5004dff91850e4abee004a12765dd948c35d6c23
[deliverable/linux.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 */
26
27 #include <linux/mm.h>
28 #include <linux/module.h>
29 #include <linux/nmi.h>
30 #include <linux/init.h>
31 #include <linux/uaccess.h>
32 #include <linux/highmem.h>
33 #include <linux/smp_lock.h>
34 #include <asm/mmu_context.h>
35 #include <linux/interrupt.h>
36 #include <linux/capability.h>
37 #include <linux/completion.h>
38 #include <linux/kernel_stat.h>
39 #include <linux/debug_locks.h>
40 #include <linux/security.h>
41 #include <linux/notifier.h>
42 #include <linux/profile.h>
43 #include <linux/freezer.h>
44 #include <linux/vmalloc.h>
45 #include <linux/blkdev.h>
46 #include <linux/delay.h>
47 #include <linux/smp.h>
48 #include <linux/threads.h>
49 #include <linux/timer.h>
50 #include <linux/rcupdate.h>
51 #include <linux/cpu.h>
52 #include <linux/cpuset.h>
53 #include <linux/percpu.h>
54 #include <linux/kthread.h>
55 #include <linux/seq_file.h>
56 #include <linux/sysctl.h>
57 #include <linux/syscalls.h>
58 #include <linux/times.h>
59 #include <linux/tsacct_kern.h>
60 #include <linux/kprobes.h>
61 #include <linux/delayacct.h>
62 #include <linux/reciprocal_div.h>
63 #include <linux/unistd.h>
64 #include <linux/pagemap.h>
65
66 #include <asm/tlb.h>
67
68 /*
69 * Scheduler clock - returns current time in nanosec units.
70 * This is default implementation.
71 * Architectures and sub-architectures can override this.
72 */
73 unsigned long long __attribute__((weak)) sched_clock(void)
74 {
75 return (unsigned long long)jiffies * (1000000000 / HZ);
76 }
77
78 /*
79 * Convert user-nice values [ -20 ... 0 ... 19 ]
80 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
81 * and back.
82 */
83 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
84 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
85 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
86
87 /*
88 * 'User priority' is the nice value converted to something we
89 * can work with better when scaling various scheduler parameters,
90 * it's a [ 0 ... 39 ] range.
91 */
92 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
93 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
94 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
95
96 /*
97 * Some helpers for converting nanosecond timing to jiffy resolution
98 */
99 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
100 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
101
102 #define NICE_0_LOAD SCHED_LOAD_SCALE
103 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
104
105 /*
106 * These are the 'tuning knobs' of the scheduler:
107 *
108 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
109 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
110 * Timeslices get refilled after they expire.
111 */
112 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
113 #define DEF_TIMESLICE (100 * HZ / 1000)
114
115 #ifdef CONFIG_SMP
116 /*
117 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
118 * Since cpu_power is a 'constant', we can use a reciprocal divide.
119 */
120 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
121 {
122 return reciprocal_divide(load, sg->reciprocal_cpu_power);
123 }
124
125 /*
126 * Each time a sched group cpu_power is changed,
127 * we must compute its reciprocal value
128 */
129 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
130 {
131 sg->__cpu_power += val;
132 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
133 }
134 #endif
135
136 #define SCALE_PRIO(x, prio) \
137 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
138
139 /*
140 * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
141 * to time slice values: [800ms ... 100ms ... 5ms]
142 */
143 static unsigned int static_prio_timeslice(int static_prio)
144 {
145 if (static_prio == NICE_TO_PRIO(19))
146 return 1;
147
148 if (static_prio < NICE_TO_PRIO(0))
149 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
150 else
151 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
152 }
153
154 static inline int rt_policy(int policy)
155 {
156 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
157 return 1;
158 return 0;
159 }
160
161 static inline int task_has_rt_policy(struct task_struct *p)
162 {
163 return rt_policy(p->policy);
164 }
165
166 /*
167 * This is the priority-queue data structure of the RT scheduling class:
168 */
169 struct rt_prio_array {
170 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
171 struct list_head queue[MAX_RT_PRIO];
172 };
173
174 #ifdef CONFIG_FAIR_GROUP_SCHED
175
176 struct cfs_rq;
177
178 /* task group related information */
179 struct task_grp {
180 /* schedulable entities of this group on each cpu */
181 struct sched_entity **se;
182 /* runqueue "owned" by this group on each cpu */
183 struct cfs_rq **cfs_rq;
184 unsigned long shares;
185 };
186
187 /* Default task group's sched entity on each cpu */
188 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
189 /* Default task group's cfs_rq on each cpu */
190 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
191
192 static struct sched_entity *init_sched_entity_p[NR_CPUS];
193 static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
194
195 /* Default task group.
196 * Every task in system belong to this group at bootup.
197 */
198 struct task_grp init_task_grp = {
199 .se = init_sched_entity_p,
200 .cfs_rq = init_cfs_rq_p,
201 };
202
203 #ifdef CONFIG_FAIR_USER_SCHED
204 #define INIT_TASK_GRP_LOAD 2*NICE_0_LOAD
205 #else
206 #define INIT_TASK_GRP_LOAD NICE_0_LOAD
207 #endif
208
209 static int init_task_grp_load = INIT_TASK_GRP_LOAD;
210
211 /* return group to which a task belongs */
212 static inline struct task_grp *task_grp(struct task_struct *p)
213 {
214 struct task_grp *tg;
215
216 #ifdef CONFIG_FAIR_USER_SCHED
217 tg = p->user->tg;
218 #else
219 tg = &init_task_grp;
220 #endif
221
222 return tg;
223 }
224
225 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
226 static inline void set_task_cfs_rq(struct task_struct *p)
227 {
228 p->se.cfs_rq = task_grp(p)->cfs_rq[task_cpu(p)];
229 p->se.parent = task_grp(p)->se[task_cpu(p)];
230 }
231
232 #else
233
234 static inline void set_task_cfs_rq(struct task_struct *p) { }
235
236 #endif /* CONFIG_FAIR_GROUP_SCHED */
237
238 /* CFS-related fields in a runqueue */
239 struct cfs_rq {
240 struct load_weight load;
241 unsigned long nr_running;
242
243 u64 exec_clock;
244 u64 min_vruntime;
245
246 struct rb_root tasks_timeline;
247 struct rb_node *rb_leftmost;
248 struct rb_node *rb_load_balance_curr;
249 /* 'curr' points to currently running entity on this cfs_rq.
250 * It is set to NULL otherwise (i.e when none are currently running).
251 */
252 struct sched_entity *curr;
253 #ifdef CONFIG_FAIR_GROUP_SCHED
254 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
255
256 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
257 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
258 * (like users, containers etc.)
259 *
260 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
261 * list is used during load balance.
262 */
263 struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
264 struct task_grp *tg; /* group that "owns" this runqueue */
265 struct rcu_head rcu;
266 #endif
267 };
268
269 /* Real-Time classes' related field in a runqueue: */
270 struct rt_rq {
271 struct rt_prio_array active;
272 int rt_load_balance_idx;
273 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
274 };
275
276 /*
277 * This is the main, per-CPU runqueue data structure.
278 *
279 * Locking rule: those places that want to lock multiple runqueues
280 * (such as the load balancing or the thread migration code), lock
281 * acquire operations must be ordered by ascending &runqueue.
282 */
283 struct rq {
284 spinlock_t lock; /* runqueue lock */
285
286 /*
287 * nr_running and cpu_load should be in the same cacheline because
288 * remote CPUs use both these fields when doing load calculation.
289 */
290 unsigned long nr_running;
291 #define CPU_LOAD_IDX_MAX 5
292 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
293 unsigned char idle_at_tick;
294 #ifdef CONFIG_NO_HZ
295 unsigned char in_nohz_recently;
296 #endif
297 struct load_weight load; /* capture load from *all* tasks on this cpu */
298 unsigned long nr_load_updates;
299 u64 nr_switches;
300
301 struct cfs_rq cfs;
302 #ifdef CONFIG_FAIR_GROUP_SCHED
303 struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
304 #endif
305 struct rt_rq rt;
306
307 /*
308 * This is part of a global counter where only the total sum
309 * over all CPUs matters. A task can increase this counter on
310 * one CPU and if it got migrated afterwards it may decrease
311 * it on another CPU. Always updated under the runqueue lock:
312 */
313 unsigned long nr_uninterruptible;
314
315 struct task_struct *curr, *idle;
316 unsigned long next_balance;
317 struct mm_struct *prev_mm;
318
319 u64 clock, prev_clock_raw;
320 s64 clock_max_delta;
321
322 unsigned int clock_warps, clock_overflows;
323 u64 idle_clock;
324 unsigned int clock_deep_idle_events;
325 u64 tick_timestamp;
326
327 atomic_t nr_iowait;
328
329 #ifdef CONFIG_SMP
330 struct sched_domain *sd;
331
332 /* For active balancing */
333 int active_balance;
334 int push_cpu;
335 int cpu; /* cpu of this runqueue */
336
337 struct task_struct *migration_thread;
338 struct list_head migration_queue;
339 #endif
340
341 #ifdef CONFIG_SCHEDSTATS
342 /* latency stats */
343 struct sched_info rq_sched_info;
344
345 /* sys_sched_yield() stats */
346 unsigned long yld_exp_empty;
347 unsigned long yld_act_empty;
348 unsigned long yld_both_empty;
349 unsigned long yld_cnt;
350
351 /* schedule() stats */
352 unsigned long sched_switch;
353 unsigned long sched_cnt;
354 unsigned long sched_goidle;
355
356 /* try_to_wake_up() stats */
357 unsigned long ttwu_cnt;
358 unsigned long ttwu_local;
359
360 /* BKL stats */
361 unsigned long bkl_cnt;
362 #endif
363 struct lock_class_key rq_lock_key;
364 };
365
366 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
367 static DEFINE_MUTEX(sched_hotcpu_mutex);
368
369 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
370 {
371 rq->curr->sched_class->check_preempt_curr(rq, p);
372 }
373
374 static inline int cpu_of(struct rq *rq)
375 {
376 #ifdef CONFIG_SMP
377 return rq->cpu;
378 #else
379 return 0;
380 #endif
381 }
382
383 /*
384 * Update the per-runqueue clock, as finegrained as the platform can give
385 * us, but without assuming monotonicity, etc.:
386 */
387 static void __update_rq_clock(struct rq *rq)
388 {
389 u64 prev_raw = rq->prev_clock_raw;
390 u64 now = sched_clock();
391 s64 delta = now - prev_raw;
392 u64 clock = rq->clock;
393
394 #ifdef CONFIG_SCHED_DEBUG
395 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
396 #endif
397 /*
398 * Protect against sched_clock() occasionally going backwards:
399 */
400 if (unlikely(delta < 0)) {
401 clock++;
402 rq->clock_warps++;
403 } else {
404 /*
405 * Catch too large forward jumps too:
406 */
407 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
408 if (clock < rq->tick_timestamp + TICK_NSEC)
409 clock = rq->tick_timestamp + TICK_NSEC;
410 else
411 clock++;
412 rq->clock_overflows++;
413 } else {
414 if (unlikely(delta > rq->clock_max_delta))
415 rq->clock_max_delta = delta;
416 clock += delta;
417 }
418 }
419
420 rq->prev_clock_raw = now;
421 rq->clock = clock;
422 }
423
424 static void update_rq_clock(struct rq *rq)
425 {
426 if (likely(smp_processor_id() == cpu_of(rq)))
427 __update_rq_clock(rq);
428 }
429
430 /*
431 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
432 * See detach_destroy_domains: synchronize_sched for details.
433 *
434 * The domain tree of any CPU may only be accessed from within
435 * preempt-disabled sections.
436 */
437 #define for_each_domain(cpu, __sd) \
438 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
439
440 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
441 #define this_rq() (&__get_cpu_var(runqueues))
442 #define task_rq(p) cpu_rq(task_cpu(p))
443 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
444
445 /*
446 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
447 */
448 #ifdef CONFIG_SCHED_DEBUG
449 # define const_debug __read_mostly
450 #else
451 # define const_debug static const
452 #endif
453
454 /*
455 * Debugging: various feature bits
456 */
457 enum {
458 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
459 SCHED_FEAT_START_DEBIT = 2,
460 SCHED_FEAT_USE_TREE_AVG = 4,
461 SCHED_FEAT_APPROX_AVG = 8,
462 };
463
464 const_debug unsigned int sysctl_sched_features =
465 SCHED_FEAT_NEW_FAIR_SLEEPERS *1 |
466 SCHED_FEAT_START_DEBIT *1 |
467 SCHED_FEAT_USE_TREE_AVG *0 |
468 SCHED_FEAT_APPROX_AVG *0;
469
470 #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
471
472 /*
473 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
474 * clock constructed from sched_clock():
475 */
476 unsigned long long cpu_clock(int cpu)
477 {
478 unsigned long long now;
479 unsigned long flags;
480 struct rq *rq;
481
482 local_irq_save(flags);
483 rq = cpu_rq(cpu);
484 update_rq_clock(rq);
485 now = rq->clock;
486 local_irq_restore(flags);
487
488 return now;
489 }
490
491 #ifndef prepare_arch_switch
492 # define prepare_arch_switch(next) do { } while (0)
493 #endif
494 #ifndef finish_arch_switch
495 # define finish_arch_switch(prev) do { } while (0)
496 #endif
497
498 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
499 static inline int task_running(struct rq *rq, struct task_struct *p)
500 {
501 return rq->curr == p;
502 }
503
504 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
505 {
506 }
507
508 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
509 {
510 #ifdef CONFIG_DEBUG_SPINLOCK
511 /* this is a valid case when another task releases the spinlock */
512 rq->lock.owner = current;
513 #endif
514 /*
515 * If we are tracking spinlock dependencies then we have to
516 * fix up the runqueue lock - which gets 'carried over' from
517 * prev into current:
518 */
519 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
520
521 spin_unlock_irq(&rq->lock);
522 }
523
524 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
525 static inline int task_running(struct rq *rq, struct task_struct *p)
526 {
527 #ifdef CONFIG_SMP
528 return p->oncpu;
529 #else
530 return rq->curr == p;
531 #endif
532 }
533
534 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
535 {
536 #ifdef CONFIG_SMP
537 /*
538 * We can optimise this out completely for !SMP, because the
539 * SMP rebalancing from interrupt is the only thing that cares
540 * here.
541 */
542 next->oncpu = 1;
543 #endif
544 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
545 spin_unlock_irq(&rq->lock);
546 #else
547 spin_unlock(&rq->lock);
548 #endif
549 }
550
551 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
552 {
553 #ifdef CONFIG_SMP
554 /*
555 * After ->oncpu is cleared, the task can be moved to a different CPU.
556 * We must ensure this doesn't happen until the switch is completely
557 * finished.
558 */
559 smp_wmb();
560 prev->oncpu = 0;
561 #endif
562 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
563 local_irq_enable();
564 #endif
565 }
566 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
567
568 /*
569 * __task_rq_lock - lock the runqueue a given task resides on.
570 * Must be called interrupts disabled.
571 */
572 static inline struct rq *__task_rq_lock(struct task_struct *p)
573 __acquires(rq->lock)
574 {
575 struct rq *rq;
576
577 repeat_lock_task:
578 rq = task_rq(p);
579 spin_lock(&rq->lock);
580 if (unlikely(rq != task_rq(p))) {
581 spin_unlock(&rq->lock);
582 goto repeat_lock_task;
583 }
584 return rq;
585 }
586
587 /*
588 * task_rq_lock - lock the runqueue a given task resides on and disable
589 * interrupts. Note the ordering: we can safely lookup the task_rq without
590 * explicitly disabling preemption.
591 */
592 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
593 __acquires(rq->lock)
594 {
595 struct rq *rq;
596
597 repeat_lock_task:
598 local_irq_save(*flags);
599 rq = task_rq(p);
600 spin_lock(&rq->lock);
601 if (unlikely(rq != task_rq(p))) {
602 spin_unlock_irqrestore(&rq->lock, *flags);
603 goto repeat_lock_task;
604 }
605 return rq;
606 }
607
608 static inline void __task_rq_unlock(struct rq *rq)
609 __releases(rq->lock)
610 {
611 spin_unlock(&rq->lock);
612 }
613
614 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
615 __releases(rq->lock)
616 {
617 spin_unlock_irqrestore(&rq->lock, *flags);
618 }
619
620 /*
621 * this_rq_lock - lock this runqueue and disable interrupts.
622 */
623 static inline struct rq *this_rq_lock(void)
624 __acquires(rq->lock)
625 {
626 struct rq *rq;
627
628 local_irq_disable();
629 rq = this_rq();
630 spin_lock(&rq->lock);
631
632 return rq;
633 }
634
635 /*
636 * We are going deep-idle (irqs are disabled):
637 */
638 void sched_clock_idle_sleep_event(void)
639 {
640 struct rq *rq = cpu_rq(smp_processor_id());
641
642 spin_lock(&rq->lock);
643 __update_rq_clock(rq);
644 spin_unlock(&rq->lock);
645 rq->clock_deep_idle_events++;
646 }
647 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
648
649 /*
650 * We just idled delta nanoseconds (called with irqs disabled):
651 */
652 void sched_clock_idle_wakeup_event(u64 delta_ns)
653 {
654 struct rq *rq = cpu_rq(smp_processor_id());
655 u64 now = sched_clock();
656
657 rq->idle_clock += delta_ns;
658 /*
659 * Override the previous timestamp and ignore all
660 * sched_clock() deltas that occured while we idled,
661 * and use the PM-provided delta_ns to advance the
662 * rq clock:
663 */
664 spin_lock(&rq->lock);
665 rq->prev_clock_raw = now;
666 rq->clock += delta_ns;
667 spin_unlock(&rq->lock);
668 }
669 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
670
671 /*
672 * resched_task - mark a task 'to be rescheduled now'.
673 *
674 * On UP this means the setting of the need_resched flag, on SMP it
675 * might also involve a cross-CPU call to trigger the scheduler on
676 * the target CPU.
677 */
678 #ifdef CONFIG_SMP
679
680 #ifndef tsk_is_polling
681 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
682 #endif
683
684 static void resched_task(struct task_struct *p)
685 {
686 int cpu;
687
688 assert_spin_locked(&task_rq(p)->lock);
689
690 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
691 return;
692
693 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
694
695 cpu = task_cpu(p);
696 if (cpu == smp_processor_id())
697 return;
698
699 /* NEED_RESCHED must be visible before we test polling */
700 smp_mb();
701 if (!tsk_is_polling(p))
702 smp_send_reschedule(cpu);
703 }
704
705 static void resched_cpu(int cpu)
706 {
707 struct rq *rq = cpu_rq(cpu);
708 unsigned long flags;
709
710 if (!spin_trylock_irqsave(&rq->lock, flags))
711 return;
712 resched_task(cpu_curr(cpu));
713 spin_unlock_irqrestore(&rq->lock, flags);
714 }
715 #else
716 static inline void resched_task(struct task_struct *p)
717 {
718 assert_spin_locked(&task_rq(p)->lock);
719 set_tsk_need_resched(p);
720 }
721 #endif
722
723 #if BITS_PER_LONG == 32
724 # define WMULT_CONST (~0UL)
725 #else
726 # define WMULT_CONST (1UL << 32)
727 #endif
728
729 #define WMULT_SHIFT 32
730
731 /*
732 * Shift right and round:
733 */
734 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
735
736 static unsigned long
737 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
738 struct load_weight *lw)
739 {
740 u64 tmp;
741
742 if (unlikely(!lw->inv_weight))
743 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
744
745 tmp = (u64)delta_exec * weight;
746 /*
747 * Check whether we'd overflow the 64-bit multiplication:
748 */
749 if (unlikely(tmp > WMULT_CONST))
750 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
751 WMULT_SHIFT/2);
752 else
753 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
754
755 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
756 }
757
758 static inline unsigned long
759 calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
760 {
761 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
762 }
763
764 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
765 {
766 lw->weight += inc;
767 }
768
769 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
770 {
771 lw->weight -= dec;
772 }
773
774 /*
775 * To aid in avoiding the subversion of "niceness" due to uneven distribution
776 * of tasks with abnormal "nice" values across CPUs the contribution that
777 * each task makes to its run queue's load is weighted according to its
778 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
779 * scaled version of the new time slice allocation that they receive on time
780 * slice expiry etc.
781 */
782
783 #define WEIGHT_IDLEPRIO 2
784 #define WMULT_IDLEPRIO (1 << 31)
785
786 /*
787 * Nice levels are multiplicative, with a gentle 10% change for every
788 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
789 * nice 1, it will get ~10% less CPU time than another CPU-bound task
790 * that remained on nice 0.
791 *
792 * The "10% effect" is relative and cumulative: from _any_ nice level,
793 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
794 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
795 * If a task goes up by ~10% and another task goes down by ~10% then
796 * the relative distance between them is ~25%.)
797 */
798 static const int prio_to_weight[40] = {
799 /* -20 */ 88761, 71755, 56483, 46273, 36291,
800 /* -15 */ 29154, 23254, 18705, 14949, 11916,
801 /* -10 */ 9548, 7620, 6100, 4904, 3906,
802 /* -5 */ 3121, 2501, 1991, 1586, 1277,
803 /* 0 */ 1024, 820, 655, 526, 423,
804 /* 5 */ 335, 272, 215, 172, 137,
805 /* 10 */ 110, 87, 70, 56, 45,
806 /* 15 */ 36, 29, 23, 18, 15,
807 };
808
809 /*
810 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
811 *
812 * In cases where the weight does not change often, we can use the
813 * precalculated inverse to speed up arithmetics by turning divisions
814 * into multiplications:
815 */
816 static const u32 prio_to_wmult[40] = {
817 /* -20 */ 48388, 59856, 76040, 92818, 118348,
818 /* -15 */ 147320, 184698, 229616, 287308, 360437,
819 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
820 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
821 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
822 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
823 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
824 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
825 };
826
827 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
828
829 /*
830 * runqueue iterator, to support SMP load-balancing between different
831 * scheduling classes, without having to expose their internal data
832 * structures to the load-balancing proper:
833 */
834 struct rq_iterator {
835 void *arg;
836 struct task_struct *(*start)(void *);
837 struct task_struct *(*next)(void *);
838 };
839
840 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
841 unsigned long max_nr_move, unsigned long max_load_move,
842 struct sched_domain *sd, enum cpu_idle_type idle,
843 int *all_pinned, unsigned long *load_moved,
844 int *this_best_prio, struct rq_iterator *iterator);
845
846 #include "sched_stats.h"
847 #include "sched_rt.c"
848 #include "sched_fair.c"
849 #include "sched_idletask.c"
850 #ifdef CONFIG_SCHED_DEBUG
851 # include "sched_debug.c"
852 #endif
853
854 #define sched_class_highest (&rt_sched_class)
855
856 /*
857 * Update delta_exec, delta_fair fields for rq.
858 *
859 * delta_fair clock advances at a rate inversely proportional to
860 * total load (rq->load.weight) on the runqueue, while
861 * delta_exec advances at the same rate as wall-clock (provided
862 * cpu is not idle).
863 *
864 * delta_exec / delta_fair is a measure of the (smoothened) load on this
865 * runqueue over any given interval. This (smoothened) load is used
866 * during load balance.
867 *
868 * This function is called /before/ updating rq->load
869 * and when switching tasks.
870 */
871 static inline void inc_load(struct rq *rq, const struct task_struct *p)
872 {
873 update_load_add(&rq->load, p->se.load.weight);
874 }
875
876 static inline void dec_load(struct rq *rq, const struct task_struct *p)
877 {
878 update_load_sub(&rq->load, p->se.load.weight);
879 }
880
881 static void inc_nr_running(struct task_struct *p, struct rq *rq)
882 {
883 rq->nr_running++;
884 inc_load(rq, p);
885 }
886
887 static void dec_nr_running(struct task_struct *p, struct rq *rq)
888 {
889 rq->nr_running--;
890 dec_load(rq, p);
891 }
892
893 static void set_load_weight(struct task_struct *p)
894 {
895 if (task_has_rt_policy(p)) {
896 p->se.load.weight = prio_to_weight[0] * 2;
897 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
898 return;
899 }
900
901 /*
902 * SCHED_IDLE tasks get minimal weight:
903 */
904 if (p->policy == SCHED_IDLE) {
905 p->se.load.weight = WEIGHT_IDLEPRIO;
906 p->se.load.inv_weight = WMULT_IDLEPRIO;
907 return;
908 }
909
910 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
911 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
912 }
913
914 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
915 {
916 sched_info_queued(p);
917 p->sched_class->enqueue_task(rq, p, wakeup);
918 p->se.on_rq = 1;
919 }
920
921 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
922 {
923 p->sched_class->dequeue_task(rq, p, sleep);
924 p->se.on_rq = 0;
925 }
926
927 /*
928 * __normal_prio - return the priority that is based on the static prio
929 */
930 static inline int __normal_prio(struct task_struct *p)
931 {
932 return p->static_prio;
933 }
934
935 /*
936 * Calculate the expected normal priority: i.e. priority
937 * without taking RT-inheritance into account. Might be
938 * boosted by interactivity modifiers. Changes upon fork,
939 * setprio syscalls, and whenever the interactivity
940 * estimator recalculates.
941 */
942 static inline int normal_prio(struct task_struct *p)
943 {
944 int prio;
945
946 if (task_has_rt_policy(p))
947 prio = MAX_RT_PRIO-1 - p->rt_priority;
948 else
949 prio = __normal_prio(p);
950 return prio;
951 }
952
953 /*
954 * Calculate the current priority, i.e. the priority
955 * taken into account by the scheduler. This value might
956 * be boosted by RT tasks, or might be boosted by
957 * interactivity modifiers. Will be RT if the task got
958 * RT-boosted. If not then it returns p->normal_prio.
959 */
960 static int effective_prio(struct task_struct *p)
961 {
962 p->normal_prio = normal_prio(p);
963 /*
964 * If we are RT tasks or we were boosted to RT priority,
965 * keep the priority unchanged. Otherwise, update priority
966 * to the normal priority:
967 */
968 if (!rt_prio(p->prio))
969 return p->normal_prio;
970 return p->prio;
971 }
972
973 /*
974 * activate_task - move a task to the runqueue.
975 */
976 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
977 {
978 if (p->state == TASK_UNINTERRUPTIBLE)
979 rq->nr_uninterruptible--;
980
981 enqueue_task(rq, p, wakeup);
982 inc_nr_running(p, rq);
983 }
984
985 /*
986 * activate_idle_task - move idle task to the _front_ of runqueue.
987 */
988 static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
989 {
990 update_rq_clock(rq);
991
992 if (p->state == TASK_UNINTERRUPTIBLE)
993 rq->nr_uninterruptible--;
994
995 enqueue_task(rq, p, 0);
996 inc_nr_running(p, rq);
997 }
998
999 /*
1000 * deactivate_task - remove a task from the runqueue.
1001 */
1002 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1003 {
1004 if (p->state == TASK_UNINTERRUPTIBLE)
1005 rq->nr_uninterruptible++;
1006
1007 dequeue_task(rq, p, sleep);
1008 dec_nr_running(p, rq);
1009 }
1010
1011 /**
1012 * task_curr - is this task currently executing on a CPU?
1013 * @p: the task in question.
1014 */
1015 inline int task_curr(const struct task_struct *p)
1016 {
1017 return cpu_curr(task_cpu(p)) == p;
1018 }
1019
1020 /* Used instead of source_load when we know the type == 0 */
1021 unsigned long weighted_cpuload(const int cpu)
1022 {
1023 return cpu_rq(cpu)->load.weight;
1024 }
1025
1026 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1027 {
1028 #ifdef CONFIG_SMP
1029 task_thread_info(p)->cpu = cpu;
1030 #endif
1031 set_task_cfs_rq(p);
1032 }
1033
1034 #ifdef CONFIG_SMP
1035
1036 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1037 {
1038 int old_cpu = task_cpu(p);
1039 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1040 u64 clock_offset;
1041
1042 clock_offset = old_rq->clock - new_rq->clock;
1043
1044 #ifdef CONFIG_SCHEDSTATS
1045 if (p->se.wait_start)
1046 p->se.wait_start -= clock_offset;
1047 if (p->se.sleep_start)
1048 p->se.sleep_start -= clock_offset;
1049 if (p->se.block_start)
1050 p->se.block_start -= clock_offset;
1051 #endif
1052 if (likely(new_rq->cfs.min_vruntime))
1053 p->se.vruntime -= old_rq->cfs.min_vruntime -
1054 new_rq->cfs.min_vruntime;
1055
1056 __set_task_cpu(p, new_cpu);
1057 }
1058
1059 struct migration_req {
1060 struct list_head list;
1061
1062 struct task_struct *task;
1063 int dest_cpu;
1064
1065 struct completion done;
1066 };
1067
1068 /*
1069 * The task's runqueue lock must be held.
1070 * Returns true if you have to wait for migration thread.
1071 */
1072 static int
1073 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1074 {
1075 struct rq *rq = task_rq(p);
1076
1077 /*
1078 * If the task is not on a runqueue (and not running), then
1079 * it is sufficient to simply update the task's cpu field.
1080 */
1081 if (!p->se.on_rq && !task_running(rq, p)) {
1082 set_task_cpu(p, dest_cpu);
1083 return 0;
1084 }
1085
1086 init_completion(&req->done);
1087 req->task = p;
1088 req->dest_cpu = dest_cpu;
1089 list_add(&req->list, &rq->migration_queue);
1090
1091 return 1;
1092 }
1093
1094 /*
1095 * wait_task_inactive - wait for a thread to unschedule.
1096 *
1097 * The caller must ensure that the task *will* unschedule sometime soon,
1098 * else this function might spin for a *long* time. This function can't
1099 * be called with interrupts off, or it may introduce deadlock with
1100 * smp_call_function() if an IPI is sent by the same process we are
1101 * waiting to become inactive.
1102 */
1103 void wait_task_inactive(struct task_struct *p)
1104 {
1105 unsigned long flags;
1106 int running, on_rq;
1107 struct rq *rq;
1108
1109 repeat:
1110 /*
1111 * We do the initial early heuristics without holding
1112 * any task-queue locks at all. We'll only try to get
1113 * the runqueue lock when things look like they will
1114 * work out!
1115 */
1116 rq = task_rq(p);
1117
1118 /*
1119 * If the task is actively running on another CPU
1120 * still, just relax and busy-wait without holding
1121 * any locks.
1122 *
1123 * NOTE! Since we don't hold any locks, it's not
1124 * even sure that "rq" stays as the right runqueue!
1125 * But we don't care, since "task_running()" will
1126 * return false if the runqueue has changed and p
1127 * is actually now running somewhere else!
1128 */
1129 while (task_running(rq, p))
1130 cpu_relax();
1131
1132 /*
1133 * Ok, time to look more closely! We need the rq
1134 * lock now, to be *sure*. If we're wrong, we'll
1135 * just go back and repeat.
1136 */
1137 rq = task_rq_lock(p, &flags);
1138 running = task_running(rq, p);
1139 on_rq = p->se.on_rq;
1140 task_rq_unlock(rq, &flags);
1141
1142 /*
1143 * Was it really running after all now that we
1144 * checked with the proper locks actually held?
1145 *
1146 * Oops. Go back and try again..
1147 */
1148 if (unlikely(running)) {
1149 cpu_relax();
1150 goto repeat;
1151 }
1152
1153 /*
1154 * It's not enough that it's not actively running,
1155 * it must be off the runqueue _entirely_, and not
1156 * preempted!
1157 *
1158 * So if it wa still runnable (but just not actively
1159 * running right now), it's preempted, and we should
1160 * yield - it could be a while.
1161 */
1162 if (unlikely(on_rq)) {
1163 yield();
1164 goto repeat;
1165 }
1166
1167 /*
1168 * Ahh, all good. It wasn't running, and it wasn't
1169 * runnable, which means that it will never become
1170 * running in the future either. We're all done!
1171 */
1172 }
1173
1174 /***
1175 * kick_process - kick a running thread to enter/exit the kernel
1176 * @p: the to-be-kicked thread
1177 *
1178 * Cause a process which is running on another CPU to enter
1179 * kernel-mode, without any delay. (to get signals handled.)
1180 *
1181 * NOTE: this function doesnt have to take the runqueue lock,
1182 * because all it wants to ensure is that the remote task enters
1183 * the kernel. If the IPI races and the task has been migrated
1184 * to another CPU then no harm is done and the purpose has been
1185 * achieved as well.
1186 */
1187 void kick_process(struct task_struct *p)
1188 {
1189 int cpu;
1190
1191 preempt_disable();
1192 cpu = task_cpu(p);
1193 if ((cpu != smp_processor_id()) && task_curr(p))
1194 smp_send_reschedule(cpu);
1195 preempt_enable();
1196 }
1197
1198 /*
1199 * Return a low guess at the load of a migration-source cpu weighted
1200 * according to the scheduling class and "nice" value.
1201 *
1202 * We want to under-estimate the load of migration sources, to
1203 * balance conservatively.
1204 */
1205 static inline unsigned long source_load(int cpu, int type)
1206 {
1207 struct rq *rq = cpu_rq(cpu);
1208 unsigned long total = weighted_cpuload(cpu);
1209
1210 if (type == 0)
1211 return total;
1212
1213 return min(rq->cpu_load[type-1], total);
1214 }
1215
1216 /*
1217 * Return a high guess at the load of a migration-target cpu weighted
1218 * according to the scheduling class and "nice" value.
1219 */
1220 static inline unsigned long target_load(int cpu, int type)
1221 {
1222 struct rq *rq = cpu_rq(cpu);
1223 unsigned long total = weighted_cpuload(cpu);
1224
1225 if (type == 0)
1226 return total;
1227
1228 return max(rq->cpu_load[type-1], total);
1229 }
1230
1231 /*
1232 * Return the average load per task on the cpu's run queue
1233 */
1234 static inline unsigned long cpu_avg_load_per_task(int cpu)
1235 {
1236 struct rq *rq = cpu_rq(cpu);
1237 unsigned long total = weighted_cpuload(cpu);
1238 unsigned long n = rq->nr_running;
1239
1240 return n ? total / n : SCHED_LOAD_SCALE;
1241 }
1242
1243 /*
1244 * find_idlest_group finds and returns the least busy CPU group within the
1245 * domain.
1246 */
1247 static struct sched_group *
1248 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1249 {
1250 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1251 unsigned long min_load = ULONG_MAX, this_load = 0;
1252 int load_idx = sd->forkexec_idx;
1253 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1254
1255 do {
1256 unsigned long load, avg_load;
1257 int local_group;
1258 int i;
1259
1260 /* Skip over this group if it has no CPUs allowed */
1261 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1262 goto nextgroup;
1263
1264 local_group = cpu_isset(this_cpu, group->cpumask);
1265
1266 /* Tally up the load of all CPUs in the group */
1267 avg_load = 0;
1268
1269 for_each_cpu_mask(i, group->cpumask) {
1270 /* Bias balancing toward cpus of our domain */
1271 if (local_group)
1272 load = source_load(i, load_idx);
1273 else
1274 load = target_load(i, load_idx);
1275
1276 avg_load += load;
1277 }
1278
1279 /* Adjust by relative CPU power of the group */
1280 avg_load = sg_div_cpu_power(group,
1281 avg_load * SCHED_LOAD_SCALE);
1282
1283 if (local_group) {
1284 this_load = avg_load;
1285 this = group;
1286 } else if (avg_load < min_load) {
1287 min_load = avg_load;
1288 idlest = group;
1289 }
1290 nextgroup:
1291 group = group->next;
1292 } while (group != sd->groups);
1293
1294 if (!idlest || 100*this_load < imbalance*min_load)
1295 return NULL;
1296 return idlest;
1297 }
1298
1299 /*
1300 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1301 */
1302 static int
1303 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1304 {
1305 cpumask_t tmp;
1306 unsigned long load, min_load = ULONG_MAX;
1307 int idlest = -1;
1308 int i;
1309
1310 /* Traverse only the allowed CPUs */
1311 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1312
1313 for_each_cpu_mask(i, tmp) {
1314 load = weighted_cpuload(i);
1315
1316 if (load < min_load || (load == min_load && i == this_cpu)) {
1317 min_load = load;
1318 idlest = i;
1319 }
1320 }
1321
1322 return idlest;
1323 }
1324
1325 /*
1326 * sched_balance_self: balance the current task (running on cpu) in domains
1327 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1328 * SD_BALANCE_EXEC.
1329 *
1330 * Balance, ie. select the least loaded group.
1331 *
1332 * Returns the target CPU number, or the same CPU if no balancing is needed.
1333 *
1334 * preempt must be disabled.
1335 */
1336 static int sched_balance_self(int cpu, int flag)
1337 {
1338 struct task_struct *t = current;
1339 struct sched_domain *tmp, *sd = NULL;
1340
1341 for_each_domain(cpu, tmp) {
1342 /*
1343 * If power savings logic is enabled for a domain, stop there.
1344 */
1345 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1346 break;
1347 if (tmp->flags & flag)
1348 sd = tmp;
1349 }
1350
1351 while (sd) {
1352 cpumask_t span;
1353 struct sched_group *group;
1354 int new_cpu, weight;
1355
1356 if (!(sd->flags & flag)) {
1357 sd = sd->child;
1358 continue;
1359 }
1360
1361 span = sd->span;
1362 group = find_idlest_group(sd, t, cpu);
1363 if (!group) {
1364 sd = sd->child;
1365 continue;
1366 }
1367
1368 new_cpu = find_idlest_cpu(group, t, cpu);
1369 if (new_cpu == -1 || new_cpu == cpu) {
1370 /* Now try balancing at a lower domain level of cpu */
1371 sd = sd->child;
1372 continue;
1373 }
1374
1375 /* Now try balancing at a lower domain level of new_cpu */
1376 cpu = new_cpu;
1377 sd = NULL;
1378 weight = cpus_weight(span);
1379 for_each_domain(cpu, tmp) {
1380 if (weight <= cpus_weight(tmp->span))
1381 break;
1382 if (tmp->flags & flag)
1383 sd = tmp;
1384 }
1385 /* while loop will break here if sd == NULL */
1386 }
1387
1388 return cpu;
1389 }
1390
1391 #endif /* CONFIG_SMP */
1392
1393 /*
1394 * wake_idle() will wake a task on an idle cpu if task->cpu is
1395 * not idle and an idle cpu is available. The span of cpus to
1396 * search starts with cpus closest then further out as needed,
1397 * so we always favor a closer, idle cpu.
1398 *
1399 * Returns the CPU we should wake onto.
1400 */
1401 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1402 static int wake_idle(int cpu, struct task_struct *p)
1403 {
1404 cpumask_t tmp;
1405 struct sched_domain *sd;
1406 int i;
1407
1408 /*
1409 * If it is idle, then it is the best cpu to run this task.
1410 *
1411 * This cpu is also the best, if it has more than one task already.
1412 * Siblings must be also busy(in most cases) as they didn't already
1413 * pickup the extra load from this cpu and hence we need not check
1414 * sibling runqueue info. This will avoid the checks and cache miss
1415 * penalities associated with that.
1416 */
1417 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1418 return cpu;
1419
1420 for_each_domain(cpu, sd) {
1421 if (sd->flags & SD_WAKE_IDLE) {
1422 cpus_and(tmp, sd->span, p->cpus_allowed);
1423 for_each_cpu_mask(i, tmp) {
1424 if (idle_cpu(i))
1425 return i;
1426 }
1427 } else {
1428 break;
1429 }
1430 }
1431 return cpu;
1432 }
1433 #else
1434 static inline int wake_idle(int cpu, struct task_struct *p)
1435 {
1436 return cpu;
1437 }
1438 #endif
1439
1440 /***
1441 * try_to_wake_up - wake up a thread
1442 * @p: the to-be-woken-up thread
1443 * @state: the mask of task states that can be woken
1444 * @sync: do a synchronous wakeup?
1445 *
1446 * Put it on the run-queue if it's not already there. The "current"
1447 * thread is always on the run-queue (except when the actual
1448 * re-schedule is in progress), and as such you're allowed to do
1449 * the simpler "current->state = TASK_RUNNING" to mark yourself
1450 * runnable without the overhead of this.
1451 *
1452 * returns failure only if the task is already active.
1453 */
1454 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1455 {
1456 int cpu, this_cpu, success = 0;
1457 unsigned long flags;
1458 long old_state;
1459 struct rq *rq;
1460 #ifdef CONFIG_SMP
1461 struct sched_domain *sd, *this_sd = NULL;
1462 unsigned long load, this_load;
1463 int new_cpu;
1464 #endif
1465
1466 rq = task_rq_lock(p, &flags);
1467 old_state = p->state;
1468 if (!(old_state & state))
1469 goto out;
1470
1471 if (p->se.on_rq)
1472 goto out_running;
1473
1474 cpu = task_cpu(p);
1475 this_cpu = smp_processor_id();
1476
1477 #ifdef CONFIG_SMP
1478 if (unlikely(task_running(rq, p)))
1479 goto out_activate;
1480
1481 new_cpu = cpu;
1482
1483 schedstat_inc(rq, ttwu_cnt);
1484 if (cpu == this_cpu) {
1485 schedstat_inc(rq, ttwu_local);
1486 goto out_set_cpu;
1487 }
1488
1489 for_each_domain(this_cpu, sd) {
1490 if (cpu_isset(cpu, sd->span)) {
1491 schedstat_inc(sd, ttwu_wake_remote);
1492 this_sd = sd;
1493 break;
1494 }
1495 }
1496
1497 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1498 goto out_set_cpu;
1499
1500 /*
1501 * Check for affine wakeup and passive balancing possibilities.
1502 */
1503 if (this_sd) {
1504 int idx = this_sd->wake_idx;
1505 unsigned int imbalance;
1506
1507 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1508
1509 load = source_load(cpu, idx);
1510 this_load = target_load(this_cpu, idx);
1511
1512 new_cpu = this_cpu; /* Wake to this CPU if we can */
1513
1514 if (this_sd->flags & SD_WAKE_AFFINE) {
1515 unsigned long tl = this_load;
1516 unsigned long tl_per_task;
1517
1518 tl_per_task = cpu_avg_load_per_task(this_cpu);
1519
1520 /*
1521 * If sync wakeup then subtract the (maximum possible)
1522 * effect of the currently running task from the load
1523 * of the current CPU:
1524 */
1525 if (sync)
1526 tl -= current->se.load.weight;
1527
1528 if ((tl <= load &&
1529 tl + target_load(cpu, idx) <= tl_per_task) ||
1530 100*(tl + p->se.load.weight) <= imbalance*load) {
1531 /*
1532 * This domain has SD_WAKE_AFFINE and
1533 * p is cache cold in this domain, and
1534 * there is no bad imbalance.
1535 */
1536 schedstat_inc(this_sd, ttwu_move_affine);
1537 goto out_set_cpu;
1538 }
1539 }
1540
1541 /*
1542 * Start passive balancing when half the imbalance_pct
1543 * limit is reached.
1544 */
1545 if (this_sd->flags & SD_WAKE_BALANCE) {
1546 if (imbalance*this_load <= 100*load) {
1547 schedstat_inc(this_sd, ttwu_move_balance);
1548 goto out_set_cpu;
1549 }
1550 }
1551 }
1552
1553 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1554 out_set_cpu:
1555 new_cpu = wake_idle(new_cpu, p);
1556 if (new_cpu != cpu) {
1557 set_task_cpu(p, new_cpu);
1558 task_rq_unlock(rq, &flags);
1559 /* might preempt at this point */
1560 rq = task_rq_lock(p, &flags);
1561 old_state = p->state;
1562 if (!(old_state & state))
1563 goto out;
1564 if (p->se.on_rq)
1565 goto out_running;
1566
1567 this_cpu = smp_processor_id();
1568 cpu = task_cpu(p);
1569 }
1570
1571 out_activate:
1572 #endif /* CONFIG_SMP */
1573 update_rq_clock(rq);
1574 activate_task(rq, p, 1);
1575 /*
1576 * Sync wakeups (i.e. those types of wakeups where the waker
1577 * has indicated that it will leave the CPU in short order)
1578 * don't trigger a preemption, if the woken up task will run on
1579 * this cpu. (in this case the 'I will reschedule' promise of
1580 * the waker guarantees that the freshly woken up task is going
1581 * to be considered on this CPU.)
1582 */
1583 if (!sync || cpu != this_cpu)
1584 check_preempt_curr(rq, p);
1585 success = 1;
1586
1587 out_running:
1588 p->state = TASK_RUNNING;
1589 out:
1590 task_rq_unlock(rq, &flags);
1591
1592 return success;
1593 }
1594
1595 int fastcall wake_up_process(struct task_struct *p)
1596 {
1597 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1598 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1599 }
1600 EXPORT_SYMBOL(wake_up_process);
1601
1602 int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1603 {
1604 return try_to_wake_up(p, state, 0);
1605 }
1606
1607 /*
1608 * Perform scheduler related setup for a newly forked process p.
1609 * p is forked by current.
1610 *
1611 * __sched_fork() is basic setup used by init_idle() too:
1612 */
1613 static void __sched_fork(struct task_struct *p)
1614 {
1615 p->se.exec_start = 0;
1616 p->se.sum_exec_runtime = 0;
1617 p->se.prev_sum_exec_runtime = 0;
1618
1619 #ifdef CONFIG_SCHEDSTATS
1620 p->se.wait_start = 0;
1621 p->se.sum_sleep_runtime = 0;
1622 p->se.sleep_start = 0;
1623 p->se.block_start = 0;
1624 p->se.sleep_max = 0;
1625 p->se.block_max = 0;
1626 p->se.exec_max = 0;
1627 p->se.slice_max = 0;
1628 p->se.wait_max = 0;
1629 #endif
1630
1631 INIT_LIST_HEAD(&p->run_list);
1632 p->se.on_rq = 0;
1633
1634 #ifdef CONFIG_PREEMPT_NOTIFIERS
1635 INIT_HLIST_HEAD(&p->preempt_notifiers);
1636 #endif
1637
1638 /*
1639 * We mark the process as running here, but have not actually
1640 * inserted it onto the runqueue yet. This guarantees that
1641 * nobody will actually run it, and a signal or other external
1642 * event cannot wake it up and insert it on the runqueue either.
1643 */
1644 p->state = TASK_RUNNING;
1645 }
1646
1647 /*
1648 * fork()/clone()-time setup:
1649 */
1650 void sched_fork(struct task_struct *p, int clone_flags)
1651 {
1652 int cpu = get_cpu();
1653
1654 __sched_fork(p);
1655
1656 #ifdef CONFIG_SMP
1657 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1658 #endif
1659 __set_task_cpu(p, cpu);
1660
1661 /*
1662 * Make sure we do not leak PI boosting priority to the child:
1663 */
1664 p->prio = current->normal_prio;
1665
1666 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1667 if (likely(sched_info_on()))
1668 memset(&p->sched_info, 0, sizeof(p->sched_info));
1669 #endif
1670 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1671 p->oncpu = 0;
1672 #endif
1673 #ifdef CONFIG_PREEMPT
1674 /* Want to start with kernel preemption disabled. */
1675 task_thread_info(p)->preempt_count = 1;
1676 #endif
1677 put_cpu();
1678 }
1679
1680 /*
1681 * wake_up_new_task - wake up a newly created task for the first time.
1682 *
1683 * This function will do some initial scheduler statistics housekeeping
1684 * that must be done for every newly created context, then puts the task
1685 * on the runqueue and wakes it.
1686 */
1687 void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1688 {
1689 unsigned long flags;
1690 struct rq *rq;
1691 int this_cpu;
1692
1693 rq = task_rq_lock(p, &flags);
1694 BUG_ON(p->state != TASK_RUNNING);
1695 this_cpu = smp_processor_id(); /* parent's CPU */
1696 update_rq_clock(rq);
1697
1698 p->prio = effective_prio(p);
1699
1700 if (rt_prio(p->prio))
1701 p->sched_class = &rt_sched_class;
1702 else
1703 p->sched_class = &fair_sched_class;
1704
1705 if (task_cpu(p) != this_cpu || !p->sched_class->task_new ||
1706 !current->se.on_rq) {
1707 activate_task(rq, p, 0);
1708 } else {
1709 /*
1710 * Let the scheduling class do new task startup
1711 * management (if any):
1712 */
1713 p->sched_class->task_new(rq, p);
1714 inc_nr_running(p, rq);
1715 }
1716 check_preempt_curr(rq, p);
1717 task_rq_unlock(rq, &flags);
1718 }
1719
1720 #ifdef CONFIG_PREEMPT_NOTIFIERS
1721
1722 /**
1723 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1724 * @notifier: notifier struct to register
1725 */
1726 void preempt_notifier_register(struct preempt_notifier *notifier)
1727 {
1728 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1729 }
1730 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1731
1732 /**
1733 * preempt_notifier_unregister - no longer interested in preemption notifications
1734 * @notifier: notifier struct to unregister
1735 *
1736 * This is safe to call from within a preemption notifier.
1737 */
1738 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1739 {
1740 hlist_del(&notifier->link);
1741 }
1742 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1743
1744 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1745 {
1746 struct preempt_notifier *notifier;
1747 struct hlist_node *node;
1748
1749 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1750 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1751 }
1752
1753 static void
1754 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1755 struct task_struct *next)
1756 {
1757 struct preempt_notifier *notifier;
1758 struct hlist_node *node;
1759
1760 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1761 notifier->ops->sched_out(notifier, next);
1762 }
1763
1764 #else
1765
1766 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1767 {
1768 }
1769
1770 static void
1771 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1772 struct task_struct *next)
1773 {
1774 }
1775
1776 #endif
1777
1778 /**
1779 * prepare_task_switch - prepare to switch tasks
1780 * @rq: the runqueue preparing to switch
1781 * @prev: the current task that is being switched out
1782 * @next: the task we are going to switch to.
1783 *
1784 * This is called with the rq lock held and interrupts off. It must
1785 * be paired with a subsequent finish_task_switch after the context
1786 * switch.
1787 *
1788 * prepare_task_switch sets up locking and calls architecture specific
1789 * hooks.
1790 */
1791 static inline void
1792 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1793 struct task_struct *next)
1794 {
1795 fire_sched_out_preempt_notifiers(prev, next);
1796 prepare_lock_switch(rq, next);
1797 prepare_arch_switch(next);
1798 }
1799
1800 /**
1801 * finish_task_switch - clean up after a task-switch
1802 * @rq: runqueue associated with task-switch
1803 * @prev: the thread we just switched away from.
1804 *
1805 * finish_task_switch must be called after the context switch, paired
1806 * with a prepare_task_switch call before the context switch.
1807 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1808 * and do any other architecture-specific cleanup actions.
1809 *
1810 * Note that we may have delayed dropping an mm in context_switch(). If
1811 * so, we finish that here outside of the runqueue lock. (Doing it
1812 * with the lock held can cause deadlocks; see schedule() for
1813 * details.)
1814 */
1815 static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
1816 __releases(rq->lock)
1817 {
1818 struct mm_struct *mm = rq->prev_mm;
1819 long prev_state;
1820
1821 rq->prev_mm = NULL;
1822
1823 /*
1824 * A task struct has one reference for the use as "current".
1825 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1826 * schedule one last time. The schedule call will never return, and
1827 * the scheduled task must drop that reference.
1828 * The test for TASK_DEAD must occur while the runqueue locks are
1829 * still held, otherwise prev could be scheduled on another cpu, die
1830 * there before we look at prev->state, and then the reference would
1831 * be dropped twice.
1832 * Manfred Spraul <manfred@colorfullife.com>
1833 */
1834 prev_state = prev->state;
1835 finish_arch_switch(prev);
1836 finish_lock_switch(rq, prev);
1837 fire_sched_in_preempt_notifiers(current);
1838 if (mm)
1839 mmdrop(mm);
1840 if (unlikely(prev_state == TASK_DEAD)) {
1841 /*
1842 * Remove function-return probe instances associated with this
1843 * task and put them back on the free list.
1844 */
1845 kprobe_flush_task(prev);
1846 put_task_struct(prev);
1847 }
1848 }
1849
1850 /**
1851 * schedule_tail - first thing a freshly forked thread must call.
1852 * @prev: the thread we just switched away from.
1853 */
1854 asmlinkage void schedule_tail(struct task_struct *prev)
1855 __releases(rq->lock)
1856 {
1857 struct rq *rq = this_rq();
1858
1859 finish_task_switch(rq, prev);
1860 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1861 /* In this case, finish_task_switch does not reenable preemption */
1862 preempt_enable();
1863 #endif
1864 if (current->set_child_tid)
1865 put_user(current->pid, current->set_child_tid);
1866 }
1867
1868 /*
1869 * context_switch - switch to the new MM and the new
1870 * thread's register state.
1871 */
1872 static inline void
1873 context_switch(struct rq *rq, struct task_struct *prev,
1874 struct task_struct *next)
1875 {
1876 struct mm_struct *mm, *oldmm;
1877
1878 prepare_task_switch(rq, prev, next);
1879 mm = next->mm;
1880 oldmm = prev->active_mm;
1881 /*
1882 * For paravirt, this is coupled with an exit in switch_to to
1883 * combine the page table reload and the switch backend into
1884 * one hypercall.
1885 */
1886 arch_enter_lazy_cpu_mode();
1887
1888 if (unlikely(!mm)) {
1889 next->active_mm = oldmm;
1890 atomic_inc(&oldmm->mm_count);
1891 enter_lazy_tlb(oldmm, next);
1892 } else
1893 switch_mm(oldmm, mm, next);
1894
1895 if (unlikely(!prev->mm)) {
1896 prev->active_mm = NULL;
1897 rq->prev_mm = oldmm;
1898 }
1899 /*
1900 * Since the runqueue lock will be released by the next
1901 * task (which is an invalid locking op but in the case
1902 * of the scheduler it's an obvious special-case), so we
1903 * do an early lockdep release here:
1904 */
1905 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1906 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1907 #endif
1908
1909 /* Here we just switch the register state and the stack. */
1910 switch_to(prev, next, prev);
1911
1912 barrier();
1913 /*
1914 * this_rq must be evaluated again because prev may have moved
1915 * CPUs since it called schedule(), thus the 'rq' on its stack
1916 * frame will be invalid.
1917 */
1918 finish_task_switch(this_rq(), prev);
1919 }
1920
1921 /*
1922 * nr_running, nr_uninterruptible and nr_context_switches:
1923 *
1924 * externally visible scheduler statistics: current number of runnable
1925 * threads, current number of uninterruptible-sleeping threads, total
1926 * number of context switches performed since bootup.
1927 */
1928 unsigned long nr_running(void)
1929 {
1930 unsigned long i, sum = 0;
1931
1932 for_each_online_cpu(i)
1933 sum += cpu_rq(i)->nr_running;
1934
1935 return sum;
1936 }
1937
1938 unsigned long nr_uninterruptible(void)
1939 {
1940 unsigned long i, sum = 0;
1941
1942 for_each_possible_cpu(i)
1943 sum += cpu_rq(i)->nr_uninterruptible;
1944
1945 /*
1946 * Since we read the counters lockless, it might be slightly
1947 * inaccurate. Do not allow it to go below zero though:
1948 */
1949 if (unlikely((long)sum < 0))
1950 sum = 0;
1951
1952 return sum;
1953 }
1954
1955 unsigned long long nr_context_switches(void)
1956 {
1957 int i;
1958 unsigned long long sum = 0;
1959
1960 for_each_possible_cpu(i)
1961 sum += cpu_rq(i)->nr_switches;
1962
1963 return sum;
1964 }
1965
1966 unsigned long nr_iowait(void)
1967 {
1968 unsigned long i, sum = 0;
1969
1970 for_each_possible_cpu(i)
1971 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1972
1973 return sum;
1974 }
1975
1976 unsigned long nr_active(void)
1977 {
1978 unsigned long i, running = 0, uninterruptible = 0;
1979
1980 for_each_online_cpu(i) {
1981 running += cpu_rq(i)->nr_running;
1982 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1983 }
1984
1985 if (unlikely((long)uninterruptible < 0))
1986 uninterruptible = 0;
1987
1988 return running + uninterruptible;
1989 }
1990
1991 /*
1992 * Update rq->cpu_load[] statistics. This function is usually called every
1993 * scheduler tick (TICK_NSEC).
1994 */
1995 static void update_cpu_load(struct rq *this_rq)
1996 {
1997 unsigned long this_load = this_rq->load.weight;
1998 int i, scale;
1999
2000 this_rq->nr_load_updates++;
2001
2002 /* Update our load: */
2003 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2004 unsigned long old_load, new_load;
2005
2006 /* scale is effectively 1 << i now, and >> i divides by scale */
2007
2008 old_load = this_rq->cpu_load[i];
2009 new_load = this_load;
2010 /*
2011 * Round up the averaging division if load is increasing. This
2012 * prevents us from getting stuck on 9 if the load is 10, for
2013 * example.
2014 */
2015 if (new_load > old_load)
2016 new_load += scale-1;
2017 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2018 }
2019 }
2020
2021 #ifdef CONFIG_SMP
2022
2023 /*
2024 * double_rq_lock - safely lock two runqueues
2025 *
2026 * Note this does not disable interrupts like task_rq_lock,
2027 * you need to do so manually before calling.
2028 */
2029 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2030 __acquires(rq1->lock)
2031 __acquires(rq2->lock)
2032 {
2033 BUG_ON(!irqs_disabled());
2034 if (rq1 == rq2) {
2035 spin_lock(&rq1->lock);
2036 __acquire(rq2->lock); /* Fake it out ;) */
2037 } else {
2038 if (rq1 < rq2) {
2039 spin_lock(&rq1->lock);
2040 spin_lock(&rq2->lock);
2041 } else {
2042 spin_lock(&rq2->lock);
2043 spin_lock(&rq1->lock);
2044 }
2045 }
2046 update_rq_clock(rq1);
2047 update_rq_clock(rq2);
2048 }
2049
2050 /*
2051 * double_rq_unlock - safely unlock two runqueues
2052 *
2053 * Note this does not restore interrupts like task_rq_unlock,
2054 * you need to do so manually after calling.
2055 */
2056 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2057 __releases(rq1->lock)
2058 __releases(rq2->lock)
2059 {
2060 spin_unlock(&rq1->lock);
2061 if (rq1 != rq2)
2062 spin_unlock(&rq2->lock);
2063 else
2064 __release(rq2->lock);
2065 }
2066
2067 /*
2068 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2069 */
2070 static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
2071 __releases(this_rq->lock)
2072 __acquires(busiest->lock)
2073 __acquires(this_rq->lock)
2074 {
2075 if (unlikely(!irqs_disabled())) {
2076 /* printk() doesn't work good under rq->lock */
2077 spin_unlock(&this_rq->lock);
2078 BUG_ON(1);
2079 }
2080 if (unlikely(!spin_trylock(&busiest->lock))) {
2081 if (busiest < this_rq) {
2082 spin_unlock(&this_rq->lock);
2083 spin_lock(&busiest->lock);
2084 spin_lock(&this_rq->lock);
2085 } else
2086 spin_lock(&busiest->lock);
2087 }
2088 }
2089
2090 /*
2091 * If dest_cpu is allowed for this process, migrate the task to it.
2092 * This is accomplished by forcing the cpu_allowed mask to only
2093 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2094 * the cpu_allowed mask is restored.
2095 */
2096 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2097 {
2098 struct migration_req req;
2099 unsigned long flags;
2100 struct rq *rq;
2101
2102 rq = task_rq_lock(p, &flags);
2103 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2104 || unlikely(cpu_is_offline(dest_cpu)))
2105 goto out;
2106
2107 /* force the process onto the specified CPU */
2108 if (migrate_task(p, dest_cpu, &req)) {
2109 /* Need to wait for migration thread (might exit: take ref). */
2110 struct task_struct *mt = rq->migration_thread;
2111
2112 get_task_struct(mt);
2113 task_rq_unlock(rq, &flags);
2114 wake_up_process(mt);
2115 put_task_struct(mt);
2116 wait_for_completion(&req.done);
2117
2118 return;
2119 }
2120 out:
2121 task_rq_unlock(rq, &flags);
2122 }
2123
2124 /*
2125 * sched_exec - execve() is a valuable balancing opportunity, because at
2126 * this point the task has the smallest effective memory and cache footprint.
2127 */
2128 void sched_exec(void)
2129 {
2130 int new_cpu, this_cpu = get_cpu();
2131 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2132 put_cpu();
2133 if (new_cpu != this_cpu)
2134 sched_migrate_task(current, new_cpu);
2135 }
2136
2137 /*
2138 * pull_task - move a task from a remote runqueue to the local runqueue.
2139 * Both runqueues must be locked.
2140 */
2141 static void pull_task(struct rq *src_rq, struct task_struct *p,
2142 struct rq *this_rq, int this_cpu)
2143 {
2144 deactivate_task(src_rq, p, 0);
2145 set_task_cpu(p, this_cpu);
2146 activate_task(this_rq, p, 0);
2147 /*
2148 * Note that idle threads have a prio of MAX_PRIO, for this test
2149 * to be always true for them.
2150 */
2151 check_preempt_curr(this_rq, p);
2152 }
2153
2154 /*
2155 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2156 */
2157 static
2158 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2159 struct sched_domain *sd, enum cpu_idle_type idle,
2160 int *all_pinned)
2161 {
2162 /*
2163 * We do not migrate tasks that are:
2164 * 1) running (obviously), or
2165 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2166 * 3) are cache-hot on their current CPU.
2167 */
2168 if (!cpu_isset(this_cpu, p->cpus_allowed))
2169 return 0;
2170 *all_pinned = 0;
2171
2172 if (task_running(rq, p))
2173 return 0;
2174
2175 return 1;
2176 }
2177
2178 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2179 unsigned long max_nr_move, unsigned long max_load_move,
2180 struct sched_domain *sd, enum cpu_idle_type idle,
2181 int *all_pinned, unsigned long *load_moved,
2182 int *this_best_prio, struct rq_iterator *iterator)
2183 {
2184 int pulled = 0, pinned = 0, skip_for_load;
2185 struct task_struct *p;
2186 long rem_load_move = max_load_move;
2187
2188 if (max_nr_move == 0 || max_load_move == 0)
2189 goto out;
2190
2191 pinned = 1;
2192
2193 /*
2194 * Start the load-balancing iterator:
2195 */
2196 p = iterator->start(iterator->arg);
2197 next:
2198 if (!p)
2199 goto out;
2200 /*
2201 * To help distribute high priority tasks accross CPUs we don't
2202 * skip a task if it will be the highest priority task (i.e. smallest
2203 * prio value) on its new queue regardless of its load weight
2204 */
2205 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2206 SCHED_LOAD_SCALE_FUZZ;
2207 if ((skip_for_load && p->prio >= *this_best_prio) ||
2208 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2209 p = iterator->next(iterator->arg);
2210 goto next;
2211 }
2212
2213 pull_task(busiest, p, this_rq, this_cpu);
2214 pulled++;
2215 rem_load_move -= p->se.load.weight;
2216
2217 /*
2218 * We only want to steal up to the prescribed number of tasks
2219 * and the prescribed amount of weighted load.
2220 */
2221 if (pulled < max_nr_move && rem_load_move > 0) {
2222 if (p->prio < *this_best_prio)
2223 *this_best_prio = p->prio;
2224 p = iterator->next(iterator->arg);
2225 goto next;
2226 }
2227 out:
2228 /*
2229 * Right now, this is the only place pull_task() is called,
2230 * so we can safely collect pull_task() stats here rather than
2231 * inside pull_task().
2232 */
2233 schedstat_add(sd, lb_gained[idle], pulled);
2234
2235 if (all_pinned)
2236 *all_pinned = pinned;
2237 *load_moved = max_load_move - rem_load_move;
2238 return pulled;
2239 }
2240
2241 /*
2242 * move_tasks tries to move up to max_load_move weighted load from busiest to
2243 * this_rq, as part of a balancing operation within domain "sd".
2244 * Returns 1 if successful and 0 otherwise.
2245 *
2246 * Called with both runqueues locked.
2247 */
2248 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2249 unsigned long max_load_move,
2250 struct sched_domain *sd, enum cpu_idle_type idle,
2251 int *all_pinned)
2252 {
2253 struct sched_class *class = sched_class_highest;
2254 unsigned long total_load_moved = 0;
2255 int this_best_prio = this_rq->curr->prio;
2256
2257 do {
2258 total_load_moved +=
2259 class->load_balance(this_rq, this_cpu, busiest,
2260 ULONG_MAX, max_load_move - total_load_moved,
2261 sd, idle, all_pinned, &this_best_prio);
2262 class = class->next;
2263 } while (class && max_load_move > total_load_moved);
2264
2265 return total_load_moved > 0;
2266 }
2267
2268 /*
2269 * move_one_task tries to move exactly one task from busiest to this_rq, as
2270 * part of active balancing operations within "domain".
2271 * Returns 1 if successful and 0 otherwise.
2272 *
2273 * Called with both runqueues locked.
2274 */
2275 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2276 struct sched_domain *sd, enum cpu_idle_type idle)
2277 {
2278 struct sched_class *class;
2279 int this_best_prio = MAX_PRIO;
2280
2281 for (class = sched_class_highest; class; class = class->next)
2282 if (class->load_balance(this_rq, this_cpu, busiest,
2283 1, ULONG_MAX, sd, idle, NULL,
2284 &this_best_prio))
2285 return 1;
2286
2287 return 0;
2288 }
2289
2290 /*
2291 * find_busiest_group finds and returns the busiest CPU group within the
2292 * domain. It calculates and returns the amount of weighted load which
2293 * should be moved to restore balance via the imbalance parameter.
2294 */
2295 static struct sched_group *
2296 find_busiest_group(struct sched_domain *sd, int this_cpu,
2297 unsigned long *imbalance, enum cpu_idle_type idle,
2298 int *sd_idle, cpumask_t *cpus, int *balance)
2299 {
2300 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2301 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2302 unsigned long max_pull;
2303 unsigned long busiest_load_per_task, busiest_nr_running;
2304 unsigned long this_load_per_task, this_nr_running;
2305 int load_idx;
2306 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2307 int power_savings_balance = 1;
2308 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2309 unsigned long min_nr_running = ULONG_MAX;
2310 struct sched_group *group_min = NULL, *group_leader = NULL;
2311 #endif
2312
2313 max_load = this_load = total_load = total_pwr = 0;
2314 busiest_load_per_task = busiest_nr_running = 0;
2315 this_load_per_task = this_nr_running = 0;
2316 if (idle == CPU_NOT_IDLE)
2317 load_idx = sd->busy_idx;
2318 else if (idle == CPU_NEWLY_IDLE)
2319 load_idx = sd->newidle_idx;
2320 else
2321 load_idx = sd->idle_idx;
2322
2323 do {
2324 unsigned long load, group_capacity;
2325 int local_group;
2326 int i;
2327 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2328 unsigned long sum_nr_running, sum_weighted_load;
2329
2330 local_group = cpu_isset(this_cpu, group->cpumask);
2331
2332 if (local_group)
2333 balance_cpu = first_cpu(group->cpumask);
2334
2335 /* Tally up the load of all CPUs in the group */
2336 sum_weighted_load = sum_nr_running = avg_load = 0;
2337
2338 for_each_cpu_mask(i, group->cpumask) {
2339 struct rq *rq;
2340
2341 if (!cpu_isset(i, *cpus))
2342 continue;
2343
2344 rq = cpu_rq(i);
2345
2346 if (*sd_idle && rq->nr_running)
2347 *sd_idle = 0;
2348
2349 /* Bias balancing toward cpus of our domain */
2350 if (local_group) {
2351 if (idle_cpu(i) && !first_idle_cpu) {
2352 first_idle_cpu = 1;
2353 balance_cpu = i;
2354 }
2355
2356 load = target_load(i, load_idx);
2357 } else
2358 load = source_load(i, load_idx);
2359
2360 avg_load += load;
2361 sum_nr_running += rq->nr_running;
2362 sum_weighted_load += weighted_cpuload(i);
2363 }
2364
2365 /*
2366 * First idle cpu or the first cpu(busiest) in this sched group
2367 * is eligible for doing load balancing at this and above
2368 * domains. In the newly idle case, we will allow all the cpu's
2369 * to do the newly idle load balance.
2370 */
2371 if (idle != CPU_NEWLY_IDLE && local_group &&
2372 balance_cpu != this_cpu && balance) {
2373 *balance = 0;
2374 goto ret;
2375 }
2376
2377 total_load += avg_load;
2378 total_pwr += group->__cpu_power;
2379
2380 /* Adjust by relative CPU power of the group */
2381 avg_load = sg_div_cpu_power(group,
2382 avg_load * SCHED_LOAD_SCALE);
2383
2384 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2385
2386 if (local_group) {
2387 this_load = avg_load;
2388 this = group;
2389 this_nr_running = sum_nr_running;
2390 this_load_per_task = sum_weighted_load;
2391 } else if (avg_load > max_load &&
2392 sum_nr_running > group_capacity) {
2393 max_load = avg_load;
2394 busiest = group;
2395 busiest_nr_running = sum_nr_running;
2396 busiest_load_per_task = sum_weighted_load;
2397 }
2398
2399 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2400 /*
2401 * Busy processors will not participate in power savings
2402 * balance.
2403 */
2404 if (idle == CPU_NOT_IDLE ||
2405 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2406 goto group_next;
2407
2408 /*
2409 * If the local group is idle or completely loaded
2410 * no need to do power savings balance at this domain
2411 */
2412 if (local_group && (this_nr_running >= group_capacity ||
2413 !this_nr_running))
2414 power_savings_balance = 0;
2415
2416 /*
2417 * If a group is already running at full capacity or idle,
2418 * don't include that group in power savings calculations
2419 */
2420 if (!power_savings_balance || sum_nr_running >= group_capacity
2421 || !sum_nr_running)
2422 goto group_next;
2423
2424 /*
2425 * Calculate the group which has the least non-idle load.
2426 * This is the group from where we need to pick up the load
2427 * for saving power
2428 */
2429 if ((sum_nr_running < min_nr_running) ||
2430 (sum_nr_running == min_nr_running &&
2431 first_cpu(group->cpumask) <
2432 first_cpu(group_min->cpumask))) {
2433 group_min = group;
2434 min_nr_running = sum_nr_running;
2435 min_load_per_task = sum_weighted_load /
2436 sum_nr_running;
2437 }
2438
2439 /*
2440 * Calculate the group which is almost near its
2441 * capacity but still has some space to pick up some load
2442 * from other group and save more power
2443 */
2444 if (sum_nr_running <= group_capacity - 1) {
2445 if (sum_nr_running > leader_nr_running ||
2446 (sum_nr_running == leader_nr_running &&
2447 first_cpu(group->cpumask) >
2448 first_cpu(group_leader->cpumask))) {
2449 group_leader = group;
2450 leader_nr_running = sum_nr_running;
2451 }
2452 }
2453 group_next:
2454 #endif
2455 group = group->next;
2456 } while (group != sd->groups);
2457
2458 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2459 goto out_balanced;
2460
2461 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2462
2463 if (this_load >= avg_load ||
2464 100*max_load <= sd->imbalance_pct*this_load)
2465 goto out_balanced;
2466
2467 busiest_load_per_task /= busiest_nr_running;
2468 /*
2469 * We're trying to get all the cpus to the average_load, so we don't
2470 * want to push ourselves above the average load, nor do we wish to
2471 * reduce the max loaded cpu below the average load, as either of these
2472 * actions would just result in more rebalancing later, and ping-pong
2473 * tasks around. Thus we look for the minimum possible imbalance.
2474 * Negative imbalances (*we* are more loaded than anyone else) will
2475 * be counted as no imbalance for these purposes -- we can't fix that
2476 * by pulling tasks to us. Be careful of negative numbers as they'll
2477 * appear as very large values with unsigned longs.
2478 */
2479 if (max_load <= busiest_load_per_task)
2480 goto out_balanced;
2481
2482 /*
2483 * In the presence of smp nice balancing, certain scenarios can have
2484 * max load less than avg load(as we skip the groups at or below
2485 * its cpu_power, while calculating max_load..)
2486 */
2487 if (max_load < avg_load) {
2488 *imbalance = 0;
2489 goto small_imbalance;
2490 }
2491
2492 /* Don't want to pull so many tasks that a group would go idle */
2493 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2494
2495 /* How much load to actually move to equalise the imbalance */
2496 *imbalance = min(max_pull * busiest->__cpu_power,
2497 (avg_load - this_load) * this->__cpu_power)
2498 / SCHED_LOAD_SCALE;
2499
2500 /*
2501 * if *imbalance is less than the average load per runnable task
2502 * there is no gaurantee that any tasks will be moved so we'll have
2503 * a think about bumping its value to force at least one task to be
2504 * moved
2505 */
2506 if (*imbalance < busiest_load_per_task) {
2507 unsigned long tmp, pwr_now, pwr_move;
2508 unsigned int imbn;
2509
2510 small_imbalance:
2511 pwr_move = pwr_now = 0;
2512 imbn = 2;
2513 if (this_nr_running) {
2514 this_load_per_task /= this_nr_running;
2515 if (busiest_load_per_task > this_load_per_task)
2516 imbn = 1;
2517 } else
2518 this_load_per_task = SCHED_LOAD_SCALE;
2519
2520 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2521 busiest_load_per_task * imbn) {
2522 *imbalance = busiest_load_per_task;
2523 return busiest;
2524 }
2525
2526 /*
2527 * OK, we don't have enough imbalance to justify moving tasks,
2528 * however we may be able to increase total CPU power used by
2529 * moving them.
2530 */
2531
2532 pwr_now += busiest->__cpu_power *
2533 min(busiest_load_per_task, max_load);
2534 pwr_now += this->__cpu_power *
2535 min(this_load_per_task, this_load);
2536 pwr_now /= SCHED_LOAD_SCALE;
2537
2538 /* Amount of load we'd subtract */
2539 tmp = sg_div_cpu_power(busiest,
2540 busiest_load_per_task * SCHED_LOAD_SCALE);
2541 if (max_load > tmp)
2542 pwr_move += busiest->__cpu_power *
2543 min(busiest_load_per_task, max_load - tmp);
2544
2545 /* Amount of load we'd add */
2546 if (max_load * busiest->__cpu_power <
2547 busiest_load_per_task * SCHED_LOAD_SCALE)
2548 tmp = sg_div_cpu_power(this,
2549 max_load * busiest->__cpu_power);
2550 else
2551 tmp = sg_div_cpu_power(this,
2552 busiest_load_per_task * SCHED_LOAD_SCALE);
2553 pwr_move += this->__cpu_power *
2554 min(this_load_per_task, this_load + tmp);
2555 pwr_move /= SCHED_LOAD_SCALE;
2556
2557 /* Move if we gain throughput */
2558 if (pwr_move > pwr_now)
2559 *imbalance = busiest_load_per_task;
2560 }
2561
2562 return busiest;
2563
2564 out_balanced:
2565 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2566 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2567 goto ret;
2568
2569 if (this == group_leader && group_leader != group_min) {
2570 *imbalance = min_load_per_task;
2571 return group_min;
2572 }
2573 #endif
2574 ret:
2575 *imbalance = 0;
2576 return NULL;
2577 }
2578
2579 /*
2580 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2581 */
2582 static struct rq *
2583 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2584 unsigned long imbalance, cpumask_t *cpus)
2585 {
2586 struct rq *busiest = NULL, *rq;
2587 unsigned long max_load = 0;
2588 int i;
2589
2590 for_each_cpu_mask(i, group->cpumask) {
2591 unsigned long wl;
2592
2593 if (!cpu_isset(i, *cpus))
2594 continue;
2595
2596 rq = cpu_rq(i);
2597 wl = weighted_cpuload(i);
2598
2599 if (rq->nr_running == 1 && wl > imbalance)
2600 continue;
2601
2602 if (wl > max_load) {
2603 max_load = wl;
2604 busiest = rq;
2605 }
2606 }
2607
2608 return busiest;
2609 }
2610
2611 /*
2612 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2613 * so long as it is large enough.
2614 */
2615 #define MAX_PINNED_INTERVAL 512
2616
2617 /*
2618 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2619 * tasks if there is an imbalance.
2620 */
2621 static int load_balance(int this_cpu, struct rq *this_rq,
2622 struct sched_domain *sd, enum cpu_idle_type idle,
2623 int *balance)
2624 {
2625 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2626 struct sched_group *group;
2627 unsigned long imbalance;
2628 struct rq *busiest;
2629 cpumask_t cpus = CPU_MASK_ALL;
2630 unsigned long flags;
2631
2632 /*
2633 * When power savings policy is enabled for the parent domain, idle
2634 * sibling can pick up load irrespective of busy siblings. In this case,
2635 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2636 * portraying it as CPU_NOT_IDLE.
2637 */
2638 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2639 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2640 sd_idle = 1;
2641
2642 schedstat_inc(sd, lb_cnt[idle]);
2643
2644 redo:
2645 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2646 &cpus, balance);
2647
2648 if (*balance == 0)
2649 goto out_balanced;
2650
2651 if (!group) {
2652 schedstat_inc(sd, lb_nobusyg[idle]);
2653 goto out_balanced;
2654 }
2655
2656 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
2657 if (!busiest) {
2658 schedstat_inc(sd, lb_nobusyq[idle]);
2659 goto out_balanced;
2660 }
2661
2662 BUG_ON(busiest == this_rq);
2663
2664 schedstat_add(sd, lb_imbalance[idle], imbalance);
2665
2666 ld_moved = 0;
2667 if (busiest->nr_running > 1) {
2668 /*
2669 * Attempt to move tasks. If find_busiest_group has found
2670 * an imbalance but busiest->nr_running <= 1, the group is
2671 * still unbalanced. ld_moved simply stays zero, so it is
2672 * correctly treated as an imbalance.
2673 */
2674 local_irq_save(flags);
2675 double_rq_lock(this_rq, busiest);
2676 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2677 imbalance, sd, idle, &all_pinned);
2678 double_rq_unlock(this_rq, busiest);
2679 local_irq_restore(flags);
2680
2681 /*
2682 * some other cpu did the load balance for us.
2683 */
2684 if (ld_moved && this_cpu != smp_processor_id())
2685 resched_cpu(this_cpu);
2686
2687 /* All tasks on this runqueue were pinned by CPU affinity */
2688 if (unlikely(all_pinned)) {
2689 cpu_clear(cpu_of(busiest), cpus);
2690 if (!cpus_empty(cpus))
2691 goto redo;
2692 goto out_balanced;
2693 }
2694 }
2695
2696 if (!ld_moved) {
2697 schedstat_inc(sd, lb_failed[idle]);
2698 sd->nr_balance_failed++;
2699
2700 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2701
2702 spin_lock_irqsave(&busiest->lock, flags);
2703
2704 /* don't kick the migration_thread, if the curr
2705 * task on busiest cpu can't be moved to this_cpu
2706 */
2707 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2708 spin_unlock_irqrestore(&busiest->lock, flags);
2709 all_pinned = 1;
2710 goto out_one_pinned;
2711 }
2712
2713 if (!busiest->active_balance) {
2714 busiest->active_balance = 1;
2715 busiest->push_cpu = this_cpu;
2716 active_balance = 1;
2717 }
2718 spin_unlock_irqrestore(&busiest->lock, flags);
2719 if (active_balance)
2720 wake_up_process(busiest->migration_thread);
2721
2722 /*
2723 * We've kicked active balancing, reset the failure
2724 * counter.
2725 */
2726 sd->nr_balance_failed = sd->cache_nice_tries+1;
2727 }
2728 } else
2729 sd->nr_balance_failed = 0;
2730
2731 if (likely(!active_balance)) {
2732 /* We were unbalanced, so reset the balancing interval */
2733 sd->balance_interval = sd->min_interval;
2734 } else {
2735 /*
2736 * If we've begun active balancing, start to back off. This
2737 * case may not be covered by the all_pinned logic if there
2738 * is only 1 task on the busy runqueue (because we don't call
2739 * move_tasks).
2740 */
2741 if (sd->balance_interval < sd->max_interval)
2742 sd->balance_interval *= 2;
2743 }
2744
2745 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2746 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2747 return -1;
2748 return ld_moved;
2749
2750 out_balanced:
2751 schedstat_inc(sd, lb_balanced[idle]);
2752
2753 sd->nr_balance_failed = 0;
2754
2755 out_one_pinned:
2756 /* tune up the balancing interval */
2757 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2758 (sd->balance_interval < sd->max_interval))
2759 sd->balance_interval *= 2;
2760
2761 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2762 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2763 return -1;
2764 return 0;
2765 }
2766
2767 /*
2768 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2769 * tasks if there is an imbalance.
2770 *
2771 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
2772 * this_rq is locked.
2773 */
2774 static int
2775 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
2776 {
2777 struct sched_group *group;
2778 struct rq *busiest = NULL;
2779 unsigned long imbalance;
2780 int ld_moved = 0;
2781 int sd_idle = 0;
2782 int all_pinned = 0;
2783 cpumask_t cpus = CPU_MASK_ALL;
2784
2785 /*
2786 * When power savings policy is enabled for the parent domain, idle
2787 * sibling can pick up load irrespective of busy siblings. In this case,
2788 * let the state of idle sibling percolate up as IDLE, instead of
2789 * portraying it as CPU_NOT_IDLE.
2790 */
2791 if (sd->flags & SD_SHARE_CPUPOWER &&
2792 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2793 sd_idle = 1;
2794
2795 schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
2796 redo:
2797 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2798 &sd_idle, &cpus, NULL);
2799 if (!group) {
2800 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2801 goto out_balanced;
2802 }
2803
2804 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2805 &cpus);
2806 if (!busiest) {
2807 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2808 goto out_balanced;
2809 }
2810
2811 BUG_ON(busiest == this_rq);
2812
2813 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2814
2815 ld_moved = 0;
2816 if (busiest->nr_running > 1) {
2817 /* Attempt to move tasks */
2818 double_lock_balance(this_rq, busiest);
2819 /* this_rq->clock is already updated */
2820 update_rq_clock(busiest);
2821 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2822 imbalance, sd, CPU_NEWLY_IDLE,
2823 &all_pinned);
2824 spin_unlock(&busiest->lock);
2825
2826 if (unlikely(all_pinned)) {
2827 cpu_clear(cpu_of(busiest), cpus);
2828 if (!cpus_empty(cpus))
2829 goto redo;
2830 }
2831 }
2832
2833 if (!ld_moved) {
2834 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2835 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2836 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2837 return -1;
2838 } else
2839 sd->nr_balance_failed = 0;
2840
2841 return ld_moved;
2842
2843 out_balanced:
2844 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2845 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2846 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2847 return -1;
2848 sd->nr_balance_failed = 0;
2849
2850 return 0;
2851 }
2852
2853 /*
2854 * idle_balance is called by schedule() if this_cpu is about to become
2855 * idle. Attempts to pull tasks from other CPUs.
2856 */
2857 static void idle_balance(int this_cpu, struct rq *this_rq)
2858 {
2859 struct sched_domain *sd;
2860 int pulled_task = -1;
2861 unsigned long next_balance = jiffies + HZ;
2862
2863 for_each_domain(this_cpu, sd) {
2864 unsigned long interval;
2865
2866 if (!(sd->flags & SD_LOAD_BALANCE))
2867 continue;
2868
2869 if (sd->flags & SD_BALANCE_NEWIDLE)
2870 /* If we've pulled tasks over stop searching: */
2871 pulled_task = load_balance_newidle(this_cpu,
2872 this_rq, sd);
2873
2874 interval = msecs_to_jiffies(sd->balance_interval);
2875 if (time_after(next_balance, sd->last_balance + interval))
2876 next_balance = sd->last_balance + interval;
2877 if (pulled_task)
2878 break;
2879 }
2880 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
2881 /*
2882 * We are going idle. next_balance may be set based on
2883 * a busy processor. So reset next_balance.
2884 */
2885 this_rq->next_balance = next_balance;
2886 }
2887 }
2888
2889 /*
2890 * active_load_balance is run by migration threads. It pushes running tasks
2891 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2892 * running on each physical CPU where possible, and avoids physical /
2893 * logical imbalances.
2894 *
2895 * Called with busiest_rq locked.
2896 */
2897 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
2898 {
2899 int target_cpu = busiest_rq->push_cpu;
2900 struct sched_domain *sd;
2901 struct rq *target_rq;
2902
2903 /* Is there any task to move? */
2904 if (busiest_rq->nr_running <= 1)
2905 return;
2906
2907 target_rq = cpu_rq(target_cpu);
2908
2909 /*
2910 * This condition is "impossible", if it occurs
2911 * we need to fix it. Originally reported by
2912 * Bjorn Helgaas on a 128-cpu setup.
2913 */
2914 BUG_ON(busiest_rq == target_rq);
2915
2916 /* move a task from busiest_rq to target_rq */
2917 double_lock_balance(busiest_rq, target_rq);
2918 update_rq_clock(busiest_rq);
2919 update_rq_clock(target_rq);
2920
2921 /* Search for an sd spanning us and the target CPU. */
2922 for_each_domain(target_cpu, sd) {
2923 if ((sd->flags & SD_LOAD_BALANCE) &&
2924 cpu_isset(busiest_cpu, sd->span))
2925 break;
2926 }
2927
2928 if (likely(sd)) {
2929 schedstat_inc(sd, alb_cnt);
2930
2931 if (move_one_task(target_rq, target_cpu, busiest_rq,
2932 sd, CPU_IDLE))
2933 schedstat_inc(sd, alb_pushed);
2934 else
2935 schedstat_inc(sd, alb_failed);
2936 }
2937 spin_unlock(&target_rq->lock);
2938 }
2939
2940 #ifdef CONFIG_NO_HZ
2941 static struct {
2942 atomic_t load_balancer;
2943 cpumask_t cpu_mask;
2944 } nohz ____cacheline_aligned = {
2945 .load_balancer = ATOMIC_INIT(-1),
2946 .cpu_mask = CPU_MASK_NONE,
2947 };
2948
2949 /*
2950 * This routine will try to nominate the ilb (idle load balancing)
2951 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
2952 * load balancing on behalf of all those cpus. If all the cpus in the system
2953 * go into this tickless mode, then there will be no ilb owner (as there is
2954 * no need for one) and all the cpus will sleep till the next wakeup event
2955 * arrives...
2956 *
2957 * For the ilb owner, tick is not stopped. And this tick will be used
2958 * for idle load balancing. ilb owner will still be part of
2959 * nohz.cpu_mask..
2960 *
2961 * While stopping the tick, this cpu will become the ilb owner if there
2962 * is no other owner. And will be the owner till that cpu becomes busy
2963 * or if all cpus in the system stop their ticks at which point
2964 * there is no need for ilb owner.
2965 *
2966 * When the ilb owner becomes busy, it nominates another owner, during the
2967 * next busy scheduler_tick()
2968 */
2969 int select_nohz_load_balancer(int stop_tick)
2970 {
2971 int cpu = smp_processor_id();
2972
2973 if (stop_tick) {
2974 cpu_set(cpu, nohz.cpu_mask);
2975 cpu_rq(cpu)->in_nohz_recently = 1;
2976
2977 /*
2978 * If we are going offline and still the leader, give up!
2979 */
2980 if (cpu_is_offline(cpu) &&
2981 atomic_read(&nohz.load_balancer) == cpu) {
2982 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2983 BUG();
2984 return 0;
2985 }
2986
2987 /* time for ilb owner also to sleep */
2988 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
2989 if (atomic_read(&nohz.load_balancer) == cpu)
2990 atomic_set(&nohz.load_balancer, -1);
2991 return 0;
2992 }
2993
2994 if (atomic_read(&nohz.load_balancer) == -1) {
2995 /* make me the ilb owner */
2996 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
2997 return 1;
2998 } else if (atomic_read(&nohz.load_balancer) == cpu)
2999 return 1;
3000 } else {
3001 if (!cpu_isset(cpu, nohz.cpu_mask))
3002 return 0;
3003
3004 cpu_clear(cpu, nohz.cpu_mask);
3005
3006 if (atomic_read(&nohz.load_balancer) == cpu)
3007 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3008 BUG();
3009 }
3010 return 0;
3011 }
3012 #endif
3013
3014 static DEFINE_SPINLOCK(balancing);
3015
3016 /*
3017 * It checks each scheduling domain to see if it is due to be balanced,
3018 * and initiates a balancing operation if so.
3019 *
3020 * Balancing parameters are set up in arch_init_sched_domains.
3021 */
3022 static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
3023 {
3024 int balance = 1;
3025 struct rq *rq = cpu_rq(cpu);
3026 unsigned long interval;
3027 struct sched_domain *sd;
3028 /* Earliest time when we have to do rebalance again */
3029 unsigned long next_balance = jiffies + 60*HZ;
3030 int update_next_balance = 0;
3031
3032 for_each_domain(cpu, sd) {
3033 if (!(sd->flags & SD_LOAD_BALANCE))
3034 continue;
3035
3036 interval = sd->balance_interval;
3037 if (idle != CPU_IDLE)
3038 interval *= sd->busy_factor;
3039
3040 /* scale ms to jiffies */
3041 interval = msecs_to_jiffies(interval);
3042 if (unlikely(!interval))
3043 interval = 1;
3044 if (interval > HZ*NR_CPUS/10)
3045 interval = HZ*NR_CPUS/10;
3046
3047
3048 if (sd->flags & SD_SERIALIZE) {
3049 if (!spin_trylock(&balancing))
3050 goto out;
3051 }
3052
3053 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3054 if (load_balance(cpu, rq, sd, idle, &balance)) {
3055 /*
3056 * We've pulled tasks over so either we're no
3057 * longer idle, or one of our SMT siblings is
3058 * not idle.
3059 */
3060 idle = CPU_NOT_IDLE;
3061 }
3062 sd->last_balance = jiffies;
3063 }
3064 if (sd->flags & SD_SERIALIZE)
3065 spin_unlock(&balancing);
3066 out:
3067 if (time_after(next_balance, sd->last_balance + interval)) {
3068 next_balance = sd->last_balance + interval;
3069 update_next_balance = 1;
3070 }
3071
3072 /*
3073 * Stop the load balance at this level. There is another
3074 * CPU in our sched group which is doing load balancing more
3075 * actively.
3076 */
3077 if (!balance)
3078 break;
3079 }
3080
3081 /*
3082 * next_balance will be updated only when there is a need.
3083 * When the cpu is attached to null domain for ex, it will not be
3084 * updated.
3085 */
3086 if (likely(update_next_balance))
3087 rq->next_balance = next_balance;
3088 }
3089
3090 /*
3091 * run_rebalance_domains is triggered when needed from the scheduler tick.
3092 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3093 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3094 */
3095 static void run_rebalance_domains(struct softirq_action *h)
3096 {
3097 int this_cpu = smp_processor_id();
3098 struct rq *this_rq = cpu_rq(this_cpu);
3099 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3100 CPU_IDLE : CPU_NOT_IDLE;
3101
3102 rebalance_domains(this_cpu, idle);
3103
3104 #ifdef CONFIG_NO_HZ
3105 /*
3106 * If this cpu is the owner for idle load balancing, then do the
3107 * balancing on behalf of the other idle cpus whose ticks are
3108 * stopped.
3109 */
3110 if (this_rq->idle_at_tick &&
3111 atomic_read(&nohz.load_balancer) == this_cpu) {
3112 cpumask_t cpus = nohz.cpu_mask;
3113 struct rq *rq;
3114 int balance_cpu;
3115
3116 cpu_clear(this_cpu, cpus);
3117 for_each_cpu_mask(balance_cpu, cpus) {
3118 /*
3119 * If this cpu gets work to do, stop the load balancing
3120 * work being done for other cpus. Next load
3121 * balancing owner will pick it up.
3122 */
3123 if (need_resched())
3124 break;
3125
3126 rebalance_domains(balance_cpu, CPU_IDLE);
3127
3128 rq = cpu_rq(balance_cpu);
3129 if (time_after(this_rq->next_balance, rq->next_balance))
3130 this_rq->next_balance = rq->next_balance;
3131 }
3132 }
3133 #endif
3134 }
3135
3136 /*
3137 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3138 *
3139 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3140 * idle load balancing owner or decide to stop the periodic load balancing,
3141 * if the whole system is idle.
3142 */
3143 static inline void trigger_load_balance(struct rq *rq, int cpu)
3144 {
3145 #ifdef CONFIG_NO_HZ
3146 /*
3147 * If we were in the nohz mode recently and busy at the current
3148 * scheduler tick, then check if we need to nominate new idle
3149 * load balancer.
3150 */
3151 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3152 rq->in_nohz_recently = 0;
3153
3154 if (atomic_read(&nohz.load_balancer) == cpu) {
3155 cpu_clear(cpu, nohz.cpu_mask);
3156 atomic_set(&nohz.load_balancer, -1);
3157 }
3158
3159 if (atomic_read(&nohz.load_balancer) == -1) {
3160 /*
3161 * simple selection for now: Nominate the
3162 * first cpu in the nohz list to be the next
3163 * ilb owner.
3164 *
3165 * TBD: Traverse the sched domains and nominate
3166 * the nearest cpu in the nohz.cpu_mask.
3167 */
3168 int ilb = first_cpu(nohz.cpu_mask);
3169
3170 if (ilb != NR_CPUS)
3171 resched_cpu(ilb);
3172 }
3173 }
3174
3175 /*
3176 * If this cpu is idle and doing idle load balancing for all the
3177 * cpus with ticks stopped, is it time for that to stop?
3178 */
3179 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3180 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3181 resched_cpu(cpu);
3182 return;
3183 }
3184
3185 /*
3186 * If this cpu is idle and the idle load balancing is done by
3187 * someone else, then no need raise the SCHED_SOFTIRQ
3188 */
3189 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3190 cpu_isset(cpu, nohz.cpu_mask))
3191 return;
3192 #endif
3193 if (time_after_eq(jiffies, rq->next_balance))
3194 raise_softirq(SCHED_SOFTIRQ);
3195 }
3196
3197 #else /* CONFIG_SMP */
3198
3199 /*
3200 * on UP we do not need to balance between CPUs:
3201 */
3202 static inline void idle_balance(int cpu, struct rq *rq)
3203 {
3204 }
3205
3206 /* Avoid "used but not defined" warning on UP */
3207 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3208 unsigned long max_nr_move, unsigned long max_load_move,
3209 struct sched_domain *sd, enum cpu_idle_type idle,
3210 int *all_pinned, unsigned long *load_moved,
3211 int *this_best_prio, struct rq_iterator *iterator)
3212 {
3213 *load_moved = 0;
3214
3215 return 0;
3216 }
3217
3218 #endif
3219
3220 DEFINE_PER_CPU(struct kernel_stat, kstat);
3221
3222 EXPORT_PER_CPU_SYMBOL(kstat);
3223
3224 /*
3225 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3226 * that have not yet been banked in case the task is currently running.
3227 */
3228 unsigned long long task_sched_runtime(struct task_struct *p)
3229 {
3230 unsigned long flags;
3231 u64 ns, delta_exec;
3232 struct rq *rq;
3233
3234 rq = task_rq_lock(p, &flags);
3235 ns = p->se.sum_exec_runtime;
3236 if (rq->curr == p) {
3237 update_rq_clock(rq);
3238 delta_exec = rq->clock - p->se.exec_start;
3239 if ((s64)delta_exec > 0)
3240 ns += delta_exec;
3241 }
3242 task_rq_unlock(rq, &flags);
3243
3244 return ns;
3245 }
3246
3247 /*
3248 * Account user cpu time to a process.
3249 * @p: the process that the cpu time gets accounted to
3250 * @hardirq_offset: the offset to subtract from hardirq_count()
3251 * @cputime: the cpu time spent in user space since the last update
3252 */
3253 void account_user_time(struct task_struct *p, cputime_t cputime)
3254 {
3255 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3256 cputime64_t tmp;
3257
3258 p->utime = cputime_add(p->utime, cputime);
3259
3260 /* Add user time to cpustat. */
3261 tmp = cputime_to_cputime64(cputime);
3262 if (TASK_NICE(p) > 0)
3263 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3264 else
3265 cpustat->user = cputime64_add(cpustat->user, tmp);
3266 }
3267
3268 /*
3269 * Account system cpu time to a process.
3270 * @p: the process that the cpu time gets accounted to
3271 * @hardirq_offset: the offset to subtract from hardirq_count()
3272 * @cputime: the cpu time spent in kernel space since the last update
3273 */
3274 void account_system_time(struct task_struct *p, int hardirq_offset,
3275 cputime_t cputime)
3276 {
3277 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3278 struct rq *rq = this_rq();
3279 cputime64_t tmp;
3280
3281 p->stime = cputime_add(p->stime, cputime);
3282
3283 /* Add system time to cpustat. */
3284 tmp = cputime_to_cputime64(cputime);
3285 if (hardirq_count() - hardirq_offset)
3286 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3287 else if (softirq_count())
3288 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3289 else if (p != rq->idle)
3290 cpustat->system = cputime64_add(cpustat->system, tmp);
3291 else if (atomic_read(&rq->nr_iowait) > 0)
3292 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3293 else
3294 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3295 /* Account for system time used */
3296 acct_update_integrals(p);
3297 }
3298
3299 /*
3300 * Account for involuntary wait time.
3301 * @p: the process from which the cpu time has been stolen
3302 * @steal: the cpu time spent in involuntary wait
3303 */
3304 void account_steal_time(struct task_struct *p, cputime_t steal)
3305 {
3306 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3307 cputime64_t tmp = cputime_to_cputime64(steal);
3308 struct rq *rq = this_rq();
3309
3310 if (p == rq->idle) {
3311 p->stime = cputime_add(p->stime, steal);
3312 if (atomic_read(&rq->nr_iowait) > 0)
3313 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3314 else
3315 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3316 } else
3317 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3318 }
3319
3320 /*
3321 * This function gets called by the timer code, with HZ frequency.
3322 * We call it with interrupts disabled.
3323 *
3324 * It also gets called by the fork code, when changing the parent's
3325 * timeslices.
3326 */
3327 void scheduler_tick(void)
3328 {
3329 int cpu = smp_processor_id();
3330 struct rq *rq = cpu_rq(cpu);
3331 struct task_struct *curr = rq->curr;
3332 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
3333
3334 spin_lock(&rq->lock);
3335 __update_rq_clock(rq);
3336 /*
3337 * Let rq->clock advance by at least TICK_NSEC:
3338 */
3339 if (unlikely(rq->clock < next_tick))
3340 rq->clock = next_tick;
3341 rq->tick_timestamp = rq->clock;
3342 update_cpu_load(rq);
3343 if (curr != rq->idle) /* FIXME: needed? */
3344 curr->sched_class->task_tick(rq, curr);
3345 spin_unlock(&rq->lock);
3346
3347 #ifdef CONFIG_SMP
3348 rq->idle_at_tick = idle_cpu(cpu);
3349 trigger_load_balance(rq, cpu);
3350 #endif
3351 }
3352
3353 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3354
3355 void fastcall add_preempt_count(int val)
3356 {
3357 /*
3358 * Underflow?
3359 */
3360 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3361 return;
3362 preempt_count() += val;
3363 /*
3364 * Spinlock count overflowing soon?
3365 */
3366 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3367 PREEMPT_MASK - 10);
3368 }
3369 EXPORT_SYMBOL(add_preempt_count);
3370
3371 void fastcall sub_preempt_count(int val)
3372 {
3373 /*
3374 * Underflow?
3375 */
3376 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3377 return;
3378 /*
3379 * Is the spinlock portion underflowing?
3380 */
3381 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3382 !(preempt_count() & PREEMPT_MASK)))
3383 return;
3384
3385 preempt_count() -= val;
3386 }
3387 EXPORT_SYMBOL(sub_preempt_count);
3388
3389 #endif
3390
3391 /*
3392 * Print scheduling while atomic bug:
3393 */
3394 static noinline void __schedule_bug(struct task_struct *prev)
3395 {
3396 printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
3397 prev->comm, preempt_count(), prev->pid);
3398 debug_show_held_locks(prev);
3399 if (irqs_disabled())
3400 print_irqtrace_events(prev);
3401 dump_stack();
3402 }
3403
3404 /*
3405 * Various schedule()-time debugging checks and statistics:
3406 */
3407 static inline void schedule_debug(struct task_struct *prev)
3408 {
3409 /*
3410 * Test if we are atomic. Since do_exit() needs to call into
3411 * schedule() atomically, we ignore that path for now.
3412 * Otherwise, whine if we are scheduling when we should not be.
3413 */
3414 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3415 __schedule_bug(prev);
3416
3417 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3418
3419 schedstat_inc(this_rq(), sched_cnt);
3420 #ifdef CONFIG_SCHEDSTATS
3421 if (unlikely(prev->lock_depth >= 0)) {
3422 schedstat_inc(this_rq(), bkl_cnt);
3423 schedstat_inc(prev, sched_info.bkl_cnt);
3424 }
3425 #endif
3426 }
3427
3428 /*
3429 * Pick up the highest-prio task:
3430 */
3431 static inline struct task_struct *
3432 pick_next_task(struct rq *rq, struct task_struct *prev)
3433 {
3434 struct sched_class *class;
3435 struct task_struct *p;
3436
3437 /*
3438 * Optimization: we know that if all tasks are in
3439 * the fair class we can call that function directly:
3440 */
3441 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3442 p = fair_sched_class.pick_next_task(rq);
3443 if (likely(p))
3444 return p;
3445 }
3446
3447 class = sched_class_highest;
3448 for ( ; ; ) {
3449 p = class->pick_next_task(rq);
3450 if (p)
3451 return p;
3452 /*
3453 * Will never be NULL as the idle class always
3454 * returns a non-NULL p:
3455 */
3456 class = class->next;
3457 }
3458 }
3459
3460 /*
3461 * schedule() is the main scheduler function.
3462 */
3463 asmlinkage void __sched schedule(void)
3464 {
3465 struct task_struct *prev, *next;
3466 long *switch_count;
3467 struct rq *rq;
3468 int cpu;
3469
3470 need_resched:
3471 preempt_disable();
3472 cpu = smp_processor_id();
3473 rq = cpu_rq(cpu);
3474 rcu_qsctr_inc(cpu);
3475 prev = rq->curr;
3476 switch_count = &prev->nivcsw;
3477
3478 release_kernel_lock(prev);
3479 need_resched_nonpreemptible:
3480
3481 schedule_debug(prev);
3482
3483 spin_lock_irq(&rq->lock);
3484 clear_tsk_need_resched(prev);
3485 __update_rq_clock(rq);
3486
3487 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3488 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3489 unlikely(signal_pending(prev)))) {
3490 prev->state = TASK_RUNNING;
3491 } else {
3492 deactivate_task(rq, prev, 1);
3493 }
3494 switch_count = &prev->nvcsw;
3495 }
3496
3497 if (unlikely(!rq->nr_running))
3498 idle_balance(cpu, rq);
3499
3500 prev->sched_class->put_prev_task(rq, prev);
3501 next = pick_next_task(rq, prev);
3502
3503 sched_info_switch(prev, next);
3504
3505 if (likely(prev != next)) {
3506 rq->nr_switches++;
3507 rq->curr = next;
3508 ++*switch_count;
3509
3510 context_switch(rq, prev, next); /* unlocks the rq */
3511 } else
3512 spin_unlock_irq(&rq->lock);
3513
3514 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3515 cpu = smp_processor_id();
3516 rq = cpu_rq(cpu);
3517 goto need_resched_nonpreemptible;
3518 }
3519 preempt_enable_no_resched();
3520 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3521 goto need_resched;
3522 }
3523 EXPORT_SYMBOL(schedule);
3524
3525 #ifdef CONFIG_PREEMPT
3526 /*
3527 * this is the entry point to schedule() from in-kernel preemption
3528 * off of preempt_enable. Kernel preemptions off return from interrupt
3529 * occur there and call schedule directly.
3530 */
3531 asmlinkage void __sched preempt_schedule(void)
3532 {
3533 struct thread_info *ti = current_thread_info();
3534 #ifdef CONFIG_PREEMPT_BKL
3535 struct task_struct *task = current;
3536 int saved_lock_depth;
3537 #endif
3538 /*
3539 * If there is a non-zero preempt_count or interrupts are disabled,
3540 * we do not want to preempt the current task. Just return..
3541 */
3542 if (likely(ti->preempt_count || irqs_disabled()))
3543 return;
3544
3545 need_resched:
3546 add_preempt_count(PREEMPT_ACTIVE);
3547 /*
3548 * We keep the big kernel semaphore locked, but we
3549 * clear ->lock_depth so that schedule() doesnt
3550 * auto-release the semaphore:
3551 */
3552 #ifdef CONFIG_PREEMPT_BKL
3553 saved_lock_depth = task->lock_depth;
3554 task->lock_depth = -1;
3555 #endif
3556 schedule();
3557 #ifdef CONFIG_PREEMPT_BKL
3558 task->lock_depth = saved_lock_depth;
3559 #endif
3560 sub_preempt_count(PREEMPT_ACTIVE);
3561
3562 /* we could miss a preemption opportunity between schedule and now */
3563 barrier();
3564 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3565 goto need_resched;
3566 }
3567 EXPORT_SYMBOL(preempt_schedule);
3568
3569 /*
3570 * this is the entry point to schedule() from kernel preemption
3571 * off of irq context.
3572 * Note, that this is called and return with irqs disabled. This will
3573 * protect us against recursive calling from irq.
3574 */
3575 asmlinkage void __sched preempt_schedule_irq(void)
3576 {
3577 struct thread_info *ti = current_thread_info();
3578 #ifdef CONFIG_PREEMPT_BKL
3579 struct task_struct *task = current;
3580 int saved_lock_depth;
3581 #endif
3582 /* Catch callers which need to be fixed */
3583 BUG_ON(ti->preempt_count || !irqs_disabled());
3584
3585 need_resched:
3586 add_preempt_count(PREEMPT_ACTIVE);
3587 /*
3588 * We keep the big kernel semaphore locked, but we
3589 * clear ->lock_depth so that schedule() doesnt
3590 * auto-release the semaphore:
3591 */
3592 #ifdef CONFIG_PREEMPT_BKL
3593 saved_lock_depth = task->lock_depth;
3594 task->lock_depth = -1;
3595 #endif
3596 local_irq_enable();
3597 schedule();
3598 local_irq_disable();
3599 #ifdef CONFIG_PREEMPT_BKL
3600 task->lock_depth = saved_lock_depth;
3601 #endif
3602 sub_preempt_count(PREEMPT_ACTIVE);
3603
3604 /* we could miss a preemption opportunity between schedule and now */
3605 barrier();
3606 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3607 goto need_resched;
3608 }
3609
3610 #endif /* CONFIG_PREEMPT */
3611
3612 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3613 void *key)
3614 {
3615 return try_to_wake_up(curr->private, mode, sync);
3616 }
3617 EXPORT_SYMBOL(default_wake_function);
3618
3619 /*
3620 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3621 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3622 * number) then we wake all the non-exclusive tasks and one exclusive task.
3623 *
3624 * There are circumstances in which we can try to wake a task which has already
3625 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3626 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3627 */
3628 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3629 int nr_exclusive, int sync, void *key)
3630 {
3631 wait_queue_t *curr, *next;
3632
3633 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3634 unsigned flags = curr->flags;
3635
3636 if (curr->func(curr, mode, sync, key) &&
3637 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3638 break;
3639 }
3640 }
3641
3642 /**
3643 * __wake_up - wake up threads blocked on a waitqueue.
3644 * @q: the waitqueue
3645 * @mode: which threads
3646 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3647 * @key: is directly passed to the wakeup function
3648 */
3649 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3650 int nr_exclusive, void *key)
3651 {
3652 unsigned long flags;
3653
3654 spin_lock_irqsave(&q->lock, flags);
3655 __wake_up_common(q, mode, nr_exclusive, 0, key);
3656 spin_unlock_irqrestore(&q->lock, flags);
3657 }
3658 EXPORT_SYMBOL(__wake_up);
3659
3660 /*
3661 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3662 */
3663 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3664 {
3665 __wake_up_common(q, mode, 1, 0, NULL);
3666 }
3667
3668 /**
3669 * __wake_up_sync - wake up threads blocked on a waitqueue.
3670 * @q: the waitqueue
3671 * @mode: which threads
3672 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3673 *
3674 * The sync wakeup differs that the waker knows that it will schedule
3675 * away soon, so while the target thread will be woken up, it will not
3676 * be migrated to another CPU - ie. the two threads are 'synchronized'
3677 * with each other. This can prevent needless bouncing between CPUs.
3678 *
3679 * On UP it can prevent extra preemption.
3680 */
3681 void fastcall
3682 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3683 {
3684 unsigned long flags;
3685 int sync = 1;
3686
3687 if (unlikely(!q))
3688 return;
3689
3690 if (unlikely(!nr_exclusive))
3691 sync = 0;
3692
3693 spin_lock_irqsave(&q->lock, flags);
3694 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3695 spin_unlock_irqrestore(&q->lock, flags);
3696 }
3697 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3698
3699 void fastcall complete(struct completion *x)
3700 {
3701 unsigned long flags;
3702
3703 spin_lock_irqsave(&x->wait.lock, flags);
3704 x->done++;
3705 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3706 1, 0, NULL);
3707 spin_unlock_irqrestore(&x->wait.lock, flags);
3708 }
3709 EXPORT_SYMBOL(complete);
3710
3711 void fastcall complete_all(struct completion *x)
3712 {
3713 unsigned long flags;
3714
3715 spin_lock_irqsave(&x->wait.lock, flags);
3716 x->done += UINT_MAX/2;
3717 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3718 0, 0, NULL);
3719 spin_unlock_irqrestore(&x->wait.lock, flags);
3720 }
3721 EXPORT_SYMBOL(complete_all);
3722
3723 void fastcall __sched wait_for_completion(struct completion *x)
3724 {
3725 might_sleep();
3726
3727 spin_lock_irq(&x->wait.lock);
3728 if (!x->done) {
3729 DECLARE_WAITQUEUE(wait, current);
3730
3731 wait.flags |= WQ_FLAG_EXCLUSIVE;
3732 __add_wait_queue_tail(&x->wait, &wait);
3733 do {
3734 __set_current_state(TASK_UNINTERRUPTIBLE);
3735 spin_unlock_irq(&x->wait.lock);
3736 schedule();
3737 spin_lock_irq(&x->wait.lock);
3738 } while (!x->done);
3739 __remove_wait_queue(&x->wait, &wait);
3740 }
3741 x->done--;
3742 spin_unlock_irq(&x->wait.lock);
3743 }
3744 EXPORT_SYMBOL(wait_for_completion);
3745
3746 unsigned long fastcall __sched
3747 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3748 {
3749 might_sleep();
3750
3751 spin_lock_irq(&x->wait.lock);
3752 if (!x->done) {
3753 DECLARE_WAITQUEUE(wait, current);
3754
3755 wait.flags |= WQ_FLAG_EXCLUSIVE;
3756 __add_wait_queue_tail(&x->wait, &wait);
3757 do {
3758 __set_current_state(TASK_UNINTERRUPTIBLE);
3759 spin_unlock_irq(&x->wait.lock);
3760 timeout = schedule_timeout(timeout);
3761 spin_lock_irq(&x->wait.lock);
3762 if (!timeout) {
3763 __remove_wait_queue(&x->wait, &wait);
3764 goto out;
3765 }
3766 } while (!x->done);
3767 __remove_wait_queue(&x->wait, &wait);
3768 }
3769 x->done--;
3770 out:
3771 spin_unlock_irq(&x->wait.lock);
3772 return timeout;
3773 }
3774 EXPORT_SYMBOL(wait_for_completion_timeout);
3775
3776 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3777 {
3778 int ret = 0;
3779
3780 might_sleep();
3781
3782 spin_lock_irq(&x->wait.lock);
3783 if (!x->done) {
3784 DECLARE_WAITQUEUE(wait, current);
3785
3786 wait.flags |= WQ_FLAG_EXCLUSIVE;
3787 __add_wait_queue_tail(&x->wait, &wait);
3788 do {
3789 if (signal_pending(current)) {
3790 ret = -ERESTARTSYS;
3791 __remove_wait_queue(&x->wait, &wait);
3792 goto out;
3793 }
3794 __set_current_state(TASK_INTERRUPTIBLE);
3795 spin_unlock_irq(&x->wait.lock);
3796 schedule();
3797 spin_lock_irq(&x->wait.lock);
3798 } while (!x->done);
3799 __remove_wait_queue(&x->wait, &wait);
3800 }
3801 x->done--;
3802 out:
3803 spin_unlock_irq(&x->wait.lock);
3804
3805 return ret;
3806 }
3807 EXPORT_SYMBOL(wait_for_completion_interruptible);
3808
3809 unsigned long fastcall __sched
3810 wait_for_completion_interruptible_timeout(struct completion *x,
3811 unsigned long timeout)
3812 {
3813 might_sleep();
3814
3815 spin_lock_irq(&x->wait.lock);
3816 if (!x->done) {
3817 DECLARE_WAITQUEUE(wait, current);
3818
3819 wait.flags |= WQ_FLAG_EXCLUSIVE;
3820 __add_wait_queue_tail(&x->wait, &wait);
3821 do {
3822 if (signal_pending(current)) {
3823 timeout = -ERESTARTSYS;
3824 __remove_wait_queue(&x->wait, &wait);
3825 goto out;
3826 }
3827 __set_current_state(TASK_INTERRUPTIBLE);
3828 spin_unlock_irq(&x->wait.lock);
3829 timeout = schedule_timeout(timeout);
3830 spin_lock_irq(&x->wait.lock);
3831 if (!timeout) {
3832 __remove_wait_queue(&x->wait, &wait);
3833 goto out;
3834 }
3835 } while (!x->done);
3836 __remove_wait_queue(&x->wait, &wait);
3837 }
3838 x->done--;
3839 out:
3840 spin_unlock_irq(&x->wait.lock);
3841 return timeout;
3842 }
3843 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3844
3845 static inline void
3846 sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3847 {
3848 spin_lock_irqsave(&q->lock, *flags);
3849 __add_wait_queue(q, wait);
3850 spin_unlock(&q->lock);
3851 }
3852
3853 static inline void
3854 sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3855 {
3856 spin_lock_irq(&q->lock);
3857 __remove_wait_queue(q, wait);
3858 spin_unlock_irqrestore(&q->lock, *flags);
3859 }
3860
3861 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3862 {
3863 unsigned long flags;
3864 wait_queue_t wait;
3865
3866 init_waitqueue_entry(&wait, current);
3867
3868 current->state = TASK_INTERRUPTIBLE;
3869
3870 sleep_on_head(q, &wait, &flags);
3871 schedule();
3872 sleep_on_tail(q, &wait, &flags);
3873 }
3874 EXPORT_SYMBOL(interruptible_sleep_on);
3875
3876 long __sched
3877 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3878 {
3879 unsigned long flags;
3880 wait_queue_t wait;
3881
3882 init_waitqueue_entry(&wait, current);
3883
3884 current->state = TASK_INTERRUPTIBLE;
3885
3886 sleep_on_head(q, &wait, &flags);
3887 timeout = schedule_timeout(timeout);
3888 sleep_on_tail(q, &wait, &flags);
3889
3890 return timeout;
3891 }
3892 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3893
3894 void __sched sleep_on(wait_queue_head_t *q)
3895 {
3896 unsigned long flags;
3897 wait_queue_t wait;
3898
3899 init_waitqueue_entry(&wait, current);
3900
3901 current->state = TASK_UNINTERRUPTIBLE;
3902
3903 sleep_on_head(q, &wait, &flags);
3904 schedule();
3905 sleep_on_tail(q, &wait, &flags);
3906 }
3907 EXPORT_SYMBOL(sleep_on);
3908
3909 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3910 {
3911 unsigned long flags;
3912 wait_queue_t wait;
3913
3914 init_waitqueue_entry(&wait, current);
3915
3916 current->state = TASK_UNINTERRUPTIBLE;
3917
3918 sleep_on_head(q, &wait, &flags);
3919 timeout = schedule_timeout(timeout);
3920 sleep_on_tail(q, &wait, &flags);
3921
3922 return timeout;
3923 }
3924 EXPORT_SYMBOL(sleep_on_timeout);
3925
3926 #ifdef CONFIG_RT_MUTEXES
3927
3928 /*
3929 * rt_mutex_setprio - set the current priority of a task
3930 * @p: task
3931 * @prio: prio value (kernel-internal form)
3932 *
3933 * This function changes the 'effective' priority of a task. It does
3934 * not touch ->normal_prio like __setscheduler().
3935 *
3936 * Used by the rt_mutex code to implement priority inheritance logic.
3937 */
3938 void rt_mutex_setprio(struct task_struct *p, int prio)
3939 {
3940 unsigned long flags;
3941 int oldprio, on_rq, running;
3942 struct rq *rq;
3943
3944 BUG_ON(prio < 0 || prio > MAX_PRIO);
3945
3946 rq = task_rq_lock(p, &flags);
3947 update_rq_clock(rq);
3948
3949 oldprio = p->prio;
3950 on_rq = p->se.on_rq;
3951 running = task_running(rq, p);
3952 if (on_rq) {
3953 dequeue_task(rq, p, 0);
3954 if (running)
3955 p->sched_class->put_prev_task(rq, p);
3956 }
3957
3958 if (rt_prio(prio))
3959 p->sched_class = &rt_sched_class;
3960 else
3961 p->sched_class = &fair_sched_class;
3962
3963 p->prio = prio;
3964
3965 if (on_rq) {
3966 if (running)
3967 p->sched_class->set_curr_task(rq);
3968 enqueue_task(rq, p, 0);
3969 /*
3970 * Reschedule if we are currently running on this runqueue and
3971 * our priority decreased, or if we are not currently running on
3972 * this runqueue and our priority is higher than the current's
3973 */
3974 if (running) {
3975 if (p->prio > oldprio)
3976 resched_task(rq->curr);
3977 } else {
3978 check_preempt_curr(rq, p);
3979 }
3980 }
3981 task_rq_unlock(rq, &flags);
3982 }
3983
3984 #endif
3985
3986 void set_user_nice(struct task_struct *p, long nice)
3987 {
3988 int old_prio, delta, on_rq;
3989 unsigned long flags;
3990 struct rq *rq;
3991
3992 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3993 return;
3994 /*
3995 * We have to be careful, if called from sys_setpriority(),
3996 * the task might be in the middle of scheduling on another CPU.
3997 */
3998 rq = task_rq_lock(p, &flags);
3999 update_rq_clock(rq);
4000 /*
4001 * The RT priorities are set via sched_setscheduler(), but we still
4002 * allow the 'normal' nice value to be set - but as expected
4003 * it wont have any effect on scheduling until the task is
4004 * SCHED_FIFO/SCHED_RR:
4005 */
4006 if (task_has_rt_policy(p)) {
4007 p->static_prio = NICE_TO_PRIO(nice);
4008 goto out_unlock;
4009 }
4010 on_rq = p->se.on_rq;
4011 if (on_rq) {
4012 dequeue_task(rq, p, 0);
4013 dec_load(rq, p);
4014 }
4015
4016 p->static_prio = NICE_TO_PRIO(nice);
4017 set_load_weight(p);
4018 old_prio = p->prio;
4019 p->prio = effective_prio(p);
4020 delta = p->prio - old_prio;
4021
4022 if (on_rq) {
4023 enqueue_task(rq, p, 0);
4024 inc_load(rq, p);
4025 /*
4026 * If the task increased its priority or is running and
4027 * lowered its priority, then reschedule its CPU:
4028 */
4029 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4030 resched_task(rq->curr);
4031 }
4032 out_unlock:
4033 task_rq_unlock(rq, &flags);
4034 }
4035 EXPORT_SYMBOL(set_user_nice);
4036
4037 /*
4038 * can_nice - check if a task can reduce its nice value
4039 * @p: task
4040 * @nice: nice value
4041 */
4042 int can_nice(const struct task_struct *p, const int nice)
4043 {
4044 /* convert nice value [19,-20] to rlimit style value [1,40] */
4045 int nice_rlim = 20 - nice;
4046
4047 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4048 capable(CAP_SYS_NICE));
4049 }
4050
4051 #ifdef __ARCH_WANT_SYS_NICE
4052
4053 /*
4054 * sys_nice - change the priority of the current process.
4055 * @increment: priority increment
4056 *
4057 * sys_setpriority is a more generic, but much slower function that
4058 * does similar things.
4059 */
4060 asmlinkage long sys_nice(int increment)
4061 {
4062 long nice, retval;
4063
4064 /*
4065 * Setpriority might change our priority at the same moment.
4066 * We don't have to worry. Conceptually one call occurs first
4067 * and we have a single winner.
4068 */
4069 if (increment < -40)
4070 increment = -40;
4071 if (increment > 40)
4072 increment = 40;
4073
4074 nice = PRIO_TO_NICE(current->static_prio) + increment;
4075 if (nice < -20)
4076 nice = -20;
4077 if (nice > 19)
4078 nice = 19;
4079
4080 if (increment < 0 && !can_nice(current, nice))
4081 return -EPERM;
4082
4083 retval = security_task_setnice(current, nice);
4084 if (retval)
4085 return retval;
4086
4087 set_user_nice(current, nice);
4088 return 0;
4089 }
4090
4091 #endif
4092
4093 /**
4094 * task_prio - return the priority value of a given task.
4095 * @p: the task in question.
4096 *
4097 * This is the priority value as seen by users in /proc.
4098 * RT tasks are offset by -200. Normal tasks are centered
4099 * around 0, value goes from -16 to +15.
4100 */
4101 int task_prio(const struct task_struct *p)
4102 {
4103 return p->prio - MAX_RT_PRIO;
4104 }
4105
4106 /**
4107 * task_nice - return the nice value of a given task.
4108 * @p: the task in question.
4109 */
4110 int task_nice(const struct task_struct *p)
4111 {
4112 return TASK_NICE(p);
4113 }
4114 EXPORT_SYMBOL_GPL(task_nice);
4115
4116 /**
4117 * idle_cpu - is a given cpu idle currently?
4118 * @cpu: the processor in question.
4119 */
4120 int idle_cpu(int cpu)
4121 {
4122 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4123 }
4124
4125 /**
4126 * idle_task - return the idle task for a given cpu.
4127 * @cpu: the processor in question.
4128 */
4129 struct task_struct *idle_task(int cpu)
4130 {
4131 return cpu_rq(cpu)->idle;
4132 }
4133
4134 /**
4135 * find_process_by_pid - find a process with a matching PID value.
4136 * @pid: the pid in question.
4137 */
4138 static inline struct task_struct *find_process_by_pid(pid_t pid)
4139 {
4140 return pid ? find_task_by_pid(pid) : current;
4141 }
4142
4143 /* Actually do priority change: must hold rq lock. */
4144 static void
4145 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4146 {
4147 BUG_ON(p->se.on_rq);
4148
4149 p->policy = policy;
4150 switch (p->policy) {
4151 case SCHED_NORMAL:
4152 case SCHED_BATCH:
4153 case SCHED_IDLE:
4154 p->sched_class = &fair_sched_class;
4155 break;
4156 case SCHED_FIFO:
4157 case SCHED_RR:
4158 p->sched_class = &rt_sched_class;
4159 break;
4160 }
4161
4162 p->rt_priority = prio;
4163 p->normal_prio = normal_prio(p);
4164 /* we are holding p->pi_lock already */
4165 p->prio = rt_mutex_getprio(p);
4166 set_load_weight(p);
4167 }
4168
4169 /**
4170 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4171 * @p: the task in question.
4172 * @policy: new policy.
4173 * @param: structure containing the new RT priority.
4174 *
4175 * NOTE that the task may be already dead.
4176 */
4177 int sched_setscheduler(struct task_struct *p, int policy,
4178 struct sched_param *param)
4179 {
4180 int retval, oldprio, oldpolicy = -1, on_rq, running;
4181 unsigned long flags;
4182 struct rq *rq;
4183
4184 /* may grab non-irq protected spin_locks */
4185 BUG_ON(in_interrupt());
4186 recheck:
4187 /* double check policy once rq lock held */
4188 if (policy < 0)
4189 policy = oldpolicy = p->policy;
4190 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4191 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4192 policy != SCHED_IDLE)
4193 return -EINVAL;
4194 /*
4195 * Valid priorities for SCHED_FIFO and SCHED_RR are
4196 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4197 * SCHED_BATCH and SCHED_IDLE is 0.
4198 */
4199 if (param->sched_priority < 0 ||
4200 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4201 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4202 return -EINVAL;
4203 if (rt_policy(policy) != (param->sched_priority != 0))
4204 return -EINVAL;
4205
4206 /*
4207 * Allow unprivileged RT tasks to decrease priority:
4208 */
4209 if (!capable(CAP_SYS_NICE)) {
4210 if (rt_policy(policy)) {
4211 unsigned long rlim_rtprio;
4212
4213 if (!lock_task_sighand(p, &flags))
4214 return -ESRCH;
4215 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4216 unlock_task_sighand(p, &flags);
4217
4218 /* can't set/change the rt policy */
4219 if (policy != p->policy && !rlim_rtprio)
4220 return -EPERM;
4221
4222 /* can't increase priority */
4223 if (param->sched_priority > p->rt_priority &&
4224 param->sched_priority > rlim_rtprio)
4225 return -EPERM;
4226 }
4227 /*
4228 * Like positive nice levels, dont allow tasks to
4229 * move out of SCHED_IDLE either:
4230 */
4231 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4232 return -EPERM;
4233
4234 /* can't change other user's priorities */
4235 if ((current->euid != p->euid) &&
4236 (current->euid != p->uid))
4237 return -EPERM;
4238 }
4239
4240 retval = security_task_setscheduler(p, policy, param);
4241 if (retval)
4242 return retval;
4243 /*
4244 * make sure no PI-waiters arrive (or leave) while we are
4245 * changing the priority of the task:
4246 */
4247 spin_lock_irqsave(&p->pi_lock, flags);
4248 /*
4249 * To be able to change p->policy safely, the apropriate
4250 * runqueue lock must be held.
4251 */
4252 rq = __task_rq_lock(p);
4253 /* recheck policy now with rq lock held */
4254 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4255 policy = oldpolicy = -1;
4256 __task_rq_unlock(rq);
4257 spin_unlock_irqrestore(&p->pi_lock, flags);
4258 goto recheck;
4259 }
4260 update_rq_clock(rq);
4261 on_rq = p->se.on_rq;
4262 running = task_running(rq, p);
4263 if (on_rq) {
4264 deactivate_task(rq, p, 0);
4265 if (running)
4266 p->sched_class->put_prev_task(rq, p);
4267 }
4268
4269 oldprio = p->prio;
4270 __setscheduler(rq, p, policy, param->sched_priority);
4271
4272 if (on_rq) {
4273 if (running)
4274 p->sched_class->set_curr_task(rq);
4275 activate_task(rq, p, 0);
4276 /*
4277 * Reschedule if we are currently running on this runqueue and
4278 * our priority decreased, or if we are not currently running on
4279 * this runqueue and our priority is higher than the current's
4280 */
4281 if (running) {
4282 if (p->prio > oldprio)
4283 resched_task(rq->curr);
4284 } else {
4285 check_preempt_curr(rq, p);
4286 }
4287 }
4288 __task_rq_unlock(rq);
4289 spin_unlock_irqrestore(&p->pi_lock, flags);
4290
4291 rt_mutex_adjust_pi(p);
4292
4293 return 0;
4294 }
4295 EXPORT_SYMBOL_GPL(sched_setscheduler);
4296
4297 static int
4298 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4299 {
4300 struct sched_param lparam;
4301 struct task_struct *p;
4302 int retval;
4303
4304 if (!param || pid < 0)
4305 return -EINVAL;
4306 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4307 return -EFAULT;
4308
4309 rcu_read_lock();
4310 retval = -ESRCH;
4311 p = find_process_by_pid(pid);
4312 if (p != NULL)
4313 retval = sched_setscheduler(p, policy, &lparam);
4314 rcu_read_unlock();
4315
4316 return retval;
4317 }
4318
4319 /**
4320 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4321 * @pid: the pid in question.
4322 * @policy: new policy.
4323 * @param: structure containing the new RT priority.
4324 */
4325 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4326 struct sched_param __user *param)
4327 {
4328 /* negative values for policy are not valid */
4329 if (policy < 0)
4330 return -EINVAL;
4331
4332 return do_sched_setscheduler(pid, policy, param);
4333 }
4334
4335 /**
4336 * sys_sched_setparam - set/change the RT priority of a thread
4337 * @pid: the pid in question.
4338 * @param: structure containing the new RT priority.
4339 */
4340 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4341 {
4342 return do_sched_setscheduler(pid, -1, param);
4343 }
4344
4345 /**
4346 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4347 * @pid: the pid in question.
4348 */
4349 asmlinkage long sys_sched_getscheduler(pid_t pid)
4350 {
4351 struct task_struct *p;
4352 int retval = -EINVAL;
4353
4354 if (pid < 0)
4355 goto out_nounlock;
4356
4357 retval = -ESRCH;
4358 read_lock(&tasklist_lock);
4359 p = find_process_by_pid(pid);
4360 if (p) {
4361 retval = security_task_getscheduler(p);
4362 if (!retval)
4363 retval = p->policy;
4364 }
4365 read_unlock(&tasklist_lock);
4366
4367 out_nounlock:
4368 return retval;
4369 }
4370
4371 /**
4372 * sys_sched_getscheduler - get the RT priority of a thread
4373 * @pid: the pid in question.
4374 * @param: structure containing the RT priority.
4375 */
4376 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4377 {
4378 struct sched_param lp;
4379 struct task_struct *p;
4380 int retval = -EINVAL;
4381
4382 if (!param || pid < 0)
4383 goto out_nounlock;
4384
4385 read_lock(&tasklist_lock);
4386 p = find_process_by_pid(pid);
4387 retval = -ESRCH;
4388 if (!p)
4389 goto out_unlock;
4390
4391 retval = security_task_getscheduler(p);
4392 if (retval)
4393 goto out_unlock;
4394
4395 lp.sched_priority = p->rt_priority;
4396 read_unlock(&tasklist_lock);
4397
4398 /*
4399 * This one might sleep, we cannot do it with a spinlock held ...
4400 */
4401 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4402
4403 out_nounlock:
4404 return retval;
4405
4406 out_unlock:
4407 read_unlock(&tasklist_lock);
4408 return retval;
4409 }
4410
4411 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4412 {
4413 cpumask_t cpus_allowed;
4414 struct task_struct *p;
4415 int retval;
4416
4417 mutex_lock(&sched_hotcpu_mutex);
4418 read_lock(&tasklist_lock);
4419
4420 p = find_process_by_pid(pid);
4421 if (!p) {
4422 read_unlock(&tasklist_lock);
4423 mutex_unlock(&sched_hotcpu_mutex);
4424 return -ESRCH;
4425 }
4426
4427 /*
4428 * It is not safe to call set_cpus_allowed with the
4429 * tasklist_lock held. We will bump the task_struct's
4430 * usage count and then drop tasklist_lock.
4431 */
4432 get_task_struct(p);
4433 read_unlock(&tasklist_lock);
4434
4435 retval = -EPERM;
4436 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4437 !capable(CAP_SYS_NICE))
4438 goto out_unlock;
4439
4440 retval = security_task_setscheduler(p, 0, NULL);
4441 if (retval)
4442 goto out_unlock;
4443
4444 cpus_allowed = cpuset_cpus_allowed(p);
4445 cpus_and(new_mask, new_mask, cpus_allowed);
4446 retval = set_cpus_allowed(p, new_mask);
4447
4448 out_unlock:
4449 put_task_struct(p);
4450 mutex_unlock(&sched_hotcpu_mutex);
4451 return retval;
4452 }
4453
4454 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4455 cpumask_t *new_mask)
4456 {
4457 if (len < sizeof(cpumask_t)) {
4458 memset(new_mask, 0, sizeof(cpumask_t));
4459 } else if (len > sizeof(cpumask_t)) {
4460 len = sizeof(cpumask_t);
4461 }
4462 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4463 }
4464
4465 /**
4466 * sys_sched_setaffinity - set the cpu affinity of a process
4467 * @pid: pid of the process
4468 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4469 * @user_mask_ptr: user-space pointer to the new cpu mask
4470 */
4471 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4472 unsigned long __user *user_mask_ptr)
4473 {
4474 cpumask_t new_mask;
4475 int retval;
4476
4477 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4478 if (retval)
4479 return retval;
4480
4481 return sched_setaffinity(pid, new_mask);
4482 }
4483
4484 /*
4485 * Represents all cpu's present in the system
4486 * In systems capable of hotplug, this map could dynamically grow
4487 * as new cpu's are detected in the system via any platform specific
4488 * method, such as ACPI for e.g.
4489 */
4490
4491 cpumask_t cpu_present_map __read_mostly;
4492 EXPORT_SYMBOL(cpu_present_map);
4493
4494 #ifndef CONFIG_SMP
4495 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4496 EXPORT_SYMBOL(cpu_online_map);
4497
4498 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4499 EXPORT_SYMBOL(cpu_possible_map);
4500 #endif
4501
4502 long sched_getaffinity(pid_t pid, cpumask_t *mask)
4503 {
4504 struct task_struct *p;
4505 int retval;
4506
4507 mutex_lock(&sched_hotcpu_mutex);
4508 read_lock(&tasklist_lock);
4509
4510 retval = -ESRCH;
4511 p = find_process_by_pid(pid);
4512 if (!p)
4513 goto out_unlock;
4514
4515 retval = security_task_getscheduler(p);
4516 if (retval)
4517 goto out_unlock;
4518
4519 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
4520
4521 out_unlock:
4522 read_unlock(&tasklist_lock);
4523 mutex_unlock(&sched_hotcpu_mutex);
4524
4525 return retval;
4526 }
4527
4528 /**
4529 * sys_sched_getaffinity - get the cpu affinity of a process
4530 * @pid: pid of the process
4531 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4532 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4533 */
4534 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4535 unsigned long __user *user_mask_ptr)
4536 {
4537 int ret;
4538 cpumask_t mask;
4539
4540 if (len < sizeof(cpumask_t))
4541 return -EINVAL;
4542
4543 ret = sched_getaffinity(pid, &mask);
4544 if (ret < 0)
4545 return ret;
4546
4547 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4548 return -EFAULT;
4549
4550 return sizeof(cpumask_t);
4551 }
4552
4553 /**
4554 * sys_sched_yield - yield the current processor to other threads.
4555 *
4556 * This function yields the current CPU to other tasks. If there are no
4557 * other threads running on this CPU then this function will return.
4558 */
4559 asmlinkage long sys_sched_yield(void)
4560 {
4561 struct rq *rq = this_rq_lock();
4562
4563 schedstat_inc(rq, yld_cnt);
4564 current->sched_class->yield_task(rq);
4565
4566 /*
4567 * Since we are going to call schedule() anyway, there's
4568 * no need to preempt or enable interrupts:
4569 */
4570 __release(rq->lock);
4571 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4572 _raw_spin_unlock(&rq->lock);
4573 preempt_enable_no_resched();
4574
4575 schedule();
4576
4577 return 0;
4578 }
4579
4580 static void __cond_resched(void)
4581 {
4582 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4583 __might_sleep(__FILE__, __LINE__);
4584 #endif
4585 /*
4586 * The BKS might be reacquired before we have dropped
4587 * PREEMPT_ACTIVE, which could trigger a second
4588 * cond_resched() call.
4589 */
4590 do {
4591 add_preempt_count(PREEMPT_ACTIVE);
4592 schedule();
4593 sub_preempt_count(PREEMPT_ACTIVE);
4594 } while (need_resched());
4595 }
4596
4597 int __sched cond_resched(void)
4598 {
4599 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4600 system_state == SYSTEM_RUNNING) {
4601 __cond_resched();
4602 return 1;
4603 }
4604 return 0;
4605 }
4606 EXPORT_SYMBOL(cond_resched);
4607
4608 /*
4609 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4610 * call schedule, and on return reacquire the lock.
4611 *
4612 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4613 * operations here to prevent schedule() from being called twice (once via
4614 * spin_unlock(), once by hand).
4615 */
4616 int cond_resched_lock(spinlock_t *lock)
4617 {
4618 int ret = 0;
4619
4620 if (need_lockbreak(lock)) {
4621 spin_unlock(lock);
4622 cpu_relax();
4623 ret = 1;
4624 spin_lock(lock);
4625 }
4626 if (need_resched() && system_state == SYSTEM_RUNNING) {
4627 spin_release(&lock->dep_map, 1, _THIS_IP_);
4628 _raw_spin_unlock(lock);
4629 preempt_enable_no_resched();
4630 __cond_resched();
4631 ret = 1;
4632 spin_lock(lock);
4633 }
4634 return ret;
4635 }
4636 EXPORT_SYMBOL(cond_resched_lock);
4637
4638 int __sched cond_resched_softirq(void)
4639 {
4640 BUG_ON(!in_softirq());
4641
4642 if (need_resched() && system_state == SYSTEM_RUNNING) {
4643 local_bh_enable();
4644 __cond_resched();
4645 local_bh_disable();
4646 return 1;
4647 }
4648 return 0;
4649 }
4650 EXPORT_SYMBOL(cond_resched_softirq);
4651
4652 /**
4653 * yield - yield the current processor to other threads.
4654 *
4655 * This is a shortcut for kernel-space yielding - it marks the
4656 * thread runnable and calls sys_sched_yield().
4657 */
4658 void __sched yield(void)
4659 {
4660 set_current_state(TASK_RUNNING);
4661 sys_sched_yield();
4662 }
4663 EXPORT_SYMBOL(yield);
4664
4665 /*
4666 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4667 * that process accounting knows that this is a task in IO wait state.
4668 *
4669 * But don't do that if it is a deliberate, throttling IO wait (this task
4670 * has set its backing_dev_info: the queue against which it should throttle)
4671 */
4672 void __sched io_schedule(void)
4673 {
4674 struct rq *rq = &__raw_get_cpu_var(runqueues);
4675
4676 delayacct_blkio_start();
4677 atomic_inc(&rq->nr_iowait);
4678 schedule();
4679 atomic_dec(&rq->nr_iowait);
4680 delayacct_blkio_end();
4681 }
4682 EXPORT_SYMBOL(io_schedule);
4683
4684 long __sched io_schedule_timeout(long timeout)
4685 {
4686 struct rq *rq = &__raw_get_cpu_var(runqueues);
4687 long ret;
4688
4689 delayacct_blkio_start();
4690 atomic_inc(&rq->nr_iowait);
4691 ret = schedule_timeout(timeout);
4692 atomic_dec(&rq->nr_iowait);
4693 delayacct_blkio_end();
4694 return ret;
4695 }
4696
4697 /**
4698 * sys_sched_get_priority_max - return maximum RT priority.
4699 * @policy: scheduling class.
4700 *
4701 * this syscall returns the maximum rt_priority that can be used
4702 * by a given scheduling class.
4703 */
4704 asmlinkage long sys_sched_get_priority_max(int policy)
4705 {
4706 int ret = -EINVAL;
4707
4708 switch (policy) {
4709 case SCHED_FIFO:
4710 case SCHED_RR:
4711 ret = MAX_USER_RT_PRIO-1;
4712 break;
4713 case SCHED_NORMAL:
4714 case SCHED_BATCH:
4715 case SCHED_IDLE:
4716 ret = 0;
4717 break;
4718 }
4719 return ret;
4720 }
4721
4722 /**
4723 * sys_sched_get_priority_min - return minimum RT priority.
4724 * @policy: scheduling class.
4725 *
4726 * this syscall returns the minimum rt_priority that can be used
4727 * by a given scheduling class.
4728 */
4729 asmlinkage long sys_sched_get_priority_min(int policy)
4730 {
4731 int ret = -EINVAL;
4732
4733 switch (policy) {
4734 case SCHED_FIFO:
4735 case SCHED_RR:
4736 ret = 1;
4737 break;
4738 case SCHED_NORMAL:
4739 case SCHED_BATCH:
4740 case SCHED_IDLE:
4741 ret = 0;
4742 }
4743 return ret;
4744 }
4745
4746 /**
4747 * sys_sched_rr_get_interval - return the default timeslice of a process.
4748 * @pid: pid of the process.
4749 * @interval: userspace pointer to the timeslice value.
4750 *
4751 * this syscall writes the default timeslice value of a given process
4752 * into the user-space timespec buffer. A value of '0' means infinity.
4753 */
4754 asmlinkage
4755 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4756 {
4757 struct task_struct *p;
4758 int retval = -EINVAL;
4759 struct timespec t;
4760
4761 if (pid < 0)
4762 goto out_nounlock;
4763
4764 retval = -ESRCH;
4765 read_lock(&tasklist_lock);
4766 p = find_process_by_pid(pid);
4767 if (!p)
4768 goto out_unlock;
4769
4770 retval = security_task_getscheduler(p);
4771 if (retval)
4772 goto out_unlock;
4773
4774 jiffies_to_timespec(p->policy == SCHED_FIFO ?
4775 0 : static_prio_timeslice(p->static_prio), &t);
4776 read_unlock(&tasklist_lock);
4777 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4778 out_nounlock:
4779 return retval;
4780 out_unlock:
4781 read_unlock(&tasklist_lock);
4782 return retval;
4783 }
4784
4785 static const char stat_nam[] = "RSDTtZX";
4786
4787 static void show_task(struct task_struct *p)
4788 {
4789 unsigned long free = 0;
4790 unsigned state;
4791
4792 state = p->state ? __ffs(p->state) + 1 : 0;
4793 printk("%-13.13s %c", p->comm,
4794 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4795 #if BITS_PER_LONG == 32
4796 if (state == TASK_RUNNING)
4797 printk(" running ");
4798 else
4799 printk(" %08lx ", thread_saved_pc(p));
4800 #else
4801 if (state == TASK_RUNNING)
4802 printk(" running task ");
4803 else
4804 printk(" %016lx ", thread_saved_pc(p));
4805 #endif
4806 #ifdef CONFIG_DEBUG_STACK_USAGE
4807 {
4808 unsigned long *n = end_of_stack(p);
4809 while (!*n)
4810 n++;
4811 free = (unsigned long)n - (unsigned long)end_of_stack(p);
4812 }
4813 #endif
4814 printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
4815
4816 if (state != TASK_RUNNING)
4817 show_stack(p, NULL);
4818 }
4819
4820 void show_state_filter(unsigned long state_filter)
4821 {
4822 struct task_struct *g, *p;
4823
4824 #if BITS_PER_LONG == 32
4825 printk(KERN_INFO
4826 " task PC stack pid father\n");
4827 #else
4828 printk(KERN_INFO
4829 " task PC stack pid father\n");
4830 #endif
4831 read_lock(&tasklist_lock);
4832 do_each_thread(g, p) {
4833 /*
4834 * reset the NMI-timeout, listing all files on a slow
4835 * console might take alot of time:
4836 */
4837 touch_nmi_watchdog();
4838 if (!state_filter || (p->state & state_filter))
4839 show_task(p);
4840 } while_each_thread(g, p);
4841
4842 touch_all_softlockup_watchdogs();
4843
4844 #ifdef CONFIG_SCHED_DEBUG
4845 sysrq_sched_debug_show();
4846 #endif
4847 read_unlock(&tasklist_lock);
4848 /*
4849 * Only show locks if all tasks are dumped:
4850 */
4851 if (state_filter == -1)
4852 debug_show_all_locks();
4853 }
4854
4855 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4856 {
4857 idle->sched_class = &idle_sched_class;
4858 }
4859
4860 /**
4861 * init_idle - set up an idle thread for a given CPU
4862 * @idle: task in question
4863 * @cpu: cpu the idle task belongs to
4864 *
4865 * NOTE: this function does not set the idle thread's NEED_RESCHED
4866 * flag, to make booting more robust.
4867 */
4868 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4869 {
4870 struct rq *rq = cpu_rq(cpu);
4871 unsigned long flags;
4872
4873 __sched_fork(idle);
4874 idle->se.exec_start = sched_clock();
4875
4876 idle->prio = idle->normal_prio = MAX_PRIO;
4877 idle->cpus_allowed = cpumask_of_cpu(cpu);
4878 __set_task_cpu(idle, cpu);
4879
4880 spin_lock_irqsave(&rq->lock, flags);
4881 rq->curr = rq->idle = idle;
4882 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4883 idle->oncpu = 1;
4884 #endif
4885 spin_unlock_irqrestore(&rq->lock, flags);
4886
4887 /* Set the preempt count _outside_ the spinlocks! */
4888 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4889 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
4890 #else
4891 task_thread_info(idle)->preempt_count = 0;
4892 #endif
4893 /*
4894 * The idle tasks have their own, simple scheduling class:
4895 */
4896 idle->sched_class = &idle_sched_class;
4897 }
4898
4899 /*
4900 * In a system that switches off the HZ timer nohz_cpu_mask
4901 * indicates which cpus entered this state. This is used
4902 * in the rcu update to wait only for active cpus. For system
4903 * which do not switch off the HZ timer nohz_cpu_mask should
4904 * always be CPU_MASK_NONE.
4905 */
4906 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4907
4908 #ifdef CONFIG_SMP
4909 /*
4910 * This is how migration works:
4911 *
4912 * 1) we queue a struct migration_req structure in the source CPU's
4913 * runqueue and wake up that CPU's migration thread.
4914 * 2) we down() the locked semaphore => thread blocks.
4915 * 3) migration thread wakes up (implicitly it forces the migrated
4916 * thread off the CPU)
4917 * 4) it gets the migration request and checks whether the migrated
4918 * task is still in the wrong runqueue.
4919 * 5) if it's in the wrong runqueue then the migration thread removes
4920 * it and puts it into the right queue.
4921 * 6) migration thread up()s the semaphore.
4922 * 7) we wake up and the migration is done.
4923 */
4924
4925 /*
4926 * Change a given task's CPU affinity. Migrate the thread to a
4927 * proper CPU and schedule it away if the CPU it's executing on
4928 * is removed from the allowed bitmask.
4929 *
4930 * NOTE: the caller must have a valid reference to the task, the
4931 * task must not exit() & deallocate itself prematurely. The
4932 * call is not atomic; no spinlocks may be held.
4933 */
4934 int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
4935 {
4936 struct migration_req req;
4937 unsigned long flags;
4938 struct rq *rq;
4939 int ret = 0;
4940
4941 rq = task_rq_lock(p, &flags);
4942 if (!cpus_intersects(new_mask, cpu_online_map)) {
4943 ret = -EINVAL;
4944 goto out;
4945 }
4946
4947 p->cpus_allowed = new_mask;
4948 /* Can the task run on the task's current CPU? If so, we're done */
4949 if (cpu_isset(task_cpu(p), new_mask))
4950 goto out;
4951
4952 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4953 /* Need help from migration thread: drop lock and wait. */
4954 task_rq_unlock(rq, &flags);
4955 wake_up_process(rq->migration_thread);
4956 wait_for_completion(&req.done);
4957 tlb_migrate_finish(p->mm);
4958 return 0;
4959 }
4960 out:
4961 task_rq_unlock(rq, &flags);
4962
4963 return ret;
4964 }
4965 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4966
4967 /*
4968 * Move (not current) task off this cpu, onto dest cpu. We're doing
4969 * this because either it can't run here any more (set_cpus_allowed()
4970 * away from this CPU, or CPU going down), or because we're
4971 * attempting to rebalance this task on exec (sched_exec).
4972 *
4973 * So we race with normal scheduler movements, but that's OK, as long
4974 * as the task is no longer on this CPU.
4975 *
4976 * Returns non-zero if task was successfully migrated.
4977 */
4978 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4979 {
4980 struct rq *rq_dest, *rq_src;
4981 int ret = 0, on_rq;
4982
4983 if (unlikely(cpu_is_offline(dest_cpu)))
4984 return ret;
4985
4986 rq_src = cpu_rq(src_cpu);
4987 rq_dest = cpu_rq(dest_cpu);
4988
4989 double_rq_lock(rq_src, rq_dest);
4990 /* Already moved. */
4991 if (task_cpu(p) != src_cpu)
4992 goto out;
4993 /* Affinity changed (again). */
4994 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4995 goto out;
4996
4997 on_rq = p->se.on_rq;
4998 if (on_rq)
4999 deactivate_task(rq_src, p, 0);
5000
5001 set_task_cpu(p, dest_cpu);
5002 if (on_rq) {
5003 activate_task(rq_dest, p, 0);
5004 check_preempt_curr(rq_dest, p);
5005 }
5006 ret = 1;
5007 out:
5008 double_rq_unlock(rq_src, rq_dest);
5009 return ret;
5010 }
5011
5012 /*
5013 * migration_thread - this is a highprio system thread that performs
5014 * thread migration by bumping thread off CPU then 'pushing' onto
5015 * another runqueue.
5016 */
5017 static int migration_thread(void *data)
5018 {
5019 int cpu = (long)data;
5020 struct rq *rq;
5021
5022 rq = cpu_rq(cpu);
5023 BUG_ON(rq->migration_thread != current);
5024
5025 set_current_state(TASK_INTERRUPTIBLE);
5026 while (!kthread_should_stop()) {
5027 struct migration_req *req;
5028 struct list_head *head;
5029
5030 spin_lock_irq(&rq->lock);
5031
5032 if (cpu_is_offline(cpu)) {
5033 spin_unlock_irq(&rq->lock);
5034 goto wait_to_die;
5035 }
5036
5037 if (rq->active_balance) {
5038 active_load_balance(rq, cpu);
5039 rq->active_balance = 0;
5040 }
5041
5042 head = &rq->migration_queue;
5043
5044 if (list_empty(head)) {
5045 spin_unlock_irq(&rq->lock);
5046 schedule();
5047 set_current_state(TASK_INTERRUPTIBLE);
5048 continue;
5049 }
5050 req = list_entry(head->next, struct migration_req, list);
5051 list_del_init(head->next);
5052
5053 spin_unlock(&rq->lock);
5054 __migrate_task(req->task, cpu, req->dest_cpu);
5055 local_irq_enable();
5056
5057 complete(&req->done);
5058 }
5059 __set_current_state(TASK_RUNNING);
5060 return 0;
5061
5062 wait_to_die:
5063 /* Wait for kthread_stop */
5064 set_current_state(TASK_INTERRUPTIBLE);
5065 while (!kthread_should_stop()) {
5066 schedule();
5067 set_current_state(TASK_INTERRUPTIBLE);
5068 }
5069 __set_current_state(TASK_RUNNING);
5070 return 0;
5071 }
5072
5073 #ifdef CONFIG_HOTPLUG_CPU
5074 /*
5075 * Figure out where task on dead CPU should go, use force if neccessary.
5076 * NOTE: interrupts should be disabled by the caller
5077 */
5078 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5079 {
5080 unsigned long flags;
5081 cpumask_t mask;
5082 struct rq *rq;
5083 int dest_cpu;
5084
5085 restart:
5086 /* On same node? */
5087 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5088 cpus_and(mask, mask, p->cpus_allowed);
5089 dest_cpu = any_online_cpu(mask);
5090
5091 /* On any allowed CPU? */
5092 if (dest_cpu == NR_CPUS)
5093 dest_cpu = any_online_cpu(p->cpus_allowed);
5094
5095 /* No more Mr. Nice Guy. */
5096 if (dest_cpu == NR_CPUS) {
5097 rq = task_rq_lock(p, &flags);
5098 cpus_setall(p->cpus_allowed);
5099 dest_cpu = any_online_cpu(p->cpus_allowed);
5100 task_rq_unlock(rq, &flags);
5101
5102 /*
5103 * Don't tell them about moving exiting tasks or
5104 * kernel threads (both mm NULL), since they never
5105 * leave kernel.
5106 */
5107 if (p->mm && printk_ratelimit())
5108 printk(KERN_INFO "process %d (%s) no "
5109 "longer affine to cpu%d\n",
5110 p->pid, p->comm, dead_cpu);
5111 }
5112 if (!__migrate_task(p, dead_cpu, dest_cpu))
5113 goto restart;
5114 }
5115
5116 /*
5117 * While a dead CPU has no uninterruptible tasks queued at this point,
5118 * it might still have a nonzero ->nr_uninterruptible counter, because
5119 * for performance reasons the counter is not stricly tracking tasks to
5120 * their home CPUs. So we just add the counter to another CPU's counter,
5121 * to keep the global sum constant after CPU-down:
5122 */
5123 static void migrate_nr_uninterruptible(struct rq *rq_src)
5124 {
5125 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
5126 unsigned long flags;
5127
5128 local_irq_save(flags);
5129 double_rq_lock(rq_src, rq_dest);
5130 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5131 rq_src->nr_uninterruptible = 0;
5132 double_rq_unlock(rq_src, rq_dest);
5133 local_irq_restore(flags);
5134 }
5135
5136 /* Run through task list and migrate tasks from the dead cpu. */
5137 static void migrate_live_tasks(int src_cpu)
5138 {
5139 struct task_struct *p, *t;
5140
5141 write_lock_irq(&tasklist_lock);
5142
5143 do_each_thread(t, p) {
5144 if (p == current)
5145 continue;
5146
5147 if (task_cpu(p) == src_cpu)
5148 move_task_off_dead_cpu(src_cpu, p);
5149 } while_each_thread(t, p);
5150
5151 write_unlock_irq(&tasklist_lock);
5152 }
5153
5154 /*
5155 * Schedules idle task to be the next runnable task on current CPU.
5156 * It does so by boosting its priority to highest possible and adding it to
5157 * the _front_ of the runqueue. Used by CPU offline code.
5158 */
5159 void sched_idle_next(void)
5160 {
5161 int this_cpu = smp_processor_id();
5162 struct rq *rq = cpu_rq(this_cpu);
5163 struct task_struct *p = rq->idle;
5164 unsigned long flags;
5165
5166 /* cpu has to be offline */
5167 BUG_ON(cpu_online(this_cpu));
5168
5169 /*
5170 * Strictly not necessary since rest of the CPUs are stopped by now
5171 * and interrupts disabled on the current cpu.
5172 */
5173 spin_lock_irqsave(&rq->lock, flags);
5174
5175 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5176
5177 /* Add idle task to the _front_ of its priority queue: */
5178 activate_idle_task(p, rq);
5179
5180 spin_unlock_irqrestore(&rq->lock, flags);
5181 }
5182
5183 /*
5184 * Ensures that the idle task is using init_mm right before its cpu goes
5185 * offline.
5186 */
5187 void idle_task_exit(void)
5188 {
5189 struct mm_struct *mm = current->active_mm;
5190
5191 BUG_ON(cpu_online(smp_processor_id()));
5192
5193 if (mm != &init_mm)
5194 switch_mm(mm, &init_mm, current);
5195 mmdrop(mm);
5196 }
5197
5198 /* called under rq->lock with disabled interrupts */
5199 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5200 {
5201 struct rq *rq = cpu_rq(dead_cpu);
5202
5203 /* Must be exiting, otherwise would be on tasklist. */
5204 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
5205
5206 /* Cannot have done final schedule yet: would have vanished. */
5207 BUG_ON(p->state == TASK_DEAD);
5208
5209 get_task_struct(p);
5210
5211 /*
5212 * Drop lock around migration; if someone else moves it,
5213 * that's OK. No task can be added to this CPU, so iteration is
5214 * fine.
5215 * NOTE: interrupts should be left disabled --dev@
5216 */
5217 spin_unlock(&rq->lock);
5218 move_task_off_dead_cpu(dead_cpu, p);
5219 spin_lock(&rq->lock);
5220
5221 put_task_struct(p);
5222 }
5223
5224 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5225 static void migrate_dead_tasks(unsigned int dead_cpu)
5226 {
5227 struct rq *rq = cpu_rq(dead_cpu);
5228 struct task_struct *next;
5229
5230 for ( ; ; ) {
5231 if (!rq->nr_running)
5232 break;
5233 update_rq_clock(rq);
5234 next = pick_next_task(rq, rq->curr);
5235 if (!next)
5236 break;
5237 migrate_dead(dead_cpu, next);
5238
5239 }
5240 }
5241 #endif /* CONFIG_HOTPLUG_CPU */
5242
5243 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5244
5245 static struct ctl_table sd_ctl_dir[] = {
5246 {
5247 .procname = "sched_domain",
5248 .mode = 0555,
5249 },
5250 {0,},
5251 };
5252
5253 static struct ctl_table sd_ctl_root[] = {
5254 {
5255 .ctl_name = CTL_KERN,
5256 .procname = "kernel",
5257 .mode = 0555,
5258 .child = sd_ctl_dir,
5259 },
5260 {0,},
5261 };
5262
5263 static struct ctl_table *sd_alloc_ctl_entry(int n)
5264 {
5265 struct ctl_table *entry =
5266 kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);
5267
5268 BUG_ON(!entry);
5269 memset(entry, 0, n * sizeof(struct ctl_table));
5270
5271 return entry;
5272 }
5273
5274 static void
5275 set_table_entry(struct ctl_table *entry,
5276 const char *procname, void *data, int maxlen,
5277 mode_t mode, proc_handler *proc_handler)
5278 {
5279 entry->procname = procname;
5280 entry->data = data;
5281 entry->maxlen = maxlen;
5282 entry->mode = mode;
5283 entry->proc_handler = proc_handler;
5284 }
5285
5286 static struct ctl_table *
5287 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5288 {
5289 struct ctl_table *table = sd_alloc_ctl_entry(14);
5290
5291 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5292 sizeof(long), 0644, proc_doulongvec_minmax);
5293 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5294 sizeof(long), 0644, proc_doulongvec_minmax);
5295 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5296 sizeof(int), 0644, proc_dointvec_minmax);
5297 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5298 sizeof(int), 0644, proc_dointvec_minmax);
5299 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5300 sizeof(int), 0644, proc_dointvec_minmax);
5301 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5302 sizeof(int), 0644, proc_dointvec_minmax);
5303 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5304 sizeof(int), 0644, proc_dointvec_minmax);
5305 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5306 sizeof(int), 0644, proc_dointvec_minmax);
5307 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5308 sizeof(int), 0644, proc_dointvec_minmax);
5309 set_table_entry(&table[10], "cache_nice_tries",
5310 &sd->cache_nice_tries,
5311 sizeof(int), 0644, proc_dointvec_minmax);
5312 set_table_entry(&table[12], "flags", &sd->flags,
5313 sizeof(int), 0644, proc_dointvec_minmax);
5314
5315 return table;
5316 }
5317
5318 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5319 {
5320 struct ctl_table *entry, *table;
5321 struct sched_domain *sd;
5322 int domain_num = 0, i;
5323 char buf[32];
5324
5325 for_each_domain(cpu, sd)
5326 domain_num++;
5327 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5328
5329 i = 0;
5330 for_each_domain(cpu, sd) {
5331 snprintf(buf, 32, "domain%d", i);
5332 entry->procname = kstrdup(buf, GFP_KERNEL);
5333 entry->mode = 0555;
5334 entry->child = sd_alloc_ctl_domain_table(sd);
5335 entry++;
5336 i++;
5337 }
5338 return table;
5339 }
5340
5341 static struct ctl_table_header *sd_sysctl_header;
5342 static void init_sched_domain_sysctl(void)
5343 {
5344 int i, cpu_num = num_online_cpus();
5345 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5346 char buf[32];
5347
5348 sd_ctl_dir[0].child = entry;
5349
5350 for (i = 0; i < cpu_num; i++, entry++) {
5351 snprintf(buf, 32, "cpu%d", i);
5352 entry->procname = kstrdup(buf, GFP_KERNEL);
5353 entry->mode = 0555;
5354 entry->child = sd_alloc_ctl_cpu_table(i);
5355 }
5356 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5357 }
5358 #else
5359 static void init_sched_domain_sysctl(void)
5360 {
5361 }
5362 #endif
5363
5364 /*
5365 * migration_call - callback that gets triggered when a CPU is added.
5366 * Here we can start up the necessary migration thread for the new CPU.
5367 */
5368 static int __cpuinit
5369 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5370 {
5371 struct task_struct *p;
5372 int cpu = (long)hcpu;
5373 unsigned long flags;
5374 struct rq *rq;
5375
5376 switch (action) {
5377 case CPU_LOCK_ACQUIRE:
5378 mutex_lock(&sched_hotcpu_mutex);
5379 break;
5380
5381 case CPU_UP_PREPARE:
5382 case CPU_UP_PREPARE_FROZEN:
5383 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
5384 if (IS_ERR(p))
5385 return NOTIFY_BAD;
5386 kthread_bind(p, cpu);
5387 /* Must be high prio: stop_machine expects to yield to it. */
5388 rq = task_rq_lock(p, &flags);
5389 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5390 task_rq_unlock(rq, &flags);
5391 cpu_rq(cpu)->migration_thread = p;
5392 break;
5393
5394 case CPU_ONLINE:
5395 case CPU_ONLINE_FROZEN:
5396 /* Strictly unneccessary, as first user will wake it. */
5397 wake_up_process(cpu_rq(cpu)->migration_thread);
5398 break;
5399
5400 #ifdef CONFIG_HOTPLUG_CPU
5401 case CPU_UP_CANCELED:
5402 case CPU_UP_CANCELED_FROZEN:
5403 if (!cpu_rq(cpu)->migration_thread)
5404 break;
5405 /* Unbind it from offline cpu so it can run. Fall thru. */
5406 kthread_bind(cpu_rq(cpu)->migration_thread,
5407 any_online_cpu(cpu_online_map));
5408 kthread_stop(cpu_rq(cpu)->migration_thread);
5409 cpu_rq(cpu)->migration_thread = NULL;
5410 break;
5411
5412 case CPU_DEAD:
5413 case CPU_DEAD_FROZEN:
5414 migrate_live_tasks(cpu);
5415 rq = cpu_rq(cpu);
5416 kthread_stop(rq->migration_thread);
5417 rq->migration_thread = NULL;
5418 /* Idle task back to normal (off runqueue, low prio) */
5419 rq = task_rq_lock(rq->idle, &flags);
5420 update_rq_clock(rq);
5421 deactivate_task(rq, rq->idle, 0);
5422 rq->idle->static_prio = MAX_PRIO;
5423 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5424 rq->idle->sched_class = &idle_sched_class;
5425 migrate_dead_tasks(cpu);
5426 task_rq_unlock(rq, &flags);
5427 migrate_nr_uninterruptible(rq);
5428 BUG_ON(rq->nr_running != 0);
5429
5430 /* No need to migrate the tasks: it was best-effort if
5431 * they didn't take sched_hotcpu_mutex. Just wake up
5432 * the requestors. */
5433 spin_lock_irq(&rq->lock);
5434 while (!list_empty(&rq->migration_queue)) {
5435 struct migration_req *req;
5436
5437 req = list_entry(rq->migration_queue.next,
5438 struct migration_req, list);
5439 list_del_init(&req->list);
5440 complete(&req->done);
5441 }
5442 spin_unlock_irq(&rq->lock);
5443 break;
5444 #endif
5445 case CPU_LOCK_RELEASE:
5446 mutex_unlock(&sched_hotcpu_mutex);
5447 break;
5448 }
5449 return NOTIFY_OK;
5450 }
5451
5452 /* Register at highest priority so that task migration (migrate_all_tasks)
5453 * happens before everything else.
5454 */
5455 static struct notifier_block __cpuinitdata migration_notifier = {
5456 .notifier_call = migration_call,
5457 .priority = 10
5458 };
5459
5460 int __init migration_init(void)
5461 {
5462 void *cpu = (void *)(long)smp_processor_id();
5463 int err;
5464
5465 /* Start one for the boot CPU: */
5466 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5467 BUG_ON(err == NOTIFY_BAD);
5468 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5469 register_cpu_notifier(&migration_notifier);
5470
5471 return 0;
5472 }
5473 #endif
5474
5475 #ifdef CONFIG_SMP
5476
5477 /* Number of possible processor ids */
5478 int nr_cpu_ids __read_mostly = NR_CPUS;
5479 EXPORT_SYMBOL(nr_cpu_ids);
5480
5481 #undef SCHED_DOMAIN_DEBUG
5482 #ifdef SCHED_DOMAIN_DEBUG
5483 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5484 {
5485 int level = 0;
5486
5487 if (!sd) {
5488 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5489 return;
5490 }
5491
5492 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5493
5494 do {
5495 int i;
5496 char str[NR_CPUS];
5497 struct sched_group *group = sd->groups;
5498 cpumask_t groupmask;
5499
5500 cpumask_scnprintf(str, NR_CPUS, sd->span);
5501 cpus_clear(groupmask);
5502
5503 printk(KERN_DEBUG);
5504 for (i = 0; i < level + 1; i++)
5505 printk(" ");
5506 printk("domain %d: ", level);
5507
5508 if (!(sd->flags & SD_LOAD_BALANCE)) {
5509 printk("does not load-balance\n");
5510 if (sd->parent)
5511 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5512 " has parent");
5513 break;
5514 }
5515
5516 printk("span %s\n", str);
5517
5518 if (!cpu_isset(cpu, sd->span))
5519 printk(KERN_ERR "ERROR: domain->span does not contain "
5520 "CPU%d\n", cpu);
5521 if (!cpu_isset(cpu, group->cpumask))
5522 printk(KERN_ERR "ERROR: domain->groups does not contain"
5523 " CPU%d\n", cpu);
5524
5525 printk(KERN_DEBUG);
5526 for (i = 0; i < level + 2; i++)
5527 printk(" ");
5528 printk("groups:");
5529 do {
5530 if (!group) {
5531 printk("\n");
5532 printk(KERN_ERR "ERROR: group is NULL\n");
5533 break;
5534 }
5535
5536 if (!group->__cpu_power) {
5537 printk("\n");
5538 printk(KERN_ERR "ERROR: domain->cpu_power not "
5539 "set\n");
5540 }
5541
5542 if (!cpus_weight(group->cpumask)) {
5543 printk("\n");
5544 printk(KERN_ERR "ERROR: empty group\n");
5545 }
5546
5547 if (cpus_intersects(groupmask, group->cpumask)) {
5548 printk("\n");
5549 printk(KERN_ERR "ERROR: repeated CPUs\n");
5550 }
5551
5552 cpus_or(groupmask, groupmask, group->cpumask);
5553
5554 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5555 printk(" %s", str);
5556
5557 group = group->next;
5558 } while (group != sd->groups);
5559 printk("\n");
5560
5561 if (!cpus_equal(sd->span, groupmask))
5562 printk(KERN_ERR "ERROR: groups don't span "
5563 "domain->span\n");
5564
5565 level++;
5566 sd = sd->parent;
5567 if (!sd)
5568 continue;
5569
5570 if (!cpus_subset(groupmask, sd->span))
5571 printk(KERN_ERR "ERROR: parent span is not a superset "
5572 "of domain->span\n");
5573
5574 } while (sd);
5575 }
5576 #else
5577 # define sched_domain_debug(sd, cpu) do { } while (0)
5578 #endif
5579
5580 static int sd_degenerate(struct sched_domain *sd)
5581 {
5582 if (cpus_weight(sd->span) == 1)
5583 return 1;
5584
5585 /* Following flags need at least 2 groups */
5586 if (sd->flags & (SD_LOAD_BALANCE |
5587 SD_BALANCE_NEWIDLE |
5588 SD_BALANCE_FORK |
5589 SD_BALANCE_EXEC |
5590 SD_SHARE_CPUPOWER |
5591 SD_SHARE_PKG_RESOURCES)) {
5592 if (sd->groups != sd->groups->next)
5593 return 0;
5594 }
5595
5596 /* Following flags don't use groups */
5597 if (sd->flags & (SD_WAKE_IDLE |
5598 SD_WAKE_AFFINE |
5599 SD_WAKE_BALANCE))
5600 return 0;
5601
5602 return 1;
5603 }
5604
5605 static int
5606 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5607 {
5608 unsigned long cflags = sd->flags, pflags = parent->flags;
5609
5610 if (sd_degenerate(parent))
5611 return 1;
5612
5613 if (!cpus_equal(sd->span, parent->span))
5614 return 0;
5615
5616 /* Does parent contain flags not in child? */
5617 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5618 if (cflags & SD_WAKE_AFFINE)
5619 pflags &= ~SD_WAKE_BALANCE;
5620 /* Flags needing groups don't count if only 1 group in parent */
5621 if (parent->groups == parent->groups->next) {
5622 pflags &= ~(SD_LOAD_BALANCE |
5623 SD_BALANCE_NEWIDLE |
5624 SD_BALANCE_FORK |
5625 SD_BALANCE_EXEC |
5626 SD_SHARE_CPUPOWER |
5627 SD_SHARE_PKG_RESOURCES);
5628 }
5629 if (~cflags & pflags)
5630 return 0;
5631
5632 return 1;
5633 }
5634
5635 /*
5636 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5637 * hold the hotplug lock.
5638 */
5639 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
5640 {
5641 struct rq *rq = cpu_rq(cpu);
5642 struct sched_domain *tmp;
5643
5644 /* Remove the sched domains which do not contribute to scheduling. */
5645 for (tmp = sd; tmp; tmp = tmp->parent) {
5646 struct sched_domain *parent = tmp->parent;
5647 if (!parent)
5648 break;
5649 if (sd_parent_degenerate(tmp, parent)) {
5650 tmp->parent = parent->parent;
5651 if (parent->parent)
5652 parent->parent->child = tmp;
5653 }
5654 }
5655
5656 if (sd && sd_degenerate(sd)) {
5657 sd = sd->parent;
5658 if (sd)
5659 sd->child = NULL;
5660 }
5661
5662 sched_domain_debug(sd, cpu);
5663
5664 rcu_assign_pointer(rq->sd, sd);
5665 }
5666
5667 /* cpus with isolated domains */
5668 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
5669
5670 /* Setup the mask of cpus configured for isolated domains */
5671 static int __init isolated_cpu_setup(char *str)
5672 {
5673 int ints[NR_CPUS], i;
5674
5675 str = get_options(str, ARRAY_SIZE(ints), ints);
5676 cpus_clear(cpu_isolated_map);
5677 for (i = 1; i <= ints[0]; i++)
5678 if (ints[i] < NR_CPUS)
5679 cpu_set(ints[i], cpu_isolated_map);
5680 return 1;
5681 }
5682
5683 __setup ("isolcpus=", isolated_cpu_setup);
5684
5685 /*
5686 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5687 * to a function which identifies what group(along with sched group) a CPU
5688 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5689 * (due to the fact that we keep track of groups covered with a cpumask_t).
5690 *
5691 * init_sched_build_groups will build a circular linked list of the groups
5692 * covered by the given span, and will set each group's ->cpumask correctly,
5693 * and ->cpu_power to 0.
5694 */
5695 static void
5696 init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5697 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5698 struct sched_group **sg))
5699 {
5700 struct sched_group *first = NULL, *last = NULL;
5701 cpumask_t covered = CPU_MASK_NONE;
5702 int i;
5703
5704 for_each_cpu_mask(i, span) {
5705 struct sched_group *sg;
5706 int group = group_fn(i, cpu_map, &sg);
5707 int j;
5708
5709 if (cpu_isset(i, covered))
5710 continue;
5711
5712 sg->cpumask = CPU_MASK_NONE;
5713 sg->__cpu_power = 0;
5714
5715 for_each_cpu_mask(j, span) {
5716 if (group_fn(j, cpu_map, NULL) != group)
5717 continue;
5718
5719 cpu_set(j, covered);
5720 cpu_set(j, sg->cpumask);
5721 }
5722 if (!first)
5723 first = sg;
5724 if (last)
5725 last->next = sg;
5726 last = sg;
5727 }
5728 last->next = first;
5729 }
5730
5731 #define SD_NODES_PER_DOMAIN 16
5732
5733 #ifdef CONFIG_NUMA
5734
5735 /**
5736 * find_next_best_node - find the next node to include in a sched_domain
5737 * @node: node whose sched_domain we're building
5738 * @used_nodes: nodes already in the sched_domain
5739 *
5740 * Find the next node to include in a given scheduling domain. Simply
5741 * finds the closest node not already in the @used_nodes map.
5742 *
5743 * Should use nodemask_t.
5744 */
5745 static int find_next_best_node(int node, unsigned long *used_nodes)
5746 {
5747 int i, n, val, min_val, best_node = 0;
5748
5749 min_val = INT_MAX;
5750
5751 for (i = 0; i < MAX_NUMNODES; i++) {
5752 /* Start at @node */
5753 n = (node + i) % MAX_NUMNODES;
5754
5755 if (!nr_cpus_node(n))
5756 continue;
5757
5758 /* Skip already used nodes */
5759 if (test_bit(n, used_nodes))
5760 continue;
5761
5762 /* Simple min distance search */
5763 val = node_distance(node, n);
5764
5765 if (val < min_val) {
5766 min_val = val;
5767 best_node = n;
5768 }
5769 }
5770
5771 set_bit(best_node, used_nodes);
5772 return best_node;
5773 }
5774
5775 /**
5776 * sched_domain_node_span - get a cpumask for a node's sched_domain
5777 * @node: node whose cpumask we're constructing
5778 * @size: number of nodes to include in this span
5779 *
5780 * Given a node, construct a good cpumask for its sched_domain to span. It
5781 * should be one that prevents unnecessary balancing, but also spreads tasks
5782 * out optimally.
5783 */
5784 static cpumask_t sched_domain_node_span(int node)
5785 {
5786 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5787 cpumask_t span, nodemask;
5788 int i;
5789
5790 cpus_clear(span);
5791 bitmap_zero(used_nodes, MAX_NUMNODES);
5792
5793 nodemask = node_to_cpumask(node);
5794 cpus_or(span, span, nodemask);
5795 set_bit(node, used_nodes);
5796
5797 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5798 int next_node = find_next_best_node(node, used_nodes);
5799
5800 nodemask = node_to_cpumask(next_node);
5801 cpus_or(span, span, nodemask);
5802 }
5803
5804 return span;
5805 }
5806 #endif
5807
5808 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5809
5810 /*
5811 * SMT sched-domains:
5812 */
5813 #ifdef CONFIG_SCHED_SMT
5814 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5815 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
5816
5817 static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
5818 struct sched_group **sg)
5819 {
5820 if (sg)
5821 *sg = &per_cpu(sched_group_cpus, cpu);
5822 return cpu;
5823 }
5824 #endif
5825
5826 /*
5827 * multi-core sched-domains:
5828 */
5829 #ifdef CONFIG_SCHED_MC
5830 static DEFINE_PER_CPU(struct sched_domain, core_domains);
5831 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
5832 #endif
5833
5834 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5835 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5836 struct sched_group **sg)
5837 {
5838 int group;
5839 cpumask_t mask = cpu_sibling_map[cpu];
5840 cpus_and(mask, mask, *cpu_map);
5841 group = first_cpu(mask);
5842 if (sg)
5843 *sg = &per_cpu(sched_group_core, group);
5844 return group;
5845 }
5846 #elif defined(CONFIG_SCHED_MC)
5847 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5848 struct sched_group **sg)
5849 {
5850 if (sg)
5851 *sg = &per_cpu(sched_group_core, cpu);
5852 return cpu;
5853 }
5854 #endif
5855
5856 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5857 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
5858
5859 static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
5860 struct sched_group **sg)
5861 {
5862 int group;
5863 #ifdef CONFIG_SCHED_MC
5864 cpumask_t mask = cpu_coregroup_map(cpu);
5865 cpus_and(mask, mask, *cpu_map);
5866 group = first_cpu(mask);
5867 #elif defined(CONFIG_SCHED_SMT)
5868 cpumask_t mask = cpu_sibling_map[cpu];
5869 cpus_and(mask, mask, *cpu_map);
5870 group = first_cpu(mask);
5871 #else
5872 group = cpu;
5873 #endif
5874 if (sg)
5875 *sg = &per_cpu(sched_group_phys, group);
5876 return group;
5877 }
5878
5879 #ifdef CONFIG_NUMA
5880 /*
5881 * The init_sched_build_groups can't handle what we want to do with node
5882 * groups, so roll our own. Now each node has its own list of groups which
5883 * gets dynamically allocated.
5884 */
5885 static DEFINE_PER_CPU(struct sched_domain, node_domains);
5886 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
5887
5888 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5889 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
5890
5891 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
5892 struct sched_group **sg)
5893 {
5894 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
5895 int group;
5896
5897 cpus_and(nodemask, nodemask, *cpu_map);
5898 group = first_cpu(nodemask);
5899
5900 if (sg)
5901 *sg = &per_cpu(sched_group_allnodes, group);
5902 return group;
5903 }
5904
5905 static void init_numa_sched_groups_power(struct sched_group *group_head)
5906 {
5907 struct sched_group *sg = group_head;
5908 int j;
5909
5910 if (!sg)
5911 return;
5912 next_sg:
5913 for_each_cpu_mask(j, sg->cpumask) {
5914 struct sched_domain *sd;
5915
5916 sd = &per_cpu(phys_domains, j);
5917 if (j != first_cpu(sd->groups->cpumask)) {
5918 /*
5919 * Only add "power" once for each
5920 * physical package.
5921 */
5922 continue;
5923 }
5924
5925 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
5926 }
5927 sg = sg->next;
5928 if (sg != group_head)
5929 goto next_sg;
5930 }
5931 #endif
5932
5933 #ifdef CONFIG_NUMA
5934 /* Free memory allocated for various sched_group structures */
5935 static void free_sched_groups(const cpumask_t *cpu_map)
5936 {
5937 int cpu, i;
5938
5939 for_each_cpu_mask(cpu, *cpu_map) {
5940 struct sched_group **sched_group_nodes
5941 = sched_group_nodes_bycpu[cpu];
5942
5943 if (!sched_group_nodes)
5944 continue;
5945
5946 for (i = 0; i < MAX_NUMNODES; i++) {
5947 cpumask_t nodemask = node_to_cpumask(i);
5948 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5949
5950 cpus_and(nodemask, nodemask, *cpu_map);
5951 if (cpus_empty(nodemask))
5952 continue;
5953
5954 if (sg == NULL)
5955 continue;
5956 sg = sg->next;
5957 next_sg:
5958 oldsg = sg;
5959 sg = sg->next;
5960 kfree(oldsg);
5961 if (oldsg != sched_group_nodes[i])
5962 goto next_sg;
5963 }
5964 kfree(sched_group_nodes);
5965 sched_group_nodes_bycpu[cpu] = NULL;
5966 }
5967 }
5968 #else
5969 static void free_sched_groups(const cpumask_t *cpu_map)
5970 {
5971 }
5972 #endif
5973
5974 /*
5975 * Initialize sched groups cpu_power.
5976 *
5977 * cpu_power indicates the capacity of sched group, which is used while
5978 * distributing the load between different sched groups in a sched domain.
5979 * Typically cpu_power for all the groups in a sched domain will be same unless
5980 * there are asymmetries in the topology. If there are asymmetries, group
5981 * having more cpu_power will pickup more load compared to the group having
5982 * less cpu_power.
5983 *
5984 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
5985 * the maximum number of tasks a group can handle in the presence of other idle
5986 * or lightly loaded groups in the same sched domain.
5987 */
5988 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5989 {
5990 struct sched_domain *child;
5991 struct sched_group *group;
5992
5993 WARN_ON(!sd || !sd->groups);
5994
5995 if (cpu != first_cpu(sd->groups->cpumask))
5996 return;
5997
5998 child = sd->child;
5999
6000 sd->groups->__cpu_power = 0;
6001
6002 /*
6003 * For perf policy, if the groups in child domain share resources
6004 * (for example cores sharing some portions of the cache hierarchy
6005 * or SMT), then set this domain groups cpu_power such that each group
6006 * can handle only one task, when there are other idle groups in the
6007 * same sched domain.
6008 */
6009 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6010 (child->flags &
6011 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6012 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6013 return;
6014 }
6015
6016 /*
6017 * add cpu_power of each child group to this groups cpu_power
6018 */
6019 group = child->groups;
6020 do {
6021 sg_inc_cpu_power(sd->groups, group->__cpu_power);
6022 group = group->next;
6023 } while (group != child->groups);
6024 }
6025
6026 /*
6027 * Build sched domains for a given set of cpus and attach the sched domains
6028 * to the individual cpus
6029 */
6030 static int build_sched_domains(const cpumask_t *cpu_map)
6031 {
6032 int i;
6033 #ifdef CONFIG_NUMA
6034 struct sched_group **sched_group_nodes = NULL;
6035 int sd_allnodes = 0;
6036
6037 /*
6038 * Allocate the per-node list of sched groups
6039 */
6040 sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
6041 GFP_KERNEL);
6042 if (!sched_group_nodes) {
6043 printk(KERN_WARNING "Can not alloc sched group node list\n");
6044 return -ENOMEM;
6045 }
6046 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6047 #endif
6048
6049 /*
6050 * Set up domains for cpus specified by the cpu_map.
6051 */
6052 for_each_cpu_mask(i, *cpu_map) {
6053 struct sched_domain *sd = NULL, *p;
6054 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6055
6056 cpus_and(nodemask, nodemask, *cpu_map);
6057
6058 #ifdef CONFIG_NUMA
6059 if (cpus_weight(*cpu_map) >
6060 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6061 sd = &per_cpu(allnodes_domains, i);
6062 *sd = SD_ALLNODES_INIT;
6063 sd->span = *cpu_map;
6064 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6065 p = sd;
6066 sd_allnodes = 1;
6067 } else
6068 p = NULL;
6069
6070 sd = &per_cpu(node_domains, i);
6071 *sd = SD_NODE_INIT;
6072 sd->span = sched_domain_node_span(cpu_to_node(i));
6073 sd->parent = p;
6074 if (p)
6075 p->child = sd;
6076 cpus_and(sd->span, sd->span, *cpu_map);
6077 #endif
6078
6079 p = sd;
6080 sd = &per_cpu(phys_domains, i);
6081 *sd = SD_CPU_INIT;
6082 sd->span = nodemask;
6083 sd->parent = p;
6084 if (p)
6085 p->child = sd;
6086 cpu_to_phys_group(i, cpu_map, &sd->groups);
6087
6088 #ifdef CONFIG_SCHED_MC
6089 p = sd;
6090 sd = &per_cpu(core_domains, i);
6091 *sd = SD_MC_INIT;
6092 sd->span = cpu_coregroup_map(i);
6093 cpus_and(sd->span, sd->span, *cpu_map);
6094 sd->parent = p;
6095 p->child = sd;
6096 cpu_to_core_group(i, cpu_map, &sd->groups);
6097 #endif
6098
6099 #ifdef CONFIG_SCHED_SMT
6100 p = sd;
6101 sd = &per_cpu(cpu_domains, i);
6102 *sd = SD_SIBLING_INIT;
6103 sd->span = cpu_sibling_map[i];
6104 cpus_and(sd->span, sd->span, *cpu_map);
6105 sd->parent = p;
6106 p->child = sd;
6107 cpu_to_cpu_group(i, cpu_map, &sd->groups);
6108 #endif
6109 }
6110
6111 #ifdef CONFIG_SCHED_SMT
6112 /* Set up CPU (sibling) groups */
6113 for_each_cpu_mask(i, *cpu_map) {
6114 cpumask_t this_sibling_map = cpu_sibling_map[i];
6115 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
6116 if (i != first_cpu(this_sibling_map))
6117 continue;
6118
6119 init_sched_build_groups(this_sibling_map, cpu_map,
6120 &cpu_to_cpu_group);
6121 }
6122 #endif
6123
6124 #ifdef CONFIG_SCHED_MC
6125 /* Set up multi-core groups */
6126 for_each_cpu_mask(i, *cpu_map) {
6127 cpumask_t this_core_map = cpu_coregroup_map(i);
6128 cpus_and(this_core_map, this_core_map, *cpu_map);
6129 if (i != first_cpu(this_core_map))
6130 continue;
6131 init_sched_build_groups(this_core_map, cpu_map,
6132 &cpu_to_core_group);
6133 }
6134 #endif
6135
6136 /* Set up physical groups */
6137 for (i = 0; i < MAX_NUMNODES; i++) {
6138 cpumask_t nodemask = node_to_cpumask(i);
6139
6140 cpus_and(nodemask, nodemask, *cpu_map);
6141 if (cpus_empty(nodemask))
6142 continue;
6143
6144 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
6145 }
6146
6147 #ifdef CONFIG_NUMA
6148 /* Set up node groups */
6149 if (sd_allnodes)
6150 init_sched_build_groups(*cpu_map, cpu_map,
6151 &cpu_to_allnodes_group);
6152
6153 for (i = 0; i < MAX_NUMNODES; i++) {
6154 /* Set up node groups */
6155 struct sched_group *sg, *prev;
6156 cpumask_t nodemask = node_to_cpumask(i);
6157 cpumask_t domainspan;
6158 cpumask_t covered = CPU_MASK_NONE;
6159 int j;
6160
6161 cpus_and(nodemask, nodemask, *cpu_map);
6162 if (cpus_empty(nodemask)) {
6163 sched_group_nodes[i] = NULL;
6164 continue;
6165 }
6166
6167 domainspan = sched_domain_node_span(i);
6168 cpus_and(domainspan, domainspan, *cpu_map);
6169
6170 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6171 if (!sg) {
6172 printk(KERN_WARNING "Can not alloc domain group for "
6173 "node %d\n", i);
6174 goto error;
6175 }
6176 sched_group_nodes[i] = sg;
6177 for_each_cpu_mask(j, nodemask) {
6178 struct sched_domain *sd;
6179
6180 sd = &per_cpu(node_domains, j);
6181 sd->groups = sg;
6182 }
6183 sg->__cpu_power = 0;
6184 sg->cpumask = nodemask;
6185 sg->next = sg;
6186 cpus_or(covered, covered, nodemask);
6187 prev = sg;
6188
6189 for (j = 0; j < MAX_NUMNODES; j++) {
6190 cpumask_t tmp, notcovered;
6191 int n = (i + j) % MAX_NUMNODES;
6192
6193 cpus_complement(notcovered, covered);
6194 cpus_and(tmp, notcovered, *cpu_map);
6195 cpus_and(tmp, tmp, domainspan);
6196 if (cpus_empty(tmp))
6197 break;
6198
6199 nodemask = node_to_cpumask(n);
6200 cpus_and(tmp, tmp, nodemask);
6201 if (cpus_empty(tmp))
6202 continue;
6203
6204 sg = kmalloc_node(sizeof(struct sched_group),
6205 GFP_KERNEL, i);
6206 if (!sg) {
6207 printk(KERN_WARNING
6208 "Can not alloc domain group for node %d\n", j);
6209 goto error;
6210 }
6211 sg->__cpu_power = 0;
6212 sg->cpumask = tmp;
6213 sg->next = prev->next;
6214 cpus_or(covered, covered, tmp);
6215 prev->next = sg;
6216 prev = sg;
6217 }
6218 }
6219 #endif
6220
6221 /* Calculate CPU power for physical packages and nodes */
6222 #ifdef CONFIG_SCHED_SMT
6223 for_each_cpu_mask(i, *cpu_map) {
6224 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6225
6226 init_sched_groups_power(i, sd);
6227 }
6228 #endif
6229 #ifdef CONFIG_SCHED_MC
6230 for_each_cpu_mask(i, *cpu_map) {
6231 struct sched_domain *sd = &per_cpu(core_domains, i);
6232
6233 init_sched_groups_power(i, sd);
6234 }
6235 #endif
6236
6237 for_each_cpu_mask(i, *cpu_map) {
6238 struct sched_domain *sd = &per_cpu(phys_domains, i);
6239
6240 init_sched_groups_power(i, sd);
6241 }
6242
6243 #ifdef CONFIG_NUMA
6244 for (i = 0; i < MAX_NUMNODES; i++)
6245 init_numa_sched_groups_power(sched_group_nodes[i]);
6246
6247 if (sd_allnodes) {
6248 struct sched_group *sg;
6249
6250 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6251 init_numa_sched_groups_power(sg);
6252 }
6253 #endif
6254
6255 /* Attach the domains */
6256 for_each_cpu_mask(i, *cpu_map) {
6257 struct sched_domain *sd;
6258 #ifdef CONFIG_SCHED_SMT
6259 sd = &per_cpu(cpu_domains, i);
6260 #elif defined(CONFIG_SCHED_MC)
6261 sd = &per_cpu(core_domains, i);
6262 #else
6263 sd = &per_cpu(phys_domains, i);
6264 #endif
6265 cpu_attach_domain(sd, i);
6266 }
6267
6268 return 0;
6269
6270 #ifdef CONFIG_NUMA
6271 error:
6272 free_sched_groups(cpu_map);
6273 return -ENOMEM;
6274 #endif
6275 }
6276 /*
6277 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6278 */
6279 static int arch_init_sched_domains(const cpumask_t *cpu_map)
6280 {
6281 cpumask_t cpu_default_map;
6282 int err;
6283
6284 /*
6285 * Setup mask for cpus without special case scheduling requirements.
6286 * For now this just excludes isolated cpus, but could be used to
6287 * exclude other special cases in the future.
6288 */
6289 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6290
6291 err = build_sched_domains(&cpu_default_map);
6292
6293 return err;
6294 }
6295
6296 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
6297 {
6298 free_sched_groups(cpu_map);
6299 }
6300
6301 /*
6302 * Detach sched domains from a group of cpus specified in cpu_map
6303 * These cpus will now be attached to the NULL domain
6304 */
6305 static void detach_destroy_domains(const cpumask_t *cpu_map)
6306 {
6307 int i;
6308
6309 for_each_cpu_mask(i, *cpu_map)
6310 cpu_attach_domain(NULL, i);
6311 synchronize_sched();
6312 arch_destroy_sched_domains(cpu_map);
6313 }
6314
6315 /*
6316 * Partition sched domains as specified by the cpumasks below.
6317 * This attaches all cpus from the cpumasks to the NULL domain,
6318 * waits for a RCU quiescent period, recalculates sched
6319 * domain information and then attaches them back to the
6320 * correct sched domains
6321 * Call with hotplug lock held
6322 */
6323 int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6324 {
6325 cpumask_t change_map;
6326 int err = 0;
6327
6328 cpus_and(*partition1, *partition1, cpu_online_map);
6329 cpus_and(*partition2, *partition2, cpu_online_map);
6330 cpus_or(change_map, *partition1, *partition2);
6331
6332 /* Detach sched domains from all of the affected cpus */
6333 detach_destroy_domains(&change_map);
6334 if (!cpus_empty(*partition1))
6335 err = build_sched_domains(partition1);
6336 if (!err && !cpus_empty(*partition2))
6337 err = build_sched_domains(partition2);
6338
6339 return err;
6340 }
6341
6342 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6343 static int arch_reinit_sched_domains(void)
6344 {
6345 int err;
6346
6347 mutex_lock(&sched_hotcpu_mutex);
6348 detach_destroy_domains(&cpu_online_map);
6349 err = arch_init_sched_domains(&cpu_online_map);
6350 mutex_unlock(&sched_hotcpu_mutex);
6351
6352 return err;
6353 }
6354
6355 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6356 {
6357 int ret;
6358
6359 if (buf[0] != '0' && buf[0] != '1')
6360 return -EINVAL;
6361
6362 if (smt)
6363 sched_smt_power_savings = (buf[0] == '1');
6364 else
6365 sched_mc_power_savings = (buf[0] == '1');
6366
6367 ret = arch_reinit_sched_domains();
6368
6369 return ret ? ret : count;
6370 }
6371
6372 #ifdef CONFIG_SCHED_MC
6373 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6374 {
6375 return sprintf(page, "%u\n", sched_mc_power_savings);
6376 }
6377 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6378 const char *buf, size_t count)
6379 {
6380 return sched_power_savings_store(buf, count, 0);
6381 }
6382 static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6383 sched_mc_power_savings_store);
6384 #endif
6385
6386 #ifdef CONFIG_SCHED_SMT
6387 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6388 {
6389 return sprintf(page, "%u\n", sched_smt_power_savings);
6390 }
6391 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6392 const char *buf, size_t count)
6393 {
6394 return sched_power_savings_store(buf, count, 1);
6395 }
6396 static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6397 sched_smt_power_savings_store);
6398 #endif
6399
6400 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6401 {
6402 int err = 0;
6403
6404 #ifdef CONFIG_SCHED_SMT
6405 if (smt_capable())
6406 err = sysfs_create_file(&cls->kset.kobj,
6407 &attr_sched_smt_power_savings.attr);
6408 #endif
6409 #ifdef CONFIG_SCHED_MC
6410 if (!err && mc_capable())
6411 err = sysfs_create_file(&cls->kset.kobj,
6412 &attr_sched_mc_power_savings.attr);
6413 #endif
6414 return err;
6415 }
6416 #endif
6417
6418 /*
6419 * Force a reinitialization of the sched domains hierarchy. The domains
6420 * and groups cannot be updated in place without racing with the balancing
6421 * code, so we temporarily attach all running cpus to the NULL domain
6422 * which will prevent rebalancing while the sched domains are recalculated.
6423 */
6424 static int update_sched_domains(struct notifier_block *nfb,
6425 unsigned long action, void *hcpu)
6426 {
6427 switch (action) {
6428 case CPU_UP_PREPARE:
6429 case CPU_UP_PREPARE_FROZEN:
6430 case CPU_DOWN_PREPARE:
6431 case CPU_DOWN_PREPARE_FROZEN:
6432 detach_destroy_domains(&cpu_online_map);
6433 return NOTIFY_OK;
6434
6435 case CPU_UP_CANCELED:
6436 case CPU_UP_CANCELED_FROZEN:
6437 case CPU_DOWN_FAILED:
6438 case CPU_DOWN_FAILED_FROZEN:
6439 case CPU_ONLINE:
6440 case CPU_ONLINE_FROZEN:
6441 case CPU_DEAD:
6442 case CPU_DEAD_FROZEN:
6443 /*
6444 * Fall through and re-initialise the domains.
6445 */
6446 break;
6447 default:
6448 return NOTIFY_DONE;
6449 }
6450
6451 /* The hotplug lock is already held by cpu_up/cpu_down */
6452 arch_init_sched_domains(&cpu_online_map);
6453
6454 return NOTIFY_OK;
6455 }
6456
6457 void __init sched_init_smp(void)
6458 {
6459 cpumask_t non_isolated_cpus;
6460
6461 mutex_lock(&sched_hotcpu_mutex);
6462 arch_init_sched_domains(&cpu_online_map);
6463 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6464 if (cpus_empty(non_isolated_cpus))
6465 cpu_set(smp_processor_id(), non_isolated_cpus);
6466 mutex_unlock(&sched_hotcpu_mutex);
6467 /* XXX: Theoretical race here - CPU may be hotplugged now */
6468 hotcpu_notifier(update_sched_domains, 0);
6469
6470 init_sched_domain_sysctl();
6471
6472 /* Move init over to a non-isolated CPU */
6473 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6474 BUG();
6475 }
6476 #else
6477 void __init sched_init_smp(void)
6478 {
6479 }
6480 #endif /* CONFIG_SMP */
6481
6482 int in_sched_functions(unsigned long addr)
6483 {
6484 /* Linker adds these: start and end of __sched functions */
6485 extern char __sched_text_start[], __sched_text_end[];
6486
6487 return in_lock_functions(addr) ||
6488 (addr >= (unsigned long)__sched_text_start
6489 && addr < (unsigned long)__sched_text_end);
6490 }
6491
6492 static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
6493 {
6494 cfs_rq->tasks_timeline = RB_ROOT;
6495 #ifdef CONFIG_FAIR_GROUP_SCHED
6496 cfs_rq->rq = rq;
6497 #endif
6498 }
6499
6500 void __init sched_init(void)
6501 {
6502 int highest_cpu = 0;
6503 int i, j;
6504
6505 /*
6506 * Link up the scheduling class hierarchy:
6507 */
6508 rt_sched_class.next = &fair_sched_class;
6509 fair_sched_class.next = &idle_sched_class;
6510 idle_sched_class.next = NULL;
6511
6512 for_each_possible_cpu(i) {
6513 struct rt_prio_array *array;
6514 struct rq *rq;
6515
6516 rq = cpu_rq(i);
6517 spin_lock_init(&rq->lock);
6518 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
6519 rq->nr_running = 0;
6520 rq->clock = 1;
6521 init_cfs_rq(&rq->cfs, rq);
6522 #ifdef CONFIG_FAIR_GROUP_SCHED
6523 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6524 {
6525 struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
6526 struct sched_entity *se =
6527 &per_cpu(init_sched_entity, i);
6528
6529 init_cfs_rq_p[i] = cfs_rq;
6530 init_cfs_rq(cfs_rq, rq);
6531 cfs_rq->tg = &init_task_grp;
6532 list_add(&cfs_rq->leaf_cfs_rq_list,
6533 &rq->leaf_cfs_rq_list);
6534
6535 init_sched_entity_p[i] = se;
6536 se->cfs_rq = &rq->cfs;
6537 se->my_q = cfs_rq;
6538 se->load.weight = init_task_grp_load;
6539 se->load.inv_weight =
6540 div64_64(1ULL<<32, init_task_grp_load);
6541 se->parent = NULL;
6542 }
6543 init_task_grp.shares = init_task_grp_load;
6544 #endif
6545
6546 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6547 rq->cpu_load[j] = 0;
6548 #ifdef CONFIG_SMP
6549 rq->sd = NULL;
6550 rq->active_balance = 0;
6551 rq->next_balance = jiffies;
6552 rq->push_cpu = 0;
6553 rq->cpu = i;
6554 rq->migration_thread = NULL;
6555 INIT_LIST_HEAD(&rq->migration_queue);
6556 #endif
6557 atomic_set(&rq->nr_iowait, 0);
6558
6559 array = &rq->rt.active;
6560 for (j = 0; j < MAX_RT_PRIO; j++) {
6561 INIT_LIST_HEAD(array->queue + j);
6562 __clear_bit(j, array->bitmap);
6563 }
6564 highest_cpu = i;
6565 /* delimiter for bitsearch: */
6566 __set_bit(MAX_RT_PRIO, array->bitmap);
6567 }
6568
6569 set_load_weight(&init_task);
6570
6571 #ifdef CONFIG_PREEMPT_NOTIFIERS
6572 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6573 #endif
6574
6575 #ifdef CONFIG_SMP
6576 nr_cpu_ids = highest_cpu + 1;
6577 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6578 #endif
6579
6580 #ifdef CONFIG_RT_MUTEXES
6581 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6582 #endif
6583
6584 /*
6585 * The boot idle thread does lazy MMU switching as well:
6586 */
6587 atomic_inc(&init_mm.mm_count);
6588 enter_lazy_tlb(&init_mm, current);
6589
6590 /*
6591 * Make us the idle thread. Technically, schedule() should not be
6592 * called from this thread, however somewhere below it might be,
6593 * but because we are the idle thread, we just pick up running again
6594 * when this runqueue becomes "idle".
6595 */
6596 init_idle(current, smp_processor_id());
6597 /*
6598 * During early bootup we pretend to be a normal task:
6599 */
6600 current->sched_class = &fair_sched_class;
6601 }
6602
6603 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6604 void __might_sleep(char *file, int line)
6605 {
6606 #ifdef in_atomic
6607 static unsigned long prev_jiffy; /* ratelimiting */
6608
6609 if ((in_atomic() || irqs_disabled()) &&
6610 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6611 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6612 return;
6613 prev_jiffy = jiffies;
6614 printk(KERN_ERR "BUG: sleeping function called from invalid"
6615 " context at %s:%d\n", file, line);
6616 printk("in_atomic():%d, irqs_disabled():%d\n",
6617 in_atomic(), irqs_disabled());
6618 debug_show_held_locks(current);
6619 if (irqs_disabled())
6620 print_irqtrace_events(current);
6621 dump_stack();
6622 }
6623 #endif
6624 }
6625 EXPORT_SYMBOL(__might_sleep);
6626 #endif
6627
6628 #ifdef CONFIG_MAGIC_SYSRQ
6629 void normalize_rt_tasks(void)
6630 {
6631 struct task_struct *g, *p;
6632 unsigned long flags;
6633 struct rq *rq;
6634 int on_rq;
6635
6636 read_lock_irq(&tasklist_lock);
6637 do_each_thread(g, p) {
6638 p->se.exec_start = 0;
6639 #ifdef CONFIG_SCHEDSTATS
6640 p->se.wait_start = 0;
6641 p->se.sleep_start = 0;
6642 p->se.block_start = 0;
6643 #endif
6644 task_rq(p)->clock = 0;
6645
6646 if (!rt_task(p)) {
6647 /*
6648 * Renice negative nice level userspace
6649 * tasks back to 0:
6650 */
6651 if (TASK_NICE(p) < 0 && p->mm)
6652 set_user_nice(p, 0);
6653 continue;
6654 }
6655
6656 spin_lock_irqsave(&p->pi_lock, flags);
6657 rq = __task_rq_lock(p);
6658 #ifdef CONFIG_SMP
6659 /*
6660 * Do not touch the migration thread:
6661 */
6662 if (p == rq->migration_thread)
6663 goto out_unlock;
6664 #endif
6665
6666 update_rq_clock(rq);
6667 on_rq = p->se.on_rq;
6668 if (on_rq)
6669 deactivate_task(rq, p, 0);
6670 __setscheduler(rq, p, SCHED_NORMAL, 0);
6671 if (on_rq) {
6672 activate_task(rq, p, 0);
6673 resched_task(rq->curr);
6674 }
6675 #ifdef CONFIG_SMP
6676 out_unlock:
6677 #endif
6678 __task_rq_unlock(rq);
6679 spin_unlock_irqrestore(&p->pi_lock, flags);
6680 } while_each_thread(g, p);
6681
6682 read_unlock_irq(&tasklist_lock);
6683 }
6684
6685 #endif /* CONFIG_MAGIC_SYSRQ */
6686
6687 #ifdef CONFIG_IA64
6688 /*
6689 * These functions are only useful for the IA64 MCA handling.
6690 *
6691 * They can only be called when the whole system has been
6692 * stopped - every CPU needs to be quiescent, and no scheduling
6693 * activity can take place. Using them for anything else would
6694 * be a serious bug, and as a result, they aren't even visible
6695 * under any other configuration.
6696 */
6697
6698 /**
6699 * curr_task - return the current task for a given cpu.
6700 * @cpu: the processor in question.
6701 *
6702 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6703 */
6704 struct task_struct *curr_task(int cpu)
6705 {
6706 return cpu_curr(cpu);
6707 }
6708
6709 /**
6710 * set_curr_task - set the current task for a given cpu.
6711 * @cpu: the processor in question.
6712 * @p: the task pointer to set.
6713 *
6714 * Description: This function must only be used when non-maskable interrupts
6715 * are serviced on a separate stack. It allows the architecture to switch the
6716 * notion of the current task on a cpu in a non-blocking manner. This function
6717 * must be called with all CPU's synchronized, and interrupts disabled, the
6718 * and caller must save the original value of the current task (see
6719 * curr_task() above) and restore that value before reenabling interrupts and
6720 * re-starting the system.
6721 *
6722 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6723 */
6724 void set_curr_task(int cpu, struct task_struct *p)
6725 {
6726 cpu_curr(cpu) = p;
6727 }
6728
6729 #endif
6730
6731 #ifdef CONFIG_FAIR_GROUP_SCHED
6732
6733 /* allocate runqueue etc for a new task group */
6734 struct task_grp *sched_create_group(void)
6735 {
6736 struct task_grp *tg;
6737 struct cfs_rq *cfs_rq;
6738 struct sched_entity *se;
6739 struct rq *rq;
6740 int i;
6741
6742 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6743 if (!tg)
6744 return ERR_PTR(-ENOMEM);
6745
6746 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
6747 if (!tg->cfs_rq)
6748 goto err;
6749 tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
6750 if (!tg->se)
6751 goto err;
6752
6753 for_each_possible_cpu(i) {
6754 rq = cpu_rq(i);
6755
6756 cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
6757 cpu_to_node(i));
6758 if (!cfs_rq)
6759 goto err;
6760
6761 se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
6762 cpu_to_node(i));
6763 if (!se)
6764 goto err;
6765
6766 memset(cfs_rq, 0, sizeof(struct cfs_rq));
6767 memset(se, 0, sizeof(struct sched_entity));
6768
6769 tg->cfs_rq[i] = cfs_rq;
6770 init_cfs_rq(cfs_rq, rq);
6771 cfs_rq->tg = tg;
6772
6773 tg->se[i] = se;
6774 se->cfs_rq = &rq->cfs;
6775 se->my_q = cfs_rq;
6776 se->load.weight = NICE_0_LOAD;
6777 se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
6778 se->parent = NULL;
6779 }
6780
6781 for_each_possible_cpu(i) {
6782 rq = cpu_rq(i);
6783 cfs_rq = tg->cfs_rq[i];
6784 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
6785 }
6786
6787 tg->shares = NICE_0_LOAD;
6788
6789 return tg;
6790
6791 err:
6792 for_each_possible_cpu(i) {
6793 if (tg->cfs_rq && tg->cfs_rq[i])
6794 kfree(tg->cfs_rq[i]);
6795 if (tg->se && tg->se[i])
6796 kfree(tg->se[i]);
6797 }
6798 if (tg->cfs_rq)
6799 kfree(tg->cfs_rq);
6800 if (tg->se)
6801 kfree(tg->se);
6802 if (tg)
6803 kfree(tg);
6804
6805 return ERR_PTR(-ENOMEM);
6806 }
6807
6808 /* rcu callback to free various structures associated with a task group */
6809 static void free_sched_group(struct rcu_head *rhp)
6810 {
6811 struct cfs_rq *cfs_rq = container_of(rhp, struct cfs_rq, rcu);
6812 struct task_grp *tg = cfs_rq->tg;
6813 struct sched_entity *se;
6814 int i;
6815
6816 /* now it should be safe to free those cfs_rqs */
6817 for_each_possible_cpu(i) {
6818 cfs_rq = tg->cfs_rq[i];
6819 kfree(cfs_rq);
6820
6821 se = tg->se[i];
6822 kfree(se);
6823 }
6824
6825 kfree(tg->cfs_rq);
6826 kfree(tg->se);
6827 kfree(tg);
6828 }
6829
6830 /* Destroy runqueue etc associated with a task group */
6831 void sched_destroy_group(struct task_grp *tg)
6832 {
6833 struct cfs_rq *cfs_rq;
6834 int i;
6835
6836 for_each_possible_cpu(i) {
6837 cfs_rq = tg->cfs_rq[i];
6838 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
6839 }
6840
6841 cfs_rq = tg->cfs_rq[0];
6842
6843 /* wait for possible concurrent references to cfs_rqs complete */
6844 call_rcu(&cfs_rq->rcu, free_sched_group);
6845 }
6846
6847 /* change task's runqueue when it moves between groups.
6848 * The caller of this function should have put the task in its new group
6849 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
6850 * reflect its new group.
6851 */
6852 void sched_move_task(struct task_struct *tsk)
6853 {
6854 int on_rq, running;
6855 unsigned long flags;
6856 struct rq *rq;
6857
6858 rq = task_rq_lock(tsk, &flags);
6859
6860 if (tsk->sched_class != &fair_sched_class)
6861 goto done;
6862
6863 update_rq_clock(rq);
6864
6865 running = task_running(rq, tsk);
6866 on_rq = tsk->se.on_rq;
6867
6868 if (on_rq) {
6869 dequeue_task(rq, tsk, 0);
6870 if (unlikely(running))
6871 tsk->sched_class->put_prev_task(rq, tsk);
6872 }
6873
6874 set_task_cfs_rq(tsk);
6875
6876 if (on_rq) {
6877 if (unlikely(running))
6878 tsk->sched_class->set_curr_task(rq);
6879 enqueue_task(rq, tsk, 0);
6880 }
6881
6882 done:
6883 task_rq_unlock(rq, &flags);
6884 }
6885
6886 static void set_se_shares(struct sched_entity *se, unsigned long shares)
6887 {
6888 struct cfs_rq *cfs_rq = se->cfs_rq;
6889 struct rq *rq = cfs_rq->rq;
6890 int on_rq;
6891
6892 spin_lock_irq(&rq->lock);
6893
6894 on_rq = se->on_rq;
6895 if (on_rq)
6896 dequeue_entity(cfs_rq, se, 0);
6897
6898 se->load.weight = shares;
6899 se->load.inv_weight = div64_64((1ULL<<32), shares);
6900
6901 if (on_rq)
6902 enqueue_entity(cfs_rq, se, 0);
6903
6904 spin_unlock_irq(&rq->lock);
6905 }
6906
6907 int sched_group_set_shares(struct task_grp *tg, unsigned long shares)
6908 {
6909 int i;
6910
6911 if (tg->shares == shares)
6912 return 0;
6913
6914 /* return -EINVAL if the new value is not sane */
6915
6916 tg->shares = shares;
6917 for_each_possible_cpu(i)
6918 set_se_shares(tg->se[i], shares);
6919
6920 return 0;
6921 }
6922
6923 #endif /* CONFIG_FAIR_GROUP_SCHED */
This page took 0.163024 seconds and 4 git commands to generate.