[PATCH] fix for cpusets minor problem
[deliverable/linux.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 */
20
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/nmi.h>
24 #include <linux/init.h>
25 #include <asm/uaccess.h>
26 #include <linux/highmem.h>
27 #include <linux/smp_lock.h>
28 #include <asm/mmu_context.h>
29 #include <linux/interrupt.h>
30 #include <linux/completion.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/security.h>
33 #include <linux/notifier.h>
34 #include <linux/profile.h>
35 #include <linux/suspend.h>
36 #include <linux/blkdev.h>
37 #include <linux/delay.h>
38 #include <linux/smp.h>
39 #include <linux/threads.h>
40 #include <linux/timer.h>
41 #include <linux/rcupdate.h>
42 #include <linux/cpu.h>
43 #include <linux/cpuset.h>
44 #include <linux/percpu.h>
45 #include <linux/kthread.h>
46 #include <linux/seq_file.h>
47 #include <linux/syscalls.h>
48 #include <linux/times.h>
49 #include <linux/acct.h>
50 #include <asm/tlb.h>
51
52 #include <asm/unistd.h>
53
54 /*
55 * Convert user-nice values [ -20 ... 0 ... 19 ]
56 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
57 * and back.
58 */
59 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
60 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
61 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
62
63 /*
64 * 'User priority' is the nice value converted to something we
65 * can work with better when scaling various scheduler parameters,
66 * it's a [ 0 ... 39 ] range.
67 */
68 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
69 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
70 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
71
72 /*
73 * Some helpers for converting nanosecond timing to jiffy resolution
74 */
75 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
76 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
77
78 /*
79 * These are the 'tuning knobs' of the scheduler:
80 *
81 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
82 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
83 * Timeslices get refilled after they expire.
84 */
85 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
86 #define DEF_TIMESLICE (100 * HZ / 1000)
87 #define ON_RUNQUEUE_WEIGHT 30
88 #define CHILD_PENALTY 95
89 #define PARENT_PENALTY 100
90 #define EXIT_WEIGHT 3
91 #define PRIO_BONUS_RATIO 25
92 #define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
93 #define INTERACTIVE_DELTA 2
94 #define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
95 #define STARVATION_LIMIT (MAX_SLEEP_AVG)
96 #define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
97
98 /*
99 * If a task is 'interactive' then we reinsert it in the active
100 * array after it has expired its current timeslice. (it will not
101 * continue to run immediately, it will still roundrobin with
102 * other interactive tasks.)
103 *
104 * This part scales the interactivity limit depending on niceness.
105 *
106 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
107 * Here are a few examples of different nice levels:
108 *
109 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
110 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
111 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
112 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
113 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
114 *
115 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
116 * priority range a task can explore, a value of '1' means the
117 * task is rated interactive.)
118 *
119 * Ie. nice +19 tasks can never get 'interactive' enough to be
120 * reinserted into the active array. And only heavily CPU-hog nice -20
121 * tasks will be expired. Default nice 0 tasks are somewhere between,
122 * it takes some effort for them to get interactive, but it's not
123 * too hard.
124 */
125
126 #define CURRENT_BONUS(p) \
127 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
128 MAX_SLEEP_AVG)
129
130 #define GRANULARITY (10 * HZ / 1000 ? : 1)
131
132 #ifdef CONFIG_SMP
133 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
134 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
135 num_online_cpus())
136 #else
137 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
138 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
139 #endif
140
141 #define SCALE(v1,v1_max,v2_max) \
142 (v1) * (v2_max) / (v1_max)
143
144 #define DELTA(p) \
145 (SCALE(TASK_NICE(p), 40, MAX_BONUS) + INTERACTIVE_DELTA)
146
147 #define TASK_INTERACTIVE(p) \
148 ((p)->prio <= (p)->static_prio - DELTA(p))
149
150 #define INTERACTIVE_SLEEP(p) \
151 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
152 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
153
154 #define TASK_PREEMPTS_CURR(p, rq) \
155 ((p)->prio < (rq)->curr->prio)
156
157 /*
158 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
159 * to time slice values: [800ms ... 100ms ... 5ms]
160 *
161 * The higher a thread's priority, the bigger timeslices
162 * it gets during one round of execution. But even the lowest
163 * priority thread gets MIN_TIMESLICE worth of execution time.
164 */
165
166 #define SCALE_PRIO(x, prio) \
167 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE)
168
169 static unsigned int task_timeslice(task_t *p)
170 {
171 if (p->static_prio < NICE_TO_PRIO(0))
172 return SCALE_PRIO(DEF_TIMESLICE*4, p->static_prio);
173 else
174 return SCALE_PRIO(DEF_TIMESLICE, p->static_prio);
175 }
176 #define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran) \
177 < (long long) (sd)->cache_hot_time)
178
179 /*
180 * These are the runqueue data structures:
181 */
182
183 #define BITMAP_SIZE ((((MAX_PRIO+1+7)/8)+sizeof(long)-1)/sizeof(long))
184
185 typedef struct runqueue runqueue_t;
186
187 struct prio_array {
188 unsigned int nr_active;
189 unsigned long bitmap[BITMAP_SIZE];
190 struct list_head queue[MAX_PRIO];
191 };
192
193 /*
194 * This is the main, per-CPU runqueue data structure.
195 *
196 * Locking rule: those places that want to lock multiple runqueues
197 * (such as the load balancing or the thread migration code), lock
198 * acquire operations must be ordered by ascending &runqueue.
199 */
200 struct runqueue {
201 spinlock_t lock;
202
203 /*
204 * nr_running and cpu_load should be in the same cacheline because
205 * remote CPUs use both these fields when doing load calculation.
206 */
207 unsigned long nr_running;
208 #ifdef CONFIG_SMP
209 unsigned long cpu_load[3];
210 #endif
211 unsigned long long nr_switches;
212
213 /*
214 * This is part of a global counter where only the total sum
215 * over all CPUs matters. A task can increase this counter on
216 * one CPU and if it got migrated afterwards it may decrease
217 * it on another CPU. Always updated under the runqueue lock:
218 */
219 unsigned long nr_uninterruptible;
220
221 unsigned long expired_timestamp;
222 unsigned long long timestamp_last_tick;
223 task_t *curr, *idle;
224 struct mm_struct *prev_mm;
225 prio_array_t *active, *expired, arrays[2];
226 int best_expired_prio;
227 atomic_t nr_iowait;
228
229 #ifdef CONFIG_SMP
230 struct sched_domain *sd;
231
232 /* For active balancing */
233 int active_balance;
234 int push_cpu;
235
236 task_t *migration_thread;
237 struct list_head migration_queue;
238 #endif
239
240 #ifdef CONFIG_SCHEDSTATS
241 /* latency stats */
242 struct sched_info rq_sched_info;
243
244 /* sys_sched_yield() stats */
245 unsigned long yld_exp_empty;
246 unsigned long yld_act_empty;
247 unsigned long yld_both_empty;
248 unsigned long yld_cnt;
249
250 /* schedule() stats */
251 unsigned long sched_switch;
252 unsigned long sched_cnt;
253 unsigned long sched_goidle;
254
255 /* try_to_wake_up() stats */
256 unsigned long ttwu_cnt;
257 unsigned long ttwu_local;
258 #endif
259 };
260
261 static DEFINE_PER_CPU(struct runqueue, runqueues);
262
263 /*
264 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
265 * See detach_destroy_domains: synchronize_sched for details.
266 *
267 * The domain tree of any CPU may only be accessed from within
268 * preempt-disabled sections.
269 */
270 #define for_each_domain(cpu, domain) \
271 for (domain = rcu_dereference(cpu_rq(cpu)->sd); domain; domain = domain->parent)
272
273 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
274 #define this_rq() (&__get_cpu_var(runqueues))
275 #define task_rq(p) cpu_rq(task_cpu(p))
276 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
277
278 #ifndef prepare_arch_switch
279 # define prepare_arch_switch(next) do { } while (0)
280 #endif
281 #ifndef finish_arch_switch
282 # define finish_arch_switch(prev) do { } while (0)
283 #endif
284
285 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
286 static inline int task_running(runqueue_t *rq, task_t *p)
287 {
288 return rq->curr == p;
289 }
290
291 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
292 {
293 }
294
295 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
296 {
297 spin_unlock_irq(&rq->lock);
298 }
299
300 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
301 static inline int task_running(runqueue_t *rq, task_t *p)
302 {
303 #ifdef CONFIG_SMP
304 return p->oncpu;
305 #else
306 return rq->curr == p;
307 #endif
308 }
309
310 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
311 {
312 #ifdef CONFIG_SMP
313 /*
314 * We can optimise this out completely for !SMP, because the
315 * SMP rebalancing from interrupt is the only thing that cares
316 * here.
317 */
318 next->oncpu = 1;
319 #endif
320 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
321 spin_unlock_irq(&rq->lock);
322 #else
323 spin_unlock(&rq->lock);
324 #endif
325 }
326
327 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
328 {
329 #ifdef CONFIG_SMP
330 /*
331 * After ->oncpu is cleared, the task can be moved to a different CPU.
332 * We must ensure this doesn't happen until the switch is completely
333 * finished.
334 */
335 smp_wmb();
336 prev->oncpu = 0;
337 #endif
338 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
339 local_irq_enable();
340 #endif
341 }
342 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
343
344 /*
345 * task_rq_lock - lock the runqueue a given task resides on and disable
346 * interrupts. Note the ordering: we can safely lookup the task_rq without
347 * explicitly disabling preemption.
348 */
349 static inline runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
350 __acquires(rq->lock)
351 {
352 struct runqueue *rq;
353
354 repeat_lock_task:
355 local_irq_save(*flags);
356 rq = task_rq(p);
357 spin_lock(&rq->lock);
358 if (unlikely(rq != task_rq(p))) {
359 spin_unlock_irqrestore(&rq->lock, *flags);
360 goto repeat_lock_task;
361 }
362 return rq;
363 }
364
365 static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
366 __releases(rq->lock)
367 {
368 spin_unlock_irqrestore(&rq->lock, *flags);
369 }
370
371 #ifdef CONFIG_SCHEDSTATS
372 /*
373 * bump this up when changing the output format or the meaning of an existing
374 * format, so that tools can adapt (or abort)
375 */
376 #define SCHEDSTAT_VERSION 12
377
378 static int show_schedstat(struct seq_file *seq, void *v)
379 {
380 int cpu;
381
382 seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
383 seq_printf(seq, "timestamp %lu\n", jiffies);
384 for_each_online_cpu(cpu) {
385 runqueue_t *rq = cpu_rq(cpu);
386 #ifdef CONFIG_SMP
387 struct sched_domain *sd;
388 int dcnt = 0;
389 #endif
390
391 /* runqueue-specific stats */
392 seq_printf(seq,
393 "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
394 cpu, rq->yld_both_empty,
395 rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
396 rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
397 rq->ttwu_cnt, rq->ttwu_local,
398 rq->rq_sched_info.cpu_time,
399 rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
400
401 seq_printf(seq, "\n");
402
403 #ifdef CONFIG_SMP
404 /* domain-specific stats */
405 preempt_disable();
406 for_each_domain(cpu, sd) {
407 enum idle_type itype;
408 char mask_str[NR_CPUS];
409
410 cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
411 seq_printf(seq, "domain%d %s", dcnt++, mask_str);
412 for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
413 itype++) {
414 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
415 sd->lb_cnt[itype],
416 sd->lb_balanced[itype],
417 sd->lb_failed[itype],
418 sd->lb_imbalance[itype],
419 sd->lb_gained[itype],
420 sd->lb_hot_gained[itype],
421 sd->lb_nobusyq[itype],
422 sd->lb_nobusyg[itype]);
423 }
424 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
425 sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
426 sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
427 sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
428 sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
429 }
430 preempt_enable();
431 #endif
432 }
433 return 0;
434 }
435
436 static int schedstat_open(struct inode *inode, struct file *file)
437 {
438 unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
439 char *buf = kmalloc(size, GFP_KERNEL);
440 struct seq_file *m;
441 int res;
442
443 if (!buf)
444 return -ENOMEM;
445 res = single_open(file, show_schedstat, NULL);
446 if (!res) {
447 m = file->private_data;
448 m->buf = buf;
449 m->size = size;
450 } else
451 kfree(buf);
452 return res;
453 }
454
455 struct file_operations proc_schedstat_operations = {
456 .open = schedstat_open,
457 .read = seq_read,
458 .llseek = seq_lseek,
459 .release = single_release,
460 };
461
462 # define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
463 # define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
464 #else /* !CONFIG_SCHEDSTATS */
465 # define schedstat_inc(rq, field) do { } while (0)
466 # define schedstat_add(rq, field, amt) do { } while (0)
467 #endif
468
469 /*
470 * rq_lock - lock a given runqueue and disable interrupts.
471 */
472 static inline runqueue_t *this_rq_lock(void)
473 __acquires(rq->lock)
474 {
475 runqueue_t *rq;
476
477 local_irq_disable();
478 rq = this_rq();
479 spin_lock(&rq->lock);
480
481 return rq;
482 }
483
484 #ifdef CONFIG_SCHEDSTATS
485 /*
486 * Called when a process is dequeued from the active array and given
487 * the cpu. We should note that with the exception of interactive
488 * tasks, the expired queue will become the active queue after the active
489 * queue is empty, without explicitly dequeuing and requeuing tasks in the
490 * expired queue. (Interactive tasks may be requeued directly to the
491 * active queue, thus delaying tasks in the expired queue from running;
492 * see scheduler_tick()).
493 *
494 * This function is only called from sched_info_arrive(), rather than
495 * dequeue_task(). Even though a task may be queued and dequeued multiple
496 * times as it is shuffled about, we're really interested in knowing how
497 * long it was from the *first* time it was queued to the time that it
498 * finally hit a cpu.
499 */
500 static inline void sched_info_dequeued(task_t *t)
501 {
502 t->sched_info.last_queued = 0;
503 }
504
505 /*
506 * Called when a task finally hits the cpu. We can now calculate how
507 * long it was waiting to run. We also note when it began so that we
508 * can keep stats on how long its timeslice is.
509 */
510 static inline void sched_info_arrive(task_t *t)
511 {
512 unsigned long now = jiffies, diff = 0;
513 struct runqueue *rq = task_rq(t);
514
515 if (t->sched_info.last_queued)
516 diff = now - t->sched_info.last_queued;
517 sched_info_dequeued(t);
518 t->sched_info.run_delay += diff;
519 t->sched_info.last_arrival = now;
520 t->sched_info.pcnt++;
521
522 if (!rq)
523 return;
524
525 rq->rq_sched_info.run_delay += diff;
526 rq->rq_sched_info.pcnt++;
527 }
528
529 /*
530 * Called when a process is queued into either the active or expired
531 * array. The time is noted and later used to determine how long we
532 * had to wait for us to reach the cpu. Since the expired queue will
533 * become the active queue after active queue is empty, without dequeuing
534 * and requeuing any tasks, we are interested in queuing to either. It
535 * is unusual but not impossible for tasks to be dequeued and immediately
536 * requeued in the same or another array: this can happen in sched_yield(),
537 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
538 * to runqueue.
539 *
540 * This function is only called from enqueue_task(), but also only updates
541 * the timestamp if it is already not set. It's assumed that
542 * sched_info_dequeued() will clear that stamp when appropriate.
543 */
544 static inline void sched_info_queued(task_t *t)
545 {
546 if (!t->sched_info.last_queued)
547 t->sched_info.last_queued = jiffies;
548 }
549
550 /*
551 * Called when a process ceases being the active-running process, either
552 * voluntarily or involuntarily. Now we can calculate how long we ran.
553 */
554 static inline void sched_info_depart(task_t *t)
555 {
556 struct runqueue *rq = task_rq(t);
557 unsigned long diff = jiffies - t->sched_info.last_arrival;
558
559 t->sched_info.cpu_time += diff;
560
561 if (rq)
562 rq->rq_sched_info.cpu_time += diff;
563 }
564
565 /*
566 * Called when tasks are switched involuntarily due, typically, to expiring
567 * their time slice. (This may also be called when switching to or from
568 * the idle task.) We are only called when prev != next.
569 */
570 static inline void sched_info_switch(task_t *prev, task_t *next)
571 {
572 struct runqueue *rq = task_rq(prev);
573
574 /*
575 * prev now departs the cpu. It's not interesting to record
576 * stats about how efficient we were at scheduling the idle
577 * process, however.
578 */
579 if (prev != rq->idle)
580 sched_info_depart(prev);
581
582 if (next != rq->idle)
583 sched_info_arrive(next);
584 }
585 #else
586 #define sched_info_queued(t) do { } while (0)
587 #define sched_info_switch(t, next) do { } while (0)
588 #endif /* CONFIG_SCHEDSTATS */
589
590 /*
591 * Adding/removing a task to/from a priority array:
592 */
593 static void dequeue_task(struct task_struct *p, prio_array_t *array)
594 {
595 array->nr_active--;
596 list_del(&p->run_list);
597 if (list_empty(array->queue + p->prio))
598 __clear_bit(p->prio, array->bitmap);
599 }
600
601 static void enqueue_task(struct task_struct *p, prio_array_t *array)
602 {
603 sched_info_queued(p);
604 list_add_tail(&p->run_list, array->queue + p->prio);
605 __set_bit(p->prio, array->bitmap);
606 array->nr_active++;
607 p->array = array;
608 }
609
610 /*
611 * Put task to the end of the run list without the overhead of dequeue
612 * followed by enqueue.
613 */
614 static void requeue_task(struct task_struct *p, prio_array_t *array)
615 {
616 list_move_tail(&p->run_list, array->queue + p->prio);
617 }
618
619 static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array)
620 {
621 list_add(&p->run_list, array->queue + p->prio);
622 __set_bit(p->prio, array->bitmap);
623 array->nr_active++;
624 p->array = array;
625 }
626
627 /*
628 * effective_prio - return the priority that is based on the static
629 * priority but is modified by bonuses/penalties.
630 *
631 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
632 * into the -5 ... 0 ... +5 bonus/penalty range.
633 *
634 * We use 25% of the full 0...39 priority range so that:
635 *
636 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
637 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
638 *
639 * Both properties are important to certain workloads.
640 */
641 static int effective_prio(task_t *p)
642 {
643 int bonus, prio;
644
645 if (rt_task(p))
646 return p->prio;
647
648 bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
649
650 prio = p->static_prio - bonus;
651 if (prio < MAX_RT_PRIO)
652 prio = MAX_RT_PRIO;
653 if (prio > MAX_PRIO-1)
654 prio = MAX_PRIO-1;
655 return prio;
656 }
657
658 /*
659 * __activate_task - move a task to the runqueue.
660 */
661 static inline void __activate_task(task_t *p, runqueue_t *rq)
662 {
663 enqueue_task(p, rq->active);
664 rq->nr_running++;
665 }
666
667 /*
668 * __activate_idle_task - move idle task to the _front_ of runqueue.
669 */
670 static inline void __activate_idle_task(task_t *p, runqueue_t *rq)
671 {
672 enqueue_task_head(p, rq->active);
673 rq->nr_running++;
674 }
675
676 static int recalc_task_prio(task_t *p, unsigned long long now)
677 {
678 /* Caller must always ensure 'now >= p->timestamp' */
679 unsigned long long __sleep_time = now - p->timestamp;
680 unsigned long sleep_time;
681
682 if (__sleep_time > NS_MAX_SLEEP_AVG)
683 sleep_time = NS_MAX_SLEEP_AVG;
684 else
685 sleep_time = (unsigned long)__sleep_time;
686
687 if (likely(sleep_time > 0)) {
688 /*
689 * User tasks that sleep a long time are categorised as
690 * idle and will get just interactive status to stay active &
691 * prevent them suddenly becoming cpu hogs and starving
692 * other processes.
693 */
694 if (p->mm && p->activated != -1 &&
695 sleep_time > INTERACTIVE_SLEEP(p)) {
696 p->sleep_avg = JIFFIES_TO_NS(MAX_SLEEP_AVG -
697 DEF_TIMESLICE);
698 } else {
699 /*
700 * The lower the sleep avg a task has the more
701 * rapidly it will rise with sleep time.
702 */
703 sleep_time *= (MAX_BONUS - CURRENT_BONUS(p)) ? : 1;
704
705 /*
706 * Tasks waking from uninterruptible sleep are
707 * limited in their sleep_avg rise as they
708 * are likely to be waiting on I/O
709 */
710 if (p->activated == -1 && p->mm) {
711 if (p->sleep_avg >= INTERACTIVE_SLEEP(p))
712 sleep_time = 0;
713 else if (p->sleep_avg + sleep_time >=
714 INTERACTIVE_SLEEP(p)) {
715 p->sleep_avg = INTERACTIVE_SLEEP(p);
716 sleep_time = 0;
717 }
718 }
719
720 /*
721 * This code gives a bonus to interactive tasks.
722 *
723 * The boost works by updating the 'average sleep time'
724 * value here, based on ->timestamp. The more time a
725 * task spends sleeping, the higher the average gets -
726 * and the higher the priority boost gets as well.
727 */
728 p->sleep_avg += sleep_time;
729
730 if (p->sleep_avg > NS_MAX_SLEEP_AVG)
731 p->sleep_avg = NS_MAX_SLEEP_AVG;
732 }
733 }
734
735 return effective_prio(p);
736 }
737
738 /*
739 * activate_task - move a task to the runqueue and do priority recalculation
740 *
741 * Update all the scheduling statistics stuff. (sleep average
742 * calculation, priority modifiers, etc.)
743 */
744 static void activate_task(task_t *p, runqueue_t *rq, int local)
745 {
746 unsigned long long now;
747
748 now = sched_clock();
749 #ifdef CONFIG_SMP
750 if (!local) {
751 /* Compensate for drifting sched_clock */
752 runqueue_t *this_rq = this_rq();
753 now = (now - this_rq->timestamp_last_tick)
754 + rq->timestamp_last_tick;
755 }
756 #endif
757
758 p->prio = recalc_task_prio(p, now);
759
760 /*
761 * This checks to make sure it's not an uninterruptible task
762 * that is now waking up.
763 */
764 if (!p->activated) {
765 /*
766 * Tasks which were woken up by interrupts (ie. hw events)
767 * are most likely of interactive nature. So we give them
768 * the credit of extending their sleep time to the period
769 * of time they spend on the runqueue, waiting for execution
770 * on a CPU, first time around:
771 */
772 if (in_interrupt())
773 p->activated = 2;
774 else {
775 /*
776 * Normal first-time wakeups get a credit too for
777 * on-runqueue time, but it will be weighted down:
778 */
779 p->activated = 1;
780 }
781 }
782 p->timestamp = now;
783
784 __activate_task(p, rq);
785 }
786
787 /*
788 * deactivate_task - remove a task from the runqueue.
789 */
790 static void deactivate_task(struct task_struct *p, runqueue_t *rq)
791 {
792 rq->nr_running--;
793 dequeue_task(p, p->array);
794 p->array = NULL;
795 }
796
797 /*
798 * resched_task - mark a task 'to be rescheduled now'.
799 *
800 * On UP this means the setting of the need_resched flag, on SMP it
801 * might also involve a cross-CPU call to trigger the scheduler on
802 * the target CPU.
803 */
804 #ifdef CONFIG_SMP
805 static void resched_task(task_t *p)
806 {
807 int need_resched, nrpolling;
808
809 assert_spin_locked(&task_rq(p)->lock);
810
811 /* minimise the chance of sending an interrupt to poll_idle() */
812 nrpolling = test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
813 need_resched = test_and_set_tsk_thread_flag(p,TIF_NEED_RESCHED);
814 nrpolling |= test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
815
816 if (!need_resched && !nrpolling && (task_cpu(p) != smp_processor_id()))
817 smp_send_reschedule(task_cpu(p));
818 }
819 #else
820 static inline void resched_task(task_t *p)
821 {
822 set_tsk_need_resched(p);
823 }
824 #endif
825
826 /**
827 * task_curr - is this task currently executing on a CPU?
828 * @p: the task in question.
829 */
830 inline int task_curr(const task_t *p)
831 {
832 return cpu_curr(task_cpu(p)) == p;
833 }
834
835 #ifdef CONFIG_SMP
836 typedef struct {
837 struct list_head list;
838
839 task_t *task;
840 int dest_cpu;
841
842 struct completion done;
843 } migration_req_t;
844
845 /*
846 * The task's runqueue lock must be held.
847 * Returns true if you have to wait for migration thread.
848 */
849 static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req)
850 {
851 runqueue_t *rq = task_rq(p);
852
853 /*
854 * If the task is not on a runqueue (and not running), then
855 * it is sufficient to simply update the task's cpu field.
856 */
857 if (!p->array && !task_running(rq, p)) {
858 set_task_cpu(p, dest_cpu);
859 return 0;
860 }
861
862 init_completion(&req->done);
863 req->task = p;
864 req->dest_cpu = dest_cpu;
865 list_add(&req->list, &rq->migration_queue);
866 return 1;
867 }
868
869 /*
870 * wait_task_inactive - wait for a thread to unschedule.
871 *
872 * The caller must ensure that the task *will* unschedule sometime soon,
873 * else this function might spin for a *long* time. This function can't
874 * be called with interrupts off, or it may introduce deadlock with
875 * smp_call_function() if an IPI is sent by the same process we are
876 * waiting to become inactive.
877 */
878 void wait_task_inactive(task_t * p)
879 {
880 unsigned long flags;
881 runqueue_t *rq;
882 int preempted;
883
884 repeat:
885 rq = task_rq_lock(p, &flags);
886 /* Must be off runqueue entirely, not preempted. */
887 if (unlikely(p->array || task_running(rq, p))) {
888 /* If it's preempted, we yield. It could be a while. */
889 preempted = !task_running(rq, p);
890 task_rq_unlock(rq, &flags);
891 cpu_relax();
892 if (preempted)
893 yield();
894 goto repeat;
895 }
896 task_rq_unlock(rq, &flags);
897 }
898
899 /***
900 * kick_process - kick a running thread to enter/exit the kernel
901 * @p: the to-be-kicked thread
902 *
903 * Cause a process which is running on another CPU to enter
904 * kernel-mode, without any delay. (to get signals handled.)
905 *
906 * NOTE: this function doesnt have to take the runqueue lock,
907 * because all it wants to ensure is that the remote task enters
908 * the kernel. If the IPI races and the task has been migrated
909 * to another CPU then no harm is done and the purpose has been
910 * achieved as well.
911 */
912 void kick_process(task_t *p)
913 {
914 int cpu;
915
916 preempt_disable();
917 cpu = task_cpu(p);
918 if ((cpu != smp_processor_id()) && task_curr(p))
919 smp_send_reschedule(cpu);
920 preempt_enable();
921 }
922
923 /*
924 * Return a low guess at the load of a migration-source cpu.
925 *
926 * We want to under-estimate the load of migration sources, to
927 * balance conservatively.
928 */
929 static inline unsigned long source_load(int cpu, int type)
930 {
931 runqueue_t *rq = cpu_rq(cpu);
932 unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
933 if (type == 0)
934 return load_now;
935
936 return min(rq->cpu_load[type-1], load_now);
937 }
938
939 /*
940 * Return a high guess at the load of a migration-target cpu
941 */
942 static inline unsigned long target_load(int cpu, int type)
943 {
944 runqueue_t *rq = cpu_rq(cpu);
945 unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
946 if (type == 0)
947 return load_now;
948
949 return max(rq->cpu_load[type-1], load_now);
950 }
951
952 /*
953 * find_idlest_group finds and returns the least busy CPU group within the
954 * domain.
955 */
956 static struct sched_group *
957 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
958 {
959 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
960 unsigned long min_load = ULONG_MAX, this_load = 0;
961 int load_idx = sd->forkexec_idx;
962 int imbalance = 100 + (sd->imbalance_pct-100)/2;
963
964 do {
965 unsigned long load, avg_load;
966 int local_group;
967 int i;
968
969 local_group = cpu_isset(this_cpu, group->cpumask);
970 /* XXX: put a cpus allowed check */
971
972 /* Tally up the load of all CPUs in the group */
973 avg_load = 0;
974
975 for_each_cpu_mask(i, group->cpumask) {
976 /* Bias balancing toward cpus of our domain */
977 if (local_group)
978 load = source_load(i, load_idx);
979 else
980 load = target_load(i, load_idx);
981
982 avg_load += load;
983 }
984
985 /* Adjust by relative CPU power of the group */
986 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
987
988 if (local_group) {
989 this_load = avg_load;
990 this = group;
991 } else if (avg_load < min_load) {
992 min_load = avg_load;
993 idlest = group;
994 }
995 group = group->next;
996 } while (group != sd->groups);
997
998 if (!idlest || 100*this_load < imbalance*min_load)
999 return NULL;
1000 return idlest;
1001 }
1002
1003 /*
1004 * find_idlest_queue - find the idlest runqueue among the cpus in group.
1005 */
1006 static int find_idlest_cpu(struct sched_group *group, int this_cpu)
1007 {
1008 unsigned long load, min_load = ULONG_MAX;
1009 int idlest = -1;
1010 int i;
1011
1012 for_each_cpu_mask(i, group->cpumask) {
1013 load = source_load(i, 0);
1014
1015 if (load < min_load || (load == min_load && i == this_cpu)) {
1016 min_load = load;
1017 idlest = i;
1018 }
1019 }
1020
1021 return idlest;
1022 }
1023
1024 /*
1025 * sched_balance_self: balance the current task (running on cpu) in domains
1026 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1027 * SD_BALANCE_EXEC.
1028 *
1029 * Balance, ie. select the least loaded group.
1030 *
1031 * Returns the target CPU number, or the same CPU if no balancing is needed.
1032 *
1033 * preempt must be disabled.
1034 */
1035 static int sched_balance_self(int cpu, int flag)
1036 {
1037 struct task_struct *t = current;
1038 struct sched_domain *tmp, *sd = NULL;
1039
1040 for_each_domain(cpu, tmp)
1041 if (tmp->flags & flag)
1042 sd = tmp;
1043
1044 while (sd) {
1045 cpumask_t span;
1046 struct sched_group *group;
1047 int new_cpu;
1048 int weight;
1049
1050 span = sd->span;
1051 group = find_idlest_group(sd, t, cpu);
1052 if (!group)
1053 goto nextlevel;
1054
1055 new_cpu = find_idlest_cpu(group, cpu);
1056 if (new_cpu == -1 || new_cpu == cpu)
1057 goto nextlevel;
1058
1059 /* Now try balancing at a lower domain level */
1060 cpu = new_cpu;
1061 nextlevel:
1062 sd = NULL;
1063 weight = cpus_weight(span);
1064 for_each_domain(cpu, tmp) {
1065 if (weight <= cpus_weight(tmp->span))
1066 break;
1067 if (tmp->flags & flag)
1068 sd = tmp;
1069 }
1070 /* while loop will break here if sd == NULL */
1071 }
1072
1073 return cpu;
1074 }
1075
1076 #endif /* CONFIG_SMP */
1077
1078 /*
1079 * wake_idle() will wake a task on an idle cpu if task->cpu is
1080 * not idle and an idle cpu is available. The span of cpus to
1081 * search starts with cpus closest then further out as needed,
1082 * so we always favor a closer, idle cpu.
1083 *
1084 * Returns the CPU we should wake onto.
1085 */
1086 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1087 static int wake_idle(int cpu, task_t *p)
1088 {
1089 cpumask_t tmp;
1090 struct sched_domain *sd;
1091 int i;
1092
1093 if (idle_cpu(cpu))
1094 return cpu;
1095
1096 for_each_domain(cpu, sd) {
1097 if (sd->flags & SD_WAKE_IDLE) {
1098 cpus_and(tmp, sd->span, p->cpus_allowed);
1099 for_each_cpu_mask(i, tmp) {
1100 if (idle_cpu(i))
1101 return i;
1102 }
1103 }
1104 else
1105 break;
1106 }
1107 return cpu;
1108 }
1109 #else
1110 static inline int wake_idle(int cpu, task_t *p)
1111 {
1112 return cpu;
1113 }
1114 #endif
1115
1116 /***
1117 * try_to_wake_up - wake up a thread
1118 * @p: the to-be-woken-up thread
1119 * @state: the mask of task states that can be woken
1120 * @sync: do a synchronous wakeup?
1121 *
1122 * Put it on the run-queue if it's not already there. The "current"
1123 * thread is always on the run-queue (except when the actual
1124 * re-schedule is in progress), and as such you're allowed to do
1125 * the simpler "current->state = TASK_RUNNING" to mark yourself
1126 * runnable without the overhead of this.
1127 *
1128 * returns failure only if the task is already active.
1129 */
1130 static int try_to_wake_up(task_t * p, unsigned int state, int sync)
1131 {
1132 int cpu, this_cpu, success = 0;
1133 unsigned long flags;
1134 long old_state;
1135 runqueue_t *rq;
1136 #ifdef CONFIG_SMP
1137 unsigned long load, this_load;
1138 struct sched_domain *sd, *this_sd = NULL;
1139 int new_cpu;
1140 #endif
1141
1142 rq = task_rq_lock(p, &flags);
1143 old_state = p->state;
1144 if (!(old_state & state))
1145 goto out;
1146
1147 if (p->array)
1148 goto out_running;
1149
1150 cpu = task_cpu(p);
1151 this_cpu = smp_processor_id();
1152
1153 #ifdef CONFIG_SMP
1154 if (unlikely(task_running(rq, p)))
1155 goto out_activate;
1156
1157 new_cpu = cpu;
1158
1159 schedstat_inc(rq, ttwu_cnt);
1160 if (cpu == this_cpu) {
1161 schedstat_inc(rq, ttwu_local);
1162 goto out_set_cpu;
1163 }
1164
1165 for_each_domain(this_cpu, sd) {
1166 if (cpu_isset(cpu, sd->span)) {
1167 schedstat_inc(sd, ttwu_wake_remote);
1168 this_sd = sd;
1169 break;
1170 }
1171 }
1172
1173 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1174 goto out_set_cpu;
1175
1176 /*
1177 * Check for affine wakeup and passive balancing possibilities.
1178 */
1179 if (this_sd) {
1180 int idx = this_sd->wake_idx;
1181 unsigned int imbalance;
1182
1183 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1184
1185 load = source_load(cpu, idx);
1186 this_load = target_load(this_cpu, idx);
1187
1188 new_cpu = this_cpu; /* Wake to this CPU if we can */
1189
1190 if (this_sd->flags & SD_WAKE_AFFINE) {
1191 unsigned long tl = this_load;
1192 /*
1193 * If sync wakeup then subtract the (maximum possible)
1194 * effect of the currently running task from the load
1195 * of the current CPU:
1196 */
1197 if (sync)
1198 tl -= SCHED_LOAD_SCALE;
1199
1200 if ((tl <= load &&
1201 tl + target_load(cpu, idx) <= SCHED_LOAD_SCALE) ||
1202 100*(tl + SCHED_LOAD_SCALE) <= imbalance*load) {
1203 /*
1204 * This domain has SD_WAKE_AFFINE and
1205 * p is cache cold in this domain, and
1206 * there is no bad imbalance.
1207 */
1208 schedstat_inc(this_sd, ttwu_move_affine);
1209 goto out_set_cpu;
1210 }
1211 }
1212
1213 /*
1214 * Start passive balancing when half the imbalance_pct
1215 * limit is reached.
1216 */
1217 if (this_sd->flags & SD_WAKE_BALANCE) {
1218 if (imbalance*this_load <= 100*load) {
1219 schedstat_inc(this_sd, ttwu_move_balance);
1220 goto out_set_cpu;
1221 }
1222 }
1223 }
1224
1225 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1226 out_set_cpu:
1227 new_cpu = wake_idle(new_cpu, p);
1228 if (new_cpu != cpu) {
1229 set_task_cpu(p, new_cpu);
1230 task_rq_unlock(rq, &flags);
1231 /* might preempt at this point */
1232 rq = task_rq_lock(p, &flags);
1233 old_state = p->state;
1234 if (!(old_state & state))
1235 goto out;
1236 if (p->array)
1237 goto out_running;
1238
1239 this_cpu = smp_processor_id();
1240 cpu = task_cpu(p);
1241 }
1242
1243 out_activate:
1244 #endif /* CONFIG_SMP */
1245 if (old_state == TASK_UNINTERRUPTIBLE) {
1246 rq->nr_uninterruptible--;
1247 /*
1248 * Tasks on involuntary sleep don't earn
1249 * sleep_avg beyond just interactive state.
1250 */
1251 p->activated = -1;
1252 }
1253
1254 /*
1255 * Sync wakeups (i.e. those types of wakeups where the waker
1256 * has indicated that it will leave the CPU in short order)
1257 * don't trigger a preemption, if the woken up task will run on
1258 * this cpu. (in this case the 'I will reschedule' promise of
1259 * the waker guarantees that the freshly woken up task is going
1260 * to be considered on this CPU.)
1261 */
1262 activate_task(p, rq, cpu == this_cpu);
1263 if (!sync || cpu != this_cpu) {
1264 if (TASK_PREEMPTS_CURR(p, rq))
1265 resched_task(rq->curr);
1266 }
1267 success = 1;
1268
1269 out_running:
1270 p->state = TASK_RUNNING;
1271 out:
1272 task_rq_unlock(rq, &flags);
1273
1274 return success;
1275 }
1276
1277 int fastcall wake_up_process(task_t * p)
1278 {
1279 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1280 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1281 }
1282
1283 EXPORT_SYMBOL(wake_up_process);
1284
1285 int fastcall wake_up_state(task_t *p, unsigned int state)
1286 {
1287 return try_to_wake_up(p, state, 0);
1288 }
1289
1290 /*
1291 * Perform scheduler related setup for a newly forked process p.
1292 * p is forked by current.
1293 */
1294 void fastcall sched_fork(task_t *p, int clone_flags)
1295 {
1296 int cpu = get_cpu();
1297
1298 #ifdef CONFIG_SMP
1299 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1300 #endif
1301 set_task_cpu(p, cpu);
1302
1303 /*
1304 * We mark the process as running here, but have not actually
1305 * inserted it onto the runqueue yet. This guarantees that
1306 * nobody will actually run it, and a signal or other external
1307 * event cannot wake it up and insert it on the runqueue either.
1308 */
1309 p->state = TASK_RUNNING;
1310 INIT_LIST_HEAD(&p->run_list);
1311 p->array = NULL;
1312 #ifdef CONFIG_SCHEDSTATS
1313 memset(&p->sched_info, 0, sizeof(p->sched_info));
1314 #endif
1315 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1316 p->oncpu = 0;
1317 #endif
1318 #ifdef CONFIG_PREEMPT
1319 /* Want to start with kernel preemption disabled. */
1320 p->thread_info->preempt_count = 1;
1321 #endif
1322 /*
1323 * Share the timeslice between parent and child, thus the
1324 * total amount of pending timeslices in the system doesn't change,
1325 * resulting in more scheduling fairness.
1326 */
1327 local_irq_disable();
1328 p->time_slice = (current->time_slice + 1) >> 1;
1329 /*
1330 * The remainder of the first timeslice might be recovered by
1331 * the parent if the child exits early enough.
1332 */
1333 p->first_time_slice = 1;
1334 current->time_slice >>= 1;
1335 p->timestamp = sched_clock();
1336 if (unlikely(!current->time_slice)) {
1337 /*
1338 * This case is rare, it happens when the parent has only
1339 * a single jiffy left from its timeslice. Taking the
1340 * runqueue lock is not a problem.
1341 */
1342 current->time_slice = 1;
1343 scheduler_tick();
1344 }
1345 local_irq_enable();
1346 put_cpu();
1347 }
1348
1349 /*
1350 * wake_up_new_task - wake up a newly created task for the first time.
1351 *
1352 * This function will do some initial scheduler statistics housekeeping
1353 * that must be done for every newly created context, then puts the task
1354 * on the runqueue and wakes it.
1355 */
1356 void fastcall wake_up_new_task(task_t * p, unsigned long clone_flags)
1357 {
1358 unsigned long flags;
1359 int this_cpu, cpu;
1360 runqueue_t *rq, *this_rq;
1361
1362 rq = task_rq_lock(p, &flags);
1363 BUG_ON(p->state != TASK_RUNNING);
1364 this_cpu = smp_processor_id();
1365 cpu = task_cpu(p);
1366
1367 /*
1368 * We decrease the sleep average of forking parents
1369 * and children as well, to keep max-interactive tasks
1370 * from forking tasks that are max-interactive. The parent
1371 * (current) is done further down, under its lock.
1372 */
1373 p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1374 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1375
1376 p->prio = effective_prio(p);
1377
1378 if (likely(cpu == this_cpu)) {
1379 if (!(clone_flags & CLONE_VM)) {
1380 /*
1381 * The VM isn't cloned, so we're in a good position to
1382 * do child-runs-first in anticipation of an exec. This
1383 * usually avoids a lot of COW overhead.
1384 */
1385 if (unlikely(!current->array))
1386 __activate_task(p, rq);
1387 else {
1388 p->prio = current->prio;
1389 list_add_tail(&p->run_list, &current->run_list);
1390 p->array = current->array;
1391 p->array->nr_active++;
1392 rq->nr_running++;
1393 }
1394 set_need_resched();
1395 } else
1396 /* Run child last */
1397 __activate_task(p, rq);
1398 /*
1399 * We skip the following code due to cpu == this_cpu
1400 *
1401 * task_rq_unlock(rq, &flags);
1402 * this_rq = task_rq_lock(current, &flags);
1403 */
1404 this_rq = rq;
1405 } else {
1406 this_rq = cpu_rq(this_cpu);
1407
1408 /*
1409 * Not the local CPU - must adjust timestamp. This should
1410 * get optimised away in the !CONFIG_SMP case.
1411 */
1412 p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
1413 + rq->timestamp_last_tick;
1414 __activate_task(p, rq);
1415 if (TASK_PREEMPTS_CURR(p, rq))
1416 resched_task(rq->curr);
1417
1418 /*
1419 * Parent and child are on different CPUs, now get the
1420 * parent runqueue to update the parent's ->sleep_avg:
1421 */
1422 task_rq_unlock(rq, &flags);
1423 this_rq = task_rq_lock(current, &flags);
1424 }
1425 current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1426 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1427 task_rq_unlock(this_rq, &flags);
1428 }
1429
1430 /*
1431 * Potentially available exiting-child timeslices are
1432 * retrieved here - this way the parent does not get
1433 * penalized for creating too many threads.
1434 *
1435 * (this cannot be used to 'generate' timeslices
1436 * artificially, because any timeslice recovered here
1437 * was given away by the parent in the first place.)
1438 */
1439 void fastcall sched_exit(task_t * p)
1440 {
1441 unsigned long flags;
1442 runqueue_t *rq;
1443
1444 /*
1445 * If the child was a (relative-) CPU hog then decrease
1446 * the sleep_avg of the parent as well.
1447 */
1448 rq = task_rq_lock(p->parent, &flags);
1449 if (p->first_time_slice) {
1450 p->parent->time_slice += p->time_slice;
1451 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1452 p->parent->time_slice = task_timeslice(p);
1453 }
1454 if (p->sleep_avg < p->parent->sleep_avg)
1455 p->parent->sleep_avg = p->parent->sleep_avg /
1456 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1457 (EXIT_WEIGHT + 1);
1458 task_rq_unlock(rq, &flags);
1459 }
1460
1461 /**
1462 * prepare_task_switch - prepare to switch tasks
1463 * @rq: the runqueue preparing to switch
1464 * @next: the task we are going to switch to.
1465 *
1466 * This is called with the rq lock held and interrupts off. It must
1467 * be paired with a subsequent finish_task_switch after the context
1468 * switch.
1469 *
1470 * prepare_task_switch sets up locking and calls architecture specific
1471 * hooks.
1472 */
1473 static inline void prepare_task_switch(runqueue_t *rq, task_t *next)
1474 {
1475 prepare_lock_switch(rq, next);
1476 prepare_arch_switch(next);
1477 }
1478
1479 /**
1480 * finish_task_switch - clean up after a task-switch
1481 * @rq: runqueue associated with task-switch
1482 * @prev: the thread we just switched away from.
1483 *
1484 * finish_task_switch must be called after the context switch, paired
1485 * with a prepare_task_switch call before the context switch.
1486 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1487 * and do any other architecture-specific cleanup actions.
1488 *
1489 * Note that we may have delayed dropping an mm in context_switch(). If
1490 * so, we finish that here outside of the runqueue lock. (Doing it
1491 * with the lock held can cause deadlocks; see schedule() for
1492 * details.)
1493 */
1494 static inline void finish_task_switch(runqueue_t *rq, task_t *prev)
1495 __releases(rq->lock)
1496 {
1497 struct mm_struct *mm = rq->prev_mm;
1498 unsigned long prev_task_flags;
1499
1500 rq->prev_mm = NULL;
1501
1502 /*
1503 * A task struct has one reference for the use as "current".
1504 * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
1505 * calls schedule one last time. The schedule call will never return,
1506 * and the scheduled task must drop that reference.
1507 * The test for EXIT_ZOMBIE must occur while the runqueue locks are
1508 * still held, otherwise prev could be scheduled on another cpu, die
1509 * there before we look at prev->state, and then the reference would
1510 * be dropped twice.
1511 * Manfred Spraul <manfred@colorfullife.com>
1512 */
1513 prev_task_flags = prev->flags;
1514 finish_arch_switch(prev);
1515 finish_lock_switch(rq, prev);
1516 if (mm)
1517 mmdrop(mm);
1518 if (unlikely(prev_task_flags & PF_DEAD))
1519 put_task_struct(prev);
1520 }
1521
1522 /**
1523 * schedule_tail - first thing a freshly forked thread must call.
1524 * @prev: the thread we just switched away from.
1525 */
1526 asmlinkage void schedule_tail(task_t *prev)
1527 __releases(rq->lock)
1528 {
1529 runqueue_t *rq = this_rq();
1530 finish_task_switch(rq, prev);
1531 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1532 /* In this case, finish_task_switch does not reenable preemption */
1533 preempt_enable();
1534 #endif
1535 if (current->set_child_tid)
1536 put_user(current->pid, current->set_child_tid);
1537 }
1538
1539 /*
1540 * context_switch - switch to the new MM and the new
1541 * thread's register state.
1542 */
1543 static inline
1544 task_t * context_switch(runqueue_t *rq, task_t *prev, task_t *next)
1545 {
1546 struct mm_struct *mm = next->mm;
1547 struct mm_struct *oldmm = prev->active_mm;
1548
1549 if (unlikely(!mm)) {
1550 next->active_mm = oldmm;
1551 atomic_inc(&oldmm->mm_count);
1552 enter_lazy_tlb(oldmm, next);
1553 } else
1554 switch_mm(oldmm, mm, next);
1555
1556 if (unlikely(!prev->mm)) {
1557 prev->active_mm = NULL;
1558 WARN_ON(rq->prev_mm);
1559 rq->prev_mm = oldmm;
1560 }
1561
1562 /* Here we just switch the register state and the stack. */
1563 switch_to(prev, next, prev);
1564
1565 return prev;
1566 }
1567
1568 /*
1569 * nr_running, nr_uninterruptible and nr_context_switches:
1570 *
1571 * externally visible scheduler statistics: current number of runnable
1572 * threads, current number of uninterruptible-sleeping threads, total
1573 * number of context switches performed since bootup.
1574 */
1575 unsigned long nr_running(void)
1576 {
1577 unsigned long i, sum = 0;
1578
1579 for_each_online_cpu(i)
1580 sum += cpu_rq(i)->nr_running;
1581
1582 return sum;
1583 }
1584
1585 unsigned long nr_uninterruptible(void)
1586 {
1587 unsigned long i, sum = 0;
1588
1589 for_each_cpu(i)
1590 sum += cpu_rq(i)->nr_uninterruptible;
1591
1592 /*
1593 * Since we read the counters lockless, it might be slightly
1594 * inaccurate. Do not allow it to go below zero though:
1595 */
1596 if (unlikely((long)sum < 0))
1597 sum = 0;
1598
1599 return sum;
1600 }
1601
1602 unsigned long long nr_context_switches(void)
1603 {
1604 unsigned long long i, sum = 0;
1605
1606 for_each_cpu(i)
1607 sum += cpu_rq(i)->nr_switches;
1608
1609 return sum;
1610 }
1611
1612 unsigned long nr_iowait(void)
1613 {
1614 unsigned long i, sum = 0;
1615
1616 for_each_cpu(i)
1617 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1618
1619 return sum;
1620 }
1621
1622 #ifdef CONFIG_SMP
1623
1624 /*
1625 * double_rq_lock - safely lock two runqueues
1626 *
1627 * Note this does not disable interrupts like task_rq_lock,
1628 * you need to do so manually before calling.
1629 */
1630 static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
1631 __acquires(rq1->lock)
1632 __acquires(rq2->lock)
1633 {
1634 if (rq1 == rq2) {
1635 spin_lock(&rq1->lock);
1636 __acquire(rq2->lock); /* Fake it out ;) */
1637 } else {
1638 if (rq1 < rq2) {
1639 spin_lock(&rq1->lock);
1640 spin_lock(&rq2->lock);
1641 } else {
1642 spin_lock(&rq2->lock);
1643 spin_lock(&rq1->lock);
1644 }
1645 }
1646 }
1647
1648 /*
1649 * double_rq_unlock - safely unlock two runqueues
1650 *
1651 * Note this does not restore interrupts like task_rq_unlock,
1652 * you need to do so manually after calling.
1653 */
1654 static void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
1655 __releases(rq1->lock)
1656 __releases(rq2->lock)
1657 {
1658 spin_unlock(&rq1->lock);
1659 if (rq1 != rq2)
1660 spin_unlock(&rq2->lock);
1661 else
1662 __release(rq2->lock);
1663 }
1664
1665 /*
1666 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1667 */
1668 static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest)
1669 __releases(this_rq->lock)
1670 __acquires(busiest->lock)
1671 __acquires(this_rq->lock)
1672 {
1673 if (unlikely(!spin_trylock(&busiest->lock))) {
1674 if (busiest < this_rq) {
1675 spin_unlock(&this_rq->lock);
1676 spin_lock(&busiest->lock);
1677 spin_lock(&this_rq->lock);
1678 } else
1679 spin_lock(&busiest->lock);
1680 }
1681 }
1682
1683 /*
1684 * If dest_cpu is allowed for this process, migrate the task to it.
1685 * This is accomplished by forcing the cpu_allowed mask to only
1686 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1687 * the cpu_allowed mask is restored.
1688 */
1689 static void sched_migrate_task(task_t *p, int dest_cpu)
1690 {
1691 migration_req_t req;
1692 runqueue_t *rq;
1693 unsigned long flags;
1694
1695 rq = task_rq_lock(p, &flags);
1696 if (!cpu_isset(dest_cpu, p->cpus_allowed)
1697 || unlikely(cpu_is_offline(dest_cpu)))
1698 goto out;
1699
1700 /* force the process onto the specified CPU */
1701 if (migrate_task(p, dest_cpu, &req)) {
1702 /* Need to wait for migration thread (might exit: take ref). */
1703 struct task_struct *mt = rq->migration_thread;
1704 get_task_struct(mt);
1705 task_rq_unlock(rq, &flags);
1706 wake_up_process(mt);
1707 put_task_struct(mt);
1708 wait_for_completion(&req.done);
1709 return;
1710 }
1711 out:
1712 task_rq_unlock(rq, &flags);
1713 }
1714
1715 /*
1716 * sched_exec - execve() is a valuable balancing opportunity, because at
1717 * this point the task has the smallest effective memory and cache footprint.
1718 */
1719 void sched_exec(void)
1720 {
1721 int new_cpu, this_cpu = get_cpu();
1722 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1723 put_cpu();
1724 if (new_cpu != this_cpu)
1725 sched_migrate_task(current, new_cpu);
1726 }
1727
1728 /*
1729 * pull_task - move a task from a remote runqueue to the local runqueue.
1730 * Both runqueues must be locked.
1731 */
1732 static inline
1733 void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p,
1734 runqueue_t *this_rq, prio_array_t *this_array, int this_cpu)
1735 {
1736 dequeue_task(p, src_array);
1737 src_rq->nr_running--;
1738 set_task_cpu(p, this_cpu);
1739 this_rq->nr_running++;
1740 enqueue_task(p, this_array);
1741 p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
1742 + this_rq->timestamp_last_tick;
1743 /*
1744 * Note that idle threads have a prio of MAX_PRIO, for this test
1745 * to be always true for them.
1746 */
1747 if (TASK_PREEMPTS_CURR(p, this_rq))
1748 resched_task(this_rq->curr);
1749 }
1750
1751 /*
1752 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1753 */
1754 static inline
1755 int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,
1756 struct sched_domain *sd, enum idle_type idle, int *all_pinned)
1757 {
1758 /*
1759 * We do not migrate tasks that are:
1760 * 1) running (obviously), or
1761 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1762 * 3) are cache-hot on their current CPU.
1763 */
1764 if (!cpu_isset(this_cpu, p->cpus_allowed))
1765 return 0;
1766 *all_pinned = 0;
1767
1768 if (task_running(rq, p))
1769 return 0;
1770
1771 /*
1772 * Aggressive migration if:
1773 * 1) task is cache cold, or
1774 * 2) too many balance attempts have failed.
1775 */
1776
1777 if (sd->nr_balance_failed > sd->cache_nice_tries)
1778 return 1;
1779
1780 if (task_hot(p, rq->timestamp_last_tick, sd))
1781 return 0;
1782 return 1;
1783 }
1784
1785 /*
1786 * move_tasks tries to move up to max_nr_move tasks from busiest to this_rq,
1787 * as part of a balancing operation within "domain". Returns the number of
1788 * tasks moved.
1789 *
1790 * Called with both runqueues locked.
1791 */
1792 static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest,
1793 unsigned long max_nr_move, struct sched_domain *sd,
1794 enum idle_type idle, int *all_pinned)
1795 {
1796 prio_array_t *array, *dst_array;
1797 struct list_head *head, *curr;
1798 int idx, pulled = 0, pinned = 0;
1799 task_t *tmp;
1800
1801 if (max_nr_move == 0)
1802 goto out;
1803
1804 pinned = 1;
1805
1806 /*
1807 * We first consider expired tasks. Those will likely not be
1808 * executed in the near future, and they are most likely to
1809 * be cache-cold, thus switching CPUs has the least effect
1810 * on them.
1811 */
1812 if (busiest->expired->nr_active) {
1813 array = busiest->expired;
1814 dst_array = this_rq->expired;
1815 } else {
1816 array = busiest->active;
1817 dst_array = this_rq->active;
1818 }
1819
1820 new_array:
1821 /* Start searching at priority 0: */
1822 idx = 0;
1823 skip_bitmap:
1824 if (!idx)
1825 idx = sched_find_first_bit(array->bitmap);
1826 else
1827 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
1828 if (idx >= MAX_PRIO) {
1829 if (array == busiest->expired && busiest->active->nr_active) {
1830 array = busiest->active;
1831 dst_array = this_rq->active;
1832 goto new_array;
1833 }
1834 goto out;
1835 }
1836
1837 head = array->queue + idx;
1838 curr = head->prev;
1839 skip_queue:
1840 tmp = list_entry(curr, task_t, run_list);
1841
1842 curr = curr->prev;
1843
1844 if (!can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
1845 if (curr != head)
1846 goto skip_queue;
1847 idx++;
1848 goto skip_bitmap;
1849 }
1850
1851 #ifdef CONFIG_SCHEDSTATS
1852 if (task_hot(tmp, busiest->timestamp_last_tick, sd))
1853 schedstat_inc(sd, lb_hot_gained[idle]);
1854 #endif
1855
1856 pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
1857 pulled++;
1858
1859 /* We only want to steal up to the prescribed number of tasks. */
1860 if (pulled < max_nr_move) {
1861 if (curr != head)
1862 goto skip_queue;
1863 idx++;
1864 goto skip_bitmap;
1865 }
1866 out:
1867 /*
1868 * Right now, this is the only place pull_task() is called,
1869 * so we can safely collect pull_task() stats here rather than
1870 * inside pull_task().
1871 */
1872 schedstat_add(sd, lb_gained[idle], pulled);
1873
1874 if (all_pinned)
1875 *all_pinned = pinned;
1876 return pulled;
1877 }
1878
1879 /*
1880 * find_busiest_group finds and returns the busiest CPU group within the
1881 * domain. It calculates and returns the number of tasks which should be
1882 * moved to restore balance via the imbalance parameter.
1883 */
1884 static struct sched_group *
1885 find_busiest_group(struct sched_domain *sd, int this_cpu,
1886 unsigned long *imbalance, enum idle_type idle)
1887 {
1888 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
1889 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
1890 int load_idx;
1891
1892 max_load = this_load = total_load = total_pwr = 0;
1893 if (idle == NOT_IDLE)
1894 load_idx = sd->busy_idx;
1895 else if (idle == NEWLY_IDLE)
1896 load_idx = sd->newidle_idx;
1897 else
1898 load_idx = sd->idle_idx;
1899
1900 do {
1901 unsigned long load;
1902 int local_group;
1903 int i;
1904
1905 local_group = cpu_isset(this_cpu, group->cpumask);
1906
1907 /* Tally up the load of all CPUs in the group */
1908 avg_load = 0;
1909
1910 for_each_cpu_mask(i, group->cpumask) {
1911 /* Bias balancing toward cpus of our domain */
1912 if (local_group)
1913 load = target_load(i, load_idx);
1914 else
1915 load = source_load(i, load_idx);
1916
1917 avg_load += load;
1918 }
1919
1920 total_load += avg_load;
1921 total_pwr += group->cpu_power;
1922
1923 /* Adjust by relative CPU power of the group */
1924 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1925
1926 if (local_group) {
1927 this_load = avg_load;
1928 this = group;
1929 } else if (avg_load > max_load) {
1930 max_load = avg_load;
1931 busiest = group;
1932 }
1933 group = group->next;
1934 } while (group != sd->groups);
1935
1936 if (!busiest || this_load >= max_load)
1937 goto out_balanced;
1938
1939 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
1940
1941 if (this_load >= avg_load ||
1942 100*max_load <= sd->imbalance_pct*this_load)
1943 goto out_balanced;
1944
1945 /*
1946 * We're trying to get all the cpus to the average_load, so we don't
1947 * want to push ourselves above the average load, nor do we wish to
1948 * reduce the max loaded cpu below the average load, as either of these
1949 * actions would just result in more rebalancing later, and ping-pong
1950 * tasks around. Thus we look for the minimum possible imbalance.
1951 * Negative imbalances (*we* are more loaded than anyone else) will
1952 * be counted as no imbalance for these purposes -- we can't fix that
1953 * by pulling tasks to us. Be careful of negative numbers as they'll
1954 * appear as very large values with unsigned longs.
1955 */
1956 /* How much load to actually move to equalise the imbalance */
1957 *imbalance = min((max_load - avg_load) * busiest->cpu_power,
1958 (avg_load - this_load) * this->cpu_power)
1959 / SCHED_LOAD_SCALE;
1960
1961 if (*imbalance < SCHED_LOAD_SCALE) {
1962 unsigned long pwr_now = 0, pwr_move = 0;
1963 unsigned long tmp;
1964
1965 if (max_load - this_load >= SCHED_LOAD_SCALE*2) {
1966 *imbalance = 1;
1967 return busiest;
1968 }
1969
1970 /*
1971 * OK, we don't have enough imbalance to justify moving tasks,
1972 * however we may be able to increase total CPU power used by
1973 * moving them.
1974 */
1975
1976 pwr_now += busiest->cpu_power*min(SCHED_LOAD_SCALE, max_load);
1977 pwr_now += this->cpu_power*min(SCHED_LOAD_SCALE, this_load);
1978 pwr_now /= SCHED_LOAD_SCALE;
1979
1980 /* Amount of load we'd subtract */
1981 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/busiest->cpu_power;
1982 if (max_load > tmp)
1983 pwr_move += busiest->cpu_power*min(SCHED_LOAD_SCALE,
1984 max_load - tmp);
1985
1986 /* Amount of load we'd add */
1987 if (max_load*busiest->cpu_power <
1988 SCHED_LOAD_SCALE*SCHED_LOAD_SCALE)
1989 tmp = max_load*busiest->cpu_power/this->cpu_power;
1990 else
1991 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/this->cpu_power;
1992 pwr_move += this->cpu_power*min(SCHED_LOAD_SCALE, this_load + tmp);
1993 pwr_move /= SCHED_LOAD_SCALE;
1994
1995 /* Move if we gain throughput */
1996 if (pwr_move <= pwr_now)
1997 goto out_balanced;
1998
1999 *imbalance = 1;
2000 return busiest;
2001 }
2002
2003 /* Get rid of the scaling factor, rounding down as we divide */
2004 *imbalance = *imbalance / SCHED_LOAD_SCALE;
2005 return busiest;
2006
2007 out_balanced:
2008
2009 *imbalance = 0;
2010 return NULL;
2011 }
2012
2013 /*
2014 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2015 */
2016 static runqueue_t *find_busiest_queue(struct sched_group *group)
2017 {
2018 unsigned long load, max_load = 0;
2019 runqueue_t *busiest = NULL;
2020 int i;
2021
2022 for_each_cpu_mask(i, group->cpumask) {
2023 load = source_load(i, 0);
2024
2025 if (load > max_load) {
2026 max_load = load;
2027 busiest = cpu_rq(i);
2028 }
2029 }
2030
2031 return busiest;
2032 }
2033
2034 /*
2035 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2036 * so long as it is large enough.
2037 */
2038 #define MAX_PINNED_INTERVAL 512
2039
2040 /*
2041 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2042 * tasks if there is an imbalance.
2043 *
2044 * Called with this_rq unlocked.
2045 */
2046 static int load_balance(int this_cpu, runqueue_t *this_rq,
2047 struct sched_domain *sd, enum idle_type idle)
2048 {
2049 struct sched_group *group;
2050 runqueue_t *busiest;
2051 unsigned long imbalance;
2052 int nr_moved, all_pinned = 0;
2053 int active_balance = 0;
2054
2055 spin_lock(&this_rq->lock);
2056 schedstat_inc(sd, lb_cnt[idle]);
2057
2058 group = find_busiest_group(sd, this_cpu, &imbalance, idle);
2059 if (!group) {
2060 schedstat_inc(sd, lb_nobusyg[idle]);
2061 goto out_balanced;
2062 }
2063
2064 busiest = find_busiest_queue(group);
2065 if (!busiest) {
2066 schedstat_inc(sd, lb_nobusyq[idle]);
2067 goto out_balanced;
2068 }
2069
2070 BUG_ON(busiest == this_rq);
2071
2072 schedstat_add(sd, lb_imbalance[idle], imbalance);
2073
2074 nr_moved = 0;
2075 if (busiest->nr_running > 1) {
2076 /*
2077 * Attempt to move tasks. If find_busiest_group has found
2078 * an imbalance but busiest->nr_running <= 1, the group is
2079 * still unbalanced. nr_moved simply stays zero, so it is
2080 * correctly treated as an imbalance.
2081 */
2082 double_lock_balance(this_rq, busiest);
2083 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2084 imbalance, sd, idle,
2085 &all_pinned);
2086 spin_unlock(&busiest->lock);
2087
2088 /* All tasks on this runqueue were pinned by CPU affinity */
2089 if (unlikely(all_pinned))
2090 goto out_balanced;
2091 }
2092
2093 spin_unlock(&this_rq->lock);
2094
2095 if (!nr_moved) {
2096 schedstat_inc(sd, lb_failed[idle]);
2097 sd->nr_balance_failed++;
2098
2099 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2100
2101 spin_lock(&busiest->lock);
2102 if (!busiest->active_balance) {
2103 busiest->active_balance = 1;
2104 busiest->push_cpu = this_cpu;
2105 active_balance = 1;
2106 }
2107 spin_unlock(&busiest->lock);
2108 if (active_balance)
2109 wake_up_process(busiest->migration_thread);
2110
2111 /*
2112 * We've kicked active balancing, reset the failure
2113 * counter.
2114 */
2115 sd->nr_balance_failed = sd->cache_nice_tries+1;
2116 }
2117 } else
2118 sd->nr_balance_failed = 0;
2119
2120 if (likely(!active_balance)) {
2121 /* We were unbalanced, so reset the balancing interval */
2122 sd->balance_interval = sd->min_interval;
2123 } else {
2124 /*
2125 * If we've begun active balancing, start to back off. This
2126 * case may not be covered by the all_pinned logic if there
2127 * is only 1 task on the busy runqueue (because we don't call
2128 * move_tasks).
2129 */
2130 if (sd->balance_interval < sd->max_interval)
2131 sd->balance_interval *= 2;
2132 }
2133
2134 return nr_moved;
2135
2136 out_balanced:
2137 spin_unlock(&this_rq->lock);
2138
2139 schedstat_inc(sd, lb_balanced[idle]);
2140
2141 sd->nr_balance_failed = 0;
2142 /* tune up the balancing interval */
2143 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2144 (sd->balance_interval < sd->max_interval))
2145 sd->balance_interval *= 2;
2146
2147 return 0;
2148 }
2149
2150 /*
2151 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2152 * tasks if there is an imbalance.
2153 *
2154 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2155 * this_rq is locked.
2156 */
2157 static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
2158 struct sched_domain *sd)
2159 {
2160 struct sched_group *group;
2161 runqueue_t *busiest = NULL;
2162 unsigned long imbalance;
2163 int nr_moved = 0;
2164
2165 schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
2166 group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE);
2167 if (!group) {
2168 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
2169 goto out_balanced;
2170 }
2171
2172 busiest = find_busiest_queue(group);
2173 if (!busiest) {
2174 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
2175 goto out_balanced;
2176 }
2177
2178 BUG_ON(busiest == this_rq);
2179
2180 /* Attempt to move tasks */
2181 double_lock_balance(this_rq, busiest);
2182
2183 schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
2184 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2185 imbalance, sd, NEWLY_IDLE, NULL);
2186 if (!nr_moved)
2187 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
2188 else
2189 sd->nr_balance_failed = 0;
2190
2191 spin_unlock(&busiest->lock);
2192 return nr_moved;
2193
2194 out_balanced:
2195 schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
2196 sd->nr_balance_failed = 0;
2197 return 0;
2198 }
2199
2200 /*
2201 * idle_balance is called by schedule() if this_cpu is about to become
2202 * idle. Attempts to pull tasks from other CPUs.
2203 */
2204 static inline void idle_balance(int this_cpu, runqueue_t *this_rq)
2205 {
2206 struct sched_domain *sd;
2207
2208 for_each_domain(this_cpu, sd) {
2209 if (sd->flags & SD_BALANCE_NEWIDLE) {
2210 if (load_balance_newidle(this_cpu, this_rq, sd)) {
2211 /* We've pulled tasks over so stop searching */
2212 break;
2213 }
2214 }
2215 }
2216 }
2217
2218 /*
2219 * active_load_balance is run by migration threads. It pushes running tasks
2220 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2221 * running on each physical CPU where possible, and avoids physical /
2222 * logical imbalances.
2223 *
2224 * Called with busiest_rq locked.
2225 */
2226 static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu)
2227 {
2228 struct sched_domain *sd;
2229 runqueue_t *target_rq;
2230 int target_cpu = busiest_rq->push_cpu;
2231
2232 if (busiest_rq->nr_running <= 1)
2233 /* no task to move */
2234 return;
2235
2236 target_rq = cpu_rq(target_cpu);
2237
2238 /*
2239 * This condition is "impossible", if it occurs
2240 * we need to fix it. Originally reported by
2241 * Bjorn Helgaas on a 128-cpu setup.
2242 */
2243 BUG_ON(busiest_rq == target_rq);
2244
2245 /* move a task from busiest_rq to target_rq */
2246 double_lock_balance(busiest_rq, target_rq);
2247
2248 /* Search for an sd spanning us and the target CPU. */
2249 for_each_domain(target_cpu, sd)
2250 if ((sd->flags & SD_LOAD_BALANCE) &&
2251 cpu_isset(busiest_cpu, sd->span))
2252 break;
2253
2254 if (unlikely(sd == NULL))
2255 goto out;
2256
2257 schedstat_inc(sd, alb_cnt);
2258
2259 if (move_tasks(target_rq, target_cpu, busiest_rq, 1, sd, SCHED_IDLE, NULL))
2260 schedstat_inc(sd, alb_pushed);
2261 else
2262 schedstat_inc(sd, alb_failed);
2263 out:
2264 spin_unlock(&target_rq->lock);
2265 }
2266
2267 /*
2268 * rebalance_tick will get called every timer tick, on every CPU.
2269 *
2270 * It checks each scheduling domain to see if it is due to be balanced,
2271 * and initiates a balancing operation if so.
2272 *
2273 * Balancing parameters are set up in arch_init_sched_domains.
2274 */
2275
2276 /* Don't have all balancing operations going off at once */
2277 #define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
2278
2279 static void rebalance_tick(int this_cpu, runqueue_t *this_rq,
2280 enum idle_type idle)
2281 {
2282 unsigned long old_load, this_load;
2283 unsigned long j = jiffies + CPU_OFFSET(this_cpu);
2284 struct sched_domain *sd;
2285 int i;
2286
2287 this_load = this_rq->nr_running * SCHED_LOAD_SCALE;
2288 /* Update our load */
2289 for (i = 0; i < 3; i++) {
2290 unsigned long new_load = this_load;
2291 int scale = 1 << i;
2292 old_load = this_rq->cpu_load[i];
2293 /*
2294 * Round up the averaging division if load is increasing. This
2295 * prevents us from getting stuck on 9 if the load is 10, for
2296 * example.
2297 */
2298 if (new_load > old_load)
2299 new_load += scale-1;
2300 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
2301 }
2302
2303 for_each_domain(this_cpu, sd) {
2304 unsigned long interval;
2305
2306 if (!(sd->flags & SD_LOAD_BALANCE))
2307 continue;
2308
2309 interval = sd->balance_interval;
2310 if (idle != SCHED_IDLE)
2311 interval *= sd->busy_factor;
2312
2313 /* scale ms to jiffies */
2314 interval = msecs_to_jiffies(interval);
2315 if (unlikely(!interval))
2316 interval = 1;
2317
2318 if (j - sd->last_balance >= interval) {
2319 if (load_balance(this_cpu, this_rq, sd, idle)) {
2320 /* We've pulled tasks over so no longer idle */
2321 idle = NOT_IDLE;
2322 }
2323 sd->last_balance += interval;
2324 }
2325 }
2326 }
2327 #else
2328 /*
2329 * on UP we do not need to balance between CPUs:
2330 */
2331 static inline void rebalance_tick(int cpu, runqueue_t *rq, enum idle_type idle)
2332 {
2333 }
2334 static inline void idle_balance(int cpu, runqueue_t *rq)
2335 {
2336 }
2337 #endif
2338
2339 static inline int wake_priority_sleeper(runqueue_t *rq)
2340 {
2341 int ret = 0;
2342 #ifdef CONFIG_SCHED_SMT
2343 spin_lock(&rq->lock);
2344 /*
2345 * If an SMT sibling task has been put to sleep for priority
2346 * reasons reschedule the idle task to see if it can now run.
2347 */
2348 if (rq->nr_running) {
2349 resched_task(rq->idle);
2350 ret = 1;
2351 }
2352 spin_unlock(&rq->lock);
2353 #endif
2354 return ret;
2355 }
2356
2357 DEFINE_PER_CPU(struct kernel_stat, kstat);
2358
2359 EXPORT_PER_CPU_SYMBOL(kstat);
2360
2361 /*
2362 * This is called on clock ticks and on context switches.
2363 * Bank in p->sched_time the ns elapsed since the last tick or switch.
2364 */
2365 static inline void update_cpu_clock(task_t *p, runqueue_t *rq,
2366 unsigned long long now)
2367 {
2368 unsigned long long last = max(p->timestamp, rq->timestamp_last_tick);
2369 p->sched_time += now - last;
2370 }
2371
2372 /*
2373 * Return current->sched_time plus any more ns on the sched_clock
2374 * that have not yet been banked.
2375 */
2376 unsigned long long current_sched_time(const task_t *tsk)
2377 {
2378 unsigned long long ns;
2379 unsigned long flags;
2380 local_irq_save(flags);
2381 ns = max(tsk->timestamp, task_rq(tsk)->timestamp_last_tick);
2382 ns = tsk->sched_time + (sched_clock() - ns);
2383 local_irq_restore(flags);
2384 return ns;
2385 }
2386
2387 /*
2388 * We place interactive tasks back into the active array, if possible.
2389 *
2390 * To guarantee that this does not starve expired tasks we ignore the
2391 * interactivity of a task if the first expired task had to wait more
2392 * than a 'reasonable' amount of time. This deadline timeout is
2393 * load-dependent, as the frequency of array switched decreases with
2394 * increasing number of running tasks. We also ignore the interactivity
2395 * if a better static_prio task has expired:
2396 */
2397 #define EXPIRED_STARVING(rq) \
2398 ((STARVATION_LIMIT && ((rq)->expired_timestamp && \
2399 (jiffies - (rq)->expired_timestamp >= \
2400 STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
2401 ((rq)->curr->static_prio > (rq)->best_expired_prio))
2402
2403 /*
2404 * Account user cpu time to a process.
2405 * @p: the process that the cpu time gets accounted to
2406 * @hardirq_offset: the offset to subtract from hardirq_count()
2407 * @cputime: the cpu time spent in user space since the last update
2408 */
2409 void account_user_time(struct task_struct *p, cputime_t cputime)
2410 {
2411 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2412 cputime64_t tmp;
2413
2414 p->utime = cputime_add(p->utime, cputime);
2415
2416 /* Add user time to cpustat. */
2417 tmp = cputime_to_cputime64(cputime);
2418 if (TASK_NICE(p) > 0)
2419 cpustat->nice = cputime64_add(cpustat->nice, tmp);
2420 else
2421 cpustat->user = cputime64_add(cpustat->user, tmp);
2422 }
2423
2424 /*
2425 * Account system cpu time to a process.
2426 * @p: the process that the cpu time gets accounted to
2427 * @hardirq_offset: the offset to subtract from hardirq_count()
2428 * @cputime: the cpu time spent in kernel space since the last update
2429 */
2430 void account_system_time(struct task_struct *p, int hardirq_offset,
2431 cputime_t cputime)
2432 {
2433 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2434 runqueue_t *rq = this_rq();
2435 cputime64_t tmp;
2436
2437 p->stime = cputime_add(p->stime, cputime);
2438
2439 /* Add system time to cpustat. */
2440 tmp = cputime_to_cputime64(cputime);
2441 if (hardirq_count() - hardirq_offset)
2442 cpustat->irq = cputime64_add(cpustat->irq, tmp);
2443 else if (softirq_count())
2444 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
2445 else if (p != rq->idle)
2446 cpustat->system = cputime64_add(cpustat->system, tmp);
2447 else if (atomic_read(&rq->nr_iowait) > 0)
2448 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2449 else
2450 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2451 /* Account for system time used */
2452 acct_update_integrals(p);
2453 /* Update rss highwater mark */
2454 update_mem_hiwater(p);
2455 }
2456
2457 /*
2458 * Account for involuntary wait time.
2459 * @p: the process from which the cpu time has been stolen
2460 * @steal: the cpu time spent in involuntary wait
2461 */
2462 void account_steal_time(struct task_struct *p, cputime_t steal)
2463 {
2464 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2465 cputime64_t tmp = cputime_to_cputime64(steal);
2466 runqueue_t *rq = this_rq();
2467
2468 if (p == rq->idle) {
2469 p->stime = cputime_add(p->stime, steal);
2470 if (atomic_read(&rq->nr_iowait) > 0)
2471 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2472 else
2473 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2474 } else
2475 cpustat->steal = cputime64_add(cpustat->steal, tmp);
2476 }
2477
2478 /*
2479 * This function gets called by the timer code, with HZ frequency.
2480 * We call it with interrupts disabled.
2481 *
2482 * It also gets called by the fork code, when changing the parent's
2483 * timeslices.
2484 */
2485 void scheduler_tick(void)
2486 {
2487 int cpu = smp_processor_id();
2488 runqueue_t *rq = this_rq();
2489 task_t *p = current;
2490 unsigned long long now = sched_clock();
2491
2492 update_cpu_clock(p, rq, now);
2493
2494 rq->timestamp_last_tick = now;
2495
2496 if (p == rq->idle) {
2497 if (wake_priority_sleeper(rq))
2498 goto out;
2499 rebalance_tick(cpu, rq, SCHED_IDLE);
2500 return;
2501 }
2502
2503 /* Task might have expired already, but not scheduled off yet */
2504 if (p->array != rq->active) {
2505 set_tsk_need_resched(p);
2506 goto out;
2507 }
2508 spin_lock(&rq->lock);
2509 /*
2510 * The task was running during this tick - update the
2511 * time slice counter. Note: we do not update a thread's
2512 * priority until it either goes to sleep or uses up its
2513 * timeslice. This makes it possible for interactive tasks
2514 * to use up their timeslices at their highest priority levels.
2515 */
2516 if (rt_task(p)) {
2517 /*
2518 * RR tasks need a special form of timeslice management.
2519 * FIFO tasks have no timeslices.
2520 */
2521 if ((p->policy == SCHED_RR) && !--p->time_slice) {
2522 p->time_slice = task_timeslice(p);
2523 p->first_time_slice = 0;
2524 set_tsk_need_resched(p);
2525
2526 /* put it at the end of the queue: */
2527 requeue_task(p, rq->active);
2528 }
2529 goto out_unlock;
2530 }
2531 if (!--p->time_slice) {
2532 dequeue_task(p, rq->active);
2533 set_tsk_need_resched(p);
2534 p->prio = effective_prio(p);
2535 p->time_slice = task_timeslice(p);
2536 p->first_time_slice = 0;
2537
2538 if (!rq->expired_timestamp)
2539 rq->expired_timestamp = jiffies;
2540 if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) {
2541 enqueue_task(p, rq->expired);
2542 if (p->static_prio < rq->best_expired_prio)
2543 rq->best_expired_prio = p->static_prio;
2544 } else
2545 enqueue_task(p, rq->active);
2546 } else {
2547 /*
2548 * Prevent a too long timeslice allowing a task to monopolize
2549 * the CPU. We do this by splitting up the timeslice into
2550 * smaller pieces.
2551 *
2552 * Note: this does not mean the task's timeslices expire or
2553 * get lost in any way, they just might be preempted by
2554 * another task of equal priority. (one with higher
2555 * priority would have preempted this task already.) We
2556 * requeue this task to the end of the list on this priority
2557 * level, which is in essence a round-robin of tasks with
2558 * equal priority.
2559 *
2560 * This only applies to tasks in the interactive
2561 * delta range with at least TIMESLICE_GRANULARITY to requeue.
2562 */
2563 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
2564 p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
2565 (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
2566 (p->array == rq->active)) {
2567
2568 requeue_task(p, rq->active);
2569 set_tsk_need_resched(p);
2570 }
2571 }
2572 out_unlock:
2573 spin_unlock(&rq->lock);
2574 out:
2575 rebalance_tick(cpu, rq, NOT_IDLE);
2576 }
2577
2578 #ifdef CONFIG_SCHED_SMT
2579 static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2580 {
2581 struct sched_domain *tmp, *sd = NULL;
2582 cpumask_t sibling_map;
2583 int i;
2584
2585 for_each_domain(this_cpu, tmp)
2586 if (tmp->flags & SD_SHARE_CPUPOWER)
2587 sd = tmp;
2588
2589 if (!sd)
2590 return;
2591
2592 /*
2593 * Unlock the current runqueue because we have to lock in
2594 * CPU order to avoid deadlocks. Caller knows that we might
2595 * unlock. We keep IRQs disabled.
2596 */
2597 spin_unlock(&this_rq->lock);
2598
2599 sibling_map = sd->span;
2600
2601 for_each_cpu_mask(i, sibling_map)
2602 spin_lock(&cpu_rq(i)->lock);
2603 /*
2604 * We clear this CPU from the mask. This both simplifies the
2605 * inner loop and keps this_rq locked when we exit:
2606 */
2607 cpu_clear(this_cpu, sibling_map);
2608
2609 for_each_cpu_mask(i, sibling_map) {
2610 runqueue_t *smt_rq = cpu_rq(i);
2611
2612 /*
2613 * If an SMT sibling task is sleeping due to priority
2614 * reasons wake it up now.
2615 */
2616 if (smt_rq->curr == smt_rq->idle && smt_rq->nr_running)
2617 resched_task(smt_rq->idle);
2618 }
2619
2620 for_each_cpu_mask(i, sibling_map)
2621 spin_unlock(&cpu_rq(i)->lock);
2622 /*
2623 * We exit with this_cpu's rq still held and IRQs
2624 * still disabled:
2625 */
2626 }
2627
2628 static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2629 {
2630 struct sched_domain *tmp, *sd = NULL;
2631 cpumask_t sibling_map;
2632 prio_array_t *array;
2633 int ret = 0, i;
2634 task_t *p;
2635
2636 for_each_domain(this_cpu, tmp)
2637 if (tmp->flags & SD_SHARE_CPUPOWER)
2638 sd = tmp;
2639
2640 if (!sd)
2641 return 0;
2642
2643 /*
2644 * The same locking rules and details apply as for
2645 * wake_sleeping_dependent():
2646 */
2647 spin_unlock(&this_rq->lock);
2648 sibling_map = sd->span;
2649 for_each_cpu_mask(i, sibling_map)
2650 spin_lock(&cpu_rq(i)->lock);
2651 cpu_clear(this_cpu, sibling_map);
2652
2653 /*
2654 * Establish next task to be run - it might have gone away because
2655 * we released the runqueue lock above:
2656 */
2657 if (!this_rq->nr_running)
2658 goto out_unlock;
2659 array = this_rq->active;
2660 if (!array->nr_active)
2661 array = this_rq->expired;
2662 BUG_ON(!array->nr_active);
2663
2664 p = list_entry(array->queue[sched_find_first_bit(array->bitmap)].next,
2665 task_t, run_list);
2666
2667 for_each_cpu_mask(i, sibling_map) {
2668 runqueue_t *smt_rq = cpu_rq(i);
2669 task_t *smt_curr = smt_rq->curr;
2670
2671 /*
2672 * If a user task with lower static priority than the
2673 * running task on the SMT sibling is trying to schedule,
2674 * delay it till there is proportionately less timeslice
2675 * left of the sibling task to prevent a lower priority
2676 * task from using an unfair proportion of the
2677 * physical cpu's resources. -ck
2678 */
2679 if (((smt_curr->time_slice * (100 - sd->per_cpu_gain) / 100) >
2680 task_timeslice(p) || rt_task(smt_curr)) &&
2681 p->mm && smt_curr->mm && !rt_task(p))
2682 ret = 1;
2683
2684 /*
2685 * Reschedule a lower priority task on the SMT sibling,
2686 * or wake it up if it has been put to sleep for priority
2687 * reasons.
2688 */
2689 if ((((p->time_slice * (100 - sd->per_cpu_gain) / 100) >
2690 task_timeslice(smt_curr) || rt_task(p)) &&
2691 smt_curr->mm && p->mm && !rt_task(smt_curr)) ||
2692 (smt_curr == smt_rq->idle && smt_rq->nr_running))
2693 resched_task(smt_curr);
2694 }
2695 out_unlock:
2696 for_each_cpu_mask(i, sibling_map)
2697 spin_unlock(&cpu_rq(i)->lock);
2698 return ret;
2699 }
2700 #else
2701 static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2702 {
2703 }
2704
2705 static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2706 {
2707 return 0;
2708 }
2709 #endif
2710
2711 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
2712
2713 void fastcall add_preempt_count(int val)
2714 {
2715 /*
2716 * Underflow?
2717 */
2718 BUG_ON((preempt_count() < 0));
2719 preempt_count() += val;
2720 /*
2721 * Spinlock count overflowing soon?
2722 */
2723 BUG_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
2724 }
2725 EXPORT_SYMBOL(add_preempt_count);
2726
2727 void fastcall sub_preempt_count(int val)
2728 {
2729 /*
2730 * Underflow?
2731 */
2732 BUG_ON(val > preempt_count());
2733 /*
2734 * Is the spinlock portion underflowing?
2735 */
2736 BUG_ON((val < PREEMPT_MASK) && !(preempt_count() & PREEMPT_MASK));
2737 preempt_count() -= val;
2738 }
2739 EXPORT_SYMBOL(sub_preempt_count);
2740
2741 #endif
2742
2743 /*
2744 * schedule() is the main scheduler function.
2745 */
2746 asmlinkage void __sched schedule(void)
2747 {
2748 long *switch_count;
2749 task_t *prev, *next;
2750 runqueue_t *rq;
2751 prio_array_t *array;
2752 struct list_head *queue;
2753 unsigned long long now;
2754 unsigned long run_time;
2755 int cpu, idx, new_prio;
2756
2757 /*
2758 * Test if we are atomic. Since do_exit() needs to call into
2759 * schedule() atomically, we ignore that path for now.
2760 * Otherwise, whine if we are scheduling when we should not be.
2761 */
2762 if (likely(!current->exit_state)) {
2763 if (unlikely(in_atomic())) {
2764 printk(KERN_ERR "scheduling while atomic: "
2765 "%s/0x%08x/%d\n",
2766 current->comm, preempt_count(), current->pid);
2767 dump_stack();
2768 }
2769 }
2770 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2771
2772 need_resched:
2773 preempt_disable();
2774 prev = current;
2775 release_kernel_lock(prev);
2776 need_resched_nonpreemptible:
2777 rq = this_rq();
2778
2779 /*
2780 * The idle thread is not allowed to schedule!
2781 * Remove this check after it has been exercised a bit.
2782 */
2783 if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
2784 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
2785 dump_stack();
2786 }
2787
2788 schedstat_inc(rq, sched_cnt);
2789 now = sched_clock();
2790 if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
2791 run_time = now - prev->timestamp;
2792 if (unlikely((long long)(now - prev->timestamp) < 0))
2793 run_time = 0;
2794 } else
2795 run_time = NS_MAX_SLEEP_AVG;
2796
2797 /*
2798 * Tasks charged proportionately less run_time at high sleep_avg to
2799 * delay them losing their interactive status
2800 */
2801 run_time /= (CURRENT_BONUS(prev) ? : 1);
2802
2803 spin_lock_irq(&rq->lock);
2804
2805 if (unlikely(prev->flags & PF_DEAD))
2806 prev->state = EXIT_DEAD;
2807
2808 switch_count = &prev->nivcsw;
2809 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2810 switch_count = &prev->nvcsw;
2811 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
2812 unlikely(signal_pending(prev))))
2813 prev->state = TASK_RUNNING;
2814 else {
2815 if (prev->state == TASK_UNINTERRUPTIBLE)
2816 rq->nr_uninterruptible++;
2817 deactivate_task(prev, rq);
2818 }
2819 }
2820
2821 cpu = smp_processor_id();
2822 if (unlikely(!rq->nr_running)) {
2823 go_idle:
2824 idle_balance(cpu, rq);
2825 if (!rq->nr_running) {
2826 next = rq->idle;
2827 rq->expired_timestamp = 0;
2828 wake_sleeping_dependent(cpu, rq);
2829 /*
2830 * wake_sleeping_dependent() might have released
2831 * the runqueue, so break out if we got new
2832 * tasks meanwhile:
2833 */
2834 if (!rq->nr_running)
2835 goto switch_tasks;
2836 }
2837 } else {
2838 if (dependent_sleeper(cpu, rq)) {
2839 next = rq->idle;
2840 goto switch_tasks;
2841 }
2842 /*
2843 * dependent_sleeper() releases and reacquires the runqueue
2844 * lock, hence go into the idle loop if the rq went
2845 * empty meanwhile:
2846 */
2847 if (unlikely(!rq->nr_running))
2848 goto go_idle;
2849 }
2850
2851 array = rq->active;
2852 if (unlikely(!array->nr_active)) {
2853 /*
2854 * Switch the active and expired arrays.
2855 */
2856 schedstat_inc(rq, sched_switch);
2857 rq->active = rq->expired;
2858 rq->expired = array;
2859 array = rq->active;
2860 rq->expired_timestamp = 0;
2861 rq->best_expired_prio = MAX_PRIO;
2862 }
2863
2864 idx = sched_find_first_bit(array->bitmap);
2865 queue = array->queue + idx;
2866 next = list_entry(queue->next, task_t, run_list);
2867
2868 if (!rt_task(next) && next->activated > 0) {
2869 unsigned long long delta = now - next->timestamp;
2870 if (unlikely((long long)(now - next->timestamp) < 0))
2871 delta = 0;
2872
2873 if (next->activated == 1)
2874 delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
2875
2876 array = next->array;
2877 new_prio = recalc_task_prio(next, next->timestamp + delta);
2878
2879 if (unlikely(next->prio != new_prio)) {
2880 dequeue_task(next, array);
2881 next->prio = new_prio;
2882 enqueue_task(next, array);
2883 } else
2884 requeue_task(next, array);
2885 }
2886 next->activated = 0;
2887 switch_tasks:
2888 if (next == rq->idle)
2889 schedstat_inc(rq, sched_goidle);
2890 prefetch(next);
2891 prefetch_stack(next);
2892 clear_tsk_need_resched(prev);
2893 rcu_qsctr_inc(task_cpu(prev));
2894
2895 update_cpu_clock(prev, rq, now);
2896
2897 prev->sleep_avg -= run_time;
2898 if ((long)prev->sleep_avg <= 0)
2899 prev->sleep_avg = 0;
2900 prev->timestamp = prev->last_ran = now;
2901
2902 sched_info_switch(prev, next);
2903 if (likely(prev != next)) {
2904 next->timestamp = now;
2905 rq->nr_switches++;
2906 rq->curr = next;
2907 ++*switch_count;
2908
2909 prepare_task_switch(rq, next);
2910 prev = context_switch(rq, prev, next);
2911 barrier();
2912 /*
2913 * this_rq must be evaluated again because prev may have moved
2914 * CPUs since it called schedule(), thus the 'rq' on its stack
2915 * frame will be invalid.
2916 */
2917 finish_task_switch(this_rq(), prev);
2918 } else
2919 spin_unlock_irq(&rq->lock);
2920
2921 prev = current;
2922 if (unlikely(reacquire_kernel_lock(prev) < 0))
2923 goto need_resched_nonpreemptible;
2924 preempt_enable_no_resched();
2925 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
2926 goto need_resched;
2927 }
2928
2929 EXPORT_SYMBOL(schedule);
2930
2931 #ifdef CONFIG_PREEMPT
2932 /*
2933 * this is is the entry point to schedule() from in-kernel preemption
2934 * off of preempt_enable. Kernel preemptions off return from interrupt
2935 * occur there and call schedule directly.
2936 */
2937 asmlinkage void __sched preempt_schedule(void)
2938 {
2939 struct thread_info *ti = current_thread_info();
2940 #ifdef CONFIG_PREEMPT_BKL
2941 struct task_struct *task = current;
2942 int saved_lock_depth;
2943 #endif
2944 /*
2945 * If there is a non-zero preempt_count or interrupts are disabled,
2946 * we do not want to preempt the current task. Just return..
2947 */
2948 if (unlikely(ti->preempt_count || irqs_disabled()))
2949 return;
2950
2951 need_resched:
2952 add_preempt_count(PREEMPT_ACTIVE);
2953 /*
2954 * We keep the big kernel semaphore locked, but we
2955 * clear ->lock_depth so that schedule() doesnt
2956 * auto-release the semaphore:
2957 */
2958 #ifdef CONFIG_PREEMPT_BKL
2959 saved_lock_depth = task->lock_depth;
2960 task->lock_depth = -1;
2961 #endif
2962 schedule();
2963 #ifdef CONFIG_PREEMPT_BKL
2964 task->lock_depth = saved_lock_depth;
2965 #endif
2966 sub_preempt_count(PREEMPT_ACTIVE);
2967
2968 /* we could miss a preemption opportunity between schedule and now */
2969 barrier();
2970 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
2971 goto need_resched;
2972 }
2973
2974 EXPORT_SYMBOL(preempt_schedule);
2975
2976 /*
2977 * this is is the entry point to schedule() from kernel preemption
2978 * off of irq context.
2979 * Note, that this is called and return with irqs disabled. This will
2980 * protect us against recursive calling from irq.
2981 */
2982 asmlinkage void __sched preempt_schedule_irq(void)
2983 {
2984 struct thread_info *ti = current_thread_info();
2985 #ifdef CONFIG_PREEMPT_BKL
2986 struct task_struct *task = current;
2987 int saved_lock_depth;
2988 #endif
2989 /* Catch callers which need to be fixed*/
2990 BUG_ON(ti->preempt_count || !irqs_disabled());
2991
2992 need_resched:
2993 add_preempt_count(PREEMPT_ACTIVE);
2994 /*
2995 * We keep the big kernel semaphore locked, but we
2996 * clear ->lock_depth so that schedule() doesnt
2997 * auto-release the semaphore:
2998 */
2999 #ifdef CONFIG_PREEMPT_BKL
3000 saved_lock_depth = task->lock_depth;
3001 task->lock_depth = -1;
3002 #endif
3003 local_irq_enable();
3004 schedule();
3005 local_irq_disable();
3006 #ifdef CONFIG_PREEMPT_BKL
3007 task->lock_depth = saved_lock_depth;
3008 #endif
3009 sub_preempt_count(PREEMPT_ACTIVE);
3010
3011 /* we could miss a preemption opportunity between schedule and now */
3012 barrier();
3013 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3014 goto need_resched;
3015 }
3016
3017 #endif /* CONFIG_PREEMPT */
3018
3019 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync, void *key)
3020 {
3021 task_t *p = curr->private;
3022 return try_to_wake_up(p, mode, sync);
3023 }
3024
3025 EXPORT_SYMBOL(default_wake_function);
3026
3027 /*
3028 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3029 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3030 * number) then we wake all the non-exclusive tasks and one exclusive task.
3031 *
3032 * There are circumstances in which we can try to wake a task which has already
3033 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3034 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3035 */
3036 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3037 int nr_exclusive, int sync, void *key)
3038 {
3039 struct list_head *tmp, *next;
3040
3041 list_for_each_safe(tmp, next, &q->task_list) {
3042 wait_queue_t *curr;
3043 unsigned flags;
3044 curr = list_entry(tmp, wait_queue_t, task_list);
3045 flags = curr->flags;
3046 if (curr->func(curr, mode, sync, key) &&
3047 (flags & WQ_FLAG_EXCLUSIVE) &&
3048 !--nr_exclusive)
3049 break;
3050 }
3051 }
3052
3053 /**
3054 * __wake_up - wake up threads blocked on a waitqueue.
3055 * @q: the waitqueue
3056 * @mode: which threads
3057 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3058 * @key: is directly passed to the wakeup function
3059 */
3060 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3061 int nr_exclusive, void *key)
3062 {
3063 unsigned long flags;
3064
3065 spin_lock_irqsave(&q->lock, flags);
3066 __wake_up_common(q, mode, nr_exclusive, 0, key);
3067 spin_unlock_irqrestore(&q->lock, flags);
3068 }
3069
3070 EXPORT_SYMBOL(__wake_up);
3071
3072 /*
3073 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3074 */
3075 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3076 {
3077 __wake_up_common(q, mode, 1, 0, NULL);
3078 }
3079
3080 /**
3081 * __wake_up_sync - wake up threads blocked on a waitqueue.
3082 * @q: the waitqueue
3083 * @mode: which threads
3084 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3085 *
3086 * The sync wakeup differs that the waker knows that it will schedule
3087 * away soon, so while the target thread will be woken up, it will not
3088 * be migrated to another CPU - ie. the two threads are 'synchronized'
3089 * with each other. This can prevent needless bouncing between CPUs.
3090 *
3091 * On UP it can prevent extra preemption.
3092 */
3093 void fastcall __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3094 {
3095 unsigned long flags;
3096 int sync = 1;
3097
3098 if (unlikely(!q))
3099 return;
3100
3101 if (unlikely(!nr_exclusive))
3102 sync = 0;
3103
3104 spin_lock_irqsave(&q->lock, flags);
3105 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3106 spin_unlock_irqrestore(&q->lock, flags);
3107 }
3108 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3109
3110 void fastcall complete(struct completion *x)
3111 {
3112 unsigned long flags;
3113
3114 spin_lock_irqsave(&x->wait.lock, flags);
3115 x->done++;
3116 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3117 1, 0, NULL);
3118 spin_unlock_irqrestore(&x->wait.lock, flags);
3119 }
3120 EXPORT_SYMBOL(complete);
3121
3122 void fastcall complete_all(struct completion *x)
3123 {
3124 unsigned long flags;
3125
3126 spin_lock_irqsave(&x->wait.lock, flags);
3127 x->done += UINT_MAX/2;
3128 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3129 0, 0, NULL);
3130 spin_unlock_irqrestore(&x->wait.lock, flags);
3131 }
3132 EXPORT_SYMBOL(complete_all);
3133
3134 void fastcall __sched wait_for_completion(struct completion *x)
3135 {
3136 might_sleep();
3137 spin_lock_irq(&x->wait.lock);
3138 if (!x->done) {
3139 DECLARE_WAITQUEUE(wait, current);
3140
3141 wait.flags |= WQ_FLAG_EXCLUSIVE;
3142 __add_wait_queue_tail(&x->wait, &wait);
3143 do {
3144 __set_current_state(TASK_UNINTERRUPTIBLE);
3145 spin_unlock_irq(&x->wait.lock);
3146 schedule();
3147 spin_lock_irq(&x->wait.lock);
3148 } while (!x->done);
3149 __remove_wait_queue(&x->wait, &wait);
3150 }
3151 x->done--;
3152 spin_unlock_irq(&x->wait.lock);
3153 }
3154 EXPORT_SYMBOL(wait_for_completion);
3155
3156 unsigned long fastcall __sched
3157 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3158 {
3159 might_sleep();
3160
3161 spin_lock_irq(&x->wait.lock);
3162 if (!x->done) {
3163 DECLARE_WAITQUEUE(wait, current);
3164
3165 wait.flags |= WQ_FLAG_EXCLUSIVE;
3166 __add_wait_queue_tail(&x->wait, &wait);
3167 do {
3168 __set_current_state(TASK_UNINTERRUPTIBLE);
3169 spin_unlock_irq(&x->wait.lock);
3170 timeout = schedule_timeout(timeout);
3171 spin_lock_irq(&x->wait.lock);
3172 if (!timeout) {
3173 __remove_wait_queue(&x->wait, &wait);
3174 goto out;
3175 }
3176 } while (!x->done);
3177 __remove_wait_queue(&x->wait, &wait);
3178 }
3179 x->done--;
3180 out:
3181 spin_unlock_irq(&x->wait.lock);
3182 return timeout;
3183 }
3184 EXPORT_SYMBOL(wait_for_completion_timeout);
3185
3186 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3187 {
3188 int ret = 0;
3189
3190 might_sleep();
3191
3192 spin_lock_irq(&x->wait.lock);
3193 if (!x->done) {
3194 DECLARE_WAITQUEUE(wait, current);
3195
3196 wait.flags |= WQ_FLAG_EXCLUSIVE;
3197 __add_wait_queue_tail(&x->wait, &wait);
3198 do {
3199 if (signal_pending(current)) {
3200 ret = -ERESTARTSYS;
3201 __remove_wait_queue(&x->wait, &wait);
3202 goto out;
3203 }
3204 __set_current_state(TASK_INTERRUPTIBLE);
3205 spin_unlock_irq(&x->wait.lock);
3206 schedule();
3207 spin_lock_irq(&x->wait.lock);
3208 } while (!x->done);
3209 __remove_wait_queue(&x->wait, &wait);
3210 }
3211 x->done--;
3212 out:
3213 spin_unlock_irq(&x->wait.lock);
3214
3215 return ret;
3216 }
3217 EXPORT_SYMBOL(wait_for_completion_interruptible);
3218
3219 unsigned long fastcall __sched
3220 wait_for_completion_interruptible_timeout(struct completion *x,
3221 unsigned long timeout)
3222 {
3223 might_sleep();
3224
3225 spin_lock_irq(&x->wait.lock);
3226 if (!x->done) {
3227 DECLARE_WAITQUEUE(wait, current);
3228
3229 wait.flags |= WQ_FLAG_EXCLUSIVE;
3230 __add_wait_queue_tail(&x->wait, &wait);
3231 do {
3232 if (signal_pending(current)) {
3233 timeout = -ERESTARTSYS;
3234 __remove_wait_queue(&x->wait, &wait);
3235 goto out;
3236 }
3237 __set_current_state(TASK_INTERRUPTIBLE);
3238 spin_unlock_irq(&x->wait.lock);
3239 timeout = schedule_timeout(timeout);
3240 spin_lock_irq(&x->wait.lock);
3241 if (!timeout) {
3242 __remove_wait_queue(&x->wait, &wait);
3243 goto out;
3244 }
3245 } while (!x->done);
3246 __remove_wait_queue(&x->wait, &wait);
3247 }
3248 x->done--;
3249 out:
3250 spin_unlock_irq(&x->wait.lock);
3251 return timeout;
3252 }
3253 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3254
3255
3256 #define SLEEP_ON_VAR \
3257 unsigned long flags; \
3258 wait_queue_t wait; \
3259 init_waitqueue_entry(&wait, current);
3260
3261 #define SLEEP_ON_HEAD \
3262 spin_lock_irqsave(&q->lock,flags); \
3263 __add_wait_queue(q, &wait); \
3264 spin_unlock(&q->lock);
3265
3266 #define SLEEP_ON_TAIL \
3267 spin_lock_irq(&q->lock); \
3268 __remove_wait_queue(q, &wait); \
3269 spin_unlock_irqrestore(&q->lock, flags);
3270
3271 void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3272 {
3273 SLEEP_ON_VAR
3274
3275 current->state = TASK_INTERRUPTIBLE;
3276
3277 SLEEP_ON_HEAD
3278 schedule();
3279 SLEEP_ON_TAIL
3280 }
3281
3282 EXPORT_SYMBOL(interruptible_sleep_on);
3283
3284 long fastcall __sched interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3285 {
3286 SLEEP_ON_VAR
3287
3288 current->state = TASK_INTERRUPTIBLE;
3289
3290 SLEEP_ON_HEAD
3291 timeout = schedule_timeout(timeout);
3292 SLEEP_ON_TAIL
3293
3294 return timeout;
3295 }
3296
3297 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3298
3299 void fastcall __sched sleep_on(wait_queue_head_t *q)
3300 {
3301 SLEEP_ON_VAR
3302
3303 current->state = TASK_UNINTERRUPTIBLE;
3304
3305 SLEEP_ON_HEAD
3306 schedule();
3307 SLEEP_ON_TAIL
3308 }
3309
3310 EXPORT_SYMBOL(sleep_on);
3311
3312 long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3313 {
3314 SLEEP_ON_VAR
3315
3316 current->state = TASK_UNINTERRUPTIBLE;
3317
3318 SLEEP_ON_HEAD
3319 timeout = schedule_timeout(timeout);
3320 SLEEP_ON_TAIL
3321
3322 return timeout;
3323 }
3324
3325 EXPORT_SYMBOL(sleep_on_timeout);
3326
3327 void set_user_nice(task_t *p, long nice)
3328 {
3329 unsigned long flags;
3330 prio_array_t *array;
3331 runqueue_t *rq;
3332 int old_prio, new_prio, delta;
3333
3334 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3335 return;
3336 /*
3337 * We have to be careful, if called from sys_setpriority(),
3338 * the task might be in the middle of scheduling on another CPU.
3339 */
3340 rq = task_rq_lock(p, &flags);
3341 /*
3342 * The RT priorities are set via sched_setscheduler(), but we still
3343 * allow the 'normal' nice value to be set - but as expected
3344 * it wont have any effect on scheduling until the task is
3345 * not SCHED_NORMAL:
3346 */
3347 if (rt_task(p)) {
3348 p->static_prio = NICE_TO_PRIO(nice);
3349 goto out_unlock;
3350 }
3351 array = p->array;
3352 if (array)
3353 dequeue_task(p, array);
3354
3355 old_prio = p->prio;
3356 new_prio = NICE_TO_PRIO(nice);
3357 delta = new_prio - old_prio;
3358 p->static_prio = NICE_TO_PRIO(nice);
3359 p->prio += delta;
3360
3361 if (array) {
3362 enqueue_task(p, array);
3363 /*
3364 * If the task increased its priority or is running and
3365 * lowered its priority, then reschedule its CPU:
3366 */
3367 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3368 resched_task(rq->curr);
3369 }
3370 out_unlock:
3371 task_rq_unlock(rq, &flags);
3372 }
3373
3374 EXPORT_SYMBOL(set_user_nice);
3375
3376 /*
3377 * can_nice - check if a task can reduce its nice value
3378 * @p: task
3379 * @nice: nice value
3380 */
3381 int can_nice(const task_t *p, const int nice)
3382 {
3383 /* convert nice value [19,-20] to rlimit style value [1,40] */
3384 int nice_rlim = 20 - nice;
3385 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3386 capable(CAP_SYS_NICE));
3387 }
3388
3389 #ifdef __ARCH_WANT_SYS_NICE
3390
3391 /*
3392 * sys_nice - change the priority of the current process.
3393 * @increment: priority increment
3394 *
3395 * sys_setpriority is a more generic, but much slower function that
3396 * does similar things.
3397 */
3398 asmlinkage long sys_nice(int increment)
3399 {
3400 int retval;
3401 long nice;
3402
3403 /*
3404 * Setpriority might change our priority at the same moment.
3405 * We don't have to worry. Conceptually one call occurs first
3406 * and we have a single winner.
3407 */
3408 if (increment < -40)
3409 increment = -40;
3410 if (increment > 40)
3411 increment = 40;
3412
3413 nice = PRIO_TO_NICE(current->static_prio) + increment;
3414 if (nice < -20)
3415 nice = -20;
3416 if (nice > 19)
3417 nice = 19;
3418
3419 if (increment < 0 && !can_nice(current, nice))
3420 return -EPERM;
3421
3422 retval = security_task_setnice(current, nice);
3423 if (retval)
3424 return retval;
3425
3426 set_user_nice(current, nice);
3427 return 0;
3428 }
3429
3430 #endif
3431
3432 /**
3433 * task_prio - return the priority value of a given task.
3434 * @p: the task in question.
3435 *
3436 * This is the priority value as seen by users in /proc.
3437 * RT tasks are offset by -200. Normal tasks are centered
3438 * around 0, value goes from -16 to +15.
3439 */
3440 int task_prio(const task_t *p)
3441 {
3442 return p->prio - MAX_RT_PRIO;
3443 }
3444
3445 /**
3446 * task_nice - return the nice value of a given task.
3447 * @p: the task in question.
3448 */
3449 int task_nice(const task_t *p)
3450 {
3451 return TASK_NICE(p);
3452 }
3453 EXPORT_SYMBOL_GPL(task_nice);
3454
3455 /**
3456 * idle_cpu - is a given cpu idle currently?
3457 * @cpu: the processor in question.
3458 */
3459 int idle_cpu(int cpu)
3460 {
3461 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
3462 }
3463
3464 EXPORT_SYMBOL_GPL(idle_cpu);
3465
3466 /**
3467 * idle_task - return the idle task for a given cpu.
3468 * @cpu: the processor in question.
3469 */
3470 task_t *idle_task(int cpu)
3471 {
3472 return cpu_rq(cpu)->idle;
3473 }
3474
3475 /**
3476 * find_process_by_pid - find a process with a matching PID value.
3477 * @pid: the pid in question.
3478 */
3479 static inline task_t *find_process_by_pid(pid_t pid)
3480 {
3481 return pid ? find_task_by_pid(pid) : current;
3482 }
3483
3484 /* Actually do priority change: must hold rq lock. */
3485 static void __setscheduler(struct task_struct *p, int policy, int prio)
3486 {
3487 BUG_ON(p->array);
3488 p->policy = policy;
3489 p->rt_priority = prio;
3490 if (policy != SCHED_NORMAL)
3491 p->prio = MAX_RT_PRIO-1 - p->rt_priority;
3492 else
3493 p->prio = p->static_prio;
3494 }
3495
3496 /**
3497 * sched_setscheduler - change the scheduling policy and/or RT priority of
3498 * a thread.
3499 * @p: the task in question.
3500 * @policy: new policy.
3501 * @param: structure containing the new RT priority.
3502 */
3503 int sched_setscheduler(struct task_struct *p, int policy, struct sched_param *param)
3504 {
3505 int retval;
3506 int oldprio, oldpolicy = -1;
3507 prio_array_t *array;
3508 unsigned long flags;
3509 runqueue_t *rq;
3510
3511 recheck:
3512 /* double check policy once rq lock held */
3513 if (policy < 0)
3514 policy = oldpolicy = p->policy;
3515 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
3516 policy != SCHED_NORMAL)
3517 return -EINVAL;
3518 /*
3519 * Valid priorities for SCHED_FIFO and SCHED_RR are
3520 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL is 0.
3521 */
3522 if (param->sched_priority < 0 ||
3523 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3524 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3525 return -EINVAL;
3526 if ((policy == SCHED_NORMAL) != (param->sched_priority == 0))
3527 return -EINVAL;
3528
3529 /*
3530 * Allow unprivileged RT tasks to decrease priority:
3531 */
3532 if (!capable(CAP_SYS_NICE)) {
3533 /* can't change policy */
3534 if (policy != p->policy &&
3535 !p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3536 return -EPERM;
3537 /* can't increase priority */
3538 if (policy != SCHED_NORMAL &&
3539 param->sched_priority > p->rt_priority &&
3540 param->sched_priority >
3541 p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3542 return -EPERM;
3543 /* can't change other user's priorities */
3544 if ((current->euid != p->euid) &&
3545 (current->euid != p->uid))
3546 return -EPERM;
3547 }
3548
3549 retval = security_task_setscheduler(p, policy, param);
3550 if (retval)
3551 return retval;
3552 /*
3553 * To be able to change p->policy safely, the apropriate
3554 * runqueue lock must be held.
3555 */
3556 rq = task_rq_lock(p, &flags);
3557 /* recheck policy now with rq lock held */
3558 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3559 policy = oldpolicy = -1;
3560 task_rq_unlock(rq, &flags);
3561 goto recheck;
3562 }
3563 array = p->array;
3564 if (array)
3565 deactivate_task(p, rq);
3566 oldprio = p->prio;
3567 __setscheduler(p, policy, param->sched_priority);
3568 if (array) {
3569 __activate_task(p, rq);
3570 /*
3571 * Reschedule if we are currently running on this runqueue and
3572 * our priority decreased, or if we are not currently running on
3573 * this runqueue and our priority is higher than the current's
3574 */
3575 if (task_running(rq, p)) {
3576 if (p->prio > oldprio)
3577 resched_task(rq->curr);
3578 } else if (TASK_PREEMPTS_CURR(p, rq))
3579 resched_task(rq->curr);
3580 }
3581 task_rq_unlock(rq, &flags);
3582 return 0;
3583 }
3584 EXPORT_SYMBOL_GPL(sched_setscheduler);
3585
3586 static int do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3587 {
3588 int retval;
3589 struct sched_param lparam;
3590 struct task_struct *p;
3591
3592 if (!param || pid < 0)
3593 return -EINVAL;
3594 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3595 return -EFAULT;
3596 read_lock_irq(&tasklist_lock);
3597 p = find_process_by_pid(pid);
3598 if (!p) {
3599 read_unlock_irq(&tasklist_lock);
3600 return -ESRCH;
3601 }
3602 retval = sched_setscheduler(p, policy, &lparam);
3603 read_unlock_irq(&tasklist_lock);
3604 return retval;
3605 }
3606
3607 /**
3608 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3609 * @pid: the pid in question.
3610 * @policy: new policy.
3611 * @param: structure containing the new RT priority.
3612 */
3613 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
3614 struct sched_param __user *param)
3615 {
3616 return do_sched_setscheduler(pid, policy, param);
3617 }
3618
3619 /**
3620 * sys_sched_setparam - set/change the RT priority of a thread
3621 * @pid: the pid in question.
3622 * @param: structure containing the new RT priority.
3623 */
3624 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
3625 {
3626 return do_sched_setscheduler(pid, -1, param);
3627 }
3628
3629 /**
3630 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3631 * @pid: the pid in question.
3632 */
3633 asmlinkage long sys_sched_getscheduler(pid_t pid)
3634 {
3635 int retval = -EINVAL;
3636 task_t *p;
3637
3638 if (pid < 0)
3639 goto out_nounlock;
3640
3641 retval = -ESRCH;
3642 read_lock(&tasklist_lock);
3643 p = find_process_by_pid(pid);
3644 if (p) {
3645 retval = security_task_getscheduler(p);
3646 if (!retval)
3647 retval = p->policy;
3648 }
3649 read_unlock(&tasklist_lock);
3650
3651 out_nounlock:
3652 return retval;
3653 }
3654
3655 /**
3656 * sys_sched_getscheduler - get the RT priority of a thread
3657 * @pid: the pid in question.
3658 * @param: structure containing the RT priority.
3659 */
3660 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
3661 {
3662 struct sched_param lp;
3663 int retval = -EINVAL;
3664 task_t *p;
3665
3666 if (!param || pid < 0)
3667 goto out_nounlock;
3668
3669 read_lock(&tasklist_lock);
3670 p = find_process_by_pid(pid);
3671 retval = -ESRCH;
3672 if (!p)
3673 goto out_unlock;
3674
3675 retval = security_task_getscheduler(p);
3676 if (retval)
3677 goto out_unlock;
3678
3679 lp.sched_priority = p->rt_priority;
3680 read_unlock(&tasklist_lock);
3681
3682 /*
3683 * This one might sleep, we cannot do it with a spinlock held ...
3684 */
3685 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3686
3687 out_nounlock:
3688 return retval;
3689
3690 out_unlock:
3691 read_unlock(&tasklist_lock);
3692 return retval;
3693 }
3694
3695 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
3696 {
3697 task_t *p;
3698 int retval;
3699 cpumask_t cpus_allowed;
3700
3701 lock_cpu_hotplug();
3702 read_lock(&tasklist_lock);
3703
3704 p = find_process_by_pid(pid);
3705 if (!p) {
3706 read_unlock(&tasklist_lock);
3707 unlock_cpu_hotplug();
3708 return -ESRCH;
3709 }
3710
3711 /*
3712 * It is not safe to call set_cpus_allowed with the
3713 * tasklist_lock held. We will bump the task_struct's
3714 * usage count and then drop tasklist_lock.
3715 */
3716 get_task_struct(p);
3717 read_unlock(&tasklist_lock);
3718
3719 retval = -EPERM;
3720 if ((current->euid != p->euid) && (current->euid != p->uid) &&
3721 !capable(CAP_SYS_NICE))
3722 goto out_unlock;
3723
3724 cpus_allowed = cpuset_cpus_allowed(p);
3725 cpus_and(new_mask, new_mask, cpus_allowed);
3726 retval = set_cpus_allowed(p, new_mask);
3727
3728 out_unlock:
3729 put_task_struct(p);
3730 unlock_cpu_hotplug();
3731 return retval;
3732 }
3733
3734 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3735 cpumask_t *new_mask)
3736 {
3737 if (len < sizeof(cpumask_t)) {
3738 memset(new_mask, 0, sizeof(cpumask_t));
3739 } else if (len > sizeof(cpumask_t)) {
3740 len = sizeof(cpumask_t);
3741 }
3742 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3743 }
3744
3745 /**
3746 * sys_sched_setaffinity - set the cpu affinity of a process
3747 * @pid: pid of the process
3748 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3749 * @user_mask_ptr: user-space pointer to the new cpu mask
3750 */
3751 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
3752 unsigned long __user *user_mask_ptr)
3753 {
3754 cpumask_t new_mask;
3755 int retval;
3756
3757 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
3758 if (retval)
3759 return retval;
3760
3761 return sched_setaffinity(pid, new_mask);
3762 }
3763
3764 /*
3765 * Represents all cpu's present in the system
3766 * In systems capable of hotplug, this map could dynamically grow
3767 * as new cpu's are detected in the system via any platform specific
3768 * method, such as ACPI for e.g.
3769 */
3770
3771 cpumask_t cpu_present_map;
3772 EXPORT_SYMBOL(cpu_present_map);
3773
3774 #ifndef CONFIG_SMP
3775 cpumask_t cpu_online_map = CPU_MASK_ALL;
3776 cpumask_t cpu_possible_map = CPU_MASK_ALL;
3777 #endif
3778
3779 long sched_getaffinity(pid_t pid, cpumask_t *mask)
3780 {
3781 int retval;
3782 task_t *p;
3783
3784 lock_cpu_hotplug();
3785 read_lock(&tasklist_lock);
3786
3787 retval = -ESRCH;
3788 p = find_process_by_pid(pid);
3789 if (!p)
3790 goto out_unlock;
3791
3792 retval = 0;
3793 cpus_and(*mask, p->cpus_allowed, cpu_possible_map);
3794
3795 out_unlock:
3796 read_unlock(&tasklist_lock);
3797 unlock_cpu_hotplug();
3798 if (retval)
3799 return retval;
3800
3801 return 0;
3802 }
3803
3804 /**
3805 * sys_sched_getaffinity - get the cpu affinity of a process
3806 * @pid: pid of the process
3807 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3808 * @user_mask_ptr: user-space pointer to hold the current cpu mask
3809 */
3810 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
3811 unsigned long __user *user_mask_ptr)
3812 {
3813 int ret;
3814 cpumask_t mask;
3815
3816 if (len < sizeof(cpumask_t))
3817 return -EINVAL;
3818
3819 ret = sched_getaffinity(pid, &mask);
3820 if (ret < 0)
3821 return ret;
3822
3823 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
3824 return -EFAULT;
3825
3826 return sizeof(cpumask_t);
3827 }
3828
3829 /**
3830 * sys_sched_yield - yield the current processor to other threads.
3831 *
3832 * this function yields the current CPU by moving the calling thread
3833 * to the expired array. If there are no other threads running on this
3834 * CPU then this function will return.
3835 */
3836 asmlinkage long sys_sched_yield(void)
3837 {
3838 runqueue_t *rq = this_rq_lock();
3839 prio_array_t *array = current->array;
3840 prio_array_t *target = rq->expired;
3841
3842 schedstat_inc(rq, yld_cnt);
3843 /*
3844 * We implement yielding by moving the task into the expired
3845 * queue.
3846 *
3847 * (special rule: RT tasks will just roundrobin in the active
3848 * array.)
3849 */
3850 if (rt_task(current))
3851 target = rq->active;
3852
3853 if (current->array->nr_active == 1) {
3854 schedstat_inc(rq, yld_act_empty);
3855 if (!rq->expired->nr_active)
3856 schedstat_inc(rq, yld_both_empty);
3857 } else if (!rq->expired->nr_active)
3858 schedstat_inc(rq, yld_exp_empty);
3859
3860 if (array != target) {
3861 dequeue_task(current, array);
3862 enqueue_task(current, target);
3863 } else
3864 /*
3865 * requeue_task is cheaper so perform that if possible.
3866 */
3867 requeue_task(current, array);
3868
3869 /*
3870 * Since we are going to call schedule() anyway, there's
3871 * no need to preempt or enable interrupts:
3872 */
3873 __release(rq->lock);
3874 _raw_spin_unlock(&rq->lock);
3875 preempt_enable_no_resched();
3876
3877 schedule();
3878
3879 return 0;
3880 }
3881
3882 static inline void __cond_resched(void)
3883 {
3884 /*
3885 * The BKS might be reacquired before we have dropped
3886 * PREEMPT_ACTIVE, which could trigger a second
3887 * cond_resched() call.
3888 */
3889 if (unlikely(preempt_count()))
3890 return;
3891 do {
3892 add_preempt_count(PREEMPT_ACTIVE);
3893 schedule();
3894 sub_preempt_count(PREEMPT_ACTIVE);
3895 } while (need_resched());
3896 }
3897
3898 int __sched cond_resched(void)
3899 {
3900 if (need_resched()) {
3901 __cond_resched();
3902 return 1;
3903 }
3904 return 0;
3905 }
3906
3907 EXPORT_SYMBOL(cond_resched);
3908
3909 /*
3910 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
3911 * call schedule, and on return reacquire the lock.
3912 *
3913 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
3914 * operations here to prevent schedule() from being called twice (once via
3915 * spin_unlock(), once by hand).
3916 */
3917 int cond_resched_lock(spinlock_t * lock)
3918 {
3919 int ret = 0;
3920
3921 if (need_lockbreak(lock)) {
3922 spin_unlock(lock);
3923 cpu_relax();
3924 ret = 1;
3925 spin_lock(lock);
3926 }
3927 if (need_resched()) {
3928 _raw_spin_unlock(lock);
3929 preempt_enable_no_resched();
3930 __cond_resched();
3931 ret = 1;
3932 spin_lock(lock);
3933 }
3934 return ret;
3935 }
3936
3937 EXPORT_SYMBOL(cond_resched_lock);
3938
3939 int __sched cond_resched_softirq(void)
3940 {
3941 BUG_ON(!in_softirq());
3942
3943 if (need_resched()) {
3944 __local_bh_enable();
3945 __cond_resched();
3946 local_bh_disable();
3947 return 1;
3948 }
3949 return 0;
3950 }
3951
3952 EXPORT_SYMBOL(cond_resched_softirq);
3953
3954
3955 /**
3956 * yield - yield the current processor to other threads.
3957 *
3958 * this is a shortcut for kernel-space yielding - it marks the
3959 * thread runnable and calls sys_sched_yield().
3960 */
3961 void __sched yield(void)
3962 {
3963 set_current_state(TASK_RUNNING);
3964 sys_sched_yield();
3965 }
3966
3967 EXPORT_SYMBOL(yield);
3968
3969 /*
3970 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
3971 * that process accounting knows that this is a task in IO wait state.
3972 *
3973 * But don't do that if it is a deliberate, throttling IO wait (this task
3974 * has set its backing_dev_info: the queue against which it should throttle)
3975 */
3976 void __sched io_schedule(void)
3977 {
3978 struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
3979
3980 atomic_inc(&rq->nr_iowait);
3981 schedule();
3982 atomic_dec(&rq->nr_iowait);
3983 }
3984
3985 EXPORT_SYMBOL(io_schedule);
3986
3987 long __sched io_schedule_timeout(long timeout)
3988 {
3989 struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
3990 long ret;
3991
3992 atomic_inc(&rq->nr_iowait);
3993 ret = schedule_timeout(timeout);
3994 atomic_dec(&rq->nr_iowait);
3995 return ret;
3996 }
3997
3998 /**
3999 * sys_sched_get_priority_max - return maximum RT priority.
4000 * @policy: scheduling class.
4001 *
4002 * this syscall returns the maximum rt_priority that can be used
4003 * by a given scheduling class.
4004 */
4005 asmlinkage long sys_sched_get_priority_max(int policy)
4006 {
4007 int ret = -EINVAL;
4008
4009 switch (policy) {
4010 case SCHED_FIFO:
4011 case SCHED_RR:
4012 ret = MAX_USER_RT_PRIO-1;
4013 break;
4014 case SCHED_NORMAL:
4015 ret = 0;
4016 break;
4017 }
4018 return ret;
4019 }
4020
4021 /**
4022 * sys_sched_get_priority_min - return minimum RT priority.
4023 * @policy: scheduling class.
4024 *
4025 * this syscall returns the minimum rt_priority that can be used
4026 * by a given scheduling class.
4027 */
4028 asmlinkage long sys_sched_get_priority_min(int policy)
4029 {
4030 int ret = -EINVAL;
4031
4032 switch (policy) {
4033 case SCHED_FIFO:
4034 case SCHED_RR:
4035 ret = 1;
4036 break;
4037 case SCHED_NORMAL:
4038 ret = 0;
4039 }
4040 return ret;
4041 }
4042
4043 /**
4044 * sys_sched_rr_get_interval - return the default timeslice of a process.
4045 * @pid: pid of the process.
4046 * @interval: userspace pointer to the timeslice value.
4047 *
4048 * this syscall writes the default timeslice value of a given process
4049 * into the user-space timespec buffer. A value of '0' means infinity.
4050 */
4051 asmlinkage
4052 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4053 {
4054 int retval = -EINVAL;
4055 struct timespec t;
4056 task_t *p;
4057
4058 if (pid < 0)
4059 goto out_nounlock;
4060
4061 retval = -ESRCH;
4062 read_lock(&tasklist_lock);
4063 p = find_process_by_pid(pid);
4064 if (!p)
4065 goto out_unlock;
4066
4067 retval = security_task_getscheduler(p);
4068 if (retval)
4069 goto out_unlock;
4070
4071 jiffies_to_timespec(p->policy & SCHED_FIFO ?
4072 0 : task_timeslice(p), &t);
4073 read_unlock(&tasklist_lock);
4074 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4075 out_nounlock:
4076 return retval;
4077 out_unlock:
4078 read_unlock(&tasklist_lock);
4079 return retval;
4080 }
4081
4082 static inline struct task_struct *eldest_child(struct task_struct *p)
4083 {
4084 if (list_empty(&p->children)) return NULL;
4085 return list_entry(p->children.next,struct task_struct,sibling);
4086 }
4087
4088 static inline struct task_struct *older_sibling(struct task_struct *p)
4089 {
4090 if (p->sibling.prev==&p->parent->children) return NULL;
4091 return list_entry(p->sibling.prev,struct task_struct,sibling);
4092 }
4093
4094 static inline struct task_struct *younger_sibling(struct task_struct *p)
4095 {
4096 if (p->sibling.next==&p->parent->children) return NULL;
4097 return list_entry(p->sibling.next,struct task_struct,sibling);
4098 }
4099
4100 static void show_task(task_t * p)
4101 {
4102 task_t *relative;
4103 unsigned state;
4104 unsigned long free = 0;
4105 static const char *stat_nam[] = { "R", "S", "D", "T", "t", "Z", "X" };
4106
4107 printk("%-13.13s ", p->comm);
4108 state = p->state ? __ffs(p->state) + 1 : 0;
4109 if (state < ARRAY_SIZE(stat_nam))
4110 printk(stat_nam[state]);
4111 else
4112 printk("?");
4113 #if (BITS_PER_LONG == 32)
4114 if (state == TASK_RUNNING)
4115 printk(" running ");
4116 else
4117 printk(" %08lX ", thread_saved_pc(p));
4118 #else
4119 if (state == TASK_RUNNING)
4120 printk(" running task ");
4121 else
4122 printk(" %016lx ", thread_saved_pc(p));
4123 #endif
4124 #ifdef CONFIG_DEBUG_STACK_USAGE
4125 {
4126 unsigned long * n = (unsigned long *) (p->thread_info+1);
4127 while (!*n)
4128 n++;
4129 free = (unsigned long) n - (unsigned long)(p->thread_info+1);
4130 }
4131 #endif
4132 printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
4133 if ((relative = eldest_child(p)))
4134 printk("%5d ", relative->pid);
4135 else
4136 printk(" ");
4137 if ((relative = younger_sibling(p)))
4138 printk("%7d", relative->pid);
4139 else
4140 printk(" ");
4141 if ((relative = older_sibling(p)))
4142 printk(" %5d", relative->pid);
4143 else
4144 printk(" ");
4145 if (!p->mm)
4146 printk(" (L-TLB)\n");
4147 else
4148 printk(" (NOTLB)\n");
4149
4150 if (state != TASK_RUNNING)
4151 show_stack(p, NULL);
4152 }
4153
4154 void show_state(void)
4155 {
4156 task_t *g, *p;
4157
4158 #if (BITS_PER_LONG == 32)
4159 printk("\n"
4160 " sibling\n");
4161 printk(" task PC pid father child younger older\n");
4162 #else
4163 printk("\n"
4164 " sibling\n");
4165 printk(" task PC pid father child younger older\n");
4166 #endif
4167 read_lock(&tasklist_lock);
4168 do_each_thread(g, p) {
4169 /*
4170 * reset the NMI-timeout, listing all files on a slow
4171 * console might take alot of time:
4172 */
4173 touch_nmi_watchdog();
4174 show_task(p);
4175 } while_each_thread(g, p);
4176
4177 read_unlock(&tasklist_lock);
4178 }
4179
4180 /**
4181 * init_idle - set up an idle thread for a given CPU
4182 * @idle: task in question
4183 * @cpu: cpu the idle task belongs to
4184 *
4185 * NOTE: this function does not set the idle thread's NEED_RESCHED
4186 * flag, to make booting more robust.
4187 */
4188 void __devinit init_idle(task_t *idle, int cpu)
4189 {
4190 runqueue_t *rq = cpu_rq(cpu);
4191 unsigned long flags;
4192
4193 idle->sleep_avg = 0;
4194 idle->array = NULL;
4195 idle->prio = MAX_PRIO;
4196 idle->state = TASK_RUNNING;
4197 idle->cpus_allowed = cpumask_of_cpu(cpu);
4198 set_task_cpu(idle, cpu);
4199
4200 spin_lock_irqsave(&rq->lock, flags);
4201 rq->curr = rq->idle = idle;
4202 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4203 idle->oncpu = 1;
4204 #endif
4205 spin_unlock_irqrestore(&rq->lock, flags);
4206
4207 /* Set the preempt count _outside_ the spinlocks! */
4208 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4209 idle->thread_info->preempt_count = (idle->lock_depth >= 0);
4210 #else
4211 idle->thread_info->preempt_count = 0;
4212 #endif
4213 }
4214
4215 /*
4216 * In a system that switches off the HZ timer nohz_cpu_mask
4217 * indicates which cpus entered this state. This is used
4218 * in the rcu update to wait only for active cpus. For system
4219 * which do not switch off the HZ timer nohz_cpu_mask should
4220 * always be CPU_MASK_NONE.
4221 */
4222 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4223
4224 #ifdef CONFIG_SMP
4225 /*
4226 * This is how migration works:
4227 *
4228 * 1) we queue a migration_req_t structure in the source CPU's
4229 * runqueue and wake up that CPU's migration thread.
4230 * 2) we down() the locked semaphore => thread blocks.
4231 * 3) migration thread wakes up (implicitly it forces the migrated
4232 * thread off the CPU)
4233 * 4) it gets the migration request and checks whether the migrated
4234 * task is still in the wrong runqueue.
4235 * 5) if it's in the wrong runqueue then the migration thread removes
4236 * it and puts it into the right queue.
4237 * 6) migration thread up()s the semaphore.
4238 * 7) we wake up and the migration is done.
4239 */
4240
4241 /*
4242 * Change a given task's CPU affinity. Migrate the thread to a
4243 * proper CPU and schedule it away if the CPU it's executing on
4244 * is removed from the allowed bitmask.
4245 *
4246 * NOTE: the caller must have a valid reference to the task, the
4247 * task must not exit() & deallocate itself prematurely. The
4248 * call is not atomic; no spinlocks may be held.
4249 */
4250 int set_cpus_allowed(task_t *p, cpumask_t new_mask)
4251 {
4252 unsigned long flags;
4253 int ret = 0;
4254 migration_req_t req;
4255 runqueue_t *rq;
4256
4257 rq = task_rq_lock(p, &flags);
4258 if (!cpus_intersects(new_mask, cpu_online_map)) {
4259 ret = -EINVAL;
4260 goto out;
4261 }
4262
4263 p->cpus_allowed = new_mask;
4264 /* Can the task run on the task's current CPU? If so, we're done */
4265 if (cpu_isset(task_cpu(p), new_mask))
4266 goto out;
4267
4268 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4269 /* Need help from migration thread: drop lock and wait. */
4270 task_rq_unlock(rq, &flags);
4271 wake_up_process(rq->migration_thread);
4272 wait_for_completion(&req.done);
4273 tlb_migrate_finish(p->mm);
4274 return 0;
4275 }
4276 out:
4277 task_rq_unlock(rq, &flags);
4278 return ret;
4279 }
4280
4281 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4282
4283 /*
4284 * Move (not current) task off this cpu, onto dest cpu. We're doing
4285 * this because either it can't run here any more (set_cpus_allowed()
4286 * away from this CPU, or CPU going down), or because we're
4287 * attempting to rebalance this task on exec (sched_exec).
4288 *
4289 * So we race with normal scheduler movements, but that's OK, as long
4290 * as the task is no longer on this CPU.
4291 */
4292 static void __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4293 {
4294 runqueue_t *rq_dest, *rq_src;
4295
4296 if (unlikely(cpu_is_offline(dest_cpu)))
4297 return;
4298
4299 rq_src = cpu_rq(src_cpu);
4300 rq_dest = cpu_rq(dest_cpu);
4301
4302 double_rq_lock(rq_src, rq_dest);
4303 /* Already moved. */
4304 if (task_cpu(p) != src_cpu)
4305 goto out;
4306 /* Affinity changed (again). */
4307 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4308 goto out;
4309
4310 set_task_cpu(p, dest_cpu);
4311 if (p->array) {
4312 /*
4313 * Sync timestamp with rq_dest's before activating.
4314 * The same thing could be achieved by doing this step
4315 * afterwards, and pretending it was a local activate.
4316 * This way is cleaner and logically correct.
4317 */
4318 p->timestamp = p->timestamp - rq_src->timestamp_last_tick
4319 + rq_dest->timestamp_last_tick;
4320 deactivate_task(p, rq_src);
4321 activate_task(p, rq_dest, 0);
4322 if (TASK_PREEMPTS_CURR(p, rq_dest))
4323 resched_task(rq_dest->curr);
4324 }
4325
4326 out:
4327 double_rq_unlock(rq_src, rq_dest);
4328 }
4329
4330 /*
4331 * migration_thread - this is a highprio system thread that performs
4332 * thread migration by bumping thread off CPU then 'pushing' onto
4333 * another runqueue.
4334 */
4335 static int migration_thread(void * data)
4336 {
4337 runqueue_t *rq;
4338 int cpu = (long)data;
4339
4340 rq = cpu_rq(cpu);
4341 BUG_ON(rq->migration_thread != current);
4342
4343 set_current_state(TASK_INTERRUPTIBLE);
4344 while (!kthread_should_stop()) {
4345 struct list_head *head;
4346 migration_req_t *req;
4347
4348 try_to_freeze();
4349
4350 spin_lock_irq(&rq->lock);
4351
4352 if (cpu_is_offline(cpu)) {
4353 spin_unlock_irq(&rq->lock);
4354 goto wait_to_die;
4355 }
4356
4357 if (rq->active_balance) {
4358 active_load_balance(rq, cpu);
4359 rq->active_balance = 0;
4360 }
4361
4362 head = &rq->migration_queue;
4363
4364 if (list_empty(head)) {
4365 spin_unlock_irq(&rq->lock);
4366 schedule();
4367 set_current_state(TASK_INTERRUPTIBLE);
4368 continue;
4369 }
4370 req = list_entry(head->next, migration_req_t, list);
4371 list_del_init(head->next);
4372
4373 spin_unlock(&rq->lock);
4374 __migrate_task(req->task, cpu, req->dest_cpu);
4375 local_irq_enable();
4376
4377 complete(&req->done);
4378 }
4379 __set_current_state(TASK_RUNNING);
4380 return 0;
4381
4382 wait_to_die:
4383 /* Wait for kthread_stop */
4384 set_current_state(TASK_INTERRUPTIBLE);
4385 while (!kthread_should_stop()) {
4386 schedule();
4387 set_current_state(TASK_INTERRUPTIBLE);
4388 }
4389 __set_current_state(TASK_RUNNING);
4390 return 0;
4391 }
4392
4393 #ifdef CONFIG_HOTPLUG_CPU
4394 /* Figure out where task on dead CPU should go, use force if neccessary. */
4395 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk)
4396 {
4397 int dest_cpu;
4398 cpumask_t mask;
4399
4400 /* On same node? */
4401 mask = node_to_cpumask(cpu_to_node(dead_cpu));
4402 cpus_and(mask, mask, tsk->cpus_allowed);
4403 dest_cpu = any_online_cpu(mask);
4404
4405 /* On any allowed CPU? */
4406 if (dest_cpu == NR_CPUS)
4407 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4408
4409 /* No more Mr. Nice Guy. */
4410 if (dest_cpu == NR_CPUS) {
4411 cpus_setall(tsk->cpus_allowed);
4412 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4413
4414 /*
4415 * Don't tell them about moving exiting tasks or
4416 * kernel threads (both mm NULL), since they never
4417 * leave kernel.
4418 */
4419 if (tsk->mm && printk_ratelimit())
4420 printk(KERN_INFO "process %d (%s) no "
4421 "longer affine to cpu%d\n",
4422 tsk->pid, tsk->comm, dead_cpu);
4423 }
4424 __migrate_task(tsk, dead_cpu, dest_cpu);
4425 }
4426
4427 /*
4428 * While a dead CPU has no uninterruptible tasks queued at this point,
4429 * it might still have a nonzero ->nr_uninterruptible counter, because
4430 * for performance reasons the counter is not stricly tracking tasks to
4431 * their home CPUs. So we just add the counter to another CPU's counter,
4432 * to keep the global sum constant after CPU-down:
4433 */
4434 static void migrate_nr_uninterruptible(runqueue_t *rq_src)
4435 {
4436 runqueue_t *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
4437 unsigned long flags;
4438
4439 local_irq_save(flags);
4440 double_rq_lock(rq_src, rq_dest);
4441 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
4442 rq_src->nr_uninterruptible = 0;
4443 double_rq_unlock(rq_src, rq_dest);
4444 local_irq_restore(flags);
4445 }
4446
4447 /* Run through task list and migrate tasks from the dead cpu. */
4448 static void migrate_live_tasks(int src_cpu)
4449 {
4450 struct task_struct *tsk, *t;
4451
4452 write_lock_irq(&tasklist_lock);
4453
4454 do_each_thread(t, tsk) {
4455 if (tsk == current)
4456 continue;
4457
4458 if (task_cpu(tsk) == src_cpu)
4459 move_task_off_dead_cpu(src_cpu, tsk);
4460 } while_each_thread(t, tsk);
4461
4462 write_unlock_irq(&tasklist_lock);
4463 }
4464
4465 /* Schedules idle task to be the next runnable task on current CPU.
4466 * It does so by boosting its priority to highest possible and adding it to
4467 * the _front_ of runqueue. Used by CPU offline code.
4468 */
4469 void sched_idle_next(void)
4470 {
4471 int cpu = smp_processor_id();
4472 runqueue_t *rq = this_rq();
4473 struct task_struct *p = rq->idle;
4474 unsigned long flags;
4475
4476 /* cpu has to be offline */
4477 BUG_ON(cpu_online(cpu));
4478
4479 /* Strictly not necessary since rest of the CPUs are stopped by now
4480 * and interrupts disabled on current cpu.
4481 */
4482 spin_lock_irqsave(&rq->lock, flags);
4483
4484 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4485 /* Add idle task to _front_ of it's priority queue */
4486 __activate_idle_task(p, rq);
4487
4488 spin_unlock_irqrestore(&rq->lock, flags);
4489 }
4490
4491 /* Ensures that the idle task is using init_mm right before its cpu goes
4492 * offline.
4493 */
4494 void idle_task_exit(void)
4495 {
4496 struct mm_struct *mm = current->active_mm;
4497
4498 BUG_ON(cpu_online(smp_processor_id()));
4499
4500 if (mm != &init_mm)
4501 switch_mm(mm, &init_mm, current);
4502 mmdrop(mm);
4503 }
4504
4505 static void migrate_dead(unsigned int dead_cpu, task_t *tsk)
4506 {
4507 struct runqueue *rq = cpu_rq(dead_cpu);
4508
4509 /* Must be exiting, otherwise would be on tasklist. */
4510 BUG_ON(tsk->exit_state != EXIT_ZOMBIE && tsk->exit_state != EXIT_DEAD);
4511
4512 /* Cannot have done final schedule yet: would have vanished. */
4513 BUG_ON(tsk->flags & PF_DEAD);
4514
4515 get_task_struct(tsk);
4516
4517 /*
4518 * Drop lock around migration; if someone else moves it,
4519 * that's OK. No task can be added to this CPU, so iteration is
4520 * fine.
4521 */
4522 spin_unlock_irq(&rq->lock);
4523 move_task_off_dead_cpu(dead_cpu, tsk);
4524 spin_lock_irq(&rq->lock);
4525
4526 put_task_struct(tsk);
4527 }
4528
4529 /* release_task() removes task from tasklist, so we won't find dead tasks. */
4530 static void migrate_dead_tasks(unsigned int dead_cpu)
4531 {
4532 unsigned arr, i;
4533 struct runqueue *rq = cpu_rq(dead_cpu);
4534
4535 for (arr = 0; arr < 2; arr++) {
4536 for (i = 0; i < MAX_PRIO; i++) {
4537 struct list_head *list = &rq->arrays[arr].queue[i];
4538 while (!list_empty(list))
4539 migrate_dead(dead_cpu,
4540 list_entry(list->next, task_t,
4541 run_list));
4542 }
4543 }
4544 }
4545 #endif /* CONFIG_HOTPLUG_CPU */
4546
4547 /*
4548 * migration_call - callback that gets triggered when a CPU is added.
4549 * Here we can start up the necessary migration thread for the new CPU.
4550 */
4551 static int migration_call(struct notifier_block *nfb, unsigned long action,
4552 void *hcpu)
4553 {
4554 int cpu = (long)hcpu;
4555 struct task_struct *p;
4556 struct runqueue *rq;
4557 unsigned long flags;
4558
4559 switch (action) {
4560 case CPU_UP_PREPARE:
4561 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
4562 if (IS_ERR(p))
4563 return NOTIFY_BAD;
4564 p->flags |= PF_NOFREEZE;
4565 kthread_bind(p, cpu);
4566 /* Must be high prio: stop_machine expects to yield to it. */
4567 rq = task_rq_lock(p, &flags);
4568 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4569 task_rq_unlock(rq, &flags);
4570 cpu_rq(cpu)->migration_thread = p;
4571 break;
4572 case CPU_ONLINE:
4573 /* Strictly unneccessary, as first user will wake it. */
4574 wake_up_process(cpu_rq(cpu)->migration_thread);
4575 break;
4576 #ifdef CONFIG_HOTPLUG_CPU
4577 case CPU_UP_CANCELED:
4578 /* Unbind it from offline cpu so it can run. Fall thru. */
4579 kthread_bind(cpu_rq(cpu)->migration_thread,smp_processor_id());
4580 kthread_stop(cpu_rq(cpu)->migration_thread);
4581 cpu_rq(cpu)->migration_thread = NULL;
4582 break;
4583 case CPU_DEAD:
4584 migrate_live_tasks(cpu);
4585 rq = cpu_rq(cpu);
4586 kthread_stop(rq->migration_thread);
4587 rq->migration_thread = NULL;
4588 /* Idle task back to normal (off runqueue, low prio) */
4589 rq = task_rq_lock(rq->idle, &flags);
4590 deactivate_task(rq->idle, rq);
4591 rq->idle->static_prio = MAX_PRIO;
4592 __setscheduler(rq->idle, SCHED_NORMAL, 0);
4593 migrate_dead_tasks(cpu);
4594 task_rq_unlock(rq, &flags);
4595 migrate_nr_uninterruptible(rq);
4596 BUG_ON(rq->nr_running != 0);
4597
4598 /* No need to migrate the tasks: it was best-effort if
4599 * they didn't do lock_cpu_hotplug(). Just wake up
4600 * the requestors. */
4601 spin_lock_irq(&rq->lock);
4602 while (!list_empty(&rq->migration_queue)) {
4603 migration_req_t *req;
4604 req = list_entry(rq->migration_queue.next,
4605 migration_req_t, list);
4606 list_del_init(&req->list);
4607 complete(&req->done);
4608 }
4609 spin_unlock_irq(&rq->lock);
4610 break;
4611 #endif
4612 }
4613 return NOTIFY_OK;
4614 }
4615
4616 /* Register at highest priority so that task migration (migrate_all_tasks)
4617 * happens before everything else.
4618 */
4619 static struct notifier_block __devinitdata migration_notifier = {
4620 .notifier_call = migration_call,
4621 .priority = 10
4622 };
4623
4624 int __init migration_init(void)
4625 {
4626 void *cpu = (void *)(long)smp_processor_id();
4627 /* Start one for boot CPU. */
4628 migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4629 migration_call(&migration_notifier, CPU_ONLINE, cpu);
4630 register_cpu_notifier(&migration_notifier);
4631 return 0;
4632 }
4633 #endif
4634
4635 #ifdef CONFIG_SMP
4636 #undef SCHED_DOMAIN_DEBUG
4637 #ifdef SCHED_DOMAIN_DEBUG
4638 static void sched_domain_debug(struct sched_domain *sd, int cpu)
4639 {
4640 int level = 0;
4641
4642 if (!sd) {
4643 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4644 return;
4645 }
4646
4647 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4648
4649 do {
4650 int i;
4651 char str[NR_CPUS];
4652 struct sched_group *group = sd->groups;
4653 cpumask_t groupmask;
4654
4655 cpumask_scnprintf(str, NR_CPUS, sd->span);
4656 cpus_clear(groupmask);
4657
4658 printk(KERN_DEBUG);
4659 for (i = 0; i < level + 1; i++)
4660 printk(" ");
4661 printk("domain %d: ", level);
4662
4663 if (!(sd->flags & SD_LOAD_BALANCE)) {
4664 printk("does not load-balance\n");
4665 if (sd->parent)
4666 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
4667 break;
4668 }
4669
4670 printk("span %s\n", str);
4671
4672 if (!cpu_isset(cpu, sd->span))
4673 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
4674 if (!cpu_isset(cpu, group->cpumask))
4675 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
4676
4677 printk(KERN_DEBUG);
4678 for (i = 0; i < level + 2; i++)
4679 printk(" ");
4680 printk("groups:");
4681 do {
4682 if (!group) {
4683 printk("\n");
4684 printk(KERN_ERR "ERROR: group is NULL\n");
4685 break;
4686 }
4687
4688 if (!group->cpu_power) {
4689 printk("\n");
4690 printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
4691 }
4692
4693 if (!cpus_weight(group->cpumask)) {
4694 printk("\n");
4695 printk(KERN_ERR "ERROR: empty group\n");
4696 }
4697
4698 if (cpus_intersects(groupmask, group->cpumask)) {
4699 printk("\n");
4700 printk(KERN_ERR "ERROR: repeated CPUs\n");
4701 }
4702
4703 cpus_or(groupmask, groupmask, group->cpumask);
4704
4705 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
4706 printk(" %s", str);
4707
4708 group = group->next;
4709 } while (group != sd->groups);
4710 printk("\n");
4711
4712 if (!cpus_equal(sd->span, groupmask))
4713 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
4714
4715 level++;
4716 sd = sd->parent;
4717
4718 if (sd) {
4719 if (!cpus_subset(groupmask, sd->span))
4720 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
4721 }
4722
4723 } while (sd);
4724 }
4725 #else
4726 #define sched_domain_debug(sd, cpu) {}
4727 #endif
4728
4729 static int sd_degenerate(struct sched_domain *sd)
4730 {
4731 if (cpus_weight(sd->span) == 1)
4732 return 1;
4733
4734 /* Following flags need at least 2 groups */
4735 if (sd->flags & (SD_LOAD_BALANCE |
4736 SD_BALANCE_NEWIDLE |
4737 SD_BALANCE_FORK |
4738 SD_BALANCE_EXEC)) {
4739 if (sd->groups != sd->groups->next)
4740 return 0;
4741 }
4742
4743 /* Following flags don't use groups */
4744 if (sd->flags & (SD_WAKE_IDLE |
4745 SD_WAKE_AFFINE |
4746 SD_WAKE_BALANCE))
4747 return 0;
4748
4749 return 1;
4750 }
4751
4752 static int sd_parent_degenerate(struct sched_domain *sd,
4753 struct sched_domain *parent)
4754 {
4755 unsigned long cflags = sd->flags, pflags = parent->flags;
4756
4757 if (sd_degenerate(parent))
4758 return 1;
4759
4760 if (!cpus_equal(sd->span, parent->span))
4761 return 0;
4762
4763 /* Does parent contain flags not in child? */
4764 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
4765 if (cflags & SD_WAKE_AFFINE)
4766 pflags &= ~SD_WAKE_BALANCE;
4767 /* Flags needing groups don't count if only 1 group in parent */
4768 if (parent->groups == parent->groups->next) {
4769 pflags &= ~(SD_LOAD_BALANCE |
4770 SD_BALANCE_NEWIDLE |
4771 SD_BALANCE_FORK |
4772 SD_BALANCE_EXEC);
4773 }
4774 if (~cflags & pflags)
4775 return 0;
4776
4777 return 1;
4778 }
4779
4780 /*
4781 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
4782 * hold the hotplug lock.
4783 */
4784 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
4785 {
4786 runqueue_t *rq = cpu_rq(cpu);
4787 struct sched_domain *tmp;
4788
4789 /* Remove the sched domains which do not contribute to scheduling. */
4790 for (tmp = sd; tmp; tmp = tmp->parent) {
4791 struct sched_domain *parent = tmp->parent;
4792 if (!parent)
4793 break;
4794 if (sd_parent_degenerate(tmp, parent))
4795 tmp->parent = parent->parent;
4796 }
4797
4798 if (sd && sd_degenerate(sd))
4799 sd = sd->parent;
4800
4801 sched_domain_debug(sd, cpu);
4802
4803 rcu_assign_pointer(rq->sd, sd);
4804 }
4805
4806 /* cpus with isolated domains */
4807 static cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE;
4808
4809 /* Setup the mask of cpus configured for isolated domains */
4810 static int __init isolated_cpu_setup(char *str)
4811 {
4812 int ints[NR_CPUS], i;
4813
4814 str = get_options(str, ARRAY_SIZE(ints), ints);
4815 cpus_clear(cpu_isolated_map);
4816 for (i = 1; i <= ints[0]; i++)
4817 if (ints[i] < NR_CPUS)
4818 cpu_set(ints[i], cpu_isolated_map);
4819 return 1;
4820 }
4821
4822 __setup ("isolcpus=", isolated_cpu_setup);
4823
4824 /*
4825 * init_sched_build_groups takes an array of groups, the cpumask we wish
4826 * to span, and a pointer to a function which identifies what group a CPU
4827 * belongs to. The return value of group_fn must be a valid index into the
4828 * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
4829 * keep track of groups covered with a cpumask_t).
4830 *
4831 * init_sched_build_groups will build a circular linked list of the groups
4832 * covered by the given span, and will set each group's ->cpumask correctly,
4833 * and ->cpu_power to 0.
4834 */
4835 static void init_sched_build_groups(struct sched_group groups[], cpumask_t span,
4836 int (*group_fn)(int cpu))
4837 {
4838 struct sched_group *first = NULL, *last = NULL;
4839 cpumask_t covered = CPU_MASK_NONE;
4840 int i;
4841
4842 for_each_cpu_mask(i, span) {
4843 int group = group_fn(i);
4844 struct sched_group *sg = &groups[group];
4845 int j;
4846
4847 if (cpu_isset(i, covered))
4848 continue;
4849
4850 sg->cpumask = CPU_MASK_NONE;
4851 sg->cpu_power = 0;
4852
4853 for_each_cpu_mask(j, span) {
4854 if (group_fn(j) != group)
4855 continue;
4856
4857 cpu_set(j, covered);
4858 cpu_set(j, sg->cpumask);
4859 }
4860 if (!first)
4861 first = sg;
4862 if (last)
4863 last->next = sg;
4864 last = sg;
4865 }
4866 last->next = first;
4867 }
4868
4869 #define SD_NODES_PER_DOMAIN 16
4870
4871 #ifdef CONFIG_NUMA
4872 /**
4873 * find_next_best_node - find the next node to include in a sched_domain
4874 * @node: node whose sched_domain we're building
4875 * @used_nodes: nodes already in the sched_domain
4876 *
4877 * Find the next node to include in a given scheduling domain. Simply
4878 * finds the closest node not already in the @used_nodes map.
4879 *
4880 * Should use nodemask_t.
4881 */
4882 static int find_next_best_node(int node, unsigned long *used_nodes)
4883 {
4884 int i, n, val, min_val, best_node = 0;
4885
4886 min_val = INT_MAX;
4887
4888 for (i = 0; i < MAX_NUMNODES; i++) {
4889 /* Start at @node */
4890 n = (node + i) % MAX_NUMNODES;
4891
4892 if (!nr_cpus_node(n))
4893 continue;
4894
4895 /* Skip already used nodes */
4896 if (test_bit(n, used_nodes))
4897 continue;
4898
4899 /* Simple min distance search */
4900 val = node_distance(node, n);
4901
4902 if (val < min_val) {
4903 min_val = val;
4904 best_node = n;
4905 }
4906 }
4907
4908 set_bit(best_node, used_nodes);
4909 return best_node;
4910 }
4911
4912 /**
4913 * sched_domain_node_span - get a cpumask for a node's sched_domain
4914 * @node: node whose cpumask we're constructing
4915 * @size: number of nodes to include in this span
4916 *
4917 * Given a node, construct a good cpumask for its sched_domain to span. It
4918 * should be one that prevents unnecessary balancing, but also spreads tasks
4919 * out optimally.
4920 */
4921 static cpumask_t sched_domain_node_span(int node)
4922 {
4923 int i;
4924 cpumask_t span, nodemask;
4925 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
4926
4927 cpus_clear(span);
4928 bitmap_zero(used_nodes, MAX_NUMNODES);
4929
4930 nodemask = node_to_cpumask(node);
4931 cpus_or(span, span, nodemask);
4932 set_bit(node, used_nodes);
4933
4934 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
4935 int next_node = find_next_best_node(node, used_nodes);
4936 nodemask = node_to_cpumask(next_node);
4937 cpus_or(span, span, nodemask);
4938 }
4939
4940 return span;
4941 }
4942 #endif
4943
4944 /*
4945 * At the moment, CONFIG_SCHED_SMT is never defined, but leave it in so we
4946 * can switch it on easily if needed.
4947 */
4948 #ifdef CONFIG_SCHED_SMT
4949 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
4950 static struct sched_group sched_group_cpus[NR_CPUS];
4951 static int cpu_to_cpu_group(int cpu)
4952 {
4953 return cpu;
4954 }
4955 #endif
4956
4957 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
4958 static struct sched_group sched_group_phys[NR_CPUS];
4959 static int cpu_to_phys_group(int cpu)
4960 {
4961 #ifdef CONFIG_SCHED_SMT
4962 return first_cpu(cpu_sibling_map[cpu]);
4963 #else
4964 return cpu;
4965 #endif
4966 }
4967
4968 #ifdef CONFIG_NUMA
4969 /*
4970 * The init_sched_build_groups can't handle what we want to do with node
4971 * groups, so roll our own. Now each node has its own list of groups which
4972 * gets dynamically allocated.
4973 */
4974 static DEFINE_PER_CPU(struct sched_domain, node_domains);
4975 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
4976
4977 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
4978 static struct sched_group *sched_group_allnodes_bycpu[NR_CPUS];
4979
4980 static int cpu_to_allnodes_group(int cpu)
4981 {
4982 return cpu_to_node(cpu);
4983 }
4984 #endif
4985
4986 /*
4987 * Build sched domains for a given set of cpus and attach the sched domains
4988 * to the individual cpus
4989 */
4990 void build_sched_domains(const cpumask_t *cpu_map)
4991 {
4992 int i;
4993 #ifdef CONFIG_NUMA
4994 struct sched_group **sched_group_nodes = NULL;
4995 struct sched_group *sched_group_allnodes = NULL;
4996
4997 /*
4998 * Allocate the per-node list of sched groups
4999 */
5000 sched_group_nodes = kmalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
5001 GFP_ATOMIC);
5002 if (!sched_group_nodes) {
5003 printk(KERN_WARNING "Can not alloc sched group node list\n");
5004 return;
5005 }
5006 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
5007 #endif
5008
5009 /*
5010 * Set up domains for cpus specified by the cpu_map.
5011 */
5012 for_each_cpu_mask(i, *cpu_map) {
5013 int group;
5014 struct sched_domain *sd = NULL, *p;
5015 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
5016
5017 cpus_and(nodemask, nodemask, *cpu_map);
5018
5019 #ifdef CONFIG_NUMA
5020 if (cpus_weight(*cpu_map)
5021 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
5022 if (!sched_group_allnodes) {
5023 sched_group_allnodes
5024 = kmalloc(sizeof(struct sched_group)
5025 * MAX_NUMNODES,
5026 GFP_KERNEL);
5027 if (!sched_group_allnodes) {
5028 printk(KERN_WARNING
5029 "Can not alloc allnodes sched group\n");
5030 break;
5031 }
5032 sched_group_allnodes_bycpu[i]
5033 = sched_group_allnodes;
5034 }
5035 sd = &per_cpu(allnodes_domains, i);
5036 *sd = SD_ALLNODES_INIT;
5037 sd->span = *cpu_map;
5038 group = cpu_to_allnodes_group(i);
5039 sd->groups = &sched_group_allnodes[group];
5040 p = sd;
5041 } else
5042 p = NULL;
5043
5044 sd = &per_cpu(node_domains, i);
5045 *sd = SD_NODE_INIT;
5046 sd->span = sched_domain_node_span(cpu_to_node(i));
5047 sd->parent = p;
5048 cpus_and(sd->span, sd->span, *cpu_map);
5049 #endif
5050
5051 p = sd;
5052 sd = &per_cpu(phys_domains, i);
5053 group = cpu_to_phys_group(i);
5054 *sd = SD_CPU_INIT;
5055 sd->span = nodemask;
5056 sd->parent = p;
5057 sd->groups = &sched_group_phys[group];
5058
5059 #ifdef CONFIG_SCHED_SMT
5060 p = sd;
5061 sd = &per_cpu(cpu_domains, i);
5062 group = cpu_to_cpu_group(i);
5063 *sd = SD_SIBLING_INIT;
5064 sd->span = cpu_sibling_map[i];
5065 cpus_and(sd->span, sd->span, *cpu_map);
5066 sd->parent = p;
5067 sd->groups = &sched_group_cpus[group];
5068 #endif
5069 }
5070
5071 #ifdef CONFIG_SCHED_SMT
5072 /* Set up CPU (sibling) groups */
5073 for_each_cpu_mask(i, *cpu_map) {
5074 cpumask_t this_sibling_map = cpu_sibling_map[i];
5075 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
5076 if (i != first_cpu(this_sibling_map))
5077 continue;
5078
5079 init_sched_build_groups(sched_group_cpus, this_sibling_map,
5080 &cpu_to_cpu_group);
5081 }
5082 #endif
5083
5084 /* Set up physical groups */
5085 for (i = 0; i < MAX_NUMNODES; i++) {
5086 cpumask_t nodemask = node_to_cpumask(i);
5087
5088 cpus_and(nodemask, nodemask, *cpu_map);
5089 if (cpus_empty(nodemask))
5090 continue;
5091
5092 init_sched_build_groups(sched_group_phys, nodemask,
5093 &cpu_to_phys_group);
5094 }
5095
5096 #ifdef CONFIG_NUMA
5097 /* Set up node groups */
5098 if (sched_group_allnodes)
5099 init_sched_build_groups(sched_group_allnodes, *cpu_map,
5100 &cpu_to_allnodes_group);
5101
5102 for (i = 0; i < MAX_NUMNODES; i++) {
5103 /* Set up node groups */
5104 struct sched_group *sg, *prev;
5105 cpumask_t nodemask = node_to_cpumask(i);
5106 cpumask_t domainspan;
5107 cpumask_t covered = CPU_MASK_NONE;
5108 int j;
5109
5110 cpus_and(nodemask, nodemask, *cpu_map);
5111 if (cpus_empty(nodemask)) {
5112 sched_group_nodes[i] = NULL;
5113 continue;
5114 }
5115
5116 domainspan = sched_domain_node_span(i);
5117 cpus_and(domainspan, domainspan, *cpu_map);
5118
5119 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5120 sched_group_nodes[i] = sg;
5121 for_each_cpu_mask(j, nodemask) {
5122 struct sched_domain *sd;
5123 sd = &per_cpu(node_domains, j);
5124 sd->groups = sg;
5125 if (sd->groups == NULL) {
5126 /* Turn off balancing if we have no groups */
5127 sd->flags = 0;
5128 }
5129 }
5130 if (!sg) {
5131 printk(KERN_WARNING
5132 "Can not alloc domain group for node %d\n", i);
5133 continue;
5134 }
5135 sg->cpu_power = 0;
5136 sg->cpumask = nodemask;
5137 cpus_or(covered, covered, nodemask);
5138 prev = sg;
5139
5140 for (j = 0; j < MAX_NUMNODES; j++) {
5141 cpumask_t tmp, notcovered;
5142 int n = (i + j) % MAX_NUMNODES;
5143
5144 cpus_complement(notcovered, covered);
5145 cpus_and(tmp, notcovered, *cpu_map);
5146 cpus_and(tmp, tmp, domainspan);
5147 if (cpus_empty(tmp))
5148 break;
5149
5150 nodemask = node_to_cpumask(n);
5151 cpus_and(tmp, tmp, nodemask);
5152 if (cpus_empty(tmp))
5153 continue;
5154
5155 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5156 if (!sg) {
5157 printk(KERN_WARNING
5158 "Can not alloc domain group for node %d\n", j);
5159 break;
5160 }
5161 sg->cpu_power = 0;
5162 sg->cpumask = tmp;
5163 cpus_or(covered, covered, tmp);
5164 prev->next = sg;
5165 prev = sg;
5166 }
5167 prev->next = sched_group_nodes[i];
5168 }
5169 #endif
5170
5171 /* Calculate CPU power for physical packages and nodes */
5172 for_each_cpu_mask(i, *cpu_map) {
5173 int power;
5174 struct sched_domain *sd;
5175 #ifdef CONFIG_SCHED_SMT
5176 sd = &per_cpu(cpu_domains, i);
5177 power = SCHED_LOAD_SCALE;
5178 sd->groups->cpu_power = power;
5179 #endif
5180
5181 sd = &per_cpu(phys_domains, i);
5182 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5183 (cpus_weight(sd->groups->cpumask)-1) / 10;
5184 sd->groups->cpu_power = power;
5185
5186 #ifdef CONFIG_NUMA
5187 sd = &per_cpu(allnodes_domains, i);
5188 if (sd->groups) {
5189 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5190 (cpus_weight(sd->groups->cpumask)-1) / 10;
5191 sd->groups->cpu_power = power;
5192 }
5193 #endif
5194 }
5195
5196 #ifdef CONFIG_NUMA
5197 for (i = 0; i < MAX_NUMNODES; i++) {
5198 struct sched_group *sg = sched_group_nodes[i];
5199 int j;
5200
5201 if (sg == NULL)
5202 continue;
5203 next_sg:
5204 for_each_cpu_mask(j, sg->cpumask) {
5205 struct sched_domain *sd;
5206 int power;
5207
5208 sd = &per_cpu(phys_domains, j);
5209 if (j != first_cpu(sd->groups->cpumask)) {
5210 /*
5211 * Only add "power" once for each
5212 * physical package.
5213 */
5214 continue;
5215 }
5216 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5217 (cpus_weight(sd->groups->cpumask)-1) / 10;
5218
5219 sg->cpu_power += power;
5220 }
5221 sg = sg->next;
5222 if (sg != sched_group_nodes[i])
5223 goto next_sg;
5224 }
5225 #endif
5226
5227 /* Attach the domains */
5228 for_each_cpu_mask(i, *cpu_map) {
5229 struct sched_domain *sd;
5230 #ifdef CONFIG_SCHED_SMT
5231 sd = &per_cpu(cpu_domains, i);
5232 #else
5233 sd = &per_cpu(phys_domains, i);
5234 #endif
5235 cpu_attach_domain(sd, i);
5236 }
5237 }
5238 /*
5239 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
5240 */
5241 static void arch_init_sched_domains(const cpumask_t *cpu_map)
5242 {
5243 cpumask_t cpu_default_map;
5244
5245 /*
5246 * Setup mask for cpus without special case scheduling requirements.
5247 * For now this just excludes isolated cpus, but could be used to
5248 * exclude other special cases in the future.
5249 */
5250 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
5251
5252 build_sched_domains(&cpu_default_map);
5253 }
5254
5255 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
5256 {
5257 #ifdef CONFIG_NUMA
5258 int i;
5259 int cpu;
5260
5261 for_each_cpu_mask(cpu, *cpu_map) {
5262 struct sched_group *sched_group_allnodes
5263 = sched_group_allnodes_bycpu[cpu];
5264 struct sched_group **sched_group_nodes
5265 = sched_group_nodes_bycpu[cpu];
5266
5267 if (sched_group_allnodes) {
5268 kfree(sched_group_allnodes);
5269 sched_group_allnodes_bycpu[cpu] = NULL;
5270 }
5271
5272 if (!sched_group_nodes)
5273 continue;
5274
5275 for (i = 0; i < MAX_NUMNODES; i++) {
5276 cpumask_t nodemask = node_to_cpumask(i);
5277 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5278
5279 cpus_and(nodemask, nodemask, *cpu_map);
5280 if (cpus_empty(nodemask))
5281 continue;
5282
5283 if (sg == NULL)
5284 continue;
5285 sg = sg->next;
5286 next_sg:
5287 oldsg = sg;
5288 sg = sg->next;
5289 kfree(oldsg);
5290 if (oldsg != sched_group_nodes[i])
5291 goto next_sg;
5292 }
5293 kfree(sched_group_nodes);
5294 sched_group_nodes_bycpu[cpu] = NULL;
5295 }
5296 #endif
5297 }
5298
5299 /*
5300 * Detach sched domains from a group of cpus specified in cpu_map
5301 * These cpus will now be attached to the NULL domain
5302 */
5303 static inline void detach_destroy_domains(const cpumask_t *cpu_map)
5304 {
5305 int i;
5306
5307 for_each_cpu_mask(i, *cpu_map)
5308 cpu_attach_domain(NULL, i);
5309 synchronize_sched();
5310 arch_destroy_sched_domains(cpu_map);
5311 }
5312
5313 /*
5314 * Partition sched domains as specified by the cpumasks below.
5315 * This attaches all cpus from the cpumasks to the NULL domain,
5316 * waits for a RCU quiescent period, recalculates sched
5317 * domain information and then attaches them back to the
5318 * correct sched domains
5319 * Call with hotplug lock held
5320 */
5321 void partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
5322 {
5323 cpumask_t change_map;
5324
5325 cpus_and(*partition1, *partition1, cpu_online_map);
5326 cpus_and(*partition2, *partition2, cpu_online_map);
5327 cpus_or(change_map, *partition1, *partition2);
5328
5329 /* Detach sched domains from all of the affected cpus */
5330 detach_destroy_domains(&change_map);
5331 if (!cpus_empty(*partition1))
5332 build_sched_domains(partition1);
5333 if (!cpus_empty(*partition2))
5334 build_sched_domains(partition2);
5335 }
5336
5337 #ifdef CONFIG_HOTPLUG_CPU
5338 /*
5339 * Force a reinitialization of the sched domains hierarchy. The domains
5340 * and groups cannot be updated in place without racing with the balancing
5341 * code, so we temporarily attach all running cpus to the NULL domain
5342 * which will prevent rebalancing while the sched domains are recalculated.
5343 */
5344 static int update_sched_domains(struct notifier_block *nfb,
5345 unsigned long action, void *hcpu)
5346 {
5347 switch (action) {
5348 case CPU_UP_PREPARE:
5349 case CPU_DOWN_PREPARE:
5350 detach_destroy_domains(&cpu_online_map);
5351 return NOTIFY_OK;
5352
5353 case CPU_UP_CANCELED:
5354 case CPU_DOWN_FAILED:
5355 case CPU_ONLINE:
5356 case CPU_DEAD:
5357 /*
5358 * Fall through and re-initialise the domains.
5359 */
5360 break;
5361 default:
5362 return NOTIFY_DONE;
5363 }
5364
5365 /* The hotplug lock is already held by cpu_up/cpu_down */
5366 arch_init_sched_domains(&cpu_online_map);
5367
5368 return NOTIFY_OK;
5369 }
5370 #endif
5371
5372 void __init sched_init_smp(void)
5373 {
5374 lock_cpu_hotplug();
5375 arch_init_sched_domains(&cpu_online_map);
5376 unlock_cpu_hotplug();
5377 /* XXX: Theoretical race here - CPU may be hotplugged now */
5378 hotcpu_notifier(update_sched_domains, 0);
5379 }
5380 #else
5381 void __init sched_init_smp(void)
5382 {
5383 }
5384 #endif /* CONFIG_SMP */
5385
5386 int in_sched_functions(unsigned long addr)
5387 {
5388 /* Linker adds these: start and end of __sched functions */
5389 extern char __sched_text_start[], __sched_text_end[];
5390 return in_lock_functions(addr) ||
5391 (addr >= (unsigned long)__sched_text_start
5392 && addr < (unsigned long)__sched_text_end);
5393 }
5394
5395 void __init sched_init(void)
5396 {
5397 runqueue_t *rq;
5398 int i, j, k;
5399
5400 for (i = 0; i < NR_CPUS; i++) {
5401 prio_array_t *array;
5402
5403 rq = cpu_rq(i);
5404 spin_lock_init(&rq->lock);
5405 rq->nr_running = 0;
5406 rq->active = rq->arrays;
5407 rq->expired = rq->arrays + 1;
5408 rq->best_expired_prio = MAX_PRIO;
5409
5410 #ifdef CONFIG_SMP
5411 rq->sd = NULL;
5412 for (j = 1; j < 3; j++)
5413 rq->cpu_load[j] = 0;
5414 rq->active_balance = 0;
5415 rq->push_cpu = 0;
5416 rq->migration_thread = NULL;
5417 INIT_LIST_HEAD(&rq->migration_queue);
5418 #endif
5419 atomic_set(&rq->nr_iowait, 0);
5420
5421 for (j = 0; j < 2; j++) {
5422 array = rq->arrays + j;
5423 for (k = 0; k < MAX_PRIO; k++) {
5424 INIT_LIST_HEAD(array->queue + k);
5425 __clear_bit(k, array->bitmap);
5426 }
5427 // delimiter for bitsearch
5428 __set_bit(MAX_PRIO, array->bitmap);
5429 }
5430 }
5431
5432 /*
5433 * The boot idle thread does lazy MMU switching as well:
5434 */
5435 atomic_inc(&init_mm.mm_count);
5436 enter_lazy_tlb(&init_mm, current);
5437
5438 /*
5439 * Make us the idle thread. Technically, schedule() should not be
5440 * called from this thread, however somewhere below it might be,
5441 * but because we are the idle thread, we just pick up running again
5442 * when this runqueue becomes "idle".
5443 */
5444 init_idle(current, smp_processor_id());
5445 }
5446
5447 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5448 void __might_sleep(char *file, int line)
5449 {
5450 #if defined(in_atomic)
5451 static unsigned long prev_jiffy; /* ratelimiting */
5452
5453 if ((in_atomic() || irqs_disabled()) &&
5454 system_state == SYSTEM_RUNNING && !oops_in_progress) {
5455 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
5456 return;
5457 prev_jiffy = jiffies;
5458 printk(KERN_ERR "Debug: sleeping function called from invalid"
5459 " context at %s:%d\n", file, line);
5460 printk("in_atomic():%d, irqs_disabled():%d\n",
5461 in_atomic(), irqs_disabled());
5462 dump_stack();
5463 }
5464 #endif
5465 }
5466 EXPORT_SYMBOL(__might_sleep);
5467 #endif
5468
5469 #ifdef CONFIG_MAGIC_SYSRQ
5470 void normalize_rt_tasks(void)
5471 {
5472 struct task_struct *p;
5473 prio_array_t *array;
5474 unsigned long flags;
5475 runqueue_t *rq;
5476
5477 read_lock_irq(&tasklist_lock);
5478 for_each_process (p) {
5479 if (!rt_task(p))
5480 continue;
5481
5482 rq = task_rq_lock(p, &flags);
5483
5484 array = p->array;
5485 if (array)
5486 deactivate_task(p, task_rq(p));
5487 __setscheduler(p, SCHED_NORMAL, 0);
5488 if (array) {
5489 __activate_task(p, task_rq(p));
5490 resched_task(rq->curr);
5491 }
5492
5493 task_rq_unlock(rq, &flags);
5494 }
5495 read_unlock_irq(&tasklist_lock);
5496 }
5497
5498 #endif /* CONFIG_MAGIC_SYSRQ */
This page took 0.143947 seconds and 5 git commands to generate.