sched: Move all scheduler bits into kernel/sched/
[deliverable/linux.git] / kernel / sched / rt.c
1 /*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
5
6 #include "sched.h"
7
8 #include <linux/slab.h>
9
10 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
11
12 struct rt_bandwidth def_rt_bandwidth;
13
14 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
15 {
16 struct rt_bandwidth *rt_b =
17 container_of(timer, struct rt_bandwidth, rt_period_timer);
18 ktime_t now;
19 int overrun;
20 int idle = 0;
21
22 for (;;) {
23 now = hrtimer_cb_get_time(timer);
24 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
25
26 if (!overrun)
27 break;
28
29 idle = do_sched_rt_period_timer(rt_b, overrun);
30 }
31
32 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
33 }
34
35 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
36 {
37 rt_b->rt_period = ns_to_ktime(period);
38 rt_b->rt_runtime = runtime;
39
40 raw_spin_lock_init(&rt_b->rt_runtime_lock);
41
42 hrtimer_init(&rt_b->rt_period_timer,
43 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
44 rt_b->rt_period_timer.function = sched_rt_period_timer;
45 }
46
47 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
48 {
49 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
50 return;
51
52 if (hrtimer_active(&rt_b->rt_period_timer))
53 return;
54
55 raw_spin_lock(&rt_b->rt_runtime_lock);
56 start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period);
57 raw_spin_unlock(&rt_b->rt_runtime_lock);
58 }
59
60 void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
61 {
62 struct rt_prio_array *array;
63 int i;
64
65 array = &rt_rq->active;
66 for (i = 0; i < MAX_RT_PRIO; i++) {
67 INIT_LIST_HEAD(array->queue + i);
68 __clear_bit(i, array->bitmap);
69 }
70 /* delimiter for bitsearch: */
71 __set_bit(MAX_RT_PRIO, array->bitmap);
72
73 #if defined CONFIG_SMP
74 rt_rq->highest_prio.curr = MAX_RT_PRIO;
75 rt_rq->highest_prio.next = MAX_RT_PRIO;
76 rt_rq->rt_nr_migratory = 0;
77 rt_rq->overloaded = 0;
78 plist_head_init(&rt_rq->pushable_tasks);
79 #endif
80
81 rt_rq->rt_time = 0;
82 rt_rq->rt_throttled = 0;
83 rt_rq->rt_runtime = 0;
84 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
85 }
86
87 #ifdef CONFIG_RT_GROUP_SCHED
88 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
89 {
90 hrtimer_cancel(&rt_b->rt_period_timer);
91 }
92
93 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
94
95 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
96 {
97 #ifdef CONFIG_SCHED_DEBUG
98 WARN_ON_ONCE(!rt_entity_is_task(rt_se));
99 #endif
100 return container_of(rt_se, struct task_struct, rt);
101 }
102
103 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
104 {
105 return rt_rq->rq;
106 }
107
108 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
109 {
110 return rt_se->rt_rq;
111 }
112
113 void free_rt_sched_group(struct task_group *tg)
114 {
115 int i;
116
117 if (tg->rt_se)
118 destroy_rt_bandwidth(&tg->rt_bandwidth);
119
120 for_each_possible_cpu(i) {
121 if (tg->rt_rq)
122 kfree(tg->rt_rq[i]);
123 if (tg->rt_se)
124 kfree(tg->rt_se[i]);
125 }
126
127 kfree(tg->rt_rq);
128 kfree(tg->rt_se);
129 }
130
131 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
132 struct sched_rt_entity *rt_se, int cpu,
133 struct sched_rt_entity *parent)
134 {
135 struct rq *rq = cpu_rq(cpu);
136
137 rt_rq->highest_prio.curr = MAX_RT_PRIO;
138 rt_rq->rt_nr_boosted = 0;
139 rt_rq->rq = rq;
140 rt_rq->tg = tg;
141
142 tg->rt_rq[cpu] = rt_rq;
143 tg->rt_se[cpu] = rt_se;
144
145 if (!rt_se)
146 return;
147
148 if (!parent)
149 rt_se->rt_rq = &rq->rt;
150 else
151 rt_se->rt_rq = parent->my_q;
152
153 rt_se->my_q = rt_rq;
154 rt_se->parent = parent;
155 INIT_LIST_HEAD(&rt_se->run_list);
156 }
157
158 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
159 {
160 struct rt_rq *rt_rq;
161 struct sched_rt_entity *rt_se;
162 int i;
163
164 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
165 if (!tg->rt_rq)
166 goto err;
167 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
168 if (!tg->rt_se)
169 goto err;
170
171 init_rt_bandwidth(&tg->rt_bandwidth,
172 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
173
174 for_each_possible_cpu(i) {
175 rt_rq = kzalloc_node(sizeof(struct rt_rq),
176 GFP_KERNEL, cpu_to_node(i));
177 if (!rt_rq)
178 goto err;
179
180 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
181 GFP_KERNEL, cpu_to_node(i));
182 if (!rt_se)
183 goto err_free_rq;
184
185 init_rt_rq(rt_rq, cpu_rq(i));
186 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
187 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
188 }
189
190 return 1;
191
192 err_free_rq:
193 kfree(rt_rq);
194 err:
195 return 0;
196 }
197
198 #else /* CONFIG_RT_GROUP_SCHED */
199
200 #define rt_entity_is_task(rt_se) (1)
201
202 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
203 {
204 return container_of(rt_se, struct task_struct, rt);
205 }
206
207 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
208 {
209 return container_of(rt_rq, struct rq, rt);
210 }
211
212 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
213 {
214 struct task_struct *p = rt_task_of(rt_se);
215 struct rq *rq = task_rq(p);
216
217 return &rq->rt;
218 }
219
220 void free_rt_sched_group(struct task_group *tg) { }
221
222 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
223 {
224 return 1;
225 }
226 #endif /* CONFIG_RT_GROUP_SCHED */
227
228 #ifdef CONFIG_SMP
229
230 static inline int rt_overloaded(struct rq *rq)
231 {
232 return atomic_read(&rq->rd->rto_count);
233 }
234
235 static inline void rt_set_overload(struct rq *rq)
236 {
237 if (!rq->online)
238 return;
239
240 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
241 /*
242 * Make sure the mask is visible before we set
243 * the overload count. That is checked to determine
244 * if we should look at the mask. It would be a shame
245 * if we looked at the mask, but the mask was not
246 * updated yet.
247 */
248 wmb();
249 atomic_inc(&rq->rd->rto_count);
250 }
251
252 static inline void rt_clear_overload(struct rq *rq)
253 {
254 if (!rq->online)
255 return;
256
257 /* the order here really doesn't matter */
258 atomic_dec(&rq->rd->rto_count);
259 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
260 }
261
262 static void update_rt_migration(struct rt_rq *rt_rq)
263 {
264 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
265 if (!rt_rq->overloaded) {
266 rt_set_overload(rq_of_rt_rq(rt_rq));
267 rt_rq->overloaded = 1;
268 }
269 } else if (rt_rq->overloaded) {
270 rt_clear_overload(rq_of_rt_rq(rt_rq));
271 rt_rq->overloaded = 0;
272 }
273 }
274
275 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
276 {
277 if (!rt_entity_is_task(rt_se))
278 return;
279
280 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
281
282 rt_rq->rt_nr_total++;
283 if (rt_se->nr_cpus_allowed > 1)
284 rt_rq->rt_nr_migratory++;
285
286 update_rt_migration(rt_rq);
287 }
288
289 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
290 {
291 if (!rt_entity_is_task(rt_se))
292 return;
293
294 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
295
296 rt_rq->rt_nr_total--;
297 if (rt_se->nr_cpus_allowed > 1)
298 rt_rq->rt_nr_migratory--;
299
300 update_rt_migration(rt_rq);
301 }
302
303 static inline int has_pushable_tasks(struct rq *rq)
304 {
305 return !plist_head_empty(&rq->rt.pushable_tasks);
306 }
307
308 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
309 {
310 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
311 plist_node_init(&p->pushable_tasks, p->prio);
312 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
313
314 /* Update the highest prio pushable task */
315 if (p->prio < rq->rt.highest_prio.next)
316 rq->rt.highest_prio.next = p->prio;
317 }
318
319 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
320 {
321 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
322
323 /* Update the new highest prio pushable task */
324 if (has_pushable_tasks(rq)) {
325 p = plist_first_entry(&rq->rt.pushable_tasks,
326 struct task_struct, pushable_tasks);
327 rq->rt.highest_prio.next = p->prio;
328 } else
329 rq->rt.highest_prio.next = MAX_RT_PRIO;
330 }
331
332 #else
333
334 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
335 {
336 }
337
338 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
339 {
340 }
341
342 static inline
343 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
344 {
345 }
346
347 static inline
348 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
349 {
350 }
351
352 #endif /* CONFIG_SMP */
353
354 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
355 {
356 return !list_empty(&rt_se->run_list);
357 }
358
359 #ifdef CONFIG_RT_GROUP_SCHED
360
361 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
362 {
363 if (!rt_rq->tg)
364 return RUNTIME_INF;
365
366 return rt_rq->rt_runtime;
367 }
368
369 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
370 {
371 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
372 }
373
374 typedef struct task_group *rt_rq_iter_t;
375
376 static inline struct task_group *next_task_group(struct task_group *tg)
377 {
378 do {
379 tg = list_entry_rcu(tg->list.next,
380 typeof(struct task_group), list);
381 } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
382
383 if (&tg->list == &task_groups)
384 tg = NULL;
385
386 return tg;
387 }
388
389 #define for_each_rt_rq(rt_rq, iter, rq) \
390 for (iter = container_of(&task_groups, typeof(*iter), list); \
391 (iter = next_task_group(iter)) && \
392 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
393
394 static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
395 {
396 list_add_rcu(&rt_rq->leaf_rt_rq_list,
397 &rq_of_rt_rq(rt_rq)->leaf_rt_rq_list);
398 }
399
400 static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
401 {
402 list_del_rcu(&rt_rq->leaf_rt_rq_list);
403 }
404
405 #define for_each_leaf_rt_rq(rt_rq, rq) \
406 list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
407
408 #define for_each_sched_rt_entity(rt_se) \
409 for (; rt_se; rt_se = rt_se->parent)
410
411 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
412 {
413 return rt_se->my_q;
414 }
415
416 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
417 static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
418
419 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
420 {
421 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
422 struct sched_rt_entity *rt_se;
423
424 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
425
426 rt_se = rt_rq->tg->rt_se[cpu];
427
428 if (rt_rq->rt_nr_running) {
429 if (rt_se && !on_rt_rq(rt_se))
430 enqueue_rt_entity(rt_se, false);
431 if (rt_rq->highest_prio.curr < curr->prio)
432 resched_task(curr);
433 }
434 }
435
436 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
437 {
438 struct sched_rt_entity *rt_se;
439 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
440
441 rt_se = rt_rq->tg->rt_se[cpu];
442
443 if (rt_se && on_rt_rq(rt_se))
444 dequeue_rt_entity(rt_se);
445 }
446
447 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
448 {
449 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
450 }
451
452 static int rt_se_boosted(struct sched_rt_entity *rt_se)
453 {
454 struct rt_rq *rt_rq = group_rt_rq(rt_se);
455 struct task_struct *p;
456
457 if (rt_rq)
458 return !!rt_rq->rt_nr_boosted;
459
460 p = rt_task_of(rt_se);
461 return p->prio != p->normal_prio;
462 }
463
464 #ifdef CONFIG_SMP
465 static inline const struct cpumask *sched_rt_period_mask(void)
466 {
467 return cpu_rq(smp_processor_id())->rd->span;
468 }
469 #else
470 static inline const struct cpumask *sched_rt_period_mask(void)
471 {
472 return cpu_online_mask;
473 }
474 #endif
475
476 static inline
477 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
478 {
479 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
480 }
481
482 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
483 {
484 return &rt_rq->tg->rt_bandwidth;
485 }
486
487 #else /* !CONFIG_RT_GROUP_SCHED */
488
489 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
490 {
491 return rt_rq->rt_runtime;
492 }
493
494 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
495 {
496 return ktime_to_ns(def_rt_bandwidth.rt_period);
497 }
498
499 typedef struct rt_rq *rt_rq_iter_t;
500
501 #define for_each_rt_rq(rt_rq, iter, rq) \
502 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
503
504 static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
505 {
506 }
507
508 static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
509 {
510 }
511
512 #define for_each_leaf_rt_rq(rt_rq, rq) \
513 for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
514
515 #define for_each_sched_rt_entity(rt_se) \
516 for (; rt_se; rt_se = NULL)
517
518 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
519 {
520 return NULL;
521 }
522
523 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
524 {
525 if (rt_rq->rt_nr_running)
526 resched_task(rq_of_rt_rq(rt_rq)->curr);
527 }
528
529 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
530 {
531 }
532
533 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
534 {
535 return rt_rq->rt_throttled;
536 }
537
538 static inline const struct cpumask *sched_rt_period_mask(void)
539 {
540 return cpu_online_mask;
541 }
542
543 static inline
544 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
545 {
546 return &cpu_rq(cpu)->rt;
547 }
548
549 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
550 {
551 return &def_rt_bandwidth;
552 }
553
554 #endif /* CONFIG_RT_GROUP_SCHED */
555
556 #ifdef CONFIG_SMP
557 /*
558 * We ran out of runtime, see if we can borrow some from our neighbours.
559 */
560 static int do_balance_runtime(struct rt_rq *rt_rq)
561 {
562 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
563 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
564 int i, weight, more = 0;
565 u64 rt_period;
566
567 weight = cpumask_weight(rd->span);
568
569 raw_spin_lock(&rt_b->rt_runtime_lock);
570 rt_period = ktime_to_ns(rt_b->rt_period);
571 for_each_cpu(i, rd->span) {
572 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
573 s64 diff;
574
575 if (iter == rt_rq)
576 continue;
577
578 raw_spin_lock(&iter->rt_runtime_lock);
579 /*
580 * Either all rqs have inf runtime and there's nothing to steal
581 * or __disable_runtime() below sets a specific rq to inf to
582 * indicate its been disabled and disalow stealing.
583 */
584 if (iter->rt_runtime == RUNTIME_INF)
585 goto next;
586
587 /*
588 * From runqueues with spare time, take 1/n part of their
589 * spare time, but no more than our period.
590 */
591 diff = iter->rt_runtime - iter->rt_time;
592 if (diff > 0) {
593 diff = div_u64((u64)diff, weight);
594 if (rt_rq->rt_runtime + diff > rt_period)
595 diff = rt_period - rt_rq->rt_runtime;
596 iter->rt_runtime -= diff;
597 rt_rq->rt_runtime += diff;
598 more = 1;
599 if (rt_rq->rt_runtime == rt_period) {
600 raw_spin_unlock(&iter->rt_runtime_lock);
601 break;
602 }
603 }
604 next:
605 raw_spin_unlock(&iter->rt_runtime_lock);
606 }
607 raw_spin_unlock(&rt_b->rt_runtime_lock);
608
609 return more;
610 }
611
612 /*
613 * Ensure this RQ takes back all the runtime it lend to its neighbours.
614 */
615 static void __disable_runtime(struct rq *rq)
616 {
617 struct root_domain *rd = rq->rd;
618 rt_rq_iter_t iter;
619 struct rt_rq *rt_rq;
620
621 if (unlikely(!scheduler_running))
622 return;
623
624 for_each_rt_rq(rt_rq, iter, rq) {
625 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
626 s64 want;
627 int i;
628
629 raw_spin_lock(&rt_b->rt_runtime_lock);
630 raw_spin_lock(&rt_rq->rt_runtime_lock);
631 /*
632 * Either we're all inf and nobody needs to borrow, or we're
633 * already disabled and thus have nothing to do, or we have
634 * exactly the right amount of runtime to take out.
635 */
636 if (rt_rq->rt_runtime == RUNTIME_INF ||
637 rt_rq->rt_runtime == rt_b->rt_runtime)
638 goto balanced;
639 raw_spin_unlock(&rt_rq->rt_runtime_lock);
640
641 /*
642 * Calculate the difference between what we started out with
643 * and what we current have, that's the amount of runtime
644 * we lend and now have to reclaim.
645 */
646 want = rt_b->rt_runtime - rt_rq->rt_runtime;
647
648 /*
649 * Greedy reclaim, take back as much as we can.
650 */
651 for_each_cpu(i, rd->span) {
652 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
653 s64 diff;
654
655 /*
656 * Can't reclaim from ourselves or disabled runqueues.
657 */
658 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
659 continue;
660
661 raw_spin_lock(&iter->rt_runtime_lock);
662 if (want > 0) {
663 diff = min_t(s64, iter->rt_runtime, want);
664 iter->rt_runtime -= diff;
665 want -= diff;
666 } else {
667 iter->rt_runtime -= want;
668 want -= want;
669 }
670 raw_spin_unlock(&iter->rt_runtime_lock);
671
672 if (!want)
673 break;
674 }
675
676 raw_spin_lock(&rt_rq->rt_runtime_lock);
677 /*
678 * We cannot be left wanting - that would mean some runtime
679 * leaked out of the system.
680 */
681 BUG_ON(want);
682 balanced:
683 /*
684 * Disable all the borrow logic by pretending we have inf
685 * runtime - in which case borrowing doesn't make sense.
686 */
687 rt_rq->rt_runtime = RUNTIME_INF;
688 raw_spin_unlock(&rt_rq->rt_runtime_lock);
689 raw_spin_unlock(&rt_b->rt_runtime_lock);
690 }
691 }
692
693 static void disable_runtime(struct rq *rq)
694 {
695 unsigned long flags;
696
697 raw_spin_lock_irqsave(&rq->lock, flags);
698 __disable_runtime(rq);
699 raw_spin_unlock_irqrestore(&rq->lock, flags);
700 }
701
702 static void __enable_runtime(struct rq *rq)
703 {
704 rt_rq_iter_t iter;
705 struct rt_rq *rt_rq;
706
707 if (unlikely(!scheduler_running))
708 return;
709
710 /*
711 * Reset each runqueue's bandwidth settings
712 */
713 for_each_rt_rq(rt_rq, iter, rq) {
714 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
715
716 raw_spin_lock(&rt_b->rt_runtime_lock);
717 raw_spin_lock(&rt_rq->rt_runtime_lock);
718 rt_rq->rt_runtime = rt_b->rt_runtime;
719 rt_rq->rt_time = 0;
720 rt_rq->rt_throttled = 0;
721 raw_spin_unlock(&rt_rq->rt_runtime_lock);
722 raw_spin_unlock(&rt_b->rt_runtime_lock);
723 }
724 }
725
726 static void enable_runtime(struct rq *rq)
727 {
728 unsigned long flags;
729
730 raw_spin_lock_irqsave(&rq->lock, flags);
731 __enable_runtime(rq);
732 raw_spin_unlock_irqrestore(&rq->lock, flags);
733 }
734
735 int update_runtime(struct notifier_block *nfb, unsigned long action, void *hcpu)
736 {
737 int cpu = (int)(long)hcpu;
738
739 switch (action) {
740 case CPU_DOWN_PREPARE:
741 case CPU_DOWN_PREPARE_FROZEN:
742 disable_runtime(cpu_rq(cpu));
743 return NOTIFY_OK;
744
745 case CPU_DOWN_FAILED:
746 case CPU_DOWN_FAILED_FROZEN:
747 case CPU_ONLINE:
748 case CPU_ONLINE_FROZEN:
749 enable_runtime(cpu_rq(cpu));
750 return NOTIFY_OK;
751
752 default:
753 return NOTIFY_DONE;
754 }
755 }
756
757 static int balance_runtime(struct rt_rq *rt_rq)
758 {
759 int more = 0;
760
761 if (!sched_feat(RT_RUNTIME_SHARE))
762 return more;
763
764 if (rt_rq->rt_time > rt_rq->rt_runtime) {
765 raw_spin_unlock(&rt_rq->rt_runtime_lock);
766 more = do_balance_runtime(rt_rq);
767 raw_spin_lock(&rt_rq->rt_runtime_lock);
768 }
769
770 return more;
771 }
772 #else /* !CONFIG_SMP */
773 static inline int balance_runtime(struct rt_rq *rt_rq)
774 {
775 return 0;
776 }
777 #endif /* CONFIG_SMP */
778
779 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
780 {
781 int i, idle = 1;
782 const struct cpumask *span;
783
784 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
785 return 1;
786
787 span = sched_rt_period_mask();
788 for_each_cpu(i, span) {
789 int enqueue = 0;
790 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
791 struct rq *rq = rq_of_rt_rq(rt_rq);
792
793 raw_spin_lock(&rq->lock);
794 if (rt_rq->rt_time) {
795 u64 runtime;
796
797 raw_spin_lock(&rt_rq->rt_runtime_lock);
798 if (rt_rq->rt_throttled)
799 balance_runtime(rt_rq);
800 runtime = rt_rq->rt_runtime;
801 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
802 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
803 rt_rq->rt_throttled = 0;
804 enqueue = 1;
805
806 /*
807 * Force a clock update if the CPU was idle,
808 * lest wakeup -> unthrottle time accumulate.
809 */
810 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
811 rq->skip_clock_update = -1;
812 }
813 if (rt_rq->rt_time || rt_rq->rt_nr_running)
814 idle = 0;
815 raw_spin_unlock(&rt_rq->rt_runtime_lock);
816 } else if (rt_rq->rt_nr_running) {
817 idle = 0;
818 if (!rt_rq_throttled(rt_rq))
819 enqueue = 1;
820 }
821
822 if (enqueue)
823 sched_rt_rq_enqueue(rt_rq);
824 raw_spin_unlock(&rq->lock);
825 }
826
827 return idle;
828 }
829
830 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
831 {
832 #ifdef CONFIG_RT_GROUP_SCHED
833 struct rt_rq *rt_rq = group_rt_rq(rt_se);
834
835 if (rt_rq)
836 return rt_rq->highest_prio.curr;
837 #endif
838
839 return rt_task_of(rt_se)->prio;
840 }
841
842 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
843 {
844 u64 runtime = sched_rt_runtime(rt_rq);
845
846 if (rt_rq->rt_throttled)
847 return rt_rq_throttled(rt_rq);
848
849 if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
850 return 0;
851
852 balance_runtime(rt_rq);
853 runtime = sched_rt_runtime(rt_rq);
854 if (runtime == RUNTIME_INF)
855 return 0;
856
857 if (rt_rq->rt_time > runtime) {
858 rt_rq->rt_throttled = 1;
859 printk_once(KERN_WARNING "sched: RT throttling activated\n");
860 if (rt_rq_throttled(rt_rq)) {
861 sched_rt_rq_dequeue(rt_rq);
862 return 1;
863 }
864 }
865
866 return 0;
867 }
868
869 /*
870 * Update the current task's runtime statistics. Skip current tasks that
871 * are not in our scheduling class.
872 */
873 static void update_curr_rt(struct rq *rq)
874 {
875 struct task_struct *curr = rq->curr;
876 struct sched_rt_entity *rt_se = &curr->rt;
877 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
878 u64 delta_exec;
879
880 if (curr->sched_class != &rt_sched_class)
881 return;
882
883 delta_exec = rq->clock_task - curr->se.exec_start;
884 if (unlikely((s64)delta_exec < 0))
885 delta_exec = 0;
886
887 schedstat_set(curr->se.statistics.exec_max, max(curr->se.statistics.exec_max, delta_exec));
888
889 curr->se.sum_exec_runtime += delta_exec;
890 account_group_exec_runtime(curr, delta_exec);
891
892 curr->se.exec_start = rq->clock_task;
893 cpuacct_charge(curr, delta_exec);
894
895 sched_rt_avg_update(rq, delta_exec);
896
897 if (!rt_bandwidth_enabled())
898 return;
899
900 for_each_sched_rt_entity(rt_se) {
901 rt_rq = rt_rq_of_se(rt_se);
902
903 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
904 raw_spin_lock(&rt_rq->rt_runtime_lock);
905 rt_rq->rt_time += delta_exec;
906 if (sched_rt_runtime_exceeded(rt_rq))
907 resched_task(curr);
908 raw_spin_unlock(&rt_rq->rt_runtime_lock);
909 }
910 }
911 }
912
913 #if defined CONFIG_SMP
914
915 static void
916 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
917 {
918 struct rq *rq = rq_of_rt_rq(rt_rq);
919
920 if (rq->online && prio < prev_prio)
921 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
922 }
923
924 static void
925 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
926 {
927 struct rq *rq = rq_of_rt_rq(rt_rq);
928
929 if (rq->online && rt_rq->highest_prio.curr != prev_prio)
930 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
931 }
932
933 #else /* CONFIG_SMP */
934
935 static inline
936 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
937 static inline
938 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
939
940 #endif /* CONFIG_SMP */
941
942 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
943 static void
944 inc_rt_prio(struct rt_rq *rt_rq, int prio)
945 {
946 int prev_prio = rt_rq->highest_prio.curr;
947
948 if (prio < prev_prio)
949 rt_rq->highest_prio.curr = prio;
950
951 inc_rt_prio_smp(rt_rq, prio, prev_prio);
952 }
953
954 static void
955 dec_rt_prio(struct rt_rq *rt_rq, int prio)
956 {
957 int prev_prio = rt_rq->highest_prio.curr;
958
959 if (rt_rq->rt_nr_running) {
960
961 WARN_ON(prio < prev_prio);
962
963 /*
964 * This may have been our highest task, and therefore
965 * we may have some recomputation to do
966 */
967 if (prio == prev_prio) {
968 struct rt_prio_array *array = &rt_rq->active;
969
970 rt_rq->highest_prio.curr =
971 sched_find_first_bit(array->bitmap);
972 }
973
974 } else
975 rt_rq->highest_prio.curr = MAX_RT_PRIO;
976
977 dec_rt_prio_smp(rt_rq, prio, prev_prio);
978 }
979
980 #else
981
982 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
983 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
984
985 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
986
987 #ifdef CONFIG_RT_GROUP_SCHED
988
989 static void
990 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
991 {
992 if (rt_se_boosted(rt_se))
993 rt_rq->rt_nr_boosted++;
994
995 if (rt_rq->tg)
996 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
997 }
998
999 static void
1000 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1001 {
1002 if (rt_se_boosted(rt_se))
1003 rt_rq->rt_nr_boosted--;
1004
1005 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1006 }
1007
1008 #else /* CONFIG_RT_GROUP_SCHED */
1009
1010 static void
1011 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1012 {
1013 start_rt_bandwidth(&def_rt_bandwidth);
1014 }
1015
1016 static inline
1017 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1018
1019 #endif /* CONFIG_RT_GROUP_SCHED */
1020
1021 static inline
1022 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1023 {
1024 int prio = rt_se_prio(rt_se);
1025
1026 WARN_ON(!rt_prio(prio));
1027 rt_rq->rt_nr_running++;
1028
1029 inc_rt_prio(rt_rq, prio);
1030 inc_rt_migration(rt_se, rt_rq);
1031 inc_rt_group(rt_se, rt_rq);
1032 }
1033
1034 static inline
1035 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1036 {
1037 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1038 WARN_ON(!rt_rq->rt_nr_running);
1039 rt_rq->rt_nr_running--;
1040
1041 dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1042 dec_rt_migration(rt_se, rt_rq);
1043 dec_rt_group(rt_se, rt_rq);
1044 }
1045
1046 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1047 {
1048 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1049 struct rt_prio_array *array = &rt_rq->active;
1050 struct rt_rq *group_rq = group_rt_rq(rt_se);
1051 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1052
1053 /*
1054 * Don't enqueue the group if its throttled, or when empty.
1055 * The latter is a consequence of the former when a child group
1056 * get throttled and the current group doesn't have any other
1057 * active members.
1058 */
1059 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
1060 return;
1061
1062 if (!rt_rq->rt_nr_running)
1063 list_add_leaf_rt_rq(rt_rq);
1064
1065 if (head)
1066 list_add(&rt_se->run_list, queue);
1067 else
1068 list_add_tail(&rt_se->run_list, queue);
1069 __set_bit(rt_se_prio(rt_se), array->bitmap);
1070
1071 inc_rt_tasks(rt_se, rt_rq);
1072 }
1073
1074 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
1075 {
1076 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1077 struct rt_prio_array *array = &rt_rq->active;
1078
1079 list_del_init(&rt_se->run_list);
1080 if (list_empty(array->queue + rt_se_prio(rt_se)))
1081 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1082
1083 dec_rt_tasks(rt_se, rt_rq);
1084 if (!rt_rq->rt_nr_running)
1085 list_del_leaf_rt_rq(rt_rq);
1086 }
1087
1088 /*
1089 * Because the prio of an upper entry depends on the lower
1090 * entries, we must remove entries top - down.
1091 */
1092 static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
1093 {
1094 struct sched_rt_entity *back = NULL;
1095
1096 for_each_sched_rt_entity(rt_se) {
1097 rt_se->back = back;
1098 back = rt_se;
1099 }
1100
1101 for (rt_se = back; rt_se; rt_se = rt_se->back) {
1102 if (on_rt_rq(rt_se))
1103 __dequeue_rt_entity(rt_se);
1104 }
1105 }
1106
1107 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1108 {
1109 dequeue_rt_stack(rt_se);
1110 for_each_sched_rt_entity(rt_se)
1111 __enqueue_rt_entity(rt_se, head);
1112 }
1113
1114 static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
1115 {
1116 dequeue_rt_stack(rt_se);
1117
1118 for_each_sched_rt_entity(rt_se) {
1119 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1120
1121 if (rt_rq && rt_rq->rt_nr_running)
1122 __enqueue_rt_entity(rt_se, false);
1123 }
1124 }
1125
1126 /*
1127 * Adding/removing a task to/from a priority array:
1128 */
1129 static void
1130 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1131 {
1132 struct sched_rt_entity *rt_se = &p->rt;
1133
1134 if (flags & ENQUEUE_WAKEUP)
1135 rt_se->timeout = 0;
1136
1137 enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
1138
1139 if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1)
1140 enqueue_pushable_task(rq, p);
1141
1142 inc_nr_running(rq);
1143 }
1144
1145 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1146 {
1147 struct sched_rt_entity *rt_se = &p->rt;
1148
1149 update_curr_rt(rq);
1150 dequeue_rt_entity(rt_se);
1151
1152 dequeue_pushable_task(rq, p);
1153
1154 dec_nr_running(rq);
1155 }
1156
1157 /*
1158 * Put task to the head or the end of the run list without the overhead of
1159 * dequeue followed by enqueue.
1160 */
1161 static void
1162 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1163 {
1164 if (on_rt_rq(rt_se)) {
1165 struct rt_prio_array *array = &rt_rq->active;
1166 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1167
1168 if (head)
1169 list_move(&rt_se->run_list, queue);
1170 else
1171 list_move_tail(&rt_se->run_list, queue);
1172 }
1173 }
1174
1175 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1176 {
1177 struct sched_rt_entity *rt_se = &p->rt;
1178 struct rt_rq *rt_rq;
1179
1180 for_each_sched_rt_entity(rt_se) {
1181 rt_rq = rt_rq_of_se(rt_se);
1182 requeue_rt_entity(rt_rq, rt_se, head);
1183 }
1184 }
1185
1186 static void yield_task_rt(struct rq *rq)
1187 {
1188 requeue_task_rt(rq, rq->curr, 0);
1189 }
1190
1191 #ifdef CONFIG_SMP
1192 static int find_lowest_rq(struct task_struct *task);
1193
1194 static int
1195 select_task_rq_rt(struct task_struct *p, int sd_flag, int flags)
1196 {
1197 struct task_struct *curr;
1198 struct rq *rq;
1199 int cpu;
1200
1201 cpu = task_cpu(p);
1202
1203 /* For anything but wake ups, just return the task_cpu */
1204 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1205 goto out;
1206
1207 rq = cpu_rq(cpu);
1208
1209 rcu_read_lock();
1210 curr = ACCESS_ONCE(rq->curr); /* unlocked access */
1211
1212 /*
1213 * If the current task on @p's runqueue is an RT task, then
1214 * try to see if we can wake this RT task up on another
1215 * runqueue. Otherwise simply start this RT task
1216 * on its current runqueue.
1217 *
1218 * We want to avoid overloading runqueues. If the woken
1219 * task is a higher priority, then it will stay on this CPU
1220 * and the lower prio task should be moved to another CPU.
1221 * Even though this will probably make the lower prio task
1222 * lose its cache, we do not want to bounce a higher task
1223 * around just because it gave up its CPU, perhaps for a
1224 * lock?
1225 *
1226 * For equal prio tasks, we just let the scheduler sort it out.
1227 *
1228 * Otherwise, just let it ride on the affined RQ and the
1229 * post-schedule router will push the preempted task away
1230 *
1231 * This test is optimistic, if we get it wrong the load-balancer
1232 * will have to sort it out.
1233 */
1234 if (curr && unlikely(rt_task(curr)) &&
1235 (curr->rt.nr_cpus_allowed < 2 ||
1236 curr->prio <= p->prio) &&
1237 (p->rt.nr_cpus_allowed > 1)) {
1238 int target = find_lowest_rq(p);
1239
1240 if (target != -1)
1241 cpu = target;
1242 }
1243 rcu_read_unlock();
1244
1245 out:
1246 return cpu;
1247 }
1248
1249 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1250 {
1251 if (rq->curr->rt.nr_cpus_allowed == 1)
1252 return;
1253
1254 if (p->rt.nr_cpus_allowed != 1
1255 && cpupri_find(&rq->rd->cpupri, p, NULL))
1256 return;
1257
1258 if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1259 return;
1260
1261 /*
1262 * There appears to be other cpus that can accept
1263 * current and none to run 'p', so lets reschedule
1264 * to try and push current away:
1265 */
1266 requeue_task_rt(rq, p, 1);
1267 resched_task(rq->curr);
1268 }
1269
1270 #endif /* CONFIG_SMP */
1271
1272 /*
1273 * Preempt the current task with a newly woken task if needed:
1274 */
1275 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1276 {
1277 if (p->prio < rq->curr->prio) {
1278 resched_task(rq->curr);
1279 return;
1280 }
1281
1282 #ifdef CONFIG_SMP
1283 /*
1284 * If:
1285 *
1286 * - the newly woken task is of equal priority to the current task
1287 * - the newly woken task is non-migratable while current is migratable
1288 * - current will be preempted on the next reschedule
1289 *
1290 * we should check to see if current can readily move to a different
1291 * cpu. If so, we will reschedule to allow the push logic to try
1292 * to move current somewhere else, making room for our non-migratable
1293 * task.
1294 */
1295 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1296 check_preempt_equal_prio(rq, p);
1297 #endif
1298 }
1299
1300 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1301 struct rt_rq *rt_rq)
1302 {
1303 struct rt_prio_array *array = &rt_rq->active;
1304 struct sched_rt_entity *next = NULL;
1305 struct list_head *queue;
1306 int idx;
1307
1308 idx = sched_find_first_bit(array->bitmap);
1309 BUG_ON(idx >= MAX_RT_PRIO);
1310
1311 queue = array->queue + idx;
1312 next = list_entry(queue->next, struct sched_rt_entity, run_list);
1313
1314 return next;
1315 }
1316
1317 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1318 {
1319 struct sched_rt_entity *rt_se;
1320 struct task_struct *p;
1321 struct rt_rq *rt_rq;
1322
1323 rt_rq = &rq->rt;
1324
1325 if (!rt_rq->rt_nr_running)
1326 return NULL;
1327
1328 if (rt_rq_throttled(rt_rq))
1329 return NULL;
1330
1331 do {
1332 rt_se = pick_next_rt_entity(rq, rt_rq);
1333 BUG_ON(!rt_se);
1334 rt_rq = group_rt_rq(rt_se);
1335 } while (rt_rq);
1336
1337 p = rt_task_of(rt_se);
1338 p->se.exec_start = rq->clock_task;
1339
1340 return p;
1341 }
1342
1343 static struct task_struct *pick_next_task_rt(struct rq *rq)
1344 {
1345 struct task_struct *p = _pick_next_task_rt(rq);
1346
1347 /* The running task is never eligible for pushing */
1348 if (p)
1349 dequeue_pushable_task(rq, p);
1350
1351 #ifdef CONFIG_SMP
1352 /*
1353 * We detect this state here so that we can avoid taking the RQ
1354 * lock again later if there is no need to push
1355 */
1356 rq->post_schedule = has_pushable_tasks(rq);
1357 #endif
1358
1359 return p;
1360 }
1361
1362 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1363 {
1364 update_curr_rt(rq);
1365
1366 /*
1367 * The previous task needs to be made eligible for pushing
1368 * if it is still active
1369 */
1370 if (on_rt_rq(&p->rt) && p->rt.nr_cpus_allowed > 1)
1371 enqueue_pushable_task(rq, p);
1372 }
1373
1374 #ifdef CONFIG_SMP
1375
1376 /* Only try algorithms three times */
1377 #define RT_MAX_TRIES 3
1378
1379 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1380 {
1381 if (!task_running(rq, p) &&
1382 (cpu < 0 || cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) &&
1383 (p->rt.nr_cpus_allowed > 1))
1384 return 1;
1385 return 0;
1386 }
1387
1388 /* Return the second highest RT task, NULL otherwise */
1389 static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
1390 {
1391 struct task_struct *next = NULL;
1392 struct sched_rt_entity *rt_se;
1393 struct rt_prio_array *array;
1394 struct rt_rq *rt_rq;
1395 int idx;
1396
1397 for_each_leaf_rt_rq(rt_rq, rq) {
1398 array = &rt_rq->active;
1399 idx = sched_find_first_bit(array->bitmap);
1400 next_idx:
1401 if (idx >= MAX_RT_PRIO)
1402 continue;
1403 if (next && next->prio < idx)
1404 continue;
1405 list_for_each_entry(rt_se, array->queue + idx, run_list) {
1406 struct task_struct *p;
1407
1408 if (!rt_entity_is_task(rt_se))
1409 continue;
1410
1411 p = rt_task_of(rt_se);
1412 if (pick_rt_task(rq, p, cpu)) {
1413 next = p;
1414 break;
1415 }
1416 }
1417 if (!next) {
1418 idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
1419 goto next_idx;
1420 }
1421 }
1422
1423 return next;
1424 }
1425
1426 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1427
1428 static int find_lowest_rq(struct task_struct *task)
1429 {
1430 struct sched_domain *sd;
1431 struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
1432 int this_cpu = smp_processor_id();
1433 int cpu = task_cpu(task);
1434
1435 /* Make sure the mask is initialized first */
1436 if (unlikely(!lowest_mask))
1437 return -1;
1438
1439 if (task->rt.nr_cpus_allowed == 1)
1440 return -1; /* No other targets possible */
1441
1442 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1443 return -1; /* No targets found */
1444
1445 /*
1446 * At this point we have built a mask of cpus representing the
1447 * lowest priority tasks in the system. Now we want to elect
1448 * the best one based on our affinity and topology.
1449 *
1450 * We prioritize the last cpu that the task executed on since
1451 * it is most likely cache-hot in that location.
1452 */
1453 if (cpumask_test_cpu(cpu, lowest_mask))
1454 return cpu;
1455
1456 /*
1457 * Otherwise, we consult the sched_domains span maps to figure
1458 * out which cpu is logically closest to our hot cache data.
1459 */
1460 if (!cpumask_test_cpu(this_cpu, lowest_mask))
1461 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1462
1463 rcu_read_lock();
1464 for_each_domain(cpu, sd) {
1465 if (sd->flags & SD_WAKE_AFFINE) {
1466 int best_cpu;
1467
1468 /*
1469 * "this_cpu" is cheaper to preempt than a
1470 * remote processor.
1471 */
1472 if (this_cpu != -1 &&
1473 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1474 rcu_read_unlock();
1475 return this_cpu;
1476 }
1477
1478 best_cpu = cpumask_first_and(lowest_mask,
1479 sched_domain_span(sd));
1480 if (best_cpu < nr_cpu_ids) {
1481 rcu_read_unlock();
1482 return best_cpu;
1483 }
1484 }
1485 }
1486 rcu_read_unlock();
1487
1488 /*
1489 * And finally, if there were no matches within the domains
1490 * just give the caller *something* to work with from the compatible
1491 * locations.
1492 */
1493 if (this_cpu != -1)
1494 return this_cpu;
1495
1496 cpu = cpumask_any(lowest_mask);
1497 if (cpu < nr_cpu_ids)
1498 return cpu;
1499 return -1;
1500 }
1501
1502 /* Will lock the rq it finds */
1503 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1504 {
1505 struct rq *lowest_rq = NULL;
1506 int tries;
1507 int cpu;
1508
1509 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1510 cpu = find_lowest_rq(task);
1511
1512 if ((cpu == -1) || (cpu == rq->cpu))
1513 break;
1514
1515 lowest_rq = cpu_rq(cpu);
1516
1517 /* if the prio of this runqueue changed, try again */
1518 if (double_lock_balance(rq, lowest_rq)) {
1519 /*
1520 * We had to unlock the run queue. In
1521 * the mean time, task could have
1522 * migrated already or had its affinity changed.
1523 * Also make sure that it wasn't scheduled on its rq.
1524 */
1525 if (unlikely(task_rq(task) != rq ||
1526 !cpumask_test_cpu(lowest_rq->cpu,
1527 tsk_cpus_allowed(task)) ||
1528 task_running(rq, task) ||
1529 !task->on_rq)) {
1530
1531 raw_spin_unlock(&lowest_rq->lock);
1532 lowest_rq = NULL;
1533 break;
1534 }
1535 }
1536
1537 /* If this rq is still suitable use it. */
1538 if (lowest_rq->rt.highest_prio.curr > task->prio)
1539 break;
1540
1541 /* try again */
1542 double_unlock_balance(rq, lowest_rq);
1543 lowest_rq = NULL;
1544 }
1545
1546 return lowest_rq;
1547 }
1548
1549 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1550 {
1551 struct task_struct *p;
1552
1553 if (!has_pushable_tasks(rq))
1554 return NULL;
1555
1556 p = plist_first_entry(&rq->rt.pushable_tasks,
1557 struct task_struct, pushable_tasks);
1558
1559 BUG_ON(rq->cpu != task_cpu(p));
1560 BUG_ON(task_current(rq, p));
1561 BUG_ON(p->rt.nr_cpus_allowed <= 1);
1562
1563 BUG_ON(!p->on_rq);
1564 BUG_ON(!rt_task(p));
1565
1566 return p;
1567 }
1568
1569 /*
1570 * If the current CPU has more than one RT task, see if the non
1571 * running task can migrate over to a CPU that is running a task
1572 * of lesser priority.
1573 */
1574 static int push_rt_task(struct rq *rq)
1575 {
1576 struct task_struct *next_task;
1577 struct rq *lowest_rq;
1578 int ret = 0;
1579
1580 if (!rq->rt.overloaded)
1581 return 0;
1582
1583 next_task = pick_next_pushable_task(rq);
1584 if (!next_task)
1585 return 0;
1586
1587 retry:
1588 if (unlikely(next_task == rq->curr)) {
1589 WARN_ON(1);
1590 return 0;
1591 }
1592
1593 /*
1594 * It's possible that the next_task slipped in of
1595 * higher priority than current. If that's the case
1596 * just reschedule current.
1597 */
1598 if (unlikely(next_task->prio < rq->curr->prio)) {
1599 resched_task(rq->curr);
1600 return 0;
1601 }
1602
1603 /* We might release rq lock */
1604 get_task_struct(next_task);
1605
1606 /* find_lock_lowest_rq locks the rq if found */
1607 lowest_rq = find_lock_lowest_rq(next_task, rq);
1608 if (!lowest_rq) {
1609 struct task_struct *task;
1610 /*
1611 * find_lock_lowest_rq releases rq->lock
1612 * so it is possible that next_task has migrated.
1613 *
1614 * We need to make sure that the task is still on the same
1615 * run-queue and is also still the next task eligible for
1616 * pushing.
1617 */
1618 task = pick_next_pushable_task(rq);
1619 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1620 /*
1621 * The task hasn't migrated, and is still the next
1622 * eligible task, but we failed to find a run-queue
1623 * to push it to. Do not retry in this case, since
1624 * other cpus will pull from us when ready.
1625 */
1626 goto out;
1627 }
1628
1629 if (!task)
1630 /* No more tasks, just exit */
1631 goto out;
1632
1633 /*
1634 * Something has shifted, try again.
1635 */
1636 put_task_struct(next_task);
1637 next_task = task;
1638 goto retry;
1639 }
1640
1641 deactivate_task(rq, next_task, 0);
1642 set_task_cpu(next_task, lowest_rq->cpu);
1643 activate_task(lowest_rq, next_task, 0);
1644 ret = 1;
1645
1646 resched_task(lowest_rq->curr);
1647
1648 double_unlock_balance(rq, lowest_rq);
1649
1650 out:
1651 put_task_struct(next_task);
1652
1653 return ret;
1654 }
1655
1656 static void push_rt_tasks(struct rq *rq)
1657 {
1658 /* push_rt_task will return true if it moved an RT */
1659 while (push_rt_task(rq))
1660 ;
1661 }
1662
1663 static int pull_rt_task(struct rq *this_rq)
1664 {
1665 int this_cpu = this_rq->cpu, ret = 0, cpu;
1666 struct task_struct *p;
1667 struct rq *src_rq;
1668
1669 if (likely(!rt_overloaded(this_rq)))
1670 return 0;
1671
1672 for_each_cpu(cpu, this_rq->rd->rto_mask) {
1673 if (this_cpu == cpu)
1674 continue;
1675
1676 src_rq = cpu_rq(cpu);
1677
1678 /*
1679 * Don't bother taking the src_rq->lock if the next highest
1680 * task is known to be lower-priority than our current task.
1681 * This may look racy, but if this value is about to go
1682 * logically higher, the src_rq will push this task away.
1683 * And if its going logically lower, we do not care
1684 */
1685 if (src_rq->rt.highest_prio.next >=
1686 this_rq->rt.highest_prio.curr)
1687 continue;
1688
1689 /*
1690 * We can potentially drop this_rq's lock in
1691 * double_lock_balance, and another CPU could
1692 * alter this_rq
1693 */
1694 double_lock_balance(this_rq, src_rq);
1695
1696 /*
1697 * Are there still pullable RT tasks?
1698 */
1699 if (src_rq->rt.rt_nr_running <= 1)
1700 goto skip;
1701
1702 p = pick_next_highest_task_rt(src_rq, this_cpu);
1703
1704 /*
1705 * Do we have an RT task that preempts
1706 * the to-be-scheduled task?
1707 */
1708 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
1709 WARN_ON(p == src_rq->curr);
1710 WARN_ON(!p->on_rq);
1711
1712 /*
1713 * There's a chance that p is higher in priority
1714 * than what's currently running on its cpu.
1715 * This is just that p is wakeing up and hasn't
1716 * had a chance to schedule. We only pull
1717 * p if it is lower in priority than the
1718 * current task on the run queue
1719 */
1720 if (p->prio < src_rq->curr->prio)
1721 goto skip;
1722
1723 ret = 1;
1724
1725 deactivate_task(src_rq, p, 0);
1726 set_task_cpu(p, this_cpu);
1727 activate_task(this_rq, p, 0);
1728 /*
1729 * We continue with the search, just in
1730 * case there's an even higher prio task
1731 * in another runqueue. (low likelihood
1732 * but possible)
1733 */
1734 }
1735 skip:
1736 double_unlock_balance(this_rq, src_rq);
1737 }
1738
1739 return ret;
1740 }
1741
1742 static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
1743 {
1744 /* Try to pull RT tasks here if we lower this rq's prio */
1745 if (rq->rt.highest_prio.curr > prev->prio)
1746 pull_rt_task(rq);
1747 }
1748
1749 static void post_schedule_rt(struct rq *rq)
1750 {
1751 push_rt_tasks(rq);
1752 }
1753
1754 /*
1755 * If we are not running and we are not going to reschedule soon, we should
1756 * try to push tasks away now
1757 */
1758 static void task_woken_rt(struct rq *rq, struct task_struct *p)
1759 {
1760 if (!task_running(rq, p) &&
1761 !test_tsk_need_resched(rq->curr) &&
1762 has_pushable_tasks(rq) &&
1763 p->rt.nr_cpus_allowed > 1 &&
1764 rt_task(rq->curr) &&
1765 (rq->curr->rt.nr_cpus_allowed < 2 ||
1766 rq->curr->prio <= p->prio))
1767 push_rt_tasks(rq);
1768 }
1769
1770 static void set_cpus_allowed_rt(struct task_struct *p,
1771 const struct cpumask *new_mask)
1772 {
1773 int weight = cpumask_weight(new_mask);
1774
1775 BUG_ON(!rt_task(p));
1776
1777 /*
1778 * Update the migration status of the RQ if we have an RT task
1779 * which is running AND changing its weight value.
1780 */
1781 if (p->on_rq && (weight != p->rt.nr_cpus_allowed)) {
1782 struct rq *rq = task_rq(p);
1783
1784 if (!task_current(rq, p)) {
1785 /*
1786 * Make sure we dequeue this task from the pushable list
1787 * before going further. It will either remain off of
1788 * the list because we are no longer pushable, or it
1789 * will be requeued.
1790 */
1791 if (p->rt.nr_cpus_allowed > 1)
1792 dequeue_pushable_task(rq, p);
1793
1794 /*
1795 * Requeue if our weight is changing and still > 1
1796 */
1797 if (weight > 1)
1798 enqueue_pushable_task(rq, p);
1799
1800 }
1801
1802 if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
1803 rq->rt.rt_nr_migratory++;
1804 } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
1805 BUG_ON(!rq->rt.rt_nr_migratory);
1806 rq->rt.rt_nr_migratory--;
1807 }
1808
1809 update_rt_migration(&rq->rt);
1810 }
1811 }
1812
1813 /* Assumes rq->lock is held */
1814 static void rq_online_rt(struct rq *rq)
1815 {
1816 if (rq->rt.overloaded)
1817 rt_set_overload(rq);
1818
1819 __enable_runtime(rq);
1820
1821 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1822 }
1823
1824 /* Assumes rq->lock is held */
1825 static void rq_offline_rt(struct rq *rq)
1826 {
1827 if (rq->rt.overloaded)
1828 rt_clear_overload(rq);
1829
1830 __disable_runtime(rq);
1831
1832 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1833 }
1834
1835 /*
1836 * When switch from the rt queue, we bring ourselves to a position
1837 * that we might want to pull RT tasks from other runqueues.
1838 */
1839 static void switched_from_rt(struct rq *rq, struct task_struct *p)
1840 {
1841 /*
1842 * If there are other RT tasks then we will reschedule
1843 * and the scheduling of the other RT tasks will handle
1844 * the balancing. But if we are the last RT task
1845 * we may need to handle the pulling of RT tasks
1846 * now.
1847 */
1848 if (p->on_rq && !rq->rt.rt_nr_running)
1849 pull_rt_task(rq);
1850 }
1851
1852 void init_sched_rt_class(void)
1853 {
1854 unsigned int i;
1855
1856 for_each_possible_cpu(i) {
1857 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
1858 GFP_KERNEL, cpu_to_node(i));
1859 }
1860 }
1861 #endif /* CONFIG_SMP */
1862
1863 /*
1864 * When switching a task to RT, we may overload the runqueue
1865 * with RT tasks. In this case we try to push them off to
1866 * other runqueues.
1867 */
1868 static void switched_to_rt(struct rq *rq, struct task_struct *p)
1869 {
1870 int check_resched = 1;
1871
1872 /*
1873 * If we are already running, then there's nothing
1874 * that needs to be done. But if we are not running
1875 * we may need to preempt the current running task.
1876 * If that current running task is also an RT task
1877 * then see if we can move to another run queue.
1878 */
1879 if (p->on_rq && rq->curr != p) {
1880 #ifdef CONFIG_SMP
1881 if (rq->rt.overloaded && push_rt_task(rq) &&
1882 /* Don't resched if we changed runqueues */
1883 rq != task_rq(p))
1884 check_resched = 0;
1885 #endif /* CONFIG_SMP */
1886 if (check_resched && p->prio < rq->curr->prio)
1887 resched_task(rq->curr);
1888 }
1889 }
1890
1891 /*
1892 * Priority of the task has changed. This may cause
1893 * us to initiate a push or pull.
1894 */
1895 static void
1896 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
1897 {
1898 if (!p->on_rq)
1899 return;
1900
1901 if (rq->curr == p) {
1902 #ifdef CONFIG_SMP
1903 /*
1904 * If our priority decreases while running, we
1905 * may need to pull tasks to this runqueue.
1906 */
1907 if (oldprio < p->prio)
1908 pull_rt_task(rq);
1909 /*
1910 * If there's a higher priority task waiting to run
1911 * then reschedule. Note, the above pull_rt_task
1912 * can release the rq lock and p could migrate.
1913 * Only reschedule if p is still on the same runqueue.
1914 */
1915 if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
1916 resched_task(p);
1917 #else
1918 /* For UP simply resched on drop of prio */
1919 if (oldprio < p->prio)
1920 resched_task(p);
1921 #endif /* CONFIG_SMP */
1922 } else {
1923 /*
1924 * This task is not running, but if it is
1925 * greater than the current running task
1926 * then reschedule.
1927 */
1928 if (p->prio < rq->curr->prio)
1929 resched_task(rq->curr);
1930 }
1931 }
1932
1933 static void watchdog(struct rq *rq, struct task_struct *p)
1934 {
1935 unsigned long soft, hard;
1936
1937 /* max may change after cur was read, this will be fixed next tick */
1938 soft = task_rlimit(p, RLIMIT_RTTIME);
1939 hard = task_rlimit_max(p, RLIMIT_RTTIME);
1940
1941 if (soft != RLIM_INFINITY) {
1942 unsigned long next;
1943
1944 p->rt.timeout++;
1945 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1946 if (p->rt.timeout > next)
1947 p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
1948 }
1949 }
1950
1951 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
1952 {
1953 update_curr_rt(rq);
1954
1955 watchdog(rq, p);
1956
1957 /*
1958 * RR tasks need a special form of timeslice management.
1959 * FIFO tasks have no timeslices.
1960 */
1961 if (p->policy != SCHED_RR)
1962 return;
1963
1964 if (--p->rt.time_slice)
1965 return;
1966
1967 p->rt.time_slice = DEF_TIMESLICE;
1968
1969 /*
1970 * Requeue to the end of queue if we are not the only element
1971 * on the queue:
1972 */
1973 if (p->rt.run_list.prev != p->rt.run_list.next) {
1974 requeue_task_rt(rq, p, 0);
1975 set_tsk_need_resched(p);
1976 }
1977 }
1978
1979 static void set_curr_task_rt(struct rq *rq)
1980 {
1981 struct task_struct *p = rq->curr;
1982
1983 p->se.exec_start = rq->clock_task;
1984
1985 /* The running task is never eligible for pushing */
1986 dequeue_pushable_task(rq, p);
1987 }
1988
1989 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
1990 {
1991 /*
1992 * Time slice is 0 for SCHED_FIFO tasks
1993 */
1994 if (task->policy == SCHED_RR)
1995 return DEF_TIMESLICE;
1996 else
1997 return 0;
1998 }
1999
2000 const struct sched_class rt_sched_class = {
2001 .next = &fair_sched_class,
2002 .enqueue_task = enqueue_task_rt,
2003 .dequeue_task = dequeue_task_rt,
2004 .yield_task = yield_task_rt,
2005
2006 .check_preempt_curr = check_preempt_curr_rt,
2007
2008 .pick_next_task = pick_next_task_rt,
2009 .put_prev_task = put_prev_task_rt,
2010
2011 #ifdef CONFIG_SMP
2012 .select_task_rq = select_task_rq_rt,
2013
2014 .set_cpus_allowed = set_cpus_allowed_rt,
2015 .rq_online = rq_online_rt,
2016 .rq_offline = rq_offline_rt,
2017 .pre_schedule = pre_schedule_rt,
2018 .post_schedule = post_schedule_rt,
2019 .task_woken = task_woken_rt,
2020 .switched_from = switched_from_rt,
2021 #endif
2022
2023 .set_curr_task = set_curr_task_rt,
2024 .task_tick = task_tick_rt,
2025
2026 .get_rr_interval = get_rr_interval_rt,
2027
2028 .prio_changed = prio_changed_rt,
2029 .switched_to = switched_to_rt,
2030 };
2031
2032 #ifdef CONFIG_SCHED_DEBUG
2033 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2034
2035 void print_rt_stats(struct seq_file *m, int cpu)
2036 {
2037 rt_rq_iter_t iter;
2038 struct rt_rq *rt_rq;
2039
2040 rcu_read_lock();
2041 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2042 print_rt_rq(m, cpu, rt_rq);
2043 rcu_read_unlock();
2044 }
2045 #endif /* CONFIG_SCHED_DEBUG */
This page took 0.110338 seconds and 5 git commands to generate.