rtc: document the sysfs interface
[deliverable/linux.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/kthread.h>
59 #include <linux/proc_fs.h>
60 #include <linux/seq_file.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
74
75 #include <asm/tlb.h>
76 #include <asm/irq_regs.h>
77
78 #include "sched_cpupri.h"
79
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/sched.h>
82
83 /*
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
87 */
88 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
91
92 /*
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
96 */
97 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
100
101 /*
102 * Helpers for converting nanosecond timing to jiffy resolution
103 */
104 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
105
106 #define NICE_0_LOAD SCHED_LOAD_SCALE
107 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
108
109 /*
110 * These are the 'tuning knobs' of the scheduler:
111 *
112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
113 * Timeslices get refilled after they expire.
114 */
115 #define DEF_TIMESLICE (100 * HZ / 1000)
116
117 /*
118 * single value that denotes runtime == period, ie unlimited time.
119 */
120 #define RUNTIME_INF ((u64)~0ULL)
121
122 static inline int rt_policy(int policy)
123 {
124 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
125 return 1;
126 return 0;
127 }
128
129 static inline int task_has_rt_policy(struct task_struct *p)
130 {
131 return rt_policy(p->policy);
132 }
133
134 /*
135 * This is the priority-queue data structure of the RT scheduling class:
136 */
137 struct rt_prio_array {
138 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
139 struct list_head queue[MAX_RT_PRIO];
140 };
141
142 struct rt_bandwidth {
143 /* nests inside the rq lock: */
144 spinlock_t rt_runtime_lock;
145 ktime_t rt_period;
146 u64 rt_runtime;
147 struct hrtimer rt_period_timer;
148 };
149
150 static struct rt_bandwidth def_rt_bandwidth;
151
152 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
153
154 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
155 {
156 struct rt_bandwidth *rt_b =
157 container_of(timer, struct rt_bandwidth, rt_period_timer);
158 ktime_t now;
159 int overrun;
160 int idle = 0;
161
162 for (;;) {
163 now = hrtimer_cb_get_time(timer);
164 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
165
166 if (!overrun)
167 break;
168
169 idle = do_sched_rt_period_timer(rt_b, overrun);
170 }
171
172 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
173 }
174
175 static
176 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
177 {
178 rt_b->rt_period = ns_to_ktime(period);
179 rt_b->rt_runtime = runtime;
180
181 spin_lock_init(&rt_b->rt_runtime_lock);
182
183 hrtimer_init(&rt_b->rt_period_timer,
184 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
185 rt_b->rt_period_timer.function = sched_rt_period_timer;
186 }
187
188 static inline int rt_bandwidth_enabled(void)
189 {
190 return sysctl_sched_rt_runtime >= 0;
191 }
192
193 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
194 {
195 ktime_t now;
196
197 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
198 return;
199
200 if (hrtimer_active(&rt_b->rt_period_timer))
201 return;
202
203 spin_lock(&rt_b->rt_runtime_lock);
204 for (;;) {
205 unsigned long delta;
206 ktime_t soft, hard;
207
208 if (hrtimer_active(&rt_b->rt_period_timer))
209 break;
210
211 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
212 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
213
214 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
215 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
216 delta = ktime_to_ns(ktime_sub(hard, soft));
217 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
218 HRTIMER_MODE_ABS_PINNED, 0);
219 }
220 spin_unlock(&rt_b->rt_runtime_lock);
221 }
222
223 #ifdef CONFIG_RT_GROUP_SCHED
224 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
225 {
226 hrtimer_cancel(&rt_b->rt_period_timer);
227 }
228 #endif
229
230 /*
231 * sched_domains_mutex serializes calls to arch_init_sched_domains,
232 * detach_destroy_domains and partition_sched_domains.
233 */
234 static DEFINE_MUTEX(sched_domains_mutex);
235
236 #ifdef CONFIG_GROUP_SCHED
237
238 #include <linux/cgroup.h>
239
240 struct cfs_rq;
241
242 static LIST_HEAD(task_groups);
243
244 /* task group related information */
245 struct task_group {
246 #ifdef CONFIG_CGROUP_SCHED
247 struct cgroup_subsys_state css;
248 #endif
249
250 #ifdef CONFIG_USER_SCHED
251 uid_t uid;
252 #endif
253
254 #ifdef CONFIG_FAIR_GROUP_SCHED
255 /* schedulable entities of this group on each cpu */
256 struct sched_entity **se;
257 /* runqueue "owned" by this group on each cpu */
258 struct cfs_rq **cfs_rq;
259 unsigned long shares;
260 #endif
261
262 #ifdef CONFIG_RT_GROUP_SCHED
263 struct sched_rt_entity **rt_se;
264 struct rt_rq **rt_rq;
265
266 struct rt_bandwidth rt_bandwidth;
267 #endif
268
269 struct rcu_head rcu;
270 struct list_head list;
271
272 struct task_group *parent;
273 struct list_head siblings;
274 struct list_head children;
275 };
276
277 #ifdef CONFIG_USER_SCHED
278
279 /* Helper function to pass uid information to create_sched_user() */
280 void set_tg_uid(struct user_struct *user)
281 {
282 user->tg->uid = user->uid;
283 }
284
285 /*
286 * Root task group.
287 * Every UID task group (including init_task_group aka UID-0) will
288 * be a child to this group.
289 */
290 struct task_group root_task_group;
291
292 #ifdef CONFIG_FAIR_GROUP_SCHED
293 /* Default task group's sched entity on each cpu */
294 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
295 /* Default task group's cfs_rq on each cpu */
296 static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
297 #endif /* CONFIG_FAIR_GROUP_SCHED */
298
299 #ifdef CONFIG_RT_GROUP_SCHED
300 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
301 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq);
302 #endif /* CONFIG_RT_GROUP_SCHED */
303 #else /* !CONFIG_USER_SCHED */
304 #define root_task_group init_task_group
305 #endif /* CONFIG_USER_SCHED */
306
307 /* task_group_lock serializes add/remove of task groups and also changes to
308 * a task group's cpu shares.
309 */
310 static DEFINE_SPINLOCK(task_group_lock);
311
312 #ifdef CONFIG_SMP
313 static int root_task_group_empty(void)
314 {
315 return list_empty(&root_task_group.children);
316 }
317 #endif
318
319 #ifdef CONFIG_FAIR_GROUP_SCHED
320 #ifdef CONFIG_USER_SCHED
321 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
322 #else /* !CONFIG_USER_SCHED */
323 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
324 #endif /* CONFIG_USER_SCHED */
325
326 /*
327 * A weight of 0 or 1 can cause arithmetics problems.
328 * A weight of a cfs_rq is the sum of weights of which entities
329 * are queued on this cfs_rq, so a weight of a entity should not be
330 * too large, so as the shares value of a task group.
331 * (The default weight is 1024 - so there's no practical
332 * limitation from this.)
333 */
334 #define MIN_SHARES 2
335 #define MAX_SHARES (1UL << 18)
336
337 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
338 #endif
339
340 /* Default task group.
341 * Every task in system belong to this group at bootup.
342 */
343 struct task_group init_task_group;
344
345 /* return group to which a task belongs */
346 static inline struct task_group *task_group(struct task_struct *p)
347 {
348 struct task_group *tg;
349
350 #ifdef CONFIG_USER_SCHED
351 rcu_read_lock();
352 tg = __task_cred(p)->user->tg;
353 rcu_read_unlock();
354 #elif defined(CONFIG_CGROUP_SCHED)
355 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
356 struct task_group, css);
357 #else
358 tg = &init_task_group;
359 #endif
360 return tg;
361 }
362
363 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
364 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
365 {
366 #ifdef CONFIG_FAIR_GROUP_SCHED
367 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
368 p->se.parent = task_group(p)->se[cpu];
369 #endif
370
371 #ifdef CONFIG_RT_GROUP_SCHED
372 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
373 p->rt.parent = task_group(p)->rt_se[cpu];
374 #endif
375 }
376
377 #else
378
379 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
380 static inline struct task_group *task_group(struct task_struct *p)
381 {
382 return NULL;
383 }
384
385 #endif /* CONFIG_GROUP_SCHED */
386
387 /* CFS-related fields in a runqueue */
388 struct cfs_rq {
389 struct load_weight load;
390 unsigned long nr_running;
391
392 u64 exec_clock;
393 u64 min_vruntime;
394
395 struct rb_root tasks_timeline;
396 struct rb_node *rb_leftmost;
397
398 struct list_head tasks;
399 struct list_head *balance_iterator;
400
401 /*
402 * 'curr' points to currently running entity on this cfs_rq.
403 * It is set to NULL otherwise (i.e when none are currently running).
404 */
405 struct sched_entity *curr, *next, *last;
406
407 unsigned int nr_spread_over;
408
409 #ifdef CONFIG_FAIR_GROUP_SCHED
410 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
411
412 /*
413 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
414 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
415 * (like users, containers etc.)
416 *
417 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
418 * list is used during load balance.
419 */
420 struct list_head leaf_cfs_rq_list;
421 struct task_group *tg; /* group that "owns" this runqueue */
422
423 #ifdef CONFIG_SMP
424 /*
425 * the part of load.weight contributed by tasks
426 */
427 unsigned long task_weight;
428
429 /*
430 * h_load = weight * f(tg)
431 *
432 * Where f(tg) is the recursive weight fraction assigned to
433 * this group.
434 */
435 unsigned long h_load;
436
437 /*
438 * this cpu's part of tg->shares
439 */
440 unsigned long shares;
441
442 /*
443 * load.weight at the time we set shares
444 */
445 unsigned long rq_weight;
446 #endif
447 #endif
448 };
449
450 /* Real-Time classes' related field in a runqueue: */
451 struct rt_rq {
452 struct rt_prio_array active;
453 unsigned long rt_nr_running;
454 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
455 struct {
456 int curr; /* highest queued rt task prio */
457 #ifdef CONFIG_SMP
458 int next; /* next highest */
459 #endif
460 } highest_prio;
461 #endif
462 #ifdef CONFIG_SMP
463 unsigned long rt_nr_migratory;
464 unsigned long rt_nr_total;
465 int overloaded;
466 struct plist_head pushable_tasks;
467 #endif
468 int rt_throttled;
469 u64 rt_time;
470 u64 rt_runtime;
471 /* Nests inside the rq lock: */
472 spinlock_t rt_runtime_lock;
473
474 #ifdef CONFIG_RT_GROUP_SCHED
475 unsigned long rt_nr_boosted;
476
477 struct rq *rq;
478 struct list_head leaf_rt_rq_list;
479 struct task_group *tg;
480 struct sched_rt_entity *rt_se;
481 #endif
482 };
483
484 #ifdef CONFIG_SMP
485
486 /*
487 * We add the notion of a root-domain which will be used to define per-domain
488 * variables. Each exclusive cpuset essentially defines an island domain by
489 * fully partitioning the member cpus from any other cpuset. Whenever a new
490 * exclusive cpuset is created, we also create and attach a new root-domain
491 * object.
492 *
493 */
494 struct root_domain {
495 atomic_t refcount;
496 cpumask_var_t span;
497 cpumask_var_t online;
498
499 /*
500 * The "RT overload" flag: it gets set if a CPU has more than
501 * one runnable RT task.
502 */
503 cpumask_var_t rto_mask;
504 atomic_t rto_count;
505 #ifdef CONFIG_SMP
506 struct cpupri cpupri;
507 #endif
508 };
509
510 /*
511 * By default the system creates a single root-domain with all cpus as
512 * members (mimicking the global state we have today).
513 */
514 static struct root_domain def_root_domain;
515
516 #endif
517
518 /*
519 * This is the main, per-CPU runqueue data structure.
520 *
521 * Locking rule: those places that want to lock multiple runqueues
522 * (such as the load balancing or the thread migration code), lock
523 * acquire operations must be ordered by ascending &runqueue.
524 */
525 struct rq {
526 /* runqueue lock: */
527 spinlock_t lock;
528
529 /*
530 * nr_running and cpu_load should be in the same cacheline because
531 * remote CPUs use both these fields when doing load calculation.
532 */
533 unsigned long nr_running;
534 #define CPU_LOAD_IDX_MAX 5
535 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
536 #ifdef CONFIG_NO_HZ
537 unsigned long last_tick_seen;
538 unsigned char in_nohz_recently;
539 #endif
540 /* capture load from *all* tasks on this cpu: */
541 struct load_weight load;
542 unsigned long nr_load_updates;
543 u64 nr_switches;
544 u64 nr_migrations_in;
545
546 struct cfs_rq cfs;
547 struct rt_rq rt;
548
549 #ifdef CONFIG_FAIR_GROUP_SCHED
550 /* list of leaf cfs_rq on this cpu: */
551 struct list_head leaf_cfs_rq_list;
552 #endif
553 #ifdef CONFIG_RT_GROUP_SCHED
554 struct list_head leaf_rt_rq_list;
555 #endif
556
557 /*
558 * This is part of a global counter where only the total sum
559 * over all CPUs matters. A task can increase this counter on
560 * one CPU and if it got migrated afterwards it may decrease
561 * it on another CPU. Always updated under the runqueue lock:
562 */
563 unsigned long nr_uninterruptible;
564
565 struct task_struct *curr, *idle;
566 unsigned long next_balance;
567 struct mm_struct *prev_mm;
568
569 u64 clock;
570
571 atomic_t nr_iowait;
572
573 #ifdef CONFIG_SMP
574 struct root_domain *rd;
575 struct sched_domain *sd;
576
577 unsigned char idle_at_tick;
578 /* For active balancing */
579 int post_schedule;
580 int active_balance;
581 int push_cpu;
582 /* cpu of this runqueue: */
583 int cpu;
584 int online;
585
586 unsigned long avg_load_per_task;
587
588 struct task_struct *migration_thread;
589 struct list_head migration_queue;
590
591 u64 rt_avg;
592 u64 age_stamp;
593 #endif
594
595 /* calc_load related fields */
596 unsigned long calc_load_update;
597 long calc_load_active;
598
599 #ifdef CONFIG_SCHED_HRTICK
600 #ifdef CONFIG_SMP
601 int hrtick_csd_pending;
602 struct call_single_data hrtick_csd;
603 #endif
604 struct hrtimer hrtick_timer;
605 #endif
606
607 #ifdef CONFIG_SCHEDSTATS
608 /* latency stats */
609 struct sched_info rq_sched_info;
610 unsigned long long rq_cpu_time;
611 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
612
613 /* sys_sched_yield() stats */
614 unsigned int yld_count;
615
616 /* schedule() stats */
617 unsigned int sched_switch;
618 unsigned int sched_count;
619 unsigned int sched_goidle;
620
621 /* try_to_wake_up() stats */
622 unsigned int ttwu_count;
623 unsigned int ttwu_local;
624
625 /* BKL stats */
626 unsigned int bkl_count;
627 #endif
628 };
629
630 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
631
632 static inline
633 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
634 {
635 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
636 }
637
638 static inline int cpu_of(struct rq *rq)
639 {
640 #ifdef CONFIG_SMP
641 return rq->cpu;
642 #else
643 return 0;
644 #endif
645 }
646
647 /*
648 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
649 * See detach_destroy_domains: synchronize_sched for details.
650 *
651 * The domain tree of any CPU may only be accessed from within
652 * preempt-disabled sections.
653 */
654 #define for_each_domain(cpu, __sd) \
655 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
656
657 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
658 #define this_rq() (&__get_cpu_var(runqueues))
659 #define task_rq(p) cpu_rq(task_cpu(p))
660 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
661 #define raw_rq() (&__raw_get_cpu_var(runqueues))
662
663 inline void update_rq_clock(struct rq *rq)
664 {
665 rq->clock = sched_clock_cpu(cpu_of(rq));
666 }
667
668 /*
669 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
670 */
671 #ifdef CONFIG_SCHED_DEBUG
672 # define const_debug __read_mostly
673 #else
674 # define const_debug static const
675 #endif
676
677 /**
678 * runqueue_is_locked
679 *
680 * Returns true if the current cpu runqueue is locked.
681 * This interface allows printk to be called with the runqueue lock
682 * held and know whether or not it is OK to wake up the klogd.
683 */
684 int runqueue_is_locked(int cpu)
685 {
686 return spin_is_locked(&cpu_rq(cpu)->lock);
687 }
688
689 /*
690 * Debugging: various feature bits
691 */
692
693 #define SCHED_FEAT(name, enabled) \
694 __SCHED_FEAT_##name ,
695
696 enum {
697 #include "sched_features.h"
698 };
699
700 #undef SCHED_FEAT
701
702 #define SCHED_FEAT(name, enabled) \
703 (1UL << __SCHED_FEAT_##name) * enabled |
704
705 const_debug unsigned int sysctl_sched_features =
706 #include "sched_features.h"
707 0;
708
709 #undef SCHED_FEAT
710
711 #ifdef CONFIG_SCHED_DEBUG
712 #define SCHED_FEAT(name, enabled) \
713 #name ,
714
715 static __read_mostly char *sched_feat_names[] = {
716 #include "sched_features.h"
717 NULL
718 };
719
720 #undef SCHED_FEAT
721
722 static int sched_feat_show(struct seq_file *m, void *v)
723 {
724 int i;
725
726 for (i = 0; sched_feat_names[i]; i++) {
727 if (!(sysctl_sched_features & (1UL << i)))
728 seq_puts(m, "NO_");
729 seq_printf(m, "%s ", sched_feat_names[i]);
730 }
731 seq_puts(m, "\n");
732
733 return 0;
734 }
735
736 static ssize_t
737 sched_feat_write(struct file *filp, const char __user *ubuf,
738 size_t cnt, loff_t *ppos)
739 {
740 char buf[64];
741 char *cmp = buf;
742 int neg = 0;
743 int i;
744
745 if (cnt > 63)
746 cnt = 63;
747
748 if (copy_from_user(&buf, ubuf, cnt))
749 return -EFAULT;
750
751 buf[cnt] = 0;
752
753 if (strncmp(buf, "NO_", 3) == 0) {
754 neg = 1;
755 cmp += 3;
756 }
757
758 for (i = 0; sched_feat_names[i]; i++) {
759 int len = strlen(sched_feat_names[i]);
760
761 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
762 if (neg)
763 sysctl_sched_features &= ~(1UL << i);
764 else
765 sysctl_sched_features |= (1UL << i);
766 break;
767 }
768 }
769
770 if (!sched_feat_names[i])
771 return -EINVAL;
772
773 filp->f_pos += cnt;
774
775 return cnt;
776 }
777
778 static int sched_feat_open(struct inode *inode, struct file *filp)
779 {
780 return single_open(filp, sched_feat_show, NULL);
781 }
782
783 static struct file_operations sched_feat_fops = {
784 .open = sched_feat_open,
785 .write = sched_feat_write,
786 .read = seq_read,
787 .llseek = seq_lseek,
788 .release = single_release,
789 };
790
791 static __init int sched_init_debug(void)
792 {
793 debugfs_create_file("sched_features", 0644, NULL, NULL,
794 &sched_feat_fops);
795
796 return 0;
797 }
798 late_initcall(sched_init_debug);
799
800 #endif
801
802 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
803
804 /*
805 * Number of tasks to iterate in a single balance run.
806 * Limited because this is done with IRQs disabled.
807 */
808 const_debug unsigned int sysctl_sched_nr_migrate = 32;
809
810 /*
811 * ratelimit for updating the group shares.
812 * default: 0.25ms
813 */
814 unsigned int sysctl_sched_shares_ratelimit = 250000;
815
816 /*
817 * Inject some fuzzyness into changing the per-cpu group shares
818 * this avoids remote rq-locks at the expense of fairness.
819 * default: 4
820 */
821 unsigned int sysctl_sched_shares_thresh = 4;
822
823 /*
824 * period over which we average the RT time consumption, measured
825 * in ms.
826 *
827 * default: 1s
828 */
829 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
830
831 /*
832 * period over which we measure -rt task cpu usage in us.
833 * default: 1s
834 */
835 unsigned int sysctl_sched_rt_period = 1000000;
836
837 static __read_mostly int scheduler_running;
838
839 /*
840 * part of the period that we allow rt tasks to run in us.
841 * default: 0.95s
842 */
843 int sysctl_sched_rt_runtime = 950000;
844
845 static inline u64 global_rt_period(void)
846 {
847 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
848 }
849
850 static inline u64 global_rt_runtime(void)
851 {
852 if (sysctl_sched_rt_runtime < 0)
853 return RUNTIME_INF;
854
855 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
856 }
857
858 #ifndef prepare_arch_switch
859 # define prepare_arch_switch(next) do { } while (0)
860 #endif
861 #ifndef finish_arch_switch
862 # define finish_arch_switch(prev) do { } while (0)
863 #endif
864
865 static inline int task_current(struct rq *rq, struct task_struct *p)
866 {
867 return rq->curr == p;
868 }
869
870 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
871 static inline int task_running(struct rq *rq, struct task_struct *p)
872 {
873 return task_current(rq, p);
874 }
875
876 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
877 {
878 }
879
880 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
881 {
882 #ifdef CONFIG_DEBUG_SPINLOCK
883 /* this is a valid case when another task releases the spinlock */
884 rq->lock.owner = current;
885 #endif
886 /*
887 * If we are tracking spinlock dependencies then we have to
888 * fix up the runqueue lock - which gets 'carried over' from
889 * prev into current:
890 */
891 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
892
893 spin_unlock_irq(&rq->lock);
894 }
895
896 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
897 static inline int task_running(struct rq *rq, struct task_struct *p)
898 {
899 #ifdef CONFIG_SMP
900 return p->oncpu;
901 #else
902 return task_current(rq, p);
903 #endif
904 }
905
906 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
907 {
908 #ifdef CONFIG_SMP
909 /*
910 * We can optimise this out completely for !SMP, because the
911 * SMP rebalancing from interrupt is the only thing that cares
912 * here.
913 */
914 next->oncpu = 1;
915 #endif
916 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
917 spin_unlock_irq(&rq->lock);
918 #else
919 spin_unlock(&rq->lock);
920 #endif
921 }
922
923 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
924 {
925 #ifdef CONFIG_SMP
926 /*
927 * After ->oncpu is cleared, the task can be moved to a different CPU.
928 * We must ensure this doesn't happen until the switch is completely
929 * finished.
930 */
931 smp_wmb();
932 prev->oncpu = 0;
933 #endif
934 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
935 local_irq_enable();
936 #endif
937 }
938 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
939
940 /*
941 * __task_rq_lock - lock the runqueue a given task resides on.
942 * Must be called interrupts disabled.
943 */
944 static inline struct rq *__task_rq_lock(struct task_struct *p)
945 __acquires(rq->lock)
946 {
947 for (;;) {
948 struct rq *rq = task_rq(p);
949 spin_lock(&rq->lock);
950 if (likely(rq == task_rq(p)))
951 return rq;
952 spin_unlock(&rq->lock);
953 }
954 }
955
956 /*
957 * task_rq_lock - lock the runqueue a given task resides on and disable
958 * interrupts. Note the ordering: we can safely lookup the task_rq without
959 * explicitly disabling preemption.
960 */
961 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
962 __acquires(rq->lock)
963 {
964 struct rq *rq;
965
966 for (;;) {
967 local_irq_save(*flags);
968 rq = task_rq(p);
969 spin_lock(&rq->lock);
970 if (likely(rq == task_rq(p)))
971 return rq;
972 spin_unlock_irqrestore(&rq->lock, *flags);
973 }
974 }
975
976 void task_rq_unlock_wait(struct task_struct *p)
977 {
978 struct rq *rq = task_rq(p);
979
980 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
981 spin_unlock_wait(&rq->lock);
982 }
983
984 static void __task_rq_unlock(struct rq *rq)
985 __releases(rq->lock)
986 {
987 spin_unlock(&rq->lock);
988 }
989
990 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
991 __releases(rq->lock)
992 {
993 spin_unlock_irqrestore(&rq->lock, *flags);
994 }
995
996 /*
997 * this_rq_lock - lock this runqueue and disable interrupts.
998 */
999 static struct rq *this_rq_lock(void)
1000 __acquires(rq->lock)
1001 {
1002 struct rq *rq;
1003
1004 local_irq_disable();
1005 rq = this_rq();
1006 spin_lock(&rq->lock);
1007
1008 return rq;
1009 }
1010
1011 #ifdef CONFIG_SCHED_HRTICK
1012 /*
1013 * Use HR-timers to deliver accurate preemption points.
1014 *
1015 * Its all a bit involved since we cannot program an hrt while holding the
1016 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1017 * reschedule event.
1018 *
1019 * When we get rescheduled we reprogram the hrtick_timer outside of the
1020 * rq->lock.
1021 */
1022
1023 /*
1024 * Use hrtick when:
1025 * - enabled by features
1026 * - hrtimer is actually high res
1027 */
1028 static inline int hrtick_enabled(struct rq *rq)
1029 {
1030 if (!sched_feat(HRTICK))
1031 return 0;
1032 if (!cpu_active(cpu_of(rq)))
1033 return 0;
1034 return hrtimer_is_hres_active(&rq->hrtick_timer);
1035 }
1036
1037 static void hrtick_clear(struct rq *rq)
1038 {
1039 if (hrtimer_active(&rq->hrtick_timer))
1040 hrtimer_cancel(&rq->hrtick_timer);
1041 }
1042
1043 /*
1044 * High-resolution timer tick.
1045 * Runs from hardirq context with interrupts disabled.
1046 */
1047 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1048 {
1049 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1050
1051 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1052
1053 spin_lock(&rq->lock);
1054 update_rq_clock(rq);
1055 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1056 spin_unlock(&rq->lock);
1057
1058 return HRTIMER_NORESTART;
1059 }
1060
1061 #ifdef CONFIG_SMP
1062 /*
1063 * called from hardirq (IPI) context
1064 */
1065 static void __hrtick_start(void *arg)
1066 {
1067 struct rq *rq = arg;
1068
1069 spin_lock(&rq->lock);
1070 hrtimer_restart(&rq->hrtick_timer);
1071 rq->hrtick_csd_pending = 0;
1072 spin_unlock(&rq->lock);
1073 }
1074
1075 /*
1076 * Called to set the hrtick timer state.
1077 *
1078 * called with rq->lock held and irqs disabled
1079 */
1080 static void hrtick_start(struct rq *rq, u64 delay)
1081 {
1082 struct hrtimer *timer = &rq->hrtick_timer;
1083 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1084
1085 hrtimer_set_expires(timer, time);
1086
1087 if (rq == this_rq()) {
1088 hrtimer_restart(timer);
1089 } else if (!rq->hrtick_csd_pending) {
1090 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1091 rq->hrtick_csd_pending = 1;
1092 }
1093 }
1094
1095 static int
1096 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1097 {
1098 int cpu = (int)(long)hcpu;
1099
1100 switch (action) {
1101 case CPU_UP_CANCELED:
1102 case CPU_UP_CANCELED_FROZEN:
1103 case CPU_DOWN_PREPARE:
1104 case CPU_DOWN_PREPARE_FROZEN:
1105 case CPU_DEAD:
1106 case CPU_DEAD_FROZEN:
1107 hrtick_clear(cpu_rq(cpu));
1108 return NOTIFY_OK;
1109 }
1110
1111 return NOTIFY_DONE;
1112 }
1113
1114 static __init void init_hrtick(void)
1115 {
1116 hotcpu_notifier(hotplug_hrtick, 0);
1117 }
1118 #else
1119 /*
1120 * Called to set the hrtick timer state.
1121 *
1122 * called with rq->lock held and irqs disabled
1123 */
1124 static void hrtick_start(struct rq *rq, u64 delay)
1125 {
1126 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1127 HRTIMER_MODE_REL_PINNED, 0);
1128 }
1129
1130 static inline void init_hrtick(void)
1131 {
1132 }
1133 #endif /* CONFIG_SMP */
1134
1135 static void init_rq_hrtick(struct rq *rq)
1136 {
1137 #ifdef CONFIG_SMP
1138 rq->hrtick_csd_pending = 0;
1139
1140 rq->hrtick_csd.flags = 0;
1141 rq->hrtick_csd.func = __hrtick_start;
1142 rq->hrtick_csd.info = rq;
1143 #endif
1144
1145 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1146 rq->hrtick_timer.function = hrtick;
1147 }
1148 #else /* CONFIG_SCHED_HRTICK */
1149 static inline void hrtick_clear(struct rq *rq)
1150 {
1151 }
1152
1153 static inline void init_rq_hrtick(struct rq *rq)
1154 {
1155 }
1156
1157 static inline void init_hrtick(void)
1158 {
1159 }
1160 #endif /* CONFIG_SCHED_HRTICK */
1161
1162 /*
1163 * resched_task - mark a task 'to be rescheduled now'.
1164 *
1165 * On UP this means the setting of the need_resched flag, on SMP it
1166 * might also involve a cross-CPU call to trigger the scheduler on
1167 * the target CPU.
1168 */
1169 #ifdef CONFIG_SMP
1170
1171 #ifndef tsk_is_polling
1172 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1173 #endif
1174
1175 static void resched_task(struct task_struct *p)
1176 {
1177 int cpu;
1178
1179 assert_spin_locked(&task_rq(p)->lock);
1180
1181 if (test_tsk_need_resched(p))
1182 return;
1183
1184 set_tsk_need_resched(p);
1185
1186 cpu = task_cpu(p);
1187 if (cpu == smp_processor_id())
1188 return;
1189
1190 /* NEED_RESCHED must be visible before we test polling */
1191 smp_mb();
1192 if (!tsk_is_polling(p))
1193 smp_send_reschedule(cpu);
1194 }
1195
1196 static void resched_cpu(int cpu)
1197 {
1198 struct rq *rq = cpu_rq(cpu);
1199 unsigned long flags;
1200
1201 if (!spin_trylock_irqsave(&rq->lock, flags))
1202 return;
1203 resched_task(cpu_curr(cpu));
1204 spin_unlock_irqrestore(&rq->lock, flags);
1205 }
1206
1207 #ifdef CONFIG_NO_HZ
1208 /*
1209 * When add_timer_on() enqueues a timer into the timer wheel of an
1210 * idle CPU then this timer might expire before the next timer event
1211 * which is scheduled to wake up that CPU. In case of a completely
1212 * idle system the next event might even be infinite time into the
1213 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1214 * leaves the inner idle loop so the newly added timer is taken into
1215 * account when the CPU goes back to idle and evaluates the timer
1216 * wheel for the next timer event.
1217 */
1218 void wake_up_idle_cpu(int cpu)
1219 {
1220 struct rq *rq = cpu_rq(cpu);
1221
1222 if (cpu == smp_processor_id())
1223 return;
1224
1225 /*
1226 * This is safe, as this function is called with the timer
1227 * wheel base lock of (cpu) held. When the CPU is on the way
1228 * to idle and has not yet set rq->curr to idle then it will
1229 * be serialized on the timer wheel base lock and take the new
1230 * timer into account automatically.
1231 */
1232 if (rq->curr != rq->idle)
1233 return;
1234
1235 /*
1236 * We can set TIF_RESCHED on the idle task of the other CPU
1237 * lockless. The worst case is that the other CPU runs the
1238 * idle task through an additional NOOP schedule()
1239 */
1240 set_tsk_need_resched(rq->idle);
1241
1242 /* NEED_RESCHED must be visible before we test polling */
1243 smp_mb();
1244 if (!tsk_is_polling(rq->idle))
1245 smp_send_reschedule(cpu);
1246 }
1247 #endif /* CONFIG_NO_HZ */
1248
1249 static u64 sched_avg_period(void)
1250 {
1251 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1252 }
1253
1254 static void sched_avg_update(struct rq *rq)
1255 {
1256 s64 period = sched_avg_period();
1257
1258 while ((s64)(rq->clock - rq->age_stamp) > period) {
1259 rq->age_stamp += period;
1260 rq->rt_avg /= 2;
1261 }
1262 }
1263
1264 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1265 {
1266 rq->rt_avg += rt_delta;
1267 sched_avg_update(rq);
1268 }
1269
1270 #else /* !CONFIG_SMP */
1271 static void resched_task(struct task_struct *p)
1272 {
1273 assert_spin_locked(&task_rq(p)->lock);
1274 set_tsk_need_resched(p);
1275 }
1276
1277 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1278 {
1279 }
1280 #endif /* CONFIG_SMP */
1281
1282 #if BITS_PER_LONG == 32
1283 # define WMULT_CONST (~0UL)
1284 #else
1285 # define WMULT_CONST (1UL << 32)
1286 #endif
1287
1288 #define WMULT_SHIFT 32
1289
1290 /*
1291 * Shift right and round:
1292 */
1293 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1294
1295 /*
1296 * delta *= weight / lw
1297 */
1298 static unsigned long
1299 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1300 struct load_weight *lw)
1301 {
1302 u64 tmp;
1303
1304 if (!lw->inv_weight) {
1305 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1306 lw->inv_weight = 1;
1307 else
1308 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1309 / (lw->weight+1);
1310 }
1311
1312 tmp = (u64)delta_exec * weight;
1313 /*
1314 * Check whether we'd overflow the 64-bit multiplication:
1315 */
1316 if (unlikely(tmp > WMULT_CONST))
1317 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1318 WMULT_SHIFT/2);
1319 else
1320 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1321
1322 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1323 }
1324
1325 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1326 {
1327 lw->weight += inc;
1328 lw->inv_weight = 0;
1329 }
1330
1331 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1332 {
1333 lw->weight -= dec;
1334 lw->inv_weight = 0;
1335 }
1336
1337 /*
1338 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1339 * of tasks with abnormal "nice" values across CPUs the contribution that
1340 * each task makes to its run queue's load is weighted according to its
1341 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1342 * scaled version of the new time slice allocation that they receive on time
1343 * slice expiry etc.
1344 */
1345
1346 #define WEIGHT_IDLEPRIO 3
1347 #define WMULT_IDLEPRIO 1431655765
1348
1349 /*
1350 * Nice levels are multiplicative, with a gentle 10% change for every
1351 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1352 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1353 * that remained on nice 0.
1354 *
1355 * The "10% effect" is relative and cumulative: from _any_ nice level,
1356 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1357 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1358 * If a task goes up by ~10% and another task goes down by ~10% then
1359 * the relative distance between them is ~25%.)
1360 */
1361 static const int prio_to_weight[40] = {
1362 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1363 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1364 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1365 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1366 /* 0 */ 1024, 820, 655, 526, 423,
1367 /* 5 */ 335, 272, 215, 172, 137,
1368 /* 10 */ 110, 87, 70, 56, 45,
1369 /* 15 */ 36, 29, 23, 18, 15,
1370 };
1371
1372 /*
1373 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1374 *
1375 * In cases where the weight does not change often, we can use the
1376 * precalculated inverse to speed up arithmetics by turning divisions
1377 * into multiplications:
1378 */
1379 static const u32 prio_to_wmult[40] = {
1380 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1381 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1382 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1383 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1384 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1385 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1386 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1387 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1388 };
1389
1390 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1391
1392 /*
1393 * runqueue iterator, to support SMP load-balancing between different
1394 * scheduling classes, without having to expose their internal data
1395 * structures to the load-balancing proper:
1396 */
1397 struct rq_iterator {
1398 void *arg;
1399 struct task_struct *(*start)(void *);
1400 struct task_struct *(*next)(void *);
1401 };
1402
1403 #ifdef CONFIG_SMP
1404 static unsigned long
1405 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1406 unsigned long max_load_move, struct sched_domain *sd,
1407 enum cpu_idle_type idle, int *all_pinned,
1408 int *this_best_prio, struct rq_iterator *iterator);
1409
1410 static int
1411 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1412 struct sched_domain *sd, enum cpu_idle_type idle,
1413 struct rq_iterator *iterator);
1414 #endif
1415
1416 /* Time spent by the tasks of the cpu accounting group executing in ... */
1417 enum cpuacct_stat_index {
1418 CPUACCT_STAT_USER, /* ... user mode */
1419 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1420
1421 CPUACCT_STAT_NSTATS,
1422 };
1423
1424 #ifdef CONFIG_CGROUP_CPUACCT
1425 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1426 static void cpuacct_update_stats(struct task_struct *tsk,
1427 enum cpuacct_stat_index idx, cputime_t val);
1428 #else
1429 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1430 static inline void cpuacct_update_stats(struct task_struct *tsk,
1431 enum cpuacct_stat_index idx, cputime_t val) {}
1432 #endif
1433
1434 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1435 {
1436 update_load_add(&rq->load, load);
1437 }
1438
1439 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1440 {
1441 update_load_sub(&rq->load, load);
1442 }
1443
1444 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1445 typedef int (*tg_visitor)(struct task_group *, void *);
1446
1447 /*
1448 * Iterate the full tree, calling @down when first entering a node and @up when
1449 * leaving it for the final time.
1450 */
1451 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1452 {
1453 struct task_group *parent, *child;
1454 int ret;
1455
1456 rcu_read_lock();
1457 parent = &root_task_group;
1458 down:
1459 ret = (*down)(parent, data);
1460 if (ret)
1461 goto out_unlock;
1462 list_for_each_entry_rcu(child, &parent->children, siblings) {
1463 parent = child;
1464 goto down;
1465
1466 up:
1467 continue;
1468 }
1469 ret = (*up)(parent, data);
1470 if (ret)
1471 goto out_unlock;
1472
1473 child = parent;
1474 parent = parent->parent;
1475 if (parent)
1476 goto up;
1477 out_unlock:
1478 rcu_read_unlock();
1479
1480 return ret;
1481 }
1482
1483 static int tg_nop(struct task_group *tg, void *data)
1484 {
1485 return 0;
1486 }
1487 #endif
1488
1489 #ifdef CONFIG_SMP
1490 /* Used instead of source_load when we know the type == 0 */
1491 static unsigned long weighted_cpuload(const int cpu)
1492 {
1493 return cpu_rq(cpu)->load.weight;
1494 }
1495
1496 /*
1497 * Return a low guess at the load of a migration-source cpu weighted
1498 * according to the scheduling class and "nice" value.
1499 *
1500 * We want to under-estimate the load of migration sources, to
1501 * balance conservatively.
1502 */
1503 static unsigned long source_load(int cpu, int type)
1504 {
1505 struct rq *rq = cpu_rq(cpu);
1506 unsigned long total = weighted_cpuload(cpu);
1507
1508 if (type == 0 || !sched_feat(LB_BIAS))
1509 return total;
1510
1511 return min(rq->cpu_load[type-1], total);
1512 }
1513
1514 /*
1515 * Return a high guess at the load of a migration-target cpu weighted
1516 * according to the scheduling class and "nice" value.
1517 */
1518 static unsigned long target_load(int cpu, int type)
1519 {
1520 struct rq *rq = cpu_rq(cpu);
1521 unsigned long total = weighted_cpuload(cpu);
1522
1523 if (type == 0 || !sched_feat(LB_BIAS))
1524 return total;
1525
1526 return max(rq->cpu_load[type-1], total);
1527 }
1528
1529 static struct sched_group *group_of(int cpu)
1530 {
1531 struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
1532
1533 if (!sd)
1534 return NULL;
1535
1536 return sd->groups;
1537 }
1538
1539 static unsigned long power_of(int cpu)
1540 {
1541 struct sched_group *group = group_of(cpu);
1542
1543 if (!group)
1544 return SCHED_LOAD_SCALE;
1545
1546 return group->cpu_power;
1547 }
1548
1549 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1550
1551 static unsigned long cpu_avg_load_per_task(int cpu)
1552 {
1553 struct rq *rq = cpu_rq(cpu);
1554 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1555
1556 if (nr_running)
1557 rq->avg_load_per_task = rq->load.weight / nr_running;
1558 else
1559 rq->avg_load_per_task = 0;
1560
1561 return rq->avg_load_per_task;
1562 }
1563
1564 #ifdef CONFIG_FAIR_GROUP_SCHED
1565
1566 struct update_shares_data {
1567 unsigned long rq_weight[NR_CPUS];
1568 };
1569
1570 static DEFINE_PER_CPU(struct update_shares_data, update_shares_data);
1571
1572 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1573
1574 /*
1575 * Calculate and set the cpu's group shares.
1576 */
1577 static void update_group_shares_cpu(struct task_group *tg, int cpu,
1578 unsigned long sd_shares,
1579 unsigned long sd_rq_weight,
1580 struct update_shares_data *usd)
1581 {
1582 unsigned long shares, rq_weight;
1583 int boost = 0;
1584
1585 rq_weight = usd->rq_weight[cpu];
1586 if (!rq_weight) {
1587 boost = 1;
1588 rq_weight = NICE_0_LOAD;
1589 }
1590
1591 /*
1592 * \Sum_j shares_j * rq_weight_i
1593 * shares_i = -----------------------------
1594 * \Sum_j rq_weight_j
1595 */
1596 shares = (sd_shares * rq_weight) / sd_rq_weight;
1597 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1598
1599 if (abs(shares - tg->se[cpu]->load.weight) >
1600 sysctl_sched_shares_thresh) {
1601 struct rq *rq = cpu_rq(cpu);
1602 unsigned long flags;
1603
1604 spin_lock_irqsave(&rq->lock, flags);
1605 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
1606 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1607 __set_se_shares(tg->se[cpu], shares);
1608 spin_unlock_irqrestore(&rq->lock, flags);
1609 }
1610 }
1611
1612 /*
1613 * Re-compute the task group their per cpu shares over the given domain.
1614 * This needs to be done in a bottom-up fashion because the rq weight of a
1615 * parent group depends on the shares of its child groups.
1616 */
1617 static int tg_shares_up(struct task_group *tg, void *data)
1618 {
1619 unsigned long weight, rq_weight = 0, shares = 0;
1620 struct update_shares_data *usd;
1621 struct sched_domain *sd = data;
1622 unsigned long flags;
1623 int i;
1624
1625 if (!tg->se[0])
1626 return 0;
1627
1628 local_irq_save(flags);
1629 usd = &__get_cpu_var(update_shares_data);
1630
1631 for_each_cpu(i, sched_domain_span(sd)) {
1632 weight = tg->cfs_rq[i]->load.weight;
1633 usd->rq_weight[i] = weight;
1634
1635 /*
1636 * If there are currently no tasks on the cpu pretend there
1637 * is one of average load so that when a new task gets to
1638 * run here it will not get delayed by group starvation.
1639 */
1640 if (!weight)
1641 weight = NICE_0_LOAD;
1642
1643 rq_weight += weight;
1644 shares += tg->cfs_rq[i]->shares;
1645 }
1646
1647 if ((!shares && rq_weight) || shares > tg->shares)
1648 shares = tg->shares;
1649
1650 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1651 shares = tg->shares;
1652
1653 for_each_cpu(i, sched_domain_span(sd))
1654 update_group_shares_cpu(tg, i, shares, rq_weight, usd);
1655
1656 local_irq_restore(flags);
1657
1658 return 0;
1659 }
1660
1661 /*
1662 * Compute the cpu's hierarchical load factor for each task group.
1663 * This needs to be done in a top-down fashion because the load of a child
1664 * group is a fraction of its parents load.
1665 */
1666 static int tg_load_down(struct task_group *tg, void *data)
1667 {
1668 unsigned long load;
1669 long cpu = (long)data;
1670
1671 if (!tg->parent) {
1672 load = cpu_rq(cpu)->load.weight;
1673 } else {
1674 load = tg->parent->cfs_rq[cpu]->h_load;
1675 load *= tg->cfs_rq[cpu]->shares;
1676 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1677 }
1678
1679 tg->cfs_rq[cpu]->h_load = load;
1680
1681 return 0;
1682 }
1683
1684 static void update_shares(struct sched_domain *sd)
1685 {
1686 s64 elapsed;
1687 u64 now;
1688
1689 if (root_task_group_empty())
1690 return;
1691
1692 now = cpu_clock(raw_smp_processor_id());
1693 elapsed = now - sd->last_update;
1694
1695 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1696 sd->last_update = now;
1697 walk_tg_tree(tg_nop, tg_shares_up, sd);
1698 }
1699 }
1700
1701 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1702 {
1703 if (root_task_group_empty())
1704 return;
1705
1706 spin_unlock(&rq->lock);
1707 update_shares(sd);
1708 spin_lock(&rq->lock);
1709 }
1710
1711 static void update_h_load(long cpu)
1712 {
1713 if (root_task_group_empty())
1714 return;
1715
1716 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1717 }
1718
1719 #else
1720
1721 static inline void update_shares(struct sched_domain *sd)
1722 {
1723 }
1724
1725 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1726 {
1727 }
1728
1729 #endif
1730
1731 #ifdef CONFIG_PREEMPT
1732
1733 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1734
1735 /*
1736 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1737 * way at the expense of forcing extra atomic operations in all
1738 * invocations. This assures that the double_lock is acquired using the
1739 * same underlying policy as the spinlock_t on this architecture, which
1740 * reduces latency compared to the unfair variant below. However, it
1741 * also adds more overhead and therefore may reduce throughput.
1742 */
1743 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1744 __releases(this_rq->lock)
1745 __acquires(busiest->lock)
1746 __acquires(this_rq->lock)
1747 {
1748 spin_unlock(&this_rq->lock);
1749 double_rq_lock(this_rq, busiest);
1750
1751 return 1;
1752 }
1753
1754 #else
1755 /*
1756 * Unfair double_lock_balance: Optimizes throughput at the expense of
1757 * latency by eliminating extra atomic operations when the locks are
1758 * already in proper order on entry. This favors lower cpu-ids and will
1759 * grant the double lock to lower cpus over higher ids under contention,
1760 * regardless of entry order into the function.
1761 */
1762 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1763 __releases(this_rq->lock)
1764 __acquires(busiest->lock)
1765 __acquires(this_rq->lock)
1766 {
1767 int ret = 0;
1768
1769 if (unlikely(!spin_trylock(&busiest->lock))) {
1770 if (busiest < this_rq) {
1771 spin_unlock(&this_rq->lock);
1772 spin_lock(&busiest->lock);
1773 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1774 ret = 1;
1775 } else
1776 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1777 }
1778 return ret;
1779 }
1780
1781 #endif /* CONFIG_PREEMPT */
1782
1783 /*
1784 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1785 */
1786 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1787 {
1788 if (unlikely(!irqs_disabled())) {
1789 /* printk() doesn't work good under rq->lock */
1790 spin_unlock(&this_rq->lock);
1791 BUG_ON(1);
1792 }
1793
1794 return _double_lock_balance(this_rq, busiest);
1795 }
1796
1797 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1798 __releases(busiest->lock)
1799 {
1800 spin_unlock(&busiest->lock);
1801 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1802 }
1803 #endif
1804
1805 #ifdef CONFIG_FAIR_GROUP_SCHED
1806 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1807 {
1808 #ifdef CONFIG_SMP
1809 cfs_rq->shares = shares;
1810 #endif
1811 }
1812 #endif
1813
1814 static void calc_load_account_active(struct rq *this_rq);
1815
1816 #include "sched_stats.h"
1817 #include "sched_idletask.c"
1818 #include "sched_fair.c"
1819 #include "sched_rt.c"
1820 #ifdef CONFIG_SCHED_DEBUG
1821 # include "sched_debug.c"
1822 #endif
1823
1824 #define sched_class_highest (&rt_sched_class)
1825 #define for_each_class(class) \
1826 for (class = sched_class_highest; class; class = class->next)
1827
1828 static void inc_nr_running(struct rq *rq)
1829 {
1830 rq->nr_running++;
1831 }
1832
1833 static void dec_nr_running(struct rq *rq)
1834 {
1835 rq->nr_running--;
1836 }
1837
1838 static void set_load_weight(struct task_struct *p)
1839 {
1840 if (task_has_rt_policy(p)) {
1841 p->se.load.weight = prio_to_weight[0] * 2;
1842 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1843 return;
1844 }
1845
1846 /*
1847 * SCHED_IDLE tasks get minimal weight:
1848 */
1849 if (p->policy == SCHED_IDLE) {
1850 p->se.load.weight = WEIGHT_IDLEPRIO;
1851 p->se.load.inv_weight = WMULT_IDLEPRIO;
1852 return;
1853 }
1854
1855 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1856 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1857 }
1858
1859 static void update_avg(u64 *avg, u64 sample)
1860 {
1861 s64 diff = sample - *avg;
1862 *avg += diff >> 3;
1863 }
1864
1865 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1866 {
1867 if (wakeup)
1868 p->se.start_runtime = p->se.sum_exec_runtime;
1869
1870 sched_info_queued(p);
1871 p->sched_class->enqueue_task(rq, p, wakeup);
1872 p->se.on_rq = 1;
1873 }
1874
1875 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1876 {
1877 if (sleep) {
1878 if (p->se.last_wakeup) {
1879 update_avg(&p->se.avg_overlap,
1880 p->se.sum_exec_runtime - p->se.last_wakeup);
1881 p->se.last_wakeup = 0;
1882 } else {
1883 update_avg(&p->se.avg_wakeup,
1884 sysctl_sched_wakeup_granularity);
1885 }
1886 }
1887
1888 sched_info_dequeued(p);
1889 p->sched_class->dequeue_task(rq, p, sleep);
1890 p->se.on_rq = 0;
1891 }
1892
1893 /*
1894 * __normal_prio - return the priority that is based on the static prio
1895 */
1896 static inline int __normal_prio(struct task_struct *p)
1897 {
1898 return p->static_prio;
1899 }
1900
1901 /*
1902 * Calculate the expected normal priority: i.e. priority
1903 * without taking RT-inheritance into account. Might be
1904 * boosted by interactivity modifiers. Changes upon fork,
1905 * setprio syscalls, and whenever the interactivity
1906 * estimator recalculates.
1907 */
1908 static inline int normal_prio(struct task_struct *p)
1909 {
1910 int prio;
1911
1912 if (task_has_rt_policy(p))
1913 prio = MAX_RT_PRIO-1 - p->rt_priority;
1914 else
1915 prio = __normal_prio(p);
1916 return prio;
1917 }
1918
1919 /*
1920 * Calculate the current priority, i.e. the priority
1921 * taken into account by the scheduler. This value might
1922 * be boosted by RT tasks, or might be boosted by
1923 * interactivity modifiers. Will be RT if the task got
1924 * RT-boosted. If not then it returns p->normal_prio.
1925 */
1926 static int effective_prio(struct task_struct *p)
1927 {
1928 p->normal_prio = normal_prio(p);
1929 /*
1930 * If we are RT tasks or we were boosted to RT priority,
1931 * keep the priority unchanged. Otherwise, update priority
1932 * to the normal priority:
1933 */
1934 if (!rt_prio(p->prio))
1935 return p->normal_prio;
1936 return p->prio;
1937 }
1938
1939 /*
1940 * activate_task - move a task to the runqueue.
1941 */
1942 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1943 {
1944 if (task_contributes_to_load(p))
1945 rq->nr_uninterruptible--;
1946
1947 enqueue_task(rq, p, wakeup);
1948 inc_nr_running(rq);
1949 }
1950
1951 /*
1952 * deactivate_task - remove a task from the runqueue.
1953 */
1954 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1955 {
1956 if (task_contributes_to_load(p))
1957 rq->nr_uninterruptible++;
1958
1959 dequeue_task(rq, p, sleep);
1960 dec_nr_running(rq);
1961 }
1962
1963 /**
1964 * task_curr - is this task currently executing on a CPU?
1965 * @p: the task in question.
1966 */
1967 inline int task_curr(const struct task_struct *p)
1968 {
1969 return cpu_curr(task_cpu(p)) == p;
1970 }
1971
1972 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1973 {
1974 set_task_rq(p, cpu);
1975 #ifdef CONFIG_SMP
1976 /*
1977 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1978 * successfuly executed on another CPU. We must ensure that updates of
1979 * per-task data have been completed by this moment.
1980 */
1981 smp_wmb();
1982 task_thread_info(p)->cpu = cpu;
1983 #endif
1984 }
1985
1986 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1987 const struct sched_class *prev_class,
1988 int oldprio, int running)
1989 {
1990 if (prev_class != p->sched_class) {
1991 if (prev_class->switched_from)
1992 prev_class->switched_from(rq, p, running);
1993 p->sched_class->switched_to(rq, p, running);
1994 } else
1995 p->sched_class->prio_changed(rq, p, oldprio, running);
1996 }
1997
1998 #ifdef CONFIG_SMP
1999 /*
2000 * Is this task likely cache-hot:
2001 */
2002 static int
2003 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2004 {
2005 s64 delta;
2006
2007 /*
2008 * Buddy candidates are cache hot:
2009 */
2010 if (sched_feat(CACHE_HOT_BUDDY) &&
2011 (&p->se == cfs_rq_of(&p->se)->next ||
2012 &p->se == cfs_rq_of(&p->se)->last))
2013 return 1;
2014
2015 if (p->sched_class != &fair_sched_class)
2016 return 0;
2017
2018 if (sysctl_sched_migration_cost == -1)
2019 return 1;
2020 if (sysctl_sched_migration_cost == 0)
2021 return 0;
2022
2023 delta = now - p->se.exec_start;
2024
2025 return delta < (s64)sysctl_sched_migration_cost;
2026 }
2027
2028
2029 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2030 {
2031 int old_cpu = task_cpu(p);
2032 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2033 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
2034 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
2035 u64 clock_offset;
2036
2037 clock_offset = old_rq->clock - new_rq->clock;
2038
2039 trace_sched_migrate_task(p, new_cpu);
2040
2041 #ifdef CONFIG_SCHEDSTATS
2042 if (p->se.wait_start)
2043 p->se.wait_start -= clock_offset;
2044 if (p->se.sleep_start)
2045 p->se.sleep_start -= clock_offset;
2046 if (p->se.block_start)
2047 p->se.block_start -= clock_offset;
2048 #endif
2049 if (old_cpu != new_cpu) {
2050 p->se.nr_migrations++;
2051 new_rq->nr_migrations_in++;
2052 #ifdef CONFIG_SCHEDSTATS
2053 if (task_hot(p, old_rq->clock, NULL))
2054 schedstat_inc(p, se.nr_forced2_migrations);
2055 #endif
2056 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS,
2057 1, 1, NULL, 0);
2058 }
2059 p->se.vruntime -= old_cfsrq->min_vruntime -
2060 new_cfsrq->min_vruntime;
2061
2062 __set_task_cpu(p, new_cpu);
2063 }
2064
2065 struct migration_req {
2066 struct list_head list;
2067
2068 struct task_struct *task;
2069 int dest_cpu;
2070
2071 struct completion done;
2072 };
2073
2074 /*
2075 * The task's runqueue lock must be held.
2076 * Returns true if you have to wait for migration thread.
2077 */
2078 static int
2079 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
2080 {
2081 struct rq *rq = task_rq(p);
2082
2083 /*
2084 * If the task is not on a runqueue (and not running), then
2085 * it is sufficient to simply update the task's cpu field.
2086 */
2087 if (!p->se.on_rq && !task_running(rq, p)) {
2088 set_task_cpu(p, dest_cpu);
2089 return 0;
2090 }
2091
2092 init_completion(&req->done);
2093 req->task = p;
2094 req->dest_cpu = dest_cpu;
2095 list_add(&req->list, &rq->migration_queue);
2096
2097 return 1;
2098 }
2099
2100 /*
2101 * wait_task_context_switch - wait for a thread to complete at least one
2102 * context switch.
2103 *
2104 * @p must not be current.
2105 */
2106 void wait_task_context_switch(struct task_struct *p)
2107 {
2108 unsigned long nvcsw, nivcsw, flags;
2109 int running;
2110 struct rq *rq;
2111
2112 nvcsw = p->nvcsw;
2113 nivcsw = p->nivcsw;
2114 for (;;) {
2115 /*
2116 * The runqueue is assigned before the actual context
2117 * switch. We need to take the runqueue lock.
2118 *
2119 * We could check initially without the lock but it is
2120 * very likely that we need to take the lock in every
2121 * iteration.
2122 */
2123 rq = task_rq_lock(p, &flags);
2124 running = task_running(rq, p);
2125 task_rq_unlock(rq, &flags);
2126
2127 if (likely(!running))
2128 break;
2129 /*
2130 * The switch count is incremented before the actual
2131 * context switch. We thus wait for two switches to be
2132 * sure at least one completed.
2133 */
2134 if ((p->nvcsw - nvcsw) > 1)
2135 break;
2136 if ((p->nivcsw - nivcsw) > 1)
2137 break;
2138
2139 cpu_relax();
2140 }
2141 }
2142
2143 /*
2144 * wait_task_inactive - wait for a thread to unschedule.
2145 *
2146 * If @match_state is nonzero, it's the @p->state value just checked and
2147 * not expected to change. If it changes, i.e. @p might have woken up,
2148 * then return zero. When we succeed in waiting for @p to be off its CPU,
2149 * we return a positive number (its total switch count). If a second call
2150 * a short while later returns the same number, the caller can be sure that
2151 * @p has remained unscheduled the whole time.
2152 *
2153 * The caller must ensure that the task *will* unschedule sometime soon,
2154 * else this function might spin for a *long* time. This function can't
2155 * be called with interrupts off, or it may introduce deadlock with
2156 * smp_call_function() if an IPI is sent by the same process we are
2157 * waiting to become inactive.
2158 */
2159 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2160 {
2161 unsigned long flags;
2162 int running, on_rq;
2163 unsigned long ncsw;
2164 struct rq *rq;
2165
2166 for (;;) {
2167 /*
2168 * We do the initial early heuristics without holding
2169 * any task-queue locks at all. We'll only try to get
2170 * the runqueue lock when things look like they will
2171 * work out!
2172 */
2173 rq = task_rq(p);
2174
2175 /*
2176 * If the task is actively running on another CPU
2177 * still, just relax and busy-wait without holding
2178 * any locks.
2179 *
2180 * NOTE! Since we don't hold any locks, it's not
2181 * even sure that "rq" stays as the right runqueue!
2182 * But we don't care, since "task_running()" will
2183 * return false if the runqueue has changed and p
2184 * is actually now running somewhere else!
2185 */
2186 while (task_running(rq, p)) {
2187 if (match_state && unlikely(p->state != match_state))
2188 return 0;
2189 cpu_relax();
2190 }
2191
2192 /*
2193 * Ok, time to look more closely! We need the rq
2194 * lock now, to be *sure*. If we're wrong, we'll
2195 * just go back and repeat.
2196 */
2197 rq = task_rq_lock(p, &flags);
2198 trace_sched_wait_task(rq, p);
2199 running = task_running(rq, p);
2200 on_rq = p->se.on_rq;
2201 ncsw = 0;
2202 if (!match_state || p->state == match_state)
2203 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2204 task_rq_unlock(rq, &flags);
2205
2206 /*
2207 * If it changed from the expected state, bail out now.
2208 */
2209 if (unlikely(!ncsw))
2210 break;
2211
2212 /*
2213 * Was it really running after all now that we
2214 * checked with the proper locks actually held?
2215 *
2216 * Oops. Go back and try again..
2217 */
2218 if (unlikely(running)) {
2219 cpu_relax();
2220 continue;
2221 }
2222
2223 /*
2224 * It's not enough that it's not actively running,
2225 * it must be off the runqueue _entirely_, and not
2226 * preempted!
2227 *
2228 * So if it was still runnable (but just not actively
2229 * running right now), it's preempted, and we should
2230 * yield - it could be a while.
2231 */
2232 if (unlikely(on_rq)) {
2233 schedule_timeout_uninterruptible(1);
2234 continue;
2235 }
2236
2237 /*
2238 * Ahh, all good. It wasn't running, and it wasn't
2239 * runnable, which means that it will never become
2240 * running in the future either. We're all done!
2241 */
2242 break;
2243 }
2244
2245 return ncsw;
2246 }
2247
2248 /***
2249 * kick_process - kick a running thread to enter/exit the kernel
2250 * @p: the to-be-kicked thread
2251 *
2252 * Cause a process which is running on another CPU to enter
2253 * kernel-mode, without any delay. (to get signals handled.)
2254 *
2255 * NOTE: this function doesnt have to take the runqueue lock,
2256 * because all it wants to ensure is that the remote task enters
2257 * the kernel. If the IPI races and the task has been migrated
2258 * to another CPU then no harm is done and the purpose has been
2259 * achieved as well.
2260 */
2261 void kick_process(struct task_struct *p)
2262 {
2263 int cpu;
2264
2265 preempt_disable();
2266 cpu = task_cpu(p);
2267 if ((cpu != smp_processor_id()) && task_curr(p))
2268 smp_send_reschedule(cpu);
2269 preempt_enable();
2270 }
2271 EXPORT_SYMBOL_GPL(kick_process);
2272 #endif /* CONFIG_SMP */
2273
2274 /**
2275 * task_oncpu_function_call - call a function on the cpu on which a task runs
2276 * @p: the task to evaluate
2277 * @func: the function to be called
2278 * @info: the function call argument
2279 *
2280 * Calls the function @func when the task is currently running. This might
2281 * be on the current CPU, which just calls the function directly
2282 */
2283 void task_oncpu_function_call(struct task_struct *p,
2284 void (*func) (void *info), void *info)
2285 {
2286 int cpu;
2287
2288 preempt_disable();
2289 cpu = task_cpu(p);
2290 if (task_curr(p))
2291 smp_call_function_single(cpu, func, info, 1);
2292 preempt_enable();
2293 }
2294
2295 /***
2296 * try_to_wake_up - wake up a thread
2297 * @p: the to-be-woken-up thread
2298 * @state: the mask of task states that can be woken
2299 * @sync: do a synchronous wakeup?
2300 *
2301 * Put it on the run-queue if it's not already there. The "current"
2302 * thread is always on the run-queue (except when the actual
2303 * re-schedule is in progress), and as such you're allowed to do
2304 * the simpler "current->state = TASK_RUNNING" to mark yourself
2305 * runnable without the overhead of this.
2306 *
2307 * returns failure only if the task is already active.
2308 */
2309 static int try_to_wake_up(struct task_struct *p, unsigned int state,
2310 int wake_flags)
2311 {
2312 int cpu, orig_cpu, this_cpu, success = 0;
2313 unsigned long flags;
2314 struct rq *rq;
2315
2316 if (!sched_feat(SYNC_WAKEUPS))
2317 wake_flags &= ~WF_SYNC;
2318
2319 this_cpu = get_cpu();
2320
2321 smp_wmb();
2322 rq = task_rq_lock(p, &flags);
2323 update_rq_clock(rq);
2324 if (!(p->state & state))
2325 goto out;
2326
2327 if (p->se.on_rq)
2328 goto out_running;
2329
2330 cpu = task_cpu(p);
2331 orig_cpu = cpu;
2332
2333 #ifdef CONFIG_SMP
2334 if (unlikely(task_running(rq, p)))
2335 goto out_activate;
2336
2337 /*
2338 * In order to handle concurrent wakeups and release the rq->lock
2339 * we put the task in TASK_WAKING state.
2340 *
2341 * First fix up the nr_uninterruptible count:
2342 */
2343 if (task_contributes_to_load(p))
2344 rq->nr_uninterruptible--;
2345 p->state = TASK_WAKING;
2346 task_rq_unlock(rq, &flags);
2347
2348 cpu = p->sched_class->select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
2349 if (cpu != orig_cpu)
2350 set_task_cpu(p, cpu);
2351
2352 rq = task_rq_lock(p, &flags);
2353 WARN_ON(p->state != TASK_WAKING);
2354 cpu = task_cpu(p);
2355
2356 #ifdef CONFIG_SCHEDSTATS
2357 schedstat_inc(rq, ttwu_count);
2358 if (cpu == this_cpu)
2359 schedstat_inc(rq, ttwu_local);
2360 else {
2361 struct sched_domain *sd;
2362 for_each_domain(this_cpu, sd) {
2363 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2364 schedstat_inc(sd, ttwu_wake_remote);
2365 break;
2366 }
2367 }
2368 }
2369 #endif /* CONFIG_SCHEDSTATS */
2370
2371 out_activate:
2372 #endif /* CONFIG_SMP */
2373 schedstat_inc(p, se.nr_wakeups);
2374 if (wake_flags & WF_SYNC)
2375 schedstat_inc(p, se.nr_wakeups_sync);
2376 if (orig_cpu != cpu)
2377 schedstat_inc(p, se.nr_wakeups_migrate);
2378 if (cpu == this_cpu)
2379 schedstat_inc(p, se.nr_wakeups_local);
2380 else
2381 schedstat_inc(p, se.nr_wakeups_remote);
2382 activate_task(rq, p, 1);
2383 success = 1;
2384
2385 /*
2386 * Only attribute actual wakeups done by this task.
2387 */
2388 if (!in_interrupt()) {
2389 struct sched_entity *se = &current->se;
2390 u64 sample = se->sum_exec_runtime;
2391
2392 if (se->last_wakeup)
2393 sample -= se->last_wakeup;
2394 else
2395 sample -= se->start_runtime;
2396 update_avg(&se->avg_wakeup, sample);
2397
2398 se->last_wakeup = se->sum_exec_runtime;
2399 }
2400
2401 out_running:
2402 trace_sched_wakeup(rq, p, success);
2403 check_preempt_curr(rq, p, wake_flags);
2404
2405 p->state = TASK_RUNNING;
2406 #ifdef CONFIG_SMP
2407 if (p->sched_class->task_wake_up)
2408 p->sched_class->task_wake_up(rq, p);
2409 #endif
2410 out:
2411 task_rq_unlock(rq, &flags);
2412 put_cpu();
2413
2414 return success;
2415 }
2416
2417 /**
2418 * wake_up_process - Wake up a specific process
2419 * @p: The process to be woken up.
2420 *
2421 * Attempt to wake up the nominated process and move it to the set of runnable
2422 * processes. Returns 1 if the process was woken up, 0 if it was already
2423 * running.
2424 *
2425 * It may be assumed that this function implies a write memory barrier before
2426 * changing the task state if and only if any tasks are woken up.
2427 */
2428 int wake_up_process(struct task_struct *p)
2429 {
2430 return try_to_wake_up(p, TASK_ALL, 0);
2431 }
2432 EXPORT_SYMBOL(wake_up_process);
2433
2434 int wake_up_state(struct task_struct *p, unsigned int state)
2435 {
2436 return try_to_wake_up(p, state, 0);
2437 }
2438
2439 /*
2440 * Perform scheduler related setup for a newly forked process p.
2441 * p is forked by current.
2442 *
2443 * __sched_fork() is basic setup used by init_idle() too:
2444 */
2445 static void __sched_fork(struct task_struct *p)
2446 {
2447 p->se.exec_start = 0;
2448 p->se.sum_exec_runtime = 0;
2449 p->se.prev_sum_exec_runtime = 0;
2450 p->se.nr_migrations = 0;
2451 p->se.last_wakeup = 0;
2452 p->se.avg_overlap = 0;
2453 p->se.start_runtime = 0;
2454 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
2455 p->se.avg_running = 0;
2456
2457 #ifdef CONFIG_SCHEDSTATS
2458 p->se.wait_start = 0;
2459 p->se.wait_max = 0;
2460 p->se.wait_count = 0;
2461 p->se.wait_sum = 0;
2462
2463 p->se.sleep_start = 0;
2464 p->se.sleep_max = 0;
2465 p->se.sum_sleep_runtime = 0;
2466
2467 p->se.block_start = 0;
2468 p->se.block_max = 0;
2469 p->se.exec_max = 0;
2470 p->se.slice_max = 0;
2471
2472 p->se.nr_migrations_cold = 0;
2473 p->se.nr_failed_migrations_affine = 0;
2474 p->se.nr_failed_migrations_running = 0;
2475 p->se.nr_failed_migrations_hot = 0;
2476 p->se.nr_forced_migrations = 0;
2477 p->se.nr_forced2_migrations = 0;
2478
2479 p->se.nr_wakeups = 0;
2480 p->se.nr_wakeups_sync = 0;
2481 p->se.nr_wakeups_migrate = 0;
2482 p->se.nr_wakeups_local = 0;
2483 p->se.nr_wakeups_remote = 0;
2484 p->se.nr_wakeups_affine = 0;
2485 p->se.nr_wakeups_affine_attempts = 0;
2486 p->se.nr_wakeups_passive = 0;
2487 p->se.nr_wakeups_idle = 0;
2488
2489 #endif
2490
2491 INIT_LIST_HEAD(&p->rt.run_list);
2492 p->se.on_rq = 0;
2493 INIT_LIST_HEAD(&p->se.group_node);
2494
2495 #ifdef CONFIG_PREEMPT_NOTIFIERS
2496 INIT_HLIST_HEAD(&p->preempt_notifiers);
2497 #endif
2498
2499 /*
2500 * We mark the process as running here, but have not actually
2501 * inserted it onto the runqueue yet. This guarantees that
2502 * nobody will actually run it, and a signal or other external
2503 * event cannot wake it up and insert it on the runqueue either.
2504 */
2505 p->state = TASK_RUNNING;
2506 }
2507
2508 /*
2509 * fork()/clone()-time setup:
2510 */
2511 void sched_fork(struct task_struct *p, int clone_flags)
2512 {
2513 int cpu = get_cpu();
2514
2515 __sched_fork(p);
2516
2517 /*
2518 * Make sure we do not leak PI boosting priority to the child.
2519 */
2520 p->prio = current->normal_prio;
2521
2522 /*
2523 * Revert to default priority/policy on fork if requested.
2524 */
2525 if (unlikely(p->sched_reset_on_fork)) {
2526 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR)
2527 p->policy = SCHED_NORMAL;
2528
2529 if (p->normal_prio < DEFAULT_PRIO)
2530 p->prio = DEFAULT_PRIO;
2531
2532 if (PRIO_TO_NICE(p->static_prio) < 0) {
2533 p->static_prio = NICE_TO_PRIO(0);
2534 set_load_weight(p);
2535 }
2536
2537 /*
2538 * We don't need the reset flag anymore after the fork. It has
2539 * fulfilled its duty:
2540 */
2541 p->sched_reset_on_fork = 0;
2542 }
2543
2544 if (!rt_prio(p->prio))
2545 p->sched_class = &fair_sched_class;
2546
2547 #ifdef CONFIG_SMP
2548 cpu = p->sched_class->select_task_rq(p, SD_BALANCE_FORK, 0);
2549 #endif
2550 set_task_cpu(p, cpu);
2551
2552 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2553 if (likely(sched_info_on()))
2554 memset(&p->sched_info, 0, sizeof(p->sched_info));
2555 #endif
2556 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2557 p->oncpu = 0;
2558 #endif
2559 #ifdef CONFIG_PREEMPT
2560 /* Want to start with kernel preemption disabled. */
2561 task_thread_info(p)->preempt_count = 1;
2562 #endif
2563 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2564
2565 put_cpu();
2566 }
2567
2568 /*
2569 * wake_up_new_task - wake up a newly created task for the first time.
2570 *
2571 * This function will do some initial scheduler statistics housekeeping
2572 * that must be done for every newly created context, then puts the task
2573 * on the runqueue and wakes it.
2574 */
2575 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2576 {
2577 unsigned long flags;
2578 struct rq *rq;
2579
2580 rq = task_rq_lock(p, &flags);
2581 BUG_ON(p->state != TASK_RUNNING);
2582 update_rq_clock(rq);
2583
2584 p->prio = effective_prio(p);
2585
2586 if (!p->sched_class->task_new || !current->se.on_rq) {
2587 activate_task(rq, p, 0);
2588 } else {
2589 /*
2590 * Let the scheduling class do new task startup
2591 * management (if any):
2592 */
2593 p->sched_class->task_new(rq, p);
2594 inc_nr_running(rq);
2595 }
2596 trace_sched_wakeup_new(rq, p, 1);
2597 check_preempt_curr(rq, p, WF_FORK);
2598 #ifdef CONFIG_SMP
2599 if (p->sched_class->task_wake_up)
2600 p->sched_class->task_wake_up(rq, p);
2601 #endif
2602 task_rq_unlock(rq, &flags);
2603 }
2604
2605 #ifdef CONFIG_PREEMPT_NOTIFIERS
2606
2607 /**
2608 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2609 * @notifier: notifier struct to register
2610 */
2611 void preempt_notifier_register(struct preempt_notifier *notifier)
2612 {
2613 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2614 }
2615 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2616
2617 /**
2618 * preempt_notifier_unregister - no longer interested in preemption notifications
2619 * @notifier: notifier struct to unregister
2620 *
2621 * This is safe to call from within a preemption notifier.
2622 */
2623 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2624 {
2625 hlist_del(&notifier->link);
2626 }
2627 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2628
2629 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2630 {
2631 struct preempt_notifier *notifier;
2632 struct hlist_node *node;
2633
2634 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2635 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2636 }
2637
2638 static void
2639 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2640 struct task_struct *next)
2641 {
2642 struct preempt_notifier *notifier;
2643 struct hlist_node *node;
2644
2645 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2646 notifier->ops->sched_out(notifier, next);
2647 }
2648
2649 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2650
2651 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2652 {
2653 }
2654
2655 static void
2656 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2657 struct task_struct *next)
2658 {
2659 }
2660
2661 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2662
2663 /**
2664 * prepare_task_switch - prepare to switch tasks
2665 * @rq: the runqueue preparing to switch
2666 * @prev: the current task that is being switched out
2667 * @next: the task we are going to switch to.
2668 *
2669 * This is called with the rq lock held and interrupts off. It must
2670 * be paired with a subsequent finish_task_switch after the context
2671 * switch.
2672 *
2673 * prepare_task_switch sets up locking and calls architecture specific
2674 * hooks.
2675 */
2676 static inline void
2677 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2678 struct task_struct *next)
2679 {
2680 fire_sched_out_preempt_notifiers(prev, next);
2681 prepare_lock_switch(rq, next);
2682 prepare_arch_switch(next);
2683 }
2684
2685 /**
2686 * finish_task_switch - clean up after a task-switch
2687 * @rq: runqueue associated with task-switch
2688 * @prev: the thread we just switched away from.
2689 *
2690 * finish_task_switch must be called after the context switch, paired
2691 * with a prepare_task_switch call before the context switch.
2692 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2693 * and do any other architecture-specific cleanup actions.
2694 *
2695 * Note that we may have delayed dropping an mm in context_switch(). If
2696 * so, we finish that here outside of the runqueue lock. (Doing it
2697 * with the lock held can cause deadlocks; see schedule() for
2698 * details.)
2699 */
2700 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2701 __releases(rq->lock)
2702 {
2703 struct mm_struct *mm = rq->prev_mm;
2704 long prev_state;
2705
2706 rq->prev_mm = NULL;
2707
2708 /*
2709 * A task struct has one reference for the use as "current".
2710 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2711 * schedule one last time. The schedule call will never return, and
2712 * the scheduled task must drop that reference.
2713 * The test for TASK_DEAD must occur while the runqueue locks are
2714 * still held, otherwise prev could be scheduled on another cpu, die
2715 * there before we look at prev->state, and then the reference would
2716 * be dropped twice.
2717 * Manfred Spraul <manfred@colorfullife.com>
2718 */
2719 prev_state = prev->state;
2720 finish_arch_switch(prev);
2721 perf_event_task_sched_in(current, cpu_of(rq));
2722 finish_lock_switch(rq, prev);
2723
2724 fire_sched_in_preempt_notifiers(current);
2725 if (mm)
2726 mmdrop(mm);
2727 if (unlikely(prev_state == TASK_DEAD)) {
2728 /*
2729 * Remove function-return probe instances associated with this
2730 * task and put them back on the free list.
2731 */
2732 kprobe_flush_task(prev);
2733 put_task_struct(prev);
2734 }
2735 }
2736
2737 #ifdef CONFIG_SMP
2738
2739 /* assumes rq->lock is held */
2740 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2741 {
2742 if (prev->sched_class->pre_schedule)
2743 prev->sched_class->pre_schedule(rq, prev);
2744 }
2745
2746 /* rq->lock is NOT held, but preemption is disabled */
2747 static inline void post_schedule(struct rq *rq)
2748 {
2749 if (rq->post_schedule) {
2750 unsigned long flags;
2751
2752 spin_lock_irqsave(&rq->lock, flags);
2753 if (rq->curr->sched_class->post_schedule)
2754 rq->curr->sched_class->post_schedule(rq);
2755 spin_unlock_irqrestore(&rq->lock, flags);
2756
2757 rq->post_schedule = 0;
2758 }
2759 }
2760
2761 #else
2762
2763 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2764 {
2765 }
2766
2767 static inline void post_schedule(struct rq *rq)
2768 {
2769 }
2770
2771 #endif
2772
2773 /**
2774 * schedule_tail - first thing a freshly forked thread must call.
2775 * @prev: the thread we just switched away from.
2776 */
2777 asmlinkage void schedule_tail(struct task_struct *prev)
2778 __releases(rq->lock)
2779 {
2780 struct rq *rq = this_rq();
2781
2782 finish_task_switch(rq, prev);
2783
2784 /*
2785 * FIXME: do we need to worry about rq being invalidated by the
2786 * task_switch?
2787 */
2788 post_schedule(rq);
2789
2790 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2791 /* In this case, finish_task_switch does not reenable preemption */
2792 preempt_enable();
2793 #endif
2794 if (current->set_child_tid)
2795 put_user(task_pid_vnr(current), current->set_child_tid);
2796 }
2797
2798 /*
2799 * context_switch - switch to the new MM and the new
2800 * thread's register state.
2801 */
2802 static inline void
2803 context_switch(struct rq *rq, struct task_struct *prev,
2804 struct task_struct *next)
2805 {
2806 struct mm_struct *mm, *oldmm;
2807
2808 prepare_task_switch(rq, prev, next);
2809 trace_sched_switch(rq, prev, next);
2810 mm = next->mm;
2811 oldmm = prev->active_mm;
2812 /*
2813 * For paravirt, this is coupled with an exit in switch_to to
2814 * combine the page table reload and the switch backend into
2815 * one hypercall.
2816 */
2817 arch_start_context_switch(prev);
2818
2819 if (unlikely(!mm)) {
2820 next->active_mm = oldmm;
2821 atomic_inc(&oldmm->mm_count);
2822 enter_lazy_tlb(oldmm, next);
2823 } else
2824 switch_mm(oldmm, mm, next);
2825
2826 if (unlikely(!prev->mm)) {
2827 prev->active_mm = NULL;
2828 rq->prev_mm = oldmm;
2829 }
2830 /*
2831 * Since the runqueue lock will be released by the next
2832 * task (which is an invalid locking op but in the case
2833 * of the scheduler it's an obvious special-case), so we
2834 * do an early lockdep release here:
2835 */
2836 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2837 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2838 #endif
2839
2840 /* Here we just switch the register state and the stack. */
2841 switch_to(prev, next, prev);
2842
2843 barrier();
2844 /*
2845 * this_rq must be evaluated again because prev may have moved
2846 * CPUs since it called schedule(), thus the 'rq' on its stack
2847 * frame will be invalid.
2848 */
2849 finish_task_switch(this_rq(), prev);
2850 }
2851
2852 /*
2853 * nr_running, nr_uninterruptible and nr_context_switches:
2854 *
2855 * externally visible scheduler statistics: current number of runnable
2856 * threads, current number of uninterruptible-sleeping threads, total
2857 * number of context switches performed since bootup.
2858 */
2859 unsigned long nr_running(void)
2860 {
2861 unsigned long i, sum = 0;
2862
2863 for_each_online_cpu(i)
2864 sum += cpu_rq(i)->nr_running;
2865
2866 return sum;
2867 }
2868
2869 unsigned long nr_uninterruptible(void)
2870 {
2871 unsigned long i, sum = 0;
2872
2873 for_each_possible_cpu(i)
2874 sum += cpu_rq(i)->nr_uninterruptible;
2875
2876 /*
2877 * Since we read the counters lockless, it might be slightly
2878 * inaccurate. Do not allow it to go below zero though:
2879 */
2880 if (unlikely((long)sum < 0))
2881 sum = 0;
2882
2883 return sum;
2884 }
2885
2886 unsigned long long nr_context_switches(void)
2887 {
2888 int i;
2889 unsigned long long sum = 0;
2890
2891 for_each_possible_cpu(i)
2892 sum += cpu_rq(i)->nr_switches;
2893
2894 return sum;
2895 }
2896
2897 unsigned long nr_iowait(void)
2898 {
2899 unsigned long i, sum = 0;
2900
2901 for_each_possible_cpu(i)
2902 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2903
2904 return sum;
2905 }
2906
2907 unsigned long nr_iowait_cpu(void)
2908 {
2909 struct rq *this = this_rq();
2910 return atomic_read(&this->nr_iowait);
2911 }
2912
2913 unsigned long this_cpu_load(void)
2914 {
2915 struct rq *this = this_rq();
2916 return this->cpu_load[0];
2917 }
2918
2919
2920 /* Variables and functions for calc_load */
2921 static atomic_long_t calc_load_tasks;
2922 static unsigned long calc_load_update;
2923 unsigned long avenrun[3];
2924 EXPORT_SYMBOL(avenrun);
2925
2926 /**
2927 * get_avenrun - get the load average array
2928 * @loads: pointer to dest load array
2929 * @offset: offset to add
2930 * @shift: shift count to shift the result left
2931 *
2932 * These values are estimates at best, so no need for locking.
2933 */
2934 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2935 {
2936 loads[0] = (avenrun[0] + offset) << shift;
2937 loads[1] = (avenrun[1] + offset) << shift;
2938 loads[2] = (avenrun[2] + offset) << shift;
2939 }
2940
2941 static unsigned long
2942 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2943 {
2944 load *= exp;
2945 load += active * (FIXED_1 - exp);
2946 return load >> FSHIFT;
2947 }
2948
2949 /*
2950 * calc_load - update the avenrun load estimates 10 ticks after the
2951 * CPUs have updated calc_load_tasks.
2952 */
2953 void calc_global_load(void)
2954 {
2955 unsigned long upd = calc_load_update + 10;
2956 long active;
2957
2958 if (time_before(jiffies, upd))
2959 return;
2960
2961 active = atomic_long_read(&calc_load_tasks);
2962 active = active > 0 ? active * FIXED_1 : 0;
2963
2964 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2965 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2966 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2967
2968 calc_load_update += LOAD_FREQ;
2969 }
2970
2971 /*
2972 * Either called from update_cpu_load() or from a cpu going idle
2973 */
2974 static void calc_load_account_active(struct rq *this_rq)
2975 {
2976 long nr_active, delta;
2977
2978 nr_active = this_rq->nr_running;
2979 nr_active += (long) this_rq->nr_uninterruptible;
2980
2981 if (nr_active != this_rq->calc_load_active) {
2982 delta = nr_active - this_rq->calc_load_active;
2983 this_rq->calc_load_active = nr_active;
2984 atomic_long_add(delta, &calc_load_tasks);
2985 }
2986 }
2987
2988 /*
2989 * Externally visible per-cpu scheduler statistics:
2990 * cpu_nr_migrations(cpu) - number of migrations into that cpu
2991 */
2992 u64 cpu_nr_migrations(int cpu)
2993 {
2994 return cpu_rq(cpu)->nr_migrations_in;
2995 }
2996
2997 /*
2998 * Update rq->cpu_load[] statistics. This function is usually called every
2999 * scheduler tick (TICK_NSEC).
3000 */
3001 static void update_cpu_load(struct rq *this_rq)
3002 {
3003 unsigned long this_load = this_rq->load.weight;
3004 int i, scale;
3005
3006 this_rq->nr_load_updates++;
3007
3008 /* Update our load: */
3009 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3010 unsigned long old_load, new_load;
3011
3012 /* scale is effectively 1 << i now, and >> i divides by scale */
3013
3014 old_load = this_rq->cpu_load[i];
3015 new_load = this_load;
3016 /*
3017 * Round up the averaging division if load is increasing. This
3018 * prevents us from getting stuck on 9 if the load is 10, for
3019 * example.
3020 */
3021 if (new_load > old_load)
3022 new_load += scale-1;
3023 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3024 }
3025
3026 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3027 this_rq->calc_load_update += LOAD_FREQ;
3028 calc_load_account_active(this_rq);
3029 }
3030 }
3031
3032 #ifdef CONFIG_SMP
3033
3034 /*
3035 * double_rq_lock - safely lock two runqueues
3036 *
3037 * Note this does not disable interrupts like task_rq_lock,
3038 * you need to do so manually before calling.
3039 */
3040 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
3041 __acquires(rq1->lock)
3042 __acquires(rq2->lock)
3043 {
3044 BUG_ON(!irqs_disabled());
3045 if (rq1 == rq2) {
3046 spin_lock(&rq1->lock);
3047 __acquire(rq2->lock); /* Fake it out ;) */
3048 } else {
3049 if (rq1 < rq2) {
3050 spin_lock(&rq1->lock);
3051 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
3052 } else {
3053 spin_lock(&rq2->lock);
3054 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
3055 }
3056 }
3057 update_rq_clock(rq1);
3058 update_rq_clock(rq2);
3059 }
3060
3061 /*
3062 * double_rq_unlock - safely unlock two runqueues
3063 *
3064 * Note this does not restore interrupts like task_rq_unlock,
3065 * you need to do so manually after calling.
3066 */
3067 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
3068 __releases(rq1->lock)
3069 __releases(rq2->lock)
3070 {
3071 spin_unlock(&rq1->lock);
3072 if (rq1 != rq2)
3073 spin_unlock(&rq2->lock);
3074 else
3075 __release(rq2->lock);
3076 }
3077
3078 /*
3079 * If dest_cpu is allowed for this process, migrate the task to it.
3080 * This is accomplished by forcing the cpu_allowed mask to only
3081 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
3082 * the cpu_allowed mask is restored.
3083 */
3084 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
3085 {
3086 struct migration_req req;
3087 unsigned long flags;
3088 struct rq *rq;
3089
3090 rq = task_rq_lock(p, &flags);
3091 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3092 || unlikely(!cpu_active(dest_cpu)))
3093 goto out;
3094
3095 /* force the process onto the specified CPU */
3096 if (migrate_task(p, dest_cpu, &req)) {
3097 /* Need to wait for migration thread (might exit: take ref). */
3098 struct task_struct *mt = rq->migration_thread;
3099
3100 get_task_struct(mt);
3101 task_rq_unlock(rq, &flags);
3102 wake_up_process(mt);
3103 put_task_struct(mt);
3104 wait_for_completion(&req.done);
3105
3106 return;
3107 }
3108 out:
3109 task_rq_unlock(rq, &flags);
3110 }
3111
3112 /*
3113 * sched_exec - execve() is a valuable balancing opportunity, because at
3114 * this point the task has the smallest effective memory and cache footprint.
3115 */
3116 void sched_exec(void)
3117 {
3118 int new_cpu, this_cpu = get_cpu();
3119 new_cpu = current->sched_class->select_task_rq(current, SD_BALANCE_EXEC, 0);
3120 put_cpu();
3121 if (new_cpu != this_cpu)
3122 sched_migrate_task(current, new_cpu);
3123 }
3124
3125 /*
3126 * pull_task - move a task from a remote runqueue to the local runqueue.
3127 * Both runqueues must be locked.
3128 */
3129 static void pull_task(struct rq *src_rq, struct task_struct *p,
3130 struct rq *this_rq, int this_cpu)
3131 {
3132 deactivate_task(src_rq, p, 0);
3133 set_task_cpu(p, this_cpu);
3134 activate_task(this_rq, p, 0);
3135 /*
3136 * Note that idle threads have a prio of MAX_PRIO, for this test
3137 * to be always true for them.
3138 */
3139 check_preempt_curr(this_rq, p, 0);
3140 }
3141
3142 /*
3143 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3144 */
3145 static
3146 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
3147 struct sched_domain *sd, enum cpu_idle_type idle,
3148 int *all_pinned)
3149 {
3150 int tsk_cache_hot = 0;
3151 /*
3152 * We do not migrate tasks that are:
3153 * 1) running (obviously), or
3154 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3155 * 3) are cache-hot on their current CPU.
3156 */
3157 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3158 schedstat_inc(p, se.nr_failed_migrations_affine);
3159 return 0;
3160 }
3161 *all_pinned = 0;
3162
3163 if (task_running(rq, p)) {
3164 schedstat_inc(p, se.nr_failed_migrations_running);
3165 return 0;
3166 }
3167
3168 /*
3169 * Aggressive migration if:
3170 * 1) task is cache cold, or
3171 * 2) too many balance attempts have failed.
3172 */
3173
3174 tsk_cache_hot = task_hot(p, rq->clock, sd);
3175 if (!tsk_cache_hot ||
3176 sd->nr_balance_failed > sd->cache_nice_tries) {
3177 #ifdef CONFIG_SCHEDSTATS
3178 if (tsk_cache_hot) {
3179 schedstat_inc(sd, lb_hot_gained[idle]);
3180 schedstat_inc(p, se.nr_forced_migrations);
3181 }
3182 #endif
3183 return 1;
3184 }
3185
3186 if (tsk_cache_hot) {
3187 schedstat_inc(p, se.nr_failed_migrations_hot);
3188 return 0;
3189 }
3190 return 1;
3191 }
3192
3193 static unsigned long
3194 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3195 unsigned long max_load_move, struct sched_domain *sd,
3196 enum cpu_idle_type idle, int *all_pinned,
3197 int *this_best_prio, struct rq_iterator *iterator)
3198 {
3199 int loops = 0, pulled = 0, pinned = 0;
3200 struct task_struct *p;
3201 long rem_load_move = max_load_move;
3202
3203 if (max_load_move == 0)
3204 goto out;
3205
3206 pinned = 1;
3207
3208 /*
3209 * Start the load-balancing iterator:
3210 */
3211 p = iterator->start(iterator->arg);
3212 next:
3213 if (!p || loops++ > sysctl_sched_nr_migrate)
3214 goto out;
3215
3216 if ((p->se.load.weight >> 1) > rem_load_move ||
3217 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3218 p = iterator->next(iterator->arg);
3219 goto next;
3220 }
3221
3222 pull_task(busiest, p, this_rq, this_cpu);
3223 pulled++;
3224 rem_load_move -= p->se.load.weight;
3225
3226 #ifdef CONFIG_PREEMPT
3227 /*
3228 * NEWIDLE balancing is a source of latency, so preemptible kernels
3229 * will stop after the first task is pulled to minimize the critical
3230 * section.
3231 */
3232 if (idle == CPU_NEWLY_IDLE)
3233 goto out;
3234 #endif
3235
3236 /*
3237 * We only want to steal up to the prescribed amount of weighted load.
3238 */
3239 if (rem_load_move > 0) {
3240 if (p->prio < *this_best_prio)
3241 *this_best_prio = p->prio;
3242 p = iterator->next(iterator->arg);
3243 goto next;
3244 }
3245 out:
3246 /*
3247 * Right now, this is one of only two places pull_task() is called,
3248 * so we can safely collect pull_task() stats here rather than
3249 * inside pull_task().
3250 */
3251 schedstat_add(sd, lb_gained[idle], pulled);
3252
3253 if (all_pinned)
3254 *all_pinned = pinned;
3255
3256 return max_load_move - rem_load_move;
3257 }
3258
3259 /*
3260 * move_tasks tries to move up to max_load_move weighted load from busiest to
3261 * this_rq, as part of a balancing operation within domain "sd".
3262 * Returns 1 if successful and 0 otherwise.
3263 *
3264 * Called with both runqueues locked.
3265 */
3266 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3267 unsigned long max_load_move,
3268 struct sched_domain *sd, enum cpu_idle_type idle,
3269 int *all_pinned)
3270 {
3271 const struct sched_class *class = sched_class_highest;
3272 unsigned long total_load_moved = 0;
3273 int this_best_prio = this_rq->curr->prio;
3274
3275 do {
3276 total_load_moved +=
3277 class->load_balance(this_rq, this_cpu, busiest,
3278 max_load_move - total_load_moved,
3279 sd, idle, all_pinned, &this_best_prio);
3280 class = class->next;
3281
3282 #ifdef CONFIG_PREEMPT
3283 /*
3284 * NEWIDLE balancing is a source of latency, so preemptible
3285 * kernels will stop after the first task is pulled to minimize
3286 * the critical section.
3287 */
3288 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3289 break;
3290 #endif
3291 } while (class && max_load_move > total_load_moved);
3292
3293 return total_load_moved > 0;
3294 }
3295
3296 static int
3297 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3298 struct sched_domain *sd, enum cpu_idle_type idle,
3299 struct rq_iterator *iterator)
3300 {
3301 struct task_struct *p = iterator->start(iterator->arg);
3302 int pinned = 0;
3303
3304 while (p) {
3305 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3306 pull_task(busiest, p, this_rq, this_cpu);
3307 /*
3308 * Right now, this is only the second place pull_task()
3309 * is called, so we can safely collect pull_task()
3310 * stats here rather than inside pull_task().
3311 */
3312 schedstat_inc(sd, lb_gained[idle]);
3313
3314 return 1;
3315 }
3316 p = iterator->next(iterator->arg);
3317 }
3318
3319 return 0;
3320 }
3321
3322 /*
3323 * move_one_task tries to move exactly one task from busiest to this_rq, as
3324 * part of active balancing operations within "domain".
3325 * Returns 1 if successful and 0 otherwise.
3326 *
3327 * Called with both runqueues locked.
3328 */
3329 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3330 struct sched_domain *sd, enum cpu_idle_type idle)
3331 {
3332 const struct sched_class *class;
3333
3334 for_each_class(class) {
3335 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3336 return 1;
3337 }
3338
3339 return 0;
3340 }
3341 /********** Helpers for find_busiest_group ************************/
3342 /*
3343 * sd_lb_stats - Structure to store the statistics of a sched_domain
3344 * during load balancing.
3345 */
3346 struct sd_lb_stats {
3347 struct sched_group *busiest; /* Busiest group in this sd */
3348 struct sched_group *this; /* Local group in this sd */
3349 unsigned long total_load; /* Total load of all groups in sd */
3350 unsigned long total_pwr; /* Total power of all groups in sd */
3351 unsigned long avg_load; /* Average load across all groups in sd */
3352
3353 /** Statistics of this group */
3354 unsigned long this_load;
3355 unsigned long this_load_per_task;
3356 unsigned long this_nr_running;
3357
3358 /* Statistics of the busiest group */
3359 unsigned long max_load;
3360 unsigned long busiest_load_per_task;
3361 unsigned long busiest_nr_running;
3362
3363 int group_imb; /* Is there imbalance in this sd */
3364 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3365 int power_savings_balance; /* Is powersave balance needed for this sd */
3366 struct sched_group *group_min; /* Least loaded group in sd */
3367 struct sched_group *group_leader; /* Group which relieves group_min */
3368 unsigned long min_load_per_task; /* load_per_task in group_min */
3369 unsigned long leader_nr_running; /* Nr running of group_leader */
3370 unsigned long min_nr_running; /* Nr running of group_min */
3371 #endif
3372 };
3373
3374 /*
3375 * sg_lb_stats - stats of a sched_group required for load_balancing
3376 */
3377 struct sg_lb_stats {
3378 unsigned long avg_load; /*Avg load across the CPUs of the group */
3379 unsigned long group_load; /* Total load over the CPUs of the group */
3380 unsigned long sum_nr_running; /* Nr tasks running in the group */
3381 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3382 unsigned long group_capacity;
3383 int group_imb; /* Is there an imbalance in the group ? */
3384 };
3385
3386 /**
3387 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3388 * @group: The group whose first cpu is to be returned.
3389 */
3390 static inline unsigned int group_first_cpu(struct sched_group *group)
3391 {
3392 return cpumask_first(sched_group_cpus(group));
3393 }
3394
3395 /**
3396 * get_sd_load_idx - Obtain the load index for a given sched domain.
3397 * @sd: The sched_domain whose load_idx is to be obtained.
3398 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3399 */
3400 static inline int get_sd_load_idx(struct sched_domain *sd,
3401 enum cpu_idle_type idle)
3402 {
3403 int load_idx;
3404
3405 switch (idle) {
3406 case CPU_NOT_IDLE:
3407 load_idx = sd->busy_idx;
3408 break;
3409
3410 case CPU_NEWLY_IDLE:
3411 load_idx = sd->newidle_idx;
3412 break;
3413 default:
3414 load_idx = sd->idle_idx;
3415 break;
3416 }
3417
3418 return load_idx;
3419 }
3420
3421
3422 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3423 /**
3424 * init_sd_power_savings_stats - Initialize power savings statistics for
3425 * the given sched_domain, during load balancing.
3426 *
3427 * @sd: Sched domain whose power-savings statistics are to be initialized.
3428 * @sds: Variable containing the statistics for sd.
3429 * @idle: Idle status of the CPU at which we're performing load-balancing.
3430 */
3431 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3432 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3433 {
3434 /*
3435 * Busy processors will not participate in power savings
3436 * balance.
3437 */
3438 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3439 sds->power_savings_balance = 0;
3440 else {
3441 sds->power_savings_balance = 1;
3442 sds->min_nr_running = ULONG_MAX;
3443 sds->leader_nr_running = 0;
3444 }
3445 }
3446
3447 /**
3448 * update_sd_power_savings_stats - Update the power saving stats for a
3449 * sched_domain while performing load balancing.
3450 *
3451 * @group: sched_group belonging to the sched_domain under consideration.
3452 * @sds: Variable containing the statistics of the sched_domain
3453 * @local_group: Does group contain the CPU for which we're performing
3454 * load balancing ?
3455 * @sgs: Variable containing the statistics of the group.
3456 */
3457 static inline void update_sd_power_savings_stats(struct sched_group *group,
3458 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3459 {
3460
3461 if (!sds->power_savings_balance)
3462 return;
3463
3464 /*
3465 * If the local group is idle or completely loaded
3466 * no need to do power savings balance at this domain
3467 */
3468 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3469 !sds->this_nr_running))
3470 sds->power_savings_balance = 0;
3471
3472 /*
3473 * If a group is already running at full capacity or idle,
3474 * don't include that group in power savings calculations
3475 */
3476 if (!sds->power_savings_balance ||
3477 sgs->sum_nr_running >= sgs->group_capacity ||
3478 !sgs->sum_nr_running)
3479 return;
3480
3481 /*
3482 * Calculate the group which has the least non-idle load.
3483 * This is the group from where we need to pick up the load
3484 * for saving power
3485 */
3486 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3487 (sgs->sum_nr_running == sds->min_nr_running &&
3488 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3489 sds->group_min = group;
3490 sds->min_nr_running = sgs->sum_nr_running;
3491 sds->min_load_per_task = sgs->sum_weighted_load /
3492 sgs->sum_nr_running;
3493 }
3494
3495 /*
3496 * Calculate the group which is almost near its
3497 * capacity but still has some space to pick up some load
3498 * from other group and save more power
3499 */
3500 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
3501 return;
3502
3503 if (sgs->sum_nr_running > sds->leader_nr_running ||
3504 (sgs->sum_nr_running == sds->leader_nr_running &&
3505 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3506 sds->group_leader = group;
3507 sds->leader_nr_running = sgs->sum_nr_running;
3508 }
3509 }
3510
3511 /**
3512 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3513 * @sds: Variable containing the statistics of the sched_domain
3514 * under consideration.
3515 * @this_cpu: Cpu at which we're currently performing load-balancing.
3516 * @imbalance: Variable to store the imbalance.
3517 *
3518 * Description:
3519 * Check if we have potential to perform some power-savings balance.
3520 * If yes, set the busiest group to be the least loaded group in the
3521 * sched_domain, so that it's CPUs can be put to idle.
3522 *
3523 * Returns 1 if there is potential to perform power-savings balance.
3524 * Else returns 0.
3525 */
3526 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3527 int this_cpu, unsigned long *imbalance)
3528 {
3529 if (!sds->power_savings_balance)
3530 return 0;
3531
3532 if (sds->this != sds->group_leader ||
3533 sds->group_leader == sds->group_min)
3534 return 0;
3535
3536 *imbalance = sds->min_load_per_task;
3537 sds->busiest = sds->group_min;
3538
3539 return 1;
3540
3541 }
3542 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3543 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3544 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3545 {
3546 return;
3547 }
3548
3549 static inline void update_sd_power_savings_stats(struct sched_group *group,
3550 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3551 {
3552 return;
3553 }
3554
3555 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3556 int this_cpu, unsigned long *imbalance)
3557 {
3558 return 0;
3559 }
3560 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3561
3562
3563 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3564 {
3565 return SCHED_LOAD_SCALE;
3566 }
3567
3568 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3569 {
3570 return default_scale_freq_power(sd, cpu);
3571 }
3572
3573 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
3574 {
3575 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3576 unsigned long smt_gain = sd->smt_gain;
3577
3578 smt_gain /= weight;
3579
3580 return smt_gain;
3581 }
3582
3583 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3584 {
3585 return default_scale_smt_power(sd, cpu);
3586 }
3587
3588 unsigned long scale_rt_power(int cpu)
3589 {
3590 struct rq *rq = cpu_rq(cpu);
3591 u64 total, available;
3592
3593 sched_avg_update(rq);
3594
3595 total = sched_avg_period() + (rq->clock - rq->age_stamp);
3596 available = total - rq->rt_avg;
3597
3598 if (unlikely((s64)total < SCHED_LOAD_SCALE))
3599 total = SCHED_LOAD_SCALE;
3600
3601 total >>= SCHED_LOAD_SHIFT;
3602
3603 return div_u64(available, total);
3604 }
3605
3606 static void update_cpu_power(struct sched_domain *sd, int cpu)
3607 {
3608 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3609 unsigned long power = SCHED_LOAD_SCALE;
3610 struct sched_group *sdg = sd->groups;
3611
3612 if (sched_feat(ARCH_POWER))
3613 power *= arch_scale_freq_power(sd, cpu);
3614 else
3615 power *= default_scale_freq_power(sd, cpu);
3616
3617 power >>= SCHED_LOAD_SHIFT;
3618
3619 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3620 if (sched_feat(ARCH_POWER))
3621 power *= arch_scale_smt_power(sd, cpu);
3622 else
3623 power *= default_scale_smt_power(sd, cpu);
3624
3625 power >>= SCHED_LOAD_SHIFT;
3626 }
3627
3628 power *= scale_rt_power(cpu);
3629 power >>= SCHED_LOAD_SHIFT;
3630
3631 if (!power)
3632 power = 1;
3633
3634 sdg->cpu_power = power;
3635 }
3636
3637 static void update_group_power(struct sched_domain *sd, int cpu)
3638 {
3639 struct sched_domain *child = sd->child;
3640 struct sched_group *group, *sdg = sd->groups;
3641 unsigned long power;
3642
3643 if (!child) {
3644 update_cpu_power(sd, cpu);
3645 return;
3646 }
3647
3648 power = 0;
3649
3650 group = child->groups;
3651 do {
3652 power += group->cpu_power;
3653 group = group->next;
3654 } while (group != child->groups);
3655
3656 sdg->cpu_power = power;
3657 }
3658
3659 /**
3660 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3661 * @group: sched_group whose statistics are to be updated.
3662 * @this_cpu: Cpu for which load balance is currently performed.
3663 * @idle: Idle status of this_cpu
3664 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3665 * @sd_idle: Idle status of the sched_domain containing group.
3666 * @local_group: Does group contain this_cpu.
3667 * @cpus: Set of cpus considered for load balancing.
3668 * @balance: Should we balance.
3669 * @sgs: variable to hold the statistics for this group.
3670 */
3671 static inline void update_sg_lb_stats(struct sched_domain *sd,
3672 struct sched_group *group, int this_cpu,
3673 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3674 int local_group, const struct cpumask *cpus,
3675 int *balance, struct sg_lb_stats *sgs)
3676 {
3677 unsigned long load, max_cpu_load, min_cpu_load;
3678 int i;
3679 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3680 unsigned long sum_avg_load_per_task;
3681 unsigned long avg_load_per_task;
3682
3683 if (local_group) {
3684 balance_cpu = group_first_cpu(group);
3685 if (balance_cpu == this_cpu)
3686 update_group_power(sd, this_cpu);
3687 }
3688
3689 /* Tally up the load of all CPUs in the group */
3690 sum_avg_load_per_task = avg_load_per_task = 0;
3691 max_cpu_load = 0;
3692 min_cpu_load = ~0UL;
3693
3694 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3695 struct rq *rq = cpu_rq(i);
3696
3697 if (*sd_idle && rq->nr_running)
3698 *sd_idle = 0;
3699
3700 /* Bias balancing toward cpus of our domain */
3701 if (local_group) {
3702 if (idle_cpu(i) && !first_idle_cpu) {
3703 first_idle_cpu = 1;
3704 balance_cpu = i;
3705 }
3706
3707 load = target_load(i, load_idx);
3708 } else {
3709 load = source_load(i, load_idx);
3710 if (load > max_cpu_load)
3711 max_cpu_load = load;
3712 if (min_cpu_load > load)
3713 min_cpu_load = load;
3714 }
3715
3716 sgs->group_load += load;
3717 sgs->sum_nr_running += rq->nr_running;
3718 sgs->sum_weighted_load += weighted_cpuload(i);
3719
3720 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3721 }
3722
3723 /*
3724 * First idle cpu or the first cpu(busiest) in this sched group
3725 * is eligible for doing load balancing at this and above
3726 * domains. In the newly idle case, we will allow all the cpu's
3727 * to do the newly idle load balance.
3728 */
3729 if (idle != CPU_NEWLY_IDLE && local_group &&
3730 balance_cpu != this_cpu && balance) {
3731 *balance = 0;
3732 return;
3733 }
3734
3735 /* Adjust by relative CPU power of the group */
3736 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
3737
3738
3739 /*
3740 * Consider the group unbalanced when the imbalance is larger
3741 * than the average weight of two tasks.
3742 *
3743 * APZ: with cgroup the avg task weight can vary wildly and
3744 * might not be a suitable number - should we keep a
3745 * normalized nr_running number somewhere that negates
3746 * the hierarchy?
3747 */
3748 avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
3749 group->cpu_power;
3750
3751 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3752 sgs->group_imb = 1;
3753
3754 sgs->group_capacity =
3755 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
3756 }
3757
3758 /**
3759 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3760 * @sd: sched_domain whose statistics are to be updated.
3761 * @this_cpu: Cpu for which load balance is currently performed.
3762 * @idle: Idle status of this_cpu
3763 * @sd_idle: Idle status of the sched_domain containing group.
3764 * @cpus: Set of cpus considered for load balancing.
3765 * @balance: Should we balance.
3766 * @sds: variable to hold the statistics for this sched_domain.
3767 */
3768 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3769 enum cpu_idle_type idle, int *sd_idle,
3770 const struct cpumask *cpus, int *balance,
3771 struct sd_lb_stats *sds)
3772 {
3773 struct sched_domain *child = sd->child;
3774 struct sched_group *group = sd->groups;
3775 struct sg_lb_stats sgs;
3776 int load_idx, prefer_sibling = 0;
3777
3778 if (child && child->flags & SD_PREFER_SIBLING)
3779 prefer_sibling = 1;
3780
3781 init_sd_power_savings_stats(sd, sds, idle);
3782 load_idx = get_sd_load_idx(sd, idle);
3783
3784 do {
3785 int local_group;
3786
3787 local_group = cpumask_test_cpu(this_cpu,
3788 sched_group_cpus(group));
3789 memset(&sgs, 0, sizeof(sgs));
3790 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
3791 local_group, cpus, balance, &sgs);
3792
3793 if (local_group && balance && !(*balance))
3794 return;
3795
3796 sds->total_load += sgs.group_load;
3797 sds->total_pwr += group->cpu_power;
3798
3799 /*
3800 * In case the child domain prefers tasks go to siblings
3801 * first, lower the group capacity to one so that we'll try
3802 * and move all the excess tasks away.
3803 */
3804 if (prefer_sibling)
3805 sgs.group_capacity = min(sgs.group_capacity, 1UL);
3806
3807 if (local_group) {
3808 sds->this_load = sgs.avg_load;
3809 sds->this = group;
3810 sds->this_nr_running = sgs.sum_nr_running;
3811 sds->this_load_per_task = sgs.sum_weighted_load;
3812 } else if (sgs.avg_load > sds->max_load &&
3813 (sgs.sum_nr_running > sgs.group_capacity ||
3814 sgs.group_imb)) {
3815 sds->max_load = sgs.avg_load;
3816 sds->busiest = group;
3817 sds->busiest_nr_running = sgs.sum_nr_running;
3818 sds->busiest_load_per_task = sgs.sum_weighted_load;
3819 sds->group_imb = sgs.group_imb;
3820 }
3821
3822 update_sd_power_savings_stats(group, sds, local_group, &sgs);
3823 group = group->next;
3824 } while (group != sd->groups);
3825 }
3826
3827 /**
3828 * fix_small_imbalance - Calculate the minor imbalance that exists
3829 * amongst the groups of a sched_domain, during
3830 * load balancing.
3831 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3832 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3833 * @imbalance: Variable to store the imbalance.
3834 */
3835 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3836 int this_cpu, unsigned long *imbalance)
3837 {
3838 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3839 unsigned int imbn = 2;
3840
3841 if (sds->this_nr_running) {
3842 sds->this_load_per_task /= sds->this_nr_running;
3843 if (sds->busiest_load_per_task >
3844 sds->this_load_per_task)
3845 imbn = 1;
3846 } else
3847 sds->this_load_per_task =
3848 cpu_avg_load_per_task(this_cpu);
3849
3850 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3851 sds->busiest_load_per_task * imbn) {
3852 *imbalance = sds->busiest_load_per_task;
3853 return;
3854 }
3855
3856 /*
3857 * OK, we don't have enough imbalance to justify moving tasks,
3858 * however we may be able to increase total CPU power used by
3859 * moving them.
3860 */
3861
3862 pwr_now += sds->busiest->cpu_power *
3863 min(sds->busiest_load_per_task, sds->max_load);
3864 pwr_now += sds->this->cpu_power *
3865 min(sds->this_load_per_task, sds->this_load);
3866 pwr_now /= SCHED_LOAD_SCALE;
3867
3868 /* Amount of load we'd subtract */
3869 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3870 sds->busiest->cpu_power;
3871 if (sds->max_load > tmp)
3872 pwr_move += sds->busiest->cpu_power *
3873 min(sds->busiest_load_per_task, sds->max_load - tmp);
3874
3875 /* Amount of load we'd add */
3876 if (sds->max_load * sds->busiest->cpu_power <
3877 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3878 tmp = (sds->max_load * sds->busiest->cpu_power) /
3879 sds->this->cpu_power;
3880 else
3881 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3882 sds->this->cpu_power;
3883 pwr_move += sds->this->cpu_power *
3884 min(sds->this_load_per_task, sds->this_load + tmp);
3885 pwr_move /= SCHED_LOAD_SCALE;
3886
3887 /* Move if we gain throughput */
3888 if (pwr_move > pwr_now)
3889 *imbalance = sds->busiest_load_per_task;
3890 }
3891
3892 /**
3893 * calculate_imbalance - Calculate the amount of imbalance present within the
3894 * groups of a given sched_domain during load balance.
3895 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3896 * @this_cpu: Cpu for which currently load balance is being performed.
3897 * @imbalance: The variable to store the imbalance.
3898 */
3899 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3900 unsigned long *imbalance)
3901 {
3902 unsigned long max_pull;
3903 /*
3904 * In the presence of smp nice balancing, certain scenarios can have
3905 * max load less than avg load(as we skip the groups at or below
3906 * its cpu_power, while calculating max_load..)
3907 */
3908 if (sds->max_load < sds->avg_load) {
3909 *imbalance = 0;
3910 return fix_small_imbalance(sds, this_cpu, imbalance);
3911 }
3912
3913 /* Don't want to pull so many tasks that a group would go idle */
3914 max_pull = min(sds->max_load - sds->avg_load,
3915 sds->max_load - sds->busiest_load_per_task);
3916
3917 /* How much load to actually move to equalise the imbalance */
3918 *imbalance = min(max_pull * sds->busiest->cpu_power,
3919 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
3920 / SCHED_LOAD_SCALE;
3921
3922 /*
3923 * if *imbalance is less than the average load per runnable task
3924 * there is no gaurantee that any tasks will be moved so we'll have
3925 * a think about bumping its value to force at least one task to be
3926 * moved
3927 */
3928 if (*imbalance < sds->busiest_load_per_task)
3929 return fix_small_imbalance(sds, this_cpu, imbalance);
3930
3931 }
3932 /******* find_busiest_group() helpers end here *********************/
3933
3934 /**
3935 * find_busiest_group - Returns the busiest group within the sched_domain
3936 * if there is an imbalance. If there isn't an imbalance, and
3937 * the user has opted for power-savings, it returns a group whose
3938 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3939 * such a group exists.
3940 *
3941 * Also calculates the amount of weighted load which should be moved
3942 * to restore balance.
3943 *
3944 * @sd: The sched_domain whose busiest group is to be returned.
3945 * @this_cpu: The cpu for which load balancing is currently being performed.
3946 * @imbalance: Variable which stores amount of weighted load which should
3947 * be moved to restore balance/put a group to idle.
3948 * @idle: The idle status of this_cpu.
3949 * @sd_idle: The idleness of sd
3950 * @cpus: The set of CPUs under consideration for load-balancing.
3951 * @balance: Pointer to a variable indicating if this_cpu
3952 * is the appropriate cpu to perform load balancing at this_level.
3953 *
3954 * Returns: - the busiest group if imbalance exists.
3955 * - If no imbalance and user has opted for power-savings balance,
3956 * return the least loaded group whose CPUs can be
3957 * put to idle by rebalancing its tasks onto our group.
3958 */
3959 static struct sched_group *
3960 find_busiest_group(struct sched_domain *sd, int this_cpu,
3961 unsigned long *imbalance, enum cpu_idle_type idle,
3962 int *sd_idle, const struct cpumask *cpus, int *balance)
3963 {
3964 struct sd_lb_stats sds;
3965
3966 memset(&sds, 0, sizeof(sds));
3967
3968 /*
3969 * Compute the various statistics relavent for load balancing at
3970 * this level.
3971 */
3972 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3973 balance, &sds);
3974
3975 /* Cases where imbalance does not exist from POV of this_cpu */
3976 /* 1) this_cpu is not the appropriate cpu to perform load balancing
3977 * at this level.
3978 * 2) There is no busy sibling group to pull from.
3979 * 3) This group is the busiest group.
3980 * 4) This group is more busy than the avg busieness at this
3981 * sched_domain.
3982 * 5) The imbalance is within the specified limit.
3983 * 6) Any rebalance would lead to ping-pong
3984 */
3985 if (balance && !(*balance))
3986 goto ret;
3987
3988 if (!sds.busiest || sds.busiest_nr_running == 0)
3989 goto out_balanced;
3990
3991 if (sds.this_load >= sds.max_load)
3992 goto out_balanced;
3993
3994 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
3995
3996 if (sds.this_load >= sds.avg_load)
3997 goto out_balanced;
3998
3999 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
4000 goto out_balanced;
4001
4002 sds.busiest_load_per_task /= sds.busiest_nr_running;
4003 if (sds.group_imb)
4004 sds.busiest_load_per_task =
4005 min(sds.busiest_load_per_task, sds.avg_load);
4006
4007 /*
4008 * We're trying to get all the cpus to the average_load, so we don't
4009 * want to push ourselves above the average load, nor do we wish to
4010 * reduce the max loaded cpu below the average load, as either of these
4011 * actions would just result in more rebalancing later, and ping-pong
4012 * tasks around. Thus we look for the minimum possible imbalance.
4013 * Negative imbalances (*we* are more loaded than anyone else) will
4014 * be counted as no imbalance for these purposes -- we can't fix that
4015 * by pulling tasks to us. Be careful of negative numbers as they'll
4016 * appear as very large values with unsigned longs.
4017 */
4018 if (sds.max_load <= sds.busiest_load_per_task)
4019 goto out_balanced;
4020
4021 /* Looks like there is an imbalance. Compute it */
4022 calculate_imbalance(&sds, this_cpu, imbalance);
4023 return sds.busiest;
4024
4025 out_balanced:
4026 /*
4027 * There is no obvious imbalance. But check if we can do some balancing
4028 * to save power.
4029 */
4030 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4031 return sds.busiest;
4032 ret:
4033 *imbalance = 0;
4034 return NULL;
4035 }
4036
4037 /*
4038 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4039 */
4040 static struct rq *
4041 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
4042 unsigned long imbalance, const struct cpumask *cpus)
4043 {
4044 struct rq *busiest = NULL, *rq;
4045 unsigned long max_load = 0;
4046 int i;
4047
4048 for_each_cpu(i, sched_group_cpus(group)) {
4049 unsigned long power = power_of(i);
4050 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
4051 unsigned long wl;
4052
4053 if (!cpumask_test_cpu(i, cpus))
4054 continue;
4055
4056 rq = cpu_rq(i);
4057 wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
4058 wl /= power;
4059
4060 if (capacity && rq->nr_running == 1 && wl > imbalance)
4061 continue;
4062
4063 if (wl > max_load) {
4064 max_load = wl;
4065 busiest = rq;
4066 }
4067 }
4068
4069 return busiest;
4070 }
4071
4072 /*
4073 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4074 * so long as it is large enough.
4075 */
4076 #define MAX_PINNED_INTERVAL 512
4077
4078 /* Working cpumask for load_balance and load_balance_newidle. */
4079 static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4080
4081 /*
4082 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4083 * tasks if there is an imbalance.
4084 */
4085 static int load_balance(int this_cpu, struct rq *this_rq,
4086 struct sched_domain *sd, enum cpu_idle_type idle,
4087 int *balance)
4088 {
4089 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
4090 struct sched_group *group;
4091 unsigned long imbalance;
4092 struct rq *busiest;
4093 unsigned long flags;
4094 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4095
4096 cpumask_setall(cpus);
4097
4098 /*
4099 * When power savings policy is enabled for the parent domain, idle
4100 * sibling can pick up load irrespective of busy siblings. In this case,
4101 * let the state of idle sibling percolate up as CPU_IDLE, instead of
4102 * portraying it as CPU_NOT_IDLE.
4103 */
4104 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
4105 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4106 sd_idle = 1;
4107
4108 schedstat_inc(sd, lb_count[idle]);
4109
4110 redo:
4111 update_shares(sd);
4112 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
4113 cpus, balance);
4114
4115 if (*balance == 0)
4116 goto out_balanced;
4117
4118 if (!group) {
4119 schedstat_inc(sd, lb_nobusyg[idle]);
4120 goto out_balanced;
4121 }
4122
4123 busiest = find_busiest_queue(group, idle, imbalance, cpus);
4124 if (!busiest) {
4125 schedstat_inc(sd, lb_nobusyq[idle]);
4126 goto out_balanced;
4127 }
4128
4129 BUG_ON(busiest == this_rq);
4130
4131 schedstat_add(sd, lb_imbalance[idle], imbalance);
4132
4133 ld_moved = 0;
4134 if (busiest->nr_running > 1) {
4135 /*
4136 * Attempt to move tasks. If find_busiest_group has found
4137 * an imbalance but busiest->nr_running <= 1, the group is
4138 * still unbalanced. ld_moved simply stays zero, so it is
4139 * correctly treated as an imbalance.
4140 */
4141 local_irq_save(flags);
4142 double_rq_lock(this_rq, busiest);
4143 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4144 imbalance, sd, idle, &all_pinned);
4145 double_rq_unlock(this_rq, busiest);
4146 local_irq_restore(flags);
4147
4148 /*
4149 * some other cpu did the load balance for us.
4150 */
4151 if (ld_moved && this_cpu != smp_processor_id())
4152 resched_cpu(this_cpu);
4153
4154 /* All tasks on this runqueue were pinned by CPU affinity */
4155 if (unlikely(all_pinned)) {
4156 cpumask_clear_cpu(cpu_of(busiest), cpus);
4157 if (!cpumask_empty(cpus))
4158 goto redo;
4159 goto out_balanced;
4160 }
4161 }
4162
4163 if (!ld_moved) {
4164 schedstat_inc(sd, lb_failed[idle]);
4165 sd->nr_balance_failed++;
4166
4167 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
4168
4169 spin_lock_irqsave(&busiest->lock, flags);
4170
4171 /* don't kick the migration_thread, if the curr
4172 * task on busiest cpu can't be moved to this_cpu
4173 */
4174 if (!cpumask_test_cpu(this_cpu,
4175 &busiest->curr->cpus_allowed)) {
4176 spin_unlock_irqrestore(&busiest->lock, flags);
4177 all_pinned = 1;
4178 goto out_one_pinned;
4179 }
4180
4181 if (!busiest->active_balance) {
4182 busiest->active_balance = 1;
4183 busiest->push_cpu = this_cpu;
4184 active_balance = 1;
4185 }
4186 spin_unlock_irqrestore(&busiest->lock, flags);
4187 if (active_balance)
4188 wake_up_process(busiest->migration_thread);
4189
4190 /*
4191 * We've kicked active balancing, reset the failure
4192 * counter.
4193 */
4194 sd->nr_balance_failed = sd->cache_nice_tries+1;
4195 }
4196 } else
4197 sd->nr_balance_failed = 0;
4198
4199 if (likely(!active_balance)) {
4200 /* We were unbalanced, so reset the balancing interval */
4201 sd->balance_interval = sd->min_interval;
4202 } else {
4203 /*
4204 * If we've begun active balancing, start to back off. This
4205 * case may not be covered by the all_pinned logic if there
4206 * is only 1 task on the busy runqueue (because we don't call
4207 * move_tasks).
4208 */
4209 if (sd->balance_interval < sd->max_interval)
4210 sd->balance_interval *= 2;
4211 }
4212
4213 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4214 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4215 ld_moved = -1;
4216
4217 goto out;
4218
4219 out_balanced:
4220 schedstat_inc(sd, lb_balanced[idle]);
4221
4222 sd->nr_balance_failed = 0;
4223
4224 out_one_pinned:
4225 /* tune up the balancing interval */
4226 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4227 (sd->balance_interval < sd->max_interval))
4228 sd->balance_interval *= 2;
4229
4230 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4231 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4232 ld_moved = -1;
4233 else
4234 ld_moved = 0;
4235 out:
4236 if (ld_moved)
4237 update_shares(sd);
4238 return ld_moved;
4239 }
4240
4241 /*
4242 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4243 * tasks if there is an imbalance.
4244 *
4245 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
4246 * this_rq is locked.
4247 */
4248 static int
4249 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
4250 {
4251 struct sched_group *group;
4252 struct rq *busiest = NULL;
4253 unsigned long imbalance;
4254 int ld_moved = 0;
4255 int sd_idle = 0;
4256 int all_pinned = 0;
4257 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4258
4259 cpumask_setall(cpus);
4260
4261 /*
4262 * When power savings policy is enabled for the parent domain, idle
4263 * sibling can pick up load irrespective of busy siblings. In this case,
4264 * let the state of idle sibling percolate up as IDLE, instead of
4265 * portraying it as CPU_NOT_IDLE.
4266 */
4267 if (sd->flags & SD_SHARE_CPUPOWER &&
4268 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4269 sd_idle = 1;
4270
4271 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4272 redo:
4273 update_shares_locked(this_rq, sd);
4274 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4275 &sd_idle, cpus, NULL);
4276 if (!group) {
4277 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4278 goto out_balanced;
4279 }
4280
4281 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
4282 if (!busiest) {
4283 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4284 goto out_balanced;
4285 }
4286
4287 BUG_ON(busiest == this_rq);
4288
4289 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4290
4291 ld_moved = 0;
4292 if (busiest->nr_running > 1) {
4293 /* Attempt to move tasks */
4294 double_lock_balance(this_rq, busiest);
4295 /* this_rq->clock is already updated */
4296 update_rq_clock(busiest);
4297 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4298 imbalance, sd, CPU_NEWLY_IDLE,
4299 &all_pinned);
4300 double_unlock_balance(this_rq, busiest);
4301
4302 if (unlikely(all_pinned)) {
4303 cpumask_clear_cpu(cpu_of(busiest), cpus);
4304 if (!cpumask_empty(cpus))
4305 goto redo;
4306 }
4307 }
4308
4309 if (!ld_moved) {
4310 int active_balance = 0;
4311
4312 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4313 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4314 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4315 return -1;
4316
4317 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4318 return -1;
4319
4320 if (sd->nr_balance_failed++ < 2)
4321 return -1;
4322
4323 /*
4324 * The only task running in a non-idle cpu can be moved to this
4325 * cpu in an attempt to completely freeup the other CPU
4326 * package. The same method used to move task in load_balance()
4327 * have been extended for load_balance_newidle() to speedup
4328 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4329 *
4330 * The package power saving logic comes from
4331 * find_busiest_group(). If there are no imbalance, then
4332 * f_b_g() will return NULL. However when sched_mc={1,2} then
4333 * f_b_g() will select a group from which a running task may be
4334 * pulled to this cpu in order to make the other package idle.
4335 * If there is no opportunity to make a package idle and if
4336 * there are no imbalance, then f_b_g() will return NULL and no
4337 * action will be taken in load_balance_newidle().
4338 *
4339 * Under normal task pull operation due to imbalance, there
4340 * will be more than one task in the source run queue and
4341 * move_tasks() will succeed. ld_moved will be true and this
4342 * active balance code will not be triggered.
4343 */
4344
4345 /* Lock busiest in correct order while this_rq is held */
4346 double_lock_balance(this_rq, busiest);
4347
4348 /*
4349 * don't kick the migration_thread, if the curr
4350 * task on busiest cpu can't be moved to this_cpu
4351 */
4352 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4353 double_unlock_balance(this_rq, busiest);
4354 all_pinned = 1;
4355 return ld_moved;
4356 }
4357
4358 if (!busiest->active_balance) {
4359 busiest->active_balance = 1;
4360 busiest->push_cpu = this_cpu;
4361 active_balance = 1;
4362 }
4363
4364 double_unlock_balance(this_rq, busiest);
4365 /*
4366 * Should not call ttwu while holding a rq->lock
4367 */
4368 spin_unlock(&this_rq->lock);
4369 if (active_balance)
4370 wake_up_process(busiest->migration_thread);
4371 spin_lock(&this_rq->lock);
4372
4373 } else
4374 sd->nr_balance_failed = 0;
4375
4376 update_shares_locked(this_rq, sd);
4377 return ld_moved;
4378
4379 out_balanced:
4380 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4381 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4382 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4383 return -1;
4384 sd->nr_balance_failed = 0;
4385
4386 return 0;
4387 }
4388
4389 /*
4390 * idle_balance is called by schedule() if this_cpu is about to become
4391 * idle. Attempts to pull tasks from other CPUs.
4392 */
4393 static void idle_balance(int this_cpu, struct rq *this_rq)
4394 {
4395 struct sched_domain *sd;
4396 int pulled_task = 0;
4397 unsigned long next_balance = jiffies + HZ;
4398
4399 for_each_domain(this_cpu, sd) {
4400 unsigned long interval;
4401
4402 if (!(sd->flags & SD_LOAD_BALANCE))
4403 continue;
4404
4405 if (sd->flags & SD_BALANCE_NEWIDLE)
4406 /* If we've pulled tasks over stop searching: */
4407 pulled_task = load_balance_newidle(this_cpu, this_rq,
4408 sd);
4409
4410 interval = msecs_to_jiffies(sd->balance_interval);
4411 if (time_after(next_balance, sd->last_balance + interval))
4412 next_balance = sd->last_balance + interval;
4413 if (pulled_task)
4414 break;
4415 }
4416 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4417 /*
4418 * We are going idle. next_balance may be set based on
4419 * a busy processor. So reset next_balance.
4420 */
4421 this_rq->next_balance = next_balance;
4422 }
4423 }
4424
4425 /*
4426 * active_load_balance is run by migration threads. It pushes running tasks
4427 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4428 * running on each physical CPU where possible, and avoids physical /
4429 * logical imbalances.
4430 *
4431 * Called with busiest_rq locked.
4432 */
4433 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
4434 {
4435 int target_cpu = busiest_rq->push_cpu;
4436 struct sched_domain *sd;
4437 struct rq *target_rq;
4438
4439 /* Is there any task to move? */
4440 if (busiest_rq->nr_running <= 1)
4441 return;
4442
4443 target_rq = cpu_rq(target_cpu);
4444
4445 /*
4446 * This condition is "impossible", if it occurs
4447 * we need to fix it. Originally reported by
4448 * Bjorn Helgaas on a 128-cpu setup.
4449 */
4450 BUG_ON(busiest_rq == target_rq);
4451
4452 /* move a task from busiest_rq to target_rq */
4453 double_lock_balance(busiest_rq, target_rq);
4454 update_rq_clock(busiest_rq);
4455 update_rq_clock(target_rq);
4456
4457 /* Search for an sd spanning us and the target CPU. */
4458 for_each_domain(target_cpu, sd) {
4459 if ((sd->flags & SD_LOAD_BALANCE) &&
4460 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4461 break;
4462 }
4463
4464 if (likely(sd)) {
4465 schedstat_inc(sd, alb_count);
4466
4467 if (move_one_task(target_rq, target_cpu, busiest_rq,
4468 sd, CPU_IDLE))
4469 schedstat_inc(sd, alb_pushed);
4470 else
4471 schedstat_inc(sd, alb_failed);
4472 }
4473 double_unlock_balance(busiest_rq, target_rq);
4474 }
4475
4476 #ifdef CONFIG_NO_HZ
4477 static struct {
4478 atomic_t load_balancer;
4479 cpumask_var_t cpu_mask;
4480 cpumask_var_t ilb_grp_nohz_mask;
4481 } nohz ____cacheline_aligned = {
4482 .load_balancer = ATOMIC_INIT(-1),
4483 };
4484
4485 int get_nohz_load_balancer(void)
4486 {
4487 return atomic_read(&nohz.load_balancer);
4488 }
4489
4490 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4491 /**
4492 * lowest_flag_domain - Return lowest sched_domain containing flag.
4493 * @cpu: The cpu whose lowest level of sched domain is to
4494 * be returned.
4495 * @flag: The flag to check for the lowest sched_domain
4496 * for the given cpu.
4497 *
4498 * Returns the lowest sched_domain of a cpu which contains the given flag.
4499 */
4500 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4501 {
4502 struct sched_domain *sd;
4503
4504 for_each_domain(cpu, sd)
4505 if (sd && (sd->flags & flag))
4506 break;
4507
4508 return sd;
4509 }
4510
4511 /**
4512 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4513 * @cpu: The cpu whose domains we're iterating over.
4514 * @sd: variable holding the value of the power_savings_sd
4515 * for cpu.
4516 * @flag: The flag to filter the sched_domains to be iterated.
4517 *
4518 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4519 * set, starting from the lowest sched_domain to the highest.
4520 */
4521 #define for_each_flag_domain(cpu, sd, flag) \
4522 for (sd = lowest_flag_domain(cpu, flag); \
4523 (sd && (sd->flags & flag)); sd = sd->parent)
4524
4525 /**
4526 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4527 * @ilb_group: group to be checked for semi-idleness
4528 *
4529 * Returns: 1 if the group is semi-idle. 0 otherwise.
4530 *
4531 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4532 * and atleast one non-idle CPU. This helper function checks if the given
4533 * sched_group is semi-idle or not.
4534 */
4535 static inline int is_semi_idle_group(struct sched_group *ilb_group)
4536 {
4537 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4538 sched_group_cpus(ilb_group));
4539
4540 /*
4541 * A sched_group is semi-idle when it has atleast one busy cpu
4542 * and atleast one idle cpu.
4543 */
4544 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4545 return 0;
4546
4547 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4548 return 0;
4549
4550 return 1;
4551 }
4552 /**
4553 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4554 * @cpu: The cpu which is nominating a new idle_load_balancer.
4555 *
4556 * Returns: Returns the id of the idle load balancer if it exists,
4557 * Else, returns >= nr_cpu_ids.
4558 *
4559 * This algorithm picks the idle load balancer such that it belongs to a
4560 * semi-idle powersavings sched_domain. The idea is to try and avoid
4561 * completely idle packages/cores just for the purpose of idle load balancing
4562 * when there are other idle cpu's which are better suited for that job.
4563 */
4564 static int find_new_ilb(int cpu)
4565 {
4566 struct sched_domain *sd;
4567 struct sched_group *ilb_group;
4568
4569 /*
4570 * Have idle load balancer selection from semi-idle packages only
4571 * when power-aware load balancing is enabled
4572 */
4573 if (!(sched_smt_power_savings || sched_mc_power_savings))
4574 goto out_done;
4575
4576 /*
4577 * Optimize for the case when we have no idle CPUs or only one
4578 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4579 */
4580 if (cpumask_weight(nohz.cpu_mask) < 2)
4581 goto out_done;
4582
4583 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4584 ilb_group = sd->groups;
4585
4586 do {
4587 if (is_semi_idle_group(ilb_group))
4588 return cpumask_first(nohz.ilb_grp_nohz_mask);
4589
4590 ilb_group = ilb_group->next;
4591
4592 } while (ilb_group != sd->groups);
4593 }
4594
4595 out_done:
4596 return cpumask_first(nohz.cpu_mask);
4597 }
4598 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4599 static inline int find_new_ilb(int call_cpu)
4600 {
4601 return cpumask_first(nohz.cpu_mask);
4602 }
4603 #endif
4604
4605 /*
4606 * This routine will try to nominate the ilb (idle load balancing)
4607 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4608 * load balancing on behalf of all those cpus. If all the cpus in the system
4609 * go into this tickless mode, then there will be no ilb owner (as there is
4610 * no need for one) and all the cpus will sleep till the next wakeup event
4611 * arrives...
4612 *
4613 * For the ilb owner, tick is not stopped. And this tick will be used
4614 * for idle load balancing. ilb owner will still be part of
4615 * nohz.cpu_mask..
4616 *
4617 * While stopping the tick, this cpu will become the ilb owner if there
4618 * is no other owner. And will be the owner till that cpu becomes busy
4619 * or if all cpus in the system stop their ticks at which point
4620 * there is no need for ilb owner.
4621 *
4622 * When the ilb owner becomes busy, it nominates another owner, during the
4623 * next busy scheduler_tick()
4624 */
4625 int select_nohz_load_balancer(int stop_tick)
4626 {
4627 int cpu = smp_processor_id();
4628
4629 if (stop_tick) {
4630 cpu_rq(cpu)->in_nohz_recently = 1;
4631
4632 if (!cpu_active(cpu)) {
4633 if (atomic_read(&nohz.load_balancer) != cpu)
4634 return 0;
4635
4636 /*
4637 * If we are going offline and still the leader,
4638 * give up!
4639 */
4640 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4641 BUG();
4642
4643 return 0;
4644 }
4645
4646 cpumask_set_cpu(cpu, nohz.cpu_mask);
4647
4648 /* time for ilb owner also to sleep */
4649 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4650 if (atomic_read(&nohz.load_balancer) == cpu)
4651 atomic_set(&nohz.load_balancer, -1);
4652 return 0;
4653 }
4654
4655 if (atomic_read(&nohz.load_balancer) == -1) {
4656 /* make me the ilb owner */
4657 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4658 return 1;
4659 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4660 int new_ilb;
4661
4662 if (!(sched_smt_power_savings ||
4663 sched_mc_power_savings))
4664 return 1;
4665 /*
4666 * Check to see if there is a more power-efficient
4667 * ilb.
4668 */
4669 new_ilb = find_new_ilb(cpu);
4670 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4671 atomic_set(&nohz.load_balancer, -1);
4672 resched_cpu(new_ilb);
4673 return 0;
4674 }
4675 return 1;
4676 }
4677 } else {
4678 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4679 return 0;
4680
4681 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4682
4683 if (atomic_read(&nohz.load_balancer) == cpu)
4684 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4685 BUG();
4686 }
4687 return 0;
4688 }
4689 #endif
4690
4691 static DEFINE_SPINLOCK(balancing);
4692
4693 /*
4694 * It checks each scheduling domain to see if it is due to be balanced,
4695 * and initiates a balancing operation if so.
4696 *
4697 * Balancing parameters are set up in arch_init_sched_domains.
4698 */
4699 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4700 {
4701 int balance = 1;
4702 struct rq *rq = cpu_rq(cpu);
4703 unsigned long interval;
4704 struct sched_domain *sd;
4705 /* Earliest time when we have to do rebalance again */
4706 unsigned long next_balance = jiffies + 60*HZ;
4707 int update_next_balance = 0;
4708 int need_serialize;
4709
4710 for_each_domain(cpu, sd) {
4711 if (!(sd->flags & SD_LOAD_BALANCE))
4712 continue;
4713
4714 interval = sd->balance_interval;
4715 if (idle != CPU_IDLE)
4716 interval *= sd->busy_factor;
4717
4718 /* scale ms to jiffies */
4719 interval = msecs_to_jiffies(interval);
4720 if (unlikely(!interval))
4721 interval = 1;
4722 if (interval > HZ*NR_CPUS/10)
4723 interval = HZ*NR_CPUS/10;
4724
4725 need_serialize = sd->flags & SD_SERIALIZE;
4726
4727 if (need_serialize) {
4728 if (!spin_trylock(&balancing))
4729 goto out;
4730 }
4731
4732 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4733 if (load_balance(cpu, rq, sd, idle, &balance)) {
4734 /*
4735 * We've pulled tasks over so either we're no
4736 * longer idle, or one of our SMT siblings is
4737 * not idle.
4738 */
4739 idle = CPU_NOT_IDLE;
4740 }
4741 sd->last_balance = jiffies;
4742 }
4743 if (need_serialize)
4744 spin_unlock(&balancing);
4745 out:
4746 if (time_after(next_balance, sd->last_balance + interval)) {
4747 next_balance = sd->last_balance + interval;
4748 update_next_balance = 1;
4749 }
4750
4751 /*
4752 * Stop the load balance at this level. There is another
4753 * CPU in our sched group which is doing load balancing more
4754 * actively.
4755 */
4756 if (!balance)
4757 break;
4758 }
4759
4760 /*
4761 * next_balance will be updated only when there is a need.
4762 * When the cpu is attached to null domain for ex, it will not be
4763 * updated.
4764 */
4765 if (likely(update_next_balance))
4766 rq->next_balance = next_balance;
4767 }
4768
4769 /*
4770 * run_rebalance_domains is triggered when needed from the scheduler tick.
4771 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4772 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4773 */
4774 static void run_rebalance_domains(struct softirq_action *h)
4775 {
4776 int this_cpu = smp_processor_id();
4777 struct rq *this_rq = cpu_rq(this_cpu);
4778 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4779 CPU_IDLE : CPU_NOT_IDLE;
4780
4781 rebalance_domains(this_cpu, idle);
4782
4783 #ifdef CONFIG_NO_HZ
4784 /*
4785 * If this cpu is the owner for idle load balancing, then do the
4786 * balancing on behalf of the other idle cpus whose ticks are
4787 * stopped.
4788 */
4789 if (this_rq->idle_at_tick &&
4790 atomic_read(&nohz.load_balancer) == this_cpu) {
4791 struct rq *rq;
4792 int balance_cpu;
4793
4794 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4795 if (balance_cpu == this_cpu)
4796 continue;
4797
4798 /*
4799 * If this cpu gets work to do, stop the load balancing
4800 * work being done for other cpus. Next load
4801 * balancing owner will pick it up.
4802 */
4803 if (need_resched())
4804 break;
4805
4806 rebalance_domains(balance_cpu, CPU_IDLE);
4807
4808 rq = cpu_rq(balance_cpu);
4809 if (time_after(this_rq->next_balance, rq->next_balance))
4810 this_rq->next_balance = rq->next_balance;
4811 }
4812 }
4813 #endif
4814 }
4815
4816 static inline int on_null_domain(int cpu)
4817 {
4818 return !rcu_dereference(cpu_rq(cpu)->sd);
4819 }
4820
4821 /*
4822 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4823 *
4824 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4825 * idle load balancing owner or decide to stop the periodic load balancing,
4826 * if the whole system is idle.
4827 */
4828 static inline void trigger_load_balance(struct rq *rq, int cpu)
4829 {
4830 #ifdef CONFIG_NO_HZ
4831 /*
4832 * If we were in the nohz mode recently and busy at the current
4833 * scheduler tick, then check if we need to nominate new idle
4834 * load balancer.
4835 */
4836 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4837 rq->in_nohz_recently = 0;
4838
4839 if (atomic_read(&nohz.load_balancer) == cpu) {
4840 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4841 atomic_set(&nohz.load_balancer, -1);
4842 }
4843
4844 if (atomic_read(&nohz.load_balancer) == -1) {
4845 int ilb = find_new_ilb(cpu);
4846
4847 if (ilb < nr_cpu_ids)
4848 resched_cpu(ilb);
4849 }
4850 }
4851
4852 /*
4853 * If this cpu is idle and doing idle load balancing for all the
4854 * cpus with ticks stopped, is it time for that to stop?
4855 */
4856 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4857 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4858 resched_cpu(cpu);
4859 return;
4860 }
4861
4862 /*
4863 * If this cpu is idle and the idle load balancing is done by
4864 * someone else, then no need raise the SCHED_SOFTIRQ
4865 */
4866 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4867 cpumask_test_cpu(cpu, nohz.cpu_mask))
4868 return;
4869 #endif
4870 /* Don't need to rebalance while attached to NULL domain */
4871 if (time_after_eq(jiffies, rq->next_balance) &&
4872 likely(!on_null_domain(cpu)))
4873 raise_softirq(SCHED_SOFTIRQ);
4874 }
4875
4876 #else /* CONFIG_SMP */
4877
4878 /*
4879 * on UP we do not need to balance between CPUs:
4880 */
4881 static inline void idle_balance(int cpu, struct rq *rq)
4882 {
4883 }
4884
4885 #endif
4886
4887 DEFINE_PER_CPU(struct kernel_stat, kstat);
4888
4889 EXPORT_PER_CPU_SYMBOL(kstat);
4890
4891 /*
4892 * Return any ns on the sched_clock that have not yet been accounted in
4893 * @p in case that task is currently running.
4894 *
4895 * Called with task_rq_lock() held on @rq.
4896 */
4897 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4898 {
4899 u64 ns = 0;
4900
4901 if (task_current(rq, p)) {
4902 update_rq_clock(rq);
4903 ns = rq->clock - p->se.exec_start;
4904 if ((s64)ns < 0)
4905 ns = 0;
4906 }
4907
4908 return ns;
4909 }
4910
4911 unsigned long long task_delta_exec(struct task_struct *p)
4912 {
4913 unsigned long flags;
4914 struct rq *rq;
4915 u64 ns = 0;
4916
4917 rq = task_rq_lock(p, &flags);
4918 ns = do_task_delta_exec(p, rq);
4919 task_rq_unlock(rq, &flags);
4920
4921 return ns;
4922 }
4923
4924 /*
4925 * Return accounted runtime for the task.
4926 * In case the task is currently running, return the runtime plus current's
4927 * pending runtime that have not been accounted yet.
4928 */
4929 unsigned long long task_sched_runtime(struct task_struct *p)
4930 {
4931 unsigned long flags;
4932 struct rq *rq;
4933 u64 ns = 0;
4934
4935 rq = task_rq_lock(p, &flags);
4936 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4937 task_rq_unlock(rq, &flags);
4938
4939 return ns;
4940 }
4941
4942 /*
4943 * Return sum_exec_runtime for the thread group.
4944 * In case the task is currently running, return the sum plus current's
4945 * pending runtime that have not been accounted yet.
4946 *
4947 * Note that the thread group might have other running tasks as well,
4948 * so the return value not includes other pending runtime that other
4949 * running tasks might have.
4950 */
4951 unsigned long long thread_group_sched_runtime(struct task_struct *p)
4952 {
4953 struct task_cputime totals;
4954 unsigned long flags;
4955 struct rq *rq;
4956 u64 ns;
4957
4958 rq = task_rq_lock(p, &flags);
4959 thread_group_cputime(p, &totals);
4960 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
4961 task_rq_unlock(rq, &flags);
4962
4963 return ns;
4964 }
4965
4966 /*
4967 * Account user cpu time to a process.
4968 * @p: the process that the cpu time gets accounted to
4969 * @cputime: the cpu time spent in user space since the last update
4970 * @cputime_scaled: cputime scaled by cpu frequency
4971 */
4972 void account_user_time(struct task_struct *p, cputime_t cputime,
4973 cputime_t cputime_scaled)
4974 {
4975 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4976 cputime64_t tmp;
4977
4978 /* Add user time to process. */
4979 p->utime = cputime_add(p->utime, cputime);
4980 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4981 account_group_user_time(p, cputime);
4982
4983 /* Add user time to cpustat. */
4984 tmp = cputime_to_cputime64(cputime);
4985 if (TASK_NICE(p) > 0)
4986 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4987 else
4988 cpustat->user = cputime64_add(cpustat->user, tmp);
4989
4990 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
4991 /* Account for user time used */
4992 acct_update_integrals(p);
4993 }
4994
4995 /*
4996 * Account guest cpu time to a process.
4997 * @p: the process that the cpu time gets accounted to
4998 * @cputime: the cpu time spent in virtual machine since the last update
4999 * @cputime_scaled: cputime scaled by cpu frequency
5000 */
5001 static void account_guest_time(struct task_struct *p, cputime_t cputime,
5002 cputime_t cputime_scaled)
5003 {
5004 cputime64_t tmp;
5005 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5006
5007 tmp = cputime_to_cputime64(cputime);
5008
5009 /* Add guest time to process. */
5010 p->utime = cputime_add(p->utime, cputime);
5011 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5012 account_group_user_time(p, cputime);
5013 p->gtime = cputime_add(p->gtime, cputime);
5014
5015 /* Add guest time to cpustat. */
5016 cpustat->user = cputime64_add(cpustat->user, tmp);
5017 cpustat->guest = cputime64_add(cpustat->guest, tmp);
5018 }
5019
5020 /*
5021 * Account system cpu time to a process.
5022 * @p: the process that the cpu time gets accounted to
5023 * @hardirq_offset: the offset to subtract from hardirq_count()
5024 * @cputime: the cpu time spent in kernel space since the last update
5025 * @cputime_scaled: cputime scaled by cpu frequency
5026 */
5027 void account_system_time(struct task_struct *p, int hardirq_offset,
5028 cputime_t cputime, cputime_t cputime_scaled)
5029 {
5030 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5031 cputime64_t tmp;
5032
5033 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
5034 account_guest_time(p, cputime, cputime_scaled);
5035 return;
5036 }
5037
5038 /* Add system time to process. */
5039 p->stime = cputime_add(p->stime, cputime);
5040 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
5041 account_group_system_time(p, cputime);
5042
5043 /* Add system time to cpustat. */
5044 tmp = cputime_to_cputime64(cputime);
5045 if (hardirq_count() - hardirq_offset)
5046 cpustat->irq = cputime64_add(cpustat->irq, tmp);
5047 else if (softirq_count())
5048 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
5049 else
5050 cpustat->system = cputime64_add(cpustat->system, tmp);
5051
5052 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
5053
5054 /* Account for system time used */
5055 acct_update_integrals(p);
5056 }
5057
5058 /*
5059 * Account for involuntary wait time.
5060 * @steal: the cpu time spent in involuntary wait
5061 */
5062 void account_steal_time(cputime_t cputime)
5063 {
5064 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5065 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5066
5067 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
5068 }
5069
5070 /*
5071 * Account for idle time.
5072 * @cputime: the cpu time spent in idle wait
5073 */
5074 void account_idle_time(cputime_t cputime)
5075 {
5076 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5077 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5078 struct rq *rq = this_rq();
5079
5080 if (atomic_read(&rq->nr_iowait) > 0)
5081 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
5082 else
5083 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
5084 }
5085
5086 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
5087
5088 /*
5089 * Account a single tick of cpu time.
5090 * @p: the process that the cpu time gets accounted to
5091 * @user_tick: indicates if the tick is a user or a system tick
5092 */
5093 void account_process_tick(struct task_struct *p, int user_tick)
5094 {
5095 cputime_t one_jiffy = jiffies_to_cputime(1);
5096 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
5097 struct rq *rq = this_rq();
5098
5099 if (user_tick)
5100 account_user_time(p, one_jiffy, one_jiffy_scaled);
5101 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
5102 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
5103 one_jiffy_scaled);
5104 else
5105 account_idle_time(one_jiffy);
5106 }
5107
5108 /*
5109 * Account multiple ticks of steal time.
5110 * @p: the process from which the cpu time has been stolen
5111 * @ticks: number of stolen ticks
5112 */
5113 void account_steal_ticks(unsigned long ticks)
5114 {
5115 account_steal_time(jiffies_to_cputime(ticks));
5116 }
5117
5118 /*
5119 * Account multiple ticks of idle time.
5120 * @ticks: number of stolen ticks
5121 */
5122 void account_idle_ticks(unsigned long ticks)
5123 {
5124 account_idle_time(jiffies_to_cputime(ticks));
5125 }
5126
5127 #endif
5128
5129 /*
5130 * Use precise platform statistics if available:
5131 */
5132 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
5133 cputime_t task_utime(struct task_struct *p)
5134 {
5135 return p->utime;
5136 }
5137
5138 cputime_t task_stime(struct task_struct *p)
5139 {
5140 return p->stime;
5141 }
5142 #else
5143 cputime_t task_utime(struct task_struct *p)
5144 {
5145 clock_t utime = cputime_to_clock_t(p->utime),
5146 total = utime + cputime_to_clock_t(p->stime);
5147 u64 temp;
5148
5149 /*
5150 * Use CFS's precise accounting:
5151 */
5152 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
5153
5154 if (total) {
5155 temp *= utime;
5156 do_div(temp, total);
5157 }
5158 utime = (clock_t)temp;
5159
5160 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
5161 return p->prev_utime;
5162 }
5163
5164 cputime_t task_stime(struct task_struct *p)
5165 {
5166 clock_t stime;
5167
5168 /*
5169 * Use CFS's precise accounting. (we subtract utime from
5170 * the total, to make sure the total observed by userspace
5171 * grows monotonically - apps rely on that):
5172 */
5173 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
5174 cputime_to_clock_t(task_utime(p));
5175
5176 if (stime >= 0)
5177 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
5178
5179 return p->prev_stime;
5180 }
5181 #endif
5182
5183 inline cputime_t task_gtime(struct task_struct *p)
5184 {
5185 return p->gtime;
5186 }
5187
5188 /*
5189 * This function gets called by the timer code, with HZ frequency.
5190 * We call it with interrupts disabled.
5191 *
5192 * It also gets called by the fork code, when changing the parent's
5193 * timeslices.
5194 */
5195 void scheduler_tick(void)
5196 {
5197 int cpu = smp_processor_id();
5198 struct rq *rq = cpu_rq(cpu);
5199 struct task_struct *curr = rq->curr;
5200
5201 sched_clock_tick();
5202
5203 spin_lock(&rq->lock);
5204 update_rq_clock(rq);
5205 update_cpu_load(rq);
5206 curr->sched_class->task_tick(rq, curr, 0);
5207 spin_unlock(&rq->lock);
5208
5209 perf_event_task_tick(curr, cpu);
5210
5211 #ifdef CONFIG_SMP
5212 rq->idle_at_tick = idle_cpu(cpu);
5213 trigger_load_balance(rq, cpu);
5214 #endif
5215 }
5216
5217 notrace unsigned long get_parent_ip(unsigned long addr)
5218 {
5219 if (in_lock_functions(addr)) {
5220 addr = CALLER_ADDR2;
5221 if (in_lock_functions(addr))
5222 addr = CALLER_ADDR3;
5223 }
5224 return addr;
5225 }
5226
5227 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5228 defined(CONFIG_PREEMPT_TRACER))
5229
5230 void __kprobes add_preempt_count(int val)
5231 {
5232 #ifdef CONFIG_DEBUG_PREEMPT
5233 /*
5234 * Underflow?
5235 */
5236 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5237 return;
5238 #endif
5239 preempt_count() += val;
5240 #ifdef CONFIG_DEBUG_PREEMPT
5241 /*
5242 * Spinlock count overflowing soon?
5243 */
5244 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5245 PREEMPT_MASK - 10);
5246 #endif
5247 if (preempt_count() == val)
5248 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5249 }
5250 EXPORT_SYMBOL(add_preempt_count);
5251
5252 void __kprobes sub_preempt_count(int val)
5253 {
5254 #ifdef CONFIG_DEBUG_PREEMPT
5255 /*
5256 * Underflow?
5257 */
5258 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5259 return;
5260 /*
5261 * Is the spinlock portion underflowing?
5262 */
5263 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5264 !(preempt_count() & PREEMPT_MASK)))
5265 return;
5266 #endif
5267
5268 if (preempt_count() == val)
5269 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5270 preempt_count() -= val;
5271 }
5272 EXPORT_SYMBOL(sub_preempt_count);
5273
5274 #endif
5275
5276 /*
5277 * Print scheduling while atomic bug:
5278 */
5279 static noinline void __schedule_bug(struct task_struct *prev)
5280 {
5281 struct pt_regs *regs = get_irq_regs();
5282
5283 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5284 prev->comm, prev->pid, preempt_count());
5285
5286 debug_show_held_locks(prev);
5287 print_modules();
5288 if (irqs_disabled())
5289 print_irqtrace_events(prev);
5290
5291 if (regs)
5292 show_regs(regs);
5293 else
5294 dump_stack();
5295 }
5296
5297 /*
5298 * Various schedule()-time debugging checks and statistics:
5299 */
5300 static inline void schedule_debug(struct task_struct *prev)
5301 {
5302 /*
5303 * Test if we are atomic. Since do_exit() needs to call into
5304 * schedule() atomically, we ignore that path for now.
5305 * Otherwise, whine if we are scheduling when we should not be.
5306 */
5307 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
5308 __schedule_bug(prev);
5309
5310 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5311
5312 schedstat_inc(this_rq(), sched_count);
5313 #ifdef CONFIG_SCHEDSTATS
5314 if (unlikely(prev->lock_depth >= 0)) {
5315 schedstat_inc(this_rq(), bkl_count);
5316 schedstat_inc(prev, sched_info.bkl_count);
5317 }
5318 #endif
5319 }
5320
5321 static void put_prev_task(struct rq *rq, struct task_struct *p)
5322 {
5323 u64 runtime = p->se.sum_exec_runtime - p->se.prev_sum_exec_runtime;
5324
5325 update_avg(&p->se.avg_running, runtime);
5326
5327 if (p->state == TASK_RUNNING) {
5328 /*
5329 * In order to avoid avg_overlap growing stale when we are
5330 * indeed overlapping and hence not getting put to sleep, grow
5331 * the avg_overlap on preemption.
5332 *
5333 * We use the average preemption runtime because that
5334 * correlates to the amount of cache footprint a task can
5335 * build up.
5336 */
5337 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5338 update_avg(&p->se.avg_overlap, runtime);
5339 } else {
5340 update_avg(&p->se.avg_running, 0);
5341 }
5342 p->sched_class->put_prev_task(rq, p);
5343 }
5344
5345 /*
5346 * Pick up the highest-prio task:
5347 */
5348 static inline struct task_struct *
5349 pick_next_task(struct rq *rq)
5350 {
5351 const struct sched_class *class;
5352 struct task_struct *p;
5353
5354 /*
5355 * Optimization: we know that if all tasks are in
5356 * the fair class we can call that function directly:
5357 */
5358 if (likely(rq->nr_running == rq->cfs.nr_running)) {
5359 p = fair_sched_class.pick_next_task(rq);
5360 if (likely(p))
5361 return p;
5362 }
5363
5364 class = sched_class_highest;
5365 for ( ; ; ) {
5366 p = class->pick_next_task(rq);
5367 if (p)
5368 return p;
5369 /*
5370 * Will never be NULL as the idle class always
5371 * returns a non-NULL p:
5372 */
5373 class = class->next;
5374 }
5375 }
5376
5377 /*
5378 * schedule() is the main scheduler function.
5379 */
5380 asmlinkage void __sched schedule(void)
5381 {
5382 struct task_struct *prev, *next;
5383 unsigned long *switch_count;
5384 struct rq *rq;
5385 int cpu;
5386
5387 need_resched:
5388 preempt_disable();
5389 cpu = smp_processor_id();
5390 rq = cpu_rq(cpu);
5391 rcu_sched_qs(cpu);
5392 prev = rq->curr;
5393 switch_count = &prev->nivcsw;
5394
5395 release_kernel_lock(prev);
5396 need_resched_nonpreemptible:
5397
5398 schedule_debug(prev);
5399
5400 if (sched_feat(HRTICK))
5401 hrtick_clear(rq);
5402
5403 spin_lock_irq(&rq->lock);
5404 update_rq_clock(rq);
5405 clear_tsk_need_resched(prev);
5406
5407 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5408 if (unlikely(signal_pending_state(prev->state, prev)))
5409 prev->state = TASK_RUNNING;
5410 else
5411 deactivate_task(rq, prev, 1);
5412 switch_count = &prev->nvcsw;
5413 }
5414
5415 pre_schedule(rq, prev);
5416
5417 if (unlikely(!rq->nr_running))
5418 idle_balance(cpu, rq);
5419
5420 put_prev_task(rq, prev);
5421 next = pick_next_task(rq);
5422
5423 if (likely(prev != next)) {
5424 sched_info_switch(prev, next);
5425 perf_event_task_sched_out(prev, next, cpu);
5426
5427 rq->nr_switches++;
5428 rq->curr = next;
5429 ++*switch_count;
5430
5431 context_switch(rq, prev, next); /* unlocks the rq */
5432 /*
5433 * the context switch might have flipped the stack from under
5434 * us, hence refresh the local variables.
5435 */
5436 cpu = smp_processor_id();
5437 rq = cpu_rq(cpu);
5438 } else
5439 spin_unlock_irq(&rq->lock);
5440
5441 post_schedule(rq);
5442
5443 if (unlikely(reacquire_kernel_lock(current) < 0))
5444 goto need_resched_nonpreemptible;
5445
5446 preempt_enable_no_resched();
5447 if (need_resched())
5448 goto need_resched;
5449 }
5450 EXPORT_SYMBOL(schedule);
5451
5452 #ifdef CONFIG_SMP
5453 /*
5454 * Look out! "owner" is an entirely speculative pointer
5455 * access and not reliable.
5456 */
5457 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5458 {
5459 unsigned int cpu;
5460 struct rq *rq;
5461
5462 if (!sched_feat(OWNER_SPIN))
5463 return 0;
5464
5465 #ifdef CONFIG_DEBUG_PAGEALLOC
5466 /*
5467 * Need to access the cpu field knowing that
5468 * DEBUG_PAGEALLOC could have unmapped it if
5469 * the mutex owner just released it and exited.
5470 */
5471 if (probe_kernel_address(&owner->cpu, cpu))
5472 goto out;
5473 #else
5474 cpu = owner->cpu;
5475 #endif
5476
5477 /*
5478 * Even if the access succeeded (likely case),
5479 * the cpu field may no longer be valid.
5480 */
5481 if (cpu >= nr_cpumask_bits)
5482 goto out;
5483
5484 /*
5485 * We need to validate that we can do a
5486 * get_cpu() and that we have the percpu area.
5487 */
5488 if (!cpu_online(cpu))
5489 goto out;
5490
5491 rq = cpu_rq(cpu);
5492
5493 for (;;) {
5494 /*
5495 * Owner changed, break to re-assess state.
5496 */
5497 if (lock->owner != owner)
5498 break;
5499
5500 /*
5501 * Is that owner really running on that cpu?
5502 */
5503 if (task_thread_info(rq->curr) != owner || need_resched())
5504 return 0;
5505
5506 cpu_relax();
5507 }
5508 out:
5509 return 1;
5510 }
5511 #endif
5512
5513 #ifdef CONFIG_PREEMPT
5514 /*
5515 * this is the entry point to schedule() from in-kernel preemption
5516 * off of preempt_enable. Kernel preemptions off return from interrupt
5517 * occur there and call schedule directly.
5518 */
5519 asmlinkage void __sched preempt_schedule(void)
5520 {
5521 struct thread_info *ti = current_thread_info();
5522
5523 /*
5524 * If there is a non-zero preempt_count or interrupts are disabled,
5525 * we do not want to preempt the current task. Just return..
5526 */
5527 if (likely(ti->preempt_count || irqs_disabled()))
5528 return;
5529
5530 do {
5531 add_preempt_count(PREEMPT_ACTIVE);
5532 schedule();
5533 sub_preempt_count(PREEMPT_ACTIVE);
5534
5535 /*
5536 * Check again in case we missed a preemption opportunity
5537 * between schedule and now.
5538 */
5539 barrier();
5540 } while (need_resched());
5541 }
5542 EXPORT_SYMBOL(preempt_schedule);
5543
5544 /*
5545 * this is the entry point to schedule() from kernel preemption
5546 * off of irq context.
5547 * Note, that this is called and return with irqs disabled. This will
5548 * protect us against recursive calling from irq.
5549 */
5550 asmlinkage void __sched preempt_schedule_irq(void)
5551 {
5552 struct thread_info *ti = current_thread_info();
5553
5554 /* Catch callers which need to be fixed */
5555 BUG_ON(ti->preempt_count || !irqs_disabled());
5556
5557 do {
5558 add_preempt_count(PREEMPT_ACTIVE);
5559 local_irq_enable();
5560 schedule();
5561 local_irq_disable();
5562 sub_preempt_count(PREEMPT_ACTIVE);
5563
5564 /*
5565 * Check again in case we missed a preemption opportunity
5566 * between schedule and now.
5567 */
5568 barrier();
5569 } while (need_resched());
5570 }
5571
5572 #endif /* CONFIG_PREEMPT */
5573
5574 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
5575 void *key)
5576 {
5577 return try_to_wake_up(curr->private, mode, wake_flags);
5578 }
5579 EXPORT_SYMBOL(default_wake_function);
5580
5581 /*
5582 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5583 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
5584 * number) then we wake all the non-exclusive tasks and one exclusive task.
5585 *
5586 * There are circumstances in which we can try to wake a task which has already
5587 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
5588 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5589 */
5590 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
5591 int nr_exclusive, int wake_flags, void *key)
5592 {
5593 wait_queue_t *curr, *next;
5594
5595 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5596 unsigned flags = curr->flags;
5597
5598 if (curr->func(curr, mode, wake_flags, key) &&
5599 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
5600 break;
5601 }
5602 }
5603
5604 /**
5605 * __wake_up - wake up threads blocked on a waitqueue.
5606 * @q: the waitqueue
5607 * @mode: which threads
5608 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5609 * @key: is directly passed to the wakeup function
5610 *
5611 * It may be assumed that this function implies a write memory barrier before
5612 * changing the task state if and only if any tasks are woken up.
5613 */
5614 void __wake_up(wait_queue_head_t *q, unsigned int mode,
5615 int nr_exclusive, void *key)
5616 {
5617 unsigned long flags;
5618
5619 spin_lock_irqsave(&q->lock, flags);
5620 __wake_up_common(q, mode, nr_exclusive, 0, key);
5621 spin_unlock_irqrestore(&q->lock, flags);
5622 }
5623 EXPORT_SYMBOL(__wake_up);
5624
5625 /*
5626 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5627 */
5628 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
5629 {
5630 __wake_up_common(q, mode, 1, 0, NULL);
5631 }
5632
5633 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5634 {
5635 __wake_up_common(q, mode, 1, 0, key);
5636 }
5637
5638 /**
5639 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
5640 * @q: the waitqueue
5641 * @mode: which threads
5642 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5643 * @key: opaque value to be passed to wakeup targets
5644 *
5645 * The sync wakeup differs that the waker knows that it will schedule
5646 * away soon, so while the target thread will be woken up, it will not
5647 * be migrated to another CPU - ie. the two threads are 'synchronized'
5648 * with each other. This can prevent needless bouncing between CPUs.
5649 *
5650 * On UP it can prevent extra preemption.
5651 *
5652 * It may be assumed that this function implies a write memory barrier before
5653 * changing the task state if and only if any tasks are woken up.
5654 */
5655 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5656 int nr_exclusive, void *key)
5657 {
5658 unsigned long flags;
5659 int wake_flags = WF_SYNC;
5660
5661 if (unlikely(!q))
5662 return;
5663
5664 if (unlikely(!nr_exclusive))
5665 wake_flags = 0;
5666
5667 spin_lock_irqsave(&q->lock, flags);
5668 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
5669 spin_unlock_irqrestore(&q->lock, flags);
5670 }
5671 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5672
5673 /*
5674 * __wake_up_sync - see __wake_up_sync_key()
5675 */
5676 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5677 {
5678 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5679 }
5680 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5681
5682 /**
5683 * complete: - signals a single thread waiting on this completion
5684 * @x: holds the state of this particular completion
5685 *
5686 * This will wake up a single thread waiting on this completion. Threads will be
5687 * awakened in the same order in which they were queued.
5688 *
5689 * See also complete_all(), wait_for_completion() and related routines.
5690 *
5691 * It may be assumed that this function implies a write memory barrier before
5692 * changing the task state if and only if any tasks are woken up.
5693 */
5694 void complete(struct completion *x)
5695 {
5696 unsigned long flags;
5697
5698 spin_lock_irqsave(&x->wait.lock, flags);
5699 x->done++;
5700 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
5701 spin_unlock_irqrestore(&x->wait.lock, flags);
5702 }
5703 EXPORT_SYMBOL(complete);
5704
5705 /**
5706 * complete_all: - signals all threads waiting on this completion
5707 * @x: holds the state of this particular completion
5708 *
5709 * This will wake up all threads waiting on this particular completion event.
5710 *
5711 * It may be assumed that this function implies a write memory barrier before
5712 * changing the task state if and only if any tasks are woken up.
5713 */
5714 void complete_all(struct completion *x)
5715 {
5716 unsigned long flags;
5717
5718 spin_lock_irqsave(&x->wait.lock, flags);
5719 x->done += UINT_MAX/2;
5720 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
5721 spin_unlock_irqrestore(&x->wait.lock, flags);
5722 }
5723 EXPORT_SYMBOL(complete_all);
5724
5725 static inline long __sched
5726 do_wait_for_common(struct completion *x, long timeout, int state)
5727 {
5728 if (!x->done) {
5729 DECLARE_WAITQUEUE(wait, current);
5730
5731 wait.flags |= WQ_FLAG_EXCLUSIVE;
5732 __add_wait_queue_tail(&x->wait, &wait);
5733 do {
5734 if (signal_pending_state(state, current)) {
5735 timeout = -ERESTARTSYS;
5736 break;
5737 }
5738 __set_current_state(state);
5739 spin_unlock_irq(&x->wait.lock);
5740 timeout = schedule_timeout(timeout);
5741 spin_lock_irq(&x->wait.lock);
5742 } while (!x->done && timeout);
5743 __remove_wait_queue(&x->wait, &wait);
5744 if (!x->done)
5745 return timeout;
5746 }
5747 x->done--;
5748 return timeout ?: 1;
5749 }
5750
5751 static long __sched
5752 wait_for_common(struct completion *x, long timeout, int state)
5753 {
5754 might_sleep();
5755
5756 spin_lock_irq(&x->wait.lock);
5757 timeout = do_wait_for_common(x, timeout, state);
5758 spin_unlock_irq(&x->wait.lock);
5759 return timeout;
5760 }
5761
5762 /**
5763 * wait_for_completion: - waits for completion of a task
5764 * @x: holds the state of this particular completion
5765 *
5766 * This waits to be signaled for completion of a specific task. It is NOT
5767 * interruptible and there is no timeout.
5768 *
5769 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5770 * and interrupt capability. Also see complete().
5771 */
5772 void __sched wait_for_completion(struct completion *x)
5773 {
5774 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
5775 }
5776 EXPORT_SYMBOL(wait_for_completion);
5777
5778 /**
5779 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5780 * @x: holds the state of this particular completion
5781 * @timeout: timeout value in jiffies
5782 *
5783 * This waits for either a completion of a specific task to be signaled or for a
5784 * specified timeout to expire. The timeout is in jiffies. It is not
5785 * interruptible.
5786 */
5787 unsigned long __sched
5788 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
5789 {
5790 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
5791 }
5792 EXPORT_SYMBOL(wait_for_completion_timeout);
5793
5794 /**
5795 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5796 * @x: holds the state of this particular completion
5797 *
5798 * This waits for completion of a specific task to be signaled. It is
5799 * interruptible.
5800 */
5801 int __sched wait_for_completion_interruptible(struct completion *x)
5802 {
5803 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5804 if (t == -ERESTARTSYS)
5805 return t;
5806 return 0;
5807 }
5808 EXPORT_SYMBOL(wait_for_completion_interruptible);
5809
5810 /**
5811 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5812 * @x: holds the state of this particular completion
5813 * @timeout: timeout value in jiffies
5814 *
5815 * This waits for either a completion of a specific task to be signaled or for a
5816 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5817 */
5818 unsigned long __sched
5819 wait_for_completion_interruptible_timeout(struct completion *x,
5820 unsigned long timeout)
5821 {
5822 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
5823 }
5824 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
5825
5826 /**
5827 * wait_for_completion_killable: - waits for completion of a task (killable)
5828 * @x: holds the state of this particular completion
5829 *
5830 * This waits to be signaled for completion of a specific task. It can be
5831 * interrupted by a kill signal.
5832 */
5833 int __sched wait_for_completion_killable(struct completion *x)
5834 {
5835 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5836 if (t == -ERESTARTSYS)
5837 return t;
5838 return 0;
5839 }
5840 EXPORT_SYMBOL(wait_for_completion_killable);
5841
5842 /**
5843 * try_wait_for_completion - try to decrement a completion without blocking
5844 * @x: completion structure
5845 *
5846 * Returns: 0 if a decrement cannot be done without blocking
5847 * 1 if a decrement succeeded.
5848 *
5849 * If a completion is being used as a counting completion,
5850 * attempt to decrement the counter without blocking. This
5851 * enables us to avoid waiting if the resource the completion
5852 * is protecting is not available.
5853 */
5854 bool try_wait_for_completion(struct completion *x)
5855 {
5856 int ret = 1;
5857
5858 spin_lock_irq(&x->wait.lock);
5859 if (!x->done)
5860 ret = 0;
5861 else
5862 x->done--;
5863 spin_unlock_irq(&x->wait.lock);
5864 return ret;
5865 }
5866 EXPORT_SYMBOL(try_wait_for_completion);
5867
5868 /**
5869 * completion_done - Test to see if a completion has any waiters
5870 * @x: completion structure
5871 *
5872 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5873 * 1 if there are no waiters.
5874 *
5875 */
5876 bool completion_done(struct completion *x)
5877 {
5878 int ret = 1;
5879
5880 spin_lock_irq(&x->wait.lock);
5881 if (!x->done)
5882 ret = 0;
5883 spin_unlock_irq(&x->wait.lock);
5884 return ret;
5885 }
5886 EXPORT_SYMBOL(completion_done);
5887
5888 static long __sched
5889 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
5890 {
5891 unsigned long flags;
5892 wait_queue_t wait;
5893
5894 init_waitqueue_entry(&wait, current);
5895
5896 __set_current_state(state);
5897
5898 spin_lock_irqsave(&q->lock, flags);
5899 __add_wait_queue(q, &wait);
5900 spin_unlock(&q->lock);
5901 timeout = schedule_timeout(timeout);
5902 spin_lock_irq(&q->lock);
5903 __remove_wait_queue(q, &wait);
5904 spin_unlock_irqrestore(&q->lock, flags);
5905
5906 return timeout;
5907 }
5908
5909 void __sched interruptible_sleep_on(wait_queue_head_t *q)
5910 {
5911 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5912 }
5913 EXPORT_SYMBOL(interruptible_sleep_on);
5914
5915 long __sched
5916 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
5917 {
5918 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
5919 }
5920 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5921
5922 void __sched sleep_on(wait_queue_head_t *q)
5923 {
5924 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5925 }
5926 EXPORT_SYMBOL(sleep_on);
5927
5928 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
5929 {
5930 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
5931 }
5932 EXPORT_SYMBOL(sleep_on_timeout);
5933
5934 #ifdef CONFIG_RT_MUTEXES
5935
5936 /*
5937 * rt_mutex_setprio - set the current priority of a task
5938 * @p: task
5939 * @prio: prio value (kernel-internal form)
5940 *
5941 * This function changes the 'effective' priority of a task. It does
5942 * not touch ->normal_prio like __setscheduler().
5943 *
5944 * Used by the rt_mutex code to implement priority inheritance logic.
5945 */
5946 void rt_mutex_setprio(struct task_struct *p, int prio)
5947 {
5948 unsigned long flags;
5949 int oldprio, on_rq, running;
5950 struct rq *rq;
5951 const struct sched_class *prev_class = p->sched_class;
5952
5953 BUG_ON(prio < 0 || prio > MAX_PRIO);
5954
5955 rq = task_rq_lock(p, &flags);
5956 update_rq_clock(rq);
5957
5958 oldprio = p->prio;
5959 on_rq = p->se.on_rq;
5960 running = task_current(rq, p);
5961 if (on_rq)
5962 dequeue_task(rq, p, 0);
5963 if (running)
5964 p->sched_class->put_prev_task(rq, p);
5965
5966 if (rt_prio(prio))
5967 p->sched_class = &rt_sched_class;
5968 else
5969 p->sched_class = &fair_sched_class;
5970
5971 p->prio = prio;
5972
5973 if (running)
5974 p->sched_class->set_curr_task(rq);
5975 if (on_rq) {
5976 enqueue_task(rq, p, 0);
5977
5978 check_class_changed(rq, p, prev_class, oldprio, running);
5979 }
5980 task_rq_unlock(rq, &flags);
5981 }
5982
5983 #endif
5984
5985 void set_user_nice(struct task_struct *p, long nice)
5986 {
5987 int old_prio, delta, on_rq;
5988 unsigned long flags;
5989 struct rq *rq;
5990
5991 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5992 return;
5993 /*
5994 * We have to be careful, if called from sys_setpriority(),
5995 * the task might be in the middle of scheduling on another CPU.
5996 */
5997 rq = task_rq_lock(p, &flags);
5998 update_rq_clock(rq);
5999 /*
6000 * The RT priorities are set via sched_setscheduler(), but we still
6001 * allow the 'normal' nice value to be set - but as expected
6002 * it wont have any effect on scheduling until the task is
6003 * SCHED_FIFO/SCHED_RR:
6004 */
6005 if (task_has_rt_policy(p)) {
6006 p->static_prio = NICE_TO_PRIO(nice);
6007 goto out_unlock;
6008 }
6009 on_rq = p->se.on_rq;
6010 if (on_rq)
6011 dequeue_task(rq, p, 0);
6012
6013 p->static_prio = NICE_TO_PRIO(nice);
6014 set_load_weight(p);
6015 old_prio = p->prio;
6016 p->prio = effective_prio(p);
6017 delta = p->prio - old_prio;
6018
6019 if (on_rq) {
6020 enqueue_task(rq, p, 0);
6021 /*
6022 * If the task increased its priority or is running and
6023 * lowered its priority, then reschedule its CPU:
6024 */
6025 if (delta < 0 || (delta > 0 && task_running(rq, p)))
6026 resched_task(rq->curr);
6027 }
6028 out_unlock:
6029 task_rq_unlock(rq, &flags);
6030 }
6031 EXPORT_SYMBOL(set_user_nice);
6032
6033 /*
6034 * can_nice - check if a task can reduce its nice value
6035 * @p: task
6036 * @nice: nice value
6037 */
6038 int can_nice(const struct task_struct *p, const int nice)
6039 {
6040 /* convert nice value [19,-20] to rlimit style value [1,40] */
6041 int nice_rlim = 20 - nice;
6042
6043 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
6044 capable(CAP_SYS_NICE));
6045 }
6046
6047 #ifdef __ARCH_WANT_SYS_NICE
6048
6049 /*
6050 * sys_nice - change the priority of the current process.
6051 * @increment: priority increment
6052 *
6053 * sys_setpriority is a more generic, but much slower function that
6054 * does similar things.
6055 */
6056 SYSCALL_DEFINE1(nice, int, increment)
6057 {
6058 long nice, retval;
6059
6060 /*
6061 * Setpriority might change our priority at the same moment.
6062 * We don't have to worry. Conceptually one call occurs first
6063 * and we have a single winner.
6064 */
6065 if (increment < -40)
6066 increment = -40;
6067 if (increment > 40)
6068 increment = 40;
6069
6070 nice = TASK_NICE(current) + increment;
6071 if (nice < -20)
6072 nice = -20;
6073 if (nice > 19)
6074 nice = 19;
6075
6076 if (increment < 0 && !can_nice(current, nice))
6077 return -EPERM;
6078
6079 retval = security_task_setnice(current, nice);
6080 if (retval)
6081 return retval;
6082
6083 set_user_nice(current, nice);
6084 return 0;
6085 }
6086
6087 #endif
6088
6089 /**
6090 * task_prio - return the priority value of a given task.
6091 * @p: the task in question.
6092 *
6093 * This is the priority value as seen by users in /proc.
6094 * RT tasks are offset by -200. Normal tasks are centered
6095 * around 0, value goes from -16 to +15.
6096 */
6097 int task_prio(const struct task_struct *p)
6098 {
6099 return p->prio - MAX_RT_PRIO;
6100 }
6101
6102 /**
6103 * task_nice - return the nice value of a given task.
6104 * @p: the task in question.
6105 */
6106 int task_nice(const struct task_struct *p)
6107 {
6108 return TASK_NICE(p);
6109 }
6110 EXPORT_SYMBOL(task_nice);
6111
6112 /**
6113 * idle_cpu - is a given cpu idle currently?
6114 * @cpu: the processor in question.
6115 */
6116 int idle_cpu(int cpu)
6117 {
6118 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6119 }
6120
6121 /**
6122 * idle_task - return the idle task for a given cpu.
6123 * @cpu: the processor in question.
6124 */
6125 struct task_struct *idle_task(int cpu)
6126 {
6127 return cpu_rq(cpu)->idle;
6128 }
6129
6130 /**
6131 * find_process_by_pid - find a process with a matching PID value.
6132 * @pid: the pid in question.
6133 */
6134 static struct task_struct *find_process_by_pid(pid_t pid)
6135 {
6136 return pid ? find_task_by_vpid(pid) : current;
6137 }
6138
6139 /* Actually do priority change: must hold rq lock. */
6140 static void
6141 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
6142 {
6143 BUG_ON(p->se.on_rq);
6144
6145 p->policy = policy;
6146 switch (p->policy) {
6147 case SCHED_NORMAL:
6148 case SCHED_BATCH:
6149 case SCHED_IDLE:
6150 p->sched_class = &fair_sched_class;
6151 break;
6152 case SCHED_FIFO:
6153 case SCHED_RR:
6154 p->sched_class = &rt_sched_class;
6155 break;
6156 }
6157
6158 p->rt_priority = prio;
6159 p->normal_prio = normal_prio(p);
6160 /* we are holding p->pi_lock already */
6161 p->prio = rt_mutex_getprio(p);
6162 set_load_weight(p);
6163 }
6164
6165 /*
6166 * check the target process has a UID that matches the current process's
6167 */
6168 static bool check_same_owner(struct task_struct *p)
6169 {
6170 const struct cred *cred = current_cred(), *pcred;
6171 bool match;
6172
6173 rcu_read_lock();
6174 pcred = __task_cred(p);
6175 match = (cred->euid == pcred->euid ||
6176 cred->euid == pcred->uid);
6177 rcu_read_unlock();
6178 return match;
6179 }
6180
6181 static int __sched_setscheduler(struct task_struct *p, int policy,
6182 struct sched_param *param, bool user)
6183 {
6184 int retval, oldprio, oldpolicy = -1, on_rq, running;
6185 unsigned long flags;
6186 const struct sched_class *prev_class = p->sched_class;
6187 struct rq *rq;
6188 int reset_on_fork;
6189
6190 /* may grab non-irq protected spin_locks */
6191 BUG_ON(in_interrupt());
6192 recheck:
6193 /* double check policy once rq lock held */
6194 if (policy < 0) {
6195 reset_on_fork = p->sched_reset_on_fork;
6196 policy = oldpolicy = p->policy;
6197 } else {
6198 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
6199 policy &= ~SCHED_RESET_ON_FORK;
6200
6201 if (policy != SCHED_FIFO && policy != SCHED_RR &&
6202 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6203 policy != SCHED_IDLE)
6204 return -EINVAL;
6205 }
6206
6207 /*
6208 * Valid priorities for SCHED_FIFO and SCHED_RR are
6209 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6210 * SCHED_BATCH and SCHED_IDLE is 0.
6211 */
6212 if (param->sched_priority < 0 ||
6213 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
6214 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
6215 return -EINVAL;
6216 if (rt_policy(policy) != (param->sched_priority != 0))
6217 return -EINVAL;
6218
6219 /*
6220 * Allow unprivileged RT tasks to decrease priority:
6221 */
6222 if (user && !capable(CAP_SYS_NICE)) {
6223 if (rt_policy(policy)) {
6224 unsigned long rlim_rtprio;
6225
6226 if (!lock_task_sighand(p, &flags))
6227 return -ESRCH;
6228 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6229 unlock_task_sighand(p, &flags);
6230
6231 /* can't set/change the rt policy */
6232 if (policy != p->policy && !rlim_rtprio)
6233 return -EPERM;
6234
6235 /* can't increase priority */
6236 if (param->sched_priority > p->rt_priority &&
6237 param->sched_priority > rlim_rtprio)
6238 return -EPERM;
6239 }
6240 /*
6241 * Like positive nice levels, dont allow tasks to
6242 * move out of SCHED_IDLE either:
6243 */
6244 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6245 return -EPERM;
6246
6247 /* can't change other user's priorities */
6248 if (!check_same_owner(p))
6249 return -EPERM;
6250
6251 /* Normal users shall not reset the sched_reset_on_fork flag */
6252 if (p->sched_reset_on_fork && !reset_on_fork)
6253 return -EPERM;
6254 }
6255
6256 if (user) {
6257 #ifdef CONFIG_RT_GROUP_SCHED
6258 /*
6259 * Do not allow realtime tasks into groups that have no runtime
6260 * assigned.
6261 */
6262 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6263 task_group(p)->rt_bandwidth.rt_runtime == 0)
6264 return -EPERM;
6265 #endif
6266
6267 retval = security_task_setscheduler(p, policy, param);
6268 if (retval)
6269 return retval;
6270 }
6271
6272 /*
6273 * make sure no PI-waiters arrive (or leave) while we are
6274 * changing the priority of the task:
6275 */
6276 spin_lock_irqsave(&p->pi_lock, flags);
6277 /*
6278 * To be able to change p->policy safely, the apropriate
6279 * runqueue lock must be held.
6280 */
6281 rq = __task_rq_lock(p);
6282 /* recheck policy now with rq lock held */
6283 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6284 policy = oldpolicy = -1;
6285 __task_rq_unlock(rq);
6286 spin_unlock_irqrestore(&p->pi_lock, flags);
6287 goto recheck;
6288 }
6289 update_rq_clock(rq);
6290 on_rq = p->se.on_rq;
6291 running = task_current(rq, p);
6292 if (on_rq)
6293 deactivate_task(rq, p, 0);
6294 if (running)
6295 p->sched_class->put_prev_task(rq, p);
6296
6297 p->sched_reset_on_fork = reset_on_fork;
6298
6299 oldprio = p->prio;
6300 __setscheduler(rq, p, policy, param->sched_priority);
6301
6302 if (running)
6303 p->sched_class->set_curr_task(rq);
6304 if (on_rq) {
6305 activate_task(rq, p, 0);
6306
6307 check_class_changed(rq, p, prev_class, oldprio, running);
6308 }
6309 __task_rq_unlock(rq);
6310 spin_unlock_irqrestore(&p->pi_lock, flags);
6311
6312 rt_mutex_adjust_pi(p);
6313
6314 return 0;
6315 }
6316
6317 /**
6318 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6319 * @p: the task in question.
6320 * @policy: new policy.
6321 * @param: structure containing the new RT priority.
6322 *
6323 * NOTE that the task may be already dead.
6324 */
6325 int sched_setscheduler(struct task_struct *p, int policy,
6326 struct sched_param *param)
6327 {
6328 return __sched_setscheduler(p, policy, param, true);
6329 }
6330 EXPORT_SYMBOL_GPL(sched_setscheduler);
6331
6332 /**
6333 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6334 * @p: the task in question.
6335 * @policy: new policy.
6336 * @param: structure containing the new RT priority.
6337 *
6338 * Just like sched_setscheduler, only don't bother checking if the
6339 * current context has permission. For example, this is needed in
6340 * stop_machine(): we create temporary high priority worker threads,
6341 * but our caller might not have that capability.
6342 */
6343 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6344 struct sched_param *param)
6345 {
6346 return __sched_setscheduler(p, policy, param, false);
6347 }
6348
6349 static int
6350 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
6351 {
6352 struct sched_param lparam;
6353 struct task_struct *p;
6354 int retval;
6355
6356 if (!param || pid < 0)
6357 return -EINVAL;
6358 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6359 return -EFAULT;
6360
6361 rcu_read_lock();
6362 retval = -ESRCH;
6363 p = find_process_by_pid(pid);
6364 if (p != NULL)
6365 retval = sched_setscheduler(p, policy, &lparam);
6366 rcu_read_unlock();
6367
6368 return retval;
6369 }
6370
6371 /**
6372 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6373 * @pid: the pid in question.
6374 * @policy: new policy.
6375 * @param: structure containing the new RT priority.
6376 */
6377 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6378 struct sched_param __user *, param)
6379 {
6380 /* negative values for policy are not valid */
6381 if (policy < 0)
6382 return -EINVAL;
6383
6384 return do_sched_setscheduler(pid, policy, param);
6385 }
6386
6387 /**
6388 * sys_sched_setparam - set/change the RT priority of a thread
6389 * @pid: the pid in question.
6390 * @param: structure containing the new RT priority.
6391 */
6392 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
6393 {
6394 return do_sched_setscheduler(pid, -1, param);
6395 }
6396
6397 /**
6398 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6399 * @pid: the pid in question.
6400 */
6401 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
6402 {
6403 struct task_struct *p;
6404 int retval;
6405
6406 if (pid < 0)
6407 return -EINVAL;
6408
6409 retval = -ESRCH;
6410 read_lock(&tasklist_lock);
6411 p = find_process_by_pid(pid);
6412 if (p) {
6413 retval = security_task_getscheduler(p);
6414 if (!retval)
6415 retval = p->policy
6416 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
6417 }
6418 read_unlock(&tasklist_lock);
6419 return retval;
6420 }
6421
6422 /**
6423 * sys_sched_getparam - get the RT priority of a thread
6424 * @pid: the pid in question.
6425 * @param: structure containing the RT priority.
6426 */
6427 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
6428 {
6429 struct sched_param lp;
6430 struct task_struct *p;
6431 int retval;
6432
6433 if (!param || pid < 0)
6434 return -EINVAL;
6435
6436 read_lock(&tasklist_lock);
6437 p = find_process_by_pid(pid);
6438 retval = -ESRCH;
6439 if (!p)
6440 goto out_unlock;
6441
6442 retval = security_task_getscheduler(p);
6443 if (retval)
6444 goto out_unlock;
6445
6446 lp.sched_priority = p->rt_priority;
6447 read_unlock(&tasklist_lock);
6448
6449 /*
6450 * This one might sleep, we cannot do it with a spinlock held ...
6451 */
6452 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6453
6454 return retval;
6455
6456 out_unlock:
6457 read_unlock(&tasklist_lock);
6458 return retval;
6459 }
6460
6461 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
6462 {
6463 cpumask_var_t cpus_allowed, new_mask;
6464 struct task_struct *p;
6465 int retval;
6466
6467 get_online_cpus();
6468 read_lock(&tasklist_lock);
6469
6470 p = find_process_by_pid(pid);
6471 if (!p) {
6472 read_unlock(&tasklist_lock);
6473 put_online_cpus();
6474 return -ESRCH;
6475 }
6476
6477 /*
6478 * It is not safe to call set_cpus_allowed with the
6479 * tasklist_lock held. We will bump the task_struct's
6480 * usage count and then drop tasklist_lock.
6481 */
6482 get_task_struct(p);
6483 read_unlock(&tasklist_lock);
6484
6485 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6486 retval = -ENOMEM;
6487 goto out_put_task;
6488 }
6489 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6490 retval = -ENOMEM;
6491 goto out_free_cpus_allowed;
6492 }
6493 retval = -EPERM;
6494 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
6495 goto out_unlock;
6496
6497 retval = security_task_setscheduler(p, 0, NULL);
6498 if (retval)
6499 goto out_unlock;
6500
6501 cpuset_cpus_allowed(p, cpus_allowed);
6502 cpumask_and(new_mask, in_mask, cpus_allowed);
6503 again:
6504 retval = set_cpus_allowed_ptr(p, new_mask);
6505
6506 if (!retval) {
6507 cpuset_cpus_allowed(p, cpus_allowed);
6508 if (!cpumask_subset(new_mask, cpus_allowed)) {
6509 /*
6510 * We must have raced with a concurrent cpuset
6511 * update. Just reset the cpus_allowed to the
6512 * cpuset's cpus_allowed
6513 */
6514 cpumask_copy(new_mask, cpus_allowed);
6515 goto again;
6516 }
6517 }
6518 out_unlock:
6519 free_cpumask_var(new_mask);
6520 out_free_cpus_allowed:
6521 free_cpumask_var(cpus_allowed);
6522 out_put_task:
6523 put_task_struct(p);
6524 put_online_cpus();
6525 return retval;
6526 }
6527
6528 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6529 struct cpumask *new_mask)
6530 {
6531 if (len < cpumask_size())
6532 cpumask_clear(new_mask);
6533 else if (len > cpumask_size())
6534 len = cpumask_size();
6535
6536 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6537 }
6538
6539 /**
6540 * sys_sched_setaffinity - set the cpu affinity of a process
6541 * @pid: pid of the process
6542 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6543 * @user_mask_ptr: user-space pointer to the new cpu mask
6544 */
6545 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6546 unsigned long __user *, user_mask_ptr)
6547 {
6548 cpumask_var_t new_mask;
6549 int retval;
6550
6551 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6552 return -ENOMEM;
6553
6554 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6555 if (retval == 0)
6556 retval = sched_setaffinity(pid, new_mask);
6557 free_cpumask_var(new_mask);
6558 return retval;
6559 }
6560
6561 long sched_getaffinity(pid_t pid, struct cpumask *mask)
6562 {
6563 struct task_struct *p;
6564 int retval;
6565
6566 get_online_cpus();
6567 read_lock(&tasklist_lock);
6568
6569 retval = -ESRCH;
6570 p = find_process_by_pid(pid);
6571 if (!p)
6572 goto out_unlock;
6573
6574 retval = security_task_getscheduler(p);
6575 if (retval)
6576 goto out_unlock;
6577
6578 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
6579
6580 out_unlock:
6581 read_unlock(&tasklist_lock);
6582 put_online_cpus();
6583
6584 return retval;
6585 }
6586
6587 /**
6588 * sys_sched_getaffinity - get the cpu affinity of a process
6589 * @pid: pid of the process
6590 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6591 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6592 */
6593 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6594 unsigned long __user *, user_mask_ptr)
6595 {
6596 int ret;
6597 cpumask_var_t mask;
6598
6599 if (len < cpumask_size())
6600 return -EINVAL;
6601
6602 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6603 return -ENOMEM;
6604
6605 ret = sched_getaffinity(pid, mask);
6606 if (ret == 0) {
6607 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6608 ret = -EFAULT;
6609 else
6610 ret = cpumask_size();
6611 }
6612 free_cpumask_var(mask);
6613
6614 return ret;
6615 }
6616
6617 /**
6618 * sys_sched_yield - yield the current processor to other threads.
6619 *
6620 * This function yields the current CPU to other tasks. If there are no
6621 * other threads running on this CPU then this function will return.
6622 */
6623 SYSCALL_DEFINE0(sched_yield)
6624 {
6625 struct rq *rq = this_rq_lock();
6626
6627 schedstat_inc(rq, yld_count);
6628 current->sched_class->yield_task(rq);
6629
6630 /*
6631 * Since we are going to call schedule() anyway, there's
6632 * no need to preempt or enable interrupts:
6633 */
6634 __release(rq->lock);
6635 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
6636 _raw_spin_unlock(&rq->lock);
6637 preempt_enable_no_resched();
6638
6639 schedule();
6640
6641 return 0;
6642 }
6643
6644 static inline int should_resched(void)
6645 {
6646 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
6647 }
6648
6649 static void __cond_resched(void)
6650 {
6651 add_preempt_count(PREEMPT_ACTIVE);
6652 schedule();
6653 sub_preempt_count(PREEMPT_ACTIVE);
6654 }
6655
6656 int __sched _cond_resched(void)
6657 {
6658 if (should_resched()) {
6659 __cond_resched();
6660 return 1;
6661 }
6662 return 0;
6663 }
6664 EXPORT_SYMBOL(_cond_resched);
6665
6666 /*
6667 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
6668 * call schedule, and on return reacquire the lock.
6669 *
6670 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
6671 * operations here to prevent schedule() from being called twice (once via
6672 * spin_unlock(), once by hand).
6673 */
6674 int __cond_resched_lock(spinlock_t *lock)
6675 {
6676 int resched = should_resched();
6677 int ret = 0;
6678
6679 lockdep_assert_held(lock);
6680
6681 if (spin_needbreak(lock) || resched) {
6682 spin_unlock(lock);
6683 if (resched)
6684 __cond_resched();
6685 else
6686 cpu_relax();
6687 ret = 1;
6688 spin_lock(lock);
6689 }
6690 return ret;
6691 }
6692 EXPORT_SYMBOL(__cond_resched_lock);
6693
6694 int __sched __cond_resched_softirq(void)
6695 {
6696 BUG_ON(!in_softirq());
6697
6698 if (should_resched()) {
6699 local_bh_enable();
6700 __cond_resched();
6701 local_bh_disable();
6702 return 1;
6703 }
6704 return 0;
6705 }
6706 EXPORT_SYMBOL(__cond_resched_softirq);
6707
6708 /**
6709 * yield - yield the current processor to other threads.
6710 *
6711 * This is a shortcut for kernel-space yielding - it marks the
6712 * thread runnable and calls sys_sched_yield().
6713 */
6714 void __sched yield(void)
6715 {
6716 set_current_state(TASK_RUNNING);
6717 sys_sched_yield();
6718 }
6719 EXPORT_SYMBOL(yield);
6720
6721 /*
6722 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6723 * that process accounting knows that this is a task in IO wait state.
6724 *
6725 * But don't do that if it is a deliberate, throttling IO wait (this task
6726 * has set its backing_dev_info: the queue against which it should throttle)
6727 */
6728 void __sched io_schedule(void)
6729 {
6730 struct rq *rq = raw_rq();
6731
6732 delayacct_blkio_start();
6733 atomic_inc(&rq->nr_iowait);
6734 current->in_iowait = 1;
6735 schedule();
6736 current->in_iowait = 0;
6737 atomic_dec(&rq->nr_iowait);
6738 delayacct_blkio_end();
6739 }
6740 EXPORT_SYMBOL(io_schedule);
6741
6742 long __sched io_schedule_timeout(long timeout)
6743 {
6744 struct rq *rq = raw_rq();
6745 long ret;
6746
6747 delayacct_blkio_start();
6748 atomic_inc(&rq->nr_iowait);
6749 current->in_iowait = 1;
6750 ret = schedule_timeout(timeout);
6751 current->in_iowait = 0;
6752 atomic_dec(&rq->nr_iowait);
6753 delayacct_blkio_end();
6754 return ret;
6755 }
6756
6757 /**
6758 * sys_sched_get_priority_max - return maximum RT priority.
6759 * @policy: scheduling class.
6760 *
6761 * this syscall returns the maximum rt_priority that can be used
6762 * by a given scheduling class.
6763 */
6764 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
6765 {
6766 int ret = -EINVAL;
6767
6768 switch (policy) {
6769 case SCHED_FIFO:
6770 case SCHED_RR:
6771 ret = MAX_USER_RT_PRIO-1;
6772 break;
6773 case SCHED_NORMAL:
6774 case SCHED_BATCH:
6775 case SCHED_IDLE:
6776 ret = 0;
6777 break;
6778 }
6779 return ret;
6780 }
6781
6782 /**
6783 * sys_sched_get_priority_min - return minimum RT priority.
6784 * @policy: scheduling class.
6785 *
6786 * this syscall returns the minimum rt_priority that can be used
6787 * by a given scheduling class.
6788 */
6789 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
6790 {
6791 int ret = -EINVAL;
6792
6793 switch (policy) {
6794 case SCHED_FIFO:
6795 case SCHED_RR:
6796 ret = 1;
6797 break;
6798 case SCHED_NORMAL:
6799 case SCHED_BATCH:
6800 case SCHED_IDLE:
6801 ret = 0;
6802 }
6803 return ret;
6804 }
6805
6806 /**
6807 * sys_sched_rr_get_interval - return the default timeslice of a process.
6808 * @pid: pid of the process.
6809 * @interval: userspace pointer to the timeslice value.
6810 *
6811 * this syscall writes the default timeslice value of a given process
6812 * into the user-space timespec buffer. A value of '0' means infinity.
6813 */
6814 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6815 struct timespec __user *, interval)
6816 {
6817 struct task_struct *p;
6818 unsigned int time_slice;
6819 int retval;
6820 struct timespec t;
6821
6822 if (pid < 0)
6823 return -EINVAL;
6824
6825 retval = -ESRCH;
6826 read_lock(&tasklist_lock);
6827 p = find_process_by_pid(pid);
6828 if (!p)
6829 goto out_unlock;
6830
6831 retval = security_task_getscheduler(p);
6832 if (retval)
6833 goto out_unlock;
6834
6835 time_slice = p->sched_class->get_rr_interval(p);
6836
6837 read_unlock(&tasklist_lock);
6838 jiffies_to_timespec(time_slice, &t);
6839 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
6840 return retval;
6841
6842 out_unlock:
6843 read_unlock(&tasklist_lock);
6844 return retval;
6845 }
6846
6847 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6848
6849 void sched_show_task(struct task_struct *p)
6850 {
6851 unsigned long free = 0;
6852 unsigned state;
6853
6854 state = p->state ? __ffs(p->state) + 1 : 0;
6855 printk(KERN_INFO "%-13.13s %c", p->comm,
6856 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6857 #if BITS_PER_LONG == 32
6858 if (state == TASK_RUNNING)
6859 printk(KERN_CONT " running ");
6860 else
6861 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
6862 #else
6863 if (state == TASK_RUNNING)
6864 printk(KERN_CONT " running task ");
6865 else
6866 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
6867 #endif
6868 #ifdef CONFIG_DEBUG_STACK_USAGE
6869 free = stack_not_used(p);
6870 #endif
6871 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6872 task_pid_nr(p), task_pid_nr(p->real_parent),
6873 (unsigned long)task_thread_info(p)->flags);
6874
6875 show_stack(p, NULL);
6876 }
6877
6878 void show_state_filter(unsigned long state_filter)
6879 {
6880 struct task_struct *g, *p;
6881
6882 #if BITS_PER_LONG == 32
6883 printk(KERN_INFO
6884 " task PC stack pid father\n");
6885 #else
6886 printk(KERN_INFO
6887 " task PC stack pid father\n");
6888 #endif
6889 read_lock(&tasklist_lock);
6890 do_each_thread(g, p) {
6891 /*
6892 * reset the NMI-timeout, listing all files on a slow
6893 * console might take alot of time:
6894 */
6895 touch_nmi_watchdog();
6896 if (!state_filter || (p->state & state_filter))
6897 sched_show_task(p);
6898 } while_each_thread(g, p);
6899
6900 touch_all_softlockup_watchdogs();
6901
6902 #ifdef CONFIG_SCHED_DEBUG
6903 sysrq_sched_debug_show();
6904 #endif
6905 read_unlock(&tasklist_lock);
6906 /*
6907 * Only show locks if all tasks are dumped:
6908 */
6909 if (state_filter == -1)
6910 debug_show_all_locks();
6911 }
6912
6913 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6914 {
6915 idle->sched_class = &idle_sched_class;
6916 }
6917
6918 /**
6919 * init_idle - set up an idle thread for a given CPU
6920 * @idle: task in question
6921 * @cpu: cpu the idle task belongs to
6922 *
6923 * NOTE: this function does not set the idle thread's NEED_RESCHED
6924 * flag, to make booting more robust.
6925 */
6926 void __cpuinit init_idle(struct task_struct *idle, int cpu)
6927 {
6928 struct rq *rq = cpu_rq(cpu);
6929 unsigned long flags;
6930
6931 spin_lock_irqsave(&rq->lock, flags);
6932
6933 __sched_fork(idle);
6934 idle->se.exec_start = sched_clock();
6935
6936 idle->prio = idle->normal_prio = MAX_PRIO;
6937 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6938 __set_task_cpu(idle, cpu);
6939
6940 rq->curr = rq->idle = idle;
6941 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6942 idle->oncpu = 1;
6943 #endif
6944 spin_unlock_irqrestore(&rq->lock, flags);
6945
6946 /* Set the preempt count _outside_ the spinlocks! */
6947 #if defined(CONFIG_PREEMPT)
6948 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6949 #else
6950 task_thread_info(idle)->preempt_count = 0;
6951 #endif
6952 /*
6953 * The idle tasks have their own, simple scheduling class:
6954 */
6955 idle->sched_class = &idle_sched_class;
6956 ftrace_graph_init_task(idle);
6957 }
6958
6959 /*
6960 * In a system that switches off the HZ timer nohz_cpu_mask
6961 * indicates which cpus entered this state. This is used
6962 * in the rcu update to wait only for active cpus. For system
6963 * which do not switch off the HZ timer nohz_cpu_mask should
6964 * always be CPU_BITS_NONE.
6965 */
6966 cpumask_var_t nohz_cpu_mask;
6967
6968 /*
6969 * Increase the granularity value when there are more CPUs,
6970 * because with more CPUs the 'effective latency' as visible
6971 * to users decreases. But the relationship is not linear,
6972 * so pick a second-best guess by going with the log2 of the
6973 * number of CPUs.
6974 *
6975 * This idea comes from the SD scheduler of Con Kolivas:
6976 */
6977 static inline void sched_init_granularity(void)
6978 {
6979 unsigned int factor = 1 + ilog2(num_online_cpus());
6980 const unsigned long limit = 200000000;
6981
6982 sysctl_sched_min_granularity *= factor;
6983 if (sysctl_sched_min_granularity > limit)
6984 sysctl_sched_min_granularity = limit;
6985
6986 sysctl_sched_latency *= factor;
6987 if (sysctl_sched_latency > limit)
6988 sysctl_sched_latency = limit;
6989
6990 sysctl_sched_wakeup_granularity *= factor;
6991
6992 sysctl_sched_shares_ratelimit *= factor;
6993 }
6994
6995 #ifdef CONFIG_SMP
6996 /*
6997 * This is how migration works:
6998 *
6999 * 1) we queue a struct migration_req structure in the source CPU's
7000 * runqueue and wake up that CPU's migration thread.
7001 * 2) we down() the locked semaphore => thread blocks.
7002 * 3) migration thread wakes up (implicitly it forces the migrated
7003 * thread off the CPU)
7004 * 4) it gets the migration request and checks whether the migrated
7005 * task is still in the wrong runqueue.
7006 * 5) if it's in the wrong runqueue then the migration thread removes
7007 * it and puts it into the right queue.
7008 * 6) migration thread up()s the semaphore.
7009 * 7) we wake up and the migration is done.
7010 */
7011
7012 /*
7013 * Change a given task's CPU affinity. Migrate the thread to a
7014 * proper CPU and schedule it away if the CPU it's executing on
7015 * is removed from the allowed bitmask.
7016 *
7017 * NOTE: the caller must have a valid reference to the task, the
7018 * task must not exit() & deallocate itself prematurely. The
7019 * call is not atomic; no spinlocks may be held.
7020 */
7021 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
7022 {
7023 struct migration_req req;
7024 unsigned long flags;
7025 struct rq *rq;
7026 int ret = 0;
7027
7028 rq = task_rq_lock(p, &flags);
7029 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
7030 ret = -EINVAL;
7031 goto out;
7032 }
7033
7034 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
7035 !cpumask_equal(&p->cpus_allowed, new_mask))) {
7036 ret = -EINVAL;
7037 goto out;
7038 }
7039
7040 if (p->sched_class->set_cpus_allowed)
7041 p->sched_class->set_cpus_allowed(p, new_mask);
7042 else {
7043 cpumask_copy(&p->cpus_allowed, new_mask);
7044 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
7045 }
7046
7047 /* Can the task run on the task's current CPU? If so, we're done */
7048 if (cpumask_test_cpu(task_cpu(p), new_mask))
7049 goto out;
7050
7051 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
7052 /* Need help from migration thread: drop lock and wait. */
7053 struct task_struct *mt = rq->migration_thread;
7054
7055 get_task_struct(mt);
7056 task_rq_unlock(rq, &flags);
7057 wake_up_process(rq->migration_thread);
7058 put_task_struct(mt);
7059 wait_for_completion(&req.done);
7060 tlb_migrate_finish(p->mm);
7061 return 0;
7062 }
7063 out:
7064 task_rq_unlock(rq, &flags);
7065
7066 return ret;
7067 }
7068 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
7069
7070 /*
7071 * Move (not current) task off this cpu, onto dest cpu. We're doing
7072 * this because either it can't run here any more (set_cpus_allowed()
7073 * away from this CPU, or CPU going down), or because we're
7074 * attempting to rebalance this task on exec (sched_exec).
7075 *
7076 * So we race with normal scheduler movements, but that's OK, as long
7077 * as the task is no longer on this CPU.
7078 *
7079 * Returns non-zero if task was successfully migrated.
7080 */
7081 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
7082 {
7083 struct rq *rq_dest, *rq_src;
7084 int ret = 0, on_rq;
7085
7086 if (unlikely(!cpu_active(dest_cpu)))
7087 return ret;
7088
7089 rq_src = cpu_rq(src_cpu);
7090 rq_dest = cpu_rq(dest_cpu);
7091
7092 double_rq_lock(rq_src, rq_dest);
7093 /* Already moved. */
7094 if (task_cpu(p) != src_cpu)
7095 goto done;
7096 /* Affinity changed (again). */
7097 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7098 goto fail;
7099
7100 on_rq = p->se.on_rq;
7101 if (on_rq)
7102 deactivate_task(rq_src, p, 0);
7103
7104 set_task_cpu(p, dest_cpu);
7105 if (on_rq) {
7106 activate_task(rq_dest, p, 0);
7107 check_preempt_curr(rq_dest, p, 0);
7108 }
7109 done:
7110 ret = 1;
7111 fail:
7112 double_rq_unlock(rq_src, rq_dest);
7113 return ret;
7114 }
7115
7116 #define RCU_MIGRATION_IDLE 0
7117 #define RCU_MIGRATION_NEED_QS 1
7118 #define RCU_MIGRATION_GOT_QS 2
7119 #define RCU_MIGRATION_MUST_SYNC 3
7120
7121 /*
7122 * migration_thread - this is a highprio system thread that performs
7123 * thread migration by bumping thread off CPU then 'pushing' onto
7124 * another runqueue.
7125 */
7126 static int migration_thread(void *data)
7127 {
7128 int badcpu;
7129 int cpu = (long)data;
7130 struct rq *rq;
7131
7132 rq = cpu_rq(cpu);
7133 BUG_ON(rq->migration_thread != current);
7134
7135 set_current_state(TASK_INTERRUPTIBLE);
7136 while (!kthread_should_stop()) {
7137 struct migration_req *req;
7138 struct list_head *head;
7139
7140 spin_lock_irq(&rq->lock);
7141
7142 if (cpu_is_offline(cpu)) {
7143 spin_unlock_irq(&rq->lock);
7144 break;
7145 }
7146
7147 if (rq->active_balance) {
7148 active_load_balance(rq, cpu);
7149 rq->active_balance = 0;
7150 }
7151
7152 head = &rq->migration_queue;
7153
7154 if (list_empty(head)) {
7155 spin_unlock_irq(&rq->lock);
7156 schedule();
7157 set_current_state(TASK_INTERRUPTIBLE);
7158 continue;
7159 }
7160 req = list_entry(head->next, struct migration_req, list);
7161 list_del_init(head->next);
7162
7163 if (req->task != NULL) {
7164 spin_unlock(&rq->lock);
7165 __migrate_task(req->task, cpu, req->dest_cpu);
7166 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
7167 req->dest_cpu = RCU_MIGRATION_GOT_QS;
7168 spin_unlock(&rq->lock);
7169 } else {
7170 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
7171 spin_unlock(&rq->lock);
7172 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
7173 }
7174 local_irq_enable();
7175
7176 complete(&req->done);
7177 }
7178 __set_current_state(TASK_RUNNING);
7179
7180 return 0;
7181 }
7182
7183 #ifdef CONFIG_HOTPLUG_CPU
7184
7185 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7186 {
7187 int ret;
7188
7189 local_irq_disable();
7190 ret = __migrate_task(p, src_cpu, dest_cpu);
7191 local_irq_enable();
7192 return ret;
7193 }
7194
7195 /*
7196 * Figure out where task on dead CPU should go, use force if necessary.
7197 */
7198 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
7199 {
7200 int dest_cpu;
7201 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
7202
7203 again:
7204 /* Look for allowed, online CPU in same node. */
7205 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
7206 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7207 goto move;
7208
7209 /* Any allowed, online CPU? */
7210 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
7211 if (dest_cpu < nr_cpu_ids)
7212 goto move;
7213
7214 /* No more Mr. Nice Guy. */
7215 if (dest_cpu >= nr_cpu_ids) {
7216 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
7217 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
7218
7219 /*
7220 * Don't tell them about moving exiting tasks or
7221 * kernel threads (both mm NULL), since they never
7222 * leave kernel.
7223 */
7224 if (p->mm && printk_ratelimit()) {
7225 printk(KERN_INFO "process %d (%s) no "
7226 "longer affine to cpu%d\n",
7227 task_pid_nr(p), p->comm, dead_cpu);
7228 }
7229 }
7230
7231 move:
7232 /* It can have affinity changed while we were choosing. */
7233 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7234 goto again;
7235 }
7236
7237 /*
7238 * While a dead CPU has no uninterruptible tasks queued at this point,
7239 * it might still have a nonzero ->nr_uninterruptible counter, because
7240 * for performance reasons the counter is not stricly tracking tasks to
7241 * their home CPUs. So we just add the counter to another CPU's counter,
7242 * to keep the global sum constant after CPU-down:
7243 */
7244 static void migrate_nr_uninterruptible(struct rq *rq_src)
7245 {
7246 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
7247 unsigned long flags;
7248
7249 local_irq_save(flags);
7250 double_rq_lock(rq_src, rq_dest);
7251 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7252 rq_src->nr_uninterruptible = 0;
7253 double_rq_unlock(rq_src, rq_dest);
7254 local_irq_restore(flags);
7255 }
7256
7257 /* Run through task list and migrate tasks from the dead cpu. */
7258 static void migrate_live_tasks(int src_cpu)
7259 {
7260 struct task_struct *p, *t;
7261
7262 read_lock(&tasklist_lock);
7263
7264 do_each_thread(t, p) {
7265 if (p == current)
7266 continue;
7267
7268 if (task_cpu(p) == src_cpu)
7269 move_task_off_dead_cpu(src_cpu, p);
7270 } while_each_thread(t, p);
7271
7272 read_unlock(&tasklist_lock);
7273 }
7274
7275 /*
7276 * Schedules idle task to be the next runnable task on current CPU.
7277 * It does so by boosting its priority to highest possible.
7278 * Used by CPU offline code.
7279 */
7280 void sched_idle_next(void)
7281 {
7282 int this_cpu = smp_processor_id();
7283 struct rq *rq = cpu_rq(this_cpu);
7284 struct task_struct *p = rq->idle;
7285 unsigned long flags;
7286
7287 /* cpu has to be offline */
7288 BUG_ON(cpu_online(this_cpu));
7289
7290 /*
7291 * Strictly not necessary since rest of the CPUs are stopped by now
7292 * and interrupts disabled on the current cpu.
7293 */
7294 spin_lock_irqsave(&rq->lock, flags);
7295
7296 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7297
7298 update_rq_clock(rq);
7299 activate_task(rq, p, 0);
7300
7301 spin_unlock_irqrestore(&rq->lock, flags);
7302 }
7303
7304 /*
7305 * Ensures that the idle task is using init_mm right before its cpu goes
7306 * offline.
7307 */
7308 void idle_task_exit(void)
7309 {
7310 struct mm_struct *mm = current->active_mm;
7311
7312 BUG_ON(cpu_online(smp_processor_id()));
7313
7314 if (mm != &init_mm)
7315 switch_mm(mm, &init_mm, current);
7316 mmdrop(mm);
7317 }
7318
7319 /* called under rq->lock with disabled interrupts */
7320 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
7321 {
7322 struct rq *rq = cpu_rq(dead_cpu);
7323
7324 /* Must be exiting, otherwise would be on tasklist. */
7325 BUG_ON(!p->exit_state);
7326
7327 /* Cannot have done final schedule yet: would have vanished. */
7328 BUG_ON(p->state == TASK_DEAD);
7329
7330 get_task_struct(p);
7331
7332 /*
7333 * Drop lock around migration; if someone else moves it,
7334 * that's OK. No task can be added to this CPU, so iteration is
7335 * fine.
7336 */
7337 spin_unlock_irq(&rq->lock);
7338 move_task_off_dead_cpu(dead_cpu, p);
7339 spin_lock_irq(&rq->lock);
7340
7341 put_task_struct(p);
7342 }
7343
7344 /* release_task() removes task from tasklist, so we won't find dead tasks. */
7345 static void migrate_dead_tasks(unsigned int dead_cpu)
7346 {
7347 struct rq *rq = cpu_rq(dead_cpu);
7348 struct task_struct *next;
7349
7350 for ( ; ; ) {
7351 if (!rq->nr_running)
7352 break;
7353 update_rq_clock(rq);
7354 next = pick_next_task(rq);
7355 if (!next)
7356 break;
7357 next->sched_class->put_prev_task(rq, next);
7358 migrate_dead(dead_cpu, next);
7359
7360 }
7361 }
7362
7363 /*
7364 * remove the tasks which were accounted by rq from calc_load_tasks.
7365 */
7366 static void calc_global_load_remove(struct rq *rq)
7367 {
7368 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
7369 rq->calc_load_active = 0;
7370 }
7371 #endif /* CONFIG_HOTPLUG_CPU */
7372
7373 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7374
7375 static struct ctl_table sd_ctl_dir[] = {
7376 {
7377 .procname = "sched_domain",
7378 .mode = 0555,
7379 },
7380 {0, },
7381 };
7382
7383 static struct ctl_table sd_ctl_root[] = {
7384 {
7385 .ctl_name = CTL_KERN,
7386 .procname = "kernel",
7387 .mode = 0555,
7388 .child = sd_ctl_dir,
7389 },
7390 {0, },
7391 };
7392
7393 static struct ctl_table *sd_alloc_ctl_entry(int n)
7394 {
7395 struct ctl_table *entry =
7396 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
7397
7398 return entry;
7399 }
7400
7401 static void sd_free_ctl_entry(struct ctl_table **tablep)
7402 {
7403 struct ctl_table *entry;
7404
7405 /*
7406 * In the intermediate directories, both the child directory and
7407 * procname are dynamically allocated and could fail but the mode
7408 * will always be set. In the lowest directory the names are
7409 * static strings and all have proc handlers.
7410 */
7411 for (entry = *tablep; entry->mode; entry++) {
7412 if (entry->child)
7413 sd_free_ctl_entry(&entry->child);
7414 if (entry->proc_handler == NULL)
7415 kfree(entry->procname);
7416 }
7417
7418 kfree(*tablep);
7419 *tablep = NULL;
7420 }
7421
7422 static void
7423 set_table_entry(struct ctl_table *entry,
7424 const char *procname, void *data, int maxlen,
7425 mode_t mode, proc_handler *proc_handler)
7426 {
7427 entry->procname = procname;
7428 entry->data = data;
7429 entry->maxlen = maxlen;
7430 entry->mode = mode;
7431 entry->proc_handler = proc_handler;
7432 }
7433
7434 static struct ctl_table *
7435 sd_alloc_ctl_domain_table(struct sched_domain *sd)
7436 {
7437 struct ctl_table *table = sd_alloc_ctl_entry(13);
7438
7439 if (table == NULL)
7440 return NULL;
7441
7442 set_table_entry(&table[0], "min_interval", &sd->min_interval,
7443 sizeof(long), 0644, proc_doulongvec_minmax);
7444 set_table_entry(&table[1], "max_interval", &sd->max_interval,
7445 sizeof(long), 0644, proc_doulongvec_minmax);
7446 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
7447 sizeof(int), 0644, proc_dointvec_minmax);
7448 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
7449 sizeof(int), 0644, proc_dointvec_minmax);
7450 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
7451 sizeof(int), 0644, proc_dointvec_minmax);
7452 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
7453 sizeof(int), 0644, proc_dointvec_minmax);
7454 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
7455 sizeof(int), 0644, proc_dointvec_minmax);
7456 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
7457 sizeof(int), 0644, proc_dointvec_minmax);
7458 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
7459 sizeof(int), 0644, proc_dointvec_minmax);
7460 set_table_entry(&table[9], "cache_nice_tries",
7461 &sd->cache_nice_tries,
7462 sizeof(int), 0644, proc_dointvec_minmax);
7463 set_table_entry(&table[10], "flags", &sd->flags,
7464 sizeof(int), 0644, proc_dointvec_minmax);
7465 set_table_entry(&table[11], "name", sd->name,
7466 CORENAME_MAX_SIZE, 0444, proc_dostring);
7467 /* &table[12] is terminator */
7468
7469 return table;
7470 }
7471
7472 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7473 {
7474 struct ctl_table *entry, *table;
7475 struct sched_domain *sd;
7476 int domain_num = 0, i;
7477 char buf[32];
7478
7479 for_each_domain(cpu, sd)
7480 domain_num++;
7481 entry = table = sd_alloc_ctl_entry(domain_num + 1);
7482 if (table == NULL)
7483 return NULL;
7484
7485 i = 0;
7486 for_each_domain(cpu, sd) {
7487 snprintf(buf, 32, "domain%d", i);
7488 entry->procname = kstrdup(buf, GFP_KERNEL);
7489 entry->mode = 0555;
7490 entry->child = sd_alloc_ctl_domain_table(sd);
7491 entry++;
7492 i++;
7493 }
7494 return table;
7495 }
7496
7497 static struct ctl_table_header *sd_sysctl_header;
7498 static void register_sched_domain_sysctl(void)
7499 {
7500 int i, cpu_num = num_online_cpus();
7501 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7502 char buf[32];
7503
7504 WARN_ON(sd_ctl_dir[0].child);
7505 sd_ctl_dir[0].child = entry;
7506
7507 if (entry == NULL)
7508 return;
7509
7510 for_each_online_cpu(i) {
7511 snprintf(buf, 32, "cpu%d", i);
7512 entry->procname = kstrdup(buf, GFP_KERNEL);
7513 entry->mode = 0555;
7514 entry->child = sd_alloc_ctl_cpu_table(i);
7515 entry++;
7516 }
7517
7518 WARN_ON(sd_sysctl_header);
7519 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7520 }
7521
7522 /* may be called multiple times per register */
7523 static void unregister_sched_domain_sysctl(void)
7524 {
7525 if (sd_sysctl_header)
7526 unregister_sysctl_table(sd_sysctl_header);
7527 sd_sysctl_header = NULL;
7528 if (sd_ctl_dir[0].child)
7529 sd_free_ctl_entry(&sd_ctl_dir[0].child);
7530 }
7531 #else
7532 static void register_sched_domain_sysctl(void)
7533 {
7534 }
7535 static void unregister_sched_domain_sysctl(void)
7536 {
7537 }
7538 #endif
7539
7540 static void set_rq_online(struct rq *rq)
7541 {
7542 if (!rq->online) {
7543 const struct sched_class *class;
7544
7545 cpumask_set_cpu(rq->cpu, rq->rd->online);
7546 rq->online = 1;
7547
7548 for_each_class(class) {
7549 if (class->rq_online)
7550 class->rq_online(rq);
7551 }
7552 }
7553 }
7554
7555 static void set_rq_offline(struct rq *rq)
7556 {
7557 if (rq->online) {
7558 const struct sched_class *class;
7559
7560 for_each_class(class) {
7561 if (class->rq_offline)
7562 class->rq_offline(rq);
7563 }
7564
7565 cpumask_clear_cpu(rq->cpu, rq->rd->online);
7566 rq->online = 0;
7567 }
7568 }
7569
7570 /*
7571 * migration_call - callback that gets triggered when a CPU is added.
7572 * Here we can start up the necessary migration thread for the new CPU.
7573 */
7574 static int __cpuinit
7575 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
7576 {
7577 struct task_struct *p;
7578 int cpu = (long)hcpu;
7579 unsigned long flags;
7580 struct rq *rq;
7581
7582 switch (action) {
7583
7584 case CPU_UP_PREPARE:
7585 case CPU_UP_PREPARE_FROZEN:
7586 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
7587 if (IS_ERR(p))
7588 return NOTIFY_BAD;
7589 kthread_bind(p, cpu);
7590 /* Must be high prio: stop_machine expects to yield to it. */
7591 rq = task_rq_lock(p, &flags);
7592 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7593 task_rq_unlock(rq, &flags);
7594 get_task_struct(p);
7595 cpu_rq(cpu)->migration_thread = p;
7596 rq->calc_load_update = calc_load_update;
7597 break;
7598
7599 case CPU_ONLINE:
7600 case CPU_ONLINE_FROZEN:
7601 /* Strictly unnecessary, as first user will wake it. */
7602 wake_up_process(cpu_rq(cpu)->migration_thread);
7603
7604 /* Update our root-domain */
7605 rq = cpu_rq(cpu);
7606 spin_lock_irqsave(&rq->lock, flags);
7607 if (rq->rd) {
7608 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7609
7610 set_rq_online(rq);
7611 }
7612 spin_unlock_irqrestore(&rq->lock, flags);
7613 break;
7614
7615 #ifdef CONFIG_HOTPLUG_CPU
7616 case CPU_UP_CANCELED:
7617 case CPU_UP_CANCELED_FROZEN:
7618 if (!cpu_rq(cpu)->migration_thread)
7619 break;
7620 /* Unbind it from offline cpu so it can run. Fall thru. */
7621 kthread_bind(cpu_rq(cpu)->migration_thread,
7622 cpumask_any(cpu_online_mask));
7623 kthread_stop(cpu_rq(cpu)->migration_thread);
7624 put_task_struct(cpu_rq(cpu)->migration_thread);
7625 cpu_rq(cpu)->migration_thread = NULL;
7626 break;
7627
7628 case CPU_DEAD:
7629 case CPU_DEAD_FROZEN:
7630 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
7631 migrate_live_tasks(cpu);
7632 rq = cpu_rq(cpu);
7633 kthread_stop(rq->migration_thread);
7634 put_task_struct(rq->migration_thread);
7635 rq->migration_thread = NULL;
7636 /* Idle task back to normal (off runqueue, low prio) */
7637 spin_lock_irq(&rq->lock);
7638 update_rq_clock(rq);
7639 deactivate_task(rq, rq->idle, 0);
7640 rq->idle->static_prio = MAX_PRIO;
7641 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7642 rq->idle->sched_class = &idle_sched_class;
7643 migrate_dead_tasks(cpu);
7644 spin_unlock_irq(&rq->lock);
7645 cpuset_unlock();
7646 migrate_nr_uninterruptible(rq);
7647 BUG_ON(rq->nr_running != 0);
7648 calc_global_load_remove(rq);
7649 /*
7650 * No need to migrate the tasks: it was best-effort if
7651 * they didn't take sched_hotcpu_mutex. Just wake up
7652 * the requestors.
7653 */
7654 spin_lock_irq(&rq->lock);
7655 while (!list_empty(&rq->migration_queue)) {
7656 struct migration_req *req;
7657
7658 req = list_entry(rq->migration_queue.next,
7659 struct migration_req, list);
7660 list_del_init(&req->list);
7661 spin_unlock_irq(&rq->lock);
7662 complete(&req->done);
7663 spin_lock_irq(&rq->lock);
7664 }
7665 spin_unlock_irq(&rq->lock);
7666 break;
7667
7668 case CPU_DYING:
7669 case CPU_DYING_FROZEN:
7670 /* Update our root-domain */
7671 rq = cpu_rq(cpu);
7672 spin_lock_irqsave(&rq->lock, flags);
7673 if (rq->rd) {
7674 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7675 set_rq_offline(rq);
7676 }
7677 spin_unlock_irqrestore(&rq->lock, flags);
7678 break;
7679 #endif
7680 }
7681 return NOTIFY_OK;
7682 }
7683
7684 /*
7685 * Register at high priority so that task migration (migrate_all_tasks)
7686 * happens before everything else. This has to be lower priority than
7687 * the notifier in the perf_event subsystem, though.
7688 */
7689 static struct notifier_block __cpuinitdata migration_notifier = {
7690 .notifier_call = migration_call,
7691 .priority = 10
7692 };
7693
7694 static int __init migration_init(void)
7695 {
7696 void *cpu = (void *)(long)smp_processor_id();
7697 int err;
7698
7699 /* Start one for the boot CPU: */
7700 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7701 BUG_ON(err == NOTIFY_BAD);
7702 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7703 register_cpu_notifier(&migration_notifier);
7704
7705 return 0;
7706 }
7707 early_initcall(migration_init);
7708 #endif
7709
7710 #ifdef CONFIG_SMP
7711
7712 #ifdef CONFIG_SCHED_DEBUG
7713
7714 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7715 struct cpumask *groupmask)
7716 {
7717 struct sched_group *group = sd->groups;
7718 char str[256];
7719
7720 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7721 cpumask_clear(groupmask);
7722
7723 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7724
7725 if (!(sd->flags & SD_LOAD_BALANCE)) {
7726 printk("does not load-balance\n");
7727 if (sd->parent)
7728 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7729 " has parent");
7730 return -1;
7731 }
7732
7733 printk(KERN_CONT "span %s level %s\n", str, sd->name);
7734
7735 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
7736 printk(KERN_ERR "ERROR: domain->span does not contain "
7737 "CPU%d\n", cpu);
7738 }
7739 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
7740 printk(KERN_ERR "ERROR: domain->groups does not contain"
7741 " CPU%d\n", cpu);
7742 }
7743
7744 printk(KERN_DEBUG "%*s groups:", level + 1, "");
7745 do {
7746 if (!group) {
7747 printk("\n");
7748 printk(KERN_ERR "ERROR: group is NULL\n");
7749 break;
7750 }
7751
7752 if (!group->cpu_power) {
7753 printk(KERN_CONT "\n");
7754 printk(KERN_ERR "ERROR: domain->cpu_power not "
7755 "set\n");
7756 break;
7757 }
7758
7759 if (!cpumask_weight(sched_group_cpus(group))) {
7760 printk(KERN_CONT "\n");
7761 printk(KERN_ERR "ERROR: empty group\n");
7762 break;
7763 }
7764
7765 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
7766 printk(KERN_CONT "\n");
7767 printk(KERN_ERR "ERROR: repeated CPUs\n");
7768 break;
7769 }
7770
7771 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
7772
7773 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7774
7775 printk(KERN_CONT " %s", str);
7776 if (group->cpu_power != SCHED_LOAD_SCALE) {
7777 printk(KERN_CONT " (cpu_power = %d)",
7778 group->cpu_power);
7779 }
7780
7781 group = group->next;
7782 } while (group != sd->groups);
7783 printk(KERN_CONT "\n");
7784
7785 if (!cpumask_equal(sched_domain_span(sd), groupmask))
7786 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
7787
7788 if (sd->parent &&
7789 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
7790 printk(KERN_ERR "ERROR: parent span is not a superset "
7791 "of domain->span\n");
7792 return 0;
7793 }
7794
7795 static void sched_domain_debug(struct sched_domain *sd, int cpu)
7796 {
7797 cpumask_var_t groupmask;
7798 int level = 0;
7799
7800 if (!sd) {
7801 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7802 return;
7803 }
7804
7805 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7806
7807 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7808 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7809 return;
7810 }
7811
7812 for (;;) {
7813 if (sched_domain_debug_one(sd, cpu, level, groupmask))
7814 break;
7815 level++;
7816 sd = sd->parent;
7817 if (!sd)
7818 break;
7819 }
7820 free_cpumask_var(groupmask);
7821 }
7822 #else /* !CONFIG_SCHED_DEBUG */
7823 # define sched_domain_debug(sd, cpu) do { } while (0)
7824 #endif /* CONFIG_SCHED_DEBUG */
7825
7826 static int sd_degenerate(struct sched_domain *sd)
7827 {
7828 if (cpumask_weight(sched_domain_span(sd)) == 1)
7829 return 1;
7830
7831 /* Following flags need at least 2 groups */
7832 if (sd->flags & (SD_LOAD_BALANCE |
7833 SD_BALANCE_NEWIDLE |
7834 SD_BALANCE_FORK |
7835 SD_BALANCE_EXEC |
7836 SD_SHARE_CPUPOWER |
7837 SD_SHARE_PKG_RESOURCES)) {
7838 if (sd->groups != sd->groups->next)
7839 return 0;
7840 }
7841
7842 /* Following flags don't use groups */
7843 if (sd->flags & (SD_WAKE_AFFINE))
7844 return 0;
7845
7846 return 1;
7847 }
7848
7849 static int
7850 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7851 {
7852 unsigned long cflags = sd->flags, pflags = parent->flags;
7853
7854 if (sd_degenerate(parent))
7855 return 1;
7856
7857 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7858 return 0;
7859
7860 /* Flags needing groups don't count if only 1 group in parent */
7861 if (parent->groups == parent->groups->next) {
7862 pflags &= ~(SD_LOAD_BALANCE |
7863 SD_BALANCE_NEWIDLE |
7864 SD_BALANCE_FORK |
7865 SD_BALANCE_EXEC |
7866 SD_SHARE_CPUPOWER |
7867 SD_SHARE_PKG_RESOURCES);
7868 if (nr_node_ids == 1)
7869 pflags &= ~SD_SERIALIZE;
7870 }
7871 if (~cflags & pflags)
7872 return 0;
7873
7874 return 1;
7875 }
7876
7877 static void free_rootdomain(struct root_domain *rd)
7878 {
7879 cpupri_cleanup(&rd->cpupri);
7880
7881 free_cpumask_var(rd->rto_mask);
7882 free_cpumask_var(rd->online);
7883 free_cpumask_var(rd->span);
7884 kfree(rd);
7885 }
7886
7887 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7888 {
7889 struct root_domain *old_rd = NULL;
7890 unsigned long flags;
7891
7892 spin_lock_irqsave(&rq->lock, flags);
7893
7894 if (rq->rd) {
7895 old_rd = rq->rd;
7896
7897 if (cpumask_test_cpu(rq->cpu, old_rd->online))
7898 set_rq_offline(rq);
7899
7900 cpumask_clear_cpu(rq->cpu, old_rd->span);
7901
7902 /*
7903 * If we dont want to free the old_rt yet then
7904 * set old_rd to NULL to skip the freeing later
7905 * in this function:
7906 */
7907 if (!atomic_dec_and_test(&old_rd->refcount))
7908 old_rd = NULL;
7909 }
7910
7911 atomic_inc(&rd->refcount);
7912 rq->rd = rd;
7913
7914 cpumask_set_cpu(rq->cpu, rd->span);
7915 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
7916 set_rq_online(rq);
7917
7918 spin_unlock_irqrestore(&rq->lock, flags);
7919
7920 if (old_rd)
7921 free_rootdomain(old_rd);
7922 }
7923
7924 static int init_rootdomain(struct root_domain *rd, bool bootmem)
7925 {
7926 gfp_t gfp = GFP_KERNEL;
7927
7928 memset(rd, 0, sizeof(*rd));
7929
7930 if (bootmem)
7931 gfp = GFP_NOWAIT;
7932
7933 if (!alloc_cpumask_var(&rd->span, gfp))
7934 goto out;
7935 if (!alloc_cpumask_var(&rd->online, gfp))
7936 goto free_span;
7937 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
7938 goto free_online;
7939
7940 if (cpupri_init(&rd->cpupri, bootmem) != 0)
7941 goto free_rto_mask;
7942 return 0;
7943
7944 free_rto_mask:
7945 free_cpumask_var(rd->rto_mask);
7946 free_online:
7947 free_cpumask_var(rd->online);
7948 free_span:
7949 free_cpumask_var(rd->span);
7950 out:
7951 return -ENOMEM;
7952 }
7953
7954 static void init_defrootdomain(void)
7955 {
7956 init_rootdomain(&def_root_domain, true);
7957
7958 atomic_set(&def_root_domain.refcount, 1);
7959 }
7960
7961 static struct root_domain *alloc_rootdomain(void)
7962 {
7963 struct root_domain *rd;
7964
7965 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7966 if (!rd)
7967 return NULL;
7968
7969 if (init_rootdomain(rd, false) != 0) {
7970 kfree(rd);
7971 return NULL;
7972 }
7973
7974 return rd;
7975 }
7976
7977 /*
7978 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
7979 * hold the hotplug lock.
7980 */
7981 static void
7982 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
7983 {
7984 struct rq *rq = cpu_rq(cpu);
7985 struct sched_domain *tmp;
7986
7987 /* Remove the sched domains which do not contribute to scheduling. */
7988 for (tmp = sd; tmp; ) {
7989 struct sched_domain *parent = tmp->parent;
7990 if (!parent)
7991 break;
7992
7993 if (sd_parent_degenerate(tmp, parent)) {
7994 tmp->parent = parent->parent;
7995 if (parent->parent)
7996 parent->parent->child = tmp;
7997 } else
7998 tmp = tmp->parent;
7999 }
8000
8001 if (sd && sd_degenerate(sd)) {
8002 sd = sd->parent;
8003 if (sd)
8004 sd->child = NULL;
8005 }
8006
8007 sched_domain_debug(sd, cpu);
8008
8009 rq_attach_root(rq, rd);
8010 rcu_assign_pointer(rq->sd, sd);
8011 }
8012
8013 /* cpus with isolated domains */
8014 static cpumask_var_t cpu_isolated_map;
8015
8016 /* Setup the mask of cpus configured for isolated domains */
8017 static int __init isolated_cpu_setup(char *str)
8018 {
8019 cpulist_parse(str, cpu_isolated_map);
8020 return 1;
8021 }
8022
8023 __setup("isolcpus=", isolated_cpu_setup);
8024
8025 /*
8026 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
8027 * to a function which identifies what group(along with sched group) a CPU
8028 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
8029 * (due to the fact that we keep track of groups covered with a struct cpumask).
8030 *
8031 * init_sched_build_groups will build a circular linked list of the groups
8032 * covered by the given span, and will set each group's ->cpumask correctly,
8033 * and ->cpu_power to 0.
8034 */
8035 static void
8036 init_sched_build_groups(const struct cpumask *span,
8037 const struct cpumask *cpu_map,
8038 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
8039 struct sched_group **sg,
8040 struct cpumask *tmpmask),
8041 struct cpumask *covered, struct cpumask *tmpmask)
8042 {
8043 struct sched_group *first = NULL, *last = NULL;
8044 int i;
8045
8046 cpumask_clear(covered);
8047
8048 for_each_cpu(i, span) {
8049 struct sched_group *sg;
8050 int group = group_fn(i, cpu_map, &sg, tmpmask);
8051 int j;
8052
8053 if (cpumask_test_cpu(i, covered))
8054 continue;
8055
8056 cpumask_clear(sched_group_cpus(sg));
8057 sg->cpu_power = 0;
8058
8059 for_each_cpu(j, span) {
8060 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
8061 continue;
8062
8063 cpumask_set_cpu(j, covered);
8064 cpumask_set_cpu(j, sched_group_cpus(sg));
8065 }
8066 if (!first)
8067 first = sg;
8068 if (last)
8069 last->next = sg;
8070 last = sg;
8071 }
8072 last->next = first;
8073 }
8074
8075 #define SD_NODES_PER_DOMAIN 16
8076
8077 #ifdef CONFIG_NUMA
8078
8079 /**
8080 * find_next_best_node - find the next node to include in a sched_domain
8081 * @node: node whose sched_domain we're building
8082 * @used_nodes: nodes already in the sched_domain
8083 *
8084 * Find the next node to include in a given scheduling domain. Simply
8085 * finds the closest node not already in the @used_nodes map.
8086 *
8087 * Should use nodemask_t.
8088 */
8089 static int find_next_best_node(int node, nodemask_t *used_nodes)
8090 {
8091 int i, n, val, min_val, best_node = 0;
8092
8093 min_val = INT_MAX;
8094
8095 for (i = 0; i < nr_node_ids; i++) {
8096 /* Start at @node */
8097 n = (node + i) % nr_node_ids;
8098
8099 if (!nr_cpus_node(n))
8100 continue;
8101
8102 /* Skip already used nodes */
8103 if (node_isset(n, *used_nodes))
8104 continue;
8105
8106 /* Simple min distance search */
8107 val = node_distance(node, n);
8108
8109 if (val < min_val) {
8110 min_val = val;
8111 best_node = n;
8112 }
8113 }
8114
8115 node_set(best_node, *used_nodes);
8116 return best_node;
8117 }
8118
8119 /**
8120 * sched_domain_node_span - get a cpumask for a node's sched_domain
8121 * @node: node whose cpumask we're constructing
8122 * @span: resulting cpumask
8123 *
8124 * Given a node, construct a good cpumask for its sched_domain to span. It
8125 * should be one that prevents unnecessary balancing, but also spreads tasks
8126 * out optimally.
8127 */
8128 static void sched_domain_node_span(int node, struct cpumask *span)
8129 {
8130 nodemask_t used_nodes;
8131 int i;
8132
8133 cpumask_clear(span);
8134 nodes_clear(used_nodes);
8135
8136 cpumask_or(span, span, cpumask_of_node(node));
8137 node_set(node, used_nodes);
8138
8139 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
8140 int next_node = find_next_best_node(node, &used_nodes);
8141
8142 cpumask_or(span, span, cpumask_of_node(next_node));
8143 }
8144 }
8145 #endif /* CONFIG_NUMA */
8146
8147 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
8148
8149 /*
8150 * The cpus mask in sched_group and sched_domain hangs off the end.
8151 *
8152 * ( See the the comments in include/linux/sched.h:struct sched_group
8153 * and struct sched_domain. )
8154 */
8155 struct static_sched_group {
8156 struct sched_group sg;
8157 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8158 };
8159
8160 struct static_sched_domain {
8161 struct sched_domain sd;
8162 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8163 };
8164
8165 struct s_data {
8166 #ifdef CONFIG_NUMA
8167 int sd_allnodes;
8168 cpumask_var_t domainspan;
8169 cpumask_var_t covered;
8170 cpumask_var_t notcovered;
8171 #endif
8172 cpumask_var_t nodemask;
8173 cpumask_var_t this_sibling_map;
8174 cpumask_var_t this_core_map;
8175 cpumask_var_t send_covered;
8176 cpumask_var_t tmpmask;
8177 struct sched_group **sched_group_nodes;
8178 struct root_domain *rd;
8179 };
8180
8181 enum s_alloc {
8182 sa_sched_groups = 0,
8183 sa_rootdomain,
8184 sa_tmpmask,
8185 sa_send_covered,
8186 sa_this_core_map,
8187 sa_this_sibling_map,
8188 sa_nodemask,
8189 sa_sched_group_nodes,
8190 #ifdef CONFIG_NUMA
8191 sa_notcovered,
8192 sa_covered,
8193 sa_domainspan,
8194 #endif
8195 sa_none,
8196 };
8197
8198 /*
8199 * SMT sched-domains:
8200 */
8201 #ifdef CONFIG_SCHED_SMT
8202 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8203 static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
8204
8205 static int
8206 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8207 struct sched_group **sg, struct cpumask *unused)
8208 {
8209 if (sg)
8210 *sg = &per_cpu(sched_group_cpus, cpu).sg;
8211 return cpu;
8212 }
8213 #endif /* CONFIG_SCHED_SMT */
8214
8215 /*
8216 * multi-core sched-domains:
8217 */
8218 #ifdef CONFIG_SCHED_MC
8219 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8220 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
8221 #endif /* CONFIG_SCHED_MC */
8222
8223 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
8224 static int
8225 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8226 struct sched_group **sg, struct cpumask *mask)
8227 {
8228 int group;
8229
8230 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8231 group = cpumask_first(mask);
8232 if (sg)
8233 *sg = &per_cpu(sched_group_core, group).sg;
8234 return group;
8235 }
8236 #elif defined(CONFIG_SCHED_MC)
8237 static int
8238 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8239 struct sched_group **sg, struct cpumask *unused)
8240 {
8241 if (sg)
8242 *sg = &per_cpu(sched_group_core, cpu).sg;
8243 return cpu;
8244 }
8245 #endif
8246
8247 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8248 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
8249
8250 static int
8251 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8252 struct sched_group **sg, struct cpumask *mask)
8253 {
8254 int group;
8255 #ifdef CONFIG_SCHED_MC
8256 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
8257 group = cpumask_first(mask);
8258 #elif defined(CONFIG_SCHED_SMT)
8259 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8260 group = cpumask_first(mask);
8261 #else
8262 group = cpu;
8263 #endif
8264 if (sg)
8265 *sg = &per_cpu(sched_group_phys, group).sg;
8266 return group;
8267 }
8268
8269 #ifdef CONFIG_NUMA
8270 /*
8271 * The init_sched_build_groups can't handle what we want to do with node
8272 * groups, so roll our own. Now each node has its own list of groups which
8273 * gets dynamically allocated.
8274 */
8275 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
8276 static struct sched_group ***sched_group_nodes_bycpu;
8277
8278 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
8279 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
8280
8281 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8282 struct sched_group **sg,
8283 struct cpumask *nodemask)
8284 {
8285 int group;
8286
8287 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
8288 group = cpumask_first(nodemask);
8289
8290 if (sg)
8291 *sg = &per_cpu(sched_group_allnodes, group).sg;
8292 return group;
8293 }
8294
8295 static void init_numa_sched_groups_power(struct sched_group *group_head)
8296 {
8297 struct sched_group *sg = group_head;
8298 int j;
8299
8300 if (!sg)
8301 return;
8302 do {
8303 for_each_cpu(j, sched_group_cpus(sg)) {
8304 struct sched_domain *sd;
8305
8306 sd = &per_cpu(phys_domains, j).sd;
8307 if (j != group_first_cpu(sd->groups)) {
8308 /*
8309 * Only add "power" once for each
8310 * physical package.
8311 */
8312 continue;
8313 }
8314
8315 sg->cpu_power += sd->groups->cpu_power;
8316 }
8317 sg = sg->next;
8318 } while (sg != group_head);
8319 }
8320
8321 static int build_numa_sched_groups(struct s_data *d,
8322 const struct cpumask *cpu_map, int num)
8323 {
8324 struct sched_domain *sd;
8325 struct sched_group *sg, *prev;
8326 int n, j;
8327
8328 cpumask_clear(d->covered);
8329 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
8330 if (cpumask_empty(d->nodemask)) {
8331 d->sched_group_nodes[num] = NULL;
8332 goto out;
8333 }
8334
8335 sched_domain_node_span(num, d->domainspan);
8336 cpumask_and(d->domainspan, d->domainspan, cpu_map);
8337
8338 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8339 GFP_KERNEL, num);
8340 if (!sg) {
8341 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
8342 num);
8343 return -ENOMEM;
8344 }
8345 d->sched_group_nodes[num] = sg;
8346
8347 for_each_cpu(j, d->nodemask) {
8348 sd = &per_cpu(node_domains, j).sd;
8349 sd->groups = sg;
8350 }
8351
8352 sg->cpu_power = 0;
8353 cpumask_copy(sched_group_cpus(sg), d->nodemask);
8354 sg->next = sg;
8355 cpumask_or(d->covered, d->covered, d->nodemask);
8356
8357 prev = sg;
8358 for (j = 0; j < nr_node_ids; j++) {
8359 n = (num + j) % nr_node_ids;
8360 cpumask_complement(d->notcovered, d->covered);
8361 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
8362 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
8363 if (cpumask_empty(d->tmpmask))
8364 break;
8365 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
8366 if (cpumask_empty(d->tmpmask))
8367 continue;
8368 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8369 GFP_KERNEL, num);
8370 if (!sg) {
8371 printk(KERN_WARNING
8372 "Can not alloc domain group for node %d\n", j);
8373 return -ENOMEM;
8374 }
8375 sg->cpu_power = 0;
8376 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
8377 sg->next = prev->next;
8378 cpumask_or(d->covered, d->covered, d->tmpmask);
8379 prev->next = sg;
8380 prev = sg;
8381 }
8382 out:
8383 return 0;
8384 }
8385 #endif /* CONFIG_NUMA */
8386
8387 #ifdef CONFIG_NUMA
8388 /* Free memory allocated for various sched_group structures */
8389 static void free_sched_groups(const struct cpumask *cpu_map,
8390 struct cpumask *nodemask)
8391 {
8392 int cpu, i;
8393
8394 for_each_cpu(cpu, cpu_map) {
8395 struct sched_group **sched_group_nodes
8396 = sched_group_nodes_bycpu[cpu];
8397
8398 if (!sched_group_nodes)
8399 continue;
8400
8401 for (i = 0; i < nr_node_ids; i++) {
8402 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8403
8404 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8405 if (cpumask_empty(nodemask))
8406 continue;
8407
8408 if (sg == NULL)
8409 continue;
8410 sg = sg->next;
8411 next_sg:
8412 oldsg = sg;
8413 sg = sg->next;
8414 kfree(oldsg);
8415 if (oldsg != sched_group_nodes[i])
8416 goto next_sg;
8417 }
8418 kfree(sched_group_nodes);
8419 sched_group_nodes_bycpu[cpu] = NULL;
8420 }
8421 }
8422 #else /* !CONFIG_NUMA */
8423 static void free_sched_groups(const struct cpumask *cpu_map,
8424 struct cpumask *nodemask)
8425 {
8426 }
8427 #endif /* CONFIG_NUMA */
8428
8429 /*
8430 * Initialize sched groups cpu_power.
8431 *
8432 * cpu_power indicates the capacity of sched group, which is used while
8433 * distributing the load between different sched groups in a sched domain.
8434 * Typically cpu_power for all the groups in a sched domain will be same unless
8435 * there are asymmetries in the topology. If there are asymmetries, group
8436 * having more cpu_power will pickup more load compared to the group having
8437 * less cpu_power.
8438 */
8439 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8440 {
8441 struct sched_domain *child;
8442 struct sched_group *group;
8443 long power;
8444 int weight;
8445
8446 WARN_ON(!sd || !sd->groups);
8447
8448 if (cpu != group_first_cpu(sd->groups))
8449 return;
8450
8451 child = sd->child;
8452
8453 sd->groups->cpu_power = 0;
8454
8455 if (!child) {
8456 power = SCHED_LOAD_SCALE;
8457 weight = cpumask_weight(sched_domain_span(sd));
8458 /*
8459 * SMT siblings share the power of a single core.
8460 * Usually multiple threads get a better yield out of
8461 * that one core than a single thread would have,
8462 * reflect that in sd->smt_gain.
8463 */
8464 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8465 power *= sd->smt_gain;
8466 power /= weight;
8467 power >>= SCHED_LOAD_SHIFT;
8468 }
8469 sd->groups->cpu_power += power;
8470 return;
8471 }
8472
8473 /*
8474 * Add cpu_power of each child group to this groups cpu_power.
8475 */
8476 group = child->groups;
8477 do {
8478 sd->groups->cpu_power += group->cpu_power;
8479 group = group->next;
8480 } while (group != child->groups);
8481 }
8482
8483 /*
8484 * Initializers for schedule domains
8485 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8486 */
8487
8488 #ifdef CONFIG_SCHED_DEBUG
8489 # define SD_INIT_NAME(sd, type) sd->name = #type
8490 #else
8491 # define SD_INIT_NAME(sd, type) do { } while (0)
8492 #endif
8493
8494 #define SD_INIT(sd, type) sd_init_##type(sd)
8495
8496 #define SD_INIT_FUNC(type) \
8497 static noinline void sd_init_##type(struct sched_domain *sd) \
8498 { \
8499 memset(sd, 0, sizeof(*sd)); \
8500 *sd = SD_##type##_INIT; \
8501 sd->level = SD_LV_##type; \
8502 SD_INIT_NAME(sd, type); \
8503 }
8504
8505 SD_INIT_FUNC(CPU)
8506 #ifdef CONFIG_NUMA
8507 SD_INIT_FUNC(ALLNODES)
8508 SD_INIT_FUNC(NODE)
8509 #endif
8510 #ifdef CONFIG_SCHED_SMT
8511 SD_INIT_FUNC(SIBLING)
8512 #endif
8513 #ifdef CONFIG_SCHED_MC
8514 SD_INIT_FUNC(MC)
8515 #endif
8516
8517 static int default_relax_domain_level = -1;
8518
8519 static int __init setup_relax_domain_level(char *str)
8520 {
8521 unsigned long val;
8522
8523 val = simple_strtoul(str, NULL, 0);
8524 if (val < SD_LV_MAX)
8525 default_relax_domain_level = val;
8526
8527 return 1;
8528 }
8529 __setup("relax_domain_level=", setup_relax_domain_level);
8530
8531 static void set_domain_attribute(struct sched_domain *sd,
8532 struct sched_domain_attr *attr)
8533 {
8534 int request;
8535
8536 if (!attr || attr->relax_domain_level < 0) {
8537 if (default_relax_domain_level < 0)
8538 return;
8539 else
8540 request = default_relax_domain_level;
8541 } else
8542 request = attr->relax_domain_level;
8543 if (request < sd->level) {
8544 /* turn off idle balance on this domain */
8545 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8546 } else {
8547 /* turn on idle balance on this domain */
8548 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8549 }
8550 }
8551
8552 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
8553 const struct cpumask *cpu_map)
8554 {
8555 switch (what) {
8556 case sa_sched_groups:
8557 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
8558 d->sched_group_nodes = NULL;
8559 case sa_rootdomain:
8560 free_rootdomain(d->rd); /* fall through */
8561 case sa_tmpmask:
8562 free_cpumask_var(d->tmpmask); /* fall through */
8563 case sa_send_covered:
8564 free_cpumask_var(d->send_covered); /* fall through */
8565 case sa_this_core_map:
8566 free_cpumask_var(d->this_core_map); /* fall through */
8567 case sa_this_sibling_map:
8568 free_cpumask_var(d->this_sibling_map); /* fall through */
8569 case sa_nodemask:
8570 free_cpumask_var(d->nodemask); /* fall through */
8571 case sa_sched_group_nodes:
8572 #ifdef CONFIG_NUMA
8573 kfree(d->sched_group_nodes); /* fall through */
8574 case sa_notcovered:
8575 free_cpumask_var(d->notcovered); /* fall through */
8576 case sa_covered:
8577 free_cpumask_var(d->covered); /* fall through */
8578 case sa_domainspan:
8579 free_cpumask_var(d->domainspan); /* fall through */
8580 #endif
8581 case sa_none:
8582 break;
8583 }
8584 }
8585
8586 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
8587 const struct cpumask *cpu_map)
8588 {
8589 #ifdef CONFIG_NUMA
8590 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
8591 return sa_none;
8592 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
8593 return sa_domainspan;
8594 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
8595 return sa_covered;
8596 /* Allocate the per-node list of sched groups */
8597 d->sched_group_nodes = kcalloc(nr_node_ids,
8598 sizeof(struct sched_group *), GFP_KERNEL);
8599 if (!d->sched_group_nodes) {
8600 printk(KERN_WARNING "Can not alloc sched group node list\n");
8601 return sa_notcovered;
8602 }
8603 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
8604 #endif
8605 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
8606 return sa_sched_group_nodes;
8607 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
8608 return sa_nodemask;
8609 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
8610 return sa_this_sibling_map;
8611 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
8612 return sa_this_core_map;
8613 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
8614 return sa_send_covered;
8615 d->rd = alloc_rootdomain();
8616 if (!d->rd) {
8617 printk(KERN_WARNING "Cannot alloc root domain\n");
8618 return sa_tmpmask;
8619 }
8620 return sa_rootdomain;
8621 }
8622
8623 static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
8624 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
8625 {
8626 struct sched_domain *sd = NULL;
8627 #ifdef CONFIG_NUMA
8628 struct sched_domain *parent;
8629
8630 d->sd_allnodes = 0;
8631 if (cpumask_weight(cpu_map) >
8632 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
8633 sd = &per_cpu(allnodes_domains, i).sd;
8634 SD_INIT(sd, ALLNODES);
8635 set_domain_attribute(sd, attr);
8636 cpumask_copy(sched_domain_span(sd), cpu_map);
8637 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
8638 d->sd_allnodes = 1;
8639 }
8640 parent = sd;
8641
8642 sd = &per_cpu(node_domains, i).sd;
8643 SD_INIT(sd, NODE);
8644 set_domain_attribute(sd, attr);
8645 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8646 sd->parent = parent;
8647 if (parent)
8648 parent->child = sd;
8649 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
8650 #endif
8651 return sd;
8652 }
8653
8654 static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
8655 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8656 struct sched_domain *parent, int i)
8657 {
8658 struct sched_domain *sd;
8659 sd = &per_cpu(phys_domains, i).sd;
8660 SD_INIT(sd, CPU);
8661 set_domain_attribute(sd, attr);
8662 cpumask_copy(sched_domain_span(sd), d->nodemask);
8663 sd->parent = parent;
8664 if (parent)
8665 parent->child = sd;
8666 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
8667 return sd;
8668 }
8669
8670 static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
8671 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8672 struct sched_domain *parent, int i)
8673 {
8674 struct sched_domain *sd = parent;
8675 #ifdef CONFIG_SCHED_MC
8676 sd = &per_cpu(core_domains, i).sd;
8677 SD_INIT(sd, MC);
8678 set_domain_attribute(sd, attr);
8679 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
8680 sd->parent = parent;
8681 parent->child = sd;
8682 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
8683 #endif
8684 return sd;
8685 }
8686
8687 static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
8688 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8689 struct sched_domain *parent, int i)
8690 {
8691 struct sched_domain *sd = parent;
8692 #ifdef CONFIG_SCHED_SMT
8693 sd = &per_cpu(cpu_domains, i).sd;
8694 SD_INIT(sd, SIBLING);
8695 set_domain_attribute(sd, attr);
8696 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
8697 sd->parent = parent;
8698 parent->child = sd;
8699 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
8700 #endif
8701 return sd;
8702 }
8703
8704 static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
8705 const struct cpumask *cpu_map, int cpu)
8706 {
8707 switch (l) {
8708 #ifdef CONFIG_SCHED_SMT
8709 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
8710 cpumask_and(d->this_sibling_map, cpu_map,
8711 topology_thread_cpumask(cpu));
8712 if (cpu == cpumask_first(d->this_sibling_map))
8713 init_sched_build_groups(d->this_sibling_map, cpu_map,
8714 &cpu_to_cpu_group,
8715 d->send_covered, d->tmpmask);
8716 break;
8717 #endif
8718 #ifdef CONFIG_SCHED_MC
8719 case SD_LV_MC: /* set up multi-core groups */
8720 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
8721 if (cpu == cpumask_first(d->this_core_map))
8722 init_sched_build_groups(d->this_core_map, cpu_map,
8723 &cpu_to_core_group,
8724 d->send_covered, d->tmpmask);
8725 break;
8726 #endif
8727 case SD_LV_CPU: /* set up physical groups */
8728 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
8729 if (!cpumask_empty(d->nodemask))
8730 init_sched_build_groups(d->nodemask, cpu_map,
8731 &cpu_to_phys_group,
8732 d->send_covered, d->tmpmask);
8733 break;
8734 #ifdef CONFIG_NUMA
8735 case SD_LV_ALLNODES:
8736 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
8737 d->send_covered, d->tmpmask);
8738 break;
8739 #endif
8740 default:
8741 break;
8742 }
8743 }
8744
8745 /*
8746 * Build sched domains for a given set of cpus and attach the sched domains
8747 * to the individual cpus
8748 */
8749 static int __build_sched_domains(const struct cpumask *cpu_map,
8750 struct sched_domain_attr *attr)
8751 {
8752 enum s_alloc alloc_state = sa_none;
8753 struct s_data d;
8754 struct sched_domain *sd;
8755 int i;
8756 #ifdef CONFIG_NUMA
8757 d.sd_allnodes = 0;
8758 #endif
8759
8760 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
8761 if (alloc_state != sa_rootdomain)
8762 goto error;
8763 alloc_state = sa_sched_groups;
8764
8765 /*
8766 * Set up domains for cpus specified by the cpu_map.
8767 */
8768 for_each_cpu(i, cpu_map) {
8769 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
8770 cpu_map);
8771
8772 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
8773 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
8774 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
8775 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
8776 }
8777
8778 for_each_cpu(i, cpu_map) {
8779 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
8780 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
8781 }
8782
8783 /* Set up physical groups */
8784 for (i = 0; i < nr_node_ids; i++)
8785 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
8786
8787 #ifdef CONFIG_NUMA
8788 /* Set up node groups */
8789 if (d.sd_allnodes)
8790 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
8791
8792 for (i = 0; i < nr_node_ids; i++)
8793 if (build_numa_sched_groups(&d, cpu_map, i))
8794 goto error;
8795 #endif
8796
8797 /* Calculate CPU power for physical packages and nodes */
8798 #ifdef CONFIG_SCHED_SMT
8799 for_each_cpu(i, cpu_map) {
8800 sd = &per_cpu(cpu_domains, i).sd;
8801 init_sched_groups_power(i, sd);
8802 }
8803 #endif
8804 #ifdef CONFIG_SCHED_MC
8805 for_each_cpu(i, cpu_map) {
8806 sd = &per_cpu(core_domains, i).sd;
8807 init_sched_groups_power(i, sd);
8808 }
8809 #endif
8810
8811 for_each_cpu(i, cpu_map) {
8812 sd = &per_cpu(phys_domains, i).sd;
8813 init_sched_groups_power(i, sd);
8814 }
8815
8816 #ifdef CONFIG_NUMA
8817 for (i = 0; i < nr_node_ids; i++)
8818 init_numa_sched_groups_power(d.sched_group_nodes[i]);
8819
8820 if (d.sd_allnodes) {
8821 struct sched_group *sg;
8822
8823 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8824 d.tmpmask);
8825 init_numa_sched_groups_power(sg);
8826 }
8827 #endif
8828
8829 /* Attach the domains */
8830 for_each_cpu(i, cpu_map) {
8831 #ifdef CONFIG_SCHED_SMT
8832 sd = &per_cpu(cpu_domains, i).sd;
8833 #elif defined(CONFIG_SCHED_MC)
8834 sd = &per_cpu(core_domains, i).sd;
8835 #else
8836 sd = &per_cpu(phys_domains, i).sd;
8837 #endif
8838 cpu_attach_domain(sd, d.rd, i);
8839 }
8840
8841 d.sched_group_nodes = NULL; /* don't free this we still need it */
8842 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
8843 return 0;
8844
8845 error:
8846 __free_domain_allocs(&d, alloc_state, cpu_map);
8847 return -ENOMEM;
8848 }
8849
8850 static int build_sched_domains(const struct cpumask *cpu_map)
8851 {
8852 return __build_sched_domains(cpu_map, NULL);
8853 }
8854
8855 static struct cpumask *doms_cur; /* current sched domains */
8856 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
8857 static struct sched_domain_attr *dattr_cur;
8858 /* attribues of custom domains in 'doms_cur' */
8859
8860 /*
8861 * Special case: If a kmalloc of a doms_cur partition (array of
8862 * cpumask) fails, then fallback to a single sched domain,
8863 * as determined by the single cpumask fallback_doms.
8864 */
8865 static cpumask_var_t fallback_doms;
8866
8867 /*
8868 * arch_update_cpu_topology lets virtualized architectures update the
8869 * cpu core maps. It is supposed to return 1 if the topology changed
8870 * or 0 if it stayed the same.
8871 */
8872 int __attribute__((weak)) arch_update_cpu_topology(void)
8873 {
8874 return 0;
8875 }
8876
8877 /*
8878 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
8879 * For now this just excludes isolated cpus, but could be used to
8880 * exclude other special cases in the future.
8881 */
8882 static int arch_init_sched_domains(const struct cpumask *cpu_map)
8883 {
8884 int err;
8885
8886 arch_update_cpu_topology();
8887 ndoms_cur = 1;
8888 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
8889 if (!doms_cur)
8890 doms_cur = fallback_doms;
8891 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
8892 dattr_cur = NULL;
8893 err = build_sched_domains(doms_cur);
8894 register_sched_domain_sysctl();
8895
8896 return err;
8897 }
8898
8899 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
8900 struct cpumask *tmpmask)
8901 {
8902 free_sched_groups(cpu_map, tmpmask);
8903 }
8904
8905 /*
8906 * Detach sched domains from a group of cpus specified in cpu_map
8907 * These cpus will now be attached to the NULL domain
8908 */
8909 static void detach_destroy_domains(const struct cpumask *cpu_map)
8910 {
8911 /* Save because hotplug lock held. */
8912 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
8913 int i;
8914
8915 for_each_cpu(i, cpu_map)
8916 cpu_attach_domain(NULL, &def_root_domain, i);
8917 synchronize_sched();
8918 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
8919 }
8920
8921 /* handle null as "default" */
8922 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8923 struct sched_domain_attr *new, int idx_new)
8924 {
8925 struct sched_domain_attr tmp;
8926
8927 /* fast path */
8928 if (!new && !cur)
8929 return 1;
8930
8931 tmp = SD_ATTR_INIT;
8932 return !memcmp(cur ? (cur + idx_cur) : &tmp,
8933 new ? (new + idx_new) : &tmp,
8934 sizeof(struct sched_domain_attr));
8935 }
8936
8937 /*
8938 * Partition sched domains as specified by the 'ndoms_new'
8939 * cpumasks in the array doms_new[] of cpumasks. This compares
8940 * doms_new[] to the current sched domain partitioning, doms_cur[].
8941 * It destroys each deleted domain and builds each new domain.
8942 *
8943 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
8944 * The masks don't intersect (don't overlap.) We should setup one
8945 * sched domain for each mask. CPUs not in any of the cpumasks will
8946 * not be load balanced. If the same cpumask appears both in the
8947 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8948 * it as it is.
8949 *
8950 * The passed in 'doms_new' should be kmalloc'd. This routine takes
8951 * ownership of it and will kfree it when done with it. If the caller
8952 * failed the kmalloc call, then it can pass in doms_new == NULL &&
8953 * ndoms_new == 1, and partition_sched_domains() will fallback to
8954 * the single partition 'fallback_doms', it also forces the domains
8955 * to be rebuilt.
8956 *
8957 * If doms_new == NULL it will be replaced with cpu_online_mask.
8958 * ndoms_new == 0 is a special case for destroying existing domains,
8959 * and it will not create the default domain.
8960 *
8961 * Call with hotplug lock held
8962 */
8963 /* FIXME: Change to struct cpumask *doms_new[] */
8964 void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
8965 struct sched_domain_attr *dattr_new)
8966 {
8967 int i, j, n;
8968 int new_topology;
8969
8970 mutex_lock(&sched_domains_mutex);
8971
8972 /* always unregister in case we don't destroy any domains */
8973 unregister_sched_domain_sysctl();
8974
8975 /* Let architecture update cpu core mappings. */
8976 new_topology = arch_update_cpu_topology();
8977
8978 n = doms_new ? ndoms_new : 0;
8979
8980 /* Destroy deleted domains */
8981 for (i = 0; i < ndoms_cur; i++) {
8982 for (j = 0; j < n && !new_topology; j++) {
8983 if (cpumask_equal(&doms_cur[i], &doms_new[j])
8984 && dattrs_equal(dattr_cur, i, dattr_new, j))
8985 goto match1;
8986 }
8987 /* no match - a current sched domain not in new doms_new[] */
8988 detach_destroy_domains(doms_cur + i);
8989 match1:
8990 ;
8991 }
8992
8993 if (doms_new == NULL) {
8994 ndoms_cur = 0;
8995 doms_new = fallback_doms;
8996 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
8997 WARN_ON_ONCE(dattr_new);
8998 }
8999
9000 /* Build new domains */
9001 for (i = 0; i < ndoms_new; i++) {
9002 for (j = 0; j < ndoms_cur && !new_topology; j++) {
9003 if (cpumask_equal(&doms_new[i], &doms_cur[j])
9004 && dattrs_equal(dattr_new, i, dattr_cur, j))
9005 goto match2;
9006 }
9007 /* no match - add a new doms_new */
9008 __build_sched_domains(doms_new + i,
9009 dattr_new ? dattr_new + i : NULL);
9010 match2:
9011 ;
9012 }
9013
9014 /* Remember the new sched domains */
9015 if (doms_cur != fallback_doms)
9016 kfree(doms_cur);
9017 kfree(dattr_cur); /* kfree(NULL) is safe */
9018 doms_cur = doms_new;
9019 dattr_cur = dattr_new;
9020 ndoms_cur = ndoms_new;
9021
9022 register_sched_domain_sysctl();
9023
9024 mutex_unlock(&sched_domains_mutex);
9025 }
9026
9027 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9028 static void arch_reinit_sched_domains(void)
9029 {
9030 get_online_cpus();
9031
9032 /* Destroy domains first to force the rebuild */
9033 partition_sched_domains(0, NULL, NULL);
9034
9035 rebuild_sched_domains();
9036 put_online_cpus();
9037 }
9038
9039 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
9040 {
9041 unsigned int level = 0;
9042
9043 if (sscanf(buf, "%u", &level) != 1)
9044 return -EINVAL;
9045
9046 /*
9047 * level is always be positive so don't check for
9048 * level < POWERSAVINGS_BALANCE_NONE which is 0
9049 * What happens on 0 or 1 byte write,
9050 * need to check for count as well?
9051 */
9052
9053 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
9054 return -EINVAL;
9055
9056 if (smt)
9057 sched_smt_power_savings = level;
9058 else
9059 sched_mc_power_savings = level;
9060
9061 arch_reinit_sched_domains();
9062
9063 return count;
9064 }
9065
9066 #ifdef CONFIG_SCHED_MC
9067 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
9068 char *page)
9069 {
9070 return sprintf(page, "%u\n", sched_mc_power_savings);
9071 }
9072 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
9073 const char *buf, size_t count)
9074 {
9075 return sched_power_savings_store(buf, count, 0);
9076 }
9077 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
9078 sched_mc_power_savings_show,
9079 sched_mc_power_savings_store);
9080 #endif
9081
9082 #ifdef CONFIG_SCHED_SMT
9083 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
9084 char *page)
9085 {
9086 return sprintf(page, "%u\n", sched_smt_power_savings);
9087 }
9088 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
9089 const char *buf, size_t count)
9090 {
9091 return sched_power_savings_store(buf, count, 1);
9092 }
9093 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
9094 sched_smt_power_savings_show,
9095 sched_smt_power_savings_store);
9096 #endif
9097
9098 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
9099 {
9100 int err = 0;
9101
9102 #ifdef CONFIG_SCHED_SMT
9103 if (smt_capable())
9104 err = sysfs_create_file(&cls->kset.kobj,
9105 &attr_sched_smt_power_savings.attr);
9106 #endif
9107 #ifdef CONFIG_SCHED_MC
9108 if (!err && mc_capable())
9109 err = sysfs_create_file(&cls->kset.kobj,
9110 &attr_sched_mc_power_savings.attr);
9111 #endif
9112 return err;
9113 }
9114 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
9115
9116 #ifndef CONFIG_CPUSETS
9117 /*
9118 * Add online and remove offline CPUs from the scheduler domains.
9119 * When cpusets are enabled they take over this function.
9120 */
9121 static int update_sched_domains(struct notifier_block *nfb,
9122 unsigned long action, void *hcpu)
9123 {
9124 switch (action) {
9125 case CPU_ONLINE:
9126 case CPU_ONLINE_FROZEN:
9127 case CPU_DEAD:
9128 case CPU_DEAD_FROZEN:
9129 partition_sched_domains(1, NULL, NULL);
9130 return NOTIFY_OK;
9131
9132 default:
9133 return NOTIFY_DONE;
9134 }
9135 }
9136 #endif
9137
9138 static int update_runtime(struct notifier_block *nfb,
9139 unsigned long action, void *hcpu)
9140 {
9141 int cpu = (int)(long)hcpu;
9142
9143 switch (action) {
9144 case CPU_DOWN_PREPARE:
9145 case CPU_DOWN_PREPARE_FROZEN:
9146 disable_runtime(cpu_rq(cpu));
9147 return NOTIFY_OK;
9148
9149 case CPU_DOWN_FAILED:
9150 case CPU_DOWN_FAILED_FROZEN:
9151 case CPU_ONLINE:
9152 case CPU_ONLINE_FROZEN:
9153 enable_runtime(cpu_rq(cpu));
9154 return NOTIFY_OK;
9155
9156 default:
9157 return NOTIFY_DONE;
9158 }
9159 }
9160
9161 void __init sched_init_smp(void)
9162 {
9163 cpumask_var_t non_isolated_cpus;
9164
9165 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
9166 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
9167
9168 #if defined(CONFIG_NUMA)
9169 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
9170 GFP_KERNEL);
9171 BUG_ON(sched_group_nodes_bycpu == NULL);
9172 #endif
9173 get_online_cpus();
9174 mutex_lock(&sched_domains_mutex);
9175 arch_init_sched_domains(cpu_online_mask);
9176 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9177 if (cpumask_empty(non_isolated_cpus))
9178 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
9179 mutex_unlock(&sched_domains_mutex);
9180 put_online_cpus();
9181
9182 #ifndef CONFIG_CPUSETS
9183 /* XXX: Theoretical race here - CPU may be hotplugged now */
9184 hotcpu_notifier(update_sched_domains, 0);
9185 #endif
9186
9187 /* RT runtime code needs to handle some hotplug events */
9188 hotcpu_notifier(update_runtime, 0);
9189
9190 init_hrtick();
9191
9192 /* Move init over to a non-isolated CPU */
9193 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
9194 BUG();
9195 sched_init_granularity();
9196 free_cpumask_var(non_isolated_cpus);
9197
9198 init_sched_rt_class();
9199 }
9200 #else
9201 void __init sched_init_smp(void)
9202 {
9203 sched_init_granularity();
9204 }
9205 #endif /* CONFIG_SMP */
9206
9207 const_debug unsigned int sysctl_timer_migration = 1;
9208
9209 int in_sched_functions(unsigned long addr)
9210 {
9211 return in_lock_functions(addr) ||
9212 (addr >= (unsigned long)__sched_text_start
9213 && addr < (unsigned long)__sched_text_end);
9214 }
9215
9216 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
9217 {
9218 cfs_rq->tasks_timeline = RB_ROOT;
9219 INIT_LIST_HEAD(&cfs_rq->tasks);
9220 #ifdef CONFIG_FAIR_GROUP_SCHED
9221 cfs_rq->rq = rq;
9222 #endif
9223 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9224 }
9225
9226 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9227 {
9228 struct rt_prio_array *array;
9229 int i;
9230
9231 array = &rt_rq->active;
9232 for (i = 0; i < MAX_RT_PRIO; i++) {
9233 INIT_LIST_HEAD(array->queue + i);
9234 __clear_bit(i, array->bitmap);
9235 }
9236 /* delimiter for bitsearch: */
9237 __set_bit(MAX_RT_PRIO, array->bitmap);
9238
9239 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
9240 rt_rq->highest_prio.curr = MAX_RT_PRIO;
9241 #ifdef CONFIG_SMP
9242 rt_rq->highest_prio.next = MAX_RT_PRIO;
9243 #endif
9244 #endif
9245 #ifdef CONFIG_SMP
9246 rt_rq->rt_nr_migratory = 0;
9247 rt_rq->overloaded = 0;
9248 plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
9249 #endif
9250
9251 rt_rq->rt_time = 0;
9252 rt_rq->rt_throttled = 0;
9253 rt_rq->rt_runtime = 0;
9254 spin_lock_init(&rt_rq->rt_runtime_lock);
9255
9256 #ifdef CONFIG_RT_GROUP_SCHED
9257 rt_rq->rt_nr_boosted = 0;
9258 rt_rq->rq = rq;
9259 #endif
9260 }
9261
9262 #ifdef CONFIG_FAIR_GROUP_SCHED
9263 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9264 struct sched_entity *se, int cpu, int add,
9265 struct sched_entity *parent)
9266 {
9267 struct rq *rq = cpu_rq(cpu);
9268 tg->cfs_rq[cpu] = cfs_rq;
9269 init_cfs_rq(cfs_rq, rq);
9270 cfs_rq->tg = tg;
9271 if (add)
9272 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9273
9274 tg->se[cpu] = se;
9275 /* se could be NULL for init_task_group */
9276 if (!se)
9277 return;
9278
9279 if (!parent)
9280 se->cfs_rq = &rq->cfs;
9281 else
9282 se->cfs_rq = parent->my_q;
9283
9284 se->my_q = cfs_rq;
9285 se->load.weight = tg->shares;
9286 se->load.inv_weight = 0;
9287 se->parent = parent;
9288 }
9289 #endif
9290
9291 #ifdef CONFIG_RT_GROUP_SCHED
9292 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9293 struct sched_rt_entity *rt_se, int cpu, int add,
9294 struct sched_rt_entity *parent)
9295 {
9296 struct rq *rq = cpu_rq(cpu);
9297
9298 tg->rt_rq[cpu] = rt_rq;
9299 init_rt_rq(rt_rq, rq);
9300 rt_rq->tg = tg;
9301 rt_rq->rt_se = rt_se;
9302 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
9303 if (add)
9304 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9305
9306 tg->rt_se[cpu] = rt_se;
9307 if (!rt_se)
9308 return;
9309
9310 if (!parent)
9311 rt_se->rt_rq = &rq->rt;
9312 else
9313 rt_se->rt_rq = parent->my_q;
9314
9315 rt_se->my_q = rt_rq;
9316 rt_se->parent = parent;
9317 INIT_LIST_HEAD(&rt_se->run_list);
9318 }
9319 #endif
9320
9321 void __init sched_init(void)
9322 {
9323 int i, j;
9324 unsigned long alloc_size = 0, ptr;
9325
9326 #ifdef CONFIG_FAIR_GROUP_SCHED
9327 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9328 #endif
9329 #ifdef CONFIG_RT_GROUP_SCHED
9330 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9331 #endif
9332 #ifdef CONFIG_USER_SCHED
9333 alloc_size *= 2;
9334 #endif
9335 #ifdef CONFIG_CPUMASK_OFFSTACK
9336 alloc_size += num_possible_cpus() * cpumask_size();
9337 #endif
9338 /*
9339 * As sched_init() is called before page_alloc is setup,
9340 * we use alloc_bootmem().
9341 */
9342 if (alloc_size) {
9343 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
9344
9345 #ifdef CONFIG_FAIR_GROUP_SCHED
9346 init_task_group.se = (struct sched_entity **)ptr;
9347 ptr += nr_cpu_ids * sizeof(void **);
9348
9349 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9350 ptr += nr_cpu_ids * sizeof(void **);
9351
9352 #ifdef CONFIG_USER_SCHED
9353 root_task_group.se = (struct sched_entity **)ptr;
9354 ptr += nr_cpu_ids * sizeof(void **);
9355
9356 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9357 ptr += nr_cpu_ids * sizeof(void **);
9358 #endif /* CONFIG_USER_SCHED */
9359 #endif /* CONFIG_FAIR_GROUP_SCHED */
9360 #ifdef CONFIG_RT_GROUP_SCHED
9361 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9362 ptr += nr_cpu_ids * sizeof(void **);
9363
9364 init_task_group.rt_rq = (struct rt_rq **)ptr;
9365 ptr += nr_cpu_ids * sizeof(void **);
9366
9367 #ifdef CONFIG_USER_SCHED
9368 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9369 ptr += nr_cpu_ids * sizeof(void **);
9370
9371 root_task_group.rt_rq = (struct rt_rq **)ptr;
9372 ptr += nr_cpu_ids * sizeof(void **);
9373 #endif /* CONFIG_USER_SCHED */
9374 #endif /* CONFIG_RT_GROUP_SCHED */
9375 #ifdef CONFIG_CPUMASK_OFFSTACK
9376 for_each_possible_cpu(i) {
9377 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9378 ptr += cpumask_size();
9379 }
9380 #endif /* CONFIG_CPUMASK_OFFSTACK */
9381 }
9382
9383 #ifdef CONFIG_SMP
9384 init_defrootdomain();
9385 #endif
9386
9387 init_rt_bandwidth(&def_rt_bandwidth,
9388 global_rt_period(), global_rt_runtime());
9389
9390 #ifdef CONFIG_RT_GROUP_SCHED
9391 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9392 global_rt_period(), global_rt_runtime());
9393 #ifdef CONFIG_USER_SCHED
9394 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9395 global_rt_period(), RUNTIME_INF);
9396 #endif /* CONFIG_USER_SCHED */
9397 #endif /* CONFIG_RT_GROUP_SCHED */
9398
9399 #ifdef CONFIG_GROUP_SCHED
9400 list_add(&init_task_group.list, &task_groups);
9401 INIT_LIST_HEAD(&init_task_group.children);
9402
9403 #ifdef CONFIG_USER_SCHED
9404 INIT_LIST_HEAD(&root_task_group.children);
9405 init_task_group.parent = &root_task_group;
9406 list_add(&init_task_group.siblings, &root_task_group.children);
9407 #endif /* CONFIG_USER_SCHED */
9408 #endif /* CONFIG_GROUP_SCHED */
9409
9410 for_each_possible_cpu(i) {
9411 struct rq *rq;
9412
9413 rq = cpu_rq(i);
9414 spin_lock_init(&rq->lock);
9415 rq->nr_running = 0;
9416 rq->calc_load_active = 0;
9417 rq->calc_load_update = jiffies + LOAD_FREQ;
9418 init_cfs_rq(&rq->cfs, rq);
9419 init_rt_rq(&rq->rt, rq);
9420 #ifdef CONFIG_FAIR_GROUP_SCHED
9421 init_task_group.shares = init_task_group_load;
9422 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9423 #ifdef CONFIG_CGROUP_SCHED
9424 /*
9425 * How much cpu bandwidth does init_task_group get?
9426 *
9427 * In case of task-groups formed thr' the cgroup filesystem, it
9428 * gets 100% of the cpu resources in the system. This overall
9429 * system cpu resource is divided among the tasks of
9430 * init_task_group and its child task-groups in a fair manner,
9431 * based on each entity's (task or task-group's) weight
9432 * (se->load.weight).
9433 *
9434 * In other words, if init_task_group has 10 tasks of weight
9435 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9436 * then A0's share of the cpu resource is:
9437 *
9438 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9439 *
9440 * We achieve this by letting init_task_group's tasks sit
9441 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9442 */
9443 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
9444 #elif defined CONFIG_USER_SCHED
9445 root_task_group.shares = NICE_0_LOAD;
9446 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
9447 /*
9448 * In case of task-groups formed thr' the user id of tasks,
9449 * init_task_group represents tasks belonging to root user.
9450 * Hence it forms a sibling of all subsequent groups formed.
9451 * In this case, init_task_group gets only a fraction of overall
9452 * system cpu resource, based on the weight assigned to root
9453 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9454 * by letting tasks of init_task_group sit in a separate cfs_rq
9455 * (init_tg_cfs_rq) and having one entity represent this group of
9456 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9457 */
9458 init_tg_cfs_entry(&init_task_group,
9459 &per_cpu(init_tg_cfs_rq, i),
9460 &per_cpu(init_sched_entity, i), i, 1,
9461 root_task_group.se[i]);
9462
9463 #endif
9464 #endif /* CONFIG_FAIR_GROUP_SCHED */
9465
9466 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9467 #ifdef CONFIG_RT_GROUP_SCHED
9468 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
9469 #ifdef CONFIG_CGROUP_SCHED
9470 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
9471 #elif defined CONFIG_USER_SCHED
9472 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
9473 init_tg_rt_entry(&init_task_group,
9474 &per_cpu(init_rt_rq, i),
9475 &per_cpu(init_sched_rt_entity, i), i, 1,
9476 root_task_group.rt_se[i]);
9477 #endif
9478 #endif
9479
9480 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9481 rq->cpu_load[j] = 0;
9482 #ifdef CONFIG_SMP
9483 rq->sd = NULL;
9484 rq->rd = NULL;
9485 rq->post_schedule = 0;
9486 rq->active_balance = 0;
9487 rq->next_balance = jiffies;
9488 rq->push_cpu = 0;
9489 rq->cpu = i;
9490 rq->online = 0;
9491 rq->migration_thread = NULL;
9492 INIT_LIST_HEAD(&rq->migration_queue);
9493 rq_attach_root(rq, &def_root_domain);
9494 #endif
9495 init_rq_hrtick(rq);
9496 atomic_set(&rq->nr_iowait, 0);
9497 }
9498
9499 set_load_weight(&init_task);
9500
9501 #ifdef CONFIG_PREEMPT_NOTIFIERS
9502 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9503 #endif
9504
9505 #ifdef CONFIG_SMP
9506 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9507 #endif
9508
9509 #ifdef CONFIG_RT_MUTEXES
9510 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9511 #endif
9512
9513 /*
9514 * The boot idle thread does lazy MMU switching as well:
9515 */
9516 atomic_inc(&init_mm.mm_count);
9517 enter_lazy_tlb(&init_mm, current);
9518
9519 /*
9520 * Make us the idle thread. Technically, schedule() should not be
9521 * called from this thread, however somewhere below it might be,
9522 * but because we are the idle thread, we just pick up running again
9523 * when this runqueue becomes "idle".
9524 */
9525 init_idle(current, smp_processor_id());
9526
9527 calc_load_update = jiffies + LOAD_FREQ;
9528
9529 /*
9530 * During early bootup we pretend to be a normal task:
9531 */
9532 current->sched_class = &fair_sched_class;
9533
9534 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9535 alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
9536 #ifdef CONFIG_SMP
9537 #ifdef CONFIG_NO_HZ
9538 alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
9539 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
9540 #endif
9541 alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
9542 #endif /* SMP */
9543
9544 perf_event_init();
9545
9546 scheduler_running = 1;
9547 }
9548
9549 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9550 static inline int preempt_count_equals(int preempt_offset)
9551 {
9552 int nested = preempt_count() & ~PREEMPT_ACTIVE;
9553
9554 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
9555 }
9556
9557 void __might_sleep(char *file, int line, int preempt_offset)
9558 {
9559 #ifdef in_atomic
9560 static unsigned long prev_jiffy; /* ratelimiting */
9561
9562 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
9563 system_state != SYSTEM_RUNNING || oops_in_progress)
9564 return;
9565 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9566 return;
9567 prev_jiffy = jiffies;
9568
9569 printk(KERN_ERR
9570 "BUG: sleeping function called from invalid context at %s:%d\n",
9571 file, line);
9572 printk(KERN_ERR
9573 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9574 in_atomic(), irqs_disabled(),
9575 current->pid, current->comm);
9576
9577 debug_show_held_locks(current);
9578 if (irqs_disabled())
9579 print_irqtrace_events(current);
9580 dump_stack();
9581 #endif
9582 }
9583 EXPORT_SYMBOL(__might_sleep);
9584 #endif
9585
9586 #ifdef CONFIG_MAGIC_SYSRQ
9587 static void normalize_task(struct rq *rq, struct task_struct *p)
9588 {
9589 int on_rq;
9590
9591 update_rq_clock(rq);
9592 on_rq = p->se.on_rq;
9593 if (on_rq)
9594 deactivate_task(rq, p, 0);
9595 __setscheduler(rq, p, SCHED_NORMAL, 0);
9596 if (on_rq) {
9597 activate_task(rq, p, 0);
9598 resched_task(rq->curr);
9599 }
9600 }
9601
9602 void normalize_rt_tasks(void)
9603 {
9604 struct task_struct *g, *p;
9605 unsigned long flags;
9606 struct rq *rq;
9607
9608 read_lock_irqsave(&tasklist_lock, flags);
9609 do_each_thread(g, p) {
9610 /*
9611 * Only normalize user tasks:
9612 */
9613 if (!p->mm)
9614 continue;
9615
9616 p->se.exec_start = 0;
9617 #ifdef CONFIG_SCHEDSTATS
9618 p->se.wait_start = 0;
9619 p->se.sleep_start = 0;
9620 p->se.block_start = 0;
9621 #endif
9622
9623 if (!rt_task(p)) {
9624 /*
9625 * Renice negative nice level userspace
9626 * tasks back to 0:
9627 */
9628 if (TASK_NICE(p) < 0 && p->mm)
9629 set_user_nice(p, 0);
9630 continue;
9631 }
9632
9633 spin_lock(&p->pi_lock);
9634 rq = __task_rq_lock(p);
9635
9636 normalize_task(rq, p);
9637
9638 __task_rq_unlock(rq);
9639 spin_unlock(&p->pi_lock);
9640 } while_each_thread(g, p);
9641
9642 read_unlock_irqrestore(&tasklist_lock, flags);
9643 }
9644
9645 #endif /* CONFIG_MAGIC_SYSRQ */
9646
9647 #ifdef CONFIG_IA64
9648 /*
9649 * These functions are only useful for the IA64 MCA handling.
9650 *
9651 * They can only be called when the whole system has been
9652 * stopped - every CPU needs to be quiescent, and no scheduling
9653 * activity can take place. Using them for anything else would
9654 * be a serious bug, and as a result, they aren't even visible
9655 * under any other configuration.
9656 */
9657
9658 /**
9659 * curr_task - return the current task for a given cpu.
9660 * @cpu: the processor in question.
9661 *
9662 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9663 */
9664 struct task_struct *curr_task(int cpu)
9665 {
9666 return cpu_curr(cpu);
9667 }
9668
9669 /**
9670 * set_curr_task - set the current task for a given cpu.
9671 * @cpu: the processor in question.
9672 * @p: the task pointer to set.
9673 *
9674 * Description: This function must only be used when non-maskable interrupts
9675 * are serviced on a separate stack. It allows the architecture to switch the
9676 * notion of the current task on a cpu in a non-blocking manner. This function
9677 * must be called with all CPU's synchronized, and interrupts disabled, the
9678 * and caller must save the original value of the current task (see
9679 * curr_task() above) and restore that value before reenabling interrupts and
9680 * re-starting the system.
9681 *
9682 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9683 */
9684 void set_curr_task(int cpu, struct task_struct *p)
9685 {
9686 cpu_curr(cpu) = p;
9687 }
9688
9689 #endif
9690
9691 #ifdef CONFIG_FAIR_GROUP_SCHED
9692 static void free_fair_sched_group(struct task_group *tg)
9693 {
9694 int i;
9695
9696 for_each_possible_cpu(i) {
9697 if (tg->cfs_rq)
9698 kfree(tg->cfs_rq[i]);
9699 if (tg->se)
9700 kfree(tg->se[i]);
9701 }
9702
9703 kfree(tg->cfs_rq);
9704 kfree(tg->se);
9705 }
9706
9707 static
9708 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9709 {
9710 struct cfs_rq *cfs_rq;
9711 struct sched_entity *se;
9712 struct rq *rq;
9713 int i;
9714
9715 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9716 if (!tg->cfs_rq)
9717 goto err;
9718 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9719 if (!tg->se)
9720 goto err;
9721
9722 tg->shares = NICE_0_LOAD;
9723
9724 for_each_possible_cpu(i) {
9725 rq = cpu_rq(i);
9726
9727 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9728 GFP_KERNEL, cpu_to_node(i));
9729 if (!cfs_rq)
9730 goto err;
9731
9732 se = kzalloc_node(sizeof(struct sched_entity),
9733 GFP_KERNEL, cpu_to_node(i));
9734 if (!se)
9735 goto err;
9736
9737 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9738 }
9739
9740 return 1;
9741
9742 err:
9743 return 0;
9744 }
9745
9746 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9747 {
9748 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9749 &cpu_rq(cpu)->leaf_cfs_rq_list);
9750 }
9751
9752 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9753 {
9754 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9755 }
9756 #else /* !CONFG_FAIR_GROUP_SCHED */
9757 static inline void free_fair_sched_group(struct task_group *tg)
9758 {
9759 }
9760
9761 static inline
9762 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9763 {
9764 return 1;
9765 }
9766
9767 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9768 {
9769 }
9770
9771 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9772 {
9773 }
9774 #endif /* CONFIG_FAIR_GROUP_SCHED */
9775
9776 #ifdef CONFIG_RT_GROUP_SCHED
9777 static void free_rt_sched_group(struct task_group *tg)
9778 {
9779 int i;
9780
9781 destroy_rt_bandwidth(&tg->rt_bandwidth);
9782
9783 for_each_possible_cpu(i) {
9784 if (tg->rt_rq)
9785 kfree(tg->rt_rq[i]);
9786 if (tg->rt_se)
9787 kfree(tg->rt_se[i]);
9788 }
9789
9790 kfree(tg->rt_rq);
9791 kfree(tg->rt_se);
9792 }
9793
9794 static
9795 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9796 {
9797 struct rt_rq *rt_rq;
9798 struct sched_rt_entity *rt_se;
9799 struct rq *rq;
9800 int i;
9801
9802 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9803 if (!tg->rt_rq)
9804 goto err;
9805 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9806 if (!tg->rt_se)
9807 goto err;
9808
9809 init_rt_bandwidth(&tg->rt_bandwidth,
9810 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9811
9812 for_each_possible_cpu(i) {
9813 rq = cpu_rq(i);
9814
9815 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9816 GFP_KERNEL, cpu_to_node(i));
9817 if (!rt_rq)
9818 goto err;
9819
9820 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9821 GFP_KERNEL, cpu_to_node(i));
9822 if (!rt_se)
9823 goto err;
9824
9825 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
9826 }
9827
9828 return 1;
9829
9830 err:
9831 return 0;
9832 }
9833
9834 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9835 {
9836 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9837 &cpu_rq(cpu)->leaf_rt_rq_list);
9838 }
9839
9840 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9841 {
9842 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9843 }
9844 #else /* !CONFIG_RT_GROUP_SCHED */
9845 static inline void free_rt_sched_group(struct task_group *tg)
9846 {
9847 }
9848
9849 static inline
9850 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9851 {
9852 return 1;
9853 }
9854
9855 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9856 {
9857 }
9858
9859 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9860 {
9861 }
9862 #endif /* CONFIG_RT_GROUP_SCHED */
9863
9864 #ifdef CONFIG_GROUP_SCHED
9865 static void free_sched_group(struct task_group *tg)
9866 {
9867 free_fair_sched_group(tg);
9868 free_rt_sched_group(tg);
9869 kfree(tg);
9870 }
9871
9872 /* allocate runqueue etc for a new task group */
9873 struct task_group *sched_create_group(struct task_group *parent)
9874 {
9875 struct task_group *tg;
9876 unsigned long flags;
9877 int i;
9878
9879 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9880 if (!tg)
9881 return ERR_PTR(-ENOMEM);
9882
9883 if (!alloc_fair_sched_group(tg, parent))
9884 goto err;
9885
9886 if (!alloc_rt_sched_group(tg, parent))
9887 goto err;
9888
9889 spin_lock_irqsave(&task_group_lock, flags);
9890 for_each_possible_cpu(i) {
9891 register_fair_sched_group(tg, i);
9892 register_rt_sched_group(tg, i);
9893 }
9894 list_add_rcu(&tg->list, &task_groups);
9895
9896 WARN_ON(!parent); /* root should already exist */
9897
9898 tg->parent = parent;
9899 INIT_LIST_HEAD(&tg->children);
9900 list_add_rcu(&tg->siblings, &parent->children);
9901 spin_unlock_irqrestore(&task_group_lock, flags);
9902
9903 return tg;
9904
9905 err:
9906 free_sched_group(tg);
9907 return ERR_PTR(-ENOMEM);
9908 }
9909
9910 /* rcu callback to free various structures associated with a task group */
9911 static void free_sched_group_rcu(struct rcu_head *rhp)
9912 {
9913 /* now it should be safe to free those cfs_rqs */
9914 free_sched_group(container_of(rhp, struct task_group, rcu));
9915 }
9916
9917 /* Destroy runqueue etc associated with a task group */
9918 void sched_destroy_group(struct task_group *tg)
9919 {
9920 unsigned long flags;
9921 int i;
9922
9923 spin_lock_irqsave(&task_group_lock, flags);
9924 for_each_possible_cpu(i) {
9925 unregister_fair_sched_group(tg, i);
9926 unregister_rt_sched_group(tg, i);
9927 }
9928 list_del_rcu(&tg->list);
9929 list_del_rcu(&tg->siblings);
9930 spin_unlock_irqrestore(&task_group_lock, flags);
9931
9932 /* wait for possible concurrent references to cfs_rqs complete */
9933 call_rcu(&tg->rcu, free_sched_group_rcu);
9934 }
9935
9936 /* change task's runqueue when it moves between groups.
9937 * The caller of this function should have put the task in its new group
9938 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
9939 * reflect its new group.
9940 */
9941 void sched_move_task(struct task_struct *tsk)
9942 {
9943 int on_rq, running;
9944 unsigned long flags;
9945 struct rq *rq;
9946
9947 rq = task_rq_lock(tsk, &flags);
9948
9949 update_rq_clock(rq);
9950
9951 running = task_current(rq, tsk);
9952 on_rq = tsk->se.on_rq;
9953
9954 if (on_rq)
9955 dequeue_task(rq, tsk, 0);
9956 if (unlikely(running))
9957 tsk->sched_class->put_prev_task(rq, tsk);
9958
9959 set_task_rq(tsk, task_cpu(tsk));
9960
9961 #ifdef CONFIG_FAIR_GROUP_SCHED
9962 if (tsk->sched_class->moved_group)
9963 tsk->sched_class->moved_group(tsk);
9964 #endif
9965
9966 if (unlikely(running))
9967 tsk->sched_class->set_curr_task(rq);
9968 if (on_rq)
9969 enqueue_task(rq, tsk, 0);
9970
9971 task_rq_unlock(rq, &flags);
9972 }
9973 #endif /* CONFIG_GROUP_SCHED */
9974
9975 #ifdef CONFIG_FAIR_GROUP_SCHED
9976 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
9977 {
9978 struct cfs_rq *cfs_rq = se->cfs_rq;
9979 int on_rq;
9980
9981 on_rq = se->on_rq;
9982 if (on_rq)
9983 dequeue_entity(cfs_rq, se, 0);
9984
9985 se->load.weight = shares;
9986 se->load.inv_weight = 0;
9987
9988 if (on_rq)
9989 enqueue_entity(cfs_rq, se, 0);
9990 }
9991
9992 static void set_se_shares(struct sched_entity *se, unsigned long shares)
9993 {
9994 struct cfs_rq *cfs_rq = se->cfs_rq;
9995 struct rq *rq = cfs_rq->rq;
9996 unsigned long flags;
9997
9998 spin_lock_irqsave(&rq->lock, flags);
9999 __set_se_shares(se, shares);
10000 spin_unlock_irqrestore(&rq->lock, flags);
10001 }
10002
10003 static DEFINE_MUTEX(shares_mutex);
10004
10005 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
10006 {
10007 int i;
10008 unsigned long flags;
10009
10010 /*
10011 * We can't change the weight of the root cgroup.
10012 */
10013 if (!tg->se[0])
10014 return -EINVAL;
10015
10016 if (shares < MIN_SHARES)
10017 shares = MIN_SHARES;
10018 else if (shares > MAX_SHARES)
10019 shares = MAX_SHARES;
10020
10021 mutex_lock(&shares_mutex);
10022 if (tg->shares == shares)
10023 goto done;
10024
10025 spin_lock_irqsave(&task_group_lock, flags);
10026 for_each_possible_cpu(i)
10027 unregister_fair_sched_group(tg, i);
10028 list_del_rcu(&tg->siblings);
10029 spin_unlock_irqrestore(&task_group_lock, flags);
10030
10031 /* wait for any ongoing reference to this group to finish */
10032 synchronize_sched();
10033
10034 /*
10035 * Now we are free to modify the group's share on each cpu
10036 * w/o tripping rebalance_share or load_balance_fair.
10037 */
10038 tg->shares = shares;
10039 for_each_possible_cpu(i) {
10040 /*
10041 * force a rebalance
10042 */
10043 cfs_rq_set_shares(tg->cfs_rq[i], 0);
10044 set_se_shares(tg->se[i], shares);
10045 }
10046
10047 /*
10048 * Enable load balance activity on this group, by inserting it back on
10049 * each cpu's rq->leaf_cfs_rq_list.
10050 */
10051 spin_lock_irqsave(&task_group_lock, flags);
10052 for_each_possible_cpu(i)
10053 register_fair_sched_group(tg, i);
10054 list_add_rcu(&tg->siblings, &tg->parent->children);
10055 spin_unlock_irqrestore(&task_group_lock, flags);
10056 done:
10057 mutex_unlock(&shares_mutex);
10058 return 0;
10059 }
10060
10061 unsigned long sched_group_shares(struct task_group *tg)
10062 {
10063 return tg->shares;
10064 }
10065 #endif
10066
10067 #ifdef CONFIG_RT_GROUP_SCHED
10068 /*
10069 * Ensure that the real time constraints are schedulable.
10070 */
10071 static DEFINE_MUTEX(rt_constraints_mutex);
10072
10073 static unsigned long to_ratio(u64 period, u64 runtime)
10074 {
10075 if (runtime == RUNTIME_INF)
10076 return 1ULL << 20;
10077
10078 return div64_u64(runtime << 20, period);
10079 }
10080
10081 /* Must be called with tasklist_lock held */
10082 static inline int tg_has_rt_tasks(struct task_group *tg)
10083 {
10084 struct task_struct *g, *p;
10085
10086 do_each_thread(g, p) {
10087 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
10088 return 1;
10089 } while_each_thread(g, p);
10090
10091 return 0;
10092 }
10093
10094 struct rt_schedulable_data {
10095 struct task_group *tg;
10096 u64 rt_period;
10097 u64 rt_runtime;
10098 };
10099
10100 static int tg_schedulable(struct task_group *tg, void *data)
10101 {
10102 struct rt_schedulable_data *d = data;
10103 struct task_group *child;
10104 unsigned long total, sum = 0;
10105 u64 period, runtime;
10106
10107 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10108 runtime = tg->rt_bandwidth.rt_runtime;
10109
10110 if (tg == d->tg) {
10111 period = d->rt_period;
10112 runtime = d->rt_runtime;
10113 }
10114
10115 #ifdef CONFIG_USER_SCHED
10116 if (tg == &root_task_group) {
10117 period = global_rt_period();
10118 runtime = global_rt_runtime();
10119 }
10120 #endif
10121
10122 /*
10123 * Cannot have more runtime than the period.
10124 */
10125 if (runtime > period && runtime != RUNTIME_INF)
10126 return -EINVAL;
10127
10128 /*
10129 * Ensure we don't starve existing RT tasks.
10130 */
10131 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
10132 return -EBUSY;
10133
10134 total = to_ratio(period, runtime);
10135
10136 /*
10137 * Nobody can have more than the global setting allows.
10138 */
10139 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
10140 return -EINVAL;
10141
10142 /*
10143 * The sum of our children's runtime should not exceed our own.
10144 */
10145 list_for_each_entry_rcu(child, &tg->children, siblings) {
10146 period = ktime_to_ns(child->rt_bandwidth.rt_period);
10147 runtime = child->rt_bandwidth.rt_runtime;
10148
10149 if (child == d->tg) {
10150 period = d->rt_period;
10151 runtime = d->rt_runtime;
10152 }
10153
10154 sum += to_ratio(period, runtime);
10155 }
10156
10157 if (sum > total)
10158 return -EINVAL;
10159
10160 return 0;
10161 }
10162
10163 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
10164 {
10165 struct rt_schedulable_data data = {
10166 .tg = tg,
10167 .rt_period = period,
10168 .rt_runtime = runtime,
10169 };
10170
10171 return walk_tg_tree(tg_schedulable, tg_nop, &data);
10172 }
10173
10174 static int tg_set_bandwidth(struct task_group *tg,
10175 u64 rt_period, u64 rt_runtime)
10176 {
10177 int i, err = 0;
10178
10179 mutex_lock(&rt_constraints_mutex);
10180 read_lock(&tasklist_lock);
10181 err = __rt_schedulable(tg, rt_period, rt_runtime);
10182 if (err)
10183 goto unlock;
10184
10185 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10186 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10187 tg->rt_bandwidth.rt_runtime = rt_runtime;
10188
10189 for_each_possible_cpu(i) {
10190 struct rt_rq *rt_rq = tg->rt_rq[i];
10191
10192 spin_lock(&rt_rq->rt_runtime_lock);
10193 rt_rq->rt_runtime = rt_runtime;
10194 spin_unlock(&rt_rq->rt_runtime_lock);
10195 }
10196 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10197 unlock:
10198 read_unlock(&tasklist_lock);
10199 mutex_unlock(&rt_constraints_mutex);
10200
10201 return err;
10202 }
10203
10204 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10205 {
10206 u64 rt_runtime, rt_period;
10207
10208 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10209 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10210 if (rt_runtime_us < 0)
10211 rt_runtime = RUNTIME_INF;
10212
10213 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10214 }
10215
10216 long sched_group_rt_runtime(struct task_group *tg)
10217 {
10218 u64 rt_runtime_us;
10219
10220 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
10221 return -1;
10222
10223 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
10224 do_div(rt_runtime_us, NSEC_PER_USEC);
10225 return rt_runtime_us;
10226 }
10227
10228 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10229 {
10230 u64 rt_runtime, rt_period;
10231
10232 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10233 rt_runtime = tg->rt_bandwidth.rt_runtime;
10234
10235 if (rt_period == 0)
10236 return -EINVAL;
10237
10238 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10239 }
10240
10241 long sched_group_rt_period(struct task_group *tg)
10242 {
10243 u64 rt_period_us;
10244
10245 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10246 do_div(rt_period_us, NSEC_PER_USEC);
10247 return rt_period_us;
10248 }
10249
10250 static int sched_rt_global_constraints(void)
10251 {
10252 u64 runtime, period;
10253 int ret = 0;
10254
10255 if (sysctl_sched_rt_period <= 0)
10256 return -EINVAL;
10257
10258 runtime = global_rt_runtime();
10259 period = global_rt_period();
10260
10261 /*
10262 * Sanity check on the sysctl variables.
10263 */
10264 if (runtime > period && runtime != RUNTIME_INF)
10265 return -EINVAL;
10266
10267 mutex_lock(&rt_constraints_mutex);
10268 read_lock(&tasklist_lock);
10269 ret = __rt_schedulable(NULL, 0, 0);
10270 read_unlock(&tasklist_lock);
10271 mutex_unlock(&rt_constraints_mutex);
10272
10273 return ret;
10274 }
10275
10276 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10277 {
10278 /* Don't accept realtime tasks when there is no way for them to run */
10279 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10280 return 0;
10281
10282 return 1;
10283 }
10284
10285 #else /* !CONFIG_RT_GROUP_SCHED */
10286 static int sched_rt_global_constraints(void)
10287 {
10288 unsigned long flags;
10289 int i;
10290
10291 if (sysctl_sched_rt_period <= 0)
10292 return -EINVAL;
10293
10294 /*
10295 * There's always some RT tasks in the root group
10296 * -- migration, kstopmachine etc..
10297 */
10298 if (sysctl_sched_rt_runtime == 0)
10299 return -EBUSY;
10300
10301 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10302 for_each_possible_cpu(i) {
10303 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10304
10305 spin_lock(&rt_rq->rt_runtime_lock);
10306 rt_rq->rt_runtime = global_rt_runtime();
10307 spin_unlock(&rt_rq->rt_runtime_lock);
10308 }
10309 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10310
10311 return 0;
10312 }
10313 #endif /* CONFIG_RT_GROUP_SCHED */
10314
10315 int sched_rt_handler(struct ctl_table *table, int write,
10316 struct file *filp, void __user *buffer, size_t *lenp,
10317 loff_t *ppos)
10318 {
10319 int ret;
10320 int old_period, old_runtime;
10321 static DEFINE_MUTEX(mutex);
10322
10323 mutex_lock(&mutex);
10324 old_period = sysctl_sched_rt_period;
10325 old_runtime = sysctl_sched_rt_runtime;
10326
10327 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
10328
10329 if (!ret && write) {
10330 ret = sched_rt_global_constraints();
10331 if (ret) {
10332 sysctl_sched_rt_period = old_period;
10333 sysctl_sched_rt_runtime = old_runtime;
10334 } else {
10335 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10336 def_rt_bandwidth.rt_period =
10337 ns_to_ktime(global_rt_period());
10338 }
10339 }
10340 mutex_unlock(&mutex);
10341
10342 return ret;
10343 }
10344
10345 #ifdef CONFIG_CGROUP_SCHED
10346
10347 /* return corresponding task_group object of a cgroup */
10348 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
10349 {
10350 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10351 struct task_group, css);
10352 }
10353
10354 static struct cgroup_subsys_state *
10355 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
10356 {
10357 struct task_group *tg, *parent;
10358
10359 if (!cgrp->parent) {
10360 /* This is early initialization for the top cgroup */
10361 return &init_task_group.css;
10362 }
10363
10364 parent = cgroup_tg(cgrp->parent);
10365 tg = sched_create_group(parent);
10366 if (IS_ERR(tg))
10367 return ERR_PTR(-ENOMEM);
10368
10369 return &tg->css;
10370 }
10371
10372 static void
10373 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10374 {
10375 struct task_group *tg = cgroup_tg(cgrp);
10376
10377 sched_destroy_group(tg);
10378 }
10379
10380 static int
10381 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10382 struct task_struct *tsk)
10383 {
10384 #ifdef CONFIG_RT_GROUP_SCHED
10385 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
10386 return -EINVAL;
10387 #else
10388 /* We don't support RT-tasks being in separate groups */
10389 if (tsk->sched_class != &fair_sched_class)
10390 return -EINVAL;
10391 #endif
10392
10393 return 0;
10394 }
10395
10396 static void
10397 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10398 struct cgroup *old_cont, struct task_struct *tsk)
10399 {
10400 sched_move_task(tsk);
10401 }
10402
10403 #ifdef CONFIG_FAIR_GROUP_SCHED
10404 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
10405 u64 shareval)
10406 {
10407 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
10408 }
10409
10410 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
10411 {
10412 struct task_group *tg = cgroup_tg(cgrp);
10413
10414 return (u64) tg->shares;
10415 }
10416 #endif /* CONFIG_FAIR_GROUP_SCHED */
10417
10418 #ifdef CONFIG_RT_GROUP_SCHED
10419 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
10420 s64 val)
10421 {
10422 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
10423 }
10424
10425 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
10426 {
10427 return sched_group_rt_runtime(cgroup_tg(cgrp));
10428 }
10429
10430 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10431 u64 rt_period_us)
10432 {
10433 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10434 }
10435
10436 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10437 {
10438 return sched_group_rt_period(cgroup_tg(cgrp));
10439 }
10440 #endif /* CONFIG_RT_GROUP_SCHED */
10441
10442 static struct cftype cpu_files[] = {
10443 #ifdef CONFIG_FAIR_GROUP_SCHED
10444 {
10445 .name = "shares",
10446 .read_u64 = cpu_shares_read_u64,
10447 .write_u64 = cpu_shares_write_u64,
10448 },
10449 #endif
10450 #ifdef CONFIG_RT_GROUP_SCHED
10451 {
10452 .name = "rt_runtime_us",
10453 .read_s64 = cpu_rt_runtime_read,
10454 .write_s64 = cpu_rt_runtime_write,
10455 },
10456 {
10457 .name = "rt_period_us",
10458 .read_u64 = cpu_rt_period_read_uint,
10459 .write_u64 = cpu_rt_period_write_uint,
10460 },
10461 #endif
10462 };
10463
10464 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10465 {
10466 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
10467 }
10468
10469 struct cgroup_subsys cpu_cgroup_subsys = {
10470 .name = "cpu",
10471 .create = cpu_cgroup_create,
10472 .destroy = cpu_cgroup_destroy,
10473 .can_attach = cpu_cgroup_can_attach,
10474 .attach = cpu_cgroup_attach,
10475 .populate = cpu_cgroup_populate,
10476 .subsys_id = cpu_cgroup_subsys_id,
10477 .early_init = 1,
10478 };
10479
10480 #endif /* CONFIG_CGROUP_SCHED */
10481
10482 #ifdef CONFIG_CGROUP_CPUACCT
10483
10484 /*
10485 * CPU accounting code for task groups.
10486 *
10487 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10488 * (balbir@in.ibm.com).
10489 */
10490
10491 /* track cpu usage of a group of tasks and its child groups */
10492 struct cpuacct {
10493 struct cgroup_subsys_state css;
10494 /* cpuusage holds pointer to a u64-type object on every cpu */
10495 u64 *cpuusage;
10496 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
10497 struct cpuacct *parent;
10498 };
10499
10500 struct cgroup_subsys cpuacct_subsys;
10501
10502 /* return cpu accounting group corresponding to this container */
10503 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
10504 {
10505 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
10506 struct cpuacct, css);
10507 }
10508
10509 /* return cpu accounting group to which this task belongs */
10510 static inline struct cpuacct *task_ca(struct task_struct *tsk)
10511 {
10512 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10513 struct cpuacct, css);
10514 }
10515
10516 /* create a new cpu accounting group */
10517 static struct cgroup_subsys_state *cpuacct_create(
10518 struct cgroup_subsys *ss, struct cgroup *cgrp)
10519 {
10520 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
10521 int i;
10522
10523 if (!ca)
10524 goto out;
10525
10526 ca->cpuusage = alloc_percpu(u64);
10527 if (!ca->cpuusage)
10528 goto out_free_ca;
10529
10530 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10531 if (percpu_counter_init(&ca->cpustat[i], 0))
10532 goto out_free_counters;
10533
10534 if (cgrp->parent)
10535 ca->parent = cgroup_ca(cgrp->parent);
10536
10537 return &ca->css;
10538
10539 out_free_counters:
10540 while (--i >= 0)
10541 percpu_counter_destroy(&ca->cpustat[i]);
10542 free_percpu(ca->cpuusage);
10543 out_free_ca:
10544 kfree(ca);
10545 out:
10546 return ERR_PTR(-ENOMEM);
10547 }
10548
10549 /* destroy an existing cpu accounting group */
10550 static void
10551 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10552 {
10553 struct cpuacct *ca = cgroup_ca(cgrp);
10554 int i;
10555
10556 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10557 percpu_counter_destroy(&ca->cpustat[i]);
10558 free_percpu(ca->cpuusage);
10559 kfree(ca);
10560 }
10561
10562 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10563 {
10564 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10565 u64 data;
10566
10567 #ifndef CONFIG_64BIT
10568 /*
10569 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10570 */
10571 spin_lock_irq(&cpu_rq(cpu)->lock);
10572 data = *cpuusage;
10573 spin_unlock_irq(&cpu_rq(cpu)->lock);
10574 #else
10575 data = *cpuusage;
10576 #endif
10577
10578 return data;
10579 }
10580
10581 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10582 {
10583 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10584
10585 #ifndef CONFIG_64BIT
10586 /*
10587 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10588 */
10589 spin_lock_irq(&cpu_rq(cpu)->lock);
10590 *cpuusage = val;
10591 spin_unlock_irq(&cpu_rq(cpu)->lock);
10592 #else
10593 *cpuusage = val;
10594 #endif
10595 }
10596
10597 /* return total cpu usage (in nanoseconds) of a group */
10598 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10599 {
10600 struct cpuacct *ca = cgroup_ca(cgrp);
10601 u64 totalcpuusage = 0;
10602 int i;
10603
10604 for_each_present_cpu(i)
10605 totalcpuusage += cpuacct_cpuusage_read(ca, i);
10606
10607 return totalcpuusage;
10608 }
10609
10610 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10611 u64 reset)
10612 {
10613 struct cpuacct *ca = cgroup_ca(cgrp);
10614 int err = 0;
10615 int i;
10616
10617 if (reset) {
10618 err = -EINVAL;
10619 goto out;
10620 }
10621
10622 for_each_present_cpu(i)
10623 cpuacct_cpuusage_write(ca, i, 0);
10624
10625 out:
10626 return err;
10627 }
10628
10629 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10630 struct seq_file *m)
10631 {
10632 struct cpuacct *ca = cgroup_ca(cgroup);
10633 u64 percpu;
10634 int i;
10635
10636 for_each_present_cpu(i) {
10637 percpu = cpuacct_cpuusage_read(ca, i);
10638 seq_printf(m, "%llu ", (unsigned long long) percpu);
10639 }
10640 seq_printf(m, "\n");
10641 return 0;
10642 }
10643
10644 static const char *cpuacct_stat_desc[] = {
10645 [CPUACCT_STAT_USER] = "user",
10646 [CPUACCT_STAT_SYSTEM] = "system",
10647 };
10648
10649 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10650 struct cgroup_map_cb *cb)
10651 {
10652 struct cpuacct *ca = cgroup_ca(cgrp);
10653 int i;
10654
10655 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10656 s64 val = percpu_counter_read(&ca->cpustat[i]);
10657 val = cputime64_to_clock_t(val);
10658 cb->fill(cb, cpuacct_stat_desc[i], val);
10659 }
10660 return 0;
10661 }
10662
10663 static struct cftype files[] = {
10664 {
10665 .name = "usage",
10666 .read_u64 = cpuusage_read,
10667 .write_u64 = cpuusage_write,
10668 },
10669 {
10670 .name = "usage_percpu",
10671 .read_seq_string = cpuacct_percpu_seq_read,
10672 },
10673 {
10674 .name = "stat",
10675 .read_map = cpuacct_stats_show,
10676 },
10677 };
10678
10679 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10680 {
10681 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10682 }
10683
10684 /*
10685 * charge this task's execution time to its accounting group.
10686 *
10687 * called with rq->lock held.
10688 */
10689 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10690 {
10691 struct cpuacct *ca;
10692 int cpu;
10693
10694 if (unlikely(!cpuacct_subsys.active))
10695 return;
10696
10697 cpu = task_cpu(tsk);
10698
10699 rcu_read_lock();
10700
10701 ca = task_ca(tsk);
10702
10703 for (; ca; ca = ca->parent) {
10704 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10705 *cpuusage += cputime;
10706 }
10707
10708 rcu_read_unlock();
10709 }
10710
10711 /*
10712 * Charge the system/user time to the task's accounting group.
10713 */
10714 static void cpuacct_update_stats(struct task_struct *tsk,
10715 enum cpuacct_stat_index idx, cputime_t val)
10716 {
10717 struct cpuacct *ca;
10718
10719 if (unlikely(!cpuacct_subsys.active))
10720 return;
10721
10722 rcu_read_lock();
10723 ca = task_ca(tsk);
10724
10725 do {
10726 percpu_counter_add(&ca->cpustat[idx], val);
10727 ca = ca->parent;
10728 } while (ca);
10729 rcu_read_unlock();
10730 }
10731
10732 struct cgroup_subsys cpuacct_subsys = {
10733 .name = "cpuacct",
10734 .create = cpuacct_create,
10735 .destroy = cpuacct_destroy,
10736 .populate = cpuacct_populate,
10737 .subsys_id = cpuacct_subsys_id,
10738 };
10739 #endif /* CONFIG_CGROUP_CPUACCT */
10740
10741 #ifndef CONFIG_SMP
10742
10743 int rcu_expedited_torture_stats(char *page)
10744 {
10745 return 0;
10746 }
10747 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10748
10749 void synchronize_sched_expedited(void)
10750 {
10751 }
10752 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10753
10754 #else /* #ifndef CONFIG_SMP */
10755
10756 static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
10757 static DEFINE_MUTEX(rcu_sched_expedited_mutex);
10758
10759 #define RCU_EXPEDITED_STATE_POST -2
10760 #define RCU_EXPEDITED_STATE_IDLE -1
10761
10762 static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10763
10764 int rcu_expedited_torture_stats(char *page)
10765 {
10766 int cnt = 0;
10767 int cpu;
10768
10769 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
10770 for_each_online_cpu(cpu) {
10771 cnt += sprintf(&page[cnt], " %d:%d",
10772 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
10773 }
10774 cnt += sprintf(&page[cnt], "\n");
10775 return cnt;
10776 }
10777 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10778
10779 static long synchronize_sched_expedited_count;
10780
10781 /*
10782 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
10783 * approach to force grace period to end quickly. This consumes
10784 * significant time on all CPUs, and is thus not recommended for
10785 * any sort of common-case code.
10786 *
10787 * Note that it is illegal to call this function while holding any
10788 * lock that is acquired by a CPU-hotplug notifier. Failing to
10789 * observe this restriction will result in deadlock.
10790 */
10791 void synchronize_sched_expedited(void)
10792 {
10793 int cpu;
10794 unsigned long flags;
10795 bool need_full_sync = 0;
10796 struct rq *rq;
10797 struct migration_req *req;
10798 long snap;
10799 int trycount = 0;
10800
10801 smp_mb(); /* ensure prior mod happens before capturing snap. */
10802 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
10803 get_online_cpus();
10804 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
10805 put_online_cpus();
10806 if (trycount++ < 10)
10807 udelay(trycount * num_online_cpus());
10808 else {
10809 synchronize_sched();
10810 return;
10811 }
10812 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
10813 smp_mb(); /* ensure test happens before caller kfree */
10814 return;
10815 }
10816 get_online_cpus();
10817 }
10818 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
10819 for_each_online_cpu(cpu) {
10820 rq = cpu_rq(cpu);
10821 req = &per_cpu(rcu_migration_req, cpu);
10822 init_completion(&req->done);
10823 req->task = NULL;
10824 req->dest_cpu = RCU_MIGRATION_NEED_QS;
10825 spin_lock_irqsave(&rq->lock, flags);
10826 list_add(&req->list, &rq->migration_queue);
10827 spin_unlock_irqrestore(&rq->lock, flags);
10828 wake_up_process(rq->migration_thread);
10829 }
10830 for_each_online_cpu(cpu) {
10831 rcu_expedited_state = cpu;
10832 req = &per_cpu(rcu_migration_req, cpu);
10833 rq = cpu_rq(cpu);
10834 wait_for_completion(&req->done);
10835 spin_lock_irqsave(&rq->lock, flags);
10836 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
10837 need_full_sync = 1;
10838 req->dest_cpu = RCU_MIGRATION_IDLE;
10839 spin_unlock_irqrestore(&rq->lock, flags);
10840 }
10841 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10842 mutex_unlock(&rcu_sched_expedited_mutex);
10843 put_online_cpus();
10844 if (need_full_sync)
10845 synchronize_sched();
10846 }
10847 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10848
10849 #endif /* #else #ifndef CONFIG_SMP */
This page took 0.524191 seconds and 5 git commands to generate.