Merge tag 'for-3.6-rc3' of git://gitorious.org/linux-pwm/linux-pwm
[deliverable/linux.git] / kernel / sched / rt.c
1 /*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
5
6 #include "sched.h"
7
8 #include <linux/slab.h>
9
10 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
11
12 struct rt_bandwidth def_rt_bandwidth;
13
14 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
15 {
16 struct rt_bandwidth *rt_b =
17 container_of(timer, struct rt_bandwidth, rt_period_timer);
18 ktime_t now;
19 int overrun;
20 int idle = 0;
21
22 for (;;) {
23 now = hrtimer_cb_get_time(timer);
24 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
25
26 if (!overrun)
27 break;
28
29 idle = do_sched_rt_period_timer(rt_b, overrun);
30 }
31
32 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
33 }
34
35 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
36 {
37 rt_b->rt_period = ns_to_ktime(period);
38 rt_b->rt_runtime = runtime;
39
40 raw_spin_lock_init(&rt_b->rt_runtime_lock);
41
42 hrtimer_init(&rt_b->rt_period_timer,
43 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
44 rt_b->rt_period_timer.function = sched_rt_period_timer;
45 }
46
47 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
48 {
49 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
50 return;
51
52 if (hrtimer_active(&rt_b->rt_period_timer))
53 return;
54
55 raw_spin_lock(&rt_b->rt_runtime_lock);
56 start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period);
57 raw_spin_unlock(&rt_b->rt_runtime_lock);
58 }
59
60 void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
61 {
62 struct rt_prio_array *array;
63 int i;
64
65 array = &rt_rq->active;
66 for (i = 0; i < MAX_RT_PRIO; i++) {
67 INIT_LIST_HEAD(array->queue + i);
68 __clear_bit(i, array->bitmap);
69 }
70 /* delimiter for bitsearch: */
71 __set_bit(MAX_RT_PRIO, array->bitmap);
72
73 #if defined CONFIG_SMP
74 rt_rq->highest_prio.curr = MAX_RT_PRIO;
75 rt_rq->highest_prio.next = MAX_RT_PRIO;
76 rt_rq->rt_nr_migratory = 0;
77 rt_rq->overloaded = 0;
78 plist_head_init(&rt_rq->pushable_tasks);
79 #endif
80
81 rt_rq->rt_time = 0;
82 rt_rq->rt_throttled = 0;
83 rt_rq->rt_runtime = 0;
84 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
85 }
86
87 #ifdef CONFIG_RT_GROUP_SCHED
88 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
89 {
90 hrtimer_cancel(&rt_b->rt_period_timer);
91 }
92
93 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
94
95 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
96 {
97 #ifdef CONFIG_SCHED_DEBUG
98 WARN_ON_ONCE(!rt_entity_is_task(rt_se));
99 #endif
100 return container_of(rt_se, struct task_struct, rt);
101 }
102
103 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
104 {
105 return rt_rq->rq;
106 }
107
108 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
109 {
110 return rt_se->rt_rq;
111 }
112
113 void free_rt_sched_group(struct task_group *tg)
114 {
115 int i;
116
117 if (tg->rt_se)
118 destroy_rt_bandwidth(&tg->rt_bandwidth);
119
120 for_each_possible_cpu(i) {
121 if (tg->rt_rq)
122 kfree(tg->rt_rq[i]);
123 if (tg->rt_se)
124 kfree(tg->rt_se[i]);
125 }
126
127 kfree(tg->rt_rq);
128 kfree(tg->rt_se);
129 }
130
131 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
132 struct sched_rt_entity *rt_se, int cpu,
133 struct sched_rt_entity *parent)
134 {
135 struct rq *rq = cpu_rq(cpu);
136
137 rt_rq->highest_prio.curr = MAX_RT_PRIO;
138 rt_rq->rt_nr_boosted = 0;
139 rt_rq->rq = rq;
140 rt_rq->tg = tg;
141
142 tg->rt_rq[cpu] = rt_rq;
143 tg->rt_se[cpu] = rt_se;
144
145 if (!rt_se)
146 return;
147
148 if (!parent)
149 rt_se->rt_rq = &rq->rt;
150 else
151 rt_se->rt_rq = parent->my_q;
152
153 rt_se->my_q = rt_rq;
154 rt_se->parent = parent;
155 INIT_LIST_HEAD(&rt_se->run_list);
156 }
157
158 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
159 {
160 struct rt_rq *rt_rq;
161 struct sched_rt_entity *rt_se;
162 int i;
163
164 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
165 if (!tg->rt_rq)
166 goto err;
167 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
168 if (!tg->rt_se)
169 goto err;
170
171 init_rt_bandwidth(&tg->rt_bandwidth,
172 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
173
174 for_each_possible_cpu(i) {
175 rt_rq = kzalloc_node(sizeof(struct rt_rq),
176 GFP_KERNEL, cpu_to_node(i));
177 if (!rt_rq)
178 goto err;
179
180 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
181 GFP_KERNEL, cpu_to_node(i));
182 if (!rt_se)
183 goto err_free_rq;
184
185 init_rt_rq(rt_rq, cpu_rq(i));
186 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
187 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
188 }
189
190 return 1;
191
192 err_free_rq:
193 kfree(rt_rq);
194 err:
195 return 0;
196 }
197
198 #else /* CONFIG_RT_GROUP_SCHED */
199
200 #define rt_entity_is_task(rt_se) (1)
201
202 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
203 {
204 return container_of(rt_se, struct task_struct, rt);
205 }
206
207 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
208 {
209 return container_of(rt_rq, struct rq, rt);
210 }
211
212 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
213 {
214 struct task_struct *p = rt_task_of(rt_se);
215 struct rq *rq = task_rq(p);
216
217 return &rq->rt;
218 }
219
220 void free_rt_sched_group(struct task_group *tg) { }
221
222 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
223 {
224 return 1;
225 }
226 #endif /* CONFIG_RT_GROUP_SCHED */
227
228 #ifdef CONFIG_SMP
229
230 static inline int rt_overloaded(struct rq *rq)
231 {
232 return atomic_read(&rq->rd->rto_count);
233 }
234
235 static inline void rt_set_overload(struct rq *rq)
236 {
237 if (!rq->online)
238 return;
239
240 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
241 /*
242 * Make sure the mask is visible before we set
243 * the overload count. That is checked to determine
244 * if we should look at the mask. It would be a shame
245 * if we looked at the mask, but the mask was not
246 * updated yet.
247 */
248 wmb();
249 atomic_inc(&rq->rd->rto_count);
250 }
251
252 static inline void rt_clear_overload(struct rq *rq)
253 {
254 if (!rq->online)
255 return;
256
257 /* the order here really doesn't matter */
258 atomic_dec(&rq->rd->rto_count);
259 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
260 }
261
262 static void update_rt_migration(struct rt_rq *rt_rq)
263 {
264 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
265 if (!rt_rq->overloaded) {
266 rt_set_overload(rq_of_rt_rq(rt_rq));
267 rt_rq->overloaded = 1;
268 }
269 } else if (rt_rq->overloaded) {
270 rt_clear_overload(rq_of_rt_rq(rt_rq));
271 rt_rq->overloaded = 0;
272 }
273 }
274
275 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
276 {
277 struct task_struct *p;
278
279 if (!rt_entity_is_task(rt_se))
280 return;
281
282 p = rt_task_of(rt_se);
283 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
284
285 rt_rq->rt_nr_total++;
286 if (p->nr_cpus_allowed > 1)
287 rt_rq->rt_nr_migratory++;
288
289 update_rt_migration(rt_rq);
290 }
291
292 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
293 {
294 struct task_struct *p;
295
296 if (!rt_entity_is_task(rt_se))
297 return;
298
299 p = rt_task_of(rt_se);
300 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
301
302 rt_rq->rt_nr_total--;
303 if (p->nr_cpus_allowed > 1)
304 rt_rq->rt_nr_migratory--;
305
306 update_rt_migration(rt_rq);
307 }
308
309 static inline int has_pushable_tasks(struct rq *rq)
310 {
311 return !plist_head_empty(&rq->rt.pushable_tasks);
312 }
313
314 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
315 {
316 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
317 plist_node_init(&p->pushable_tasks, p->prio);
318 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
319
320 /* Update the highest prio pushable task */
321 if (p->prio < rq->rt.highest_prio.next)
322 rq->rt.highest_prio.next = p->prio;
323 }
324
325 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
326 {
327 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
328
329 /* Update the new highest prio pushable task */
330 if (has_pushable_tasks(rq)) {
331 p = plist_first_entry(&rq->rt.pushable_tasks,
332 struct task_struct, pushable_tasks);
333 rq->rt.highest_prio.next = p->prio;
334 } else
335 rq->rt.highest_prio.next = MAX_RT_PRIO;
336 }
337
338 #else
339
340 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
341 {
342 }
343
344 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
345 {
346 }
347
348 static inline
349 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
350 {
351 }
352
353 static inline
354 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
355 {
356 }
357
358 #endif /* CONFIG_SMP */
359
360 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
361 {
362 return !list_empty(&rt_se->run_list);
363 }
364
365 #ifdef CONFIG_RT_GROUP_SCHED
366
367 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
368 {
369 if (!rt_rq->tg)
370 return RUNTIME_INF;
371
372 return rt_rq->rt_runtime;
373 }
374
375 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
376 {
377 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
378 }
379
380 typedef struct task_group *rt_rq_iter_t;
381
382 static inline struct task_group *next_task_group(struct task_group *tg)
383 {
384 do {
385 tg = list_entry_rcu(tg->list.next,
386 typeof(struct task_group), list);
387 } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
388
389 if (&tg->list == &task_groups)
390 tg = NULL;
391
392 return tg;
393 }
394
395 #define for_each_rt_rq(rt_rq, iter, rq) \
396 for (iter = container_of(&task_groups, typeof(*iter), list); \
397 (iter = next_task_group(iter)) && \
398 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
399
400 static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
401 {
402 list_add_rcu(&rt_rq->leaf_rt_rq_list,
403 &rq_of_rt_rq(rt_rq)->leaf_rt_rq_list);
404 }
405
406 static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
407 {
408 list_del_rcu(&rt_rq->leaf_rt_rq_list);
409 }
410
411 #define for_each_leaf_rt_rq(rt_rq, rq) \
412 list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
413
414 #define for_each_sched_rt_entity(rt_se) \
415 for (; rt_se; rt_se = rt_se->parent)
416
417 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
418 {
419 return rt_se->my_q;
420 }
421
422 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
423 static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
424
425 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
426 {
427 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
428 struct sched_rt_entity *rt_se;
429
430 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
431
432 rt_se = rt_rq->tg->rt_se[cpu];
433
434 if (rt_rq->rt_nr_running) {
435 if (rt_se && !on_rt_rq(rt_se))
436 enqueue_rt_entity(rt_se, false);
437 if (rt_rq->highest_prio.curr < curr->prio)
438 resched_task(curr);
439 }
440 }
441
442 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
443 {
444 struct sched_rt_entity *rt_se;
445 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
446
447 rt_se = rt_rq->tg->rt_se[cpu];
448
449 if (rt_se && on_rt_rq(rt_se))
450 dequeue_rt_entity(rt_se);
451 }
452
453 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
454 {
455 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
456 }
457
458 static int rt_se_boosted(struct sched_rt_entity *rt_se)
459 {
460 struct rt_rq *rt_rq = group_rt_rq(rt_se);
461 struct task_struct *p;
462
463 if (rt_rq)
464 return !!rt_rq->rt_nr_boosted;
465
466 p = rt_task_of(rt_se);
467 return p->prio != p->normal_prio;
468 }
469
470 #ifdef CONFIG_SMP
471 static inline const struct cpumask *sched_rt_period_mask(void)
472 {
473 return cpu_rq(smp_processor_id())->rd->span;
474 }
475 #else
476 static inline const struct cpumask *sched_rt_period_mask(void)
477 {
478 return cpu_online_mask;
479 }
480 #endif
481
482 static inline
483 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
484 {
485 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
486 }
487
488 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
489 {
490 return &rt_rq->tg->rt_bandwidth;
491 }
492
493 #else /* !CONFIG_RT_GROUP_SCHED */
494
495 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
496 {
497 return rt_rq->rt_runtime;
498 }
499
500 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
501 {
502 return ktime_to_ns(def_rt_bandwidth.rt_period);
503 }
504
505 typedef struct rt_rq *rt_rq_iter_t;
506
507 #define for_each_rt_rq(rt_rq, iter, rq) \
508 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
509
510 static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
511 {
512 }
513
514 static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
515 {
516 }
517
518 #define for_each_leaf_rt_rq(rt_rq, rq) \
519 for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
520
521 #define for_each_sched_rt_entity(rt_se) \
522 for (; rt_se; rt_se = NULL)
523
524 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
525 {
526 return NULL;
527 }
528
529 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
530 {
531 if (rt_rq->rt_nr_running)
532 resched_task(rq_of_rt_rq(rt_rq)->curr);
533 }
534
535 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
536 {
537 }
538
539 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
540 {
541 return rt_rq->rt_throttled;
542 }
543
544 static inline const struct cpumask *sched_rt_period_mask(void)
545 {
546 return cpu_online_mask;
547 }
548
549 static inline
550 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
551 {
552 return &cpu_rq(cpu)->rt;
553 }
554
555 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
556 {
557 return &def_rt_bandwidth;
558 }
559
560 #endif /* CONFIG_RT_GROUP_SCHED */
561
562 #ifdef CONFIG_SMP
563 /*
564 * We ran out of runtime, see if we can borrow some from our neighbours.
565 */
566 static int do_balance_runtime(struct rt_rq *rt_rq)
567 {
568 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
569 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
570 int i, weight, more = 0;
571 u64 rt_period;
572
573 weight = cpumask_weight(rd->span);
574
575 raw_spin_lock(&rt_b->rt_runtime_lock);
576 rt_period = ktime_to_ns(rt_b->rt_period);
577 for_each_cpu(i, rd->span) {
578 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
579 s64 diff;
580
581 if (iter == rt_rq)
582 continue;
583
584 raw_spin_lock(&iter->rt_runtime_lock);
585 /*
586 * Either all rqs have inf runtime and there's nothing to steal
587 * or __disable_runtime() below sets a specific rq to inf to
588 * indicate its been disabled and disalow stealing.
589 */
590 if (iter->rt_runtime == RUNTIME_INF)
591 goto next;
592
593 /*
594 * From runqueues with spare time, take 1/n part of their
595 * spare time, but no more than our period.
596 */
597 diff = iter->rt_runtime - iter->rt_time;
598 if (diff > 0) {
599 diff = div_u64((u64)diff, weight);
600 if (rt_rq->rt_runtime + diff > rt_period)
601 diff = rt_period - rt_rq->rt_runtime;
602 iter->rt_runtime -= diff;
603 rt_rq->rt_runtime += diff;
604 more = 1;
605 if (rt_rq->rt_runtime == rt_period) {
606 raw_spin_unlock(&iter->rt_runtime_lock);
607 break;
608 }
609 }
610 next:
611 raw_spin_unlock(&iter->rt_runtime_lock);
612 }
613 raw_spin_unlock(&rt_b->rt_runtime_lock);
614
615 return more;
616 }
617
618 /*
619 * Ensure this RQ takes back all the runtime it lend to its neighbours.
620 */
621 static void __disable_runtime(struct rq *rq)
622 {
623 struct root_domain *rd = rq->rd;
624 rt_rq_iter_t iter;
625 struct rt_rq *rt_rq;
626
627 if (unlikely(!scheduler_running))
628 return;
629
630 for_each_rt_rq(rt_rq, iter, rq) {
631 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
632 s64 want;
633 int i;
634
635 raw_spin_lock(&rt_b->rt_runtime_lock);
636 raw_spin_lock(&rt_rq->rt_runtime_lock);
637 /*
638 * Either we're all inf and nobody needs to borrow, or we're
639 * already disabled and thus have nothing to do, or we have
640 * exactly the right amount of runtime to take out.
641 */
642 if (rt_rq->rt_runtime == RUNTIME_INF ||
643 rt_rq->rt_runtime == rt_b->rt_runtime)
644 goto balanced;
645 raw_spin_unlock(&rt_rq->rt_runtime_lock);
646
647 /*
648 * Calculate the difference between what we started out with
649 * and what we current have, that's the amount of runtime
650 * we lend and now have to reclaim.
651 */
652 want = rt_b->rt_runtime - rt_rq->rt_runtime;
653
654 /*
655 * Greedy reclaim, take back as much as we can.
656 */
657 for_each_cpu(i, rd->span) {
658 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
659 s64 diff;
660
661 /*
662 * Can't reclaim from ourselves or disabled runqueues.
663 */
664 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
665 continue;
666
667 raw_spin_lock(&iter->rt_runtime_lock);
668 if (want > 0) {
669 diff = min_t(s64, iter->rt_runtime, want);
670 iter->rt_runtime -= diff;
671 want -= diff;
672 } else {
673 iter->rt_runtime -= want;
674 want -= want;
675 }
676 raw_spin_unlock(&iter->rt_runtime_lock);
677
678 if (!want)
679 break;
680 }
681
682 raw_spin_lock(&rt_rq->rt_runtime_lock);
683 /*
684 * We cannot be left wanting - that would mean some runtime
685 * leaked out of the system.
686 */
687 BUG_ON(want);
688 balanced:
689 /*
690 * Disable all the borrow logic by pretending we have inf
691 * runtime - in which case borrowing doesn't make sense.
692 */
693 rt_rq->rt_runtime = RUNTIME_INF;
694 raw_spin_unlock(&rt_rq->rt_runtime_lock);
695 raw_spin_unlock(&rt_b->rt_runtime_lock);
696 }
697 }
698
699 static void disable_runtime(struct rq *rq)
700 {
701 unsigned long flags;
702
703 raw_spin_lock_irqsave(&rq->lock, flags);
704 __disable_runtime(rq);
705 raw_spin_unlock_irqrestore(&rq->lock, flags);
706 }
707
708 static void __enable_runtime(struct rq *rq)
709 {
710 rt_rq_iter_t iter;
711 struct rt_rq *rt_rq;
712
713 if (unlikely(!scheduler_running))
714 return;
715
716 /*
717 * Reset each runqueue's bandwidth settings
718 */
719 for_each_rt_rq(rt_rq, iter, rq) {
720 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
721
722 raw_spin_lock(&rt_b->rt_runtime_lock);
723 raw_spin_lock(&rt_rq->rt_runtime_lock);
724 rt_rq->rt_runtime = rt_b->rt_runtime;
725 rt_rq->rt_time = 0;
726 rt_rq->rt_throttled = 0;
727 raw_spin_unlock(&rt_rq->rt_runtime_lock);
728 raw_spin_unlock(&rt_b->rt_runtime_lock);
729 }
730 }
731
732 static void enable_runtime(struct rq *rq)
733 {
734 unsigned long flags;
735
736 raw_spin_lock_irqsave(&rq->lock, flags);
737 __enable_runtime(rq);
738 raw_spin_unlock_irqrestore(&rq->lock, flags);
739 }
740
741 int update_runtime(struct notifier_block *nfb, unsigned long action, void *hcpu)
742 {
743 int cpu = (int)(long)hcpu;
744
745 switch (action) {
746 case CPU_DOWN_PREPARE:
747 case CPU_DOWN_PREPARE_FROZEN:
748 disable_runtime(cpu_rq(cpu));
749 return NOTIFY_OK;
750
751 case CPU_DOWN_FAILED:
752 case CPU_DOWN_FAILED_FROZEN:
753 case CPU_ONLINE:
754 case CPU_ONLINE_FROZEN:
755 enable_runtime(cpu_rq(cpu));
756 return NOTIFY_OK;
757
758 default:
759 return NOTIFY_DONE;
760 }
761 }
762
763 static int balance_runtime(struct rt_rq *rt_rq)
764 {
765 int more = 0;
766
767 if (!sched_feat(RT_RUNTIME_SHARE))
768 return more;
769
770 if (rt_rq->rt_time > rt_rq->rt_runtime) {
771 raw_spin_unlock(&rt_rq->rt_runtime_lock);
772 more = do_balance_runtime(rt_rq);
773 raw_spin_lock(&rt_rq->rt_runtime_lock);
774 }
775
776 return more;
777 }
778 #else /* !CONFIG_SMP */
779 static inline int balance_runtime(struct rt_rq *rt_rq)
780 {
781 return 0;
782 }
783 #endif /* CONFIG_SMP */
784
785 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
786 {
787 int i, idle = 1, throttled = 0;
788 const struct cpumask *span;
789
790 span = sched_rt_period_mask();
791 #ifdef CONFIG_RT_GROUP_SCHED
792 /*
793 * FIXME: isolated CPUs should really leave the root task group,
794 * whether they are isolcpus or were isolated via cpusets, lest
795 * the timer run on a CPU which does not service all runqueues,
796 * potentially leaving other CPUs indefinitely throttled. If
797 * isolation is really required, the user will turn the throttle
798 * off to kill the perturbations it causes anyway. Meanwhile,
799 * this maintains functionality for boot and/or troubleshooting.
800 */
801 if (rt_b == &root_task_group.rt_bandwidth)
802 span = cpu_online_mask;
803 #endif
804 for_each_cpu(i, span) {
805 int enqueue = 0;
806 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
807 struct rq *rq = rq_of_rt_rq(rt_rq);
808
809 raw_spin_lock(&rq->lock);
810 if (rt_rq->rt_time) {
811 u64 runtime;
812
813 raw_spin_lock(&rt_rq->rt_runtime_lock);
814 if (rt_rq->rt_throttled)
815 balance_runtime(rt_rq);
816 runtime = rt_rq->rt_runtime;
817 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
818 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
819 rt_rq->rt_throttled = 0;
820 enqueue = 1;
821
822 /*
823 * Force a clock update if the CPU was idle,
824 * lest wakeup -> unthrottle time accumulate.
825 */
826 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
827 rq->skip_clock_update = -1;
828 }
829 if (rt_rq->rt_time || rt_rq->rt_nr_running)
830 idle = 0;
831 raw_spin_unlock(&rt_rq->rt_runtime_lock);
832 } else if (rt_rq->rt_nr_running) {
833 idle = 0;
834 if (!rt_rq_throttled(rt_rq))
835 enqueue = 1;
836 }
837 if (rt_rq->rt_throttled)
838 throttled = 1;
839
840 if (enqueue)
841 sched_rt_rq_enqueue(rt_rq);
842 raw_spin_unlock(&rq->lock);
843 }
844
845 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
846 return 1;
847
848 return idle;
849 }
850
851 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
852 {
853 #ifdef CONFIG_RT_GROUP_SCHED
854 struct rt_rq *rt_rq = group_rt_rq(rt_se);
855
856 if (rt_rq)
857 return rt_rq->highest_prio.curr;
858 #endif
859
860 return rt_task_of(rt_se)->prio;
861 }
862
863 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
864 {
865 u64 runtime = sched_rt_runtime(rt_rq);
866
867 if (rt_rq->rt_throttled)
868 return rt_rq_throttled(rt_rq);
869
870 if (runtime >= sched_rt_period(rt_rq))
871 return 0;
872
873 balance_runtime(rt_rq);
874 runtime = sched_rt_runtime(rt_rq);
875 if (runtime == RUNTIME_INF)
876 return 0;
877
878 if (rt_rq->rt_time > runtime) {
879 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
880
881 /*
882 * Don't actually throttle groups that have no runtime assigned
883 * but accrue some time due to boosting.
884 */
885 if (likely(rt_b->rt_runtime)) {
886 static bool once = false;
887
888 rt_rq->rt_throttled = 1;
889
890 if (!once) {
891 once = true;
892 printk_sched("sched: RT throttling activated\n");
893 }
894 } else {
895 /*
896 * In case we did anyway, make it go away,
897 * replenishment is a joke, since it will replenish us
898 * with exactly 0 ns.
899 */
900 rt_rq->rt_time = 0;
901 }
902
903 if (rt_rq_throttled(rt_rq)) {
904 sched_rt_rq_dequeue(rt_rq);
905 return 1;
906 }
907 }
908
909 return 0;
910 }
911
912 /*
913 * Update the current task's runtime statistics. Skip current tasks that
914 * are not in our scheduling class.
915 */
916 static void update_curr_rt(struct rq *rq)
917 {
918 struct task_struct *curr = rq->curr;
919 struct sched_rt_entity *rt_se = &curr->rt;
920 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
921 u64 delta_exec;
922
923 if (curr->sched_class != &rt_sched_class)
924 return;
925
926 delta_exec = rq->clock_task - curr->se.exec_start;
927 if (unlikely((s64)delta_exec < 0))
928 delta_exec = 0;
929
930 schedstat_set(curr->se.statistics.exec_max,
931 max(curr->se.statistics.exec_max, delta_exec));
932
933 curr->se.sum_exec_runtime += delta_exec;
934 account_group_exec_runtime(curr, delta_exec);
935
936 curr->se.exec_start = rq->clock_task;
937 cpuacct_charge(curr, delta_exec);
938
939 sched_rt_avg_update(rq, delta_exec);
940
941 if (!rt_bandwidth_enabled())
942 return;
943
944 for_each_sched_rt_entity(rt_se) {
945 rt_rq = rt_rq_of_se(rt_se);
946
947 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
948 raw_spin_lock(&rt_rq->rt_runtime_lock);
949 rt_rq->rt_time += delta_exec;
950 if (sched_rt_runtime_exceeded(rt_rq))
951 resched_task(curr);
952 raw_spin_unlock(&rt_rq->rt_runtime_lock);
953 }
954 }
955 }
956
957 #if defined CONFIG_SMP
958
959 static void
960 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
961 {
962 struct rq *rq = rq_of_rt_rq(rt_rq);
963
964 if (rq->online && prio < prev_prio)
965 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
966 }
967
968 static void
969 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
970 {
971 struct rq *rq = rq_of_rt_rq(rt_rq);
972
973 if (rq->online && rt_rq->highest_prio.curr != prev_prio)
974 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
975 }
976
977 #else /* CONFIG_SMP */
978
979 static inline
980 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
981 static inline
982 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
983
984 #endif /* CONFIG_SMP */
985
986 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
987 static void
988 inc_rt_prio(struct rt_rq *rt_rq, int prio)
989 {
990 int prev_prio = rt_rq->highest_prio.curr;
991
992 if (prio < prev_prio)
993 rt_rq->highest_prio.curr = prio;
994
995 inc_rt_prio_smp(rt_rq, prio, prev_prio);
996 }
997
998 static void
999 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1000 {
1001 int prev_prio = rt_rq->highest_prio.curr;
1002
1003 if (rt_rq->rt_nr_running) {
1004
1005 WARN_ON(prio < prev_prio);
1006
1007 /*
1008 * This may have been our highest task, and therefore
1009 * we may have some recomputation to do
1010 */
1011 if (prio == prev_prio) {
1012 struct rt_prio_array *array = &rt_rq->active;
1013
1014 rt_rq->highest_prio.curr =
1015 sched_find_first_bit(array->bitmap);
1016 }
1017
1018 } else
1019 rt_rq->highest_prio.curr = MAX_RT_PRIO;
1020
1021 dec_rt_prio_smp(rt_rq, prio, prev_prio);
1022 }
1023
1024 #else
1025
1026 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1027 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1028
1029 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1030
1031 #ifdef CONFIG_RT_GROUP_SCHED
1032
1033 static void
1034 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1035 {
1036 if (rt_se_boosted(rt_se))
1037 rt_rq->rt_nr_boosted++;
1038
1039 if (rt_rq->tg)
1040 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1041 }
1042
1043 static void
1044 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1045 {
1046 if (rt_se_boosted(rt_se))
1047 rt_rq->rt_nr_boosted--;
1048
1049 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1050 }
1051
1052 #else /* CONFIG_RT_GROUP_SCHED */
1053
1054 static void
1055 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1056 {
1057 start_rt_bandwidth(&def_rt_bandwidth);
1058 }
1059
1060 static inline
1061 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1062
1063 #endif /* CONFIG_RT_GROUP_SCHED */
1064
1065 static inline
1066 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1067 {
1068 int prio = rt_se_prio(rt_se);
1069
1070 WARN_ON(!rt_prio(prio));
1071 rt_rq->rt_nr_running++;
1072
1073 inc_rt_prio(rt_rq, prio);
1074 inc_rt_migration(rt_se, rt_rq);
1075 inc_rt_group(rt_se, rt_rq);
1076 }
1077
1078 static inline
1079 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1080 {
1081 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1082 WARN_ON(!rt_rq->rt_nr_running);
1083 rt_rq->rt_nr_running--;
1084
1085 dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1086 dec_rt_migration(rt_se, rt_rq);
1087 dec_rt_group(rt_se, rt_rq);
1088 }
1089
1090 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1091 {
1092 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1093 struct rt_prio_array *array = &rt_rq->active;
1094 struct rt_rq *group_rq = group_rt_rq(rt_se);
1095 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1096
1097 /*
1098 * Don't enqueue the group if its throttled, or when empty.
1099 * The latter is a consequence of the former when a child group
1100 * get throttled and the current group doesn't have any other
1101 * active members.
1102 */
1103 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
1104 return;
1105
1106 if (!rt_rq->rt_nr_running)
1107 list_add_leaf_rt_rq(rt_rq);
1108
1109 if (head)
1110 list_add(&rt_se->run_list, queue);
1111 else
1112 list_add_tail(&rt_se->run_list, queue);
1113 __set_bit(rt_se_prio(rt_se), array->bitmap);
1114
1115 inc_rt_tasks(rt_se, rt_rq);
1116 }
1117
1118 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
1119 {
1120 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1121 struct rt_prio_array *array = &rt_rq->active;
1122
1123 list_del_init(&rt_se->run_list);
1124 if (list_empty(array->queue + rt_se_prio(rt_se)))
1125 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1126
1127 dec_rt_tasks(rt_se, rt_rq);
1128 if (!rt_rq->rt_nr_running)
1129 list_del_leaf_rt_rq(rt_rq);
1130 }
1131
1132 /*
1133 * Because the prio of an upper entry depends on the lower
1134 * entries, we must remove entries top - down.
1135 */
1136 static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
1137 {
1138 struct sched_rt_entity *back = NULL;
1139
1140 for_each_sched_rt_entity(rt_se) {
1141 rt_se->back = back;
1142 back = rt_se;
1143 }
1144
1145 for (rt_se = back; rt_se; rt_se = rt_se->back) {
1146 if (on_rt_rq(rt_se))
1147 __dequeue_rt_entity(rt_se);
1148 }
1149 }
1150
1151 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1152 {
1153 dequeue_rt_stack(rt_se);
1154 for_each_sched_rt_entity(rt_se)
1155 __enqueue_rt_entity(rt_se, head);
1156 }
1157
1158 static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
1159 {
1160 dequeue_rt_stack(rt_se);
1161
1162 for_each_sched_rt_entity(rt_se) {
1163 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1164
1165 if (rt_rq && rt_rq->rt_nr_running)
1166 __enqueue_rt_entity(rt_se, false);
1167 }
1168 }
1169
1170 /*
1171 * Adding/removing a task to/from a priority array:
1172 */
1173 static void
1174 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1175 {
1176 struct sched_rt_entity *rt_se = &p->rt;
1177
1178 if (flags & ENQUEUE_WAKEUP)
1179 rt_se->timeout = 0;
1180
1181 enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
1182
1183 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1184 enqueue_pushable_task(rq, p);
1185
1186 inc_nr_running(rq);
1187 }
1188
1189 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1190 {
1191 struct sched_rt_entity *rt_se = &p->rt;
1192
1193 update_curr_rt(rq);
1194 dequeue_rt_entity(rt_se);
1195
1196 dequeue_pushable_task(rq, p);
1197
1198 dec_nr_running(rq);
1199 }
1200
1201 /*
1202 * Put task to the head or the end of the run list without the overhead of
1203 * dequeue followed by enqueue.
1204 */
1205 static void
1206 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1207 {
1208 if (on_rt_rq(rt_se)) {
1209 struct rt_prio_array *array = &rt_rq->active;
1210 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1211
1212 if (head)
1213 list_move(&rt_se->run_list, queue);
1214 else
1215 list_move_tail(&rt_se->run_list, queue);
1216 }
1217 }
1218
1219 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1220 {
1221 struct sched_rt_entity *rt_se = &p->rt;
1222 struct rt_rq *rt_rq;
1223
1224 for_each_sched_rt_entity(rt_se) {
1225 rt_rq = rt_rq_of_se(rt_se);
1226 requeue_rt_entity(rt_rq, rt_se, head);
1227 }
1228 }
1229
1230 static void yield_task_rt(struct rq *rq)
1231 {
1232 requeue_task_rt(rq, rq->curr, 0);
1233 }
1234
1235 #ifdef CONFIG_SMP
1236 static int find_lowest_rq(struct task_struct *task);
1237
1238 static int
1239 select_task_rq_rt(struct task_struct *p, int sd_flag, int flags)
1240 {
1241 struct task_struct *curr;
1242 struct rq *rq;
1243 int cpu;
1244
1245 cpu = task_cpu(p);
1246
1247 if (p->nr_cpus_allowed == 1)
1248 goto out;
1249
1250 /* For anything but wake ups, just return the task_cpu */
1251 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1252 goto out;
1253
1254 rq = cpu_rq(cpu);
1255
1256 rcu_read_lock();
1257 curr = ACCESS_ONCE(rq->curr); /* unlocked access */
1258
1259 /*
1260 * If the current task on @p's runqueue is an RT task, then
1261 * try to see if we can wake this RT task up on another
1262 * runqueue. Otherwise simply start this RT task
1263 * on its current runqueue.
1264 *
1265 * We want to avoid overloading runqueues. If the woken
1266 * task is a higher priority, then it will stay on this CPU
1267 * and the lower prio task should be moved to another CPU.
1268 * Even though this will probably make the lower prio task
1269 * lose its cache, we do not want to bounce a higher task
1270 * around just because it gave up its CPU, perhaps for a
1271 * lock?
1272 *
1273 * For equal prio tasks, we just let the scheduler sort it out.
1274 *
1275 * Otherwise, just let it ride on the affined RQ and the
1276 * post-schedule router will push the preempted task away
1277 *
1278 * This test is optimistic, if we get it wrong the load-balancer
1279 * will have to sort it out.
1280 */
1281 if (curr && unlikely(rt_task(curr)) &&
1282 (curr->nr_cpus_allowed < 2 ||
1283 curr->prio <= p->prio) &&
1284 (p->nr_cpus_allowed > 1)) {
1285 int target = find_lowest_rq(p);
1286
1287 if (target != -1)
1288 cpu = target;
1289 }
1290 rcu_read_unlock();
1291
1292 out:
1293 return cpu;
1294 }
1295
1296 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1297 {
1298 if (rq->curr->nr_cpus_allowed == 1)
1299 return;
1300
1301 if (p->nr_cpus_allowed != 1
1302 && cpupri_find(&rq->rd->cpupri, p, NULL))
1303 return;
1304
1305 if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1306 return;
1307
1308 /*
1309 * There appears to be other cpus that can accept
1310 * current and none to run 'p', so lets reschedule
1311 * to try and push current away:
1312 */
1313 requeue_task_rt(rq, p, 1);
1314 resched_task(rq->curr);
1315 }
1316
1317 #endif /* CONFIG_SMP */
1318
1319 /*
1320 * Preempt the current task with a newly woken task if needed:
1321 */
1322 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1323 {
1324 if (p->prio < rq->curr->prio) {
1325 resched_task(rq->curr);
1326 return;
1327 }
1328
1329 #ifdef CONFIG_SMP
1330 /*
1331 * If:
1332 *
1333 * - the newly woken task is of equal priority to the current task
1334 * - the newly woken task is non-migratable while current is migratable
1335 * - current will be preempted on the next reschedule
1336 *
1337 * we should check to see if current can readily move to a different
1338 * cpu. If so, we will reschedule to allow the push logic to try
1339 * to move current somewhere else, making room for our non-migratable
1340 * task.
1341 */
1342 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1343 check_preempt_equal_prio(rq, p);
1344 #endif
1345 }
1346
1347 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1348 struct rt_rq *rt_rq)
1349 {
1350 struct rt_prio_array *array = &rt_rq->active;
1351 struct sched_rt_entity *next = NULL;
1352 struct list_head *queue;
1353 int idx;
1354
1355 idx = sched_find_first_bit(array->bitmap);
1356 BUG_ON(idx >= MAX_RT_PRIO);
1357
1358 queue = array->queue + idx;
1359 next = list_entry(queue->next, struct sched_rt_entity, run_list);
1360
1361 return next;
1362 }
1363
1364 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1365 {
1366 struct sched_rt_entity *rt_se;
1367 struct task_struct *p;
1368 struct rt_rq *rt_rq;
1369
1370 rt_rq = &rq->rt;
1371
1372 if (!rt_rq->rt_nr_running)
1373 return NULL;
1374
1375 if (rt_rq_throttled(rt_rq))
1376 return NULL;
1377
1378 do {
1379 rt_se = pick_next_rt_entity(rq, rt_rq);
1380 BUG_ON(!rt_se);
1381 rt_rq = group_rt_rq(rt_se);
1382 } while (rt_rq);
1383
1384 p = rt_task_of(rt_se);
1385 p->se.exec_start = rq->clock_task;
1386
1387 return p;
1388 }
1389
1390 static struct task_struct *pick_next_task_rt(struct rq *rq)
1391 {
1392 struct task_struct *p = _pick_next_task_rt(rq);
1393
1394 /* The running task is never eligible for pushing */
1395 if (p)
1396 dequeue_pushable_task(rq, p);
1397
1398 #ifdef CONFIG_SMP
1399 /*
1400 * We detect this state here so that we can avoid taking the RQ
1401 * lock again later if there is no need to push
1402 */
1403 rq->post_schedule = has_pushable_tasks(rq);
1404 #endif
1405
1406 return p;
1407 }
1408
1409 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1410 {
1411 update_curr_rt(rq);
1412
1413 /*
1414 * The previous task needs to be made eligible for pushing
1415 * if it is still active
1416 */
1417 if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1418 enqueue_pushable_task(rq, p);
1419 }
1420
1421 #ifdef CONFIG_SMP
1422
1423 /* Only try algorithms three times */
1424 #define RT_MAX_TRIES 3
1425
1426 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1427 {
1428 if (!task_running(rq, p) &&
1429 (cpu < 0 || cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) &&
1430 (p->nr_cpus_allowed > 1))
1431 return 1;
1432 return 0;
1433 }
1434
1435 /* Return the second highest RT task, NULL otherwise */
1436 static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
1437 {
1438 struct task_struct *next = NULL;
1439 struct sched_rt_entity *rt_se;
1440 struct rt_prio_array *array;
1441 struct rt_rq *rt_rq;
1442 int idx;
1443
1444 for_each_leaf_rt_rq(rt_rq, rq) {
1445 array = &rt_rq->active;
1446 idx = sched_find_first_bit(array->bitmap);
1447 next_idx:
1448 if (idx >= MAX_RT_PRIO)
1449 continue;
1450 if (next && next->prio <= idx)
1451 continue;
1452 list_for_each_entry(rt_se, array->queue + idx, run_list) {
1453 struct task_struct *p;
1454
1455 if (!rt_entity_is_task(rt_se))
1456 continue;
1457
1458 p = rt_task_of(rt_se);
1459 if (pick_rt_task(rq, p, cpu)) {
1460 next = p;
1461 break;
1462 }
1463 }
1464 if (!next) {
1465 idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
1466 goto next_idx;
1467 }
1468 }
1469
1470 return next;
1471 }
1472
1473 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1474
1475 static int find_lowest_rq(struct task_struct *task)
1476 {
1477 struct sched_domain *sd;
1478 struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
1479 int this_cpu = smp_processor_id();
1480 int cpu = task_cpu(task);
1481
1482 /* Make sure the mask is initialized first */
1483 if (unlikely(!lowest_mask))
1484 return -1;
1485
1486 if (task->nr_cpus_allowed == 1)
1487 return -1; /* No other targets possible */
1488
1489 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1490 return -1; /* No targets found */
1491
1492 /*
1493 * At this point we have built a mask of cpus representing the
1494 * lowest priority tasks in the system. Now we want to elect
1495 * the best one based on our affinity and topology.
1496 *
1497 * We prioritize the last cpu that the task executed on since
1498 * it is most likely cache-hot in that location.
1499 */
1500 if (cpumask_test_cpu(cpu, lowest_mask))
1501 return cpu;
1502
1503 /*
1504 * Otherwise, we consult the sched_domains span maps to figure
1505 * out which cpu is logically closest to our hot cache data.
1506 */
1507 if (!cpumask_test_cpu(this_cpu, lowest_mask))
1508 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1509
1510 rcu_read_lock();
1511 for_each_domain(cpu, sd) {
1512 if (sd->flags & SD_WAKE_AFFINE) {
1513 int best_cpu;
1514
1515 /*
1516 * "this_cpu" is cheaper to preempt than a
1517 * remote processor.
1518 */
1519 if (this_cpu != -1 &&
1520 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1521 rcu_read_unlock();
1522 return this_cpu;
1523 }
1524
1525 best_cpu = cpumask_first_and(lowest_mask,
1526 sched_domain_span(sd));
1527 if (best_cpu < nr_cpu_ids) {
1528 rcu_read_unlock();
1529 return best_cpu;
1530 }
1531 }
1532 }
1533 rcu_read_unlock();
1534
1535 /*
1536 * And finally, if there were no matches within the domains
1537 * just give the caller *something* to work with from the compatible
1538 * locations.
1539 */
1540 if (this_cpu != -1)
1541 return this_cpu;
1542
1543 cpu = cpumask_any(lowest_mask);
1544 if (cpu < nr_cpu_ids)
1545 return cpu;
1546 return -1;
1547 }
1548
1549 /* Will lock the rq it finds */
1550 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1551 {
1552 struct rq *lowest_rq = NULL;
1553 int tries;
1554 int cpu;
1555
1556 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1557 cpu = find_lowest_rq(task);
1558
1559 if ((cpu == -1) || (cpu == rq->cpu))
1560 break;
1561
1562 lowest_rq = cpu_rq(cpu);
1563
1564 /* if the prio of this runqueue changed, try again */
1565 if (double_lock_balance(rq, lowest_rq)) {
1566 /*
1567 * We had to unlock the run queue. In
1568 * the mean time, task could have
1569 * migrated already or had its affinity changed.
1570 * Also make sure that it wasn't scheduled on its rq.
1571 */
1572 if (unlikely(task_rq(task) != rq ||
1573 !cpumask_test_cpu(lowest_rq->cpu,
1574 tsk_cpus_allowed(task)) ||
1575 task_running(rq, task) ||
1576 !task->on_rq)) {
1577
1578 double_unlock_balance(rq, lowest_rq);
1579 lowest_rq = NULL;
1580 break;
1581 }
1582 }
1583
1584 /* If this rq is still suitable use it. */
1585 if (lowest_rq->rt.highest_prio.curr > task->prio)
1586 break;
1587
1588 /* try again */
1589 double_unlock_balance(rq, lowest_rq);
1590 lowest_rq = NULL;
1591 }
1592
1593 return lowest_rq;
1594 }
1595
1596 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1597 {
1598 struct task_struct *p;
1599
1600 if (!has_pushable_tasks(rq))
1601 return NULL;
1602
1603 p = plist_first_entry(&rq->rt.pushable_tasks,
1604 struct task_struct, pushable_tasks);
1605
1606 BUG_ON(rq->cpu != task_cpu(p));
1607 BUG_ON(task_current(rq, p));
1608 BUG_ON(p->nr_cpus_allowed <= 1);
1609
1610 BUG_ON(!p->on_rq);
1611 BUG_ON(!rt_task(p));
1612
1613 return p;
1614 }
1615
1616 /*
1617 * If the current CPU has more than one RT task, see if the non
1618 * running task can migrate over to a CPU that is running a task
1619 * of lesser priority.
1620 */
1621 static int push_rt_task(struct rq *rq)
1622 {
1623 struct task_struct *next_task;
1624 struct rq *lowest_rq;
1625 int ret = 0;
1626
1627 if (!rq->rt.overloaded)
1628 return 0;
1629
1630 next_task = pick_next_pushable_task(rq);
1631 if (!next_task)
1632 return 0;
1633
1634 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1635 if (unlikely(task_running(rq, next_task)))
1636 return 0;
1637 #endif
1638
1639 retry:
1640 if (unlikely(next_task == rq->curr)) {
1641 WARN_ON(1);
1642 return 0;
1643 }
1644
1645 /*
1646 * It's possible that the next_task slipped in of
1647 * higher priority than current. If that's the case
1648 * just reschedule current.
1649 */
1650 if (unlikely(next_task->prio < rq->curr->prio)) {
1651 resched_task(rq->curr);
1652 return 0;
1653 }
1654
1655 /* We might release rq lock */
1656 get_task_struct(next_task);
1657
1658 /* find_lock_lowest_rq locks the rq if found */
1659 lowest_rq = find_lock_lowest_rq(next_task, rq);
1660 if (!lowest_rq) {
1661 struct task_struct *task;
1662 /*
1663 * find_lock_lowest_rq releases rq->lock
1664 * so it is possible that next_task has migrated.
1665 *
1666 * We need to make sure that the task is still on the same
1667 * run-queue and is also still the next task eligible for
1668 * pushing.
1669 */
1670 task = pick_next_pushable_task(rq);
1671 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1672 /*
1673 * The task hasn't migrated, and is still the next
1674 * eligible task, but we failed to find a run-queue
1675 * to push it to. Do not retry in this case, since
1676 * other cpus will pull from us when ready.
1677 */
1678 goto out;
1679 }
1680
1681 if (!task)
1682 /* No more tasks, just exit */
1683 goto out;
1684
1685 /*
1686 * Something has shifted, try again.
1687 */
1688 put_task_struct(next_task);
1689 next_task = task;
1690 goto retry;
1691 }
1692
1693 deactivate_task(rq, next_task, 0);
1694 set_task_cpu(next_task, lowest_rq->cpu);
1695 activate_task(lowest_rq, next_task, 0);
1696 ret = 1;
1697
1698 resched_task(lowest_rq->curr);
1699
1700 double_unlock_balance(rq, lowest_rq);
1701
1702 out:
1703 put_task_struct(next_task);
1704
1705 return ret;
1706 }
1707
1708 static void push_rt_tasks(struct rq *rq)
1709 {
1710 /* push_rt_task will return true if it moved an RT */
1711 while (push_rt_task(rq))
1712 ;
1713 }
1714
1715 static int pull_rt_task(struct rq *this_rq)
1716 {
1717 int this_cpu = this_rq->cpu, ret = 0, cpu;
1718 struct task_struct *p;
1719 struct rq *src_rq;
1720
1721 if (likely(!rt_overloaded(this_rq)))
1722 return 0;
1723
1724 for_each_cpu(cpu, this_rq->rd->rto_mask) {
1725 if (this_cpu == cpu)
1726 continue;
1727
1728 src_rq = cpu_rq(cpu);
1729
1730 /*
1731 * Don't bother taking the src_rq->lock if the next highest
1732 * task is known to be lower-priority than our current task.
1733 * This may look racy, but if this value is about to go
1734 * logically higher, the src_rq will push this task away.
1735 * And if its going logically lower, we do not care
1736 */
1737 if (src_rq->rt.highest_prio.next >=
1738 this_rq->rt.highest_prio.curr)
1739 continue;
1740
1741 /*
1742 * We can potentially drop this_rq's lock in
1743 * double_lock_balance, and another CPU could
1744 * alter this_rq
1745 */
1746 double_lock_balance(this_rq, src_rq);
1747
1748 /*
1749 * Are there still pullable RT tasks?
1750 */
1751 if (src_rq->rt.rt_nr_running <= 1)
1752 goto skip;
1753
1754 p = pick_next_highest_task_rt(src_rq, this_cpu);
1755
1756 /*
1757 * Do we have an RT task that preempts
1758 * the to-be-scheduled task?
1759 */
1760 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
1761 WARN_ON(p == src_rq->curr);
1762 WARN_ON(!p->on_rq);
1763
1764 /*
1765 * There's a chance that p is higher in priority
1766 * than what's currently running on its cpu.
1767 * This is just that p is wakeing up and hasn't
1768 * had a chance to schedule. We only pull
1769 * p if it is lower in priority than the
1770 * current task on the run queue
1771 */
1772 if (p->prio < src_rq->curr->prio)
1773 goto skip;
1774
1775 ret = 1;
1776
1777 deactivate_task(src_rq, p, 0);
1778 set_task_cpu(p, this_cpu);
1779 activate_task(this_rq, p, 0);
1780 /*
1781 * We continue with the search, just in
1782 * case there's an even higher prio task
1783 * in another runqueue. (low likelihood
1784 * but possible)
1785 */
1786 }
1787 skip:
1788 double_unlock_balance(this_rq, src_rq);
1789 }
1790
1791 return ret;
1792 }
1793
1794 static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
1795 {
1796 /* Try to pull RT tasks here if we lower this rq's prio */
1797 if (rq->rt.highest_prio.curr > prev->prio)
1798 pull_rt_task(rq);
1799 }
1800
1801 static void post_schedule_rt(struct rq *rq)
1802 {
1803 push_rt_tasks(rq);
1804 }
1805
1806 /*
1807 * If we are not running and we are not going to reschedule soon, we should
1808 * try to push tasks away now
1809 */
1810 static void task_woken_rt(struct rq *rq, struct task_struct *p)
1811 {
1812 if (!task_running(rq, p) &&
1813 !test_tsk_need_resched(rq->curr) &&
1814 has_pushable_tasks(rq) &&
1815 p->nr_cpus_allowed > 1 &&
1816 rt_task(rq->curr) &&
1817 (rq->curr->nr_cpus_allowed < 2 ||
1818 rq->curr->prio <= p->prio))
1819 push_rt_tasks(rq);
1820 }
1821
1822 static void set_cpus_allowed_rt(struct task_struct *p,
1823 const struct cpumask *new_mask)
1824 {
1825 struct rq *rq;
1826 int weight;
1827
1828 BUG_ON(!rt_task(p));
1829
1830 if (!p->on_rq)
1831 return;
1832
1833 weight = cpumask_weight(new_mask);
1834
1835 /*
1836 * Only update if the process changes its state from whether it
1837 * can migrate or not.
1838 */
1839 if ((p->nr_cpus_allowed > 1) == (weight > 1))
1840 return;
1841
1842 rq = task_rq(p);
1843
1844 /*
1845 * The process used to be able to migrate OR it can now migrate
1846 */
1847 if (weight <= 1) {
1848 if (!task_current(rq, p))
1849 dequeue_pushable_task(rq, p);
1850 BUG_ON(!rq->rt.rt_nr_migratory);
1851 rq->rt.rt_nr_migratory--;
1852 } else {
1853 if (!task_current(rq, p))
1854 enqueue_pushable_task(rq, p);
1855 rq->rt.rt_nr_migratory++;
1856 }
1857
1858 update_rt_migration(&rq->rt);
1859 }
1860
1861 /* Assumes rq->lock is held */
1862 static void rq_online_rt(struct rq *rq)
1863 {
1864 if (rq->rt.overloaded)
1865 rt_set_overload(rq);
1866
1867 __enable_runtime(rq);
1868
1869 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1870 }
1871
1872 /* Assumes rq->lock is held */
1873 static void rq_offline_rt(struct rq *rq)
1874 {
1875 if (rq->rt.overloaded)
1876 rt_clear_overload(rq);
1877
1878 __disable_runtime(rq);
1879
1880 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1881 }
1882
1883 /*
1884 * When switch from the rt queue, we bring ourselves to a position
1885 * that we might want to pull RT tasks from other runqueues.
1886 */
1887 static void switched_from_rt(struct rq *rq, struct task_struct *p)
1888 {
1889 /*
1890 * If there are other RT tasks then we will reschedule
1891 * and the scheduling of the other RT tasks will handle
1892 * the balancing. But if we are the last RT task
1893 * we may need to handle the pulling of RT tasks
1894 * now.
1895 */
1896 if (p->on_rq && !rq->rt.rt_nr_running)
1897 pull_rt_task(rq);
1898 }
1899
1900 void init_sched_rt_class(void)
1901 {
1902 unsigned int i;
1903
1904 for_each_possible_cpu(i) {
1905 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
1906 GFP_KERNEL, cpu_to_node(i));
1907 }
1908 }
1909 #endif /* CONFIG_SMP */
1910
1911 /*
1912 * When switching a task to RT, we may overload the runqueue
1913 * with RT tasks. In this case we try to push them off to
1914 * other runqueues.
1915 */
1916 static void switched_to_rt(struct rq *rq, struct task_struct *p)
1917 {
1918 int check_resched = 1;
1919
1920 /*
1921 * If we are already running, then there's nothing
1922 * that needs to be done. But if we are not running
1923 * we may need to preempt the current running task.
1924 * If that current running task is also an RT task
1925 * then see if we can move to another run queue.
1926 */
1927 if (p->on_rq && rq->curr != p) {
1928 #ifdef CONFIG_SMP
1929 if (rq->rt.overloaded && push_rt_task(rq) &&
1930 /* Don't resched if we changed runqueues */
1931 rq != task_rq(p))
1932 check_resched = 0;
1933 #endif /* CONFIG_SMP */
1934 if (check_resched && p->prio < rq->curr->prio)
1935 resched_task(rq->curr);
1936 }
1937 }
1938
1939 /*
1940 * Priority of the task has changed. This may cause
1941 * us to initiate a push or pull.
1942 */
1943 static void
1944 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
1945 {
1946 if (!p->on_rq)
1947 return;
1948
1949 if (rq->curr == p) {
1950 #ifdef CONFIG_SMP
1951 /*
1952 * If our priority decreases while running, we
1953 * may need to pull tasks to this runqueue.
1954 */
1955 if (oldprio < p->prio)
1956 pull_rt_task(rq);
1957 /*
1958 * If there's a higher priority task waiting to run
1959 * then reschedule. Note, the above pull_rt_task
1960 * can release the rq lock and p could migrate.
1961 * Only reschedule if p is still on the same runqueue.
1962 */
1963 if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
1964 resched_task(p);
1965 #else
1966 /* For UP simply resched on drop of prio */
1967 if (oldprio < p->prio)
1968 resched_task(p);
1969 #endif /* CONFIG_SMP */
1970 } else {
1971 /*
1972 * This task is not running, but if it is
1973 * greater than the current running task
1974 * then reschedule.
1975 */
1976 if (p->prio < rq->curr->prio)
1977 resched_task(rq->curr);
1978 }
1979 }
1980
1981 static void watchdog(struct rq *rq, struct task_struct *p)
1982 {
1983 unsigned long soft, hard;
1984
1985 /* max may change after cur was read, this will be fixed next tick */
1986 soft = task_rlimit(p, RLIMIT_RTTIME);
1987 hard = task_rlimit_max(p, RLIMIT_RTTIME);
1988
1989 if (soft != RLIM_INFINITY) {
1990 unsigned long next;
1991
1992 p->rt.timeout++;
1993 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1994 if (p->rt.timeout > next)
1995 p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
1996 }
1997 }
1998
1999 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2000 {
2001 struct sched_rt_entity *rt_se = &p->rt;
2002
2003 update_curr_rt(rq);
2004
2005 watchdog(rq, p);
2006
2007 /*
2008 * RR tasks need a special form of timeslice management.
2009 * FIFO tasks have no timeslices.
2010 */
2011 if (p->policy != SCHED_RR)
2012 return;
2013
2014 if (--p->rt.time_slice)
2015 return;
2016
2017 p->rt.time_slice = RR_TIMESLICE;
2018
2019 /*
2020 * Requeue to the end of queue if we (and all of our ancestors) are the
2021 * only element on the queue
2022 */
2023 for_each_sched_rt_entity(rt_se) {
2024 if (rt_se->run_list.prev != rt_se->run_list.next) {
2025 requeue_task_rt(rq, p, 0);
2026 set_tsk_need_resched(p);
2027 return;
2028 }
2029 }
2030 }
2031
2032 static void set_curr_task_rt(struct rq *rq)
2033 {
2034 struct task_struct *p = rq->curr;
2035
2036 p->se.exec_start = rq->clock_task;
2037
2038 /* The running task is never eligible for pushing */
2039 dequeue_pushable_task(rq, p);
2040 }
2041
2042 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2043 {
2044 /*
2045 * Time slice is 0 for SCHED_FIFO tasks
2046 */
2047 if (task->policy == SCHED_RR)
2048 return RR_TIMESLICE;
2049 else
2050 return 0;
2051 }
2052
2053 const struct sched_class rt_sched_class = {
2054 .next = &fair_sched_class,
2055 .enqueue_task = enqueue_task_rt,
2056 .dequeue_task = dequeue_task_rt,
2057 .yield_task = yield_task_rt,
2058
2059 .check_preempt_curr = check_preempt_curr_rt,
2060
2061 .pick_next_task = pick_next_task_rt,
2062 .put_prev_task = put_prev_task_rt,
2063
2064 #ifdef CONFIG_SMP
2065 .select_task_rq = select_task_rq_rt,
2066
2067 .set_cpus_allowed = set_cpus_allowed_rt,
2068 .rq_online = rq_online_rt,
2069 .rq_offline = rq_offline_rt,
2070 .pre_schedule = pre_schedule_rt,
2071 .post_schedule = post_schedule_rt,
2072 .task_woken = task_woken_rt,
2073 .switched_from = switched_from_rt,
2074 #endif
2075
2076 .set_curr_task = set_curr_task_rt,
2077 .task_tick = task_tick_rt,
2078
2079 .get_rr_interval = get_rr_interval_rt,
2080
2081 .prio_changed = prio_changed_rt,
2082 .switched_to = switched_to_rt,
2083 };
2084
2085 #ifdef CONFIG_SCHED_DEBUG
2086 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2087
2088 void print_rt_stats(struct seq_file *m, int cpu)
2089 {
2090 rt_rq_iter_t iter;
2091 struct rt_rq *rt_rq;
2092
2093 rcu_read_lock();
2094 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2095 print_rt_rq(m, cpu, rt_rq);
2096 rcu_read_unlock();
2097 }
2098 #endif /* CONFIG_SCHED_DEBUG */
This page took 0.097397 seconds and 6 git commands to generate.