Merge branch 'overlayfs-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mszer...
[deliverable/linux.git] / kernel / sched / sched.h
1
2 #include <linux/sched.h>
3 #include <linux/sched/sysctl.h>
4 #include <linux/sched/rt.h>
5 #include <linux/sched/deadline.h>
6 #include <linux/binfmts.h>
7 #include <linux/mutex.h>
8 #include <linux/spinlock.h>
9 #include <linux/stop_machine.h>
10 #include <linux/irq_work.h>
11 #include <linux/tick.h>
12 #include <linux/slab.h>
13
14 #include "cpupri.h"
15 #include "cpudeadline.h"
16 #include "cpuacct.h"
17
18 struct rq;
19 struct cpuidle_state;
20
21 /* task_struct::on_rq states: */
22 #define TASK_ON_RQ_QUEUED 1
23 #define TASK_ON_RQ_MIGRATING 2
24
25 extern __read_mostly int scheduler_running;
26
27 extern unsigned long calc_load_update;
28 extern atomic_long_t calc_load_tasks;
29
30 extern void calc_global_load_tick(struct rq *this_rq);
31 extern long calc_load_fold_active(struct rq *this_rq);
32
33 #ifdef CONFIG_SMP
34 extern void cpu_load_update_active(struct rq *this_rq);
35 #else
36 static inline void cpu_load_update_active(struct rq *this_rq) { }
37 #endif
38
39 /*
40 * Helpers for converting nanosecond timing to jiffy resolution
41 */
42 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
43
44 /*
45 * Increase resolution of nice-level calculations for 64-bit architectures.
46 * The extra resolution improves shares distribution and load balancing of
47 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
48 * hierarchies, especially on larger systems. This is not a user-visible change
49 * and does not change the user-interface for setting shares/weights.
50 *
51 * We increase resolution only if we have enough bits to allow this increased
52 * resolution (i.e. 64bit). The costs for increasing resolution when 32bit are
53 * pretty high and the returns do not justify the increased costs.
54 *
55 * Really only required when CONFIG_FAIR_GROUP_SCHED is also set, but to
56 * increase coverage and consistency always enable it on 64bit platforms.
57 */
58 #ifdef CONFIG_64BIT
59 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
60 # define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT)
61 # define scale_load_down(w) ((w) >> SCHED_FIXEDPOINT_SHIFT)
62 #else
63 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT)
64 # define scale_load(w) (w)
65 # define scale_load_down(w) (w)
66 #endif
67
68 /*
69 * Task weight (visible to users) and its load (invisible to users) have
70 * independent resolution, but they should be well calibrated. We use
71 * scale_load() and scale_load_down(w) to convert between them. The
72 * following must be true:
73 *
74 * scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
75 *
76 */
77 #define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT)
78
79 /*
80 * Single value that decides SCHED_DEADLINE internal math precision.
81 * 10 -> just above 1us
82 * 9 -> just above 0.5us
83 */
84 #define DL_SCALE (10)
85
86 /*
87 * These are the 'tuning knobs' of the scheduler:
88 */
89
90 /*
91 * single value that denotes runtime == period, ie unlimited time.
92 */
93 #define RUNTIME_INF ((u64)~0ULL)
94
95 static inline int idle_policy(int policy)
96 {
97 return policy == SCHED_IDLE;
98 }
99 static inline int fair_policy(int policy)
100 {
101 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
102 }
103
104 static inline int rt_policy(int policy)
105 {
106 return policy == SCHED_FIFO || policy == SCHED_RR;
107 }
108
109 static inline int dl_policy(int policy)
110 {
111 return policy == SCHED_DEADLINE;
112 }
113 static inline bool valid_policy(int policy)
114 {
115 return idle_policy(policy) || fair_policy(policy) ||
116 rt_policy(policy) || dl_policy(policy);
117 }
118
119 static inline int task_has_rt_policy(struct task_struct *p)
120 {
121 return rt_policy(p->policy);
122 }
123
124 static inline int task_has_dl_policy(struct task_struct *p)
125 {
126 return dl_policy(p->policy);
127 }
128
129 /*
130 * Tells if entity @a should preempt entity @b.
131 */
132 static inline bool
133 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
134 {
135 return dl_time_before(a->deadline, b->deadline);
136 }
137
138 /*
139 * This is the priority-queue data structure of the RT scheduling class:
140 */
141 struct rt_prio_array {
142 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
143 struct list_head queue[MAX_RT_PRIO];
144 };
145
146 struct rt_bandwidth {
147 /* nests inside the rq lock: */
148 raw_spinlock_t rt_runtime_lock;
149 ktime_t rt_period;
150 u64 rt_runtime;
151 struct hrtimer rt_period_timer;
152 unsigned int rt_period_active;
153 };
154
155 void __dl_clear_params(struct task_struct *p);
156
157 /*
158 * To keep the bandwidth of -deadline tasks and groups under control
159 * we need some place where:
160 * - store the maximum -deadline bandwidth of the system (the group);
161 * - cache the fraction of that bandwidth that is currently allocated.
162 *
163 * This is all done in the data structure below. It is similar to the
164 * one used for RT-throttling (rt_bandwidth), with the main difference
165 * that, since here we are only interested in admission control, we
166 * do not decrease any runtime while the group "executes", neither we
167 * need a timer to replenish it.
168 *
169 * With respect to SMP, the bandwidth is given on a per-CPU basis,
170 * meaning that:
171 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
172 * - dl_total_bw array contains, in the i-eth element, the currently
173 * allocated bandwidth on the i-eth CPU.
174 * Moreover, groups consume bandwidth on each CPU, while tasks only
175 * consume bandwidth on the CPU they're running on.
176 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
177 * that will be shown the next time the proc or cgroup controls will
178 * be red. It on its turn can be changed by writing on its own
179 * control.
180 */
181 struct dl_bandwidth {
182 raw_spinlock_t dl_runtime_lock;
183 u64 dl_runtime;
184 u64 dl_period;
185 };
186
187 static inline int dl_bandwidth_enabled(void)
188 {
189 return sysctl_sched_rt_runtime >= 0;
190 }
191
192 extern struct dl_bw *dl_bw_of(int i);
193
194 struct dl_bw {
195 raw_spinlock_t lock;
196 u64 bw, total_bw;
197 };
198
199 static inline
200 void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
201 {
202 dl_b->total_bw -= tsk_bw;
203 }
204
205 static inline
206 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
207 {
208 dl_b->total_bw += tsk_bw;
209 }
210
211 static inline
212 bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
213 {
214 return dl_b->bw != -1 &&
215 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
216 }
217
218 extern struct mutex sched_domains_mutex;
219
220 #ifdef CONFIG_CGROUP_SCHED
221
222 #include <linux/cgroup.h>
223
224 struct cfs_rq;
225 struct rt_rq;
226
227 extern struct list_head task_groups;
228
229 struct cfs_bandwidth {
230 #ifdef CONFIG_CFS_BANDWIDTH
231 raw_spinlock_t lock;
232 ktime_t period;
233 u64 quota, runtime;
234 s64 hierarchical_quota;
235 u64 runtime_expires;
236
237 int idle, period_active;
238 struct hrtimer period_timer, slack_timer;
239 struct list_head throttled_cfs_rq;
240
241 /* statistics */
242 int nr_periods, nr_throttled;
243 u64 throttled_time;
244 #endif
245 };
246
247 /* task group related information */
248 struct task_group {
249 struct cgroup_subsys_state css;
250
251 #ifdef CONFIG_FAIR_GROUP_SCHED
252 /* schedulable entities of this group on each cpu */
253 struct sched_entity **se;
254 /* runqueue "owned" by this group on each cpu */
255 struct cfs_rq **cfs_rq;
256 unsigned long shares;
257
258 #ifdef CONFIG_SMP
259 /*
260 * load_avg can be heavily contended at clock tick time, so put
261 * it in its own cacheline separated from the fields above which
262 * will also be accessed at each tick.
263 */
264 atomic_long_t load_avg ____cacheline_aligned;
265 #endif
266 #endif
267
268 #ifdef CONFIG_RT_GROUP_SCHED
269 struct sched_rt_entity **rt_se;
270 struct rt_rq **rt_rq;
271
272 struct rt_bandwidth rt_bandwidth;
273 #endif
274
275 struct rcu_head rcu;
276 struct list_head list;
277
278 struct task_group *parent;
279 struct list_head siblings;
280 struct list_head children;
281
282 #ifdef CONFIG_SCHED_AUTOGROUP
283 struct autogroup *autogroup;
284 #endif
285
286 struct cfs_bandwidth cfs_bandwidth;
287 };
288
289 #ifdef CONFIG_FAIR_GROUP_SCHED
290 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
291
292 /*
293 * A weight of 0 or 1 can cause arithmetics problems.
294 * A weight of a cfs_rq is the sum of weights of which entities
295 * are queued on this cfs_rq, so a weight of a entity should not be
296 * too large, so as the shares value of a task group.
297 * (The default weight is 1024 - so there's no practical
298 * limitation from this.)
299 */
300 #define MIN_SHARES (1UL << 1)
301 #define MAX_SHARES (1UL << 18)
302 #endif
303
304 typedef int (*tg_visitor)(struct task_group *, void *);
305
306 extern int walk_tg_tree_from(struct task_group *from,
307 tg_visitor down, tg_visitor up, void *data);
308
309 /*
310 * Iterate the full tree, calling @down when first entering a node and @up when
311 * leaving it for the final time.
312 *
313 * Caller must hold rcu_lock or sufficient equivalent.
314 */
315 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
316 {
317 return walk_tg_tree_from(&root_task_group, down, up, data);
318 }
319
320 extern int tg_nop(struct task_group *tg, void *data);
321
322 extern void free_fair_sched_group(struct task_group *tg);
323 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
324 extern void unregister_fair_sched_group(struct task_group *tg);
325 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
326 struct sched_entity *se, int cpu,
327 struct sched_entity *parent);
328 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
329
330 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
331 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
332 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
333
334 extern void free_rt_sched_group(struct task_group *tg);
335 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
336 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
337 struct sched_rt_entity *rt_se, int cpu,
338 struct sched_rt_entity *parent);
339
340 extern struct task_group *sched_create_group(struct task_group *parent);
341 extern void sched_online_group(struct task_group *tg,
342 struct task_group *parent);
343 extern void sched_destroy_group(struct task_group *tg);
344 extern void sched_offline_group(struct task_group *tg);
345
346 extern void sched_move_task(struct task_struct *tsk);
347
348 #ifdef CONFIG_FAIR_GROUP_SCHED
349 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
350
351 #ifdef CONFIG_SMP
352 extern void set_task_rq_fair(struct sched_entity *se,
353 struct cfs_rq *prev, struct cfs_rq *next);
354 #else /* !CONFIG_SMP */
355 static inline void set_task_rq_fair(struct sched_entity *se,
356 struct cfs_rq *prev, struct cfs_rq *next) { }
357 #endif /* CONFIG_SMP */
358 #endif /* CONFIG_FAIR_GROUP_SCHED */
359
360 #else /* CONFIG_CGROUP_SCHED */
361
362 struct cfs_bandwidth { };
363
364 #endif /* CONFIG_CGROUP_SCHED */
365
366 /* CFS-related fields in a runqueue */
367 struct cfs_rq {
368 struct load_weight load;
369 unsigned int nr_running, h_nr_running;
370
371 u64 exec_clock;
372 u64 min_vruntime;
373 #ifndef CONFIG_64BIT
374 u64 min_vruntime_copy;
375 #endif
376
377 struct rb_root tasks_timeline;
378 struct rb_node *rb_leftmost;
379
380 /*
381 * 'curr' points to currently running entity on this cfs_rq.
382 * It is set to NULL otherwise (i.e when none are currently running).
383 */
384 struct sched_entity *curr, *next, *last, *skip;
385
386 #ifdef CONFIG_SCHED_DEBUG
387 unsigned int nr_spread_over;
388 #endif
389
390 #ifdef CONFIG_SMP
391 /*
392 * CFS load tracking
393 */
394 struct sched_avg avg;
395 u64 runnable_load_sum;
396 unsigned long runnable_load_avg;
397 #ifdef CONFIG_FAIR_GROUP_SCHED
398 unsigned long tg_load_avg_contrib;
399 #endif
400 atomic_long_t removed_load_avg, removed_util_avg;
401 #ifndef CONFIG_64BIT
402 u64 load_last_update_time_copy;
403 #endif
404
405 #ifdef CONFIG_FAIR_GROUP_SCHED
406 /*
407 * h_load = weight * f(tg)
408 *
409 * Where f(tg) is the recursive weight fraction assigned to
410 * this group.
411 */
412 unsigned long h_load;
413 u64 last_h_load_update;
414 struct sched_entity *h_load_next;
415 #endif /* CONFIG_FAIR_GROUP_SCHED */
416 #endif /* CONFIG_SMP */
417
418 #ifdef CONFIG_FAIR_GROUP_SCHED
419 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
420
421 /*
422 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
423 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
424 * (like users, containers etc.)
425 *
426 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
427 * list is used during load balance.
428 */
429 int on_list;
430 struct list_head leaf_cfs_rq_list;
431 struct task_group *tg; /* group that "owns" this runqueue */
432
433 #ifdef CONFIG_CFS_BANDWIDTH
434 int runtime_enabled;
435 u64 runtime_expires;
436 s64 runtime_remaining;
437
438 u64 throttled_clock, throttled_clock_task;
439 u64 throttled_clock_task_time;
440 int throttled, throttle_count;
441 struct list_head throttled_list;
442 #endif /* CONFIG_CFS_BANDWIDTH */
443 #endif /* CONFIG_FAIR_GROUP_SCHED */
444 };
445
446 static inline int rt_bandwidth_enabled(void)
447 {
448 return sysctl_sched_rt_runtime >= 0;
449 }
450
451 /* RT IPI pull logic requires IRQ_WORK */
452 #ifdef CONFIG_IRQ_WORK
453 # define HAVE_RT_PUSH_IPI
454 #endif
455
456 /* Real-Time classes' related field in a runqueue: */
457 struct rt_rq {
458 struct rt_prio_array active;
459 unsigned int rt_nr_running;
460 unsigned int rr_nr_running;
461 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
462 struct {
463 int curr; /* highest queued rt task prio */
464 #ifdef CONFIG_SMP
465 int next; /* next highest */
466 #endif
467 } highest_prio;
468 #endif
469 #ifdef CONFIG_SMP
470 unsigned long rt_nr_migratory;
471 unsigned long rt_nr_total;
472 int overloaded;
473 struct plist_head pushable_tasks;
474 #ifdef HAVE_RT_PUSH_IPI
475 int push_flags;
476 int push_cpu;
477 struct irq_work push_work;
478 raw_spinlock_t push_lock;
479 #endif
480 #endif /* CONFIG_SMP */
481 int rt_queued;
482
483 int rt_throttled;
484 u64 rt_time;
485 u64 rt_runtime;
486 /* Nests inside the rq lock: */
487 raw_spinlock_t rt_runtime_lock;
488
489 #ifdef CONFIG_RT_GROUP_SCHED
490 unsigned long rt_nr_boosted;
491
492 struct rq *rq;
493 struct task_group *tg;
494 #endif
495 };
496
497 /* Deadline class' related fields in a runqueue */
498 struct dl_rq {
499 /* runqueue is an rbtree, ordered by deadline */
500 struct rb_root rb_root;
501 struct rb_node *rb_leftmost;
502
503 unsigned long dl_nr_running;
504
505 #ifdef CONFIG_SMP
506 /*
507 * Deadline values of the currently executing and the
508 * earliest ready task on this rq. Caching these facilitates
509 * the decision wether or not a ready but not running task
510 * should migrate somewhere else.
511 */
512 struct {
513 u64 curr;
514 u64 next;
515 } earliest_dl;
516
517 unsigned long dl_nr_migratory;
518 int overloaded;
519
520 /*
521 * Tasks on this rq that can be pushed away. They are kept in
522 * an rb-tree, ordered by tasks' deadlines, with caching
523 * of the leftmost (earliest deadline) element.
524 */
525 struct rb_root pushable_dl_tasks_root;
526 struct rb_node *pushable_dl_tasks_leftmost;
527 #else
528 struct dl_bw dl_bw;
529 #endif
530 };
531
532 #ifdef CONFIG_SMP
533
534 /*
535 * We add the notion of a root-domain which will be used to define per-domain
536 * variables. Each exclusive cpuset essentially defines an island domain by
537 * fully partitioning the member cpus from any other cpuset. Whenever a new
538 * exclusive cpuset is created, we also create and attach a new root-domain
539 * object.
540 *
541 */
542 struct root_domain {
543 atomic_t refcount;
544 atomic_t rto_count;
545 struct rcu_head rcu;
546 cpumask_var_t span;
547 cpumask_var_t online;
548
549 /* Indicate more than one runnable task for any CPU */
550 bool overload;
551
552 /*
553 * The bit corresponding to a CPU gets set here if such CPU has more
554 * than one runnable -deadline task (as it is below for RT tasks).
555 */
556 cpumask_var_t dlo_mask;
557 atomic_t dlo_count;
558 struct dl_bw dl_bw;
559 struct cpudl cpudl;
560
561 /*
562 * The "RT overload" flag: it gets set if a CPU has more than
563 * one runnable RT task.
564 */
565 cpumask_var_t rto_mask;
566 struct cpupri cpupri;
567 };
568
569 extern struct root_domain def_root_domain;
570
571 #endif /* CONFIG_SMP */
572
573 /*
574 * This is the main, per-CPU runqueue data structure.
575 *
576 * Locking rule: those places that want to lock multiple runqueues
577 * (such as the load balancing or the thread migration code), lock
578 * acquire operations must be ordered by ascending &runqueue.
579 */
580 struct rq {
581 /* runqueue lock: */
582 raw_spinlock_t lock;
583
584 /*
585 * nr_running and cpu_load should be in the same cacheline because
586 * remote CPUs use both these fields when doing load calculation.
587 */
588 unsigned int nr_running;
589 #ifdef CONFIG_NUMA_BALANCING
590 unsigned int nr_numa_running;
591 unsigned int nr_preferred_running;
592 #endif
593 #define CPU_LOAD_IDX_MAX 5
594 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
595 #ifdef CONFIG_NO_HZ_COMMON
596 #ifdef CONFIG_SMP
597 unsigned long last_load_update_tick;
598 #endif /* CONFIG_SMP */
599 u64 nohz_stamp;
600 unsigned long nohz_flags;
601 #endif /* CONFIG_NO_HZ_COMMON */
602 #ifdef CONFIG_NO_HZ_FULL
603 unsigned long last_sched_tick;
604 #endif
605 /* capture load from *all* tasks on this cpu: */
606 struct load_weight load;
607 unsigned long nr_load_updates;
608 u64 nr_switches;
609
610 struct cfs_rq cfs;
611 struct rt_rq rt;
612 struct dl_rq dl;
613
614 #ifdef CONFIG_FAIR_GROUP_SCHED
615 /* list of leaf cfs_rq on this cpu: */
616 struct list_head leaf_cfs_rq_list;
617 #endif /* CONFIG_FAIR_GROUP_SCHED */
618
619 /*
620 * This is part of a global counter where only the total sum
621 * over all CPUs matters. A task can increase this counter on
622 * one CPU and if it got migrated afterwards it may decrease
623 * it on another CPU. Always updated under the runqueue lock:
624 */
625 unsigned long nr_uninterruptible;
626
627 struct task_struct *curr, *idle, *stop;
628 unsigned long next_balance;
629 struct mm_struct *prev_mm;
630
631 unsigned int clock_skip_update;
632 u64 clock;
633 u64 clock_task;
634
635 atomic_t nr_iowait;
636
637 #ifdef CONFIG_SMP
638 struct root_domain *rd;
639 struct sched_domain *sd;
640
641 unsigned long cpu_capacity;
642 unsigned long cpu_capacity_orig;
643
644 struct callback_head *balance_callback;
645
646 unsigned char idle_balance;
647 /* For active balancing */
648 int active_balance;
649 int push_cpu;
650 struct cpu_stop_work active_balance_work;
651 /* cpu of this runqueue: */
652 int cpu;
653 int online;
654
655 struct list_head cfs_tasks;
656
657 u64 rt_avg;
658 u64 age_stamp;
659 u64 idle_stamp;
660 u64 avg_idle;
661
662 /* This is used to determine avg_idle's max value */
663 u64 max_idle_balance_cost;
664 #endif
665
666 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
667 u64 prev_irq_time;
668 #endif
669 #ifdef CONFIG_PARAVIRT
670 u64 prev_steal_time;
671 #endif
672 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
673 u64 prev_steal_time_rq;
674 #endif
675
676 /* calc_load related fields */
677 unsigned long calc_load_update;
678 long calc_load_active;
679
680 #ifdef CONFIG_SCHED_HRTICK
681 #ifdef CONFIG_SMP
682 int hrtick_csd_pending;
683 struct call_single_data hrtick_csd;
684 #endif
685 struct hrtimer hrtick_timer;
686 #endif
687
688 #ifdef CONFIG_SCHEDSTATS
689 /* latency stats */
690 struct sched_info rq_sched_info;
691 unsigned long long rq_cpu_time;
692 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
693
694 /* sys_sched_yield() stats */
695 unsigned int yld_count;
696
697 /* schedule() stats */
698 unsigned int sched_count;
699 unsigned int sched_goidle;
700
701 /* try_to_wake_up() stats */
702 unsigned int ttwu_count;
703 unsigned int ttwu_local;
704 #endif
705
706 #ifdef CONFIG_SMP
707 struct llist_head wake_list;
708 #endif
709
710 #ifdef CONFIG_CPU_IDLE
711 /* Must be inspected within a rcu lock section */
712 struct cpuidle_state *idle_state;
713 #endif
714 };
715
716 static inline int cpu_of(struct rq *rq)
717 {
718 #ifdef CONFIG_SMP
719 return rq->cpu;
720 #else
721 return 0;
722 #endif
723 }
724
725 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
726
727 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
728 #define this_rq() this_cpu_ptr(&runqueues)
729 #define task_rq(p) cpu_rq(task_cpu(p))
730 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
731 #define raw_rq() raw_cpu_ptr(&runqueues)
732
733 static inline u64 __rq_clock_broken(struct rq *rq)
734 {
735 return READ_ONCE(rq->clock);
736 }
737
738 static inline u64 rq_clock(struct rq *rq)
739 {
740 lockdep_assert_held(&rq->lock);
741 return rq->clock;
742 }
743
744 static inline u64 rq_clock_task(struct rq *rq)
745 {
746 lockdep_assert_held(&rq->lock);
747 return rq->clock_task;
748 }
749
750 #define RQCF_REQ_SKIP 0x01
751 #define RQCF_ACT_SKIP 0x02
752
753 static inline void rq_clock_skip_update(struct rq *rq, bool skip)
754 {
755 lockdep_assert_held(&rq->lock);
756 if (skip)
757 rq->clock_skip_update |= RQCF_REQ_SKIP;
758 else
759 rq->clock_skip_update &= ~RQCF_REQ_SKIP;
760 }
761
762 #ifdef CONFIG_NUMA
763 enum numa_topology_type {
764 NUMA_DIRECT,
765 NUMA_GLUELESS_MESH,
766 NUMA_BACKPLANE,
767 };
768 extern enum numa_topology_type sched_numa_topology_type;
769 extern int sched_max_numa_distance;
770 extern bool find_numa_distance(int distance);
771 #endif
772
773 #ifdef CONFIG_NUMA_BALANCING
774 /* The regions in numa_faults array from task_struct */
775 enum numa_faults_stats {
776 NUMA_MEM = 0,
777 NUMA_CPU,
778 NUMA_MEMBUF,
779 NUMA_CPUBUF
780 };
781 extern void sched_setnuma(struct task_struct *p, int node);
782 extern int migrate_task_to(struct task_struct *p, int cpu);
783 extern int migrate_swap(struct task_struct *, struct task_struct *);
784 #endif /* CONFIG_NUMA_BALANCING */
785
786 #ifdef CONFIG_SMP
787
788 static inline void
789 queue_balance_callback(struct rq *rq,
790 struct callback_head *head,
791 void (*func)(struct rq *rq))
792 {
793 lockdep_assert_held(&rq->lock);
794
795 if (unlikely(head->next))
796 return;
797
798 head->func = (void (*)(struct callback_head *))func;
799 head->next = rq->balance_callback;
800 rq->balance_callback = head;
801 }
802
803 extern void sched_ttwu_pending(void);
804
805 #define rcu_dereference_check_sched_domain(p) \
806 rcu_dereference_check((p), \
807 lockdep_is_held(&sched_domains_mutex))
808
809 /*
810 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
811 * See detach_destroy_domains: synchronize_sched for details.
812 *
813 * The domain tree of any CPU may only be accessed from within
814 * preempt-disabled sections.
815 */
816 #define for_each_domain(cpu, __sd) \
817 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
818 __sd; __sd = __sd->parent)
819
820 #define for_each_lower_domain(sd) for (; sd; sd = sd->child)
821
822 /**
823 * highest_flag_domain - Return highest sched_domain containing flag.
824 * @cpu: The cpu whose highest level of sched domain is to
825 * be returned.
826 * @flag: The flag to check for the highest sched_domain
827 * for the given cpu.
828 *
829 * Returns the highest sched_domain of a cpu which contains the given flag.
830 */
831 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
832 {
833 struct sched_domain *sd, *hsd = NULL;
834
835 for_each_domain(cpu, sd) {
836 if (!(sd->flags & flag))
837 break;
838 hsd = sd;
839 }
840
841 return hsd;
842 }
843
844 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
845 {
846 struct sched_domain *sd;
847
848 for_each_domain(cpu, sd) {
849 if (sd->flags & flag)
850 break;
851 }
852
853 return sd;
854 }
855
856 DECLARE_PER_CPU(struct sched_domain *, sd_llc);
857 DECLARE_PER_CPU(int, sd_llc_size);
858 DECLARE_PER_CPU(int, sd_llc_id);
859 DECLARE_PER_CPU(struct sched_domain *, sd_numa);
860 DECLARE_PER_CPU(struct sched_domain *, sd_busy);
861 DECLARE_PER_CPU(struct sched_domain *, sd_asym);
862
863 struct sched_group_capacity {
864 atomic_t ref;
865 /*
866 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
867 * for a single CPU.
868 */
869 unsigned int capacity;
870 unsigned long next_update;
871 int imbalance; /* XXX unrelated to capacity but shared group state */
872 /*
873 * Number of busy cpus in this group.
874 */
875 atomic_t nr_busy_cpus;
876
877 unsigned long cpumask[0]; /* iteration mask */
878 };
879
880 struct sched_group {
881 struct sched_group *next; /* Must be a circular list */
882 atomic_t ref;
883
884 unsigned int group_weight;
885 struct sched_group_capacity *sgc;
886
887 /*
888 * The CPUs this group covers.
889 *
890 * NOTE: this field is variable length. (Allocated dynamically
891 * by attaching extra space to the end of the structure,
892 * depending on how many CPUs the kernel has booted up with)
893 */
894 unsigned long cpumask[0];
895 };
896
897 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
898 {
899 return to_cpumask(sg->cpumask);
900 }
901
902 /*
903 * cpumask masking which cpus in the group are allowed to iterate up the domain
904 * tree.
905 */
906 static inline struct cpumask *sched_group_mask(struct sched_group *sg)
907 {
908 return to_cpumask(sg->sgc->cpumask);
909 }
910
911 /**
912 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
913 * @group: The group whose first cpu is to be returned.
914 */
915 static inline unsigned int group_first_cpu(struct sched_group *group)
916 {
917 return cpumask_first(sched_group_cpus(group));
918 }
919
920 extern int group_balance_cpu(struct sched_group *sg);
921
922 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
923 void register_sched_domain_sysctl(void);
924 void unregister_sched_domain_sysctl(void);
925 #else
926 static inline void register_sched_domain_sysctl(void)
927 {
928 }
929 static inline void unregister_sched_domain_sysctl(void)
930 {
931 }
932 #endif
933
934 #else
935
936 static inline void sched_ttwu_pending(void) { }
937
938 #endif /* CONFIG_SMP */
939
940 #include "stats.h"
941 #include "auto_group.h"
942
943 #ifdef CONFIG_CGROUP_SCHED
944
945 /*
946 * Return the group to which this tasks belongs.
947 *
948 * We cannot use task_css() and friends because the cgroup subsystem
949 * changes that value before the cgroup_subsys::attach() method is called,
950 * therefore we cannot pin it and might observe the wrong value.
951 *
952 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
953 * core changes this before calling sched_move_task().
954 *
955 * Instead we use a 'copy' which is updated from sched_move_task() while
956 * holding both task_struct::pi_lock and rq::lock.
957 */
958 static inline struct task_group *task_group(struct task_struct *p)
959 {
960 return p->sched_task_group;
961 }
962
963 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
964 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
965 {
966 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
967 struct task_group *tg = task_group(p);
968 #endif
969
970 #ifdef CONFIG_FAIR_GROUP_SCHED
971 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
972 p->se.cfs_rq = tg->cfs_rq[cpu];
973 p->se.parent = tg->se[cpu];
974 #endif
975
976 #ifdef CONFIG_RT_GROUP_SCHED
977 p->rt.rt_rq = tg->rt_rq[cpu];
978 p->rt.parent = tg->rt_se[cpu];
979 #endif
980 }
981
982 #else /* CONFIG_CGROUP_SCHED */
983
984 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
985 static inline struct task_group *task_group(struct task_struct *p)
986 {
987 return NULL;
988 }
989
990 #endif /* CONFIG_CGROUP_SCHED */
991
992 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
993 {
994 set_task_rq(p, cpu);
995 #ifdef CONFIG_SMP
996 /*
997 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
998 * successfuly executed on another CPU. We must ensure that updates of
999 * per-task data have been completed by this moment.
1000 */
1001 smp_wmb();
1002 task_thread_info(p)->cpu = cpu;
1003 p->wake_cpu = cpu;
1004 #endif
1005 }
1006
1007 /*
1008 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1009 */
1010 #ifdef CONFIG_SCHED_DEBUG
1011 # include <linux/static_key.h>
1012 # define const_debug __read_mostly
1013 #else
1014 # define const_debug const
1015 #endif
1016
1017 extern const_debug unsigned int sysctl_sched_features;
1018
1019 #define SCHED_FEAT(name, enabled) \
1020 __SCHED_FEAT_##name ,
1021
1022 enum {
1023 #include "features.h"
1024 __SCHED_FEAT_NR,
1025 };
1026
1027 #undef SCHED_FEAT
1028
1029 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
1030 #define SCHED_FEAT(name, enabled) \
1031 static __always_inline bool static_branch_##name(struct static_key *key) \
1032 { \
1033 return static_key_##enabled(key); \
1034 }
1035
1036 #include "features.h"
1037
1038 #undef SCHED_FEAT
1039
1040 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
1041 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1042 #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
1043 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1044 #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
1045
1046 extern struct static_key_false sched_numa_balancing;
1047 extern struct static_key_false sched_schedstats;
1048
1049 static inline u64 global_rt_period(void)
1050 {
1051 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1052 }
1053
1054 static inline u64 global_rt_runtime(void)
1055 {
1056 if (sysctl_sched_rt_runtime < 0)
1057 return RUNTIME_INF;
1058
1059 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1060 }
1061
1062 static inline int task_current(struct rq *rq, struct task_struct *p)
1063 {
1064 return rq->curr == p;
1065 }
1066
1067 static inline int task_running(struct rq *rq, struct task_struct *p)
1068 {
1069 #ifdef CONFIG_SMP
1070 return p->on_cpu;
1071 #else
1072 return task_current(rq, p);
1073 #endif
1074 }
1075
1076 static inline int task_on_rq_queued(struct task_struct *p)
1077 {
1078 return p->on_rq == TASK_ON_RQ_QUEUED;
1079 }
1080
1081 static inline int task_on_rq_migrating(struct task_struct *p)
1082 {
1083 return p->on_rq == TASK_ON_RQ_MIGRATING;
1084 }
1085
1086 #ifndef prepare_arch_switch
1087 # define prepare_arch_switch(next) do { } while (0)
1088 #endif
1089 #ifndef finish_arch_post_lock_switch
1090 # define finish_arch_post_lock_switch() do { } while (0)
1091 #endif
1092
1093 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1094 {
1095 #ifdef CONFIG_SMP
1096 /*
1097 * We can optimise this out completely for !SMP, because the
1098 * SMP rebalancing from interrupt is the only thing that cares
1099 * here.
1100 */
1101 next->on_cpu = 1;
1102 #endif
1103 }
1104
1105 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1106 {
1107 #ifdef CONFIG_SMP
1108 /*
1109 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1110 * We must ensure this doesn't happen until the switch is completely
1111 * finished.
1112 *
1113 * In particular, the load of prev->state in finish_task_switch() must
1114 * happen before this.
1115 *
1116 * Pairs with the smp_cond_acquire() in try_to_wake_up().
1117 */
1118 smp_store_release(&prev->on_cpu, 0);
1119 #endif
1120 #ifdef CONFIG_DEBUG_SPINLOCK
1121 /* this is a valid case when another task releases the spinlock */
1122 rq->lock.owner = current;
1123 #endif
1124 /*
1125 * If we are tracking spinlock dependencies then we have to
1126 * fix up the runqueue lock - which gets 'carried over' from
1127 * prev into current:
1128 */
1129 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
1130
1131 raw_spin_unlock_irq(&rq->lock);
1132 }
1133
1134 /*
1135 * wake flags
1136 */
1137 #define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
1138 #define WF_FORK 0x02 /* child wakeup after fork */
1139 #define WF_MIGRATED 0x4 /* internal use, task got migrated */
1140
1141 /*
1142 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1143 * of tasks with abnormal "nice" values across CPUs the contribution that
1144 * each task makes to its run queue's load is weighted according to its
1145 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1146 * scaled version of the new time slice allocation that they receive on time
1147 * slice expiry etc.
1148 */
1149
1150 #define WEIGHT_IDLEPRIO 3
1151 #define WMULT_IDLEPRIO 1431655765
1152
1153 extern const int sched_prio_to_weight[40];
1154 extern const u32 sched_prio_to_wmult[40];
1155
1156 /*
1157 * {de,en}queue flags:
1158 *
1159 * DEQUEUE_SLEEP - task is no longer runnable
1160 * ENQUEUE_WAKEUP - task just became runnable
1161 *
1162 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
1163 * are in a known state which allows modification. Such pairs
1164 * should preserve as much state as possible.
1165 *
1166 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
1167 * in the runqueue.
1168 *
1169 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified)
1170 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
1171 * ENQUEUE_MIGRATED - the task was migrated during wakeup
1172 *
1173 */
1174
1175 #define DEQUEUE_SLEEP 0x01
1176 #define DEQUEUE_SAVE 0x02 /* matches ENQUEUE_RESTORE */
1177 #define DEQUEUE_MOVE 0x04 /* matches ENQUEUE_MOVE */
1178
1179 #define ENQUEUE_WAKEUP 0x01
1180 #define ENQUEUE_RESTORE 0x02
1181 #define ENQUEUE_MOVE 0x04
1182
1183 #define ENQUEUE_HEAD 0x08
1184 #define ENQUEUE_REPLENISH 0x10
1185 #ifdef CONFIG_SMP
1186 #define ENQUEUE_MIGRATED 0x20
1187 #else
1188 #define ENQUEUE_MIGRATED 0x00
1189 #endif
1190
1191 #define RETRY_TASK ((void *)-1UL)
1192
1193 struct sched_class {
1194 const struct sched_class *next;
1195
1196 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1197 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1198 void (*yield_task) (struct rq *rq);
1199 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1200
1201 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1202
1203 /*
1204 * It is the responsibility of the pick_next_task() method that will
1205 * return the next task to call put_prev_task() on the @prev task or
1206 * something equivalent.
1207 *
1208 * May return RETRY_TASK when it finds a higher prio class has runnable
1209 * tasks.
1210 */
1211 struct task_struct * (*pick_next_task) (struct rq *rq,
1212 struct task_struct *prev,
1213 struct pin_cookie cookie);
1214 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1215
1216 #ifdef CONFIG_SMP
1217 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
1218 void (*migrate_task_rq)(struct task_struct *p);
1219
1220 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1221
1222 void (*set_cpus_allowed)(struct task_struct *p,
1223 const struct cpumask *newmask);
1224
1225 void (*rq_online)(struct rq *rq);
1226 void (*rq_offline)(struct rq *rq);
1227 #endif
1228
1229 void (*set_curr_task) (struct rq *rq);
1230 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1231 void (*task_fork) (struct task_struct *p);
1232 void (*task_dead) (struct task_struct *p);
1233
1234 /*
1235 * The switched_from() call is allowed to drop rq->lock, therefore we
1236 * cannot assume the switched_from/switched_to pair is serliazed by
1237 * rq->lock. They are however serialized by p->pi_lock.
1238 */
1239 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1240 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1241 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1242 int oldprio);
1243
1244 unsigned int (*get_rr_interval) (struct rq *rq,
1245 struct task_struct *task);
1246
1247 void (*update_curr) (struct rq *rq);
1248
1249 #ifdef CONFIG_FAIR_GROUP_SCHED
1250 void (*task_move_group) (struct task_struct *p);
1251 #endif
1252 };
1253
1254 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1255 {
1256 prev->sched_class->put_prev_task(rq, prev);
1257 }
1258
1259 #define sched_class_highest (&stop_sched_class)
1260 #define for_each_class(class) \
1261 for (class = sched_class_highest; class; class = class->next)
1262
1263 extern const struct sched_class stop_sched_class;
1264 extern const struct sched_class dl_sched_class;
1265 extern const struct sched_class rt_sched_class;
1266 extern const struct sched_class fair_sched_class;
1267 extern const struct sched_class idle_sched_class;
1268
1269
1270 #ifdef CONFIG_SMP
1271
1272 extern void update_group_capacity(struct sched_domain *sd, int cpu);
1273
1274 extern void trigger_load_balance(struct rq *rq);
1275
1276 extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
1277
1278 #endif
1279
1280 #ifdef CONFIG_CPU_IDLE
1281 static inline void idle_set_state(struct rq *rq,
1282 struct cpuidle_state *idle_state)
1283 {
1284 rq->idle_state = idle_state;
1285 }
1286
1287 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1288 {
1289 WARN_ON(!rcu_read_lock_held());
1290 return rq->idle_state;
1291 }
1292 #else
1293 static inline void idle_set_state(struct rq *rq,
1294 struct cpuidle_state *idle_state)
1295 {
1296 }
1297
1298 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1299 {
1300 return NULL;
1301 }
1302 #endif
1303
1304 extern void sysrq_sched_debug_show(void);
1305 extern void sched_init_granularity(void);
1306 extern void update_max_interval(void);
1307
1308 extern void init_sched_dl_class(void);
1309 extern void init_sched_rt_class(void);
1310 extern void init_sched_fair_class(void);
1311
1312 extern void resched_curr(struct rq *rq);
1313 extern void resched_cpu(int cpu);
1314
1315 extern struct rt_bandwidth def_rt_bandwidth;
1316 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1317
1318 extern struct dl_bandwidth def_dl_bandwidth;
1319 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
1320 extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1321
1322 unsigned long to_ratio(u64 period, u64 runtime);
1323
1324 extern void init_entity_runnable_average(struct sched_entity *se);
1325 extern void post_init_entity_util_avg(struct sched_entity *se);
1326
1327 #ifdef CONFIG_NO_HZ_FULL
1328 extern bool sched_can_stop_tick(struct rq *rq);
1329
1330 /*
1331 * Tick may be needed by tasks in the runqueue depending on their policy and
1332 * requirements. If tick is needed, lets send the target an IPI to kick it out of
1333 * nohz mode if necessary.
1334 */
1335 static inline void sched_update_tick_dependency(struct rq *rq)
1336 {
1337 int cpu;
1338
1339 if (!tick_nohz_full_enabled())
1340 return;
1341
1342 cpu = cpu_of(rq);
1343
1344 if (!tick_nohz_full_cpu(cpu))
1345 return;
1346
1347 if (sched_can_stop_tick(rq))
1348 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
1349 else
1350 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
1351 }
1352 #else
1353 static inline void sched_update_tick_dependency(struct rq *rq) { }
1354 #endif
1355
1356 static inline void add_nr_running(struct rq *rq, unsigned count)
1357 {
1358 unsigned prev_nr = rq->nr_running;
1359
1360 rq->nr_running = prev_nr + count;
1361
1362 if (prev_nr < 2 && rq->nr_running >= 2) {
1363 #ifdef CONFIG_SMP
1364 if (!rq->rd->overload)
1365 rq->rd->overload = true;
1366 #endif
1367 }
1368
1369 sched_update_tick_dependency(rq);
1370 }
1371
1372 static inline void sub_nr_running(struct rq *rq, unsigned count)
1373 {
1374 rq->nr_running -= count;
1375 /* Check if we still need preemption */
1376 sched_update_tick_dependency(rq);
1377 }
1378
1379 static inline void rq_last_tick_reset(struct rq *rq)
1380 {
1381 #ifdef CONFIG_NO_HZ_FULL
1382 rq->last_sched_tick = jiffies;
1383 #endif
1384 }
1385
1386 extern void update_rq_clock(struct rq *rq);
1387
1388 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1389 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1390
1391 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1392
1393 extern const_debug unsigned int sysctl_sched_time_avg;
1394 extern const_debug unsigned int sysctl_sched_nr_migrate;
1395 extern const_debug unsigned int sysctl_sched_migration_cost;
1396
1397 static inline u64 sched_avg_period(void)
1398 {
1399 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1400 }
1401
1402 #ifdef CONFIG_SCHED_HRTICK
1403
1404 /*
1405 * Use hrtick when:
1406 * - enabled by features
1407 * - hrtimer is actually high res
1408 */
1409 static inline int hrtick_enabled(struct rq *rq)
1410 {
1411 if (!sched_feat(HRTICK))
1412 return 0;
1413 if (!cpu_active(cpu_of(rq)))
1414 return 0;
1415 return hrtimer_is_hres_active(&rq->hrtick_timer);
1416 }
1417
1418 void hrtick_start(struct rq *rq, u64 delay);
1419
1420 #else
1421
1422 static inline int hrtick_enabled(struct rq *rq)
1423 {
1424 return 0;
1425 }
1426
1427 #endif /* CONFIG_SCHED_HRTICK */
1428
1429 #ifdef CONFIG_SMP
1430 extern void sched_avg_update(struct rq *rq);
1431
1432 #ifndef arch_scale_freq_capacity
1433 static __always_inline
1434 unsigned long arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
1435 {
1436 return SCHED_CAPACITY_SCALE;
1437 }
1438 #endif
1439
1440 #ifndef arch_scale_cpu_capacity
1441 static __always_inline
1442 unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1443 {
1444 if (sd && (sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
1445 return sd->smt_gain / sd->span_weight;
1446
1447 return SCHED_CAPACITY_SCALE;
1448 }
1449 #endif
1450
1451 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1452 {
1453 rq->rt_avg += rt_delta * arch_scale_freq_capacity(NULL, cpu_of(rq));
1454 sched_avg_update(rq);
1455 }
1456 #else
1457 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1458 static inline void sched_avg_update(struct rq *rq) { }
1459 #endif
1460
1461 struct rq_flags {
1462 unsigned long flags;
1463 struct pin_cookie cookie;
1464 };
1465
1466 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1467 __acquires(rq->lock);
1468 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1469 __acquires(p->pi_lock)
1470 __acquires(rq->lock);
1471
1472 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1473 __releases(rq->lock)
1474 {
1475 lockdep_unpin_lock(&rq->lock, rf->cookie);
1476 raw_spin_unlock(&rq->lock);
1477 }
1478
1479 static inline void
1480 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1481 __releases(rq->lock)
1482 __releases(p->pi_lock)
1483 {
1484 lockdep_unpin_lock(&rq->lock, rf->cookie);
1485 raw_spin_unlock(&rq->lock);
1486 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1487 }
1488
1489 #ifdef CONFIG_SMP
1490 #ifdef CONFIG_PREEMPT
1491
1492 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1493
1494 /*
1495 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1496 * way at the expense of forcing extra atomic operations in all
1497 * invocations. This assures that the double_lock is acquired using the
1498 * same underlying policy as the spinlock_t on this architecture, which
1499 * reduces latency compared to the unfair variant below. However, it
1500 * also adds more overhead and therefore may reduce throughput.
1501 */
1502 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1503 __releases(this_rq->lock)
1504 __acquires(busiest->lock)
1505 __acquires(this_rq->lock)
1506 {
1507 raw_spin_unlock(&this_rq->lock);
1508 double_rq_lock(this_rq, busiest);
1509
1510 return 1;
1511 }
1512
1513 #else
1514 /*
1515 * Unfair double_lock_balance: Optimizes throughput at the expense of
1516 * latency by eliminating extra atomic operations when the locks are
1517 * already in proper order on entry. This favors lower cpu-ids and will
1518 * grant the double lock to lower cpus over higher ids under contention,
1519 * regardless of entry order into the function.
1520 */
1521 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1522 __releases(this_rq->lock)
1523 __acquires(busiest->lock)
1524 __acquires(this_rq->lock)
1525 {
1526 int ret = 0;
1527
1528 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1529 if (busiest < this_rq) {
1530 raw_spin_unlock(&this_rq->lock);
1531 raw_spin_lock(&busiest->lock);
1532 raw_spin_lock_nested(&this_rq->lock,
1533 SINGLE_DEPTH_NESTING);
1534 ret = 1;
1535 } else
1536 raw_spin_lock_nested(&busiest->lock,
1537 SINGLE_DEPTH_NESTING);
1538 }
1539 return ret;
1540 }
1541
1542 #endif /* CONFIG_PREEMPT */
1543
1544 /*
1545 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1546 */
1547 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1548 {
1549 if (unlikely(!irqs_disabled())) {
1550 /* printk() doesn't work good under rq->lock */
1551 raw_spin_unlock(&this_rq->lock);
1552 BUG_ON(1);
1553 }
1554
1555 return _double_lock_balance(this_rq, busiest);
1556 }
1557
1558 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1559 __releases(busiest->lock)
1560 {
1561 raw_spin_unlock(&busiest->lock);
1562 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1563 }
1564
1565 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1566 {
1567 if (l1 > l2)
1568 swap(l1, l2);
1569
1570 spin_lock(l1);
1571 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1572 }
1573
1574 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
1575 {
1576 if (l1 > l2)
1577 swap(l1, l2);
1578
1579 spin_lock_irq(l1);
1580 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1581 }
1582
1583 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1584 {
1585 if (l1 > l2)
1586 swap(l1, l2);
1587
1588 raw_spin_lock(l1);
1589 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1590 }
1591
1592 /*
1593 * double_rq_lock - safely lock two runqueues
1594 *
1595 * Note this does not disable interrupts like task_rq_lock,
1596 * you need to do so manually before calling.
1597 */
1598 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1599 __acquires(rq1->lock)
1600 __acquires(rq2->lock)
1601 {
1602 BUG_ON(!irqs_disabled());
1603 if (rq1 == rq2) {
1604 raw_spin_lock(&rq1->lock);
1605 __acquire(rq2->lock); /* Fake it out ;) */
1606 } else {
1607 if (rq1 < rq2) {
1608 raw_spin_lock(&rq1->lock);
1609 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1610 } else {
1611 raw_spin_lock(&rq2->lock);
1612 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1613 }
1614 }
1615 }
1616
1617 /*
1618 * double_rq_unlock - safely unlock two runqueues
1619 *
1620 * Note this does not restore interrupts like task_rq_unlock,
1621 * you need to do so manually after calling.
1622 */
1623 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1624 __releases(rq1->lock)
1625 __releases(rq2->lock)
1626 {
1627 raw_spin_unlock(&rq1->lock);
1628 if (rq1 != rq2)
1629 raw_spin_unlock(&rq2->lock);
1630 else
1631 __release(rq2->lock);
1632 }
1633
1634 #else /* CONFIG_SMP */
1635
1636 /*
1637 * double_rq_lock - safely lock two runqueues
1638 *
1639 * Note this does not disable interrupts like task_rq_lock,
1640 * you need to do so manually before calling.
1641 */
1642 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1643 __acquires(rq1->lock)
1644 __acquires(rq2->lock)
1645 {
1646 BUG_ON(!irqs_disabled());
1647 BUG_ON(rq1 != rq2);
1648 raw_spin_lock(&rq1->lock);
1649 __acquire(rq2->lock); /* Fake it out ;) */
1650 }
1651
1652 /*
1653 * double_rq_unlock - safely unlock two runqueues
1654 *
1655 * Note this does not restore interrupts like task_rq_unlock,
1656 * you need to do so manually after calling.
1657 */
1658 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1659 __releases(rq1->lock)
1660 __releases(rq2->lock)
1661 {
1662 BUG_ON(rq1 != rq2);
1663 raw_spin_unlock(&rq1->lock);
1664 __release(rq2->lock);
1665 }
1666
1667 #endif
1668
1669 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1670 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1671
1672 #ifdef CONFIG_SCHED_DEBUG
1673 extern void print_cfs_stats(struct seq_file *m, int cpu);
1674 extern void print_rt_stats(struct seq_file *m, int cpu);
1675 extern void print_dl_stats(struct seq_file *m, int cpu);
1676 extern void
1677 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
1678
1679 #ifdef CONFIG_NUMA_BALANCING
1680 extern void
1681 show_numa_stats(struct task_struct *p, struct seq_file *m);
1682 extern void
1683 print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
1684 unsigned long tpf, unsigned long gsf, unsigned long gpf);
1685 #endif /* CONFIG_NUMA_BALANCING */
1686 #endif /* CONFIG_SCHED_DEBUG */
1687
1688 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1689 extern void init_rt_rq(struct rt_rq *rt_rq);
1690 extern void init_dl_rq(struct dl_rq *dl_rq);
1691
1692 extern void cfs_bandwidth_usage_inc(void);
1693 extern void cfs_bandwidth_usage_dec(void);
1694
1695 #ifdef CONFIG_NO_HZ_COMMON
1696 enum rq_nohz_flag_bits {
1697 NOHZ_TICK_STOPPED,
1698 NOHZ_BALANCE_KICK,
1699 };
1700
1701 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1702
1703 extern void nohz_balance_exit_idle(unsigned int cpu);
1704 #else
1705 static inline void nohz_balance_exit_idle(unsigned int cpu) { }
1706 #endif
1707
1708 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1709
1710 DECLARE_PER_CPU(u64, cpu_hardirq_time);
1711 DECLARE_PER_CPU(u64, cpu_softirq_time);
1712
1713 #ifndef CONFIG_64BIT
1714 DECLARE_PER_CPU(seqcount_t, irq_time_seq);
1715
1716 static inline void irq_time_write_begin(void)
1717 {
1718 __this_cpu_inc(irq_time_seq.sequence);
1719 smp_wmb();
1720 }
1721
1722 static inline void irq_time_write_end(void)
1723 {
1724 smp_wmb();
1725 __this_cpu_inc(irq_time_seq.sequence);
1726 }
1727
1728 static inline u64 irq_time_read(int cpu)
1729 {
1730 u64 irq_time;
1731 unsigned seq;
1732
1733 do {
1734 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1735 irq_time = per_cpu(cpu_softirq_time, cpu) +
1736 per_cpu(cpu_hardirq_time, cpu);
1737 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1738
1739 return irq_time;
1740 }
1741 #else /* CONFIG_64BIT */
1742 static inline void irq_time_write_begin(void)
1743 {
1744 }
1745
1746 static inline void irq_time_write_end(void)
1747 {
1748 }
1749
1750 static inline u64 irq_time_read(int cpu)
1751 {
1752 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1753 }
1754 #endif /* CONFIG_64BIT */
1755 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
1756
1757 #ifdef CONFIG_CPU_FREQ
1758 DECLARE_PER_CPU(struct update_util_data *, cpufreq_update_util_data);
1759
1760 /**
1761 * cpufreq_update_util - Take a note about CPU utilization changes.
1762 * @time: Current time.
1763 * @util: Current utilization.
1764 * @max: Utilization ceiling.
1765 *
1766 * This function is called by the scheduler on every invocation of
1767 * update_load_avg() on the CPU whose utilization is being updated.
1768 *
1769 * It can only be called from RCU-sched read-side critical sections.
1770 */
1771 static inline void cpufreq_update_util(u64 time, unsigned long util, unsigned long max)
1772 {
1773 struct update_util_data *data;
1774
1775 data = rcu_dereference_sched(*this_cpu_ptr(&cpufreq_update_util_data));
1776 if (data)
1777 data->func(data, time, util, max);
1778 }
1779
1780 /**
1781 * cpufreq_trigger_update - Trigger CPU performance state evaluation if needed.
1782 * @time: Current time.
1783 *
1784 * The way cpufreq is currently arranged requires it to evaluate the CPU
1785 * performance state (frequency/voltage) on a regular basis to prevent it from
1786 * being stuck in a completely inadequate performance level for too long.
1787 * That is not guaranteed to happen if the updates are only triggered from CFS,
1788 * though, because they may not be coming in if RT or deadline tasks are active
1789 * all the time (or there are RT and DL tasks only).
1790 *
1791 * As a workaround for that issue, this function is called by the RT and DL
1792 * sched classes to trigger extra cpufreq updates to prevent it from stalling,
1793 * but that really is a band-aid. Going forward it should be replaced with
1794 * solutions targeted more specifically at RT and DL tasks.
1795 */
1796 static inline void cpufreq_trigger_update(u64 time)
1797 {
1798 cpufreq_update_util(time, ULONG_MAX, 0);
1799 }
1800 #else
1801 static inline void cpufreq_update_util(u64 time, unsigned long util, unsigned long max) {}
1802 static inline void cpufreq_trigger_update(u64 time) {}
1803 #endif /* CONFIG_CPU_FREQ */
1804
1805 #ifdef arch_scale_freq_capacity
1806 #ifndef arch_scale_freq_invariant
1807 #define arch_scale_freq_invariant() (true)
1808 #endif
1809 #else /* arch_scale_freq_capacity */
1810 #define arch_scale_freq_invariant() (false)
1811 #endif
1812
1813 static inline void account_reset_rq(struct rq *rq)
1814 {
1815 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1816 rq->prev_irq_time = 0;
1817 #endif
1818 #ifdef CONFIG_PARAVIRT
1819 rq->prev_steal_time = 0;
1820 #endif
1821 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
1822 rq->prev_steal_time_rq = 0;
1823 #endif
1824 }
This page took 0.09356 seconds and 5 git commands to generate.