Merge branch 'rmobile-latest' of git://git.kernel.org/pub/scm/linux/kernel/git/lethal...
[deliverable/linux.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/stop_machine.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/debugfs.h>
71 #include <linux/ctype.h>
72 #include <linux/ftrace.h>
73 #include <linux/slab.h>
74
75 #include <asm/tlb.h>
76 #include <asm/irq_regs.h>
77 #include <asm/mutex.h>
78
79 #include "sched_cpupri.h"
80 #include "workqueue_sched.h"
81 #include "sched_autogroup.h"
82
83 #define CREATE_TRACE_POINTS
84 #include <trace/events/sched.h>
85
86 /*
87 * Convert user-nice values [ -20 ... 0 ... 19 ]
88 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
89 * and back.
90 */
91 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
92 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
93 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
94
95 /*
96 * 'User priority' is the nice value converted to something we
97 * can work with better when scaling various scheduler parameters,
98 * it's a [ 0 ... 39 ] range.
99 */
100 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
101 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
102 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
103
104 /*
105 * Helpers for converting nanosecond timing to jiffy resolution
106 */
107 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
108
109 #define NICE_0_LOAD SCHED_LOAD_SCALE
110 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
111
112 /*
113 * These are the 'tuning knobs' of the scheduler:
114 *
115 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
116 * Timeslices get refilled after they expire.
117 */
118 #define DEF_TIMESLICE (100 * HZ / 1000)
119
120 /*
121 * single value that denotes runtime == period, ie unlimited time.
122 */
123 #define RUNTIME_INF ((u64)~0ULL)
124
125 static inline int rt_policy(int policy)
126 {
127 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
128 return 1;
129 return 0;
130 }
131
132 static inline int task_has_rt_policy(struct task_struct *p)
133 {
134 return rt_policy(p->policy);
135 }
136
137 /*
138 * This is the priority-queue data structure of the RT scheduling class:
139 */
140 struct rt_prio_array {
141 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
142 struct list_head queue[MAX_RT_PRIO];
143 };
144
145 struct rt_bandwidth {
146 /* nests inside the rq lock: */
147 raw_spinlock_t rt_runtime_lock;
148 ktime_t rt_period;
149 u64 rt_runtime;
150 struct hrtimer rt_period_timer;
151 };
152
153 static struct rt_bandwidth def_rt_bandwidth;
154
155 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
156
157 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
158 {
159 struct rt_bandwidth *rt_b =
160 container_of(timer, struct rt_bandwidth, rt_period_timer);
161 ktime_t now;
162 int overrun;
163 int idle = 0;
164
165 for (;;) {
166 now = hrtimer_cb_get_time(timer);
167 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
168
169 if (!overrun)
170 break;
171
172 idle = do_sched_rt_period_timer(rt_b, overrun);
173 }
174
175 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
176 }
177
178 static
179 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
180 {
181 rt_b->rt_period = ns_to_ktime(period);
182 rt_b->rt_runtime = runtime;
183
184 raw_spin_lock_init(&rt_b->rt_runtime_lock);
185
186 hrtimer_init(&rt_b->rt_period_timer,
187 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
188 rt_b->rt_period_timer.function = sched_rt_period_timer;
189 }
190
191 static inline int rt_bandwidth_enabled(void)
192 {
193 return sysctl_sched_rt_runtime >= 0;
194 }
195
196 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
197 {
198 ktime_t now;
199
200 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
201 return;
202
203 if (hrtimer_active(&rt_b->rt_period_timer))
204 return;
205
206 raw_spin_lock(&rt_b->rt_runtime_lock);
207 for (;;) {
208 unsigned long delta;
209 ktime_t soft, hard;
210
211 if (hrtimer_active(&rt_b->rt_period_timer))
212 break;
213
214 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
215 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
216
217 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
218 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
219 delta = ktime_to_ns(ktime_sub(hard, soft));
220 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
221 HRTIMER_MODE_ABS_PINNED, 0);
222 }
223 raw_spin_unlock(&rt_b->rt_runtime_lock);
224 }
225
226 #ifdef CONFIG_RT_GROUP_SCHED
227 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
228 {
229 hrtimer_cancel(&rt_b->rt_period_timer);
230 }
231 #endif
232
233 /*
234 * sched_domains_mutex serializes calls to arch_init_sched_domains,
235 * detach_destroy_domains and partition_sched_domains.
236 */
237 static DEFINE_MUTEX(sched_domains_mutex);
238
239 #ifdef CONFIG_CGROUP_SCHED
240
241 #include <linux/cgroup.h>
242
243 struct cfs_rq;
244
245 static LIST_HEAD(task_groups);
246
247 /* task group related information */
248 struct task_group {
249 struct cgroup_subsys_state css;
250
251 #ifdef CONFIG_FAIR_GROUP_SCHED
252 /* schedulable entities of this group on each cpu */
253 struct sched_entity **se;
254 /* runqueue "owned" by this group on each cpu */
255 struct cfs_rq **cfs_rq;
256 unsigned long shares;
257
258 atomic_t load_weight;
259 #endif
260
261 #ifdef CONFIG_RT_GROUP_SCHED
262 struct sched_rt_entity **rt_se;
263 struct rt_rq **rt_rq;
264
265 struct rt_bandwidth rt_bandwidth;
266 #endif
267
268 struct rcu_head rcu;
269 struct list_head list;
270
271 struct task_group *parent;
272 struct list_head siblings;
273 struct list_head children;
274
275 #ifdef CONFIG_SCHED_AUTOGROUP
276 struct autogroup *autogroup;
277 #endif
278 };
279
280 /* task_group_lock serializes the addition/removal of task groups */
281 static DEFINE_SPINLOCK(task_group_lock);
282
283 #ifdef CONFIG_FAIR_GROUP_SCHED
284
285 # define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
286
287 /*
288 * A weight of 0 or 1 can cause arithmetics problems.
289 * A weight of a cfs_rq is the sum of weights of which entities
290 * are queued on this cfs_rq, so a weight of a entity should not be
291 * too large, so as the shares value of a task group.
292 * (The default weight is 1024 - so there's no practical
293 * limitation from this.)
294 */
295 #define MIN_SHARES 2
296 #define MAX_SHARES (1UL << 18)
297
298 static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
299 #endif
300
301 /* Default task group.
302 * Every task in system belong to this group at bootup.
303 */
304 struct task_group root_task_group;
305
306 #endif /* CONFIG_CGROUP_SCHED */
307
308 /* CFS-related fields in a runqueue */
309 struct cfs_rq {
310 struct load_weight load;
311 unsigned long nr_running;
312
313 u64 exec_clock;
314 u64 min_vruntime;
315
316 struct rb_root tasks_timeline;
317 struct rb_node *rb_leftmost;
318
319 struct list_head tasks;
320 struct list_head *balance_iterator;
321
322 /*
323 * 'curr' points to currently running entity on this cfs_rq.
324 * It is set to NULL otherwise (i.e when none are currently running).
325 */
326 struct sched_entity *curr, *next, *last, *skip;
327
328 unsigned int nr_spread_over;
329
330 #ifdef CONFIG_FAIR_GROUP_SCHED
331 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
332
333 /*
334 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
335 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
336 * (like users, containers etc.)
337 *
338 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
339 * list is used during load balance.
340 */
341 int on_list;
342 struct list_head leaf_cfs_rq_list;
343 struct task_group *tg; /* group that "owns" this runqueue */
344
345 #ifdef CONFIG_SMP
346 /*
347 * the part of load.weight contributed by tasks
348 */
349 unsigned long task_weight;
350
351 /*
352 * h_load = weight * f(tg)
353 *
354 * Where f(tg) is the recursive weight fraction assigned to
355 * this group.
356 */
357 unsigned long h_load;
358
359 /*
360 * Maintaining per-cpu shares distribution for group scheduling
361 *
362 * load_stamp is the last time we updated the load average
363 * load_last is the last time we updated the load average and saw load
364 * load_unacc_exec_time is currently unaccounted execution time
365 */
366 u64 load_avg;
367 u64 load_period;
368 u64 load_stamp, load_last, load_unacc_exec_time;
369
370 unsigned long load_contribution;
371 #endif
372 #endif
373 };
374
375 /* Real-Time classes' related field in a runqueue: */
376 struct rt_rq {
377 struct rt_prio_array active;
378 unsigned long rt_nr_running;
379 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
380 struct {
381 int curr; /* highest queued rt task prio */
382 #ifdef CONFIG_SMP
383 int next; /* next highest */
384 #endif
385 } highest_prio;
386 #endif
387 #ifdef CONFIG_SMP
388 unsigned long rt_nr_migratory;
389 unsigned long rt_nr_total;
390 int overloaded;
391 struct plist_head pushable_tasks;
392 #endif
393 int rt_throttled;
394 u64 rt_time;
395 u64 rt_runtime;
396 /* Nests inside the rq lock: */
397 raw_spinlock_t rt_runtime_lock;
398
399 #ifdef CONFIG_RT_GROUP_SCHED
400 unsigned long rt_nr_boosted;
401
402 struct rq *rq;
403 struct list_head leaf_rt_rq_list;
404 struct task_group *tg;
405 #endif
406 };
407
408 #ifdef CONFIG_SMP
409
410 /*
411 * We add the notion of a root-domain which will be used to define per-domain
412 * variables. Each exclusive cpuset essentially defines an island domain by
413 * fully partitioning the member cpus from any other cpuset. Whenever a new
414 * exclusive cpuset is created, we also create and attach a new root-domain
415 * object.
416 *
417 */
418 struct root_domain {
419 atomic_t refcount;
420 cpumask_var_t span;
421 cpumask_var_t online;
422
423 /*
424 * The "RT overload" flag: it gets set if a CPU has more than
425 * one runnable RT task.
426 */
427 cpumask_var_t rto_mask;
428 atomic_t rto_count;
429 struct cpupri cpupri;
430 };
431
432 /*
433 * By default the system creates a single root-domain with all cpus as
434 * members (mimicking the global state we have today).
435 */
436 static struct root_domain def_root_domain;
437
438 #endif /* CONFIG_SMP */
439
440 /*
441 * This is the main, per-CPU runqueue data structure.
442 *
443 * Locking rule: those places that want to lock multiple runqueues
444 * (such as the load balancing or the thread migration code), lock
445 * acquire operations must be ordered by ascending &runqueue.
446 */
447 struct rq {
448 /* runqueue lock: */
449 raw_spinlock_t lock;
450
451 /*
452 * nr_running and cpu_load should be in the same cacheline because
453 * remote CPUs use both these fields when doing load calculation.
454 */
455 unsigned long nr_running;
456 #define CPU_LOAD_IDX_MAX 5
457 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
458 unsigned long last_load_update_tick;
459 #ifdef CONFIG_NO_HZ
460 u64 nohz_stamp;
461 unsigned char nohz_balance_kick;
462 #endif
463 unsigned int skip_clock_update;
464
465 /* capture load from *all* tasks on this cpu: */
466 struct load_weight load;
467 unsigned long nr_load_updates;
468 u64 nr_switches;
469
470 struct cfs_rq cfs;
471 struct rt_rq rt;
472
473 #ifdef CONFIG_FAIR_GROUP_SCHED
474 /* list of leaf cfs_rq on this cpu: */
475 struct list_head leaf_cfs_rq_list;
476 #endif
477 #ifdef CONFIG_RT_GROUP_SCHED
478 struct list_head leaf_rt_rq_list;
479 #endif
480
481 /*
482 * This is part of a global counter where only the total sum
483 * over all CPUs matters. A task can increase this counter on
484 * one CPU and if it got migrated afterwards it may decrease
485 * it on another CPU. Always updated under the runqueue lock:
486 */
487 unsigned long nr_uninterruptible;
488
489 struct task_struct *curr, *idle, *stop;
490 unsigned long next_balance;
491 struct mm_struct *prev_mm;
492
493 u64 clock;
494 u64 clock_task;
495
496 atomic_t nr_iowait;
497
498 #ifdef CONFIG_SMP
499 struct root_domain *rd;
500 struct sched_domain *sd;
501
502 unsigned long cpu_power;
503
504 unsigned char idle_at_tick;
505 /* For active balancing */
506 int post_schedule;
507 int active_balance;
508 int push_cpu;
509 struct cpu_stop_work active_balance_work;
510 /* cpu of this runqueue: */
511 int cpu;
512 int online;
513
514 unsigned long avg_load_per_task;
515
516 u64 rt_avg;
517 u64 age_stamp;
518 u64 idle_stamp;
519 u64 avg_idle;
520 #endif
521
522 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
523 u64 prev_irq_time;
524 #endif
525
526 /* calc_load related fields */
527 unsigned long calc_load_update;
528 long calc_load_active;
529
530 #ifdef CONFIG_SCHED_HRTICK
531 #ifdef CONFIG_SMP
532 int hrtick_csd_pending;
533 struct call_single_data hrtick_csd;
534 #endif
535 struct hrtimer hrtick_timer;
536 #endif
537
538 #ifdef CONFIG_SCHEDSTATS
539 /* latency stats */
540 struct sched_info rq_sched_info;
541 unsigned long long rq_cpu_time;
542 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
543
544 /* sys_sched_yield() stats */
545 unsigned int yld_count;
546
547 /* schedule() stats */
548 unsigned int sched_switch;
549 unsigned int sched_count;
550 unsigned int sched_goidle;
551
552 /* try_to_wake_up() stats */
553 unsigned int ttwu_count;
554 unsigned int ttwu_local;
555 #endif
556 };
557
558 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
559
560
561 static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
562
563 static inline int cpu_of(struct rq *rq)
564 {
565 #ifdef CONFIG_SMP
566 return rq->cpu;
567 #else
568 return 0;
569 #endif
570 }
571
572 #define rcu_dereference_check_sched_domain(p) \
573 rcu_dereference_check((p), \
574 rcu_read_lock_sched_held() || \
575 lockdep_is_held(&sched_domains_mutex))
576
577 /*
578 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
579 * See detach_destroy_domains: synchronize_sched for details.
580 *
581 * The domain tree of any CPU may only be accessed from within
582 * preempt-disabled sections.
583 */
584 #define for_each_domain(cpu, __sd) \
585 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
586
587 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
588 #define this_rq() (&__get_cpu_var(runqueues))
589 #define task_rq(p) cpu_rq(task_cpu(p))
590 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
591 #define raw_rq() (&__raw_get_cpu_var(runqueues))
592
593 #ifdef CONFIG_CGROUP_SCHED
594
595 /*
596 * Return the group to which this tasks belongs.
597 *
598 * We use task_subsys_state_check() and extend the RCU verification
599 * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
600 * holds that lock for each task it moves into the cgroup. Therefore
601 * by holding that lock, we pin the task to the current cgroup.
602 */
603 static inline struct task_group *task_group(struct task_struct *p)
604 {
605 struct task_group *tg;
606 struct cgroup_subsys_state *css;
607
608 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
609 lockdep_is_held(&task_rq(p)->lock));
610 tg = container_of(css, struct task_group, css);
611
612 return autogroup_task_group(p, tg);
613 }
614
615 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
616 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
617 {
618 #ifdef CONFIG_FAIR_GROUP_SCHED
619 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
620 p->se.parent = task_group(p)->se[cpu];
621 #endif
622
623 #ifdef CONFIG_RT_GROUP_SCHED
624 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
625 p->rt.parent = task_group(p)->rt_se[cpu];
626 #endif
627 }
628
629 #else /* CONFIG_CGROUP_SCHED */
630
631 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
632 static inline struct task_group *task_group(struct task_struct *p)
633 {
634 return NULL;
635 }
636
637 #endif /* CONFIG_CGROUP_SCHED */
638
639 static void update_rq_clock_task(struct rq *rq, s64 delta);
640
641 static void update_rq_clock(struct rq *rq)
642 {
643 s64 delta;
644
645 if (rq->skip_clock_update)
646 return;
647
648 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
649 rq->clock += delta;
650 update_rq_clock_task(rq, delta);
651 }
652
653 /*
654 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
655 */
656 #ifdef CONFIG_SCHED_DEBUG
657 # define const_debug __read_mostly
658 #else
659 # define const_debug static const
660 #endif
661
662 /**
663 * runqueue_is_locked - Returns true if the current cpu runqueue is locked
664 * @cpu: the processor in question.
665 *
666 * This interface allows printk to be called with the runqueue lock
667 * held and know whether or not it is OK to wake up the klogd.
668 */
669 int runqueue_is_locked(int cpu)
670 {
671 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
672 }
673
674 /*
675 * Debugging: various feature bits
676 */
677
678 #define SCHED_FEAT(name, enabled) \
679 __SCHED_FEAT_##name ,
680
681 enum {
682 #include "sched_features.h"
683 };
684
685 #undef SCHED_FEAT
686
687 #define SCHED_FEAT(name, enabled) \
688 (1UL << __SCHED_FEAT_##name) * enabled |
689
690 const_debug unsigned int sysctl_sched_features =
691 #include "sched_features.h"
692 0;
693
694 #undef SCHED_FEAT
695
696 #ifdef CONFIG_SCHED_DEBUG
697 #define SCHED_FEAT(name, enabled) \
698 #name ,
699
700 static __read_mostly char *sched_feat_names[] = {
701 #include "sched_features.h"
702 NULL
703 };
704
705 #undef SCHED_FEAT
706
707 static int sched_feat_show(struct seq_file *m, void *v)
708 {
709 int i;
710
711 for (i = 0; sched_feat_names[i]; i++) {
712 if (!(sysctl_sched_features & (1UL << i)))
713 seq_puts(m, "NO_");
714 seq_printf(m, "%s ", sched_feat_names[i]);
715 }
716 seq_puts(m, "\n");
717
718 return 0;
719 }
720
721 static ssize_t
722 sched_feat_write(struct file *filp, const char __user *ubuf,
723 size_t cnt, loff_t *ppos)
724 {
725 char buf[64];
726 char *cmp;
727 int neg = 0;
728 int i;
729
730 if (cnt > 63)
731 cnt = 63;
732
733 if (copy_from_user(&buf, ubuf, cnt))
734 return -EFAULT;
735
736 buf[cnt] = 0;
737 cmp = strstrip(buf);
738
739 if (strncmp(cmp, "NO_", 3) == 0) {
740 neg = 1;
741 cmp += 3;
742 }
743
744 for (i = 0; sched_feat_names[i]; i++) {
745 if (strcmp(cmp, sched_feat_names[i]) == 0) {
746 if (neg)
747 sysctl_sched_features &= ~(1UL << i);
748 else
749 sysctl_sched_features |= (1UL << i);
750 break;
751 }
752 }
753
754 if (!sched_feat_names[i])
755 return -EINVAL;
756
757 *ppos += cnt;
758
759 return cnt;
760 }
761
762 static int sched_feat_open(struct inode *inode, struct file *filp)
763 {
764 return single_open(filp, sched_feat_show, NULL);
765 }
766
767 static const struct file_operations sched_feat_fops = {
768 .open = sched_feat_open,
769 .write = sched_feat_write,
770 .read = seq_read,
771 .llseek = seq_lseek,
772 .release = single_release,
773 };
774
775 static __init int sched_init_debug(void)
776 {
777 debugfs_create_file("sched_features", 0644, NULL, NULL,
778 &sched_feat_fops);
779
780 return 0;
781 }
782 late_initcall(sched_init_debug);
783
784 #endif
785
786 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
787
788 /*
789 * Number of tasks to iterate in a single balance run.
790 * Limited because this is done with IRQs disabled.
791 */
792 const_debug unsigned int sysctl_sched_nr_migrate = 32;
793
794 /*
795 * period over which we average the RT time consumption, measured
796 * in ms.
797 *
798 * default: 1s
799 */
800 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
801
802 /*
803 * period over which we measure -rt task cpu usage in us.
804 * default: 1s
805 */
806 unsigned int sysctl_sched_rt_period = 1000000;
807
808 static __read_mostly int scheduler_running;
809
810 /*
811 * part of the period that we allow rt tasks to run in us.
812 * default: 0.95s
813 */
814 int sysctl_sched_rt_runtime = 950000;
815
816 static inline u64 global_rt_period(void)
817 {
818 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
819 }
820
821 static inline u64 global_rt_runtime(void)
822 {
823 if (sysctl_sched_rt_runtime < 0)
824 return RUNTIME_INF;
825
826 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
827 }
828
829 #ifndef prepare_arch_switch
830 # define prepare_arch_switch(next) do { } while (0)
831 #endif
832 #ifndef finish_arch_switch
833 # define finish_arch_switch(prev) do { } while (0)
834 #endif
835
836 static inline int task_current(struct rq *rq, struct task_struct *p)
837 {
838 return rq->curr == p;
839 }
840
841 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
842 static inline int task_running(struct rq *rq, struct task_struct *p)
843 {
844 return task_current(rq, p);
845 }
846
847 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
848 {
849 }
850
851 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
852 {
853 #ifdef CONFIG_DEBUG_SPINLOCK
854 /* this is a valid case when another task releases the spinlock */
855 rq->lock.owner = current;
856 #endif
857 /*
858 * If we are tracking spinlock dependencies then we have to
859 * fix up the runqueue lock - which gets 'carried over' from
860 * prev into current:
861 */
862 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
863
864 raw_spin_unlock_irq(&rq->lock);
865 }
866
867 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
868 static inline int task_running(struct rq *rq, struct task_struct *p)
869 {
870 #ifdef CONFIG_SMP
871 return p->oncpu;
872 #else
873 return task_current(rq, p);
874 #endif
875 }
876
877 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
878 {
879 #ifdef CONFIG_SMP
880 /*
881 * We can optimise this out completely for !SMP, because the
882 * SMP rebalancing from interrupt is the only thing that cares
883 * here.
884 */
885 next->oncpu = 1;
886 #endif
887 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
888 raw_spin_unlock_irq(&rq->lock);
889 #else
890 raw_spin_unlock(&rq->lock);
891 #endif
892 }
893
894 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
895 {
896 #ifdef CONFIG_SMP
897 /*
898 * After ->oncpu is cleared, the task can be moved to a different CPU.
899 * We must ensure this doesn't happen until the switch is completely
900 * finished.
901 */
902 smp_wmb();
903 prev->oncpu = 0;
904 #endif
905 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
906 local_irq_enable();
907 #endif
908 }
909 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
910
911 /*
912 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
913 * against ttwu().
914 */
915 static inline int task_is_waking(struct task_struct *p)
916 {
917 return unlikely(p->state == TASK_WAKING);
918 }
919
920 /*
921 * __task_rq_lock - lock the runqueue a given task resides on.
922 * Must be called interrupts disabled.
923 */
924 static inline struct rq *__task_rq_lock(struct task_struct *p)
925 __acquires(rq->lock)
926 {
927 struct rq *rq;
928
929 for (;;) {
930 rq = task_rq(p);
931 raw_spin_lock(&rq->lock);
932 if (likely(rq == task_rq(p)))
933 return rq;
934 raw_spin_unlock(&rq->lock);
935 }
936 }
937
938 /*
939 * task_rq_lock - lock the runqueue a given task resides on and disable
940 * interrupts. Note the ordering: we can safely lookup the task_rq without
941 * explicitly disabling preemption.
942 */
943 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
944 __acquires(rq->lock)
945 {
946 struct rq *rq;
947
948 for (;;) {
949 local_irq_save(*flags);
950 rq = task_rq(p);
951 raw_spin_lock(&rq->lock);
952 if (likely(rq == task_rq(p)))
953 return rq;
954 raw_spin_unlock_irqrestore(&rq->lock, *flags);
955 }
956 }
957
958 static void __task_rq_unlock(struct rq *rq)
959 __releases(rq->lock)
960 {
961 raw_spin_unlock(&rq->lock);
962 }
963
964 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
965 __releases(rq->lock)
966 {
967 raw_spin_unlock_irqrestore(&rq->lock, *flags);
968 }
969
970 /*
971 * this_rq_lock - lock this runqueue and disable interrupts.
972 */
973 static struct rq *this_rq_lock(void)
974 __acquires(rq->lock)
975 {
976 struct rq *rq;
977
978 local_irq_disable();
979 rq = this_rq();
980 raw_spin_lock(&rq->lock);
981
982 return rq;
983 }
984
985 #ifdef CONFIG_SCHED_HRTICK
986 /*
987 * Use HR-timers to deliver accurate preemption points.
988 *
989 * Its all a bit involved since we cannot program an hrt while holding the
990 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
991 * reschedule event.
992 *
993 * When we get rescheduled we reprogram the hrtick_timer outside of the
994 * rq->lock.
995 */
996
997 /*
998 * Use hrtick when:
999 * - enabled by features
1000 * - hrtimer is actually high res
1001 */
1002 static inline int hrtick_enabled(struct rq *rq)
1003 {
1004 if (!sched_feat(HRTICK))
1005 return 0;
1006 if (!cpu_active(cpu_of(rq)))
1007 return 0;
1008 return hrtimer_is_hres_active(&rq->hrtick_timer);
1009 }
1010
1011 static void hrtick_clear(struct rq *rq)
1012 {
1013 if (hrtimer_active(&rq->hrtick_timer))
1014 hrtimer_cancel(&rq->hrtick_timer);
1015 }
1016
1017 /*
1018 * High-resolution timer tick.
1019 * Runs from hardirq context with interrupts disabled.
1020 */
1021 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1022 {
1023 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1024
1025 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1026
1027 raw_spin_lock(&rq->lock);
1028 update_rq_clock(rq);
1029 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1030 raw_spin_unlock(&rq->lock);
1031
1032 return HRTIMER_NORESTART;
1033 }
1034
1035 #ifdef CONFIG_SMP
1036 /*
1037 * called from hardirq (IPI) context
1038 */
1039 static void __hrtick_start(void *arg)
1040 {
1041 struct rq *rq = arg;
1042
1043 raw_spin_lock(&rq->lock);
1044 hrtimer_restart(&rq->hrtick_timer);
1045 rq->hrtick_csd_pending = 0;
1046 raw_spin_unlock(&rq->lock);
1047 }
1048
1049 /*
1050 * Called to set the hrtick timer state.
1051 *
1052 * called with rq->lock held and irqs disabled
1053 */
1054 static void hrtick_start(struct rq *rq, u64 delay)
1055 {
1056 struct hrtimer *timer = &rq->hrtick_timer;
1057 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1058
1059 hrtimer_set_expires(timer, time);
1060
1061 if (rq == this_rq()) {
1062 hrtimer_restart(timer);
1063 } else if (!rq->hrtick_csd_pending) {
1064 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1065 rq->hrtick_csd_pending = 1;
1066 }
1067 }
1068
1069 static int
1070 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1071 {
1072 int cpu = (int)(long)hcpu;
1073
1074 switch (action) {
1075 case CPU_UP_CANCELED:
1076 case CPU_UP_CANCELED_FROZEN:
1077 case CPU_DOWN_PREPARE:
1078 case CPU_DOWN_PREPARE_FROZEN:
1079 case CPU_DEAD:
1080 case CPU_DEAD_FROZEN:
1081 hrtick_clear(cpu_rq(cpu));
1082 return NOTIFY_OK;
1083 }
1084
1085 return NOTIFY_DONE;
1086 }
1087
1088 static __init void init_hrtick(void)
1089 {
1090 hotcpu_notifier(hotplug_hrtick, 0);
1091 }
1092 #else
1093 /*
1094 * Called to set the hrtick timer state.
1095 *
1096 * called with rq->lock held and irqs disabled
1097 */
1098 static void hrtick_start(struct rq *rq, u64 delay)
1099 {
1100 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1101 HRTIMER_MODE_REL_PINNED, 0);
1102 }
1103
1104 static inline void init_hrtick(void)
1105 {
1106 }
1107 #endif /* CONFIG_SMP */
1108
1109 static void init_rq_hrtick(struct rq *rq)
1110 {
1111 #ifdef CONFIG_SMP
1112 rq->hrtick_csd_pending = 0;
1113
1114 rq->hrtick_csd.flags = 0;
1115 rq->hrtick_csd.func = __hrtick_start;
1116 rq->hrtick_csd.info = rq;
1117 #endif
1118
1119 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1120 rq->hrtick_timer.function = hrtick;
1121 }
1122 #else /* CONFIG_SCHED_HRTICK */
1123 static inline void hrtick_clear(struct rq *rq)
1124 {
1125 }
1126
1127 static inline void init_rq_hrtick(struct rq *rq)
1128 {
1129 }
1130
1131 static inline void init_hrtick(void)
1132 {
1133 }
1134 #endif /* CONFIG_SCHED_HRTICK */
1135
1136 /*
1137 * resched_task - mark a task 'to be rescheduled now'.
1138 *
1139 * On UP this means the setting of the need_resched flag, on SMP it
1140 * might also involve a cross-CPU call to trigger the scheduler on
1141 * the target CPU.
1142 */
1143 #ifdef CONFIG_SMP
1144
1145 #ifndef tsk_is_polling
1146 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1147 #endif
1148
1149 static void resched_task(struct task_struct *p)
1150 {
1151 int cpu;
1152
1153 assert_raw_spin_locked(&task_rq(p)->lock);
1154
1155 if (test_tsk_need_resched(p))
1156 return;
1157
1158 set_tsk_need_resched(p);
1159
1160 cpu = task_cpu(p);
1161 if (cpu == smp_processor_id())
1162 return;
1163
1164 /* NEED_RESCHED must be visible before we test polling */
1165 smp_mb();
1166 if (!tsk_is_polling(p))
1167 smp_send_reschedule(cpu);
1168 }
1169
1170 static void resched_cpu(int cpu)
1171 {
1172 struct rq *rq = cpu_rq(cpu);
1173 unsigned long flags;
1174
1175 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
1176 return;
1177 resched_task(cpu_curr(cpu));
1178 raw_spin_unlock_irqrestore(&rq->lock, flags);
1179 }
1180
1181 #ifdef CONFIG_NO_HZ
1182 /*
1183 * In the semi idle case, use the nearest busy cpu for migrating timers
1184 * from an idle cpu. This is good for power-savings.
1185 *
1186 * We don't do similar optimization for completely idle system, as
1187 * selecting an idle cpu will add more delays to the timers than intended
1188 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1189 */
1190 int get_nohz_timer_target(void)
1191 {
1192 int cpu = smp_processor_id();
1193 int i;
1194 struct sched_domain *sd;
1195
1196 for_each_domain(cpu, sd) {
1197 for_each_cpu(i, sched_domain_span(sd))
1198 if (!idle_cpu(i))
1199 return i;
1200 }
1201 return cpu;
1202 }
1203 /*
1204 * When add_timer_on() enqueues a timer into the timer wheel of an
1205 * idle CPU then this timer might expire before the next timer event
1206 * which is scheduled to wake up that CPU. In case of a completely
1207 * idle system the next event might even be infinite time into the
1208 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1209 * leaves the inner idle loop so the newly added timer is taken into
1210 * account when the CPU goes back to idle and evaluates the timer
1211 * wheel for the next timer event.
1212 */
1213 void wake_up_idle_cpu(int cpu)
1214 {
1215 struct rq *rq = cpu_rq(cpu);
1216
1217 if (cpu == smp_processor_id())
1218 return;
1219
1220 /*
1221 * This is safe, as this function is called with the timer
1222 * wheel base lock of (cpu) held. When the CPU is on the way
1223 * to idle and has not yet set rq->curr to idle then it will
1224 * be serialized on the timer wheel base lock and take the new
1225 * timer into account automatically.
1226 */
1227 if (rq->curr != rq->idle)
1228 return;
1229
1230 /*
1231 * We can set TIF_RESCHED on the idle task of the other CPU
1232 * lockless. The worst case is that the other CPU runs the
1233 * idle task through an additional NOOP schedule()
1234 */
1235 set_tsk_need_resched(rq->idle);
1236
1237 /* NEED_RESCHED must be visible before we test polling */
1238 smp_mb();
1239 if (!tsk_is_polling(rq->idle))
1240 smp_send_reschedule(cpu);
1241 }
1242
1243 #endif /* CONFIG_NO_HZ */
1244
1245 static u64 sched_avg_period(void)
1246 {
1247 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1248 }
1249
1250 static void sched_avg_update(struct rq *rq)
1251 {
1252 s64 period = sched_avg_period();
1253
1254 while ((s64)(rq->clock - rq->age_stamp) > period) {
1255 /*
1256 * Inline assembly required to prevent the compiler
1257 * optimising this loop into a divmod call.
1258 * See __iter_div_u64_rem() for another example of this.
1259 */
1260 asm("" : "+rm" (rq->age_stamp));
1261 rq->age_stamp += period;
1262 rq->rt_avg /= 2;
1263 }
1264 }
1265
1266 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1267 {
1268 rq->rt_avg += rt_delta;
1269 sched_avg_update(rq);
1270 }
1271
1272 #else /* !CONFIG_SMP */
1273 static void resched_task(struct task_struct *p)
1274 {
1275 assert_raw_spin_locked(&task_rq(p)->lock);
1276 set_tsk_need_resched(p);
1277 }
1278
1279 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1280 {
1281 }
1282
1283 static void sched_avg_update(struct rq *rq)
1284 {
1285 }
1286 #endif /* CONFIG_SMP */
1287
1288 #if BITS_PER_LONG == 32
1289 # define WMULT_CONST (~0UL)
1290 #else
1291 # define WMULT_CONST (1UL << 32)
1292 #endif
1293
1294 #define WMULT_SHIFT 32
1295
1296 /*
1297 * Shift right and round:
1298 */
1299 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1300
1301 /*
1302 * delta *= weight / lw
1303 */
1304 static unsigned long
1305 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1306 struct load_weight *lw)
1307 {
1308 u64 tmp;
1309
1310 if (!lw->inv_weight) {
1311 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1312 lw->inv_weight = 1;
1313 else
1314 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1315 / (lw->weight+1);
1316 }
1317
1318 tmp = (u64)delta_exec * weight;
1319 /*
1320 * Check whether we'd overflow the 64-bit multiplication:
1321 */
1322 if (unlikely(tmp > WMULT_CONST))
1323 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1324 WMULT_SHIFT/2);
1325 else
1326 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1327
1328 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1329 }
1330
1331 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1332 {
1333 lw->weight += inc;
1334 lw->inv_weight = 0;
1335 }
1336
1337 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1338 {
1339 lw->weight -= dec;
1340 lw->inv_weight = 0;
1341 }
1342
1343 static inline void update_load_set(struct load_weight *lw, unsigned long w)
1344 {
1345 lw->weight = w;
1346 lw->inv_weight = 0;
1347 }
1348
1349 /*
1350 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1351 * of tasks with abnormal "nice" values across CPUs the contribution that
1352 * each task makes to its run queue's load is weighted according to its
1353 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1354 * scaled version of the new time slice allocation that they receive on time
1355 * slice expiry etc.
1356 */
1357
1358 #define WEIGHT_IDLEPRIO 3
1359 #define WMULT_IDLEPRIO 1431655765
1360
1361 /*
1362 * Nice levels are multiplicative, with a gentle 10% change for every
1363 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1364 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1365 * that remained on nice 0.
1366 *
1367 * The "10% effect" is relative and cumulative: from _any_ nice level,
1368 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1369 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1370 * If a task goes up by ~10% and another task goes down by ~10% then
1371 * the relative distance between them is ~25%.)
1372 */
1373 static const int prio_to_weight[40] = {
1374 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1375 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1376 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1377 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1378 /* 0 */ 1024, 820, 655, 526, 423,
1379 /* 5 */ 335, 272, 215, 172, 137,
1380 /* 10 */ 110, 87, 70, 56, 45,
1381 /* 15 */ 36, 29, 23, 18, 15,
1382 };
1383
1384 /*
1385 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1386 *
1387 * In cases where the weight does not change often, we can use the
1388 * precalculated inverse to speed up arithmetics by turning divisions
1389 * into multiplications:
1390 */
1391 static const u32 prio_to_wmult[40] = {
1392 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1393 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1394 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1395 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1396 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1397 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1398 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1399 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1400 };
1401
1402 /* Time spent by the tasks of the cpu accounting group executing in ... */
1403 enum cpuacct_stat_index {
1404 CPUACCT_STAT_USER, /* ... user mode */
1405 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1406
1407 CPUACCT_STAT_NSTATS,
1408 };
1409
1410 #ifdef CONFIG_CGROUP_CPUACCT
1411 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1412 static void cpuacct_update_stats(struct task_struct *tsk,
1413 enum cpuacct_stat_index idx, cputime_t val);
1414 #else
1415 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1416 static inline void cpuacct_update_stats(struct task_struct *tsk,
1417 enum cpuacct_stat_index idx, cputime_t val) {}
1418 #endif
1419
1420 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1421 {
1422 update_load_add(&rq->load, load);
1423 }
1424
1425 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1426 {
1427 update_load_sub(&rq->load, load);
1428 }
1429
1430 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1431 typedef int (*tg_visitor)(struct task_group *, void *);
1432
1433 /*
1434 * Iterate the full tree, calling @down when first entering a node and @up when
1435 * leaving it for the final time.
1436 */
1437 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1438 {
1439 struct task_group *parent, *child;
1440 int ret;
1441
1442 rcu_read_lock();
1443 parent = &root_task_group;
1444 down:
1445 ret = (*down)(parent, data);
1446 if (ret)
1447 goto out_unlock;
1448 list_for_each_entry_rcu(child, &parent->children, siblings) {
1449 parent = child;
1450 goto down;
1451
1452 up:
1453 continue;
1454 }
1455 ret = (*up)(parent, data);
1456 if (ret)
1457 goto out_unlock;
1458
1459 child = parent;
1460 parent = parent->parent;
1461 if (parent)
1462 goto up;
1463 out_unlock:
1464 rcu_read_unlock();
1465
1466 return ret;
1467 }
1468
1469 static int tg_nop(struct task_group *tg, void *data)
1470 {
1471 return 0;
1472 }
1473 #endif
1474
1475 #ifdef CONFIG_SMP
1476 /* Used instead of source_load when we know the type == 0 */
1477 static unsigned long weighted_cpuload(const int cpu)
1478 {
1479 return cpu_rq(cpu)->load.weight;
1480 }
1481
1482 /*
1483 * Return a low guess at the load of a migration-source cpu weighted
1484 * according to the scheduling class and "nice" value.
1485 *
1486 * We want to under-estimate the load of migration sources, to
1487 * balance conservatively.
1488 */
1489 static unsigned long source_load(int cpu, int type)
1490 {
1491 struct rq *rq = cpu_rq(cpu);
1492 unsigned long total = weighted_cpuload(cpu);
1493
1494 if (type == 0 || !sched_feat(LB_BIAS))
1495 return total;
1496
1497 return min(rq->cpu_load[type-1], total);
1498 }
1499
1500 /*
1501 * Return a high guess at the load of a migration-target cpu weighted
1502 * according to the scheduling class and "nice" value.
1503 */
1504 static unsigned long target_load(int cpu, int type)
1505 {
1506 struct rq *rq = cpu_rq(cpu);
1507 unsigned long total = weighted_cpuload(cpu);
1508
1509 if (type == 0 || !sched_feat(LB_BIAS))
1510 return total;
1511
1512 return max(rq->cpu_load[type-1], total);
1513 }
1514
1515 static unsigned long power_of(int cpu)
1516 {
1517 return cpu_rq(cpu)->cpu_power;
1518 }
1519
1520 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1521
1522 static unsigned long cpu_avg_load_per_task(int cpu)
1523 {
1524 struct rq *rq = cpu_rq(cpu);
1525 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1526
1527 if (nr_running)
1528 rq->avg_load_per_task = rq->load.weight / nr_running;
1529 else
1530 rq->avg_load_per_task = 0;
1531
1532 return rq->avg_load_per_task;
1533 }
1534
1535 #ifdef CONFIG_FAIR_GROUP_SCHED
1536
1537 /*
1538 * Compute the cpu's hierarchical load factor for each task group.
1539 * This needs to be done in a top-down fashion because the load of a child
1540 * group is a fraction of its parents load.
1541 */
1542 static int tg_load_down(struct task_group *tg, void *data)
1543 {
1544 unsigned long load;
1545 long cpu = (long)data;
1546
1547 if (!tg->parent) {
1548 load = cpu_rq(cpu)->load.weight;
1549 } else {
1550 load = tg->parent->cfs_rq[cpu]->h_load;
1551 load *= tg->se[cpu]->load.weight;
1552 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1553 }
1554
1555 tg->cfs_rq[cpu]->h_load = load;
1556
1557 return 0;
1558 }
1559
1560 static void update_h_load(long cpu)
1561 {
1562 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1563 }
1564
1565 #endif
1566
1567 #ifdef CONFIG_PREEMPT
1568
1569 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1570
1571 /*
1572 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1573 * way at the expense of forcing extra atomic operations in all
1574 * invocations. This assures that the double_lock is acquired using the
1575 * same underlying policy as the spinlock_t on this architecture, which
1576 * reduces latency compared to the unfair variant below. However, it
1577 * also adds more overhead and therefore may reduce throughput.
1578 */
1579 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1580 __releases(this_rq->lock)
1581 __acquires(busiest->lock)
1582 __acquires(this_rq->lock)
1583 {
1584 raw_spin_unlock(&this_rq->lock);
1585 double_rq_lock(this_rq, busiest);
1586
1587 return 1;
1588 }
1589
1590 #else
1591 /*
1592 * Unfair double_lock_balance: Optimizes throughput at the expense of
1593 * latency by eliminating extra atomic operations when the locks are
1594 * already in proper order on entry. This favors lower cpu-ids and will
1595 * grant the double lock to lower cpus over higher ids under contention,
1596 * regardless of entry order into the function.
1597 */
1598 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1599 __releases(this_rq->lock)
1600 __acquires(busiest->lock)
1601 __acquires(this_rq->lock)
1602 {
1603 int ret = 0;
1604
1605 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1606 if (busiest < this_rq) {
1607 raw_spin_unlock(&this_rq->lock);
1608 raw_spin_lock(&busiest->lock);
1609 raw_spin_lock_nested(&this_rq->lock,
1610 SINGLE_DEPTH_NESTING);
1611 ret = 1;
1612 } else
1613 raw_spin_lock_nested(&busiest->lock,
1614 SINGLE_DEPTH_NESTING);
1615 }
1616 return ret;
1617 }
1618
1619 #endif /* CONFIG_PREEMPT */
1620
1621 /*
1622 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1623 */
1624 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1625 {
1626 if (unlikely(!irqs_disabled())) {
1627 /* printk() doesn't work good under rq->lock */
1628 raw_spin_unlock(&this_rq->lock);
1629 BUG_ON(1);
1630 }
1631
1632 return _double_lock_balance(this_rq, busiest);
1633 }
1634
1635 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1636 __releases(busiest->lock)
1637 {
1638 raw_spin_unlock(&busiest->lock);
1639 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1640 }
1641
1642 /*
1643 * double_rq_lock - safely lock two runqueues
1644 *
1645 * Note this does not disable interrupts like task_rq_lock,
1646 * you need to do so manually before calling.
1647 */
1648 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1649 __acquires(rq1->lock)
1650 __acquires(rq2->lock)
1651 {
1652 BUG_ON(!irqs_disabled());
1653 if (rq1 == rq2) {
1654 raw_spin_lock(&rq1->lock);
1655 __acquire(rq2->lock); /* Fake it out ;) */
1656 } else {
1657 if (rq1 < rq2) {
1658 raw_spin_lock(&rq1->lock);
1659 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1660 } else {
1661 raw_spin_lock(&rq2->lock);
1662 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1663 }
1664 }
1665 }
1666
1667 /*
1668 * double_rq_unlock - safely unlock two runqueues
1669 *
1670 * Note this does not restore interrupts like task_rq_unlock,
1671 * you need to do so manually after calling.
1672 */
1673 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1674 __releases(rq1->lock)
1675 __releases(rq2->lock)
1676 {
1677 raw_spin_unlock(&rq1->lock);
1678 if (rq1 != rq2)
1679 raw_spin_unlock(&rq2->lock);
1680 else
1681 __release(rq2->lock);
1682 }
1683
1684 #else /* CONFIG_SMP */
1685
1686 /*
1687 * double_rq_lock - safely lock two runqueues
1688 *
1689 * Note this does not disable interrupts like task_rq_lock,
1690 * you need to do so manually before calling.
1691 */
1692 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1693 __acquires(rq1->lock)
1694 __acquires(rq2->lock)
1695 {
1696 BUG_ON(!irqs_disabled());
1697 BUG_ON(rq1 != rq2);
1698 raw_spin_lock(&rq1->lock);
1699 __acquire(rq2->lock); /* Fake it out ;) */
1700 }
1701
1702 /*
1703 * double_rq_unlock - safely unlock two runqueues
1704 *
1705 * Note this does not restore interrupts like task_rq_unlock,
1706 * you need to do so manually after calling.
1707 */
1708 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1709 __releases(rq1->lock)
1710 __releases(rq2->lock)
1711 {
1712 BUG_ON(rq1 != rq2);
1713 raw_spin_unlock(&rq1->lock);
1714 __release(rq2->lock);
1715 }
1716
1717 #endif
1718
1719 static void calc_load_account_idle(struct rq *this_rq);
1720 static void update_sysctl(void);
1721 static int get_update_sysctl_factor(void);
1722 static void update_cpu_load(struct rq *this_rq);
1723
1724 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1725 {
1726 set_task_rq(p, cpu);
1727 #ifdef CONFIG_SMP
1728 /*
1729 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1730 * successfuly executed on another CPU. We must ensure that updates of
1731 * per-task data have been completed by this moment.
1732 */
1733 smp_wmb();
1734 task_thread_info(p)->cpu = cpu;
1735 #endif
1736 }
1737
1738 static const struct sched_class rt_sched_class;
1739
1740 #define sched_class_highest (&stop_sched_class)
1741 #define for_each_class(class) \
1742 for (class = sched_class_highest; class; class = class->next)
1743
1744 #include "sched_stats.h"
1745
1746 static void inc_nr_running(struct rq *rq)
1747 {
1748 rq->nr_running++;
1749 }
1750
1751 static void dec_nr_running(struct rq *rq)
1752 {
1753 rq->nr_running--;
1754 }
1755
1756 static void set_load_weight(struct task_struct *p)
1757 {
1758 /*
1759 * SCHED_IDLE tasks get minimal weight:
1760 */
1761 if (p->policy == SCHED_IDLE) {
1762 p->se.load.weight = WEIGHT_IDLEPRIO;
1763 p->se.load.inv_weight = WMULT_IDLEPRIO;
1764 return;
1765 }
1766
1767 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1768 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1769 }
1770
1771 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1772 {
1773 update_rq_clock(rq);
1774 sched_info_queued(p);
1775 p->sched_class->enqueue_task(rq, p, flags);
1776 p->se.on_rq = 1;
1777 }
1778
1779 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1780 {
1781 update_rq_clock(rq);
1782 sched_info_dequeued(p);
1783 p->sched_class->dequeue_task(rq, p, flags);
1784 p->se.on_rq = 0;
1785 }
1786
1787 /*
1788 * activate_task - move a task to the runqueue.
1789 */
1790 static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1791 {
1792 if (task_contributes_to_load(p))
1793 rq->nr_uninterruptible--;
1794
1795 enqueue_task(rq, p, flags);
1796 inc_nr_running(rq);
1797 }
1798
1799 /*
1800 * deactivate_task - remove a task from the runqueue.
1801 */
1802 static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1803 {
1804 if (task_contributes_to_load(p))
1805 rq->nr_uninterruptible++;
1806
1807 dequeue_task(rq, p, flags);
1808 dec_nr_running(rq);
1809 }
1810
1811 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1812
1813 /*
1814 * There are no locks covering percpu hardirq/softirq time.
1815 * They are only modified in account_system_vtime, on corresponding CPU
1816 * with interrupts disabled. So, writes are safe.
1817 * They are read and saved off onto struct rq in update_rq_clock().
1818 * This may result in other CPU reading this CPU's irq time and can
1819 * race with irq/account_system_vtime on this CPU. We would either get old
1820 * or new value with a side effect of accounting a slice of irq time to wrong
1821 * task when irq is in progress while we read rq->clock. That is a worthy
1822 * compromise in place of having locks on each irq in account_system_time.
1823 */
1824 static DEFINE_PER_CPU(u64, cpu_hardirq_time);
1825 static DEFINE_PER_CPU(u64, cpu_softirq_time);
1826
1827 static DEFINE_PER_CPU(u64, irq_start_time);
1828 static int sched_clock_irqtime;
1829
1830 void enable_sched_clock_irqtime(void)
1831 {
1832 sched_clock_irqtime = 1;
1833 }
1834
1835 void disable_sched_clock_irqtime(void)
1836 {
1837 sched_clock_irqtime = 0;
1838 }
1839
1840 #ifndef CONFIG_64BIT
1841 static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
1842
1843 static inline void irq_time_write_begin(void)
1844 {
1845 __this_cpu_inc(irq_time_seq.sequence);
1846 smp_wmb();
1847 }
1848
1849 static inline void irq_time_write_end(void)
1850 {
1851 smp_wmb();
1852 __this_cpu_inc(irq_time_seq.sequence);
1853 }
1854
1855 static inline u64 irq_time_read(int cpu)
1856 {
1857 u64 irq_time;
1858 unsigned seq;
1859
1860 do {
1861 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1862 irq_time = per_cpu(cpu_softirq_time, cpu) +
1863 per_cpu(cpu_hardirq_time, cpu);
1864 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1865
1866 return irq_time;
1867 }
1868 #else /* CONFIG_64BIT */
1869 static inline void irq_time_write_begin(void)
1870 {
1871 }
1872
1873 static inline void irq_time_write_end(void)
1874 {
1875 }
1876
1877 static inline u64 irq_time_read(int cpu)
1878 {
1879 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1880 }
1881 #endif /* CONFIG_64BIT */
1882
1883 /*
1884 * Called before incrementing preempt_count on {soft,}irq_enter
1885 * and before decrementing preempt_count on {soft,}irq_exit.
1886 */
1887 void account_system_vtime(struct task_struct *curr)
1888 {
1889 unsigned long flags;
1890 s64 delta;
1891 int cpu;
1892
1893 if (!sched_clock_irqtime)
1894 return;
1895
1896 local_irq_save(flags);
1897
1898 cpu = smp_processor_id();
1899 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
1900 __this_cpu_add(irq_start_time, delta);
1901
1902 irq_time_write_begin();
1903 /*
1904 * We do not account for softirq time from ksoftirqd here.
1905 * We want to continue accounting softirq time to ksoftirqd thread
1906 * in that case, so as not to confuse scheduler with a special task
1907 * that do not consume any time, but still wants to run.
1908 */
1909 if (hardirq_count())
1910 __this_cpu_add(cpu_hardirq_time, delta);
1911 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
1912 __this_cpu_add(cpu_softirq_time, delta);
1913
1914 irq_time_write_end();
1915 local_irq_restore(flags);
1916 }
1917 EXPORT_SYMBOL_GPL(account_system_vtime);
1918
1919 static void update_rq_clock_task(struct rq *rq, s64 delta)
1920 {
1921 s64 irq_delta;
1922
1923 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
1924
1925 /*
1926 * Since irq_time is only updated on {soft,}irq_exit, we might run into
1927 * this case when a previous update_rq_clock() happened inside a
1928 * {soft,}irq region.
1929 *
1930 * When this happens, we stop ->clock_task and only update the
1931 * prev_irq_time stamp to account for the part that fit, so that a next
1932 * update will consume the rest. This ensures ->clock_task is
1933 * monotonic.
1934 *
1935 * It does however cause some slight miss-attribution of {soft,}irq
1936 * time, a more accurate solution would be to update the irq_time using
1937 * the current rq->clock timestamp, except that would require using
1938 * atomic ops.
1939 */
1940 if (irq_delta > delta)
1941 irq_delta = delta;
1942
1943 rq->prev_irq_time += irq_delta;
1944 delta -= irq_delta;
1945 rq->clock_task += delta;
1946
1947 if (irq_delta && sched_feat(NONIRQ_POWER))
1948 sched_rt_avg_update(rq, irq_delta);
1949 }
1950
1951 static int irqtime_account_hi_update(void)
1952 {
1953 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1954 unsigned long flags;
1955 u64 latest_ns;
1956 int ret = 0;
1957
1958 local_irq_save(flags);
1959 latest_ns = this_cpu_read(cpu_hardirq_time);
1960 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
1961 ret = 1;
1962 local_irq_restore(flags);
1963 return ret;
1964 }
1965
1966 static int irqtime_account_si_update(void)
1967 {
1968 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1969 unsigned long flags;
1970 u64 latest_ns;
1971 int ret = 0;
1972
1973 local_irq_save(flags);
1974 latest_ns = this_cpu_read(cpu_softirq_time);
1975 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
1976 ret = 1;
1977 local_irq_restore(flags);
1978 return ret;
1979 }
1980
1981 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
1982
1983 #define sched_clock_irqtime (0)
1984
1985 static void update_rq_clock_task(struct rq *rq, s64 delta)
1986 {
1987 rq->clock_task += delta;
1988 }
1989
1990 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
1991
1992 #include "sched_idletask.c"
1993 #include "sched_fair.c"
1994 #include "sched_rt.c"
1995 #include "sched_autogroup.c"
1996 #include "sched_stoptask.c"
1997 #ifdef CONFIG_SCHED_DEBUG
1998 # include "sched_debug.c"
1999 #endif
2000
2001 void sched_set_stop_task(int cpu, struct task_struct *stop)
2002 {
2003 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2004 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2005
2006 if (stop) {
2007 /*
2008 * Make it appear like a SCHED_FIFO task, its something
2009 * userspace knows about and won't get confused about.
2010 *
2011 * Also, it will make PI more or less work without too
2012 * much confusion -- but then, stop work should not
2013 * rely on PI working anyway.
2014 */
2015 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2016
2017 stop->sched_class = &stop_sched_class;
2018 }
2019
2020 cpu_rq(cpu)->stop = stop;
2021
2022 if (old_stop) {
2023 /*
2024 * Reset it back to a normal scheduling class so that
2025 * it can die in pieces.
2026 */
2027 old_stop->sched_class = &rt_sched_class;
2028 }
2029 }
2030
2031 /*
2032 * __normal_prio - return the priority that is based on the static prio
2033 */
2034 static inline int __normal_prio(struct task_struct *p)
2035 {
2036 return p->static_prio;
2037 }
2038
2039 /*
2040 * Calculate the expected normal priority: i.e. priority
2041 * without taking RT-inheritance into account. Might be
2042 * boosted by interactivity modifiers. Changes upon fork,
2043 * setprio syscalls, and whenever the interactivity
2044 * estimator recalculates.
2045 */
2046 static inline int normal_prio(struct task_struct *p)
2047 {
2048 int prio;
2049
2050 if (task_has_rt_policy(p))
2051 prio = MAX_RT_PRIO-1 - p->rt_priority;
2052 else
2053 prio = __normal_prio(p);
2054 return prio;
2055 }
2056
2057 /*
2058 * Calculate the current priority, i.e. the priority
2059 * taken into account by the scheduler. This value might
2060 * be boosted by RT tasks, or might be boosted by
2061 * interactivity modifiers. Will be RT if the task got
2062 * RT-boosted. If not then it returns p->normal_prio.
2063 */
2064 static int effective_prio(struct task_struct *p)
2065 {
2066 p->normal_prio = normal_prio(p);
2067 /*
2068 * If we are RT tasks or we were boosted to RT priority,
2069 * keep the priority unchanged. Otherwise, update priority
2070 * to the normal priority:
2071 */
2072 if (!rt_prio(p->prio))
2073 return p->normal_prio;
2074 return p->prio;
2075 }
2076
2077 /**
2078 * task_curr - is this task currently executing on a CPU?
2079 * @p: the task in question.
2080 */
2081 inline int task_curr(const struct task_struct *p)
2082 {
2083 return cpu_curr(task_cpu(p)) == p;
2084 }
2085
2086 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2087 const struct sched_class *prev_class,
2088 int oldprio)
2089 {
2090 if (prev_class != p->sched_class) {
2091 if (prev_class->switched_from)
2092 prev_class->switched_from(rq, p);
2093 p->sched_class->switched_to(rq, p);
2094 } else if (oldprio != p->prio)
2095 p->sched_class->prio_changed(rq, p, oldprio);
2096 }
2097
2098 static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2099 {
2100 const struct sched_class *class;
2101
2102 if (p->sched_class == rq->curr->sched_class) {
2103 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2104 } else {
2105 for_each_class(class) {
2106 if (class == rq->curr->sched_class)
2107 break;
2108 if (class == p->sched_class) {
2109 resched_task(rq->curr);
2110 break;
2111 }
2112 }
2113 }
2114
2115 /*
2116 * A queue event has occurred, and we're going to schedule. In
2117 * this case, we can save a useless back to back clock update.
2118 */
2119 if (rq->curr->se.on_rq && test_tsk_need_resched(rq->curr))
2120 rq->skip_clock_update = 1;
2121 }
2122
2123 #ifdef CONFIG_SMP
2124 /*
2125 * Is this task likely cache-hot:
2126 */
2127 static int
2128 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2129 {
2130 s64 delta;
2131
2132 if (p->sched_class != &fair_sched_class)
2133 return 0;
2134
2135 if (unlikely(p->policy == SCHED_IDLE))
2136 return 0;
2137
2138 /*
2139 * Buddy candidates are cache hot:
2140 */
2141 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
2142 (&p->se == cfs_rq_of(&p->se)->next ||
2143 &p->se == cfs_rq_of(&p->se)->last))
2144 return 1;
2145
2146 if (sysctl_sched_migration_cost == -1)
2147 return 1;
2148 if (sysctl_sched_migration_cost == 0)
2149 return 0;
2150
2151 delta = now - p->se.exec_start;
2152
2153 return delta < (s64)sysctl_sched_migration_cost;
2154 }
2155
2156 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2157 {
2158 #ifdef CONFIG_SCHED_DEBUG
2159 /*
2160 * We should never call set_task_cpu() on a blocked task,
2161 * ttwu() will sort out the placement.
2162 */
2163 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2164 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2165 #endif
2166
2167 trace_sched_migrate_task(p, new_cpu);
2168
2169 if (task_cpu(p) != new_cpu) {
2170 p->se.nr_migrations++;
2171 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2172 }
2173
2174 __set_task_cpu(p, new_cpu);
2175 }
2176
2177 struct migration_arg {
2178 struct task_struct *task;
2179 int dest_cpu;
2180 };
2181
2182 static int migration_cpu_stop(void *data);
2183
2184 /*
2185 * The task's runqueue lock must be held.
2186 * Returns true if you have to wait for migration thread.
2187 */
2188 static bool migrate_task(struct task_struct *p, struct rq *rq)
2189 {
2190 /*
2191 * If the task is not on a runqueue (and not running), then
2192 * the next wake-up will properly place the task.
2193 */
2194 return p->se.on_rq || task_running(rq, p);
2195 }
2196
2197 /*
2198 * wait_task_inactive - wait for a thread to unschedule.
2199 *
2200 * If @match_state is nonzero, it's the @p->state value just checked and
2201 * not expected to change. If it changes, i.e. @p might have woken up,
2202 * then return zero. When we succeed in waiting for @p to be off its CPU,
2203 * we return a positive number (its total switch count). If a second call
2204 * a short while later returns the same number, the caller can be sure that
2205 * @p has remained unscheduled the whole time.
2206 *
2207 * The caller must ensure that the task *will* unschedule sometime soon,
2208 * else this function might spin for a *long* time. This function can't
2209 * be called with interrupts off, or it may introduce deadlock with
2210 * smp_call_function() if an IPI is sent by the same process we are
2211 * waiting to become inactive.
2212 */
2213 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2214 {
2215 unsigned long flags;
2216 int running, on_rq;
2217 unsigned long ncsw;
2218 struct rq *rq;
2219
2220 for (;;) {
2221 /*
2222 * We do the initial early heuristics without holding
2223 * any task-queue locks at all. We'll only try to get
2224 * the runqueue lock when things look like they will
2225 * work out!
2226 */
2227 rq = task_rq(p);
2228
2229 /*
2230 * If the task is actively running on another CPU
2231 * still, just relax and busy-wait without holding
2232 * any locks.
2233 *
2234 * NOTE! Since we don't hold any locks, it's not
2235 * even sure that "rq" stays as the right runqueue!
2236 * But we don't care, since "task_running()" will
2237 * return false if the runqueue has changed and p
2238 * is actually now running somewhere else!
2239 */
2240 while (task_running(rq, p)) {
2241 if (match_state && unlikely(p->state != match_state))
2242 return 0;
2243 cpu_relax();
2244 }
2245
2246 /*
2247 * Ok, time to look more closely! We need the rq
2248 * lock now, to be *sure*. If we're wrong, we'll
2249 * just go back and repeat.
2250 */
2251 rq = task_rq_lock(p, &flags);
2252 trace_sched_wait_task(p);
2253 running = task_running(rq, p);
2254 on_rq = p->se.on_rq;
2255 ncsw = 0;
2256 if (!match_state || p->state == match_state)
2257 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2258 task_rq_unlock(rq, &flags);
2259
2260 /*
2261 * If it changed from the expected state, bail out now.
2262 */
2263 if (unlikely(!ncsw))
2264 break;
2265
2266 /*
2267 * Was it really running after all now that we
2268 * checked with the proper locks actually held?
2269 *
2270 * Oops. Go back and try again..
2271 */
2272 if (unlikely(running)) {
2273 cpu_relax();
2274 continue;
2275 }
2276
2277 /*
2278 * It's not enough that it's not actively running,
2279 * it must be off the runqueue _entirely_, and not
2280 * preempted!
2281 *
2282 * So if it was still runnable (but just not actively
2283 * running right now), it's preempted, and we should
2284 * yield - it could be a while.
2285 */
2286 if (unlikely(on_rq)) {
2287 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
2288
2289 set_current_state(TASK_UNINTERRUPTIBLE);
2290 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
2291 continue;
2292 }
2293
2294 /*
2295 * Ahh, all good. It wasn't running, and it wasn't
2296 * runnable, which means that it will never become
2297 * running in the future either. We're all done!
2298 */
2299 break;
2300 }
2301
2302 return ncsw;
2303 }
2304
2305 /***
2306 * kick_process - kick a running thread to enter/exit the kernel
2307 * @p: the to-be-kicked thread
2308 *
2309 * Cause a process which is running on another CPU to enter
2310 * kernel-mode, without any delay. (to get signals handled.)
2311 *
2312 * NOTE: this function doesnt have to take the runqueue lock,
2313 * because all it wants to ensure is that the remote task enters
2314 * the kernel. If the IPI races and the task has been migrated
2315 * to another CPU then no harm is done and the purpose has been
2316 * achieved as well.
2317 */
2318 void kick_process(struct task_struct *p)
2319 {
2320 int cpu;
2321
2322 preempt_disable();
2323 cpu = task_cpu(p);
2324 if ((cpu != smp_processor_id()) && task_curr(p))
2325 smp_send_reschedule(cpu);
2326 preempt_enable();
2327 }
2328 EXPORT_SYMBOL_GPL(kick_process);
2329 #endif /* CONFIG_SMP */
2330
2331 #ifdef CONFIG_SMP
2332 /*
2333 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2334 */
2335 static int select_fallback_rq(int cpu, struct task_struct *p)
2336 {
2337 int dest_cpu;
2338 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2339
2340 /* Look for allowed, online CPU in same node. */
2341 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2342 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2343 return dest_cpu;
2344
2345 /* Any allowed, online CPU? */
2346 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2347 if (dest_cpu < nr_cpu_ids)
2348 return dest_cpu;
2349
2350 /* No more Mr. Nice Guy. */
2351 dest_cpu = cpuset_cpus_allowed_fallback(p);
2352 /*
2353 * Don't tell them about moving exiting tasks or
2354 * kernel threads (both mm NULL), since they never
2355 * leave kernel.
2356 */
2357 if (p->mm && printk_ratelimit()) {
2358 printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
2359 task_pid_nr(p), p->comm, cpu);
2360 }
2361
2362 return dest_cpu;
2363 }
2364
2365 /*
2366 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
2367 */
2368 static inline
2369 int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
2370 {
2371 int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
2372
2373 /*
2374 * In order not to call set_task_cpu() on a blocking task we need
2375 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2376 * cpu.
2377 *
2378 * Since this is common to all placement strategies, this lives here.
2379 *
2380 * [ this allows ->select_task() to simply return task_cpu(p) and
2381 * not worry about this generic constraint ]
2382 */
2383 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
2384 !cpu_online(cpu)))
2385 cpu = select_fallback_rq(task_cpu(p), p);
2386
2387 return cpu;
2388 }
2389
2390 static void update_avg(u64 *avg, u64 sample)
2391 {
2392 s64 diff = sample - *avg;
2393 *avg += diff >> 3;
2394 }
2395 #endif
2396
2397 static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
2398 bool is_sync, bool is_migrate, bool is_local,
2399 unsigned long en_flags)
2400 {
2401 schedstat_inc(p, se.statistics.nr_wakeups);
2402 if (is_sync)
2403 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2404 if (is_migrate)
2405 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2406 if (is_local)
2407 schedstat_inc(p, se.statistics.nr_wakeups_local);
2408 else
2409 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2410
2411 activate_task(rq, p, en_flags);
2412 }
2413
2414 static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
2415 int wake_flags, bool success)
2416 {
2417 trace_sched_wakeup(p, success);
2418 check_preempt_curr(rq, p, wake_flags);
2419
2420 p->state = TASK_RUNNING;
2421 #ifdef CONFIG_SMP
2422 if (p->sched_class->task_woken)
2423 p->sched_class->task_woken(rq, p);
2424
2425 if (unlikely(rq->idle_stamp)) {
2426 u64 delta = rq->clock - rq->idle_stamp;
2427 u64 max = 2*sysctl_sched_migration_cost;
2428
2429 if (delta > max)
2430 rq->avg_idle = max;
2431 else
2432 update_avg(&rq->avg_idle, delta);
2433 rq->idle_stamp = 0;
2434 }
2435 #endif
2436 /* if a worker is waking up, notify workqueue */
2437 if ((p->flags & PF_WQ_WORKER) && success)
2438 wq_worker_waking_up(p, cpu_of(rq));
2439 }
2440
2441 /**
2442 * try_to_wake_up - wake up a thread
2443 * @p: the thread to be awakened
2444 * @state: the mask of task states that can be woken
2445 * @wake_flags: wake modifier flags (WF_*)
2446 *
2447 * Put it on the run-queue if it's not already there. The "current"
2448 * thread is always on the run-queue (except when the actual
2449 * re-schedule is in progress), and as such you're allowed to do
2450 * the simpler "current->state = TASK_RUNNING" to mark yourself
2451 * runnable without the overhead of this.
2452 *
2453 * Returns %true if @p was woken up, %false if it was already running
2454 * or @state didn't match @p's state.
2455 */
2456 static int try_to_wake_up(struct task_struct *p, unsigned int state,
2457 int wake_flags)
2458 {
2459 int cpu, orig_cpu, this_cpu, success = 0;
2460 unsigned long flags;
2461 unsigned long en_flags = ENQUEUE_WAKEUP;
2462 struct rq *rq;
2463
2464 this_cpu = get_cpu();
2465
2466 smp_wmb();
2467 rq = task_rq_lock(p, &flags);
2468 if (!(p->state & state))
2469 goto out;
2470
2471 if (p->se.on_rq)
2472 goto out_running;
2473
2474 cpu = task_cpu(p);
2475 orig_cpu = cpu;
2476
2477 #ifdef CONFIG_SMP
2478 if (unlikely(task_running(rq, p)))
2479 goto out_activate;
2480
2481 /*
2482 * In order to handle concurrent wakeups and release the rq->lock
2483 * we put the task in TASK_WAKING state.
2484 *
2485 * First fix up the nr_uninterruptible count:
2486 */
2487 if (task_contributes_to_load(p)) {
2488 if (likely(cpu_online(orig_cpu)))
2489 rq->nr_uninterruptible--;
2490 else
2491 this_rq()->nr_uninterruptible--;
2492 }
2493 p->state = TASK_WAKING;
2494
2495 if (p->sched_class->task_waking) {
2496 p->sched_class->task_waking(rq, p);
2497 en_flags |= ENQUEUE_WAKING;
2498 }
2499
2500 cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
2501 if (cpu != orig_cpu)
2502 set_task_cpu(p, cpu);
2503 __task_rq_unlock(rq);
2504
2505 rq = cpu_rq(cpu);
2506 raw_spin_lock(&rq->lock);
2507
2508 /*
2509 * We migrated the task without holding either rq->lock, however
2510 * since the task is not on the task list itself, nobody else
2511 * will try and migrate the task, hence the rq should match the
2512 * cpu we just moved it to.
2513 */
2514 WARN_ON(task_cpu(p) != cpu);
2515 WARN_ON(p->state != TASK_WAKING);
2516
2517 #ifdef CONFIG_SCHEDSTATS
2518 schedstat_inc(rq, ttwu_count);
2519 if (cpu == this_cpu)
2520 schedstat_inc(rq, ttwu_local);
2521 else {
2522 struct sched_domain *sd;
2523 for_each_domain(this_cpu, sd) {
2524 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2525 schedstat_inc(sd, ttwu_wake_remote);
2526 break;
2527 }
2528 }
2529 }
2530 #endif /* CONFIG_SCHEDSTATS */
2531
2532 out_activate:
2533 #endif /* CONFIG_SMP */
2534 ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu,
2535 cpu == this_cpu, en_flags);
2536 success = 1;
2537 out_running:
2538 ttwu_post_activation(p, rq, wake_flags, success);
2539 out:
2540 task_rq_unlock(rq, &flags);
2541 put_cpu();
2542
2543 return success;
2544 }
2545
2546 /**
2547 * try_to_wake_up_local - try to wake up a local task with rq lock held
2548 * @p: the thread to be awakened
2549 *
2550 * Put @p on the run-queue if it's not already there. The caller must
2551 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2552 * the current task. this_rq() stays locked over invocation.
2553 */
2554 static void try_to_wake_up_local(struct task_struct *p)
2555 {
2556 struct rq *rq = task_rq(p);
2557 bool success = false;
2558
2559 BUG_ON(rq != this_rq());
2560 BUG_ON(p == current);
2561 lockdep_assert_held(&rq->lock);
2562
2563 if (!(p->state & TASK_NORMAL))
2564 return;
2565
2566 if (!p->se.on_rq) {
2567 if (likely(!task_running(rq, p))) {
2568 schedstat_inc(rq, ttwu_count);
2569 schedstat_inc(rq, ttwu_local);
2570 }
2571 ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP);
2572 success = true;
2573 }
2574 ttwu_post_activation(p, rq, 0, success);
2575 }
2576
2577 /**
2578 * wake_up_process - Wake up a specific process
2579 * @p: The process to be woken up.
2580 *
2581 * Attempt to wake up the nominated process and move it to the set of runnable
2582 * processes. Returns 1 if the process was woken up, 0 if it was already
2583 * running.
2584 *
2585 * It may be assumed that this function implies a write memory barrier before
2586 * changing the task state if and only if any tasks are woken up.
2587 */
2588 int wake_up_process(struct task_struct *p)
2589 {
2590 return try_to_wake_up(p, TASK_ALL, 0);
2591 }
2592 EXPORT_SYMBOL(wake_up_process);
2593
2594 int wake_up_state(struct task_struct *p, unsigned int state)
2595 {
2596 return try_to_wake_up(p, state, 0);
2597 }
2598
2599 /*
2600 * Perform scheduler related setup for a newly forked process p.
2601 * p is forked by current.
2602 *
2603 * __sched_fork() is basic setup used by init_idle() too:
2604 */
2605 static void __sched_fork(struct task_struct *p)
2606 {
2607 p->se.exec_start = 0;
2608 p->se.sum_exec_runtime = 0;
2609 p->se.prev_sum_exec_runtime = 0;
2610 p->se.nr_migrations = 0;
2611 p->se.vruntime = 0;
2612
2613 #ifdef CONFIG_SCHEDSTATS
2614 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2615 #endif
2616
2617 INIT_LIST_HEAD(&p->rt.run_list);
2618 p->se.on_rq = 0;
2619 INIT_LIST_HEAD(&p->se.group_node);
2620
2621 #ifdef CONFIG_PREEMPT_NOTIFIERS
2622 INIT_HLIST_HEAD(&p->preempt_notifiers);
2623 #endif
2624 }
2625
2626 /*
2627 * fork()/clone()-time setup:
2628 */
2629 void sched_fork(struct task_struct *p, int clone_flags)
2630 {
2631 int cpu = get_cpu();
2632
2633 __sched_fork(p);
2634 /*
2635 * We mark the process as running here. This guarantees that
2636 * nobody will actually run it, and a signal or other external
2637 * event cannot wake it up and insert it on the runqueue either.
2638 */
2639 p->state = TASK_RUNNING;
2640
2641 /*
2642 * Revert to default priority/policy on fork if requested.
2643 */
2644 if (unlikely(p->sched_reset_on_fork)) {
2645 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2646 p->policy = SCHED_NORMAL;
2647 p->normal_prio = p->static_prio;
2648 }
2649
2650 if (PRIO_TO_NICE(p->static_prio) < 0) {
2651 p->static_prio = NICE_TO_PRIO(0);
2652 p->normal_prio = p->static_prio;
2653 set_load_weight(p);
2654 }
2655
2656 /*
2657 * We don't need the reset flag anymore after the fork. It has
2658 * fulfilled its duty:
2659 */
2660 p->sched_reset_on_fork = 0;
2661 }
2662
2663 /*
2664 * Make sure we do not leak PI boosting priority to the child.
2665 */
2666 p->prio = current->normal_prio;
2667
2668 if (!rt_prio(p->prio))
2669 p->sched_class = &fair_sched_class;
2670
2671 if (p->sched_class->task_fork)
2672 p->sched_class->task_fork(p);
2673
2674 /*
2675 * The child is not yet in the pid-hash so no cgroup attach races,
2676 * and the cgroup is pinned to this child due to cgroup_fork()
2677 * is ran before sched_fork().
2678 *
2679 * Silence PROVE_RCU.
2680 */
2681 rcu_read_lock();
2682 set_task_cpu(p, cpu);
2683 rcu_read_unlock();
2684
2685 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2686 if (likely(sched_info_on()))
2687 memset(&p->sched_info, 0, sizeof(p->sched_info));
2688 #endif
2689 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2690 p->oncpu = 0;
2691 #endif
2692 #ifdef CONFIG_PREEMPT
2693 /* Want to start with kernel preemption disabled. */
2694 task_thread_info(p)->preempt_count = 1;
2695 #endif
2696 #ifdef CONFIG_SMP
2697 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2698 #endif
2699
2700 put_cpu();
2701 }
2702
2703 /*
2704 * wake_up_new_task - wake up a newly created task for the first time.
2705 *
2706 * This function will do some initial scheduler statistics housekeeping
2707 * that must be done for every newly created context, then puts the task
2708 * on the runqueue and wakes it.
2709 */
2710 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2711 {
2712 unsigned long flags;
2713 struct rq *rq;
2714 int cpu __maybe_unused = get_cpu();
2715
2716 #ifdef CONFIG_SMP
2717 rq = task_rq_lock(p, &flags);
2718 p->state = TASK_WAKING;
2719
2720 /*
2721 * Fork balancing, do it here and not earlier because:
2722 * - cpus_allowed can change in the fork path
2723 * - any previously selected cpu might disappear through hotplug
2724 *
2725 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2726 * without people poking at ->cpus_allowed.
2727 */
2728 cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
2729 set_task_cpu(p, cpu);
2730
2731 p->state = TASK_RUNNING;
2732 task_rq_unlock(rq, &flags);
2733 #endif
2734
2735 rq = task_rq_lock(p, &flags);
2736 activate_task(rq, p, 0);
2737 trace_sched_wakeup_new(p, 1);
2738 check_preempt_curr(rq, p, WF_FORK);
2739 #ifdef CONFIG_SMP
2740 if (p->sched_class->task_woken)
2741 p->sched_class->task_woken(rq, p);
2742 #endif
2743 task_rq_unlock(rq, &flags);
2744 put_cpu();
2745 }
2746
2747 #ifdef CONFIG_PREEMPT_NOTIFIERS
2748
2749 /**
2750 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2751 * @notifier: notifier struct to register
2752 */
2753 void preempt_notifier_register(struct preempt_notifier *notifier)
2754 {
2755 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2756 }
2757 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2758
2759 /**
2760 * preempt_notifier_unregister - no longer interested in preemption notifications
2761 * @notifier: notifier struct to unregister
2762 *
2763 * This is safe to call from within a preemption notifier.
2764 */
2765 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2766 {
2767 hlist_del(&notifier->link);
2768 }
2769 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2770
2771 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2772 {
2773 struct preempt_notifier *notifier;
2774 struct hlist_node *node;
2775
2776 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2777 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2778 }
2779
2780 static void
2781 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2782 struct task_struct *next)
2783 {
2784 struct preempt_notifier *notifier;
2785 struct hlist_node *node;
2786
2787 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2788 notifier->ops->sched_out(notifier, next);
2789 }
2790
2791 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2792
2793 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2794 {
2795 }
2796
2797 static void
2798 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2799 struct task_struct *next)
2800 {
2801 }
2802
2803 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2804
2805 /**
2806 * prepare_task_switch - prepare to switch tasks
2807 * @rq: the runqueue preparing to switch
2808 * @prev: the current task that is being switched out
2809 * @next: the task we are going to switch to.
2810 *
2811 * This is called with the rq lock held and interrupts off. It must
2812 * be paired with a subsequent finish_task_switch after the context
2813 * switch.
2814 *
2815 * prepare_task_switch sets up locking and calls architecture specific
2816 * hooks.
2817 */
2818 static inline void
2819 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2820 struct task_struct *next)
2821 {
2822 sched_info_switch(prev, next);
2823 perf_event_task_sched_out(prev, next);
2824 fire_sched_out_preempt_notifiers(prev, next);
2825 prepare_lock_switch(rq, next);
2826 prepare_arch_switch(next);
2827 trace_sched_switch(prev, next);
2828 }
2829
2830 /**
2831 * finish_task_switch - clean up after a task-switch
2832 * @rq: runqueue associated with task-switch
2833 * @prev: the thread we just switched away from.
2834 *
2835 * finish_task_switch must be called after the context switch, paired
2836 * with a prepare_task_switch call before the context switch.
2837 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2838 * and do any other architecture-specific cleanup actions.
2839 *
2840 * Note that we may have delayed dropping an mm in context_switch(). If
2841 * so, we finish that here outside of the runqueue lock. (Doing it
2842 * with the lock held can cause deadlocks; see schedule() for
2843 * details.)
2844 */
2845 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2846 __releases(rq->lock)
2847 {
2848 struct mm_struct *mm = rq->prev_mm;
2849 long prev_state;
2850
2851 rq->prev_mm = NULL;
2852
2853 /*
2854 * A task struct has one reference for the use as "current".
2855 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2856 * schedule one last time. The schedule call will never return, and
2857 * the scheduled task must drop that reference.
2858 * The test for TASK_DEAD must occur while the runqueue locks are
2859 * still held, otherwise prev could be scheduled on another cpu, die
2860 * there before we look at prev->state, and then the reference would
2861 * be dropped twice.
2862 * Manfred Spraul <manfred@colorfullife.com>
2863 */
2864 prev_state = prev->state;
2865 finish_arch_switch(prev);
2866 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2867 local_irq_disable();
2868 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2869 perf_event_task_sched_in(current);
2870 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2871 local_irq_enable();
2872 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2873 finish_lock_switch(rq, prev);
2874
2875 fire_sched_in_preempt_notifiers(current);
2876 if (mm)
2877 mmdrop(mm);
2878 if (unlikely(prev_state == TASK_DEAD)) {
2879 /*
2880 * Remove function-return probe instances associated with this
2881 * task and put them back on the free list.
2882 */
2883 kprobe_flush_task(prev);
2884 put_task_struct(prev);
2885 }
2886 }
2887
2888 #ifdef CONFIG_SMP
2889
2890 /* assumes rq->lock is held */
2891 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2892 {
2893 if (prev->sched_class->pre_schedule)
2894 prev->sched_class->pre_schedule(rq, prev);
2895 }
2896
2897 /* rq->lock is NOT held, but preemption is disabled */
2898 static inline void post_schedule(struct rq *rq)
2899 {
2900 if (rq->post_schedule) {
2901 unsigned long flags;
2902
2903 raw_spin_lock_irqsave(&rq->lock, flags);
2904 if (rq->curr->sched_class->post_schedule)
2905 rq->curr->sched_class->post_schedule(rq);
2906 raw_spin_unlock_irqrestore(&rq->lock, flags);
2907
2908 rq->post_schedule = 0;
2909 }
2910 }
2911
2912 #else
2913
2914 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2915 {
2916 }
2917
2918 static inline void post_schedule(struct rq *rq)
2919 {
2920 }
2921
2922 #endif
2923
2924 /**
2925 * schedule_tail - first thing a freshly forked thread must call.
2926 * @prev: the thread we just switched away from.
2927 */
2928 asmlinkage void schedule_tail(struct task_struct *prev)
2929 __releases(rq->lock)
2930 {
2931 struct rq *rq = this_rq();
2932
2933 finish_task_switch(rq, prev);
2934
2935 /*
2936 * FIXME: do we need to worry about rq being invalidated by the
2937 * task_switch?
2938 */
2939 post_schedule(rq);
2940
2941 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2942 /* In this case, finish_task_switch does not reenable preemption */
2943 preempt_enable();
2944 #endif
2945 if (current->set_child_tid)
2946 put_user(task_pid_vnr(current), current->set_child_tid);
2947 }
2948
2949 /*
2950 * context_switch - switch to the new MM and the new
2951 * thread's register state.
2952 */
2953 static inline void
2954 context_switch(struct rq *rq, struct task_struct *prev,
2955 struct task_struct *next)
2956 {
2957 struct mm_struct *mm, *oldmm;
2958
2959 prepare_task_switch(rq, prev, next);
2960
2961 mm = next->mm;
2962 oldmm = prev->active_mm;
2963 /*
2964 * For paravirt, this is coupled with an exit in switch_to to
2965 * combine the page table reload and the switch backend into
2966 * one hypercall.
2967 */
2968 arch_start_context_switch(prev);
2969
2970 if (!mm) {
2971 next->active_mm = oldmm;
2972 atomic_inc(&oldmm->mm_count);
2973 enter_lazy_tlb(oldmm, next);
2974 } else
2975 switch_mm(oldmm, mm, next);
2976
2977 if (!prev->mm) {
2978 prev->active_mm = NULL;
2979 rq->prev_mm = oldmm;
2980 }
2981 /*
2982 * Since the runqueue lock will be released by the next
2983 * task (which is an invalid locking op but in the case
2984 * of the scheduler it's an obvious special-case), so we
2985 * do an early lockdep release here:
2986 */
2987 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2988 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2989 #endif
2990
2991 /* Here we just switch the register state and the stack. */
2992 switch_to(prev, next, prev);
2993
2994 barrier();
2995 /*
2996 * this_rq must be evaluated again because prev may have moved
2997 * CPUs since it called schedule(), thus the 'rq' on its stack
2998 * frame will be invalid.
2999 */
3000 finish_task_switch(this_rq(), prev);
3001 }
3002
3003 /*
3004 * nr_running, nr_uninterruptible and nr_context_switches:
3005 *
3006 * externally visible scheduler statistics: current number of runnable
3007 * threads, current number of uninterruptible-sleeping threads, total
3008 * number of context switches performed since bootup.
3009 */
3010 unsigned long nr_running(void)
3011 {
3012 unsigned long i, sum = 0;
3013
3014 for_each_online_cpu(i)
3015 sum += cpu_rq(i)->nr_running;
3016
3017 return sum;
3018 }
3019
3020 unsigned long nr_uninterruptible(void)
3021 {
3022 unsigned long i, sum = 0;
3023
3024 for_each_possible_cpu(i)
3025 sum += cpu_rq(i)->nr_uninterruptible;
3026
3027 /*
3028 * Since we read the counters lockless, it might be slightly
3029 * inaccurate. Do not allow it to go below zero though:
3030 */
3031 if (unlikely((long)sum < 0))
3032 sum = 0;
3033
3034 return sum;
3035 }
3036
3037 unsigned long long nr_context_switches(void)
3038 {
3039 int i;
3040 unsigned long long sum = 0;
3041
3042 for_each_possible_cpu(i)
3043 sum += cpu_rq(i)->nr_switches;
3044
3045 return sum;
3046 }
3047
3048 unsigned long nr_iowait(void)
3049 {
3050 unsigned long i, sum = 0;
3051
3052 for_each_possible_cpu(i)
3053 sum += atomic_read(&cpu_rq(i)->nr_iowait);
3054
3055 return sum;
3056 }
3057
3058 unsigned long nr_iowait_cpu(int cpu)
3059 {
3060 struct rq *this = cpu_rq(cpu);
3061 return atomic_read(&this->nr_iowait);
3062 }
3063
3064 unsigned long this_cpu_load(void)
3065 {
3066 struct rq *this = this_rq();
3067 return this->cpu_load[0];
3068 }
3069
3070
3071 /* Variables and functions for calc_load */
3072 static atomic_long_t calc_load_tasks;
3073 static unsigned long calc_load_update;
3074 unsigned long avenrun[3];
3075 EXPORT_SYMBOL(avenrun);
3076
3077 static long calc_load_fold_active(struct rq *this_rq)
3078 {
3079 long nr_active, delta = 0;
3080
3081 nr_active = this_rq->nr_running;
3082 nr_active += (long) this_rq->nr_uninterruptible;
3083
3084 if (nr_active != this_rq->calc_load_active) {
3085 delta = nr_active - this_rq->calc_load_active;
3086 this_rq->calc_load_active = nr_active;
3087 }
3088
3089 return delta;
3090 }
3091
3092 static unsigned long
3093 calc_load(unsigned long load, unsigned long exp, unsigned long active)
3094 {
3095 load *= exp;
3096 load += active * (FIXED_1 - exp);
3097 load += 1UL << (FSHIFT - 1);
3098 return load >> FSHIFT;
3099 }
3100
3101 #ifdef CONFIG_NO_HZ
3102 /*
3103 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3104 *
3105 * When making the ILB scale, we should try to pull this in as well.
3106 */
3107 static atomic_long_t calc_load_tasks_idle;
3108
3109 static void calc_load_account_idle(struct rq *this_rq)
3110 {
3111 long delta;
3112
3113 delta = calc_load_fold_active(this_rq);
3114 if (delta)
3115 atomic_long_add(delta, &calc_load_tasks_idle);
3116 }
3117
3118 static long calc_load_fold_idle(void)
3119 {
3120 long delta = 0;
3121
3122 /*
3123 * Its got a race, we don't care...
3124 */
3125 if (atomic_long_read(&calc_load_tasks_idle))
3126 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
3127
3128 return delta;
3129 }
3130
3131 /**
3132 * fixed_power_int - compute: x^n, in O(log n) time
3133 *
3134 * @x: base of the power
3135 * @frac_bits: fractional bits of @x
3136 * @n: power to raise @x to.
3137 *
3138 * By exploiting the relation between the definition of the natural power
3139 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3140 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3141 * (where: n_i \elem {0, 1}, the binary vector representing n),
3142 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3143 * of course trivially computable in O(log_2 n), the length of our binary
3144 * vector.
3145 */
3146 static unsigned long
3147 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
3148 {
3149 unsigned long result = 1UL << frac_bits;
3150
3151 if (n) for (;;) {
3152 if (n & 1) {
3153 result *= x;
3154 result += 1UL << (frac_bits - 1);
3155 result >>= frac_bits;
3156 }
3157 n >>= 1;
3158 if (!n)
3159 break;
3160 x *= x;
3161 x += 1UL << (frac_bits - 1);
3162 x >>= frac_bits;
3163 }
3164
3165 return result;
3166 }
3167
3168 /*
3169 * a1 = a0 * e + a * (1 - e)
3170 *
3171 * a2 = a1 * e + a * (1 - e)
3172 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3173 * = a0 * e^2 + a * (1 - e) * (1 + e)
3174 *
3175 * a3 = a2 * e + a * (1 - e)
3176 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3177 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3178 *
3179 * ...
3180 *
3181 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3182 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3183 * = a0 * e^n + a * (1 - e^n)
3184 *
3185 * [1] application of the geometric series:
3186 *
3187 * n 1 - x^(n+1)
3188 * S_n := \Sum x^i = -------------
3189 * i=0 1 - x
3190 */
3191 static unsigned long
3192 calc_load_n(unsigned long load, unsigned long exp,
3193 unsigned long active, unsigned int n)
3194 {
3195
3196 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
3197 }
3198
3199 /*
3200 * NO_HZ can leave us missing all per-cpu ticks calling
3201 * calc_load_account_active(), but since an idle CPU folds its delta into
3202 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3203 * in the pending idle delta if our idle period crossed a load cycle boundary.
3204 *
3205 * Once we've updated the global active value, we need to apply the exponential
3206 * weights adjusted to the number of cycles missed.
3207 */
3208 static void calc_global_nohz(unsigned long ticks)
3209 {
3210 long delta, active, n;
3211
3212 if (time_before(jiffies, calc_load_update))
3213 return;
3214
3215 /*
3216 * If we crossed a calc_load_update boundary, make sure to fold
3217 * any pending idle changes, the respective CPUs might have
3218 * missed the tick driven calc_load_account_active() update
3219 * due to NO_HZ.
3220 */
3221 delta = calc_load_fold_idle();
3222 if (delta)
3223 atomic_long_add(delta, &calc_load_tasks);
3224
3225 /*
3226 * If we were idle for multiple load cycles, apply them.
3227 */
3228 if (ticks >= LOAD_FREQ) {
3229 n = ticks / LOAD_FREQ;
3230
3231 active = atomic_long_read(&calc_load_tasks);
3232 active = active > 0 ? active * FIXED_1 : 0;
3233
3234 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
3235 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
3236 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
3237
3238 calc_load_update += n * LOAD_FREQ;
3239 }
3240
3241 /*
3242 * Its possible the remainder of the above division also crosses
3243 * a LOAD_FREQ period, the regular check in calc_global_load()
3244 * which comes after this will take care of that.
3245 *
3246 * Consider us being 11 ticks before a cycle completion, and us
3247 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
3248 * age us 4 cycles, and the test in calc_global_load() will
3249 * pick up the final one.
3250 */
3251 }
3252 #else
3253 static void calc_load_account_idle(struct rq *this_rq)
3254 {
3255 }
3256
3257 static inline long calc_load_fold_idle(void)
3258 {
3259 return 0;
3260 }
3261
3262 static void calc_global_nohz(unsigned long ticks)
3263 {
3264 }
3265 #endif
3266
3267 /**
3268 * get_avenrun - get the load average array
3269 * @loads: pointer to dest load array
3270 * @offset: offset to add
3271 * @shift: shift count to shift the result left
3272 *
3273 * These values are estimates at best, so no need for locking.
3274 */
3275 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3276 {
3277 loads[0] = (avenrun[0] + offset) << shift;
3278 loads[1] = (avenrun[1] + offset) << shift;
3279 loads[2] = (avenrun[2] + offset) << shift;
3280 }
3281
3282 /*
3283 * calc_load - update the avenrun load estimates 10 ticks after the
3284 * CPUs have updated calc_load_tasks.
3285 */
3286 void calc_global_load(unsigned long ticks)
3287 {
3288 long active;
3289
3290 calc_global_nohz(ticks);
3291
3292 if (time_before(jiffies, calc_load_update + 10))
3293 return;
3294
3295 active = atomic_long_read(&calc_load_tasks);
3296 active = active > 0 ? active * FIXED_1 : 0;
3297
3298 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3299 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3300 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3301
3302 calc_load_update += LOAD_FREQ;
3303 }
3304
3305 /*
3306 * Called from update_cpu_load() to periodically update this CPU's
3307 * active count.
3308 */
3309 static void calc_load_account_active(struct rq *this_rq)
3310 {
3311 long delta;
3312
3313 if (time_before(jiffies, this_rq->calc_load_update))
3314 return;
3315
3316 delta = calc_load_fold_active(this_rq);
3317 delta += calc_load_fold_idle();
3318 if (delta)
3319 atomic_long_add(delta, &calc_load_tasks);
3320
3321 this_rq->calc_load_update += LOAD_FREQ;
3322 }
3323
3324 /*
3325 * The exact cpuload at various idx values, calculated at every tick would be
3326 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3327 *
3328 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3329 * on nth tick when cpu may be busy, then we have:
3330 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3331 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3332 *
3333 * decay_load_missed() below does efficient calculation of
3334 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3335 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3336 *
3337 * The calculation is approximated on a 128 point scale.
3338 * degrade_zero_ticks is the number of ticks after which load at any
3339 * particular idx is approximated to be zero.
3340 * degrade_factor is a precomputed table, a row for each load idx.
3341 * Each column corresponds to degradation factor for a power of two ticks,
3342 * based on 128 point scale.
3343 * Example:
3344 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3345 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3346 *
3347 * With this power of 2 load factors, we can degrade the load n times
3348 * by looking at 1 bits in n and doing as many mult/shift instead of
3349 * n mult/shifts needed by the exact degradation.
3350 */
3351 #define DEGRADE_SHIFT 7
3352 static const unsigned char
3353 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3354 static const unsigned char
3355 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3356 {0, 0, 0, 0, 0, 0, 0, 0},
3357 {64, 32, 8, 0, 0, 0, 0, 0},
3358 {96, 72, 40, 12, 1, 0, 0},
3359 {112, 98, 75, 43, 15, 1, 0},
3360 {120, 112, 98, 76, 45, 16, 2} };
3361
3362 /*
3363 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3364 * would be when CPU is idle and so we just decay the old load without
3365 * adding any new load.
3366 */
3367 static unsigned long
3368 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3369 {
3370 int j = 0;
3371
3372 if (!missed_updates)
3373 return load;
3374
3375 if (missed_updates >= degrade_zero_ticks[idx])
3376 return 0;
3377
3378 if (idx == 1)
3379 return load >> missed_updates;
3380
3381 while (missed_updates) {
3382 if (missed_updates % 2)
3383 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3384
3385 missed_updates >>= 1;
3386 j++;
3387 }
3388 return load;
3389 }
3390
3391 /*
3392 * Update rq->cpu_load[] statistics. This function is usually called every
3393 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3394 * every tick. We fix it up based on jiffies.
3395 */
3396 static void update_cpu_load(struct rq *this_rq)
3397 {
3398 unsigned long this_load = this_rq->load.weight;
3399 unsigned long curr_jiffies = jiffies;
3400 unsigned long pending_updates;
3401 int i, scale;
3402
3403 this_rq->nr_load_updates++;
3404
3405 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3406 if (curr_jiffies == this_rq->last_load_update_tick)
3407 return;
3408
3409 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3410 this_rq->last_load_update_tick = curr_jiffies;
3411
3412 /* Update our load: */
3413 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3414 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3415 unsigned long old_load, new_load;
3416
3417 /* scale is effectively 1 << i now, and >> i divides by scale */
3418
3419 old_load = this_rq->cpu_load[i];
3420 old_load = decay_load_missed(old_load, pending_updates - 1, i);
3421 new_load = this_load;
3422 /*
3423 * Round up the averaging division if load is increasing. This
3424 * prevents us from getting stuck on 9 if the load is 10, for
3425 * example.
3426 */
3427 if (new_load > old_load)
3428 new_load += scale - 1;
3429
3430 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
3431 }
3432
3433 sched_avg_update(this_rq);
3434 }
3435
3436 static void update_cpu_load_active(struct rq *this_rq)
3437 {
3438 update_cpu_load(this_rq);
3439
3440 calc_load_account_active(this_rq);
3441 }
3442
3443 #ifdef CONFIG_SMP
3444
3445 /*
3446 * sched_exec - execve() is a valuable balancing opportunity, because at
3447 * this point the task has the smallest effective memory and cache footprint.
3448 */
3449 void sched_exec(void)
3450 {
3451 struct task_struct *p = current;
3452 unsigned long flags;
3453 struct rq *rq;
3454 int dest_cpu;
3455
3456 rq = task_rq_lock(p, &flags);
3457 dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
3458 if (dest_cpu == smp_processor_id())
3459 goto unlock;
3460
3461 /*
3462 * select_task_rq() can race against ->cpus_allowed
3463 */
3464 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
3465 likely(cpu_active(dest_cpu)) && migrate_task(p, rq)) {
3466 struct migration_arg arg = { p, dest_cpu };
3467
3468 task_rq_unlock(rq, &flags);
3469 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
3470 return;
3471 }
3472 unlock:
3473 task_rq_unlock(rq, &flags);
3474 }
3475
3476 #endif
3477
3478 DEFINE_PER_CPU(struct kernel_stat, kstat);
3479
3480 EXPORT_PER_CPU_SYMBOL(kstat);
3481
3482 /*
3483 * Return any ns on the sched_clock that have not yet been accounted in
3484 * @p in case that task is currently running.
3485 *
3486 * Called with task_rq_lock() held on @rq.
3487 */
3488 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3489 {
3490 u64 ns = 0;
3491
3492 if (task_current(rq, p)) {
3493 update_rq_clock(rq);
3494 ns = rq->clock_task - p->se.exec_start;
3495 if ((s64)ns < 0)
3496 ns = 0;
3497 }
3498
3499 return ns;
3500 }
3501
3502 unsigned long long task_delta_exec(struct task_struct *p)
3503 {
3504 unsigned long flags;
3505 struct rq *rq;
3506 u64 ns = 0;
3507
3508 rq = task_rq_lock(p, &flags);
3509 ns = do_task_delta_exec(p, rq);
3510 task_rq_unlock(rq, &flags);
3511
3512 return ns;
3513 }
3514
3515 /*
3516 * Return accounted runtime for the task.
3517 * In case the task is currently running, return the runtime plus current's
3518 * pending runtime that have not been accounted yet.
3519 */
3520 unsigned long long task_sched_runtime(struct task_struct *p)
3521 {
3522 unsigned long flags;
3523 struct rq *rq;
3524 u64 ns = 0;
3525
3526 rq = task_rq_lock(p, &flags);
3527 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3528 task_rq_unlock(rq, &flags);
3529
3530 return ns;
3531 }
3532
3533 /*
3534 * Return sum_exec_runtime for the thread group.
3535 * In case the task is currently running, return the sum plus current's
3536 * pending runtime that have not been accounted yet.
3537 *
3538 * Note that the thread group might have other running tasks as well,
3539 * so the return value not includes other pending runtime that other
3540 * running tasks might have.
3541 */
3542 unsigned long long thread_group_sched_runtime(struct task_struct *p)
3543 {
3544 struct task_cputime totals;
3545 unsigned long flags;
3546 struct rq *rq;
3547 u64 ns;
3548
3549 rq = task_rq_lock(p, &flags);
3550 thread_group_cputime(p, &totals);
3551 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3552 task_rq_unlock(rq, &flags);
3553
3554 return ns;
3555 }
3556
3557 /*
3558 * Account user cpu time to a process.
3559 * @p: the process that the cpu time gets accounted to
3560 * @cputime: the cpu time spent in user space since the last update
3561 * @cputime_scaled: cputime scaled by cpu frequency
3562 */
3563 void account_user_time(struct task_struct *p, cputime_t cputime,
3564 cputime_t cputime_scaled)
3565 {
3566 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3567 cputime64_t tmp;
3568
3569 /* Add user time to process. */
3570 p->utime = cputime_add(p->utime, cputime);
3571 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3572 account_group_user_time(p, cputime);
3573
3574 /* Add user time to cpustat. */
3575 tmp = cputime_to_cputime64(cputime);
3576 if (TASK_NICE(p) > 0)
3577 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3578 else
3579 cpustat->user = cputime64_add(cpustat->user, tmp);
3580
3581 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3582 /* Account for user time used */
3583 acct_update_integrals(p);
3584 }
3585
3586 /*
3587 * Account guest cpu time to a process.
3588 * @p: the process that the cpu time gets accounted to
3589 * @cputime: the cpu time spent in virtual machine since the last update
3590 * @cputime_scaled: cputime scaled by cpu frequency
3591 */
3592 static void account_guest_time(struct task_struct *p, cputime_t cputime,
3593 cputime_t cputime_scaled)
3594 {
3595 cputime64_t tmp;
3596 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3597
3598 tmp = cputime_to_cputime64(cputime);
3599
3600 /* Add guest time to process. */
3601 p->utime = cputime_add(p->utime, cputime);
3602 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3603 account_group_user_time(p, cputime);
3604 p->gtime = cputime_add(p->gtime, cputime);
3605
3606 /* Add guest time to cpustat. */
3607 if (TASK_NICE(p) > 0) {
3608 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3609 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3610 } else {
3611 cpustat->user = cputime64_add(cpustat->user, tmp);
3612 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3613 }
3614 }
3615
3616 /*
3617 * Account system cpu time to a process and desired cpustat field
3618 * @p: the process that the cpu time gets accounted to
3619 * @cputime: the cpu time spent in kernel space since the last update
3620 * @cputime_scaled: cputime scaled by cpu frequency
3621 * @target_cputime64: pointer to cpustat field that has to be updated
3622 */
3623 static inline
3624 void __account_system_time(struct task_struct *p, cputime_t cputime,
3625 cputime_t cputime_scaled, cputime64_t *target_cputime64)
3626 {
3627 cputime64_t tmp = cputime_to_cputime64(cputime);
3628
3629 /* Add system time to process. */
3630 p->stime = cputime_add(p->stime, cputime);
3631 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3632 account_group_system_time(p, cputime);
3633
3634 /* Add system time to cpustat. */
3635 *target_cputime64 = cputime64_add(*target_cputime64, tmp);
3636 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3637
3638 /* Account for system time used */
3639 acct_update_integrals(p);
3640 }
3641
3642 /*
3643 * Account system cpu time to a process.
3644 * @p: the process that the cpu time gets accounted to
3645 * @hardirq_offset: the offset to subtract from hardirq_count()
3646 * @cputime: the cpu time spent in kernel space since the last update
3647 * @cputime_scaled: cputime scaled by cpu frequency
3648 */
3649 void account_system_time(struct task_struct *p, int hardirq_offset,
3650 cputime_t cputime, cputime_t cputime_scaled)
3651 {
3652 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3653 cputime64_t *target_cputime64;
3654
3655 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3656 account_guest_time(p, cputime, cputime_scaled);
3657 return;
3658 }
3659
3660 if (hardirq_count() - hardirq_offset)
3661 target_cputime64 = &cpustat->irq;
3662 else if (in_serving_softirq())
3663 target_cputime64 = &cpustat->softirq;
3664 else
3665 target_cputime64 = &cpustat->system;
3666
3667 __account_system_time(p, cputime, cputime_scaled, target_cputime64);
3668 }
3669
3670 /*
3671 * Account for involuntary wait time.
3672 * @cputime: the cpu time spent in involuntary wait
3673 */
3674 void account_steal_time(cputime_t cputime)
3675 {
3676 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3677 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3678
3679 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3680 }
3681
3682 /*
3683 * Account for idle time.
3684 * @cputime: the cpu time spent in idle wait
3685 */
3686 void account_idle_time(cputime_t cputime)
3687 {
3688 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3689 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3690 struct rq *rq = this_rq();
3691
3692 if (atomic_read(&rq->nr_iowait) > 0)
3693 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3694 else
3695 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
3696 }
3697
3698 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
3699
3700 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
3701 /*
3702 * Account a tick to a process and cpustat
3703 * @p: the process that the cpu time gets accounted to
3704 * @user_tick: is the tick from userspace
3705 * @rq: the pointer to rq
3706 *
3707 * Tick demultiplexing follows the order
3708 * - pending hardirq update
3709 * - pending softirq update
3710 * - user_time
3711 * - idle_time
3712 * - system time
3713 * - check for guest_time
3714 * - else account as system_time
3715 *
3716 * Check for hardirq is done both for system and user time as there is
3717 * no timer going off while we are on hardirq and hence we may never get an
3718 * opportunity to update it solely in system time.
3719 * p->stime and friends are only updated on system time and not on irq
3720 * softirq as those do not count in task exec_runtime any more.
3721 */
3722 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3723 struct rq *rq)
3724 {
3725 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3726 cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
3727 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3728
3729 if (irqtime_account_hi_update()) {
3730 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3731 } else if (irqtime_account_si_update()) {
3732 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3733 } else if (this_cpu_ksoftirqd() == p) {
3734 /*
3735 * ksoftirqd time do not get accounted in cpu_softirq_time.
3736 * So, we have to handle it separately here.
3737 * Also, p->stime needs to be updated for ksoftirqd.
3738 */
3739 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3740 &cpustat->softirq);
3741 } else if (user_tick) {
3742 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3743 } else if (p == rq->idle) {
3744 account_idle_time(cputime_one_jiffy);
3745 } else if (p->flags & PF_VCPU) { /* System time or guest time */
3746 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
3747 } else {
3748 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3749 &cpustat->system);
3750 }
3751 }
3752
3753 static void irqtime_account_idle_ticks(int ticks)
3754 {
3755 int i;
3756 struct rq *rq = this_rq();
3757
3758 for (i = 0; i < ticks; i++)
3759 irqtime_account_process_tick(current, 0, rq);
3760 }
3761 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
3762 static void irqtime_account_idle_ticks(int ticks) {}
3763 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3764 struct rq *rq) {}
3765 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
3766
3767 /*
3768 * Account a single tick of cpu time.
3769 * @p: the process that the cpu time gets accounted to
3770 * @user_tick: indicates if the tick is a user or a system tick
3771 */
3772 void account_process_tick(struct task_struct *p, int user_tick)
3773 {
3774 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3775 struct rq *rq = this_rq();
3776
3777 if (sched_clock_irqtime) {
3778 irqtime_account_process_tick(p, user_tick, rq);
3779 return;
3780 }
3781
3782 if (user_tick)
3783 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3784 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3785 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3786 one_jiffy_scaled);
3787 else
3788 account_idle_time(cputime_one_jiffy);
3789 }
3790
3791 /*
3792 * Account multiple ticks of steal time.
3793 * @p: the process from which the cpu time has been stolen
3794 * @ticks: number of stolen ticks
3795 */
3796 void account_steal_ticks(unsigned long ticks)
3797 {
3798 account_steal_time(jiffies_to_cputime(ticks));
3799 }
3800
3801 /*
3802 * Account multiple ticks of idle time.
3803 * @ticks: number of stolen ticks
3804 */
3805 void account_idle_ticks(unsigned long ticks)
3806 {
3807
3808 if (sched_clock_irqtime) {
3809 irqtime_account_idle_ticks(ticks);
3810 return;
3811 }
3812
3813 account_idle_time(jiffies_to_cputime(ticks));
3814 }
3815
3816 #endif
3817
3818 /*
3819 * Use precise platform statistics if available:
3820 */
3821 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
3822 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3823 {
3824 *ut = p->utime;
3825 *st = p->stime;
3826 }
3827
3828 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3829 {
3830 struct task_cputime cputime;
3831
3832 thread_group_cputime(p, &cputime);
3833
3834 *ut = cputime.utime;
3835 *st = cputime.stime;
3836 }
3837 #else
3838
3839 #ifndef nsecs_to_cputime
3840 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
3841 #endif
3842
3843 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3844 {
3845 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
3846
3847 /*
3848 * Use CFS's precise accounting:
3849 */
3850 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3851
3852 if (total) {
3853 u64 temp = rtime;
3854
3855 temp *= utime;
3856 do_div(temp, total);
3857 utime = (cputime_t)temp;
3858 } else
3859 utime = rtime;
3860
3861 /*
3862 * Compare with previous values, to keep monotonicity:
3863 */
3864 p->prev_utime = max(p->prev_utime, utime);
3865 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
3866
3867 *ut = p->prev_utime;
3868 *st = p->prev_stime;
3869 }
3870
3871 /*
3872 * Must be called with siglock held.
3873 */
3874 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3875 {
3876 struct signal_struct *sig = p->signal;
3877 struct task_cputime cputime;
3878 cputime_t rtime, utime, total;
3879
3880 thread_group_cputime(p, &cputime);
3881
3882 total = cputime_add(cputime.utime, cputime.stime);
3883 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3884
3885 if (total) {
3886 u64 temp = rtime;
3887
3888 temp *= cputime.utime;
3889 do_div(temp, total);
3890 utime = (cputime_t)temp;
3891 } else
3892 utime = rtime;
3893
3894 sig->prev_utime = max(sig->prev_utime, utime);
3895 sig->prev_stime = max(sig->prev_stime,
3896 cputime_sub(rtime, sig->prev_utime));
3897
3898 *ut = sig->prev_utime;
3899 *st = sig->prev_stime;
3900 }
3901 #endif
3902
3903 /*
3904 * This function gets called by the timer code, with HZ frequency.
3905 * We call it with interrupts disabled.
3906 *
3907 * It also gets called by the fork code, when changing the parent's
3908 * timeslices.
3909 */
3910 void scheduler_tick(void)
3911 {
3912 int cpu = smp_processor_id();
3913 struct rq *rq = cpu_rq(cpu);
3914 struct task_struct *curr = rq->curr;
3915
3916 sched_clock_tick();
3917
3918 raw_spin_lock(&rq->lock);
3919 update_rq_clock(rq);
3920 update_cpu_load_active(rq);
3921 curr->sched_class->task_tick(rq, curr, 0);
3922 raw_spin_unlock(&rq->lock);
3923
3924 perf_event_task_tick();
3925
3926 #ifdef CONFIG_SMP
3927 rq->idle_at_tick = idle_cpu(cpu);
3928 trigger_load_balance(rq, cpu);
3929 #endif
3930 }
3931
3932 notrace unsigned long get_parent_ip(unsigned long addr)
3933 {
3934 if (in_lock_functions(addr)) {
3935 addr = CALLER_ADDR2;
3936 if (in_lock_functions(addr))
3937 addr = CALLER_ADDR3;
3938 }
3939 return addr;
3940 }
3941
3942 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3943 defined(CONFIG_PREEMPT_TRACER))
3944
3945 void __kprobes add_preempt_count(int val)
3946 {
3947 #ifdef CONFIG_DEBUG_PREEMPT
3948 /*
3949 * Underflow?
3950 */
3951 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3952 return;
3953 #endif
3954 preempt_count() += val;
3955 #ifdef CONFIG_DEBUG_PREEMPT
3956 /*
3957 * Spinlock count overflowing soon?
3958 */
3959 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3960 PREEMPT_MASK - 10);
3961 #endif
3962 if (preempt_count() == val)
3963 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3964 }
3965 EXPORT_SYMBOL(add_preempt_count);
3966
3967 void __kprobes sub_preempt_count(int val)
3968 {
3969 #ifdef CONFIG_DEBUG_PREEMPT
3970 /*
3971 * Underflow?
3972 */
3973 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3974 return;
3975 /*
3976 * Is the spinlock portion underflowing?
3977 */
3978 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3979 !(preempt_count() & PREEMPT_MASK)))
3980 return;
3981 #endif
3982
3983 if (preempt_count() == val)
3984 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3985 preempt_count() -= val;
3986 }
3987 EXPORT_SYMBOL(sub_preempt_count);
3988
3989 #endif
3990
3991 /*
3992 * Print scheduling while atomic bug:
3993 */
3994 static noinline void __schedule_bug(struct task_struct *prev)
3995 {
3996 struct pt_regs *regs = get_irq_regs();
3997
3998 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3999 prev->comm, prev->pid, preempt_count());
4000
4001 debug_show_held_locks(prev);
4002 print_modules();
4003 if (irqs_disabled())
4004 print_irqtrace_events(prev);
4005
4006 if (regs)
4007 show_regs(regs);
4008 else
4009 dump_stack();
4010 }
4011
4012 /*
4013 * Various schedule()-time debugging checks and statistics:
4014 */
4015 static inline void schedule_debug(struct task_struct *prev)
4016 {
4017 /*
4018 * Test if we are atomic. Since do_exit() needs to call into
4019 * schedule() atomically, we ignore that path for now.
4020 * Otherwise, whine if we are scheduling when we should not be.
4021 */
4022 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
4023 __schedule_bug(prev);
4024
4025 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4026
4027 schedstat_inc(this_rq(), sched_count);
4028 #ifdef CONFIG_SCHEDSTATS
4029 if (unlikely(prev->lock_depth >= 0)) {
4030 schedstat_inc(this_rq(), rq_sched_info.bkl_count);
4031 schedstat_inc(prev, sched_info.bkl_count);
4032 }
4033 #endif
4034 }
4035
4036 static void put_prev_task(struct rq *rq, struct task_struct *prev)
4037 {
4038 if (prev->se.on_rq)
4039 update_rq_clock(rq);
4040 prev->sched_class->put_prev_task(rq, prev);
4041 }
4042
4043 /*
4044 * Pick up the highest-prio task:
4045 */
4046 static inline struct task_struct *
4047 pick_next_task(struct rq *rq)
4048 {
4049 const struct sched_class *class;
4050 struct task_struct *p;
4051
4052 /*
4053 * Optimization: we know that if all tasks are in
4054 * the fair class we can call that function directly:
4055 */
4056 if (likely(rq->nr_running == rq->cfs.nr_running)) {
4057 p = fair_sched_class.pick_next_task(rq);
4058 if (likely(p))
4059 return p;
4060 }
4061
4062 for_each_class(class) {
4063 p = class->pick_next_task(rq);
4064 if (p)
4065 return p;
4066 }
4067
4068 BUG(); /* the idle class will always have a runnable task */
4069 }
4070
4071 /*
4072 * schedule() is the main scheduler function.
4073 */
4074 asmlinkage void __sched schedule(void)
4075 {
4076 struct task_struct *prev, *next;
4077 unsigned long *switch_count;
4078 struct rq *rq;
4079 int cpu;
4080
4081 need_resched:
4082 preempt_disable();
4083 cpu = smp_processor_id();
4084 rq = cpu_rq(cpu);
4085 rcu_note_context_switch(cpu);
4086 prev = rq->curr;
4087
4088 schedule_debug(prev);
4089
4090 if (sched_feat(HRTICK))
4091 hrtick_clear(rq);
4092
4093 raw_spin_lock_irq(&rq->lock);
4094
4095 switch_count = &prev->nivcsw;
4096 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4097 if (unlikely(signal_pending_state(prev->state, prev))) {
4098 prev->state = TASK_RUNNING;
4099 } else {
4100 /*
4101 * If a worker is going to sleep, notify and
4102 * ask workqueue whether it wants to wake up a
4103 * task to maintain concurrency. If so, wake
4104 * up the task.
4105 */
4106 if (prev->flags & PF_WQ_WORKER) {
4107 struct task_struct *to_wakeup;
4108
4109 to_wakeup = wq_worker_sleeping(prev, cpu);
4110 if (to_wakeup)
4111 try_to_wake_up_local(to_wakeup);
4112 }
4113 deactivate_task(rq, prev, DEQUEUE_SLEEP);
4114 }
4115 switch_count = &prev->nvcsw;
4116 }
4117
4118 pre_schedule(rq, prev);
4119
4120 if (unlikely(!rq->nr_running))
4121 idle_balance(cpu, rq);
4122
4123 put_prev_task(rq, prev);
4124 next = pick_next_task(rq);
4125 clear_tsk_need_resched(prev);
4126 rq->skip_clock_update = 0;
4127
4128 if (likely(prev != next)) {
4129 rq->nr_switches++;
4130 rq->curr = next;
4131 ++*switch_count;
4132
4133 context_switch(rq, prev, next); /* unlocks the rq */
4134 /*
4135 * The context switch have flipped the stack from under us
4136 * and restored the local variables which were saved when
4137 * this task called schedule() in the past. prev == current
4138 * is still correct, but it can be moved to another cpu/rq.
4139 */
4140 cpu = smp_processor_id();
4141 rq = cpu_rq(cpu);
4142 } else
4143 raw_spin_unlock_irq(&rq->lock);
4144
4145 post_schedule(rq);
4146
4147 preempt_enable_no_resched();
4148 if (need_resched())
4149 goto need_resched;
4150 }
4151 EXPORT_SYMBOL(schedule);
4152
4153 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
4154 /*
4155 * Look out! "owner" is an entirely speculative pointer
4156 * access and not reliable.
4157 */
4158 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
4159 {
4160 unsigned int cpu;
4161 struct rq *rq;
4162
4163 if (!sched_feat(OWNER_SPIN))
4164 return 0;
4165
4166 #ifdef CONFIG_DEBUG_PAGEALLOC
4167 /*
4168 * Need to access the cpu field knowing that
4169 * DEBUG_PAGEALLOC could have unmapped it if
4170 * the mutex owner just released it and exited.
4171 */
4172 if (probe_kernel_address(&owner->cpu, cpu))
4173 return 0;
4174 #else
4175 cpu = owner->cpu;
4176 #endif
4177
4178 /*
4179 * Even if the access succeeded (likely case),
4180 * the cpu field may no longer be valid.
4181 */
4182 if (cpu >= nr_cpumask_bits)
4183 return 0;
4184
4185 /*
4186 * We need to validate that we can do a
4187 * get_cpu() and that we have the percpu area.
4188 */
4189 if (!cpu_online(cpu))
4190 return 0;
4191
4192 rq = cpu_rq(cpu);
4193
4194 for (;;) {
4195 /*
4196 * Owner changed, break to re-assess state.
4197 */
4198 if (lock->owner != owner) {
4199 /*
4200 * If the lock has switched to a different owner,
4201 * we likely have heavy contention. Return 0 to quit
4202 * optimistic spinning and not contend further:
4203 */
4204 if (lock->owner)
4205 return 0;
4206 break;
4207 }
4208
4209 /*
4210 * Is that owner really running on that cpu?
4211 */
4212 if (task_thread_info(rq->curr) != owner || need_resched())
4213 return 0;
4214
4215 arch_mutex_cpu_relax();
4216 }
4217
4218 return 1;
4219 }
4220 #endif
4221
4222 #ifdef CONFIG_PREEMPT
4223 /*
4224 * this is the entry point to schedule() from in-kernel preemption
4225 * off of preempt_enable. Kernel preemptions off return from interrupt
4226 * occur there and call schedule directly.
4227 */
4228 asmlinkage void __sched notrace preempt_schedule(void)
4229 {
4230 struct thread_info *ti = current_thread_info();
4231
4232 /*
4233 * If there is a non-zero preempt_count or interrupts are disabled,
4234 * we do not want to preempt the current task. Just return..
4235 */
4236 if (likely(ti->preempt_count || irqs_disabled()))
4237 return;
4238
4239 do {
4240 add_preempt_count_notrace(PREEMPT_ACTIVE);
4241 schedule();
4242 sub_preempt_count_notrace(PREEMPT_ACTIVE);
4243
4244 /*
4245 * Check again in case we missed a preemption opportunity
4246 * between schedule and now.
4247 */
4248 barrier();
4249 } while (need_resched());
4250 }
4251 EXPORT_SYMBOL(preempt_schedule);
4252
4253 /*
4254 * this is the entry point to schedule() from kernel preemption
4255 * off of irq context.
4256 * Note, that this is called and return with irqs disabled. This will
4257 * protect us against recursive calling from irq.
4258 */
4259 asmlinkage void __sched preempt_schedule_irq(void)
4260 {
4261 struct thread_info *ti = current_thread_info();
4262
4263 /* Catch callers which need to be fixed */
4264 BUG_ON(ti->preempt_count || !irqs_disabled());
4265
4266 do {
4267 add_preempt_count(PREEMPT_ACTIVE);
4268 local_irq_enable();
4269 schedule();
4270 local_irq_disable();
4271 sub_preempt_count(PREEMPT_ACTIVE);
4272
4273 /*
4274 * Check again in case we missed a preemption opportunity
4275 * between schedule and now.
4276 */
4277 barrier();
4278 } while (need_resched());
4279 }
4280
4281 #endif /* CONFIG_PREEMPT */
4282
4283 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
4284 void *key)
4285 {
4286 return try_to_wake_up(curr->private, mode, wake_flags);
4287 }
4288 EXPORT_SYMBOL(default_wake_function);
4289
4290 /*
4291 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4292 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4293 * number) then we wake all the non-exclusive tasks and one exclusive task.
4294 *
4295 * There are circumstances in which we can try to wake a task which has already
4296 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4297 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4298 */
4299 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4300 int nr_exclusive, int wake_flags, void *key)
4301 {
4302 wait_queue_t *curr, *next;
4303
4304 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4305 unsigned flags = curr->flags;
4306
4307 if (curr->func(curr, mode, wake_flags, key) &&
4308 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4309 break;
4310 }
4311 }
4312
4313 /**
4314 * __wake_up - wake up threads blocked on a waitqueue.
4315 * @q: the waitqueue
4316 * @mode: which threads
4317 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4318 * @key: is directly passed to the wakeup function
4319 *
4320 * It may be assumed that this function implies a write memory barrier before
4321 * changing the task state if and only if any tasks are woken up.
4322 */
4323 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4324 int nr_exclusive, void *key)
4325 {
4326 unsigned long flags;
4327
4328 spin_lock_irqsave(&q->lock, flags);
4329 __wake_up_common(q, mode, nr_exclusive, 0, key);
4330 spin_unlock_irqrestore(&q->lock, flags);
4331 }
4332 EXPORT_SYMBOL(__wake_up);
4333
4334 /*
4335 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4336 */
4337 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4338 {
4339 __wake_up_common(q, mode, 1, 0, NULL);
4340 }
4341 EXPORT_SYMBOL_GPL(__wake_up_locked);
4342
4343 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4344 {
4345 __wake_up_common(q, mode, 1, 0, key);
4346 }
4347 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4348
4349 /**
4350 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
4351 * @q: the waitqueue
4352 * @mode: which threads
4353 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4354 * @key: opaque value to be passed to wakeup targets
4355 *
4356 * The sync wakeup differs that the waker knows that it will schedule
4357 * away soon, so while the target thread will be woken up, it will not
4358 * be migrated to another CPU - ie. the two threads are 'synchronized'
4359 * with each other. This can prevent needless bouncing between CPUs.
4360 *
4361 * On UP it can prevent extra preemption.
4362 *
4363 * It may be assumed that this function implies a write memory barrier before
4364 * changing the task state if and only if any tasks are woken up.
4365 */
4366 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4367 int nr_exclusive, void *key)
4368 {
4369 unsigned long flags;
4370 int wake_flags = WF_SYNC;
4371
4372 if (unlikely(!q))
4373 return;
4374
4375 if (unlikely(!nr_exclusive))
4376 wake_flags = 0;
4377
4378 spin_lock_irqsave(&q->lock, flags);
4379 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
4380 spin_unlock_irqrestore(&q->lock, flags);
4381 }
4382 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4383
4384 /*
4385 * __wake_up_sync - see __wake_up_sync_key()
4386 */
4387 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4388 {
4389 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4390 }
4391 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4392
4393 /**
4394 * complete: - signals a single thread waiting on this completion
4395 * @x: holds the state of this particular completion
4396 *
4397 * This will wake up a single thread waiting on this completion. Threads will be
4398 * awakened in the same order in which they were queued.
4399 *
4400 * See also complete_all(), wait_for_completion() and related routines.
4401 *
4402 * It may be assumed that this function implies a write memory barrier before
4403 * changing the task state if and only if any tasks are woken up.
4404 */
4405 void complete(struct completion *x)
4406 {
4407 unsigned long flags;
4408
4409 spin_lock_irqsave(&x->wait.lock, flags);
4410 x->done++;
4411 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4412 spin_unlock_irqrestore(&x->wait.lock, flags);
4413 }
4414 EXPORT_SYMBOL(complete);
4415
4416 /**
4417 * complete_all: - signals all threads waiting on this completion
4418 * @x: holds the state of this particular completion
4419 *
4420 * This will wake up all threads waiting on this particular completion event.
4421 *
4422 * It may be assumed that this function implies a write memory barrier before
4423 * changing the task state if and only if any tasks are woken up.
4424 */
4425 void complete_all(struct completion *x)
4426 {
4427 unsigned long flags;
4428
4429 spin_lock_irqsave(&x->wait.lock, flags);
4430 x->done += UINT_MAX/2;
4431 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4432 spin_unlock_irqrestore(&x->wait.lock, flags);
4433 }
4434 EXPORT_SYMBOL(complete_all);
4435
4436 static inline long __sched
4437 do_wait_for_common(struct completion *x, long timeout, int state)
4438 {
4439 if (!x->done) {
4440 DECLARE_WAITQUEUE(wait, current);
4441
4442 __add_wait_queue_tail_exclusive(&x->wait, &wait);
4443 do {
4444 if (signal_pending_state(state, current)) {
4445 timeout = -ERESTARTSYS;
4446 break;
4447 }
4448 __set_current_state(state);
4449 spin_unlock_irq(&x->wait.lock);
4450 timeout = schedule_timeout(timeout);
4451 spin_lock_irq(&x->wait.lock);
4452 } while (!x->done && timeout);
4453 __remove_wait_queue(&x->wait, &wait);
4454 if (!x->done)
4455 return timeout;
4456 }
4457 x->done--;
4458 return timeout ?: 1;
4459 }
4460
4461 static long __sched
4462 wait_for_common(struct completion *x, long timeout, int state)
4463 {
4464 might_sleep();
4465
4466 spin_lock_irq(&x->wait.lock);
4467 timeout = do_wait_for_common(x, timeout, state);
4468 spin_unlock_irq(&x->wait.lock);
4469 return timeout;
4470 }
4471
4472 /**
4473 * wait_for_completion: - waits for completion of a task
4474 * @x: holds the state of this particular completion
4475 *
4476 * This waits to be signaled for completion of a specific task. It is NOT
4477 * interruptible and there is no timeout.
4478 *
4479 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4480 * and interrupt capability. Also see complete().
4481 */
4482 void __sched wait_for_completion(struct completion *x)
4483 {
4484 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4485 }
4486 EXPORT_SYMBOL(wait_for_completion);
4487
4488 /**
4489 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4490 * @x: holds the state of this particular completion
4491 * @timeout: timeout value in jiffies
4492 *
4493 * This waits for either a completion of a specific task to be signaled or for a
4494 * specified timeout to expire. The timeout is in jiffies. It is not
4495 * interruptible.
4496 */
4497 unsigned long __sched
4498 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4499 {
4500 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4501 }
4502 EXPORT_SYMBOL(wait_for_completion_timeout);
4503
4504 /**
4505 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4506 * @x: holds the state of this particular completion
4507 *
4508 * This waits for completion of a specific task to be signaled. It is
4509 * interruptible.
4510 */
4511 int __sched wait_for_completion_interruptible(struct completion *x)
4512 {
4513 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4514 if (t == -ERESTARTSYS)
4515 return t;
4516 return 0;
4517 }
4518 EXPORT_SYMBOL(wait_for_completion_interruptible);
4519
4520 /**
4521 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4522 * @x: holds the state of this particular completion
4523 * @timeout: timeout value in jiffies
4524 *
4525 * This waits for either a completion of a specific task to be signaled or for a
4526 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4527 */
4528 long __sched
4529 wait_for_completion_interruptible_timeout(struct completion *x,
4530 unsigned long timeout)
4531 {
4532 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4533 }
4534 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4535
4536 /**
4537 * wait_for_completion_killable: - waits for completion of a task (killable)
4538 * @x: holds the state of this particular completion
4539 *
4540 * This waits to be signaled for completion of a specific task. It can be
4541 * interrupted by a kill signal.
4542 */
4543 int __sched wait_for_completion_killable(struct completion *x)
4544 {
4545 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4546 if (t == -ERESTARTSYS)
4547 return t;
4548 return 0;
4549 }
4550 EXPORT_SYMBOL(wait_for_completion_killable);
4551
4552 /**
4553 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4554 * @x: holds the state of this particular completion
4555 * @timeout: timeout value in jiffies
4556 *
4557 * This waits for either a completion of a specific task to be
4558 * signaled or for a specified timeout to expire. It can be
4559 * interrupted by a kill signal. The timeout is in jiffies.
4560 */
4561 long __sched
4562 wait_for_completion_killable_timeout(struct completion *x,
4563 unsigned long timeout)
4564 {
4565 return wait_for_common(x, timeout, TASK_KILLABLE);
4566 }
4567 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4568
4569 /**
4570 * try_wait_for_completion - try to decrement a completion without blocking
4571 * @x: completion structure
4572 *
4573 * Returns: 0 if a decrement cannot be done without blocking
4574 * 1 if a decrement succeeded.
4575 *
4576 * If a completion is being used as a counting completion,
4577 * attempt to decrement the counter without blocking. This
4578 * enables us to avoid waiting if the resource the completion
4579 * is protecting is not available.
4580 */
4581 bool try_wait_for_completion(struct completion *x)
4582 {
4583 unsigned long flags;
4584 int ret = 1;
4585
4586 spin_lock_irqsave(&x->wait.lock, flags);
4587 if (!x->done)
4588 ret = 0;
4589 else
4590 x->done--;
4591 spin_unlock_irqrestore(&x->wait.lock, flags);
4592 return ret;
4593 }
4594 EXPORT_SYMBOL(try_wait_for_completion);
4595
4596 /**
4597 * completion_done - Test to see if a completion has any waiters
4598 * @x: completion structure
4599 *
4600 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4601 * 1 if there are no waiters.
4602 *
4603 */
4604 bool completion_done(struct completion *x)
4605 {
4606 unsigned long flags;
4607 int ret = 1;
4608
4609 spin_lock_irqsave(&x->wait.lock, flags);
4610 if (!x->done)
4611 ret = 0;
4612 spin_unlock_irqrestore(&x->wait.lock, flags);
4613 return ret;
4614 }
4615 EXPORT_SYMBOL(completion_done);
4616
4617 static long __sched
4618 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4619 {
4620 unsigned long flags;
4621 wait_queue_t wait;
4622
4623 init_waitqueue_entry(&wait, current);
4624
4625 __set_current_state(state);
4626
4627 spin_lock_irqsave(&q->lock, flags);
4628 __add_wait_queue(q, &wait);
4629 spin_unlock(&q->lock);
4630 timeout = schedule_timeout(timeout);
4631 spin_lock_irq(&q->lock);
4632 __remove_wait_queue(q, &wait);
4633 spin_unlock_irqrestore(&q->lock, flags);
4634
4635 return timeout;
4636 }
4637
4638 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4639 {
4640 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4641 }
4642 EXPORT_SYMBOL(interruptible_sleep_on);
4643
4644 long __sched
4645 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4646 {
4647 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4648 }
4649 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4650
4651 void __sched sleep_on(wait_queue_head_t *q)
4652 {
4653 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4654 }
4655 EXPORT_SYMBOL(sleep_on);
4656
4657 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4658 {
4659 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4660 }
4661 EXPORT_SYMBOL(sleep_on_timeout);
4662
4663 #ifdef CONFIG_RT_MUTEXES
4664
4665 /*
4666 * rt_mutex_setprio - set the current priority of a task
4667 * @p: task
4668 * @prio: prio value (kernel-internal form)
4669 *
4670 * This function changes the 'effective' priority of a task. It does
4671 * not touch ->normal_prio like __setscheduler().
4672 *
4673 * Used by the rt_mutex code to implement priority inheritance logic.
4674 */
4675 void rt_mutex_setprio(struct task_struct *p, int prio)
4676 {
4677 unsigned long flags;
4678 int oldprio, on_rq, running;
4679 struct rq *rq;
4680 const struct sched_class *prev_class;
4681
4682 BUG_ON(prio < 0 || prio > MAX_PRIO);
4683
4684 rq = task_rq_lock(p, &flags);
4685
4686 trace_sched_pi_setprio(p, prio);
4687 oldprio = p->prio;
4688 prev_class = p->sched_class;
4689 on_rq = p->se.on_rq;
4690 running = task_current(rq, p);
4691 if (on_rq)
4692 dequeue_task(rq, p, 0);
4693 if (running)
4694 p->sched_class->put_prev_task(rq, p);
4695
4696 if (rt_prio(prio))
4697 p->sched_class = &rt_sched_class;
4698 else
4699 p->sched_class = &fair_sched_class;
4700
4701 p->prio = prio;
4702
4703 if (running)
4704 p->sched_class->set_curr_task(rq);
4705 if (on_rq)
4706 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
4707
4708 check_class_changed(rq, p, prev_class, oldprio);
4709 task_rq_unlock(rq, &flags);
4710 }
4711
4712 #endif
4713
4714 void set_user_nice(struct task_struct *p, long nice)
4715 {
4716 int old_prio, delta, on_rq;
4717 unsigned long flags;
4718 struct rq *rq;
4719
4720 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4721 return;
4722 /*
4723 * We have to be careful, if called from sys_setpriority(),
4724 * the task might be in the middle of scheduling on another CPU.
4725 */
4726 rq = task_rq_lock(p, &flags);
4727 /*
4728 * The RT priorities are set via sched_setscheduler(), but we still
4729 * allow the 'normal' nice value to be set - but as expected
4730 * it wont have any effect on scheduling until the task is
4731 * SCHED_FIFO/SCHED_RR:
4732 */
4733 if (task_has_rt_policy(p)) {
4734 p->static_prio = NICE_TO_PRIO(nice);
4735 goto out_unlock;
4736 }
4737 on_rq = p->se.on_rq;
4738 if (on_rq)
4739 dequeue_task(rq, p, 0);
4740
4741 p->static_prio = NICE_TO_PRIO(nice);
4742 set_load_weight(p);
4743 old_prio = p->prio;
4744 p->prio = effective_prio(p);
4745 delta = p->prio - old_prio;
4746
4747 if (on_rq) {
4748 enqueue_task(rq, p, 0);
4749 /*
4750 * If the task increased its priority or is running and
4751 * lowered its priority, then reschedule its CPU:
4752 */
4753 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4754 resched_task(rq->curr);
4755 }
4756 out_unlock:
4757 task_rq_unlock(rq, &flags);
4758 }
4759 EXPORT_SYMBOL(set_user_nice);
4760
4761 /*
4762 * can_nice - check if a task can reduce its nice value
4763 * @p: task
4764 * @nice: nice value
4765 */
4766 int can_nice(const struct task_struct *p, const int nice)
4767 {
4768 /* convert nice value [19,-20] to rlimit style value [1,40] */
4769 int nice_rlim = 20 - nice;
4770
4771 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4772 capable(CAP_SYS_NICE));
4773 }
4774
4775 #ifdef __ARCH_WANT_SYS_NICE
4776
4777 /*
4778 * sys_nice - change the priority of the current process.
4779 * @increment: priority increment
4780 *
4781 * sys_setpriority is a more generic, but much slower function that
4782 * does similar things.
4783 */
4784 SYSCALL_DEFINE1(nice, int, increment)
4785 {
4786 long nice, retval;
4787
4788 /*
4789 * Setpriority might change our priority at the same moment.
4790 * We don't have to worry. Conceptually one call occurs first
4791 * and we have a single winner.
4792 */
4793 if (increment < -40)
4794 increment = -40;
4795 if (increment > 40)
4796 increment = 40;
4797
4798 nice = TASK_NICE(current) + increment;
4799 if (nice < -20)
4800 nice = -20;
4801 if (nice > 19)
4802 nice = 19;
4803
4804 if (increment < 0 && !can_nice(current, nice))
4805 return -EPERM;
4806
4807 retval = security_task_setnice(current, nice);
4808 if (retval)
4809 return retval;
4810
4811 set_user_nice(current, nice);
4812 return 0;
4813 }
4814
4815 #endif
4816
4817 /**
4818 * task_prio - return the priority value of a given task.
4819 * @p: the task in question.
4820 *
4821 * This is the priority value as seen by users in /proc.
4822 * RT tasks are offset by -200. Normal tasks are centered
4823 * around 0, value goes from -16 to +15.
4824 */
4825 int task_prio(const struct task_struct *p)
4826 {
4827 return p->prio - MAX_RT_PRIO;
4828 }
4829
4830 /**
4831 * task_nice - return the nice value of a given task.
4832 * @p: the task in question.
4833 */
4834 int task_nice(const struct task_struct *p)
4835 {
4836 return TASK_NICE(p);
4837 }
4838 EXPORT_SYMBOL(task_nice);
4839
4840 /**
4841 * idle_cpu - is a given cpu idle currently?
4842 * @cpu: the processor in question.
4843 */
4844 int idle_cpu(int cpu)
4845 {
4846 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4847 }
4848
4849 /**
4850 * idle_task - return the idle task for a given cpu.
4851 * @cpu: the processor in question.
4852 */
4853 struct task_struct *idle_task(int cpu)
4854 {
4855 return cpu_rq(cpu)->idle;
4856 }
4857
4858 /**
4859 * find_process_by_pid - find a process with a matching PID value.
4860 * @pid: the pid in question.
4861 */
4862 static struct task_struct *find_process_by_pid(pid_t pid)
4863 {
4864 return pid ? find_task_by_vpid(pid) : current;
4865 }
4866
4867 /* Actually do priority change: must hold rq lock. */
4868 static void
4869 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4870 {
4871 BUG_ON(p->se.on_rq);
4872
4873 p->policy = policy;
4874 p->rt_priority = prio;
4875 p->normal_prio = normal_prio(p);
4876 /* we are holding p->pi_lock already */
4877 p->prio = rt_mutex_getprio(p);
4878 if (rt_prio(p->prio))
4879 p->sched_class = &rt_sched_class;
4880 else
4881 p->sched_class = &fair_sched_class;
4882 set_load_weight(p);
4883 }
4884
4885 /*
4886 * check the target process has a UID that matches the current process's
4887 */
4888 static bool check_same_owner(struct task_struct *p)
4889 {
4890 const struct cred *cred = current_cred(), *pcred;
4891 bool match;
4892
4893 rcu_read_lock();
4894 pcred = __task_cred(p);
4895 if (cred->user->user_ns == pcred->user->user_ns)
4896 match = (cred->euid == pcred->euid ||
4897 cred->euid == pcred->uid);
4898 else
4899 match = false;
4900 rcu_read_unlock();
4901 return match;
4902 }
4903
4904 static int __sched_setscheduler(struct task_struct *p, int policy,
4905 const struct sched_param *param, bool user)
4906 {
4907 int retval, oldprio, oldpolicy = -1, on_rq, running;
4908 unsigned long flags;
4909 const struct sched_class *prev_class;
4910 struct rq *rq;
4911 int reset_on_fork;
4912
4913 /* may grab non-irq protected spin_locks */
4914 BUG_ON(in_interrupt());
4915 recheck:
4916 /* double check policy once rq lock held */
4917 if (policy < 0) {
4918 reset_on_fork = p->sched_reset_on_fork;
4919 policy = oldpolicy = p->policy;
4920 } else {
4921 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4922 policy &= ~SCHED_RESET_ON_FORK;
4923
4924 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4925 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4926 policy != SCHED_IDLE)
4927 return -EINVAL;
4928 }
4929
4930 /*
4931 * Valid priorities for SCHED_FIFO and SCHED_RR are
4932 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4933 * SCHED_BATCH and SCHED_IDLE is 0.
4934 */
4935 if (param->sched_priority < 0 ||
4936 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4937 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4938 return -EINVAL;
4939 if (rt_policy(policy) != (param->sched_priority != 0))
4940 return -EINVAL;
4941
4942 /*
4943 * Allow unprivileged RT tasks to decrease priority:
4944 */
4945 if (user && !capable(CAP_SYS_NICE)) {
4946 if (rt_policy(policy)) {
4947 unsigned long rlim_rtprio =
4948 task_rlimit(p, RLIMIT_RTPRIO);
4949
4950 /* can't set/change the rt policy */
4951 if (policy != p->policy && !rlim_rtprio)
4952 return -EPERM;
4953
4954 /* can't increase priority */
4955 if (param->sched_priority > p->rt_priority &&
4956 param->sched_priority > rlim_rtprio)
4957 return -EPERM;
4958 }
4959
4960 /*
4961 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4962 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4963 */
4964 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
4965 if (!can_nice(p, TASK_NICE(p)))
4966 return -EPERM;
4967 }
4968
4969 /* can't change other user's priorities */
4970 if (!check_same_owner(p))
4971 return -EPERM;
4972
4973 /* Normal users shall not reset the sched_reset_on_fork flag */
4974 if (p->sched_reset_on_fork && !reset_on_fork)
4975 return -EPERM;
4976 }
4977
4978 if (user) {
4979 retval = security_task_setscheduler(p);
4980 if (retval)
4981 return retval;
4982 }
4983
4984 /*
4985 * make sure no PI-waiters arrive (or leave) while we are
4986 * changing the priority of the task:
4987 */
4988 raw_spin_lock_irqsave(&p->pi_lock, flags);
4989 /*
4990 * To be able to change p->policy safely, the apropriate
4991 * runqueue lock must be held.
4992 */
4993 rq = __task_rq_lock(p);
4994
4995 /*
4996 * Changing the policy of the stop threads its a very bad idea
4997 */
4998 if (p == rq->stop) {
4999 __task_rq_unlock(rq);
5000 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5001 return -EINVAL;
5002 }
5003
5004 #ifdef CONFIG_RT_GROUP_SCHED
5005 if (user) {
5006 /*
5007 * Do not allow realtime tasks into groups that have no runtime
5008 * assigned.
5009 */
5010 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5011 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5012 !task_group_is_autogroup(task_group(p))) {
5013 __task_rq_unlock(rq);
5014 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5015 return -EPERM;
5016 }
5017 }
5018 #endif
5019
5020 /* recheck policy now with rq lock held */
5021 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5022 policy = oldpolicy = -1;
5023 __task_rq_unlock(rq);
5024 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5025 goto recheck;
5026 }
5027 on_rq = p->se.on_rq;
5028 running = task_current(rq, p);
5029 if (on_rq)
5030 deactivate_task(rq, p, 0);
5031 if (running)
5032 p->sched_class->put_prev_task(rq, p);
5033
5034 p->sched_reset_on_fork = reset_on_fork;
5035
5036 oldprio = p->prio;
5037 prev_class = p->sched_class;
5038 __setscheduler(rq, p, policy, param->sched_priority);
5039
5040 if (running)
5041 p->sched_class->set_curr_task(rq);
5042 if (on_rq)
5043 activate_task(rq, p, 0);
5044
5045 check_class_changed(rq, p, prev_class, oldprio);
5046 __task_rq_unlock(rq);
5047 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5048
5049 rt_mutex_adjust_pi(p);
5050
5051 return 0;
5052 }
5053
5054 /**
5055 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5056 * @p: the task in question.
5057 * @policy: new policy.
5058 * @param: structure containing the new RT priority.
5059 *
5060 * NOTE that the task may be already dead.
5061 */
5062 int sched_setscheduler(struct task_struct *p, int policy,
5063 const struct sched_param *param)
5064 {
5065 return __sched_setscheduler(p, policy, param, true);
5066 }
5067 EXPORT_SYMBOL_GPL(sched_setscheduler);
5068
5069 /**
5070 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5071 * @p: the task in question.
5072 * @policy: new policy.
5073 * @param: structure containing the new RT priority.
5074 *
5075 * Just like sched_setscheduler, only don't bother checking if the
5076 * current context has permission. For example, this is needed in
5077 * stop_machine(): we create temporary high priority worker threads,
5078 * but our caller might not have that capability.
5079 */
5080 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5081 const struct sched_param *param)
5082 {
5083 return __sched_setscheduler(p, policy, param, false);
5084 }
5085
5086 static int
5087 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5088 {
5089 struct sched_param lparam;
5090 struct task_struct *p;
5091 int retval;
5092
5093 if (!param || pid < 0)
5094 return -EINVAL;
5095 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5096 return -EFAULT;
5097
5098 rcu_read_lock();
5099 retval = -ESRCH;
5100 p = find_process_by_pid(pid);
5101 if (p != NULL)
5102 retval = sched_setscheduler(p, policy, &lparam);
5103 rcu_read_unlock();
5104
5105 return retval;
5106 }
5107
5108 /**
5109 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5110 * @pid: the pid in question.
5111 * @policy: new policy.
5112 * @param: structure containing the new RT priority.
5113 */
5114 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5115 struct sched_param __user *, param)
5116 {
5117 /* negative values for policy are not valid */
5118 if (policy < 0)
5119 return -EINVAL;
5120
5121 return do_sched_setscheduler(pid, policy, param);
5122 }
5123
5124 /**
5125 * sys_sched_setparam - set/change the RT priority of a thread
5126 * @pid: the pid in question.
5127 * @param: structure containing the new RT priority.
5128 */
5129 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
5130 {
5131 return do_sched_setscheduler(pid, -1, param);
5132 }
5133
5134 /**
5135 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5136 * @pid: the pid in question.
5137 */
5138 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5139 {
5140 struct task_struct *p;
5141 int retval;
5142
5143 if (pid < 0)
5144 return -EINVAL;
5145
5146 retval = -ESRCH;
5147 rcu_read_lock();
5148 p = find_process_by_pid(pid);
5149 if (p) {
5150 retval = security_task_getscheduler(p);
5151 if (!retval)
5152 retval = p->policy
5153 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
5154 }
5155 rcu_read_unlock();
5156 return retval;
5157 }
5158
5159 /**
5160 * sys_sched_getparam - get the RT priority of a thread
5161 * @pid: the pid in question.
5162 * @param: structure containing the RT priority.
5163 */
5164 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5165 {
5166 struct sched_param lp;
5167 struct task_struct *p;
5168 int retval;
5169
5170 if (!param || pid < 0)
5171 return -EINVAL;
5172
5173 rcu_read_lock();
5174 p = find_process_by_pid(pid);
5175 retval = -ESRCH;
5176 if (!p)
5177 goto out_unlock;
5178
5179 retval = security_task_getscheduler(p);
5180 if (retval)
5181 goto out_unlock;
5182
5183 lp.sched_priority = p->rt_priority;
5184 rcu_read_unlock();
5185
5186 /*
5187 * This one might sleep, we cannot do it with a spinlock held ...
5188 */
5189 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5190
5191 return retval;
5192
5193 out_unlock:
5194 rcu_read_unlock();
5195 return retval;
5196 }
5197
5198 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5199 {
5200 cpumask_var_t cpus_allowed, new_mask;
5201 struct task_struct *p;
5202 int retval;
5203
5204 get_online_cpus();
5205 rcu_read_lock();
5206
5207 p = find_process_by_pid(pid);
5208 if (!p) {
5209 rcu_read_unlock();
5210 put_online_cpus();
5211 return -ESRCH;
5212 }
5213
5214 /* Prevent p going away */
5215 get_task_struct(p);
5216 rcu_read_unlock();
5217
5218 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5219 retval = -ENOMEM;
5220 goto out_put_task;
5221 }
5222 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5223 retval = -ENOMEM;
5224 goto out_free_cpus_allowed;
5225 }
5226 retval = -EPERM;
5227 if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
5228 goto out_unlock;
5229
5230 retval = security_task_setscheduler(p);
5231 if (retval)
5232 goto out_unlock;
5233
5234 cpuset_cpus_allowed(p, cpus_allowed);
5235 cpumask_and(new_mask, in_mask, cpus_allowed);
5236 again:
5237 retval = set_cpus_allowed_ptr(p, new_mask);
5238
5239 if (!retval) {
5240 cpuset_cpus_allowed(p, cpus_allowed);
5241 if (!cpumask_subset(new_mask, cpus_allowed)) {
5242 /*
5243 * We must have raced with a concurrent cpuset
5244 * update. Just reset the cpus_allowed to the
5245 * cpuset's cpus_allowed
5246 */
5247 cpumask_copy(new_mask, cpus_allowed);
5248 goto again;
5249 }
5250 }
5251 out_unlock:
5252 free_cpumask_var(new_mask);
5253 out_free_cpus_allowed:
5254 free_cpumask_var(cpus_allowed);
5255 out_put_task:
5256 put_task_struct(p);
5257 put_online_cpus();
5258 return retval;
5259 }
5260
5261 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5262 struct cpumask *new_mask)
5263 {
5264 if (len < cpumask_size())
5265 cpumask_clear(new_mask);
5266 else if (len > cpumask_size())
5267 len = cpumask_size();
5268
5269 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5270 }
5271
5272 /**
5273 * sys_sched_setaffinity - set the cpu affinity of a process
5274 * @pid: pid of the process
5275 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5276 * @user_mask_ptr: user-space pointer to the new cpu mask
5277 */
5278 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5279 unsigned long __user *, user_mask_ptr)
5280 {
5281 cpumask_var_t new_mask;
5282 int retval;
5283
5284 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5285 return -ENOMEM;
5286
5287 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5288 if (retval == 0)
5289 retval = sched_setaffinity(pid, new_mask);
5290 free_cpumask_var(new_mask);
5291 return retval;
5292 }
5293
5294 long sched_getaffinity(pid_t pid, struct cpumask *mask)
5295 {
5296 struct task_struct *p;
5297 unsigned long flags;
5298 struct rq *rq;
5299 int retval;
5300
5301 get_online_cpus();
5302 rcu_read_lock();
5303
5304 retval = -ESRCH;
5305 p = find_process_by_pid(pid);
5306 if (!p)
5307 goto out_unlock;
5308
5309 retval = security_task_getscheduler(p);
5310 if (retval)
5311 goto out_unlock;
5312
5313 rq = task_rq_lock(p, &flags);
5314 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
5315 task_rq_unlock(rq, &flags);
5316
5317 out_unlock:
5318 rcu_read_unlock();
5319 put_online_cpus();
5320
5321 return retval;
5322 }
5323
5324 /**
5325 * sys_sched_getaffinity - get the cpu affinity of a process
5326 * @pid: pid of the process
5327 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5328 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5329 */
5330 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5331 unsigned long __user *, user_mask_ptr)
5332 {
5333 int ret;
5334 cpumask_var_t mask;
5335
5336 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
5337 return -EINVAL;
5338 if (len & (sizeof(unsigned long)-1))
5339 return -EINVAL;
5340
5341 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5342 return -ENOMEM;
5343
5344 ret = sched_getaffinity(pid, mask);
5345 if (ret == 0) {
5346 size_t retlen = min_t(size_t, len, cpumask_size());
5347
5348 if (copy_to_user(user_mask_ptr, mask, retlen))
5349 ret = -EFAULT;
5350 else
5351 ret = retlen;
5352 }
5353 free_cpumask_var(mask);
5354
5355 return ret;
5356 }
5357
5358 /**
5359 * sys_sched_yield - yield the current processor to other threads.
5360 *
5361 * This function yields the current CPU to other tasks. If there are no
5362 * other threads running on this CPU then this function will return.
5363 */
5364 SYSCALL_DEFINE0(sched_yield)
5365 {
5366 struct rq *rq = this_rq_lock();
5367
5368 schedstat_inc(rq, yld_count);
5369 current->sched_class->yield_task(rq);
5370
5371 /*
5372 * Since we are going to call schedule() anyway, there's
5373 * no need to preempt or enable interrupts:
5374 */
5375 __release(rq->lock);
5376 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5377 do_raw_spin_unlock(&rq->lock);
5378 preempt_enable_no_resched();
5379
5380 schedule();
5381
5382 return 0;
5383 }
5384
5385 static inline int should_resched(void)
5386 {
5387 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5388 }
5389
5390 static void __cond_resched(void)
5391 {
5392 add_preempt_count(PREEMPT_ACTIVE);
5393 schedule();
5394 sub_preempt_count(PREEMPT_ACTIVE);
5395 }
5396
5397 int __sched _cond_resched(void)
5398 {
5399 if (should_resched()) {
5400 __cond_resched();
5401 return 1;
5402 }
5403 return 0;
5404 }
5405 EXPORT_SYMBOL(_cond_resched);
5406
5407 /*
5408 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5409 * call schedule, and on return reacquire the lock.
5410 *
5411 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5412 * operations here to prevent schedule() from being called twice (once via
5413 * spin_unlock(), once by hand).
5414 */
5415 int __cond_resched_lock(spinlock_t *lock)
5416 {
5417 int resched = should_resched();
5418 int ret = 0;
5419
5420 lockdep_assert_held(lock);
5421
5422 if (spin_needbreak(lock) || resched) {
5423 spin_unlock(lock);
5424 if (resched)
5425 __cond_resched();
5426 else
5427 cpu_relax();
5428 ret = 1;
5429 spin_lock(lock);
5430 }
5431 return ret;
5432 }
5433 EXPORT_SYMBOL(__cond_resched_lock);
5434
5435 int __sched __cond_resched_softirq(void)
5436 {
5437 BUG_ON(!in_softirq());
5438
5439 if (should_resched()) {
5440 local_bh_enable();
5441 __cond_resched();
5442 local_bh_disable();
5443 return 1;
5444 }
5445 return 0;
5446 }
5447 EXPORT_SYMBOL(__cond_resched_softirq);
5448
5449 /**
5450 * yield - yield the current processor to other threads.
5451 *
5452 * This is a shortcut for kernel-space yielding - it marks the
5453 * thread runnable and calls sys_sched_yield().
5454 */
5455 void __sched yield(void)
5456 {
5457 set_current_state(TASK_RUNNING);
5458 sys_sched_yield();
5459 }
5460 EXPORT_SYMBOL(yield);
5461
5462 /**
5463 * yield_to - yield the current processor to another thread in
5464 * your thread group, or accelerate that thread toward the
5465 * processor it's on.
5466 *
5467 * It's the caller's job to ensure that the target task struct
5468 * can't go away on us before we can do any checks.
5469 *
5470 * Returns true if we indeed boosted the target task.
5471 */
5472 bool __sched yield_to(struct task_struct *p, bool preempt)
5473 {
5474 struct task_struct *curr = current;
5475 struct rq *rq, *p_rq;
5476 unsigned long flags;
5477 bool yielded = 0;
5478
5479 local_irq_save(flags);
5480 rq = this_rq();
5481
5482 again:
5483 p_rq = task_rq(p);
5484 double_rq_lock(rq, p_rq);
5485 while (task_rq(p) != p_rq) {
5486 double_rq_unlock(rq, p_rq);
5487 goto again;
5488 }
5489
5490 if (!curr->sched_class->yield_to_task)
5491 goto out;
5492
5493 if (curr->sched_class != p->sched_class)
5494 goto out;
5495
5496 if (task_running(p_rq, p) || p->state)
5497 goto out;
5498
5499 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5500 if (yielded) {
5501 schedstat_inc(rq, yld_count);
5502 /*
5503 * Make p's CPU reschedule; pick_next_entity takes care of
5504 * fairness.
5505 */
5506 if (preempt && rq != p_rq)
5507 resched_task(p_rq->curr);
5508 }
5509
5510 out:
5511 double_rq_unlock(rq, p_rq);
5512 local_irq_restore(flags);
5513
5514 if (yielded)
5515 schedule();
5516
5517 return yielded;
5518 }
5519 EXPORT_SYMBOL_GPL(yield_to);
5520
5521 /*
5522 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5523 * that process accounting knows that this is a task in IO wait state.
5524 */
5525 void __sched io_schedule(void)
5526 {
5527 struct rq *rq = raw_rq();
5528
5529 delayacct_blkio_start();
5530 atomic_inc(&rq->nr_iowait);
5531 current->in_iowait = 1;
5532 schedule();
5533 current->in_iowait = 0;
5534 atomic_dec(&rq->nr_iowait);
5535 delayacct_blkio_end();
5536 }
5537 EXPORT_SYMBOL(io_schedule);
5538
5539 long __sched io_schedule_timeout(long timeout)
5540 {
5541 struct rq *rq = raw_rq();
5542 long ret;
5543
5544 delayacct_blkio_start();
5545 atomic_inc(&rq->nr_iowait);
5546 current->in_iowait = 1;
5547 ret = schedule_timeout(timeout);
5548 current->in_iowait = 0;
5549 atomic_dec(&rq->nr_iowait);
5550 delayacct_blkio_end();
5551 return ret;
5552 }
5553
5554 /**
5555 * sys_sched_get_priority_max - return maximum RT priority.
5556 * @policy: scheduling class.
5557 *
5558 * this syscall returns the maximum rt_priority that can be used
5559 * by a given scheduling class.
5560 */
5561 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5562 {
5563 int ret = -EINVAL;
5564
5565 switch (policy) {
5566 case SCHED_FIFO:
5567 case SCHED_RR:
5568 ret = MAX_USER_RT_PRIO-1;
5569 break;
5570 case SCHED_NORMAL:
5571 case SCHED_BATCH:
5572 case SCHED_IDLE:
5573 ret = 0;
5574 break;
5575 }
5576 return ret;
5577 }
5578
5579 /**
5580 * sys_sched_get_priority_min - return minimum RT priority.
5581 * @policy: scheduling class.
5582 *
5583 * this syscall returns the minimum rt_priority that can be used
5584 * by a given scheduling class.
5585 */
5586 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5587 {
5588 int ret = -EINVAL;
5589
5590 switch (policy) {
5591 case SCHED_FIFO:
5592 case SCHED_RR:
5593 ret = 1;
5594 break;
5595 case SCHED_NORMAL:
5596 case SCHED_BATCH:
5597 case SCHED_IDLE:
5598 ret = 0;
5599 }
5600 return ret;
5601 }
5602
5603 /**
5604 * sys_sched_rr_get_interval - return the default timeslice of a process.
5605 * @pid: pid of the process.
5606 * @interval: userspace pointer to the timeslice value.
5607 *
5608 * this syscall writes the default timeslice value of a given process
5609 * into the user-space timespec buffer. A value of '0' means infinity.
5610 */
5611 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5612 struct timespec __user *, interval)
5613 {
5614 struct task_struct *p;
5615 unsigned int time_slice;
5616 unsigned long flags;
5617 struct rq *rq;
5618 int retval;
5619 struct timespec t;
5620
5621 if (pid < 0)
5622 return -EINVAL;
5623
5624 retval = -ESRCH;
5625 rcu_read_lock();
5626 p = find_process_by_pid(pid);
5627 if (!p)
5628 goto out_unlock;
5629
5630 retval = security_task_getscheduler(p);
5631 if (retval)
5632 goto out_unlock;
5633
5634 rq = task_rq_lock(p, &flags);
5635 time_slice = p->sched_class->get_rr_interval(rq, p);
5636 task_rq_unlock(rq, &flags);
5637
5638 rcu_read_unlock();
5639 jiffies_to_timespec(time_slice, &t);
5640 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5641 return retval;
5642
5643 out_unlock:
5644 rcu_read_unlock();
5645 return retval;
5646 }
5647
5648 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5649
5650 void sched_show_task(struct task_struct *p)
5651 {
5652 unsigned long free = 0;
5653 unsigned state;
5654
5655 state = p->state ? __ffs(p->state) + 1 : 0;
5656 printk(KERN_INFO "%-15.15s %c", p->comm,
5657 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5658 #if BITS_PER_LONG == 32
5659 if (state == TASK_RUNNING)
5660 printk(KERN_CONT " running ");
5661 else
5662 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5663 #else
5664 if (state == TASK_RUNNING)
5665 printk(KERN_CONT " running task ");
5666 else
5667 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5668 #endif
5669 #ifdef CONFIG_DEBUG_STACK_USAGE
5670 free = stack_not_used(p);
5671 #endif
5672 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5673 task_pid_nr(p), task_pid_nr(p->real_parent),
5674 (unsigned long)task_thread_info(p)->flags);
5675
5676 show_stack(p, NULL);
5677 }
5678
5679 void show_state_filter(unsigned long state_filter)
5680 {
5681 struct task_struct *g, *p;
5682
5683 #if BITS_PER_LONG == 32
5684 printk(KERN_INFO
5685 " task PC stack pid father\n");
5686 #else
5687 printk(KERN_INFO
5688 " task PC stack pid father\n");
5689 #endif
5690 read_lock(&tasklist_lock);
5691 do_each_thread(g, p) {
5692 /*
5693 * reset the NMI-timeout, listing all files on a slow
5694 * console might take alot of time:
5695 */
5696 touch_nmi_watchdog();
5697 if (!state_filter || (p->state & state_filter))
5698 sched_show_task(p);
5699 } while_each_thread(g, p);
5700
5701 touch_all_softlockup_watchdogs();
5702
5703 #ifdef CONFIG_SCHED_DEBUG
5704 sysrq_sched_debug_show();
5705 #endif
5706 read_unlock(&tasklist_lock);
5707 /*
5708 * Only show locks if all tasks are dumped:
5709 */
5710 if (!state_filter)
5711 debug_show_all_locks();
5712 }
5713
5714 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5715 {
5716 idle->sched_class = &idle_sched_class;
5717 }
5718
5719 /**
5720 * init_idle - set up an idle thread for a given CPU
5721 * @idle: task in question
5722 * @cpu: cpu the idle task belongs to
5723 *
5724 * NOTE: this function does not set the idle thread's NEED_RESCHED
5725 * flag, to make booting more robust.
5726 */
5727 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5728 {
5729 struct rq *rq = cpu_rq(cpu);
5730 unsigned long flags;
5731
5732 raw_spin_lock_irqsave(&rq->lock, flags);
5733
5734 __sched_fork(idle);
5735 idle->state = TASK_RUNNING;
5736 idle->se.exec_start = sched_clock();
5737
5738 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
5739 /*
5740 * We're having a chicken and egg problem, even though we are
5741 * holding rq->lock, the cpu isn't yet set to this cpu so the
5742 * lockdep check in task_group() will fail.
5743 *
5744 * Similar case to sched_fork(). / Alternatively we could
5745 * use task_rq_lock() here and obtain the other rq->lock.
5746 *
5747 * Silence PROVE_RCU
5748 */
5749 rcu_read_lock();
5750 __set_task_cpu(idle, cpu);
5751 rcu_read_unlock();
5752
5753 rq->curr = rq->idle = idle;
5754 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5755 idle->oncpu = 1;
5756 #endif
5757 raw_spin_unlock_irqrestore(&rq->lock, flags);
5758
5759 /* Set the preempt count _outside_ the spinlocks! */
5760 #if defined(CONFIG_PREEMPT)
5761 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5762 #else
5763 task_thread_info(idle)->preempt_count = 0;
5764 #endif
5765 /*
5766 * The idle tasks have their own, simple scheduling class:
5767 */
5768 idle->sched_class = &idle_sched_class;
5769 ftrace_graph_init_idle_task(idle, cpu);
5770 }
5771
5772 /*
5773 * In a system that switches off the HZ timer nohz_cpu_mask
5774 * indicates which cpus entered this state. This is used
5775 * in the rcu update to wait only for active cpus. For system
5776 * which do not switch off the HZ timer nohz_cpu_mask should
5777 * always be CPU_BITS_NONE.
5778 */
5779 cpumask_var_t nohz_cpu_mask;
5780
5781 /*
5782 * Increase the granularity value when there are more CPUs,
5783 * because with more CPUs the 'effective latency' as visible
5784 * to users decreases. But the relationship is not linear,
5785 * so pick a second-best guess by going with the log2 of the
5786 * number of CPUs.
5787 *
5788 * This idea comes from the SD scheduler of Con Kolivas:
5789 */
5790 static int get_update_sysctl_factor(void)
5791 {
5792 unsigned int cpus = min_t(int, num_online_cpus(), 8);
5793 unsigned int factor;
5794
5795 switch (sysctl_sched_tunable_scaling) {
5796 case SCHED_TUNABLESCALING_NONE:
5797 factor = 1;
5798 break;
5799 case SCHED_TUNABLESCALING_LINEAR:
5800 factor = cpus;
5801 break;
5802 case SCHED_TUNABLESCALING_LOG:
5803 default:
5804 factor = 1 + ilog2(cpus);
5805 break;
5806 }
5807
5808 return factor;
5809 }
5810
5811 static void update_sysctl(void)
5812 {
5813 unsigned int factor = get_update_sysctl_factor();
5814
5815 #define SET_SYSCTL(name) \
5816 (sysctl_##name = (factor) * normalized_sysctl_##name)
5817 SET_SYSCTL(sched_min_granularity);
5818 SET_SYSCTL(sched_latency);
5819 SET_SYSCTL(sched_wakeup_granularity);
5820 #undef SET_SYSCTL
5821 }
5822
5823 static inline void sched_init_granularity(void)
5824 {
5825 update_sysctl();
5826 }
5827
5828 #ifdef CONFIG_SMP
5829 /*
5830 * This is how migration works:
5831 *
5832 * 1) we invoke migration_cpu_stop() on the target CPU using
5833 * stop_one_cpu().
5834 * 2) stopper starts to run (implicitly forcing the migrated thread
5835 * off the CPU)
5836 * 3) it checks whether the migrated task is still in the wrong runqueue.
5837 * 4) if it's in the wrong runqueue then the migration thread removes
5838 * it and puts it into the right queue.
5839 * 5) stopper completes and stop_one_cpu() returns and the migration
5840 * is done.
5841 */
5842
5843 /*
5844 * Change a given task's CPU affinity. Migrate the thread to a
5845 * proper CPU and schedule it away if the CPU it's executing on
5846 * is removed from the allowed bitmask.
5847 *
5848 * NOTE: the caller must have a valid reference to the task, the
5849 * task must not exit() & deallocate itself prematurely. The
5850 * call is not atomic; no spinlocks may be held.
5851 */
5852 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
5853 {
5854 unsigned long flags;
5855 struct rq *rq;
5856 unsigned int dest_cpu;
5857 int ret = 0;
5858
5859 /*
5860 * Serialize against TASK_WAKING so that ttwu() and wunt() can
5861 * drop the rq->lock and still rely on ->cpus_allowed.
5862 */
5863 again:
5864 while (task_is_waking(p))
5865 cpu_relax();
5866 rq = task_rq_lock(p, &flags);
5867 if (task_is_waking(p)) {
5868 task_rq_unlock(rq, &flags);
5869 goto again;
5870 }
5871
5872 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
5873 ret = -EINVAL;
5874 goto out;
5875 }
5876
5877 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5878 !cpumask_equal(&p->cpus_allowed, new_mask))) {
5879 ret = -EINVAL;
5880 goto out;
5881 }
5882
5883 if (p->sched_class->set_cpus_allowed)
5884 p->sched_class->set_cpus_allowed(p, new_mask);
5885 else {
5886 cpumask_copy(&p->cpus_allowed, new_mask);
5887 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5888 }
5889
5890 /* Can the task run on the task's current CPU? If so, we're done */
5891 if (cpumask_test_cpu(task_cpu(p), new_mask))
5892 goto out;
5893
5894 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5895 if (migrate_task(p, rq)) {
5896 struct migration_arg arg = { p, dest_cpu };
5897 /* Need help from migration thread: drop lock and wait. */
5898 task_rq_unlock(rq, &flags);
5899 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
5900 tlb_migrate_finish(p->mm);
5901 return 0;
5902 }
5903 out:
5904 task_rq_unlock(rq, &flags);
5905
5906 return ret;
5907 }
5908 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5909
5910 /*
5911 * Move (not current) task off this cpu, onto dest cpu. We're doing
5912 * this because either it can't run here any more (set_cpus_allowed()
5913 * away from this CPU, or CPU going down), or because we're
5914 * attempting to rebalance this task on exec (sched_exec).
5915 *
5916 * So we race with normal scheduler movements, but that's OK, as long
5917 * as the task is no longer on this CPU.
5918 *
5919 * Returns non-zero if task was successfully migrated.
5920 */
5921 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5922 {
5923 struct rq *rq_dest, *rq_src;
5924 int ret = 0;
5925
5926 if (unlikely(!cpu_active(dest_cpu)))
5927 return ret;
5928
5929 rq_src = cpu_rq(src_cpu);
5930 rq_dest = cpu_rq(dest_cpu);
5931
5932 double_rq_lock(rq_src, rq_dest);
5933 /* Already moved. */
5934 if (task_cpu(p) != src_cpu)
5935 goto done;
5936 /* Affinity changed (again). */
5937 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
5938 goto fail;
5939
5940 /*
5941 * If we're not on a rq, the next wake-up will ensure we're
5942 * placed properly.
5943 */
5944 if (p->se.on_rq) {
5945 deactivate_task(rq_src, p, 0);
5946 set_task_cpu(p, dest_cpu);
5947 activate_task(rq_dest, p, 0);
5948 check_preempt_curr(rq_dest, p, 0);
5949 }
5950 done:
5951 ret = 1;
5952 fail:
5953 double_rq_unlock(rq_src, rq_dest);
5954 return ret;
5955 }
5956
5957 /*
5958 * migration_cpu_stop - this will be executed by a highprio stopper thread
5959 * and performs thread migration by bumping thread off CPU then
5960 * 'pushing' onto another runqueue.
5961 */
5962 static int migration_cpu_stop(void *data)
5963 {
5964 struct migration_arg *arg = data;
5965
5966 /*
5967 * The original target cpu might have gone down and we might
5968 * be on another cpu but it doesn't matter.
5969 */
5970 local_irq_disable();
5971 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5972 local_irq_enable();
5973 return 0;
5974 }
5975
5976 #ifdef CONFIG_HOTPLUG_CPU
5977
5978 /*
5979 * Ensures that the idle task is using init_mm right before its cpu goes
5980 * offline.
5981 */
5982 void idle_task_exit(void)
5983 {
5984 struct mm_struct *mm = current->active_mm;
5985
5986 BUG_ON(cpu_online(smp_processor_id()));
5987
5988 if (mm != &init_mm)
5989 switch_mm(mm, &init_mm, current);
5990 mmdrop(mm);
5991 }
5992
5993 /*
5994 * While a dead CPU has no uninterruptible tasks queued at this point,
5995 * it might still have a nonzero ->nr_uninterruptible counter, because
5996 * for performance reasons the counter is not stricly tracking tasks to
5997 * their home CPUs. So we just add the counter to another CPU's counter,
5998 * to keep the global sum constant after CPU-down:
5999 */
6000 static void migrate_nr_uninterruptible(struct rq *rq_src)
6001 {
6002 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
6003
6004 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6005 rq_src->nr_uninterruptible = 0;
6006 }
6007
6008 /*
6009 * remove the tasks which were accounted by rq from calc_load_tasks.
6010 */
6011 static void calc_global_load_remove(struct rq *rq)
6012 {
6013 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
6014 rq->calc_load_active = 0;
6015 }
6016
6017 /*
6018 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6019 * try_to_wake_up()->select_task_rq().
6020 *
6021 * Called with rq->lock held even though we'er in stop_machine() and
6022 * there's no concurrency possible, we hold the required locks anyway
6023 * because of lock validation efforts.
6024 */
6025 static void migrate_tasks(unsigned int dead_cpu)
6026 {
6027 struct rq *rq = cpu_rq(dead_cpu);
6028 struct task_struct *next, *stop = rq->stop;
6029 int dest_cpu;
6030
6031 /*
6032 * Fudge the rq selection such that the below task selection loop
6033 * doesn't get stuck on the currently eligible stop task.
6034 *
6035 * We're currently inside stop_machine() and the rq is either stuck
6036 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6037 * either way we should never end up calling schedule() until we're
6038 * done here.
6039 */
6040 rq->stop = NULL;
6041
6042 for ( ; ; ) {
6043 /*
6044 * There's this thread running, bail when that's the only
6045 * remaining thread.
6046 */
6047 if (rq->nr_running == 1)
6048 break;
6049
6050 next = pick_next_task(rq);
6051 BUG_ON(!next);
6052 next->sched_class->put_prev_task(rq, next);
6053
6054 /* Find suitable destination for @next, with force if needed. */
6055 dest_cpu = select_fallback_rq(dead_cpu, next);
6056 raw_spin_unlock(&rq->lock);
6057
6058 __migrate_task(next, dead_cpu, dest_cpu);
6059
6060 raw_spin_lock(&rq->lock);
6061 }
6062
6063 rq->stop = stop;
6064 }
6065
6066 #endif /* CONFIG_HOTPLUG_CPU */
6067
6068 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6069
6070 static struct ctl_table sd_ctl_dir[] = {
6071 {
6072 .procname = "sched_domain",
6073 .mode = 0555,
6074 },
6075 {}
6076 };
6077
6078 static struct ctl_table sd_ctl_root[] = {
6079 {
6080 .procname = "kernel",
6081 .mode = 0555,
6082 .child = sd_ctl_dir,
6083 },
6084 {}
6085 };
6086
6087 static struct ctl_table *sd_alloc_ctl_entry(int n)
6088 {
6089 struct ctl_table *entry =
6090 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6091
6092 return entry;
6093 }
6094
6095 static void sd_free_ctl_entry(struct ctl_table **tablep)
6096 {
6097 struct ctl_table *entry;
6098
6099 /*
6100 * In the intermediate directories, both the child directory and
6101 * procname are dynamically allocated and could fail but the mode
6102 * will always be set. In the lowest directory the names are
6103 * static strings and all have proc handlers.
6104 */
6105 for (entry = *tablep; entry->mode; entry++) {
6106 if (entry->child)
6107 sd_free_ctl_entry(&entry->child);
6108 if (entry->proc_handler == NULL)
6109 kfree(entry->procname);
6110 }
6111
6112 kfree(*tablep);
6113 *tablep = NULL;
6114 }
6115
6116 static void
6117 set_table_entry(struct ctl_table *entry,
6118 const char *procname, void *data, int maxlen,
6119 mode_t mode, proc_handler *proc_handler)
6120 {
6121 entry->procname = procname;
6122 entry->data = data;
6123 entry->maxlen = maxlen;
6124 entry->mode = mode;
6125 entry->proc_handler = proc_handler;
6126 }
6127
6128 static struct ctl_table *
6129 sd_alloc_ctl_domain_table(struct sched_domain *sd)
6130 {
6131 struct ctl_table *table = sd_alloc_ctl_entry(13);
6132
6133 if (table == NULL)
6134 return NULL;
6135
6136 set_table_entry(&table[0], "min_interval", &sd->min_interval,
6137 sizeof(long), 0644, proc_doulongvec_minmax);
6138 set_table_entry(&table[1], "max_interval", &sd->max_interval,
6139 sizeof(long), 0644, proc_doulongvec_minmax);
6140 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6141 sizeof(int), 0644, proc_dointvec_minmax);
6142 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6143 sizeof(int), 0644, proc_dointvec_minmax);
6144 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6145 sizeof(int), 0644, proc_dointvec_minmax);
6146 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6147 sizeof(int), 0644, proc_dointvec_minmax);
6148 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6149 sizeof(int), 0644, proc_dointvec_minmax);
6150 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6151 sizeof(int), 0644, proc_dointvec_minmax);
6152 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6153 sizeof(int), 0644, proc_dointvec_minmax);
6154 set_table_entry(&table[9], "cache_nice_tries",
6155 &sd->cache_nice_tries,
6156 sizeof(int), 0644, proc_dointvec_minmax);
6157 set_table_entry(&table[10], "flags", &sd->flags,
6158 sizeof(int), 0644, proc_dointvec_minmax);
6159 set_table_entry(&table[11], "name", sd->name,
6160 CORENAME_MAX_SIZE, 0444, proc_dostring);
6161 /* &table[12] is terminator */
6162
6163 return table;
6164 }
6165
6166 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6167 {
6168 struct ctl_table *entry, *table;
6169 struct sched_domain *sd;
6170 int domain_num = 0, i;
6171 char buf[32];
6172
6173 for_each_domain(cpu, sd)
6174 domain_num++;
6175 entry = table = sd_alloc_ctl_entry(domain_num + 1);
6176 if (table == NULL)
6177 return NULL;
6178
6179 i = 0;
6180 for_each_domain(cpu, sd) {
6181 snprintf(buf, 32, "domain%d", i);
6182 entry->procname = kstrdup(buf, GFP_KERNEL);
6183 entry->mode = 0555;
6184 entry->child = sd_alloc_ctl_domain_table(sd);
6185 entry++;
6186 i++;
6187 }
6188 return table;
6189 }
6190
6191 static struct ctl_table_header *sd_sysctl_header;
6192 static void register_sched_domain_sysctl(void)
6193 {
6194 int i, cpu_num = num_possible_cpus();
6195 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6196 char buf[32];
6197
6198 WARN_ON(sd_ctl_dir[0].child);
6199 sd_ctl_dir[0].child = entry;
6200
6201 if (entry == NULL)
6202 return;
6203
6204 for_each_possible_cpu(i) {
6205 snprintf(buf, 32, "cpu%d", i);
6206 entry->procname = kstrdup(buf, GFP_KERNEL);
6207 entry->mode = 0555;
6208 entry->child = sd_alloc_ctl_cpu_table(i);
6209 entry++;
6210 }
6211
6212 WARN_ON(sd_sysctl_header);
6213 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6214 }
6215
6216 /* may be called multiple times per register */
6217 static void unregister_sched_domain_sysctl(void)
6218 {
6219 if (sd_sysctl_header)
6220 unregister_sysctl_table(sd_sysctl_header);
6221 sd_sysctl_header = NULL;
6222 if (sd_ctl_dir[0].child)
6223 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6224 }
6225 #else
6226 static void register_sched_domain_sysctl(void)
6227 {
6228 }
6229 static void unregister_sched_domain_sysctl(void)
6230 {
6231 }
6232 #endif
6233
6234 static void set_rq_online(struct rq *rq)
6235 {
6236 if (!rq->online) {
6237 const struct sched_class *class;
6238
6239 cpumask_set_cpu(rq->cpu, rq->rd->online);
6240 rq->online = 1;
6241
6242 for_each_class(class) {
6243 if (class->rq_online)
6244 class->rq_online(rq);
6245 }
6246 }
6247 }
6248
6249 static void set_rq_offline(struct rq *rq)
6250 {
6251 if (rq->online) {
6252 const struct sched_class *class;
6253
6254 for_each_class(class) {
6255 if (class->rq_offline)
6256 class->rq_offline(rq);
6257 }
6258
6259 cpumask_clear_cpu(rq->cpu, rq->rd->online);
6260 rq->online = 0;
6261 }
6262 }
6263
6264 /*
6265 * migration_call - callback that gets triggered when a CPU is added.
6266 * Here we can start up the necessary migration thread for the new CPU.
6267 */
6268 static int __cpuinit
6269 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6270 {
6271 int cpu = (long)hcpu;
6272 unsigned long flags;
6273 struct rq *rq = cpu_rq(cpu);
6274
6275 switch (action & ~CPU_TASKS_FROZEN) {
6276
6277 case CPU_UP_PREPARE:
6278 rq->calc_load_update = calc_load_update;
6279 break;
6280
6281 case CPU_ONLINE:
6282 /* Update our root-domain */
6283 raw_spin_lock_irqsave(&rq->lock, flags);
6284 if (rq->rd) {
6285 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6286
6287 set_rq_online(rq);
6288 }
6289 raw_spin_unlock_irqrestore(&rq->lock, flags);
6290 break;
6291
6292 #ifdef CONFIG_HOTPLUG_CPU
6293 case CPU_DYING:
6294 /* Update our root-domain */
6295 raw_spin_lock_irqsave(&rq->lock, flags);
6296 if (rq->rd) {
6297 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6298 set_rq_offline(rq);
6299 }
6300 migrate_tasks(cpu);
6301 BUG_ON(rq->nr_running != 1); /* the migration thread */
6302 raw_spin_unlock_irqrestore(&rq->lock, flags);
6303
6304 migrate_nr_uninterruptible(rq);
6305 calc_global_load_remove(rq);
6306 break;
6307 #endif
6308 }
6309 return NOTIFY_OK;
6310 }
6311
6312 /*
6313 * Register at high priority so that task migration (migrate_all_tasks)
6314 * happens before everything else. This has to be lower priority than
6315 * the notifier in the perf_event subsystem, though.
6316 */
6317 static struct notifier_block __cpuinitdata migration_notifier = {
6318 .notifier_call = migration_call,
6319 .priority = CPU_PRI_MIGRATION,
6320 };
6321
6322 static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
6323 unsigned long action, void *hcpu)
6324 {
6325 switch (action & ~CPU_TASKS_FROZEN) {
6326 case CPU_ONLINE:
6327 case CPU_DOWN_FAILED:
6328 set_cpu_active((long)hcpu, true);
6329 return NOTIFY_OK;
6330 default:
6331 return NOTIFY_DONE;
6332 }
6333 }
6334
6335 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
6336 unsigned long action, void *hcpu)
6337 {
6338 switch (action & ~CPU_TASKS_FROZEN) {
6339 case CPU_DOWN_PREPARE:
6340 set_cpu_active((long)hcpu, false);
6341 return NOTIFY_OK;
6342 default:
6343 return NOTIFY_DONE;
6344 }
6345 }
6346
6347 static int __init migration_init(void)
6348 {
6349 void *cpu = (void *)(long)smp_processor_id();
6350 int err;
6351
6352 /* Initialize migration for the boot CPU */
6353 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6354 BUG_ON(err == NOTIFY_BAD);
6355 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6356 register_cpu_notifier(&migration_notifier);
6357
6358 /* Register cpu active notifiers */
6359 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6360 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6361
6362 return 0;
6363 }
6364 early_initcall(migration_init);
6365 #endif
6366
6367 #ifdef CONFIG_SMP
6368
6369 #ifdef CONFIG_SCHED_DEBUG
6370
6371 static __read_mostly int sched_domain_debug_enabled;
6372
6373 static int __init sched_domain_debug_setup(char *str)
6374 {
6375 sched_domain_debug_enabled = 1;
6376
6377 return 0;
6378 }
6379 early_param("sched_debug", sched_domain_debug_setup);
6380
6381 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6382 struct cpumask *groupmask)
6383 {
6384 struct sched_group *group = sd->groups;
6385 char str[256];
6386
6387 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6388 cpumask_clear(groupmask);
6389
6390 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6391
6392 if (!(sd->flags & SD_LOAD_BALANCE)) {
6393 printk("does not load-balance\n");
6394 if (sd->parent)
6395 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6396 " has parent");
6397 return -1;
6398 }
6399
6400 printk(KERN_CONT "span %s level %s\n", str, sd->name);
6401
6402 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
6403 printk(KERN_ERR "ERROR: domain->span does not contain "
6404 "CPU%d\n", cpu);
6405 }
6406 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
6407 printk(KERN_ERR "ERROR: domain->groups does not contain"
6408 " CPU%d\n", cpu);
6409 }
6410
6411 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6412 do {
6413 if (!group) {
6414 printk("\n");
6415 printk(KERN_ERR "ERROR: group is NULL\n");
6416 break;
6417 }
6418
6419 if (!group->cpu_power) {
6420 printk(KERN_CONT "\n");
6421 printk(KERN_ERR "ERROR: domain->cpu_power not "
6422 "set\n");
6423 break;
6424 }
6425
6426 if (!cpumask_weight(sched_group_cpus(group))) {
6427 printk(KERN_CONT "\n");
6428 printk(KERN_ERR "ERROR: empty group\n");
6429 break;
6430 }
6431
6432 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
6433 printk(KERN_CONT "\n");
6434 printk(KERN_ERR "ERROR: repeated CPUs\n");
6435 break;
6436 }
6437
6438 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
6439
6440 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6441
6442 printk(KERN_CONT " %s", str);
6443 if (group->cpu_power != SCHED_LOAD_SCALE) {
6444 printk(KERN_CONT " (cpu_power = %d)",
6445 group->cpu_power);
6446 }
6447
6448 group = group->next;
6449 } while (group != sd->groups);
6450 printk(KERN_CONT "\n");
6451
6452 if (!cpumask_equal(sched_domain_span(sd), groupmask))
6453 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6454
6455 if (sd->parent &&
6456 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
6457 printk(KERN_ERR "ERROR: parent span is not a superset "
6458 "of domain->span\n");
6459 return 0;
6460 }
6461
6462 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6463 {
6464 cpumask_var_t groupmask;
6465 int level = 0;
6466
6467 if (!sched_domain_debug_enabled)
6468 return;
6469
6470 if (!sd) {
6471 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6472 return;
6473 }
6474
6475 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6476
6477 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6478 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6479 return;
6480 }
6481
6482 for (;;) {
6483 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6484 break;
6485 level++;
6486 sd = sd->parent;
6487 if (!sd)
6488 break;
6489 }
6490 free_cpumask_var(groupmask);
6491 }
6492 #else /* !CONFIG_SCHED_DEBUG */
6493 # define sched_domain_debug(sd, cpu) do { } while (0)
6494 #endif /* CONFIG_SCHED_DEBUG */
6495
6496 static int sd_degenerate(struct sched_domain *sd)
6497 {
6498 if (cpumask_weight(sched_domain_span(sd)) == 1)
6499 return 1;
6500
6501 /* Following flags need at least 2 groups */
6502 if (sd->flags & (SD_LOAD_BALANCE |
6503 SD_BALANCE_NEWIDLE |
6504 SD_BALANCE_FORK |
6505 SD_BALANCE_EXEC |
6506 SD_SHARE_CPUPOWER |
6507 SD_SHARE_PKG_RESOURCES)) {
6508 if (sd->groups != sd->groups->next)
6509 return 0;
6510 }
6511
6512 /* Following flags don't use groups */
6513 if (sd->flags & (SD_WAKE_AFFINE))
6514 return 0;
6515
6516 return 1;
6517 }
6518
6519 static int
6520 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6521 {
6522 unsigned long cflags = sd->flags, pflags = parent->flags;
6523
6524 if (sd_degenerate(parent))
6525 return 1;
6526
6527 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6528 return 0;
6529
6530 /* Flags needing groups don't count if only 1 group in parent */
6531 if (parent->groups == parent->groups->next) {
6532 pflags &= ~(SD_LOAD_BALANCE |
6533 SD_BALANCE_NEWIDLE |
6534 SD_BALANCE_FORK |
6535 SD_BALANCE_EXEC |
6536 SD_SHARE_CPUPOWER |
6537 SD_SHARE_PKG_RESOURCES);
6538 if (nr_node_ids == 1)
6539 pflags &= ~SD_SERIALIZE;
6540 }
6541 if (~cflags & pflags)
6542 return 0;
6543
6544 return 1;
6545 }
6546
6547 static void free_rootdomain(struct root_domain *rd)
6548 {
6549 synchronize_sched();
6550
6551 cpupri_cleanup(&rd->cpupri);
6552
6553 free_cpumask_var(rd->rto_mask);
6554 free_cpumask_var(rd->online);
6555 free_cpumask_var(rd->span);
6556 kfree(rd);
6557 }
6558
6559 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6560 {
6561 struct root_domain *old_rd = NULL;
6562 unsigned long flags;
6563
6564 raw_spin_lock_irqsave(&rq->lock, flags);
6565
6566 if (rq->rd) {
6567 old_rd = rq->rd;
6568
6569 if (cpumask_test_cpu(rq->cpu, old_rd->online))
6570 set_rq_offline(rq);
6571
6572 cpumask_clear_cpu(rq->cpu, old_rd->span);
6573
6574 /*
6575 * If we dont want to free the old_rt yet then
6576 * set old_rd to NULL to skip the freeing later
6577 * in this function:
6578 */
6579 if (!atomic_dec_and_test(&old_rd->refcount))
6580 old_rd = NULL;
6581 }
6582
6583 atomic_inc(&rd->refcount);
6584 rq->rd = rd;
6585
6586 cpumask_set_cpu(rq->cpu, rd->span);
6587 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6588 set_rq_online(rq);
6589
6590 raw_spin_unlock_irqrestore(&rq->lock, flags);
6591
6592 if (old_rd)
6593 free_rootdomain(old_rd);
6594 }
6595
6596 static int init_rootdomain(struct root_domain *rd)
6597 {
6598 memset(rd, 0, sizeof(*rd));
6599
6600 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
6601 goto out;
6602 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
6603 goto free_span;
6604 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
6605 goto free_online;
6606
6607 if (cpupri_init(&rd->cpupri) != 0)
6608 goto free_rto_mask;
6609 return 0;
6610
6611 free_rto_mask:
6612 free_cpumask_var(rd->rto_mask);
6613 free_online:
6614 free_cpumask_var(rd->online);
6615 free_span:
6616 free_cpumask_var(rd->span);
6617 out:
6618 return -ENOMEM;
6619 }
6620
6621 static void init_defrootdomain(void)
6622 {
6623 init_rootdomain(&def_root_domain);
6624
6625 atomic_set(&def_root_domain.refcount, 1);
6626 }
6627
6628 static struct root_domain *alloc_rootdomain(void)
6629 {
6630 struct root_domain *rd;
6631
6632 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6633 if (!rd)
6634 return NULL;
6635
6636 if (init_rootdomain(rd) != 0) {
6637 kfree(rd);
6638 return NULL;
6639 }
6640
6641 return rd;
6642 }
6643
6644 /*
6645 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6646 * hold the hotplug lock.
6647 */
6648 static void
6649 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6650 {
6651 struct rq *rq = cpu_rq(cpu);
6652 struct sched_domain *tmp;
6653
6654 for (tmp = sd; tmp; tmp = tmp->parent)
6655 tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
6656
6657 /* Remove the sched domains which do not contribute to scheduling. */
6658 for (tmp = sd; tmp; ) {
6659 struct sched_domain *parent = tmp->parent;
6660 if (!parent)
6661 break;
6662
6663 if (sd_parent_degenerate(tmp, parent)) {
6664 tmp->parent = parent->parent;
6665 if (parent->parent)
6666 parent->parent->child = tmp;
6667 } else
6668 tmp = tmp->parent;
6669 }
6670
6671 if (sd && sd_degenerate(sd)) {
6672 sd = sd->parent;
6673 if (sd)
6674 sd->child = NULL;
6675 }
6676
6677 sched_domain_debug(sd, cpu);
6678
6679 rq_attach_root(rq, rd);
6680 rcu_assign_pointer(rq->sd, sd);
6681 }
6682
6683 /* cpus with isolated domains */
6684 static cpumask_var_t cpu_isolated_map;
6685
6686 /* Setup the mask of cpus configured for isolated domains */
6687 static int __init isolated_cpu_setup(char *str)
6688 {
6689 alloc_bootmem_cpumask_var(&cpu_isolated_map);
6690 cpulist_parse(str, cpu_isolated_map);
6691 return 1;
6692 }
6693
6694 __setup("isolcpus=", isolated_cpu_setup);
6695
6696 /*
6697 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6698 * to a function which identifies what group(along with sched group) a CPU
6699 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6700 * (due to the fact that we keep track of groups covered with a struct cpumask).
6701 *
6702 * init_sched_build_groups will build a circular linked list of the groups
6703 * covered by the given span, and will set each group's ->cpumask correctly,
6704 * and ->cpu_power to 0.
6705 */
6706 static void
6707 init_sched_build_groups(const struct cpumask *span,
6708 const struct cpumask *cpu_map,
6709 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
6710 struct sched_group **sg,
6711 struct cpumask *tmpmask),
6712 struct cpumask *covered, struct cpumask *tmpmask)
6713 {
6714 struct sched_group *first = NULL, *last = NULL;
6715 int i;
6716
6717 cpumask_clear(covered);
6718
6719 for_each_cpu(i, span) {
6720 struct sched_group *sg;
6721 int group = group_fn(i, cpu_map, &sg, tmpmask);
6722 int j;
6723
6724 if (cpumask_test_cpu(i, covered))
6725 continue;
6726
6727 cpumask_clear(sched_group_cpus(sg));
6728 sg->cpu_power = 0;
6729
6730 for_each_cpu(j, span) {
6731 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6732 continue;
6733
6734 cpumask_set_cpu(j, covered);
6735 cpumask_set_cpu(j, sched_group_cpus(sg));
6736 }
6737 if (!first)
6738 first = sg;
6739 if (last)
6740 last->next = sg;
6741 last = sg;
6742 }
6743 last->next = first;
6744 }
6745
6746 #define SD_NODES_PER_DOMAIN 16
6747
6748 #ifdef CONFIG_NUMA
6749
6750 /**
6751 * find_next_best_node - find the next node to include in a sched_domain
6752 * @node: node whose sched_domain we're building
6753 * @used_nodes: nodes already in the sched_domain
6754 *
6755 * Find the next node to include in a given scheduling domain. Simply
6756 * finds the closest node not already in the @used_nodes map.
6757 *
6758 * Should use nodemask_t.
6759 */
6760 static int find_next_best_node(int node, nodemask_t *used_nodes)
6761 {
6762 int i, n, val, min_val, best_node = 0;
6763
6764 min_val = INT_MAX;
6765
6766 for (i = 0; i < nr_node_ids; i++) {
6767 /* Start at @node */
6768 n = (node + i) % nr_node_ids;
6769
6770 if (!nr_cpus_node(n))
6771 continue;
6772
6773 /* Skip already used nodes */
6774 if (node_isset(n, *used_nodes))
6775 continue;
6776
6777 /* Simple min distance search */
6778 val = node_distance(node, n);
6779
6780 if (val < min_val) {
6781 min_val = val;
6782 best_node = n;
6783 }
6784 }
6785
6786 node_set(best_node, *used_nodes);
6787 return best_node;
6788 }
6789
6790 /**
6791 * sched_domain_node_span - get a cpumask for a node's sched_domain
6792 * @node: node whose cpumask we're constructing
6793 * @span: resulting cpumask
6794 *
6795 * Given a node, construct a good cpumask for its sched_domain to span. It
6796 * should be one that prevents unnecessary balancing, but also spreads tasks
6797 * out optimally.
6798 */
6799 static void sched_domain_node_span(int node, struct cpumask *span)
6800 {
6801 nodemask_t used_nodes;
6802 int i;
6803
6804 cpumask_clear(span);
6805 nodes_clear(used_nodes);
6806
6807 cpumask_or(span, span, cpumask_of_node(node));
6808 node_set(node, used_nodes);
6809
6810 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6811 int next_node = find_next_best_node(node, &used_nodes);
6812
6813 cpumask_or(span, span, cpumask_of_node(next_node));
6814 }
6815 }
6816 #endif /* CONFIG_NUMA */
6817
6818 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6819
6820 /*
6821 * The cpus mask in sched_group and sched_domain hangs off the end.
6822 *
6823 * ( See the the comments in include/linux/sched.h:struct sched_group
6824 * and struct sched_domain. )
6825 */
6826 struct static_sched_group {
6827 struct sched_group sg;
6828 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6829 };
6830
6831 struct static_sched_domain {
6832 struct sched_domain sd;
6833 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6834 };
6835
6836 struct s_data {
6837 #ifdef CONFIG_NUMA
6838 int sd_allnodes;
6839 cpumask_var_t domainspan;
6840 cpumask_var_t covered;
6841 cpumask_var_t notcovered;
6842 #endif
6843 cpumask_var_t nodemask;
6844 cpumask_var_t this_sibling_map;
6845 cpumask_var_t this_core_map;
6846 cpumask_var_t this_book_map;
6847 cpumask_var_t send_covered;
6848 cpumask_var_t tmpmask;
6849 struct sched_group **sched_group_nodes;
6850 struct root_domain *rd;
6851 };
6852
6853 enum s_alloc {
6854 sa_sched_groups = 0,
6855 sa_rootdomain,
6856 sa_tmpmask,
6857 sa_send_covered,
6858 sa_this_book_map,
6859 sa_this_core_map,
6860 sa_this_sibling_map,
6861 sa_nodemask,
6862 sa_sched_group_nodes,
6863 #ifdef CONFIG_NUMA
6864 sa_notcovered,
6865 sa_covered,
6866 sa_domainspan,
6867 #endif
6868 sa_none,
6869 };
6870
6871 /*
6872 * SMT sched-domains:
6873 */
6874 #ifdef CONFIG_SCHED_SMT
6875 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
6876 static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
6877
6878 static int
6879 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6880 struct sched_group **sg, struct cpumask *unused)
6881 {
6882 if (sg)
6883 *sg = &per_cpu(sched_groups, cpu).sg;
6884 return cpu;
6885 }
6886 #endif /* CONFIG_SCHED_SMT */
6887
6888 /*
6889 * multi-core sched-domains:
6890 */
6891 #ifdef CONFIG_SCHED_MC
6892 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6893 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6894
6895 static int
6896 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6897 struct sched_group **sg, struct cpumask *mask)
6898 {
6899 int group;
6900 #ifdef CONFIG_SCHED_SMT
6901 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6902 group = cpumask_first(mask);
6903 #else
6904 group = cpu;
6905 #endif
6906 if (sg)
6907 *sg = &per_cpu(sched_group_core, group).sg;
6908 return group;
6909 }
6910 #endif /* CONFIG_SCHED_MC */
6911
6912 /*
6913 * book sched-domains:
6914 */
6915 #ifdef CONFIG_SCHED_BOOK
6916 static DEFINE_PER_CPU(struct static_sched_domain, book_domains);
6917 static DEFINE_PER_CPU(struct static_sched_group, sched_group_book);
6918
6919 static int
6920 cpu_to_book_group(int cpu, const struct cpumask *cpu_map,
6921 struct sched_group **sg, struct cpumask *mask)
6922 {
6923 int group = cpu;
6924 #ifdef CONFIG_SCHED_MC
6925 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6926 group = cpumask_first(mask);
6927 #elif defined(CONFIG_SCHED_SMT)
6928 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6929 group = cpumask_first(mask);
6930 #endif
6931 if (sg)
6932 *sg = &per_cpu(sched_group_book, group).sg;
6933 return group;
6934 }
6935 #endif /* CONFIG_SCHED_BOOK */
6936
6937 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6938 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
6939
6940 static int
6941 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6942 struct sched_group **sg, struct cpumask *mask)
6943 {
6944 int group;
6945 #ifdef CONFIG_SCHED_BOOK
6946 cpumask_and(mask, cpu_book_mask(cpu), cpu_map);
6947 group = cpumask_first(mask);
6948 #elif defined(CONFIG_SCHED_MC)
6949 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6950 group = cpumask_first(mask);
6951 #elif defined(CONFIG_SCHED_SMT)
6952 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6953 group = cpumask_first(mask);
6954 #else
6955 group = cpu;
6956 #endif
6957 if (sg)
6958 *sg = &per_cpu(sched_group_phys, group).sg;
6959 return group;
6960 }
6961
6962 #ifdef CONFIG_NUMA
6963 /*
6964 * The init_sched_build_groups can't handle what we want to do with node
6965 * groups, so roll our own. Now each node has its own list of groups which
6966 * gets dynamically allocated.
6967 */
6968 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
6969 static struct sched_group ***sched_group_nodes_bycpu;
6970
6971 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6972 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
6973
6974 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6975 struct sched_group **sg,
6976 struct cpumask *nodemask)
6977 {
6978 int group;
6979
6980 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
6981 group = cpumask_first(nodemask);
6982
6983 if (sg)
6984 *sg = &per_cpu(sched_group_allnodes, group).sg;
6985 return group;
6986 }
6987
6988 static void init_numa_sched_groups_power(struct sched_group *group_head)
6989 {
6990 struct sched_group *sg = group_head;
6991 int j;
6992
6993 if (!sg)
6994 return;
6995 do {
6996 for_each_cpu(j, sched_group_cpus(sg)) {
6997 struct sched_domain *sd;
6998
6999 sd = &per_cpu(phys_domains, j).sd;
7000 if (j != group_first_cpu(sd->groups)) {
7001 /*
7002 * Only add "power" once for each
7003 * physical package.
7004 */
7005 continue;
7006 }
7007
7008 sg->cpu_power += sd->groups->cpu_power;
7009 }
7010 sg = sg->next;
7011 } while (sg != group_head);
7012 }
7013
7014 static int build_numa_sched_groups(struct s_data *d,
7015 const struct cpumask *cpu_map, int num)
7016 {
7017 struct sched_domain *sd;
7018 struct sched_group *sg, *prev;
7019 int n, j;
7020
7021 cpumask_clear(d->covered);
7022 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
7023 if (cpumask_empty(d->nodemask)) {
7024 d->sched_group_nodes[num] = NULL;
7025 goto out;
7026 }
7027
7028 sched_domain_node_span(num, d->domainspan);
7029 cpumask_and(d->domainspan, d->domainspan, cpu_map);
7030
7031 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
7032 GFP_KERNEL, num);
7033 if (!sg) {
7034 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
7035 num);
7036 return -ENOMEM;
7037 }
7038 d->sched_group_nodes[num] = sg;
7039
7040 for_each_cpu(j, d->nodemask) {
7041 sd = &per_cpu(node_domains, j).sd;
7042 sd->groups = sg;
7043 }
7044
7045 sg->cpu_power = 0;
7046 cpumask_copy(sched_group_cpus(sg), d->nodemask);
7047 sg->next = sg;
7048 cpumask_or(d->covered, d->covered, d->nodemask);
7049
7050 prev = sg;
7051 for (j = 0; j < nr_node_ids; j++) {
7052 n = (num + j) % nr_node_ids;
7053 cpumask_complement(d->notcovered, d->covered);
7054 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
7055 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
7056 if (cpumask_empty(d->tmpmask))
7057 break;
7058 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
7059 if (cpumask_empty(d->tmpmask))
7060 continue;
7061 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
7062 GFP_KERNEL, num);
7063 if (!sg) {
7064 printk(KERN_WARNING
7065 "Can not alloc domain group for node %d\n", j);
7066 return -ENOMEM;
7067 }
7068 sg->cpu_power = 0;
7069 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
7070 sg->next = prev->next;
7071 cpumask_or(d->covered, d->covered, d->tmpmask);
7072 prev->next = sg;
7073 prev = sg;
7074 }
7075 out:
7076 return 0;
7077 }
7078 #endif /* CONFIG_NUMA */
7079
7080 #ifdef CONFIG_NUMA
7081 /* Free memory allocated for various sched_group structures */
7082 static void free_sched_groups(const struct cpumask *cpu_map,
7083 struct cpumask *nodemask)
7084 {
7085 int cpu, i;
7086
7087 for_each_cpu(cpu, cpu_map) {
7088 struct sched_group **sched_group_nodes
7089 = sched_group_nodes_bycpu[cpu];
7090
7091 if (!sched_group_nodes)
7092 continue;
7093
7094 for (i = 0; i < nr_node_ids; i++) {
7095 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7096
7097 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7098 if (cpumask_empty(nodemask))
7099 continue;
7100
7101 if (sg == NULL)
7102 continue;
7103 sg = sg->next;
7104 next_sg:
7105 oldsg = sg;
7106 sg = sg->next;
7107 kfree(oldsg);
7108 if (oldsg != sched_group_nodes[i])
7109 goto next_sg;
7110 }
7111 kfree(sched_group_nodes);
7112 sched_group_nodes_bycpu[cpu] = NULL;
7113 }
7114 }
7115 #else /* !CONFIG_NUMA */
7116 static void free_sched_groups(const struct cpumask *cpu_map,
7117 struct cpumask *nodemask)
7118 {
7119 }
7120 #endif /* CONFIG_NUMA */
7121
7122 /*
7123 * Initialize sched groups cpu_power.
7124 *
7125 * cpu_power indicates the capacity of sched group, which is used while
7126 * distributing the load between different sched groups in a sched domain.
7127 * Typically cpu_power for all the groups in a sched domain will be same unless
7128 * there are asymmetries in the topology. If there are asymmetries, group
7129 * having more cpu_power will pickup more load compared to the group having
7130 * less cpu_power.
7131 */
7132 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7133 {
7134 struct sched_domain *child;
7135 struct sched_group *group;
7136 long power;
7137 int weight;
7138
7139 WARN_ON(!sd || !sd->groups);
7140
7141 if (cpu != group_first_cpu(sd->groups))
7142 return;
7143
7144 sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups));
7145
7146 child = sd->child;
7147
7148 sd->groups->cpu_power = 0;
7149
7150 if (!child) {
7151 power = SCHED_LOAD_SCALE;
7152 weight = cpumask_weight(sched_domain_span(sd));
7153 /*
7154 * SMT siblings share the power of a single core.
7155 * Usually multiple threads get a better yield out of
7156 * that one core than a single thread would have,
7157 * reflect that in sd->smt_gain.
7158 */
7159 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
7160 power *= sd->smt_gain;
7161 power /= weight;
7162 power >>= SCHED_LOAD_SHIFT;
7163 }
7164 sd->groups->cpu_power += power;
7165 return;
7166 }
7167
7168 /*
7169 * Add cpu_power of each child group to this groups cpu_power.
7170 */
7171 group = child->groups;
7172 do {
7173 sd->groups->cpu_power += group->cpu_power;
7174 group = group->next;
7175 } while (group != child->groups);
7176 }
7177
7178 /*
7179 * Initializers for schedule domains
7180 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7181 */
7182
7183 #ifdef CONFIG_SCHED_DEBUG
7184 # define SD_INIT_NAME(sd, type) sd->name = #type
7185 #else
7186 # define SD_INIT_NAME(sd, type) do { } while (0)
7187 #endif
7188
7189 #define SD_INIT(sd, type) sd_init_##type(sd)
7190
7191 #define SD_INIT_FUNC(type) \
7192 static noinline void sd_init_##type(struct sched_domain *sd) \
7193 { \
7194 memset(sd, 0, sizeof(*sd)); \
7195 *sd = SD_##type##_INIT; \
7196 sd->level = SD_LV_##type; \
7197 SD_INIT_NAME(sd, type); \
7198 }
7199
7200 SD_INIT_FUNC(CPU)
7201 #ifdef CONFIG_NUMA
7202 SD_INIT_FUNC(ALLNODES)
7203 SD_INIT_FUNC(NODE)
7204 #endif
7205 #ifdef CONFIG_SCHED_SMT
7206 SD_INIT_FUNC(SIBLING)
7207 #endif
7208 #ifdef CONFIG_SCHED_MC
7209 SD_INIT_FUNC(MC)
7210 #endif
7211 #ifdef CONFIG_SCHED_BOOK
7212 SD_INIT_FUNC(BOOK)
7213 #endif
7214
7215 static int default_relax_domain_level = -1;
7216
7217 static int __init setup_relax_domain_level(char *str)
7218 {
7219 unsigned long val;
7220
7221 val = simple_strtoul(str, NULL, 0);
7222 if (val < SD_LV_MAX)
7223 default_relax_domain_level = val;
7224
7225 return 1;
7226 }
7227 __setup("relax_domain_level=", setup_relax_domain_level);
7228
7229 static void set_domain_attribute(struct sched_domain *sd,
7230 struct sched_domain_attr *attr)
7231 {
7232 int request;
7233
7234 if (!attr || attr->relax_domain_level < 0) {
7235 if (default_relax_domain_level < 0)
7236 return;
7237 else
7238 request = default_relax_domain_level;
7239 } else
7240 request = attr->relax_domain_level;
7241 if (request < sd->level) {
7242 /* turn off idle balance on this domain */
7243 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7244 } else {
7245 /* turn on idle balance on this domain */
7246 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7247 }
7248 }
7249
7250 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
7251 const struct cpumask *cpu_map)
7252 {
7253 switch (what) {
7254 case sa_sched_groups:
7255 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
7256 d->sched_group_nodes = NULL;
7257 case sa_rootdomain:
7258 free_rootdomain(d->rd); /* fall through */
7259 case sa_tmpmask:
7260 free_cpumask_var(d->tmpmask); /* fall through */
7261 case sa_send_covered:
7262 free_cpumask_var(d->send_covered); /* fall through */
7263 case sa_this_book_map:
7264 free_cpumask_var(d->this_book_map); /* fall through */
7265 case sa_this_core_map:
7266 free_cpumask_var(d->this_core_map); /* fall through */
7267 case sa_this_sibling_map:
7268 free_cpumask_var(d->this_sibling_map); /* fall through */
7269 case sa_nodemask:
7270 free_cpumask_var(d->nodemask); /* fall through */
7271 case sa_sched_group_nodes:
7272 #ifdef CONFIG_NUMA
7273 kfree(d->sched_group_nodes); /* fall through */
7274 case sa_notcovered:
7275 free_cpumask_var(d->notcovered); /* fall through */
7276 case sa_covered:
7277 free_cpumask_var(d->covered); /* fall through */
7278 case sa_domainspan:
7279 free_cpumask_var(d->domainspan); /* fall through */
7280 #endif
7281 case sa_none:
7282 break;
7283 }
7284 }
7285
7286 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
7287 const struct cpumask *cpu_map)
7288 {
7289 #ifdef CONFIG_NUMA
7290 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
7291 return sa_none;
7292 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
7293 return sa_domainspan;
7294 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
7295 return sa_covered;
7296 /* Allocate the per-node list of sched groups */
7297 d->sched_group_nodes = kcalloc(nr_node_ids,
7298 sizeof(struct sched_group *), GFP_KERNEL);
7299 if (!d->sched_group_nodes) {
7300 printk(KERN_WARNING "Can not alloc sched group node list\n");
7301 return sa_notcovered;
7302 }
7303 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
7304 #endif
7305 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
7306 return sa_sched_group_nodes;
7307 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
7308 return sa_nodemask;
7309 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
7310 return sa_this_sibling_map;
7311 if (!alloc_cpumask_var(&d->this_book_map, GFP_KERNEL))
7312 return sa_this_core_map;
7313 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
7314 return sa_this_book_map;
7315 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
7316 return sa_send_covered;
7317 d->rd = alloc_rootdomain();
7318 if (!d->rd) {
7319 printk(KERN_WARNING "Cannot alloc root domain\n");
7320 return sa_tmpmask;
7321 }
7322 return sa_rootdomain;
7323 }
7324
7325 static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
7326 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
7327 {
7328 struct sched_domain *sd = NULL;
7329 #ifdef CONFIG_NUMA
7330 struct sched_domain *parent;
7331
7332 d->sd_allnodes = 0;
7333 if (cpumask_weight(cpu_map) >
7334 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
7335 sd = &per_cpu(allnodes_domains, i).sd;
7336 SD_INIT(sd, ALLNODES);
7337 set_domain_attribute(sd, attr);
7338 cpumask_copy(sched_domain_span(sd), cpu_map);
7339 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
7340 d->sd_allnodes = 1;
7341 }
7342 parent = sd;
7343
7344 sd = &per_cpu(node_domains, i).sd;
7345 SD_INIT(sd, NODE);
7346 set_domain_attribute(sd, attr);
7347 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
7348 sd->parent = parent;
7349 if (parent)
7350 parent->child = sd;
7351 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
7352 #endif
7353 return sd;
7354 }
7355
7356 static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
7357 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7358 struct sched_domain *parent, int i)
7359 {
7360 struct sched_domain *sd;
7361 sd = &per_cpu(phys_domains, i).sd;
7362 SD_INIT(sd, CPU);
7363 set_domain_attribute(sd, attr);
7364 cpumask_copy(sched_domain_span(sd), d->nodemask);
7365 sd->parent = parent;
7366 if (parent)
7367 parent->child = sd;
7368 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
7369 return sd;
7370 }
7371
7372 static struct sched_domain *__build_book_sched_domain(struct s_data *d,
7373 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7374 struct sched_domain *parent, int i)
7375 {
7376 struct sched_domain *sd = parent;
7377 #ifdef CONFIG_SCHED_BOOK
7378 sd = &per_cpu(book_domains, i).sd;
7379 SD_INIT(sd, BOOK);
7380 set_domain_attribute(sd, attr);
7381 cpumask_and(sched_domain_span(sd), cpu_map, cpu_book_mask(i));
7382 sd->parent = parent;
7383 parent->child = sd;
7384 cpu_to_book_group(i, cpu_map, &sd->groups, d->tmpmask);
7385 #endif
7386 return sd;
7387 }
7388
7389 static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
7390 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7391 struct sched_domain *parent, int i)
7392 {
7393 struct sched_domain *sd = parent;
7394 #ifdef CONFIG_SCHED_MC
7395 sd = &per_cpu(core_domains, i).sd;
7396 SD_INIT(sd, MC);
7397 set_domain_attribute(sd, attr);
7398 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
7399 sd->parent = parent;
7400 parent->child = sd;
7401 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
7402 #endif
7403 return sd;
7404 }
7405
7406 static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
7407 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7408 struct sched_domain *parent, int i)
7409 {
7410 struct sched_domain *sd = parent;
7411 #ifdef CONFIG_SCHED_SMT
7412 sd = &per_cpu(cpu_domains, i).sd;
7413 SD_INIT(sd, SIBLING);
7414 set_domain_attribute(sd, attr);
7415 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
7416 sd->parent = parent;
7417 parent->child = sd;
7418 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
7419 #endif
7420 return sd;
7421 }
7422
7423 static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
7424 const struct cpumask *cpu_map, int cpu)
7425 {
7426 switch (l) {
7427 #ifdef CONFIG_SCHED_SMT
7428 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
7429 cpumask_and(d->this_sibling_map, cpu_map,
7430 topology_thread_cpumask(cpu));
7431 if (cpu == cpumask_first(d->this_sibling_map))
7432 init_sched_build_groups(d->this_sibling_map, cpu_map,
7433 &cpu_to_cpu_group,
7434 d->send_covered, d->tmpmask);
7435 break;
7436 #endif
7437 #ifdef CONFIG_SCHED_MC
7438 case SD_LV_MC: /* set up multi-core groups */
7439 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
7440 if (cpu == cpumask_first(d->this_core_map))
7441 init_sched_build_groups(d->this_core_map, cpu_map,
7442 &cpu_to_core_group,
7443 d->send_covered, d->tmpmask);
7444 break;
7445 #endif
7446 #ifdef CONFIG_SCHED_BOOK
7447 case SD_LV_BOOK: /* set up book groups */
7448 cpumask_and(d->this_book_map, cpu_map, cpu_book_mask(cpu));
7449 if (cpu == cpumask_first(d->this_book_map))
7450 init_sched_build_groups(d->this_book_map, cpu_map,
7451 &cpu_to_book_group,
7452 d->send_covered, d->tmpmask);
7453 break;
7454 #endif
7455 case SD_LV_CPU: /* set up physical groups */
7456 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
7457 if (!cpumask_empty(d->nodemask))
7458 init_sched_build_groups(d->nodemask, cpu_map,
7459 &cpu_to_phys_group,
7460 d->send_covered, d->tmpmask);
7461 break;
7462 #ifdef CONFIG_NUMA
7463 case SD_LV_ALLNODES:
7464 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
7465 d->send_covered, d->tmpmask);
7466 break;
7467 #endif
7468 default:
7469 break;
7470 }
7471 }
7472
7473 /*
7474 * Build sched domains for a given set of cpus and attach the sched domains
7475 * to the individual cpus
7476 */
7477 static int __build_sched_domains(const struct cpumask *cpu_map,
7478 struct sched_domain_attr *attr)
7479 {
7480 enum s_alloc alloc_state = sa_none;
7481 struct s_data d;
7482 struct sched_domain *sd;
7483 int i;
7484 #ifdef CONFIG_NUMA
7485 d.sd_allnodes = 0;
7486 #endif
7487
7488 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7489 if (alloc_state != sa_rootdomain)
7490 goto error;
7491 alloc_state = sa_sched_groups;
7492
7493 /*
7494 * Set up domains for cpus specified by the cpu_map.
7495 */
7496 for_each_cpu(i, cpu_map) {
7497 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
7498 cpu_map);
7499
7500 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
7501 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
7502 sd = __build_book_sched_domain(&d, cpu_map, attr, sd, i);
7503 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
7504 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
7505 }
7506
7507 for_each_cpu(i, cpu_map) {
7508 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
7509 build_sched_groups(&d, SD_LV_BOOK, cpu_map, i);
7510 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
7511 }
7512
7513 /* Set up physical groups */
7514 for (i = 0; i < nr_node_ids; i++)
7515 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
7516
7517 #ifdef CONFIG_NUMA
7518 /* Set up node groups */
7519 if (d.sd_allnodes)
7520 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
7521
7522 for (i = 0; i < nr_node_ids; i++)
7523 if (build_numa_sched_groups(&d, cpu_map, i))
7524 goto error;
7525 #endif
7526
7527 /* Calculate CPU power for physical packages and nodes */
7528 #ifdef CONFIG_SCHED_SMT
7529 for_each_cpu(i, cpu_map) {
7530 sd = &per_cpu(cpu_domains, i).sd;
7531 init_sched_groups_power(i, sd);
7532 }
7533 #endif
7534 #ifdef CONFIG_SCHED_MC
7535 for_each_cpu(i, cpu_map) {
7536 sd = &per_cpu(core_domains, i).sd;
7537 init_sched_groups_power(i, sd);
7538 }
7539 #endif
7540 #ifdef CONFIG_SCHED_BOOK
7541 for_each_cpu(i, cpu_map) {
7542 sd = &per_cpu(book_domains, i).sd;
7543 init_sched_groups_power(i, sd);
7544 }
7545 #endif
7546
7547 for_each_cpu(i, cpu_map) {
7548 sd = &per_cpu(phys_domains, i).sd;
7549 init_sched_groups_power(i, sd);
7550 }
7551
7552 #ifdef CONFIG_NUMA
7553 for (i = 0; i < nr_node_ids; i++)
7554 init_numa_sched_groups_power(d.sched_group_nodes[i]);
7555
7556 if (d.sd_allnodes) {
7557 struct sched_group *sg;
7558
7559 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7560 d.tmpmask);
7561 init_numa_sched_groups_power(sg);
7562 }
7563 #endif
7564
7565 /* Attach the domains */
7566 for_each_cpu(i, cpu_map) {
7567 #ifdef CONFIG_SCHED_SMT
7568 sd = &per_cpu(cpu_domains, i).sd;
7569 #elif defined(CONFIG_SCHED_MC)
7570 sd = &per_cpu(core_domains, i).sd;
7571 #elif defined(CONFIG_SCHED_BOOK)
7572 sd = &per_cpu(book_domains, i).sd;
7573 #else
7574 sd = &per_cpu(phys_domains, i).sd;
7575 #endif
7576 cpu_attach_domain(sd, d.rd, i);
7577 }
7578
7579 d.sched_group_nodes = NULL; /* don't free this we still need it */
7580 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7581 return 0;
7582
7583 error:
7584 __free_domain_allocs(&d, alloc_state, cpu_map);
7585 return -ENOMEM;
7586 }
7587
7588 static int build_sched_domains(const struct cpumask *cpu_map)
7589 {
7590 return __build_sched_domains(cpu_map, NULL);
7591 }
7592
7593 static cpumask_var_t *doms_cur; /* current sched domains */
7594 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7595 static struct sched_domain_attr *dattr_cur;
7596 /* attribues of custom domains in 'doms_cur' */
7597
7598 /*
7599 * Special case: If a kmalloc of a doms_cur partition (array of
7600 * cpumask) fails, then fallback to a single sched domain,
7601 * as determined by the single cpumask fallback_doms.
7602 */
7603 static cpumask_var_t fallback_doms;
7604
7605 /*
7606 * arch_update_cpu_topology lets virtualized architectures update the
7607 * cpu core maps. It is supposed to return 1 if the topology changed
7608 * or 0 if it stayed the same.
7609 */
7610 int __attribute__((weak)) arch_update_cpu_topology(void)
7611 {
7612 return 0;
7613 }
7614
7615 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7616 {
7617 int i;
7618 cpumask_var_t *doms;
7619
7620 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7621 if (!doms)
7622 return NULL;
7623 for (i = 0; i < ndoms; i++) {
7624 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7625 free_sched_domains(doms, i);
7626 return NULL;
7627 }
7628 }
7629 return doms;
7630 }
7631
7632 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7633 {
7634 unsigned int i;
7635 for (i = 0; i < ndoms; i++)
7636 free_cpumask_var(doms[i]);
7637 kfree(doms);
7638 }
7639
7640 /*
7641 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7642 * For now this just excludes isolated cpus, but could be used to
7643 * exclude other special cases in the future.
7644 */
7645 static int arch_init_sched_domains(const struct cpumask *cpu_map)
7646 {
7647 int err;
7648
7649 arch_update_cpu_topology();
7650 ndoms_cur = 1;
7651 doms_cur = alloc_sched_domains(ndoms_cur);
7652 if (!doms_cur)
7653 doms_cur = &fallback_doms;
7654 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7655 dattr_cur = NULL;
7656 err = build_sched_domains(doms_cur[0]);
7657 register_sched_domain_sysctl();
7658
7659 return err;
7660 }
7661
7662 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7663 struct cpumask *tmpmask)
7664 {
7665 free_sched_groups(cpu_map, tmpmask);
7666 }
7667
7668 /*
7669 * Detach sched domains from a group of cpus specified in cpu_map
7670 * These cpus will now be attached to the NULL domain
7671 */
7672 static void detach_destroy_domains(const struct cpumask *cpu_map)
7673 {
7674 /* Save because hotplug lock held. */
7675 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7676 int i;
7677
7678 for_each_cpu(i, cpu_map)
7679 cpu_attach_domain(NULL, &def_root_domain, i);
7680 synchronize_sched();
7681 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7682 }
7683
7684 /* handle null as "default" */
7685 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7686 struct sched_domain_attr *new, int idx_new)
7687 {
7688 struct sched_domain_attr tmp;
7689
7690 /* fast path */
7691 if (!new && !cur)
7692 return 1;
7693
7694 tmp = SD_ATTR_INIT;
7695 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7696 new ? (new + idx_new) : &tmp,
7697 sizeof(struct sched_domain_attr));
7698 }
7699
7700 /*
7701 * Partition sched domains as specified by the 'ndoms_new'
7702 * cpumasks in the array doms_new[] of cpumasks. This compares
7703 * doms_new[] to the current sched domain partitioning, doms_cur[].
7704 * It destroys each deleted domain and builds each new domain.
7705 *
7706 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7707 * The masks don't intersect (don't overlap.) We should setup one
7708 * sched domain for each mask. CPUs not in any of the cpumasks will
7709 * not be load balanced. If the same cpumask appears both in the
7710 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7711 * it as it is.
7712 *
7713 * The passed in 'doms_new' should be allocated using
7714 * alloc_sched_domains. This routine takes ownership of it and will
7715 * free_sched_domains it when done with it. If the caller failed the
7716 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7717 * and partition_sched_domains() will fallback to the single partition
7718 * 'fallback_doms', it also forces the domains to be rebuilt.
7719 *
7720 * If doms_new == NULL it will be replaced with cpu_online_mask.
7721 * ndoms_new == 0 is a special case for destroying existing domains,
7722 * and it will not create the default domain.
7723 *
7724 * Call with hotplug lock held
7725 */
7726 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7727 struct sched_domain_attr *dattr_new)
7728 {
7729 int i, j, n;
7730 int new_topology;
7731
7732 mutex_lock(&sched_domains_mutex);
7733
7734 /* always unregister in case we don't destroy any domains */
7735 unregister_sched_domain_sysctl();
7736
7737 /* Let architecture update cpu core mappings. */
7738 new_topology = arch_update_cpu_topology();
7739
7740 n = doms_new ? ndoms_new : 0;
7741
7742 /* Destroy deleted domains */
7743 for (i = 0; i < ndoms_cur; i++) {
7744 for (j = 0; j < n && !new_topology; j++) {
7745 if (cpumask_equal(doms_cur[i], doms_new[j])
7746 && dattrs_equal(dattr_cur, i, dattr_new, j))
7747 goto match1;
7748 }
7749 /* no match - a current sched domain not in new doms_new[] */
7750 detach_destroy_domains(doms_cur[i]);
7751 match1:
7752 ;
7753 }
7754
7755 if (doms_new == NULL) {
7756 ndoms_cur = 0;
7757 doms_new = &fallback_doms;
7758 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7759 WARN_ON_ONCE(dattr_new);
7760 }
7761
7762 /* Build new domains */
7763 for (i = 0; i < ndoms_new; i++) {
7764 for (j = 0; j < ndoms_cur && !new_topology; j++) {
7765 if (cpumask_equal(doms_new[i], doms_cur[j])
7766 && dattrs_equal(dattr_new, i, dattr_cur, j))
7767 goto match2;
7768 }
7769 /* no match - add a new doms_new */
7770 __build_sched_domains(doms_new[i],
7771 dattr_new ? dattr_new + i : NULL);
7772 match2:
7773 ;
7774 }
7775
7776 /* Remember the new sched domains */
7777 if (doms_cur != &fallback_doms)
7778 free_sched_domains(doms_cur, ndoms_cur);
7779 kfree(dattr_cur); /* kfree(NULL) is safe */
7780 doms_cur = doms_new;
7781 dattr_cur = dattr_new;
7782 ndoms_cur = ndoms_new;
7783
7784 register_sched_domain_sysctl();
7785
7786 mutex_unlock(&sched_domains_mutex);
7787 }
7788
7789 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7790 static void arch_reinit_sched_domains(void)
7791 {
7792 get_online_cpus();
7793
7794 /* Destroy domains first to force the rebuild */
7795 partition_sched_domains(0, NULL, NULL);
7796
7797 rebuild_sched_domains();
7798 put_online_cpus();
7799 }
7800
7801 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7802 {
7803 unsigned int level = 0;
7804
7805 if (sscanf(buf, "%u", &level) != 1)
7806 return -EINVAL;
7807
7808 /*
7809 * level is always be positive so don't check for
7810 * level < POWERSAVINGS_BALANCE_NONE which is 0
7811 * What happens on 0 or 1 byte write,
7812 * need to check for count as well?
7813 */
7814
7815 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7816 return -EINVAL;
7817
7818 if (smt)
7819 sched_smt_power_savings = level;
7820 else
7821 sched_mc_power_savings = level;
7822
7823 arch_reinit_sched_domains();
7824
7825 return count;
7826 }
7827
7828 #ifdef CONFIG_SCHED_MC
7829 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7830 struct sysdev_class_attribute *attr,
7831 char *page)
7832 {
7833 return sprintf(page, "%u\n", sched_mc_power_savings);
7834 }
7835 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7836 struct sysdev_class_attribute *attr,
7837 const char *buf, size_t count)
7838 {
7839 return sched_power_savings_store(buf, count, 0);
7840 }
7841 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7842 sched_mc_power_savings_show,
7843 sched_mc_power_savings_store);
7844 #endif
7845
7846 #ifdef CONFIG_SCHED_SMT
7847 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7848 struct sysdev_class_attribute *attr,
7849 char *page)
7850 {
7851 return sprintf(page, "%u\n", sched_smt_power_savings);
7852 }
7853 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7854 struct sysdev_class_attribute *attr,
7855 const char *buf, size_t count)
7856 {
7857 return sched_power_savings_store(buf, count, 1);
7858 }
7859 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7860 sched_smt_power_savings_show,
7861 sched_smt_power_savings_store);
7862 #endif
7863
7864 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7865 {
7866 int err = 0;
7867
7868 #ifdef CONFIG_SCHED_SMT
7869 if (smt_capable())
7870 err = sysfs_create_file(&cls->kset.kobj,
7871 &attr_sched_smt_power_savings.attr);
7872 #endif
7873 #ifdef CONFIG_SCHED_MC
7874 if (!err && mc_capable())
7875 err = sysfs_create_file(&cls->kset.kobj,
7876 &attr_sched_mc_power_savings.attr);
7877 #endif
7878 return err;
7879 }
7880 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7881
7882 /*
7883 * Update cpusets according to cpu_active mask. If cpusets are
7884 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7885 * around partition_sched_domains().
7886 */
7887 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7888 void *hcpu)
7889 {
7890 switch (action & ~CPU_TASKS_FROZEN) {
7891 case CPU_ONLINE:
7892 case CPU_DOWN_FAILED:
7893 cpuset_update_active_cpus();
7894 return NOTIFY_OK;
7895 default:
7896 return NOTIFY_DONE;
7897 }
7898 }
7899
7900 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7901 void *hcpu)
7902 {
7903 switch (action & ~CPU_TASKS_FROZEN) {
7904 case CPU_DOWN_PREPARE:
7905 cpuset_update_active_cpus();
7906 return NOTIFY_OK;
7907 default:
7908 return NOTIFY_DONE;
7909 }
7910 }
7911
7912 static int update_runtime(struct notifier_block *nfb,
7913 unsigned long action, void *hcpu)
7914 {
7915 int cpu = (int)(long)hcpu;
7916
7917 switch (action) {
7918 case CPU_DOWN_PREPARE:
7919 case CPU_DOWN_PREPARE_FROZEN:
7920 disable_runtime(cpu_rq(cpu));
7921 return NOTIFY_OK;
7922
7923 case CPU_DOWN_FAILED:
7924 case CPU_DOWN_FAILED_FROZEN:
7925 case CPU_ONLINE:
7926 case CPU_ONLINE_FROZEN:
7927 enable_runtime(cpu_rq(cpu));
7928 return NOTIFY_OK;
7929
7930 default:
7931 return NOTIFY_DONE;
7932 }
7933 }
7934
7935 void __init sched_init_smp(void)
7936 {
7937 cpumask_var_t non_isolated_cpus;
7938
7939 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7940 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7941
7942 #if defined(CONFIG_NUMA)
7943 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7944 GFP_KERNEL);
7945 BUG_ON(sched_group_nodes_bycpu == NULL);
7946 #endif
7947 get_online_cpus();
7948 mutex_lock(&sched_domains_mutex);
7949 arch_init_sched_domains(cpu_active_mask);
7950 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7951 if (cpumask_empty(non_isolated_cpus))
7952 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7953 mutex_unlock(&sched_domains_mutex);
7954 put_online_cpus();
7955
7956 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7957 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7958
7959 /* RT runtime code needs to handle some hotplug events */
7960 hotcpu_notifier(update_runtime, 0);
7961
7962 init_hrtick();
7963
7964 /* Move init over to a non-isolated CPU */
7965 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7966 BUG();
7967 sched_init_granularity();
7968 free_cpumask_var(non_isolated_cpus);
7969
7970 init_sched_rt_class();
7971 }
7972 #else
7973 void __init sched_init_smp(void)
7974 {
7975 sched_init_granularity();
7976 }
7977 #endif /* CONFIG_SMP */
7978
7979 const_debug unsigned int sysctl_timer_migration = 1;
7980
7981 int in_sched_functions(unsigned long addr)
7982 {
7983 return in_lock_functions(addr) ||
7984 (addr >= (unsigned long)__sched_text_start
7985 && addr < (unsigned long)__sched_text_end);
7986 }
7987
7988 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
7989 {
7990 cfs_rq->tasks_timeline = RB_ROOT;
7991 INIT_LIST_HEAD(&cfs_rq->tasks);
7992 #ifdef CONFIG_FAIR_GROUP_SCHED
7993 cfs_rq->rq = rq;
7994 /* allow initial update_cfs_load() to truncate */
7995 #ifdef CONFIG_SMP
7996 cfs_rq->load_stamp = 1;
7997 #endif
7998 #endif
7999 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8000 }
8001
8002 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8003 {
8004 struct rt_prio_array *array;
8005 int i;
8006
8007 array = &rt_rq->active;
8008 for (i = 0; i < MAX_RT_PRIO; i++) {
8009 INIT_LIST_HEAD(array->queue + i);
8010 __clear_bit(i, array->bitmap);
8011 }
8012 /* delimiter for bitsearch: */
8013 __set_bit(MAX_RT_PRIO, array->bitmap);
8014
8015 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
8016 rt_rq->highest_prio.curr = MAX_RT_PRIO;
8017 #ifdef CONFIG_SMP
8018 rt_rq->highest_prio.next = MAX_RT_PRIO;
8019 #endif
8020 #endif
8021 #ifdef CONFIG_SMP
8022 rt_rq->rt_nr_migratory = 0;
8023 rt_rq->overloaded = 0;
8024 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
8025 #endif
8026
8027 rt_rq->rt_time = 0;
8028 rt_rq->rt_throttled = 0;
8029 rt_rq->rt_runtime = 0;
8030 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
8031
8032 #ifdef CONFIG_RT_GROUP_SCHED
8033 rt_rq->rt_nr_boosted = 0;
8034 rt_rq->rq = rq;
8035 #endif
8036 }
8037
8038 #ifdef CONFIG_FAIR_GROUP_SCHED
8039 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8040 struct sched_entity *se, int cpu,
8041 struct sched_entity *parent)
8042 {
8043 struct rq *rq = cpu_rq(cpu);
8044 tg->cfs_rq[cpu] = cfs_rq;
8045 init_cfs_rq(cfs_rq, rq);
8046 cfs_rq->tg = tg;
8047
8048 tg->se[cpu] = se;
8049 /* se could be NULL for root_task_group */
8050 if (!se)
8051 return;
8052
8053 if (!parent)
8054 se->cfs_rq = &rq->cfs;
8055 else
8056 se->cfs_rq = parent->my_q;
8057
8058 se->my_q = cfs_rq;
8059 update_load_set(&se->load, 0);
8060 se->parent = parent;
8061 }
8062 #endif
8063
8064 #ifdef CONFIG_RT_GROUP_SCHED
8065 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8066 struct sched_rt_entity *rt_se, int cpu,
8067 struct sched_rt_entity *parent)
8068 {
8069 struct rq *rq = cpu_rq(cpu);
8070
8071 tg->rt_rq[cpu] = rt_rq;
8072 init_rt_rq(rt_rq, rq);
8073 rt_rq->tg = tg;
8074 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
8075
8076 tg->rt_se[cpu] = rt_se;
8077 if (!rt_se)
8078 return;
8079
8080 if (!parent)
8081 rt_se->rt_rq = &rq->rt;
8082 else
8083 rt_se->rt_rq = parent->my_q;
8084
8085 rt_se->my_q = rt_rq;
8086 rt_se->parent = parent;
8087 INIT_LIST_HEAD(&rt_se->run_list);
8088 }
8089 #endif
8090
8091 void __init sched_init(void)
8092 {
8093 int i, j;
8094 unsigned long alloc_size = 0, ptr;
8095
8096 #ifdef CONFIG_FAIR_GROUP_SCHED
8097 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8098 #endif
8099 #ifdef CONFIG_RT_GROUP_SCHED
8100 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8101 #endif
8102 #ifdef CONFIG_CPUMASK_OFFSTACK
8103 alloc_size += num_possible_cpus() * cpumask_size();
8104 #endif
8105 if (alloc_size) {
8106 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
8107
8108 #ifdef CONFIG_FAIR_GROUP_SCHED
8109 root_task_group.se = (struct sched_entity **)ptr;
8110 ptr += nr_cpu_ids * sizeof(void **);
8111
8112 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8113 ptr += nr_cpu_ids * sizeof(void **);
8114
8115 #endif /* CONFIG_FAIR_GROUP_SCHED */
8116 #ifdef CONFIG_RT_GROUP_SCHED
8117 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8118 ptr += nr_cpu_ids * sizeof(void **);
8119
8120 root_task_group.rt_rq = (struct rt_rq **)ptr;
8121 ptr += nr_cpu_ids * sizeof(void **);
8122
8123 #endif /* CONFIG_RT_GROUP_SCHED */
8124 #ifdef CONFIG_CPUMASK_OFFSTACK
8125 for_each_possible_cpu(i) {
8126 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
8127 ptr += cpumask_size();
8128 }
8129 #endif /* CONFIG_CPUMASK_OFFSTACK */
8130 }
8131
8132 #ifdef CONFIG_SMP
8133 init_defrootdomain();
8134 #endif
8135
8136 init_rt_bandwidth(&def_rt_bandwidth,
8137 global_rt_period(), global_rt_runtime());
8138
8139 #ifdef CONFIG_RT_GROUP_SCHED
8140 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8141 global_rt_period(), global_rt_runtime());
8142 #endif /* CONFIG_RT_GROUP_SCHED */
8143
8144 #ifdef CONFIG_CGROUP_SCHED
8145 list_add(&root_task_group.list, &task_groups);
8146 INIT_LIST_HEAD(&root_task_group.children);
8147 autogroup_init(&init_task);
8148 #endif /* CONFIG_CGROUP_SCHED */
8149
8150 for_each_possible_cpu(i) {
8151 struct rq *rq;
8152
8153 rq = cpu_rq(i);
8154 raw_spin_lock_init(&rq->lock);
8155 rq->nr_running = 0;
8156 rq->calc_load_active = 0;
8157 rq->calc_load_update = jiffies + LOAD_FREQ;
8158 init_cfs_rq(&rq->cfs, rq);
8159 init_rt_rq(&rq->rt, rq);
8160 #ifdef CONFIG_FAIR_GROUP_SCHED
8161 root_task_group.shares = root_task_group_load;
8162 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8163 /*
8164 * How much cpu bandwidth does root_task_group get?
8165 *
8166 * In case of task-groups formed thr' the cgroup filesystem, it
8167 * gets 100% of the cpu resources in the system. This overall
8168 * system cpu resource is divided among the tasks of
8169 * root_task_group and its child task-groups in a fair manner,
8170 * based on each entity's (task or task-group's) weight
8171 * (se->load.weight).
8172 *
8173 * In other words, if root_task_group has 10 tasks of weight
8174 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8175 * then A0's share of the cpu resource is:
8176 *
8177 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8178 *
8179 * We achieve this by letting root_task_group's tasks sit
8180 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
8181 */
8182 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
8183 #endif /* CONFIG_FAIR_GROUP_SCHED */
8184
8185 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8186 #ifdef CONFIG_RT_GROUP_SCHED
8187 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
8188 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
8189 #endif
8190
8191 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8192 rq->cpu_load[j] = 0;
8193
8194 rq->last_load_update_tick = jiffies;
8195
8196 #ifdef CONFIG_SMP
8197 rq->sd = NULL;
8198 rq->rd = NULL;
8199 rq->cpu_power = SCHED_LOAD_SCALE;
8200 rq->post_schedule = 0;
8201 rq->active_balance = 0;
8202 rq->next_balance = jiffies;
8203 rq->push_cpu = 0;
8204 rq->cpu = i;
8205 rq->online = 0;
8206 rq->idle_stamp = 0;
8207 rq->avg_idle = 2*sysctl_sched_migration_cost;
8208 rq_attach_root(rq, &def_root_domain);
8209 #ifdef CONFIG_NO_HZ
8210 rq->nohz_balance_kick = 0;
8211 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
8212 #endif
8213 #endif
8214 init_rq_hrtick(rq);
8215 atomic_set(&rq->nr_iowait, 0);
8216 }
8217
8218 set_load_weight(&init_task);
8219
8220 #ifdef CONFIG_PREEMPT_NOTIFIERS
8221 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8222 #endif
8223
8224 #ifdef CONFIG_SMP
8225 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8226 #endif
8227
8228 #ifdef CONFIG_RT_MUTEXES
8229 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
8230 #endif
8231
8232 /*
8233 * The boot idle thread does lazy MMU switching as well:
8234 */
8235 atomic_inc(&init_mm.mm_count);
8236 enter_lazy_tlb(&init_mm, current);
8237
8238 /*
8239 * Make us the idle thread. Technically, schedule() should not be
8240 * called from this thread, however somewhere below it might be,
8241 * but because we are the idle thread, we just pick up running again
8242 * when this runqueue becomes "idle".
8243 */
8244 init_idle(current, smp_processor_id());
8245
8246 calc_load_update = jiffies + LOAD_FREQ;
8247
8248 /*
8249 * During early bootup we pretend to be a normal task:
8250 */
8251 current->sched_class = &fair_sched_class;
8252
8253 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8254 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
8255 #ifdef CONFIG_SMP
8256 #ifdef CONFIG_NO_HZ
8257 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8258 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
8259 atomic_set(&nohz.load_balancer, nr_cpu_ids);
8260 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
8261 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
8262 #endif
8263 /* May be allocated at isolcpus cmdline parse time */
8264 if (cpu_isolated_map == NULL)
8265 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
8266 #endif /* SMP */
8267
8268 scheduler_running = 1;
8269 }
8270
8271 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8272 static inline int preempt_count_equals(int preempt_offset)
8273 {
8274 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
8275
8276 return (nested == preempt_offset);
8277 }
8278
8279 void __might_sleep(const char *file, int line, int preempt_offset)
8280 {
8281 #ifdef in_atomic
8282 static unsigned long prev_jiffy; /* ratelimiting */
8283
8284 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
8285 system_state != SYSTEM_RUNNING || oops_in_progress)
8286 return;
8287 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8288 return;
8289 prev_jiffy = jiffies;
8290
8291 printk(KERN_ERR
8292 "BUG: sleeping function called from invalid context at %s:%d\n",
8293 file, line);
8294 printk(KERN_ERR
8295 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8296 in_atomic(), irqs_disabled(),
8297 current->pid, current->comm);
8298
8299 debug_show_held_locks(current);
8300 if (irqs_disabled())
8301 print_irqtrace_events(current);
8302 dump_stack();
8303 #endif
8304 }
8305 EXPORT_SYMBOL(__might_sleep);
8306 #endif
8307
8308 #ifdef CONFIG_MAGIC_SYSRQ
8309 static void normalize_task(struct rq *rq, struct task_struct *p)
8310 {
8311 const struct sched_class *prev_class = p->sched_class;
8312 int old_prio = p->prio;
8313 int on_rq;
8314
8315 on_rq = p->se.on_rq;
8316 if (on_rq)
8317 deactivate_task(rq, p, 0);
8318 __setscheduler(rq, p, SCHED_NORMAL, 0);
8319 if (on_rq) {
8320 activate_task(rq, p, 0);
8321 resched_task(rq->curr);
8322 }
8323
8324 check_class_changed(rq, p, prev_class, old_prio);
8325 }
8326
8327 void normalize_rt_tasks(void)
8328 {
8329 struct task_struct *g, *p;
8330 unsigned long flags;
8331 struct rq *rq;
8332
8333 read_lock_irqsave(&tasklist_lock, flags);
8334 do_each_thread(g, p) {
8335 /*
8336 * Only normalize user tasks:
8337 */
8338 if (!p->mm)
8339 continue;
8340
8341 p->se.exec_start = 0;
8342 #ifdef CONFIG_SCHEDSTATS
8343 p->se.statistics.wait_start = 0;
8344 p->se.statistics.sleep_start = 0;
8345 p->se.statistics.block_start = 0;
8346 #endif
8347
8348 if (!rt_task(p)) {
8349 /*
8350 * Renice negative nice level userspace
8351 * tasks back to 0:
8352 */
8353 if (TASK_NICE(p) < 0 && p->mm)
8354 set_user_nice(p, 0);
8355 continue;
8356 }
8357
8358 raw_spin_lock(&p->pi_lock);
8359 rq = __task_rq_lock(p);
8360
8361 normalize_task(rq, p);
8362
8363 __task_rq_unlock(rq);
8364 raw_spin_unlock(&p->pi_lock);
8365 } while_each_thread(g, p);
8366
8367 read_unlock_irqrestore(&tasklist_lock, flags);
8368 }
8369
8370 #endif /* CONFIG_MAGIC_SYSRQ */
8371
8372 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
8373 /*
8374 * These functions are only useful for the IA64 MCA handling, or kdb.
8375 *
8376 * They can only be called when the whole system has been
8377 * stopped - every CPU needs to be quiescent, and no scheduling
8378 * activity can take place. Using them for anything else would
8379 * be a serious bug, and as a result, they aren't even visible
8380 * under any other configuration.
8381 */
8382
8383 /**
8384 * curr_task - return the current task for a given cpu.
8385 * @cpu: the processor in question.
8386 *
8387 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8388 */
8389 struct task_struct *curr_task(int cpu)
8390 {
8391 return cpu_curr(cpu);
8392 }
8393
8394 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8395
8396 #ifdef CONFIG_IA64
8397 /**
8398 * set_curr_task - set the current task for a given cpu.
8399 * @cpu: the processor in question.
8400 * @p: the task pointer to set.
8401 *
8402 * Description: This function must only be used when non-maskable interrupts
8403 * are serviced on a separate stack. It allows the architecture to switch the
8404 * notion of the current task on a cpu in a non-blocking manner. This function
8405 * must be called with all CPU's synchronized, and interrupts disabled, the
8406 * and caller must save the original value of the current task (see
8407 * curr_task() above) and restore that value before reenabling interrupts and
8408 * re-starting the system.
8409 *
8410 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8411 */
8412 void set_curr_task(int cpu, struct task_struct *p)
8413 {
8414 cpu_curr(cpu) = p;
8415 }
8416
8417 #endif
8418
8419 #ifdef CONFIG_FAIR_GROUP_SCHED
8420 static void free_fair_sched_group(struct task_group *tg)
8421 {
8422 int i;
8423
8424 for_each_possible_cpu(i) {
8425 if (tg->cfs_rq)
8426 kfree(tg->cfs_rq[i]);
8427 if (tg->se)
8428 kfree(tg->se[i]);
8429 }
8430
8431 kfree(tg->cfs_rq);
8432 kfree(tg->se);
8433 }
8434
8435 static
8436 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8437 {
8438 struct cfs_rq *cfs_rq;
8439 struct sched_entity *se;
8440 struct rq *rq;
8441 int i;
8442
8443 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8444 if (!tg->cfs_rq)
8445 goto err;
8446 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8447 if (!tg->se)
8448 goto err;
8449
8450 tg->shares = NICE_0_LOAD;
8451
8452 for_each_possible_cpu(i) {
8453 rq = cpu_rq(i);
8454
8455 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8456 GFP_KERNEL, cpu_to_node(i));
8457 if (!cfs_rq)
8458 goto err;
8459
8460 se = kzalloc_node(sizeof(struct sched_entity),
8461 GFP_KERNEL, cpu_to_node(i));
8462 if (!se)
8463 goto err_free_rq;
8464
8465 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8466 }
8467
8468 return 1;
8469
8470 err_free_rq:
8471 kfree(cfs_rq);
8472 err:
8473 return 0;
8474 }
8475
8476 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8477 {
8478 struct rq *rq = cpu_rq(cpu);
8479 unsigned long flags;
8480
8481 /*
8482 * Only empty task groups can be destroyed; so we can speculatively
8483 * check on_list without danger of it being re-added.
8484 */
8485 if (!tg->cfs_rq[cpu]->on_list)
8486 return;
8487
8488 raw_spin_lock_irqsave(&rq->lock, flags);
8489 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8490 raw_spin_unlock_irqrestore(&rq->lock, flags);
8491 }
8492 #else /* !CONFG_FAIR_GROUP_SCHED */
8493 static inline void free_fair_sched_group(struct task_group *tg)
8494 {
8495 }
8496
8497 static inline
8498 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8499 {
8500 return 1;
8501 }
8502
8503 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8504 {
8505 }
8506 #endif /* CONFIG_FAIR_GROUP_SCHED */
8507
8508 #ifdef CONFIG_RT_GROUP_SCHED
8509 static void free_rt_sched_group(struct task_group *tg)
8510 {
8511 int i;
8512
8513 destroy_rt_bandwidth(&tg->rt_bandwidth);
8514
8515 for_each_possible_cpu(i) {
8516 if (tg->rt_rq)
8517 kfree(tg->rt_rq[i]);
8518 if (tg->rt_se)
8519 kfree(tg->rt_se[i]);
8520 }
8521
8522 kfree(tg->rt_rq);
8523 kfree(tg->rt_se);
8524 }
8525
8526 static
8527 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8528 {
8529 struct rt_rq *rt_rq;
8530 struct sched_rt_entity *rt_se;
8531 struct rq *rq;
8532 int i;
8533
8534 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8535 if (!tg->rt_rq)
8536 goto err;
8537 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8538 if (!tg->rt_se)
8539 goto err;
8540
8541 init_rt_bandwidth(&tg->rt_bandwidth,
8542 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8543
8544 for_each_possible_cpu(i) {
8545 rq = cpu_rq(i);
8546
8547 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8548 GFP_KERNEL, cpu_to_node(i));
8549 if (!rt_rq)
8550 goto err;
8551
8552 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8553 GFP_KERNEL, cpu_to_node(i));
8554 if (!rt_se)
8555 goto err_free_rq;
8556
8557 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
8558 }
8559
8560 return 1;
8561
8562 err_free_rq:
8563 kfree(rt_rq);
8564 err:
8565 return 0;
8566 }
8567 #else /* !CONFIG_RT_GROUP_SCHED */
8568 static inline void free_rt_sched_group(struct task_group *tg)
8569 {
8570 }
8571
8572 static inline
8573 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8574 {
8575 return 1;
8576 }
8577 #endif /* CONFIG_RT_GROUP_SCHED */
8578
8579 #ifdef CONFIG_CGROUP_SCHED
8580 static void free_sched_group(struct task_group *tg)
8581 {
8582 free_fair_sched_group(tg);
8583 free_rt_sched_group(tg);
8584 autogroup_free(tg);
8585 kfree(tg);
8586 }
8587
8588 /* allocate runqueue etc for a new task group */
8589 struct task_group *sched_create_group(struct task_group *parent)
8590 {
8591 struct task_group *tg;
8592 unsigned long flags;
8593
8594 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8595 if (!tg)
8596 return ERR_PTR(-ENOMEM);
8597
8598 if (!alloc_fair_sched_group(tg, parent))
8599 goto err;
8600
8601 if (!alloc_rt_sched_group(tg, parent))
8602 goto err;
8603
8604 spin_lock_irqsave(&task_group_lock, flags);
8605 list_add_rcu(&tg->list, &task_groups);
8606
8607 WARN_ON(!parent); /* root should already exist */
8608
8609 tg->parent = parent;
8610 INIT_LIST_HEAD(&tg->children);
8611 list_add_rcu(&tg->siblings, &parent->children);
8612 spin_unlock_irqrestore(&task_group_lock, flags);
8613
8614 return tg;
8615
8616 err:
8617 free_sched_group(tg);
8618 return ERR_PTR(-ENOMEM);
8619 }
8620
8621 /* rcu callback to free various structures associated with a task group */
8622 static void free_sched_group_rcu(struct rcu_head *rhp)
8623 {
8624 /* now it should be safe to free those cfs_rqs */
8625 free_sched_group(container_of(rhp, struct task_group, rcu));
8626 }
8627
8628 /* Destroy runqueue etc associated with a task group */
8629 void sched_destroy_group(struct task_group *tg)
8630 {
8631 unsigned long flags;
8632 int i;
8633
8634 /* end participation in shares distribution */
8635 for_each_possible_cpu(i)
8636 unregister_fair_sched_group(tg, i);
8637
8638 spin_lock_irqsave(&task_group_lock, flags);
8639 list_del_rcu(&tg->list);
8640 list_del_rcu(&tg->siblings);
8641 spin_unlock_irqrestore(&task_group_lock, flags);
8642
8643 /* wait for possible concurrent references to cfs_rqs complete */
8644 call_rcu(&tg->rcu, free_sched_group_rcu);
8645 }
8646
8647 /* change task's runqueue when it moves between groups.
8648 * The caller of this function should have put the task in its new group
8649 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8650 * reflect its new group.
8651 */
8652 void sched_move_task(struct task_struct *tsk)
8653 {
8654 int on_rq, running;
8655 unsigned long flags;
8656 struct rq *rq;
8657
8658 rq = task_rq_lock(tsk, &flags);
8659
8660 running = task_current(rq, tsk);
8661 on_rq = tsk->se.on_rq;
8662
8663 if (on_rq)
8664 dequeue_task(rq, tsk, 0);
8665 if (unlikely(running))
8666 tsk->sched_class->put_prev_task(rq, tsk);
8667
8668 #ifdef CONFIG_FAIR_GROUP_SCHED
8669 if (tsk->sched_class->task_move_group)
8670 tsk->sched_class->task_move_group(tsk, on_rq);
8671 else
8672 #endif
8673 set_task_rq(tsk, task_cpu(tsk));
8674
8675 if (unlikely(running))
8676 tsk->sched_class->set_curr_task(rq);
8677 if (on_rq)
8678 enqueue_task(rq, tsk, 0);
8679
8680 task_rq_unlock(rq, &flags);
8681 }
8682 #endif /* CONFIG_CGROUP_SCHED */
8683
8684 #ifdef CONFIG_FAIR_GROUP_SCHED
8685 static DEFINE_MUTEX(shares_mutex);
8686
8687 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8688 {
8689 int i;
8690 unsigned long flags;
8691
8692 /*
8693 * We can't change the weight of the root cgroup.
8694 */
8695 if (!tg->se[0])
8696 return -EINVAL;
8697
8698 if (shares < MIN_SHARES)
8699 shares = MIN_SHARES;
8700 else if (shares > MAX_SHARES)
8701 shares = MAX_SHARES;
8702
8703 mutex_lock(&shares_mutex);
8704 if (tg->shares == shares)
8705 goto done;
8706
8707 tg->shares = shares;
8708 for_each_possible_cpu(i) {
8709 struct rq *rq = cpu_rq(i);
8710 struct sched_entity *se;
8711
8712 se = tg->se[i];
8713 /* Propagate contribution to hierarchy */
8714 raw_spin_lock_irqsave(&rq->lock, flags);
8715 for_each_sched_entity(se)
8716 update_cfs_shares(group_cfs_rq(se));
8717 raw_spin_unlock_irqrestore(&rq->lock, flags);
8718 }
8719
8720 done:
8721 mutex_unlock(&shares_mutex);
8722 return 0;
8723 }
8724
8725 unsigned long sched_group_shares(struct task_group *tg)
8726 {
8727 return tg->shares;
8728 }
8729 #endif
8730
8731 #ifdef CONFIG_RT_GROUP_SCHED
8732 /*
8733 * Ensure that the real time constraints are schedulable.
8734 */
8735 static DEFINE_MUTEX(rt_constraints_mutex);
8736
8737 static unsigned long to_ratio(u64 period, u64 runtime)
8738 {
8739 if (runtime == RUNTIME_INF)
8740 return 1ULL << 20;
8741
8742 return div64_u64(runtime << 20, period);
8743 }
8744
8745 /* Must be called with tasklist_lock held */
8746 static inline int tg_has_rt_tasks(struct task_group *tg)
8747 {
8748 struct task_struct *g, *p;
8749
8750 do_each_thread(g, p) {
8751 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8752 return 1;
8753 } while_each_thread(g, p);
8754
8755 return 0;
8756 }
8757
8758 struct rt_schedulable_data {
8759 struct task_group *tg;
8760 u64 rt_period;
8761 u64 rt_runtime;
8762 };
8763
8764 static int tg_schedulable(struct task_group *tg, void *data)
8765 {
8766 struct rt_schedulable_data *d = data;
8767 struct task_group *child;
8768 unsigned long total, sum = 0;
8769 u64 period, runtime;
8770
8771 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8772 runtime = tg->rt_bandwidth.rt_runtime;
8773
8774 if (tg == d->tg) {
8775 period = d->rt_period;
8776 runtime = d->rt_runtime;
8777 }
8778
8779 /*
8780 * Cannot have more runtime than the period.
8781 */
8782 if (runtime > period && runtime != RUNTIME_INF)
8783 return -EINVAL;
8784
8785 /*
8786 * Ensure we don't starve existing RT tasks.
8787 */
8788 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8789 return -EBUSY;
8790
8791 total = to_ratio(period, runtime);
8792
8793 /*
8794 * Nobody can have more than the global setting allows.
8795 */
8796 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8797 return -EINVAL;
8798
8799 /*
8800 * The sum of our children's runtime should not exceed our own.
8801 */
8802 list_for_each_entry_rcu(child, &tg->children, siblings) {
8803 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8804 runtime = child->rt_bandwidth.rt_runtime;
8805
8806 if (child == d->tg) {
8807 period = d->rt_period;
8808 runtime = d->rt_runtime;
8809 }
8810
8811 sum += to_ratio(period, runtime);
8812 }
8813
8814 if (sum > total)
8815 return -EINVAL;
8816
8817 return 0;
8818 }
8819
8820 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8821 {
8822 struct rt_schedulable_data data = {
8823 .tg = tg,
8824 .rt_period = period,
8825 .rt_runtime = runtime,
8826 };
8827
8828 return walk_tg_tree(tg_schedulable, tg_nop, &data);
8829 }
8830
8831 static int tg_set_bandwidth(struct task_group *tg,
8832 u64 rt_period, u64 rt_runtime)
8833 {
8834 int i, err = 0;
8835
8836 mutex_lock(&rt_constraints_mutex);
8837 read_lock(&tasklist_lock);
8838 err = __rt_schedulable(tg, rt_period, rt_runtime);
8839 if (err)
8840 goto unlock;
8841
8842 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8843 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8844 tg->rt_bandwidth.rt_runtime = rt_runtime;
8845
8846 for_each_possible_cpu(i) {
8847 struct rt_rq *rt_rq = tg->rt_rq[i];
8848
8849 raw_spin_lock(&rt_rq->rt_runtime_lock);
8850 rt_rq->rt_runtime = rt_runtime;
8851 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8852 }
8853 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8854 unlock:
8855 read_unlock(&tasklist_lock);
8856 mutex_unlock(&rt_constraints_mutex);
8857
8858 return err;
8859 }
8860
8861 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8862 {
8863 u64 rt_runtime, rt_period;
8864
8865 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8866 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8867 if (rt_runtime_us < 0)
8868 rt_runtime = RUNTIME_INF;
8869
8870 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8871 }
8872
8873 long sched_group_rt_runtime(struct task_group *tg)
8874 {
8875 u64 rt_runtime_us;
8876
8877 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8878 return -1;
8879
8880 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8881 do_div(rt_runtime_us, NSEC_PER_USEC);
8882 return rt_runtime_us;
8883 }
8884
8885 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8886 {
8887 u64 rt_runtime, rt_period;
8888
8889 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8890 rt_runtime = tg->rt_bandwidth.rt_runtime;
8891
8892 if (rt_period == 0)
8893 return -EINVAL;
8894
8895 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8896 }
8897
8898 long sched_group_rt_period(struct task_group *tg)
8899 {
8900 u64 rt_period_us;
8901
8902 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8903 do_div(rt_period_us, NSEC_PER_USEC);
8904 return rt_period_us;
8905 }
8906
8907 static int sched_rt_global_constraints(void)
8908 {
8909 u64 runtime, period;
8910 int ret = 0;
8911
8912 if (sysctl_sched_rt_period <= 0)
8913 return -EINVAL;
8914
8915 runtime = global_rt_runtime();
8916 period = global_rt_period();
8917
8918 /*
8919 * Sanity check on the sysctl variables.
8920 */
8921 if (runtime > period && runtime != RUNTIME_INF)
8922 return -EINVAL;
8923
8924 mutex_lock(&rt_constraints_mutex);
8925 read_lock(&tasklist_lock);
8926 ret = __rt_schedulable(NULL, 0, 0);
8927 read_unlock(&tasklist_lock);
8928 mutex_unlock(&rt_constraints_mutex);
8929
8930 return ret;
8931 }
8932
8933 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8934 {
8935 /* Don't accept realtime tasks when there is no way for them to run */
8936 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8937 return 0;
8938
8939 return 1;
8940 }
8941
8942 #else /* !CONFIG_RT_GROUP_SCHED */
8943 static int sched_rt_global_constraints(void)
8944 {
8945 unsigned long flags;
8946 int i;
8947
8948 if (sysctl_sched_rt_period <= 0)
8949 return -EINVAL;
8950
8951 /*
8952 * There's always some RT tasks in the root group
8953 * -- migration, kstopmachine etc..
8954 */
8955 if (sysctl_sched_rt_runtime == 0)
8956 return -EBUSY;
8957
8958 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8959 for_each_possible_cpu(i) {
8960 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8961
8962 raw_spin_lock(&rt_rq->rt_runtime_lock);
8963 rt_rq->rt_runtime = global_rt_runtime();
8964 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8965 }
8966 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8967
8968 return 0;
8969 }
8970 #endif /* CONFIG_RT_GROUP_SCHED */
8971
8972 int sched_rt_handler(struct ctl_table *table, int write,
8973 void __user *buffer, size_t *lenp,
8974 loff_t *ppos)
8975 {
8976 int ret;
8977 int old_period, old_runtime;
8978 static DEFINE_MUTEX(mutex);
8979
8980 mutex_lock(&mutex);
8981 old_period = sysctl_sched_rt_period;
8982 old_runtime = sysctl_sched_rt_runtime;
8983
8984 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8985
8986 if (!ret && write) {
8987 ret = sched_rt_global_constraints();
8988 if (ret) {
8989 sysctl_sched_rt_period = old_period;
8990 sysctl_sched_rt_runtime = old_runtime;
8991 } else {
8992 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8993 def_rt_bandwidth.rt_period =
8994 ns_to_ktime(global_rt_period());
8995 }
8996 }
8997 mutex_unlock(&mutex);
8998
8999 return ret;
9000 }
9001
9002 #ifdef CONFIG_CGROUP_SCHED
9003
9004 /* return corresponding task_group object of a cgroup */
9005 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9006 {
9007 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9008 struct task_group, css);
9009 }
9010
9011 static struct cgroup_subsys_state *
9012 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9013 {
9014 struct task_group *tg, *parent;
9015
9016 if (!cgrp->parent) {
9017 /* This is early initialization for the top cgroup */
9018 return &root_task_group.css;
9019 }
9020
9021 parent = cgroup_tg(cgrp->parent);
9022 tg = sched_create_group(parent);
9023 if (IS_ERR(tg))
9024 return ERR_PTR(-ENOMEM);
9025
9026 return &tg->css;
9027 }
9028
9029 static void
9030 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9031 {
9032 struct task_group *tg = cgroup_tg(cgrp);
9033
9034 sched_destroy_group(tg);
9035 }
9036
9037 static int
9038 cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
9039 {
9040 #ifdef CONFIG_RT_GROUP_SCHED
9041 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
9042 return -EINVAL;
9043 #else
9044 /* We don't support RT-tasks being in separate groups */
9045 if (tsk->sched_class != &fair_sched_class)
9046 return -EINVAL;
9047 #endif
9048 return 0;
9049 }
9050
9051 static int
9052 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9053 struct task_struct *tsk, bool threadgroup)
9054 {
9055 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
9056 if (retval)
9057 return retval;
9058 if (threadgroup) {
9059 struct task_struct *c;
9060 rcu_read_lock();
9061 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
9062 retval = cpu_cgroup_can_attach_task(cgrp, c);
9063 if (retval) {
9064 rcu_read_unlock();
9065 return retval;
9066 }
9067 }
9068 rcu_read_unlock();
9069 }
9070 return 0;
9071 }
9072
9073 static void
9074 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9075 struct cgroup *old_cont, struct task_struct *tsk,
9076 bool threadgroup)
9077 {
9078 sched_move_task(tsk);
9079 if (threadgroup) {
9080 struct task_struct *c;
9081 rcu_read_lock();
9082 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
9083 sched_move_task(c);
9084 }
9085 rcu_read_unlock();
9086 }
9087 }
9088
9089 static void
9090 cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
9091 struct cgroup *old_cgrp, struct task_struct *task)
9092 {
9093 /*
9094 * cgroup_exit() is called in the copy_process() failure path.
9095 * Ignore this case since the task hasn't ran yet, this avoids
9096 * trying to poke a half freed task state from generic code.
9097 */
9098 if (!(task->flags & PF_EXITING))
9099 return;
9100
9101 sched_move_task(task);
9102 }
9103
9104 #ifdef CONFIG_FAIR_GROUP_SCHED
9105 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9106 u64 shareval)
9107 {
9108 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9109 }
9110
9111 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9112 {
9113 struct task_group *tg = cgroup_tg(cgrp);
9114
9115 return (u64) tg->shares;
9116 }
9117 #endif /* CONFIG_FAIR_GROUP_SCHED */
9118
9119 #ifdef CONFIG_RT_GROUP_SCHED
9120 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9121 s64 val)
9122 {
9123 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
9124 }
9125
9126 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
9127 {
9128 return sched_group_rt_runtime(cgroup_tg(cgrp));
9129 }
9130
9131 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9132 u64 rt_period_us)
9133 {
9134 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9135 }
9136
9137 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9138 {
9139 return sched_group_rt_period(cgroup_tg(cgrp));
9140 }
9141 #endif /* CONFIG_RT_GROUP_SCHED */
9142
9143 static struct cftype cpu_files[] = {
9144 #ifdef CONFIG_FAIR_GROUP_SCHED
9145 {
9146 .name = "shares",
9147 .read_u64 = cpu_shares_read_u64,
9148 .write_u64 = cpu_shares_write_u64,
9149 },
9150 #endif
9151 #ifdef CONFIG_RT_GROUP_SCHED
9152 {
9153 .name = "rt_runtime_us",
9154 .read_s64 = cpu_rt_runtime_read,
9155 .write_s64 = cpu_rt_runtime_write,
9156 },
9157 {
9158 .name = "rt_period_us",
9159 .read_u64 = cpu_rt_period_read_uint,
9160 .write_u64 = cpu_rt_period_write_uint,
9161 },
9162 #endif
9163 };
9164
9165 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9166 {
9167 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9168 }
9169
9170 struct cgroup_subsys cpu_cgroup_subsys = {
9171 .name = "cpu",
9172 .create = cpu_cgroup_create,
9173 .destroy = cpu_cgroup_destroy,
9174 .can_attach = cpu_cgroup_can_attach,
9175 .attach = cpu_cgroup_attach,
9176 .exit = cpu_cgroup_exit,
9177 .populate = cpu_cgroup_populate,
9178 .subsys_id = cpu_cgroup_subsys_id,
9179 .early_init = 1,
9180 };
9181
9182 #endif /* CONFIG_CGROUP_SCHED */
9183
9184 #ifdef CONFIG_CGROUP_CPUACCT
9185
9186 /*
9187 * CPU accounting code for task groups.
9188 *
9189 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9190 * (balbir@in.ibm.com).
9191 */
9192
9193 /* track cpu usage of a group of tasks and its child groups */
9194 struct cpuacct {
9195 struct cgroup_subsys_state css;
9196 /* cpuusage holds pointer to a u64-type object on every cpu */
9197 u64 __percpu *cpuusage;
9198 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
9199 struct cpuacct *parent;
9200 };
9201
9202 struct cgroup_subsys cpuacct_subsys;
9203
9204 /* return cpu accounting group corresponding to this container */
9205 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9206 {
9207 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9208 struct cpuacct, css);
9209 }
9210
9211 /* return cpu accounting group to which this task belongs */
9212 static inline struct cpuacct *task_ca(struct task_struct *tsk)
9213 {
9214 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9215 struct cpuacct, css);
9216 }
9217
9218 /* create a new cpu accounting group */
9219 static struct cgroup_subsys_state *cpuacct_create(
9220 struct cgroup_subsys *ss, struct cgroup *cgrp)
9221 {
9222 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9223 int i;
9224
9225 if (!ca)
9226 goto out;
9227
9228 ca->cpuusage = alloc_percpu(u64);
9229 if (!ca->cpuusage)
9230 goto out_free_ca;
9231
9232 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9233 if (percpu_counter_init(&ca->cpustat[i], 0))
9234 goto out_free_counters;
9235
9236 if (cgrp->parent)
9237 ca->parent = cgroup_ca(cgrp->parent);
9238
9239 return &ca->css;
9240
9241 out_free_counters:
9242 while (--i >= 0)
9243 percpu_counter_destroy(&ca->cpustat[i]);
9244 free_percpu(ca->cpuusage);
9245 out_free_ca:
9246 kfree(ca);
9247 out:
9248 return ERR_PTR(-ENOMEM);
9249 }
9250
9251 /* destroy an existing cpu accounting group */
9252 static void
9253 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9254 {
9255 struct cpuacct *ca = cgroup_ca(cgrp);
9256 int i;
9257
9258 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9259 percpu_counter_destroy(&ca->cpustat[i]);
9260 free_percpu(ca->cpuusage);
9261 kfree(ca);
9262 }
9263
9264 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9265 {
9266 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9267 u64 data;
9268
9269 #ifndef CONFIG_64BIT
9270 /*
9271 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9272 */
9273 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9274 data = *cpuusage;
9275 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9276 #else
9277 data = *cpuusage;
9278 #endif
9279
9280 return data;
9281 }
9282
9283 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9284 {
9285 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9286
9287 #ifndef CONFIG_64BIT
9288 /*
9289 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9290 */
9291 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9292 *cpuusage = val;
9293 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9294 #else
9295 *cpuusage = val;
9296 #endif
9297 }
9298
9299 /* return total cpu usage (in nanoseconds) of a group */
9300 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9301 {
9302 struct cpuacct *ca = cgroup_ca(cgrp);
9303 u64 totalcpuusage = 0;
9304 int i;
9305
9306 for_each_present_cpu(i)
9307 totalcpuusage += cpuacct_cpuusage_read(ca, i);
9308
9309 return totalcpuusage;
9310 }
9311
9312 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9313 u64 reset)
9314 {
9315 struct cpuacct *ca = cgroup_ca(cgrp);
9316 int err = 0;
9317 int i;
9318
9319 if (reset) {
9320 err = -EINVAL;
9321 goto out;
9322 }
9323
9324 for_each_present_cpu(i)
9325 cpuacct_cpuusage_write(ca, i, 0);
9326
9327 out:
9328 return err;
9329 }
9330
9331 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9332 struct seq_file *m)
9333 {
9334 struct cpuacct *ca = cgroup_ca(cgroup);
9335 u64 percpu;
9336 int i;
9337
9338 for_each_present_cpu(i) {
9339 percpu = cpuacct_cpuusage_read(ca, i);
9340 seq_printf(m, "%llu ", (unsigned long long) percpu);
9341 }
9342 seq_printf(m, "\n");
9343 return 0;
9344 }
9345
9346 static const char *cpuacct_stat_desc[] = {
9347 [CPUACCT_STAT_USER] = "user",
9348 [CPUACCT_STAT_SYSTEM] = "system",
9349 };
9350
9351 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9352 struct cgroup_map_cb *cb)
9353 {
9354 struct cpuacct *ca = cgroup_ca(cgrp);
9355 int i;
9356
9357 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9358 s64 val = percpu_counter_read(&ca->cpustat[i]);
9359 val = cputime64_to_clock_t(val);
9360 cb->fill(cb, cpuacct_stat_desc[i], val);
9361 }
9362 return 0;
9363 }
9364
9365 static struct cftype files[] = {
9366 {
9367 .name = "usage",
9368 .read_u64 = cpuusage_read,
9369 .write_u64 = cpuusage_write,
9370 },
9371 {
9372 .name = "usage_percpu",
9373 .read_seq_string = cpuacct_percpu_seq_read,
9374 },
9375 {
9376 .name = "stat",
9377 .read_map = cpuacct_stats_show,
9378 },
9379 };
9380
9381 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9382 {
9383 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9384 }
9385
9386 /*
9387 * charge this task's execution time to its accounting group.
9388 *
9389 * called with rq->lock held.
9390 */
9391 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9392 {
9393 struct cpuacct *ca;
9394 int cpu;
9395
9396 if (unlikely(!cpuacct_subsys.active))
9397 return;
9398
9399 cpu = task_cpu(tsk);
9400
9401 rcu_read_lock();
9402
9403 ca = task_ca(tsk);
9404
9405 for (; ca; ca = ca->parent) {
9406 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9407 *cpuusage += cputime;
9408 }
9409
9410 rcu_read_unlock();
9411 }
9412
9413 /*
9414 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9415 * in cputime_t units. As a result, cpuacct_update_stats calls
9416 * percpu_counter_add with values large enough to always overflow the
9417 * per cpu batch limit causing bad SMP scalability.
9418 *
9419 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9420 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9421 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9422 */
9423 #ifdef CONFIG_SMP
9424 #define CPUACCT_BATCH \
9425 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9426 #else
9427 #define CPUACCT_BATCH 0
9428 #endif
9429
9430 /*
9431 * Charge the system/user time to the task's accounting group.
9432 */
9433 static void cpuacct_update_stats(struct task_struct *tsk,
9434 enum cpuacct_stat_index idx, cputime_t val)
9435 {
9436 struct cpuacct *ca;
9437 int batch = CPUACCT_BATCH;
9438
9439 if (unlikely(!cpuacct_subsys.active))
9440 return;
9441
9442 rcu_read_lock();
9443 ca = task_ca(tsk);
9444
9445 do {
9446 __percpu_counter_add(&ca->cpustat[idx], val, batch);
9447 ca = ca->parent;
9448 } while (ca);
9449 rcu_read_unlock();
9450 }
9451
9452 struct cgroup_subsys cpuacct_subsys = {
9453 .name = "cpuacct",
9454 .create = cpuacct_create,
9455 .destroy = cpuacct_destroy,
9456 .populate = cpuacct_populate,
9457 .subsys_id = cpuacct_subsys_id,
9458 };
9459 #endif /* CONFIG_CGROUP_CPUACCT */
9460
This page took 0.247554 seconds and 5 git commands to generate.