Merge branch 'for-4.0-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj...
[deliverable/linux.git] / kernel / sched / sched.h
1
2 #include <linux/sched.h>
3 #include <linux/sched/sysctl.h>
4 #include <linux/sched/rt.h>
5 #include <linux/sched/deadline.h>
6 #include <linux/mutex.h>
7 #include <linux/spinlock.h>
8 #include <linux/stop_machine.h>
9 #include <linux/tick.h>
10 #include <linux/slab.h>
11
12 #include "cpupri.h"
13 #include "cpudeadline.h"
14 #include "cpuacct.h"
15
16 struct rq;
17 struct cpuidle_state;
18
19 /* task_struct::on_rq states: */
20 #define TASK_ON_RQ_QUEUED 1
21 #define TASK_ON_RQ_MIGRATING 2
22
23 extern __read_mostly int scheduler_running;
24
25 extern unsigned long calc_load_update;
26 extern atomic_long_t calc_load_tasks;
27
28 extern long calc_load_fold_active(struct rq *this_rq);
29 extern void update_cpu_load_active(struct rq *this_rq);
30
31 /*
32 * Helpers for converting nanosecond timing to jiffy resolution
33 */
34 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
35
36 /*
37 * Increase resolution of nice-level calculations for 64-bit architectures.
38 * The extra resolution improves shares distribution and load balancing of
39 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
40 * hierarchies, especially on larger systems. This is not a user-visible change
41 * and does not change the user-interface for setting shares/weights.
42 *
43 * We increase resolution only if we have enough bits to allow this increased
44 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
45 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
46 * increased costs.
47 */
48 #if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
49 # define SCHED_LOAD_RESOLUTION 10
50 # define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
51 # define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
52 #else
53 # define SCHED_LOAD_RESOLUTION 0
54 # define scale_load(w) (w)
55 # define scale_load_down(w) (w)
56 #endif
57
58 #define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
59 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
60
61 #define NICE_0_LOAD SCHED_LOAD_SCALE
62 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
63
64 /*
65 * Single value that decides SCHED_DEADLINE internal math precision.
66 * 10 -> just above 1us
67 * 9 -> just above 0.5us
68 */
69 #define DL_SCALE (10)
70
71 /*
72 * These are the 'tuning knobs' of the scheduler:
73 */
74
75 /*
76 * single value that denotes runtime == period, ie unlimited time.
77 */
78 #define RUNTIME_INF ((u64)~0ULL)
79
80 static inline int fair_policy(int policy)
81 {
82 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
83 }
84
85 static inline int rt_policy(int policy)
86 {
87 return policy == SCHED_FIFO || policy == SCHED_RR;
88 }
89
90 static inline int dl_policy(int policy)
91 {
92 return policy == SCHED_DEADLINE;
93 }
94
95 static inline int task_has_rt_policy(struct task_struct *p)
96 {
97 return rt_policy(p->policy);
98 }
99
100 static inline int task_has_dl_policy(struct task_struct *p)
101 {
102 return dl_policy(p->policy);
103 }
104
105 static inline bool dl_time_before(u64 a, u64 b)
106 {
107 return (s64)(a - b) < 0;
108 }
109
110 /*
111 * Tells if entity @a should preempt entity @b.
112 */
113 static inline bool
114 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
115 {
116 return dl_time_before(a->deadline, b->deadline);
117 }
118
119 /*
120 * This is the priority-queue data structure of the RT scheduling class:
121 */
122 struct rt_prio_array {
123 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
124 struct list_head queue[MAX_RT_PRIO];
125 };
126
127 struct rt_bandwidth {
128 /* nests inside the rq lock: */
129 raw_spinlock_t rt_runtime_lock;
130 ktime_t rt_period;
131 u64 rt_runtime;
132 struct hrtimer rt_period_timer;
133 };
134
135 void __dl_clear_params(struct task_struct *p);
136
137 /*
138 * To keep the bandwidth of -deadline tasks and groups under control
139 * we need some place where:
140 * - store the maximum -deadline bandwidth of the system (the group);
141 * - cache the fraction of that bandwidth that is currently allocated.
142 *
143 * This is all done in the data structure below. It is similar to the
144 * one used for RT-throttling (rt_bandwidth), with the main difference
145 * that, since here we are only interested in admission control, we
146 * do not decrease any runtime while the group "executes", neither we
147 * need a timer to replenish it.
148 *
149 * With respect to SMP, the bandwidth is given on a per-CPU basis,
150 * meaning that:
151 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
152 * - dl_total_bw array contains, in the i-eth element, the currently
153 * allocated bandwidth on the i-eth CPU.
154 * Moreover, groups consume bandwidth on each CPU, while tasks only
155 * consume bandwidth on the CPU they're running on.
156 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
157 * that will be shown the next time the proc or cgroup controls will
158 * be red. It on its turn can be changed by writing on its own
159 * control.
160 */
161 struct dl_bandwidth {
162 raw_spinlock_t dl_runtime_lock;
163 u64 dl_runtime;
164 u64 dl_period;
165 };
166
167 static inline int dl_bandwidth_enabled(void)
168 {
169 return sysctl_sched_rt_runtime >= 0;
170 }
171
172 extern struct dl_bw *dl_bw_of(int i);
173
174 struct dl_bw {
175 raw_spinlock_t lock;
176 u64 bw, total_bw;
177 };
178
179 static inline
180 void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
181 {
182 dl_b->total_bw -= tsk_bw;
183 }
184
185 static inline
186 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
187 {
188 dl_b->total_bw += tsk_bw;
189 }
190
191 static inline
192 bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
193 {
194 return dl_b->bw != -1 &&
195 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
196 }
197
198 extern struct mutex sched_domains_mutex;
199
200 #ifdef CONFIG_CGROUP_SCHED
201
202 #include <linux/cgroup.h>
203
204 struct cfs_rq;
205 struct rt_rq;
206
207 extern struct list_head task_groups;
208
209 struct cfs_bandwidth {
210 #ifdef CONFIG_CFS_BANDWIDTH
211 raw_spinlock_t lock;
212 ktime_t period;
213 u64 quota, runtime;
214 s64 hierarchical_quota;
215 u64 runtime_expires;
216
217 int idle, timer_active;
218 struct hrtimer period_timer, slack_timer;
219 struct list_head throttled_cfs_rq;
220
221 /* statistics */
222 int nr_periods, nr_throttled;
223 u64 throttled_time;
224 #endif
225 };
226
227 /* task group related information */
228 struct task_group {
229 struct cgroup_subsys_state css;
230
231 #ifdef CONFIG_FAIR_GROUP_SCHED
232 /* schedulable entities of this group on each cpu */
233 struct sched_entity **se;
234 /* runqueue "owned" by this group on each cpu */
235 struct cfs_rq **cfs_rq;
236 unsigned long shares;
237
238 #ifdef CONFIG_SMP
239 atomic_long_t load_avg;
240 atomic_t runnable_avg;
241 #endif
242 #endif
243
244 #ifdef CONFIG_RT_GROUP_SCHED
245 struct sched_rt_entity **rt_se;
246 struct rt_rq **rt_rq;
247
248 struct rt_bandwidth rt_bandwidth;
249 #endif
250
251 struct rcu_head rcu;
252 struct list_head list;
253
254 struct task_group *parent;
255 struct list_head siblings;
256 struct list_head children;
257
258 #ifdef CONFIG_SCHED_AUTOGROUP
259 struct autogroup *autogroup;
260 #endif
261
262 struct cfs_bandwidth cfs_bandwidth;
263 };
264
265 #ifdef CONFIG_FAIR_GROUP_SCHED
266 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
267
268 /*
269 * A weight of 0 or 1 can cause arithmetics problems.
270 * A weight of a cfs_rq is the sum of weights of which entities
271 * are queued on this cfs_rq, so a weight of a entity should not be
272 * too large, so as the shares value of a task group.
273 * (The default weight is 1024 - so there's no practical
274 * limitation from this.)
275 */
276 #define MIN_SHARES (1UL << 1)
277 #define MAX_SHARES (1UL << 18)
278 #endif
279
280 typedef int (*tg_visitor)(struct task_group *, void *);
281
282 extern int walk_tg_tree_from(struct task_group *from,
283 tg_visitor down, tg_visitor up, void *data);
284
285 /*
286 * Iterate the full tree, calling @down when first entering a node and @up when
287 * leaving it for the final time.
288 *
289 * Caller must hold rcu_lock or sufficient equivalent.
290 */
291 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
292 {
293 return walk_tg_tree_from(&root_task_group, down, up, data);
294 }
295
296 extern int tg_nop(struct task_group *tg, void *data);
297
298 extern void free_fair_sched_group(struct task_group *tg);
299 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
300 extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
301 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
302 struct sched_entity *se, int cpu,
303 struct sched_entity *parent);
304 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
305 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
306
307 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
308 extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force);
309 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
310
311 extern void free_rt_sched_group(struct task_group *tg);
312 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
313 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
314 struct sched_rt_entity *rt_se, int cpu,
315 struct sched_rt_entity *parent);
316
317 extern struct task_group *sched_create_group(struct task_group *parent);
318 extern void sched_online_group(struct task_group *tg,
319 struct task_group *parent);
320 extern void sched_destroy_group(struct task_group *tg);
321 extern void sched_offline_group(struct task_group *tg);
322
323 extern void sched_move_task(struct task_struct *tsk);
324
325 #ifdef CONFIG_FAIR_GROUP_SCHED
326 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
327 #endif
328
329 #else /* CONFIG_CGROUP_SCHED */
330
331 struct cfs_bandwidth { };
332
333 #endif /* CONFIG_CGROUP_SCHED */
334
335 /* CFS-related fields in a runqueue */
336 struct cfs_rq {
337 struct load_weight load;
338 unsigned int nr_running, h_nr_running;
339
340 u64 exec_clock;
341 u64 min_vruntime;
342 #ifndef CONFIG_64BIT
343 u64 min_vruntime_copy;
344 #endif
345
346 struct rb_root tasks_timeline;
347 struct rb_node *rb_leftmost;
348
349 /*
350 * 'curr' points to currently running entity on this cfs_rq.
351 * It is set to NULL otherwise (i.e when none are currently running).
352 */
353 struct sched_entity *curr, *next, *last, *skip;
354
355 #ifdef CONFIG_SCHED_DEBUG
356 unsigned int nr_spread_over;
357 #endif
358
359 #ifdef CONFIG_SMP
360 /*
361 * CFS Load tracking
362 * Under CFS, load is tracked on a per-entity basis and aggregated up.
363 * This allows for the description of both thread and group usage (in
364 * the FAIR_GROUP_SCHED case).
365 */
366 unsigned long runnable_load_avg, blocked_load_avg;
367 atomic64_t decay_counter;
368 u64 last_decay;
369 atomic_long_t removed_load;
370
371 #ifdef CONFIG_FAIR_GROUP_SCHED
372 /* Required to track per-cpu representation of a task_group */
373 u32 tg_runnable_contrib;
374 unsigned long tg_load_contrib;
375
376 /*
377 * h_load = weight * f(tg)
378 *
379 * Where f(tg) is the recursive weight fraction assigned to
380 * this group.
381 */
382 unsigned long h_load;
383 u64 last_h_load_update;
384 struct sched_entity *h_load_next;
385 #endif /* CONFIG_FAIR_GROUP_SCHED */
386 #endif /* CONFIG_SMP */
387
388 #ifdef CONFIG_FAIR_GROUP_SCHED
389 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
390
391 /*
392 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
393 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
394 * (like users, containers etc.)
395 *
396 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
397 * list is used during load balance.
398 */
399 int on_list;
400 struct list_head leaf_cfs_rq_list;
401 struct task_group *tg; /* group that "owns" this runqueue */
402
403 #ifdef CONFIG_CFS_BANDWIDTH
404 int runtime_enabled;
405 u64 runtime_expires;
406 s64 runtime_remaining;
407
408 u64 throttled_clock, throttled_clock_task;
409 u64 throttled_clock_task_time;
410 int throttled, throttle_count;
411 struct list_head throttled_list;
412 #endif /* CONFIG_CFS_BANDWIDTH */
413 #endif /* CONFIG_FAIR_GROUP_SCHED */
414 };
415
416 static inline int rt_bandwidth_enabled(void)
417 {
418 return sysctl_sched_rt_runtime >= 0;
419 }
420
421 /* Real-Time classes' related field in a runqueue: */
422 struct rt_rq {
423 struct rt_prio_array active;
424 unsigned int rt_nr_running;
425 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
426 struct {
427 int curr; /* highest queued rt task prio */
428 #ifdef CONFIG_SMP
429 int next; /* next highest */
430 #endif
431 } highest_prio;
432 #endif
433 #ifdef CONFIG_SMP
434 unsigned long rt_nr_migratory;
435 unsigned long rt_nr_total;
436 int overloaded;
437 struct plist_head pushable_tasks;
438 #endif
439 int rt_queued;
440
441 int rt_throttled;
442 u64 rt_time;
443 u64 rt_runtime;
444 /* Nests inside the rq lock: */
445 raw_spinlock_t rt_runtime_lock;
446
447 #ifdef CONFIG_RT_GROUP_SCHED
448 unsigned long rt_nr_boosted;
449
450 struct rq *rq;
451 struct task_group *tg;
452 #endif
453 };
454
455 /* Deadline class' related fields in a runqueue */
456 struct dl_rq {
457 /* runqueue is an rbtree, ordered by deadline */
458 struct rb_root rb_root;
459 struct rb_node *rb_leftmost;
460
461 unsigned long dl_nr_running;
462
463 #ifdef CONFIG_SMP
464 /*
465 * Deadline values of the currently executing and the
466 * earliest ready task on this rq. Caching these facilitates
467 * the decision wether or not a ready but not running task
468 * should migrate somewhere else.
469 */
470 struct {
471 u64 curr;
472 u64 next;
473 } earliest_dl;
474
475 unsigned long dl_nr_migratory;
476 int overloaded;
477
478 /*
479 * Tasks on this rq that can be pushed away. They are kept in
480 * an rb-tree, ordered by tasks' deadlines, with caching
481 * of the leftmost (earliest deadline) element.
482 */
483 struct rb_root pushable_dl_tasks_root;
484 struct rb_node *pushable_dl_tasks_leftmost;
485 #else
486 struct dl_bw dl_bw;
487 #endif
488 };
489
490 #ifdef CONFIG_SMP
491
492 /*
493 * We add the notion of a root-domain which will be used to define per-domain
494 * variables. Each exclusive cpuset essentially defines an island domain by
495 * fully partitioning the member cpus from any other cpuset. Whenever a new
496 * exclusive cpuset is created, we also create and attach a new root-domain
497 * object.
498 *
499 */
500 struct root_domain {
501 atomic_t refcount;
502 atomic_t rto_count;
503 struct rcu_head rcu;
504 cpumask_var_t span;
505 cpumask_var_t online;
506
507 /* Indicate more than one runnable task for any CPU */
508 bool overload;
509
510 /*
511 * The bit corresponding to a CPU gets set here if such CPU has more
512 * than one runnable -deadline task (as it is below for RT tasks).
513 */
514 cpumask_var_t dlo_mask;
515 atomic_t dlo_count;
516 struct dl_bw dl_bw;
517 struct cpudl cpudl;
518
519 /*
520 * The "RT overload" flag: it gets set if a CPU has more than
521 * one runnable RT task.
522 */
523 cpumask_var_t rto_mask;
524 struct cpupri cpupri;
525 };
526
527 extern struct root_domain def_root_domain;
528
529 #endif /* CONFIG_SMP */
530
531 /*
532 * This is the main, per-CPU runqueue data structure.
533 *
534 * Locking rule: those places that want to lock multiple runqueues
535 * (such as the load balancing or the thread migration code), lock
536 * acquire operations must be ordered by ascending &runqueue.
537 */
538 struct rq {
539 /* runqueue lock: */
540 raw_spinlock_t lock;
541
542 /*
543 * nr_running and cpu_load should be in the same cacheline because
544 * remote CPUs use both these fields when doing load calculation.
545 */
546 unsigned int nr_running;
547 #ifdef CONFIG_NUMA_BALANCING
548 unsigned int nr_numa_running;
549 unsigned int nr_preferred_running;
550 #endif
551 #define CPU_LOAD_IDX_MAX 5
552 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
553 unsigned long last_load_update_tick;
554 #ifdef CONFIG_NO_HZ_COMMON
555 u64 nohz_stamp;
556 unsigned long nohz_flags;
557 #endif
558 #ifdef CONFIG_NO_HZ_FULL
559 unsigned long last_sched_tick;
560 #endif
561 /* capture load from *all* tasks on this cpu: */
562 struct load_weight load;
563 unsigned long nr_load_updates;
564 u64 nr_switches;
565
566 struct cfs_rq cfs;
567 struct rt_rq rt;
568 struct dl_rq dl;
569
570 #ifdef CONFIG_FAIR_GROUP_SCHED
571 /* list of leaf cfs_rq on this cpu: */
572 struct list_head leaf_cfs_rq_list;
573
574 struct sched_avg avg;
575 #endif /* CONFIG_FAIR_GROUP_SCHED */
576
577 /*
578 * This is part of a global counter where only the total sum
579 * over all CPUs matters. A task can increase this counter on
580 * one CPU and if it got migrated afterwards it may decrease
581 * it on another CPU. Always updated under the runqueue lock:
582 */
583 unsigned long nr_uninterruptible;
584
585 struct task_struct *curr, *idle, *stop;
586 unsigned long next_balance;
587 struct mm_struct *prev_mm;
588
589 unsigned int clock_skip_update;
590 u64 clock;
591 u64 clock_task;
592
593 atomic_t nr_iowait;
594
595 #ifdef CONFIG_SMP
596 struct root_domain *rd;
597 struct sched_domain *sd;
598
599 unsigned long cpu_capacity;
600
601 unsigned char idle_balance;
602 /* For active balancing */
603 int post_schedule;
604 int active_balance;
605 int push_cpu;
606 struct cpu_stop_work active_balance_work;
607 /* cpu of this runqueue: */
608 int cpu;
609 int online;
610
611 struct list_head cfs_tasks;
612
613 u64 rt_avg;
614 u64 age_stamp;
615 u64 idle_stamp;
616 u64 avg_idle;
617
618 /* This is used to determine avg_idle's max value */
619 u64 max_idle_balance_cost;
620 #endif
621
622 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
623 u64 prev_irq_time;
624 #endif
625 #ifdef CONFIG_PARAVIRT
626 u64 prev_steal_time;
627 #endif
628 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
629 u64 prev_steal_time_rq;
630 #endif
631
632 /* calc_load related fields */
633 unsigned long calc_load_update;
634 long calc_load_active;
635
636 #ifdef CONFIG_SCHED_HRTICK
637 #ifdef CONFIG_SMP
638 int hrtick_csd_pending;
639 struct call_single_data hrtick_csd;
640 #endif
641 struct hrtimer hrtick_timer;
642 #endif
643
644 #ifdef CONFIG_SCHEDSTATS
645 /* latency stats */
646 struct sched_info rq_sched_info;
647 unsigned long long rq_cpu_time;
648 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
649
650 /* sys_sched_yield() stats */
651 unsigned int yld_count;
652
653 /* schedule() stats */
654 unsigned int sched_count;
655 unsigned int sched_goidle;
656
657 /* try_to_wake_up() stats */
658 unsigned int ttwu_count;
659 unsigned int ttwu_local;
660 #endif
661
662 #ifdef CONFIG_SMP
663 struct llist_head wake_list;
664 #endif
665
666 #ifdef CONFIG_CPU_IDLE
667 /* Must be inspected within a rcu lock section */
668 struct cpuidle_state *idle_state;
669 #endif
670 };
671
672 static inline int cpu_of(struct rq *rq)
673 {
674 #ifdef CONFIG_SMP
675 return rq->cpu;
676 #else
677 return 0;
678 #endif
679 }
680
681 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
682
683 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
684 #define this_rq() this_cpu_ptr(&runqueues)
685 #define task_rq(p) cpu_rq(task_cpu(p))
686 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
687 #define raw_rq() raw_cpu_ptr(&runqueues)
688
689 static inline u64 __rq_clock_broken(struct rq *rq)
690 {
691 return ACCESS_ONCE(rq->clock);
692 }
693
694 static inline u64 rq_clock(struct rq *rq)
695 {
696 lockdep_assert_held(&rq->lock);
697 return rq->clock;
698 }
699
700 static inline u64 rq_clock_task(struct rq *rq)
701 {
702 lockdep_assert_held(&rq->lock);
703 return rq->clock_task;
704 }
705
706 #define RQCF_REQ_SKIP 0x01
707 #define RQCF_ACT_SKIP 0x02
708
709 static inline void rq_clock_skip_update(struct rq *rq, bool skip)
710 {
711 lockdep_assert_held(&rq->lock);
712 if (skip)
713 rq->clock_skip_update |= RQCF_REQ_SKIP;
714 else
715 rq->clock_skip_update &= ~RQCF_REQ_SKIP;
716 }
717
718 #ifdef CONFIG_NUMA
719 enum numa_topology_type {
720 NUMA_DIRECT,
721 NUMA_GLUELESS_MESH,
722 NUMA_BACKPLANE,
723 };
724 extern enum numa_topology_type sched_numa_topology_type;
725 extern int sched_max_numa_distance;
726 extern bool find_numa_distance(int distance);
727 #endif
728
729 #ifdef CONFIG_NUMA_BALANCING
730 /* The regions in numa_faults array from task_struct */
731 enum numa_faults_stats {
732 NUMA_MEM = 0,
733 NUMA_CPU,
734 NUMA_MEMBUF,
735 NUMA_CPUBUF
736 };
737 extern void sched_setnuma(struct task_struct *p, int node);
738 extern int migrate_task_to(struct task_struct *p, int cpu);
739 extern int migrate_swap(struct task_struct *, struct task_struct *);
740 #endif /* CONFIG_NUMA_BALANCING */
741
742 #ifdef CONFIG_SMP
743
744 extern void sched_ttwu_pending(void);
745
746 #define rcu_dereference_check_sched_domain(p) \
747 rcu_dereference_check((p), \
748 lockdep_is_held(&sched_domains_mutex))
749
750 /*
751 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
752 * See detach_destroy_domains: synchronize_sched for details.
753 *
754 * The domain tree of any CPU may only be accessed from within
755 * preempt-disabled sections.
756 */
757 #define for_each_domain(cpu, __sd) \
758 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
759 __sd; __sd = __sd->parent)
760
761 #define for_each_lower_domain(sd) for (; sd; sd = sd->child)
762
763 /**
764 * highest_flag_domain - Return highest sched_domain containing flag.
765 * @cpu: The cpu whose highest level of sched domain is to
766 * be returned.
767 * @flag: The flag to check for the highest sched_domain
768 * for the given cpu.
769 *
770 * Returns the highest sched_domain of a cpu which contains the given flag.
771 */
772 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
773 {
774 struct sched_domain *sd, *hsd = NULL;
775
776 for_each_domain(cpu, sd) {
777 if (!(sd->flags & flag))
778 break;
779 hsd = sd;
780 }
781
782 return hsd;
783 }
784
785 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
786 {
787 struct sched_domain *sd;
788
789 for_each_domain(cpu, sd) {
790 if (sd->flags & flag)
791 break;
792 }
793
794 return sd;
795 }
796
797 DECLARE_PER_CPU(struct sched_domain *, sd_llc);
798 DECLARE_PER_CPU(int, sd_llc_size);
799 DECLARE_PER_CPU(int, sd_llc_id);
800 DECLARE_PER_CPU(struct sched_domain *, sd_numa);
801 DECLARE_PER_CPU(struct sched_domain *, sd_busy);
802 DECLARE_PER_CPU(struct sched_domain *, sd_asym);
803
804 struct sched_group_capacity {
805 atomic_t ref;
806 /*
807 * CPU capacity of this group, SCHED_LOAD_SCALE being max capacity
808 * for a single CPU.
809 */
810 unsigned int capacity, capacity_orig;
811 unsigned long next_update;
812 int imbalance; /* XXX unrelated to capacity but shared group state */
813 /*
814 * Number of busy cpus in this group.
815 */
816 atomic_t nr_busy_cpus;
817
818 unsigned long cpumask[0]; /* iteration mask */
819 };
820
821 struct sched_group {
822 struct sched_group *next; /* Must be a circular list */
823 atomic_t ref;
824
825 unsigned int group_weight;
826 struct sched_group_capacity *sgc;
827
828 /*
829 * The CPUs this group covers.
830 *
831 * NOTE: this field is variable length. (Allocated dynamically
832 * by attaching extra space to the end of the structure,
833 * depending on how many CPUs the kernel has booted up with)
834 */
835 unsigned long cpumask[0];
836 };
837
838 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
839 {
840 return to_cpumask(sg->cpumask);
841 }
842
843 /*
844 * cpumask masking which cpus in the group are allowed to iterate up the domain
845 * tree.
846 */
847 static inline struct cpumask *sched_group_mask(struct sched_group *sg)
848 {
849 return to_cpumask(sg->sgc->cpumask);
850 }
851
852 /**
853 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
854 * @group: The group whose first cpu is to be returned.
855 */
856 static inline unsigned int group_first_cpu(struct sched_group *group)
857 {
858 return cpumask_first(sched_group_cpus(group));
859 }
860
861 extern int group_balance_cpu(struct sched_group *sg);
862
863 #else
864
865 static inline void sched_ttwu_pending(void) { }
866
867 #endif /* CONFIG_SMP */
868
869 #include "stats.h"
870 #include "auto_group.h"
871
872 #ifdef CONFIG_CGROUP_SCHED
873
874 /*
875 * Return the group to which this tasks belongs.
876 *
877 * We cannot use task_css() and friends because the cgroup subsystem
878 * changes that value before the cgroup_subsys::attach() method is called,
879 * therefore we cannot pin it and might observe the wrong value.
880 *
881 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
882 * core changes this before calling sched_move_task().
883 *
884 * Instead we use a 'copy' which is updated from sched_move_task() while
885 * holding both task_struct::pi_lock and rq::lock.
886 */
887 static inline struct task_group *task_group(struct task_struct *p)
888 {
889 return p->sched_task_group;
890 }
891
892 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
893 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
894 {
895 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
896 struct task_group *tg = task_group(p);
897 #endif
898
899 #ifdef CONFIG_FAIR_GROUP_SCHED
900 p->se.cfs_rq = tg->cfs_rq[cpu];
901 p->se.parent = tg->se[cpu];
902 #endif
903
904 #ifdef CONFIG_RT_GROUP_SCHED
905 p->rt.rt_rq = tg->rt_rq[cpu];
906 p->rt.parent = tg->rt_se[cpu];
907 #endif
908 }
909
910 #else /* CONFIG_CGROUP_SCHED */
911
912 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
913 static inline struct task_group *task_group(struct task_struct *p)
914 {
915 return NULL;
916 }
917
918 #endif /* CONFIG_CGROUP_SCHED */
919
920 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
921 {
922 set_task_rq(p, cpu);
923 #ifdef CONFIG_SMP
924 /*
925 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
926 * successfuly executed on another CPU. We must ensure that updates of
927 * per-task data have been completed by this moment.
928 */
929 smp_wmb();
930 task_thread_info(p)->cpu = cpu;
931 p->wake_cpu = cpu;
932 #endif
933 }
934
935 /*
936 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
937 */
938 #ifdef CONFIG_SCHED_DEBUG
939 # include <linux/static_key.h>
940 # define const_debug __read_mostly
941 #else
942 # define const_debug const
943 #endif
944
945 extern const_debug unsigned int sysctl_sched_features;
946
947 #define SCHED_FEAT(name, enabled) \
948 __SCHED_FEAT_##name ,
949
950 enum {
951 #include "features.h"
952 __SCHED_FEAT_NR,
953 };
954
955 #undef SCHED_FEAT
956
957 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
958 #define SCHED_FEAT(name, enabled) \
959 static __always_inline bool static_branch_##name(struct static_key *key) \
960 { \
961 return static_key_##enabled(key); \
962 }
963
964 #include "features.h"
965
966 #undef SCHED_FEAT
967
968 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
969 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
970 #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
971 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
972 #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
973
974 #ifdef CONFIG_NUMA_BALANCING
975 #define sched_feat_numa(x) sched_feat(x)
976 #ifdef CONFIG_SCHED_DEBUG
977 #define numabalancing_enabled sched_feat_numa(NUMA)
978 #else
979 extern bool numabalancing_enabled;
980 #endif /* CONFIG_SCHED_DEBUG */
981 #else
982 #define sched_feat_numa(x) (0)
983 #define numabalancing_enabled (0)
984 #endif /* CONFIG_NUMA_BALANCING */
985
986 static inline u64 global_rt_period(void)
987 {
988 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
989 }
990
991 static inline u64 global_rt_runtime(void)
992 {
993 if (sysctl_sched_rt_runtime < 0)
994 return RUNTIME_INF;
995
996 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
997 }
998
999 static inline int task_current(struct rq *rq, struct task_struct *p)
1000 {
1001 return rq->curr == p;
1002 }
1003
1004 static inline int task_running(struct rq *rq, struct task_struct *p)
1005 {
1006 #ifdef CONFIG_SMP
1007 return p->on_cpu;
1008 #else
1009 return task_current(rq, p);
1010 #endif
1011 }
1012
1013 static inline int task_on_rq_queued(struct task_struct *p)
1014 {
1015 return p->on_rq == TASK_ON_RQ_QUEUED;
1016 }
1017
1018 static inline int task_on_rq_migrating(struct task_struct *p)
1019 {
1020 return p->on_rq == TASK_ON_RQ_MIGRATING;
1021 }
1022
1023 #ifndef prepare_arch_switch
1024 # define prepare_arch_switch(next) do { } while (0)
1025 #endif
1026 #ifndef finish_arch_switch
1027 # define finish_arch_switch(prev) do { } while (0)
1028 #endif
1029 #ifndef finish_arch_post_lock_switch
1030 # define finish_arch_post_lock_switch() do { } while (0)
1031 #endif
1032
1033 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1034 {
1035 #ifdef CONFIG_SMP
1036 /*
1037 * We can optimise this out completely for !SMP, because the
1038 * SMP rebalancing from interrupt is the only thing that cares
1039 * here.
1040 */
1041 next->on_cpu = 1;
1042 #endif
1043 }
1044
1045 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1046 {
1047 #ifdef CONFIG_SMP
1048 /*
1049 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1050 * We must ensure this doesn't happen until the switch is completely
1051 * finished.
1052 */
1053 smp_wmb();
1054 prev->on_cpu = 0;
1055 #endif
1056 #ifdef CONFIG_DEBUG_SPINLOCK
1057 /* this is a valid case when another task releases the spinlock */
1058 rq->lock.owner = current;
1059 #endif
1060 /*
1061 * If we are tracking spinlock dependencies then we have to
1062 * fix up the runqueue lock - which gets 'carried over' from
1063 * prev into current:
1064 */
1065 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
1066
1067 raw_spin_unlock_irq(&rq->lock);
1068 }
1069
1070 /*
1071 * wake flags
1072 */
1073 #define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
1074 #define WF_FORK 0x02 /* child wakeup after fork */
1075 #define WF_MIGRATED 0x4 /* internal use, task got migrated */
1076
1077 /*
1078 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1079 * of tasks with abnormal "nice" values across CPUs the contribution that
1080 * each task makes to its run queue's load is weighted according to its
1081 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1082 * scaled version of the new time slice allocation that they receive on time
1083 * slice expiry etc.
1084 */
1085
1086 #define WEIGHT_IDLEPRIO 3
1087 #define WMULT_IDLEPRIO 1431655765
1088
1089 /*
1090 * Nice levels are multiplicative, with a gentle 10% change for every
1091 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1092 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1093 * that remained on nice 0.
1094 *
1095 * The "10% effect" is relative and cumulative: from _any_ nice level,
1096 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1097 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1098 * If a task goes up by ~10% and another task goes down by ~10% then
1099 * the relative distance between them is ~25%.)
1100 */
1101 static const int prio_to_weight[40] = {
1102 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1103 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1104 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1105 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1106 /* 0 */ 1024, 820, 655, 526, 423,
1107 /* 5 */ 335, 272, 215, 172, 137,
1108 /* 10 */ 110, 87, 70, 56, 45,
1109 /* 15 */ 36, 29, 23, 18, 15,
1110 };
1111
1112 /*
1113 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1114 *
1115 * In cases where the weight does not change often, we can use the
1116 * precalculated inverse to speed up arithmetics by turning divisions
1117 * into multiplications:
1118 */
1119 static const u32 prio_to_wmult[40] = {
1120 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1121 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1122 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1123 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1124 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1125 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1126 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1127 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1128 };
1129
1130 #define ENQUEUE_WAKEUP 1
1131 #define ENQUEUE_HEAD 2
1132 #ifdef CONFIG_SMP
1133 #define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */
1134 #else
1135 #define ENQUEUE_WAKING 0
1136 #endif
1137 #define ENQUEUE_REPLENISH 8
1138
1139 #define DEQUEUE_SLEEP 1
1140
1141 #define RETRY_TASK ((void *)-1UL)
1142
1143 struct sched_class {
1144 const struct sched_class *next;
1145
1146 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1147 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1148 void (*yield_task) (struct rq *rq);
1149 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1150
1151 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1152
1153 /*
1154 * It is the responsibility of the pick_next_task() method that will
1155 * return the next task to call put_prev_task() on the @prev task or
1156 * something equivalent.
1157 *
1158 * May return RETRY_TASK when it finds a higher prio class has runnable
1159 * tasks.
1160 */
1161 struct task_struct * (*pick_next_task) (struct rq *rq,
1162 struct task_struct *prev);
1163 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1164
1165 #ifdef CONFIG_SMP
1166 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
1167 void (*migrate_task_rq)(struct task_struct *p, int next_cpu);
1168
1169 void (*post_schedule) (struct rq *this_rq);
1170 void (*task_waking) (struct task_struct *task);
1171 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1172
1173 void (*set_cpus_allowed)(struct task_struct *p,
1174 const struct cpumask *newmask);
1175
1176 void (*rq_online)(struct rq *rq);
1177 void (*rq_offline)(struct rq *rq);
1178 #endif
1179
1180 void (*set_curr_task) (struct rq *rq);
1181 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1182 void (*task_fork) (struct task_struct *p);
1183 void (*task_dead) (struct task_struct *p);
1184
1185 /*
1186 * The switched_from() call is allowed to drop rq->lock, therefore we
1187 * cannot assume the switched_from/switched_to pair is serliazed by
1188 * rq->lock. They are however serialized by p->pi_lock.
1189 */
1190 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1191 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1192 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1193 int oldprio);
1194
1195 unsigned int (*get_rr_interval) (struct rq *rq,
1196 struct task_struct *task);
1197
1198 void (*update_curr) (struct rq *rq);
1199
1200 #ifdef CONFIG_FAIR_GROUP_SCHED
1201 void (*task_move_group) (struct task_struct *p, int on_rq);
1202 #endif
1203 };
1204
1205 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1206 {
1207 prev->sched_class->put_prev_task(rq, prev);
1208 }
1209
1210 #define sched_class_highest (&stop_sched_class)
1211 #define for_each_class(class) \
1212 for (class = sched_class_highest; class; class = class->next)
1213
1214 extern const struct sched_class stop_sched_class;
1215 extern const struct sched_class dl_sched_class;
1216 extern const struct sched_class rt_sched_class;
1217 extern const struct sched_class fair_sched_class;
1218 extern const struct sched_class idle_sched_class;
1219
1220
1221 #ifdef CONFIG_SMP
1222
1223 extern void update_group_capacity(struct sched_domain *sd, int cpu);
1224
1225 extern void trigger_load_balance(struct rq *rq);
1226
1227 extern void idle_enter_fair(struct rq *this_rq);
1228 extern void idle_exit_fair(struct rq *this_rq);
1229
1230 #else
1231
1232 static inline void idle_enter_fair(struct rq *rq) { }
1233 static inline void idle_exit_fair(struct rq *rq) { }
1234
1235 #endif
1236
1237 #ifdef CONFIG_CPU_IDLE
1238 static inline void idle_set_state(struct rq *rq,
1239 struct cpuidle_state *idle_state)
1240 {
1241 rq->idle_state = idle_state;
1242 }
1243
1244 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1245 {
1246 WARN_ON(!rcu_read_lock_held());
1247 return rq->idle_state;
1248 }
1249 #else
1250 static inline void idle_set_state(struct rq *rq,
1251 struct cpuidle_state *idle_state)
1252 {
1253 }
1254
1255 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1256 {
1257 return NULL;
1258 }
1259 #endif
1260
1261 extern void sysrq_sched_debug_show(void);
1262 extern void sched_init_granularity(void);
1263 extern void update_max_interval(void);
1264
1265 extern void init_sched_dl_class(void);
1266 extern void init_sched_rt_class(void);
1267 extern void init_sched_fair_class(void);
1268 extern void init_sched_dl_class(void);
1269
1270 extern void resched_curr(struct rq *rq);
1271 extern void resched_cpu(int cpu);
1272
1273 extern struct rt_bandwidth def_rt_bandwidth;
1274 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1275
1276 extern struct dl_bandwidth def_dl_bandwidth;
1277 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
1278 extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1279
1280 unsigned long to_ratio(u64 period, u64 runtime);
1281
1282 extern void update_idle_cpu_load(struct rq *this_rq);
1283
1284 extern void init_task_runnable_average(struct task_struct *p);
1285
1286 static inline void add_nr_running(struct rq *rq, unsigned count)
1287 {
1288 unsigned prev_nr = rq->nr_running;
1289
1290 rq->nr_running = prev_nr + count;
1291
1292 if (prev_nr < 2 && rq->nr_running >= 2) {
1293 #ifdef CONFIG_SMP
1294 if (!rq->rd->overload)
1295 rq->rd->overload = true;
1296 #endif
1297
1298 #ifdef CONFIG_NO_HZ_FULL
1299 if (tick_nohz_full_cpu(rq->cpu)) {
1300 /*
1301 * Tick is needed if more than one task runs on a CPU.
1302 * Send the target an IPI to kick it out of nohz mode.
1303 *
1304 * We assume that IPI implies full memory barrier and the
1305 * new value of rq->nr_running is visible on reception
1306 * from the target.
1307 */
1308 tick_nohz_full_kick_cpu(rq->cpu);
1309 }
1310 #endif
1311 }
1312 }
1313
1314 static inline void sub_nr_running(struct rq *rq, unsigned count)
1315 {
1316 rq->nr_running -= count;
1317 }
1318
1319 static inline void rq_last_tick_reset(struct rq *rq)
1320 {
1321 #ifdef CONFIG_NO_HZ_FULL
1322 rq->last_sched_tick = jiffies;
1323 #endif
1324 }
1325
1326 extern void update_rq_clock(struct rq *rq);
1327
1328 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1329 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1330
1331 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1332
1333 extern const_debug unsigned int sysctl_sched_time_avg;
1334 extern const_debug unsigned int sysctl_sched_nr_migrate;
1335 extern const_debug unsigned int sysctl_sched_migration_cost;
1336
1337 static inline u64 sched_avg_period(void)
1338 {
1339 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1340 }
1341
1342 #ifdef CONFIG_SCHED_HRTICK
1343
1344 /*
1345 * Use hrtick when:
1346 * - enabled by features
1347 * - hrtimer is actually high res
1348 */
1349 static inline int hrtick_enabled(struct rq *rq)
1350 {
1351 if (!sched_feat(HRTICK))
1352 return 0;
1353 if (!cpu_active(cpu_of(rq)))
1354 return 0;
1355 return hrtimer_is_hres_active(&rq->hrtick_timer);
1356 }
1357
1358 void hrtick_start(struct rq *rq, u64 delay);
1359
1360 #else
1361
1362 static inline int hrtick_enabled(struct rq *rq)
1363 {
1364 return 0;
1365 }
1366
1367 #endif /* CONFIG_SCHED_HRTICK */
1368
1369 #ifdef CONFIG_SMP
1370 extern void sched_avg_update(struct rq *rq);
1371 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1372 {
1373 rq->rt_avg += rt_delta;
1374 sched_avg_update(rq);
1375 }
1376 #else
1377 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1378 static inline void sched_avg_update(struct rq *rq) { }
1379 #endif
1380
1381 extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period);
1382
1383 /*
1384 * __task_rq_lock - lock the rq @p resides on.
1385 */
1386 static inline struct rq *__task_rq_lock(struct task_struct *p)
1387 __acquires(rq->lock)
1388 {
1389 struct rq *rq;
1390
1391 lockdep_assert_held(&p->pi_lock);
1392
1393 for (;;) {
1394 rq = task_rq(p);
1395 raw_spin_lock(&rq->lock);
1396 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
1397 return rq;
1398 raw_spin_unlock(&rq->lock);
1399
1400 while (unlikely(task_on_rq_migrating(p)))
1401 cpu_relax();
1402 }
1403 }
1404
1405 /*
1406 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1407 */
1408 static inline struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1409 __acquires(p->pi_lock)
1410 __acquires(rq->lock)
1411 {
1412 struct rq *rq;
1413
1414 for (;;) {
1415 raw_spin_lock_irqsave(&p->pi_lock, *flags);
1416 rq = task_rq(p);
1417 raw_spin_lock(&rq->lock);
1418 /*
1419 * move_queued_task() task_rq_lock()
1420 *
1421 * ACQUIRE (rq->lock)
1422 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
1423 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
1424 * [S] ->cpu = new_cpu [L] task_rq()
1425 * [L] ->on_rq
1426 * RELEASE (rq->lock)
1427 *
1428 * If we observe the old cpu in task_rq_lock, the acquire of
1429 * the old rq->lock will fully serialize against the stores.
1430 *
1431 * If we observe the new cpu in task_rq_lock, the acquire will
1432 * pair with the WMB to ensure we must then also see migrating.
1433 */
1434 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
1435 return rq;
1436 raw_spin_unlock(&rq->lock);
1437 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1438
1439 while (unlikely(task_on_rq_migrating(p)))
1440 cpu_relax();
1441 }
1442 }
1443
1444 static inline void __task_rq_unlock(struct rq *rq)
1445 __releases(rq->lock)
1446 {
1447 raw_spin_unlock(&rq->lock);
1448 }
1449
1450 static inline void
1451 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1452 __releases(rq->lock)
1453 __releases(p->pi_lock)
1454 {
1455 raw_spin_unlock(&rq->lock);
1456 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1457 }
1458
1459 #ifdef CONFIG_SMP
1460 #ifdef CONFIG_PREEMPT
1461
1462 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1463
1464 /*
1465 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1466 * way at the expense of forcing extra atomic operations in all
1467 * invocations. This assures that the double_lock is acquired using the
1468 * same underlying policy as the spinlock_t on this architecture, which
1469 * reduces latency compared to the unfair variant below. However, it
1470 * also adds more overhead and therefore may reduce throughput.
1471 */
1472 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1473 __releases(this_rq->lock)
1474 __acquires(busiest->lock)
1475 __acquires(this_rq->lock)
1476 {
1477 raw_spin_unlock(&this_rq->lock);
1478 double_rq_lock(this_rq, busiest);
1479
1480 return 1;
1481 }
1482
1483 #else
1484 /*
1485 * Unfair double_lock_balance: Optimizes throughput at the expense of
1486 * latency by eliminating extra atomic operations when the locks are
1487 * already in proper order on entry. This favors lower cpu-ids and will
1488 * grant the double lock to lower cpus over higher ids under contention,
1489 * regardless of entry order into the function.
1490 */
1491 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1492 __releases(this_rq->lock)
1493 __acquires(busiest->lock)
1494 __acquires(this_rq->lock)
1495 {
1496 int ret = 0;
1497
1498 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1499 if (busiest < this_rq) {
1500 raw_spin_unlock(&this_rq->lock);
1501 raw_spin_lock(&busiest->lock);
1502 raw_spin_lock_nested(&this_rq->lock,
1503 SINGLE_DEPTH_NESTING);
1504 ret = 1;
1505 } else
1506 raw_spin_lock_nested(&busiest->lock,
1507 SINGLE_DEPTH_NESTING);
1508 }
1509 return ret;
1510 }
1511
1512 #endif /* CONFIG_PREEMPT */
1513
1514 /*
1515 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1516 */
1517 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1518 {
1519 if (unlikely(!irqs_disabled())) {
1520 /* printk() doesn't work good under rq->lock */
1521 raw_spin_unlock(&this_rq->lock);
1522 BUG_ON(1);
1523 }
1524
1525 return _double_lock_balance(this_rq, busiest);
1526 }
1527
1528 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1529 __releases(busiest->lock)
1530 {
1531 raw_spin_unlock(&busiest->lock);
1532 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1533 }
1534
1535 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1536 {
1537 if (l1 > l2)
1538 swap(l1, l2);
1539
1540 spin_lock(l1);
1541 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1542 }
1543
1544 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
1545 {
1546 if (l1 > l2)
1547 swap(l1, l2);
1548
1549 spin_lock_irq(l1);
1550 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1551 }
1552
1553 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1554 {
1555 if (l1 > l2)
1556 swap(l1, l2);
1557
1558 raw_spin_lock(l1);
1559 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1560 }
1561
1562 /*
1563 * double_rq_lock - safely lock two runqueues
1564 *
1565 * Note this does not disable interrupts like task_rq_lock,
1566 * you need to do so manually before calling.
1567 */
1568 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1569 __acquires(rq1->lock)
1570 __acquires(rq2->lock)
1571 {
1572 BUG_ON(!irqs_disabled());
1573 if (rq1 == rq2) {
1574 raw_spin_lock(&rq1->lock);
1575 __acquire(rq2->lock); /* Fake it out ;) */
1576 } else {
1577 if (rq1 < rq2) {
1578 raw_spin_lock(&rq1->lock);
1579 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1580 } else {
1581 raw_spin_lock(&rq2->lock);
1582 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1583 }
1584 }
1585 }
1586
1587 /*
1588 * double_rq_unlock - safely unlock two runqueues
1589 *
1590 * Note this does not restore interrupts like task_rq_unlock,
1591 * you need to do so manually after calling.
1592 */
1593 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1594 __releases(rq1->lock)
1595 __releases(rq2->lock)
1596 {
1597 raw_spin_unlock(&rq1->lock);
1598 if (rq1 != rq2)
1599 raw_spin_unlock(&rq2->lock);
1600 else
1601 __release(rq2->lock);
1602 }
1603
1604 #else /* CONFIG_SMP */
1605
1606 /*
1607 * double_rq_lock - safely lock two runqueues
1608 *
1609 * Note this does not disable interrupts like task_rq_lock,
1610 * you need to do so manually before calling.
1611 */
1612 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1613 __acquires(rq1->lock)
1614 __acquires(rq2->lock)
1615 {
1616 BUG_ON(!irqs_disabled());
1617 BUG_ON(rq1 != rq2);
1618 raw_spin_lock(&rq1->lock);
1619 __acquire(rq2->lock); /* Fake it out ;) */
1620 }
1621
1622 /*
1623 * double_rq_unlock - safely unlock two runqueues
1624 *
1625 * Note this does not restore interrupts like task_rq_unlock,
1626 * you need to do so manually after calling.
1627 */
1628 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1629 __releases(rq1->lock)
1630 __releases(rq2->lock)
1631 {
1632 BUG_ON(rq1 != rq2);
1633 raw_spin_unlock(&rq1->lock);
1634 __release(rq2->lock);
1635 }
1636
1637 #endif
1638
1639 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1640 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1641 extern void print_cfs_stats(struct seq_file *m, int cpu);
1642 extern void print_rt_stats(struct seq_file *m, int cpu);
1643 extern void print_dl_stats(struct seq_file *m, int cpu);
1644
1645 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1646 extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq);
1647 extern void init_dl_rq(struct dl_rq *dl_rq, struct rq *rq);
1648
1649 extern void cfs_bandwidth_usage_inc(void);
1650 extern void cfs_bandwidth_usage_dec(void);
1651
1652 #ifdef CONFIG_NO_HZ_COMMON
1653 enum rq_nohz_flag_bits {
1654 NOHZ_TICK_STOPPED,
1655 NOHZ_BALANCE_KICK,
1656 };
1657
1658 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1659 #endif
1660
1661 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1662
1663 DECLARE_PER_CPU(u64, cpu_hardirq_time);
1664 DECLARE_PER_CPU(u64, cpu_softirq_time);
1665
1666 #ifndef CONFIG_64BIT
1667 DECLARE_PER_CPU(seqcount_t, irq_time_seq);
1668
1669 static inline void irq_time_write_begin(void)
1670 {
1671 __this_cpu_inc(irq_time_seq.sequence);
1672 smp_wmb();
1673 }
1674
1675 static inline void irq_time_write_end(void)
1676 {
1677 smp_wmb();
1678 __this_cpu_inc(irq_time_seq.sequence);
1679 }
1680
1681 static inline u64 irq_time_read(int cpu)
1682 {
1683 u64 irq_time;
1684 unsigned seq;
1685
1686 do {
1687 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1688 irq_time = per_cpu(cpu_softirq_time, cpu) +
1689 per_cpu(cpu_hardirq_time, cpu);
1690 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1691
1692 return irq_time;
1693 }
1694 #else /* CONFIG_64BIT */
1695 static inline void irq_time_write_begin(void)
1696 {
1697 }
1698
1699 static inline void irq_time_write_end(void)
1700 {
1701 }
1702
1703 static inline u64 irq_time_read(int cpu)
1704 {
1705 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1706 }
1707 #endif /* CONFIG_64BIT */
1708 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
This page took 0.078919 seconds and 5 git commands to generate.