Merge branch 'linus' into x86/cleanups
[deliverable/linux.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/reciprocal_div.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/bootmem.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73
74 #include <asm/tlb.h>
75 #include <asm/irq_regs.h>
76
77 /*
78 * Convert user-nice values [ -20 ... 0 ... 19 ]
79 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
80 * and back.
81 */
82 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
83 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
84 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
85
86 /*
87 * 'User priority' is the nice value converted to something we
88 * can work with better when scaling various scheduler parameters,
89 * it's a [ 0 ... 39 ] range.
90 */
91 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
92 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
93 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
94
95 /*
96 * Helpers for converting nanosecond timing to jiffy resolution
97 */
98 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
99
100 #define NICE_0_LOAD SCHED_LOAD_SCALE
101 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
102
103 /*
104 * These are the 'tuning knobs' of the scheduler:
105 *
106 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
107 * Timeslices get refilled after they expire.
108 */
109 #define DEF_TIMESLICE (100 * HZ / 1000)
110
111 /*
112 * single value that denotes runtime == period, ie unlimited time.
113 */
114 #define RUNTIME_INF ((u64)~0ULL)
115
116 #ifdef CONFIG_SMP
117 /*
118 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
119 * Since cpu_power is a 'constant', we can use a reciprocal divide.
120 */
121 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
122 {
123 return reciprocal_divide(load, sg->reciprocal_cpu_power);
124 }
125
126 /*
127 * Each time a sched group cpu_power is changed,
128 * we must compute its reciprocal value
129 */
130 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
131 {
132 sg->__cpu_power += val;
133 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
134 }
135 #endif
136
137 static inline int rt_policy(int policy)
138 {
139 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
140 return 1;
141 return 0;
142 }
143
144 static inline int task_has_rt_policy(struct task_struct *p)
145 {
146 return rt_policy(p->policy);
147 }
148
149 /*
150 * This is the priority-queue data structure of the RT scheduling class:
151 */
152 struct rt_prio_array {
153 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
154 struct list_head queue[MAX_RT_PRIO];
155 };
156
157 struct rt_bandwidth {
158 /* nests inside the rq lock: */
159 spinlock_t rt_runtime_lock;
160 ktime_t rt_period;
161 u64 rt_runtime;
162 struct hrtimer rt_period_timer;
163 };
164
165 static struct rt_bandwidth def_rt_bandwidth;
166
167 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
168
169 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
170 {
171 struct rt_bandwidth *rt_b =
172 container_of(timer, struct rt_bandwidth, rt_period_timer);
173 ktime_t now;
174 int overrun;
175 int idle = 0;
176
177 for (;;) {
178 now = hrtimer_cb_get_time(timer);
179 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
180
181 if (!overrun)
182 break;
183
184 idle = do_sched_rt_period_timer(rt_b, overrun);
185 }
186
187 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
188 }
189
190 static
191 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
192 {
193 rt_b->rt_period = ns_to_ktime(period);
194 rt_b->rt_runtime = runtime;
195
196 spin_lock_init(&rt_b->rt_runtime_lock);
197
198 hrtimer_init(&rt_b->rt_period_timer,
199 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
200 rt_b->rt_period_timer.function = sched_rt_period_timer;
201 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
202 }
203
204 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
205 {
206 ktime_t now;
207
208 if (rt_b->rt_runtime == RUNTIME_INF)
209 return;
210
211 if (hrtimer_active(&rt_b->rt_period_timer))
212 return;
213
214 spin_lock(&rt_b->rt_runtime_lock);
215 for (;;) {
216 if (hrtimer_active(&rt_b->rt_period_timer))
217 break;
218
219 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
220 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
221 hrtimer_start(&rt_b->rt_period_timer,
222 rt_b->rt_period_timer.expires,
223 HRTIMER_MODE_ABS);
224 }
225 spin_unlock(&rt_b->rt_runtime_lock);
226 }
227
228 #ifdef CONFIG_RT_GROUP_SCHED
229 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
230 {
231 hrtimer_cancel(&rt_b->rt_period_timer);
232 }
233 #endif
234
235 /*
236 * sched_domains_mutex serializes calls to arch_init_sched_domains,
237 * detach_destroy_domains and partition_sched_domains.
238 */
239 static DEFINE_MUTEX(sched_domains_mutex);
240
241 #ifdef CONFIG_GROUP_SCHED
242
243 #include <linux/cgroup.h>
244
245 struct cfs_rq;
246
247 static LIST_HEAD(task_groups);
248
249 /* task group related information */
250 struct task_group {
251 #ifdef CONFIG_CGROUP_SCHED
252 struct cgroup_subsys_state css;
253 #endif
254
255 #ifdef CONFIG_FAIR_GROUP_SCHED
256 /* schedulable entities of this group on each cpu */
257 struct sched_entity **se;
258 /* runqueue "owned" by this group on each cpu */
259 struct cfs_rq **cfs_rq;
260 unsigned long shares;
261 #endif
262
263 #ifdef CONFIG_RT_GROUP_SCHED
264 struct sched_rt_entity **rt_se;
265 struct rt_rq **rt_rq;
266
267 struct rt_bandwidth rt_bandwidth;
268 #endif
269
270 struct rcu_head rcu;
271 struct list_head list;
272
273 struct task_group *parent;
274 struct list_head siblings;
275 struct list_head children;
276 };
277
278 #ifdef CONFIG_USER_SCHED
279
280 /*
281 * Root task group.
282 * Every UID task group (including init_task_group aka UID-0) will
283 * be a child to this group.
284 */
285 struct task_group root_task_group;
286
287 #ifdef CONFIG_FAIR_GROUP_SCHED
288 /* Default task group's sched entity on each cpu */
289 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
290 /* Default task group's cfs_rq on each cpu */
291 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
292 #endif
293
294 #ifdef CONFIG_RT_GROUP_SCHED
295 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
296 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
297 #endif
298 #else
299 #define root_task_group init_task_group
300 #endif
301
302 /* task_group_lock serializes add/remove of task groups and also changes to
303 * a task group's cpu shares.
304 */
305 static DEFINE_SPINLOCK(task_group_lock);
306
307 #ifdef CONFIG_FAIR_GROUP_SCHED
308 #ifdef CONFIG_USER_SCHED
309 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
310 #else
311 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
312 #endif
313
314 /*
315 * A weight of 0 or 1 can cause arithmetics problems.
316 * A weight of a cfs_rq is the sum of weights of which entities
317 * are queued on this cfs_rq, so a weight of a entity should not be
318 * too large, so as the shares value of a task group.
319 * (The default weight is 1024 - so there's no practical
320 * limitation from this.)
321 */
322 #define MIN_SHARES 2
323 #define MAX_SHARES (1UL << 18)
324
325 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
326 #endif
327
328 /* Default task group.
329 * Every task in system belong to this group at bootup.
330 */
331 struct task_group init_task_group;
332
333 /* return group to which a task belongs */
334 static inline struct task_group *task_group(struct task_struct *p)
335 {
336 struct task_group *tg;
337
338 #ifdef CONFIG_USER_SCHED
339 tg = p->user->tg;
340 #elif defined(CONFIG_CGROUP_SCHED)
341 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
342 struct task_group, css);
343 #else
344 tg = &init_task_group;
345 #endif
346 return tg;
347 }
348
349 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
350 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
351 {
352 #ifdef CONFIG_FAIR_GROUP_SCHED
353 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
354 p->se.parent = task_group(p)->se[cpu];
355 #endif
356
357 #ifdef CONFIG_RT_GROUP_SCHED
358 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
359 p->rt.parent = task_group(p)->rt_se[cpu];
360 #endif
361 }
362
363 #else
364
365 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
366
367 #endif /* CONFIG_GROUP_SCHED */
368
369 /* CFS-related fields in a runqueue */
370 struct cfs_rq {
371 struct load_weight load;
372 unsigned long nr_running;
373
374 u64 exec_clock;
375 u64 min_vruntime;
376
377 struct rb_root tasks_timeline;
378 struct rb_node *rb_leftmost;
379
380 struct list_head tasks;
381 struct list_head *balance_iterator;
382
383 /*
384 * 'curr' points to currently running entity on this cfs_rq.
385 * It is set to NULL otherwise (i.e when none are currently running).
386 */
387 struct sched_entity *curr, *next;
388
389 unsigned long nr_spread_over;
390
391 #ifdef CONFIG_FAIR_GROUP_SCHED
392 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
393
394 /*
395 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
396 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
397 * (like users, containers etc.)
398 *
399 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
400 * list is used during load balance.
401 */
402 struct list_head leaf_cfs_rq_list;
403 struct task_group *tg; /* group that "owns" this runqueue */
404 #endif
405 };
406
407 /* Real-Time classes' related field in a runqueue: */
408 struct rt_rq {
409 struct rt_prio_array active;
410 unsigned long rt_nr_running;
411 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
412 int highest_prio; /* highest queued rt task prio */
413 #endif
414 #ifdef CONFIG_SMP
415 unsigned long rt_nr_migratory;
416 int overloaded;
417 #endif
418 int rt_throttled;
419 u64 rt_time;
420 u64 rt_runtime;
421 /* Nests inside the rq lock: */
422 spinlock_t rt_runtime_lock;
423
424 #ifdef CONFIG_RT_GROUP_SCHED
425 unsigned long rt_nr_boosted;
426
427 struct rq *rq;
428 struct list_head leaf_rt_rq_list;
429 struct task_group *tg;
430 struct sched_rt_entity *rt_se;
431 #endif
432 };
433
434 #ifdef CONFIG_SMP
435
436 /*
437 * We add the notion of a root-domain which will be used to define per-domain
438 * variables. Each exclusive cpuset essentially defines an island domain by
439 * fully partitioning the member cpus from any other cpuset. Whenever a new
440 * exclusive cpuset is created, we also create and attach a new root-domain
441 * object.
442 *
443 */
444 struct root_domain {
445 atomic_t refcount;
446 cpumask_t span;
447 cpumask_t online;
448
449 /*
450 * The "RT overload" flag: it gets set if a CPU has more than
451 * one runnable RT task.
452 */
453 cpumask_t rto_mask;
454 atomic_t rto_count;
455 };
456
457 /*
458 * By default the system creates a single root-domain with all cpus as
459 * members (mimicking the global state we have today).
460 */
461 static struct root_domain def_root_domain;
462
463 #endif
464
465 /*
466 * This is the main, per-CPU runqueue data structure.
467 *
468 * Locking rule: those places that want to lock multiple runqueues
469 * (such as the load balancing or the thread migration code), lock
470 * acquire operations must be ordered by ascending &runqueue.
471 */
472 struct rq {
473 /* runqueue lock: */
474 spinlock_t lock;
475
476 /*
477 * nr_running and cpu_load should be in the same cacheline because
478 * remote CPUs use both these fields when doing load calculation.
479 */
480 unsigned long nr_running;
481 #define CPU_LOAD_IDX_MAX 5
482 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
483 unsigned char idle_at_tick;
484 #ifdef CONFIG_NO_HZ
485 unsigned long last_tick_seen;
486 unsigned char in_nohz_recently;
487 #endif
488 /* capture load from *all* tasks on this cpu: */
489 struct load_weight load;
490 unsigned long nr_load_updates;
491 u64 nr_switches;
492
493 struct cfs_rq cfs;
494 struct rt_rq rt;
495
496 #ifdef CONFIG_FAIR_GROUP_SCHED
497 /* list of leaf cfs_rq on this cpu: */
498 struct list_head leaf_cfs_rq_list;
499 #endif
500 #ifdef CONFIG_RT_GROUP_SCHED
501 struct list_head leaf_rt_rq_list;
502 #endif
503
504 /*
505 * This is part of a global counter where only the total sum
506 * over all CPUs matters. A task can increase this counter on
507 * one CPU and if it got migrated afterwards it may decrease
508 * it on another CPU. Always updated under the runqueue lock:
509 */
510 unsigned long nr_uninterruptible;
511
512 struct task_struct *curr, *idle;
513 unsigned long next_balance;
514 struct mm_struct *prev_mm;
515
516 u64 clock;
517
518 atomic_t nr_iowait;
519
520 #ifdef CONFIG_SMP
521 struct root_domain *rd;
522 struct sched_domain *sd;
523
524 /* For active balancing */
525 int active_balance;
526 int push_cpu;
527 /* cpu of this runqueue: */
528 int cpu;
529
530 struct task_struct *migration_thread;
531 struct list_head migration_queue;
532 #endif
533
534 #ifdef CONFIG_SCHED_HRTICK
535 unsigned long hrtick_flags;
536 ktime_t hrtick_expire;
537 struct hrtimer hrtick_timer;
538 #endif
539
540 #ifdef CONFIG_SCHEDSTATS
541 /* latency stats */
542 struct sched_info rq_sched_info;
543
544 /* sys_sched_yield() stats */
545 unsigned int yld_exp_empty;
546 unsigned int yld_act_empty;
547 unsigned int yld_both_empty;
548 unsigned int yld_count;
549
550 /* schedule() stats */
551 unsigned int sched_switch;
552 unsigned int sched_count;
553 unsigned int sched_goidle;
554
555 /* try_to_wake_up() stats */
556 unsigned int ttwu_count;
557 unsigned int ttwu_local;
558
559 /* BKL stats */
560 unsigned int bkl_count;
561 #endif
562 struct lock_class_key rq_lock_key;
563 };
564
565 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
566
567 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
568 {
569 rq->curr->sched_class->check_preempt_curr(rq, p);
570 }
571
572 static inline int cpu_of(struct rq *rq)
573 {
574 #ifdef CONFIG_SMP
575 return rq->cpu;
576 #else
577 return 0;
578 #endif
579 }
580
581 /*
582 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
583 * See detach_destroy_domains: synchronize_sched for details.
584 *
585 * The domain tree of any CPU may only be accessed from within
586 * preempt-disabled sections.
587 */
588 #define for_each_domain(cpu, __sd) \
589 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
590
591 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
592 #define this_rq() (&__get_cpu_var(runqueues))
593 #define task_rq(p) cpu_rq(task_cpu(p))
594 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
595
596 static inline void update_rq_clock(struct rq *rq)
597 {
598 rq->clock = sched_clock_cpu(cpu_of(rq));
599 }
600
601 /*
602 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
603 */
604 #ifdef CONFIG_SCHED_DEBUG
605 # define const_debug __read_mostly
606 #else
607 # define const_debug static const
608 #endif
609
610 /*
611 * Debugging: various feature bits
612 */
613
614 #define SCHED_FEAT(name, enabled) \
615 __SCHED_FEAT_##name ,
616
617 enum {
618 #include "sched_features.h"
619 };
620
621 #undef SCHED_FEAT
622
623 #define SCHED_FEAT(name, enabled) \
624 (1UL << __SCHED_FEAT_##name) * enabled |
625
626 const_debug unsigned int sysctl_sched_features =
627 #include "sched_features.h"
628 0;
629
630 #undef SCHED_FEAT
631
632 #ifdef CONFIG_SCHED_DEBUG
633 #define SCHED_FEAT(name, enabled) \
634 #name ,
635
636 static __read_mostly char *sched_feat_names[] = {
637 #include "sched_features.h"
638 NULL
639 };
640
641 #undef SCHED_FEAT
642
643 static int sched_feat_open(struct inode *inode, struct file *filp)
644 {
645 filp->private_data = inode->i_private;
646 return 0;
647 }
648
649 static ssize_t
650 sched_feat_read(struct file *filp, char __user *ubuf,
651 size_t cnt, loff_t *ppos)
652 {
653 char *buf;
654 int r = 0;
655 int len = 0;
656 int i;
657
658 for (i = 0; sched_feat_names[i]; i++) {
659 len += strlen(sched_feat_names[i]);
660 len += 4;
661 }
662
663 buf = kmalloc(len + 2, GFP_KERNEL);
664 if (!buf)
665 return -ENOMEM;
666
667 for (i = 0; sched_feat_names[i]; i++) {
668 if (sysctl_sched_features & (1UL << i))
669 r += sprintf(buf + r, "%s ", sched_feat_names[i]);
670 else
671 r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
672 }
673
674 r += sprintf(buf + r, "\n");
675 WARN_ON(r >= len + 2);
676
677 r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
678
679 kfree(buf);
680
681 return r;
682 }
683
684 static ssize_t
685 sched_feat_write(struct file *filp, const char __user *ubuf,
686 size_t cnt, loff_t *ppos)
687 {
688 char buf[64];
689 char *cmp = buf;
690 int neg = 0;
691 int i;
692
693 if (cnt > 63)
694 cnt = 63;
695
696 if (copy_from_user(&buf, ubuf, cnt))
697 return -EFAULT;
698
699 buf[cnt] = 0;
700
701 if (strncmp(buf, "NO_", 3) == 0) {
702 neg = 1;
703 cmp += 3;
704 }
705
706 for (i = 0; sched_feat_names[i]; i++) {
707 int len = strlen(sched_feat_names[i]);
708
709 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
710 if (neg)
711 sysctl_sched_features &= ~(1UL << i);
712 else
713 sysctl_sched_features |= (1UL << i);
714 break;
715 }
716 }
717
718 if (!sched_feat_names[i])
719 return -EINVAL;
720
721 filp->f_pos += cnt;
722
723 return cnt;
724 }
725
726 static struct file_operations sched_feat_fops = {
727 .open = sched_feat_open,
728 .read = sched_feat_read,
729 .write = sched_feat_write,
730 };
731
732 static __init int sched_init_debug(void)
733 {
734 debugfs_create_file("sched_features", 0644, NULL, NULL,
735 &sched_feat_fops);
736
737 return 0;
738 }
739 late_initcall(sched_init_debug);
740
741 #endif
742
743 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
744
745 /*
746 * Number of tasks to iterate in a single balance run.
747 * Limited because this is done with IRQs disabled.
748 */
749 const_debug unsigned int sysctl_sched_nr_migrate = 32;
750
751 /*
752 * period over which we measure -rt task cpu usage in us.
753 * default: 1s
754 */
755 unsigned int sysctl_sched_rt_period = 1000000;
756
757 static __read_mostly int scheduler_running;
758
759 /*
760 * part of the period that we allow rt tasks to run in us.
761 * default: 0.95s
762 */
763 int sysctl_sched_rt_runtime = 950000;
764
765 static inline u64 global_rt_period(void)
766 {
767 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
768 }
769
770 static inline u64 global_rt_runtime(void)
771 {
772 if (sysctl_sched_rt_period < 0)
773 return RUNTIME_INF;
774
775 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
776 }
777
778 unsigned long long time_sync_thresh = 100000;
779
780 static DEFINE_PER_CPU(unsigned long long, time_offset);
781 static DEFINE_PER_CPU(unsigned long long, prev_cpu_time);
782
783 /*
784 * Global lock which we take every now and then to synchronize
785 * the CPUs time. This method is not warp-safe, but it's good
786 * enough to synchronize slowly diverging time sources and thus
787 * it's good enough for tracing:
788 */
789 static DEFINE_SPINLOCK(time_sync_lock);
790 static unsigned long long prev_global_time;
791
792 static unsigned long long __sync_cpu_clock(unsigned long long time, int cpu)
793 {
794 /*
795 * We want this inlined, to not get tracer function calls
796 * in this critical section:
797 */
798 spin_acquire(&time_sync_lock.dep_map, 0, 0, _THIS_IP_);
799 __raw_spin_lock(&time_sync_lock.raw_lock);
800
801 if (time < prev_global_time) {
802 per_cpu(time_offset, cpu) += prev_global_time - time;
803 time = prev_global_time;
804 } else {
805 prev_global_time = time;
806 }
807
808 __raw_spin_unlock(&time_sync_lock.raw_lock);
809 spin_release(&time_sync_lock.dep_map, 1, _THIS_IP_);
810
811 return time;
812 }
813
814 static unsigned long long __cpu_clock(int cpu)
815 {
816 unsigned long long now;
817
818 /*
819 * Only call sched_clock() if the scheduler has already been
820 * initialized (some code might call cpu_clock() very early):
821 */
822 if (unlikely(!scheduler_running))
823 return 0;
824
825 now = sched_clock_cpu(cpu);
826
827 return now;
828 }
829
830 /*
831 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
832 * clock constructed from sched_clock():
833 */
834 unsigned long long cpu_clock(int cpu)
835 {
836 unsigned long long prev_cpu_time, time, delta_time;
837 unsigned long flags;
838
839 local_irq_save(flags);
840 prev_cpu_time = per_cpu(prev_cpu_time, cpu);
841 time = __cpu_clock(cpu) + per_cpu(time_offset, cpu);
842 delta_time = time-prev_cpu_time;
843
844 if (unlikely(delta_time > time_sync_thresh)) {
845 time = __sync_cpu_clock(time, cpu);
846 per_cpu(prev_cpu_time, cpu) = time;
847 }
848 local_irq_restore(flags);
849
850 return time;
851 }
852 EXPORT_SYMBOL_GPL(cpu_clock);
853
854 #ifndef prepare_arch_switch
855 # define prepare_arch_switch(next) do { } while (0)
856 #endif
857 #ifndef finish_arch_switch
858 # define finish_arch_switch(prev) do { } while (0)
859 #endif
860
861 static inline int task_current(struct rq *rq, struct task_struct *p)
862 {
863 return rq->curr == p;
864 }
865
866 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
867 static inline int task_running(struct rq *rq, struct task_struct *p)
868 {
869 return task_current(rq, p);
870 }
871
872 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
873 {
874 }
875
876 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
877 {
878 #ifdef CONFIG_DEBUG_SPINLOCK
879 /* this is a valid case when another task releases the spinlock */
880 rq->lock.owner = current;
881 #endif
882 /*
883 * If we are tracking spinlock dependencies then we have to
884 * fix up the runqueue lock - which gets 'carried over' from
885 * prev into current:
886 */
887 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
888
889 spin_unlock_irq(&rq->lock);
890 }
891
892 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
893 static inline int task_running(struct rq *rq, struct task_struct *p)
894 {
895 #ifdef CONFIG_SMP
896 return p->oncpu;
897 #else
898 return task_current(rq, p);
899 #endif
900 }
901
902 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
903 {
904 #ifdef CONFIG_SMP
905 /*
906 * We can optimise this out completely for !SMP, because the
907 * SMP rebalancing from interrupt is the only thing that cares
908 * here.
909 */
910 next->oncpu = 1;
911 #endif
912 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
913 spin_unlock_irq(&rq->lock);
914 #else
915 spin_unlock(&rq->lock);
916 #endif
917 }
918
919 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
920 {
921 #ifdef CONFIG_SMP
922 /*
923 * After ->oncpu is cleared, the task can be moved to a different CPU.
924 * We must ensure this doesn't happen until the switch is completely
925 * finished.
926 */
927 smp_wmb();
928 prev->oncpu = 0;
929 #endif
930 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
931 local_irq_enable();
932 #endif
933 }
934 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
935
936 /*
937 * __task_rq_lock - lock the runqueue a given task resides on.
938 * Must be called interrupts disabled.
939 */
940 static inline struct rq *__task_rq_lock(struct task_struct *p)
941 __acquires(rq->lock)
942 {
943 for (;;) {
944 struct rq *rq = task_rq(p);
945 spin_lock(&rq->lock);
946 if (likely(rq == task_rq(p)))
947 return rq;
948 spin_unlock(&rq->lock);
949 }
950 }
951
952 /*
953 * task_rq_lock - lock the runqueue a given task resides on and disable
954 * interrupts. Note the ordering: we can safely lookup the task_rq without
955 * explicitly disabling preemption.
956 */
957 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
958 __acquires(rq->lock)
959 {
960 struct rq *rq;
961
962 for (;;) {
963 local_irq_save(*flags);
964 rq = task_rq(p);
965 spin_lock(&rq->lock);
966 if (likely(rq == task_rq(p)))
967 return rq;
968 spin_unlock_irqrestore(&rq->lock, *flags);
969 }
970 }
971
972 static void __task_rq_unlock(struct rq *rq)
973 __releases(rq->lock)
974 {
975 spin_unlock(&rq->lock);
976 }
977
978 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
979 __releases(rq->lock)
980 {
981 spin_unlock_irqrestore(&rq->lock, *flags);
982 }
983
984 /*
985 * this_rq_lock - lock this runqueue and disable interrupts.
986 */
987 static struct rq *this_rq_lock(void)
988 __acquires(rq->lock)
989 {
990 struct rq *rq;
991
992 local_irq_disable();
993 rq = this_rq();
994 spin_lock(&rq->lock);
995
996 return rq;
997 }
998
999 static void __resched_task(struct task_struct *p, int tif_bit);
1000
1001 static inline void resched_task(struct task_struct *p)
1002 {
1003 __resched_task(p, TIF_NEED_RESCHED);
1004 }
1005
1006 #ifdef CONFIG_SCHED_HRTICK
1007 /*
1008 * Use HR-timers to deliver accurate preemption points.
1009 *
1010 * Its all a bit involved since we cannot program an hrt while holding the
1011 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1012 * reschedule event.
1013 *
1014 * When we get rescheduled we reprogram the hrtick_timer outside of the
1015 * rq->lock.
1016 */
1017 static inline void resched_hrt(struct task_struct *p)
1018 {
1019 __resched_task(p, TIF_HRTICK_RESCHED);
1020 }
1021
1022 static inline void resched_rq(struct rq *rq)
1023 {
1024 unsigned long flags;
1025
1026 spin_lock_irqsave(&rq->lock, flags);
1027 resched_task(rq->curr);
1028 spin_unlock_irqrestore(&rq->lock, flags);
1029 }
1030
1031 enum {
1032 HRTICK_SET, /* re-programm hrtick_timer */
1033 HRTICK_RESET, /* not a new slice */
1034 HRTICK_BLOCK, /* stop hrtick operations */
1035 };
1036
1037 /*
1038 * Use hrtick when:
1039 * - enabled by features
1040 * - hrtimer is actually high res
1041 */
1042 static inline int hrtick_enabled(struct rq *rq)
1043 {
1044 if (!sched_feat(HRTICK))
1045 return 0;
1046 if (unlikely(test_bit(HRTICK_BLOCK, &rq->hrtick_flags)))
1047 return 0;
1048 return hrtimer_is_hres_active(&rq->hrtick_timer);
1049 }
1050
1051 /*
1052 * Called to set the hrtick timer state.
1053 *
1054 * called with rq->lock held and irqs disabled
1055 */
1056 static void hrtick_start(struct rq *rq, u64 delay, int reset)
1057 {
1058 assert_spin_locked(&rq->lock);
1059
1060 /*
1061 * preempt at: now + delay
1062 */
1063 rq->hrtick_expire =
1064 ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
1065 /*
1066 * indicate we need to program the timer
1067 */
1068 __set_bit(HRTICK_SET, &rq->hrtick_flags);
1069 if (reset)
1070 __set_bit(HRTICK_RESET, &rq->hrtick_flags);
1071
1072 /*
1073 * New slices are called from the schedule path and don't need a
1074 * forced reschedule.
1075 */
1076 if (reset)
1077 resched_hrt(rq->curr);
1078 }
1079
1080 static void hrtick_clear(struct rq *rq)
1081 {
1082 if (hrtimer_active(&rq->hrtick_timer))
1083 hrtimer_cancel(&rq->hrtick_timer);
1084 }
1085
1086 /*
1087 * Update the timer from the possible pending state.
1088 */
1089 static void hrtick_set(struct rq *rq)
1090 {
1091 ktime_t time;
1092 int set, reset;
1093 unsigned long flags;
1094
1095 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1096
1097 spin_lock_irqsave(&rq->lock, flags);
1098 set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
1099 reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
1100 time = rq->hrtick_expire;
1101 clear_thread_flag(TIF_HRTICK_RESCHED);
1102 spin_unlock_irqrestore(&rq->lock, flags);
1103
1104 if (set) {
1105 hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
1106 if (reset && !hrtimer_active(&rq->hrtick_timer))
1107 resched_rq(rq);
1108 } else
1109 hrtick_clear(rq);
1110 }
1111
1112 /*
1113 * High-resolution timer tick.
1114 * Runs from hardirq context with interrupts disabled.
1115 */
1116 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1117 {
1118 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1119
1120 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1121
1122 spin_lock(&rq->lock);
1123 update_rq_clock(rq);
1124 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1125 spin_unlock(&rq->lock);
1126
1127 return HRTIMER_NORESTART;
1128 }
1129
1130 #ifdef CONFIG_SMP
1131 static void hotplug_hrtick_disable(int cpu)
1132 {
1133 struct rq *rq = cpu_rq(cpu);
1134 unsigned long flags;
1135
1136 spin_lock_irqsave(&rq->lock, flags);
1137 rq->hrtick_flags = 0;
1138 __set_bit(HRTICK_BLOCK, &rq->hrtick_flags);
1139 spin_unlock_irqrestore(&rq->lock, flags);
1140
1141 hrtick_clear(rq);
1142 }
1143
1144 static void hotplug_hrtick_enable(int cpu)
1145 {
1146 struct rq *rq = cpu_rq(cpu);
1147 unsigned long flags;
1148
1149 spin_lock_irqsave(&rq->lock, flags);
1150 __clear_bit(HRTICK_BLOCK, &rq->hrtick_flags);
1151 spin_unlock_irqrestore(&rq->lock, flags);
1152 }
1153
1154 static int
1155 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1156 {
1157 int cpu = (int)(long)hcpu;
1158
1159 switch (action) {
1160 case CPU_UP_CANCELED:
1161 case CPU_UP_CANCELED_FROZEN:
1162 case CPU_DOWN_PREPARE:
1163 case CPU_DOWN_PREPARE_FROZEN:
1164 case CPU_DEAD:
1165 case CPU_DEAD_FROZEN:
1166 hotplug_hrtick_disable(cpu);
1167 return NOTIFY_OK;
1168
1169 case CPU_UP_PREPARE:
1170 case CPU_UP_PREPARE_FROZEN:
1171 case CPU_DOWN_FAILED:
1172 case CPU_DOWN_FAILED_FROZEN:
1173 case CPU_ONLINE:
1174 case CPU_ONLINE_FROZEN:
1175 hotplug_hrtick_enable(cpu);
1176 return NOTIFY_OK;
1177 }
1178
1179 return NOTIFY_DONE;
1180 }
1181
1182 static void init_hrtick(void)
1183 {
1184 hotcpu_notifier(hotplug_hrtick, 0);
1185 }
1186 #endif /* CONFIG_SMP */
1187
1188 static void init_rq_hrtick(struct rq *rq)
1189 {
1190 rq->hrtick_flags = 0;
1191 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1192 rq->hrtick_timer.function = hrtick;
1193 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
1194 }
1195
1196 void hrtick_resched(void)
1197 {
1198 struct rq *rq;
1199 unsigned long flags;
1200
1201 if (!test_thread_flag(TIF_HRTICK_RESCHED))
1202 return;
1203
1204 local_irq_save(flags);
1205 rq = cpu_rq(smp_processor_id());
1206 hrtick_set(rq);
1207 local_irq_restore(flags);
1208 }
1209 #else
1210 static inline void hrtick_clear(struct rq *rq)
1211 {
1212 }
1213
1214 static inline void hrtick_set(struct rq *rq)
1215 {
1216 }
1217
1218 static inline void init_rq_hrtick(struct rq *rq)
1219 {
1220 }
1221
1222 void hrtick_resched(void)
1223 {
1224 }
1225
1226 static inline void init_hrtick(void)
1227 {
1228 }
1229 #endif
1230
1231 /*
1232 * resched_task - mark a task 'to be rescheduled now'.
1233 *
1234 * On UP this means the setting of the need_resched flag, on SMP it
1235 * might also involve a cross-CPU call to trigger the scheduler on
1236 * the target CPU.
1237 */
1238 #ifdef CONFIG_SMP
1239
1240 #ifndef tsk_is_polling
1241 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1242 #endif
1243
1244 static void __resched_task(struct task_struct *p, int tif_bit)
1245 {
1246 int cpu;
1247
1248 assert_spin_locked(&task_rq(p)->lock);
1249
1250 if (unlikely(test_tsk_thread_flag(p, tif_bit)))
1251 return;
1252
1253 set_tsk_thread_flag(p, tif_bit);
1254
1255 cpu = task_cpu(p);
1256 if (cpu == smp_processor_id())
1257 return;
1258
1259 /* NEED_RESCHED must be visible before we test polling */
1260 smp_mb();
1261 if (!tsk_is_polling(p))
1262 smp_send_reschedule(cpu);
1263 }
1264
1265 static void resched_cpu(int cpu)
1266 {
1267 struct rq *rq = cpu_rq(cpu);
1268 unsigned long flags;
1269
1270 if (!spin_trylock_irqsave(&rq->lock, flags))
1271 return;
1272 resched_task(cpu_curr(cpu));
1273 spin_unlock_irqrestore(&rq->lock, flags);
1274 }
1275
1276 #ifdef CONFIG_NO_HZ
1277 /*
1278 * When add_timer_on() enqueues a timer into the timer wheel of an
1279 * idle CPU then this timer might expire before the next timer event
1280 * which is scheduled to wake up that CPU. In case of a completely
1281 * idle system the next event might even be infinite time into the
1282 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1283 * leaves the inner idle loop so the newly added timer is taken into
1284 * account when the CPU goes back to idle and evaluates the timer
1285 * wheel for the next timer event.
1286 */
1287 void wake_up_idle_cpu(int cpu)
1288 {
1289 struct rq *rq = cpu_rq(cpu);
1290
1291 if (cpu == smp_processor_id())
1292 return;
1293
1294 /*
1295 * This is safe, as this function is called with the timer
1296 * wheel base lock of (cpu) held. When the CPU is on the way
1297 * to idle and has not yet set rq->curr to idle then it will
1298 * be serialized on the timer wheel base lock and take the new
1299 * timer into account automatically.
1300 */
1301 if (rq->curr != rq->idle)
1302 return;
1303
1304 /*
1305 * We can set TIF_RESCHED on the idle task of the other CPU
1306 * lockless. The worst case is that the other CPU runs the
1307 * idle task through an additional NOOP schedule()
1308 */
1309 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1310
1311 /* NEED_RESCHED must be visible before we test polling */
1312 smp_mb();
1313 if (!tsk_is_polling(rq->idle))
1314 smp_send_reschedule(cpu);
1315 }
1316 #endif
1317
1318 #else
1319 static void __resched_task(struct task_struct *p, int tif_bit)
1320 {
1321 assert_spin_locked(&task_rq(p)->lock);
1322 set_tsk_thread_flag(p, tif_bit);
1323 }
1324 #endif
1325
1326 #if BITS_PER_LONG == 32
1327 # define WMULT_CONST (~0UL)
1328 #else
1329 # define WMULT_CONST (1UL << 32)
1330 #endif
1331
1332 #define WMULT_SHIFT 32
1333
1334 /*
1335 * Shift right and round:
1336 */
1337 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1338
1339 static unsigned long
1340 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1341 struct load_weight *lw)
1342 {
1343 u64 tmp;
1344
1345 if (!lw->inv_weight) {
1346 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1347 lw->inv_weight = 1;
1348 else
1349 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1350 / (lw->weight+1);
1351 }
1352
1353 tmp = (u64)delta_exec * weight;
1354 /*
1355 * Check whether we'd overflow the 64-bit multiplication:
1356 */
1357 if (unlikely(tmp > WMULT_CONST))
1358 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1359 WMULT_SHIFT/2);
1360 else
1361 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1362
1363 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1364 }
1365
1366 static inline unsigned long
1367 calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
1368 {
1369 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
1370 }
1371
1372 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1373 {
1374 lw->weight += inc;
1375 lw->inv_weight = 0;
1376 }
1377
1378 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1379 {
1380 lw->weight -= dec;
1381 lw->inv_weight = 0;
1382 }
1383
1384 /*
1385 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1386 * of tasks with abnormal "nice" values across CPUs the contribution that
1387 * each task makes to its run queue's load is weighted according to its
1388 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1389 * scaled version of the new time slice allocation that they receive on time
1390 * slice expiry etc.
1391 */
1392
1393 #define WEIGHT_IDLEPRIO 2
1394 #define WMULT_IDLEPRIO (1 << 31)
1395
1396 /*
1397 * Nice levels are multiplicative, with a gentle 10% change for every
1398 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1399 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1400 * that remained on nice 0.
1401 *
1402 * The "10% effect" is relative and cumulative: from _any_ nice level,
1403 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1404 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1405 * If a task goes up by ~10% and another task goes down by ~10% then
1406 * the relative distance between them is ~25%.)
1407 */
1408 static const int prio_to_weight[40] = {
1409 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1410 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1411 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1412 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1413 /* 0 */ 1024, 820, 655, 526, 423,
1414 /* 5 */ 335, 272, 215, 172, 137,
1415 /* 10 */ 110, 87, 70, 56, 45,
1416 /* 15 */ 36, 29, 23, 18, 15,
1417 };
1418
1419 /*
1420 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1421 *
1422 * In cases where the weight does not change often, we can use the
1423 * precalculated inverse to speed up arithmetics by turning divisions
1424 * into multiplications:
1425 */
1426 static const u32 prio_to_wmult[40] = {
1427 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1428 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1429 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1430 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1431 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1432 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1433 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1434 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1435 };
1436
1437 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1438
1439 /*
1440 * runqueue iterator, to support SMP load-balancing between different
1441 * scheduling classes, without having to expose their internal data
1442 * structures to the load-balancing proper:
1443 */
1444 struct rq_iterator {
1445 void *arg;
1446 struct task_struct *(*start)(void *);
1447 struct task_struct *(*next)(void *);
1448 };
1449
1450 #ifdef CONFIG_SMP
1451 static unsigned long
1452 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1453 unsigned long max_load_move, struct sched_domain *sd,
1454 enum cpu_idle_type idle, int *all_pinned,
1455 int *this_best_prio, struct rq_iterator *iterator);
1456
1457 static int
1458 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1459 struct sched_domain *sd, enum cpu_idle_type idle,
1460 struct rq_iterator *iterator);
1461 #endif
1462
1463 #ifdef CONFIG_CGROUP_CPUACCT
1464 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1465 #else
1466 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1467 #endif
1468
1469 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1470 {
1471 update_load_add(&rq->load, load);
1472 }
1473
1474 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1475 {
1476 update_load_sub(&rq->load, load);
1477 }
1478
1479 #ifdef CONFIG_SMP
1480 static unsigned long source_load(int cpu, int type);
1481 static unsigned long target_load(int cpu, int type);
1482 static unsigned long cpu_avg_load_per_task(int cpu);
1483 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1484 #else /* CONFIG_SMP */
1485
1486 #ifdef CONFIG_FAIR_GROUP_SCHED
1487 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1488 {
1489 }
1490 #endif
1491
1492 #endif /* CONFIG_SMP */
1493
1494 #include "sched_stats.h"
1495 #include "sched_idletask.c"
1496 #include "sched_fair.c"
1497 #include "sched_rt.c"
1498 #ifdef CONFIG_SCHED_DEBUG
1499 # include "sched_debug.c"
1500 #endif
1501
1502 #define sched_class_highest (&rt_sched_class)
1503
1504 static inline void inc_load(struct rq *rq, const struct task_struct *p)
1505 {
1506 update_load_add(&rq->load, p->se.load.weight);
1507 }
1508
1509 static inline void dec_load(struct rq *rq, const struct task_struct *p)
1510 {
1511 update_load_sub(&rq->load, p->se.load.weight);
1512 }
1513
1514 static void inc_nr_running(struct task_struct *p, struct rq *rq)
1515 {
1516 rq->nr_running++;
1517 inc_load(rq, p);
1518 }
1519
1520 static void dec_nr_running(struct task_struct *p, struct rq *rq)
1521 {
1522 rq->nr_running--;
1523 dec_load(rq, p);
1524 }
1525
1526 static void set_load_weight(struct task_struct *p)
1527 {
1528 if (task_has_rt_policy(p)) {
1529 p->se.load.weight = prio_to_weight[0] * 2;
1530 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1531 return;
1532 }
1533
1534 /*
1535 * SCHED_IDLE tasks get minimal weight:
1536 */
1537 if (p->policy == SCHED_IDLE) {
1538 p->se.load.weight = WEIGHT_IDLEPRIO;
1539 p->se.load.inv_weight = WMULT_IDLEPRIO;
1540 return;
1541 }
1542
1543 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1544 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1545 }
1546
1547 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1548 {
1549 sched_info_queued(p);
1550 p->sched_class->enqueue_task(rq, p, wakeup);
1551 p->se.on_rq = 1;
1552 }
1553
1554 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1555 {
1556 p->sched_class->dequeue_task(rq, p, sleep);
1557 p->se.on_rq = 0;
1558 }
1559
1560 /*
1561 * __normal_prio - return the priority that is based on the static prio
1562 */
1563 static inline int __normal_prio(struct task_struct *p)
1564 {
1565 return p->static_prio;
1566 }
1567
1568 /*
1569 * Calculate the expected normal priority: i.e. priority
1570 * without taking RT-inheritance into account. Might be
1571 * boosted by interactivity modifiers. Changes upon fork,
1572 * setprio syscalls, and whenever the interactivity
1573 * estimator recalculates.
1574 */
1575 static inline int normal_prio(struct task_struct *p)
1576 {
1577 int prio;
1578
1579 if (task_has_rt_policy(p))
1580 prio = MAX_RT_PRIO-1 - p->rt_priority;
1581 else
1582 prio = __normal_prio(p);
1583 return prio;
1584 }
1585
1586 /*
1587 * Calculate the current priority, i.e. the priority
1588 * taken into account by the scheduler. This value might
1589 * be boosted by RT tasks, or might be boosted by
1590 * interactivity modifiers. Will be RT if the task got
1591 * RT-boosted. If not then it returns p->normal_prio.
1592 */
1593 static int effective_prio(struct task_struct *p)
1594 {
1595 p->normal_prio = normal_prio(p);
1596 /*
1597 * If we are RT tasks or we were boosted to RT priority,
1598 * keep the priority unchanged. Otherwise, update priority
1599 * to the normal priority:
1600 */
1601 if (!rt_prio(p->prio))
1602 return p->normal_prio;
1603 return p->prio;
1604 }
1605
1606 /*
1607 * activate_task - move a task to the runqueue.
1608 */
1609 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1610 {
1611 if (task_contributes_to_load(p))
1612 rq->nr_uninterruptible--;
1613
1614 enqueue_task(rq, p, wakeup);
1615 inc_nr_running(p, rq);
1616 }
1617
1618 /*
1619 * deactivate_task - remove a task from the runqueue.
1620 */
1621 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1622 {
1623 if (task_contributes_to_load(p))
1624 rq->nr_uninterruptible++;
1625
1626 dequeue_task(rq, p, sleep);
1627 dec_nr_running(p, rq);
1628 }
1629
1630 /**
1631 * task_curr - is this task currently executing on a CPU?
1632 * @p: the task in question.
1633 */
1634 inline int task_curr(const struct task_struct *p)
1635 {
1636 return cpu_curr(task_cpu(p)) == p;
1637 }
1638
1639 /* Used instead of source_load when we know the type == 0 */
1640 unsigned long weighted_cpuload(const int cpu)
1641 {
1642 return cpu_rq(cpu)->load.weight;
1643 }
1644
1645 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1646 {
1647 set_task_rq(p, cpu);
1648 #ifdef CONFIG_SMP
1649 /*
1650 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1651 * successfuly executed on another CPU. We must ensure that updates of
1652 * per-task data have been completed by this moment.
1653 */
1654 smp_wmb();
1655 task_thread_info(p)->cpu = cpu;
1656 #endif
1657 }
1658
1659 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1660 const struct sched_class *prev_class,
1661 int oldprio, int running)
1662 {
1663 if (prev_class != p->sched_class) {
1664 if (prev_class->switched_from)
1665 prev_class->switched_from(rq, p, running);
1666 p->sched_class->switched_to(rq, p, running);
1667 } else
1668 p->sched_class->prio_changed(rq, p, oldprio, running);
1669 }
1670
1671 #ifdef CONFIG_SMP
1672
1673 /*
1674 * Is this task likely cache-hot:
1675 */
1676 static int
1677 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1678 {
1679 s64 delta;
1680
1681 /*
1682 * Buddy candidates are cache hot:
1683 */
1684 if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
1685 return 1;
1686
1687 if (p->sched_class != &fair_sched_class)
1688 return 0;
1689
1690 if (sysctl_sched_migration_cost == -1)
1691 return 1;
1692 if (sysctl_sched_migration_cost == 0)
1693 return 0;
1694
1695 delta = now - p->se.exec_start;
1696
1697 return delta < (s64)sysctl_sched_migration_cost;
1698 }
1699
1700
1701 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1702 {
1703 int old_cpu = task_cpu(p);
1704 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1705 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1706 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1707 u64 clock_offset;
1708
1709 clock_offset = old_rq->clock - new_rq->clock;
1710
1711 #ifdef CONFIG_SCHEDSTATS
1712 if (p->se.wait_start)
1713 p->se.wait_start -= clock_offset;
1714 if (p->se.sleep_start)
1715 p->se.sleep_start -= clock_offset;
1716 if (p->se.block_start)
1717 p->se.block_start -= clock_offset;
1718 if (old_cpu != new_cpu) {
1719 schedstat_inc(p, se.nr_migrations);
1720 if (task_hot(p, old_rq->clock, NULL))
1721 schedstat_inc(p, se.nr_forced2_migrations);
1722 }
1723 #endif
1724 p->se.vruntime -= old_cfsrq->min_vruntime -
1725 new_cfsrq->min_vruntime;
1726
1727 __set_task_cpu(p, new_cpu);
1728 }
1729
1730 struct migration_req {
1731 struct list_head list;
1732
1733 struct task_struct *task;
1734 int dest_cpu;
1735
1736 struct completion done;
1737 };
1738
1739 /*
1740 * The task's runqueue lock must be held.
1741 * Returns true if you have to wait for migration thread.
1742 */
1743 static int
1744 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1745 {
1746 struct rq *rq = task_rq(p);
1747
1748 /*
1749 * If the task is not on a runqueue (and not running), then
1750 * it is sufficient to simply update the task's cpu field.
1751 */
1752 if (!p->se.on_rq && !task_running(rq, p)) {
1753 set_task_cpu(p, dest_cpu);
1754 return 0;
1755 }
1756
1757 init_completion(&req->done);
1758 req->task = p;
1759 req->dest_cpu = dest_cpu;
1760 list_add(&req->list, &rq->migration_queue);
1761
1762 return 1;
1763 }
1764
1765 /*
1766 * wait_task_inactive - wait for a thread to unschedule.
1767 *
1768 * The caller must ensure that the task *will* unschedule sometime soon,
1769 * else this function might spin for a *long* time. This function can't
1770 * be called with interrupts off, or it may introduce deadlock with
1771 * smp_call_function() if an IPI is sent by the same process we are
1772 * waiting to become inactive.
1773 */
1774 void wait_task_inactive(struct task_struct *p)
1775 {
1776 unsigned long flags;
1777 int running, on_rq;
1778 struct rq *rq;
1779
1780 for (;;) {
1781 /*
1782 * We do the initial early heuristics without holding
1783 * any task-queue locks at all. We'll only try to get
1784 * the runqueue lock when things look like they will
1785 * work out!
1786 */
1787 rq = task_rq(p);
1788
1789 /*
1790 * If the task is actively running on another CPU
1791 * still, just relax and busy-wait without holding
1792 * any locks.
1793 *
1794 * NOTE! Since we don't hold any locks, it's not
1795 * even sure that "rq" stays as the right runqueue!
1796 * But we don't care, since "task_running()" will
1797 * return false if the runqueue has changed and p
1798 * is actually now running somewhere else!
1799 */
1800 while (task_running(rq, p))
1801 cpu_relax();
1802
1803 /*
1804 * Ok, time to look more closely! We need the rq
1805 * lock now, to be *sure*. If we're wrong, we'll
1806 * just go back and repeat.
1807 */
1808 rq = task_rq_lock(p, &flags);
1809 running = task_running(rq, p);
1810 on_rq = p->se.on_rq;
1811 task_rq_unlock(rq, &flags);
1812
1813 /*
1814 * Was it really running after all now that we
1815 * checked with the proper locks actually held?
1816 *
1817 * Oops. Go back and try again..
1818 */
1819 if (unlikely(running)) {
1820 cpu_relax();
1821 continue;
1822 }
1823
1824 /*
1825 * It's not enough that it's not actively running,
1826 * it must be off the runqueue _entirely_, and not
1827 * preempted!
1828 *
1829 * So if it wa still runnable (but just not actively
1830 * running right now), it's preempted, and we should
1831 * yield - it could be a while.
1832 */
1833 if (unlikely(on_rq)) {
1834 schedule_timeout_uninterruptible(1);
1835 continue;
1836 }
1837
1838 /*
1839 * Ahh, all good. It wasn't running, and it wasn't
1840 * runnable, which means that it will never become
1841 * running in the future either. We're all done!
1842 */
1843 break;
1844 }
1845 }
1846
1847 /***
1848 * kick_process - kick a running thread to enter/exit the kernel
1849 * @p: the to-be-kicked thread
1850 *
1851 * Cause a process which is running on another CPU to enter
1852 * kernel-mode, without any delay. (to get signals handled.)
1853 *
1854 * NOTE: this function doesnt have to take the runqueue lock,
1855 * because all it wants to ensure is that the remote task enters
1856 * the kernel. If the IPI races and the task has been migrated
1857 * to another CPU then no harm is done and the purpose has been
1858 * achieved as well.
1859 */
1860 void kick_process(struct task_struct *p)
1861 {
1862 int cpu;
1863
1864 preempt_disable();
1865 cpu = task_cpu(p);
1866 if ((cpu != smp_processor_id()) && task_curr(p))
1867 smp_send_reschedule(cpu);
1868 preempt_enable();
1869 }
1870
1871 /*
1872 * Return a low guess at the load of a migration-source cpu weighted
1873 * according to the scheduling class and "nice" value.
1874 *
1875 * We want to under-estimate the load of migration sources, to
1876 * balance conservatively.
1877 */
1878 static unsigned long source_load(int cpu, int type)
1879 {
1880 struct rq *rq = cpu_rq(cpu);
1881 unsigned long total = weighted_cpuload(cpu);
1882
1883 if (type == 0)
1884 return total;
1885
1886 return min(rq->cpu_load[type-1], total);
1887 }
1888
1889 /*
1890 * Return a high guess at the load of a migration-target cpu weighted
1891 * according to the scheduling class and "nice" value.
1892 */
1893 static unsigned long target_load(int cpu, int type)
1894 {
1895 struct rq *rq = cpu_rq(cpu);
1896 unsigned long total = weighted_cpuload(cpu);
1897
1898 if (type == 0)
1899 return total;
1900
1901 return max(rq->cpu_load[type-1], total);
1902 }
1903
1904 /*
1905 * Return the average load per task on the cpu's run queue
1906 */
1907 static unsigned long cpu_avg_load_per_task(int cpu)
1908 {
1909 struct rq *rq = cpu_rq(cpu);
1910 unsigned long total = weighted_cpuload(cpu);
1911 unsigned long n = rq->nr_running;
1912
1913 return n ? total / n : SCHED_LOAD_SCALE;
1914 }
1915
1916 /*
1917 * find_idlest_group finds and returns the least busy CPU group within the
1918 * domain.
1919 */
1920 static struct sched_group *
1921 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1922 {
1923 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1924 unsigned long min_load = ULONG_MAX, this_load = 0;
1925 int load_idx = sd->forkexec_idx;
1926 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1927
1928 do {
1929 unsigned long load, avg_load;
1930 int local_group;
1931 int i;
1932
1933 /* Skip over this group if it has no CPUs allowed */
1934 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1935 continue;
1936
1937 local_group = cpu_isset(this_cpu, group->cpumask);
1938
1939 /* Tally up the load of all CPUs in the group */
1940 avg_load = 0;
1941
1942 for_each_cpu_mask(i, group->cpumask) {
1943 /* Bias balancing toward cpus of our domain */
1944 if (local_group)
1945 load = source_load(i, load_idx);
1946 else
1947 load = target_load(i, load_idx);
1948
1949 avg_load += load;
1950 }
1951
1952 /* Adjust by relative CPU power of the group */
1953 avg_load = sg_div_cpu_power(group,
1954 avg_load * SCHED_LOAD_SCALE);
1955
1956 if (local_group) {
1957 this_load = avg_load;
1958 this = group;
1959 } else if (avg_load < min_load) {
1960 min_load = avg_load;
1961 idlest = group;
1962 }
1963 } while (group = group->next, group != sd->groups);
1964
1965 if (!idlest || 100*this_load < imbalance*min_load)
1966 return NULL;
1967 return idlest;
1968 }
1969
1970 /*
1971 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1972 */
1973 static int
1974 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
1975 cpumask_t *tmp)
1976 {
1977 unsigned long load, min_load = ULONG_MAX;
1978 int idlest = -1;
1979 int i;
1980
1981 /* Traverse only the allowed CPUs */
1982 cpus_and(*tmp, group->cpumask, p->cpus_allowed);
1983
1984 for_each_cpu_mask(i, *tmp) {
1985 load = weighted_cpuload(i);
1986
1987 if (load < min_load || (load == min_load && i == this_cpu)) {
1988 min_load = load;
1989 idlest = i;
1990 }
1991 }
1992
1993 return idlest;
1994 }
1995
1996 /*
1997 * sched_balance_self: balance the current task (running on cpu) in domains
1998 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1999 * SD_BALANCE_EXEC.
2000 *
2001 * Balance, ie. select the least loaded group.
2002 *
2003 * Returns the target CPU number, or the same CPU if no balancing is needed.
2004 *
2005 * preempt must be disabled.
2006 */
2007 static int sched_balance_self(int cpu, int flag)
2008 {
2009 struct task_struct *t = current;
2010 struct sched_domain *tmp, *sd = NULL;
2011
2012 for_each_domain(cpu, tmp) {
2013 /*
2014 * If power savings logic is enabled for a domain, stop there.
2015 */
2016 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2017 break;
2018 if (tmp->flags & flag)
2019 sd = tmp;
2020 }
2021
2022 while (sd) {
2023 cpumask_t span, tmpmask;
2024 struct sched_group *group;
2025 int new_cpu, weight;
2026
2027 if (!(sd->flags & flag)) {
2028 sd = sd->child;
2029 continue;
2030 }
2031
2032 span = sd->span;
2033 group = find_idlest_group(sd, t, cpu);
2034 if (!group) {
2035 sd = sd->child;
2036 continue;
2037 }
2038
2039 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
2040 if (new_cpu == -1 || new_cpu == cpu) {
2041 /* Now try balancing at a lower domain level of cpu */
2042 sd = sd->child;
2043 continue;
2044 }
2045
2046 /* Now try balancing at a lower domain level of new_cpu */
2047 cpu = new_cpu;
2048 sd = NULL;
2049 weight = cpus_weight(span);
2050 for_each_domain(cpu, tmp) {
2051 if (weight <= cpus_weight(tmp->span))
2052 break;
2053 if (tmp->flags & flag)
2054 sd = tmp;
2055 }
2056 /* while loop will break here if sd == NULL */
2057 }
2058
2059 return cpu;
2060 }
2061
2062 #endif /* CONFIG_SMP */
2063
2064 /***
2065 * try_to_wake_up - wake up a thread
2066 * @p: the to-be-woken-up thread
2067 * @state: the mask of task states that can be woken
2068 * @sync: do a synchronous wakeup?
2069 *
2070 * Put it on the run-queue if it's not already there. The "current"
2071 * thread is always on the run-queue (except when the actual
2072 * re-schedule is in progress), and as such you're allowed to do
2073 * the simpler "current->state = TASK_RUNNING" to mark yourself
2074 * runnable without the overhead of this.
2075 *
2076 * returns failure only if the task is already active.
2077 */
2078 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2079 {
2080 int cpu, orig_cpu, this_cpu, success = 0;
2081 unsigned long flags;
2082 long old_state;
2083 struct rq *rq;
2084
2085 if (!sched_feat(SYNC_WAKEUPS))
2086 sync = 0;
2087
2088 smp_wmb();
2089 rq = task_rq_lock(p, &flags);
2090 old_state = p->state;
2091 if (!(old_state & state))
2092 goto out;
2093
2094 if (p->se.on_rq)
2095 goto out_running;
2096
2097 cpu = task_cpu(p);
2098 orig_cpu = cpu;
2099 this_cpu = smp_processor_id();
2100
2101 #ifdef CONFIG_SMP
2102 if (unlikely(task_running(rq, p)))
2103 goto out_activate;
2104
2105 cpu = p->sched_class->select_task_rq(p, sync);
2106 if (cpu != orig_cpu) {
2107 set_task_cpu(p, cpu);
2108 task_rq_unlock(rq, &flags);
2109 /* might preempt at this point */
2110 rq = task_rq_lock(p, &flags);
2111 old_state = p->state;
2112 if (!(old_state & state))
2113 goto out;
2114 if (p->se.on_rq)
2115 goto out_running;
2116
2117 this_cpu = smp_processor_id();
2118 cpu = task_cpu(p);
2119 }
2120
2121 #ifdef CONFIG_SCHEDSTATS
2122 schedstat_inc(rq, ttwu_count);
2123 if (cpu == this_cpu)
2124 schedstat_inc(rq, ttwu_local);
2125 else {
2126 struct sched_domain *sd;
2127 for_each_domain(this_cpu, sd) {
2128 if (cpu_isset(cpu, sd->span)) {
2129 schedstat_inc(sd, ttwu_wake_remote);
2130 break;
2131 }
2132 }
2133 }
2134 #endif
2135
2136 out_activate:
2137 #endif /* CONFIG_SMP */
2138 schedstat_inc(p, se.nr_wakeups);
2139 if (sync)
2140 schedstat_inc(p, se.nr_wakeups_sync);
2141 if (orig_cpu != cpu)
2142 schedstat_inc(p, se.nr_wakeups_migrate);
2143 if (cpu == this_cpu)
2144 schedstat_inc(p, se.nr_wakeups_local);
2145 else
2146 schedstat_inc(p, se.nr_wakeups_remote);
2147 update_rq_clock(rq);
2148 activate_task(rq, p, 1);
2149 success = 1;
2150
2151 out_running:
2152 check_preempt_curr(rq, p);
2153
2154 p->state = TASK_RUNNING;
2155 #ifdef CONFIG_SMP
2156 if (p->sched_class->task_wake_up)
2157 p->sched_class->task_wake_up(rq, p);
2158 #endif
2159 out:
2160 task_rq_unlock(rq, &flags);
2161
2162 return success;
2163 }
2164
2165 int wake_up_process(struct task_struct *p)
2166 {
2167 return try_to_wake_up(p, TASK_ALL, 0);
2168 }
2169 EXPORT_SYMBOL(wake_up_process);
2170
2171 int wake_up_state(struct task_struct *p, unsigned int state)
2172 {
2173 return try_to_wake_up(p, state, 0);
2174 }
2175
2176 /*
2177 * Perform scheduler related setup for a newly forked process p.
2178 * p is forked by current.
2179 *
2180 * __sched_fork() is basic setup used by init_idle() too:
2181 */
2182 static void __sched_fork(struct task_struct *p)
2183 {
2184 p->se.exec_start = 0;
2185 p->se.sum_exec_runtime = 0;
2186 p->se.prev_sum_exec_runtime = 0;
2187 p->se.last_wakeup = 0;
2188 p->se.avg_overlap = 0;
2189
2190 #ifdef CONFIG_SCHEDSTATS
2191 p->se.wait_start = 0;
2192 p->se.sum_sleep_runtime = 0;
2193 p->se.sleep_start = 0;
2194 p->se.block_start = 0;
2195 p->se.sleep_max = 0;
2196 p->se.block_max = 0;
2197 p->se.exec_max = 0;
2198 p->se.slice_max = 0;
2199 p->se.wait_max = 0;
2200 #endif
2201
2202 INIT_LIST_HEAD(&p->rt.run_list);
2203 p->se.on_rq = 0;
2204 INIT_LIST_HEAD(&p->se.group_node);
2205
2206 #ifdef CONFIG_PREEMPT_NOTIFIERS
2207 INIT_HLIST_HEAD(&p->preempt_notifiers);
2208 #endif
2209
2210 /*
2211 * We mark the process as running here, but have not actually
2212 * inserted it onto the runqueue yet. This guarantees that
2213 * nobody will actually run it, and a signal or other external
2214 * event cannot wake it up and insert it on the runqueue either.
2215 */
2216 p->state = TASK_RUNNING;
2217 }
2218
2219 /*
2220 * fork()/clone()-time setup:
2221 */
2222 void sched_fork(struct task_struct *p, int clone_flags)
2223 {
2224 int cpu = get_cpu();
2225
2226 __sched_fork(p);
2227
2228 #ifdef CONFIG_SMP
2229 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2230 #endif
2231 set_task_cpu(p, cpu);
2232
2233 /*
2234 * Make sure we do not leak PI boosting priority to the child:
2235 */
2236 p->prio = current->normal_prio;
2237 if (!rt_prio(p->prio))
2238 p->sched_class = &fair_sched_class;
2239
2240 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2241 if (likely(sched_info_on()))
2242 memset(&p->sched_info, 0, sizeof(p->sched_info));
2243 #endif
2244 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2245 p->oncpu = 0;
2246 #endif
2247 #ifdef CONFIG_PREEMPT
2248 /* Want to start with kernel preemption disabled. */
2249 task_thread_info(p)->preempt_count = 1;
2250 #endif
2251 put_cpu();
2252 }
2253
2254 /*
2255 * wake_up_new_task - wake up a newly created task for the first time.
2256 *
2257 * This function will do some initial scheduler statistics housekeeping
2258 * that must be done for every newly created context, then puts the task
2259 * on the runqueue and wakes it.
2260 */
2261 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2262 {
2263 unsigned long flags;
2264 struct rq *rq;
2265
2266 rq = task_rq_lock(p, &flags);
2267 BUG_ON(p->state != TASK_RUNNING);
2268 update_rq_clock(rq);
2269
2270 p->prio = effective_prio(p);
2271
2272 if (!p->sched_class->task_new || !current->se.on_rq) {
2273 activate_task(rq, p, 0);
2274 } else {
2275 /*
2276 * Let the scheduling class do new task startup
2277 * management (if any):
2278 */
2279 p->sched_class->task_new(rq, p);
2280 inc_nr_running(p, rq);
2281 }
2282 check_preempt_curr(rq, p);
2283 #ifdef CONFIG_SMP
2284 if (p->sched_class->task_wake_up)
2285 p->sched_class->task_wake_up(rq, p);
2286 #endif
2287 task_rq_unlock(rq, &flags);
2288 }
2289
2290 #ifdef CONFIG_PREEMPT_NOTIFIERS
2291
2292 /**
2293 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2294 * @notifier: notifier struct to register
2295 */
2296 void preempt_notifier_register(struct preempt_notifier *notifier)
2297 {
2298 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2299 }
2300 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2301
2302 /**
2303 * preempt_notifier_unregister - no longer interested in preemption notifications
2304 * @notifier: notifier struct to unregister
2305 *
2306 * This is safe to call from within a preemption notifier.
2307 */
2308 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2309 {
2310 hlist_del(&notifier->link);
2311 }
2312 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2313
2314 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2315 {
2316 struct preempt_notifier *notifier;
2317 struct hlist_node *node;
2318
2319 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2320 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2321 }
2322
2323 static void
2324 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2325 struct task_struct *next)
2326 {
2327 struct preempt_notifier *notifier;
2328 struct hlist_node *node;
2329
2330 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2331 notifier->ops->sched_out(notifier, next);
2332 }
2333
2334 #else
2335
2336 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2337 {
2338 }
2339
2340 static void
2341 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2342 struct task_struct *next)
2343 {
2344 }
2345
2346 #endif
2347
2348 /**
2349 * prepare_task_switch - prepare to switch tasks
2350 * @rq: the runqueue preparing to switch
2351 * @prev: the current task that is being switched out
2352 * @next: the task we are going to switch to.
2353 *
2354 * This is called with the rq lock held and interrupts off. It must
2355 * be paired with a subsequent finish_task_switch after the context
2356 * switch.
2357 *
2358 * prepare_task_switch sets up locking and calls architecture specific
2359 * hooks.
2360 */
2361 static inline void
2362 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2363 struct task_struct *next)
2364 {
2365 fire_sched_out_preempt_notifiers(prev, next);
2366 prepare_lock_switch(rq, next);
2367 prepare_arch_switch(next);
2368 }
2369
2370 /**
2371 * finish_task_switch - clean up after a task-switch
2372 * @rq: runqueue associated with task-switch
2373 * @prev: the thread we just switched away from.
2374 *
2375 * finish_task_switch must be called after the context switch, paired
2376 * with a prepare_task_switch call before the context switch.
2377 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2378 * and do any other architecture-specific cleanup actions.
2379 *
2380 * Note that we may have delayed dropping an mm in context_switch(). If
2381 * so, we finish that here outside of the runqueue lock. (Doing it
2382 * with the lock held can cause deadlocks; see schedule() for
2383 * details.)
2384 */
2385 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2386 __releases(rq->lock)
2387 {
2388 struct mm_struct *mm = rq->prev_mm;
2389 long prev_state;
2390
2391 rq->prev_mm = NULL;
2392
2393 /*
2394 * A task struct has one reference for the use as "current".
2395 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2396 * schedule one last time. The schedule call will never return, and
2397 * the scheduled task must drop that reference.
2398 * The test for TASK_DEAD must occur while the runqueue locks are
2399 * still held, otherwise prev could be scheduled on another cpu, die
2400 * there before we look at prev->state, and then the reference would
2401 * be dropped twice.
2402 * Manfred Spraul <manfred@colorfullife.com>
2403 */
2404 prev_state = prev->state;
2405 finish_arch_switch(prev);
2406 finish_lock_switch(rq, prev);
2407 #ifdef CONFIG_SMP
2408 if (current->sched_class->post_schedule)
2409 current->sched_class->post_schedule(rq);
2410 #endif
2411
2412 fire_sched_in_preempt_notifiers(current);
2413 if (mm)
2414 mmdrop(mm);
2415 if (unlikely(prev_state == TASK_DEAD)) {
2416 /*
2417 * Remove function-return probe instances associated with this
2418 * task and put them back on the free list.
2419 */
2420 kprobe_flush_task(prev);
2421 put_task_struct(prev);
2422 }
2423 }
2424
2425 /**
2426 * schedule_tail - first thing a freshly forked thread must call.
2427 * @prev: the thread we just switched away from.
2428 */
2429 asmlinkage void schedule_tail(struct task_struct *prev)
2430 __releases(rq->lock)
2431 {
2432 struct rq *rq = this_rq();
2433
2434 finish_task_switch(rq, prev);
2435 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2436 /* In this case, finish_task_switch does not reenable preemption */
2437 preempt_enable();
2438 #endif
2439 if (current->set_child_tid)
2440 put_user(task_pid_vnr(current), current->set_child_tid);
2441 }
2442
2443 /*
2444 * context_switch - switch to the new MM and the new
2445 * thread's register state.
2446 */
2447 static inline void
2448 context_switch(struct rq *rq, struct task_struct *prev,
2449 struct task_struct *next)
2450 {
2451 struct mm_struct *mm, *oldmm;
2452
2453 prepare_task_switch(rq, prev, next);
2454 mm = next->mm;
2455 oldmm = prev->active_mm;
2456 /*
2457 * For paravirt, this is coupled with an exit in switch_to to
2458 * combine the page table reload and the switch backend into
2459 * one hypercall.
2460 */
2461 arch_enter_lazy_cpu_mode();
2462
2463 if (unlikely(!mm)) {
2464 next->active_mm = oldmm;
2465 atomic_inc(&oldmm->mm_count);
2466 enter_lazy_tlb(oldmm, next);
2467 } else
2468 switch_mm(oldmm, mm, next);
2469
2470 if (unlikely(!prev->mm)) {
2471 prev->active_mm = NULL;
2472 rq->prev_mm = oldmm;
2473 }
2474 /*
2475 * Since the runqueue lock will be released by the next
2476 * task (which is an invalid locking op but in the case
2477 * of the scheduler it's an obvious special-case), so we
2478 * do an early lockdep release here:
2479 */
2480 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2481 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2482 #endif
2483
2484 /* Here we just switch the register state and the stack. */
2485 switch_to(prev, next, prev);
2486
2487 barrier();
2488 /*
2489 * this_rq must be evaluated again because prev may have moved
2490 * CPUs since it called schedule(), thus the 'rq' on its stack
2491 * frame will be invalid.
2492 */
2493 finish_task_switch(this_rq(), prev);
2494 }
2495
2496 /*
2497 * nr_running, nr_uninterruptible and nr_context_switches:
2498 *
2499 * externally visible scheduler statistics: current number of runnable
2500 * threads, current number of uninterruptible-sleeping threads, total
2501 * number of context switches performed since bootup.
2502 */
2503 unsigned long nr_running(void)
2504 {
2505 unsigned long i, sum = 0;
2506
2507 for_each_online_cpu(i)
2508 sum += cpu_rq(i)->nr_running;
2509
2510 return sum;
2511 }
2512
2513 unsigned long nr_uninterruptible(void)
2514 {
2515 unsigned long i, sum = 0;
2516
2517 for_each_possible_cpu(i)
2518 sum += cpu_rq(i)->nr_uninterruptible;
2519
2520 /*
2521 * Since we read the counters lockless, it might be slightly
2522 * inaccurate. Do not allow it to go below zero though:
2523 */
2524 if (unlikely((long)sum < 0))
2525 sum = 0;
2526
2527 return sum;
2528 }
2529
2530 unsigned long long nr_context_switches(void)
2531 {
2532 int i;
2533 unsigned long long sum = 0;
2534
2535 for_each_possible_cpu(i)
2536 sum += cpu_rq(i)->nr_switches;
2537
2538 return sum;
2539 }
2540
2541 unsigned long nr_iowait(void)
2542 {
2543 unsigned long i, sum = 0;
2544
2545 for_each_possible_cpu(i)
2546 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2547
2548 return sum;
2549 }
2550
2551 unsigned long nr_active(void)
2552 {
2553 unsigned long i, running = 0, uninterruptible = 0;
2554
2555 for_each_online_cpu(i) {
2556 running += cpu_rq(i)->nr_running;
2557 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2558 }
2559
2560 if (unlikely((long)uninterruptible < 0))
2561 uninterruptible = 0;
2562
2563 return running + uninterruptible;
2564 }
2565
2566 /*
2567 * Update rq->cpu_load[] statistics. This function is usually called every
2568 * scheduler tick (TICK_NSEC).
2569 */
2570 static void update_cpu_load(struct rq *this_rq)
2571 {
2572 unsigned long this_load = this_rq->load.weight;
2573 int i, scale;
2574
2575 this_rq->nr_load_updates++;
2576
2577 /* Update our load: */
2578 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2579 unsigned long old_load, new_load;
2580
2581 /* scale is effectively 1 << i now, and >> i divides by scale */
2582
2583 old_load = this_rq->cpu_load[i];
2584 new_load = this_load;
2585 /*
2586 * Round up the averaging division if load is increasing. This
2587 * prevents us from getting stuck on 9 if the load is 10, for
2588 * example.
2589 */
2590 if (new_load > old_load)
2591 new_load += scale-1;
2592 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2593 }
2594 }
2595
2596 #ifdef CONFIG_SMP
2597
2598 /*
2599 * double_rq_lock - safely lock two runqueues
2600 *
2601 * Note this does not disable interrupts like task_rq_lock,
2602 * you need to do so manually before calling.
2603 */
2604 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2605 __acquires(rq1->lock)
2606 __acquires(rq2->lock)
2607 {
2608 BUG_ON(!irqs_disabled());
2609 if (rq1 == rq2) {
2610 spin_lock(&rq1->lock);
2611 __acquire(rq2->lock); /* Fake it out ;) */
2612 } else {
2613 if (rq1 < rq2) {
2614 spin_lock(&rq1->lock);
2615 spin_lock(&rq2->lock);
2616 } else {
2617 spin_lock(&rq2->lock);
2618 spin_lock(&rq1->lock);
2619 }
2620 }
2621 update_rq_clock(rq1);
2622 update_rq_clock(rq2);
2623 }
2624
2625 /*
2626 * double_rq_unlock - safely unlock two runqueues
2627 *
2628 * Note this does not restore interrupts like task_rq_unlock,
2629 * you need to do so manually after calling.
2630 */
2631 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2632 __releases(rq1->lock)
2633 __releases(rq2->lock)
2634 {
2635 spin_unlock(&rq1->lock);
2636 if (rq1 != rq2)
2637 spin_unlock(&rq2->lock);
2638 else
2639 __release(rq2->lock);
2640 }
2641
2642 /*
2643 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2644 */
2645 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2646 __releases(this_rq->lock)
2647 __acquires(busiest->lock)
2648 __acquires(this_rq->lock)
2649 {
2650 int ret = 0;
2651
2652 if (unlikely(!irqs_disabled())) {
2653 /* printk() doesn't work good under rq->lock */
2654 spin_unlock(&this_rq->lock);
2655 BUG_ON(1);
2656 }
2657 if (unlikely(!spin_trylock(&busiest->lock))) {
2658 if (busiest < this_rq) {
2659 spin_unlock(&this_rq->lock);
2660 spin_lock(&busiest->lock);
2661 spin_lock(&this_rq->lock);
2662 ret = 1;
2663 } else
2664 spin_lock(&busiest->lock);
2665 }
2666 return ret;
2667 }
2668
2669 /*
2670 * If dest_cpu is allowed for this process, migrate the task to it.
2671 * This is accomplished by forcing the cpu_allowed mask to only
2672 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2673 * the cpu_allowed mask is restored.
2674 */
2675 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2676 {
2677 struct migration_req req;
2678 unsigned long flags;
2679 struct rq *rq;
2680
2681 rq = task_rq_lock(p, &flags);
2682 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2683 || unlikely(cpu_is_offline(dest_cpu)))
2684 goto out;
2685
2686 /* force the process onto the specified CPU */
2687 if (migrate_task(p, dest_cpu, &req)) {
2688 /* Need to wait for migration thread (might exit: take ref). */
2689 struct task_struct *mt = rq->migration_thread;
2690
2691 get_task_struct(mt);
2692 task_rq_unlock(rq, &flags);
2693 wake_up_process(mt);
2694 put_task_struct(mt);
2695 wait_for_completion(&req.done);
2696
2697 return;
2698 }
2699 out:
2700 task_rq_unlock(rq, &flags);
2701 }
2702
2703 /*
2704 * sched_exec - execve() is a valuable balancing opportunity, because at
2705 * this point the task has the smallest effective memory and cache footprint.
2706 */
2707 void sched_exec(void)
2708 {
2709 int new_cpu, this_cpu = get_cpu();
2710 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2711 put_cpu();
2712 if (new_cpu != this_cpu)
2713 sched_migrate_task(current, new_cpu);
2714 }
2715
2716 /*
2717 * pull_task - move a task from a remote runqueue to the local runqueue.
2718 * Both runqueues must be locked.
2719 */
2720 static void pull_task(struct rq *src_rq, struct task_struct *p,
2721 struct rq *this_rq, int this_cpu)
2722 {
2723 deactivate_task(src_rq, p, 0);
2724 set_task_cpu(p, this_cpu);
2725 activate_task(this_rq, p, 0);
2726 /*
2727 * Note that idle threads have a prio of MAX_PRIO, for this test
2728 * to be always true for them.
2729 */
2730 check_preempt_curr(this_rq, p);
2731 }
2732
2733 /*
2734 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2735 */
2736 static
2737 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2738 struct sched_domain *sd, enum cpu_idle_type idle,
2739 int *all_pinned)
2740 {
2741 /*
2742 * We do not migrate tasks that are:
2743 * 1) running (obviously), or
2744 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2745 * 3) are cache-hot on their current CPU.
2746 */
2747 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2748 schedstat_inc(p, se.nr_failed_migrations_affine);
2749 return 0;
2750 }
2751 *all_pinned = 0;
2752
2753 if (task_running(rq, p)) {
2754 schedstat_inc(p, se.nr_failed_migrations_running);
2755 return 0;
2756 }
2757
2758 /*
2759 * Aggressive migration if:
2760 * 1) task is cache cold, or
2761 * 2) too many balance attempts have failed.
2762 */
2763
2764 if (!task_hot(p, rq->clock, sd) ||
2765 sd->nr_balance_failed > sd->cache_nice_tries) {
2766 #ifdef CONFIG_SCHEDSTATS
2767 if (task_hot(p, rq->clock, sd)) {
2768 schedstat_inc(sd, lb_hot_gained[idle]);
2769 schedstat_inc(p, se.nr_forced_migrations);
2770 }
2771 #endif
2772 return 1;
2773 }
2774
2775 if (task_hot(p, rq->clock, sd)) {
2776 schedstat_inc(p, se.nr_failed_migrations_hot);
2777 return 0;
2778 }
2779 return 1;
2780 }
2781
2782 static unsigned long
2783 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2784 unsigned long max_load_move, struct sched_domain *sd,
2785 enum cpu_idle_type idle, int *all_pinned,
2786 int *this_best_prio, struct rq_iterator *iterator)
2787 {
2788 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
2789 struct task_struct *p;
2790 long rem_load_move = max_load_move;
2791
2792 if (max_load_move == 0)
2793 goto out;
2794
2795 pinned = 1;
2796
2797 /*
2798 * Start the load-balancing iterator:
2799 */
2800 p = iterator->start(iterator->arg);
2801 next:
2802 if (!p || loops++ > sysctl_sched_nr_migrate)
2803 goto out;
2804 /*
2805 * To help distribute high priority tasks across CPUs we don't
2806 * skip a task if it will be the highest priority task (i.e. smallest
2807 * prio value) on its new queue regardless of its load weight
2808 */
2809 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2810 SCHED_LOAD_SCALE_FUZZ;
2811 if ((skip_for_load && p->prio >= *this_best_prio) ||
2812 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2813 p = iterator->next(iterator->arg);
2814 goto next;
2815 }
2816
2817 pull_task(busiest, p, this_rq, this_cpu);
2818 pulled++;
2819 rem_load_move -= p->se.load.weight;
2820
2821 /*
2822 * We only want to steal up to the prescribed amount of weighted load.
2823 */
2824 if (rem_load_move > 0) {
2825 if (p->prio < *this_best_prio)
2826 *this_best_prio = p->prio;
2827 p = iterator->next(iterator->arg);
2828 goto next;
2829 }
2830 out:
2831 /*
2832 * Right now, this is one of only two places pull_task() is called,
2833 * so we can safely collect pull_task() stats here rather than
2834 * inside pull_task().
2835 */
2836 schedstat_add(sd, lb_gained[idle], pulled);
2837
2838 if (all_pinned)
2839 *all_pinned = pinned;
2840
2841 return max_load_move - rem_load_move;
2842 }
2843
2844 /*
2845 * move_tasks tries to move up to max_load_move weighted load from busiest to
2846 * this_rq, as part of a balancing operation within domain "sd".
2847 * Returns 1 if successful and 0 otherwise.
2848 *
2849 * Called with both runqueues locked.
2850 */
2851 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2852 unsigned long max_load_move,
2853 struct sched_domain *sd, enum cpu_idle_type idle,
2854 int *all_pinned)
2855 {
2856 const struct sched_class *class = sched_class_highest;
2857 unsigned long total_load_moved = 0;
2858 int this_best_prio = this_rq->curr->prio;
2859
2860 do {
2861 total_load_moved +=
2862 class->load_balance(this_rq, this_cpu, busiest,
2863 max_load_move - total_load_moved,
2864 sd, idle, all_pinned, &this_best_prio);
2865 class = class->next;
2866 } while (class && max_load_move > total_load_moved);
2867
2868 return total_load_moved > 0;
2869 }
2870
2871 static int
2872 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2873 struct sched_domain *sd, enum cpu_idle_type idle,
2874 struct rq_iterator *iterator)
2875 {
2876 struct task_struct *p = iterator->start(iterator->arg);
2877 int pinned = 0;
2878
2879 while (p) {
2880 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2881 pull_task(busiest, p, this_rq, this_cpu);
2882 /*
2883 * Right now, this is only the second place pull_task()
2884 * is called, so we can safely collect pull_task()
2885 * stats here rather than inside pull_task().
2886 */
2887 schedstat_inc(sd, lb_gained[idle]);
2888
2889 return 1;
2890 }
2891 p = iterator->next(iterator->arg);
2892 }
2893
2894 return 0;
2895 }
2896
2897 /*
2898 * move_one_task tries to move exactly one task from busiest to this_rq, as
2899 * part of active balancing operations within "domain".
2900 * Returns 1 if successful and 0 otherwise.
2901 *
2902 * Called with both runqueues locked.
2903 */
2904 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2905 struct sched_domain *sd, enum cpu_idle_type idle)
2906 {
2907 const struct sched_class *class;
2908
2909 for (class = sched_class_highest; class; class = class->next)
2910 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
2911 return 1;
2912
2913 return 0;
2914 }
2915
2916 /*
2917 * find_busiest_group finds and returns the busiest CPU group within the
2918 * domain. It calculates and returns the amount of weighted load which
2919 * should be moved to restore balance via the imbalance parameter.
2920 */
2921 static struct sched_group *
2922 find_busiest_group(struct sched_domain *sd, int this_cpu,
2923 unsigned long *imbalance, enum cpu_idle_type idle,
2924 int *sd_idle, const cpumask_t *cpus, int *balance)
2925 {
2926 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2927 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2928 unsigned long max_pull;
2929 unsigned long busiest_load_per_task, busiest_nr_running;
2930 unsigned long this_load_per_task, this_nr_running;
2931 int load_idx, group_imb = 0;
2932 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2933 int power_savings_balance = 1;
2934 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2935 unsigned long min_nr_running = ULONG_MAX;
2936 struct sched_group *group_min = NULL, *group_leader = NULL;
2937 #endif
2938
2939 max_load = this_load = total_load = total_pwr = 0;
2940 busiest_load_per_task = busiest_nr_running = 0;
2941 this_load_per_task = this_nr_running = 0;
2942 if (idle == CPU_NOT_IDLE)
2943 load_idx = sd->busy_idx;
2944 else if (idle == CPU_NEWLY_IDLE)
2945 load_idx = sd->newidle_idx;
2946 else
2947 load_idx = sd->idle_idx;
2948
2949 do {
2950 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
2951 int local_group;
2952 int i;
2953 int __group_imb = 0;
2954 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2955 unsigned long sum_nr_running, sum_weighted_load;
2956
2957 local_group = cpu_isset(this_cpu, group->cpumask);
2958
2959 if (local_group)
2960 balance_cpu = first_cpu(group->cpumask);
2961
2962 /* Tally up the load of all CPUs in the group */
2963 sum_weighted_load = sum_nr_running = avg_load = 0;
2964 max_cpu_load = 0;
2965 min_cpu_load = ~0UL;
2966
2967 for_each_cpu_mask(i, group->cpumask) {
2968 struct rq *rq;
2969
2970 if (!cpu_isset(i, *cpus))
2971 continue;
2972
2973 rq = cpu_rq(i);
2974
2975 if (*sd_idle && rq->nr_running)
2976 *sd_idle = 0;
2977
2978 /* Bias balancing toward cpus of our domain */
2979 if (local_group) {
2980 if (idle_cpu(i) && !first_idle_cpu) {
2981 first_idle_cpu = 1;
2982 balance_cpu = i;
2983 }
2984
2985 load = target_load(i, load_idx);
2986 } else {
2987 load = source_load(i, load_idx);
2988 if (load > max_cpu_load)
2989 max_cpu_load = load;
2990 if (min_cpu_load > load)
2991 min_cpu_load = load;
2992 }
2993
2994 avg_load += load;
2995 sum_nr_running += rq->nr_running;
2996 sum_weighted_load += weighted_cpuload(i);
2997 }
2998
2999 /*
3000 * First idle cpu or the first cpu(busiest) in this sched group
3001 * is eligible for doing load balancing at this and above
3002 * domains. In the newly idle case, we will allow all the cpu's
3003 * to do the newly idle load balance.
3004 */
3005 if (idle != CPU_NEWLY_IDLE && local_group &&
3006 balance_cpu != this_cpu && balance) {
3007 *balance = 0;
3008 goto ret;
3009 }
3010
3011 total_load += avg_load;
3012 total_pwr += group->__cpu_power;
3013
3014 /* Adjust by relative CPU power of the group */
3015 avg_load = sg_div_cpu_power(group,
3016 avg_load * SCHED_LOAD_SCALE);
3017
3018 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
3019 __group_imb = 1;
3020
3021 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3022
3023 if (local_group) {
3024 this_load = avg_load;
3025 this = group;
3026 this_nr_running = sum_nr_running;
3027 this_load_per_task = sum_weighted_load;
3028 } else if (avg_load > max_load &&
3029 (sum_nr_running > group_capacity || __group_imb)) {
3030 max_load = avg_load;
3031 busiest = group;
3032 busiest_nr_running = sum_nr_running;
3033 busiest_load_per_task = sum_weighted_load;
3034 group_imb = __group_imb;
3035 }
3036
3037 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3038 /*
3039 * Busy processors will not participate in power savings
3040 * balance.
3041 */
3042 if (idle == CPU_NOT_IDLE ||
3043 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3044 goto group_next;
3045
3046 /*
3047 * If the local group is idle or completely loaded
3048 * no need to do power savings balance at this domain
3049 */
3050 if (local_group && (this_nr_running >= group_capacity ||
3051 !this_nr_running))
3052 power_savings_balance = 0;
3053
3054 /*
3055 * If a group is already running at full capacity or idle,
3056 * don't include that group in power savings calculations
3057 */
3058 if (!power_savings_balance || sum_nr_running >= group_capacity
3059 || !sum_nr_running)
3060 goto group_next;
3061
3062 /*
3063 * Calculate the group which has the least non-idle load.
3064 * This is the group from where we need to pick up the load
3065 * for saving power
3066 */
3067 if ((sum_nr_running < min_nr_running) ||
3068 (sum_nr_running == min_nr_running &&
3069 first_cpu(group->cpumask) <
3070 first_cpu(group_min->cpumask))) {
3071 group_min = group;
3072 min_nr_running = sum_nr_running;
3073 min_load_per_task = sum_weighted_load /
3074 sum_nr_running;
3075 }
3076
3077 /*
3078 * Calculate the group which is almost near its
3079 * capacity but still has some space to pick up some load
3080 * from other group and save more power
3081 */
3082 if (sum_nr_running <= group_capacity - 1) {
3083 if (sum_nr_running > leader_nr_running ||
3084 (sum_nr_running == leader_nr_running &&
3085 first_cpu(group->cpumask) >
3086 first_cpu(group_leader->cpumask))) {
3087 group_leader = group;
3088 leader_nr_running = sum_nr_running;
3089 }
3090 }
3091 group_next:
3092 #endif
3093 group = group->next;
3094 } while (group != sd->groups);
3095
3096 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
3097 goto out_balanced;
3098
3099 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3100
3101 if (this_load >= avg_load ||
3102 100*max_load <= sd->imbalance_pct*this_load)
3103 goto out_balanced;
3104
3105 busiest_load_per_task /= busiest_nr_running;
3106 if (group_imb)
3107 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3108
3109 /*
3110 * We're trying to get all the cpus to the average_load, so we don't
3111 * want to push ourselves above the average load, nor do we wish to
3112 * reduce the max loaded cpu below the average load, as either of these
3113 * actions would just result in more rebalancing later, and ping-pong
3114 * tasks around. Thus we look for the minimum possible imbalance.
3115 * Negative imbalances (*we* are more loaded than anyone else) will
3116 * be counted as no imbalance for these purposes -- we can't fix that
3117 * by pulling tasks to us. Be careful of negative numbers as they'll
3118 * appear as very large values with unsigned longs.
3119 */
3120 if (max_load <= busiest_load_per_task)
3121 goto out_balanced;
3122
3123 /*
3124 * In the presence of smp nice balancing, certain scenarios can have
3125 * max load less than avg load(as we skip the groups at or below
3126 * its cpu_power, while calculating max_load..)
3127 */
3128 if (max_load < avg_load) {
3129 *imbalance = 0;
3130 goto small_imbalance;
3131 }
3132
3133 /* Don't want to pull so many tasks that a group would go idle */
3134 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3135
3136 /* How much load to actually move to equalise the imbalance */
3137 *imbalance = min(max_pull * busiest->__cpu_power,
3138 (avg_load - this_load) * this->__cpu_power)
3139 / SCHED_LOAD_SCALE;
3140
3141 /*
3142 * if *imbalance is less than the average load per runnable task
3143 * there is no gaurantee that any tasks will be moved so we'll have
3144 * a think about bumping its value to force at least one task to be
3145 * moved
3146 */
3147 if (*imbalance < busiest_load_per_task) {
3148 unsigned long tmp, pwr_now, pwr_move;
3149 unsigned int imbn;
3150
3151 small_imbalance:
3152 pwr_move = pwr_now = 0;
3153 imbn = 2;
3154 if (this_nr_running) {
3155 this_load_per_task /= this_nr_running;
3156 if (busiest_load_per_task > this_load_per_task)
3157 imbn = 1;
3158 } else
3159 this_load_per_task = SCHED_LOAD_SCALE;
3160
3161 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
3162 busiest_load_per_task * imbn) {
3163 *imbalance = busiest_load_per_task;
3164 return busiest;
3165 }
3166
3167 /*
3168 * OK, we don't have enough imbalance to justify moving tasks,
3169 * however we may be able to increase total CPU power used by
3170 * moving them.
3171 */
3172
3173 pwr_now += busiest->__cpu_power *
3174 min(busiest_load_per_task, max_load);
3175 pwr_now += this->__cpu_power *
3176 min(this_load_per_task, this_load);
3177 pwr_now /= SCHED_LOAD_SCALE;
3178
3179 /* Amount of load we'd subtract */
3180 tmp = sg_div_cpu_power(busiest,
3181 busiest_load_per_task * SCHED_LOAD_SCALE);
3182 if (max_load > tmp)
3183 pwr_move += busiest->__cpu_power *
3184 min(busiest_load_per_task, max_load - tmp);
3185
3186 /* Amount of load we'd add */
3187 if (max_load * busiest->__cpu_power <
3188 busiest_load_per_task * SCHED_LOAD_SCALE)
3189 tmp = sg_div_cpu_power(this,
3190 max_load * busiest->__cpu_power);
3191 else
3192 tmp = sg_div_cpu_power(this,
3193 busiest_load_per_task * SCHED_LOAD_SCALE);
3194 pwr_move += this->__cpu_power *
3195 min(this_load_per_task, this_load + tmp);
3196 pwr_move /= SCHED_LOAD_SCALE;
3197
3198 /* Move if we gain throughput */
3199 if (pwr_move > pwr_now)
3200 *imbalance = busiest_load_per_task;
3201 }
3202
3203 return busiest;
3204
3205 out_balanced:
3206 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3207 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3208 goto ret;
3209
3210 if (this == group_leader && group_leader != group_min) {
3211 *imbalance = min_load_per_task;
3212 return group_min;
3213 }
3214 #endif
3215 ret:
3216 *imbalance = 0;
3217 return NULL;
3218 }
3219
3220 /*
3221 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3222 */
3223 static struct rq *
3224 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3225 unsigned long imbalance, const cpumask_t *cpus)
3226 {
3227 struct rq *busiest = NULL, *rq;
3228 unsigned long max_load = 0;
3229 int i;
3230
3231 for_each_cpu_mask(i, group->cpumask) {
3232 unsigned long wl;
3233
3234 if (!cpu_isset(i, *cpus))
3235 continue;
3236
3237 rq = cpu_rq(i);
3238 wl = weighted_cpuload(i);
3239
3240 if (rq->nr_running == 1 && wl > imbalance)
3241 continue;
3242
3243 if (wl > max_load) {
3244 max_load = wl;
3245 busiest = rq;
3246 }
3247 }
3248
3249 return busiest;
3250 }
3251
3252 /*
3253 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3254 * so long as it is large enough.
3255 */
3256 #define MAX_PINNED_INTERVAL 512
3257
3258 /*
3259 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3260 * tasks if there is an imbalance.
3261 */
3262 static int load_balance(int this_cpu, struct rq *this_rq,
3263 struct sched_domain *sd, enum cpu_idle_type idle,
3264 int *balance, cpumask_t *cpus)
3265 {
3266 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3267 struct sched_group *group;
3268 unsigned long imbalance;
3269 struct rq *busiest;
3270 unsigned long flags;
3271
3272 cpus_setall(*cpus);
3273
3274 /*
3275 * When power savings policy is enabled for the parent domain, idle
3276 * sibling can pick up load irrespective of busy siblings. In this case,
3277 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3278 * portraying it as CPU_NOT_IDLE.
3279 */
3280 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3281 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3282 sd_idle = 1;
3283
3284 schedstat_inc(sd, lb_count[idle]);
3285
3286 redo:
3287 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3288 cpus, balance);
3289
3290 if (*balance == 0)
3291 goto out_balanced;
3292
3293 if (!group) {
3294 schedstat_inc(sd, lb_nobusyg[idle]);
3295 goto out_balanced;
3296 }
3297
3298 busiest = find_busiest_queue(group, idle, imbalance, cpus);
3299 if (!busiest) {
3300 schedstat_inc(sd, lb_nobusyq[idle]);
3301 goto out_balanced;
3302 }
3303
3304 BUG_ON(busiest == this_rq);
3305
3306 schedstat_add(sd, lb_imbalance[idle], imbalance);
3307
3308 ld_moved = 0;
3309 if (busiest->nr_running > 1) {
3310 /*
3311 * Attempt to move tasks. If find_busiest_group has found
3312 * an imbalance but busiest->nr_running <= 1, the group is
3313 * still unbalanced. ld_moved simply stays zero, so it is
3314 * correctly treated as an imbalance.
3315 */
3316 local_irq_save(flags);
3317 double_rq_lock(this_rq, busiest);
3318 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3319 imbalance, sd, idle, &all_pinned);
3320 double_rq_unlock(this_rq, busiest);
3321 local_irq_restore(flags);
3322
3323 /*
3324 * some other cpu did the load balance for us.
3325 */
3326 if (ld_moved && this_cpu != smp_processor_id())
3327 resched_cpu(this_cpu);
3328
3329 /* All tasks on this runqueue were pinned by CPU affinity */
3330 if (unlikely(all_pinned)) {
3331 cpu_clear(cpu_of(busiest), *cpus);
3332 if (!cpus_empty(*cpus))
3333 goto redo;
3334 goto out_balanced;
3335 }
3336 }
3337
3338 if (!ld_moved) {
3339 schedstat_inc(sd, lb_failed[idle]);
3340 sd->nr_balance_failed++;
3341
3342 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
3343
3344 spin_lock_irqsave(&busiest->lock, flags);
3345
3346 /* don't kick the migration_thread, if the curr
3347 * task on busiest cpu can't be moved to this_cpu
3348 */
3349 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3350 spin_unlock_irqrestore(&busiest->lock, flags);
3351 all_pinned = 1;
3352 goto out_one_pinned;
3353 }
3354
3355 if (!busiest->active_balance) {
3356 busiest->active_balance = 1;
3357 busiest->push_cpu = this_cpu;
3358 active_balance = 1;
3359 }
3360 spin_unlock_irqrestore(&busiest->lock, flags);
3361 if (active_balance)
3362 wake_up_process(busiest->migration_thread);
3363
3364 /*
3365 * We've kicked active balancing, reset the failure
3366 * counter.
3367 */
3368 sd->nr_balance_failed = sd->cache_nice_tries+1;
3369 }
3370 } else
3371 sd->nr_balance_failed = 0;
3372
3373 if (likely(!active_balance)) {
3374 /* We were unbalanced, so reset the balancing interval */
3375 sd->balance_interval = sd->min_interval;
3376 } else {
3377 /*
3378 * If we've begun active balancing, start to back off. This
3379 * case may not be covered by the all_pinned logic if there
3380 * is only 1 task on the busy runqueue (because we don't call
3381 * move_tasks).
3382 */
3383 if (sd->balance_interval < sd->max_interval)
3384 sd->balance_interval *= 2;
3385 }
3386
3387 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3388 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3389 return -1;
3390 return ld_moved;
3391
3392 out_balanced:
3393 schedstat_inc(sd, lb_balanced[idle]);
3394
3395 sd->nr_balance_failed = 0;
3396
3397 out_one_pinned:
3398 /* tune up the balancing interval */
3399 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3400 (sd->balance_interval < sd->max_interval))
3401 sd->balance_interval *= 2;
3402
3403 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3404 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3405 return -1;
3406 return 0;
3407 }
3408
3409 /*
3410 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3411 * tasks if there is an imbalance.
3412 *
3413 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3414 * this_rq is locked.
3415 */
3416 static int
3417 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3418 cpumask_t *cpus)
3419 {
3420 struct sched_group *group;
3421 struct rq *busiest = NULL;
3422 unsigned long imbalance;
3423 int ld_moved = 0;
3424 int sd_idle = 0;
3425 int all_pinned = 0;
3426
3427 cpus_setall(*cpus);
3428
3429 /*
3430 * When power savings policy is enabled for the parent domain, idle
3431 * sibling can pick up load irrespective of busy siblings. In this case,
3432 * let the state of idle sibling percolate up as IDLE, instead of
3433 * portraying it as CPU_NOT_IDLE.
3434 */
3435 if (sd->flags & SD_SHARE_CPUPOWER &&
3436 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3437 sd_idle = 1;
3438
3439 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3440 redo:
3441 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3442 &sd_idle, cpus, NULL);
3443 if (!group) {
3444 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3445 goto out_balanced;
3446 }
3447
3448 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
3449 if (!busiest) {
3450 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3451 goto out_balanced;
3452 }
3453
3454 BUG_ON(busiest == this_rq);
3455
3456 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3457
3458 ld_moved = 0;
3459 if (busiest->nr_running > 1) {
3460 /* Attempt to move tasks */
3461 double_lock_balance(this_rq, busiest);
3462 /* this_rq->clock is already updated */
3463 update_rq_clock(busiest);
3464 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3465 imbalance, sd, CPU_NEWLY_IDLE,
3466 &all_pinned);
3467 spin_unlock(&busiest->lock);
3468
3469 if (unlikely(all_pinned)) {
3470 cpu_clear(cpu_of(busiest), *cpus);
3471 if (!cpus_empty(*cpus))
3472 goto redo;
3473 }
3474 }
3475
3476 if (!ld_moved) {
3477 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3478 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3479 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3480 return -1;
3481 } else
3482 sd->nr_balance_failed = 0;
3483
3484 return ld_moved;
3485
3486 out_balanced:
3487 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3488 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3489 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3490 return -1;
3491 sd->nr_balance_failed = 0;
3492
3493 return 0;
3494 }
3495
3496 /*
3497 * idle_balance is called by schedule() if this_cpu is about to become
3498 * idle. Attempts to pull tasks from other CPUs.
3499 */
3500 static void idle_balance(int this_cpu, struct rq *this_rq)
3501 {
3502 struct sched_domain *sd;
3503 int pulled_task = -1;
3504 unsigned long next_balance = jiffies + HZ;
3505 cpumask_t tmpmask;
3506
3507 for_each_domain(this_cpu, sd) {
3508 unsigned long interval;
3509
3510 if (!(sd->flags & SD_LOAD_BALANCE))
3511 continue;
3512
3513 if (sd->flags & SD_BALANCE_NEWIDLE)
3514 /* If we've pulled tasks over stop searching: */
3515 pulled_task = load_balance_newidle(this_cpu, this_rq,
3516 sd, &tmpmask);
3517
3518 interval = msecs_to_jiffies(sd->balance_interval);
3519 if (time_after(next_balance, sd->last_balance + interval))
3520 next_balance = sd->last_balance + interval;
3521 if (pulled_task)
3522 break;
3523 }
3524 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3525 /*
3526 * We are going idle. next_balance may be set based on
3527 * a busy processor. So reset next_balance.
3528 */
3529 this_rq->next_balance = next_balance;
3530 }
3531 }
3532
3533 /*
3534 * active_load_balance is run by migration threads. It pushes running tasks
3535 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3536 * running on each physical CPU where possible, and avoids physical /
3537 * logical imbalances.
3538 *
3539 * Called with busiest_rq locked.
3540 */
3541 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3542 {
3543 int target_cpu = busiest_rq->push_cpu;
3544 struct sched_domain *sd;
3545 struct rq *target_rq;
3546
3547 /* Is there any task to move? */
3548 if (busiest_rq->nr_running <= 1)
3549 return;
3550
3551 target_rq = cpu_rq(target_cpu);
3552
3553 /*
3554 * This condition is "impossible", if it occurs
3555 * we need to fix it. Originally reported by
3556 * Bjorn Helgaas on a 128-cpu setup.
3557 */
3558 BUG_ON(busiest_rq == target_rq);
3559
3560 /* move a task from busiest_rq to target_rq */
3561 double_lock_balance(busiest_rq, target_rq);
3562 update_rq_clock(busiest_rq);
3563 update_rq_clock(target_rq);
3564
3565 /* Search for an sd spanning us and the target CPU. */
3566 for_each_domain(target_cpu, sd) {
3567 if ((sd->flags & SD_LOAD_BALANCE) &&
3568 cpu_isset(busiest_cpu, sd->span))
3569 break;
3570 }
3571
3572 if (likely(sd)) {
3573 schedstat_inc(sd, alb_count);
3574
3575 if (move_one_task(target_rq, target_cpu, busiest_rq,
3576 sd, CPU_IDLE))
3577 schedstat_inc(sd, alb_pushed);
3578 else
3579 schedstat_inc(sd, alb_failed);
3580 }
3581 spin_unlock(&target_rq->lock);
3582 }
3583
3584 #ifdef CONFIG_NO_HZ
3585 static struct {
3586 atomic_t load_balancer;
3587 cpumask_t cpu_mask;
3588 } nohz ____cacheline_aligned = {
3589 .load_balancer = ATOMIC_INIT(-1),
3590 .cpu_mask = CPU_MASK_NONE,
3591 };
3592
3593 /*
3594 * This routine will try to nominate the ilb (idle load balancing)
3595 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3596 * load balancing on behalf of all those cpus. If all the cpus in the system
3597 * go into this tickless mode, then there will be no ilb owner (as there is
3598 * no need for one) and all the cpus will sleep till the next wakeup event
3599 * arrives...
3600 *
3601 * For the ilb owner, tick is not stopped. And this tick will be used
3602 * for idle load balancing. ilb owner will still be part of
3603 * nohz.cpu_mask..
3604 *
3605 * While stopping the tick, this cpu will become the ilb owner if there
3606 * is no other owner. And will be the owner till that cpu becomes busy
3607 * or if all cpus in the system stop their ticks at which point
3608 * there is no need for ilb owner.
3609 *
3610 * When the ilb owner becomes busy, it nominates another owner, during the
3611 * next busy scheduler_tick()
3612 */
3613 int select_nohz_load_balancer(int stop_tick)
3614 {
3615 int cpu = smp_processor_id();
3616
3617 if (stop_tick) {
3618 cpu_set(cpu, nohz.cpu_mask);
3619 cpu_rq(cpu)->in_nohz_recently = 1;
3620
3621 /*
3622 * If we are going offline and still the leader, give up!
3623 */
3624 if (cpu_is_offline(cpu) &&
3625 atomic_read(&nohz.load_balancer) == cpu) {
3626 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3627 BUG();
3628 return 0;
3629 }
3630
3631 /* time for ilb owner also to sleep */
3632 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3633 if (atomic_read(&nohz.load_balancer) == cpu)
3634 atomic_set(&nohz.load_balancer, -1);
3635 return 0;
3636 }
3637
3638 if (atomic_read(&nohz.load_balancer) == -1) {
3639 /* make me the ilb owner */
3640 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3641 return 1;
3642 } else if (atomic_read(&nohz.load_balancer) == cpu)
3643 return 1;
3644 } else {
3645 if (!cpu_isset(cpu, nohz.cpu_mask))
3646 return 0;
3647
3648 cpu_clear(cpu, nohz.cpu_mask);
3649
3650 if (atomic_read(&nohz.load_balancer) == cpu)
3651 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3652 BUG();
3653 }
3654 return 0;
3655 }
3656 #endif
3657
3658 static DEFINE_SPINLOCK(balancing);
3659
3660 /*
3661 * It checks each scheduling domain to see if it is due to be balanced,
3662 * and initiates a balancing operation if so.
3663 *
3664 * Balancing parameters are set up in arch_init_sched_domains.
3665 */
3666 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3667 {
3668 int balance = 1;
3669 struct rq *rq = cpu_rq(cpu);
3670 unsigned long interval;
3671 struct sched_domain *sd;
3672 /* Earliest time when we have to do rebalance again */
3673 unsigned long next_balance = jiffies + 60*HZ;
3674 int update_next_balance = 0;
3675 cpumask_t tmp;
3676
3677 for_each_domain(cpu, sd) {
3678 if (!(sd->flags & SD_LOAD_BALANCE))
3679 continue;
3680
3681 interval = sd->balance_interval;
3682 if (idle != CPU_IDLE)
3683 interval *= sd->busy_factor;
3684
3685 /* scale ms to jiffies */
3686 interval = msecs_to_jiffies(interval);
3687 if (unlikely(!interval))
3688 interval = 1;
3689 if (interval > HZ*NR_CPUS/10)
3690 interval = HZ*NR_CPUS/10;
3691
3692
3693 if (sd->flags & SD_SERIALIZE) {
3694 if (!spin_trylock(&balancing))
3695 goto out;
3696 }
3697
3698 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3699 if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
3700 /*
3701 * We've pulled tasks over so either we're no
3702 * longer idle, or one of our SMT siblings is
3703 * not idle.
3704 */
3705 idle = CPU_NOT_IDLE;
3706 }
3707 sd->last_balance = jiffies;
3708 }
3709 if (sd->flags & SD_SERIALIZE)
3710 spin_unlock(&balancing);
3711 out:
3712 if (time_after(next_balance, sd->last_balance + interval)) {
3713 next_balance = sd->last_balance + interval;
3714 update_next_balance = 1;
3715 }
3716
3717 /*
3718 * Stop the load balance at this level. There is another
3719 * CPU in our sched group which is doing load balancing more
3720 * actively.
3721 */
3722 if (!balance)
3723 break;
3724 }
3725
3726 /*
3727 * next_balance will be updated only when there is a need.
3728 * When the cpu is attached to null domain for ex, it will not be
3729 * updated.
3730 */
3731 if (likely(update_next_balance))
3732 rq->next_balance = next_balance;
3733 }
3734
3735 /*
3736 * run_rebalance_domains is triggered when needed from the scheduler tick.
3737 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3738 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3739 */
3740 static void run_rebalance_domains(struct softirq_action *h)
3741 {
3742 int this_cpu = smp_processor_id();
3743 struct rq *this_rq = cpu_rq(this_cpu);
3744 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3745 CPU_IDLE : CPU_NOT_IDLE;
3746
3747 rebalance_domains(this_cpu, idle);
3748
3749 #ifdef CONFIG_NO_HZ
3750 /*
3751 * If this cpu is the owner for idle load balancing, then do the
3752 * balancing on behalf of the other idle cpus whose ticks are
3753 * stopped.
3754 */
3755 if (this_rq->idle_at_tick &&
3756 atomic_read(&nohz.load_balancer) == this_cpu) {
3757 cpumask_t cpus = nohz.cpu_mask;
3758 struct rq *rq;
3759 int balance_cpu;
3760
3761 cpu_clear(this_cpu, cpus);
3762 for_each_cpu_mask(balance_cpu, cpus) {
3763 /*
3764 * If this cpu gets work to do, stop the load balancing
3765 * work being done for other cpus. Next load
3766 * balancing owner will pick it up.
3767 */
3768 if (need_resched())
3769 break;
3770
3771 rebalance_domains(balance_cpu, CPU_IDLE);
3772
3773 rq = cpu_rq(balance_cpu);
3774 if (time_after(this_rq->next_balance, rq->next_balance))
3775 this_rq->next_balance = rq->next_balance;
3776 }
3777 }
3778 #endif
3779 }
3780
3781 /*
3782 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3783 *
3784 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3785 * idle load balancing owner or decide to stop the periodic load balancing,
3786 * if the whole system is idle.
3787 */
3788 static inline void trigger_load_balance(struct rq *rq, int cpu)
3789 {
3790 #ifdef CONFIG_NO_HZ
3791 /*
3792 * If we were in the nohz mode recently and busy at the current
3793 * scheduler tick, then check if we need to nominate new idle
3794 * load balancer.
3795 */
3796 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3797 rq->in_nohz_recently = 0;
3798
3799 if (atomic_read(&nohz.load_balancer) == cpu) {
3800 cpu_clear(cpu, nohz.cpu_mask);
3801 atomic_set(&nohz.load_balancer, -1);
3802 }
3803
3804 if (atomic_read(&nohz.load_balancer) == -1) {
3805 /*
3806 * simple selection for now: Nominate the
3807 * first cpu in the nohz list to be the next
3808 * ilb owner.
3809 *
3810 * TBD: Traverse the sched domains and nominate
3811 * the nearest cpu in the nohz.cpu_mask.
3812 */
3813 int ilb = first_cpu(nohz.cpu_mask);
3814
3815 if (ilb < nr_cpu_ids)
3816 resched_cpu(ilb);
3817 }
3818 }
3819
3820 /*
3821 * If this cpu is idle and doing idle load balancing for all the
3822 * cpus with ticks stopped, is it time for that to stop?
3823 */
3824 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3825 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3826 resched_cpu(cpu);
3827 return;
3828 }
3829
3830 /*
3831 * If this cpu is idle and the idle load balancing is done by
3832 * someone else, then no need raise the SCHED_SOFTIRQ
3833 */
3834 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3835 cpu_isset(cpu, nohz.cpu_mask))
3836 return;
3837 #endif
3838 if (time_after_eq(jiffies, rq->next_balance))
3839 raise_softirq(SCHED_SOFTIRQ);
3840 }
3841
3842 #else /* CONFIG_SMP */
3843
3844 /*
3845 * on UP we do not need to balance between CPUs:
3846 */
3847 static inline void idle_balance(int cpu, struct rq *rq)
3848 {
3849 }
3850
3851 #endif
3852
3853 DEFINE_PER_CPU(struct kernel_stat, kstat);
3854
3855 EXPORT_PER_CPU_SYMBOL(kstat);
3856
3857 /*
3858 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3859 * that have not yet been banked in case the task is currently running.
3860 */
3861 unsigned long long task_sched_runtime(struct task_struct *p)
3862 {
3863 unsigned long flags;
3864 u64 ns, delta_exec;
3865 struct rq *rq;
3866
3867 rq = task_rq_lock(p, &flags);
3868 ns = p->se.sum_exec_runtime;
3869 if (task_current(rq, p)) {
3870 update_rq_clock(rq);
3871 delta_exec = rq->clock - p->se.exec_start;
3872 if ((s64)delta_exec > 0)
3873 ns += delta_exec;
3874 }
3875 task_rq_unlock(rq, &flags);
3876
3877 return ns;
3878 }
3879
3880 /*
3881 * Account user cpu time to a process.
3882 * @p: the process that the cpu time gets accounted to
3883 * @cputime: the cpu time spent in user space since the last update
3884 */
3885 void account_user_time(struct task_struct *p, cputime_t cputime)
3886 {
3887 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3888 cputime64_t tmp;
3889
3890 p->utime = cputime_add(p->utime, cputime);
3891
3892 /* Add user time to cpustat. */
3893 tmp = cputime_to_cputime64(cputime);
3894 if (TASK_NICE(p) > 0)
3895 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3896 else
3897 cpustat->user = cputime64_add(cpustat->user, tmp);
3898 }
3899
3900 /*
3901 * Account guest cpu time to a process.
3902 * @p: the process that the cpu time gets accounted to
3903 * @cputime: the cpu time spent in virtual machine since the last update
3904 */
3905 static void account_guest_time(struct task_struct *p, cputime_t cputime)
3906 {
3907 cputime64_t tmp;
3908 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3909
3910 tmp = cputime_to_cputime64(cputime);
3911
3912 p->utime = cputime_add(p->utime, cputime);
3913 p->gtime = cputime_add(p->gtime, cputime);
3914
3915 cpustat->user = cputime64_add(cpustat->user, tmp);
3916 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3917 }
3918
3919 /*
3920 * Account scaled user cpu time to a process.
3921 * @p: the process that the cpu time gets accounted to
3922 * @cputime: the cpu time spent in user space since the last update
3923 */
3924 void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
3925 {
3926 p->utimescaled = cputime_add(p->utimescaled, cputime);
3927 }
3928
3929 /*
3930 * Account system cpu time to a process.
3931 * @p: the process that the cpu time gets accounted to
3932 * @hardirq_offset: the offset to subtract from hardirq_count()
3933 * @cputime: the cpu time spent in kernel space since the last update
3934 */
3935 void account_system_time(struct task_struct *p, int hardirq_offset,
3936 cputime_t cputime)
3937 {
3938 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3939 struct rq *rq = this_rq();
3940 cputime64_t tmp;
3941
3942 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3943 account_guest_time(p, cputime);
3944 return;
3945 }
3946
3947 p->stime = cputime_add(p->stime, cputime);
3948
3949 /* Add system time to cpustat. */
3950 tmp = cputime_to_cputime64(cputime);
3951 if (hardirq_count() - hardirq_offset)
3952 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3953 else if (softirq_count())
3954 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3955 else if (p != rq->idle)
3956 cpustat->system = cputime64_add(cpustat->system, tmp);
3957 else if (atomic_read(&rq->nr_iowait) > 0)
3958 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3959 else
3960 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3961 /* Account for system time used */
3962 acct_update_integrals(p);
3963 }
3964
3965 /*
3966 * Account scaled system cpu time to a process.
3967 * @p: the process that the cpu time gets accounted to
3968 * @hardirq_offset: the offset to subtract from hardirq_count()
3969 * @cputime: the cpu time spent in kernel space since the last update
3970 */
3971 void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
3972 {
3973 p->stimescaled = cputime_add(p->stimescaled, cputime);
3974 }
3975
3976 /*
3977 * Account for involuntary wait time.
3978 * @p: the process from which the cpu time has been stolen
3979 * @steal: the cpu time spent in involuntary wait
3980 */
3981 void account_steal_time(struct task_struct *p, cputime_t steal)
3982 {
3983 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3984 cputime64_t tmp = cputime_to_cputime64(steal);
3985 struct rq *rq = this_rq();
3986
3987 if (p == rq->idle) {
3988 p->stime = cputime_add(p->stime, steal);
3989 if (atomic_read(&rq->nr_iowait) > 0)
3990 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3991 else
3992 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3993 } else
3994 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3995 }
3996
3997 /*
3998 * This function gets called by the timer code, with HZ frequency.
3999 * We call it with interrupts disabled.
4000 *
4001 * It also gets called by the fork code, when changing the parent's
4002 * timeslices.
4003 */
4004 void scheduler_tick(void)
4005 {
4006 int cpu = smp_processor_id();
4007 struct rq *rq = cpu_rq(cpu);
4008 struct task_struct *curr = rq->curr;
4009
4010 sched_clock_tick();
4011
4012 spin_lock(&rq->lock);
4013 update_rq_clock(rq);
4014 update_cpu_load(rq);
4015 curr->sched_class->task_tick(rq, curr, 0);
4016 spin_unlock(&rq->lock);
4017
4018 #ifdef CONFIG_SMP
4019 rq->idle_at_tick = idle_cpu(cpu);
4020 trigger_load_balance(rq, cpu);
4021 #endif
4022 }
4023
4024 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
4025
4026 void __kprobes add_preempt_count(int val)
4027 {
4028 /*
4029 * Underflow?
4030 */
4031 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4032 return;
4033 preempt_count() += val;
4034 /*
4035 * Spinlock count overflowing soon?
4036 */
4037 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4038 PREEMPT_MASK - 10);
4039 }
4040 EXPORT_SYMBOL(add_preempt_count);
4041
4042 void __kprobes sub_preempt_count(int val)
4043 {
4044 /*
4045 * Underflow?
4046 */
4047 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4048 return;
4049 /*
4050 * Is the spinlock portion underflowing?
4051 */
4052 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4053 !(preempt_count() & PREEMPT_MASK)))
4054 return;
4055
4056 preempt_count() -= val;
4057 }
4058 EXPORT_SYMBOL(sub_preempt_count);
4059
4060 #endif
4061
4062 /*
4063 * Print scheduling while atomic bug:
4064 */
4065 static noinline void __schedule_bug(struct task_struct *prev)
4066 {
4067 struct pt_regs *regs = get_irq_regs();
4068
4069 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4070 prev->comm, prev->pid, preempt_count());
4071
4072 debug_show_held_locks(prev);
4073 if (irqs_disabled())
4074 print_irqtrace_events(prev);
4075
4076 if (regs)
4077 show_regs(regs);
4078 else
4079 dump_stack();
4080 }
4081
4082 /*
4083 * Various schedule()-time debugging checks and statistics:
4084 */
4085 static inline void schedule_debug(struct task_struct *prev)
4086 {
4087 /*
4088 * Test if we are atomic. Since do_exit() needs to call into
4089 * schedule() atomically, we ignore that path for now.
4090 * Otherwise, whine if we are scheduling when we should not be.
4091 */
4092 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
4093 __schedule_bug(prev);
4094
4095 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4096
4097 schedstat_inc(this_rq(), sched_count);
4098 #ifdef CONFIG_SCHEDSTATS
4099 if (unlikely(prev->lock_depth >= 0)) {
4100 schedstat_inc(this_rq(), bkl_count);
4101 schedstat_inc(prev, sched_info.bkl_count);
4102 }
4103 #endif
4104 }
4105
4106 /*
4107 * Pick up the highest-prio task:
4108 */
4109 static inline struct task_struct *
4110 pick_next_task(struct rq *rq, struct task_struct *prev)
4111 {
4112 const struct sched_class *class;
4113 struct task_struct *p;
4114
4115 /*
4116 * Optimization: we know that if all tasks are in
4117 * the fair class we can call that function directly:
4118 */
4119 if (likely(rq->nr_running == rq->cfs.nr_running)) {
4120 p = fair_sched_class.pick_next_task(rq);
4121 if (likely(p))
4122 return p;
4123 }
4124
4125 class = sched_class_highest;
4126 for ( ; ; ) {
4127 p = class->pick_next_task(rq);
4128 if (p)
4129 return p;
4130 /*
4131 * Will never be NULL as the idle class always
4132 * returns a non-NULL p:
4133 */
4134 class = class->next;
4135 }
4136 }
4137
4138 /*
4139 * schedule() is the main scheduler function.
4140 */
4141 asmlinkage void __sched schedule(void)
4142 {
4143 struct task_struct *prev, *next;
4144 unsigned long *switch_count;
4145 struct rq *rq;
4146 int cpu;
4147
4148 need_resched:
4149 preempt_disable();
4150 cpu = smp_processor_id();
4151 rq = cpu_rq(cpu);
4152 rcu_qsctr_inc(cpu);
4153 prev = rq->curr;
4154 switch_count = &prev->nivcsw;
4155
4156 release_kernel_lock(prev);
4157 need_resched_nonpreemptible:
4158
4159 schedule_debug(prev);
4160
4161 hrtick_clear(rq);
4162
4163 /*
4164 * Do the rq-clock update outside the rq lock:
4165 */
4166 local_irq_disable();
4167 update_rq_clock(rq);
4168 spin_lock(&rq->lock);
4169 clear_tsk_need_resched(prev);
4170
4171 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4172 if (unlikely(signal_pending_state(prev->state, prev)))
4173 prev->state = TASK_RUNNING;
4174 else
4175 deactivate_task(rq, prev, 1);
4176 switch_count = &prev->nvcsw;
4177 }
4178
4179 #ifdef CONFIG_SMP
4180 if (prev->sched_class->pre_schedule)
4181 prev->sched_class->pre_schedule(rq, prev);
4182 #endif
4183
4184 if (unlikely(!rq->nr_running))
4185 idle_balance(cpu, rq);
4186
4187 prev->sched_class->put_prev_task(rq, prev);
4188 next = pick_next_task(rq, prev);
4189
4190 if (likely(prev != next)) {
4191 sched_info_switch(prev, next);
4192
4193 rq->nr_switches++;
4194 rq->curr = next;
4195 ++*switch_count;
4196
4197 context_switch(rq, prev, next); /* unlocks the rq */
4198 /*
4199 * the context switch might have flipped the stack from under
4200 * us, hence refresh the local variables.
4201 */
4202 cpu = smp_processor_id();
4203 rq = cpu_rq(cpu);
4204 } else
4205 spin_unlock_irq(&rq->lock);
4206
4207 hrtick_set(rq);
4208
4209 if (unlikely(reacquire_kernel_lock(current) < 0))
4210 goto need_resched_nonpreemptible;
4211
4212 preempt_enable_no_resched();
4213 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4214 goto need_resched;
4215 }
4216 EXPORT_SYMBOL(schedule);
4217
4218 #ifdef CONFIG_PREEMPT
4219 /*
4220 * this is the entry point to schedule() from in-kernel preemption
4221 * off of preempt_enable. Kernel preemptions off return from interrupt
4222 * occur there and call schedule directly.
4223 */
4224 asmlinkage void __sched preempt_schedule(void)
4225 {
4226 struct thread_info *ti = current_thread_info();
4227
4228 /*
4229 * If there is a non-zero preempt_count or interrupts are disabled,
4230 * we do not want to preempt the current task. Just return..
4231 */
4232 if (likely(ti->preempt_count || irqs_disabled()))
4233 return;
4234
4235 do {
4236 add_preempt_count(PREEMPT_ACTIVE);
4237 schedule();
4238 sub_preempt_count(PREEMPT_ACTIVE);
4239
4240 /*
4241 * Check again in case we missed a preemption opportunity
4242 * between schedule and now.
4243 */
4244 barrier();
4245 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4246 }
4247 EXPORT_SYMBOL(preempt_schedule);
4248
4249 /*
4250 * this is the entry point to schedule() from kernel preemption
4251 * off of irq context.
4252 * Note, that this is called and return with irqs disabled. This will
4253 * protect us against recursive calling from irq.
4254 */
4255 asmlinkage void __sched preempt_schedule_irq(void)
4256 {
4257 struct thread_info *ti = current_thread_info();
4258
4259 /* Catch callers which need to be fixed */
4260 BUG_ON(ti->preempt_count || !irqs_disabled());
4261
4262 do {
4263 add_preempt_count(PREEMPT_ACTIVE);
4264 local_irq_enable();
4265 schedule();
4266 local_irq_disable();
4267 sub_preempt_count(PREEMPT_ACTIVE);
4268
4269 /*
4270 * Check again in case we missed a preemption opportunity
4271 * between schedule and now.
4272 */
4273 barrier();
4274 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4275 }
4276
4277 #endif /* CONFIG_PREEMPT */
4278
4279 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4280 void *key)
4281 {
4282 return try_to_wake_up(curr->private, mode, sync);
4283 }
4284 EXPORT_SYMBOL(default_wake_function);
4285
4286 /*
4287 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4288 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4289 * number) then we wake all the non-exclusive tasks and one exclusive task.
4290 *
4291 * There are circumstances in which we can try to wake a task which has already
4292 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4293 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4294 */
4295 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4296 int nr_exclusive, int sync, void *key)
4297 {
4298 wait_queue_t *curr, *next;
4299
4300 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4301 unsigned flags = curr->flags;
4302
4303 if (curr->func(curr, mode, sync, key) &&
4304 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4305 break;
4306 }
4307 }
4308
4309 /**
4310 * __wake_up - wake up threads blocked on a waitqueue.
4311 * @q: the waitqueue
4312 * @mode: which threads
4313 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4314 * @key: is directly passed to the wakeup function
4315 */
4316 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4317 int nr_exclusive, void *key)
4318 {
4319 unsigned long flags;
4320
4321 spin_lock_irqsave(&q->lock, flags);
4322 __wake_up_common(q, mode, nr_exclusive, 0, key);
4323 spin_unlock_irqrestore(&q->lock, flags);
4324 }
4325 EXPORT_SYMBOL(__wake_up);
4326
4327 /*
4328 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4329 */
4330 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4331 {
4332 __wake_up_common(q, mode, 1, 0, NULL);
4333 }
4334
4335 /**
4336 * __wake_up_sync - wake up threads blocked on a waitqueue.
4337 * @q: the waitqueue
4338 * @mode: which threads
4339 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4340 *
4341 * The sync wakeup differs that the waker knows that it will schedule
4342 * away soon, so while the target thread will be woken up, it will not
4343 * be migrated to another CPU - ie. the two threads are 'synchronized'
4344 * with each other. This can prevent needless bouncing between CPUs.
4345 *
4346 * On UP it can prevent extra preemption.
4347 */
4348 void
4349 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4350 {
4351 unsigned long flags;
4352 int sync = 1;
4353
4354 if (unlikely(!q))
4355 return;
4356
4357 if (unlikely(!nr_exclusive))
4358 sync = 0;
4359
4360 spin_lock_irqsave(&q->lock, flags);
4361 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4362 spin_unlock_irqrestore(&q->lock, flags);
4363 }
4364 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4365
4366 void complete(struct completion *x)
4367 {
4368 unsigned long flags;
4369
4370 spin_lock_irqsave(&x->wait.lock, flags);
4371 x->done++;
4372 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4373 spin_unlock_irqrestore(&x->wait.lock, flags);
4374 }
4375 EXPORT_SYMBOL(complete);
4376
4377 void complete_all(struct completion *x)
4378 {
4379 unsigned long flags;
4380
4381 spin_lock_irqsave(&x->wait.lock, flags);
4382 x->done += UINT_MAX/2;
4383 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4384 spin_unlock_irqrestore(&x->wait.lock, flags);
4385 }
4386 EXPORT_SYMBOL(complete_all);
4387
4388 static inline long __sched
4389 do_wait_for_common(struct completion *x, long timeout, int state)
4390 {
4391 if (!x->done) {
4392 DECLARE_WAITQUEUE(wait, current);
4393
4394 wait.flags |= WQ_FLAG_EXCLUSIVE;
4395 __add_wait_queue_tail(&x->wait, &wait);
4396 do {
4397 if ((state == TASK_INTERRUPTIBLE &&
4398 signal_pending(current)) ||
4399 (state == TASK_KILLABLE &&
4400 fatal_signal_pending(current))) {
4401 timeout = -ERESTARTSYS;
4402 break;
4403 }
4404 __set_current_state(state);
4405 spin_unlock_irq(&x->wait.lock);
4406 timeout = schedule_timeout(timeout);
4407 spin_lock_irq(&x->wait.lock);
4408 } while (!x->done && timeout);
4409 __remove_wait_queue(&x->wait, &wait);
4410 if (!x->done)
4411 return timeout;
4412 }
4413 x->done--;
4414 return timeout ?: 1;
4415 }
4416
4417 static long __sched
4418 wait_for_common(struct completion *x, long timeout, int state)
4419 {
4420 might_sleep();
4421
4422 spin_lock_irq(&x->wait.lock);
4423 timeout = do_wait_for_common(x, timeout, state);
4424 spin_unlock_irq(&x->wait.lock);
4425 return timeout;
4426 }
4427
4428 void __sched wait_for_completion(struct completion *x)
4429 {
4430 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4431 }
4432 EXPORT_SYMBOL(wait_for_completion);
4433
4434 unsigned long __sched
4435 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4436 {
4437 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4438 }
4439 EXPORT_SYMBOL(wait_for_completion_timeout);
4440
4441 int __sched wait_for_completion_interruptible(struct completion *x)
4442 {
4443 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4444 if (t == -ERESTARTSYS)
4445 return t;
4446 return 0;
4447 }
4448 EXPORT_SYMBOL(wait_for_completion_interruptible);
4449
4450 unsigned long __sched
4451 wait_for_completion_interruptible_timeout(struct completion *x,
4452 unsigned long timeout)
4453 {
4454 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4455 }
4456 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4457
4458 int __sched wait_for_completion_killable(struct completion *x)
4459 {
4460 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4461 if (t == -ERESTARTSYS)
4462 return t;
4463 return 0;
4464 }
4465 EXPORT_SYMBOL(wait_for_completion_killable);
4466
4467 static long __sched
4468 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4469 {
4470 unsigned long flags;
4471 wait_queue_t wait;
4472
4473 init_waitqueue_entry(&wait, current);
4474
4475 __set_current_state(state);
4476
4477 spin_lock_irqsave(&q->lock, flags);
4478 __add_wait_queue(q, &wait);
4479 spin_unlock(&q->lock);
4480 timeout = schedule_timeout(timeout);
4481 spin_lock_irq(&q->lock);
4482 __remove_wait_queue(q, &wait);
4483 spin_unlock_irqrestore(&q->lock, flags);
4484
4485 return timeout;
4486 }
4487
4488 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4489 {
4490 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4491 }
4492 EXPORT_SYMBOL(interruptible_sleep_on);
4493
4494 long __sched
4495 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4496 {
4497 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4498 }
4499 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4500
4501 void __sched sleep_on(wait_queue_head_t *q)
4502 {
4503 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4504 }
4505 EXPORT_SYMBOL(sleep_on);
4506
4507 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4508 {
4509 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4510 }
4511 EXPORT_SYMBOL(sleep_on_timeout);
4512
4513 #ifdef CONFIG_RT_MUTEXES
4514
4515 /*
4516 * rt_mutex_setprio - set the current priority of a task
4517 * @p: task
4518 * @prio: prio value (kernel-internal form)
4519 *
4520 * This function changes the 'effective' priority of a task. It does
4521 * not touch ->normal_prio like __setscheduler().
4522 *
4523 * Used by the rt_mutex code to implement priority inheritance logic.
4524 */
4525 void rt_mutex_setprio(struct task_struct *p, int prio)
4526 {
4527 unsigned long flags;
4528 int oldprio, on_rq, running;
4529 struct rq *rq;
4530 const struct sched_class *prev_class = p->sched_class;
4531
4532 BUG_ON(prio < 0 || prio > MAX_PRIO);
4533
4534 rq = task_rq_lock(p, &flags);
4535 update_rq_clock(rq);
4536
4537 oldprio = p->prio;
4538 on_rq = p->se.on_rq;
4539 running = task_current(rq, p);
4540 if (on_rq)
4541 dequeue_task(rq, p, 0);
4542 if (running)
4543 p->sched_class->put_prev_task(rq, p);
4544
4545 if (rt_prio(prio))
4546 p->sched_class = &rt_sched_class;
4547 else
4548 p->sched_class = &fair_sched_class;
4549
4550 p->prio = prio;
4551
4552 if (running)
4553 p->sched_class->set_curr_task(rq);
4554 if (on_rq) {
4555 enqueue_task(rq, p, 0);
4556
4557 check_class_changed(rq, p, prev_class, oldprio, running);
4558 }
4559 task_rq_unlock(rq, &flags);
4560 }
4561
4562 #endif
4563
4564 void set_user_nice(struct task_struct *p, long nice)
4565 {
4566 int old_prio, delta, on_rq;
4567 unsigned long flags;
4568 struct rq *rq;
4569
4570 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4571 return;
4572 /*
4573 * We have to be careful, if called from sys_setpriority(),
4574 * the task might be in the middle of scheduling on another CPU.
4575 */
4576 rq = task_rq_lock(p, &flags);
4577 update_rq_clock(rq);
4578 /*
4579 * The RT priorities are set via sched_setscheduler(), but we still
4580 * allow the 'normal' nice value to be set - but as expected
4581 * it wont have any effect on scheduling until the task is
4582 * SCHED_FIFO/SCHED_RR:
4583 */
4584 if (task_has_rt_policy(p)) {
4585 p->static_prio = NICE_TO_PRIO(nice);
4586 goto out_unlock;
4587 }
4588 on_rq = p->se.on_rq;
4589 if (on_rq) {
4590 dequeue_task(rq, p, 0);
4591 dec_load(rq, p);
4592 }
4593
4594 p->static_prio = NICE_TO_PRIO(nice);
4595 set_load_weight(p);
4596 old_prio = p->prio;
4597 p->prio = effective_prio(p);
4598 delta = p->prio - old_prio;
4599
4600 if (on_rq) {
4601 enqueue_task(rq, p, 0);
4602 inc_load(rq, p);
4603 /*
4604 * If the task increased its priority or is running and
4605 * lowered its priority, then reschedule its CPU:
4606 */
4607 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4608 resched_task(rq->curr);
4609 }
4610 out_unlock:
4611 task_rq_unlock(rq, &flags);
4612 }
4613 EXPORT_SYMBOL(set_user_nice);
4614
4615 /*
4616 * can_nice - check if a task can reduce its nice value
4617 * @p: task
4618 * @nice: nice value
4619 */
4620 int can_nice(const struct task_struct *p, const int nice)
4621 {
4622 /* convert nice value [19,-20] to rlimit style value [1,40] */
4623 int nice_rlim = 20 - nice;
4624
4625 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4626 capable(CAP_SYS_NICE));
4627 }
4628
4629 #ifdef __ARCH_WANT_SYS_NICE
4630
4631 /*
4632 * sys_nice - change the priority of the current process.
4633 * @increment: priority increment
4634 *
4635 * sys_setpriority is a more generic, but much slower function that
4636 * does similar things.
4637 */
4638 asmlinkage long sys_nice(int increment)
4639 {
4640 long nice, retval;
4641
4642 /*
4643 * Setpriority might change our priority at the same moment.
4644 * We don't have to worry. Conceptually one call occurs first
4645 * and we have a single winner.
4646 */
4647 if (increment < -40)
4648 increment = -40;
4649 if (increment > 40)
4650 increment = 40;
4651
4652 nice = PRIO_TO_NICE(current->static_prio) + increment;
4653 if (nice < -20)
4654 nice = -20;
4655 if (nice > 19)
4656 nice = 19;
4657
4658 if (increment < 0 && !can_nice(current, nice))
4659 return -EPERM;
4660
4661 retval = security_task_setnice(current, nice);
4662 if (retval)
4663 return retval;
4664
4665 set_user_nice(current, nice);
4666 return 0;
4667 }
4668
4669 #endif
4670
4671 /**
4672 * task_prio - return the priority value of a given task.
4673 * @p: the task in question.
4674 *
4675 * This is the priority value as seen by users in /proc.
4676 * RT tasks are offset by -200. Normal tasks are centered
4677 * around 0, value goes from -16 to +15.
4678 */
4679 int task_prio(const struct task_struct *p)
4680 {
4681 return p->prio - MAX_RT_PRIO;
4682 }
4683
4684 /**
4685 * task_nice - return the nice value of a given task.
4686 * @p: the task in question.
4687 */
4688 int task_nice(const struct task_struct *p)
4689 {
4690 return TASK_NICE(p);
4691 }
4692 EXPORT_SYMBOL(task_nice);
4693
4694 /**
4695 * idle_cpu - is a given cpu idle currently?
4696 * @cpu: the processor in question.
4697 */
4698 int idle_cpu(int cpu)
4699 {
4700 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4701 }
4702
4703 /**
4704 * idle_task - return the idle task for a given cpu.
4705 * @cpu: the processor in question.
4706 */
4707 struct task_struct *idle_task(int cpu)
4708 {
4709 return cpu_rq(cpu)->idle;
4710 }
4711
4712 /**
4713 * find_process_by_pid - find a process with a matching PID value.
4714 * @pid: the pid in question.
4715 */
4716 static struct task_struct *find_process_by_pid(pid_t pid)
4717 {
4718 return pid ? find_task_by_vpid(pid) : current;
4719 }
4720
4721 /* Actually do priority change: must hold rq lock. */
4722 static void
4723 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4724 {
4725 BUG_ON(p->se.on_rq);
4726
4727 p->policy = policy;
4728 switch (p->policy) {
4729 case SCHED_NORMAL:
4730 case SCHED_BATCH:
4731 case SCHED_IDLE:
4732 p->sched_class = &fair_sched_class;
4733 break;
4734 case SCHED_FIFO:
4735 case SCHED_RR:
4736 p->sched_class = &rt_sched_class;
4737 break;
4738 }
4739
4740 p->rt_priority = prio;
4741 p->normal_prio = normal_prio(p);
4742 /* we are holding p->pi_lock already */
4743 p->prio = rt_mutex_getprio(p);
4744 set_load_weight(p);
4745 }
4746
4747 /**
4748 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4749 * @p: the task in question.
4750 * @policy: new policy.
4751 * @param: structure containing the new RT priority.
4752 *
4753 * NOTE that the task may be already dead.
4754 */
4755 int sched_setscheduler(struct task_struct *p, int policy,
4756 struct sched_param *param)
4757 {
4758 int retval, oldprio, oldpolicy = -1, on_rq, running;
4759 unsigned long flags;
4760 const struct sched_class *prev_class = p->sched_class;
4761 struct rq *rq;
4762
4763 /* may grab non-irq protected spin_locks */
4764 BUG_ON(in_interrupt());
4765 recheck:
4766 /* double check policy once rq lock held */
4767 if (policy < 0)
4768 policy = oldpolicy = p->policy;
4769 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4770 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4771 policy != SCHED_IDLE)
4772 return -EINVAL;
4773 /*
4774 * Valid priorities for SCHED_FIFO and SCHED_RR are
4775 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4776 * SCHED_BATCH and SCHED_IDLE is 0.
4777 */
4778 if (param->sched_priority < 0 ||
4779 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4780 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4781 return -EINVAL;
4782 if (rt_policy(policy) != (param->sched_priority != 0))
4783 return -EINVAL;
4784
4785 /*
4786 * Allow unprivileged RT tasks to decrease priority:
4787 */
4788 if (!capable(CAP_SYS_NICE)) {
4789 if (rt_policy(policy)) {
4790 unsigned long rlim_rtprio;
4791
4792 if (!lock_task_sighand(p, &flags))
4793 return -ESRCH;
4794 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4795 unlock_task_sighand(p, &flags);
4796
4797 /* can't set/change the rt policy */
4798 if (policy != p->policy && !rlim_rtprio)
4799 return -EPERM;
4800
4801 /* can't increase priority */
4802 if (param->sched_priority > p->rt_priority &&
4803 param->sched_priority > rlim_rtprio)
4804 return -EPERM;
4805 }
4806 /*
4807 * Like positive nice levels, dont allow tasks to
4808 * move out of SCHED_IDLE either:
4809 */
4810 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4811 return -EPERM;
4812
4813 /* can't change other user's priorities */
4814 if ((current->euid != p->euid) &&
4815 (current->euid != p->uid))
4816 return -EPERM;
4817 }
4818
4819 #ifdef CONFIG_RT_GROUP_SCHED
4820 /*
4821 * Do not allow realtime tasks into groups that have no runtime
4822 * assigned.
4823 */
4824 if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
4825 return -EPERM;
4826 #endif
4827
4828 retval = security_task_setscheduler(p, policy, param);
4829 if (retval)
4830 return retval;
4831 /*
4832 * make sure no PI-waiters arrive (or leave) while we are
4833 * changing the priority of the task:
4834 */
4835 spin_lock_irqsave(&p->pi_lock, flags);
4836 /*
4837 * To be able to change p->policy safely, the apropriate
4838 * runqueue lock must be held.
4839 */
4840 rq = __task_rq_lock(p);
4841 /* recheck policy now with rq lock held */
4842 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4843 policy = oldpolicy = -1;
4844 __task_rq_unlock(rq);
4845 spin_unlock_irqrestore(&p->pi_lock, flags);
4846 goto recheck;
4847 }
4848 update_rq_clock(rq);
4849 on_rq = p->se.on_rq;
4850 running = task_current(rq, p);
4851 if (on_rq)
4852 deactivate_task(rq, p, 0);
4853 if (running)
4854 p->sched_class->put_prev_task(rq, p);
4855
4856 oldprio = p->prio;
4857 __setscheduler(rq, p, policy, param->sched_priority);
4858
4859 if (running)
4860 p->sched_class->set_curr_task(rq);
4861 if (on_rq) {
4862 activate_task(rq, p, 0);
4863
4864 check_class_changed(rq, p, prev_class, oldprio, running);
4865 }
4866 __task_rq_unlock(rq);
4867 spin_unlock_irqrestore(&p->pi_lock, flags);
4868
4869 rt_mutex_adjust_pi(p);
4870
4871 return 0;
4872 }
4873 EXPORT_SYMBOL_GPL(sched_setscheduler);
4874
4875 static int
4876 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4877 {
4878 struct sched_param lparam;
4879 struct task_struct *p;
4880 int retval;
4881
4882 if (!param || pid < 0)
4883 return -EINVAL;
4884 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4885 return -EFAULT;
4886
4887 rcu_read_lock();
4888 retval = -ESRCH;
4889 p = find_process_by_pid(pid);
4890 if (p != NULL)
4891 retval = sched_setscheduler(p, policy, &lparam);
4892 rcu_read_unlock();
4893
4894 return retval;
4895 }
4896
4897 /**
4898 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4899 * @pid: the pid in question.
4900 * @policy: new policy.
4901 * @param: structure containing the new RT priority.
4902 */
4903 asmlinkage long
4904 sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4905 {
4906 /* negative values for policy are not valid */
4907 if (policy < 0)
4908 return -EINVAL;
4909
4910 return do_sched_setscheduler(pid, policy, param);
4911 }
4912
4913 /**
4914 * sys_sched_setparam - set/change the RT priority of a thread
4915 * @pid: the pid in question.
4916 * @param: structure containing the new RT priority.
4917 */
4918 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4919 {
4920 return do_sched_setscheduler(pid, -1, param);
4921 }
4922
4923 /**
4924 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4925 * @pid: the pid in question.
4926 */
4927 asmlinkage long sys_sched_getscheduler(pid_t pid)
4928 {
4929 struct task_struct *p;
4930 int retval;
4931
4932 if (pid < 0)
4933 return -EINVAL;
4934
4935 retval = -ESRCH;
4936 read_lock(&tasklist_lock);
4937 p = find_process_by_pid(pid);
4938 if (p) {
4939 retval = security_task_getscheduler(p);
4940 if (!retval)
4941 retval = p->policy;
4942 }
4943 read_unlock(&tasklist_lock);
4944 return retval;
4945 }
4946
4947 /**
4948 * sys_sched_getscheduler - get the RT priority of a thread
4949 * @pid: the pid in question.
4950 * @param: structure containing the RT priority.
4951 */
4952 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4953 {
4954 struct sched_param lp;
4955 struct task_struct *p;
4956 int retval;
4957
4958 if (!param || pid < 0)
4959 return -EINVAL;
4960
4961 read_lock(&tasklist_lock);
4962 p = find_process_by_pid(pid);
4963 retval = -ESRCH;
4964 if (!p)
4965 goto out_unlock;
4966
4967 retval = security_task_getscheduler(p);
4968 if (retval)
4969 goto out_unlock;
4970
4971 lp.sched_priority = p->rt_priority;
4972 read_unlock(&tasklist_lock);
4973
4974 /*
4975 * This one might sleep, we cannot do it with a spinlock held ...
4976 */
4977 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4978
4979 return retval;
4980
4981 out_unlock:
4982 read_unlock(&tasklist_lock);
4983 return retval;
4984 }
4985
4986 long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
4987 {
4988 cpumask_t cpus_allowed;
4989 cpumask_t new_mask = *in_mask;
4990 struct task_struct *p;
4991 int retval;
4992
4993 get_online_cpus();
4994 read_lock(&tasklist_lock);
4995
4996 p = find_process_by_pid(pid);
4997 if (!p) {
4998 read_unlock(&tasklist_lock);
4999 put_online_cpus();
5000 return -ESRCH;
5001 }
5002
5003 /*
5004 * It is not safe to call set_cpus_allowed with the
5005 * tasklist_lock held. We will bump the task_struct's
5006 * usage count and then drop tasklist_lock.
5007 */
5008 get_task_struct(p);
5009 read_unlock(&tasklist_lock);
5010
5011 retval = -EPERM;
5012 if ((current->euid != p->euid) && (current->euid != p->uid) &&
5013 !capable(CAP_SYS_NICE))
5014 goto out_unlock;
5015
5016 retval = security_task_setscheduler(p, 0, NULL);
5017 if (retval)
5018 goto out_unlock;
5019
5020 cpuset_cpus_allowed(p, &cpus_allowed);
5021 cpus_and(new_mask, new_mask, cpus_allowed);
5022 again:
5023 retval = set_cpus_allowed_ptr(p, &new_mask);
5024
5025 if (!retval) {
5026 cpuset_cpus_allowed(p, &cpus_allowed);
5027 if (!cpus_subset(new_mask, cpus_allowed)) {
5028 /*
5029 * We must have raced with a concurrent cpuset
5030 * update. Just reset the cpus_allowed to the
5031 * cpuset's cpus_allowed
5032 */
5033 new_mask = cpus_allowed;
5034 goto again;
5035 }
5036 }
5037 out_unlock:
5038 put_task_struct(p);
5039 put_online_cpus();
5040 return retval;
5041 }
5042
5043 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5044 cpumask_t *new_mask)
5045 {
5046 if (len < sizeof(cpumask_t)) {
5047 memset(new_mask, 0, sizeof(cpumask_t));
5048 } else if (len > sizeof(cpumask_t)) {
5049 len = sizeof(cpumask_t);
5050 }
5051 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5052 }
5053
5054 /**
5055 * sys_sched_setaffinity - set the cpu affinity of a process
5056 * @pid: pid of the process
5057 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5058 * @user_mask_ptr: user-space pointer to the new cpu mask
5059 */
5060 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5061 unsigned long __user *user_mask_ptr)
5062 {
5063 cpumask_t new_mask;
5064 int retval;
5065
5066 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
5067 if (retval)
5068 return retval;
5069
5070 return sched_setaffinity(pid, &new_mask);
5071 }
5072
5073 /*
5074 * Represents all cpu's present in the system
5075 * In systems capable of hotplug, this map could dynamically grow
5076 * as new cpu's are detected in the system via any platform specific
5077 * method, such as ACPI for e.g.
5078 */
5079
5080 cpumask_t cpu_present_map __read_mostly;
5081 EXPORT_SYMBOL(cpu_present_map);
5082
5083 #ifndef CONFIG_SMP
5084 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
5085 EXPORT_SYMBOL(cpu_online_map);
5086
5087 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
5088 EXPORT_SYMBOL(cpu_possible_map);
5089 #endif
5090
5091 long sched_getaffinity(pid_t pid, cpumask_t *mask)
5092 {
5093 struct task_struct *p;
5094 int retval;
5095
5096 get_online_cpus();
5097 read_lock(&tasklist_lock);
5098
5099 retval = -ESRCH;
5100 p = find_process_by_pid(pid);
5101 if (!p)
5102 goto out_unlock;
5103
5104 retval = security_task_getscheduler(p);
5105 if (retval)
5106 goto out_unlock;
5107
5108 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
5109
5110 out_unlock:
5111 read_unlock(&tasklist_lock);
5112 put_online_cpus();
5113
5114 return retval;
5115 }
5116
5117 /**
5118 * sys_sched_getaffinity - get the cpu affinity of a process
5119 * @pid: pid of the process
5120 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5121 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5122 */
5123 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5124 unsigned long __user *user_mask_ptr)
5125 {
5126 int ret;
5127 cpumask_t mask;
5128
5129 if (len < sizeof(cpumask_t))
5130 return -EINVAL;
5131
5132 ret = sched_getaffinity(pid, &mask);
5133 if (ret < 0)
5134 return ret;
5135
5136 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
5137 return -EFAULT;
5138
5139 return sizeof(cpumask_t);
5140 }
5141
5142 /**
5143 * sys_sched_yield - yield the current processor to other threads.
5144 *
5145 * This function yields the current CPU to other tasks. If there are no
5146 * other threads running on this CPU then this function will return.
5147 */
5148 asmlinkage long sys_sched_yield(void)
5149 {
5150 struct rq *rq = this_rq_lock();
5151
5152 schedstat_inc(rq, yld_count);
5153 current->sched_class->yield_task(rq);
5154
5155 /*
5156 * Since we are going to call schedule() anyway, there's
5157 * no need to preempt or enable interrupts:
5158 */
5159 __release(rq->lock);
5160 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5161 _raw_spin_unlock(&rq->lock);
5162 preempt_enable_no_resched();
5163
5164 schedule();
5165
5166 return 0;
5167 }
5168
5169 static void __cond_resched(void)
5170 {
5171 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5172 __might_sleep(__FILE__, __LINE__);
5173 #endif
5174 /*
5175 * The BKS might be reacquired before we have dropped
5176 * PREEMPT_ACTIVE, which could trigger a second
5177 * cond_resched() call.
5178 */
5179 do {
5180 add_preempt_count(PREEMPT_ACTIVE);
5181 schedule();
5182 sub_preempt_count(PREEMPT_ACTIVE);
5183 } while (need_resched());
5184 }
5185
5186 int __sched _cond_resched(void)
5187 {
5188 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5189 system_state == SYSTEM_RUNNING) {
5190 __cond_resched();
5191 return 1;
5192 }
5193 return 0;
5194 }
5195 EXPORT_SYMBOL(_cond_resched);
5196
5197 /*
5198 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5199 * call schedule, and on return reacquire the lock.
5200 *
5201 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5202 * operations here to prevent schedule() from being called twice (once via
5203 * spin_unlock(), once by hand).
5204 */
5205 int cond_resched_lock(spinlock_t *lock)
5206 {
5207 int resched = need_resched() && system_state == SYSTEM_RUNNING;
5208 int ret = 0;
5209
5210 if (spin_needbreak(lock) || resched) {
5211 spin_unlock(lock);
5212 if (resched && need_resched())
5213 __cond_resched();
5214 else
5215 cpu_relax();
5216 ret = 1;
5217 spin_lock(lock);
5218 }
5219 return ret;
5220 }
5221 EXPORT_SYMBOL(cond_resched_lock);
5222
5223 int __sched cond_resched_softirq(void)
5224 {
5225 BUG_ON(!in_softirq());
5226
5227 if (need_resched() && system_state == SYSTEM_RUNNING) {
5228 local_bh_enable();
5229 __cond_resched();
5230 local_bh_disable();
5231 return 1;
5232 }
5233 return 0;
5234 }
5235 EXPORT_SYMBOL(cond_resched_softirq);
5236
5237 /**
5238 * yield - yield the current processor to other threads.
5239 *
5240 * This is a shortcut for kernel-space yielding - it marks the
5241 * thread runnable and calls sys_sched_yield().
5242 */
5243 void __sched yield(void)
5244 {
5245 set_current_state(TASK_RUNNING);
5246 sys_sched_yield();
5247 }
5248 EXPORT_SYMBOL(yield);
5249
5250 /*
5251 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5252 * that process accounting knows that this is a task in IO wait state.
5253 *
5254 * But don't do that if it is a deliberate, throttling IO wait (this task
5255 * has set its backing_dev_info: the queue against which it should throttle)
5256 */
5257 void __sched io_schedule(void)
5258 {
5259 struct rq *rq = &__raw_get_cpu_var(runqueues);
5260
5261 delayacct_blkio_start();
5262 atomic_inc(&rq->nr_iowait);
5263 schedule();
5264 atomic_dec(&rq->nr_iowait);
5265 delayacct_blkio_end();
5266 }
5267 EXPORT_SYMBOL(io_schedule);
5268
5269 long __sched io_schedule_timeout(long timeout)
5270 {
5271 struct rq *rq = &__raw_get_cpu_var(runqueues);
5272 long ret;
5273
5274 delayacct_blkio_start();
5275 atomic_inc(&rq->nr_iowait);
5276 ret = schedule_timeout(timeout);
5277 atomic_dec(&rq->nr_iowait);
5278 delayacct_blkio_end();
5279 return ret;
5280 }
5281
5282 /**
5283 * sys_sched_get_priority_max - return maximum RT priority.
5284 * @policy: scheduling class.
5285 *
5286 * this syscall returns the maximum rt_priority that can be used
5287 * by a given scheduling class.
5288 */
5289 asmlinkage long sys_sched_get_priority_max(int policy)
5290 {
5291 int ret = -EINVAL;
5292
5293 switch (policy) {
5294 case SCHED_FIFO:
5295 case SCHED_RR:
5296 ret = MAX_USER_RT_PRIO-1;
5297 break;
5298 case SCHED_NORMAL:
5299 case SCHED_BATCH:
5300 case SCHED_IDLE:
5301 ret = 0;
5302 break;
5303 }
5304 return ret;
5305 }
5306
5307 /**
5308 * sys_sched_get_priority_min - return minimum RT priority.
5309 * @policy: scheduling class.
5310 *
5311 * this syscall returns the minimum rt_priority that can be used
5312 * by a given scheduling class.
5313 */
5314 asmlinkage long sys_sched_get_priority_min(int policy)
5315 {
5316 int ret = -EINVAL;
5317
5318 switch (policy) {
5319 case SCHED_FIFO:
5320 case SCHED_RR:
5321 ret = 1;
5322 break;
5323 case SCHED_NORMAL:
5324 case SCHED_BATCH:
5325 case SCHED_IDLE:
5326 ret = 0;
5327 }
5328 return ret;
5329 }
5330
5331 /**
5332 * sys_sched_rr_get_interval - return the default timeslice of a process.
5333 * @pid: pid of the process.
5334 * @interval: userspace pointer to the timeslice value.
5335 *
5336 * this syscall writes the default timeslice value of a given process
5337 * into the user-space timespec buffer. A value of '0' means infinity.
5338 */
5339 asmlinkage
5340 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5341 {
5342 struct task_struct *p;
5343 unsigned int time_slice;
5344 int retval;
5345 struct timespec t;
5346
5347 if (pid < 0)
5348 return -EINVAL;
5349
5350 retval = -ESRCH;
5351 read_lock(&tasklist_lock);
5352 p = find_process_by_pid(pid);
5353 if (!p)
5354 goto out_unlock;
5355
5356 retval = security_task_getscheduler(p);
5357 if (retval)
5358 goto out_unlock;
5359
5360 /*
5361 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5362 * tasks that are on an otherwise idle runqueue:
5363 */
5364 time_slice = 0;
5365 if (p->policy == SCHED_RR) {
5366 time_slice = DEF_TIMESLICE;
5367 } else if (p->policy != SCHED_FIFO) {
5368 struct sched_entity *se = &p->se;
5369 unsigned long flags;
5370 struct rq *rq;
5371
5372 rq = task_rq_lock(p, &flags);
5373 if (rq->cfs.load.weight)
5374 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
5375 task_rq_unlock(rq, &flags);
5376 }
5377 read_unlock(&tasklist_lock);
5378 jiffies_to_timespec(time_slice, &t);
5379 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5380 return retval;
5381
5382 out_unlock:
5383 read_unlock(&tasklist_lock);
5384 return retval;
5385 }
5386
5387 static const char stat_nam[] = "RSDTtZX";
5388
5389 void sched_show_task(struct task_struct *p)
5390 {
5391 unsigned long free = 0;
5392 unsigned state;
5393
5394 state = p->state ? __ffs(p->state) + 1 : 0;
5395 printk(KERN_INFO "%-13.13s %c", p->comm,
5396 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5397 #if BITS_PER_LONG == 32
5398 if (state == TASK_RUNNING)
5399 printk(KERN_CONT " running ");
5400 else
5401 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5402 #else
5403 if (state == TASK_RUNNING)
5404 printk(KERN_CONT " running task ");
5405 else
5406 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5407 #endif
5408 #ifdef CONFIG_DEBUG_STACK_USAGE
5409 {
5410 unsigned long *n = end_of_stack(p);
5411 while (!*n)
5412 n++;
5413 free = (unsigned long)n - (unsigned long)end_of_stack(p);
5414 }
5415 #endif
5416 printk(KERN_CONT "%5lu %5d %6d\n", free,
5417 task_pid_nr(p), task_pid_nr(p->real_parent));
5418
5419 show_stack(p, NULL);
5420 }
5421
5422 void show_state_filter(unsigned long state_filter)
5423 {
5424 struct task_struct *g, *p;
5425
5426 #if BITS_PER_LONG == 32
5427 printk(KERN_INFO
5428 " task PC stack pid father\n");
5429 #else
5430 printk(KERN_INFO
5431 " task PC stack pid father\n");
5432 #endif
5433 read_lock(&tasklist_lock);
5434 do_each_thread(g, p) {
5435 /*
5436 * reset the NMI-timeout, listing all files on a slow
5437 * console might take alot of time:
5438 */
5439 touch_nmi_watchdog();
5440 if (!state_filter || (p->state & state_filter))
5441 sched_show_task(p);
5442 } while_each_thread(g, p);
5443
5444 touch_all_softlockup_watchdogs();
5445
5446 #ifdef CONFIG_SCHED_DEBUG
5447 sysrq_sched_debug_show();
5448 #endif
5449 read_unlock(&tasklist_lock);
5450 /*
5451 * Only show locks if all tasks are dumped:
5452 */
5453 if (state_filter == -1)
5454 debug_show_all_locks();
5455 }
5456
5457 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5458 {
5459 idle->sched_class = &idle_sched_class;
5460 }
5461
5462 /**
5463 * init_idle - set up an idle thread for a given CPU
5464 * @idle: task in question
5465 * @cpu: cpu the idle task belongs to
5466 *
5467 * NOTE: this function does not set the idle thread's NEED_RESCHED
5468 * flag, to make booting more robust.
5469 */
5470 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5471 {
5472 struct rq *rq = cpu_rq(cpu);
5473 unsigned long flags;
5474
5475 __sched_fork(idle);
5476 idle->se.exec_start = sched_clock();
5477
5478 idle->prio = idle->normal_prio = MAX_PRIO;
5479 idle->cpus_allowed = cpumask_of_cpu(cpu);
5480 __set_task_cpu(idle, cpu);
5481
5482 spin_lock_irqsave(&rq->lock, flags);
5483 rq->curr = rq->idle = idle;
5484 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5485 idle->oncpu = 1;
5486 #endif
5487 spin_unlock_irqrestore(&rq->lock, flags);
5488
5489 /* Set the preempt count _outside_ the spinlocks! */
5490 #if defined(CONFIG_PREEMPT)
5491 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5492 #else
5493 task_thread_info(idle)->preempt_count = 0;
5494 #endif
5495 /*
5496 * The idle tasks have their own, simple scheduling class:
5497 */
5498 idle->sched_class = &idle_sched_class;
5499 }
5500
5501 /*
5502 * In a system that switches off the HZ timer nohz_cpu_mask
5503 * indicates which cpus entered this state. This is used
5504 * in the rcu update to wait only for active cpus. For system
5505 * which do not switch off the HZ timer nohz_cpu_mask should
5506 * always be CPU_MASK_NONE.
5507 */
5508 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5509
5510 /*
5511 * Increase the granularity value when there are more CPUs,
5512 * because with more CPUs the 'effective latency' as visible
5513 * to users decreases. But the relationship is not linear,
5514 * so pick a second-best guess by going with the log2 of the
5515 * number of CPUs.
5516 *
5517 * This idea comes from the SD scheduler of Con Kolivas:
5518 */
5519 static inline void sched_init_granularity(void)
5520 {
5521 unsigned int factor = 1 + ilog2(num_online_cpus());
5522 const unsigned long limit = 200000000;
5523
5524 sysctl_sched_min_granularity *= factor;
5525 if (sysctl_sched_min_granularity > limit)
5526 sysctl_sched_min_granularity = limit;
5527
5528 sysctl_sched_latency *= factor;
5529 if (sysctl_sched_latency > limit)
5530 sysctl_sched_latency = limit;
5531
5532 sysctl_sched_wakeup_granularity *= factor;
5533 }
5534
5535 #ifdef CONFIG_SMP
5536 /*
5537 * This is how migration works:
5538 *
5539 * 1) we queue a struct migration_req structure in the source CPU's
5540 * runqueue and wake up that CPU's migration thread.
5541 * 2) we down() the locked semaphore => thread blocks.
5542 * 3) migration thread wakes up (implicitly it forces the migrated
5543 * thread off the CPU)
5544 * 4) it gets the migration request and checks whether the migrated
5545 * task is still in the wrong runqueue.
5546 * 5) if it's in the wrong runqueue then the migration thread removes
5547 * it and puts it into the right queue.
5548 * 6) migration thread up()s the semaphore.
5549 * 7) we wake up and the migration is done.
5550 */
5551
5552 /*
5553 * Change a given task's CPU affinity. Migrate the thread to a
5554 * proper CPU and schedule it away if the CPU it's executing on
5555 * is removed from the allowed bitmask.
5556 *
5557 * NOTE: the caller must have a valid reference to the task, the
5558 * task must not exit() & deallocate itself prematurely. The
5559 * call is not atomic; no spinlocks may be held.
5560 */
5561 int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
5562 {
5563 struct migration_req req;
5564 unsigned long flags;
5565 struct rq *rq;
5566 int ret = 0;
5567
5568 rq = task_rq_lock(p, &flags);
5569 if (!cpus_intersects(*new_mask, cpu_online_map)) {
5570 ret = -EINVAL;
5571 goto out;
5572 }
5573
5574 if (p->sched_class->set_cpus_allowed)
5575 p->sched_class->set_cpus_allowed(p, new_mask);
5576 else {
5577 p->cpus_allowed = *new_mask;
5578 p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
5579 }
5580
5581 /* Can the task run on the task's current CPU? If so, we're done */
5582 if (cpu_isset(task_cpu(p), *new_mask))
5583 goto out;
5584
5585 if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
5586 /* Need help from migration thread: drop lock and wait. */
5587 task_rq_unlock(rq, &flags);
5588 wake_up_process(rq->migration_thread);
5589 wait_for_completion(&req.done);
5590 tlb_migrate_finish(p->mm);
5591 return 0;
5592 }
5593 out:
5594 task_rq_unlock(rq, &flags);
5595
5596 return ret;
5597 }
5598 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5599
5600 /*
5601 * Move (not current) task off this cpu, onto dest cpu. We're doing
5602 * this because either it can't run here any more (set_cpus_allowed()
5603 * away from this CPU, or CPU going down), or because we're
5604 * attempting to rebalance this task on exec (sched_exec).
5605 *
5606 * So we race with normal scheduler movements, but that's OK, as long
5607 * as the task is no longer on this CPU.
5608 *
5609 * Returns non-zero if task was successfully migrated.
5610 */
5611 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5612 {
5613 struct rq *rq_dest, *rq_src;
5614 int ret = 0, on_rq;
5615
5616 if (unlikely(cpu_is_offline(dest_cpu)))
5617 return ret;
5618
5619 rq_src = cpu_rq(src_cpu);
5620 rq_dest = cpu_rq(dest_cpu);
5621
5622 double_rq_lock(rq_src, rq_dest);
5623 /* Already moved. */
5624 if (task_cpu(p) != src_cpu)
5625 goto out;
5626 /* Affinity changed (again). */
5627 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5628 goto out;
5629
5630 on_rq = p->se.on_rq;
5631 if (on_rq)
5632 deactivate_task(rq_src, p, 0);
5633
5634 set_task_cpu(p, dest_cpu);
5635 if (on_rq) {
5636 activate_task(rq_dest, p, 0);
5637 check_preempt_curr(rq_dest, p);
5638 }
5639 ret = 1;
5640 out:
5641 double_rq_unlock(rq_src, rq_dest);
5642 return ret;
5643 }
5644
5645 /*
5646 * migration_thread - this is a highprio system thread that performs
5647 * thread migration by bumping thread off CPU then 'pushing' onto
5648 * another runqueue.
5649 */
5650 static int migration_thread(void *data)
5651 {
5652 int cpu = (long)data;
5653 struct rq *rq;
5654
5655 rq = cpu_rq(cpu);
5656 BUG_ON(rq->migration_thread != current);
5657
5658 set_current_state(TASK_INTERRUPTIBLE);
5659 while (!kthread_should_stop()) {
5660 struct migration_req *req;
5661 struct list_head *head;
5662
5663 spin_lock_irq(&rq->lock);
5664
5665 if (cpu_is_offline(cpu)) {
5666 spin_unlock_irq(&rq->lock);
5667 goto wait_to_die;
5668 }
5669
5670 if (rq->active_balance) {
5671 active_load_balance(rq, cpu);
5672 rq->active_balance = 0;
5673 }
5674
5675 head = &rq->migration_queue;
5676
5677 if (list_empty(head)) {
5678 spin_unlock_irq(&rq->lock);
5679 schedule();
5680 set_current_state(TASK_INTERRUPTIBLE);
5681 continue;
5682 }
5683 req = list_entry(head->next, struct migration_req, list);
5684 list_del_init(head->next);
5685
5686 spin_unlock(&rq->lock);
5687 __migrate_task(req->task, cpu, req->dest_cpu);
5688 local_irq_enable();
5689
5690 complete(&req->done);
5691 }
5692 __set_current_state(TASK_RUNNING);
5693 return 0;
5694
5695 wait_to_die:
5696 /* Wait for kthread_stop */
5697 set_current_state(TASK_INTERRUPTIBLE);
5698 while (!kthread_should_stop()) {
5699 schedule();
5700 set_current_state(TASK_INTERRUPTIBLE);
5701 }
5702 __set_current_state(TASK_RUNNING);
5703 return 0;
5704 }
5705
5706 #ifdef CONFIG_HOTPLUG_CPU
5707
5708 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5709 {
5710 int ret;
5711
5712 local_irq_disable();
5713 ret = __migrate_task(p, src_cpu, dest_cpu);
5714 local_irq_enable();
5715 return ret;
5716 }
5717
5718 /*
5719 * Figure out where task on dead CPU should go, use force if necessary.
5720 * NOTE: interrupts should be disabled by the caller
5721 */
5722 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5723 {
5724 unsigned long flags;
5725 cpumask_t mask;
5726 struct rq *rq;
5727 int dest_cpu;
5728
5729 do {
5730 /* On same node? */
5731 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5732 cpus_and(mask, mask, p->cpus_allowed);
5733 dest_cpu = any_online_cpu(mask);
5734
5735 /* On any allowed CPU? */
5736 if (dest_cpu >= nr_cpu_ids)
5737 dest_cpu = any_online_cpu(p->cpus_allowed);
5738
5739 /* No more Mr. Nice Guy. */
5740 if (dest_cpu >= nr_cpu_ids) {
5741 cpumask_t cpus_allowed;
5742
5743 cpuset_cpus_allowed_locked(p, &cpus_allowed);
5744 /*
5745 * Try to stay on the same cpuset, where the
5746 * current cpuset may be a subset of all cpus.
5747 * The cpuset_cpus_allowed_locked() variant of
5748 * cpuset_cpus_allowed() will not block. It must be
5749 * called within calls to cpuset_lock/cpuset_unlock.
5750 */
5751 rq = task_rq_lock(p, &flags);
5752 p->cpus_allowed = cpus_allowed;
5753 dest_cpu = any_online_cpu(p->cpus_allowed);
5754 task_rq_unlock(rq, &flags);
5755
5756 /*
5757 * Don't tell them about moving exiting tasks or
5758 * kernel threads (both mm NULL), since they never
5759 * leave kernel.
5760 */
5761 if (p->mm && printk_ratelimit()) {
5762 printk(KERN_INFO "process %d (%s) no "
5763 "longer affine to cpu%d\n",
5764 task_pid_nr(p), p->comm, dead_cpu);
5765 }
5766 }
5767 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
5768 }
5769
5770 /*
5771 * While a dead CPU has no uninterruptible tasks queued at this point,
5772 * it might still have a nonzero ->nr_uninterruptible counter, because
5773 * for performance reasons the counter is not stricly tracking tasks to
5774 * their home CPUs. So we just add the counter to another CPU's counter,
5775 * to keep the global sum constant after CPU-down:
5776 */
5777 static void migrate_nr_uninterruptible(struct rq *rq_src)
5778 {
5779 struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
5780 unsigned long flags;
5781
5782 local_irq_save(flags);
5783 double_rq_lock(rq_src, rq_dest);
5784 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5785 rq_src->nr_uninterruptible = 0;
5786 double_rq_unlock(rq_src, rq_dest);
5787 local_irq_restore(flags);
5788 }
5789
5790 /* Run through task list and migrate tasks from the dead cpu. */
5791 static void migrate_live_tasks(int src_cpu)
5792 {
5793 struct task_struct *p, *t;
5794
5795 read_lock(&tasklist_lock);
5796
5797 do_each_thread(t, p) {
5798 if (p == current)
5799 continue;
5800
5801 if (task_cpu(p) == src_cpu)
5802 move_task_off_dead_cpu(src_cpu, p);
5803 } while_each_thread(t, p);
5804
5805 read_unlock(&tasklist_lock);
5806 }
5807
5808 /*
5809 * Schedules idle task to be the next runnable task on current CPU.
5810 * It does so by boosting its priority to highest possible.
5811 * Used by CPU offline code.
5812 */
5813 void sched_idle_next(void)
5814 {
5815 int this_cpu = smp_processor_id();
5816 struct rq *rq = cpu_rq(this_cpu);
5817 struct task_struct *p = rq->idle;
5818 unsigned long flags;
5819
5820 /* cpu has to be offline */
5821 BUG_ON(cpu_online(this_cpu));
5822
5823 /*
5824 * Strictly not necessary since rest of the CPUs are stopped by now
5825 * and interrupts disabled on the current cpu.
5826 */
5827 spin_lock_irqsave(&rq->lock, flags);
5828
5829 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5830
5831 update_rq_clock(rq);
5832 activate_task(rq, p, 0);
5833
5834 spin_unlock_irqrestore(&rq->lock, flags);
5835 }
5836
5837 /*
5838 * Ensures that the idle task is using init_mm right before its cpu goes
5839 * offline.
5840 */
5841 void idle_task_exit(void)
5842 {
5843 struct mm_struct *mm = current->active_mm;
5844
5845 BUG_ON(cpu_online(smp_processor_id()));
5846
5847 if (mm != &init_mm)
5848 switch_mm(mm, &init_mm, current);
5849 mmdrop(mm);
5850 }
5851
5852 /* called under rq->lock with disabled interrupts */
5853 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5854 {
5855 struct rq *rq = cpu_rq(dead_cpu);
5856
5857 /* Must be exiting, otherwise would be on tasklist. */
5858 BUG_ON(!p->exit_state);
5859
5860 /* Cannot have done final schedule yet: would have vanished. */
5861 BUG_ON(p->state == TASK_DEAD);
5862
5863 get_task_struct(p);
5864
5865 /*
5866 * Drop lock around migration; if someone else moves it,
5867 * that's OK. No task can be added to this CPU, so iteration is
5868 * fine.
5869 */
5870 spin_unlock_irq(&rq->lock);
5871 move_task_off_dead_cpu(dead_cpu, p);
5872 spin_lock_irq(&rq->lock);
5873
5874 put_task_struct(p);
5875 }
5876
5877 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5878 static void migrate_dead_tasks(unsigned int dead_cpu)
5879 {
5880 struct rq *rq = cpu_rq(dead_cpu);
5881 struct task_struct *next;
5882
5883 for ( ; ; ) {
5884 if (!rq->nr_running)
5885 break;
5886 update_rq_clock(rq);
5887 next = pick_next_task(rq, rq->curr);
5888 if (!next)
5889 break;
5890 migrate_dead(dead_cpu, next);
5891
5892 }
5893 }
5894 #endif /* CONFIG_HOTPLUG_CPU */
5895
5896 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5897
5898 static struct ctl_table sd_ctl_dir[] = {
5899 {
5900 .procname = "sched_domain",
5901 .mode = 0555,
5902 },
5903 {0, },
5904 };
5905
5906 static struct ctl_table sd_ctl_root[] = {
5907 {
5908 .ctl_name = CTL_KERN,
5909 .procname = "kernel",
5910 .mode = 0555,
5911 .child = sd_ctl_dir,
5912 },
5913 {0, },
5914 };
5915
5916 static struct ctl_table *sd_alloc_ctl_entry(int n)
5917 {
5918 struct ctl_table *entry =
5919 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5920
5921 return entry;
5922 }
5923
5924 static void sd_free_ctl_entry(struct ctl_table **tablep)
5925 {
5926 struct ctl_table *entry;
5927
5928 /*
5929 * In the intermediate directories, both the child directory and
5930 * procname are dynamically allocated and could fail but the mode
5931 * will always be set. In the lowest directory the names are
5932 * static strings and all have proc handlers.
5933 */
5934 for (entry = *tablep; entry->mode; entry++) {
5935 if (entry->child)
5936 sd_free_ctl_entry(&entry->child);
5937 if (entry->proc_handler == NULL)
5938 kfree(entry->procname);
5939 }
5940
5941 kfree(*tablep);
5942 *tablep = NULL;
5943 }
5944
5945 static void
5946 set_table_entry(struct ctl_table *entry,
5947 const char *procname, void *data, int maxlen,
5948 mode_t mode, proc_handler *proc_handler)
5949 {
5950 entry->procname = procname;
5951 entry->data = data;
5952 entry->maxlen = maxlen;
5953 entry->mode = mode;
5954 entry->proc_handler = proc_handler;
5955 }
5956
5957 static struct ctl_table *
5958 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5959 {
5960 struct ctl_table *table = sd_alloc_ctl_entry(12);
5961
5962 if (table == NULL)
5963 return NULL;
5964
5965 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5966 sizeof(long), 0644, proc_doulongvec_minmax);
5967 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5968 sizeof(long), 0644, proc_doulongvec_minmax);
5969 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5970 sizeof(int), 0644, proc_dointvec_minmax);
5971 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5972 sizeof(int), 0644, proc_dointvec_minmax);
5973 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5974 sizeof(int), 0644, proc_dointvec_minmax);
5975 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5976 sizeof(int), 0644, proc_dointvec_minmax);
5977 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5978 sizeof(int), 0644, proc_dointvec_minmax);
5979 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5980 sizeof(int), 0644, proc_dointvec_minmax);
5981 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5982 sizeof(int), 0644, proc_dointvec_minmax);
5983 set_table_entry(&table[9], "cache_nice_tries",
5984 &sd->cache_nice_tries,
5985 sizeof(int), 0644, proc_dointvec_minmax);
5986 set_table_entry(&table[10], "flags", &sd->flags,
5987 sizeof(int), 0644, proc_dointvec_minmax);
5988 /* &table[11] is terminator */
5989
5990 return table;
5991 }
5992
5993 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5994 {
5995 struct ctl_table *entry, *table;
5996 struct sched_domain *sd;
5997 int domain_num = 0, i;
5998 char buf[32];
5999
6000 for_each_domain(cpu, sd)
6001 domain_num++;
6002 entry = table = sd_alloc_ctl_entry(domain_num + 1);
6003 if (table == NULL)
6004 return NULL;
6005
6006 i = 0;
6007 for_each_domain(cpu, sd) {
6008 snprintf(buf, 32, "domain%d", i);
6009 entry->procname = kstrdup(buf, GFP_KERNEL);
6010 entry->mode = 0555;
6011 entry->child = sd_alloc_ctl_domain_table(sd);
6012 entry++;
6013 i++;
6014 }
6015 return table;
6016 }
6017
6018 static struct ctl_table_header *sd_sysctl_header;
6019 static void register_sched_domain_sysctl(void)
6020 {
6021 int i, cpu_num = num_online_cpus();
6022 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6023 char buf[32];
6024
6025 WARN_ON(sd_ctl_dir[0].child);
6026 sd_ctl_dir[0].child = entry;
6027
6028 if (entry == NULL)
6029 return;
6030
6031 for_each_online_cpu(i) {
6032 snprintf(buf, 32, "cpu%d", i);
6033 entry->procname = kstrdup(buf, GFP_KERNEL);
6034 entry->mode = 0555;
6035 entry->child = sd_alloc_ctl_cpu_table(i);
6036 entry++;
6037 }
6038
6039 WARN_ON(sd_sysctl_header);
6040 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6041 }
6042
6043 /* may be called multiple times per register */
6044 static void unregister_sched_domain_sysctl(void)
6045 {
6046 if (sd_sysctl_header)
6047 unregister_sysctl_table(sd_sysctl_header);
6048 sd_sysctl_header = NULL;
6049 if (sd_ctl_dir[0].child)
6050 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6051 }
6052 #else
6053 static void register_sched_domain_sysctl(void)
6054 {
6055 }
6056 static void unregister_sched_domain_sysctl(void)
6057 {
6058 }
6059 #endif
6060
6061 /*
6062 * migration_call - callback that gets triggered when a CPU is added.
6063 * Here we can start up the necessary migration thread for the new CPU.
6064 */
6065 static int __cpuinit
6066 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6067 {
6068 struct task_struct *p;
6069 int cpu = (long)hcpu;
6070 unsigned long flags;
6071 struct rq *rq;
6072
6073 switch (action) {
6074
6075 case CPU_UP_PREPARE:
6076 case CPU_UP_PREPARE_FROZEN:
6077 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
6078 if (IS_ERR(p))
6079 return NOTIFY_BAD;
6080 kthread_bind(p, cpu);
6081 /* Must be high prio: stop_machine expects to yield to it. */
6082 rq = task_rq_lock(p, &flags);
6083 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6084 task_rq_unlock(rq, &flags);
6085 cpu_rq(cpu)->migration_thread = p;
6086 break;
6087
6088 case CPU_ONLINE:
6089 case CPU_ONLINE_FROZEN:
6090 /* Strictly unnecessary, as first user will wake it. */
6091 wake_up_process(cpu_rq(cpu)->migration_thread);
6092
6093 /* Update our root-domain */
6094 rq = cpu_rq(cpu);
6095 spin_lock_irqsave(&rq->lock, flags);
6096 if (rq->rd) {
6097 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6098 cpu_set(cpu, rq->rd->online);
6099 }
6100 spin_unlock_irqrestore(&rq->lock, flags);
6101 break;
6102
6103 #ifdef CONFIG_HOTPLUG_CPU
6104 case CPU_UP_CANCELED:
6105 case CPU_UP_CANCELED_FROZEN:
6106 if (!cpu_rq(cpu)->migration_thread)
6107 break;
6108 /* Unbind it from offline cpu so it can run. Fall thru. */
6109 kthread_bind(cpu_rq(cpu)->migration_thread,
6110 any_online_cpu(cpu_online_map));
6111 kthread_stop(cpu_rq(cpu)->migration_thread);
6112 cpu_rq(cpu)->migration_thread = NULL;
6113 break;
6114
6115 case CPU_DEAD:
6116 case CPU_DEAD_FROZEN:
6117 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
6118 migrate_live_tasks(cpu);
6119 rq = cpu_rq(cpu);
6120 kthread_stop(rq->migration_thread);
6121 rq->migration_thread = NULL;
6122 /* Idle task back to normal (off runqueue, low prio) */
6123 spin_lock_irq(&rq->lock);
6124 update_rq_clock(rq);
6125 deactivate_task(rq, rq->idle, 0);
6126 rq->idle->static_prio = MAX_PRIO;
6127 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6128 rq->idle->sched_class = &idle_sched_class;
6129 migrate_dead_tasks(cpu);
6130 spin_unlock_irq(&rq->lock);
6131 cpuset_unlock();
6132 migrate_nr_uninterruptible(rq);
6133 BUG_ON(rq->nr_running != 0);
6134
6135 /*
6136 * No need to migrate the tasks: it was best-effort if
6137 * they didn't take sched_hotcpu_mutex. Just wake up
6138 * the requestors.
6139 */
6140 spin_lock_irq(&rq->lock);
6141 while (!list_empty(&rq->migration_queue)) {
6142 struct migration_req *req;
6143
6144 req = list_entry(rq->migration_queue.next,
6145 struct migration_req, list);
6146 list_del_init(&req->list);
6147 complete(&req->done);
6148 }
6149 spin_unlock_irq(&rq->lock);
6150 break;
6151
6152 case CPU_DYING:
6153 case CPU_DYING_FROZEN:
6154 /* Update our root-domain */
6155 rq = cpu_rq(cpu);
6156 spin_lock_irqsave(&rq->lock, flags);
6157 if (rq->rd) {
6158 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6159 cpu_clear(cpu, rq->rd->online);
6160 }
6161 spin_unlock_irqrestore(&rq->lock, flags);
6162 break;
6163 #endif
6164 }
6165 return NOTIFY_OK;
6166 }
6167
6168 /* Register at highest priority so that task migration (migrate_all_tasks)
6169 * happens before everything else.
6170 */
6171 static struct notifier_block __cpuinitdata migration_notifier = {
6172 .notifier_call = migration_call,
6173 .priority = 10
6174 };
6175
6176 void __init migration_init(void)
6177 {
6178 void *cpu = (void *)(long)smp_processor_id();
6179 int err;
6180
6181 /* Start one for the boot CPU: */
6182 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6183 BUG_ON(err == NOTIFY_BAD);
6184 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6185 register_cpu_notifier(&migration_notifier);
6186 }
6187 #endif
6188
6189 #ifdef CONFIG_SMP
6190
6191 #ifdef CONFIG_SCHED_DEBUG
6192
6193 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6194 cpumask_t *groupmask)
6195 {
6196 struct sched_group *group = sd->groups;
6197 char str[256];
6198
6199 cpulist_scnprintf(str, sizeof(str), sd->span);
6200 cpus_clear(*groupmask);
6201
6202 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6203
6204 if (!(sd->flags & SD_LOAD_BALANCE)) {
6205 printk("does not load-balance\n");
6206 if (sd->parent)
6207 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6208 " has parent");
6209 return -1;
6210 }
6211
6212 printk(KERN_CONT "span %s\n", str);
6213
6214 if (!cpu_isset(cpu, sd->span)) {
6215 printk(KERN_ERR "ERROR: domain->span does not contain "
6216 "CPU%d\n", cpu);
6217 }
6218 if (!cpu_isset(cpu, group->cpumask)) {
6219 printk(KERN_ERR "ERROR: domain->groups does not contain"
6220 " CPU%d\n", cpu);
6221 }
6222
6223 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6224 do {
6225 if (!group) {
6226 printk("\n");
6227 printk(KERN_ERR "ERROR: group is NULL\n");
6228 break;
6229 }
6230
6231 if (!group->__cpu_power) {
6232 printk(KERN_CONT "\n");
6233 printk(KERN_ERR "ERROR: domain->cpu_power not "
6234 "set\n");
6235 break;
6236 }
6237
6238 if (!cpus_weight(group->cpumask)) {
6239 printk(KERN_CONT "\n");
6240 printk(KERN_ERR "ERROR: empty group\n");
6241 break;
6242 }
6243
6244 if (cpus_intersects(*groupmask, group->cpumask)) {
6245 printk(KERN_CONT "\n");
6246 printk(KERN_ERR "ERROR: repeated CPUs\n");
6247 break;
6248 }
6249
6250 cpus_or(*groupmask, *groupmask, group->cpumask);
6251
6252 cpulist_scnprintf(str, sizeof(str), group->cpumask);
6253 printk(KERN_CONT " %s", str);
6254
6255 group = group->next;
6256 } while (group != sd->groups);
6257 printk(KERN_CONT "\n");
6258
6259 if (!cpus_equal(sd->span, *groupmask))
6260 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6261
6262 if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
6263 printk(KERN_ERR "ERROR: parent span is not a superset "
6264 "of domain->span\n");
6265 return 0;
6266 }
6267
6268 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6269 {
6270 cpumask_t *groupmask;
6271 int level = 0;
6272
6273 if (!sd) {
6274 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6275 return;
6276 }
6277
6278 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6279
6280 groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6281 if (!groupmask) {
6282 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6283 return;
6284 }
6285
6286 for (;;) {
6287 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6288 break;
6289 level++;
6290 sd = sd->parent;
6291 if (!sd)
6292 break;
6293 }
6294 kfree(groupmask);
6295 }
6296 #else
6297 # define sched_domain_debug(sd, cpu) do { } while (0)
6298 #endif
6299
6300 static int sd_degenerate(struct sched_domain *sd)
6301 {
6302 if (cpus_weight(sd->span) == 1)
6303 return 1;
6304
6305 /* Following flags need at least 2 groups */
6306 if (sd->flags & (SD_LOAD_BALANCE |
6307 SD_BALANCE_NEWIDLE |
6308 SD_BALANCE_FORK |
6309 SD_BALANCE_EXEC |
6310 SD_SHARE_CPUPOWER |
6311 SD_SHARE_PKG_RESOURCES)) {
6312 if (sd->groups != sd->groups->next)
6313 return 0;
6314 }
6315
6316 /* Following flags don't use groups */
6317 if (sd->flags & (SD_WAKE_IDLE |
6318 SD_WAKE_AFFINE |
6319 SD_WAKE_BALANCE))
6320 return 0;
6321
6322 return 1;
6323 }
6324
6325 static int
6326 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6327 {
6328 unsigned long cflags = sd->flags, pflags = parent->flags;
6329
6330 if (sd_degenerate(parent))
6331 return 1;
6332
6333 if (!cpus_equal(sd->span, parent->span))
6334 return 0;
6335
6336 /* Does parent contain flags not in child? */
6337 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6338 if (cflags & SD_WAKE_AFFINE)
6339 pflags &= ~SD_WAKE_BALANCE;
6340 /* Flags needing groups don't count if only 1 group in parent */
6341 if (parent->groups == parent->groups->next) {
6342 pflags &= ~(SD_LOAD_BALANCE |
6343 SD_BALANCE_NEWIDLE |
6344 SD_BALANCE_FORK |
6345 SD_BALANCE_EXEC |
6346 SD_SHARE_CPUPOWER |
6347 SD_SHARE_PKG_RESOURCES);
6348 }
6349 if (~cflags & pflags)
6350 return 0;
6351
6352 return 1;
6353 }
6354
6355 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6356 {
6357 unsigned long flags;
6358 const struct sched_class *class;
6359
6360 spin_lock_irqsave(&rq->lock, flags);
6361
6362 if (rq->rd) {
6363 struct root_domain *old_rd = rq->rd;
6364
6365 for (class = sched_class_highest; class; class = class->next) {
6366 if (class->leave_domain)
6367 class->leave_domain(rq);
6368 }
6369
6370 cpu_clear(rq->cpu, old_rd->span);
6371 cpu_clear(rq->cpu, old_rd->online);
6372
6373 if (atomic_dec_and_test(&old_rd->refcount))
6374 kfree(old_rd);
6375 }
6376
6377 atomic_inc(&rd->refcount);
6378 rq->rd = rd;
6379
6380 cpu_set(rq->cpu, rd->span);
6381 if (cpu_isset(rq->cpu, cpu_online_map))
6382 cpu_set(rq->cpu, rd->online);
6383
6384 for (class = sched_class_highest; class; class = class->next) {
6385 if (class->join_domain)
6386 class->join_domain(rq);
6387 }
6388
6389 spin_unlock_irqrestore(&rq->lock, flags);
6390 }
6391
6392 static void init_rootdomain(struct root_domain *rd)
6393 {
6394 memset(rd, 0, sizeof(*rd));
6395
6396 cpus_clear(rd->span);
6397 cpus_clear(rd->online);
6398 }
6399
6400 static void init_defrootdomain(void)
6401 {
6402 init_rootdomain(&def_root_domain);
6403 atomic_set(&def_root_domain.refcount, 1);
6404 }
6405
6406 static struct root_domain *alloc_rootdomain(void)
6407 {
6408 struct root_domain *rd;
6409
6410 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6411 if (!rd)
6412 return NULL;
6413
6414 init_rootdomain(rd);
6415
6416 return rd;
6417 }
6418
6419 /*
6420 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6421 * hold the hotplug lock.
6422 */
6423 static void
6424 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6425 {
6426 struct rq *rq = cpu_rq(cpu);
6427 struct sched_domain *tmp;
6428
6429 /* Remove the sched domains which do not contribute to scheduling. */
6430 for (tmp = sd; tmp; tmp = tmp->parent) {
6431 struct sched_domain *parent = tmp->parent;
6432 if (!parent)
6433 break;
6434 if (sd_parent_degenerate(tmp, parent)) {
6435 tmp->parent = parent->parent;
6436 if (parent->parent)
6437 parent->parent->child = tmp;
6438 }
6439 }
6440
6441 if (sd && sd_degenerate(sd)) {
6442 sd = sd->parent;
6443 if (sd)
6444 sd->child = NULL;
6445 }
6446
6447 sched_domain_debug(sd, cpu);
6448
6449 rq_attach_root(rq, rd);
6450 rcu_assign_pointer(rq->sd, sd);
6451 }
6452
6453 /* cpus with isolated domains */
6454 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
6455
6456 /* Setup the mask of cpus configured for isolated domains */
6457 static int __init isolated_cpu_setup(char *str)
6458 {
6459 int ints[NR_CPUS], i;
6460
6461 str = get_options(str, ARRAY_SIZE(ints), ints);
6462 cpus_clear(cpu_isolated_map);
6463 for (i = 1; i <= ints[0]; i++)
6464 if (ints[i] < NR_CPUS)
6465 cpu_set(ints[i], cpu_isolated_map);
6466 return 1;
6467 }
6468
6469 __setup("isolcpus=", isolated_cpu_setup);
6470
6471 /*
6472 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6473 * to a function which identifies what group(along with sched group) a CPU
6474 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6475 * (due to the fact that we keep track of groups covered with a cpumask_t).
6476 *
6477 * init_sched_build_groups will build a circular linked list of the groups
6478 * covered by the given span, and will set each group's ->cpumask correctly,
6479 * and ->cpu_power to 0.
6480 */
6481 static void
6482 init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6483 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6484 struct sched_group **sg,
6485 cpumask_t *tmpmask),
6486 cpumask_t *covered, cpumask_t *tmpmask)
6487 {
6488 struct sched_group *first = NULL, *last = NULL;
6489 int i;
6490
6491 cpus_clear(*covered);
6492
6493 for_each_cpu_mask(i, *span) {
6494 struct sched_group *sg;
6495 int group = group_fn(i, cpu_map, &sg, tmpmask);
6496 int j;
6497
6498 if (cpu_isset(i, *covered))
6499 continue;
6500
6501 cpus_clear(sg->cpumask);
6502 sg->__cpu_power = 0;
6503
6504 for_each_cpu_mask(j, *span) {
6505 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6506 continue;
6507
6508 cpu_set(j, *covered);
6509 cpu_set(j, sg->cpumask);
6510 }
6511 if (!first)
6512 first = sg;
6513 if (last)
6514 last->next = sg;
6515 last = sg;
6516 }
6517 last->next = first;
6518 }
6519
6520 #define SD_NODES_PER_DOMAIN 16
6521
6522 #ifdef CONFIG_NUMA
6523
6524 /**
6525 * find_next_best_node - find the next node to include in a sched_domain
6526 * @node: node whose sched_domain we're building
6527 * @used_nodes: nodes already in the sched_domain
6528 *
6529 * Find the next node to include in a given scheduling domain. Simply
6530 * finds the closest node not already in the @used_nodes map.
6531 *
6532 * Should use nodemask_t.
6533 */
6534 static int find_next_best_node(int node, nodemask_t *used_nodes)
6535 {
6536 int i, n, val, min_val, best_node = 0;
6537
6538 min_val = INT_MAX;
6539
6540 for (i = 0; i < MAX_NUMNODES; i++) {
6541 /* Start at @node */
6542 n = (node + i) % MAX_NUMNODES;
6543
6544 if (!nr_cpus_node(n))
6545 continue;
6546
6547 /* Skip already used nodes */
6548 if (node_isset(n, *used_nodes))
6549 continue;
6550
6551 /* Simple min distance search */
6552 val = node_distance(node, n);
6553
6554 if (val < min_val) {
6555 min_val = val;
6556 best_node = n;
6557 }
6558 }
6559
6560 node_set(best_node, *used_nodes);
6561 return best_node;
6562 }
6563
6564 /**
6565 * sched_domain_node_span - get a cpumask for a node's sched_domain
6566 * @node: node whose cpumask we're constructing
6567 * @span: resulting cpumask
6568 *
6569 * Given a node, construct a good cpumask for its sched_domain to span. It
6570 * should be one that prevents unnecessary balancing, but also spreads tasks
6571 * out optimally.
6572 */
6573 static void sched_domain_node_span(int node, cpumask_t *span)
6574 {
6575 nodemask_t used_nodes;
6576 node_to_cpumask_ptr(nodemask, node);
6577 int i;
6578
6579 cpus_clear(*span);
6580 nodes_clear(used_nodes);
6581
6582 cpus_or(*span, *span, *nodemask);
6583 node_set(node, used_nodes);
6584
6585 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6586 int next_node = find_next_best_node(node, &used_nodes);
6587
6588 node_to_cpumask_ptr_next(nodemask, next_node);
6589 cpus_or(*span, *span, *nodemask);
6590 }
6591 }
6592 #endif
6593
6594 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6595
6596 /*
6597 * SMT sched-domains:
6598 */
6599 #ifdef CONFIG_SCHED_SMT
6600 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6601 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6602
6603 static int
6604 cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6605 cpumask_t *unused)
6606 {
6607 if (sg)
6608 *sg = &per_cpu(sched_group_cpus, cpu);
6609 return cpu;
6610 }
6611 #endif
6612
6613 /*
6614 * multi-core sched-domains:
6615 */
6616 #ifdef CONFIG_SCHED_MC
6617 static DEFINE_PER_CPU(struct sched_domain, core_domains);
6618 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6619 #endif
6620
6621 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6622 static int
6623 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6624 cpumask_t *mask)
6625 {
6626 int group;
6627
6628 *mask = per_cpu(cpu_sibling_map, cpu);
6629 cpus_and(*mask, *mask, *cpu_map);
6630 group = first_cpu(*mask);
6631 if (sg)
6632 *sg = &per_cpu(sched_group_core, group);
6633 return group;
6634 }
6635 #elif defined(CONFIG_SCHED_MC)
6636 static int
6637 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6638 cpumask_t *unused)
6639 {
6640 if (sg)
6641 *sg = &per_cpu(sched_group_core, cpu);
6642 return cpu;
6643 }
6644 #endif
6645
6646 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6647 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6648
6649 static int
6650 cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6651 cpumask_t *mask)
6652 {
6653 int group;
6654 #ifdef CONFIG_SCHED_MC
6655 *mask = cpu_coregroup_map(cpu);
6656 cpus_and(*mask, *mask, *cpu_map);
6657 group = first_cpu(*mask);
6658 #elif defined(CONFIG_SCHED_SMT)
6659 *mask = per_cpu(cpu_sibling_map, cpu);
6660 cpus_and(*mask, *mask, *cpu_map);
6661 group = first_cpu(*mask);
6662 #else
6663 group = cpu;
6664 #endif
6665 if (sg)
6666 *sg = &per_cpu(sched_group_phys, group);
6667 return group;
6668 }
6669
6670 #ifdef CONFIG_NUMA
6671 /*
6672 * The init_sched_build_groups can't handle what we want to do with node
6673 * groups, so roll our own. Now each node has its own list of groups which
6674 * gets dynamically allocated.
6675 */
6676 static DEFINE_PER_CPU(struct sched_domain, node_domains);
6677 static struct sched_group ***sched_group_nodes_bycpu;
6678
6679 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6680 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6681
6682 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6683 struct sched_group **sg, cpumask_t *nodemask)
6684 {
6685 int group;
6686
6687 *nodemask = node_to_cpumask(cpu_to_node(cpu));
6688 cpus_and(*nodemask, *nodemask, *cpu_map);
6689 group = first_cpu(*nodemask);
6690
6691 if (sg)
6692 *sg = &per_cpu(sched_group_allnodes, group);
6693 return group;
6694 }
6695
6696 static void init_numa_sched_groups_power(struct sched_group *group_head)
6697 {
6698 struct sched_group *sg = group_head;
6699 int j;
6700
6701 if (!sg)
6702 return;
6703 do {
6704 for_each_cpu_mask(j, sg->cpumask) {
6705 struct sched_domain *sd;
6706
6707 sd = &per_cpu(phys_domains, j);
6708 if (j != first_cpu(sd->groups->cpumask)) {
6709 /*
6710 * Only add "power" once for each
6711 * physical package.
6712 */
6713 continue;
6714 }
6715
6716 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6717 }
6718 sg = sg->next;
6719 } while (sg != group_head);
6720 }
6721 #endif
6722
6723 #ifdef CONFIG_NUMA
6724 /* Free memory allocated for various sched_group structures */
6725 static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
6726 {
6727 int cpu, i;
6728
6729 for_each_cpu_mask(cpu, *cpu_map) {
6730 struct sched_group **sched_group_nodes
6731 = sched_group_nodes_bycpu[cpu];
6732
6733 if (!sched_group_nodes)
6734 continue;
6735
6736 for (i = 0; i < MAX_NUMNODES; i++) {
6737 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6738
6739 *nodemask = node_to_cpumask(i);
6740 cpus_and(*nodemask, *nodemask, *cpu_map);
6741 if (cpus_empty(*nodemask))
6742 continue;
6743
6744 if (sg == NULL)
6745 continue;
6746 sg = sg->next;
6747 next_sg:
6748 oldsg = sg;
6749 sg = sg->next;
6750 kfree(oldsg);
6751 if (oldsg != sched_group_nodes[i])
6752 goto next_sg;
6753 }
6754 kfree(sched_group_nodes);
6755 sched_group_nodes_bycpu[cpu] = NULL;
6756 }
6757 }
6758 #else
6759 static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
6760 {
6761 }
6762 #endif
6763
6764 /*
6765 * Initialize sched groups cpu_power.
6766 *
6767 * cpu_power indicates the capacity of sched group, which is used while
6768 * distributing the load between different sched groups in a sched domain.
6769 * Typically cpu_power for all the groups in a sched domain will be same unless
6770 * there are asymmetries in the topology. If there are asymmetries, group
6771 * having more cpu_power will pickup more load compared to the group having
6772 * less cpu_power.
6773 *
6774 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6775 * the maximum number of tasks a group can handle in the presence of other idle
6776 * or lightly loaded groups in the same sched domain.
6777 */
6778 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6779 {
6780 struct sched_domain *child;
6781 struct sched_group *group;
6782
6783 WARN_ON(!sd || !sd->groups);
6784
6785 if (cpu != first_cpu(sd->groups->cpumask))
6786 return;
6787
6788 child = sd->child;
6789
6790 sd->groups->__cpu_power = 0;
6791
6792 /*
6793 * For perf policy, if the groups in child domain share resources
6794 * (for example cores sharing some portions of the cache hierarchy
6795 * or SMT), then set this domain groups cpu_power such that each group
6796 * can handle only one task, when there are other idle groups in the
6797 * same sched domain.
6798 */
6799 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6800 (child->flags &
6801 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6802 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6803 return;
6804 }
6805
6806 /*
6807 * add cpu_power of each child group to this groups cpu_power
6808 */
6809 group = child->groups;
6810 do {
6811 sg_inc_cpu_power(sd->groups, group->__cpu_power);
6812 group = group->next;
6813 } while (group != child->groups);
6814 }
6815
6816 /*
6817 * Initializers for schedule domains
6818 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6819 */
6820
6821 #define SD_INIT(sd, type) sd_init_##type(sd)
6822 #define SD_INIT_FUNC(type) \
6823 static noinline void sd_init_##type(struct sched_domain *sd) \
6824 { \
6825 memset(sd, 0, sizeof(*sd)); \
6826 *sd = SD_##type##_INIT; \
6827 sd->level = SD_LV_##type; \
6828 }
6829
6830 SD_INIT_FUNC(CPU)
6831 #ifdef CONFIG_NUMA
6832 SD_INIT_FUNC(ALLNODES)
6833 SD_INIT_FUNC(NODE)
6834 #endif
6835 #ifdef CONFIG_SCHED_SMT
6836 SD_INIT_FUNC(SIBLING)
6837 #endif
6838 #ifdef CONFIG_SCHED_MC
6839 SD_INIT_FUNC(MC)
6840 #endif
6841
6842 /*
6843 * To minimize stack usage kmalloc room for cpumasks and share the
6844 * space as the usage in build_sched_domains() dictates. Used only
6845 * if the amount of space is significant.
6846 */
6847 struct allmasks {
6848 cpumask_t tmpmask; /* make this one first */
6849 union {
6850 cpumask_t nodemask;
6851 cpumask_t this_sibling_map;
6852 cpumask_t this_core_map;
6853 };
6854 cpumask_t send_covered;
6855
6856 #ifdef CONFIG_NUMA
6857 cpumask_t domainspan;
6858 cpumask_t covered;
6859 cpumask_t notcovered;
6860 #endif
6861 };
6862
6863 #if NR_CPUS > 128
6864 #define SCHED_CPUMASK_ALLOC 1
6865 #define SCHED_CPUMASK_FREE(v) kfree(v)
6866 #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
6867 #else
6868 #define SCHED_CPUMASK_ALLOC 0
6869 #define SCHED_CPUMASK_FREE(v)
6870 #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
6871 #endif
6872
6873 #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
6874 ((unsigned long)(a) + offsetof(struct allmasks, v))
6875
6876 static int default_relax_domain_level = -1;
6877
6878 static int __init setup_relax_domain_level(char *str)
6879 {
6880 unsigned long val;
6881
6882 val = simple_strtoul(str, NULL, 0);
6883 if (val < SD_LV_MAX)
6884 default_relax_domain_level = val;
6885
6886 return 1;
6887 }
6888 __setup("relax_domain_level=", setup_relax_domain_level);
6889
6890 static void set_domain_attribute(struct sched_domain *sd,
6891 struct sched_domain_attr *attr)
6892 {
6893 int request;
6894
6895 if (!attr || attr->relax_domain_level < 0) {
6896 if (default_relax_domain_level < 0)
6897 return;
6898 else
6899 request = default_relax_domain_level;
6900 } else
6901 request = attr->relax_domain_level;
6902 if (request < sd->level) {
6903 /* turn off idle balance on this domain */
6904 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
6905 } else {
6906 /* turn on idle balance on this domain */
6907 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
6908 }
6909 }
6910
6911 /*
6912 * Build sched domains for a given set of cpus and attach the sched domains
6913 * to the individual cpus
6914 */
6915 static int __build_sched_domains(const cpumask_t *cpu_map,
6916 struct sched_domain_attr *attr)
6917 {
6918 int i;
6919 struct root_domain *rd;
6920 SCHED_CPUMASK_DECLARE(allmasks);
6921 cpumask_t *tmpmask;
6922 #ifdef CONFIG_NUMA
6923 struct sched_group **sched_group_nodes = NULL;
6924 int sd_allnodes = 0;
6925
6926 /*
6927 * Allocate the per-node list of sched groups
6928 */
6929 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
6930 GFP_KERNEL);
6931 if (!sched_group_nodes) {
6932 printk(KERN_WARNING "Can not alloc sched group node list\n");
6933 return -ENOMEM;
6934 }
6935 #endif
6936
6937 rd = alloc_rootdomain();
6938 if (!rd) {
6939 printk(KERN_WARNING "Cannot alloc root domain\n");
6940 #ifdef CONFIG_NUMA
6941 kfree(sched_group_nodes);
6942 #endif
6943 return -ENOMEM;
6944 }
6945
6946 #if SCHED_CPUMASK_ALLOC
6947 /* get space for all scratch cpumask variables */
6948 allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
6949 if (!allmasks) {
6950 printk(KERN_WARNING "Cannot alloc cpumask array\n");
6951 kfree(rd);
6952 #ifdef CONFIG_NUMA
6953 kfree(sched_group_nodes);
6954 #endif
6955 return -ENOMEM;
6956 }
6957 #endif
6958 tmpmask = (cpumask_t *)allmasks;
6959
6960
6961 #ifdef CONFIG_NUMA
6962 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6963 #endif
6964
6965 /*
6966 * Set up domains for cpus specified by the cpu_map.
6967 */
6968 for_each_cpu_mask(i, *cpu_map) {
6969 struct sched_domain *sd = NULL, *p;
6970 SCHED_CPUMASK_VAR(nodemask, allmasks);
6971
6972 *nodemask = node_to_cpumask(cpu_to_node(i));
6973 cpus_and(*nodemask, *nodemask, *cpu_map);
6974
6975 #ifdef CONFIG_NUMA
6976 if (cpus_weight(*cpu_map) >
6977 SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
6978 sd = &per_cpu(allnodes_domains, i);
6979 SD_INIT(sd, ALLNODES);
6980 set_domain_attribute(sd, attr);
6981 sd->span = *cpu_map;
6982 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
6983 p = sd;
6984 sd_allnodes = 1;
6985 } else
6986 p = NULL;
6987
6988 sd = &per_cpu(node_domains, i);
6989 SD_INIT(sd, NODE);
6990 set_domain_attribute(sd, attr);
6991 sched_domain_node_span(cpu_to_node(i), &sd->span);
6992 sd->parent = p;
6993 if (p)
6994 p->child = sd;
6995 cpus_and(sd->span, sd->span, *cpu_map);
6996 #endif
6997
6998 p = sd;
6999 sd = &per_cpu(phys_domains, i);
7000 SD_INIT(sd, CPU);
7001 set_domain_attribute(sd, attr);
7002 sd->span = *nodemask;
7003 sd->parent = p;
7004 if (p)
7005 p->child = sd;
7006 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
7007
7008 #ifdef CONFIG_SCHED_MC
7009 p = sd;
7010 sd = &per_cpu(core_domains, i);
7011 SD_INIT(sd, MC);
7012 set_domain_attribute(sd, attr);
7013 sd->span = cpu_coregroup_map(i);
7014 cpus_and(sd->span, sd->span, *cpu_map);
7015 sd->parent = p;
7016 p->child = sd;
7017 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7018 #endif
7019
7020 #ifdef CONFIG_SCHED_SMT
7021 p = sd;
7022 sd = &per_cpu(cpu_domains, i);
7023 SD_INIT(sd, SIBLING);
7024 set_domain_attribute(sd, attr);
7025 sd->span = per_cpu(cpu_sibling_map, i);
7026 cpus_and(sd->span, sd->span, *cpu_map);
7027 sd->parent = p;
7028 p->child = sd;
7029 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
7030 #endif
7031 }
7032
7033 #ifdef CONFIG_SCHED_SMT
7034 /* Set up CPU (sibling) groups */
7035 for_each_cpu_mask(i, *cpu_map) {
7036 SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
7037 SCHED_CPUMASK_VAR(send_covered, allmasks);
7038
7039 *this_sibling_map = per_cpu(cpu_sibling_map, i);
7040 cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
7041 if (i != first_cpu(*this_sibling_map))
7042 continue;
7043
7044 init_sched_build_groups(this_sibling_map, cpu_map,
7045 &cpu_to_cpu_group,
7046 send_covered, tmpmask);
7047 }
7048 #endif
7049
7050 #ifdef CONFIG_SCHED_MC
7051 /* Set up multi-core groups */
7052 for_each_cpu_mask(i, *cpu_map) {
7053 SCHED_CPUMASK_VAR(this_core_map, allmasks);
7054 SCHED_CPUMASK_VAR(send_covered, allmasks);
7055
7056 *this_core_map = cpu_coregroup_map(i);
7057 cpus_and(*this_core_map, *this_core_map, *cpu_map);
7058 if (i != first_cpu(*this_core_map))
7059 continue;
7060
7061 init_sched_build_groups(this_core_map, cpu_map,
7062 &cpu_to_core_group,
7063 send_covered, tmpmask);
7064 }
7065 #endif
7066
7067 /* Set up physical groups */
7068 for (i = 0; i < MAX_NUMNODES; i++) {
7069 SCHED_CPUMASK_VAR(nodemask, allmasks);
7070 SCHED_CPUMASK_VAR(send_covered, allmasks);
7071
7072 *nodemask = node_to_cpumask(i);
7073 cpus_and(*nodemask, *nodemask, *cpu_map);
7074 if (cpus_empty(*nodemask))
7075 continue;
7076
7077 init_sched_build_groups(nodemask, cpu_map,
7078 &cpu_to_phys_group,
7079 send_covered, tmpmask);
7080 }
7081
7082 #ifdef CONFIG_NUMA
7083 /* Set up node groups */
7084 if (sd_allnodes) {
7085 SCHED_CPUMASK_VAR(send_covered, allmasks);
7086
7087 init_sched_build_groups(cpu_map, cpu_map,
7088 &cpu_to_allnodes_group,
7089 send_covered, tmpmask);
7090 }
7091
7092 for (i = 0; i < MAX_NUMNODES; i++) {
7093 /* Set up node groups */
7094 struct sched_group *sg, *prev;
7095 SCHED_CPUMASK_VAR(nodemask, allmasks);
7096 SCHED_CPUMASK_VAR(domainspan, allmasks);
7097 SCHED_CPUMASK_VAR(covered, allmasks);
7098 int j;
7099
7100 *nodemask = node_to_cpumask(i);
7101 cpus_clear(*covered);
7102
7103 cpus_and(*nodemask, *nodemask, *cpu_map);
7104 if (cpus_empty(*nodemask)) {
7105 sched_group_nodes[i] = NULL;
7106 continue;
7107 }
7108
7109 sched_domain_node_span(i, domainspan);
7110 cpus_and(*domainspan, *domainspan, *cpu_map);
7111
7112 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
7113 if (!sg) {
7114 printk(KERN_WARNING "Can not alloc domain group for "
7115 "node %d\n", i);
7116 goto error;
7117 }
7118 sched_group_nodes[i] = sg;
7119 for_each_cpu_mask(j, *nodemask) {
7120 struct sched_domain *sd;
7121
7122 sd = &per_cpu(node_domains, j);
7123 sd->groups = sg;
7124 }
7125 sg->__cpu_power = 0;
7126 sg->cpumask = *nodemask;
7127 sg->next = sg;
7128 cpus_or(*covered, *covered, *nodemask);
7129 prev = sg;
7130
7131 for (j = 0; j < MAX_NUMNODES; j++) {
7132 SCHED_CPUMASK_VAR(notcovered, allmasks);
7133 int n = (i + j) % MAX_NUMNODES;
7134 node_to_cpumask_ptr(pnodemask, n);
7135
7136 cpus_complement(*notcovered, *covered);
7137 cpus_and(*tmpmask, *notcovered, *cpu_map);
7138 cpus_and(*tmpmask, *tmpmask, *domainspan);
7139 if (cpus_empty(*tmpmask))
7140 break;
7141
7142 cpus_and(*tmpmask, *tmpmask, *pnodemask);
7143 if (cpus_empty(*tmpmask))
7144 continue;
7145
7146 sg = kmalloc_node(sizeof(struct sched_group),
7147 GFP_KERNEL, i);
7148 if (!sg) {
7149 printk(KERN_WARNING
7150 "Can not alloc domain group for node %d\n", j);
7151 goto error;
7152 }
7153 sg->__cpu_power = 0;
7154 sg->cpumask = *tmpmask;
7155 sg->next = prev->next;
7156 cpus_or(*covered, *covered, *tmpmask);
7157 prev->next = sg;
7158 prev = sg;
7159 }
7160 }
7161 #endif
7162
7163 /* Calculate CPU power for physical packages and nodes */
7164 #ifdef CONFIG_SCHED_SMT
7165 for_each_cpu_mask(i, *cpu_map) {
7166 struct sched_domain *sd = &per_cpu(cpu_domains, i);
7167
7168 init_sched_groups_power(i, sd);
7169 }
7170 #endif
7171 #ifdef CONFIG_SCHED_MC
7172 for_each_cpu_mask(i, *cpu_map) {
7173 struct sched_domain *sd = &per_cpu(core_domains, i);
7174
7175 init_sched_groups_power(i, sd);
7176 }
7177 #endif
7178
7179 for_each_cpu_mask(i, *cpu_map) {
7180 struct sched_domain *sd = &per_cpu(phys_domains, i);
7181
7182 init_sched_groups_power(i, sd);
7183 }
7184
7185 #ifdef CONFIG_NUMA
7186 for (i = 0; i < MAX_NUMNODES; i++)
7187 init_numa_sched_groups_power(sched_group_nodes[i]);
7188
7189 if (sd_allnodes) {
7190 struct sched_group *sg;
7191
7192 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
7193 tmpmask);
7194 init_numa_sched_groups_power(sg);
7195 }
7196 #endif
7197
7198 /* Attach the domains */
7199 for_each_cpu_mask(i, *cpu_map) {
7200 struct sched_domain *sd;
7201 #ifdef CONFIG_SCHED_SMT
7202 sd = &per_cpu(cpu_domains, i);
7203 #elif defined(CONFIG_SCHED_MC)
7204 sd = &per_cpu(core_domains, i);
7205 #else
7206 sd = &per_cpu(phys_domains, i);
7207 #endif
7208 cpu_attach_domain(sd, rd, i);
7209 }
7210
7211 SCHED_CPUMASK_FREE((void *)allmasks);
7212 return 0;
7213
7214 #ifdef CONFIG_NUMA
7215 error:
7216 free_sched_groups(cpu_map, tmpmask);
7217 SCHED_CPUMASK_FREE((void *)allmasks);
7218 return -ENOMEM;
7219 #endif
7220 }
7221
7222 static int build_sched_domains(const cpumask_t *cpu_map)
7223 {
7224 return __build_sched_domains(cpu_map, NULL);
7225 }
7226
7227 static cpumask_t *doms_cur; /* current sched domains */
7228 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7229 static struct sched_domain_attr *dattr_cur;
7230 /* attribues of custom domains in 'doms_cur' */
7231
7232 /*
7233 * Special case: If a kmalloc of a doms_cur partition (array of
7234 * cpumask_t) fails, then fallback to a single sched domain,
7235 * as determined by the single cpumask_t fallback_doms.
7236 */
7237 static cpumask_t fallback_doms;
7238
7239 void __attribute__((weak)) arch_update_cpu_topology(void)
7240 {
7241 }
7242
7243 /*
7244 * Free current domain masks.
7245 * Called after all cpus are attached to NULL domain.
7246 */
7247 static void free_sched_domains(void)
7248 {
7249 ndoms_cur = 0;
7250 if (doms_cur != &fallback_doms)
7251 kfree(doms_cur);
7252 doms_cur = &fallback_doms;
7253 }
7254
7255 /*
7256 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7257 * For now this just excludes isolated cpus, but could be used to
7258 * exclude other special cases in the future.
7259 */
7260 static int arch_init_sched_domains(const cpumask_t *cpu_map)
7261 {
7262 int err;
7263
7264 arch_update_cpu_topology();
7265 ndoms_cur = 1;
7266 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
7267 if (!doms_cur)
7268 doms_cur = &fallback_doms;
7269 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7270 dattr_cur = NULL;
7271 err = build_sched_domains(doms_cur);
7272 register_sched_domain_sysctl();
7273
7274 return err;
7275 }
7276
7277 static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
7278 cpumask_t *tmpmask)
7279 {
7280 free_sched_groups(cpu_map, tmpmask);
7281 }
7282
7283 /*
7284 * Detach sched domains from a group of cpus specified in cpu_map
7285 * These cpus will now be attached to the NULL domain
7286 */
7287 static void detach_destroy_domains(const cpumask_t *cpu_map)
7288 {
7289 cpumask_t tmpmask;
7290 int i;
7291
7292 unregister_sched_domain_sysctl();
7293
7294 for_each_cpu_mask(i, *cpu_map)
7295 cpu_attach_domain(NULL, &def_root_domain, i);
7296 synchronize_sched();
7297 arch_destroy_sched_domains(cpu_map, &tmpmask);
7298 }
7299
7300 /* handle null as "default" */
7301 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7302 struct sched_domain_attr *new, int idx_new)
7303 {
7304 struct sched_domain_attr tmp;
7305
7306 /* fast path */
7307 if (!new && !cur)
7308 return 1;
7309
7310 tmp = SD_ATTR_INIT;
7311 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7312 new ? (new + idx_new) : &tmp,
7313 sizeof(struct sched_domain_attr));
7314 }
7315
7316 /*
7317 * Partition sched domains as specified by the 'ndoms_new'
7318 * cpumasks in the array doms_new[] of cpumasks. This compares
7319 * doms_new[] to the current sched domain partitioning, doms_cur[].
7320 * It destroys each deleted domain and builds each new domain.
7321 *
7322 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
7323 * The masks don't intersect (don't overlap.) We should setup one
7324 * sched domain for each mask. CPUs not in any of the cpumasks will
7325 * not be load balanced. If the same cpumask appears both in the
7326 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7327 * it as it is.
7328 *
7329 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7330 * ownership of it and will kfree it when done with it. If the caller
7331 * failed the kmalloc call, then it can pass in doms_new == NULL,
7332 * and partition_sched_domains() will fallback to the single partition
7333 * 'fallback_doms'.
7334 *
7335 * Call with hotplug lock held
7336 */
7337 void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
7338 struct sched_domain_attr *dattr_new)
7339 {
7340 int i, j;
7341
7342 mutex_lock(&sched_domains_mutex);
7343
7344 /* always unregister in case we don't destroy any domains */
7345 unregister_sched_domain_sysctl();
7346
7347 if (doms_new == NULL) {
7348 ndoms_new = 1;
7349 doms_new = &fallback_doms;
7350 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
7351 dattr_new = NULL;
7352 }
7353
7354 /* Destroy deleted domains */
7355 for (i = 0; i < ndoms_cur; i++) {
7356 for (j = 0; j < ndoms_new; j++) {
7357 if (cpus_equal(doms_cur[i], doms_new[j])
7358 && dattrs_equal(dattr_cur, i, dattr_new, j))
7359 goto match1;
7360 }
7361 /* no match - a current sched domain not in new doms_new[] */
7362 detach_destroy_domains(doms_cur + i);
7363 match1:
7364 ;
7365 }
7366
7367 /* Build new domains */
7368 for (i = 0; i < ndoms_new; i++) {
7369 for (j = 0; j < ndoms_cur; j++) {
7370 if (cpus_equal(doms_new[i], doms_cur[j])
7371 && dattrs_equal(dattr_new, i, dattr_cur, j))
7372 goto match2;
7373 }
7374 /* no match - add a new doms_new */
7375 __build_sched_domains(doms_new + i,
7376 dattr_new ? dattr_new + i : NULL);
7377 match2:
7378 ;
7379 }
7380
7381 /* Remember the new sched domains */
7382 if (doms_cur != &fallback_doms)
7383 kfree(doms_cur);
7384 kfree(dattr_cur); /* kfree(NULL) is safe */
7385 doms_cur = doms_new;
7386 dattr_cur = dattr_new;
7387 ndoms_cur = ndoms_new;
7388
7389 register_sched_domain_sysctl();
7390
7391 mutex_unlock(&sched_domains_mutex);
7392 }
7393
7394 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7395 int arch_reinit_sched_domains(void)
7396 {
7397 int err;
7398
7399 get_online_cpus();
7400 mutex_lock(&sched_domains_mutex);
7401 detach_destroy_domains(&cpu_online_map);
7402 free_sched_domains();
7403 err = arch_init_sched_domains(&cpu_online_map);
7404 mutex_unlock(&sched_domains_mutex);
7405 put_online_cpus();
7406
7407 return err;
7408 }
7409
7410 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7411 {
7412 int ret;
7413
7414 if (buf[0] != '0' && buf[0] != '1')
7415 return -EINVAL;
7416
7417 if (smt)
7418 sched_smt_power_savings = (buf[0] == '1');
7419 else
7420 sched_mc_power_savings = (buf[0] == '1');
7421
7422 ret = arch_reinit_sched_domains();
7423
7424 return ret ? ret : count;
7425 }
7426
7427 #ifdef CONFIG_SCHED_MC
7428 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
7429 {
7430 return sprintf(page, "%u\n", sched_mc_power_savings);
7431 }
7432 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
7433 const char *buf, size_t count)
7434 {
7435 return sched_power_savings_store(buf, count, 0);
7436 }
7437 static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
7438 sched_mc_power_savings_store);
7439 #endif
7440
7441 #ifdef CONFIG_SCHED_SMT
7442 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
7443 {
7444 return sprintf(page, "%u\n", sched_smt_power_savings);
7445 }
7446 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
7447 const char *buf, size_t count)
7448 {
7449 return sched_power_savings_store(buf, count, 1);
7450 }
7451 static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
7452 sched_smt_power_savings_store);
7453 #endif
7454
7455 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7456 {
7457 int err = 0;
7458
7459 #ifdef CONFIG_SCHED_SMT
7460 if (smt_capable())
7461 err = sysfs_create_file(&cls->kset.kobj,
7462 &attr_sched_smt_power_savings.attr);
7463 #endif
7464 #ifdef CONFIG_SCHED_MC
7465 if (!err && mc_capable())
7466 err = sysfs_create_file(&cls->kset.kobj,
7467 &attr_sched_mc_power_savings.attr);
7468 #endif
7469 return err;
7470 }
7471 #endif
7472
7473 /*
7474 * Force a reinitialization of the sched domains hierarchy. The domains
7475 * and groups cannot be updated in place without racing with the balancing
7476 * code, so we temporarily attach all running cpus to the NULL domain
7477 * which will prevent rebalancing while the sched domains are recalculated.
7478 */
7479 static int update_sched_domains(struct notifier_block *nfb,
7480 unsigned long action, void *hcpu)
7481 {
7482 switch (action) {
7483 case CPU_UP_PREPARE:
7484 case CPU_UP_PREPARE_FROZEN:
7485 case CPU_DOWN_PREPARE:
7486 case CPU_DOWN_PREPARE_FROZEN:
7487 detach_destroy_domains(&cpu_online_map);
7488 free_sched_domains();
7489 return NOTIFY_OK;
7490
7491 case CPU_UP_CANCELED:
7492 case CPU_UP_CANCELED_FROZEN:
7493 case CPU_DOWN_FAILED:
7494 case CPU_DOWN_FAILED_FROZEN:
7495 case CPU_ONLINE:
7496 case CPU_ONLINE_FROZEN:
7497 case CPU_DEAD:
7498 case CPU_DEAD_FROZEN:
7499 /*
7500 * Fall through and re-initialise the domains.
7501 */
7502 break;
7503 default:
7504 return NOTIFY_DONE;
7505 }
7506
7507 #ifndef CONFIG_CPUSETS
7508 /*
7509 * Create default domain partitioning if cpusets are disabled.
7510 * Otherwise we let cpusets rebuild the domains based on the
7511 * current setup.
7512 */
7513
7514 /* The hotplug lock is already held by cpu_up/cpu_down */
7515 arch_init_sched_domains(&cpu_online_map);
7516 #endif
7517
7518 return NOTIFY_OK;
7519 }
7520
7521 void __init sched_init_smp(void)
7522 {
7523 cpumask_t non_isolated_cpus;
7524
7525 #if defined(CONFIG_NUMA)
7526 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7527 GFP_KERNEL);
7528 BUG_ON(sched_group_nodes_bycpu == NULL);
7529 #endif
7530 get_online_cpus();
7531 mutex_lock(&sched_domains_mutex);
7532 arch_init_sched_domains(&cpu_online_map);
7533 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7534 if (cpus_empty(non_isolated_cpus))
7535 cpu_set(smp_processor_id(), non_isolated_cpus);
7536 mutex_unlock(&sched_domains_mutex);
7537 put_online_cpus();
7538 /* XXX: Theoretical race here - CPU may be hotplugged now */
7539 hotcpu_notifier(update_sched_domains, 0);
7540 init_hrtick();
7541
7542 /* Move init over to a non-isolated CPU */
7543 if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
7544 BUG();
7545 sched_init_granularity();
7546 }
7547 #else
7548 void __init sched_init_smp(void)
7549 {
7550 sched_init_granularity();
7551 }
7552 #endif /* CONFIG_SMP */
7553
7554 int in_sched_functions(unsigned long addr)
7555 {
7556 return in_lock_functions(addr) ||
7557 (addr >= (unsigned long)__sched_text_start
7558 && addr < (unsigned long)__sched_text_end);
7559 }
7560
7561 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
7562 {
7563 cfs_rq->tasks_timeline = RB_ROOT;
7564 INIT_LIST_HEAD(&cfs_rq->tasks);
7565 #ifdef CONFIG_FAIR_GROUP_SCHED
7566 cfs_rq->rq = rq;
7567 #endif
7568 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7569 }
7570
7571 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7572 {
7573 struct rt_prio_array *array;
7574 int i;
7575
7576 array = &rt_rq->active;
7577 for (i = 0; i < MAX_RT_PRIO; i++) {
7578 INIT_LIST_HEAD(array->queue + i);
7579 __clear_bit(i, array->bitmap);
7580 }
7581 /* delimiter for bitsearch: */
7582 __set_bit(MAX_RT_PRIO, array->bitmap);
7583
7584 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7585 rt_rq->highest_prio = MAX_RT_PRIO;
7586 #endif
7587 #ifdef CONFIG_SMP
7588 rt_rq->rt_nr_migratory = 0;
7589 rt_rq->overloaded = 0;
7590 #endif
7591
7592 rt_rq->rt_time = 0;
7593 rt_rq->rt_throttled = 0;
7594 rt_rq->rt_runtime = 0;
7595 spin_lock_init(&rt_rq->rt_runtime_lock);
7596
7597 #ifdef CONFIG_RT_GROUP_SCHED
7598 rt_rq->rt_nr_boosted = 0;
7599 rt_rq->rq = rq;
7600 #endif
7601 }
7602
7603 #ifdef CONFIG_FAIR_GROUP_SCHED
7604 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7605 struct sched_entity *se, int cpu, int add,
7606 struct sched_entity *parent)
7607 {
7608 struct rq *rq = cpu_rq(cpu);
7609 tg->cfs_rq[cpu] = cfs_rq;
7610 init_cfs_rq(cfs_rq, rq);
7611 cfs_rq->tg = tg;
7612 if (add)
7613 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7614
7615 tg->se[cpu] = se;
7616 /* se could be NULL for init_task_group */
7617 if (!se)
7618 return;
7619
7620 if (!parent)
7621 se->cfs_rq = &rq->cfs;
7622 else
7623 se->cfs_rq = parent->my_q;
7624
7625 se->my_q = cfs_rq;
7626 se->load.weight = tg->shares;
7627 se->load.inv_weight = 0;
7628 se->parent = parent;
7629 }
7630 #endif
7631
7632 #ifdef CONFIG_RT_GROUP_SCHED
7633 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7634 struct sched_rt_entity *rt_se, int cpu, int add,
7635 struct sched_rt_entity *parent)
7636 {
7637 struct rq *rq = cpu_rq(cpu);
7638
7639 tg->rt_rq[cpu] = rt_rq;
7640 init_rt_rq(rt_rq, rq);
7641 rt_rq->tg = tg;
7642 rt_rq->rt_se = rt_se;
7643 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
7644 if (add)
7645 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7646
7647 tg->rt_se[cpu] = rt_se;
7648 if (!rt_se)
7649 return;
7650
7651 if (!parent)
7652 rt_se->rt_rq = &rq->rt;
7653 else
7654 rt_se->rt_rq = parent->my_q;
7655
7656 rt_se->my_q = rt_rq;
7657 rt_se->parent = parent;
7658 INIT_LIST_HEAD(&rt_se->run_list);
7659 }
7660 #endif
7661
7662 void __init sched_init(void)
7663 {
7664 int i, j;
7665 unsigned long alloc_size = 0, ptr;
7666
7667 #ifdef CONFIG_FAIR_GROUP_SCHED
7668 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7669 #endif
7670 #ifdef CONFIG_RT_GROUP_SCHED
7671 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7672 #endif
7673 #ifdef CONFIG_USER_SCHED
7674 alloc_size *= 2;
7675 #endif
7676 /*
7677 * As sched_init() is called before page_alloc is setup,
7678 * we use alloc_bootmem().
7679 */
7680 if (alloc_size) {
7681 ptr = (unsigned long)alloc_bootmem(alloc_size);
7682
7683 #ifdef CONFIG_FAIR_GROUP_SCHED
7684 init_task_group.se = (struct sched_entity **)ptr;
7685 ptr += nr_cpu_ids * sizeof(void **);
7686
7687 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7688 ptr += nr_cpu_ids * sizeof(void **);
7689
7690 #ifdef CONFIG_USER_SCHED
7691 root_task_group.se = (struct sched_entity **)ptr;
7692 ptr += nr_cpu_ids * sizeof(void **);
7693
7694 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7695 ptr += nr_cpu_ids * sizeof(void **);
7696 #endif
7697 #endif
7698 #ifdef CONFIG_RT_GROUP_SCHED
7699 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7700 ptr += nr_cpu_ids * sizeof(void **);
7701
7702 init_task_group.rt_rq = (struct rt_rq **)ptr;
7703 ptr += nr_cpu_ids * sizeof(void **);
7704
7705 #ifdef CONFIG_USER_SCHED
7706 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7707 ptr += nr_cpu_ids * sizeof(void **);
7708
7709 root_task_group.rt_rq = (struct rt_rq **)ptr;
7710 ptr += nr_cpu_ids * sizeof(void **);
7711 #endif
7712 #endif
7713 }
7714
7715 #ifdef CONFIG_SMP
7716 init_defrootdomain();
7717 #endif
7718
7719 init_rt_bandwidth(&def_rt_bandwidth,
7720 global_rt_period(), global_rt_runtime());
7721
7722 #ifdef CONFIG_RT_GROUP_SCHED
7723 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7724 global_rt_period(), global_rt_runtime());
7725 #ifdef CONFIG_USER_SCHED
7726 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7727 global_rt_period(), RUNTIME_INF);
7728 #endif
7729 #endif
7730
7731 #ifdef CONFIG_GROUP_SCHED
7732 list_add(&init_task_group.list, &task_groups);
7733 INIT_LIST_HEAD(&init_task_group.children);
7734
7735 #ifdef CONFIG_USER_SCHED
7736 INIT_LIST_HEAD(&root_task_group.children);
7737 init_task_group.parent = &root_task_group;
7738 list_add(&init_task_group.siblings, &root_task_group.children);
7739 #endif
7740 #endif
7741
7742 for_each_possible_cpu(i) {
7743 struct rq *rq;
7744
7745 rq = cpu_rq(i);
7746 spin_lock_init(&rq->lock);
7747 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7748 rq->nr_running = 0;
7749 init_cfs_rq(&rq->cfs, rq);
7750 init_rt_rq(&rq->rt, rq);
7751 #ifdef CONFIG_FAIR_GROUP_SCHED
7752 init_task_group.shares = init_task_group_load;
7753 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7754 #ifdef CONFIG_CGROUP_SCHED
7755 /*
7756 * How much cpu bandwidth does init_task_group get?
7757 *
7758 * In case of task-groups formed thr' the cgroup filesystem, it
7759 * gets 100% of the cpu resources in the system. This overall
7760 * system cpu resource is divided among the tasks of
7761 * init_task_group and its child task-groups in a fair manner,
7762 * based on each entity's (task or task-group's) weight
7763 * (se->load.weight).
7764 *
7765 * In other words, if init_task_group has 10 tasks of weight
7766 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7767 * then A0's share of the cpu resource is:
7768 *
7769 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7770 *
7771 * We achieve this by letting init_task_group's tasks sit
7772 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7773 */
7774 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
7775 #elif defined CONFIG_USER_SCHED
7776 root_task_group.shares = NICE_0_LOAD;
7777 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
7778 /*
7779 * In case of task-groups formed thr' the user id of tasks,
7780 * init_task_group represents tasks belonging to root user.
7781 * Hence it forms a sibling of all subsequent groups formed.
7782 * In this case, init_task_group gets only a fraction of overall
7783 * system cpu resource, based on the weight assigned to root
7784 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
7785 * by letting tasks of init_task_group sit in a separate cfs_rq
7786 * (init_cfs_rq) and having one entity represent this group of
7787 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
7788 */
7789 init_tg_cfs_entry(&init_task_group,
7790 &per_cpu(init_cfs_rq, i),
7791 &per_cpu(init_sched_entity, i), i, 1,
7792 root_task_group.se[i]);
7793
7794 #endif
7795 #endif /* CONFIG_FAIR_GROUP_SCHED */
7796
7797 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7798 #ifdef CONFIG_RT_GROUP_SCHED
7799 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7800 #ifdef CONFIG_CGROUP_SCHED
7801 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
7802 #elif defined CONFIG_USER_SCHED
7803 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
7804 init_tg_rt_entry(&init_task_group,
7805 &per_cpu(init_rt_rq, i),
7806 &per_cpu(init_sched_rt_entity, i), i, 1,
7807 root_task_group.rt_se[i]);
7808 #endif
7809 #endif
7810
7811 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7812 rq->cpu_load[j] = 0;
7813 #ifdef CONFIG_SMP
7814 rq->sd = NULL;
7815 rq->rd = NULL;
7816 rq->active_balance = 0;
7817 rq->next_balance = jiffies;
7818 rq->push_cpu = 0;
7819 rq->cpu = i;
7820 rq->migration_thread = NULL;
7821 INIT_LIST_HEAD(&rq->migration_queue);
7822 rq_attach_root(rq, &def_root_domain);
7823 #endif
7824 init_rq_hrtick(rq);
7825 atomic_set(&rq->nr_iowait, 0);
7826 }
7827
7828 set_load_weight(&init_task);
7829
7830 #ifdef CONFIG_PREEMPT_NOTIFIERS
7831 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7832 #endif
7833
7834 #ifdef CONFIG_SMP
7835 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
7836 #endif
7837
7838 #ifdef CONFIG_RT_MUTEXES
7839 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
7840 #endif
7841
7842 /*
7843 * The boot idle thread does lazy MMU switching as well:
7844 */
7845 atomic_inc(&init_mm.mm_count);
7846 enter_lazy_tlb(&init_mm, current);
7847
7848 /*
7849 * Make us the idle thread. Technically, schedule() should not be
7850 * called from this thread, however somewhere below it might be,
7851 * but because we are the idle thread, we just pick up running again
7852 * when this runqueue becomes "idle".
7853 */
7854 init_idle(current, smp_processor_id());
7855 /*
7856 * During early bootup we pretend to be a normal task:
7857 */
7858 current->sched_class = &fair_sched_class;
7859
7860 scheduler_running = 1;
7861 }
7862
7863 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7864 void __might_sleep(char *file, int line)
7865 {
7866 #ifdef in_atomic
7867 static unsigned long prev_jiffy; /* ratelimiting */
7868
7869 if ((in_atomic() || irqs_disabled()) &&
7870 system_state == SYSTEM_RUNNING && !oops_in_progress) {
7871 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7872 return;
7873 prev_jiffy = jiffies;
7874 printk(KERN_ERR "BUG: sleeping function called from invalid"
7875 " context at %s:%d\n", file, line);
7876 printk("in_atomic():%d, irqs_disabled():%d\n",
7877 in_atomic(), irqs_disabled());
7878 debug_show_held_locks(current);
7879 if (irqs_disabled())
7880 print_irqtrace_events(current);
7881 dump_stack();
7882 }
7883 #endif
7884 }
7885 EXPORT_SYMBOL(__might_sleep);
7886 #endif
7887
7888 #ifdef CONFIG_MAGIC_SYSRQ
7889 static void normalize_task(struct rq *rq, struct task_struct *p)
7890 {
7891 int on_rq;
7892
7893 update_rq_clock(rq);
7894 on_rq = p->se.on_rq;
7895 if (on_rq)
7896 deactivate_task(rq, p, 0);
7897 __setscheduler(rq, p, SCHED_NORMAL, 0);
7898 if (on_rq) {
7899 activate_task(rq, p, 0);
7900 resched_task(rq->curr);
7901 }
7902 }
7903
7904 void normalize_rt_tasks(void)
7905 {
7906 struct task_struct *g, *p;
7907 unsigned long flags;
7908 struct rq *rq;
7909
7910 read_lock_irqsave(&tasklist_lock, flags);
7911 do_each_thread(g, p) {
7912 /*
7913 * Only normalize user tasks:
7914 */
7915 if (!p->mm)
7916 continue;
7917
7918 p->se.exec_start = 0;
7919 #ifdef CONFIG_SCHEDSTATS
7920 p->se.wait_start = 0;
7921 p->se.sleep_start = 0;
7922 p->se.block_start = 0;
7923 #endif
7924
7925 if (!rt_task(p)) {
7926 /*
7927 * Renice negative nice level userspace
7928 * tasks back to 0:
7929 */
7930 if (TASK_NICE(p) < 0 && p->mm)
7931 set_user_nice(p, 0);
7932 continue;
7933 }
7934
7935 spin_lock(&p->pi_lock);
7936 rq = __task_rq_lock(p);
7937
7938 normalize_task(rq, p);
7939
7940 __task_rq_unlock(rq);
7941 spin_unlock(&p->pi_lock);
7942 } while_each_thread(g, p);
7943
7944 read_unlock_irqrestore(&tasklist_lock, flags);
7945 }
7946
7947 #endif /* CONFIG_MAGIC_SYSRQ */
7948
7949 #ifdef CONFIG_IA64
7950 /*
7951 * These functions are only useful for the IA64 MCA handling.
7952 *
7953 * They can only be called when the whole system has been
7954 * stopped - every CPU needs to be quiescent, and no scheduling
7955 * activity can take place. Using them for anything else would
7956 * be a serious bug, and as a result, they aren't even visible
7957 * under any other configuration.
7958 */
7959
7960 /**
7961 * curr_task - return the current task for a given cpu.
7962 * @cpu: the processor in question.
7963 *
7964 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7965 */
7966 struct task_struct *curr_task(int cpu)
7967 {
7968 return cpu_curr(cpu);
7969 }
7970
7971 /**
7972 * set_curr_task - set the current task for a given cpu.
7973 * @cpu: the processor in question.
7974 * @p: the task pointer to set.
7975 *
7976 * Description: This function must only be used when non-maskable interrupts
7977 * are serviced on a separate stack. It allows the architecture to switch the
7978 * notion of the current task on a cpu in a non-blocking manner. This function
7979 * must be called with all CPU's synchronized, and interrupts disabled, the
7980 * and caller must save the original value of the current task (see
7981 * curr_task() above) and restore that value before reenabling interrupts and
7982 * re-starting the system.
7983 *
7984 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7985 */
7986 void set_curr_task(int cpu, struct task_struct *p)
7987 {
7988 cpu_curr(cpu) = p;
7989 }
7990
7991 #endif
7992
7993 #ifdef CONFIG_FAIR_GROUP_SCHED
7994 static void free_fair_sched_group(struct task_group *tg)
7995 {
7996 int i;
7997
7998 for_each_possible_cpu(i) {
7999 if (tg->cfs_rq)
8000 kfree(tg->cfs_rq[i]);
8001 if (tg->se)
8002 kfree(tg->se[i]);
8003 }
8004
8005 kfree(tg->cfs_rq);
8006 kfree(tg->se);
8007 }
8008
8009 static
8010 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8011 {
8012 struct cfs_rq *cfs_rq;
8013 struct sched_entity *se, *parent_se;
8014 struct rq *rq;
8015 int i;
8016
8017 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8018 if (!tg->cfs_rq)
8019 goto err;
8020 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8021 if (!tg->se)
8022 goto err;
8023
8024 tg->shares = NICE_0_LOAD;
8025
8026 for_each_possible_cpu(i) {
8027 rq = cpu_rq(i);
8028
8029 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
8030 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8031 if (!cfs_rq)
8032 goto err;
8033
8034 se = kmalloc_node(sizeof(struct sched_entity),
8035 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8036 if (!se)
8037 goto err;
8038
8039 parent_se = parent ? parent->se[i] : NULL;
8040 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
8041 }
8042
8043 return 1;
8044
8045 err:
8046 return 0;
8047 }
8048
8049 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8050 {
8051 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8052 &cpu_rq(cpu)->leaf_cfs_rq_list);
8053 }
8054
8055 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8056 {
8057 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8058 }
8059 #else
8060 static inline void free_fair_sched_group(struct task_group *tg)
8061 {
8062 }
8063
8064 static inline
8065 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8066 {
8067 return 1;
8068 }
8069
8070 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8071 {
8072 }
8073
8074 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8075 {
8076 }
8077 #endif
8078
8079 #ifdef CONFIG_RT_GROUP_SCHED
8080 static void free_rt_sched_group(struct task_group *tg)
8081 {
8082 int i;
8083
8084 destroy_rt_bandwidth(&tg->rt_bandwidth);
8085
8086 for_each_possible_cpu(i) {
8087 if (tg->rt_rq)
8088 kfree(tg->rt_rq[i]);
8089 if (tg->rt_se)
8090 kfree(tg->rt_se[i]);
8091 }
8092
8093 kfree(tg->rt_rq);
8094 kfree(tg->rt_se);
8095 }
8096
8097 static
8098 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8099 {
8100 struct rt_rq *rt_rq;
8101 struct sched_rt_entity *rt_se, *parent_se;
8102 struct rq *rq;
8103 int i;
8104
8105 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8106 if (!tg->rt_rq)
8107 goto err;
8108 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8109 if (!tg->rt_se)
8110 goto err;
8111
8112 init_rt_bandwidth(&tg->rt_bandwidth,
8113 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8114
8115 for_each_possible_cpu(i) {
8116 rq = cpu_rq(i);
8117
8118 rt_rq = kmalloc_node(sizeof(struct rt_rq),
8119 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8120 if (!rt_rq)
8121 goto err;
8122
8123 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
8124 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8125 if (!rt_se)
8126 goto err;
8127
8128 parent_se = parent ? parent->rt_se[i] : NULL;
8129 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
8130 }
8131
8132 return 1;
8133
8134 err:
8135 return 0;
8136 }
8137
8138 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8139 {
8140 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8141 &cpu_rq(cpu)->leaf_rt_rq_list);
8142 }
8143
8144 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8145 {
8146 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8147 }
8148 #else
8149 static inline void free_rt_sched_group(struct task_group *tg)
8150 {
8151 }
8152
8153 static inline
8154 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8155 {
8156 return 1;
8157 }
8158
8159 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8160 {
8161 }
8162
8163 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8164 {
8165 }
8166 #endif
8167
8168 #ifdef CONFIG_GROUP_SCHED
8169 static void free_sched_group(struct task_group *tg)
8170 {
8171 free_fair_sched_group(tg);
8172 free_rt_sched_group(tg);
8173 kfree(tg);
8174 }
8175
8176 /* allocate runqueue etc for a new task group */
8177 struct task_group *sched_create_group(struct task_group *parent)
8178 {
8179 struct task_group *tg;
8180 unsigned long flags;
8181 int i;
8182
8183 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8184 if (!tg)
8185 return ERR_PTR(-ENOMEM);
8186
8187 if (!alloc_fair_sched_group(tg, parent))
8188 goto err;
8189
8190 if (!alloc_rt_sched_group(tg, parent))
8191 goto err;
8192
8193 spin_lock_irqsave(&task_group_lock, flags);
8194 for_each_possible_cpu(i) {
8195 register_fair_sched_group(tg, i);
8196 register_rt_sched_group(tg, i);
8197 }
8198 list_add_rcu(&tg->list, &task_groups);
8199
8200 WARN_ON(!parent); /* root should already exist */
8201
8202 tg->parent = parent;
8203 list_add_rcu(&tg->siblings, &parent->children);
8204 INIT_LIST_HEAD(&tg->children);
8205 spin_unlock_irqrestore(&task_group_lock, flags);
8206
8207 return tg;
8208
8209 err:
8210 free_sched_group(tg);
8211 return ERR_PTR(-ENOMEM);
8212 }
8213
8214 /* rcu callback to free various structures associated with a task group */
8215 static void free_sched_group_rcu(struct rcu_head *rhp)
8216 {
8217 /* now it should be safe to free those cfs_rqs */
8218 free_sched_group(container_of(rhp, struct task_group, rcu));
8219 }
8220
8221 /* Destroy runqueue etc associated with a task group */
8222 void sched_destroy_group(struct task_group *tg)
8223 {
8224 unsigned long flags;
8225 int i;
8226
8227 spin_lock_irqsave(&task_group_lock, flags);
8228 for_each_possible_cpu(i) {
8229 unregister_fair_sched_group(tg, i);
8230 unregister_rt_sched_group(tg, i);
8231 }
8232 list_del_rcu(&tg->list);
8233 list_del_rcu(&tg->siblings);
8234 spin_unlock_irqrestore(&task_group_lock, flags);
8235
8236 /* wait for possible concurrent references to cfs_rqs complete */
8237 call_rcu(&tg->rcu, free_sched_group_rcu);
8238 }
8239
8240 /* change task's runqueue when it moves between groups.
8241 * The caller of this function should have put the task in its new group
8242 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8243 * reflect its new group.
8244 */
8245 void sched_move_task(struct task_struct *tsk)
8246 {
8247 int on_rq, running;
8248 unsigned long flags;
8249 struct rq *rq;
8250
8251 rq = task_rq_lock(tsk, &flags);
8252
8253 update_rq_clock(rq);
8254
8255 running = task_current(rq, tsk);
8256 on_rq = tsk->se.on_rq;
8257
8258 if (on_rq)
8259 dequeue_task(rq, tsk, 0);
8260 if (unlikely(running))
8261 tsk->sched_class->put_prev_task(rq, tsk);
8262
8263 set_task_rq(tsk, task_cpu(tsk));
8264
8265 #ifdef CONFIG_FAIR_GROUP_SCHED
8266 if (tsk->sched_class->moved_group)
8267 tsk->sched_class->moved_group(tsk);
8268 #endif
8269
8270 if (unlikely(running))
8271 tsk->sched_class->set_curr_task(rq);
8272 if (on_rq)
8273 enqueue_task(rq, tsk, 0);
8274
8275 task_rq_unlock(rq, &flags);
8276 }
8277 #endif
8278
8279 #ifdef CONFIG_FAIR_GROUP_SCHED
8280 static void set_se_shares(struct sched_entity *se, unsigned long shares)
8281 {
8282 struct cfs_rq *cfs_rq = se->cfs_rq;
8283 struct rq *rq = cfs_rq->rq;
8284 int on_rq;
8285
8286 spin_lock_irq(&rq->lock);
8287
8288 on_rq = se->on_rq;
8289 if (on_rq)
8290 dequeue_entity(cfs_rq, se, 0);
8291
8292 se->load.weight = shares;
8293 se->load.inv_weight = 0;
8294
8295 if (on_rq)
8296 enqueue_entity(cfs_rq, se, 0);
8297
8298 spin_unlock_irq(&rq->lock);
8299 }
8300
8301 static DEFINE_MUTEX(shares_mutex);
8302
8303 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8304 {
8305 int i;
8306 unsigned long flags;
8307
8308 /*
8309 * We can't change the weight of the root cgroup.
8310 */
8311 if (!tg->se[0])
8312 return -EINVAL;
8313
8314 if (shares < MIN_SHARES)
8315 shares = MIN_SHARES;
8316 else if (shares > MAX_SHARES)
8317 shares = MAX_SHARES;
8318
8319 mutex_lock(&shares_mutex);
8320 if (tg->shares == shares)
8321 goto done;
8322
8323 spin_lock_irqsave(&task_group_lock, flags);
8324 for_each_possible_cpu(i)
8325 unregister_fair_sched_group(tg, i);
8326 list_del_rcu(&tg->siblings);
8327 spin_unlock_irqrestore(&task_group_lock, flags);
8328
8329 /* wait for any ongoing reference to this group to finish */
8330 synchronize_sched();
8331
8332 /*
8333 * Now we are free to modify the group's share on each cpu
8334 * w/o tripping rebalance_share or load_balance_fair.
8335 */
8336 tg->shares = shares;
8337 for_each_possible_cpu(i)
8338 set_se_shares(tg->se[i], shares);
8339
8340 /*
8341 * Enable load balance activity on this group, by inserting it back on
8342 * each cpu's rq->leaf_cfs_rq_list.
8343 */
8344 spin_lock_irqsave(&task_group_lock, flags);
8345 for_each_possible_cpu(i)
8346 register_fair_sched_group(tg, i);
8347 list_add_rcu(&tg->siblings, &tg->parent->children);
8348 spin_unlock_irqrestore(&task_group_lock, flags);
8349 done:
8350 mutex_unlock(&shares_mutex);
8351 return 0;
8352 }
8353
8354 unsigned long sched_group_shares(struct task_group *tg)
8355 {
8356 return tg->shares;
8357 }
8358 #endif
8359
8360 #ifdef CONFIG_RT_GROUP_SCHED
8361 /*
8362 * Ensure that the real time constraints are schedulable.
8363 */
8364 static DEFINE_MUTEX(rt_constraints_mutex);
8365
8366 static unsigned long to_ratio(u64 period, u64 runtime)
8367 {
8368 if (runtime == RUNTIME_INF)
8369 return 1ULL << 16;
8370
8371 return div64_u64(runtime << 16, period);
8372 }
8373
8374 #ifdef CONFIG_CGROUP_SCHED
8375 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8376 {
8377 struct task_group *tgi, *parent = tg ? tg->parent : NULL;
8378 unsigned long total = 0;
8379
8380 if (!parent) {
8381 if (global_rt_period() < period)
8382 return 0;
8383
8384 return to_ratio(period, runtime) <
8385 to_ratio(global_rt_period(), global_rt_runtime());
8386 }
8387
8388 if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
8389 return 0;
8390
8391 rcu_read_lock();
8392 list_for_each_entry_rcu(tgi, &parent->children, siblings) {
8393 if (tgi == tg)
8394 continue;
8395
8396 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8397 tgi->rt_bandwidth.rt_runtime);
8398 }
8399 rcu_read_unlock();
8400
8401 return total + to_ratio(period, runtime) <
8402 to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
8403 parent->rt_bandwidth.rt_runtime);
8404 }
8405 #elif defined CONFIG_USER_SCHED
8406 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8407 {
8408 struct task_group *tgi;
8409 unsigned long total = 0;
8410 unsigned long global_ratio =
8411 to_ratio(global_rt_period(), global_rt_runtime());
8412
8413 rcu_read_lock();
8414 list_for_each_entry_rcu(tgi, &task_groups, list) {
8415 if (tgi == tg)
8416 continue;
8417
8418 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8419 tgi->rt_bandwidth.rt_runtime);
8420 }
8421 rcu_read_unlock();
8422
8423 return total + to_ratio(period, runtime) < global_ratio;
8424 }
8425 #endif
8426
8427 /* Must be called with tasklist_lock held */
8428 static inline int tg_has_rt_tasks(struct task_group *tg)
8429 {
8430 struct task_struct *g, *p;
8431 do_each_thread(g, p) {
8432 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8433 return 1;
8434 } while_each_thread(g, p);
8435 return 0;
8436 }
8437
8438 static int tg_set_bandwidth(struct task_group *tg,
8439 u64 rt_period, u64 rt_runtime)
8440 {
8441 int i, err = 0;
8442
8443 mutex_lock(&rt_constraints_mutex);
8444 read_lock(&tasklist_lock);
8445 if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
8446 err = -EBUSY;
8447 goto unlock;
8448 }
8449 if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
8450 err = -EINVAL;
8451 goto unlock;
8452 }
8453
8454 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8455 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8456 tg->rt_bandwidth.rt_runtime = rt_runtime;
8457
8458 for_each_possible_cpu(i) {
8459 struct rt_rq *rt_rq = tg->rt_rq[i];
8460
8461 spin_lock(&rt_rq->rt_runtime_lock);
8462 rt_rq->rt_runtime = rt_runtime;
8463 spin_unlock(&rt_rq->rt_runtime_lock);
8464 }
8465 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8466 unlock:
8467 read_unlock(&tasklist_lock);
8468 mutex_unlock(&rt_constraints_mutex);
8469
8470 return err;
8471 }
8472
8473 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8474 {
8475 u64 rt_runtime, rt_period;
8476
8477 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8478 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8479 if (rt_runtime_us < 0)
8480 rt_runtime = RUNTIME_INF;
8481
8482 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8483 }
8484
8485 long sched_group_rt_runtime(struct task_group *tg)
8486 {
8487 u64 rt_runtime_us;
8488
8489 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8490 return -1;
8491
8492 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8493 do_div(rt_runtime_us, NSEC_PER_USEC);
8494 return rt_runtime_us;
8495 }
8496
8497 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8498 {
8499 u64 rt_runtime, rt_period;
8500
8501 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8502 rt_runtime = tg->rt_bandwidth.rt_runtime;
8503
8504 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8505 }
8506
8507 long sched_group_rt_period(struct task_group *tg)
8508 {
8509 u64 rt_period_us;
8510
8511 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8512 do_div(rt_period_us, NSEC_PER_USEC);
8513 return rt_period_us;
8514 }
8515
8516 static int sched_rt_global_constraints(void)
8517 {
8518 int ret = 0;
8519
8520 mutex_lock(&rt_constraints_mutex);
8521 if (!__rt_schedulable(NULL, 1, 0))
8522 ret = -EINVAL;
8523 mutex_unlock(&rt_constraints_mutex);
8524
8525 return ret;
8526 }
8527 #else
8528 static int sched_rt_global_constraints(void)
8529 {
8530 unsigned long flags;
8531 int i;
8532
8533 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8534 for_each_possible_cpu(i) {
8535 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8536
8537 spin_lock(&rt_rq->rt_runtime_lock);
8538 rt_rq->rt_runtime = global_rt_runtime();
8539 spin_unlock(&rt_rq->rt_runtime_lock);
8540 }
8541 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8542
8543 return 0;
8544 }
8545 #endif
8546
8547 int sched_rt_handler(struct ctl_table *table, int write,
8548 struct file *filp, void __user *buffer, size_t *lenp,
8549 loff_t *ppos)
8550 {
8551 int ret;
8552 int old_period, old_runtime;
8553 static DEFINE_MUTEX(mutex);
8554
8555 mutex_lock(&mutex);
8556 old_period = sysctl_sched_rt_period;
8557 old_runtime = sysctl_sched_rt_runtime;
8558
8559 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
8560
8561 if (!ret && write) {
8562 ret = sched_rt_global_constraints();
8563 if (ret) {
8564 sysctl_sched_rt_period = old_period;
8565 sysctl_sched_rt_runtime = old_runtime;
8566 } else {
8567 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8568 def_rt_bandwidth.rt_period =
8569 ns_to_ktime(global_rt_period());
8570 }
8571 }
8572 mutex_unlock(&mutex);
8573
8574 return ret;
8575 }
8576
8577 #ifdef CONFIG_CGROUP_SCHED
8578
8579 /* return corresponding task_group object of a cgroup */
8580 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8581 {
8582 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8583 struct task_group, css);
8584 }
8585
8586 static struct cgroup_subsys_state *
8587 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8588 {
8589 struct task_group *tg, *parent;
8590
8591 if (!cgrp->parent) {
8592 /* This is early initialization for the top cgroup */
8593 init_task_group.css.cgroup = cgrp;
8594 return &init_task_group.css;
8595 }
8596
8597 parent = cgroup_tg(cgrp->parent);
8598 tg = sched_create_group(parent);
8599 if (IS_ERR(tg))
8600 return ERR_PTR(-ENOMEM);
8601
8602 /* Bind the cgroup to task_group object we just created */
8603 tg->css.cgroup = cgrp;
8604
8605 return &tg->css;
8606 }
8607
8608 static void
8609 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8610 {
8611 struct task_group *tg = cgroup_tg(cgrp);
8612
8613 sched_destroy_group(tg);
8614 }
8615
8616 static int
8617 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8618 struct task_struct *tsk)
8619 {
8620 #ifdef CONFIG_RT_GROUP_SCHED
8621 /* Don't accept realtime tasks when there is no way for them to run */
8622 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
8623 return -EINVAL;
8624 #else
8625 /* We don't support RT-tasks being in separate groups */
8626 if (tsk->sched_class != &fair_sched_class)
8627 return -EINVAL;
8628 #endif
8629
8630 return 0;
8631 }
8632
8633 static void
8634 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8635 struct cgroup *old_cont, struct task_struct *tsk)
8636 {
8637 sched_move_task(tsk);
8638 }
8639
8640 #ifdef CONFIG_FAIR_GROUP_SCHED
8641 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8642 u64 shareval)
8643 {
8644 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8645 }
8646
8647 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8648 {
8649 struct task_group *tg = cgroup_tg(cgrp);
8650
8651 return (u64) tg->shares;
8652 }
8653 #endif
8654
8655 #ifdef CONFIG_RT_GROUP_SCHED
8656 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8657 s64 val)
8658 {
8659 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
8660 }
8661
8662 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
8663 {
8664 return sched_group_rt_runtime(cgroup_tg(cgrp));
8665 }
8666
8667 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8668 u64 rt_period_us)
8669 {
8670 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8671 }
8672
8673 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8674 {
8675 return sched_group_rt_period(cgroup_tg(cgrp));
8676 }
8677 #endif
8678
8679 static struct cftype cpu_files[] = {
8680 #ifdef CONFIG_FAIR_GROUP_SCHED
8681 {
8682 .name = "shares",
8683 .read_u64 = cpu_shares_read_u64,
8684 .write_u64 = cpu_shares_write_u64,
8685 },
8686 #endif
8687 #ifdef CONFIG_RT_GROUP_SCHED
8688 {
8689 .name = "rt_runtime_us",
8690 .read_s64 = cpu_rt_runtime_read,
8691 .write_s64 = cpu_rt_runtime_write,
8692 },
8693 {
8694 .name = "rt_period_us",
8695 .read_u64 = cpu_rt_period_read_uint,
8696 .write_u64 = cpu_rt_period_write_uint,
8697 },
8698 #endif
8699 };
8700
8701 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8702 {
8703 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8704 }
8705
8706 struct cgroup_subsys cpu_cgroup_subsys = {
8707 .name = "cpu",
8708 .create = cpu_cgroup_create,
8709 .destroy = cpu_cgroup_destroy,
8710 .can_attach = cpu_cgroup_can_attach,
8711 .attach = cpu_cgroup_attach,
8712 .populate = cpu_cgroup_populate,
8713 .subsys_id = cpu_cgroup_subsys_id,
8714 .early_init = 1,
8715 };
8716
8717 #endif /* CONFIG_CGROUP_SCHED */
8718
8719 #ifdef CONFIG_CGROUP_CPUACCT
8720
8721 /*
8722 * CPU accounting code for task groups.
8723 *
8724 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8725 * (balbir@in.ibm.com).
8726 */
8727
8728 /* track cpu usage of a group of tasks */
8729 struct cpuacct {
8730 struct cgroup_subsys_state css;
8731 /* cpuusage holds pointer to a u64-type object on every cpu */
8732 u64 *cpuusage;
8733 };
8734
8735 struct cgroup_subsys cpuacct_subsys;
8736
8737 /* return cpu accounting group corresponding to this container */
8738 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8739 {
8740 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8741 struct cpuacct, css);
8742 }
8743
8744 /* return cpu accounting group to which this task belongs */
8745 static inline struct cpuacct *task_ca(struct task_struct *tsk)
8746 {
8747 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8748 struct cpuacct, css);
8749 }
8750
8751 /* create a new cpu accounting group */
8752 static struct cgroup_subsys_state *cpuacct_create(
8753 struct cgroup_subsys *ss, struct cgroup *cgrp)
8754 {
8755 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8756
8757 if (!ca)
8758 return ERR_PTR(-ENOMEM);
8759
8760 ca->cpuusage = alloc_percpu(u64);
8761 if (!ca->cpuusage) {
8762 kfree(ca);
8763 return ERR_PTR(-ENOMEM);
8764 }
8765
8766 return &ca->css;
8767 }
8768
8769 /* destroy an existing cpu accounting group */
8770 static void
8771 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8772 {
8773 struct cpuacct *ca = cgroup_ca(cgrp);
8774
8775 free_percpu(ca->cpuusage);
8776 kfree(ca);
8777 }
8778
8779 /* return total cpu usage (in nanoseconds) of a group */
8780 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8781 {
8782 struct cpuacct *ca = cgroup_ca(cgrp);
8783 u64 totalcpuusage = 0;
8784 int i;
8785
8786 for_each_possible_cpu(i) {
8787 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
8788
8789 /*
8790 * Take rq->lock to make 64-bit addition safe on 32-bit
8791 * platforms.
8792 */
8793 spin_lock_irq(&cpu_rq(i)->lock);
8794 totalcpuusage += *cpuusage;
8795 spin_unlock_irq(&cpu_rq(i)->lock);
8796 }
8797
8798 return totalcpuusage;
8799 }
8800
8801 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8802 u64 reset)
8803 {
8804 struct cpuacct *ca = cgroup_ca(cgrp);
8805 int err = 0;
8806 int i;
8807
8808 if (reset) {
8809 err = -EINVAL;
8810 goto out;
8811 }
8812
8813 for_each_possible_cpu(i) {
8814 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
8815
8816 spin_lock_irq(&cpu_rq(i)->lock);
8817 *cpuusage = 0;
8818 spin_unlock_irq(&cpu_rq(i)->lock);
8819 }
8820 out:
8821 return err;
8822 }
8823
8824 static struct cftype files[] = {
8825 {
8826 .name = "usage",
8827 .read_u64 = cpuusage_read,
8828 .write_u64 = cpuusage_write,
8829 },
8830 };
8831
8832 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
8833 {
8834 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
8835 }
8836
8837 /*
8838 * charge this task's execution time to its accounting group.
8839 *
8840 * called with rq->lock held.
8841 */
8842 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8843 {
8844 struct cpuacct *ca;
8845
8846 if (!cpuacct_subsys.active)
8847 return;
8848
8849 ca = task_ca(tsk);
8850 if (ca) {
8851 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
8852
8853 *cpuusage += cputime;
8854 }
8855 }
8856
8857 struct cgroup_subsys cpuacct_subsys = {
8858 .name = "cpuacct",
8859 .create = cpuacct_create,
8860 .destroy = cpuacct_destroy,
8861 .populate = cpuacct_populate,
8862 .subsys_id = cpuacct_subsys_id,
8863 };
8864 #endif /* CONFIG_CGROUP_CPUACCT */
This page took 0.236617 seconds and 5 git commands to generate.