x86: Move call to print_modules() out of show_regs()
[deliverable/linux.git] / kernel / sched / sched.h
1
2 #include <linux/sched.h>
3 #include <linux/mutex.h>
4 #include <linux/spinlock.h>
5 #include <linux/stop_machine.h>
6
7 #include "cpupri.h"
8
9 extern __read_mostly int scheduler_running;
10
11 /*
12 * Convert user-nice values [ -20 ... 0 ... 19 ]
13 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
14 * and back.
15 */
16 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
17 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
18 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
19
20 /*
21 * 'User priority' is the nice value converted to something we
22 * can work with better when scaling various scheduler parameters,
23 * it's a [ 0 ... 39 ] range.
24 */
25 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
26 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
27 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
28
29 /*
30 * Helpers for converting nanosecond timing to jiffy resolution
31 */
32 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
33
34 #define NICE_0_LOAD SCHED_LOAD_SCALE
35 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
36
37 /*
38 * These are the 'tuning knobs' of the scheduler:
39 */
40
41 /*
42 * single value that denotes runtime == period, ie unlimited time.
43 */
44 #define RUNTIME_INF ((u64)~0ULL)
45
46 static inline int rt_policy(int policy)
47 {
48 if (policy == SCHED_FIFO || policy == SCHED_RR)
49 return 1;
50 return 0;
51 }
52
53 static inline int task_has_rt_policy(struct task_struct *p)
54 {
55 return rt_policy(p->policy);
56 }
57
58 /*
59 * This is the priority-queue data structure of the RT scheduling class:
60 */
61 struct rt_prio_array {
62 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
63 struct list_head queue[MAX_RT_PRIO];
64 };
65
66 struct rt_bandwidth {
67 /* nests inside the rq lock: */
68 raw_spinlock_t rt_runtime_lock;
69 ktime_t rt_period;
70 u64 rt_runtime;
71 struct hrtimer rt_period_timer;
72 };
73
74 extern struct mutex sched_domains_mutex;
75
76 #ifdef CONFIG_CGROUP_SCHED
77
78 #include <linux/cgroup.h>
79
80 struct cfs_rq;
81 struct rt_rq;
82
83 static LIST_HEAD(task_groups);
84
85 struct cfs_bandwidth {
86 #ifdef CONFIG_CFS_BANDWIDTH
87 raw_spinlock_t lock;
88 ktime_t period;
89 u64 quota, runtime;
90 s64 hierarchal_quota;
91 u64 runtime_expires;
92
93 int idle, timer_active;
94 struct hrtimer period_timer, slack_timer;
95 struct list_head throttled_cfs_rq;
96
97 /* statistics */
98 int nr_periods, nr_throttled;
99 u64 throttled_time;
100 #endif
101 };
102
103 /* task group related information */
104 struct task_group {
105 struct cgroup_subsys_state css;
106
107 #ifdef CONFIG_FAIR_GROUP_SCHED
108 /* schedulable entities of this group on each cpu */
109 struct sched_entity **se;
110 /* runqueue "owned" by this group on each cpu */
111 struct cfs_rq **cfs_rq;
112 unsigned long shares;
113
114 atomic_t load_weight;
115 #endif
116
117 #ifdef CONFIG_RT_GROUP_SCHED
118 struct sched_rt_entity **rt_se;
119 struct rt_rq **rt_rq;
120
121 struct rt_bandwidth rt_bandwidth;
122 #endif
123
124 struct rcu_head rcu;
125 struct list_head list;
126
127 struct task_group *parent;
128 struct list_head siblings;
129 struct list_head children;
130
131 #ifdef CONFIG_SCHED_AUTOGROUP
132 struct autogroup *autogroup;
133 #endif
134
135 struct cfs_bandwidth cfs_bandwidth;
136 };
137
138 #ifdef CONFIG_FAIR_GROUP_SCHED
139 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
140
141 /*
142 * A weight of 0 or 1 can cause arithmetics problems.
143 * A weight of a cfs_rq is the sum of weights of which entities
144 * are queued on this cfs_rq, so a weight of a entity should not be
145 * too large, so as the shares value of a task group.
146 * (The default weight is 1024 - so there's no practical
147 * limitation from this.)
148 */
149 #define MIN_SHARES (1UL << 1)
150 #define MAX_SHARES (1UL << 18)
151 #endif
152
153 /* Default task group.
154 * Every task in system belong to this group at bootup.
155 */
156 extern struct task_group root_task_group;
157
158 typedef int (*tg_visitor)(struct task_group *, void *);
159
160 extern int walk_tg_tree_from(struct task_group *from,
161 tg_visitor down, tg_visitor up, void *data);
162
163 /*
164 * Iterate the full tree, calling @down when first entering a node and @up when
165 * leaving it for the final time.
166 *
167 * Caller must hold rcu_lock or sufficient equivalent.
168 */
169 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
170 {
171 return walk_tg_tree_from(&root_task_group, down, up, data);
172 }
173
174 extern int tg_nop(struct task_group *tg, void *data);
175
176 extern void free_fair_sched_group(struct task_group *tg);
177 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
178 extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
179 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
180 struct sched_entity *se, int cpu,
181 struct sched_entity *parent);
182 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
183 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
184
185 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
186 extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
187 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
188
189 extern void free_rt_sched_group(struct task_group *tg);
190 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
191 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
192 struct sched_rt_entity *rt_se, int cpu,
193 struct sched_rt_entity *parent);
194
195 #else /* CONFIG_CGROUP_SCHED */
196
197 struct cfs_bandwidth { };
198
199 #endif /* CONFIG_CGROUP_SCHED */
200
201 /* CFS-related fields in a runqueue */
202 struct cfs_rq {
203 struct load_weight load;
204 unsigned int nr_running, h_nr_running;
205
206 u64 exec_clock;
207 u64 min_vruntime;
208 #ifndef CONFIG_64BIT
209 u64 min_vruntime_copy;
210 #endif
211
212 struct rb_root tasks_timeline;
213 struct rb_node *rb_leftmost;
214
215 /*
216 * 'curr' points to currently running entity on this cfs_rq.
217 * It is set to NULL otherwise (i.e when none are currently running).
218 */
219 struct sched_entity *curr, *next, *last, *skip;
220
221 #ifdef CONFIG_SCHED_DEBUG
222 unsigned int nr_spread_over;
223 #endif
224
225 #ifdef CONFIG_FAIR_GROUP_SCHED
226 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
227
228 /*
229 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
230 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
231 * (like users, containers etc.)
232 *
233 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
234 * list is used during load balance.
235 */
236 int on_list;
237 struct list_head leaf_cfs_rq_list;
238 struct task_group *tg; /* group that "owns" this runqueue */
239
240 #ifdef CONFIG_SMP
241 /*
242 * h_load = weight * f(tg)
243 *
244 * Where f(tg) is the recursive weight fraction assigned to
245 * this group.
246 */
247 unsigned long h_load;
248
249 /*
250 * Maintaining per-cpu shares distribution for group scheduling
251 *
252 * load_stamp is the last time we updated the load average
253 * load_last is the last time we updated the load average and saw load
254 * load_unacc_exec_time is currently unaccounted execution time
255 */
256 u64 load_avg;
257 u64 load_period;
258 u64 load_stamp, load_last, load_unacc_exec_time;
259
260 unsigned long load_contribution;
261 #endif /* CONFIG_SMP */
262 #ifdef CONFIG_CFS_BANDWIDTH
263 int runtime_enabled;
264 u64 runtime_expires;
265 s64 runtime_remaining;
266
267 u64 throttled_timestamp;
268 int throttled, throttle_count;
269 struct list_head throttled_list;
270 #endif /* CONFIG_CFS_BANDWIDTH */
271 #endif /* CONFIG_FAIR_GROUP_SCHED */
272 };
273
274 static inline int rt_bandwidth_enabled(void)
275 {
276 return sysctl_sched_rt_runtime >= 0;
277 }
278
279 /* Real-Time classes' related field in a runqueue: */
280 struct rt_rq {
281 struct rt_prio_array active;
282 unsigned int rt_nr_running;
283 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
284 struct {
285 int curr; /* highest queued rt task prio */
286 #ifdef CONFIG_SMP
287 int next; /* next highest */
288 #endif
289 } highest_prio;
290 #endif
291 #ifdef CONFIG_SMP
292 unsigned long rt_nr_migratory;
293 unsigned long rt_nr_total;
294 int overloaded;
295 struct plist_head pushable_tasks;
296 #endif
297 int rt_throttled;
298 u64 rt_time;
299 u64 rt_runtime;
300 /* Nests inside the rq lock: */
301 raw_spinlock_t rt_runtime_lock;
302
303 #ifdef CONFIG_RT_GROUP_SCHED
304 unsigned long rt_nr_boosted;
305
306 struct rq *rq;
307 struct list_head leaf_rt_rq_list;
308 struct task_group *tg;
309 #endif
310 };
311
312 #ifdef CONFIG_SMP
313
314 /*
315 * We add the notion of a root-domain which will be used to define per-domain
316 * variables. Each exclusive cpuset essentially defines an island domain by
317 * fully partitioning the member cpus from any other cpuset. Whenever a new
318 * exclusive cpuset is created, we also create and attach a new root-domain
319 * object.
320 *
321 */
322 struct root_domain {
323 atomic_t refcount;
324 atomic_t rto_count;
325 struct rcu_head rcu;
326 cpumask_var_t span;
327 cpumask_var_t online;
328
329 /*
330 * The "RT overload" flag: it gets set if a CPU has more than
331 * one runnable RT task.
332 */
333 cpumask_var_t rto_mask;
334 struct cpupri cpupri;
335 };
336
337 extern struct root_domain def_root_domain;
338
339 #endif /* CONFIG_SMP */
340
341 /*
342 * This is the main, per-CPU runqueue data structure.
343 *
344 * Locking rule: those places that want to lock multiple runqueues
345 * (such as the load balancing or the thread migration code), lock
346 * acquire operations must be ordered by ascending &runqueue.
347 */
348 struct rq {
349 /* runqueue lock: */
350 raw_spinlock_t lock;
351
352 /*
353 * nr_running and cpu_load should be in the same cacheline because
354 * remote CPUs use both these fields when doing load calculation.
355 */
356 unsigned int nr_running;
357 #define CPU_LOAD_IDX_MAX 5
358 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
359 unsigned long last_load_update_tick;
360 #ifdef CONFIG_NO_HZ
361 u64 nohz_stamp;
362 unsigned long nohz_flags;
363 #endif
364 int skip_clock_update;
365
366 /* capture load from *all* tasks on this cpu: */
367 struct load_weight load;
368 unsigned long nr_load_updates;
369 u64 nr_switches;
370
371 struct cfs_rq cfs;
372 struct rt_rq rt;
373
374 #ifdef CONFIG_FAIR_GROUP_SCHED
375 /* list of leaf cfs_rq on this cpu: */
376 struct list_head leaf_cfs_rq_list;
377 #endif
378 #ifdef CONFIG_RT_GROUP_SCHED
379 struct list_head leaf_rt_rq_list;
380 #endif
381
382 /*
383 * This is part of a global counter where only the total sum
384 * over all CPUs matters. A task can increase this counter on
385 * one CPU and if it got migrated afterwards it may decrease
386 * it on another CPU. Always updated under the runqueue lock:
387 */
388 unsigned long nr_uninterruptible;
389
390 struct task_struct *curr, *idle, *stop;
391 unsigned long next_balance;
392 struct mm_struct *prev_mm;
393
394 u64 clock;
395 u64 clock_task;
396
397 atomic_t nr_iowait;
398
399 #ifdef CONFIG_SMP
400 struct root_domain *rd;
401 struct sched_domain *sd;
402
403 unsigned long cpu_power;
404
405 unsigned char idle_balance;
406 /* For active balancing */
407 int post_schedule;
408 int active_balance;
409 int push_cpu;
410 struct cpu_stop_work active_balance_work;
411 /* cpu of this runqueue: */
412 int cpu;
413 int online;
414
415 struct list_head cfs_tasks;
416
417 u64 rt_avg;
418 u64 age_stamp;
419 u64 idle_stamp;
420 u64 avg_idle;
421 #endif
422
423 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
424 u64 prev_irq_time;
425 #endif
426 #ifdef CONFIG_PARAVIRT
427 u64 prev_steal_time;
428 #endif
429 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
430 u64 prev_steal_time_rq;
431 #endif
432
433 /* calc_load related fields */
434 unsigned long calc_load_update;
435 long calc_load_active;
436
437 #ifdef CONFIG_SCHED_HRTICK
438 #ifdef CONFIG_SMP
439 int hrtick_csd_pending;
440 struct call_single_data hrtick_csd;
441 #endif
442 struct hrtimer hrtick_timer;
443 #endif
444
445 #ifdef CONFIG_SCHEDSTATS
446 /* latency stats */
447 struct sched_info rq_sched_info;
448 unsigned long long rq_cpu_time;
449 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
450
451 /* sys_sched_yield() stats */
452 unsigned int yld_count;
453
454 /* schedule() stats */
455 unsigned int sched_count;
456 unsigned int sched_goidle;
457
458 /* try_to_wake_up() stats */
459 unsigned int ttwu_count;
460 unsigned int ttwu_local;
461 #endif
462
463 #ifdef CONFIG_SMP
464 struct llist_head wake_list;
465 #endif
466 };
467
468 static inline int cpu_of(struct rq *rq)
469 {
470 #ifdef CONFIG_SMP
471 return rq->cpu;
472 #else
473 return 0;
474 #endif
475 }
476
477 DECLARE_PER_CPU(struct rq, runqueues);
478
479 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
480 #define this_rq() (&__get_cpu_var(runqueues))
481 #define task_rq(p) cpu_rq(task_cpu(p))
482 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
483 #define raw_rq() (&__raw_get_cpu_var(runqueues))
484
485 #ifdef CONFIG_SMP
486
487 #define rcu_dereference_check_sched_domain(p) \
488 rcu_dereference_check((p), \
489 lockdep_is_held(&sched_domains_mutex))
490
491 /*
492 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
493 * See detach_destroy_domains: synchronize_sched for details.
494 *
495 * The domain tree of any CPU may only be accessed from within
496 * preempt-disabled sections.
497 */
498 #define for_each_domain(cpu, __sd) \
499 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
500 __sd; __sd = __sd->parent)
501
502 #define for_each_lower_domain(sd) for (; sd; sd = sd->child)
503
504 /**
505 * highest_flag_domain - Return highest sched_domain containing flag.
506 * @cpu: The cpu whose highest level of sched domain is to
507 * be returned.
508 * @flag: The flag to check for the highest sched_domain
509 * for the given cpu.
510 *
511 * Returns the highest sched_domain of a cpu which contains the given flag.
512 */
513 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
514 {
515 struct sched_domain *sd, *hsd = NULL;
516
517 for_each_domain(cpu, sd) {
518 if (!(sd->flags & flag))
519 break;
520 hsd = sd;
521 }
522
523 return hsd;
524 }
525
526 DECLARE_PER_CPU(struct sched_domain *, sd_llc);
527 DECLARE_PER_CPU(int, sd_llc_id);
528
529 extern int group_balance_cpu(struct sched_group *sg);
530
531 #endif /* CONFIG_SMP */
532
533 #include "stats.h"
534 #include "auto_group.h"
535
536 #ifdef CONFIG_CGROUP_SCHED
537
538 /*
539 * Return the group to which this tasks belongs.
540 *
541 * We use task_subsys_state_check() and extend the RCU verification with
542 * pi->lock and rq->lock because cpu_cgroup_attach() holds those locks for each
543 * task it moves into the cgroup. Therefore by holding either of those locks,
544 * we pin the task to the current cgroup.
545 */
546 static inline struct task_group *task_group(struct task_struct *p)
547 {
548 struct task_group *tg;
549 struct cgroup_subsys_state *css;
550
551 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
552 lockdep_is_held(&p->pi_lock) ||
553 lockdep_is_held(&task_rq(p)->lock));
554 tg = container_of(css, struct task_group, css);
555
556 return autogroup_task_group(p, tg);
557 }
558
559 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
560 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
561 {
562 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
563 struct task_group *tg = task_group(p);
564 #endif
565
566 #ifdef CONFIG_FAIR_GROUP_SCHED
567 p->se.cfs_rq = tg->cfs_rq[cpu];
568 p->se.parent = tg->se[cpu];
569 #endif
570
571 #ifdef CONFIG_RT_GROUP_SCHED
572 p->rt.rt_rq = tg->rt_rq[cpu];
573 p->rt.parent = tg->rt_se[cpu];
574 #endif
575 }
576
577 #else /* CONFIG_CGROUP_SCHED */
578
579 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
580 static inline struct task_group *task_group(struct task_struct *p)
581 {
582 return NULL;
583 }
584
585 #endif /* CONFIG_CGROUP_SCHED */
586
587 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
588 {
589 set_task_rq(p, cpu);
590 #ifdef CONFIG_SMP
591 /*
592 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
593 * successfuly executed on another CPU. We must ensure that updates of
594 * per-task data have been completed by this moment.
595 */
596 smp_wmb();
597 task_thread_info(p)->cpu = cpu;
598 #endif
599 }
600
601 /*
602 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
603 */
604 #ifdef CONFIG_SCHED_DEBUG
605 # include <linux/static_key.h>
606 # define const_debug __read_mostly
607 #else
608 # define const_debug const
609 #endif
610
611 extern const_debug unsigned int sysctl_sched_features;
612
613 #define SCHED_FEAT(name, enabled) \
614 __SCHED_FEAT_##name ,
615
616 enum {
617 #include "features.h"
618 __SCHED_FEAT_NR,
619 };
620
621 #undef SCHED_FEAT
622
623 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
624 static __always_inline bool static_branch__true(struct static_key *key)
625 {
626 return static_key_true(key); /* Not out of line branch. */
627 }
628
629 static __always_inline bool static_branch__false(struct static_key *key)
630 {
631 return static_key_false(key); /* Out of line branch. */
632 }
633
634 #define SCHED_FEAT(name, enabled) \
635 static __always_inline bool static_branch_##name(struct static_key *key) \
636 { \
637 return static_branch__##enabled(key); \
638 }
639
640 #include "features.h"
641
642 #undef SCHED_FEAT
643
644 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
645 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
646 #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
647 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
648 #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
649
650 static inline u64 global_rt_period(void)
651 {
652 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
653 }
654
655 static inline u64 global_rt_runtime(void)
656 {
657 if (sysctl_sched_rt_runtime < 0)
658 return RUNTIME_INF;
659
660 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
661 }
662
663
664
665 static inline int task_current(struct rq *rq, struct task_struct *p)
666 {
667 return rq->curr == p;
668 }
669
670 static inline int task_running(struct rq *rq, struct task_struct *p)
671 {
672 #ifdef CONFIG_SMP
673 return p->on_cpu;
674 #else
675 return task_current(rq, p);
676 #endif
677 }
678
679
680 #ifndef prepare_arch_switch
681 # define prepare_arch_switch(next) do { } while (0)
682 #endif
683 #ifndef finish_arch_switch
684 # define finish_arch_switch(prev) do { } while (0)
685 #endif
686 #ifndef finish_arch_post_lock_switch
687 # define finish_arch_post_lock_switch() do { } while (0)
688 #endif
689
690 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
691 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
692 {
693 #ifdef CONFIG_SMP
694 /*
695 * We can optimise this out completely for !SMP, because the
696 * SMP rebalancing from interrupt is the only thing that cares
697 * here.
698 */
699 next->on_cpu = 1;
700 #endif
701 }
702
703 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
704 {
705 #ifdef CONFIG_SMP
706 /*
707 * After ->on_cpu is cleared, the task can be moved to a different CPU.
708 * We must ensure this doesn't happen until the switch is completely
709 * finished.
710 */
711 smp_wmb();
712 prev->on_cpu = 0;
713 #endif
714 #ifdef CONFIG_DEBUG_SPINLOCK
715 /* this is a valid case when another task releases the spinlock */
716 rq->lock.owner = current;
717 #endif
718 /*
719 * If we are tracking spinlock dependencies then we have to
720 * fix up the runqueue lock - which gets 'carried over' from
721 * prev into current:
722 */
723 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
724
725 raw_spin_unlock_irq(&rq->lock);
726 }
727
728 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
729 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
730 {
731 #ifdef CONFIG_SMP
732 /*
733 * We can optimise this out completely for !SMP, because the
734 * SMP rebalancing from interrupt is the only thing that cares
735 * here.
736 */
737 next->on_cpu = 1;
738 #endif
739 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
740 raw_spin_unlock_irq(&rq->lock);
741 #else
742 raw_spin_unlock(&rq->lock);
743 #endif
744 }
745
746 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
747 {
748 #ifdef CONFIG_SMP
749 /*
750 * After ->on_cpu is cleared, the task can be moved to a different CPU.
751 * We must ensure this doesn't happen until the switch is completely
752 * finished.
753 */
754 smp_wmb();
755 prev->on_cpu = 0;
756 #endif
757 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
758 local_irq_enable();
759 #endif
760 }
761 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
762
763
764 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
765 {
766 lw->weight += inc;
767 lw->inv_weight = 0;
768 }
769
770 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
771 {
772 lw->weight -= dec;
773 lw->inv_weight = 0;
774 }
775
776 static inline void update_load_set(struct load_weight *lw, unsigned long w)
777 {
778 lw->weight = w;
779 lw->inv_weight = 0;
780 }
781
782 /*
783 * To aid in avoiding the subversion of "niceness" due to uneven distribution
784 * of tasks with abnormal "nice" values across CPUs the contribution that
785 * each task makes to its run queue's load is weighted according to its
786 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
787 * scaled version of the new time slice allocation that they receive on time
788 * slice expiry etc.
789 */
790
791 #define WEIGHT_IDLEPRIO 3
792 #define WMULT_IDLEPRIO 1431655765
793
794 /*
795 * Nice levels are multiplicative, with a gentle 10% change for every
796 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
797 * nice 1, it will get ~10% less CPU time than another CPU-bound task
798 * that remained on nice 0.
799 *
800 * The "10% effect" is relative and cumulative: from _any_ nice level,
801 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
802 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
803 * If a task goes up by ~10% and another task goes down by ~10% then
804 * the relative distance between them is ~25%.)
805 */
806 static const int prio_to_weight[40] = {
807 /* -20 */ 88761, 71755, 56483, 46273, 36291,
808 /* -15 */ 29154, 23254, 18705, 14949, 11916,
809 /* -10 */ 9548, 7620, 6100, 4904, 3906,
810 /* -5 */ 3121, 2501, 1991, 1586, 1277,
811 /* 0 */ 1024, 820, 655, 526, 423,
812 /* 5 */ 335, 272, 215, 172, 137,
813 /* 10 */ 110, 87, 70, 56, 45,
814 /* 15 */ 36, 29, 23, 18, 15,
815 };
816
817 /*
818 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
819 *
820 * In cases where the weight does not change often, we can use the
821 * precalculated inverse to speed up arithmetics by turning divisions
822 * into multiplications:
823 */
824 static const u32 prio_to_wmult[40] = {
825 /* -20 */ 48388, 59856, 76040, 92818, 118348,
826 /* -15 */ 147320, 184698, 229616, 287308, 360437,
827 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
828 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
829 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
830 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
831 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
832 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
833 };
834
835 /* Time spent by the tasks of the cpu accounting group executing in ... */
836 enum cpuacct_stat_index {
837 CPUACCT_STAT_USER, /* ... user mode */
838 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
839
840 CPUACCT_STAT_NSTATS,
841 };
842
843
844 #define sched_class_highest (&stop_sched_class)
845 #define for_each_class(class) \
846 for (class = sched_class_highest; class; class = class->next)
847
848 extern const struct sched_class stop_sched_class;
849 extern const struct sched_class rt_sched_class;
850 extern const struct sched_class fair_sched_class;
851 extern const struct sched_class idle_sched_class;
852
853
854 #ifdef CONFIG_SMP
855
856 extern void trigger_load_balance(struct rq *rq, int cpu);
857 extern void idle_balance(int this_cpu, struct rq *this_rq);
858
859 #else /* CONFIG_SMP */
860
861 static inline void idle_balance(int cpu, struct rq *rq)
862 {
863 }
864
865 #endif
866
867 extern void sysrq_sched_debug_show(void);
868 extern void sched_init_granularity(void);
869 extern void update_max_interval(void);
870 extern void update_group_power(struct sched_domain *sd, int cpu);
871 extern int update_runtime(struct notifier_block *nfb, unsigned long action, void *hcpu);
872 extern void init_sched_rt_class(void);
873 extern void init_sched_fair_class(void);
874
875 extern void resched_task(struct task_struct *p);
876 extern void resched_cpu(int cpu);
877
878 extern struct rt_bandwidth def_rt_bandwidth;
879 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
880
881 extern void update_idle_cpu_load(struct rq *this_rq);
882
883 #ifdef CONFIG_CGROUP_CPUACCT
884 #include <linux/cgroup.h>
885 /* track cpu usage of a group of tasks and its child groups */
886 struct cpuacct {
887 struct cgroup_subsys_state css;
888 /* cpuusage holds pointer to a u64-type object on every cpu */
889 u64 __percpu *cpuusage;
890 struct kernel_cpustat __percpu *cpustat;
891 };
892
893 /* return cpu accounting group corresponding to this container */
894 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
895 {
896 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
897 struct cpuacct, css);
898 }
899
900 /* return cpu accounting group to which this task belongs */
901 static inline struct cpuacct *task_ca(struct task_struct *tsk)
902 {
903 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
904 struct cpuacct, css);
905 }
906
907 static inline struct cpuacct *parent_ca(struct cpuacct *ca)
908 {
909 if (!ca || !ca->css.cgroup->parent)
910 return NULL;
911 return cgroup_ca(ca->css.cgroup->parent);
912 }
913
914 extern void cpuacct_charge(struct task_struct *tsk, u64 cputime);
915 #else
916 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
917 #endif
918
919 static inline void inc_nr_running(struct rq *rq)
920 {
921 rq->nr_running++;
922 }
923
924 static inline void dec_nr_running(struct rq *rq)
925 {
926 rq->nr_running--;
927 }
928
929 extern void update_rq_clock(struct rq *rq);
930
931 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
932 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
933
934 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
935
936 extern const_debug unsigned int sysctl_sched_time_avg;
937 extern const_debug unsigned int sysctl_sched_nr_migrate;
938 extern const_debug unsigned int sysctl_sched_migration_cost;
939
940 static inline u64 sched_avg_period(void)
941 {
942 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
943 }
944
945 void calc_load_account_idle(struct rq *this_rq);
946
947 #ifdef CONFIG_SCHED_HRTICK
948
949 /*
950 * Use hrtick when:
951 * - enabled by features
952 * - hrtimer is actually high res
953 */
954 static inline int hrtick_enabled(struct rq *rq)
955 {
956 if (!sched_feat(HRTICK))
957 return 0;
958 if (!cpu_active(cpu_of(rq)))
959 return 0;
960 return hrtimer_is_hres_active(&rq->hrtick_timer);
961 }
962
963 void hrtick_start(struct rq *rq, u64 delay);
964
965 #else
966
967 static inline int hrtick_enabled(struct rq *rq)
968 {
969 return 0;
970 }
971
972 #endif /* CONFIG_SCHED_HRTICK */
973
974 #ifdef CONFIG_SMP
975 extern void sched_avg_update(struct rq *rq);
976 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
977 {
978 rq->rt_avg += rt_delta;
979 sched_avg_update(rq);
980 }
981 #else
982 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
983 static inline void sched_avg_update(struct rq *rq) { }
984 #endif
985
986 extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period);
987
988 #ifdef CONFIG_SMP
989 #ifdef CONFIG_PREEMPT
990
991 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
992
993 /*
994 * fair double_lock_balance: Safely acquires both rq->locks in a fair
995 * way at the expense of forcing extra atomic operations in all
996 * invocations. This assures that the double_lock is acquired using the
997 * same underlying policy as the spinlock_t on this architecture, which
998 * reduces latency compared to the unfair variant below. However, it
999 * also adds more overhead and therefore may reduce throughput.
1000 */
1001 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1002 __releases(this_rq->lock)
1003 __acquires(busiest->lock)
1004 __acquires(this_rq->lock)
1005 {
1006 raw_spin_unlock(&this_rq->lock);
1007 double_rq_lock(this_rq, busiest);
1008
1009 return 1;
1010 }
1011
1012 #else
1013 /*
1014 * Unfair double_lock_balance: Optimizes throughput at the expense of
1015 * latency by eliminating extra atomic operations when the locks are
1016 * already in proper order on entry. This favors lower cpu-ids and will
1017 * grant the double lock to lower cpus over higher ids under contention,
1018 * regardless of entry order into the function.
1019 */
1020 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1021 __releases(this_rq->lock)
1022 __acquires(busiest->lock)
1023 __acquires(this_rq->lock)
1024 {
1025 int ret = 0;
1026
1027 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1028 if (busiest < this_rq) {
1029 raw_spin_unlock(&this_rq->lock);
1030 raw_spin_lock(&busiest->lock);
1031 raw_spin_lock_nested(&this_rq->lock,
1032 SINGLE_DEPTH_NESTING);
1033 ret = 1;
1034 } else
1035 raw_spin_lock_nested(&busiest->lock,
1036 SINGLE_DEPTH_NESTING);
1037 }
1038 return ret;
1039 }
1040
1041 #endif /* CONFIG_PREEMPT */
1042
1043 /*
1044 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1045 */
1046 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1047 {
1048 if (unlikely(!irqs_disabled())) {
1049 /* printk() doesn't work good under rq->lock */
1050 raw_spin_unlock(&this_rq->lock);
1051 BUG_ON(1);
1052 }
1053
1054 return _double_lock_balance(this_rq, busiest);
1055 }
1056
1057 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1058 __releases(busiest->lock)
1059 {
1060 raw_spin_unlock(&busiest->lock);
1061 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1062 }
1063
1064 /*
1065 * double_rq_lock - safely lock two runqueues
1066 *
1067 * Note this does not disable interrupts like task_rq_lock,
1068 * you need to do so manually before calling.
1069 */
1070 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1071 __acquires(rq1->lock)
1072 __acquires(rq2->lock)
1073 {
1074 BUG_ON(!irqs_disabled());
1075 if (rq1 == rq2) {
1076 raw_spin_lock(&rq1->lock);
1077 __acquire(rq2->lock); /* Fake it out ;) */
1078 } else {
1079 if (rq1 < rq2) {
1080 raw_spin_lock(&rq1->lock);
1081 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1082 } else {
1083 raw_spin_lock(&rq2->lock);
1084 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1085 }
1086 }
1087 }
1088
1089 /*
1090 * double_rq_unlock - safely unlock two runqueues
1091 *
1092 * Note this does not restore interrupts like task_rq_unlock,
1093 * you need to do so manually after calling.
1094 */
1095 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1096 __releases(rq1->lock)
1097 __releases(rq2->lock)
1098 {
1099 raw_spin_unlock(&rq1->lock);
1100 if (rq1 != rq2)
1101 raw_spin_unlock(&rq2->lock);
1102 else
1103 __release(rq2->lock);
1104 }
1105
1106 #else /* CONFIG_SMP */
1107
1108 /*
1109 * double_rq_lock - safely lock two runqueues
1110 *
1111 * Note this does not disable interrupts like task_rq_lock,
1112 * you need to do so manually before calling.
1113 */
1114 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1115 __acquires(rq1->lock)
1116 __acquires(rq2->lock)
1117 {
1118 BUG_ON(!irqs_disabled());
1119 BUG_ON(rq1 != rq2);
1120 raw_spin_lock(&rq1->lock);
1121 __acquire(rq2->lock); /* Fake it out ;) */
1122 }
1123
1124 /*
1125 * double_rq_unlock - safely unlock two runqueues
1126 *
1127 * Note this does not restore interrupts like task_rq_unlock,
1128 * you need to do so manually after calling.
1129 */
1130 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1131 __releases(rq1->lock)
1132 __releases(rq2->lock)
1133 {
1134 BUG_ON(rq1 != rq2);
1135 raw_spin_unlock(&rq1->lock);
1136 __release(rq2->lock);
1137 }
1138
1139 #endif
1140
1141 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1142 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1143 extern void print_cfs_stats(struct seq_file *m, int cpu);
1144 extern void print_rt_stats(struct seq_file *m, int cpu);
1145
1146 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1147 extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq);
1148 extern void unthrottle_offline_cfs_rqs(struct rq *rq);
1149
1150 extern void account_cfs_bandwidth_used(int enabled, int was_enabled);
1151
1152 #ifdef CONFIG_NO_HZ
1153 enum rq_nohz_flag_bits {
1154 NOHZ_TICK_STOPPED,
1155 NOHZ_BALANCE_KICK,
1156 NOHZ_IDLE,
1157 };
1158
1159 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1160 #endif
This page took 0.061648 seconds and 5 git commands to generate.