Merge branch 'x86-debug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / kernel / sched / rt.c
1 /*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
5
6 #include "sched.h"
7
8 #include <linux/slab.h>
9 #include <linux/irq_work.h>
10
11 int sched_rr_timeslice = RR_TIMESLICE;
12
13 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
14
15 struct rt_bandwidth def_rt_bandwidth;
16
17 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
18 {
19 struct rt_bandwidth *rt_b =
20 container_of(timer, struct rt_bandwidth, rt_period_timer);
21 ktime_t now;
22 int overrun;
23 int idle = 0;
24
25 for (;;) {
26 now = hrtimer_cb_get_time(timer);
27 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
28
29 if (!overrun)
30 break;
31
32 idle = do_sched_rt_period_timer(rt_b, overrun);
33 }
34
35 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
36 }
37
38 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
39 {
40 rt_b->rt_period = ns_to_ktime(period);
41 rt_b->rt_runtime = runtime;
42
43 raw_spin_lock_init(&rt_b->rt_runtime_lock);
44
45 hrtimer_init(&rt_b->rt_period_timer,
46 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
47 rt_b->rt_period_timer.function = sched_rt_period_timer;
48 }
49
50 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
51 {
52 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
53 return;
54
55 if (hrtimer_active(&rt_b->rt_period_timer))
56 return;
57
58 raw_spin_lock(&rt_b->rt_runtime_lock);
59 start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period);
60 raw_spin_unlock(&rt_b->rt_runtime_lock);
61 }
62
63 #ifdef CONFIG_SMP
64 static void push_irq_work_func(struct irq_work *work);
65 #endif
66
67 void init_rt_rq(struct rt_rq *rt_rq)
68 {
69 struct rt_prio_array *array;
70 int i;
71
72 array = &rt_rq->active;
73 for (i = 0; i < MAX_RT_PRIO; i++) {
74 INIT_LIST_HEAD(array->queue + i);
75 __clear_bit(i, array->bitmap);
76 }
77 /* delimiter for bitsearch: */
78 __set_bit(MAX_RT_PRIO, array->bitmap);
79
80 #if defined CONFIG_SMP
81 rt_rq->highest_prio.curr = MAX_RT_PRIO;
82 rt_rq->highest_prio.next = MAX_RT_PRIO;
83 rt_rq->rt_nr_migratory = 0;
84 rt_rq->overloaded = 0;
85 plist_head_init(&rt_rq->pushable_tasks);
86
87 #ifdef HAVE_RT_PUSH_IPI
88 rt_rq->push_flags = 0;
89 rt_rq->push_cpu = nr_cpu_ids;
90 raw_spin_lock_init(&rt_rq->push_lock);
91 init_irq_work(&rt_rq->push_work, push_irq_work_func);
92 #endif
93 #endif /* CONFIG_SMP */
94 /* We start is dequeued state, because no RT tasks are queued */
95 rt_rq->rt_queued = 0;
96
97 rt_rq->rt_time = 0;
98 rt_rq->rt_throttled = 0;
99 rt_rq->rt_runtime = 0;
100 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
101 }
102
103 #ifdef CONFIG_RT_GROUP_SCHED
104 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
105 {
106 hrtimer_cancel(&rt_b->rt_period_timer);
107 }
108
109 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
110
111 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
112 {
113 #ifdef CONFIG_SCHED_DEBUG
114 WARN_ON_ONCE(!rt_entity_is_task(rt_se));
115 #endif
116 return container_of(rt_se, struct task_struct, rt);
117 }
118
119 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
120 {
121 return rt_rq->rq;
122 }
123
124 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
125 {
126 return rt_se->rt_rq;
127 }
128
129 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
130 {
131 struct rt_rq *rt_rq = rt_se->rt_rq;
132
133 return rt_rq->rq;
134 }
135
136 void free_rt_sched_group(struct task_group *tg)
137 {
138 int i;
139
140 if (tg->rt_se)
141 destroy_rt_bandwidth(&tg->rt_bandwidth);
142
143 for_each_possible_cpu(i) {
144 if (tg->rt_rq)
145 kfree(tg->rt_rq[i]);
146 if (tg->rt_se)
147 kfree(tg->rt_se[i]);
148 }
149
150 kfree(tg->rt_rq);
151 kfree(tg->rt_se);
152 }
153
154 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
155 struct sched_rt_entity *rt_se, int cpu,
156 struct sched_rt_entity *parent)
157 {
158 struct rq *rq = cpu_rq(cpu);
159
160 rt_rq->highest_prio.curr = MAX_RT_PRIO;
161 rt_rq->rt_nr_boosted = 0;
162 rt_rq->rq = rq;
163 rt_rq->tg = tg;
164
165 tg->rt_rq[cpu] = rt_rq;
166 tg->rt_se[cpu] = rt_se;
167
168 if (!rt_se)
169 return;
170
171 if (!parent)
172 rt_se->rt_rq = &rq->rt;
173 else
174 rt_se->rt_rq = parent->my_q;
175
176 rt_se->my_q = rt_rq;
177 rt_se->parent = parent;
178 INIT_LIST_HEAD(&rt_se->run_list);
179 }
180
181 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
182 {
183 struct rt_rq *rt_rq;
184 struct sched_rt_entity *rt_se;
185 int i;
186
187 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
188 if (!tg->rt_rq)
189 goto err;
190 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
191 if (!tg->rt_se)
192 goto err;
193
194 init_rt_bandwidth(&tg->rt_bandwidth,
195 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
196
197 for_each_possible_cpu(i) {
198 rt_rq = kzalloc_node(sizeof(struct rt_rq),
199 GFP_KERNEL, cpu_to_node(i));
200 if (!rt_rq)
201 goto err;
202
203 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
204 GFP_KERNEL, cpu_to_node(i));
205 if (!rt_se)
206 goto err_free_rq;
207
208 init_rt_rq(rt_rq);
209 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
210 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
211 }
212
213 return 1;
214
215 err_free_rq:
216 kfree(rt_rq);
217 err:
218 return 0;
219 }
220
221 #else /* CONFIG_RT_GROUP_SCHED */
222
223 #define rt_entity_is_task(rt_se) (1)
224
225 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
226 {
227 return container_of(rt_se, struct task_struct, rt);
228 }
229
230 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
231 {
232 return container_of(rt_rq, struct rq, rt);
233 }
234
235 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
236 {
237 struct task_struct *p = rt_task_of(rt_se);
238
239 return task_rq(p);
240 }
241
242 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
243 {
244 struct rq *rq = rq_of_rt_se(rt_se);
245
246 return &rq->rt;
247 }
248
249 void free_rt_sched_group(struct task_group *tg) { }
250
251 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
252 {
253 return 1;
254 }
255 #endif /* CONFIG_RT_GROUP_SCHED */
256
257 #ifdef CONFIG_SMP
258
259 static int pull_rt_task(struct rq *this_rq);
260
261 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
262 {
263 /* Try to pull RT tasks here if we lower this rq's prio */
264 return rq->rt.highest_prio.curr > prev->prio;
265 }
266
267 static inline int rt_overloaded(struct rq *rq)
268 {
269 return atomic_read(&rq->rd->rto_count);
270 }
271
272 static inline void rt_set_overload(struct rq *rq)
273 {
274 if (!rq->online)
275 return;
276
277 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
278 /*
279 * Make sure the mask is visible before we set
280 * the overload count. That is checked to determine
281 * if we should look at the mask. It would be a shame
282 * if we looked at the mask, but the mask was not
283 * updated yet.
284 *
285 * Matched by the barrier in pull_rt_task().
286 */
287 smp_wmb();
288 atomic_inc(&rq->rd->rto_count);
289 }
290
291 static inline void rt_clear_overload(struct rq *rq)
292 {
293 if (!rq->online)
294 return;
295
296 /* the order here really doesn't matter */
297 atomic_dec(&rq->rd->rto_count);
298 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
299 }
300
301 static void update_rt_migration(struct rt_rq *rt_rq)
302 {
303 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
304 if (!rt_rq->overloaded) {
305 rt_set_overload(rq_of_rt_rq(rt_rq));
306 rt_rq->overloaded = 1;
307 }
308 } else if (rt_rq->overloaded) {
309 rt_clear_overload(rq_of_rt_rq(rt_rq));
310 rt_rq->overloaded = 0;
311 }
312 }
313
314 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
315 {
316 struct task_struct *p;
317
318 if (!rt_entity_is_task(rt_se))
319 return;
320
321 p = rt_task_of(rt_se);
322 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
323
324 rt_rq->rt_nr_total++;
325 if (p->nr_cpus_allowed > 1)
326 rt_rq->rt_nr_migratory++;
327
328 update_rt_migration(rt_rq);
329 }
330
331 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
332 {
333 struct task_struct *p;
334
335 if (!rt_entity_is_task(rt_se))
336 return;
337
338 p = rt_task_of(rt_se);
339 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
340
341 rt_rq->rt_nr_total--;
342 if (p->nr_cpus_allowed > 1)
343 rt_rq->rt_nr_migratory--;
344
345 update_rt_migration(rt_rq);
346 }
347
348 static inline int has_pushable_tasks(struct rq *rq)
349 {
350 return !plist_head_empty(&rq->rt.pushable_tasks);
351 }
352
353 static inline void set_post_schedule(struct rq *rq)
354 {
355 /*
356 * We detect this state here so that we can avoid taking the RQ
357 * lock again later if there is no need to push
358 */
359 rq->post_schedule = has_pushable_tasks(rq);
360 }
361
362 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
363 {
364 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
365 plist_node_init(&p->pushable_tasks, p->prio);
366 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
367
368 /* Update the highest prio pushable task */
369 if (p->prio < rq->rt.highest_prio.next)
370 rq->rt.highest_prio.next = p->prio;
371 }
372
373 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
374 {
375 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
376
377 /* Update the new highest prio pushable task */
378 if (has_pushable_tasks(rq)) {
379 p = plist_first_entry(&rq->rt.pushable_tasks,
380 struct task_struct, pushable_tasks);
381 rq->rt.highest_prio.next = p->prio;
382 } else
383 rq->rt.highest_prio.next = MAX_RT_PRIO;
384 }
385
386 #else
387
388 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
389 {
390 }
391
392 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
393 {
394 }
395
396 static inline
397 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
398 {
399 }
400
401 static inline
402 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
403 {
404 }
405
406 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
407 {
408 return false;
409 }
410
411 static inline int pull_rt_task(struct rq *this_rq)
412 {
413 return 0;
414 }
415
416 static inline void set_post_schedule(struct rq *rq)
417 {
418 }
419 #endif /* CONFIG_SMP */
420
421 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
422 static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
423
424 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
425 {
426 return !list_empty(&rt_se->run_list);
427 }
428
429 #ifdef CONFIG_RT_GROUP_SCHED
430
431 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
432 {
433 if (!rt_rq->tg)
434 return RUNTIME_INF;
435
436 return rt_rq->rt_runtime;
437 }
438
439 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
440 {
441 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
442 }
443
444 typedef struct task_group *rt_rq_iter_t;
445
446 static inline struct task_group *next_task_group(struct task_group *tg)
447 {
448 do {
449 tg = list_entry_rcu(tg->list.next,
450 typeof(struct task_group), list);
451 } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
452
453 if (&tg->list == &task_groups)
454 tg = NULL;
455
456 return tg;
457 }
458
459 #define for_each_rt_rq(rt_rq, iter, rq) \
460 for (iter = container_of(&task_groups, typeof(*iter), list); \
461 (iter = next_task_group(iter)) && \
462 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
463
464 #define for_each_sched_rt_entity(rt_se) \
465 for (; rt_se; rt_se = rt_se->parent)
466
467 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
468 {
469 return rt_se->my_q;
470 }
471
472 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
473 static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
474
475 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
476 {
477 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
478 struct rq *rq = rq_of_rt_rq(rt_rq);
479 struct sched_rt_entity *rt_se;
480
481 int cpu = cpu_of(rq);
482
483 rt_se = rt_rq->tg->rt_se[cpu];
484
485 if (rt_rq->rt_nr_running) {
486 if (!rt_se)
487 enqueue_top_rt_rq(rt_rq);
488 else if (!on_rt_rq(rt_se))
489 enqueue_rt_entity(rt_se, false);
490
491 if (rt_rq->highest_prio.curr < curr->prio)
492 resched_curr(rq);
493 }
494 }
495
496 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
497 {
498 struct sched_rt_entity *rt_se;
499 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
500
501 rt_se = rt_rq->tg->rt_se[cpu];
502
503 if (!rt_se)
504 dequeue_top_rt_rq(rt_rq);
505 else if (on_rt_rq(rt_se))
506 dequeue_rt_entity(rt_se);
507 }
508
509 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
510 {
511 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
512 }
513
514 static int rt_se_boosted(struct sched_rt_entity *rt_se)
515 {
516 struct rt_rq *rt_rq = group_rt_rq(rt_se);
517 struct task_struct *p;
518
519 if (rt_rq)
520 return !!rt_rq->rt_nr_boosted;
521
522 p = rt_task_of(rt_se);
523 return p->prio != p->normal_prio;
524 }
525
526 #ifdef CONFIG_SMP
527 static inline const struct cpumask *sched_rt_period_mask(void)
528 {
529 return this_rq()->rd->span;
530 }
531 #else
532 static inline const struct cpumask *sched_rt_period_mask(void)
533 {
534 return cpu_online_mask;
535 }
536 #endif
537
538 static inline
539 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
540 {
541 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
542 }
543
544 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
545 {
546 return &rt_rq->tg->rt_bandwidth;
547 }
548
549 #else /* !CONFIG_RT_GROUP_SCHED */
550
551 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
552 {
553 return rt_rq->rt_runtime;
554 }
555
556 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
557 {
558 return ktime_to_ns(def_rt_bandwidth.rt_period);
559 }
560
561 typedef struct rt_rq *rt_rq_iter_t;
562
563 #define for_each_rt_rq(rt_rq, iter, rq) \
564 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
565
566 #define for_each_sched_rt_entity(rt_se) \
567 for (; rt_se; rt_se = NULL)
568
569 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
570 {
571 return NULL;
572 }
573
574 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
575 {
576 struct rq *rq = rq_of_rt_rq(rt_rq);
577
578 if (!rt_rq->rt_nr_running)
579 return;
580
581 enqueue_top_rt_rq(rt_rq);
582 resched_curr(rq);
583 }
584
585 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
586 {
587 dequeue_top_rt_rq(rt_rq);
588 }
589
590 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
591 {
592 return rt_rq->rt_throttled;
593 }
594
595 static inline const struct cpumask *sched_rt_period_mask(void)
596 {
597 return cpu_online_mask;
598 }
599
600 static inline
601 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
602 {
603 return &cpu_rq(cpu)->rt;
604 }
605
606 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
607 {
608 return &def_rt_bandwidth;
609 }
610
611 #endif /* CONFIG_RT_GROUP_SCHED */
612
613 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
614 {
615 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
616
617 return (hrtimer_active(&rt_b->rt_period_timer) ||
618 rt_rq->rt_time < rt_b->rt_runtime);
619 }
620
621 #ifdef CONFIG_SMP
622 /*
623 * We ran out of runtime, see if we can borrow some from our neighbours.
624 */
625 static int do_balance_runtime(struct rt_rq *rt_rq)
626 {
627 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
628 struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
629 int i, weight, more = 0;
630 u64 rt_period;
631
632 weight = cpumask_weight(rd->span);
633
634 raw_spin_lock(&rt_b->rt_runtime_lock);
635 rt_period = ktime_to_ns(rt_b->rt_period);
636 for_each_cpu(i, rd->span) {
637 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
638 s64 diff;
639
640 if (iter == rt_rq)
641 continue;
642
643 raw_spin_lock(&iter->rt_runtime_lock);
644 /*
645 * Either all rqs have inf runtime and there's nothing to steal
646 * or __disable_runtime() below sets a specific rq to inf to
647 * indicate its been disabled and disalow stealing.
648 */
649 if (iter->rt_runtime == RUNTIME_INF)
650 goto next;
651
652 /*
653 * From runqueues with spare time, take 1/n part of their
654 * spare time, but no more than our period.
655 */
656 diff = iter->rt_runtime - iter->rt_time;
657 if (diff > 0) {
658 diff = div_u64((u64)diff, weight);
659 if (rt_rq->rt_runtime + diff > rt_period)
660 diff = rt_period - rt_rq->rt_runtime;
661 iter->rt_runtime -= diff;
662 rt_rq->rt_runtime += diff;
663 more = 1;
664 if (rt_rq->rt_runtime == rt_period) {
665 raw_spin_unlock(&iter->rt_runtime_lock);
666 break;
667 }
668 }
669 next:
670 raw_spin_unlock(&iter->rt_runtime_lock);
671 }
672 raw_spin_unlock(&rt_b->rt_runtime_lock);
673
674 return more;
675 }
676
677 /*
678 * Ensure this RQ takes back all the runtime it lend to its neighbours.
679 */
680 static void __disable_runtime(struct rq *rq)
681 {
682 struct root_domain *rd = rq->rd;
683 rt_rq_iter_t iter;
684 struct rt_rq *rt_rq;
685
686 if (unlikely(!scheduler_running))
687 return;
688
689 for_each_rt_rq(rt_rq, iter, rq) {
690 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
691 s64 want;
692 int i;
693
694 raw_spin_lock(&rt_b->rt_runtime_lock);
695 raw_spin_lock(&rt_rq->rt_runtime_lock);
696 /*
697 * Either we're all inf and nobody needs to borrow, or we're
698 * already disabled and thus have nothing to do, or we have
699 * exactly the right amount of runtime to take out.
700 */
701 if (rt_rq->rt_runtime == RUNTIME_INF ||
702 rt_rq->rt_runtime == rt_b->rt_runtime)
703 goto balanced;
704 raw_spin_unlock(&rt_rq->rt_runtime_lock);
705
706 /*
707 * Calculate the difference between what we started out with
708 * and what we current have, that's the amount of runtime
709 * we lend and now have to reclaim.
710 */
711 want = rt_b->rt_runtime - rt_rq->rt_runtime;
712
713 /*
714 * Greedy reclaim, take back as much as we can.
715 */
716 for_each_cpu(i, rd->span) {
717 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
718 s64 diff;
719
720 /*
721 * Can't reclaim from ourselves or disabled runqueues.
722 */
723 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
724 continue;
725
726 raw_spin_lock(&iter->rt_runtime_lock);
727 if (want > 0) {
728 diff = min_t(s64, iter->rt_runtime, want);
729 iter->rt_runtime -= diff;
730 want -= diff;
731 } else {
732 iter->rt_runtime -= want;
733 want -= want;
734 }
735 raw_spin_unlock(&iter->rt_runtime_lock);
736
737 if (!want)
738 break;
739 }
740
741 raw_spin_lock(&rt_rq->rt_runtime_lock);
742 /*
743 * We cannot be left wanting - that would mean some runtime
744 * leaked out of the system.
745 */
746 BUG_ON(want);
747 balanced:
748 /*
749 * Disable all the borrow logic by pretending we have inf
750 * runtime - in which case borrowing doesn't make sense.
751 */
752 rt_rq->rt_runtime = RUNTIME_INF;
753 rt_rq->rt_throttled = 0;
754 raw_spin_unlock(&rt_rq->rt_runtime_lock);
755 raw_spin_unlock(&rt_b->rt_runtime_lock);
756
757 /* Make rt_rq available for pick_next_task() */
758 sched_rt_rq_enqueue(rt_rq);
759 }
760 }
761
762 static void __enable_runtime(struct rq *rq)
763 {
764 rt_rq_iter_t iter;
765 struct rt_rq *rt_rq;
766
767 if (unlikely(!scheduler_running))
768 return;
769
770 /*
771 * Reset each runqueue's bandwidth settings
772 */
773 for_each_rt_rq(rt_rq, iter, rq) {
774 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
775
776 raw_spin_lock(&rt_b->rt_runtime_lock);
777 raw_spin_lock(&rt_rq->rt_runtime_lock);
778 rt_rq->rt_runtime = rt_b->rt_runtime;
779 rt_rq->rt_time = 0;
780 rt_rq->rt_throttled = 0;
781 raw_spin_unlock(&rt_rq->rt_runtime_lock);
782 raw_spin_unlock(&rt_b->rt_runtime_lock);
783 }
784 }
785
786 static int balance_runtime(struct rt_rq *rt_rq)
787 {
788 int more = 0;
789
790 if (!sched_feat(RT_RUNTIME_SHARE))
791 return more;
792
793 if (rt_rq->rt_time > rt_rq->rt_runtime) {
794 raw_spin_unlock(&rt_rq->rt_runtime_lock);
795 more = do_balance_runtime(rt_rq);
796 raw_spin_lock(&rt_rq->rt_runtime_lock);
797 }
798
799 return more;
800 }
801 #else /* !CONFIG_SMP */
802 static inline int balance_runtime(struct rt_rq *rt_rq)
803 {
804 return 0;
805 }
806 #endif /* CONFIG_SMP */
807
808 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
809 {
810 int i, idle = 1, throttled = 0;
811 const struct cpumask *span;
812
813 span = sched_rt_period_mask();
814 #ifdef CONFIG_RT_GROUP_SCHED
815 /*
816 * FIXME: isolated CPUs should really leave the root task group,
817 * whether they are isolcpus or were isolated via cpusets, lest
818 * the timer run on a CPU which does not service all runqueues,
819 * potentially leaving other CPUs indefinitely throttled. If
820 * isolation is really required, the user will turn the throttle
821 * off to kill the perturbations it causes anyway. Meanwhile,
822 * this maintains functionality for boot and/or troubleshooting.
823 */
824 if (rt_b == &root_task_group.rt_bandwidth)
825 span = cpu_online_mask;
826 #endif
827 for_each_cpu(i, span) {
828 int enqueue = 0;
829 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
830 struct rq *rq = rq_of_rt_rq(rt_rq);
831
832 raw_spin_lock(&rq->lock);
833 if (rt_rq->rt_time) {
834 u64 runtime;
835
836 raw_spin_lock(&rt_rq->rt_runtime_lock);
837 if (rt_rq->rt_throttled)
838 balance_runtime(rt_rq);
839 runtime = rt_rq->rt_runtime;
840 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
841 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
842 rt_rq->rt_throttled = 0;
843 enqueue = 1;
844
845 /*
846 * When we're idle and a woken (rt) task is
847 * throttled check_preempt_curr() will set
848 * skip_update and the time between the wakeup
849 * and this unthrottle will get accounted as
850 * 'runtime'.
851 */
852 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
853 rq_clock_skip_update(rq, false);
854 }
855 if (rt_rq->rt_time || rt_rq->rt_nr_running)
856 idle = 0;
857 raw_spin_unlock(&rt_rq->rt_runtime_lock);
858 } else if (rt_rq->rt_nr_running) {
859 idle = 0;
860 if (!rt_rq_throttled(rt_rq))
861 enqueue = 1;
862 }
863 if (rt_rq->rt_throttled)
864 throttled = 1;
865
866 if (enqueue)
867 sched_rt_rq_enqueue(rt_rq);
868 raw_spin_unlock(&rq->lock);
869 }
870
871 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
872 return 1;
873
874 return idle;
875 }
876
877 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
878 {
879 #ifdef CONFIG_RT_GROUP_SCHED
880 struct rt_rq *rt_rq = group_rt_rq(rt_se);
881
882 if (rt_rq)
883 return rt_rq->highest_prio.curr;
884 #endif
885
886 return rt_task_of(rt_se)->prio;
887 }
888
889 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
890 {
891 u64 runtime = sched_rt_runtime(rt_rq);
892
893 if (rt_rq->rt_throttled)
894 return rt_rq_throttled(rt_rq);
895
896 if (runtime >= sched_rt_period(rt_rq))
897 return 0;
898
899 balance_runtime(rt_rq);
900 runtime = sched_rt_runtime(rt_rq);
901 if (runtime == RUNTIME_INF)
902 return 0;
903
904 if (rt_rq->rt_time > runtime) {
905 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
906
907 /*
908 * Don't actually throttle groups that have no runtime assigned
909 * but accrue some time due to boosting.
910 */
911 if (likely(rt_b->rt_runtime)) {
912 rt_rq->rt_throttled = 1;
913 printk_deferred_once("sched: RT throttling activated\n");
914 } else {
915 /*
916 * In case we did anyway, make it go away,
917 * replenishment is a joke, since it will replenish us
918 * with exactly 0 ns.
919 */
920 rt_rq->rt_time = 0;
921 }
922
923 if (rt_rq_throttled(rt_rq)) {
924 sched_rt_rq_dequeue(rt_rq);
925 return 1;
926 }
927 }
928
929 return 0;
930 }
931
932 /*
933 * Update the current task's runtime statistics. Skip current tasks that
934 * are not in our scheduling class.
935 */
936 static void update_curr_rt(struct rq *rq)
937 {
938 struct task_struct *curr = rq->curr;
939 struct sched_rt_entity *rt_se = &curr->rt;
940 u64 delta_exec;
941
942 if (curr->sched_class != &rt_sched_class)
943 return;
944
945 delta_exec = rq_clock_task(rq) - curr->se.exec_start;
946 if (unlikely((s64)delta_exec <= 0))
947 return;
948
949 schedstat_set(curr->se.statistics.exec_max,
950 max(curr->se.statistics.exec_max, delta_exec));
951
952 curr->se.sum_exec_runtime += delta_exec;
953 account_group_exec_runtime(curr, delta_exec);
954
955 curr->se.exec_start = rq_clock_task(rq);
956 cpuacct_charge(curr, delta_exec);
957
958 sched_rt_avg_update(rq, delta_exec);
959
960 if (!rt_bandwidth_enabled())
961 return;
962
963 for_each_sched_rt_entity(rt_se) {
964 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
965
966 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
967 raw_spin_lock(&rt_rq->rt_runtime_lock);
968 rt_rq->rt_time += delta_exec;
969 if (sched_rt_runtime_exceeded(rt_rq))
970 resched_curr(rq);
971 raw_spin_unlock(&rt_rq->rt_runtime_lock);
972 }
973 }
974 }
975
976 static void
977 dequeue_top_rt_rq(struct rt_rq *rt_rq)
978 {
979 struct rq *rq = rq_of_rt_rq(rt_rq);
980
981 BUG_ON(&rq->rt != rt_rq);
982
983 if (!rt_rq->rt_queued)
984 return;
985
986 BUG_ON(!rq->nr_running);
987
988 sub_nr_running(rq, rt_rq->rt_nr_running);
989 rt_rq->rt_queued = 0;
990 }
991
992 static void
993 enqueue_top_rt_rq(struct rt_rq *rt_rq)
994 {
995 struct rq *rq = rq_of_rt_rq(rt_rq);
996
997 BUG_ON(&rq->rt != rt_rq);
998
999 if (rt_rq->rt_queued)
1000 return;
1001 if (rt_rq_throttled(rt_rq) || !rt_rq->rt_nr_running)
1002 return;
1003
1004 add_nr_running(rq, rt_rq->rt_nr_running);
1005 rt_rq->rt_queued = 1;
1006 }
1007
1008 #if defined CONFIG_SMP
1009
1010 static void
1011 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1012 {
1013 struct rq *rq = rq_of_rt_rq(rt_rq);
1014
1015 #ifdef CONFIG_RT_GROUP_SCHED
1016 /*
1017 * Change rq's cpupri only if rt_rq is the top queue.
1018 */
1019 if (&rq->rt != rt_rq)
1020 return;
1021 #endif
1022 if (rq->online && prio < prev_prio)
1023 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1024 }
1025
1026 static void
1027 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1028 {
1029 struct rq *rq = rq_of_rt_rq(rt_rq);
1030
1031 #ifdef CONFIG_RT_GROUP_SCHED
1032 /*
1033 * Change rq's cpupri only if rt_rq is the top queue.
1034 */
1035 if (&rq->rt != rt_rq)
1036 return;
1037 #endif
1038 if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1039 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1040 }
1041
1042 #else /* CONFIG_SMP */
1043
1044 static inline
1045 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1046 static inline
1047 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1048
1049 #endif /* CONFIG_SMP */
1050
1051 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1052 static void
1053 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1054 {
1055 int prev_prio = rt_rq->highest_prio.curr;
1056
1057 if (prio < prev_prio)
1058 rt_rq->highest_prio.curr = prio;
1059
1060 inc_rt_prio_smp(rt_rq, prio, prev_prio);
1061 }
1062
1063 static void
1064 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1065 {
1066 int prev_prio = rt_rq->highest_prio.curr;
1067
1068 if (rt_rq->rt_nr_running) {
1069
1070 WARN_ON(prio < prev_prio);
1071
1072 /*
1073 * This may have been our highest task, and therefore
1074 * we may have some recomputation to do
1075 */
1076 if (prio == prev_prio) {
1077 struct rt_prio_array *array = &rt_rq->active;
1078
1079 rt_rq->highest_prio.curr =
1080 sched_find_first_bit(array->bitmap);
1081 }
1082
1083 } else
1084 rt_rq->highest_prio.curr = MAX_RT_PRIO;
1085
1086 dec_rt_prio_smp(rt_rq, prio, prev_prio);
1087 }
1088
1089 #else
1090
1091 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1092 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1093
1094 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1095
1096 #ifdef CONFIG_RT_GROUP_SCHED
1097
1098 static void
1099 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1100 {
1101 if (rt_se_boosted(rt_se))
1102 rt_rq->rt_nr_boosted++;
1103
1104 if (rt_rq->tg)
1105 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1106 }
1107
1108 static void
1109 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1110 {
1111 if (rt_se_boosted(rt_se))
1112 rt_rq->rt_nr_boosted--;
1113
1114 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1115 }
1116
1117 #else /* CONFIG_RT_GROUP_SCHED */
1118
1119 static void
1120 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1121 {
1122 start_rt_bandwidth(&def_rt_bandwidth);
1123 }
1124
1125 static inline
1126 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1127
1128 #endif /* CONFIG_RT_GROUP_SCHED */
1129
1130 static inline
1131 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1132 {
1133 struct rt_rq *group_rq = group_rt_rq(rt_se);
1134
1135 if (group_rq)
1136 return group_rq->rt_nr_running;
1137 else
1138 return 1;
1139 }
1140
1141 static inline
1142 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1143 {
1144 int prio = rt_se_prio(rt_se);
1145
1146 WARN_ON(!rt_prio(prio));
1147 rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1148
1149 inc_rt_prio(rt_rq, prio);
1150 inc_rt_migration(rt_se, rt_rq);
1151 inc_rt_group(rt_se, rt_rq);
1152 }
1153
1154 static inline
1155 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1156 {
1157 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1158 WARN_ON(!rt_rq->rt_nr_running);
1159 rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1160
1161 dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1162 dec_rt_migration(rt_se, rt_rq);
1163 dec_rt_group(rt_se, rt_rq);
1164 }
1165
1166 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1167 {
1168 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1169 struct rt_prio_array *array = &rt_rq->active;
1170 struct rt_rq *group_rq = group_rt_rq(rt_se);
1171 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1172
1173 /*
1174 * Don't enqueue the group if its throttled, or when empty.
1175 * The latter is a consequence of the former when a child group
1176 * get throttled and the current group doesn't have any other
1177 * active members.
1178 */
1179 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
1180 return;
1181
1182 if (head)
1183 list_add(&rt_se->run_list, queue);
1184 else
1185 list_add_tail(&rt_se->run_list, queue);
1186 __set_bit(rt_se_prio(rt_se), array->bitmap);
1187
1188 inc_rt_tasks(rt_se, rt_rq);
1189 }
1190
1191 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
1192 {
1193 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1194 struct rt_prio_array *array = &rt_rq->active;
1195
1196 list_del_init(&rt_se->run_list);
1197 if (list_empty(array->queue + rt_se_prio(rt_se)))
1198 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1199
1200 dec_rt_tasks(rt_se, rt_rq);
1201 }
1202
1203 /*
1204 * Because the prio of an upper entry depends on the lower
1205 * entries, we must remove entries top - down.
1206 */
1207 static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
1208 {
1209 struct sched_rt_entity *back = NULL;
1210
1211 for_each_sched_rt_entity(rt_se) {
1212 rt_se->back = back;
1213 back = rt_se;
1214 }
1215
1216 dequeue_top_rt_rq(rt_rq_of_se(back));
1217
1218 for (rt_se = back; rt_se; rt_se = rt_se->back) {
1219 if (on_rt_rq(rt_se))
1220 __dequeue_rt_entity(rt_se);
1221 }
1222 }
1223
1224 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1225 {
1226 struct rq *rq = rq_of_rt_se(rt_se);
1227
1228 dequeue_rt_stack(rt_se);
1229 for_each_sched_rt_entity(rt_se)
1230 __enqueue_rt_entity(rt_se, head);
1231 enqueue_top_rt_rq(&rq->rt);
1232 }
1233
1234 static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
1235 {
1236 struct rq *rq = rq_of_rt_se(rt_se);
1237
1238 dequeue_rt_stack(rt_se);
1239
1240 for_each_sched_rt_entity(rt_se) {
1241 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1242
1243 if (rt_rq && rt_rq->rt_nr_running)
1244 __enqueue_rt_entity(rt_se, false);
1245 }
1246 enqueue_top_rt_rq(&rq->rt);
1247 }
1248
1249 /*
1250 * Adding/removing a task to/from a priority array:
1251 */
1252 static void
1253 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1254 {
1255 struct sched_rt_entity *rt_se = &p->rt;
1256
1257 if (flags & ENQUEUE_WAKEUP)
1258 rt_se->timeout = 0;
1259
1260 enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
1261
1262 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1263 enqueue_pushable_task(rq, p);
1264 }
1265
1266 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1267 {
1268 struct sched_rt_entity *rt_se = &p->rt;
1269
1270 update_curr_rt(rq);
1271 dequeue_rt_entity(rt_se);
1272
1273 dequeue_pushable_task(rq, p);
1274 }
1275
1276 /*
1277 * Put task to the head or the end of the run list without the overhead of
1278 * dequeue followed by enqueue.
1279 */
1280 static void
1281 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1282 {
1283 if (on_rt_rq(rt_se)) {
1284 struct rt_prio_array *array = &rt_rq->active;
1285 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1286
1287 if (head)
1288 list_move(&rt_se->run_list, queue);
1289 else
1290 list_move_tail(&rt_se->run_list, queue);
1291 }
1292 }
1293
1294 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1295 {
1296 struct sched_rt_entity *rt_se = &p->rt;
1297 struct rt_rq *rt_rq;
1298
1299 for_each_sched_rt_entity(rt_se) {
1300 rt_rq = rt_rq_of_se(rt_se);
1301 requeue_rt_entity(rt_rq, rt_se, head);
1302 }
1303 }
1304
1305 static void yield_task_rt(struct rq *rq)
1306 {
1307 requeue_task_rt(rq, rq->curr, 0);
1308 }
1309
1310 #ifdef CONFIG_SMP
1311 static int find_lowest_rq(struct task_struct *task);
1312
1313 static int
1314 select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
1315 {
1316 struct task_struct *curr;
1317 struct rq *rq;
1318
1319 /* For anything but wake ups, just return the task_cpu */
1320 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1321 goto out;
1322
1323 rq = cpu_rq(cpu);
1324
1325 rcu_read_lock();
1326 curr = ACCESS_ONCE(rq->curr); /* unlocked access */
1327
1328 /*
1329 * If the current task on @p's runqueue is an RT task, then
1330 * try to see if we can wake this RT task up on another
1331 * runqueue. Otherwise simply start this RT task
1332 * on its current runqueue.
1333 *
1334 * We want to avoid overloading runqueues. If the woken
1335 * task is a higher priority, then it will stay on this CPU
1336 * and the lower prio task should be moved to another CPU.
1337 * Even though this will probably make the lower prio task
1338 * lose its cache, we do not want to bounce a higher task
1339 * around just because it gave up its CPU, perhaps for a
1340 * lock?
1341 *
1342 * For equal prio tasks, we just let the scheduler sort it out.
1343 *
1344 * Otherwise, just let it ride on the affined RQ and the
1345 * post-schedule router will push the preempted task away
1346 *
1347 * This test is optimistic, if we get it wrong the load-balancer
1348 * will have to sort it out.
1349 */
1350 if (curr && unlikely(rt_task(curr)) &&
1351 (curr->nr_cpus_allowed < 2 ||
1352 curr->prio <= p->prio)) {
1353 int target = find_lowest_rq(p);
1354
1355 /*
1356 * Don't bother moving it if the destination CPU is
1357 * not running a lower priority task.
1358 */
1359 if (target != -1 &&
1360 p->prio < cpu_rq(target)->rt.highest_prio.curr)
1361 cpu = target;
1362 }
1363 rcu_read_unlock();
1364
1365 out:
1366 return cpu;
1367 }
1368
1369 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1370 {
1371 /*
1372 * Current can't be migrated, useless to reschedule,
1373 * let's hope p can move out.
1374 */
1375 if (rq->curr->nr_cpus_allowed == 1 ||
1376 !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1377 return;
1378
1379 /*
1380 * p is migratable, so let's not schedule it and
1381 * see if it is pushed or pulled somewhere else.
1382 */
1383 if (p->nr_cpus_allowed != 1
1384 && cpupri_find(&rq->rd->cpupri, p, NULL))
1385 return;
1386
1387 /*
1388 * There appears to be other cpus that can accept
1389 * current and none to run 'p', so lets reschedule
1390 * to try and push current away:
1391 */
1392 requeue_task_rt(rq, p, 1);
1393 resched_curr(rq);
1394 }
1395
1396 #endif /* CONFIG_SMP */
1397
1398 /*
1399 * Preempt the current task with a newly woken task if needed:
1400 */
1401 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1402 {
1403 if (p->prio < rq->curr->prio) {
1404 resched_curr(rq);
1405 return;
1406 }
1407
1408 #ifdef CONFIG_SMP
1409 /*
1410 * If:
1411 *
1412 * - the newly woken task is of equal priority to the current task
1413 * - the newly woken task is non-migratable while current is migratable
1414 * - current will be preempted on the next reschedule
1415 *
1416 * we should check to see if current can readily move to a different
1417 * cpu. If so, we will reschedule to allow the push logic to try
1418 * to move current somewhere else, making room for our non-migratable
1419 * task.
1420 */
1421 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1422 check_preempt_equal_prio(rq, p);
1423 #endif
1424 }
1425
1426 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1427 struct rt_rq *rt_rq)
1428 {
1429 struct rt_prio_array *array = &rt_rq->active;
1430 struct sched_rt_entity *next = NULL;
1431 struct list_head *queue;
1432 int idx;
1433
1434 idx = sched_find_first_bit(array->bitmap);
1435 BUG_ON(idx >= MAX_RT_PRIO);
1436
1437 queue = array->queue + idx;
1438 next = list_entry(queue->next, struct sched_rt_entity, run_list);
1439
1440 return next;
1441 }
1442
1443 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1444 {
1445 struct sched_rt_entity *rt_se;
1446 struct task_struct *p;
1447 struct rt_rq *rt_rq = &rq->rt;
1448
1449 do {
1450 rt_se = pick_next_rt_entity(rq, rt_rq);
1451 BUG_ON(!rt_se);
1452 rt_rq = group_rt_rq(rt_se);
1453 } while (rt_rq);
1454
1455 p = rt_task_of(rt_se);
1456 p->se.exec_start = rq_clock_task(rq);
1457
1458 return p;
1459 }
1460
1461 static struct task_struct *
1462 pick_next_task_rt(struct rq *rq, struct task_struct *prev)
1463 {
1464 struct task_struct *p;
1465 struct rt_rq *rt_rq = &rq->rt;
1466
1467 if (need_pull_rt_task(rq, prev)) {
1468 pull_rt_task(rq);
1469 /*
1470 * pull_rt_task() can drop (and re-acquire) rq->lock; this
1471 * means a dl or stop task can slip in, in which case we need
1472 * to re-start task selection.
1473 */
1474 if (unlikely((rq->stop && task_on_rq_queued(rq->stop)) ||
1475 rq->dl.dl_nr_running))
1476 return RETRY_TASK;
1477 }
1478
1479 /*
1480 * We may dequeue prev's rt_rq in put_prev_task().
1481 * So, we update time before rt_nr_running check.
1482 */
1483 if (prev->sched_class == &rt_sched_class)
1484 update_curr_rt(rq);
1485
1486 if (!rt_rq->rt_queued)
1487 return NULL;
1488
1489 put_prev_task(rq, prev);
1490
1491 p = _pick_next_task_rt(rq);
1492
1493 /* The running task is never eligible for pushing */
1494 dequeue_pushable_task(rq, p);
1495
1496 set_post_schedule(rq);
1497
1498 return p;
1499 }
1500
1501 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1502 {
1503 update_curr_rt(rq);
1504
1505 /*
1506 * The previous task needs to be made eligible for pushing
1507 * if it is still active
1508 */
1509 if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1510 enqueue_pushable_task(rq, p);
1511 }
1512
1513 #ifdef CONFIG_SMP
1514
1515 /* Only try algorithms three times */
1516 #define RT_MAX_TRIES 3
1517
1518 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1519 {
1520 if (!task_running(rq, p) &&
1521 cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
1522 return 1;
1523 return 0;
1524 }
1525
1526 /*
1527 * Return the highest pushable rq's task, which is suitable to be executed
1528 * on the cpu, NULL otherwise
1529 */
1530 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1531 {
1532 struct plist_head *head = &rq->rt.pushable_tasks;
1533 struct task_struct *p;
1534
1535 if (!has_pushable_tasks(rq))
1536 return NULL;
1537
1538 plist_for_each_entry(p, head, pushable_tasks) {
1539 if (pick_rt_task(rq, p, cpu))
1540 return p;
1541 }
1542
1543 return NULL;
1544 }
1545
1546 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1547
1548 static int find_lowest_rq(struct task_struct *task)
1549 {
1550 struct sched_domain *sd;
1551 struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1552 int this_cpu = smp_processor_id();
1553 int cpu = task_cpu(task);
1554
1555 /* Make sure the mask is initialized first */
1556 if (unlikely(!lowest_mask))
1557 return -1;
1558
1559 if (task->nr_cpus_allowed == 1)
1560 return -1; /* No other targets possible */
1561
1562 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1563 return -1; /* No targets found */
1564
1565 /*
1566 * At this point we have built a mask of cpus representing the
1567 * lowest priority tasks in the system. Now we want to elect
1568 * the best one based on our affinity and topology.
1569 *
1570 * We prioritize the last cpu that the task executed on since
1571 * it is most likely cache-hot in that location.
1572 */
1573 if (cpumask_test_cpu(cpu, lowest_mask))
1574 return cpu;
1575
1576 /*
1577 * Otherwise, we consult the sched_domains span maps to figure
1578 * out which cpu is logically closest to our hot cache data.
1579 */
1580 if (!cpumask_test_cpu(this_cpu, lowest_mask))
1581 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1582
1583 rcu_read_lock();
1584 for_each_domain(cpu, sd) {
1585 if (sd->flags & SD_WAKE_AFFINE) {
1586 int best_cpu;
1587
1588 /*
1589 * "this_cpu" is cheaper to preempt than a
1590 * remote processor.
1591 */
1592 if (this_cpu != -1 &&
1593 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1594 rcu_read_unlock();
1595 return this_cpu;
1596 }
1597
1598 best_cpu = cpumask_first_and(lowest_mask,
1599 sched_domain_span(sd));
1600 if (best_cpu < nr_cpu_ids) {
1601 rcu_read_unlock();
1602 return best_cpu;
1603 }
1604 }
1605 }
1606 rcu_read_unlock();
1607
1608 /*
1609 * And finally, if there were no matches within the domains
1610 * just give the caller *something* to work with from the compatible
1611 * locations.
1612 */
1613 if (this_cpu != -1)
1614 return this_cpu;
1615
1616 cpu = cpumask_any(lowest_mask);
1617 if (cpu < nr_cpu_ids)
1618 return cpu;
1619 return -1;
1620 }
1621
1622 /* Will lock the rq it finds */
1623 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1624 {
1625 struct rq *lowest_rq = NULL;
1626 int tries;
1627 int cpu;
1628
1629 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1630 cpu = find_lowest_rq(task);
1631
1632 if ((cpu == -1) || (cpu == rq->cpu))
1633 break;
1634
1635 lowest_rq = cpu_rq(cpu);
1636
1637 if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1638 /*
1639 * Target rq has tasks of equal or higher priority,
1640 * retrying does not release any lock and is unlikely
1641 * to yield a different result.
1642 */
1643 lowest_rq = NULL;
1644 break;
1645 }
1646
1647 /* if the prio of this runqueue changed, try again */
1648 if (double_lock_balance(rq, lowest_rq)) {
1649 /*
1650 * We had to unlock the run queue. In
1651 * the mean time, task could have
1652 * migrated already or had its affinity changed.
1653 * Also make sure that it wasn't scheduled on its rq.
1654 */
1655 if (unlikely(task_rq(task) != rq ||
1656 !cpumask_test_cpu(lowest_rq->cpu,
1657 tsk_cpus_allowed(task)) ||
1658 task_running(rq, task) ||
1659 !task_on_rq_queued(task))) {
1660
1661 double_unlock_balance(rq, lowest_rq);
1662 lowest_rq = NULL;
1663 break;
1664 }
1665 }
1666
1667 /* If this rq is still suitable use it. */
1668 if (lowest_rq->rt.highest_prio.curr > task->prio)
1669 break;
1670
1671 /* try again */
1672 double_unlock_balance(rq, lowest_rq);
1673 lowest_rq = NULL;
1674 }
1675
1676 return lowest_rq;
1677 }
1678
1679 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1680 {
1681 struct task_struct *p;
1682
1683 if (!has_pushable_tasks(rq))
1684 return NULL;
1685
1686 p = plist_first_entry(&rq->rt.pushable_tasks,
1687 struct task_struct, pushable_tasks);
1688
1689 BUG_ON(rq->cpu != task_cpu(p));
1690 BUG_ON(task_current(rq, p));
1691 BUG_ON(p->nr_cpus_allowed <= 1);
1692
1693 BUG_ON(!task_on_rq_queued(p));
1694 BUG_ON(!rt_task(p));
1695
1696 return p;
1697 }
1698
1699 /*
1700 * If the current CPU has more than one RT task, see if the non
1701 * running task can migrate over to a CPU that is running a task
1702 * of lesser priority.
1703 */
1704 static int push_rt_task(struct rq *rq)
1705 {
1706 struct task_struct *next_task;
1707 struct rq *lowest_rq;
1708 int ret = 0;
1709
1710 if (!rq->rt.overloaded)
1711 return 0;
1712
1713 next_task = pick_next_pushable_task(rq);
1714 if (!next_task)
1715 return 0;
1716
1717 retry:
1718 if (unlikely(next_task == rq->curr)) {
1719 WARN_ON(1);
1720 return 0;
1721 }
1722
1723 /*
1724 * It's possible that the next_task slipped in of
1725 * higher priority than current. If that's the case
1726 * just reschedule current.
1727 */
1728 if (unlikely(next_task->prio < rq->curr->prio)) {
1729 resched_curr(rq);
1730 return 0;
1731 }
1732
1733 /* We might release rq lock */
1734 get_task_struct(next_task);
1735
1736 /* find_lock_lowest_rq locks the rq if found */
1737 lowest_rq = find_lock_lowest_rq(next_task, rq);
1738 if (!lowest_rq) {
1739 struct task_struct *task;
1740 /*
1741 * find_lock_lowest_rq releases rq->lock
1742 * so it is possible that next_task has migrated.
1743 *
1744 * We need to make sure that the task is still on the same
1745 * run-queue and is also still the next task eligible for
1746 * pushing.
1747 */
1748 task = pick_next_pushable_task(rq);
1749 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1750 /*
1751 * The task hasn't migrated, and is still the next
1752 * eligible task, but we failed to find a run-queue
1753 * to push it to. Do not retry in this case, since
1754 * other cpus will pull from us when ready.
1755 */
1756 goto out;
1757 }
1758
1759 if (!task)
1760 /* No more tasks, just exit */
1761 goto out;
1762
1763 /*
1764 * Something has shifted, try again.
1765 */
1766 put_task_struct(next_task);
1767 next_task = task;
1768 goto retry;
1769 }
1770
1771 deactivate_task(rq, next_task, 0);
1772 set_task_cpu(next_task, lowest_rq->cpu);
1773 activate_task(lowest_rq, next_task, 0);
1774 ret = 1;
1775
1776 resched_curr(lowest_rq);
1777
1778 double_unlock_balance(rq, lowest_rq);
1779
1780 out:
1781 put_task_struct(next_task);
1782
1783 return ret;
1784 }
1785
1786 static void push_rt_tasks(struct rq *rq)
1787 {
1788 /* push_rt_task will return true if it moved an RT */
1789 while (push_rt_task(rq))
1790 ;
1791 }
1792
1793 #ifdef HAVE_RT_PUSH_IPI
1794 /*
1795 * The search for the next cpu always starts at rq->cpu and ends
1796 * when we reach rq->cpu again. It will never return rq->cpu.
1797 * This returns the next cpu to check, or nr_cpu_ids if the loop
1798 * is complete.
1799 *
1800 * rq->rt.push_cpu holds the last cpu returned by this function,
1801 * or if this is the first instance, it must hold rq->cpu.
1802 */
1803 static int rto_next_cpu(struct rq *rq)
1804 {
1805 int prev_cpu = rq->rt.push_cpu;
1806 int cpu;
1807
1808 cpu = cpumask_next(prev_cpu, rq->rd->rto_mask);
1809
1810 /*
1811 * If the previous cpu is less than the rq's CPU, then it already
1812 * passed the end of the mask, and has started from the beginning.
1813 * We end if the next CPU is greater or equal to rq's CPU.
1814 */
1815 if (prev_cpu < rq->cpu) {
1816 if (cpu >= rq->cpu)
1817 return nr_cpu_ids;
1818
1819 } else if (cpu >= nr_cpu_ids) {
1820 /*
1821 * We passed the end of the mask, start at the beginning.
1822 * If the result is greater or equal to the rq's CPU, then
1823 * the loop is finished.
1824 */
1825 cpu = cpumask_first(rq->rd->rto_mask);
1826 if (cpu >= rq->cpu)
1827 return nr_cpu_ids;
1828 }
1829 rq->rt.push_cpu = cpu;
1830
1831 /* Return cpu to let the caller know if the loop is finished or not */
1832 return cpu;
1833 }
1834
1835 static int find_next_push_cpu(struct rq *rq)
1836 {
1837 struct rq *next_rq;
1838 int cpu;
1839
1840 while (1) {
1841 cpu = rto_next_cpu(rq);
1842 if (cpu >= nr_cpu_ids)
1843 break;
1844 next_rq = cpu_rq(cpu);
1845
1846 /* Make sure the next rq can push to this rq */
1847 if (next_rq->rt.highest_prio.next < rq->rt.highest_prio.curr)
1848 break;
1849 }
1850
1851 return cpu;
1852 }
1853
1854 #define RT_PUSH_IPI_EXECUTING 1
1855 #define RT_PUSH_IPI_RESTART 2
1856
1857 static void tell_cpu_to_push(struct rq *rq)
1858 {
1859 int cpu;
1860
1861 if (rq->rt.push_flags & RT_PUSH_IPI_EXECUTING) {
1862 raw_spin_lock(&rq->rt.push_lock);
1863 /* Make sure it's still executing */
1864 if (rq->rt.push_flags & RT_PUSH_IPI_EXECUTING) {
1865 /*
1866 * Tell the IPI to restart the loop as things have
1867 * changed since it started.
1868 */
1869 rq->rt.push_flags |= RT_PUSH_IPI_RESTART;
1870 raw_spin_unlock(&rq->rt.push_lock);
1871 return;
1872 }
1873 raw_spin_unlock(&rq->rt.push_lock);
1874 }
1875
1876 /* When here, there's no IPI going around */
1877
1878 rq->rt.push_cpu = rq->cpu;
1879 cpu = find_next_push_cpu(rq);
1880 if (cpu >= nr_cpu_ids)
1881 return;
1882
1883 rq->rt.push_flags = RT_PUSH_IPI_EXECUTING;
1884
1885 irq_work_queue_on(&rq->rt.push_work, cpu);
1886 }
1887
1888 /* Called from hardirq context */
1889 static void try_to_push_tasks(void *arg)
1890 {
1891 struct rt_rq *rt_rq = arg;
1892 struct rq *rq, *src_rq;
1893 int this_cpu;
1894 int cpu;
1895
1896 this_cpu = rt_rq->push_cpu;
1897
1898 /* Paranoid check */
1899 BUG_ON(this_cpu != smp_processor_id());
1900
1901 rq = cpu_rq(this_cpu);
1902 src_rq = rq_of_rt_rq(rt_rq);
1903
1904 again:
1905 if (has_pushable_tasks(rq)) {
1906 raw_spin_lock(&rq->lock);
1907 push_rt_task(rq);
1908 raw_spin_unlock(&rq->lock);
1909 }
1910
1911 /* Pass the IPI to the next rt overloaded queue */
1912 raw_spin_lock(&rt_rq->push_lock);
1913 /*
1914 * If the source queue changed since the IPI went out,
1915 * we need to restart the search from that CPU again.
1916 */
1917 if (rt_rq->push_flags & RT_PUSH_IPI_RESTART) {
1918 rt_rq->push_flags &= ~RT_PUSH_IPI_RESTART;
1919 rt_rq->push_cpu = src_rq->cpu;
1920 }
1921
1922 cpu = find_next_push_cpu(src_rq);
1923
1924 if (cpu >= nr_cpu_ids)
1925 rt_rq->push_flags &= ~RT_PUSH_IPI_EXECUTING;
1926 raw_spin_unlock(&rt_rq->push_lock);
1927
1928 if (cpu >= nr_cpu_ids)
1929 return;
1930
1931 /*
1932 * It is possible that a restart caused this CPU to be
1933 * chosen again. Don't bother with an IPI, just see if we
1934 * have more to push.
1935 */
1936 if (unlikely(cpu == rq->cpu))
1937 goto again;
1938
1939 /* Try the next RT overloaded CPU */
1940 irq_work_queue_on(&rt_rq->push_work, cpu);
1941 }
1942
1943 static void push_irq_work_func(struct irq_work *work)
1944 {
1945 struct rt_rq *rt_rq = container_of(work, struct rt_rq, push_work);
1946
1947 try_to_push_tasks(rt_rq);
1948 }
1949 #endif /* HAVE_RT_PUSH_IPI */
1950
1951 static int pull_rt_task(struct rq *this_rq)
1952 {
1953 int this_cpu = this_rq->cpu, ret = 0, cpu;
1954 struct task_struct *p;
1955 struct rq *src_rq;
1956
1957 if (likely(!rt_overloaded(this_rq)))
1958 return 0;
1959
1960 /*
1961 * Match the barrier from rt_set_overloaded; this guarantees that if we
1962 * see overloaded we must also see the rto_mask bit.
1963 */
1964 smp_rmb();
1965
1966 #ifdef HAVE_RT_PUSH_IPI
1967 if (sched_feat(RT_PUSH_IPI)) {
1968 tell_cpu_to_push(this_rq);
1969 return 0;
1970 }
1971 #endif
1972
1973 for_each_cpu(cpu, this_rq->rd->rto_mask) {
1974 if (this_cpu == cpu)
1975 continue;
1976
1977 src_rq = cpu_rq(cpu);
1978
1979 /*
1980 * Don't bother taking the src_rq->lock if the next highest
1981 * task is known to be lower-priority than our current task.
1982 * This may look racy, but if this value is about to go
1983 * logically higher, the src_rq will push this task away.
1984 * And if its going logically lower, we do not care
1985 */
1986 if (src_rq->rt.highest_prio.next >=
1987 this_rq->rt.highest_prio.curr)
1988 continue;
1989
1990 /*
1991 * We can potentially drop this_rq's lock in
1992 * double_lock_balance, and another CPU could
1993 * alter this_rq
1994 */
1995 double_lock_balance(this_rq, src_rq);
1996
1997 /*
1998 * We can pull only a task, which is pushable
1999 * on its rq, and no others.
2000 */
2001 p = pick_highest_pushable_task(src_rq, this_cpu);
2002
2003 /*
2004 * Do we have an RT task that preempts
2005 * the to-be-scheduled task?
2006 */
2007 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2008 WARN_ON(p == src_rq->curr);
2009 WARN_ON(!task_on_rq_queued(p));
2010
2011 /*
2012 * There's a chance that p is higher in priority
2013 * than what's currently running on its cpu.
2014 * This is just that p is wakeing up and hasn't
2015 * had a chance to schedule. We only pull
2016 * p if it is lower in priority than the
2017 * current task on the run queue
2018 */
2019 if (p->prio < src_rq->curr->prio)
2020 goto skip;
2021
2022 ret = 1;
2023
2024 deactivate_task(src_rq, p, 0);
2025 set_task_cpu(p, this_cpu);
2026 activate_task(this_rq, p, 0);
2027 /*
2028 * We continue with the search, just in
2029 * case there's an even higher prio task
2030 * in another runqueue. (low likelihood
2031 * but possible)
2032 */
2033 }
2034 skip:
2035 double_unlock_balance(this_rq, src_rq);
2036 }
2037
2038 return ret;
2039 }
2040
2041 static void post_schedule_rt(struct rq *rq)
2042 {
2043 push_rt_tasks(rq);
2044 }
2045
2046 /*
2047 * If we are not running and we are not going to reschedule soon, we should
2048 * try to push tasks away now
2049 */
2050 static void task_woken_rt(struct rq *rq, struct task_struct *p)
2051 {
2052 if (!task_running(rq, p) &&
2053 !test_tsk_need_resched(rq->curr) &&
2054 has_pushable_tasks(rq) &&
2055 p->nr_cpus_allowed > 1 &&
2056 (dl_task(rq->curr) || rt_task(rq->curr)) &&
2057 (rq->curr->nr_cpus_allowed < 2 ||
2058 rq->curr->prio <= p->prio))
2059 push_rt_tasks(rq);
2060 }
2061
2062 static void set_cpus_allowed_rt(struct task_struct *p,
2063 const struct cpumask *new_mask)
2064 {
2065 struct rq *rq;
2066 int weight;
2067
2068 BUG_ON(!rt_task(p));
2069
2070 if (!task_on_rq_queued(p))
2071 return;
2072
2073 weight = cpumask_weight(new_mask);
2074
2075 /*
2076 * Only update if the process changes its state from whether it
2077 * can migrate or not.
2078 */
2079 if ((p->nr_cpus_allowed > 1) == (weight > 1))
2080 return;
2081
2082 rq = task_rq(p);
2083
2084 /*
2085 * The process used to be able to migrate OR it can now migrate
2086 */
2087 if (weight <= 1) {
2088 if (!task_current(rq, p))
2089 dequeue_pushable_task(rq, p);
2090 BUG_ON(!rq->rt.rt_nr_migratory);
2091 rq->rt.rt_nr_migratory--;
2092 } else {
2093 if (!task_current(rq, p))
2094 enqueue_pushable_task(rq, p);
2095 rq->rt.rt_nr_migratory++;
2096 }
2097
2098 update_rt_migration(&rq->rt);
2099 }
2100
2101 /* Assumes rq->lock is held */
2102 static void rq_online_rt(struct rq *rq)
2103 {
2104 if (rq->rt.overloaded)
2105 rt_set_overload(rq);
2106
2107 __enable_runtime(rq);
2108
2109 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2110 }
2111
2112 /* Assumes rq->lock is held */
2113 static void rq_offline_rt(struct rq *rq)
2114 {
2115 if (rq->rt.overloaded)
2116 rt_clear_overload(rq);
2117
2118 __disable_runtime(rq);
2119
2120 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2121 }
2122
2123 /*
2124 * When switch from the rt queue, we bring ourselves to a position
2125 * that we might want to pull RT tasks from other runqueues.
2126 */
2127 static void switched_from_rt(struct rq *rq, struct task_struct *p)
2128 {
2129 /*
2130 * If there are other RT tasks then we will reschedule
2131 * and the scheduling of the other RT tasks will handle
2132 * the balancing. But if we are the last RT task
2133 * we may need to handle the pulling of RT tasks
2134 * now.
2135 */
2136 if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2137 return;
2138
2139 if (pull_rt_task(rq))
2140 resched_curr(rq);
2141 }
2142
2143 void __init init_sched_rt_class(void)
2144 {
2145 unsigned int i;
2146
2147 for_each_possible_cpu(i) {
2148 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2149 GFP_KERNEL, cpu_to_node(i));
2150 }
2151 }
2152 #endif /* CONFIG_SMP */
2153
2154 /*
2155 * When switching a task to RT, we may overload the runqueue
2156 * with RT tasks. In this case we try to push them off to
2157 * other runqueues.
2158 */
2159 static void switched_to_rt(struct rq *rq, struct task_struct *p)
2160 {
2161 int check_resched = 1;
2162
2163 /*
2164 * If we are already running, then there's nothing
2165 * that needs to be done. But if we are not running
2166 * we may need to preempt the current running task.
2167 * If that current running task is also an RT task
2168 * then see if we can move to another run queue.
2169 */
2170 if (task_on_rq_queued(p) && rq->curr != p) {
2171 #ifdef CONFIG_SMP
2172 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded &&
2173 /* Don't resched if we changed runqueues */
2174 push_rt_task(rq) && rq != task_rq(p))
2175 check_resched = 0;
2176 #endif /* CONFIG_SMP */
2177 if (check_resched && p->prio < rq->curr->prio)
2178 resched_curr(rq);
2179 }
2180 }
2181
2182 /*
2183 * Priority of the task has changed. This may cause
2184 * us to initiate a push or pull.
2185 */
2186 static void
2187 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2188 {
2189 if (!task_on_rq_queued(p))
2190 return;
2191
2192 if (rq->curr == p) {
2193 #ifdef CONFIG_SMP
2194 /*
2195 * If our priority decreases while running, we
2196 * may need to pull tasks to this runqueue.
2197 */
2198 if (oldprio < p->prio)
2199 pull_rt_task(rq);
2200 /*
2201 * If there's a higher priority task waiting to run
2202 * then reschedule. Note, the above pull_rt_task
2203 * can release the rq lock and p could migrate.
2204 * Only reschedule if p is still on the same runqueue.
2205 */
2206 if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
2207 resched_curr(rq);
2208 #else
2209 /* For UP simply resched on drop of prio */
2210 if (oldprio < p->prio)
2211 resched_curr(rq);
2212 #endif /* CONFIG_SMP */
2213 } else {
2214 /*
2215 * This task is not running, but if it is
2216 * greater than the current running task
2217 * then reschedule.
2218 */
2219 if (p->prio < rq->curr->prio)
2220 resched_curr(rq);
2221 }
2222 }
2223
2224 static void watchdog(struct rq *rq, struct task_struct *p)
2225 {
2226 unsigned long soft, hard;
2227
2228 /* max may change after cur was read, this will be fixed next tick */
2229 soft = task_rlimit(p, RLIMIT_RTTIME);
2230 hard = task_rlimit_max(p, RLIMIT_RTTIME);
2231
2232 if (soft != RLIM_INFINITY) {
2233 unsigned long next;
2234
2235 if (p->rt.watchdog_stamp != jiffies) {
2236 p->rt.timeout++;
2237 p->rt.watchdog_stamp = jiffies;
2238 }
2239
2240 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2241 if (p->rt.timeout > next)
2242 p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
2243 }
2244 }
2245
2246 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2247 {
2248 struct sched_rt_entity *rt_se = &p->rt;
2249
2250 update_curr_rt(rq);
2251
2252 watchdog(rq, p);
2253
2254 /*
2255 * RR tasks need a special form of timeslice management.
2256 * FIFO tasks have no timeslices.
2257 */
2258 if (p->policy != SCHED_RR)
2259 return;
2260
2261 if (--p->rt.time_slice)
2262 return;
2263
2264 p->rt.time_slice = sched_rr_timeslice;
2265
2266 /*
2267 * Requeue to the end of queue if we (and all of our ancestors) are not
2268 * the only element on the queue
2269 */
2270 for_each_sched_rt_entity(rt_se) {
2271 if (rt_se->run_list.prev != rt_se->run_list.next) {
2272 requeue_task_rt(rq, p, 0);
2273 resched_curr(rq);
2274 return;
2275 }
2276 }
2277 }
2278
2279 static void set_curr_task_rt(struct rq *rq)
2280 {
2281 struct task_struct *p = rq->curr;
2282
2283 p->se.exec_start = rq_clock_task(rq);
2284
2285 /* The running task is never eligible for pushing */
2286 dequeue_pushable_task(rq, p);
2287 }
2288
2289 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2290 {
2291 /*
2292 * Time slice is 0 for SCHED_FIFO tasks
2293 */
2294 if (task->policy == SCHED_RR)
2295 return sched_rr_timeslice;
2296 else
2297 return 0;
2298 }
2299
2300 const struct sched_class rt_sched_class = {
2301 .next = &fair_sched_class,
2302 .enqueue_task = enqueue_task_rt,
2303 .dequeue_task = dequeue_task_rt,
2304 .yield_task = yield_task_rt,
2305
2306 .check_preempt_curr = check_preempt_curr_rt,
2307
2308 .pick_next_task = pick_next_task_rt,
2309 .put_prev_task = put_prev_task_rt,
2310
2311 #ifdef CONFIG_SMP
2312 .select_task_rq = select_task_rq_rt,
2313
2314 .set_cpus_allowed = set_cpus_allowed_rt,
2315 .rq_online = rq_online_rt,
2316 .rq_offline = rq_offline_rt,
2317 .post_schedule = post_schedule_rt,
2318 .task_woken = task_woken_rt,
2319 .switched_from = switched_from_rt,
2320 #endif
2321
2322 .set_curr_task = set_curr_task_rt,
2323 .task_tick = task_tick_rt,
2324
2325 .get_rr_interval = get_rr_interval_rt,
2326
2327 .prio_changed = prio_changed_rt,
2328 .switched_to = switched_to_rt,
2329
2330 .update_curr = update_curr_rt,
2331 };
2332
2333 #ifdef CONFIG_SCHED_DEBUG
2334 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2335
2336 void print_rt_stats(struct seq_file *m, int cpu)
2337 {
2338 rt_rq_iter_t iter;
2339 struct rt_rq *rt_rq;
2340
2341 rcu_read_lock();
2342 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2343 print_rt_rq(m, cpu, rt_rq);
2344 rcu_read_unlock();
2345 }
2346 #endif /* CONFIG_SCHED_DEBUG */
This page took 0.079502 seconds and 6 git commands to generate.