ftrace: add stack tracer
[deliverable/linux.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/reciprocal_div.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/bootmem.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
74 #include <trace/sched.h>
75
76 #include <asm/tlb.h>
77 #include <asm/irq_regs.h>
78
79 #include "sched_cpupri.h"
80
81 /*
82 * Convert user-nice values [ -20 ... 0 ... 19 ]
83 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
84 * and back.
85 */
86 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
87 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
88 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
89
90 /*
91 * 'User priority' is the nice value converted to something we
92 * can work with better when scaling various scheduler parameters,
93 * it's a [ 0 ... 39 ] range.
94 */
95 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
96 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
97 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
98
99 /*
100 * Helpers for converting nanosecond timing to jiffy resolution
101 */
102 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
103
104 #define NICE_0_LOAD SCHED_LOAD_SCALE
105 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
106
107 /*
108 * These are the 'tuning knobs' of the scheduler:
109 *
110 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
111 * Timeslices get refilled after they expire.
112 */
113 #define DEF_TIMESLICE (100 * HZ / 1000)
114
115 /*
116 * single value that denotes runtime == period, ie unlimited time.
117 */
118 #define RUNTIME_INF ((u64)~0ULL)
119
120 #ifdef CONFIG_SMP
121 /*
122 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
123 * Since cpu_power is a 'constant', we can use a reciprocal divide.
124 */
125 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
126 {
127 return reciprocal_divide(load, sg->reciprocal_cpu_power);
128 }
129
130 /*
131 * Each time a sched group cpu_power is changed,
132 * we must compute its reciprocal value
133 */
134 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
135 {
136 sg->__cpu_power += val;
137 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
138 }
139 #endif
140
141 static inline int rt_policy(int policy)
142 {
143 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
144 return 1;
145 return 0;
146 }
147
148 static inline int task_has_rt_policy(struct task_struct *p)
149 {
150 return rt_policy(p->policy);
151 }
152
153 /*
154 * This is the priority-queue data structure of the RT scheduling class:
155 */
156 struct rt_prio_array {
157 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
158 struct list_head queue[MAX_RT_PRIO];
159 };
160
161 struct rt_bandwidth {
162 /* nests inside the rq lock: */
163 spinlock_t rt_runtime_lock;
164 ktime_t rt_period;
165 u64 rt_runtime;
166 struct hrtimer rt_period_timer;
167 };
168
169 static struct rt_bandwidth def_rt_bandwidth;
170
171 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
172
173 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
174 {
175 struct rt_bandwidth *rt_b =
176 container_of(timer, struct rt_bandwidth, rt_period_timer);
177 ktime_t now;
178 int overrun;
179 int idle = 0;
180
181 for (;;) {
182 now = hrtimer_cb_get_time(timer);
183 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
184
185 if (!overrun)
186 break;
187
188 idle = do_sched_rt_period_timer(rt_b, overrun);
189 }
190
191 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
192 }
193
194 static
195 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
196 {
197 rt_b->rt_period = ns_to_ktime(period);
198 rt_b->rt_runtime = runtime;
199
200 spin_lock_init(&rt_b->rt_runtime_lock);
201
202 hrtimer_init(&rt_b->rt_period_timer,
203 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
204 rt_b->rt_period_timer.function = sched_rt_period_timer;
205 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
206 }
207
208 static inline int rt_bandwidth_enabled(void)
209 {
210 return sysctl_sched_rt_runtime >= 0;
211 }
212
213 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
214 {
215 ktime_t now;
216
217 if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
218 return;
219
220 if (hrtimer_active(&rt_b->rt_period_timer))
221 return;
222
223 spin_lock(&rt_b->rt_runtime_lock);
224 for (;;) {
225 if (hrtimer_active(&rt_b->rt_period_timer))
226 break;
227
228 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
229 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
230 hrtimer_start(&rt_b->rt_period_timer,
231 rt_b->rt_period_timer.expires,
232 HRTIMER_MODE_ABS);
233 }
234 spin_unlock(&rt_b->rt_runtime_lock);
235 }
236
237 #ifdef CONFIG_RT_GROUP_SCHED
238 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
239 {
240 hrtimer_cancel(&rt_b->rt_period_timer);
241 }
242 #endif
243
244 /*
245 * sched_domains_mutex serializes calls to arch_init_sched_domains,
246 * detach_destroy_domains and partition_sched_domains.
247 */
248 static DEFINE_MUTEX(sched_domains_mutex);
249
250 #ifdef CONFIG_GROUP_SCHED
251
252 #include <linux/cgroup.h>
253
254 struct cfs_rq;
255
256 static LIST_HEAD(task_groups);
257
258 /* task group related information */
259 struct task_group {
260 #ifdef CONFIG_CGROUP_SCHED
261 struct cgroup_subsys_state css;
262 #endif
263
264 #ifdef CONFIG_FAIR_GROUP_SCHED
265 /* schedulable entities of this group on each cpu */
266 struct sched_entity **se;
267 /* runqueue "owned" by this group on each cpu */
268 struct cfs_rq **cfs_rq;
269 unsigned long shares;
270 #endif
271
272 #ifdef CONFIG_RT_GROUP_SCHED
273 struct sched_rt_entity **rt_se;
274 struct rt_rq **rt_rq;
275
276 struct rt_bandwidth rt_bandwidth;
277 #endif
278
279 struct rcu_head rcu;
280 struct list_head list;
281
282 struct task_group *parent;
283 struct list_head siblings;
284 struct list_head children;
285 };
286
287 #ifdef CONFIG_USER_SCHED
288
289 /*
290 * Root task group.
291 * Every UID task group (including init_task_group aka UID-0) will
292 * be a child to this group.
293 */
294 struct task_group root_task_group;
295
296 #ifdef CONFIG_FAIR_GROUP_SCHED
297 /* Default task group's sched entity on each cpu */
298 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
299 /* Default task group's cfs_rq on each cpu */
300 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
301 #endif /* CONFIG_FAIR_GROUP_SCHED */
302
303 #ifdef CONFIG_RT_GROUP_SCHED
304 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
305 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
306 #endif /* CONFIG_RT_GROUP_SCHED */
307 #else /* !CONFIG_USER_SCHED */
308 #define root_task_group init_task_group
309 #endif /* CONFIG_USER_SCHED */
310
311 /* task_group_lock serializes add/remove of task groups and also changes to
312 * a task group's cpu shares.
313 */
314 static DEFINE_SPINLOCK(task_group_lock);
315
316 #ifdef CONFIG_FAIR_GROUP_SCHED
317 #ifdef CONFIG_USER_SCHED
318 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
319 #else /* !CONFIG_USER_SCHED */
320 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
321 #endif /* CONFIG_USER_SCHED */
322
323 /*
324 * A weight of 0 or 1 can cause arithmetics problems.
325 * A weight of a cfs_rq is the sum of weights of which entities
326 * are queued on this cfs_rq, so a weight of a entity should not be
327 * too large, so as the shares value of a task group.
328 * (The default weight is 1024 - so there's no practical
329 * limitation from this.)
330 */
331 #define MIN_SHARES 2
332 #define MAX_SHARES (1UL << 18)
333
334 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
335 #endif
336
337 /* Default task group.
338 * Every task in system belong to this group at bootup.
339 */
340 struct task_group init_task_group;
341
342 /* return group to which a task belongs */
343 static inline struct task_group *task_group(struct task_struct *p)
344 {
345 struct task_group *tg;
346
347 #ifdef CONFIG_USER_SCHED
348 tg = p->user->tg;
349 #elif defined(CONFIG_CGROUP_SCHED)
350 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
351 struct task_group, css);
352 #else
353 tg = &init_task_group;
354 #endif
355 return tg;
356 }
357
358 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
359 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
360 {
361 #ifdef CONFIG_FAIR_GROUP_SCHED
362 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
363 p->se.parent = task_group(p)->se[cpu];
364 #endif
365
366 #ifdef CONFIG_RT_GROUP_SCHED
367 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
368 p->rt.parent = task_group(p)->rt_se[cpu];
369 #endif
370 }
371
372 #else
373
374 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
375 static inline struct task_group *task_group(struct task_struct *p)
376 {
377 return NULL;
378 }
379
380 #endif /* CONFIG_GROUP_SCHED */
381
382 /* CFS-related fields in a runqueue */
383 struct cfs_rq {
384 struct load_weight load;
385 unsigned long nr_running;
386
387 u64 exec_clock;
388 u64 min_vruntime;
389 u64 pair_start;
390
391 struct rb_root tasks_timeline;
392 struct rb_node *rb_leftmost;
393
394 struct list_head tasks;
395 struct list_head *balance_iterator;
396
397 /*
398 * 'curr' points to currently running entity on this cfs_rq.
399 * It is set to NULL otherwise (i.e when none are currently running).
400 */
401 struct sched_entity *curr, *next;
402
403 unsigned long nr_spread_over;
404
405 #ifdef CONFIG_FAIR_GROUP_SCHED
406 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
407
408 /*
409 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
410 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
411 * (like users, containers etc.)
412 *
413 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
414 * list is used during load balance.
415 */
416 struct list_head leaf_cfs_rq_list;
417 struct task_group *tg; /* group that "owns" this runqueue */
418
419 #ifdef CONFIG_SMP
420 /*
421 * the part of load.weight contributed by tasks
422 */
423 unsigned long task_weight;
424
425 /*
426 * h_load = weight * f(tg)
427 *
428 * Where f(tg) is the recursive weight fraction assigned to
429 * this group.
430 */
431 unsigned long h_load;
432
433 /*
434 * this cpu's part of tg->shares
435 */
436 unsigned long shares;
437
438 /*
439 * load.weight at the time we set shares
440 */
441 unsigned long rq_weight;
442 #endif
443 #endif
444 };
445
446 /* Real-Time classes' related field in a runqueue: */
447 struct rt_rq {
448 struct rt_prio_array active;
449 unsigned long rt_nr_running;
450 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
451 int highest_prio; /* highest queued rt task prio */
452 #endif
453 #ifdef CONFIG_SMP
454 unsigned long rt_nr_migratory;
455 int overloaded;
456 #endif
457 int rt_throttled;
458 u64 rt_time;
459 u64 rt_runtime;
460 /* Nests inside the rq lock: */
461 spinlock_t rt_runtime_lock;
462
463 #ifdef CONFIG_RT_GROUP_SCHED
464 unsigned long rt_nr_boosted;
465
466 struct rq *rq;
467 struct list_head leaf_rt_rq_list;
468 struct task_group *tg;
469 struct sched_rt_entity *rt_se;
470 #endif
471 };
472
473 #ifdef CONFIG_SMP
474
475 /*
476 * We add the notion of a root-domain which will be used to define per-domain
477 * variables. Each exclusive cpuset essentially defines an island domain by
478 * fully partitioning the member cpus from any other cpuset. Whenever a new
479 * exclusive cpuset is created, we also create and attach a new root-domain
480 * object.
481 *
482 */
483 struct root_domain {
484 atomic_t refcount;
485 cpumask_t span;
486 cpumask_t online;
487
488 /*
489 * The "RT overload" flag: it gets set if a CPU has more than
490 * one runnable RT task.
491 */
492 cpumask_t rto_mask;
493 atomic_t rto_count;
494 #ifdef CONFIG_SMP
495 struct cpupri cpupri;
496 #endif
497 };
498
499 /*
500 * By default the system creates a single root-domain with all cpus as
501 * members (mimicking the global state we have today).
502 */
503 static struct root_domain def_root_domain;
504
505 #endif
506
507 /*
508 * This is the main, per-CPU runqueue data structure.
509 *
510 * Locking rule: those places that want to lock multiple runqueues
511 * (such as the load balancing or the thread migration code), lock
512 * acquire operations must be ordered by ascending &runqueue.
513 */
514 struct rq {
515 /* runqueue lock: */
516 spinlock_t lock;
517
518 /*
519 * nr_running and cpu_load should be in the same cacheline because
520 * remote CPUs use both these fields when doing load calculation.
521 */
522 unsigned long nr_running;
523 #define CPU_LOAD_IDX_MAX 5
524 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
525 unsigned char idle_at_tick;
526 #ifdef CONFIG_NO_HZ
527 unsigned long last_tick_seen;
528 unsigned char in_nohz_recently;
529 #endif
530 /* capture load from *all* tasks on this cpu: */
531 struct load_weight load;
532 unsigned long nr_load_updates;
533 u64 nr_switches;
534
535 struct cfs_rq cfs;
536 struct rt_rq rt;
537
538 #ifdef CONFIG_FAIR_GROUP_SCHED
539 /* list of leaf cfs_rq on this cpu: */
540 struct list_head leaf_cfs_rq_list;
541 #endif
542 #ifdef CONFIG_RT_GROUP_SCHED
543 struct list_head leaf_rt_rq_list;
544 #endif
545
546 /*
547 * This is part of a global counter where only the total sum
548 * over all CPUs matters. A task can increase this counter on
549 * one CPU and if it got migrated afterwards it may decrease
550 * it on another CPU. Always updated under the runqueue lock:
551 */
552 unsigned long nr_uninterruptible;
553
554 struct task_struct *curr, *idle;
555 unsigned long next_balance;
556 struct mm_struct *prev_mm;
557
558 u64 clock;
559
560 atomic_t nr_iowait;
561
562 #ifdef CONFIG_SMP
563 struct root_domain *rd;
564 struct sched_domain *sd;
565
566 /* For active balancing */
567 int active_balance;
568 int push_cpu;
569 /* cpu of this runqueue: */
570 int cpu;
571 int online;
572
573 unsigned long avg_load_per_task;
574
575 struct task_struct *migration_thread;
576 struct list_head migration_queue;
577 #endif
578
579 #ifdef CONFIG_SCHED_HRTICK
580 #ifdef CONFIG_SMP
581 int hrtick_csd_pending;
582 struct call_single_data hrtick_csd;
583 #endif
584 struct hrtimer hrtick_timer;
585 #endif
586
587 #ifdef CONFIG_SCHEDSTATS
588 /* latency stats */
589 struct sched_info rq_sched_info;
590
591 /* sys_sched_yield() stats */
592 unsigned int yld_exp_empty;
593 unsigned int yld_act_empty;
594 unsigned int yld_both_empty;
595 unsigned int yld_count;
596
597 /* schedule() stats */
598 unsigned int sched_switch;
599 unsigned int sched_count;
600 unsigned int sched_goidle;
601
602 /* try_to_wake_up() stats */
603 unsigned int ttwu_count;
604 unsigned int ttwu_local;
605
606 /* BKL stats */
607 unsigned int bkl_count;
608 #endif
609 };
610
611 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
612
613 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
614 {
615 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
616 }
617
618 static inline int cpu_of(struct rq *rq)
619 {
620 #ifdef CONFIG_SMP
621 return rq->cpu;
622 #else
623 return 0;
624 #endif
625 }
626
627 /*
628 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
629 * See detach_destroy_domains: synchronize_sched for details.
630 *
631 * The domain tree of any CPU may only be accessed from within
632 * preempt-disabled sections.
633 */
634 #define for_each_domain(cpu, __sd) \
635 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
636
637 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
638 #define this_rq() (&__get_cpu_var(runqueues))
639 #define task_rq(p) cpu_rq(task_cpu(p))
640 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
641
642 static inline void update_rq_clock(struct rq *rq)
643 {
644 rq->clock = sched_clock_cpu(cpu_of(rq));
645 }
646
647 /*
648 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
649 */
650 #ifdef CONFIG_SCHED_DEBUG
651 # define const_debug __read_mostly
652 #else
653 # define const_debug static const
654 #endif
655
656 /**
657 * runqueue_is_locked
658 *
659 * Returns true if the current cpu runqueue is locked.
660 * This interface allows printk to be called with the runqueue lock
661 * held and know whether or not it is OK to wake up the klogd.
662 */
663 int runqueue_is_locked(void)
664 {
665 int cpu = get_cpu();
666 struct rq *rq = cpu_rq(cpu);
667 int ret;
668
669 ret = spin_is_locked(&rq->lock);
670 put_cpu();
671 return ret;
672 }
673
674 /*
675 * Debugging: various feature bits
676 */
677
678 #define SCHED_FEAT(name, enabled) \
679 __SCHED_FEAT_##name ,
680
681 enum {
682 #include "sched_features.h"
683 };
684
685 #undef SCHED_FEAT
686
687 #define SCHED_FEAT(name, enabled) \
688 (1UL << __SCHED_FEAT_##name) * enabled |
689
690 const_debug unsigned int sysctl_sched_features =
691 #include "sched_features.h"
692 0;
693
694 #undef SCHED_FEAT
695
696 #ifdef CONFIG_SCHED_DEBUG
697 #define SCHED_FEAT(name, enabled) \
698 #name ,
699
700 static __read_mostly char *sched_feat_names[] = {
701 #include "sched_features.h"
702 NULL
703 };
704
705 #undef SCHED_FEAT
706
707 static int sched_feat_open(struct inode *inode, struct file *filp)
708 {
709 filp->private_data = inode->i_private;
710 return 0;
711 }
712
713 static ssize_t
714 sched_feat_read(struct file *filp, char __user *ubuf,
715 size_t cnt, loff_t *ppos)
716 {
717 char *buf;
718 int r = 0;
719 int len = 0;
720 int i;
721
722 for (i = 0; sched_feat_names[i]; i++) {
723 len += strlen(sched_feat_names[i]);
724 len += 4;
725 }
726
727 buf = kmalloc(len + 2, GFP_KERNEL);
728 if (!buf)
729 return -ENOMEM;
730
731 for (i = 0; sched_feat_names[i]; i++) {
732 if (sysctl_sched_features & (1UL << i))
733 r += sprintf(buf + r, "%s ", sched_feat_names[i]);
734 else
735 r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
736 }
737
738 r += sprintf(buf + r, "\n");
739 WARN_ON(r >= len + 2);
740
741 r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
742
743 kfree(buf);
744
745 return r;
746 }
747
748 static ssize_t
749 sched_feat_write(struct file *filp, const char __user *ubuf,
750 size_t cnt, loff_t *ppos)
751 {
752 char buf[64];
753 char *cmp = buf;
754 int neg = 0;
755 int i;
756
757 if (cnt > 63)
758 cnt = 63;
759
760 if (copy_from_user(&buf, ubuf, cnt))
761 return -EFAULT;
762
763 buf[cnt] = 0;
764
765 if (strncmp(buf, "NO_", 3) == 0) {
766 neg = 1;
767 cmp += 3;
768 }
769
770 for (i = 0; sched_feat_names[i]; i++) {
771 int len = strlen(sched_feat_names[i]);
772
773 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
774 if (neg)
775 sysctl_sched_features &= ~(1UL << i);
776 else
777 sysctl_sched_features |= (1UL << i);
778 break;
779 }
780 }
781
782 if (!sched_feat_names[i])
783 return -EINVAL;
784
785 filp->f_pos += cnt;
786
787 return cnt;
788 }
789
790 static struct file_operations sched_feat_fops = {
791 .open = sched_feat_open,
792 .read = sched_feat_read,
793 .write = sched_feat_write,
794 };
795
796 static __init int sched_init_debug(void)
797 {
798 debugfs_create_file("sched_features", 0644, NULL, NULL,
799 &sched_feat_fops);
800
801 return 0;
802 }
803 late_initcall(sched_init_debug);
804
805 #endif
806
807 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
808
809 /*
810 * Number of tasks to iterate in a single balance run.
811 * Limited because this is done with IRQs disabled.
812 */
813 const_debug unsigned int sysctl_sched_nr_migrate = 32;
814
815 /*
816 * ratelimit for updating the group shares.
817 * default: 0.25ms
818 */
819 unsigned int sysctl_sched_shares_ratelimit = 250000;
820
821 /*
822 * period over which we measure -rt task cpu usage in us.
823 * default: 1s
824 */
825 unsigned int sysctl_sched_rt_period = 1000000;
826
827 static __read_mostly int scheduler_running;
828
829 /*
830 * part of the period that we allow rt tasks to run in us.
831 * default: 0.95s
832 */
833 int sysctl_sched_rt_runtime = 950000;
834
835 static inline u64 global_rt_period(void)
836 {
837 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
838 }
839
840 static inline u64 global_rt_runtime(void)
841 {
842 if (sysctl_sched_rt_runtime < 0)
843 return RUNTIME_INF;
844
845 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
846 }
847
848 #ifndef prepare_arch_switch
849 # define prepare_arch_switch(next) do { } while (0)
850 #endif
851 #ifndef finish_arch_switch
852 # define finish_arch_switch(prev) do { } while (0)
853 #endif
854
855 static inline int task_current(struct rq *rq, struct task_struct *p)
856 {
857 return rq->curr == p;
858 }
859
860 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
861 static inline int task_running(struct rq *rq, struct task_struct *p)
862 {
863 return task_current(rq, p);
864 }
865
866 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
867 {
868 }
869
870 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
871 {
872 #ifdef CONFIG_DEBUG_SPINLOCK
873 /* this is a valid case when another task releases the spinlock */
874 rq->lock.owner = current;
875 #endif
876 /*
877 * If we are tracking spinlock dependencies then we have to
878 * fix up the runqueue lock - which gets 'carried over' from
879 * prev into current:
880 */
881 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
882
883 spin_unlock_irq(&rq->lock);
884 }
885
886 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
887 static inline int task_running(struct rq *rq, struct task_struct *p)
888 {
889 #ifdef CONFIG_SMP
890 return p->oncpu;
891 #else
892 return task_current(rq, p);
893 #endif
894 }
895
896 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
897 {
898 #ifdef CONFIG_SMP
899 /*
900 * We can optimise this out completely for !SMP, because the
901 * SMP rebalancing from interrupt is the only thing that cares
902 * here.
903 */
904 next->oncpu = 1;
905 #endif
906 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
907 spin_unlock_irq(&rq->lock);
908 #else
909 spin_unlock(&rq->lock);
910 #endif
911 }
912
913 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
914 {
915 #ifdef CONFIG_SMP
916 /*
917 * After ->oncpu is cleared, the task can be moved to a different CPU.
918 * We must ensure this doesn't happen until the switch is completely
919 * finished.
920 */
921 smp_wmb();
922 prev->oncpu = 0;
923 #endif
924 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
925 local_irq_enable();
926 #endif
927 }
928 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
929
930 /*
931 * __task_rq_lock - lock the runqueue a given task resides on.
932 * Must be called interrupts disabled.
933 */
934 static inline struct rq *__task_rq_lock(struct task_struct *p)
935 __acquires(rq->lock)
936 {
937 for (;;) {
938 struct rq *rq = task_rq(p);
939 spin_lock(&rq->lock);
940 if (likely(rq == task_rq(p)))
941 return rq;
942 spin_unlock(&rq->lock);
943 }
944 }
945
946 /*
947 * task_rq_lock - lock the runqueue a given task resides on and disable
948 * interrupts. Note the ordering: we can safely lookup the task_rq without
949 * explicitly disabling preemption.
950 */
951 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
952 __acquires(rq->lock)
953 {
954 struct rq *rq;
955
956 for (;;) {
957 local_irq_save(*flags);
958 rq = task_rq(p);
959 spin_lock(&rq->lock);
960 if (likely(rq == task_rq(p)))
961 return rq;
962 spin_unlock_irqrestore(&rq->lock, *flags);
963 }
964 }
965
966 static void __task_rq_unlock(struct rq *rq)
967 __releases(rq->lock)
968 {
969 spin_unlock(&rq->lock);
970 }
971
972 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
973 __releases(rq->lock)
974 {
975 spin_unlock_irqrestore(&rq->lock, *flags);
976 }
977
978 /*
979 * this_rq_lock - lock this runqueue and disable interrupts.
980 */
981 static struct rq *this_rq_lock(void)
982 __acquires(rq->lock)
983 {
984 struct rq *rq;
985
986 local_irq_disable();
987 rq = this_rq();
988 spin_lock(&rq->lock);
989
990 return rq;
991 }
992
993 #ifdef CONFIG_SCHED_HRTICK
994 /*
995 * Use HR-timers to deliver accurate preemption points.
996 *
997 * Its all a bit involved since we cannot program an hrt while holding the
998 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
999 * reschedule event.
1000 *
1001 * When we get rescheduled we reprogram the hrtick_timer outside of the
1002 * rq->lock.
1003 */
1004
1005 /*
1006 * Use hrtick when:
1007 * - enabled by features
1008 * - hrtimer is actually high res
1009 */
1010 static inline int hrtick_enabled(struct rq *rq)
1011 {
1012 if (!sched_feat(HRTICK))
1013 return 0;
1014 if (!cpu_active(cpu_of(rq)))
1015 return 0;
1016 return hrtimer_is_hres_active(&rq->hrtick_timer);
1017 }
1018
1019 static void hrtick_clear(struct rq *rq)
1020 {
1021 if (hrtimer_active(&rq->hrtick_timer))
1022 hrtimer_cancel(&rq->hrtick_timer);
1023 }
1024
1025 /*
1026 * High-resolution timer tick.
1027 * Runs from hardirq context with interrupts disabled.
1028 */
1029 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1030 {
1031 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1032
1033 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1034
1035 spin_lock(&rq->lock);
1036 update_rq_clock(rq);
1037 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1038 spin_unlock(&rq->lock);
1039
1040 return HRTIMER_NORESTART;
1041 }
1042
1043 #ifdef CONFIG_SMP
1044 /*
1045 * called from hardirq (IPI) context
1046 */
1047 static void __hrtick_start(void *arg)
1048 {
1049 struct rq *rq = arg;
1050
1051 spin_lock(&rq->lock);
1052 hrtimer_restart(&rq->hrtick_timer);
1053 rq->hrtick_csd_pending = 0;
1054 spin_unlock(&rq->lock);
1055 }
1056
1057 /*
1058 * Called to set the hrtick timer state.
1059 *
1060 * called with rq->lock held and irqs disabled
1061 */
1062 static void hrtick_start(struct rq *rq, u64 delay)
1063 {
1064 struct hrtimer *timer = &rq->hrtick_timer;
1065 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1066
1067 timer->expires = time;
1068
1069 if (rq == this_rq()) {
1070 hrtimer_restart(timer);
1071 } else if (!rq->hrtick_csd_pending) {
1072 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
1073 rq->hrtick_csd_pending = 1;
1074 }
1075 }
1076
1077 static int
1078 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1079 {
1080 int cpu = (int)(long)hcpu;
1081
1082 switch (action) {
1083 case CPU_UP_CANCELED:
1084 case CPU_UP_CANCELED_FROZEN:
1085 case CPU_DOWN_PREPARE:
1086 case CPU_DOWN_PREPARE_FROZEN:
1087 case CPU_DEAD:
1088 case CPU_DEAD_FROZEN:
1089 hrtick_clear(cpu_rq(cpu));
1090 return NOTIFY_OK;
1091 }
1092
1093 return NOTIFY_DONE;
1094 }
1095
1096 static __init void init_hrtick(void)
1097 {
1098 hotcpu_notifier(hotplug_hrtick, 0);
1099 }
1100 #else
1101 /*
1102 * Called to set the hrtick timer state.
1103 *
1104 * called with rq->lock held and irqs disabled
1105 */
1106 static void hrtick_start(struct rq *rq, u64 delay)
1107 {
1108 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
1109 }
1110
1111 static inline void init_hrtick(void)
1112 {
1113 }
1114 #endif /* CONFIG_SMP */
1115
1116 static void init_rq_hrtick(struct rq *rq)
1117 {
1118 #ifdef CONFIG_SMP
1119 rq->hrtick_csd_pending = 0;
1120
1121 rq->hrtick_csd.flags = 0;
1122 rq->hrtick_csd.func = __hrtick_start;
1123 rq->hrtick_csd.info = rq;
1124 #endif
1125
1126 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1127 rq->hrtick_timer.function = hrtick;
1128 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU;
1129 }
1130 #else /* CONFIG_SCHED_HRTICK */
1131 static inline void hrtick_clear(struct rq *rq)
1132 {
1133 }
1134
1135 static inline void init_rq_hrtick(struct rq *rq)
1136 {
1137 }
1138
1139 static inline void init_hrtick(void)
1140 {
1141 }
1142 #endif /* CONFIG_SCHED_HRTICK */
1143
1144 /*
1145 * resched_task - mark a task 'to be rescheduled now'.
1146 *
1147 * On UP this means the setting of the need_resched flag, on SMP it
1148 * might also involve a cross-CPU call to trigger the scheduler on
1149 * the target CPU.
1150 */
1151 #ifdef CONFIG_SMP
1152
1153 #ifndef tsk_is_polling
1154 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1155 #endif
1156
1157 static void resched_task(struct task_struct *p)
1158 {
1159 int cpu;
1160
1161 assert_spin_locked(&task_rq(p)->lock);
1162
1163 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
1164 return;
1165
1166 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
1167
1168 cpu = task_cpu(p);
1169 if (cpu == smp_processor_id())
1170 return;
1171
1172 /* NEED_RESCHED must be visible before we test polling */
1173 smp_mb();
1174 if (!tsk_is_polling(p))
1175 smp_send_reschedule(cpu);
1176 }
1177
1178 static void resched_cpu(int cpu)
1179 {
1180 struct rq *rq = cpu_rq(cpu);
1181 unsigned long flags;
1182
1183 if (!spin_trylock_irqsave(&rq->lock, flags))
1184 return;
1185 resched_task(cpu_curr(cpu));
1186 spin_unlock_irqrestore(&rq->lock, flags);
1187 }
1188
1189 #ifdef CONFIG_NO_HZ
1190 /*
1191 * When add_timer_on() enqueues a timer into the timer wheel of an
1192 * idle CPU then this timer might expire before the next timer event
1193 * which is scheduled to wake up that CPU. In case of a completely
1194 * idle system the next event might even be infinite time into the
1195 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1196 * leaves the inner idle loop so the newly added timer is taken into
1197 * account when the CPU goes back to idle and evaluates the timer
1198 * wheel for the next timer event.
1199 */
1200 void wake_up_idle_cpu(int cpu)
1201 {
1202 struct rq *rq = cpu_rq(cpu);
1203
1204 if (cpu == smp_processor_id())
1205 return;
1206
1207 /*
1208 * This is safe, as this function is called with the timer
1209 * wheel base lock of (cpu) held. When the CPU is on the way
1210 * to idle and has not yet set rq->curr to idle then it will
1211 * be serialized on the timer wheel base lock and take the new
1212 * timer into account automatically.
1213 */
1214 if (rq->curr != rq->idle)
1215 return;
1216
1217 /*
1218 * We can set TIF_RESCHED on the idle task of the other CPU
1219 * lockless. The worst case is that the other CPU runs the
1220 * idle task through an additional NOOP schedule()
1221 */
1222 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1223
1224 /* NEED_RESCHED must be visible before we test polling */
1225 smp_mb();
1226 if (!tsk_is_polling(rq->idle))
1227 smp_send_reschedule(cpu);
1228 }
1229 #endif /* CONFIG_NO_HZ */
1230
1231 #else /* !CONFIG_SMP */
1232 static void resched_task(struct task_struct *p)
1233 {
1234 assert_spin_locked(&task_rq(p)->lock);
1235 set_tsk_need_resched(p);
1236 }
1237 #endif /* CONFIG_SMP */
1238
1239 #if BITS_PER_LONG == 32
1240 # define WMULT_CONST (~0UL)
1241 #else
1242 # define WMULT_CONST (1UL << 32)
1243 #endif
1244
1245 #define WMULT_SHIFT 32
1246
1247 /*
1248 * Shift right and round:
1249 */
1250 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1251
1252 /*
1253 * delta *= weight / lw
1254 */
1255 static unsigned long
1256 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1257 struct load_weight *lw)
1258 {
1259 u64 tmp;
1260
1261 if (!lw->inv_weight) {
1262 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1263 lw->inv_weight = 1;
1264 else
1265 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1266 / (lw->weight+1);
1267 }
1268
1269 tmp = (u64)delta_exec * weight;
1270 /*
1271 * Check whether we'd overflow the 64-bit multiplication:
1272 */
1273 if (unlikely(tmp > WMULT_CONST))
1274 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1275 WMULT_SHIFT/2);
1276 else
1277 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1278
1279 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1280 }
1281
1282 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1283 {
1284 lw->weight += inc;
1285 lw->inv_weight = 0;
1286 }
1287
1288 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1289 {
1290 lw->weight -= dec;
1291 lw->inv_weight = 0;
1292 }
1293
1294 /*
1295 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1296 * of tasks with abnormal "nice" values across CPUs the contribution that
1297 * each task makes to its run queue's load is weighted according to its
1298 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1299 * scaled version of the new time slice allocation that they receive on time
1300 * slice expiry etc.
1301 */
1302
1303 #define WEIGHT_IDLEPRIO 2
1304 #define WMULT_IDLEPRIO (1 << 31)
1305
1306 /*
1307 * Nice levels are multiplicative, with a gentle 10% change for every
1308 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1309 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1310 * that remained on nice 0.
1311 *
1312 * The "10% effect" is relative and cumulative: from _any_ nice level,
1313 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1314 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1315 * If a task goes up by ~10% and another task goes down by ~10% then
1316 * the relative distance between them is ~25%.)
1317 */
1318 static const int prio_to_weight[40] = {
1319 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1320 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1321 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1322 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1323 /* 0 */ 1024, 820, 655, 526, 423,
1324 /* 5 */ 335, 272, 215, 172, 137,
1325 /* 10 */ 110, 87, 70, 56, 45,
1326 /* 15 */ 36, 29, 23, 18, 15,
1327 };
1328
1329 /*
1330 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1331 *
1332 * In cases where the weight does not change often, we can use the
1333 * precalculated inverse to speed up arithmetics by turning divisions
1334 * into multiplications:
1335 */
1336 static const u32 prio_to_wmult[40] = {
1337 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1338 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1339 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1340 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1341 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1342 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1343 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1344 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1345 };
1346
1347 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1348
1349 /*
1350 * runqueue iterator, to support SMP load-balancing between different
1351 * scheduling classes, without having to expose their internal data
1352 * structures to the load-balancing proper:
1353 */
1354 struct rq_iterator {
1355 void *arg;
1356 struct task_struct *(*start)(void *);
1357 struct task_struct *(*next)(void *);
1358 };
1359
1360 #ifdef CONFIG_SMP
1361 static unsigned long
1362 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1363 unsigned long max_load_move, struct sched_domain *sd,
1364 enum cpu_idle_type idle, int *all_pinned,
1365 int *this_best_prio, struct rq_iterator *iterator);
1366
1367 static int
1368 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1369 struct sched_domain *sd, enum cpu_idle_type idle,
1370 struct rq_iterator *iterator);
1371 #endif
1372
1373 #ifdef CONFIG_CGROUP_CPUACCT
1374 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1375 #else
1376 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1377 #endif
1378
1379 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1380 {
1381 update_load_add(&rq->load, load);
1382 }
1383
1384 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1385 {
1386 update_load_sub(&rq->load, load);
1387 }
1388
1389 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1390 typedef int (*tg_visitor)(struct task_group *, void *);
1391
1392 /*
1393 * Iterate the full tree, calling @down when first entering a node and @up when
1394 * leaving it for the final time.
1395 */
1396 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1397 {
1398 struct task_group *parent, *child;
1399 int ret;
1400
1401 rcu_read_lock();
1402 parent = &root_task_group;
1403 down:
1404 ret = (*down)(parent, data);
1405 if (ret)
1406 goto out_unlock;
1407 list_for_each_entry_rcu(child, &parent->children, siblings) {
1408 parent = child;
1409 goto down;
1410
1411 up:
1412 continue;
1413 }
1414 ret = (*up)(parent, data);
1415 if (ret)
1416 goto out_unlock;
1417
1418 child = parent;
1419 parent = parent->parent;
1420 if (parent)
1421 goto up;
1422 out_unlock:
1423 rcu_read_unlock();
1424
1425 return ret;
1426 }
1427
1428 static int tg_nop(struct task_group *tg, void *data)
1429 {
1430 return 0;
1431 }
1432 #endif
1433
1434 #ifdef CONFIG_SMP
1435 static unsigned long source_load(int cpu, int type);
1436 static unsigned long target_load(int cpu, int type);
1437 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1438
1439 static unsigned long cpu_avg_load_per_task(int cpu)
1440 {
1441 struct rq *rq = cpu_rq(cpu);
1442
1443 if (rq->nr_running)
1444 rq->avg_load_per_task = rq->load.weight / rq->nr_running;
1445
1446 return rq->avg_load_per_task;
1447 }
1448
1449 #ifdef CONFIG_FAIR_GROUP_SCHED
1450
1451 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1452
1453 /*
1454 * Calculate and set the cpu's group shares.
1455 */
1456 static void
1457 __update_group_shares_cpu(struct task_group *tg, int cpu,
1458 unsigned long sd_shares, unsigned long sd_rq_weight)
1459 {
1460 int boost = 0;
1461 unsigned long shares;
1462 unsigned long rq_weight;
1463
1464 if (!tg->se[cpu])
1465 return;
1466
1467 rq_weight = tg->cfs_rq[cpu]->load.weight;
1468
1469 /*
1470 * If there are currently no tasks on the cpu pretend there is one of
1471 * average load so that when a new task gets to run here it will not
1472 * get delayed by group starvation.
1473 */
1474 if (!rq_weight) {
1475 boost = 1;
1476 rq_weight = NICE_0_LOAD;
1477 }
1478
1479 if (unlikely(rq_weight > sd_rq_weight))
1480 rq_weight = sd_rq_weight;
1481
1482 /*
1483 * \Sum shares * rq_weight
1484 * shares = -----------------------
1485 * \Sum rq_weight
1486 *
1487 */
1488 shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
1489
1490 /*
1491 * record the actual number of shares, not the boosted amount.
1492 */
1493 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1494 tg->cfs_rq[cpu]->rq_weight = rq_weight;
1495
1496 if (shares < MIN_SHARES)
1497 shares = MIN_SHARES;
1498 else if (shares > MAX_SHARES)
1499 shares = MAX_SHARES;
1500
1501 __set_se_shares(tg->se[cpu], shares);
1502 }
1503
1504 /*
1505 * Re-compute the task group their per cpu shares over the given domain.
1506 * This needs to be done in a bottom-up fashion because the rq weight of a
1507 * parent group depends on the shares of its child groups.
1508 */
1509 static int tg_shares_up(struct task_group *tg, void *data)
1510 {
1511 unsigned long rq_weight = 0;
1512 unsigned long shares = 0;
1513 struct sched_domain *sd = data;
1514 int i;
1515
1516 for_each_cpu_mask(i, sd->span) {
1517 rq_weight += tg->cfs_rq[i]->load.weight;
1518 shares += tg->cfs_rq[i]->shares;
1519 }
1520
1521 if ((!shares && rq_weight) || shares > tg->shares)
1522 shares = tg->shares;
1523
1524 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1525 shares = tg->shares;
1526
1527 if (!rq_weight)
1528 rq_weight = cpus_weight(sd->span) * NICE_0_LOAD;
1529
1530 for_each_cpu_mask(i, sd->span) {
1531 struct rq *rq = cpu_rq(i);
1532 unsigned long flags;
1533
1534 spin_lock_irqsave(&rq->lock, flags);
1535 __update_group_shares_cpu(tg, i, shares, rq_weight);
1536 spin_unlock_irqrestore(&rq->lock, flags);
1537 }
1538
1539 return 0;
1540 }
1541
1542 /*
1543 * Compute the cpu's hierarchical load factor for each task group.
1544 * This needs to be done in a top-down fashion because the load of a child
1545 * group is a fraction of its parents load.
1546 */
1547 static int tg_load_down(struct task_group *tg, void *data)
1548 {
1549 unsigned long load;
1550 long cpu = (long)data;
1551
1552 if (!tg->parent) {
1553 load = cpu_rq(cpu)->load.weight;
1554 } else {
1555 load = tg->parent->cfs_rq[cpu]->h_load;
1556 load *= tg->cfs_rq[cpu]->shares;
1557 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1558 }
1559
1560 tg->cfs_rq[cpu]->h_load = load;
1561
1562 return 0;
1563 }
1564
1565 static void update_shares(struct sched_domain *sd)
1566 {
1567 u64 now = cpu_clock(raw_smp_processor_id());
1568 s64 elapsed = now - sd->last_update;
1569
1570 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1571 sd->last_update = now;
1572 walk_tg_tree(tg_nop, tg_shares_up, sd);
1573 }
1574 }
1575
1576 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1577 {
1578 spin_unlock(&rq->lock);
1579 update_shares(sd);
1580 spin_lock(&rq->lock);
1581 }
1582
1583 static void update_h_load(long cpu)
1584 {
1585 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1586 }
1587
1588 #else
1589
1590 static inline void update_shares(struct sched_domain *sd)
1591 {
1592 }
1593
1594 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1595 {
1596 }
1597
1598 #endif
1599
1600 #endif
1601
1602 #ifdef CONFIG_FAIR_GROUP_SCHED
1603 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1604 {
1605 #ifdef CONFIG_SMP
1606 cfs_rq->shares = shares;
1607 #endif
1608 }
1609 #endif
1610
1611 #include "sched_stats.h"
1612 #include "sched_idletask.c"
1613 #include "sched_fair.c"
1614 #include "sched_rt.c"
1615 #ifdef CONFIG_SCHED_DEBUG
1616 # include "sched_debug.c"
1617 #endif
1618
1619 #define sched_class_highest (&rt_sched_class)
1620 #define for_each_class(class) \
1621 for (class = sched_class_highest; class; class = class->next)
1622
1623 static void inc_nr_running(struct rq *rq)
1624 {
1625 rq->nr_running++;
1626 }
1627
1628 static void dec_nr_running(struct rq *rq)
1629 {
1630 rq->nr_running--;
1631 }
1632
1633 static void set_load_weight(struct task_struct *p)
1634 {
1635 if (task_has_rt_policy(p)) {
1636 p->se.load.weight = prio_to_weight[0] * 2;
1637 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1638 return;
1639 }
1640
1641 /*
1642 * SCHED_IDLE tasks get minimal weight:
1643 */
1644 if (p->policy == SCHED_IDLE) {
1645 p->se.load.weight = WEIGHT_IDLEPRIO;
1646 p->se.load.inv_weight = WMULT_IDLEPRIO;
1647 return;
1648 }
1649
1650 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1651 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1652 }
1653
1654 static void update_avg(u64 *avg, u64 sample)
1655 {
1656 s64 diff = sample - *avg;
1657 *avg += diff >> 3;
1658 }
1659
1660 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1661 {
1662 sched_info_queued(p);
1663 p->sched_class->enqueue_task(rq, p, wakeup);
1664 p->se.on_rq = 1;
1665 }
1666
1667 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1668 {
1669 if (sleep && p->se.last_wakeup) {
1670 update_avg(&p->se.avg_overlap,
1671 p->se.sum_exec_runtime - p->se.last_wakeup);
1672 p->se.last_wakeup = 0;
1673 }
1674
1675 sched_info_dequeued(p);
1676 p->sched_class->dequeue_task(rq, p, sleep);
1677 p->se.on_rq = 0;
1678 }
1679
1680 /*
1681 * __normal_prio - return the priority that is based on the static prio
1682 */
1683 static inline int __normal_prio(struct task_struct *p)
1684 {
1685 return p->static_prio;
1686 }
1687
1688 /*
1689 * Calculate the expected normal priority: i.e. priority
1690 * without taking RT-inheritance into account. Might be
1691 * boosted by interactivity modifiers. Changes upon fork,
1692 * setprio syscalls, and whenever the interactivity
1693 * estimator recalculates.
1694 */
1695 static inline int normal_prio(struct task_struct *p)
1696 {
1697 int prio;
1698
1699 if (task_has_rt_policy(p))
1700 prio = MAX_RT_PRIO-1 - p->rt_priority;
1701 else
1702 prio = __normal_prio(p);
1703 return prio;
1704 }
1705
1706 /*
1707 * Calculate the current priority, i.e. the priority
1708 * taken into account by the scheduler. This value might
1709 * be boosted by RT tasks, or might be boosted by
1710 * interactivity modifiers. Will be RT if the task got
1711 * RT-boosted. If not then it returns p->normal_prio.
1712 */
1713 static int effective_prio(struct task_struct *p)
1714 {
1715 p->normal_prio = normal_prio(p);
1716 /*
1717 * If we are RT tasks or we were boosted to RT priority,
1718 * keep the priority unchanged. Otherwise, update priority
1719 * to the normal priority:
1720 */
1721 if (!rt_prio(p->prio))
1722 return p->normal_prio;
1723 return p->prio;
1724 }
1725
1726 /*
1727 * activate_task - move a task to the runqueue.
1728 */
1729 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1730 {
1731 if (task_contributes_to_load(p))
1732 rq->nr_uninterruptible--;
1733
1734 enqueue_task(rq, p, wakeup);
1735 inc_nr_running(rq);
1736 }
1737
1738 /*
1739 * deactivate_task - remove a task from the runqueue.
1740 */
1741 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1742 {
1743 if (task_contributes_to_load(p))
1744 rq->nr_uninterruptible++;
1745
1746 dequeue_task(rq, p, sleep);
1747 dec_nr_running(rq);
1748 }
1749
1750 /**
1751 * task_curr - is this task currently executing on a CPU?
1752 * @p: the task in question.
1753 */
1754 inline int task_curr(const struct task_struct *p)
1755 {
1756 return cpu_curr(task_cpu(p)) == p;
1757 }
1758
1759 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1760 {
1761 set_task_rq(p, cpu);
1762 #ifdef CONFIG_SMP
1763 /*
1764 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1765 * successfuly executed on another CPU. We must ensure that updates of
1766 * per-task data have been completed by this moment.
1767 */
1768 smp_wmb();
1769 task_thread_info(p)->cpu = cpu;
1770 #endif
1771 }
1772
1773 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1774 const struct sched_class *prev_class,
1775 int oldprio, int running)
1776 {
1777 if (prev_class != p->sched_class) {
1778 if (prev_class->switched_from)
1779 prev_class->switched_from(rq, p, running);
1780 p->sched_class->switched_to(rq, p, running);
1781 } else
1782 p->sched_class->prio_changed(rq, p, oldprio, running);
1783 }
1784
1785 #ifdef CONFIG_SMP
1786
1787 /* Used instead of source_load when we know the type == 0 */
1788 static unsigned long weighted_cpuload(const int cpu)
1789 {
1790 return cpu_rq(cpu)->load.weight;
1791 }
1792
1793 /*
1794 * Is this task likely cache-hot:
1795 */
1796 static int
1797 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1798 {
1799 s64 delta;
1800
1801 /*
1802 * Buddy candidates are cache hot:
1803 */
1804 if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
1805 return 1;
1806
1807 if (p->sched_class != &fair_sched_class)
1808 return 0;
1809
1810 if (sysctl_sched_migration_cost == -1)
1811 return 1;
1812 if (sysctl_sched_migration_cost == 0)
1813 return 0;
1814
1815 delta = now - p->se.exec_start;
1816
1817 return delta < (s64)sysctl_sched_migration_cost;
1818 }
1819
1820
1821 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1822 {
1823 int old_cpu = task_cpu(p);
1824 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1825 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1826 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1827 u64 clock_offset;
1828
1829 clock_offset = old_rq->clock - new_rq->clock;
1830
1831 #ifdef CONFIG_SCHEDSTATS
1832 if (p->se.wait_start)
1833 p->se.wait_start -= clock_offset;
1834 if (p->se.sleep_start)
1835 p->se.sleep_start -= clock_offset;
1836 if (p->se.block_start)
1837 p->se.block_start -= clock_offset;
1838 if (old_cpu != new_cpu) {
1839 schedstat_inc(p, se.nr_migrations);
1840 if (task_hot(p, old_rq->clock, NULL))
1841 schedstat_inc(p, se.nr_forced2_migrations);
1842 }
1843 #endif
1844 p->se.vruntime -= old_cfsrq->min_vruntime -
1845 new_cfsrq->min_vruntime;
1846
1847 __set_task_cpu(p, new_cpu);
1848 }
1849
1850 struct migration_req {
1851 struct list_head list;
1852
1853 struct task_struct *task;
1854 int dest_cpu;
1855
1856 struct completion done;
1857 };
1858
1859 /*
1860 * The task's runqueue lock must be held.
1861 * Returns true if you have to wait for migration thread.
1862 */
1863 static int
1864 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1865 {
1866 struct rq *rq = task_rq(p);
1867
1868 /*
1869 * If the task is not on a runqueue (and not running), then
1870 * it is sufficient to simply update the task's cpu field.
1871 */
1872 if (!p->se.on_rq && !task_running(rq, p)) {
1873 set_task_cpu(p, dest_cpu);
1874 return 0;
1875 }
1876
1877 init_completion(&req->done);
1878 req->task = p;
1879 req->dest_cpu = dest_cpu;
1880 list_add(&req->list, &rq->migration_queue);
1881
1882 return 1;
1883 }
1884
1885 /*
1886 * wait_task_inactive - wait for a thread to unschedule.
1887 *
1888 * If @match_state is nonzero, it's the @p->state value just checked and
1889 * not expected to change. If it changes, i.e. @p might have woken up,
1890 * then return zero. When we succeed in waiting for @p to be off its CPU,
1891 * we return a positive number (its total switch count). If a second call
1892 * a short while later returns the same number, the caller can be sure that
1893 * @p has remained unscheduled the whole time.
1894 *
1895 * The caller must ensure that the task *will* unschedule sometime soon,
1896 * else this function might spin for a *long* time. This function can't
1897 * be called with interrupts off, or it may introduce deadlock with
1898 * smp_call_function() if an IPI is sent by the same process we are
1899 * waiting to become inactive.
1900 */
1901 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1902 {
1903 unsigned long flags;
1904 int running, on_rq;
1905 unsigned long ncsw;
1906 struct rq *rq;
1907
1908 for (;;) {
1909 /*
1910 * We do the initial early heuristics without holding
1911 * any task-queue locks at all. We'll only try to get
1912 * the runqueue lock when things look like they will
1913 * work out!
1914 */
1915 rq = task_rq(p);
1916
1917 /*
1918 * If the task is actively running on another CPU
1919 * still, just relax and busy-wait without holding
1920 * any locks.
1921 *
1922 * NOTE! Since we don't hold any locks, it's not
1923 * even sure that "rq" stays as the right runqueue!
1924 * But we don't care, since "task_running()" will
1925 * return false if the runqueue has changed and p
1926 * is actually now running somewhere else!
1927 */
1928 while (task_running(rq, p)) {
1929 if (match_state && unlikely(p->state != match_state))
1930 return 0;
1931 cpu_relax();
1932 }
1933
1934 /*
1935 * Ok, time to look more closely! We need the rq
1936 * lock now, to be *sure*. If we're wrong, we'll
1937 * just go back and repeat.
1938 */
1939 rq = task_rq_lock(p, &flags);
1940 trace_sched_wait_task(rq, p);
1941 running = task_running(rq, p);
1942 on_rq = p->se.on_rq;
1943 ncsw = 0;
1944 if (!match_state || p->state == match_state)
1945 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1946 task_rq_unlock(rq, &flags);
1947
1948 /*
1949 * If it changed from the expected state, bail out now.
1950 */
1951 if (unlikely(!ncsw))
1952 break;
1953
1954 /*
1955 * Was it really running after all now that we
1956 * checked with the proper locks actually held?
1957 *
1958 * Oops. Go back and try again..
1959 */
1960 if (unlikely(running)) {
1961 cpu_relax();
1962 continue;
1963 }
1964
1965 /*
1966 * It's not enough that it's not actively running,
1967 * it must be off the runqueue _entirely_, and not
1968 * preempted!
1969 *
1970 * So if it wa still runnable (but just not actively
1971 * running right now), it's preempted, and we should
1972 * yield - it could be a while.
1973 */
1974 if (unlikely(on_rq)) {
1975 schedule_timeout_uninterruptible(1);
1976 continue;
1977 }
1978
1979 /*
1980 * Ahh, all good. It wasn't running, and it wasn't
1981 * runnable, which means that it will never become
1982 * running in the future either. We're all done!
1983 */
1984 break;
1985 }
1986
1987 return ncsw;
1988 }
1989
1990 /***
1991 * kick_process - kick a running thread to enter/exit the kernel
1992 * @p: the to-be-kicked thread
1993 *
1994 * Cause a process which is running on another CPU to enter
1995 * kernel-mode, without any delay. (to get signals handled.)
1996 *
1997 * NOTE: this function doesnt have to take the runqueue lock,
1998 * because all it wants to ensure is that the remote task enters
1999 * the kernel. If the IPI races and the task has been migrated
2000 * to another CPU then no harm is done and the purpose has been
2001 * achieved as well.
2002 */
2003 void kick_process(struct task_struct *p)
2004 {
2005 int cpu;
2006
2007 preempt_disable();
2008 cpu = task_cpu(p);
2009 if ((cpu != smp_processor_id()) && task_curr(p))
2010 smp_send_reschedule(cpu);
2011 preempt_enable();
2012 }
2013
2014 /*
2015 * Return a low guess at the load of a migration-source cpu weighted
2016 * according to the scheduling class and "nice" value.
2017 *
2018 * We want to under-estimate the load of migration sources, to
2019 * balance conservatively.
2020 */
2021 static unsigned long source_load(int cpu, int type)
2022 {
2023 struct rq *rq = cpu_rq(cpu);
2024 unsigned long total = weighted_cpuload(cpu);
2025
2026 if (type == 0 || !sched_feat(LB_BIAS))
2027 return total;
2028
2029 return min(rq->cpu_load[type-1], total);
2030 }
2031
2032 /*
2033 * Return a high guess at the load of a migration-target cpu weighted
2034 * according to the scheduling class and "nice" value.
2035 */
2036 static unsigned long target_load(int cpu, int type)
2037 {
2038 struct rq *rq = cpu_rq(cpu);
2039 unsigned long total = weighted_cpuload(cpu);
2040
2041 if (type == 0 || !sched_feat(LB_BIAS))
2042 return total;
2043
2044 return max(rq->cpu_load[type-1], total);
2045 }
2046
2047 /*
2048 * find_idlest_group finds and returns the least busy CPU group within the
2049 * domain.
2050 */
2051 static struct sched_group *
2052 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2053 {
2054 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2055 unsigned long min_load = ULONG_MAX, this_load = 0;
2056 int load_idx = sd->forkexec_idx;
2057 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2058
2059 do {
2060 unsigned long load, avg_load;
2061 int local_group;
2062 int i;
2063
2064 /* Skip over this group if it has no CPUs allowed */
2065 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
2066 continue;
2067
2068 local_group = cpu_isset(this_cpu, group->cpumask);
2069
2070 /* Tally up the load of all CPUs in the group */
2071 avg_load = 0;
2072
2073 for_each_cpu_mask_nr(i, group->cpumask) {
2074 /* Bias balancing toward cpus of our domain */
2075 if (local_group)
2076 load = source_load(i, load_idx);
2077 else
2078 load = target_load(i, load_idx);
2079
2080 avg_load += load;
2081 }
2082
2083 /* Adjust by relative CPU power of the group */
2084 avg_load = sg_div_cpu_power(group,
2085 avg_load * SCHED_LOAD_SCALE);
2086
2087 if (local_group) {
2088 this_load = avg_load;
2089 this = group;
2090 } else if (avg_load < min_load) {
2091 min_load = avg_load;
2092 idlest = group;
2093 }
2094 } while (group = group->next, group != sd->groups);
2095
2096 if (!idlest || 100*this_load < imbalance*min_load)
2097 return NULL;
2098 return idlest;
2099 }
2100
2101 /*
2102 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2103 */
2104 static int
2105 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
2106 cpumask_t *tmp)
2107 {
2108 unsigned long load, min_load = ULONG_MAX;
2109 int idlest = -1;
2110 int i;
2111
2112 /* Traverse only the allowed CPUs */
2113 cpus_and(*tmp, group->cpumask, p->cpus_allowed);
2114
2115 for_each_cpu_mask_nr(i, *tmp) {
2116 load = weighted_cpuload(i);
2117
2118 if (load < min_load || (load == min_load && i == this_cpu)) {
2119 min_load = load;
2120 idlest = i;
2121 }
2122 }
2123
2124 return idlest;
2125 }
2126
2127 /*
2128 * sched_balance_self: balance the current task (running on cpu) in domains
2129 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2130 * SD_BALANCE_EXEC.
2131 *
2132 * Balance, ie. select the least loaded group.
2133 *
2134 * Returns the target CPU number, or the same CPU if no balancing is needed.
2135 *
2136 * preempt must be disabled.
2137 */
2138 static int sched_balance_self(int cpu, int flag)
2139 {
2140 struct task_struct *t = current;
2141 struct sched_domain *tmp, *sd = NULL;
2142
2143 for_each_domain(cpu, tmp) {
2144 /*
2145 * If power savings logic is enabled for a domain, stop there.
2146 */
2147 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2148 break;
2149 if (tmp->flags & flag)
2150 sd = tmp;
2151 }
2152
2153 if (sd)
2154 update_shares(sd);
2155
2156 while (sd) {
2157 cpumask_t span, tmpmask;
2158 struct sched_group *group;
2159 int new_cpu, weight;
2160
2161 if (!(sd->flags & flag)) {
2162 sd = sd->child;
2163 continue;
2164 }
2165
2166 span = sd->span;
2167 group = find_idlest_group(sd, t, cpu);
2168 if (!group) {
2169 sd = sd->child;
2170 continue;
2171 }
2172
2173 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
2174 if (new_cpu == -1 || new_cpu == cpu) {
2175 /* Now try balancing at a lower domain level of cpu */
2176 sd = sd->child;
2177 continue;
2178 }
2179
2180 /* Now try balancing at a lower domain level of new_cpu */
2181 cpu = new_cpu;
2182 sd = NULL;
2183 weight = cpus_weight(span);
2184 for_each_domain(cpu, tmp) {
2185 if (weight <= cpus_weight(tmp->span))
2186 break;
2187 if (tmp->flags & flag)
2188 sd = tmp;
2189 }
2190 /* while loop will break here if sd == NULL */
2191 }
2192
2193 return cpu;
2194 }
2195
2196 #endif /* CONFIG_SMP */
2197
2198 /***
2199 * try_to_wake_up - wake up a thread
2200 * @p: the to-be-woken-up thread
2201 * @state: the mask of task states that can be woken
2202 * @sync: do a synchronous wakeup?
2203 *
2204 * Put it on the run-queue if it's not already there. The "current"
2205 * thread is always on the run-queue (except when the actual
2206 * re-schedule is in progress), and as such you're allowed to do
2207 * the simpler "current->state = TASK_RUNNING" to mark yourself
2208 * runnable without the overhead of this.
2209 *
2210 * returns failure only if the task is already active.
2211 */
2212 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2213 {
2214 int cpu, orig_cpu, this_cpu, success = 0;
2215 unsigned long flags;
2216 long old_state;
2217 struct rq *rq;
2218
2219 if (!sched_feat(SYNC_WAKEUPS))
2220 sync = 0;
2221
2222 #ifdef CONFIG_SMP
2223 if (sched_feat(LB_WAKEUP_UPDATE)) {
2224 struct sched_domain *sd;
2225
2226 this_cpu = raw_smp_processor_id();
2227 cpu = task_cpu(p);
2228
2229 for_each_domain(this_cpu, sd) {
2230 if (cpu_isset(cpu, sd->span)) {
2231 update_shares(sd);
2232 break;
2233 }
2234 }
2235 }
2236 #endif
2237
2238 smp_wmb();
2239 rq = task_rq_lock(p, &flags);
2240 old_state = p->state;
2241 if (!(old_state & state))
2242 goto out;
2243
2244 if (p->se.on_rq)
2245 goto out_running;
2246
2247 cpu = task_cpu(p);
2248 orig_cpu = cpu;
2249 this_cpu = smp_processor_id();
2250
2251 #ifdef CONFIG_SMP
2252 if (unlikely(task_running(rq, p)))
2253 goto out_activate;
2254
2255 cpu = p->sched_class->select_task_rq(p, sync);
2256 if (cpu != orig_cpu) {
2257 set_task_cpu(p, cpu);
2258 task_rq_unlock(rq, &flags);
2259 /* might preempt at this point */
2260 rq = task_rq_lock(p, &flags);
2261 old_state = p->state;
2262 if (!(old_state & state))
2263 goto out;
2264 if (p->se.on_rq)
2265 goto out_running;
2266
2267 this_cpu = smp_processor_id();
2268 cpu = task_cpu(p);
2269 }
2270
2271 #ifdef CONFIG_SCHEDSTATS
2272 schedstat_inc(rq, ttwu_count);
2273 if (cpu == this_cpu)
2274 schedstat_inc(rq, ttwu_local);
2275 else {
2276 struct sched_domain *sd;
2277 for_each_domain(this_cpu, sd) {
2278 if (cpu_isset(cpu, sd->span)) {
2279 schedstat_inc(sd, ttwu_wake_remote);
2280 break;
2281 }
2282 }
2283 }
2284 #endif /* CONFIG_SCHEDSTATS */
2285
2286 out_activate:
2287 #endif /* CONFIG_SMP */
2288 schedstat_inc(p, se.nr_wakeups);
2289 if (sync)
2290 schedstat_inc(p, se.nr_wakeups_sync);
2291 if (orig_cpu != cpu)
2292 schedstat_inc(p, se.nr_wakeups_migrate);
2293 if (cpu == this_cpu)
2294 schedstat_inc(p, se.nr_wakeups_local);
2295 else
2296 schedstat_inc(p, se.nr_wakeups_remote);
2297 update_rq_clock(rq);
2298 activate_task(rq, p, 1);
2299 success = 1;
2300
2301 out_running:
2302 trace_sched_wakeup(rq, p);
2303 check_preempt_curr(rq, p, sync);
2304
2305 p->state = TASK_RUNNING;
2306 #ifdef CONFIG_SMP
2307 if (p->sched_class->task_wake_up)
2308 p->sched_class->task_wake_up(rq, p);
2309 #endif
2310 out:
2311 current->se.last_wakeup = current->se.sum_exec_runtime;
2312
2313 task_rq_unlock(rq, &flags);
2314
2315 return success;
2316 }
2317
2318 int wake_up_process(struct task_struct *p)
2319 {
2320 return try_to_wake_up(p, TASK_ALL, 0);
2321 }
2322 EXPORT_SYMBOL(wake_up_process);
2323
2324 int wake_up_state(struct task_struct *p, unsigned int state)
2325 {
2326 return try_to_wake_up(p, state, 0);
2327 }
2328
2329 /*
2330 * Perform scheduler related setup for a newly forked process p.
2331 * p is forked by current.
2332 *
2333 * __sched_fork() is basic setup used by init_idle() too:
2334 */
2335 static void __sched_fork(struct task_struct *p)
2336 {
2337 p->se.exec_start = 0;
2338 p->se.sum_exec_runtime = 0;
2339 p->se.prev_sum_exec_runtime = 0;
2340 p->se.last_wakeup = 0;
2341 p->se.avg_overlap = 0;
2342
2343 #ifdef CONFIG_SCHEDSTATS
2344 p->se.wait_start = 0;
2345 p->se.sum_sleep_runtime = 0;
2346 p->se.sleep_start = 0;
2347 p->se.block_start = 0;
2348 p->se.sleep_max = 0;
2349 p->se.block_max = 0;
2350 p->se.exec_max = 0;
2351 p->se.slice_max = 0;
2352 p->se.wait_max = 0;
2353 #endif
2354
2355 INIT_LIST_HEAD(&p->rt.run_list);
2356 p->se.on_rq = 0;
2357 INIT_LIST_HEAD(&p->se.group_node);
2358
2359 #ifdef CONFIG_PREEMPT_NOTIFIERS
2360 INIT_HLIST_HEAD(&p->preempt_notifiers);
2361 #endif
2362
2363 /*
2364 * We mark the process as running here, but have not actually
2365 * inserted it onto the runqueue yet. This guarantees that
2366 * nobody will actually run it, and a signal or other external
2367 * event cannot wake it up and insert it on the runqueue either.
2368 */
2369 p->state = TASK_RUNNING;
2370 }
2371
2372 /*
2373 * fork()/clone()-time setup:
2374 */
2375 void sched_fork(struct task_struct *p, int clone_flags)
2376 {
2377 int cpu = get_cpu();
2378
2379 __sched_fork(p);
2380
2381 #ifdef CONFIG_SMP
2382 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2383 #endif
2384 set_task_cpu(p, cpu);
2385
2386 /*
2387 * Make sure we do not leak PI boosting priority to the child:
2388 */
2389 p->prio = current->normal_prio;
2390 if (!rt_prio(p->prio))
2391 p->sched_class = &fair_sched_class;
2392
2393 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2394 if (likely(sched_info_on()))
2395 memset(&p->sched_info, 0, sizeof(p->sched_info));
2396 #endif
2397 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2398 p->oncpu = 0;
2399 #endif
2400 #ifdef CONFIG_PREEMPT
2401 /* Want to start with kernel preemption disabled. */
2402 task_thread_info(p)->preempt_count = 1;
2403 #endif
2404 put_cpu();
2405 }
2406
2407 /*
2408 * wake_up_new_task - wake up a newly created task for the first time.
2409 *
2410 * This function will do some initial scheduler statistics housekeeping
2411 * that must be done for every newly created context, then puts the task
2412 * on the runqueue and wakes it.
2413 */
2414 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2415 {
2416 unsigned long flags;
2417 struct rq *rq;
2418
2419 rq = task_rq_lock(p, &flags);
2420 BUG_ON(p->state != TASK_RUNNING);
2421 update_rq_clock(rq);
2422
2423 p->prio = effective_prio(p);
2424
2425 if (!p->sched_class->task_new || !current->se.on_rq) {
2426 activate_task(rq, p, 0);
2427 } else {
2428 /*
2429 * Let the scheduling class do new task startup
2430 * management (if any):
2431 */
2432 p->sched_class->task_new(rq, p);
2433 inc_nr_running(rq);
2434 }
2435 trace_sched_wakeup_new(rq, p);
2436 check_preempt_curr(rq, p, 0);
2437 #ifdef CONFIG_SMP
2438 if (p->sched_class->task_wake_up)
2439 p->sched_class->task_wake_up(rq, p);
2440 #endif
2441 task_rq_unlock(rq, &flags);
2442 }
2443
2444 #ifdef CONFIG_PREEMPT_NOTIFIERS
2445
2446 /**
2447 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2448 * @notifier: notifier struct to register
2449 */
2450 void preempt_notifier_register(struct preempt_notifier *notifier)
2451 {
2452 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2453 }
2454 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2455
2456 /**
2457 * preempt_notifier_unregister - no longer interested in preemption notifications
2458 * @notifier: notifier struct to unregister
2459 *
2460 * This is safe to call from within a preemption notifier.
2461 */
2462 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2463 {
2464 hlist_del(&notifier->link);
2465 }
2466 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2467
2468 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2469 {
2470 struct preempt_notifier *notifier;
2471 struct hlist_node *node;
2472
2473 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2474 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2475 }
2476
2477 static void
2478 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2479 struct task_struct *next)
2480 {
2481 struct preempt_notifier *notifier;
2482 struct hlist_node *node;
2483
2484 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2485 notifier->ops->sched_out(notifier, next);
2486 }
2487
2488 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2489
2490 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2491 {
2492 }
2493
2494 static void
2495 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2496 struct task_struct *next)
2497 {
2498 }
2499
2500 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2501
2502 /**
2503 * prepare_task_switch - prepare to switch tasks
2504 * @rq: the runqueue preparing to switch
2505 * @prev: the current task that is being switched out
2506 * @next: the task we are going to switch to.
2507 *
2508 * This is called with the rq lock held and interrupts off. It must
2509 * be paired with a subsequent finish_task_switch after the context
2510 * switch.
2511 *
2512 * prepare_task_switch sets up locking and calls architecture specific
2513 * hooks.
2514 */
2515 static inline void
2516 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2517 struct task_struct *next)
2518 {
2519 fire_sched_out_preempt_notifiers(prev, next);
2520 prepare_lock_switch(rq, next);
2521 prepare_arch_switch(next);
2522 }
2523
2524 /**
2525 * finish_task_switch - clean up after a task-switch
2526 * @rq: runqueue associated with task-switch
2527 * @prev: the thread we just switched away from.
2528 *
2529 * finish_task_switch must be called after the context switch, paired
2530 * with a prepare_task_switch call before the context switch.
2531 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2532 * and do any other architecture-specific cleanup actions.
2533 *
2534 * Note that we may have delayed dropping an mm in context_switch(). If
2535 * so, we finish that here outside of the runqueue lock. (Doing it
2536 * with the lock held can cause deadlocks; see schedule() for
2537 * details.)
2538 */
2539 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2540 __releases(rq->lock)
2541 {
2542 struct mm_struct *mm = rq->prev_mm;
2543 long prev_state;
2544
2545 rq->prev_mm = NULL;
2546
2547 /*
2548 * A task struct has one reference for the use as "current".
2549 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2550 * schedule one last time. The schedule call will never return, and
2551 * the scheduled task must drop that reference.
2552 * The test for TASK_DEAD must occur while the runqueue locks are
2553 * still held, otherwise prev could be scheduled on another cpu, die
2554 * there before we look at prev->state, and then the reference would
2555 * be dropped twice.
2556 * Manfred Spraul <manfred@colorfullife.com>
2557 */
2558 prev_state = prev->state;
2559 finish_arch_switch(prev);
2560 finish_lock_switch(rq, prev);
2561 #ifdef CONFIG_SMP
2562 if (current->sched_class->post_schedule)
2563 current->sched_class->post_schedule(rq);
2564 #endif
2565
2566 fire_sched_in_preempt_notifiers(current);
2567 if (mm)
2568 mmdrop(mm);
2569 if (unlikely(prev_state == TASK_DEAD)) {
2570 /*
2571 * Remove function-return probe instances associated with this
2572 * task and put them back on the free list.
2573 */
2574 kprobe_flush_task(prev);
2575 put_task_struct(prev);
2576 }
2577 }
2578
2579 /**
2580 * schedule_tail - first thing a freshly forked thread must call.
2581 * @prev: the thread we just switched away from.
2582 */
2583 asmlinkage void schedule_tail(struct task_struct *prev)
2584 __releases(rq->lock)
2585 {
2586 struct rq *rq = this_rq();
2587
2588 finish_task_switch(rq, prev);
2589 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2590 /* In this case, finish_task_switch does not reenable preemption */
2591 preempt_enable();
2592 #endif
2593 if (current->set_child_tid)
2594 put_user(task_pid_vnr(current), current->set_child_tid);
2595 }
2596
2597 /*
2598 * context_switch - switch to the new MM and the new
2599 * thread's register state.
2600 */
2601 static inline void
2602 context_switch(struct rq *rq, struct task_struct *prev,
2603 struct task_struct *next)
2604 {
2605 struct mm_struct *mm, *oldmm;
2606
2607 prepare_task_switch(rq, prev, next);
2608 trace_sched_switch(rq, prev, next);
2609 mm = next->mm;
2610 oldmm = prev->active_mm;
2611 /*
2612 * For paravirt, this is coupled with an exit in switch_to to
2613 * combine the page table reload and the switch backend into
2614 * one hypercall.
2615 */
2616 arch_enter_lazy_cpu_mode();
2617
2618 if (unlikely(!mm)) {
2619 next->active_mm = oldmm;
2620 atomic_inc(&oldmm->mm_count);
2621 enter_lazy_tlb(oldmm, next);
2622 } else
2623 switch_mm(oldmm, mm, next);
2624
2625 if (unlikely(!prev->mm)) {
2626 prev->active_mm = NULL;
2627 rq->prev_mm = oldmm;
2628 }
2629 /*
2630 * Since the runqueue lock will be released by the next
2631 * task (which is an invalid locking op but in the case
2632 * of the scheduler it's an obvious special-case), so we
2633 * do an early lockdep release here:
2634 */
2635 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2636 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2637 #endif
2638
2639 /* Here we just switch the register state and the stack. */
2640 switch_to(prev, next, prev);
2641
2642 barrier();
2643 /*
2644 * this_rq must be evaluated again because prev may have moved
2645 * CPUs since it called schedule(), thus the 'rq' on its stack
2646 * frame will be invalid.
2647 */
2648 finish_task_switch(this_rq(), prev);
2649 }
2650
2651 /*
2652 * nr_running, nr_uninterruptible and nr_context_switches:
2653 *
2654 * externally visible scheduler statistics: current number of runnable
2655 * threads, current number of uninterruptible-sleeping threads, total
2656 * number of context switches performed since bootup.
2657 */
2658 unsigned long nr_running(void)
2659 {
2660 unsigned long i, sum = 0;
2661
2662 for_each_online_cpu(i)
2663 sum += cpu_rq(i)->nr_running;
2664
2665 return sum;
2666 }
2667
2668 unsigned long nr_uninterruptible(void)
2669 {
2670 unsigned long i, sum = 0;
2671
2672 for_each_possible_cpu(i)
2673 sum += cpu_rq(i)->nr_uninterruptible;
2674
2675 /*
2676 * Since we read the counters lockless, it might be slightly
2677 * inaccurate. Do not allow it to go below zero though:
2678 */
2679 if (unlikely((long)sum < 0))
2680 sum = 0;
2681
2682 return sum;
2683 }
2684
2685 unsigned long long nr_context_switches(void)
2686 {
2687 int i;
2688 unsigned long long sum = 0;
2689
2690 for_each_possible_cpu(i)
2691 sum += cpu_rq(i)->nr_switches;
2692
2693 return sum;
2694 }
2695
2696 unsigned long nr_iowait(void)
2697 {
2698 unsigned long i, sum = 0;
2699
2700 for_each_possible_cpu(i)
2701 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2702
2703 return sum;
2704 }
2705
2706 unsigned long nr_active(void)
2707 {
2708 unsigned long i, running = 0, uninterruptible = 0;
2709
2710 for_each_online_cpu(i) {
2711 running += cpu_rq(i)->nr_running;
2712 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2713 }
2714
2715 if (unlikely((long)uninterruptible < 0))
2716 uninterruptible = 0;
2717
2718 return running + uninterruptible;
2719 }
2720
2721 /*
2722 * Update rq->cpu_load[] statistics. This function is usually called every
2723 * scheduler tick (TICK_NSEC).
2724 */
2725 static void update_cpu_load(struct rq *this_rq)
2726 {
2727 unsigned long this_load = this_rq->load.weight;
2728 int i, scale;
2729
2730 this_rq->nr_load_updates++;
2731
2732 /* Update our load: */
2733 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2734 unsigned long old_load, new_load;
2735
2736 /* scale is effectively 1 << i now, and >> i divides by scale */
2737
2738 old_load = this_rq->cpu_load[i];
2739 new_load = this_load;
2740 /*
2741 * Round up the averaging division if load is increasing. This
2742 * prevents us from getting stuck on 9 if the load is 10, for
2743 * example.
2744 */
2745 if (new_load > old_load)
2746 new_load += scale-1;
2747 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2748 }
2749 }
2750
2751 #ifdef CONFIG_SMP
2752
2753 /*
2754 * double_rq_lock - safely lock two runqueues
2755 *
2756 * Note this does not disable interrupts like task_rq_lock,
2757 * you need to do so manually before calling.
2758 */
2759 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2760 __acquires(rq1->lock)
2761 __acquires(rq2->lock)
2762 {
2763 BUG_ON(!irqs_disabled());
2764 if (rq1 == rq2) {
2765 spin_lock(&rq1->lock);
2766 __acquire(rq2->lock); /* Fake it out ;) */
2767 } else {
2768 if (rq1 < rq2) {
2769 spin_lock(&rq1->lock);
2770 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
2771 } else {
2772 spin_lock(&rq2->lock);
2773 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
2774 }
2775 }
2776 update_rq_clock(rq1);
2777 update_rq_clock(rq2);
2778 }
2779
2780 /*
2781 * double_rq_unlock - safely unlock two runqueues
2782 *
2783 * Note this does not restore interrupts like task_rq_unlock,
2784 * you need to do so manually after calling.
2785 */
2786 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2787 __releases(rq1->lock)
2788 __releases(rq2->lock)
2789 {
2790 spin_unlock(&rq1->lock);
2791 if (rq1 != rq2)
2792 spin_unlock(&rq2->lock);
2793 else
2794 __release(rq2->lock);
2795 }
2796
2797 /*
2798 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2799 */
2800 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2801 __releases(this_rq->lock)
2802 __acquires(busiest->lock)
2803 __acquires(this_rq->lock)
2804 {
2805 int ret = 0;
2806
2807 if (unlikely(!irqs_disabled())) {
2808 /* printk() doesn't work good under rq->lock */
2809 spin_unlock(&this_rq->lock);
2810 BUG_ON(1);
2811 }
2812 if (unlikely(!spin_trylock(&busiest->lock))) {
2813 if (busiest < this_rq) {
2814 spin_unlock(&this_rq->lock);
2815 spin_lock(&busiest->lock);
2816 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
2817 ret = 1;
2818 } else
2819 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
2820 }
2821 return ret;
2822 }
2823
2824 static void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2825 __releases(busiest->lock)
2826 {
2827 spin_unlock(&busiest->lock);
2828 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
2829 }
2830
2831 /*
2832 * If dest_cpu is allowed for this process, migrate the task to it.
2833 * This is accomplished by forcing the cpu_allowed mask to only
2834 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2835 * the cpu_allowed mask is restored.
2836 */
2837 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2838 {
2839 struct migration_req req;
2840 unsigned long flags;
2841 struct rq *rq;
2842
2843 rq = task_rq_lock(p, &flags);
2844 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2845 || unlikely(!cpu_active(dest_cpu)))
2846 goto out;
2847
2848 trace_sched_migrate_task(rq, p, dest_cpu);
2849 /* force the process onto the specified CPU */
2850 if (migrate_task(p, dest_cpu, &req)) {
2851 /* Need to wait for migration thread (might exit: take ref). */
2852 struct task_struct *mt = rq->migration_thread;
2853
2854 get_task_struct(mt);
2855 task_rq_unlock(rq, &flags);
2856 wake_up_process(mt);
2857 put_task_struct(mt);
2858 wait_for_completion(&req.done);
2859
2860 return;
2861 }
2862 out:
2863 task_rq_unlock(rq, &flags);
2864 }
2865
2866 /*
2867 * sched_exec - execve() is a valuable balancing opportunity, because at
2868 * this point the task has the smallest effective memory and cache footprint.
2869 */
2870 void sched_exec(void)
2871 {
2872 int new_cpu, this_cpu = get_cpu();
2873 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2874 put_cpu();
2875 if (new_cpu != this_cpu)
2876 sched_migrate_task(current, new_cpu);
2877 }
2878
2879 /*
2880 * pull_task - move a task from a remote runqueue to the local runqueue.
2881 * Both runqueues must be locked.
2882 */
2883 static void pull_task(struct rq *src_rq, struct task_struct *p,
2884 struct rq *this_rq, int this_cpu)
2885 {
2886 deactivate_task(src_rq, p, 0);
2887 set_task_cpu(p, this_cpu);
2888 activate_task(this_rq, p, 0);
2889 /*
2890 * Note that idle threads have a prio of MAX_PRIO, for this test
2891 * to be always true for them.
2892 */
2893 check_preempt_curr(this_rq, p, 0);
2894 }
2895
2896 /*
2897 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2898 */
2899 static
2900 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2901 struct sched_domain *sd, enum cpu_idle_type idle,
2902 int *all_pinned)
2903 {
2904 /*
2905 * We do not migrate tasks that are:
2906 * 1) running (obviously), or
2907 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2908 * 3) are cache-hot on their current CPU.
2909 */
2910 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2911 schedstat_inc(p, se.nr_failed_migrations_affine);
2912 return 0;
2913 }
2914 *all_pinned = 0;
2915
2916 if (task_running(rq, p)) {
2917 schedstat_inc(p, se.nr_failed_migrations_running);
2918 return 0;
2919 }
2920
2921 /*
2922 * Aggressive migration if:
2923 * 1) task is cache cold, or
2924 * 2) too many balance attempts have failed.
2925 */
2926
2927 if (!task_hot(p, rq->clock, sd) ||
2928 sd->nr_balance_failed > sd->cache_nice_tries) {
2929 #ifdef CONFIG_SCHEDSTATS
2930 if (task_hot(p, rq->clock, sd)) {
2931 schedstat_inc(sd, lb_hot_gained[idle]);
2932 schedstat_inc(p, se.nr_forced_migrations);
2933 }
2934 #endif
2935 return 1;
2936 }
2937
2938 if (task_hot(p, rq->clock, sd)) {
2939 schedstat_inc(p, se.nr_failed_migrations_hot);
2940 return 0;
2941 }
2942 return 1;
2943 }
2944
2945 static unsigned long
2946 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2947 unsigned long max_load_move, struct sched_domain *sd,
2948 enum cpu_idle_type idle, int *all_pinned,
2949 int *this_best_prio, struct rq_iterator *iterator)
2950 {
2951 int loops = 0, pulled = 0, pinned = 0;
2952 struct task_struct *p;
2953 long rem_load_move = max_load_move;
2954
2955 if (max_load_move == 0)
2956 goto out;
2957
2958 pinned = 1;
2959
2960 /*
2961 * Start the load-balancing iterator:
2962 */
2963 p = iterator->start(iterator->arg);
2964 next:
2965 if (!p || loops++ > sysctl_sched_nr_migrate)
2966 goto out;
2967
2968 if ((p->se.load.weight >> 1) > rem_load_move ||
2969 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2970 p = iterator->next(iterator->arg);
2971 goto next;
2972 }
2973
2974 pull_task(busiest, p, this_rq, this_cpu);
2975 pulled++;
2976 rem_load_move -= p->se.load.weight;
2977
2978 /*
2979 * We only want to steal up to the prescribed amount of weighted load.
2980 */
2981 if (rem_load_move > 0) {
2982 if (p->prio < *this_best_prio)
2983 *this_best_prio = p->prio;
2984 p = iterator->next(iterator->arg);
2985 goto next;
2986 }
2987 out:
2988 /*
2989 * Right now, this is one of only two places pull_task() is called,
2990 * so we can safely collect pull_task() stats here rather than
2991 * inside pull_task().
2992 */
2993 schedstat_add(sd, lb_gained[idle], pulled);
2994
2995 if (all_pinned)
2996 *all_pinned = pinned;
2997
2998 return max_load_move - rem_load_move;
2999 }
3000
3001 /*
3002 * move_tasks tries to move up to max_load_move weighted load from busiest to
3003 * this_rq, as part of a balancing operation within domain "sd".
3004 * Returns 1 if successful and 0 otherwise.
3005 *
3006 * Called with both runqueues locked.
3007 */
3008 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3009 unsigned long max_load_move,
3010 struct sched_domain *sd, enum cpu_idle_type idle,
3011 int *all_pinned)
3012 {
3013 const struct sched_class *class = sched_class_highest;
3014 unsigned long total_load_moved = 0;
3015 int this_best_prio = this_rq->curr->prio;
3016
3017 do {
3018 total_load_moved +=
3019 class->load_balance(this_rq, this_cpu, busiest,
3020 max_load_move - total_load_moved,
3021 sd, idle, all_pinned, &this_best_prio);
3022 class = class->next;
3023
3024 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3025 break;
3026
3027 } while (class && max_load_move > total_load_moved);
3028
3029 return total_load_moved > 0;
3030 }
3031
3032 static int
3033 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3034 struct sched_domain *sd, enum cpu_idle_type idle,
3035 struct rq_iterator *iterator)
3036 {
3037 struct task_struct *p = iterator->start(iterator->arg);
3038 int pinned = 0;
3039
3040 while (p) {
3041 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3042 pull_task(busiest, p, this_rq, this_cpu);
3043 /*
3044 * Right now, this is only the second place pull_task()
3045 * is called, so we can safely collect pull_task()
3046 * stats here rather than inside pull_task().
3047 */
3048 schedstat_inc(sd, lb_gained[idle]);
3049
3050 return 1;
3051 }
3052 p = iterator->next(iterator->arg);
3053 }
3054
3055 return 0;
3056 }
3057
3058 /*
3059 * move_one_task tries to move exactly one task from busiest to this_rq, as
3060 * part of active balancing operations within "domain".
3061 * Returns 1 if successful and 0 otherwise.
3062 *
3063 * Called with both runqueues locked.
3064 */
3065 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3066 struct sched_domain *sd, enum cpu_idle_type idle)
3067 {
3068 const struct sched_class *class;
3069
3070 for (class = sched_class_highest; class; class = class->next)
3071 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3072 return 1;
3073
3074 return 0;
3075 }
3076
3077 /*
3078 * find_busiest_group finds and returns the busiest CPU group within the
3079 * domain. It calculates and returns the amount of weighted load which
3080 * should be moved to restore balance via the imbalance parameter.
3081 */
3082 static struct sched_group *
3083 find_busiest_group(struct sched_domain *sd, int this_cpu,
3084 unsigned long *imbalance, enum cpu_idle_type idle,
3085 int *sd_idle, const cpumask_t *cpus, int *balance)
3086 {
3087 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3088 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3089 unsigned long max_pull;
3090 unsigned long busiest_load_per_task, busiest_nr_running;
3091 unsigned long this_load_per_task, this_nr_running;
3092 int load_idx, group_imb = 0;
3093 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3094 int power_savings_balance = 1;
3095 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3096 unsigned long min_nr_running = ULONG_MAX;
3097 struct sched_group *group_min = NULL, *group_leader = NULL;
3098 #endif
3099
3100 max_load = this_load = total_load = total_pwr = 0;
3101 busiest_load_per_task = busiest_nr_running = 0;
3102 this_load_per_task = this_nr_running = 0;
3103
3104 if (idle == CPU_NOT_IDLE)
3105 load_idx = sd->busy_idx;
3106 else if (idle == CPU_NEWLY_IDLE)
3107 load_idx = sd->newidle_idx;
3108 else
3109 load_idx = sd->idle_idx;
3110
3111 do {
3112 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
3113 int local_group;
3114 int i;
3115 int __group_imb = 0;
3116 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3117 unsigned long sum_nr_running, sum_weighted_load;
3118 unsigned long sum_avg_load_per_task;
3119 unsigned long avg_load_per_task;
3120
3121 local_group = cpu_isset(this_cpu, group->cpumask);
3122
3123 if (local_group)
3124 balance_cpu = first_cpu(group->cpumask);
3125
3126 /* Tally up the load of all CPUs in the group */
3127 sum_weighted_load = sum_nr_running = avg_load = 0;
3128 sum_avg_load_per_task = avg_load_per_task = 0;
3129
3130 max_cpu_load = 0;
3131 min_cpu_load = ~0UL;
3132
3133 for_each_cpu_mask_nr(i, group->cpumask) {
3134 struct rq *rq;
3135
3136 if (!cpu_isset(i, *cpus))
3137 continue;
3138
3139 rq = cpu_rq(i);
3140
3141 if (*sd_idle && rq->nr_running)
3142 *sd_idle = 0;
3143
3144 /* Bias balancing toward cpus of our domain */
3145 if (local_group) {
3146 if (idle_cpu(i) && !first_idle_cpu) {
3147 first_idle_cpu = 1;
3148 balance_cpu = i;
3149 }
3150
3151 load = target_load(i, load_idx);
3152 } else {
3153 load = source_load(i, load_idx);
3154 if (load > max_cpu_load)
3155 max_cpu_load = load;
3156 if (min_cpu_load > load)
3157 min_cpu_load = load;
3158 }
3159
3160 avg_load += load;
3161 sum_nr_running += rq->nr_running;
3162 sum_weighted_load += weighted_cpuload(i);
3163
3164 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3165 }
3166
3167 /*
3168 * First idle cpu or the first cpu(busiest) in this sched group
3169 * is eligible for doing load balancing at this and above
3170 * domains. In the newly idle case, we will allow all the cpu's
3171 * to do the newly idle load balance.
3172 */
3173 if (idle != CPU_NEWLY_IDLE && local_group &&
3174 balance_cpu != this_cpu && balance) {
3175 *balance = 0;
3176 goto ret;
3177 }
3178
3179 total_load += avg_load;
3180 total_pwr += group->__cpu_power;
3181
3182 /* Adjust by relative CPU power of the group */
3183 avg_load = sg_div_cpu_power(group,
3184 avg_load * SCHED_LOAD_SCALE);
3185
3186
3187 /*
3188 * Consider the group unbalanced when the imbalance is larger
3189 * than the average weight of two tasks.
3190 *
3191 * APZ: with cgroup the avg task weight can vary wildly and
3192 * might not be a suitable number - should we keep a
3193 * normalized nr_running number somewhere that negates
3194 * the hierarchy?
3195 */
3196 avg_load_per_task = sg_div_cpu_power(group,
3197 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3198
3199 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3200 __group_imb = 1;
3201
3202 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3203
3204 if (local_group) {
3205 this_load = avg_load;
3206 this = group;
3207 this_nr_running = sum_nr_running;
3208 this_load_per_task = sum_weighted_load;
3209 } else if (avg_load > max_load &&
3210 (sum_nr_running > group_capacity || __group_imb)) {
3211 max_load = avg_load;
3212 busiest = group;
3213 busiest_nr_running = sum_nr_running;
3214 busiest_load_per_task = sum_weighted_load;
3215 group_imb = __group_imb;
3216 }
3217
3218 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3219 /*
3220 * Busy processors will not participate in power savings
3221 * balance.
3222 */
3223 if (idle == CPU_NOT_IDLE ||
3224 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3225 goto group_next;
3226
3227 /*
3228 * If the local group is idle or completely loaded
3229 * no need to do power savings balance at this domain
3230 */
3231 if (local_group && (this_nr_running >= group_capacity ||
3232 !this_nr_running))
3233 power_savings_balance = 0;
3234
3235 /*
3236 * If a group is already running at full capacity or idle,
3237 * don't include that group in power savings calculations
3238 */
3239 if (!power_savings_balance || sum_nr_running >= group_capacity
3240 || !sum_nr_running)
3241 goto group_next;
3242
3243 /*
3244 * Calculate the group which has the least non-idle load.
3245 * This is the group from where we need to pick up the load
3246 * for saving power
3247 */
3248 if ((sum_nr_running < min_nr_running) ||
3249 (sum_nr_running == min_nr_running &&
3250 first_cpu(group->cpumask) <
3251 first_cpu(group_min->cpumask))) {
3252 group_min = group;
3253 min_nr_running = sum_nr_running;
3254 min_load_per_task = sum_weighted_load /
3255 sum_nr_running;
3256 }
3257
3258 /*
3259 * Calculate the group which is almost near its
3260 * capacity but still has some space to pick up some load
3261 * from other group and save more power
3262 */
3263 if (sum_nr_running <= group_capacity - 1) {
3264 if (sum_nr_running > leader_nr_running ||
3265 (sum_nr_running == leader_nr_running &&
3266 first_cpu(group->cpumask) >
3267 first_cpu(group_leader->cpumask))) {
3268 group_leader = group;
3269 leader_nr_running = sum_nr_running;
3270 }
3271 }
3272 group_next:
3273 #endif
3274 group = group->next;
3275 } while (group != sd->groups);
3276
3277 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
3278 goto out_balanced;
3279
3280 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3281
3282 if (this_load >= avg_load ||
3283 100*max_load <= sd->imbalance_pct*this_load)
3284 goto out_balanced;
3285
3286 busiest_load_per_task /= busiest_nr_running;
3287 if (group_imb)
3288 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3289
3290 /*
3291 * We're trying to get all the cpus to the average_load, so we don't
3292 * want to push ourselves above the average load, nor do we wish to
3293 * reduce the max loaded cpu below the average load, as either of these
3294 * actions would just result in more rebalancing later, and ping-pong
3295 * tasks around. Thus we look for the minimum possible imbalance.
3296 * Negative imbalances (*we* are more loaded than anyone else) will
3297 * be counted as no imbalance for these purposes -- we can't fix that
3298 * by pulling tasks to us. Be careful of negative numbers as they'll
3299 * appear as very large values with unsigned longs.
3300 */
3301 if (max_load <= busiest_load_per_task)
3302 goto out_balanced;
3303
3304 /*
3305 * In the presence of smp nice balancing, certain scenarios can have
3306 * max load less than avg load(as we skip the groups at or below
3307 * its cpu_power, while calculating max_load..)
3308 */
3309 if (max_load < avg_load) {
3310 *imbalance = 0;
3311 goto small_imbalance;
3312 }
3313
3314 /* Don't want to pull so many tasks that a group would go idle */
3315 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3316
3317 /* How much load to actually move to equalise the imbalance */
3318 *imbalance = min(max_pull * busiest->__cpu_power,
3319 (avg_load - this_load) * this->__cpu_power)
3320 / SCHED_LOAD_SCALE;
3321
3322 /*
3323 * if *imbalance is less than the average load per runnable task
3324 * there is no gaurantee that any tasks will be moved so we'll have
3325 * a think about bumping its value to force at least one task to be
3326 * moved
3327 */
3328 if (*imbalance < busiest_load_per_task) {
3329 unsigned long tmp, pwr_now, pwr_move;
3330 unsigned int imbn;
3331
3332 small_imbalance:
3333 pwr_move = pwr_now = 0;
3334 imbn = 2;
3335 if (this_nr_running) {
3336 this_load_per_task /= this_nr_running;
3337 if (busiest_load_per_task > this_load_per_task)
3338 imbn = 1;
3339 } else
3340 this_load_per_task = cpu_avg_load_per_task(this_cpu);
3341
3342 if (max_load - this_load + 2*busiest_load_per_task >=
3343 busiest_load_per_task * imbn) {
3344 *imbalance = busiest_load_per_task;
3345 return busiest;
3346 }
3347
3348 /*
3349 * OK, we don't have enough imbalance to justify moving tasks,
3350 * however we may be able to increase total CPU power used by
3351 * moving them.
3352 */
3353
3354 pwr_now += busiest->__cpu_power *
3355 min(busiest_load_per_task, max_load);
3356 pwr_now += this->__cpu_power *
3357 min(this_load_per_task, this_load);
3358 pwr_now /= SCHED_LOAD_SCALE;
3359
3360 /* Amount of load we'd subtract */
3361 tmp = sg_div_cpu_power(busiest,
3362 busiest_load_per_task * SCHED_LOAD_SCALE);
3363 if (max_load > tmp)
3364 pwr_move += busiest->__cpu_power *
3365 min(busiest_load_per_task, max_load - tmp);
3366
3367 /* Amount of load we'd add */
3368 if (max_load * busiest->__cpu_power <
3369 busiest_load_per_task * SCHED_LOAD_SCALE)
3370 tmp = sg_div_cpu_power(this,
3371 max_load * busiest->__cpu_power);
3372 else
3373 tmp = sg_div_cpu_power(this,
3374 busiest_load_per_task * SCHED_LOAD_SCALE);
3375 pwr_move += this->__cpu_power *
3376 min(this_load_per_task, this_load + tmp);
3377 pwr_move /= SCHED_LOAD_SCALE;
3378
3379 /* Move if we gain throughput */
3380 if (pwr_move > pwr_now)
3381 *imbalance = busiest_load_per_task;
3382 }
3383
3384 return busiest;
3385
3386 out_balanced:
3387 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3388 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3389 goto ret;
3390
3391 if (this == group_leader && group_leader != group_min) {
3392 *imbalance = min_load_per_task;
3393 return group_min;
3394 }
3395 #endif
3396 ret:
3397 *imbalance = 0;
3398 return NULL;
3399 }
3400
3401 /*
3402 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3403 */
3404 static struct rq *
3405 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3406 unsigned long imbalance, const cpumask_t *cpus)
3407 {
3408 struct rq *busiest = NULL, *rq;
3409 unsigned long max_load = 0;
3410 int i;
3411
3412 for_each_cpu_mask_nr(i, group->cpumask) {
3413 unsigned long wl;
3414
3415 if (!cpu_isset(i, *cpus))
3416 continue;
3417
3418 rq = cpu_rq(i);
3419 wl = weighted_cpuload(i);
3420
3421 if (rq->nr_running == 1 && wl > imbalance)
3422 continue;
3423
3424 if (wl > max_load) {
3425 max_load = wl;
3426 busiest = rq;
3427 }
3428 }
3429
3430 return busiest;
3431 }
3432
3433 /*
3434 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3435 * so long as it is large enough.
3436 */
3437 #define MAX_PINNED_INTERVAL 512
3438
3439 /*
3440 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3441 * tasks if there is an imbalance.
3442 */
3443 static int load_balance(int this_cpu, struct rq *this_rq,
3444 struct sched_domain *sd, enum cpu_idle_type idle,
3445 int *balance, cpumask_t *cpus)
3446 {
3447 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3448 struct sched_group *group;
3449 unsigned long imbalance;
3450 struct rq *busiest;
3451 unsigned long flags;
3452
3453 cpus_setall(*cpus);
3454
3455 /*
3456 * When power savings policy is enabled for the parent domain, idle
3457 * sibling can pick up load irrespective of busy siblings. In this case,
3458 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3459 * portraying it as CPU_NOT_IDLE.
3460 */
3461 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3462 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3463 sd_idle = 1;
3464
3465 schedstat_inc(sd, lb_count[idle]);
3466
3467 redo:
3468 update_shares(sd);
3469 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3470 cpus, balance);
3471
3472 if (*balance == 0)
3473 goto out_balanced;
3474
3475 if (!group) {
3476 schedstat_inc(sd, lb_nobusyg[idle]);
3477 goto out_balanced;
3478 }
3479
3480 busiest = find_busiest_queue(group, idle, imbalance, cpus);
3481 if (!busiest) {
3482 schedstat_inc(sd, lb_nobusyq[idle]);
3483 goto out_balanced;
3484 }
3485
3486 BUG_ON(busiest == this_rq);
3487
3488 schedstat_add(sd, lb_imbalance[idle], imbalance);
3489
3490 ld_moved = 0;
3491 if (busiest->nr_running > 1) {
3492 /*
3493 * Attempt to move tasks. If find_busiest_group has found
3494 * an imbalance but busiest->nr_running <= 1, the group is
3495 * still unbalanced. ld_moved simply stays zero, so it is
3496 * correctly treated as an imbalance.
3497 */
3498 local_irq_save(flags);
3499 double_rq_lock(this_rq, busiest);
3500 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3501 imbalance, sd, idle, &all_pinned);
3502 double_rq_unlock(this_rq, busiest);
3503 local_irq_restore(flags);
3504
3505 /*
3506 * some other cpu did the load balance for us.
3507 */
3508 if (ld_moved && this_cpu != smp_processor_id())
3509 resched_cpu(this_cpu);
3510
3511 /* All tasks on this runqueue were pinned by CPU affinity */
3512 if (unlikely(all_pinned)) {
3513 cpu_clear(cpu_of(busiest), *cpus);
3514 if (!cpus_empty(*cpus))
3515 goto redo;
3516 goto out_balanced;
3517 }
3518 }
3519
3520 if (!ld_moved) {
3521 schedstat_inc(sd, lb_failed[idle]);
3522 sd->nr_balance_failed++;
3523
3524 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
3525
3526 spin_lock_irqsave(&busiest->lock, flags);
3527
3528 /* don't kick the migration_thread, if the curr
3529 * task on busiest cpu can't be moved to this_cpu
3530 */
3531 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3532 spin_unlock_irqrestore(&busiest->lock, flags);
3533 all_pinned = 1;
3534 goto out_one_pinned;
3535 }
3536
3537 if (!busiest->active_balance) {
3538 busiest->active_balance = 1;
3539 busiest->push_cpu = this_cpu;
3540 active_balance = 1;
3541 }
3542 spin_unlock_irqrestore(&busiest->lock, flags);
3543 if (active_balance)
3544 wake_up_process(busiest->migration_thread);
3545
3546 /*
3547 * We've kicked active balancing, reset the failure
3548 * counter.
3549 */
3550 sd->nr_balance_failed = sd->cache_nice_tries+1;
3551 }
3552 } else
3553 sd->nr_balance_failed = 0;
3554
3555 if (likely(!active_balance)) {
3556 /* We were unbalanced, so reset the balancing interval */
3557 sd->balance_interval = sd->min_interval;
3558 } else {
3559 /*
3560 * If we've begun active balancing, start to back off. This
3561 * case may not be covered by the all_pinned logic if there
3562 * is only 1 task on the busy runqueue (because we don't call
3563 * move_tasks).
3564 */
3565 if (sd->balance_interval < sd->max_interval)
3566 sd->balance_interval *= 2;
3567 }
3568
3569 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3570 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3571 ld_moved = -1;
3572
3573 goto out;
3574
3575 out_balanced:
3576 schedstat_inc(sd, lb_balanced[idle]);
3577
3578 sd->nr_balance_failed = 0;
3579
3580 out_one_pinned:
3581 /* tune up the balancing interval */
3582 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3583 (sd->balance_interval < sd->max_interval))
3584 sd->balance_interval *= 2;
3585
3586 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3587 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3588 ld_moved = -1;
3589 else
3590 ld_moved = 0;
3591 out:
3592 if (ld_moved)
3593 update_shares(sd);
3594 return ld_moved;
3595 }
3596
3597 /*
3598 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3599 * tasks if there is an imbalance.
3600 *
3601 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3602 * this_rq is locked.
3603 */
3604 static int
3605 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3606 cpumask_t *cpus)
3607 {
3608 struct sched_group *group;
3609 struct rq *busiest = NULL;
3610 unsigned long imbalance;
3611 int ld_moved = 0;
3612 int sd_idle = 0;
3613 int all_pinned = 0;
3614
3615 cpus_setall(*cpus);
3616
3617 /*
3618 * When power savings policy is enabled for the parent domain, idle
3619 * sibling can pick up load irrespective of busy siblings. In this case,
3620 * let the state of idle sibling percolate up as IDLE, instead of
3621 * portraying it as CPU_NOT_IDLE.
3622 */
3623 if (sd->flags & SD_SHARE_CPUPOWER &&
3624 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3625 sd_idle = 1;
3626
3627 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3628 redo:
3629 update_shares_locked(this_rq, sd);
3630 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3631 &sd_idle, cpus, NULL);
3632 if (!group) {
3633 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3634 goto out_balanced;
3635 }
3636
3637 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
3638 if (!busiest) {
3639 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3640 goto out_balanced;
3641 }
3642
3643 BUG_ON(busiest == this_rq);
3644
3645 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3646
3647 ld_moved = 0;
3648 if (busiest->nr_running > 1) {
3649 /* Attempt to move tasks */
3650 double_lock_balance(this_rq, busiest);
3651 /* this_rq->clock is already updated */
3652 update_rq_clock(busiest);
3653 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3654 imbalance, sd, CPU_NEWLY_IDLE,
3655 &all_pinned);
3656 double_unlock_balance(this_rq, busiest);
3657
3658 if (unlikely(all_pinned)) {
3659 cpu_clear(cpu_of(busiest), *cpus);
3660 if (!cpus_empty(*cpus))
3661 goto redo;
3662 }
3663 }
3664
3665 if (!ld_moved) {
3666 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3667 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3668 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3669 return -1;
3670 } else
3671 sd->nr_balance_failed = 0;
3672
3673 update_shares_locked(this_rq, sd);
3674 return ld_moved;
3675
3676 out_balanced:
3677 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3678 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3679 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3680 return -1;
3681 sd->nr_balance_failed = 0;
3682
3683 return 0;
3684 }
3685
3686 /*
3687 * idle_balance is called by schedule() if this_cpu is about to become
3688 * idle. Attempts to pull tasks from other CPUs.
3689 */
3690 static void idle_balance(int this_cpu, struct rq *this_rq)
3691 {
3692 struct sched_domain *sd;
3693 int pulled_task = -1;
3694 unsigned long next_balance = jiffies + HZ;
3695 cpumask_t tmpmask;
3696
3697 for_each_domain(this_cpu, sd) {
3698 unsigned long interval;
3699
3700 if (!(sd->flags & SD_LOAD_BALANCE))
3701 continue;
3702
3703 if (sd->flags & SD_BALANCE_NEWIDLE)
3704 /* If we've pulled tasks over stop searching: */
3705 pulled_task = load_balance_newidle(this_cpu, this_rq,
3706 sd, &tmpmask);
3707
3708 interval = msecs_to_jiffies(sd->balance_interval);
3709 if (time_after(next_balance, sd->last_balance + interval))
3710 next_balance = sd->last_balance + interval;
3711 if (pulled_task)
3712 break;
3713 }
3714 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3715 /*
3716 * We are going idle. next_balance may be set based on
3717 * a busy processor. So reset next_balance.
3718 */
3719 this_rq->next_balance = next_balance;
3720 }
3721 }
3722
3723 /*
3724 * active_load_balance is run by migration threads. It pushes running tasks
3725 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3726 * running on each physical CPU where possible, and avoids physical /
3727 * logical imbalances.
3728 *
3729 * Called with busiest_rq locked.
3730 */
3731 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3732 {
3733 int target_cpu = busiest_rq->push_cpu;
3734 struct sched_domain *sd;
3735 struct rq *target_rq;
3736
3737 /* Is there any task to move? */
3738 if (busiest_rq->nr_running <= 1)
3739 return;
3740
3741 target_rq = cpu_rq(target_cpu);
3742
3743 /*
3744 * This condition is "impossible", if it occurs
3745 * we need to fix it. Originally reported by
3746 * Bjorn Helgaas on a 128-cpu setup.
3747 */
3748 BUG_ON(busiest_rq == target_rq);
3749
3750 /* move a task from busiest_rq to target_rq */
3751 double_lock_balance(busiest_rq, target_rq);
3752 update_rq_clock(busiest_rq);
3753 update_rq_clock(target_rq);
3754
3755 /* Search for an sd spanning us and the target CPU. */
3756 for_each_domain(target_cpu, sd) {
3757 if ((sd->flags & SD_LOAD_BALANCE) &&
3758 cpu_isset(busiest_cpu, sd->span))
3759 break;
3760 }
3761
3762 if (likely(sd)) {
3763 schedstat_inc(sd, alb_count);
3764
3765 if (move_one_task(target_rq, target_cpu, busiest_rq,
3766 sd, CPU_IDLE))
3767 schedstat_inc(sd, alb_pushed);
3768 else
3769 schedstat_inc(sd, alb_failed);
3770 }
3771 double_unlock_balance(busiest_rq, target_rq);
3772 }
3773
3774 #ifdef CONFIG_NO_HZ
3775 static struct {
3776 atomic_t load_balancer;
3777 cpumask_t cpu_mask;
3778 } nohz ____cacheline_aligned = {
3779 .load_balancer = ATOMIC_INIT(-1),
3780 .cpu_mask = CPU_MASK_NONE,
3781 };
3782
3783 /*
3784 * This routine will try to nominate the ilb (idle load balancing)
3785 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3786 * load balancing on behalf of all those cpus. If all the cpus in the system
3787 * go into this tickless mode, then there will be no ilb owner (as there is
3788 * no need for one) and all the cpus will sleep till the next wakeup event
3789 * arrives...
3790 *
3791 * For the ilb owner, tick is not stopped. And this tick will be used
3792 * for idle load balancing. ilb owner will still be part of
3793 * nohz.cpu_mask..
3794 *
3795 * While stopping the tick, this cpu will become the ilb owner if there
3796 * is no other owner. And will be the owner till that cpu becomes busy
3797 * or if all cpus in the system stop their ticks at which point
3798 * there is no need for ilb owner.
3799 *
3800 * When the ilb owner becomes busy, it nominates another owner, during the
3801 * next busy scheduler_tick()
3802 */
3803 int select_nohz_load_balancer(int stop_tick)
3804 {
3805 int cpu = smp_processor_id();
3806
3807 if (stop_tick) {
3808 cpu_set(cpu, nohz.cpu_mask);
3809 cpu_rq(cpu)->in_nohz_recently = 1;
3810
3811 /*
3812 * If we are going offline and still the leader, give up!
3813 */
3814 if (!cpu_active(cpu) &&
3815 atomic_read(&nohz.load_balancer) == cpu) {
3816 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3817 BUG();
3818 return 0;
3819 }
3820
3821 /* time for ilb owner also to sleep */
3822 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3823 if (atomic_read(&nohz.load_balancer) == cpu)
3824 atomic_set(&nohz.load_balancer, -1);
3825 return 0;
3826 }
3827
3828 if (atomic_read(&nohz.load_balancer) == -1) {
3829 /* make me the ilb owner */
3830 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3831 return 1;
3832 } else if (atomic_read(&nohz.load_balancer) == cpu)
3833 return 1;
3834 } else {
3835 if (!cpu_isset(cpu, nohz.cpu_mask))
3836 return 0;
3837
3838 cpu_clear(cpu, nohz.cpu_mask);
3839
3840 if (atomic_read(&nohz.load_balancer) == cpu)
3841 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3842 BUG();
3843 }
3844 return 0;
3845 }
3846 #endif
3847
3848 static DEFINE_SPINLOCK(balancing);
3849
3850 /*
3851 * It checks each scheduling domain to see if it is due to be balanced,
3852 * and initiates a balancing operation if so.
3853 *
3854 * Balancing parameters are set up in arch_init_sched_domains.
3855 */
3856 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3857 {
3858 int balance = 1;
3859 struct rq *rq = cpu_rq(cpu);
3860 unsigned long interval;
3861 struct sched_domain *sd;
3862 /* Earliest time when we have to do rebalance again */
3863 unsigned long next_balance = jiffies + 60*HZ;
3864 int update_next_balance = 0;
3865 int need_serialize;
3866 cpumask_t tmp;
3867
3868 for_each_domain(cpu, sd) {
3869 if (!(sd->flags & SD_LOAD_BALANCE))
3870 continue;
3871
3872 interval = sd->balance_interval;
3873 if (idle != CPU_IDLE)
3874 interval *= sd->busy_factor;
3875
3876 /* scale ms to jiffies */
3877 interval = msecs_to_jiffies(interval);
3878 if (unlikely(!interval))
3879 interval = 1;
3880 if (interval > HZ*NR_CPUS/10)
3881 interval = HZ*NR_CPUS/10;
3882
3883 need_serialize = sd->flags & SD_SERIALIZE;
3884
3885 if (need_serialize) {
3886 if (!spin_trylock(&balancing))
3887 goto out;
3888 }
3889
3890 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3891 if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
3892 /*
3893 * We've pulled tasks over so either we're no
3894 * longer idle, or one of our SMT siblings is
3895 * not idle.
3896 */
3897 idle = CPU_NOT_IDLE;
3898 }
3899 sd->last_balance = jiffies;
3900 }
3901 if (need_serialize)
3902 spin_unlock(&balancing);
3903 out:
3904 if (time_after(next_balance, sd->last_balance + interval)) {
3905 next_balance = sd->last_balance + interval;
3906 update_next_balance = 1;
3907 }
3908
3909 /*
3910 * Stop the load balance at this level. There is another
3911 * CPU in our sched group which is doing load balancing more
3912 * actively.
3913 */
3914 if (!balance)
3915 break;
3916 }
3917
3918 /*
3919 * next_balance will be updated only when there is a need.
3920 * When the cpu is attached to null domain for ex, it will not be
3921 * updated.
3922 */
3923 if (likely(update_next_balance))
3924 rq->next_balance = next_balance;
3925 }
3926
3927 /*
3928 * run_rebalance_domains is triggered when needed from the scheduler tick.
3929 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3930 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3931 */
3932 static void run_rebalance_domains(struct softirq_action *h)
3933 {
3934 int this_cpu = smp_processor_id();
3935 struct rq *this_rq = cpu_rq(this_cpu);
3936 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3937 CPU_IDLE : CPU_NOT_IDLE;
3938
3939 rebalance_domains(this_cpu, idle);
3940
3941 #ifdef CONFIG_NO_HZ
3942 /*
3943 * If this cpu is the owner for idle load balancing, then do the
3944 * balancing on behalf of the other idle cpus whose ticks are
3945 * stopped.
3946 */
3947 if (this_rq->idle_at_tick &&
3948 atomic_read(&nohz.load_balancer) == this_cpu) {
3949 cpumask_t cpus = nohz.cpu_mask;
3950 struct rq *rq;
3951 int balance_cpu;
3952
3953 cpu_clear(this_cpu, cpus);
3954 for_each_cpu_mask_nr(balance_cpu, cpus) {
3955 /*
3956 * If this cpu gets work to do, stop the load balancing
3957 * work being done for other cpus. Next load
3958 * balancing owner will pick it up.
3959 */
3960 if (need_resched())
3961 break;
3962
3963 rebalance_domains(balance_cpu, CPU_IDLE);
3964
3965 rq = cpu_rq(balance_cpu);
3966 if (time_after(this_rq->next_balance, rq->next_balance))
3967 this_rq->next_balance = rq->next_balance;
3968 }
3969 }
3970 #endif
3971 }
3972
3973 /*
3974 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3975 *
3976 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3977 * idle load balancing owner or decide to stop the periodic load balancing,
3978 * if the whole system is idle.
3979 */
3980 static inline void trigger_load_balance(struct rq *rq, int cpu)
3981 {
3982 #ifdef CONFIG_NO_HZ
3983 /*
3984 * If we were in the nohz mode recently and busy at the current
3985 * scheduler tick, then check if we need to nominate new idle
3986 * load balancer.
3987 */
3988 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3989 rq->in_nohz_recently = 0;
3990
3991 if (atomic_read(&nohz.load_balancer) == cpu) {
3992 cpu_clear(cpu, nohz.cpu_mask);
3993 atomic_set(&nohz.load_balancer, -1);
3994 }
3995
3996 if (atomic_read(&nohz.load_balancer) == -1) {
3997 /*
3998 * simple selection for now: Nominate the
3999 * first cpu in the nohz list to be the next
4000 * ilb owner.
4001 *
4002 * TBD: Traverse the sched domains and nominate
4003 * the nearest cpu in the nohz.cpu_mask.
4004 */
4005 int ilb = first_cpu(nohz.cpu_mask);
4006
4007 if (ilb < nr_cpu_ids)
4008 resched_cpu(ilb);
4009 }
4010 }
4011
4012 /*
4013 * If this cpu is idle and doing idle load balancing for all the
4014 * cpus with ticks stopped, is it time for that to stop?
4015 */
4016 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4017 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
4018 resched_cpu(cpu);
4019 return;
4020 }
4021
4022 /*
4023 * If this cpu is idle and the idle load balancing is done by
4024 * someone else, then no need raise the SCHED_SOFTIRQ
4025 */
4026 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4027 cpu_isset(cpu, nohz.cpu_mask))
4028 return;
4029 #endif
4030 if (time_after_eq(jiffies, rq->next_balance))
4031 raise_softirq(SCHED_SOFTIRQ);
4032 }
4033
4034 #else /* CONFIG_SMP */
4035
4036 /*
4037 * on UP we do not need to balance between CPUs:
4038 */
4039 static inline void idle_balance(int cpu, struct rq *rq)
4040 {
4041 }
4042
4043 #endif
4044
4045 DEFINE_PER_CPU(struct kernel_stat, kstat);
4046
4047 EXPORT_PER_CPU_SYMBOL(kstat);
4048
4049 /*
4050 * Return p->sum_exec_runtime plus any more ns on the sched_clock
4051 * that have not yet been banked in case the task is currently running.
4052 */
4053 unsigned long long task_sched_runtime(struct task_struct *p)
4054 {
4055 unsigned long flags;
4056 u64 ns, delta_exec;
4057 struct rq *rq;
4058
4059 rq = task_rq_lock(p, &flags);
4060 ns = p->se.sum_exec_runtime;
4061 if (task_current(rq, p)) {
4062 update_rq_clock(rq);
4063 delta_exec = rq->clock - p->se.exec_start;
4064 if ((s64)delta_exec > 0)
4065 ns += delta_exec;
4066 }
4067 task_rq_unlock(rq, &flags);
4068
4069 return ns;
4070 }
4071
4072 /*
4073 * Account user cpu time to a process.
4074 * @p: the process that the cpu time gets accounted to
4075 * @cputime: the cpu time spent in user space since the last update
4076 */
4077 void account_user_time(struct task_struct *p, cputime_t cputime)
4078 {
4079 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4080 cputime64_t tmp;
4081
4082 p->utime = cputime_add(p->utime, cputime);
4083
4084 /* Add user time to cpustat. */
4085 tmp = cputime_to_cputime64(cputime);
4086 if (TASK_NICE(p) > 0)
4087 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4088 else
4089 cpustat->user = cputime64_add(cpustat->user, tmp);
4090 /* Account for user time used */
4091 acct_update_integrals(p);
4092 }
4093
4094 /*
4095 * Account guest cpu time to a process.
4096 * @p: the process that the cpu time gets accounted to
4097 * @cputime: the cpu time spent in virtual machine since the last update
4098 */
4099 static void account_guest_time(struct task_struct *p, cputime_t cputime)
4100 {
4101 cputime64_t tmp;
4102 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4103
4104 tmp = cputime_to_cputime64(cputime);
4105
4106 p->utime = cputime_add(p->utime, cputime);
4107 p->gtime = cputime_add(p->gtime, cputime);
4108
4109 cpustat->user = cputime64_add(cpustat->user, tmp);
4110 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4111 }
4112
4113 /*
4114 * Account scaled user cpu time to a process.
4115 * @p: the process that the cpu time gets accounted to
4116 * @cputime: the cpu time spent in user space since the last update
4117 */
4118 void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
4119 {
4120 p->utimescaled = cputime_add(p->utimescaled, cputime);
4121 }
4122
4123 /*
4124 * Account system cpu time to a process.
4125 * @p: the process that the cpu time gets accounted to
4126 * @hardirq_offset: the offset to subtract from hardirq_count()
4127 * @cputime: the cpu time spent in kernel space since the last update
4128 */
4129 void account_system_time(struct task_struct *p, int hardirq_offset,
4130 cputime_t cputime)
4131 {
4132 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4133 struct rq *rq = this_rq();
4134 cputime64_t tmp;
4135
4136 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4137 account_guest_time(p, cputime);
4138 return;
4139 }
4140
4141 p->stime = cputime_add(p->stime, cputime);
4142
4143 /* Add system time to cpustat. */
4144 tmp = cputime_to_cputime64(cputime);
4145 if (hardirq_count() - hardirq_offset)
4146 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4147 else if (softirq_count())
4148 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4149 else if (p != rq->idle)
4150 cpustat->system = cputime64_add(cpustat->system, tmp);
4151 else if (atomic_read(&rq->nr_iowait) > 0)
4152 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4153 else
4154 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4155 /* Account for system time used */
4156 acct_update_integrals(p);
4157 }
4158
4159 /*
4160 * Account scaled system cpu time to a process.
4161 * @p: the process that the cpu time gets accounted to
4162 * @hardirq_offset: the offset to subtract from hardirq_count()
4163 * @cputime: the cpu time spent in kernel space since the last update
4164 */
4165 void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
4166 {
4167 p->stimescaled = cputime_add(p->stimescaled, cputime);
4168 }
4169
4170 /*
4171 * Account for involuntary wait time.
4172 * @p: the process from which the cpu time has been stolen
4173 * @steal: the cpu time spent in involuntary wait
4174 */
4175 void account_steal_time(struct task_struct *p, cputime_t steal)
4176 {
4177 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4178 cputime64_t tmp = cputime_to_cputime64(steal);
4179 struct rq *rq = this_rq();
4180
4181 if (p == rq->idle) {
4182 p->stime = cputime_add(p->stime, steal);
4183 if (atomic_read(&rq->nr_iowait) > 0)
4184 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4185 else
4186 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4187 } else
4188 cpustat->steal = cputime64_add(cpustat->steal, tmp);
4189 }
4190
4191 /*
4192 * Use precise platform statistics if available:
4193 */
4194 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
4195 cputime_t task_utime(struct task_struct *p)
4196 {
4197 return p->utime;
4198 }
4199
4200 cputime_t task_stime(struct task_struct *p)
4201 {
4202 return p->stime;
4203 }
4204 #else
4205 cputime_t task_utime(struct task_struct *p)
4206 {
4207 clock_t utime = cputime_to_clock_t(p->utime),
4208 total = utime + cputime_to_clock_t(p->stime);
4209 u64 temp;
4210
4211 /*
4212 * Use CFS's precise accounting:
4213 */
4214 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
4215
4216 if (total) {
4217 temp *= utime;
4218 do_div(temp, total);
4219 }
4220 utime = (clock_t)temp;
4221
4222 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
4223 return p->prev_utime;
4224 }
4225
4226 cputime_t task_stime(struct task_struct *p)
4227 {
4228 clock_t stime;
4229
4230 /*
4231 * Use CFS's precise accounting. (we subtract utime from
4232 * the total, to make sure the total observed by userspace
4233 * grows monotonically - apps rely on that):
4234 */
4235 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
4236 cputime_to_clock_t(task_utime(p));
4237
4238 if (stime >= 0)
4239 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
4240
4241 return p->prev_stime;
4242 }
4243 #endif
4244
4245 inline cputime_t task_gtime(struct task_struct *p)
4246 {
4247 return p->gtime;
4248 }
4249
4250 /*
4251 * This function gets called by the timer code, with HZ frequency.
4252 * We call it with interrupts disabled.
4253 *
4254 * It also gets called by the fork code, when changing the parent's
4255 * timeslices.
4256 */
4257 void scheduler_tick(void)
4258 {
4259 int cpu = smp_processor_id();
4260 struct rq *rq = cpu_rq(cpu);
4261 struct task_struct *curr = rq->curr;
4262
4263 sched_clock_tick();
4264
4265 spin_lock(&rq->lock);
4266 update_rq_clock(rq);
4267 update_cpu_load(rq);
4268 curr->sched_class->task_tick(rq, curr, 0);
4269 spin_unlock(&rq->lock);
4270
4271 #ifdef CONFIG_SMP
4272 rq->idle_at_tick = idle_cpu(cpu);
4273 trigger_load_balance(rq, cpu);
4274 #endif
4275 }
4276
4277 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4278 defined(CONFIG_PREEMPT_TRACER))
4279
4280 static inline unsigned long get_parent_ip(unsigned long addr)
4281 {
4282 if (in_lock_functions(addr)) {
4283 addr = CALLER_ADDR2;
4284 if (in_lock_functions(addr))
4285 addr = CALLER_ADDR3;
4286 }
4287 return addr;
4288 }
4289
4290 void __kprobes add_preempt_count(int val)
4291 {
4292 #ifdef CONFIG_DEBUG_PREEMPT
4293 /*
4294 * Underflow?
4295 */
4296 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4297 return;
4298 #endif
4299 preempt_count() += val;
4300 #ifdef CONFIG_DEBUG_PREEMPT
4301 /*
4302 * Spinlock count overflowing soon?
4303 */
4304 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4305 PREEMPT_MASK - 10);
4306 #endif
4307 if (preempt_count() == val)
4308 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4309 }
4310 EXPORT_SYMBOL(add_preempt_count);
4311
4312 void __kprobes sub_preempt_count(int val)
4313 {
4314 #ifdef CONFIG_DEBUG_PREEMPT
4315 /*
4316 * Underflow?
4317 */
4318 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4319 return;
4320 /*
4321 * Is the spinlock portion underflowing?
4322 */
4323 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4324 !(preempt_count() & PREEMPT_MASK)))
4325 return;
4326 #endif
4327
4328 if (preempt_count() == val)
4329 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4330 preempt_count() -= val;
4331 }
4332 EXPORT_SYMBOL(sub_preempt_count);
4333
4334 #endif
4335
4336 /*
4337 * Print scheduling while atomic bug:
4338 */
4339 static noinline void __schedule_bug(struct task_struct *prev)
4340 {
4341 struct pt_regs *regs = get_irq_regs();
4342
4343 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4344 prev->comm, prev->pid, preempt_count());
4345
4346 debug_show_held_locks(prev);
4347 print_modules();
4348 if (irqs_disabled())
4349 print_irqtrace_events(prev);
4350
4351 if (regs)
4352 show_regs(regs);
4353 else
4354 dump_stack();
4355 }
4356
4357 /*
4358 * Various schedule()-time debugging checks and statistics:
4359 */
4360 static inline void schedule_debug(struct task_struct *prev)
4361 {
4362 /*
4363 * Test if we are atomic. Since do_exit() needs to call into
4364 * schedule() atomically, we ignore that path for now.
4365 * Otherwise, whine if we are scheduling when we should not be.
4366 */
4367 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
4368 __schedule_bug(prev);
4369
4370 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4371
4372 schedstat_inc(this_rq(), sched_count);
4373 #ifdef CONFIG_SCHEDSTATS
4374 if (unlikely(prev->lock_depth >= 0)) {
4375 schedstat_inc(this_rq(), bkl_count);
4376 schedstat_inc(prev, sched_info.bkl_count);
4377 }
4378 #endif
4379 }
4380
4381 /*
4382 * Pick up the highest-prio task:
4383 */
4384 static inline struct task_struct *
4385 pick_next_task(struct rq *rq, struct task_struct *prev)
4386 {
4387 const struct sched_class *class;
4388 struct task_struct *p;
4389
4390 /*
4391 * Optimization: we know that if all tasks are in
4392 * the fair class we can call that function directly:
4393 */
4394 if (likely(rq->nr_running == rq->cfs.nr_running)) {
4395 p = fair_sched_class.pick_next_task(rq);
4396 if (likely(p))
4397 return p;
4398 }
4399
4400 class = sched_class_highest;
4401 for ( ; ; ) {
4402 p = class->pick_next_task(rq);
4403 if (p)
4404 return p;
4405 /*
4406 * Will never be NULL as the idle class always
4407 * returns a non-NULL p:
4408 */
4409 class = class->next;
4410 }
4411 }
4412
4413 /*
4414 * schedule() is the main scheduler function.
4415 */
4416 asmlinkage void __sched schedule(void)
4417 {
4418 struct task_struct *prev, *next;
4419 unsigned long *switch_count;
4420 struct rq *rq;
4421 int cpu;
4422
4423 need_resched:
4424 preempt_disable();
4425 cpu = smp_processor_id();
4426 rq = cpu_rq(cpu);
4427 rcu_qsctr_inc(cpu);
4428 prev = rq->curr;
4429 switch_count = &prev->nivcsw;
4430
4431 release_kernel_lock(prev);
4432 need_resched_nonpreemptible:
4433
4434 schedule_debug(prev);
4435
4436 if (sched_feat(HRTICK))
4437 hrtick_clear(rq);
4438
4439 /*
4440 * Do the rq-clock update outside the rq lock:
4441 */
4442 local_irq_disable();
4443 update_rq_clock(rq);
4444 spin_lock(&rq->lock);
4445 clear_tsk_need_resched(prev);
4446
4447 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4448 if (unlikely(signal_pending_state(prev->state, prev)))
4449 prev->state = TASK_RUNNING;
4450 else
4451 deactivate_task(rq, prev, 1);
4452 switch_count = &prev->nvcsw;
4453 }
4454
4455 #ifdef CONFIG_SMP
4456 if (prev->sched_class->pre_schedule)
4457 prev->sched_class->pre_schedule(rq, prev);
4458 #endif
4459
4460 if (unlikely(!rq->nr_running))
4461 idle_balance(cpu, rq);
4462
4463 prev->sched_class->put_prev_task(rq, prev);
4464 next = pick_next_task(rq, prev);
4465
4466 if (likely(prev != next)) {
4467 sched_info_switch(prev, next);
4468
4469 rq->nr_switches++;
4470 rq->curr = next;
4471 ++*switch_count;
4472
4473 context_switch(rq, prev, next); /* unlocks the rq */
4474 /*
4475 * the context switch might have flipped the stack from under
4476 * us, hence refresh the local variables.
4477 */
4478 cpu = smp_processor_id();
4479 rq = cpu_rq(cpu);
4480 } else
4481 spin_unlock_irq(&rq->lock);
4482
4483 if (unlikely(reacquire_kernel_lock(current) < 0))
4484 goto need_resched_nonpreemptible;
4485
4486 preempt_enable_no_resched();
4487 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4488 goto need_resched;
4489 }
4490 EXPORT_SYMBOL(schedule);
4491
4492 #ifdef CONFIG_PREEMPT
4493 /*
4494 * this is the entry point to schedule() from in-kernel preemption
4495 * off of preempt_enable. Kernel preemptions off return from interrupt
4496 * occur there and call schedule directly.
4497 */
4498 asmlinkage void __sched preempt_schedule(void)
4499 {
4500 struct thread_info *ti = current_thread_info();
4501
4502 /*
4503 * If there is a non-zero preempt_count or interrupts are disabled,
4504 * we do not want to preempt the current task. Just return..
4505 */
4506 if (likely(ti->preempt_count || irqs_disabled()))
4507 return;
4508
4509 do {
4510 add_preempt_count(PREEMPT_ACTIVE);
4511 schedule();
4512 sub_preempt_count(PREEMPT_ACTIVE);
4513
4514 /*
4515 * Check again in case we missed a preemption opportunity
4516 * between schedule and now.
4517 */
4518 barrier();
4519 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4520 }
4521 EXPORT_SYMBOL(preempt_schedule);
4522
4523 /*
4524 * this is the entry point to schedule() from kernel preemption
4525 * off of irq context.
4526 * Note, that this is called and return with irqs disabled. This will
4527 * protect us against recursive calling from irq.
4528 */
4529 asmlinkage void __sched preempt_schedule_irq(void)
4530 {
4531 struct thread_info *ti = current_thread_info();
4532
4533 /* Catch callers which need to be fixed */
4534 BUG_ON(ti->preempt_count || !irqs_disabled());
4535
4536 do {
4537 add_preempt_count(PREEMPT_ACTIVE);
4538 local_irq_enable();
4539 schedule();
4540 local_irq_disable();
4541 sub_preempt_count(PREEMPT_ACTIVE);
4542
4543 /*
4544 * Check again in case we missed a preemption opportunity
4545 * between schedule and now.
4546 */
4547 barrier();
4548 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4549 }
4550
4551 #endif /* CONFIG_PREEMPT */
4552
4553 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4554 void *key)
4555 {
4556 return try_to_wake_up(curr->private, mode, sync);
4557 }
4558 EXPORT_SYMBOL(default_wake_function);
4559
4560 /*
4561 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4562 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4563 * number) then we wake all the non-exclusive tasks and one exclusive task.
4564 *
4565 * There are circumstances in which we can try to wake a task which has already
4566 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4567 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4568 */
4569 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4570 int nr_exclusive, int sync, void *key)
4571 {
4572 wait_queue_t *curr, *next;
4573
4574 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4575 unsigned flags = curr->flags;
4576
4577 if (curr->func(curr, mode, sync, key) &&
4578 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4579 break;
4580 }
4581 }
4582
4583 /**
4584 * __wake_up - wake up threads blocked on a waitqueue.
4585 * @q: the waitqueue
4586 * @mode: which threads
4587 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4588 * @key: is directly passed to the wakeup function
4589 */
4590 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4591 int nr_exclusive, void *key)
4592 {
4593 unsigned long flags;
4594
4595 spin_lock_irqsave(&q->lock, flags);
4596 __wake_up_common(q, mode, nr_exclusive, 0, key);
4597 spin_unlock_irqrestore(&q->lock, flags);
4598 }
4599 EXPORT_SYMBOL(__wake_up);
4600
4601 /*
4602 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4603 */
4604 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4605 {
4606 __wake_up_common(q, mode, 1, 0, NULL);
4607 }
4608
4609 /**
4610 * __wake_up_sync - wake up threads blocked on a waitqueue.
4611 * @q: the waitqueue
4612 * @mode: which threads
4613 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4614 *
4615 * The sync wakeup differs that the waker knows that it will schedule
4616 * away soon, so while the target thread will be woken up, it will not
4617 * be migrated to another CPU - ie. the two threads are 'synchronized'
4618 * with each other. This can prevent needless bouncing between CPUs.
4619 *
4620 * On UP it can prevent extra preemption.
4621 */
4622 void
4623 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4624 {
4625 unsigned long flags;
4626 int sync = 1;
4627
4628 if (unlikely(!q))
4629 return;
4630
4631 if (unlikely(!nr_exclusive))
4632 sync = 0;
4633
4634 spin_lock_irqsave(&q->lock, flags);
4635 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4636 spin_unlock_irqrestore(&q->lock, flags);
4637 }
4638 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4639
4640 /**
4641 * complete: - signals a single thread waiting on this completion
4642 * @x: holds the state of this particular completion
4643 *
4644 * This will wake up a single thread waiting on this completion. Threads will be
4645 * awakened in the same order in which they were queued.
4646 *
4647 * See also complete_all(), wait_for_completion() and related routines.
4648 */
4649 void complete(struct completion *x)
4650 {
4651 unsigned long flags;
4652
4653 spin_lock_irqsave(&x->wait.lock, flags);
4654 x->done++;
4655 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4656 spin_unlock_irqrestore(&x->wait.lock, flags);
4657 }
4658 EXPORT_SYMBOL(complete);
4659
4660 /**
4661 * complete_all: - signals all threads waiting on this completion
4662 * @x: holds the state of this particular completion
4663 *
4664 * This will wake up all threads waiting on this particular completion event.
4665 */
4666 void complete_all(struct completion *x)
4667 {
4668 unsigned long flags;
4669
4670 spin_lock_irqsave(&x->wait.lock, flags);
4671 x->done += UINT_MAX/2;
4672 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4673 spin_unlock_irqrestore(&x->wait.lock, flags);
4674 }
4675 EXPORT_SYMBOL(complete_all);
4676
4677 static inline long __sched
4678 do_wait_for_common(struct completion *x, long timeout, int state)
4679 {
4680 if (!x->done) {
4681 DECLARE_WAITQUEUE(wait, current);
4682
4683 wait.flags |= WQ_FLAG_EXCLUSIVE;
4684 __add_wait_queue_tail(&x->wait, &wait);
4685 do {
4686 if (signal_pending_state(state, current)) {
4687 timeout = -ERESTARTSYS;
4688 break;
4689 }
4690 __set_current_state(state);
4691 spin_unlock_irq(&x->wait.lock);
4692 timeout = schedule_timeout(timeout);
4693 spin_lock_irq(&x->wait.lock);
4694 } while (!x->done && timeout);
4695 __remove_wait_queue(&x->wait, &wait);
4696 if (!x->done)
4697 return timeout;
4698 }
4699 x->done--;
4700 return timeout ?: 1;
4701 }
4702
4703 static long __sched
4704 wait_for_common(struct completion *x, long timeout, int state)
4705 {
4706 might_sleep();
4707
4708 spin_lock_irq(&x->wait.lock);
4709 timeout = do_wait_for_common(x, timeout, state);
4710 spin_unlock_irq(&x->wait.lock);
4711 return timeout;
4712 }
4713
4714 /**
4715 * wait_for_completion: - waits for completion of a task
4716 * @x: holds the state of this particular completion
4717 *
4718 * This waits to be signaled for completion of a specific task. It is NOT
4719 * interruptible and there is no timeout.
4720 *
4721 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4722 * and interrupt capability. Also see complete().
4723 */
4724 void __sched wait_for_completion(struct completion *x)
4725 {
4726 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4727 }
4728 EXPORT_SYMBOL(wait_for_completion);
4729
4730 /**
4731 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4732 * @x: holds the state of this particular completion
4733 * @timeout: timeout value in jiffies
4734 *
4735 * This waits for either a completion of a specific task to be signaled or for a
4736 * specified timeout to expire. The timeout is in jiffies. It is not
4737 * interruptible.
4738 */
4739 unsigned long __sched
4740 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4741 {
4742 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4743 }
4744 EXPORT_SYMBOL(wait_for_completion_timeout);
4745
4746 /**
4747 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4748 * @x: holds the state of this particular completion
4749 *
4750 * This waits for completion of a specific task to be signaled. It is
4751 * interruptible.
4752 */
4753 int __sched wait_for_completion_interruptible(struct completion *x)
4754 {
4755 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4756 if (t == -ERESTARTSYS)
4757 return t;
4758 return 0;
4759 }
4760 EXPORT_SYMBOL(wait_for_completion_interruptible);
4761
4762 /**
4763 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4764 * @x: holds the state of this particular completion
4765 * @timeout: timeout value in jiffies
4766 *
4767 * This waits for either a completion of a specific task to be signaled or for a
4768 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4769 */
4770 unsigned long __sched
4771 wait_for_completion_interruptible_timeout(struct completion *x,
4772 unsigned long timeout)
4773 {
4774 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4775 }
4776 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4777
4778 /**
4779 * wait_for_completion_killable: - waits for completion of a task (killable)
4780 * @x: holds the state of this particular completion
4781 *
4782 * This waits to be signaled for completion of a specific task. It can be
4783 * interrupted by a kill signal.
4784 */
4785 int __sched wait_for_completion_killable(struct completion *x)
4786 {
4787 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4788 if (t == -ERESTARTSYS)
4789 return t;
4790 return 0;
4791 }
4792 EXPORT_SYMBOL(wait_for_completion_killable);
4793
4794 /**
4795 * try_wait_for_completion - try to decrement a completion without blocking
4796 * @x: completion structure
4797 *
4798 * Returns: 0 if a decrement cannot be done without blocking
4799 * 1 if a decrement succeeded.
4800 *
4801 * If a completion is being used as a counting completion,
4802 * attempt to decrement the counter without blocking. This
4803 * enables us to avoid waiting if the resource the completion
4804 * is protecting is not available.
4805 */
4806 bool try_wait_for_completion(struct completion *x)
4807 {
4808 int ret = 1;
4809
4810 spin_lock_irq(&x->wait.lock);
4811 if (!x->done)
4812 ret = 0;
4813 else
4814 x->done--;
4815 spin_unlock_irq(&x->wait.lock);
4816 return ret;
4817 }
4818 EXPORT_SYMBOL(try_wait_for_completion);
4819
4820 /**
4821 * completion_done - Test to see if a completion has any waiters
4822 * @x: completion structure
4823 *
4824 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4825 * 1 if there are no waiters.
4826 *
4827 */
4828 bool completion_done(struct completion *x)
4829 {
4830 int ret = 1;
4831
4832 spin_lock_irq(&x->wait.lock);
4833 if (!x->done)
4834 ret = 0;
4835 spin_unlock_irq(&x->wait.lock);
4836 return ret;
4837 }
4838 EXPORT_SYMBOL(completion_done);
4839
4840 static long __sched
4841 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4842 {
4843 unsigned long flags;
4844 wait_queue_t wait;
4845
4846 init_waitqueue_entry(&wait, current);
4847
4848 __set_current_state(state);
4849
4850 spin_lock_irqsave(&q->lock, flags);
4851 __add_wait_queue(q, &wait);
4852 spin_unlock(&q->lock);
4853 timeout = schedule_timeout(timeout);
4854 spin_lock_irq(&q->lock);
4855 __remove_wait_queue(q, &wait);
4856 spin_unlock_irqrestore(&q->lock, flags);
4857
4858 return timeout;
4859 }
4860
4861 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4862 {
4863 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4864 }
4865 EXPORT_SYMBOL(interruptible_sleep_on);
4866
4867 long __sched
4868 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4869 {
4870 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4871 }
4872 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4873
4874 void __sched sleep_on(wait_queue_head_t *q)
4875 {
4876 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4877 }
4878 EXPORT_SYMBOL(sleep_on);
4879
4880 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4881 {
4882 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4883 }
4884 EXPORT_SYMBOL(sleep_on_timeout);
4885
4886 #ifdef CONFIG_RT_MUTEXES
4887
4888 /*
4889 * rt_mutex_setprio - set the current priority of a task
4890 * @p: task
4891 * @prio: prio value (kernel-internal form)
4892 *
4893 * This function changes the 'effective' priority of a task. It does
4894 * not touch ->normal_prio like __setscheduler().
4895 *
4896 * Used by the rt_mutex code to implement priority inheritance logic.
4897 */
4898 void rt_mutex_setprio(struct task_struct *p, int prio)
4899 {
4900 unsigned long flags;
4901 int oldprio, on_rq, running;
4902 struct rq *rq;
4903 const struct sched_class *prev_class = p->sched_class;
4904
4905 BUG_ON(prio < 0 || prio > MAX_PRIO);
4906
4907 rq = task_rq_lock(p, &flags);
4908 update_rq_clock(rq);
4909
4910 oldprio = p->prio;
4911 on_rq = p->se.on_rq;
4912 running = task_current(rq, p);
4913 if (on_rq)
4914 dequeue_task(rq, p, 0);
4915 if (running)
4916 p->sched_class->put_prev_task(rq, p);
4917
4918 if (rt_prio(prio))
4919 p->sched_class = &rt_sched_class;
4920 else
4921 p->sched_class = &fair_sched_class;
4922
4923 p->prio = prio;
4924
4925 if (running)
4926 p->sched_class->set_curr_task(rq);
4927 if (on_rq) {
4928 enqueue_task(rq, p, 0);
4929
4930 check_class_changed(rq, p, prev_class, oldprio, running);
4931 }
4932 task_rq_unlock(rq, &flags);
4933 }
4934
4935 #endif
4936
4937 void set_user_nice(struct task_struct *p, long nice)
4938 {
4939 int old_prio, delta, on_rq;
4940 unsigned long flags;
4941 struct rq *rq;
4942
4943 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4944 return;
4945 /*
4946 * We have to be careful, if called from sys_setpriority(),
4947 * the task might be in the middle of scheduling on another CPU.
4948 */
4949 rq = task_rq_lock(p, &flags);
4950 update_rq_clock(rq);
4951 /*
4952 * The RT priorities are set via sched_setscheduler(), but we still
4953 * allow the 'normal' nice value to be set - but as expected
4954 * it wont have any effect on scheduling until the task is
4955 * SCHED_FIFO/SCHED_RR:
4956 */
4957 if (task_has_rt_policy(p)) {
4958 p->static_prio = NICE_TO_PRIO(nice);
4959 goto out_unlock;
4960 }
4961 on_rq = p->se.on_rq;
4962 if (on_rq)
4963 dequeue_task(rq, p, 0);
4964
4965 p->static_prio = NICE_TO_PRIO(nice);
4966 set_load_weight(p);
4967 old_prio = p->prio;
4968 p->prio = effective_prio(p);
4969 delta = p->prio - old_prio;
4970
4971 if (on_rq) {
4972 enqueue_task(rq, p, 0);
4973 /*
4974 * If the task increased its priority or is running and
4975 * lowered its priority, then reschedule its CPU:
4976 */
4977 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4978 resched_task(rq->curr);
4979 }
4980 out_unlock:
4981 task_rq_unlock(rq, &flags);
4982 }
4983 EXPORT_SYMBOL(set_user_nice);
4984
4985 /*
4986 * can_nice - check if a task can reduce its nice value
4987 * @p: task
4988 * @nice: nice value
4989 */
4990 int can_nice(const struct task_struct *p, const int nice)
4991 {
4992 /* convert nice value [19,-20] to rlimit style value [1,40] */
4993 int nice_rlim = 20 - nice;
4994
4995 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4996 capable(CAP_SYS_NICE));
4997 }
4998
4999 #ifdef __ARCH_WANT_SYS_NICE
5000
5001 /*
5002 * sys_nice - change the priority of the current process.
5003 * @increment: priority increment
5004 *
5005 * sys_setpriority is a more generic, but much slower function that
5006 * does similar things.
5007 */
5008 asmlinkage long sys_nice(int increment)
5009 {
5010 long nice, retval;
5011
5012 /*
5013 * Setpriority might change our priority at the same moment.
5014 * We don't have to worry. Conceptually one call occurs first
5015 * and we have a single winner.
5016 */
5017 if (increment < -40)
5018 increment = -40;
5019 if (increment > 40)
5020 increment = 40;
5021
5022 nice = PRIO_TO_NICE(current->static_prio) + increment;
5023 if (nice < -20)
5024 nice = -20;
5025 if (nice > 19)
5026 nice = 19;
5027
5028 if (increment < 0 && !can_nice(current, nice))
5029 return -EPERM;
5030
5031 retval = security_task_setnice(current, nice);
5032 if (retval)
5033 return retval;
5034
5035 set_user_nice(current, nice);
5036 return 0;
5037 }
5038
5039 #endif
5040
5041 /**
5042 * task_prio - return the priority value of a given task.
5043 * @p: the task in question.
5044 *
5045 * This is the priority value as seen by users in /proc.
5046 * RT tasks are offset by -200. Normal tasks are centered
5047 * around 0, value goes from -16 to +15.
5048 */
5049 int task_prio(const struct task_struct *p)
5050 {
5051 return p->prio - MAX_RT_PRIO;
5052 }
5053
5054 /**
5055 * task_nice - return the nice value of a given task.
5056 * @p: the task in question.
5057 */
5058 int task_nice(const struct task_struct *p)
5059 {
5060 return TASK_NICE(p);
5061 }
5062 EXPORT_SYMBOL(task_nice);
5063
5064 /**
5065 * idle_cpu - is a given cpu idle currently?
5066 * @cpu: the processor in question.
5067 */
5068 int idle_cpu(int cpu)
5069 {
5070 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5071 }
5072
5073 /**
5074 * idle_task - return the idle task for a given cpu.
5075 * @cpu: the processor in question.
5076 */
5077 struct task_struct *idle_task(int cpu)
5078 {
5079 return cpu_rq(cpu)->idle;
5080 }
5081
5082 /**
5083 * find_process_by_pid - find a process with a matching PID value.
5084 * @pid: the pid in question.
5085 */
5086 static struct task_struct *find_process_by_pid(pid_t pid)
5087 {
5088 return pid ? find_task_by_vpid(pid) : current;
5089 }
5090
5091 /* Actually do priority change: must hold rq lock. */
5092 static void
5093 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
5094 {
5095 BUG_ON(p->se.on_rq);
5096
5097 p->policy = policy;
5098 switch (p->policy) {
5099 case SCHED_NORMAL:
5100 case SCHED_BATCH:
5101 case SCHED_IDLE:
5102 p->sched_class = &fair_sched_class;
5103 break;
5104 case SCHED_FIFO:
5105 case SCHED_RR:
5106 p->sched_class = &rt_sched_class;
5107 break;
5108 }
5109
5110 p->rt_priority = prio;
5111 p->normal_prio = normal_prio(p);
5112 /* we are holding p->pi_lock already */
5113 p->prio = rt_mutex_getprio(p);
5114 set_load_weight(p);
5115 }
5116
5117 static int __sched_setscheduler(struct task_struct *p, int policy,
5118 struct sched_param *param, bool user)
5119 {
5120 int retval, oldprio, oldpolicy = -1, on_rq, running;
5121 unsigned long flags;
5122 const struct sched_class *prev_class = p->sched_class;
5123 struct rq *rq;
5124
5125 /* may grab non-irq protected spin_locks */
5126 BUG_ON(in_interrupt());
5127 recheck:
5128 /* double check policy once rq lock held */
5129 if (policy < 0)
5130 policy = oldpolicy = p->policy;
5131 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
5132 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5133 policy != SCHED_IDLE)
5134 return -EINVAL;
5135 /*
5136 * Valid priorities for SCHED_FIFO and SCHED_RR are
5137 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5138 * SCHED_BATCH and SCHED_IDLE is 0.
5139 */
5140 if (param->sched_priority < 0 ||
5141 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5142 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
5143 return -EINVAL;
5144 if (rt_policy(policy) != (param->sched_priority != 0))
5145 return -EINVAL;
5146
5147 /*
5148 * Allow unprivileged RT tasks to decrease priority:
5149 */
5150 if (user && !capable(CAP_SYS_NICE)) {
5151 if (rt_policy(policy)) {
5152 unsigned long rlim_rtprio;
5153
5154 if (!lock_task_sighand(p, &flags))
5155 return -ESRCH;
5156 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5157 unlock_task_sighand(p, &flags);
5158
5159 /* can't set/change the rt policy */
5160 if (policy != p->policy && !rlim_rtprio)
5161 return -EPERM;
5162
5163 /* can't increase priority */
5164 if (param->sched_priority > p->rt_priority &&
5165 param->sched_priority > rlim_rtprio)
5166 return -EPERM;
5167 }
5168 /*
5169 * Like positive nice levels, dont allow tasks to
5170 * move out of SCHED_IDLE either:
5171 */
5172 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5173 return -EPERM;
5174
5175 /* can't change other user's priorities */
5176 if ((current->euid != p->euid) &&
5177 (current->euid != p->uid))
5178 return -EPERM;
5179 }
5180
5181 if (user) {
5182 #ifdef CONFIG_RT_GROUP_SCHED
5183 /*
5184 * Do not allow realtime tasks into groups that have no runtime
5185 * assigned.
5186 */
5187 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5188 task_group(p)->rt_bandwidth.rt_runtime == 0)
5189 return -EPERM;
5190 #endif
5191
5192 retval = security_task_setscheduler(p, policy, param);
5193 if (retval)
5194 return retval;
5195 }
5196
5197 /*
5198 * make sure no PI-waiters arrive (or leave) while we are
5199 * changing the priority of the task:
5200 */
5201 spin_lock_irqsave(&p->pi_lock, flags);
5202 /*
5203 * To be able to change p->policy safely, the apropriate
5204 * runqueue lock must be held.
5205 */
5206 rq = __task_rq_lock(p);
5207 /* recheck policy now with rq lock held */
5208 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5209 policy = oldpolicy = -1;
5210 __task_rq_unlock(rq);
5211 spin_unlock_irqrestore(&p->pi_lock, flags);
5212 goto recheck;
5213 }
5214 update_rq_clock(rq);
5215 on_rq = p->se.on_rq;
5216 running = task_current(rq, p);
5217 if (on_rq)
5218 deactivate_task(rq, p, 0);
5219 if (running)
5220 p->sched_class->put_prev_task(rq, p);
5221
5222 oldprio = p->prio;
5223 __setscheduler(rq, p, policy, param->sched_priority);
5224
5225 if (running)
5226 p->sched_class->set_curr_task(rq);
5227 if (on_rq) {
5228 activate_task(rq, p, 0);
5229
5230 check_class_changed(rq, p, prev_class, oldprio, running);
5231 }
5232 __task_rq_unlock(rq);
5233 spin_unlock_irqrestore(&p->pi_lock, flags);
5234
5235 rt_mutex_adjust_pi(p);
5236
5237 return 0;
5238 }
5239
5240 /**
5241 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5242 * @p: the task in question.
5243 * @policy: new policy.
5244 * @param: structure containing the new RT priority.
5245 *
5246 * NOTE that the task may be already dead.
5247 */
5248 int sched_setscheduler(struct task_struct *p, int policy,
5249 struct sched_param *param)
5250 {
5251 return __sched_setscheduler(p, policy, param, true);
5252 }
5253 EXPORT_SYMBOL_GPL(sched_setscheduler);
5254
5255 /**
5256 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5257 * @p: the task in question.
5258 * @policy: new policy.
5259 * @param: structure containing the new RT priority.
5260 *
5261 * Just like sched_setscheduler, only don't bother checking if the
5262 * current context has permission. For example, this is needed in
5263 * stop_machine(): we create temporary high priority worker threads,
5264 * but our caller might not have that capability.
5265 */
5266 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5267 struct sched_param *param)
5268 {
5269 return __sched_setscheduler(p, policy, param, false);
5270 }
5271
5272 static int
5273 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5274 {
5275 struct sched_param lparam;
5276 struct task_struct *p;
5277 int retval;
5278
5279 if (!param || pid < 0)
5280 return -EINVAL;
5281 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5282 return -EFAULT;
5283
5284 rcu_read_lock();
5285 retval = -ESRCH;
5286 p = find_process_by_pid(pid);
5287 if (p != NULL)
5288 retval = sched_setscheduler(p, policy, &lparam);
5289 rcu_read_unlock();
5290
5291 return retval;
5292 }
5293
5294 /**
5295 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5296 * @pid: the pid in question.
5297 * @policy: new policy.
5298 * @param: structure containing the new RT priority.
5299 */
5300 asmlinkage long
5301 sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5302 {
5303 /* negative values for policy are not valid */
5304 if (policy < 0)
5305 return -EINVAL;
5306
5307 return do_sched_setscheduler(pid, policy, param);
5308 }
5309
5310 /**
5311 * sys_sched_setparam - set/change the RT priority of a thread
5312 * @pid: the pid in question.
5313 * @param: structure containing the new RT priority.
5314 */
5315 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
5316 {
5317 return do_sched_setscheduler(pid, -1, param);
5318 }
5319
5320 /**
5321 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5322 * @pid: the pid in question.
5323 */
5324 asmlinkage long sys_sched_getscheduler(pid_t pid)
5325 {
5326 struct task_struct *p;
5327 int retval;
5328
5329 if (pid < 0)
5330 return -EINVAL;
5331
5332 retval = -ESRCH;
5333 read_lock(&tasklist_lock);
5334 p = find_process_by_pid(pid);
5335 if (p) {
5336 retval = security_task_getscheduler(p);
5337 if (!retval)
5338 retval = p->policy;
5339 }
5340 read_unlock(&tasklist_lock);
5341 return retval;
5342 }
5343
5344 /**
5345 * sys_sched_getscheduler - get the RT priority of a thread
5346 * @pid: the pid in question.
5347 * @param: structure containing the RT priority.
5348 */
5349 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
5350 {
5351 struct sched_param lp;
5352 struct task_struct *p;
5353 int retval;
5354
5355 if (!param || pid < 0)
5356 return -EINVAL;
5357
5358 read_lock(&tasklist_lock);
5359 p = find_process_by_pid(pid);
5360 retval = -ESRCH;
5361 if (!p)
5362 goto out_unlock;
5363
5364 retval = security_task_getscheduler(p);
5365 if (retval)
5366 goto out_unlock;
5367
5368 lp.sched_priority = p->rt_priority;
5369 read_unlock(&tasklist_lock);
5370
5371 /*
5372 * This one might sleep, we cannot do it with a spinlock held ...
5373 */
5374 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5375
5376 return retval;
5377
5378 out_unlock:
5379 read_unlock(&tasklist_lock);
5380 return retval;
5381 }
5382
5383 long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
5384 {
5385 cpumask_t cpus_allowed;
5386 cpumask_t new_mask = *in_mask;
5387 struct task_struct *p;
5388 int retval;
5389
5390 get_online_cpus();
5391 read_lock(&tasklist_lock);
5392
5393 p = find_process_by_pid(pid);
5394 if (!p) {
5395 read_unlock(&tasklist_lock);
5396 put_online_cpus();
5397 return -ESRCH;
5398 }
5399
5400 /*
5401 * It is not safe to call set_cpus_allowed with the
5402 * tasklist_lock held. We will bump the task_struct's
5403 * usage count and then drop tasklist_lock.
5404 */
5405 get_task_struct(p);
5406 read_unlock(&tasklist_lock);
5407
5408 retval = -EPERM;
5409 if ((current->euid != p->euid) && (current->euid != p->uid) &&
5410 !capable(CAP_SYS_NICE))
5411 goto out_unlock;
5412
5413 retval = security_task_setscheduler(p, 0, NULL);
5414 if (retval)
5415 goto out_unlock;
5416
5417 cpuset_cpus_allowed(p, &cpus_allowed);
5418 cpus_and(new_mask, new_mask, cpus_allowed);
5419 again:
5420 retval = set_cpus_allowed_ptr(p, &new_mask);
5421
5422 if (!retval) {
5423 cpuset_cpus_allowed(p, &cpus_allowed);
5424 if (!cpus_subset(new_mask, cpus_allowed)) {
5425 /*
5426 * We must have raced with a concurrent cpuset
5427 * update. Just reset the cpus_allowed to the
5428 * cpuset's cpus_allowed
5429 */
5430 new_mask = cpus_allowed;
5431 goto again;
5432 }
5433 }
5434 out_unlock:
5435 put_task_struct(p);
5436 put_online_cpus();
5437 return retval;
5438 }
5439
5440 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5441 cpumask_t *new_mask)
5442 {
5443 if (len < sizeof(cpumask_t)) {
5444 memset(new_mask, 0, sizeof(cpumask_t));
5445 } else if (len > sizeof(cpumask_t)) {
5446 len = sizeof(cpumask_t);
5447 }
5448 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5449 }
5450
5451 /**
5452 * sys_sched_setaffinity - set the cpu affinity of a process
5453 * @pid: pid of the process
5454 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5455 * @user_mask_ptr: user-space pointer to the new cpu mask
5456 */
5457 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5458 unsigned long __user *user_mask_ptr)
5459 {
5460 cpumask_t new_mask;
5461 int retval;
5462
5463 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
5464 if (retval)
5465 return retval;
5466
5467 return sched_setaffinity(pid, &new_mask);
5468 }
5469
5470 long sched_getaffinity(pid_t pid, cpumask_t *mask)
5471 {
5472 struct task_struct *p;
5473 int retval;
5474
5475 get_online_cpus();
5476 read_lock(&tasklist_lock);
5477
5478 retval = -ESRCH;
5479 p = find_process_by_pid(pid);
5480 if (!p)
5481 goto out_unlock;
5482
5483 retval = security_task_getscheduler(p);
5484 if (retval)
5485 goto out_unlock;
5486
5487 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
5488
5489 out_unlock:
5490 read_unlock(&tasklist_lock);
5491 put_online_cpus();
5492
5493 return retval;
5494 }
5495
5496 /**
5497 * sys_sched_getaffinity - get the cpu affinity of a process
5498 * @pid: pid of the process
5499 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5500 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5501 */
5502 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5503 unsigned long __user *user_mask_ptr)
5504 {
5505 int ret;
5506 cpumask_t mask;
5507
5508 if (len < sizeof(cpumask_t))
5509 return -EINVAL;
5510
5511 ret = sched_getaffinity(pid, &mask);
5512 if (ret < 0)
5513 return ret;
5514
5515 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
5516 return -EFAULT;
5517
5518 return sizeof(cpumask_t);
5519 }
5520
5521 /**
5522 * sys_sched_yield - yield the current processor to other threads.
5523 *
5524 * This function yields the current CPU to other tasks. If there are no
5525 * other threads running on this CPU then this function will return.
5526 */
5527 asmlinkage long sys_sched_yield(void)
5528 {
5529 struct rq *rq = this_rq_lock();
5530
5531 schedstat_inc(rq, yld_count);
5532 current->sched_class->yield_task(rq);
5533
5534 /*
5535 * Since we are going to call schedule() anyway, there's
5536 * no need to preempt or enable interrupts:
5537 */
5538 __release(rq->lock);
5539 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5540 _raw_spin_unlock(&rq->lock);
5541 preempt_enable_no_resched();
5542
5543 schedule();
5544
5545 return 0;
5546 }
5547
5548 static void __cond_resched(void)
5549 {
5550 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5551 __might_sleep(__FILE__, __LINE__);
5552 #endif
5553 /*
5554 * The BKS might be reacquired before we have dropped
5555 * PREEMPT_ACTIVE, which could trigger a second
5556 * cond_resched() call.
5557 */
5558 do {
5559 add_preempt_count(PREEMPT_ACTIVE);
5560 schedule();
5561 sub_preempt_count(PREEMPT_ACTIVE);
5562 } while (need_resched());
5563 }
5564
5565 int __sched _cond_resched(void)
5566 {
5567 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5568 system_state == SYSTEM_RUNNING) {
5569 __cond_resched();
5570 return 1;
5571 }
5572 return 0;
5573 }
5574 EXPORT_SYMBOL(_cond_resched);
5575
5576 /*
5577 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5578 * call schedule, and on return reacquire the lock.
5579 *
5580 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5581 * operations here to prevent schedule() from being called twice (once via
5582 * spin_unlock(), once by hand).
5583 */
5584 int cond_resched_lock(spinlock_t *lock)
5585 {
5586 int resched = need_resched() && system_state == SYSTEM_RUNNING;
5587 int ret = 0;
5588
5589 if (spin_needbreak(lock) || resched) {
5590 spin_unlock(lock);
5591 if (resched && need_resched())
5592 __cond_resched();
5593 else
5594 cpu_relax();
5595 ret = 1;
5596 spin_lock(lock);
5597 }
5598 return ret;
5599 }
5600 EXPORT_SYMBOL(cond_resched_lock);
5601
5602 int __sched cond_resched_softirq(void)
5603 {
5604 BUG_ON(!in_softirq());
5605
5606 if (need_resched() && system_state == SYSTEM_RUNNING) {
5607 local_bh_enable();
5608 __cond_resched();
5609 local_bh_disable();
5610 return 1;
5611 }
5612 return 0;
5613 }
5614 EXPORT_SYMBOL(cond_resched_softirq);
5615
5616 /**
5617 * yield - yield the current processor to other threads.
5618 *
5619 * This is a shortcut for kernel-space yielding - it marks the
5620 * thread runnable and calls sys_sched_yield().
5621 */
5622 void __sched yield(void)
5623 {
5624 set_current_state(TASK_RUNNING);
5625 sys_sched_yield();
5626 }
5627 EXPORT_SYMBOL(yield);
5628
5629 /*
5630 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5631 * that process accounting knows that this is a task in IO wait state.
5632 *
5633 * But don't do that if it is a deliberate, throttling IO wait (this task
5634 * has set its backing_dev_info: the queue against which it should throttle)
5635 */
5636 void __sched io_schedule(void)
5637 {
5638 struct rq *rq = &__raw_get_cpu_var(runqueues);
5639
5640 delayacct_blkio_start();
5641 atomic_inc(&rq->nr_iowait);
5642 schedule();
5643 atomic_dec(&rq->nr_iowait);
5644 delayacct_blkio_end();
5645 }
5646 EXPORT_SYMBOL(io_schedule);
5647
5648 long __sched io_schedule_timeout(long timeout)
5649 {
5650 struct rq *rq = &__raw_get_cpu_var(runqueues);
5651 long ret;
5652
5653 delayacct_blkio_start();
5654 atomic_inc(&rq->nr_iowait);
5655 ret = schedule_timeout(timeout);
5656 atomic_dec(&rq->nr_iowait);
5657 delayacct_blkio_end();
5658 return ret;
5659 }
5660
5661 /**
5662 * sys_sched_get_priority_max - return maximum RT priority.
5663 * @policy: scheduling class.
5664 *
5665 * this syscall returns the maximum rt_priority that can be used
5666 * by a given scheduling class.
5667 */
5668 asmlinkage long sys_sched_get_priority_max(int policy)
5669 {
5670 int ret = -EINVAL;
5671
5672 switch (policy) {
5673 case SCHED_FIFO:
5674 case SCHED_RR:
5675 ret = MAX_USER_RT_PRIO-1;
5676 break;
5677 case SCHED_NORMAL:
5678 case SCHED_BATCH:
5679 case SCHED_IDLE:
5680 ret = 0;
5681 break;
5682 }
5683 return ret;
5684 }
5685
5686 /**
5687 * sys_sched_get_priority_min - return minimum RT priority.
5688 * @policy: scheduling class.
5689 *
5690 * this syscall returns the minimum rt_priority that can be used
5691 * by a given scheduling class.
5692 */
5693 asmlinkage long sys_sched_get_priority_min(int policy)
5694 {
5695 int ret = -EINVAL;
5696
5697 switch (policy) {
5698 case SCHED_FIFO:
5699 case SCHED_RR:
5700 ret = 1;
5701 break;
5702 case SCHED_NORMAL:
5703 case SCHED_BATCH:
5704 case SCHED_IDLE:
5705 ret = 0;
5706 }
5707 return ret;
5708 }
5709
5710 /**
5711 * sys_sched_rr_get_interval - return the default timeslice of a process.
5712 * @pid: pid of the process.
5713 * @interval: userspace pointer to the timeslice value.
5714 *
5715 * this syscall writes the default timeslice value of a given process
5716 * into the user-space timespec buffer. A value of '0' means infinity.
5717 */
5718 asmlinkage
5719 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5720 {
5721 struct task_struct *p;
5722 unsigned int time_slice;
5723 int retval;
5724 struct timespec t;
5725
5726 if (pid < 0)
5727 return -EINVAL;
5728
5729 retval = -ESRCH;
5730 read_lock(&tasklist_lock);
5731 p = find_process_by_pid(pid);
5732 if (!p)
5733 goto out_unlock;
5734
5735 retval = security_task_getscheduler(p);
5736 if (retval)
5737 goto out_unlock;
5738
5739 /*
5740 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5741 * tasks that are on an otherwise idle runqueue:
5742 */
5743 time_slice = 0;
5744 if (p->policy == SCHED_RR) {
5745 time_slice = DEF_TIMESLICE;
5746 } else if (p->policy != SCHED_FIFO) {
5747 struct sched_entity *se = &p->se;
5748 unsigned long flags;
5749 struct rq *rq;
5750
5751 rq = task_rq_lock(p, &flags);
5752 if (rq->cfs.load.weight)
5753 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
5754 task_rq_unlock(rq, &flags);
5755 }
5756 read_unlock(&tasklist_lock);
5757 jiffies_to_timespec(time_slice, &t);
5758 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5759 return retval;
5760
5761 out_unlock:
5762 read_unlock(&tasklist_lock);
5763 return retval;
5764 }
5765
5766 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5767
5768 void sched_show_task(struct task_struct *p)
5769 {
5770 unsigned long free = 0;
5771 unsigned state;
5772
5773 state = p->state ? __ffs(p->state) + 1 : 0;
5774 printk(KERN_INFO "%-13.13s %c", p->comm,
5775 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5776 #if BITS_PER_LONG == 32
5777 if (state == TASK_RUNNING)
5778 printk(KERN_CONT " running ");
5779 else
5780 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5781 #else
5782 if (state == TASK_RUNNING)
5783 printk(KERN_CONT " running task ");
5784 else
5785 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5786 #endif
5787 #ifdef CONFIG_DEBUG_STACK_USAGE
5788 {
5789 unsigned long *n = end_of_stack(p);
5790 while (!*n)
5791 n++;
5792 free = (unsigned long)n - (unsigned long)end_of_stack(p);
5793 }
5794 #endif
5795 printk(KERN_CONT "%5lu %5d %6d\n", free,
5796 task_pid_nr(p), task_pid_nr(p->real_parent));
5797
5798 show_stack(p, NULL);
5799 }
5800
5801 void show_state_filter(unsigned long state_filter)
5802 {
5803 struct task_struct *g, *p;
5804
5805 #if BITS_PER_LONG == 32
5806 printk(KERN_INFO
5807 " task PC stack pid father\n");
5808 #else
5809 printk(KERN_INFO
5810 " task PC stack pid father\n");
5811 #endif
5812 read_lock(&tasklist_lock);
5813 do_each_thread(g, p) {
5814 /*
5815 * reset the NMI-timeout, listing all files on a slow
5816 * console might take alot of time:
5817 */
5818 touch_nmi_watchdog();
5819 if (!state_filter || (p->state & state_filter))
5820 sched_show_task(p);
5821 } while_each_thread(g, p);
5822
5823 touch_all_softlockup_watchdogs();
5824
5825 #ifdef CONFIG_SCHED_DEBUG
5826 sysrq_sched_debug_show();
5827 #endif
5828 read_unlock(&tasklist_lock);
5829 /*
5830 * Only show locks if all tasks are dumped:
5831 */
5832 if (state_filter == -1)
5833 debug_show_all_locks();
5834 }
5835
5836 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5837 {
5838 idle->sched_class = &idle_sched_class;
5839 }
5840
5841 /**
5842 * init_idle - set up an idle thread for a given CPU
5843 * @idle: task in question
5844 * @cpu: cpu the idle task belongs to
5845 *
5846 * NOTE: this function does not set the idle thread's NEED_RESCHED
5847 * flag, to make booting more robust.
5848 */
5849 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5850 {
5851 struct rq *rq = cpu_rq(cpu);
5852 unsigned long flags;
5853
5854 __sched_fork(idle);
5855 idle->se.exec_start = sched_clock();
5856
5857 idle->prio = idle->normal_prio = MAX_PRIO;
5858 idle->cpus_allowed = cpumask_of_cpu(cpu);
5859 __set_task_cpu(idle, cpu);
5860
5861 spin_lock_irqsave(&rq->lock, flags);
5862 rq->curr = rq->idle = idle;
5863 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5864 idle->oncpu = 1;
5865 #endif
5866 spin_unlock_irqrestore(&rq->lock, flags);
5867
5868 /* Set the preempt count _outside_ the spinlocks! */
5869 #if defined(CONFIG_PREEMPT)
5870 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5871 #else
5872 task_thread_info(idle)->preempt_count = 0;
5873 #endif
5874 /*
5875 * The idle tasks have their own, simple scheduling class:
5876 */
5877 idle->sched_class = &idle_sched_class;
5878 }
5879
5880 /*
5881 * In a system that switches off the HZ timer nohz_cpu_mask
5882 * indicates which cpus entered this state. This is used
5883 * in the rcu update to wait only for active cpus. For system
5884 * which do not switch off the HZ timer nohz_cpu_mask should
5885 * always be CPU_MASK_NONE.
5886 */
5887 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5888
5889 /*
5890 * Increase the granularity value when there are more CPUs,
5891 * because with more CPUs the 'effective latency' as visible
5892 * to users decreases. But the relationship is not linear,
5893 * so pick a second-best guess by going with the log2 of the
5894 * number of CPUs.
5895 *
5896 * This idea comes from the SD scheduler of Con Kolivas:
5897 */
5898 static inline void sched_init_granularity(void)
5899 {
5900 unsigned int factor = 1 + ilog2(num_online_cpus());
5901 const unsigned long limit = 200000000;
5902
5903 sysctl_sched_min_granularity *= factor;
5904 if (sysctl_sched_min_granularity > limit)
5905 sysctl_sched_min_granularity = limit;
5906
5907 sysctl_sched_latency *= factor;
5908 if (sysctl_sched_latency > limit)
5909 sysctl_sched_latency = limit;
5910
5911 sysctl_sched_wakeup_granularity *= factor;
5912
5913 sysctl_sched_shares_ratelimit *= factor;
5914 }
5915
5916 #ifdef CONFIG_SMP
5917 /*
5918 * This is how migration works:
5919 *
5920 * 1) we queue a struct migration_req structure in the source CPU's
5921 * runqueue and wake up that CPU's migration thread.
5922 * 2) we down() the locked semaphore => thread blocks.
5923 * 3) migration thread wakes up (implicitly it forces the migrated
5924 * thread off the CPU)
5925 * 4) it gets the migration request and checks whether the migrated
5926 * task is still in the wrong runqueue.
5927 * 5) if it's in the wrong runqueue then the migration thread removes
5928 * it and puts it into the right queue.
5929 * 6) migration thread up()s the semaphore.
5930 * 7) we wake up and the migration is done.
5931 */
5932
5933 /*
5934 * Change a given task's CPU affinity. Migrate the thread to a
5935 * proper CPU and schedule it away if the CPU it's executing on
5936 * is removed from the allowed bitmask.
5937 *
5938 * NOTE: the caller must have a valid reference to the task, the
5939 * task must not exit() & deallocate itself prematurely. The
5940 * call is not atomic; no spinlocks may be held.
5941 */
5942 int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
5943 {
5944 struct migration_req req;
5945 unsigned long flags;
5946 struct rq *rq;
5947 int ret = 0;
5948
5949 rq = task_rq_lock(p, &flags);
5950 if (!cpus_intersects(*new_mask, cpu_online_map)) {
5951 ret = -EINVAL;
5952 goto out;
5953 }
5954
5955 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5956 !cpus_equal(p->cpus_allowed, *new_mask))) {
5957 ret = -EINVAL;
5958 goto out;
5959 }
5960
5961 if (p->sched_class->set_cpus_allowed)
5962 p->sched_class->set_cpus_allowed(p, new_mask);
5963 else {
5964 p->cpus_allowed = *new_mask;
5965 p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
5966 }
5967
5968 /* Can the task run on the task's current CPU? If so, we're done */
5969 if (cpu_isset(task_cpu(p), *new_mask))
5970 goto out;
5971
5972 if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
5973 /* Need help from migration thread: drop lock and wait. */
5974 task_rq_unlock(rq, &flags);
5975 wake_up_process(rq->migration_thread);
5976 wait_for_completion(&req.done);
5977 tlb_migrate_finish(p->mm);
5978 return 0;
5979 }
5980 out:
5981 task_rq_unlock(rq, &flags);
5982
5983 return ret;
5984 }
5985 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5986
5987 /*
5988 * Move (not current) task off this cpu, onto dest cpu. We're doing
5989 * this because either it can't run here any more (set_cpus_allowed()
5990 * away from this CPU, or CPU going down), or because we're
5991 * attempting to rebalance this task on exec (sched_exec).
5992 *
5993 * So we race with normal scheduler movements, but that's OK, as long
5994 * as the task is no longer on this CPU.
5995 *
5996 * Returns non-zero if task was successfully migrated.
5997 */
5998 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5999 {
6000 struct rq *rq_dest, *rq_src;
6001 int ret = 0, on_rq;
6002
6003 if (unlikely(!cpu_active(dest_cpu)))
6004 return ret;
6005
6006 rq_src = cpu_rq(src_cpu);
6007 rq_dest = cpu_rq(dest_cpu);
6008
6009 double_rq_lock(rq_src, rq_dest);
6010 /* Already moved. */
6011 if (task_cpu(p) != src_cpu)
6012 goto done;
6013 /* Affinity changed (again). */
6014 if (!cpu_isset(dest_cpu, p->cpus_allowed))
6015 goto fail;
6016
6017 on_rq = p->se.on_rq;
6018 if (on_rq)
6019 deactivate_task(rq_src, p, 0);
6020
6021 set_task_cpu(p, dest_cpu);
6022 if (on_rq) {
6023 activate_task(rq_dest, p, 0);
6024 check_preempt_curr(rq_dest, p, 0);
6025 }
6026 done:
6027 ret = 1;
6028 fail:
6029 double_rq_unlock(rq_src, rq_dest);
6030 return ret;
6031 }
6032
6033 /*
6034 * migration_thread - this is a highprio system thread that performs
6035 * thread migration by bumping thread off CPU then 'pushing' onto
6036 * another runqueue.
6037 */
6038 static int migration_thread(void *data)
6039 {
6040 int cpu = (long)data;
6041 struct rq *rq;
6042
6043 rq = cpu_rq(cpu);
6044 BUG_ON(rq->migration_thread != current);
6045
6046 set_current_state(TASK_INTERRUPTIBLE);
6047 while (!kthread_should_stop()) {
6048 struct migration_req *req;
6049 struct list_head *head;
6050
6051 spin_lock_irq(&rq->lock);
6052
6053 if (cpu_is_offline(cpu)) {
6054 spin_unlock_irq(&rq->lock);
6055 goto wait_to_die;
6056 }
6057
6058 if (rq->active_balance) {
6059 active_load_balance(rq, cpu);
6060 rq->active_balance = 0;
6061 }
6062
6063 head = &rq->migration_queue;
6064
6065 if (list_empty(head)) {
6066 spin_unlock_irq(&rq->lock);
6067 schedule();
6068 set_current_state(TASK_INTERRUPTIBLE);
6069 continue;
6070 }
6071 req = list_entry(head->next, struct migration_req, list);
6072 list_del_init(head->next);
6073
6074 spin_unlock(&rq->lock);
6075 __migrate_task(req->task, cpu, req->dest_cpu);
6076 local_irq_enable();
6077
6078 complete(&req->done);
6079 }
6080 __set_current_state(TASK_RUNNING);
6081 return 0;
6082
6083 wait_to_die:
6084 /* Wait for kthread_stop */
6085 set_current_state(TASK_INTERRUPTIBLE);
6086 while (!kthread_should_stop()) {
6087 schedule();
6088 set_current_state(TASK_INTERRUPTIBLE);
6089 }
6090 __set_current_state(TASK_RUNNING);
6091 return 0;
6092 }
6093
6094 #ifdef CONFIG_HOTPLUG_CPU
6095
6096 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6097 {
6098 int ret;
6099
6100 local_irq_disable();
6101 ret = __migrate_task(p, src_cpu, dest_cpu);
6102 local_irq_enable();
6103 return ret;
6104 }
6105
6106 /*
6107 * Figure out where task on dead CPU should go, use force if necessary.
6108 * NOTE: interrupts should be disabled by the caller
6109 */
6110 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
6111 {
6112 unsigned long flags;
6113 cpumask_t mask;
6114 struct rq *rq;
6115 int dest_cpu;
6116
6117 do {
6118 /* On same node? */
6119 mask = node_to_cpumask(cpu_to_node(dead_cpu));
6120 cpus_and(mask, mask, p->cpus_allowed);
6121 dest_cpu = any_online_cpu(mask);
6122
6123 /* On any allowed CPU? */
6124 if (dest_cpu >= nr_cpu_ids)
6125 dest_cpu = any_online_cpu(p->cpus_allowed);
6126
6127 /* No more Mr. Nice Guy. */
6128 if (dest_cpu >= nr_cpu_ids) {
6129 cpumask_t cpus_allowed;
6130
6131 cpuset_cpus_allowed_locked(p, &cpus_allowed);
6132 /*
6133 * Try to stay on the same cpuset, where the
6134 * current cpuset may be a subset of all cpus.
6135 * The cpuset_cpus_allowed_locked() variant of
6136 * cpuset_cpus_allowed() will not block. It must be
6137 * called within calls to cpuset_lock/cpuset_unlock.
6138 */
6139 rq = task_rq_lock(p, &flags);
6140 p->cpus_allowed = cpus_allowed;
6141 dest_cpu = any_online_cpu(p->cpus_allowed);
6142 task_rq_unlock(rq, &flags);
6143
6144 /*
6145 * Don't tell them about moving exiting tasks or
6146 * kernel threads (both mm NULL), since they never
6147 * leave kernel.
6148 */
6149 if (p->mm && printk_ratelimit()) {
6150 printk(KERN_INFO "process %d (%s) no "
6151 "longer affine to cpu%d\n",
6152 task_pid_nr(p), p->comm, dead_cpu);
6153 }
6154 }
6155 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
6156 }
6157
6158 /*
6159 * While a dead CPU has no uninterruptible tasks queued at this point,
6160 * it might still have a nonzero ->nr_uninterruptible counter, because
6161 * for performance reasons the counter is not stricly tracking tasks to
6162 * their home CPUs. So we just add the counter to another CPU's counter,
6163 * to keep the global sum constant after CPU-down:
6164 */
6165 static void migrate_nr_uninterruptible(struct rq *rq_src)
6166 {
6167 struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
6168 unsigned long flags;
6169
6170 local_irq_save(flags);
6171 double_rq_lock(rq_src, rq_dest);
6172 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6173 rq_src->nr_uninterruptible = 0;
6174 double_rq_unlock(rq_src, rq_dest);
6175 local_irq_restore(flags);
6176 }
6177
6178 /* Run through task list and migrate tasks from the dead cpu. */
6179 static void migrate_live_tasks(int src_cpu)
6180 {
6181 struct task_struct *p, *t;
6182
6183 read_lock(&tasklist_lock);
6184
6185 do_each_thread(t, p) {
6186 if (p == current)
6187 continue;
6188
6189 if (task_cpu(p) == src_cpu)
6190 move_task_off_dead_cpu(src_cpu, p);
6191 } while_each_thread(t, p);
6192
6193 read_unlock(&tasklist_lock);
6194 }
6195
6196 /*
6197 * Schedules idle task to be the next runnable task on current CPU.
6198 * It does so by boosting its priority to highest possible.
6199 * Used by CPU offline code.
6200 */
6201 void sched_idle_next(void)
6202 {
6203 int this_cpu = smp_processor_id();
6204 struct rq *rq = cpu_rq(this_cpu);
6205 struct task_struct *p = rq->idle;
6206 unsigned long flags;
6207
6208 /* cpu has to be offline */
6209 BUG_ON(cpu_online(this_cpu));
6210
6211 /*
6212 * Strictly not necessary since rest of the CPUs are stopped by now
6213 * and interrupts disabled on the current cpu.
6214 */
6215 spin_lock_irqsave(&rq->lock, flags);
6216
6217 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6218
6219 update_rq_clock(rq);
6220 activate_task(rq, p, 0);
6221
6222 spin_unlock_irqrestore(&rq->lock, flags);
6223 }
6224
6225 /*
6226 * Ensures that the idle task is using init_mm right before its cpu goes
6227 * offline.
6228 */
6229 void idle_task_exit(void)
6230 {
6231 struct mm_struct *mm = current->active_mm;
6232
6233 BUG_ON(cpu_online(smp_processor_id()));
6234
6235 if (mm != &init_mm)
6236 switch_mm(mm, &init_mm, current);
6237 mmdrop(mm);
6238 }
6239
6240 /* called under rq->lock with disabled interrupts */
6241 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
6242 {
6243 struct rq *rq = cpu_rq(dead_cpu);
6244
6245 /* Must be exiting, otherwise would be on tasklist. */
6246 BUG_ON(!p->exit_state);
6247
6248 /* Cannot have done final schedule yet: would have vanished. */
6249 BUG_ON(p->state == TASK_DEAD);
6250
6251 get_task_struct(p);
6252
6253 /*
6254 * Drop lock around migration; if someone else moves it,
6255 * that's OK. No task can be added to this CPU, so iteration is
6256 * fine.
6257 */
6258 spin_unlock_irq(&rq->lock);
6259 move_task_off_dead_cpu(dead_cpu, p);
6260 spin_lock_irq(&rq->lock);
6261
6262 put_task_struct(p);
6263 }
6264
6265 /* release_task() removes task from tasklist, so we won't find dead tasks. */
6266 static void migrate_dead_tasks(unsigned int dead_cpu)
6267 {
6268 struct rq *rq = cpu_rq(dead_cpu);
6269 struct task_struct *next;
6270
6271 for ( ; ; ) {
6272 if (!rq->nr_running)
6273 break;
6274 update_rq_clock(rq);
6275 next = pick_next_task(rq, rq->curr);
6276 if (!next)
6277 break;
6278 next->sched_class->put_prev_task(rq, next);
6279 migrate_dead(dead_cpu, next);
6280
6281 }
6282 }
6283 #endif /* CONFIG_HOTPLUG_CPU */
6284
6285 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6286
6287 static struct ctl_table sd_ctl_dir[] = {
6288 {
6289 .procname = "sched_domain",
6290 .mode = 0555,
6291 },
6292 {0, },
6293 };
6294
6295 static struct ctl_table sd_ctl_root[] = {
6296 {
6297 .ctl_name = CTL_KERN,
6298 .procname = "kernel",
6299 .mode = 0555,
6300 .child = sd_ctl_dir,
6301 },
6302 {0, },
6303 };
6304
6305 static struct ctl_table *sd_alloc_ctl_entry(int n)
6306 {
6307 struct ctl_table *entry =
6308 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6309
6310 return entry;
6311 }
6312
6313 static void sd_free_ctl_entry(struct ctl_table **tablep)
6314 {
6315 struct ctl_table *entry;
6316
6317 /*
6318 * In the intermediate directories, both the child directory and
6319 * procname are dynamically allocated and could fail but the mode
6320 * will always be set. In the lowest directory the names are
6321 * static strings and all have proc handlers.
6322 */
6323 for (entry = *tablep; entry->mode; entry++) {
6324 if (entry->child)
6325 sd_free_ctl_entry(&entry->child);
6326 if (entry->proc_handler == NULL)
6327 kfree(entry->procname);
6328 }
6329
6330 kfree(*tablep);
6331 *tablep = NULL;
6332 }
6333
6334 static void
6335 set_table_entry(struct ctl_table *entry,
6336 const char *procname, void *data, int maxlen,
6337 mode_t mode, proc_handler *proc_handler)
6338 {
6339 entry->procname = procname;
6340 entry->data = data;
6341 entry->maxlen = maxlen;
6342 entry->mode = mode;
6343 entry->proc_handler = proc_handler;
6344 }
6345
6346 static struct ctl_table *
6347 sd_alloc_ctl_domain_table(struct sched_domain *sd)
6348 {
6349 struct ctl_table *table = sd_alloc_ctl_entry(13);
6350
6351 if (table == NULL)
6352 return NULL;
6353
6354 set_table_entry(&table[0], "min_interval", &sd->min_interval,
6355 sizeof(long), 0644, proc_doulongvec_minmax);
6356 set_table_entry(&table[1], "max_interval", &sd->max_interval,
6357 sizeof(long), 0644, proc_doulongvec_minmax);
6358 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6359 sizeof(int), 0644, proc_dointvec_minmax);
6360 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6361 sizeof(int), 0644, proc_dointvec_minmax);
6362 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6363 sizeof(int), 0644, proc_dointvec_minmax);
6364 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6365 sizeof(int), 0644, proc_dointvec_minmax);
6366 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6367 sizeof(int), 0644, proc_dointvec_minmax);
6368 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6369 sizeof(int), 0644, proc_dointvec_minmax);
6370 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6371 sizeof(int), 0644, proc_dointvec_minmax);
6372 set_table_entry(&table[9], "cache_nice_tries",
6373 &sd->cache_nice_tries,
6374 sizeof(int), 0644, proc_dointvec_minmax);
6375 set_table_entry(&table[10], "flags", &sd->flags,
6376 sizeof(int), 0644, proc_dointvec_minmax);
6377 set_table_entry(&table[11], "name", sd->name,
6378 CORENAME_MAX_SIZE, 0444, proc_dostring);
6379 /* &table[12] is terminator */
6380
6381 return table;
6382 }
6383
6384 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6385 {
6386 struct ctl_table *entry, *table;
6387 struct sched_domain *sd;
6388 int domain_num = 0, i;
6389 char buf[32];
6390
6391 for_each_domain(cpu, sd)
6392 domain_num++;
6393 entry = table = sd_alloc_ctl_entry(domain_num + 1);
6394 if (table == NULL)
6395 return NULL;
6396
6397 i = 0;
6398 for_each_domain(cpu, sd) {
6399 snprintf(buf, 32, "domain%d", i);
6400 entry->procname = kstrdup(buf, GFP_KERNEL);
6401 entry->mode = 0555;
6402 entry->child = sd_alloc_ctl_domain_table(sd);
6403 entry++;
6404 i++;
6405 }
6406 return table;
6407 }
6408
6409 static struct ctl_table_header *sd_sysctl_header;
6410 static void register_sched_domain_sysctl(void)
6411 {
6412 int i, cpu_num = num_online_cpus();
6413 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6414 char buf[32];
6415
6416 WARN_ON(sd_ctl_dir[0].child);
6417 sd_ctl_dir[0].child = entry;
6418
6419 if (entry == NULL)
6420 return;
6421
6422 for_each_online_cpu(i) {
6423 snprintf(buf, 32, "cpu%d", i);
6424 entry->procname = kstrdup(buf, GFP_KERNEL);
6425 entry->mode = 0555;
6426 entry->child = sd_alloc_ctl_cpu_table(i);
6427 entry++;
6428 }
6429
6430 WARN_ON(sd_sysctl_header);
6431 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6432 }
6433
6434 /* may be called multiple times per register */
6435 static void unregister_sched_domain_sysctl(void)
6436 {
6437 if (sd_sysctl_header)
6438 unregister_sysctl_table(sd_sysctl_header);
6439 sd_sysctl_header = NULL;
6440 if (sd_ctl_dir[0].child)
6441 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6442 }
6443 #else
6444 static void register_sched_domain_sysctl(void)
6445 {
6446 }
6447 static void unregister_sched_domain_sysctl(void)
6448 {
6449 }
6450 #endif
6451
6452 static void set_rq_online(struct rq *rq)
6453 {
6454 if (!rq->online) {
6455 const struct sched_class *class;
6456
6457 cpu_set(rq->cpu, rq->rd->online);
6458 rq->online = 1;
6459
6460 for_each_class(class) {
6461 if (class->rq_online)
6462 class->rq_online(rq);
6463 }
6464 }
6465 }
6466
6467 static void set_rq_offline(struct rq *rq)
6468 {
6469 if (rq->online) {
6470 const struct sched_class *class;
6471
6472 for_each_class(class) {
6473 if (class->rq_offline)
6474 class->rq_offline(rq);
6475 }
6476
6477 cpu_clear(rq->cpu, rq->rd->online);
6478 rq->online = 0;
6479 }
6480 }
6481
6482 /*
6483 * migration_call - callback that gets triggered when a CPU is added.
6484 * Here we can start up the necessary migration thread for the new CPU.
6485 */
6486 static int __cpuinit
6487 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6488 {
6489 struct task_struct *p;
6490 int cpu = (long)hcpu;
6491 unsigned long flags;
6492 struct rq *rq;
6493
6494 switch (action) {
6495
6496 case CPU_UP_PREPARE:
6497 case CPU_UP_PREPARE_FROZEN:
6498 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
6499 if (IS_ERR(p))
6500 return NOTIFY_BAD;
6501 kthread_bind(p, cpu);
6502 /* Must be high prio: stop_machine expects to yield to it. */
6503 rq = task_rq_lock(p, &flags);
6504 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6505 task_rq_unlock(rq, &flags);
6506 cpu_rq(cpu)->migration_thread = p;
6507 break;
6508
6509 case CPU_ONLINE:
6510 case CPU_ONLINE_FROZEN:
6511 /* Strictly unnecessary, as first user will wake it. */
6512 wake_up_process(cpu_rq(cpu)->migration_thread);
6513
6514 /* Update our root-domain */
6515 rq = cpu_rq(cpu);
6516 spin_lock_irqsave(&rq->lock, flags);
6517 if (rq->rd) {
6518 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6519
6520 set_rq_online(rq);
6521 }
6522 spin_unlock_irqrestore(&rq->lock, flags);
6523 break;
6524
6525 #ifdef CONFIG_HOTPLUG_CPU
6526 case CPU_UP_CANCELED:
6527 case CPU_UP_CANCELED_FROZEN:
6528 if (!cpu_rq(cpu)->migration_thread)
6529 break;
6530 /* Unbind it from offline cpu so it can run. Fall thru. */
6531 kthread_bind(cpu_rq(cpu)->migration_thread,
6532 any_online_cpu(cpu_online_map));
6533 kthread_stop(cpu_rq(cpu)->migration_thread);
6534 cpu_rq(cpu)->migration_thread = NULL;
6535 break;
6536
6537 case CPU_DEAD:
6538 case CPU_DEAD_FROZEN:
6539 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
6540 migrate_live_tasks(cpu);
6541 rq = cpu_rq(cpu);
6542 kthread_stop(rq->migration_thread);
6543 rq->migration_thread = NULL;
6544 /* Idle task back to normal (off runqueue, low prio) */
6545 spin_lock_irq(&rq->lock);
6546 update_rq_clock(rq);
6547 deactivate_task(rq, rq->idle, 0);
6548 rq->idle->static_prio = MAX_PRIO;
6549 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6550 rq->idle->sched_class = &idle_sched_class;
6551 migrate_dead_tasks(cpu);
6552 spin_unlock_irq(&rq->lock);
6553 cpuset_unlock();
6554 migrate_nr_uninterruptible(rq);
6555 BUG_ON(rq->nr_running != 0);
6556
6557 /*
6558 * No need to migrate the tasks: it was best-effort if
6559 * they didn't take sched_hotcpu_mutex. Just wake up
6560 * the requestors.
6561 */
6562 spin_lock_irq(&rq->lock);
6563 while (!list_empty(&rq->migration_queue)) {
6564 struct migration_req *req;
6565
6566 req = list_entry(rq->migration_queue.next,
6567 struct migration_req, list);
6568 list_del_init(&req->list);
6569 complete(&req->done);
6570 }
6571 spin_unlock_irq(&rq->lock);
6572 break;
6573
6574 case CPU_DYING:
6575 case CPU_DYING_FROZEN:
6576 /* Update our root-domain */
6577 rq = cpu_rq(cpu);
6578 spin_lock_irqsave(&rq->lock, flags);
6579 if (rq->rd) {
6580 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6581 set_rq_offline(rq);
6582 }
6583 spin_unlock_irqrestore(&rq->lock, flags);
6584 break;
6585 #endif
6586 }
6587 return NOTIFY_OK;
6588 }
6589
6590 /* Register at highest priority so that task migration (migrate_all_tasks)
6591 * happens before everything else.
6592 */
6593 static struct notifier_block __cpuinitdata migration_notifier = {
6594 .notifier_call = migration_call,
6595 .priority = 10
6596 };
6597
6598 static int __init migration_init(void)
6599 {
6600 void *cpu = (void *)(long)smp_processor_id();
6601 int err;
6602
6603 /* Start one for the boot CPU: */
6604 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6605 BUG_ON(err == NOTIFY_BAD);
6606 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6607 register_cpu_notifier(&migration_notifier);
6608
6609 return err;
6610 }
6611 early_initcall(migration_init);
6612 #endif
6613
6614 #ifdef CONFIG_SMP
6615
6616 #ifdef CONFIG_SCHED_DEBUG
6617
6618 static inline const char *sd_level_to_string(enum sched_domain_level lvl)
6619 {
6620 switch (lvl) {
6621 case SD_LV_NONE:
6622 return "NONE";
6623 case SD_LV_SIBLING:
6624 return "SIBLING";
6625 case SD_LV_MC:
6626 return "MC";
6627 case SD_LV_CPU:
6628 return "CPU";
6629 case SD_LV_NODE:
6630 return "NODE";
6631 case SD_LV_ALLNODES:
6632 return "ALLNODES";
6633 case SD_LV_MAX:
6634 return "MAX";
6635
6636 }
6637 return "MAX";
6638 }
6639
6640 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6641 cpumask_t *groupmask)
6642 {
6643 struct sched_group *group = sd->groups;
6644 char str[256];
6645
6646 cpulist_scnprintf(str, sizeof(str), sd->span);
6647 cpus_clear(*groupmask);
6648
6649 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6650
6651 if (!(sd->flags & SD_LOAD_BALANCE)) {
6652 printk("does not load-balance\n");
6653 if (sd->parent)
6654 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6655 " has parent");
6656 return -1;
6657 }
6658
6659 printk(KERN_CONT "span %s level %s\n",
6660 str, sd_level_to_string(sd->level));
6661
6662 if (!cpu_isset(cpu, sd->span)) {
6663 printk(KERN_ERR "ERROR: domain->span does not contain "
6664 "CPU%d\n", cpu);
6665 }
6666 if (!cpu_isset(cpu, group->cpumask)) {
6667 printk(KERN_ERR "ERROR: domain->groups does not contain"
6668 " CPU%d\n", cpu);
6669 }
6670
6671 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6672 do {
6673 if (!group) {
6674 printk("\n");
6675 printk(KERN_ERR "ERROR: group is NULL\n");
6676 break;
6677 }
6678
6679 if (!group->__cpu_power) {
6680 printk(KERN_CONT "\n");
6681 printk(KERN_ERR "ERROR: domain->cpu_power not "
6682 "set\n");
6683 break;
6684 }
6685
6686 if (!cpus_weight(group->cpumask)) {
6687 printk(KERN_CONT "\n");
6688 printk(KERN_ERR "ERROR: empty group\n");
6689 break;
6690 }
6691
6692 if (cpus_intersects(*groupmask, group->cpumask)) {
6693 printk(KERN_CONT "\n");
6694 printk(KERN_ERR "ERROR: repeated CPUs\n");
6695 break;
6696 }
6697
6698 cpus_or(*groupmask, *groupmask, group->cpumask);
6699
6700 cpulist_scnprintf(str, sizeof(str), group->cpumask);
6701 printk(KERN_CONT " %s", str);
6702
6703 group = group->next;
6704 } while (group != sd->groups);
6705 printk(KERN_CONT "\n");
6706
6707 if (!cpus_equal(sd->span, *groupmask))
6708 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6709
6710 if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
6711 printk(KERN_ERR "ERROR: parent span is not a superset "
6712 "of domain->span\n");
6713 return 0;
6714 }
6715
6716 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6717 {
6718 cpumask_t *groupmask;
6719 int level = 0;
6720
6721 if (!sd) {
6722 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6723 return;
6724 }
6725
6726 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6727
6728 groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6729 if (!groupmask) {
6730 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6731 return;
6732 }
6733
6734 for (;;) {
6735 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6736 break;
6737 level++;
6738 sd = sd->parent;
6739 if (!sd)
6740 break;
6741 }
6742 kfree(groupmask);
6743 }
6744 #else /* !CONFIG_SCHED_DEBUG */
6745 # define sched_domain_debug(sd, cpu) do { } while (0)
6746 #endif /* CONFIG_SCHED_DEBUG */
6747
6748 static int sd_degenerate(struct sched_domain *sd)
6749 {
6750 if (cpus_weight(sd->span) == 1)
6751 return 1;
6752
6753 /* Following flags need at least 2 groups */
6754 if (sd->flags & (SD_LOAD_BALANCE |
6755 SD_BALANCE_NEWIDLE |
6756 SD_BALANCE_FORK |
6757 SD_BALANCE_EXEC |
6758 SD_SHARE_CPUPOWER |
6759 SD_SHARE_PKG_RESOURCES)) {
6760 if (sd->groups != sd->groups->next)
6761 return 0;
6762 }
6763
6764 /* Following flags don't use groups */
6765 if (sd->flags & (SD_WAKE_IDLE |
6766 SD_WAKE_AFFINE |
6767 SD_WAKE_BALANCE))
6768 return 0;
6769
6770 return 1;
6771 }
6772
6773 static int
6774 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6775 {
6776 unsigned long cflags = sd->flags, pflags = parent->flags;
6777
6778 if (sd_degenerate(parent))
6779 return 1;
6780
6781 if (!cpus_equal(sd->span, parent->span))
6782 return 0;
6783
6784 /* Does parent contain flags not in child? */
6785 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6786 if (cflags & SD_WAKE_AFFINE)
6787 pflags &= ~SD_WAKE_BALANCE;
6788 /* Flags needing groups don't count if only 1 group in parent */
6789 if (parent->groups == parent->groups->next) {
6790 pflags &= ~(SD_LOAD_BALANCE |
6791 SD_BALANCE_NEWIDLE |
6792 SD_BALANCE_FORK |
6793 SD_BALANCE_EXEC |
6794 SD_SHARE_CPUPOWER |
6795 SD_SHARE_PKG_RESOURCES);
6796 }
6797 if (~cflags & pflags)
6798 return 0;
6799
6800 return 1;
6801 }
6802
6803 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6804 {
6805 unsigned long flags;
6806
6807 spin_lock_irqsave(&rq->lock, flags);
6808
6809 if (rq->rd) {
6810 struct root_domain *old_rd = rq->rd;
6811
6812 if (cpu_isset(rq->cpu, old_rd->online))
6813 set_rq_offline(rq);
6814
6815 cpu_clear(rq->cpu, old_rd->span);
6816
6817 if (atomic_dec_and_test(&old_rd->refcount))
6818 kfree(old_rd);
6819 }
6820
6821 atomic_inc(&rd->refcount);
6822 rq->rd = rd;
6823
6824 cpu_set(rq->cpu, rd->span);
6825 if (cpu_isset(rq->cpu, cpu_online_map))
6826 set_rq_online(rq);
6827
6828 spin_unlock_irqrestore(&rq->lock, flags);
6829 }
6830
6831 static void init_rootdomain(struct root_domain *rd)
6832 {
6833 memset(rd, 0, sizeof(*rd));
6834
6835 cpus_clear(rd->span);
6836 cpus_clear(rd->online);
6837
6838 cpupri_init(&rd->cpupri);
6839 }
6840
6841 static void init_defrootdomain(void)
6842 {
6843 init_rootdomain(&def_root_domain);
6844 atomic_set(&def_root_domain.refcount, 1);
6845 }
6846
6847 static struct root_domain *alloc_rootdomain(void)
6848 {
6849 struct root_domain *rd;
6850
6851 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6852 if (!rd)
6853 return NULL;
6854
6855 init_rootdomain(rd);
6856
6857 return rd;
6858 }
6859
6860 /*
6861 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6862 * hold the hotplug lock.
6863 */
6864 static void
6865 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6866 {
6867 struct rq *rq = cpu_rq(cpu);
6868 struct sched_domain *tmp;
6869
6870 /* Remove the sched domains which do not contribute to scheduling. */
6871 for (tmp = sd; tmp; tmp = tmp->parent) {
6872 struct sched_domain *parent = tmp->parent;
6873 if (!parent)
6874 break;
6875 if (sd_parent_degenerate(tmp, parent)) {
6876 tmp->parent = parent->parent;
6877 if (parent->parent)
6878 parent->parent->child = tmp;
6879 }
6880 }
6881
6882 if (sd && sd_degenerate(sd)) {
6883 sd = sd->parent;
6884 if (sd)
6885 sd->child = NULL;
6886 }
6887
6888 sched_domain_debug(sd, cpu);
6889
6890 rq_attach_root(rq, rd);
6891 rcu_assign_pointer(rq->sd, sd);
6892 }
6893
6894 /* cpus with isolated domains */
6895 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
6896
6897 /* Setup the mask of cpus configured for isolated domains */
6898 static int __init isolated_cpu_setup(char *str)
6899 {
6900 static int __initdata ints[NR_CPUS];
6901 int i;
6902
6903 str = get_options(str, ARRAY_SIZE(ints), ints);
6904 cpus_clear(cpu_isolated_map);
6905 for (i = 1; i <= ints[0]; i++)
6906 if (ints[i] < NR_CPUS)
6907 cpu_set(ints[i], cpu_isolated_map);
6908 return 1;
6909 }
6910
6911 __setup("isolcpus=", isolated_cpu_setup);
6912
6913 /*
6914 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6915 * to a function which identifies what group(along with sched group) a CPU
6916 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6917 * (due to the fact that we keep track of groups covered with a cpumask_t).
6918 *
6919 * init_sched_build_groups will build a circular linked list of the groups
6920 * covered by the given span, and will set each group's ->cpumask correctly,
6921 * and ->cpu_power to 0.
6922 */
6923 static void
6924 init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6925 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6926 struct sched_group **sg,
6927 cpumask_t *tmpmask),
6928 cpumask_t *covered, cpumask_t *tmpmask)
6929 {
6930 struct sched_group *first = NULL, *last = NULL;
6931 int i;
6932
6933 cpus_clear(*covered);
6934
6935 for_each_cpu_mask_nr(i, *span) {
6936 struct sched_group *sg;
6937 int group = group_fn(i, cpu_map, &sg, tmpmask);
6938 int j;
6939
6940 if (cpu_isset(i, *covered))
6941 continue;
6942
6943 cpus_clear(sg->cpumask);
6944 sg->__cpu_power = 0;
6945
6946 for_each_cpu_mask_nr(j, *span) {
6947 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6948 continue;
6949
6950 cpu_set(j, *covered);
6951 cpu_set(j, sg->cpumask);
6952 }
6953 if (!first)
6954 first = sg;
6955 if (last)
6956 last->next = sg;
6957 last = sg;
6958 }
6959 last->next = first;
6960 }
6961
6962 #define SD_NODES_PER_DOMAIN 16
6963
6964 #ifdef CONFIG_NUMA
6965
6966 /**
6967 * find_next_best_node - find the next node to include in a sched_domain
6968 * @node: node whose sched_domain we're building
6969 * @used_nodes: nodes already in the sched_domain
6970 *
6971 * Find the next node to include in a given scheduling domain. Simply
6972 * finds the closest node not already in the @used_nodes map.
6973 *
6974 * Should use nodemask_t.
6975 */
6976 static int find_next_best_node(int node, nodemask_t *used_nodes)
6977 {
6978 int i, n, val, min_val, best_node = 0;
6979
6980 min_val = INT_MAX;
6981
6982 for (i = 0; i < nr_node_ids; i++) {
6983 /* Start at @node */
6984 n = (node + i) % nr_node_ids;
6985
6986 if (!nr_cpus_node(n))
6987 continue;
6988
6989 /* Skip already used nodes */
6990 if (node_isset(n, *used_nodes))
6991 continue;
6992
6993 /* Simple min distance search */
6994 val = node_distance(node, n);
6995
6996 if (val < min_val) {
6997 min_val = val;
6998 best_node = n;
6999 }
7000 }
7001
7002 node_set(best_node, *used_nodes);
7003 return best_node;
7004 }
7005
7006 /**
7007 * sched_domain_node_span - get a cpumask for a node's sched_domain
7008 * @node: node whose cpumask we're constructing
7009 * @span: resulting cpumask
7010 *
7011 * Given a node, construct a good cpumask for its sched_domain to span. It
7012 * should be one that prevents unnecessary balancing, but also spreads tasks
7013 * out optimally.
7014 */
7015 static void sched_domain_node_span(int node, cpumask_t *span)
7016 {
7017 nodemask_t used_nodes;
7018 node_to_cpumask_ptr(nodemask, node);
7019 int i;
7020
7021 cpus_clear(*span);
7022 nodes_clear(used_nodes);
7023
7024 cpus_or(*span, *span, *nodemask);
7025 node_set(node, used_nodes);
7026
7027 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7028 int next_node = find_next_best_node(node, &used_nodes);
7029
7030 node_to_cpumask_ptr_next(nodemask, next_node);
7031 cpus_or(*span, *span, *nodemask);
7032 }
7033 }
7034 #endif /* CONFIG_NUMA */
7035
7036 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7037
7038 /*
7039 * SMT sched-domains:
7040 */
7041 #ifdef CONFIG_SCHED_SMT
7042 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
7043 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
7044
7045 static int
7046 cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7047 cpumask_t *unused)
7048 {
7049 if (sg)
7050 *sg = &per_cpu(sched_group_cpus, cpu);
7051 return cpu;
7052 }
7053 #endif /* CONFIG_SCHED_SMT */
7054
7055 /*
7056 * multi-core sched-domains:
7057 */
7058 #ifdef CONFIG_SCHED_MC
7059 static DEFINE_PER_CPU(struct sched_domain, core_domains);
7060 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
7061 #endif /* CONFIG_SCHED_MC */
7062
7063 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
7064 static int
7065 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7066 cpumask_t *mask)
7067 {
7068 int group;
7069
7070 *mask = per_cpu(cpu_sibling_map, cpu);
7071 cpus_and(*mask, *mask, *cpu_map);
7072 group = first_cpu(*mask);
7073 if (sg)
7074 *sg = &per_cpu(sched_group_core, group);
7075 return group;
7076 }
7077 #elif defined(CONFIG_SCHED_MC)
7078 static int
7079 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7080 cpumask_t *unused)
7081 {
7082 if (sg)
7083 *sg = &per_cpu(sched_group_core, cpu);
7084 return cpu;
7085 }
7086 #endif
7087
7088 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
7089 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
7090
7091 static int
7092 cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7093 cpumask_t *mask)
7094 {
7095 int group;
7096 #ifdef CONFIG_SCHED_MC
7097 *mask = cpu_coregroup_map(cpu);
7098 cpus_and(*mask, *mask, *cpu_map);
7099 group = first_cpu(*mask);
7100 #elif defined(CONFIG_SCHED_SMT)
7101 *mask = per_cpu(cpu_sibling_map, cpu);
7102 cpus_and(*mask, *mask, *cpu_map);
7103 group = first_cpu(*mask);
7104 #else
7105 group = cpu;
7106 #endif
7107 if (sg)
7108 *sg = &per_cpu(sched_group_phys, group);
7109 return group;
7110 }
7111
7112 #ifdef CONFIG_NUMA
7113 /*
7114 * The init_sched_build_groups can't handle what we want to do with node
7115 * groups, so roll our own. Now each node has its own list of groups which
7116 * gets dynamically allocated.
7117 */
7118 static DEFINE_PER_CPU(struct sched_domain, node_domains);
7119 static struct sched_group ***sched_group_nodes_bycpu;
7120
7121 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
7122 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
7123
7124 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7125 struct sched_group **sg, cpumask_t *nodemask)
7126 {
7127 int group;
7128
7129 *nodemask = node_to_cpumask(cpu_to_node(cpu));
7130 cpus_and(*nodemask, *nodemask, *cpu_map);
7131 group = first_cpu(*nodemask);
7132
7133 if (sg)
7134 *sg = &per_cpu(sched_group_allnodes, group);
7135 return group;
7136 }
7137
7138 static void init_numa_sched_groups_power(struct sched_group *group_head)
7139 {
7140 struct sched_group *sg = group_head;
7141 int j;
7142
7143 if (!sg)
7144 return;
7145 do {
7146 for_each_cpu_mask_nr(j, sg->cpumask) {
7147 struct sched_domain *sd;
7148
7149 sd = &per_cpu(phys_domains, j);
7150 if (j != first_cpu(sd->groups->cpumask)) {
7151 /*
7152 * Only add "power" once for each
7153 * physical package.
7154 */
7155 continue;
7156 }
7157
7158 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7159 }
7160 sg = sg->next;
7161 } while (sg != group_head);
7162 }
7163 #endif /* CONFIG_NUMA */
7164
7165 #ifdef CONFIG_NUMA
7166 /* Free memory allocated for various sched_group structures */
7167 static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7168 {
7169 int cpu, i;
7170
7171 for_each_cpu_mask_nr(cpu, *cpu_map) {
7172 struct sched_group **sched_group_nodes
7173 = sched_group_nodes_bycpu[cpu];
7174
7175 if (!sched_group_nodes)
7176 continue;
7177
7178 for (i = 0; i < nr_node_ids; i++) {
7179 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7180
7181 *nodemask = node_to_cpumask(i);
7182 cpus_and(*nodemask, *nodemask, *cpu_map);
7183 if (cpus_empty(*nodemask))
7184 continue;
7185
7186 if (sg == NULL)
7187 continue;
7188 sg = sg->next;
7189 next_sg:
7190 oldsg = sg;
7191 sg = sg->next;
7192 kfree(oldsg);
7193 if (oldsg != sched_group_nodes[i])
7194 goto next_sg;
7195 }
7196 kfree(sched_group_nodes);
7197 sched_group_nodes_bycpu[cpu] = NULL;
7198 }
7199 }
7200 #else /* !CONFIG_NUMA */
7201 static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7202 {
7203 }
7204 #endif /* CONFIG_NUMA */
7205
7206 /*
7207 * Initialize sched groups cpu_power.
7208 *
7209 * cpu_power indicates the capacity of sched group, which is used while
7210 * distributing the load between different sched groups in a sched domain.
7211 * Typically cpu_power for all the groups in a sched domain will be same unless
7212 * there are asymmetries in the topology. If there are asymmetries, group
7213 * having more cpu_power will pickup more load compared to the group having
7214 * less cpu_power.
7215 *
7216 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7217 * the maximum number of tasks a group can handle in the presence of other idle
7218 * or lightly loaded groups in the same sched domain.
7219 */
7220 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7221 {
7222 struct sched_domain *child;
7223 struct sched_group *group;
7224
7225 WARN_ON(!sd || !sd->groups);
7226
7227 if (cpu != first_cpu(sd->groups->cpumask))
7228 return;
7229
7230 child = sd->child;
7231
7232 sd->groups->__cpu_power = 0;
7233
7234 /*
7235 * For perf policy, if the groups in child domain share resources
7236 * (for example cores sharing some portions of the cache hierarchy
7237 * or SMT), then set this domain groups cpu_power such that each group
7238 * can handle only one task, when there are other idle groups in the
7239 * same sched domain.
7240 */
7241 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7242 (child->flags &
7243 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7244 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7245 return;
7246 }
7247
7248 /*
7249 * add cpu_power of each child group to this groups cpu_power
7250 */
7251 group = child->groups;
7252 do {
7253 sg_inc_cpu_power(sd->groups, group->__cpu_power);
7254 group = group->next;
7255 } while (group != child->groups);
7256 }
7257
7258 /*
7259 * Initializers for schedule domains
7260 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7261 */
7262
7263 #ifdef CONFIG_SCHED_DEBUG
7264 # define SD_INIT_NAME(sd, type) sd->name = #type
7265 #else
7266 # define SD_INIT_NAME(sd, type) do { } while (0)
7267 #endif
7268
7269 #define SD_INIT(sd, type) sd_init_##type(sd)
7270
7271 #define SD_INIT_FUNC(type) \
7272 static noinline void sd_init_##type(struct sched_domain *sd) \
7273 { \
7274 memset(sd, 0, sizeof(*sd)); \
7275 *sd = SD_##type##_INIT; \
7276 sd->level = SD_LV_##type; \
7277 SD_INIT_NAME(sd, type); \
7278 }
7279
7280 SD_INIT_FUNC(CPU)
7281 #ifdef CONFIG_NUMA
7282 SD_INIT_FUNC(ALLNODES)
7283 SD_INIT_FUNC(NODE)
7284 #endif
7285 #ifdef CONFIG_SCHED_SMT
7286 SD_INIT_FUNC(SIBLING)
7287 #endif
7288 #ifdef CONFIG_SCHED_MC
7289 SD_INIT_FUNC(MC)
7290 #endif
7291
7292 /*
7293 * To minimize stack usage kmalloc room for cpumasks and share the
7294 * space as the usage in build_sched_domains() dictates. Used only
7295 * if the amount of space is significant.
7296 */
7297 struct allmasks {
7298 cpumask_t tmpmask; /* make this one first */
7299 union {
7300 cpumask_t nodemask;
7301 cpumask_t this_sibling_map;
7302 cpumask_t this_core_map;
7303 };
7304 cpumask_t send_covered;
7305
7306 #ifdef CONFIG_NUMA
7307 cpumask_t domainspan;
7308 cpumask_t covered;
7309 cpumask_t notcovered;
7310 #endif
7311 };
7312
7313 #if NR_CPUS > 128
7314 #define SCHED_CPUMASK_ALLOC 1
7315 #define SCHED_CPUMASK_FREE(v) kfree(v)
7316 #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
7317 #else
7318 #define SCHED_CPUMASK_ALLOC 0
7319 #define SCHED_CPUMASK_FREE(v)
7320 #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
7321 #endif
7322
7323 #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
7324 ((unsigned long)(a) + offsetof(struct allmasks, v))
7325
7326 static int default_relax_domain_level = -1;
7327
7328 static int __init setup_relax_domain_level(char *str)
7329 {
7330 unsigned long val;
7331
7332 val = simple_strtoul(str, NULL, 0);
7333 if (val < SD_LV_MAX)
7334 default_relax_domain_level = val;
7335
7336 return 1;
7337 }
7338 __setup("relax_domain_level=", setup_relax_domain_level);
7339
7340 static void set_domain_attribute(struct sched_domain *sd,
7341 struct sched_domain_attr *attr)
7342 {
7343 int request;
7344
7345 if (!attr || attr->relax_domain_level < 0) {
7346 if (default_relax_domain_level < 0)
7347 return;
7348 else
7349 request = default_relax_domain_level;
7350 } else
7351 request = attr->relax_domain_level;
7352 if (request < sd->level) {
7353 /* turn off idle balance on this domain */
7354 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7355 } else {
7356 /* turn on idle balance on this domain */
7357 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7358 }
7359 }
7360
7361 /*
7362 * Build sched domains for a given set of cpus and attach the sched domains
7363 * to the individual cpus
7364 */
7365 static int __build_sched_domains(const cpumask_t *cpu_map,
7366 struct sched_domain_attr *attr)
7367 {
7368 int i;
7369 struct root_domain *rd;
7370 SCHED_CPUMASK_DECLARE(allmasks);
7371 cpumask_t *tmpmask;
7372 #ifdef CONFIG_NUMA
7373 struct sched_group **sched_group_nodes = NULL;
7374 int sd_allnodes = 0;
7375
7376 /*
7377 * Allocate the per-node list of sched groups
7378 */
7379 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
7380 GFP_KERNEL);
7381 if (!sched_group_nodes) {
7382 printk(KERN_WARNING "Can not alloc sched group node list\n");
7383 return -ENOMEM;
7384 }
7385 #endif
7386
7387 rd = alloc_rootdomain();
7388 if (!rd) {
7389 printk(KERN_WARNING "Cannot alloc root domain\n");
7390 #ifdef CONFIG_NUMA
7391 kfree(sched_group_nodes);
7392 #endif
7393 return -ENOMEM;
7394 }
7395
7396 #if SCHED_CPUMASK_ALLOC
7397 /* get space for all scratch cpumask variables */
7398 allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
7399 if (!allmasks) {
7400 printk(KERN_WARNING "Cannot alloc cpumask array\n");
7401 kfree(rd);
7402 #ifdef CONFIG_NUMA
7403 kfree(sched_group_nodes);
7404 #endif
7405 return -ENOMEM;
7406 }
7407 #endif
7408 tmpmask = (cpumask_t *)allmasks;
7409
7410
7411 #ifdef CONFIG_NUMA
7412 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
7413 #endif
7414
7415 /*
7416 * Set up domains for cpus specified by the cpu_map.
7417 */
7418 for_each_cpu_mask_nr(i, *cpu_map) {
7419 struct sched_domain *sd = NULL, *p;
7420 SCHED_CPUMASK_VAR(nodemask, allmasks);
7421
7422 *nodemask = node_to_cpumask(cpu_to_node(i));
7423 cpus_and(*nodemask, *nodemask, *cpu_map);
7424
7425 #ifdef CONFIG_NUMA
7426 if (cpus_weight(*cpu_map) >
7427 SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
7428 sd = &per_cpu(allnodes_domains, i);
7429 SD_INIT(sd, ALLNODES);
7430 set_domain_attribute(sd, attr);
7431 sd->span = *cpu_map;
7432 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7433 p = sd;
7434 sd_allnodes = 1;
7435 } else
7436 p = NULL;
7437
7438 sd = &per_cpu(node_domains, i);
7439 SD_INIT(sd, NODE);
7440 set_domain_attribute(sd, attr);
7441 sched_domain_node_span(cpu_to_node(i), &sd->span);
7442 sd->parent = p;
7443 if (p)
7444 p->child = sd;
7445 cpus_and(sd->span, sd->span, *cpu_map);
7446 #endif
7447
7448 p = sd;
7449 sd = &per_cpu(phys_domains, i);
7450 SD_INIT(sd, CPU);
7451 set_domain_attribute(sd, attr);
7452 sd->span = *nodemask;
7453 sd->parent = p;
7454 if (p)
7455 p->child = sd;
7456 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
7457
7458 #ifdef CONFIG_SCHED_MC
7459 p = sd;
7460 sd = &per_cpu(core_domains, i);
7461 SD_INIT(sd, MC);
7462 set_domain_attribute(sd, attr);
7463 sd->span = cpu_coregroup_map(i);
7464 cpus_and(sd->span, sd->span, *cpu_map);
7465 sd->parent = p;
7466 p->child = sd;
7467 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7468 #endif
7469
7470 #ifdef CONFIG_SCHED_SMT
7471 p = sd;
7472 sd = &per_cpu(cpu_domains, i);
7473 SD_INIT(sd, SIBLING);
7474 set_domain_attribute(sd, attr);
7475 sd->span = per_cpu(cpu_sibling_map, i);
7476 cpus_and(sd->span, sd->span, *cpu_map);
7477 sd->parent = p;
7478 p->child = sd;
7479 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
7480 #endif
7481 }
7482
7483 #ifdef CONFIG_SCHED_SMT
7484 /* Set up CPU (sibling) groups */
7485 for_each_cpu_mask_nr(i, *cpu_map) {
7486 SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
7487 SCHED_CPUMASK_VAR(send_covered, allmasks);
7488
7489 *this_sibling_map = per_cpu(cpu_sibling_map, i);
7490 cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
7491 if (i != first_cpu(*this_sibling_map))
7492 continue;
7493
7494 init_sched_build_groups(this_sibling_map, cpu_map,
7495 &cpu_to_cpu_group,
7496 send_covered, tmpmask);
7497 }
7498 #endif
7499
7500 #ifdef CONFIG_SCHED_MC
7501 /* Set up multi-core groups */
7502 for_each_cpu_mask_nr(i, *cpu_map) {
7503 SCHED_CPUMASK_VAR(this_core_map, allmasks);
7504 SCHED_CPUMASK_VAR(send_covered, allmasks);
7505
7506 *this_core_map = cpu_coregroup_map(i);
7507 cpus_and(*this_core_map, *this_core_map, *cpu_map);
7508 if (i != first_cpu(*this_core_map))
7509 continue;
7510
7511 init_sched_build_groups(this_core_map, cpu_map,
7512 &cpu_to_core_group,
7513 send_covered, tmpmask);
7514 }
7515 #endif
7516
7517 /* Set up physical groups */
7518 for (i = 0; i < nr_node_ids; i++) {
7519 SCHED_CPUMASK_VAR(nodemask, allmasks);
7520 SCHED_CPUMASK_VAR(send_covered, allmasks);
7521
7522 *nodemask = node_to_cpumask(i);
7523 cpus_and(*nodemask, *nodemask, *cpu_map);
7524 if (cpus_empty(*nodemask))
7525 continue;
7526
7527 init_sched_build_groups(nodemask, cpu_map,
7528 &cpu_to_phys_group,
7529 send_covered, tmpmask);
7530 }
7531
7532 #ifdef CONFIG_NUMA
7533 /* Set up node groups */
7534 if (sd_allnodes) {
7535 SCHED_CPUMASK_VAR(send_covered, allmasks);
7536
7537 init_sched_build_groups(cpu_map, cpu_map,
7538 &cpu_to_allnodes_group,
7539 send_covered, tmpmask);
7540 }
7541
7542 for (i = 0; i < nr_node_ids; i++) {
7543 /* Set up node groups */
7544 struct sched_group *sg, *prev;
7545 SCHED_CPUMASK_VAR(nodemask, allmasks);
7546 SCHED_CPUMASK_VAR(domainspan, allmasks);
7547 SCHED_CPUMASK_VAR(covered, allmasks);
7548 int j;
7549
7550 *nodemask = node_to_cpumask(i);
7551 cpus_clear(*covered);
7552
7553 cpus_and(*nodemask, *nodemask, *cpu_map);
7554 if (cpus_empty(*nodemask)) {
7555 sched_group_nodes[i] = NULL;
7556 continue;
7557 }
7558
7559 sched_domain_node_span(i, domainspan);
7560 cpus_and(*domainspan, *domainspan, *cpu_map);
7561
7562 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
7563 if (!sg) {
7564 printk(KERN_WARNING "Can not alloc domain group for "
7565 "node %d\n", i);
7566 goto error;
7567 }
7568 sched_group_nodes[i] = sg;
7569 for_each_cpu_mask_nr(j, *nodemask) {
7570 struct sched_domain *sd;
7571
7572 sd = &per_cpu(node_domains, j);
7573 sd->groups = sg;
7574 }
7575 sg->__cpu_power = 0;
7576 sg->cpumask = *nodemask;
7577 sg->next = sg;
7578 cpus_or(*covered, *covered, *nodemask);
7579 prev = sg;
7580
7581 for (j = 0; j < nr_node_ids; j++) {
7582 SCHED_CPUMASK_VAR(notcovered, allmasks);
7583 int n = (i + j) % nr_node_ids;
7584 node_to_cpumask_ptr(pnodemask, n);
7585
7586 cpus_complement(*notcovered, *covered);
7587 cpus_and(*tmpmask, *notcovered, *cpu_map);
7588 cpus_and(*tmpmask, *tmpmask, *domainspan);
7589 if (cpus_empty(*tmpmask))
7590 break;
7591
7592 cpus_and(*tmpmask, *tmpmask, *pnodemask);
7593 if (cpus_empty(*tmpmask))
7594 continue;
7595
7596 sg = kmalloc_node(sizeof(struct sched_group),
7597 GFP_KERNEL, i);
7598 if (!sg) {
7599 printk(KERN_WARNING
7600 "Can not alloc domain group for node %d\n", j);
7601 goto error;
7602 }
7603 sg->__cpu_power = 0;
7604 sg->cpumask = *tmpmask;
7605 sg->next = prev->next;
7606 cpus_or(*covered, *covered, *tmpmask);
7607 prev->next = sg;
7608 prev = sg;
7609 }
7610 }
7611 #endif
7612
7613 /* Calculate CPU power for physical packages and nodes */
7614 #ifdef CONFIG_SCHED_SMT
7615 for_each_cpu_mask_nr(i, *cpu_map) {
7616 struct sched_domain *sd = &per_cpu(cpu_domains, i);
7617
7618 init_sched_groups_power(i, sd);
7619 }
7620 #endif
7621 #ifdef CONFIG_SCHED_MC
7622 for_each_cpu_mask_nr(i, *cpu_map) {
7623 struct sched_domain *sd = &per_cpu(core_domains, i);
7624
7625 init_sched_groups_power(i, sd);
7626 }
7627 #endif
7628
7629 for_each_cpu_mask_nr(i, *cpu_map) {
7630 struct sched_domain *sd = &per_cpu(phys_domains, i);
7631
7632 init_sched_groups_power(i, sd);
7633 }
7634
7635 #ifdef CONFIG_NUMA
7636 for (i = 0; i < nr_node_ids; i++)
7637 init_numa_sched_groups_power(sched_group_nodes[i]);
7638
7639 if (sd_allnodes) {
7640 struct sched_group *sg;
7641
7642 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
7643 tmpmask);
7644 init_numa_sched_groups_power(sg);
7645 }
7646 #endif
7647
7648 /* Attach the domains */
7649 for_each_cpu_mask_nr(i, *cpu_map) {
7650 struct sched_domain *sd;
7651 #ifdef CONFIG_SCHED_SMT
7652 sd = &per_cpu(cpu_domains, i);
7653 #elif defined(CONFIG_SCHED_MC)
7654 sd = &per_cpu(core_domains, i);
7655 #else
7656 sd = &per_cpu(phys_domains, i);
7657 #endif
7658 cpu_attach_domain(sd, rd, i);
7659 }
7660
7661 SCHED_CPUMASK_FREE((void *)allmasks);
7662 return 0;
7663
7664 #ifdef CONFIG_NUMA
7665 error:
7666 free_sched_groups(cpu_map, tmpmask);
7667 SCHED_CPUMASK_FREE((void *)allmasks);
7668 return -ENOMEM;
7669 #endif
7670 }
7671
7672 static int build_sched_domains(const cpumask_t *cpu_map)
7673 {
7674 return __build_sched_domains(cpu_map, NULL);
7675 }
7676
7677 static cpumask_t *doms_cur; /* current sched domains */
7678 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7679 static struct sched_domain_attr *dattr_cur;
7680 /* attribues of custom domains in 'doms_cur' */
7681
7682 /*
7683 * Special case: If a kmalloc of a doms_cur partition (array of
7684 * cpumask_t) fails, then fallback to a single sched domain,
7685 * as determined by the single cpumask_t fallback_doms.
7686 */
7687 static cpumask_t fallback_doms;
7688
7689 void __attribute__((weak)) arch_update_cpu_topology(void)
7690 {
7691 }
7692
7693 /*
7694 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7695 * For now this just excludes isolated cpus, but could be used to
7696 * exclude other special cases in the future.
7697 */
7698 static int arch_init_sched_domains(const cpumask_t *cpu_map)
7699 {
7700 int err;
7701
7702 arch_update_cpu_topology();
7703 ndoms_cur = 1;
7704 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
7705 if (!doms_cur)
7706 doms_cur = &fallback_doms;
7707 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7708 dattr_cur = NULL;
7709 err = build_sched_domains(doms_cur);
7710 register_sched_domain_sysctl();
7711
7712 return err;
7713 }
7714
7715 static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
7716 cpumask_t *tmpmask)
7717 {
7718 free_sched_groups(cpu_map, tmpmask);
7719 }
7720
7721 /*
7722 * Detach sched domains from a group of cpus specified in cpu_map
7723 * These cpus will now be attached to the NULL domain
7724 */
7725 static void detach_destroy_domains(const cpumask_t *cpu_map)
7726 {
7727 cpumask_t tmpmask;
7728 int i;
7729
7730 unregister_sched_domain_sysctl();
7731
7732 for_each_cpu_mask_nr(i, *cpu_map)
7733 cpu_attach_domain(NULL, &def_root_domain, i);
7734 synchronize_sched();
7735 arch_destroy_sched_domains(cpu_map, &tmpmask);
7736 }
7737
7738 /* handle null as "default" */
7739 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7740 struct sched_domain_attr *new, int idx_new)
7741 {
7742 struct sched_domain_attr tmp;
7743
7744 /* fast path */
7745 if (!new && !cur)
7746 return 1;
7747
7748 tmp = SD_ATTR_INIT;
7749 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7750 new ? (new + idx_new) : &tmp,
7751 sizeof(struct sched_domain_attr));
7752 }
7753
7754 /*
7755 * Partition sched domains as specified by the 'ndoms_new'
7756 * cpumasks in the array doms_new[] of cpumasks. This compares
7757 * doms_new[] to the current sched domain partitioning, doms_cur[].
7758 * It destroys each deleted domain and builds each new domain.
7759 *
7760 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
7761 * The masks don't intersect (don't overlap.) We should setup one
7762 * sched domain for each mask. CPUs not in any of the cpumasks will
7763 * not be load balanced. If the same cpumask appears both in the
7764 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7765 * it as it is.
7766 *
7767 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7768 * ownership of it and will kfree it when done with it. If the caller
7769 * failed the kmalloc call, then it can pass in doms_new == NULL,
7770 * and partition_sched_domains() will fallback to the single partition
7771 * 'fallback_doms', it also forces the domains to be rebuilt.
7772 *
7773 * If doms_new==NULL it will be replaced with cpu_online_map.
7774 * ndoms_new==0 is a special case for destroying existing domains.
7775 * It will not create the default domain.
7776 *
7777 * Call with hotplug lock held
7778 */
7779 void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
7780 struct sched_domain_attr *dattr_new)
7781 {
7782 int i, j, n;
7783
7784 mutex_lock(&sched_domains_mutex);
7785
7786 /* always unregister in case we don't destroy any domains */
7787 unregister_sched_domain_sysctl();
7788
7789 n = doms_new ? ndoms_new : 0;
7790
7791 /* Destroy deleted domains */
7792 for (i = 0; i < ndoms_cur; i++) {
7793 for (j = 0; j < n; j++) {
7794 if (cpus_equal(doms_cur[i], doms_new[j])
7795 && dattrs_equal(dattr_cur, i, dattr_new, j))
7796 goto match1;
7797 }
7798 /* no match - a current sched domain not in new doms_new[] */
7799 detach_destroy_domains(doms_cur + i);
7800 match1:
7801 ;
7802 }
7803
7804 if (doms_new == NULL) {
7805 ndoms_cur = 0;
7806 doms_new = &fallback_doms;
7807 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
7808 dattr_new = NULL;
7809 }
7810
7811 /* Build new domains */
7812 for (i = 0; i < ndoms_new; i++) {
7813 for (j = 0; j < ndoms_cur; j++) {
7814 if (cpus_equal(doms_new[i], doms_cur[j])
7815 && dattrs_equal(dattr_new, i, dattr_cur, j))
7816 goto match2;
7817 }
7818 /* no match - add a new doms_new */
7819 __build_sched_domains(doms_new + i,
7820 dattr_new ? dattr_new + i : NULL);
7821 match2:
7822 ;
7823 }
7824
7825 /* Remember the new sched domains */
7826 if (doms_cur != &fallback_doms)
7827 kfree(doms_cur);
7828 kfree(dattr_cur); /* kfree(NULL) is safe */
7829 doms_cur = doms_new;
7830 dattr_cur = dattr_new;
7831 ndoms_cur = ndoms_new;
7832
7833 register_sched_domain_sysctl();
7834
7835 mutex_unlock(&sched_domains_mutex);
7836 }
7837
7838 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7839 int arch_reinit_sched_domains(void)
7840 {
7841 get_online_cpus();
7842
7843 /* Destroy domains first to force the rebuild */
7844 partition_sched_domains(0, NULL, NULL);
7845
7846 rebuild_sched_domains();
7847 put_online_cpus();
7848
7849 return 0;
7850 }
7851
7852 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7853 {
7854 int ret;
7855
7856 if (buf[0] != '0' && buf[0] != '1')
7857 return -EINVAL;
7858
7859 if (smt)
7860 sched_smt_power_savings = (buf[0] == '1');
7861 else
7862 sched_mc_power_savings = (buf[0] == '1');
7863
7864 ret = arch_reinit_sched_domains();
7865
7866 return ret ? ret : count;
7867 }
7868
7869 #ifdef CONFIG_SCHED_MC
7870 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7871 char *page)
7872 {
7873 return sprintf(page, "%u\n", sched_mc_power_savings);
7874 }
7875 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7876 const char *buf, size_t count)
7877 {
7878 return sched_power_savings_store(buf, count, 0);
7879 }
7880 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7881 sched_mc_power_savings_show,
7882 sched_mc_power_savings_store);
7883 #endif
7884
7885 #ifdef CONFIG_SCHED_SMT
7886 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7887 char *page)
7888 {
7889 return sprintf(page, "%u\n", sched_smt_power_savings);
7890 }
7891 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7892 const char *buf, size_t count)
7893 {
7894 return sched_power_savings_store(buf, count, 1);
7895 }
7896 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7897 sched_smt_power_savings_show,
7898 sched_smt_power_savings_store);
7899 #endif
7900
7901 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7902 {
7903 int err = 0;
7904
7905 #ifdef CONFIG_SCHED_SMT
7906 if (smt_capable())
7907 err = sysfs_create_file(&cls->kset.kobj,
7908 &attr_sched_smt_power_savings.attr);
7909 #endif
7910 #ifdef CONFIG_SCHED_MC
7911 if (!err && mc_capable())
7912 err = sysfs_create_file(&cls->kset.kobj,
7913 &attr_sched_mc_power_savings.attr);
7914 #endif
7915 return err;
7916 }
7917 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7918
7919 #ifndef CONFIG_CPUSETS
7920 /*
7921 * Add online and remove offline CPUs from the scheduler domains.
7922 * When cpusets are enabled they take over this function.
7923 */
7924 static int update_sched_domains(struct notifier_block *nfb,
7925 unsigned long action, void *hcpu)
7926 {
7927 switch (action) {
7928 case CPU_ONLINE:
7929 case CPU_ONLINE_FROZEN:
7930 case CPU_DEAD:
7931 case CPU_DEAD_FROZEN:
7932 partition_sched_domains(1, NULL, NULL);
7933 return NOTIFY_OK;
7934
7935 default:
7936 return NOTIFY_DONE;
7937 }
7938 }
7939 #endif
7940
7941 static int update_runtime(struct notifier_block *nfb,
7942 unsigned long action, void *hcpu)
7943 {
7944 int cpu = (int)(long)hcpu;
7945
7946 switch (action) {
7947 case CPU_DOWN_PREPARE:
7948 case CPU_DOWN_PREPARE_FROZEN:
7949 disable_runtime(cpu_rq(cpu));
7950 return NOTIFY_OK;
7951
7952 case CPU_DOWN_FAILED:
7953 case CPU_DOWN_FAILED_FROZEN:
7954 case CPU_ONLINE:
7955 case CPU_ONLINE_FROZEN:
7956 enable_runtime(cpu_rq(cpu));
7957 return NOTIFY_OK;
7958
7959 default:
7960 return NOTIFY_DONE;
7961 }
7962 }
7963
7964 void __init sched_init_smp(void)
7965 {
7966 cpumask_t non_isolated_cpus;
7967
7968 #if defined(CONFIG_NUMA)
7969 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7970 GFP_KERNEL);
7971 BUG_ON(sched_group_nodes_bycpu == NULL);
7972 #endif
7973 get_online_cpus();
7974 mutex_lock(&sched_domains_mutex);
7975 arch_init_sched_domains(&cpu_online_map);
7976 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7977 if (cpus_empty(non_isolated_cpus))
7978 cpu_set(smp_processor_id(), non_isolated_cpus);
7979 mutex_unlock(&sched_domains_mutex);
7980 put_online_cpus();
7981
7982 #ifndef CONFIG_CPUSETS
7983 /* XXX: Theoretical race here - CPU may be hotplugged now */
7984 hotcpu_notifier(update_sched_domains, 0);
7985 #endif
7986
7987 /* RT runtime code needs to handle some hotplug events */
7988 hotcpu_notifier(update_runtime, 0);
7989
7990 init_hrtick();
7991
7992 /* Move init over to a non-isolated CPU */
7993 if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
7994 BUG();
7995 sched_init_granularity();
7996 }
7997 #else
7998 void __init sched_init_smp(void)
7999 {
8000 sched_init_granularity();
8001 }
8002 #endif /* CONFIG_SMP */
8003
8004 int in_sched_functions(unsigned long addr)
8005 {
8006 return in_lock_functions(addr) ||
8007 (addr >= (unsigned long)__sched_text_start
8008 && addr < (unsigned long)__sched_text_end);
8009 }
8010
8011 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
8012 {
8013 cfs_rq->tasks_timeline = RB_ROOT;
8014 INIT_LIST_HEAD(&cfs_rq->tasks);
8015 #ifdef CONFIG_FAIR_GROUP_SCHED
8016 cfs_rq->rq = rq;
8017 #endif
8018 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8019 }
8020
8021 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8022 {
8023 struct rt_prio_array *array;
8024 int i;
8025
8026 array = &rt_rq->active;
8027 for (i = 0; i < MAX_RT_PRIO; i++) {
8028 INIT_LIST_HEAD(array->queue + i);
8029 __clear_bit(i, array->bitmap);
8030 }
8031 /* delimiter for bitsearch: */
8032 __set_bit(MAX_RT_PRIO, array->bitmap);
8033
8034 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
8035 rt_rq->highest_prio = MAX_RT_PRIO;
8036 #endif
8037 #ifdef CONFIG_SMP
8038 rt_rq->rt_nr_migratory = 0;
8039 rt_rq->overloaded = 0;
8040 #endif
8041
8042 rt_rq->rt_time = 0;
8043 rt_rq->rt_throttled = 0;
8044 rt_rq->rt_runtime = 0;
8045 spin_lock_init(&rt_rq->rt_runtime_lock);
8046
8047 #ifdef CONFIG_RT_GROUP_SCHED
8048 rt_rq->rt_nr_boosted = 0;
8049 rt_rq->rq = rq;
8050 #endif
8051 }
8052
8053 #ifdef CONFIG_FAIR_GROUP_SCHED
8054 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8055 struct sched_entity *se, int cpu, int add,
8056 struct sched_entity *parent)
8057 {
8058 struct rq *rq = cpu_rq(cpu);
8059 tg->cfs_rq[cpu] = cfs_rq;
8060 init_cfs_rq(cfs_rq, rq);
8061 cfs_rq->tg = tg;
8062 if (add)
8063 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8064
8065 tg->se[cpu] = se;
8066 /* se could be NULL for init_task_group */
8067 if (!se)
8068 return;
8069
8070 if (!parent)
8071 se->cfs_rq = &rq->cfs;
8072 else
8073 se->cfs_rq = parent->my_q;
8074
8075 se->my_q = cfs_rq;
8076 se->load.weight = tg->shares;
8077 se->load.inv_weight = 0;
8078 se->parent = parent;
8079 }
8080 #endif
8081
8082 #ifdef CONFIG_RT_GROUP_SCHED
8083 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8084 struct sched_rt_entity *rt_se, int cpu, int add,
8085 struct sched_rt_entity *parent)
8086 {
8087 struct rq *rq = cpu_rq(cpu);
8088
8089 tg->rt_rq[cpu] = rt_rq;
8090 init_rt_rq(rt_rq, rq);
8091 rt_rq->tg = tg;
8092 rt_rq->rt_se = rt_se;
8093 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
8094 if (add)
8095 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8096
8097 tg->rt_se[cpu] = rt_se;
8098 if (!rt_se)
8099 return;
8100
8101 if (!parent)
8102 rt_se->rt_rq = &rq->rt;
8103 else
8104 rt_se->rt_rq = parent->my_q;
8105
8106 rt_se->my_q = rt_rq;
8107 rt_se->parent = parent;
8108 INIT_LIST_HEAD(&rt_se->run_list);
8109 }
8110 #endif
8111
8112 void __init sched_init(void)
8113 {
8114 int i, j;
8115 unsigned long alloc_size = 0, ptr;
8116
8117 #ifdef CONFIG_FAIR_GROUP_SCHED
8118 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8119 #endif
8120 #ifdef CONFIG_RT_GROUP_SCHED
8121 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8122 #endif
8123 #ifdef CONFIG_USER_SCHED
8124 alloc_size *= 2;
8125 #endif
8126 /*
8127 * As sched_init() is called before page_alloc is setup,
8128 * we use alloc_bootmem().
8129 */
8130 if (alloc_size) {
8131 ptr = (unsigned long)alloc_bootmem(alloc_size);
8132
8133 #ifdef CONFIG_FAIR_GROUP_SCHED
8134 init_task_group.se = (struct sched_entity **)ptr;
8135 ptr += nr_cpu_ids * sizeof(void **);
8136
8137 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8138 ptr += nr_cpu_ids * sizeof(void **);
8139
8140 #ifdef CONFIG_USER_SCHED
8141 root_task_group.se = (struct sched_entity **)ptr;
8142 ptr += nr_cpu_ids * sizeof(void **);
8143
8144 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8145 ptr += nr_cpu_ids * sizeof(void **);
8146 #endif /* CONFIG_USER_SCHED */
8147 #endif /* CONFIG_FAIR_GROUP_SCHED */
8148 #ifdef CONFIG_RT_GROUP_SCHED
8149 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8150 ptr += nr_cpu_ids * sizeof(void **);
8151
8152 init_task_group.rt_rq = (struct rt_rq **)ptr;
8153 ptr += nr_cpu_ids * sizeof(void **);
8154
8155 #ifdef CONFIG_USER_SCHED
8156 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8157 ptr += nr_cpu_ids * sizeof(void **);
8158
8159 root_task_group.rt_rq = (struct rt_rq **)ptr;
8160 ptr += nr_cpu_ids * sizeof(void **);
8161 #endif /* CONFIG_USER_SCHED */
8162 #endif /* CONFIG_RT_GROUP_SCHED */
8163 }
8164
8165 #ifdef CONFIG_SMP
8166 init_defrootdomain();
8167 #endif
8168
8169 init_rt_bandwidth(&def_rt_bandwidth,
8170 global_rt_period(), global_rt_runtime());
8171
8172 #ifdef CONFIG_RT_GROUP_SCHED
8173 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8174 global_rt_period(), global_rt_runtime());
8175 #ifdef CONFIG_USER_SCHED
8176 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8177 global_rt_period(), RUNTIME_INF);
8178 #endif /* CONFIG_USER_SCHED */
8179 #endif /* CONFIG_RT_GROUP_SCHED */
8180
8181 #ifdef CONFIG_GROUP_SCHED
8182 list_add(&init_task_group.list, &task_groups);
8183 INIT_LIST_HEAD(&init_task_group.children);
8184
8185 #ifdef CONFIG_USER_SCHED
8186 INIT_LIST_HEAD(&root_task_group.children);
8187 init_task_group.parent = &root_task_group;
8188 list_add(&init_task_group.siblings, &root_task_group.children);
8189 #endif /* CONFIG_USER_SCHED */
8190 #endif /* CONFIG_GROUP_SCHED */
8191
8192 for_each_possible_cpu(i) {
8193 struct rq *rq;
8194
8195 rq = cpu_rq(i);
8196 spin_lock_init(&rq->lock);
8197 rq->nr_running = 0;
8198 init_cfs_rq(&rq->cfs, rq);
8199 init_rt_rq(&rq->rt, rq);
8200 #ifdef CONFIG_FAIR_GROUP_SCHED
8201 init_task_group.shares = init_task_group_load;
8202 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8203 #ifdef CONFIG_CGROUP_SCHED
8204 /*
8205 * How much cpu bandwidth does init_task_group get?
8206 *
8207 * In case of task-groups formed thr' the cgroup filesystem, it
8208 * gets 100% of the cpu resources in the system. This overall
8209 * system cpu resource is divided among the tasks of
8210 * init_task_group and its child task-groups in a fair manner,
8211 * based on each entity's (task or task-group's) weight
8212 * (se->load.weight).
8213 *
8214 * In other words, if init_task_group has 10 tasks of weight
8215 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8216 * then A0's share of the cpu resource is:
8217 *
8218 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8219 *
8220 * We achieve this by letting init_task_group's tasks sit
8221 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8222 */
8223 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
8224 #elif defined CONFIG_USER_SCHED
8225 root_task_group.shares = NICE_0_LOAD;
8226 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
8227 /*
8228 * In case of task-groups formed thr' the user id of tasks,
8229 * init_task_group represents tasks belonging to root user.
8230 * Hence it forms a sibling of all subsequent groups formed.
8231 * In this case, init_task_group gets only a fraction of overall
8232 * system cpu resource, based on the weight assigned to root
8233 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8234 * by letting tasks of init_task_group sit in a separate cfs_rq
8235 * (init_cfs_rq) and having one entity represent this group of
8236 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8237 */
8238 init_tg_cfs_entry(&init_task_group,
8239 &per_cpu(init_cfs_rq, i),
8240 &per_cpu(init_sched_entity, i), i, 1,
8241 root_task_group.se[i]);
8242
8243 #endif
8244 #endif /* CONFIG_FAIR_GROUP_SCHED */
8245
8246 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8247 #ifdef CONFIG_RT_GROUP_SCHED
8248 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
8249 #ifdef CONFIG_CGROUP_SCHED
8250 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
8251 #elif defined CONFIG_USER_SCHED
8252 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8253 init_tg_rt_entry(&init_task_group,
8254 &per_cpu(init_rt_rq, i),
8255 &per_cpu(init_sched_rt_entity, i), i, 1,
8256 root_task_group.rt_se[i]);
8257 #endif
8258 #endif
8259
8260 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8261 rq->cpu_load[j] = 0;
8262 #ifdef CONFIG_SMP
8263 rq->sd = NULL;
8264 rq->rd = NULL;
8265 rq->active_balance = 0;
8266 rq->next_balance = jiffies;
8267 rq->push_cpu = 0;
8268 rq->cpu = i;
8269 rq->online = 0;
8270 rq->migration_thread = NULL;
8271 INIT_LIST_HEAD(&rq->migration_queue);
8272 rq_attach_root(rq, &def_root_domain);
8273 #endif
8274 init_rq_hrtick(rq);
8275 atomic_set(&rq->nr_iowait, 0);
8276 }
8277
8278 set_load_weight(&init_task);
8279
8280 #ifdef CONFIG_PREEMPT_NOTIFIERS
8281 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8282 #endif
8283
8284 #ifdef CONFIG_SMP
8285 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8286 #endif
8287
8288 #ifdef CONFIG_RT_MUTEXES
8289 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8290 #endif
8291
8292 /*
8293 * The boot idle thread does lazy MMU switching as well:
8294 */
8295 atomic_inc(&init_mm.mm_count);
8296 enter_lazy_tlb(&init_mm, current);
8297
8298 /*
8299 * Make us the idle thread. Technically, schedule() should not be
8300 * called from this thread, however somewhere below it might be,
8301 * but because we are the idle thread, we just pick up running again
8302 * when this runqueue becomes "idle".
8303 */
8304 init_idle(current, smp_processor_id());
8305 /*
8306 * During early bootup we pretend to be a normal task:
8307 */
8308 current->sched_class = &fair_sched_class;
8309
8310 scheduler_running = 1;
8311 }
8312
8313 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8314 void __might_sleep(char *file, int line)
8315 {
8316 #ifdef in_atomic
8317 static unsigned long prev_jiffy; /* ratelimiting */
8318
8319 if ((!in_atomic() && !irqs_disabled()) ||
8320 system_state != SYSTEM_RUNNING || oops_in_progress)
8321 return;
8322 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8323 return;
8324 prev_jiffy = jiffies;
8325
8326 printk(KERN_ERR
8327 "BUG: sleeping function called from invalid context at %s:%d\n",
8328 file, line);
8329 printk(KERN_ERR
8330 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8331 in_atomic(), irqs_disabled(),
8332 current->pid, current->comm);
8333
8334 debug_show_held_locks(current);
8335 if (irqs_disabled())
8336 print_irqtrace_events(current);
8337 dump_stack();
8338 #endif
8339 }
8340 EXPORT_SYMBOL(__might_sleep);
8341 #endif
8342
8343 #ifdef CONFIG_MAGIC_SYSRQ
8344 static void normalize_task(struct rq *rq, struct task_struct *p)
8345 {
8346 int on_rq;
8347
8348 update_rq_clock(rq);
8349 on_rq = p->se.on_rq;
8350 if (on_rq)
8351 deactivate_task(rq, p, 0);
8352 __setscheduler(rq, p, SCHED_NORMAL, 0);
8353 if (on_rq) {
8354 activate_task(rq, p, 0);
8355 resched_task(rq->curr);
8356 }
8357 }
8358
8359 void normalize_rt_tasks(void)
8360 {
8361 struct task_struct *g, *p;
8362 unsigned long flags;
8363 struct rq *rq;
8364
8365 read_lock_irqsave(&tasklist_lock, flags);
8366 do_each_thread(g, p) {
8367 /*
8368 * Only normalize user tasks:
8369 */
8370 if (!p->mm)
8371 continue;
8372
8373 p->se.exec_start = 0;
8374 #ifdef CONFIG_SCHEDSTATS
8375 p->se.wait_start = 0;
8376 p->se.sleep_start = 0;
8377 p->se.block_start = 0;
8378 #endif
8379
8380 if (!rt_task(p)) {
8381 /*
8382 * Renice negative nice level userspace
8383 * tasks back to 0:
8384 */
8385 if (TASK_NICE(p) < 0 && p->mm)
8386 set_user_nice(p, 0);
8387 continue;
8388 }
8389
8390 spin_lock(&p->pi_lock);
8391 rq = __task_rq_lock(p);
8392
8393 normalize_task(rq, p);
8394
8395 __task_rq_unlock(rq);
8396 spin_unlock(&p->pi_lock);
8397 } while_each_thread(g, p);
8398
8399 read_unlock_irqrestore(&tasklist_lock, flags);
8400 }
8401
8402 #endif /* CONFIG_MAGIC_SYSRQ */
8403
8404 #ifdef CONFIG_IA64
8405 /*
8406 * These functions are only useful for the IA64 MCA handling.
8407 *
8408 * They can only be called when the whole system has been
8409 * stopped - every CPU needs to be quiescent, and no scheduling
8410 * activity can take place. Using them for anything else would
8411 * be a serious bug, and as a result, they aren't even visible
8412 * under any other configuration.
8413 */
8414
8415 /**
8416 * curr_task - return the current task for a given cpu.
8417 * @cpu: the processor in question.
8418 *
8419 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8420 */
8421 struct task_struct *curr_task(int cpu)
8422 {
8423 return cpu_curr(cpu);
8424 }
8425
8426 /**
8427 * set_curr_task - set the current task for a given cpu.
8428 * @cpu: the processor in question.
8429 * @p: the task pointer to set.
8430 *
8431 * Description: This function must only be used when non-maskable interrupts
8432 * are serviced on a separate stack. It allows the architecture to switch the
8433 * notion of the current task on a cpu in a non-blocking manner. This function
8434 * must be called with all CPU's synchronized, and interrupts disabled, the
8435 * and caller must save the original value of the current task (see
8436 * curr_task() above) and restore that value before reenabling interrupts and
8437 * re-starting the system.
8438 *
8439 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8440 */
8441 void set_curr_task(int cpu, struct task_struct *p)
8442 {
8443 cpu_curr(cpu) = p;
8444 }
8445
8446 #endif
8447
8448 #ifdef CONFIG_FAIR_GROUP_SCHED
8449 static void free_fair_sched_group(struct task_group *tg)
8450 {
8451 int i;
8452
8453 for_each_possible_cpu(i) {
8454 if (tg->cfs_rq)
8455 kfree(tg->cfs_rq[i]);
8456 if (tg->se)
8457 kfree(tg->se[i]);
8458 }
8459
8460 kfree(tg->cfs_rq);
8461 kfree(tg->se);
8462 }
8463
8464 static
8465 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8466 {
8467 struct cfs_rq *cfs_rq;
8468 struct sched_entity *se, *parent_se;
8469 struct rq *rq;
8470 int i;
8471
8472 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8473 if (!tg->cfs_rq)
8474 goto err;
8475 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8476 if (!tg->se)
8477 goto err;
8478
8479 tg->shares = NICE_0_LOAD;
8480
8481 for_each_possible_cpu(i) {
8482 rq = cpu_rq(i);
8483
8484 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
8485 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8486 if (!cfs_rq)
8487 goto err;
8488
8489 se = kmalloc_node(sizeof(struct sched_entity),
8490 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8491 if (!se)
8492 goto err;
8493
8494 parent_se = parent ? parent->se[i] : NULL;
8495 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
8496 }
8497
8498 return 1;
8499
8500 err:
8501 return 0;
8502 }
8503
8504 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8505 {
8506 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8507 &cpu_rq(cpu)->leaf_cfs_rq_list);
8508 }
8509
8510 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8511 {
8512 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8513 }
8514 #else /* !CONFG_FAIR_GROUP_SCHED */
8515 static inline void free_fair_sched_group(struct task_group *tg)
8516 {
8517 }
8518
8519 static inline
8520 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8521 {
8522 return 1;
8523 }
8524
8525 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8526 {
8527 }
8528
8529 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8530 {
8531 }
8532 #endif /* CONFIG_FAIR_GROUP_SCHED */
8533
8534 #ifdef CONFIG_RT_GROUP_SCHED
8535 static void free_rt_sched_group(struct task_group *tg)
8536 {
8537 int i;
8538
8539 destroy_rt_bandwidth(&tg->rt_bandwidth);
8540
8541 for_each_possible_cpu(i) {
8542 if (tg->rt_rq)
8543 kfree(tg->rt_rq[i]);
8544 if (tg->rt_se)
8545 kfree(tg->rt_se[i]);
8546 }
8547
8548 kfree(tg->rt_rq);
8549 kfree(tg->rt_se);
8550 }
8551
8552 static
8553 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8554 {
8555 struct rt_rq *rt_rq;
8556 struct sched_rt_entity *rt_se, *parent_se;
8557 struct rq *rq;
8558 int i;
8559
8560 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8561 if (!tg->rt_rq)
8562 goto err;
8563 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8564 if (!tg->rt_se)
8565 goto err;
8566
8567 init_rt_bandwidth(&tg->rt_bandwidth,
8568 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8569
8570 for_each_possible_cpu(i) {
8571 rq = cpu_rq(i);
8572
8573 rt_rq = kmalloc_node(sizeof(struct rt_rq),
8574 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8575 if (!rt_rq)
8576 goto err;
8577
8578 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
8579 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8580 if (!rt_se)
8581 goto err;
8582
8583 parent_se = parent ? parent->rt_se[i] : NULL;
8584 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
8585 }
8586
8587 return 1;
8588
8589 err:
8590 return 0;
8591 }
8592
8593 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8594 {
8595 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8596 &cpu_rq(cpu)->leaf_rt_rq_list);
8597 }
8598
8599 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8600 {
8601 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8602 }
8603 #else /* !CONFIG_RT_GROUP_SCHED */
8604 static inline void free_rt_sched_group(struct task_group *tg)
8605 {
8606 }
8607
8608 static inline
8609 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8610 {
8611 return 1;
8612 }
8613
8614 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8615 {
8616 }
8617
8618 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8619 {
8620 }
8621 #endif /* CONFIG_RT_GROUP_SCHED */
8622
8623 #ifdef CONFIG_GROUP_SCHED
8624 static void free_sched_group(struct task_group *tg)
8625 {
8626 free_fair_sched_group(tg);
8627 free_rt_sched_group(tg);
8628 kfree(tg);
8629 }
8630
8631 /* allocate runqueue etc for a new task group */
8632 struct task_group *sched_create_group(struct task_group *parent)
8633 {
8634 struct task_group *tg;
8635 unsigned long flags;
8636 int i;
8637
8638 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8639 if (!tg)
8640 return ERR_PTR(-ENOMEM);
8641
8642 if (!alloc_fair_sched_group(tg, parent))
8643 goto err;
8644
8645 if (!alloc_rt_sched_group(tg, parent))
8646 goto err;
8647
8648 spin_lock_irqsave(&task_group_lock, flags);
8649 for_each_possible_cpu(i) {
8650 register_fair_sched_group(tg, i);
8651 register_rt_sched_group(tg, i);
8652 }
8653 list_add_rcu(&tg->list, &task_groups);
8654
8655 WARN_ON(!parent); /* root should already exist */
8656
8657 tg->parent = parent;
8658 INIT_LIST_HEAD(&tg->children);
8659 list_add_rcu(&tg->siblings, &parent->children);
8660 spin_unlock_irqrestore(&task_group_lock, flags);
8661
8662 return tg;
8663
8664 err:
8665 free_sched_group(tg);
8666 return ERR_PTR(-ENOMEM);
8667 }
8668
8669 /* rcu callback to free various structures associated with a task group */
8670 static void free_sched_group_rcu(struct rcu_head *rhp)
8671 {
8672 /* now it should be safe to free those cfs_rqs */
8673 free_sched_group(container_of(rhp, struct task_group, rcu));
8674 }
8675
8676 /* Destroy runqueue etc associated with a task group */
8677 void sched_destroy_group(struct task_group *tg)
8678 {
8679 unsigned long flags;
8680 int i;
8681
8682 spin_lock_irqsave(&task_group_lock, flags);
8683 for_each_possible_cpu(i) {
8684 unregister_fair_sched_group(tg, i);
8685 unregister_rt_sched_group(tg, i);
8686 }
8687 list_del_rcu(&tg->list);
8688 list_del_rcu(&tg->siblings);
8689 spin_unlock_irqrestore(&task_group_lock, flags);
8690
8691 /* wait for possible concurrent references to cfs_rqs complete */
8692 call_rcu(&tg->rcu, free_sched_group_rcu);
8693 }
8694
8695 /* change task's runqueue when it moves between groups.
8696 * The caller of this function should have put the task in its new group
8697 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8698 * reflect its new group.
8699 */
8700 void sched_move_task(struct task_struct *tsk)
8701 {
8702 int on_rq, running;
8703 unsigned long flags;
8704 struct rq *rq;
8705
8706 rq = task_rq_lock(tsk, &flags);
8707
8708 update_rq_clock(rq);
8709
8710 running = task_current(rq, tsk);
8711 on_rq = tsk->se.on_rq;
8712
8713 if (on_rq)
8714 dequeue_task(rq, tsk, 0);
8715 if (unlikely(running))
8716 tsk->sched_class->put_prev_task(rq, tsk);
8717
8718 set_task_rq(tsk, task_cpu(tsk));
8719
8720 #ifdef CONFIG_FAIR_GROUP_SCHED
8721 if (tsk->sched_class->moved_group)
8722 tsk->sched_class->moved_group(tsk);
8723 #endif
8724
8725 if (unlikely(running))
8726 tsk->sched_class->set_curr_task(rq);
8727 if (on_rq)
8728 enqueue_task(rq, tsk, 0);
8729
8730 task_rq_unlock(rq, &flags);
8731 }
8732 #endif /* CONFIG_GROUP_SCHED */
8733
8734 #ifdef CONFIG_FAIR_GROUP_SCHED
8735 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
8736 {
8737 struct cfs_rq *cfs_rq = se->cfs_rq;
8738 int on_rq;
8739
8740 on_rq = se->on_rq;
8741 if (on_rq)
8742 dequeue_entity(cfs_rq, se, 0);
8743
8744 se->load.weight = shares;
8745 se->load.inv_weight = 0;
8746
8747 if (on_rq)
8748 enqueue_entity(cfs_rq, se, 0);
8749 }
8750
8751 static void set_se_shares(struct sched_entity *se, unsigned long shares)
8752 {
8753 struct cfs_rq *cfs_rq = se->cfs_rq;
8754 struct rq *rq = cfs_rq->rq;
8755 unsigned long flags;
8756
8757 spin_lock_irqsave(&rq->lock, flags);
8758 __set_se_shares(se, shares);
8759 spin_unlock_irqrestore(&rq->lock, flags);
8760 }
8761
8762 static DEFINE_MUTEX(shares_mutex);
8763
8764 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8765 {
8766 int i;
8767 unsigned long flags;
8768
8769 /*
8770 * We can't change the weight of the root cgroup.
8771 */
8772 if (!tg->se[0])
8773 return -EINVAL;
8774
8775 if (shares < MIN_SHARES)
8776 shares = MIN_SHARES;
8777 else if (shares > MAX_SHARES)
8778 shares = MAX_SHARES;
8779
8780 mutex_lock(&shares_mutex);
8781 if (tg->shares == shares)
8782 goto done;
8783
8784 spin_lock_irqsave(&task_group_lock, flags);
8785 for_each_possible_cpu(i)
8786 unregister_fair_sched_group(tg, i);
8787 list_del_rcu(&tg->siblings);
8788 spin_unlock_irqrestore(&task_group_lock, flags);
8789
8790 /* wait for any ongoing reference to this group to finish */
8791 synchronize_sched();
8792
8793 /*
8794 * Now we are free to modify the group's share on each cpu
8795 * w/o tripping rebalance_share or load_balance_fair.
8796 */
8797 tg->shares = shares;
8798 for_each_possible_cpu(i) {
8799 /*
8800 * force a rebalance
8801 */
8802 cfs_rq_set_shares(tg->cfs_rq[i], 0);
8803 set_se_shares(tg->se[i], shares);
8804 }
8805
8806 /*
8807 * Enable load balance activity on this group, by inserting it back on
8808 * each cpu's rq->leaf_cfs_rq_list.
8809 */
8810 spin_lock_irqsave(&task_group_lock, flags);
8811 for_each_possible_cpu(i)
8812 register_fair_sched_group(tg, i);
8813 list_add_rcu(&tg->siblings, &tg->parent->children);
8814 spin_unlock_irqrestore(&task_group_lock, flags);
8815 done:
8816 mutex_unlock(&shares_mutex);
8817 return 0;
8818 }
8819
8820 unsigned long sched_group_shares(struct task_group *tg)
8821 {
8822 return tg->shares;
8823 }
8824 #endif
8825
8826 #ifdef CONFIG_RT_GROUP_SCHED
8827 /*
8828 * Ensure that the real time constraints are schedulable.
8829 */
8830 static DEFINE_MUTEX(rt_constraints_mutex);
8831
8832 static unsigned long to_ratio(u64 period, u64 runtime)
8833 {
8834 if (runtime == RUNTIME_INF)
8835 return 1ULL << 20;
8836
8837 return div64_u64(runtime << 20, period);
8838 }
8839
8840 /* Must be called with tasklist_lock held */
8841 static inline int tg_has_rt_tasks(struct task_group *tg)
8842 {
8843 struct task_struct *g, *p;
8844
8845 do_each_thread(g, p) {
8846 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8847 return 1;
8848 } while_each_thread(g, p);
8849
8850 return 0;
8851 }
8852
8853 struct rt_schedulable_data {
8854 struct task_group *tg;
8855 u64 rt_period;
8856 u64 rt_runtime;
8857 };
8858
8859 static int tg_schedulable(struct task_group *tg, void *data)
8860 {
8861 struct rt_schedulable_data *d = data;
8862 struct task_group *child;
8863 unsigned long total, sum = 0;
8864 u64 period, runtime;
8865
8866 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8867 runtime = tg->rt_bandwidth.rt_runtime;
8868
8869 if (tg == d->tg) {
8870 period = d->rt_period;
8871 runtime = d->rt_runtime;
8872 }
8873
8874 /*
8875 * Cannot have more runtime than the period.
8876 */
8877 if (runtime > period && runtime != RUNTIME_INF)
8878 return -EINVAL;
8879
8880 /*
8881 * Ensure we don't starve existing RT tasks.
8882 */
8883 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8884 return -EBUSY;
8885
8886 total = to_ratio(period, runtime);
8887
8888 /*
8889 * Nobody can have more than the global setting allows.
8890 */
8891 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8892 return -EINVAL;
8893
8894 /*
8895 * The sum of our children's runtime should not exceed our own.
8896 */
8897 list_for_each_entry_rcu(child, &tg->children, siblings) {
8898 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8899 runtime = child->rt_bandwidth.rt_runtime;
8900
8901 if (child == d->tg) {
8902 period = d->rt_period;
8903 runtime = d->rt_runtime;
8904 }
8905
8906 sum += to_ratio(period, runtime);
8907 }
8908
8909 if (sum > total)
8910 return -EINVAL;
8911
8912 return 0;
8913 }
8914
8915 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8916 {
8917 struct rt_schedulable_data data = {
8918 .tg = tg,
8919 .rt_period = period,
8920 .rt_runtime = runtime,
8921 };
8922
8923 return walk_tg_tree(tg_schedulable, tg_nop, &data);
8924 }
8925
8926 static int tg_set_bandwidth(struct task_group *tg,
8927 u64 rt_period, u64 rt_runtime)
8928 {
8929 int i, err = 0;
8930
8931 mutex_lock(&rt_constraints_mutex);
8932 read_lock(&tasklist_lock);
8933 err = __rt_schedulable(tg, rt_period, rt_runtime);
8934 if (err)
8935 goto unlock;
8936
8937 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8938 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8939 tg->rt_bandwidth.rt_runtime = rt_runtime;
8940
8941 for_each_possible_cpu(i) {
8942 struct rt_rq *rt_rq = tg->rt_rq[i];
8943
8944 spin_lock(&rt_rq->rt_runtime_lock);
8945 rt_rq->rt_runtime = rt_runtime;
8946 spin_unlock(&rt_rq->rt_runtime_lock);
8947 }
8948 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8949 unlock:
8950 read_unlock(&tasklist_lock);
8951 mutex_unlock(&rt_constraints_mutex);
8952
8953 return err;
8954 }
8955
8956 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8957 {
8958 u64 rt_runtime, rt_period;
8959
8960 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8961 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8962 if (rt_runtime_us < 0)
8963 rt_runtime = RUNTIME_INF;
8964
8965 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8966 }
8967
8968 long sched_group_rt_runtime(struct task_group *tg)
8969 {
8970 u64 rt_runtime_us;
8971
8972 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8973 return -1;
8974
8975 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8976 do_div(rt_runtime_us, NSEC_PER_USEC);
8977 return rt_runtime_us;
8978 }
8979
8980 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8981 {
8982 u64 rt_runtime, rt_period;
8983
8984 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8985 rt_runtime = tg->rt_bandwidth.rt_runtime;
8986
8987 if (rt_period == 0)
8988 return -EINVAL;
8989
8990 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8991 }
8992
8993 long sched_group_rt_period(struct task_group *tg)
8994 {
8995 u64 rt_period_us;
8996
8997 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8998 do_div(rt_period_us, NSEC_PER_USEC);
8999 return rt_period_us;
9000 }
9001
9002 static int sched_rt_global_constraints(void)
9003 {
9004 u64 runtime, period;
9005 int ret = 0;
9006
9007 if (sysctl_sched_rt_period <= 0)
9008 return -EINVAL;
9009
9010 runtime = global_rt_runtime();
9011 period = global_rt_period();
9012
9013 /*
9014 * Sanity check on the sysctl variables.
9015 */
9016 if (runtime > period && runtime != RUNTIME_INF)
9017 return -EINVAL;
9018
9019 mutex_lock(&rt_constraints_mutex);
9020 read_lock(&tasklist_lock);
9021 ret = __rt_schedulable(NULL, 0, 0);
9022 read_unlock(&tasklist_lock);
9023 mutex_unlock(&rt_constraints_mutex);
9024
9025 return ret;
9026 }
9027 #else /* !CONFIG_RT_GROUP_SCHED */
9028 static int sched_rt_global_constraints(void)
9029 {
9030 unsigned long flags;
9031 int i;
9032
9033 if (sysctl_sched_rt_period <= 0)
9034 return -EINVAL;
9035
9036 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9037 for_each_possible_cpu(i) {
9038 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9039
9040 spin_lock(&rt_rq->rt_runtime_lock);
9041 rt_rq->rt_runtime = global_rt_runtime();
9042 spin_unlock(&rt_rq->rt_runtime_lock);
9043 }
9044 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9045
9046 return 0;
9047 }
9048 #endif /* CONFIG_RT_GROUP_SCHED */
9049
9050 int sched_rt_handler(struct ctl_table *table, int write,
9051 struct file *filp, void __user *buffer, size_t *lenp,
9052 loff_t *ppos)
9053 {
9054 int ret;
9055 int old_period, old_runtime;
9056 static DEFINE_MUTEX(mutex);
9057
9058 mutex_lock(&mutex);
9059 old_period = sysctl_sched_rt_period;
9060 old_runtime = sysctl_sched_rt_runtime;
9061
9062 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
9063
9064 if (!ret && write) {
9065 ret = sched_rt_global_constraints();
9066 if (ret) {
9067 sysctl_sched_rt_period = old_period;
9068 sysctl_sched_rt_runtime = old_runtime;
9069 } else {
9070 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9071 def_rt_bandwidth.rt_period =
9072 ns_to_ktime(global_rt_period());
9073 }
9074 }
9075 mutex_unlock(&mutex);
9076
9077 return ret;
9078 }
9079
9080 #ifdef CONFIG_CGROUP_SCHED
9081
9082 /* return corresponding task_group object of a cgroup */
9083 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9084 {
9085 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9086 struct task_group, css);
9087 }
9088
9089 static struct cgroup_subsys_state *
9090 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9091 {
9092 struct task_group *tg, *parent;
9093
9094 if (!cgrp->parent) {
9095 /* This is early initialization for the top cgroup */
9096 return &init_task_group.css;
9097 }
9098
9099 parent = cgroup_tg(cgrp->parent);
9100 tg = sched_create_group(parent);
9101 if (IS_ERR(tg))
9102 return ERR_PTR(-ENOMEM);
9103
9104 return &tg->css;
9105 }
9106
9107 static void
9108 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9109 {
9110 struct task_group *tg = cgroup_tg(cgrp);
9111
9112 sched_destroy_group(tg);
9113 }
9114
9115 static int
9116 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9117 struct task_struct *tsk)
9118 {
9119 #ifdef CONFIG_RT_GROUP_SCHED
9120 /* Don't accept realtime tasks when there is no way for them to run */
9121 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
9122 return -EINVAL;
9123 #else
9124 /* We don't support RT-tasks being in separate groups */
9125 if (tsk->sched_class != &fair_sched_class)
9126 return -EINVAL;
9127 #endif
9128
9129 return 0;
9130 }
9131
9132 static void
9133 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9134 struct cgroup *old_cont, struct task_struct *tsk)
9135 {
9136 sched_move_task(tsk);
9137 }
9138
9139 #ifdef CONFIG_FAIR_GROUP_SCHED
9140 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9141 u64 shareval)
9142 {
9143 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9144 }
9145
9146 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9147 {
9148 struct task_group *tg = cgroup_tg(cgrp);
9149
9150 return (u64) tg->shares;
9151 }
9152 #endif /* CONFIG_FAIR_GROUP_SCHED */
9153
9154 #ifdef CONFIG_RT_GROUP_SCHED
9155 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9156 s64 val)
9157 {
9158 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
9159 }
9160
9161 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
9162 {
9163 return sched_group_rt_runtime(cgroup_tg(cgrp));
9164 }
9165
9166 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9167 u64 rt_period_us)
9168 {
9169 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9170 }
9171
9172 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9173 {
9174 return sched_group_rt_period(cgroup_tg(cgrp));
9175 }
9176 #endif /* CONFIG_RT_GROUP_SCHED */
9177
9178 static struct cftype cpu_files[] = {
9179 #ifdef CONFIG_FAIR_GROUP_SCHED
9180 {
9181 .name = "shares",
9182 .read_u64 = cpu_shares_read_u64,
9183 .write_u64 = cpu_shares_write_u64,
9184 },
9185 #endif
9186 #ifdef CONFIG_RT_GROUP_SCHED
9187 {
9188 .name = "rt_runtime_us",
9189 .read_s64 = cpu_rt_runtime_read,
9190 .write_s64 = cpu_rt_runtime_write,
9191 },
9192 {
9193 .name = "rt_period_us",
9194 .read_u64 = cpu_rt_period_read_uint,
9195 .write_u64 = cpu_rt_period_write_uint,
9196 },
9197 #endif
9198 };
9199
9200 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9201 {
9202 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9203 }
9204
9205 struct cgroup_subsys cpu_cgroup_subsys = {
9206 .name = "cpu",
9207 .create = cpu_cgroup_create,
9208 .destroy = cpu_cgroup_destroy,
9209 .can_attach = cpu_cgroup_can_attach,
9210 .attach = cpu_cgroup_attach,
9211 .populate = cpu_cgroup_populate,
9212 .subsys_id = cpu_cgroup_subsys_id,
9213 .early_init = 1,
9214 };
9215
9216 #endif /* CONFIG_CGROUP_SCHED */
9217
9218 #ifdef CONFIG_CGROUP_CPUACCT
9219
9220 /*
9221 * CPU accounting code for task groups.
9222 *
9223 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9224 * (balbir@in.ibm.com).
9225 */
9226
9227 /* track cpu usage of a group of tasks */
9228 struct cpuacct {
9229 struct cgroup_subsys_state css;
9230 /* cpuusage holds pointer to a u64-type object on every cpu */
9231 u64 *cpuusage;
9232 };
9233
9234 struct cgroup_subsys cpuacct_subsys;
9235
9236 /* return cpu accounting group corresponding to this container */
9237 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9238 {
9239 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9240 struct cpuacct, css);
9241 }
9242
9243 /* return cpu accounting group to which this task belongs */
9244 static inline struct cpuacct *task_ca(struct task_struct *tsk)
9245 {
9246 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9247 struct cpuacct, css);
9248 }
9249
9250 /* create a new cpu accounting group */
9251 static struct cgroup_subsys_state *cpuacct_create(
9252 struct cgroup_subsys *ss, struct cgroup *cgrp)
9253 {
9254 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9255
9256 if (!ca)
9257 return ERR_PTR(-ENOMEM);
9258
9259 ca->cpuusage = alloc_percpu(u64);
9260 if (!ca->cpuusage) {
9261 kfree(ca);
9262 return ERR_PTR(-ENOMEM);
9263 }
9264
9265 return &ca->css;
9266 }
9267
9268 /* destroy an existing cpu accounting group */
9269 static void
9270 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9271 {
9272 struct cpuacct *ca = cgroup_ca(cgrp);
9273
9274 free_percpu(ca->cpuusage);
9275 kfree(ca);
9276 }
9277
9278 /* return total cpu usage (in nanoseconds) of a group */
9279 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9280 {
9281 struct cpuacct *ca = cgroup_ca(cgrp);
9282 u64 totalcpuusage = 0;
9283 int i;
9284
9285 for_each_possible_cpu(i) {
9286 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9287
9288 /*
9289 * Take rq->lock to make 64-bit addition safe on 32-bit
9290 * platforms.
9291 */
9292 spin_lock_irq(&cpu_rq(i)->lock);
9293 totalcpuusage += *cpuusage;
9294 spin_unlock_irq(&cpu_rq(i)->lock);
9295 }
9296
9297 return totalcpuusage;
9298 }
9299
9300 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9301 u64 reset)
9302 {
9303 struct cpuacct *ca = cgroup_ca(cgrp);
9304 int err = 0;
9305 int i;
9306
9307 if (reset) {
9308 err = -EINVAL;
9309 goto out;
9310 }
9311
9312 for_each_possible_cpu(i) {
9313 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9314
9315 spin_lock_irq(&cpu_rq(i)->lock);
9316 *cpuusage = 0;
9317 spin_unlock_irq(&cpu_rq(i)->lock);
9318 }
9319 out:
9320 return err;
9321 }
9322
9323 static struct cftype files[] = {
9324 {
9325 .name = "usage",
9326 .read_u64 = cpuusage_read,
9327 .write_u64 = cpuusage_write,
9328 },
9329 };
9330
9331 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9332 {
9333 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9334 }
9335
9336 /*
9337 * charge this task's execution time to its accounting group.
9338 *
9339 * called with rq->lock held.
9340 */
9341 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9342 {
9343 struct cpuacct *ca;
9344
9345 if (!cpuacct_subsys.active)
9346 return;
9347
9348 ca = task_ca(tsk);
9349 if (ca) {
9350 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
9351
9352 *cpuusage += cputime;
9353 }
9354 }
9355
9356 struct cgroup_subsys cpuacct_subsys = {
9357 .name = "cpuacct",
9358 .create = cpuacct_create,
9359 .destroy = cpuacct_destroy,
9360 .populate = cpuacct_populate,
9361 .subsys_id = cpuacct_subsys_id,
9362 };
9363 #endif /* CONFIG_CGROUP_CPUACCT */
This page took 0.247619 seconds and 5 git commands to generate.