sched: reintroduce cache-hot affinity
[deliverable/linux.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 */
26
27 #include <linux/mm.h>
28 #include <linux/module.h>
29 #include <linux/nmi.h>
30 #include <linux/init.h>
31 #include <linux/uaccess.h>
32 #include <linux/highmem.h>
33 #include <linux/smp_lock.h>
34 #include <asm/mmu_context.h>
35 #include <linux/interrupt.h>
36 #include <linux/capability.h>
37 #include <linux/completion.h>
38 #include <linux/kernel_stat.h>
39 #include <linux/debug_locks.h>
40 #include <linux/security.h>
41 #include <linux/notifier.h>
42 #include <linux/profile.h>
43 #include <linux/freezer.h>
44 #include <linux/vmalloc.h>
45 #include <linux/blkdev.h>
46 #include <linux/delay.h>
47 #include <linux/smp.h>
48 #include <linux/threads.h>
49 #include <linux/timer.h>
50 #include <linux/rcupdate.h>
51 #include <linux/cpu.h>
52 #include <linux/cpuset.h>
53 #include <linux/percpu.h>
54 #include <linux/kthread.h>
55 #include <linux/seq_file.h>
56 #include <linux/sysctl.h>
57 #include <linux/syscalls.h>
58 #include <linux/times.h>
59 #include <linux/tsacct_kern.h>
60 #include <linux/kprobes.h>
61 #include <linux/delayacct.h>
62 #include <linux/reciprocal_div.h>
63 #include <linux/unistd.h>
64 #include <linux/pagemap.h>
65
66 #include <asm/tlb.h>
67
68 /*
69 * Scheduler clock - returns current time in nanosec units.
70 * This is default implementation.
71 * Architectures and sub-architectures can override this.
72 */
73 unsigned long long __attribute__((weak)) sched_clock(void)
74 {
75 return (unsigned long long)jiffies * (1000000000 / HZ);
76 }
77
78 /*
79 * Convert user-nice values [ -20 ... 0 ... 19 ]
80 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
81 * and back.
82 */
83 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
84 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
85 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
86
87 /*
88 * 'User priority' is the nice value converted to something we
89 * can work with better when scaling various scheduler parameters,
90 * it's a [ 0 ... 39 ] range.
91 */
92 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
93 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
94 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
95
96 /*
97 * Some helpers for converting nanosecond timing to jiffy resolution
98 */
99 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (1000000000 / HZ))
100 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
101
102 #define NICE_0_LOAD SCHED_LOAD_SCALE
103 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
104
105 /*
106 * These are the 'tuning knobs' of the scheduler:
107 *
108 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
109 * Timeslices get refilled after they expire.
110 */
111 #define DEF_TIMESLICE (100 * HZ / 1000)
112
113 #ifdef CONFIG_SMP
114 /*
115 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
116 * Since cpu_power is a 'constant', we can use a reciprocal divide.
117 */
118 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
119 {
120 return reciprocal_divide(load, sg->reciprocal_cpu_power);
121 }
122
123 /*
124 * Each time a sched group cpu_power is changed,
125 * we must compute its reciprocal value
126 */
127 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
128 {
129 sg->__cpu_power += val;
130 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
131 }
132 #endif
133
134 static inline int rt_policy(int policy)
135 {
136 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
137 return 1;
138 return 0;
139 }
140
141 static inline int task_has_rt_policy(struct task_struct *p)
142 {
143 return rt_policy(p->policy);
144 }
145
146 /*
147 * This is the priority-queue data structure of the RT scheduling class:
148 */
149 struct rt_prio_array {
150 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
151 struct list_head queue[MAX_RT_PRIO];
152 };
153
154 #ifdef CONFIG_FAIR_GROUP_SCHED
155
156 struct cfs_rq;
157
158 /* task group related information */
159 struct task_group {
160 /* schedulable entities of this group on each cpu */
161 struct sched_entity **se;
162 /* runqueue "owned" by this group on each cpu */
163 struct cfs_rq **cfs_rq;
164 unsigned long shares;
165 /* spinlock to serialize modification to shares */
166 spinlock_t lock;
167 };
168
169 /* Default task group's sched entity on each cpu */
170 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
171 /* Default task group's cfs_rq on each cpu */
172 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
173
174 static struct sched_entity *init_sched_entity_p[NR_CPUS];
175 static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
176
177 /* Default task group.
178 * Every task in system belong to this group at bootup.
179 */
180 struct task_group init_task_group = {
181 .se = init_sched_entity_p,
182 .cfs_rq = init_cfs_rq_p,
183 };
184
185 #ifdef CONFIG_FAIR_USER_SCHED
186 # define INIT_TASK_GRP_LOAD 2*NICE_0_LOAD
187 #else
188 # define INIT_TASK_GRP_LOAD NICE_0_LOAD
189 #endif
190
191 static int init_task_group_load = INIT_TASK_GRP_LOAD;
192
193 /* return group to which a task belongs */
194 static inline struct task_group *task_group(struct task_struct *p)
195 {
196 struct task_group *tg;
197
198 #ifdef CONFIG_FAIR_USER_SCHED
199 tg = p->user->tg;
200 #else
201 tg = &init_task_group;
202 #endif
203
204 return tg;
205 }
206
207 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
208 static inline void set_task_cfs_rq(struct task_struct *p)
209 {
210 p->se.cfs_rq = task_group(p)->cfs_rq[task_cpu(p)];
211 p->se.parent = task_group(p)->se[task_cpu(p)];
212 }
213
214 #else
215
216 static inline void set_task_cfs_rq(struct task_struct *p) { }
217
218 #endif /* CONFIG_FAIR_GROUP_SCHED */
219
220 /* CFS-related fields in a runqueue */
221 struct cfs_rq {
222 struct load_weight load;
223 unsigned long nr_running;
224
225 u64 exec_clock;
226 u64 min_vruntime;
227
228 struct rb_root tasks_timeline;
229 struct rb_node *rb_leftmost;
230 struct rb_node *rb_load_balance_curr;
231 /* 'curr' points to currently running entity on this cfs_rq.
232 * It is set to NULL otherwise (i.e when none are currently running).
233 */
234 struct sched_entity *curr;
235
236 unsigned long nr_spread_over;
237
238 #ifdef CONFIG_FAIR_GROUP_SCHED
239 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
240
241 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
242 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
243 * (like users, containers etc.)
244 *
245 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
246 * list is used during load balance.
247 */
248 struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
249 struct task_group *tg; /* group that "owns" this runqueue */
250 struct rcu_head rcu;
251 #endif
252 };
253
254 /* Real-Time classes' related field in a runqueue: */
255 struct rt_rq {
256 struct rt_prio_array active;
257 int rt_load_balance_idx;
258 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
259 };
260
261 /*
262 * This is the main, per-CPU runqueue data structure.
263 *
264 * Locking rule: those places that want to lock multiple runqueues
265 * (such as the load balancing or the thread migration code), lock
266 * acquire operations must be ordered by ascending &runqueue.
267 */
268 struct rq {
269 spinlock_t lock; /* runqueue lock */
270
271 /*
272 * nr_running and cpu_load should be in the same cacheline because
273 * remote CPUs use both these fields when doing load calculation.
274 */
275 unsigned long nr_running;
276 #define CPU_LOAD_IDX_MAX 5
277 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
278 unsigned char idle_at_tick;
279 #ifdef CONFIG_NO_HZ
280 unsigned char in_nohz_recently;
281 #endif
282 struct load_weight load; /* capture load from *all* tasks on this cpu */
283 unsigned long nr_load_updates;
284 u64 nr_switches;
285
286 struct cfs_rq cfs;
287 #ifdef CONFIG_FAIR_GROUP_SCHED
288 struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
289 #endif
290 struct rt_rq rt;
291
292 /*
293 * This is part of a global counter where only the total sum
294 * over all CPUs matters. A task can increase this counter on
295 * one CPU and if it got migrated afterwards it may decrease
296 * it on another CPU. Always updated under the runqueue lock:
297 */
298 unsigned long nr_uninterruptible;
299
300 struct task_struct *curr, *idle;
301 unsigned long next_balance;
302 struct mm_struct *prev_mm;
303
304 u64 clock, prev_clock_raw;
305 s64 clock_max_delta;
306
307 unsigned int clock_warps, clock_overflows;
308 u64 idle_clock;
309 unsigned int clock_deep_idle_events;
310 u64 tick_timestamp;
311
312 atomic_t nr_iowait;
313
314 #ifdef CONFIG_SMP
315 struct sched_domain *sd;
316
317 /* For active balancing */
318 int active_balance;
319 int push_cpu;
320 int cpu; /* cpu of this runqueue */
321
322 struct task_struct *migration_thread;
323 struct list_head migration_queue;
324 #endif
325
326 #ifdef CONFIG_SCHEDSTATS
327 /* latency stats */
328 struct sched_info rq_sched_info;
329
330 /* sys_sched_yield() stats */
331 unsigned long yld_exp_empty;
332 unsigned long yld_act_empty;
333 unsigned long yld_both_empty;
334 unsigned long yld_count;
335
336 /* schedule() stats */
337 unsigned long sched_switch;
338 unsigned long sched_count;
339 unsigned long sched_goidle;
340
341 /* try_to_wake_up() stats */
342 unsigned long ttwu_count;
343 unsigned long ttwu_local;
344
345 /* BKL stats */
346 unsigned long bkl_count;
347 #endif
348 struct lock_class_key rq_lock_key;
349 };
350
351 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
352 static DEFINE_MUTEX(sched_hotcpu_mutex);
353
354 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
355 {
356 rq->curr->sched_class->check_preempt_curr(rq, p);
357 }
358
359 static inline int cpu_of(struct rq *rq)
360 {
361 #ifdef CONFIG_SMP
362 return rq->cpu;
363 #else
364 return 0;
365 #endif
366 }
367
368 /*
369 * Update the per-runqueue clock, as finegrained as the platform can give
370 * us, but without assuming monotonicity, etc.:
371 */
372 static void __update_rq_clock(struct rq *rq)
373 {
374 u64 prev_raw = rq->prev_clock_raw;
375 u64 now = sched_clock();
376 s64 delta = now - prev_raw;
377 u64 clock = rq->clock;
378
379 #ifdef CONFIG_SCHED_DEBUG
380 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
381 #endif
382 /*
383 * Protect against sched_clock() occasionally going backwards:
384 */
385 if (unlikely(delta < 0)) {
386 clock++;
387 rq->clock_warps++;
388 } else {
389 /*
390 * Catch too large forward jumps too:
391 */
392 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
393 if (clock < rq->tick_timestamp + TICK_NSEC)
394 clock = rq->tick_timestamp + TICK_NSEC;
395 else
396 clock++;
397 rq->clock_overflows++;
398 } else {
399 if (unlikely(delta > rq->clock_max_delta))
400 rq->clock_max_delta = delta;
401 clock += delta;
402 }
403 }
404
405 rq->prev_clock_raw = now;
406 rq->clock = clock;
407 }
408
409 static void update_rq_clock(struct rq *rq)
410 {
411 if (likely(smp_processor_id() == cpu_of(rq)))
412 __update_rq_clock(rq);
413 }
414
415 /*
416 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
417 * See detach_destroy_domains: synchronize_sched for details.
418 *
419 * The domain tree of any CPU may only be accessed from within
420 * preempt-disabled sections.
421 */
422 #define for_each_domain(cpu, __sd) \
423 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
424
425 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
426 #define this_rq() (&__get_cpu_var(runqueues))
427 #define task_rq(p) cpu_rq(task_cpu(p))
428 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
429
430 /*
431 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
432 */
433 #ifdef CONFIG_SCHED_DEBUG
434 # define const_debug __read_mostly
435 #else
436 # define const_debug static const
437 #endif
438
439 /*
440 * Debugging: various feature bits
441 */
442 enum {
443 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
444 SCHED_FEAT_START_DEBIT = 2,
445 SCHED_FEAT_TREE_AVG = 4,
446 SCHED_FEAT_APPROX_AVG = 8,
447 SCHED_FEAT_WAKEUP_PREEMPT = 16,
448 SCHED_FEAT_PREEMPT_RESTRICT = 32,
449 };
450
451 const_debug unsigned int sysctl_sched_features =
452 SCHED_FEAT_NEW_FAIR_SLEEPERS *1 |
453 SCHED_FEAT_START_DEBIT *1 |
454 SCHED_FEAT_TREE_AVG *0 |
455 SCHED_FEAT_APPROX_AVG *0 |
456 SCHED_FEAT_WAKEUP_PREEMPT *1 |
457 SCHED_FEAT_PREEMPT_RESTRICT *1;
458
459 #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
460
461 /*
462 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
463 * clock constructed from sched_clock():
464 */
465 unsigned long long cpu_clock(int cpu)
466 {
467 unsigned long long now;
468 unsigned long flags;
469 struct rq *rq;
470
471 local_irq_save(flags);
472 rq = cpu_rq(cpu);
473 update_rq_clock(rq);
474 now = rq->clock;
475 local_irq_restore(flags);
476
477 return now;
478 }
479 EXPORT_SYMBOL_GPL(cpu_clock);
480
481 #ifndef prepare_arch_switch
482 # define prepare_arch_switch(next) do { } while (0)
483 #endif
484 #ifndef finish_arch_switch
485 # define finish_arch_switch(prev) do { } while (0)
486 #endif
487
488 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
489 static inline int task_running(struct rq *rq, struct task_struct *p)
490 {
491 return rq->curr == p;
492 }
493
494 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
495 {
496 }
497
498 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
499 {
500 #ifdef CONFIG_DEBUG_SPINLOCK
501 /* this is a valid case when another task releases the spinlock */
502 rq->lock.owner = current;
503 #endif
504 /*
505 * If we are tracking spinlock dependencies then we have to
506 * fix up the runqueue lock - which gets 'carried over' from
507 * prev into current:
508 */
509 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
510
511 spin_unlock_irq(&rq->lock);
512 }
513
514 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
515 static inline int task_running(struct rq *rq, struct task_struct *p)
516 {
517 #ifdef CONFIG_SMP
518 return p->oncpu;
519 #else
520 return rq->curr == p;
521 #endif
522 }
523
524 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
525 {
526 #ifdef CONFIG_SMP
527 /*
528 * We can optimise this out completely for !SMP, because the
529 * SMP rebalancing from interrupt is the only thing that cares
530 * here.
531 */
532 next->oncpu = 1;
533 #endif
534 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
535 spin_unlock_irq(&rq->lock);
536 #else
537 spin_unlock(&rq->lock);
538 #endif
539 }
540
541 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
542 {
543 #ifdef CONFIG_SMP
544 /*
545 * After ->oncpu is cleared, the task can be moved to a different CPU.
546 * We must ensure this doesn't happen until the switch is completely
547 * finished.
548 */
549 smp_wmb();
550 prev->oncpu = 0;
551 #endif
552 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
553 local_irq_enable();
554 #endif
555 }
556 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
557
558 /*
559 * __task_rq_lock - lock the runqueue a given task resides on.
560 * Must be called interrupts disabled.
561 */
562 static inline struct rq *__task_rq_lock(struct task_struct *p)
563 __acquires(rq->lock)
564 {
565 for (;;) {
566 struct rq *rq = task_rq(p);
567 spin_lock(&rq->lock);
568 if (likely(rq == task_rq(p)))
569 return rq;
570 spin_unlock(&rq->lock);
571 }
572 }
573
574 /*
575 * task_rq_lock - lock the runqueue a given task resides on and disable
576 * interrupts. Note the ordering: we can safely lookup the task_rq without
577 * explicitly disabling preemption.
578 */
579 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
580 __acquires(rq->lock)
581 {
582 struct rq *rq;
583
584 for (;;) {
585 local_irq_save(*flags);
586 rq = task_rq(p);
587 spin_lock(&rq->lock);
588 if (likely(rq == task_rq(p)))
589 return rq;
590 spin_unlock_irqrestore(&rq->lock, *flags);
591 }
592 }
593
594 static void __task_rq_unlock(struct rq *rq)
595 __releases(rq->lock)
596 {
597 spin_unlock(&rq->lock);
598 }
599
600 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
601 __releases(rq->lock)
602 {
603 spin_unlock_irqrestore(&rq->lock, *flags);
604 }
605
606 /*
607 * this_rq_lock - lock this runqueue and disable interrupts.
608 */
609 static struct rq *this_rq_lock(void)
610 __acquires(rq->lock)
611 {
612 struct rq *rq;
613
614 local_irq_disable();
615 rq = this_rq();
616 spin_lock(&rq->lock);
617
618 return rq;
619 }
620
621 /*
622 * We are going deep-idle (irqs are disabled):
623 */
624 void sched_clock_idle_sleep_event(void)
625 {
626 struct rq *rq = cpu_rq(smp_processor_id());
627
628 spin_lock(&rq->lock);
629 __update_rq_clock(rq);
630 spin_unlock(&rq->lock);
631 rq->clock_deep_idle_events++;
632 }
633 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
634
635 /*
636 * We just idled delta nanoseconds (called with irqs disabled):
637 */
638 void sched_clock_idle_wakeup_event(u64 delta_ns)
639 {
640 struct rq *rq = cpu_rq(smp_processor_id());
641 u64 now = sched_clock();
642
643 rq->idle_clock += delta_ns;
644 /*
645 * Override the previous timestamp and ignore all
646 * sched_clock() deltas that occured while we idled,
647 * and use the PM-provided delta_ns to advance the
648 * rq clock:
649 */
650 spin_lock(&rq->lock);
651 rq->prev_clock_raw = now;
652 rq->clock += delta_ns;
653 spin_unlock(&rq->lock);
654 }
655 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
656
657 /*
658 * resched_task - mark a task 'to be rescheduled now'.
659 *
660 * On UP this means the setting of the need_resched flag, on SMP it
661 * might also involve a cross-CPU call to trigger the scheduler on
662 * the target CPU.
663 */
664 #ifdef CONFIG_SMP
665
666 #ifndef tsk_is_polling
667 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
668 #endif
669
670 static void resched_task(struct task_struct *p)
671 {
672 int cpu;
673
674 assert_spin_locked(&task_rq(p)->lock);
675
676 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
677 return;
678
679 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
680
681 cpu = task_cpu(p);
682 if (cpu == smp_processor_id())
683 return;
684
685 /* NEED_RESCHED must be visible before we test polling */
686 smp_mb();
687 if (!tsk_is_polling(p))
688 smp_send_reschedule(cpu);
689 }
690
691 static void resched_cpu(int cpu)
692 {
693 struct rq *rq = cpu_rq(cpu);
694 unsigned long flags;
695
696 if (!spin_trylock_irqsave(&rq->lock, flags))
697 return;
698 resched_task(cpu_curr(cpu));
699 spin_unlock_irqrestore(&rq->lock, flags);
700 }
701 #else
702 static inline void resched_task(struct task_struct *p)
703 {
704 assert_spin_locked(&task_rq(p)->lock);
705 set_tsk_need_resched(p);
706 }
707 #endif
708
709 #if BITS_PER_LONG == 32
710 # define WMULT_CONST (~0UL)
711 #else
712 # define WMULT_CONST (1UL << 32)
713 #endif
714
715 #define WMULT_SHIFT 32
716
717 /*
718 * Shift right and round:
719 */
720 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
721
722 static unsigned long
723 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
724 struct load_weight *lw)
725 {
726 u64 tmp;
727
728 if (unlikely(!lw->inv_weight))
729 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
730
731 tmp = (u64)delta_exec * weight;
732 /*
733 * Check whether we'd overflow the 64-bit multiplication:
734 */
735 if (unlikely(tmp > WMULT_CONST))
736 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
737 WMULT_SHIFT/2);
738 else
739 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
740
741 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
742 }
743
744 static inline unsigned long
745 calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
746 {
747 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
748 }
749
750 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
751 {
752 lw->weight += inc;
753 }
754
755 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
756 {
757 lw->weight -= dec;
758 }
759
760 /*
761 * To aid in avoiding the subversion of "niceness" due to uneven distribution
762 * of tasks with abnormal "nice" values across CPUs the contribution that
763 * each task makes to its run queue's load is weighted according to its
764 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
765 * scaled version of the new time slice allocation that they receive on time
766 * slice expiry etc.
767 */
768
769 #define WEIGHT_IDLEPRIO 2
770 #define WMULT_IDLEPRIO (1 << 31)
771
772 /*
773 * Nice levels are multiplicative, with a gentle 10% change for every
774 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
775 * nice 1, it will get ~10% less CPU time than another CPU-bound task
776 * that remained on nice 0.
777 *
778 * The "10% effect" is relative and cumulative: from _any_ nice level,
779 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
780 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
781 * If a task goes up by ~10% and another task goes down by ~10% then
782 * the relative distance between them is ~25%.)
783 */
784 static const int prio_to_weight[40] = {
785 /* -20 */ 88761, 71755, 56483, 46273, 36291,
786 /* -15 */ 29154, 23254, 18705, 14949, 11916,
787 /* -10 */ 9548, 7620, 6100, 4904, 3906,
788 /* -5 */ 3121, 2501, 1991, 1586, 1277,
789 /* 0 */ 1024, 820, 655, 526, 423,
790 /* 5 */ 335, 272, 215, 172, 137,
791 /* 10 */ 110, 87, 70, 56, 45,
792 /* 15 */ 36, 29, 23, 18, 15,
793 };
794
795 /*
796 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
797 *
798 * In cases where the weight does not change often, we can use the
799 * precalculated inverse to speed up arithmetics by turning divisions
800 * into multiplications:
801 */
802 static const u32 prio_to_wmult[40] = {
803 /* -20 */ 48388, 59856, 76040, 92818, 118348,
804 /* -15 */ 147320, 184698, 229616, 287308, 360437,
805 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
806 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
807 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
808 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
809 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
810 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
811 };
812
813 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
814
815 /*
816 * runqueue iterator, to support SMP load-balancing between different
817 * scheduling classes, without having to expose their internal data
818 * structures to the load-balancing proper:
819 */
820 struct rq_iterator {
821 void *arg;
822 struct task_struct *(*start)(void *);
823 struct task_struct *(*next)(void *);
824 };
825
826 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
827 unsigned long max_nr_move, unsigned long max_load_move,
828 struct sched_domain *sd, enum cpu_idle_type idle,
829 int *all_pinned, unsigned long *load_moved,
830 int *this_best_prio, struct rq_iterator *iterator);
831
832 #include "sched_stats.h"
833 #include "sched_idletask.c"
834 #include "sched_fair.c"
835 #include "sched_rt.c"
836 #ifdef CONFIG_SCHED_DEBUG
837 # include "sched_debug.c"
838 #endif
839
840 #define sched_class_highest (&rt_sched_class)
841
842 /*
843 * Update delta_exec, delta_fair fields for rq.
844 *
845 * delta_fair clock advances at a rate inversely proportional to
846 * total load (rq->load.weight) on the runqueue, while
847 * delta_exec advances at the same rate as wall-clock (provided
848 * cpu is not idle).
849 *
850 * delta_exec / delta_fair is a measure of the (smoothened) load on this
851 * runqueue over any given interval. This (smoothened) load is used
852 * during load balance.
853 *
854 * This function is called /before/ updating rq->load
855 * and when switching tasks.
856 */
857 static inline void inc_load(struct rq *rq, const struct task_struct *p)
858 {
859 update_load_add(&rq->load, p->se.load.weight);
860 }
861
862 static inline void dec_load(struct rq *rq, const struct task_struct *p)
863 {
864 update_load_sub(&rq->load, p->se.load.weight);
865 }
866
867 static void inc_nr_running(struct task_struct *p, struct rq *rq)
868 {
869 rq->nr_running++;
870 inc_load(rq, p);
871 }
872
873 static void dec_nr_running(struct task_struct *p, struct rq *rq)
874 {
875 rq->nr_running--;
876 dec_load(rq, p);
877 }
878
879 static void set_load_weight(struct task_struct *p)
880 {
881 if (task_has_rt_policy(p)) {
882 p->se.load.weight = prio_to_weight[0] * 2;
883 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
884 return;
885 }
886
887 /*
888 * SCHED_IDLE tasks get minimal weight:
889 */
890 if (p->policy == SCHED_IDLE) {
891 p->se.load.weight = WEIGHT_IDLEPRIO;
892 p->se.load.inv_weight = WMULT_IDLEPRIO;
893 return;
894 }
895
896 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
897 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
898 }
899
900 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
901 {
902 sched_info_queued(p);
903 p->sched_class->enqueue_task(rq, p, wakeup);
904 p->se.on_rq = 1;
905 }
906
907 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
908 {
909 p->sched_class->dequeue_task(rq, p, sleep);
910 p->se.on_rq = 0;
911 }
912
913 /*
914 * __normal_prio - return the priority that is based on the static prio
915 */
916 static inline int __normal_prio(struct task_struct *p)
917 {
918 return p->static_prio;
919 }
920
921 /*
922 * Calculate the expected normal priority: i.e. priority
923 * without taking RT-inheritance into account. Might be
924 * boosted by interactivity modifiers. Changes upon fork,
925 * setprio syscalls, and whenever the interactivity
926 * estimator recalculates.
927 */
928 static inline int normal_prio(struct task_struct *p)
929 {
930 int prio;
931
932 if (task_has_rt_policy(p))
933 prio = MAX_RT_PRIO-1 - p->rt_priority;
934 else
935 prio = __normal_prio(p);
936 return prio;
937 }
938
939 /*
940 * Calculate the current priority, i.e. the priority
941 * taken into account by the scheduler. This value might
942 * be boosted by RT tasks, or might be boosted by
943 * interactivity modifiers. Will be RT if the task got
944 * RT-boosted. If not then it returns p->normal_prio.
945 */
946 static int effective_prio(struct task_struct *p)
947 {
948 p->normal_prio = normal_prio(p);
949 /*
950 * If we are RT tasks or we were boosted to RT priority,
951 * keep the priority unchanged. Otherwise, update priority
952 * to the normal priority:
953 */
954 if (!rt_prio(p->prio))
955 return p->normal_prio;
956 return p->prio;
957 }
958
959 /*
960 * activate_task - move a task to the runqueue.
961 */
962 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
963 {
964 if (p->state == TASK_UNINTERRUPTIBLE)
965 rq->nr_uninterruptible--;
966
967 enqueue_task(rq, p, wakeup);
968 inc_nr_running(p, rq);
969 }
970
971 /*
972 * deactivate_task - remove a task from the runqueue.
973 */
974 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
975 {
976 if (p->state == TASK_UNINTERRUPTIBLE)
977 rq->nr_uninterruptible++;
978
979 dequeue_task(rq, p, sleep);
980 dec_nr_running(p, rq);
981 }
982
983 /**
984 * task_curr - is this task currently executing on a CPU?
985 * @p: the task in question.
986 */
987 inline int task_curr(const struct task_struct *p)
988 {
989 return cpu_curr(task_cpu(p)) == p;
990 }
991
992 /* Used instead of source_load when we know the type == 0 */
993 unsigned long weighted_cpuload(const int cpu)
994 {
995 return cpu_rq(cpu)->load.weight;
996 }
997
998 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
999 {
1000 #ifdef CONFIG_SMP
1001 task_thread_info(p)->cpu = cpu;
1002 #endif
1003 set_task_cfs_rq(p);
1004 }
1005
1006 #ifdef CONFIG_SMP
1007
1008 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1009 {
1010 int old_cpu = task_cpu(p);
1011 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1012 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1013 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1014 u64 clock_offset;
1015
1016 clock_offset = old_rq->clock - new_rq->clock;
1017
1018 #ifdef CONFIG_SCHEDSTATS
1019 if (p->se.wait_start)
1020 p->se.wait_start -= clock_offset;
1021 if (p->se.sleep_start)
1022 p->se.sleep_start -= clock_offset;
1023 if (p->se.block_start)
1024 p->se.block_start -= clock_offset;
1025 #endif
1026 p->se.vruntime -= old_cfsrq->min_vruntime -
1027 new_cfsrq->min_vruntime;
1028
1029 __set_task_cpu(p, new_cpu);
1030 }
1031
1032 struct migration_req {
1033 struct list_head list;
1034
1035 struct task_struct *task;
1036 int dest_cpu;
1037
1038 struct completion done;
1039 };
1040
1041 /*
1042 * The task's runqueue lock must be held.
1043 * Returns true if you have to wait for migration thread.
1044 */
1045 static int
1046 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1047 {
1048 struct rq *rq = task_rq(p);
1049
1050 /*
1051 * If the task is not on a runqueue (and not running), then
1052 * it is sufficient to simply update the task's cpu field.
1053 */
1054 if (!p->se.on_rq && !task_running(rq, p)) {
1055 set_task_cpu(p, dest_cpu);
1056 return 0;
1057 }
1058
1059 init_completion(&req->done);
1060 req->task = p;
1061 req->dest_cpu = dest_cpu;
1062 list_add(&req->list, &rq->migration_queue);
1063
1064 return 1;
1065 }
1066
1067 /*
1068 * wait_task_inactive - wait for a thread to unschedule.
1069 *
1070 * The caller must ensure that the task *will* unschedule sometime soon,
1071 * else this function might spin for a *long* time. This function can't
1072 * be called with interrupts off, or it may introduce deadlock with
1073 * smp_call_function() if an IPI is sent by the same process we are
1074 * waiting to become inactive.
1075 */
1076 void wait_task_inactive(struct task_struct *p)
1077 {
1078 unsigned long flags;
1079 int running, on_rq;
1080 struct rq *rq;
1081
1082 for (;;) {
1083 /*
1084 * We do the initial early heuristics without holding
1085 * any task-queue locks at all. We'll only try to get
1086 * the runqueue lock when things look like they will
1087 * work out!
1088 */
1089 rq = task_rq(p);
1090
1091 /*
1092 * If the task is actively running on another CPU
1093 * still, just relax and busy-wait without holding
1094 * any locks.
1095 *
1096 * NOTE! Since we don't hold any locks, it's not
1097 * even sure that "rq" stays as the right runqueue!
1098 * But we don't care, since "task_running()" will
1099 * return false if the runqueue has changed and p
1100 * is actually now running somewhere else!
1101 */
1102 while (task_running(rq, p))
1103 cpu_relax();
1104
1105 /*
1106 * Ok, time to look more closely! We need the rq
1107 * lock now, to be *sure*. If we're wrong, we'll
1108 * just go back and repeat.
1109 */
1110 rq = task_rq_lock(p, &flags);
1111 running = task_running(rq, p);
1112 on_rq = p->se.on_rq;
1113 task_rq_unlock(rq, &flags);
1114
1115 /*
1116 * Was it really running after all now that we
1117 * checked with the proper locks actually held?
1118 *
1119 * Oops. Go back and try again..
1120 */
1121 if (unlikely(running)) {
1122 cpu_relax();
1123 continue;
1124 }
1125
1126 /*
1127 * It's not enough that it's not actively running,
1128 * it must be off the runqueue _entirely_, and not
1129 * preempted!
1130 *
1131 * So if it wa still runnable (but just not actively
1132 * running right now), it's preempted, and we should
1133 * yield - it could be a while.
1134 */
1135 if (unlikely(on_rq)) {
1136 schedule_timeout_uninterruptible(1);
1137 continue;
1138 }
1139
1140 /*
1141 * Ahh, all good. It wasn't running, and it wasn't
1142 * runnable, which means that it will never become
1143 * running in the future either. We're all done!
1144 */
1145 break;
1146 }
1147 }
1148
1149 /***
1150 * kick_process - kick a running thread to enter/exit the kernel
1151 * @p: the to-be-kicked thread
1152 *
1153 * Cause a process which is running on another CPU to enter
1154 * kernel-mode, without any delay. (to get signals handled.)
1155 *
1156 * NOTE: this function doesnt have to take the runqueue lock,
1157 * because all it wants to ensure is that the remote task enters
1158 * the kernel. If the IPI races and the task has been migrated
1159 * to another CPU then no harm is done and the purpose has been
1160 * achieved as well.
1161 */
1162 void kick_process(struct task_struct *p)
1163 {
1164 int cpu;
1165
1166 preempt_disable();
1167 cpu = task_cpu(p);
1168 if ((cpu != smp_processor_id()) && task_curr(p))
1169 smp_send_reschedule(cpu);
1170 preempt_enable();
1171 }
1172
1173 /*
1174 * Return a low guess at the load of a migration-source cpu weighted
1175 * according to the scheduling class and "nice" value.
1176 *
1177 * We want to under-estimate the load of migration sources, to
1178 * balance conservatively.
1179 */
1180 static unsigned long source_load(int cpu, int type)
1181 {
1182 struct rq *rq = cpu_rq(cpu);
1183 unsigned long total = weighted_cpuload(cpu);
1184
1185 if (type == 0)
1186 return total;
1187
1188 return min(rq->cpu_load[type-1], total);
1189 }
1190
1191 /*
1192 * Return a high guess at the load of a migration-target cpu weighted
1193 * according to the scheduling class and "nice" value.
1194 */
1195 static unsigned long target_load(int cpu, int type)
1196 {
1197 struct rq *rq = cpu_rq(cpu);
1198 unsigned long total = weighted_cpuload(cpu);
1199
1200 if (type == 0)
1201 return total;
1202
1203 return max(rq->cpu_load[type-1], total);
1204 }
1205
1206 /*
1207 * Return the average load per task on the cpu's run queue
1208 */
1209 static inline unsigned long cpu_avg_load_per_task(int cpu)
1210 {
1211 struct rq *rq = cpu_rq(cpu);
1212 unsigned long total = weighted_cpuload(cpu);
1213 unsigned long n = rq->nr_running;
1214
1215 return n ? total / n : SCHED_LOAD_SCALE;
1216 }
1217
1218 /*
1219 * find_idlest_group finds and returns the least busy CPU group within the
1220 * domain.
1221 */
1222 static struct sched_group *
1223 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1224 {
1225 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1226 unsigned long min_load = ULONG_MAX, this_load = 0;
1227 int load_idx = sd->forkexec_idx;
1228 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1229
1230 do {
1231 unsigned long load, avg_load;
1232 int local_group;
1233 int i;
1234
1235 /* Skip over this group if it has no CPUs allowed */
1236 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1237 continue;
1238
1239 local_group = cpu_isset(this_cpu, group->cpumask);
1240
1241 /* Tally up the load of all CPUs in the group */
1242 avg_load = 0;
1243
1244 for_each_cpu_mask(i, group->cpumask) {
1245 /* Bias balancing toward cpus of our domain */
1246 if (local_group)
1247 load = source_load(i, load_idx);
1248 else
1249 load = target_load(i, load_idx);
1250
1251 avg_load += load;
1252 }
1253
1254 /* Adjust by relative CPU power of the group */
1255 avg_load = sg_div_cpu_power(group,
1256 avg_load * SCHED_LOAD_SCALE);
1257
1258 if (local_group) {
1259 this_load = avg_load;
1260 this = group;
1261 } else if (avg_load < min_load) {
1262 min_load = avg_load;
1263 idlest = group;
1264 }
1265 } while (group = group->next, group != sd->groups);
1266
1267 if (!idlest || 100*this_load < imbalance*min_load)
1268 return NULL;
1269 return idlest;
1270 }
1271
1272 /*
1273 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1274 */
1275 static int
1276 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1277 {
1278 cpumask_t tmp;
1279 unsigned long load, min_load = ULONG_MAX;
1280 int idlest = -1;
1281 int i;
1282
1283 /* Traverse only the allowed CPUs */
1284 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1285
1286 for_each_cpu_mask(i, tmp) {
1287 load = weighted_cpuload(i);
1288
1289 if (load < min_load || (load == min_load && i == this_cpu)) {
1290 min_load = load;
1291 idlest = i;
1292 }
1293 }
1294
1295 return idlest;
1296 }
1297
1298 /*
1299 * sched_balance_self: balance the current task (running on cpu) in domains
1300 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1301 * SD_BALANCE_EXEC.
1302 *
1303 * Balance, ie. select the least loaded group.
1304 *
1305 * Returns the target CPU number, or the same CPU if no balancing is needed.
1306 *
1307 * preempt must be disabled.
1308 */
1309 static int sched_balance_self(int cpu, int flag)
1310 {
1311 struct task_struct *t = current;
1312 struct sched_domain *tmp, *sd = NULL;
1313
1314 for_each_domain(cpu, tmp) {
1315 /*
1316 * If power savings logic is enabled for a domain, stop there.
1317 */
1318 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1319 break;
1320 if (tmp->flags & flag)
1321 sd = tmp;
1322 }
1323
1324 while (sd) {
1325 cpumask_t span;
1326 struct sched_group *group;
1327 int new_cpu, weight;
1328
1329 if (!(sd->flags & flag)) {
1330 sd = sd->child;
1331 continue;
1332 }
1333
1334 span = sd->span;
1335 group = find_idlest_group(sd, t, cpu);
1336 if (!group) {
1337 sd = sd->child;
1338 continue;
1339 }
1340
1341 new_cpu = find_idlest_cpu(group, t, cpu);
1342 if (new_cpu == -1 || new_cpu == cpu) {
1343 /* Now try balancing at a lower domain level of cpu */
1344 sd = sd->child;
1345 continue;
1346 }
1347
1348 /* Now try balancing at a lower domain level of new_cpu */
1349 cpu = new_cpu;
1350 sd = NULL;
1351 weight = cpus_weight(span);
1352 for_each_domain(cpu, tmp) {
1353 if (weight <= cpus_weight(tmp->span))
1354 break;
1355 if (tmp->flags & flag)
1356 sd = tmp;
1357 }
1358 /* while loop will break here if sd == NULL */
1359 }
1360
1361 return cpu;
1362 }
1363
1364 #endif /* CONFIG_SMP */
1365
1366 /*
1367 * wake_idle() will wake a task on an idle cpu if task->cpu is
1368 * not idle and an idle cpu is available. The span of cpus to
1369 * search starts with cpus closest then further out as needed,
1370 * so we always favor a closer, idle cpu.
1371 *
1372 * Returns the CPU we should wake onto.
1373 */
1374 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1375 static int wake_idle(int cpu, struct task_struct *p)
1376 {
1377 cpumask_t tmp;
1378 struct sched_domain *sd;
1379 int i;
1380
1381 /*
1382 * If it is idle, then it is the best cpu to run this task.
1383 *
1384 * This cpu is also the best, if it has more than one task already.
1385 * Siblings must be also busy(in most cases) as they didn't already
1386 * pickup the extra load from this cpu and hence we need not check
1387 * sibling runqueue info. This will avoid the checks and cache miss
1388 * penalities associated with that.
1389 */
1390 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1391 return cpu;
1392
1393 for_each_domain(cpu, sd) {
1394 if (sd->flags & SD_WAKE_IDLE) {
1395 cpus_and(tmp, sd->span, p->cpus_allowed);
1396 for_each_cpu_mask(i, tmp) {
1397 if (idle_cpu(i))
1398 return i;
1399 }
1400 } else {
1401 break;
1402 }
1403 }
1404 return cpu;
1405 }
1406 #else
1407 static inline int wake_idle(int cpu, struct task_struct *p)
1408 {
1409 return cpu;
1410 }
1411 #endif
1412
1413 /***
1414 * try_to_wake_up - wake up a thread
1415 * @p: the to-be-woken-up thread
1416 * @state: the mask of task states that can be woken
1417 * @sync: do a synchronous wakeup?
1418 *
1419 * Put it on the run-queue if it's not already there. The "current"
1420 * thread is always on the run-queue (except when the actual
1421 * re-schedule is in progress), and as such you're allowed to do
1422 * the simpler "current->state = TASK_RUNNING" to mark yourself
1423 * runnable without the overhead of this.
1424 *
1425 * returns failure only if the task is already active.
1426 */
1427 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1428 {
1429 int cpu, this_cpu, success = 0;
1430 unsigned long flags;
1431 long old_state;
1432 struct rq *rq;
1433 #ifdef CONFIG_SMP
1434 struct sched_domain *sd, *this_sd = NULL;
1435 unsigned long load, this_load;
1436 int new_cpu;
1437 #endif
1438
1439 rq = task_rq_lock(p, &flags);
1440 old_state = p->state;
1441 if (!(old_state & state))
1442 goto out;
1443
1444 if (p->se.on_rq)
1445 goto out_running;
1446
1447 cpu = task_cpu(p);
1448 this_cpu = smp_processor_id();
1449
1450 #ifdef CONFIG_SMP
1451 if (unlikely(task_running(rq, p)))
1452 goto out_activate;
1453
1454 new_cpu = cpu;
1455
1456 schedstat_inc(rq, ttwu_count);
1457 if (cpu == this_cpu) {
1458 schedstat_inc(rq, ttwu_local);
1459 goto out_set_cpu;
1460 }
1461
1462 for_each_domain(this_cpu, sd) {
1463 if (cpu_isset(cpu, sd->span)) {
1464 schedstat_inc(sd, ttwu_wake_remote);
1465 this_sd = sd;
1466 break;
1467 }
1468 }
1469
1470 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1471 goto out_set_cpu;
1472
1473 /*
1474 * Check for affine wakeup and passive balancing possibilities.
1475 */
1476 if (this_sd) {
1477 int idx = this_sd->wake_idx;
1478 unsigned int imbalance;
1479
1480 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1481
1482 load = source_load(cpu, idx);
1483 this_load = target_load(this_cpu, idx);
1484
1485 new_cpu = this_cpu; /* Wake to this CPU if we can */
1486
1487 if (this_sd->flags & SD_WAKE_AFFINE) {
1488 unsigned long tl = this_load;
1489 unsigned long tl_per_task;
1490
1491 tl_per_task = cpu_avg_load_per_task(this_cpu);
1492
1493 /*
1494 * If sync wakeup then subtract the (maximum possible)
1495 * effect of the currently running task from the load
1496 * of the current CPU:
1497 */
1498 if (sync)
1499 tl -= current->se.load.weight;
1500
1501 if ((tl <= load &&
1502 tl + target_load(cpu, idx) <= tl_per_task) ||
1503 100*(tl + p->se.load.weight) <= imbalance*load) {
1504 /*
1505 * This domain has SD_WAKE_AFFINE and
1506 * p is cache cold in this domain, and
1507 * there is no bad imbalance.
1508 */
1509 schedstat_inc(this_sd, ttwu_move_affine);
1510 goto out_set_cpu;
1511 }
1512 }
1513
1514 /*
1515 * Start passive balancing when half the imbalance_pct
1516 * limit is reached.
1517 */
1518 if (this_sd->flags & SD_WAKE_BALANCE) {
1519 if (imbalance*this_load <= 100*load) {
1520 schedstat_inc(this_sd, ttwu_move_balance);
1521 goto out_set_cpu;
1522 }
1523 }
1524 }
1525
1526 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1527 out_set_cpu:
1528 new_cpu = wake_idle(new_cpu, p);
1529 if (new_cpu != cpu) {
1530 set_task_cpu(p, new_cpu);
1531 task_rq_unlock(rq, &flags);
1532 /* might preempt at this point */
1533 rq = task_rq_lock(p, &flags);
1534 old_state = p->state;
1535 if (!(old_state & state))
1536 goto out;
1537 if (p->se.on_rq)
1538 goto out_running;
1539
1540 this_cpu = smp_processor_id();
1541 cpu = task_cpu(p);
1542 }
1543
1544 out_activate:
1545 #endif /* CONFIG_SMP */
1546 update_rq_clock(rq);
1547 activate_task(rq, p, 1);
1548 /*
1549 * Sync wakeups (i.e. those types of wakeups where the waker
1550 * has indicated that it will leave the CPU in short order)
1551 * don't trigger a preemption, if the woken up task will run on
1552 * this cpu. (in this case the 'I will reschedule' promise of
1553 * the waker guarantees that the freshly woken up task is going
1554 * to be considered on this CPU.)
1555 */
1556 if (!sync || cpu != this_cpu)
1557 check_preempt_curr(rq, p);
1558 success = 1;
1559
1560 out_running:
1561 p->state = TASK_RUNNING;
1562 out:
1563 task_rq_unlock(rq, &flags);
1564
1565 return success;
1566 }
1567
1568 int fastcall wake_up_process(struct task_struct *p)
1569 {
1570 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1571 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1572 }
1573 EXPORT_SYMBOL(wake_up_process);
1574
1575 int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1576 {
1577 return try_to_wake_up(p, state, 0);
1578 }
1579
1580 /*
1581 * Perform scheduler related setup for a newly forked process p.
1582 * p is forked by current.
1583 *
1584 * __sched_fork() is basic setup used by init_idle() too:
1585 */
1586 static void __sched_fork(struct task_struct *p)
1587 {
1588 p->se.exec_start = 0;
1589 p->se.sum_exec_runtime = 0;
1590 p->se.prev_sum_exec_runtime = 0;
1591
1592 #ifdef CONFIG_SCHEDSTATS
1593 p->se.wait_start = 0;
1594 p->se.sum_sleep_runtime = 0;
1595 p->se.sleep_start = 0;
1596 p->se.block_start = 0;
1597 p->se.sleep_max = 0;
1598 p->se.block_max = 0;
1599 p->se.exec_max = 0;
1600 p->se.slice_max = 0;
1601 p->se.wait_max = 0;
1602 #endif
1603
1604 INIT_LIST_HEAD(&p->run_list);
1605 p->se.on_rq = 0;
1606
1607 #ifdef CONFIG_PREEMPT_NOTIFIERS
1608 INIT_HLIST_HEAD(&p->preempt_notifiers);
1609 #endif
1610
1611 /*
1612 * We mark the process as running here, but have not actually
1613 * inserted it onto the runqueue yet. This guarantees that
1614 * nobody will actually run it, and a signal or other external
1615 * event cannot wake it up and insert it on the runqueue either.
1616 */
1617 p->state = TASK_RUNNING;
1618 }
1619
1620 /*
1621 * fork()/clone()-time setup:
1622 */
1623 void sched_fork(struct task_struct *p, int clone_flags)
1624 {
1625 int cpu = get_cpu();
1626
1627 __sched_fork(p);
1628
1629 #ifdef CONFIG_SMP
1630 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1631 #endif
1632 set_task_cpu(p, cpu);
1633
1634 /*
1635 * Make sure we do not leak PI boosting priority to the child:
1636 */
1637 p->prio = current->normal_prio;
1638 if (!rt_prio(p->prio))
1639 p->sched_class = &fair_sched_class;
1640
1641 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1642 if (likely(sched_info_on()))
1643 memset(&p->sched_info, 0, sizeof(p->sched_info));
1644 #endif
1645 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1646 p->oncpu = 0;
1647 #endif
1648 #ifdef CONFIG_PREEMPT
1649 /* Want to start with kernel preemption disabled. */
1650 task_thread_info(p)->preempt_count = 1;
1651 #endif
1652 put_cpu();
1653 }
1654
1655 /*
1656 * wake_up_new_task - wake up a newly created task for the first time.
1657 *
1658 * This function will do some initial scheduler statistics housekeeping
1659 * that must be done for every newly created context, then puts the task
1660 * on the runqueue and wakes it.
1661 */
1662 void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1663 {
1664 unsigned long flags;
1665 struct rq *rq;
1666
1667 rq = task_rq_lock(p, &flags);
1668 BUG_ON(p->state != TASK_RUNNING);
1669 update_rq_clock(rq);
1670
1671 p->prio = effective_prio(p);
1672
1673 if (!p->sched_class->task_new || !current->se.on_rq || !rq->cfs.curr) {
1674 activate_task(rq, p, 0);
1675 } else {
1676 /*
1677 * Let the scheduling class do new task startup
1678 * management (if any):
1679 */
1680 p->sched_class->task_new(rq, p);
1681 inc_nr_running(p, rq);
1682 }
1683 check_preempt_curr(rq, p);
1684 task_rq_unlock(rq, &flags);
1685 }
1686
1687 #ifdef CONFIG_PREEMPT_NOTIFIERS
1688
1689 /**
1690 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1691 * @notifier: notifier struct to register
1692 */
1693 void preempt_notifier_register(struct preempt_notifier *notifier)
1694 {
1695 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1696 }
1697 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1698
1699 /**
1700 * preempt_notifier_unregister - no longer interested in preemption notifications
1701 * @notifier: notifier struct to unregister
1702 *
1703 * This is safe to call from within a preemption notifier.
1704 */
1705 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1706 {
1707 hlist_del(&notifier->link);
1708 }
1709 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1710
1711 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1712 {
1713 struct preempt_notifier *notifier;
1714 struct hlist_node *node;
1715
1716 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1717 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1718 }
1719
1720 static void
1721 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1722 struct task_struct *next)
1723 {
1724 struct preempt_notifier *notifier;
1725 struct hlist_node *node;
1726
1727 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1728 notifier->ops->sched_out(notifier, next);
1729 }
1730
1731 #else
1732
1733 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1734 {
1735 }
1736
1737 static void
1738 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1739 struct task_struct *next)
1740 {
1741 }
1742
1743 #endif
1744
1745 /**
1746 * prepare_task_switch - prepare to switch tasks
1747 * @rq: the runqueue preparing to switch
1748 * @prev: the current task that is being switched out
1749 * @next: the task we are going to switch to.
1750 *
1751 * This is called with the rq lock held and interrupts off. It must
1752 * be paired with a subsequent finish_task_switch after the context
1753 * switch.
1754 *
1755 * prepare_task_switch sets up locking and calls architecture specific
1756 * hooks.
1757 */
1758 static inline void
1759 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1760 struct task_struct *next)
1761 {
1762 fire_sched_out_preempt_notifiers(prev, next);
1763 prepare_lock_switch(rq, next);
1764 prepare_arch_switch(next);
1765 }
1766
1767 /**
1768 * finish_task_switch - clean up after a task-switch
1769 * @rq: runqueue associated with task-switch
1770 * @prev: the thread we just switched away from.
1771 *
1772 * finish_task_switch must be called after the context switch, paired
1773 * with a prepare_task_switch call before the context switch.
1774 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1775 * and do any other architecture-specific cleanup actions.
1776 *
1777 * Note that we may have delayed dropping an mm in context_switch(). If
1778 * so, we finish that here outside of the runqueue lock. (Doing it
1779 * with the lock held can cause deadlocks; see schedule() for
1780 * details.)
1781 */
1782 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1783 __releases(rq->lock)
1784 {
1785 struct mm_struct *mm = rq->prev_mm;
1786 long prev_state;
1787
1788 rq->prev_mm = NULL;
1789
1790 /*
1791 * A task struct has one reference for the use as "current".
1792 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1793 * schedule one last time. The schedule call will never return, and
1794 * the scheduled task must drop that reference.
1795 * The test for TASK_DEAD must occur while the runqueue locks are
1796 * still held, otherwise prev could be scheduled on another cpu, die
1797 * there before we look at prev->state, and then the reference would
1798 * be dropped twice.
1799 * Manfred Spraul <manfred@colorfullife.com>
1800 */
1801 prev_state = prev->state;
1802 finish_arch_switch(prev);
1803 finish_lock_switch(rq, prev);
1804 fire_sched_in_preempt_notifiers(current);
1805 if (mm)
1806 mmdrop(mm);
1807 if (unlikely(prev_state == TASK_DEAD)) {
1808 /*
1809 * Remove function-return probe instances associated with this
1810 * task and put them back on the free list.
1811 */
1812 kprobe_flush_task(prev);
1813 put_task_struct(prev);
1814 }
1815 }
1816
1817 /**
1818 * schedule_tail - first thing a freshly forked thread must call.
1819 * @prev: the thread we just switched away from.
1820 */
1821 asmlinkage void schedule_tail(struct task_struct *prev)
1822 __releases(rq->lock)
1823 {
1824 struct rq *rq = this_rq();
1825
1826 finish_task_switch(rq, prev);
1827 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1828 /* In this case, finish_task_switch does not reenable preemption */
1829 preempt_enable();
1830 #endif
1831 if (current->set_child_tid)
1832 put_user(current->pid, current->set_child_tid);
1833 }
1834
1835 /*
1836 * context_switch - switch to the new MM and the new
1837 * thread's register state.
1838 */
1839 static inline void
1840 context_switch(struct rq *rq, struct task_struct *prev,
1841 struct task_struct *next)
1842 {
1843 struct mm_struct *mm, *oldmm;
1844
1845 prepare_task_switch(rq, prev, next);
1846 mm = next->mm;
1847 oldmm = prev->active_mm;
1848 /*
1849 * For paravirt, this is coupled with an exit in switch_to to
1850 * combine the page table reload and the switch backend into
1851 * one hypercall.
1852 */
1853 arch_enter_lazy_cpu_mode();
1854
1855 if (unlikely(!mm)) {
1856 next->active_mm = oldmm;
1857 atomic_inc(&oldmm->mm_count);
1858 enter_lazy_tlb(oldmm, next);
1859 } else
1860 switch_mm(oldmm, mm, next);
1861
1862 if (unlikely(!prev->mm)) {
1863 prev->active_mm = NULL;
1864 rq->prev_mm = oldmm;
1865 }
1866 /*
1867 * Since the runqueue lock will be released by the next
1868 * task (which is an invalid locking op but in the case
1869 * of the scheduler it's an obvious special-case), so we
1870 * do an early lockdep release here:
1871 */
1872 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1873 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1874 #endif
1875
1876 /* Here we just switch the register state and the stack. */
1877 switch_to(prev, next, prev);
1878
1879 barrier();
1880 /*
1881 * this_rq must be evaluated again because prev may have moved
1882 * CPUs since it called schedule(), thus the 'rq' on its stack
1883 * frame will be invalid.
1884 */
1885 finish_task_switch(this_rq(), prev);
1886 }
1887
1888 /*
1889 * nr_running, nr_uninterruptible and nr_context_switches:
1890 *
1891 * externally visible scheduler statistics: current number of runnable
1892 * threads, current number of uninterruptible-sleeping threads, total
1893 * number of context switches performed since bootup.
1894 */
1895 unsigned long nr_running(void)
1896 {
1897 unsigned long i, sum = 0;
1898
1899 for_each_online_cpu(i)
1900 sum += cpu_rq(i)->nr_running;
1901
1902 return sum;
1903 }
1904
1905 unsigned long nr_uninterruptible(void)
1906 {
1907 unsigned long i, sum = 0;
1908
1909 for_each_possible_cpu(i)
1910 sum += cpu_rq(i)->nr_uninterruptible;
1911
1912 /*
1913 * Since we read the counters lockless, it might be slightly
1914 * inaccurate. Do not allow it to go below zero though:
1915 */
1916 if (unlikely((long)sum < 0))
1917 sum = 0;
1918
1919 return sum;
1920 }
1921
1922 unsigned long long nr_context_switches(void)
1923 {
1924 int i;
1925 unsigned long long sum = 0;
1926
1927 for_each_possible_cpu(i)
1928 sum += cpu_rq(i)->nr_switches;
1929
1930 return sum;
1931 }
1932
1933 unsigned long nr_iowait(void)
1934 {
1935 unsigned long i, sum = 0;
1936
1937 for_each_possible_cpu(i)
1938 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1939
1940 return sum;
1941 }
1942
1943 unsigned long nr_active(void)
1944 {
1945 unsigned long i, running = 0, uninterruptible = 0;
1946
1947 for_each_online_cpu(i) {
1948 running += cpu_rq(i)->nr_running;
1949 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1950 }
1951
1952 if (unlikely((long)uninterruptible < 0))
1953 uninterruptible = 0;
1954
1955 return running + uninterruptible;
1956 }
1957
1958 /*
1959 * Update rq->cpu_load[] statistics. This function is usually called every
1960 * scheduler tick (TICK_NSEC).
1961 */
1962 static void update_cpu_load(struct rq *this_rq)
1963 {
1964 unsigned long this_load = this_rq->load.weight;
1965 int i, scale;
1966
1967 this_rq->nr_load_updates++;
1968
1969 /* Update our load: */
1970 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
1971 unsigned long old_load, new_load;
1972
1973 /* scale is effectively 1 << i now, and >> i divides by scale */
1974
1975 old_load = this_rq->cpu_load[i];
1976 new_load = this_load;
1977 /*
1978 * Round up the averaging division if load is increasing. This
1979 * prevents us from getting stuck on 9 if the load is 10, for
1980 * example.
1981 */
1982 if (new_load > old_load)
1983 new_load += scale-1;
1984 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
1985 }
1986 }
1987
1988 #ifdef CONFIG_SMP
1989
1990 /*
1991 * double_rq_lock - safely lock two runqueues
1992 *
1993 * Note this does not disable interrupts like task_rq_lock,
1994 * you need to do so manually before calling.
1995 */
1996 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1997 __acquires(rq1->lock)
1998 __acquires(rq2->lock)
1999 {
2000 BUG_ON(!irqs_disabled());
2001 if (rq1 == rq2) {
2002 spin_lock(&rq1->lock);
2003 __acquire(rq2->lock); /* Fake it out ;) */
2004 } else {
2005 if (rq1 < rq2) {
2006 spin_lock(&rq1->lock);
2007 spin_lock(&rq2->lock);
2008 } else {
2009 spin_lock(&rq2->lock);
2010 spin_lock(&rq1->lock);
2011 }
2012 }
2013 update_rq_clock(rq1);
2014 update_rq_clock(rq2);
2015 }
2016
2017 /*
2018 * double_rq_unlock - safely unlock two runqueues
2019 *
2020 * Note this does not restore interrupts like task_rq_unlock,
2021 * you need to do so manually after calling.
2022 */
2023 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2024 __releases(rq1->lock)
2025 __releases(rq2->lock)
2026 {
2027 spin_unlock(&rq1->lock);
2028 if (rq1 != rq2)
2029 spin_unlock(&rq2->lock);
2030 else
2031 __release(rq2->lock);
2032 }
2033
2034 /*
2035 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2036 */
2037 static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
2038 __releases(this_rq->lock)
2039 __acquires(busiest->lock)
2040 __acquires(this_rq->lock)
2041 {
2042 if (unlikely(!irqs_disabled())) {
2043 /* printk() doesn't work good under rq->lock */
2044 spin_unlock(&this_rq->lock);
2045 BUG_ON(1);
2046 }
2047 if (unlikely(!spin_trylock(&busiest->lock))) {
2048 if (busiest < this_rq) {
2049 spin_unlock(&this_rq->lock);
2050 spin_lock(&busiest->lock);
2051 spin_lock(&this_rq->lock);
2052 } else
2053 spin_lock(&busiest->lock);
2054 }
2055 }
2056
2057 /*
2058 * If dest_cpu is allowed for this process, migrate the task to it.
2059 * This is accomplished by forcing the cpu_allowed mask to only
2060 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2061 * the cpu_allowed mask is restored.
2062 */
2063 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2064 {
2065 struct migration_req req;
2066 unsigned long flags;
2067 struct rq *rq;
2068
2069 rq = task_rq_lock(p, &flags);
2070 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2071 || unlikely(cpu_is_offline(dest_cpu)))
2072 goto out;
2073
2074 /* force the process onto the specified CPU */
2075 if (migrate_task(p, dest_cpu, &req)) {
2076 /* Need to wait for migration thread (might exit: take ref). */
2077 struct task_struct *mt = rq->migration_thread;
2078
2079 get_task_struct(mt);
2080 task_rq_unlock(rq, &flags);
2081 wake_up_process(mt);
2082 put_task_struct(mt);
2083 wait_for_completion(&req.done);
2084
2085 return;
2086 }
2087 out:
2088 task_rq_unlock(rq, &flags);
2089 }
2090
2091 /*
2092 * sched_exec - execve() is a valuable balancing opportunity, because at
2093 * this point the task has the smallest effective memory and cache footprint.
2094 */
2095 void sched_exec(void)
2096 {
2097 int new_cpu, this_cpu = get_cpu();
2098 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2099 put_cpu();
2100 if (new_cpu != this_cpu)
2101 sched_migrate_task(current, new_cpu);
2102 }
2103
2104 /*
2105 * pull_task - move a task from a remote runqueue to the local runqueue.
2106 * Both runqueues must be locked.
2107 */
2108 static void pull_task(struct rq *src_rq, struct task_struct *p,
2109 struct rq *this_rq, int this_cpu)
2110 {
2111 deactivate_task(src_rq, p, 0);
2112 set_task_cpu(p, this_cpu);
2113 activate_task(this_rq, p, 0);
2114 /*
2115 * Note that idle threads have a prio of MAX_PRIO, for this test
2116 * to be always true for them.
2117 */
2118 check_preempt_curr(this_rq, p);
2119 }
2120
2121 /*
2122 * Is this task likely cache-hot:
2123 */
2124 static inline int
2125 task_hot(struct task_struct *p, unsigned long long now, struct sched_domain *sd)
2126 {
2127 s64 delta = now - p->se.exec_start;
2128
2129 return delta < (long long)sysctl_sched_migration_cost;
2130 }
2131
2132 /*
2133 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2134 */
2135 static
2136 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2137 struct sched_domain *sd, enum cpu_idle_type idle,
2138 int *all_pinned)
2139 {
2140 /*
2141 * We do not migrate tasks that are:
2142 * 1) running (obviously), or
2143 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2144 * 3) are cache-hot on their current CPU.
2145 */
2146 if (!cpu_isset(this_cpu, p->cpus_allowed))
2147 return 0;
2148 *all_pinned = 0;
2149
2150 if (task_running(rq, p))
2151 return 0;
2152
2153 /*
2154 * Aggressive migration if:
2155 * 1) task is cache cold, or
2156 * 2) too many balance attempts have failed.
2157 */
2158
2159 if (sd->nr_balance_failed > sd->cache_nice_tries) {
2160 #ifdef CONFIG_SCHEDSTATS
2161 if (task_hot(p, rq->clock, sd))
2162 schedstat_inc(sd, lb_hot_gained[idle]);
2163 #endif
2164 return 1;
2165 }
2166
2167 if (task_hot(p, rq->clock, sd))
2168 return 0;
2169 return 1;
2170 }
2171
2172 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2173 unsigned long max_nr_move, unsigned long max_load_move,
2174 struct sched_domain *sd, enum cpu_idle_type idle,
2175 int *all_pinned, unsigned long *load_moved,
2176 int *this_best_prio, struct rq_iterator *iterator)
2177 {
2178 int pulled = 0, pinned = 0, skip_for_load;
2179 struct task_struct *p;
2180 long rem_load_move = max_load_move;
2181
2182 if (max_nr_move == 0 || max_load_move == 0)
2183 goto out;
2184
2185 pinned = 1;
2186
2187 /*
2188 * Start the load-balancing iterator:
2189 */
2190 p = iterator->start(iterator->arg);
2191 next:
2192 if (!p)
2193 goto out;
2194 /*
2195 * To help distribute high priority tasks accross CPUs we don't
2196 * skip a task if it will be the highest priority task (i.e. smallest
2197 * prio value) on its new queue regardless of its load weight
2198 */
2199 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2200 SCHED_LOAD_SCALE_FUZZ;
2201 if ((skip_for_load && p->prio >= *this_best_prio) ||
2202 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2203 p = iterator->next(iterator->arg);
2204 goto next;
2205 }
2206
2207 pull_task(busiest, p, this_rq, this_cpu);
2208 pulled++;
2209 rem_load_move -= p->se.load.weight;
2210
2211 /*
2212 * We only want to steal up to the prescribed number of tasks
2213 * and the prescribed amount of weighted load.
2214 */
2215 if (pulled < max_nr_move && rem_load_move > 0) {
2216 if (p->prio < *this_best_prio)
2217 *this_best_prio = p->prio;
2218 p = iterator->next(iterator->arg);
2219 goto next;
2220 }
2221 out:
2222 /*
2223 * Right now, this is the only place pull_task() is called,
2224 * so we can safely collect pull_task() stats here rather than
2225 * inside pull_task().
2226 */
2227 schedstat_add(sd, lb_gained[idle], pulled);
2228
2229 if (all_pinned)
2230 *all_pinned = pinned;
2231 *load_moved = max_load_move - rem_load_move;
2232 return pulled;
2233 }
2234
2235 /*
2236 * move_tasks tries to move up to max_load_move weighted load from busiest to
2237 * this_rq, as part of a balancing operation within domain "sd".
2238 * Returns 1 if successful and 0 otherwise.
2239 *
2240 * Called with both runqueues locked.
2241 */
2242 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2243 unsigned long max_load_move,
2244 struct sched_domain *sd, enum cpu_idle_type idle,
2245 int *all_pinned)
2246 {
2247 const struct sched_class *class = sched_class_highest;
2248 unsigned long total_load_moved = 0;
2249 int this_best_prio = this_rq->curr->prio;
2250
2251 do {
2252 total_load_moved +=
2253 class->load_balance(this_rq, this_cpu, busiest,
2254 ULONG_MAX, max_load_move - total_load_moved,
2255 sd, idle, all_pinned, &this_best_prio);
2256 class = class->next;
2257 } while (class && max_load_move > total_load_moved);
2258
2259 return total_load_moved > 0;
2260 }
2261
2262 /*
2263 * move_one_task tries to move exactly one task from busiest to this_rq, as
2264 * part of active balancing operations within "domain".
2265 * Returns 1 if successful and 0 otherwise.
2266 *
2267 * Called with both runqueues locked.
2268 */
2269 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2270 struct sched_domain *sd, enum cpu_idle_type idle)
2271 {
2272 const struct sched_class *class;
2273 int this_best_prio = MAX_PRIO;
2274
2275 for (class = sched_class_highest; class; class = class->next)
2276 if (class->load_balance(this_rq, this_cpu, busiest,
2277 1, ULONG_MAX, sd, idle, NULL,
2278 &this_best_prio))
2279 return 1;
2280
2281 return 0;
2282 }
2283
2284 /*
2285 * find_busiest_group finds and returns the busiest CPU group within the
2286 * domain. It calculates and returns the amount of weighted load which
2287 * should be moved to restore balance via the imbalance parameter.
2288 */
2289 static struct sched_group *
2290 find_busiest_group(struct sched_domain *sd, int this_cpu,
2291 unsigned long *imbalance, enum cpu_idle_type idle,
2292 int *sd_idle, cpumask_t *cpus, int *balance)
2293 {
2294 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2295 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2296 unsigned long max_pull;
2297 unsigned long busiest_load_per_task, busiest_nr_running;
2298 unsigned long this_load_per_task, this_nr_running;
2299 int load_idx;
2300 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2301 int power_savings_balance = 1;
2302 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2303 unsigned long min_nr_running = ULONG_MAX;
2304 struct sched_group *group_min = NULL, *group_leader = NULL;
2305 #endif
2306
2307 max_load = this_load = total_load = total_pwr = 0;
2308 busiest_load_per_task = busiest_nr_running = 0;
2309 this_load_per_task = this_nr_running = 0;
2310 if (idle == CPU_NOT_IDLE)
2311 load_idx = sd->busy_idx;
2312 else if (idle == CPU_NEWLY_IDLE)
2313 load_idx = sd->newidle_idx;
2314 else
2315 load_idx = sd->idle_idx;
2316
2317 do {
2318 unsigned long load, group_capacity;
2319 int local_group;
2320 int i;
2321 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2322 unsigned long sum_nr_running, sum_weighted_load;
2323
2324 local_group = cpu_isset(this_cpu, group->cpumask);
2325
2326 if (local_group)
2327 balance_cpu = first_cpu(group->cpumask);
2328
2329 /* Tally up the load of all CPUs in the group */
2330 sum_weighted_load = sum_nr_running = avg_load = 0;
2331
2332 for_each_cpu_mask(i, group->cpumask) {
2333 struct rq *rq;
2334
2335 if (!cpu_isset(i, *cpus))
2336 continue;
2337
2338 rq = cpu_rq(i);
2339
2340 if (*sd_idle && rq->nr_running)
2341 *sd_idle = 0;
2342
2343 /* Bias balancing toward cpus of our domain */
2344 if (local_group) {
2345 if (idle_cpu(i) && !first_idle_cpu) {
2346 first_idle_cpu = 1;
2347 balance_cpu = i;
2348 }
2349
2350 load = target_load(i, load_idx);
2351 } else
2352 load = source_load(i, load_idx);
2353
2354 avg_load += load;
2355 sum_nr_running += rq->nr_running;
2356 sum_weighted_load += weighted_cpuload(i);
2357 }
2358
2359 /*
2360 * First idle cpu or the first cpu(busiest) in this sched group
2361 * is eligible for doing load balancing at this and above
2362 * domains. In the newly idle case, we will allow all the cpu's
2363 * to do the newly idle load balance.
2364 */
2365 if (idle != CPU_NEWLY_IDLE && local_group &&
2366 balance_cpu != this_cpu && balance) {
2367 *balance = 0;
2368 goto ret;
2369 }
2370
2371 total_load += avg_load;
2372 total_pwr += group->__cpu_power;
2373
2374 /* Adjust by relative CPU power of the group */
2375 avg_load = sg_div_cpu_power(group,
2376 avg_load * SCHED_LOAD_SCALE);
2377
2378 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2379
2380 if (local_group) {
2381 this_load = avg_load;
2382 this = group;
2383 this_nr_running = sum_nr_running;
2384 this_load_per_task = sum_weighted_load;
2385 } else if (avg_load > max_load &&
2386 sum_nr_running > group_capacity) {
2387 max_load = avg_load;
2388 busiest = group;
2389 busiest_nr_running = sum_nr_running;
2390 busiest_load_per_task = sum_weighted_load;
2391 }
2392
2393 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2394 /*
2395 * Busy processors will not participate in power savings
2396 * balance.
2397 */
2398 if (idle == CPU_NOT_IDLE ||
2399 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2400 goto group_next;
2401
2402 /*
2403 * If the local group is idle or completely loaded
2404 * no need to do power savings balance at this domain
2405 */
2406 if (local_group && (this_nr_running >= group_capacity ||
2407 !this_nr_running))
2408 power_savings_balance = 0;
2409
2410 /*
2411 * If a group is already running at full capacity or idle,
2412 * don't include that group in power savings calculations
2413 */
2414 if (!power_savings_balance || sum_nr_running >= group_capacity
2415 || !sum_nr_running)
2416 goto group_next;
2417
2418 /*
2419 * Calculate the group which has the least non-idle load.
2420 * This is the group from where we need to pick up the load
2421 * for saving power
2422 */
2423 if ((sum_nr_running < min_nr_running) ||
2424 (sum_nr_running == min_nr_running &&
2425 first_cpu(group->cpumask) <
2426 first_cpu(group_min->cpumask))) {
2427 group_min = group;
2428 min_nr_running = sum_nr_running;
2429 min_load_per_task = sum_weighted_load /
2430 sum_nr_running;
2431 }
2432
2433 /*
2434 * Calculate the group which is almost near its
2435 * capacity but still has some space to pick up some load
2436 * from other group and save more power
2437 */
2438 if (sum_nr_running <= group_capacity - 1) {
2439 if (sum_nr_running > leader_nr_running ||
2440 (sum_nr_running == leader_nr_running &&
2441 first_cpu(group->cpumask) >
2442 first_cpu(group_leader->cpumask))) {
2443 group_leader = group;
2444 leader_nr_running = sum_nr_running;
2445 }
2446 }
2447 group_next:
2448 #endif
2449 group = group->next;
2450 } while (group != sd->groups);
2451
2452 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2453 goto out_balanced;
2454
2455 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2456
2457 if (this_load >= avg_load ||
2458 100*max_load <= sd->imbalance_pct*this_load)
2459 goto out_balanced;
2460
2461 busiest_load_per_task /= busiest_nr_running;
2462 /*
2463 * We're trying to get all the cpus to the average_load, so we don't
2464 * want to push ourselves above the average load, nor do we wish to
2465 * reduce the max loaded cpu below the average load, as either of these
2466 * actions would just result in more rebalancing later, and ping-pong
2467 * tasks around. Thus we look for the minimum possible imbalance.
2468 * Negative imbalances (*we* are more loaded than anyone else) will
2469 * be counted as no imbalance for these purposes -- we can't fix that
2470 * by pulling tasks to us. Be careful of negative numbers as they'll
2471 * appear as very large values with unsigned longs.
2472 */
2473 if (max_load <= busiest_load_per_task)
2474 goto out_balanced;
2475
2476 /*
2477 * In the presence of smp nice balancing, certain scenarios can have
2478 * max load less than avg load(as we skip the groups at or below
2479 * its cpu_power, while calculating max_load..)
2480 */
2481 if (max_load < avg_load) {
2482 *imbalance = 0;
2483 goto small_imbalance;
2484 }
2485
2486 /* Don't want to pull so many tasks that a group would go idle */
2487 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2488
2489 /* How much load to actually move to equalise the imbalance */
2490 *imbalance = min(max_pull * busiest->__cpu_power,
2491 (avg_load - this_load) * this->__cpu_power)
2492 / SCHED_LOAD_SCALE;
2493
2494 /*
2495 * if *imbalance is less than the average load per runnable task
2496 * there is no gaurantee that any tasks will be moved so we'll have
2497 * a think about bumping its value to force at least one task to be
2498 * moved
2499 */
2500 if (*imbalance < busiest_load_per_task) {
2501 unsigned long tmp, pwr_now, pwr_move;
2502 unsigned int imbn;
2503
2504 small_imbalance:
2505 pwr_move = pwr_now = 0;
2506 imbn = 2;
2507 if (this_nr_running) {
2508 this_load_per_task /= this_nr_running;
2509 if (busiest_load_per_task > this_load_per_task)
2510 imbn = 1;
2511 } else
2512 this_load_per_task = SCHED_LOAD_SCALE;
2513
2514 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2515 busiest_load_per_task * imbn) {
2516 *imbalance = busiest_load_per_task;
2517 return busiest;
2518 }
2519
2520 /*
2521 * OK, we don't have enough imbalance to justify moving tasks,
2522 * however we may be able to increase total CPU power used by
2523 * moving them.
2524 */
2525
2526 pwr_now += busiest->__cpu_power *
2527 min(busiest_load_per_task, max_load);
2528 pwr_now += this->__cpu_power *
2529 min(this_load_per_task, this_load);
2530 pwr_now /= SCHED_LOAD_SCALE;
2531
2532 /* Amount of load we'd subtract */
2533 tmp = sg_div_cpu_power(busiest,
2534 busiest_load_per_task * SCHED_LOAD_SCALE);
2535 if (max_load > tmp)
2536 pwr_move += busiest->__cpu_power *
2537 min(busiest_load_per_task, max_load - tmp);
2538
2539 /* Amount of load we'd add */
2540 if (max_load * busiest->__cpu_power <
2541 busiest_load_per_task * SCHED_LOAD_SCALE)
2542 tmp = sg_div_cpu_power(this,
2543 max_load * busiest->__cpu_power);
2544 else
2545 tmp = sg_div_cpu_power(this,
2546 busiest_load_per_task * SCHED_LOAD_SCALE);
2547 pwr_move += this->__cpu_power *
2548 min(this_load_per_task, this_load + tmp);
2549 pwr_move /= SCHED_LOAD_SCALE;
2550
2551 /* Move if we gain throughput */
2552 if (pwr_move > pwr_now)
2553 *imbalance = busiest_load_per_task;
2554 }
2555
2556 return busiest;
2557
2558 out_balanced:
2559 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2560 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2561 goto ret;
2562
2563 if (this == group_leader && group_leader != group_min) {
2564 *imbalance = min_load_per_task;
2565 return group_min;
2566 }
2567 #endif
2568 ret:
2569 *imbalance = 0;
2570 return NULL;
2571 }
2572
2573 /*
2574 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2575 */
2576 static struct rq *
2577 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2578 unsigned long imbalance, cpumask_t *cpus)
2579 {
2580 struct rq *busiest = NULL, *rq;
2581 unsigned long max_load = 0;
2582 int i;
2583
2584 for_each_cpu_mask(i, group->cpumask) {
2585 unsigned long wl;
2586
2587 if (!cpu_isset(i, *cpus))
2588 continue;
2589
2590 rq = cpu_rq(i);
2591 wl = weighted_cpuload(i);
2592
2593 if (rq->nr_running == 1 && wl > imbalance)
2594 continue;
2595
2596 if (wl > max_load) {
2597 max_load = wl;
2598 busiest = rq;
2599 }
2600 }
2601
2602 return busiest;
2603 }
2604
2605 /*
2606 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2607 * so long as it is large enough.
2608 */
2609 #define MAX_PINNED_INTERVAL 512
2610
2611 /*
2612 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2613 * tasks if there is an imbalance.
2614 */
2615 static int load_balance(int this_cpu, struct rq *this_rq,
2616 struct sched_domain *sd, enum cpu_idle_type idle,
2617 int *balance)
2618 {
2619 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2620 struct sched_group *group;
2621 unsigned long imbalance;
2622 struct rq *busiest;
2623 cpumask_t cpus = CPU_MASK_ALL;
2624 unsigned long flags;
2625
2626 /*
2627 * When power savings policy is enabled for the parent domain, idle
2628 * sibling can pick up load irrespective of busy siblings. In this case,
2629 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2630 * portraying it as CPU_NOT_IDLE.
2631 */
2632 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2633 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2634 sd_idle = 1;
2635
2636 schedstat_inc(sd, lb_count[idle]);
2637
2638 redo:
2639 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2640 &cpus, balance);
2641
2642 if (*balance == 0)
2643 goto out_balanced;
2644
2645 if (!group) {
2646 schedstat_inc(sd, lb_nobusyg[idle]);
2647 goto out_balanced;
2648 }
2649
2650 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
2651 if (!busiest) {
2652 schedstat_inc(sd, lb_nobusyq[idle]);
2653 goto out_balanced;
2654 }
2655
2656 BUG_ON(busiest == this_rq);
2657
2658 schedstat_add(sd, lb_imbalance[idle], imbalance);
2659
2660 ld_moved = 0;
2661 if (busiest->nr_running > 1) {
2662 /*
2663 * Attempt to move tasks. If find_busiest_group has found
2664 * an imbalance but busiest->nr_running <= 1, the group is
2665 * still unbalanced. ld_moved simply stays zero, so it is
2666 * correctly treated as an imbalance.
2667 */
2668 local_irq_save(flags);
2669 double_rq_lock(this_rq, busiest);
2670 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2671 imbalance, sd, idle, &all_pinned);
2672 double_rq_unlock(this_rq, busiest);
2673 local_irq_restore(flags);
2674
2675 /*
2676 * some other cpu did the load balance for us.
2677 */
2678 if (ld_moved && this_cpu != smp_processor_id())
2679 resched_cpu(this_cpu);
2680
2681 /* All tasks on this runqueue were pinned by CPU affinity */
2682 if (unlikely(all_pinned)) {
2683 cpu_clear(cpu_of(busiest), cpus);
2684 if (!cpus_empty(cpus))
2685 goto redo;
2686 goto out_balanced;
2687 }
2688 }
2689
2690 if (!ld_moved) {
2691 schedstat_inc(sd, lb_failed[idle]);
2692 sd->nr_balance_failed++;
2693
2694 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2695
2696 spin_lock_irqsave(&busiest->lock, flags);
2697
2698 /* don't kick the migration_thread, if the curr
2699 * task on busiest cpu can't be moved to this_cpu
2700 */
2701 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2702 spin_unlock_irqrestore(&busiest->lock, flags);
2703 all_pinned = 1;
2704 goto out_one_pinned;
2705 }
2706
2707 if (!busiest->active_balance) {
2708 busiest->active_balance = 1;
2709 busiest->push_cpu = this_cpu;
2710 active_balance = 1;
2711 }
2712 spin_unlock_irqrestore(&busiest->lock, flags);
2713 if (active_balance)
2714 wake_up_process(busiest->migration_thread);
2715
2716 /*
2717 * We've kicked active balancing, reset the failure
2718 * counter.
2719 */
2720 sd->nr_balance_failed = sd->cache_nice_tries+1;
2721 }
2722 } else
2723 sd->nr_balance_failed = 0;
2724
2725 if (likely(!active_balance)) {
2726 /* We were unbalanced, so reset the balancing interval */
2727 sd->balance_interval = sd->min_interval;
2728 } else {
2729 /*
2730 * If we've begun active balancing, start to back off. This
2731 * case may not be covered by the all_pinned logic if there
2732 * is only 1 task on the busy runqueue (because we don't call
2733 * move_tasks).
2734 */
2735 if (sd->balance_interval < sd->max_interval)
2736 sd->balance_interval *= 2;
2737 }
2738
2739 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2740 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2741 return -1;
2742 return ld_moved;
2743
2744 out_balanced:
2745 schedstat_inc(sd, lb_balanced[idle]);
2746
2747 sd->nr_balance_failed = 0;
2748
2749 out_one_pinned:
2750 /* tune up the balancing interval */
2751 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2752 (sd->balance_interval < sd->max_interval))
2753 sd->balance_interval *= 2;
2754
2755 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2756 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2757 return -1;
2758 return 0;
2759 }
2760
2761 /*
2762 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2763 * tasks if there is an imbalance.
2764 *
2765 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
2766 * this_rq is locked.
2767 */
2768 static int
2769 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
2770 {
2771 struct sched_group *group;
2772 struct rq *busiest = NULL;
2773 unsigned long imbalance;
2774 int ld_moved = 0;
2775 int sd_idle = 0;
2776 int all_pinned = 0;
2777 cpumask_t cpus = CPU_MASK_ALL;
2778
2779 /*
2780 * When power savings policy is enabled for the parent domain, idle
2781 * sibling can pick up load irrespective of busy siblings. In this case,
2782 * let the state of idle sibling percolate up as IDLE, instead of
2783 * portraying it as CPU_NOT_IDLE.
2784 */
2785 if (sd->flags & SD_SHARE_CPUPOWER &&
2786 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2787 sd_idle = 1;
2788
2789 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
2790 redo:
2791 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2792 &sd_idle, &cpus, NULL);
2793 if (!group) {
2794 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2795 goto out_balanced;
2796 }
2797
2798 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2799 &cpus);
2800 if (!busiest) {
2801 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2802 goto out_balanced;
2803 }
2804
2805 BUG_ON(busiest == this_rq);
2806
2807 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2808
2809 ld_moved = 0;
2810 if (busiest->nr_running > 1) {
2811 /* Attempt to move tasks */
2812 double_lock_balance(this_rq, busiest);
2813 /* this_rq->clock is already updated */
2814 update_rq_clock(busiest);
2815 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2816 imbalance, sd, CPU_NEWLY_IDLE,
2817 &all_pinned);
2818 spin_unlock(&busiest->lock);
2819
2820 if (unlikely(all_pinned)) {
2821 cpu_clear(cpu_of(busiest), cpus);
2822 if (!cpus_empty(cpus))
2823 goto redo;
2824 }
2825 }
2826
2827 if (!ld_moved) {
2828 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2829 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2830 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2831 return -1;
2832 } else
2833 sd->nr_balance_failed = 0;
2834
2835 return ld_moved;
2836
2837 out_balanced:
2838 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2839 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2840 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2841 return -1;
2842 sd->nr_balance_failed = 0;
2843
2844 return 0;
2845 }
2846
2847 /*
2848 * idle_balance is called by schedule() if this_cpu is about to become
2849 * idle. Attempts to pull tasks from other CPUs.
2850 */
2851 static void idle_balance(int this_cpu, struct rq *this_rq)
2852 {
2853 struct sched_domain *sd;
2854 int pulled_task = -1;
2855 unsigned long next_balance = jiffies + HZ;
2856
2857 for_each_domain(this_cpu, sd) {
2858 unsigned long interval;
2859
2860 if (!(sd->flags & SD_LOAD_BALANCE))
2861 continue;
2862
2863 if (sd->flags & SD_BALANCE_NEWIDLE)
2864 /* If we've pulled tasks over stop searching: */
2865 pulled_task = load_balance_newidle(this_cpu,
2866 this_rq, sd);
2867
2868 interval = msecs_to_jiffies(sd->balance_interval);
2869 if (time_after(next_balance, sd->last_balance + interval))
2870 next_balance = sd->last_balance + interval;
2871 if (pulled_task)
2872 break;
2873 }
2874 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
2875 /*
2876 * We are going idle. next_balance may be set based on
2877 * a busy processor. So reset next_balance.
2878 */
2879 this_rq->next_balance = next_balance;
2880 }
2881 }
2882
2883 /*
2884 * active_load_balance is run by migration threads. It pushes running tasks
2885 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2886 * running on each physical CPU where possible, and avoids physical /
2887 * logical imbalances.
2888 *
2889 * Called with busiest_rq locked.
2890 */
2891 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
2892 {
2893 int target_cpu = busiest_rq->push_cpu;
2894 struct sched_domain *sd;
2895 struct rq *target_rq;
2896
2897 /* Is there any task to move? */
2898 if (busiest_rq->nr_running <= 1)
2899 return;
2900
2901 target_rq = cpu_rq(target_cpu);
2902
2903 /*
2904 * This condition is "impossible", if it occurs
2905 * we need to fix it. Originally reported by
2906 * Bjorn Helgaas on a 128-cpu setup.
2907 */
2908 BUG_ON(busiest_rq == target_rq);
2909
2910 /* move a task from busiest_rq to target_rq */
2911 double_lock_balance(busiest_rq, target_rq);
2912 update_rq_clock(busiest_rq);
2913 update_rq_clock(target_rq);
2914
2915 /* Search for an sd spanning us and the target CPU. */
2916 for_each_domain(target_cpu, sd) {
2917 if ((sd->flags & SD_LOAD_BALANCE) &&
2918 cpu_isset(busiest_cpu, sd->span))
2919 break;
2920 }
2921
2922 if (likely(sd)) {
2923 schedstat_inc(sd, alb_count);
2924
2925 if (move_one_task(target_rq, target_cpu, busiest_rq,
2926 sd, CPU_IDLE))
2927 schedstat_inc(sd, alb_pushed);
2928 else
2929 schedstat_inc(sd, alb_failed);
2930 }
2931 spin_unlock(&target_rq->lock);
2932 }
2933
2934 #ifdef CONFIG_NO_HZ
2935 static struct {
2936 atomic_t load_balancer;
2937 cpumask_t cpu_mask;
2938 } nohz ____cacheline_aligned = {
2939 .load_balancer = ATOMIC_INIT(-1),
2940 .cpu_mask = CPU_MASK_NONE,
2941 };
2942
2943 /*
2944 * This routine will try to nominate the ilb (idle load balancing)
2945 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
2946 * load balancing on behalf of all those cpus. If all the cpus in the system
2947 * go into this tickless mode, then there will be no ilb owner (as there is
2948 * no need for one) and all the cpus will sleep till the next wakeup event
2949 * arrives...
2950 *
2951 * For the ilb owner, tick is not stopped. And this tick will be used
2952 * for idle load balancing. ilb owner will still be part of
2953 * nohz.cpu_mask..
2954 *
2955 * While stopping the tick, this cpu will become the ilb owner if there
2956 * is no other owner. And will be the owner till that cpu becomes busy
2957 * or if all cpus in the system stop their ticks at which point
2958 * there is no need for ilb owner.
2959 *
2960 * When the ilb owner becomes busy, it nominates another owner, during the
2961 * next busy scheduler_tick()
2962 */
2963 int select_nohz_load_balancer(int stop_tick)
2964 {
2965 int cpu = smp_processor_id();
2966
2967 if (stop_tick) {
2968 cpu_set(cpu, nohz.cpu_mask);
2969 cpu_rq(cpu)->in_nohz_recently = 1;
2970
2971 /*
2972 * If we are going offline and still the leader, give up!
2973 */
2974 if (cpu_is_offline(cpu) &&
2975 atomic_read(&nohz.load_balancer) == cpu) {
2976 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2977 BUG();
2978 return 0;
2979 }
2980
2981 /* time for ilb owner also to sleep */
2982 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
2983 if (atomic_read(&nohz.load_balancer) == cpu)
2984 atomic_set(&nohz.load_balancer, -1);
2985 return 0;
2986 }
2987
2988 if (atomic_read(&nohz.load_balancer) == -1) {
2989 /* make me the ilb owner */
2990 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
2991 return 1;
2992 } else if (atomic_read(&nohz.load_balancer) == cpu)
2993 return 1;
2994 } else {
2995 if (!cpu_isset(cpu, nohz.cpu_mask))
2996 return 0;
2997
2998 cpu_clear(cpu, nohz.cpu_mask);
2999
3000 if (atomic_read(&nohz.load_balancer) == cpu)
3001 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3002 BUG();
3003 }
3004 return 0;
3005 }
3006 #endif
3007
3008 static DEFINE_SPINLOCK(balancing);
3009
3010 /*
3011 * It checks each scheduling domain to see if it is due to be balanced,
3012 * and initiates a balancing operation if so.
3013 *
3014 * Balancing parameters are set up in arch_init_sched_domains.
3015 */
3016 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3017 {
3018 int balance = 1;
3019 struct rq *rq = cpu_rq(cpu);
3020 unsigned long interval;
3021 struct sched_domain *sd;
3022 /* Earliest time when we have to do rebalance again */
3023 unsigned long next_balance = jiffies + 60*HZ;
3024 int update_next_balance = 0;
3025
3026 for_each_domain(cpu, sd) {
3027 if (!(sd->flags & SD_LOAD_BALANCE))
3028 continue;
3029
3030 interval = sd->balance_interval;
3031 if (idle != CPU_IDLE)
3032 interval *= sd->busy_factor;
3033
3034 /* scale ms to jiffies */
3035 interval = msecs_to_jiffies(interval);
3036 if (unlikely(!interval))
3037 interval = 1;
3038 if (interval > HZ*NR_CPUS/10)
3039 interval = HZ*NR_CPUS/10;
3040
3041
3042 if (sd->flags & SD_SERIALIZE) {
3043 if (!spin_trylock(&balancing))
3044 goto out;
3045 }
3046
3047 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3048 if (load_balance(cpu, rq, sd, idle, &balance)) {
3049 /*
3050 * We've pulled tasks over so either we're no
3051 * longer idle, or one of our SMT siblings is
3052 * not idle.
3053 */
3054 idle = CPU_NOT_IDLE;
3055 }
3056 sd->last_balance = jiffies;
3057 }
3058 if (sd->flags & SD_SERIALIZE)
3059 spin_unlock(&balancing);
3060 out:
3061 if (time_after(next_balance, sd->last_balance + interval)) {
3062 next_balance = sd->last_balance + interval;
3063 update_next_balance = 1;
3064 }
3065
3066 /*
3067 * Stop the load balance at this level. There is another
3068 * CPU in our sched group which is doing load balancing more
3069 * actively.
3070 */
3071 if (!balance)
3072 break;
3073 }
3074
3075 /*
3076 * next_balance will be updated only when there is a need.
3077 * When the cpu is attached to null domain for ex, it will not be
3078 * updated.
3079 */
3080 if (likely(update_next_balance))
3081 rq->next_balance = next_balance;
3082 }
3083
3084 /*
3085 * run_rebalance_domains is triggered when needed from the scheduler tick.
3086 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3087 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3088 */
3089 static void run_rebalance_domains(struct softirq_action *h)
3090 {
3091 int this_cpu = smp_processor_id();
3092 struct rq *this_rq = cpu_rq(this_cpu);
3093 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3094 CPU_IDLE : CPU_NOT_IDLE;
3095
3096 rebalance_domains(this_cpu, idle);
3097
3098 #ifdef CONFIG_NO_HZ
3099 /*
3100 * If this cpu is the owner for idle load balancing, then do the
3101 * balancing on behalf of the other idle cpus whose ticks are
3102 * stopped.
3103 */
3104 if (this_rq->idle_at_tick &&
3105 atomic_read(&nohz.load_balancer) == this_cpu) {
3106 cpumask_t cpus = nohz.cpu_mask;
3107 struct rq *rq;
3108 int balance_cpu;
3109
3110 cpu_clear(this_cpu, cpus);
3111 for_each_cpu_mask(balance_cpu, cpus) {
3112 /*
3113 * If this cpu gets work to do, stop the load balancing
3114 * work being done for other cpus. Next load
3115 * balancing owner will pick it up.
3116 */
3117 if (need_resched())
3118 break;
3119
3120 rebalance_domains(balance_cpu, CPU_IDLE);
3121
3122 rq = cpu_rq(balance_cpu);
3123 if (time_after(this_rq->next_balance, rq->next_balance))
3124 this_rq->next_balance = rq->next_balance;
3125 }
3126 }
3127 #endif
3128 }
3129
3130 /*
3131 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3132 *
3133 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3134 * idle load balancing owner or decide to stop the periodic load balancing,
3135 * if the whole system is idle.
3136 */
3137 static inline void trigger_load_balance(struct rq *rq, int cpu)
3138 {
3139 #ifdef CONFIG_NO_HZ
3140 /*
3141 * If we were in the nohz mode recently and busy at the current
3142 * scheduler tick, then check if we need to nominate new idle
3143 * load balancer.
3144 */
3145 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3146 rq->in_nohz_recently = 0;
3147
3148 if (atomic_read(&nohz.load_balancer) == cpu) {
3149 cpu_clear(cpu, nohz.cpu_mask);
3150 atomic_set(&nohz.load_balancer, -1);
3151 }
3152
3153 if (atomic_read(&nohz.load_balancer) == -1) {
3154 /*
3155 * simple selection for now: Nominate the
3156 * first cpu in the nohz list to be the next
3157 * ilb owner.
3158 *
3159 * TBD: Traverse the sched domains and nominate
3160 * the nearest cpu in the nohz.cpu_mask.
3161 */
3162 int ilb = first_cpu(nohz.cpu_mask);
3163
3164 if (ilb != NR_CPUS)
3165 resched_cpu(ilb);
3166 }
3167 }
3168
3169 /*
3170 * If this cpu is idle and doing idle load balancing for all the
3171 * cpus with ticks stopped, is it time for that to stop?
3172 */
3173 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3174 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3175 resched_cpu(cpu);
3176 return;
3177 }
3178
3179 /*
3180 * If this cpu is idle and the idle load balancing is done by
3181 * someone else, then no need raise the SCHED_SOFTIRQ
3182 */
3183 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3184 cpu_isset(cpu, nohz.cpu_mask))
3185 return;
3186 #endif
3187 if (time_after_eq(jiffies, rq->next_balance))
3188 raise_softirq(SCHED_SOFTIRQ);
3189 }
3190
3191 #else /* CONFIG_SMP */
3192
3193 /*
3194 * on UP we do not need to balance between CPUs:
3195 */
3196 static inline void idle_balance(int cpu, struct rq *rq)
3197 {
3198 }
3199
3200 /* Avoid "used but not defined" warning on UP */
3201 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3202 unsigned long max_nr_move, unsigned long max_load_move,
3203 struct sched_domain *sd, enum cpu_idle_type idle,
3204 int *all_pinned, unsigned long *load_moved,
3205 int *this_best_prio, struct rq_iterator *iterator)
3206 {
3207 *load_moved = 0;
3208
3209 return 0;
3210 }
3211
3212 #endif
3213
3214 DEFINE_PER_CPU(struct kernel_stat, kstat);
3215
3216 EXPORT_PER_CPU_SYMBOL(kstat);
3217
3218 /*
3219 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3220 * that have not yet been banked in case the task is currently running.
3221 */
3222 unsigned long long task_sched_runtime(struct task_struct *p)
3223 {
3224 unsigned long flags;
3225 u64 ns, delta_exec;
3226 struct rq *rq;
3227
3228 rq = task_rq_lock(p, &flags);
3229 ns = p->se.sum_exec_runtime;
3230 if (rq->curr == p) {
3231 update_rq_clock(rq);
3232 delta_exec = rq->clock - p->se.exec_start;
3233 if ((s64)delta_exec > 0)
3234 ns += delta_exec;
3235 }
3236 task_rq_unlock(rq, &flags);
3237
3238 return ns;
3239 }
3240
3241 /*
3242 * Account user cpu time to a process.
3243 * @p: the process that the cpu time gets accounted to
3244 * @hardirq_offset: the offset to subtract from hardirq_count()
3245 * @cputime: the cpu time spent in user space since the last update
3246 */
3247 void account_user_time(struct task_struct *p, cputime_t cputime)
3248 {
3249 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3250 cputime64_t tmp;
3251
3252 p->utime = cputime_add(p->utime, cputime);
3253
3254 /* Add user time to cpustat. */
3255 tmp = cputime_to_cputime64(cputime);
3256 if (TASK_NICE(p) > 0)
3257 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3258 else
3259 cpustat->user = cputime64_add(cpustat->user, tmp);
3260 }
3261
3262 /*
3263 * Account system cpu time to a process.
3264 * @p: the process that the cpu time gets accounted to
3265 * @hardirq_offset: the offset to subtract from hardirq_count()
3266 * @cputime: the cpu time spent in kernel space since the last update
3267 */
3268 void account_system_time(struct task_struct *p, int hardirq_offset,
3269 cputime_t cputime)
3270 {
3271 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3272 struct rq *rq = this_rq();
3273 cputime64_t tmp;
3274
3275 p->stime = cputime_add(p->stime, cputime);
3276
3277 /* Add system time to cpustat. */
3278 tmp = cputime_to_cputime64(cputime);
3279 if (hardirq_count() - hardirq_offset)
3280 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3281 else if (softirq_count())
3282 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3283 else if (p != rq->idle)
3284 cpustat->system = cputime64_add(cpustat->system, tmp);
3285 else if (atomic_read(&rq->nr_iowait) > 0)
3286 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3287 else
3288 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3289 /* Account for system time used */
3290 acct_update_integrals(p);
3291 }
3292
3293 /*
3294 * Account for involuntary wait time.
3295 * @p: the process from which the cpu time has been stolen
3296 * @steal: the cpu time spent in involuntary wait
3297 */
3298 void account_steal_time(struct task_struct *p, cputime_t steal)
3299 {
3300 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3301 cputime64_t tmp = cputime_to_cputime64(steal);
3302 struct rq *rq = this_rq();
3303
3304 if (p == rq->idle) {
3305 p->stime = cputime_add(p->stime, steal);
3306 if (atomic_read(&rq->nr_iowait) > 0)
3307 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3308 else
3309 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3310 } else
3311 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3312 }
3313
3314 /*
3315 * This function gets called by the timer code, with HZ frequency.
3316 * We call it with interrupts disabled.
3317 *
3318 * It also gets called by the fork code, when changing the parent's
3319 * timeslices.
3320 */
3321 void scheduler_tick(void)
3322 {
3323 int cpu = smp_processor_id();
3324 struct rq *rq = cpu_rq(cpu);
3325 struct task_struct *curr = rq->curr;
3326 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
3327
3328 spin_lock(&rq->lock);
3329 __update_rq_clock(rq);
3330 /*
3331 * Let rq->clock advance by at least TICK_NSEC:
3332 */
3333 if (unlikely(rq->clock < next_tick))
3334 rq->clock = next_tick;
3335 rq->tick_timestamp = rq->clock;
3336 update_cpu_load(rq);
3337 if (curr != rq->idle) /* FIXME: needed? */
3338 curr->sched_class->task_tick(rq, curr);
3339 spin_unlock(&rq->lock);
3340
3341 #ifdef CONFIG_SMP
3342 rq->idle_at_tick = idle_cpu(cpu);
3343 trigger_load_balance(rq, cpu);
3344 #endif
3345 }
3346
3347 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3348
3349 void fastcall add_preempt_count(int val)
3350 {
3351 /*
3352 * Underflow?
3353 */
3354 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3355 return;
3356 preempt_count() += val;
3357 /*
3358 * Spinlock count overflowing soon?
3359 */
3360 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3361 PREEMPT_MASK - 10);
3362 }
3363 EXPORT_SYMBOL(add_preempt_count);
3364
3365 void fastcall sub_preempt_count(int val)
3366 {
3367 /*
3368 * Underflow?
3369 */
3370 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3371 return;
3372 /*
3373 * Is the spinlock portion underflowing?
3374 */
3375 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3376 !(preempt_count() & PREEMPT_MASK)))
3377 return;
3378
3379 preempt_count() -= val;
3380 }
3381 EXPORT_SYMBOL(sub_preempt_count);
3382
3383 #endif
3384
3385 /*
3386 * Print scheduling while atomic bug:
3387 */
3388 static noinline void __schedule_bug(struct task_struct *prev)
3389 {
3390 printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
3391 prev->comm, preempt_count(), prev->pid);
3392 debug_show_held_locks(prev);
3393 if (irqs_disabled())
3394 print_irqtrace_events(prev);
3395 dump_stack();
3396 }
3397
3398 /*
3399 * Various schedule()-time debugging checks and statistics:
3400 */
3401 static inline void schedule_debug(struct task_struct *prev)
3402 {
3403 /*
3404 * Test if we are atomic. Since do_exit() needs to call into
3405 * schedule() atomically, we ignore that path for now.
3406 * Otherwise, whine if we are scheduling when we should not be.
3407 */
3408 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3409 __schedule_bug(prev);
3410
3411 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3412
3413 schedstat_inc(this_rq(), sched_count);
3414 #ifdef CONFIG_SCHEDSTATS
3415 if (unlikely(prev->lock_depth >= 0)) {
3416 schedstat_inc(this_rq(), bkl_count);
3417 schedstat_inc(prev, sched_info.bkl_count);
3418 }
3419 #endif
3420 }
3421
3422 /*
3423 * Pick up the highest-prio task:
3424 */
3425 static inline struct task_struct *
3426 pick_next_task(struct rq *rq, struct task_struct *prev)
3427 {
3428 const struct sched_class *class;
3429 struct task_struct *p;
3430
3431 /*
3432 * Optimization: we know that if all tasks are in
3433 * the fair class we can call that function directly:
3434 */
3435 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3436 p = fair_sched_class.pick_next_task(rq);
3437 if (likely(p))
3438 return p;
3439 }
3440
3441 class = sched_class_highest;
3442 for ( ; ; ) {
3443 p = class->pick_next_task(rq);
3444 if (p)
3445 return p;
3446 /*
3447 * Will never be NULL as the idle class always
3448 * returns a non-NULL p:
3449 */
3450 class = class->next;
3451 }
3452 }
3453
3454 /*
3455 * schedule() is the main scheduler function.
3456 */
3457 asmlinkage void __sched schedule(void)
3458 {
3459 struct task_struct *prev, *next;
3460 long *switch_count;
3461 struct rq *rq;
3462 int cpu;
3463
3464 need_resched:
3465 preempt_disable();
3466 cpu = smp_processor_id();
3467 rq = cpu_rq(cpu);
3468 rcu_qsctr_inc(cpu);
3469 prev = rq->curr;
3470 switch_count = &prev->nivcsw;
3471
3472 release_kernel_lock(prev);
3473 need_resched_nonpreemptible:
3474
3475 schedule_debug(prev);
3476
3477 /*
3478 * Do the rq-clock update outside the rq lock:
3479 */
3480 local_irq_disable();
3481 __update_rq_clock(rq);
3482 spin_lock(&rq->lock);
3483 clear_tsk_need_resched(prev);
3484
3485 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3486 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3487 unlikely(signal_pending(prev)))) {
3488 prev->state = TASK_RUNNING;
3489 } else {
3490 deactivate_task(rq, prev, 1);
3491 }
3492 switch_count = &prev->nvcsw;
3493 }
3494
3495 if (unlikely(!rq->nr_running))
3496 idle_balance(cpu, rq);
3497
3498 prev->sched_class->put_prev_task(rq, prev);
3499 next = pick_next_task(rq, prev);
3500
3501 sched_info_switch(prev, next);
3502
3503 if (likely(prev != next)) {
3504 rq->nr_switches++;
3505 rq->curr = next;
3506 ++*switch_count;
3507
3508 context_switch(rq, prev, next); /* unlocks the rq */
3509 } else
3510 spin_unlock_irq(&rq->lock);
3511
3512 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3513 cpu = smp_processor_id();
3514 rq = cpu_rq(cpu);
3515 goto need_resched_nonpreemptible;
3516 }
3517 preempt_enable_no_resched();
3518 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3519 goto need_resched;
3520 }
3521 EXPORT_SYMBOL(schedule);
3522
3523 #ifdef CONFIG_PREEMPT
3524 /*
3525 * this is the entry point to schedule() from in-kernel preemption
3526 * off of preempt_enable. Kernel preemptions off return from interrupt
3527 * occur there and call schedule directly.
3528 */
3529 asmlinkage void __sched preempt_schedule(void)
3530 {
3531 struct thread_info *ti = current_thread_info();
3532 #ifdef CONFIG_PREEMPT_BKL
3533 struct task_struct *task = current;
3534 int saved_lock_depth;
3535 #endif
3536 /*
3537 * If there is a non-zero preempt_count or interrupts are disabled,
3538 * we do not want to preempt the current task. Just return..
3539 */
3540 if (likely(ti->preempt_count || irqs_disabled()))
3541 return;
3542
3543 do {
3544 add_preempt_count(PREEMPT_ACTIVE);
3545
3546 /*
3547 * We keep the big kernel semaphore locked, but we
3548 * clear ->lock_depth so that schedule() doesnt
3549 * auto-release the semaphore:
3550 */
3551 #ifdef CONFIG_PREEMPT_BKL
3552 saved_lock_depth = task->lock_depth;
3553 task->lock_depth = -1;
3554 #endif
3555 schedule();
3556 #ifdef CONFIG_PREEMPT_BKL
3557 task->lock_depth = saved_lock_depth;
3558 #endif
3559 sub_preempt_count(PREEMPT_ACTIVE);
3560
3561 /*
3562 * Check again in case we missed a preemption opportunity
3563 * between schedule and now.
3564 */
3565 barrier();
3566 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
3567 }
3568 EXPORT_SYMBOL(preempt_schedule);
3569
3570 /*
3571 * this is the entry point to schedule() from kernel preemption
3572 * off of irq context.
3573 * Note, that this is called and return with irqs disabled. This will
3574 * protect us against recursive calling from irq.
3575 */
3576 asmlinkage void __sched preempt_schedule_irq(void)
3577 {
3578 struct thread_info *ti = current_thread_info();
3579 #ifdef CONFIG_PREEMPT_BKL
3580 struct task_struct *task = current;
3581 int saved_lock_depth;
3582 #endif
3583 /* Catch callers which need to be fixed */
3584 BUG_ON(ti->preempt_count || !irqs_disabled());
3585
3586 do {
3587 add_preempt_count(PREEMPT_ACTIVE);
3588
3589 /*
3590 * We keep the big kernel semaphore locked, but we
3591 * clear ->lock_depth so that schedule() doesnt
3592 * auto-release the semaphore:
3593 */
3594 #ifdef CONFIG_PREEMPT_BKL
3595 saved_lock_depth = task->lock_depth;
3596 task->lock_depth = -1;
3597 #endif
3598 local_irq_enable();
3599 schedule();
3600 local_irq_disable();
3601 #ifdef CONFIG_PREEMPT_BKL
3602 task->lock_depth = saved_lock_depth;
3603 #endif
3604 sub_preempt_count(PREEMPT_ACTIVE);
3605
3606 /*
3607 * Check again in case we missed a preemption opportunity
3608 * between schedule and now.
3609 */
3610 barrier();
3611 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
3612 }
3613
3614 #endif /* CONFIG_PREEMPT */
3615
3616 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3617 void *key)
3618 {
3619 return try_to_wake_up(curr->private, mode, sync);
3620 }
3621 EXPORT_SYMBOL(default_wake_function);
3622
3623 /*
3624 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3625 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3626 * number) then we wake all the non-exclusive tasks and one exclusive task.
3627 *
3628 * There are circumstances in which we can try to wake a task which has already
3629 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3630 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3631 */
3632 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3633 int nr_exclusive, int sync, void *key)
3634 {
3635 wait_queue_t *curr, *next;
3636
3637 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3638 unsigned flags = curr->flags;
3639
3640 if (curr->func(curr, mode, sync, key) &&
3641 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3642 break;
3643 }
3644 }
3645
3646 /**
3647 * __wake_up - wake up threads blocked on a waitqueue.
3648 * @q: the waitqueue
3649 * @mode: which threads
3650 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3651 * @key: is directly passed to the wakeup function
3652 */
3653 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3654 int nr_exclusive, void *key)
3655 {
3656 unsigned long flags;
3657
3658 spin_lock_irqsave(&q->lock, flags);
3659 __wake_up_common(q, mode, nr_exclusive, 0, key);
3660 spin_unlock_irqrestore(&q->lock, flags);
3661 }
3662 EXPORT_SYMBOL(__wake_up);
3663
3664 /*
3665 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3666 */
3667 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3668 {
3669 __wake_up_common(q, mode, 1, 0, NULL);
3670 }
3671
3672 /**
3673 * __wake_up_sync - wake up threads blocked on a waitqueue.
3674 * @q: the waitqueue
3675 * @mode: which threads
3676 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3677 *
3678 * The sync wakeup differs that the waker knows that it will schedule
3679 * away soon, so while the target thread will be woken up, it will not
3680 * be migrated to another CPU - ie. the two threads are 'synchronized'
3681 * with each other. This can prevent needless bouncing between CPUs.
3682 *
3683 * On UP it can prevent extra preemption.
3684 */
3685 void fastcall
3686 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3687 {
3688 unsigned long flags;
3689 int sync = 1;
3690
3691 if (unlikely(!q))
3692 return;
3693
3694 if (unlikely(!nr_exclusive))
3695 sync = 0;
3696
3697 spin_lock_irqsave(&q->lock, flags);
3698 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3699 spin_unlock_irqrestore(&q->lock, flags);
3700 }
3701 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3702
3703 void fastcall complete(struct completion *x)
3704 {
3705 unsigned long flags;
3706
3707 spin_lock_irqsave(&x->wait.lock, flags);
3708 x->done++;
3709 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3710 1, 0, NULL);
3711 spin_unlock_irqrestore(&x->wait.lock, flags);
3712 }
3713 EXPORT_SYMBOL(complete);
3714
3715 void fastcall complete_all(struct completion *x)
3716 {
3717 unsigned long flags;
3718
3719 spin_lock_irqsave(&x->wait.lock, flags);
3720 x->done += UINT_MAX/2;
3721 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3722 0, 0, NULL);
3723 spin_unlock_irqrestore(&x->wait.lock, flags);
3724 }
3725 EXPORT_SYMBOL(complete_all);
3726
3727 static inline long __sched
3728 do_wait_for_common(struct completion *x, long timeout, int state)
3729 {
3730 if (!x->done) {
3731 DECLARE_WAITQUEUE(wait, current);
3732
3733 wait.flags |= WQ_FLAG_EXCLUSIVE;
3734 __add_wait_queue_tail(&x->wait, &wait);
3735 do {
3736 if (state == TASK_INTERRUPTIBLE &&
3737 signal_pending(current)) {
3738 __remove_wait_queue(&x->wait, &wait);
3739 return -ERESTARTSYS;
3740 }
3741 __set_current_state(state);
3742 spin_unlock_irq(&x->wait.lock);
3743 timeout = schedule_timeout(timeout);
3744 spin_lock_irq(&x->wait.lock);
3745 if (!timeout) {
3746 __remove_wait_queue(&x->wait, &wait);
3747 return timeout;
3748 }
3749 } while (!x->done);
3750 __remove_wait_queue(&x->wait, &wait);
3751 }
3752 x->done--;
3753 return timeout;
3754 }
3755
3756 static long __sched
3757 wait_for_common(struct completion *x, long timeout, int state)
3758 {
3759 might_sleep();
3760
3761 spin_lock_irq(&x->wait.lock);
3762 timeout = do_wait_for_common(x, timeout, state);
3763 spin_unlock_irq(&x->wait.lock);
3764 return timeout;
3765 }
3766
3767 void fastcall __sched wait_for_completion(struct completion *x)
3768 {
3769 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3770 }
3771 EXPORT_SYMBOL(wait_for_completion);
3772
3773 unsigned long fastcall __sched
3774 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3775 {
3776 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3777 }
3778 EXPORT_SYMBOL(wait_for_completion_timeout);
3779
3780 int __sched wait_for_completion_interruptible(struct completion *x)
3781 {
3782 return wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3783 }
3784 EXPORT_SYMBOL(wait_for_completion_interruptible);
3785
3786 unsigned long fastcall __sched
3787 wait_for_completion_interruptible_timeout(struct completion *x,
3788 unsigned long timeout)
3789 {
3790 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3791 }
3792 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3793
3794 static long __sched
3795 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3796 {
3797 unsigned long flags;
3798 wait_queue_t wait;
3799
3800 init_waitqueue_entry(&wait, current);
3801
3802 __set_current_state(state);
3803
3804 spin_lock_irqsave(&q->lock, flags);
3805 __add_wait_queue(q, &wait);
3806 spin_unlock(&q->lock);
3807 timeout = schedule_timeout(timeout);
3808 spin_lock_irq(&q->lock);
3809 __remove_wait_queue(q, &wait);
3810 spin_unlock_irqrestore(&q->lock, flags);
3811
3812 return timeout;
3813 }
3814
3815 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3816 {
3817 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3818 }
3819 EXPORT_SYMBOL(interruptible_sleep_on);
3820
3821 long __sched
3822 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3823 {
3824 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3825 }
3826 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3827
3828 void __sched sleep_on(wait_queue_head_t *q)
3829 {
3830 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3831 }
3832 EXPORT_SYMBOL(sleep_on);
3833
3834 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3835 {
3836 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3837 }
3838 EXPORT_SYMBOL(sleep_on_timeout);
3839
3840 #ifdef CONFIG_RT_MUTEXES
3841
3842 /*
3843 * rt_mutex_setprio - set the current priority of a task
3844 * @p: task
3845 * @prio: prio value (kernel-internal form)
3846 *
3847 * This function changes the 'effective' priority of a task. It does
3848 * not touch ->normal_prio like __setscheduler().
3849 *
3850 * Used by the rt_mutex code to implement priority inheritance logic.
3851 */
3852 void rt_mutex_setprio(struct task_struct *p, int prio)
3853 {
3854 unsigned long flags;
3855 int oldprio, on_rq, running;
3856 struct rq *rq;
3857
3858 BUG_ON(prio < 0 || prio > MAX_PRIO);
3859
3860 rq = task_rq_lock(p, &flags);
3861 update_rq_clock(rq);
3862
3863 oldprio = p->prio;
3864 on_rq = p->se.on_rq;
3865 running = task_running(rq, p);
3866 if (on_rq) {
3867 dequeue_task(rq, p, 0);
3868 if (running)
3869 p->sched_class->put_prev_task(rq, p);
3870 }
3871
3872 if (rt_prio(prio))
3873 p->sched_class = &rt_sched_class;
3874 else
3875 p->sched_class = &fair_sched_class;
3876
3877 p->prio = prio;
3878
3879 if (on_rq) {
3880 if (running)
3881 p->sched_class->set_curr_task(rq);
3882 enqueue_task(rq, p, 0);
3883 /*
3884 * Reschedule if we are currently running on this runqueue and
3885 * our priority decreased, or if we are not currently running on
3886 * this runqueue and our priority is higher than the current's
3887 */
3888 if (running) {
3889 if (p->prio > oldprio)
3890 resched_task(rq->curr);
3891 } else {
3892 check_preempt_curr(rq, p);
3893 }
3894 }
3895 task_rq_unlock(rq, &flags);
3896 }
3897
3898 #endif
3899
3900 void set_user_nice(struct task_struct *p, long nice)
3901 {
3902 int old_prio, delta, on_rq;
3903 unsigned long flags;
3904 struct rq *rq;
3905
3906 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3907 return;
3908 /*
3909 * We have to be careful, if called from sys_setpriority(),
3910 * the task might be in the middle of scheduling on another CPU.
3911 */
3912 rq = task_rq_lock(p, &flags);
3913 update_rq_clock(rq);
3914 /*
3915 * The RT priorities are set via sched_setscheduler(), but we still
3916 * allow the 'normal' nice value to be set - but as expected
3917 * it wont have any effect on scheduling until the task is
3918 * SCHED_FIFO/SCHED_RR:
3919 */
3920 if (task_has_rt_policy(p)) {
3921 p->static_prio = NICE_TO_PRIO(nice);
3922 goto out_unlock;
3923 }
3924 on_rq = p->se.on_rq;
3925 if (on_rq) {
3926 dequeue_task(rq, p, 0);
3927 dec_load(rq, p);
3928 }
3929
3930 p->static_prio = NICE_TO_PRIO(nice);
3931 set_load_weight(p);
3932 old_prio = p->prio;
3933 p->prio = effective_prio(p);
3934 delta = p->prio - old_prio;
3935
3936 if (on_rq) {
3937 enqueue_task(rq, p, 0);
3938 inc_load(rq, p);
3939 /*
3940 * If the task increased its priority or is running and
3941 * lowered its priority, then reschedule its CPU:
3942 */
3943 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3944 resched_task(rq->curr);
3945 }
3946 out_unlock:
3947 task_rq_unlock(rq, &flags);
3948 }
3949 EXPORT_SYMBOL(set_user_nice);
3950
3951 /*
3952 * can_nice - check if a task can reduce its nice value
3953 * @p: task
3954 * @nice: nice value
3955 */
3956 int can_nice(const struct task_struct *p, const int nice)
3957 {
3958 /* convert nice value [19,-20] to rlimit style value [1,40] */
3959 int nice_rlim = 20 - nice;
3960
3961 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3962 capable(CAP_SYS_NICE));
3963 }
3964
3965 #ifdef __ARCH_WANT_SYS_NICE
3966
3967 /*
3968 * sys_nice - change the priority of the current process.
3969 * @increment: priority increment
3970 *
3971 * sys_setpriority is a more generic, but much slower function that
3972 * does similar things.
3973 */
3974 asmlinkage long sys_nice(int increment)
3975 {
3976 long nice, retval;
3977
3978 /*
3979 * Setpriority might change our priority at the same moment.
3980 * We don't have to worry. Conceptually one call occurs first
3981 * and we have a single winner.
3982 */
3983 if (increment < -40)
3984 increment = -40;
3985 if (increment > 40)
3986 increment = 40;
3987
3988 nice = PRIO_TO_NICE(current->static_prio) + increment;
3989 if (nice < -20)
3990 nice = -20;
3991 if (nice > 19)
3992 nice = 19;
3993
3994 if (increment < 0 && !can_nice(current, nice))
3995 return -EPERM;
3996
3997 retval = security_task_setnice(current, nice);
3998 if (retval)
3999 return retval;
4000
4001 set_user_nice(current, nice);
4002 return 0;
4003 }
4004
4005 #endif
4006
4007 /**
4008 * task_prio - return the priority value of a given task.
4009 * @p: the task in question.
4010 *
4011 * This is the priority value as seen by users in /proc.
4012 * RT tasks are offset by -200. Normal tasks are centered
4013 * around 0, value goes from -16 to +15.
4014 */
4015 int task_prio(const struct task_struct *p)
4016 {
4017 return p->prio - MAX_RT_PRIO;
4018 }
4019
4020 /**
4021 * task_nice - return the nice value of a given task.
4022 * @p: the task in question.
4023 */
4024 int task_nice(const struct task_struct *p)
4025 {
4026 return TASK_NICE(p);
4027 }
4028 EXPORT_SYMBOL_GPL(task_nice);
4029
4030 /**
4031 * idle_cpu - is a given cpu idle currently?
4032 * @cpu: the processor in question.
4033 */
4034 int idle_cpu(int cpu)
4035 {
4036 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4037 }
4038
4039 /**
4040 * idle_task - return the idle task for a given cpu.
4041 * @cpu: the processor in question.
4042 */
4043 struct task_struct *idle_task(int cpu)
4044 {
4045 return cpu_rq(cpu)->idle;
4046 }
4047
4048 /**
4049 * find_process_by_pid - find a process with a matching PID value.
4050 * @pid: the pid in question.
4051 */
4052 static struct task_struct *find_process_by_pid(pid_t pid)
4053 {
4054 return pid ? find_task_by_pid(pid) : current;
4055 }
4056
4057 /* Actually do priority change: must hold rq lock. */
4058 static void
4059 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4060 {
4061 BUG_ON(p->se.on_rq);
4062
4063 p->policy = policy;
4064 switch (p->policy) {
4065 case SCHED_NORMAL:
4066 case SCHED_BATCH:
4067 case SCHED_IDLE:
4068 p->sched_class = &fair_sched_class;
4069 break;
4070 case SCHED_FIFO:
4071 case SCHED_RR:
4072 p->sched_class = &rt_sched_class;
4073 break;
4074 }
4075
4076 p->rt_priority = prio;
4077 p->normal_prio = normal_prio(p);
4078 /* we are holding p->pi_lock already */
4079 p->prio = rt_mutex_getprio(p);
4080 set_load_weight(p);
4081 }
4082
4083 /**
4084 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4085 * @p: the task in question.
4086 * @policy: new policy.
4087 * @param: structure containing the new RT priority.
4088 *
4089 * NOTE that the task may be already dead.
4090 */
4091 int sched_setscheduler(struct task_struct *p, int policy,
4092 struct sched_param *param)
4093 {
4094 int retval, oldprio, oldpolicy = -1, on_rq, running;
4095 unsigned long flags;
4096 struct rq *rq;
4097
4098 /* may grab non-irq protected spin_locks */
4099 BUG_ON(in_interrupt());
4100 recheck:
4101 /* double check policy once rq lock held */
4102 if (policy < 0)
4103 policy = oldpolicy = p->policy;
4104 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4105 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4106 policy != SCHED_IDLE)
4107 return -EINVAL;
4108 /*
4109 * Valid priorities for SCHED_FIFO and SCHED_RR are
4110 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4111 * SCHED_BATCH and SCHED_IDLE is 0.
4112 */
4113 if (param->sched_priority < 0 ||
4114 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4115 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4116 return -EINVAL;
4117 if (rt_policy(policy) != (param->sched_priority != 0))
4118 return -EINVAL;
4119
4120 /*
4121 * Allow unprivileged RT tasks to decrease priority:
4122 */
4123 if (!capable(CAP_SYS_NICE)) {
4124 if (rt_policy(policy)) {
4125 unsigned long rlim_rtprio;
4126
4127 if (!lock_task_sighand(p, &flags))
4128 return -ESRCH;
4129 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4130 unlock_task_sighand(p, &flags);
4131
4132 /* can't set/change the rt policy */
4133 if (policy != p->policy && !rlim_rtprio)
4134 return -EPERM;
4135
4136 /* can't increase priority */
4137 if (param->sched_priority > p->rt_priority &&
4138 param->sched_priority > rlim_rtprio)
4139 return -EPERM;
4140 }
4141 /*
4142 * Like positive nice levels, dont allow tasks to
4143 * move out of SCHED_IDLE either:
4144 */
4145 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4146 return -EPERM;
4147
4148 /* can't change other user's priorities */
4149 if ((current->euid != p->euid) &&
4150 (current->euid != p->uid))
4151 return -EPERM;
4152 }
4153
4154 retval = security_task_setscheduler(p, policy, param);
4155 if (retval)
4156 return retval;
4157 /*
4158 * make sure no PI-waiters arrive (or leave) while we are
4159 * changing the priority of the task:
4160 */
4161 spin_lock_irqsave(&p->pi_lock, flags);
4162 /*
4163 * To be able to change p->policy safely, the apropriate
4164 * runqueue lock must be held.
4165 */
4166 rq = __task_rq_lock(p);
4167 /* recheck policy now with rq lock held */
4168 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4169 policy = oldpolicy = -1;
4170 __task_rq_unlock(rq);
4171 spin_unlock_irqrestore(&p->pi_lock, flags);
4172 goto recheck;
4173 }
4174 update_rq_clock(rq);
4175 on_rq = p->se.on_rq;
4176 running = task_running(rq, p);
4177 if (on_rq) {
4178 deactivate_task(rq, p, 0);
4179 if (running)
4180 p->sched_class->put_prev_task(rq, p);
4181 }
4182
4183 oldprio = p->prio;
4184 __setscheduler(rq, p, policy, param->sched_priority);
4185
4186 if (on_rq) {
4187 if (running)
4188 p->sched_class->set_curr_task(rq);
4189 activate_task(rq, p, 0);
4190 /*
4191 * Reschedule if we are currently running on this runqueue and
4192 * our priority decreased, or if we are not currently running on
4193 * this runqueue and our priority is higher than the current's
4194 */
4195 if (running) {
4196 if (p->prio > oldprio)
4197 resched_task(rq->curr);
4198 } else {
4199 check_preempt_curr(rq, p);
4200 }
4201 }
4202 __task_rq_unlock(rq);
4203 spin_unlock_irqrestore(&p->pi_lock, flags);
4204
4205 rt_mutex_adjust_pi(p);
4206
4207 return 0;
4208 }
4209 EXPORT_SYMBOL_GPL(sched_setscheduler);
4210
4211 static int
4212 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4213 {
4214 struct sched_param lparam;
4215 struct task_struct *p;
4216 int retval;
4217
4218 if (!param || pid < 0)
4219 return -EINVAL;
4220 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4221 return -EFAULT;
4222
4223 rcu_read_lock();
4224 retval = -ESRCH;
4225 p = find_process_by_pid(pid);
4226 if (p != NULL)
4227 retval = sched_setscheduler(p, policy, &lparam);
4228 rcu_read_unlock();
4229
4230 return retval;
4231 }
4232
4233 /**
4234 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4235 * @pid: the pid in question.
4236 * @policy: new policy.
4237 * @param: structure containing the new RT priority.
4238 */
4239 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4240 struct sched_param __user *param)
4241 {
4242 /* negative values for policy are not valid */
4243 if (policy < 0)
4244 return -EINVAL;
4245
4246 return do_sched_setscheduler(pid, policy, param);
4247 }
4248
4249 /**
4250 * sys_sched_setparam - set/change the RT priority of a thread
4251 * @pid: the pid in question.
4252 * @param: structure containing the new RT priority.
4253 */
4254 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4255 {
4256 return do_sched_setscheduler(pid, -1, param);
4257 }
4258
4259 /**
4260 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4261 * @pid: the pid in question.
4262 */
4263 asmlinkage long sys_sched_getscheduler(pid_t pid)
4264 {
4265 struct task_struct *p;
4266 int retval;
4267
4268 if (pid < 0)
4269 return -EINVAL;
4270
4271 retval = -ESRCH;
4272 read_lock(&tasklist_lock);
4273 p = find_process_by_pid(pid);
4274 if (p) {
4275 retval = security_task_getscheduler(p);
4276 if (!retval)
4277 retval = p->policy;
4278 }
4279 read_unlock(&tasklist_lock);
4280 return retval;
4281 }
4282
4283 /**
4284 * sys_sched_getscheduler - get the RT priority of a thread
4285 * @pid: the pid in question.
4286 * @param: structure containing the RT priority.
4287 */
4288 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4289 {
4290 struct sched_param lp;
4291 struct task_struct *p;
4292 int retval;
4293
4294 if (!param || pid < 0)
4295 return -EINVAL;
4296
4297 read_lock(&tasklist_lock);
4298 p = find_process_by_pid(pid);
4299 retval = -ESRCH;
4300 if (!p)
4301 goto out_unlock;
4302
4303 retval = security_task_getscheduler(p);
4304 if (retval)
4305 goto out_unlock;
4306
4307 lp.sched_priority = p->rt_priority;
4308 read_unlock(&tasklist_lock);
4309
4310 /*
4311 * This one might sleep, we cannot do it with a spinlock held ...
4312 */
4313 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4314
4315 return retval;
4316
4317 out_unlock:
4318 read_unlock(&tasklist_lock);
4319 return retval;
4320 }
4321
4322 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4323 {
4324 cpumask_t cpus_allowed;
4325 struct task_struct *p;
4326 int retval;
4327
4328 mutex_lock(&sched_hotcpu_mutex);
4329 read_lock(&tasklist_lock);
4330
4331 p = find_process_by_pid(pid);
4332 if (!p) {
4333 read_unlock(&tasklist_lock);
4334 mutex_unlock(&sched_hotcpu_mutex);
4335 return -ESRCH;
4336 }
4337
4338 /*
4339 * It is not safe to call set_cpus_allowed with the
4340 * tasklist_lock held. We will bump the task_struct's
4341 * usage count and then drop tasklist_lock.
4342 */
4343 get_task_struct(p);
4344 read_unlock(&tasklist_lock);
4345
4346 retval = -EPERM;
4347 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4348 !capable(CAP_SYS_NICE))
4349 goto out_unlock;
4350
4351 retval = security_task_setscheduler(p, 0, NULL);
4352 if (retval)
4353 goto out_unlock;
4354
4355 cpus_allowed = cpuset_cpus_allowed(p);
4356 cpus_and(new_mask, new_mask, cpus_allowed);
4357 retval = set_cpus_allowed(p, new_mask);
4358
4359 out_unlock:
4360 put_task_struct(p);
4361 mutex_unlock(&sched_hotcpu_mutex);
4362 return retval;
4363 }
4364
4365 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4366 cpumask_t *new_mask)
4367 {
4368 if (len < sizeof(cpumask_t)) {
4369 memset(new_mask, 0, sizeof(cpumask_t));
4370 } else if (len > sizeof(cpumask_t)) {
4371 len = sizeof(cpumask_t);
4372 }
4373 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4374 }
4375
4376 /**
4377 * sys_sched_setaffinity - set the cpu affinity of a process
4378 * @pid: pid of the process
4379 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4380 * @user_mask_ptr: user-space pointer to the new cpu mask
4381 */
4382 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4383 unsigned long __user *user_mask_ptr)
4384 {
4385 cpumask_t new_mask;
4386 int retval;
4387
4388 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4389 if (retval)
4390 return retval;
4391
4392 return sched_setaffinity(pid, new_mask);
4393 }
4394
4395 /*
4396 * Represents all cpu's present in the system
4397 * In systems capable of hotplug, this map could dynamically grow
4398 * as new cpu's are detected in the system via any platform specific
4399 * method, such as ACPI for e.g.
4400 */
4401
4402 cpumask_t cpu_present_map __read_mostly;
4403 EXPORT_SYMBOL(cpu_present_map);
4404
4405 #ifndef CONFIG_SMP
4406 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4407 EXPORT_SYMBOL(cpu_online_map);
4408
4409 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4410 EXPORT_SYMBOL(cpu_possible_map);
4411 #endif
4412
4413 long sched_getaffinity(pid_t pid, cpumask_t *mask)
4414 {
4415 struct task_struct *p;
4416 int retval;
4417
4418 mutex_lock(&sched_hotcpu_mutex);
4419 read_lock(&tasklist_lock);
4420
4421 retval = -ESRCH;
4422 p = find_process_by_pid(pid);
4423 if (!p)
4424 goto out_unlock;
4425
4426 retval = security_task_getscheduler(p);
4427 if (retval)
4428 goto out_unlock;
4429
4430 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
4431
4432 out_unlock:
4433 read_unlock(&tasklist_lock);
4434 mutex_unlock(&sched_hotcpu_mutex);
4435
4436 return retval;
4437 }
4438
4439 /**
4440 * sys_sched_getaffinity - get the cpu affinity of a process
4441 * @pid: pid of the process
4442 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4443 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4444 */
4445 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4446 unsigned long __user *user_mask_ptr)
4447 {
4448 int ret;
4449 cpumask_t mask;
4450
4451 if (len < sizeof(cpumask_t))
4452 return -EINVAL;
4453
4454 ret = sched_getaffinity(pid, &mask);
4455 if (ret < 0)
4456 return ret;
4457
4458 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4459 return -EFAULT;
4460
4461 return sizeof(cpumask_t);
4462 }
4463
4464 /**
4465 * sys_sched_yield - yield the current processor to other threads.
4466 *
4467 * This function yields the current CPU to other tasks. If there are no
4468 * other threads running on this CPU then this function will return.
4469 */
4470 asmlinkage long sys_sched_yield(void)
4471 {
4472 struct rq *rq = this_rq_lock();
4473
4474 schedstat_inc(rq, yld_count);
4475 current->sched_class->yield_task(rq);
4476
4477 /*
4478 * Since we are going to call schedule() anyway, there's
4479 * no need to preempt or enable interrupts:
4480 */
4481 __release(rq->lock);
4482 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4483 _raw_spin_unlock(&rq->lock);
4484 preempt_enable_no_resched();
4485
4486 schedule();
4487
4488 return 0;
4489 }
4490
4491 static void __cond_resched(void)
4492 {
4493 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4494 __might_sleep(__FILE__, __LINE__);
4495 #endif
4496 /*
4497 * The BKS might be reacquired before we have dropped
4498 * PREEMPT_ACTIVE, which could trigger a second
4499 * cond_resched() call.
4500 */
4501 do {
4502 add_preempt_count(PREEMPT_ACTIVE);
4503 schedule();
4504 sub_preempt_count(PREEMPT_ACTIVE);
4505 } while (need_resched());
4506 }
4507
4508 int __sched cond_resched(void)
4509 {
4510 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4511 system_state == SYSTEM_RUNNING) {
4512 __cond_resched();
4513 return 1;
4514 }
4515 return 0;
4516 }
4517 EXPORT_SYMBOL(cond_resched);
4518
4519 /*
4520 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4521 * call schedule, and on return reacquire the lock.
4522 *
4523 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4524 * operations here to prevent schedule() from being called twice (once via
4525 * spin_unlock(), once by hand).
4526 */
4527 int cond_resched_lock(spinlock_t *lock)
4528 {
4529 int ret = 0;
4530
4531 if (need_lockbreak(lock)) {
4532 spin_unlock(lock);
4533 cpu_relax();
4534 ret = 1;
4535 spin_lock(lock);
4536 }
4537 if (need_resched() && system_state == SYSTEM_RUNNING) {
4538 spin_release(&lock->dep_map, 1, _THIS_IP_);
4539 _raw_spin_unlock(lock);
4540 preempt_enable_no_resched();
4541 __cond_resched();
4542 ret = 1;
4543 spin_lock(lock);
4544 }
4545 return ret;
4546 }
4547 EXPORT_SYMBOL(cond_resched_lock);
4548
4549 int __sched cond_resched_softirq(void)
4550 {
4551 BUG_ON(!in_softirq());
4552
4553 if (need_resched() && system_state == SYSTEM_RUNNING) {
4554 local_bh_enable();
4555 __cond_resched();
4556 local_bh_disable();
4557 return 1;
4558 }
4559 return 0;
4560 }
4561 EXPORT_SYMBOL(cond_resched_softirq);
4562
4563 /**
4564 * yield - yield the current processor to other threads.
4565 *
4566 * This is a shortcut for kernel-space yielding - it marks the
4567 * thread runnable and calls sys_sched_yield().
4568 */
4569 void __sched yield(void)
4570 {
4571 set_current_state(TASK_RUNNING);
4572 sys_sched_yield();
4573 }
4574 EXPORT_SYMBOL(yield);
4575
4576 /*
4577 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4578 * that process accounting knows that this is a task in IO wait state.
4579 *
4580 * But don't do that if it is a deliberate, throttling IO wait (this task
4581 * has set its backing_dev_info: the queue against which it should throttle)
4582 */
4583 void __sched io_schedule(void)
4584 {
4585 struct rq *rq = &__raw_get_cpu_var(runqueues);
4586
4587 delayacct_blkio_start();
4588 atomic_inc(&rq->nr_iowait);
4589 schedule();
4590 atomic_dec(&rq->nr_iowait);
4591 delayacct_blkio_end();
4592 }
4593 EXPORT_SYMBOL(io_schedule);
4594
4595 long __sched io_schedule_timeout(long timeout)
4596 {
4597 struct rq *rq = &__raw_get_cpu_var(runqueues);
4598 long ret;
4599
4600 delayacct_blkio_start();
4601 atomic_inc(&rq->nr_iowait);
4602 ret = schedule_timeout(timeout);
4603 atomic_dec(&rq->nr_iowait);
4604 delayacct_blkio_end();
4605 return ret;
4606 }
4607
4608 /**
4609 * sys_sched_get_priority_max - return maximum RT priority.
4610 * @policy: scheduling class.
4611 *
4612 * this syscall returns the maximum rt_priority that can be used
4613 * by a given scheduling class.
4614 */
4615 asmlinkage long sys_sched_get_priority_max(int policy)
4616 {
4617 int ret = -EINVAL;
4618
4619 switch (policy) {
4620 case SCHED_FIFO:
4621 case SCHED_RR:
4622 ret = MAX_USER_RT_PRIO-1;
4623 break;
4624 case SCHED_NORMAL:
4625 case SCHED_BATCH:
4626 case SCHED_IDLE:
4627 ret = 0;
4628 break;
4629 }
4630 return ret;
4631 }
4632
4633 /**
4634 * sys_sched_get_priority_min - return minimum RT priority.
4635 * @policy: scheduling class.
4636 *
4637 * this syscall returns the minimum rt_priority that can be used
4638 * by a given scheduling class.
4639 */
4640 asmlinkage long sys_sched_get_priority_min(int policy)
4641 {
4642 int ret = -EINVAL;
4643
4644 switch (policy) {
4645 case SCHED_FIFO:
4646 case SCHED_RR:
4647 ret = 1;
4648 break;
4649 case SCHED_NORMAL:
4650 case SCHED_BATCH:
4651 case SCHED_IDLE:
4652 ret = 0;
4653 }
4654 return ret;
4655 }
4656
4657 /**
4658 * sys_sched_rr_get_interval - return the default timeslice of a process.
4659 * @pid: pid of the process.
4660 * @interval: userspace pointer to the timeslice value.
4661 *
4662 * this syscall writes the default timeslice value of a given process
4663 * into the user-space timespec buffer. A value of '0' means infinity.
4664 */
4665 asmlinkage
4666 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4667 {
4668 struct task_struct *p;
4669 unsigned int time_slice;
4670 int retval;
4671 struct timespec t;
4672
4673 if (pid < 0)
4674 return -EINVAL;
4675
4676 retval = -ESRCH;
4677 read_lock(&tasklist_lock);
4678 p = find_process_by_pid(pid);
4679 if (!p)
4680 goto out_unlock;
4681
4682 retval = security_task_getscheduler(p);
4683 if (retval)
4684 goto out_unlock;
4685
4686 if (p->policy == SCHED_FIFO)
4687 time_slice = 0;
4688 else if (p->policy == SCHED_RR)
4689 time_slice = DEF_TIMESLICE;
4690 else {
4691 struct sched_entity *se = &p->se;
4692 unsigned long flags;
4693 struct rq *rq;
4694
4695 rq = task_rq_lock(p, &flags);
4696 time_slice = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
4697 task_rq_unlock(rq, &flags);
4698 }
4699 read_unlock(&tasklist_lock);
4700 jiffies_to_timespec(time_slice, &t);
4701 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4702 return retval;
4703
4704 out_unlock:
4705 read_unlock(&tasklist_lock);
4706 return retval;
4707 }
4708
4709 static const char stat_nam[] = "RSDTtZX";
4710
4711 static void show_task(struct task_struct *p)
4712 {
4713 unsigned long free = 0;
4714 unsigned state;
4715
4716 state = p->state ? __ffs(p->state) + 1 : 0;
4717 printk("%-13.13s %c", p->comm,
4718 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4719 #if BITS_PER_LONG == 32
4720 if (state == TASK_RUNNING)
4721 printk(" running ");
4722 else
4723 printk(" %08lx ", thread_saved_pc(p));
4724 #else
4725 if (state == TASK_RUNNING)
4726 printk(" running task ");
4727 else
4728 printk(" %016lx ", thread_saved_pc(p));
4729 #endif
4730 #ifdef CONFIG_DEBUG_STACK_USAGE
4731 {
4732 unsigned long *n = end_of_stack(p);
4733 while (!*n)
4734 n++;
4735 free = (unsigned long)n - (unsigned long)end_of_stack(p);
4736 }
4737 #endif
4738 printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
4739
4740 if (state != TASK_RUNNING)
4741 show_stack(p, NULL);
4742 }
4743
4744 void show_state_filter(unsigned long state_filter)
4745 {
4746 struct task_struct *g, *p;
4747
4748 #if BITS_PER_LONG == 32
4749 printk(KERN_INFO
4750 " task PC stack pid father\n");
4751 #else
4752 printk(KERN_INFO
4753 " task PC stack pid father\n");
4754 #endif
4755 read_lock(&tasklist_lock);
4756 do_each_thread(g, p) {
4757 /*
4758 * reset the NMI-timeout, listing all files on a slow
4759 * console might take alot of time:
4760 */
4761 touch_nmi_watchdog();
4762 if (!state_filter || (p->state & state_filter))
4763 show_task(p);
4764 } while_each_thread(g, p);
4765
4766 touch_all_softlockup_watchdogs();
4767
4768 #ifdef CONFIG_SCHED_DEBUG
4769 sysrq_sched_debug_show();
4770 #endif
4771 read_unlock(&tasklist_lock);
4772 /*
4773 * Only show locks if all tasks are dumped:
4774 */
4775 if (state_filter == -1)
4776 debug_show_all_locks();
4777 }
4778
4779 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4780 {
4781 idle->sched_class = &idle_sched_class;
4782 }
4783
4784 /**
4785 * init_idle - set up an idle thread for a given CPU
4786 * @idle: task in question
4787 * @cpu: cpu the idle task belongs to
4788 *
4789 * NOTE: this function does not set the idle thread's NEED_RESCHED
4790 * flag, to make booting more robust.
4791 */
4792 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4793 {
4794 struct rq *rq = cpu_rq(cpu);
4795 unsigned long flags;
4796
4797 __sched_fork(idle);
4798 idle->se.exec_start = sched_clock();
4799
4800 idle->prio = idle->normal_prio = MAX_PRIO;
4801 idle->cpus_allowed = cpumask_of_cpu(cpu);
4802 __set_task_cpu(idle, cpu);
4803
4804 spin_lock_irqsave(&rq->lock, flags);
4805 rq->curr = rq->idle = idle;
4806 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4807 idle->oncpu = 1;
4808 #endif
4809 spin_unlock_irqrestore(&rq->lock, flags);
4810
4811 /* Set the preempt count _outside_ the spinlocks! */
4812 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4813 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
4814 #else
4815 task_thread_info(idle)->preempt_count = 0;
4816 #endif
4817 /*
4818 * The idle tasks have their own, simple scheduling class:
4819 */
4820 idle->sched_class = &idle_sched_class;
4821 }
4822
4823 /*
4824 * In a system that switches off the HZ timer nohz_cpu_mask
4825 * indicates which cpus entered this state. This is used
4826 * in the rcu update to wait only for active cpus. For system
4827 * which do not switch off the HZ timer nohz_cpu_mask should
4828 * always be CPU_MASK_NONE.
4829 */
4830 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4831
4832 #ifdef CONFIG_SMP
4833 /*
4834 * This is how migration works:
4835 *
4836 * 1) we queue a struct migration_req structure in the source CPU's
4837 * runqueue and wake up that CPU's migration thread.
4838 * 2) we down() the locked semaphore => thread blocks.
4839 * 3) migration thread wakes up (implicitly it forces the migrated
4840 * thread off the CPU)
4841 * 4) it gets the migration request and checks whether the migrated
4842 * task is still in the wrong runqueue.
4843 * 5) if it's in the wrong runqueue then the migration thread removes
4844 * it and puts it into the right queue.
4845 * 6) migration thread up()s the semaphore.
4846 * 7) we wake up and the migration is done.
4847 */
4848
4849 /*
4850 * Change a given task's CPU affinity. Migrate the thread to a
4851 * proper CPU and schedule it away if the CPU it's executing on
4852 * is removed from the allowed bitmask.
4853 *
4854 * NOTE: the caller must have a valid reference to the task, the
4855 * task must not exit() & deallocate itself prematurely. The
4856 * call is not atomic; no spinlocks may be held.
4857 */
4858 int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
4859 {
4860 struct migration_req req;
4861 unsigned long flags;
4862 struct rq *rq;
4863 int ret = 0;
4864
4865 rq = task_rq_lock(p, &flags);
4866 if (!cpus_intersects(new_mask, cpu_online_map)) {
4867 ret = -EINVAL;
4868 goto out;
4869 }
4870
4871 p->cpus_allowed = new_mask;
4872 /* Can the task run on the task's current CPU? If so, we're done */
4873 if (cpu_isset(task_cpu(p), new_mask))
4874 goto out;
4875
4876 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4877 /* Need help from migration thread: drop lock and wait. */
4878 task_rq_unlock(rq, &flags);
4879 wake_up_process(rq->migration_thread);
4880 wait_for_completion(&req.done);
4881 tlb_migrate_finish(p->mm);
4882 return 0;
4883 }
4884 out:
4885 task_rq_unlock(rq, &flags);
4886
4887 return ret;
4888 }
4889 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4890
4891 /*
4892 * Move (not current) task off this cpu, onto dest cpu. We're doing
4893 * this because either it can't run here any more (set_cpus_allowed()
4894 * away from this CPU, or CPU going down), or because we're
4895 * attempting to rebalance this task on exec (sched_exec).
4896 *
4897 * So we race with normal scheduler movements, but that's OK, as long
4898 * as the task is no longer on this CPU.
4899 *
4900 * Returns non-zero if task was successfully migrated.
4901 */
4902 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4903 {
4904 struct rq *rq_dest, *rq_src;
4905 int ret = 0, on_rq;
4906
4907 if (unlikely(cpu_is_offline(dest_cpu)))
4908 return ret;
4909
4910 rq_src = cpu_rq(src_cpu);
4911 rq_dest = cpu_rq(dest_cpu);
4912
4913 double_rq_lock(rq_src, rq_dest);
4914 /* Already moved. */
4915 if (task_cpu(p) != src_cpu)
4916 goto out;
4917 /* Affinity changed (again). */
4918 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4919 goto out;
4920
4921 on_rq = p->se.on_rq;
4922 if (on_rq)
4923 deactivate_task(rq_src, p, 0);
4924
4925 set_task_cpu(p, dest_cpu);
4926 if (on_rq) {
4927 activate_task(rq_dest, p, 0);
4928 check_preempt_curr(rq_dest, p);
4929 }
4930 ret = 1;
4931 out:
4932 double_rq_unlock(rq_src, rq_dest);
4933 return ret;
4934 }
4935
4936 /*
4937 * migration_thread - this is a highprio system thread that performs
4938 * thread migration by bumping thread off CPU then 'pushing' onto
4939 * another runqueue.
4940 */
4941 static int migration_thread(void *data)
4942 {
4943 int cpu = (long)data;
4944 struct rq *rq;
4945
4946 rq = cpu_rq(cpu);
4947 BUG_ON(rq->migration_thread != current);
4948
4949 set_current_state(TASK_INTERRUPTIBLE);
4950 while (!kthread_should_stop()) {
4951 struct migration_req *req;
4952 struct list_head *head;
4953
4954 spin_lock_irq(&rq->lock);
4955
4956 if (cpu_is_offline(cpu)) {
4957 spin_unlock_irq(&rq->lock);
4958 goto wait_to_die;
4959 }
4960
4961 if (rq->active_balance) {
4962 active_load_balance(rq, cpu);
4963 rq->active_balance = 0;
4964 }
4965
4966 head = &rq->migration_queue;
4967
4968 if (list_empty(head)) {
4969 spin_unlock_irq(&rq->lock);
4970 schedule();
4971 set_current_state(TASK_INTERRUPTIBLE);
4972 continue;
4973 }
4974 req = list_entry(head->next, struct migration_req, list);
4975 list_del_init(head->next);
4976
4977 spin_unlock(&rq->lock);
4978 __migrate_task(req->task, cpu, req->dest_cpu);
4979 local_irq_enable();
4980
4981 complete(&req->done);
4982 }
4983 __set_current_state(TASK_RUNNING);
4984 return 0;
4985
4986 wait_to_die:
4987 /* Wait for kthread_stop */
4988 set_current_state(TASK_INTERRUPTIBLE);
4989 while (!kthread_should_stop()) {
4990 schedule();
4991 set_current_state(TASK_INTERRUPTIBLE);
4992 }
4993 __set_current_state(TASK_RUNNING);
4994 return 0;
4995 }
4996
4997 #ifdef CONFIG_HOTPLUG_CPU
4998 /*
4999 * Figure out where task on dead CPU should go, use force if neccessary.
5000 * NOTE: interrupts should be disabled by the caller
5001 */
5002 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5003 {
5004 unsigned long flags;
5005 cpumask_t mask;
5006 struct rq *rq;
5007 int dest_cpu;
5008
5009 do {
5010 /* On same node? */
5011 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5012 cpus_and(mask, mask, p->cpus_allowed);
5013 dest_cpu = any_online_cpu(mask);
5014
5015 /* On any allowed CPU? */
5016 if (dest_cpu == NR_CPUS)
5017 dest_cpu = any_online_cpu(p->cpus_allowed);
5018
5019 /* No more Mr. Nice Guy. */
5020 if (dest_cpu == NR_CPUS) {
5021 rq = task_rq_lock(p, &flags);
5022 cpus_setall(p->cpus_allowed);
5023 dest_cpu = any_online_cpu(p->cpus_allowed);
5024 task_rq_unlock(rq, &flags);
5025
5026 /*
5027 * Don't tell them about moving exiting tasks or
5028 * kernel threads (both mm NULL), since they never
5029 * leave kernel.
5030 */
5031 if (p->mm && printk_ratelimit())
5032 printk(KERN_INFO "process %d (%s) no "
5033 "longer affine to cpu%d\n",
5034 p->pid, p->comm, dead_cpu);
5035 }
5036 } while (!__migrate_task(p, dead_cpu, dest_cpu));
5037 }
5038
5039 /*
5040 * While a dead CPU has no uninterruptible tasks queued at this point,
5041 * it might still have a nonzero ->nr_uninterruptible counter, because
5042 * for performance reasons the counter is not stricly tracking tasks to
5043 * their home CPUs. So we just add the counter to another CPU's counter,
5044 * to keep the global sum constant after CPU-down:
5045 */
5046 static void migrate_nr_uninterruptible(struct rq *rq_src)
5047 {
5048 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
5049 unsigned long flags;
5050
5051 local_irq_save(flags);
5052 double_rq_lock(rq_src, rq_dest);
5053 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5054 rq_src->nr_uninterruptible = 0;
5055 double_rq_unlock(rq_src, rq_dest);
5056 local_irq_restore(flags);
5057 }
5058
5059 /* Run through task list and migrate tasks from the dead cpu. */
5060 static void migrate_live_tasks(int src_cpu)
5061 {
5062 struct task_struct *p, *t;
5063
5064 write_lock_irq(&tasklist_lock);
5065
5066 do_each_thread(t, p) {
5067 if (p == current)
5068 continue;
5069
5070 if (task_cpu(p) == src_cpu)
5071 move_task_off_dead_cpu(src_cpu, p);
5072 } while_each_thread(t, p);
5073
5074 write_unlock_irq(&tasklist_lock);
5075 }
5076
5077 /*
5078 * activate_idle_task - move idle task to the _front_ of runqueue.
5079 */
5080 static void activate_idle_task(struct task_struct *p, struct rq *rq)
5081 {
5082 update_rq_clock(rq);
5083
5084 if (p->state == TASK_UNINTERRUPTIBLE)
5085 rq->nr_uninterruptible--;
5086
5087 enqueue_task(rq, p, 0);
5088 inc_nr_running(p, rq);
5089 }
5090
5091 /*
5092 * Schedules idle task to be the next runnable task on current CPU.
5093 * It does so by boosting its priority to highest possible and adding it to
5094 * the _front_ of the runqueue. Used by CPU offline code.
5095 */
5096 void sched_idle_next(void)
5097 {
5098 int this_cpu = smp_processor_id();
5099 struct rq *rq = cpu_rq(this_cpu);
5100 struct task_struct *p = rq->idle;
5101 unsigned long flags;
5102
5103 /* cpu has to be offline */
5104 BUG_ON(cpu_online(this_cpu));
5105
5106 /*
5107 * Strictly not necessary since rest of the CPUs are stopped by now
5108 * and interrupts disabled on the current cpu.
5109 */
5110 spin_lock_irqsave(&rq->lock, flags);
5111
5112 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5113
5114 /* Add idle task to the _front_ of its priority queue: */
5115 activate_idle_task(p, rq);
5116
5117 spin_unlock_irqrestore(&rq->lock, flags);
5118 }
5119
5120 /*
5121 * Ensures that the idle task is using init_mm right before its cpu goes
5122 * offline.
5123 */
5124 void idle_task_exit(void)
5125 {
5126 struct mm_struct *mm = current->active_mm;
5127
5128 BUG_ON(cpu_online(smp_processor_id()));
5129
5130 if (mm != &init_mm)
5131 switch_mm(mm, &init_mm, current);
5132 mmdrop(mm);
5133 }
5134
5135 /* called under rq->lock with disabled interrupts */
5136 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5137 {
5138 struct rq *rq = cpu_rq(dead_cpu);
5139
5140 /* Must be exiting, otherwise would be on tasklist. */
5141 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
5142
5143 /* Cannot have done final schedule yet: would have vanished. */
5144 BUG_ON(p->state == TASK_DEAD);
5145
5146 get_task_struct(p);
5147
5148 /*
5149 * Drop lock around migration; if someone else moves it,
5150 * that's OK. No task can be added to this CPU, so iteration is
5151 * fine.
5152 * NOTE: interrupts should be left disabled --dev@
5153 */
5154 spin_unlock(&rq->lock);
5155 move_task_off_dead_cpu(dead_cpu, p);
5156 spin_lock(&rq->lock);
5157
5158 put_task_struct(p);
5159 }
5160
5161 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5162 static void migrate_dead_tasks(unsigned int dead_cpu)
5163 {
5164 struct rq *rq = cpu_rq(dead_cpu);
5165 struct task_struct *next;
5166
5167 for ( ; ; ) {
5168 if (!rq->nr_running)
5169 break;
5170 update_rq_clock(rq);
5171 next = pick_next_task(rq, rq->curr);
5172 if (!next)
5173 break;
5174 migrate_dead(dead_cpu, next);
5175
5176 }
5177 }
5178 #endif /* CONFIG_HOTPLUG_CPU */
5179
5180 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5181
5182 static struct ctl_table sd_ctl_dir[] = {
5183 {
5184 .procname = "sched_domain",
5185 .mode = 0555,
5186 },
5187 {0,},
5188 };
5189
5190 static struct ctl_table sd_ctl_root[] = {
5191 {
5192 .ctl_name = CTL_KERN,
5193 .procname = "kernel",
5194 .mode = 0555,
5195 .child = sd_ctl_dir,
5196 },
5197 {0,},
5198 };
5199
5200 static struct ctl_table *sd_alloc_ctl_entry(int n)
5201 {
5202 struct ctl_table *entry =
5203 kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);
5204
5205 BUG_ON(!entry);
5206 memset(entry, 0, n * sizeof(struct ctl_table));
5207
5208 return entry;
5209 }
5210
5211 static void
5212 set_table_entry(struct ctl_table *entry,
5213 const char *procname, void *data, int maxlen,
5214 mode_t mode, proc_handler *proc_handler)
5215 {
5216 entry->procname = procname;
5217 entry->data = data;
5218 entry->maxlen = maxlen;
5219 entry->mode = mode;
5220 entry->proc_handler = proc_handler;
5221 }
5222
5223 static struct ctl_table *
5224 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5225 {
5226 struct ctl_table *table = sd_alloc_ctl_entry(12);
5227
5228 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5229 sizeof(long), 0644, proc_doulongvec_minmax);
5230 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5231 sizeof(long), 0644, proc_doulongvec_minmax);
5232 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5233 sizeof(int), 0644, proc_dointvec_minmax);
5234 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5235 sizeof(int), 0644, proc_dointvec_minmax);
5236 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5237 sizeof(int), 0644, proc_dointvec_minmax);
5238 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5239 sizeof(int), 0644, proc_dointvec_minmax);
5240 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5241 sizeof(int), 0644, proc_dointvec_minmax);
5242 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5243 sizeof(int), 0644, proc_dointvec_minmax);
5244 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5245 sizeof(int), 0644, proc_dointvec_minmax);
5246 set_table_entry(&table[9], "cache_nice_tries",
5247 &sd->cache_nice_tries,
5248 sizeof(int), 0644, proc_dointvec_minmax);
5249 set_table_entry(&table[10], "flags", &sd->flags,
5250 sizeof(int), 0644, proc_dointvec_minmax);
5251
5252 return table;
5253 }
5254
5255 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5256 {
5257 struct ctl_table *entry, *table;
5258 struct sched_domain *sd;
5259 int domain_num = 0, i;
5260 char buf[32];
5261
5262 for_each_domain(cpu, sd)
5263 domain_num++;
5264 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5265
5266 i = 0;
5267 for_each_domain(cpu, sd) {
5268 snprintf(buf, 32, "domain%d", i);
5269 entry->procname = kstrdup(buf, GFP_KERNEL);
5270 entry->mode = 0555;
5271 entry->child = sd_alloc_ctl_domain_table(sd);
5272 entry++;
5273 i++;
5274 }
5275 return table;
5276 }
5277
5278 static struct ctl_table_header *sd_sysctl_header;
5279 static void init_sched_domain_sysctl(void)
5280 {
5281 int i, cpu_num = num_online_cpus();
5282 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5283 char buf[32];
5284
5285 sd_ctl_dir[0].child = entry;
5286
5287 for (i = 0; i < cpu_num; i++, entry++) {
5288 snprintf(buf, 32, "cpu%d", i);
5289 entry->procname = kstrdup(buf, GFP_KERNEL);
5290 entry->mode = 0555;
5291 entry->child = sd_alloc_ctl_cpu_table(i);
5292 }
5293 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5294 }
5295 #else
5296 static void init_sched_domain_sysctl(void)
5297 {
5298 }
5299 #endif
5300
5301 /*
5302 * migration_call - callback that gets triggered when a CPU is added.
5303 * Here we can start up the necessary migration thread for the new CPU.
5304 */
5305 static int __cpuinit
5306 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5307 {
5308 struct task_struct *p;
5309 int cpu = (long)hcpu;
5310 unsigned long flags;
5311 struct rq *rq;
5312
5313 switch (action) {
5314 case CPU_LOCK_ACQUIRE:
5315 mutex_lock(&sched_hotcpu_mutex);
5316 break;
5317
5318 case CPU_UP_PREPARE:
5319 case CPU_UP_PREPARE_FROZEN:
5320 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
5321 if (IS_ERR(p))
5322 return NOTIFY_BAD;
5323 kthread_bind(p, cpu);
5324 /* Must be high prio: stop_machine expects to yield to it. */
5325 rq = task_rq_lock(p, &flags);
5326 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5327 task_rq_unlock(rq, &flags);
5328 cpu_rq(cpu)->migration_thread = p;
5329 break;
5330
5331 case CPU_ONLINE:
5332 case CPU_ONLINE_FROZEN:
5333 /* Strictly unneccessary, as first user will wake it. */
5334 wake_up_process(cpu_rq(cpu)->migration_thread);
5335 break;
5336
5337 #ifdef CONFIG_HOTPLUG_CPU
5338 case CPU_UP_CANCELED:
5339 case CPU_UP_CANCELED_FROZEN:
5340 if (!cpu_rq(cpu)->migration_thread)
5341 break;
5342 /* Unbind it from offline cpu so it can run. Fall thru. */
5343 kthread_bind(cpu_rq(cpu)->migration_thread,
5344 any_online_cpu(cpu_online_map));
5345 kthread_stop(cpu_rq(cpu)->migration_thread);
5346 cpu_rq(cpu)->migration_thread = NULL;
5347 break;
5348
5349 case CPU_DEAD:
5350 case CPU_DEAD_FROZEN:
5351 migrate_live_tasks(cpu);
5352 rq = cpu_rq(cpu);
5353 kthread_stop(rq->migration_thread);
5354 rq->migration_thread = NULL;
5355 /* Idle task back to normal (off runqueue, low prio) */
5356 rq = task_rq_lock(rq->idle, &flags);
5357 update_rq_clock(rq);
5358 deactivate_task(rq, rq->idle, 0);
5359 rq->idle->static_prio = MAX_PRIO;
5360 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5361 rq->idle->sched_class = &idle_sched_class;
5362 migrate_dead_tasks(cpu);
5363 task_rq_unlock(rq, &flags);
5364 migrate_nr_uninterruptible(rq);
5365 BUG_ON(rq->nr_running != 0);
5366
5367 /* No need to migrate the tasks: it was best-effort if
5368 * they didn't take sched_hotcpu_mutex. Just wake up
5369 * the requestors. */
5370 spin_lock_irq(&rq->lock);
5371 while (!list_empty(&rq->migration_queue)) {
5372 struct migration_req *req;
5373
5374 req = list_entry(rq->migration_queue.next,
5375 struct migration_req, list);
5376 list_del_init(&req->list);
5377 complete(&req->done);
5378 }
5379 spin_unlock_irq(&rq->lock);
5380 break;
5381 #endif
5382 case CPU_LOCK_RELEASE:
5383 mutex_unlock(&sched_hotcpu_mutex);
5384 break;
5385 }
5386 return NOTIFY_OK;
5387 }
5388
5389 /* Register at highest priority so that task migration (migrate_all_tasks)
5390 * happens before everything else.
5391 */
5392 static struct notifier_block __cpuinitdata migration_notifier = {
5393 .notifier_call = migration_call,
5394 .priority = 10
5395 };
5396
5397 int __init migration_init(void)
5398 {
5399 void *cpu = (void *)(long)smp_processor_id();
5400 int err;
5401
5402 /* Start one for the boot CPU: */
5403 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5404 BUG_ON(err == NOTIFY_BAD);
5405 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5406 register_cpu_notifier(&migration_notifier);
5407
5408 return 0;
5409 }
5410 #endif
5411
5412 #ifdef CONFIG_SMP
5413
5414 /* Number of possible processor ids */
5415 int nr_cpu_ids __read_mostly = NR_CPUS;
5416 EXPORT_SYMBOL(nr_cpu_ids);
5417
5418 #ifdef CONFIG_SCHED_DEBUG
5419 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5420 {
5421 int level = 0;
5422
5423 if (!sd) {
5424 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5425 return;
5426 }
5427
5428 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5429
5430 do {
5431 int i;
5432 char str[NR_CPUS];
5433 struct sched_group *group = sd->groups;
5434 cpumask_t groupmask;
5435
5436 cpumask_scnprintf(str, NR_CPUS, sd->span);
5437 cpus_clear(groupmask);
5438
5439 printk(KERN_DEBUG);
5440 for (i = 0; i < level + 1; i++)
5441 printk(" ");
5442 printk("domain %d: ", level);
5443
5444 if (!(sd->flags & SD_LOAD_BALANCE)) {
5445 printk("does not load-balance\n");
5446 if (sd->parent)
5447 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5448 " has parent");
5449 break;
5450 }
5451
5452 printk("span %s\n", str);
5453
5454 if (!cpu_isset(cpu, sd->span))
5455 printk(KERN_ERR "ERROR: domain->span does not contain "
5456 "CPU%d\n", cpu);
5457 if (!cpu_isset(cpu, group->cpumask))
5458 printk(KERN_ERR "ERROR: domain->groups does not contain"
5459 " CPU%d\n", cpu);
5460
5461 printk(KERN_DEBUG);
5462 for (i = 0; i < level + 2; i++)
5463 printk(" ");
5464 printk("groups:");
5465 do {
5466 if (!group) {
5467 printk("\n");
5468 printk(KERN_ERR "ERROR: group is NULL\n");
5469 break;
5470 }
5471
5472 if (!group->__cpu_power) {
5473 printk("\n");
5474 printk(KERN_ERR "ERROR: domain->cpu_power not "
5475 "set\n");
5476 break;
5477 }
5478
5479 if (!cpus_weight(group->cpumask)) {
5480 printk("\n");
5481 printk(KERN_ERR "ERROR: empty group\n");
5482 break;
5483 }
5484
5485 if (cpus_intersects(groupmask, group->cpumask)) {
5486 printk("\n");
5487 printk(KERN_ERR "ERROR: repeated CPUs\n");
5488 break;
5489 }
5490
5491 cpus_or(groupmask, groupmask, group->cpumask);
5492
5493 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5494 printk(" %s", str);
5495
5496 group = group->next;
5497 } while (group != sd->groups);
5498 printk("\n");
5499
5500 if (!cpus_equal(sd->span, groupmask))
5501 printk(KERN_ERR "ERROR: groups don't span "
5502 "domain->span\n");
5503
5504 level++;
5505 sd = sd->parent;
5506 if (!sd)
5507 continue;
5508
5509 if (!cpus_subset(groupmask, sd->span))
5510 printk(KERN_ERR "ERROR: parent span is not a superset "
5511 "of domain->span\n");
5512
5513 } while (sd);
5514 }
5515 #else
5516 # define sched_domain_debug(sd, cpu) do { } while (0)
5517 #endif
5518
5519 static int sd_degenerate(struct sched_domain *sd)
5520 {
5521 if (cpus_weight(sd->span) == 1)
5522 return 1;
5523
5524 /* Following flags need at least 2 groups */
5525 if (sd->flags & (SD_LOAD_BALANCE |
5526 SD_BALANCE_NEWIDLE |
5527 SD_BALANCE_FORK |
5528 SD_BALANCE_EXEC |
5529 SD_SHARE_CPUPOWER |
5530 SD_SHARE_PKG_RESOURCES)) {
5531 if (sd->groups != sd->groups->next)
5532 return 0;
5533 }
5534
5535 /* Following flags don't use groups */
5536 if (sd->flags & (SD_WAKE_IDLE |
5537 SD_WAKE_AFFINE |
5538 SD_WAKE_BALANCE))
5539 return 0;
5540
5541 return 1;
5542 }
5543
5544 static int
5545 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5546 {
5547 unsigned long cflags = sd->flags, pflags = parent->flags;
5548
5549 if (sd_degenerate(parent))
5550 return 1;
5551
5552 if (!cpus_equal(sd->span, parent->span))
5553 return 0;
5554
5555 /* Does parent contain flags not in child? */
5556 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5557 if (cflags & SD_WAKE_AFFINE)
5558 pflags &= ~SD_WAKE_BALANCE;
5559 /* Flags needing groups don't count if only 1 group in parent */
5560 if (parent->groups == parent->groups->next) {
5561 pflags &= ~(SD_LOAD_BALANCE |
5562 SD_BALANCE_NEWIDLE |
5563 SD_BALANCE_FORK |
5564 SD_BALANCE_EXEC |
5565 SD_SHARE_CPUPOWER |
5566 SD_SHARE_PKG_RESOURCES);
5567 }
5568 if (~cflags & pflags)
5569 return 0;
5570
5571 return 1;
5572 }
5573
5574 /*
5575 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5576 * hold the hotplug lock.
5577 */
5578 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
5579 {
5580 struct rq *rq = cpu_rq(cpu);
5581 struct sched_domain *tmp;
5582
5583 /* Remove the sched domains which do not contribute to scheduling. */
5584 for (tmp = sd; tmp; tmp = tmp->parent) {
5585 struct sched_domain *parent = tmp->parent;
5586 if (!parent)
5587 break;
5588 if (sd_parent_degenerate(tmp, parent)) {
5589 tmp->parent = parent->parent;
5590 if (parent->parent)
5591 parent->parent->child = tmp;
5592 }
5593 }
5594
5595 if (sd && sd_degenerate(sd)) {
5596 sd = sd->parent;
5597 if (sd)
5598 sd->child = NULL;
5599 }
5600
5601 sched_domain_debug(sd, cpu);
5602
5603 rcu_assign_pointer(rq->sd, sd);
5604 }
5605
5606 /* cpus with isolated domains */
5607 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
5608
5609 /* Setup the mask of cpus configured for isolated domains */
5610 static int __init isolated_cpu_setup(char *str)
5611 {
5612 int ints[NR_CPUS], i;
5613
5614 str = get_options(str, ARRAY_SIZE(ints), ints);
5615 cpus_clear(cpu_isolated_map);
5616 for (i = 1; i <= ints[0]; i++)
5617 if (ints[i] < NR_CPUS)
5618 cpu_set(ints[i], cpu_isolated_map);
5619 return 1;
5620 }
5621
5622 __setup("isolcpus=", isolated_cpu_setup);
5623
5624 /*
5625 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5626 * to a function which identifies what group(along with sched group) a CPU
5627 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5628 * (due to the fact that we keep track of groups covered with a cpumask_t).
5629 *
5630 * init_sched_build_groups will build a circular linked list of the groups
5631 * covered by the given span, and will set each group's ->cpumask correctly,
5632 * and ->cpu_power to 0.
5633 */
5634 static void
5635 init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5636 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5637 struct sched_group **sg))
5638 {
5639 struct sched_group *first = NULL, *last = NULL;
5640 cpumask_t covered = CPU_MASK_NONE;
5641 int i;
5642
5643 for_each_cpu_mask(i, span) {
5644 struct sched_group *sg;
5645 int group = group_fn(i, cpu_map, &sg);
5646 int j;
5647
5648 if (cpu_isset(i, covered))
5649 continue;
5650
5651 sg->cpumask = CPU_MASK_NONE;
5652 sg->__cpu_power = 0;
5653
5654 for_each_cpu_mask(j, span) {
5655 if (group_fn(j, cpu_map, NULL) != group)
5656 continue;
5657
5658 cpu_set(j, covered);
5659 cpu_set(j, sg->cpumask);
5660 }
5661 if (!first)
5662 first = sg;
5663 if (last)
5664 last->next = sg;
5665 last = sg;
5666 }
5667 last->next = first;
5668 }
5669
5670 #define SD_NODES_PER_DOMAIN 16
5671
5672 #ifdef CONFIG_NUMA
5673
5674 /**
5675 * find_next_best_node - find the next node to include in a sched_domain
5676 * @node: node whose sched_domain we're building
5677 * @used_nodes: nodes already in the sched_domain
5678 *
5679 * Find the next node to include in a given scheduling domain. Simply
5680 * finds the closest node not already in the @used_nodes map.
5681 *
5682 * Should use nodemask_t.
5683 */
5684 static int find_next_best_node(int node, unsigned long *used_nodes)
5685 {
5686 int i, n, val, min_val, best_node = 0;
5687
5688 min_val = INT_MAX;
5689
5690 for (i = 0; i < MAX_NUMNODES; i++) {
5691 /* Start at @node */
5692 n = (node + i) % MAX_NUMNODES;
5693
5694 if (!nr_cpus_node(n))
5695 continue;
5696
5697 /* Skip already used nodes */
5698 if (test_bit(n, used_nodes))
5699 continue;
5700
5701 /* Simple min distance search */
5702 val = node_distance(node, n);
5703
5704 if (val < min_val) {
5705 min_val = val;
5706 best_node = n;
5707 }
5708 }
5709
5710 set_bit(best_node, used_nodes);
5711 return best_node;
5712 }
5713
5714 /**
5715 * sched_domain_node_span - get a cpumask for a node's sched_domain
5716 * @node: node whose cpumask we're constructing
5717 * @size: number of nodes to include in this span
5718 *
5719 * Given a node, construct a good cpumask for its sched_domain to span. It
5720 * should be one that prevents unnecessary balancing, but also spreads tasks
5721 * out optimally.
5722 */
5723 static cpumask_t sched_domain_node_span(int node)
5724 {
5725 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5726 cpumask_t span, nodemask;
5727 int i;
5728
5729 cpus_clear(span);
5730 bitmap_zero(used_nodes, MAX_NUMNODES);
5731
5732 nodemask = node_to_cpumask(node);
5733 cpus_or(span, span, nodemask);
5734 set_bit(node, used_nodes);
5735
5736 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5737 int next_node = find_next_best_node(node, used_nodes);
5738
5739 nodemask = node_to_cpumask(next_node);
5740 cpus_or(span, span, nodemask);
5741 }
5742
5743 return span;
5744 }
5745 #endif
5746
5747 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5748
5749 /*
5750 * SMT sched-domains:
5751 */
5752 #ifdef CONFIG_SCHED_SMT
5753 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5754 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
5755
5756 static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
5757 struct sched_group **sg)
5758 {
5759 if (sg)
5760 *sg = &per_cpu(sched_group_cpus, cpu);
5761 return cpu;
5762 }
5763 #endif
5764
5765 /*
5766 * multi-core sched-domains:
5767 */
5768 #ifdef CONFIG_SCHED_MC
5769 static DEFINE_PER_CPU(struct sched_domain, core_domains);
5770 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
5771 #endif
5772
5773 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5774 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5775 struct sched_group **sg)
5776 {
5777 int group;
5778 cpumask_t mask = cpu_sibling_map[cpu];
5779 cpus_and(mask, mask, *cpu_map);
5780 group = first_cpu(mask);
5781 if (sg)
5782 *sg = &per_cpu(sched_group_core, group);
5783 return group;
5784 }
5785 #elif defined(CONFIG_SCHED_MC)
5786 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5787 struct sched_group **sg)
5788 {
5789 if (sg)
5790 *sg = &per_cpu(sched_group_core, cpu);
5791 return cpu;
5792 }
5793 #endif
5794
5795 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5796 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
5797
5798 static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
5799 struct sched_group **sg)
5800 {
5801 int group;
5802 #ifdef CONFIG_SCHED_MC
5803 cpumask_t mask = cpu_coregroup_map(cpu);
5804 cpus_and(mask, mask, *cpu_map);
5805 group = first_cpu(mask);
5806 #elif defined(CONFIG_SCHED_SMT)
5807 cpumask_t mask = cpu_sibling_map[cpu];
5808 cpus_and(mask, mask, *cpu_map);
5809 group = first_cpu(mask);
5810 #else
5811 group = cpu;
5812 #endif
5813 if (sg)
5814 *sg = &per_cpu(sched_group_phys, group);
5815 return group;
5816 }
5817
5818 #ifdef CONFIG_NUMA
5819 /*
5820 * The init_sched_build_groups can't handle what we want to do with node
5821 * groups, so roll our own. Now each node has its own list of groups which
5822 * gets dynamically allocated.
5823 */
5824 static DEFINE_PER_CPU(struct sched_domain, node_domains);
5825 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
5826
5827 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5828 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
5829
5830 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
5831 struct sched_group **sg)
5832 {
5833 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
5834 int group;
5835
5836 cpus_and(nodemask, nodemask, *cpu_map);
5837 group = first_cpu(nodemask);
5838
5839 if (sg)
5840 *sg = &per_cpu(sched_group_allnodes, group);
5841 return group;
5842 }
5843
5844 static void init_numa_sched_groups_power(struct sched_group *group_head)
5845 {
5846 struct sched_group *sg = group_head;
5847 int j;
5848
5849 if (!sg)
5850 return;
5851 do {
5852 for_each_cpu_mask(j, sg->cpumask) {
5853 struct sched_domain *sd;
5854
5855 sd = &per_cpu(phys_domains, j);
5856 if (j != first_cpu(sd->groups->cpumask)) {
5857 /*
5858 * Only add "power" once for each
5859 * physical package.
5860 */
5861 continue;
5862 }
5863
5864 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
5865 }
5866 sg = sg->next;
5867 } while (sg != group_head);
5868 }
5869 #endif
5870
5871 #ifdef CONFIG_NUMA
5872 /* Free memory allocated for various sched_group structures */
5873 static void free_sched_groups(const cpumask_t *cpu_map)
5874 {
5875 int cpu, i;
5876
5877 for_each_cpu_mask(cpu, *cpu_map) {
5878 struct sched_group **sched_group_nodes
5879 = sched_group_nodes_bycpu[cpu];
5880
5881 if (!sched_group_nodes)
5882 continue;
5883
5884 for (i = 0; i < MAX_NUMNODES; i++) {
5885 cpumask_t nodemask = node_to_cpumask(i);
5886 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5887
5888 cpus_and(nodemask, nodemask, *cpu_map);
5889 if (cpus_empty(nodemask))
5890 continue;
5891
5892 if (sg == NULL)
5893 continue;
5894 sg = sg->next;
5895 next_sg:
5896 oldsg = sg;
5897 sg = sg->next;
5898 kfree(oldsg);
5899 if (oldsg != sched_group_nodes[i])
5900 goto next_sg;
5901 }
5902 kfree(sched_group_nodes);
5903 sched_group_nodes_bycpu[cpu] = NULL;
5904 }
5905 }
5906 #else
5907 static void free_sched_groups(const cpumask_t *cpu_map)
5908 {
5909 }
5910 #endif
5911
5912 /*
5913 * Initialize sched groups cpu_power.
5914 *
5915 * cpu_power indicates the capacity of sched group, which is used while
5916 * distributing the load between different sched groups in a sched domain.
5917 * Typically cpu_power for all the groups in a sched domain will be same unless
5918 * there are asymmetries in the topology. If there are asymmetries, group
5919 * having more cpu_power will pickup more load compared to the group having
5920 * less cpu_power.
5921 *
5922 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
5923 * the maximum number of tasks a group can handle in the presence of other idle
5924 * or lightly loaded groups in the same sched domain.
5925 */
5926 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5927 {
5928 struct sched_domain *child;
5929 struct sched_group *group;
5930
5931 WARN_ON(!sd || !sd->groups);
5932
5933 if (cpu != first_cpu(sd->groups->cpumask))
5934 return;
5935
5936 child = sd->child;
5937
5938 sd->groups->__cpu_power = 0;
5939
5940 /*
5941 * For perf policy, if the groups in child domain share resources
5942 * (for example cores sharing some portions of the cache hierarchy
5943 * or SMT), then set this domain groups cpu_power such that each group
5944 * can handle only one task, when there are other idle groups in the
5945 * same sched domain.
5946 */
5947 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
5948 (child->flags &
5949 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5950 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
5951 return;
5952 }
5953
5954 /*
5955 * add cpu_power of each child group to this groups cpu_power
5956 */
5957 group = child->groups;
5958 do {
5959 sg_inc_cpu_power(sd->groups, group->__cpu_power);
5960 group = group->next;
5961 } while (group != child->groups);
5962 }
5963
5964 /*
5965 * Build sched domains for a given set of cpus and attach the sched domains
5966 * to the individual cpus
5967 */
5968 static int build_sched_domains(const cpumask_t *cpu_map)
5969 {
5970 int i;
5971 #ifdef CONFIG_NUMA
5972 struct sched_group **sched_group_nodes = NULL;
5973 int sd_allnodes = 0;
5974
5975 /*
5976 * Allocate the per-node list of sched groups
5977 */
5978 sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
5979 GFP_KERNEL);
5980 if (!sched_group_nodes) {
5981 printk(KERN_WARNING "Can not alloc sched group node list\n");
5982 return -ENOMEM;
5983 }
5984 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
5985 #endif
5986
5987 /*
5988 * Set up domains for cpus specified by the cpu_map.
5989 */
5990 for_each_cpu_mask(i, *cpu_map) {
5991 struct sched_domain *sd = NULL, *p;
5992 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
5993
5994 cpus_and(nodemask, nodemask, *cpu_map);
5995
5996 #ifdef CONFIG_NUMA
5997 if (cpus_weight(*cpu_map) >
5998 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
5999 sd = &per_cpu(allnodes_domains, i);
6000 *sd = SD_ALLNODES_INIT;
6001 sd->span = *cpu_map;
6002 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6003 p = sd;
6004 sd_allnodes = 1;
6005 } else
6006 p = NULL;
6007
6008 sd = &per_cpu(node_domains, i);
6009 *sd = SD_NODE_INIT;
6010 sd->span = sched_domain_node_span(cpu_to_node(i));
6011 sd->parent = p;
6012 if (p)
6013 p->child = sd;
6014 cpus_and(sd->span, sd->span, *cpu_map);
6015 #endif
6016
6017 p = sd;
6018 sd = &per_cpu(phys_domains, i);
6019 *sd = SD_CPU_INIT;
6020 sd->span = nodemask;
6021 sd->parent = p;
6022 if (p)
6023 p->child = sd;
6024 cpu_to_phys_group(i, cpu_map, &sd->groups);
6025
6026 #ifdef CONFIG_SCHED_MC
6027 p = sd;
6028 sd = &per_cpu(core_domains, i);
6029 *sd = SD_MC_INIT;
6030 sd->span = cpu_coregroup_map(i);
6031 cpus_and(sd->span, sd->span, *cpu_map);
6032 sd->parent = p;
6033 p->child = sd;
6034 cpu_to_core_group(i, cpu_map, &sd->groups);
6035 #endif
6036
6037 #ifdef CONFIG_SCHED_SMT
6038 p = sd;
6039 sd = &per_cpu(cpu_domains, i);
6040 *sd = SD_SIBLING_INIT;
6041 sd->span = cpu_sibling_map[i];
6042 cpus_and(sd->span, sd->span, *cpu_map);
6043 sd->parent = p;
6044 p->child = sd;
6045 cpu_to_cpu_group(i, cpu_map, &sd->groups);
6046 #endif
6047 }
6048
6049 #ifdef CONFIG_SCHED_SMT
6050 /* Set up CPU (sibling) groups */
6051 for_each_cpu_mask(i, *cpu_map) {
6052 cpumask_t this_sibling_map = cpu_sibling_map[i];
6053 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
6054 if (i != first_cpu(this_sibling_map))
6055 continue;
6056
6057 init_sched_build_groups(this_sibling_map, cpu_map,
6058 &cpu_to_cpu_group);
6059 }
6060 #endif
6061
6062 #ifdef CONFIG_SCHED_MC
6063 /* Set up multi-core groups */
6064 for_each_cpu_mask(i, *cpu_map) {
6065 cpumask_t this_core_map = cpu_coregroup_map(i);
6066 cpus_and(this_core_map, this_core_map, *cpu_map);
6067 if (i != first_cpu(this_core_map))
6068 continue;
6069 init_sched_build_groups(this_core_map, cpu_map,
6070 &cpu_to_core_group);
6071 }
6072 #endif
6073
6074 /* Set up physical groups */
6075 for (i = 0; i < MAX_NUMNODES; i++) {
6076 cpumask_t nodemask = node_to_cpumask(i);
6077
6078 cpus_and(nodemask, nodemask, *cpu_map);
6079 if (cpus_empty(nodemask))
6080 continue;
6081
6082 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
6083 }
6084
6085 #ifdef CONFIG_NUMA
6086 /* Set up node groups */
6087 if (sd_allnodes)
6088 init_sched_build_groups(*cpu_map, cpu_map,
6089 &cpu_to_allnodes_group);
6090
6091 for (i = 0; i < MAX_NUMNODES; i++) {
6092 /* Set up node groups */
6093 struct sched_group *sg, *prev;
6094 cpumask_t nodemask = node_to_cpumask(i);
6095 cpumask_t domainspan;
6096 cpumask_t covered = CPU_MASK_NONE;
6097 int j;
6098
6099 cpus_and(nodemask, nodemask, *cpu_map);
6100 if (cpus_empty(nodemask)) {
6101 sched_group_nodes[i] = NULL;
6102 continue;
6103 }
6104
6105 domainspan = sched_domain_node_span(i);
6106 cpus_and(domainspan, domainspan, *cpu_map);
6107
6108 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6109 if (!sg) {
6110 printk(KERN_WARNING "Can not alloc domain group for "
6111 "node %d\n", i);
6112 goto error;
6113 }
6114 sched_group_nodes[i] = sg;
6115 for_each_cpu_mask(j, nodemask) {
6116 struct sched_domain *sd;
6117
6118 sd = &per_cpu(node_domains, j);
6119 sd->groups = sg;
6120 }
6121 sg->__cpu_power = 0;
6122 sg->cpumask = nodemask;
6123 sg->next = sg;
6124 cpus_or(covered, covered, nodemask);
6125 prev = sg;
6126
6127 for (j = 0; j < MAX_NUMNODES; j++) {
6128 cpumask_t tmp, notcovered;
6129 int n = (i + j) % MAX_NUMNODES;
6130
6131 cpus_complement(notcovered, covered);
6132 cpus_and(tmp, notcovered, *cpu_map);
6133 cpus_and(tmp, tmp, domainspan);
6134 if (cpus_empty(tmp))
6135 break;
6136
6137 nodemask = node_to_cpumask(n);
6138 cpus_and(tmp, tmp, nodemask);
6139 if (cpus_empty(tmp))
6140 continue;
6141
6142 sg = kmalloc_node(sizeof(struct sched_group),
6143 GFP_KERNEL, i);
6144 if (!sg) {
6145 printk(KERN_WARNING
6146 "Can not alloc domain group for node %d\n", j);
6147 goto error;
6148 }
6149 sg->__cpu_power = 0;
6150 sg->cpumask = tmp;
6151 sg->next = prev->next;
6152 cpus_or(covered, covered, tmp);
6153 prev->next = sg;
6154 prev = sg;
6155 }
6156 }
6157 #endif
6158
6159 /* Calculate CPU power for physical packages and nodes */
6160 #ifdef CONFIG_SCHED_SMT
6161 for_each_cpu_mask(i, *cpu_map) {
6162 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6163
6164 init_sched_groups_power(i, sd);
6165 }
6166 #endif
6167 #ifdef CONFIG_SCHED_MC
6168 for_each_cpu_mask(i, *cpu_map) {
6169 struct sched_domain *sd = &per_cpu(core_domains, i);
6170
6171 init_sched_groups_power(i, sd);
6172 }
6173 #endif
6174
6175 for_each_cpu_mask(i, *cpu_map) {
6176 struct sched_domain *sd = &per_cpu(phys_domains, i);
6177
6178 init_sched_groups_power(i, sd);
6179 }
6180
6181 #ifdef CONFIG_NUMA
6182 for (i = 0; i < MAX_NUMNODES; i++)
6183 init_numa_sched_groups_power(sched_group_nodes[i]);
6184
6185 if (sd_allnodes) {
6186 struct sched_group *sg;
6187
6188 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6189 init_numa_sched_groups_power(sg);
6190 }
6191 #endif
6192
6193 /* Attach the domains */
6194 for_each_cpu_mask(i, *cpu_map) {
6195 struct sched_domain *sd;
6196 #ifdef CONFIG_SCHED_SMT
6197 sd = &per_cpu(cpu_domains, i);
6198 #elif defined(CONFIG_SCHED_MC)
6199 sd = &per_cpu(core_domains, i);
6200 #else
6201 sd = &per_cpu(phys_domains, i);
6202 #endif
6203 cpu_attach_domain(sd, i);
6204 }
6205
6206 return 0;
6207
6208 #ifdef CONFIG_NUMA
6209 error:
6210 free_sched_groups(cpu_map);
6211 return -ENOMEM;
6212 #endif
6213 }
6214 /*
6215 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6216 */
6217 static int arch_init_sched_domains(const cpumask_t *cpu_map)
6218 {
6219 cpumask_t cpu_default_map;
6220 int err;
6221
6222 /*
6223 * Setup mask for cpus without special case scheduling requirements.
6224 * For now this just excludes isolated cpus, but could be used to
6225 * exclude other special cases in the future.
6226 */
6227 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6228
6229 err = build_sched_domains(&cpu_default_map);
6230
6231 return err;
6232 }
6233
6234 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
6235 {
6236 free_sched_groups(cpu_map);
6237 }
6238
6239 /*
6240 * Detach sched domains from a group of cpus specified in cpu_map
6241 * These cpus will now be attached to the NULL domain
6242 */
6243 static void detach_destroy_domains(const cpumask_t *cpu_map)
6244 {
6245 int i;
6246
6247 for_each_cpu_mask(i, *cpu_map)
6248 cpu_attach_domain(NULL, i);
6249 synchronize_sched();
6250 arch_destroy_sched_domains(cpu_map);
6251 }
6252
6253 /*
6254 * Partition sched domains as specified by the cpumasks below.
6255 * This attaches all cpus from the cpumasks to the NULL domain,
6256 * waits for a RCU quiescent period, recalculates sched
6257 * domain information and then attaches them back to the
6258 * correct sched domains
6259 * Call with hotplug lock held
6260 */
6261 int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6262 {
6263 cpumask_t change_map;
6264 int err = 0;
6265
6266 cpus_and(*partition1, *partition1, cpu_online_map);
6267 cpus_and(*partition2, *partition2, cpu_online_map);
6268 cpus_or(change_map, *partition1, *partition2);
6269
6270 /* Detach sched domains from all of the affected cpus */
6271 detach_destroy_domains(&change_map);
6272 if (!cpus_empty(*partition1))
6273 err = build_sched_domains(partition1);
6274 if (!err && !cpus_empty(*partition2))
6275 err = build_sched_domains(partition2);
6276
6277 return err;
6278 }
6279
6280 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6281 static int arch_reinit_sched_domains(void)
6282 {
6283 int err;
6284
6285 mutex_lock(&sched_hotcpu_mutex);
6286 detach_destroy_domains(&cpu_online_map);
6287 err = arch_init_sched_domains(&cpu_online_map);
6288 mutex_unlock(&sched_hotcpu_mutex);
6289
6290 return err;
6291 }
6292
6293 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6294 {
6295 int ret;
6296
6297 if (buf[0] != '0' && buf[0] != '1')
6298 return -EINVAL;
6299
6300 if (smt)
6301 sched_smt_power_savings = (buf[0] == '1');
6302 else
6303 sched_mc_power_savings = (buf[0] == '1');
6304
6305 ret = arch_reinit_sched_domains();
6306
6307 return ret ? ret : count;
6308 }
6309
6310 #ifdef CONFIG_SCHED_MC
6311 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6312 {
6313 return sprintf(page, "%u\n", sched_mc_power_savings);
6314 }
6315 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6316 const char *buf, size_t count)
6317 {
6318 return sched_power_savings_store(buf, count, 0);
6319 }
6320 static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6321 sched_mc_power_savings_store);
6322 #endif
6323
6324 #ifdef CONFIG_SCHED_SMT
6325 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6326 {
6327 return sprintf(page, "%u\n", sched_smt_power_savings);
6328 }
6329 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6330 const char *buf, size_t count)
6331 {
6332 return sched_power_savings_store(buf, count, 1);
6333 }
6334 static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6335 sched_smt_power_savings_store);
6336 #endif
6337
6338 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6339 {
6340 int err = 0;
6341
6342 #ifdef CONFIG_SCHED_SMT
6343 if (smt_capable())
6344 err = sysfs_create_file(&cls->kset.kobj,
6345 &attr_sched_smt_power_savings.attr);
6346 #endif
6347 #ifdef CONFIG_SCHED_MC
6348 if (!err && mc_capable())
6349 err = sysfs_create_file(&cls->kset.kobj,
6350 &attr_sched_mc_power_savings.attr);
6351 #endif
6352 return err;
6353 }
6354 #endif
6355
6356 /*
6357 * Force a reinitialization of the sched domains hierarchy. The domains
6358 * and groups cannot be updated in place without racing with the balancing
6359 * code, so we temporarily attach all running cpus to the NULL domain
6360 * which will prevent rebalancing while the sched domains are recalculated.
6361 */
6362 static int update_sched_domains(struct notifier_block *nfb,
6363 unsigned long action, void *hcpu)
6364 {
6365 switch (action) {
6366 case CPU_UP_PREPARE:
6367 case CPU_UP_PREPARE_FROZEN:
6368 case CPU_DOWN_PREPARE:
6369 case CPU_DOWN_PREPARE_FROZEN:
6370 detach_destroy_domains(&cpu_online_map);
6371 return NOTIFY_OK;
6372
6373 case CPU_UP_CANCELED:
6374 case CPU_UP_CANCELED_FROZEN:
6375 case CPU_DOWN_FAILED:
6376 case CPU_DOWN_FAILED_FROZEN:
6377 case CPU_ONLINE:
6378 case CPU_ONLINE_FROZEN:
6379 case CPU_DEAD:
6380 case CPU_DEAD_FROZEN:
6381 /*
6382 * Fall through and re-initialise the domains.
6383 */
6384 break;
6385 default:
6386 return NOTIFY_DONE;
6387 }
6388
6389 /* The hotplug lock is already held by cpu_up/cpu_down */
6390 arch_init_sched_domains(&cpu_online_map);
6391
6392 return NOTIFY_OK;
6393 }
6394
6395 void __init sched_init_smp(void)
6396 {
6397 cpumask_t non_isolated_cpus;
6398
6399 mutex_lock(&sched_hotcpu_mutex);
6400 arch_init_sched_domains(&cpu_online_map);
6401 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6402 if (cpus_empty(non_isolated_cpus))
6403 cpu_set(smp_processor_id(), non_isolated_cpus);
6404 mutex_unlock(&sched_hotcpu_mutex);
6405 /* XXX: Theoretical race here - CPU may be hotplugged now */
6406 hotcpu_notifier(update_sched_domains, 0);
6407
6408 init_sched_domain_sysctl();
6409
6410 /* Move init over to a non-isolated CPU */
6411 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6412 BUG();
6413 }
6414 #else
6415 void __init sched_init_smp(void)
6416 {
6417 }
6418 #endif /* CONFIG_SMP */
6419
6420 int in_sched_functions(unsigned long addr)
6421 {
6422 /* Linker adds these: start and end of __sched functions */
6423 extern char __sched_text_start[], __sched_text_end[];
6424
6425 return in_lock_functions(addr) ||
6426 (addr >= (unsigned long)__sched_text_start
6427 && addr < (unsigned long)__sched_text_end);
6428 }
6429
6430 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
6431 {
6432 cfs_rq->tasks_timeline = RB_ROOT;
6433 #ifdef CONFIG_FAIR_GROUP_SCHED
6434 cfs_rq->rq = rq;
6435 #endif
6436 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
6437 }
6438
6439 void __init sched_init(void)
6440 {
6441 int highest_cpu = 0;
6442 int i, j;
6443
6444 for_each_possible_cpu(i) {
6445 struct rt_prio_array *array;
6446 struct rq *rq;
6447
6448 rq = cpu_rq(i);
6449 spin_lock_init(&rq->lock);
6450 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
6451 rq->nr_running = 0;
6452 rq->clock = 1;
6453 init_cfs_rq(&rq->cfs, rq);
6454 #ifdef CONFIG_FAIR_GROUP_SCHED
6455 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6456 {
6457 struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
6458 struct sched_entity *se =
6459 &per_cpu(init_sched_entity, i);
6460
6461 init_cfs_rq_p[i] = cfs_rq;
6462 init_cfs_rq(cfs_rq, rq);
6463 cfs_rq->tg = &init_task_group;
6464 list_add(&cfs_rq->leaf_cfs_rq_list,
6465 &rq->leaf_cfs_rq_list);
6466
6467 init_sched_entity_p[i] = se;
6468 se->cfs_rq = &rq->cfs;
6469 se->my_q = cfs_rq;
6470 se->load.weight = init_task_group_load;
6471 se->load.inv_weight =
6472 div64_64(1ULL<<32, init_task_group_load);
6473 se->parent = NULL;
6474 }
6475 init_task_group.shares = init_task_group_load;
6476 spin_lock_init(&init_task_group.lock);
6477 #endif
6478
6479 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6480 rq->cpu_load[j] = 0;
6481 #ifdef CONFIG_SMP
6482 rq->sd = NULL;
6483 rq->active_balance = 0;
6484 rq->next_balance = jiffies;
6485 rq->push_cpu = 0;
6486 rq->cpu = i;
6487 rq->migration_thread = NULL;
6488 INIT_LIST_HEAD(&rq->migration_queue);
6489 #endif
6490 atomic_set(&rq->nr_iowait, 0);
6491
6492 array = &rq->rt.active;
6493 for (j = 0; j < MAX_RT_PRIO; j++) {
6494 INIT_LIST_HEAD(array->queue + j);
6495 __clear_bit(j, array->bitmap);
6496 }
6497 highest_cpu = i;
6498 /* delimiter for bitsearch: */
6499 __set_bit(MAX_RT_PRIO, array->bitmap);
6500 }
6501
6502 set_load_weight(&init_task);
6503
6504 #ifdef CONFIG_PREEMPT_NOTIFIERS
6505 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6506 #endif
6507
6508 #ifdef CONFIG_SMP
6509 nr_cpu_ids = highest_cpu + 1;
6510 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6511 #endif
6512
6513 #ifdef CONFIG_RT_MUTEXES
6514 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6515 #endif
6516
6517 /*
6518 * The boot idle thread does lazy MMU switching as well:
6519 */
6520 atomic_inc(&init_mm.mm_count);
6521 enter_lazy_tlb(&init_mm, current);
6522
6523 /*
6524 * Make us the idle thread. Technically, schedule() should not be
6525 * called from this thread, however somewhere below it might be,
6526 * but because we are the idle thread, we just pick up running again
6527 * when this runqueue becomes "idle".
6528 */
6529 init_idle(current, smp_processor_id());
6530 /*
6531 * During early bootup we pretend to be a normal task:
6532 */
6533 current->sched_class = &fair_sched_class;
6534 }
6535
6536 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6537 void __might_sleep(char *file, int line)
6538 {
6539 #ifdef in_atomic
6540 static unsigned long prev_jiffy; /* ratelimiting */
6541
6542 if ((in_atomic() || irqs_disabled()) &&
6543 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6544 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6545 return;
6546 prev_jiffy = jiffies;
6547 printk(KERN_ERR "BUG: sleeping function called from invalid"
6548 " context at %s:%d\n", file, line);
6549 printk("in_atomic():%d, irqs_disabled():%d\n",
6550 in_atomic(), irqs_disabled());
6551 debug_show_held_locks(current);
6552 if (irqs_disabled())
6553 print_irqtrace_events(current);
6554 dump_stack();
6555 }
6556 #endif
6557 }
6558 EXPORT_SYMBOL(__might_sleep);
6559 #endif
6560
6561 #ifdef CONFIG_MAGIC_SYSRQ
6562 static void normalize_task(struct rq *rq, struct task_struct *p)
6563 {
6564 int on_rq;
6565 update_rq_clock(rq);
6566 on_rq = p->se.on_rq;
6567 if (on_rq)
6568 deactivate_task(rq, p, 0);
6569 __setscheduler(rq, p, SCHED_NORMAL, 0);
6570 if (on_rq) {
6571 activate_task(rq, p, 0);
6572 resched_task(rq->curr);
6573 }
6574 }
6575
6576 void normalize_rt_tasks(void)
6577 {
6578 struct task_struct *g, *p;
6579 unsigned long flags;
6580 struct rq *rq;
6581
6582 read_lock_irq(&tasklist_lock);
6583 do_each_thread(g, p) {
6584 /*
6585 * Only normalize user tasks:
6586 */
6587 if (!p->mm)
6588 continue;
6589
6590 p->se.exec_start = 0;
6591 #ifdef CONFIG_SCHEDSTATS
6592 p->se.wait_start = 0;
6593 p->se.sleep_start = 0;
6594 p->se.block_start = 0;
6595 #endif
6596 task_rq(p)->clock = 0;
6597
6598 if (!rt_task(p)) {
6599 /*
6600 * Renice negative nice level userspace
6601 * tasks back to 0:
6602 */
6603 if (TASK_NICE(p) < 0 && p->mm)
6604 set_user_nice(p, 0);
6605 continue;
6606 }
6607
6608 spin_lock_irqsave(&p->pi_lock, flags);
6609 rq = __task_rq_lock(p);
6610
6611 normalize_task(rq, p);
6612
6613 __task_rq_unlock(rq);
6614 spin_unlock_irqrestore(&p->pi_lock, flags);
6615 } while_each_thread(g, p);
6616
6617 read_unlock_irq(&tasklist_lock);
6618 }
6619
6620 #endif /* CONFIG_MAGIC_SYSRQ */
6621
6622 #ifdef CONFIG_IA64
6623 /*
6624 * These functions are only useful for the IA64 MCA handling.
6625 *
6626 * They can only be called when the whole system has been
6627 * stopped - every CPU needs to be quiescent, and no scheduling
6628 * activity can take place. Using them for anything else would
6629 * be a serious bug, and as a result, they aren't even visible
6630 * under any other configuration.
6631 */
6632
6633 /**
6634 * curr_task - return the current task for a given cpu.
6635 * @cpu: the processor in question.
6636 *
6637 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6638 */
6639 struct task_struct *curr_task(int cpu)
6640 {
6641 return cpu_curr(cpu);
6642 }
6643
6644 /**
6645 * set_curr_task - set the current task for a given cpu.
6646 * @cpu: the processor in question.
6647 * @p: the task pointer to set.
6648 *
6649 * Description: This function must only be used when non-maskable interrupts
6650 * are serviced on a separate stack. It allows the architecture to switch the
6651 * notion of the current task on a cpu in a non-blocking manner. This function
6652 * must be called with all CPU's synchronized, and interrupts disabled, the
6653 * and caller must save the original value of the current task (see
6654 * curr_task() above) and restore that value before reenabling interrupts and
6655 * re-starting the system.
6656 *
6657 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6658 */
6659 void set_curr_task(int cpu, struct task_struct *p)
6660 {
6661 cpu_curr(cpu) = p;
6662 }
6663
6664 #endif
6665
6666 #ifdef CONFIG_FAIR_GROUP_SCHED
6667
6668 /* allocate runqueue etc for a new task group */
6669 struct task_group *sched_create_group(void)
6670 {
6671 struct task_group *tg;
6672 struct cfs_rq *cfs_rq;
6673 struct sched_entity *se;
6674 struct rq *rq;
6675 int i;
6676
6677 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6678 if (!tg)
6679 return ERR_PTR(-ENOMEM);
6680
6681 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
6682 if (!tg->cfs_rq)
6683 goto err;
6684 tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
6685 if (!tg->se)
6686 goto err;
6687
6688 for_each_possible_cpu(i) {
6689 rq = cpu_rq(i);
6690
6691 cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
6692 cpu_to_node(i));
6693 if (!cfs_rq)
6694 goto err;
6695
6696 se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
6697 cpu_to_node(i));
6698 if (!se)
6699 goto err;
6700
6701 memset(cfs_rq, 0, sizeof(struct cfs_rq));
6702 memset(se, 0, sizeof(struct sched_entity));
6703
6704 tg->cfs_rq[i] = cfs_rq;
6705 init_cfs_rq(cfs_rq, rq);
6706 cfs_rq->tg = tg;
6707
6708 tg->se[i] = se;
6709 se->cfs_rq = &rq->cfs;
6710 se->my_q = cfs_rq;
6711 se->load.weight = NICE_0_LOAD;
6712 se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
6713 se->parent = NULL;
6714 }
6715
6716 for_each_possible_cpu(i) {
6717 rq = cpu_rq(i);
6718 cfs_rq = tg->cfs_rq[i];
6719 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
6720 }
6721
6722 tg->shares = NICE_0_LOAD;
6723 spin_lock_init(&tg->lock);
6724
6725 return tg;
6726
6727 err:
6728 for_each_possible_cpu(i) {
6729 if (tg->cfs_rq)
6730 kfree(tg->cfs_rq[i]);
6731 if (tg->se)
6732 kfree(tg->se[i]);
6733 }
6734 kfree(tg->cfs_rq);
6735 kfree(tg->se);
6736 kfree(tg);
6737
6738 return ERR_PTR(-ENOMEM);
6739 }
6740
6741 /* rcu callback to free various structures associated with a task group */
6742 static void free_sched_group(struct rcu_head *rhp)
6743 {
6744 struct cfs_rq *cfs_rq = container_of(rhp, struct cfs_rq, rcu);
6745 struct task_group *tg = cfs_rq->tg;
6746 struct sched_entity *se;
6747 int i;
6748
6749 /* now it should be safe to free those cfs_rqs */
6750 for_each_possible_cpu(i) {
6751 cfs_rq = tg->cfs_rq[i];
6752 kfree(cfs_rq);
6753
6754 se = tg->se[i];
6755 kfree(se);
6756 }
6757
6758 kfree(tg->cfs_rq);
6759 kfree(tg->se);
6760 kfree(tg);
6761 }
6762
6763 /* Destroy runqueue etc associated with a task group */
6764 void sched_destroy_group(struct task_group *tg)
6765 {
6766 struct cfs_rq *cfs_rq;
6767 int i;
6768
6769 for_each_possible_cpu(i) {
6770 cfs_rq = tg->cfs_rq[i];
6771 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
6772 }
6773
6774 cfs_rq = tg->cfs_rq[0];
6775
6776 /* wait for possible concurrent references to cfs_rqs complete */
6777 call_rcu(&cfs_rq->rcu, free_sched_group);
6778 }
6779
6780 /* change task's runqueue when it moves between groups.
6781 * The caller of this function should have put the task in its new group
6782 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
6783 * reflect its new group.
6784 */
6785 void sched_move_task(struct task_struct *tsk)
6786 {
6787 int on_rq, running;
6788 unsigned long flags;
6789 struct rq *rq;
6790
6791 rq = task_rq_lock(tsk, &flags);
6792
6793 if (tsk->sched_class != &fair_sched_class)
6794 goto done;
6795
6796 update_rq_clock(rq);
6797
6798 running = task_running(rq, tsk);
6799 on_rq = tsk->se.on_rq;
6800
6801 if (on_rq) {
6802 dequeue_task(rq, tsk, 0);
6803 if (unlikely(running))
6804 tsk->sched_class->put_prev_task(rq, tsk);
6805 }
6806
6807 set_task_cfs_rq(tsk);
6808
6809 if (on_rq) {
6810 if (unlikely(running))
6811 tsk->sched_class->set_curr_task(rq);
6812 enqueue_task(rq, tsk, 0);
6813 }
6814
6815 done:
6816 task_rq_unlock(rq, &flags);
6817 }
6818
6819 static void set_se_shares(struct sched_entity *se, unsigned long shares)
6820 {
6821 struct cfs_rq *cfs_rq = se->cfs_rq;
6822 struct rq *rq = cfs_rq->rq;
6823 int on_rq;
6824
6825 spin_lock_irq(&rq->lock);
6826
6827 on_rq = se->on_rq;
6828 if (on_rq)
6829 dequeue_entity(cfs_rq, se, 0);
6830
6831 se->load.weight = shares;
6832 se->load.inv_weight = div64_64((1ULL<<32), shares);
6833
6834 if (on_rq)
6835 enqueue_entity(cfs_rq, se, 0);
6836
6837 spin_unlock_irq(&rq->lock);
6838 }
6839
6840 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
6841 {
6842 int i;
6843
6844 spin_lock(&tg->lock);
6845 if (tg->shares == shares)
6846 goto done;
6847
6848 tg->shares = shares;
6849 for_each_possible_cpu(i)
6850 set_se_shares(tg->se[i], shares);
6851
6852 done:
6853 spin_unlock(&tg->lock);
6854 return 0;
6855 }
6856
6857 unsigned long sched_group_shares(struct task_group *tg)
6858 {
6859 return tg->shares;
6860 }
6861
6862 #endif /* CONFIG_FAIR_GROUP_SCHED */
This page took 0.367564 seconds and 5 git commands to generate.