sched/numa: Track NUMA hinting faults on per-node basis
[deliverable/linux.git] / kernel / sched / sched.h
1
2 #include <linux/sched.h>
3 #include <linux/sched/sysctl.h>
4 #include <linux/sched/rt.h>
5 #include <linux/mutex.h>
6 #include <linux/spinlock.h>
7 #include <linux/stop_machine.h>
8 #include <linux/tick.h>
9 #include <linux/slab.h>
10
11 #include "cpupri.h"
12 #include "cpuacct.h"
13
14 struct rq;
15
16 extern __read_mostly int scheduler_running;
17
18 extern unsigned long calc_load_update;
19 extern atomic_long_t calc_load_tasks;
20
21 extern long calc_load_fold_active(struct rq *this_rq);
22 extern void update_cpu_load_active(struct rq *this_rq);
23
24 /*
25 * Convert user-nice values [ -20 ... 0 ... 19 ]
26 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
27 * and back.
28 */
29 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
30 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
31 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
32
33 /*
34 * 'User priority' is the nice value converted to something we
35 * can work with better when scaling various scheduler parameters,
36 * it's a [ 0 ... 39 ] range.
37 */
38 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
39 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
40 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
41
42 /*
43 * Helpers for converting nanosecond timing to jiffy resolution
44 */
45 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
46
47 /*
48 * Increase resolution of nice-level calculations for 64-bit architectures.
49 * The extra resolution improves shares distribution and load balancing of
50 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
51 * hierarchies, especially on larger systems. This is not a user-visible change
52 * and does not change the user-interface for setting shares/weights.
53 *
54 * We increase resolution only if we have enough bits to allow this increased
55 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
56 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
57 * increased costs.
58 */
59 #if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
60 # define SCHED_LOAD_RESOLUTION 10
61 # define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
62 # define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
63 #else
64 # define SCHED_LOAD_RESOLUTION 0
65 # define scale_load(w) (w)
66 # define scale_load_down(w) (w)
67 #endif
68
69 #define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
70 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
71
72 #define NICE_0_LOAD SCHED_LOAD_SCALE
73 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
74
75 /*
76 * These are the 'tuning knobs' of the scheduler:
77 */
78
79 /*
80 * single value that denotes runtime == period, ie unlimited time.
81 */
82 #define RUNTIME_INF ((u64)~0ULL)
83
84 static inline int rt_policy(int policy)
85 {
86 if (policy == SCHED_FIFO || policy == SCHED_RR)
87 return 1;
88 return 0;
89 }
90
91 static inline int task_has_rt_policy(struct task_struct *p)
92 {
93 return rt_policy(p->policy);
94 }
95
96 /*
97 * This is the priority-queue data structure of the RT scheduling class:
98 */
99 struct rt_prio_array {
100 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
101 struct list_head queue[MAX_RT_PRIO];
102 };
103
104 struct rt_bandwidth {
105 /* nests inside the rq lock: */
106 raw_spinlock_t rt_runtime_lock;
107 ktime_t rt_period;
108 u64 rt_runtime;
109 struct hrtimer rt_period_timer;
110 };
111
112 extern struct mutex sched_domains_mutex;
113
114 #ifdef CONFIG_CGROUP_SCHED
115
116 #include <linux/cgroup.h>
117
118 struct cfs_rq;
119 struct rt_rq;
120
121 extern struct list_head task_groups;
122
123 struct cfs_bandwidth {
124 #ifdef CONFIG_CFS_BANDWIDTH
125 raw_spinlock_t lock;
126 ktime_t period;
127 u64 quota, runtime;
128 s64 hierarchal_quota;
129 u64 runtime_expires;
130
131 int idle, timer_active;
132 struct hrtimer period_timer, slack_timer;
133 struct list_head throttled_cfs_rq;
134
135 /* statistics */
136 int nr_periods, nr_throttled;
137 u64 throttled_time;
138 #endif
139 };
140
141 /* task group related information */
142 struct task_group {
143 struct cgroup_subsys_state css;
144
145 #ifdef CONFIG_FAIR_GROUP_SCHED
146 /* schedulable entities of this group on each cpu */
147 struct sched_entity **se;
148 /* runqueue "owned" by this group on each cpu */
149 struct cfs_rq **cfs_rq;
150 unsigned long shares;
151
152 #ifdef CONFIG_SMP
153 atomic_long_t load_avg;
154 atomic_t runnable_avg;
155 #endif
156 #endif
157
158 #ifdef CONFIG_RT_GROUP_SCHED
159 struct sched_rt_entity **rt_se;
160 struct rt_rq **rt_rq;
161
162 struct rt_bandwidth rt_bandwidth;
163 #endif
164
165 struct rcu_head rcu;
166 struct list_head list;
167
168 struct task_group *parent;
169 struct list_head siblings;
170 struct list_head children;
171
172 #ifdef CONFIG_SCHED_AUTOGROUP
173 struct autogroup *autogroup;
174 #endif
175
176 struct cfs_bandwidth cfs_bandwidth;
177 };
178
179 #ifdef CONFIG_FAIR_GROUP_SCHED
180 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
181
182 /*
183 * A weight of 0 or 1 can cause arithmetics problems.
184 * A weight of a cfs_rq is the sum of weights of which entities
185 * are queued on this cfs_rq, so a weight of a entity should not be
186 * too large, so as the shares value of a task group.
187 * (The default weight is 1024 - so there's no practical
188 * limitation from this.)
189 */
190 #define MIN_SHARES (1UL << 1)
191 #define MAX_SHARES (1UL << 18)
192 #endif
193
194 typedef int (*tg_visitor)(struct task_group *, void *);
195
196 extern int walk_tg_tree_from(struct task_group *from,
197 tg_visitor down, tg_visitor up, void *data);
198
199 /*
200 * Iterate the full tree, calling @down when first entering a node and @up when
201 * leaving it for the final time.
202 *
203 * Caller must hold rcu_lock or sufficient equivalent.
204 */
205 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
206 {
207 return walk_tg_tree_from(&root_task_group, down, up, data);
208 }
209
210 extern int tg_nop(struct task_group *tg, void *data);
211
212 extern void free_fair_sched_group(struct task_group *tg);
213 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
214 extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
215 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
216 struct sched_entity *se, int cpu,
217 struct sched_entity *parent);
218 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
219 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
220
221 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
222 extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
223 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
224
225 extern void free_rt_sched_group(struct task_group *tg);
226 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
227 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
228 struct sched_rt_entity *rt_se, int cpu,
229 struct sched_rt_entity *parent);
230
231 extern struct task_group *sched_create_group(struct task_group *parent);
232 extern void sched_online_group(struct task_group *tg,
233 struct task_group *parent);
234 extern void sched_destroy_group(struct task_group *tg);
235 extern void sched_offline_group(struct task_group *tg);
236
237 extern void sched_move_task(struct task_struct *tsk);
238
239 #ifdef CONFIG_FAIR_GROUP_SCHED
240 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
241 #endif
242
243 #else /* CONFIG_CGROUP_SCHED */
244
245 struct cfs_bandwidth { };
246
247 #endif /* CONFIG_CGROUP_SCHED */
248
249 /* CFS-related fields in a runqueue */
250 struct cfs_rq {
251 struct load_weight load;
252 unsigned int nr_running, h_nr_running;
253
254 u64 exec_clock;
255 u64 min_vruntime;
256 #ifndef CONFIG_64BIT
257 u64 min_vruntime_copy;
258 #endif
259
260 struct rb_root tasks_timeline;
261 struct rb_node *rb_leftmost;
262
263 /*
264 * 'curr' points to currently running entity on this cfs_rq.
265 * It is set to NULL otherwise (i.e when none are currently running).
266 */
267 struct sched_entity *curr, *next, *last, *skip;
268
269 #ifdef CONFIG_SCHED_DEBUG
270 unsigned int nr_spread_over;
271 #endif
272
273 #ifdef CONFIG_SMP
274 /*
275 * CFS Load tracking
276 * Under CFS, load is tracked on a per-entity basis and aggregated up.
277 * This allows for the description of both thread and group usage (in
278 * the FAIR_GROUP_SCHED case).
279 */
280 unsigned long runnable_load_avg, blocked_load_avg;
281 atomic64_t decay_counter;
282 u64 last_decay;
283 atomic_long_t removed_load;
284
285 #ifdef CONFIG_FAIR_GROUP_SCHED
286 /* Required to track per-cpu representation of a task_group */
287 u32 tg_runnable_contrib;
288 unsigned long tg_load_contrib;
289
290 /*
291 * h_load = weight * f(tg)
292 *
293 * Where f(tg) is the recursive weight fraction assigned to
294 * this group.
295 */
296 unsigned long h_load;
297 u64 last_h_load_update;
298 struct sched_entity *h_load_next;
299 #endif /* CONFIG_FAIR_GROUP_SCHED */
300 #endif /* CONFIG_SMP */
301
302 #ifdef CONFIG_FAIR_GROUP_SCHED
303 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
304
305 /*
306 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
307 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
308 * (like users, containers etc.)
309 *
310 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
311 * list is used during load balance.
312 */
313 int on_list;
314 struct list_head leaf_cfs_rq_list;
315 struct task_group *tg; /* group that "owns" this runqueue */
316
317 #ifdef CONFIG_CFS_BANDWIDTH
318 int runtime_enabled;
319 u64 runtime_expires;
320 s64 runtime_remaining;
321
322 u64 throttled_clock, throttled_clock_task;
323 u64 throttled_clock_task_time;
324 int throttled, throttle_count;
325 struct list_head throttled_list;
326 #endif /* CONFIG_CFS_BANDWIDTH */
327 #endif /* CONFIG_FAIR_GROUP_SCHED */
328 };
329
330 static inline int rt_bandwidth_enabled(void)
331 {
332 return sysctl_sched_rt_runtime >= 0;
333 }
334
335 /* Real-Time classes' related field in a runqueue: */
336 struct rt_rq {
337 struct rt_prio_array active;
338 unsigned int rt_nr_running;
339 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
340 struct {
341 int curr; /* highest queued rt task prio */
342 #ifdef CONFIG_SMP
343 int next; /* next highest */
344 #endif
345 } highest_prio;
346 #endif
347 #ifdef CONFIG_SMP
348 unsigned long rt_nr_migratory;
349 unsigned long rt_nr_total;
350 int overloaded;
351 struct plist_head pushable_tasks;
352 #endif
353 int rt_throttled;
354 u64 rt_time;
355 u64 rt_runtime;
356 /* Nests inside the rq lock: */
357 raw_spinlock_t rt_runtime_lock;
358
359 #ifdef CONFIG_RT_GROUP_SCHED
360 unsigned long rt_nr_boosted;
361
362 struct rq *rq;
363 struct task_group *tg;
364 #endif
365 };
366
367 #ifdef CONFIG_SMP
368
369 /*
370 * We add the notion of a root-domain which will be used to define per-domain
371 * variables. Each exclusive cpuset essentially defines an island domain by
372 * fully partitioning the member cpus from any other cpuset. Whenever a new
373 * exclusive cpuset is created, we also create and attach a new root-domain
374 * object.
375 *
376 */
377 struct root_domain {
378 atomic_t refcount;
379 atomic_t rto_count;
380 struct rcu_head rcu;
381 cpumask_var_t span;
382 cpumask_var_t online;
383
384 /*
385 * The "RT overload" flag: it gets set if a CPU has more than
386 * one runnable RT task.
387 */
388 cpumask_var_t rto_mask;
389 struct cpupri cpupri;
390 };
391
392 extern struct root_domain def_root_domain;
393
394 #endif /* CONFIG_SMP */
395
396 /*
397 * This is the main, per-CPU runqueue data structure.
398 *
399 * Locking rule: those places that want to lock multiple runqueues
400 * (such as the load balancing or the thread migration code), lock
401 * acquire operations must be ordered by ascending &runqueue.
402 */
403 struct rq {
404 /* runqueue lock: */
405 raw_spinlock_t lock;
406
407 /*
408 * nr_running and cpu_load should be in the same cacheline because
409 * remote CPUs use both these fields when doing load calculation.
410 */
411 unsigned int nr_running;
412 #define CPU_LOAD_IDX_MAX 5
413 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
414 unsigned long last_load_update_tick;
415 #ifdef CONFIG_NO_HZ_COMMON
416 u64 nohz_stamp;
417 unsigned long nohz_flags;
418 #endif
419 #ifdef CONFIG_NO_HZ_FULL
420 unsigned long last_sched_tick;
421 #endif
422 int skip_clock_update;
423
424 /* capture load from *all* tasks on this cpu: */
425 struct load_weight load;
426 unsigned long nr_load_updates;
427 u64 nr_switches;
428
429 struct cfs_rq cfs;
430 struct rt_rq rt;
431
432 #ifdef CONFIG_FAIR_GROUP_SCHED
433 /* list of leaf cfs_rq on this cpu: */
434 struct list_head leaf_cfs_rq_list;
435 #endif /* CONFIG_FAIR_GROUP_SCHED */
436
437 #ifdef CONFIG_RT_GROUP_SCHED
438 struct list_head leaf_rt_rq_list;
439 #endif
440
441 /*
442 * This is part of a global counter where only the total sum
443 * over all CPUs matters. A task can increase this counter on
444 * one CPU and if it got migrated afterwards it may decrease
445 * it on another CPU. Always updated under the runqueue lock:
446 */
447 unsigned long nr_uninterruptible;
448
449 struct task_struct *curr, *idle, *stop;
450 unsigned long next_balance;
451 struct mm_struct *prev_mm;
452
453 u64 clock;
454 u64 clock_task;
455
456 atomic_t nr_iowait;
457
458 #ifdef CONFIG_SMP
459 struct root_domain *rd;
460 struct sched_domain *sd;
461
462 unsigned long cpu_power;
463
464 unsigned char idle_balance;
465 /* For active balancing */
466 int post_schedule;
467 int active_balance;
468 int push_cpu;
469 struct cpu_stop_work active_balance_work;
470 /* cpu of this runqueue: */
471 int cpu;
472 int online;
473
474 struct list_head cfs_tasks;
475
476 u64 rt_avg;
477 u64 age_stamp;
478 u64 idle_stamp;
479 u64 avg_idle;
480
481 /* This is used to determine avg_idle's max value */
482 u64 max_idle_balance_cost;
483 #endif
484
485 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
486 u64 prev_irq_time;
487 #endif
488 #ifdef CONFIG_PARAVIRT
489 u64 prev_steal_time;
490 #endif
491 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
492 u64 prev_steal_time_rq;
493 #endif
494
495 /* calc_load related fields */
496 unsigned long calc_load_update;
497 long calc_load_active;
498
499 #ifdef CONFIG_SCHED_HRTICK
500 #ifdef CONFIG_SMP
501 int hrtick_csd_pending;
502 struct call_single_data hrtick_csd;
503 #endif
504 struct hrtimer hrtick_timer;
505 #endif
506
507 #ifdef CONFIG_SCHEDSTATS
508 /* latency stats */
509 struct sched_info rq_sched_info;
510 unsigned long long rq_cpu_time;
511 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
512
513 /* sys_sched_yield() stats */
514 unsigned int yld_count;
515
516 /* schedule() stats */
517 unsigned int sched_count;
518 unsigned int sched_goidle;
519
520 /* try_to_wake_up() stats */
521 unsigned int ttwu_count;
522 unsigned int ttwu_local;
523 #endif
524
525 #ifdef CONFIG_SMP
526 struct llist_head wake_list;
527 #endif
528
529 struct sched_avg avg;
530 };
531
532 static inline int cpu_of(struct rq *rq)
533 {
534 #ifdef CONFIG_SMP
535 return rq->cpu;
536 #else
537 return 0;
538 #endif
539 }
540
541 DECLARE_PER_CPU(struct rq, runqueues);
542
543 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
544 #define this_rq() (&__get_cpu_var(runqueues))
545 #define task_rq(p) cpu_rq(task_cpu(p))
546 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
547 #define raw_rq() (&__raw_get_cpu_var(runqueues))
548
549 static inline u64 rq_clock(struct rq *rq)
550 {
551 return rq->clock;
552 }
553
554 static inline u64 rq_clock_task(struct rq *rq)
555 {
556 return rq->clock_task;
557 }
558
559 #ifdef CONFIG_NUMA_BALANCING
560 static inline void task_numa_free(struct task_struct *p)
561 {
562 kfree(p->numa_faults);
563 }
564 #else /* CONFIG_NUMA_BALANCING */
565 static inline void task_numa_free(struct task_struct *p)
566 {
567 }
568 #endif /* CONFIG_NUMA_BALANCING */
569
570 #ifdef CONFIG_SMP
571
572 #define rcu_dereference_check_sched_domain(p) \
573 rcu_dereference_check((p), \
574 lockdep_is_held(&sched_domains_mutex))
575
576 /*
577 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
578 * See detach_destroy_domains: synchronize_sched for details.
579 *
580 * The domain tree of any CPU may only be accessed from within
581 * preempt-disabled sections.
582 */
583 #define for_each_domain(cpu, __sd) \
584 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
585 __sd; __sd = __sd->parent)
586
587 #define for_each_lower_domain(sd) for (; sd; sd = sd->child)
588
589 /**
590 * highest_flag_domain - Return highest sched_domain containing flag.
591 * @cpu: The cpu whose highest level of sched domain is to
592 * be returned.
593 * @flag: The flag to check for the highest sched_domain
594 * for the given cpu.
595 *
596 * Returns the highest sched_domain of a cpu which contains the given flag.
597 */
598 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
599 {
600 struct sched_domain *sd, *hsd = NULL;
601
602 for_each_domain(cpu, sd) {
603 if (!(sd->flags & flag))
604 break;
605 hsd = sd;
606 }
607
608 return hsd;
609 }
610
611 DECLARE_PER_CPU(struct sched_domain *, sd_llc);
612 DECLARE_PER_CPU(int, sd_llc_size);
613 DECLARE_PER_CPU(int, sd_llc_id);
614
615 struct sched_group_power {
616 atomic_t ref;
617 /*
618 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
619 * single CPU.
620 */
621 unsigned int power, power_orig;
622 unsigned long next_update;
623 int imbalance; /* XXX unrelated to power but shared group state */
624 /*
625 * Number of busy cpus in this group.
626 */
627 atomic_t nr_busy_cpus;
628
629 unsigned long cpumask[0]; /* iteration mask */
630 };
631
632 struct sched_group {
633 struct sched_group *next; /* Must be a circular list */
634 atomic_t ref;
635
636 unsigned int group_weight;
637 struct sched_group_power *sgp;
638
639 /*
640 * The CPUs this group covers.
641 *
642 * NOTE: this field is variable length. (Allocated dynamically
643 * by attaching extra space to the end of the structure,
644 * depending on how many CPUs the kernel has booted up with)
645 */
646 unsigned long cpumask[0];
647 };
648
649 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
650 {
651 return to_cpumask(sg->cpumask);
652 }
653
654 /*
655 * cpumask masking which cpus in the group are allowed to iterate up the domain
656 * tree.
657 */
658 static inline struct cpumask *sched_group_mask(struct sched_group *sg)
659 {
660 return to_cpumask(sg->sgp->cpumask);
661 }
662
663 /**
664 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
665 * @group: The group whose first cpu is to be returned.
666 */
667 static inline unsigned int group_first_cpu(struct sched_group *group)
668 {
669 return cpumask_first(sched_group_cpus(group));
670 }
671
672 extern int group_balance_cpu(struct sched_group *sg);
673
674 #endif /* CONFIG_SMP */
675
676 #include "stats.h"
677 #include "auto_group.h"
678
679 #ifdef CONFIG_CGROUP_SCHED
680
681 /*
682 * Return the group to which this tasks belongs.
683 *
684 * We cannot use task_css() and friends because the cgroup subsystem
685 * changes that value before the cgroup_subsys::attach() method is called,
686 * therefore we cannot pin it and might observe the wrong value.
687 *
688 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
689 * core changes this before calling sched_move_task().
690 *
691 * Instead we use a 'copy' which is updated from sched_move_task() while
692 * holding both task_struct::pi_lock and rq::lock.
693 */
694 static inline struct task_group *task_group(struct task_struct *p)
695 {
696 return p->sched_task_group;
697 }
698
699 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
700 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
701 {
702 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
703 struct task_group *tg = task_group(p);
704 #endif
705
706 #ifdef CONFIG_FAIR_GROUP_SCHED
707 p->se.cfs_rq = tg->cfs_rq[cpu];
708 p->se.parent = tg->se[cpu];
709 #endif
710
711 #ifdef CONFIG_RT_GROUP_SCHED
712 p->rt.rt_rq = tg->rt_rq[cpu];
713 p->rt.parent = tg->rt_se[cpu];
714 #endif
715 }
716
717 #else /* CONFIG_CGROUP_SCHED */
718
719 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
720 static inline struct task_group *task_group(struct task_struct *p)
721 {
722 return NULL;
723 }
724
725 #endif /* CONFIG_CGROUP_SCHED */
726
727 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
728 {
729 set_task_rq(p, cpu);
730 #ifdef CONFIG_SMP
731 /*
732 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
733 * successfuly executed on another CPU. We must ensure that updates of
734 * per-task data have been completed by this moment.
735 */
736 smp_wmb();
737 task_thread_info(p)->cpu = cpu;
738 #endif
739 }
740
741 /*
742 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
743 */
744 #ifdef CONFIG_SCHED_DEBUG
745 # include <linux/static_key.h>
746 # define const_debug __read_mostly
747 #else
748 # define const_debug const
749 #endif
750
751 extern const_debug unsigned int sysctl_sched_features;
752
753 #define SCHED_FEAT(name, enabled) \
754 __SCHED_FEAT_##name ,
755
756 enum {
757 #include "features.h"
758 __SCHED_FEAT_NR,
759 };
760
761 #undef SCHED_FEAT
762
763 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
764 static __always_inline bool static_branch__true(struct static_key *key)
765 {
766 return static_key_true(key); /* Not out of line branch. */
767 }
768
769 static __always_inline bool static_branch__false(struct static_key *key)
770 {
771 return static_key_false(key); /* Out of line branch. */
772 }
773
774 #define SCHED_FEAT(name, enabled) \
775 static __always_inline bool static_branch_##name(struct static_key *key) \
776 { \
777 return static_branch__##enabled(key); \
778 }
779
780 #include "features.h"
781
782 #undef SCHED_FEAT
783
784 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
785 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
786 #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
787 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
788 #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
789
790 #ifdef CONFIG_NUMA_BALANCING
791 #define sched_feat_numa(x) sched_feat(x)
792 #ifdef CONFIG_SCHED_DEBUG
793 #define numabalancing_enabled sched_feat_numa(NUMA)
794 #else
795 extern bool numabalancing_enabled;
796 #endif /* CONFIG_SCHED_DEBUG */
797 #else
798 #define sched_feat_numa(x) (0)
799 #define numabalancing_enabled (0)
800 #endif /* CONFIG_NUMA_BALANCING */
801
802 static inline u64 global_rt_period(void)
803 {
804 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
805 }
806
807 static inline u64 global_rt_runtime(void)
808 {
809 if (sysctl_sched_rt_runtime < 0)
810 return RUNTIME_INF;
811
812 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
813 }
814
815
816
817 static inline int task_current(struct rq *rq, struct task_struct *p)
818 {
819 return rq->curr == p;
820 }
821
822 static inline int task_running(struct rq *rq, struct task_struct *p)
823 {
824 #ifdef CONFIG_SMP
825 return p->on_cpu;
826 #else
827 return task_current(rq, p);
828 #endif
829 }
830
831
832 #ifndef prepare_arch_switch
833 # define prepare_arch_switch(next) do { } while (0)
834 #endif
835 #ifndef finish_arch_switch
836 # define finish_arch_switch(prev) do { } while (0)
837 #endif
838 #ifndef finish_arch_post_lock_switch
839 # define finish_arch_post_lock_switch() do { } while (0)
840 #endif
841
842 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
843 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
844 {
845 #ifdef CONFIG_SMP
846 /*
847 * We can optimise this out completely for !SMP, because the
848 * SMP rebalancing from interrupt is the only thing that cares
849 * here.
850 */
851 next->on_cpu = 1;
852 #endif
853 }
854
855 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
856 {
857 #ifdef CONFIG_SMP
858 /*
859 * After ->on_cpu is cleared, the task can be moved to a different CPU.
860 * We must ensure this doesn't happen until the switch is completely
861 * finished.
862 */
863 smp_wmb();
864 prev->on_cpu = 0;
865 #endif
866 #ifdef CONFIG_DEBUG_SPINLOCK
867 /* this is a valid case when another task releases the spinlock */
868 rq->lock.owner = current;
869 #endif
870 /*
871 * If we are tracking spinlock dependencies then we have to
872 * fix up the runqueue lock - which gets 'carried over' from
873 * prev into current:
874 */
875 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
876
877 raw_spin_unlock_irq(&rq->lock);
878 }
879
880 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
881 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
882 {
883 #ifdef CONFIG_SMP
884 /*
885 * We can optimise this out completely for !SMP, because the
886 * SMP rebalancing from interrupt is the only thing that cares
887 * here.
888 */
889 next->on_cpu = 1;
890 #endif
891 raw_spin_unlock(&rq->lock);
892 }
893
894 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
895 {
896 #ifdef CONFIG_SMP
897 /*
898 * After ->on_cpu is cleared, the task can be moved to a different CPU.
899 * We must ensure this doesn't happen until the switch is completely
900 * finished.
901 */
902 smp_wmb();
903 prev->on_cpu = 0;
904 #endif
905 local_irq_enable();
906 }
907 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
908
909 /*
910 * wake flags
911 */
912 #define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
913 #define WF_FORK 0x02 /* child wakeup after fork */
914 #define WF_MIGRATED 0x4 /* internal use, task got migrated */
915
916 /*
917 * To aid in avoiding the subversion of "niceness" due to uneven distribution
918 * of tasks with abnormal "nice" values across CPUs the contribution that
919 * each task makes to its run queue's load is weighted according to its
920 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
921 * scaled version of the new time slice allocation that they receive on time
922 * slice expiry etc.
923 */
924
925 #define WEIGHT_IDLEPRIO 3
926 #define WMULT_IDLEPRIO 1431655765
927
928 /*
929 * Nice levels are multiplicative, with a gentle 10% change for every
930 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
931 * nice 1, it will get ~10% less CPU time than another CPU-bound task
932 * that remained on nice 0.
933 *
934 * The "10% effect" is relative and cumulative: from _any_ nice level,
935 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
936 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
937 * If a task goes up by ~10% and another task goes down by ~10% then
938 * the relative distance between them is ~25%.)
939 */
940 static const int prio_to_weight[40] = {
941 /* -20 */ 88761, 71755, 56483, 46273, 36291,
942 /* -15 */ 29154, 23254, 18705, 14949, 11916,
943 /* -10 */ 9548, 7620, 6100, 4904, 3906,
944 /* -5 */ 3121, 2501, 1991, 1586, 1277,
945 /* 0 */ 1024, 820, 655, 526, 423,
946 /* 5 */ 335, 272, 215, 172, 137,
947 /* 10 */ 110, 87, 70, 56, 45,
948 /* 15 */ 36, 29, 23, 18, 15,
949 };
950
951 /*
952 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
953 *
954 * In cases where the weight does not change often, we can use the
955 * precalculated inverse to speed up arithmetics by turning divisions
956 * into multiplications:
957 */
958 static const u32 prio_to_wmult[40] = {
959 /* -20 */ 48388, 59856, 76040, 92818, 118348,
960 /* -15 */ 147320, 184698, 229616, 287308, 360437,
961 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
962 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
963 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
964 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
965 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
966 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
967 };
968
969 #define ENQUEUE_WAKEUP 1
970 #define ENQUEUE_HEAD 2
971 #ifdef CONFIG_SMP
972 #define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */
973 #else
974 #define ENQUEUE_WAKING 0
975 #endif
976
977 #define DEQUEUE_SLEEP 1
978
979 struct sched_class {
980 const struct sched_class *next;
981
982 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
983 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
984 void (*yield_task) (struct rq *rq);
985 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
986
987 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
988
989 struct task_struct * (*pick_next_task) (struct rq *rq);
990 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
991
992 #ifdef CONFIG_SMP
993 int (*select_task_rq)(struct task_struct *p, int sd_flag, int flags);
994 void (*migrate_task_rq)(struct task_struct *p, int next_cpu);
995
996 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
997 void (*post_schedule) (struct rq *this_rq);
998 void (*task_waking) (struct task_struct *task);
999 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1000
1001 void (*set_cpus_allowed)(struct task_struct *p,
1002 const struct cpumask *newmask);
1003
1004 void (*rq_online)(struct rq *rq);
1005 void (*rq_offline)(struct rq *rq);
1006 #endif
1007
1008 void (*set_curr_task) (struct rq *rq);
1009 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1010 void (*task_fork) (struct task_struct *p);
1011
1012 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1013 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1014 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1015 int oldprio);
1016
1017 unsigned int (*get_rr_interval) (struct rq *rq,
1018 struct task_struct *task);
1019
1020 #ifdef CONFIG_FAIR_GROUP_SCHED
1021 void (*task_move_group) (struct task_struct *p, int on_rq);
1022 #endif
1023 };
1024
1025 #define sched_class_highest (&stop_sched_class)
1026 #define for_each_class(class) \
1027 for (class = sched_class_highest; class; class = class->next)
1028
1029 extern const struct sched_class stop_sched_class;
1030 extern const struct sched_class rt_sched_class;
1031 extern const struct sched_class fair_sched_class;
1032 extern const struct sched_class idle_sched_class;
1033
1034
1035 #ifdef CONFIG_SMP
1036
1037 extern void update_group_power(struct sched_domain *sd, int cpu);
1038
1039 extern void trigger_load_balance(struct rq *rq, int cpu);
1040 extern void idle_balance(int this_cpu, struct rq *this_rq);
1041
1042 extern void idle_enter_fair(struct rq *this_rq);
1043 extern void idle_exit_fair(struct rq *this_rq);
1044
1045 #else /* CONFIG_SMP */
1046
1047 static inline void idle_balance(int cpu, struct rq *rq)
1048 {
1049 }
1050
1051 #endif
1052
1053 extern void sysrq_sched_debug_show(void);
1054 extern void sched_init_granularity(void);
1055 extern void update_max_interval(void);
1056 extern void init_sched_rt_class(void);
1057 extern void init_sched_fair_class(void);
1058
1059 extern void resched_task(struct task_struct *p);
1060 extern void resched_cpu(int cpu);
1061
1062 extern struct rt_bandwidth def_rt_bandwidth;
1063 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1064
1065 extern void update_idle_cpu_load(struct rq *this_rq);
1066
1067 extern void init_task_runnable_average(struct task_struct *p);
1068
1069 #ifdef CONFIG_PARAVIRT
1070 static inline u64 steal_ticks(u64 steal)
1071 {
1072 if (unlikely(steal > NSEC_PER_SEC))
1073 return div_u64(steal, TICK_NSEC);
1074
1075 return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
1076 }
1077 #endif
1078
1079 static inline void inc_nr_running(struct rq *rq)
1080 {
1081 rq->nr_running++;
1082
1083 #ifdef CONFIG_NO_HZ_FULL
1084 if (rq->nr_running == 2) {
1085 if (tick_nohz_full_cpu(rq->cpu)) {
1086 /* Order rq->nr_running write against the IPI */
1087 smp_wmb();
1088 smp_send_reschedule(rq->cpu);
1089 }
1090 }
1091 #endif
1092 }
1093
1094 static inline void dec_nr_running(struct rq *rq)
1095 {
1096 rq->nr_running--;
1097 }
1098
1099 static inline void rq_last_tick_reset(struct rq *rq)
1100 {
1101 #ifdef CONFIG_NO_HZ_FULL
1102 rq->last_sched_tick = jiffies;
1103 #endif
1104 }
1105
1106 extern void update_rq_clock(struct rq *rq);
1107
1108 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1109 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1110
1111 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1112
1113 extern const_debug unsigned int sysctl_sched_time_avg;
1114 extern const_debug unsigned int sysctl_sched_nr_migrate;
1115 extern const_debug unsigned int sysctl_sched_migration_cost;
1116
1117 static inline u64 sched_avg_period(void)
1118 {
1119 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1120 }
1121
1122 #ifdef CONFIG_SCHED_HRTICK
1123
1124 /*
1125 * Use hrtick when:
1126 * - enabled by features
1127 * - hrtimer is actually high res
1128 */
1129 static inline int hrtick_enabled(struct rq *rq)
1130 {
1131 if (!sched_feat(HRTICK))
1132 return 0;
1133 if (!cpu_active(cpu_of(rq)))
1134 return 0;
1135 return hrtimer_is_hres_active(&rq->hrtick_timer);
1136 }
1137
1138 void hrtick_start(struct rq *rq, u64 delay);
1139
1140 #else
1141
1142 static inline int hrtick_enabled(struct rq *rq)
1143 {
1144 return 0;
1145 }
1146
1147 #endif /* CONFIG_SCHED_HRTICK */
1148
1149 #ifdef CONFIG_SMP
1150 extern void sched_avg_update(struct rq *rq);
1151 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1152 {
1153 rq->rt_avg += rt_delta;
1154 sched_avg_update(rq);
1155 }
1156 #else
1157 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1158 static inline void sched_avg_update(struct rq *rq) { }
1159 #endif
1160
1161 extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period);
1162
1163 #ifdef CONFIG_SMP
1164 #ifdef CONFIG_PREEMPT
1165
1166 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1167
1168 /*
1169 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1170 * way at the expense of forcing extra atomic operations in all
1171 * invocations. This assures that the double_lock is acquired using the
1172 * same underlying policy as the spinlock_t on this architecture, which
1173 * reduces latency compared to the unfair variant below. However, it
1174 * also adds more overhead and therefore may reduce throughput.
1175 */
1176 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1177 __releases(this_rq->lock)
1178 __acquires(busiest->lock)
1179 __acquires(this_rq->lock)
1180 {
1181 raw_spin_unlock(&this_rq->lock);
1182 double_rq_lock(this_rq, busiest);
1183
1184 return 1;
1185 }
1186
1187 #else
1188 /*
1189 * Unfair double_lock_balance: Optimizes throughput at the expense of
1190 * latency by eliminating extra atomic operations when the locks are
1191 * already in proper order on entry. This favors lower cpu-ids and will
1192 * grant the double lock to lower cpus over higher ids under contention,
1193 * regardless of entry order into the function.
1194 */
1195 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1196 __releases(this_rq->lock)
1197 __acquires(busiest->lock)
1198 __acquires(this_rq->lock)
1199 {
1200 int ret = 0;
1201
1202 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1203 if (busiest < this_rq) {
1204 raw_spin_unlock(&this_rq->lock);
1205 raw_spin_lock(&busiest->lock);
1206 raw_spin_lock_nested(&this_rq->lock,
1207 SINGLE_DEPTH_NESTING);
1208 ret = 1;
1209 } else
1210 raw_spin_lock_nested(&busiest->lock,
1211 SINGLE_DEPTH_NESTING);
1212 }
1213 return ret;
1214 }
1215
1216 #endif /* CONFIG_PREEMPT */
1217
1218 /*
1219 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1220 */
1221 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1222 {
1223 if (unlikely(!irqs_disabled())) {
1224 /* printk() doesn't work good under rq->lock */
1225 raw_spin_unlock(&this_rq->lock);
1226 BUG_ON(1);
1227 }
1228
1229 return _double_lock_balance(this_rq, busiest);
1230 }
1231
1232 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1233 __releases(busiest->lock)
1234 {
1235 raw_spin_unlock(&busiest->lock);
1236 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1237 }
1238
1239 /*
1240 * double_rq_lock - safely lock two runqueues
1241 *
1242 * Note this does not disable interrupts like task_rq_lock,
1243 * you need to do so manually before calling.
1244 */
1245 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1246 __acquires(rq1->lock)
1247 __acquires(rq2->lock)
1248 {
1249 BUG_ON(!irqs_disabled());
1250 if (rq1 == rq2) {
1251 raw_spin_lock(&rq1->lock);
1252 __acquire(rq2->lock); /* Fake it out ;) */
1253 } else {
1254 if (rq1 < rq2) {
1255 raw_spin_lock(&rq1->lock);
1256 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1257 } else {
1258 raw_spin_lock(&rq2->lock);
1259 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1260 }
1261 }
1262 }
1263
1264 /*
1265 * double_rq_unlock - safely unlock two runqueues
1266 *
1267 * Note this does not restore interrupts like task_rq_unlock,
1268 * you need to do so manually after calling.
1269 */
1270 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1271 __releases(rq1->lock)
1272 __releases(rq2->lock)
1273 {
1274 raw_spin_unlock(&rq1->lock);
1275 if (rq1 != rq2)
1276 raw_spin_unlock(&rq2->lock);
1277 else
1278 __release(rq2->lock);
1279 }
1280
1281 #else /* CONFIG_SMP */
1282
1283 /*
1284 * double_rq_lock - safely lock two runqueues
1285 *
1286 * Note this does not disable interrupts like task_rq_lock,
1287 * you need to do so manually before calling.
1288 */
1289 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1290 __acquires(rq1->lock)
1291 __acquires(rq2->lock)
1292 {
1293 BUG_ON(!irqs_disabled());
1294 BUG_ON(rq1 != rq2);
1295 raw_spin_lock(&rq1->lock);
1296 __acquire(rq2->lock); /* Fake it out ;) */
1297 }
1298
1299 /*
1300 * double_rq_unlock - safely unlock two runqueues
1301 *
1302 * Note this does not restore interrupts like task_rq_unlock,
1303 * you need to do so manually after calling.
1304 */
1305 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1306 __releases(rq1->lock)
1307 __releases(rq2->lock)
1308 {
1309 BUG_ON(rq1 != rq2);
1310 raw_spin_unlock(&rq1->lock);
1311 __release(rq2->lock);
1312 }
1313
1314 #endif
1315
1316 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1317 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1318 extern void print_cfs_stats(struct seq_file *m, int cpu);
1319 extern void print_rt_stats(struct seq_file *m, int cpu);
1320
1321 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1322 extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq);
1323
1324 extern void account_cfs_bandwidth_used(int enabled, int was_enabled);
1325
1326 #ifdef CONFIG_NO_HZ_COMMON
1327 enum rq_nohz_flag_bits {
1328 NOHZ_TICK_STOPPED,
1329 NOHZ_BALANCE_KICK,
1330 };
1331
1332 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1333 #endif
1334
1335 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1336
1337 DECLARE_PER_CPU(u64, cpu_hardirq_time);
1338 DECLARE_PER_CPU(u64, cpu_softirq_time);
1339
1340 #ifndef CONFIG_64BIT
1341 DECLARE_PER_CPU(seqcount_t, irq_time_seq);
1342
1343 static inline void irq_time_write_begin(void)
1344 {
1345 __this_cpu_inc(irq_time_seq.sequence);
1346 smp_wmb();
1347 }
1348
1349 static inline void irq_time_write_end(void)
1350 {
1351 smp_wmb();
1352 __this_cpu_inc(irq_time_seq.sequence);
1353 }
1354
1355 static inline u64 irq_time_read(int cpu)
1356 {
1357 u64 irq_time;
1358 unsigned seq;
1359
1360 do {
1361 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1362 irq_time = per_cpu(cpu_softirq_time, cpu) +
1363 per_cpu(cpu_hardirq_time, cpu);
1364 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1365
1366 return irq_time;
1367 }
1368 #else /* CONFIG_64BIT */
1369 static inline void irq_time_write_begin(void)
1370 {
1371 }
1372
1373 static inline void irq_time_write_end(void)
1374 {
1375 }
1376
1377 static inline u64 irq_time_read(int cpu)
1378 {
1379 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1380 }
1381 #endif /* CONFIG_64BIT */
1382 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
This page took 0.059968 seconds and 5 git commands to generate.