Merge tag 'davinci-fixes-for-v3.15-rc4' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / kernel / sched / rt.c
1 /*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
5
6 #include "sched.h"
7
8 #include <linux/slab.h>
9
10 int sched_rr_timeslice = RR_TIMESLICE;
11
12 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
13
14 struct rt_bandwidth def_rt_bandwidth;
15
16 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
17 {
18 struct rt_bandwidth *rt_b =
19 container_of(timer, struct rt_bandwidth, rt_period_timer);
20 ktime_t now;
21 int overrun;
22 int idle = 0;
23
24 for (;;) {
25 now = hrtimer_cb_get_time(timer);
26 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
27
28 if (!overrun)
29 break;
30
31 idle = do_sched_rt_period_timer(rt_b, overrun);
32 }
33
34 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
35 }
36
37 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
38 {
39 rt_b->rt_period = ns_to_ktime(period);
40 rt_b->rt_runtime = runtime;
41
42 raw_spin_lock_init(&rt_b->rt_runtime_lock);
43
44 hrtimer_init(&rt_b->rt_period_timer,
45 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
46 rt_b->rt_period_timer.function = sched_rt_period_timer;
47 }
48
49 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
50 {
51 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
52 return;
53
54 if (hrtimer_active(&rt_b->rt_period_timer))
55 return;
56
57 raw_spin_lock(&rt_b->rt_runtime_lock);
58 start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period);
59 raw_spin_unlock(&rt_b->rt_runtime_lock);
60 }
61
62 void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
63 {
64 struct rt_prio_array *array;
65 int i;
66
67 array = &rt_rq->active;
68 for (i = 0; i < MAX_RT_PRIO; i++) {
69 INIT_LIST_HEAD(array->queue + i);
70 __clear_bit(i, array->bitmap);
71 }
72 /* delimiter for bitsearch: */
73 __set_bit(MAX_RT_PRIO, array->bitmap);
74
75 #if defined CONFIG_SMP
76 rt_rq->highest_prio.curr = MAX_RT_PRIO;
77 rt_rq->highest_prio.next = MAX_RT_PRIO;
78 rt_rq->rt_nr_migratory = 0;
79 rt_rq->overloaded = 0;
80 plist_head_init(&rt_rq->pushable_tasks);
81 #endif
82
83 rt_rq->rt_time = 0;
84 rt_rq->rt_throttled = 0;
85 rt_rq->rt_runtime = 0;
86 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
87 }
88
89 #ifdef CONFIG_RT_GROUP_SCHED
90 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
91 {
92 hrtimer_cancel(&rt_b->rt_period_timer);
93 }
94
95 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
96
97 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
98 {
99 #ifdef CONFIG_SCHED_DEBUG
100 WARN_ON_ONCE(!rt_entity_is_task(rt_se));
101 #endif
102 return container_of(rt_se, struct task_struct, rt);
103 }
104
105 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
106 {
107 return rt_rq->rq;
108 }
109
110 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
111 {
112 return rt_se->rt_rq;
113 }
114
115 void free_rt_sched_group(struct task_group *tg)
116 {
117 int i;
118
119 if (tg->rt_se)
120 destroy_rt_bandwidth(&tg->rt_bandwidth);
121
122 for_each_possible_cpu(i) {
123 if (tg->rt_rq)
124 kfree(tg->rt_rq[i]);
125 if (tg->rt_se)
126 kfree(tg->rt_se[i]);
127 }
128
129 kfree(tg->rt_rq);
130 kfree(tg->rt_se);
131 }
132
133 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
134 struct sched_rt_entity *rt_se, int cpu,
135 struct sched_rt_entity *parent)
136 {
137 struct rq *rq = cpu_rq(cpu);
138
139 rt_rq->highest_prio.curr = MAX_RT_PRIO;
140 rt_rq->rt_nr_boosted = 0;
141 rt_rq->rq = rq;
142 rt_rq->tg = tg;
143
144 tg->rt_rq[cpu] = rt_rq;
145 tg->rt_se[cpu] = rt_se;
146
147 if (!rt_se)
148 return;
149
150 if (!parent)
151 rt_se->rt_rq = &rq->rt;
152 else
153 rt_se->rt_rq = parent->my_q;
154
155 rt_se->my_q = rt_rq;
156 rt_se->parent = parent;
157 INIT_LIST_HEAD(&rt_se->run_list);
158 }
159
160 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
161 {
162 struct rt_rq *rt_rq;
163 struct sched_rt_entity *rt_se;
164 int i;
165
166 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
167 if (!tg->rt_rq)
168 goto err;
169 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
170 if (!tg->rt_se)
171 goto err;
172
173 init_rt_bandwidth(&tg->rt_bandwidth,
174 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
175
176 for_each_possible_cpu(i) {
177 rt_rq = kzalloc_node(sizeof(struct rt_rq),
178 GFP_KERNEL, cpu_to_node(i));
179 if (!rt_rq)
180 goto err;
181
182 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
183 GFP_KERNEL, cpu_to_node(i));
184 if (!rt_se)
185 goto err_free_rq;
186
187 init_rt_rq(rt_rq, cpu_rq(i));
188 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
189 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
190 }
191
192 return 1;
193
194 err_free_rq:
195 kfree(rt_rq);
196 err:
197 return 0;
198 }
199
200 #else /* CONFIG_RT_GROUP_SCHED */
201
202 #define rt_entity_is_task(rt_se) (1)
203
204 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
205 {
206 return container_of(rt_se, struct task_struct, rt);
207 }
208
209 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
210 {
211 return container_of(rt_rq, struct rq, rt);
212 }
213
214 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
215 {
216 struct task_struct *p = rt_task_of(rt_se);
217 struct rq *rq = task_rq(p);
218
219 return &rq->rt;
220 }
221
222 void free_rt_sched_group(struct task_group *tg) { }
223
224 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
225 {
226 return 1;
227 }
228 #endif /* CONFIG_RT_GROUP_SCHED */
229
230 #ifdef CONFIG_SMP
231
232 static int pull_rt_task(struct rq *this_rq);
233
234 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
235 {
236 /* Try to pull RT tasks here if we lower this rq's prio */
237 return rq->rt.highest_prio.curr > prev->prio;
238 }
239
240 static inline int rt_overloaded(struct rq *rq)
241 {
242 return atomic_read(&rq->rd->rto_count);
243 }
244
245 static inline void rt_set_overload(struct rq *rq)
246 {
247 if (!rq->online)
248 return;
249
250 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
251 /*
252 * Make sure the mask is visible before we set
253 * the overload count. That is checked to determine
254 * if we should look at the mask. It would be a shame
255 * if we looked at the mask, but the mask was not
256 * updated yet.
257 *
258 * Matched by the barrier in pull_rt_task().
259 */
260 smp_wmb();
261 atomic_inc(&rq->rd->rto_count);
262 }
263
264 static inline void rt_clear_overload(struct rq *rq)
265 {
266 if (!rq->online)
267 return;
268
269 /* the order here really doesn't matter */
270 atomic_dec(&rq->rd->rto_count);
271 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
272 }
273
274 static void update_rt_migration(struct rt_rq *rt_rq)
275 {
276 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
277 if (!rt_rq->overloaded) {
278 rt_set_overload(rq_of_rt_rq(rt_rq));
279 rt_rq->overloaded = 1;
280 }
281 } else if (rt_rq->overloaded) {
282 rt_clear_overload(rq_of_rt_rq(rt_rq));
283 rt_rq->overloaded = 0;
284 }
285 }
286
287 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
288 {
289 struct task_struct *p;
290
291 if (!rt_entity_is_task(rt_se))
292 return;
293
294 p = rt_task_of(rt_se);
295 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
296
297 rt_rq->rt_nr_total++;
298 if (p->nr_cpus_allowed > 1)
299 rt_rq->rt_nr_migratory++;
300
301 update_rt_migration(rt_rq);
302 }
303
304 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
305 {
306 struct task_struct *p;
307
308 if (!rt_entity_is_task(rt_se))
309 return;
310
311 p = rt_task_of(rt_se);
312 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
313
314 rt_rq->rt_nr_total--;
315 if (p->nr_cpus_allowed > 1)
316 rt_rq->rt_nr_migratory--;
317
318 update_rt_migration(rt_rq);
319 }
320
321 static inline int has_pushable_tasks(struct rq *rq)
322 {
323 return !plist_head_empty(&rq->rt.pushable_tasks);
324 }
325
326 static inline void set_post_schedule(struct rq *rq)
327 {
328 /*
329 * We detect this state here so that we can avoid taking the RQ
330 * lock again later if there is no need to push
331 */
332 rq->post_schedule = has_pushable_tasks(rq);
333 }
334
335 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
336 {
337 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
338 plist_node_init(&p->pushable_tasks, p->prio);
339 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
340
341 /* Update the highest prio pushable task */
342 if (p->prio < rq->rt.highest_prio.next)
343 rq->rt.highest_prio.next = p->prio;
344 }
345
346 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
347 {
348 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
349
350 /* Update the new highest prio pushable task */
351 if (has_pushable_tasks(rq)) {
352 p = plist_first_entry(&rq->rt.pushable_tasks,
353 struct task_struct, pushable_tasks);
354 rq->rt.highest_prio.next = p->prio;
355 } else
356 rq->rt.highest_prio.next = MAX_RT_PRIO;
357 }
358
359 #else
360
361 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
362 {
363 }
364
365 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
366 {
367 }
368
369 static inline
370 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
371 {
372 }
373
374 static inline
375 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
376 {
377 }
378
379 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
380 {
381 return false;
382 }
383
384 static inline int pull_rt_task(struct rq *this_rq)
385 {
386 return 0;
387 }
388
389 static inline void set_post_schedule(struct rq *rq)
390 {
391 }
392 #endif /* CONFIG_SMP */
393
394 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
395 {
396 return !list_empty(&rt_se->run_list);
397 }
398
399 #ifdef CONFIG_RT_GROUP_SCHED
400
401 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
402 {
403 if (!rt_rq->tg)
404 return RUNTIME_INF;
405
406 return rt_rq->rt_runtime;
407 }
408
409 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
410 {
411 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
412 }
413
414 typedef struct task_group *rt_rq_iter_t;
415
416 static inline struct task_group *next_task_group(struct task_group *tg)
417 {
418 do {
419 tg = list_entry_rcu(tg->list.next,
420 typeof(struct task_group), list);
421 } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
422
423 if (&tg->list == &task_groups)
424 tg = NULL;
425
426 return tg;
427 }
428
429 #define for_each_rt_rq(rt_rq, iter, rq) \
430 for (iter = container_of(&task_groups, typeof(*iter), list); \
431 (iter = next_task_group(iter)) && \
432 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
433
434 #define for_each_sched_rt_entity(rt_se) \
435 for (; rt_se; rt_se = rt_se->parent)
436
437 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
438 {
439 return rt_se->my_q;
440 }
441
442 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
443 static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
444
445 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
446 {
447 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
448 struct sched_rt_entity *rt_se;
449
450 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
451
452 rt_se = rt_rq->tg->rt_se[cpu];
453
454 if (rt_rq->rt_nr_running) {
455 if (rt_se && !on_rt_rq(rt_se))
456 enqueue_rt_entity(rt_se, false);
457 if (rt_rq->highest_prio.curr < curr->prio)
458 resched_task(curr);
459 }
460 }
461
462 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
463 {
464 struct sched_rt_entity *rt_se;
465 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
466
467 rt_se = rt_rq->tg->rt_se[cpu];
468
469 if (rt_se && on_rt_rq(rt_se))
470 dequeue_rt_entity(rt_se);
471 }
472
473 static int rt_se_boosted(struct sched_rt_entity *rt_se)
474 {
475 struct rt_rq *rt_rq = group_rt_rq(rt_se);
476 struct task_struct *p;
477
478 if (rt_rq)
479 return !!rt_rq->rt_nr_boosted;
480
481 p = rt_task_of(rt_se);
482 return p->prio != p->normal_prio;
483 }
484
485 #ifdef CONFIG_SMP
486 static inline const struct cpumask *sched_rt_period_mask(void)
487 {
488 return this_rq()->rd->span;
489 }
490 #else
491 static inline const struct cpumask *sched_rt_period_mask(void)
492 {
493 return cpu_online_mask;
494 }
495 #endif
496
497 static inline
498 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
499 {
500 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
501 }
502
503 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
504 {
505 return &rt_rq->tg->rt_bandwidth;
506 }
507
508 #else /* !CONFIG_RT_GROUP_SCHED */
509
510 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
511 {
512 return rt_rq->rt_runtime;
513 }
514
515 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
516 {
517 return ktime_to_ns(def_rt_bandwidth.rt_period);
518 }
519
520 typedef struct rt_rq *rt_rq_iter_t;
521
522 #define for_each_rt_rq(rt_rq, iter, rq) \
523 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
524
525 #define for_each_sched_rt_entity(rt_se) \
526 for (; rt_se; rt_se = NULL)
527
528 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
529 {
530 return NULL;
531 }
532
533 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
534 {
535 if (rt_rq->rt_nr_running)
536 resched_task(rq_of_rt_rq(rt_rq)->curr);
537 }
538
539 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
540 {
541 }
542
543 static inline const struct cpumask *sched_rt_period_mask(void)
544 {
545 return cpu_online_mask;
546 }
547
548 static inline
549 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
550 {
551 return &cpu_rq(cpu)->rt;
552 }
553
554 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
555 {
556 return &def_rt_bandwidth;
557 }
558
559 #endif /* CONFIG_RT_GROUP_SCHED */
560
561 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
562 {
563 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
564
565 return (hrtimer_active(&rt_b->rt_period_timer) ||
566 rt_rq->rt_time < rt_b->rt_runtime);
567 }
568
569 #ifdef CONFIG_SMP
570 /*
571 * We ran out of runtime, see if we can borrow some from our neighbours.
572 */
573 static int do_balance_runtime(struct rt_rq *rt_rq)
574 {
575 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
576 struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
577 int i, weight, more = 0;
578 u64 rt_period;
579
580 weight = cpumask_weight(rd->span);
581
582 raw_spin_lock(&rt_b->rt_runtime_lock);
583 rt_period = ktime_to_ns(rt_b->rt_period);
584 for_each_cpu(i, rd->span) {
585 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
586 s64 diff;
587
588 if (iter == rt_rq)
589 continue;
590
591 raw_spin_lock(&iter->rt_runtime_lock);
592 /*
593 * Either all rqs have inf runtime and there's nothing to steal
594 * or __disable_runtime() below sets a specific rq to inf to
595 * indicate its been disabled and disalow stealing.
596 */
597 if (iter->rt_runtime == RUNTIME_INF)
598 goto next;
599
600 /*
601 * From runqueues with spare time, take 1/n part of their
602 * spare time, but no more than our period.
603 */
604 diff = iter->rt_runtime - iter->rt_time;
605 if (diff > 0) {
606 diff = div_u64((u64)diff, weight);
607 if (rt_rq->rt_runtime + diff > rt_period)
608 diff = rt_period - rt_rq->rt_runtime;
609 iter->rt_runtime -= diff;
610 rt_rq->rt_runtime += diff;
611 more = 1;
612 if (rt_rq->rt_runtime == rt_period) {
613 raw_spin_unlock(&iter->rt_runtime_lock);
614 break;
615 }
616 }
617 next:
618 raw_spin_unlock(&iter->rt_runtime_lock);
619 }
620 raw_spin_unlock(&rt_b->rt_runtime_lock);
621
622 return more;
623 }
624
625 /*
626 * Ensure this RQ takes back all the runtime it lend to its neighbours.
627 */
628 static void __disable_runtime(struct rq *rq)
629 {
630 struct root_domain *rd = rq->rd;
631 rt_rq_iter_t iter;
632 struct rt_rq *rt_rq;
633
634 if (unlikely(!scheduler_running))
635 return;
636
637 for_each_rt_rq(rt_rq, iter, rq) {
638 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
639 s64 want;
640 int i;
641
642 raw_spin_lock(&rt_b->rt_runtime_lock);
643 raw_spin_lock(&rt_rq->rt_runtime_lock);
644 /*
645 * Either we're all inf and nobody needs to borrow, or we're
646 * already disabled and thus have nothing to do, or we have
647 * exactly the right amount of runtime to take out.
648 */
649 if (rt_rq->rt_runtime == RUNTIME_INF ||
650 rt_rq->rt_runtime == rt_b->rt_runtime)
651 goto balanced;
652 raw_spin_unlock(&rt_rq->rt_runtime_lock);
653
654 /*
655 * Calculate the difference between what we started out with
656 * and what we current have, that's the amount of runtime
657 * we lend and now have to reclaim.
658 */
659 want = rt_b->rt_runtime - rt_rq->rt_runtime;
660
661 /*
662 * Greedy reclaim, take back as much as we can.
663 */
664 for_each_cpu(i, rd->span) {
665 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
666 s64 diff;
667
668 /*
669 * Can't reclaim from ourselves or disabled runqueues.
670 */
671 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
672 continue;
673
674 raw_spin_lock(&iter->rt_runtime_lock);
675 if (want > 0) {
676 diff = min_t(s64, iter->rt_runtime, want);
677 iter->rt_runtime -= diff;
678 want -= diff;
679 } else {
680 iter->rt_runtime -= want;
681 want -= want;
682 }
683 raw_spin_unlock(&iter->rt_runtime_lock);
684
685 if (!want)
686 break;
687 }
688
689 raw_spin_lock(&rt_rq->rt_runtime_lock);
690 /*
691 * We cannot be left wanting - that would mean some runtime
692 * leaked out of the system.
693 */
694 BUG_ON(want);
695 balanced:
696 /*
697 * Disable all the borrow logic by pretending we have inf
698 * runtime - in which case borrowing doesn't make sense.
699 */
700 rt_rq->rt_runtime = RUNTIME_INF;
701 rt_rq->rt_throttled = 0;
702 raw_spin_unlock(&rt_rq->rt_runtime_lock);
703 raw_spin_unlock(&rt_b->rt_runtime_lock);
704 }
705 }
706
707 static void __enable_runtime(struct rq *rq)
708 {
709 rt_rq_iter_t iter;
710 struct rt_rq *rt_rq;
711
712 if (unlikely(!scheduler_running))
713 return;
714
715 /*
716 * Reset each runqueue's bandwidth settings
717 */
718 for_each_rt_rq(rt_rq, iter, rq) {
719 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
720
721 raw_spin_lock(&rt_b->rt_runtime_lock);
722 raw_spin_lock(&rt_rq->rt_runtime_lock);
723 rt_rq->rt_runtime = rt_b->rt_runtime;
724 rt_rq->rt_time = 0;
725 rt_rq->rt_throttled = 0;
726 raw_spin_unlock(&rt_rq->rt_runtime_lock);
727 raw_spin_unlock(&rt_b->rt_runtime_lock);
728 }
729 }
730
731 static int balance_runtime(struct rt_rq *rt_rq)
732 {
733 int more = 0;
734
735 if (!sched_feat(RT_RUNTIME_SHARE))
736 return more;
737
738 if (rt_rq->rt_time > rt_rq->rt_runtime) {
739 raw_spin_unlock(&rt_rq->rt_runtime_lock);
740 more = do_balance_runtime(rt_rq);
741 raw_spin_lock(&rt_rq->rt_runtime_lock);
742 }
743
744 return more;
745 }
746 #else /* !CONFIG_SMP */
747 static inline int balance_runtime(struct rt_rq *rt_rq)
748 {
749 return 0;
750 }
751 #endif /* CONFIG_SMP */
752
753 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
754 {
755 int i, idle = 1, throttled = 0;
756 const struct cpumask *span;
757
758 span = sched_rt_period_mask();
759 #ifdef CONFIG_RT_GROUP_SCHED
760 /*
761 * FIXME: isolated CPUs should really leave the root task group,
762 * whether they are isolcpus or were isolated via cpusets, lest
763 * the timer run on a CPU which does not service all runqueues,
764 * potentially leaving other CPUs indefinitely throttled. If
765 * isolation is really required, the user will turn the throttle
766 * off to kill the perturbations it causes anyway. Meanwhile,
767 * this maintains functionality for boot and/or troubleshooting.
768 */
769 if (rt_b == &root_task_group.rt_bandwidth)
770 span = cpu_online_mask;
771 #endif
772 for_each_cpu(i, span) {
773 int enqueue = 0;
774 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
775 struct rq *rq = rq_of_rt_rq(rt_rq);
776
777 raw_spin_lock(&rq->lock);
778 if (rt_rq->rt_time) {
779 u64 runtime;
780
781 raw_spin_lock(&rt_rq->rt_runtime_lock);
782 if (rt_rq->rt_throttled)
783 balance_runtime(rt_rq);
784 runtime = rt_rq->rt_runtime;
785 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
786 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
787 rt_rq->rt_throttled = 0;
788 enqueue = 1;
789
790 /*
791 * Force a clock update if the CPU was idle,
792 * lest wakeup -> unthrottle time accumulate.
793 */
794 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
795 rq->skip_clock_update = -1;
796 }
797 if (rt_rq->rt_time || rt_rq->rt_nr_running)
798 idle = 0;
799 raw_spin_unlock(&rt_rq->rt_runtime_lock);
800 } else if (rt_rq->rt_nr_running) {
801 idle = 0;
802 if (!rt_rq_throttled(rt_rq))
803 enqueue = 1;
804 }
805 if (rt_rq->rt_throttled)
806 throttled = 1;
807
808 if (enqueue)
809 sched_rt_rq_enqueue(rt_rq);
810 raw_spin_unlock(&rq->lock);
811 }
812
813 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
814 return 1;
815
816 return idle;
817 }
818
819 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
820 {
821 #ifdef CONFIG_RT_GROUP_SCHED
822 struct rt_rq *rt_rq = group_rt_rq(rt_se);
823
824 if (rt_rq)
825 return rt_rq->highest_prio.curr;
826 #endif
827
828 return rt_task_of(rt_se)->prio;
829 }
830
831 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
832 {
833 u64 runtime = sched_rt_runtime(rt_rq);
834
835 if (rt_rq->rt_throttled)
836 return rt_rq_throttled(rt_rq);
837
838 if (runtime >= sched_rt_period(rt_rq))
839 return 0;
840
841 balance_runtime(rt_rq);
842 runtime = sched_rt_runtime(rt_rq);
843 if (runtime == RUNTIME_INF)
844 return 0;
845
846 if (rt_rq->rt_time > runtime) {
847 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
848
849 /*
850 * Don't actually throttle groups that have no runtime assigned
851 * but accrue some time due to boosting.
852 */
853 if (likely(rt_b->rt_runtime)) {
854 static bool once = false;
855
856 rt_rq->rt_throttled = 1;
857
858 if (!once) {
859 once = true;
860 printk_sched("sched: RT throttling activated\n");
861 }
862 } else {
863 /*
864 * In case we did anyway, make it go away,
865 * replenishment is a joke, since it will replenish us
866 * with exactly 0 ns.
867 */
868 rt_rq->rt_time = 0;
869 }
870
871 if (rt_rq_throttled(rt_rq)) {
872 sched_rt_rq_dequeue(rt_rq);
873 return 1;
874 }
875 }
876
877 return 0;
878 }
879
880 /*
881 * Update the current task's runtime statistics. Skip current tasks that
882 * are not in our scheduling class.
883 */
884 static void update_curr_rt(struct rq *rq)
885 {
886 struct task_struct *curr = rq->curr;
887 struct sched_rt_entity *rt_se = &curr->rt;
888 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
889 u64 delta_exec;
890
891 if (curr->sched_class != &rt_sched_class)
892 return;
893
894 delta_exec = rq_clock_task(rq) - curr->se.exec_start;
895 if (unlikely((s64)delta_exec <= 0))
896 return;
897
898 schedstat_set(curr->se.statistics.exec_max,
899 max(curr->se.statistics.exec_max, delta_exec));
900
901 curr->se.sum_exec_runtime += delta_exec;
902 account_group_exec_runtime(curr, delta_exec);
903
904 curr->se.exec_start = rq_clock_task(rq);
905 cpuacct_charge(curr, delta_exec);
906
907 sched_rt_avg_update(rq, delta_exec);
908
909 if (!rt_bandwidth_enabled())
910 return;
911
912 for_each_sched_rt_entity(rt_se) {
913 rt_rq = rt_rq_of_se(rt_se);
914
915 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
916 raw_spin_lock(&rt_rq->rt_runtime_lock);
917 rt_rq->rt_time += delta_exec;
918 if (sched_rt_runtime_exceeded(rt_rq))
919 resched_task(curr);
920 raw_spin_unlock(&rt_rq->rt_runtime_lock);
921 }
922 }
923 }
924
925 #if defined CONFIG_SMP
926
927 static void
928 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
929 {
930 struct rq *rq = rq_of_rt_rq(rt_rq);
931
932 #ifdef CONFIG_RT_GROUP_SCHED
933 /*
934 * Change rq's cpupri only if rt_rq is the top queue.
935 */
936 if (&rq->rt != rt_rq)
937 return;
938 #endif
939 if (rq->online && prio < prev_prio)
940 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
941 }
942
943 static void
944 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
945 {
946 struct rq *rq = rq_of_rt_rq(rt_rq);
947
948 #ifdef CONFIG_RT_GROUP_SCHED
949 /*
950 * Change rq's cpupri only if rt_rq is the top queue.
951 */
952 if (&rq->rt != rt_rq)
953 return;
954 #endif
955 if (rq->online && rt_rq->highest_prio.curr != prev_prio)
956 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
957 }
958
959 #else /* CONFIG_SMP */
960
961 static inline
962 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
963 static inline
964 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
965
966 #endif /* CONFIG_SMP */
967
968 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
969 static void
970 inc_rt_prio(struct rt_rq *rt_rq, int prio)
971 {
972 int prev_prio = rt_rq->highest_prio.curr;
973
974 if (prio < prev_prio)
975 rt_rq->highest_prio.curr = prio;
976
977 inc_rt_prio_smp(rt_rq, prio, prev_prio);
978 }
979
980 static void
981 dec_rt_prio(struct rt_rq *rt_rq, int prio)
982 {
983 int prev_prio = rt_rq->highest_prio.curr;
984
985 if (rt_rq->rt_nr_running) {
986
987 WARN_ON(prio < prev_prio);
988
989 /*
990 * This may have been our highest task, and therefore
991 * we may have some recomputation to do
992 */
993 if (prio == prev_prio) {
994 struct rt_prio_array *array = &rt_rq->active;
995
996 rt_rq->highest_prio.curr =
997 sched_find_first_bit(array->bitmap);
998 }
999
1000 } else
1001 rt_rq->highest_prio.curr = MAX_RT_PRIO;
1002
1003 dec_rt_prio_smp(rt_rq, prio, prev_prio);
1004 }
1005
1006 #else
1007
1008 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1009 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1010
1011 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1012
1013 #ifdef CONFIG_RT_GROUP_SCHED
1014
1015 static void
1016 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1017 {
1018 if (rt_se_boosted(rt_se))
1019 rt_rq->rt_nr_boosted++;
1020
1021 if (rt_rq->tg)
1022 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1023 }
1024
1025 static void
1026 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1027 {
1028 if (rt_se_boosted(rt_se))
1029 rt_rq->rt_nr_boosted--;
1030
1031 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1032 }
1033
1034 #else /* CONFIG_RT_GROUP_SCHED */
1035
1036 static void
1037 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1038 {
1039 start_rt_bandwidth(&def_rt_bandwidth);
1040 }
1041
1042 static inline
1043 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1044
1045 #endif /* CONFIG_RT_GROUP_SCHED */
1046
1047 static inline
1048 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1049 {
1050 int prio = rt_se_prio(rt_se);
1051
1052 WARN_ON(!rt_prio(prio));
1053 rt_rq->rt_nr_running++;
1054
1055 inc_rt_prio(rt_rq, prio);
1056 inc_rt_migration(rt_se, rt_rq);
1057 inc_rt_group(rt_se, rt_rq);
1058 }
1059
1060 static inline
1061 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1062 {
1063 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1064 WARN_ON(!rt_rq->rt_nr_running);
1065 rt_rq->rt_nr_running--;
1066
1067 dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1068 dec_rt_migration(rt_se, rt_rq);
1069 dec_rt_group(rt_se, rt_rq);
1070 }
1071
1072 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1073 {
1074 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1075 struct rt_prio_array *array = &rt_rq->active;
1076 struct rt_rq *group_rq = group_rt_rq(rt_se);
1077 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1078
1079 /*
1080 * Don't enqueue the group if its throttled, or when empty.
1081 * The latter is a consequence of the former when a child group
1082 * get throttled and the current group doesn't have any other
1083 * active members.
1084 */
1085 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
1086 return;
1087
1088 if (head)
1089 list_add(&rt_se->run_list, queue);
1090 else
1091 list_add_tail(&rt_se->run_list, queue);
1092 __set_bit(rt_se_prio(rt_se), array->bitmap);
1093
1094 inc_rt_tasks(rt_se, rt_rq);
1095 }
1096
1097 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
1098 {
1099 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1100 struct rt_prio_array *array = &rt_rq->active;
1101
1102 list_del_init(&rt_se->run_list);
1103 if (list_empty(array->queue + rt_se_prio(rt_se)))
1104 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1105
1106 dec_rt_tasks(rt_se, rt_rq);
1107 }
1108
1109 /*
1110 * Because the prio of an upper entry depends on the lower
1111 * entries, we must remove entries top - down.
1112 */
1113 static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
1114 {
1115 struct sched_rt_entity *back = NULL;
1116
1117 for_each_sched_rt_entity(rt_se) {
1118 rt_se->back = back;
1119 back = rt_se;
1120 }
1121
1122 for (rt_se = back; rt_se; rt_se = rt_se->back) {
1123 if (on_rt_rq(rt_se))
1124 __dequeue_rt_entity(rt_se);
1125 }
1126 }
1127
1128 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1129 {
1130 dequeue_rt_stack(rt_se);
1131 for_each_sched_rt_entity(rt_se)
1132 __enqueue_rt_entity(rt_se, head);
1133 }
1134
1135 static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
1136 {
1137 dequeue_rt_stack(rt_se);
1138
1139 for_each_sched_rt_entity(rt_se) {
1140 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1141
1142 if (rt_rq && rt_rq->rt_nr_running)
1143 __enqueue_rt_entity(rt_se, false);
1144 }
1145 }
1146
1147 /*
1148 * Adding/removing a task to/from a priority array:
1149 */
1150 static void
1151 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1152 {
1153 struct sched_rt_entity *rt_se = &p->rt;
1154
1155 if (flags & ENQUEUE_WAKEUP)
1156 rt_se->timeout = 0;
1157
1158 enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
1159
1160 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1161 enqueue_pushable_task(rq, p);
1162
1163 inc_nr_running(rq);
1164 }
1165
1166 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1167 {
1168 struct sched_rt_entity *rt_se = &p->rt;
1169
1170 update_curr_rt(rq);
1171 dequeue_rt_entity(rt_se);
1172
1173 dequeue_pushable_task(rq, p);
1174
1175 dec_nr_running(rq);
1176 }
1177
1178 /*
1179 * Put task to the head or the end of the run list without the overhead of
1180 * dequeue followed by enqueue.
1181 */
1182 static void
1183 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1184 {
1185 if (on_rt_rq(rt_se)) {
1186 struct rt_prio_array *array = &rt_rq->active;
1187 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1188
1189 if (head)
1190 list_move(&rt_se->run_list, queue);
1191 else
1192 list_move_tail(&rt_se->run_list, queue);
1193 }
1194 }
1195
1196 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1197 {
1198 struct sched_rt_entity *rt_se = &p->rt;
1199 struct rt_rq *rt_rq;
1200
1201 for_each_sched_rt_entity(rt_se) {
1202 rt_rq = rt_rq_of_se(rt_se);
1203 requeue_rt_entity(rt_rq, rt_se, head);
1204 }
1205 }
1206
1207 static void yield_task_rt(struct rq *rq)
1208 {
1209 requeue_task_rt(rq, rq->curr, 0);
1210 }
1211
1212 #ifdef CONFIG_SMP
1213 static int find_lowest_rq(struct task_struct *task);
1214
1215 static int
1216 select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
1217 {
1218 struct task_struct *curr;
1219 struct rq *rq;
1220
1221 if (p->nr_cpus_allowed == 1)
1222 goto out;
1223
1224 /* For anything but wake ups, just return the task_cpu */
1225 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1226 goto out;
1227
1228 rq = cpu_rq(cpu);
1229
1230 rcu_read_lock();
1231 curr = ACCESS_ONCE(rq->curr); /* unlocked access */
1232
1233 /*
1234 * If the current task on @p's runqueue is an RT task, then
1235 * try to see if we can wake this RT task up on another
1236 * runqueue. Otherwise simply start this RT task
1237 * on its current runqueue.
1238 *
1239 * We want to avoid overloading runqueues. If the woken
1240 * task is a higher priority, then it will stay on this CPU
1241 * and the lower prio task should be moved to another CPU.
1242 * Even though this will probably make the lower prio task
1243 * lose its cache, we do not want to bounce a higher task
1244 * around just because it gave up its CPU, perhaps for a
1245 * lock?
1246 *
1247 * For equal prio tasks, we just let the scheduler sort it out.
1248 *
1249 * Otherwise, just let it ride on the affined RQ and the
1250 * post-schedule router will push the preempted task away
1251 *
1252 * This test is optimistic, if we get it wrong the load-balancer
1253 * will have to sort it out.
1254 */
1255 if (curr && unlikely(rt_task(curr)) &&
1256 (curr->nr_cpus_allowed < 2 ||
1257 curr->prio <= p->prio)) {
1258 int target = find_lowest_rq(p);
1259
1260 if (target != -1)
1261 cpu = target;
1262 }
1263 rcu_read_unlock();
1264
1265 out:
1266 return cpu;
1267 }
1268
1269 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1270 {
1271 if (rq->curr->nr_cpus_allowed == 1)
1272 return;
1273
1274 if (p->nr_cpus_allowed != 1
1275 && cpupri_find(&rq->rd->cpupri, p, NULL))
1276 return;
1277
1278 if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1279 return;
1280
1281 /*
1282 * There appears to be other cpus that can accept
1283 * current and none to run 'p', so lets reschedule
1284 * to try and push current away:
1285 */
1286 requeue_task_rt(rq, p, 1);
1287 resched_task(rq->curr);
1288 }
1289
1290 #endif /* CONFIG_SMP */
1291
1292 /*
1293 * Preempt the current task with a newly woken task if needed:
1294 */
1295 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1296 {
1297 if (p->prio < rq->curr->prio) {
1298 resched_task(rq->curr);
1299 return;
1300 }
1301
1302 #ifdef CONFIG_SMP
1303 /*
1304 * If:
1305 *
1306 * - the newly woken task is of equal priority to the current task
1307 * - the newly woken task is non-migratable while current is migratable
1308 * - current will be preempted on the next reschedule
1309 *
1310 * we should check to see if current can readily move to a different
1311 * cpu. If so, we will reschedule to allow the push logic to try
1312 * to move current somewhere else, making room for our non-migratable
1313 * task.
1314 */
1315 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1316 check_preempt_equal_prio(rq, p);
1317 #endif
1318 }
1319
1320 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1321 struct rt_rq *rt_rq)
1322 {
1323 struct rt_prio_array *array = &rt_rq->active;
1324 struct sched_rt_entity *next = NULL;
1325 struct list_head *queue;
1326 int idx;
1327
1328 idx = sched_find_first_bit(array->bitmap);
1329 BUG_ON(idx >= MAX_RT_PRIO);
1330
1331 queue = array->queue + idx;
1332 next = list_entry(queue->next, struct sched_rt_entity, run_list);
1333
1334 return next;
1335 }
1336
1337 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1338 {
1339 struct sched_rt_entity *rt_se;
1340 struct task_struct *p;
1341 struct rt_rq *rt_rq = &rq->rt;
1342
1343 do {
1344 rt_se = pick_next_rt_entity(rq, rt_rq);
1345 BUG_ON(!rt_se);
1346 rt_rq = group_rt_rq(rt_se);
1347 } while (rt_rq);
1348
1349 p = rt_task_of(rt_se);
1350 p->se.exec_start = rq_clock_task(rq);
1351
1352 return p;
1353 }
1354
1355 static struct task_struct *
1356 pick_next_task_rt(struct rq *rq, struct task_struct *prev)
1357 {
1358 struct task_struct *p;
1359 struct rt_rq *rt_rq = &rq->rt;
1360
1361 if (need_pull_rt_task(rq, prev)) {
1362 pull_rt_task(rq);
1363 /*
1364 * pull_rt_task() can drop (and re-acquire) rq->lock; this
1365 * means a dl or stop task can slip in, in which case we need
1366 * to re-start task selection.
1367 */
1368 if (unlikely((rq->stop && rq->stop->on_rq) ||
1369 rq->dl.dl_nr_running))
1370 return RETRY_TASK;
1371 }
1372
1373 /*
1374 * We may dequeue prev's rt_rq in put_prev_task().
1375 * So, we update time before rt_nr_running check.
1376 */
1377 if (prev->sched_class == &rt_sched_class)
1378 update_curr_rt(rq);
1379
1380 if (!rt_rq->rt_nr_running)
1381 return NULL;
1382
1383 if (rt_rq_throttled(rt_rq))
1384 return NULL;
1385
1386 put_prev_task(rq, prev);
1387
1388 p = _pick_next_task_rt(rq);
1389
1390 /* The running task is never eligible for pushing */
1391 if (p)
1392 dequeue_pushable_task(rq, p);
1393
1394 set_post_schedule(rq);
1395
1396 return p;
1397 }
1398
1399 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1400 {
1401 update_curr_rt(rq);
1402
1403 /*
1404 * The previous task needs to be made eligible for pushing
1405 * if it is still active
1406 */
1407 if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1408 enqueue_pushable_task(rq, p);
1409 }
1410
1411 #ifdef CONFIG_SMP
1412
1413 /* Only try algorithms three times */
1414 #define RT_MAX_TRIES 3
1415
1416 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1417 {
1418 if (!task_running(rq, p) &&
1419 cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
1420 return 1;
1421 return 0;
1422 }
1423
1424 /*
1425 * Return the highest pushable rq's task, which is suitable to be executed
1426 * on the cpu, NULL otherwise
1427 */
1428 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1429 {
1430 struct plist_head *head = &rq->rt.pushable_tasks;
1431 struct task_struct *p;
1432
1433 if (!has_pushable_tasks(rq))
1434 return NULL;
1435
1436 plist_for_each_entry(p, head, pushable_tasks) {
1437 if (pick_rt_task(rq, p, cpu))
1438 return p;
1439 }
1440
1441 return NULL;
1442 }
1443
1444 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1445
1446 static int find_lowest_rq(struct task_struct *task)
1447 {
1448 struct sched_domain *sd;
1449 struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
1450 int this_cpu = smp_processor_id();
1451 int cpu = task_cpu(task);
1452
1453 /* Make sure the mask is initialized first */
1454 if (unlikely(!lowest_mask))
1455 return -1;
1456
1457 if (task->nr_cpus_allowed == 1)
1458 return -1; /* No other targets possible */
1459
1460 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1461 return -1; /* No targets found */
1462
1463 /*
1464 * At this point we have built a mask of cpus representing the
1465 * lowest priority tasks in the system. Now we want to elect
1466 * the best one based on our affinity and topology.
1467 *
1468 * We prioritize the last cpu that the task executed on since
1469 * it is most likely cache-hot in that location.
1470 */
1471 if (cpumask_test_cpu(cpu, lowest_mask))
1472 return cpu;
1473
1474 /*
1475 * Otherwise, we consult the sched_domains span maps to figure
1476 * out which cpu is logically closest to our hot cache data.
1477 */
1478 if (!cpumask_test_cpu(this_cpu, lowest_mask))
1479 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1480
1481 rcu_read_lock();
1482 for_each_domain(cpu, sd) {
1483 if (sd->flags & SD_WAKE_AFFINE) {
1484 int best_cpu;
1485
1486 /*
1487 * "this_cpu" is cheaper to preempt than a
1488 * remote processor.
1489 */
1490 if (this_cpu != -1 &&
1491 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1492 rcu_read_unlock();
1493 return this_cpu;
1494 }
1495
1496 best_cpu = cpumask_first_and(lowest_mask,
1497 sched_domain_span(sd));
1498 if (best_cpu < nr_cpu_ids) {
1499 rcu_read_unlock();
1500 return best_cpu;
1501 }
1502 }
1503 }
1504 rcu_read_unlock();
1505
1506 /*
1507 * And finally, if there were no matches within the domains
1508 * just give the caller *something* to work with from the compatible
1509 * locations.
1510 */
1511 if (this_cpu != -1)
1512 return this_cpu;
1513
1514 cpu = cpumask_any(lowest_mask);
1515 if (cpu < nr_cpu_ids)
1516 return cpu;
1517 return -1;
1518 }
1519
1520 /* Will lock the rq it finds */
1521 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1522 {
1523 struct rq *lowest_rq = NULL;
1524 int tries;
1525 int cpu;
1526
1527 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1528 cpu = find_lowest_rq(task);
1529
1530 if ((cpu == -1) || (cpu == rq->cpu))
1531 break;
1532
1533 lowest_rq = cpu_rq(cpu);
1534
1535 /* if the prio of this runqueue changed, try again */
1536 if (double_lock_balance(rq, lowest_rq)) {
1537 /*
1538 * We had to unlock the run queue. In
1539 * the mean time, task could have
1540 * migrated already or had its affinity changed.
1541 * Also make sure that it wasn't scheduled on its rq.
1542 */
1543 if (unlikely(task_rq(task) != rq ||
1544 !cpumask_test_cpu(lowest_rq->cpu,
1545 tsk_cpus_allowed(task)) ||
1546 task_running(rq, task) ||
1547 !task->on_rq)) {
1548
1549 double_unlock_balance(rq, lowest_rq);
1550 lowest_rq = NULL;
1551 break;
1552 }
1553 }
1554
1555 /* If this rq is still suitable use it. */
1556 if (lowest_rq->rt.highest_prio.curr > task->prio)
1557 break;
1558
1559 /* try again */
1560 double_unlock_balance(rq, lowest_rq);
1561 lowest_rq = NULL;
1562 }
1563
1564 return lowest_rq;
1565 }
1566
1567 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1568 {
1569 struct task_struct *p;
1570
1571 if (!has_pushable_tasks(rq))
1572 return NULL;
1573
1574 p = plist_first_entry(&rq->rt.pushable_tasks,
1575 struct task_struct, pushable_tasks);
1576
1577 BUG_ON(rq->cpu != task_cpu(p));
1578 BUG_ON(task_current(rq, p));
1579 BUG_ON(p->nr_cpus_allowed <= 1);
1580
1581 BUG_ON(!p->on_rq);
1582 BUG_ON(!rt_task(p));
1583
1584 return p;
1585 }
1586
1587 /*
1588 * If the current CPU has more than one RT task, see if the non
1589 * running task can migrate over to a CPU that is running a task
1590 * of lesser priority.
1591 */
1592 static int push_rt_task(struct rq *rq)
1593 {
1594 struct task_struct *next_task;
1595 struct rq *lowest_rq;
1596 int ret = 0;
1597
1598 if (!rq->rt.overloaded)
1599 return 0;
1600
1601 next_task = pick_next_pushable_task(rq);
1602 if (!next_task)
1603 return 0;
1604
1605 retry:
1606 if (unlikely(next_task == rq->curr)) {
1607 WARN_ON(1);
1608 return 0;
1609 }
1610
1611 /*
1612 * It's possible that the next_task slipped in of
1613 * higher priority than current. If that's the case
1614 * just reschedule current.
1615 */
1616 if (unlikely(next_task->prio < rq->curr->prio)) {
1617 resched_task(rq->curr);
1618 return 0;
1619 }
1620
1621 /* We might release rq lock */
1622 get_task_struct(next_task);
1623
1624 /* find_lock_lowest_rq locks the rq if found */
1625 lowest_rq = find_lock_lowest_rq(next_task, rq);
1626 if (!lowest_rq) {
1627 struct task_struct *task;
1628 /*
1629 * find_lock_lowest_rq releases rq->lock
1630 * so it is possible that next_task has migrated.
1631 *
1632 * We need to make sure that the task is still on the same
1633 * run-queue and is also still the next task eligible for
1634 * pushing.
1635 */
1636 task = pick_next_pushable_task(rq);
1637 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1638 /*
1639 * The task hasn't migrated, and is still the next
1640 * eligible task, but we failed to find a run-queue
1641 * to push it to. Do not retry in this case, since
1642 * other cpus will pull from us when ready.
1643 */
1644 goto out;
1645 }
1646
1647 if (!task)
1648 /* No more tasks, just exit */
1649 goto out;
1650
1651 /*
1652 * Something has shifted, try again.
1653 */
1654 put_task_struct(next_task);
1655 next_task = task;
1656 goto retry;
1657 }
1658
1659 deactivate_task(rq, next_task, 0);
1660 set_task_cpu(next_task, lowest_rq->cpu);
1661 activate_task(lowest_rq, next_task, 0);
1662 ret = 1;
1663
1664 resched_task(lowest_rq->curr);
1665
1666 double_unlock_balance(rq, lowest_rq);
1667
1668 out:
1669 put_task_struct(next_task);
1670
1671 return ret;
1672 }
1673
1674 static void push_rt_tasks(struct rq *rq)
1675 {
1676 /* push_rt_task will return true if it moved an RT */
1677 while (push_rt_task(rq))
1678 ;
1679 }
1680
1681 static int pull_rt_task(struct rq *this_rq)
1682 {
1683 int this_cpu = this_rq->cpu, ret = 0, cpu;
1684 struct task_struct *p;
1685 struct rq *src_rq;
1686
1687 if (likely(!rt_overloaded(this_rq)))
1688 return 0;
1689
1690 /*
1691 * Match the barrier from rt_set_overloaded; this guarantees that if we
1692 * see overloaded we must also see the rto_mask bit.
1693 */
1694 smp_rmb();
1695
1696 for_each_cpu(cpu, this_rq->rd->rto_mask) {
1697 if (this_cpu == cpu)
1698 continue;
1699
1700 src_rq = cpu_rq(cpu);
1701
1702 /*
1703 * Don't bother taking the src_rq->lock if the next highest
1704 * task is known to be lower-priority than our current task.
1705 * This may look racy, but if this value is about to go
1706 * logically higher, the src_rq will push this task away.
1707 * And if its going logically lower, we do not care
1708 */
1709 if (src_rq->rt.highest_prio.next >=
1710 this_rq->rt.highest_prio.curr)
1711 continue;
1712
1713 /*
1714 * We can potentially drop this_rq's lock in
1715 * double_lock_balance, and another CPU could
1716 * alter this_rq
1717 */
1718 double_lock_balance(this_rq, src_rq);
1719
1720 /*
1721 * We can pull only a task, which is pushable
1722 * on its rq, and no others.
1723 */
1724 p = pick_highest_pushable_task(src_rq, this_cpu);
1725
1726 /*
1727 * Do we have an RT task that preempts
1728 * the to-be-scheduled task?
1729 */
1730 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
1731 WARN_ON(p == src_rq->curr);
1732 WARN_ON(!p->on_rq);
1733
1734 /*
1735 * There's a chance that p is higher in priority
1736 * than what's currently running on its cpu.
1737 * This is just that p is wakeing up and hasn't
1738 * had a chance to schedule. We only pull
1739 * p if it is lower in priority than the
1740 * current task on the run queue
1741 */
1742 if (p->prio < src_rq->curr->prio)
1743 goto skip;
1744
1745 ret = 1;
1746
1747 deactivate_task(src_rq, p, 0);
1748 set_task_cpu(p, this_cpu);
1749 activate_task(this_rq, p, 0);
1750 /*
1751 * We continue with the search, just in
1752 * case there's an even higher prio task
1753 * in another runqueue. (low likelihood
1754 * but possible)
1755 */
1756 }
1757 skip:
1758 double_unlock_balance(this_rq, src_rq);
1759 }
1760
1761 return ret;
1762 }
1763
1764 static void post_schedule_rt(struct rq *rq)
1765 {
1766 push_rt_tasks(rq);
1767 }
1768
1769 /*
1770 * If we are not running and we are not going to reschedule soon, we should
1771 * try to push tasks away now
1772 */
1773 static void task_woken_rt(struct rq *rq, struct task_struct *p)
1774 {
1775 if (!task_running(rq, p) &&
1776 !test_tsk_need_resched(rq->curr) &&
1777 has_pushable_tasks(rq) &&
1778 p->nr_cpus_allowed > 1 &&
1779 (dl_task(rq->curr) || rt_task(rq->curr)) &&
1780 (rq->curr->nr_cpus_allowed < 2 ||
1781 rq->curr->prio <= p->prio))
1782 push_rt_tasks(rq);
1783 }
1784
1785 static void set_cpus_allowed_rt(struct task_struct *p,
1786 const struct cpumask *new_mask)
1787 {
1788 struct rq *rq;
1789 int weight;
1790
1791 BUG_ON(!rt_task(p));
1792
1793 if (!p->on_rq)
1794 return;
1795
1796 weight = cpumask_weight(new_mask);
1797
1798 /*
1799 * Only update if the process changes its state from whether it
1800 * can migrate or not.
1801 */
1802 if ((p->nr_cpus_allowed > 1) == (weight > 1))
1803 return;
1804
1805 rq = task_rq(p);
1806
1807 /*
1808 * The process used to be able to migrate OR it can now migrate
1809 */
1810 if (weight <= 1) {
1811 if (!task_current(rq, p))
1812 dequeue_pushable_task(rq, p);
1813 BUG_ON(!rq->rt.rt_nr_migratory);
1814 rq->rt.rt_nr_migratory--;
1815 } else {
1816 if (!task_current(rq, p))
1817 enqueue_pushable_task(rq, p);
1818 rq->rt.rt_nr_migratory++;
1819 }
1820
1821 update_rt_migration(&rq->rt);
1822 }
1823
1824 /* Assumes rq->lock is held */
1825 static void rq_online_rt(struct rq *rq)
1826 {
1827 if (rq->rt.overloaded)
1828 rt_set_overload(rq);
1829
1830 __enable_runtime(rq);
1831
1832 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1833 }
1834
1835 /* Assumes rq->lock is held */
1836 static void rq_offline_rt(struct rq *rq)
1837 {
1838 if (rq->rt.overloaded)
1839 rt_clear_overload(rq);
1840
1841 __disable_runtime(rq);
1842
1843 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1844 }
1845
1846 /*
1847 * When switch from the rt queue, we bring ourselves to a position
1848 * that we might want to pull RT tasks from other runqueues.
1849 */
1850 static void switched_from_rt(struct rq *rq, struct task_struct *p)
1851 {
1852 /*
1853 * If there are other RT tasks then we will reschedule
1854 * and the scheduling of the other RT tasks will handle
1855 * the balancing. But if we are the last RT task
1856 * we may need to handle the pulling of RT tasks
1857 * now.
1858 */
1859 if (!p->on_rq || rq->rt.rt_nr_running)
1860 return;
1861
1862 if (pull_rt_task(rq))
1863 resched_task(rq->curr);
1864 }
1865
1866 void __init init_sched_rt_class(void)
1867 {
1868 unsigned int i;
1869
1870 for_each_possible_cpu(i) {
1871 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
1872 GFP_KERNEL, cpu_to_node(i));
1873 }
1874 }
1875 #endif /* CONFIG_SMP */
1876
1877 /*
1878 * When switching a task to RT, we may overload the runqueue
1879 * with RT tasks. In this case we try to push them off to
1880 * other runqueues.
1881 */
1882 static void switched_to_rt(struct rq *rq, struct task_struct *p)
1883 {
1884 int check_resched = 1;
1885
1886 /*
1887 * If we are already running, then there's nothing
1888 * that needs to be done. But if we are not running
1889 * we may need to preempt the current running task.
1890 * If that current running task is also an RT task
1891 * then see if we can move to another run queue.
1892 */
1893 if (p->on_rq && rq->curr != p) {
1894 #ifdef CONFIG_SMP
1895 if (rq->rt.overloaded && push_rt_task(rq) &&
1896 /* Don't resched if we changed runqueues */
1897 rq != task_rq(p))
1898 check_resched = 0;
1899 #endif /* CONFIG_SMP */
1900 if (check_resched && p->prio < rq->curr->prio)
1901 resched_task(rq->curr);
1902 }
1903 }
1904
1905 /*
1906 * Priority of the task has changed. This may cause
1907 * us to initiate a push or pull.
1908 */
1909 static void
1910 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
1911 {
1912 if (!p->on_rq)
1913 return;
1914
1915 if (rq->curr == p) {
1916 #ifdef CONFIG_SMP
1917 /*
1918 * If our priority decreases while running, we
1919 * may need to pull tasks to this runqueue.
1920 */
1921 if (oldprio < p->prio)
1922 pull_rt_task(rq);
1923 /*
1924 * If there's a higher priority task waiting to run
1925 * then reschedule. Note, the above pull_rt_task
1926 * can release the rq lock and p could migrate.
1927 * Only reschedule if p is still on the same runqueue.
1928 */
1929 if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
1930 resched_task(p);
1931 #else
1932 /* For UP simply resched on drop of prio */
1933 if (oldprio < p->prio)
1934 resched_task(p);
1935 #endif /* CONFIG_SMP */
1936 } else {
1937 /*
1938 * This task is not running, but if it is
1939 * greater than the current running task
1940 * then reschedule.
1941 */
1942 if (p->prio < rq->curr->prio)
1943 resched_task(rq->curr);
1944 }
1945 }
1946
1947 static void watchdog(struct rq *rq, struct task_struct *p)
1948 {
1949 unsigned long soft, hard;
1950
1951 /* max may change after cur was read, this will be fixed next tick */
1952 soft = task_rlimit(p, RLIMIT_RTTIME);
1953 hard = task_rlimit_max(p, RLIMIT_RTTIME);
1954
1955 if (soft != RLIM_INFINITY) {
1956 unsigned long next;
1957
1958 if (p->rt.watchdog_stamp != jiffies) {
1959 p->rt.timeout++;
1960 p->rt.watchdog_stamp = jiffies;
1961 }
1962
1963 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1964 if (p->rt.timeout > next)
1965 p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
1966 }
1967 }
1968
1969 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
1970 {
1971 struct sched_rt_entity *rt_se = &p->rt;
1972
1973 update_curr_rt(rq);
1974
1975 watchdog(rq, p);
1976
1977 /*
1978 * RR tasks need a special form of timeslice management.
1979 * FIFO tasks have no timeslices.
1980 */
1981 if (p->policy != SCHED_RR)
1982 return;
1983
1984 if (--p->rt.time_slice)
1985 return;
1986
1987 p->rt.time_slice = sched_rr_timeslice;
1988
1989 /*
1990 * Requeue to the end of queue if we (and all of our ancestors) are not
1991 * the only element on the queue
1992 */
1993 for_each_sched_rt_entity(rt_se) {
1994 if (rt_se->run_list.prev != rt_se->run_list.next) {
1995 requeue_task_rt(rq, p, 0);
1996 set_tsk_need_resched(p);
1997 return;
1998 }
1999 }
2000 }
2001
2002 static void set_curr_task_rt(struct rq *rq)
2003 {
2004 struct task_struct *p = rq->curr;
2005
2006 p->se.exec_start = rq_clock_task(rq);
2007
2008 /* The running task is never eligible for pushing */
2009 dequeue_pushable_task(rq, p);
2010 }
2011
2012 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2013 {
2014 /*
2015 * Time slice is 0 for SCHED_FIFO tasks
2016 */
2017 if (task->policy == SCHED_RR)
2018 return sched_rr_timeslice;
2019 else
2020 return 0;
2021 }
2022
2023 const struct sched_class rt_sched_class = {
2024 .next = &fair_sched_class,
2025 .enqueue_task = enqueue_task_rt,
2026 .dequeue_task = dequeue_task_rt,
2027 .yield_task = yield_task_rt,
2028
2029 .check_preempt_curr = check_preempt_curr_rt,
2030
2031 .pick_next_task = pick_next_task_rt,
2032 .put_prev_task = put_prev_task_rt,
2033
2034 #ifdef CONFIG_SMP
2035 .select_task_rq = select_task_rq_rt,
2036
2037 .set_cpus_allowed = set_cpus_allowed_rt,
2038 .rq_online = rq_online_rt,
2039 .rq_offline = rq_offline_rt,
2040 .post_schedule = post_schedule_rt,
2041 .task_woken = task_woken_rt,
2042 .switched_from = switched_from_rt,
2043 #endif
2044
2045 .set_curr_task = set_curr_task_rt,
2046 .task_tick = task_tick_rt,
2047
2048 .get_rr_interval = get_rr_interval_rt,
2049
2050 .prio_changed = prio_changed_rt,
2051 .switched_to = switched_to_rt,
2052 };
2053
2054 #ifdef CONFIG_SCHED_DEBUG
2055 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2056
2057 void print_rt_stats(struct seq_file *m, int cpu)
2058 {
2059 rt_rq_iter_t iter;
2060 struct rt_rq *rt_rq;
2061
2062 rcu_read_lock();
2063 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2064 print_rt_rq(m, cpu, rt_rq);
2065 rcu_read_unlock();
2066 }
2067 #endif /* CONFIG_SCHED_DEBUG */
This page took 0.285905 seconds and 5 git commands to generate.