Merge branch 'next' into for-linus
[deliverable/linux.git] / kernel / sched / rt.c
1 /*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
5
6 #include "sched.h"
7
8 #include <linux/slab.h>
9
10 int sched_rr_timeslice = RR_TIMESLICE;
11
12 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
13
14 struct rt_bandwidth def_rt_bandwidth;
15
16 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
17 {
18 struct rt_bandwidth *rt_b =
19 container_of(timer, struct rt_bandwidth, rt_period_timer);
20 ktime_t now;
21 int overrun;
22 int idle = 0;
23
24 for (;;) {
25 now = hrtimer_cb_get_time(timer);
26 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
27
28 if (!overrun)
29 break;
30
31 idle = do_sched_rt_period_timer(rt_b, overrun);
32 }
33
34 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
35 }
36
37 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
38 {
39 rt_b->rt_period = ns_to_ktime(period);
40 rt_b->rt_runtime = runtime;
41
42 raw_spin_lock_init(&rt_b->rt_runtime_lock);
43
44 hrtimer_init(&rt_b->rt_period_timer,
45 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
46 rt_b->rt_period_timer.function = sched_rt_period_timer;
47 }
48
49 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
50 {
51 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
52 return;
53
54 if (hrtimer_active(&rt_b->rt_period_timer))
55 return;
56
57 raw_spin_lock(&rt_b->rt_runtime_lock);
58 start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period);
59 raw_spin_unlock(&rt_b->rt_runtime_lock);
60 }
61
62 void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
63 {
64 struct rt_prio_array *array;
65 int i;
66
67 array = &rt_rq->active;
68 for (i = 0; i < MAX_RT_PRIO; i++) {
69 INIT_LIST_HEAD(array->queue + i);
70 __clear_bit(i, array->bitmap);
71 }
72 /* delimiter for bitsearch: */
73 __set_bit(MAX_RT_PRIO, array->bitmap);
74
75 #if defined CONFIG_SMP
76 rt_rq->highest_prio.curr = MAX_RT_PRIO;
77 rt_rq->highest_prio.next = MAX_RT_PRIO;
78 rt_rq->rt_nr_migratory = 0;
79 rt_rq->overloaded = 0;
80 plist_head_init(&rt_rq->pushable_tasks);
81 #endif
82 /* We start is dequeued state, because no RT tasks are queued */
83 rt_rq->rt_queued = 0;
84
85 rt_rq->rt_time = 0;
86 rt_rq->rt_throttled = 0;
87 rt_rq->rt_runtime = 0;
88 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
89 }
90
91 #ifdef CONFIG_RT_GROUP_SCHED
92 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
93 {
94 hrtimer_cancel(&rt_b->rt_period_timer);
95 }
96
97 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
98
99 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
100 {
101 #ifdef CONFIG_SCHED_DEBUG
102 WARN_ON_ONCE(!rt_entity_is_task(rt_se));
103 #endif
104 return container_of(rt_se, struct task_struct, rt);
105 }
106
107 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
108 {
109 return rt_rq->rq;
110 }
111
112 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
113 {
114 return rt_se->rt_rq;
115 }
116
117 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
118 {
119 struct rt_rq *rt_rq = rt_se->rt_rq;
120
121 return rt_rq->rq;
122 }
123
124 void free_rt_sched_group(struct task_group *tg)
125 {
126 int i;
127
128 if (tg->rt_se)
129 destroy_rt_bandwidth(&tg->rt_bandwidth);
130
131 for_each_possible_cpu(i) {
132 if (tg->rt_rq)
133 kfree(tg->rt_rq[i]);
134 if (tg->rt_se)
135 kfree(tg->rt_se[i]);
136 }
137
138 kfree(tg->rt_rq);
139 kfree(tg->rt_se);
140 }
141
142 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
143 struct sched_rt_entity *rt_se, int cpu,
144 struct sched_rt_entity *parent)
145 {
146 struct rq *rq = cpu_rq(cpu);
147
148 rt_rq->highest_prio.curr = MAX_RT_PRIO;
149 rt_rq->rt_nr_boosted = 0;
150 rt_rq->rq = rq;
151 rt_rq->tg = tg;
152
153 tg->rt_rq[cpu] = rt_rq;
154 tg->rt_se[cpu] = rt_se;
155
156 if (!rt_se)
157 return;
158
159 if (!parent)
160 rt_se->rt_rq = &rq->rt;
161 else
162 rt_se->rt_rq = parent->my_q;
163
164 rt_se->my_q = rt_rq;
165 rt_se->parent = parent;
166 INIT_LIST_HEAD(&rt_se->run_list);
167 }
168
169 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
170 {
171 struct rt_rq *rt_rq;
172 struct sched_rt_entity *rt_se;
173 int i;
174
175 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
176 if (!tg->rt_rq)
177 goto err;
178 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
179 if (!tg->rt_se)
180 goto err;
181
182 init_rt_bandwidth(&tg->rt_bandwidth,
183 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
184
185 for_each_possible_cpu(i) {
186 rt_rq = kzalloc_node(sizeof(struct rt_rq),
187 GFP_KERNEL, cpu_to_node(i));
188 if (!rt_rq)
189 goto err;
190
191 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
192 GFP_KERNEL, cpu_to_node(i));
193 if (!rt_se)
194 goto err_free_rq;
195
196 init_rt_rq(rt_rq, cpu_rq(i));
197 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
198 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
199 }
200
201 return 1;
202
203 err_free_rq:
204 kfree(rt_rq);
205 err:
206 return 0;
207 }
208
209 #else /* CONFIG_RT_GROUP_SCHED */
210
211 #define rt_entity_is_task(rt_se) (1)
212
213 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
214 {
215 return container_of(rt_se, struct task_struct, rt);
216 }
217
218 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
219 {
220 return container_of(rt_rq, struct rq, rt);
221 }
222
223 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
224 {
225 struct task_struct *p = rt_task_of(rt_se);
226
227 return task_rq(p);
228 }
229
230 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
231 {
232 struct rq *rq = rq_of_rt_se(rt_se);
233
234 return &rq->rt;
235 }
236
237 void free_rt_sched_group(struct task_group *tg) { }
238
239 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
240 {
241 return 1;
242 }
243 #endif /* CONFIG_RT_GROUP_SCHED */
244
245 #ifdef CONFIG_SMP
246
247 static int pull_rt_task(struct rq *this_rq);
248
249 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
250 {
251 /* Try to pull RT tasks here if we lower this rq's prio */
252 return rq->rt.highest_prio.curr > prev->prio;
253 }
254
255 static inline int rt_overloaded(struct rq *rq)
256 {
257 return atomic_read(&rq->rd->rto_count);
258 }
259
260 static inline void rt_set_overload(struct rq *rq)
261 {
262 if (!rq->online)
263 return;
264
265 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
266 /*
267 * Make sure the mask is visible before we set
268 * the overload count. That is checked to determine
269 * if we should look at the mask. It would be a shame
270 * if we looked at the mask, but the mask was not
271 * updated yet.
272 *
273 * Matched by the barrier in pull_rt_task().
274 */
275 smp_wmb();
276 atomic_inc(&rq->rd->rto_count);
277 }
278
279 static inline void rt_clear_overload(struct rq *rq)
280 {
281 if (!rq->online)
282 return;
283
284 /* the order here really doesn't matter */
285 atomic_dec(&rq->rd->rto_count);
286 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
287 }
288
289 static void update_rt_migration(struct rt_rq *rt_rq)
290 {
291 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
292 if (!rt_rq->overloaded) {
293 rt_set_overload(rq_of_rt_rq(rt_rq));
294 rt_rq->overloaded = 1;
295 }
296 } else if (rt_rq->overloaded) {
297 rt_clear_overload(rq_of_rt_rq(rt_rq));
298 rt_rq->overloaded = 0;
299 }
300 }
301
302 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
303 {
304 struct task_struct *p;
305
306 if (!rt_entity_is_task(rt_se))
307 return;
308
309 p = rt_task_of(rt_se);
310 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
311
312 rt_rq->rt_nr_total++;
313 if (p->nr_cpus_allowed > 1)
314 rt_rq->rt_nr_migratory++;
315
316 update_rt_migration(rt_rq);
317 }
318
319 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
320 {
321 struct task_struct *p;
322
323 if (!rt_entity_is_task(rt_se))
324 return;
325
326 p = rt_task_of(rt_se);
327 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
328
329 rt_rq->rt_nr_total--;
330 if (p->nr_cpus_allowed > 1)
331 rt_rq->rt_nr_migratory--;
332
333 update_rt_migration(rt_rq);
334 }
335
336 static inline int has_pushable_tasks(struct rq *rq)
337 {
338 return !plist_head_empty(&rq->rt.pushable_tasks);
339 }
340
341 static inline void set_post_schedule(struct rq *rq)
342 {
343 /*
344 * We detect this state here so that we can avoid taking the RQ
345 * lock again later if there is no need to push
346 */
347 rq->post_schedule = has_pushable_tasks(rq);
348 }
349
350 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
351 {
352 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
353 plist_node_init(&p->pushable_tasks, p->prio);
354 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
355
356 /* Update the highest prio pushable task */
357 if (p->prio < rq->rt.highest_prio.next)
358 rq->rt.highest_prio.next = p->prio;
359 }
360
361 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
362 {
363 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
364
365 /* Update the new highest prio pushable task */
366 if (has_pushable_tasks(rq)) {
367 p = plist_first_entry(&rq->rt.pushable_tasks,
368 struct task_struct, pushable_tasks);
369 rq->rt.highest_prio.next = p->prio;
370 } else
371 rq->rt.highest_prio.next = MAX_RT_PRIO;
372 }
373
374 #else
375
376 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
377 {
378 }
379
380 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
381 {
382 }
383
384 static inline
385 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
386 {
387 }
388
389 static inline
390 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
391 {
392 }
393
394 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
395 {
396 return false;
397 }
398
399 static inline int pull_rt_task(struct rq *this_rq)
400 {
401 return 0;
402 }
403
404 static inline void set_post_schedule(struct rq *rq)
405 {
406 }
407 #endif /* CONFIG_SMP */
408
409 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
410 static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
411
412 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
413 {
414 return !list_empty(&rt_se->run_list);
415 }
416
417 #ifdef CONFIG_RT_GROUP_SCHED
418
419 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
420 {
421 if (!rt_rq->tg)
422 return RUNTIME_INF;
423
424 return rt_rq->rt_runtime;
425 }
426
427 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
428 {
429 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
430 }
431
432 typedef struct task_group *rt_rq_iter_t;
433
434 static inline struct task_group *next_task_group(struct task_group *tg)
435 {
436 do {
437 tg = list_entry_rcu(tg->list.next,
438 typeof(struct task_group), list);
439 } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
440
441 if (&tg->list == &task_groups)
442 tg = NULL;
443
444 return tg;
445 }
446
447 #define for_each_rt_rq(rt_rq, iter, rq) \
448 for (iter = container_of(&task_groups, typeof(*iter), list); \
449 (iter = next_task_group(iter)) && \
450 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
451
452 #define for_each_sched_rt_entity(rt_se) \
453 for (; rt_se; rt_se = rt_se->parent)
454
455 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
456 {
457 return rt_se->my_q;
458 }
459
460 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
461 static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
462
463 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
464 {
465 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
466 struct rq *rq = rq_of_rt_rq(rt_rq);
467 struct sched_rt_entity *rt_se;
468
469 int cpu = cpu_of(rq);
470
471 rt_se = rt_rq->tg->rt_se[cpu];
472
473 if (rt_rq->rt_nr_running) {
474 if (!rt_se)
475 enqueue_top_rt_rq(rt_rq);
476 else if (!on_rt_rq(rt_se))
477 enqueue_rt_entity(rt_se, false);
478
479 if (rt_rq->highest_prio.curr < curr->prio)
480 resched_curr(rq);
481 }
482 }
483
484 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
485 {
486 struct sched_rt_entity *rt_se;
487 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
488
489 rt_se = rt_rq->tg->rt_se[cpu];
490
491 if (!rt_se)
492 dequeue_top_rt_rq(rt_rq);
493 else if (on_rt_rq(rt_se))
494 dequeue_rt_entity(rt_se);
495 }
496
497 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
498 {
499 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
500 }
501
502 static int rt_se_boosted(struct sched_rt_entity *rt_se)
503 {
504 struct rt_rq *rt_rq = group_rt_rq(rt_se);
505 struct task_struct *p;
506
507 if (rt_rq)
508 return !!rt_rq->rt_nr_boosted;
509
510 p = rt_task_of(rt_se);
511 return p->prio != p->normal_prio;
512 }
513
514 #ifdef CONFIG_SMP
515 static inline const struct cpumask *sched_rt_period_mask(void)
516 {
517 return this_rq()->rd->span;
518 }
519 #else
520 static inline const struct cpumask *sched_rt_period_mask(void)
521 {
522 return cpu_online_mask;
523 }
524 #endif
525
526 static inline
527 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
528 {
529 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
530 }
531
532 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
533 {
534 return &rt_rq->tg->rt_bandwidth;
535 }
536
537 #else /* !CONFIG_RT_GROUP_SCHED */
538
539 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
540 {
541 return rt_rq->rt_runtime;
542 }
543
544 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
545 {
546 return ktime_to_ns(def_rt_bandwidth.rt_period);
547 }
548
549 typedef struct rt_rq *rt_rq_iter_t;
550
551 #define for_each_rt_rq(rt_rq, iter, rq) \
552 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
553
554 #define for_each_sched_rt_entity(rt_se) \
555 for (; rt_se; rt_se = NULL)
556
557 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
558 {
559 return NULL;
560 }
561
562 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
563 {
564 struct rq *rq = rq_of_rt_rq(rt_rq);
565
566 if (!rt_rq->rt_nr_running)
567 return;
568
569 enqueue_top_rt_rq(rt_rq);
570 resched_curr(rq);
571 }
572
573 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
574 {
575 dequeue_top_rt_rq(rt_rq);
576 }
577
578 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
579 {
580 return rt_rq->rt_throttled;
581 }
582
583 static inline const struct cpumask *sched_rt_period_mask(void)
584 {
585 return cpu_online_mask;
586 }
587
588 static inline
589 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
590 {
591 return &cpu_rq(cpu)->rt;
592 }
593
594 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
595 {
596 return &def_rt_bandwidth;
597 }
598
599 #endif /* CONFIG_RT_GROUP_SCHED */
600
601 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
602 {
603 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
604
605 return (hrtimer_active(&rt_b->rt_period_timer) ||
606 rt_rq->rt_time < rt_b->rt_runtime);
607 }
608
609 #ifdef CONFIG_SMP
610 /*
611 * We ran out of runtime, see if we can borrow some from our neighbours.
612 */
613 static int do_balance_runtime(struct rt_rq *rt_rq)
614 {
615 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
616 struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
617 int i, weight, more = 0;
618 u64 rt_period;
619
620 weight = cpumask_weight(rd->span);
621
622 raw_spin_lock(&rt_b->rt_runtime_lock);
623 rt_period = ktime_to_ns(rt_b->rt_period);
624 for_each_cpu(i, rd->span) {
625 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
626 s64 diff;
627
628 if (iter == rt_rq)
629 continue;
630
631 raw_spin_lock(&iter->rt_runtime_lock);
632 /*
633 * Either all rqs have inf runtime and there's nothing to steal
634 * or __disable_runtime() below sets a specific rq to inf to
635 * indicate its been disabled and disalow stealing.
636 */
637 if (iter->rt_runtime == RUNTIME_INF)
638 goto next;
639
640 /*
641 * From runqueues with spare time, take 1/n part of their
642 * spare time, but no more than our period.
643 */
644 diff = iter->rt_runtime - iter->rt_time;
645 if (diff > 0) {
646 diff = div_u64((u64)diff, weight);
647 if (rt_rq->rt_runtime + diff > rt_period)
648 diff = rt_period - rt_rq->rt_runtime;
649 iter->rt_runtime -= diff;
650 rt_rq->rt_runtime += diff;
651 more = 1;
652 if (rt_rq->rt_runtime == rt_period) {
653 raw_spin_unlock(&iter->rt_runtime_lock);
654 break;
655 }
656 }
657 next:
658 raw_spin_unlock(&iter->rt_runtime_lock);
659 }
660 raw_spin_unlock(&rt_b->rt_runtime_lock);
661
662 return more;
663 }
664
665 /*
666 * Ensure this RQ takes back all the runtime it lend to its neighbours.
667 */
668 static void __disable_runtime(struct rq *rq)
669 {
670 struct root_domain *rd = rq->rd;
671 rt_rq_iter_t iter;
672 struct rt_rq *rt_rq;
673
674 if (unlikely(!scheduler_running))
675 return;
676
677 for_each_rt_rq(rt_rq, iter, rq) {
678 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
679 s64 want;
680 int i;
681
682 raw_spin_lock(&rt_b->rt_runtime_lock);
683 raw_spin_lock(&rt_rq->rt_runtime_lock);
684 /*
685 * Either we're all inf and nobody needs to borrow, or we're
686 * already disabled and thus have nothing to do, or we have
687 * exactly the right amount of runtime to take out.
688 */
689 if (rt_rq->rt_runtime == RUNTIME_INF ||
690 rt_rq->rt_runtime == rt_b->rt_runtime)
691 goto balanced;
692 raw_spin_unlock(&rt_rq->rt_runtime_lock);
693
694 /*
695 * Calculate the difference between what we started out with
696 * and what we current have, that's the amount of runtime
697 * we lend and now have to reclaim.
698 */
699 want = rt_b->rt_runtime - rt_rq->rt_runtime;
700
701 /*
702 * Greedy reclaim, take back as much as we can.
703 */
704 for_each_cpu(i, rd->span) {
705 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
706 s64 diff;
707
708 /*
709 * Can't reclaim from ourselves or disabled runqueues.
710 */
711 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
712 continue;
713
714 raw_spin_lock(&iter->rt_runtime_lock);
715 if (want > 0) {
716 diff = min_t(s64, iter->rt_runtime, want);
717 iter->rt_runtime -= diff;
718 want -= diff;
719 } else {
720 iter->rt_runtime -= want;
721 want -= want;
722 }
723 raw_spin_unlock(&iter->rt_runtime_lock);
724
725 if (!want)
726 break;
727 }
728
729 raw_spin_lock(&rt_rq->rt_runtime_lock);
730 /*
731 * We cannot be left wanting - that would mean some runtime
732 * leaked out of the system.
733 */
734 BUG_ON(want);
735 balanced:
736 /*
737 * Disable all the borrow logic by pretending we have inf
738 * runtime - in which case borrowing doesn't make sense.
739 */
740 rt_rq->rt_runtime = RUNTIME_INF;
741 rt_rq->rt_throttled = 0;
742 raw_spin_unlock(&rt_rq->rt_runtime_lock);
743 raw_spin_unlock(&rt_b->rt_runtime_lock);
744
745 /* Make rt_rq available for pick_next_task() */
746 sched_rt_rq_enqueue(rt_rq);
747 }
748 }
749
750 static void __enable_runtime(struct rq *rq)
751 {
752 rt_rq_iter_t iter;
753 struct rt_rq *rt_rq;
754
755 if (unlikely(!scheduler_running))
756 return;
757
758 /*
759 * Reset each runqueue's bandwidth settings
760 */
761 for_each_rt_rq(rt_rq, iter, rq) {
762 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
763
764 raw_spin_lock(&rt_b->rt_runtime_lock);
765 raw_spin_lock(&rt_rq->rt_runtime_lock);
766 rt_rq->rt_runtime = rt_b->rt_runtime;
767 rt_rq->rt_time = 0;
768 rt_rq->rt_throttled = 0;
769 raw_spin_unlock(&rt_rq->rt_runtime_lock);
770 raw_spin_unlock(&rt_b->rt_runtime_lock);
771 }
772 }
773
774 static int balance_runtime(struct rt_rq *rt_rq)
775 {
776 int more = 0;
777
778 if (!sched_feat(RT_RUNTIME_SHARE))
779 return more;
780
781 if (rt_rq->rt_time > rt_rq->rt_runtime) {
782 raw_spin_unlock(&rt_rq->rt_runtime_lock);
783 more = do_balance_runtime(rt_rq);
784 raw_spin_lock(&rt_rq->rt_runtime_lock);
785 }
786
787 return more;
788 }
789 #else /* !CONFIG_SMP */
790 static inline int balance_runtime(struct rt_rq *rt_rq)
791 {
792 return 0;
793 }
794 #endif /* CONFIG_SMP */
795
796 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
797 {
798 int i, idle = 1, throttled = 0;
799 const struct cpumask *span;
800
801 span = sched_rt_period_mask();
802 #ifdef CONFIG_RT_GROUP_SCHED
803 /*
804 * FIXME: isolated CPUs should really leave the root task group,
805 * whether they are isolcpus or were isolated via cpusets, lest
806 * the timer run on a CPU which does not service all runqueues,
807 * potentially leaving other CPUs indefinitely throttled. If
808 * isolation is really required, the user will turn the throttle
809 * off to kill the perturbations it causes anyway. Meanwhile,
810 * this maintains functionality for boot and/or troubleshooting.
811 */
812 if (rt_b == &root_task_group.rt_bandwidth)
813 span = cpu_online_mask;
814 #endif
815 for_each_cpu(i, span) {
816 int enqueue = 0;
817 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
818 struct rq *rq = rq_of_rt_rq(rt_rq);
819
820 raw_spin_lock(&rq->lock);
821 if (rt_rq->rt_time) {
822 u64 runtime;
823
824 raw_spin_lock(&rt_rq->rt_runtime_lock);
825 if (rt_rq->rt_throttled)
826 balance_runtime(rt_rq);
827 runtime = rt_rq->rt_runtime;
828 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
829 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
830 rt_rq->rt_throttled = 0;
831 enqueue = 1;
832
833 /*
834 * When we're idle and a woken (rt) task is
835 * throttled check_preempt_curr() will set
836 * skip_update and the time between the wakeup
837 * and this unthrottle will get accounted as
838 * 'runtime'.
839 */
840 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
841 rq_clock_skip_update(rq, false);
842 }
843 if (rt_rq->rt_time || rt_rq->rt_nr_running)
844 idle = 0;
845 raw_spin_unlock(&rt_rq->rt_runtime_lock);
846 } else if (rt_rq->rt_nr_running) {
847 idle = 0;
848 if (!rt_rq_throttled(rt_rq))
849 enqueue = 1;
850 }
851 if (rt_rq->rt_throttled)
852 throttled = 1;
853
854 if (enqueue)
855 sched_rt_rq_enqueue(rt_rq);
856 raw_spin_unlock(&rq->lock);
857 }
858
859 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
860 return 1;
861
862 return idle;
863 }
864
865 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
866 {
867 #ifdef CONFIG_RT_GROUP_SCHED
868 struct rt_rq *rt_rq = group_rt_rq(rt_se);
869
870 if (rt_rq)
871 return rt_rq->highest_prio.curr;
872 #endif
873
874 return rt_task_of(rt_se)->prio;
875 }
876
877 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
878 {
879 u64 runtime = sched_rt_runtime(rt_rq);
880
881 if (rt_rq->rt_throttled)
882 return rt_rq_throttled(rt_rq);
883
884 if (runtime >= sched_rt_period(rt_rq))
885 return 0;
886
887 balance_runtime(rt_rq);
888 runtime = sched_rt_runtime(rt_rq);
889 if (runtime == RUNTIME_INF)
890 return 0;
891
892 if (rt_rq->rt_time > runtime) {
893 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
894
895 /*
896 * Don't actually throttle groups that have no runtime assigned
897 * but accrue some time due to boosting.
898 */
899 if (likely(rt_b->rt_runtime)) {
900 rt_rq->rt_throttled = 1;
901 printk_deferred_once("sched: RT throttling activated\n");
902 } else {
903 /*
904 * In case we did anyway, make it go away,
905 * replenishment is a joke, since it will replenish us
906 * with exactly 0 ns.
907 */
908 rt_rq->rt_time = 0;
909 }
910
911 if (rt_rq_throttled(rt_rq)) {
912 sched_rt_rq_dequeue(rt_rq);
913 return 1;
914 }
915 }
916
917 return 0;
918 }
919
920 /*
921 * Update the current task's runtime statistics. Skip current tasks that
922 * are not in our scheduling class.
923 */
924 static void update_curr_rt(struct rq *rq)
925 {
926 struct task_struct *curr = rq->curr;
927 struct sched_rt_entity *rt_se = &curr->rt;
928 u64 delta_exec;
929
930 if (curr->sched_class != &rt_sched_class)
931 return;
932
933 delta_exec = rq_clock_task(rq) - curr->se.exec_start;
934 if (unlikely((s64)delta_exec <= 0))
935 return;
936
937 schedstat_set(curr->se.statistics.exec_max,
938 max(curr->se.statistics.exec_max, delta_exec));
939
940 curr->se.sum_exec_runtime += delta_exec;
941 account_group_exec_runtime(curr, delta_exec);
942
943 curr->se.exec_start = rq_clock_task(rq);
944 cpuacct_charge(curr, delta_exec);
945
946 sched_rt_avg_update(rq, delta_exec);
947
948 if (!rt_bandwidth_enabled())
949 return;
950
951 for_each_sched_rt_entity(rt_se) {
952 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
953
954 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
955 raw_spin_lock(&rt_rq->rt_runtime_lock);
956 rt_rq->rt_time += delta_exec;
957 if (sched_rt_runtime_exceeded(rt_rq))
958 resched_curr(rq);
959 raw_spin_unlock(&rt_rq->rt_runtime_lock);
960 }
961 }
962 }
963
964 static void
965 dequeue_top_rt_rq(struct rt_rq *rt_rq)
966 {
967 struct rq *rq = rq_of_rt_rq(rt_rq);
968
969 BUG_ON(&rq->rt != rt_rq);
970
971 if (!rt_rq->rt_queued)
972 return;
973
974 BUG_ON(!rq->nr_running);
975
976 sub_nr_running(rq, rt_rq->rt_nr_running);
977 rt_rq->rt_queued = 0;
978 }
979
980 static void
981 enqueue_top_rt_rq(struct rt_rq *rt_rq)
982 {
983 struct rq *rq = rq_of_rt_rq(rt_rq);
984
985 BUG_ON(&rq->rt != rt_rq);
986
987 if (rt_rq->rt_queued)
988 return;
989 if (rt_rq_throttled(rt_rq) || !rt_rq->rt_nr_running)
990 return;
991
992 add_nr_running(rq, rt_rq->rt_nr_running);
993 rt_rq->rt_queued = 1;
994 }
995
996 #if defined CONFIG_SMP
997
998 static void
999 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1000 {
1001 struct rq *rq = rq_of_rt_rq(rt_rq);
1002
1003 #ifdef CONFIG_RT_GROUP_SCHED
1004 /*
1005 * Change rq's cpupri only if rt_rq is the top queue.
1006 */
1007 if (&rq->rt != rt_rq)
1008 return;
1009 #endif
1010 if (rq->online && prio < prev_prio)
1011 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1012 }
1013
1014 static void
1015 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1016 {
1017 struct rq *rq = rq_of_rt_rq(rt_rq);
1018
1019 #ifdef CONFIG_RT_GROUP_SCHED
1020 /*
1021 * Change rq's cpupri only if rt_rq is the top queue.
1022 */
1023 if (&rq->rt != rt_rq)
1024 return;
1025 #endif
1026 if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1027 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1028 }
1029
1030 #else /* CONFIG_SMP */
1031
1032 static inline
1033 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1034 static inline
1035 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1036
1037 #endif /* CONFIG_SMP */
1038
1039 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1040 static void
1041 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1042 {
1043 int prev_prio = rt_rq->highest_prio.curr;
1044
1045 if (prio < prev_prio)
1046 rt_rq->highest_prio.curr = prio;
1047
1048 inc_rt_prio_smp(rt_rq, prio, prev_prio);
1049 }
1050
1051 static void
1052 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1053 {
1054 int prev_prio = rt_rq->highest_prio.curr;
1055
1056 if (rt_rq->rt_nr_running) {
1057
1058 WARN_ON(prio < prev_prio);
1059
1060 /*
1061 * This may have been our highest task, and therefore
1062 * we may have some recomputation to do
1063 */
1064 if (prio == prev_prio) {
1065 struct rt_prio_array *array = &rt_rq->active;
1066
1067 rt_rq->highest_prio.curr =
1068 sched_find_first_bit(array->bitmap);
1069 }
1070
1071 } else
1072 rt_rq->highest_prio.curr = MAX_RT_PRIO;
1073
1074 dec_rt_prio_smp(rt_rq, prio, prev_prio);
1075 }
1076
1077 #else
1078
1079 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1080 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1081
1082 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1083
1084 #ifdef CONFIG_RT_GROUP_SCHED
1085
1086 static void
1087 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1088 {
1089 if (rt_se_boosted(rt_se))
1090 rt_rq->rt_nr_boosted++;
1091
1092 if (rt_rq->tg)
1093 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1094 }
1095
1096 static void
1097 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1098 {
1099 if (rt_se_boosted(rt_se))
1100 rt_rq->rt_nr_boosted--;
1101
1102 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1103 }
1104
1105 #else /* CONFIG_RT_GROUP_SCHED */
1106
1107 static void
1108 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1109 {
1110 start_rt_bandwidth(&def_rt_bandwidth);
1111 }
1112
1113 static inline
1114 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1115
1116 #endif /* CONFIG_RT_GROUP_SCHED */
1117
1118 static inline
1119 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1120 {
1121 struct rt_rq *group_rq = group_rt_rq(rt_se);
1122
1123 if (group_rq)
1124 return group_rq->rt_nr_running;
1125 else
1126 return 1;
1127 }
1128
1129 static inline
1130 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1131 {
1132 int prio = rt_se_prio(rt_se);
1133
1134 WARN_ON(!rt_prio(prio));
1135 rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1136
1137 inc_rt_prio(rt_rq, prio);
1138 inc_rt_migration(rt_se, rt_rq);
1139 inc_rt_group(rt_se, rt_rq);
1140 }
1141
1142 static inline
1143 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1144 {
1145 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1146 WARN_ON(!rt_rq->rt_nr_running);
1147 rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1148
1149 dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1150 dec_rt_migration(rt_se, rt_rq);
1151 dec_rt_group(rt_se, rt_rq);
1152 }
1153
1154 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1155 {
1156 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1157 struct rt_prio_array *array = &rt_rq->active;
1158 struct rt_rq *group_rq = group_rt_rq(rt_se);
1159 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1160
1161 /*
1162 * Don't enqueue the group if its throttled, or when empty.
1163 * The latter is a consequence of the former when a child group
1164 * get throttled and the current group doesn't have any other
1165 * active members.
1166 */
1167 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
1168 return;
1169
1170 if (head)
1171 list_add(&rt_se->run_list, queue);
1172 else
1173 list_add_tail(&rt_se->run_list, queue);
1174 __set_bit(rt_se_prio(rt_se), array->bitmap);
1175
1176 inc_rt_tasks(rt_se, rt_rq);
1177 }
1178
1179 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
1180 {
1181 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1182 struct rt_prio_array *array = &rt_rq->active;
1183
1184 list_del_init(&rt_se->run_list);
1185 if (list_empty(array->queue + rt_se_prio(rt_se)))
1186 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1187
1188 dec_rt_tasks(rt_se, rt_rq);
1189 }
1190
1191 /*
1192 * Because the prio of an upper entry depends on the lower
1193 * entries, we must remove entries top - down.
1194 */
1195 static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
1196 {
1197 struct sched_rt_entity *back = NULL;
1198
1199 for_each_sched_rt_entity(rt_se) {
1200 rt_se->back = back;
1201 back = rt_se;
1202 }
1203
1204 dequeue_top_rt_rq(rt_rq_of_se(back));
1205
1206 for (rt_se = back; rt_se; rt_se = rt_se->back) {
1207 if (on_rt_rq(rt_se))
1208 __dequeue_rt_entity(rt_se);
1209 }
1210 }
1211
1212 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1213 {
1214 struct rq *rq = rq_of_rt_se(rt_se);
1215
1216 dequeue_rt_stack(rt_se);
1217 for_each_sched_rt_entity(rt_se)
1218 __enqueue_rt_entity(rt_se, head);
1219 enqueue_top_rt_rq(&rq->rt);
1220 }
1221
1222 static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
1223 {
1224 struct rq *rq = rq_of_rt_se(rt_se);
1225
1226 dequeue_rt_stack(rt_se);
1227
1228 for_each_sched_rt_entity(rt_se) {
1229 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1230
1231 if (rt_rq && rt_rq->rt_nr_running)
1232 __enqueue_rt_entity(rt_se, false);
1233 }
1234 enqueue_top_rt_rq(&rq->rt);
1235 }
1236
1237 /*
1238 * Adding/removing a task to/from a priority array:
1239 */
1240 static void
1241 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1242 {
1243 struct sched_rt_entity *rt_se = &p->rt;
1244
1245 if (flags & ENQUEUE_WAKEUP)
1246 rt_se->timeout = 0;
1247
1248 enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
1249
1250 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1251 enqueue_pushable_task(rq, p);
1252 }
1253
1254 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1255 {
1256 struct sched_rt_entity *rt_se = &p->rt;
1257
1258 update_curr_rt(rq);
1259 dequeue_rt_entity(rt_se);
1260
1261 dequeue_pushable_task(rq, p);
1262 }
1263
1264 /*
1265 * Put task to the head or the end of the run list without the overhead of
1266 * dequeue followed by enqueue.
1267 */
1268 static void
1269 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1270 {
1271 if (on_rt_rq(rt_se)) {
1272 struct rt_prio_array *array = &rt_rq->active;
1273 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1274
1275 if (head)
1276 list_move(&rt_se->run_list, queue);
1277 else
1278 list_move_tail(&rt_se->run_list, queue);
1279 }
1280 }
1281
1282 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1283 {
1284 struct sched_rt_entity *rt_se = &p->rt;
1285 struct rt_rq *rt_rq;
1286
1287 for_each_sched_rt_entity(rt_se) {
1288 rt_rq = rt_rq_of_se(rt_se);
1289 requeue_rt_entity(rt_rq, rt_se, head);
1290 }
1291 }
1292
1293 static void yield_task_rt(struct rq *rq)
1294 {
1295 requeue_task_rt(rq, rq->curr, 0);
1296 }
1297
1298 #ifdef CONFIG_SMP
1299 static int find_lowest_rq(struct task_struct *task);
1300
1301 static int
1302 select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
1303 {
1304 struct task_struct *curr;
1305 struct rq *rq;
1306
1307 /* For anything but wake ups, just return the task_cpu */
1308 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1309 goto out;
1310
1311 rq = cpu_rq(cpu);
1312
1313 rcu_read_lock();
1314 curr = ACCESS_ONCE(rq->curr); /* unlocked access */
1315
1316 /*
1317 * If the current task on @p's runqueue is an RT task, then
1318 * try to see if we can wake this RT task up on another
1319 * runqueue. Otherwise simply start this RT task
1320 * on its current runqueue.
1321 *
1322 * We want to avoid overloading runqueues. If the woken
1323 * task is a higher priority, then it will stay on this CPU
1324 * and the lower prio task should be moved to another CPU.
1325 * Even though this will probably make the lower prio task
1326 * lose its cache, we do not want to bounce a higher task
1327 * around just because it gave up its CPU, perhaps for a
1328 * lock?
1329 *
1330 * For equal prio tasks, we just let the scheduler sort it out.
1331 *
1332 * Otherwise, just let it ride on the affined RQ and the
1333 * post-schedule router will push the preempted task away
1334 *
1335 * This test is optimistic, if we get it wrong the load-balancer
1336 * will have to sort it out.
1337 */
1338 if (curr && unlikely(rt_task(curr)) &&
1339 (curr->nr_cpus_allowed < 2 ||
1340 curr->prio <= p->prio)) {
1341 int target = find_lowest_rq(p);
1342
1343 /*
1344 * Don't bother moving it if the destination CPU is
1345 * not running a lower priority task.
1346 */
1347 if (target != -1 &&
1348 p->prio < cpu_rq(target)->rt.highest_prio.curr)
1349 cpu = target;
1350 }
1351 rcu_read_unlock();
1352
1353 out:
1354 return cpu;
1355 }
1356
1357 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1358 {
1359 /*
1360 * Current can't be migrated, useless to reschedule,
1361 * let's hope p can move out.
1362 */
1363 if (rq->curr->nr_cpus_allowed == 1 ||
1364 !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1365 return;
1366
1367 /*
1368 * p is migratable, so let's not schedule it and
1369 * see if it is pushed or pulled somewhere else.
1370 */
1371 if (p->nr_cpus_allowed != 1
1372 && cpupri_find(&rq->rd->cpupri, p, NULL))
1373 return;
1374
1375 /*
1376 * There appears to be other cpus that can accept
1377 * current and none to run 'p', so lets reschedule
1378 * to try and push current away:
1379 */
1380 requeue_task_rt(rq, p, 1);
1381 resched_curr(rq);
1382 }
1383
1384 #endif /* CONFIG_SMP */
1385
1386 /*
1387 * Preempt the current task with a newly woken task if needed:
1388 */
1389 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1390 {
1391 if (p->prio < rq->curr->prio) {
1392 resched_curr(rq);
1393 return;
1394 }
1395
1396 #ifdef CONFIG_SMP
1397 /*
1398 * If:
1399 *
1400 * - the newly woken task is of equal priority to the current task
1401 * - the newly woken task is non-migratable while current is migratable
1402 * - current will be preempted on the next reschedule
1403 *
1404 * we should check to see if current can readily move to a different
1405 * cpu. If so, we will reschedule to allow the push logic to try
1406 * to move current somewhere else, making room for our non-migratable
1407 * task.
1408 */
1409 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1410 check_preempt_equal_prio(rq, p);
1411 #endif
1412 }
1413
1414 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1415 struct rt_rq *rt_rq)
1416 {
1417 struct rt_prio_array *array = &rt_rq->active;
1418 struct sched_rt_entity *next = NULL;
1419 struct list_head *queue;
1420 int idx;
1421
1422 idx = sched_find_first_bit(array->bitmap);
1423 BUG_ON(idx >= MAX_RT_PRIO);
1424
1425 queue = array->queue + idx;
1426 next = list_entry(queue->next, struct sched_rt_entity, run_list);
1427
1428 return next;
1429 }
1430
1431 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1432 {
1433 struct sched_rt_entity *rt_se;
1434 struct task_struct *p;
1435 struct rt_rq *rt_rq = &rq->rt;
1436
1437 do {
1438 rt_se = pick_next_rt_entity(rq, rt_rq);
1439 BUG_ON(!rt_se);
1440 rt_rq = group_rt_rq(rt_se);
1441 } while (rt_rq);
1442
1443 p = rt_task_of(rt_se);
1444 p->se.exec_start = rq_clock_task(rq);
1445
1446 return p;
1447 }
1448
1449 static struct task_struct *
1450 pick_next_task_rt(struct rq *rq, struct task_struct *prev)
1451 {
1452 struct task_struct *p;
1453 struct rt_rq *rt_rq = &rq->rt;
1454
1455 if (need_pull_rt_task(rq, prev)) {
1456 pull_rt_task(rq);
1457 /*
1458 * pull_rt_task() can drop (and re-acquire) rq->lock; this
1459 * means a dl or stop task can slip in, in which case we need
1460 * to re-start task selection.
1461 */
1462 if (unlikely((rq->stop && task_on_rq_queued(rq->stop)) ||
1463 rq->dl.dl_nr_running))
1464 return RETRY_TASK;
1465 }
1466
1467 /*
1468 * We may dequeue prev's rt_rq in put_prev_task().
1469 * So, we update time before rt_nr_running check.
1470 */
1471 if (prev->sched_class == &rt_sched_class)
1472 update_curr_rt(rq);
1473
1474 if (!rt_rq->rt_queued)
1475 return NULL;
1476
1477 put_prev_task(rq, prev);
1478
1479 p = _pick_next_task_rt(rq);
1480
1481 /* The running task is never eligible for pushing */
1482 dequeue_pushable_task(rq, p);
1483
1484 set_post_schedule(rq);
1485
1486 return p;
1487 }
1488
1489 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1490 {
1491 update_curr_rt(rq);
1492
1493 /*
1494 * The previous task needs to be made eligible for pushing
1495 * if it is still active
1496 */
1497 if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1498 enqueue_pushable_task(rq, p);
1499 }
1500
1501 #ifdef CONFIG_SMP
1502
1503 /* Only try algorithms three times */
1504 #define RT_MAX_TRIES 3
1505
1506 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1507 {
1508 if (!task_running(rq, p) &&
1509 cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
1510 return 1;
1511 return 0;
1512 }
1513
1514 /*
1515 * Return the highest pushable rq's task, which is suitable to be executed
1516 * on the cpu, NULL otherwise
1517 */
1518 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1519 {
1520 struct plist_head *head = &rq->rt.pushable_tasks;
1521 struct task_struct *p;
1522
1523 if (!has_pushable_tasks(rq))
1524 return NULL;
1525
1526 plist_for_each_entry(p, head, pushable_tasks) {
1527 if (pick_rt_task(rq, p, cpu))
1528 return p;
1529 }
1530
1531 return NULL;
1532 }
1533
1534 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1535
1536 static int find_lowest_rq(struct task_struct *task)
1537 {
1538 struct sched_domain *sd;
1539 struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1540 int this_cpu = smp_processor_id();
1541 int cpu = task_cpu(task);
1542
1543 /* Make sure the mask is initialized first */
1544 if (unlikely(!lowest_mask))
1545 return -1;
1546
1547 if (task->nr_cpus_allowed == 1)
1548 return -1; /* No other targets possible */
1549
1550 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1551 return -1; /* No targets found */
1552
1553 /*
1554 * At this point we have built a mask of cpus representing the
1555 * lowest priority tasks in the system. Now we want to elect
1556 * the best one based on our affinity and topology.
1557 *
1558 * We prioritize the last cpu that the task executed on since
1559 * it is most likely cache-hot in that location.
1560 */
1561 if (cpumask_test_cpu(cpu, lowest_mask))
1562 return cpu;
1563
1564 /*
1565 * Otherwise, we consult the sched_domains span maps to figure
1566 * out which cpu is logically closest to our hot cache data.
1567 */
1568 if (!cpumask_test_cpu(this_cpu, lowest_mask))
1569 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1570
1571 rcu_read_lock();
1572 for_each_domain(cpu, sd) {
1573 if (sd->flags & SD_WAKE_AFFINE) {
1574 int best_cpu;
1575
1576 /*
1577 * "this_cpu" is cheaper to preempt than a
1578 * remote processor.
1579 */
1580 if (this_cpu != -1 &&
1581 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1582 rcu_read_unlock();
1583 return this_cpu;
1584 }
1585
1586 best_cpu = cpumask_first_and(lowest_mask,
1587 sched_domain_span(sd));
1588 if (best_cpu < nr_cpu_ids) {
1589 rcu_read_unlock();
1590 return best_cpu;
1591 }
1592 }
1593 }
1594 rcu_read_unlock();
1595
1596 /*
1597 * And finally, if there were no matches within the domains
1598 * just give the caller *something* to work with from the compatible
1599 * locations.
1600 */
1601 if (this_cpu != -1)
1602 return this_cpu;
1603
1604 cpu = cpumask_any(lowest_mask);
1605 if (cpu < nr_cpu_ids)
1606 return cpu;
1607 return -1;
1608 }
1609
1610 /* Will lock the rq it finds */
1611 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1612 {
1613 struct rq *lowest_rq = NULL;
1614 int tries;
1615 int cpu;
1616
1617 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1618 cpu = find_lowest_rq(task);
1619
1620 if ((cpu == -1) || (cpu == rq->cpu))
1621 break;
1622
1623 lowest_rq = cpu_rq(cpu);
1624
1625 if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1626 /*
1627 * Target rq has tasks of equal or higher priority,
1628 * retrying does not release any lock and is unlikely
1629 * to yield a different result.
1630 */
1631 lowest_rq = NULL;
1632 break;
1633 }
1634
1635 /* if the prio of this runqueue changed, try again */
1636 if (double_lock_balance(rq, lowest_rq)) {
1637 /*
1638 * We had to unlock the run queue. In
1639 * the mean time, task could have
1640 * migrated already or had its affinity changed.
1641 * Also make sure that it wasn't scheduled on its rq.
1642 */
1643 if (unlikely(task_rq(task) != rq ||
1644 !cpumask_test_cpu(lowest_rq->cpu,
1645 tsk_cpus_allowed(task)) ||
1646 task_running(rq, task) ||
1647 !task_on_rq_queued(task))) {
1648
1649 double_unlock_balance(rq, lowest_rq);
1650 lowest_rq = NULL;
1651 break;
1652 }
1653 }
1654
1655 /* If this rq is still suitable use it. */
1656 if (lowest_rq->rt.highest_prio.curr > task->prio)
1657 break;
1658
1659 /* try again */
1660 double_unlock_balance(rq, lowest_rq);
1661 lowest_rq = NULL;
1662 }
1663
1664 return lowest_rq;
1665 }
1666
1667 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1668 {
1669 struct task_struct *p;
1670
1671 if (!has_pushable_tasks(rq))
1672 return NULL;
1673
1674 p = plist_first_entry(&rq->rt.pushable_tasks,
1675 struct task_struct, pushable_tasks);
1676
1677 BUG_ON(rq->cpu != task_cpu(p));
1678 BUG_ON(task_current(rq, p));
1679 BUG_ON(p->nr_cpus_allowed <= 1);
1680
1681 BUG_ON(!task_on_rq_queued(p));
1682 BUG_ON(!rt_task(p));
1683
1684 return p;
1685 }
1686
1687 /*
1688 * If the current CPU has more than one RT task, see if the non
1689 * running task can migrate over to a CPU that is running a task
1690 * of lesser priority.
1691 */
1692 static int push_rt_task(struct rq *rq)
1693 {
1694 struct task_struct *next_task;
1695 struct rq *lowest_rq;
1696 int ret = 0;
1697
1698 if (!rq->rt.overloaded)
1699 return 0;
1700
1701 next_task = pick_next_pushable_task(rq);
1702 if (!next_task)
1703 return 0;
1704
1705 retry:
1706 if (unlikely(next_task == rq->curr)) {
1707 WARN_ON(1);
1708 return 0;
1709 }
1710
1711 /*
1712 * It's possible that the next_task slipped in of
1713 * higher priority than current. If that's the case
1714 * just reschedule current.
1715 */
1716 if (unlikely(next_task->prio < rq->curr->prio)) {
1717 resched_curr(rq);
1718 return 0;
1719 }
1720
1721 /* We might release rq lock */
1722 get_task_struct(next_task);
1723
1724 /* find_lock_lowest_rq locks the rq if found */
1725 lowest_rq = find_lock_lowest_rq(next_task, rq);
1726 if (!lowest_rq) {
1727 struct task_struct *task;
1728 /*
1729 * find_lock_lowest_rq releases rq->lock
1730 * so it is possible that next_task has migrated.
1731 *
1732 * We need to make sure that the task is still on the same
1733 * run-queue and is also still the next task eligible for
1734 * pushing.
1735 */
1736 task = pick_next_pushable_task(rq);
1737 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1738 /*
1739 * The task hasn't migrated, and is still the next
1740 * eligible task, but we failed to find a run-queue
1741 * to push it to. Do not retry in this case, since
1742 * other cpus will pull from us when ready.
1743 */
1744 goto out;
1745 }
1746
1747 if (!task)
1748 /* No more tasks, just exit */
1749 goto out;
1750
1751 /*
1752 * Something has shifted, try again.
1753 */
1754 put_task_struct(next_task);
1755 next_task = task;
1756 goto retry;
1757 }
1758
1759 deactivate_task(rq, next_task, 0);
1760 set_task_cpu(next_task, lowest_rq->cpu);
1761 activate_task(lowest_rq, next_task, 0);
1762 ret = 1;
1763
1764 resched_curr(lowest_rq);
1765
1766 double_unlock_balance(rq, lowest_rq);
1767
1768 out:
1769 put_task_struct(next_task);
1770
1771 return ret;
1772 }
1773
1774 static void push_rt_tasks(struct rq *rq)
1775 {
1776 /* push_rt_task will return true if it moved an RT */
1777 while (push_rt_task(rq))
1778 ;
1779 }
1780
1781 static int pull_rt_task(struct rq *this_rq)
1782 {
1783 int this_cpu = this_rq->cpu, ret = 0, cpu;
1784 struct task_struct *p;
1785 struct rq *src_rq;
1786
1787 if (likely(!rt_overloaded(this_rq)))
1788 return 0;
1789
1790 /*
1791 * Match the barrier from rt_set_overloaded; this guarantees that if we
1792 * see overloaded we must also see the rto_mask bit.
1793 */
1794 smp_rmb();
1795
1796 for_each_cpu(cpu, this_rq->rd->rto_mask) {
1797 if (this_cpu == cpu)
1798 continue;
1799
1800 src_rq = cpu_rq(cpu);
1801
1802 /*
1803 * Don't bother taking the src_rq->lock if the next highest
1804 * task is known to be lower-priority than our current task.
1805 * This may look racy, but if this value is about to go
1806 * logically higher, the src_rq will push this task away.
1807 * And if its going logically lower, we do not care
1808 */
1809 if (src_rq->rt.highest_prio.next >=
1810 this_rq->rt.highest_prio.curr)
1811 continue;
1812
1813 /*
1814 * We can potentially drop this_rq's lock in
1815 * double_lock_balance, and another CPU could
1816 * alter this_rq
1817 */
1818 double_lock_balance(this_rq, src_rq);
1819
1820 /*
1821 * We can pull only a task, which is pushable
1822 * on its rq, and no others.
1823 */
1824 p = pick_highest_pushable_task(src_rq, this_cpu);
1825
1826 /*
1827 * Do we have an RT task that preempts
1828 * the to-be-scheduled task?
1829 */
1830 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
1831 WARN_ON(p == src_rq->curr);
1832 WARN_ON(!task_on_rq_queued(p));
1833
1834 /*
1835 * There's a chance that p is higher in priority
1836 * than what's currently running on its cpu.
1837 * This is just that p is wakeing up and hasn't
1838 * had a chance to schedule. We only pull
1839 * p if it is lower in priority than the
1840 * current task on the run queue
1841 */
1842 if (p->prio < src_rq->curr->prio)
1843 goto skip;
1844
1845 ret = 1;
1846
1847 deactivate_task(src_rq, p, 0);
1848 set_task_cpu(p, this_cpu);
1849 activate_task(this_rq, p, 0);
1850 /*
1851 * We continue with the search, just in
1852 * case there's an even higher prio task
1853 * in another runqueue. (low likelihood
1854 * but possible)
1855 */
1856 }
1857 skip:
1858 double_unlock_balance(this_rq, src_rq);
1859 }
1860
1861 return ret;
1862 }
1863
1864 static void post_schedule_rt(struct rq *rq)
1865 {
1866 push_rt_tasks(rq);
1867 }
1868
1869 /*
1870 * If we are not running and we are not going to reschedule soon, we should
1871 * try to push tasks away now
1872 */
1873 static void task_woken_rt(struct rq *rq, struct task_struct *p)
1874 {
1875 if (!task_running(rq, p) &&
1876 !test_tsk_need_resched(rq->curr) &&
1877 has_pushable_tasks(rq) &&
1878 p->nr_cpus_allowed > 1 &&
1879 (dl_task(rq->curr) || rt_task(rq->curr)) &&
1880 (rq->curr->nr_cpus_allowed < 2 ||
1881 rq->curr->prio <= p->prio))
1882 push_rt_tasks(rq);
1883 }
1884
1885 static void set_cpus_allowed_rt(struct task_struct *p,
1886 const struct cpumask *new_mask)
1887 {
1888 struct rq *rq;
1889 int weight;
1890
1891 BUG_ON(!rt_task(p));
1892
1893 if (!task_on_rq_queued(p))
1894 return;
1895
1896 weight = cpumask_weight(new_mask);
1897
1898 /*
1899 * Only update if the process changes its state from whether it
1900 * can migrate or not.
1901 */
1902 if ((p->nr_cpus_allowed > 1) == (weight > 1))
1903 return;
1904
1905 rq = task_rq(p);
1906
1907 /*
1908 * The process used to be able to migrate OR it can now migrate
1909 */
1910 if (weight <= 1) {
1911 if (!task_current(rq, p))
1912 dequeue_pushable_task(rq, p);
1913 BUG_ON(!rq->rt.rt_nr_migratory);
1914 rq->rt.rt_nr_migratory--;
1915 } else {
1916 if (!task_current(rq, p))
1917 enqueue_pushable_task(rq, p);
1918 rq->rt.rt_nr_migratory++;
1919 }
1920
1921 update_rt_migration(&rq->rt);
1922 }
1923
1924 /* Assumes rq->lock is held */
1925 static void rq_online_rt(struct rq *rq)
1926 {
1927 if (rq->rt.overloaded)
1928 rt_set_overload(rq);
1929
1930 __enable_runtime(rq);
1931
1932 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1933 }
1934
1935 /* Assumes rq->lock is held */
1936 static void rq_offline_rt(struct rq *rq)
1937 {
1938 if (rq->rt.overloaded)
1939 rt_clear_overload(rq);
1940
1941 __disable_runtime(rq);
1942
1943 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1944 }
1945
1946 /*
1947 * When switch from the rt queue, we bring ourselves to a position
1948 * that we might want to pull RT tasks from other runqueues.
1949 */
1950 static void switched_from_rt(struct rq *rq, struct task_struct *p)
1951 {
1952 /*
1953 * If there are other RT tasks then we will reschedule
1954 * and the scheduling of the other RT tasks will handle
1955 * the balancing. But if we are the last RT task
1956 * we may need to handle the pulling of RT tasks
1957 * now.
1958 */
1959 if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
1960 return;
1961
1962 if (pull_rt_task(rq))
1963 resched_curr(rq);
1964 }
1965
1966 void __init init_sched_rt_class(void)
1967 {
1968 unsigned int i;
1969
1970 for_each_possible_cpu(i) {
1971 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
1972 GFP_KERNEL, cpu_to_node(i));
1973 }
1974 }
1975 #endif /* CONFIG_SMP */
1976
1977 /*
1978 * When switching a task to RT, we may overload the runqueue
1979 * with RT tasks. In this case we try to push them off to
1980 * other runqueues.
1981 */
1982 static void switched_to_rt(struct rq *rq, struct task_struct *p)
1983 {
1984 int check_resched = 1;
1985
1986 /*
1987 * If we are already running, then there's nothing
1988 * that needs to be done. But if we are not running
1989 * we may need to preempt the current running task.
1990 * If that current running task is also an RT task
1991 * then see if we can move to another run queue.
1992 */
1993 if (task_on_rq_queued(p) && rq->curr != p) {
1994 #ifdef CONFIG_SMP
1995 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded &&
1996 /* Don't resched if we changed runqueues */
1997 push_rt_task(rq) && rq != task_rq(p))
1998 check_resched = 0;
1999 #endif /* CONFIG_SMP */
2000 if (check_resched && p->prio < rq->curr->prio)
2001 resched_curr(rq);
2002 }
2003 }
2004
2005 /*
2006 * Priority of the task has changed. This may cause
2007 * us to initiate a push or pull.
2008 */
2009 static void
2010 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2011 {
2012 if (!task_on_rq_queued(p))
2013 return;
2014
2015 if (rq->curr == p) {
2016 #ifdef CONFIG_SMP
2017 /*
2018 * If our priority decreases while running, we
2019 * may need to pull tasks to this runqueue.
2020 */
2021 if (oldprio < p->prio)
2022 pull_rt_task(rq);
2023 /*
2024 * If there's a higher priority task waiting to run
2025 * then reschedule. Note, the above pull_rt_task
2026 * can release the rq lock and p could migrate.
2027 * Only reschedule if p is still on the same runqueue.
2028 */
2029 if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
2030 resched_curr(rq);
2031 #else
2032 /* For UP simply resched on drop of prio */
2033 if (oldprio < p->prio)
2034 resched_curr(rq);
2035 #endif /* CONFIG_SMP */
2036 } else {
2037 /*
2038 * This task is not running, but if it is
2039 * greater than the current running task
2040 * then reschedule.
2041 */
2042 if (p->prio < rq->curr->prio)
2043 resched_curr(rq);
2044 }
2045 }
2046
2047 static void watchdog(struct rq *rq, struct task_struct *p)
2048 {
2049 unsigned long soft, hard;
2050
2051 /* max may change after cur was read, this will be fixed next tick */
2052 soft = task_rlimit(p, RLIMIT_RTTIME);
2053 hard = task_rlimit_max(p, RLIMIT_RTTIME);
2054
2055 if (soft != RLIM_INFINITY) {
2056 unsigned long next;
2057
2058 if (p->rt.watchdog_stamp != jiffies) {
2059 p->rt.timeout++;
2060 p->rt.watchdog_stamp = jiffies;
2061 }
2062
2063 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2064 if (p->rt.timeout > next)
2065 p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
2066 }
2067 }
2068
2069 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2070 {
2071 struct sched_rt_entity *rt_se = &p->rt;
2072
2073 update_curr_rt(rq);
2074
2075 watchdog(rq, p);
2076
2077 /*
2078 * RR tasks need a special form of timeslice management.
2079 * FIFO tasks have no timeslices.
2080 */
2081 if (p->policy != SCHED_RR)
2082 return;
2083
2084 if (--p->rt.time_slice)
2085 return;
2086
2087 p->rt.time_slice = sched_rr_timeslice;
2088
2089 /*
2090 * Requeue to the end of queue if we (and all of our ancestors) are not
2091 * the only element on the queue
2092 */
2093 for_each_sched_rt_entity(rt_se) {
2094 if (rt_se->run_list.prev != rt_se->run_list.next) {
2095 requeue_task_rt(rq, p, 0);
2096 resched_curr(rq);
2097 return;
2098 }
2099 }
2100 }
2101
2102 static void set_curr_task_rt(struct rq *rq)
2103 {
2104 struct task_struct *p = rq->curr;
2105
2106 p->se.exec_start = rq_clock_task(rq);
2107
2108 /* The running task is never eligible for pushing */
2109 dequeue_pushable_task(rq, p);
2110 }
2111
2112 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2113 {
2114 /*
2115 * Time slice is 0 for SCHED_FIFO tasks
2116 */
2117 if (task->policy == SCHED_RR)
2118 return sched_rr_timeslice;
2119 else
2120 return 0;
2121 }
2122
2123 const struct sched_class rt_sched_class = {
2124 .next = &fair_sched_class,
2125 .enqueue_task = enqueue_task_rt,
2126 .dequeue_task = dequeue_task_rt,
2127 .yield_task = yield_task_rt,
2128
2129 .check_preempt_curr = check_preempt_curr_rt,
2130
2131 .pick_next_task = pick_next_task_rt,
2132 .put_prev_task = put_prev_task_rt,
2133
2134 #ifdef CONFIG_SMP
2135 .select_task_rq = select_task_rq_rt,
2136
2137 .set_cpus_allowed = set_cpus_allowed_rt,
2138 .rq_online = rq_online_rt,
2139 .rq_offline = rq_offline_rt,
2140 .post_schedule = post_schedule_rt,
2141 .task_woken = task_woken_rt,
2142 .switched_from = switched_from_rt,
2143 #endif
2144
2145 .set_curr_task = set_curr_task_rt,
2146 .task_tick = task_tick_rt,
2147
2148 .get_rr_interval = get_rr_interval_rt,
2149
2150 .prio_changed = prio_changed_rt,
2151 .switched_to = switched_to_rt,
2152
2153 .update_curr = update_curr_rt,
2154 };
2155
2156 #ifdef CONFIG_SCHED_DEBUG
2157 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2158
2159 void print_rt_stats(struct seq_file *m, int cpu)
2160 {
2161 rt_rq_iter_t iter;
2162 struct rt_rq *rt_rq;
2163
2164 rcu_read_lock();
2165 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2166 print_rt_rq(m, cpu, rt_rq);
2167 rcu_read_unlock();
2168 }
2169 #endif /* CONFIG_SCHED_DEBUG */
This page took 0.075122 seconds and 6 git commands to generate.