089be8adb0746ac6680fc26dc7344fbc1a3697d2
[deliverable/linux.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/stop_machine.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
74 #include <linux/slab.h>
75
76 #include <asm/tlb.h>
77 #include <asm/irq_regs.h>
78
79 #include "sched_cpupri.h"
80 #include "workqueue_sched.h"
81
82 #define CREATE_TRACE_POINTS
83 #include <trace/events/sched.h>
84
85 /*
86 * Convert user-nice values [ -20 ... 0 ... 19 ]
87 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
88 * and back.
89 */
90 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
91 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
92 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
93
94 /*
95 * 'User priority' is the nice value converted to something we
96 * can work with better when scaling various scheduler parameters,
97 * it's a [ 0 ... 39 ] range.
98 */
99 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
100 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
101 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
102
103 /*
104 * Helpers for converting nanosecond timing to jiffy resolution
105 */
106 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
107
108 #define NICE_0_LOAD SCHED_LOAD_SCALE
109 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
110
111 /*
112 * These are the 'tuning knobs' of the scheduler:
113 *
114 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
115 * Timeslices get refilled after they expire.
116 */
117 #define DEF_TIMESLICE (100 * HZ / 1000)
118
119 /*
120 * single value that denotes runtime == period, ie unlimited time.
121 */
122 #define RUNTIME_INF ((u64)~0ULL)
123
124 static inline int rt_policy(int policy)
125 {
126 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
127 return 1;
128 return 0;
129 }
130
131 static inline int task_has_rt_policy(struct task_struct *p)
132 {
133 return rt_policy(p->policy);
134 }
135
136 /*
137 * This is the priority-queue data structure of the RT scheduling class:
138 */
139 struct rt_prio_array {
140 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
141 struct list_head queue[MAX_RT_PRIO];
142 };
143
144 struct rt_bandwidth {
145 /* nests inside the rq lock: */
146 raw_spinlock_t rt_runtime_lock;
147 ktime_t rt_period;
148 u64 rt_runtime;
149 struct hrtimer rt_period_timer;
150 };
151
152 static struct rt_bandwidth def_rt_bandwidth;
153
154 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
155
156 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
157 {
158 struct rt_bandwidth *rt_b =
159 container_of(timer, struct rt_bandwidth, rt_period_timer);
160 ktime_t now;
161 int overrun;
162 int idle = 0;
163
164 for (;;) {
165 now = hrtimer_cb_get_time(timer);
166 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
167
168 if (!overrun)
169 break;
170
171 idle = do_sched_rt_period_timer(rt_b, overrun);
172 }
173
174 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
175 }
176
177 static
178 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
179 {
180 rt_b->rt_period = ns_to_ktime(period);
181 rt_b->rt_runtime = runtime;
182
183 raw_spin_lock_init(&rt_b->rt_runtime_lock);
184
185 hrtimer_init(&rt_b->rt_period_timer,
186 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
187 rt_b->rt_period_timer.function = sched_rt_period_timer;
188 }
189
190 static inline int rt_bandwidth_enabled(void)
191 {
192 return sysctl_sched_rt_runtime >= 0;
193 }
194
195 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
196 {
197 ktime_t now;
198
199 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
200 return;
201
202 if (hrtimer_active(&rt_b->rt_period_timer))
203 return;
204
205 raw_spin_lock(&rt_b->rt_runtime_lock);
206 for (;;) {
207 unsigned long delta;
208 ktime_t soft, hard;
209
210 if (hrtimer_active(&rt_b->rt_period_timer))
211 break;
212
213 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
214 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
215
216 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
217 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
218 delta = ktime_to_ns(ktime_sub(hard, soft));
219 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
220 HRTIMER_MODE_ABS_PINNED, 0);
221 }
222 raw_spin_unlock(&rt_b->rt_runtime_lock);
223 }
224
225 #ifdef CONFIG_RT_GROUP_SCHED
226 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
227 {
228 hrtimer_cancel(&rt_b->rt_period_timer);
229 }
230 #endif
231
232 /*
233 * sched_domains_mutex serializes calls to arch_init_sched_domains,
234 * detach_destroy_domains and partition_sched_domains.
235 */
236 static DEFINE_MUTEX(sched_domains_mutex);
237
238 #ifdef CONFIG_CGROUP_SCHED
239
240 #include <linux/cgroup.h>
241
242 struct cfs_rq;
243
244 static LIST_HEAD(task_groups);
245
246 /* task group related information */
247 struct task_group {
248 struct cgroup_subsys_state css;
249
250 #ifdef CONFIG_FAIR_GROUP_SCHED
251 /* schedulable entities of this group on each cpu */
252 struct sched_entity **se;
253 /* runqueue "owned" by this group on each cpu */
254 struct cfs_rq **cfs_rq;
255 unsigned long shares;
256 #endif
257
258 #ifdef CONFIG_RT_GROUP_SCHED
259 struct sched_rt_entity **rt_se;
260 struct rt_rq **rt_rq;
261
262 struct rt_bandwidth rt_bandwidth;
263 #endif
264
265 struct rcu_head rcu;
266 struct list_head list;
267
268 struct task_group *parent;
269 struct list_head siblings;
270 struct list_head children;
271 };
272
273 #define root_task_group init_task_group
274
275 /* task_group_lock serializes add/remove of task groups and also changes to
276 * a task group's cpu shares.
277 */
278 static DEFINE_SPINLOCK(task_group_lock);
279
280 #ifdef CONFIG_FAIR_GROUP_SCHED
281
282 #ifdef CONFIG_SMP
283 static int root_task_group_empty(void)
284 {
285 return list_empty(&root_task_group.children);
286 }
287 #endif
288
289 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
290
291 /*
292 * A weight of 0 or 1 can cause arithmetics problems.
293 * A weight of a cfs_rq is the sum of weights of which entities
294 * are queued on this cfs_rq, so a weight of a entity should not be
295 * too large, so as the shares value of a task group.
296 * (The default weight is 1024 - so there's no practical
297 * limitation from this.)
298 */
299 #define MIN_SHARES 2
300 #define MAX_SHARES (1UL << 18)
301
302 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
303 #endif
304
305 /* Default task group.
306 * Every task in system belong to this group at bootup.
307 */
308 struct task_group init_task_group;
309
310 #endif /* CONFIG_CGROUP_SCHED */
311
312 /* CFS-related fields in a runqueue */
313 struct cfs_rq {
314 struct load_weight load;
315 unsigned long nr_running;
316
317 u64 exec_clock;
318 u64 min_vruntime;
319
320 struct rb_root tasks_timeline;
321 struct rb_node *rb_leftmost;
322
323 struct list_head tasks;
324 struct list_head *balance_iterator;
325
326 /*
327 * 'curr' points to currently running entity on this cfs_rq.
328 * It is set to NULL otherwise (i.e when none are currently running).
329 */
330 struct sched_entity *curr, *next, *last;
331
332 unsigned int nr_spread_over;
333
334 #ifdef CONFIG_FAIR_GROUP_SCHED
335 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
336
337 /*
338 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
339 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
340 * (like users, containers etc.)
341 *
342 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
343 * list is used during load balance.
344 */
345 struct list_head leaf_cfs_rq_list;
346 struct task_group *tg; /* group that "owns" this runqueue */
347
348 #ifdef CONFIG_SMP
349 /*
350 * the part of load.weight contributed by tasks
351 */
352 unsigned long task_weight;
353
354 /*
355 * h_load = weight * f(tg)
356 *
357 * Where f(tg) is the recursive weight fraction assigned to
358 * this group.
359 */
360 unsigned long h_load;
361
362 /*
363 * this cpu's part of tg->shares
364 */
365 unsigned long shares;
366
367 /*
368 * load.weight at the time we set shares
369 */
370 unsigned long rq_weight;
371 #endif
372 #endif
373 };
374
375 /* Real-Time classes' related field in a runqueue: */
376 struct rt_rq {
377 struct rt_prio_array active;
378 unsigned long rt_nr_running;
379 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
380 struct {
381 int curr; /* highest queued rt task prio */
382 #ifdef CONFIG_SMP
383 int next; /* next highest */
384 #endif
385 } highest_prio;
386 #endif
387 #ifdef CONFIG_SMP
388 unsigned long rt_nr_migratory;
389 unsigned long rt_nr_total;
390 int overloaded;
391 struct plist_head pushable_tasks;
392 #endif
393 int rt_throttled;
394 u64 rt_time;
395 u64 rt_runtime;
396 /* Nests inside the rq lock: */
397 raw_spinlock_t rt_runtime_lock;
398
399 #ifdef CONFIG_RT_GROUP_SCHED
400 unsigned long rt_nr_boosted;
401
402 struct rq *rq;
403 struct list_head leaf_rt_rq_list;
404 struct task_group *tg;
405 #endif
406 };
407
408 #ifdef CONFIG_SMP
409
410 /*
411 * We add the notion of a root-domain which will be used to define per-domain
412 * variables. Each exclusive cpuset essentially defines an island domain by
413 * fully partitioning the member cpus from any other cpuset. Whenever a new
414 * exclusive cpuset is created, we also create and attach a new root-domain
415 * object.
416 *
417 */
418 struct root_domain {
419 atomic_t refcount;
420 cpumask_var_t span;
421 cpumask_var_t online;
422
423 /*
424 * The "RT overload" flag: it gets set if a CPU has more than
425 * one runnable RT task.
426 */
427 cpumask_var_t rto_mask;
428 atomic_t rto_count;
429 struct cpupri cpupri;
430 };
431
432 /*
433 * By default the system creates a single root-domain with all cpus as
434 * members (mimicking the global state we have today).
435 */
436 static struct root_domain def_root_domain;
437
438 #endif /* CONFIG_SMP */
439
440 /*
441 * This is the main, per-CPU runqueue data structure.
442 *
443 * Locking rule: those places that want to lock multiple runqueues
444 * (such as the load balancing or the thread migration code), lock
445 * acquire operations must be ordered by ascending &runqueue.
446 */
447 struct rq {
448 /* runqueue lock: */
449 raw_spinlock_t lock;
450
451 /*
452 * nr_running and cpu_load should be in the same cacheline because
453 * remote CPUs use both these fields when doing load calculation.
454 */
455 unsigned long nr_running;
456 #define CPU_LOAD_IDX_MAX 5
457 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
458 unsigned long last_load_update_tick;
459 #ifdef CONFIG_NO_HZ
460 u64 nohz_stamp;
461 unsigned char nohz_balance_kick;
462 #endif
463 unsigned int skip_clock_update;
464
465 /* capture load from *all* tasks on this cpu: */
466 struct load_weight load;
467 unsigned long nr_load_updates;
468 u64 nr_switches;
469
470 struct cfs_rq cfs;
471 struct rt_rq rt;
472
473 #ifdef CONFIG_FAIR_GROUP_SCHED
474 /* list of leaf cfs_rq on this cpu: */
475 struct list_head leaf_cfs_rq_list;
476 #endif
477 #ifdef CONFIG_RT_GROUP_SCHED
478 struct list_head leaf_rt_rq_list;
479 #endif
480
481 /*
482 * This is part of a global counter where only the total sum
483 * over all CPUs matters. A task can increase this counter on
484 * one CPU and if it got migrated afterwards it may decrease
485 * it on another CPU. Always updated under the runqueue lock:
486 */
487 unsigned long nr_uninterruptible;
488
489 struct task_struct *curr, *idle, *stop;
490 unsigned long next_balance;
491 struct mm_struct *prev_mm;
492
493 u64 clock;
494
495 atomic_t nr_iowait;
496
497 #ifdef CONFIG_SMP
498 struct root_domain *rd;
499 struct sched_domain *sd;
500
501 unsigned long cpu_power;
502
503 unsigned char idle_at_tick;
504 /* For active balancing */
505 int post_schedule;
506 int active_balance;
507 int push_cpu;
508 struct cpu_stop_work active_balance_work;
509 /* cpu of this runqueue: */
510 int cpu;
511 int online;
512
513 unsigned long avg_load_per_task;
514
515 u64 rt_avg;
516 u64 age_stamp;
517 u64 idle_stamp;
518 u64 avg_idle;
519 #endif
520
521 /* calc_load related fields */
522 unsigned long calc_load_update;
523 long calc_load_active;
524
525 #ifdef CONFIG_SCHED_HRTICK
526 #ifdef CONFIG_SMP
527 int hrtick_csd_pending;
528 struct call_single_data hrtick_csd;
529 #endif
530 struct hrtimer hrtick_timer;
531 #endif
532
533 #ifdef CONFIG_SCHEDSTATS
534 /* latency stats */
535 struct sched_info rq_sched_info;
536 unsigned long long rq_cpu_time;
537 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
538
539 /* sys_sched_yield() stats */
540 unsigned int yld_count;
541
542 /* schedule() stats */
543 unsigned int sched_switch;
544 unsigned int sched_count;
545 unsigned int sched_goidle;
546
547 /* try_to_wake_up() stats */
548 unsigned int ttwu_count;
549 unsigned int ttwu_local;
550
551 /* BKL stats */
552 unsigned int bkl_count;
553 #endif
554 };
555
556 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
557
558 static inline
559 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
560 {
561 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
562
563 /*
564 * A queue event has occurred, and we're going to schedule. In
565 * this case, we can save a useless back to back clock update.
566 */
567 if (test_tsk_need_resched(p))
568 rq->skip_clock_update = 1;
569 }
570
571 static inline int cpu_of(struct rq *rq)
572 {
573 #ifdef CONFIG_SMP
574 return rq->cpu;
575 #else
576 return 0;
577 #endif
578 }
579
580 #define rcu_dereference_check_sched_domain(p) \
581 rcu_dereference_check((p), \
582 rcu_read_lock_sched_held() || \
583 lockdep_is_held(&sched_domains_mutex))
584
585 /*
586 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
587 * See detach_destroy_domains: synchronize_sched for details.
588 *
589 * The domain tree of any CPU may only be accessed from within
590 * preempt-disabled sections.
591 */
592 #define for_each_domain(cpu, __sd) \
593 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
594
595 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
596 #define this_rq() (&__get_cpu_var(runqueues))
597 #define task_rq(p) cpu_rq(task_cpu(p))
598 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
599 #define raw_rq() (&__raw_get_cpu_var(runqueues))
600
601 #ifdef CONFIG_CGROUP_SCHED
602
603 /*
604 * Return the group to which this tasks belongs.
605 *
606 * We use task_subsys_state_check() and extend the RCU verification
607 * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
608 * holds that lock for each task it moves into the cgroup. Therefore
609 * by holding that lock, we pin the task to the current cgroup.
610 */
611 static inline struct task_group *task_group(struct task_struct *p)
612 {
613 struct cgroup_subsys_state *css;
614
615 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
616 lockdep_is_held(&task_rq(p)->lock));
617 return container_of(css, struct task_group, css);
618 }
619
620 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
621 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
622 {
623 #ifdef CONFIG_FAIR_GROUP_SCHED
624 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
625 p->se.parent = task_group(p)->se[cpu];
626 #endif
627
628 #ifdef CONFIG_RT_GROUP_SCHED
629 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
630 p->rt.parent = task_group(p)->rt_se[cpu];
631 #endif
632 }
633
634 #else /* CONFIG_CGROUP_SCHED */
635
636 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
637 static inline struct task_group *task_group(struct task_struct *p)
638 {
639 return NULL;
640 }
641
642 #endif /* CONFIG_CGROUP_SCHED */
643
644 inline void update_rq_clock(struct rq *rq)
645 {
646 if (!rq->skip_clock_update)
647 rq->clock = sched_clock_cpu(cpu_of(rq));
648 }
649
650 /*
651 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
652 */
653 #ifdef CONFIG_SCHED_DEBUG
654 # define const_debug __read_mostly
655 #else
656 # define const_debug static const
657 #endif
658
659 /**
660 * runqueue_is_locked
661 * @cpu: the processor in question.
662 *
663 * Returns true if the current cpu runqueue is locked.
664 * This interface allows printk to be called with the runqueue lock
665 * held and know whether or not it is OK to wake up the klogd.
666 */
667 int runqueue_is_locked(int cpu)
668 {
669 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
670 }
671
672 /*
673 * Debugging: various feature bits
674 */
675
676 #define SCHED_FEAT(name, enabled) \
677 __SCHED_FEAT_##name ,
678
679 enum {
680 #include "sched_features.h"
681 };
682
683 #undef SCHED_FEAT
684
685 #define SCHED_FEAT(name, enabled) \
686 (1UL << __SCHED_FEAT_##name) * enabled |
687
688 const_debug unsigned int sysctl_sched_features =
689 #include "sched_features.h"
690 0;
691
692 #undef SCHED_FEAT
693
694 #ifdef CONFIG_SCHED_DEBUG
695 #define SCHED_FEAT(name, enabled) \
696 #name ,
697
698 static __read_mostly char *sched_feat_names[] = {
699 #include "sched_features.h"
700 NULL
701 };
702
703 #undef SCHED_FEAT
704
705 static int sched_feat_show(struct seq_file *m, void *v)
706 {
707 int i;
708
709 for (i = 0; sched_feat_names[i]; i++) {
710 if (!(sysctl_sched_features & (1UL << i)))
711 seq_puts(m, "NO_");
712 seq_printf(m, "%s ", sched_feat_names[i]);
713 }
714 seq_puts(m, "\n");
715
716 return 0;
717 }
718
719 static ssize_t
720 sched_feat_write(struct file *filp, const char __user *ubuf,
721 size_t cnt, loff_t *ppos)
722 {
723 char buf[64];
724 char *cmp;
725 int neg = 0;
726 int i;
727
728 if (cnt > 63)
729 cnt = 63;
730
731 if (copy_from_user(&buf, ubuf, cnt))
732 return -EFAULT;
733
734 buf[cnt] = 0;
735 cmp = strstrip(buf);
736
737 if (strncmp(buf, "NO_", 3) == 0) {
738 neg = 1;
739 cmp += 3;
740 }
741
742 for (i = 0; sched_feat_names[i]; i++) {
743 if (strcmp(cmp, sched_feat_names[i]) == 0) {
744 if (neg)
745 sysctl_sched_features &= ~(1UL << i);
746 else
747 sysctl_sched_features |= (1UL << i);
748 break;
749 }
750 }
751
752 if (!sched_feat_names[i])
753 return -EINVAL;
754
755 *ppos += cnt;
756
757 return cnt;
758 }
759
760 static int sched_feat_open(struct inode *inode, struct file *filp)
761 {
762 return single_open(filp, sched_feat_show, NULL);
763 }
764
765 static const struct file_operations sched_feat_fops = {
766 .open = sched_feat_open,
767 .write = sched_feat_write,
768 .read = seq_read,
769 .llseek = seq_lseek,
770 .release = single_release,
771 };
772
773 static __init int sched_init_debug(void)
774 {
775 debugfs_create_file("sched_features", 0644, NULL, NULL,
776 &sched_feat_fops);
777
778 return 0;
779 }
780 late_initcall(sched_init_debug);
781
782 #endif
783
784 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
785
786 /*
787 * Number of tasks to iterate in a single balance run.
788 * Limited because this is done with IRQs disabled.
789 */
790 const_debug unsigned int sysctl_sched_nr_migrate = 32;
791
792 /*
793 * ratelimit for updating the group shares.
794 * default: 0.25ms
795 */
796 unsigned int sysctl_sched_shares_ratelimit = 250000;
797 unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
798
799 /*
800 * Inject some fuzzyness into changing the per-cpu group shares
801 * this avoids remote rq-locks at the expense of fairness.
802 * default: 4
803 */
804 unsigned int sysctl_sched_shares_thresh = 4;
805
806 /*
807 * period over which we average the RT time consumption, measured
808 * in ms.
809 *
810 * default: 1s
811 */
812 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
813
814 /*
815 * period over which we measure -rt task cpu usage in us.
816 * default: 1s
817 */
818 unsigned int sysctl_sched_rt_period = 1000000;
819
820 static __read_mostly int scheduler_running;
821
822 /*
823 * part of the period that we allow rt tasks to run in us.
824 * default: 0.95s
825 */
826 int sysctl_sched_rt_runtime = 950000;
827
828 static inline u64 global_rt_period(void)
829 {
830 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
831 }
832
833 static inline u64 global_rt_runtime(void)
834 {
835 if (sysctl_sched_rt_runtime < 0)
836 return RUNTIME_INF;
837
838 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
839 }
840
841 #ifndef prepare_arch_switch
842 # define prepare_arch_switch(next) do { } while (0)
843 #endif
844 #ifndef finish_arch_switch
845 # define finish_arch_switch(prev) do { } while (0)
846 #endif
847
848 static inline int task_current(struct rq *rq, struct task_struct *p)
849 {
850 return rq->curr == p;
851 }
852
853 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
854 static inline int task_running(struct rq *rq, struct task_struct *p)
855 {
856 return task_current(rq, p);
857 }
858
859 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
860 {
861 }
862
863 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
864 {
865 #ifdef CONFIG_DEBUG_SPINLOCK
866 /* this is a valid case when another task releases the spinlock */
867 rq->lock.owner = current;
868 #endif
869 /*
870 * If we are tracking spinlock dependencies then we have to
871 * fix up the runqueue lock - which gets 'carried over' from
872 * prev into current:
873 */
874 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
875
876 raw_spin_unlock_irq(&rq->lock);
877 }
878
879 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
880 static inline int task_running(struct rq *rq, struct task_struct *p)
881 {
882 #ifdef CONFIG_SMP
883 return p->oncpu;
884 #else
885 return task_current(rq, p);
886 #endif
887 }
888
889 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
890 {
891 #ifdef CONFIG_SMP
892 /*
893 * We can optimise this out completely for !SMP, because the
894 * SMP rebalancing from interrupt is the only thing that cares
895 * here.
896 */
897 next->oncpu = 1;
898 #endif
899 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
900 raw_spin_unlock_irq(&rq->lock);
901 #else
902 raw_spin_unlock(&rq->lock);
903 #endif
904 }
905
906 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
907 {
908 #ifdef CONFIG_SMP
909 /*
910 * After ->oncpu is cleared, the task can be moved to a different CPU.
911 * We must ensure this doesn't happen until the switch is completely
912 * finished.
913 */
914 smp_wmb();
915 prev->oncpu = 0;
916 #endif
917 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
918 local_irq_enable();
919 #endif
920 }
921 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
922
923 /*
924 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
925 * against ttwu().
926 */
927 static inline int task_is_waking(struct task_struct *p)
928 {
929 return unlikely(p->state == TASK_WAKING);
930 }
931
932 /*
933 * __task_rq_lock - lock the runqueue a given task resides on.
934 * Must be called interrupts disabled.
935 */
936 static inline struct rq *__task_rq_lock(struct task_struct *p)
937 __acquires(rq->lock)
938 {
939 struct rq *rq;
940
941 for (;;) {
942 rq = task_rq(p);
943 raw_spin_lock(&rq->lock);
944 if (likely(rq == task_rq(p)))
945 return rq;
946 raw_spin_unlock(&rq->lock);
947 }
948 }
949
950 /*
951 * task_rq_lock - lock the runqueue a given task resides on and disable
952 * interrupts. Note the ordering: we can safely lookup the task_rq without
953 * explicitly disabling preemption.
954 */
955 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
956 __acquires(rq->lock)
957 {
958 struct rq *rq;
959
960 for (;;) {
961 local_irq_save(*flags);
962 rq = task_rq(p);
963 raw_spin_lock(&rq->lock);
964 if (likely(rq == task_rq(p)))
965 return rq;
966 raw_spin_unlock_irqrestore(&rq->lock, *flags);
967 }
968 }
969
970 static void __task_rq_unlock(struct rq *rq)
971 __releases(rq->lock)
972 {
973 raw_spin_unlock(&rq->lock);
974 }
975
976 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
977 __releases(rq->lock)
978 {
979 raw_spin_unlock_irqrestore(&rq->lock, *flags);
980 }
981
982 /*
983 * this_rq_lock - lock this runqueue and disable interrupts.
984 */
985 static struct rq *this_rq_lock(void)
986 __acquires(rq->lock)
987 {
988 struct rq *rq;
989
990 local_irq_disable();
991 rq = this_rq();
992 raw_spin_lock(&rq->lock);
993
994 return rq;
995 }
996
997 #ifdef CONFIG_SCHED_HRTICK
998 /*
999 * Use HR-timers to deliver accurate preemption points.
1000 *
1001 * Its all a bit involved since we cannot program an hrt while holding the
1002 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1003 * reschedule event.
1004 *
1005 * When we get rescheduled we reprogram the hrtick_timer outside of the
1006 * rq->lock.
1007 */
1008
1009 /*
1010 * Use hrtick when:
1011 * - enabled by features
1012 * - hrtimer is actually high res
1013 */
1014 static inline int hrtick_enabled(struct rq *rq)
1015 {
1016 if (!sched_feat(HRTICK))
1017 return 0;
1018 if (!cpu_active(cpu_of(rq)))
1019 return 0;
1020 return hrtimer_is_hres_active(&rq->hrtick_timer);
1021 }
1022
1023 static void hrtick_clear(struct rq *rq)
1024 {
1025 if (hrtimer_active(&rq->hrtick_timer))
1026 hrtimer_cancel(&rq->hrtick_timer);
1027 }
1028
1029 /*
1030 * High-resolution timer tick.
1031 * Runs from hardirq context with interrupts disabled.
1032 */
1033 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1034 {
1035 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1036
1037 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1038
1039 raw_spin_lock(&rq->lock);
1040 update_rq_clock(rq);
1041 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1042 raw_spin_unlock(&rq->lock);
1043
1044 return HRTIMER_NORESTART;
1045 }
1046
1047 #ifdef CONFIG_SMP
1048 /*
1049 * called from hardirq (IPI) context
1050 */
1051 static void __hrtick_start(void *arg)
1052 {
1053 struct rq *rq = arg;
1054
1055 raw_spin_lock(&rq->lock);
1056 hrtimer_restart(&rq->hrtick_timer);
1057 rq->hrtick_csd_pending = 0;
1058 raw_spin_unlock(&rq->lock);
1059 }
1060
1061 /*
1062 * Called to set the hrtick timer state.
1063 *
1064 * called with rq->lock held and irqs disabled
1065 */
1066 static void hrtick_start(struct rq *rq, u64 delay)
1067 {
1068 struct hrtimer *timer = &rq->hrtick_timer;
1069 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1070
1071 hrtimer_set_expires(timer, time);
1072
1073 if (rq == this_rq()) {
1074 hrtimer_restart(timer);
1075 } else if (!rq->hrtick_csd_pending) {
1076 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1077 rq->hrtick_csd_pending = 1;
1078 }
1079 }
1080
1081 static int
1082 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1083 {
1084 int cpu = (int)(long)hcpu;
1085
1086 switch (action) {
1087 case CPU_UP_CANCELED:
1088 case CPU_UP_CANCELED_FROZEN:
1089 case CPU_DOWN_PREPARE:
1090 case CPU_DOWN_PREPARE_FROZEN:
1091 case CPU_DEAD:
1092 case CPU_DEAD_FROZEN:
1093 hrtick_clear(cpu_rq(cpu));
1094 return NOTIFY_OK;
1095 }
1096
1097 return NOTIFY_DONE;
1098 }
1099
1100 static __init void init_hrtick(void)
1101 {
1102 hotcpu_notifier(hotplug_hrtick, 0);
1103 }
1104 #else
1105 /*
1106 * Called to set the hrtick timer state.
1107 *
1108 * called with rq->lock held and irqs disabled
1109 */
1110 static void hrtick_start(struct rq *rq, u64 delay)
1111 {
1112 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1113 HRTIMER_MODE_REL_PINNED, 0);
1114 }
1115
1116 static inline void init_hrtick(void)
1117 {
1118 }
1119 #endif /* CONFIG_SMP */
1120
1121 static void init_rq_hrtick(struct rq *rq)
1122 {
1123 #ifdef CONFIG_SMP
1124 rq->hrtick_csd_pending = 0;
1125
1126 rq->hrtick_csd.flags = 0;
1127 rq->hrtick_csd.func = __hrtick_start;
1128 rq->hrtick_csd.info = rq;
1129 #endif
1130
1131 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1132 rq->hrtick_timer.function = hrtick;
1133 }
1134 #else /* CONFIG_SCHED_HRTICK */
1135 static inline void hrtick_clear(struct rq *rq)
1136 {
1137 }
1138
1139 static inline void init_rq_hrtick(struct rq *rq)
1140 {
1141 }
1142
1143 static inline void init_hrtick(void)
1144 {
1145 }
1146 #endif /* CONFIG_SCHED_HRTICK */
1147
1148 /*
1149 * resched_task - mark a task 'to be rescheduled now'.
1150 *
1151 * On UP this means the setting of the need_resched flag, on SMP it
1152 * might also involve a cross-CPU call to trigger the scheduler on
1153 * the target CPU.
1154 */
1155 #ifdef CONFIG_SMP
1156
1157 #ifndef tsk_is_polling
1158 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1159 #endif
1160
1161 static void resched_task(struct task_struct *p)
1162 {
1163 int cpu;
1164
1165 assert_raw_spin_locked(&task_rq(p)->lock);
1166
1167 if (test_tsk_need_resched(p))
1168 return;
1169
1170 set_tsk_need_resched(p);
1171
1172 cpu = task_cpu(p);
1173 if (cpu == smp_processor_id())
1174 return;
1175
1176 /* NEED_RESCHED must be visible before we test polling */
1177 smp_mb();
1178 if (!tsk_is_polling(p))
1179 smp_send_reschedule(cpu);
1180 }
1181
1182 static void resched_cpu(int cpu)
1183 {
1184 struct rq *rq = cpu_rq(cpu);
1185 unsigned long flags;
1186
1187 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
1188 return;
1189 resched_task(cpu_curr(cpu));
1190 raw_spin_unlock_irqrestore(&rq->lock, flags);
1191 }
1192
1193 #ifdef CONFIG_NO_HZ
1194 /*
1195 * In the semi idle case, use the nearest busy cpu for migrating timers
1196 * from an idle cpu. This is good for power-savings.
1197 *
1198 * We don't do similar optimization for completely idle system, as
1199 * selecting an idle cpu will add more delays to the timers than intended
1200 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1201 */
1202 int get_nohz_timer_target(void)
1203 {
1204 int cpu = smp_processor_id();
1205 int i;
1206 struct sched_domain *sd;
1207
1208 for_each_domain(cpu, sd) {
1209 for_each_cpu(i, sched_domain_span(sd))
1210 if (!idle_cpu(i))
1211 return i;
1212 }
1213 return cpu;
1214 }
1215 /*
1216 * When add_timer_on() enqueues a timer into the timer wheel of an
1217 * idle CPU then this timer might expire before the next timer event
1218 * which is scheduled to wake up that CPU. In case of a completely
1219 * idle system the next event might even be infinite time into the
1220 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1221 * leaves the inner idle loop so the newly added timer is taken into
1222 * account when the CPU goes back to idle and evaluates the timer
1223 * wheel for the next timer event.
1224 */
1225 void wake_up_idle_cpu(int cpu)
1226 {
1227 struct rq *rq = cpu_rq(cpu);
1228
1229 if (cpu == smp_processor_id())
1230 return;
1231
1232 /*
1233 * This is safe, as this function is called with the timer
1234 * wheel base lock of (cpu) held. When the CPU is on the way
1235 * to idle and has not yet set rq->curr to idle then it will
1236 * be serialized on the timer wheel base lock and take the new
1237 * timer into account automatically.
1238 */
1239 if (rq->curr != rq->idle)
1240 return;
1241
1242 /*
1243 * We can set TIF_RESCHED on the idle task of the other CPU
1244 * lockless. The worst case is that the other CPU runs the
1245 * idle task through an additional NOOP schedule()
1246 */
1247 set_tsk_need_resched(rq->idle);
1248
1249 /* NEED_RESCHED must be visible before we test polling */
1250 smp_mb();
1251 if (!tsk_is_polling(rq->idle))
1252 smp_send_reschedule(cpu);
1253 }
1254
1255 #endif /* CONFIG_NO_HZ */
1256
1257 static u64 sched_avg_period(void)
1258 {
1259 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1260 }
1261
1262 static void sched_avg_update(struct rq *rq)
1263 {
1264 s64 period = sched_avg_period();
1265
1266 while ((s64)(rq->clock - rq->age_stamp) > period) {
1267 /*
1268 * Inline assembly required to prevent the compiler
1269 * optimising this loop into a divmod call.
1270 * See __iter_div_u64_rem() for another example of this.
1271 */
1272 asm("" : "+rm" (rq->age_stamp));
1273 rq->age_stamp += period;
1274 rq->rt_avg /= 2;
1275 }
1276 }
1277
1278 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1279 {
1280 rq->rt_avg += rt_delta;
1281 sched_avg_update(rq);
1282 }
1283
1284 #else /* !CONFIG_SMP */
1285 static void resched_task(struct task_struct *p)
1286 {
1287 assert_raw_spin_locked(&task_rq(p)->lock);
1288 set_tsk_need_resched(p);
1289 }
1290
1291 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1292 {
1293 }
1294
1295 static void sched_avg_update(struct rq *rq)
1296 {
1297 }
1298 #endif /* CONFIG_SMP */
1299
1300 #if BITS_PER_LONG == 32
1301 # define WMULT_CONST (~0UL)
1302 #else
1303 # define WMULT_CONST (1UL << 32)
1304 #endif
1305
1306 #define WMULT_SHIFT 32
1307
1308 /*
1309 * Shift right and round:
1310 */
1311 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1312
1313 /*
1314 * delta *= weight / lw
1315 */
1316 static unsigned long
1317 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1318 struct load_weight *lw)
1319 {
1320 u64 tmp;
1321
1322 if (!lw->inv_weight) {
1323 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1324 lw->inv_weight = 1;
1325 else
1326 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1327 / (lw->weight+1);
1328 }
1329
1330 tmp = (u64)delta_exec * weight;
1331 /*
1332 * Check whether we'd overflow the 64-bit multiplication:
1333 */
1334 if (unlikely(tmp > WMULT_CONST))
1335 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1336 WMULT_SHIFT/2);
1337 else
1338 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1339
1340 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1341 }
1342
1343 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1344 {
1345 lw->weight += inc;
1346 lw->inv_weight = 0;
1347 }
1348
1349 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1350 {
1351 lw->weight -= dec;
1352 lw->inv_weight = 0;
1353 }
1354
1355 /*
1356 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1357 * of tasks with abnormal "nice" values across CPUs the contribution that
1358 * each task makes to its run queue's load is weighted according to its
1359 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1360 * scaled version of the new time slice allocation that they receive on time
1361 * slice expiry etc.
1362 */
1363
1364 #define WEIGHT_IDLEPRIO 3
1365 #define WMULT_IDLEPRIO 1431655765
1366
1367 /*
1368 * Nice levels are multiplicative, with a gentle 10% change for every
1369 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1370 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1371 * that remained on nice 0.
1372 *
1373 * The "10% effect" is relative and cumulative: from _any_ nice level,
1374 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1375 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1376 * If a task goes up by ~10% and another task goes down by ~10% then
1377 * the relative distance between them is ~25%.)
1378 */
1379 static const int prio_to_weight[40] = {
1380 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1381 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1382 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1383 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1384 /* 0 */ 1024, 820, 655, 526, 423,
1385 /* 5 */ 335, 272, 215, 172, 137,
1386 /* 10 */ 110, 87, 70, 56, 45,
1387 /* 15 */ 36, 29, 23, 18, 15,
1388 };
1389
1390 /*
1391 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1392 *
1393 * In cases where the weight does not change often, we can use the
1394 * precalculated inverse to speed up arithmetics by turning divisions
1395 * into multiplications:
1396 */
1397 static const u32 prio_to_wmult[40] = {
1398 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1399 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1400 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1401 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1402 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1403 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1404 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1405 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1406 };
1407
1408 /* Time spent by the tasks of the cpu accounting group executing in ... */
1409 enum cpuacct_stat_index {
1410 CPUACCT_STAT_USER, /* ... user mode */
1411 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1412
1413 CPUACCT_STAT_NSTATS,
1414 };
1415
1416 #ifdef CONFIG_CGROUP_CPUACCT
1417 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1418 static void cpuacct_update_stats(struct task_struct *tsk,
1419 enum cpuacct_stat_index idx, cputime_t val);
1420 #else
1421 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1422 static inline void cpuacct_update_stats(struct task_struct *tsk,
1423 enum cpuacct_stat_index idx, cputime_t val) {}
1424 #endif
1425
1426 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1427 {
1428 update_load_add(&rq->load, load);
1429 }
1430
1431 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1432 {
1433 update_load_sub(&rq->load, load);
1434 }
1435
1436 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1437 typedef int (*tg_visitor)(struct task_group *, void *);
1438
1439 /*
1440 * Iterate the full tree, calling @down when first entering a node and @up when
1441 * leaving it for the final time.
1442 */
1443 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1444 {
1445 struct task_group *parent, *child;
1446 int ret;
1447
1448 rcu_read_lock();
1449 parent = &root_task_group;
1450 down:
1451 ret = (*down)(parent, data);
1452 if (ret)
1453 goto out_unlock;
1454 list_for_each_entry_rcu(child, &parent->children, siblings) {
1455 parent = child;
1456 goto down;
1457
1458 up:
1459 continue;
1460 }
1461 ret = (*up)(parent, data);
1462 if (ret)
1463 goto out_unlock;
1464
1465 child = parent;
1466 parent = parent->parent;
1467 if (parent)
1468 goto up;
1469 out_unlock:
1470 rcu_read_unlock();
1471
1472 return ret;
1473 }
1474
1475 static int tg_nop(struct task_group *tg, void *data)
1476 {
1477 return 0;
1478 }
1479 #endif
1480
1481 #ifdef CONFIG_SMP
1482 /* Used instead of source_load when we know the type == 0 */
1483 static unsigned long weighted_cpuload(const int cpu)
1484 {
1485 return cpu_rq(cpu)->load.weight;
1486 }
1487
1488 /*
1489 * Return a low guess at the load of a migration-source cpu weighted
1490 * according to the scheduling class and "nice" value.
1491 *
1492 * We want to under-estimate the load of migration sources, to
1493 * balance conservatively.
1494 */
1495 static unsigned long source_load(int cpu, int type)
1496 {
1497 struct rq *rq = cpu_rq(cpu);
1498 unsigned long total = weighted_cpuload(cpu);
1499
1500 if (type == 0 || !sched_feat(LB_BIAS))
1501 return total;
1502
1503 return min(rq->cpu_load[type-1], total);
1504 }
1505
1506 /*
1507 * Return a high guess at the load of a migration-target cpu weighted
1508 * according to the scheduling class and "nice" value.
1509 */
1510 static unsigned long target_load(int cpu, int type)
1511 {
1512 struct rq *rq = cpu_rq(cpu);
1513 unsigned long total = weighted_cpuload(cpu);
1514
1515 if (type == 0 || !sched_feat(LB_BIAS))
1516 return total;
1517
1518 return max(rq->cpu_load[type-1], total);
1519 }
1520
1521 static unsigned long power_of(int cpu)
1522 {
1523 return cpu_rq(cpu)->cpu_power;
1524 }
1525
1526 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1527
1528 static unsigned long cpu_avg_load_per_task(int cpu)
1529 {
1530 struct rq *rq = cpu_rq(cpu);
1531 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1532
1533 if (nr_running)
1534 rq->avg_load_per_task = rq->load.weight / nr_running;
1535 else
1536 rq->avg_load_per_task = 0;
1537
1538 return rq->avg_load_per_task;
1539 }
1540
1541 #ifdef CONFIG_FAIR_GROUP_SCHED
1542
1543 static __read_mostly unsigned long __percpu *update_shares_data;
1544
1545 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1546
1547 /*
1548 * Calculate and set the cpu's group shares.
1549 */
1550 static void update_group_shares_cpu(struct task_group *tg, int cpu,
1551 unsigned long sd_shares,
1552 unsigned long sd_rq_weight,
1553 unsigned long *usd_rq_weight)
1554 {
1555 unsigned long shares, rq_weight;
1556 int boost = 0;
1557
1558 rq_weight = usd_rq_weight[cpu];
1559 if (!rq_weight) {
1560 boost = 1;
1561 rq_weight = NICE_0_LOAD;
1562 }
1563
1564 /*
1565 * \Sum_j shares_j * rq_weight_i
1566 * shares_i = -----------------------------
1567 * \Sum_j rq_weight_j
1568 */
1569 shares = (sd_shares * rq_weight) / sd_rq_weight;
1570 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1571
1572 if (abs(shares - tg->se[cpu]->load.weight) >
1573 sysctl_sched_shares_thresh) {
1574 struct rq *rq = cpu_rq(cpu);
1575 unsigned long flags;
1576
1577 raw_spin_lock_irqsave(&rq->lock, flags);
1578 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
1579 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1580 __set_se_shares(tg->se[cpu], shares);
1581 raw_spin_unlock_irqrestore(&rq->lock, flags);
1582 }
1583 }
1584
1585 /*
1586 * Re-compute the task group their per cpu shares over the given domain.
1587 * This needs to be done in a bottom-up fashion because the rq weight of a
1588 * parent group depends on the shares of its child groups.
1589 */
1590 static int tg_shares_up(struct task_group *tg, void *data)
1591 {
1592 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
1593 unsigned long *usd_rq_weight;
1594 struct sched_domain *sd = data;
1595 unsigned long flags;
1596 int i;
1597
1598 if (!tg->se[0])
1599 return 0;
1600
1601 local_irq_save(flags);
1602 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1603
1604 for_each_cpu(i, sched_domain_span(sd)) {
1605 weight = tg->cfs_rq[i]->load.weight;
1606 usd_rq_weight[i] = weight;
1607
1608 rq_weight += weight;
1609 /*
1610 * If there are currently no tasks on the cpu pretend there
1611 * is one of average load so that when a new task gets to
1612 * run here it will not get delayed by group starvation.
1613 */
1614 if (!weight)
1615 weight = NICE_0_LOAD;
1616
1617 sum_weight += weight;
1618 shares += tg->cfs_rq[i]->shares;
1619 }
1620
1621 if (!rq_weight)
1622 rq_weight = sum_weight;
1623
1624 if ((!shares && rq_weight) || shares > tg->shares)
1625 shares = tg->shares;
1626
1627 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1628 shares = tg->shares;
1629
1630 for_each_cpu(i, sched_domain_span(sd))
1631 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1632
1633 local_irq_restore(flags);
1634
1635 return 0;
1636 }
1637
1638 /*
1639 * Compute the cpu's hierarchical load factor for each task group.
1640 * This needs to be done in a top-down fashion because the load of a child
1641 * group is a fraction of its parents load.
1642 */
1643 static int tg_load_down(struct task_group *tg, void *data)
1644 {
1645 unsigned long load;
1646 long cpu = (long)data;
1647
1648 if (!tg->parent) {
1649 load = cpu_rq(cpu)->load.weight;
1650 } else {
1651 load = tg->parent->cfs_rq[cpu]->h_load;
1652 load *= tg->cfs_rq[cpu]->shares;
1653 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1654 }
1655
1656 tg->cfs_rq[cpu]->h_load = load;
1657
1658 return 0;
1659 }
1660
1661 static void update_shares(struct sched_domain *sd)
1662 {
1663 s64 elapsed;
1664 u64 now;
1665
1666 if (root_task_group_empty())
1667 return;
1668
1669 now = local_clock();
1670 elapsed = now - sd->last_update;
1671
1672 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1673 sd->last_update = now;
1674 walk_tg_tree(tg_nop, tg_shares_up, sd);
1675 }
1676 }
1677
1678 static void update_h_load(long cpu)
1679 {
1680 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1681 }
1682
1683 #else
1684
1685 static inline void update_shares(struct sched_domain *sd)
1686 {
1687 }
1688
1689 #endif
1690
1691 #ifdef CONFIG_PREEMPT
1692
1693 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1694
1695 /*
1696 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1697 * way at the expense of forcing extra atomic operations in all
1698 * invocations. This assures that the double_lock is acquired using the
1699 * same underlying policy as the spinlock_t on this architecture, which
1700 * reduces latency compared to the unfair variant below. However, it
1701 * also adds more overhead and therefore may reduce throughput.
1702 */
1703 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1704 __releases(this_rq->lock)
1705 __acquires(busiest->lock)
1706 __acquires(this_rq->lock)
1707 {
1708 raw_spin_unlock(&this_rq->lock);
1709 double_rq_lock(this_rq, busiest);
1710
1711 return 1;
1712 }
1713
1714 #else
1715 /*
1716 * Unfair double_lock_balance: Optimizes throughput at the expense of
1717 * latency by eliminating extra atomic operations when the locks are
1718 * already in proper order on entry. This favors lower cpu-ids and will
1719 * grant the double lock to lower cpus over higher ids under contention,
1720 * regardless of entry order into the function.
1721 */
1722 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1723 __releases(this_rq->lock)
1724 __acquires(busiest->lock)
1725 __acquires(this_rq->lock)
1726 {
1727 int ret = 0;
1728
1729 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1730 if (busiest < this_rq) {
1731 raw_spin_unlock(&this_rq->lock);
1732 raw_spin_lock(&busiest->lock);
1733 raw_spin_lock_nested(&this_rq->lock,
1734 SINGLE_DEPTH_NESTING);
1735 ret = 1;
1736 } else
1737 raw_spin_lock_nested(&busiest->lock,
1738 SINGLE_DEPTH_NESTING);
1739 }
1740 return ret;
1741 }
1742
1743 #endif /* CONFIG_PREEMPT */
1744
1745 /*
1746 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1747 */
1748 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1749 {
1750 if (unlikely(!irqs_disabled())) {
1751 /* printk() doesn't work good under rq->lock */
1752 raw_spin_unlock(&this_rq->lock);
1753 BUG_ON(1);
1754 }
1755
1756 return _double_lock_balance(this_rq, busiest);
1757 }
1758
1759 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1760 __releases(busiest->lock)
1761 {
1762 raw_spin_unlock(&busiest->lock);
1763 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1764 }
1765
1766 /*
1767 * double_rq_lock - safely lock two runqueues
1768 *
1769 * Note this does not disable interrupts like task_rq_lock,
1770 * you need to do so manually before calling.
1771 */
1772 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1773 __acquires(rq1->lock)
1774 __acquires(rq2->lock)
1775 {
1776 BUG_ON(!irqs_disabled());
1777 if (rq1 == rq2) {
1778 raw_spin_lock(&rq1->lock);
1779 __acquire(rq2->lock); /* Fake it out ;) */
1780 } else {
1781 if (rq1 < rq2) {
1782 raw_spin_lock(&rq1->lock);
1783 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1784 } else {
1785 raw_spin_lock(&rq2->lock);
1786 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1787 }
1788 }
1789 }
1790
1791 /*
1792 * double_rq_unlock - safely unlock two runqueues
1793 *
1794 * Note this does not restore interrupts like task_rq_unlock,
1795 * you need to do so manually after calling.
1796 */
1797 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1798 __releases(rq1->lock)
1799 __releases(rq2->lock)
1800 {
1801 raw_spin_unlock(&rq1->lock);
1802 if (rq1 != rq2)
1803 raw_spin_unlock(&rq2->lock);
1804 else
1805 __release(rq2->lock);
1806 }
1807
1808 #endif
1809
1810 #ifdef CONFIG_FAIR_GROUP_SCHED
1811 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1812 {
1813 #ifdef CONFIG_SMP
1814 cfs_rq->shares = shares;
1815 #endif
1816 }
1817 #endif
1818
1819 static void calc_load_account_idle(struct rq *this_rq);
1820 static void update_sysctl(void);
1821 static int get_update_sysctl_factor(void);
1822 static void update_cpu_load(struct rq *this_rq);
1823
1824 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1825 {
1826 set_task_rq(p, cpu);
1827 #ifdef CONFIG_SMP
1828 /*
1829 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1830 * successfuly executed on another CPU. We must ensure that updates of
1831 * per-task data have been completed by this moment.
1832 */
1833 smp_wmb();
1834 task_thread_info(p)->cpu = cpu;
1835 #endif
1836 }
1837
1838 static const struct sched_class rt_sched_class;
1839
1840 #define sched_class_highest (&stop_sched_class)
1841 #define for_each_class(class) \
1842 for (class = sched_class_highest; class; class = class->next)
1843
1844 #include "sched_stats.h"
1845
1846 static void inc_nr_running(struct rq *rq)
1847 {
1848 rq->nr_running++;
1849 }
1850
1851 static void dec_nr_running(struct rq *rq)
1852 {
1853 rq->nr_running--;
1854 }
1855
1856 static void set_load_weight(struct task_struct *p)
1857 {
1858 /*
1859 * SCHED_IDLE tasks get minimal weight:
1860 */
1861 if (p->policy == SCHED_IDLE) {
1862 p->se.load.weight = WEIGHT_IDLEPRIO;
1863 p->se.load.inv_weight = WMULT_IDLEPRIO;
1864 return;
1865 }
1866
1867 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1868 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1869 }
1870
1871 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1872 {
1873 update_rq_clock(rq);
1874 sched_info_queued(p);
1875 p->sched_class->enqueue_task(rq, p, flags);
1876 p->se.on_rq = 1;
1877 }
1878
1879 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1880 {
1881 update_rq_clock(rq);
1882 sched_info_dequeued(p);
1883 p->sched_class->dequeue_task(rq, p, flags);
1884 p->se.on_rq = 0;
1885 }
1886
1887 /*
1888 * activate_task - move a task to the runqueue.
1889 */
1890 static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1891 {
1892 if (task_contributes_to_load(p))
1893 rq->nr_uninterruptible--;
1894
1895 enqueue_task(rq, p, flags);
1896 inc_nr_running(rq);
1897 }
1898
1899 /*
1900 * deactivate_task - remove a task from the runqueue.
1901 */
1902 static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1903 {
1904 if (task_contributes_to_load(p))
1905 rq->nr_uninterruptible++;
1906
1907 dequeue_task(rq, p, flags);
1908 dec_nr_running(rq);
1909 }
1910
1911 #include "sched_idletask.c"
1912 #include "sched_fair.c"
1913 #include "sched_rt.c"
1914 #include "sched_stoptask.c"
1915 #ifdef CONFIG_SCHED_DEBUG
1916 # include "sched_debug.c"
1917 #endif
1918
1919 void sched_set_stop_task(int cpu, struct task_struct *stop)
1920 {
1921 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1922 struct task_struct *old_stop = cpu_rq(cpu)->stop;
1923
1924 if (stop) {
1925 /*
1926 * Make it appear like a SCHED_FIFO task, its something
1927 * userspace knows about and won't get confused about.
1928 *
1929 * Also, it will make PI more or less work without too
1930 * much confusion -- but then, stop work should not
1931 * rely on PI working anyway.
1932 */
1933 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
1934
1935 stop->sched_class = &stop_sched_class;
1936 }
1937
1938 cpu_rq(cpu)->stop = stop;
1939
1940 if (old_stop) {
1941 /*
1942 * Reset it back to a normal scheduling class so that
1943 * it can die in pieces.
1944 */
1945 old_stop->sched_class = &rt_sched_class;
1946 }
1947 }
1948
1949 /*
1950 * __normal_prio - return the priority that is based on the static prio
1951 */
1952 static inline int __normal_prio(struct task_struct *p)
1953 {
1954 return p->static_prio;
1955 }
1956
1957 /*
1958 * Calculate the expected normal priority: i.e. priority
1959 * without taking RT-inheritance into account. Might be
1960 * boosted by interactivity modifiers. Changes upon fork,
1961 * setprio syscalls, and whenever the interactivity
1962 * estimator recalculates.
1963 */
1964 static inline int normal_prio(struct task_struct *p)
1965 {
1966 int prio;
1967
1968 if (task_has_rt_policy(p))
1969 prio = MAX_RT_PRIO-1 - p->rt_priority;
1970 else
1971 prio = __normal_prio(p);
1972 return prio;
1973 }
1974
1975 /*
1976 * Calculate the current priority, i.e. the priority
1977 * taken into account by the scheduler. This value might
1978 * be boosted by RT tasks, or might be boosted by
1979 * interactivity modifiers. Will be RT if the task got
1980 * RT-boosted. If not then it returns p->normal_prio.
1981 */
1982 static int effective_prio(struct task_struct *p)
1983 {
1984 p->normal_prio = normal_prio(p);
1985 /*
1986 * If we are RT tasks or we were boosted to RT priority,
1987 * keep the priority unchanged. Otherwise, update priority
1988 * to the normal priority:
1989 */
1990 if (!rt_prio(p->prio))
1991 return p->normal_prio;
1992 return p->prio;
1993 }
1994
1995 /**
1996 * task_curr - is this task currently executing on a CPU?
1997 * @p: the task in question.
1998 */
1999 inline int task_curr(const struct task_struct *p)
2000 {
2001 return cpu_curr(task_cpu(p)) == p;
2002 }
2003
2004 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2005 const struct sched_class *prev_class,
2006 int oldprio, int running)
2007 {
2008 if (prev_class != p->sched_class) {
2009 if (prev_class->switched_from)
2010 prev_class->switched_from(rq, p, running);
2011 p->sched_class->switched_to(rq, p, running);
2012 } else
2013 p->sched_class->prio_changed(rq, p, oldprio, running);
2014 }
2015
2016 #ifdef CONFIG_SMP
2017 /*
2018 * Is this task likely cache-hot:
2019 */
2020 static int
2021 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2022 {
2023 s64 delta;
2024
2025 if (p->sched_class != &fair_sched_class)
2026 return 0;
2027
2028 if (unlikely(p->policy == SCHED_IDLE))
2029 return 0;
2030
2031 /*
2032 * Buddy candidates are cache hot:
2033 */
2034 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
2035 (&p->se == cfs_rq_of(&p->se)->next ||
2036 &p->se == cfs_rq_of(&p->se)->last))
2037 return 1;
2038
2039 if (sysctl_sched_migration_cost == -1)
2040 return 1;
2041 if (sysctl_sched_migration_cost == 0)
2042 return 0;
2043
2044 delta = now - p->se.exec_start;
2045
2046 return delta < (s64)sysctl_sched_migration_cost;
2047 }
2048
2049 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2050 {
2051 #ifdef CONFIG_SCHED_DEBUG
2052 /*
2053 * We should never call set_task_cpu() on a blocked task,
2054 * ttwu() will sort out the placement.
2055 */
2056 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2057 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2058 #endif
2059
2060 trace_sched_migrate_task(p, new_cpu);
2061
2062 if (task_cpu(p) != new_cpu) {
2063 p->se.nr_migrations++;
2064 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2065 }
2066
2067 __set_task_cpu(p, new_cpu);
2068 }
2069
2070 struct migration_arg {
2071 struct task_struct *task;
2072 int dest_cpu;
2073 };
2074
2075 static int migration_cpu_stop(void *data);
2076
2077 /*
2078 * The task's runqueue lock must be held.
2079 * Returns true if you have to wait for migration thread.
2080 */
2081 static bool migrate_task(struct task_struct *p, int dest_cpu)
2082 {
2083 struct rq *rq = task_rq(p);
2084
2085 /*
2086 * If the task is not on a runqueue (and not running), then
2087 * the next wake-up will properly place the task.
2088 */
2089 return p->se.on_rq || task_running(rq, p);
2090 }
2091
2092 /*
2093 * wait_task_inactive - wait for a thread to unschedule.
2094 *
2095 * If @match_state is nonzero, it's the @p->state value just checked and
2096 * not expected to change. If it changes, i.e. @p might have woken up,
2097 * then return zero. When we succeed in waiting for @p to be off its CPU,
2098 * we return a positive number (its total switch count). If a second call
2099 * a short while later returns the same number, the caller can be sure that
2100 * @p has remained unscheduled the whole time.
2101 *
2102 * The caller must ensure that the task *will* unschedule sometime soon,
2103 * else this function might spin for a *long* time. This function can't
2104 * be called with interrupts off, or it may introduce deadlock with
2105 * smp_call_function() if an IPI is sent by the same process we are
2106 * waiting to become inactive.
2107 */
2108 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2109 {
2110 unsigned long flags;
2111 int running, on_rq;
2112 unsigned long ncsw;
2113 struct rq *rq;
2114
2115 for (;;) {
2116 /*
2117 * We do the initial early heuristics without holding
2118 * any task-queue locks at all. We'll only try to get
2119 * the runqueue lock when things look like they will
2120 * work out!
2121 */
2122 rq = task_rq(p);
2123
2124 /*
2125 * If the task is actively running on another CPU
2126 * still, just relax and busy-wait without holding
2127 * any locks.
2128 *
2129 * NOTE! Since we don't hold any locks, it's not
2130 * even sure that "rq" stays as the right runqueue!
2131 * But we don't care, since "task_running()" will
2132 * return false if the runqueue has changed and p
2133 * is actually now running somewhere else!
2134 */
2135 while (task_running(rq, p)) {
2136 if (match_state && unlikely(p->state != match_state))
2137 return 0;
2138 cpu_relax();
2139 }
2140
2141 /*
2142 * Ok, time to look more closely! We need the rq
2143 * lock now, to be *sure*. If we're wrong, we'll
2144 * just go back and repeat.
2145 */
2146 rq = task_rq_lock(p, &flags);
2147 trace_sched_wait_task(p);
2148 running = task_running(rq, p);
2149 on_rq = p->se.on_rq;
2150 ncsw = 0;
2151 if (!match_state || p->state == match_state)
2152 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2153 task_rq_unlock(rq, &flags);
2154
2155 /*
2156 * If it changed from the expected state, bail out now.
2157 */
2158 if (unlikely(!ncsw))
2159 break;
2160
2161 /*
2162 * Was it really running after all now that we
2163 * checked with the proper locks actually held?
2164 *
2165 * Oops. Go back and try again..
2166 */
2167 if (unlikely(running)) {
2168 cpu_relax();
2169 continue;
2170 }
2171
2172 /*
2173 * It's not enough that it's not actively running,
2174 * it must be off the runqueue _entirely_, and not
2175 * preempted!
2176 *
2177 * So if it was still runnable (but just not actively
2178 * running right now), it's preempted, and we should
2179 * yield - it could be a while.
2180 */
2181 if (unlikely(on_rq)) {
2182 schedule_timeout_uninterruptible(1);
2183 continue;
2184 }
2185
2186 /*
2187 * Ahh, all good. It wasn't running, and it wasn't
2188 * runnable, which means that it will never become
2189 * running in the future either. We're all done!
2190 */
2191 break;
2192 }
2193
2194 return ncsw;
2195 }
2196
2197 /***
2198 * kick_process - kick a running thread to enter/exit the kernel
2199 * @p: the to-be-kicked thread
2200 *
2201 * Cause a process which is running on another CPU to enter
2202 * kernel-mode, without any delay. (to get signals handled.)
2203 *
2204 * NOTE: this function doesnt have to take the runqueue lock,
2205 * because all it wants to ensure is that the remote task enters
2206 * the kernel. If the IPI races and the task has been migrated
2207 * to another CPU then no harm is done and the purpose has been
2208 * achieved as well.
2209 */
2210 void kick_process(struct task_struct *p)
2211 {
2212 int cpu;
2213
2214 preempt_disable();
2215 cpu = task_cpu(p);
2216 if ((cpu != smp_processor_id()) && task_curr(p))
2217 smp_send_reschedule(cpu);
2218 preempt_enable();
2219 }
2220 EXPORT_SYMBOL_GPL(kick_process);
2221 #endif /* CONFIG_SMP */
2222
2223 /**
2224 * task_oncpu_function_call - call a function on the cpu on which a task runs
2225 * @p: the task to evaluate
2226 * @func: the function to be called
2227 * @info: the function call argument
2228 *
2229 * Calls the function @func when the task is currently running. This might
2230 * be on the current CPU, which just calls the function directly
2231 */
2232 void task_oncpu_function_call(struct task_struct *p,
2233 void (*func) (void *info), void *info)
2234 {
2235 int cpu;
2236
2237 preempt_disable();
2238 cpu = task_cpu(p);
2239 if (task_curr(p))
2240 smp_call_function_single(cpu, func, info, 1);
2241 preempt_enable();
2242 }
2243
2244 #ifdef CONFIG_SMP
2245 /*
2246 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2247 */
2248 static int select_fallback_rq(int cpu, struct task_struct *p)
2249 {
2250 int dest_cpu;
2251 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2252
2253 /* Look for allowed, online CPU in same node. */
2254 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2255 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2256 return dest_cpu;
2257
2258 /* Any allowed, online CPU? */
2259 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2260 if (dest_cpu < nr_cpu_ids)
2261 return dest_cpu;
2262
2263 /* No more Mr. Nice Guy. */
2264 if (unlikely(dest_cpu >= nr_cpu_ids)) {
2265 dest_cpu = cpuset_cpus_allowed_fallback(p);
2266 /*
2267 * Don't tell them about moving exiting tasks or
2268 * kernel threads (both mm NULL), since they never
2269 * leave kernel.
2270 */
2271 if (p->mm && printk_ratelimit()) {
2272 printk(KERN_INFO "process %d (%s) no "
2273 "longer affine to cpu%d\n",
2274 task_pid_nr(p), p->comm, cpu);
2275 }
2276 }
2277
2278 return dest_cpu;
2279 }
2280
2281 /*
2282 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
2283 */
2284 static inline
2285 int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
2286 {
2287 int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
2288
2289 /*
2290 * In order not to call set_task_cpu() on a blocking task we need
2291 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2292 * cpu.
2293 *
2294 * Since this is common to all placement strategies, this lives here.
2295 *
2296 * [ this allows ->select_task() to simply return task_cpu(p) and
2297 * not worry about this generic constraint ]
2298 */
2299 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
2300 !cpu_online(cpu)))
2301 cpu = select_fallback_rq(task_cpu(p), p);
2302
2303 return cpu;
2304 }
2305
2306 static void update_avg(u64 *avg, u64 sample)
2307 {
2308 s64 diff = sample - *avg;
2309 *avg += diff >> 3;
2310 }
2311 #endif
2312
2313 static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
2314 bool is_sync, bool is_migrate, bool is_local,
2315 unsigned long en_flags)
2316 {
2317 schedstat_inc(p, se.statistics.nr_wakeups);
2318 if (is_sync)
2319 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2320 if (is_migrate)
2321 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2322 if (is_local)
2323 schedstat_inc(p, se.statistics.nr_wakeups_local);
2324 else
2325 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2326
2327 activate_task(rq, p, en_flags);
2328 }
2329
2330 static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
2331 int wake_flags, bool success)
2332 {
2333 trace_sched_wakeup(p, success);
2334 check_preempt_curr(rq, p, wake_flags);
2335
2336 p->state = TASK_RUNNING;
2337 #ifdef CONFIG_SMP
2338 if (p->sched_class->task_woken)
2339 p->sched_class->task_woken(rq, p);
2340
2341 if (unlikely(rq->idle_stamp)) {
2342 u64 delta = rq->clock - rq->idle_stamp;
2343 u64 max = 2*sysctl_sched_migration_cost;
2344
2345 if (delta > max)
2346 rq->avg_idle = max;
2347 else
2348 update_avg(&rq->avg_idle, delta);
2349 rq->idle_stamp = 0;
2350 }
2351 #endif
2352 /* if a worker is waking up, notify workqueue */
2353 if ((p->flags & PF_WQ_WORKER) && success)
2354 wq_worker_waking_up(p, cpu_of(rq));
2355 }
2356
2357 /**
2358 * try_to_wake_up - wake up a thread
2359 * @p: the thread to be awakened
2360 * @state: the mask of task states that can be woken
2361 * @wake_flags: wake modifier flags (WF_*)
2362 *
2363 * Put it on the run-queue if it's not already there. The "current"
2364 * thread is always on the run-queue (except when the actual
2365 * re-schedule is in progress), and as such you're allowed to do
2366 * the simpler "current->state = TASK_RUNNING" to mark yourself
2367 * runnable without the overhead of this.
2368 *
2369 * Returns %true if @p was woken up, %false if it was already running
2370 * or @state didn't match @p's state.
2371 */
2372 static int try_to_wake_up(struct task_struct *p, unsigned int state,
2373 int wake_flags)
2374 {
2375 int cpu, orig_cpu, this_cpu, success = 0;
2376 unsigned long flags;
2377 unsigned long en_flags = ENQUEUE_WAKEUP;
2378 struct rq *rq;
2379
2380 this_cpu = get_cpu();
2381
2382 smp_wmb();
2383 rq = task_rq_lock(p, &flags);
2384 if (!(p->state & state))
2385 goto out;
2386
2387 if (p->se.on_rq)
2388 goto out_running;
2389
2390 cpu = task_cpu(p);
2391 orig_cpu = cpu;
2392
2393 #ifdef CONFIG_SMP
2394 if (unlikely(task_running(rq, p)))
2395 goto out_activate;
2396
2397 /*
2398 * In order to handle concurrent wakeups and release the rq->lock
2399 * we put the task in TASK_WAKING state.
2400 *
2401 * First fix up the nr_uninterruptible count:
2402 */
2403 if (task_contributes_to_load(p)) {
2404 if (likely(cpu_online(orig_cpu)))
2405 rq->nr_uninterruptible--;
2406 else
2407 this_rq()->nr_uninterruptible--;
2408 }
2409 p->state = TASK_WAKING;
2410
2411 if (p->sched_class->task_waking) {
2412 p->sched_class->task_waking(rq, p);
2413 en_flags |= ENQUEUE_WAKING;
2414 }
2415
2416 cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
2417 if (cpu != orig_cpu)
2418 set_task_cpu(p, cpu);
2419 __task_rq_unlock(rq);
2420
2421 rq = cpu_rq(cpu);
2422 raw_spin_lock(&rq->lock);
2423
2424 /*
2425 * We migrated the task without holding either rq->lock, however
2426 * since the task is not on the task list itself, nobody else
2427 * will try and migrate the task, hence the rq should match the
2428 * cpu we just moved it to.
2429 */
2430 WARN_ON(task_cpu(p) != cpu);
2431 WARN_ON(p->state != TASK_WAKING);
2432
2433 #ifdef CONFIG_SCHEDSTATS
2434 schedstat_inc(rq, ttwu_count);
2435 if (cpu == this_cpu)
2436 schedstat_inc(rq, ttwu_local);
2437 else {
2438 struct sched_domain *sd;
2439 for_each_domain(this_cpu, sd) {
2440 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2441 schedstat_inc(sd, ttwu_wake_remote);
2442 break;
2443 }
2444 }
2445 }
2446 #endif /* CONFIG_SCHEDSTATS */
2447
2448 out_activate:
2449 #endif /* CONFIG_SMP */
2450 ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu,
2451 cpu == this_cpu, en_flags);
2452 success = 1;
2453 out_running:
2454 ttwu_post_activation(p, rq, wake_flags, success);
2455 out:
2456 task_rq_unlock(rq, &flags);
2457 put_cpu();
2458
2459 return success;
2460 }
2461
2462 /**
2463 * try_to_wake_up_local - try to wake up a local task with rq lock held
2464 * @p: the thread to be awakened
2465 *
2466 * Put @p on the run-queue if it's not alredy there. The caller must
2467 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2468 * the current task. this_rq() stays locked over invocation.
2469 */
2470 static void try_to_wake_up_local(struct task_struct *p)
2471 {
2472 struct rq *rq = task_rq(p);
2473 bool success = false;
2474
2475 BUG_ON(rq != this_rq());
2476 BUG_ON(p == current);
2477 lockdep_assert_held(&rq->lock);
2478
2479 if (!(p->state & TASK_NORMAL))
2480 return;
2481
2482 if (!p->se.on_rq) {
2483 if (likely(!task_running(rq, p))) {
2484 schedstat_inc(rq, ttwu_count);
2485 schedstat_inc(rq, ttwu_local);
2486 }
2487 ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP);
2488 success = true;
2489 }
2490 ttwu_post_activation(p, rq, 0, success);
2491 }
2492
2493 /**
2494 * wake_up_process - Wake up a specific process
2495 * @p: The process to be woken up.
2496 *
2497 * Attempt to wake up the nominated process and move it to the set of runnable
2498 * processes. Returns 1 if the process was woken up, 0 if it was already
2499 * running.
2500 *
2501 * It may be assumed that this function implies a write memory barrier before
2502 * changing the task state if and only if any tasks are woken up.
2503 */
2504 int wake_up_process(struct task_struct *p)
2505 {
2506 return try_to_wake_up(p, TASK_ALL, 0);
2507 }
2508 EXPORT_SYMBOL(wake_up_process);
2509
2510 int wake_up_state(struct task_struct *p, unsigned int state)
2511 {
2512 return try_to_wake_up(p, state, 0);
2513 }
2514
2515 /*
2516 * Perform scheduler related setup for a newly forked process p.
2517 * p is forked by current.
2518 *
2519 * __sched_fork() is basic setup used by init_idle() too:
2520 */
2521 static void __sched_fork(struct task_struct *p)
2522 {
2523 p->se.exec_start = 0;
2524 p->se.sum_exec_runtime = 0;
2525 p->se.prev_sum_exec_runtime = 0;
2526 p->se.nr_migrations = 0;
2527
2528 #ifdef CONFIG_SCHEDSTATS
2529 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2530 #endif
2531
2532 INIT_LIST_HEAD(&p->rt.run_list);
2533 p->se.on_rq = 0;
2534 INIT_LIST_HEAD(&p->se.group_node);
2535
2536 #ifdef CONFIG_PREEMPT_NOTIFIERS
2537 INIT_HLIST_HEAD(&p->preempt_notifiers);
2538 #endif
2539 }
2540
2541 /*
2542 * fork()/clone()-time setup:
2543 */
2544 void sched_fork(struct task_struct *p, int clone_flags)
2545 {
2546 int cpu = get_cpu();
2547
2548 __sched_fork(p);
2549 /*
2550 * We mark the process as running here. This guarantees that
2551 * nobody will actually run it, and a signal or other external
2552 * event cannot wake it up and insert it on the runqueue either.
2553 */
2554 p->state = TASK_RUNNING;
2555
2556 /*
2557 * Revert to default priority/policy on fork if requested.
2558 */
2559 if (unlikely(p->sched_reset_on_fork)) {
2560 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2561 p->policy = SCHED_NORMAL;
2562 p->normal_prio = p->static_prio;
2563 }
2564
2565 if (PRIO_TO_NICE(p->static_prio) < 0) {
2566 p->static_prio = NICE_TO_PRIO(0);
2567 p->normal_prio = p->static_prio;
2568 set_load_weight(p);
2569 }
2570
2571 /*
2572 * We don't need the reset flag anymore after the fork. It has
2573 * fulfilled its duty:
2574 */
2575 p->sched_reset_on_fork = 0;
2576 }
2577
2578 /*
2579 * Make sure we do not leak PI boosting priority to the child.
2580 */
2581 p->prio = current->normal_prio;
2582
2583 if (!rt_prio(p->prio))
2584 p->sched_class = &fair_sched_class;
2585
2586 if (p->sched_class->task_fork)
2587 p->sched_class->task_fork(p);
2588
2589 /*
2590 * The child is not yet in the pid-hash so no cgroup attach races,
2591 * and the cgroup is pinned to this child due to cgroup_fork()
2592 * is ran before sched_fork().
2593 *
2594 * Silence PROVE_RCU.
2595 */
2596 rcu_read_lock();
2597 set_task_cpu(p, cpu);
2598 rcu_read_unlock();
2599
2600 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2601 if (likely(sched_info_on()))
2602 memset(&p->sched_info, 0, sizeof(p->sched_info));
2603 #endif
2604 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2605 p->oncpu = 0;
2606 #endif
2607 #ifdef CONFIG_PREEMPT
2608 /* Want to start with kernel preemption disabled. */
2609 task_thread_info(p)->preempt_count = 1;
2610 #endif
2611 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2612
2613 put_cpu();
2614 }
2615
2616 /*
2617 * wake_up_new_task - wake up a newly created task for the first time.
2618 *
2619 * This function will do some initial scheduler statistics housekeeping
2620 * that must be done for every newly created context, then puts the task
2621 * on the runqueue and wakes it.
2622 */
2623 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2624 {
2625 unsigned long flags;
2626 struct rq *rq;
2627 int cpu __maybe_unused = get_cpu();
2628
2629 #ifdef CONFIG_SMP
2630 rq = task_rq_lock(p, &flags);
2631 p->state = TASK_WAKING;
2632
2633 /*
2634 * Fork balancing, do it here and not earlier because:
2635 * - cpus_allowed can change in the fork path
2636 * - any previously selected cpu might disappear through hotplug
2637 *
2638 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2639 * without people poking at ->cpus_allowed.
2640 */
2641 cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
2642 set_task_cpu(p, cpu);
2643
2644 p->state = TASK_RUNNING;
2645 task_rq_unlock(rq, &flags);
2646 #endif
2647
2648 rq = task_rq_lock(p, &flags);
2649 activate_task(rq, p, 0);
2650 trace_sched_wakeup_new(p, 1);
2651 check_preempt_curr(rq, p, WF_FORK);
2652 #ifdef CONFIG_SMP
2653 if (p->sched_class->task_woken)
2654 p->sched_class->task_woken(rq, p);
2655 #endif
2656 task_rq_unlock(rq, &flags);
2657 put_cpu();
2658 }
2659
2660 #ifdef CONFIG_PREEMPT_NOTIFIERS
2661
2662 /**
2663 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2664 * @notifier: notifier struct to register
2665 */
2666 void preempt_notifier_register(struct preempt_notifier *notifier)
2667 {
2668 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2669 }
2670 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2671
2672 /**
2673 * preempt_notifier_unregister - no longer interested in preemption notifications
2674 * @notifier: notifier struct to unregister
2675 *
2676 * This is safe to call from within a preemption notifier.
2677 */
2678 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2679 {
2680 hlist_del(&notifier->link);
2681 }
2682 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2683
2684 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2685 {
2686 struct preempt_notifier *notifier;
2687 struct hlist_node *node;
2688
2689 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2690 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2691 }
2692
2693 static void
2694 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2695 struct task_struct *next)
2696 {
2697 struct preempt_notifier *notifier;
2698 struct hlist_node *node;
2699
2700 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2701 notifier->ops->sched_out(notifier, next);
2702 }
2703
2704 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2705
2706 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2707 {
2708 }
2709
2710 static void
2711 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2712 struct task_struct *next)
2713 {
2714 }
2715
2716 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2717
2718 /**
2719 * prepare_task_switch - prepare to switch tasks
2720 * @rq: the runqueue preparing to switch
2721 * @prev: the current task that is being switched out
2722 * @next: the task we are going to switch to.
2723 *
2724 * This is called with the rq lock held and interrupts off. It must
2725 * be paired with a subsequent finish_task_switch after the context
2726 * switch.
2727 *
2728 * prepare_task_switch sets up locking and calls architecture specific
2729 * hooks.
2730 */
2731 static inline void
2732 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2733 struct task_struct *next)
2734 {
2735 fire_sched_out_preempt_notifiers(prev, next);
2736 prepare_lock_switch(rq, next);
2737 prepare_arch_switch(next);
2738 }
2739
2740 /**
2741 * finish_task_switch - clean up after a task-switch
2742 * @rq: runqueue associated with task-switch
2743 * @prev: the thread we just switched away from.
2744 *
2745 * finish_task_switch must be called after the context switch, paired
2746 * with a prepare_task_switch call before the context switch.
2747 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2748 * and do any other architecture-specific cleanup actions.
2749 *
2750 * Note that we may have delayed dropping an mm in context_switch(). If
2751 * so, we finish that here outside of the runqueue lock. (Doing it
2752 * with the lock held can cause deadlocks; see schedule() for
2753 * details.)
2754 */
2755 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2756 __releases(rq->lock)
2757 {
2758 struct mm_struct *mm = rq->prev_mm;
2759 long prev_state;
2760
2761 rq->prev_mm = NULL;
2762
2763 /*
2764 * A task struct has one reference for the use as "current".
2765 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2766 * schedule one last time. The schedule call will never return, and
2767 * the scheduled task must drop that reference.
2768 * The test for TASK_DEAD must occur while the runqueue locks are
2769 * still held, otherwise prev could be scheduled on another cpu, die
2770 * there before we look at prev->state, and then the reference would
2771 * be dropped twice.
2772 * Manfred Spraul <manfred@colorfullife.com>
2773 */
2774 prev_state = prev->state;
2775 finish_arch_switch(prev);
2776 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2777 local_irq_disable();
2778 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2779 perf_event_task_sched_in(current);
2780 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2781 local_irq_enable();
2782 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2783 finish_lock_switch(rq, prev);
2784
2785 fire_sched_in_preempt_notifiers(current);
2786 if (mm)
2787 mmdrop(mm);
2788 if (unlikely(prev_state == TASK_DEAD)) {
2789 /*
2790 * Remove function-return probe instances associated with this
2791 * task and put them back on the free list.
2792 */
2793 kprobe_flush_task(prev);
2794 put_task_struct(prev);
2795 }
2796 }
2797
2798 #ifdef CONFIG_SMP
2799
2800 /* assumes rq->lock is held */
2801 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2802 {
2803 if (prev->sched_class->pre_schedule)
2804 prev->sched_class->pre_schedule(rq, prev);
2805 }
2806
2807 /* rq->lock is NOT held, but preemption is disabled */
2808 static inline void post_schedule(struct rq *rq)
2809 {
2810 if (rq->post_schedule) {
2811 unsigned long flags;
2812
2813 raw_spin_lock_irqsave(&rq->lock, flags);
2814 if (rq->curr->sched_class->post_schedule)
2815 rq->curr->sched_class->post_schedule(rq);
2816 raw_spin_unlock_irqrestore(&rq->lock, flags);
2817
2818 rq->post_schedule = 0;
2819 }
2820 }
2821
2822 #else
2823
2824 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2825 {
2826 }
2827
2828 static inline void post_schedule(struct rq *rq)
2829 {
2830 }
2831
2832 #endif
2833
2834 /**
2835 * schedule_tail - first thing a freshly forked thread must call.
2836 * @prev: the thread we just switched away from.
2837 */
2838 asmlinkage void schedule_tail(struct task_struct *prev)
2839 __releases(rq->lock)
2840 {
2841 struct rq *rq = this_rq();
2842
2843 finish_task_switch(rq, prev);
2844
2845 /*
2846 * FIXME: do we need to worry about rq being invalidated by the
2847 * task_switch?
2848 */
2849 post_schedule(rq);
2850
2851 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2852 /* In this case, finish_task_switch does not reenable preemption */
2853 preempt_enable();
2854 #endif
2855 if (current->set_child_tid)
2856 put_user(task_pid_vnr(current), current->set_child_tid);
2857 }
2858
2859 /*
2860 * context_switch - switch to the new MM and the new
2861 * thread's register state.
2862 */
2863 static inline void
2864 context_switch(struct rq *rq, struct task_struct *prev,
2865 struct task_struct *next)
2866 {
2867 struct mm_struct *mm, *oldmm;
2868
2869 prepare_task_switch(rq, prev, next);
2870 trace_sched_switch(prev, next);
2871 mm = next->mm;
2872 oldmm = prev->active_mm;
2873 /*
2874 * For paravirt, this is coupled with an exit in switch_to to
2875 * combine the page table reload and the switch backend into
2876 * one hypercall.
2877 */
2878 arch_start_context_switch(prev);
2879
2880 if (!mm) {
2881 next->active_mm = oldmm;
2882 atomic_inc(&oldmm->mm_count);
2883 enter_lazy_tlb(oldmm, next);
2884 } else
2885 switch_mm(oldmm, mm, next);
2886
2887 if (!prev->mm) {
2888 prev->active_mm = NULL;
2889 rq->prev_mm = oldmm;
2890 }
2891 /*
2892 * Since the runqueue lock will be released by the next
2893 * task (which is an invalid locking op but in the case
2894 * of the scheduler it's an obvious special-case), so we
2895 * do an early lockdep release here:
2896 */
2897 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2898 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2899 #endif
2900
2901 /* Here we just switch the register state and the stack. */
2902 switch_to(prev, next, prev);
2903
2904 barrier();
2905 /*
2906 * this_rq must be evaluated again because prev may have moved
2907 * CPUs since it called schedule(), thus the 'rq' on its stack
2908 * frame will be invalid.
2909 */
2910 finish_task_switch(this_rq(), prev);
2911 }
2912
2913 /*
2914 * nr_running, nr_uninterruptible and nr_context_switches:
2915 *
2916 * externally visible scheduler statistics: current number of runnable
2917 * threads, current number of uninterruptible-sleeping threads, total
2918 * number of context switches performed since bootup.
2919 */
2920 unsigned long nr_running(void)
2921 {
2922 unsigned long i, sum = 0;
2923
2924 for_each_online_cpu(i)
2925 sum += cpu_rq(i)->nr_running;
2926
2927 return sum;
2928 }
2929
2930 unsigned long nr_uninterruptible(void)
2931 {
2932 unsigned long i, sum = 0;
2933
2934 for_each_possible_cpu(i)
2935 sum += cpu_rq(i)->nr_uninterruptible;
2936
2937 /*
2938 * Since we read the counters lockless, it might be slightly
2939 * inaccurate. Do not allow it to go below zero though:
2940 */
2941 if (unlikely((long)sum < 0))
2942 sum = 0;
2943
2944 return sum;
2945 }
2946
2947 unsigned long long nr_context_switches(void)
2948 {
2949 int i;
2950 unsigned long long sum = 0;
2951
2952 for_each_possible_cpu(i)
2953 sum += cpu_rq(i)->nr_switches;
2954
2955 return sum;
2956 }
2957
2958 unsigned long nr_iowait(void)
2959 {
2960 unsigned long i, sum = 0;
2961
2962 for_each_possible_cpu(i)
2963 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2964
2965 return sum;
2966 }
2967
2968 unsigned long nr_iowait_cpu(int cpu)
2969 {
2970 struct rq *this = cpu_rq(cpu);
2971 return atomic_read(&this->nr_iowait);
2972 }
2973
2974 unsigned long this_cpu_load(void)
2975 {
2976 struct rq *this = this_rq();
2977 return this->cpu_load[0];
2978 }
2979
2980
2981 /* Variables and functions for calc_load */
2982 static atomic_long_t calc_load_tasks;
2983 static unsigned long calc_load_update;
2984 unsigned long avenrun[3];
2985 EXPORT_SYMBOL(avenrun);
2986
2987 static long calc_load_fold_active(struct rq *this_rq)
2988 {
2989 long nr_active, delta = 0;
2990
2991 nr_active = this_rq->nr_running;
2992 nr_active += (long) this_rq->nr_uninterruptible;
2993
2994 if (nr_active != this_rq->calc_load_active) {
2995 delta = nr_active - this_rq->calc_load_active;
2996 this_rq->calc_load_active = nr_active;
2997 }
2998
2999 return delta;
3000 }
3001
3002 #ifdef CONFIG_NO_HZ
3003 /*
3004 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3005 *
3006 * When making the ILB scale, we should try to pull this in as well.
3007 */
3008 static atomic_long_t calc_load_tasks_idle;
3009
3010 static void calc_load_account_idle(struct rq *this_rq)
3011 {
3012 long delta;
3013
3014 delta = calc_load_fold_active(this_rq);
3015 if (delta)
3016 atomic_long_add(delta, &calc_load_tasks_idle);
3017 }
3018
3019 static long calc_load_fold_idle(void)
3020 {
3021 long delta = 0;
3022
3023 /*
3024 * Its got a race, we don't care...
3025 */
3026 if (atomic_long_read(&calc_load_tasks_idle))
3027 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
3028
3029 return delta;
3030 }
3031 #else
3032 static void calc_load_account_idle(struct rq *this_rq)
3033 {
3034 }
3035
3036 static inline long calc_load_fold_idle(void)
3037 {
3038 return 0;
3039 }
3040 #endif
3041
3042 /**
3043 * get_avenrun - get the load average array
3044 * @loads: pointer to dest load array
3045 * @offset: offset to add
3046 * @shift: shift count to shift the result left
3047 *
3048 * These values are estimates at best, so no need for locking.
3049 */
3050 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3051 {
3052 loads[0] = (avenrun[0] + offset) << shift;
3053 loads[1] = (avenrun[1] + offset) << shift;
3054 loads[2] = (avenrun[2] + offset) << shift;
3055 }
3056
3057 static unsigned long
3058 calc_load(unsigned long load, unsigned long exp, unsigned long active)
3059 {
3060 load *= exp;
3061 load += active * (FIXED_1 - exp);
3062 return load >> FSHIFT;
3063 }
3064
3065 /*
3066 * calc_load - update the avenrun load estimates 10 ticks after the
3067 * CPUs have updated calc_load_tasks.
3068 */
3069 void calc_global_load(void)
3070 {
3071 unsigned long upd = calc_load_update + 10;
3072 long active;
3073
3074 if (time_before(jiffies, upd))
3075 return;
3076
3077 active = atomic_long_read(&calc_load_tasks);
3078 active = active > 0 ? active * FIXED_1 : 0;
3079
3080 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3081 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3082 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3083
3084 calc_load_update += LOAD_FREQ;
3085 }
3086
3087 /*
3088 * Called from update_cpu_load() to periodically update this CPU's
3089 * active count.
3090 */
3091 static void calc_load_account_active(struct rq *this_rq)
3092 {
3093 long delta;
3094
3095 if (time_before(jiffies, this_rq->calc_load_update))
3096 return;
3097
3098 delta = calc_load_fold_active(this_rq);
3099 delta += calc_load_fold_idle();
3100 if (delta)
3101 atomic_long_add(delta, &calc_load_tasks);
3102
3103 this_rq->calc_load_update += LOAD_FREQ;
3104 }
3105
3106 /*
3107 * The exact cpuload at various idx values, calculated at every tick would be
3108 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3109 *
3110 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3111 * on nth tick when cpu may be busy, then we have:
3112 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3113 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3114 *
3115 * decay_load_missed() below does efficient calculation of
3116 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3117 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3118 *
3119 * The calculation is approximated on a 128 point scale.
3120 * degrade_zero_ticks is the number of ticks after which load at any
3121 * particular idx is approximated to be zero.
3122 * degrade_factor is a precomputed table, a row for each load idx.
3123 * Each column corresponds to degradation factor for a power of two ticks,
3124 * based on 128 point scale.
3125 * Example:
3126 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3127 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3128 *
3129 * With this power of 2 load factors, we can degrade the load n times
3130 * by looking at 1 bits in n and doing as many mult/shift instead of
3131 * n mult/shifts needed by the exact degradation.
3132 */
3133 #define DEGRADE_SHIFT 7
3134 static const unsigned char
3135 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3136 static const unsigned char
3137 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3138 {0, 0, 0, 0, 0, 0, 0, 0},
3139 {64, 32, 8, 0, 0, 0, 0, 0},
3140 {96, 72, 40, 12, 1, 0, 0},
3141 {112, 98, 75, 43, 15, 1, 0},
3142 {120, 112, 98, 76, 45, 16, 2} };
3143
3144 /*
3145 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3146 * would be when CPU is idle and so we just decay the old load without
3147 * adding any new load.
3148 */
3149 static unsigned long
3150 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3151 {
3152 int j = 0;
3153
3154 if (!missed_updates)
3155 return load;
3156
3157 if (missed_updates >= degrade_zero_ticks[idx])
3158 return 0;
3159
3160 if (idx == 1)
3161 return load >> missed_updates;
3162
3163 while (missed_updates) {
3164 if (missed_updates % 2)
3165 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3166
3167 missed_updates >>= 1;
3168 j++;
3169 }
3170 return load;
3171 }
3172
3173 /*
3174 * Update rq->cpu_load[] statistics. This function is usually called every
3175 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3176 * every tick. We fix it up based on jiffies.
3177 */
3178 static void update_cpu_load(struct rq *this_rq)
3179 {
3180 unsigned long this_load = this_rq->load.weight;
3181 unsigned long curr_jiffies = jiffies;
3182 unsigned long pending_updates;
3183 int i, scale;
3184
3185 this_rq->nr_load_updates++;
3186
3187 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3188 if (curr_jiffies == this_rq->last_load_update_tick)
3189 return;
3190
3191 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3192 this_rq->last_load_update_tick = curr_jiffies;
3193
3194 /* Update our load: */
3195 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3196 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3197 unsigned long old_load, new_load;
3198
3199 /* scale is effectively 1 << i now, and >> i divides by scale */
3200
3201 old_load = this_rq->cpu_load[i];
3202 old_load = decay_load_missed(old_load, pending_updates - 1, i);
3203 new_load = this_load;
3204 /*
3205 * Round up the averaging division if load is increasing. This
3206 * prevents us from getting stuck on 9 if the load is 10, for
3207 * example.
3208 */
3209 if (new_load > old_load)
3210 new_load += scale - 1;
3211
3212 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
3213 }
3214
3215 sched_avg_update(this_rq);
3216 }
3217
3218 static void update_cpu_load_active(struct rq *this_rq)
3219 {
3220 update_cpu_load(this_rq);
3221
3222 calc_load_account_active(this_rq);
3223 }
3224
3225 #ifdef CONFIG_SMP
3226
3227 /*
3228 * sched_exec - execve() is a valuable balancing opportunity, because at
3229 * this point the task has the smallest effective memory and cache footprint.
3230 */
3231 void sched_exec(void)
3232 {
3233 struct task_struct *p = current;
3234 unsigned long flags;
3235 struct rq *rq;
3236 int dest_cpu;
3237
3238 rq = task_rq_lock(p, &flags);
3239 dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
3240 if (dest_cpu == smp_processor_id())
3241 goto unlock;
3242
3243 /*
3244 * select_task_rq() can race against ->cpus_allowed
3245 */
3246 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
3247 likely(cpu_active(dest_cpu)) && migrate_task(p, dest_cpu)) {
3248 struct migration_arg arg = { p, dest_cpu };
3249
3250 task_rq_unlock(rq, &flags);
3251 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
3252 return;
3253 }
3254 unlock:
3255 task_rq_unlock(rq, &flags);
3256 }
3257
3258 #endif
3259
3260 DEFINE_PER_CPU(struct kernel_stat, kstat);
3261
3262 EXPORT_PER_CPU_SYMBOL(kstat);
3263
3264 /*
3265 * Return any ns on the sched_clock that have not yet been accounted in
3266 * @p in case that task is currently running.
3267 *
3268 * Called with task_rq_lock() held on @rq.
3269 */
3270 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3271 {
3272 u64 ns = 0;
3273
3274 if (task_current(rq, p)) {
3275 update_rq_clock(rq);
3276 ns = rq->clock - p->se.exec_start;
3277 if ((s64)ns < 0)
3278 ns = 0;
3279 }
3280
3281 return ns;
3282 }
3283
3284 unsigned long long task_delta_exec(struct task_struct *p)
3285 {
3286 unsigned long flags;
3287 struct rq *rq;
3288 u64 ns = 0;
3289
3290 rq = task_rq_lock(p, &flags);
3291 ns = do_task_delta_exec(p, rq);
3292 task_rq_unlock(rq, &flags);
3293
3294 return ns;
3295 }
3296
3297 /*
3298 * Return accounted runtime for the task.
3299 * In case the task is currently running, return the runtime plus current's
3300 * pending runtime that have not been accounted yet.
3301 */
3302 unsigned long long task_sched_runtime(struct task_struct *p)
3303 {
3304 unsigned long flags;
3305 struct rq *rq;
3306 u64 ns = 0;
3307
3308 rq = task_rq_lock(p, &flags);
3309 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3310 task_rq_unlock(rq, &flags);
3311
3312 return ns;
3313 }
3314
3315 /*
3316 * Return sum_exec_runtime for the thread group.
3317 * In case the task is currently running, return the sum plus current's
3318 * pending runtime that have not been accounted yet.
3319 *
3320 * Note that the thread group might have other running tasks as well,
3321 * so the return value not includes other pending runtime that other
3322 * running tasks might have.
3323 */
3324 unsigned long long thread_group_sched_runtime(struct task_struct *p)
3325 {
3326 struct task_cputime totals;
3327 unsigned long flags;
3328 struct rq *rq;
3329 u64 ns;
3330
3331 rq = task_rq_lock(p, &flags);
3332 thread_group_cputime(p, &totals);
3333 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3334 task_rq_unlock(rq, &flags);
3335
3336 return ns;
3337 }
3338
3339 /*
3340 * Account user cpu time to a process.
3341 * @p: the process that the cpu time gets accounted to
3342 * @cputime: the cpu time spent in user space since the last update
3343 * @cputime_scaled: cputime scaled by cpu frequency
3344 */
3345 void account_user_time(struct task_struct *p, cputime_t cputime,
3346 cputime_t cputime_scaled)
3347 {
3348 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3349 cputime64_t tmp;
3350
3351 /* Add user time to process. */
3352 p->utime = cputime_add(p->utime, cputime);
3353 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3354 account_group_user_time(p, cputime);
3355
3356 /* Add user time to cpustat. */
3357 tmp = cputime_to_cputime64(cputime);
3358 if (TASK_NICE(p) > 0)
3359 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3360 else
3361 cpustat->user = cputime64_add(cpustat->user, tmp);
3362
3363 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3364 /* Account for user time used */
3365 acct_update_integrals(p);
3366 }
3367
3368 /*
3369 * Account guest cpu time to a process.
3370 * @p: the process that the cpu time gets accounted to
3371 * @cputime: the cpu time spent in virtual machine since the last update
3372 * @cputime_scaled: cputime scaled by cpu frequency
3373 */
3374 static void account_guest_time(struct task_struct *p, cputime_t cputime,
3375 cputime_t cputime_scaled)
3376 {
3377 cputime64_t tmp;
3378 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3379
3380 tmp = cputime_to_cputime64(cputime);
3381
3382 /* Add guest time to process. */
3383 p->utime = cputime_add(p->utime, cputime);
3384 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3385 account_group_user_time(p, cputime);
3386 p->gtime = cputime_add(p->gtime, cputime);
3387
3388 /* Add guest time to cpustat. */
3389 if (TASK_NICE(p) > 0) {
3390 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3391 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3392 } else {
3393 cpustat->user = cputime64_add(cpustat->user, tmp);
3394 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3395 }
3396 }
3397
3398 /*
3399 * Account system cpu time to a process.
3400 * @p: the process that the cpu time gets accounted to
3401 * @hardirq_offset: the offset to subtract from hardirq_count()
3402 * @cputime: the cpu time spent in kernel space since the last update
3403 * @cputime_scaled: cputime scaled by cpu frequency
3404 */
3405 void account_system_time(struct task_struct *p, int hardirq_offset,
3406 cputime_t cputime, cputime_t cputime_scaled)
3407 {
3408 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3409 cputime64_t tmp;
3410
3411 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3412 account_guest_time(p, cputime, cputime_scaled);
3413 return;
3414 }
3415
3416 /* Add system time to process. */
3417 p->stime = cputime_add(p->stime, cputime);
3418 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3419 account_group_system_time(p, cputime);
3420
3421 /* Add system time to cpustat. */
3422 tmp = cputime_to_cputime64(cputime);
3423 if (hardirq_count() - hardirq_offset)
3424 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3425 else if (in_serving_softirq())
3426 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3427 else
3428 cpustat->system = cputime64_add(cpustat->system, tmp);
3429
3430 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3431
3432 /* Account for system time used */
3433 acct_update_integrals(p);
3434 }
3435
3436 /*
3437 * Account for involuntary wait time.
3438 * @steal: the cpu time spent in involuntary wait
3439 */
3440 void account_steal_time(cputime_t cputime)
3441 {
3442 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3443 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3444
3445 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3446 }
3447
3448 /*
3449 * Account for idle time.
3450 * @cputime: the cpu time spent in idle wait
3451 */
3452 void account_idle_time(cputime_t cputime)
3453 {
3454 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3455 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3456 struct rq *rq = this_rq();
3457
3458 if (atomic_read(&rq->nr_iowait) > 0)
3459 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3460 else
3461 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
3462 }
3463
3464 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
3465
3466 /*
3467 * Account a single tick of cpu time.
3468 * @p: the process that the cpu time gets accounted to
3469 * @user_tick: indicates if the tick is a user or a system tick
3470 */
3471 void account_process_tick(struct task_struct *p, int user_tick)
3472 {
3473 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3474 struct rq *rq = this_rq();
3475
3476 if (user_tick)
3477 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3478 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3479 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3480 one_jiffy_scaled);
3481 else
3482 account_idle_time(cputime_one_jiffy);
3483 }
3484
3485 /*
3486 * Account multiple ticks of steal time.
3487 * @p: the process from which the cpu time has been stolen
3488 * @ticks: number of stolen ticks
3489 */
3490 void account_steal_ticks(unsigned long ticks)
3491 {
3492 account_steal_time(jiffies_to_cputime(ticks));
3493 }
3494
3495 /*
3496 * Account multiple ticks of idle time.
3497 * @ticks: number of stolen ticks
3498 */
3499 void account_idle_ticks(unsigned long ticks)
3500 {
3501 account_idle_time(jiffies_to_cputime(ticks));
3502 }
3503
3504 #endif
3505
3506 /*
3507 * Use precise platform statistics if available:
3508 */
3509 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
3510 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3511 {
3512 *ut = p->utime;
3513 *st = p->stime;
3514 }
3515
3516 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3517 {
3518 struct task_cputime cputime;
3519
3520 thread_group_cputime(p, &cputime);
3521
3522 *ut = cputime.utime;
3523 *st = cputime.stime;
3524 }
3525 #else
3526
3527 #ifndef nsecs_to_cputime
3528 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
3529 #endif
3530
3531 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3532 {
3533 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
3534
3535 /*
3536 * Use CFS's precise accounting:
3537 */
3538 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3539
3540 if (total) {
3541 u64 temp = rtime;
3542
3543 temp *= utime;
3544 do_div(temp, total);
3545 utime = (cputime_t)temp;
3546 } else
3547 utime = rtime;
3548
3549 /*
3550 * Compare with previous values, to keep monotonicity:
3551 */
3552 p->prev_utime = max(p->prev_utime, utime);
3553 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
3554
3555 *ut = p->prev_utime;
3556 *st = p->prev_stime;
3557 }
3558
3559 /*
3560 * Must be called with siglock held.
3561 */
3562 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3563 {
3564 struct signal_struct *sig = p->signal;
3565 struct task_cputime cputime;
3566 cputime_t rtime, utime, total;
3567
3568 thread_group_cputime(p, &cputime);
3569
3570 total = cputime_add(cputime.utime, cputime.stime);
3571 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3572
3573 if (total) {
3574 u64 temp = rtime;
3575
3576 temp *= cputime.utime;
3577 do_div(temp, total);
3578 utime = (cputime_t)temp;
3579 } else
3580 utime = rtime;
3581
3582 sig->prev_utime = max(sig->prev_utime, utime);
3583 sig->prev_stime = max(sig->prev_stime,
3584 cputime_sub(rtime, sig->prev_utime));
3585
3586 *ut = sig->prev_utime;
3587 *st = sig->prev_stime;
3588 }
3589 #endif
3590
3591 /*
3592 * This function gets called by the timer code, with HZ frequency.
3593 * We call it with interrupts disabled.
3594 *
3595 * It also gets called by the fork code, when changing the parent's
3596 * timeslices.
3597 */
3598 void scheduler_tick(void)
3599 {
3600 int cpu = smp_processor_id();
3601 struct rq *rq = cpu_rq(cpu);
3602 struct task_struct *curr = rq->curr;
3603
3604 sched_clock_tick();
3605
3606 raw_spin_lock(&rq->lock);
3607 update_rq_clock(rq);
3608 update_cpu_load_active(rq);
3609 curr->sched_class->task_tick(rq, curr, 0);
3610 raw_spin_unlock(&rq->lock);
3611
3612 perf_event_task_tick(curr);
3613
3614 #ifdef CONFIG_SMP
3615 rq->idle_at_tick = idle_cpu(cpu);
3616 trigger_load_balance(rq, cpu);
3617 #endif
3618 }
3619
3620 notrace unsigned long get_parent_ip(unsigned long addr)
3621 {
3622 if (in_lock_functions(addr)) {
3623 addr = CALLER_ADDR2;
3624 if (in_lock_functions(addr))
3625 addr = CALLER_ADDR3;
3626 }
3627 return addr;
3628 }
3629
3630 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3631 defined(CONFIG_PREEMPT_TRACER))
3632
3633 void __kprobes add_preempt_count(int val)
3634 {
3635 #ifdef CONFIG_DEBUG_PREEMPT
3636 /*
3637 * Underflow?
3638 */
3639 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3640 return;
3641 #endif
3642 preempt_count() += val;
3643 #ifdef CONFIG_DEBUG_PREEMPT
3644 /*
3645 * Spinlock count overflowing soon?
3646 */
3647 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3648 PREEMPT_MASK - 10);
3649 #endif
3650 if (preempt_count() == val)
3651 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3652 }
3653 EXPORT_SYMBOL(add_preempt_count);
3654
3655 void __kprobes sub_preempt_count(int val)
3656 {
3657 #ifdef CONFIG_DEBUG_PREEMPT
3658 /*
3659 * Underflow?
3660 */
3661 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3662 return;
3663 /*
3664 * Is the spinlock portion underflowing?
3665 */
3666 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3667 !(preempt_count() & PREEMPT_MASK)))
3668 return;
3669 #endif
3670
3671 if (preempt_count() == val)
3672 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3673 preempt_count() -= val;
3674 }
3675 EXPORT_SYMBOL(sub_preempt_count);
3676
3677 #endif
3678
3679 /*
3680 * Print scheduling while atomic bug:
3681 */
3682 static noinline void __schedule_bug(struct task_struct *prev)
3683 {
3684 struct pt_regs *regs = get_irq_regs();
3685
3686 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3687 prev->comm, prev->pid, preempt_count());
3688
3689 debug_show_held_locks(prev);
3690 print_modules();
3691 if (irqs_disabled())
3692 print_irqtrace_events(prev);
3693
3694 if (regs)
3695 show_regs(regs);
3696 else
3697 dump_stack();
3698 }
3699
3700 /*
3701 * Various schedule()-time debugging checks and statistics:
3702 */
3703 static inline void schedule_debug(struct task_struct *prev)
3704 {
3705 /*
3706 * Test if we are atomic. Since do_exit() needs to call into
3707 * schedule() atomically, we ignore that path for now.
3708 * Otherwise, whine if we are scheduling when we should not be.
3709 */
3710 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
3711 __schedule_bug(prev);
3712
3713 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3714
3715 schedstat_inc(this_rq(), sched_count);
3716 #ifdef CONFIG_SCHEDSTATS
3717 if (unlikely(prev->lock_depth >= 0)) {
3718 schedstat_inc(this_rq(), bkl_count);
3719 schedstat_inc(prev, sched_info.bkl_count);
3720 }
3721 #endif
3722 }
3723
3724 static void put_prev_task(struct rq *rq, struct task_struct *prev)
3725 {
3726 if (prev->se.on_rq)
3727 update_rq_clock(rq);
3728 rq->skip_clock_update = 0;
3729 prev->sched_class->put_prev_task(rq, prev);
3730 }
3731
3732 /*
3733 * Pick up the highest-prio task:
3734 */
3735 static inline struct task_struct *
3736 pick_next_task(struct rq *rq)
3737 {
3738 const struct sched_class *class;
3739 struct task_struct *p;
3740
3741 /*
3742 * Optimization: we know that if all tasks are in
3743 * the fair class we can call that function directly:
3744 */
3745 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3746 p = fair_sched_class.pick_next_task(rq);
3747 if (likely(p))
3748 return p;
3749 }
3750
3751 for_each_class(class) {
3752 p = class->pick_next_task(rq);
3753 if (p)
3754 return p;
3755 }
3756
3757 BUG(); /* the idle class will always have a runnable task */
3758 }
3759
3760 /*
3761 * schedule() is the main scheduler function.
3762 */
3763 asmlinkage void __sched schedule(void)
3764 {
3765 struct task_struct *prev, *next;
3766 unsigned long *switch_count;
3767 struct rq *rq;
3768 int cpu;
3769
3770 need_resched:
3771 preempt_disable();
3772 cpu = smp_processor_id();
3773 rq = cpu_rq(cpu);
3774 rcu_note_context_switch(cpu);
3775 prev = rq->curr;
3776
3777 release_kernel_lock(prev);
3778 need_resched_nonpreemptible:
3779
3780 schedule_debug(prev);
3781
3782 if (sched_feat(HRTICK))
3783 hrtick_clear(rq);
3784
3785 raw_spin_lock_irq(&rq->lock);
3786 clear_tsk_need_resched(prev);
3787
3788 switch_count = &prev->nivcsw;
3789 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3790 if (unlikely(signal_pending_state(prev->state, prev))) {
3791 prev->state = TASK_RUNNING;
3792 } else {
3793 /*
3794 * If a worker is going to sleep, notify and
3795 * ask workqueue whether it wants to wake up a
3796 * task to maintain concurrency. If so, wake
3797 * up the task.
3798 */
3799 if (prev->flags & PF_WQ_WORKER) {
3800 struct task_struct *to_wakeup;
3801
3802 to_wakeup = wq_worker_sleeping(prev, cpu);
3803 if (to_wakeup)
3804 try_to_wake_up_local(to_wakeup);
3805 }
3806 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3807 }
3808 switch_count = &prev->nvcsw;
3809 }
3810
3811 pre_schedule(rq, prev);
3812
3813 if (unlikely(!rq->nr_running))
3814 idle_balance(cpu, rq);
3815
3816 put_prev_task(rq, prev);
3817 next = pick_next_task(rq);
3818
3819 if (likely(prev != next)) {
3820 sched_info_switch(prev, next);
3821 perf_event_task_sched_out(prev, next);
3822
3823 rq->nr_switches++;
3824 rq->curr = next;
3825 ++*switch_count;
3826
3827 context_switch(rq, prev, next); /* unlocks the rq */
3828 /*
3829 * The context switch have flipped the stack from under us
3830 * and restored the local variables which were saved when
3831 * this task called schedule() in the past. prev == current
3832 * is still correct, but it can be moved to another cpu/rq.
3833 */
3834 cpu = smp_processor_id();
3835 rq = cpu_rq(cpu);
3836 } else
3837 raw_spin_unlock_irq(&rq->lock);
3838
3839 post_schedule(rq);
3840
3841 if (unlikely(reacquire_kernel_lock(prev)))
3842 goto need_resched_nonpreemptible;
3843
3844 preempt_enable_no_resched();
3845 if (need_resched())
3846 goto need_resched;
3847 }
3848 EXPORT_SYMBOL(schedule);
3849
3850 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3851 /*
3852 * Look out! "owner" is an entirely speculative pointer
3853 * access and not reliable.
3854 */
3855 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
3856 {
3857 unsigned int cpu;
3858 struct rq *rq;
3859
3860 if (!sched_feat(OWNER_SPIN))
3861 return 0;
3862
3863 #ifdef CONFIG_DEBUG_PAGEALLOC
3864 /*
3865 * Need to access the cpu field knowing that
3866 * DEBUG_PAGEALLOC could have unmapped it if
3867 * the mutex owner just released it and exited.
3868 */
3869 if (probe_kernel_address(&owner->cpu, cpu))
3870 return 0;
3871 #else
3872 cpu = owner->cpu;
3873 #endif
3874
3875 /*
3876 * Even if the access succeeded (likely case),
3877 * the cpu field may no longer be valid.
3878 */
3879 if (cpu >= nr_cpumask_bits)
3880 return 0;
3881
3882 /*
3883 * We need to validate that we can do a
3884 * get_cpu() and that we have the percpu area.
3885 */
3886 if (!cpu_online(cpu))
3887 return 0;
3888
3889 rq = cpu_rq(cpu);
3890
3891 for (;;) {
3892 /*
3893 * Owner changed, break to re-assess state.
3894 */
3895 if (lock->owner != owner) {
3896 /*
3897 * If the lock has switched to a different owner,
3898 * we likely have heavy contention. Return 0 to quit
3899 * optimistic spinning and not contend further:
3900 */
3901 if (lock->owner)
3902 return 0;
3903 break;
3904 }
3905
3906 /*
3907 * Is that owner really running on that cpu?
3908 */
3909 if (task_thread_info(rq->curr) != owner || need_resched())
3910 return 0;
3911
3912 cpu_relax();
3913 }
3914
3915 return 1;
3916 }
3917 #endif
3918
3919 #ifdef CONFIG_PREEMPT
3920 /*
3921 * this is the entry point to schedule() from in-kernel preemption
3922 * off of preempt_enable. Kernel preemptions off return from interrupt
3923 * occur there and call schedule directly.
3924 */
3925 asmlinkage void __sched notrace preempt_schedule(void)
3926 {
3927 struct thread_info *ti = current_thread_info();
3928
3929 /*
3930 * If there is a non-zero preempt_count or interrupts are disabled,
3931 * we do not want to preempt the current task. Just return..
3932 */
3933 if (likely(ti->preempt_count || irqs_disabled()))
3934 return;
3935
3936 do {
3937 add_preempt_count_notrace(PREEMPT_ACTIVE);
3938 schedule();
3939 sub_preempt_count_notrace(PREEMPT_ACTIVE);
3940
3941 /*
3942 * Check again in case we missed a preemption opportunity
3943 * between schedule and now.
3944 */
3945 barrier();
3946 } while (need_resched());
3947 }
3948 EXPORT_SYMBOL(preempt_schedule);
3949
3950 /*
3951 * this is the entry point to schedule() from kernel preemption
3952 * off of irq context.
3953 * Note, that this is called and return with irqs disabled. This will
3954 * protect us against recursive calling from irq.
3955 */
3956 asmlinkage void __sched preempt_schedule_irq(void)
3957 {
3958 struct thread_info *ti = current_thread_info();
3959
3960 /* Catch callers which need to be fixed */
3961 BUG_ON(ti->preempt_count || !irqs_disabled());
3962
3963 do {
3964 add_preempt_count(PREEMPT_ACTIVE);
3965 local_irq_enable();
3966 schedule();
3967 local_irq_disable();
3968 sub_preempt_count(PREEMPT_ACTIVE);
3969
3970 /*
3971 * Check again in case we missed a preemption opportunity
3972 * between schedule and now.
3973 */
3974 barrier();
3975 } while (need_resched());
3976 }
3977
3978 #endif /* CONFIG_PREEMPT */
3979
3980 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3981 void *key)
3982 {
3983 return try_to_wake_up(curr->private, mode, wake_flags);
3984 }
3985 EXPORT_SYMBOL(default_wake_function);
3986
3987 /*
3988 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3989 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3990 * number) then we wake all the non-exclusive tasks and one exclusive task.
3991 *
3992 * There are circumstances in which we can try to wake a task which has already
3993 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3994 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3995 */
3996 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3997 int nr_exclusive, int wake_flags, void *key)
3998 {
3999 wait_queue_t *curr, *next;
4000
4001 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4002 unsigned flags = curr->flags;
4003
4004 if (curr->func(curr, mode, wake_flags, key) &&
4005 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4006 break;
4007 }
4008 }
4009
4010 /**
4011 * __wake_up - wake up threads blocked on a waitqueue.
4012 * @q: the waitqueue
4013 * @mode: which threads
4014 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4015 * @key: is directly passed to the wakeup function
4016 *
4017 * It may be assumed that this function implies a write memory barrier before
4018 * changing the task state if and only if any tasks are woken up.
4019 */
4020 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4021 int nr_exclusive, void *key)
4022 {
4023 unsigned long flags;
4024
4025 spin_lock_irqsave(&q->lock, flags);
4026 __wake_up_common(q, mode, nr_exclusive, 0, key);
4027 spin_unlock_irqrestore(&q->lock, flags);
4028 }
4029 EXPORT_SYMBOL(__wake_up);
4030
4031 /*
4032 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4033 */
4034 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4035 {
4036 __wake_up_common(q, mode, 1, 0, NULL);
4037 }
4038 EXPORT_SYMBOL_GPL(__wake_up_locked);
4039
4040 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4041 {
4042 __wake_up_common(q, mode, 1, 0, key);
4043 }
4044
4045 /**
4046 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
4047 * @q: the waitqueue
4048 * @mode: which threads
4049 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4050 * @key: opaque value to be passed to wakeup targets
4051 *
4052 * The sync wakeup differs that the waker knows that it will schedule
4053 * away soon, so while the target thread will be woken up, it will not
4054 * be migrated to another CPU - ie. the two threads are 'synchronized'
4055 * with each other. This can prevent needless bouncing between CPUs.
4056 *
4057 * On UP it can prevent extra preemption.
4058 *
4059 * It may be assumed that this function implies a write memory barrier before
4060 * changing the task state if and only if any tasks are woken up.
4061 */
4062 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4063 int nr_exclusive, void *key)
4064 {
4065 unsigned long flags;
4066 int wake_flags = WF_SYNC;
4067
4068 if (unlikely(!q))
4069 return;
4070
4071 if (unlikely(!nr_exclusive))
4072 wake_flags = 0;
4073
4074 spin_lock_irqsave(&q->lock, flags);
4075 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
4076 spin_unlock_irqrestore(&q->lock, flags);
4077 }
4078 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4079
4080 /*
4081 * __wake_up_sync - see __wake_up_sync_key()
4082 */
4083 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4084 {
4085 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4086 }
4087 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4088
4089 /**
4090 * complete: - signals a single thread waiting on this completion
4091 * @x: holds the state of this particular completion
4092 *
4093 * This will wake up a single thread waiting on this completion. Threads will be
4094 * awakened in the same order in which they were queued.
4095 *
4096 * See also complete_all(), wait_for_completion() and related routines.
4097 *
4098 * It may be assumed that this function implies a write memory barrier before
4099 * changing the task state if and only if any tasks are woken up.
4100 */
4101 void complete(struct completion *x)
4102 {
4103 unsigned long flags;
4104
4105 spin_lock_irqsave(&x->wait.lock, flags);
4106 x->done++;
4107 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4108 spin_unlock_irqrestore(&x->wait.lock, flags);
4109 }
4110 EXPORT_SYMBOL(complete);
4111
4112 /**
4113 * complete_all: - signals all threads waiting on this completion
4114 * @x: holds the state of this particular completion
4115 *
4116 * This will wake up all threads waiting on this particular completion event.
4117 *
4118 * It may be assumed that this function implies a write memory barrier before
4119 * changing the task state if and only if any tasks are woken up.
4120 */
4121 void complete_all(struct completion *x)
4122 {
4123 unsigned long flags;
4124
4125 spin_lock_irqsave(&x->wait.lock, flags);
4126 x->done += UINT_MAX/2;
4127 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4128 spin_unlock_irqrestore(&x->wait.lock, flags);
4129 }
4130 EXPORT_SYMBOL(complete_all);
4131
4132 static inline long __sched
4133 do_wait_for_common(struct completion *x, long timeout, int state)
4134 {
4135 if (!x->done) {
4136 DECLARE_WAITQUEUE(wait, current);
4137
4138 __add_wait_queue_tail_exclusive(&x->wait, &wait);
4139 do {
4140 if (signal_pending_state(state, current)) {
4141 timeout = -ERESTARTSYS;
4142 break;
4143 }
4144 __set_current_state(state);
4145 spin_unlock_irq(&x->wait.lock);
4146 timeout = schedule_timeout(timeout);
4147 spin_lock_irq(&x->wait.lock);
4148 } while (!x->done && timeout);
4149 __remove_wait_queue(&x->wait, &wait);
4150 if (!x->done)
4151 return timeout;
4152 }
4153 x->done--;
4154 return timeout ?: 1;
4155 }
4156
4157 static long __sched
4158 wait_for_common(struct completion *x, long timeout, int state)
4159 {
4160 might_sleep();
4161
4162 spin_lock_irq(&x->wait.lock);
4163 timeout = do_wait_for_common(x, timeout, state);
4164 spin_unlock_irq(&x->wait.lock);
4165 return timeout;
4166 }
4167
4168 /**
4169 * wait_for_completion: - waits for completion of a task
4170 * @x: holds the state of this particular completion
4171 *
4172 * This waits to be signaled for completion of a specific task. It is NOT
4173 * interruptible and there is no timeout.
4174 *
4175 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4176 * and interrupt capability. Also see complete().
4177 */
4178 void __sched wait_for_completion(struct completion *x)
4179 {
4180 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4181 }
4182 EXPORT_SYMBOL(wait_for_completion);
4183
4184 /**
4185 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4186 * @x: holds the state of this particular completion
4187 * @timeout: timeout value in jiffies
4188 *
4189 * This waits for either a completion of a specific task to be signaled or for a
4190 * specified timeout to expire. The timeout is in jiffies. It is not
4191 * interruptible.
4192 */
4193 unsigned long __sched
4194 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4195 {
4196 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4197 }
4198 EXPORT_SYMBOL(wait_for_completion_timeout);
4199
4200 /**
4201 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4202 * @x: holds the state of this particular completion
4203 *
4204 * This waits for completion of a specific task to be signaled. It is
4205 * interruptible.
4206 */
4207 int __sched wait_for_completion_interruptible(struct completion *x)
4208 {
4209 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4210 if (t == -ERESTARTSYS)
4211 return t;
4212 return 0;
4213 }
4214 EXPORT_SYMBOL(wait_for_completion_interruptible);
4215
4216 /**
4217 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4218 * @x: holds the state of this particular completion
4219 * @timeout: timeout value in jiffies
4220 *
4221 * This waits for either a completion of a specific task to be signaled or for a
4222 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4223 */
4224 unsigned long __sched
4225 wait_for_completion_interruptible_timeout(struct completion *x,
4226 unsigned long timeout)
4227 {
4228 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4229 }
4230 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4231
4232 /**
4233 * wait_for_completion_killable: - waits for completion of a task (killable)
4234 * @x: holds the state of this particular completion
4235 *
4236 * This waits to be signaled for completion of a specific task. It can be
4237 * interrupted by a kill signal.
4238 */
4239 int __sched wait_for_completion_killable(struct completion *x)
4240 {
4241 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4242 if (t == -ERESTARTSYS)
4243 return t;
4244 return 0;
4245 }
4246 EXPORT_SYMBOL(wait_for_completion_killable);
4247
4248 /**
4249 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4250 * @x: holds the state of this particular completion
4251 * @timeout: timeout value in jiffies
4252 *
4253 * This waits for either a completion of a specific task to be
4254 * signaled or for a specified timeout to expire. It can be
4255 * interrupted by a kill signal. The timeout is in jiffies.
4256 */
4257 unsigned long __sched
4258 wait_for_completion_killable_timeout(struct completion *x,
4259 unsigned long timeout)
4260 {
4261 return wait_for_common(x, timeout, TASK_KILLABLE);
4262 }
4263 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4264
4265 /**
4266 * try_wait_for_completion - try to decrement a completion without blocking
4267 * @x: completion structure
4268 *
4269 * Returns: 0 if a decrement cannot be done without blocking
4270 * 1 if a decrement succeeded.
4271 *
4272 * If a completion is being used as a counting completion,
4273 * attempt to decrement the counter without blocking. This
4274 * enables us to avoid waiting if the resource the completion
4275 * is protecting is not available.
4276 */
4277 bool try_wait_for_completion(struct completion *x)
4278 {
4279 unsigned long flags;
4280 int ret = 1;
4281
4282 spin_lock_irqsave(&x->wait.lock, flags);
4283 if (!x->done)
4284 ret = 0;
4285 else
4286 x->done--;
4287 spin_unlock_irqrestore(&x->wait.lock, flags);
4288 return ret;
4289 }
4290 EXPORT_SYMBOL(try_wait_for_completion);
4291
4292 /**
4293 * completion_done - Test to see if a completion has any waiters
4294 * @x: completion structure
4295 *
4296 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4297 * 1 if there are no waiters.
4298 *
4299 */
4300 bool completion_done(struct completion *x)
4301 {
4302 unsigned long flags;
4303 int ret = 1;
4304
4305 spin_lock_irqsave(&x->wait.lock, flags);
4306 if (!x->done)
4307 ret = 0;
4308 spin_unlock_irqrestore(&x->wait.lock, flags);
4309 return ret;
4310 }
4311 EXPORT_SYMBOL(completion_done);
4312
4313 static long __sched
4314 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4315 {
4316 unsigned long flags;
4317 wait_queue_t wait;
4318
4319 init_waitqueue_entry(&wait, current);
4320
4321 __set_current_state(state);
4322
4323 spin_lock_irqsave(&q->lock, flags);
4324 __add_wait_queue(q, &wait);
4325 spin_unlock(&q->lock);
4326 timeout = schedule_timeout(timeout);
4327 spin_lock_irq(&q->lock);
4328 __remove_wait_queue(q, &wait);
4329 spin_unlock_irqrestore(&q->lock, flags);
4330
4331 return timeout;
4332 }
4333
4334 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4335 {
4336 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4337 }
4338 EXPORT_SYMBOL(interruptible_sleep_on);
4339
4340 long __sched
4341 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4342 {
4343 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4344 }
4345 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4346
4347 void __sched sleep_on(wait_queue_head_t *q)
4348 {
4349 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4350 }
4351 EXPORT_SYMBOL(sleep_on);
4352
4353 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4354 {
4355 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4356 }
4357 EXPORT_SYMBOL(sleep_on_timeout);
4358
4359 #ifdef CONFIG_RT_MUTEXES
4360
4361 /*
4362 * rt_mutex_setprio - set the current priority of a task
4363 * @p: task
4364 * @prio: prio value (kernel-internal form)
4365 *
4366 * This function changes the 'effective' priority of a task. It does
4367 * not touch ->normal_prio like __setscheduler().
4368 *
4369 * Used by the rt_mutex code to implement priority inheritance logic.
4370 */
4371 void rt_mutex_setprio(struct task_struct *p, int prio)
4372 {
4373 unsigned long flags;
4374 int oldprio, on_rq, running;
4375 struct rq *rq;
4376 const struct sched_class *prev_class;
4377
4378 BUG_ON(prio < 0 || prio > MAX_PRIO);
4379
4380 rq = task_rq_lock(p, &flags);
4381
4382 trace_sched_pi_setprio(p, prio);
4383 oldprio = p->prio;
4384 prev_class = p->sched_class;
4385 on_rq = p->se.on_rq;
4386 running = task_current(rq, p);
4387 if (on_rq)
4388 dequeue_task(rq, p, 0);
4389 if (running)
4390 p->sched_class->put_prev_task(rq, p);
4391
4392 if (rt_prio(prio))
4393 p->sched_class = &rt_sched_class;
4394 else
4395 p->sched_class = &fair_sched_class;
4396
4397 p->prio = prio;
4398
4399 if (running)
4400 p->sched_class->set_curr_task(rq);
4401 if (on_rq) {
4402 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
4403
4404 check_class_changed(rq, p, prev_class, oldprio, running);
4405 }
4406 task_rq_unlock(rq, &flags);
4407 }
4408
4409 #endif
4410
4411 void set_user_nice(struct task_struct *p, long nice)
4412 {
4413 int old_prio, delta, on_rq;
4414 unsigned long flags;
4415 struct rq *rq;
4416
4417 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4418 return;
4419 /*
4420 * We have to be careful, if called from sys_setpriority(),
4421 * the task might be in the middle of scheduling on another CPU.
4422 */
4423 rq = task_rq_lock(p, &flags);
4424 /*
4425 * The RT priorities are set via sched_setscheduler(), but we still
4426 * allow the 'normal' nice value to be set - but as expected
4427 * it wont have any effect on scheduling until the task is
4428 * SCHED_FIFO/SCHED_RR:
4429 */
4430 if (task_has_rt_policy(p)) {
4431 p->static_prio = NICE_TO_PRIO(nice);
4432 goto out_unlock;
4433 }
4434 on_rq = p->se.on_rq;
4435 if (on_rq)
4436 dequeue_task(rq, p, 0);
4437
4438 p->static_prio = NICE_TO_PRIO(nice);
4439 set_load_weight(p);
4440 old_prio = p->prio;
4441 p->prio = effective_prio(p);
4442 delta = p->prio - old_prio;
4443
4444 if (on_rq) {
4445 enqueue_task(rq, p, 0);
4446 /*
4447 * If the task increased its priority or is running and
4448 * lowered its priority, then reschedule its CPU:
4449 */
4450 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4451 resched_task(rq->curr);
4452 }
4453 out_unlock:
4454 task_rq_unlock(rq, &flags);
4455 }
4456 EXPORT_SYMBOL(set_user_nice);
4457
4458 /*
4459 * can_nice - check if a task can reduce its nice value
4460 * @p: task
4461 * @nice: nice value
4462 */
4463 int can_nice(const struct task_struct *p, const int nice)
4464 {
4465 /* convert nice value [19,-20] to rlimit style value [1,40] */
4466 int nice_rlim = 20 - nice;
4467
4468 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4469 capable(CAP_SYS_NICE));
4470 }
4471
4472 #ifdef __ARCH_WANT_SYS_NICE
4473
4474 /*
4475 * sys_nice - change the priority of the current process.
4476 * @increment: priority increment
4477 *
4478 * sys_setpriority is a more generic, but much slower function that
4479 * does similar things.
4480 */
4481 SYSCALL_DEFINE1(nice, int, increment)
4482 {
4483 long nice, retval;
4484
4485 /*
4486 * Setpriority might change our priority at the same moment.
4487 * We don't have to worry. Conceptually one call occurs first
4488 * and we have a single winner.
4489 */
4490 if (increment < -40)
4491 increment = -40;
4492 if (increment > 40)
4493 increment = 40;
4494
4495 nice = TASK_NICE(current) + increment;
4496 if (nice < -20)
4497 nice = -20;
4498 if (nice > 19)
4499 nice = 19;
4500
4501 if (increment < 0 && !can_nice(current, nice))
4502 return -EPERM;
4503
4504 retval = security_task_setnice(current, nice);
4505 if (retval)
4506 return retval;
4507
4508 set_user_nice(current, nice);
4509 return 0;
4510 }
4511
4512 #endif
4513
4514 /**
4515 * task_prio - return the priority value of a given task.
4516 * @p: the task in question.
4517 *
4518 * This is the priority value as seen by users in /proc.
4519 * RT tasks are offset by -200. Normal tasks are centered
4520 * around 0, value goes from -16 to +15.
4521 */
4522 int task_prio(const struct task_struct *p)
4523 {
4524 return p->prio - MAX_RT_PRIO;
4525 }
4526
4527 /**
4528 * task_nice - return the nice value of a given task.
4529 * @p: the task in question.
4530 */
4531 int task_nice(const struct task_struct *p)
4532 {
4533 return TASK_NICE(p);
4534 }
4535 EXPORT_SYMBOL(task_nice);
4536
4537 /**
4538 * idle_cpu - is a given cpu idle currently?
4539 * @cpu: the processor in question.
4540 */
4541 int idle_cpu(int cpu)
4542 {
4543 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4544 }
4545
4546 /**
4547 * idle_task - return the idle task for a given cpu.
4548 * @cpu: the processor in question.
4549 */
4550 struct task_struct *idle_task(int cpu)
4551 {
4552 return cpu_rq(cpu)->idle;
4553 }
4554
4555 /**
4556 * find_process_by_pid - find a process with a matching PID value.
4557 * @pid: the pid in question.
4558 */
4559 static struct task_struct *find_process_by_pid(pid_t pid)
4560 {
4561 return pid ? find_task_by_vpid(pid) : current;
4562 }
4563
4564 /* Actually do priority change: must hold rq lock. */
4565 static void
4566 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4567 {
4568 BUG_ON(p->se.on_rq);
4569
4570 p->policy = policy;
4571 p->rt_priority = prio;
4572 p->normal_prio = normal_prio(p);
4573 /* we are holding p->pi_lock already */
4574 p->prio = rt_mutex_getprio(p);
4575 if (rt_prio(p->prio))
4576 p->sched_class = &rt_sched_class;
4577 else
4578 p->sched_class = &fair_sched_class;
4579 set_load_weight(p);
4580 }
4581
4582 /*
4583 * check the target process has a UID that matches the current process's
4584 */
4585 static bool check_same_owner(struct task_struct *p)
4586 {
4587 const struct cred *cred = current_cred(), *pcred;
4588 bool match;
4589
4590 rcu_read_lock();
4591 pcred = __task_cred(p);
4592 match = (cred->euid == pcred->euid ||
4593 cred->euid == pcred->uid);
4594 rcu_read_unlock();
4595 return match;
4596 }
4597
4598 static int __sched_setscheduler(struct task_struct *p, int policy,
4599 struct sched_param *param, bool user)
4600 {
4601 int retval, oldprio, oldpolicy = -1, on_rq, running;
4602 unsigned long flags;
4603 const struct sched_class *prev_class;
4604 struct rq *rq;
4605 int reset_on_fork;
4606
4607 /* may grab non-irq protected spin_locks */
4608 BUG_ON(in_interrupt());
4609 recheck:
4610 /* double check policy once rq lock held */
4611 if (policy < 0) {
4612 reset_on_fork = p->sched_reset_on_fork;
4613 policy = oldpolicy = p->policy;
4614 } else {
4615 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4616 policy &= ~SCHED_RESET_ON_FORK;
4617
4618 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4619 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4620 policy != SCHED_IDLE)
4621 return -EINVAL;
4622 }
4623
4624 /*
4625 * Valid priorities for SCHED_FIFO and SCHED_RR are
4626 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4627 * SCHED_BATCH and SCHED_IDLE is 0.
4628 */
4629 if (param->sched_priority < 0 ||
4630 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4631 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4632 return -EINVAL;
4633 if (rt_policy(policy) != (param->sched_priority != 0))
4634 return -EINVAL;
4635
4636 /*
4637 * Allow unprivileged RT tasks to decrease priority:
4638 */
4639 if (user && !capable(CAP_SYS_NICE)) {
4640 if (rt_policy(policy)) {
4641 unsigned long rlim_rtprio =
4642 task_rlimit(p, RLIMIT_RTPRIO);
4643
4644 /* can't set/change the rt policy */
4645 if (policy != p->policy && !rlim_rtprio)
4646 return -EPERM;
4647
4648 /* can't increase priority */
4649 if (param->sched_priority > p->rt_priority &&
4650 param->sched_priority > rlim_rtprio)
4651 return -EPERM;
4652 }
4653 /*
4654 * Like positive nice levels, dont allow tasks to
4655 * move out of SCHED_IDLE either:
4656 */
4657 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4658 return -EPERM;
4659
4660 /* can't change other user's priorities */
4661 if (!check_same_owner(p))
4662 return -EPERM;
4663
4664 /* Normal users shall not reset the sched_reset_on_fork flag */
4665 if (p->sched_reset_on_fork && !reset_on_fork)
4666 return -EPERM;
4667 }
4668
4669 if (user) {
4670 retval = security_task_setscheduler(p, policy, param);
4671 if (retval)
4672 return retval;
4673 }
4674
4675 /*
4676 * make sure no PI-waiters arrive (or leave) while we are
4677 * changing the priority of the task:
4678 */
4679 raw_spin_lock_irqsave(&p->pi_lock, flags);
4680 /*
4681 * To be able to change p->policy safely, the apropriate
4682 * runqueue lock must be held.
4683 */
4684 rq = __task_rq_lock(p);
4685
4686 /*
4687 * Changing the policy of the stop threads its a very bad idea
4688 */
4689 if (p == rq->stop) {
4690 __task_rq_unlock(rq);
4691 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4692 return -EINVAL;
4693 }
4694
4695 #ifdef CONFIG_RT_GROUP_SCHED
4696 if (user) {
4697 /*
4698 * Do not allow realtime tasks into groups that have no runtime
4699 * assigned.
4700 */
4701 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4702 task_group(p)->rt_bandwidth.rt_runtime == 0) {
4703 __task_rq_unlock(rq);
4704 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4705 return -EPERM;
4706 }
4707 }
4708 #endif
4709
4710 /* recheck policy now with rq lock held */
4711 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4712 policy = oldpolicy = -1;
4713 __task_rq_unlock(rq);
4714 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4715 goto recheck;
4716 }
4717 on_rq = p->se.on_rq;
4718 running = task_current(rq, p);
4719 if (on_rq)
4720 deactivate_task(rq, p, 0);
4721 if (running)
4722 p->sched_class->put_prev_task(rq, p);
4723
4724 p->sched_reset_on_fork = reset_on_fork;
4725
4726 oldprio = p->prio;
4727 prev_class = p->sched_class;
4728 __setscheduler(rq, p, policy, param->sched_priority);
4729
4730 if (running)
4731 p->sched_class->set_curr_task(rq);
4732 if (on_rq) {
4733 activate_task(rq, p, 0);
4734
4735 check_class_changed(rq, p, prev_class, oldprio, running);
4736 }
4737 __task_rq_unlock(rq);
4738 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4739
4740 rt_mutex_adjust_pi(p);
4741
4742 return 0;
4743 }
4744
4745 /**
4746 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4747 * @p: the task in question.
4748 * @policy: new policy.
4749 * @param: structure containing the new RT priority.
4750 *
4751 * NOTE that the task may be already dead.
4752 */
4753 int sched_setscheduler(struct task_struct *p, int policy,
4754 struct sched_param *param)
4755 {
4756 return __sched_setscheduler(p, policy, param, true);
4757 }
4758 EXPORT_SYMBOL_GPL(sched_setscheduler);
4759
4760 /**
4761 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4762 * @p: the task in question.
4763 * @policy: new policy.
4764 * @param: structure containing the new RT priority.
4765 *
4766 * Just like sched_setscheduler, only don't bother checking if the
4767 * current context has permission. For example, this is needed in
4768 * stop_machine(): we create temporary high priority worker threads,
4769 * but our caller might not have that capability.
4770 */
4771 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4772 struct sched_param *param)
4773 {
4774 return __sched_setscheduler(p, policy, param, false);
4775 }
4776
4777 static int
4778 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4779 {
4780 struct sched_param lparam;
4781 struct task_struct *p;
4782 int retval;
4783
4784 if (!param || pid < 0)
4785 return -EINVAL;
4786 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4787 return -EFAULT;
4788
4789 rcu_read_lock();
4790 retval = -ESRCH;
4791 p = find_process_by_pid(pid);
4792 if (p != NULL)
4793 retval = sched_setscheduler(p, policy, &lparam);
4794 rcu_read_unlock();
4795
4796 return retval;
4797 }
4798
4799 /**
4800 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4801 * @pid: the pid in question.
4802 * @policy: new policy.
4803 * @param: structure containing the new RT priority.
4804 */
4805 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4806 struct sched_param __user *, param)
4807 {
4808 /* negative values for policy are not valid */
4809 if (policy < 0)
4810 return -EINVAL;
4811
4812 return do_sched_setscheduler(pid, policy, param);
4813 }
4814
4815 /**
4816 * sys_sched_setparam - set/change the RT priority of a thread
4817 * @pid: the pid in question.
4818 * @param: structure containing the new RT priority.
4819 */
4820 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4821 {
4822 return do_sched_setscheduler(pid, -1, param);
4823 }
4824
4825 /**
4826 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4827 * @pid: the pid in question.
4828 */
4829 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4830 {
4831 struct task_struct *p;
4832 int retval;
4833
4834 if (pid < 0)
4835 return -EINVAL;
4836
4837 retval = -ESRCH;
4838 rcu_read_lock();
4839 p = find_process_by_pid(pid);
4840 if (p) {
4841 retval = security_task_getscheduler(p);
4842 if (!retval)
4843 retval = p->policy
4844 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4845 }
4846 rcu_read_unlock();
4847 return retval;
4848 }
4849
4850 /**
4851 * sys_sched_getparam - get the RT priority of a thread
4852 * @pid: the pid in question.
4853 * @param: structure containing the RT priority.
4854 */
4855 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4856 {
4857 struct sched_param lp;
4858 struct task_struct *p;
4859 int retval;
4860
4861 if (!param || pid < 0)
4862 return -EINVAL;
4863
4864 rcu_read_lock();
4865 p = find_process_by_pid(pid);
4866 retval = -ESRCH;
4867 if (!p)
4868 goto out_unlock;
4869
4870 retval = security_task_getscheduler(p);
4871 if (retval)
4872 goto out_unlock;
4873
4874 lp.sched_priority = p->rt_priority;
4875 rcu_read_unlock();
4876
4877 /*
4878 * This one might sleep, we cannot do it with a spinlock held ...
4879 */
4880 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4881
4882 return retval;
4883
4884 out_unlock:
4885 rcu_read_unlock();
4886 return retval;
4887 }
4888
4889 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4890 {
4891 cpumask_var_t cpus_allowed, new_mask;
4892 struct task_struct *p;
4893 int retval;
4894
4895 get_online_cpus();
4896 rcu_read_lock();
4897
4898 p = find_process_by_pid(pid);
4899 if (!p) {
4900 rcu_read_unlock();
4901 put_online_cpus();
4902 return -ESRCH;
4903 }
4904
4905 /* Prevent p going away */
4906 get_task_struct(p);
4907 rcu_read_unlock();
4908
4909 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4910 retval = -ENOMEM;
4911 goto out_put_task;
4912 }
4913 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4914 retval = -ENOMEM;
4915 goto out_free_cpus_allowed;
4916 }
4917 retval = -EPERM;
4918 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
4919 goto out_unlock;
4920
4921 retval = security_task_setscheduler(p, 0, NULL);
4922 if (retval)
4923 goto out_unlock;
4924
4925 cpuset_cpus_allowed(p, cpus_allowed);
4926 cpumask_and(new_mask, in_mask, cpus_allowed);
4927 again:
4928 retval = set_cpus_allowed_ptr(p, new_mask);
4929
4930 if (!retval) {
4931 cpuset_cpus_allowed(p, cpus_allowed);
4932 if (!cpumask_subset(new_mask, cpus_allowed)) {
4933 /*
4934 * We must have raced with a concurrent cpuset
4935 * update. Just reset the cpus_allowed to the
4936 * cpuset's cpus_allowed
4937 */
4938 cpumask_copy(new_mask, cpus_allowed);
4939 goto again;
4940 }
4941 }
4942 out_unlock:
4943 free_cpumask_var(new_mask);
4944 out_free_cpus_allowed:
4945 free_cpumask_var(cpus_allowed);
4946 out_put_task:
4947 put_task_struct(p);
4948 put_online_cpus();
4949 return retval;
4950 }
4951
4952 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4953 struct cpumask *new_mask)
4954 {
4955 if (len < cpumask_size())
4956 cpumask_clear(new_mask);
4957 else if (len > cpumask_size())
4958 len = cpumask_size();
4959
4960 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4961 }
4962
4963 /**
4964 * sys_sched_setaffinity - set the cpu affinity of a process
4965 * @pid: pid of the process
4966 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4967 * @user_mask_ptr: user-space pointer to the new cpu mask
4968 */
4969 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4970 unsigned long __user *, user_mask_ptr)
4971 {
4972 cpumask_var_t new_mask;
4973 int retval;
4974
4975 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4976 return -ENOMEM;
4977
4978 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4979 if (retval == 0)
4980 retval = sched_setaffinity(pid, new_mask);
4981 free_cpumask_var(new_mask);
4982 return retval;
4983 }
4984
4985 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4986 {
4987 struct task_struct *p;
4988 unsigned long flags;
4989 struct rq *rq;
4990 int retval;
4991
4992 get_online_cpus();
4993 rcu_read_lock();
4994
4995 retval = -ESRCH;
4996 p = find_process_by_pid(pid);
4997 if (!p)
4998 goto out_unlock;
4999
5000 retval = security_task_getscheduler(p);
5001 if (retval)
5002 goto out_unlock;
5003
5004 rq = task_rq_lock(p, &flags);
5005 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
5006 task_rq_unlock(rq, &flags);
5007
5008 out_unlock:
5009 rcu_read_unlock();
5010 put_online_cpus();
5011
5012 return retval;
5013 }
5014
5015 /**
5016 * sys_sched_getaffinity - get the cpu affinity of a process
5017 * @pid: pid of the process
5018 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5019 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5020 */
5021 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5022 unsigned long __user *, user_mask_ptr)
5023 {
5024 int ret;
5025 cpumask_var_t mask;
5026
5027 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
5028 return -EINVAL;
5029 if (len & (sizeof(unsigned long)-1))
5030 return -EINVAL;
5031
5032 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5033 return -ENOMEM;
5034
5035 ret = sched_getaffinity(pid, mask);
5036 if (ret == 0) {
5037 size_t retlen = min_t(size_t, len, cpumask_size());
5038
5039 if (copy_to_user(user_mask_ptr, mask, retlen))
5040 ret = -EFAULT;
5041 else
5042 ret = retlen;
5043 }
5044 free_cpumask_var(mask);
5045
5046 return ret;
5047 }
5048
5049 /**
5050 * sys_sched_yield - yield the current processor to other threads.
5051 *
5052 * This function yields the current CPU to other tasks. If there are no
5053 * other threads running on this CPU then this function will return.
5054 */
5055 SYSCALL_DEFINE0(sched_yield)
5056 {
5057 struct rq *rq = this_rq_lock();
5058
5059 schedstat_inc(rq, yld_count);
5060 current->sched_class->yield_task(rq);
5061
5062 /*
5063 * Since we are going to call schedule() anyway, there's
5064 * no need to preempt or enable interrupts:
5065 */
5066 __release(rq->lock);
5067 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5068 do_raw_spin_unlock(&rq->lock);
5069 preempt_enable_no_resched();
5070
5071 schedule();
5072
5073 return 0;
5074 }
5075
5076 static inline int should_resched(void)
5077 {
5078 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5079 }
5080
5081 static void __cond_resched(void)
5082 {
5083 add_preempt_count(PREEMPT_ACTIVE);
5084 schedule();
5085 sub_preempt_count(PREEMPT_ACTIVE);
5086 }
5087
5088 int __sched _cond_resched(void)
5089 {
5090 if (should_resched()) {
5091 __cond_resched();
5092 return 1;
5093 }
5094 return 0;
5095 }
5096 EXPORT_SYMBOL(_cond_resched);
5097
5098 /*
5099 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5100 * call schedule, and on return reacquire the lock.
5101 *
5102 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5103 * operations here to prevent schedule() from being called twice (once via
5104 * spin_unlock(), once by hand).
5105 */
5106 int __cond_resched_lock(spinlock_t *lock)
5107 {
5108 int resched = should_resched();
5109 int ret = 0;
5110
5111 lockdep_assert_held(lock);
5112
5113 if (spin_needbreak(lock) || resched) {
5114 spin_unlock(lock);
5115 if (resched)
5116 __cond_resched();
5117 else
5118 cpu_relax();
5119 ret = 1;
5120 spin_lock(lock);
5121 }
5122 return ret;
5123 }
5124 EXPORT_SYMBOL(__cond_resched_lock);
5125
5126 int __sched __cond_resched_softirq(void)
5127 {
5128 BUG_ON(!in_softirq());
5129
5130 if (should_resched()) {
5131 local_bh_enable();
5132 __cond_resched();
5133 local_bh_disable();
5134 return 1;
5135 }
5136 return 0;
5137 }
5138 EXPORT_SYMBOL(__cond_resched_softirq);
5139
5140 /**
5141 * yield - yield the current processor to other threads.
5142 *
5143 * This is a shortcut for kernel-space yielding - it marks the
5144 * thread runnable and calls sys_sched_yield().
5145 */
5146 void __sched yield(void)
5147 {
5148 set_current_state(TASK_RUNNING);
5149 sys_sched_yield();
5150 }
5151 EXPORT_SYMBOL(yield);
5152
5153 /*
5154 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5155 * that process accounting knows that this is a task in IO wait state.
5156 */
5157 void __sched io_schedule(void)
5158 {
5159 struct rq *rq = raw_rq();
5160
5161 delayacct_blkio_start();
5162 atomic_inc(&rq->nr_iowait);
5163 current->in_iowait = 1;
5164 schedule();
5165 current->in_iowait = 0;
5166 atomic_dec(&rq->nr_iowait);
5167 delayacct_blkio_end();
5168 }
5169 EXPORT_SYMBOL(io_schedule);
5170
5171 long __sched io_schedule_timeout(long timeout)
5172 {
5173 struct rq *rq = raw_rq();
5174 long ret;
5175
5176 delayacct_blkio_start();
5177 atomic_inc(&rq->nr_iowait);
5178 current->in_iowait = 1;
5179 ret = schedule_timeout(timeout);
5180 current->in_iowait = 0;
5181 atomic_dec(&rq->nr_iowait);
5182 delayacct_blkio_end();
5183 return ret;
5184 }
5185
5186 /**
5187 * sys_sched_get_priority_max - return maximum RT priority.
5188 * @policy: scheduling class.
5189 *
5190 * this syscall returns the maximum rt_priority that can be used
5191 * by a given scheduling class.
5192 */
5193 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5194 {
5195 int ret = -EINVAL;
5196
5197 switch (policy) {
5198 case SCHED_FIFO:
5199 case SCHED_RR:
5200 ret = MAX_USER_RT_PRIO-1;
5201 break;
5202 case SCHED_NORMAL:
5203 case SCHED_BATCH:
5204 case SCHED_IDLE:
5205 ret = 0;
5206 break;
5207 }
5208 return ret;
5209 }
5210
5211 /**
5212 * sys_sched_get_priority_min - return minimum RT priority.
5213 * @policy: scheduling class.
5214 *
5215 * this syscall returns the minimum rt_priority that can be used
5216 * by a given scheduling class.
5217 */
5218 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5219 {
5220 int ret = -EINVAL;
5221
5222 switch (policy) {
5223 case SCHED_FIFO:
5224 case SCHED_RR:
5225 ret = 1;
5226 break;
5227 case SCHED_NORMAL:
5228 case SCHED_BATCH:
5229 case SCHED_IDLE:
5230 ret = 0;
5231 }
5232 return ret;
5233 }
5234
5235 /**
5236 * sys_sched_rr_get_interval - return the default timeslice of a process.
5237 * @pid: pid of the process.
5238 * @interval: userspace pointer to the timeslice value.
5239 *
5240 * this syscall writes the default timeslice value of a given process
5241 * into the user-space timespec buffer. A value of '0' means infinity.
5242 */
5243 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5244 struct timespec __user *, interval)
5245 {
5246 struct task_struct *p;
5247 unsigned int time_slice;
5248 unsigned long flags;
5249 struct rq *rq;
5250 int retval;
5251 struct timespec t;
5252
5253 if (pid < 0)
5254 return -EINVAL;
5255
5256 retval = -ESRCH;
5257 rcu_read_lock();
5258 p = find_process_by_pid(pid);
5259 if (!p)
5260 goto out_unlock;
5261
5262 retval = security_task_getscheduler(p);
5263 if (retval)
5264 goto out_unlock;
5265
5266 rq = task_rq_lock(p, &flags);
5267 time_slice = p->sched_class->get_rr_interval(rq, p);
5268 task_rq_unlock(rq, &flags);
5269
5270 rcu_read_unlock();
5271 jiffies_to_timespec(time_slice, &t);
5272 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5273 return retval;
5274
5275 out_unlock:
5276 rcu_read_unlock();
5277 return retval;
5278 }
5279
5280 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5281
5282 void sched_show_task(struct task_struct *p)
5283 {
5284 unsigned long free = 0;
5285 unsigned state;
5286
5287 state = p->state ? __ffs(p->state) + 1 : 0;
5288 printk(KERN_INFO "%-13.13s %c", p->comm,
5289 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5290 #if BITS_PER_LONG == 32
5291 if (state == TASK_RUNNING)
5292 printk(KERN_CONT " running ");
5293 else
5294 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5295 #else
5296 if (state == TASK_RUNNING)
5297 printk(KERN_CONT " running task ");
5298 else
5299 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5300 #endif
5301 #ifdef CONFIG_DEBUG_STACK_USAGE
5302 free = stack_not_used(p);
5303 #endif
5304 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5305 task_pid_nr(p), task_pid_nr(p->real_parent),
5306 (unsigned long)task_thread_info(p)->flags);
5307
5308 show_stack(p, NULL);
5309 }
5310
5311 void show_state_filter(unsigned long state_filter)
5312 {
5313 struct task_struct *g, *p;
5314
5315 #if BITS_PER_LONG == 32
5316 printk(KERN_INFO
5317 " task PC stack pid father\n");
5318 #else
5319 printk(KERN_INFO
5320 " task PC stack pid father\n");
5321 #endif
5322 read_lock(&tasklist_lock);
5323 do_each_thread(g, p) {
5324 /*
5325 * reset the NMI-timeout, listing all files on a slow
5326 * console might take alot of time:
5327 */
5328 touch_nmi_watchdog();
5329 if (!state_filter || (p->state & state_filter))
5330 sched_show_task(p);
5331 } while_each_thread(g, p);
5332
5333 touch_all_softlockup_watchdogs();
5334
5335 #ifdef CONFIG_SCHED_DEBUG
5336 sysrq_sched_debug_show();
5337 #endif
5338 read_unlock(&tasklist_lock);
5339 /*
5340 * Only show locks if all tasks are dumped:
5341 */
5342 if (!state_filter)
5343 debug_show_all_locks();
5344 }
5345
5346 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5347 {
5348 idle->sched_class = &idle_sched_class;
5349 }
5350
5351 /**
5352 * init_idle - set up an idle thread for a given CPU
5353 * @idle: task in question
5354 * @cpu: cpu the idle task belongs to
5355 *
5356 * NOTE: this function does not set the idle thread's NEED_RESCHED
5357 * flag, to make booting more robust.
5358 */
5359 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5360 {
5361 struct rq *rq = cpu_rq(cpu);
5362 unsigned long flags;
5363
5364 raw_spin_lock_irqsave(&rq->lock, flags);
5365
5366 __sched_fork(idle);
5367 idle->state = TASK_RUNNING;
5368 idle->se.exec_start = sched_clock();
5369
5370 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
5371 __set_task_cpu(idle, cpu);
5372
5373 rq->curr = rq->idle = idle;
5374 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5375 idle->oncpu = 1;
5376 #endif
5377 raw_spin_unlock_irqrestore(&rq->lock, flags);
5378
5379 /* Set the preempt count _outside_ the spinlocks! */
5380 #if defined(CONFIG_PREEMPT)
5381 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5382 #else
5383 task_thread_info(idle)->preempt_count = 0;
5384 #endif
5385 /*
5386 * The idle tasks have their own, simple scheduling class:
5387 */
5388 idle->sched_class = &idle_sched_class;
5389 ftrace_graph_init_task(idle);
5390 }
5391
5392 /*
5393 * In a system that switches off the HZ timer nohz_cpu_mask
5394 * indicates which cpus entered this state. This is used
5395 * in the rcu update to wait only for active cpus. For system
5396 * which do not switch off the HZ timer nohz_cpu_mask should
5397 * always be CPU_BITS_NONE.
5398 */
5399 cpumask_var_t nohz_cpu_mask;
5400
5401 /*
5402 * Increase the granularity value when there are more CPUs,
5403 * because with more CPUs the 'effective latency' as visible
5404 * to users decreases. But the relationship is not linear,
5405 * so pick a second-best guess by going with the log2 of the
5406 * number of CPUs.
5407 *
5408 * This idea comes from the SD scheduler of Con Kolivas:
5409 */
5410 static int get_update_sysctl_factor(void)
5411 {
5412 unsigned int cpus = min_t(int, num_online_cpus(), 8);
5413 unsigned int factor;
5414
5415 switch (sysctl_sched_tunable_scaling) {
5416 case SCHED_TUNABLESCALING_NONE:
5417 factor = 1;
5418 break;
5419 case SCHED_TUNABLESCALING_LINEAR:
5420 factor = cpus;
5421 break;
5422 case SCHED_TUNABLESCALING_LOG:
5423 default:
5424 factor = 1 + ilog2(cpus);
5425 break;
5426 }
5427
5428 return factor;
5429 }
5430
5431 static void update_sysctl(void)
5432 {
5433 unsigned int factor = get_update_sysctl_factor();
5434
5435 #define SET_SYSCTL(name) \
5436 (sysctl_##name = (factor) * normalized_sysctl_##name)
5437 SET_SYSCTL(sched_min_granularity);
5438 SET_SYSCTL(sched_latency);
5439 SET_SYSCTL(sched_wakeup_granularity);
5440 SET_SYSCTL(sched_shares_ratelimit);
5441 #undef SET_SYSCTL
5442 }
5443
5444 static inline void sched_init_granularity(void)
5445 {
5446 update_sysctl();
5447 }
5448
5449 #ifdef CONFIG_SMP
5450 /*
5451 * This is how migration works:
5452 *
5453 * 1) we invoke migration_cpu_stop() on the target CPU using
5454 * stop_one_cpu().
5455 * 2) stopper starts to run (implicitly forcing the migrated thread
5456 * off the CPU)
5457 * 3) it checks whether the migrated task is still in the wrong runqueue.
5458 * 4) if it's in the wrong runqueue then the migration thread removes
5459 * it and puts it into the right queue.
5460 * 5) stopper completes and stop_one_cpu() returns and the migration
5461 * is done.
5462 */
5463
5464 /*
5465 * Change a given task's CPU affinity. Migrate the thread to a
5466 * proper CPU and schedule it away if the CPU it's executing on
5467 * is removed from the allowed bitmask.
5468 *
5469 * NOTE: the caller must have a valid reference to the task, the
5470 * task must not exit() & deallocate itself prematurely. The
5471 * call is not atomic; no spinlocks may be held.
5472 */
5473 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
5474 {
5475 unsigned long flags;
5476 struct rq *rq;
5477 unsigned int dest_cpu;
5478 int ret = 0;
5479
5480 /*
5481 * Serialize against TASK_WAKING so that ttwu() and wunt() can
5482 * drop the rq->lock and still rely on ->cpus_allowed.
5483 */
5484 again:
5485 while (task_is_waking(p))
5486 cpu_relax();
5487 rq = task_rq_lock(p, &flags);
5488 if (task_is_waking(p)) {
5489 task_rq_unlock(rq, &flags);
5490 goto again;
5491 }
5492
5493 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
5494 ret = -EINVAL;
5495 goto out;
5496 }
5497
5498 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5499 !cpumask_equal(&p->cpus_allowed, new_mask))) {
5500 ret = -EINVAL;
5501 goto out;
5502 }
5503
5504 if (p->sched_class->set_cpus_allowed)
5505 p->sched_class->set_cpus_allowed(p, new_mask);
5506 else {
5507 cpumask_copy(&p->cpus_allowed, new_mask);
5508 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5509 }
5510
5511 /* Can the task run on the task's current CPU? If so, we're done */
5512 if (cpumask_test_cpu(task_cpu(p), new_mask))
5513 goto out;
5514
5515 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5516 if (migrate_task(p, dest_cpu)) {
5517 struct migration_arg arg = { p, dest_cpu };
5518 /* Need help from migration thread: drop lock and wait. */
5519 task_rq_unlock(rq, &flags);
5520 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
5521 tlb_migrate_finish(p->mm);
5522 return 0;
5523 }
5524 out:
5525 task_rq_unlock(rq, &flags);
5526
5527 return ret;
5528 }
5529 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5530
5531 /*
5532 * Move (not current) task off this cpu, onto dest cpu. We're doing
5533 * this because either it can't run here any more (set_cpus_allowed()
5534 * away from this CPU, or CPU going down), or because we're
5535 * attempting to rebalance this task on exec (sched_exec).
5536 *
5537 * So we race with normal scheduler movements, but that's OK, as long
5538 * as the task is no longer on this CPU.
5539 *
5540 * Returns non-zero if task was successfully migrated.
5541 */
5542 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5543 {
5544 struct rq *rq_dest, *rq_src;
5545 int ret = 0;
5546
5547 if (unlikely(!cpu_active(dest_cpu)))
5548 return ret;
5549
5550 rq_src = cpu_rq(src_cpu);
5551 rq_dest = cpu_rq(dest_cpu);
5552
5553 double_rq_lock(rq_src, rq_dest);
5554 /* Already moved. */
5555 if (task_cpu(p) != src_cpu)
5556 goto done;
5557 /* Affinity changed (again). */
5558 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
5559 goto fail;
5560
5561 /*
5562 * If we're not on a rq, the next wake-up will ensure we're
5563 * placed properly.
5564 */
5565 if (p->se.on_rq) {
5566 deactivate_task(rq_src, p, 0);
5567 set_task_cpu(p, dest_cpu);
5568 activate_task(rq_dest, p, 0);
5569 check_preempt_curr(rq_dest, p, 0);
5570 }
5571 done:
5572 ret = 1;
5573 fail:
5574 double_rq_unlock(rq_src, rq_dest);
5575 return ret;
5576 }
5577
5578 /*
5579 * migration_cpu_stop - this will be executed by a highprio stopper thread
5580 * and performs thread migration by bumping thread off CPU then
5581 * 'pushing' onto another runqueue.
5582 */
5583 static int migration_cpu_stop(void *data)
5584 {
5585 struct migration_arg *arg = data;
5586
5587 /*
5588 * The original target cpu might have gone down and we might
5589 * be on another cpu but it doesn't matter.
5590 */
5591 local_irq_disable();
5592 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5593 local_irq_enable();
5594 return 0;
5595 }
5596
5597 #ifdef CONFIG_HOTPLUG_CPU
5598 /*
5599 * Figure out where task on dead CPU should go, use force if necessary.
5600 */
5601 void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5602 {
5603 struct rq *rq = cpu_rq(dead_cpu);
5604 int needs_cpu, uninitialized_var(dest_cpu);
5605 unsigned long flags;
5606
5607 local_irq_save(flags);
5608
5609 raw_spin_lock(&rq->lock);
5610 needs_cpu = (task_cpu(p) == dead_cpu) && (p->state != TASK_WAKING);
5611 if (needs_cpu)
5612 dest_cpu = select_fallback_rq(dead_cpu, p);
5613 raw_spin_unlock(&rq->lock);
5614 /*
5615 * It can only fail if we race with set_cpus_allowed(),
5616 * in the racer should migrate the task anyway.
5617 */
5618 if (needs_cpu)
5619 __migrate_task(p, dead_cpu, dest_cpu);
5620 local_irq_restore(flags);
5621 }
5622
5623 /*
5624 * While a dead CPU has no uninterruptible tasks queued at this point,
5625 * it might still have a nonzero ->nr_uninterruptible counter, because
5626 * for performance reasons the counter is not stricly tracking tasks to
5627 * their home CPUs. So we just add the counter to another CPU's counter,
5628 * to keep the global sum constant after CPU-down:
5629 */
5630 static void migrate_nr_uninterruptible(struct rq *rq_src)
5631 {
5632 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
5633 unsigned long flags;
5634
5635 local_irq_save(flags);
5636 double_rq_lock(rq_src, rq_dest);
5637 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5638 rq_src->nr_uninterruptible = 0;
5639 double_rq_unlock(rq_src, rq_dest);
5640 local_irq_restore(flags);
5641 }
5642
5643 /* Run through task list and migrate tasks from the dead cpu. */
5644 static void migrate_live_tasks(int src_cpu)
5645 {
5646 struct task_struct *p, *t;
5647
5648 read_lock(&tasklist_lock);
5649
5650 do_each_thread(t, p) {
5651 if (p == current)
5652 continue;
5653
5654 if (task_cpu(p) == src_cpu)
5655 move_task_off_dead_cpu(src_cpu, p);
5656 } while_each_thread(t, p);
5657
5658 read_unlock(&tasklist_lock);
5659 }
5660
5661 /*
5662 * Schedules idle task to be the next runnable task on current CPU.
5663 * It does so by boosting its priority to highest possible.
5664 * Used by CPU offline code.
5665 */
5666 void sched_idle_next(void)
5667 {
5668 int this_cpu = smp_processor_id();
5669 struct rq *rq = cpu_rq(this_cpu);
5670 struct task_struct *p = rq->idle;
5671 unsigned long flags;
5672
5673 /* cpu has to be offline */
5674 BUG_ON(cpu_online(this_cpu));
5675
5676 /*
5677 * Strictly not necessary since rest of the CPUs are stopped by now
5678 * and interrupts disabled on the current cpu.
5679 */
5680 raw_spin_lock_irqsave(&rq->lock, flags);
5681
5682 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5683
5684 activate_task(rq, p, 0);
5685
5686 raw_spin_unlock_irqrestore(&rq->lock, flags);
5687 }
5688
5689 /*
5690 * Ensures that the idle task is using init_mm right before its cpu goes
5691 * offline.
5692 */
5693 void idle_task_exit(void)
5694 {
5695 struct mm_struct *mm = current->active_mm;
5696
5697 BUG_ON(cpu_online(smp_processor_id()));
5698
5699 if (mm != &init_mm)
5700 switch_mm(mm, &init_mm, current);
5701 mmdrop(mm);
5702 }
5703
5704 /* called under rq->lock with disabled interrupts */
5705 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5706 {
5707 struct rq *rq = cpu_rq(dead_cpu);
5708
5709 /* Must be exiting, otherwise would be on tasklist. */
5710 BUG_ON(!p->exit_state);
5711
5712 /* Cannot have done final schedule yet: would have vanished. */
5713 BUG_ON(p->state == TASK_DEAD);
5714
5715 get_task_struct(p);
5716
5717 /*
5718 * Drop lock around migration; if someone else moves it,
5719 * that's OK. No task can be added to this CPU, so iteration is
5720 * fine.
5721 */
5722 raw_spin_unlock_irq(&rq->lock);
5723 move_task_off_dead_cpu(dead_cpu, p);
5724 raw_spin_lock_irq(&rq->lock);
5725
5726 put_task_struct(p);
5727 }
5728
5729 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5730 static void migrate_dead_tasks(unsigned int dead_cpu)
5731 {
5732 struct rq *rq = cpu_rq(dead_cpu);
5733 struct task_struct *next;
5734
5735 for ( ; ; ) {
5736 if (!rq->nr_running)
5737 break;
5738 next = pick_next_task(rq);
5739 if (!next)
5740 break;
5741 next->sched_class->put_prev_task(rq, next);
5742 migrate_dead(dead_cpu, next);
5743
5744 }
5745 }
5746
5747 /*
5748 * remove the tasks which were accounted by rq from calc_load_tasks.
5749 */
5750 static void calc_global_load_remove(struct rq *rq)
5751 {
5752 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5753 rq->calc_load_active = 0;
5754 }
5755 #endif /* CONFIG_HOTPLUG_CPU */
5756
5757 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5758
5759 static struct ctl_table sd_ctl_dir[] = {
5760 {
5761 .procname = "sched_domain",
5762 .mode = 0555,
5763 },
5764 {}
5765 };
5766
5767 static struct ctl_table sd_ctl_root[] = {
5768 {
5769 .procname = "kernel",
5770 .mode = 0555,
5771 .child = sd_ctl_dir,
5772 },
5773 {}
5774 };
5775
5776 static struct ctl_table *sd_alloc_ctl_entry(int n)
5777 {
5778 struct ctl_table *entry =
5779 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5780
5781 return entry;
5782 }
5783
5784 static void sd_free_ctl_entry(struct ctl_table **tablep)
5785 {
5786 struct ctl_table *entry;
5787
5788 /*
5789 * In the intermediate directories, both the child directory and
5790 * procname are dynamically allocated and could fail but the mode
5791 * will always be set. In the lowest directory the names are
5792 * static strings and all have proc handlers.
5793 */
5794 for (entry = *tablep; entry->mode; entry++) {
5795 if (entry->child)
5796 sd_free_ctl_entry(&entry->child);
5797 if (entry->proc_handler == NULL)
5798 kfree(entry->procname);
5799 }
5800
5801 kfree(*tablep);
5802 *tablep = NULL;
5803 }
5804
5805 static void
5806 set_table_entry(struct ctl_table *entry,
5807 const char *procname, void *data, int maxlen,
5808 mode_t mode, proc_handler *proc_handler)
5809 {
5810 entry->procname = procname;
5811 entry->data = data;
5812 entry->maxlen = maxlen;
5813 entry->mode = mode;
5814 entry->proc_handler = proc_handler;
5815 }
5816
5817 static struct ctl_table *
5818 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5819 {
5820 struct ctl_table *table = sd_alloc_ctl_entry(13);
5821
5822 if (table == NULL)
5823 return NULL;
5824
5825 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5826 sizeof(long), 0644, proc_doulongvec_minmax);
5827 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5828 sizeof(long), 0644, proc_doulongvec_minmax);
5829 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5830 sizeof(int), 0644, proc_dointvec_minmax);
5831 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5832 sizeof(int), 0644, proc_dointvec_minmax);
5833 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5834 sizeof(int), 0644, proc_dointvec_minmax);
5835 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5836 sizeof(int), 0644, proc_dointvec_minmax);
5837 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5838 sizeof(int), 0644, proc_dointvec_minmax);
5839 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5840 sizeof(int), 0644, proc_dointvec_minmax);
5841 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5842 sizeof(int), 0644, proc_dointvec_minmax);
5843 set_table_entry(&table[9], "cache_nice_tries",
5844 &sd->cache_nice_tries,
5845 sizeof(int), 0644, proc_dointvec_minmax);
5846 set_table_entry(&table[10], "flags", &sd->flags,
5847 sizeof(int), 0644, proc_dointvec_minmax);
5848 set_table_entry(&table[11], "name", sd->name,
5849 CORENAME_MAX_SIZE, 0444, proc_dostring);
5850 /* &table[12] is terminator */
5851
5852 return table;
5853 }
5854
5855 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5856 {
5857 struct ctl_table *entry, *table;
5858 struct sched_domain *sd;
5859 int domain_num = 0, i;
5860 char buf[32];
5861
5862 for_each_domain(cpu, sd)
5863 domain_num++;
5864 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5865 if (table == NULL)
5866 return NULL;
5867
5868 i = 0;
5869 for_each_domain(cpu, sd) {
5870 snprintf(buf, 32, "domain%d", i);
5871 entry->procname = kstrdup(buf, GFP_KERNEL);
5872 entry->mode = 0555;
5873 entry->child = sd_alloc_ctl_domain_table(sd);
5874 entry++;
5875 i++;
5876 }
5877 return table;
5878 }
5879
5880 static struct ctl_table_header *sd_sysctl_header;
5881 static void register_sched_domain_sysctl(void)
5882 {
5883 int i, cpu_num = num_possible_cpus();
5884 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5885 char buf[32];
5886
5887 WARN_ON(sd_ctl_dir[0].child);
5888 sd_ctl_dir[0].child = entry;
5889
5890 if (entry == NULL)
5891 return;
5892
5893 for_each_possible_cpu(i) {
5894 snprintf(buf, 32, "cpu%d", i);
5895 entry->procname = kstrdup(buf, GFP_KERNEL);
5896 entry->mode = 0555;
5897 entry->child = sd_alloc_ctl_cpu_table(i);
5898 entry++;
5899 }
5900
5901 WARN_ON(sd_sysctl_header);
5902 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5903 }
5904
5905 /* may be called multiple times per register */
5906 static void unregister_sched_domain_sysctl(void)
5907 {
5908 if (sd_sysctl_header)
5909 unregister_sysctl_table(sd_sysctl_header);
5910 sd_sysctl_header = NULL;
5911 if (sd_ctl_dir[0].child)
5912 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5913 }
5914 #else
5915 static void register_sched_domain_sysctl(void)
5916 {
5917 }
5918 static void unregister_sched_domain_sysctl(void)
5919 {
5920 }
5921 #endif
5922
5923 static void set_rq_online(struct rq *rq)
5924 {
5925 if (!rq->online) {
5926 const struct sched_class *class;
5927
5928 cpumask_set_cpu(rq->cpu, rq->rd->online);
5929 rq->online = 1;
5930
5931 for_each_class(class) {
5932 if (class->rq_online)
5933 class->rq_online(rq);
5934 }
5935 }
5936 }
5937
5938 static void set_rq_offline(struct rq *rq)
5939 {
5940 if (rq->online) {
5941 const struct sched_class *class;
5942
5943 for_each_class(class) {
5944 if (class->rq_offline)
5945 class->rq_offline(rq);
5946 }
5947
5948 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5949 rq->online = 0;
5950 }
5951 }
5952
5953 /*
5954 * migration_call - callback that gets triggered when a CPU is added.
5955 * Here we can start up the necessary migration thread for the new CPU.
5956 */
5957 static int __cpuinit
5958 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5959 {
5960 int cpu = (long)hcpu;
5961 unsigned long flags;
5962 struct rq *rq = cpu_rq(cpu);
5963
5964 switch (action) {
5965
5966 case CPU_UP_PREPARE:
5967 case CPU_UP_PREPARE_FROZEN:
5968 rq->calc_load_update = calc_load_update;
5969 break;
5970
5971 case CPU_ONLINE:
5972 case CPU_ONLINE_FROZEN:
5973 /* Update our root-domain */
5974 raw_spin_lock_irqsave(&rq->lock, flags);
5975 if (rq->rd) {
5976 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5977
5978 set_rq_online(rq);
5979 }
5980 raw_spin_unlock_irqrestore(&rq->lock, flags);
5981 break;
5982
5983 #ifdef CONFIG_HOTPLUG_CPU
5984 case CPU_DEAD:
5985 case CPU_DEAD_FROZEN:
5986 migrate_live_tasks(cpu);
5987 /* Idle task back to normal (off runqueue, low prio) */
5988 raw_spin_lock_irq(&rq->lock);
5989 deactivate_task(rq, rq->idle, 0);
5990 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5991 rq->idle->sched_class = &idle_sched_class;
5992 migrate_dead_tasks(cpu);
5993 raw_spin_unlock_irq(&rq->lock);
5994 migrate_nr_uninterruptible(rq);
5995 BUG_ON(rq->nr_running != 0);
5996 calc_global_load_remove(rq);
5997 break;
5998
5999 case CPU_DYING:
6000 case CPU_DYING_FROZEN:
6001 /* Update our root-domain */
6002 raw_spin_lock_irqsave(&rq->lock, flags);
6003 if (rq->rd) {
6004 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6005 set_rq_offline(rq);
6006 }
6007 raw_spin_unlock_irqrestore(&rq->lock, flags);
6008 break;
6009 #endif
6010 }
6011 return NOTIFY_OK;
6012 }
6013
6014 /*
6015 * Register at high priority so that task migration (migrate_all_tasks)
6016 * happens before everything else. This has to be lower priority than
6017 * the notifier in the perf_event subsystem, though.
6018 */
6019 static struct notifier_block __cpuinitdata migration_notifier = {
6020 .notifier_call = migration_call,
6021 .priority = CPU_PRI_MIGRATION,
6022 };
6023
6024 static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
6025 unsigned long action, void *hcpu)
6026 {
6027 switch (action & ~CPU_TASKS_FROZEN) {
6028 case CPU_ONLINE:
6029 case CPU_DOWN_FAILED:
6030 set_cpu_active((long)hcpu, true);
6031 return NOTIFY_OK;
6032 default:
6033 return NOTIFY_DONE;
6034 }
6035 }
6036
6037 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
6038 unsigned long action, void *hcpu)
6039 {
6040 switch (action & ~CPU_TASKS_FROZEN) {
6041 case CPU_DOWN_PREPARE:
6042 set_cpu_active((long)hcpu, false);
6043 return NOTIFY_OK;
6044 default:
6045 return NOTIFY_DONE;
6046 }
6047 }
6048
6049 static int __init migration_init(void)
6050 {
6051 void *cpu = (void *)(long)smp_processor_id();
6052 int err;
6053
6054 /* Initialize migration for the boot CPU */
6055 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6056 BUG_ON(err == NOTIFY_BAD);
6057 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6058 register_cpu_notifier(&migration_notifier);
6059
6060 /* Register cpu active notifiers */
6061 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6062 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6063
6064 return 0;
6065 }
6066 early_initcall(migration_init);
6067 #endif
6068
6069 #ifdef CONFIG_SMP
6070
6071 #ifdef CONFIG_SCHED_DEBUG
6072
6073 static __read_mostly int sched_domain_debug_enabled;
6074
6075 static int __init sched_domain_debug_setup(char *str)
6076 {
6077 sched_domain_debug_enabled = 1;
6078
6079 return 0;
6080 }
6081 early_param("sched_debug", sched_domain_debug_setup);
6082
6083 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6084 struct cpumask *groupmask)
6085 {
6086 struct sched_group *group = sd->groups;
6087 char str[256];
6088
6089 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6090 cpumask_clear(groupmask);
6091
6092 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6093
6094 if (!(sd->flags & SD_LOAD_BALANCE)) {
6095 printk("does not load-balance\n");
6096 if (sd->parent)
6097 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6098 " has parent");
6099 return -1;
6100 }
6101
6102 printk(KERN_CONT "span %s level %s\n", str, sd->name);
6103
6104 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
6105 printk(KERN_ERR "ERROR: domain->span does not contain "
6106 "CPU%d\n", cpu);
6107 }
6108 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
6109 printk(KERN_ERR "ERROR: domain->groups does not contain"
6110 " CPU%d\n", cpu);
6111 }
6112
6113 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6114 do {
6115 if (!group) {
6116 printk("\n");
6117 printk(KERN_ERR "ERROR: group is NULL\n");
6118 break;
6119 }
6120
6121 if (!group->cpu_power) {
6122 printk(KERN_CONT "\n");
6123 printk(KERN_ERR "ERROR: domain->cpu_power not "
6124 "set\n");
6125 break;
6126 }
6127
6128 if (!cpumask_weight(sched_group_cpus(group))) {
6129 printk(KERN_CONT "\n");
6130 printk(KERN_ERR "ERROR: empty group\n");
6131 break;
6132 }
6133
6134 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
6135 printk(KERN_CONT "\n");
6136 printk(KERN_ERR "ERROR: repeated CPUs\n");
6137 break;
6138 }
6139
6140 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
6141
6142 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6143
6144 printk(KERN_CONT " %s", str);
6145 if (group->cpu_power != SCHED_LOAD_SCALE) {
6146 printk(KERN_CONT " (cpu_power = %d)",
6147 group->cpu_power);
6148 }
6149
6150 group = group->next;
6151 } while (group != sd->groups);
6152 printk(KERN_CONT "\n");
6153
6154 if (!cpumask_equal(sched_domain_span(sd), groupmask))
6155 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6156
6157 if (sd->parent &&
6158 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
6159 printk(KERN_ERR "ERROR: parent span is not a superset "
6160 "of domain->span\n");
6161 return 0;
6162 }
6163
6164 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6165 {
6166 cpumask_var_t groupmask;
6167 int level = 0;
6168
6169 if (!sched_domain_debug_enabled)
6170 return;
6171
6172 if (!sd) {
6173 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6174 return;
6175 }
6176
6177 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6178
6179 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6180 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6181 return;
6182 }
6183
6184 for (;;) {
6185 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6186 break;
6187 level++;
6188 sd = sd->parent;
6189 if (!sd)
6190 break;
6191 }
6192 free_cpumask_var(groupmask);
6193 }
6194 #else /* !CONFIG_SCHED_DEBUG */
6195 # define sched_domain_debug(sd, cpu) do { } while (0)
6196 #endif /* CONFIG_SCHED_DEBUG */
6197
6198 static int sd_degenerate(struct sched_domain *sd)
6199 {
6200 if (cpumask_weight(sched_domain_span(sd)) == 1)
6201 return 1;
6202
6203 /* Following flags need at least 2 groups */
6204 if (sd->flags & (SD_LOAD_BALANCE |
6205 SD_BALANCE_NEWIDLE |
6206 SD_BALANCE_FORK |
6207 SD_BALANCE_EXEC |
6208 SD_SHARE_CPUPOWER |
6209 SD_SHARE_PKG_RESOURCES)) {
6210 if (sd->groups != sd->groups->next)
6211 return 0;
6212 }
6213
6214 /* Following flags don't use groups */
6215 if (sd->flags & (SD_WAKE_AFFINE))
6216 return 0;
6217
6218 return 1;
6219 }
6220
6221 static int
6222 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6223 {
6224 unsigned long cflags = sd->flags, pflags = parent->flags;
6225
6226 if (sd_degenerate(parent))
6227 return 1;
6228
6229 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6230 return 0;
6231
6232 /* Flags needing groups don't count if only 1 group in parent */
6233 if (parent->groups == parent->groups->next) {
6234 pflags &= ~(SD_LOAD_BALANCE |
6235 SD_BALANCE_NEWIDLE |
6236 SD_BALANCE_FORK |
6237 SD_BALANCE_EXEC |
6238 SD_SHARE_CPUPOWER |
6239 SD_SHARE_PKG_RESOURCES);
6240 if (nr_node_ids == 1)
6241 pflags &= ~SD_SERIALIZE;
6242 }
6243 if (~cflags & pflags)
6244 return 0;
6245
6246 return 1;
6247 }
6248
6249 static void free_rootdomain(struct root_domain *rd)
6250 {
6251 synchronize_sched();
6252
6253 cpupri_cleanup(&rd->cpupri);
6254
6255 free_cpumask_var(rd->rto_mask);
6256 free_cpumask_var(rd->online);
6257 free_cpumask_var(rd->span);
6258 kfree(rd);
6259 }
6260
6261 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6262 {
6263 struct root_domain *old_rd = NULL;
6264 unsigned long flags;
6265
6266 raw_spin_lock_irqsave(&rq->lock, flags);
6267
6268 if (rq->rd) {
6269 old_rd = rq->rd;
6270
6271 if (cpumask_test_cpu(rq->cpu, old_rd->online))
6272 set_rq_offline(rq);
6273
6274 cpumask_clear_cpu(rq->cpu, old_rd->span);
6275
6276 /*
6277 * If we dont want to free the old_rt yet then
6278 * set old_rd to NULL to skip the freeing later
6279 * in this function:
6280 */
6281 if (!atomic_dec_and_test(&old_rd->refcount))
6282 old_rd = NULL;
6283 }
6284
6285 atomic_inc(&rd->refcount);
6286 rq->rd = rd;
6287
6288 cpumask_set_cpu(rq->cpu, rd->span);
6289 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6290 set_rq_online(rq);
6291
6292 raw_spin_unlock_irqrestore(&rq->lock, flags);
6293
6294 if (old_rd)
6295 free_rootdomain(old_rd);
6296 }
6297
6298 static int init_rootdomain(struct root_domain *rd)
6299 {
6300 memset(rd, 0, sizeof(*rd));
6301
6302 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
6303 goto out;
6304 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
6305 goto free_span;
6306 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
6307 goto free_online;
6308
6309 if (cpupri_init(&rd->cpupri) != 0)
6310 goto free_rto_mask;
6311 return 0;
6312
6313 free_rto_mask:
6314 free_cpumask_var(rd->rto_mask);
6315 free_online:
6316 free_cpumask_var(rd->online);
6317 free_span:
6318 free_cpumask_var(rd->span);
6319 out:
6320 return -ENOMEM;
6321 }
6322
6323 static void init_defrootdomain(void)
6324 {
6325 init_rootdomain(&def_root_domain);
6326
6327 atomic_set(&def_root_domain.refcount, 1);
6328 }
6329
6330 static struct root_domain *alloc_rootdomain(void)
6331 {
6332 struct root_domain *rd;
6333
6334 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6335 if (!rd)
6336 return NULL;
6337
6338 if (init_rootdomain(rd) != 0) {
6339 kfree(rd);
6340 return NULL;
6341 }
6342
6343 return rd;
6344 }
6345
6346 /*
6347 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6348 * hold the hotplug lock.
6349 */
6350 static void
6351 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6352 {
6353 struct rq *rq = cpu_rq(cpu);
6354 struct sched_domain *tmp;
6355
6356 for (tmp = sd; tmp; tmp = tmp->parent)
6357 tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
6358
6359 /* Remove the sched domains which do not contribute to scheduling. */
6360 for (tmp = sd; tmp; ) {
6361 struct sched_domain *parent = tmp->parent;
6362 if (!parent)
6363 break;
6364
6365 if (sd_parent_degenerate(tmp, parent)) {
6366 tmp->parent = parent->parent;
6367 if (parent->parent)
6368 parent->parent->child = tmp;
6369 } else
6370 tmp = tmp->parent;
6371 }
6372
6373 if (sd && sd_degenerate(sd)) {
6374 sd = sd->parent;
6375 if (sd)
6376 sd->child = NULL;
6377 }
6378
6379 sched_domain_debug(sd, cpu);
6380
6381 rq_attach_root(rq, rd);
6382 rcu_assign_pointer(rq->sd, sd);
6383 }
6384
6385 /* cpus with isolated domains */
6386 static cpumask_var_t cpu_isolated_map;
6387
6388 /* Setup the mask of cpus configured for isolated domains */
6389 static int __init isolated_cpu_setup(char *str)
6390 {
6391 alloc_bootmem_cpumask_var(&cpu_isolated_map);
6392 cpulist_parse(str, cpu_isolated_map);
6393 return 1;
6394 }
6395
6396 __setup("isolcpus=", isolated_cpu_setup);
6397
6398 /*
6399 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6400 * to a function which identifies what group(along with sched group) a CPU
6401 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6402 * (due to the fact that we keep track of groups covered with a struct cpumask).
6403 *
6404 * init_sched_build_groups will build a circular linked list of the groups
6405 * covered by the given span, and will set each group's ->cpumask correctly,
6406 * and ->cpu_power to 0.
6407 */
6408 static void
6409 init_sched_build_groups(const struct cpumask *span,
6410 const struct cpumask *cpu_map,
6411 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
6412 struct sched_group **sg,
6413 struct cpumask *tmpmask),
6414 struct cpumask *covered, struct cpumask *tmpmask)
6415 {
6416 struct sched_group *first = NULL, *last = NULL;
6417 int i;
6418
6419 cpumask_clear(covered);
6420
6421 for_each_cpu(i, span) {
6422 struct sched_group *sg;
6423 int group = group_fn(i, cpu_map, &sg, tmpmask);
6424 int j;
6425
6426 if (cpumask_test_cpu(i, covered))
6427 continue;
6428
6429 cpumask_clear(sched_group_cpus(sg));
6430 sg->cpu_power = 0;
6431
6432 for_each_cpu(j, span) {
6433 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6434 continue;
6435
6436 cpumask_set_cpu(j, covered);
6437 cpumask_set_cpu(j, sched_group_cpus(sg));
6438 }
6439 if (!first)
6440 first = sg;
6441 if (last)
6442 last->next = sg;
6443 last = sg;
6444 }
6445 last->next = first;
6446 }
6447
6448 #define SD_NODES_PER_DOMAIN 16
6449
6450 #ifdef CONFIG_NUMA
6451
6452 /**
6453 * find_next_best_node - find the next node to include in a sched_domain
6454 * @node: node whose sched_domain we're building
6455 * @used_nodes: nodes already in the sched_domain
6456 *
6457 * Find the next node to include in a given scheduling domain. Simply
6458 * finds the closest node not already in the @used_nodes map.
6459 *
6460 * Should use nodemask_t.
6461 */
6462 static int find_next_best_node(int node, nodemask_t *used_nodes)
6463 {
6464 int i, n, val, min_val, best_node = 0;
6465
6466 min_val = INT_MAX;
6467
6468 for (i = 0; i < nr_node_ids; i++) {
6469 /* Start at @node */
6470 n = (node + i) % nr_node_ids;
6471
6472 if (!nr_cpus_node(n))
6473 continue;
6474
6475 /* Skip already used nodes */
6476 if (node_isset(n, *used_nodes))
6477 continue;
6478
6479 /* Simple min distance search */
6480 val = node_distance(node, n);
6481
6482 if (val < min_val) {
6483 min_val = val;
6484 best_node = n;
6485 }
6486 }
6487
6488 node_set(best_node, *used_nodes);
6489 return best_node;
6490 }
6491
6492 /**
6493 * sched_domain_node_span - get a cpumask for a node's sched_domain
6494 * @node: node whose cpumask we're constructing
6495 * @span: resulting cpumask
6496 *
6497 * Given a node, construct a good cpumask for its sched_domain to span. It
6498 * should be one that prevents unnecessary balancing, but also spreads tasks
6499 * out optimally.
6500 */
6501 static void sched_domain_node_span(int node, struct cpumask *span)
6502 {
6503 nodemask_t used_nodes;
6504 int i;
6505
6506 cpumask_clear(span);
6507 nodes_clear(used_nodes);
6508
6509 cpumask_or(span, span, cpumask_of_node(node));
6510 node_set(node, used_nodes);
6511
6512 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6513 int next_node = find_next_best_node(node, &used_nodes);
6514
6515 cpumask_or(span, span, cpumask_of_node(next_node));
6516 }
6517 }
6518 #endif /* CONFIG_NUMA */
6519
6520 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6521
6522 /*
6523 * The cpus mask in sched_group and sched_domain hangs off the end.
6524 *
6525 * ( See the the comments in include/linux/sched.h:struct sched_group
6526 * and struct sched_domain. )
6527 */
6528 struct static_sched_group {
6529 struct sched_group sg;
6530 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6531 };
6532
6533 struct static_sched_domain {
6534 struct sched_domain sd;
6535 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6536 };
6537
6538 struct s_data {
6539 #ifdef CONFIG_NUMA
6540 int sd_allnodes;
6541 cpumask_var_t domainspan;
6542 cpumask_var_t covered;
6543 cpumask_var_t notcovered;
6544 #endif
6545 cpumask_var_t nodemask;
6546 cpumask_var_t this_sibling_map;
6547 cpumask_var_t this_core_map;
6548 cpumask_var_t this_book_map;
6549 cpumask_var_t send_covered;
6550 cpumask_var_t tmpmask;
6551 struct sched_group **sched_group_nodes;
6552 struct root_domain *rd;
6553 };
6554
6555 enum s_alloc {
6556 sa_sched_groups = 0,
6557 sa_rootdomain,
6558 sa_tmpmask,
6559 sa_send_covered,
6560 sa_this_book_map,
6561 sa_this_core_map,
6562 sa_this_sibling_map,
6563 sa_nodemask,
6564 sa_sched_group_nodes,
6565 #ifdef CONFIG_NUMA
6566 sa_notcovered,
6567 sa_covered,
6568 sa_domainspan,
6569 #endif
6570 sa_none,
6571 };
6572
6573 /*
6574 * SMT sched-domains:
6575 */
6576 #ifdef CONFIG_SCHED_SMT
6577 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
6578 static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
6579
6580 static int
6581 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6582 struct sched_group **sg, struct cpumask *unused)
6583 {
6584 if (sg)
6585 *sg = &per_cpu(sched_groups, cpu).sg;
6586 return cpu;
6587 }
6588 #endif /* CONFIG_SCHED_SMT */
6589
6590 /*
6591 * multi-core sched-domains:
6592 */
6593 #ifdef CONFIG_SCHED_MC
6594 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6595 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6596
6597 static int
6598 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6599 struct sched_group **sg, struct cpumask *mask)
6600 {
6601 int group;
6602 #ifdef CONFIG_SCHED_SMT
6603 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6604 group = cpumask_first(mask);
6605 #else
6606 group = cpu;
6607 #endif
6608 if (sg)
6609 *sg = &per_cpu(sched_group_core, group).sg;
6610 return group;
6611 }
6612 #endif /* CONFIG_SCHED_MC */
6613
6614 /*
6615 * book sched-domains:
6616 */
6617 #ifdef CONFIG_SCHED_BOOK
6618 static DEFINE_PER_CPU(struct static_sched_domain, book_domains);
6619 static DEFINE_PER_CPU(struct static_sched_group, sched_group_book);
6620
6621 static int
6622 cpu_to_book_group(int cpu, const struct cpumask *cpu_map,
6623 struct sched_group **sg, struct cpumask *mask)
6624 {
6625 int group = cpu;
6626 #ifdef CONFIG_SCHED_MC
6627 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6628 group = cpumask_first(mask);
6629 #elif defined(CONFIG_SCHED_SMT)
6630 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6631 group = cpumask_first(mask);
6632 #endif
6633 if (sg)
6634 *sg = &per_cpu(sched_group_book, group).sg;
6635 return group;
6636 }
6637 #endif /* CONFIG_SCHED_BOOK */
6638
6639 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6640 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
6641
6642 static int
6643 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6644 struct sched_group **sg, struct cpumask *mask)
6645 {
6646 int group;
6647 #ifdef CONFIG_SCHED_BOOK
6648 cpumask_and(mask, cpu_book_mask(cpu), cpu_map);
6649 group = cpumask_first(mask);
6650 #elif defined(CONFIG_SCHED_MC)
6651 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6652 group = cpumask_first(mask);
6653 #elif defined(CONFIG_SCHED_SMT)
6654 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6655 group = cpumask_first(mask);
6656 #else
6657 group = cpu;
6658 #endif
6659 if (sg)
6660 *sg = &per_cpu(sched_group_phys, group).sg;
6661 return group;
6662 }
6663
6664 #ifdef CONFIG_NUMA
6665 /*
6666 * The init_sched_build_groups can't handle what we want to do with node
6667 * groups, so roll our own. Now each node has its own list of groups which
6668 * gets dynamically allocated.
6669 */
6670 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
6671 static struct sched_group ***sched_group_nodes_bycpu;
6672
6673 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6674 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
6675
6676 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6677 struct sched_group **sg,
6678 struct cpumask *nodemask)
6679 {
6680 int group;
6681
6682 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
6683 group = cpumask_first(nodemask);
6684
6685 if (sg)
6686 *sg = &per_cpu(sched_group_allnodes, group).sg;
6687 return group;
6688 }
6689
6690 static void init_numa_sched_groups_power(struct sched_group *group_head)
6691 {
6692 struct sched_group *sg = group_head;
6693 int j;
6694
6695 if (!sg)
6696 return;
6697 do {
6698 for_each_cpu(j, sched_group_cpus(sg)) {
6699 struct sched_domain *sd;
6700
6701 sd = &per_cpu(phys_domains, j).sd;
6702 if (j != group_first_cpu(sd->groups)) {
6703 /*
6704 * Only add "power" once for each
6705 * physical package.
6706 */
6707 continue;
6708 }
6709
6710 sg->cpu_power += sd->groups->cpu_power;
6711 }
6712 sg = sg->next;
6713 } while (sg != group_head);
6714 }
6715
6716 static int build_numa_sched_groups(struct s_data *d,
6717 const struct cpumask *cpu_map, int num)
6718 {
6719 struct sched_domain *sd;
6720 struct sched_group *sg, *prev;
6721 int n, j;
6722
6723 cpumask_clear(d->covered);
6724 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
6725 if (cpumask_empty(d->nodemask)) {
6726 d->sched_group_nodes[num] = NULL;
6727 goto out;
6728 }
6729
6730 sched_domain_node_span(num, d->domainspan);
6731 cpumask_and(d->domainspan, d->domainspan, cpu_map);
6732
6733 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6734 GFP_KERNEL, num);
6735 if (!sg) {
6736 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
6737 num);
6738 return -ENOMEM;
6739 }
6740 d->sched_group_nodes[num] = sg;
6741
6742 for_each_cpu(j, d->nodemask) {
6743 sd = &per_cpu(node_domains, j).sd;
6744 sd->groups = sg;
6745 }
6746
6747 sg->cpu_power = 0;
6748 cpumask_copy(sched_group_cpus(sg), d->nodemask);
6749 sg->next = sg;
6750 cpumask_or(d->covered, d->covered, d->nodemask);
6751
6752 prev = sg;
6753 for (j = 0; j < nr_node_ids; j++) {
6754 n = (num + j) % nr_node_ids;
6755 cpumask_complement(d->notcovered, d->covered);
6756 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
6757 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
6758 if (cpumask_empty(d->tmpmask))
6759 break;
6760 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
6761 if (cpumask_empty(d->tmpmask))
6762 continue;
6763 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6764 GFP_KERNEL, num);
6765 if (!sg) {
6766 printk(KERN_WARNING
6767 "Can not alloc domain group for node %d\n", j);
6768 return -ENOMEM;
6769 }
6770 sg->cpu_power = 0;
6771 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
6772 sg->next = prev->next;
6773 cpumask_or(d->covered, d->covered, d->tmpmask);
6774 prev->next = sg;
6775 prev = sg;
6776 }
6777 out:
6778 return 0;
6779 }
6780 #endif /* CONFIG_NUMA */
6781
6782 #ifdef CONFIG_NUMA
6783 /* Free memory allocated for various sched_group structures */
6784 static void free_sched_groups(const struct cpumask *cpu_map,
6785 struct cpumask *nodemask)
6786 {
6787 int cpu, i;
6788
6789 for_each_cpu(cpu, cpu_map) {
6790 struct sched_group **sched_group_nodes
6791 = sched_group_nodes_bycpu[cpu];
6792
6793 if (!sched_group_nodes)
6794 continue;
6795
6796 for (i = 0; i < nr_node_ids; i++) {
6797 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6798
6799 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
6800 if (cpumask_empty(nodemask))
6801 continue;
6802
6803 if (sg == NULL)
6804 continue;
6805 sg = sg->next;
6806 next_sg:
6807 oldsg = sg;
6808 sg = sg->next;
6809 kfree(oldsg);
6810 if (oldsg != sched_group_nodes[i])
6811 goto next_sg;
6812 }
6813 kfree(sched_group_nodes);
6814 sched_group_nodes_bycpu[cpu] = NULL;
6815 }
6816 }
6817 #else /* !CONFIG_NUMA */
6818 static void free_sched_groups(const struct cpumask *cpu_map,
6819 struct cpumask *nodemask)
6820 {
6821 }
6822 #endif /* CONFIG_NUMA */
6823
6824 /*
6825 * Initialize sched groups cpu_power.
6826 *
6827 * cpu_power indicates the capacity of sched group, which is used while
6828 * distributing the load between different sched groups in a sched domain.
6829 * Typically cpu_power for all the groups in a sched domain will be same unless
6830 * there are asymmetries in the topology. If there are asymmetries, group
6831 * having more cpu_power will pickup more load compared to the group having
6832 * less cpu_power.
6833 */
6834 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6835 {
6836 struct sched_domain *child;
6837 struct sched_group *group;
6838 long power;
6839 int weight;
6840
6841 WARN_ON(!sd || !sd->groups);
6842
6843 if (cpu != group_first_cpu(sd->groups))
6844 return;
6845
6846 child = sd->child;
6847
6848 sd->groups->cpu_power = 0;
6849
6850 if (!child) {
6851 power = SCHED_LOAD_SCALE;
6852 weight = cpumask_weight(sched_domain_span(sd));
6853 /*
6854 * SMT siblings share the power of a single core.
6855 * Usually multiple threads get a better yield out of
6856 * that one core than a single thread would have,
6857 * reflect that in sd->smt_gain.
6858 */
6859 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
6860 power *= sd->smt_gain;
6861 power /= weight;
6862 power >>= SCHED_LOAD_SHIFT;
6863 }
6864 sd->groups->cpu_power += power;
6865 return;
6866 }
6867
6868 /*
6869 * Add cpu_power of each child group to this groups cpu_power.
6870 */
6871 group = child->groups;
6872 do {
6873 sd->groups->cpu_power += group->cpu_power;
6874 group = group->next;
6875 } while (group != child->groups);
6876 }
6877
6878 /*
6879 * Initializers for schedule domains
6880 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6881 */
6882
6883 #ifdef CONFIG_SCHED_DEBUG
6884 # define SD_INIT_NAME(sd, type) sd->name = #type
6885 #else
6886 # define SD_INIT_NAME(sd, type) do { } while (0)
6887 #endif
6888
6889 #define SD_INIT(sd, type) sd_init_##type(sd)
6890
6891 #define SD_INIT_FUNC(type) \
6892 static noinline void sd_init_##type(struct sched_domain *sd) \
6893 { \
6894 memset(sd, 0, sizeof(*sd)); \
6895 *sd = SD_##type##_INIT; \
6896 sd->level = SD_LV_##type; \
6897 SD_INIT_NAME(sd, type); \
6898 }
6899
6900 SD_INIT_FUNC(CPU)
6901 #ifdef CONFIG_NUMA
6902 SD_INIT_FUNC(ALLNODES)
6903 SD_INIT_FUNC(NODE)
6904 #endif
6905 #ifdef CONFIG_SCHED_SMT
6906 SD_INIT_FUNC(SIBLING)
6907 #endif
6908 #ifdef CONFIG_SCHED_MC
6909 SD_INIT_FUNC(MC)
6910 #endif
6911 #ifdef CONFIG_SCHED_BOOK
6912 SD_INIT_FUNC(BOOK)
6913 #endif
6914
6915 static int default_relax_domain_level = -1;
6916
6917 static int __init setup_relax_domain_level(char *str)
6918 {
6919 unsigned long val;
6920
6921 val = simple_strtoul(str, NULL, 0);
6922 if (val < SD_LV_MAX)
6923 default_relax_domain_level = val;
6924
6925 return 1;
6926 }
6927 __setup("relax_domain_level=", setup_relax_domain_level);
6928
6929 static void set_domain_attribute(struct sched_domain *sd,
6930 struct sched_domain_attr *attr)
6931 {
6932 int request;
6933
6934 if (!attr || attr->relax_domain_level < 0) {
6935 if (default_relax_domain_level < 0)
6936 return;
6937 else
6938 request = default_relax_domain_level;
6939 } else
6940 request = attr->relax_domain_level;
6941 if (request < sd->level) {
6942 /* turn off idle balance on this domain */
6943 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6944 } else {
6945 /* turn on idle balance on this domain */
6946 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6947 }
6948 }
6949
6950 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6951 const struct cpumask *cpu_map)
6952 {
6953 switch (what) {
6954 case sa_sched_groups:
6955 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
6956 d->sched_group_nodes = NULL;
6957 case sa_rootdomain:
6958 free_rootdomain(d->rd); /* fall through */
6959 case sa_tmpmask:
6960 free_cpumask_var(d->tmpmask); /* fall through */
6961 case sa_send_covered:
6962 free_cpumask_var(d->send_covered); /* fall through */
6963 case sa_this_book_map:
6964 free_cpumask_var(d->this_book_map); /* fall through */
6965 case sa_this_core_map:
6966 free_cpumask_var(d->this_core_map); /* fall through */
6967 case sa_this_sibling_map:
6968 free_cpumask_var(d->this_sibling_map); /* fall through */
6969 case sa_nodemask:
6970 free_cpumask_var(d->nodemask); /* fall through */
6971 case sa_sched_group_nodes:
6972 #ifdef CONFIG_NUMA
6973 kfree(d->sched_group_nodes); /* fall through */
6974 case sa_notcovered:
6975 free_cpumask_var(d->notcovered); /* fall through */
6976 case sa_covered:
6977 free_cpumask_var(d->covered); /* fall through */
6978 case sa_domainspan:
6979 free_cpumask_var(d->domainspan); /* fall through */
6980 #endif
6981 case sa_none:
6982 break;
6983 }
6984 }
6985
6986 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6987 const struct cpumask *cpu_map)
6988 {
6989 #ifdef CONFIG_NUMA
6990 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
6991 return sa_none;
6992 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
6993 return sa_domainspan;
6994 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
6995 return sa_covered;
6996 /* Allocate the per-node list of sched groups */
6997 d->sched_group_nodes = kcalloc(nr_node_ids,
6998 sizeof(struct sched_group *), GFP_KERNEL);
6999 if (!d->sched_group_nodes) {
7000 printk(KERN_WARNING "Can not alloc sched group node list\n");
7001 return sa_notcovered;
7002 }
7003 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
7004 #endif
7005 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
7006 return sa_sched_group_nodes;
7007 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
7008 return sa_nodemask;
7009 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
7010 return sa_this_sibling_map;
7011 if (!alloc_cpumask_var(&d->this_book_map, GFP_KERNEL))
7012 return sa_this_core_map;
7013 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
7014 return sa_this_book_map;
7015 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
7016 return sa_send_covered;
7017 d->rd = alloc_rootdomain();
7018 if (!d->rd) {
7019 printk(KERN_WARNING "Cannot alloc root domain\n");
7020 return sa_tmpmask;
7021 }
7022 return sa_rootdomain;
7023 }
7024
7025 static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
7026 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
7027 {
7028 struct sched_domain *sd = NULL;
7029 #ifdef CONFIG_NUMA
7030 struct sched_domain *parent;
7031
7032 d->sd_allnodes = 0;
7033 if (cpumask_weight(cpu_map) >
7034 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
7035 sd = &per_cpu(allnodes_domains, i).sd;
7036 SD_INIT(sd, ALLNODES);
7037 set_domain_attribute(sd, attr);
7038 cpumask_copy(sched_domain_span(sd), cpu_map);
7039 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
7040 d->sd_allnodes = 1;
7041 }
7042 parent = sd;
7043
7044 sd = &per_cpu(node_domains, i).sd;
7045 SD_INIT(sd, NODE);
7046 set_domain_attribute(sd, attr);
7047 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
7048 sd->parent = parent;
7049 if (parent)
7050 parent->child = sd;
7051 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
7052 #endif
7053 return sd;
7054 }
7055
7056 static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
7057 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7058 struct sched_domain *parent, int i)
7059 {
7060 struct sched_domain *sd;
7061 sd = &per_cpu(phys_domains, i).sd;
7062 SD_INIT(sd, CPU);
7063 set_domain_attribute(sd, attr);
7064 cpumask_copy(sched_domain_span(sd), d->nodemask);
7065 sd->parent = parent;
7066 if (parent)
7067 parent->child = sd;
7068 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
7069 return sd;
7070 }
7071
7072 static struct sched_domain *__build_book_sched_domain(struct s_data *d,
7073 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7074 struct sched_domain *parent, int i)
7075 {
7076 struct sched_domain *sd = parent;
7077 #ifdef CONFIG_SCHED_BOOK
7078 sd = &per_cpu(book_domains, i).sd;
7079 SD_INIT(sd, BOOK);
7080 set_domain_attribute(sd, attr);
7081 cpumask_and(sched_domain_span(sd), cpu_map, cpu_book_mask(i));
7082 sd->parent = parent;
7083 parent->child = sd;
7084 cpu_to_book_group(i, cpu_map, &sd->groups, d->tmpmask);
7085 #endif
7086 return sd;
7087 }
7088
7089 static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
7090 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7091 struct sched_domain *parent, int i)
7092 {
7093 struct sched_domain *sd = parent;
7094 #ifdef CONFIG_SCHED_MC
7095 sd = &per_cpu(core_domains, i).sd;
7096 SD_INIT(sd, MC);
7097 set_domain_attribute(sd, attr);
7098 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
7099 sd->parent = parent;
7100 parent->child = sd;
7101 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
7102 #endif
7103 return sd;
7104 }
7105
7106 static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
7107 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7108 struct sched_domain *parent, int i)
7109 {
7110 struct sched_domain *sd = parent;
7111 #ifdef CONFIG_SCHED_SMT
7112 sd = &per_cpu(cpu_domains, i).sd;
7113 SD_INIT(sd, SIBLING);
7114 set_domain_attribute(sd, attr);
7115 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
7116 sd->parent = parent;
7117 parent->child = sd;
7118 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
7119 #endif
7120 return sd;
7121 }
7122
7123 static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
7124 const struct cpumask *cpu_map, int cpu)
7125 {
7126 switch (l) {
7127 #ifdef CONFIG_SCHED_SMT
7128 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
7129 cpumask_and(d->this_sibling_map, cpu_map,
7130 topology_thread_cpumask(cpu));
7131 if (cpu == cpumask_first(d->this_sibling_map))
7132 init_sched_build_groups(d->this_sibling_map, cpu_map,
7133 &cpu_to_cpu_group,
7134 d->send_covered, d->tmpmask);
7135 break;
7136 #endif
7137 #ifdef CONFIG_SCHED_MC
7138 case SD_LV_MC: /* set up multi-core groups */
7139 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
7140 if (cpu == cpumask_first(d->this_core_map))
7141 init_sched_build_groups(d->this_core_map, cpu_map,
7142 &cpu_to_core_group,
7143 d->send_covered, d->tmpmask);
7144 break;
7145 #endif
7146 #ifdef CONFIG_SCHED_BOOK
7147 case SD_LV_BOOK: /* set up book groups */
7148 cpumask_and(d->this_book_map, cpu_map, cpu_book_mask(cpu));
7149 if (cpu == cpumask_first(d->this_book_map))
7150 init_sched_build_groups(d->this_book_map, cpu_map,
7151 &cpu_to_book_group,
7152 d->send_covered, d->tmpmask);
7153 break;
7154 #endif
7155 case SD_LV_CPU: /* set up physical groups */
7156 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
7157 if (!cpumask_empty(d->nodemask))
7158 init_sched_build_groups(d->nodemask, cpu_map,
7159 &cpu_to_phys_group,
7160 d->send_covered, d->tmpmask);
7161 break;
7162 #ifdef CONFIG_NUMA
7163 case SD_LV_ALLNODES:
7164 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
7165 d->send_covered, d->tmpmask);
7166 break;
7167 #endif
7168 default:
7169 break;
7170 }
7171 }
7172
7173 /*
7174 * Build sched domains for a given set of cpus and attach the sched domains
7175 * to the individual cpus
7176 */
7177 static int __build_sched_domains(const struct cpumask *cpu_map,
7178 struct sched_domain_attr *attr)
7179 {
7180 enum s_alloc alloc_state = sa_none;
7181 struct s_data d;
7182 struct sched_domain *sd;
7183 int i;
7184 #ifdef CONFIG_NUMA
7185 d.sd_allnodes = 0;
7186 #endif
7187
7188 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7189 if (alloc_state != sa_rootdomain)
7190 goto error;
7191 alloc_state = sa_sched_groups;
7192
7193 /*
7194 * Set up domains for cpus specified by the cpu_map.
7195 */
7196 for_each_cpu(i, cpu_map) {
7197 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
7198 cpu_map);
7199
7200 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
7201 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
7202 sd = __build_book_sched_domain(&d, cpu_map, attr, sd, i);
7203 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
7204 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
7205 }
7206
7207 for_each_cpu(i, cpu_map) {
7208 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
7209 build_sched_groups(&d, SD_LV_BOOK, cpu_map, i);
7210 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
7211 }
7212
7213 /* Set up physical groups */
7214 for (i = 0; i < nr_node_ids; i++)
7215 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
7216
7217 #ifdef CONFIG_NUMA
7218 /* Set up node groups */
7219 if (d.sd_allnodes)
7220 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
7221
7222 for (i = 0; i < nr_node_ids; i++)
7223 if (build_numa_sched_groups(&d, cpu_map, i))
7224 goto error;
7225 #endif
7226
7227 /* Calculate CPU power for physical packages and nodes */
7228 #ifdef CONFIG_SCHED_SMT
7229 for_each_cpu(i, cpu_map) {
7230 sd = &per_cpu(cpu_domains, i).sd;
7231 init_sched_groups_power(i, sd);
7232 }
7233 #endif
7234 #ifdef CONFIG_SCHED_MC
7235 for_each_cpu(i, cpu_map) {
7236 sd = &per_cpu(core_domains, i).sd;
7237 init_sched_groups_power(i, sd);
7238 }
7239 #endif
7240 #ifdef CONFIG_SCHED_BOOK
7241 for_each_cpu(i, cpu_map) {
7242 sd = &per_cpu(book_domains, i).sd;
7243 init_sched_groups_power(i, sd);
7244 }
7245 #endif
7246
7247 for_each_cpu(i, cpu_map) {
7248 sd = &per_cpu(phys_domains, i).sd;
7249 init_sched_groups_power(i, sd);
7250 }
7251
7252 #ifdef CONFIG_NUMA
7253 for (i = 0; i < nr_node_ids; i++)
7254 init_numa_sched_groups_power(d.sched_group_nodes[i]);
7255
7256 if (d.sd_allnodes) {
7257 struct sched_group *sg;
7258
7259 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7260 d.tmpmask);
7261 init_numa_sched_groups_power(sg);
7262 }
7263 #endif
7264
7265 /* Attach the domains */
7266 for_each_cpu(i, cpu_map) {
7267 #ifdef CONFIG_SCHED_SMT
7268 sd = &per_cpu(cpu_domains, i).sd;
7269 #elif defined(CONFIG_SCHED_MC)
7270 sd = &per_cpu(core_domains, i).sd;
7271 #elif defined(CONFIG_SCHED_BOOK)
7272 sd = &per_cpu(book_domains, i).sd;
7273 #else
7274 sd = &per_cpu(phys_domains, i).sd;
7275 #endif
7276 cpu_attach_domain(sd, d.rd, i);
7277 }
7278
7279 d.sched_group_nodes = NULL; /* don't free this we still need it */
7280 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7281 return 0;
7282
7283 error:
7284 __free_domain_allocs(&d, alloc_state, cpu_map);
7285 return -ENOMEM;
7286 }
7287
7288 static int build_sched_domains(const struct cpumask *cpu_map)
7289 {
7290 return __build_sched_domains(cpu_map, NULL);
7291 }
7292
7293 static cpumask_var_t *doms_cur; /* current sched domains */
7294 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7295 static struct sched_domain_attr *dattr_cur;
7296 /* attribues of custom domains in 'doms_cur' */
7297
7298 /*
7299 * Special case: If a kmalloc of a doms_cur partition (array of
7300 * cpumask) fails, then fallback to a single sched domain,
7301 * as determined by the single cpumask fallback_doms.
7302 */
7303 static cpumask_var_t fallback_doms;
7304
7305 /*
7306 * arch_update_cpu_topology lets virtualized architectures update the
7307 * cpu core maps. It is supposed to return 1 if the topology changed
7308 * or 0 if it stayed the same.
7309 */
7310 int __attribute__((weak)) arch_update_cpu_topology(void)
7311 {
7312 return 0;
7313 }
7314
7315 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7316 {
7317 int i;
7318 cpumask_var_t *doms;
7319
7320 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7321 if (!doms)
7322 return NULL;
7323 for (i = 0; i < ndoms; i++) {
7324 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7325 free_sched_domains(doms, i);
7326 return NULL;
7327 }
7328 }
7329 return doms;
7330 }
7331
7332 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7333 {
7334 unsigned int i;
7335 for (i = 0; i < ndoms; i++)
7336 free_cpumask_var(doms[i]);
7337 kfree(doms);
7338 }
7339
7340 /*
7341 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7342 * For now this just excludes isolated cpus, but could be used to
7343 * exclude other special cases in the future.
7344 */
7345 static int arch_init_sched_domains(const struct cpumask *cpu_map)
7346 {
7347 int err;
7348
7349 arch_update_cpu_topology();
7350 ndoms_cur = 1;
7351 doms_cur = alloc_sched_domains(ndoms_cur);
7352 if (!doms_cur)
7353 doms_cur = &fallback_doms;
7354 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7355 dattr_cur = NULL;
7356 err = build_sched_domains(doms_cur[0]);
7357 register_sched_domain_sysctl();
7358
7359 return err;
7360 }
7361
7362 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7363 struct cpumask *tmpmask)
7364 {
7365 free_sched_groups(cpu_map, tmpmask);
7366 }
7367
7368 /*
7369 * Detach sched domains from a group of cpus specified in cpu_map
7370 * These cpus will now be attached to the NULL domain
7371 */
7372 static void detach_destroy_domains(const struct cpumask *cpu_map)
7373 {
7374 /* Save because hotplug lock held. */
7375 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7376 int i;
7377
7378 for_each_cpu(i, cpu_map)
7379 cpu_attach_domain(NULL, &def_root_domain, i);
7380 synchronize_sched();
7381 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7382 }
7383
7384 /* handle null as "default" */
7385 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7386 struct sched_domain_attr *new, int idx_new)
7387 {
7388 struct sched_domain_attr tmp;
7389
7390 /* fast path */
7391 if (!new && !cur)
7392 return 1;
7393
7394 tmp = SD_ATTR_INIT;
7395 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7396 new ? (new + idx_new) : &tmp,
7397 sizeof(struct sched_domain_attr));
7398 }
7399
7400 /*
7401 * Partition sched domains as specified by the 'ndoms_new'
7402 * cpumasks in the array doms_new[] of cpumasks. This compares
7403 * doms_new[] to the current sched domain partitioning, doms_cur[].
7404 * It destroys each deleted domain and builds each new domain.
7405 *
7406 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7407 * The masks don't intersect (don't overlap.) We should setup one
7408 * sched domain for each mask. CPUs not in any of the cpumasks will
7409 * not be load balanced. If the same cpumask appears both in the
7410 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7411 * it as it is.
7412 *
7413 * The passed in 'doms_new' should be allocated using
7414 * alloc_sched_domains. This routine takes ownership of it and will
7415 * free_sched_domains it when done with it. If the caller failed the
7416 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7417 * and partition_sched_domains() will fallback to the single partition
7418 * 'fallback_doms', it also forces the domains to be rebuilt.
7419 *
7420 * If doms_new == NULL it will be replaced with cpu_online_mask.
7421 * ndoms_new == 0 is a special case for destroying existing domains,
7422 * and it will not create the default domain.
7423 *
7424 * Call with hotplug lock held
7425 */
7426 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7427 struct sched_domain_attr *dattr_new)
7428 {
7429 int i, j, n;
7430 int new_topology;
7431
7432 mutex_lock(&sched_domains_mutex);
7433
7434 /* always unregister in case we don't destroy any domains */
7435 unregister_sched_domain_sysctl();
7436
7437 /* Let architecture update cpu core mappings. */
7438 new_topology = arch_update_cpu_topology();
7439
7440 n = doms_new ? ndoms_new : 0;
7441
7442 /* Destroy deleted domains */
7443 for (i = 0; i < ndoms_cur; i++) {
7444 for (j = 0; j < n && !new_topology; j++) {
7445 if (cpumask_equal(doms_cur[i], doms_new[j])
7446 && dattrs_equal(dattr_cur, i, dattr_new, j))
7447 goto match1;
7448 }
7449 /* no match - a current sched domain not in new doms_new[] */
7450 detach_destroy_domains(doms_cur[i]);
7451 match1:
7452 ;
7453 }
7454
7455 if (doms_new == NULL) {
7456 ndoms_cur = 0;
7457 doms_new = &fallback_doms;
7458 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7459 WARN_ON_ONCE(dattr_new);
7460 }
7461
7462 /* Build new domains */
7463 for (i = 0; i < ndoms_new; i++) {
7464 for (j = 0; j < ndoms_cur && !new_topology; j++) {
7465 if (cpumask_equal(doms_new[i], doms_cur[j])
7466 && dattrs_equal(dattr_new, i, dattr_cur, j))
7467 goto match2;
7468 }
7469 /* no match - add a new doms_new */
7470 __build_sched_domains(doms_new[i],
7471 dattr_new ? dattr_new + i : NULL);
7472 match2:
7473 ;
7474 }
7475
7476 /* Remember the new sched domains */
7477 if (doms_cur != &fallback_doms)
7478 free_sched_domains(doms_cur, ndoms_cur);
7479 kfree(dattr_cur); /* kfree(NULL) is safe */
7480 doms_cur = doms_new;
7481 dattr_cur = dattr_new;
7482 ndoms_cur = ndoms_new;
7483
7484 register_sched_domain_sysctl();
7485
7486 mutex_unlock(&sched_domains_mutex);
7487 }
7488
7489 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7490 static void arch_reinit_sched_domains(void)
7491 {
7492 get_online_cpus();
7493
7494 /* Destroy domains first to force the rebuild */
7495 partition_sched_domains(0, NULL, NULL);
7496
7497 rebuild_sched_domains();
7498 put_online_cpus();
7499 }
7500
7501 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7502 {
7503 unsigned int level = 0;
7504
7505 if (sscanf(buf, "%u", &level) != 1)
7506 return -EINVAL;
7507
7508 /*
7509 * level is always be positive so don't check for
7510 * level < POWERSAVINGS_BALANCE_NONE which is 0
7511 * What happens on 0 or 1 byte write,
7512 * need to check for count as well?
7513 */
7514
7515 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7516 return -EINVAL;
7517
7518 if (smt)
7519 sched_smt_power_savings = level;
7520 else
7521 sched_mc_power_savings = level;
7522
7523 arch_reinit_sched_domains();
7524
7525 return count;
7526 }
7527
7528 #ifdef CONFIG_SCHED_MC
7529 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7530 struct sysdev_class_attribute *attr,
7531 char *page)
7532 {
7533 return sprintf(page, "%u\n", sched_mc_power_savings);
7534 }
7535 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7536 struct sysdev_class_attribute *attr,
7537 const char *buf, size_t count)
7538 {
7539 return sched_power_savings_store(buf, count, 0);
7540 }
7541 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7542 sched_mc_power_savings_show,
7543 sched_mc_power_savings_store);
7544 #endif
7545
7546 #ifdef CONFIG_SCHED_SMT
7547 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7548 struct sysdev_class_attribute *attr,
7549 char *page)
7550 {
7551 return sprintf(page, "%u\n", sched_smt_power_savings);
7552 }
7553 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7554 struct sysdev_class_attribute *attr,
7555 const char *buf, size_t count)
7556 {
7557 return sched_power_savings_store(buf, count, 1);
7558 }
7559 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7560 sched_smt_power_savings_show,
7561 sched_smt_power_savings_store);
7562 #endif
7563
7564 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7565 {
7566 int err = 0;
7567
7568 #ifdef CONFIG_SCHED_SMT
7569 if (smt_capable())
7570 err = sysfs_create_file(&cls->kset.kobj,
7571 &attr_sched_smt_power_savings.attr);
7572 #endif
7573 #ifdef CONFIG_SCHED_MC
7574 if (!err && mc_capable())
7575 err = sysfs_create_file(&cls->kset.kobj,
7576 &attr_sched_mc_power_savings.attr);
7577 #endif
7578 return err;
7579 }
7580 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7581
7582 /*
7583 * Update cpusets according to cpu_active mask. If cpusets are
7584 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7585 * around partition_sched_domains().
7586 */
7587 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7588 void *hcpu)
7589 {
7590 switch (action & ~CPU_TASKS_FROZEN) {
7591 case CPU_ONLINE:
7592 case CPU_DOWN_FAILED:
7593 cpuset_update_active_cpus();
7594 return NOTIFY_OK;
7595 default:
7596 return NOTIFY_DONE;
7597 }
7598 }
7599
7600 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7601 void *hcpu)
7602 {
7603 switch (action & ~CPU_TASKS_FROZEN) {
7604 case CPU_DOWN_PREPARE:
7605 cpuset_update_active_cpus();
7606 return NOTIFY_OK;
7607 default:
7608 return NOTIFY_DONE;
7609 }
7610 }
7611
7612 static int update_runtime(struct notifier_block *nfb,
7613 unsigned long action, void *hcpu)
7614 {
7615 int cpu = (int)(long)hcpu;
7616
7617 switch (action) {
7618 case CPU_DOWN_PREPARE:
7619 case CPU_DOWN_PREPARE_FROZEN:
7620 disable_runtime(cpu_rq(cpu));
7621 return NOTIFY_OK;
7622
7623 case CPU_DOWN_FAILED:
7624 case CPU_DOWN_FAILED_FROZEN:
7625 case CPU_ONLINE:
7626 case CPU_ONLINE_FROZEN:
7627 enable_runtime(cpu_rq(cpu));
7628 return NOTIFY_OK;
7629
7630 default:
7631 return NOTIFY_DONE;
7632 }
7633 }
7634
7635 void __init sched_init_smp(void)
7636 {
7637 cpumask_var_t non_isolated_cpus;
7638
7639 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7640 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7641
7642 #if defined(CONFIG_NUMA)
7643 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7644 GFP_KERNEL);
7645 BUG_ON(sched_group_nodes_bycpu == NULL);
7646 #endif
7647 get_online_cpus();
7648 mutex_lock(&sched_domains_mutex);
7649 arch_init_sched_domains(cpu_active_mask);
7650 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7651 if (cpumask_empty(non_isolated_cpus))
7652 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7653 mutex_unlock(&sched_domains_mutex);
7654 put_online_cpus();
7655
7656 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7657 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7658
7659 /* RT runtime code needs to handle some hotplug events */
7660 hotcpu_notifier(update_runtime, 0);
7661
7662 init_hrtick();
7663
7664 /* Move init over to a non-isolated CPU */
7665 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7666 BUG();
7667 sched_init_granularity();
7668 free_cpumask_var(non_isolated_cpus);
7669
7670 init_sched_rt_class();
7671 }
7672 #else
7673 void __init sched_init_smp(void)
7674 {
7675 sched_init_granularity();
7676 }
7677 #endif /* CONFIG_SMP */
7678
7679 const_debug unsigned int sysctl_timer_migration = 1;
7680
7681 int in_sched_functions(unsigned long addr)
7682 {
7683 return in_lock_functions(addr) ||
7684 (addr >= (unsigned long)__sched_text_start
7685 && addr < (unsigned long)__sched_text_end);
7686 }
7687
7688 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
7689 {
7690 cfs_rq->tasks_timeline = RB_ROOT;
7691 INIT_LIST_HEAD(&cfs_rq->tasks);
7692 #ifdef CONFIG_FAIR_GROUP_SCHED
7693 cfs_rq->rq = rq;
7694 #endif
7695 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7696 }
7697
7698 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7699 {
7700 struct rt_prio_array *array;
7701 int i;
7702
7703 array = &rt_rq->active;
7704 for (i = 0; i < MAX_RT_PRIO; i++) {
7705 INIT_LIST_HEAD(array->queue + i);
7706 __clear_bit(i, array->bitmap);
7707 }
7708 /* delimiter for bitsearch: */
7709 __set_bit(MAX_RT_PRIO, array->bitmap);
7710
7711 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7712 rt_rq->highest_prio.curr = MAX_RT_PRIO;
7713 #ifdef CONFIG_SMP
7714 rt_rq->highest_prio.next = MAX_RT_PRIO;
7715 #endif
7716 #endif
7717 #ifdef CONFIG_SMP
7718 rt_rq->rt_nr_migratory = 0;
7719 rt_rq->overloaded = 0;
7720 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
7721 #endif
7722
7723 rt_rq->rt_time = 0;
7724 rt_rq->rt_throttled = 0;
7725 rt_rq->rt_runtime = 0;
7726 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
7727
7728 #ifdef CONFIG_RT_GROUP_SCHED
7729 rt_rq->rt_nr_boosted = 0;
7730 rt_rq->rq = rq;
7731 #endif
7732 }
7733
7734 #ifdef CONFIG_FAIR_GROUP_SCHED
7735 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7736 struct sched_entity *se, int cpu, int add,
7737 struct sched_entity *parent)
7738 {
7739 struct rq *rq = cpu_rq(cpu);
7740 tg->cfs_rq[cpu] = cfs_rq;
7741 init_cfs_rq(cfs_rq, rq);
7742 cfs_rq->tg = tg;
7743 if (add)
7744 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7745
7746 tg->se[cpu] = se;
7747 /* se could be NULL for init_task_group */
7748 if (!se)
7749 return;
7750
7751 if (!parent)
7752 se->cfs_rq = &rq->cfs;
7753 else
7754 se->cfs_rq = parent->my_q;
7755
7756 se->my_q = cfs_rq;
7757 se->load.weight = tg->shares;
7758 se->load.inv_weight = 0;
7759 se->parent = parent;
7760 }
7761 #endif
7762
7763 #ifdef CONFIG_RT_GROUP_SCHED
7764 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7765 struct sched_rt_entity *rt_se, int cpu, int add,
7766 struct sched_rt_entity *parent)
7767 {
7768 struct rq *rq = cpu_rq(cpu);
7769
7770 tg->rt_rq[cpu] = rt_rq;
7771 init_rt_rq(rt_rq, rq);
7772 rt_rq->tg = tg;
7773 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
7774 if (add)
7775 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7776
7777 tg->rt_se[cpu] = rt_se;
7778 if (!rt_se)
7779 return;
7780
7781 if (!parent)
7782 rt_se->rt_rq = &rq->rt;
7783 else
7784 rt_se->rt_rq = parent->my_q;
7785
7786 rt_se->my_q = rt_rq;
7787 rt_se->parent = parent;
7788 INIT_LIST_HEAD(&rt_se->run_list);
7789 }
7790 #endif
7791
7792 void __init sched_init(void)
7793 {
7794 int i, j;
7795 unsigned long alloc_size = 0, ptr;
7796
7797 #ifdef CONFIG_FAIR_GROUP_SCHED
7798 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7799 #endif
7800 #ifdef CONFIG_RT_GROUP_SCHED
7801 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7802 #endif
7803 #ifdef CONFIG_CPUMASK_OFFSTACK
7804 alloc_size += num_possible_cpus() * cpumask_size();
7805 #endif
7806 if (alloc_size) {
7807 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7808
7809 #ifdef CONFIG_FAIR_GROUP_SCHED
7810 init_task_group.se = (struct sched_entity **)ptr;
7811 ptr += nr_cpu_ids * sizeof(void **);
7812
7813 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7814 ptr += nr_cpu_ids * sizeof(void **);
7815
7816 #endif /* CONFIG_FAIR_GROUP_SCHED */
7817 #ifdef CONFIG_RT_GROUP_SCHED
7818 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7819 ptr += nr_cpu_ids * sizeof(void **);
7820
7821 init_task_group.rt_rq = (struct rt_rq **)ptr;
7822 ptr += nr_cpu_ids * sizeof(void **);
7823
7824 #endif /* CONFIG_RT_GROUP_SCHED */
7825 #ifdef CONFIG_CPUMASK_OFFSTACK
7826 for_each_possible_cpu(i) {
7827 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7828 ptr += cpumask_size();
7829 }
7830 #endif /* CONFIG_CPUMASK_OFFSTACK */
7831 }
7832
7833 #ifdef CONFIG_SMP
7834 init_defrootdomain();
7835 #endif
7836
7837 init_rt_bandwidth(&def_rt_bandwidth,
7838 global_rt_period(), global_rt_runtime());
7839
7840 #ifdef CONFIG_RT_GROUP_SCHED
7841 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7842 global_rt_period(), global_rt_runtime());
7843 #endif /* CONFIG_RT_GROUP_SCHED */
7844
7845 #ifdef CONFIG_CGROUP_SCHED
7846 list_add(&init_task_group.list, &task_groups);
7847 INIT_LIST_HEAD(&init_task_group.children);
7848
7849 #endif /* CONFIG_CGROUP_SCHED */
7850
7851 #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
7852 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
7853 __alignof__(unsigned long));
7854 #endif
7855 for_each_possible_cpu(i) {
7856 struct rq *rq;
7857
7858 rq = cpu_rq(i);
7859 raw_spin_lock_init(&rq->lock);
7860 rq->nr_running = 0;
7861 rq->calc_load_active = 0;
7862 rq->calc_load_update = jiffies + LOAD_FREQ;
7863 init_cfs_rq(&rq->cfs, rq);
7864 init_rt_rq(&rq->rt, rq);
7865 #ifdef CONFIG_FAIR_GROUP_SCHED
7866 init_task_group.shares = init_task_group_load;
7867 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7868 #ifdef CONFIG_CGROUP_SCHED
7869 /*
7870 * How much cpu bandwidth does init_task_group get?
7871 *
7872 * In case of task-groups formed thr' the cgroup filesystem, it
7873 * gets 100% of the cpu resources in the system. This overall
7874 * system cpu resource is divided among the tasks of
7875 * init_task_group and its child task-groups in a fair manner,
7876 * based on each entity's (task or task-group's) weight
7877 * (se->load.weight).
7878 *
7879 * In other words, if init_task_group has 10 tasks of weight
7880 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7881 * then A0's share of the cpu resource is:
7882 *
7883 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7884 *
7885 * We achieve this by letting init_task_group's tasks sit
7886 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7887 */
7888 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
7889 #endif
7890 #endif /* CONFIG_FAIR_GROUP_SCHED */
7891
7892 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7893 #ifdef CONFIG_RT_GROUP_SCHED
7894 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7895 #ifdef CONFIG_CGROUP_SCHED
7896 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
7897 #endif
7898 #endif
7899
7900 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7901 rq->cpu_load[j] = 0;
7902
7903 rq->last_load_update_tick = jiffies;
7904
7905 #ifdef CONFIG_SMP
7906 rq->sd = NULL;
7907 rq->rd = NULL;
7908 rq->cpu_power = SCHED_LOAD_SCALE;
7909 rq->post_schedule = 0;
7910 rq->active_balance = 0;
7911 rq->next_balance = jiffies;
7912 rq->push_cpu = 0;
7913 rq->cpu = i;
7914 rq->online = 0;
7915 rq->idle_stamp = 0;
7916 rq->avg_idle = 2*sysctl_sched_migration_cost;
7917 rq_attach_root(rq, &def_root_domain);
7918 #ifdef CONFIG_NO_HZ
7919 rq->nohz_balance_kick = 0;
7920 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
7921 #endif
7922 #endif
7923 init_rq_hrtick(rq);
7924 atomic_set(&rq->nr_iowait, 0);
7925 }
7926
7927 set_load_weight(&init_task);
7928
7929 #ifdef CONFIG_PREEMPT_NOTIFIERS
7930 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7931 #endif
7932
7933 #ifdef CONFIG_SMP
7934 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7935 #endif
7936
7937 #ifdef CONFIG_RT_MUTEXES
7938 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
7939 #endif
7940
7941 /*
7942 * The boot idle thread does lazy MMU switching as well:
7943 */
7944 atomic_inc(&init_mm.mm_count);
7945 enter_lazy_tlb(&init_mm, current);
7946
7947 /*
7948 * Make us the idle thread. Technically, schedule() should not be
7949 * called from this thread, however somewhere below it might be,
7950 * but because we are the idle thread, we just pick up running again
7951 * when this runqueue becomes "idle".
7952 */
7953 init_idle(current, smp_processor_id());
7954
7955 calc_load_update = jiffies + LOAD_FREQ;
7956
7957 /*
7958 * During early bootup we pretend to be a normal task:
7959 */
7960 current->sched_class = &fair_sched_class;
7961
7962 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
7963 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
7964 #ifdef CONFIG_SMP
7965 #ifdef CONFIG_NO_HZ
7966 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
7967 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
7968 atomic_set(&nohz.load_balancer, nr_cpu_ids);
7969 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
7970 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
7971 #endif
7972 /* May be allocated at isolcpus cmdline parse time */
7973 if (cpu_isolated_map == NULL)
7974 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7975 #endif /* SMP */
7976
7977 perf_event_init();
7978
7979 scheduler_running = 1;
7980 }
7981
7982 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7983 static inline int preempt_count_equals(int preempt_offset)
7984 {
7985 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7986
7987 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
7988 }
7989
7990 void __might_sleep(const char *file, int line, int preempt_offset)
7991 {
7992 #ifdef in_atomic
7993 static unsigned long prev_jiffy; /* ratelimiting */
7994
7995 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7996 system_state != SYSTEM_RUNNING || oops_in_progress)
7997 return;
7998 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7999 return;
8000 prev_jiffy = jiffies;
8001
8002 printk(KERN_ERR
8003 "BUG: sleeping function called from invalid context at %s:%d\n",
8004 file, line);
8005 printk(KERN_ERR
8006 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8007 in_atomic(), irqs_disabled(),
8008 current->pid, current->comm);
8009
8010 debug_show_held_locks(current);
8011 if (irqs_disabled())
8012 print_irqtrace_events(current);
8013 dump_stack();
8014 #endif
8015 }
8016 EXPORT_SYMBOL(__might_sleep);
8017 #endif
8018
8019 #ifdef CONFIG_MAGIC_SYSRQ
8020 static void normalize_task(struct rq *rq, struct task_struct *p)
8021 {
8022 int on_rq;
8023
8024 on_rq = p->se.on_rq;
8025 if (on_rq)
8026 deactivate_task(rq, p, 0);
8027 __setscheduler(rq, p, SCHED_NORMAL, 0);
8028 if (on_rq) {
8029 activate_task(rq, p, 0);
8030 resched_task(rq->curr);
8031 }
8032 }
8033
8034 void normalize_rt_tasks(void)
8035 {
8036 struct task_struct *g, *p;
8037 unsigned long flags;
8038 struct rq *rq;
8039
8040 read_lock_irqsave(&tasklist_lock, flags);
8041 do_each_thread(g, p) {
8042 /*
8043 * Only normalize user tasks:
8044 */
8045 if (!p->mm)
8046 continue;
8047
8048 p->se.exec_start = 0;
8049 #ifdef CONFIG_SCHEDSTATS
8050 p->se.statistics.wait_start = 0;
8051 p->se.statistics.sleep_start = 0;
8052 p->se.statistics.block_start = 0;
8053 #endif
8054
8055 if (!rt_task(p)) {
8056 /*
8057 * Renice negative nice level userspace
8058 * tasks back to 0:
8059 */
8060 if (TASK_NICE(p) < 0 && p->mm)
8061 set_user_nice(p, 0);
8062 continue;
8063 }
8064
8065 raw_spin_lock(&p->pi_lock);
8066 rq = __task_rq_lock(p);
8067
8068 normalize_task(rq, p);
8069
8070 __task_rq_unlock(rq);
8071 raw_spin_unlock(&p->pi_lock);
8072 } while_each_thread(g, p);
8073
8074 read_unlock_irqrestore(&tasklist_lock, flags);
8075 }
8076
8077 #endif /* CONFIG_MAGIC_SYSRQ */
8078
8079 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
8080 /*
8081 * These functions are only useful for the IA64 MCA handling, or kdb.
8082 *
8083 * They can only be called when the whole system has been
8084 * stopped - every CPU needs to be quiescent, and no scheduling
8085 * activity can take place. Using them for anything else would
8086 * be a serious bug, and as a result, they aren't even visible
8087 * under any other configuration.
8088 */
8089
8090 /**
8091 * curr_task - return the current task for a given cpu.
8092 * @cpu: the processor in question.
8093 *
8094 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8095 */
8096 struct task_struct *curr_task(int cpu)
8097 {
8098 return cpu_curr(cpu);
8099 }
8100
8101 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8102
8103 #ifdef CONFIG_IA64
8104 /**
8105 * set_curr_task - set the current task for a given cpu.
8106 * @cpu: the processor in question.
8107 * @p: the task pointer to set.
8108 *
8109 * Description: This function must only be used when non-maskable interrupts
8110 * are serviced on a separate stack. It allows the architecture to switch the
8111 * notion of the current task on a cpu in a non-blocking manner. This function
8112 * must be called with all CPU's synchronized, and interrupts disabled, the
8113 * and caller must save the original value of the current task (see
8114 * curr_task() above) and restore that value before reenabling interrupts and
8115 * re-starting the system.
8116 *
8117 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8118 */
8119 void set_curr_task(int cpu, struct task_struct *p)
8120 {
8121 cpu_curr(cpu) = p;
8122 }
8123
8124 #endif
8125
8126 #ifdef CONFIG_FAIR_GROUP_SCHED
8127 static void free_fair_sched_group(struct task_group *tg)
8128 {
8129 int i;
8130
8131 for_each_possible_cpu(i) {
8132 if (tg->cfs_rq)
8133 kfree(tg->cfs_rq[i]);
8134 if (tg->se)
8135 kfree(tg->se[i]);
8136 }
8137
8138 kfree(tg->cfs_rq);
8139 kfree(tg->se);
8140 }
8141
8142 static
8143 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8144 {
8145 struct cfs_rq *cfs_rq;
8146 struct sched_entity *se;
8147 struct rq *rq;
8148 int i;
8149
8150 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8151 if (!tg->cfs_rq)
8152 goto err;
8153 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8154 if (!tg->se)
8155 goto err;
8156
8157 tg->shares = NICE_0_LOAD;
8158
8159 for_each_possible_cpu(i) {
8160 rq = cpu_rq(i);
8161
8162 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8163 GFP_KERNEL, cpu_to_node(i));
8164 if (!cfs_rq)
8165 goto err;
8166
8167 se = kzalloc_node(sizeof(struct sched_entity),
8168 GFP_KERNEL, cpu_to_node(i));
8169 if (!se)
8170 goto err_free_rq;
8171
8172 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
8173 }
8174
8175 return 1;
8176
8177 err_free_rq:
8178 kfree(cfs_rq);
8179 err:
8180 return 0;
8181 }
8182
8183 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8184 {
8185 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8186 &cpu_rq(cpu)->leaf_cfs_rq_list);
8187 }
8188
8189 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8190 {
8191 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8192 }
8193 #else /* !CONFG_FAIR_GROUP_SCHED */
8194 static inline void free_fair_sched_group(struct task_group *tg)
8195 {
8196 }
8197
8198 static inline
8199 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8200 {
8201 return 1;
8202 }
8203
8204 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8205 {
8206 }
8207
8208 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8209 {
8210 }
8211 #endif /* CONFIG_FAIR_GROUP_SCHED */
8212
8213 #ifdef CONFIG_RT_GROUP_SCHED
8214 static void free_rt_sched_group(struct task_group *tg)
8215 {
8216 int i;
8217
8218 destroy_rt_bandwidth(&tg->rt_bandwidth);
8219
8220 for_each_possible_cpu(i) {
8221 if (tg->rt_rq)
8222 kfree(tg->rt_rq[i]);
8223 if (tg->rt_se)
8224 kfree(tg->rt_se[i]);
8225 }
8226
8227 kfree(tg->rt_rq);
8228 kfree(tg->rt_se);
8229 }
8230
8231 static
8232 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8233 {
8234 struct rt_rq *rt_rq;
8235 struct sched_rt_entity *rt_se;
8236 struct rq *rq;
8237 int i;
8238
8239 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8240 if (!tg->rt_rq)
8241 goto err;
8242 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8243 if (!tg->rt_se)
8244 goto err;
8245
8246 init_rt_bandwidth(&tg->rt_bandwidth,
8247 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8248
8249 for_each_possible_cpu(i) {
8250 rq = cpu_rq(i);
8251
8252 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8253 GFP_KERNEL, cpu_to_node(i));
8254 if (!rt_rq)
8255 goto err;
8256
8257 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8258 GFP_KERNEL, cpu_to_node(i));
8259 if (!rt_se)
8260 goto err_free_rq;
8261
8262 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
8263 }
8264
8265 return 1;
8266
8267 err_free_rq:
8268 kfree(rt_rq);
8269 err:
8270 return 0;
8271 }
8272
8273 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8274 {
8275 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8276 &cpu_rq(cpu)->leaf_rt_rq_list);
8277 }
8278
8279 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8280 {
8281 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8282 }
8283 #else /* !CONFIG_RT_GROUP_SCHED */
8284 static inline void free_rt_sched_group(struct task_group *tg)
8285 {
8286 }
8287
8288 static inline
8289 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8290 {
8291 return 1;
8292 }
8293
8294 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8295 {
8296 }
8297
8298 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8299 {
8300 }
8301 #endif /* CONFIG_RT_GROUP_SCHED */
8302
8303 #ifdef CONFIG_CGROUP_SCHED
8304 static void free_sched_group(struct task_group *tg)
8305 {
8306 free_fair_sched_group(tg);
8307 free_rt_sched_group(tg);
8308 kfree(tg);
8309 }
8310
8311 /* allocate runqueue etc for a new task group */
8312 struct task_group *sched_create_group(struct task_group *parent)
8313 {
8314 struct task_group *tg;
8315 unsigned long flags;
8316 int i;
8317
8318 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8319 if (!tg)
8320 return ERR_PTR(-ENOMEM);
8321
8322 if (!alloc_fair_sched_group(tg, parent))
8323 goto err;
8324
8325 if (!alloc_rt_sched_group(tg, parent))
8326 goto err;
8327
8328 spin_lock_irqsave(&task_group_lock, flags);
8329 for_each_possible_cpu(i) {
8330 register_fair_sched_group(tg, i);
8331 register_rt_sched_group(tg, i);
8332 }
8333 list_add_rcu(&tg->list, &task_groups);
8334
8335 WARN_ON(!parent); /* root should already exist */
8336
8337 tg->parent = parent;
8338 INIT_LIST_HEAD(&tg->children);
8339 list_add_rcu(&tg->siblings, &parent->children);
8340 spin_unlock_irqrestore(&task_group_lock, flags);
8341
8342 return tg;
8343
8344 err:
8345 free_sched_group(tg);
8346 return ERR_PTR(-ENOMEM);
8347 }
8348
8349 /* rcu callback to free various structures associated with a task group */
8350 static void free_sched_group_rcu(struct rcu_head *rhp)
8351 {
8352 /* now it should be safe to free those cfs_rqs */
8353 free_sched_group(container_of(rhp, struct task_group, rcu));
8354 }
8355
8356 /* Destroy runqueue etc associated with a task group */
8357 void sched_destroy_group(struct task_group *tg)
8358 {
8359 unsigned long flags;
8360 int i;
8361
8362 spin_lock_irqsave(&task_group_lock, flags);
8363 for_each_possible_cpu(i) {
8364 unregister_fair_sched_group(tg, i);
8365 unregister_rt_sched_group(tg, i);
8366 }
8367 list_del_rcu(&tg->list);
8368 list_del_rcu(&tg->siblings);
8369 spin_unlock_irqrestore(&task_group_lock, flags);
8370
8371 /* wait for possible concurrent references to cfs_rqs complete */
8372 call_rcu(&tg->rcu, free_sched_group_rcu);
8373 }
8374
8375 /* change task's runqueue when it moves between groups.
8376 * The caller of this function should have put the task in its new group
8377 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8378 * reflect its new group.
8379 */
8380 void sched_move_task(struct task_struct *tsk)
8381 {
8382 int on_rq, running;
8383 unsigned long flags;
8384 struct rq *rq;
8385
8386 rq = task_rq_lock(tsk, &flags);
8387
8388 running = task_current(rq, tsk);
8389 on_rq = tsk->se.on_rq;
8390
8391 if (on_rq)
8392 dequeue_task(rq, tsk, 0);
8393 if (unlikely(running))
8394 tsk->sched_class->put_prev_task(rq, tsk);
8395
8396 set_task_rq(tsk, task_cpu(tsk));
8397
8398 #ifdef CONFIG_FAIR_GROUP_SCHED
8399 if (tsk->sched_class->moved_group)
8400 tsk->sched_class->moved_group(tsk, on_rq);
8401 #endif
8402
8403 if (unlikely(running))
8404 tsk->sched_class->set_curr_task(rq);
8405 if (on_rq)
8406 enqueue_task(rq, tsk, 0);
8407
8408 task_rq_unlock(rq, &flags);
8409 }
8410 #endif /* CONFIG_CGROUP_SCHED */
8411
8412 #ifdef CONFIG_FAIR_GROUP_SCHED
8413 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
8414 {
8415 struct cfs_rq *cfs_rq = se->cfs_rq;
8416 int on_rq;
8417
8418 on_rq = se->on_rq;
8419 if (on_rq)
8420 dequeue_entity(cfs_rq, se, 0);
8421
8422 se->load.weight = shares;
8423 se->load.inv_weight = 0;
8424
8425 if (on_rq)
8426 enqueue_entity(cfs_rq, se, 0);
8427 }
8428
8429 static void set_se_shares(struct sched_entity *se, unsigned long shares)
8430 {
8431 struct cfs_rq *cfs_rq = se->cfs_rq;
8432 struct rq *rq = cfs_rq->rq;
8433 unsigned long flags;
8434
8435 raw_spin_lock_irqsave(&rq->lock, flags);
8436 __set_se_shares(se, shares);
8437 raw_spin_unlock_irqrestore(&rq->lock, flags);
8438 }
8439
8440 static DEFINE_MUTEX(shares_mutex);
8441
8442 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8443 {
8444 int i;
8445 unsigned long flags;
8446
8447 /*
8448 * We can't change the weight of the root cgroup.
8449 */
8450 if (!tg->se[0])
8451 return -EINVAL;
8452
8453 if (shares < MIN_SHARES)
8454 shares = MIN_SHARES;
8455 else if (shares > MAX_SHARES)
8456 shares = MAX_SHARES;
8457
8458 mutex_lock(&shares_mutex);
8459 if (tg->shares == shares)
8460 goto done;
8461
8462 spin_lock_irqsave(&task_group_lock, flags);
8463 for_each_possible_cpu(i)
8464 unregister_fair_sched_group(tg, i);
8465 list_del_rcu(&tg->siblings);
8466 spin_unlock_irqrestore(&task_group_lock, flags);
8467
8468 /* wait for any ongoing reference to this group to finish */
8469 synchronize_sched();
8470
8471 /*
8472 * Now we are free to modify the group's share on each cpu
8473 * w/o tripping rebalance_share or load_balance_fair.
8474 */
8475 tg->shares = shares;
8476 for_each_possible_cpu(i) {
8477 /*
8478 * force a rebalance
8479 */
8480 cfs_rq_set_shares(tg->cfs_rq[i], 0);
8481 set_se_shares(tg->se[i], shares);
8482 }
8483
8484 /*
8485 * Enable load balance activity on this group, by inserting it back on
8486 * each cpu's rq->leaf_cfs_rq_list.
8487 */
8488 spin_lock_irqsave(&task_group_lock, flags);
8489 for_each_possible_cpu(i)
8490 register_fair_sched_group(tg, i);
8491 list_add_rcu(&tg->siblings, &tg->parent->children);
8492 spin_unlock_irqrestore(&task_group_lock, flags);
8493 done:
8494 mutex_unlock(&shares_mutex);
8495 return 0;
8496 }
8497
8498 unsigned long sched_group_shares(struct task_group *tg)
8499 {
8500 return tg->shares;
8501 }
8502 #endif
8503
8504 #ifdef CONFIG_RT_GROUP_SCHED
8505 /*
8506 * Ensure that the real time constraints are schedulable.
8507 */
8508 static DEFINE_MUTEX(rt_constraints_mutex);
8509
8510 static unsigned long to_ratio(u64 period, u64 runtime)
8511 {
8512 if (runtime == RUNTIME_INF)
8513 return 1ULL << 20;
8514
8515 return div64_u64(runtime << 20, period);
8516 }
8517
8518 /* Must be called with tasklist_lock held */
8519 static inline int tg_has_rt_tasks(struct task_group *tg)
8520 {
8521 struct task_struct *g, *p;
8522
8523 do_each_thread(g, p) {
8524 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8525 return 1;
8526 } while_each_thread(g, p);
8527
8528 return 0;
8529 }
8530
8531 struct rt_schedulable_data {
8532 struct task_group *tg;
8533 u64 rt_period;
8534 u64 rt_runtime;
8535 };
8536
8537 static int tg_schedulable(struct task_group *tg, void *data)
8538 {
8539 struct rt_schedulable_data *d = data;
8540 struct task_group *child;
8541 unsigned long total, sum = 0;
8542 u64 period, runtime;
8543
8544 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8545 runtime = tg->rt_bandwidth.rt_runtime;
8546
8547 if (tg == d->tg) {
8548 period = d->rt_period;
8549 runtime = d->rt_runtime;
8550 }
8551
8552 /*
8553 * Cannot have more runtime than the period.
8554 */
8555 if (runtime > period && runtime != RUNTIME_INF)
8556 return -EINVAL;
8557
8558 /*
8559 * Ensure we don't starve existing RT tasks.
8560 */
8561 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8562 return -EBUSY;
8563
8564 total = to_ratio(period, runtime);
8565
8566 /*
8567 * Nobody can have more than the global setting allows.
8568 */
8569 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8570 return -EINVAL;
8571
8572 /*
8573 * The sum of our children's runtime should not exceed our own.
8574 */
8575 list_for_each_entry_rcu(child, &tg->children, siblings) {
8576 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8577 runtime = child->rt_bandwidth.rt_runtime;
8578
8579 if (child == d->tg) {
8580 period = d->rt_period;
8581 runtime = d->rt_runtime;
8582 }
8583
8584 sum += to_ratio(period, runtime);
8585 }
8586
8587 if (sum > total)
8588 return -EINVAL;
8589
8590 return 0;
8591 }
8592
8593 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8594 {
8595 struct rt_schedulable_data data = {
8596 .tg = tg,
8597 .rt_period = period,
8598 .rt_runtime = runtime,
8599 };
8600
8601 return walk_tg_tree(tg_schedulable, tg_nop, &data);
8602 }
8603
8604 static int tg_set_bandwidth(struct task_group *tg,
8605 u64 rt_period, u64 rt_runtime)
8606 {
8607 int i, err = 0;
8608
8609 mutex_lock(&rt_constraints_mutex);
8610 read_lock(&tasklist_lock);
8611 err = __rt_schedulable(tg, rt_period, rt_runtime);
8612 if (err)
8613 goto unlock;
8614
8615 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8616 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8617 tg->rt_bandwidth.rt_runtime = rt_runtime;
8618
8619 for_each_possible_cpu(i) {
8620 struct rt_rq *rt_rq = tg->rt_rq[i];
8621
8622 raw_spin_lock(&rt_rq->rt_runtime_lock);
8623 rt_rq->rt_runtime = rt_runtime;
8624 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8625 }
8626 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8627 unlock:
8628 read_unlock(&tasklist_lock);
8629 mutex_unlock(&rt_constraints_mutex);
8630
8631 return err;
8632 }
8633
8634 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8635 {
8636 u64 rt_runtime, rt_period;
8637
8638 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8639 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8640 if (rt_runtime_us < 0)
8641 rt_runtime = RUNTIME_INF;
8642
8643 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8644 }
8645
8646 long sched_group_rt_runtime(struct task_group *tg)
8647 {
8648 u64 rt_runtime_us;
8649
8650 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8651 return -1;
8652
8653 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8654 do_div(rt_runtime_us, NSEC_PER_USEC);
8655 return rt_runtime_us;
8656 }
8657
8658 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8659 {
8660 u64 rt_runtime, rt_period;
8661
8662 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8663 rt_runtime = tg->rt_bandwidth.rt_runtime;
8664
8665 if (rt_period == 0)
8666 return -EINVAL;
8667
8668 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8669 }
8670
8671 long sched_group_rt_period(struct task_group *tg)
8672 {
8673 u64 rt_period_us;
8674
8675 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8676 do_div(rt_period_us, NSEC_PER_USEC);
8677 return rt_period_us;
8678 }
8679
8680 static int sched_rt_global_constraints(void)
8681 {
8682 u64 runtime, period;
8683 int ret = 0;
8684
8685 if (sysctl_sched_rt_period <= 0)
8686 return -EINVAL;
8687
8688 runtime = global_rt_runtime();
8689 period = global_rt_period();
8690
8691 /*
8692 * Sanity check on the sysctl variables.
8693 */
8694 if (runtime > period && runtime != RUNTIME_INF)
8695 return -EINVAL;
8696
8697 mutex_lock(&rt_constraints_mutex);
8698 read_lock(&tasklist_lock);
8699 ret = __rt_schedulable(NULL, 0, 0);
8700 read_unlock(&tasklist_lock);
8701 mutex_unlock(&rt_constraints_mutex);
8702
8703 return ret;
8704 }
8705
8706 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8707 {
8708 /* Don't accept realtime tasks when there is no way for them to run */
8709 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8710 return 0;
8711
8712 return 1;
8713 }
8714
8715 #else /* !CONFIG_RT_GROUP_SCHED */
8716 static int sched_rt_global_constraints(void)
8717 {
8718 unsigned long flags;
8719 int i;
8720
8721 if (sysctl_sched_rt_period <= 0)
8722 return -EINVAL;
8723
8724 /*
8725 * There's always some RT tasks in the root group
8726 * -- migration, kstopmachine etc..
8727 */
8728 if (sysctl_sched_rt_runtime == 0)
8729 return -EBUSY;
8730
8731 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8732 for_each_possible_cpu(i) {
8733 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8734
8735 raw_spin_lock(&rt_rq->rt_runtime_lock);
8736 rt_rq->rt_runtime = global_rt_runtime();
8737 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8738 }
8739 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8740
8741 return 0;
8742 }
8743 #endif /* CONFIG_RT_GROUP_SCHED */
8744
8745 int sched_rt_handler(struct ctl_table *table, int write,
8746 void __user *buffer, size_t *lenp,
8747 loff_t *ppos)
8748 {
8749 int ret;
8750 int old_period, old_runtime;
8751 static DEFINE_MUTEX(mutex);
8752
8753 mutex_lock(&mutex);
8754 old_period = sysctl_sched_rt_period;
8755 old_runtime = sysctl_sched_rt_runtime;
8756
8757 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8758
8759 if (!ret && write) {
8760 ret = sched_rt_global_constraints();
8761 if (ret) {
8762 sysctl_sched_rt_period = old_period;
8763 sysctl_sched_rt_runtime = old_runtime;
8764 } else {
8765 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8766 def_rt_bandwidth.rt_period =
8767 ns_to_ktime(global_rt_period());
8768 }
8769 }
8770 mutex_unlock(&mutex);
8771
8772 return ret;
8773 }
8774
8775 #ifdef CONFIG_CGROUP_SCHED
8776
8777 /* return corresponding task_group object of a cgroup */
8778 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8779 {
8780 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8781 struct task_group, css);
8782 }
8783
8784 static struct cgroup_subsys_state *
8785 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8786 {
8787 struct task_group *tg, *parent;
8788
8789 if (!cgrp->parent) {
8790 /* This is early initialization for the top cgroup */
8791 return &init_task_group.css;
8792 }
8793
8794 parent = cgroup_tg(cgrp->parent);
8795 tg = sched_create_group(parent);
8796 if (IS_ERR(tg))
8797 return ERR_PTR(-ENOMEM);
8798
8799 return &tg->css;
8800 }
8801
8802 static void
8803 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8804 {
8805 struct task_group *tg = cgroup_tg(cgrp);
8806
8807 sched_destroy_group(tg);
8808 }
8809
8810 static int
8811 cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
8812 {
8813 #ifdef CONFIG_RT_GROUP_SCHED
8814 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
8815 return -EINVAL;
8816 #else
8817 /* We don't support RT-tasks being in separate groups */
8818 if (tsk->sched_class != &fair_sched_class)
8819 return -EINVAL;
8820 #endif
8821 return 0;
8822 }
8823
8824 static int
8825 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8826 struct task_struct *tsk, bool threadgroup)
8827 {
8828 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
8829 if (retval)
8830 return retval;
8831 if (threadgroup) {
8832 struct task_struct *c;
8833 rcu_read_lock();
8834 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8835 retval = cpu_cgroup_can_attach_task(cgrp, c);
8836 if (retval) {
8837 rcu_read_unlock();
8838 return retval;
8839 }
8840 }
8841 rcu_read_unlock();
8842 }
8843 return 0;
8844 }
8845
8846 static void
8847 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8848 struct cgroup *old_cont, struct task_struct *tsk,
8849 bool threadgroup)
8850 {
8851 sched_move_task(tsk);
8852 if (threadgroup) {
8853 struct task_struct *c;
8854 rcu_read_lock();
8855 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8856 sched_move_task(c);
8857 }
8858 rcu_read_unlock();
8859 }
8860 }
8861
8862 #ifdef CONFIG_FAIR_GROUP_SCHED
8863 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8864 u64 shareval)
8865 {
8866 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8867 }
8868
8869 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8870 {
8871 struct task_group *tg = cgroup_tg(cgrp);
8872
8873 return (u64) tg->shares;
8874 }
8875 #endif /* CONFIG_FAIR_GROUP_SCHED */
8876
8877 #ifdef CONFIG_RT_GROUP_SCHED
8878 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8879 s64 val)
8880 {
8881 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
8882 }
8883
8884 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
8885 {
8886 return sched_group_rt_runtime(cgroup_tg(cgrp));
8887 }
8888
8889 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8890 u64 rt_period_us)
8891 {
8892 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8893 }
8894
8895 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8896 {
8897 return sched_group_rt_period(cgroup_tg(cgrp));
8898 }
8899 #endif /* CONFIG_RT_GROUP_SCHED */
8900
8901 static struct cftype cpu_files[] = {
8902 #ifdef CONFIG_FAIR_GROUP_SCHED
8903 {
8904 .name = "shares",
8905 .read_u64 = cpu_shares_read_u64,
8906 .write_u64 = cpu_shares_write_u64,
8907 },
8908 #endif
8909 #ifdef CONFIG_RT_GROUP_SCHED
8910 {
8911 .name = "rt_runtime_us",
8912 .read_s64 = cpu_rt_runtime_read,
8913 .write_s64 = cpu_rt_runtime_write,
8914 },
8915 {
8916 .name = "rt_period_us",
8917 .read_u64 = cpu_rt_period_read_uint,
8918 .write_u64 = cpu_rt_period_write_uint,
8919 },
8920 #endif
8921 };
8922
8923 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8924 {
8925 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8926 }
8927
8928 struct cgroup_subsys cpu_cgroup_subsys = {
8929 .name = "cpu",
8930 .create = cpu_cgroup_create,
8931 .destroy = cpu_cgroup_destroy,
8932 .can_attach = cpu_cgroup_can_attach,
8933 .attach = cpu_cgroup_attach,
8934 .populate = cpu_cgroup_populate,
8935 .subsys_id = cpu_cgroup_subsys_id,
8936 .early_init = 1,
8937 };
8938
8939 #endif /* CONFIG_CGROUP_SCHED */
8940
8941 #ifdef CONFIG_CGROUP_CPUACCT
8942
8943 /*
8944 * CPU accounting code for task groups.
8945 *
8946 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8947 * (balbir@in.ibm.com).
8948 */
8949
8950 /* track cpu usage of a group of tasks and its child groups */
8951 struct cpuacct {
8952 struct cgroup_subsys_state css;
8953 /* cpuusage holds pointer to a u64-type object on every cpu */
8954 u64 __percpu *cpuusage;
8955 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
8956 struct cpuacct *parent;
8957 };
8958
8959 struct cgroup_subsys cpuacct_subsys;
8960
8961 /* return cpu accounting group corresponding to this container */
8962 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8963 {
8964 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8965 struct cpuacct, css);
8966 }
8967
8968 /* return cpu accounting group to which this task belongs */
8969 static inline struct cpuacct *task_ca(struct task_struct *tsk)
8970 {
8971 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8972 struct cpuacct, css);
8973 }
8974
8975 /* create a new cpu accounting group */
8976 static struct cgroup_subsys_state *cpuacct_create(
8977 struct cgroup_subsys *ss, struct cgroup *cgrp)
8978 {
8979 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8980 int i;
8981
8982 if (!ca)
8983 goto out;
8984
8985 ca->cpuusage = alloc_percpu(u64);
8986 if (!ca->cpuusage)
8987 goto out_free_ca;
8988
8989 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8990 if (percpu_counter_init(&ca->cpustat[i], 0))
8991 goto out_free_counters;
8992
8993 if (cgrp->parent)
8994 ca->parent = cgroup_ca(cgrp->parent);
8995
8996 return &ca->css;
8997
8998 out_free_counters:
8999 while (--i >= 0)
9000 percpu_counter_destroy(&ca->cpustat[i]);
9001 free_percpu(ca->cpuusage);
9002 out_free_ca:
9003 kfree(ca);
9004 out:
9005 return ERR_PTR(-ENOMEM);
9006 }
9007
9008 /* destroy an existing cpu accounting group */
9009 static void
9010 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9011 {
9012 struct cpuacct *ca = cgroup_ca(cgrp);
9013 int i;
9014
9015 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9016 percpu_counter_destroy(&ca->cpustat[i]);
9017 free_percpu(ca->cpuusage);
9018 kfree(ca);
9019 }
9020
9021 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9022 {
9023 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9024 u64 data;
9025
9026 #ifndef CONFIG_64BIT
9027 /*
9028 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9029 */
9030 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9031 data = *cpuusage;
9032 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9033 #else
9034 data = *cpuusage;
9035 #endif
9036
9037 return data;
9038 }
9039
9040 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9041 {
9042 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9043
9044 #ifndef CONFIG_64BIT
9045 /*
9046 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9047 */
9048 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9049 *cpuusage = val;
9050 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9051 #else
9052 *cpuusage = val;
9053 #endif
9054 }
9055
9056 /* return total cpu usage (in nanoseconds) of a group */
9057 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9058 {
9059 struct cpuacct *ca = cgroup_ca(cgrp);
9060 u64 totalcpuusage = 0;
9061 int i;
9062
9063 for_each_present_cpu(i)
9064 totalcpuusage += cpuacct_cpuusage_read(ca, i);
9065
9066 return totalcpuusage;
9067 }
9068
9069 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9070 u64 reset)
9071 {
9072 struct cpuacct *ca = cgroup_ca(cgrp);
9073 int err = 0;
9074 int i;
9075
9076 if (reset) {
9077 err = -EINVAL;
9078 goto out;
9079 }
9080
9081 for_each_present_cpu(i)
9082 cpuacct_cpuusage_write(ca, i, 0);
9083
9084 out:
9085 return err;
9086 }
9087
9088 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9089 struct seq_file *m)
9090 {
9091 struct cpuacct *ca = cgroup_ca(cgroup);
9092 u64 percpu;
9093 int i;
9094
9095 for_each_present_cpu(i) {
9096 percpu = cpuacct_cpuusage_read(ca, i);
9097 seq_printf(m, "%llu ", (unsigned long long) percpu);
9098 }
9099 seq_printf(m, "\n");
9100 return 0;
9101 }
9102
9103 static const char *cpuacct_stat_desc[] = {
9104 [CPUACCT_STAT_USER] = "user",
9105 [CPUACCT_STAT_SYSTEM] = "system",
9106 };
9107
9108 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9109 struct cgroup_map_cb *cb)
9110 {
9111 struct cpuacct *ca = cgroup_ca(cgrp);
9112 int i;
9113
9114 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9115 s64 val = percpu_counter_read(&ca->cpustat[i]);
9116 val = cputime64_to_clock_t(val);
9117 cb->fill(cb, cpuacct_stat_desc[i], val);
9118 }
9119 return 0;
9120 }
9121
9122 static struct cftype files[] = {
9123 {
9124 .name = "usage",
9125 .read_u64 = cpuusage_read,
9126 .write_u64 = cpuusage_write,
9127 },
9128 {
9129 .name = "usage_percpu",
9130 .read_seq_string = cpuacct_percpu_seq_read,
9131 },
9132 {
9133 .name = "stat",
9134 .read_map = cpuacct_stats_show,
9135 },
9136 };
9137
9138 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9139 {
9140 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9141 }
9142
9143 /*
9144 * charge this task's execution time to its accounting group.
9145 *
9146 * called with rq->lock held.
9147 */
9148 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9149 {
9150 struct cpuacct *ca;
9151 int cpu;
9152
9153 if (unlikely(!cpuacct_subsys.active))
9154 return;
9155
9156 cpu = task_cpu(tsk);
9157
9158 rcu_read_lock();
9159
9160 ca = task_ca(tsk);
9161
9162 for (; ca; ca = ca->parent) {
9163 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9164 *cpuusage += cputime;
9165 }
9166
9167 rcu_read_unlock();
9168 }
9169
9170 /*
9171 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9172 * in cputime_t units. As a result, cpuacct_update_stats calls
9173 * percpu_counter_add with values large enough to always overflow the
9174 * per cpu batch limit causing bad SMP scalability.
9175 *
9176 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9177 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9178 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9179 */
9180 #ifdef CONFIG_SMP
9181 #define CPUACCT_BATCH \
9182 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9183 #else
9184 #define CPUACCT_BATCH 0
9185 #endif
9186
9187 /*
9188 * Charge the system/user time to the task's accounting group.
9189 */
9190 static void cpuacct_update_stats(struct task_struct *tsk,
9191 enum cpuacct_stat_index idx, cputime_t val)
9192 {
9193 struct cpuacct *ca;
9194 int batch = CPUACCT_BATCH;
9195
9196 if (unlikely(!cpuacct_subsys.active))
9197 return;
9198
9199 rcu_read_lock();
9200 ca = task_ca(tsk);
9201
9202 do {
9203 __percpu_counter_add(&ca->cpustat[idx], val, batch);
9204 ca = ca->parent;
9205 } while (ca);
9206 rcu_read_unlock();
9207 }
9208
9209 struct cgroup_subsys cpuacct_subsys = {
9210 .name = "cpuacct",
9211 .create = cpuacct_create,
9212 .destroy = cpuacct_destroy,
9213 .populate = cpuacct_populate,
9214 .subsys_id = cpuacct_subsys_id,
9215 };
9216 #endif /* CONFIG_CGROUP_CPUACCT */
9217
9218 #ifndef CONFIG_SMP
9219
9220 void synchronize_sched_expedited(void)
9221 {
9222 barrier();
9223 }
9224 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9225
9226 #else /* #ifndef CONFIG_SMP */
9227
9228 static atomic_t synchronize_sched_expedited_count = ATOMIC_INIT(0);
9229
9230 static int synchronize_sched_expedited_cpu_stop(void *data)
9231 {
9232 /*
9233 * There must be a full memory barrier on each affected CPU
9234 * between the time that try_stop_cpus() is called and the
9235 * time that it returns.
9236 *
9237 * In the current initial implementation of cpu_stop, the
9238 * above condition is already met when the control reaches
9239 * this point and the following smp_mb() is not strictly
9240 * necessary. Do smp_mb() anyway for documentation and
9241 * robustness against future implementation changes.
9242 */
9243 smp_mb(); /* See above comment block. */
9244 return 0;
9245 }
9246
9247 /*
9248 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
9249 * approach to force grace period to end quickly. This consumes
9250 * significant time on all CPUs, and is thus not recommended for
9251 * any sort of common-case code.
9252 *
9253 * Note that it is illegal to call this function while holding any
9254 * lock that is acquired by a CPU-hotplug notifier. Failing to
9255 * observe this restriction will result in deadlock.
9256 */
9257 void synchronize_sched_expedited(void)
9258 {
9259 int snap, trycount = 0;
9260
9261 smp_mb(); /* ensure prior mod happens before capturing snap. */
9262 snap = atomic_read(&synchronize_sched_expedited_count) + 1;
9263 get_online_cpus();
9264 while (try_stop_cpus(cpu_online_mask,
9265 synchronize_sched_expedited_cpu_stop,
9266 NULL) == -EAGAIN) {
9267 put_online_cpus();
9268 if (trycount++ < 10)
9269 udelay(trycount * num_online_cpus());
9270 else {
9271 synchronize_sched();
9272 return;
9273 }
9274 if (atomic_read(&synchronize_sched_expedited_count) - snap > 0) {
9275 smp_mb(); /* ensure test happens before caller kfree */
9276 return;
9277 }
9278 get_online_cpus();
9279 }
9280 atomic_inc(&synchronize_sched_expedited_count);
9281 smp_mb__after_atomic_inc(); /* ensure post-GP actions seen after GP. */
9282 put_online_cpus();
9283 }
9284 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9285
9286 #endif /* #else #ifndef CONFIG_SMP */
This page took 0.306491 seconds and 4 git commands to generate.