ftrace: avoid modifying kprobe'd records
[deliverable/linux.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/reciprocal_div.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/bootmem.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
74
75 #include <asm/tlb.h>
76 #include <asm/irq_regs.h>
77
78 /*
79 * Convert user-nice values [ -20 ... 0 ... 19 ]
80 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
81 * and back.
82 */
83 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
84 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
85 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
86
87 /*
88 * 'User priority' is the nice value converted to something we
89 * can work with better when scaling various scheduler parameters,
90 * it's a [ 0 ... 39 ] range.
91 */
92 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
93 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
94 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
95
96 /*
97 * Helpers for converting nanosecond timing to jiffy resolution
98 */
99 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
100
101 #define NICE_0_LOAD SCHED_LOAD_SCALE
102 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
103
104 /*
105 * These are the 'tuning knobs' of the scheduler:
106 *
107 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
108 * Timeslices get refilled after they expire.
109 */
110 #define DEF_TIMESLICE (100 * HZ / 1000)
111
112 /*
113 * single value that denotes runtime == period, ie unlimited time.
114 */
115 #define RUNTIME_INF ((u64)~0ULL)
116
117 #ifdef CONFIG_SMP
118 /*
119 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
120 * Since cpu_power is a 'constant', we can use a reciprocal divide.
121 */
122 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
123 {
124 return reciprocal_divide(load, sg->reciprocal_cpu_power);
125 }
126
127 /*
128 * Each time a sched group cpu_power is changed,
129 * we must compute its reciprocal value
130 */
131 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
132 {
133 sg->__cpu_power += val;
134 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
135 }
136 #endif
137
138 static inline int rt_policy(int policy)
139 {
140 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
141 return 1;
142 return 0;
143 }
144
145 static inline int task_has_rt_policy(struct task_struct *p)
146 {
147 return rt_policy(p->policy);
148 }
149
150 /*
151 * This is the priority-queue data structure of the RT scheduling class:
152 */
153 struct rt_prio_array {
154 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
155 struct list_head queue[MAX_RT_PRIO];
156 };
157
158 struct rt_bandwidth {
159 /* nests inside the rq lock: */
160 spinlock_t rt_runtime_lock;
161 ktime_t rt_period;
162 u64 rt_runtime;
163 struct hrtimer rt_period_timer;
164 };
165
166 static struct rt_bandwidth def_rt_bandwidth;
167
168 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
169
170 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
171 {
172 struct rt_bandwidth *rt_b =
173 container_of(timer, struct rt_bandwidth, rt_period_timer);
174 ktime_t now;
175 int overrun;
176 int idle = 0;
177
178 for (;;) {
179 now = hrtimer_cb_get_time(timer);
180 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
181
182 if (!overrun)
183 break;
184
185 idle = do_sched_rt_period_timer(rt_b, overrun);
186 }
187
188 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
189 }
190
191 static
192 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
193 {
194 rt_b->rt_period = ns_to_ktime(period);
195 rt_b->rt_runtime = runtime;
196
197 spin_lock_init(&rt_b->rt_runtime_lock);
198
199 hrtimer_init(&rt_b->rt_period_timer,
200 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
201 rt_b->rt_period_timer.function = sched_rt_period_timer;
202 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
203 }
204
205 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
206 {
207 ktime_t now;
208
209 if (rt_b->rt_runtime == RUNTIME_INF)
210 return;
211
212 if (hrtimer_active(&rt_b->rt_period_timer))
213 return;
214
215 spin_lock(&rt_b->rt_runtime_lock);
216 for (;;) {
217 if (hrtimer_active(&rt_b->rt_period_timer))
218 break;
219
220 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
221 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
222 hrtimer_start(&rt_b->rt_period_timer,
223 rt_b->rt_period_timer.expires,
224 HRTIMER_MODE_ABS);
225 }
226 spin_unlock(&rt_b->rt_runtime_lock);
227 }
228
229 #ifdef CONFIG_RT_GROUP_SCHED
230 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
231 {
232 hrtimer_cancel(&rt_b->rt_period_timer);
233 }
234 #endif
235
236 /*
237 * sched_domains_mutex serializes calls to arch_init_sched_domains,
238 * detach_destroy_domains and partition_sched_domains.
239 */
240 static DEFINE_MUTEX(sched_domains_mutex);
241
242 #ifdef CONFIG_GROUP_SCHED
243
244 #include <linux/cgroup.h>
245
246 struct cfs_rq;
247
248 static LIST_HEAD(task_groups);
249
250 /* task group related information */
251 struct task_group {
252 #ifdef CONFIG_CGROUP_SCHED
253 struct cgroup_subsys_state css;
254 #endif
255
256 #ifdef CONFIG_FAIR_GROUP_SCHED
257 /* schedulable entities of this group on each cpu */
258 struct sched_entity **se;
259 /* runqueue "owned" by this group on each cpu */
260 struct cfs_rq **cfs_rq;
261 unsigned long shares;
262 #endif
263
264 #ifdef CONFIG_RT_GROUP_SCHED
265 struct sched_rt_entity **rt_se;
266 struct rt_rq **rt_rq;
267
268 struct rt_bandwidth rt_bandwidth;
269 #endif
270
271 struct rcu_head rcu;
272 struct list_head list;
273
274 struct task_group *parent;
275 struct list_head siblings;
276 struct list_head children;
277 };
278
279 #ifdef CONFIG_USER_SCHED
280
281 /*
282 * Root task group.
283 * Every UID task group (including init_task_group aka UID-0) will
284 * be a child to this group.
285 */
286 struct task_group root_task_group;
287
288 #ifdef CONFIG_FAIR_GROUP_SCHED
289 /* Default task group's sched entity on each cpu */
290 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
291 /* Default task group's cfs_rq on each cpu */
292 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
293 #endif
294
295 #ifdef CONFIG_RT_GROUP_SCHED
296 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
297 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
298 #endif
299 #else
300 #define root_task_group init_task_group
301 #endif
302
303 /* task_group_lock serializes add/remove of task groups and also changes to
304 * a task group's cpu shares.
305 */
306 static DEFINE_SPINLOCK(task_group_lock);
307
308 #ifdef CONFIG_FAIR_GROUP_SCHED
309 #ifdef CONFIG_USER_SCHED
310 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
311 #else
312 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
313 #endif
314
315 /*
316 * A weight of 0 or 1 can cause arithmetics problems.
317 * A weight of a cfs_rq is the sum of weights of which entities
318 * are queued on this cfs_rq, so a weight of a entity should not be
319 * too large, so as the shares value of a task group.
320 * (The default weight is 1024 - so there's no practical
321 * limitation from this.)
322 */
323 #define MIN_SHARES 2
324 #define MAX_SHARES (1UL << 18)
325
326 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
327 #endif
328
329 /* Default task group.
330 * Every task in system belong to this group at bootup.
331 */
332 struct task_group init_task_group;
333
334 /* return group to which a task belongs */
335 static inline struct task_group *task_group(struct task_struct *p)
336 {
337 struct task_group *tg;
338
339 #ifdef CONFIG_USER_SCHED
340 tg = p->user->tg;
341 #elif defined(CONFIG_CGROUP_SCHED)
342 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
343 struct task_group, css);
344 #else
345 tg = &init_task_group;
346 #endif
347 return tg;
348 }
349
350 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
351 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
352 {
353 #ifdef CONFIG_FAIR_GROUP_SCHED
354 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
355 p->se.parent = task_group(p)->se[cpu];
356 #endif
357
358 #ifdef CONFIG_RT_GROUP_SCHED
359 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
360 p->rt.parent = task_group(p)->rt_se[cpu];
361 #endif
362 }
363
364 #else
365
366 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
367
368 #endif /* CONFIG_GROUP_SCHED */
369
370 /* CFS-related fields in a runqueue */
371 struct cfs_rq {
372 struct load_weight load;
373 unsigned long nr_running;
374
375 u64 exec_clock;
376 u64 min_vruntime;
377
378 struct rb_root tasks_timeline;
379 struct rb_node *rb_leftmost;
380
381 struct list_head tasks;
382 struct list_head *balance_iterator;
383
384 /*
385 * 'curr' points to currently running entity on this cfs_rq.
386 * It is set to NULL otherwise (i.e when none are currently running).
387 */
388 struct sched_entity *curr, *next;
389
390 unsigned long nr_spread_over;
391
392 #ifdef CONFIG_FAIR_GROUP_SCHED
393 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
394
395 /*
396 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
397 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
398 * (like users, containers etc.)
399 *
400 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
401 * list is used during load balance.
402 */
403 struct list_head leaf_cfs_rq_list;
404 struct task_group *tg; /* group that "owns" this runqueue */
405 #endif
406 };
407
408 /* Real-Time classes' related field in a runqueue: */
409 struct rt_rq {
410 struct rt_prio_array active;
411 unsigned long rt_nr_running;
412 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
413 int highest_prio; /* highest queued rt task prio */
414 #endif
415 #ifdef CONFIG_SMP
416 unsigned long rt_nr_migratory;
417 int overloaded;
418 #endif
419 int rt_throttled;
420 u64 rt_time;
421 u64 rt_runtime;
422 /* Nests inside the rq lock: */
423 spinlock_t rt_runtime_lock;
424
425 #ifdef CONFIG_RT_GROUP_SCHED
426 unsigned long rt_nr_boosted;
427
428 struct rq *rq;
429 struct list_head leaf_rt_rq_list;
430 struct task_group *tg;
431 struct sched_rt_entity *rt_se;
432 #endif
433 };
434
435 #ifdef CONFIG_SMP
436
437 /*
438 * We add the notion of a root-domain which will be used to define per-domain
439 * variables. Each exclusive cpuset essentially defines an island domain by
440 * fully partitioning the member cpus from any other cpuset. Whenever a new
441 * exclusive cpuset is created, we also create and attach a new root-domain
442 * object.
443 *
444 */
445 struct root_domain {
446 atomic_t refcount;
447 cpumask_t span;
448 cpumask_t online;
449
450 /*
451 * The "RT overload" flag: it gets set if a CPU has more than
452 * one runnable RT task.
453 */
454 cpumask_t rto_mask;
455 atomic_t rto_count;
456 };
457
458 /*
459 * By default the system creates a single root-domain with all cpus as
460 * members (mimicking the global state we have today).
461 */
462 static struct root_domain def_root_domain;
463
464 #endif
465
466 /*
467 * This is the main, per-CPU runqueue data structure.
468 *
469 * Locking rule: those places that want to lock multiple runqueues
470 * (such as the load balancing or the thread migration code), lock
471 * acquire operations must be ordered by ascending &runqueue.
472 */
473 struct rq {
474 /* runqueue lock: */
475 spinlock_t lock;
476
477 /*
478 * nr_running and cpu_load should be in the same cacheline because
479 * remote CPUs use both these fields when doing load calculation.
480 */
481 unsigned long nr_running;
482 #define CPU_LOAD_IDX_MAX 5
483 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
484 unsigned char idle_at_tick;
485 #ifdef CONFIG_NO_HZ
486 unsigned long last_tick_seen;
487 unsigned char in_nohz_recently;
488 #endif
489 /* capture load from *all* tasks on this cpu: */
490 struct load_weight load;
491 unsigned long nr_load_updates;
492 u64 nr_switches;
493
494 struct cfs_rq cfs;
495 struct rt_rq rt;
496
497 #ifdef CONFIG_FAIR_GROUP_SCHED
498 /* list of leaf cfs_rq on this cpu: */
499 struct list_head leaf_cfs_rq_list;
500 #endif
501 #ifdef CONFIG_RT_GROUP_SCHED
502 struct list_head leaf_rt_rq_list;
503 #endif
504
505 /*
506 * This is part of a global counter where only the total sum
507 * over all CPUs matters. A task can increase this counter on
508 * one CPU and if it got migrated afterwards it may decrease
509 * it on another CPU. Always updated under the runqueue lock:
510 */
511 unsigned long nr_uninterruptible;
512
513 struct task_struct *curr, *idle;
514 unsigned long next_balance;
515 struct mm_struct *prev_mm;
516
517 u64 clock;
518
519 atomic_t nr_iowait;
520
521 #ifdef CONFIG_SMP
522 struct root_domain *rd;
523 struct sched_domain *sd;
524
525 /* For active balancing */
526 int active_balance;
527 int push_cpu;
528 /* cpu of this runqueue: */
529 int cpu;
530
531 struct task_struct *migration_thread;
532 struct list_head migration_queue;
533 #endif
534
535 #ifdef CONFIG_SCHED_HRTICK
536 unsigned long hrtick_flags;
537 ktime_t hrtick_expire;
538 struct hrtimer hrtick_timer;
539 #endif
540
541 #ifdef CONFIG_SCHEDSTATS
542 /* latency stats */
543 struct sched_info rq_sched_info;
544
545 /* sys_sched_yield() stats */
546 unsigned int yld_exp_empty;
547 unsigned int yld_act_empty;
548 unsigned int yld_both_empty;
549 unsigned int yld_count;
550
551 /* schedule() stats */
552 unsigned int sched_switch;
553 unsigned int sched_count;
554 unsigned int sched_goidle;
555
556 /* try_to_wake_up() stats */
557 unsigned int ttwu_count;
558 unsigned int ttwu_local;
559
560 /* BKL stats */
561 unsigned int bkl_count;
562 #endif
563 struct lock_class_key rq_lock_key;
564 };
565
566 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
567
568 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
569 {
570 rq->curr->sched_class->check_preempt_curr(rq, p);
571 }
572
573 static inline int cpu_of(struct rq *rq)
574 {
575 #ifdef CONFIG_SMP
576 return rq->cpu;
577 #else
578 return 0;
579 #endif
580 }
581
582 /*
583 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
584 * See detach_destroy_domains: synchronize_sched for details.
585 *
586 * The domain tree of any CPU may only be accessed from within
587 * preempt-disabled sections.
588 */
589 #define for_each_domain(cpu, __sd) \
590 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
591
592 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
593 #define this_rq() (&__get_cpu_var(runqueues))
594 #define task_rq(p) cpu_rq(task_cpu(p))
595 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
596
597 static inline void update_rq_clock(struct rq *rq)
598 {
599 rq->clock = sched_clock_cpu(cpu_of(rq));
600 }
601
602 /*
603 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
604 */
605 #ifdef CONFIG_SCHED_DEBUG
606 # define const_debug __read_mostly
607 #else
608 # define const_debug static const
609 #endif
610
611 /**
612 * runqueue_is_locked
613 *
614 * Returns true if the current cpu runqueue is locked.
615 * This interface allows printk to be called with the runqueue lock
616 * held and know whether or not it is OK to wake up the klogd.
617 */
618 int runqueue_is_locked(void)
619 {
620 int cpu = get_cpu();
621 struct rq *rq = cpu_rq(cpu);
622 int ret;
623
624 ret = spin_is_locked(&rq->lock);
625 put_cpu();
626 return ret;
627 }
628
629 /*
630 * Debugging: various feature bits
631 */
632
633 #define SCHED_FEAT(name, enabled) \
634 __SCHED_FEAT_##name ,
635
636 enum {
637 #include "sched_features.h"
638 };
639
640 #undef SCHED_FEAT
641
642 #define SCHED_FEAT(name, enabled) \
643 (1UL << __SCHED_FEAT_##name) * enabled |
644
645 const_debug unsigned int sysctl_sched_features =
646 #include "sched_features.h"
647 0;
648
649 #undef SCHED_FEAT
650
651 #ifdef CONFIG_SCHED_DEBUG
652 #define SCHED_FEAT(name, enabled) \
653 #name ,
654
655 static __read_mostly char *sched_feat_names[] = {
656 #include "sched_features.h"
657 NULL
658 };
659
660 #undef SCHED_FEAT
661
662 static int sched_feat_open(struct inode *inode, struct file *filp)
663 {
664 filp->private_data = inode->i_private;
665 return 0;
666 }
667
668 static ssize_t
669 sched_feat_read(struct file *filp, char __user *ubuf,
670 size_t cnt, loff_t *ppos)
671 {
672 char *buf;
673 int r = 0;
674 int len = 0;
675 int i;
676
677 for (i = 0; sched_feat_names[i]; i++) {
678 len += strlen(sched_feat_names[i]);
679 len += 4;
680 }
681
682 buf = kmalloc(len + 2, GFP_KERNEL);
683 if (!buf)
684 return -ENOMEM;
685
686 for (i = 0; sched_feat_names[i]; i++) {
687 if (sysctl_sched_features & (1UL << i))
688 r += sprintf(buf + r, "%s ", sched_feat_names[i]);
689 else
690 r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
691 }
692
693 r += sprintf(buf + r, "\n");
694 WARN_ON(r >= len + 2);
695
696 r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
697
698 kfree(buf);
699
700 return r;
701 }
702
703 static ssize_t
704 sched_feat_write(struct file *filp, const char __user *ubuf,
705 size_t cnt, loff_t *ppos)
706 {
707 char buf[64];
708 char *cmp = buf;
709 int neg = 0;
710 int i;
711
712 if (cnt > 63)
713 cnt = 63;
714
715 if (copy_from_user(&buf, ubuf, cnt))
716 return -EFAULT;
717
718 buf[cnt] = 0;
719
720 if (strncmp(buf, "NO_", 3) == 0) {
721 neg = 1;
722 cmp += 3;
723 }
724
725 for (i = 0; sched_feat_names[i]; i++) {
726 int len = strlen(sched_feat_names[i]);
727
728 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
729 if (neg)
730 sysctl_sched_features &= ~(1UL << i);
731 else
732 sysctl_sched_features |= (1UL << i);
733 break;
734 }
735 }
736
737 if (!sched_feat_names[i])
738 return -EINVAL;
739
740 filp->f_pos += cnt;
741
742 return cnt;
743 }
744
745 static struct file_operations sched_feat_fops = {
746 .open = sched_feat_open,
747 .read = sched_feat_read,
748 .write = sched_feat_write,
749 };
750
751 static __init int sched_init_debug(void)
752 {
753 debugfs_create_file("sched_features", 0644, NULL, NULL,
754 &sched_feat_fops);
755
756 return 0;
757 }
758 late_initcall(sched_init_debug);
759
760 #endif
761
762 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
763
764 /*
765 * Number of tasks to iterate in a single balance run.
766 * Limited because this is done with IRQs disabled.
767 */
768 const_debug unsigned int sysctl_sched_nr_migrate = 32;
769
770 /*
771 * period over which we measure -rt task cpu usage in us.
772 * default: 1s
773 */
774 unsigned int sysctl_sched_rt_period = 1000000;
775
776 static __read_mostly int scheduler_running;
777
778 /*
779 * part of the period that we allow rt tasks to run in us.
780 * default: 0.95s
781 */
782 int sysctl_sched_rt_runtime = 950000;
783
784 static inline u64 global_rt_period(void)
785 {
786 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
787 }
788
789 static inline u64 global_rt_runtime(void)
790 {
791 if (sysctl_sched_rt_period < 0)
792 return RUNTIME_INF;
793
794 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
795 }
796
797 unsigned long long time_sync_thresh = 100000;
798
799 static DEFINE_PER_CPU(unsigned long long, time_offset);
800 static DEFINE_PER_CPU(unsigned long long, prev_cpu_time);
801
802 /*
803 * Global lock which we take every now and then to synchronize
804 * the CPUs time. This method is not warp-safe, but it's good
805 * enough to synchronize slowly diverging time sources and thus
806 * it's good enough for tracing:
807 */
808 static DEFINE_SPINLOCK(time_sync_lock);
809 static unsigned long long prev_global_time;
810
811 static unsigned long long __sync_cpu_clock(unsigned long long time, int cpu)
812 {
813 /*
814 * We want this inlined, to not get tracer function calls
815 * in this critical section:
816 */
817 spin_acquire(&time_sync_lock.dep_map, 0, 0, _THIS_IP_);
818 __raw_spin_lock(&time_sync_lock.raw_lock);
819
820 if (time < prev_global_time) {
821 per_cpu(time_offset, cpu) += prev_global_time - time;
822 time = prev_global_time;
823 } else {
824 prev_global_time = time;
825 }
826
827 __raw_spin_unlock(&time_sync_lock.raw_lock);
828 spin_release(&time_sync_lock.dep_map, 1, _THIS_IP_);
829
830 return time;
831 }
832
833 static unsigned long long __cpu_clock(int cpu)
834 {
835 unsigned long long now;
836
837 /*
838 * Only call sched_clock() if the scheduler has already been
839 * initialized (some code might call cpu_clock() very early):
840 */
841 if (unlikely(!scheduler_running))
842 return 0;
843
844 now = sched_clock_cpu(cpu);
845
846 return now;
847 }
848
849 /*
850 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
851 * clock constructed from sched_clock():
852 */
853 unsigned long long notrace cpu_clock(int cpu)
854 {
855 unsigned long long prev_cpu_time, time, delta_time;
856 unsigned long flags;
857
858 local_irq_save(flags);
859 prev_cpu_time = per_cpu(prev_cpu_time, cpu);
860 time = __cpu_clock(cpu) + per_cpu(time_offset, cpu);
861 delta_time = time-prev_cpu_time;
862
863 if (unlikely(delta_time > time_sync_thresh)) {
864 time = __sync_cpu_clock(time, cpu);
865 per_cpu(prev_cpu_time, cpu) = time;
866 }
867 local_irq_restore(flags);
868
869 return time;
870 }
871 EXPORT_SYMBOL_GPL(cpu_clock);
872
873 #ifndef prepare_arch_switch
874 # define prepare_arch_switch(next) do { } while (0)
875 #endif
876 #ifndef finish_arch_switch
877 # define finish_arch_switch(prev) do { } while (0)
878 #endif
879
880 static inline int task_current(struct rq *rq, struct task_struct *p)
881 {
882 return rq->curr == p;
883 }
884
885 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
886 static inline int task_running(struct rq *rq, struct task_struct *p)
887 {
888 return task_current(rq, p);
889 }
890
891 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
892 {
893 }
894
895 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
896 {
897 #ifdef CONFIG_DEBUG_SPINLOCK
898 /* this is a valid case when another task releases the spinlock */
899 rq->lock.owner = current;
900 #endif
901 /*
902 * If we are tracking spinlock dependencies then we have to
903 * fix up the runqueue lock - which gets 'carried over' from
904 * prev into current:
905 */
906 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
907
908 spin_unlock_irq(&rq->lock);
909 }
910
911 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
912 static inline int task_running(struct rq *rq, struct task_struct *p)
913 {
914 #ifdef CONFIG_SMP
915 return p->oncpu;
916 #else
917 return task_current(rq, p);
918 #endif
919 }
920
921 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
922 {
923 #ifdef CONFIG_SMP
924 /*
925 * We can optimise this out completely for !SMP, because the
926 * SMP rebalancing from interrupt is the only thing that cares
927 * here.
928 */
929 next->oncpu = 1;
930 #endif
931 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
932 spin_unlock_irq(&rq->lock);
933 #else
934 spin_unlock(&rq->lock);
935 #endif
936 }
937
938 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
939 {
940 #ifdef CONFIG_SMP
941 /*
942 * After ->oncpu is cleared, the task can be moved to a different CPU.
943 * We must ensure this doesn't happen until the switch is completely
944 * finished.
945 */
946 smp_wmb();
947 prev->oncpu = 0;
948 #endif
949 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
950 local_irq_enable();
951 #endif
952 }
953 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
954
955 /*
956 * __task_rq_lock - lock the runqueue a given task resides on.
957 * Must be called interrupts disabled.
958 */
959 static inline struct rq *__task_rq_lock(struct task_struct *p)
960 __acquires(rq->lock)
961 {
962 for (;;) {
963 struct rq *rq = task_rq(p);
964 spin_lock(&rq->lock);
965 if (likely(rq == task_rq(p)))
966 return rq;
967 spin_unlock(&rq->lock);
968 }
969 }
970
971 /*
972 * task_rq_lock - lock the runqueue a given task resides on and disable
973 * interrupts. Note the ordering: we can safely lookup the task_rq without
974 * explicitly disabling preemption.
975 */
976 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
977 __acquires(rq->lock)
978 {
979 struct rq *rq;
980
981 for (;;) {
982 local_irq_save(*flags);
983 rq = task_rq(p);
984 spin_lock(&rq->lock);
985 if (likely(rq == task_rq(p)))
986 return rq;
987 spin_unlock_irqrestore(&rq->lock, *flags);
988 }
989 }
990
991 static void __task_rq_unlock(struct rq *rq)
992 __releases(rq->lock)
993 {
994 spin_unlock(&rq->lock);
995 }
996
997 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
998 __releases(rq->lock)
999 {
1000 spin_unlock_irqrestore(&rq->lock, *flags);
1001 }
1002
1003 /*
1004 * this_rq_lock - lock this runqueue and disable interrupts.
1005 */
1006 static struct rq *this_rq_lock(void)
1007 __acquires(rq->lock)
1008 {
1009 struct rq *rq;
1010
1011 local_irq_disable();
1012 rq = this_rq();
1013 spin_lock(&rq->lock);
1014
1015 return rq;
1016 }
1017
1018 static void __resched_task(struct task_struct *p, int tif_bit);
1019
1020 static inline void resched_task(struct task_struct *p)
1021 {
1022 __resched_task(p, TIF_NEED_RESCHED);
1023 }
1024
1025 #ifdef CONFIG_SCHED_HRTICK
1026 /*
1027 * Use HR-timers to deliver accurate preemption points.
1028 *
1029 * Its all a bit involved since we cannot program an hrt while holding the
1030 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1031 * reschedule event.
1032 *
1033 * When we get rescheduled we reprogram the hrtick_timer outside of the
1034 * rq->lock.
1035 */
1036 static inline void resched_hrt(struct task_struct *p)
1037 {
1038 __resched_task(p, TIF_HRTICK_RESCHED);
1039 }
1040
1041 static inline void resched_rq(struct rq *rq)
1042 {
1043 unsigned long flags;
1044
1045 spin_lock_irqsave(&rq->lock, flags);
1046 resched_task(rq->curr);
1047 spin_unlock_irqrestore(&rq->lock, flags);
1048 }
1049
1050 enum {
1051 HRTICK_SET, /* re-programm hrtick_timer */
1052 HRTICK_RESET, /* not a new slice */
1053 HRTICK_BLOCK, /* stop hrtick operations */
1054 };
1055
1056 /*
1057 * Use hrtick when:
1058 * - enabled by features
1059 * - hrtimer is actually high res
1060 */
1061 static inline int hrtick_enabled(struct rq *rq)
1062 {
1063 if (!sched_feat(HRTICK))
1064 return 0;
1065 if (unlikely(test_bit(HRTICK_BLOCK, &rq->hrtick_flags)))
1066 return 0;
1067 return hrtimer_is_hres_active(&rq->hrtick_timer);
1068 }
1069
1070 /*
1071 * Called to set the hrtick timer state.
1072 *
1073 * called with rq->lock held and irqs disabled
1074 */
1075 static void hrtick_start(struct rq *rq, u64 delay, int reset)
1076 {
1077 assert_spin_locked(&rq->lock);
1078
1079 /*
1080 * preempt at: now + delay
1081 */
1082 rq->hrtick_expire =
1083 ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
1084 /*
1085 * indicate we need to program the timer
1086 */
1087 __set_bit(HRTICK_SET, &rq->hrtick_flags);
1088 if (reset)
1089 __set_bit(HRTICK_RESET, &rq->hrtick_flags);
1090
1091 /*
1092 * New slices are called from the schedule path and don't need a
1093 * forced reschedule.
1094 */
1095 if (reset)
1096 resched_hrt(rq->curr);
1097 }
1098
1099 static void hrtick_clear(struct rq *rq)
1100 {
1101 if (hrtimer_active(&rq->hrtick_timer))
1102 hrtimer_cancel(&rq->hrtick_timer);
1103 }
1104
1105 /*
1106 * Update the timer from the possible pending state.
1107 */
1108 static void hrtick_set(struct rq *rq)
1109 {
1110 ktime_t time;
1111 int set, reset;
1112 unsigned long flags;
1113
1114 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1115
1116 spin_lock_irqsave(&rq->lock, flags);
1117 set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
1118 reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
1119 time = rq->hrtick_expire;
1120 clear_thread_flag(TIF_HRTICK_RESCHED);
1121 spin_unlock_irqrestore(&rq->lock, flags);
1122
1123 if (set) {
1124 hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
1125 if (reset && !hrtimer_active(&rq->hrtick_timer))
1126 resched_rq(rq);
1127 } else
1128 hrtick_clear(rq);
1129 }
1130
1131 /*
1132 * High-resolution timer tick.
1133 * Runs from hardirq context with interrupts disabled.
1134 */
1135 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1136 {
1137 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1138
1139 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1140
1141 spin_lock(&rq->lock);
1142 update_rq_clock(rq);
1143 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1144 spin_unlock(&rq->lock);
1145
1146 return HRTIMER_NORESTART;
1147 }
1148
1149 #ifdef CONFIG_SMP
1150 static void hotplug_hrtick_disable(int cpu)
1151 {
1152 struct rq *rq = cpu_rq(cpu);
1153 unsigned long flags;
1154
1155 spin_lock_irqsave(&rq->lock, flags);
1156 rq->hrtick_flags = 0;
1157 __set_bit(HRTICK_BLOCK, &rq->hrtick_flags);
1158 spin_unlock_irqrestore(&rq->lock, flags);
1159
1160 hrtick_clear(rq);
1161 }
1162
1163 static void hotplug_hrtick_enable(int cpu)
1164 {
1165 struct rq *rq = cpu_rq(cpu);
1166 unsigned long flags;
1167
1168 spin_lock_irqsave(&rq->lock, flags);
1169 __clear_bit(HRTICK_BLOCK, &rq->hrtick_flags);
1170 spin_unlock_irqrestore(&rq->lock, flags);
1171 }
1172
1173 static int
1174 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1175 {
1176 int cpu = (int)(long)hcpu;
1177
1178 switch (action) {
1179 case CPU_UP_CANCELED:
1180 case CPU_UP_CANCELED_FROZEN:
1181 case CPU_DOWN_PREPARE:
1182 case CPU_DOWN_PREPARE_FROZEN:
1183 case CPU_DEAD:
1184 case CPU_DEAD_FROZEN:
1185 hotplug_hrtick_disable(cpu);
1186 return NOTIFY_OK;
1187
1188 case CPU_UP_PREPARE:
1189 case CPU_UP_PREPARE_FROZEN:
1190 case CPU_DOWN_FAILED:
1191 case CPU_DOWN_FAILED_FROZEN:
1192 case CPU_ONLINE:
1193 case CPU_ONLINE_FROZEN:
1194 hotplug_hrtick_enable(cpu);
1195 return NOTIFY_OK;
1196 }
1197
1198 return NOTIFY_DONE;
1199 }
1200
1201 static void init_hrtick(void)
1202 {
1203 hotcpu_notifier(hotplug_hrtick, 0);
1204 }
1205 #endif /* CONFIG_SMP */
1206
1207 static void init_rq_hrtick(struct rq *rq)
1208 {
1209 rq->hrtick_flags = 0;
1210 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1211 rq->hrtick_timer.function = hrtick;
1212 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
1213 }
1214
1215 void hrtick_resched(void)
1216 {
1217 struct rq *rq;
1218 unsigned long flags;
1219
1220 if (!test_thread_flag(TIF_HRTICK_RESCHED))
1221 return;
1222
1223 local_irq_save(flags);
1224 rq = cpu_rq(smp_processor_id());
1225 hrtick_set(rq);
1226 local_irq_restore(flags);
1227 }
1228 #else
1229 static inline void hrtick_clear(struct rq *rq)
1230 {
1231 }
1232
1233 static inline void hrtick_set(struct rq *rq)
1234 {
1235 }
1236
1237 static inline void init_rq_hrtick(struct rq *rq)
1238 {
1239 }
1240
1241 void hrtick_resched(void)
1242 {
1243 }
1244
1245 static inline void init_hrtick(void)
1246 {
1247 }
1248 #endif
1249
1250 /*
1251 * resched_task - mark a task 'to be rescheduled now'.
1252 *
1253 * On UP this means the setting of the need_resched flag, on SMP it
1254 * might also involve a cross-CPU call to trigger the scheduler on
1255 * the target CPU.
1256 */
1257 #ifdef CONFIG_SMP
1258
1259 #ifndef tsk_is_polling
1260 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1261 #endif
1262
1263 static void __resched_task(struct task_struct *p, int tif_bit)
1264 {
1265 int cpu;
1266
1267 assert_spin_locked(&task_rq(p)->lock);
1268
1269 if (unlikely(test_tsk_thread_flag(p, tif_bit)))
1270 return;
1271
1272 set_tsk_thread_flag(p, tif_bit);
1273
1274 cpu = task_cpu(p);
1275 if (cpu == smp_processor_id())
1276 return;
1277
1278 /* NEED_RESCHED must be visible before we test polling */
1279 smp_mb();
1280 if (!tsk_is_polling(p))
1281 smp_send_reschedule(cpu);
1282 }
1283
1284 static void resched_cpu(int cpu)
1285 {
1286 struct rq *rq = cpu_rq(cpu);
1287 unsigned long flags;
1288
1289 if (!spin_trylock_irqsave(&rq->lock, flags))
1290 return;
1291 resched_task(cpu_curr(cpu));
1292 spin_unlock_irqrestore(&rq->lock, flags);
1293 }
1294
1295 #ifdef CONFIG_NO_HZ
1296 /*
1297 * When add_timer_on() enqueues a timer into the timer wheel of an
1298 * idle CPU then this timer might expire before the next timer event
1299 * which is scheduled to wake up that CPU. In case of a completely
1300 * idle system the next event might even be infinite time into the
1301 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1302 * leaves the inner idle loop so the newly added timer is taken into
1303 * account when the CPU goes back to idle and evaluates the timer
1304 * wheel for the next timer event.
1305 */
1306 void wake_up_idle_cpu(int cpu)
1307 {
1308 struct rq *rq = cpu_rq(cpu);
1309
1310 if (cpu == smp_processor_id())
1311 return;
1312
1313 /*
1314 * This is safe, as this function is called with the timer
1315 * wheel base lock of (cpu) held. When the CPU is on the way
1316 * to idle and has not yet set rq->curr to idle then it will
1317 * be serialized on the timer wheel base lock and take the new
1318 * timer into account automatically.
1319 */
1320 if (rq->curr != rq->idle)
1321 return;
1322
1323 /*
1324 * We can set TIF_RESCHED on the idle task of the other CPU
1325 * lockless. The worst case is that the other CPU runs the
1326 * idle task through an additional NOOP schedule()
1327 */
1328 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1329
1330 /* NEED_RESCHED must be visible before we test polling */
1331 smp_mb();
1332 if (!tsk_is_polling(rq->idle))
1333 smp_send_reschedule(cpu);
1334 }
1335 #endif
1336
1337 #else
1338 static void __resched_task(struct task_struct *p, int tif_bit)
1339 {
1340 assert_spin_locked(&task_rq(p)->lock);
1341 set_tsk_thread_flag(p, tif_bit);
1342 }
1343 #endif
1344
1345 #if BITS_PER_LONG == 32
1346 # define WMULT_CONST (~0UL)
1347 #else
1348 # define WMULT_CONST (1UL << 32)
1349 #endif
1350
1351 #define WMULT_SHIFT 32
1352
1353 /*
1354 * Shift right and round:
1355 */
1356 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1357
1358 static unsigned long
1359 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1360 struct load_weight *lw)
1361 {
1362 u64 tmp;
1363
1364 if (!lw->inv_weight) {
1365 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1366 lw->inv_weight = 1;
1367 else
1368 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1369 / (lw->weight+1);
1370 }
1371
1372 tmp = (u64)delta_exec * weight;
1373 /*
1374 * Check whether we'd overflow the 64-bit multiplication:
1375 */
1376 if (unlikely(tmp > WMULT_CONST))
1377 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1378 WMULT_SHIFT/2);
1379 else
1380 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1381
1382 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1383 }
1384
1385 static inline unsigned long
1386 calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
1387 {
1388 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
1389 }
1390
1391 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1392 {
1393 lw->weight += inc;
1394 lw->inv_weight = 0;
1395 }
1396
1397 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1398 {
1399 lw->weight -= dec;
1400 lw->inv_weight = 0;
1401 }
1402
1403 /*
1404 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1405 * of tasks with abnormal "nice" values across CPUs the contribution that
1406 * each task makes to its run queue's load is weighted according to its
1407 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1408 * scaled version of the new time slice allocation that they receive on time
1409 * slice expiry etc.
1410 */
1411
1412 #define WEIGHT_IDLEPRIO 2
1413 #define WMULT_IDLEPRIO (1 << 31)
1414
1415 /*
1416 * Nice levels are multiplicative, with a gentle 10% change for every
1417 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1418 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1419 * that remained on nice 0.
1420 *
1421 * The "10% effect" is relative and cumulative: from _any_ nice level,
1422 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1423 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1424 * If a task goes up by ~10% and another task goes down by ~10% then
1425 * the relative distance between them is ~25%.)
1426 */
1427 static const int prio_to_weight[40] = {
1428 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1429 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1430 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1431 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1432 /* 0 */ 1024, 820, 655, 526, 423,
1433 /* 5 */ 335, 272, 215, 172, 137,
1434 /* 10 */ 110, 87, 70, 56, 45,
1435 /* 15 */ 36, 29, 23, 18, 15,
1436 };
1437
1438 /*
1439 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1440 *
1441 * In cases where the weight does not change often, we can use the
1442 * precalculated inverse to speed up arithmetics by turning divisions
1443 * into multiplications:
1444 */
1445 static const u32 prio_to_wmult[40] = {
1446 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1447 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1448 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1449 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1450 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1451 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1452 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1453 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1454 };
1455
1456 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1457
1458 /*
1459 * runqueue iterator, to support SMP load-balancing between different
1460 * scheduling classes, without having to expose their internal data
1461 * structures to the load-balancing proper:
1462 */
1463 struct rq_iterator {
1464 void *arg;
1465 struct task_struct *(*start)(void *);
1466 struct task_struct *(*next)(void *);
1467 };
1468
1469 #ifdef CONFIG_SMP
1470 static unsigned long
1471 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1472 unsigned long max_load_move, struct sched_domain *sd,
1473 enum cpu_idle_type idle, int *all_pinned,
1474 int *this_best_prio, struct rq_iterator *iterator);
1475
1476 static int
1477 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1478 struct sched_domain *sd, enum cpu_idle_type idle,
1479 struct rq_iterator *iterator);
1480 #endif
1481
1482 #ifdef CONFIG_CGROUP_CPUACCT
1483 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1484 #else
1485 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1486 #endif
1487
1488 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1489 {
1490 update_load_add(&rq->load, load);
1491 }
1492
1493 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1494 {
1495 update_load_sub(&rq->load, load);
1496 }
1497
1498 #ifdef CONFIG_SMP
1499 static unsigned long source_load(int cpu, int type);
1500 static unsigned long target_load(int cpu, int type);
1501 static unsigned long cpu_avg_load_per_task(int cpu);
1502 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1503 #else /* CONFIG_SMP */
1504
1505 #ifdef CONFIG_FAIR_GROUP_SCHED
1506 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1507 {
1508 }
1509 #endif
1510
1511 #endif /* CONFIG_SMP */
1512
1513 #include "sched_stats.h"
1514 #include "sched_idletask.c"
1515 #include "sched_fair.c"
1516 #include "sched_rt.c"
1517 #ifdef CONFIG_SCHED_DEBUG
1518 # include "sched_debug.c"
1519 #endif
1520
1521 #define sched_class_highest (&rt_sched_class)
1522
1523 static inline void inc_load(struct rq *rq, const struct task_struct *p)
1524 {
1525 update_load_add(&rq->load, p->se.load.weight);
1526 }
1527
1528 static inline void dec_load(struct rq *rq, const struct task_struct *p)
1529 {
1530 update_load_sub(&rq->load, p->se.load.weight);
1531 }
1532
1533 static void inc_nr_running(struct task_struct *p, struct rq *rq)
1534 {
1535 rq->nr_running++;
1536 inc_load(rq, p);
1537 }
1538
1539 static void dec_nr_running(struct task_struct *p, struct rq *rq)
1540 {
1541 rq->nr_running--;
1542 dec_load(rq, p);
1543 }
1544
1545 static void set_load_weight(struct task_struct *p)
1546 {
1547 if (task_has_rt_policy(p)) {
1548 p->se.load.weight = prio_to_weight[0] * 2;
1549 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1550 return;
1551 }
1552
1553 /*
1554 * SCHED_IDLE tasks get minimal weight:
1555 */
1556 if (p->policy == SCHED_IDLE) {
1557 p->se.load.weight = WEIGHT_IDLEPRIO;
1558 p->se.load.inv_weight = WMULT_IDLEPRIO;
1559 return;
1560 }
1561
1562 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1563 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1564 }
1565
1566 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1567 {
1568 sched_info_queued(p);
1569 p->sched_class->enqueue_task(rq, p, wakeup);
1570 p->se.on_rq = 1;
1571 }
1572
1573 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1574 {
1575 p->sched_class->dequeue_task(rq, p, sleep);
1576 p->se.on_rq = 0;
1577 }
1578
1579 /*
1580 * __normal_prio - return the priority that is based on the static prio
1581 */
1582 static inline int __normal_prio(struct task_struct *p)
1583 {
1584 return p->static_prio;
1585 }
1586
1587 /*
1588 * Calculate the expected normal priority: i.e. priority
1589 * without taking RT-inheritance into account. Might be
1590 * boosted by interactivity modifiers. Changes upon fork,
1591 * setprio syscalls, and whenever the interactivity
1592 * estimator recalculates.
1593 */
1594 static inline int normal_prio(struct task_struct *p)
1595 {
1596 int prio;
1597
1598 if (task_has_rt_policy(p))
1599 prio = MAX_RT_PRIO-1 - p->rt_priority;
1600 else
1601 prio = __normal_prio(p);
1602 return prio;
1603 }
1604
1605 /*
1606 * Calculate the current priority, i.e. the priority
1607 * taken into account by the scheduler. This value might
1608 * be boosted by RT tasks, or might be boosted by
1609 * interactivity modifiers. Will be RT if the task got
1610 * RT-boosted. If not then it returns p->normal_prio.
1611 */
1612 static int effective_prio(struct task_struct *p)
1613 {
1614 p->normal_prio = normal_prio(p);
1615 /*
1616 * If we are RT tasks or we were boosted to RT priority,
1617 * keep the priority unchanged. Otherwise, update priority
1618 * to the normal priority:
1619 */
1620 if (!rt_prio(p->prio))
1621 return p->normal_prio;
1622 return p->prio;
1623 }
1624
1625 /*
1626 * activate_task - move a task to the runqueue.
1627 */
1628 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1629 {
1630 if (task_contributes_to_load(p))
1631 rq->nr_uninterruptible--;
1632
1633 enqueue_task(rq, p, wakeup);
1634 inc_nr_running(p, rq);
1635 }
1636
1637 /*
1638 * deactivate_task - remove a task from the runqueue.
1639 */
1640 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1641 {
1642 if (task_contributes_to_load(p))
1643 rq->nr_uninterruptible++;
1644
1645 dequeue_task(rq, p, sleep);
1646 dec_nr_running(p, rq);
1647 }
1648
1649 /**
1650 * task_curr - is this task currently executing on a CPU?
1651 * @p: the task in question.
1652 */
1653 inline int task_curr(const struct task_struct *p)
1654 {
1655 return cpu_curr(task_cpu(p)) == p;
1656 }
1657
1658 /* Used instead of source_load when we know the type == 0 */
1659 unsigned long weighted_cpuload(const int cpu)
1660 {
1661 return cpu_rq(cpu)->load.weight;
1662 }
1663
1664 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1665 {
1666 set_task_rq(p, cpu);
1667 #ifdef CONFIG_SMP
1668 /*
1669 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1670 * successfuly executed on another CPU. We must ensure that updates of
1671 * per-task data have been completed by this moment.
1672 */
1673 smp_wmb();
1674 task_thread_info(p)->cpu = cpu;
1675 #endif
1676 }
1677
1678 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1679 const struct sched_class *prev_class,
1680 int oldprio, int running)
1681 {
1682 if (prev_class != p->sched_class) {
1683 if (prev_class->switched_from)
1684 prev_class->switched_from(rq, p, running);
1685 p->sched_class->switched_to(rq, p, running);
1686 } else
1687 p->sched_class->prio_changed(rq, p, oldprio, running);
1688 }
1689
1690 #ifdef CONFIG_SMP
1691
1692 /*
1693 * Is this task likely cache-hot:
1694 */
1695 static int
1696 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1697 {
1698 s64 delta;
1699
1700 /*
1701 * Buddy candidates are cache hot:
1702 */
1703 if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
1704 return 1;
1705
1706 if (p->sched_class != &fair_sched_class)
1707 return 0;
1708
1709 if (sysctl_sched_migration_cost == -1)
1710 return 1;
1711 if (sysctl_sched_migration_cost == 0)
1712 return 0;
1713
1714 delta = now - p->se.exec_start;
1715
1716 return delta < (s64)sysctl_sched_migration_cost;
1717 }
1718
1719
1720 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1721 {
1722 int old_cpu = task_cpu(p);
1723 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1724 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1725 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1726 u64 clock_offset;
1727
1728 clock_offset = old_rq->clock - new_rq->clock;
1729
1730 #ifdef CONFIG_SCHEDSTATS
1731 if (p->se.wait_start)
1732 p->se.wait_start -= clock_offset;
1733 if (p->se.sleep_start)
1734 p->se.sleep_start -= clock_offset;
1735 if (p->se.block_start)
1736 p->se.block_start -= clock_offset;
1737 if (old_cpu != new_cpu) {
1738 schedstat_inc(p, se.nr_migrations);
1739 if (task_hot(p, old_rq->clock, NULL))
1740 schedstat_inc(p, se.nr_forced2_migrations);
1741 }
1742 #endif
1743 p->se.vruntime -= old_cfsrq->min_vruntime -
1744 new_cfsrq->min_vruntime;
1745
1746 __set_task_cpu(p, new_cpu);
1747 }
1748
1749 struct migration_req {
1750 struct list_head list;
1751
1752 struct task_struct *task;
1753 int dest_cpu;
1754
1755 struct completion done;
1756 };
1757
1758 /*
1759 * The task's runqueue lock must be held.
1760 * Returns true if you have to wait for migration thread.
1761 */
1762 static int
1763 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1764 {
1765 struct rq *rq = task_rq(p);
1766
1767 /*
1768 * If the task is not on a runqueue (and not running), then
1769 * it is sufficient to simply update the task's cpu field.
1770 */
1771 if (!p->se.on_rq && !task_running(rq, p)) {
1772 set_task_cpu(p, dest_cpu);
1773 return 0;
1774 }
1775
1776 init_completion(&req->done);
1777 req->task = p;
1778 req->dest_cpu = dest_cpu;
1779 list_add(&req->list, &rq->migration_queue);
1780
1781 return 1;
1782 }
1783
1784 /*
1785 * wait_task_inactive - wait for a thread to unschedule.
1786 *
1787 * The caller must ensure that the task *will* unschedule sometime soon,
1788 * else this function might spin for a *long* time. This function can't
1789 * be called with interrupts off, or it may introduce deadlock with
1790 * smp_call_function() if an IPI is sent by the same process we are
1791 * waiting to become inactive.
1792 */
1793 void wait_task_inactive(struct task_struct *p)
1794 {
1795 unsigned long flags;
1796 int running, on_rq;
1797 struct rq *rq;
1798
1799 for (;;) {
1800 /*
1801 * We do the initial early heuristics without holding
1802 * any task-queue locks at all. We'll only try to get
1803 * the runqueue lock when things look like they will
1804 * work out!
1805 */
1806 rq = task_rq(p);
1807
1808 /*
1809 * If the task is actively running on another CPU
1810 * still, just relax and busy-wait without holding
1811 * any locks.
1812 *
1813 * NOTE! Since we don't hold any locks, it's not
1814 * even sure that "rq" stays as the right runqueue!
1815 * But we don't care, since "task_running()" will
1816 * return false if the runqueue has changed and p
1817 * is actually now running somewhere else!
1818 */
1819 while (task_running(rq, p))
1820 cpu_relax();
1821
1822 /*
1823 * Ok, time to look more closely! We need the rq
1824 * lock now, to be *sure*. If we're wrong, we'll
1825 * just go back and repeat.
1826 */
1827 rq = task_rq_lock(p, &flags);
1828 running = task_running(rq, p);
1829 on_rq = p->se.on_rq;
1830 task_rq_unlock(rq, &flags);
1831
1832 /*
1833 * Was it really running after all now that we
1834 * checked with the proper locks actually held?
1835 *
1836 * Oops. Go back and try again..
1837 */
1838 if (unlikely(running)) {
1839 cpu_relax();
1840 continue;
1841 }
1842
1843 /*
1844 * It's not enough that it's not actively running,
1845 * it must be off the runqueue _entirely_, and not
1846 * preempted!
1847 *
1848 * So if it wa still runnable (but just not actively
1849 * running right now), it's preempted, and we should
1850 * yield - it could be a while.
1851 */
1852 if (unlikely(on_rq)) {
1853 schedule_timeout_uninterruptible(1);
1854 continue;
1855 }
1856
1857 /*
1858 * Ahh, all good. It wasn't running, and it wasn't
1859 * runnable, which means that it will never become
1860 * running in the future either. We're all done!
1861 */
1862 break;
1863 }
1864 }
1865
1866 /***
1867 * kick_process - kick a running thread to enter/exit the kernel
1868 * @p: the to-be-kicked thread
1869 *
1870 * Cause a process which is running on another CPU to enter
1871 * kernel-mode, without any delay. (to get signals handled.)
1872 *
1873 * NOTE: this function doesnt have to take the runqueue lock,
1874 * because all it wants to ensure is that the remote task enters
1875 * the kernel. If the IPI races and the task has been migrated
1876 * to another CPU then no harm is done and the purpose has been
1877 * achieved as well.
1878 */
1879 void kick_process(struct task_struct *p)
1880 {
1881 int cpu;
1882
1883 preempt_disable();
1884 cpu = task_cpu(p);
1885 if ((cpu != smp_processor_id()) && task_curr(p))
1886 smp_send_reschedule(cpu);
1887 preempt_enable();
1888 }
1889
1890 /*
1891 * Return a low guess at the load of a migration-source cpu weighted
1892 * according to the scheduling class and "nice" value.
1893 *
1894 * We want to under-estimate the load of migration sources, to
1895 * balance conservatively.
1896 */
1897 static unsigned long source_load(int cpu, int type)
1898 {
1899 struct rq *rq = cpu_rq(cpu);
1900 unsigned long total = weighted_cpuload(cpu);
1901
1902 if (type == 0)
1903 return total;
1904
1905 return min(rq->cpu_load[type-1], total);
1906 }
1907
1908 /*
1909 * Return a high guess at the load of a migration-target cpu weighted
1910 * according to the scheduling class and "nice" value.
1911 */
1912 static unsigned long target_load(int cpu, int type)
1913 {
1914 struct rq *rq = cpu_rq(cpu);
1915 unsigned long total = weighted_cpuload(cpu);
1916
1917 if (type == 0)
1918 return total;
1919
1920 return max(rq->cpu_load[type-1], total);
1921 }
1922
1923 /*
1924 * Return the average load per task on the cpu's run queue
1925 */
1926 static unsigned long cpu_avg_load_per_task(int cpu)
1927 {
1928 struct rq *rq = cpu_rq(cpu);
1929 unsigned long total = weighted_cpuload(cpu);
1930 unsigned long n = rq->nr_running;
1931
1932 return n ? total / n : SCHED_LOAD_SCALE;
1933 }
1934
1935 /*
1936 * find_idlest_group finds and returns the least busy CPU group within the
1937 * domain.
1938 */
1939 static struct sched_group *
1940 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1941 {
1942 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1943 unsigned long min_load = ULONG_MAX, this_load = 0;
1944 int load_idx = sd->forkexec_idx;
1945 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1946
1947 do {
1948 unsigned long load, avg_load;
1949 int local_group;
1950 int i;
1951
1952 /* Skip over this group if it has no CPUs allowed */
1953 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1954 continue;
1955
1956 local_group = cpu_isset(this_cpu, group->cpumask);
1957
1958 /* Tally up the load of all CPUs in the group */
1959 avg_load = 0;
1960
1961 for_each_cpu_mask(i, group->cpumask) {
1962 /* Bias balancing toward cpus of our domain */
1963 if (local_group)
1964 load = source_load(i, load_idx);
1965 else
1966 load = target_load(i, load_idx);
1967
1968 avg_load += load;
1969 }
1970
1971 /* Adjust by relative CPU power of the group */
1972 avg_load = sg_div_cpu_power(group,
1973 avg_load * SCHED_LOAD_SCALE);
1974
1975 if (local_group) {
1976 this_load = avg_load;
1977 this = group;
1978 } else if (avg_load < min_load) {
1979 min_load = avg_load;
1980 idlest = group;
1981 }
1982 } while (group = group->next, group != sd->groups);
1983
1984 if (!idlest || 100*this_load < imbalance*min_load)
1985 return NULL;
1986 return idlest;
1987 }
1988
1989 /*
1990 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1991 */
1992 static int
1993 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
1994 cpumask_t *tmp)
1995 {
1996 unsigned long load, min_load = ULONG_MAX;
1997 int idlest = -1;
1998 int i;
1999
2000 /* Traverse only the allowed CPUs */
2001 cpus_and(*tmp, group->cpumask, p->cpus_allowed);
2002
2003 for_each_cpu_mask(i, *tmp) {
2004 load = weighted_cpuload(i);
2005
2006 if (load < min_load || (load == min_load && i == this_cpu)) {
2007 min_load = load;
2008 idlest = i;
2009 }
2010 }
2011
2012 return idlest;
2013 }
2014
2015 /*
2016 * sched_balance_self: balance the current task (running on cpu) in domains
2017 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2018 * SD_BALANCE_EXEC.
2019 *
2020 * Balance, ie. select the least loaded group.
2021 *
2022 * Returns the target CPU number, or the same CPU if no balancing is needed.
2023 *
2024 * preempt must be disabled.
2025 */
2026 static int sched_balance_self(int cpu, int flag)
2027 {
2028 struct task_struct *t = current;
2029 struct sched_domain *tmp, *sd = NULL;
2030
2031 for_each_domain(cpu, tmp) {
2032 /*
2033 * If power savings logic is enabled for a domain, stop there.
2034 */
2035 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2036 break;
2037 if (tmp->flags & flag)
2038 sd = tmp;
2039 }
2040
2041 while (sd) {
2042 cpumask_t span, tmpmask;
2043 struct sched_group *group;
2044 int new_cpu, weight;
2045
2046 if (!(sd->flags & flag)) {
2047 sd = sd->child;
2048 continue;
2049 }
2050
2051 span = sd->span;
2052 group = find_idlest_group(sd, t, cpu);
2053 if (!group) {
2054 sd = sd->child;
2055 continue;
2056 }
2057
2058 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
2059 if (new_cpu == -1 || new_cpu == cpu) {
2060 /* Now try balancing at a lower domain level of cpu */
2061 sd = sd->child;
2062 continue;
2063 }
2064
2065 /* Now try balancing at a lower domain level of new_cpu */
2066 cpu = new_cpu;
2067 sd = NULL;
2068 weight = cpus_weight(span);
2069 for_each_domain(cpu, tmp) {
2070 if (weight <= cpus_weight(tmp->span))
2071 break;
2072 if (tmp->flags & flag)
2073 sd = tmp;
2074 }
2075 /* while loop will break here if sd == NULL */
2076 }
2077
2078 return cpu;
2079 }
2080
2081 #endif /* CONFIG_SMP */
2082
2083 /***
2084 * try_to_wake_up - wake up a thread
2085 * @p: the to-be-woken-up thread
2086 * @state: the mask of task states that can be woken
2087 * @sync: do a synchronous wakeup?
2088 *
2089 * Put it on the run-queue if it's not already there. The "current"
2090 * thread is always on the run-queue (except when the actual
2091 * re-schedule is in progress), and as such you're allowed to do
2092 * the simpler "current->state = TASK_RUNNING" to mark yourself
2093 * runnable without the overhead of this.
2094 *
2095 * returns failure only if the task is already active.
2096 */
2097 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2098 {
2099 int cpu, orig_cpu, this_cpu, success = 0;
2100 unsigned long flags;
2101 long old_state;
2102 struct rq *rq;
2103
2104 if (!sched_feat(SYNC_WAKEUPS))
2105 sync = 0;
2106
2107 smp_wmb();
2108 rq = task_rq_lock(p, &flags);
2109 old_state = p->state;
2110 if (!(old_state & state))
2111 goto out;
2112
2113 if (p->se.on_rq)
2114 goto out_running;
2115
2116 cpu = task_cpu(p);
2117 orig_cpu = cpu;
2118 this_cpu = smp_processor_id();
2119
2120 #ifdef CONFIG_SMP
2121 if (unlikely(task_running(rq, p)))
2122 goto out_activate;
2123
2124 cpu = p->sched_class->select_task_rq(p, sync);
2125 if (cpu != orig_cpu) {
2126 set_task_cpu(p, cpu);
2127 task_rq_unlock(rq, &flags);
2128 /* might preempt at this point */
2129 rq = task_rq_lock(p, &flags);
2130 old_state = p->state;
2131 if (!(old_state & state))
2132 goto out;
2133 if (p->se.on_rq)
2134 goto out_running;
2135
2136 this_cpu = smp_processor_id();
2137 cpu = task_cpu(p);
2138 }
2139
2140 #ifdef CONFIG_SCHEDSTATS
2141 schedstat_inc(rq, ttwu_count);
2142 if (cpu == this_cpu)
2143 schedstat_inc(rq, ttwu_local);
2144 else {
2145 struct sched_domain *sd;
2146 for_each_domain(this_cpu, sd) {
2147 if (cpu_isset(cpu, sd->span)) {
2148 schedstat_inc(sd, ttwu_wake_remote);
2149 break;
2150 }
2151 }
2152 }
2153 #endif
2154
2155 out_activate:
2156 #endif /* CONFIG_SMP */
2157 schedstat_inc(p, se.nr_wakeups);
2158 if (sync)
2159 schedstat_inc(p, se.nr_wakeups_sync);
2160 if (orig_cpu != cpu)
2161 schedstat_inc(p, se.nr_wakeups_migrate);
2162 if (cpu == this_cpu)
2163 schedstat_inc(p, se.nr_wakeups_local);
2164 else
2165 schedstat_inc(p, se.nr_wakeups_remote);
2166 update_rq_clock(rq);
2167 activate_task(rq, p, 1);
2168 success = 1;
2169
2170 out_running:
2171 trace_mark(kernel_sched_wakeup,
2172 "pid %d state %ld ## rq %p task %p rq->curr %p",
2173 p->pid, p->state, rq, p, rq->curr);
2174 check_preempt_curr(rq, p);
2175
2176 p->state = TASK_RUNNING;
2177 #ifdef CONFIG_SMP
2178 if (p->sched_class->task_wake_up)
2179 p->sched_class->task_wake_up(rq, p);
2180 #endif
2181 out:
2182 task_rq_unlock(rq, &flags);
2183
2184 return success;
2185 }
2186
2187 int wake_up_process(struct task_struct *p)
2188 {
2189 return try_to_wake_up(p, TASK_ALL, 0);
2190 }
2191 EXPORT_SYMBOL(wake_up_process);
2192
2193 int wake_up_state(struct task_struct *p, unsigned int state)
2194 {
2195 return try_to_wake_up(p, state, 0);
2196 }
2197
2198 /*
2199 * Perform scheduler related setup for a newly forked process p.
2200 * p is forked by current.
2201 *
2202 * __sched_fork() is basic setup used by init_idle() too:
2203 */
2204 static void __sched_fork(struct task_struct *p)
2205 {
2206 p->se.exec_start = 0;
2207 p->se.sum_exec_runtime = 0;
2208 p->se.prev_sum_exec_runtime = 0;
2209 p->se.last_wakeup = 0;
2210 p->se.avg_overlap = 0;
2211
2212 #ifdef CONFIG_SCHEDSTATS
2213 p->se.wait_start = 0;
2214 p->se.sum_sleep_runtime = 0;
2215 p->se.sleep_start = 0;
2216 p->se.block_start = 0;
2217 p->se.sleep_max = 0;
2218 p->se.block_max = 0;
2219 p->se.exec_max = 0;
2220 p->se.slice_max = 0;
2221 p->se.wait_max = 0;
2222 #endif
2223
2224 INIT_LIST_HEAD(&p->rt.run_list);
2225 p->se.on_rq = 0;
2226 INIT_LIST_HEAD(&p->se.group_node);
2227
2228 #ifdef CONFIG_PREEMPT_NOTIFIERS
2229 INIT_HLIST_HEAD(&p->preempt_notifiers);
2230 #endif
2231
2232 /*
2233 * We mark the process as running here, but have not actually
2234 * inserted it onto the runqueue yet. This guarantees that
2235 * nobody will actually run it, and a signal or other external
2236 * event cannot wake it up and insert it on the runqueue either.
2237 */
2238 p->state = TASK_RUNNING;
2239 }
2240
2241 /*
2242 * fork()/clone()-time setup:
2243 */
2244 void sched_fork(struct task_struct *p, int clone_flags)
2245 {
2246 int cpu = get_cpu();
2247
2248 __sched_fork(p);
2249
2250 #ifdef CONFIG_SMP
2251 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2252 #endif
2253 set_task_cpu(p, cpu);
2254
2255 /*
2256 * Make sure we do not leak PI boosting priority to the child:
2257 */
2258 p->prio = current->normal_prio;
2259 if (!rt_prio(p->prio))
2260 p->sched_class = &fair_sched_class;
2261
2262 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2263 if (likely(sched_info_on()))
2264 memset(&p->sched_info, 0, sizeof(p->sched_info));
2265 #endif
2266 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2267 p->oncpu = 0;
2268 #endif
2269 #ifdef CONFIG_PREEMPT
2270 /* Want to start with kernel preemption disabled. */
2271 task_thread_info(p)->preempt_count = 1;
2272 #endif
2273 put_cpu();
2274 }
2275
2276 /*
2277 * wake_up_new_task - wake up a newly created task for the first time.
2278 *
2279 * This function will do some initial scheduler statistics housekeeping
2280 * that must be done for every newly created context, then puts the task
2281 * on the runqueue and wakes it.
2282 */
2283 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2284 {
2285 unsigned long flags;
2286 struct rq *rq;
2287
2288 rq = task_rq_lock(p, &flags);
2289 BUG_ON(p->state != TASK_RUNNING);
2290 update_rq_clock(rq);
2291
2292 p->prio = effective_prio(p);
2293
2294 if (!p->sched_class->task_new || !current->se.on_rq) {
2295 activate_task(rq, p, 0);
2296 } else {
2297 /*
2298 * Let the scheduling class do new task startup
2299 * management (if any):
2300 */
2301 p->sched_class->task_new(rq, p);
2302 inc_nr_running(p, rq);
2303 }
2304 trace_mark(kernel_sched_wakeup_new,
2305 "pid %d state %ld ## rq %p task %p rq->curr %p",
2306 p->pid, p->state, rq, p, rq->curr);
2307 check_preempt_curr(rq, p);
2308 #ifdef CONFIG_SMP
2309 if (p->sched_class->task_wake_up)
2310 p->sched_class->task_wake_up(rq, p);
2311 #endif
2312 task_rq_unlock(rq, &flags);
2313 }
2314
2315 #ifdef CONFIG_PREEMPT_NOTIFIERS
2316
2317 /**
2318 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2319 * @notifier: notifier struct to register
2320 */
2321 void preempt_notifier_register(struct preempt_notifier *notifier)
2322 {
2323 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2324 }
2325 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2326
2327 /**
2328 * preempt_notifier_unregister - no longer interested in preemption notifications
2329 * @notifier: notifier struct to unregister
2330 *
2331 * This is safe to call from within a preemption notifier.
2332 */
2333 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2334 {
2335 hlist_del(&notifier->link);
2336 }
2337 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2338
2339 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2340 {
2341 struct preempt_notifier *notifier;
2342 struct hlist_node *node;
2343
2344 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2345 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2346 }
2347
2348 static void
2349 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2350 struct task_struct *next)
2351 {
2352 struct preempt_notifier *notifier;
2353 struct hlist_node *node;
2354
2355 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2356 notifier->ops->sched_out(notifier, next);
2357 }
2358
2359 #else
2360
2361 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2362 {
2363 }
2364
2365 static void
2366 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2367 struct task_struct *next)
2368 {
2369 }
2370
2371 #endif
2372
2373 /**
2374 * prepare_task_switch - prepare to switch tasks
2375 * @rq: the runqueue preparing to switch
2376 * @prev: the current task that is being switched out
2377 * @next: the task we are going to switch to.
2378 *
2379 * This is called with the rq lock held and interrupts off. It must
2380 * be paired with a subsequent finish_task_switch after the context
2381 * switch.
2382 *
2383 * prepare_task_switch sets up locking and calls architecture specific
2384 * hooks.
2385 */
2386 static inline void
2387 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2388 struct task_struct *next)
2389 {
2390 fire_sched_out_preempt_notifiers(prev, next);
2391 prepare_lock_switch(rq, next);
2392 prepare_arch_switch(next);
2393 }
2394
2395 /**
2396 * finish_task_switch - clean up after a task-switch
2397 * @rq: runqueue associated with task-switch
2398 * @prev: the thread we just switched away from.
2399 *
2400 * finish_task_switch must be called after the context switch, paired
2401 * with a prepare_task_switch call before the context switch.
2402 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2403 * and do any other architecture-specific cleanup actions.
2404 *
2405 * Note that we may have delayed dropping an mm in context_switch(). If
2406 * so, we finish that here outside of the runqueue lock. (Doing it
2407 * with the lock held can cause deadlocks; see schedule() for
2408 * details.)
2409 */
2410 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2411 __releases(rq->lock)
2412 {
2413 struct mm_struct *mm = rq->prev_mm;
2414 long prev_state;
2415
2416 rq->prev_mm = NULL;
2417
2418 /*
2419 * A task struct has one reference for the use as "current".
2420 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2421 * schedule one last time. The schedule call will never return, and
2422 * the scheduled task must drop that reference.
2423 * The test for TASK_DEAD must occur while the runqueue locks are
2424 * still held, otherwise prev could be scheduled on another cpu, die
2425 * there before we look at prev->state, and then the reference would
2426 * be dropped twice.
2427 * Manfred Spraul <manfred@colorfullife.com>
2428 */
2429 prev_state = prev->state;
2430 finish_arch_switch(prev);
2431 finish_lock_switch(rq, prev);
2432 #ifdef CONFIG_SMP
2433 if (current->sched_class->post_schedule)
2434 current->sched_class->post_schedule(rq);
2435 #endif
2436
2437 fire_sched_in_preempt_notifiers(current);
2438 if (mm)
2439 mmdrop(mm);
2440 if (unlikely(prev_state == TASK_DEAD)) {
2441 /*
2442 * Remove function-return probe instances associated with this
2443 * task and put them back on the free list.
2444 */
2445 kprobe_flush_task(prev);
2446 put_task_struct(prev);
2447 }
2448 }
2449
2450 /**
2451 * schedule_tail - first thing a freshly forked thread must call.
2452 * @prev: the thread we just switched away from.
2453 */
2454 asmlinkage void schedule_tail(struct task_struct *prev)
2455 __releases(rq->lock)
2456 {
2457 struct rq *rq = this_rq();
2458
2459 finish_task_switch(rq, prev);
2460 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2461 /* In this case, finish_task_switch does not reenable preemption */
2462 preempt_enable();
2463 #endif
2464 if (current->set_child_tid)
2465 put_user(task_pid_vnr(current), current->set_child_tid);
2466 }
2467
2468 /*
2469 * context_switch - switch to the new MM and the new
2470 * thread's register state.
2471 */
2472 static inline void
2473 context_switch(struct rq *rq, struct task_struct *prev,
2474 struct task_struct *next)
2475 {
2476 struct mm_struct *mm, *oldmm;
2477
2478 prepare_task_switch(rq, prev, next);
2479 trace_mark(kernel_sched_schedule,
2480 "prev_pid %d next_pid %d prev_state %ld "
2481 "## rq %p prev %p next %p",
2482 prev->pid, next->pid, prev->state,
2483 rq, prev, next);
2484 mm = next->mm;
2485 oldmm = prev->active_mm;
2486 /*
2487 * For paravirt, this is coupled with an exit in switch_to to
2488 * combine the page table reload and the switch backend into
2489 * one hypercall.
2490 */
2491 arch_enter_lazy_cpu_mode();
2492
2493 if (unlikely(!mm)) {
2494 next->active_mm = oldmm;
2495 atomic_inc(&oldmm->mm_count);
2496 enter_lazy_tlb(oldmm, next);
2497 } else
2498 switch_mm(oldmm, mm, next);
2499
2500 if (unlikely(!prev->mm)) {
2501 prev->active_mm = NULL;
2502 rq->prev_mm = oldmm;
2503 }
2504 /*
2505 * Since the runqueue lock will be released by the next
2506 * task (which is an invalid locking op but in the case
2507 * of the scheduler it's an obvious special-case), so we
2508 * do an early lockdep release here:
2509 */
2510 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2511 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2512 #endif
2513
2514 /* Here we just switch the register state and the stack. */
2515 switch_to(prev, next, prev);
2516
2517 barrier();
2518 /*
2519 * this_rq must be evaluated again because prev may have moved
2520 * CPUs since it called schedule(), thus the 'rq' on its stack
2521 * frame will be invalid.
2522 */
2523 finish_task_switch(this_rq(), prev);
2524 }
2525
2526 /*
2527 * nr_running, nr_uninterruptible and nr_context_switches:
2528 *
2529 * externally visible scheduler statistics: current number of runnable
2530 * threads, current number of uninterruptible-sleeping threads, total
2531 * number of context switches performed since bootup.
2532 */
2533 unsigned long nr_running(void)
2534 {
2535 unsigned long i, sum = 0;
2536
2537 for_each_online_cpu(i)
2538 sum += cpu_rq(i)->nr_running;
2539
2540 return sum;
2541 }
2542
2543 unsigned long nr_uninterruptible(void)
2544 {
2545 unsigned long i, sum = 0;
2546
2547 for_each_possible_cpu(i)
2548 sum += cpu_rq(i)->nr_uninterruptible;
2549
2550 /*
2551 * Since we read the counters lockless, it might be slightly
2552 * inaccurate. Do not allow it to go below zero though:
2553 */
2554 if (unlikely((long)sum < 0))
2555 sum = 0;
2556
2557 return sum;
2558 }
2559
2560 unsigned long long nr_context_switches(void)
2561 {
2562 int i;
2563 unsigned long long sum = 0;
2564
2565 for_each_possible_cpu(i)
2566 sum += cpu_rq(i)->nr_switches;
2567
2568 return sum;
2569 }
2570
2571 unsigned long nr_iowait(void)
2572 {
2573 unsigned long i, sum = 0;
2574
2575 for_each_possible_cpu(i)
2576 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2577
2578 return sum;
2579 }
2580
2581 unsigned long nr_active(void)
2582 {
2583 unsigned long i, running = 0, uninterruptible = 0;
2584
2585 for_each_online_cpu(i) {
2586 running += cpu_rq(i)->nr_running;
2587 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2588 }
2589
2590 if (unlikely((long)uninterruptible < 0))
2591 uninterruptible = 0;
2592
2593 return running + uninterruptible;
2594 }
2595
2596 /*
2597 * Update rq->cpu_load[] statistics. This function is usually called every
2598 * scheduler tick (TICK_NSEC).
2599 */
2600 static void update_cpu_load(struct rq *this_rq)
2601 {
2602 unsigned long this_load = this_rq->load.weight;
2603 int i, scale;
2604
2605 this_rq->nr_load_updates++;
2606
2607 /* Update our load: */
2608 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2609 unsigned long old_load, new_load;
2610
2611 /* scale is effectively 1 << i now, and >> i divides by scale */
2612
2613 old_load = this_rq->cpu_load[i];
2614 new_load = this_load;
2615 /*
2616 * Round up the averaging division if load is increasing. This
2617 * prevents us from getting stuck on 9 if the load is 10, for
2618 * example.
2619 */
2620 if (new_load > old_load)
2621 new_load += scale-1;
2622 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2623 }
2624 }
2625
2626 #ifdef CONFIG_SMP
2627
2628 /*
2629 * double_rq_lock - safely lock two runqueues
2630 *
2631 * Note this does not disable interrupts like task_rq_lock,
2632 * you need to do so manually before calling.
2633 */
2634 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2635 __acquires(rq1->lock)
2636 __acquires(rq2->lock)
2637 {
2638 BUG_ON(!irqs_disabled());
2639 if (rq1 == rq2) {
2640 spin_lock(&rq1->lock);
2641 __acquire(rq2->lock); /* Fake it out ;) */
2642 } else {
2643 if (rq1 < rq2) {
2644 spin_lock(&rq1->lock);
2645 spin_lock(&rq2->lock);
2646 } else {
2647 spin_lock(&rq2->lock);
2648 spin_lock(&rq1->lock);
2649 }
2650 }
2651 update_rq_clock(rq1);
2652 update_rq_clock(rq2);
2653 }
2654
2655 /*
2656 * double_rq_unlock - safely unlock two runqueues
2657 *
2658 * Note this does not restore interrupts like task_rq_unlock,
2659 * you need to do so manually after calling.
2660 */
2661 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2662 __releases(rq1->lock)
2663 __releases(rq2->lock)
2664 {
2665 spin_unlock(&rq1->lock);
2666 if (rq1 != rq2)
2667 spin_unlock(&rq2->lock);
2668 else
2669 __release(rq2->lock);
2670 }
2671
2672 /*
2673 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2674 */
2675 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2676 __releases(this_rq->lock)
2677 __acquires(busiest->lock)
2678 __acquires(this_rq->lock)
2679 {
2680 int ret = 0;
2681
2682 if (unlikely(!irqs_disabled())) {
2683 /* printk() doesn't work good under rq->lock */
2684 spin_unlock(&this_rq->lock);
2685 BUG_ON(1);
2686 }
2687 if (unlikely(!spin_trylock(&busiest->lock))) {
2688 if (busiest < this_rq) {
2689 spin_unlock(&this_rq->lock);
2690 spin_lock(&busiest->lock);
2691 spin_lock(&this_rq->lock);
2692 ret = 1;
2693 } else
2694 spin_lock(&busiest->lock);
2695 }
2696 return ret;
2697 }
2698
2699 /*
2700 * If dest_cpu is allowed for this process, migrate the task to it.
2701 * This is accomplished by forcing the cpu_allowed mask to only
2702 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2703 * the cpu_allowed mask is restored.
2704 */
2705 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2706 {
2707 struct migration_req req;
2708 unsigned long flags;
2709 struct rq *rq;
2710
2711 rq = task_rq_lock(p, &flags);
2712 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2713 || unlikely(cpu_is_offline(dest_cpu)))
2714 goto out;
2715
2716 /* force the process onto the specified CPU */
2717 if (migrate_task(p, dest_cpu, &req)) {
2718 /* Need to wait for migration thread (might exit: take ref). */
2719 struct task_struct *mt = rq->migration_thread;
2720
2721 get_task_struct(mt);
2722 task_rq_unlock(rq, &flags);
2723 wake_up_process(mt);
2724 put_task_struct(mt);
2725 wait_for_completion(&req.done);
2726
2727 return;
2728 }
2729 out:
2730 task_rq_unlock(rq, &flags);
2731 }
2732
2733 /*
2734 * sched_exec - execve() is a valuable balancing opportunity, because at
2735 * this point the task has the smallest effective memory and cache footprint.
2736 */
2737 void sched_exec(void)
2738 {
2739 int new_cpu, this_cpu = get_cpu();
2740 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2741 put_cpu();
2742 if (new_cpu != this_cpu)
2743 sched_migrate_task(current, new_cpu);
2744 }
2745
2746 /*
2747 * pull_task - move a task from a remote runqueue to the local runqueue.
2748 * Both runqueues must be locked.
2749 */
2750 static void pull_task(struct rq *src_rq, struct task_struct *p,
2751 struct rq *this_rq, int this_cpu)
2752 {
2753 deactivate_task(src_rq, p, 0);
2754 set_task_cpu(p, this_cpu);
2755 activate_task(this_rq, p, 0);
2756 /*
2757 * Note that idle threads have a prio of MAX_PRIO, for this test
2758 * to be always true for them.
2759 */
2760 check_preempt_curr(this_rq, p);
2761 }
2762
2763 /*
2764 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2765 */
2766 static
2767 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2768 struct sched_domain *sd, enum cpu_idle_type idle,
2769 int *all_pinned)
2770 {
2771 /*
2772 * We do not migrate tasks that are:
2773 * 1) running (obviously), or
2774 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2775 * 3) are cache-hot on their current CPU.
2776 */
2777 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2778 schedstat_inc(p, se.nr_failed_migrations_affine);
2779 return 0;
2780 }
2781 *all_pinned = 0;
2782
2783 if (task_running(rq, p)) {
2784 schedstat_inc(p, se.nr_failed_migrations_running);
2785 return 0;
2786 }
2787
2788 /*
2789 * Aggressive migration if:
2790 * 1) task is cache cold, or
2791 * 2) too many balance attempts have failed.
2792 */
2793
2794 if (!task_hot(p, rq->clock, sd) ||
2795 sd->nr_balance_failed > sd->cache_nice_tries) {
2796 #ifdef CONFIG_SCHEDSTATS
2797 if (task_hot(p, rq->clock, sd)) {
2798 schedstat_inc(sd, lb_hot_gained[idle]);
2799 schedstat_inc(p, se.nr_forced_migrations);
2800 }
2801 #endif
2802 return 1;
2803 }
2804
2805 if (task_hot(p, rq->clock, sd)) {
2806 schedstat_inc(p, se.nr_failed_migrations_hot);
2807 return 0;
2808 }
2809 return 1;
2810 }
2811
2812 static unsigned long
2813 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2814 unsigned long max_load_move, struct sched_domain *sd,
2815 enum cpu_idle_type idle, int *all_pinned,
2816 int *this_best_prio, struct rq_iterator *iterator)
2817 {
2818 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
2819 struct task_struct *p;
2820 long rem_load_move = max_load_move;
2821
2822 if (max_load_move == 0)
2823 goto out;
2824
2825 pinned = 1;
2826
2827 /*
2828 * Start the load-balancing iterator:
2829 */
2830 p = iterator->start(iterator->arg);
2831 next:
2832 if (!p || loops++ > sysctl_sched_nr_migrate)
2833 goto out;
2834 /*
2835 * To help distribute high priority tasks across CPUs we don't
2836 * skip a task if it will be the highest priority task (i.e. smallest
2837 * prio value) on its new queue regardless of its load weight
2838 */
2839 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2840 SCHED_LOAD_SCALE_FUZZ;
2841 if ((skip_for_load && p->prio >= *this_best_prio) ||
2842 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2843 p = iterator->next(iterator->arg);
2844 goto next;
2845 }
2846
2847 pull_task(busiest, p, this_rq, this_cpu);
2848 pulled++;
2849 rem_load_move -= p->se.load.weight;
2850
2851 /*
2852 * We only want to steal up to the prescribed amount of weighted load.
2853 */
2854 if (rem_load_move > 0) {
2855 if (p->prio < *this_best_prio)
2856 *this_best_prio = p->prio;
2857 p = iterator->next(iterator->arg);
2858 goto next;
2859 }
2860 out:
2861 /*
2862 * Right now, this is one of only two places pull_task() is called,
2863 * so we can safely collect pull_task() stats here rather than
2864 * inside pull_task().
2865 */
2866 schedstat_add(sd, lb_gained[idle], pulled);
2867
2868 if (all_pinned)
2869 *all_pinned = pinned;
2870
2871 return max_load_move - rem_load_move;
2872 }
2873
2874 /*
2875 * move_tasks tries to move up to max_load_move weighted load from busiest to
2876 * this_rq, as part of a balancing operation within domain "sd".
2877 * Returns 1 if successful and 0 otherwise.
2878 *
2879 * Called with both runqueues locked.
2880 */
2881 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2882 unsigned long max_load_move,
2883 struct sched_domain *sd, enum cpu_idle_type idle,
2884 int *all_pinned)
2885 {
2886 const struct sched_class *class = sched_class_highest;
2887 unsigned long total_load_moved = 0;
2888 int this_best_prio = this_rq->curr->prio;
2889
2890 do {
2891 total_load_moved +=
2892 class->load_balance(this_rq, this_cpu, busiest,
2893 max_load_move - total_load_moved,
2894 sd, idle, all_pinned, &this_best_prio);
2895 class = class->next;
2896 } while (class && max_load_move > total_load_moved);
2897
2898 return total_load_moved > 0;
2899 }
2900
2901 static int
2902 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2903 struct sched_domain *sd, enum cpu_idle_type idle,
2904 struct rq_iterator *iterator)
2905 {
2906 struct task_struct *p = iterator->start(iterator->arg);
2907 int pinned = 0;
2908
2909 while (p) {
2910 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2911 pull_task(busiest, p, this_rq, this_cpu);
2912 /*
2913 * Right now, this is only the second place pull_task()
2914 * is called, so we can safely collect pull_task()
2915 * stats here rather than inside pull_task().
2916 */
2917 schedstat_inc(sd, lb_gained[idle]);
2918
2919 return 1;
2920 }
2921 p = iterator->next(iterator->arg);
2922 }
2923
2924 return 0;
2925 }
2926
2927 /*
2928 * move_one_task tries to move exactly one task from busiest to this_rq, as
2929 * part of active balancing operations within "domain".
2930 * Returns 1 if successful and 0 otherwise.
2931 *
2932 * Called with both runqueues locked.
2933 */
2934 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2935 struct sched_domain *sd, enum cpu_idle_type idle)
2936 {
2937 const struct sched_class *class;
2938
2939 for (class = sched_class_highest; class; class = class->next)
2940 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
2941 return 1;
2942
2943 return 0;
2944 }
2945
2946 /*
2947 * find_busiest_group finds and returns the busiest CPU group within the
2948 * domain. It calculates and returns the amount of weighted load which
2949 * should be moved to restore balance via the imbalance parameter.
2950 */
2951 static struct sched_group *
2952 find_busiest_group(struct sched_domain *sd, int this_cpu,
2953 unsigned long *imbalance, enum cpu_idle_type idle,
2954 int *sd_idle, const cpumask_t *cpus, int *balance)
2955 {
2956 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2957 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2958 unsigned long max_pull;
2959 unsigned long busiest_load_per_task, busiest_nr_running;
2960 unsigned long this_load_per_task, this_nr_running;
2961 int load_idx, group_imb = 0;
2962 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2963 int power_savings_balance = 1;
2964 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2965 unsigned long min_nr_running = ULONG_MAX;
2966 struct sched_group *group_min = NULL, *group_leader = NULL;
2967 #endif
2968
2969 max_load = this_load = total_load = total_pwr = 0;
2970 busiest_load_per_task = busiest_nr_running = 0;
2971 this_load_per_task = this_nr_running = 0;
2972 if (idle == CPU_NOT_IDLE)
2973 load_idx = sd->busy_idx;
2974 else if (idle == CPU_NEWLY_IDLE)
2975 load_idx = sd->newidle_idx;
2976 else
2977 load_idx = sd->idle_idx;
2978
2979 do {
2980 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
2981 int local_group;
2982 int i;
2983 int __group_imb = 0;
2984 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2985 unsigned long sum_nr_running, sum_weighted_load;
2986
2987 local_group = cpu_isset(this_cpu, group->cpumask);
2988
2989 if (local_group)
2990 balance_cpu = first_cpu(group->cpumask);
2991
2992 /* Tally up the load of all CPUs in the group */
2993 sum_weighted_load = sum_nr_running = avg_load = 0;
2994 max_cpu_load = 0;
2995 min_cpu_load = ~0UL;
2996
2997 for_each_cpu_mask(i, group->cpumask) {
2998 struct rq *rq;
2999
3000 if (!cpu_isset(i, *cpus))
3001 continue;
3002
3003 rq = cpu_rq(i);
3004
3005 if (*sd_idle && rq->nr_running)
3006 *sd_idle = 0;
3007
3008 /* Bias balancing toward cpus of our domain */
3009 if (local_group) {
3010 if (idle_cpu(i) && !first_idle_cpu) {
3011 first_idle_cpu = 1;
3012 balance_cpu = i;
3013 }
3014
3015 load = target_load(i, load_idx);
3016 } else {
3017 load = source_load(i, load_idx);
3018 if (load > max_cpu_load)
3019 max_cpu_load = load;
3020 if (min_cpu_load > load)
3021 min_cpu_load = load;
3022 }
3023
3024 avg_load += load;
3025 sum_nr_running += rq->nr_running;
3026 sum_weighted_load += weighted_cpuload(i);
3027 }
3028
3029 /*
3030 * First idle cpu or the first cpu(busiest) in this sched group
3031 * is eligible for doing load balancing at this and above
3032 * domains. In the newly idle case, we will allow all the cpu's
3033 * to do the newly idle load balance.
3034 */
3035 if (idle != CPU_NEWLY_IDLE && local_group &&
3036 balance_cpu != this_cpu && balance) {
3037 *balance = 0;
3038 goto ret;
3039 }
3040
3041 total_load += avg_load;
3042 total_pwr += group->__cpu_power;
3043
3044 /* Adjust by relative CPU power of the group */
3045 avg_load = sg_div_cpu_power(group,
3046 avg_load * SCHED_LOAD_SCALE);
3047
3048 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
3049 __group_imb = 1;
3050
3051 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3052
3053 if (local_group) {
3054 this_load = avg_load;
3055 this = group;
3056 this_nr_running = sum_nr_running;
3057 this_load_per_task = sum_weighted_load;
3058 } else if (avg_load > max_load &&
3059 (sum_nr_running > group_capacity || __group_imb)) {
3060 max_load = avg_load;
3061 busiest = group;
3062 busiest_nr_running = sum_nr_running;
3063 busiest_load_per_task = sum_weighted_load;
3064 group_imb = __group_imb;
3065 }
3066
3067 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3068 /*
3069 * Busy processors will not participate in power savings
3070 * balance.
3071 */
3072 if (idle == CPU_NOT_IDLE ||
3073 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3074 goto group_next;
3075
3076 /*
3077 * If the local group is idle or completely loaded
3078 * no need to do power savings balance at this domain
3079 */
3080 if (local_group && (this_nr_running >= group_capacity ||
3081 !this_nr_running))
3082 power_savings_balance = 0;
3083
3084 /*
3085 * If a group is already running at full capacity or idle,
3086 * don't include that group in power savings calculations
3087 */
3088 if (!power_savings_balance || sum_nr_running >= group_capacity
3089 || !sum_nr_running)
3090 goto group_next;
3091
3092 /*
3093 * Calculate the group which has the least non-idle load.
3094 * This is the group from where we need to pick up the load
3095 * for saving power
3096 */
3097 if ((sum_nr_running < min_nr_running) ||
3098 (sum_nr_running == min_nr_running &&
3099 first_cpu(group->cpumask) <
3100 first_cpu(group_min->cpumask))) {
3101 group_min = group;
3102 min_nr_running = sum_nr_running;
3103 min_load_per_task = sum_weighted_load /
3104 sum_nr_running;
3105 }
3106
3107 /*
3108 * Calculate the group which is almost near its
3109 * capacity but still has some space to pick up some load
3110 * from other group and save more power
3111 */
3112 if (sum_nr_running <= group_capacity - 1) {
3113 if (sum_nr_running > leader_nr_running ||
3114 (sum_nr_running == leader_nr_running &&
3115 first_cpu(group->cpumask) >
3116 first_cpu(group_leader->cpumask))) {
3117 group_leader = group;
3118 leader_nr_running = sum_nr_running;
3119 }
3120 }
3121 group_next:
3122 #endif
3123 group = group->next;
3124 } while (group != sd->groups);
3125
3126 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
3127 goto out_balanced;
3128
3129 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3130
3131 if (this_load >= avg_load ||
3132 100*max_load <= sd->imbalance_pct*this_load)
3133 goto out_balanced;
3134
3135 busiest_load_per_task /= busiest_nr_running;
3136 if (group_imb)
3137 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3138
3139 /*
3140 * We're trying to get all the cpus to the average_load, so we don't
3141 * want to push ourselves above the average load, nor do we wish to
3142 * reduce the max loaded cpu below the average load, as either of these
3143 * actions would just result in more rebalancing later, and ping-pong
3144 * tasks around. Thus we look for the minimum possible imbalance.
3145 * Negative imbalances (*we* are more loaded than anyone else) will
3146 * be counted as no imbalance for these purposes -- we can't fix that
3147 * by pulling tasks to us. Be careful of negative numbers as they'll
3148 * appear as very large values with unsigned longs.
3149 */
3150 if (max_load <= busiest_load_per_task)
3151 goto out_balanced;
3152
3153 /*
3154 * In the presence of smp nice balancing, certain scenarios can have
3155 * max load less than avg load(as we skip the groups at or below
3156 * its cpu_power, while calculating max_load..)
3157 */
3158 if (max_load < avg_load) {
3159 *imbalance = 0;
3160 goto small_imbalance;
3161 }
3162
3163 /* Don't want to pull so many tasks that a group would go idle */
3164 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3165
3166 /* How much load to actually move to equalise the imbalance */
3167 *imbalance = min(max_pull * busiest->__cpu_power,
3168 (avg_load - this_load) * this->__cpu_power)
3169 / SCHED_LOAD_SCALE;
3170
3171 /*
3172 * if *imbalance is less than the average load per runnable task
3173 * there is no gaurantee that any tasks will be moved so we'll have
3174 * a think about bumping its value to force at least one task to be
3175 * moved
3176 */
3177 if (*imbalance < busiest_load_per_task) {
3178 unsigned long tmp, pwr_now, pwr_move;
3179 unsigned int imbn;
3180
3181 small_imbalance:
3182 pwr_move = pwr_now = 0;
3183 imbn = 2;
3184 if (this_nr_running) {
3185 this_load_per_task /= this_nr_running;
3186 if (busiest_load_per_task > this_load_per_task)
3187 imbn = 1;
3188 } else
3189 this_load_per_task = SCHED_LOAD_SCALE;
3190
3191 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
3192 busiest_load_per_task * imbn) {
3193 *imbalance = busiest_load_per_task;
3194 return busiest;
3195 }
3196
3197 /*
3198 * OK, we don't have enough imbalance to justify moving tasks,
3199 * however we may be able to increase total CPU power used by
3200 * moving them.
3201 */
3202
3203 pwr_now += busiest->__cpu_power *
3204 min(busiest_load_per_task, max_load);
3205 pwr_now += this->__cpu_power *
3206 min(this_load_per_task, this_load);
3207 pwr_now /= SCHED_LOAD_SCALE;
3208
3209 /* Amount of load we'd subtract */
3210 tmp = sg_div_cpu_power(busiest,
3211 busiest_load_per_task * SCHED_LOAD_SCALE);
3212 if (max_load > tmp)
3213 pwr_move += busiest->__cpu_power *
3214 min(busiest_load_per_task, max_load - tmp);
3215
3216 /* Amount of load we'd add */
3217 if (max_load * busiest->__cpu_power <
3218 busiest_load_per_task * SCHED_LOAD_SCALE)
3219 tmp = sg_div_cpu_power(this,
3220 max_load * busiest->__cpu_power);
3221 else
3222 tmp = sg_div_cpu_power(this,
3223 busiest_load_per_task * SCHED_LOAD_SCALE);
3224 pwr_move += this->__cpu_power *
3225 min(this_load_per_task, this_load + tmp);
3226 pwr_move /= SCHED_LOAD_SCALE;
3227
3228 /* Move if we gain throughput */
3229 if (pwr_move > pwr_now)
3230 *imbalance = busiest_load_per_task;
3231 }
3232
3233 return busiest;
3234
3235 out_balanced:
3236 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3237 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3238 goto ret;
3239
3240 if (this == group_leader && group_leader != group_min) {
3241 *imbalance = min_load_per_task;
3242 return group_min;
3243 }
3244 #endif
3245 ret:
3246 *imbalance = 0;
3247 return NULL;
3248 }
3249
3250 /*
3251 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3252 */
3253 static struct rq *
3254 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3255 unsigned long imbalance, const cpumask_t *cpus)
3256 {
3257 struct rq *busiest = NULL, *rq;
3258 unsigned long max_load = 0;
3259 int i;
3260
3261 for_each_cpu_mask(i, group->cpumask) {
3262 unsigned long wl;
3263
3264 if (!cpu_isset(i, *cpus))
3265 continue;
3266
3267 rq = cpu_rq(i);
3268 wl = weighted_cpuload(i);
3269
3270 if (rq->nr_running == 1 && wl > imbalance)
3271 continue;
3272
3273 if (wl > max_load) {
3274 max_load = wl;
3275 busiest = rq;
3276 }
3277 }
3278
3279 return busiest;
3280 }
3281
3282 /*
3283 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3284 * so long as it is large enough.
3285 */
3286 #define MAX_PINNED_INTERVAL 512
3287
3288 /*
3289 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3290 * tasks if there is an imbalance.
3291 */
3292 static int load_balance(int this_cpu, struct rq *this_rq,
3293 struct sched_domain *sd, enum cpu_idle_type idle,
3294 int *balance, cpumask_t *cpus)
3295 {
3296 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3297 struct sched_group *group;
3298 unsigned long imbalance;
3299 struct rq *busiest;
3300 unsigned long flags;
3301
3302 cpus_setall(*cpus);
3303
3304 /*
3305 * When power savings policy is enabled for the parent domain, idle
3306 * sibling can pick up load irrespective of busy siblings. In this case,
3307 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3308 * portraying it as CPU_NOT_IDLE.
3309 */
3310 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3311 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3312 sd_idle = 1;
3313
3314 schedstat_inc(sd, lb_count[idle]);
3315
3316 redo:
3317 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3318 cpus, balance);
3319
3320 if (*balance == 0)
3321 goto out_balanced;
3322
3323 if (!group) {
3324 schedstat_inc(sd, lb_nobusyg[idle]);
3325 goto out_balanced;
3326 }
3327
3328 busiest = find_busiest_queue(group, idle, imbalance, cpus);
3329 if (!busiest) {
3330 schedstat_inc(sd, lb_nobusyq[idle]);
3331 goto out_balanced;
3332 }
3333
3334 BUG_ON(busiest == this_rq);
3335
3336 schedstat_add(sd, lb_imbalance[idle], imbalance);
3337
3338 ld_moved = 0;
3339 if (busiest->nr_running > 1) {
3340 /*
3341 * Attempt to move tasks. If find_busiest_group has found
3342 * an imbalance but busiest->nr_running <= 1, the group is
3343 * still unbalanced. ld_moved simply stays zero, so it is
3344 * correctly treated as an imbalance.
3345 */
3346 local_irq_save(flags);
3347 double_rq_lock(this_rq, busiest);
3348 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3349 imbalance, sd, idle, &all_pinned);
3350 double_rq_unlock(this_rq, busiest);
3351 local_irq_restore(flags);
3352
3353 /*
3354 * some other cpu did the load balance for us.
3355 */
3356 if (ld_moved && this_cpu != smp_processor_id())
3357 resched_cpu(this_cpu);
3358
3359 /* All tasks on this runqueue were pinned by CPU affinity */
3360 if (unlikely(all_pinned)) {
3361 cpu_clear(cpu_of(busiest), *cpus);
3362 if (!cpus_empty(*cpus))
3363 goto redo;
3364 goto out_balanced;
3365 }
3366 }
3367
3368 if (!ld_moved) {
3369 schedstat_inc(sd, lb_failed[idle]);
3370 sd->nr_balance_failed++;
3371
3372 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
3373
3374 spin_lock_irqsave(&busiest->lock, flags);
3375
3376 /* don't kick the migration_thread, if the curr
3377 * task on busiest cpu can't be moved to this_cpu
3378 */
3379 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3380 spin_unlock_irqrestore(&busiest->lock, flags);
3381 all_pinned = 1;
3382 goto out_one_pinned;
3383 }
3384
3385 if (!busiest->active_balance) {
3386 busiest->active_balance = 1;
3387 busiest->push_cpu = this_cpu;
3388 active_balance = 1;
3389 }
3390 spin_unlock_irqrestore(&busiest->lock, flags);
3391 if (active_balance)
3392 wake_up_process(busiest->migration_thread);
3393
3394 /*
3395 * We've kicked active balancing, reset the failure
3396 * counter.
3397 */
3398 sd->nr_balance_failed = sd->cache_nice_tries+1;
3399 }
3400 } else
3401 sd->nr_balance_failed = 0;
3402
3403 if (likely(!active_balance)) {
3404 /* We were unbalanced, so reset the balancing interval */
3405 sd->balance_interval = sd->min_interval;
3406 } else {
3407 /*
3408 * If we've begun active balancing, start to back off. This
3409 * case may not be covered by the all_pinned logic if there
3410 * is only 1 task on the busy runqueue (because we don't call
3411 * move_tasks).
3412 */
3413 if (sd->balance_interval < sd->max_interval)
3414 sd->balance_interval *= 2;
3415 }
3416
3417 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3418 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3419 return -1;
3420 return ld_moved;
3421
3422 out_balanced:
3423 schedstat_inc(sd, lb_balanced[idle]);
3424
3425 sd->nr_balance_failed = 0;
3426
3427 out_one_pinned:
3428 /* tune up the balancing interval */
3429 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3430 (sd->balance_interval < sd->max_interval))
3431 sd->balance_interval *= 2;
3432
3433 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3434 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3435 return -1;
3436 return 0;
3437 }
3438
3439 /*
3440 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3441 * tasks if there is an imbalance.
3442 *
3443 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3444 * this_rq is locked.
3445 */
3446 static int
3447 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3448 cpumask_t *cpus)
3449 {
3450 struct sched_group *group;
3451 struct rq *busiest = NULL;
3452 unsigned long imbalance;
3453 int ld_moved = 0;
3454 int sd_idle = 0;
3455 int all_pinned = 0;
3456
3457 cpus_setall(*cpus);
3458
3459 /*
3460 * When power savings policy is enabled for the parent domain, idle
3461 * sibling can pick up load irrespective of busy siblings. In this case,
3462 * let the state of idle sibling percolate up as IDLE, instead of
3463 * portraying it as CPU_NOT_IDLE.
3464 */
3465 if (sd->flags & SD_SHARE_CPUPOWER &&
3466 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3467 sd_idle = 1;
3468
3469 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3470 redo:
3471 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3472 &sd_idle, cpus, NULL);
3473 if (!group) {
3474 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3475 goto out_balanced;
3476 }
3477
3478 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
3479 if (!busiest) {
3480 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3481 goto out_balanced;
3482 }
3483
3484 BUG_ON(busiest == this_rq);
3485
3486 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3487
3488 ld_moved = 0;
3489 if (busiest->nr_running > 1) {
3490 /* Attempt to move tasks */
3491 double_lock_balance(this_rq, busiest);
3492 /* this_rq->clock is already updated */
3493 update_rq_clock(busiest);
3494 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3495 imbalance, sd, CPU_NEWLY_IDLE,
3496 &all_pinned);
3497 spin_unlock(&busiest->lock);
3498
3499 if (unlikely(all_pinned)) {
3500 cpu_clear(cpu_of(busiest), *cpus);
3501 if (!cpus_empty(*cpus))
3502 goto redo;
3503 }
3504 }
3505
3506 if (!ld_moved) {
3507 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3508 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3509 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3510 return -1;
3511 } else
3512 sd->nr_balance_failed = 0;
3513
3514 return ld_moved;
3515
3516 out_balanced:
3517 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3518 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3519 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3520 return -1;
3521 sd->nr_balance_failed = 0;
3522
3523 return 0;
3524 }
3525
3526 /*
3527 * idle_balance is called by schedule() if this_cpu is about to become
3528 * idle. Attempts to pull tasks from other CPUs.
3529 */
3530 static void idle_balance(int this_cpu, struct rq *this_rq)
3531 {
3532 struct sched_domain *sd;
3533 int pulled_task = -1;
3534 unsigned long next_balance = jiffies + HZ;
3535 cpumask_t tmpmask;
3536
3537 for_each_domain(this_cpu, sd) {
3538 unsigned long interval;
3539
3540 if (!(sd->flags & SD_LOAD_BALANCE))
3541 continue;
3542
3543 if (sd->flags & SD_BALANCE_NEWIDLE)
3544 /* If we've pulled tasks over stop searching: */
3545 pulled_task = load_balance_newidle(this_cpu, this_rq,
3546 sd, &tmpmask);
3547
3548 interval = msecs_to_jiffies(sd->balance_interval);
3549 if (time_after(next_balance, sd->last_balance + interval))
3550 next_balance = sd->last_balance + interval;
3551 if (pulled_task)
3552 break;
3553 }
3554 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3555 /*
3556 * We are going idle. next_balance may be set based on
3557 * a busy processor. So reset next_balance.
3558 */
3559 this_rq->next_balance = next_balance;
3560 }
3561 }
3562
3563 /*
3564 * active_load_balance is run by migration threads. It pushes running tasks
3565 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3566 * running on each physical CPU where possible, and avoids physical /
3567 * logical imbalances.
3568 *
3569 * Called with busiest_rq locked.
3570 */
3571 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3572 {
3573 int target_cpu = busiest_rq->push_cpu;
3574 struct sched_domain *sd;
3575 struct rq *target_rq;
3576
3577 /* Is there any task to move? */
3578 if (busiest_rq->nr_running <= 1)
3579 return;
3580
3581 target_rq = cpu_rq(target_cpu);
3582
3583 /*
3584 * This condition is "impossible", if it occurs
3585 * we need to fix it. Originally reported by
3586 * Bjorn Helgaas on a 128-cpu setup.
3587 */
3588 BUG_ON(busiest_rq == target_rq);
3589
3590 /* move a task from busiest_rq to target_rq */
3591 double_lock_balance(busiest_rq, target_rq);
3592 update_rq_clock(busiest_rq);
3593 update_rq_clock(target_rq);
3594
3595 /* Search for an sd spanning us and the target CPU. */
3596 for_each_domain(target_cpu, sd) {
3597 if ((sd->flags & SD_LOAD_BALANCE) &&
3598 cpu_isset(busiest_cpu, sd->span))
3599 break;
3600 }
3601
3602 if (likely(sd)) {
3603 schedstat_inc(sd, alb_count);
3604
3605 if (move_one_task(target_rq, target_cpu, busiest_rq,
3606 sd, CPU_IDLE))
3607 schedstat_inc(sd, alb_pushed);
3608 else
3609 schedstat_inc(sd, alb_failed);
3610 }
3611 spin_unlock(&target_rq->lock);
3612 }
3613
3614 #ifdef CONFIG_NO_HZ
3615 static struct {
3616 atomic_t load_balancer;
3617 cpumask_t cpu_mask;
3618 } nohz ____cacheline_aligned = {
3619 .load_balancer = ATOMIC_INIT(-1),
3620 .cpu_mask = CPU_MASK_NONE,
3621 };
3622
3623 /*
3624 * This routine will try to nominate the ilb (idle load balancing)
3625 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3626 * load balancing on behalf of all those cpus. If all the cpus in the system
3627 * go into this tickless mode, then there will be no ilb owner (as there is
3628 * no need for one) and all the cpus will sleep till the next wakeup event
3629 * arrives...
3630 *
3631 * For the ilb owner, tick is not stopped. And this tick will be used
3632 * for idle load balancing. ilb owner will still be part of
3633 * nohz.cpu_mask..
3634 *
3635 * While stopping the tick, this cpu will become the ilb owner if there
3636 * is no other owner. And will be the owner till that cpu becomes busy
3637 * or if all cpus in the system stop their ticks at which point
3638 * there is no need for ilb owner.
3639 *
3640 * When the ilb owner becomes busy, it nominates another owner, during the
3641 * next busy scheduler_tick()
3642 */
3643 int select_nohz_load_balancer(int stop_tick)
3644 {
3645 int cpu = smp_processor_id();
3646
3647 if (stop_tick) {
3648 cpu_set(cpu, nohz.cpu_mask);
3649 cpu_rq(cpu)->in_nohz_recently = 1;
3650
3651 /*
3652 * If we are going offline and still the leader, give up!
3653 */
3654 if (cpu_is_offline(cpu) &&
3655 atomic_read(&nohz.load_balancer) == cpu) {
3656 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3657 BUG();
3658 return 0;
3659 }
3660
3661 /* time for ilb owner also to sleep */
3662 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3663 if (atomic_read(&nohz.load_balancer) == cpu)
3664 atomic_set(&nohz.load_balancer, -1);
3665 return 0;
3666 }
3667
3668 if (atomic_read(&nohz.load_balancer) == -1) {
3669 /* make me the ilb owner */
3670 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3671 return 1;
3672 } else if (atomic_read(&nohz.load_balancer) == cpu)
3673 return 1;
3674 } else {
3675 if (!cpu_isset(cpu, nohz.cpu_mask))
3676 return 0;
3677
3678 cpu_clear(cpu, nohz.cpu_mask);
3679
3680 if (atomic_read(&nohz.load_balancer) == cpu)
3681 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3682 BUG();
3683 }
3684 return 0;
3685 }
3686 #endif
3687
3688 static DEFINE_SPINLOCK(balancing);
3689
3690 /*
3691 * It checks each scheduling domain to see if it is due to be balanced,
3692 * and initiates a balancing operation if so.
3693 *
3694 * Balancing parameters are set up in arch_init_sched_domains.
3695 */
3696 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3697 {
3698 int balance = 1;
3699 struct rq *rq = cpu_rq(cpu);
3700 unsigned long interval;
3701 struct sched_domain *sd;
3702 /* Earliest time when we have to do rebalance again */
3703 unsigned long next_balance = jiffies + 60*HZ;
3704 int update_next_balance = 0;
3705 cpumask_t tmp;
3706
3707 for_each_domain(cpu, sd) {
3708 if (!(sd->flags & SD_LOAD_BALANCE))
3709 continue;
3710
3711 interval = sd->balance_interval;
3712 if (idle != CPU_IDLE)
3713 interval *= sd->busy_factor;
3714
3715 /* scale ms to jiffies */
3716 interval = msecs_to_jiffies(interval);
3717 if (unlikely(!interval))
3718 interval = 1;
3719 if (interval > HZ*NR_CPUS/10)
3720 interval = HZ*NR_CPUS/10;
3721
3722
3723 if (sd->flags & SD_SERIALIZE) {
3724 if (!spin_trylock(&balancing))
3725 goto out;
3726 }
3727
3728 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3729 if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
3730 /*
3731 * We've pulled tasks over so either we're no
3732 * longer idle, or one of our SMT siblings is
3733 * not idle.
3734 */
3735 idle = CPU_NOT_IDLE;
3736 }
3737 sd->last_balance = jiffies;
3738 }
3739 if (sd->flags & SD_SERIALIZE)
3740 spin_unlock(&balancing);
3741 out:
3742 if (time_after(next_balance, sd->last_balance + interval)) {
3743 next_balance = sd->last_balance + interval;
3744 update_next_balance = 1;
3745 }
3746
3747 /*
3748 * Stop the load balance at this level. There is another
3749 * CPU in our sched group which is doing load balancing more
3750 * actively.
3751 */
3752 if (!balance)
3753 break;
3754 }
3755
3756 /*
3757 * next_balance will be updated only when there is a need.
3758 * When the cpu is attached to null domain for ex, it will not be
3759 * updated.
3760 */
3761 if (likely(update_next_balance))
3762 rq->next_balance = next_balance;
3763 }
3764
3765 /*
3766 * run_rebalance_domains is triggered when needed from the scheduler tick.
3767 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3768 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3769 */
3770 static void run_rebalance_domains(struct softirq_action *h)
3771 {
3772 int this_cpu = smp_processor_id();
3773 struct rq *this_rq = cpu_rq(this_cpu);
3774 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3775 CPU_IDLE : CPU_NOT_IDLE;
3776
3777 rebalance_domains(this_cpu, idle);
3778
3779 #ifdef CONFIG_NO_HZ
3780 /*
3781 * If this cpu is the owner for idle load balancing, then do the
3782 * balancing on behalf of the other idle cpus whose ticks are
3783 * stopped.
3784 */
3785 if (this_rq->idle_at_tick &&
3786 atomic_read(&nohz.load_balancer) == this_cpu) {
3787 cpumask_t cpus = nohz.cpu_mask;
3788 struct rq *rq;
3789 int balance_cpu;
3790
3791 cpu_clear(this_cpu, cpus);
3792 for_each_cpu_mask(balance_cpu, cpus) {
3793 /*
3794 * If this cpu gets work to do, stop the load balancing
3795 * work being done for other cpus. Next load
3796 * balancing owner will pick it up.
3797 */
3798 if (need_resched())
3799 break;
3800
3801 rebalance_domains(balance_cpu, CPU_IDLE);
3802
3803 rq = cpu_rq(balance_cpu);
3804 if (time_after(this_rq->next_balance, rq->next_balance))
3805 this_rq->next_balance = rq->next_balance;
3806 }
3807 }
3808 #endif
3809 }
3810
3811 /*
3812 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3813 *
3814 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3815 * idle load balancing owner or decide to stop the periodic load balancing,
3816 * if the whole system is idle.
3817 */
3818 static inline void trigger_load_balance(struct rq *rq, int cpu)
3819 {
3820 #ifdef CONFIG_NO_HZ
3821 /*
3822 * If we were in the nohz mode recently and busy at the current
3823 * scheduler tick, then check if we need to nominate new idle
3824 * load balancer.
3825 */
3826 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3827 rq->in_nohz_recently = 0;
3828
3829 if (atomic_read(&nohz.load_balancer) == cpu) {
3830 cpu_clear(cpu, nohz.cpu_mask);
3831 atomic_set(&nohz.load_balancer, -1);
3832 }
3833
3834 if (atomic_read(&nohz.load_balancer) == -1) {
3835 /*
3836 * simple selection for now: Nominate the
3837 * first cpu in the nohz list to be the next
3838 * ilb owner.
3839 *
3840 * TBD: Traverse the sched domains and nominate
3841 * the nearest cpu in the nohz.cpu_mask.
3842 */
3843 int ilb = first_cpu(nohz.cpu_mask);
3844
3845 if (ilb < nr_cpu_ids)
3846 resched_cpu(ilb);
3847 }
3848 }
3849
3850 /*
3851 * If this cpu is idle and doing idle load balancing for all the
3852 * cpus with ticks stopped, is it time for that to stop?
3853 */
3854 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3855 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3856 resched_cpu(cpu);
3857 return;
3858 }
3859
3860 /*
3861 * If this cpu is idle and the idle load balancing is done by
3862 * someone else, then no need raise the SCHED_SOFTIRQ
3863 */
3864 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3865 cpu_isset(cpu, nohz.cpu_mask))
3866 return;
3867 #endif
3868 if (time_after_eq(jiffies, rq->next_balance))
3869 raise_softirq(SCHED_SOFTIRQ);
3870 }
3871
3872 #else /* CONFIG_SMP */
3873
3874 /*
3875 * on UP we do not need to balance between CPUs:
3876 */
3877 static inline void idle_balance(int cpu, struct rq *rq)
3878 {
3879 }
3880
3881 #endif
3882
3883 DEFINE_PER_CPU(struct kernel_stat, kstat);
3884
3885 EXPORT_PER_CPU_SYMBOL(kstat);
3886
3887 /*
3888 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3889 * that have not yet been banked in case the task is currently running.
3890 */
3891 unsigned long long task_sched_runtime(struct task_struct *p)
3892 {
3893 unsigned long flags;
3894 u64 ns, delta_exec;
3895 struct rq *rq;
3896
3897 rq = task_rq_lock(p, &flags);
3898 ns = p->se.sum_exec_runtime;
3899 if (task_current(rq, p)) {
3900 update_rq_clock(rq);
3901 delta_exec = rq->clock - p->se.exec_start;
3902 if ((s64)delta_exec > 0)
3903 ns += delta_exec;
3904 }
3905 task_rq_unlock(rq, &flags);
3906
3907 return ns;
3908 }
3909
3910 /*
3911 * Account user cpu time to a process.
3912 * @p: the process that the cpu time gets accounted to
3913 * @cputime: the cpu time spent in user space since the last update
3914 */
3915 void account_user_time(struct task_struct *p, cputime_t cputime)
3916 {
3917 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3918 cputime64_t tmp;
3919
3920 p->utime = cputime_add(p->utime, cputime);
3921
3922 /* Add user time to cpustat. */
3923 tmp = cputime_to_cputime64(cputime);
3924 if (TASK_NICE(p) > 0)
3925 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3926 else
3927 cpustat->user = cputime64_add(cpustat->user, tmp);
3928 }
3929
3930 /*
3931 * Account guest cpu time to a process.
3932 * @p: the process that the cpu time gets accounted to
3933 * @cputime: the cpu time spent in virtual machine since the last update
3934 */
3935 static void account_guest_time(struct task_struct *p, cputime_t cputime)
3936 {
3937 cputime64_t tmp;
3938 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3939
3940 tmp = cputime_to_cputime64(cputime);
3941
3942 p->utime = cputime_add(p->utime, cputime);
3943 p->gtime = cputime_add(p->gtime, cputime);
3944
3945 cpustat->user = cputime64_add(cpustat->user, tmp);
3946 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3947 }
3948
3949 /*
3950 * Account scaled user cpu time to a process.
3951 * @p: the process that the cpu time gets accounted to
3952 * @cputime: the cpu time spent in user space since the last update
3953 */
3954 void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
3955 {
3956 p->utimescaled = cputime_add(p->utimescaled, cputime);
3957 }
3958
3959 /*
3960 * Account system cpu time to a process.
3961 * @p: the process that the cpu time gets accounted to
3962 * @hardirq_offset: the offset to subtract from hardirq_count()
3963 * @cputime: the cpu time spent in kernel space since the last update
3964 */
3965 void account_system_time(struct task_struct *p, int hardirq_offset,
3966 cputime_t cputime)
3967 {
3968 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3969 struct rq *rq = this_rq();
3970 cputime64_t tmp;
3971
3972 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3973 account_guest_time(p, cputime);
3974 return;
3975 }
3976
3977 p->stime = cputime_add(p->stime, cputime);
3978
3979 /* Add system time to cpustat. */
3980 tmp = cputime_to_cputime64(cputime);
3981 if (hardirq_count() - hardirq_offset)
3982 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3983 else if (softirq_count())
3984 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3985 else if (p != rq->idle)
3986 cpustat->system = cputime64_add(cpustat->system, tmp);
3987 else if (atomic_read(&rq->nr_iowait) > 0)
3988 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3989 else
3990 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3991 /* Account for system time used */
3992 acct_update_integrals(p);
3993 }
3994
3995 /*
3996 * Account scaled system cpu time to a process.
3997 * @p: the process that the cpu time gets accounted to
3998 * @hardirq_offset: the offset to subtract from hardirq_count()
3999 * @cputime: the cpu time spent in kernel space since the last update
4000 */
4001 void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
4002 {
4003 p->stimescaled = cputime_add(p->stimescaled, cputime);
4004 }
4005
4006 /*
4007 * Account for involuntary wait time.
4008 * @p: the process from which the cpu time has been stolen
4009 * @steal: the cpu time spent in involuntary wait
4010 */
4011 void account_steal_time(struct task_struct *p, cputime_t steal)
4012 {
4013 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4014 cputime64_t tmp = cputime_to_cputime64(steal);
4015 struct rq *rq = this_rq();
4016
4017 if (p == rq->idle) {
4018 p->stime = cputime_add(p->stime, steal);
4019 if (atomic_read(&rq->nr_iowait) > 0)
4020 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4021 else
4022 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4023 } else
4024 cpustat->steal = cputime64_add(cpustat->steal, tmp);
4025 }
4026
4027 /*
4028 * This function gets called by the timer code, with HZ frequency.
4029 * We call it with interrupts disabled.
4030 *
4031 * It also gets called by the fork code, when changing the parent's
4032 * timeslices.
4033 */
4034 void scheduler_tick(void)
4035 {
4036 int cpu = smp_processor_id();
4037 struct rq *rq = cpu_rq(cpu);
4038 struct task_struct *curr = rq->curr;
4039
4040 sched_clock_tick();
4041
4042 spin_lock(&rq->lock);
4043 update_rq_clock(rq);
4044 update_cpu_load(rq);
4045 curr->sched_class->task_tick(rq, curr, 0);
4046 spin_unlock(&rq->lock);
4047
4048 #ifdef CONFIG_SMP
4049 rq->idle_at_tick = idle_cpu(cpu);
4050 trigger_load_balance(rq, cpu);
4051 #endif
4052 }
4053
4054 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4055 defined(CONFIG_PREEMPT_TRACER))
4056
4057 static inline unsigned long get_parent_ip(unsigned long addr)
4058 {
4059 if (in_lock_functions(addr)) {
4060 addr = CALLER_ADDR2;
4061 if (in_lock_functions(addr))
4062 addr = CALLER_ADDR3;
4063 }
4064 return addr;
4065 }
4066
4067 void __kprobes add_preempt_count(int val)
4068 {
4069 #ifdef CONFIG_DEBUG_PREEMPT
4070 /*
4071 * Underflow?
4072 */
4073 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4074 return;
4075 #endif
4076 preempt_count() += val;
4077 #ifdef CONFIG_DEBUG_PREEMPT
4078 /*
4079 * Spinlock count overflowing soon?
4080 */
4081 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4082 PREEMPT_MASK - 10);
4083 #endif
4084 if (preempt_count() == val)
4085 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4086 }
4087 EXPORT_SYMBOL(add_preempt_count);
4088
4089 void __kprobes sub_preempt_count(int val)
4090 {
4091 #ifdef CONFIG_DEBUG_PREEMPT
4092 /*
4093 * Underflow?
4094 */
4095 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4096 return;
4097 /*
4098 * Is the spinlock portion underflowing?
4099 */
4100 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4101 !(preempt_count() & PREEMPT_MASK)))
4102 return;
4103 #endif
4104
4105 if (preempt_count() == val)
4106 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4107 preempt_count() -= val;
4108 }
4109 EXPORT_SYMBOL(sub_preempt_count);
4110
4111 #endif
4112
4113 /*
4114 * Print scheduling while atomic bug:
4115 */
4116 static noinline void __schedule_bug(struct task_struct *prev)
4117 {
4118 struct pt_regs *regs = get_irq_regs();
4119
4120 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4121 prev->comm, prev->pid, preempt_count());
4122
4123 debug_show_held_locks(prev);
4124 if (irqs_disabled())
4125 print_irqtrace_events(prev);
4126
4127 if (regs)
4128 show_regs(regs);
4129 else
4130 dump_stack();
4131 }
4132
4133 /*
4134 * Various schedule()-time debugging checks and statistics:
4135 */
4136 static inline void schedule_debug(struct task_struct *prev)
4137 {
4138 /*
4139 * Test if we are atomic. Since do_exit() needs to call into
4140 * schedule() atomically, we ignore that path for now.
4141 * Otherwise, whine if we are scheduling when we should not be.
4142 */
4143 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
4144 __schedule_bug(prev);
4145
4146 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4147
4148 schedstat_inc(this_rq(), sched_count);
4149 #ifdef CONFIG_SCHEDSTATS
4150 if (unlikely(prev->lock_depth >= 0)) {
4151 schedstat_inc(this_rq(), bkl_count);
4152 schedstat_inc(prev, sched_info.bkl_count);
4153 }
4154 #endif
4155 }
4156
4157 /*
4158 * Pick up the highest-prio task:
4159 */
4160 static inline struct task_struct *
4161 pick_next_task(struct rq *rq, struct task_struct *prev)
4162 {
4163 const struct sched_class *class;
4164 struct task_struct *p;
4165
4166 /*
4167 * Optimization: we know that if all tasks are in
4168 * the fair class we can call that function directly:
4169 */
4170 if (likely(rq->nr_running == rq->cfs.nr_running)) {
4171 p = fair_sched_class.pick_next_task(rq);
4172 if (likely(p))
4173 return p;
4174 }
4175
4176 class = sched_class_highest;
4177 for ( ; ; ) {
4178 p = class->pick_next_task(rq);
4179 if (p)
4180 return p;
4181 /*
4182 * Will never be NULL as the idle class always
4183 * returns a non-NULL p:
4184 */
4185 class = class->next;
4186 }
4187 }
4188
4189 /*
4190 * schedule() is the main scheduler function.
4191 */
4192 asmlinkage void __sched schedule(void)
4193 {
4194 struct task_struct *prev, *next;
4195 unsigned long *switch_count;
4196 struct rq *rq;
4197 int cpu;
4198
4199 need_resched:
4200 preempt_disable();
4201 cpu = smp_processor_id();
4202 rq = cpu_rq(cpu);
4203 rcu_qsctr_inc(cpu);
4204 prev = rq->curr;
4205 switch_count = &prev->nivcsw;
4206
4207 release_kernel_lock(prev);
4208 need_resched_nonpreemptible:
4209
4210 schedule_debug(prev);
4211
4212 hrtick_clear(rq);
4213
4214 /*
4215 * Do the rq-clock update outside the rq lock:
4216 */
4217 local_irq_disable();
4218 update_rq_clock(rq);
4219 spin_lock(&rq->lock);
4220 clear_tsk_need_resched(prev);
4221
4222 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4223 if (unlikely(signal_pending_state(prev->state, prev)))
4224 prev->state = TASK_RUNNING;
4225 else
4226 deactivate_task(rq, prev, 1);
4227 switch_count = &prev->nvcsw;
4228 }
4229
4230 #ifdef CONFIG_SMP
4231 if (prev->sched_class->pre_schedule)
4232 prev->sched_class->pre_schedule(rq, prev);
4233 #endif
4234
4235 if (unlikely(!rq->nr_running))
4236 idle_balance(cpu, rq);
4237
4238 prev->sched_class->put_prev_task(rq, prev);
4239 next = pick_next_task(rq, prev);
4240
4241 if (likely(prev != next)) {
4242 sched_info_switch(prev, next);
4243
4244 rq->nr_switches++;
4245 rq->curr = next;
4246 ++*switch_count;
4247
4248 context_switch(rq, prev, next); /* unlocks the rq */
4249 /*
4250 * the context switch might have flipped the stack from under
4251 * us, hence refresh the local variables.
4252 */
4253 cpu = smp_processor_id();
4254 rq = cpu_rq(cpu);
4255 } else
4256 spin_unlock_irq(&rq->lock);
4257
4258 hrtick_set(rq);
4259
4260 if (unlikely(reacquire_kernel_lock(current) < 0))
4261 goto need_resched_nonpreemptible;
4262
4263 preempt_enable_no_resched();
4264 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4265 goto need_resched;
4266 }
4267 EXPORT_SYMBOL(schedule);
4268
4269 #ifdef CONFIG_PREEMPT
4270 /*
4271 * this is the entry point to schedule() from in-kernel preemption
4272 * off of preempt_enable. Kernel preemptions off return from interrupt
4273 * occur there and call schedule directly.
4274 */
4275 asmlinkage void __sched preempt_schedule(void)
4276 {
4277 struct thread_info *ti = current_thread_info();
4278
4279 /*
4280 * If there is a non-zero preempt_count or interrupts are disabled,
4281 * we do not want to preempt the current task. Just return..
4282 */
4283 if (likely(ti->preempt_count || irqs_disabled()))
4284 return;
4285
4286 do {
4287 add_preempt_count(PREEMPT_ACTIVE);
4288 schedule();
4289 sub_preempt_count(PREEMPT_ACTIVE);
4290
4291 /*
4292 * Check again in case we missed a preemption opportunity
4293 * between schedule and now.
4294 */
4295 barrier();
4296 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4297 }
4298 EXPORT_SYMBOL(preempt_schedule);
4299
4300 /*
4301 * this is the entry point to schedule() from kernel preemption
4302 * off of irq context.
4303 * Note, that this is called and return with irqs disabled. This will
4304 * protect us against recursive calling from irq.
4305 */
4306 asmlinkage void __sched preempt_schedule_irq(void)
4307 {
4308 struct thread_info *ti = current_thread_info();
4309
4310 /* Catch callers which need to be fixed */
4311 BUG_ON(ti->preempt_count || !irqs_disabled());
4312
4313 do {
4314 add_preempt_count(PREEMPT_ACTIVE);
4315 local_irq_enable();
4316 schedule();
4317 local_irq_disable();
4318 sub_preempt_count(PREEMPT_ACTIVE);
4319
4320 /*
4321 * Check again in case we missed a preemption opportunity
4322 * between schedule and now.
4323 */
4324 barrier();
4325 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4326 }
4327
4328 #endif /* CONFIG_PREEMPT */
4329
4330 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4331 void *key)
4332 {
4333 return try_to_wake_up(curr->private, mode, sync);
4334 }
4335 EXPORT_SYMBOL(default_wake_function);
4336
4337 /*
4338 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4339 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4340 * number) then we wake all the non-exclusive tasks and one exclusive task.
4341 *
4342 * There are circumstances in which we can try to wake a task which has already
4343 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4344 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4345 */
4346 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4347 int nr_exclusive, int sync, void *key)
4348 {
4349 wait_queue_t *curr, *next;
4350
4351 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4352 unsigned flags = curr->flags;
4353
4354 if (curr->func(curr, mode, sync, key) &&
4355 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4356 break;
4357 }
4358 }
4359
4360 /**
4361 * __wake_up - wake up threads blocked on a waitqueue.
4362 * @q: the waitqueue
4363 * @mode: which threads
4364 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4365 * @key: is directly passed to the wakeup function
4366 */
4367 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4368 int nr_exclusive, void *key)
4369 {
4370 unsigned long flags;
4371
4372 spin_lock_irqsave(&q->lock, flags);
4373 __wake_up_common(q, mode, nr_exclusive, 0, key);
4374 spin_unlock_irqrestore(&q->lock, flags);
4375 }
4376 EXPORT_SYMBOL(__wake_up);
4377
4378 /*
4379 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4380 */
4381 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4382 {
4383 __wake_up_common(q, mode, 1, 0, NULL);
4384 }
4385
4386 /**
4387 * __wake_up_sync - wake up threads blocked on a waitqueue.
4388 * @q: the waitqueue
4389 * @mode: which threads
4390 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4391 *
4392 * The sync wakeup differs that the waker knows that it will schedule
4393 * away soon, so while the target thread will be woken up, it will not
4394 * be migrated to another CPU - ie. the two threads are 'synchronized'
4395 * with each other. This can prevent needless bouncing between CPUs.
4396 *
4397 * On UP it can prevent extra preemption.
4398 */
4399 void
4400 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4401 {
4402 unsigned long flags;
4403 int sync = 1;
4404
4405 if (unlikely(!q))
4406 return;
4407
4408 if (unlikely(!nr_exclusive))
4409 sync = 0;
4410
4411 spin_lock_irqsave(&q->lock, flags);
4412 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4413 spin_unlock_irqrestore(&q->lock, flags);
4414 }
4415 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4416
4417 void complete(struct completion *x)
4418 {
4419 unsigned long flags;
4420
4421 spin_lock_irqsave(&x->wait.lock, flags);
4422 x->done++;
4423 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4424 spin_unlock_irqrestore(&x->wait.lock, flags);
4425 }
4426 EXPORT_SYMBOL(complete);
4427
4428 void complete_all(struct completion *x)
4429 {
4430 unsigned long flags;
4431
4432 spin_lock_irqsave(&x->wait.lock, flags);
4433 x->done += UINT_MAX/2;
4434 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4435 spin_unlock_irqrestore(&x->wait.lock, flags);
4436 }
4437 EXPORT_SYMBOL(complete_all);
4438
4439 static inline long __sched
4440 do_wait_for_common(struct completion *x, long timeout, int state)
4441 {
4442 if (!x->done) {
4443 DECLARE_WAITQUEUE(wait, current);
4444
4445 wait.flags |= WQ_FLAG_EXCLUSIVE;
4446 __add_wait_queue_tail(&x->wait, &wait);
4447 do {
4448 if ((state == TASK_INTERRUPTIBLE &&
4449 signal_pending(current)) ||
4450 (state == TASK_KILLABLE &&
4451 fatal_signal_pending(current))) {
4452 __remove_wait_queue(&x->wait, &wait);
4453 return -ERESTARTSYS;
4454 }
4455 __set_current_state(state);
4456 spin_unlock_irq(&x->wait.lock);
4457 timeout = schedule_timeout(timeout);
4458 spin_lock_irq(&x->wait.lock);
4459 if (!timeout) {
4460 __remove_wait_queue(&x->wait, &wait);
4461 return timeout;
4462 }
4463 } while (!x->done);
4464 __remove_wait_queue(&x->wait, &wait);
4465 }
4466 x->done--;
4467 return timeout;
4468 }
4469
4470 static long __sched
4471 wait_for_common(struct completion *x, long timeout, int state)
4472 {
4473 might_sleep();
4474
4475 spin_lock_irq(&x->wait.lock);
4476 timeout = do_wait_for_common(x, timeout, state);
4477 spin_unlock_irq(&x->wait.lock);
4478 return timeout;
4479 }
4480
4481 void __sched wait_for_completion(struct completion *x)
4482 {
4483 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4484 }
4485 EXPORT_SYMBOL(wait_for_completion);
4486
4487 unsigned long __sched
4488 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4489 {
4490 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4491 }
4492 EXPORT_SYMBOL(wait_for_completion_timeout);
4493
4494 int __sched wait_for_completion_interruptible(struct completion *x)
4495 {
4496 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4497 if (t == -ERESTARTSYS)
4498 return t;
4499 return 0;
4500 }
4501 EXPORT_SYMBOL(wait_for_completion_interruptible);
4502
4503 unsigned long __sched
4504 wait_for_completion_interruptible_timeout(struct completion *x,
4505 unsigned long timeout)
4506 {
4507 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4508 }
4509 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4510
4511 int __sched wait_for_completion_killable(struct completion *x)
4512 {
4513 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4514 if (t == -ERESTARTSYS)
4515 return t;
4516 return 0;
4517 }
4518 EXPORT_SYMBOL(wait_for_completion_killable);
4519
4520 static long __sched
4521 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4522 {
4523 unsigned long flags;
4524 wait_queue_t wait;
4525
4526 init_waitqueue_entry(&wait, current);
4527
4528 __set_current_state(state);
4529
4530 spin_lock_irqsave(&q->lock, flags);
4531 __add_wait_queue(q, &wait);
4532 spin_unlock(&q->lock);
4533 timeout = schedule_timeout(timeout);
4534 spin_lock_irq(&q->lock);
4535 __remove_wait_queue(q, &wait);
4536 spin_unlock_irqrestore(&q->lock, flags);
4537
4538 return timeout;
4539 }
4540
4541 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4542 {
4543 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4544 }
4545 EXPORT_SYMBOL(interruptible_sleep_on);
4546
4547 long __sched
4548 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4549 {
4550 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4551 }
4552 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4553
4554 void __sched sleep_on(wait_queue_head_t *q)
4555 {
4556 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4557 }
4558 EXPORT_SYMBOL(sleep_on);
4559
4560 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4561 {
4562 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4563 }
4564 EXPORT_SYMBOL(sleep_on_timeout);
4565
4566 #ifdef CONFIG_RT_MUTEXES
4567
4568 /*
4569 * rt_mutex_setprio - set the current priority of a task
4570 * @p: task
4571 * @prio: prio value (kernel-internal form)
4572 *
4573 * This function changes the 'effective' priority of a task. It does
4574 * not touch ->normal_prio like __setscheduler().
4575 *
4576 * Used by the rt_mutex code to implement priority inheritance logic.
4577 */
4578 void rt_mutex_setprio(struct task_struct *p, int prio)
4579 {
4580 unsigned long flags;
4581 int oldprio, on_rq, running;
4582 struct rq *rq;
4583 const struct sched_class *prev_class = p->sched_class;
4584
4585 BUG_ON(prio < 0 || prio > MAX_PRIO);
4586
4587 rq = task_rq_lock(p, &flags);
4588 update_rq_clock(rq);
4589
4590 oldprio = p->prio;
4591 on_rq = p->se.on_rq;
4592 running = task_current(rq, p);
4593 if (on_rq)
4594 dequeue_task(rq, p, 0);
4595 if (running)
4596 p->sched_class->put_prev_task(rq, p);
4597
4598 if (rt_prio(prio))
4599 p->sched_class = &rt_sched_class;
4600 else
4601 p->sched_class = &fair_sched_class;
4602
4603 p->prio = prio;
4604
4605 if (running)
4606 p->sched_class->set_curr_task(rq);
4607 if (on_rq) {
4608 enqueue_task(rq, p, 0);
4609
4610 check_class_changed(rq, p, prev_class, oldprio, running);
4611 }
4612 task_rq_unlock(rq, &flags);
4613 }
4614
4615 #endif
4616
4617 void set_user_nice(struct task_struct *p, long nice)
4618 {
4619 int old_prio, delta, on_rq;
4620 unsigned long flags;
4621 struct rq *rq;
4622
4623 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4624 return;
4625 /*
4626 * We have to be careful, if called from sys_setpriority(),
4627 * the task might be in the middle of scheduling on another CPU.
4628 */
4629 rq = task_rq_lock(p, &flags);
4630 update_rq_clock(rq);
4631 /*
4632 * The RT priorities are set via sched_setscheduler(), but we still
4633 * allow the 'normal' nice value to be set - but as expected
4634 * it wont have any effect on scheduling until the task is
4635 * SCHED_FIFO/SCHED_RR:
4636 */
4637 if (task_has_rt_policy(p)) {
4638 p->static_prio = NICE_TO_PRIO(nice);
4639 goto out_unlock;
4640 }
4641 on_rq = p->se.on_rq;
4642 if (on_rq) {
4643 dequeue_task(rq, p, 0);
4644 dec_load(rq, p);
4645 }
4646
4647 p->static_prio = NICE_TO_PRIO(nice);
4648 set_load_weight(p);
4649 old_prio = p->prio;
4650 p->prio = effective_prio(p);
4651 delta = p->prio - old_prio;
4652
4653 if (on_rq) {
4654 enqueue_task(rq, p, 0);
4655 inc_load(rq, p);
4656 /*
4657 * If the task increased its priority or is running and
4658 * lowered its priority, then reschedule its CPU:
4659 */
4660 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4661 resched_task(rq->curr);
4662 }
4663 out_unlock:
4664 task_rq_unlock(rq, &flags);
4665 }
4666 EXPORT_SYMBOL(set_user_nice);
4667
4668 /*
4669 * can_nice - check if a task can reduce its nice value
4670 * @p: task
4671 * @nice: nice value
4672 */
4673 int can_nice(const struct task_struct *p, const int nice)
4674 {
4675 /* convert nice value [19,-20] to rlimit style value [1,40] */
4676 int nice_rlim = 20 - nice;
4677
4678 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4679 capable(CAP_SYS_NICE));
4680 }
4681
4682 #ifdef __ARCH_WANT_SYS_NICE
4683
4684 /*
4685 * sys_nice - change the priority of the current process.
4686 * @increment: priority increment
4687 *
4688 * sys_setpriority is a more generic, but much slower function that
4689 * does similar things.
4690 */
4691 asmlinkage long sys_nice(int increment)
4692 {
4693 long nice, retval;
4694
4695 /*
4696 * Setpriority might change our priority at the same moment.
4697 * We don't have to worry. Conceptually one call occurs first
4698 * and we have a single winner.
4699 */
4700 if (increment < -40)
4701 increment = -40;
4702 if (increment > 40)
4703 increment = 40;
4704
4705 nice = PRIO_TO_NICE(current->static_prio) + increment;
4706 if (nice < -20)
4707 nice = -20;
4708 if (nice > 19)
4709 nice = 19;
4710
4711 if (increment < 0 && !can_nice(current, nice))
4712 return -EPERM;
4713
4714 retval = security_task_setnice(current, nice);
4715 if (retval)
4716 return retval;
4717
4718 set_user_nice(current, nice);
4719 return 0;
4720 }
4721
4722 #endif
4723
4724 /**
4725 * task_prio - return the priority value of a given task.
4726 * @p: the task in question.
4727 *
4728 * This is the priority value as seen by users in /proc.
4729 * RT tasks are offset by -200. Normal tasks are centered
4730 * around 0, value goes from -16 to +15.
4731 */
4732 int task_prio(const struct task_struct *p)
4733 {
4734 return p->prio - MAX_RT_PRIO;
4735 }
4736
4737 /**
4738 * task_nice - return the nice value of a given task.
4739 * @p: the task in question.
4740 */
4741 int task_nice(const struct task_struct *p)
4742 {
4743 return TASK_NICE(p);
4744 }
4745 EXPORT_SYMBOL(task_nice);
4746
4747 /**
4748 * idle_cpu - is a given cpu idle currently?
4749 * @cpu: the processor in question.
4750 */
4751 int idle_cpu(int cpu)
4752 {
4753 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4754 }
4755
4756 /**
4757 * idle_task - return the idle task for a given cpu.
4758 * @cpu: the processor in question.
4759 */
4760 struct task_struct *idle_task(int cpu)
4761 {
4762 return cpu_rq(cpu)->idle;
4763 }
4764
4765 /**
4766 * find_process_by_pid - find a process with a matching PID value.
4767 * @pid: the pid in question.
4768 */
4769 static struct task_struct *find_process_by_pid(pid_t pid)
4770 {
4771 return pid ? find_task_by_vpid(pid) : current;
4772 }
4773
4774 /* Actually do priority change: must hold rq lock. */
4775 static void
4776 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4777 {
4778 BUG_ON(p->se.on_rq);
4779
4780 p->policy = policy;
4781 switch (p->policy) {
4782 case SCHED_NORMAL:
4783 case SCHED_BATCH:
4784 case SCHED_IDLE:
4785 p->sched_class = &fair_sched_class;
4786 break;
4787 case SCHED_FIFO:
4788 case SCHED_RR:
4789 p->sched_class = &rt_sched_class;
4790 break;
4791 }
4792
4793 p->rt_priority = prio;
4794 p->normal_prio = normal_prio(p);
4795 /* we are holding p->pi_lock already */
4796 p->prio = rt_mutex_getprio(p);
4797 set_load_weight(p);
4798 }
4799
4800 /**
4801 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4802 * @p: the task in question.
4803 * @policy: new policy.
4804 * @param: structure containing the new RT priority.
4805 *
4806 * NOTE that the task may be already dead.
4807 */
4808 int sched_setscheduler(struct task_struct *p, int policy,
4809 struct sched_param *param)
4810 {
4811 int retval, oldprio, oldpolicy = -1, on_rq, running;
4812 unsigned long flags;
4813 const struct sched_class *prev_class = p->sched_class;
4814 struct rq *rq;
4815
4816 /* may grab non-irq protected spin_locks */
4817 BUG_ON(in_interrupt());
4818 recheck:
4819 /* double check policy once rq lock held */
4820 if (policy < 0)
4821 policy = oldpolicy = p->policy;
4822 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4823 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4824 policy != SCHED_IDLE)
4825 return -EINVAL;
4826 /*
4827 * Valid priorities for SCHED_FIFO and SCHED_RR are
4828 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4829 * SCHED_BATCH and SCHED_IDLE is 0.
4830 */
4831 if (param->sched_priority < 0 ||
4832 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4833 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4834 return -EINVAL;
4835 if (rt_policy(policy) != (param->sched_priority != 0))
4836 return -EINVAL;
4837
4838 /*
4839 * Allow unprivileged RT tasks to decrease priority:
4840 */
4841 if (!capable(CAP_SYS_NICE)) {
4842 if (rt_policy(policy)) {
4843 unsigned long rlim_rtprio;
4844
4845 if (!lock_task_sighand(p, &flags))
4846 return -ESRCH;
4847 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4848 unlock_task_sighand(p, &flags);
4849
4850 /* can't set/change the rt policy */
4851 if (policy != p->policy && !rlim_rtprio)
4852 return -EPERM;
4853
4854 /* can't increase priority */
4855 if (param->sched_priority > p->rt_priority &&
4856 param->sched_priority > rlim_rtprio)
4857 return -EPERM;
4858 }
4859 /*
4860 * Like positive nice levels, dont allow tasks to
4861 * move out of SCHED_IDLE either:
4862 */
4863 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4864 return -EPERM;
4865
4866 /* can't change other user's priorities */
4867 if ((current->euid != p->euid) &&
4868 (current->euid != p->uid))
4869 return -EPERM;
4870 }
4871
4872 #ifdef CONFIG_RT_GROUP_SCHED
4873 /*
4874 * Do not allow realtime tasks into groups that have no runtime
4875 * assigned.
4876 */
4877 if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
4878 return -EPERM;
4879 #endif
4880
4881 retval = security_task_setscheduler(p, policy, param);
4882 if (retval)
4883 return retval;
4884 /*
4885 * make sure no PI-waiters arrive (or leave) while we are
4886 * changing the priority of the task:
4887 */
4888 spin_lock_irqsave(&p->pi_lock, flags);
4889 /*
4890 * To be able to change p->policy safely, the apropriate
4891 * runqueue lock must be held.
4892 */
4893 rq = __task_rq_lock(p);
4894 /* recheck policy now with rq lock held */
4895 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4896 policy = oldpolicy = -1;
4897 __task_rq_unlock(rq);
4898 spin_unlock_irqrestore(&p->pi_lock, flags);
4899 goto recheck;
4900 }
4901 update_rq_clock(rq);
4902 on_rq = p->se.on_rq;
4903 running = task_current(rq, p);
4904 if (on_rq)
4905 deactivate_task(rq, p, 0);
4906 if (running)
4907 p->sched_class->put_prev_task(rq, p);
4908
4909 oldprio = p->prio;
4910 __setscheduler(rq, p, policy, param->sched_priority);
4911
4912 if (running)
4913 p->sched_class->set_curr_task(rq);
4914 if (on_rq) {
4915 activate_task(rq, p, 0);
4916
4917 check_class_changed(rq, p, prev_class, oldprio, running);
4918 }
4919 __task_rq_unlock(rq);
4920 spin_unlock_irqrestore(&p->pi_lock, flags);
4921
4922 rt_mutex_adjust_pi(p);
4923
4924 return 0;
4925 }
4926 EXPORT_SYMBOL_GPL(sched_setscheduler);
4927
4928 static int
4929 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4930 {
4931 struct sched_param lparam;
4932 struct task_struct *p;
4933 int retval;
4934
4935 if (!param || pid < 0)
4936 return -EINVAL;
4937 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4938 return -EFAULT;
4939
4940 rcu_read_lock();
4941 retval = -ESRCH;
4942 p = find_process_by_pid(pid);
4943 if (p != NULL)
4944 retval = sched_setscheduler(p, policy, &lparam);
4945 rcu_read_unlock();
4946
4947 return retval;
4948 }
4949
4950 /**
4951 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4952 * @pid: the pid in question.
4953 * @policy: new policy.
4954 * @param: structure containing the new RT priority.
4955 */
4956 asmlinkage long
4957 sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4958 {
4959 /* negative values for policy are not valid */
4960 if (policy < 0)
4961 return -EINVAL;
4962
4963 return do_sched_setscheduler(pid, policy, param);
4964 }
4965
4966 /**
4967 * sys_sched_setparam - set/change the RT priority of a thread
4968 * @pid: the pid in question.
4969 * @param: structure containing the new RT priority.
4970 */
4971 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4972 {
4973 return do_sched_setscheduler(pid, -1, param);
4974 }
4975
4976 /**
4977 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4978 * @pid: the pid in question.
4979 */
4980 asmlinkage long sys_sched_getscheduler(pid_t pid)
4981 {
4982 struct task_struct *p;
4983 int retval;
4984
4985 if (pid < 0)
4986 return -EINVAL;
4987
4988 retval = -ESRCH;
4989 read_lock(&tasklist_lock);
4990 p = find_process_by_pid(pid);
4991 if (p) {
4992 retval = security_task_getscheduler(p);
4993 if (!retval)
4994 retval = p->policy;
4995 }
4996 read_unlock(&tasklist_lock);
4997 return retval;
4998 }
4999
5000 /**
5001 * sys_sched_getscheduler - get the RT priority of a thread
5002 * @pid: the pid in question.
5003 * @param: structure containing the RT priority.
5004 */
5005 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
5006 {
5007 struct sched_param lp;
5008 struct task_struct *p;
5009 int retval;
5010
5011 if (!param || pid < 0)
5012 return -EINVAL;
5013
5014 read_lock(&tasklist_lock);
5015 p = find_process_by_pid(pid);
5016 retval = -ESRCH;
5017 if (!p)
5018 goto out_unlock;
5019
5020 retval = security_task_getscheduler(p);
5021 if (retval)
5022 goto out_unlock;
5023
5024 lp.sched_priority = p->rt_priority;
5025 read_unlock(&tasklist_lock);
5026
5027 /*
5028 * This one might sleep, we cannot do it with a spinlock held ...
5029 */
5030 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5031
5032 return retval;
5033
5034 out_unlock:
5035 read_unlock(&tasklist_lock);
5036 return retval;
5037 }
5038
5039 long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
5040 {
5041 cpumask_t cpus_allowed;
5042 cpumask_t new_mask = *in_mask;
5043 struct task_struct *p;
5044 int retval;
5045
5046 get_online_cpus();
5047 read_lock(&tasklist_lock);
5048
5049 p = find_process_by_pid(pid);
5050 if (!p) {
5051 read_unlock(&tasklist_lock);
5052 put_online_cpus();
5053 return -ESRCH;
5054 }
5055
5056 /*
5057 * It is not safe to call set_cpus_allowed with the
5058 * tasklist_lock held. We will bump the task_struct's
5059 * usage count and then drop tasklist_lock.
5060 */
5061 get_task_struct(p);
5062 read_unlock(&tasklist_lock);
5063
5064 retval = -EPERM;
5065 if ((current->euid != p->euid) && (current->euid != p->uid) &&
5066 !capable(CAP_SYS_NICE))
5067 goto out_unlock;
5068
5069 retval = security_task_setscheduler(p, 0, NULL);
5070 if (retval)
5071 goto out_unlock;
5072
5073 cpuset_cpus_allowed(p, &cpus_allowed);
5074 cpus_and(new_mask, new_mask, cpus_allowed);
5075 again:
5076 retval = set_cpus_allowed_ptr(p, &new_mask);
5077
5078 if (!retval) {
5079 cpuset_cpus_allowed(p, &cpus_allowed);
5080 if (!cpus_subset(new_mask, cpus_allowed)) {
5081 /*
5082 * We must have raced with a concurrent cpuset
5083 * update. Just reset the cpus_allowed to the
5084 * cpuset's cpus_allowed
5085 */
5086 new_mask = cpus_allowed;
5087 goto again;
5088 }
5089 }
5090 out_unlock:
5091 put_task_struct(p);
5092 put_online_cpus();
5093 return retval;
5094 }
5095
5096 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5097 cpumask_t *new_mask)
5098 {
5099 if (len < sizeof(cpumask_t)) {
5100 memset(new_mask, 0, sizeof(cpumask_t));
5101 } else if (len > sizeof(cpumask_t)) {
5102 len = sizeof(cpumask_t);
5103 }
5104 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5105 }
5106
5107 /**
5108 * sys_sched_setaffinity - set the cpu affinity of a process
5109 * @pid: pid of the process
5110 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5111 * @user_mask_ptr: user-space pointer to the new cpu mask
5112 */
5113 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5114 unsigned long __user *user_mask_ptr)
5115 {
5116 cpumask_t new_mask;
5117 int retval;
5118
5119 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
5120 if (retval)
5121 return retval;
5122
5123 return sched_setaffinity(pid, &new_mask);
5124 }
5125
5126 /*
5127 * Represents all cpu's present in the system
5128 * In systems capable of hotplug, this map could dynamically grow
5129 * as new cpu's are detected in the system via any platform specific
5130 * method, such as ACPI for e.g.
5131 */
5132
5133 cpumask_t cpu_present_map __read_mostly;
5134 EXPORT_SYMBOL(cpu_present_map);
5135
5136 #ifndef CONFIG_SMP
5137 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
5138 EXPORT_SYMBOL(cpu_online_map);
5139
5140 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
5141 EXPORT_SYMBOL(cpu_possible_map);
5142 #endif
5143
5144 long sched_getaffinity(pid_t pid, cpumask_t *mask)
5145 {
5146 struct task_struct *p;
5147 int retval;
5148
5149 get_online_cpus();
5150 read_lock(&tasklist_lock);
5151
5152 retval = -ESRCH;
5153 p = find_process_by_pid(pid);
5154 if (!p)
5155 goto out_unlock;
5156
5157 retval = security_task_getscheduler(p);
5158 if (retval)
5159 goto out_unlock;
5160
5161 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
5162
5163 out_unlock:
5164 read_unlock(&tasklist_lock);
5165 put_online_cpus();
5166
5167 return retval;
5168 }
5169
5170 /**
5171 * sys_sched_getaffinity - get the cpu affinity of a process
5172 * @pid: pid of the process
5173 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5174 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5175 */
5176 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5177 unsigned long __user *user_mask_ptr)
5178 {
5179 int ret;
5180 cpumask_t mask;
5181
5182 if (len < sizeof(cpumask_t))
5183 return -EINVAL;
5184
5185 ret = sched_getaffinity(pid, &mask);
5186 if (ret < 0)
5187 return ret;
5188
5189 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
5190 return -EFAULT;
5191
5192 return sizeof(cpumask_t);
5193 }
5194
5195 /**
5196 * sys_sched_yield - yield the current processor to other threads.
5197 *
5198 * This function yields the current CPU to other tasks. If there are no
5199 * other threads running on this CPU then this function will return.
5200 */
5201 asmlinkage long sys_sched_yield(void)
5202 {
5203 struct rq *rq = this_rq_lock();
5204
5205 schedstat_inc(rq, yld_count);
5206 current->sched_class->yield_task(rq);
5207
5208 /*
5209 * Since we are going to call schedule() anyway, there's
5210 * no need to preempt or enable interrupts:
5211 */
5212 __release(rq->lock);
5213 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5214 _raw_spin_unlock(&rq->lock);
5215 preempt_enable_no_resched();
5216
5217 schedule();
5218
5219 return 0;
5220 }
5221
5222 static void __cond_resched(void)
5223 {
5224 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5225 __might_sleep(__FILE__, __LINE__);
5226 #endif
5227 /*
5228 * The BKS might be reacquired before we have dropped
5229 * PREEMPT_ACTIVE, which could trigger a second
5230 * cond_resched() call.
5231 */
5232 do {
5233 add_preempt_count(PREEMPT_ACTIVE);
5234 schedule();
5235 sub_preempt_count(PREEMPT_ACTIVE);
5236 } while (need_resched());
5237 }
5238
5239 int __sched _cond_resched(void)
5240 {
5241 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5242 system_state == SYSTEM_RUNNING) {
5243 __cond_resched();
5244 return 1;
5245 }
5246 return 0;
5247 }
5248 EXPORT_SYMBOL(_cond_resched);
5249
5250 /*
5251 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5252 * call schedule, and on return reacquire the lock.
5253 *
5254 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5255 * operations here to prevent schedule() from being called twice (once via
5256 * spin_unlock(), once by hand).
5257 */
5258 int cond_resched_lock(spinlock_t *lock)
5259 {
5260 int resched = need_resched() && system_state == SYSTEM_RUNNING;
5261 int ret = 0;
5262
5263 if (spin_needbreak(lock) || resched) {
5264 spin_unlock(lock);
5265 if (resched && need_resched())
5266 __cond_resched();
5267 else
5268 cpu_relax();
5269 ret = 1;
5270 spin_lock(lock);
5271 }
5272 return ret;
5273 }
5274 EXPORT_SYMBOL(cond_resched_lock);
5275
5276 int __sched cond_resched_softirq(void)
5277 {
5278 BUG_ON(!in_softirq());
5279
5280 if (need_resched() && system_state == SYSTEM_RUNNING) {
5281 local_bh_enable();
5282 __cond_resched();
5283 local_bh_disable();
5284 return 1;
5285 }
5286 return 0;
5287 }
5288 EXPORT_SYMBOL(cond_resched_softirq);
5289
5290 /**
5291 * yield - yield the current processor to other threads.
5292 *
5293 * This is a shortcut for kernel-space yielding - it marks the
5294 * thread runnable and calls sys_sched_yield().
5295 */
5296 void __sched yield(void)
5297 {
5298 set_current_state(TASK_RUNNING);
5299 sys_sched_yield();
5300 }
5301 EXPORT_SYMBOL(yield);
5302
5303 /*
5304 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5305 * that process accounting knows that this is a task in IO wait state.
5306 *
5307 * But don't do that if it is a deliberate, throttling IO wait (this task
5308 * has set its backing_dev_info: the queue against which it should throttle)
5309 */
5310 void __sched io_schedule(void)
5311 {
5312 struct rq *rq = &__raw_get_cpu_var(runqueues);
5313
5314 delayacct_blkio_start();
5315 atomic_inc(&rq->nr_iowait);
5316 schedule();
5317 atomic_dec(&rq->nr_iowait);
5318 delayacct_blkio_end();
5319 }
5320 EXPORT_SYMBOL(io_schedule);
5321
5322 long __sched io_schedule_timeout(long timeout)
5323 {
5324 struct rq *rq = &__raw_get_cpu_var(runqueues);
5325 long ret;
5326
5327 delayacct_blkio_start();
5328 atomic_inc(&rq->nr_iowait);
5329 ret = schedule_timeout(timeout);
5330 atomic_dec(&rq->nr_iowait);
5331 delayacct_blkio_end();
5332 return ret;
5333 }
5334
5335 /**
5336 * sys_sched_get_priority_max - return maximum RT priority.
5337 * @policy: scheduling class.
5338 *
5339 * this syscall returns the maximum rt_priority that can be used
5340 * by a given scheduling class.
5341 */
5342 asmlinkage long sys_sched_get_priority_max(int policy)
5343 {
5344 int ret = -EINVAL;
5345
5346 switch (policy) {
5347 case SCHED_FIFO:
5348 case SCHED_RR:
5349 ret = MAX_USER_RT_PRIO-1;
5350 break;
5351 case SCHED_NORMAL:
5352 case SCHED_BATCH:
5353 case SCHED_IDLE:
5354 ret = 0;
5355 break;
5356 }
5357 return ret;
5358 }
5359
5360 /**
5361 * sys_sched_get_priority_min - return minimum RT priority.
5362 * @policy: scheduling class.
5363 *
5364 * this syscall returns the minimum rt_priority that can be used
5365 * by a given scheduling class.
5366 */
5367 asmlinkage long sys_sched_get_priority_min(int policy)
5368 {
5369 int ret = -EINVAL;
5370
5371 switch (policy) {
5372 case SCHED_FIFO:
5373 case SCHED_RR:
5374 ret = 1;
5375 break;
5376 case SCHED_NORMAL:
5377 case SCHED_BATCH:
5378 case SCHED_IDLE:
5379 ret = 0;
5380 }
5381 return ret;
5382 }
5383
5384 /**
5385 * sys_sched_rr_get_interval - return the default timeslice of a process.
5386 * @pid: pid of the process.
5387 * @interval: userspace pointer to the timeslice value.
5388 *
5389 * this syscall writes the default timeslice value of a given process
5390 * into the user-space timespec buffer. A value of '0' means infinity.
5391 */
5392 asmlinkage
5393 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5394 {
5395 struct task_struct *p;
5396 unsigned int time_slice;
5397 int retval;
5398 struct timespec t;
5399
5400 if (pid < 0)
5401 return -EINVAL;
5402
5403 retval = -ESRCH;
5404 read_lock(&tasklist_lock);
5405 p = find_process_by_pid(pid);
5406 if (!p)
5407 goto out_unlock;
5408
5409 retval = security_task_getscheduler(p);
5410 if (retval)
5411 goto out_unlock;
5412
5413 /*
5414 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5415 * tasks that are on an otherwise idle runqueue:
5416 */
5417 time_slice = 0;
5418 if (p->policy == SCHED_RR) {
5419 time_slice = DEF_TIMESLICE;
5420 } else if (p->policy != SCHED_FIFO) {
5421 struct sched_entity *se = &p->se;
5422 unsigned long flags;
5423 struct rq *rq;
5424
5425 rq = task_rq_lock(p, &flags);
5426 if (rq->cfs.load.weight)
5427 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
5428 task_rq_unlock(rq, &flags);
5429 }
5430 read_unlock(&tasklist_lock);
5431 jiffies_to_timespec(time_slice, &t);
5432 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5433 return retval;
5434
5435 out_unlock:
5436 read_unlock(&tasklist_lock);
5437 return retval;
5438 }
5439
5440 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5441
5442 void sched_show_task(struct task_struct *p)
5443 {
5444 unsigned long free = 0;
5445 unsigned state;
5446
5447 state = p->state ? __ffs(p->state) + 1 : 0;
5448 printk(KERN_INFO "%-13.13s %c", p->comm,
5449 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5450 #if BITS_PER_LONG == 32
5451 if (state == TASK_RUNNING)
5452 printk(KERN_CONT " running ");
5453 else
5454 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5455 #else
5456 if (state == TASK_RUNNING)
5457 printk(KERN_CONT " running task ");
5458 else
5459 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5460 #endif
5461 #ifdef CONFIG_DEBUG_STACK_USAGE
5462 {
5463 unsigned long *n = end_of_stack(p);
5464 while (!*n)
5465 n++;
5466 free = (unsigned long)n - (unsigned long)end_of_stack(p);
5467 }
5468 #endif
5469 printk(KERN_CONT "%5lu %5d %6d\n", free,
5470 task_pid_nr(p), task_pid_nr(p->real_parent));
5471
5472 show_stack(p, NULL);
5473 }
5474
5475 void show_state_filter(unsigned long state_filter)
5476 {
5477 struct task_struct *g, *p;
5478
5479 #if BITS_PER_LONG == 32
5480 printk(KERN_INFO
5481 " task PC stack pid father\n");
5482 #else
5483 printk(KERN_INFO
5484 " task PC stack pid father\n");
5485 #endif
5486 read_lock(&tasklist_lock);
5487 do_each_thread(g, p) {
5488 /*
5489 * reset the NMI-timeout, listing all files on a slow
5490 * console might take alot of time:
5491 */
5492 touch_nmi_watchdog();
5493 if (!state_filter || (p->state & state_filter))
5494 sched_show_task(p);
5495 } while_each_thread(g, p);
5496
5497 touch_all_softlockup_watchdogs();
5498
5499 #ifdef CONFIG_SCHED_DEBUG
5500 sysrq_sched_debug_show();
5501 #endif
5502 read_unlock(&tasklist_lock);
5503 /*
5504 * Only show locks if all tasks are dumped:
5505 */
5506 if (state_filter == -1)
5507 debug_show_all_locks();
5508 }
5509
5510 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5511 {
5512 idle->sched_class = &idle_sched_class;
5513 }
5514
5515 /**
5516 * init_idle - set up an idle thread for a given CPU
5517 * @idle: task in question
5518 * @cpu: cpu the idle task belongs to
5519 *
5520 * NOTE: this function does not set the idle thread's NEED_RESCHED
5521 * flag, to make booting more robust.
5522 */
5523 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5524 {
5525 struct rq *rq = cpu_rq(cpu);
5526 unsigned long flags;
5527
5528 __sched_fork(idle);
5529 idle->se.exec_start = sched_clock();
5530
5531 idle->prio = idle->normal_prio = MAX_PRIO;
5532 idle->cpus_allowed = cpumask_of_cpu(cpu);
5533 __set_task_cpu(idle, cpu);
5534
5535 spin_lock_irqsave(&rq->lock, flags);
5536 rq->curr = rq->idle = idle;
5537 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5538 idle->oncpu = 1;
5539 #endif
5540 spin_unlock_irqrestore(&rq->lock, flags);
5541
5542 /* Set the preempt count _outside_ the spinlocks! */
5543 #if defined(CONFIG_PREEMPT)
5544 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5545 #else
5546 task_thread_info(idle)->preempt_count = 0;
5547 #endif
5548 /*
5549 * The idle tasks have their own, simple scheduling class:
5550 */
5551 idle->sched_class = &idle_sched_class;
5552 }
5553
5554 /*
5555 * In a system that switches off the HZ timer nohz_cpu_mask
5556 * indicates which cpus entered this state. This is used
5557 * in the rcu update to wait only for active cpus. For system
5558 * which do not switch off the HZ timer nohz_cpu_mask should
5559 * always be CPU_MASK_NONE.
5560 */
5561 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5562
5563 /*
5564 * Increase the granularity value when there are more CPUs,
5565 * because with more CPUs the 'effective latency' as visible
5566 * to users decreases. But the relationship is not linear,
5567 * so pick a second-best guess by going with the log2 of the
5568 * number of CPUs.
5569 *
5570 * This idea comes from the SD scheduler of Con Kolivas:
5571 */
5572 static inline void sched_init_granularity(void)
5573 {
5574 unsigned int factor = 1 + ilog2(num_online_cpus());
5575 const unsigned long limit = 200000000;
5576
5577 sysctl_sched_min_granularity *= factor;
5578 if (sysctl_sched_min_granularity > limit)
5579 sysctl_sched_min_granularity = limit;
5580
5581 sysctl_sched_latency *= factor;
5582 if (sysctl_sched_latency > limit)
5583 sysctl_sched_latency = limit;
5584
5585 sysctl_sched_wakeup_granularity *= factor;
5586 }
5587
5588 #ifdef CONFIG_SMP
5589 /*
5590 * This is how migration works:
5591 *
5592 * 1) we queue a struct migration_req structure in the source CPU's
5593 * runqueue and wake up that CPU's migration thread.
5594 * 2) we down() the locked semaphore => thread blocks.
5595 * 3) migration thread wakes up (implicitly it forces the migrated
5596 * thread off the CPU)
5597 * 4) it gets the migration request and checks whether the migrated
5598 * task is still in the wrong runqueue.
5599 * 5) if it's in the wrong runqueue then the migration thread removes
5600 * it and puts it into the right queue.
5601 * 6) migration thread up()s the semaphore.
5602 * 7) we wake up and the migration is done.
5603 */
5604
5605 /*
5606 * Change a given task's CPU affinity. Migrate the thread to a
5607 * proper CPU and schedule it away if the CPU it's executing on
5608 * is removed from the allowed bitmask.
5609 *
5610 * NOTE: the caller must have a valid reference to the task, the
5611 * task must not exit() & deallocate itself prematurely. The
5612 * call is not atomic; no spinlocks may be held.
5613 */
5614 int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
5615 {
5616 struct migration_req req;
5617 unsigned long flags;
5618 struct rq *rq;
5619 int ret = 0;
5620
5621 rq = task_rq_lock(p, &flags);
5622 if (!cpus_intersects(*new_mask, cpu_online_map)) {
5623 ret = -EINVAL;
5624 goto out;
5625 }
5626
5627 if (p->sched_class->set_cpus_allowed)
5628 p->sched_class->set_cpus_allowed(p, new_mask);
5629 else {
5630 p->cpus_allowed = *new_mask;
5631 p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
5632 }
5633
5634 /* Can the task run on the task's current CPU? If so, we're done */
5635 if (cpu_isset(task_cpu(p), *new_mask))
5636 goto out;
5637
5638 if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
5639 /* Need help from migration thread: drop lock and wait. */
5640 task_rq_unlock(rq, &flags);
5641 wake_up_process(rq->migration_thread);
5642 wait_for_completion(&req.done);
5643 tlb_migrate_finish(p->mm);
5644 return 0;
5645 }
5646 out:
5647 task_rq_unlock(rq, &flags);
5648
5649 return ret;
5650 }
5651 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5652
5653 /*
5654 * Move (not current) task off this cpu, onto dest cpu. We're doing
5655 * this because either it can't run here any more (set_cpus_allowed()
5656 * away from this CPU, or CPU going down), or because we're
5657 * attempting to rebalance this task on exec (sched_exec).
5658 *
5659 * So we race with normal scheduler movements, but that's OK, as long
5660 * as the task is no longer on this CPU.
5661 *
5662 * Returns non-zero if task was successfully migrated.
5663 */
5664 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5665 {
5666 struct rq *rq_dest, *rq_src;
5667 int ret = 0, on_rq;
5668
5669 if (unlikely(cpu_is_offline(dest_cpu)))
5670 return ret;
5671
5672 rq_src = cpu_rq(src_cpu);
5673 rq_dest = cpu_rq(dest_cpu);
5674
5675 double_rq_lock(rq_src, rq_dest);
5676 /* Already moved. */
5677 if (task_cpu(p) != src_cpu)
5678 goto out;
5679 /* Affinity changed (again). */
5680 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5681 goto out;
5682
5683 on_rq = p->se.on_rq;
5684 if (on_rq)
5685 deactivate_task(rq_src, p, 0);
5686
5687 set_task_cpu(p, dest_cpu);
5688 if (on_rq) {
5689 activate_task(rq_dest, p, 0);
5690 check_preempt_curr(rq_dest, p);
5691 }
5692 ret = 1;
5693 out:
5694 double_rq_unlock(rq_src, rq_dest);
5695 return ret;
5696 }
5697
5698 /*
5699 * migration_thread - this is a highprio system thread that performs
5700 * thread migration by bumping thread off CPU then 'pushing' onto
5701 * another runqueue.
5702 */
5703 static int migration_thread(void *data)
5704 {
5705 int cpu = (long)data;
5706 struct rq *rq;
5707
5708 rq = cpu_rq(cpu);
5709 BUG_ON(rq->migration_thread != current);
5710
5711 set_current_state(TASK_INTERRUPTIBLE);
5712 while (!kthread_should_stop()) {
5713 struct migration_req *req;
5714 struct list_head *head;
5715
5716 spin_lock_irq(&rq->lock);
5717
5718 if (cpu_is_offline(cpu)) {
5719 spin_unlock_irq(&rq->lock);
5720 goto wait_to_die;
5721 }
5722
5723 if (rq->active_balance) {
5724 active_load_balance(rq, cpu);
5725 rq->active_balance = 0;
5726 }
5727
5728 head = &rq->migration_queue;
5729
5730 if (list_empty(head)) {
5731 spin_unlock_irq(&rq->lock);
5732 schedule();
5733 set_current_state(TASK_INTERRUPTIBLE);
5734 continue;
5735 }
5736 req = list_entry(head->next, struct migration_req, list);
5737 list_del_init(head->next);
5738
5739 spin_unlock(&rq->lock);
5740 __migrate_task(req->task, cpu, req->dest_cpu);
5741 local_irq_enable();
5742
5743 complete(&req->done);
5744 }
5745 __set_current_state(TASK_RUNNING);
5746 return 0;
5747
5748 wait_to_die:
5749 /* Wait for kthread_stop */
5750 set_current_state(TASK_INTERRUPTIBLE);
5751 while (!kthread_should_stop()) {
5752 schedule();
5753 set_current_state(TASK_INTERRUPTIBLE);
5754 }
5755 __set_current_state(TASK_RUNNING);
5756 return 0;
5757 }
5758
5759 #ifdef CONFIG_HOTPLUG_CPU
5760
5761 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5762 {
5763 int ret;
5764
5765 local_irq_disable();
5766 ret = __migrate_task(p, src_cpu, dest_cpu);
5767 local_irq_enable();
5768 return ret;
5769 }
5770
5771 /*
5772 * Figure out where task on dead CPU should go, use force if necessary.
5773 * NOTE: interrupts should be disabled by the caller
5774 */
5775 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5776 {
5777 unsigned long flags;
5778 cpumask_t mask;
5779 struct rq *rq;
5780 int dest_cpu;
5781
5782 do {
5783 /* On same node? */
5784 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5785 cpus_and(mask, mask, p->cpus_allowed);
5786 dest_cpu = any_online_cpu(mask);
5787
5788 /* On any allowed CPU? */
5789 if (dest_cpu >= nr_cpu_ids)
5790 dest_cpu = any_online_cpu(p->cpus_allowed);
5791
5792 /* No more Mr. Nice Guy. */
5793 if (dest_cpu >= nr_cpu_ids) {
5794 cpumask_t cpus_allowed;
5795
5796 cpuset_cpus_allowed_locked(p, &cpus_allowed);
5797 /*
5798 * Try to stay on the same cpuset, where the
5799 * current cpuset may be a subset of all cpus.
5800 * The cpuset_cpus_allowed_locked() variant of
5801 * cpuset_cpus_allowed() will not block. It must be
5802 * called within calls to cpuset_lock/cpuset_unlock.
5803 */
5804 rq = task_rq_lock(p, &flags);
5805 p->cpus_allowed = cpus_allowed;
5806 dest_cpu = any_online_cpu(p->cpus_allowed);
5807 task_rq_unlock(rq, &flags);
5808
5809 /*
5810 * Don't tell them about moving exiting tasks or
5811 * kernel threads (both mm NULL), since they never
5812 * leave kernel.
5813 */
5814 if (p->mm && printk_ratelimit()) {
5815 printk(KERN_INFO "process %d (%s) no "
5816 "longer affine to cpu%d\n",
5817 task_pid_nr(p), p->comm, dead_cpu);
5818 }
5819 }
5820 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
5821 }
5822
5823 /*
5824 * While a dead CPU has no uninterruptible tasks queued at this point,
5825 * it might still have a nonzero ->nr_uninterruptible counter, because
5826 * for performance reasons the counter is not stricly tracking tasks to
5827 * their home CPUs. So we just add the counter to another CPU's counter,
5828 * to keep the global sum constant after CPU-down:
5829 */
5830 static void migrate_nr_uninterruptible(struct rq *rq_src)
5831 {
5832 struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
5833 unsigned long flags;
5834
5835 local_irq_save(flags);
5836 double_rq_lock(rq_src, rq_dest);
5837 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5838 rq_src->nr_uninterruptible = 0;
5839 double_rq_unlock(rq_src, rq_dest);
5840 local_irq_restore(flags);
5841 }
5842
5843 /* Run through task list and migrate tasks from the dead cpu. */
5844 static void migrate_live_tasks(int src_cpu)
5845 {
5846 struct task_struct *p, *t;
5847
5848 read_lock(&tasklist_lock);
5849
5850 do_each_thread(t, p) {
5851 if (p == current)
5852 continue;
5853
5854 if (task_cpu(p) == src_cpu)
5855 move_task_off_dead_cpu(src_cpu, p);
5856 } while_each_thread(t, p);
5857
5858 read_unlock(&tasklist_lock);
5859 }
5860
5861 /*
5862 * Schedules idle task to be the next runnable task on current CPU.
5863 * It does so by boosting its priority to highest possible.
5864 * Used by CPU offline code.
5865 */
5866 void sched_idle_next(void)
5867 {
5868 int this_cpu = smp_processor_id();
5869 struct rq *rq = cpu_rq(this_cpu);
5870 struct task_struct *p = rq->idle;
5871 unsigned long flags;
5872
5873 /* cpu has to be offline */
5874 BUG_ON(cpu_online(this_cpu));
5875
5876 /*
5877 * Strictly not necessary since rest of the CPUs are stopped by now
5878 * and interrupts disabled on the current cpu.
5879 */
5880 spin_lock_irqsave(&rq->lock, flags);
5881
5882 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5883
5884 update_rq_clock(rq);
5885 activate_task(rq, p, 0);
5886
5887 spin_unlock_irqrestore(&rq->lock, flags);
5888 }
5889
5890 /*
5891 * Ensures that the idle task is using init_mm right before its cpu goes
5892 * offline.
5893 */
5894 void idle_task_exit(void)
5895 {
5896 struct mm_struct *mm = current->active_mm;
5897
5898 BUG_ON(cpu_online(smp_processor_id()));
5899
5900 if (mm != &init_mm)
5901 switch_mm(mm, &init_mm, current);
5902 mmdrop(mm);
5903 }
5904
5905 /* called under rq->lock with disabled interrupts */
5906 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5907 {
5908 struct rq *rq = cpu_rq(dead_cpu);
5909
5910 /* Must be exiting, otherwise would be on tasklist. */
5911 BUG_ON(!p->exit_state);
5912
5913 /* Cannot have done final schedule yet: would have vanished. */
5914 BUG_ON(p->state == TASK_DEAD);
5915
5916 get_task_struct(p);
5917
5918 /*
5919 * Drop lock around migration; if someone else moves it,
5920 * that's OK. No task can be added to this CPU, so iteration is
5921 * fine.
5922 */
5923 spin_unlock_irq(&rq->lock);
5924 move_task_off_dead_cpu(dead_cpu, p);
5925 spin_lock_irq(&rq->lock);
5926
5927 put_task_struct(p);
5928 }
5929
5930 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5931 static void migrate_dead_tasks(unsigned int dead_cpu)
5932 {
5933 struct rq *rq = cpu_rq(dead_cpu);
5934 struct task_struct *next;
5935
5936 for ( ; ; ) {
5937 if (!rq->nr_running)
5938 break;
5939 update_rq_clock(rq);
5940 next = pick_next_task(rq, rq->curr);
5941 if (!next)
5942 break;
5943 migrate_dead(dead_cpu, next);
5944
5945 }
5946 }
5947 #endif /* CONFIG_HOTPLUG_CPU */
5948
5949 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5950
5951 static struct ctl_table sd_ctl_dir[] = {
5952 {
5953 .procname = "sched_domain",
5954 .mode = 0555,
5955 },
5956 {0, },
5957 };
5958
5959 static struct ctl_table sd_ctl_root[] = {
5960 {
5961 .ctl_name = CTL_KERN,
5962 .procname = "kernel",
5963 .mode = 0555,
5964 .child = sd_ctl_dir,
5965 },
5966 {0, },
5967 };
5968
5969 static struct ctl_table *sd_alloc_ctl_entry(int n)
5970 {
5971 struct ctl_table *entry =
5972 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5973
5974 return entry;
5975 }
5976
5977 static void sd_free_ctl_entry(struct ctl_table **tablep)
5978 {
5979 struct ctl_table *entry;
5980
5981 /*
5982 * In the intermediate directories, both the child directory and
5983 * procname are dynamically allocated and could fail but the mode
5984 * will always be set. In the lowest directory the names are
5985 * static strings and all have proc handlers.
5986 */
5987 for (entry = *tablep; entry->mode; entry++) {
5988 if (entry->child)
5989 sd_free_ctl_entry(&entry->child);
5990 if (entry->proc_handler == NULL)
5991 kfree(entry->procname);
5992 }
5993
5994 kfree(*tablep);
5995 *tablep = NULL;
5996 }
5997
5998 static void
5999 set_table_entry(struct ctl_table *entry,
6000 const char *procname, void *data, int maxlen,
6001 mode_t mode, proc_handler *proc_handler)
6002 {
6003 entry->procname = procname;
6004 entry->data = data;
6005 entry->maxlen = maxlen;
6006 entry->mode = mode;
6007 entry->proc_handler = proc_handler;
6008 }
6009
6010 static struct ctl_table *
6011 sd_alloc_ctl_domain_table(struct sched_domain *sd)
6012 {
6013 struct ctl_table *table = sd_alloc_ctl_entry(12);
6014
6015 if (table == NULL)
6016 return NULL;
6017
6018 set_table_entry(&table[0], "min_interval", &sd->min_interval,
6019 sizeof(long), 0644, proc_doulongvec_minmax);
6020 set_table_entry(&table[1], "max_interval", &sd->max_interval,
6021 sizeof(long), 0644, proc_doulongvec_minmax);
6022 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6023 sizeof(int), 0644, proc_dointvec_minmax);
6024 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6025 sizeof(int), 0644, proc_dointvec_minmax);
6026 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6027 sizeof(int), 0644, proc_dointvec_minmax);
6028 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6029 sizeof(int), 0644, proc_dointvec_minmax);
6030 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6031 sizeof(int), 0644, proc_dointvec_minmax);
6032 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6033 sizeof(int), 0644, proc_dointvec_minmax);
6034 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6035 sizeof(int), 0644, proc_dointvec_minmax);
6036 set_table_entry(&table[9], "cache_nice_tries",
6037 &sd->cache_nice_tries,
6038 sizeof(int), 0644, proc_dointvec_minmax);
6039 set_table_entry(&table[10], "flags", &sd->flags,
6040 sizeof(int), 0644, proc_dointvec_minmax);
6041 /* &table[11] is terminator */
6042
6043 return table;
6044 }
6045
6046 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6047 {
6048 struct ctl_table *entry, *table;
6049 struct sched_domain *sd;
6050 int domain_num = 0, i;
6051 char buf[32];
6052
6053 for_each_domain(cpu, sd)
6054 domain_num++;
6055 entry = table = sd_alloc_ctl_entry(domain_num + 1);
6056 if (table == NULL)
6057 return NULL;
6058
6059 i = 0;
6060 for_each_domain(cpu, sd) {
6061 snprintf(buf, 32, "domain%d", i);
6062 entry->procname = kstrdup(buf, GFP_KERNEL);
6063 entry->mode = 0555;
6064 entry->child = sd_alloc_ctl_domain_table(sd);
6065 entry++;
6066 i++;
6067 }
6068 return table;
6069 }
6070
6071 static struct ctl_table_header *sd_sysctl_header;
6072 static void register_sched_domain_sysctl(void)
6073 {
6074 int i, cpu_num = num_online_cpus();
6075 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6076 char buf[32];
6077
6078 WARN_ON(sd_ctl_dir[0].child);
6079 sd_ctl_dir[0].child = entry;
6080
6081 if (entry == NULL)
6082 return;
6083
6084 for_each_online_cpu(i) {
6085 snprintf(buf, 32, "cpu%d", i);
6086 entry->procname = kstrdup(buf, GFP_KERNEL);
6087 entry->mode = 0555;
6088 entry->child = sd_alloc_ctl_cpu_table(i);
6089 entry++;
6090 }
6091
6092 WARN_ON(sd_sysctl_header);
6093 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6094 }
6095
6096 /* may be called multiple times per register */
6097 static void unregister_sched_domain_sysctl(void)
6098 {
6099 if (sd_sysctl_header)
6100 unregister_sysctl_table(sd_sysctl_header);
6101 sd_sysctl_header = NULL;
6102 if (sd_ctl_dir[0].child)
6103 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6104 }
6105 #else
6106 static void register_sched_domain_sysctl(void)
6107 {
6108 }
6109 static void unregister_sched_domain_sysctl(void)
6110 {
6111 }
6112 #endif
6113
6114 /*
6115 * migration_call - callback that gets triggered when a CPU is added.
6116 * Here we can start up the necessary migration thread for the new CPU.
6117 */
6118 static int __cpuinit
6119 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6120 {
6121 struct task_struct *p;
6122 int cpu = (long)hcpu;
6123 unsigned long flags;
6124 struct rq *rq;
6125
6126 switch (action) {
6127
6128 case CPU_UP_PREPARE:
6129 case CPU_UP_PREPARE_FROZEN:
6130 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
6131 if (IS_ERR(p))
6132 return NOTIFY_BAD;
6133 kthread_bind(p, cpu);
6134 /* Must be high prio: stop_machine expects to yield to it. */
6135 rq = task_rq_lock(p, &flags);
6136 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6137 task_rq_unlock(rq, &flags);
6138 cpu_rq(cpu)->migration_thread = p;
6139 break;
6140
6141 case CPU_ONLINE:
6142 case CPU_ONLINE_FROZEN:
6143 /* Strictly unnecessary, as first user will wake it. */
6144 wake_up_process(cpu_rq(cpu)->migration_thread);
6145
6146 /* Update our root-domain */
6147 rq = cpu_rq(cpu);
6148 spin_lock_irqsave(&rq->lock, flags);
6149 if (rq->rd) {
6150 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6151 cpu_set(cpu, rq->rd->online);
6152 }
6153 spin_unlock_irqrestore(&rq->lock, flags);
6154 break;
6155
6156 #ifdef CONFIG_HOTPLUG_CPU
6157 case CPU_UP_CANCELED:
6158 case CPU_UP_CANCELED_FROZEN:
6159 if (!cpu_rq(cpu)->migration_thread)
6160 break;
6161 /* Unbind it from offline cpu so it can run. Fall thru. */
6162 kthread_bind(cpu_rq(cpu)->migration_thread,
6163 any_online_cpu(cpu_online_map));
6164 kthread_stop(cpu_rq(cpu)->migration_thread);
6165 cpu_rq(cpu)->migration_thread = NULL;
6166 break;
6167
6168 case CPU_DEAD:
6169 case CPU_DEAD_FROZEN:
6170 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
6171 migrate_live_tasks(cpu);
6172 rq = cpu_rq(cpu);
6173 kthread_stop(rq->migration_thread);
6174 rq->migration_thread = NULL;
6175 /* Idle task back to normal (off runqueue, low prio) */
6176 spin_lock_irq(&rq->lock);
6177 update_rq_clock(rq);
6178 deactivate_task(rq, rq->idle, 0);
6179 rq->idle->static_prio = MAX_PRIO;
6180 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6181 rq->idle->sched_class = &idle_sched_class;
6182 migrate_dead_tasks(cpu);
6183 spin_unlock_irq(&rq->lock);
6184 cpuset_unlock();
6185 migrate_nr_uninterruptible(rq);
6186 BUG_ON(rq->nr_running != 0);
6187
6188 /*
6189 * No need to migrate the tasks: it was best-effort if
6190 * they didn't take sched_hotcpu_mutex. Just wake up
6191 * the requestors.
6192 */
6193 spin_lock_irq(&rq->lock);
6194 while (!list_empty(&rq->migration_queue)) {
6195 struct migration_req *req;
6196
6197 req = list_entry(rq->migration_queue.next,
6198 struct migration_req, list);
6199 list_del_init(&req->list);
6200 complete(&req->done);
6201 }
6202 spin_unlock_irq(&rq->lock);
6203 break;
6204
6205 case CPU_DYING:
6206 case CPU_DYING_FROZEN:
6207 /* Update our root-domain */
6208 rq = cpu_rq(cpu);
6209 spin_lock_irqsave(&rq->lock, flags);
6210 if (rq->rd) {
6211 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6212 cpu_clear(cpu, rq->rd->online);
6213 }
6214 spin_unlock_irqrestore(&rq->lock, flags);
6215 break;
6216 #endif
6217 }
6218 return NOTIFY_OK;
6219 }
6220
6221 /* Register at highest priority so that task migration (migrate_all_tasks)
6222 * happens before everything else.
6223 */
6224 static struct notifier_block __cpuinitdata migration_notifier = {
6225 .notifier_call = migration_call,
6226 .priority = 10
6227 };
6228
6229 void __init migration_init(void)
6230 {
6231 void *cpu = (void *)(long)smp_processor_id();
6232 int err;
6233
6234 /* Start one for the boot CPU: */
6235 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6236 BUG_ON(err == NOTIFY_BAD);
6237 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6238 register_cpu_notifier(&migration_notifier);
6239 }
6240 #endif
6241
6242 #ifdef CONFIG_SMP
6243
6244 #ifdef CONFIG_SCHED_DEBUG
6245
6246 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6247 cpumask_t *groupmask)
6248 {
6249 struct sched_group *group = sd->groups;
6250 char str[256];
6251
6252 cpulist_scnprintf(str, sizeof(str), sd->span);
6253 cpus_clear(*groupmask);
6254
6255 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6256
6257 if (!(sd->flags & SD_LOAD_BALANCE)) {
6258 printk("does not load-balance\n");
6259 if (sd->parent)
6260 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6261 " has parent");
6262 return -1;
6263 }
6264
6265 printk(KERN_CONT "span %s\n", str);
6266
6267 if (!cpu_isset(cpu, sd->span)) {
6268 printk(KERN_ERR "ERROR: domain->span does not contain "
6269 "CPU%d\n", cpu);
6270 }
6271 if (!cpu_isset(cpu, group->cpumask)) {
6272 printk(KERN_ERR "ERROR: domain->groups does not contain"
6273 " CPU%d\n", cpu);
6274 }
6275
6276 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6277 do {
6278 if (!group) {
6279 printk("\n");
6280 printk(KERN_ERR "ERROR: group is NULL\n");
6281 break;
6282 }
6283
6284 if (!group->__cpu_power) {
6285 printk(KERN_CONT "\n");
6286 printk(KERN_ERR "ERROR: domain->cpu_power not "
6287 "set\n");
6288 break;
6289 }
6290
6291 if (!cpus_weight(group->cpumask)) {
6292 printk(KERN_CONT "\n");
6293 printk(KERN_ERR "ERROR: empty group\n");
6294 break;
6295 }
6296
6297 if (cpus_intersects(*groupmask, group->cpumask)) {
6298 printk(KERN_CONT "\n");
6299 printk(KERN_ERR "ERROR: repeated CPUs\n");
6300 break;
6301 }
6302
6303 cpus_or(*groupmask, *groupmask, group->cpumask);
6304
6305 cpulist_scnprintf(str, sizeof(str), group->cpumask);
6306 printk(KERN_CONT " %s", str);
6307
6308 group = group->next;
6309 } while (group != sd->groups);
6310 printk(KERN_CONT "\n");
6311
6312 if (!cpus_equal(sd->span, *groupmask))
6313 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6314
6315 if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
6316 printk(KERN_ERR "ERROR: parent span is not a superset "
6317 "of domain->span\n");
6318 return 0;
6319 }
6320
6321 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6322 {
6323 cpumask_t *groupmask;
6324 int level = 0;
6325
6326 if (!sd) {
6327 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6328 return;
6329 }
6330
6331 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6332
6333 groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6334 if (!groupmask) {
6335 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6336 return;
6337 }
6338
6339 for (;;) {
6340 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6341 break;
6342 level++;
6343 sd = sd->parent;
6344 if (!sd)
6345 break;
6346 }
6347 kfree(groupmask);
6348 }
6349 #else
6350 # define sched_domain_debug(sd, cpu) do { } while (0)
6351 #endif
6352
6353 static int sd_degenerate(struct sched_domain *sd)
6354 {
6355 if (cpus_weight(sd->span) == 1)
6356 return 1;
6357
6358 /* Following flags need at least 2 groups */
6359 if (sd->flags & (SD_LOAD_BALANCE |
6360 SD_BALANCE_NEWIDLE |
6361 SD_BALANCE_FORK |
6362 SD_BALANCE_EXEC |
6363 SD_SHARE_CPUPOWER |
6364 SD_SHARE_PKG_RESOURCES)) {
6365 if (sd->groups != sd->groups->next)
6366 return 0;
6367 }
6368
6369 /* Following flags don't use groups */
6370 if (sd->flags & (SD_WAKE_IDLE |
6371 SD_WAKE_AFFINE |
6372 SD_WAKE_BALANCE))
6373 return 0;
6374
6375 return 1;
6376 }
6377
6378 static int
6379 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6380 {
6381 unsigned long cflags = sd->flags, pflags = parent->flags;
6382
6383 if (sd_degenerate(parent))
6384 return 1;
6385
6386 if (!cpus_equal(sd->span, parent->span))
6387 return 0;
6388
6389 /* Does parent contain flags not in child? */
6390 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6391 if (cflags & SD_WAKE_AFFINE)
6392 pflags &= ~SD_WAKE_BALANCE;
6393 /* Flags needing groups don't count if only 1 group in parent */
6394 if (parent->groups == parent->groups->next) {
6395 pflags &= ~(SD_LOAD_BALANCE |
6396 SD_BALANCE_NEWIDLE |
6397 SD_BALANCE_FORK |
6398 SD_BALANCE_EXEC |
6399 SD_SHARE_CPUPOWER |
6400 SD_SHARE_PKG_RESOURCES);
6401 }
6402 if (~cflags & pflags)
6403 return 0;
6404
6405 return 1;
6406 }
6407
6408 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6409 {
6410 unsigned long flags;
6411 const struct sched_class *class;
6412
6413 spin_lock_irqsave(&rq->lock, flags);
6414
6415 if (rq->rd) {
6416 struct root_domain *old_rd = rq->rd;
6417
6418 for (class = sched_class_highest; class; class = class->next) {
6419 if (class->leave_domain)
6420 class->leave_domain(rq);
6421 }
6422
6423 cpu_clear(rq->cpu, old_rd->span);
6424 cpu_clear(rq->cpu, old_rd->online);
6425
6426 if (atomic_dec_and_test(&old_rd->refcount))
6427 kfree(old_rd);
6428 }
6429
6430 atomic_inc(&rd->refcount);
6431 rq->rd = rd;
6432
6433 cpu_set(rq->cpu, rd->span);
6434 if (cpu_isset(rq->cpu, cpu_online_map))
6435 cpu_set(rq->cpu, rd->online);
6436
6437 for (class = sched_class_highest; class; class = class->next) {
6438 if (class->join_domain)
6439 class->join_domain(rq);
6440 }
6441
6442 spin_unlock_irqrestore(&rq->lock, flags);
6443 }
6444
6445 static void init_rootdomain(struct root_domain *rd)
6446 {
6447 memset(rd, 0, sizeof(*rd));
6448
6449 cpus_clear(rd->span);
6450 cpus_clear(rd->online);
6451 }
6452
6453 static void init_defrootdomain(void)
6454 {
6455 init_rootdomain(&def_root_domain);
6456 atomic_set(&def_root_domain.refcount, 1);
6457 }
6458
6459 static struct root_domain *alloc_rootdomain(void)
6460 {
6461 struct root_domain *rd;
6462
6463 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6464 if (!rd)
6465 return NULL;
6466
6467 init_rootdomain(rd);
6468
6469 return rd;
6470 }
6471
6472 /*
6473 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6474 * hold the hotplug lock.
6475 */
6476 static void
6477 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6478 {
6479 struct rq *rq = cpu_rq(cpu);
6480 struct sched_domain *tmp;
6481
6482 /* Remove the sched domains which do not contribute to scheduling. */
6483 for (tmp = sd; tmp; tmp = tmp->parent) {
6484 struct sched_domain *parent = tmp->parent;
6485 if (!parent)
6486 break;
6487 if (sd_parent_degenerate(tmp, parent)) {
6488 tmp->parent = parent->parent;
6489 if (parent->parent)
6490 parent->parent->child = tmp;
6491 }
6492 }
6493
6494 if (sd && sd_degenerate(sd)) {
6495 sd = sd->parent;
6496 if (sd)
6497 sd->child = NULL;
6498 }
6499
6500 sched_domain_debug(sd, cpu);
6501
6502 rq_attach_root(rq, rd);
6503 rcu_assign_pointer(rq->sd, sd);
6504 }
6505
6506 /* cpus with isolated domains */
6507 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
6508
6509 /* Setup the mask of cpus configured for isolated domains */
6510 static int __init isolated_cpu_setup(char *str)
6511 {
6512 int ints[NR_CPUS], i;
6513
6514 str = get_options(str, ARRAY_SIZE(ints), ints);
6515 cpus_clear(cpu_isolated_map);
6516 for (i = 1; i <= ints[0]; i++)
6517 if (ints[i] < NR_CPUS)
6518 cpu_set(ints[i], cpu_isolated_map);
6519 return 1;
6520 }
6521
6522 __setup("isolcpus=", isolated_cpu_setup);
6523
6524 /*
6525 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6526 * to a function which identifies what group(along with sched group) a CPU
6527 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6528 * (due to the fact that we keep track of groups covered with a cpumask_t).
6529 *
6530 * init_sched_build_groups will build a circular linked list of the groups
6531 * covered by the given span, and will set each group's ->cpumask correctly,
6532 * and ->cpu_power to 0.
6533 */
6534 static void
6535 init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6536 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6537 struct sched_group **sg,
6538 cpumask_t *tmpmask),
6539 cpumask_t *covered, cpumask_t *tmpmask)
6540 {
6541 struct sched_group *first = NULL, *last = NULL;
6542 int i;
6543
6544 cpus_clear(*covered);
6545
6546 for_each_cpu_mask(i, *span) {
6547 struct sched_group *sg;
6548 int group = group_fn(i, cpu_map, &sg, tmpmask);
6549 int j;
6550
6551 if (cpu_isset(i, *covered))
6552 continue;
6553
6554 cpus_clear(sg->cpumask);
6555 sg->__cpu_power = 0;
6556
6557 for_each_cpu_mask(j, *span) {
6558 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6559 continue;
6560
6561 cpu_set(j, *covered);
6562 cpu_set(j, sg->cpumask);
6563 }
6564 if (!first)
6565 first = sg;
6566 if (last)
6567 last->next = sg;
6568 last = sg;
6569 }
6570 last->next = first;
6571 }
6572
6573 #define SD_NODES_PER_DOMAIN 16
6574
6575 #ifdef CONFIG_NUMA
6576
6577 /**
6578 * find_next_best_node - find the next node to include in a sched_domain
6579 * @node: node whose sched_domain we're building
6580 * @used_nodes: nodes already in the sched_domain
6581 *
6582 * Find the next node to include in a given scheduling domain. Simply
6583 * finds the closest node not already in the @used_nodes map.
6584 *
6585 * Should use nodemask_t.
6586 */
6587 static int find_next_best_node(int node, nodemask_t *used_nodes)
6588 {
6589 int i, n, val, min_val, best_node = 0;
6590
6591 min_val = INT_MAX;
6592
6593 for (i = 0; i < MAX_NUMNODES; i++) {
6594 /* Start at @node */
6595 n = (node + i) % MAX_NUMNODES;
6596
6597 if (!nr_cpus_node(n))
6598 continue;
6599
6600 /* Skip already used nodes */
6601 if (node_isset(n, *used_nodes))
6602 continue;
6603
6604 /* Simple min distance search */
6605 val = node_distance(node, n);
6606
6607 if (val < min_val) {
6608 min_val = val;
6609 best_node = n;
6610 }
6611 }
6612
6613 node_set(best_node, *used_nodes);
6614 return best_node;
6615 }
6616
6617 /**
6618 * sched_domain_node_span - get a cpumask for a node's sched_domain
6619 * @node: node whose cpumask we're constructing
6620 * @span: resulting cpumask
6621 *
6622 * Given a node, construct a good cpumask for its sched_domain to span. It
6623 * should be one that prevents unnecessary balancing, but also spreads tasks
6624 * out optimally.
6625 */
6626 static void sched_domain_node_span(int node, cpumask_t *span)
6627 {
6628 nodemask_t used_nodes;
6629 node_to_cpumask_ptr(nodemask, node);
6630 int i;
6631
6632 cpus_clear(*span);
6633 nodes_clear(used_nodes);
6634
6635 cpus_or(*span, *span, *nodemask);
6636 node_set(node, used_nodes);
6637
6638 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6639 int next_node = find_next_best_node(node, &used_nodes);
6640
6641 node_to_cpumask_ptr_next(nodemask, next_node);
6642 cpus_or(*span, *span, *nodemask);
6643 }
6644 }
6645 #endif
6646
6647 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6648
6649 /*
6650 * SMT sched-domains:
6651 */
6652 #ifdef CONFIG_SCHED_SMT
6653 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6654 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6655
6656 static int
6657 cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6658 cpumask_t *unused)
6659 {
6660 if (sg)
6661 *sg = &per_cpu(sched_group_cpus, cpu);
6662 return cpu;
6663 }
6664 #endif
6665
6666 /*
6667 * multi-core sched-domains:
6668 */
6669 #ifdef CONFIG_SCHED_MC
6670 static DEFINE_PER_CPU(struct sched_domain, core_domains);
6671 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6672 #endif
6673
6674 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6675 static int
6676 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6677 cpumask_t *mask)
6678 {
6679 int group;
6680
6681 *mask = per_cpu(cpu_sibling_map, cpu);
6682 cpus_and(*mask, *mask, *cpu_map);
6683 group = first_cpu(*mask);
6684 if (sg)
6685 *sg = &per_cpu(sched_group_core, group);
6686 return group;
6687 }
6688 #elif defined(CONFIG_SCHED_MC)
6689 static int
6690 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6691 cpumask_t *unused)
6692 {
6693 if (sg)
6694 *sg = &per_cpu(sched_group_core, cpu);
6695 return cpu;
6696 }
6697 #endif
6698
6699 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6700 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6701
6702 static int
6703 cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6704 cpumask_t *mask)
6705 {
6706 int group;
6707 #ifdef CONFIG_SCHED_MC
6708 *mask = cpu_coregroup_map(cpu);
6709 cpus_and(*mask, *mask, *cpu_map);
6710 group = first_cpu(*mask);
6711 #elif defined(CONFIG_SCHED_SMT)
6712 *mask = per_cpu(cpu_sibling_map, cpu);
6713 cpus_and(*mask, *mask, *cpu_map);
6714 group = first_cpu(*mask);
6715 #else
6716 group = cpu;
6717 #endif
6718 if (sg)
6719 *sg = &per_cpu(sched_group_phys, group);
6720 return group;
6721 }
6722
6723 #ifdef CONFIG_NUMA
6724 /*
6725 * The init_sched_build_groups can't handle what we want to do with node
6726 * groups, so roll our own. Now each node has its own list of groups which
6727 * gets dynamically allocated.
6728 */
6729 static DEFINE_PER_CPU(struct sched_domain, node_domains);
6730 static struct sched_group ***sched_group_nodes_bycpu;
6731
6732 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6733 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6734
6735 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6736 struct sched_group **sg, cpumask_t *nodemask)
6737 {
6738 int group;
6739
6740 *nodemask = node_to_cpumask(cpu_to_node(cpu));
6741 cpus_and(*nodemask, *nodemask, *cpu_map);
6742 group = first_cpu(*nodemask);
6743
6744 if (sg)
6745 *sg = &per_cpu(sched_group_allnodes, group);
6746 return group;
6747 }
6748
6749 static void init_numa_sched_groups_power(struct sched_group *group_head)
6750 {
6751 struct sched_group *sg = group_head;
6752 int j;
6753
6754 if (!sg)
6755 return;
6756 do {
6757 for_each_cpu_mask(j, sg->cpumask) {
6758 struct sched_domain *sd;
6759
6760 sd = &per_cpu(phys_domains, j);
6761 if (j != first_cpu(sd->groups->cpumask)) {
6762 /*
6763 * Only add "power" once for each
6764 * physical package.
6765 */
6766 continue;
6767 }
6768
6769 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6770 }
6771 sg = sg->next;
6772 } while (sg != group_head);
6773 }
6774 #endif
6775
6776 #ifdef CONFIG_NUMA
6777 /* Free memory allocated for various sched_group structures */
6778 static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
6779 {
6780 int cpu, i;
6781
6782 for_each_cpu_mask(cpu, *cpu_map) {
6783 struct sched_group **sched_group_nodes
6784 = sched_group_nodes_bycpu[cpu];
6785
6786 if (!sched_group_nodes)
6787 continue;
6788
6789 for (i = 0; i < MAX_NUMNODES; i++) {
6790 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6791
6792 *nodemask = node_to_cpumask(i);
6793 cpus_and(*nodemask, *nodemask, *cpu_map);
6794 if (cpus_empty(*nodemask))
6795 continue;
6796
6797 if (sg == NULL)
6798 continue;
6799 sg = sg->next;
6800 next_sg:
6801 oldsg = sg;
6802 sg = sg->next;
6803 kfree(oldsg);
6804 if (oldsg != sched_group_nodes[i])
6805 goto next_sg;
6806 }
6807 kfree(sched_group_nodes);
6808 sched_group_nodes_bycpu[cpu] = NULL;
6809 }
6810 }
6811 #else
6812 static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
6813 {
6814 }
6815 #endif
6816
6817 /*
6818 * Initialize sched groups cpu_power.
6819 *
6820 * cpu_power indicates the capacity of sched group, which is used while
6821 * distributing the load between different sched groups in a sched domain.
6822 * Typically cpu_power for all the groups in a sched domain will be same unless
6823 * there are asymmetries in the topology. If there are asymmetries, group
6824 * having more cpu_power will pickup more load compared to the group having
6825 * less cpu_power.
6826 *
6827 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6828 * the maximum number of tasks a group can handle in the presence of other idle
6829 * or lightly loaded groups in the same sched domain.
6830 */
6831 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6832 {
6833 struct sched_domain *child;
6834 struct sched_group *group;
6835
6836 WARN_ON(!sd || !sd->groups);
6837
6838 if (cpu != first_cpu(sd->groups->cpumask))
6839 return;
6840
6841 child = sd->child;
6842
6843 sd->groups->__cpu_power = 0;
6844
6845 /*
6846 * For perf policy, if the groups in child domain share resources
6847 * (for example cores sharing some portions of the cache hierarchy
6848 * or SMT), then set this domain groups cpu_power such that each group
6849 * can handle only one task, when there are other idle groups in the
6850 * same sched domain.
6851 */
6852 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6853 (child->flags &
6854 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6855 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6856 return;
6857 }
6858
6859 /*
6860 * add cpu_power of each child group to this groups cpu_power
6861 */
6862 group = child->groups;
6863 do {
6864 sg_inc_cpu_power(sd->groups, group->__cpu_power);
6865 group = group->next;
6866 } while (group != child->groups);
6867 }
6868
6869 /*
6870 * Initializers for schedule domains
6871 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6872 */
6873
6874 #define SD_INIT(sd, type) sd_init_##type(sd)
6875 #define SD_INIT_FUNC(type) \
6876 static noinline void sd_init_##type(struct sched_domain *sd) \
6877 { \
6878 memset(sd, 0, sizeof(*sd)); \
6879 *sd = SD_##type##_INIT; \
6880 sd->level = SD_LV_##type; \
6881 }
6882
6883 SD_INIT_FUNC(CPU)
6884 #ifdef CONFIG_NUMA
6885 SD_INIT_FUNC(ALLNODES)
6886 SD_INIT_FUNC(NODE)
6887 #endif
6888 #ifdef CONFIG_SCHED_SMT
6889 SD_INIT_FUNC(SIBLING)
6890 #endif
6891 #ifdef CONFIG_SCHED_MC
6892 SD_INIT_FUNC(MC)
6893 #endif
6894
6895 /*
6896 * To minimize stack usage kmalloc room for cpumasks and share the
6897 * space as the usage in build_sched_domains() dictates. Used only
6898 * if the amount of space is significant.
6899 */
6900 struct allmasks {
6901 cpumask_t tmpmask; /* make this one first */
6902 union {
6903 cpumask_t nodemask;
6904 cpumask_t this_sibling_map;
6905 cpumask_t this_core_map;
6906 };
6907 cpumask_t send_covered;
6908
6909 #ifdef CONFIG_NUMA
6910 cpumask_t domainspan;
6911 cpumask_t covered;
6912 cpumask_t notcovered;
6913 #endif
6914 };
6915
6916 #if NR_CPUS > 128
6917 #define SCHED_CPUMASK_ALLOC 1
6918 #define SCHED_CPUMASK_FREE(v) kfree(v)
6919 #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
6920 #else
6921 #define SCHED_CPUMASK_ALLOC 0
6922 #define SCHED_CPUMASK_FREE(v)
6923 #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
6924 #endif
6925
6926 #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
6927 ((unsigned long)(a) + offsetof(struct allmasks, v))
6928
6929 static int default_relax_domain_level = -1;
6930
6931 static int __init setup_relax_domain_level(char *str)
6932 {
6933 unsigned long val;
6934
6935 val = simple_strtoul(str, NULL, 0);
6936 if (val < SD_LV_MAX)
6937 default_relax_domain_level = val;
6938
6939 return 1;
6940 }
6941 __setup("relax_domain_level=", setup_relax_domain_level);
6942
6943 static void set_domain_attribute(struct sched_domain *sd,
6944 struct sched_domain_attr *attr)
6945 {
6946 int request;
6947
6948 if (!attr || attr->relax_domain_level < 0) {
6949 if (default_relax_domain_level < 0)
6950 return;
6951 else
6952 request = default_relax_domain_level;
6953 } else
6954 request = attr->relax_domain_level;
6955 if (request < sd->level) {
6956 /* turn off idle balance on this domain */
6957 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
6958 } else {
6959 /* turn on idle balance on this domain */
6960 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
6961 }
6962 }
6963
6964 /*
6965 * Build sched domains for a given set of cpus and attach the sched domains
6966 * to the individual cpus
6967 */
6968 static int __build_sched_domains(const cpumask_t *cpu_map,
6969 struct sched_domain_attr *attr)
6970 {
6971 int i;
6972 struct root_domain *rd;
6973 SCHED_CPUMASK_DECLARE(allmasks);
6974 cpumask_t *tmpmask;
6975 #ifdef CONFIG_NUMA
6976 struct sched_group **sched_group_nodes = NULL;
6977 int sd_allnodes = 0;
6978
6979 /*
6980 * Allocate the per-node list of sched groups
6981 */
6982 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
6983 GFP_KERNEL);
6984 if (!sched_group_nodes) {
6985 printk(KERN_WARNING "Can not alloc sched group node list\n");
6986 return -ENOMEM;
6987 }
6988 #endif
6989
6990 rd = alloc_rootdomain();
6991 if (!rd) {
6992 printk(KERN_WARNING "Cannot alloc root domain\n");
6993 #ifdef CONFIG_NUMA
6994 kfree(sched_group_nodes);
6995 #endif
6996 return -ENOMEM;
6997 }
6998
6999 #if SCHED_CPUMASK_ALLOC
7000 /* get space for all scratch cpumask variables */
7001 allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
7002 if (!allmasks) {
7003 printk(KERN_WARNING "Cannot alloc cpumask array\n");
7004 kfree(rd);
7005 #ifdef CONFIG_NUMA
7006 kfree(sched_group_nodes);
7007 #endif
7008 return -ENOMEM;
7009 }
7010 #endif
7011 tmpmask = (cpumask_t *)allmasks;
7012
7013
7014 #ifdef CONFIG_NUMA
7015 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
7016 #endif
7017
7018 /*
7019 * Set up domains for cpus specified by the cpu_map.
7020 */
7021 for_each_cpu_mask(i, *cpu_map) {
7022 struct sched_domain *sd = NULL, *p;
7023 SCHED_CPUMASK_VAR(nodemask, allmasks);
7024
7025 *nodemask = node_to_cpumask(cpu_to_node(i));
7026 cpus_and(*nodemask, *nodemask, *cpu_map);
7027
7028 #ifdef CONFIG_NUMA
7029 if (cpus_weight(*cpu_map) >
7030 SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
7031 sd = &per_cpu(allnodes_domains, i);
7032 SD_INIT(sd, ALLNODES);
7033 set_domain_attribute(sd, attr);
7034 sd->span = *cpu_map;
7035 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7036 p = sd;
7037 sd_allnodes = 1;
7038 } else
7039 p = NULL;
7040
7041 sd = &per_cpu(node_domains, i);
7042 SD_INIT(sd, NODE);
7043 set_domain_attribute(sd, attr);
7044 sched_domain_node_span(cpu_to_node(i), &sd->span);
7045 sd->parent = p;
7046 if (p)
7047 p->child = sd;
7048 cpus_and(sd->span, sd->span, *cpu_map);
7049 #endif
7050
7051 p = sd;
7052 sd = &per_cpu(phys_domains, i);
7053 SD_INIT(sd, CPU);
7054 set_domain_attribute(sd, attr);
7055 sd->span = *nodemask;
7056 sd->parent = p;
7057 if (p)
7058 p->child = sd;
7059 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
7060
7061 #ifdef CONFIG_SCHED_MC
7062 p = sd;
7063 sd = &per_cpu(core_domains, i);
7064 SD_INIT(sd, MC);
7065 set_domain_attribute(sd, attr);
7066 sd->span = cpu_coregroup_map(i);
7067 cpus_and(sd->span, sd->span, *cpu_map);
7068 sd->parent = p;
7069 p->child = sd;
7070 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7071 #endif
7072
7073 #ifdef CONFIG_SCHED_SMT
7074 p = sd;
7075 sd = &per_cpu(cpu_domains, i);
7076 SD_INIT(sd, SIBLING);
7077 set_domain_attribute(sd, attr);
7078 sd->span = per_cpu(cpu_sibling_map, i);
7079 cpus_and(sd->span, sd->span, *cpu_map);
7080 sd->parent = p;
7081 p->child = sd;
7082 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
7083 #endif
7084 }
7085
7086 #ifdef CONFIG_SCHED_SMT
7087 /* Set up CPU (sibling) groups */
7088 for_each_cpu_mask(i, *cpu_map) {
7089 SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
7090 SCHED_CPUMASK_VAR(send_covered, allmasks);
7091
7092 *this_sibling_map = per_cpu(cpu_sibling_map, i);
7093 cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
7094 if (i != first_cpu(*this_sibling_map))
7095 continue;
7096
7097 init_sched_build_groups(this_sibling_map, cpu_map,
7098 &cpu_to_cpu_group,
7099 send_covered, tmpmask);
7100 }
7101 #endif
7102
7103 #ifdef CONFIG_SCHED_MC
7104 /* Set up multi-core groups */
7105 for_each_cpu_mask(i, *cpu_map) {
7106 SCHED_CPUMASK_VAR(this_core_map, allmasks);
7107 SCHED_CPUMASK_VAR(send_covered, allmasks);
7108
7109 *this_core_map = cpu_coregroup_map(i);
7110 cpus_and(*this_core_map, *this_core_map, *cpu_map);
7111 if (i != first_cpu(*this_core_map))
7112 continue;
7113
7114 init_sched_build_groups(this_core_map, cpu_map,
7115 &cpu_to_core_group,
7116 send_covered, tmpmask);
7117 }
7118 #endif
7119
7120 /* Set up physical groups */
7121 for (i = 0; i < MAX_NUMNODES; i++) {
7122 SCHED_CPUMASK_VAR(nodemask, allmasks);
7123 SCHED_CPUMASK_VAR(send_covered, allmasks);
7124
7125 *nodemask = node_to_cpumask(i);
7126 cpus_and(*nodemask, *nodemask, *cpu_map);
7127 if (cpus_empty(*nodemask))
7128 continue;
7129
7130 init_sched_build_groups(nodemask, cpu_map,
7131 &cpu_to_phys_group,
7132 send_covered, tmpmask);
7133 }
7134
7135 #ifdef CONFIG_NUMA
7136 /* Set up node groups */
7137 if (sd_allnodes) {
7138 SCHED_CPUMASK_VAR(send_covered, allmasks);
7139
7140 init_sched_build_groups(cpu_map, cpu_map,
7141 &cpu_to_allnodes_group,
7142 send_covered, tmpmask);
7143 }
7144
7145 for (i = 0; i < MAX_NUMNODES; i++) {
7146 /* Set up node groups */
7147 struct sched_group *sg, *prev;
7148 SCHED_CPUMASK_VAR(nodemask, allmasks);
7149 SCHED_CPUMASK_VAR(domainspan, allmasks);
7150 SCHED_CPUMASK_VAR(covered, allmasks);
7151 int j;
7152
7153 *nodemask = node_to_cpumask(i);
7154 cpus_clear(*covered);
7155
7156 cpus_and(*nodemask, *nodemask, *cpu_map);
7157 if (cpus_empty(*nodemask)) {
7158 sched_group_nodes[i] = NULL;
7159 continue;
7160 }
7161
7162 sched_domain_node_span(i, domainspan);
7163 cpus_and(*domainspan, *domainspan, *cpu_map);
7164
7165 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
7166 if (!sg) {
7167 printk(KERN_WARNING "Can not alloc domain group for "
7168 "node %d\n", i);
7169 goto error;
7170 }
7171 sched_group_nodes[i] = sg;
7172 for_each_cpu_mask(j, *nodemask) {
7173 struct sched_domain *sd;
7174
7175 sd = &per_cpu(node_domains, j);
7176 sd->groups = sg;
7177 }
7178 sg->__cpu_power = 0;
7179 sg->cpumask = *nodemask;
7180 sg->next = sg;
7181 cpus_or(*covered, *covered, *nodemask);
7182 prev = sg;
7183
7184 for (j = 0; j < MAX_NUMNODES; j++) {
7185 SCHED_CPUMASK_VAR(notcovered, allmasks);
7186 int n = (i + j) % MAX_NUMNODES;
7187 node_to_cpumask_ptr(pnodemask, n);
7188
7189 cpus_complement(*notcovered, *covered);
7190 cpus_and(*tmpmask, *notcovered, *cpu_map);
7191 cpus_and(*tmpmask, *tmpmask, *domainspan);
7192 if (cpus_empty(*tmpmask))
7193 break;
7194
7195 cpus_and(*tmpmask, *tmpmask, *pnodemask);
7196 if (cpus_empty(*tmpmask))
7197 continue;
7198
7199 sg = kmalloc_node(sizeof(struct sched_group),
7200 GFP_KERNEL, i);
7201 if (!sg) {
7202 printk(KERN_WARNING
7203 "Can not alloc domain group for node %d\n", j);
7204 goto error;
7205 }
7206 sg->__cpu_power = 0;
7207 sg->cpumask = *tmpmask;
7208 sg->next = prev->next;
7209 cpus_or(*covered, *covered, *tmpmask);
7210 prev->next = sg;
7211 prev = sg;
7212 }
7213 }
7214 #endif
7215
7216 /* Calculate CPU power for physical packages and nodes */
7217 #ifdef CONFIG_SCHED_SMT
7218 for_each_cpu_mask(i, *cpu_map) {
7219 struct sched_domain *sd = &per_cpu(cpu_domains, i);
7220
7221 init_sched_groups_power(i, sd);
7222 }
7223 #endif
7224 #ifdef CONFIG_SCHED_MC
7225 for_each_cpu_mask(i, *cpu_map) {
7226 struct sched_domain *sd = &per_cpu(core_domains, i);
7227
7228 init_sched_groups_power(i, sd);
7229 }
7230 #endif
7231
7232 for_each_cpu_mask(i, *cpu_map) {
7233 struct sched_domain *sd = &per_cpu(phys_domains, i);
7234
7235 init_sched_groups_power(i, sd);
7236 }
7237
7238 #ifdef CONFIG_NUMA
7239 for (i = 0; i < MAX_NUMNODES; i++)
7240 init_numa_sched_groups_power(sched_group_nodes[i]);
7241
7242 if (sd_allnodes) {
7243 struct sched_group *sg;
7244
7245 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
7246 tmpmask);
7247 init_numa_sched_groups_power(sg);
7248 }
7249 #endif
7250
7251 /* Attach the domains */
7252 for_each_cpu_mask(i, *cpu_map) {
7253 struct sched_domain *sd;
7254 #ifdef CONFIG_SCHED_SMT
7255 sd = &per_cpu(cpu_domains, i);
7256 #elif defined(CONFIG_SCHED_MC)
7257 sd = &per_cpu(core_domains, i);
7258 #else
7259 sd = &per_cpu(phys_domains, i);
7260 #endif
7261 cpu_attach_domain(sd, rd, i);
7262 }
7263
7264 SCHED_CPUMASK_FREE((void *)allmasks);
7265 return 0;
7266
7267 #ifdef CONFIG_NUMA
7268 error:
7269 free_sched_groups(cpu_map, tmpmask);
7270 SCHED_CPUMASK_FREE((void *)allmasks);
7271 return -ENOMEM;
7272 #endif
7273 }
7274
7275 static int build_sched_domains(const cpumask_t *cpu_map)
7276 {
7277 return __build_sched_domains(cpu_map, NULL);
7278 }
7279
7280 static cpumask_t *doms_cur; /* current sched domains */
7281 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7282 static struct sched_domain_attr *dattr_cur;
7283 /* attribues of custom domains in 'doms_cur' */
7284
7285 /*
7286 * Special case: If a kmalloc of a doms_cur partition (array of
7287 * cpumask_t) fails, then fallback to a single sched domain,
7288 * as determined by the single cpumask_t fallback_doms.
7289 */
7290 static cpumask_t fallback_doms;
7291
7292 void __attribute__((weak)) arch_update_cpu_topology(void)
7293 {
7294 }
7295
7296 /*
7297 * Free current domain masks.
7298 * Called after all cpus are attached to NULL domain.
7299 */
7300 static void free_sched_domains(void)
7301 {
7302 ndoms_cur = 0;
7303 if (doms_cur != &fallback_doms)
7304 kfree(doms_cur);
7305 doms_cur = &fallback_doms;
7306 }
7307
7308 /*
7309 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7310 * For now this just excludes isolated cpus, but could be used to
7311 * exclude other special cases in the future.
7312 */
7313 static int arch_init_sched_domains(const cpumask_t *cpu_map)
7314 {
7315 int err;
7316
7317 arch_update_cpu_topology();
7318 ndoms_cur = 1;
7319 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
7320 if (!doms_cur)
7321 doms_cur = &fallback_doms;
7322 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7323 dattr_cur = NULL;
7324 err = build_sched_domains(doms_cur);
7325 register_sched_domain_sysctl();
7326
7327 return err;
7328 }
7329
7330 static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
7331 cpumask_t *tmpmask)
7332 {
7333 free_sched_groups(cpu_map, tmpmask);
7334 }
7335
7336 /*
7337 * Detach sched domains from a group of cpus specified in cpu_map
7338 * These cpus will now be attached to the NULL domain
7339 */
7340 static void detach_destroy_domains(const cpumask_t *cpu_map)
7341 {
7342 cpumask_t tmpmask;
7343 int i;
7344
7345 unregister_sched_domain_sysctl();
7346
7347 for_each_cpu_mask(i, *cpu_map)
7348 cpu_attach_domain(NULL, &def_root_domain, i);
7349 synchronize_sched();
7350 arch_destroy_sched_domains(cpu_map, &tmpmask);
7351 }
7352
7353 /* handle null as "default" */
7354 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7355 struct sched_domain_attr *new, int idx_new)
7356 {
7357 struct sched_domain_attr tmp;
7358
7359 /* fast path */
7360 if (!new && !cur)
7361 return 1;
7362
7363 tmp = SD_ATTR_INIT;
7364 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7365 new ? (new + idx_new) : &tmp,
7366 sizeof(struct sched_domain_attr));
7367 }
7368
7369 /*
7370 * Partition sched domains as specified by the 'ndoms_new'
7371 * cpumasks in the array doms_new[] of cpumasks. This compares
7372 * doms_new[] to the current sched domain partitioning, doms_cur[].
7373 * It destroys each deleted domain and builds each new domain.
7374 *
7375 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
7376 * The masks don't intersect (don't overlap.) We should setup one
7377 * sched domain for each mask. CPUs not in any of the cpumasks will
7378 * not be load balanced. If the same cpumask appears both in the
7379 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7380 * it as it is.
7381 *
7382 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7383 * ownership of it and will kfree it when done with it. If the caller
7384 * failed the kmalloc call, then it can pass in doms_new == NULL,
7385 * and partition_sched_domains() will fallback to the single partition
7386 * 'fallback_doms'.
7387 *
7388 * Call with hotplug lock held
7389 */
7390 void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
7391 struct sched_domain_attr *dattr_new)
7392 {
7393 int i, j;
7394
7395 mutex_lock(&sched_domains_mutex);
7396
7397 /* always unregister in case we don't destroy any domains */
7398 unregister_sched_domain_sysctl();
7399
7400 if (doms_new == NULL) {
7401 ndoms_new = 1;
7402 doms_new = &fallback_doms;
7403 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
7404 dattr_new = NULL;
7405 }
7406
7407 /* Destroy deleted domains */
7408 for (i = 0; i < ndoms_cur; i++) {
7409 for (j = 0; j < ndoms_new; j++) {
7410 if (cpus_equal(doms_cur[i], doms_new[j])
7411 && dattrs_equal(dattr_cur, i, dattr_new, j))
7412 goto match1;
7413 }
7414 /* no match - a current sched domain not in new doms_new[] */
7415 detach_destroy_domains(doms_cur + i);
7416 match1:
7417 ;
7418 }
7419
7420 /* Build new domains */
7421 for (i = 0; i < ndoms_new; i++) {
7422 for (j = 0; j < ndoms_cur; j++) {
7423 if (cpus_equal(doms_new[i], doms_cur[j])
7424 && dattrs_equal(dattr_new, i, dattr_cur, j))
7425 goto match2;
7426 }
7427 /* no match - add a new doms_new */
7428 __build_sched_domains(doms_new + i,
7429 dattr_new ? dattr_new + i : NULL);
7430 match2:
7431 ;
7432 }
7433
7434 /* Remember the new sched domains */
7435 if (doms_cur != &fallback_doms)
7436 kfree(doms_cur);
7437 kfree(dattr_cur); /* kfree(NULL) is safe */
7438 doms_cur = doms_new;
7439 dattr_cur = dattr_new;
7440 ndoms_cur = ndoms_new;
7441
7442 register_sched_domain_sysctl();
7443
7444 mutex_unlock(&sched_domains_mutex);
7445 }
7446
7447 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7448 int arch_reinit_sched_domains(void)
7449 {
7450 int err;
7451
7452 get_online_cpus();
7453 mutex_lock(&sched_domains_mutex);
7454 detach_destroy_domains(&cpu_online_map);
7455 free_sched_domains();
7456 err = arch_init_sched_domains(&cpu_online_map);
7457 mutex_unlock(&sched_domains_mutex);
7458 put_online_cpus();
7459
7460 return err;
7461 }
7462
7463 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7464 {
7465 int ret;
7466
7467 if (buf[0] != '0' && buf[0] != '1')
7468 return -EINVAL;
7469
7470 if (smt)
7471 sched_smt_power_savings = (buf[0] == '1');
7472 else
7473 sched_mc_power_savings = (buf[0] == '1');
7474
7475 ret = arch_reinit_sched_domains();
7476
7477 return ret ? ret : count;
7478 }
7479
7480 #ifdef CONFIG_SCHED_MC
7481 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
7482 {
7483 return sprintf(page, "%u\n", sched_mc_power_savings);
7484 }
7485 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
7486 const char *buf, size_t count)
7487 {
7488 return sched_power_savings_store(buf, count, 0);
7489 }
7490 static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
7491 sched_mc_power_savings_store);
7492 #endif
7493
7494 #ifdef CONFIG_SCHED_SMT
7495 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
7496 {
7497 return sprintf(page, "%u\n", sched_smt_power_savings);
7498 }
7499 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
7500 const char *buf, size_t count)
7501 {
7502 return sched_power_savings_store(buf, count, 1);
7503 }
7504 static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
7505 sched_smt_power_savings_store);
7506 #endif
7507
7508 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7509 {
7510 int err = 0;
7511
7512 #ifdef CONFIG_SCHED_SMT
7513 if (smt_capable())
7514 err = sysfs_create_file(&cls->kset.kobj,
7515 &attr_sched_smt_power_savings.attr);
7516 #endif
7517 #ifdef CONFIG_SCHED_MC
7518 if (!err && mc_capable())
7519 err = sysfs_create_file(&cls->kset.kobj,
7520 &attr_sched_mc_power_savings.attr);
7521 #endif
7522 return err;
7523 }
7524 #endif
7525
7526 /*
7527 * Force a reinitialization of the sched domains hierarchy. The domains
7528 * and groups cannot be updated in place without racing with the balancing
7529 * code, so we temporarily attach all running cpus to the NULL domain
7530 * which will prevent rebalancing while the sched domains are recalculated.
7531 */
7532 static int update_sched_domains(struct notifier_block *nfb,
7533 unsigned long action, void *hcpu)
7534 {
7535 switch (action) {
7536 case CPU_UP_PREPARE:
7537 case CPU_UP_PREPARE_FROZEN:
7538 case CPU_DOWN_PREPARE:
7539 case CPU_DOWN_PREPARE_FROZEN:
7540 detach_destroy_domains(&cpu_online_map);
7541 free_sched_domains();
7542 return NOTIFY_OK;
7543
7544 case CPU_UP_CANCELED:
7545 case CPU_UP_CANCELED_FROZEN:
7546 case CPU_DOWN_FAILED:
7547 case CPU_DOWN_FAILED_FROZEN:
7548 case CPU_ONLINE:
7549 case CPU_ONLINE_FROZEN:
7550 case CPU_DEAD:
7551 case CPU_DEAD_FROZEN:
7552 /*
7553 * Fall through and re-initialise the domains.
7554 */
7555 break;
7556 default:
7557 return NOTIFY_DONE;
7558 }
7559
7560 #ifndef CONFIG_CPUSETS
7561 /*
7562 * Create default domain partitioning if cpusets are disabled.
7563 * Otherwise we let cpusets rebuild the domains based on the
7564 * current setup.
7565 */
7566
7567 /* The hotplug lock is already held by cpu_up/cpu_down */
7568 arch_init_sched_domains(&cpu_online_map);
7569 #endif
7570
7571 return NOTIFY_OK;
7572 }
7573
7574 void __init sched_init_smp(void)
7575 {
7576 cpumask_t non_isolated_cpus;
7577
7578 #if defined(CONFIG_NUMA)
7579 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7580 GFP_KERNEL);
7581 BUG_ON(sched_group_nodes_bycpu == NULL);
7582 #endif
7583 get_online_cpus();
7584 mutex_lock(&sched_domains_mutex);
7585 arch_init_sched_domains(&cpu_online_map);
7586 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7587 if (cpus_empty(non_isolated_cpus))
7588 cpu_set(smp_processor_id(), non_isolated_cpus);
7589 mutex_unlock(&sched_domains_mutex);
7590 put_online_cpus();
7591 /* XXX: Theoretical race here - CPU may be hotplugged now */
7592 hotcpu_notifier(update_sched_domains, 0);
7593 init_hrtick();
7594
7595 /* Move init over to a non-isolated CPU */
7596 if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
7597 BUG();
7598 sched_init_granularity();
7599 }
7600 #else
7601 void __init sched_init_smp(void)
7602 {
7603 sched_init_granularity();
7604 }
7605 #endif /* CONFIG_SMP */
7606
7607 int in_sched_functions(unsigned long addr)
7608 {
7609 return in_lock_functions(addr) ||
7610 (addr >= (unsigned long)__sched_text_start
7611 && addr < (unsigned long)__sched_text_end);
7612 }
7613
7614 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
7615 {
7616 cfs_rq->tasks_timeline = RB_ROOT;
7617 INIT_LIST_HEAD(&cfs_rq->tasks);
7618 #ifdef CONFIG_FAIR_GROUP_SCHED
7619 cfs_rq->rq = rq;
7620 #endif
7621 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7622 }
7623
7624 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7625 {
7626 struct rt_prio_array *array;
7627 int i;
7628
7629 array = &rt_rq->active;
7630 for (i = 0; i < MAX_RT_PRIO; i++) {
7631 INIT_LIST_HEAD(array->queue + i);
7632 __clear_bit(i, array->bitmap);
7633 }
7634 /* delimiter for bitsearch: */
7635 __set_bit(MAX_RT_PRIO, array->bitmap);
7636
7637 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7638 rt_rq->highest_prio = MAX_RT_PRIO;
7639 #endif
7640 #ifdef CONFIG_SMP
7641 rt_rq->rt_nr_migratory = 0;
7642 rt_rq->overloaded = 0;
7643 #endif
7644
7645 rt_rq->rt_time = 0;
7646 rt_rq->rt_throttled = 0;
7647 rt_rq->rt_runtime = 0;
7648 spin_lock_init(&rt_rq->rt_runtime_lock);
7649
7650 #ifdef CONFIG_RT_GROUP_SCHED
7651 rt_rq->rt_nr_boosted = 0;
7652 rt_rq->rq = rq;
7653 #endif
7654 }
7655
7656 #ifdef CONFIG_FAIR_GROUP_SCHED
7657 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7658 struct sched_entity *se, int cpu, int add,
7659 struct sched_entity *parent)
7660 {
7661 struct rq *rq = cpu_rq(cpu);
7662 tg->cfs_rq[cpu] = cfs_rq;
7663 init_cfs_rq(cfs_rq, rq);
7664 cfs_rq->tg = tg;
7665 if (add)
7666 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7667
7668 tg->se[cpu] = se;
7669 /* se could be NULL for init_task_group */
7670 if (!se)
7671 return;
7672
7673 if (!parent)
7674 se->cfs_rq = &rq->cfs;
7675 else
7676 se->cfs_rq = parent->my_q;
7677
7678 se->my_q = cfs_rq;
7679 se->load.weight = tg->shares;
7680 se->load.inv_weight = 0;
7681 se->parent = parent;
7682 }
7683 #endif
7684
7685 #ifdef CONFIG_RT_GROUP_SCHED
7686 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7687 struct sched_rt_entity *rt_se, int cpu, int add,
7688 struct sched_rt_entity *parent)
7689 {
7690 struct rq *rq = cpu_rq(cpu);
7691
7692 tg->rt_rq[cpu] = rt_rq;
7693 init_rt_rq(rt_rq, rq);
7694 rt_rq->tg = tg;
7695 rt_rq->rt_se = rt_se;
7696 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
7697 if (add)
7698 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7699
7700 tg->rt_se[cpu] = rt_se;
7701 if (!rt_se)
7702 return;
7703
7704 if (!parent)
7705 rt_se->rt_rq = &rq->rt;
7706 else
7707 rt_se->rt_rq = parent->my_q;
7708
7709 rt_se->my_q = rt_rq;
7710 rt_se->parent = parent;
7711 INIT_LIST_HEAD(&rt_se->run_list);
7712 }
7713 #endif
7714
7715 void __init sched_init(void)
7716 {
7717 int i, j;
7718 unsigned long alloc_size = 0, ptr;
7719
7720 #ifdef CONFIG_FAIR_GROUP_SCHED
7721 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7722 #endif
7723 #ifdef CONFIG_RT_GROUP_SCHED
7724 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7725 #endif
7726 #ifdef CONFIG_USER_SCHED
7727 alloc_size *= 2;
7728 #endif
7729 /*
7730 * As sched_init() is called before page_alloc is setup,
7731 * we use alloc_bootmem().
7732 */
7733 if (alloc_size) {
7734 ptr = (unsigned long)alloc_bootmem(alloc_size);
7735
7736 #ifdef CONFIG_FAIR_GROUP_SCHED
7737 init_task_group.se = (struct sched_entity **)ptr;
7738 ptr += nr_cpu_ids * sizeof(void **);
7739
7740 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7741 ptr += nr_cpu_ids * sizeof(void **);
7742
7743 #ifdef CONFIG_USER_SCHED
7744 root_task_group.se = (struct sched_entity **)ptr;
7745 ptr += nr_cpu_ids * sizeof(void **);
7746
7747 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7748 ptr += nr_cpu_ids * sizeof(void **);
7749 #endif
7750 #endif
7751 #ifdef CONFIG_RT_GROUP_SCHED
7752 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7753 ptr += nr_cpu_ids * sizeof(void **);
7754
7755 init_task_group.rt_rq = (struct rt_rq **)ptr;
7756 ptr += nr_cpu_ids * sizeof(void **);
7757
7758 #ifdef CONFIG_USER_SCHED
7759 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7760 ptr += nr_cpu_ids * sizeof(void **);
7761
7762 root_task_group.rt_rq = (struct rt_rq **)ptr;
7763 ptr += nr_cpu_ids * sizeof(void **);
7764 #endif
7765 #endif
7766 }
7767
7768 #ifdef CONFIG_SMP
7769 init_defrootdomain();
7770 #endif
7771
7772 init_rt_bandwidth(&def_rt_bandwidth,
7773 global_rt_period(), global_rt_runtime());
7774
7775 #ifdef CONFIG_RT_GROUP_SCHED
7776 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7777 global_rt_period(), global_rt_runtime());
7778 #ifdef CONFIG_USER_SCHED
7779 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7780 global_rt_period(), RUNTIME_INF);
7781 #endif
7782 #endif
7783
7784 #ifdef CONFIG_GROUP_SCHED
7785 list_add(&init_task_group.list, &task_groups);
7786 INIT_LIST_HEAD(&init_task_group.children);
7787
7788 #ifdef CONFIG_USER_SCHED
7789 INIT_LIST_HEAD(&root_task_group.children);
7790 init_task_group.parent = &root_task_group;
7791 list_add(&init_task_group.siblings, &root_task_group.children);
7792 #endif
7793 #endif
7794
7795 for_each_possible_cpu(i) {
7796 struct rq *rq;
7797
7798 rq = cpu_rq(i);
7799 spin_lock_init(&rq->lock);
7800 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7801 rq->nr_running = 0;
7802 init_cfs_rq(&rq->cfs, rq);
7803 init_rt_rq(&rq->rt, rq);
7804 #ifdef CONFIG_FAIR_GROUP_SCHED
7805 init_task_group.shares = init_task_group_load;
7806 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7807 #ifdef CONFIG_CGROUP_SCHED
7808 /*
7809 * How much cpu bandwidth does init_task_group get?
7810 *
7811 * In case of task-groups formed thr' the cgroup filesystem, it
7812 * gets 100% of the cpu resources in the system. This overall
7813 * system cpu resource is divided among the tasks of
7814 * init_task_group and its child task-groups in a fair manner,
7815 * based on each entity's (task or task-group's) weight
7816 * (se->load.weight).
7817 *
7818 * In other words, if init_task_group has 10 tasks of weight
7819 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7820 * then A0's share of the cpu resource is:
7821 *
7822 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7823 *
7824 * We achieve this by letting init_task_group's tasks sit
7825 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7826 */
7827 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
7828 #elif defined CONFIG_USER_SCHED
7829 root_task_group.shares = NICE_0_LOAD;
7830 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
7831 /*
7832 * In case of task-groups formed thr' the user id of tasks,
7833 * init_task_group represents tasks belonging to root user.
7834 * Hence it forms a sibling of all subsequent groups formed.
7835 * In this case, init_task_group gets only a fraction of overall
7836 * system cpu resource, based on the weight assigned to root
7837 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
7838 * by letting tasks of init_task_group sit in a separate cfs_rq
7839 * (init_cfs_rq) and having one entity represent this group of
7840 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
7841 */
7842 init_tg_cfs_entry(&init_task_group,
7843 &per_cpu(init_cfs_rq, i),
7844 &per_cpu(init_sched_entity, i), i, 1,
7845 root_task_group.se[i]);
7846
7847 #endif
7848 #endif /* CONFIG_FAIR_GROUP_SCHED */
7849
7850 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7851 #ifdef CONFIG_RT_GROUP_SCHED
7852 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7853 #ifdef CONFIG_CGROUP_SCHED
7854 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
7855 #elif defined CONFIG_USER_SCHED
7856 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
7857 init_tg_rt_entry(&init_task_group,
7858 &per_cpu(init_rt_rq, i),
7859 &per_cpu(init_sched_rt_entity, i), i, 1,
7860 root_task_group.rt_se[i]);
7861 #endif
7862 #endif
7863
7864 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7865 rq->cpu_load[j] = 0;
7866 #ifdef CONFIG_SMP
7867 rq->sd = NULL;
7868 rq->rd = NULL;
7869 rq->active_balance = 0;
7870 rq->next_balance = jiffies;
7871 rq->push_cpu = 0;
7872 rq->cpu = i;
7873 rq->migration_thread = NULL;
7874 INIT_LIST_HEAD(&rq->migration_queue);
7875 rq_attach_root(rq, &def_root_domain);
7876 #endif
7877 init_rq_hrtick(rq);
7878 atomic_set(&rq->nr_iowait, 0);
7879 }
7880
7881 set_load_weight(&init_task);
7882
7883 #ifdef CONFIG_PREEMPT_NOTIFIERS
7884 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7885 #endif
7886
7887 #ifdef CONFIG_SMP
7888 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
7889 #endif
7890
7891 #ifdef CONFIG_RT_MUTEXES
7892 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
7893 #endif
7894
7895 /*
7896 * The boot idle thread does lazy MMU switching as well:
7897 */
7898 atomic_inc(&init_mm.mm_count);
7899 enter_lazy_tlb(&init_mm, current);
7900
7901 /*
7902 * Make us the idle thread. Technically, schedule() should not be
7903 * called from this thread, however somewhere below it might be,
7904 * but because we are the idle thread, we just pick up running again
7905 * when this runqueue becomes "idle".
7906 */
7907 init_idle(current, smp_processor_id());
7908 /*
7909 * During early bootup we pretend to be a normal task:
7910 */
7911 current->sched_class = &fair_sched_class;
7912
7913 scheduler_running = 1;
7914 }
7915
7916 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7917 void __might_sleep(char *file, int line)
7918 {
7919 #ifdef in_atomic
7920 static unsigned long prev_jiffy; /* ratelimiting */
7921
7922 if ((in_atomic() || irqs_disabled()) &&
7923 system_state == SYSTEM_RUNNING && !oops_in_progress) {
7924 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7925 return;
7926 prev_jiffy = jiffies;
7927 printk(KERN_ERR "BUG: sleeping function called from invalid"
7928 " context at %s:%d\n", file, line);
7929 printk("in_atomic():%d, irqs_disabled():%d\n",
7930 in_atomic(), irqs_disabled());
7931 debug_show_held_locks(current);
7932 if (irqs_disabled())
7933 print_irqtrace_events(current);
7934 dump_stack();
7935 }
7936 #endif
7937 }
7938 EXPORT_SYMBOL(__might_sleep);
7939 #endif
7940
7941 #ifdef CONFIG_MAGIC_SYSRQ
7942 static void normalize_task(struct rq *rq, struct task_struct *p)
7943 {
7944 int on_rq;
7945
7946 update_rq_clock(rq);
7947 on_rq = p->se.on_rq;
7948 if (on_rq)
7949 deactivate_task(rq, p, 0);
7950 __setscheduler(rq, p, SCHED_NORMAL, 0);
7951 if (on_rq) {
7952 activate_task(rq, p, 0);
7953 resched_task(rq->curr);
7954 }
7955 }
7956
7957 void normalize_rt_tasks(void)
7958 {
7959 struct task_struct *g, *p;
7960 unsigned long flags;
7961 struct rq *rq;
7962
7963 read_lock_irqsave(&tasklist_lock, flags);
7964 do_each_thread(g, p) {
7965 /*
7966 * Only normalize user tasks:
7967 */
7968 if (!p->mm)
7969 continue;
7970
7971 p->se.exec_start = 0;
7972 #ifdef CONFIG_SCHEDSTATS
7973 p->se.wait_start = 0;
7974 p->se.sleep_start = 0;
7975 p->se.block_start = 0;
7976 #endif
7977
7978 if (!rt_task(p)) {
7979 /*
7980 * Renice negative nice level userspace
7981 * tasks back to 0:
7982 */
7983 if (TASK_NICE(p) < 0 && p->mm)
7984 set_user_nice(p, 0);
7985 continue;
7986 }
7987
7988 spin_lock(&p->pi_lock);
7989 rq = __task_rq_lock(p);
7990
7991 normalize_task(rq, p);
7992
7993 __task_rq_unlock(rq);
7994 spin_unlock(&p->pi_lock);
7995 } while_each_thread(g, p);
7996
7997 read_unlock_irqrestore(&tasklist_lock, flags);
7998 }
7999
8000 #endif /* CONFIG_MAGIC_SYSRQ */
8001
8002 #ifdef CONFIG_IA64
8003 /*
8004 * These functions are only useful for the IA64 MCA handling.
8005 *
8006 * They can only be called when the whole system has been
8007 * stopped - every CPU needs to be quiescent, and no scheduling
8008 * activity can take place. Using them for anything else would
8009 * be a serious bug, and as a result, they aren't even visible
8010 * under any other configuration.
8011 */
8012
8013 /**
8014 * curr_task - return the current task for a given cpu.
8015 * @cpu: the processor in question.
8016 *
8017 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8018 */
8019 struct task_struct *curr_task(int cpu)
8020 {
8021 return cpu_curr(cpu);
8022 }
8023
8024 /**
8025 * set_curr_task - set the current task for a given cpu.
8026 * @cpu: the processor in question.
8027 * @p: the task pointer to set.
8028 *
8029 * Description: This function must only be used when non-maskable interrupts
8030 * are serviced on a separate stack. It allows the architecture to switch the
8031 * notion of the current task on a cpu in a non-blocking manner. This function
8032 * must be called with all CPU's synchronized, and interrupts disabled, the
8033 * and caller must save the original value of the current task (see
8034 * curr_task() above) and restore that value before reenabling interrupts and
8035 * re-starting the system.
8036 *
8037 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8038 */
8039 void set_curr_task(int cpu, struct task_struct *p)
8040 {
8041 cpu_curr(cpu) = p;
8042 }
8043
8044 #endif
8045
8046 #ifdef CONFIG_FAIR_GROUP_SCHED
8047 static void free_fair_sched_group(struct task_group *tg)
8048 {
8049 int i;
8050
8051 for_each_possible_cpu(i) {
8052 if (tg->cfs_rq)
8053 kfree(tg->cfs_rq[i]);
8054 if (tg->se)
8055 kfree(tg->se[i]);
8056 }
8057
8058 kfree(tg->cfs_rq);
8059 kfree(tg->se);
8060 }
8061
8062 static
8063 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8064 {
8065 struct cfs_rq *cfs_rq;
8066 struct sched_entity *se, *parent_se;
8067 struct rq *rq;
8068 int i;
8069
8070 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8071 if (!tg->cfs_rq)
8072 goto err;
8073 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8074 if (!tg->se)
8075 goto err;
8076
8077 tg->shares = NICE_0_LOAD;
8078
8079 for_each_possible_cpu(i) {
8080 rq = cpu_rq(i);
8081
8082 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
8083 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8084 if (!cfs_rq)
8085 goto err;
8086
8087 se = kmalloc_node(sizeof(struct sched_entity),
8088 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8089 if (!se)
8090 goto err;
8091
8092 parent_se = parent ? parent->se[i] : NULL;
8093 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
8094 }
8095
8096 return 1;
8097
8098 err:
8099 return 0;
8100 }
8101
8102 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8103 {
8104 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8105 &cpu_rq(cpu)->leaf_cfs_rq_list);
8106 }
8107
8108 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8109 {
8110 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8111 }
8112 #else
8113 static inline void free_fair_sched_group(struct task_group *tg)
8114 {
8115 }
8116
8117 static inline
8118 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8119 {
8120 return 1;
8121 }
8122
8123 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8124 {
8125 }
8126
8127 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8128 {
8129 }
8130 #endif
8131
8132 #ifdef CONFIG_RT_GROUP_SCHED
8133 static void free_rt_sched_group(struct task_group *tg)
8134 {
8135 int i;
8136
8137 destroy_rt_bandwidth(&tg->rt_bandwidth);
8138
8139 for_each_possible_cpu(i) {
8140 if (tg->rt_rq)
8141 kfree(tg->rt_rq[i]);
8142 if (tg->rt_se)
8143 kfree(tg->rt_se[i]);
8144 }
8145
8146 kfree(tg->rt_rq);
8147 kfree(tg->rt_se);
8148 }
8149
8150 static
8151 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8152 {
8153 struct rt_rq *rt_rq;
8154 struct sched_rt_entity *rt_se, *parent_se;
8155 struct rq *rq;
8156 int i;
8157
8158 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8159 if (!tg->rt_rq)
8160 goto err;
8161 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8162 if (!tg->rt_se)
8163 goto err;
8164
8165 init_rt_bandwidth(&tg->rt_bandwidth,
8166 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8167
8168 for_each_possible_cpu(i) {
8169 rq = cpu_rq(i);
8170
8171 rt_rq = kmalloc_node(sizeof(struct rt_rq),
8172 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8173 if (!rt_rq)
8174 goto err;
8175
8176 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
8177 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8178 if (!rt_se)
8179 goto err;
8180
8181 parent_se = parent ? parent->rt_se[i] : NULL;
8182 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
8183 }
8184
8185 return 1;
8186
8187 err:
8188 return 0;
8189 }
8190
8191 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8192 {
8193 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8194 &cpu_rq(cpu)->leaf_rt_rq_list);
8195 }
8196
8197 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8198 {
8199 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8200 }
8201 #else
8202 static inline void free_rt_sched_group(struct task_group *tg)
8203 {
8204 }
8205
8206 static inline
8207 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8208 {
8209 return 1;
8210 }
8211
8212 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8213 {
8214 }
8215
8216 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8217 {
8218 }
8219 #endif
8220
8221 #ifdef CONFIG_GROUP_SCHED
8222 static void free_sched_group(struct task_group *tg)
8223 {
8224 free_fair_sched_group(tg);
8225 free_rt_sched_group(tg);
8226 kfree(tg);
8227 }
8228
8229 /* allocate runqueue etc for a new task group */
8230 struct task_group *sched_create_group(struct task_group *parent)
8231 {
8232 struct task_group *tg;
8233 unsigned long flags;
8234 int i;
8235
8236 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8237 if (!tg)
8238 return ERR_PTR(-ENOMEM);
8239
8240 if (!alloc_fair_sched_group(tg, parent))
8241 goto err;
8242
8243 if (!alloc_rt_sched_group(tg, parent))
8244 goto err;
8245
8246 spin_lock_irqsave(&task_group_lock, flags);
8247 for_each_possible_cpu(i) {
8248 register_fair_sched_group(tg, i);
8249 register_rt_sched_group(tg, i);
8250 }
8251 list_add_rcu(&tg->list, &task_groups);
8252
8253 WARN_ON(!parent); /* root should already exist */
8254
8255 tg->parent = parent;
8256 list_add_rcu(&tg->siblings, &parent->children);
8257 INIT_LIST_HEAD(&tg->children);
8258 spin_unlock_irqrestore(&task_group_lock, flags);
8259
8260 return tg;
8261
8262 err:
8263 free_sched_group(tg);
8264 return ERR_PTR(-ENOMEM);
8265 }
8266
8267 /* rcu callback to free various structures associated with a task group */
8268 static void free_sched_group_rcu(struct rcu_head *rhp)
8269 {
8270 /* now it should be safe to free those cfs_rqs */
8271 free_sched_group(container_of(rhp, struct task_group, rcu));
8272 }
8273
8274 /* Destroy runqueue etc associated with a task group */
8275 void sched_destroy_group(struct task_group *tg)
8276 {
8277 unsigned long flags;
8278 int i;
8279
8280 spin_lock_irqsave(&task_group_lock, flags);
8281 for_each_possible_cpu(i) {
8282 unregister_fair_sched_group(tg, i);
8283 unregister_rt_sched_group(tg, i);
8284 }
8285 list_del_rcu(&tg->list);
8286 list_del_rcu(&tg->siblings);
8287 spin_unlock_irqrestore(&task_group_lock, flags);
8288
8289 /* wait for possible concurrent references to cfs_rqs complete */
8290 call_rcu(&tg->rcu, free_sched_group_rcu);
8291 }
8292
8293 /* change task's runqueue when it moves between groups.
8294 * The caller of this function should have put the task in its new group
8295 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8296 * reflect its new group.
8297 */
8298 void sched_move_task(struct task_struct *tsk)
8299 {
8300 int on_rq, running;
8301 unsigned long flags;
8302 struct rq *rq;
8303
8304 rq = task_rq_lock(tsk, &flags);
8305
8306 update_rq_clock(rq);
8307
8308 running = task_current(rq, tsk);
8309 on_rq = tsk->se.on_rq;
8310
8311 if (on_rq)
8312 dequeue_task(rq, tsk, 0);
8313 if (unlikely(running))
8314 tsk->sched_class->put_prev_task(rq, tsk);
8315
8316 set_task_rq(tsk, task_cpu(tsk));
8317
8318 #ifdef CONFIG_FAIR_GROUP_SCHED
8319 if (tsk->sched_class->moved_group)
8320 tsk->sched_class->moved_group(tsk);
8321 #endif
8322
8323 if (unlikely(running))
8324 tsk->sched_class->set_curr_task(rq);
8325 if (on_rq)
8326 enqueue_task(rq, tsk, 0);
8327
8328 task_rq_unlock(rq, &flags);
8329 }
8330 #endif
8331
8332 #ifdef CONFIG_FAIR_GROUP_SCHED
8333 static void set_se_shares(struct sched_entity *se, unsigned long shares)
8334 {
8335 struct cfs_rq *cfs_rq = se->cfs_rq;
8336 struct rq *rq = cfs_rq->rq;
8337 int on_rq;
8338
8339 spin_lock_irq(&rq->lock);
8340
8341 on_rq = se->on_rq;
8342 if (on_rq)
8343 dequeue_entity(cfs_rq, se, 0);
8344
8345 se->load.weight = shares;
8346 se->load.inv_weight = 0;
8347
8348 if (on_rq)
8349 enqueue_entity(cfs_rq, se, 0);
8350
8351 spin_unlock_irq(&rq->lock);
8352 }
8353
8354 static DEFINE_MUTEX(shares_mutex);
8355
8356 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8357 {
8358 int i;
8359 unsigned long flags;
8360
8361 /*
8362 * We can't change the weight of the root cgroup.
8363 */
8364 if (!tg->se[0])
8365 return -EINVAL;
8366
8367 if (shares < MIN_SHARES)
8368 shares = MIN_SHARES;
8369 else if (shares > MAX_SHARES)
8370 shares = MAX_SHARES;
8371
8372 mutex_lock(&shares_mutex);
8373 if (tg->shares == shares)
8374 goto done;
8375
8376 spin_lock_irqsave(&task_group_lock, flags);
8377 for_each_possible_cpu(i)
8378 unregister_fair_sched_group(tg, i);
8379 list_del_rcu(&tg->siblings);
8380 spin_unlock_irqrestore(&task_group_lock, flags);
8381
8382 /* wait for any ongoing reference to this group to finish */
8383 synchronize_sched();
8384
8385 /*
8386 * Now we are free to modify the group's share on each cpu
8387 * w/o tripping rebalance_share or load_balance_fair.
8388 */
8389 tg->shares = shares;
8390 for_each_possible_cpu(i)
8391 set_se_shares(tg->se[i], shares);
8392
8393 /*
8394 * Enable load balance activity on this group, by inserting it back on
8395 * each cpu's rq->leaf_cfs_rq_list.
8396 */
8397 spin_lock_irqsave(&task_group_lock, flags);
8398 for_each_possible_cpu(i)
8399 register_fair_sched_group(tg, i);
8400 list_add_rcu(&tg->siblings, &tg->parent->children);
8401 spin_unlock_irqrestore(&task_group_lock, flags);
8402 done:
8403 mutex_unlock(&shares_mutex);
8404 return 0;
8405 }
8406
8407 unsigned long sched_group_shares(struct task_group *tg)
8408 {
8409 return tg->shares;
8410 }
8411 #endif
8412
8413 #ifdef CONFIG_RT_GROUP_SCHED
8414 /*
8415 * Ensure that the real time constraints are schedulable.
8416 */
8417 static DEFINE_MUTEX(rt_constraints_mutex);
8418
8419 static unsigned long to_ratio(u64 period, u64 runtime)
8420 {
8421 if (runtime == RUNTIME_INF)
8422 return 1ULL << 16;
8423
8424 return div64_u64(runtime << 16, period);
8425 }
8426
8427 #ifdef CONFIG_CGROUP_SCHED
8428 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8429 {
8430 struct task_group *tgi, *parent = tg ? tg->parent : NULL;
8431 unsigned long total = 0;
8432
8433 if (!parent) {
8434 if (global_rt_period() < period)
8435 return 0;
8436
8437 return to_ratio(period, runtime) <
8438 to_ratio(global_rt_period(), global_rt_runtime());
8439 }
8440
8441 if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
8442 return 0;
8443
8444 rcu_read_lock();
8445 list_for_each_entry_rcu(tgi, &parent->children, siblings) {
8446 if (tgi == tg)
8447 continue;
8448
8449 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8450 tgi->rt_bandwidth.rt_runtime);
8451 }
8452 rcu_read_unlock();
8453
8454 return total + to_ratio(period, runtime) <
8455 to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
8456 parent->rt_bandwidth.rt_runtime);
8457 }
8458 #elif defined CONFIG_USER_SCHED
8459 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8460 {
8461 struct task_group *tgi;
8462 unsigned long total = 0;
8463 unsigned long global_ratio =
8464 to_ratio(global_rt_period(), global_rt_runtime());
8465
8466 rcu_read_lock();
8467 list_for_each_entry_rcu(tgi, &task_groups, list) {
8468 if (tgi == tg)
8469 continue;
8470
8471 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8472 tgi->rt_bandwidth.rt_runtime);
8473 }
8474 rcu_read_unlock();
8475
8476 return total + to_ratio(period, runtime) < global_ratio;
8477 }
8478 #endif
8479
8480 /* Must be called with tasklist_lock held */
8481 static inline int tg_has_rt_tasks(struct task_group *tg)
8482 {
8483 struct task_struct *g, *p;
8484 do_each_thread(g, p) {
8485 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8486 return 1;
8487 } while_each_thread(g, p);
8488 return 0;
8489 }
8490
8491 static int tg_set_bandwidth(struct task_group *tg,
8492 u64 rt_period, u64 rt_runtime)
8493 {
8494 int i, err = 0;
8495
8496 mutex_lock(&rt_constraints_mutex);
8497 read_lock(&tasklist_lock);
8498 if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
8499 err = -EBUSY;
8500 goto unlock;
8501 }
8502 if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
8503 err = -EINVAL;
8504 goto unlock;
8505 }
8506
8507 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8508 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8509 tg->rt_bandwidth.rt_runtime = rt_runtime;
8510
8511 for_each_possible_cpu(i) {
8512 struct rt_rq *rt_rq = tg->rt_rq[i];
8513
8514 spin_lock(&rt_rq->rt_runtime_lock);
8515 rt_rq->rt_runtime = rt_runtime;
8516 spin_unlock(&rt_rq->rt_runtime_lock);
8517 }
8518 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8519 unlock:
8520 read_unlock(&tasklist_lock);
8521 mutex_unlock(&rt_constraints_mutex);
8522
8523 return err;
8524 }
8525
8526 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8527 {
8528 u64 rt_runtime, rt_period;
8529
8530 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8531 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8532 if (rt_runtime_us < 0)
8533 rt_runtime = RUNTIME_INF;
8534
8535 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8536 }
8537
8538 long sched_group_rt_runtime(struct task_group *tg)
8539 {
8540 u64 rt_runtime_us;
8541
8542 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8543 return -1;
8544
8545 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8546 do_div(rt_runtime_us, NSEC_PER_USEC);
8547 return rt_runtime_us;
8548 }
8549
8550 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8551 {
8552 u64 rt_runtime, rt_period;
8553
8554 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8555 rt_runtime = tg->rt_bandwidth.rt_runtime;
8556
8557 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8558 }
8559
8560 long sched_group_rt_period(struct task_group *tg)
8561 {
8562 u64 rt_period_us;
8563
8564 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8565 do_div(rt_period_us, NSEC_PER_USEC);
8566 return rt_period_us;
8567 }
8568
8569 static int sched_rt_global_constraints(void)
8570 {
8571 int ret = 0;
8572
8573 mutex_lock(&rt_constraints_mutex);
8574 if (!__rt_schedulable(NULL, 1, 0))
8575 ret = -EINVAL;
8576 mutex_unlock(&rt_constraints_mutex);
8577
8578 return ret;
8579 }
8580 #else
8581 static int sched_rt_global_constraints(void)
8582 {
8583 unsigned long flags;
8584 int i;
8585
8586 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8587 for_each_possible_cpu(i) {
8588 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8589
8590 spin_lock(&rt_rq->rt_runtime_lock);
8591 rt_rq->rt_runtime = global_rt_runtime();
8592 spin_unlock(&rt_rq->rt_runtime_lock);
8593 }
8594 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8595
8596 return 0;
8597 }
8598 #endif
8599
8600 int sched_rt_handler(struct ctl_table *table, int write,
8601 struct file *filp, void __user *buffer, size_t *lenp,
8602 loff_t *ppos)
8603 {
8604 int ret;
8605 int old_period, old_runtime;
8606 static DEFINE_MUTEX(mutex);
8607
8608 mutex_lock(&mutex);
8609 old_period = sysctl_sched_rt_period;
8610 old_runtime = sysctl_sched_rt_runtime;
8611
8612 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
8613
8614 if (!ret && write) {
8615 ret = sched_rt_global_constraints();
8616 if (ret) {
8617 sysctl_sched_rt_period = old_period;
8618 sysctl_sched_rt_runtime = old_runtime;
8619 } else {
8620 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8621 def_rt_bandwidth.rt_period =
8622 ns_to_ktime(global_rt_period());
8623 }
8624 }
8625 mutex_unlock(&mutex);
8626
8627 return ret;
8628 }
8629
8630 #ifdef CONFIG_CGROUP_SCHED
8631
8632 /* return corresponding task_group object of a cgroup */
8633 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8634 {
8635 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8636 struct task_group, css);
8637 }
8638
8639 static struct cgroup_subsys_state *
8640 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8641 {
8642 struct task_group *tg, *parent;
8643
8644 if (!cgrp->parent) {
8645 /* This is early initialization for the top cgroup */
8646 init_task_group.css.cgroup = cgrp;
8647 return &init_task_group.css;
8648 }
8649
8650 parent = cgroup_tg(cgrp->parent);
8651 tg = sched_create_group(parent);
8652 if (IS_ERR(tg))
8653 return ERR_PTR(-ENOMEM);
8654
8655 /* Bind the cgroup to task_group object we just created */
8656 tg->css.cgroup = cgrp;
8657
8658 return &tg->css;
8659 }
8660
8661 static void
8662 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8663 {
8664 struct task_group *tg = cgroup_tg(cgrp);
8665
8666 sched_destroy_group(tg);
8667 }
8668
8669 static int
8670 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8671 struct task_struct *tsk)
8672 {
8673 #ifdef CONFIG_RT_GROUP_SCHED
8674 /* Don't accept realtime tasks when there is no way for them to run */
8675 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
8676 return -EINVAL;
8677 #else
8678 /* We don't support RT-tasks being in separate groups */
8679 if (tsk->sched_class != &fair_sched_class)
8680 return -EINVAL;
8681 #endif
8682
8683 return 0;
8684 }
8685
8686 static void
8687 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8688 struct cgroup *old_cont, struct task_struct *tsk)
8689 {
8690 sched_move_task(tsk);
8691 }
8692
8693 #ifdef CONFIG_FAIR_GROUP_SCHED
8694 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8695 u64 shareval)
8696 {
8697 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8698 }
8699
8700 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8701 {
8702 struct task_group *tg = cgroup_tg(cgrp);
8703
8704 return (u64) tg->shares;
8705 }
8706 #endif
8707
8708 #ifdef CONFIG_RT_GROUP_SCHED
8709 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8710 s64 val)
8711 {
8712 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
8713 }
8714
8715 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
8716 {
8717 return sched_group_rt_runtime(cgroup_tg(cgrp));
8718 }
8719
8720 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8721 u64 rt_period_us)
8722 {
8723 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8724 }
8725
8726 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8727 {
8728 return sched_group_rt_period(cgroup_tg(cgrp));
8729 }
8730 #endif
8731
8732 static struct cftype cpu_files[] = {
8733 #ifdef CONFIG_FAIR_GROUP_SCHED
8734 {
8735 .name = "shares",
8736 .read_u64 = cpu_shares_read_u64,
8737 .write_u64 = cpu_shares_write_u64,
8738 },
8739 #endif
8740 #ifdef CONFIG_RT_GROUP_SCHED
8741 {
8742 .name = "rt_runtime_us",
8743 .read_s64 = cpu_rt_runtime_read,
8744 .write_s64 = cpu_rt_runtime_write,
8745 },
8746 {
8747 .name = "rt_period_us",
8748 .read_u64 = cpu_rt_period_read_uint,
8749 .write_u64 = cpu_rt_period_write_uint,
8750 },
8751 #endif
8752 };
8753
8754 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8755 {
8756 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8757 }
8758
8759 struct cgroup_subsys cpu_cgroup_subsys = {
8760 .name = "cpu",
8761 .create = cpu_cgroup_create,
8762 .destroy = cpu_cgroup_destroy,
8763 .can_attach = cpu_cgroup_can_attach,
8764 .attach = cpu_cgroup_attach,
8765 .populate = cpu_cgroup_populate,
8766 .subsys_id = cpu_cgroup_subsys_id,
8767 .early_init = 1,
8768 };
8769
8770 #endif /* CONFIG_CGROUP_SCHED */
8771
8772 #ifdef CONFIG_CGROUP_CPUACCT
8773
8774 /*
8775 * CPU accounting code for task groups.
8776 *
8777 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8778 * (balbir@in.ibm.com).
8779 */
8780
8781 /* track cpu usage of a group of tasks */
8782 struct cpuacct {
8783 struct cgroup_subsys_state css;
8784 /* cpuusage holds pointer to a u64-type object on every cpu */
8785 u64 *cpuusage;
8786 };
8787
8788 struct cgroup_subsys cpuacct_subsys;
8789
8790 /* return cpu accounting group corresponding to this container */
8791 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8792 {
8793 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8794 struct cpuacct, css);
8795 }
8796
8797 /* return cpu accounting group to which this task belongs */
8798 static inline struct cpuacct *task_ca(struct task_struct *tsk)
8799 {
8800 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8801 struct cpuacct, css);
8802 }
8803
8804 /* create a new cpu accounting group */
8805 static struct cgroup_subsys_state *cpuacct_create(
8806 struct cgroup_subsys *ss, struct cgroup *cgrp)
8807 {
8808 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8809
8810 if (!ca)
8811 return ERR_PTR(-ENOMEM);
8812
8813 ca->cpuusage = alloc_percpu(u64);
8814 if (!ca->cpuusage) {
8815 kfree(ca);
8816 return ERR_PTR(-ENOMEM);
8817 }
8818
8819 return &ca->css;
8820 }
8821
8822 /* destroy an existing cpu accounting group */
8823 static void
8824 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8825 {
8826 struct cpuacct *ca = cgroup_ca(cgrp);
8827
8828 free_percpu(ca->cpuusage);
8829 kfree(ca);
8830 }
8831
8832 /* return total cpu usage (in nanoseconds) of a group */
8833 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8834 {
8835 struct cpuacct *ca = cgroup_ca(cgrp);
8836 u64 totalcpuusage = 0;
8837 int i;
8838
8839 for_each_possible_cpu(i) {
8840 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
8841
8842 /*
8843 * Take rq->lock to make 64-bit addition safe on 32-bit
8844 * platforms.
8845 */
8846 spin_lock_irq(&cpu_rq(i)->lock);
8847 totalcpuusage += *cpuusage;
8848 spin_unlock_irq(&cpu_rq(i)->lock);
8849 }
8850
8851 return totalcpuusage;
8852 }
8853
8854 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8855 u64 reset)
8856 {
8857 struct cpuacct *ca = cgroup_ca(cgrp);
8858 int err = 0;
8859 int i;
8860
8861 if (reset) {
8862 err = -EINVAL;
8863 goto out;
8864 }
8865
8866 for_each_possible_cpu(i) {
8867 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
8868
8869 spin_lock_irq(&cpu_rq(i)->lock);
8870 *cpuusage = 0;
8871 spin_unlock_irq(&cpu_rq(i)->lock);
8872 }
8873 out:
8874 return err;
8875 }
8876
8877 static struct cftype files[] = {
8878 {
8879 .name = "usage",
8880 .read_u64 = cpuusage_read,
8881 .write_u64 = cpuusage_write,
8882 },
8883 };
8884
8885 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
8886 {
8887 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
8888 }
8889
8890 /*
8891 * charge this task's execution time to its accounting group.
8892 *
8893 * called with rq->lock held.
8894 */
8895 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8896 {
8897 struct cpuacct *ca;
8898
8899 if (!cpuacct_subsys.active)
8900 return;
8901
8902 ca = task_ca(tsk);
8903 if (ca) {
8904 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
8905
8906 *cpuusage += cputime;
8907 }
8908 }
8909
8910 struct cgroup_subsys cpuacct_subsys = {
8911 .name = "cpuacct",
8912 .create = cpuacct_create,
8913 .destroy = cpuacct_destroy,
8914 .populate = cpuacct_populate,
8915 .subsys_id = cpuacct_subsys_id,
8916 };
8917 #endif /* CONFIG_CGROUP_CPUACCT */
This page took 0.213036 seconds and 5 git commands to generate.