Merge branch 'drm_kms_for_next-v8' of git://git.linaro.org/people/benjamin.gaignard...
[deliverable/linux.git] / kernel / sched / rt.c
1 /*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
5
6 #include "sched.h"
7
8 #include <linux/slab.h>
9
10 int sched_rr_timeslice = RR_TIMESLICE;
11
12 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
13
14 struct rt_bandwidth def_rt_bandwidth;
15
16 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
17 {
18 struct rt_bandwidth *rt_b =
19 container_of(timer, struct rt_bandwidth, rt_period_timer);
20 ktime_t now;
21 int overrun;
22 int idle = 0;
23
24 for (;;) {
25 now = hrtimer_cb_get_time(timer);
26 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
27
28 if (!overrun)
29 break;
30
31 idle = do_sched_rt_period_timer(rt_b, overrun);
32 }
33
34 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
35 }
36
37 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
38 {
39 rt_b->rt_period = ns_to_ktime(period);
40 rt_b->rt_runtime = runtime;
41
42 raw_spin_lock_init(&rt_b->rt_runtime_lock);
43
44 hrtimer_init(&rt_b->rt_period_timer,
45 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
46 rt_b->rt_period_timer.function = sched_rt_period_timer;
47 }
48
49 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
50 {
51 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
52 return;
53
54 if (hrtimer_active(&rt_b->rt_period_timer))
55 return;
56
57 raw_spin_lock(&rt_b->rt_runtime_lock);
58 start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period);
59 raw_spin_unlock(&rt_b->rt_runtime_lock);
60 }
61
62 void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
63 {
64 struct rt_prio_array *array;
65 int i;
66
67 array = &rt_rq->active;
68 for (i = 0; i < MAX_RT_PRIO; i++) {
69 INIT_LIST_HEAD(array->queue + i);
70 __clear_bit(i, array->bitmap);
71 }
72 /* delimiter for bitsearch: */
73 __set_bit(MAX_RT_PRIO, array->bitmap);
74
75 #if defined CONFIG_SMP
76 rt_rq->highest_prio.curr = MAX_RT_PRIO;
77 rt_rq->highest_prio.next = MAX_RT_PRIO;
78 rt_rq->rt_nr_migratory = 0;
79 rt_rq->overloaded = 0;
80 plist_head_init(&rt_rq->pushable_tasks);
81 #endif
82 /* We start is dequeued state, because no RT tasks are queued */
83 rt_rq->rt_queued = 0;
84
85 rt_rq->rt_time = 0;
86 rt_rq->rt_throttled = 0;
87 rt_rq->rt_runtime = 0;
88 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
89 }
90
91 #ifdef CONFIG_RT_GROUP_SCHED
92 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
93 {
94 hrtimer_cancel(&rt_b->rt_period_timer);
95 }
96
97 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
98
99 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
100 {
101 #ifdef CONFIG_SCHED_DEBUG
102 WARN_ON_ONCE(!rt_entity_is_task(rt_se));
103 #endif
104 return container_of(rt_se, struct task_struct, rt);
105 }
106
107 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
108 {
109 return rt_rq->rq;
110 }
111
112 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
113 {
114 return rt_se->rt_rq;
115 }
116
117 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
118 {
119 struct rt_rq *rt_rq = rt_se->rt_rq;
120
121 return rt_rq->rq;
122 }
123
124 void free_rt_sched_group(struct task_group *tg)
125 {
126 int i;
127
128 if (tg->rt_se)
129 destroy_rt_bandwidth(&tg->rt_bandwidth);
130
131 for_each_possible_cpu(i) {
132 if (tg->rt_rq)
133 kfree(tg->rt_rq[i]);
134 if (tg->rt_se)
135 kfree(tg->rt_se[i]);
136 }
137
138 kfree(tg->rt_rq);
139 kfree(tg->rt_se);
140 }
141
142 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
143 struct sched_rt_entity *rt_se, int cpu,
144 struct sched_rt_entity *parent)
145 {
146 struct rq *rq = cpu_rq(cpu);
147
148 rt_rq->highest_prio.curr = MAX_RT_PRIO;
149 rt_rq->rt_nr_boosted = 0;
150 rt_rq->rq = rq;
151 rt_rq->tg = tg;
152
153 tg->rt_rq[cpu] = rt_rq;
154 tg->rt_se[cpu] = rt_se;
155
156 if (!rt_se)
157 return;
158
159 if (!parent)
160 rt_se->rt_rq = &rq->rt;
161 else
162 rt_se->rt_rq = parent->my_q;
163
164 rt_se->my_q = rt_rq;
165 rt_se->parent = parent;
166 INIT_LIST_HEAD(&rt_se->run_list);
167 }
168
169 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
170 {
171 struct rt_rq *rt_rq;
172 struct sched_rt_entity *rt_se;
173 int i;
174
175 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
176 if (!tg->rt_rq)
177 goto err;
178 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
179 if (!tg->rt_se)
180 goto err;
181
182 init_rt_bandwidth(&tg->rt_bandwidth,
183 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
184
185 for_each_possible_cpu(i) {
186 rt_rq = kzalloc_node(sizeof(struct rt_rq),
187 GFP_KERNEL, cpu_to_node(i));
188 if (!rt_rq)
189 goto err;
190
191 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
192 GFP_KERNEL, cpu_to_node(i));
193 if (!rt_se)
194 goto err_free_rq;
195
196 init_rt_rq(rt_rq, cpu_rq(i));
197 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
198 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
199 }
200
201 return 1;
202
203 err_free_rq:
204 kfree(rt_rq);
205 err:
206 return 0;
207 }
208
209 #else /* CONFIG_RT_GROUP_SCHED */
210
211 #define rt_entity_is_task(rt_se) (1)
212
213 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
214 {
215 return container_of(rt_se, struct task_struct, rt);
216 }
217
218 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
219 {
220 return container_of(rt_rq, struct rq, rt);
221 }
222
223 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
224 {
225 struct task_struct *p = rt_task_of(rt_se);
226
227 return task_rq(p);
228 }
229
230 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
231 {
232 struct rq *rq = rq_of_rt_se(rt_se);
233
234 return &rq->rt;
235 }
236
237 void free_rt_sched_group(struct task_group *tg) { }
238
239 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
240 {
241 return 1;
242 }
243 #endif /* CONFIG_RT_GROUP_SCHED */
244
245 #ifdef CONFIG_SMP
246
247 static int pull_rt_task(struct rq *this_rq);
248
249 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
250 {
251 /* Try to pull RT tasks here if we lower this rq's prio */
252 return rq->rt.highest_prio.curr > prev->prio;
253 }
254
255 static inline int rt_overloaded(struct rq *rq)
256 {
257 return atomic_read(&rq->rd->rto_count);
258 }
259
260 static inline void rt_set_overload(struct rq *rq)
261 {
262 if (!rq->online)
263 return;
264
265 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
266 /*
267 * Make sure the mask is visible before we set
268 * the overload count. That is checked to determine
269 * if we should look at the mask. It would be a shame
270 * if we looked at the mask, but the mask was not
271 * updated yet.
272 *
273 * Matched by the barrier in pull_rt_task().
274 */
275 smp_wmb();
276 atomic_inc(&rq->rd->rto_count);
277 }
278
279 static inline void rt_clear_overload(struct rq *rq)
280 {
281 if (!rq->online)
282 return;
283
284 /* the order here really doesn't matter */
285 atomic_dec(&rq->rd->rto_count);
286 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
287 }
288
289 static void update_rt_migration(struct rt_rq *rt_rq)
290 {
291 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
292 if (!rt_rq->overloaded) {
293 rt_set_overload(rq_of_rt_rq(rt_rq));
294 rt_rq->overloaded = 1;
295 }
296 } else if (rt_rq->overloaded) {
297 rt_clear_overload(rq_of_rt_rq(rt_rq));
298 rt_rq->overloaded = 0;
299 }
300 }
301
302 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
303 {
304 struct task_struct *p;
305
306 if (!rt_entity_is_task(rt_se))
307 return;
308
309 p = rt_task_of(rt_se);
310 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
311
312 rt_rq->rt_nr_total++;
313 if (p->nr_cpus_allowed > 1)
314 rt_rq->rt_nr_migratory++;
315
316 update_rt_migration(rt_rq);
317 }
318
319 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
320 {
321 struct task_struct *p;
322
323 if (!rt_entity_is_task(rt_se))
324 return;
325
326 p = rt_task_of(rt_se);
327 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
328
329 rt_rq->rt_nr_total--;
330 if (p->nr_cpus_allowed > 1)
331 rt_rq->rt_nr_migratory--;
332
333 update_rt_migration(rt_rq);
334 }
335
336 static inline int has_pushable_tasks(struct rq *rq)
337 {
338 return !plist_head_empty(&rq->rt.pushable_tasks);
339 }
340
341 static inline void set_post_schedule(struct rq *rq)
342 {
343 /*
344 * We detect this state here so that we can avoid taking the RQ
345 * lock again later if there is no need to push
346 */
347 rq->post_schedule = has_pushable_tasks(rq);
348 }
349
350 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
351 {
352 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
353 plist_node_init(&p->pushable_tasks, p->prio);
354 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
355
356 /* Update the highest prio pushable task */
357 if (p->prio < rq->rt.highest_prio.next)
358 rq->rt.highest_prio.next = p->prio;
359 }
360
361 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
362 {
363 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
364
365 /* Update the new highest prio pushable task */
366 if (has_pushable_tasks(rq)) {
367 p = plist_first_entry(&rq->rt.pushable_tasks,
368 struct task_struct, pushable_tasks);
369 rq->rt.highest_prio.next = p->prio;
370 } else
371 rq->rt.highest_prio.next = MAX_RT_PRIO;
372 }
373
374 #else
375
376 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
377 {
378 }
379
380 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
381 {
382 }
383
384 static inline
385 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
386 {
387 }
388
389 static inline
390 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
391 {
392 }
393
394 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
395 {
396 return false;
397 }
398
399 static inline int pull_rt_task(struct rq *this_rq)
400 {
401 return 0;
402 }
403
404 static inline void set_post_schedule(struct rq *rq)
405 {
406 }
407 #endif /* CONFIG_SMP */
408
409 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
410 static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
411
412 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
413 {
414 return !list_empty(&rt_se->run_list);
415 }
416
417 #ifdef CONFIG_RT_GROUP_SCHED
418
419 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
420 {
421 if (!rt_rq->tg)
422 return RUNTIME_INF;
423
424 return rt_rq->rt_runtime;
425 }
426
427 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
428 {
429 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
430 }
431
432 typedef struct task_group *rt_rq_iter_t;
433
434 static inline struct task_group *next_task_group(struct task_group *tg)
435 {
436 do {
437 tg = list_entry_rcu(tg->list.next,
438 typeof(struct task_group), list);
439 } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
440
441 if (&tg->list == &task_groups)
442 tg = NULL;
443
444 return tg;
445 }
446
447 #define for_each_rt_rq(rt_rq, iter, rq) \
448 for (iter = container_of(&task_groups, typeof(*iter), list); \
449 (iter = next_task_group(iter)) && \
450 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
451
452 #define for_each_sched_rt_entity(rt_se) \
453 for (; rt_se; rt_se = rt_se->parent)
454
455 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
456 {
457 return rt_se->my_q;
458 }
459
460 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
461 static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
462
463 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
464 {
465 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
466 struct sched_rt_entity *rt_se;
467
468 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
469
470 rt_se = rt_rq->tg->rt_se[cpu];
471
472 if (rt_rq->rt_nr_running) {
473 if (!rt_se)
474 enqueue_top_rt_rq(rt_rq);
475 else if (!on_rt_rq(rt_se))
476 enqueue_rt_entity(rt_se, false);
477
478 if (rt_rq->highest_prio.curr < curr->prio)
479 resched_task(curr);
480 }
481 }
482
483 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
484 {
485 struct sched_rt_entity *rt_se;
486 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
487
488 rt_se = rt_rq->tg->rt_se[cpu];
489
490 if (!rt_se)
491 dequeue_top_rt_rq(rt_rq);
492 else if (on_rt_rq(rt_se))
493 dequeue_rt_entity(rt_se);
494 }
495
496 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
497 {
498 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
499 }
500
501 static int rt_se_boosted(struct sched_rt_entity *rt_se)
502 {
503 struct rt_rq *rt_rq = group_rt_rq(rt_se);
504 struct task_struct *p;
505
506 if (rt_rq)
507 return !!rt_rq->rt_nr_boosted;
508
509 p = rt_task_of(rt_se);
510 return p->prio != p->normal_prio;
511 }
512
513 #ifdef CONFIG_SMP
514 static inline const struct cpumask *sched_rt_period_mask(void)
515 {
516 return this_rq()->rd->span;
517 }
518 #else
519 static inline const struct cpumask *sched_rt_period_mask(void)
520 {
521 return cpu_online_mask;
522 }
523 #endif
524
525 static inline
526 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
527 {
528 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
529 }
530
531 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
532 {
533 return &rt_rq->tg->rt_bandwidth;
534 }
535
536 #else /* !CONFIG_RT_GROUP_SCHED */
537
538 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
539 {
540 return rt_rq->rt_runtime;
541 }
542
543 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
544 {
545 return ktime_to_ns(def_rt_bandwidth.rt_period);
546 }
547
548 typedef struct rt_rq *rt_rq_iter_t;
549
550 #define for_each_rt_rq(rt_rq, iter, rq) \
551 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
552
553 #define for_each_sched_rt_entity(rt_se) \
554 for (; rt_se; rt_se = NULL)
555
556 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
557 {
558 return NULL;
559 }
560
561 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
562 {
563 struct rq *rq = rq_of_rt_rq(rt_rq);
564
565 if (!rt_rq->rt_nr_running)
566 return;
567
568 enqueue_top_rt_rq(rt_rq);
569 resched_task(rq->curr);
570 }
571
572 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
573 {
574 dequeue_top_rt_rq(rt_rq);
575 }
576
577 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
578 {
579 return rt_rq->rt_throttled;
580 }
581
582 static inline const struct cpumask *sched_rt_period_mask(void)
583 {
584 return cpu_online_mask;
585 }
586
587 static inline
588 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
589 {
590 return &cpu_rq(cpu)->rt;
591 }
592
593 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
594 {
595 return &def_rt_bandwidth;
596 }
597
598 #endif /* CONFIG_RT_GROUP_SCHED */
599
600 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
601 {
602 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
603
604 return (hrtimer_active(&rt_b->rt_period_timer) ||
605 rt_rq->rt_time < rt_b->rt_runtime);
606 }
607
608 #ifdef CONFIG_SMP
609 /*
610 * We ran out of runtime, see if we can borrow some from our neighbours.
611 */
612 static int do_balance_runtime(struct rt_rq *rt_rq)
613 {
614 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
615 struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
616 int i, weight, more = 0;
617 u64 rt_period;
618
619 weight = cpumask_weight(rd->span);
620
621 raw_spin_lock(&rt_b->rt_runtime_lock);
622 rt_period = ktime_to_ns(rt_b->rt_period);
623 for_each_cpu(i, rd->span) {
624 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
625 s64 diff;
626
627 if (iter == rt_rq)
628 continue;
629
630 raw_spin_lock(&iter->rt_runtime_lock);
631 /*
632 * Either all rqs have inf runtime and there's nothing to steal
633 * or __disable_runtime() below sets a specific rq to inf to
634 * indicate its been disabled and disalow stealing.
635 */
636 if (iter->rt_runtime == RUNTIME_INF)
637 goto next;
638
639 /*
640 * From runqueues with spare time, take 1/n part of their
641 * spare time, but no more than our period.
642 */
643 diff = iter->rt_runtime - iter->rt_time;
644 if (diff > 0) {
645 diff = div_u64((u64)diff, weight);
646 if (rt_rq->rt_runtime + diff > rt_period)
647 diff = rt_period - rt_rq->rt_runtime;
648 iter->rt_runtime -= diff;
649 rt_rq->rt_runtime += diff;
650 more = 1;
651 if (rt_rq->rt_runtime == rt_period) {
652 raw_spin_unlock(&iter->rt_runtime_lock);
653 break;
654 }
655 }
656 next:
657 raw_spin_unlock(&iter->rt_runtime_lock);
658 }
659 raw_spin_unlock(&rt_b->rt_runtime_lock);
660
661 return more;
662 }
663
664 /*
665 * Ensure this RQ takes back all the runtime it lend to its neighbours.
666 */
667 static void __disable_runtime(struct rq *rq)
668 {
669 struct root_domain *rd = rq->rd;
670 rt_rq_iter_t iter;
671 struct rt_rq *rt_rq;
672
673 if (unlikely(!scheduler_running))
674 return;
675
676 for_each_rt_rq(rt_rq, iter, rq) {
677 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
678 s64 want;
679 int i;
680
681 raw_spin_lock(&rt_b->rt_runtime_lock);
682 raw_spin_lock(&rt_rq->rt_runtime_lock);
683 /*
684 * Either we're all inf and nobody needs to borrow, or we're
685 * already disabled and thus have nothing to do, or we have
686 * exactly the right amount of runtime to take out.
687 */
688 if (rt_rq->rt_runtime == RUNTIME_INF ||
689 rt_rq->rt_runtime == rt_b->rt_runtime)
690 goto balanced;
691 raw_spin_unlock(&rt_rq->rt_runtime_lock);
692
693 /*
694 * Calculate the difference between what we started out with
695 * and what we current have, that's the amount of runtime
696 * we lend and now have to reclaim.
697 */
698 want = rt_b->rt_runtime - rt_rq->rt_runtime;
699
700 /*
701 * Greedy reclaim, take back as much as we can.
702 */
703 for_each_cpu(i, rd->span) {
704 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
705 s64 diff;
706
707 /*
708 * Can't reclaim from ourselves or disabled runqueues.
709 */
710 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
711 continue;
712
713 raw_spin_lock(&iter->rt_runtime_lock);
714 if (want > 0) {
715 diff = min_t(s64, iter->rt_runtime, want);
716 iter->rt_runtime -= diff;
717 want -= diff;
718 } else {
719 iter->rt_runtime -= want;
720 want -= want;
721 }
722 raw_spin_unlock(&iter->rt_runtime_lock);
723
724 if (!want)
725 break;
726 }
727
728 raw_spin_lock(&rt_rq->rt_runtime_lock);
729 /*
730 * We cannot be left wanting - that would mean some runtime
731 * leaked out of the system.
732 */
733 BUG_ON(want);
734 balanced:
735 /*
736 * Disable all the borrow logic by pretending we have inf
737 * runtime - in which case borrowing doesn't make sense.
738 */
739 rt_rq->rt_runtime = RUNTIME_INF;
740 rt_rq->rt_throttled = 0;
741 raw_spin_unlock(&rt_rq->rt_runtime_lock);
742 raw_spin_unlock(&rt_b->rt_runtime_lock);
743 }
744 }
745
746 static void __enable_runtime(struct rq *rq)
747 {
748 rt_rq_iter_t iter;
749 struct rt_rq *rt_rq;
750
751 if (unlikely(!scheduler_running))
752 return;
753
754 /*
755 * Reset each runqueue's bandwidth settings
756 */
757 for_each_rt_rq(rt_rq, iter, rq) {
758 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
759
760 raw_spin_lock(&rt_b->rt_runtime_lock);
761 raw_spin_lock(&rt_rq->rt_runtime_lock);
762 rt_rq->rt_runtime = rt_b->rt_runtime;
763 rt_rq->rt_time = 0;
764 rt_rq->rt_throttled = 0;
765 raw_spin_unlock(&rt_rq->rt_runtime_lock);
766 raw_spin_unlock(&rt_b->rt_runtime_lock);
767 }
768 }
769
770 static int balance_runtime(struct rt_rq *rt_rq)
771 {
772 int more = 0;
773
774 if (!sched_feat(RT_RUNTIME_SHARE))
775 return more;
776
777 if (rt_rq->rt_time > rt_rq->rt_runtime) {
778 raw_spin_unlock(&rt_rq->rt_runtime_lock);
779 more = do_balance_runtime(rt_rq);
780 raw_spin_lock(&rt_rq->rt_runtime_lock);
781 }
782
783 return more;
784 }
785 #else /* !CONFIG_SMP */
786 static inline int balance_runtime(struct rt_rq *rt_rq)
787 {
788 return 0;
789 }
790 #endif /* CONFIG_SMP */
791
792 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
793 {
794 int i, idle = 1, throttled = 0;
795 const struct cpumask *span;
796
797 span = sched_rt_period_mask();
798 #ifdef CONFIG_RT_GROUP_SCHED
799 /*
800 * FIXME: isolated CPUs should really leave the root task group,
801 * whether they are isolcpus or were isolated via cpusets, lest
802 * the timer run on a CPU which does not service all runqueues,
803 * potentially leaving other CPUs indefinitely throttled. If
804 * isolation is really required, the user will turn the throttle
805 * off to kill the perturbations it causes anyway. Meanwhile,
806 * this maintains functionality for boot and/or troubleshooting.
807 */
808 if (rt_b == &root_task_group.rt_bandwidth)
809 span = cpu_online_mask;
810 #endif
811 for_each_cpu(i, span) {
812 int enqueue = 0;
813 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
814 struct rq *rq = rq_of_rt_rq(rt_rq);
815
816 raw_spin_lock(&rq->lock);
817 if (rt_rq->rt_time) {
818 u64 runtime;
819
820 raw_spin_lock(&rt_rq->rt_runtime_lock);
821 if (rt_rq->rt_throttled)
822 balance_runtime(rt_rq);
823 runtime = rt_rq->rt_runtime;
824 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
825 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
826 rt_rq->rt_throttled = 0;
827 enqueue = 1;
828
829 /*
830 * Force a clock update if the CPU was idle,
831 * lest wakeup -> unthrottle time accumulate.
832 */
833 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
834 rq->skip_clock_update = -1;
835 }
836 if (rt_rq->rt_time || rt_rq->rt_nr_running)
837 idle = 0;
838 raw_spin_unlock(&rt_rq->rt_runtime_lock);
839 } else if (rt_rq->rt_nr_running) {
840 idle = 0;
841 if (!rt_rq_throttled(rt_rq))
842 enqueue = 1;
843 }
844 if (rt_rq->rt_throttled)
845 throttled = 1;
846
847 if (enqueue)
848 sched_rt_rq_enqueue(rt_rq);
849 raw_spin_unlock(&rq->lock);
850 }
851
852 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
853 return 1;
854
855 return idle;
856 }
857
858 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
859 {
860 #ifdef CONFIG_RT_GROUP_SCHED
861 struct rt_rq *rt_rq = group_rt_rq(rt_se);
862
863 if (rt_rq)
864 return rt_rq->highest_prio.curr;
865 #endif
866
867 return rt_task_of(rt_se)->prio;
868 }
869
870 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
871 {
872 u64 runtime = sched_rt_runtime(rt_rq);
873
874 if (rt_rq->rt_throttled)
875 return rt_rq_throttled(rt_rq);
876
877 if (runtime >= sched_rt_period(rt_rq))
878 return 0;
879
880 balance_runtime(rt_rq);
881 runtime = sched_rt_runtime(rt_rq);
882 if (runtime == RUNTIME_INF)
883 return 0;
884
885 if (rt_rq->rt_time > runtime) {
886 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
887
888 /*
889 * Don't actually throttle groups that have no runtime assigned
890 * but accrue some time due to boosting.
891 */
892 if (likely(rt_b->rt_runtime)) {
893 rt_rq->rt_throttled = 1;
894 printk_deferred_once("sched: RT throttling activated\n");
895 } else {
896 /*
897 * In case we did anyway, make it go away,
898 * replenishment is a joke, since it will replenish us
899 * with exactly 0 ns.
900 */
901 rt_rq->rt_time = 0;
902 }
903
904 if (rt_rq_throttled(rt_rq)) {
905 sched_rt_rq_dequeue(rt_rq);
906 return 1;
907 }
908 }
909
910 return 0;
911 }
912
913 /*
914 * Update the current task's runtime statistics. Skip current tasks that
915 * are not in our scheduling class.
916 */
917 static void update_curr_rt(struct rq *rq)
918 {
919 struct task_struct *curr = rq->curr;
920 struct sched_rt_entity *rt_se = &curr->rt;
921 u64 delta_exec;
922
923 if (curr->sched_class != &rt_sched_class)
924 return;
925
926 delta_exec = rq_clock_task(rq) - curr->se.exec_start;
927 if (unlikely((s64)delta_exec <= 0))
928 return;
929
930 schedstat_set(curr->se.statistics.exec_max,
931 max(curr->se.statistics.exec_max, delta_exec));
932
933 curr->se.sum_exec_runtime += delta_exec;
934 account_group_exec_runtime(curr, delta_exec);
935
936 curr->se.exec_start = rq_clock_task(rq);
937 cpuacct_charge(curr, delta_exec);
938
939 sched_rt_avg_update(rq, delta_exec);
940
941 if (!rt_bandwidth_enabled())
942 return;
943
944 for_each_sched_rt_entity(rt_se) {
945 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
946
947 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
948 raw_spin_lock(&rt_rq->rt_runtime_lock);
949 rt_rq->rt_time += delta_exec;
950 if (sched_rt_runtime_exceeded(rt_rq))
951 resched_task(curr);
952 raw_spin_unlock(&rt_rq->rt_runtime_lock);
953 }
954 }
955 }
956
957 static void
958 dequeue_top_rt_rq(struct rt_rq *rt_rq)
959 {
960 struct rq *rq = rq_of_rt_rq(rt_rq);
961
962 BUG_ON(&rq->rt != rt_rq);
963
964 if (!rt_rq->rt_queued)
965 return;
966
967 BUG_ON(!rq->nr_running);
968
969 sub_nr_running(rq, rt_rq->rt_nr_running);
970 rt_rq->rt_queued = 0;
971 }
972
973 static void
974 enqueue_top_rt_rq(struct rt_rq *rt_rq)
975 {
976 struct rq *rq = rq_of_rt_rq(rt_rq);
977
978 BUG_ON(&rq->rt != rt_rq);
979
980 if (rt_rq->rt_queued)
981 return;
982 if (rt_rq_throttled(rt_rq) || !rt_rq->rt_nr_running)
983 return;
984
985 add_nr_running(rq, rt_rq->rt_nr_running);
986 rt_rq->rt_queued = 1;
987 }
988
989 #if defined CONFIG_SMP
990
991 static void
992 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
993 {
994 struct rq *rq = rq_of_rt_rq(rt_rq);
995
996 #ifdef CONFIG_RT_GROUP_SCHED
997 /*
998 * Change rq's cpupri only if rt_rq is the top queue.
999 */
1000 if (&rq->rt != rt_rq)
1001 return;
1002 #endif
1003 if (rq->online && prio < prev_prio)
1004 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1005 }
1006
1007 static void
1008 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1009 {
1010 struct rq *rq = rq_of_rt_rq(rt_rq);
1011
1012 #ifdef CONFIG_RT_GROUP_SCHED
1013 /*
1014 * Change rq's cpupri only if rt_rq is the top queue.
1015 */
1016 if (&rq->rt != rt_rq)
1017 return;
1018 #endif
1019 if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1020 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1021 }
1022
1023 #else /* CONFIG_SMP */
1024
1025 static inline
1026 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1027 static inline
1028 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1029
1030 #endif /* CONFIG_SMP */
1031
1032 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1033 static void
1034 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1035 {
1036 int prev_prio = rt_rq->highest_prio.curr;
1037
1038 if (prio < prev_prio)
1039 rt_rq->highest_prio.curr = prio;
1040
1041 inc_rt_prio_smp(rt_rq, prio, prev_prio);
1042 }
1043
1044 static void
1045 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1046 {
1047 int prev_prio = rt_rq->highest_prio.curr;
1048
1049 if (rt_rq->rt_nr_running) {
1050
1051 WARN_ON(prio < prev_prio);
1052
1053 /*
1054 * This may have been our highest task, and therefore
1055 * we may have some recomputation to do
1056 */
1057 if (prio == prev_prio) {
1058 struct rt_prio_array *array = &rt_rq->active;
1059
1060 rt_rq->highest_prio.curr =
1061 sched_find_first_bit(array->bitmap);
1062 }
1063
1064 } else
1065 rt_rq->highest_prio.curr = MAX_RT_PRIO;
1066
1067 dec_rt_prio_smp(rt_rq, prio, prev_prio);
1068 }
1069
1070 #else
1071
1072 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1073 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1074
1075 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1076
1077 #ifdef CONFIG_RT_GROUP_SCHED
1078
1079 static void
1080 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1081 {
1082 if (rt_se_boosted(rt_se))
1083 rt_rq->rt_nr_boosted++;
1084
1085 if (rt_rq->tg)
1086 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1087 }
1088
1089 static void
1090 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1091 {
1092 if (rt_se_boosted(rt_se))
1093 rt_rq->rt_nr_boosted--;
1094
1095 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1096 }
1097
1098 #else /* CONFIG_RT_GROUP_SCHED */
1099
1100 static void
1101 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1102 {
1103 start_rt_bandwidth(&def_rt_bandwidth);
1104 }
1105
1106 static inline
1107 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1108
1109 #endif /* CONFIG_RT_GROUP_SCHED */
1110
1111 static inline
1112 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1113 {
1114 struct rt_rq *group_rq = group_rt_rq(rt_se);
1115
1116 if (group_rq)
1117 return group_rq->rt_nr_running;
1118 else
1119 return 1;
1120 }
1121
1122 static inline
1123 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1124 {
1125 int prio = rt_se_prio(rt_se);
1126
1127 WARN_ON(!rt_prio(prio));
1128 rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1129
1130 inc_rt_prio(rt_rq, prio);
1131 inc_rt_migration(rt_se, rt_rq);
1132 inc_rt_group(rt_se, rt_rq);
1133 }
1134
1135 static inline
1136 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1137 {
1138 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1139 WARN_ON(!rt_rq->rt_nr_running);
1140 rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1141
1142 dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1143 dec_rt_migration(rt_se, rt_rq);
1144 dec_rt_group(rt_se, rt_rq);
1145 }
1146
1147 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1148 {
1149 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1150 struct rt_prio_array *array = &rt_rq->active;
1151 struct rt_rq *group_rq = group_rt_rq(rt_se);
1152 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1153
1154 /*
1155 * Don't enqueue the group if its throttled, or when empty.
1156 * The latter is a consequence of the former when a child group
1157 * get throttled and the current group doesn't have any other
1158 * active members.
1159 */
1160 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
1161 return;
1162
1163 if (head)
1164 list_add(&rt_se->run_list, queue);
1165 else
1166 list_add_tail(&rt_se->run_list, queue);
1167 __set_bit(rt_se_prio(rt_se), array->bitmap);
1168
1169 inc_rt_tasks(rt_se, rt_rq);
1170 }
1171
1172 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
1173 {
1174 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1175 struct rt_prio_array *array = &rt_rq->active;
1176
1177 list_del_init(&rt_se->run_list);
1178 if (list_empty(array->queue + rt_se_prio(rt_se)))
1179 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1180
1181 dec_rt_tasks(rt_se, rt_rq);
1182 }
1183
1184 /*
1185 * Because the prio of an upper entry depends on the lower
1186 * entries, we must remove entries top - down.
1187 */
1188 static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
1189 {
1190 struct sched_rt_entity *back = NULL;
1191
1192 for_each_sched_rt_entity(rt_se) {
1193 rt_se->back = back;
1194 back = rt_se;
1195 }
1196
1197 dequeue_top_rt_rq(rt_rq_of_se(back));
1198
1199 for (rt_se = back; rt_se; rt_se = rt_se->back) {
1200 if (on_rt_rq(rt_se))
1201 __dequeue_rt_entity(rt_se);
1202 }
1203 }
1204
1205 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1206 {
1207 struct rq *rq = rq_of_rt_se(rt_se);
1208
1209 dequeue_rt_stack(rt_se);
1210 for_each_sched_rt_entity(rt_se)
1211 __enqueue_rt_entity(rt_se, head);
1212 enqueue_top_rt_rq(&rq->rt);
1213 }
1214
1215 static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
1216 {
1217 struct rq *rq = rq_of_rt_se(rt_se);
1218
1219 dequeue_rt_stack(rt_se);
1220
1221 for_each_sched_rt_entity(rt_se) {
1222 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1223
1224 if (rt_rq && rt_rq->rt_nr_running)
1225 __enqueue_rt_entity(rt_se, false);
1226 }
1227 enqueue_top_rt_rq(&rq->rt);
1228 }
1229
1230 /*
1231 * Adding/removing a task to/from a priority array:
1232 */
1233 static void
1234 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1235 {
1236 struct sched_rt_entity *rt_se = &p->rt;
1237
1238 if (flags & ENQUEUE_WAKEUP)
1239 rt_se->timeout = 0;
1240
1241 enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
1242
1243 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1244 enqueue_pushable_task(rq, p);
1245 }
1246
1247 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1248 {
1249 struct sched_rt_entity *rt_se = &p->rt;
1250
1251 update_curr_rt(rq);
1252 dequeue_rt_entity(rt_se);
1253
1254 dequeue_pushable_task(rq, p);
1255 }
1256
1257 /*
1258 * Put task to the head or the end of the run list without the overhead of
1259 * dequeue followed by enqueue.
1260 */
1261 static void
1262 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1263 {
1264 if (on_rt_rq(rt_se)) {
1265 struct rt_prio_array *array = &rt_rq->active;
1266 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1267
1268 if (head)
1269 list_move(&rt_se->run_list, queue);
1270 else
1271 list_move_tail(&rt_se->run_list, queue);
1272 }
1273 }
1274
1275 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1276 {
1277 struct sched_rt_entity *rt_se = &p->rt;
1278 struct rt_rq *rt_rq;
1279
1280 for_each_sched_rt_entity(rt_se) {
1281 rt_rq = rt_rq_of_se(rt_se);
1282 requeue_rt_entity(rt_rq, rt_se, head);
1283 }
1284 }
1285
1286 static void yield_task_rt(struct rq *rq)
1287 {
1288 requeue_task_rt(rq, rq->curr, 0);
1289 }
1290
1291 #ifdef CONFIG_SMP
1292 static int find_lowest_rq(struct task_struct *task);
1293
1294 static int
1295 select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
1296 {
1297 struct task_struct *curr;
1298 struct rq *rq;
1299
1300 if (p->nr_cpus_allowed == 1)
1301 goto out;
1302
1303 /* For anything but wake ups, just return the task_cpu */
1304 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1305 goto out;
1306
1307 rq = cpu_rq(cpu);
1308
1309 rcu_read_lock();
1310 curr = ACCESS_ONCE(rq->curr); /* unlocked access */
1311
1312 /*
1313 * If the current task on @p's runqueue is an RT task, then
1314 * try to see if we can wake this RT task up on another
1315 * runqueue. Otherwise simply start this RT task
1316 * on its current runqueue.
1317 *
1318 * We want to avoid overloading runqueues. If the woken
1319 * task is a higher priority, then it will stay on this CPU
1320 * and the lower prio task should be moved to another CPU.
1321 * Even though this will probably make the lower prio task
1322 * lose its cache, we do not want to bounce a higher task
1323 * around just because it gave up its CPU, perhaps for a
1324 * lock?
1325 *
1326 * For equal prio tasks, we just let the scheduler sort it out.
1327 *
1328 * Otherwise, just let it ride on the affined RQ and the
1329 * post-schedule router will push the preempted task away
1330 *
1331 * This test is optimistic, if we get it wrong the load-balancer
1332 * will have to sort it out.
1333 */
1334 if (curr && unlikely(rt_task(curr)) &&
1335 (curr->nr_cpus_allowed < 2 ||
1336 curr->prio <= p->prio)) {
1337 int target = find_lowest_rq(p);
1338
1339 if (target != -1)
1340 cpu = target;
1341 }
1342 rcu_read_unlock();
1343
1344 out:
1345 return cpu;
1346 }
1347
1348 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1349 {
1350 if (rq->curr->nr_cpus_allowed == 1)
1351 return;
1352
1353 if (p->nr_cpus_allowed != 1
1354 && cpupri_find(&rq->rd->cpupri, p, NULL))
1355 return;
1356
1357 if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1358 return;
1359
1360 /*
1361 * There appears to be other cpus that can accept
1362 * current and none to run 'p', so lets reschedule
1363 * to try and push current away:
1364 */
1365 requeue_task_rt(rq, p, 1);
1366 resched_task(rq->curr);
1367 }
1368
1369 #endif /* CONFIG_SMP */
1370
1371 /*
1372 * Preempt the current task with a newly woken task if needed:
1373 */
1374 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1375 {
1376 if (p->prio < rq->curr->prio) {
1377 resched_task(rq->curr);
1378 return;
1379 }
1380
1381 #ifdef CONFIG_SMP
1382 /*
1383 * If:
1384 *
1385 * - the newly woken task is of equal priority to the current task
1386 * - the newly woken task is non-migratable while current is migratable
1387 * - current will be preempted on the next reschedule
1388 *
1389 * we should check to see if current can readily move to a different
1390 * cpu. If so, we will reschedule to allow the push logic to try
1391 * to move current somewhere else, making room for our non-migratable
1392 * task.
1393 */
1394 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1395 check_preempt_equal_prio(rq, p);
1396 #endif
1397 }
1398
1399 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1400 struct rt_rq *rt_rq)
1401 {
1402 struct rt_prio_array *array = &rt_rq->active;
1403 struct sched_rt_entity *next = NULL;
1404 struct list_head *queue;
1405 int idx;
1406
1407 idx = sched_find_first_bit(array->bitmap);
1408 BUG_ON(idx >= MAX_RT_PRIO);
1409
1410 queue = array->queue + idx;
1411 next = list_entry(queue->next, struct sched_rt_entity, run_list);
1412
1413 return next;
1414 }
1415
1416 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1417 {
1418 struct sched_rt_entity *rt_se;
1419 struct task_struct *p;
1420 struct rt_rq *rt_rq = &rq->rt;
1421
1422 do {
1423 rt_se = pick_next_rt_entity(rq, rt_rq);
1424 BUG_ON(!rt_se);
1425 rt_rq = group_rt_rq(rt_se);
1426 } while (rt_rq);
1427
1428 p = rt_task_of(rt_se);
1429 p->se.exec_start = rq_clock_task(rq);
1430
1431 return p;
1432 }
1433
1434 static struct task_struct *
1435 pick_next_task_rt(struct rq *rq, struct task_struct *prev)
1436 {
1437 struct task_struct *p;
1438 struct rt_rq *rt_rq = &rq->rt;
1439
1440 if (need_pull_rt_task(rq, prev)) {
1441 pull_rt_task(rq);
1442 /*
1443 * pull_rt_task() can drop (and re-acquire) rq->lock; this
1444 * means a dl or stop task can slip in, in which case we need
1445 * to re-start task selection.
1446 */
1447 if (unlikely((rq->stop && rq->stop->on_rq) ||
1448 rq->dl.dl_nr_running))
1449 return RETRY_TASK;
1450 }
1451
1452 /*
1453 * We may dequeue prev's rt_rq in put_prev_task().
1454 * So, we update time before rt_nr_running check.
1455 */
1456 if (prev->sched_class == &rt_sched_class)
1457 update_curr_rt(rq);
1458
1459 if (!rt_rq->rt_queued)
1460 return NULL;
1461
1462 put_prev_task(rq, prev);
1463
1464 p = _pick_next_task_rt(rq);
1465
1466 /* The running task is never eligible for pushing */
1467 if (p)
1468 dequeue_pushable_task(rq, p);
1469
1470 set_post_schedule(rq);
1471
1472 return p;
1473 }
1474
1475 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1476 {
1477 update_curr_rt(rq);
1478
1479 /*
1480 * The previous task needs to be made eligible for pushing
1481 * if it is still active
1482 */
1483 if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1484 enqueue_pushable_task(rq, p);
1485 }
1486
1487 #ifdef CONFIG_SMP
1488
1489 /* Only try algorithms three times */
1490 #define RT_MAX_TRIES 3
1491
1492 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1493 {
1494 if (!task_running(rq, p) &&
1495 cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
1496 return 1;
1497 return 0;
1498 }
1499
1500 /*
1501 * Return the highest pushable rq's task, which is suitable to be executed
1502 * on the cpu, NULL otherwise
1503 */
1504 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1505 {
1506 struct plist_head *head = &rq->rt.pushable_tasks;
1507 struct task_struct *p;
1508
1509 if (!has_pushable_tasks(rq))
1510 return NULL;
1511
1512 plist_for_each_entry(p, head, pushable_tasks) {
1513 if (pick_rt_task(rq, p, cpu))
1514 return p;
1515 }
1516
1517 return NULL;
1518 }
1519
1520 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1521
1522 static int find_lowest_rq(struct task_struct *task)
1523 {
1524 struct sched_domain *sd;
1525 struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
1526 int this_cpu = smp_processor_id();
1527 int cpu = task_cpu(task);
1528
1529 /* Make sure the mask is initialized first */
1530 if (unlikely(!lowest_mask))
1531 return -1;
1532
1533 if (task->nr_cpus_allowed == 1)
1534 return -1; /* No other targets possible */
1535
1536 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1537 return -1; /* No targets found */
1538
1539 /*
1540 * At this point we have built a mask of cpus representing the
1541 * lowest priority tasks in the system. Now we want to elect
1542 * the best one based on our affinity and topology.
1543 *
1544 * We prioritize the last cpu that the task executed on since
1545 * it is most likely cache-hot in that location.
1546 */
1547 if (cpumask_test_cpu(cpu, lowest_mask))
1548 return cpu;
1549
1550 /*
1551 * Otherwise, we consult the sched_domains span maps to figure
1552 * out which cpu is logically closest to our hot cache data.
1553 */
1554 if (!cpumask_test_cpu(this_cpu, lowest_mask))
1555 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1556
1557 rcu_read_lock();
1558 for_each_domain(cpu, sd) {
1559 if (sd->flags & SD_WAKE_AFFINE) {
1560 int best_cpu;
1561
1562 /*
1563 * "this_cpu" is cheaper to preempt than a
1564 * remote processor.
1565 */
1566 if (this_cpu != -1 &&
1567 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1568 rcu_read_unlock();
1569 return this_cpu;
1570 }
1571
1572 best_cpu = cpumask_first_and(lowest_mask,
1573 sched_domain_span(sd));
1574 if (best_cpu < nr_cpu_ids) {
1575 rcu_read_unlock();
1576 return best_cpu;
1577 }
1578 }
1579 }
1580 rcu_read_unlock();
1581
1582 /*
1583 * And finally, if there were no matches within the domains
1584 * just give the caller *something* to work with from the compatible
1585 * locations.
1586 */
1587 if (this_cpu != -1)
1588 return this_cpu;
1589
1590 cpu = cpumask_any(lowest_mask);
1591 if (cpu < nr_cpu_ids)
1592 return cpu;
1593 return -1;
1594 }
1595
1596 /* Will lock the rq it finds */
1597 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1598 {
1599 struct rq *lowest_rq = NULL;
1600 int tries;
1601 int cpu;
1602
1603 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1604 cpu = find_lowest_rq(task);
1605
1606 if ((cpu == -1) || (cpu == rq->cpu))
1607 break;
1608
1609 lowest_rq = cpu_rq(cpu);
1610
1611 /* if the prio of this runqueue changed, try again */
1612 if (double_lock_balance(rq, lowest_rq)) {
1613 /*
1614 * We had to unlock the run queue. In
1615 * the mean time, task could have
1616 * migrated already or had its affinity changed.
1617 * Also make sure that it wasn't scheduled on its rq.
1618 */
1619 if (unlikely(task_rq(task) != rq ||
1620 !cpumask_test_cpu(lowest_rq->cpu,
1621 tsk_cpus_allowed(task)) ||
1622 task_running(rq, task) ||
1623 !task->on_rq)) {
1624
1625 double_unlock_balance(rq, lowest_rq);
1626 lowest_rq = NULL;
1627 break;
1628 }
1629 }
1630
1631 /* If this rq is still suitable use it. */
1632 if (lowest_rq->rt.highest_prio.curr > task->prio)
1633 break;
1634
1635 /* try again */
1636 double_unlock_balance(rq, lowest_rq);
1637 lowest_rq = NULL;
1638 }
1639
1640 return lowest_rq;
1641 }
1642
1643 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1644 {
1645 struct task_struct *p;
1646
1647 if (!has_pushable_tasks(rq))
1648 return NULL;
1649
1650 p = plist_first_entry(&rq->rt.pushable_tasks,
1651 struct task_struct, pushable_tasks);
1652
1653 BUG_ON(rq->cpu != task_cpu(p));
1654 BUG_ON(task_current(rq, p));
1655 BUG_ON(p->nr_cpus_allowed <= 1);
1656
1657 BUG_ON(!p->on_rq);
1658 BUG_ON(!rt_task(p));
1659
1660 return p;
1661 }
1662
1663 /*
1664 * If the current CPU has more than one RT task, see if the non
1665 * running task can migrate over to a CPU that is running a task
1666 * of lesser priority.
1667 */
1668 static int push_rt_task(struct rq *rq)
1669 {
1670 struct task_struct *next_task;
1671 struct rq *lowest_rq;
1672 int ret = 0;
1673
1674 if (!rq->rt.overloaded)
1675 return 0;
1676
1677 next_task = pick_next_pushable_task(rq);
1678 if (!next_task)
1679 return 0;
1680
1681 retry:
1682 if (unlikely(next_task == rq->curr)) {
1683 WARN_ON(1);
1684 return 0;
1685 }
1686
1687 /*
1688 * It's possible that the next_task slipped in of
1689 * higher priority than current. If that's the case
1690 * just reschedule current.
1691 */
1692 if (unlikely(next_task->prio < rq->curr->prio)) {
1693 resched_task(rq->curr);
1694 return 0;
1695 }
1696
1697 /* We might release rq lock */
1698 get_task_struct(next_task);
1699
1700 /* find_lock_lowest_rq locks the rq if found */
1701 lowest_rq = find_lock_lowest_rq(next_task, rq);
1702 if (!lowest_rq) {
1703 struct task_struct *task;
1704 /*
1705 * find_lock_lowest_rq releases rq->lock
1706 * so it is possible that next_task has migrated.
1707 *
1708 * We need to make sure that the task is still on the same
1709 * run-queue and is also still the next task eligible for
1710 * pushing.
1711 */
1712 task = pick_next_pushable_task(rq);
1713 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1714 /*
1715 * The task hasn't migrated, and is still the next
1716 * eligible task, but we failed to find a run-queue
1717 * to push it to. Do not retry in this case, since
1718 * other cpus will pull from us when ready.
1719 */
1720 goto out;
1721 }
1722
1723 if (!task)
1724 /* No more tasks, just exit */
1725 goto out;
1726
1727 /*
1728 * Something has shifted, try again.
1729 */
1730 put_task_struct(next_task);
1731 next_task = task;
1732 goto retry;
1733 }
1734
1735 deactivate_task(rq, next_task, 0);
1736 set_task_cpu(next_task, lowest_rq->cpu);
1737 activate_task(lowest_rq, next_task, 0);
1738 ret = 1;
1739
1740 resched_task(lowest_rq->curr);
1741
1742 double_unlock_balance(rq, lowest_rq);
1743
1744 out:
1745 put_task_struct(next_task);
1746
1747 return ret;
1748 }
1749
1750 static void push_rt_tasks(struct rq *rq)
1751 {
1752 /* push_rt_task will return true if it moved an RT */
1753 while (push_rt_task(rq))
1754 ;
1755 }
1756
1757 static int pull_rt_task(struct rq *this_rq)
1758 {
1759 int this_cpu = this_rq->cpu, ret = 0, cpu;
1760 struct task_struct *p;
1761 struct rq *src_rq;
1762
1763 if (likely(!rt_overloaded(this_rq)))
1764 return 0;
1765
1766 /*
1767 * Match the barrier from rt_set_overloaded; this guarantees that if we
1768 * see overloaded we must also see the rto_mask bit.
1769 */
1770 smp_rmb();
1771
1772 for_each_cpu(cpu, this_rq->rd->rto_mask) {
1773 if (this_cpu == cpu)
1774 continue;
1775
1776 src_rq = cpu_rq(cpu);
1777
1778 /*
1779 * Don't bother taking the src_rq->lock if the next highest
1780 * task is known to be lower-priority than our current task.
1781 * This may look racy, but if this value is about to go
1782 * logically higher, the src_rq will push this task away.
1783 * And if its going logically lower, we do not care
1784 */
1785 if (src_rq->rt.highest_prio.next >=
1786 this_rq->rt.highest_prio.curr)
1787 continue;
1788
1789 /*
1790 * We can potentially drop this_rq's lock in
1791 * double_lock_balance, and another CPU could
1792 * alter this_rq
1793 */
1794 double_lock_balance(this_rq, src_rq);
1795
1796 /*
1797 * We can pull only a task, which is pushable
1798 * on its rq, and no others.
1799 */
1800 p = pick_highest_pushable_task(src_rq, this_cpu);
1801
1802 /*
1803 * Do we have an RT task that preempts
1804 * the to-be-scheduled task?
1805 */
1806 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
1807 WARN_ON(p == src_rq->curr);
1808 WARN_ON(!p->on_rq);
1809
1810 /*
1811 * There's a chance that p is higher in priority
1812 * than what's currently running on its cpu.
1813 * This is just that p is wakeing up and hasn't
1814 * had a chance to schedule. We only pull
1815 * p if it is lower in priority than the
1816 * current task on the run queue
1817 */
1818 if (p->prio < src_rq->curr->prio)
1819 goto skip;
1820
1821 ret = 1;
1822
1823 deactivate_task(src_rq, p, 0);
1824 set_task_cpu(p, this_cpu);
1825 activate_task(this_rq, p, 0);
1826 /*
1827 * We continue with the search, just in
1828 * case there's an even higher prio task
1829 * in another runqueue. (low likelihood
1830 * but possible)
1831 */
1832 }
1833 skip:
1834 double_unlock_balance(this_rq, src_rq);
1835 }
1836
1837 return ret;
1838 }
1839
1840 static void post_schedule_rt(struct rq *rq)
1841 {
1842 push_rt_tasks(rq);
1843 }
1844
1845 /*
1846 * If we are not running and we are not going to reschedule soon, we should
1847 * try to push tasks away now
1848 */
1849 static void task_woken_rt(struct rq *rq, struct task_struct *p)
1850 {
1851 if (!task_running(rq, p) &&
1852 !test_tsk_need_resched(rq->curr) &&
1853 has_pushable_tasks(rq) &&
1854 p->nr_cpus_allowed > 1 &&
1855 (dl_task(rq->curr) || rt_task(rq->curr)) &&
1856 (rq->curr->nr_cpus_allowed < 2 ||
1857 rq->curr->prio <= p->prio))
1858 push_rt_tasks(rq);
1859 }
1860
1861 static void set_cpus_allowed_rt(struct task_struct *p,
1862 const struct cpumask *new_mask)
1863 {
1864 struct rq *rq;
1865 int weight;
1866
1867 BUG_ON(!rt_task(p));
1868
1869 if (!p->on_rq)
1870 return;
1871
1872 weight = cpumask_weight(new_mask);
1873
1874 /*
1875 * Only update if the process changes its state from whether it
1876 * can migrate or not.
1877 */
1878 if ((p->nr_cpus_allowed > 1) == (weight > 1))
1879 return;
1880
1881 rq = task_rq(p);
1882
1883 /*
1884 * The process used to be able to migrate OR it can now migrate
1885 */
1886 if (weight <= 1) {
1887 if (!task_current(rq, p))
1888 dequeue_pushable_task(rq, p);
1889 BUG_ON(!rq->rt.rt_nr_migratory);
1890 rq->rt.rt_nr_migratory--;
1891 } else {
1892 if (!task_current(rq, p))
1893 enqueue_pushable_task(rq, p);
1894 rq->rt.rt_nr_migratory++;
1895 }
1896
1897 update_rt_migration(&rq->rt);
1898 }
1899
1900 /* Assumes rq->lock is held */
1901 static void rq_online_rt(struct rq *rq)
1902 {
1903 if (rq->rt.overloaded)
1904 rt_set_overload(rq);
1905
1906 __enable_runtime(rq);
1907
1908 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1909 }
1910
1911 /* Assumes rq->lock is held */
1912 static void rq_offline_rt(struct rq *rq)
1913 {
1914 if (rq->rt.overloaded)
1915 rt_clear_overload(rq);
1916
1917 __disable_runtime(rq);
1918
1919 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1920 }
1921
1922 /*
1923 * When switch from the rt queue, we bring ourselves to a position
1924 * that we might want to pull RT tasks from other runqueues.
1925 */
1926 static void switched_from_rt(struct rq *rq, struct task_struct *p)
1927 {
1928 /*
1929 * If there are other RT tasks then we will reschedule
1930 * and the scheduling of the other RT tasks will handle
1931 * the balancing. But if we are the last RT task
1932 * we may need to handle the pulling of RT tasks
1933 * now.
1934 */
1935 if (!p->on_rq || rq->rt.rt_nr_running)
1936 return;
1937
1938 if (pull_rt_task(rq))
1939 resched_task(rq->curr);
1940 }
1941
1942 void __init init_sched_rt_class(void)
1943 {
1944 unsigned int i;
1945
1946 for_each_possible_cpu(i) {
1947 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
1948 GFP_KERNEL, cpu_to_node(i));
1949 }
1950 }
1951 #endif /* CONFIG_SMP */
1952
1953 /*
1954 * When switching a task to RT, we may overload the runqueue
1955 * with RT tasks. In this case we try to push them off to
1956 * other runqueues.
1957 */
1958 static void switched_to_rt(struct rq *rq, struct task_struct *p)
1959 {
1960 int check_resched = 1;
1961
1962 /*
1963 * If we are already running, then there's nothing
1964 * that needs to be done. But if we are not running
1965 * we may need to preempt the current running task.
1966 * If that current running task is also an RT task
1967 * then see if we can move to another run queue.
1968 */
1969 if (p->on_rq && rq->curr != p) {
1970 #ifdef CONFIG_SMP
1971 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded &&
1972 /* Don't resched if we changed runqueues */
1973 push_rt_task(rq) && rq != task_rq(p))
1974 check_resched = 0;
1975 #endif /* CONFIG_SMP */
1976 if (check_resched && p->prio < rq->curr->prio)
1977 resched_task(rq->curr);
1978 }
1979 }
1980
1981 /*
1982 * Priority of the task has changed. This may cause
1983 * us to initiate a push or pull.
1984 */
1985 static void
1986 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
1987 {
1988 if (!p->on_rq)
1989 return;
1990
1991 if (rq->curr == p) {
1992 #ifdef CONFIG_SMP
1993 /*
1994 * If our priority decreases while running, we
1995 * may need to pull tasks to this runqueue.
1996 */
1997 if (oldprio < p->prio)
1998 pull_rt_task(rq);
1999 /*
2000 * If there's a higher priority task waiting to run
2001 * then reschedule. Note, the above pull_rt_task
2002 * can release the rq lock and p could migrate.
2003 * Only reschedule if p is still on the same runqueue.
2004 */
2005 if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
2006 resched_task(p);
2007 #else
2008 /* For UP simply resched on drop of prio */
2009 if (oldprio < p->prio)
2010 resched_task(p);
2011 #endif /* CONFIG_SMP */
2012 } else {
2013 /*
2014 * This task is not running, but if it is
2015 * greater than the current running task
2016 * then reschedule.
2017 */
2018 if (p->prio < rq->curr->prio)
2019 resched_task(rq->curr);
2020 }
2021 }
2022
2023 static void watchdog(struct rq *rq, struct task_struct *p)
2024 {
2025 unsigned long soft, hard;
2026
2027 /* max may change after cur was read, this will be fixed next tick */
2028 soft = task_rlimit(p, RLIMIT_RTTIME);
2029 hard = task_rlimit_max(p, RLIMIT_RTTIME);
2030
2031 if (soft != RLIM_INFINITY) {
2032 unsigned long next;
2033
2034 if (p->rt.watchdog_stamp != jiffies) {
2035 p->rt.timeout++;
2036 p->rt.watchdog_stamp = jiffies;
2037 }
2038
2039 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2040 if (p->rt.timeout > next)
2041 p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
2042 }
2043 }
2044
2045 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2046 {
2047 struct sched_rt_entity *rt_se = &p->rt;
2048
2049 update_curr_rt(rq);
2050
2051 watchdog(rq, p);
2052
2053 /*
2054 * RR tasks need a special form of timeslice management.
2055 * FIFO tasks have no timeslices.
2056 */
2057 if (p->policy != SCHED_RR)
2058 return;
2059
2060 if (--p->rt.time_slice)
2061 return;
2062
2063 p->rt.time_slice = sched_rr_timeslice;
2064
2065 /*
2066 * Requeue to the end of queue if we (and all of our ancestors) are not
2067 * the only element on the queue
2068 */
2069 for_each_sched_rt_entity(rt_se) {
2070 if (rt_se->run_list.prev != rt_se->run_list.next) {
2071 requeue_task_rt(rq, p, 0);
2072 set_tsk_need_resched(p);
2073 return;
2074 }
2075 }
2076 }
2077
2078 static void set_curr_task_rt(struct rq *rq)
2079 {
2080 struct task_struct *p = rq->curr;
2081
2082 p->se.exec_start = rq_clock_task(rq);
2083
2084 /* The running task is never eligible for pushing */
2085 dequeue_pushable_task(rq, p);
2086 }
2087
2088 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2089 {
2090 /*
2091 * Time slice is 0 for SCHED_FIFO tasks
2092 */
2093 if (task->policy == SCHED_RR)
2094 return sched_rr_timeslice;
2095 else
2096 return 0;
2097 }
2098
2099 const struct sched_class rt_sched_class = {
2100 .next = &fair_sched_class,
2101 .enqueue_task = enqueue_task_rt,
2102 .dequeue_task = dequeue_task_rt,
2103 .yield_task = yield_task_rt,
2104
2105 .check_preempt_curr = check_preempt_curr_rt,
2106
2107 .pick_next_task = pick_next_task_rt,
2108 .put_prev_task = put_prev_task_rt,
2109
2110 #ifdef CONFIG_SMP
2111 .select_task_rq = select_task_rq_rt,
2112
2113 .set_cpus_allowed = set_cpus_allowed_rt,
2114 .rq_online = rq_online_rt,
2115 .rq_offline = rq_offline_rt,
2116 .post_schedule = post_schedule_rt,
2117 .task_woken = task_woken_rt,
2118 .switched_from = switched_from_rt,
2119 #endif
2120
2121 .set_curr_task = set_curr_task_rt,
2122 .task_tick = task_tick_rt,
2123
2124 .get_rr_interval = get_rr_interval_rt,
2125
2126 .prio_changed = prio_changed_rt,
2127 .switched_to = switched_to_rt,
2128 };
2129
2130 #ifdef CONFIG_SCHED_DEBUG
2131 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2132
2133 void print_rt_stats(struct seq_file *m, int cpu)
2134 {
2135 rt_rq_iter_t iter;
2136 struct rt_rq *rt_rq;
2137
2138 rcu_read_lock();
2139 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2140 print_rt_rq(m, cpu, rt_rq);
2141 rcu_read_unlock();
2142 }
2143 #endif /* CONFIG_SCHED_DEBUG */
This page took 0.109999 seconds and 5 git commands to generate.