[CRYPTO] geode: move defines into a headerfile
[deliverable/linux.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 */
26
27 #include <linux/mm.h>
28 #include <linux/module.h>
29 #include <linux/nmi.h>
30 #include <linux/init.h>
31 #include <linux/uaccess.h>
32 #include <linux/highmem.h>
33 #include <linux/smp_lock.h>
34 #include <asm/mmu_context.h>
35 #include <linux/interrupt.h>
36 #include <linux/capability.h>
37 #include <linux/completion.h>
38 #include <linux/kernel_stat.h>
39 #include <linux/debug_locks.h>
40 #include <linux/security.h>
41 #include <linux/notifier.h>
42 #include <linux/profile.h>
43 #include <linux/freezer.h>
44 #include <linux/vmalloc.h>
45 #include <linux/blkdev.h>
46 #include <linux/delay.h>
47 #include <linux/pid_namespace.h>
48 #include <linux/smp.h>
49 #include <linux/threads.h>
50 #include <linux/timer.h>
51 #include <linux/rcupdate.h>
52 #include <linux/cpu.h>
53 #include <linux/cpuset.h>
54 #include <linux/percpu.h>
55 #include <linux/kthread.h>
56 #include <linux/seq_file.h>
57 #include <linux/sysctl.h>
58 #include <linux/syscalls.h>
59 #include <linux/times.h>
60 #include <linux/tsacct_kern.h>
61 #include <linux/kprobes.h>
62 #include <linux/delayacct.h>
63 #include <linux/reciprocal_div.h>
64 #include <linux/unistd.h>
65 #include <linux/pagemap.h>
66
67 #include <asm/tlb.h>
68 #include <asm/irq_regs.h>
69
70 /*
71 * Scheduler clock - returns current time in nanosec units.
72 * This is default implementation.
73 * Architectures and sub-architectures can override this.
74 */
75 unsigned long long __attribute__((weak)) sched_clock(void)
76 {
77 return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
78 }
79
80 /*
81 * Convert user-nice values [ -20 ... 0 ... 19 ]
82 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
83 * and back.
84 */
85 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
86 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
87 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
88
89 /*
90 * 'User priority' is the nice value converted to something we
91 * can work with better when scaling various scheduler parameters,
92 * it's a [ 0 ... 39 ] range.
93 */
94 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
95 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
96 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
97
98 /*
99 * Some helpers for converting nanosecond timing to jiffy resolution
100 */
101 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
102 #define JIFFIES_TO_NS(TIME) ((TIME) * (NSEC_PER_SEC / HZ))
103
104 #define NICE_0_LOAD SCHED_LOAD_SCALE
105 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
106
107 /*
108 * These are the 'tuning knobs' of the scheduler:
109 *
110 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
111 * Timeslices get refilled after they expire.
112 */
113 #define DEF_TIMESLICE (100 * HZ / 1000)
114
115 #ifdef CONFIG_SMP
116 /*
117 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
118 * Since cpu_power is a 'constant', we can use a reciprocal divide.
119 */
120 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
121 {
122 return reciprocal_divide(load, sg->reciprocal_cpu_power);
123 }
124
125 /*
126 * Each time a sched group cpu_power is changed,
127 * we must compute its reciprocal value
128 */
129 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
130 {
131 sg->__cpu_power += val;
132 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
133 }
134 #endif
135
136 static inline int rt_policy(int policy)
137 {
138 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
139 return 1;
140 return 0;
141 }
142
143 static inline int task_has_rt_policy(struct task_struct *p)
144 {
145 return rt_policy(p->policy);
146 }
147
148 /*
149 * This is the priority-queue data structure of the RT scheduling class:
150 */
151 struct rt_prio_array {
152 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
153 struct list_head queue[MAX_RT_PRIO];
154 };
155
156 #ifdef CONFIG_FAIR_GROUP_SCHED
157
158 #include <linux/cgroup.h>
159
160 struct cfs_rq;
161
162 /* task group related information */
163 struct task_group {
164 #ifdef CONFIG_FAIR_CGROUP_SCHED
165 struct cgroup_subsys_state css;
166 #endif
167 /* schedulable entities of this group on each cpu */
168 struct sched_entity **se;
169 /* runqueue "owned" by this group on each cpu */
170 struct cfs_rq **cfs_rq;
171 unsigned long shares;
172 /* spinlock to serialize modification to shares */
173 spinlock_t lock;
174 struct rcu_head rcu;
175 };
176
177 /* Default task group's sched entity on each cpu */
178 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
179 /* Default task group's cfs_rq on each cpu */
180 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
181
182 static struct sched_entity *init_sched_entity_p[NR_CPUS];
183 static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
184
185 /* Default task group.
186 * Every task in system belong to this group at bootup.
187 */
188 struct task_group init_task_group = {
189 .se = init_sched_entity_p,
190 .cfs_rq = init_cfs_rq_p,
191 };
192
193 #ifdef CONFIG_FAIR_USER_SCHED
194 # define INIT_TASK_GRP_LOAD 2*NICE_0_LOAD
195 #else
196 # define INIT_TASK_GRP_LOAD NICE_0_LOAD
197 #endif
198
199 static int init_task_group_load = INIT_TASK_GRP_LOAD;
200
201 /* return group to which a task belongs */
202 static inline struct task_group *task_group(struct task_struct *p)
203 {
204 struct task_group *tg;
205
206 #ifdef CONFIG_FAIR_USER_SCHED
207 tg = p->user->tg;
208 #elif defined(CONFIG_FAIR_CGROUP_SCHED)
209 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
210 struct task_group, css);
211 #else
212 tg = &init_task_group;
213 #endif
214
215 return tg;
216 }
217
218 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
219 static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu)
220 {
221 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
222 p->se.parent = task_group(p)->se[cpu];
223 }
224
225 #else
226
227 static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu) { }
228
229 #endif /* CONFIG_FAIR_GROUP_SCHED */
230
231 /* CFS-related fields in a runqueue */
232 struct cfs_rq {
233 struct load_weight load;
234 unsigned long nr_running;
235
236 u64 exec_clock;
237 u64 min_vruntime;
238
239 struct rb_root tasks_timeline;
240 struct rb_node *rb_leftmost;
241 struct rb_node *rb_load_balance_curr;
242 /* 'curr' points to currently running entity on this cfs_rq.
243 * It is set to NULL otherwise (i.e when none are currently running).
244 */
245 struct sched_entity *curr;
246
247 unsigned long nr_spread_over;
248
249 #ifdef CONFIG_FAIR_GROUP_SCHED
250 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
251
252 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
253 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
254 * (like users, containers etc.)
255 *
256 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
257 * list is used during load balance.
258 */
259 struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
260 struct task_group *tg; /* group that "owns" this runqueue */
261 #endif
262 };
263
264 /* Real-Time classes' related field in a runqueue: */
265 struct rt_rq {
266 struct rt_prio_array active;
267 int rt_load_balance_idx;
268 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
269 };
270
271 /*
272 * This is the main, per-CPU runqueue data structure.
273 *
274 * Locking rule: those places that want to lock multiple runqueues
275 * (such as the load balancing or the thread migration code), lock
276 * acquire operations must be ordered by ascending &runqueue.
277 */
278 struct rq {
279 /* runqueue lock: */
280 spinlock_t lock;
281
282 /*
283 * nr_running and cpu_load should be in the same cacheline because
284 * remote CPUs use both these fields when doing load calculation.
285 */
286 unsigned long nr_running;
287 #define CPU_LOAD_IDX_MAX 5
288 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
289 unsigned char idle_at_tick;
290 #ifdef CONFIG_NO_HZ
291 unsigned char in_nohz_recently;
292 #endif
293 /* capture load from *all* tasks on this cpu: */
294 struct load_weight load;
295 unsigned long nr_load_updates;
296 u64 nr_switches;
297
298 struct cfs_rq cfs;
299 #ifdef CONFIG_FAIR_GROUP_SCHED
300 /* list of leaf cfs_rq on this cpu: */
301 struct list_head leaf_cfs_rq_list;
302 #endif
303 struct rt_rq rt;
304
305 /*
306 * This is part of a global counter where only the total sum
307 * over all CPUs matters. A task can increase this counter on
308 * one CPU and if it got migrated afterwards it may decrease
309 * it on another CPU. Always updated under the runqueue lock:
310 */
311 unsigned long nr_uninterruptible;
312
313 struct task_struct *curr, *idle;
314 unsigned long next_balance;
315 struct mm_struct *prev_mm;
316
317 u64 clock, prev_clock_raw;
318 s64 clock_max_delta;
319
320 unsigned int clock_warps, clock_overflows;
321 u64 idle_clock;
322 unsigned int clock_deep_idle_events;
323 u64 tick_timestamp;
324
325 atomic_t nr_iowait;
326
327 #ifdef CONFIG_SMP
328 struct sched_domain *sd;
329
330 /* For active balancing */
331 int active_balance;
332 int push_cpu;
333 /* cpu of this runqueue: */
334 int cpu;
335
336 struct task_struct *migration_thread;
337 struct list_head migration_queue;
338 #endif
339
340 #ifdef CONFIG_SCHEDSTATS
341 /* latency stats */
342 struct sched_info rq_sched_info;
343
344 /* sys_sched_yield() stats */
345 unsigned int yld_exp_empty;
346 unsigned int yld_act_empty;
347 unsigned int yld_both_empty;
348 unsigned int yld_count;
349
350 /* schedule() stats */
351 unsigned int sched_switch;
352 unsigned int sched_count;
353 unsigned int sched_goidle;
354
355 /* try_to_wake_up() stats */
356 unsigned int ttwu_count;
357 unsigned int ttwu_local;
358
359 /* BKL stats */
360 unsigned int bkl_count;
361 #endif
362 struct lock_class_key rq_lock_key;
363 };
364
365 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
366 static DEFINE_MUTEX(sched_hotcpu_mutex);
367
368 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
369 {
370 rq->curr->sched_class->check_preempt_curr(rq, p);
371 }
372
373 static inline int cpu_of(struct rq *rq)
374 {
375 #ifdef CONFIG_SMP
376 return rq->cpu;
377 #else
378 return 0;
379 #endif
380 }
381
382 /*
383 * Update the per-runqueue clock, as finegrained as the platform can give
384 * us, but without assuming monotonicity, etc.:
385 */
386 static void __update_rq_clock(struct rq *rq)
387 {
388 u64 prev_raw = rq->prev_clock_raw;
389 u64 now = sched_clock();
390 s64 delta = now - prev_raw;
391 u64 clock = rq->clock;
392
393 #ifdef CONFIG_SCHED_DEBUG
394 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
395 #endif
396 /*
397 * Protect against sched_clock() occasionally going backwards:
398 */
399 if (unlikely(delta < 0)) {
400 clock++;
401 rq->clock_warps++;
402 } else {
403 /*
404 * Catch too large forward jumps too:
405 */
406 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
407 if (clock < rq->tick_timestamp + TICK_NSEC)
408 clock = rq->tick_timestamp + TICK_NSEC;
409 else
410 clock++;
411 rq->clock_overflows++;
412 } else {
413 if (unlikely(delta > rq->clock_max_delta))
414 rq->clock_max_delta = delta;
415 clock += delta;
416 }
417 }
418
419 rq->prev_clock_raw = now;
420 rq->clock = clock;
421 }
422
423 static void update_rq_clock(struct rq *rq)
424 {
425 if (likely(smp_processor_id() == cpu_of(rq)))
426 __update_rq_clock(rq);
427 }
428
429 /*
430 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
431 * See detach_destroy_domains: synchronize_sched for details.
432 *
433 * The domain tree of any CPU may only be accessed from within
434 * preempt-disabled sections.
435 */
436 #define for_each_domain(cpu, __sd) \
437 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
438
439 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
440 #define this_rq() (&__get_cpu_var(runqueues))
441 #define task_rq(p) cpu_rq(task_cpu(p))
442 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
443
444 /*
445 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
446 */
447 #ifdef CONFIG_SCHED_DEBUG
448 # define const_debug __read_mostly
449 #else
450 # define const_debug static const
451 #endif
452
453 /*
454 * Debugging: various feature bits
455 */
456 enum {
457 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
458 SCHED_FEAT_WAKEUP_PREEMPT = 2,
459 SCHED_FEAT_START_DEBIT = 4,
460 SCHED_FEAT_TREE_AVG = 8,
461 SCHED_FEAT_APPROX_AVG = 16,
462 };
463
464 const_debug unsigned int sysctl_sched_features =
465 SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
466 SCHED_FEAT_WAKEUP_PREEMPT * 1 |
467 SCHED_FEAT_START_DEBIT * 1 |
468 SCHED_FEAT_TREE_AVG * 0 |
469 SCHED_FEAT_APPROX_AVG * 0;
470
471 #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
472
473 /*
474 * Number of tasks to iterate in a single balance run.
475 * Limited because this is done with IRQs disabled.
476 */
477 const_debug unsigned int sysctl_sched_nr_migrate = 32;
478
479 /*
480 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
481 * clock constructed from sched_clock():
482 */
483 unsigned long long cpu_clock(int cpu)
484 {
485 unsigned long long now;
486 unsigned long flags;
487 struct rq *rq;
488
489 local_irq_save(flags);
490 rq = cpu_rq(cpu);
491 update_rq_clock(rq);
492 now = rq->clock;
493 local_irq_restore(flags);
494
495 return now;
496 }
497 EXPORT_SYMBOL_GPL(cpu_clock);
498
499 #ifndef prepare_arch_switch
500 # define prepare_arch_switch(next) do { } while (0)
501 #endif
502 #ifndef finish_arch_switch
503 # define finish_arch_switch(prev) do { } while (0)
504 #endif
505
506 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
507 static inline int task_running(struct rq *rq, struct task_struct *p)
508 {
509 return rq->curr == p;
510 }
511
512 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
513 {
514 }
515
516 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
517 {
518 #ifdef CONFIG_DEBUG_SPINLOCK
519 /* this is a valid case when another task releases the spinlock */
520 rq->lock.owner = current;
521 #endif
522 /*
523 * If we are tracking spinlock dependencies then we have to
524 * fix up the runqueue lock - which gets 'carried over' from
525 * prev into current:
526 */
527 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
528
529 spin_unlock_irq(&rq->lock);
530 }
531
532 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
533 static inline int task_running(struct rq *rq, struct task_struct *p)
534 {
535 #ifdef CONFIG_SMP
536 return p->oncpu;
537 #else
538 return rq->curr == p;
539 #endif
540 }
541
542 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
543 {
544 #ifdef CONFIG_SMP
545 /*
546 * We can optimise this out completely for !SMP, because the
547 * SMP rebalancing from interrupt is the only thing that cares
548 * here.
549 */
550 next->oncpu = 1;
551 #endif
552 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
553 spin_unlock_irq(&rq->lock);
554 #else
555 spin_unlock(&rq->lock);
556 #endif
557 }
558
559 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
560 {
561 #ifdef CONFIG_SMP
562 /*
563 * After ->oncpu is cleared, the task can be moved to a different CPU.
564 * We must ensure this doesn't happen until the switch is completely
565 * finished.
566 */
567 smp_wmb();
568 prev->oncpu = 0;
569 #endif
570 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
571 local_irq_enable();
572 #endif
573 }
574 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
575
576 /*
577 * __task_rq_lock - lock the runqueue a given task resides on.
578 * Must be called interrupts disabled.
579 */
580 static inline struct rq *__task_rq_lock(struct task_struct *p)
581 __acquires(rq->lock)
582 {
583 for (;;) {
584 struct rq *rq = task_rq(p);
585 spin_lock(&rq->lock);
586 if (likely(rq == task_rq(p)))
587 return rq;
588 spin_unlock(&rq->lock);
589 }
590 }
591
592 /*
593 * task_rq_lock - lock the runqueue a given task resides on and disable
594 * interrupts. Note the ordering: we can safely lookup the task_rq without
595 * explicitly disabling preemption.
596 */
597 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
598 __acquires(rq->lock)
599 {
600 struct rq *rq;
601
602 for (;;) {
603 local_irq_save(*flags);
604 rq = task_rq(p);
605 spin_lock(&rq->lock);
606 if (likely(rq == task_rq(p)))
607 return rq;
608 spin_unlock_irqrestore(&rq->lock, *flags);
609 }
610 }
611
612 static void __task_rq_unlock(struct rq *rq)
613 __releases(rq->lock)
614 {
615 spin_unlock(&rq->lock);
616 }
617
618 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
619 __releases(rq->lock)
620 {
621 spin_unlock_irqrestore(&rq->lock, *flags);
622 }
623
624 /*
625 * this_rq_lock - lock this runqueue and disable interrupts.
626 */
627 static struct rq *this_rq_lock(void)
628 __acquires(rq->lock)
629 {
630 struct rq *rq;
631
632 local_irq_disable();
633 rq = this_rq();
634 spin_lock(&rq->lock);
635
636 return rq;
637 }
638
639 /*
640 * We are going deep-idle (irqs are disabled):
641 */
642 void sched_clock_idle_sleep_event(void)
643 {
644 struct rq *rq = cpu_rq(smp_processor_id());
645
646 spin_lock(&rq->lock);
647 __update_rq_clock(rq);
648 spin_unlock(&rq->lock);
649 rq->clock_deep_idle_events++;
650 }
651 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
652
653 /*
654 * We just idled delta nanoseconds (called with irqs disabled):
655 */
656 void sched_clock_idle_wakeup_event(u64 delta_ns)
657 {
658 struct rq *rq = cpu_rq(smp_processor_id());
659 u64 now = sched_clock();
660
661 rq->idle_clock += delta_ns;
662 /*
663 * Override the previous timestamp and ignore all
664 * sched_clock() deltas that occured while we idled,
665 * and use the PM-provided delta_ns to advance the
666 * rq clock:
667 */
668 spin_lock(&rq->lock);
669 rq->prev_clock_raw = now;
670 rq->clock += delta_ns;
671 spin_unlock(&rq->lock);
672 }
673 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
674
675 /*
676 * resched_task - mark a task 'to be rescheduled now'.
677 *
678 * On UP this means the setting of the need_resched flag, on SMP it
679 * might also involve a cross-CPU call to trigger the scheduler on
680 * the target CPU.
681 */
682 #ifdef CONFIG_SMP
683
684 #ifndef tsk_is_polling
685 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
686 #endif
687
688 static void resched_task(struct task_struct *p)
689 {
690 int cpu;
691
692 assert_spin_locked(&task_rq(p)->lock);
693
694 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
695 return;
696
697 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
698
699 cpu = task_cpu(p);
700 if (cpu == smp_processor_id())
701 return;
702
703 /* NEED_RESCHED must be visible before we test polling */
704 smp_mb();
705 if (!tsk_is_polling(p))
706 smp_send_reschedule(cpu);
707 }
708
709 static void resched_cpu(int cpu)
710 {
711 struct rq *rq = cpu_rq(cpu);
712 unsigned long flags;
713
714 if (!spin_trylock_irqsave(&rq->lock, flags))
715 return;
716 resched_task(cpu_curr(cpu));
717 spin_unlock_irqrestore(&rq->lock, flags);
718 }
719 #else
720 static inline void resched_task(struct task_struct *p)
721 {
722 assert_spin_locked(&task_rq(p)->lock);
723 set_tsk_need_resched(p);
724 }
725 #endif
726
727 #if BITS_PER_LONG == 32
728 # define WMULT_CONST (~0UL)
729 #else
730 # define WMULT_CONST (1UL << 32)
731 #endif
732
733 #define WMULT_SHIFT 32
734
735 /*
736 * Shift right and round:
737 */
738 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
739
740 static unsigned long
741 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
742 struct load_weight *lw)
743 {
744 u64 tmp;
745
746 if (unlikely(!lw->inv_weight))
747 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
748
749 tmp = (u64)delta_exec * weight;
750 /*
751 * Check whether we'd overflow the 64-bit multiplication:
752 */
753 if (unlikely(tmp > WMULT_CONST))
754 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
755 WMULT_SHIFT/2);
756 else
757 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
758
759 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
760 }
761
762 static inline unsigned long
763 calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
764 {
765 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
766 }
767
768 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
769 {
770 lw->weight += inc;
771 }
772
773 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
774 {
775 lw->weight -= dec;
776 }
777
778 /*
779 * To aid in avoiding the subversion of "niceness" due to uneven distribution
780 * of tasks with abnormal "nice" values across CPUs the contribution that
781 * each task makes to its run queue's load is weighted according to its
782 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
783 * scaled version of the new time slice allocation that they receive on time
784 * slice expiry etc.
785 */
786
787 #define WEIGHT_IDLEPRIO 2
788 #define WMULT_IDLEPRIO (1 << 31)
789
790 /*
791 * Nice levels are multiplicative, with a gentle 10% change for every
792 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
793 * nice 1, it will get ~10% less CPU time than another CPU-bound task
794 * that remained on nice 0.
795 *
796 * The "10% effect" is relative and cumulative: from _any_ nice level,
797 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
798 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
799 * If a task goes up by ~10% and another task goes down by ~10% then
800 * the relative distance between them is ~25%.)
801 */
802 static const int prio_to_weight[40] = {
803 /* -20 */ 88761, 71755, 56483, 46273, 36291,
804 /* -15 */ 29154, 23254, 18705, 14949, 11916,
805 /* -10 */ 9548, 7620, 6100, 4904, 3906,
806 /* -5 */ 3121, 2501, 1991, 1586, 1277,
807 /* 0 */ 1024, 820, 655, 526, 423,
808 /* 5 */ 335, 272, 215, 172, 137,
809 /* 10 */ 110, 87, 70, 56, 45,
810 /* 15 */ 36, 29, 23, 18, 15,
811 };
812
813 /*
814 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
815 *
816 * In cases where the weight does not change often, we can use the
817 * precalculated inverse to speed up arithmetics by turning divisions
818 * into multiplications:
819 */
820 static const u32 prio_to_wmult[40] = {
821 /* -20 */ 48388, 59856, 76040, 92818, 118348,
822 /* -15 */ 147320, 184698, 229616, 287308, 360437,
823 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
824 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
825 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
826 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
827 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
828 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
829 };
830
831 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
832
833 /*
834 * runqueue iterator, to support SMP load-balancing between different
835 * scheduling classes, without having to expose their internal data
836 * structures to the load-balancing proper:
837 */
838 struct rq_iterator {
839 void *arg;
840 struct task_struct *(*start)(void *);
841 struct task_struct *(*next)(void *);
842 };
843
844 #ifdef CONFIG_SMP
845 static unsigned long
846 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
847 unsigned long max_load_move, struct sched_domain *sd,
848 enum cpu_idle_type idle, int *all_pinned,
849 int *this_best_prio, struct rq_iterator *iterator);
850
851 static int
852 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
853 struct sched_domain *sd, enum cpu_idle_type idle,
854 struct rq_iterator *iterator);
855 #endif
856
857 #include "sched_stats.h"
858 #include "sched_idletask.c"
859 #include "sched_fair.c"
860 #include "sched_rt.c"
861 #ifdef CONFIG_SCHED_DEBUG
862 # include "sched_debug.c"
863 #endif
864
865 #define sched_class_highest (&rt_sched_class)
866
867 /*
868 * Update delta_exec, delta_fair fields for rq.
869 *
870 * delta_fair clock advances at a rate inversely proportional to
871 * total load (rq->load.weight) on the runqueue, while
872 * delta_exec advances at the same rate as wall-clock (provided
873 * cpu is not idle).
874 *
875 * delta_exec / delta_fair is a measure of the (smoothened) load on this
876 * runqueue over any given interval. This (smoothened) load is used
877 * during load balance.
878 *
879 * This function is called /before/ updating rq->load
880 * and when switching tasks.
881 */
882 static inline void inc_load(struct rq *rq, const struct task_struct *p)
883 {
884 update_load_add(&rq->load, p->se.load.weight);
885 }
886
887 static inline void dec_load(struct rq *rq, const struct task_struct *p)
888 {
889 update_load_sub(&rq->load, p->se.load.weight);
890 }
891
892 static void inc_nr_running(struct task_struct *p, struct rq *rq)
893 {
894 rq->nr_running++;
895 inc_load(rq, p);
896 }
897
898 static void dec_nr_running(struct task_struct *p, struct rq *rq)
899 {
900 rq->nr_running--;
901 dec_load(rq, p);
902 }
903
904 static void set_load_weight(struct task_struct *p)
905 {
906 if (task_has_rt_policy(p)) {
907 p->se.load.weight = prio_to_weight[0] * 2;
908 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
909 return;
910 }
911
912 /*
913 * SCHED_IDLE tasks get minimal weight:
914 */
915 if (p->policy == SCHED_IDLE) {
916 p->se.load.weight = WEIGHT_IDLEPRIO;
917 p->se.load.inv_weight = WMULT_IDLEPRIO;
918 return;
919 }
920
921 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
922 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
923 }
924
925 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
926 {
927 sched_info_queued(p);
928 p->sched_class->enqueue_task(rq, p, wakeup);
929 p->se.on_rq = 1;
930 }
931
932 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
933 {
934 p->sched_class->dequeue_task(rq, p, sleep);
935 p->se.on_rq = 0;
936 }
937
938 /*
939 * __normal_prio - return the priority that is based on the static prio
940 */
941 static inline int __normal_prio(struct task_struct *p)
942 {
943 return p->static_prio;
944 }
945
946 /*
947 * Calculate the expected normal priority: i.e. priority
948 * without taking RT-inheritance into account. Might be
949 * boosted by interactivity modifiers. Changes upon fork,
950 * setprio syscalls, and whenever the interactivity
951 * estimator recalculates.
952 */
953 static inline int normal_prio(struct task_struct *p)
954 {
955 int prio;
956
957 if (task_has_rt_policy(p))
958 prio = MAX_RT_PRIO-1 - p->rt_priority;
959 else
960 prio = __normal_prio(p);
961 return prio;
962 }
963
964 /*
965 * Calculate the current priority, i.e. the priority
966 * taken into account by the scheduler. This value might
967 * be boosted by RT tasks, or might be boosted by
968 * interactivity modifiers. Will be RT if the task got
969 * RT-boosted. If not then it returns p->normal_prio.
970 */
971 static int effective_prio(struct task_struct *p)
972 {
973 p->normal_prio = normal_prio(p);
974 /*
975 * If we are RT tasks or we were boosted to RT priority,
976 * keep the priority unchanged. Otherwise, update priority
977 * to the normal priority:
978 */
979 if (!rt_prio(p->prio))
980 return p->normal_prio;
981 return p->prio;
982 }
983
984 /*
985 * activate_task - move a task to the runqueue.
986 */
987 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
988 {
989 if (p->state == TASK_UNINTERRUPTIBLE)
990 rq->nr_uninterruptible--;
991
992 enqueue_task(rq, p, wakeup);
993 inc_nr_running(p, rq);
994 }
995
996 /*
997 * deactivate_task - remove a task from the runqueue.
998 */
999 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1000 {
1001 if (p->state == TASK_UNINTERRUPTIBLE)
1002 rq->nr_uninterruptible++;
1003
1004 dequeue_task(rq, p, sleep);
1005 dec_nr_running(p, rq);
1006 }
1007
1008 /**
1009 * task_curr - is this task currently executing on a CPU?
1010 * @p: the task in question.
1011 */
1012 inline int task_curr(const struct task_struct *p)
1013 {
1014 return cpu_curr(task_cpu(p)) == p;
1015 }
1016
1017 /* Used instead of source_load when we know the type == 0 */
1018 unsigned long weighted_cpuload(const int cpu)
1019 {
1020 return cpu_rq(cpu)->load.weight;
1021 }
1022
1023 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1024 {
1025 set_task_cfs_rq(p, cpu);
1026 #ifdef CONFIG_SMP
1027 /*
1028 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1029 * successfuly executed on another CPU. We must ensure that updates of
1030 * per-task data have been completed by this moment.
1031 */
1032 smp_wmb();
1033 task_thread_info(p)->cpu = cpu;
1034 #endif
1035 }
1036
1037 #ifdef CONFIG_SMP
1038
1039 /*
1040 * Is this task likely cache-hot:
1041 */
1042 static inline int
1043 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1044 {
1045 s64 delta;
1046
1047 if (p->sched_class != &fair_sched_class)
1048 return 0;
1049
1050 if (sysctl_sched_migration_cost == -1)
1051 return 1;
1052 if (sysctl_sched_migration_cost == 0)
1053 return 0;
1054
1055 delta = now - p->se.exec_start;
1056
1057 return delta < (s64)sysctl_sched_migration_cost;
1058 }
1059
1060
1061 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1062 {
1063 int old_cpu = task_cpu(p);
1064 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1065 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1066 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1067 u64 clock_offset;
1068
1069 clock_offset = old_rq->clock - new_rq->clock;
1070
1071 #ifdef CONFIG_SCHEDSTATS
1072 if (p->se.wait_start)
1073 p->se.wait_start -= clock_offset;
1074 if (p->se.sleep_start)
1075 p->se.sleep_start -= clock_offset;
1076 if (p->se.block_start)
1077 p->se.block_start -= clock_offset;
1078 if (old_cpu != new_cpu) {
1079 schedstat_inc(p, se.nr_migrations);
1080 if (task_hot(p, old_rq->clock, NULL))
1081 schedstat_inc(p, se.nr_forced2_migrations);
1082 }
1083 #endif
1084 p->se.vruntime -= old_cfsrq->min_vruntime -
1085 new_cfsrq->min_vruntime;
1086
1087 __set_task_cpu(p, new_cpu);
1088 }
1089
1090 struct migration_req {
1091 struct list_head list;
1092
1093 struct task_struct *task;
1094 int dest_cpu;
1095
1096 struct completion done;
1097 };
1098
1099 /*
1100 * The task's runqueue lock must be held.
1101 * Returns true if you have to wait for migration thread.
1102 */
1103 static int
1104 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1105 {
1106 struct rq *rq = task_rq(p);
1107
1108 /*
1109 * If the task is not on a runqueue (and not running), then
1110 * it is sufficient to simply update the task's cpu field.
1111 */
1112 if (!p->se.on_rq && !task_running(rq, p)) {
1113 set_task_cpu(p, dest_cpu);
1114 return 0;
1115 }
1116
1117 init_completion(&req->done);
1118 req->task = p;
1119 req->dest_cpu = dest_cpu;
1120 list_add(&req->list, &rq->migration_queue);
1121
1122 return 1;
1123 }
1124
1125 /*
1126 * wait_task_inactive - wait for a thread to unschedule.
1127 *
1128 * The caller must ensure that the task *will* unschedule sometime soon,
1129 * else this function might spin for a *long* time. This function can't
1130 * be called with interrupts off, or it may introduce deadlock with
1131 * smp_call_function() if an IPI is sent by the same process we are
1132 * waiting to become inactive.
1133 */
1134 void wait_task_inactive(struct task_struct *p)
1135 {
1136 unsigned long flags;
1137 int running, on_rq;
1138 struct rq *rq;
1139
1140 for (;;) {
1141 /*
1142 * We do the initial early heuristics without holding
1143 * any task-queue locks at all. We'll only try to get
1144 * the runqueue lock when things look like they will
1145 * work out!
1146 */
1147 rq = task_rq(p);
1148
1149 /*
1150 * If the task is actively running on another CPU
1151 * still, just relax and busy-wait without holding
1152 * any locks.
1153 *
1154 * NOTE! Since we don't hold any locks, it's not
1155 * even sure that "rq" stays as the right runqueue!
1156 * But we don't care, since "task_running()" will
1157 * return false if the runqueue has changed and p
1158 * is actually now running somewhere else!
1159 */
1160 while (task_running(rq, p))
1161 cpu_relax();
1162
1163 /*
1164 * Ok, time to look more closely! We need the rq
1165 * lock now, to be *sure*. If we're wrong, we'll
1166 * just go back and repeat.
1167 */
1168 rq = task_rq_lock(p, &flags);
1169 running = task_running(rq, p);
1170 on_rq = p->se.on_rq;
1171 task_rq_unlock(rq, &flags);
1172
1173 /*
1174 * Was it really running after all now that we
1175 * checked with the proper locks actually held?
1176 *
1177 * Oops. Go back and try again..
1178 */
1179 if (unlikely(running)) {
1180 cpu_relax();
1181 continue;
1182 }
1183
1184 /*
1185 * It's not enough that it's not actively running,
1186 * it must be off the runqueue _entirely_, and not
1187 * preempted!
1188 *
1189 * So if it wa still runnable (but just not actively
1190 * running right now), it's preempted, and we should
1191 * yield - it could be a while.
1192 */
1193 if (unlikely(on_rq)) {
1194 schedule_timeout_uninterruptible(1);
1195 continue;
1196 }
1197
1198 /*
1199 * Ahh, all good. It wasn't running, and it wasn't
1200 * runnable, which means that it will never become
1201 * running in the future either. We're all done!
1202 */
1203 break;
1204 }
1205 }
1206
1207 /***
1208 * kick_process - kick a running thread to enter/exit the kernel
1209 * @p: the to-be-kicked thread
1210 *
1211 * Cause a process which is running on another CPU to enter
1212 * kernel-mode, without any delay. (to get signals handled.)
1213 *
1214 * NOTE: this function doesnt have to take the runqueue lock,
1215 * because all it wants to ensure is that the remote task enters
1216 * the kernel. If the IPI races and the task has been migrated
1217 * to another CPU then no harm is done and the purpose has been
1218 * achieved as well.
1219 */
1220 void kick_process(struct task_struct *p)
1221 {
1222 int cpu;
1223
1224 preempt_disable();
1225 cpu = task_cpu(p);
1226 if ((cpu != smp_processor_id()) && task_curr(p))
1227 smp_send_reschedule(cpu);
1228 preempt_enable();
1229 }
1230
1231 /*
1232 * Return a low guess at the load of a migration-source cpu weighted
1233 * according to the scheduling class and "nice" value.
1234 *
1235 * We want to under-estimate the load of migration sources, to
1236 * balance conservatively.
1237 */
1238 static unsigned long source_load(int cpu, int type)
1239 {
1240 struct rq *rq = cpu_rq(cpu);
1241 unsigned long total = weighted_cpuload(cpu);
1242
1243 if (type == 0)
1244 return total;
1245
1246 return min(rq->cpu_load[type-1], total);
1247 }
1248
1249 /*
1250 * Return a high guess at the load of a migration-target cpu weighted
1251 * according to the scheduling class and "nice" value.
1252 */
1253 static unsigned long target_load(int cpu, int type)
1254 {
1255 struct rq *rq = cpu_rq(cpu);
1256 unsigned long total = weighted_cpuload(cpu);
1257
1258 if (type == 0)
1259 return total;
1260
1261 return max(rq->cpu_load[type-1], total);
1262 }
1263
1264 /*
1265 * Return the average load per task on the cpu's run queue
1266 */
1267 static inline unsigned long cpu_avg_load_per_task(int cpu)
1268 {
1269 struct rq *rq = cpu_rq(cpu);
1270 unsigned long total = weighted_cpuload(cpu);
1271 unsigned long n = rq->nr_running;
1272
1273 return n ? total / n : SCHED_LOAD_SCALE;
1274 }
1275
1276 /*
1277 * find_idlest_group finds and returns the least busy CPU group within the
1278 * domain.
1279 */
1280 static struct sched_group *
1281 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1282 {
1283 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1284 unsigned long min_load = ULONG_MAX, this_load = 0;
1285 int load_idx = sd->forkexec_idx;
1286 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1287
1288 do {
1289 unsigned long load, avg_load;
1290 int local_group;
1291 int i;
1292
1293 /* Skip over this group if it has no CPUs allowed */
1294 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1295 continue;
1296
1297 local_group = cpu_isset(this_cpu, group->cpumask);
1298
1299 /* Tally up the load of all CPUs in the group */
1300 avg_load = 0;
1301
1302 for_each_cpu_mask(i, group->cpumask) {
1303 /* Bias balancing toward cpus of our domain */
1304 if (local_group)
1305 load = source_load(i, load_idx);
1306 else
1307 load = target_load(i, load_idx);
1308
1309 avg_load += load;
1310 }
1311
1312 /* Adjust by relative CPU power of the group */
1313 avg_load = sg_div_cpu_power(group,
1314 avg_load * SCHED_LOAD_SCALE);
1315
1316 if (local_group) {
1317 this_load = avg_load;
1318 this = group;
1319 } else if (avg_load < min_load) {
1320 min_load = avg_load;
1321 idlest = group;
1322 }
1323 } while (group = group->next, group != sd->groups);
1324
1325 if (!idlest || 100*this_load < imbalance*min_load)
1326 return NULL;
1327 return idlest;
1328 }
1329
1330 /*
1331 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1332 */
1333 static int
1334 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1335 {
1336 cpumask_t tmp;
1337 unsigned long load, min_load = ULONG_MAX;
1338 int idlest = -1;
1339 int i;
1340
1341 /* Traverse only the allowed CPUs */
1342 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1343
1344 for_each_cpu_mask(i, tmp) {
1345 load = weighted_cpuload(i);
1346
1347 if (load < min_load || (load == min_load && i == this_cpu)) {
1348 min_load = load;
1349 idlest = i;
1350 }
1351 }
1352
1353 return idlest;
1354 }
1355
1356 /*
1357 * sched_balance_self: balance the current task (running on cpu) in domains
1358 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1359 * SD_BALANCE_EXEC.
1360 *
1361 * Balance, ie. select the least loaded group.
1362 *
1363 * Returns the target CPU number, or the same CPU if no balancing is needed.
1364 *
1365 * preempt must be disabled.
1366 */
1367 static int sched_balance_self(int cpu, int flag)
1368 {
1369 struct task_struct *t = current;
1370 struct sched_domain *tmp, *sd = NULL;
1371
1372 for_each_domain(cpu, tmp) {
1373 /*
1374 * If power savings logic is enabled for a domain, stop there.
1375 */
1376 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1377 break;
1378 if (tmp->flags & flag)
1379 sd = tmp;
1380 }
1381
1382 while (sd) {
1383 cpumask_t span;
1384 struct sched_group *group;
1385 int new_cpu, weight;
1386
1387 if (!(sd->flags & flag)) {
1388 sd = sd->child;
1389 continue;
1390 }
1391
1392 span = sd->span;
1393 group = find_idlest_group(sd, t, cpu);
1394 if (!group) {
1395 sd = sd->child;
1396 continue;
1397 }
1398
1399 new_cpu = find_idlest_cpu(group, t, cpu);
1400 if (new_cpu == -1 || new_cpu == cpu) {
1401 /* Now try balancing at a lower domain level of cpu */
1402 sd = sd->child;
1403 continue;
1404 }
1405
1406 /* Now try balancing at a lower domain level of new_cpu */
1407 cpu = new_cpu;
1408 sd = NULL;
1409 weight = cpus_weight(span);
1410 for_each_domain(cpu, tmp) {
1411 if (weight <= cpus_weight(tmp->span))
1412 break;
1413 if (tmp->flags & flag)
1414 sd = tmp;
1415 }
1416 /* while loop will break here if sd == NULL */
1417 }
1418
1419 return cpu;
1420 }
1421
1422 #endif /* CONFIG_SMP */
1423
1424 /*
1425 * wake_idle() will wake a task on an idle cpu if task->cpu is
1426 * not idle and an idle cpu is available. The span of cpus to
1427 * search starts with cpus closest then further out as needed,
1428 * so we always favor a closer, idle cpu.
1429 *
1430 * Returns the CPU we should wake onto.
1431 */
1432 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1433 static int wake_idle(int cpu, struct task_struct *p)
1434 {
1435 cpumask_t tmp;
1436 struct sched_domain *sd;
1437 int i;
1438
1439 /*
1440 * If it is idle, then it is the best cpu to run this task.
1441 *
1442 * This cpu is also the best, if it has more than one task already.
1443 * Siblings must be also busy(in most cases) as they didn't already
1444 * pickup the extra load from this cpu and hence we need not check
1445 * sibling runqueue info. This will avoid the checks and cache miss
1446 * penalities associated with that.
1447 */
1448 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1449 return cpu;
1450
1451 for_each_domain(cpu, sd) {
1452 if (sd->flags & SD_WAKE_IDLE) {
1453 cpus_and(tmp, sd->span, p->cpus_allowed);
1454 for_each_cpu_mask(i, tmp) {
1455 if (idle_cpu(i)) {
1456 if (i != task_cpu(p)) {
1457 schedstat_inc(p,
1458 se.nr_wakeups_idle);
1459 }
1460 return i;
1461 }
1462 }
1463 } else {
1464 break;
1465 }
1466 }
1467 return cpu;
1468 }
1469 #else
1470 static inline int wake_idle(int cpu, struct task_struct *p)
1471 {
1472 return cpu;
1473 }
1474 #endif
1475
1476 /***
1477 * try_to_wake_up - wake up a thread
1478 * @p: the to-be-woken-up thread
1479 * @state: the mask of task states that can be woken
1480 * @sync: do a synchronous wakeup?
1481 *
1482 * Put it on the run-queue if it's not already there. The "current"
1483 * thread is always on the run-queue (except when the actual
1484 * re-schedule is in progress), and as such you're allowed to do
1485 * the simpler "current->state = TASK_RUNNING" to mark yourself
1486 * runnable without the overhead of this.
1487 *
1488 * returns failure only if the task is already active.
1489 */
1490 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1491 {
1492 int cpu, orig_cpu, this_cpu, success = 0;
1493 unsigned long flags;
1494 long old_state;
1495 struct rq *rq;
1496 #ifdef CONFIG_SMP
1497 struct sched_domain *sd, *this_sd = NULL;
1498 unsigned long load, this_load;
1499 int new_cpu;
1500 #endif
1501
1502 rq = task_rq_lock(p, &flags);
1503 old_state = p->state;
1504 if (!(old_state & state))
1505 goto out;
1506
1507 if (p->se.on_rq)
1508 goto out_running;
1509
1510 cpu = task_cpu(p);
1511 orig_cpu = cpu;
1512 this_cpu = smp_processor_id();
1513
1514 #ifdef CONFIG_SMP
1515 if (unlikely(task_running(rq, p)))
1516 goto out_activate;
1517
1518 new_cpu = cpu;
1519
1520 schedstat_inc(rq, ttwu_count);
1521 if (cpu == this_cpu) {
1522 schedstat_inc(rq, ttwu_local);
1523 goto out_set_cpu;
1524 }
1525
1526 for_each_domain(this_cpu, sd) {
1527 if (cpu_isset(cpu, sd->span)) {
1528 schedstat_inc(sd, ttwu_wake_remote);
1529 this_sd = sd;
1530 break;
1531 }
1532 }
1533
1534 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1535 goto out_set_cpu;
1536
1537 /*
1538 * Check for affine wakeup and passive balancing possibilities.
1539 */
1540 if (this_sd) {
1541 int idx = this_sd->wake_idx;
1542 unsigned int imbalance;
1543
1544 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1545
1546 load = source_load(cpu, idx);
1547 this_load = target_load(this_cpu, idx);
1548
1549 new_cpu = this_cpu; /* Wake to this CPU if we can */
1550
1551 if (this_sd->flags & SD_WAKE_AFFINE) {
1552 unsigned long tl = this_load;
1553 unsigned long tl_per_task;
1554
1555 /*
1556 * Attract cache-cold tasks on sync wakeups:
1557 */
1558 if (sync && !task_hot(p, rq->clock, this_sd))
1559 goto out_set_cpu;
1560
1561 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1562 tl_per_task = cpu_avg_load_per_task(this_cpu);
1563
1564 /*
1565 * If sync wakeup then subtract the (maximum possible)
1566 * effect of the currently running task from the load
1567 * of the current CPU:
1568 */
1569 if (sync)
1570 tl -= current->se.load.weight;
1571
1572 if ((tl <= load &&
1573 tl + target_load(cpu, idx) <= tl_per_task) ||
1574 100*(tl + p->se.load.weight) <= imbalance*load) {
1575 /*
1576 * This domain has SD_WAKE_AFFINE and
1577 * p is cache cold in this domain, and
1578 * there is no bad imbalance.
1579 */
1580 schedstat_inc(this_sd, ttwu_move_affine);
1581 schedstat_inc(p, se.nr_wakeups_affine);
1582 goto out_set_cpu;
1583 }
1584 }
1585
1586 /*
1587 * Start passive balancing when half the imbalance_pct
1588 * limit is reached.
1589 */
1590 if (this_sd->flags & SD_WAKE_BALANCE) {
1591 if (imbalance*this_load <= 100*load) {
1592 schedstat_inc(this_sd, ttwu_move_balance);
1593 schedstat_inc(p, se.nr_wakeups_passive);
1594 goto out_set_cpu;
1595 }
1596 }
1597 }
1598
1599 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1600 out_set_cpu:
1601 new_cpu = wake_idle(new_cpu, p);
1602 if (new_cpu != cpu) {
1603 set_task_cpu(p, new_cpu);
1604 task_rq_unlock(rq, &flags);
1605 /* might preempt at this point */
1606 rq = task_rq_lock(p, &flags);
1607 old_state = p->state;
1608 if (!(old_state & state))
1609 goto out;
1610 if (p->se.on_rq)
1611 goto out_running;
1612
1613 this_cpu = smp_processor_id();
1614 cpu = task_cpu(p);
1615 }
1616
1617 out_activate:
1618 #endif /* CONFIG_SMP */
1619 schedstat_inc(p, se.nr_wakeups);
1620 if (sync)
1621 schedstat_inc(p, se.nr_wakeups_sync);
1622 if (orig_cpu != cpu)
1623 schedstat_inc(p, se.nr_wakeups_migrate);
1624 if (cpu == this_cpu)
1625 schedstat_inc(p, se.nr_wakeups_local);
1626 else
1627 schedstat_inc(p, se.nr_wakeups_remote);
1628 update_rq_clock(rq);
1629 activate_task(rq, p, 1);
1630 check_preempt_curr(rq, p);
1631 success = 1;
1632
1633 out_running:
1634 p->state = TASK_RUNNING;
1635 out:
1636 task_rq_unlock(rq, &flags);
1637
1638 return success;
1639 }
1640
1641 int fastcall wake_up_process(struct task_struct *p)
1642 {
1643 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1644 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1645 }
1646 EXPORT_SYMBOL(wake_up_process);
1647
1648 int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1649 {
1650 return try_to_wake_up(p, state, 0);
1651 }
1652
1653 /*
1654 * Perform scheduler related setup for a newly forked process p.
1655 * p is forked by current.
1656 *
1657 * __sched_fork() is basic setup used by init_idle() too:
1658 */
1659 static void __sched_fork(struct task_struct *p)
1660 {
1661 p->se.exec_start = 0;
1662 p->se.sum_exec_runtime = 0;
1663 p->se.prev_sum_exec_runtime = 0;
1664
1665 #ifdef CONFIG_SCHEDSTATS
1666 p->se.wait_start = 0;
1667 p->se.sum_sleep_runtime = 0;
1668 p->se.sleep_start = 0;
1669 p->se.block_start = 0;
1670 p->se.sleep_max = 0;
1671 p->se.block_max = 0;
1672 p->se.exec_max = 0;
1673 p->se.slice_max = 0;
1674 p->se.wait_max = 0;
1675 #endif
1676
1677 INIT_LIST_HEAD(&p->run_list);
1678 p->se.on_rq = 0;
1679
1680 #ifdef CONFIG_PREEMPT_NOTIFIERS
1681 INIT_HLIST_HEAD(&p->preempt_notifiers);
1682 #endif
1683
1684 /*
1685 * We mark the process as running here, but have not actually
1686 * inserted it onto the runqueue yet. This guarantees that
1687 * nobody will actually run it, and a signal or other external
1688 * event cannot wake it up and insert it on the runqueue either.
1689 */
1690 p->state = TASK_RUNNING;
1691 }
1692
1693 /*
1694 * fork()/clone()-time setup:
1695 */
1696 void sched_fork(struct task_struct *p, int clone_flags)
1697 {
1698 int cpu = get_cpu();
1699
1700 __sched_fork(p);
1701
1702 #ifdef CONFIG_SMP
1703 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1704 #endif
1705 set_task_cpu(p, cpu);
1706
1707 /*
1708 * Make sure we do not leak PI boosting priority to the child:
1709 */
1710 p->prio = current->normal_prio;
1711 if (!rt_prio(p->prio))
1712 p->sched_class = &fair_sched_class;
1713
1714 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1715 if (likely(sched_info_on()))
1716 memset(&p->sched_info, 0, sizeof(p->sched_info));
1717 #endif
1718 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1719 p->oncpu = 0;
1720 #endif
1721 #ifdef CONFIG_PREEMPT
1722 /* Want to start with kernel preemption disabled. */
1723 task_thread_info(p)->preempt_count = 1;
1724 #endif
1725 put_cpu();
1726 }
1727
1728 /*
1729 * wake_up_new_task - wake up a newly created task for the first time.
1730 *
1731 * This function will do some initial scheduler statistics housekeeping
1732 * that must be done for every newly created context, then puts the task
1733 * on the runqueue and wakes it.
1734 */
1735 void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1736 {
1737 unsigned long flags;
1738 struct rq *rq;
1739
1740 rq = task_rq_lock(p, &flags);
1741 BUG_ON(p->state != TASK_RUNNING);
1742 update_rq_clock(rq);
1743
1744 p->prio = effective_prio(p);
1745
1746 if (!p->sched_class->task_new || !current->se.on_rq) {
1747 activate_task(rq, p, 0);
1748 } else {
1749 /*
1750 * Let the scheduling class do new task startup
1751 * management (if any):
1752 */
1753 p->sched_class->task_new(rq, p);
1754 inc_nr_running(p, rq);
1755 }
1756 check_preempt_curr(rq, p);
1757 task_rq_unlock(rq, &flags);
1758 }
1759
1760 #ifdef CONFIG_PREEMPT_NOTIFIERS
1761
1762 /**
1763 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1764 * @notifier: notifier struct to register
1765 */
1766 void preempt_notifier_register(struct preempt_notifier *notifier)
1767 {
1768 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1769 }
1770 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1771
1772 /**
1773 * preempt_notifier_unregister - no longer interested in preemption notifications
1774 * @notifier: notifier struct to unregister
1775 *
1776 * This is safe to call from within a preemption notifier.
1777 */
1778 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1779 {
1780 hlist_del(&notifier->link);
1781 }
1782 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1783
1784 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1785 {
1786 struct preempt_notifier *notifier;
1787 struct hlist_node *node;
1788
1789 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1790 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1791 }
1792
1793 static void
1794 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1795 struct task_struct *next)
1796 {
1797 struct preempt_notifier *notifier;
1798 struct hlist_node *node;
1799
1800 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1801 notifier->ops->sched_out(notifier, next);
1802 }
1803
1804 #else
1805
1806 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1807 {
1808 }
1809
1810 static void
1811 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1812 struct task_struct *next)
1813 {
1814 }
1815
1816 #endif
1817
1818 /**
1819 * prepare_task_switch - prepare to switch tasks
1820 * @rq: the runqueue preparing to switch
1821 * @prev: the current task that is being switched out
1822 * @next: the task we are going to switch to.
1823 *
1824 * This is called with the rq lock held and interrupts off. It must
1825 * be paired with a subsequent finish_task_switch after the context
1826 * switch.
1827 *
1828 * prepare_task_switch sets up locking and calls architecture specific
1829 * hooks.
1830 */
1831 static inline void
1832 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1833 struct task_struct *next)
1834 {
1835 fire_sched_out_preempt_notifiers(prev, next);
1836 prepare_lock_switch(rq, next);
1837 prepare_arch_switch(next);
1838 }
1839
1840 /**
1841 * finish_task_switch - clean up after a task-switch
1842 * @rq: runqueue associated with task-switch
1843 * @prev: the thread we just switched away from.
1844 *
1845 * finish_task_switch must be called after the context switch, paired
1846 * with a prepare_task_switch call before the context switch.
1847 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1848 * and do any other architecture-specific cleanup actions.
1849 *
1850 * Note that we may have delayed dropping an mm in context_switch(). If
1851 * so, we finish that here outside of the runqueue lock. (Doing it
1852 * with the lock held can cause deadlocks; see schedule() for
1853 * details.)
1854 */
1855 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1856 __releases(rq->lock)
1857 {
1858 struct mm_struct *mm = rq->prev_mm;
1859 long prev_state;
1860
1861 rq->prev_mm = NULL;
1862
1863 /*
1864 * A task struct has one reference for the use as "current".
1865 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1866 * schedule one last time. The schedule call will never return, and
1867 * the scheduled task must drop that reference.
1868 * The test for TASK_DEAD must occur while the runqueue locks are
1869 * still held, otherwise prev could be scheduled on another cpu, die
1870 * there before we look at prev->state, and then the reference would
1871 * be dropped twice.
1872 * Manfred Spraul <manfred@colorfullife.com>
1873 */
1874 prev_state = prev->state;
1875 finish_arch_switch(prev);
1876 finish_lock_switch(rq, prev);
1877 fire_sched_in_preempt_notifiers(current);
1878 if (mm)
1879 mmdrop(mm);
1880 if (unlikely(prev_state == TASK_DEAD)) {
1881 /*
1882 * Remove function-return probe instances associated with this
1883 * task and put them back on the free list.
1884 */
1885 kprobe_flush_task(prev);
1886 put_task_struct(prev);
1887 }
1888 }
1889
1890 /**
1891 * schedule_tail - first thing a freshly forked thread must call.
1892 * @prev: the thread we just switched away from.
1893 */
1894 asmlinkage void schedule_tail(struct task_struct *prev)
1895 __releases(rq->lock)
1896 {
1897 struct rq *rq = this_rq();
1898
1899 finish_task_switch(rq, prev);
1900 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1901 /* In this case, finish_task_switch does not reenable preemption */
1902 preempt_enable();
1903 #endif
1904 if (current->set_child_tid)
1905 put_user(task_pid_vnr(current), current->set_child_tid);
1906 }
1907
1908 /*
1909 * context_switch - switch to the new MM and the new
1910 * thread's register state.
1911 */
1912 static inline void
1913 context_switch(struct rq *rq, struct task_struct *prev,
1914 struct task_struct *next)
1915 {
1916 struct mm_struct *mm, *oldmm;
1917
1918 prepare_task_switch(rq, prev, next);
1919 mm = next->mm;
1920 oldmm = prev->active_mm;
1921 /*
1922 * For paravirt, this is coupled with an exit in switch_to to
1923 * combine the page table reload and the switch backend into
1924 * one hypercall.
1925 */
1926 arch_enter_lazy_cpu_mode();
1927
1928 if (unlikely(!mm)) {
1929 next->active_mm = oldmm;
1930 atomic_inc(&oldmm->mm_count);
1931 enter_lazy_tlb(oldmm, next);
1932 } else
1933 switch_mm(oldmm, mm, next);
1934
1935 if (unlikely(!prev->mm)) {
1936 prev->active_mm = NULL;
1937 rq->prev_mm = oldmm;
1938 }
1939 /*
1940 * Since the runqueue lock will be released by the next
1941 * task (which is an invalid locking op but in the case
1942 * of the scheduler it's an obvious special-case), so we
1943 * do an early lockdep release here:
1944 */
1945 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1946 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1947 #endif
1948
1949 /* Here we just switch the register state and the stack. */
1950 switch_to(prev, next, prev);
1951
1952 barrier();
1953 /*
1954 * this_rq must be evaluated again because prev may have moved
1955 * CPUs since it called schedule(), thus the 'rq' on its stack
1956 * frame will be invalid.
1957 */
1958 finish_task_switch(this_rq(), prev);
1959 }
1960
1961 /*
1962 * nr_running, nr_uninterruptible and nr_context_switches:
1963 *
1964 * externally visible scheduler statistics: current number of runnable
1965 * threads, current number of uninterruptible-sleeping threads, total
1966 * number of context switches performed since bootup.
1967 */
1968 unsigned long nr_running(void)
1969 {
1970 unsigned long i, sum = 0;
1971
1972 for_each_online_cpu(i)
1973 sum += cpu_rq(i)->nr_running;
1974
1975 return sum;
1976 }
1977
1978 unsigned long nr_uninterruptible(void)
1979 {
1980 unsigned long i, sum = 0;
1981
1982 for_each_possible_cpu(i)
1983 sum += cpu_rq(i)->nr_uninterruptible;
1984
1985 /*
1986 * Since we read the counters lockless, it might be slightly
1987 * inaccurate. Do not allow it to go below zero though:
1988 */
1989 if (unlikely((long)sum < 0))
1990 sum = 0;
1991
1992 return sum;
1993 }
1994
1995 unsigned long long nr_context_switches(void)
1996 {
1997 int i;
1998 unsigned long long sum = 0;
1999
2000 for_each_possible_cpu(i)
2001 sum += cpu_rq(i)->nr_switches;
2002
2003 return sum;
2004 }
2005
2006 unsigned long nr_iowait(void)
2007 {
2008 unsigned long i, sum = 0;
2009
2010 for_each_possible_cpu(i)
2011 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2012
2013 return sum;
2014 }
2015
2016 unsigned long nr_active(void)
2017 {
2018 unsigned long i, running = 0, uninterruptible = 0;
2019
2020 for_each_online_cpu(i) {
2021 running += cpu_rq(i)->nr_running;
2022 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2023 }
2024
2025 if (unlikely((long)uninterruptible < 0))
2026 uninterruptible = 0;
2027
2028 return running + uninterruptible;
2029 }
2030
2031 /*
2032 * Update rq->cpu_load[] statistics. This function is usually called every
2033 * scheduler tick (TICK_NSEC).
2034 */
2035 static void update_cpu_load(struct rq *this_rq)
2036 {
2037 unsigned long this_load = this_rq->load.weight;
2038 int i, scale;
2039
2040 this_rq->nr_load_updates++;
2041
2042 /* Update our load: */
2043 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2044 unsigned long old_load, new_load;
2045
2046 /* scale is effectively 1 << i now, and >> i divides by scale */
2047
2048 old_load = this_rq->cpu_load[i];
2049 new_load = this_load;
2050 /*
2051 * Round up the averaging division if load is increasing. This
2052 * prevents us from getting stuck on 9 if the load is 10, for
2053 * example.
2054 */
2055 if (new_load > old_load)
2056 new_load += scale-1;
2057 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2058 }
2059 }
2060
2061 #ifdef CONFIG_SMP
2062
2063 /*
2064 * double_rq_lock - safely lock two runqueues
2065 *
2066 * Note this does not disable interrupts like task_rq_lock,
2067 * you need to do so manually before calling.
2068 */
2069 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2070 __acquires(rq1->lock)
2071 __acquires(rq2->lock)
2072 {
2073 BUG_ON(!irqs_disabled());
2074 if (rq1 == rq2) {
2075 spin_lock(&rq1->lock);
2076 __acquire(rq2->lock); /* Fake it out ;) */
2077 } else {
2078 if (rq1 < rq2) {
2079 spin_lock(&rq1->lock);
2080 spin_lock(&rq2->lock);
2081 } else {
2082 spin_lock(&rq2->lock);
2083 spin_lock(&rq1->lock);
2084 }
2085 }
2086 update_rq_clock(rq1);
2087 update_rq_clock(rq2);
2088 }
2089
2090 /*
2091 * double_rq_unlock - safely unlock two runqueues
2092 *
2093 * Note this does not restore interrupts like task_rq_unlock,
2094 * you need to do so manually after calling.
2095 */
2096 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2097 __releases(rq1->lock)
2098 __releases(rq2->lock)
2099 {
2100 spin_unlock(&rq1->lock);
2101 if (rq1 != rq2)
2102 spin_unlock(&rq2->lock);
2103 else
2104 __release(rq2->lock);
2105 }
2106
2107 /*
2108 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2109 */
2110 static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
2111 __releases(this_rq->lock)
2112 __acquires(busiest->lock)
2113 __acquires(this_rq->lock)
2114 {
2115 if (unlikely(!irqs_disabled())) {
2116 /* printk() doesn't work good under rq->lock */
2117 spin_unlock(&this_rq->lock);
2118 BUG_ON(1);
2119 }
2120 if (unlikely(!spin_trylock(&busiest->lock))) {
2121 if (busiest < this_rq) {
2122 spin_unlock(&this_rq->lock);
2123 spin_lock(&busiest->lock);
2124 spin_lock(&this_rq->lock);
2125 } else
2126 spin_lock(&busiest->lock);
2127 }
2128 }
2129
2130 /*
2131 * If dest_cpu is allowed for this process, migrate the task to it.
2132 * This is accomplished by forcing the cpu_allowed mask to only
2133 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2134 * the cpu_allowed mask is restored.
2135 */
2136 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2137 {
2138 struct migration_req req;
2139 unsigned long flags;
2140 struct rq *rq;
2141
2142 rq = task_rq_lock(p, &flags);
2143 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2144 || unlikely(cpu_is_offline(dest_cpu)))
2145 goto out;
2146
2147 /* force the process onto the specified CPU */
2148 if (migrate_task(p, dest_cpu, &req)) {
2149 /* Need to wait for migration thread (might exit: take ref). */
2150 struct task_struct *mt = rq->migration_thread;
2151
2152 get_task_struct(mt);
2153 task_rq_unlock(rq, &flags);
2154 wake_up_process(mt);
2155 put_task_struct(mt);
2156 wait_for_completion(&req.done);
2157
2158 return;
2159 }
2160 out:
2161 task_rq_unlock(rq, &flags);
2162 }
2163
2164 /*
2165 * sched_exec - execve() is a valuable balancing opportunity, because at
2166 * this point the task has the smallest effective memory and cache footprint.
2167 */
2168 void sched_exec(void)
2169 {
2170 int new_cpu, this_cpu = get_cpu();
2171 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2172 put_cpu();
2173 if (new_cpu != this_cpu)
2174 sched_migrate_task(current, new_cpu);
2175 }
2176
2177 /*
2178 * pull_task - move a task from a remote runqueue to the local runqueue.
2179 * Both runqueues must be locked.
2180 */
2181 static void pull_task(struct rq *src_rq, struct task_struct *p,
2182 struct rq *this_rq, int this_cpu)
2183 {
2184 deactivate_task(src_rq, p, 0);
2185 set_task_cpu(p, this_cpu);
2186 activate_task(this_rq, p, 0);
2187 /*
2188 * Note that idle threads have a prio of MAX_PRIO, for this test
2189 * to be always true for them.
2190 */
2191 check_preempt_curr(this_rq, p);
2192 }
2193
2194 /*
2195 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2196 */
2197 static
2198 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2199 struct sched_domain *sd, enum cpu_idle_type idle,
2200 int *all_pinned)
2201 {
2202 /*
2203 * We do not migrate tasks that are:
2204 * 1) running (obviously), or
2205 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2206 * 3) are cache-hot on their current CPU.
2207 */
2208 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2209 schedstat_inc(p, se.nr_failed_migrations_affine);
2210 return 0;
2211 }
2212 *all_pinned = 0;
2213
2214 if (task_running(rq, p)) {
2215 schedstat_inc(p, se.nr_failed_migrations_running);
2216 return 0;
2217 }
2218
2219 /*
2220 * Aggressive migration if:
2221 * 1) task is cache cold, or
2222 * 2) too many balance attempts have failed.
2223 */
2224
2225 if (!task_hot(p, rq->clock, sd) ||
2226 sd->nr_balance_failed > sd->cache_nice_tries) {
2227 #ifdef CONFIG_SCHEDSTATS
2228 if (task_hot(p, rq->clock, sd)) {
2229 schedstat_inc(sd, lb_hot_gained[idle]);
2230 schedstat_inc(p, se.nr_forced_migrations);
2231 }
2232 #endif
2233 return 1;
2234 }
2235
2236 if (task_hot(p, rq->clock, sd)) {
2237 schedstat_inc(p, se.nr_failed_migrations_hot);
2238 return 0;
2239 }
2240 return 1;
2241 }
2242
2243 static unsigned long
2244 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2245 unsigned long max_load_move, struct sched_domain *sd,
2246 enum cpu_idle_type idle, int *all_pinned,
2247 int *this_best_prio, struct rq_iterator *iterator)
2248 {
2249 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
2250 struct task_struct *p;
2251 long rem_load_move = max_load_move;
2252
2253 if (max_load_move == 0)
2254 goto out;
2255
2256 pinned = 1;
2257
2258 /*
2259 * Start the load-balancing iterator:
2260 */
2261 p = iterator->start(iterator->arg);
2262 next:
2263 if (!p || loops++ > sysctl_sched_nr_migrate)
2264 goto out;
2265 /*
2266 * To help distribute high priority tasks across CPUs we don't
2267 * skip a task if it will be the highest priority task (i.e. smallest
2268 * prio value) on its new queue regardless of its load weight
2269 */
2270 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2271 SCHED_LOAD_SCALE_FUZZ;
2272 if ((skip_for_load && p->prio >= *this_best_prio) ||
2273 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2274 p = iterator->next(iterator->arg);
2275 goto next;
2276 }
2277
2278 pull_task(busiest, p, this_rq, this_cpu);
2279 pulled++;
2280 rem_load_move -= p->se.load.weight;
2281
2282 /*
2283 * We only want to steal up to the prescribed amount of weighted load.
2284 */
2285 if (rem_load_move > 0) {
2286 if (p->prio < *this_best_prio)
2287 *this_best_prio = p->prio;
2288 p = iterator->next(iterator->arg);
2289 goto next;
2290 }
2291 out:
2292 /*
2293 * Right now, this is one of only two places pull_task() is called,
2294 * so we can safely collect pull_task() stats here rather than
2295 * inside pull_task().
2296 */
2297 schedstat_add(sd, lb_gained[idle], pulled);
2298
2299 if (all_pinned)
2300 *all_pinned = pinned;
2301
2302 return max_load_move - rem_load_move;
2303 }
2304
2305 /*
2306 * move_tasks tries to move up to max_load_move weighted load from busiest to
2307 * this_rq, as part of a balancing operation within domain "sd".
2308 * Returns 1 if successful and 0 otherwise.
2309 *
2310 * Called with both runqueues locked.
2311 */
2312 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2313 unsigned long max_load_move,
2314 struct sched_domain *sd, enum cpu_idle_type idle,
2315 int *all_pinned)
2316 {
2317 const struct sched_class *class = sched_class_highest;
2318 unsigned long total_load_moved = 0;
2319 int this_best_prio = this_rq->curr->prio;
2320
2321 do {
2322 total_load_moved +=
2323 class->load_balance(this_rq, this_cpu, busiest,
2324 max_load_move - total_load_moved,
2325 sd, idle, all_pinned, &this_best_prio);
2326 class = class->next;
2327 } while (class && max_load_move > total_load_moved);
2328
2329 return total_load_moved > 0;
2330 }
2331
2332 static int
2333 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2334 struct sched_domain *sd, enum cpu_idle_type idle,
2335 struct rq_iterator *iterator)
2336 {
2337 struct task_struct *p = iterator->start(iterator->arg);
2338 int pinned = 0;
2339
2340 while (p) {
2341 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2342 pull_task(busiest, p, this_rq, this_cpu);
2343 /*
2344 * Right now, this is only the second place pull_task()
2345 * is called, so we can safely collect pull_task()
2346 * stats here rather than inside pull_task().
2347 */
2348 schedstat_inc(sd, lb_gained[idle]);
2349
2350 return 1;
2351 }
2352 p = iterator->next(iterator->arg);
2353 }
2354
2355 return 0;
2356 }
2357
2358 /*
2359 * move_one_task tries to move exactly one task from busiest to this_rq, as
2360 * part of active balancing operations within "domain".
2361 * Returns 1 if successful and 0 otherwise.
2362 *
2363 * Called with both runqueues locked.
2364 */
2365 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2366 struct sched_domain *sd, enum cpu_idle_type idle)
2367 {
2368 const struct sched_class *class;
2369
2370 for (class = sched_class_highest; class; class = class->next)
2371 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
2372 return 1;
2373
2374 return 0;
2375 }
2376
2377 /*
2378 * find_busiest_group finds and returns the busiest CPU group within the
2379 * domain. It calculates and returns the amount of weighted load which
2380 * should be moved to restore balance via the imbalance parameter.
2381 */
2382 static struct sched_group *
2383 find_busiest_group(struct sched_domain *sd, int this_cpu,
2384 unsigned long *imbalance, enum cpu_idle_type idle,
2385 int *sd_idle, cpumask_t *cpus, int *balance)
2386 {
2387 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2388 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2389 unsigned long max_pull;
2390 unsigned long busiest_load_per_task, busiest_nr_running;
2391 unsigned long this_load_per_task, this_nr_running;
2392 int load_idx, group_imb = 0;
2393 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2394 int power_savings_balance = 1;
2395 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2396 unsigned long min_nr_running = ULONG_MAX;
2397 struct sched_group *group_min = NULL, *group_leader = NULL;
2398 #endif
2399
2400 max_load = this_load = total_load = total_pwr = 0;
2401 busiest_load_per_task = busiest_nr_running = 0;
2402 this_load_per_task = this_nr_running = 0;
2403 if (idle == CPU_NOT_IDLE)
2404 load_idx = sd->busy_idx;
2405 else if (idle == CPU_NEWLY_IDLE)
2406 load_idx = sd->newidle_idx;
2407 else
2408 load_idx = sd->idle_idx;
2409
2410 do {
2411 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
2412 int local_group;
2413 int i;
2414 int __group_imb = 0;
2415 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2416 unsigned long sum_nr_running, sum_weighted_load;
2417
2418 local_group = cpu_isset(this_cpu, group->cpumask);
2419
2420 if (local_group)
2421 balance_cpu = first_cpu(group->cpumask);
2422
2423 /* Tally up the load of all CPUs in the group */
2424 sum_weighted_load = sum_nr_running = avg_load = 0;
2425 max_cpu_load = 0;
2426 min_cpu_load = ~0UL;
2427
2428 for_each_cpu_mask(i, group->cpumask) {
2429 struct rq *rq;
2430
2431 if (!cpu_isset(i, *cpus))
2432 continue;
2433
2434 rq = cpu_rq(i);
2435
2436 if (*sd_idle && rq->nr_running)
2437 *sd_idle = 0;
2438
2439 /* Bias balancing toward cpus of our domain */
2440 if (local_group) {
2441 if (idle_cpu(i) && !first_idle_cpu) {
2442 first_idle_cpu = 1;
2443 balance_cpu = i;
2444 }
2445
2446 load = target_load(i, load_idx);
2447 } else {
2448 load = source_load(i, load_idx);
2449 if (load > max_cpu_load)
2450 max_cpu_load = load;
2451 if (min_cpu_load > load)
2452 min_cpu_load = load;
2453 }
2454
2455 avg_load += load;
2456 sum_nr_running += rq->nr_running;
2457 sum_weighted_load += weighted_cpuload(i);
2458 }
2459
2460 /*
2461 * First idle cpu or the first cpu(busiest) in this sched group
2462 * is eligible for doing load balancing at this and above
2463 * domains. In the newly idle case, we will allow all the cpu's
2464 * to do the newly idle load balance.
2465 */
2466 if (idle != CPU_NEWLY_IDLE && local_group &&
2467 balance_cpu != this_cpu && balance) {
2468 *balance = 0;
2469 goto ret;
2470 }
2471
2472 total_load += avg_load;
2473 total_pwr += group->__cpu_power;
2474
2475 /* Adjust by relative CPU power of the group */
2476 avg_load = sg_div_cpu_power(group,
2477 avg_load * SCHED_LOAD_SCALE);
2478
2479 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
2480 __group_imb = 1;
2481
2482 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2483
2484 if (local_group) {
2485 this_load = avg_load;
2486 this = group;
2487 this_nr_running = sum_nr_running;
2488 this_load_per_task = sum_weighted_load;
2489 } else if (avg_load > max_load &&
2490 (sum_nr_running > group_capacity || __group_imb)) {
2491 max_load = avg_load;
2492 busiest = group;
2493 busiest_nr_running = sum_nr_running;
2494 busiest_load_per_task = sum_weighted_load;
2495 group_imb = __group_imb;
2496 }
2497
2498 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2499 /*
2500 * Busy processors will not participate in power savings
2501 * balance.
2502 */
2503 if (idle == CPU_NOT_IDLE ||
2504 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2505 goto group_next;
2506
2507 /*
2508 * If the local group is idle or completely loaded
2509 * no need to do power savings balance at this domain
2510 */
2511 if (local_group && (this_nr_running >= group_capacity ||
2512 !this_nr_running))
2513 power_savings_balance = 0;
2514
2515 /*
2516 * If a group is already running at full capacity or idle,
2517 * don't include that group in power savings calculations
2518 */
2519 if (!power_savings_balance || sum_nr_running >= group_capacity
2520 || !sum_nr_running)
2521 goto group_next;
2522
2523 /*
2524 * Calculate the group which has the least non-idle load.
2525 * This is the group from where we need to pick up the load
2526 * for saving power
2527 */
2528 if ((sum_nr_running < min_nr_running) ||
2529 (sum_nr_running == min_nr_running &&
2530 first_cpu(group->cpumask) <
2531 first_cpu(group_min->cpumask))) {
2532 group_min = group;
2533 min_nr_running = sum_nr_running;
2534 min_load_per_task = sum_weighted_load /
2535 sum_nr_running;
2536 }
2537
2538 /*
2539 * Calculate the group which is almost near its
2540 * capacity but still has some space to pick up some load
2541 * from other group and save more power
2542 */
2543 if (sum_nr_running <= group_capacity - 1) {
2544 if (sum_nr_running > leader_nr_running ||
2545 (sum_nr_running == leader_nr_running &&
2546 first_cpu(group->cpumask) >
2547 first_cpu(group_leader->cpumask))) {
2548 group_leader = group;
2549 leader_nr_running = sum_nr_running;
2550 }
2551 }
2552 group_next:
2553 #endif
2554 group = group->next;
2555 } while (group != sd->groups);
2556
2557 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2558 goto out_balanced;
2559
2560 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2561
2562 if (this_load >= avg_load ||
2563 100*max_load <= sd->imbalance_pct*this_load)
2564 goto out_balanced;
2565
2566 busiest_load_per_task /= busiest_nr_running;
2567 if (group_imb)
2568 busiest_load_per_task = min(busiest_load_per_task, avg_load);
2569
2570 /*
2571 * We're trying to get all the cpus to the average_load, so we don't
2572 * want to push ourselves above the average load, nor do we wish to
2573 * reduce the max loaded cpu below the average load, as either of these
2574 * actions would just result in more rebalancing later, and ping-pong
2575 * tasks around. Thus we look for the minimum possible imbalance.
2576 * Negative imbalances (*we* are more loaded than anyone else) will
2577 * be counted as no imbalance for these purposes -- we can't fix that
2578 * by pulling tasks to us. Be careful of negative numbers as they'll
2579 * appear as very large values with unsigned longs.
2580 */
2581 if (max_load <= busiest_load_per_task)
2582 goto out_balanced;
2583
2584 /*
2585 * In the presence of smp nice balancing, certain scenarios can have
2586 * max load less than avg load(as we skip the groups at or below
2587 * its cpu_power, while calculating max_load..)
2588 */
2589 if (max_load < avg_load) {
2590 *imbalance = 0;
2591 goto small_imbalance;
2592 }
2593
2594 /* Don't want to pull so many tasks that a group would go idle */
2595 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2596
2597 /* How much load to actually move to equalise the imbalance */
2598 *imbalance = min(max_pull * busiest->__cpu_power,
2599 (avg_load - this_load) * this->__cpu_power)
2600 / SCHED_LOAD_SCALE;
2601
2602 /*
2603 * if *imbalance is less than the average load per runnable task
2604 * there is no gaurantee that any tasks will be moved so we'll have
2605 * a think about bumping its value to force at least one task to be
2606 * moved
2607 */
2608 if (*imbalance < busiest_load_per_task) {
2609 unsigned long tmp, pwr_now, pwr_move;
2610 unsigned int imbn;
2611
2612 small_imbalance:
2613 pwr_move = pwr_now = 0;
2614 imbn = 2;
2615 if (this_nr_running) {
2616 this_load_per_task /= this_nr_running;
2617 if (busiest_load_per_task > this_load_per_task)
2618 imbn = 1;
2619 } else
2620 this_load_per_task = SCHED_LOAD_SCALE;
2621
2622 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2623 busiest_load_per_task * imbn) {
2624 *imbalance = busiest_load_per_task;
2625 return busiest;
2626 }
2627
2628 /*
2629 * OK, we don't have enough imbalance to justify moving tasks,
2630 * however we may be able to increase total CPU power used by
2631 * moving them.
2632 */
2633
2634 pwr_now += busiest->__cpu_power *
2635 min(busiest_load_per_task, max_load);
2636 pwr_now += this->__cpu_power *
2637 min(this_load_per_task, this_load);
2638 pwr_now /= SCHED_LOAD_SCALE;
2639
2640 /* Amount of load we'd subtract */
2641 tmp = sg_div_cpu_power(busiest,
2642 busiest_load_per_task * SCHED_LOAD_SCALE);
2643 if (max_load > tmp)
2644 pwr_move += busiest->__cpu_power *
2645 min(busiest_load_per_task, max_load - tmp);
2646
2647 /* Amount of load we'd add */
2648 if (max_load * busiest->__cpu_power <
2649 busiest_load_per_task * SCHED_LOAD_SCALE)
2650 tmp = sg_div_cpu_power(this,
2651 max_load * busiest->__cpu_power);
2652 else
2653 tmp = sg_div_cpu_power(this,
2654 busiest_load_per_task * SCHED_LOAD_SCALE);
2655 pwr_move += this->__cpu_power *
2656 min(this_load_per_task, this_load + tmp);
2657 pwr_move /= SCHED_LOAD_SCALE;
2658
2659 /* Move if we gain throughput */
2660 if (pwr_move > pwr_now)
2661 *imbalance = busiest_load_per_task;
2662 }
2663
2664 return busiest;
2665
2666 out_balanced:
2667 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2668 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2669 goto ret;
2670
2671 if (this == group_leader && group_leader != group_min) {
2672 *imbalance = min_load_per_task;
2673 return group_min;
2674 }
2675 #endif
2676 ret:
2677 *imbalance = 0;
2678 return NULL;
2679 }
2680
2681 /*
2682 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2683 */
2684 static struct rq *
2685 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2686 unsigned long imbalance, cpumask_t *cpus)
2687 {
2688 struct rq *busiest = NULL, *rq;
2689 unsigned long max_load = 0;
2690 int i;
2691
2692 for_each_cpu_mask(i, group->cpumask) {
2693 unsigned long wl;
2694
2695 if (!cpu_isset(i, *cpus))
2696 continue;
2697
2698 rq = cpu_rq(i);
2699 wl = weighted_cpuload(i);
2700
2701 if (rq->nr_running == 1 && wl > imbalance)
2702 continue;
2703
2704 if (wl > max_load) {
2705 max_load = wl;
2706 busiest = rq;
2707 }
2708 }
2709
2710 return busiest;
2711 }
2712
2713 /*
2714 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2715 * so long as it is large enough.
2716 */
2717 #define MAX_PINNED_INTERVAL 512
2718
2719 /*
2720 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2721 * tasks if there is an imbalance.
2722 */
2723 static int load_balance(int this_cpu, struct rq *this_rq,
2724 struct sched_domain *sd, enum cpu_idle_type idle,
2725 int *balance)
2726 {
2727 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2728 struct sched_group *group;
2729 unsigned long imbalance;
2730 struct rq *busiest;
2731 cpumask_t cpus = CPU_MASK_ALL;
2732 unsigned long flags;
2733
2734 /*
2735 * When power savings policy is enabled for the parent domain, idle
2736 * sibling can pick up load irrespective of busy siblings. In this case,
2737 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2738 * portraying it as CPU_NOT_IDLE.
2739 */
2740 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2741 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2742 sd_idle = 1;
2743
2744 schedstat_inc(sd, lb_count[idle]);
2745
2746 redo:
2747 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2748 &cpus, balance);
2749
2750 if (*balance == 0)
2751 goto out_balanced;
2752
2753 if (!group) {
2754 schedstat_inc(sd, lb_nobusyg[idle]);
2755 goto out_balanced;
2756 }
2757
2758 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
2759 if (!busiest) {
2760 schedstat_inc(sd, lb_nobusyq[idle]);
2761 goto out_balanced;
2762 }
2763
2764 BUG_ON(busiest == this_rq);
2765
2766 schedstat_add(sd, lb_imbalance[idle], imbalance);
2767
2768 ld_moved = 0;
2769 if (busiest->nr_running > 1) {
2770 /*
2771 * Attempt to move tasks. If find_busiest_group has found
2772 * an imbalance but busiest->nr_running <= 1, the group is
2773 * still unbalanced. ld_moved simply stays zero, so it is
2774 * correctly treated as an imbalance.
2775 */
2776 local_irq_save(flags);
2777 double_rq_lock(this_rq, busiest);
2778 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2779 imbalance, sd, idle, &all_pinned);
2780 double_rq_unlock(this_rq, busiest);
2781 local_irq_restore(flags);
2782
2783 /*
2784 * some other cpu did the load balance for us.
2785 */
2786 if (ld_moved && this_cpu != smp_processor_id())
2787 resched_cpu(this_cpu);
2788
2789 /* All tasks on this runqueue were pinned by CPU affinity */
2790 if (unlikely(all_pinned)) {
2791 cpu_clear(cpu_of(busiest), cpus);
2792 if (!cpus_empty(cpus))
2793 goto redo;
2794 goto out_balanced;
2795 }
2796 }
2797
2798 if (!ld_moved) {
2799 schedstat_inc(sd, lb_failed[idle]);
2800 sd->nr_balance_failed++;
2801
2802 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2803
2804 spin_lock_irqsave(&busiest->lock, flags);
2805
2806 /* don't kick the migration_thread, if the curr
2807 * task on busiest cpu can't be moved to this_cpu
2808 */
2809 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2810 spin_unlock_irqrestore(&busiest->lock, flags);
2811 all_pinned = 1;
2812 goto out_one_pinned;
2813 }
2814
2815 if (!busiest->active_balance) {
2816 busiest->active_balance = 1;
2817 busiest->push_cpu = this_cpu;
2818 active_balance = 1;
2819 }
2820 spin_unlock_irqrestore(&busiest->lock, flags);
2821 if (active_balance)
2822 wake_up_process(busiest->migration_thread);
2823
2824 /*
2825 * We've kicked active balancing, reset the failure
2826 * counter.
2827 */
2828 sd->nr_balance_failed = sd->cache_nice_tries+1;
2829 }
2830 } else
2831 sd->nr_balance_failed = 0;
2832
2833 if (likely(!active_balance)) {
2834 /* We were unbalanced, so reset the balancing interval */
2835 sd->balance_interval = sd->min_interval;
2836 } else {
2837 /*
2838 * If we've begun active balancing, start to back off. This
2839 * case may not be covered by the all_pinned logic if there
2840 * is only 1 task on the busy runqueue (because we don't call
2841 * move_tasks).
2842 */
2843 if (sd->balance_interval < sd->max_interval)
2844 sd->balance_interval *= 2;
2845 }
2846
2847 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2848 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2849 return -1;
2850 return ld_moved;
2851
2852 out_balanced:
2853 schedstat_inc(sd, lb_balanced[idle]);
2854
2855 sd->nr_balance_failed = 0;
2856
2857 out_one_pinned:
2858 /* tune up the balancing interval */
2859 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2860 (sd->balance_interval < sd->max_interval))
2861 sd->balance_interval *= 2;
2862
2863 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2864 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2865 return -1;
2866 return 0;
2867 }
2868
2869 /*
2870 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2871 * tasks if there is an imbalance.
2872 *
2873 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
2874 * this_rq is locked.
2875 */
2876 static int
2877 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
2878 {
2879 struct sched_group *group;
2880 struct rq *busiest = NULL;
2881 unsigned long imbalance;
2882 int ld_moved = 0;
2883 int sd_idle = 0;
2884 int all_pinned = 0;
2885 cpumask_t cpus = CPU_MASK_ALL;
2886
2887 /*
2888 * When power savings policy is enabled for the parent domain, idle
2889 * sibling can pick up load irrespective of busy siblings. In this case,
2890 * let the state of idle sibling percolate up as IDLE, instead of
2891 * portraying it as CPU_NOT_IDLE.
2892 */
2893 if (sd->flags & SD_SHARE_CPUPOWER &&
2894 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2895 sd_idle = 1;
2896
2897 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
2898 redo:
2899 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2900 &sd_idle, &cpus, NULL);
2901 if (!group) {
2902 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2903 goto out_balanced;
2904 }
2905
2906 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2907 &cpus);
2908 if (!busiest) {
2909 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2910 goto out_balanced;
2911 }
2912
2913 BUG_ON(busiest == this_rq);
2914
2915 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2916
2917 ld_moved = 0;
2918 if (busiest->nr_running > 1) {
2919 /* Attempt to move tasks */
2920 double_lock_balance(this_rq, busiest);
2921 /* this_rq->clock is already updated */
2922 update_rq_clock(busiest);
2923 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2924 imbalance, sd, CPU_NEWLY_IDLE,
2925 &all_pinned);
2926 spin_unlock(&busiest->lock);
2927
2928 if (unlikely(all_pinned)) {
2929 cpu_clear(cpu_of(busiest), cpus);
2930 if (!cpus_empty(cpus))
2931 goto redo;
2932 }
2933 }
2934
2935 if (!ld_moved) {
2936 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2937 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2938 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2939 return -1;
2940 } else
2941 sd->nr_balance_failed = 0;
2942
2943 return ld_moved;
2944
2945 out_balanced:
2946 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2947 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2948 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2949 return -1;
2950 sd->nr_balance_failed = 0;
2951
2952 return 0;
2953 }
2954
2955 /*
2956 * idle_balance is called by schedule() if this_cpu is about to become
2957 * idle. Attempts to pull tasks from other CPUs.
2958 */
2959 static void idle_balance(int this_cpu, struct rq *this_rq)
2960 {
2961 struct sched_domain *sd;
2962 int pulled_task = -1;
2963 unsigned long next_balance = jiffies + HZ;
2964
2965 for_each_domain(this_cpu, sd) {
2966 unsigned long interval;
2967
2968 if (!(sd->flags & SD_LOAD_BALANCE))
2969 continue;
2970
2971 if (sd->flags & SD_BALANCE_NEWIDLE)
2972 /* If we've pulled tasks over stop searching: */
2973 pulled_task = load_balance_newidle(this_cpu,
2974 this_rq, sd);
2975
2976 interval = msecs_to_jiffies(sd->balance_interval);
2977 if (time_after(next_balance, sd->last_balance + interval))
2978 next_balance = sd->last_balance + interval;
2979 if (pulled_task)
2980 break;
2981 }
2982 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
2983 /*
2984 * We are going idle. next_balance may be set based on
2985 * a busy processor. So reset next_balance.
2986 */
2987 this_rq->next_balance = next_balance;
2988 }
2989 }
2990
2991 /*
2992 * active_load_balance is run by migration threads. It pushes running tasks
2993 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2994 * running on each physical CPU where possible, and avoids physical /
2995 * logical imbalances.
2996 *
2997 * Called with busiest_rq locked.
2998 */
2999 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3000 {
3001 int target_cpu = busiest_rq->push_cpu;
3002 struct sched_domain *sd;
3003 struct rq *target_rq;
3004
3005 /* Is there any task to move? */
3006 if (busiest_rq->nr_running <= 1)
3007 return;
3008
3009 target_rq = cpu_rq(target_cpu);
3010
3011 /*
3012 * This condition is "impossible", if it occurs
3013 * we need to fix it. Originally reported by
3014 * Bjorn Helgaas on a 128-cpu setup.
3015 */
3016 BUG_ON(busiest_rq == target_rq);
3017
3018 /* move a task from busiest_rq to target_rq */
3019 double_lock_balance(busiest_rq, target_rq);
3020 update_rq_clock(busiest_rq);
3021 update_rq_clock(target_rq);
3022
3023 /* Search for an sd spanning us and the target CPU. */
3024 for_each_domain(target_cpu, sd) {
3025 if ((sd->flags & SD_LOAD_BALANCE) &&
3026 cpu_isset(busiest_cpu, sd->span))
3027 break;
3028 }
3029
3030 if (likely(sd)) {
3031 schedstat_inc(sd, alb_count);
3032
3033 if (move_one_task(target_rq, target_cpu, busiest_rq,
3034 sd, CPU_IDLE))
3035 schedstat_inc(sd, alb_pushed);
3036 else
3037 schedstat_inc(sd, alb_failed);
3038 }
3039 spin_unlock(&target_rq->lock);
3040 }
3041
3042 #ifdef CONFIG_NO_HZ
3043 static struct {
3044 atomic_t load_balancer;
3045 cpumask_t cpu_mask;
3046 } nohz ____cacheline_aligned = {
3047 .load_balancer = ATOMIC_INIT(-1),
3048 .cpu_mask = CPU_MASK_NONE,
3049 };
3050
3051 /*
3052 * This routine will try to nominate the ilb (idle load balancing)
3053 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3054 * load balancing on behalf of all those cpus. If all the cpus in the system
3055 * go into this tickless mode, then there will be no ilb owner (as there is
3056 * no need for one) and all the cpus will sleep till the next wakeup event
3057 * arrives...
3058 *
3059 * For the ilb owner, tick is not stopped. And this tick will be used
3060 * for idle load balancing. ilb owner will still be part of
3061 * nohz.cpu_mask..
3062 *
3063 * While stopping the tick, this cpu will become the ilb owner if there
3064 * is no other owner. And will be the owner till that cpu becomes busy
3065 * or if all cpus in the system stop their ticks at which point
3066 * there is no need for ilb owner.
3067 *
3068 * When the ilb owner becomes busy, it nominates another owner, during the
3069 * next busy scheduler_tick()
3070 */
3071 int select_nohz_load_balancer(int stop_tick)
3072 {
3073 int cpu = smp_processor_id();
3074
3075 if (stop_tick) {
3076 cpu_set(cpu, nohz.cpu_mask);
3077 cpu_rq(cpu)->in_nohz_recently = 1;
3078
3079 /*
3080 * If we are going offline and still the leader, give up!
3081 */
3082 if (cpu_is_offline(cpu) &&
3083 atomic_read(&nohz.load_balancer) == cpu) {
3084 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3085 BUG();
3086 return 0;
3087 }
3088
3089 /* time for ilb owner also to sleep */
3090 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3091 if (atomic_read(&nohz.load_balancer) == cpu)
3092 atomic_set(&nohz.load_balancer, -1);
3093 return 0;
3094 }
3095
3096 if (atomic_read(&nohz.load_balancer) == -1) {
3097 /* make me the ilb owner */
3098 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3099 return 1;
3100 } else if (atomic_read(&nohz.load_balancer) == cpu)
3101 return 1;
3102 } else {
3103 if (!cpu_isset(cpu, nohz.cpu_mask))
3104 return 0;
3105
3106 cpu_clear(cpu, nohz.cpu_mask);
3107
3108 if (atomic_read(&nohz.load_balancer) == cpu)
3109 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3110 BUG();
3111 }
3112 return 0;
3113 }
3114 #endif
3115
3116 static DEFINE_SPINLOCK(balancing);
3117
3118 /*
3119 * It checks each scheduling domain to see if it is due to be balanced,
3120 * and initiates a balancing operation if so.
3121 *
3122 * Balancing parameters are set up in arch_init_sched_domains.
3123 */
3124 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3125 {
3126 int balance = 1;
3127 struct rq *rq = cpu_rq(cpu);
3128 unsigned long interval;
3129 struct sched_domain *sd;
3130 /* Earliest time when we have to do rebalance again */
3131 unsigned long next_balance = jiffies + 60*HZ;
3132 int update_next_balance = 0;
3133
3134 for_each_domain(cpu, sd) {
3135 if (!(sd->flags & SD_LOAD_BALANCE))
3136 continue;
3137
3138 interval = sd->balance_interval;
3139 if (idle != CPU_IDLE)
3140 interval *= sd->busy_factor;
3141
3142 /* scale ms to jiffies */
3143 interval = msecs_to_jiffies(interval);
3144 if (unlikely(!interval))
3145 interval = 1;
3146 if (interval > HZ*NR_CPUS/10)
3147 interval = HZ*NR_CPUS/10;
3148
3149
3150 if (sd->flags & SD_SERIALIZE) {
3151 if (!spin_trylock(&balancing))
3152 goto out;
3153 }
3154
3155 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3156 if (load_balance(cpu, rq, sd, idle, &balance)) {
3157 /*
3158 * We've pulled tasks over so either we're no
3159 * longer idle, or one of our SMT siblings is
3160 * not idle.
3161 */
3162 idle = CPU_NOT_IDLE;
3163 }
3164 sd->last_balance = jiffies;
3165 }
3166 if (sd->flags & SD_SERIALIZE)
3167 spin_unlock(&balancing);
3168 out:
3169 if (time_after(next_balance, sd->last_balance + interval)) {
3170 next_balance = sd->last_balance + interval;
3171 update_next_balance = 1;
3172 }
3173
3174 /*
3175 * Stop the load balance at this level. There is another
3176 * CPU in our sched group which is doing load balancing more
3177 * actively.
3178 */
3179 if (!balance)
3180 break;
3181 }
3182
3183 /*
3184 * next_balance will be updated only when there is a need.
3185 * When the cpu is attached to null domain for ex, it will not be
3186 * updated.
3187 */
3188 if (likely(update_next_balance))
3189 rq->next_balance = next_balance;
3190 }
3191
3192 /*
3193 * run_rebalance_domains is triggered when needed from the scheduler tick.
3194 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3195 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3196 */
3197 static void run_rebalance_domains(struct softirq_action *h)
3198 {
3199 int this_cpu = smp_processor_id();
3200 struct rq *this_rq = cpu_rq(this_cpu);
3201 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3202 CPU_IDLE : CPU_NOT_IDLE;
3203
3204 rebalance_domains(this_cpu, idle);
3205
3206 #ifdef CONFIG_NO_HZ
3207 /*
3208 * If this cpu is the owner for idle load balancing, then do the
3209 * balancing on behalf of the other idle cpus whose ticks are
3210 * stopped.
3211 */
3212 if (this_rq->idle_at_tick &&
3213 atomic_read(&nohz.load_balancer) == this_cpu) {
3214 cpumask_t cpus = nohz.cpu_mask;
3215 struct rq *rq;
3216 int balance_cpu;
3217
3218 cpu_clear(this_cpu, cpus);
3219 for_each_cpu_mask(balance_cpu, cpus) {
3220 /*
3221 * If this cpu gets work to do, stop the load balancing
3222 * work being done for other cpus. Next load
3223 * balancing owner will pick it up.
3224 */
3225 if (need_resched())
3226 break;
3227
3228 rebalance_domains(balance_cpu, CPU_IDLE);
3229
3230 rq = cpu_rq(balance_cpu);
3231 if (time_after(this_rq->next_balance, rq->next_balance))
3232 this_rq->next_balance = rq->next_balance;
3233 }
3234 }
3235 #endif
3236 }
3237
3238 /*
3239 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3240 *
3241 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3242 * idle load balancing owner or decide to stop the periodic load balancing,
3243 * if the whole system is idle.
3244 */
3245 static inline void trigger_load_balance(struct rq *rq, int cpu)
3246 {
3247 #ifdef CONFIG_NO_HZ
3248 /*
3249 * If we were in the nohz mode recently and busy at the current
3250 * scheduler tick, then check if we need to nominate new idle
3251 * load balancer.
3252 */
3253 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3254 rq->in_nohz_recently = 0;
3255
3256 if (atomic_read(&nohz.load_balancer) == cpu) {
3257 cpu_clear(cpu, nohz.cpu_mask);
3258 atomic_set(&nohz.load_balancer, -1);
3259 }
3260
3261 if (atomic_read(&nohz.load_balancer) == -1) {
3262 /*
3263 * simple selection for now: Nominate the
3264 * first cpu in the nohz list to be the next
3265 * ilb owner.
3266 *
3267 * TBD: Traverse the sched domains and nominate
3268 * the nearest cpu in the nohz.cpu_mask.
3269 */
3270 int ilb = first_cpu(nohz.cpu_mask);
3271
3272 if (ilb != NR_CPUS)
3273 resched_cpu(ilb);
3274 }
3275 }
3276
3277 /*
3278 * If this cpu is idle and doing idle load balancing for all the
3279 * cpus with ticks stopped, is it time for that to stop?
3280 */
3281 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3282 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3283 resched_cpu(cpu);
3284 return;
3285 }
3286
3287 /*
3288 * If this cpu is idle and the idle load balancing is done by
3289 * someone else, then no need raise the SCHED_SOFTIRQ
3290 */
3291 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3292 cpu_isset(cpu, nohz.cpu_mask))
3293 return;
3294 #endif
3295 if (time_after_eq(jiffies, rq->next_balance))
3296 raise_softirq(SCHED_SOFTIRQ);
3297 }
3298
3299 #else /* CONFIG_SMP */
3300
3301 /*
3302 * on UP we do not need to balance between CPUs:
3303 */
3304 static inline void idle_balance(int cpu, struct rq *rq)
3305 {
3306 }
3307
3308 #endif
3309
3310 DEFINE_PER_CPU(struct kernel_stat, kstat);
3311
3312 EXPORT_PER_CPU_SYMBOL(kstat);
3313
3314 /*
3315 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3316 * that have not yet been banked in case the task is currently running.
3317 */
3318 unsigned long long task_sched_runtime(struct task_struct *p)
3319 {
3320 unsigned long flags;
3321 u64 ns, delta_exec;
3322 struct rq *rq;
3323
3324 rq = task_rq_lock(p, &flags);
3325 ns = p->se.sum_exec_runtime;
3326 if (rq->curr == p) {
3327 update_rq_clock(rq);
3328 delta_exec = rq->clock - p->se.exec_start;
3329 if ((s64)delta_exec > 0)
3330 ns += delta_exec;
3331 }
3332 task_rq_unlock(rq, &flags);
3333
3334 return ns;
3335 }
3336
3337 /*
3338 * Account user cpu time to a process.
3339 * @p: the process that the cpu time gets accounted to
3340 * @cputime: the cpu time spent in user space since the last update
3341 */
3342 void account_user_time(struct task_struct *p, cputime_t cputime)
3343 {
3344 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3345 cputime64_t tmp;
3346
3347 p->utime = cputime_add(p->utime, cputime);
3348
3349 /* Add user time to cpustat. */
3350 tmp = cputime_to_cputime64(cputime);
3351 if (TASK_NICE(p) > 0)
3352 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3353 else
3354 cpustat->user = cputime64_add(cpustat->user, tmp);
3355 }
3356
3357 /*
3358 * Account guest cpu time to a process.
3359 * @p: the process that the cpu time gets accounted to
3360 * @cputime: the cpu time spent in virtual machine since the last update
3361 */
3362 static void account_guest_time(struct task_struct *p, cputime_t cputime)
3363 {
3364 cputime64_t tmp;
3365 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3366
3367 tmp = cputime_to_cputime64(cputime);
3368
3369 p->utime = cputime_add(p->utime, cputime);
3370 p->gtime = cputime_add(p->gtime, cputime);
3371
3372 cpustat->user = cputime64_add(cpustat->user, tmp);
3373 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3374 }
3375
3376 /*
3377 * Account scaled user cpu time to a process.
3378 * @p: the process that the cpu time gets accounted to
3379 * @cputime: the cpu time spent in user space since the last update
3380 */
3381 void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
3382 {
3383 p->utimescaled = cputime_add(p->utimescaled, cputime);
3384 }
3385
3386 /*
3387 * Account system cpu time to a process.
3388 * @p: the process that the cpu time gets accounted to
3389 * @hardirq_offset: the offset to subtract from hardirq_count()
3390 * @cputime: the cpu time spent in kernel space since the last update
3391 */
3392 void account_system_time(struct task_struct *p, int hardirq_offset,
3393 cputime_t cputime)
3394 {
3395 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3396 struct rq *rq = this_rq();
3397 cputime64_t tmp;
3398
3399 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
3400 return account_guest_time(p, cputime);
3401
3402 p->stime = cputime_add(p->stime, cputime);
3403
3404 /* Add system time to cpustat. */
3405 tmp = cputime_to_cputime64(cputime);
3406 if (hardirq_count() - hardirq_offset)
3407 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3408 else if (softirq_count())
3409 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3410 else if (p != rq->idle)
3411 cpustat->system = cputime64_add(cpustat->system, tmp);
3412 else if (atomic_read(&rq->nr_iowait) > 0)
3413 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3414 else
3415 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3416 /* Account for system time used */
3417 acct_update_integrals(p);
3418 }
3419
3420 /*
3421 * Account scaled system cpu time to a process.
3422 * @p: the process that the cpu time gets accounted to
3423 * @hardirq_offset: the offset to subtract from hardirq_count()
3424 * @cputime: the cpu time spent in kernel space since the last update
3425 */
3426 void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
3427 {
3428 p->stimescaled = cputime_add(p->stimescaled, cputime);
3429 }
3430
3431 /*
3432 * Account for involuntary wait time.
3433 * @p: the process from which the cpu time has been stolen
3434 * @steal: the cpu time spent in involuntary wait
3435 */
3436 void account_steal_time(struct task_struct *p, cputime_t steal)
3437 {
3438 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3439 cputime64_t tmp = cputime_to_cputime64(steal);
3440 struct rq *rq = this_rq();
3441
3442 if (p == rq->idle) {
3443 p->stime = cputime_add(p->stime, steal);
3444 if (atomic_read(&rq->nr_iowait) > 0)
3445 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3446 else
3447 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3448 } else
3449 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3450 }
3451
3452 /*
3453 * This function gets called by the timer code, with HZ frequency.
3454 * We call it with interrupts disabled.
3455 *
3456 * It also gets called by the fork code, when changing the parent's
3457 * timeslices.
3458 */
3459 void scheduler_tick(void)
3460 {
3461 int cpu = smp_processor_id();
3462 struct rq *rq = cpu_rq(cpu);
3463 struct task_struct *curr = rq->curr;
3464 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
3465
3466 spin_lock(&rq->lock);
3467 __update_rq_clock(rq);
3468 /*
3469 * Let rq->clock advance by at least TICK_NSEC:
3470 */
3471 if (unlikely(rq->clock < next_tick))
3472 rq->clock = next_tick;
3473 rq->tick_timestamp = rq->clock;
3474 update_cpu_load(rq);
3475 if (curr != rq->idle) /* FIXME: needed? */
3476 curr->sched_class->task_tick(rq, curr);
3477 spin_unlock(&rq->lock);
3478
3479 #ifdef CONFIG_SMP
3480 rq->idle_at_tick = idle_cpu(cpu);
3481 trigger_load_balance(rq, cpu);
3482 #endif
3483 }
3484
3485 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3486
3487 void fastcall add_preempt_count(int val)
3488 {
3489 /*
3490 * Underflow?
3491 */
3492 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3493 return;
3494 preempt_count() += val;
3495 /*
3496 * Spinlock count overflowing soon?
3497 */
3498 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3499 PREEMPT_MASK - 10);
3500 }
3501 EXPORT_SYMBOL(add_preempt_count);
3502
3503 void fastcall sub_preempt_count(int val)
3504 {
3505 /*
3506 * Underflow?
3507 */
3508 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3509 return;
3510 /*
3511 * Is the spinlock portion underflowing?
3512 */
3513 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3514 !(preempt_count() & PREEMPT_MASK)))
3515 return;
3516
3517 preempt_count() -= val;
3518 }
3519 EXPORT_SYMBOL(sub_preempt_count);
3520
3521 #endif
3522
3523 /*
3524 * Print scheduling while atomic bug:
3525 */
3526 static noinline void __schedule_bug(struct task_struct *prev)
3527 {
3528 struct pt_regs *regs = get_irq_regs();
3529
3530 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3531 prev->comm, prev->pid, preempt_count());
3532
3533 debug_show_held_locks(prev);
3534 if (irqs_disabled())
3535 print_irqtrace_events(prev);
3536
3537 if (regs)
3538 show_regs(regs);
3539 else
3540 dump_stack();
3541 }
3542
3543 /*
3544 * Various schedule()-time debugging checks and statistics:
3545 */
3546 static inline void schedule_debug(struct task_struct *prev)
3547 {
3548 /*
3549 * Test if we are atomic. Since do_exit() needs to call into
3550 * schedule() atomically, we ignore that path for now.
3551 * Otherwise, whine if we are scheduling when we should not be.
3552 */
3553 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3554 __schedule_bug(prev);
3555
3556 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3557
3558 schedstat_inc(this_rq(), sched_count);
3559 #ifdef CONFIG_SCHEDSTATS
3560 if (unlikely(prev->lock_depth >= 0)) {
3561 schedstat_inc(this_rq(), bkl_count);
3562 schedstat_inc(prev, sched_info.bkl_count);
3563 }
3564 #endif
3565 }
3566
3567 /*
3568 * Pick up the highest-prio task:
3569 */
3570 static inline struct task_struct *
3571 pick_next_task(struct rq *rq, struct task_struct *prev)
3572 {
3573 const struct sched_class *class;
3574 struct task_struct *p;
3575
3576 /*
3577 * Optimization: we know that if all tasks are in
3578 * the fair class we can call that function directly:
3579 */
3580 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3581 p = fair_sched_class.pick_next_task(rq);
3582 if (likely(p))
3583 return p;
3584 }
3585
3586 class = sched_class_highest;
3587 for ( ; ; ) {
3588 p = class->pick_next_task(rq);
3589 if (p)
3590 return p;
3591 /*
3592 * Will never be NULL as the idle class always
3593 * returns a non-NULL p:
3594 */
3595 class = class->next;
3596 }
3597 }
3598
3599 /*
3600 * schedule() is the main scheduler function.
3601 */
3602 asmlinkage void __sched schedule(void)
3603 {
3604 struct task_struct *prev, *next;
3605 long *switch_count;
3606 struct rq *rq;
3607 int cpu;
3608
3609 need_resched:
3610 preempt_disable();
3611 cpu = smp_processor_id();
3612 rq = cpu_rq(cpu);
3613 rcu_qsctr_inc(cpu);
3614 prev = rq->curr;
3615 switch_count = &prev->nivcsw;
3616
3617 release_kernel_lock(prev);
3618 need_resched_nonpreemptible:
3619
3620 schedule_debug(prev);
3621
3622 /*
3623 * Do the rq-clock update outside the rq lock:
3624 */
3625 local_irq_disable();
3626 __update_rq_clock(rq);
3627 spin_lock(&rq->lock);
3628 clear_tsk_need_resched(prev);
3629
3630 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3631 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3632 unlikely(signal_pending(prev)))) {
3633 prev->state = TASK_RUNNING;
3634 } else {
3635 deactivate_task(rq, prev, 1);
3636 }
3637 switch_count = &prev->nvcsw;
3638 }
3639
3640 if (unlikely(!rq->nr_running))
3641 idle_balance(cpu, rq);
3642
3643 prev->sched_class->put_prev_task(rq, prev);
3644 next = pick_next_task(rq, prev);
3645
3646 sched_info_switch(prev, next);
3647
3648 if (likely(prev != next)) {
3649 rq->nr_switches++;
3650 rq->curr = next;
3651 ++*switch_count;
3652
3653 context_switch(rq, prev, next); /* unlocks the rq */
3654 } else
3655 spin_unlock_irq(&rq->lock);
3656
3657 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3658 cpu = smp_processor_id();
3659 rq = cpu_rq(cpu);
3660 goto need_resched_nonpreemptible;
3661 }
3662 preempt_enable_no_resched();
3663 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3664 goto need_resched;
3665 }
3666 EXPORT_SYMBOL(schedule);
3667
3668 #ifdef CONFIG_PREEMPT
3669 /*
3670 * this is the entry point to schedule() from in-kernel preemption
3671 * off of preempt_enable. Kernel preemptions off return from interrupt
3672 * occur there and call schedule directly.
3673 */
3674 asmlinkage void __sched preempt_schedule(void)
3675 {
3676 struct thread_info *ti = current_thread_info();
3677 #ifdef CONFIG_PREEMPT_BKL
3678 struct task_struct *task = current;
3679 int saved_lock_depth;
3680 #endif
3681 /*
3682 * If there is a non-zero preempt_count or interrupts are disabled,
3683 * we do not want to preempt the current task. Just return..
3684 */
3685 if (likely(ti->preempt_count || irqs_disabled()))
3686 return;
3687
3688 do {
3689 add_preempt_count(PREEMPT_ACTIVE);
3690
3691 /*
3692 * We keep the big kernel semaphore locked, but we
3693 * clear ->lock_depth so that schedule() doesnt
3694 * auto-release the semaphore:
3695 */
3696 #ifdef CONFIG_PREEMPT_BKL
3697 saved_lock_depth = task->lock_depth;
3698 task->lock_depth = -1;
3699 #endif
3700 schedule();
3701 #ifdef CONFIG_PREEMPT_BKL
3702 task->lock_depth = saved_lock_depth;
3703 #endif
3704 sub_preempt_count(PREEMPT_ACTIVE);
3705
3706 /*
3707 * Check again in case we missed a preemption opportunity
3708 * between schedule and now.
3709 */
3710 barrier();
3711 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
3712 }
3713 EXPORT_SYMBOL(preempt_schedule);
3714
3715 /*
3716 * this is the entry point to schedule() from kernel preemption
3717 * off of irq context.
3718 * Note, that this is called and return with irqs disabled. This will
3719 * protect us against recursive calling from irq.
3720 */
3721 asmlinkage void __sched preempt_schedule_irq(void)
3722 {
3723 struct thread_info *ti = current_thread_info();
3724 #ifdef CONFIG_PREEMPT_BKL
3725 struct task_struct *task = current;
3726 int saved_lock_depth;
3727 #endif
3728 /* Catch callers which need to be fixed */
3729 BUG_ON(ti->preempt_count || !irqs_disabled());
3730
3731 do {
3732 add_preempt_count(PREEMPT_ACTIVE);
3733
3734 /*
3735 * We keep the big kernel semaphore locked, but we
3736 * clear ->lock_depth so that schedule() doesnt
3737 * auto-release the semaphore:
3738 */
3739 #ifdef CONFIG_PREEMPT_BKL
3740 saved_lock_depth = task->lock_depth;
3741 task->lock_depth = -1;
3742 #endif
3743 local_irq_enable();
3744 schedule();
3745 local_irq_disable();
3746 #ifdef CONFIG_PREEMPT_BKL
3747 task->lock_depth = saved_lock_depth;
3748 #endif
3749 sub_preempt_count(PREEMPT_ACTIVE);
3750
3751 /*
3752 * Check again in case we missed a preemption opportunity
3753 * between schedule and now.
3754 */
3755 barrier();
3756 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
3757 }
3758
3759 #endif /* CONFIG_PREEMPT */
3760
3761 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3762 void *key)
3763 {
3764 return try_to_wake_up(curr->private, mode, sync);
3765 }
3766 EXPORT_SYMBOL(default_wake_function);
3767
3768 /*
3769 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3770 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3771 * number) then we wake all the non-exclusive tasks and one exclusive task.
3772 *
3773 * There are circumstances in which we can try to wake a task which has already
3774 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3775 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3776 */
3777 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3778 int nr_exclusive, int sync, void *key)
3779 {
3780 wait_queue_t *curr, *next;
3781
3782 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3783 unsigned flags = curr->flags;
3784
3785 if (curr->func(curr, mode, sync, key) &&
3786 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3787 break;
3788 }
3789 }
3790
3791 /**
3792 * __wake_up - wake up threads blocked on a waitqueue.
3793 * @q: the waitqueue
3794 * @mode: which threads
3795 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3796 * @key: is directly passed to the wakeup function
3797 */
3798 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3799 int nr_exclusive, void *key)
3800 {
3801 unsigned long flags;
3802
3803 spin_lock_irqsave(&q->lock, flags);
3804 __wake_up_common(q, mode, nr_exclusive, 0, key);
3805 spin_unlock_irqrestore(&q->lock, flags);
3806 }
3807 EXPORT_SYMBOL(__wake_up);
3808
3809 /*
3810 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3811 */
3812 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3813 {
3814 __wake_up_common(q, mode, 1, 0, NULL);
3815 }
3816
3817 /**
3818 * __wake_up_sync - wake up threads blocked on a waitqueue.
3819 * @q: the waitqueue
3820 * @mode: which threads
3821 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3822 *
3823 * The sync wakeup differs that the waker knows that it will schedule
3824 * away soon, so while the target thread will be woken up, it will not
3825 * be migrated to another CPU - ie. the two threads are 'synchronized'
3826 * with each other. This can prevent needless bouncing between CPUs.
3827 *
3828 * On UP it can prevent extra preemption.
3829 */
3830 void fastcall
3831 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3832 {
3833 unsigned long flags;
3834 int sync = 1;
3835
3836 if (unlikely(!q))
3837 return;
3838
3839 if (unlikely(!nr_exclusive))
3840 sync = 0;
3841
3842 spin_lock_irqsave(&q->lock, flags);
3843 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3844 spin_unlock_irqrestore(&q->lock, flags);
3845 }
3846 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3847
3848 void complete(struct completion *x)
3849 {
3850 unsigned long flags;
3851
3852 spin_lock_irqsave(&x->wait.lock, flags);
3853 x->done++;
3854 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3855 1, 0, NULL);
3856 spin_unlock_irqrestore(&x->wait.lock, flags);
3857 }
3858 EXPORT_SYMBOL(complete);
3859
3860 void complete_all(struct completion *x)
3861 {
3862 unsigned long flags;
3863
3864 spin_lock_irqsave(&x->wait.lock, flags);
3865 x->done += UINT_MAX/2;
3866 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3867 0, 0, NULL);
3868 spin_unlock_irqrestore(&x->wait.lock, flags);
3869 }
3870 EXPORT_SYMBOL(complete_all);
3871
3872 static inline long __sched
3873 do_wait_for_common(struct completion *x, long timeout, int state)
3874 {
3875 if (!x->done) {
3876 DECLARE_WAITQUEUE(wait, current);
3877
3878 wait.flags |= WQ_FLAG_EXCLUSIVE;
3879 __add_wait_queue_tail(&x->wait, &wait);
3880 do {
3881 if (state == TASK_INTERRUPTIBLE &&
3882 signal_pending(current)) {
3883 __remove_wait_queue(&x->wait, &wait);
3884 return -ERESTARTSYS;
3885 }
3886 __set_current_state(state);
3887 spin_unlock_irq(&x->wait.lock);
3888 timeout = schedule_timeout(timeout);
3889 spin_lock_irq(&x->wait.lock);
3890 if (!timeout) {
3891 __remove_wait_queue(&x->wait, &wait);
3892 return timeout;
3893 }
3894 } while (!x->done);
3895 __remove_wait_queue(&x->wait, &wait);
3896 }
3897 x->done--;
3898 return timeout;
3899 }
3900
3901 static long __sched
3902 wait_for_common(struct completion *x, long timeout, int state)
3903 {
3904 might_sleep();
3905
3906 spin_lock_irq(&x->wait.lock);
3907 timeout = do_wait_for_common(x, timeout, state);
3908 spin_unlock_irq(&x->wait.lock);
3909 return timeout;
3910 }
3911
3912 void __sched wait_for_completion(struct completion *x)
3913 {
3914 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3915 }
3916 EXPORT_SYMBOL(wait_for_completion);
3917
3918 unsigned long __sched
3919 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3920 {
3921 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3922 }
3923 EXPORT_SYMBOL(wait_for_completion_timeout);
3924
3925 int __sched wait_for_completion_interruptible(struct completion *x)
3926 {
3927 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3928 if (t == -ERESTARTSYS)
3929 return t;
3930 return 0;
3931 }
3932 EXPORT_SYMBOL(wait_for_completion_interruptible);
3933
3934 unsigned long __sched
3935 wait_for_completion_interruptible_timeout(struct completion *x,
3936 unsigned long timeout)
3937 {
3938 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3939 }
3940 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3941
3942 static long __sched
3943 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3944 {
3945 unsigned long flags;
3946 wait_queue_t wait;
3947
3948 init_waitqueue_entry(&wait, current);
3949
3950 __set_current_state(state);
3951
3952 spin_lock_irqsave(&q->lock, flags);
3953 __add_wait_queue(q, &wait);
3954 spin_unlock(&q->lock);
3955 timeout = schedule_timeout(timeout);
3956 spin_lock_irq(&q->lock);
3957 __remove_wait_queue(q, &wait);
3958 spin_unlock_irqrestore(&q->lock, flags);
3959
3960 return timeout;
3961 }
3962
3963 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3964 {
3965 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3966 }
3967 EXPORT_SYMBOL(interruptible_sleep_on);
3968
3969 long __sched
3970 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3971 {
3972 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3973 }
3974 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3975
3976 void __sched sleep_on(wait_queue_head_t *q)
3977 {
3978 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3979 }
3980 EXPORT_SYMBOL(sleep_on);
3981
3982 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3983 {
3984 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3985 }
3986 EXPORT_SYMBOL(sleep_on_timeout);
3987
3988 #ifdef CONFIG_RT_MUTEXES
3989
3990 /*
3991 * rt_mutex_setprio - set the current priority of a task
3992 * @p: task
3993 * @prio: prio value (kernel-internal form)
3994 *
3995 * This function changes the 'effective' priority of a task. It does
3996 * not touch ->normal_prio like __setscheduler().
3997 *
3998 * Used by the rt_mutex code to implement priority inheritance logic.
3999 */
4000 void rt_mutex_setprio(struct task_struct *p, int prio)
4001 {
4002 unsigned long flags;
4003 int oldprio, on_rq, running;
4004 struct rq *rq;
4005
4006 BUG_ON(prio < 0 || prio > MAX_PRIO);
4007
4008 rq = task_rq_lock(p, &flags);
4009 update_rq_clock(rq);
4010
4011 oldprio = p->prio;
4012 on_rq = p->se.on_rq;
4013 running = task_running(rq, p);
4014 if (on_rq) {
4015 dequeue_task(rq, p, 0);
4016 if (running)
4017 p->sched_class->put_prev_task(rq, p);
4018 }
4019
4020 if (rt_prio(prio))
4021 p->sched_class = &rt_sched_class;
4022 else
4023 p->sched_class = &fair_sched_class;
4024
4025 p->prio = prio;
4026
4027 if (on_rq) {
4028 if (running)
4029 p->sched_class->set_curr_task(rq);
4030 enqueue_task(rq, p, 0);
4031 /*
4032 * Reschedule if we are currently running on this runqueue and
4033 * our priority decreased, or if we are not currently running on
4034 * this runqueue and our priority is higher than the current's
4035 */
4036 if (running) {
4037 if (p->prio > oldprio)
4038 resched_task(rq->curr);
4039 } else {
4040 check_preempt_curr(rq, p);
4041 }
4042 }
4043 task_rq_unlock(rq, &flags);
4044 }
4045
4046 #endif
4047
4048 void set_user_nice(struct task_struct *p, long nice)
4049 {
4050 int old_prio, delta, on_rq;
4051 unsigned long flags;
4052 struct rq *rq;
4053
4054 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4055 return;
4056 /*
4057 * We have to be careful, if called from sys_setpriority(),
4058 * the task might be in the middle of scheduling on another CPU.
4059 */
4060 rq = task_rq_lock(p, &flags);
4061 update_rq_clock(rq);
4062 /*
4063 * The RT priorities are set via sched_setscheduler(), but we still
4064 * allow the 'normal' nice value to be set - but as expected
4065 * it wont have any effect on scheduling until the task is
4066 * SCHED_FIFO/SCHED_RR:
4067 */
4068 if (task_has_rt_policy(p)) {
4069 p->static_prio = NICE_TO_PRIO(nice);
4070 goto out_unlock;
4071 }
4072 on_rq = p->se.on_rq;
4073 if (on_rq) {
4074 dequeue_task(rq, p, 0);
4075 dec_load(rq, p);
4076 }
4077
4078 p->static_prio = NICE_TO_PRIO(nice);
4079 set_load_weight(p);
4080 old_prio = p->prio;
4081 p->prio = effective_prio(p);
4082 delta = p->prio - old_prio;
4083
4084 if (on_rq) {
4085 enqueue_task(rq, p, 0);
4086 inc_load(rq, p);
4087 /*
4088 * If the task increased its priority or is running and
4089 * lowered its priority, then reschedule its CPU:
4090 */
4091 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4092 resched_task(rq->curr);
4093 }
4094 out_unlock:
4095 task_rq_unlock(rq, &flags);
4096 }
4097 EXPORT_SYMBOL(set_user_nice);
4098
4099 /*
4100 * can_nice - check if a task can reduce its nice value
4101 * @p: task
4102 * @nice: nice value
4103 */
4104 int can_nice(const struct task_struct *p, const int nice)
4105 {
4106 /* convert nice value [19,-20] to rlimit style value [1,40] */
4107 int nice_rlim = 20 - nice;
4108
4109 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4110 capable(CAP_SYS_NICE));
4111 }
4112
4113 #ifdef __ARCH_WANT_SYS_NICE
4114
4115 /*
4116 * sys_nice - change the priority of the current process.
4117 * @increment: priority increment
4118 *
4119 * sys_setpriority is a more generic, but much slower function that
4120 * does similar things.
4121 */
4122 asmlinkage long sys_nice(int increment)
4123 {
4124 long nice, retval;
4125
4126 /*
4127 * Setpriority might change our priority at the same moment.
4128 * We don't have to worry. Conceptually one call occurs first
4129 * and we have a single winner.
4130 */
4131 if (increment < -40)
4132 increment = -40;
4133 if (increment > 40)
4134 increment = 40;
4135
4136 nice = PRIO_TO_NICE(current->static_prio) + increment;
4137 if (nice < -20)
4138 nice = -20;
4139 if (nice > 19)
4140 nice = 19;
4141
4142 if (increment < 0 && !can_nice(current, nice))
4143 return -EPERM;
4144
4145 retval = security_task_setnice(current, nice);
4146 if (retval)
4147 return retval;
4148
4149 set_user_nice(current, nice);
4150 return 0;
4151 }
4152
4153 #endif
4154
4155 /**
4156 * task_prio - return the priority value of a given task.
4157 * @p: the task in question.
4158 *
4159 * This is the priority value as seen by users in /proc.
4160 * RT tasks are offset by -200. Normal tasks are centered
4161 * around 0, value goes from -16 to +15.
4162 */
4163 int task_prio(const struct task_struct *p)
4164 {
4165 return p->prio - MAX_RT_PRIO;
4166 }
4167
4168 /**
4169 * task_nice - return the nice value of a given task.
4170 * @p: the task in question.
4171 */
4172 int task_nice(const struct task_struct *p)
4173 {
4174 return TASK_NICE(p);
4175 }
4176 EXPORT_SYMBOL_GPL(task_nice);
4177
4178 /**
4179 * idle_cpu - is a given cpu idle currently?
4180 * @cpu: the processor in question.
4181 */
4182 int idle_cpu(int cpu)
4183 {
4184 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4185 }
4186
4187 /**
4188 * idle_task - return the idle task for a given cpu.
4189 * @cpu: the processor in question.
4190 */
4191 struct task_struct *idle_task(int cpu)
4192 {
4193 return cpu_rq(cpu)->idle;
4194 }
4195
4196 /**
4197 * find_process_by_pid - find a process with a matching PID value.
4198 * @pid: the pid in question.
4199 */
4200 static struct task_struct *find_process_by_pid(pid_t pid)
4201 {
4202 return pid ? find_task_by_vpid(pid) : current;
4203 }
4204
4205 /* Actually do priority change: must hold rq lock. */
4206 static void
4207 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4208 {
4209 BUG_ON(p->se.on_rq);
4210
4211 p->policy = policy;
4212 switch (p->policy) {
4213 case SCHED_NORMAL:
4214 case SCHED_BATCH:
4215 case SCHED_IDLE:
4216 p->sched_class = &fair_sched_class;
4217 break;
4218 case SCHED_FIFO:
4219 case SCHED_RR:
4220 p->sched_class = &rt_sched_class;
4221 break;
4222 }
4223
4224 p->rt_priority = prio;
4225 p->normal_prio = normal_prio(p);
4226 /* we are holding p->pi_lock already */
4227 p->prio = rt_mutex_getprio(p);
4228 set_load_weight(p);
4229 }
4230
4231 /**
4232 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4233 * @p: the task in question.
4234 * @policy: new policy.
4235 * @param: structure containing the new RT priority.
4236 *
4237 * NOTE that the task may be already dead.
4238 */
4239 int sched_setscheduler(struct task_struct *p, int policy,
4240 struct sched_param *param)
4241 {
4242 int retval, oldprio, oldpolicy = -1, on_rq, running;
4243 unsigned long flags;
4244 struct rq *rq;
4245
4246 /* may grab non-irq protected spin_locks */
4247 BUG_ON(in_interrupt());
4248 recheck:
4249 /* double check policy once rq lock held */
4250 if (policy < 0)
4251 policy = oldpolicy = p->policy;
4252 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4253 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4254 policy != SCHED_IDLE)
4255 return -EINVAL;
4256 /*
4257 * Valid priorities for SCHED_FIFO and SCHED_RR are
4258 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4259 * SCHED_BATCH and SCHED_IDLE is 0.
4260 */
4261 if (param->sched_priority < 0 ||
4262 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4263 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4264 return -EINVAL;
4265 if (rt_policy(policy) != (param->sched_priority != 0))
4266 return -EINVAL;
4267
4268 /*
4269 * Allow unprivileged RT tasks to decrease priority:
4270 */
4271 if (!capable(CAP_SYS_NICE)) {
4272 if (rt_policy(policy)) {
4273 unsigned long rlim_rtprio;
4274
4275 if (!lock_task_sighand(p, &flags))
4276 return -ESRCH;
4277 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4278 unlock_task_sighand(p, &flags);
4279
4280 /* can't set/change the rt policy */
4281 if (policy != p->policy && !rlim_rtprio)
4282 return -EPERM;
4283
4284 /* can't increase priority */
4285 if (param->sched_priority > p->rt_priority &&
4286 param->sched_priority > rlim_rtprio)
4287 return -EPERM;
4288 }
4289 /*
4290 * Like positive nice levels, dont allow tasks to
4291 * move out of SCHED_IDLE either:
4292 */
4293 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4294 return -EPERM;
4295
4296 /* can't change other user's priorities */
4297 if ((current->euid != p->euid) &&
4298 (current->euid != p->uid))
4299 return -EPERM;
4300 }
4301
4302 retval = security_task_setscheduler(p, policy, param);
4303 if (retval)
4304 return retval;
4305 /*
4306 * make sure no PI-waiters arrive (or leave) while we are
4307 * changing the priority of the task:
4308 */
4309 spin_lock_irqsave(&p->pi_lock, flags);
4310 /*
4311 * To be able to change p->policy safely, the apropriate
4312 * runqueue lock must be held.
4313 */
4314 rq = __task_rq_lock(p);
4315 /* recheck policy now with rq lock held */
4316 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4317 policy = oldpolicy = -1;
4318 __task_rq_unlock(rq);
4319 spin_unlock_irqrestore(&p->pi_lock, flags);
4320 goto recheck;
4321 }
4322 update_rq_clock(rq);
4323 on_rq = p->se.on_rq;
4324 running = task_running(rq, p);
4325 if (on_rq) {
4326 deactivate_task(rq, p, 0);
4327 if (running)
4328 p->sched_class->put_prev_task(rq, p);
4329 }
4330
4331 oldprio = p->prio;
4332 __setscheduler(rq, p, policy, param->sched_priority);
4333
4334 if (on_rq) {
4335 if (running)
4336 p->sched_class->set_curr_task(rq);
4337 activate_task(rq, p, 0);
4338 /*
4339 * Reschedule if we are currently running on this runqueue and
4340 * our priority decreased, or if we are not currently running on
4341 * this runqueue and our priority is higher than the current's
4342 */
4343 if (running) {
4344 if (p->prio > oldprio)
4345 resched_task(rq->curr);
4346 } else {
4347 check_preempt_curr(rq, p);
4348 }
4349 }
4350 __task_rq_unlock(rq);
4351 spin_unlock_irqrestore(&p->pi_lock, flags);
4352
4353 rt_mutex_adjust_pi(p);
4354
4355 return 0;
4356 }
4357 EXPORT_SYMBOL_GPL(sched_setscheduler);
4358
4359 static int
4360 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4361 {
4362 struct sched_param lparam;
4363 struct task_struct *p;
4364 int retval;
4365
4366 if (!param || pid < 0)
4367 return -EINVAL;
4368 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4369 return -EFAULT;
4370
4371 rcu_read_lock();
4372 retval = -ESRCH;
4373 p = find_process_by_pid(pid);
4374 if (p != NULL)
4375 retval = sched_setscheduler(p, policy, &lparam);
4376 rcu_read_unlock();
4377
4378 return retval;
4379 }
4380
4381 /**
4382 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4383 * @pid: the pid in question.
4384 * @policy: new policy.
4385 * @param: structure containing the new RT priority.
4386 */
4387 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4388 struct sched_param __user *param)
4389 {
4390 /* negative values for policy are not valid */
4391 if (policy < 0)
4392 return -EINVAL;
4393
4394 return do_sched_setscheduler(pid, policy, param);
4395 }
4396
4397 /**
4398 * sys_sched_setparam - set/change the RT priority of a thread
4399 * @pid: the pid in question.
4400 * @param: structure containing the new RT priority.
4401 */
4402 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4403 {
4404 return do_sched_setscheduler(pid, -1, param);
4405 }
4406
4407 /**
4408 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4409 * @pid: the pid in question.
4410 */
4411 asmlinkage long sys_sched_getscheduler(pid_t pid)
4412 {
4413 struct task_struct *p;
4414 int retval;
4415
4416 if (pid < 0)
4417 return -EINVAL;
4418
4419 retval = -ESRCH;
4420 read_lock(&tasklist_lock);
4421 p = find_process_by_pid(pid);
4422 if (p) {
4423 retval = security_task_getscheduler(p);
4424 if (!retval)
4425 retval = p->policy;
4426 }
4427 read_unlock(&tasklist_lock);
4428 return retval;
4429 }
4430
4431 /**
4432 * sys_sched_getscheduler - get the RT priority of a thread
4433 * @pid: the pid in question.
4434 * @param: structure containing the RT priority.
4435 */
4436 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4437 {
4438 struct sched_param lp;
4439 struct task_struct *p;
4440 int retval;
4441
4442 if (!param || pid < 0)
4443 return -EINVAL;
4444
4445 read_lock(&tasklist_lock);
4446 p = find_process_by_pid(pid);
4447 retval = -ESRCH;
4448 if (!p)
4449 goto out_unlock;
4450
4451 retval = security_task_getscheduler(p);
4452 if (retval)
4453 goto out_unlock;
4454
4455 lp.sched_priority = p->rt_priority;
4456 read_unlock(&tasklist_lock);
4457
4458 /*
4459 * This one might sleep, we cannot do it with a spinlock held ...
4460 */
4461 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4462
4463 return retval;
4464
4465 out_unlock:
4466 read_unlock(&tasklist_lock);
4467 return retval;
4468 }
4469
4470 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4471 {
4472 cpumask_t cpus_allowed;
4473 struct task_struct *p;
4474 int retval;
4475
4476 mutex_lock(&sched_hotcpu_mutex);
4477 read_lock(&tasklist_lock);
4478
4479 p = find_process_by_pid(pid);
4480 if (!p) {
4481 read_unlock(&tasklist_lock);
4482 mutex_unlock(&sched_hotcpu_mutex);
4483 return -ESRCH;
4484 }
4485
4486 /*
4487 * It is not safe to call set_cpus_allowed with the
4488 * tasklist_lock held. We will bump the task_struct's
4489 * usage count and then drop tasklist_lock.
4490 */
4491 get_task_struct(p);
4492 read_unlock(&tasklist_lock);
4493
4494 retval = -EPERM;
4495 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4496 !capable(CAP_SYS_NICE))
4497 goto out_unlock;
4498
4499 retval = security_task_setscheduler(p, 0, NULL);
4500 if (retval)
4501 goto out_unlock;
4502
4503 cpus_allowed = cpuset_cpus_allowed(p);
4504 cpus_and(new_mask, new_mask, cpus_allowed);
4505 again:
4506 retval = set_cpus_allowed(p, new_mask);
4507
4508 if (!retval) {
4509 cpus_allowed = cpuset_cpus_allowed(p);
4510 if (!cpus_subset(new_mask, cpus_allowed)) {
4511 /*
4512 * We must have raced with a concurrent cpuset
4513 * update. Just reset the cpus_allowed to the
4514 * cpuset's cpus_allowed
4515 */
4516 new_mask = cpus_allowed;
4517 goto again;
4518 }
4519 }
4520 out_unlock:
4521 put_task_struct(p);
4522 mutex_unlock(&sched_hotcpu_mutex);
4523 return retval;
4524 }
4525
4526 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4527 cpumask_t *new_mask)
4528 {
4529 if (len < sizeof(cpumask_t)) {
4530 memset(new_mask, 0, sizeof(cpumask_t));
4531 } else if (len > sizeof(cpumask_t)) {
4532 len = sizeof(cpumask_t);
4533 }
4534 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4535 }
4536
4537 /**
4538 * sys_sched_setaffinity - set the cpu affinity of a process
4539 * @pid: pid of the process
4540 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4541 * @user_mask_ptr: user-space pointer to the new cpu mask
4542 */
4543 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4544 unsigned long __user *user_mask_ptr)
4545 {
4546 cpumask_t new_mask;
4547 int retval;
4548
4549 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4550 if (retval)
4551 return retval;
4552
4553 return sched_setaffinity(pid, new_mask);
4554 }
4555
4556 /*
4557 * Represents all cpu's present in the system
4558 * In systems capable of hotplug, this map could dynamically grow
4559 * as new cpu's are detected in the system via any platform specific
4560 * method, such as ACPI for e.g.
4561 */
4562
4563 cpumask_t cpu_present_map __read_mostly;
4564 EXPORT_SYMBOL(cpu_present_map);
4565
4566 #ifndef CONFIG_SMP
4567 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4568 EXPORT_SYMBOL(cpu_online_map);
4569
4570 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4571 EXPORT_SYMBOL(cpu_possible_map);
4572 #endif
4573
4574 long sched_getaffinity(pid_t pid, cpumask_t *mask)
4575 {
4576 struct task_struct *p;
4577 int retval;
4578
4579 mutex_lock(&sched_hotcpu_mutex);
4580 read_lock(&tasklist_lock);
4581
4582 retval = -ESRCH;
4583 p = find_process_by_pid(pid);
4584 if (!p)
4585 goto out_unlock;
4586
4587 retval = security_task_getscheduler(p);
4588 if (retval)
4589 goto out_unlock;
4590
4591 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
4592
4593 out_unlock:
4594 read_unlock(&tasklist_lock);
4595 mutex_unlock(&sched_hotcpu_mutex);
4596
4597 return retval;
4598 }
4599
4600 /**
4601 * sys_sched_getaffinity - get the cpu affinity of a process
4602 * @pid: pid of the process
4603 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4604 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4605 */
4606 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4607 unsigned long __user *user_mask_ptr)
4608 {
4609 int ret;
4610 cpumask_t mask;
4611
4612 if (len < sizeof(cpumask_t))
4613 return -EINVAL;
4614
4615 ret = sched_getaffinity(pid, &mask);
4616 if (ret < 0)
4617 return ret;
4618
4619 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4620 return -EFAULT;
4621
4622 return sizeof(cpumask_t);
4623 }
4624
4625 /**
4626 * sys_sched_yield - yield the current processor to other threads.
4627 *
4628 * This function yields the current CPU to other tasks. If there are no
4629 * other threads running on this CPU then this function will return.
4630 */
4631 asmlinkage long sys_sched_yield(void)
4632 {
4633 struct rq *rq = this_rq_lock();
4634
4635 schedstat_inc(rq, yld_count);
4636 current->sched_class->yield_task(rq);
4637
4638 /*
4639 * Since we are going to call schedule() anyway, there's
4640 * no need to preempt or enable interrupts:
4641 */
4642 __release(rq->lock);
4643 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4644 _raw_spin_unlock(&rq->lock);
4645 preempt_enable_no_resched();
4646
4647 schedule();
4648
4649 return 0;
4650 }
4651
4652 static void __cond_resched(void)
4653 {
4654 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4655 __might_sleep(__FILE__, __LINE__);
4656 #endif
4657 /*
4658 * The BKS might be reacquired before we have dropped
4659 * PREEMPT_ACTIVE, which could trigger a second
4660 * cond_resched() call.
4661 */
4662 do {
4663 add_preempt_count(PREEMPT_ACTIVE);
4664 schedule();
4665 sub_preempt_count(PREEMPT_ACTIVE);
4666 } while (need_resched());
4667 }
4668
4669 int __sched cond_resched(void)
4670 {
4671 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4672 system_state == SYSTEM_RUNNING) {
4673 __cond_resched();
4674 return 1;
4675 }
4676 return 0;
4677 }
4678 EXPORT_SYMBOL(cond_resched);
4679
4680 /*
4681 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4682 * call schedule, and on return reacquire the lock.
4683 *
4684 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4685 * operations here to prevent schedule() from being called twice (once via
4686 * spin_unlock(), once by hand).
4687 */
4688 int cond_resched_lock(spinlock_t *lock)
4689 {
4690 int ret = 0;
4691
4692 if (need_lockbreak(lock)) {
4693 spin_unlock(lock);
4694 cpu_relax();
4695 ret = 1;
4696 spin_lock(lock);
4697 }
4698 if (need_resched() && system_state == SYSTEM_RUNNING) {
4699 spin_release(&lock->dep_map, 1, _THIS_IP_);
4700 _raw_spin_unlock(lock);
4701 preempt_enable_no_resched();
4702 __cond_resched();
4703 ret = 1;
4704 spin_lock(lock);
4705 }
4706 return ret;
4707 }
4708 EXPORT_SYMBOL(cond_resched_lock);
4709
4710 int __sched cond_resched_softirq(void)
4711 {
4712 BUG_ON(!in_softirq());
4713
4714 if (need_resched() && system_state == SYSTEM_RUNNING) {
4715 local_bh_enable();
4716 __cond_resched();
4717 local_bh_disable();
4718 return 1;
4719 }
4720 return 0;
4721 }
4722 EXPORT_SYMBOL(cond_resched_softirq);
4723
4724 /**
4725 * yield - yield the current processor to other threads.
4726 *
4727 * This is a shortcut for kernel-space yielding - it marks the
4728 * thread runnable and calls sys_sched_yield().
4729 */
4730 void __sched yield(void)
4731 {
4732 set_current_state(TASK_RUNNING);
4733 sys_sched_yield();
4734 }
4735 EXPORT_SYMBOL(yield);
4736
4737 /*
4738 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4739 * that process accounting knows that this is a task in IO wait state.
4740 *
4741 * But don't do that if it is a deliberate, throttling IO wait (this task
4742 * has set its backing_dev_info: the queue against which it should throttle)
4743 */
4744 void __sched io_schedule(void)
4745 {
4746 struct rq *rq = &__raw_get_cpu_var(runqueues);
4747
4748 delayacct_blkio_start();
4749 atomic_inc(&rq->nr_iowait);
4750 schedule();
4751 atomic_dec(&rq->nr_iowait);
4752 delayacct_blkio_end();
4753 }
4754 EXPORT_SYMBOL(io_schedule);
4755
4756 long __sched io_schedule_timeout(long timeout)
4757 {
4758 struct rq *rq = &__raw_get_cpu_var(runqueues);
4759 long ret;
4760
4761 delayacct_blkio_start();
4762 atomic_inc(&rq->nr_iowait);
4763 ret = schedule_timeout(timeout);
4764 atomic_dec(&rq->nr_iowait);
4765 delayacct_blkio_end();
4766 return ret;
4767 }
4768
4769 /**
4770 * sys_sched_get_priority_max - return maximum RT priority.
4771 * @policy: scheduling class.
4772 *
4773 * this syscall returns the maximum rt_priority that can be used
4774 * by a given scheduling class.
4775 */
4776 asmlinkage long sys_sched_get_priority_max(int policy)
4777 {
4778 int ret = -EINVAL;
4779
4780 switch (policy) {
4781 case SCHED_FIFO:
4782 case SCHED_RR:
4783 ret = MAX_USER_RT_PRIO-1;
4784 break;
4785 case SCHED_NORMAL:
4786 case SCHED_BATCH:
4787 case SCHED_IDLE:
4788 ret = 0;
4789 break;
4790 }
4791 return ret;
4792 }
4793
4794 /**
4795 * sys_sched_get_priority_min - return minimum RT priority.
4796 * @policy: scheduling class.
4797 *
4798 * this syscall returns the minimum rt_priority that can be used
4799 * by a given scheduling class.
4800 */
4801 asmlinkage long sys_sched_get_priority_min(int policy)
4802 {
4803 int ret = -EINVAL;
4804
4805 switch (policy) {
4806 case SCHED_FIFO:
4807 case SCHED_RR:
4808 ret = 1;
4809 break;
4810 case SCHED_NORMAL:
4811 case SCHED_BATCH:
4812 case SCHED_IDLE:
4813 ret = 0;
4814 }
4815 return ret;
4816 }
4817
4818 /**
4819 * sys_sched_rr_get_interval - return the default timeslice of a process.
4820 * @pid: pid of the process.
4821 * @interval: userspace pointer to the timeslice value.
4822 *
4823 * this syscall writes the default timeslice value of a given process
4824 * into the user-space timespec buffer. A value of '0' means infinity.
4825 */
4826 asmlinkage
4827 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4828 {
4829 struct task_struct *p;
4830 unsigned int time_slice;
4831 int retval;
4832 struct timespec t;
4833
4834 if (pid < 0)
4835 return -EINVAL;
4836
4837 retval = -ESRCH;
4838 read_lock(&tasklist_lock);
4839 p = find_process_by_pid(pid);
4840 if (!p)
4841 goto out_unlock;
4842
4843 retval = security_task_getscheduler(p);
4844 if (retval)
4845 goto out_unlock;
4846
4847 if (p->policy == SCHED_FIFO)
4848 time_slice = 0;
4849 else if (p->policy == SCHED_RR)
4850 time_slice = DEF_TIMESLICE;
4851 else {
4852 struct sched_entity *se = &p->se;
4853 unsigned long flags;
4854 struct rq *rq;
4855
4856 rq = task_rq_lock(p, &flags);
4857 time_slice = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
4858 task_rq_unlock(rq, &flags);
4859 }
4860 read_unlock(&tasklist_lock);
4861 jiffies_to_timespec(time_slice, &t);
4862 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4863 return retval;
4864
4865 out_unlock:
4866 read_unlock(&tasklist_lock);
4867 return retval;
4868 }
4869
4870 static const char stat_nam[] = "RSDTtZX";
4871
4872 static void show_task(struct task_struct *p)
4873 {
4874 unsigned long free = 0;
4875 unsigned state;
4876
4877 state = p->state ? __ffs(p->state) + 1 : 0;
4878 printk(KERN_INFO "%-13.13s %c", p->comm,
4879 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4880 #if BITS_PER_LONG == 32
4881 if (state == TASK_RUNNING)
4882 printk(KERN_CONT " running ");
4883 else
4884 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4885 #else
4886 if (state == TASK_RUNNING)
4887 printk(KERN_CONT " running task ");
4888 else
4889 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4890 #endif
4891 #ifdef CONFIG_DEBUG_STACK_USAGE
4892 {
4893 unsigned long *n = end_of_stack(p);
4894 while (!*n)
4895 n++;
4896 free = (unsigned long)n - (unsigned long)end_of_stack(p);
4897 }
4898 #endif
4899 printk(KERN_CONT "%5lu %5d %6d\n", free,
4900 task_pid_nr(p), task_pid_nr(p->parent));
4901
4902 if (state != TASK_RUNNING)
4903 show_stack(p, NULL);
4904 }
4905
4906 void show_state_filter(unsigned long state_filter)
4907 {
4908 struct task_struct *g, *p;
4909
4910 #if BITS_PER_LONG == 32
4911 printk(KERN_INFO
4912 " task PC stack pid father\n");
4913 #else
4914 printk(KERN_INFO
4915 " task PC stack pid father\n");
4916 #endif
4917 read_lock(&tasklist_lock);
4918 do_each_thread(g, p) {
4919 /*
4920 * reset the NMI-timeout, listing all files on a slow
4921 * console might take alot of time:
4922 */
4923 touch_nmi_watchdog();
4924 if (!state_filter || (p->state & state_filter))
4925 show_task(p);
4926 } while_each_thread(g, p);
4927
4928 touch_all_softlockup_watchdogs();
4929
4930 #ifdef CONFIG_SCHED_DEBUG
4931 sysrq_sched_debug_show();
4932 #endif
4933 read_unlock(&tasklist_lock);
4934 /*
4935 * Only show locks if all tasks are dumped:
4936 */
4937 if (state_filter == -1)
4938 debug_show_all_locks();
4939 }
4940
4941 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4942 {
4943 idle->sched_class = &idle_sched_class;
4944 }
4945
4946 /**
4947 * init_idle - set up an idle thread for a given CPU
4948 * @idle: task in question
4949 * @cpu: cpu the idle task belongs to
4950 *
4951 * NOTE: this function does not set the idle thread's NEED_RESCHED
4952 * flag, to make booting more robust.
4953 */
4954 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4955 {
4956 struct rq *rq = cpu_rq(cpu);
4957 unsigned long flags;
4958
4959 __sched_fork(idle);
4960 idle->se.exec_start = sched_clock();
4961
4962 idle->prio = idle->normal_prio = MAX_PRIO;
4963 idle->cpus_allowed = cpumask_of_cpu(cpu);
4964 __set_task_cpu(idle, cpu);
4965
4966 spin_lock_irqsave(&rq->lock, flags);
4967 rq->curr = rq->idle = idle;
4968 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4969 idle->oncpu = 1;
4970 #endif
4971 spin_unlock_irqrestore(&rq->lock, flags);
4972
4973 /* Set the preempt count _outside_ the spinlocks! */
4974 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4975 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
4976 #else
4977 task_thread_info(idle)->preempt_count = 0;
4978 #endif
4979 /*
4980 * The idle tasks have their own, simple scheduling class:
4981 */
4982 idle->sched_class = &idle_sched_class;
4983 }
4984
4985 /*
4986 * In a system that switches off the HZ timer nohz_cpu_mask
4987 * indicates which cpus entered this state. This is used
4988 * in the rcu update to wait only for active cpus. For system
4989 * which do not switch off the HZ timer nohz_cpu_mask should
4990 * always be CPU_MASK_NONE.
4991 */
4992 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4993
4994 /*
4995 * Increase the granularity value when there are more CPUs,
4996 * because with more CPUs the 'effective latency' as visible
4997 * to users decreases. But the relationship is not linear,
4998 * so pick a second-best guess by going with the log2 of the
4999 * number of CPUs.
5000 *
5001 * This idea comes from the SD scheduler of Con Kolivas:
5002 */
5003 static inline void sched_init_granularity(void)
5004 {
5005 unsigned int factor = 1 + ilog2(num_online_cpus());
5006 const unsigned long limit = 200000000;
5007
5008 sysctl_sched_min_granularity *= factor;
5009 if (sysctl_sched_min_granularity > limit)
5010 sysctl_sched_min_granularity = limit;
5011
5012 sysctl_sched_latency *= factor;
5013 if (sysctl_sched_latency > limit)
5014 sysctl_sched_latency = limit;
5015
5016 sysctl_sched_wakeup_granularity *= factor;
5017 sysctl_sched_batch_wakeup_granularity *= factor;
5018 }
5019
5020 #ifdef CONFIG_SMP
5021 /*
5022 * This is how migration works:
5023 *
5024 * 1) we queue a struct migration_req structure in the source CPU's
5025 * runqueue and wake up that CPU's migration thread.
5026 * 2) we down() the locked semaphore => thread blocks.
5027 * 3) migration thread wakes up (implicitly it forces the migrated
5028 * thread off the CPU)
5029 * 4) it gets the migration request and checks whether the migrated
5030 * task is still in the wrong runqueue.
5031 * 5) if it's in the wrong runqueue then the migration thread removes
5032 * it and puts it into the right queue.
5033 * 6) migration thread up()s the semaphore.
5034 * 7) we wake up and the migration is done.
5035 */
5036
5037 /*
5038 * Change a given task's CPU affinity. Migrate the thread to a
5039 * proper CPU and schedule it away if the CPU it's executing on
5040 * is removed from the allowed bitmask.
5041 *
5042 * NOTE: the caller must have a valid reference to the task, the
5043 * task must not exit() & deallocate itself prematurely. The
5044 * call is not atomic; no spinlocks may be held.
5045 */
5046 int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
5047 {
5048 struct migration_req req;
5049 unsigned long flags;
5050 struct rq *rq;
5051 int ret = 0;
5052
5053 rq = task_rq_lock(p, &flags);
5054 if (!cpus_intersects(new_mask, cpu_online_map)) {
5055 ret = -EINVAL;
5056 goto out;
5057 }
5058
5059 p->cpus_allowed = new_mask;
5060 /* Can the task run on the task's current CPU? If so, we're done */
5061 if (cpu_isset(task_cpu(p), new_mask))
5062 goto out;
5063
5064 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
5065 /* Need help from migration thread: drop lock and wait. */
5066 task_rq_unlock(rq, &flags);
5067 wake_up_process(rq->migration_thread);
5068 wait_for_completion(&req.done);
5069 tlb_migrate_finish(p->mm);
5070 return 0;
5071 }
5072 out:
5073 task_rq_unlock(rq, &flags);
5074
5075 return ret;
5076 }
5077 EXPORT_SYMBOL_GPL(set_cpus_allowed);
5078
5079 /*
5080 * Move (not current) task off this cpu, onto dest cpu. We're doing
5081 * this because either it can't run here any more (set_cpus_allowed()
5082 * away from this CPU, or CPU going down), or because we're
5083 * attempting to rebalance this task on exec (sched_exec).
5084 *
5085 * So we race with normal scheduler movements, but that's OK, as long
5086 * as the task is no longer on this CPU.
5087 *
5088 * Returns non-zero if task was successfully migrated.
5089 */
5090 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5091 {
5092 struct rq *rq_dest, *rq_src;
5093 int ret = 0, on_rq;
5094
5095 if (unlikely(cpu_is_offline(dest_cpu)))
5096 return ret;
5097
5098 rq_src = cpu_rq(src_cpu);
5099 rq_dest = cpu_rq(dest_cpu);
5100
5101 double_rq_lock(rq_src, rq_dest);
5102 /* Already moved. */
5103 if (task_cpu(p) != src_cpu)
5104 goto out;
5105 /* Affinity changed (again). */
5106 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5107 goto out;
5108
5109 on_rq = p->se.on_rq;
5110 if (on_rq)
5111 deactivate_task(rq_src, p, 0);
5112
5113 set_task_cpu(p, dest_cpu);
5114 if (on_rq) {
5115 activate_task(rq_dest, p, 0);
5116 check_preempt_curr(rq_dest, p);
5117 }
5118 ret = 1;
5119 out:
5120 double_rq_unlock(rq_src, rq_dest);
5121 return ret;
5122 }
5123
5124 /*
5125 * migration_thread - this is a highprio system thread that performs
5126 * thread migration by bumping thread off CPU then 'pushing' onto
5127 * another runqueue.
5128 */
5129 static int migration_thread(void *data)
5130 {
5131 int cpu = (long)data;
5132 struct rq *rq;
5133
5134 rq = cpu_rq(cpu);
5135 BUG_ON(rq->migration_thread != current);
5136
5137 set_current_state(TASK_INTERRUPTIBLE);
5138 while (!kthread_should_stop()) {
5139 struct migration_req *req;
5140 struct list_head *head;
5141
5142 spin_lock_irq(&rq->lock);
5143
5144 if (cpu_is_offline(cpu)) {
5145 spin_unlock_irq(&rq->lock);
5146 goto wait_to_die;
5147 }
5148
5149 if (rq->active_balance) {
5150 active_load_balance(rq, cpu);
5151 rq->active_balance = 0;
5152 }
5153
5154 head = &rq->migration_queue;
5155
5156 if (list_empty(head)) {
5157 spin_unlock_irq(&rq->lock);
5158 schedule();
5159 set_current_state(TASK_INTERRUPTIBLE);
5160 continue;
5161 }
5162 req = list_entry(head->next, struct migration_req, list);
5163 list_del_init(head->next);
5164
5165 spin_unlock(&rq->lock);
5166 __migrate_task(req->task, cpu, req->dest_cpu);
5167 local_irq_enable();
5168
5169 complete(&req->done);
5170 }
5171 __set_current_state(TASK_RUNNING);
5172 return 0;
5173
5174 wait_to_die:
5175 /* Wait for kthread_stop */
5176 set_current_state(TASK_INTERRUPTIBLE);
5177 while (!kthread_should_stop()) {
5178 schedule();
5179 set_current_state(TASK_INTERRUPTIBLE);
5180 }
5181 __set_current_state(TASK_RUNNING);
5182 return 0;
5183 }
5184
5185 #ifdef CONFIG_HOTPLUG_CPU
5186
5187 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5188 {
5189 int ret;
5190
5191 local_irq_disable();
5192 ret = __migrate_task(p, src_cpu, dest_cpu);
5193 local_irq_enable();
5194 return ret;
5195 }
5196
5197 /*
5198 * Figure out where task on dead CPU should go, use force if necessary.
5199 * NOTE: interrupts should be disabled by the caller
5200 */
5201 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5202 {
5203 unsigned long flags;
5204 cpumask_t mask;
5205 struct rq *rq;
5206 int dest_cpu;
5207
5208 do {
5209 /* On same node? */
5210 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5211 cpus_and(mask, mask, p->cpus_allowed);
5212 dest_cpu = any_online_cpu(mask);
5213
5214 /* On any allowed CPU? */
5215 if (dest_cpu == NR_CPUS)
5216 dest_cpu = any_online_cpu(p->cpus_allowed);
5217
5218 /* No more Mr. Nice Guy. */
5219 if (dest_cpu == NR_CPUS) {
5220 cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
5221 /*
5222 * Try to stay on the same cpuset, where the
5223 * current cpuset may be a subset of all cpus.
5224 * The cpuset_cpus_allowed_locked() variant of
5225 * cpuset_cpus_allowed() will not block. It must be
5226 * called within calls to cpuset_lock/cpuset_unlock.
5227 */
5228 rq = task_rq_lock(p, &flags);
5229 p->cpus_allowed = cpus_allowed;
5230 dest_cpu = any_online_cpu(p->cpus_allowed);
5231 task_rq_unlock(rq, &flags);
5232
5233 /*
5234 * Don't tell them about moving exiting tasks or
5235 * kernel threads (both mm NULL), since they never
5236 * leave kernel.
5237 */
5238 if (p->mm && printk_ratelimit())
5239 printk(KERN_INFO "process %d (%s) no "
5240 "longer affine to cpu%d\n",
5241 task_pid_nr(p), p->comm, dead_cpu);
5242 }
5243 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
5244 }
5245
5246 /*
5247 * While a dead CPU has no uninterruptible tasks queued at this point,
5248 * it might still have a nonzero ->nr_uninterruptible counter, because
5249 * for performance reasons the counter is not stricly tracking tasks to
5250 * their home CPUs. So we just add the counter to another CPU's counter,
5251 * to keep the global sum constant after CPU-down:
5252 */
5253 static void migrate_nr_uninterruptible(struct rq *rq_src)
5254 {
5255 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
5256 unsigned long flags;
5257
5258 local_irq_save(flags);
5259 double_rq_lock(rq_src, rq_dest);
5260 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5261 rq_src->nr_uninterruptible = 0;
5262 double_rq_unlock(rq_src, rq_dest);
5263 local_irq_restore(flags);
5264 }
5265
5266 /* Run through task list and migrate tasks from the dead cpu. */
5267 static void migrate_live_tasks(int src_cpu)
5268 {
5269 struct task_struct *p, *t;
5270
5271 read_lock(&tasklist_lock);
5272
5273 do_each_thread(t, p) {
5274 if (p == current)
5275 continue;
5276
5277 if (task_cpu(p) == src_cpu)
5278 move_task_off_dead_cpu(src_cpu, p);
5279 } while_each_thread(t, p);
5280
5281 read_unlock(&tasklist_lock);
5282 }
5283
5284 /*
5285 * Schedules idle task to be the next runnable task on current CPU.
5286 * It does so by boosting its priority to highest possible.
5287 * Used by CPU offline code.
5288 */
5289 void sched_idle_next(void)
5290 {
5291 int this_cpu = smp_processor_id();
5292 struct rq *rq = cpu_rq(this_cpu);
5293 struct task_struct *p = rq->idle;
5294 unsigned long flags;
5295
5296 /* cpu has to be offline */
5297 BUG_ON(cpu_online(this_cpu));
5298
5299 /*
5300 * Strictly not necessary since rest of the CPUs are stopped by now
5301 * and interrupts disabled on the current cpu.
5302 */
5303 spin_lock_irqsave(&rq->lock, flags);
5304
5305 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5306
5307 update_rq_clock(rq);
5308 activate_task(rq, p, 0);
5309
5310 spin_unlock_irqrestore(&rq->lock, flags);
5311 }
5312
5313 /*
5314 * Ensures that the idle task is using init_mm right before its cpu goes
5315 * offline.
5316 */
5317 void idle_task_exit(void)
5318 {
5319 struct mm_struct *mm = current->active_mm;
5320
5321 BUG_ON(cpu_online(smp_processor_id()));
5322
5323 if (mm != &init_mm)
5324 switch_mm(mm, &init_mm, current);
5325 mmdrop(mm);
5326 }
5327
5328 /* called under rq->lock with disabled interrupts */
5329 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5330 {
5331 struct rq *rq = cpu_rq(dead_cpu);
5332
5333 /* Must be exiting, otherwise would be on tasklist. */
5334 BUG_ON(!p->exit_state);
5335
5336 /* Cannot have done final schedule yet: would have vanished. */
5337 BUG_ON(p->state == TASK_DEAD);
5338
5339 get_task_struct(p);
5340
5341 /*
5342 * Drop lock around migration; if someone else moves it,
5343 * that's OK. No task can be added to this CPU, so iteration is
5344 * fine.
5345 */
5346 spin_unlock_irq(&rq->lock);
5347 move_task_off_dead_cpu(dead_cpu, p);
5348 spin_lock_irq(&rq->lock);
5349
5350 put_task_struct(p);
5351 }
5352
5353 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5354 static void migrate_dead_tasks(unsigned int dead_cpu)
5355 {
5356 struct rq *rq = cpu_rq(dead_cpu);
5357 struct task_struct *next;
5358
5359 for ( ; ; ) {
5360 if (!rq->nr_running)
5361 break;
5362 update_rq_clock(rq);
5363 next = pick_next_task(rq, rq->curr);
5364 if (!next)
5365 break;
5366 migrate_dead(dead_cpu, next);
5367
5368 }
5369 }
5370 #endif /* CONFIG_HOTPLUG_CPU */
5371
5372 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5373
5374 static struct ctl_table sd_ctl_dir[] = {
5375 {
5376 .procname = "sched_domain",
5377 .mode = 0555,
5378 },
5379 {0, },
5380 };
5381
5382 static struct ctl_table sd_ctl_root[] = {
5383 {
5384 .ctl_name = CTL_KERN,
5385 .procname = "kernel",
5386 .mode = 0555,
5387 .child = sd_ctl_dir,
5388 },
5389 {0, },
5390 };
5391
5392 static struct ctl_table *sd_alloc_ctl_entry(int n)
5393 {
5394 struct ctl_table *entry =
5395 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5396
5397 return entry;
5398 }
5399
5400 static void sd_free_ctl_entry(struct ctl_table **tablep)
5401 {
5402 struct ctl_table *entry;
5403
5404 /*
5405 * In the intermediate directories, both the child directory and
5406 * procname are dynamically allocated and could fail but the mode
5407 * will always be set. In the lowest directory the names are
5408 * static strings and all have proc handlers.
5409 */
5410 for (entry = *tablep; entry->mode; entry++) {
5411 if (entry->child)
5412 sd_free_ctl_entry(&entry->child);
5413 if (entry->proc_handler == NULL)
5414 kfree(entry->procname);
5415 }
5416
5417 kfree(*tablep);
5418 *tablep = NULL;
5419 }
5420
5421 static void
5422 set_table_entry(struct ctl_table *entry,
5423 const char *procname, void *data, int maxlen,
5424 mode_t mode, proc_handler *proc_handler)
5425 {
5426 entry->procname = procname;
5427 entry->data = data;
5428 entry->maxlen = maxlen;
5429 entry->mode = mode;
5430 entry->proc_handler = proc_handler;
5431 }
5432
5433 static struct ctl_table *
5434 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5435 {
5436 struct ctl_table *table = sd_alloc_ctl_entry(12);
5437
5438 if (table == NULL)
5439 return NULL;
5440
5441 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5442 sizeof(long), 0644, proc_doulongvec_minmax);
5443 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5444 sizeof(long), 0644, proc_doulongvec_minmax);
5445 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5446 sizeof(int), 0644, proc_dointvec_minmax);
5447 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5448 sizeof(int), 0644, proc_dointvec_minmax);
5449 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5450 sizeof(int), 0644, proc_dointvec_minmax);
5451 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5452 sizeof(int), 0644, proc_dointvec_minmax);
5453 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5454 sizeof(int), 0644, proc_dointvec_minmax);
5455 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5456 sizeof(int), 0644, proc_dointvec_minmax);
5457 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5458 sizeof(int), 0644, proc_dointvec_minmax);
5459 set_table_entry(&table[9], "cache_nice_tries",
5460 &sd->cache_nice_tries,
5461 sizeof(int), 0644, proc_dointvec_minmax);
5462 set_table_entry(&table[10], "flags", &sd->flags,
5463 sizeof(int), 0644, proc_dointvec_minmax);
5464 /* &table[11] is terminator */
5465
5466 return table;
5467 }
5468
5469 static ctl_table * sd_alloc_ctl_cpu_table(int cpu)
5470 {
5471 struct ctl_table *entry, *table;
5472 struct sched_domain *sd;
5473 int domain_num = 0, i;
5474 char buf[32];
5475
5476 for_each_domain(cpu, sd)
5477 domain_num++;
5478 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5479 if (table == NULL)
5480 return NULL;
5481
5482 i = 0;
5483 for_each_domain(cpu, sd) {
5484 snprintf(buf, 32, "domain%d", i);
5485 entry->procname = kstrdup(buf, GFP_KERNEL);
5486 entry->mode = 0555;
5487 entry->child = sd_alloc_ctl_domain_table(sd);
5488 entry++;
5489 i++;
5490 }
5491 return table;
5492 }
5493
5494 static struct ctl_table_header *sd_sysctl_header;
5495 static void register_sched_domain_sysctl(void)
5496 {
5497 int i, cpu_num = num_online_cpus();
5498 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5499 char buf[32];
5500
5501 WARN_ON(sd_ctl_dir[0].child);
5502 sd_ctl_dir[0].child = entry;
5503
5504 if (entry == NULL)
5505 return;
5506
5507 for_each_online_cpu(i) {
5508 snprintf(buf, 32, "cpu%d", i);
5509 entry->procname = kstrdup(buf, GFP_KERNEL);
5510 entry->mode = 0555;
5511 entry->child = sd_alloc_ctl_cpu_table(i);
5512 entry++;
5513 }
5514
5515 WARN_ON(sd_sysctl_header);
5516 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5517 }
5518
5519 /* may be called multiple times per register */
5520 static void unregister_sched_domain_sysctl(void)
5521 {
5522 if (sd_sysctl_header)
5523 unregister_sysctl_table(sd_sysctl_header);
5524 sd_sysctl_header = NULL;
5525 if (sd_ctl_dir[0].child)
5526 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5527 }
5528 #else
5529 static void register_sched_domain_sysctl(void)
5530 {
5531 }
5532 static void unregister_sched_domain_sysctl(void)
5533 {
5534 }
5535 #endif
5536
5537 /*
5538 * migration_call - callback that gets triggered when a CPU is added.
5539 * Here we can start up the necessary migration thread for the new CPU.
5540 */
5541 static int __cpuinit
5542 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5543 {
5544 struct task_struct *p;
5545 int cpu = (long)hcpu;
5546 unsigned long flags;
5547 struct rq *rq;
5548
5549 switch (action) {
5550 case CPU_LOCK_ACQUIRE:
5551 mutex_lock(&sched_hotcpu_mutex);
5552 break;
5553
5554 case CPU_UP_PREPARE:
5555 case CPU_UP_PREPARE_FROZEN:
5556 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
5557 if (IS_ERR(p))
5558 return NOTIFY_BAD;
5559 kthread_bind(p, cpu);
5560 /* Must be high prio: stop_machine expects to yield to it. */
5561 rq = task_rq_lock(p, &flags);
5562 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5563 task_rq_unlock(rq, &flags);
5564 cpu_rq(cpu)->migration_thread = p;
5565 break;
5566
5567 case CPU_ONLINE:
5568 case CPU_ONLINE_FROZEN:
5569 /* Strictly unnecessary, as first user will wake it. */
5570 wake_up_process(cpu_rq(cpu)->migration_thread);
5571 break;
5572
5573 #ifdef CONFIG_HOTPLUG_CPU
5574 case CPU_UP_CANCELED:
5575 case CPU_UP_CANCELED_FROZEN:
5576 if (!cpu_rq(cpu)->migration_thread)
5577 break;
5578 /* Unbind it from offline cpu so it can run. Fall thru. */
5579 kthread_bind(cpu_rq(cpu)->migration_thread,
5580 any_online_cpu(cpu_online_map));
5581 kthread_stop(cpu_rq(cpu)->migration_thread);
5582 cpu_rq(cpu)->migration_thread = NULL;
5583 break;
5584
5585 case CPU_DEAD:
5586 case CPU_DEAD_FROZEN:
5587 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
5588 migrate_live_tasks(cpu);
5589 rq = cpu_rq(cpu);
5590 kthread_stop(rq->migration_thread);
5591 rq->migration_thread = NULL;
5592 /* Idle task back to normal (off runqueue, low prio) */
5593 spin_lock_irq(&rq->lock);
5594 update_rq_clock(rq);
5595 deactivate_task(rq, rq->idle, 0);
5596 rq->idle->static_prio = MAX_PRIO;
5597 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5598 rq->idle->sched_class = &idle_sched_class;
5599 migrate_dead_tasks(cpu);
5600 spin_unlock_irq(&rq->lock);
5601 cpuset_unlock();
5602 migrate_nr_uninterruptible(rq);
5603 BUG_ON(rq->nr_running != 0);
5604
5605 /* No need to migrate the tasks: it was best-effort if
5606 * they didn't take sched_hotcpu_mutex. Just wake up
5607 * the requestors. */
5608 spin_lock_irq(&rq->lock);
5609 while (!list_empty(&rq->migration_queue)) {
5610 struct migration_req *req;
5611
5612 req = list_entry(rq->migration_queue.next,
5613 struct migration_req, list);
5614 list_del_init(&req->list);
5615 complete(&req->done);
5616 }
5617 spin_unlock_irq(&rq->lock);
5618 break;
5619 #endif
5620 case CPU_LOCK_RELEASE:
5621 mutex_unlock(&sched_hotcpu_mutex);
5622 break;
5623 }
5624 return NOTIFY_OK;
5625 }
5626
5627 /* Register at highest priority so that task migration (migrate_all_tasks)
5628 * happens before everything else.
5629 */
5630 static struct notifier_block __cpuinitdata migration_notifier = {
5631 .notifier_call = migration_call,
5632 .priority = 10
5633 };
5634
5635 void __init migration_init(void)
5636 {
5637 void *cpu = (void *)(long)smp_processor_id();
5638 int err;
5639
5640 /* Start one for the boot CPU: */
5641 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5642 BUG_ON(err == NOTIFY_BAD);
5643 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5644 register_cpu_notifier(&migration_notifier);
5645 }
5646 #endif
5647
5648 #ifdef CONFIG_SMP
5649
5650 /* Number of possible processor ids */
5651 int nr_cpu_ids __read_mostly = NR_CPUS;
5652 EXPORT_SYMBOL(nr_cpu_ids);
5653
5654 #ifdef CONFIG_SCHED_DEBUG
5655
5656 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
5657 {
5658 struct sched_group *group = sd->groups;
5659 cpumask_t groupmask;
5660 char str[NR_CPUS];
5661
5662 cpumask_scnprintf(str, NR_CPUS, sd->span);
5663 cpus_clear(groupmask);
5664
5665 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5666
5667 if (!(sd->flags & SD_LOAD_BALANCE)) {
5668 printk("does not load-balance\n");
5669 if (sd->parent)
5670 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5671 " has parent");
5672 return -1;
5673 }
5674
5675 printk(KERN_CONT "span %s\n", str);
5676
5677 if (!cpu_isset(cpu, sd->span)) {
5678 printk(KERN_ERR "ERROR: domain->span does not contain "
5679 "CPU%d\n", cpu);
5680 }
5681 if (!cpu_isset(cpu, group->cpumask)) {
5682 printk(KERN_ERR "ERROR: domain->groups does not contain"
5683 " CPU%d\n", cpu);
5684 }
5685
5686 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5687 do {
5688 if (!group) {
5689 printk("\n");
5690 printk(KERN_ERR "ERROR: group is NULL\n");
5691 break;
5692 }
5693
5694 if (!group->__cpu_power) {
5695 printk(KERN_CONT "\n");
5696 printk(KERN_ERR "ERROR: domain->cpu_power not "
5697 "set\n");
5698 break;
5699 }
5700
5701 if (!cpus_weight(group->cpumask)) {
5702 printk(KERN_CONT "\n");
5703 printk(KERN_ERR "ERROR: empty group\n");
5704 break;
5705 }
5706
5707 if (cpus_intersects(groupmask, group->cpumask)) {
5708 printk(KERN_CONT "\n");
5709 printk(KERN_ERR "ERROR: repeated CPUs\n");
5710 break;
5711 }
5712
5713 cpus_or(groupmask, groupmask, group->cpumask);
5714
5715 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5716 printk(KERN_CONT " %s", str);
5717
5718 group = group->next;
5719 } while (group != sd->groups);
5720 printk(KERN_CONT "\n");
5721
5722 if (!cpus_equal(sd->span, groupmask))
5723 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5724
5725 if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
5726 printk(KERN_ERR "ERROR: parent span is not a superset "
5727 "of domain->span\n");
5728 return 0;
5729 }
5730
5731 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5732 {
5733 int level = 0;
5734
5735 if (!sd) {
5736 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5737 return;
5738 }
5739
5740 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5741
5742 for (;;) {
5743 if (sched_domain_debug_one(sd, cpu, level))
5744 break;
5745 level++;
5746 sd = sd->parent;
5747 if (!sd)
5748 break;
5749 }
5750 }
5751 #else
5752 # define sched_domain_debug(sd, cpu) do { } while (0)
5753 #endif
5754
5755 static int sd_degenerate(struct sched_domain *sd)
5756 {
5757 if (cpus_weight(sd->span) == 1)
5758 return 1;
5759
5760 /* Following flags need at least 2 groups */
5761 if (sd->flags & (SD_LOAD_BALANCE |
5762 SD_BALANCE_NEWIDLE |
5763 SD_BALANCE_FORK |
5764 SD_BALANCE_EXEC |
5765 SD_SHARE_CPUPOWER |
5766 SD_SHARE_PKG_RESOURCES)) {
5767 if (sd->groups != sd->groups->next)
5768 return 0;
5769 }
5770
5771 /* Following flags don't use groups */
5772 if (sd->flags & (SD_WAKE_IDLE |
5773 SD_WAKE_AFFINE |
5774 SD_WAKE_BALANCE))
5775 return 0;
5776
5777 return 1;
5778 }
5779
5780 static int
5781 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5782 {
5783 unsigned long cflags = sd->flags, pflags = parent->flags;
5784
5785 if (sd_degenerate(parent))
5786 return 1;
5787
5788 if (!cpus_equal(sd->span, parent->span))
5789 return 0;
5790
5791 /* Does parent contain flags not in child? */
5792 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5793 if (cflags & SD_WAKE_AFFINE)
5794 pflags &= ~SD_WAKE_BALANCE;
5795 /* Flags needing groups don't count if only 1 group in parent */
5796 if (parent->groups == parent->groups->next) {
5797 pflags &= ~(SD_LOAD_BALANCE |
5798 SD_BALANCE_NEWIDLE |
5799 SD_BALANCE_FORK |
5800 SD_BALANCE_EXEC |
5801 SD_SHARE_CPUPOWER |
5802 SD_SHARE_PKG_RESOURCES);
5803 }
5804 if (~cflags & pflags)
5805 return 0;
5806
5807 return 1;
5808 }
5809
5810 /*
5811 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5812 * hold the hotplug lock.
5813 */
5814 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
5815 {
5816 struct rq *rq = cpu_rq(cpu);
5817 struct sched_domain *tmp;
5818
5819 /* Remove the sched domains which do not contribute to scheduling. */
5820 for (tmp = sd; tmp; tmp = tmp->parent) {
5821 struct sched_domain *parent = tmp->parent;
5822 if (!parent)
5823 break;
5824 if (sd_parent_degenerate(tmp, parent)) {
5825 tmp->parent = parent->parent;
5826 if (parent->parent)
5827 parent->parent->child = tmp;
5828 }
5829 }
5830
5831 if (sd && sd_degenerate(sd)) {
5832 sd = sd->parent;
5833 if (sd)
5834 sd->child = NULL;
5835 }
5836
5837 sched_domain_debug(sd, cpu);
5838
5839 rcu_assign_pointer(rq->sd, sd);
5840 }
5841
5842 /* cpus with isolated domains */
5843 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
5844
5845 /* Setup the mask of cpus configured for isolated domains */
5846 static int __init isolated_cpu_setup(char *str)
5847 {
5848 int ints[NR_CPUS], i;
5849
5850 str = get_options(str, ARRAY_SIZE(ints), ints);
5851 cpus_clear(cpu_isolated_map);
5852 for (i = 1; i <= ints[0]; i++)
5853 if (ints[i] < NR_CPUS)
5854 cpu_set(ints[i], cpu_isolated_map);
5855 return 1;
5856 }
5857
5858 __setup("isolcpus=", isolated_cpu_setup);
5859
5860 /*
5861 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5862 * to a function which identifies what group(along with sched group) a CPU
5863 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5864 * (due to the fact that we keep track of groups covered with a cpumask_t).
5865 *
5866 * init_sched_build_groups will build a circular linked list of the groups
5867 * covered by the given span, and will set each group's ->cpumask correctly,
5868 * and ->cpu_power to 0.
5869 */
5870 static void
5871 init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5872 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5873 struct sched_group **sg))
5874 {
5875 struct sched_group *first = NULL, *last = NULL;
5876 cpumask_t covered = CPU_MASK_NONE;
5877 int i;
5878
5879 for_each_cpu_mask(i, span) {
5880 struct sched_group *sg;
5881 int group = group_fn(i, cpu_map, &sg);
5882 int j;
5883
5884 if (cpu_isset(i, covered))
5885 continue;
5886
5887 sg->cpumask = CPU_MASK_NONE;
5888 sg->__cpu_power = 0;
5889
5890 for_each_cpu_mask(j, span) {
5891 if (group_fn(j, cpu_map, NULL) != group)
5892 continue;
5893
5894 cpu_set(j, covered);
5895 cpu_set(j, sg->cpumask);
5896 }
5897 if (!first)
5898 first = sg;
5899 if (last)
5900 last->next = sg;
5901 last = sg;
5902 }
5903 last->next = first;
5904 }
5905
5906 #define SD_NODES_PER_DOMAIN 16
5907
5908 #ifdef CONFIG_NUMA
5909
5910 /**
5911 * find_next_best_node - find the next node to include in a sched_domain
5912 * @node: node whose sched_domain we're building
5913 * @used_nodes: nodes already in the sched_domain
5914 *
5915 * Find the next node to include in a given scheduling domain. Simply
5916 * finds the closest node not already in the @used_nodes map.
5917 *
5918 * Should use nodemask_t.
5919 */
5920 static int find_next_best_node(int node, unsigned long *used_nodes)
5921 {
5922 int i, n, val, min_val, best_node = 0;
5923
5924 min_val = INT_MAX;
5925
5926 for (i = 0; i < MAX_NUMNODES; i++) {
5927 /* Start at @node */
5928 n = (node + i) % MAX_NUMNODES;
5929
5930 if (!nr_cpus_node(n))
5931 continue;
5932
5933 /* Skip already used nodes */
5934 if (test_bit(n, used_nodes))
5935 continue;
5936
5937 /* Simple min distance search */
5938 val = node_distance(node, n);
5939
5940 if (val < min_val) {
5941 min_val = val;
5942 best_node = n;
5943 }
5944 }
5945
5946 set_bit(best_node, used_nodes);
5947 return best_node;
5948 }
5949
5950 /**
5951 * sched_domain_node_span - get a cpumask for a node's sched_domain
5952 * @node: node whose cpumask we're constructing
5953 * @size: number of nodes to include in this span
5954 *
5955 * Given a node, construct a good cpumask for its sched_domain to span. It
5956 * should be one that prevents unnecessary balancing, but also spreads tasks
5957 * out optimally.
5958 */
5959 static cpumask_t sched_domain_node_span(int node)
5960 {
5961 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5962 cpumask_t span, nodemask;
5963 int i;
5964
5965 cpus_clear(span);
5966 bitmap_zero(used_nodes, MAX_NUMNODES);
5967
5968 nodemask = node_to_cpumask(node);
5969 cpus_or(span, span, nodemask);
5970 set_bit(node, used_nodes);
5971
5972 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5973 int next_node = find_next_best_node(node, used_nodes);
5974
5975 nodemask = node_to_cpumask(next_node);
5976 cpus_or(span, span, nodemask);
5977 }
5978
5979 return span;
5980 }
5981 #endif
5982
5983 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5984
5985 /*
5986 * SMT sched-domains:
5987 */
5988 #ifdef CONFIG_SCHED_SMT
5989 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5990 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
5991
5992 static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
5993 struct sched_group **sg)
5994 {
5995 if (sg)
5996 *sg = &per_cpu(sched_group_cpus, cpu);
5997 return cpu;
5998 }
5999 #endif
6000
6001 /*
6002 * multi-core sched-domains:
6003 */
6004 #ifdef CONFIG_SCHED_MC
6005 static DEFINE_PER_CPU(struct sched_domain, core_domains);
6006 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6007 #endif
6008
6009 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6010 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
6011 struct sched_group **sg)
6012 {
6013 int group;
6014 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6015 cpus_and(mask, mask, *cpu_map);
6016 group = first_cpu(mask);
6017 if (sg)
6018 *sg = &per_cpu(sched_group_core, group);
6019 return group;
6020 }
6021 #elif defined(CONFIG_SCHED_MC)
6022 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
6023 struct sched_group **sg)
6024 {
6025 if (sg)
6026 *sg = &per_cpu(sched_group_core, cpu);
6027 return cpu;
6028 }
6029 #endif
6030
6031 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6032 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6033
6034 static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
6035 struct sched_group **sg)
6036 {
6037 int group;
6038 #ifdef CONFIG_SCHED_MC
6039 cpumask_t mask = cpu_coregroup_map(cpu);
6040 cpus_and(mask, mask, *cpu_map);
6041 group = first_cpu(mask);
6042 #elif defined(CONFIG_SCHED_SMT)
6043 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6044 cpus_and(mask, mask, *cpu_map);
6045 group = first_cpu(mask);
6046 #else
6047 group = cpu;
6048 #endif
6049 if (sg)
6050 *sg = &per_cpu(sched_group_phys, group);
6051 return group;
6052 }
6053
6054 #ifdef CONFIG_NUMA
6055 /*
6056 * The init_sched_build_groups can't handle what we want to do with node
6057 * groups, so roll our own. Now each node has its own list of groups which
6058 * gets dynamically allocated.
6059 */
6060 static DEFINE_PER_CPU(struct sched_domain, node_domains);
6061 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
6062
6063 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6064 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6065
6066 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6067 struct sched_group **sg)
6068 {
6069 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
6070 int group;
6071
6072 cpus_and(nodemask, nodemask, *cpu_map);
6073 group = first_cpu(nodemask);
6074
6075 if (sg)
6076 *sg = &per_cpu(sched_group_allnodes, group);
6077 return group;
6078 }
6079
6080 static void init_numa_sched_groups_power(struct sched_group *group_head)
6081 {
6082 struct sched_group *sg = group_head;
6083 int j;
6084
6085 if (!sg)
6086 return;
6087 do {
6088 for_each_cpu_mask(j, sg->cpumask) {
6089 struct sched_domain *sd;
6090
6091 sd = &per_cpu(phys_domains, j);
6092 if (j != first_cpu(sd->groups->cpumask)) {
6093 /*
6094 * Only add "power" once for each
6095 * physical package.
6096 */
6097 continue;
6098 }
6099
6100 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6101 }
6102 sg = sg->next;
6103 } while (sg != group_head);
6104 }
6105 #endif
6106
6107 #ifdef CONFIG_NUMA
6108 /* Free memory allocated for various sched_group structures */
6109 static void free_sched_groups(const cpumask_t *cpu_map)
6110 {
6111 int cpu, i;
6112
6113 for_each_cpu_mask(cpu, *cpu_map) {
6114 struct sched_group **sched_group_nodes
6115 = sched_group_nodes_bycpu[cpu];
6116
6117 if (!sched_group_nodes)
6118 continue;
6119
6120 for (i = 0; i < MAX_NUMNODES; i++) {
6121 cpumask_t nodemask = node_to_cpumask(i);
6122 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6123
6124 cpus_and(nodemask, nodemask, *cpu_map);
6125 if (cpus_empty(nodemask))
6126 continue;
6127
6128 if (sg == NULL)
6129 continue;
6130 sg = sg->next;
6131 next_sg:
6132 oldsg = sg;
6133 sg = sg->next;
6134 kfree(oldsg);
6135 if (oldsg != sched_group_nodes[i])
6136 goto next_sg;
6137 }
6138 kfree(sched_group_nodes);
6139 sched_group_nodes_bycpu[cpu] = NULL;
6140 }
6141 }
6142 #else
6143 static void free_sched_groups(const cpumask_t *cpu_map)
6144 {
6145 }
6146 #endif
6147
6148 /*
6149 * Initialize sched groups cpu_power.
6150 *
6151 * cpu_power indicates the capacity of sched group, which is used while
6152 * distributing the load between different sched groups in a sched domain.
6153 * Typically cpu_power for all the groups in a sched domain will be same unless
6154 * there are asymmetries in the topology. If there are asymmetries, group
6155 * having more cpu_power will pickup more load compared to the group having
6156 * less cpu_power.
6157 *
6158 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6159 * the maximum number of tasks a group can handle in the presence of other idle
6160 * or lightly loaded groups in the same sched domain.
6161 */
6162 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6163 {
6164 struct sched_domain *child;
6165 struct sched_group *group;
6166
6167 WARN_ON(!sd || !sd->groups);
6168
6169 if (cpu != first_cpu(sd->groups->cpumask))
6170 return;
6171
6172 child = sd->child;
6173
6174 sd->groups->__cpu_power = 0;
6175
6176 /*
6177 * For perf policy, if the groups in child domain share resources
6178 * (for example cores sharing some portions of the cache hierarchy
6179 * or SMT), then set this domain groups cpu_power such that each group
6180 * can handle only one task, when there are other idle groups in the
6181 * same sched domain.
6182 */
6183 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6184 (child->flags &
6185 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6186 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6187 return;
6188 }
6189
6190 /*
6191 * add cpu_power of each child group to this groups cpu_power
6192 */
6193 group = child->groups;
6194 do {
6195 sg_inc_cpu_power(sd->groups, group->__cpu_power);
6196 group = group->next;
6197 } while (group != child->groups);
6198 }
6199
6200 /*
6201 * Build sched domains for a given set of cpus and attach the sched domains
6202 * to the individual cpus
6203 */
6204 static int build_sched_domains(const cpumask_t *cpu_map)
6205 {
6206 int i;
6207 #ifdef CONFIG_NUMA
6208 struct sched_group **sched_group_nodes = NULL;
6209 int sd_allnodes = 0;
6210
6211 /*
6212 * Allocate the per-node list of sched groups
6213 */
6214 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
6215 GFP_KERNEL);
6216 if (!sched_group_nodes) {
6217 printk(KERN_WARNING "Can not alloc sched group node list\n");
6218 return -ENOMEM;
6219 }
6220 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6221 #endif
6222
6223 /*
6224 * Set up domains for cpus specified by the cpu_map.
6225 */
6226 for_each_cpu_mask(i, *cpu_map) {
6227 struct sched_domain *sd = NULL, *p;
6228 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6229
6230 cpus_and(nodemask, nodemask, *cpu_map);
6231
6232 #ifdef CONFIG_NUMA
6233 if (cpus_weight(*cpu_map) >
6234 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6235 sd = &per_cpu(allnodes_domains, i);
6236 *sd = SD_ALLNODES_INIT;
6237 sd->span = *cpu_map;
6238 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6239 p = sd;
6240 sd_allnodes = 1;
6241 } else
6242 p = NULL;
6243
6244 sd = &per_cpu(node_domains, i);
6245 *sd = SD_NODE_INIT;
6246 sd->span = sched_domain_node_span(cpu_to_node(i));
6247 sd->parent = p;
6248 if (p)
6249 p->child = sd;
6250 cpus_and(sd->span, sd->span, *cpu_map);
6251 #endif
6252
6253 p = sd;
6254 sd = &per_cpu(phys_domains, i);
6255 *sd = SD_CPU_INIT;
6256 sd->span = nodemask;
6257 sd->parent = p;
6258 if (p)
6259 p->child = sd;
6260 cpu_to_phys_group(i, cpu_map, &sd->groups);
6261
6262 #ifdef CONFIG_SCHED_MC
6263 p = sd;
6264 sd = &per_cpu(core_domains, i);
6265 *sd = SD_MC_INIT;
6266 sd->span = cpu_coregroup_map(i);
6267 cpus_and(sd->span, sd->span, *cpu_map);
6268 sd->parent = p;
6269 p->child = sd;
6270 cpu_to_core_group(i, cpu_map, &sd->groups);
6271 #endif
6272
6273 #ifdef CONFIG_SCHED_SMT
6274 p = sd;
6275 sd = &per_cpu(cpu_domains, i);
6276 *sd = SD_SIBLING_INIT;
6277 sd->span = per_cpu(cpu_sibling_map, i);
6278 cpus_and(sd->span, sd->span, *cpu_map);
6279 sd->parent = p;
6280 p->child = sd;
6281 cpu_to_cpu_group(i, cpu_map, &sd->groups);
6282 #endif
6283 }
6284
6285 #ifdef CONFIG_SCHED_SMT
6286 /* Set up CPU (sibling) groups */
6287 for_each_cpu_mask(i, *cpu_map) {
6288 cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
6289 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
6290 if (i != first_cpu(this_sibling_map))
6291 continue;
6292
6293 init_sched_build_groups(this_sibling_map, cpu_map,
6294 &cpu_to_cpu_group);
6295 }
6296 #endif
6297
6298 #ifdef CONFIG_SCHED_MC
6299 /* Set up multi-core groups */
6300 for_each_cpu_mask(i, *cpu_map) {
6301 cpumask_t this_core_map = cpu_coregroup_map(i);
6302 cpus_and(this_core_map, this_core_map, *cpu_map);
6303 if (i != first_cpu(this_core_map))
6304 continue;
6305 init_sched_build_groups(this_core_map, cpu_map,
6306 &cpu_to_core_group);
6307 }
6308 #endif
6309
6310 /* Set up physical groups */
6311 for (i = 0; i < MAX_NUMNODES; i++) {
6312 cpumask_t nodemask = node_to_cpumask(i);
6313
6314 cpus_and(nodemask, nodemask, *cpu_map);
6315 if (cpus_empty(nodemask))
6316 continue;
6317
6318 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
6319 }
6320
6321 #ifdef CONFIG_NUMA
6322 /* Set up node groups */
6323 if (sd_allnodes)
6324 init_sched_build_groups(*cpu_map, cpu_map,
6325 &cpu_to_allnodes_group);
6326
6327 for (i = 0; i < MAX_NUMNODES; i++) {
6328 /* Set up node groups */
6329 struct sched_group *sg, *prev;
6330 cpumask_t nodemask = node_to_cpumask(i);
6331 cpumask_t domainspan;
6332 cpumask_t covered = CPU_MASK_NONE;
6333 int j;
6334
6335 cpus_and(nodemask, nodemask, *cpu_map);
6336 if (cpus_empty(nodemask)) {
6337 sched_group_nodes[i] = NULL;
6338 continue;
6339 }
6340
6341 domainspan = sched_domain_node_span(i);
6342 cpus_and(domainspan, domainspan, *cpu_map);
6343
6344 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6345 if (!sg) {
6346 printk(KERN_WARNING "Can not alloc domain group for "
6347 "node %d\n", i);
6348 goto error;
6349 }
6350 sched_group_nodes[i] = sg;
6351 for_each_cpu_mask(j, nodemask) {
6352 struct sched_domain *sd;
6353
6354 sd = &per_cpu(node_domains, j);
6355 sd->groups = sg;
6356 }
6357 sg->__cpu_power = 0;
6358 sg->cpumask = nodemask;
6359 sg->next = sg;
6360 cpus_or(covered, covered, nodemask);
6361 prev = sg;
6362
6363 for (j = 0; j < MAX_NUMNODES; j++) {
6364 cpumask_t tmp, notcovered;
6365 int n = (i + j) % MAX_NUMNODES;
6366
6367 cpus_complement(notcovered, covered);
6368 cpus_and(tmp, notcovered, *cpu_map);
6369 cpus_and(tmp, tmp, domainspan);
6370 if (cpus_empty(tmp))
6371 break;
6372
6373 nodemask = node_to_cpumask(n);
6374 cpus_and(tmp, tmp, nodemask);
6375 if (cpus_empty(tmp))
6376 continue;
6377
6378 sg = kmalloc_node(sizeof(struct sched_group),
6379 GFP_KERNEL, i);
6380 if (!sg) {
6381 printk(KERN_WARNING
6382 "Can not alloc domain group for node %d\n", j);
6383 goto error;
6384 }
6385 sg->__cpu_power = 0;
6386 sg->cpumask = tmp;
6387 sg->next = prev->next;
6388 cpus_or(covered, covered, tmp);
6389 prev->next = sg;
6390 prev = sg;
6391 }
6392 }
6393 #endif
6394
6395 /* Calculate CPU power for physical packages and nodes */
6396 #ifdef CONFIG_SCHED_SMT
6397 for_each_cpu_mask(i, *cpu_map) {
6398 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6399
6400 init_sched_groups_power(i, sd);
6401 }
6402 #endif
6403 #ifdef CONFIG_SCHED_MC
6404 for_each_cpu_mask(i, *cpu_map) {
6405 struct sched_domain *sd = &per_cpu(core_domains, i);
6406
6407 init_sched_groups_power(i, sd);
6408 }
6409 #endif
6410
6411 for_each_cpu_mask(i, *cpu_map) {
6412 struct sched_domain *sd = &per_cpu(phys_domains, i);
6413
6414 init_sched_groups_power(i, sd);
6415 }
6416
6417 #ifdef CONFIG_NUMA
6418 for (i = 0; i < MAX_NUMNODES; i++)
6419 init_numa_sched_groups_power(sched_group_nodes[i]);
6420
6421 if (sd_allnodes) {
6422 struct sched_group *sg;
6423
6424 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6425 init_numa_sched_groups_power(sg);
6426 }
6427 #endif
6428
6429 /* Attach the domains */
6430 for_each_cpu_mask(i, *cpu_map) {
6431 struct sched_domain *sd;
6432 #ifdef CONFIG_SCHED_SMT
6433 sd = &per_cpu(cpu_domains, i);
6434 #elif defined(CONFIG_SCHED_MC)
6435 sd = &per_cpu(core_domains, i);
6436 #else
6437 sd = &per_cpu(phys_domains, i);
6438 #endif
6439 cpu_attach_domain(sd, i);
6440 }
6441
6442 return 0;
6443
6444 #ifdef CONFIG_NUMA
6445 error:
6446 free_sched_groups(cpu_map);
6447 return -ENOMEM;
6448 #endif
6449 }
6450
6451 static cpumask_t *doms_cur; /* current sched domains */
6452 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6453
6454 /*
6455 * Special case: If a kmalloc of a doms_cur partition (array of
6456 * cpumask_t) fails, then fallback to a single sched domain,
6457 * as determined by the single cpumask_t fallback_doms.
6458 */
6459 static cpumask_t fallback_doms;
6460
6461 /*
6462 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6463 * For now this just excludes isolated cpus, but could be used to
6464 * exclude other special cases in the future.
6465 */
6466 static int arch_init_sched_domains(const cpumask_t *cpu_map)
6467 {
6468 int err;
6469
6470 ndoms_cur = 1;
6471 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6472 if (!doms_cur)
6473 doms_cur = &fallback_doms;
6474 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
6475 err = build_sched_domains(doms_cur);
6476 register_sched_domain_sysctl();
6477
6478 return err;
6479 }
6480
6481 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
6482 {
6483 free_sched_groups(cpu_map);
6484 }
6485
6486 /*
6487 * Detach sched domains from a group of cpus specified in cpu_map
6488 * These cpus will now be attached to the NULL domain
6489 */
6490 static void detach_destroy_domains(const cpumask_t *cpu_map)
6491 {
6492 int i;
6493
6494 unregister_sched_domain_sysctl();
6495
6496 for_each_cpu_mask(i, *cpu_map)
6497 cpu_attach_domain(NULL, i);
6498 synchronize_sched();
6499 arch_destroy_sched_domains(cpu_map);
6500 }
6501
6502 /*
6503 * Partition sched domains as specified by the 'ndoms_new'
6504 * cpumasks in the array doms_new[] of cpumasks. This compares
6505 * doms_new[] to the current sched domain partitioning, doms_cur[].
6506 * It destroys each deleted domain and builds each new domain.
6507 *
6508 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
6509 * The masks don't intersect (don't overlap.) We should setup one
6510 * sched domain for each mask. CPUs not in any of the cpumasks will
6511 * not be load balanced. If the same cpumask appears both in the
6512 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6513 * it as it is.
6514 *
6515 * The passed in 'doms_new' should be kmalloc'd. This routine takes
6516 * ownership of it and will kfree it when done with it. If the caller
6517 * failed the kmalloc call, then it can pass in doms_new == NULL,
6518 * and partition_sched_domains() will fallback to the single partition
6519 * 'fallback_doms'.
6520 *
6521 * Call with hotplug lock held
6522 */
6523 void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
6524 {
6525 int i, j;
6526
6527 /* always unregister in case we don't destroy any domains */
6528 unregister_sched_domain_sysctl();
6529
6530 if (doms_new == NULL) {
6531 ndoms_new = 1;
6532 doms_new = &fallback_doms;
6533 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
6534 }
6535
6536 /* Destroy deleted domains */
6537 for (i = 0; i < ndoms_cur; i++) {
6538 for (j = 0; j < ndoms_new; j++) {
6539 if (cpus_equal(doms_cur[i], doms_new[j]))
6540 goto match1;
6541 }
6542 /* no match - a current sched domain not in new doms_new[] */
6543 detach_destroy_domains(doms_cur + i);
6544 match1:
6545 ;
6546 }
6547
6548 /* Build new domains */
6549 for (i = 0; i < ndoms_new; i++) {
6550 for (j = 0; j < ndoms_cur; j++) {
6551 if (cpus_equal(doms_new[i], doms_cur[j]))
6552 goto match2;
6553 }
6554 /* no match - add a new doms_new */
6555 build_sched_domains(doms_new + i);
6556 match2:
6557 ;
6558 }
6559
6560 /* Remember the new sched domains */
6561 if (doms_cur != &fallback_doms)
6562 kfree(doms_cur);
6563 doms_cur = doms_new;
6564 ndoms_cur = ndoms_new;
6565
6566 register_sched_domain_sysctl();
6567 }
6568
6569 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6570 static int arch_reinit_sched_domains(void)
6571 {
6572 int err;
6573
6574 mutex_lock(&sched_hotcpu_mutex);
6575 detach_destroy_domains(&cpu_online_map);
6576 err = arch_init_sched_domains(&cpu_online_map);
6577 mutex_unlock(&sched_hotcpu_mutex);
6578
6579 return err;
6580 }
6581
6582 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6583 {
6584 int ret;
6585
6586 if (buf[0] != '0' && buf[0] != '1')
6587 return -EINVAL;
6588
6589 if (smt)
6590 sched_smt_power_savings = (buf[0] == '1');
6591 else
6592 sched_mc_power_savings = (buf[0] == '1');
6593
6594 ret = arch_reinit_sched_domains();
6595
6596 return ret ? ret : count;
6597 }
6598
6599 #ifdef CONFIG_SCHED_MC
6600 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6601 {
6602 return sprintf(page, "%u\n", sched_mc_power_savings);
6603 }
6604 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6605 const char *buf, size_t count)
6606 {
6607 return sched_power_savings_store(buf, count, 0);
6608 }
6609 static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6610 sched_mc_power_savings_store);
6611 #endif
6612
6613 #ifdef CONFIG_SCHED_SMT
6614 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6615 {
6616 return sprintf(page, "%u\n", sched_smt_power_savings);
6617 }
6618 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6619 const char *buf, size_t count)
6620 {
6621 return sched_power_savings_store(buf, count, 1);
6622 }
6623 static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6624 sched_smt_power_savings_store);
6625 #endif
6626
6627 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6628 {
6629 int err = 0;
6630
6631 #ifdef CONFIG_SCHED_SMT
6632 if (smt_capable())
6633 err = sysfs_create_file(&cls->kset.kobj,
6634 &attr_sched_smt_power_savings.attr);
6635 #endif
6636 #ifdef CONFIG_SCHED_MC
6637 if (!err && mc_capable())
6638 err = sysfs_create_file(&cls->kset.kobj,
6639 &attr_sched_mc_power_savings.attr);
6640 #endif
6641 return err;
6642 }
6643 #endif
6644
6645 /*
6646 * Force a reinitialization of the sched domains hierarchy. The domains
6647 * and groups cannot be updated in place without racing with the balancing
6648 * code, so we temporarily attach all running cpus to the NULL domain
6649 * which will prevent rebalancing while the sched domains are recalculated.
6650 */
6651 static int update_sched_domains(struct notifier_block *nfb,
6652 unsigned long action, void *hcpu)
6653 {
6654 switch (action) {
6655 case CPU_UP_PREPARE:
6656 case CPU_UP_PREPARE_FROZEN:
6657 case CPU_DOWN_PREPARE:
6658 case CPU_DOWN_PREPARE_FROZEN:
6659 detach_destroy_domains(&cpu_online_map);
6660 return NOTIFY_OK;
6661
6662 case CPU_UP_CANCELED:
6663 case CPU_UP_CANCELED_FROZEN:
6664 case CPU_DOWN_FAILED:
6665 case CPU_DOWN_FAILED_FROZEN:
6666 case CPU_ONLINE:
6667 case CPU_ONLINE_FROZEN:
6668 case CPU_DEAD:
6669 case CPU_DEAD_FROZEN:
6670 /*
6671 * Fall through and re-initialise the domains.
6672 */
6673 break;
6674 default:
6675 return NOTIFY_DONE;
6676 }
6677
6678 /* The hotplug lock is already held by cpu_up/cpu_down */
6679 arch_init_sched_domains(&cpu_online_map);
6680
6681 return NOTIFY_OK;
6682 }
6683
6684 void __init sched_init_smp(void)
6685 {
6686 cpumask_t non_isolated_cpus;
6687
6688 mutex_lock(&sched_hotcpu_mutex);
6689 arch_init_sched_domains(&cpu_online_map);
6690 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6691 if (cpus_empty(non_isolated_cpus))
6692 cpu_set(smp_processor_id(), non_isolated_cpus);
6693 mutex_unlock(&sched_hotcpu_mutex);
6694 /* XXX: Theoretical race here - CPU may be hotplugged now */
6695 hotcpu_notifier(update_sched_domains, 0);
6696
6697 /* Move init over to a non-isolated CPU */
6698 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6699 BUG();
6700 sched_init_granularity();
6701 }
6702 #else
6703 void __init sched_init_smp(void)
6704 {
6705 sched_init_granularity();
6706 }
6707 #endif /* CONFIG_SMP */
6708
6709 int in_sched_functions(unsigned long addr)
6710 {
6711 /* Linker adds these: start and end of __sched functions */
6712 extern char __sched_text_start[], __sched_text_end[];
6713
6714 return in_lock_functions(addr) ||
6715 (addr >= (unsigned long)__sched_text_start
6716 && addr < (unsigned long)__sched_text_end);
6717 }
6718
6719 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
6720 {
6721 cfs_rq->tasks_timeline = RB_ROOT;
6722 #ifdef CONFIG_FAIR_GROUP_SCHED
6723 cfs_rq->rq = rq;
6724 #endif
6725 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
6726 }
6727
6728 void __init sched_init(void)
6729 {
6730 int highest_cpu = 0;
6731 int i, j;
6732
6733 for_each_possible_cpu(i) {
6734 struct rt_prio_array *array;
6735 struct rq *rq;
6736
6737 rq = cpu_rq(i);
6738 spin_lock_init(&rq->lock);
6739 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
6740 rq->nr_running = 0;
6741 rq->clock = 1;
6742 init_cfs_rq(&rq->cfs, rq);
6743 #ifdef CONFIG_FAIR_GROUP_SCHED
6744 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6745 {
6746 struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
6747 struct sched_entity *se =
6748 &per_cpu(init_sched_entity, i);
6749
6750 init_cfs_rq_p[i] = cfs_rq;
6751 init_cfs_rq(cfs_rq, rq);
6752 cfs_rq->tg = &init_task_group;
6753 list_add(&cfs_rq->leaf_cfs_rq_list,
6754 &rq->leaf_cfs_rq_list);
6755
6756 init_sched_entity_p[i] = se;
6757 se->cfs_rq = &rq->cfs;
6758 se->my_q = cfs_rq;
6759 se->load.weight = init_task_group_load;
6760 se->load.inv_weight =
6761 div64_64(1ULL<<32, init_task_group_load);
6762 se->parent = NULL;
6763 }
6764 init_task_group.shares = init_task_group_load;
6765 spin_lock_init(&init_task_group.lock);
6766 #endif
6767
6768 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6769 rq->cpu_load[j] = 0;
6770 #ifdef CONFIG_SMP
6771 rq->sd = NULL;
6772 rq->active_balance = 0;
6773 rq->next_balance = jiffies;
6774 rq->push_cpu = 0;
6775 rq->cpu = i;
6776 rq->migration_thread = NULL;
6777 INIT_LIST_HEAD(&rq->migration_queue);
6778 #endif
6779 atomic_set(&rq->nr_iowait, 0);
6780
6781 array = &rq->rt.active;
6782 for (j = 0; j < MAX_RT_PRIO; j++) {
6783 INIT_LIST_HEAD(array->queue + j);
6784 __clear_bit(j, array->bitmap);
6785 }
6786 highest_cpu = i;
6787 /* delimiter for bitsearch: */
6788 __set_bit(MAX_RT_PRIO, array->bitmap);
6789 }
6790
6791 set_load_weight(&init_task);
6792
6793 #ifdef CONFIG_PREEMPT_NOTIFIERS
6794 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6795 #endif
6796
6797 #ifdef CONFIG_SMP
6798 nr_cpu_ids = highest_cpu + 1;
6799 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6800 #endif
6801
6802 #ifdef CONFIG_RT_MUTEXES
6803 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6804 #endif
6805
6806 /*
6807 * The boot idle thread does lazy MMU switching as well:
6808 */
6809 atomic_inc(&init_mm.mm_count);
6810 enter_lazy_tlb(&init_mm, current);
6811
6812 /*
6813 * Make us the idle thread. Technically, schedule() should not be
6814 * called from this thread, however somewhere below it might be,
6815 * but because we are the idle thread, we just pick up running again
6816 * when this runqueue becomes "idle".
6817 */
6818 init_idle(current, smp_processor_id());
6819 /*
6820 * During early bootup we pretend to be a normal task:
6821 */
6822 current->sched_class = &fair_sched_class;
6823 }
6824
6825 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6826 void __might_sleep(char *file, int line)
6827 {
6828 #ifdef in_atomic
6829 static unsigned long prev_jiffy; /* ratelimiting */
6830
6831 if ((in_atomic() || irqs_disabled()) &&
6832 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6833 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6834 return;
6835 prev_jiffy = jiffies;
6836 printk(KERN_ERR "BUG: sleeping function called from invalid"
6837 " context at %s:%d\n", file, line);
6838 printk("in_atomic():%d, irqs_disabled():%d\n",
6839 in_atomic(), irqs_disabled());
6840 debug_show_held_locks(current);
6841 if (irqs_disabled())
6842 print_irqtrace_events(current);
6843 dump_stack();
6844 }
6845 #endif
6846 }
6847 EXPORT_SYMBOL(__might_sleep);
6848 #endif
6849
6850 #ifdef CONFIG_MAGIC_SYSRQ
6851 static void normalize_task(struct rq *rq, struct task_struct *p)
6852 {
6853 int on_rq;
6854 update_rq_clock(rq);
6855 on_rq = p->se.on_rq;
6856 if (on_rq)
6857 deactivate_task(rq, p, 0);
6858 __setscheduler(rq, p, SCHED_NORMAL, 0);
6859 if (on_rq) {
6860 activate_task(rq, p, 0);
6861 resched_task(rq->curr);
6862 }
6863 }
6864
6865 void normalize_rt_tasks(void)
6866 {
6867 struct task_struct *g, *p;
6868 unsigned long flags;
6869 struct rq *rq;
6870
6871 read_lock_irq(&tasklist_lock);
6872 do_each_thread(g, p) {
6873 /*
6874 * Only normalize user tasks:
6875 */
6876 if (!p->mm)
6877 continue;
6878
6879 p->se.exec_start = 0;
6880 #ifdef CONFIG_SCHEDSTATS
6881 p->se.wait_start = 0;
6882 p->se.sleep_start = 0;
6883 p->se.block_start = 0;
6884 #endif
6885 task_rq(p)->clock = 0;
6886
6887 if (!rt_task(p)) {
6888 /*
6889 * Renice negative nice level userspace
6890 * tasks back to 0:
6891 */
6892 if (TASK_NICE(p) < 0 && p->mm)
6893 set_user_nice(p, 0);
6894 continue;
6895 }
6896
6897 spin_lock_irqsave(&p->pi_lock, flags);
6898 rq = __task_rq_lock(p);
6899
6900 normalize_task(rq, p);
6901
6902 __task_rq_unlock(rq);
6903 spin_unlock_irqrestore(&p->pi_lock, flags);
6904 } while_each_thread(g, p);
6905
6906 read_unlock_irq(&tasklist_lock);
6907 }
6908
6909 #endif /* CONFIG_MAGIC_SYSRQ */
6910
6911 #ifdef CONFIG_IA64
6912 /*
6913 * These functions are only useful for the IA64 MCA handling.
6914 *
6915 * They can only be called when the whole system has been
6916 * stopped - every CPU needs to be quiescent, and no scheduling
6917 * activity can take place. Using them for anything else would
6918 * be a serious bug, and as a result, they aren't even visible
6919 * under any other configuration.
6920 */
6921
6922 /**
6923 * curr_task - return the current task for a given cpu.
6924 * @cpu: the processor in question.
6925 *
6926 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6927 */
6928 struct task_struct *curr_task(int cpu)
6929 {
6930 return cpu_curr(cpu);
6931 }
6932
6933 /**
6934 * set_curr_task - set the current task for a given cpu.
6935 * @cpu: the processor in question.
6936 * @p: the task pointer to set.
6937 *
6938 * Description: This function must only be used when non-maskable interrupts
6939 * are serviced on a separate stack. It allows the architecture to switch the
6940 * notion of the current task on a cpu in a non-blocking manner. This function
6941 * must be called with all CPU's synchronized, and interrupts disabled, the
6942 * and caller must save the original value of the current task (see
6943 * curr_task() above) and restore that value before reenabling interrupts and
6944 * re-starting the system.
6945 *
6946 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6947 */
6948 void set_curr_task(int cpu, struct task_struct *p)
6949 {
6950 cpu_curr(cpu) = p;
6951 }
6952
6953 #endif
6954
6955 #ifdef CONFIG_FAIR_GROUP_SCHED
6956
6957 /* allocate runqueue etc for a new task group */
6958 struct task_group *sched_create_group(void)
6959 {
6960 struct task_group *tg;
6961 struct cfs_rq *cfs_rq;
6962 struct sched_entity *se;
6963 struct rq *rq;
6964 int i;
6965
6966 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6967 if (!tg)
6968 return ERR_PTR(-ENOMEM);
6969
6970 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
6971 if (!tg->cfs_rq)
6972 goto err;
6973 tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
6974 if (!tg->se)
6975 goto err;
6976
6977 for_each_possible_cpu(i) {
6978 rq = cpu_rq(i);
6979
6980 cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
6981 cpu_to_node(i));
6982 if (!cfs_rq)
6983 goto err;
6984
6985 se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
6986 cpu_to_node(i));
6987 if (!se)
6988 goto err;
6989
6990 memset(cfs_rq, 0, sizeof(struct cfs_rq));
6991 memset(se, 0, sizeof(struct sched_entity));
6992
6993 tg->cfs_rq[i] = cfs_rq;
6994 init_cfs_rq(cfs_rq, rq);
6995 cfs_rq->tg = tg;
6996
6997 tg->se[i] = se;
6998 se->cfs_rq = &rq->cfs;
6999 se->my_q = cfs_rq;
7000 se->load.weight = NICE_0_LOAD;
7001 se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
7002 se->parent = NULL;
7003 }
7004
7005 for_each_possible_cpu(i) {
7006 rq = cpu_rq(i);
7007 cfs_rq = tg->cfs_rq[i];
7008 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7009 }
7010
7011 tg->shares = NICE_0_LOAD;
7012 spin_lock_init(&tg->lock);
7013
7014 return tg;
7015
7016 err:
7017 for_each_possible_cpu(i) {
7018 if (tg->cfs_rq)
7019 kfree(tg->cfs_rq[i]);
7020 if (tg->se)
7021 kfree(tg->se[i]);
7022 }
7023 kfree(tg->cfs_rq);
7024 kfree(tg->se);
7025 kfree(tg);
7026
7027 return ERR_PTR(-ENOMEM);
7028 }
7029
7030 /* rcu callback to free various structures associated with a task group */
7031 static void free_sched_group(struct rcu_head *rhp)
7032 {
7033 struct task_group *tg = container_of(rhp, struct task_group, rcu);
7034 struct cfs_rq *cfs_rq;
7035 struct sched_entity *se;
7036 int i;
7037
7038 /* now it should be safe to free those cfs_rqs */
7039 for_each_possible_cpu(i) {
7040 cfs_rq = tg->cfs_rq[i];
7041 kfree(cfs_rq);
7042
7043 se = tg->se[i];
7044 kfree(se);
7045 }
7046
7047 kfree(tg->cfs_rq);
7048 kfree(tg->se);
7049 kfree(tg);
7050 }
7051
7052 /* Destroy runqueue etc associated with a task group */
7053 void sched_destroy_group(struct task_group *tg)
7054 {
7055 struct cfs_rq *cfs_rq = NULL;
7056 int i;
7057
7058 for_each_possible_cpu(i) {
7059 cfs_rq = tg->cfs_rq[i];
7060 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
7061 }
7062
7063 BUG_ON(!cfs_rq);
7064
7065 /* wait for possible concurrent references to cfs_rqs complete */
7066 call_rcu(&tg->rcu, free_sched_group);
7067 }
7068
7069 /* change task's runqueue when it moves between groups.
7070 * The caller of this function should have put the task in its new group
7071 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7072 * reflect its new group.
7073 */
7074 void sched_move_task(struct task_struct *tsk)
7075 {
7076 int on_rq, running;
7077 unsigned long flags;
7078 struct rq *rq;
7079
7080 rq = task_rq_lock(tsk, &flags);
7081
7082 if (tsk->sched_class != &fair_sched_class) {
7083 set_task_cfs_rq(tsk, task_cpu(tsk));
7084 goto done;
7085 }
7086
7087 update_rq_clock(rq);
7088
7089 running = task_running(rq, tsk);
7090 on_rq = tsk->se.on_rq;
7091
7092 if (on_rq) {
7093 dequeue_task(rq, tsk, 0);
7094 if (unlikely(running))
7095 tsk->sched_class->put_prev_task(rq, tsk);
7096 }
7097
7098 set_task_cfs_rq(tsk, task_cpu(tsk));
7099
7100 if (on_rq) {
7101 if (unlikely(running))
7102 tsk->sched_class->set_curr_task(rq);
7103 enqueue_task(rq, tsk, 0);
7104 }
7105
7106 done:
7107 task_rq_unlock(rq, &flags);
7108 }
7109
7110 static void set_se_shares(struct sched_entity *se, unsigned long shares)
7111 {
7112 struct cfs_rq *cfs_rq = se->cfs_rq;
7113 struct rq *rq = cfs_rq->rq;
7114 int on_rq;
7115
7116 spin_lock_irq(&rq->lock);
7117
7118 on_rq = se->on_rq;
7119 if (on_rq)
7120 dequeue_entity(cfs_rq, se, 0);
7121
7122 se->load.weight = shares;
7123 se->load.inv_weight = div64_64((1ULL<<32), shares);
7124
7125 if (on_rq)
7126 enqueue_entity(cfs_rq, se, 0);
7127
7128 spin_unlock_irq(&rq->lock);
7129 }
7130
7131 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7132 {
7133 int i;
7134
7135 spin_lock(&tg->lock);
7136 if (tg->shares == shares)
7137 goto done;
7138
7139 tg->shares = shares;
7140 for_each_possible_cpu(i)
7141 set_se_shares(tg->se[i], shares);
7142
7143 done:
7144 spin_unlock(&tg->lock);
7145 return 0;
7146 }
7147
7148 unsigned long sched_group_shares(struct task_group *tg)
7149 {
7150 return tg->shares;
7151 }
7152
7153 #endif /* CONFIG_FAIR_GROUP_SCHED */
7154
7155 #ifdef CONFIG_FAIR_CGROUP_SCHED
7156
7157 /* return corresponding task_group object of a cgroup */
7158 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7159 {
7160 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7161 struct task_group, css);
7162 }
7163
7164 static struct cgroup_subsys_state *
7165 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
7166 {
7167 struct task_group *tg;
7168
7169 if (!cgrp->parent) {
7170 /* This is early initialization for the top cgroup */
7171 init_task_group.css.cgroup = cgrp;
7172 return &init_task_group.css;
7173 }
7174
7175 /* we support only 1-level deep hierarchical scheduler atm */
7176 if (cgrp->parent->parent)
7177 return ERR_PTR(-EINVAL);
7178
7179 tg = sched_create_group();
7180 if (IS_ERR(tg))
7181 return ERR_PTR(-ENOMEM);
7182
7183 /* Bind the cgroup to task_group object we just created */
7184 tg->css.cgroup = cgrp;
7185
7186 return &tg->css;
7187 }
7188
7189 static void cpu_cgroup_destroy(struct cgroup_subsys *ss,
7190 struct cgroup *cgrp)
7191 {
7192 struct task_group *tg = cgroup_tg(cgrp);
7193
7194 sched_destroy_group(tg);
7195 }
7196
7197 static int cpu_cgroup_can_attach(struct cgroup_subsys *ss,
7198 struct cgroup *cgrp, struct task_struct *tsk)
7199 {
7200 /* We don't support RT-tasks being in separate groups */
7201 if (tsk->sched_class != &fair_sched_class)
7202 return -EINVAL;
7203
7204 return 0;
7205 }
7206
7207 static void
7208 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7209 struct cgroup *old_cont, struct task_struct *tsk)
7210 {
7211 sched_move_task(tsk);
7212 }
7213
7214 static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7215 u64 shareval)
7216 {
7217 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
7218 }
7219
7220 static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
7221 {
7222 struct task_group *tg = cgroup_tg(cgrp);
7223
7224 return (u64) tg->shares;
7225 }
7226
7227 static u64 cpu_usage_read(struct cgroup *cgrp, struct cftype *cft)
7228 {
7229 struct task_group *tg = cgroup_tg(cgrp);
7230 unsigned long flags;
7231 u64 res = 0;
7232 int i;
7233
7234 for_each_possible_cpu(i) {
7235 /*
7236 * Lock to prevent races with updating 64-bit counters
7237 * on 32-bit arches.
7238 */
7239 spin_lock_irqsave(&cpu_rq(i)->lock, flags);
7240 res += tg->se[i]->sum_exec_runtime;
7241 spin_unlock_irqrestore(&cpu_rq(i)->lock, flags);
7242 }
7243 /* Convert from ns to ms */
7244 do_div(res, NSEC_PER_MSEC);
7245
7246 return res;
7247 }
7248
7249 static struct cftype cpu_files[] = {
7250 {
7251 .name = "shares",
7252 .read_uint = cpu_shares_read_uint,
7253 .write_uint = cpu_shares_write_uint,
7254 },
7255 {
7256 .name = "usage",
7257 .read_uint = cpu_usage_read,
7258 },
7259 };
7260
7261 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7262 {
7263 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
7264 }
7265
7266 struct cgroup_subsys cpu_cgroup_subsys = {
7267 .name = "cpu",
7268 .create = cpu_cgroup_create,
7269 .destroy = cpu_cgroup_destroy,
7270 .can_attach = cpu_cgroup_can_attach,
7271 .attach = cpu_cgroup_attach,
7272 .populate = cpu_cgroup_populate,
7273 .subsys_id = cpu_cgroup_subsys_id,
7274 .early_init = 1,
7275 };
7276
7277 #endif /* CONFIG_FAIR_CGROUP_SCHED */
This page took 1.381238 seconds and 5 git commands to generate.