4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/stop_machine.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/debugfs.h>
71 #include <linux/ctype.h>
72 #include <linux/ftrace.h>
73 #include <linux/slab.h>
76 #include <asm/irq_regs.h>
77 #include <asm/mutex.h>
78 #ifdef CONFIG_PARAVIRT
79 #include <asm/paravirt.h>
82 #include "sched_cpupri.h"
83 #include "workqueue_sched.h"
84 #include "sched_autogroup.h"
86 #define CREATE_TRACE_POINTS
87 #include <trace/events/sched.h>
90 * Convert user-nice values [ -20 ... 0 ... 19 ]
91 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
94 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
95 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
96 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
99 * 'User priority' is the nice value converted to something we
100 * can work with better when scaling various scheduler parameters,
101 * it's a [ 0 ... 39 ] range.
103 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
104 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
105 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
108 * Helpers for converting nanosecond timing to jiffy resolution
110 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
112 #define NICE_0_LOAD SCHED_LOAD_SCALE
113 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
116 * These are the 'tuning knobs' of the scheduler:
118 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
119 * Timeslices get refilled after they expire.
121 #define DEF_TIMESLICE (100 * HZ / 1000)
124 * single value that denotes runtime == period, ie unlimited time.
126 #define RUNTIME_INF ((u64)~0ULL)
128 static inline int rt_policy(int policy
)
130 if (policy
== SCHED_FIFO
|| policy
== SCHED_RR
)
135 static inline int task_has_rt_policy(struct task_struct
*p
)
137 return rt_policy(p
->policy
);
141 * This is the priority-queue data structure of the RT scheduling class:
143 struct rt_prio_array
{
144 DECLARE_BITMAP(bitmap
, MAX_RT_PRIO
+1); /* include 1 bit for delimiter */
145 struct list_head queue
[MAX_RT_PRIO
];
148 struct rt_bandwidth
{
149 /* nests inside the rq lock: */
150 raw_spinlock_t rt_runtime_lock
;
153 struct hrtimer rt_period_timer
;
156 static struct rt_bandwidth def_rt_bandwidth
;
158 static int do_sched_rt_period_timer(struct rt_bandwidth
*rt_b
, int overrun
);
160 static enum hrtimer_restart
sched_rt_period_timer(struct hrtimer
*timer
)
162 struct rt_bandwidth
*rt_b
=
163 container_of(timer
, struct rt_bandwidth
, rt_period_timer
);
169 now
= hrtimer_cb_get_time(timer
);
170 overrun
= hrtimer_forward(timer
, now
, rt_b
->rt_period
);
175 idle
= do_sched_rt_period_timer(rt_b
, overrun
);
178 return idle
? HRTIMER_NORESTART
: HRTIMER_RESTART
;
182 void init_rt_bandwidth(struct rt_bandwidth
*rt_b
, u64 period
, u64 runtime
)
184 rt_b
->rt_period
= ns_to_ktime(period
);
185 rt_b
->rt_runtime
= runtime
;
187 raw_spin_lock_init(&rt_b
->rt_runtime_lock
);
189 hrtimer_init(&rt_b
->rt_period_timer
,
190 CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
191 rt_b
->rt_period_timer
.function
= sched_rt_period_timer
;
194 static inline int rt_bandwidth_enabled(void)
196 return sysctl_sched_rt_runtime
>= 0;
199 static void start_bandwidth_timer(struct hrtimer
*period_timer
, ktime_t period
)
202 ktime_t soft
, hard
, now
;
205 if (hrtimer_active(period_timer
))
208 now
= hrtimer_cb_get_time(period_timer
);
209 hrtimer_forward(period_timer
, now
, period
);
211 soft
= hrtimer_get_softexpires(period_timer
);
212 hard
= hrtimer_get_expires(period_timer
);
213 delta
= ktime_to_ns(ktime_sub(hard
, soft
));
214 __hrtimer_start_range_ns(period_timer
, soft
, delta
,
215 HRTIMER_MODE_ABS_PINNED
, 0);
219 static void start_rt_bandwidth(struct rt_bandwidth
*rt_b
)
221 if (!rt_bandwidth_enabled() || rt_b
->rt_runtime
== RUNTIME_INF
)
224 if (hrtimer_active(&rt_b
->rt_period_timer
))
227 raw_spin_lock(&rt_b
->rt_runtime_lock
);
228 start_bandwidth_timer(&rt_b
->rt_period_timer
, rt_b
->rt_period
);
229 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
232 #ifdef CONFIG_RT_GROUP_SCHED
233 static void destroy_rt_bandwidth(struct rt_bandwidth
*rt_b
)
235 hrtimer_cancel(&rt_b
->rt_period_timer
);
240 * sched_domains_mutex serializes calls to init_sched_domains,
241 * detach_destroy_domains and partition_sched_domains.
243 static DEFINE_MUTEX(sched_domains_mutex
);
245 #ifdef CONFIG_CGROUP_SCHED
247 #include <linux/cgroup.h>
251 static LIST_HEAD(task_groups
);
253 struct cfs_bandwidth
{
254 #ifdef CONFIG_CFS_BANDWIDTH
258 s64 hierarchal_quota
;
261 int idle
, timer_active
;
262 struct hrtimer period_timer
, slack_timer
;
263 struct list_head throttled_cfs_rq
;
266 int nr_periods
, nr_throttled
;
271 /* task group related information */
273 struct cgroup_subsys_state css
;
275 #ifdef CONFIG_FAIR_GROUP_SCHED
276 /* schedulable entities of this group on each cpu */
277 struct sched_entity
**se
;
278 /* runqueue "owned" by this group on each cpu */
279 struct cfs_rq
**cfs_rq
;
280 unsigned long shares
;
282 atomic_t load_weight
;
285 #ifdef CONFIG_RT_GROUP_SCHED
286 struct sched_rt_entity
**rt_se
;
287 struct rt_rq
**rt_rq
;
289 struct rt_bandwidth rt_bandwidth
;
293 struct list_head list
;
295 struct task_group
*parent
;
296 struct list_head siblings
;
297 struct list_head children
;
299 #ifdef CONFIG_SCHED_AUTOGROUP
300 struct autogroup
*autogroup
;
303 struct cfs_bandwidth cfs_bandwidth
;
306 /* task_group_lock serializes the addition/removal of task groups */
307 static DEFINE_SPINLOCK(task_group_lock
);
309 #ifdef CONFIG_FAIR_GROUP_SCHED
311 # define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
314 * A weight of 0 or 1 can cause arithmetics problems.
315 * A weight of a cfs_rq is the sum of weights of which entities
316 * are queued on this cfs_rq, so a weight of a entity should not be
317 * too large, so as the shares value of a task group.
318 * (The default weight is 1024 - so there's no practical
319 * limitation from this.)
321 #define MIN_SHARES (1UL << 1)
322 #define MAX_SHARES (1UL << 18)
324 static int root_task_group_load
= ROOT_TASK_GROUP_LOAD
;
327 /* Default task group.
328 * Every task in system belong to this group at bootup.
330 struct task_group root_task_group
;
332 #endif /* CONFIG_CGROUP_SCHED */
334 /* CFS-related fields in a runqueue */
336 struct load_weight load
;
337 unsigned long nr_running
, h_nr_running
;
342 u64 min_vruntime_copy
;
345 struct rb_root tasks_timeline
;
346 struct rb_node
*rb_leftmost
;
348 struct list_head tasks
;
349 struct list_head
*balance_iterator
;
352 * 'curr' points to currently running entity on this cfs_rq.
353 * It is set to NULL otherwise (i.e when none are currently running).
355 struct sched_entity
*curr
, *next
, *last
, *skip
;
357 #ifdef CONFIG_SCHED_DEBUG
358 unsigned int nr_spread_over
;
361 #ifdef CONFIG_FAIR_GROUP_SCHED
362 struct rq
*rq
; /* cpu runqueue to which this cfs_rq is attached */
365 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
366 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
367 * (like users, containers etc.)
369 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
370 * list is used during load balance.
373 struct list_head leaf_cfs_rq_list
;
374 struct task_group
*tg
; /* group that "owns" this runqueue */
378 * the part of load.weight contributed by tasks
380 unsigned long task_weight
;
383 * h_load = weight * f(tg)
385 * Where f(tg) is the recursive weight fraction assigned to
388 unsigned long h_load
;
391 * Maintaining per-cpu shares distribution for group scheduling
393 * load_stamp is the last time we updated the load average
394 * load_last is the last time we updated the load average and saw load
395 * load_unacc_exec_time is currently unaccounted execution time
399 u64 load_stamp
, load_last
, load_unacc_exec_time
;
401 unsigned long load_contribution
;
403 #ifdef CONFIG_CFS_BANDWIDTH
406 s64 runtime_remaining
;
408 u64 throttled_timestamp
;
409 int throttled
, throttle_count
;
410 struct list_head throttled_list
;
415 #ifdef CONFIG_FAIR_GROUP_SCHED
416 #ifdef CONFIG_CFS_BANDWIDTH
417 static inline struct cfs_bandwidth
*tg_cfs_bandwidth(struct task_group
*tg
)
419 return &tg
->cfs_bandwidth
;
422 static inline u64
default_cfs_period(void);
423 static int do_sched_cfs_period_timer(struct cfs_bandwidth
*cfs_b
, int overrun
);
424 static void do_sched_cfs_slack_timer(struct cfs_bandwidth
*cfs_b
);
426 static enum hrtimer_restart
sched_cfs_slack_timer(struct hrtimer
*timer
)
428 struct cfs_bandwidth
*cfs_b
=
429 container_of(timer
, struct cfs_bandwidth
, slack_timer
);
430 do_sched_cfs_slack_timer(cfs_b
);
432 return HRTIMER_NORESTART
;
435 static enum hrtimer_restart
sched_cfs_period_timer(struct hrtimer
*timer
)
437 struct cfs_bandwidth
*cfs_b
=
438 container_of(timer
, struct cfs_bandwidth
, period_timer
);
444 now
= hrtimer_cb_get_time(timer
);
445 overrun
= hrtimer_forward(timer
, now
, cfs_b
->period
);
450 idle
= do_sched_cfs_period_timer(cfs_b
, overrun
);
453 return idle
? HRTIMER_NORESTART
: HRTIMER_RESTART
;
456 static void init_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
)
458 raw_spin_lock_init(&cfs_b
->lock
);
460 cfs_b
->quota
= RUNTIME_INF
;
461 cfs_b
->period
= ns_to_ktime(default_cfs_period());
463 INIT_LIST_HEAD(&cfs_b
->throttled_cfs_rq
);
464 hrtimer_init(&cfs_b
->period_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
465 cfs_b
->period_timer
.function
= sched_cfs_period_timer
;
466 hrtimer_init(&cfs_b
->slack_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
467 cfs_b
->slack_timer
.function
= sched_cfs_slack_timer
;
470 static void init_cfs_rq_runtime(struct cfs_rq
*cfs_rq
)
472 cfs_rq
->runtime_enabled
= 0;
473 INIT_LIST_HEAD(&cfs_rq
->throttled_list
);
476 /* requires cfs_b->lock, may release to reprogram timer */
477 static void __start_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
)
480 * The timer may be active because we're trying to set a new bandwidth
481 * period or because we're racing with the tear-down path
482 * (timer_active==0 becomes visible before the hrtimer call-back
483 * terminates). In either case we ensure that it's re-programmed
485 while (unlikely(hrtimer_active(&cfs_b
->period_timer
))) {
486 raw_spin_unlock(&cfs_b
->lock
);
487 /* ensure cfs_b->lock is available while we wait */
488 hrtimer_cancel(&cfs_b
->period_timer
);
490 raw_spin_lock(&cfs_b
->lock
);
491 /* if someone else restarted the timer then we're done */
492 if (cfs_b
->timer_active
)
496 cfs_b
->timer_active
= 1;
497 start_bandwidth_timer(&cfs_b
->period_timer
, cfs_b
->period
);
500 static void destroy_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
)
502 hrtimer_cancel(&cfs_b
->period_timer
);
503 hrtimer_cancel(&cfs_b
->slack_timer
);
506 static void init_cfs_rq_runtime(struct cfs_rq
*cfs_rq
) {}
507 static void init_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
) {}
508 static void destroy_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
) {}
510 static inline struct cfs_bandwidth
*tg_cfs_bandwidth(struct task_group
*tg
)
514 #endif /* CONFIG_CFS_BANDWIDTH */
515 #endif /* CONFIG_FAIR_GROUP_SCHED */
517 /* Real-Time classes' related field in a runqueue: */
519 struct rt_prio_array active
;
520 unsigned long rt_nr_running
;
521 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
523 int curr
; /* highest queued rt task prio */
525 int next
; /* next highest */
530 unsigned long rt_nr_migratory
;
531 unsigned long rt_nr_total
;
533 struct plist_head pushable_tasks
;
538 /* Nests inside the rq lock: */
539 raw_spinlock_t rt_runtime_lock
;
541 #ifdef CONFIG_RT_GROUP_SCHED
542 unsigned long rt_nr_boosted
;
545 struct list_head leaf_rt_rq_list
;
546 struct task_group
*tg
;
553 * We add the notion of a root-domain which will be used to define per-domain
554 * variables. Each exclusive cpuset essentially defines an island domain by
555 * fully partitioning the member cpus from any other cpuset. Whenever a new
556 * exclusive cpuset is created, we also create and attach a new root-domain
565 cpumask_var_t online
;
568 * The "RT overload" flag: it gets set if a CPU has more than
569 * one runnable RT task.
571 cpumask_var_t rto_mask
;
572 struct cpupri cpupri
;
576 * By default the system creates a single root-domain with all cpus as
577 * members (mimicking the global state we have today).
579 static struct root_domain def_root_domain
;
581 #endif /* CONFIG_SMP */
584 * This is the main, per-CPU runqueue data structure.
586 * Locking rule: those places that want to lock multiple runqueues
587 * (such as the load balancing or the thread migration code), lock
588 * acquire operations must be ordered by ascending &runqueue.
595 * nr_running and cpu_load should be in the same cacheline because
596 * remote CPUs use both these fields when doing load calculation.
598 unsigned long nr_running
;
599 #define CPU_LOAD_IDX_MAX 5
600 unsigned long cpu_load
[CPU_LOAD_IDX_MAX
];
601 unsigned long last_load_update_tick
;
604 unsigned char nohz_balance_kick
;
606 int skip_clock_update
;
608 /* capture load from *all* tasks on this cpu: */
609 struct load_weight load
;
610 unsigned long nr_load_updates
;
616 #ifdef CONFIG_FAIR_GROUP_SCHED
617 /* list of leaf cfs_rq on this cpu: */
618 struct list_head leaf_cfs_rq_list
;
620 #ifdef CONFIG_RT_GROUP_SCHED
621 struct list_head leaf_rt_rq_list
;
625 * This is part of a global counter where only the total sum
626 * over all CPUs matters. A task can increase this counter on
627 * one CPU and if it got migrated afterwards it may decrease
628 * it on another CPU. Always updated under the runqueue lock:
630 unsigned long nr_uninterruptible
;
632 struct task_struct
*curr
, *idle
, *stop
;
633 unsigned long next_balance
;
634 struct mm_struct
*prev_mm
;
642 struct root_domain
*rd
;
643 struct sched_domain
*sd
;
645 unsigned long cpu_power
;
647 unsigned char idle_balance
;
648 /* For active balancing */
652 struct cpu_stop_work active_balance_work
;
653 /* cpu of this runqueue: */
663 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
666 #ifdef CONFIG_PARAVIRT
669 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
670 u64 prev_steal_time_rq
;
673 /* calc_load related fields */
674 unsigned long calc_load_update
;
675 long calc_load_active
;
677 #ifdef CONFIG_SCHED_HRTICK
679 int hrtick_csd_pending
;
680 struct call_single_data hrtick_csd
;
682 struct hrtimer hrtick_timer
;
685 #ifdef CONFIG_SCHEDSTATS
687 struct sched_info rq_sched_info
;
688 unsigned long long rq_cpu_time
;
689 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
691 /* sys_sched_yield() stats */
692 unsigned int yld_count
;
694 /* schedule() stats */
695 unsigned int sched_switch
;
696 unsigned int sched_count
;
697 unsigned int sched_goidle
;
699 /* try_to_wake_up() stats */
700 unsigned int ttwu_count
;
701 unsigned int ttwu_local
;
705 struct llist_head wake_list
;
709 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
712 static void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
, int flags
);
714 static inline int cpu_of(struct rq
*rq
)
723 #define rcu_dereference_check_sched_domain(p) \
724 rcu_dereference_check((p), \
725 lockdep_is_held(&sched_domains_mutex))
728 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
729 * See detach_destroy_domains: synchronize_sched for details.
731 * The domain tree of any CPU may only be accessed from within
732 * preempt-disabled sections.
734 #define for_each_domain(cpu, __sd) \
735 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
737 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
738 #define this_rq() (&__get_cpu_var(runqueues))
739 #define task_rq(p) cpu_rq(task_cpu(p))
740 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
741 #define raw_rq() (&__raw_get_cpu_var(runqueues))
743 #ifdef CONFIG_CGROUP_SCHED
746 * Return the group to which this tasks belongs.
748 * We use task_subsys_state_check() and extend the RCU verification with
749 * pi->lock and rq->lock because cpu_cgroup_attach() holds those locks for each
750 * task it moves into the cgroup. Therefore by holding either of those locks,
751 * we pin the task to the current cgroup.
753 static inline struct task_group
*task_group(struct task_struct
*p
)
755 struct task_group
*tg
;
756 struct cgroup_subsys_state
*css
;
758 css
= task_subsys_state_check(p
, cpu_cgroup_subsys_id
,
759 lockdep_is_held(&p
->pi_lock
) ||
760 lockdep_is_held(&task_rq(p
)->lock
));
761 tg
= container_of(css
, struct task_group
, css
);
763 return autogroup_task_group(p
, tg
);
766 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
767 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
)
769 #ifdef CONFIG_FAIR_GROUP_SCHED
770 p
->se
.cfs_rq
= task_group(p
)->cfs_rq
[cpu
];
771 p
->se
.parent
= task_group(p
)->se
[cpu
];
774 #ifdef CONFIG_RT_GROUP_SCHED
775 p
->rt
.rt_rq
= task_group(p
)->rt_rq
[cpu
];
776 p
->rt
.parent
= task_group(p
)->rt_se
[cpu
];
780 #else /* CONFIG_CGROUP_SCHED */
782 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
) { }
783 static inline struct task_group
*task_group(struct task_struct
*p
)
788 #endif /* CONFIG_CGROUP_SCHED */
790 static void update_rq_clock_task(struct rq
*rq
, s64 delta
);
792 static void update_rq_clock(struct rq
*rq
)
796 if (rq
->skip_clock_update
> 0)
799 delta
= sched_clock_cpu(cpu_of(rq
)) - rq
->clock
;
801 update_rq_clock_task(rq
, delta
);
805 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
807 #ifdef CONFIG_SCHED_DEBUG
808 # define const_debug __read_mostly
810 # define const_debug static const
814 * runqueue_is_locked - Returns true if the current cpu runqueue is locked
815 * @cpu: the processor in question.
817 * This interface allows printk to be called with the runqueue lock
818 * held and know whether or not it is OK to wake up the klogd.
820 int runqueue_is_locked(int cpu
)
822 return raw_spin_is_locked(&cpu_rq(cpu
)->lock
);
826 * Debugging: various feature bits
829 #define SCHED_FEAT(name, enabled) \
830 __SCHED_FEAT_##name ,
833 #include "sched_features.h"
838 #define SCHED_FEAT(name, enabled) \
839 (1UL << __SCHED_FEAT_##name) * enabled |
841 const_debug
unsigned int sysctl_sched_features
=
842 #include "sched_features.h"
847 #ifdef CONFIG_SCHED_DEBUG
848 #define SCHED_FEAT(name, enabled) \
851 static __read_mostly
char *sched_feat_names
[] = {
852 #include "sched_features.h"
858 static int sched_feat_show(struct seq_file
*m
, void *v
)
862 for (i
= 0; sched_feat_names
[i
]; i
++) {
863 if (!(sysctl_sched_features
& (1UL << i
)))
865 seq_printf(m
, "%s ", sched_feat_names
[i
]);
873 sched_feat_write(struct file
*filp
, const char __user
*ubuf
,
874 size_t cnt
, loff_t
*ppos
)
884 if (copy_from_user(&buf
, ubuf
, cnt
))
890 if (strncmp(cmp
, "NO_", 3) == 0) {
895 for (i
= 0; sched_feat_names
[i
]; i
++) {
896 if (strcmp(cmp
, sched_feat_names
[i
]) == 0) {
898 sysctl_sched_features
&= ~(1UL << i
);
900 sysctl_sched_features
|= (1UL << i
);
905 if (!sched_feat_names
[i
])
913 static int sched_feat_open(struct inode
*inode
, struct file
*filp
)
915 return single_open(filp
, sched_feat_show
, NULL
);
918 static const struct file_operations sched_feat_fops
= {
919 .open
= sched_feat_open
,
920 .write
= sched_feat_write
,
923 .release
= single_release
,
926 static __init
int sched_init_debug(void)
928 debugfs_create_file("sched_features", 0644, NULL
, NULL
,
933 late_initcall(sched_init_debug
);
937 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
940 * Number of tasks to iterate in a single balance run.
941 * Limited because this is done with IRQs disabled.
943 const_debug
unsigned int sysctl_sched_nr_migrate
= 32;
946 * period over which we average the RT time consumption, measured
951 const_debug
unsigned int sysctl_sched_time_avg
= MSEC_PER_SEC
;
954 * period over which we measure -rt task cpu usage in us.
957 unsigned int sysctl_sched_rt_period
= 1000000;
959 static __read_mostly
int scheduler_running
;
962 * part of the period that we allow rt tasks to run in us.
965 int sysctl_sched_rt_runtime
= 950000;
967 static inline u64
global_rt_period(void)
969 return (u64
)sysctl_sched_rt_period
* NSEC_PER_USEC
;
972 static inline u64
global_rt_runtime(void)
974 if (sysctl_sched_rt_runtime
< 0)
977 return (u64
)sysctl_sched_rt_runtime
* NSEC_PER_USEC
;
980 #ifndef prepare_arch_switch
981 # define prepare_arch_switch(next) do { } while (0)
983 #ifndef finish_arch_switch
984 # define finish_arch_switch(prev) do { } while (0)
987 static inline int task_current(struct rq
*rq
, struct task_struct
*p
)
989 return rq
->curr
== p
;
992 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
997 return task_current(rq
, p
);
1001 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1002 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
1006 * We can optimise this out completely for !SMP, because the
1007 * SMP rebalancing from interrupt is the only thing that cares
1014 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
1018 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1019 * We must ensure this doesn't happen until the switch is completely
1025 #ifdef CONFIG_DEBUG_SPINLOCK
1026 /* this is a valid case when another task releases the spinlock */
1027 rq
->lock
.owner
= current
;
1030 * If we are tracking spinlock dependencies then we have to
1031 * fix up the runqueue lock - which gets 'carried over' from
1032 * prev into current:
1034 spin_acquire(&rq
->lock
.dep_map
, 0, 0, _THIS_IP_
);
1036 raw_spin_unlock_irq(&rq
->lock
);
1039 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
1040 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
1044 * We can optimise this out completely for !SMP, because the
1045 * SMP rebalancing from interrupt is the only thing that cares
1050 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1051 raw_spin_unlock_irq(&rq
->lock
);
1053 raw_spin_unlock(&rq
->lock
);
1057 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
1061 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1062 * We must ensure this doesn't happen until the switch is completely
1068 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1072 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1075 * __task_rq_lock - lock the rq @p resides on.
1077 static inline struct rq
*__task_rq_lock(struct task_struct
*p
)
1078 __acquires(rq
->lock
)
1082 lockdep_assert_held(&p
->pi_lock
);
1086 raw_spin_lock(&rq
->lock
);
1087 if (likely(rq
== task_rq(p
)))
1089 raw_spin_unlock(&rq
->lock
);
1094 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1096 static struct rq
*task_rq_lock(struct task_struct
*p
, unsigned long *flags
)
1097 __acquires(p
->pi_lock
)
1098 __acquires(rq
->lock
)
1103 raw_spin_lock_irqsave(&p
->pi_lock
, *flags
);
1105 raw_spin_lock(&rq
->lock
);
1106 if (likely(rq
== task_rq(p
)))
1108 raw_spin_unlock(&rq
->lock
);
1109 raw_spin_unlock_irqrestore(&p
->pi_lock
, *flags
);
1113 static void __task_rq_unlock(struct rq
*rq
)
1114 __releases(rq
->lock
)
1116 raw_spin_unlock(&rq
->lock
);
1120 task_rq_unlock(struct rq
*rq
, struct task_struct
*p
, unsigned long *flags
)
1121 __releases(rq
->lock
)
1122 __releases(p
->pi_lock
)
1124 raw_spin_unlock(&rq
->lock
);
1125 raw_spin_unlock_irqrestore(&p
->pi_lock
, *flags
);
1129 * this_rq_lock - lock this runqueue and disable interrupts.
1131 static struct rq
*this_rq_lock(void)
1132 __acquires(rq
->lock
)
1136 local_irq_disable();
1138 raw_spin_lock(&rq
->lock
);
1143 #ifdef CONFIG_SCHED_HRTICK
1145 * Use HR-timers to deliver accurate preemption points.
1147 * Its all a bit involved since we cannot program an hrt while holding the
1148 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1151 * When we get rescheduled we reprogram the hrtick_timer outside of the
1157 * - enabled by features
1158 * - hrtimer is actually high res
1160 static inline int hrtick_enabled(struct rq
*rq
)
1162 if (!sched_feat(HRTICK
))
1164 if (!cpu_active(cpu_of(rq
)))
1166 return hrtimer_is_hres_active(&rq
->hrtick_timer
);
1169 static void hrtick_clear(struct rq
*rq
)
1171 if (hrtimer_active(&rq
->hrtick_timer
))
1172 hrtimer_cancel(&rq
->hrtick_timer
);
1176 * High-resolution timer tick.
1177 * Runs from hardirq context with interrupts disabled.
1179 static enum hrtimer_restart
hrtick(struct hrtimer
*timer
)
1181 struct rq
*rq
= container_of(timer
, struct rq
, hrtick_timer
);
1183 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
1185 raw_spin_lock(&rq
->lock
);
1186 update_rq_clock(rq
);
1187 rq
->curr
->sched_class
->task_tick(rq
, rq
->curr
, 1);
1188 raw_spin_unlock(&rq
->lock
);
1190 return HRTIMER_NORESTART
;
1195 * called from hardirq (IPI) context
1197 static void __hrtick_start(void *arg
)
1199 struct rq
*rq
= arg
;
1201 raw_spin_lock(&rq
->lock
);
1202 hrtimer_restart(&rq
->hrtick_timer
);
1203 rq
->hrtick_csd_pending
= 0;
1204 raw_spin_unlock(&rq
->lock
);
1208 * Called to set the hrtick timer state.
1210 * called with rq->lock held and irqs disabled
1212 static void hrtick_start(struct rq
*rq
, u64 delay
)
1214 struct hrtimer
*timer
= &rq
->hrtick_timer
;
1215 ktime_t time
= ktime_add_ns(timer
->base
->get_time(), delay
);
1217 hrtimer_set_expires(timer
, time
);
1219 if (rq
== this_rq()) {
1220 hrtimer_restart(timer
);
1221 } else if (!rq
->hrtick_csd_pending
) {
1222 __smp_call_function_single(cpu_of(rq
), &rq
->hrtick_csd
, 0);
1223 rq
->hrtick_csd_pending
= 1;
1228 hotplug_hrtick(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
1230 int cpu
= (int)(long)hcpu
;
1233 case CPU_UP_CANCELED
:
1234 case CPU_UP_CANCELED_FROZEN
:
1235 case CPU_DOWN_PREPARE
:
1236 case CPU_DOWN_PREPARE_FROZEN
:
1238 case CPU_DEAD_FROZEN
:
1239 hrtick_clear(cpu_rq(cpu
));
1246 static __init
void init_hrtick(void)
1248 hotcpu_notifier(hotplug_hrtick
, 0);
1252 * Called to set the hrtick timer state.
1254 * called with rq->lock held and irqs disabled
1256 static void hrtick_start(struct rq
*rq
, u64 delay
)
1258 __hrtimer_start_range_ns(&rq
->hrtick_timer
, ns_to_ktime(delay
), 0,
1259 HRTIMER_MODE_REL_PINNED
, 0);
1262 static inline void init_hrtick(void)
1265 #endif /* CONFIG_SMP */
1267 static void init_rq_hrtick(struct rq
*rq
)
1270 rq
->hrtick_csd_pending
= 0;
1272 rq
->hrtick_csd
.flags
= 0;
1273 rq
->hrtick_csd
.func
= __hrtick_start
;
1274 rq
->hrtick_csd
.info
= rq
;
1277 hrtimer_init(&rq
->hrtick_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
1278 rq
->hrtick_timer
.function
= hrtick
;
1280 #else /* CONFIG_SCHED_HRTICK */
1281 static inline void hrtick_clear(struct rq
*rq
)
1285 static inline void init_rq_hrtick(struct rq
*rq
)
1289 static inline void init_hrtick(void)
1292 #endif /* CONFIG_SCHED_HRTICK */
1295 * resched_task - mark a task 'to be rescheduled now'.
1297 * On UP this means the setting of the need_resched flag, on SMP it
1298 * might also involve a cross-CPU call to trigger the scheduler on
1303 #ifndef tsk_is_polling
1304 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1307 static void resched_task(struct task_struct
*p
)
1311 assert_raw_spin_locked(&task_rq(p
)->lock
);
1313 if (test_tsk_need_resched(p
))
1316 set_tsk_need_resched(p
);
1319 if (cpu
== smp_processor_id())
1322 /* NEED_RESCHED must be visible before we test polling */
1324 if (!tsk_is_polling(p
))
1325 smp_send_reschedule(cpu
);
1328 static void resched_cpu(int cpu
)
1330 struct rq
*rq
= cpu_rq(cpu
);
1331 unsigned long flags
;
1333 if (!raw_spin_trylock_irqsave(&rq
->lock
, flags
))
1335 resched_task(cpu_curr(cpu
));
1336 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
1341 * In the semi idle case, use the nearest busy cpu for migrating timers
1342 * from an idle cpu. This is good for power-savings.
1344 * We don't do similar optimization for completely idle system, as
1345 * selecting an idle cpu will add more delays to the timers than intended
1346 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1348 int get_nohz_timer_target(void)
1350 int cpu
= smp_processor_id();
1352 struct sched_domain
*sd
;
1355 for_each_domain(cpu
, sd
) {
1356 for_each_cpu(i
, sched_domain_span(sd
)) {
1368 * When add_timer_on() enqueues a timer into the timer wheel of an
1369 * idle CPU then this timer might expire before the next timer event
1370 * which is scheduled to wake up that CPU. In case of a completely
1371 * idle system the next event might even be infinite time into the
1372 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1373 * leaves the inner idle loop so the newly added timer is taken into
1374 * account when the CPU goes back to idle and evaluates the timer
1375 * wheel for the next timer event.
1377 void wake_up_idle_cpu(int cpu
)
1379 struct rq
*rq
= cpu_rq(cpu
);
1381 if (cpu
== smp_processor_id())
1385 * This is safe, as this function is called with the timer
1386 * wheel base lock of (cpu) held. When the CPU is on the way
1387 * to idle and has not yet set rq->curr to idle then it will
1388 * be serialized on the timer wheel base lock and take the new
1389 * timer into account automatically.
1391 if (rq
->curr
!= rq
->idle
)
1395 * We can set TIF_RESCHED on the idle task of the other CPU
1396 * lockless. The worst case is that the other CPU runs the
1397 * idle task through an additional NOOP schedule()
1399 set_tsk_need_resched(rq
->idle
);
1401 /* NEED_RESCHED must be visible before we test polling */
1403 if (!tsk_is_polling(rq
->idle
))
1404 smp_send_reschedule(cpu
);
1407 static inline bool got_nohz_idle_kick(void)
1409 return idle_cpu(smp_processor_id()) && this_rq()->nohz_balance_kick
;
1412 #else /* CONFIG_NO_HZ */
1414 static inline bool got_nohz_idle_kick(void)
1419 #endif /* CONFIG_NO_HZ */
1421 static u64
sched_avg_period(void)
1423 return (u64
)sysctl_sched_time_avg
* NSEC_PER_MSEC
/ 2;
1426 static void sched_avg_update(struct rq
*rq
)
1428 s64 period
= sched_avg_period();
1430 while ((s64
)(rq
->clock
- rq
->age_stamp
) > period
) {
1432 * Inline assembly required to prevent the compiler
1433 * optimising this loop into a divmod call.
1434 * See __iter_div_u64_rem() for another example of this.
1436 asm("" : "+rm" (rq
->age_stamp
));
1437 rq
->age_stamp
+= period
;
1442 static void sched_rt_avg_update(struct rq
*rq
, u64 rt_delta
)
1444 rq
->rt_avg
+= rt_delta
;
1445 sched_avg_update(rq
);
1448 #else /* !CONFIG_SMP */
1449 static void resched_task(struct task_struct
*p
)
1451 assert_raw_spin_locked(&task_rq(p
)->lock
);
1452 set_tsk_need_resched(p
);
1455 static void sched_rt_avg_update(struct rq
*rq
, u64 rt_delta
)
1459 static void sched_avg_update(struct rq
*rq
)
1462 #endif /* CONFIG_SMP */
1464 #if BITS_PER_LONG == 32
1465 # define WMULT_CONST (~0UL)
1467 # define WMULT_CONST (1UL << 32)
1470 #define WMULT_SHIFT 32
1473 * Shift right and round:
1475 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1478 * delta *= weight / lw
1480 static unsigned long
1481 calc_delta_mine(unsigned long delta_exec
, unsigned long weight
,
1482 struct load_weight
*lw
)
1487 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
1488 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
1489 * 2^SCHED_LOAD_RESOLUTION.
1491 if (likely(weight
> (1UL << SCHED_LOAD_RESOLUTION
)))
1492 tmp
= (u64
)delta_exec
* scale_load_down(weight
);
1494 tmp
= (u64
)delta_exec
;
1496 if (!lw
->inv_weight
) {
1497 unsigned long w
= scale_load_down(lw
->weight
);
1499 if (BITS_PER_LONG
> 32 && unlikely(w
>= WMULT_CONST
))
1501 else if (unlikely(!w
))
1502 lw
->inv_weight
= WMULT_CONST
;
1504 lw
->inv_weight
= WMULT_CONST
/ w
;
1508 * Check whether we'd overflow the 64-bit multiplication:
1510 if (unlikely(tmp
> WMULT_CONST
))
1511 tmp
= SRR(SRR(tmp
, WMULT_SHIFT
/2) * lw
->inv_weight
,
1514 tmp
= SRR(tmp
* lw
->inv_weight
, WMULT_SHIFT
);
1516 return (unsigned long)min(tmp
, (u64
)(unsigned long)LONG_MAX
);
1519 static inline void update_load_add(struct load_weight
*lw
, unsigned long inc
)
1525 static inline void update_load_sub(struct load_weight
*lw
, unsigned long dec
)
1531 static inline void update_load_set(struct load_weight
*lw
, unsigned long w
)
1538 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1539 * of tasks with abnormal "nice" values across CPUs the contribution that
1540 * each task makes to its run queue's load is weighted according to its
1541 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1542 * scaled version of the new time slice allocation that they receive on time
1546 #define WEIGHT_IDLEPRIO 3
1547 #define WMULT_IDLEPRIO 1431655765
1550 * Nice levels are multiplicative, with a gentle 10% change for every
1551 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1552 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1553 * that remained on nice 0.
1555 * The "10% effect" is relative and cumulative: from _any_ nice level,
1556 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1557 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1558 * If a task goes up by ~10% and another task goes down by ~10% then
1559 * the relative distance between them is ~25%.)
1561 static const int prio_to_weight
[40] = {
1562 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1563 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1564 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1565 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1566 /* 0 */ 1024, 820, 655, 526, 423,
1567 /* 5 */ 335, 272, 215, 172, 137,
1568 /* 10 */ 110, 87, 70, 56, 45,
1569 /* 15 */ 36, 29, 23, 18, 15,
1573 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1575 * In cases where the weight does not change often, we can use the
1576 * precalculated inverse to speed up arithmetics by turning divisions
1577 * into multiplications:
1579 static const u32 prio_to_wmult
[40] = {
1580 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1581 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1582 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1583 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1584 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1585 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1586 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1587 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1590 /* Time spent by the tasks of the cpu accounting group executing in ... */
1591 enum cpuacct_stat_index
{
1592 CPUACCT_STAT_USER
, /* ... user mode */
1593 CPUACCT_STAT_SYSTEM
, /* ... kernel mode */
1595 CPUACCT_STAT_NSTATS
,
1598 #ifdef CONFIG_CGROUP_CPUACCT
1599 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
);
1600 static void cpuacct_update_stats(struct task_struct
*tsk
,
1601 enum cpuacct_stat_index idx
, cputime_t val
);
1603 static inline void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
) {}
1604 static inline void cpuacct_update_stats(struct task_struct
*tsk
,
1605 enum cpuacct_stat_index idx
, cputime_t val
) {}
1608 static inline void inc_cpu_load(struct rq
*rq
, unsigned long load
)
1610 update_load_add(&rq
->load
, load
);
1613 static inline void dec_cpu_load(struct rq
*rq
, unsigned long load
)
1615 update_load_sub(&rq
->load
, load
);
1618 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1619 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
1620 typedef int (*tg_visitor
)(struct task_group
*, void *);
1623 * Iterate task_group tree rooted at *from, calling @down when first entering a
1624 * node and @up when leaving it for the final time.
1626 * Caller must hold rcu_lock or sufficient equivalent.
1628 static int walk_tg_tree_from(struct task_group
*from
,
1629 tg_visitor down
, tg_visitor up
, void *data
)
1631 struct task_group
*parent
, *child
;
1637 ret
= (*down
)(parent
, data
);
1640 list_for_each_entry_rcu(child
, &parent
->children
, siblings
) {
1647 ret
= (*up
)(parent
, data
);
1648 if (ret
|| parent
== from
)
1652 parent
= parent
->parent
;
1660 * Iterate the full tree, calling @down when first entering a node and @up when
1661 * leaving it for the final time.
1663 * Caller must hold rcu_lock or sufficient equivalent.
1666 static inline int walk_tg_tree(tg_visitor down
, tg_visitor up
, void *data
)
1668 return walk_tg_tree_from(&root_task_group
, down
, up
, data
);
1671 static int tg_nop(struct task_group
*tg
, void *data
)
1678 /* Used instead of source_load when we know the type == 0 */
1679 static unsigned long weighted_cpuload(const int cpu
)
1681 return cpu_rq(cpu
)->load
.weight
;
1685 * Return a low guess at the load of a migration-source cpu weighted
1686 * according to the scheduling class and "nice" value.
1688 * We want to under-estimate the load of migration sources, to
1689 * balance conservatively.
1691 static unsigned long source_load(int cpu
, int type
)
1693 struct rq
*rq
= cpu_rq(cpu
);
1694 unsigned long total
= weighted_cpuload(cpu
);
1696 if (type
== 0 || !sched_feat(LB_BIAS
))
1699 return min(rq
->cpu_load
[type
-1], total
);
1703 * Return a high guess at the load of a migration-target cpu weighted
1704 * according to the scheduling class and "nice" value.
1706 static unsigned long target_load(int cpu
, int type
)
1708 struct rq
*rq
= cpu_rq(cpu
);
1709 unsigned long total
= weighted_cpuload(cpu
);
1711 if (type
== 0 || !sched_feat(LB_BIAS
))
1714 return max(rq
->cpu_load
[type
-1], total
);
1717 static unsigned long power_of(int cpu
)
1719 return cpu_rq(cpu
)->cpu_power
;
1722 static int task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
);
1724 static unsigned long cpu_avg_load_per_task(int cpu
)
1726 struct rq
*rq
= cpu_rq(cpu
);
1727 unsigned long nr_running
= ACCESS_ONCE(rq
->nr_running
);
1730 return rq
->load
.weight
/ nr_running
;
1735 #ifdef CONFIG_PREEMPT
1737 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
);
1740 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1741 * way at the expense of forcing extra atomic operations in all
1742 * invocations. This assures that the double_lock is acquired using the
1743 * same underlying policy as the spinlock_t on this architecture, which
1744 * reduces latency compared to the unfair variant below. However, it
1745 * also adds more overhead and therefore may reduce throughput.
1747 static inline int _double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1748 __releases(this_rq
->lock
)
1749 __acquires(busiest
->lock
)
1750 __acquires(this_rq
->lock
)
1752 raw_spin_unlock(&this_rq
->lock
);
1753 double_rq_lock(this_rq
, busiest
);
1760 * Unfair double_lock_balance: Optimizes throughput at the expense of
1761 * latency by eliminating extra atomic operations when the locks are
1762 * already in proper order on entry. This favors lower cpu-ids and will
1763 * grant the double lock to lower cpus over higher ids under contention,
1764 * regardless of entry order into the function.
1766 static int _double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1767 __releases(this_rq
->lock
)
1768 __acquires(busiest
->lock
)
1769 __acquires(this_rq
->lock
)
1773 if (unlikely(!raw_spin_trylock(&busiest
->lock
))) {
1774 if (busiest
< this_rq
) {
1775 raw_spin_unlock(&this_rq
->lock
);
1776 raw_spin_lock(&busiest
->lock
);
1777 raw_spin_lock_nested(&this_rq
->lock
,
1778 SINGLE_DEPTH_NESTING
);
1781 raw_spin_lock_nested(&busiest
->lock
,
1782 SINGLE_DEPTH_NESTING
);
1787 #endif /* CONFIG_PREEMPT */
1790 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1792 static int double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1794 if (unlikely(!irqs_disabled())) {
1795 /* printk() doesn't work good under rq->lock */
1796 raw_spin_unlock(&this_rq
->lock
);
1800 return _double_lock_balance(this_rq
, busiest
);
1803 static inline void double_unlock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1804 __releases(busiest
->lock
)
1806 raw_spin_unlock(&busiest
->lock
);
1807 lock_set_subclass(&this_rq
->lock
.dep_map
, 0, _RET_IP_
);
1811 * double_rq_lock - safely lock two runqueues
1813 * Note this does not disable interrupts like task_rq_lock,
1814 * you need to do so manually before calling.
1816 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
1817 __acquires(rq1
->lock
)
1818 __acquires(rq2
->lock
)
1820 BUG_ON(!irqs_disabled());
1822 raw_spin_lock(&rq1
->lock
);
1823 __acquire(rq2
->lock
); /* Fake it out ;) */
1826 raw_spin_lock(&rq1
->lock
);
1827 raw_spin_lock_nested(&rq2
->lock
, SINGLE_DEPTH_NESTING
);
1829 raw_spin_lock(&rq2
->lock
);
1830 raw_spin_lock_nested(&rq1
->lock
, SINGLE_DEPTH_NESTING
);
1836 * double_rq_unlock - safely unlock two runqueues
1838 * Note this does not restore interrupts like task_rq_unlock,
1839 * you need to do so manually after calling.
1841 static void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
1842 __releases(rq1
->lock
)
1843 __releases(rq2
->lock
)
1845 raw_spin_unlock(&rq1
->lock
);
1847 raw_spin_unlock(&rq2
->lock
);
1849 __release(rq2
->lock
);
1852 #else /* CONFIG_SMP */
1855 * double_rq_lock - safely lock two runqueues
1857 * Note this does not disable interrupts like task_rq_lock,
1858 * you need to do so manually before calling.
1860 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
1861 __acquires(rq1
->lock
)
1862 __acquires(rq2
->lock
)
1864 BUG_ON(!irqs_disabled());
1866 raw_spin_lock(&rq1
->lock
);
1867 __acquire(rq2
->lock
); /* Fake it out ;) */
1871 * double_rq_unlock - safely unlock two runqueues
1873 * Note this does not restore interrupts like task_rq_unlock,
1874 * you need to do so manually after calling.
1876 static void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
1877 __releases(rq1
->lock
)
1878 __releases(rq2
->lock
)
1881 raw_spin_unlock(&rq1
->lock
);
1882 __release(rq2
->lock
);
1887 static void calc_load_account_idle(struct rq
*this_rq
);
1888 static void update_sysctl(void);
1889 static int get_update_sysctl_factor(void);
1890 static void update_cpu_load(struct rq
*this_rq
);
1892 static inline void __set_task_cpu(struct task_struct
*p
, unsigned int cpu
)
1894 set_task_rq(p
, cpu
);
1897 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1898 * successfully executed on another CPU. We must ensure that updates of
1899 * per-task data have been completed by this moment.
1902 task_thread_info(p
)->cpu
= cpu
;
1906 static const struct sched_class rt_sched_class
;
1908 #define sched_class_highest (&stop_sched_class)
1909 #define for_each_class(class) \
1910 for (class = sched_class_highest; class; class = class->next)
1912 #include "sched_stats.h"
1914 static void inc_nr_running(struct rq
*rq
)
1919 static void dec_nr_running(struct rq
*rq
)
1924 static void set_load_weight(struct task_struct
*p
)
1926 int prio
= p
->static_prio
- MAX_RT_PRIO
;
1927 struct load_weight
*load
= &p
->se
.load
;
1930 * SCHED_IDLE tasks get minimal weight:
1932 if (p
->policy
== SCHED_IDLE
) {
1933 load
->weight
= scale_load(WEIGHT_IDLEPRIO
);
1934 load
->inv_weight
= WMULT_IDLEPRIO
;
1938 load
->weight
= scale_load(prio_to_weight
[prio
]);
1939 load
->inv_weight
= prio_to_wmult
[prio
];
1942 static void enqueue_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
1944 update_rq_clock(rq
);
1945 sched_info_queued(p
);
1946 p
->sched_class
->enqueue_task(rq
, p
, flags
);
1949 static void dequeue_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
1951 update_rq_clock(rq
);
1952 sched_info_dequeued(p
);
1953 p
->sched_class
->dequeue_task(rq
, p
, flags
);
1957 * activate_task - move a task to the runqueue.
1959 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
1961 if (task_contributes_to_load(p
))
1962 rq
->nr_uninterruptible
--;
1964 enqueue_task(rq
, p
, flags
);
1968 * deactivate_task - remove a task from the runqueue.
1970 static void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
1972 if (task_contributes_to_load(p
))
1973 rq
->nr_uninterruptible
++;
1975 dequeue_task(rq
, p
, flags
);
1978 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1981 * There are no locks covering percpu hardirq/softirq time.
1982 * They are only modified in account_system_vtime, on corresponding CPU
1983 * with interrupts disabled. So, writes are safe.
1984 * They are read and saved off onto struct rq in update_rq_clock().
1985 * This may result in other CPU reading this CPU's irq time and can
1986 * race with irq/account_system_vtime on this CPU. We would either get old
1987 * or new value with a side effect of accounting a slice of irq time to wrong
1988 * task when irq is in progress while we read rq->clock. That is a worthy
1989 * compromise in place of having locks on each irq in account_system_time.
1991 static DEFINE_PER_CPU(u64
, cpu_hardirq_time
);
1992 static DEFINE_PER_CPU(u64
, cpu_softirq_time
);
1994 static DEFINE_PER_CPU(u64
, irq_start_time
);
1995 static int sched_clock_irqtime
;
1997 void enable_sched_clock_irqtime(void)
1999 sched_clock_irqtime
= 1;
2002 void disable_sched_clock_irqtime(void)
2004 sched_clock_irqtime
= 0;
2007 #ifndef CONFIG_64BIT
2008 static DEFINE_PER_CPU(seqcount_t
, irq_time_seq
);
2010 static inline void irq_time_write_begin(void)
2012 __this_cpu_inc(irq_time_seq
.sequence
);
2016 static inline void irq_time_write_end(void)
2019 __this_cpu_inc(irq_time_seq
.sequence
);
2022 static inline u64
irq_time_read(int cpu
)
2028 seq
= read_seqcount_begin(&per_cpu(irq_time_seq
, cpu
));
2029 irq_time
= per_cpu(cpu_softirq_time
, cpu
) +
2030 per_cpu(cpu_hardirq_time
, cpu
);
2031 } while (read_seqcount_retry(&per_cpu(irq_time_seq
, cpu
), seq
));
2035 #else /* CONFIG_64BIT */
2036 static inline void irq_time_write_begin(void)
2040 static inline void irq_time_write_end(void)
2044 static inline u64
irq_time_read(int cpu
)
2046 return per_cpu(cpu_softirq_time
, cpu
) + per_cpu(cpu_hardirq_time
, cpu
);
2048 #endif /* CONFIG_64BIT */
2051 * Called before incrementing preempt_count on {soft,}irq_enter
2052 * and before decrementing preempt_count on {soft,}irq_exit.
2054 void account_system_vtime(struct task_struct
*curr
)
2056 unsigned long flags
;
2060 if (!sched_clock_irqtime
)
2063 local_irq_save(flags
);
2065 cpu
= smp_processor_id();
2066 delta
= sched_clock_cpu(cpu
) - __this_cpu_read(irq_start_time
);
2067 __this_cpu_add(irq_start_time
, delta
);
2069 irq_time_write_begin();
2071 * We do not account for softirq time from ksoftirqd here.
2072 * We want to continue accounting softirq time to ksoftirqd thread
2073 * in that case, so as not to confuse scheduler with a special task
2074 * that do not consume any time, but still wants to run.
2076 if (hardirq_count())
2077 __this_cpu_add(cpu_hardirq_time
, delta
);
2078 else if (in_serving_softirq() && curr
!= this_cpu_ksoftirqd())
2079 __this_cpu_add(cpu_softirq_time
, delta
);
2081 irq_time_write_end();
2082 local_irq_restore(flags
);
2084 EXPORT_SYMBOL_GPL(account_system_vtime
);
2086 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2088 #ifdef CONFIG_PARAVIRT
2089 static inline u64
steal_ticks(u64 steal
)
2091 if (unlikely(steal
> NSEC_PER_SEC
))
2092 return div_u64(steal
, TICK_NSEC
);
2094 return __iter_div_u64_rem(steal
, TICK_NSEC
, &steal
);
2098 static void update_rq_clock_task(struct rq
*rq
, s64 delta
)
2101 * In theory, the compile should just see 0 here, and optimize out the call
2102 * to sched_rt_avg_update. But I don't trust it...
2104 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
2105 s64 steal
= 0, irq_delta
= 0;
2107 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2108 irq_delta
= irq_time_read(cpu_of(rq
)) - rq
->prev_irq_time
;
2111 * Since irq_time is only updated on {soft,}irq_exit, we might run into
2112 * this case when a previous update_rq_clock() happened inside a
2113 * {soft,}irq region.
2115 * When this happens, we stop ->clock_task and only update the
2116 * prev_irq_time stamp to account for the part that fit, so that a next
2117 * update will consume the rest. This ensures ->clock_task is
2120 * It does however cause some slight miss-attribution of {soft,}irq
2121 * time, a more accurate solution would be to update the irq_time using
2122 * the current rq->clock timestamp, except that would require using
2125 if (irq_delta
> delta
)
2128 rq
->prev_irq_time
+= irq_delta
;
2131 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
2132 if (static_branch((¶virt_steal_rq_enabled
))) {
2135 steal
= paravirt_steal_clock(cpu_of(rq
));
2136 steal
-= rq
->prev_steal_time_rq
;
2138 if (unlikely(steal
> delta
))
2141 st
= steal_ticks(steal
);
2142 steal
= st
* TICK_NSEC
;
2144 rq
->prev_steal_time_rq
+= steal
;
2150 rq
->clock_task
+= delta
;
2152 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
2153 if ((irq_delta
+ steal
) && sched_feat(NONTASK_POWER
))
2154 sched_rt_avg_update(rq
, irq_delta
+ steal
);
2158 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2159 static int irqtime_account_hi_update(void)
2161 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
2162 unsigned long flags
;
2166 local_irq_save(flags
);
2167 latest_ns
= this_cpu_read(cpu_hardirq_time
);
2168 if (cputime64_gt(nsecs_to_cputime64(latest_ns
), cpustat
->irq
))
2170 local_irq_restore(flags
);
2174 static int irqtime_account_si_update(void)
2176 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
2177 unsigned long flags
;
2181 local_irq_save(flags
);
2182 latest_ns
= this_cpu_read(cpu_softirq_time
);
2183 if (cputime64_gt(nsecs_to_cputime64(latest_ns
), cpustat
->softirq
))
2185 local_irq_restore(flags
);
2189 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
2191 #define sched_clock_irqtime (0)
2195 #include "sched_idletask.c"
2196 #include "sched_fair.c"
2197 #include "sched_rt.c"
2198 #include "sched_autogroup.c"
2199 #include "sched_stoptask.c"
2200 #ifdef CONFIG_SCHED_DEBUG
2201 # include "sched_debug.c"
2204 void sched_set_stop_task(int cpu
, struct task_struct
*stop
)
2206 struct sched_param param
= { .sched_priority
= MAX_RT_PRIO
- 1 };
2207 struct task_struct
*old_stop
= cpu_rq(cpu
)->stop
;
2211 * Make it appear like a SCHED_FIFO task, its something
2212 * userspace knows about and won't get confused about.
2214 * Also, it will make PI more or less work without too
2215 * much confusion -- but then, stop work should not
2216 * rely on PI working anyway.
2218 sched_setscheduler_nocheck(stop
, SCHED_FIFO
, ¶m
);
2220 stop
->sched_class
= &stop_sched_class
;
2223 cpu_rq(cpu
)->stop
= stop
;
2227 * Reset it back to a normal scheduling class so that
2228 * it can die in pieces.
2230 old_stop
->sched_class
= &rt_sched_class
;
2235 * __normal_prio - return the priority that is based on the static prio
2237 static inline int __normal_prio(struct task_struct
*p
)
2239 return p
->static_prio
;
2243 * Calculate the expected normal priority: i.e. priority
2244 * without taking RT-inheritance into account. Might be
2245 * boosted by interactivity modifiers. Changes upon fork,
2246 * setprio syscalls, and whenever the interactivity
2247 * estimator recalculates.
2249 static inline int normal_prio(struct task_struct
*p
)
2253 if (task_has_rt_policy(p
))
2254 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
2256 prio
= __normal_prio(p
);
2261 * Calculate the current priority, i.e. the priority
2262 * taken into account by the scheduler. This value might
2263 * be boosted by RT tasks, or might be boosted by
2264 * interactivity modifiers. Will be RT if the task got
2265 * RT-boosted. If not then it returns p->normal_prio.
2267 static int effective_prio(struct task_struct
*p
)
2269 p
->normal_prio
= normal_prio(p
);
2271 * If we are RT tasks or we were boosted to RT priority,
2272 * keep the priority unchanged. Otherwise, update priority
2273 * to the normal priority:
2275 if (!rt_prio(p
->prio
))
2276 return p
->normal_prio
;
2281 * task_curr - is this task currently executing on a CPU?
2282 * @p: the task in question.
2284 inline int task_curr(const struct task_struct
*p
)
2286 return cpu_curr(task_cpu(p
)) == p
;
2289 static inline void check_class_changed(struct rq
*rq
, struct task_struct
*p
,
2290 const struct sched_class
*prev_class
,
2293 if (prev_class
!= p
->sched_class
) {
2294 if (prev_class
->switched_from
)
2295 prev_class
->switched_from(rq
, p
);
2296 p
->sched_class
->switched_to(rq
, p
);
2297 } else if (oldprio
!= p
->prio
)
2298 p
->sched_class
->prio_changed(rq
, p
, oldprio
);
2301 static void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
, int flags
)
2303 const struct sched_class
*class;
2305 if (p
->sched_class
== rq
->curr
->sched_class
) {
2306 rq
->curr
->sched_class
->check_preempt_curr(rq
, p
, flags
);
2308 for_each_class(class) {
2309 if (class == rq
->curr
->sched_class
)
2311 if (class == p
->sched_class
) {
2312 resched_task(rq
->curr
);
2319 * A queue event has occurred, and we're going to schedule. In
2320 * this case, we can save a useless back to back clock update.
2322 if (rq
->curr
->on_rq
&& test_tsk_need_resched(rq
->curr
))
2323 rq
->skip_clock_update
= 1;
2328 * Is this task likely cache-hot:
2331 task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
)
2335 if (p
->sched_class
!= &fair_sched_class
)
2338 if (unlikely(p
->policy
== SCHED_IDLE
))
2342 * Buddy candidates are cache hot:
2344 if (sched_feat(CACHE_HOT_BUDDY
) && this_rq()->nr_running
&&
2345 (&p
->se
== cfs_rq_of(&p
->se
)->next
||
2346 &p
->se
== cfs_rq_of(&p
->se
)->last
))
2349 if (sysctl_sched_migration_cost
== -1)
2351 if (sysctl_sched_migration_cost
== 0)
2354 delta
= now
- p
->se
.exec_start
;
2356 return delta
< (s64
)sysctl_sched_migration_cost
;
2359 void set_task_cpu(struct task_struct
*p
, unsigned int new_cpu
)
2361 #ifdef CONFIG_SCHED_DEBUG
2363 * We should never call set_task_cpu() on a blocked task,
2364 * ttwu() will sort out the placement.
2366 WARN_ON_ONCE(p
->state
!= TASK_RUNNING
&& p
->state
!= TASK_WAKING
&&
2367 !(task_thread_info(p
)->preempt_count
& PREEMPT_ACTIVE
));
2369 #ifdef CONFIG_LOCKDEP
2371 * The caller should hold either p->pi_lock or rq->lock, when changing
2372 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
2374 * sched_move_task() holds both and thus holding either pins the cgroup,
2375 * see set_task_rq().
2377 * Furthermore, all task_rq users should acquire both locks, see
2380 WARN_ON_ONCE(debug_locks
&& !(lockdep_is_held(&p
->pi_lock
) ||
2381 lockdep_is_held(&task_rq(p
)->lock
)));
2385 trace_sched_migrate_task(p
, new_cpu
);
2387 if (task_cpu(p
) != new_cpu
) {
2388 p
->se
.nr_migrations
++;
2389 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS
, 1, NULL
, 0);
2392 __set_task_cpu(p
, new_cpu
);
2395 struct migration_arg
{
2396 struct task_struct
*task
;
2400 static int migration_cpu_stop(void *data
);
2403 * wait_task_inactive - wait for a thread to unschedule.
2405 * If @match_state is nonzero, it's the @p->state value just checked and
2406 * not expected to change. If it changes, i.e. @p might have woken up,
2407 * then return zero. When we succeed in waiting for @p to be off its CPU,
2408 * we return a positive number (its total switch count). If a second call
2409 * a short while later returns the same number, the caller can be sure that
2410 * @p has remained unscheduled the whole time.
2412 * The caller must ensure that the task *will* unschedule sometime soon,
2413 * else this function might spin for a *long* time. This function can't
2414 * be called with interrupts off, or it may introduce deadlock with
2415 * smp_call_function() if an IPI is sent by the same process we are
2416 * waiting to become inactive.
2418 unsigned long wait_task_inactive(struct task_struct
*p
, long match_state
)
2420 unsigned long flags
;
2427 * We do the initial early heuristics without holding
2428 * any task-queue locks at all. We'll only try to get
2429 * the runqueue lock when things look like they will
2435 * If the task is actively running on another CPU
2436 * still, just relax and busy-wait without holding
2439 * NOTE! Since we don't hold any locks, it's not
2440 * even sure that "rq" stays as the right runqueue!
2441 * But we don't care, since "task_running()" will
2442 * return false if the runqueue has changed and p
2443 * is actually now running somewhere else!
2445 while (task_running(rq
, p
)) {
2446 if (match_state
&& unlikely(p
->state
!= match_state
))
2452 * Ok, time to look more closely! We need the rq
2453 * lock now, to be *sure*. If we're wrong, we'll
2454 * just go back and repeat.
2456 rq
= task_rq_lock(p
, &flags
);
2457 trace_sched_wait_task(p
);
2458 running
= task_running(rq
, p
);
2461 if (!match_state
|| p
->state
== match_state
)
2462 ncsw
= p
->nvcsw
| LONG_MIN
; /* sets MSB */
2463 task_rq_unlock(rq
, p
, &flags
);
2466 * If it changed from the expected state, bail out now.
2468 if (unlikely(!ncsw
))
2472 * Was it really running after all now that we
2473 * checked with the proper locks actually held?
2475 * Oops. Go back and try again..
2477 if (unlikely(running
)) {
2483 * It's not enough that it's not actively running,
2484 * it must be off the runqueue _entirely_, and not
2487 * So if it was still runnable (but just not actively
2488 * running right now), it's preempted, and we should
2489 * yield - it could be a while.
2491 if (unlikely(on_rq
)) {
2492 ktime_t to
= ktime_set(0, NSEC_PER_SEC
/HZ
);
2494 set_current_state(TASK_UNINTERRUPTIBLE
);
2495 schedule_hrtimeout(&to
, HRTIMER_MODE_REL
);
2500 * Ahh, all good. It wasn't running, and it wasn't
2501 * runnable, which means that it will never become
2502 * running in the future either. We're all done!
2511 * kick_process - kick a running thread to enter/exit the kernel
2512 * @p: the to-be-kicked thread
2514 * Cause a process which is running on another CPU to enter
2515 * kernel-mode, without any delay. (to get signals handled.)
2517 * NOTE: this function doesn't have to take the runqueue lock,
2518 * because all it wants to ensure is that the remote task enters
2519 * the kernel. If the IPI races and the task has been migrated
2520 * to another CPU then no harm is done and the purpose has been
2523 void kick_process(struct task_struct
*p
)
2529 if ((cpu
!= smp_processor_id()) && task_curr(p
))
2530 smp_send_reschedule(cpu
);
2533 EXPORT_SYMBOL_GPL(kick_process
);
2534 #endif /* CONFIG_SMP */
2538 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
2540 static int select_fallback_rq(int cpu
, struct task_struct
*p
)
2543 const struct cpumask
*nodemask
= cpumask_of_node(cpu_to_node(cpu
));
2545 /* Look for allowed, online CPU in same node. */
2546 for_each_cpu_and(dest_cpu
, nodemask
, cpu_active_mask
)
2547 if (cpumask_test_cpu(dest_cpu
, tsk_cpus_allowed(p
)))
2550 /* Any allowed, online CPU? */
2551 dest_cpu
= cpumask_any_and(tsk_cpus_allowed(p
), cpu_active_mask
);
2552 if (dest_cpu
< nr_cpu_ids
)
2555 /* No more Mr. Nice Guy. */
2556 dest_cpu
= cpuset_cpus_allowed_fallback(p
);
2558 * Don't tell them about moving exiting tasks or
2559 * kernel threads (both mm NULL), since they never
2562 if (p
->mm
&& printk_ratelimit()) {
2563 printk(KERN_INFO
"process %d (%s) no longer affine to cpu%d\n",
2564 task_pid_nr(p
), p
->comm
, cpu
);
2571 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
2574 int select_task_rq(struct task_struct
*p
, int sd_flags
, int wake_flags
)
2576 int cpu
= p
->sched_class
->select_task_rq(p
, sd_flags
, wake_flags
);
2579 * In order not to call set_task_cpu() on a blocking task we need
2580 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2583 * Since this is common to all placement strategies, this lives here.
2585 * [ this allows ->select_task() to simply return task_cpu(p) and
2586 * not worry about this generic constraint ]
2588 if (unlikely(!cpumask_test_cpu(cpu
, tsk_cpus_allowed(p
)) ||
2590 cpu
= select_fallback_rq(task_cpu(p
), p
);
2595 static void update_avg(u64
*avg
, u64 sample
)
2597 s64 diff
= sample
- *avg
;
2603 ttwu_stat(struct task_struct
*p
, int cpu
, int wake_flags
)
2605 #ifdef CONFIG_SCHEDSTATS
2606 struct rq
*rq
= this_rq();
2609 int this_cpu
= smp_processor_id();
2611 if (cpu
== this_cpu
) {
2612 schedstat_inc(rq
, ttwu_local
);
2613 schedstat_inc(p
, se
.statistics
.nr_wakeups_local
);
2615 struct sched_domain
*sd
;
2617 schedstat_inc(p
, se
.statistics
.nr_wakeups_remote
);
2619 for_each_domain(this_cpu
, sd
) {
2620 if (cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
2621 schedstat_inc(sd
, ttwu_wake_remote
);
2628 if (wake_flags
& WF_MIGRATED
)
2629 schedstat_inc(p
, se
.statistics
.nr_wakeups_migrate
);
2631 #endif /* CONFIG_SMP */
2633 schedstat_inc(rq
, ttwu_count
);
2634 schedstat_inc(p
, se
.statistics
.nr_wakeups
);
2636 if (wake_flags
& WF_SYNC
)
2637 schedstat_inc(p
, se
.statistics
.nr_wakeups_sync
);
2639 #endif /* CONFIG_SCHEDSTATS */
2642 static void ttwu_activate(struct rq
*rq
, struct task_struct
*p
, int en_flags
)
2644 activate_task(rq
, p
, en_flags
);
2647 /* if a worker is waking up, notify workqueue */
2648 if (p
->flags
& PF_WQ_WORKER
)
2649 wq_worker_waking_up(p
, cpu_of(rq
));
2653 * Mark the task runnable and perform wakeup-preemption.
2656 ttwu_do_wakeup(struct rq
*rq
, struct task_struct
*p
, int wake_flags
)
2658 trace_sched_wakeup(p
, true);
2659 check_preempt_curr(rq
, p
, wake_flags
);
2661 p
->state
= TASK_RUNNING
;
2663 if (p
->sched_class
->task_woken
)
2664 p
->sched_class
->task_woken(rq
, p
);
2666 if (rq
->idle_stamp
) {
2667 u64 delta
= rq
->clock
- rq
->idle_stamp
;
2668 u64 max
= 2*sysctl_sched_migration_cost
;
2673 update_avg(&rq
->avg_idle
, delta
);
2680 ttwu_do_activate(struct rq
*rq
, struct task_struct
*p
, int wake_flags
)
2683 if (p
->sched_contributes_to_load
)
2684 rq
->nr_uninterruptible
--;
2687 ttwu_activate(rq
, p
, ENQUEUE_WAKEUP
| ENQUEUE_WAKING
);
2688 ttwu_do_wakeup(rq
, p
, wake_flags
);
2692 * Called in case the task @p isn't fully descheduled from its runqueue,
2693 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2694 * since all we need to do is flip p->state to TASK_RUNNING, since
2695 * the task is still ->on_rq.
2697 static int ttwu_remote(struct task_struct
*p
, int wake_flags
)
2702 rq
= __task_rq_lock(p
);
2704 ttwu_do_wakeup(rq
, p
, wake_flags
);
2707 __task_rq_unlock(rq
);
2713 static void sched_ttwu_pending(void)
2715 struct rq
*rq
= this_rq();
2716 struct llist_node
*llist
= llist_del_all(&rq
->wake_list
);
2717 struct task_struct
*p
;
2719 raw_spin_lock(&rq
->lock
);
2722 p
= llist_entry(llist
, struct task_struct
, wake_entry
);
2723 llist
= llist_next(llist
);
2724 ttwu_do_activate(rq
, p
, 0);
2727 raw_spin_unlock(&rq
->lock
);
2730 void scheduler_ipi(void)
2732 if (llist_empty(&this_rq()->wake_list
) && !got_nohz_idle_kick())
2736 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
2737 * traditionally all their work was done from the interrupt return
2738 * path. Now that we actually do some work, we need to make sure
2741 * Some archs already do call them, luckily irq_enter/exit nest
2744 * Arguably we should visit all archs and update all handlers,
2745 * however a fair share of IPIs are still resched only so this would
2746 * somewhat pessimize the simple resched case.
2749 sched_ttwu_pending();
2752 * Check if someone kicked us for doing the nohz idle load balance.
2754 if (unlikely(got_nohz_idle_kick() && !need_resched())) {
2755 this_rq()->idle_balance
= 1;
2756 raise_softirq_irqoff(SCHED_SOFTIRQ
);
2761 static void ttwu_queue_remote(struct task_struct
*p
, int cpu
)
2763 if (llist_add(&p
->wake_entry
, &cpu_rq(cpu
)->wake_list
))
2764 smp_send_reschedule(cpu
);
2767 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2768 static int ttwu_activate_remote(struct task_struct
*p
, int wake_flags
)
2773 rq
= __task_rq_lock(p
);
2775 ttwu_activate(rq
, p
, ENQUEUE_WAKEUP
);
2776 ttwu_do_wakeup(rq
, p
, wake_flags
);
2779 __task_rq_unlock(rq
);
2784 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2785 #endif /* CONFIG_SMP */
2787 static void ttwu_queue(struct task_struct
*p
, int cpu
)
2789 struct rq
*rq
= cpu_rq(cpu
);
2791 #if defined(CONFIG_SMP)
2792 if (sched_feat(TTWU_QUEUE
) && cpu
!= smp_processor_id()) {
2793 sched_clock_cpu(cpu
); /* sync clocks x-cpu */
2794 ttwu_queue_remote(p
, cpu
);
2799 raw_spin_lock(&rq
->lock
);
2800 ttwu_do_activate(rq
, p
, 0);
2801 raw_spin_unlock(&rq
->lock
);
2805 * try_to_wake_up - wake up a thread
2806 * @p: the thread to be awakened
2807 * @state: the mask of task states that can be woken
2808 * @wake_flags: wake modifier flags (WF_*)
2810 * Put it on the run-queue if it's not already there. The "current"
2811 * thread is always on the run-queue (except when the actual
2812 * re-schedule is in progress), and as such you're allowed to do
2813 * the simpler "current->state = TASK_RUNNING" to mark yourself
2814 * runnable without the overhead of this.
2816 * Returns %true if @p was woken up, %false if it was already running
2817 * or @state didn't match @p's state.
2820 try_to_wake_up(struct task_struct
*p
, unsigned int state
, int wake_flags
)
2822 unsigned long flags
;
2823 int cpu
, success
= 0;
2826 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
2827 if (!(p
->state
& state
))
2830 success
= 1; /* we're going to change ->state */
2833 if (p
->on_rq
&& ttwu_remote(p
, wake_flags
))
2838 * If the owning (remote) cpu is still in the middle of schedule() with
2839 * this task as prev, wait until its done referencing the task.
2842 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2844 * In case the architecture enables interrupts in
2845 * context_switch(), we cannot busy wait, since that
2846 * would lead to deadlocks when an interrupt hits and
2847 * tries to wake up @prev. So bail and do a complete
2850 if (ttwu_activate_remote(p
, wake_flags
))
2857 * Pairs with the smp_wmb() in finish_lock_switch().
2861 p
->sched_contributes_to_load
= !!task_contributes_to_load(p
);
2862 p
->state
= TASK_WAKING
;
2864 if (p
->sched_class
->task_waking
)
2865 p
->sched_class
->task_waking(p
);
2867 cpu
= select_task_rq(p
, SD_BALANCE_WAKE
, wake_flags
);
2868 if (task_cpu(p
) != cpu
) {
2869 wake_flags
|= WF_MIGRATED
;
2870 set_task_cpu(p
, cpu
);
2872 #endif /* CONFIG_SMP */
2876 ttwu_stat(p
, cpu
, wake_flags
);
2878 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
2884 * try_to_wake_up_local - try to wake up a local task with rq lock held
2885 * @p: the thread to be awakened
2887 * Put @p on the run-queue if it's not already there. The caller must
2888 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2891 static void try_to_wake_up_local(struct task_struct
*p
)
2893 struct rq
*rq
= task_rq(p
);
2895 BUG_ON(rq
!= this_rq());
2896 BUG_ON(p
== current
);
2897 lockdep_assert_held(&rq
->lock
);
2899 if (!raw_spin_trylock(&p
->pi_lock
)) {
2900 raw_spin_unlock(&rq
->lock
);
2901 raw_spin_lock(&p
->pi_lock
);
2902 raw_spin_lock(&rq
->lock
);
2905 if (!(p
->state
& TASK_NORMAL
))
2909 ttwu_activate(rq
, p
, ENQUEUE_WAKEUP
);
2911 ttwu_do_wakeup(rq
, p
, 0);
2912 ttwu_stat(p
, smp_processor_id(), 0);
2914 raw_spin_unlock(&p
->pi_lock
);
2918 * wake_up_process - Wake up a specific process
2919 * @p: The process to be woken up.
2921 * Attempt to wake up the nominated process and move it to the set of runnable
2922 * processes. Returns 1 if the process was woken up, 0 if it was already
2925 * It may be assumed that this function implies a write memory barrier before
2926 * changing the task state if and only if any tasks are woken up.
2928 int wake_up_process(struct task_struct
*p
)
2930 return try_to_wake_up(p
, TASK_ALL
, 0);
2932 EXPORT_SYMBOL(wake_up_process
);
2934 int wake_up_state(struct task_struct
*p
, unsigned int state
)
2936 return try_to_wake_up(p
, state
, 0);
2940 * Perform scheduler related setup for a newly forked process p.
2941 * p is forked by current.
2943 * __sched_fork() is basic setup used by init_idle() too:
2945 static void __sched_fork(struct task_struct
*p
)
2950 p
->se
.exec_start
= 0;
2951 p
->se
.sum_exec_runtime
= 0;
2952 p
->se
.prev_sum_exec_runtime
= 0;
2953 p
->se
.nr_migrations
= 0;
2955 INIT_LIST_HEAD(&p
->se
.group_node
);
2957 #ifdef CONFIG_SCHEDSTATS
2958 memset(&p
->se
.statistics
, 0, sizeof(p
->se
.statistics
));
2961 INIT_LIST_HEAD(&p
->rt
.run_list
);
2963 #ifdef CONFIG_PREEMPT_NOTIFIERS
2964 INIT_HLIST_HEAD(&p
->preempt_notifiers
);
2969 * fork()/clone()-time setup:
2971 void sched_fork(struct task_struct
*p
)
2973 unsigned long flags
;
2974 int cpu
= get_cpu();
2978 * We mark the process as running here. This guarantees that
2979 * nobody will actually run it, and a signal or other external
2980 * event cannot wake it up and insert it on the runqueue either.
2982 p
->state
= TASK_RUNNING
;
2985 * Make sure we do not leak PI boosting priority to the child.
2987 p
->prio
= current
->normal_prio
;
2990 * Revert to default priority/policy on fork if requested.
2992 if (unlikely(p
->sched_reset_on_fork
)) {
2993 if (task_has_rt_policy(p
)) {
2994 p
->policy
= SCHED_NORMAL
;
2995 p
->static_prio
= NICE_TO_PRIO(0);
2997 } else if (PRIO_TO_NICE(p
->static_prio
) < 0)
2998 p
->static_prio
= NICE_TO_PRIO(0);
3000 p
->prio
= p
->normal_prio
= __normal_prio(p
);
3004 * We don't need the reset flag anymore after the fork. It has
3005 * fulfilled its duty:
3007 p
->sched_reset_on_fork
= 0;
3010 if (!rt_prio(p
->prio
))
3011 p
->sched_class
= &fair_sched_class
;
3013 if (p
->sched_class
->task_fork
)
3014 p
->sched_class
->task_fork(p
);
3017 * The child is not yet in the pid-hash so no cgroup attach races,
3018 * and the cgroup is pinned to this child due to cgroup_fork()
3019 * is ran before sched_fork().
3021 * Silence PROVE_RCU.
3023 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
3024 set_task_cpu(p
, cpu
);
3025 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
3027 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
3028 if (likely(sched_info_on()))
3029 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
3031 #if defined(CONFIG_SMP)
3034 #ifdef CONFIG_PREEMPT_COUNT
3035 /* Want to start with kernel preemption disabled. */
3036 task_thread_info(p
)->preempt_count
= 1;
3039 plist_node_init(&p
->pushable_tasks
, MAX_PRIO
);
3046 * wake_up_new_task - wake up a newly created task for the first time.
3048 * This function will do some initial scheduler statistics housekeeping
3049 * that must be done for every newly created context, then puts the task
3050 * on the runqueue and wakes it.
3052 void wake_up_new_task(struct task_struct
*p
)
3054 unsigned long flags
;
3057 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
3060 * Fork balancing, do it here and not earlier because:
3061 * - cpus_allowed can change in the fork path
3062 * - any previously selected cpu might disappear through hotplug
3064 set_task_cpu(p
, select_task_rq(p
, SD_BALANCE_FORK
, 0));
3067 rq
= __task_rq_lock(p
);
3068 activate_task(rq
, p
, 0);
3070 trace_sched_wakeup_new(p
, true);
3071 check_preempt_curr(rq
, p
, WF_FORK
);
3073 if (p
->sched_class
->task_woken
)
3074 p
->sched_class
->task_woken(rq
, p
);
3076 task_rq_unlock(rq
, p
, &flags
);
3079 #ifdef CONFIG_PREEMPT_NOTIFIERS
3082 * preempt_notifier_register - tell me when current is being preempted & rescheduled
3083 * @notifier: notifier struct to register
3085 void preempt_notifier_register(struct preempt_notifier
*notifier
)
3087 hlist_add_head(¬ifier
->link
, ¤t
->preempt_notifiers
);
3089 EXPORT_SYMBOL_GPL(preempt_notifier_register
);
3092 * preempt_notifier_unregister - no longer interested in preemption notifications
3093 * @notifier: notifier struct to unregister
3095 * This is safe to call from within a preemption notifier.
3097 void preempt_notifier_unregister(struct preempt_notifier
*notifier
)
3099 hlist_del(¬ifier
->link
);
3101 EXPORT_SYMBOL_GPL(preempt_notifier_unregister
);
3103 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
3105 struct preempt_notifier
*notifier
;
3106 struct hlist_node
*node
;
3108 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
3109 notifier
->ops
->sched_in(notifier
, raw_smp_processor_id());
3113 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
3114 struct task_struct
*next
)
3116 struct preempt_notifier
*notifier
;
3117 struct hlist_node
*node
;
3119 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
3120 notifier
->ops
->sched_out(notifier
, next
);
3123 #else /* !CONFIG_PREEMPT_NOTIFIERS */
3125 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
3130 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
3131 struct task_struct
*next
)
3135 #endif /* CONFIG_PREEMPT_NOTIFIERS */
3138 * prepare_task_switch - prepare to switch tasks
3139 * @rq: the runqueue preparing to switch
3140 * @prev: the current task that is being switched out
3141 * @next: the task we are going to switch to.
3143 * This is called with the rq lock held and interrupts off. It must
3144 * be paired with a subsequent finish_task_switch after the context
3147 * prepare_task_switch sets up locking and calls architecture specific
3151 prepare_task_switch(struct rq
*rq
, struct task_struct
*prev
,
3152 struct task_struct
*next
)
3154 sched_info_switch(prev
, next
);
3155 perf_event_task_sched_out(prev
, next
);
3156 fire_sched_out_preempt_notifiers(prev
, next
);
3157 prepare_lock_switch(rq
, next
);
3158 prepare_arch_switch(next
);
3159 trace_sched_switch(prev
, next
);
3163 * finish_task_switch - clean up after a task-switch
3164 * @rq: runqueue associated with task-switch
3165 * @prev: the thread we just switched away from.
3167 * finish_task_switch must be called after the context switch, paired
3168 * with a prepare_task_switch call before the context switch.
3169 * finish_task_switch will reconcile locking set up by prepare_task_switch,
3170 * and do any other architecture-specific cleanup actions.
3172 * Note that we may have delayed dropping an mm in context_switch(). If
3173 * so, we finish that here outside of the runqueue lock. (Doing it
3174 * with the lock held can cause deadlocks; see schedule() for
3177 static void finish_task_switch(struct rq
*rq
, struct task_struct
*prev
)
3178 __releases(rq
->lock
)
3180 struct mm_struct
*mm
= rq
->prev_mm
;
3186 * A task struct has one reference for the use as "current".
3187 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
3188 * schedule one last time. The schedule call will never return, and
3189 * the scheduled task must drop that reference.
3190 * The test for TASK_DEAD must occur while the runqueue locks are
3191 * still held, otherwise prev could be scheduled on another cpu, die
3192 * there before we look at prev->state, and then the reference would
3194 * Manfred Spraul <manfred@colorfullife.com>
3196 prev_state
= prev
->state
;
3197 finish_arch_switch(prev
);
3198 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
3199 local_irq_disable();
3200 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
3201 perf_event_task_sched_in(prev
, current
);
3202 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
3204 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
3205 finish_lock_switch(rq
, prev
);
3207 fire_sched_in_preempt_notifiers(current
);
3210 if (unlikely(prev_state
== TASK_DEAD
)) {
3212 * Remove function-return probe instances associated with this
3213 * task and put them back on the free list.
3215 kprobe_flush_task(prev
);
3216 put_task_struct(prev
);
3222 /* assumes rq->lock is held */
3223 static inline void pre_schedule(struct rq
*rq
, struct task_struct
*prev
)
3225 if (prev
->sched_class
->pre_schedule
)
3226 prev
->sched_class
->pre_schedule(rq
, prev
);
3229 /* rq->lock is NOT held, but preemption is disabled */
3230 static inline void post_schedule(struct rq
*rq
)
3232 if (rq
->post_schedule
) {
3233 unsigned long flags
;
3235 raw_spin_lock_irqsave(&rq
->lock
, flags
);
3236 if (rq
->curr
->sched_class
->post_schedule
)
3237 rq
->curr
->sched_class
->post_schedule(rq
);
3238 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
3240 rq
->post_schedule
= 0;
3246 static inline void pre_schedule(struct rq
*rq
, struct task_struct
*p
)
3250 static inline void post_schedule(struct rq
*rq
)
3257 * schedule_tail - first thing a freshly forked thread must call.
3258 * @prev: the thread we just switched away from.
3260 asmlinkage
void schedule_tail(struct task_struct
*prev
)
3261 __releases(rq
->lock
)
3263 struct rq
*rq
= this_rq();
3265 finish_task_switch(rq
, prev
);
3268 * FIXME: do we need to worry about rq being invalidated by the
3273 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
3274 /* In this case, finish_task_switch does not reenable preemption */
3277 if (current
->set_child_tid
)
3278 put_user(task_pid_vnr(current
), current
->set_child_tid
);
3282 * context_switch - switch to the new MM and the new
3283 * thread's register state.
3286 context_switch(struct rq
*rq
, struct task_struct
*prev
,
3287 struct task_struct
*next
)
3289 struct mm_struct
*mm
, *oldmm
;
3291 prepare_task_switch(rq
, prev
, next
);
3294 oldmm
= prev
->active_mm
;
3296 * For paravirt, this is coupled with an exit in switch_to to
3297 * combine the page table reload and the switch backend into
3300 arch_start_context_switch(prev
);
3303 next
->active_mm
= oldmm
;
3304 atomic_inc(&oldmm
->mm_count
);
3305 enter_lazy_tlb(oldmm
, next
);
3307 switch_mm(oldmm
, mm
, next
);
3310 prev
->active_mm
= NULL
;
3311 rq
->prev_mm
= oldmm
;
3314 * Since the runqueue lock will be released by the next
3315 * task (which is an invalid locking op but in the case
3316 * of the scheduler it's an obvious special-case), so we
3317 * do an early lockdep release here:
3319 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
3320 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
3323 /* Here we just switch the register state and the stack. */
3324 switch_to(prev
, next
, prev
);
3328 * this_rq must be evaluated again because prev may have moved
3329 * CPUs since it called schedule(), thus the 'rq' on its stack
3330 * frame will be invalid.
3332 finish_task_switch(this_rq(), prev
);
3336 * nr_running, nr_uninterruptible and nr_context_switches:
3338 * externally visible scheduler statistics: current number of runnable
3339 * threads, current number of uninterruptible-sleeping threads, total
3340 * number of context switches performed since bootup.
3342 unsigned long nr_running(void)
3344 unsigned long i
, sum
= 0;
3346 for_each_online_cpu(i
)
3347 sum
+= cpu_rq(i
)->nr_running
;
3352 unsigned long nr_uninterruptible(void)
3354 unsigned long i
, sum
= 0;
3356 for_each_possible_cpu(i
)
3357 sum
+= cpu_rq(i
)->nr_uninterruptible
;
3360 * Since we read the counters lockless, it might be slightly
3361 * inaccurate. Do not allow it to go below zero though:
3363 if (unlikely((long)sum
< 0))
3369 unsigned long long nr_context_switches(void)
3372 unsigned long long sum
= 0;
3374 for_each_possible_cpu(i
)
3375 sum
+= cpu_rq(i
)->nr_switches
;
3380 unsigned long nr_iowait(void)
3382 unsigned long i
, sum
= 0;
3384 for_each_possible_cpu(i
)
3385 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
3390 unsigned long nr_iowait_cpu(int cpu
)
3392 struct rq
*this = cpu_rq(cpu
);
3393 return atomic_read(&this->nr_iowait
);
3396 unsigned long this_cpu_load(void)
3398 struct rq
*this = this_rq();
3399 return this->cpu_load
[0];
3403 /* Variables and functions for calc_load */
3404 static atomic_long_t calc_load_tasks
;
3405 static unsigned long calc_load_update
;
3406 unsigned long avenrun
[3];
3407 EXPORT_SYMBOL(avenrun
);
3409 static long calc_load_fold_active(struct rq
*this_rq
)
3411 long nr_active
, delta
= 0;
3413 nr_active
= this_rq
->nr_running
;
3414 nr_active
+= (long) this_rq
->nr_uninterruptible
;
3416 if (nr_active
!= this_rq
->calc_load_active
) {
3417 delta
= nr_active
- this_rq
->calc_load_active
;
3418 this_rq
->calc_load_active
= nr_active
;
3424 static unsigned long
3425 calc_load(unsigned long load
, unsigned long exp
, unsigned long active
)
3428 load
+= active
* (FIXED_1
- exp
);
3429 load
+= 1UL << (FSHIFT
- 1);
3430 return load
>> FSHIFT
;
3435 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3437 * When making the ILB scale, we should try to pull this in as well.
3439 static atomic_long_t calc_load_tasks_idle
;
3441 static void calc_load_account_idle(struct rq
*this_rq
)
3445 delta
= calc_load_fold_active(this_rq
);
3447 atomic_long_add(delta
, &calc_load_tasks_idle
);
3450 static long calc_load_fold_idle(void)
3455 * Its got a race, we don't care...
3457 if (atomic_long_read(&calc_load_tasks_idle
))
3458 delta
= atomic_long_xchg(&calc_load_tasks_idle
, 0);
3464 * fixed_power_int - compute: x^n, in O(log n) time
3466 * @x: base of the power
3467 * @frac_bits: fractional bits of @x
3468 * @n: power to raise @x to.
3470 * By exploiting the relation between the definition of the natural power
3471 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3472 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3473 * (where: n_i \elem {0, 1}, the binary vector representing n),
3474 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3475 * of course trivially computable in O(log_2 n), the length of our binary
3478 static unsigned long
3479 fixed_power_int(unsigned long x
, unsigned int frac_bits
, unsigned int n
)
3481 unsigned long result
= 1UL << frac_bits
;
3486 result
+= 1UL << (frac_bits
- 1);
3487 result
>>= frac_bits
;
3493 x
+= 1UL << (frac_bits
- 1);
3501 * a1 = a0 * e + a * (1 - e)
3503 * a2 = a1 * e + a * (1 - e)
3504 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3505 * = a0 * e^2 + a * (1 - e) * (1 + e)
3507 * a3 = a2 * e + a * (1 - e)
3508 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3509 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3513 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3514 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3515 * = a0 * e^n + a * (1 - e^n)
3517 * [1] application of the geometric series:
3520 * S_n := \Sum x^i = -------------
3523 static unsigned long
3524 calc_load_n(unsigned long load
, unsigned long exp
,
3525 unsigned long active
, unsigned int n
)
3528 return calc_load(load
, fixed_power_int(exp
, FSHIFT
, n
), active
);
3532 * NO_HZ can leave us missing all per-cpu ticks calling
3533 * calc_load_account_active(), but since an idle CPU folds its delta into
3534 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3535 * in the pending idle delta if our idle period crossed a load cycle boundary.
3537 * Once we've updated the global active value, we need to apply the exponential
3538 * weights adjusted to the number of cycles missed.
3540 static void calc_global_nohz(unsigned long ticks
)
3542 long delta
, active
, n
;
3544 if (time_before(jiffies
, calc_load_update
))
3548 * If we crossed a calc_load_update boundary, make sure to fold
3549 * any pending idle changes, the respective CPUs might have
3550 * missed the tick driven calc_load_account_active() update
3553 delta
= calc_load_fold_idle();
3555 atomic_long_add(delta
, &calc_load_tasks
);
3558 * If we were idle for multiple load cycles, apply them.
3560 if (ticks
>= LOAD_FREQ
) {
3561 n
= ticks
/ LOAD_FREQ
;
3563 active
= atomic_long_read(&calc_load_tasks
);
3564 active
= active
> 0 ? active
* FIXED_1
: 0;
3566 avenrun
[0] = calc_load_n(avenrun
[0], EXP_1
, active
, n
);
3567 avenrun
[1] = calc_load_n(avenrun
[1], EXP_5
, active
, n
);
3568 avenrun
[2] = calc_load_n(avenrun
[2], EXP_15
, active
, n
);
3570 calc_load_update
+= n
* LOAD_FREQ
;
3574 * Its possible the remainder of the above division also crosses
3575 * a LOAD_FREQ period, the regular check in calc_global_load()
3576 * which comes after this will take care of that.
3578 * Consider us being 11 ticks before a cycle completion, and us
3579 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
3580 * age us 4 cycles, and the test in calc_global_load() will
3581 * pick up the final one.
3585 static void calc_load_account_idle(struct rq
*this_rq
)
3589 static inline long calc_load_fold_idle(void)
3594 static void calc_global_nohz(unsigned long ticks
)
3600 * get_avenrun - get the load average array
3601 * @loads: pointer to dest load array
3602 * @offset: offset to add
3603 * @shift: shift count to shift the result left
3605 * These values are estimates at best, so no need for locking.
3607 void get_avenrun(unsigned long *loads
, unsigned long offset
, int shift
)
3609 loads
[0] = (avenrun
[0] + offset
) << shift
;
3610 loads
[1] = (avenrun
[1] + offset
) << shift
;
3611 loads
[2] = (avenrun
[2] + offset
) << shift
;
3615 * calc_load - update the avenrun load estimates 10 ticks after the
3616 * CPUs have updated calc_load_tasks.
3618 void calc_global_load(unsigned long ticks
)
3622 calc_global_nohz(ticks
);
3624 if (time_before(jiffies
, calc_load_update
+ 10))
3627 active
= atomic_long_read(&calc_load_tasks
);
3628 active
= active
> 0 ? active
* FIXED_1
: 0;
3630 avenrun
[0] = calc_load(avenrun
[0], EXP_1
, active
);
3631 avenrun
[1] = calc_load(avenrun
[1], EXP_5
, active
);
3632 avenrun
[2] = calc_load(avenrun
[2], EXP_15
, active
);
3634 calc_load_update
+= LOAD_FREQ
;
3638 * Called from update_cpu_load() to periodically update this CPU's
3641 static void calc_load_account_active(struct rq
*this_rq
)
3645 if (time_before(jiffies
, this_rq
->calc_load_update
))
3648 delta
= calc_load_fold_active(this_rq
);
3649 delta
+= calc_load_fold_idle();
3651 atomic_long_add(delta
, &calc_load_tasks
);
3653 this_rq
->calc_load_update
+= LOAD_FREQ
;
3657 * The exact cpuload at various idx values, calculated at every tick would be
3658 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3660 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3661 * on nth tick when cpu may be busy, then we have:
3662 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3663 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3665 * decay_load_missed() below does efficient calculation of
3666 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3667 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3669 * The calculation is approximated on a 128 point scale.
3670 * degrade_zero_ticks is the number of ticks after which load at any
3671 * particular idx is approximated to be zero.
3672 * degrade_factor is a precomputed table, a row for each load idx.
3673 * Each column corresponds to degradation factor for a power of two ticks,
3674 * based on 128 point scale.
3676 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3677 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3679 * With this power of 2 load factors, we can degrade the load n times
3680 * by looking at 1 bits in n and doing as many mult/shift instead of
3681 * n mult/shifts needed by the exact degradation.
3683 #define DEGRADE_SHIFT 7
3684 static const unsigned char
3685 degrade_zero_ticks
[CPU_LOAD_IDX_MAX
] = {0, 8, 32, 64, 128};
3686 static const unsigned char
3687 degrade_factor
[CPU_LOAD_IDX_MAX
][DEGRADE_SHIFT
+ 1] = {
3688 {0, 0, 0, 0, 0, 0, 0, 0},
3689 {64, 32, 8, 0, 0, 0, 0, 0},
3690 {96, 72, 40, 12, 1, 0, 0},
3691 {112, 98, 75, 43, 15, 1, 0},
3692 {120, 112, 98, 76, 45, 16, 2} };
3695 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3696 * would be when CPU is idle and so we just decay the old load without
3697 * adding any new load.
3699 static unsigned long
3700 decay_load_missed(unsigned long load
, unsigned long missed_updates
, int idx
)
3704 if (!missed_updates
)
3707 if (missed_updates
>= degrade_zero_ticks
[idx
])
3711 return load
>> missed_updates
;
3713 while (missed_updates
) {
3714 if (missed_updates
% 2)
3715 load
= (load
* degrade_factor
[idx
][j
]) >> DEGRADE_SHIFT
;
3717 missed_updates
>>= 1;
3724 * Update rq->cpu_load[] statistics. This function is usually called every
3725 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3726 * every tick. We fix it up based on jiffies.
3728 static void update_cpu_load(struct rq
*this_rq
)
3730 unsigned long this_load
= this_rq
->load
.weight
;
3731 unsigned long curr_jiffies
= jiffies
;
3732 unsigned long pending_updates
;
3735 this_rq
->nr_load_updates
++;
3737 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3738 if (curr_jiffies
== this_rq
->last_load_update_tick
)
3741 pending_updates
= curr_jiffies
- this_rq
->last_load_update_tick
;
3742 this_rq
->last_load_update_tick
= curr_jiffies
;
3744 /* Update our load: */
3745 this_rq
->cpu_load
[0] = this_load
; /* Fasttrack for idx 0 */
3746 for (i
= 1, scale
= 2; i
< CPU_LOAD_IDX_MAX
; i
++, scale
+= scale
) {
3747 unsigned long old_load
, new_load
;
3749 /* scale is effectively 1 << i now, and >> i divides by scale */
3751 old_load
= this_rq
->cpu_load
[i
];
3752 old_load
= decay_load_missed(old_load
, pending_updates
- 1, i
);
3753 new_load
= this_load
;
3755 * Round up the averaging division if load is increasing. This
3756 * prevents us from getting stuck on 9 if the load is 10, for
3759 if (new_load
> old_load
)
3760 new_load
+= scale
- 1;
3762 this_rq
->cpu_load
[i
] = (old_load
* (scale
- 1) + new_load
) >> i
;
3765 sched_avg_update(this_rq
);
3768 static void update_cpu_load_active(struct rq
*this_rq
)
3770 update_cpu_load(this_rq
);
3772 calc_load_account_active(this_rq
);
3778 * sched_exec - execve() is a valuable balancing opportunity, because at
3779 * this point the task has the smallest effective memory and cache footprint.
3781 void sched_exec(void)
3783 struct task_struct
*p
= current
;
3784 unsigned long flags
;
3787 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
3788 dest_cpu
= p
->sched_class
->select_task_rq(p
, SD_BALANCE_EXEC
, 0);
3789 if (dest_cpu
== smp_processor_id())
3792 if (likely(cpu_active(dest_cpu
))) {
3793 struct migration_arg arg
= { p
, dest_cpu
};
3795 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
3796 stop_one_cpu(task_cpu(p
), migration_cpu_stop
, &arg
);
3800 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
3805 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
3807 EXPORT_PER_CPU_SYMBOL(kstat
);
3810 * Return any ns on the sched_clock that have not yet been accounted in
3811 * @p in case that task is currently running.
3813 * Called with task_rq_lock() held on @rq.
3815 static u64
do_task_delta_exec(struct task_struct
*p
, struct rq
*rq
)
3819 if (task_current(rq
, p
)) {
3820 update_rq_clock(rq
);
3821 ns
= rq
->clock_task
- p
->se
.exec_start
;
3829 unsigned long long task_delta_exec(struct task_struct
*p
)
3831 unsigned long flags
;
3835 rq
= task_rq_lock(p
, &flags
);
3836 ns
= do_task_delta_exec(p
, rq
);
3837 task_rq_unlock(rq
, p
, &flags
);
3843 * Return accounted runtime for the task.
3844 * In case the task is currently running, return the runtime plus current's
3845 * pending runtime that have not been accounted yet.
3847 unsigned long long task_sched_runtime(struct task_struct
*p
)
3849 unsigned long flags
;
3853 rq
= task_rq_lock(p
, &flags
);
3854 ns
= p
->se
.sum_exec_runtime
+ do_task_delta_exec(p
, rq
);
3855 task_rq_unlock(rq
, p
, &flags
);
3861 * Account user cpu time to a process.
3862 * @p: the process that the cpu time gets accounted to
3863 * @cputime: the cpu time spent in user space since the last update
3864 * @cputime_scaled: cputime scaled by cpu frequency
3866 void account_user_time(struct task_struct
*p
, cputime_t cputime
,
3867 cputime_t cputime_scaled
)
3869 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3872 /* Add user time to process. */
3873 p
->utime
= cputime_add(p
->utime
, cputime
);
3874 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime_scaled
);
3875 account_group_user_time(p
, cputime
);
3877 /* Add user time to cpustat. */
3878 tmp
= cputime_to_cputime64(cputime
);
3879 if (TASK_NICE(p
) > 0)
3880 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
3882 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
3884 cpuacct_update_stats(p
, CPUACCT_STAT_USER
, cputime
);
3885 /* Account for user time used */
3886 acct_update_integrals(p
);
3890 * Account guest cpu time to a process.
3891 * @p: the process that the cpu time gets accounted to
3892 * @cputime: the cpu time spent in virtual machine since the last update
3893 * @cputime_scaled: cputime scaled by cpu frequency
3895 static void account_guest_time(struct task_struct
*p
, cputime_t cputime
,
3896 cputime_t cputime_scaled
)
3899 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3901 tmp
= cputime_to_cputime64(cputime
);
3903 /* Add guest time to process. */
3904 p
->utime
= cputime_add(p
->utime
, cputime
);
3905 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime_scaled
);
3906 account_group_user_time(p
, cputime
);
3907 p
->gtime
= cputime_add(p
->gtime
, cputime
);
3909 /* Add guest time to cpustat. */
3910 if (TASK_NICE(p
) > 0) {
3911 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
3912 cpustat
->guest_nice
= cputime64_add(cpustat
->guest_nice
, tmp
);
3914 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
3915 cpustat
->guest
= cputime64_add(cpustat
->guest
, tmp
);
3920 * Account system cpu time to a process and desired cpustat field
3921 * @p: the process that the cpu time gets accounted to
3922 * @cputime: the cpu time spent in kernel space since the last update
3923 * @cputime_scaled: cputime scaled by cpu frequency
3924 * @target_cputime64: pointer to cpustat field that has to be updated
3927 void __account_system_time(struct task_struct
*p
, cputime_t cputime
,
3928 cputime_t cputime_scaled
, cputime64_t
*target_cputime64
)
3930 cputime64_t tmp
= cputime_to_cputime64(cputime
);
3932 /* Add system time to process. */
3933 p
->stime
= cputime_add(p
->stime
, cputime
);
3934 p
->stimescaled
= cputime_add(p
->stimescaled
, cputime_scaled
);
3935 account_group_system_time(p
, cputime
);
3937 /* Add system time to cpustat. */
3938 *target_cputime64
= cputime64_add(*target_cputime64
, tmp
);
3939 cpuacct_update_stats(p
, CPUACCT_STAT_SYSTEM
, cputime
);
3941 /* Account for system time used */
3942 acct_update_integrals(p
);
3946 * Account system cpu time to a process.
3947 * @p: the process that the cpu time gets accounted to
3948 * @hardirq_offset: the offset to subtract from hardirq_count()
3949 * @cputime: the cpu time spent in kernel space since the last update
3950 * @cputime_scaled: cputime scaled by cpu frequency
3952 void account_system_time(struct task_struct
*p
, int hardirq_offset
,
3953 cputime_t cputime
, cputime_t cputime_scaled
)
3955 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3956 cputime64_t
*target_cputime64
;
3958 if ((p
->flags
& PF_VCPU
) && (irq_count() - hardirq_offset
== 0)) {
3959 account_guest_time(p
, cputime
, cputime_scaled
);
3963 if (hardirq_count() - hardirq_offset
)
3964 target_cputime64
= &cpustat
->irq
;
3965 else if (in_serving_softirq())
3966 target_cputime64
= &cpustat
->softirq
;
3968 target_cputime64
= &cpustat
->system
;
3970 __account_system_time(p
, cputime
, cputime_scaled
, target_cputime64
);
3974 * Account for involuntary wait time.
3975 * @cputime: the cpu time spent in involuntary wait
3977 void account_steal_time(cputime_t cputime
)
3979 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3980 cputime64_t cputime64
= cputime_to_cputime64(cputime
);
3982 cpustat
->steal
= cputime64_add(cpustat
->steal
, cputime64
);
3986 * Account for idle time.
3987 * @cputime: the cpu time spent in idle wait
3989 void account_idle_time(cputime_t cputime
)
3991 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3992 cputime64_t cputime64
= cputime_to_cputime64(cputime
);
3993 struct rq
*rq
= this_rq();
3995 if (atomic_read(&rq
->nr_iowait
) > 0)
3996 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, cputime64
);
3998 cpustat
->idle
= cputime64_add(cpustat
->idle
, cputime64
);
4001 static __always_inline
bool steal_account_process_tick(void)
4003 #ifdef CONFIG_PARAVIRT
4004 if (static_branch(¶virt_steal_enabled
)) {
4007 steal
= paravirt_steal_clock(smp_processor_id());
4008 steal
-= this_rq()->prev_steal_time
;
4010 st
= steal_ticks(steal
);
4011 this_rq()->prev_steal_time
+= st
* TICK_NSEC
;
4013 account_steal_time(st
);
4020 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
4022 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
4024 * Account a tick to a process and cpustat
4025 * @p: the process that the cpu time gets accounted to
4026 * @user_tick: is the tick from userspace
4027 * @rq: the pointer to rq
4029 * Tick demultiplexing follows the order
4030 * - pending hardirq update
4031 * - pending softirq update
4035 * - check for guest_time
4036 * - else account as system_time
4038 * Check for hardirq is done both for system and user time as there is
4039 * no timer going off while we are on hardirq and hence we may never get an
4040 * opportunity to update it solely in system time.
4041 * p->stime and friends are only updated on system time and not on irq
4042 * softirq as those do not count in task exec_runtime any more.
4044 static void irqtime_account_process_tick(struct task_struct
*p
, int user_tick
,
4047 cputime_t one_jiffy_scaled
= cputime_to_scaled(cputime_one_jiffy
);
4048 cputime64_t tmp
= cputime_to_cputime64(cputime_one_jiffy
);
4049 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4051 if (steal_account_process_tick())
4054 if (irqtime_account_hi_update()) {
4055 cpustat
->irq
= cputime64_add(cpustat
->irq
, tmp
);
4056 } else if (irqtime_account_si_update()) {
4057 cpustat
->softirq
= cputime64_add(cpustat
->softirq
, tmp
);
4058 } else if (this_cpu_ksoftirqd() == p
) {
4060 * ksoftirqd time do not get accounted in cpu_softirq_time.
4061 * So, we have to handle it separately here.
4062 * Also, p->stime needs to be updated for ksoftirqd.
4064 __account_system_time(p
, cputime_one_jiffy
, one_jiffy_scaled
,
4066 } else if (user_tick
) {
4067 account_user_time(p
, cputime_one_jiffy
, one_jiffy_scaled
);
4068 } else if (p
== rq
->idle
) {
4069 account_idle_time(cputime_one_jiffy
);
4070 } else if (p
->flags
& PF_VCPU
) { /* System time or guest time */
4071 account_guest_time(p
, cputime_one_jiffy
, one_jiffy_scaled
);
4073 __account_system_time(p
, cputime_one_jiffy
, one_jiffy_scaled
,
4078 static void irqtime_account_idle_ticks(int ticks
)
4081 struct rq
*rq
= this_rq();
4083 for (i
= 0; i
< ticks
; i
++)
4084 irqtime_account_process_tick(current
, 0, rq
);
4086 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
4087 static void irqtime_account_idle_ticks(int ticks
) {}
4088 static void irqtime_account_process_tick(struct task_struct
*p
, int user_tick
,
4090 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
4093 * Account a single tick of cpu time.
4094 * @p: the process that the cpu time gets accounted to
4095 * @user_tick: indicates if the tick is a user or a system tick
4097 void account_process_tick(struct task_struct
*p
, int user_tick
)
4099 cputime_t one_jiffy_scaled
= cputime_to_scaled(cputime_one_jiffy
);
4100 struct rq
*rq
= this_rq();
4102 if (sched_clock_irqtime
) {
4103 irqtime_account_process_tick(p
, user_tick
, rq
);
4107 if (steal_account_process_tick())
4111 account_user_time(p
, cputime_one_jiffy
, one_jiffy_scaled
);
4112 else if ((p
!= rq
->idle
) || (irq_count() != HARDIRQ_OFFSET
))
4113 account_system_time(p
, HARDIRQ_OFFSET
, cputime_one_jiffy
,
4116 account_idle_time(cputime_one_jiffy
);
4120 * Account multiple ticks of steal time.
4121 * @p: the process from which the cpu time has been stolen
4122 * @ticks: number of stolen ticks
4124 void account_steal_ticks(unsigned long ticks
)
4126 account_steal_time(jiffies_to_cputime(ticks
));
4130 * Account multiple ticks of idle time.
4131 * @ticks: number of stolen ticks
4133 void account_idle_ticks(unsigned long ticks
)
4136 if (sched_clock_irqtime
) {
4137 irqtime_account_idle_ticks(ticks
);
4141 account_idle_time(jiffies_to_cputime(ticks
));
4147 * Use precise platform statistics if available:
4149 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
4150 void task_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
4156 void thread_group_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
4158 struct task_cputime cputime
;
4160 thread_group_cputime(p
, &cputime
);
4162 *ut
= cputime
.utime
;
4163 *st
= cputime
.stime
;
4167 #ifndef nsecs_to_cputime
4168 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
4171 void task_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
4173 cputime_t rtime
, utime
= p
->utime
, total
= cputime_add(utime
, p
->stime
);
4176 * Use CFS's precise accounting:
4178 rtime
= nsecs_to_cputime(p
->se
.sum_exec_runtime
);
4184 do_div(temp
, total
);
4185 utime
= (cputime_t
)temp
;
4190 * Compare with previous values, to keep monotonicity:
4192 p
->prev_utime
= max(p
->prev_utime
, utime
);
4193 p
->prev_stime
= max(p
->prev_stime
, cputime_sub(rtime
, p
->prev_utime
));
4195 *ut
= p
->prev_utime
;
4196 *st
= p
->prev_stime
;
4200 * Must be called with siglock held.
4202 void thread_group_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
4204 struct signal_struct
*sig
= p
->signal
;
4205 struct task_cputime cputime
;
4206 cputime_t rtime
, utime
, total
;
4208 thread_group_cputime(p
, &cputime
);
4210 total
= cputime_add(cputime
.utime
, cputime
.stime
);
4211 rtime
= nsecs_to_cputime(cputime
.sum_exec_runtime
);
4216 temp
*= cputime
.utime
;
4217 do_div(temp
, total
);
4218 utime
= (cputime_t
)temp
;
4222 sig
->prev_utime
= max(sig
->prev_utime
, utime
);
4223 sig
->prev_stime
= max(sig
->prev_stime
,
4224 cputime_sub(rtime
, sig
->prev_utime
));
4226 *ut
= sig
->prev_utime
;
4227 *st
= sig
->prev_stime
;
4232 * This function gets called by the timer code, with HZ frequency.
4233 * We call it with interrupts disabled.
4235 void scheduler_tick(void)
4237 int cpu
= smp_processor_id();
4238 struct rq
*rq
= cpu_rq(cpu
);
4239 struct task_struct
*curr
= rq
->curr
;
4243 raw_spin_lock(&rq
->lock
);
4244 update_rq_clock(rq
);
4245 update_cpu_load_active(rq
);
4246 curr
->sched_class
->task_tick(rq
, curr
, 0);
4247 raw_spin_unlock(&rq
->lock
);
4249 perf_event_task_tick();
4252 rq
->idle_balance
= idle_cpu(cpu
);
4253 trigger_load_balance(rq
, cpu
);
4257 notrace
unsigned long get_parent_ip(unsigned long addr
)
4259 if (in_lock_functions(addr
)) {
4260 addr
= CALLER_ADDR2
;
4261 if (in_lock_functions(addr
))
4262 addr
= CALLER_ADDR3
;
4267 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4268 defined(CONFIG_PREEMPT_TRACER))
4270 void __kprobes
add_preempt_count(int val
)
4272 #ifdef CONFIG_DEBUG_PREEMPT
4276 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4279 preempt_count() += val
;
4280 #ifdef CONFIG_DEBUG_PREEMPT
4282 * Spinlock count overflowing soon?
4284 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >=
4287 if (preempt_count() == val
)
4288 trace_preempt_off(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
4290 EXPORT_SYMBOL(add_preempt_count
);
4292 void __kprobes
sub_preempt_count(int val
)
4294 #ifdef CONFIG_DEBUG_PREEMPT
4298 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count()))
4301 * Is the spinlock portion underflowing?
4303 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
4304 !(preempt_count() & PREEMPT_MASK
)))
4308 if (preempt_count() == val
)
4309 trace_preempt_on(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
4310 preempt_count() -= val
;
4312 EXPORT_SYMBOL(sub_preempt_count
);
4317 * Print scheduling while atomic bug:
4319 static noinline
void __schedule_bug(struct task_struct
*prev
)
4321 struct pt_regs
*regs
= get_irq_regs();
4323 printk(KERN_ERR
"BUG: scheduling while atomic: %s/%d/0x%08x\n",
4324 prev
->comm
, prev
->pid
, preempt_count());
4326 debug_show_held_locks(prev
);
4328 if (irqs_disabled())
4329 print_irqtrace_events(prev
);
4338 * Various schedule()-time debugging checks and statistics:
4340 static inline void schedule_debug(struct task_struct
*prev
)
4343 * Test if we are atomic. Since do_exit() needs to call into
4344 * schedule() atomically, we ignore that path for now.
4345 * Otherwise, whine if we are scheduling when we should not be.
4347 if (unlikely(in_atomic_preempt_off() && !prev
->exit_state
))
4348 __schedule_bug(prev
);
4351 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
4353 schedstat_inc(this_rq(), sched_count
);
4356 static void put_prev_task(struct rq
*rq
, struct task_struct
*prev
)
4358 if (prev
->on_rq
|| rq
->skip_clock_update
< 0)
4359 update_rq_clock(rq
);
4360 prev
->sched_class
->put_prev_task(rq
, prev
);
4364 * Pick up the highest-prio task:
4366 static inline struct task_struct
*
4367 pick_next_task(struct rq
*rq
)
4369 const struct sched_class
*class;
4370 struct task_struct
*p
;
4373 * Optimization: we know that if all tasks are in
4374 * the fair class we can call that function directly:
4376 if (likely(rq
->nr_running
== rq
->cfs
.h_nr_running
)) {
4377 p
= fair_sched_class
.pick_next_task(rq
);
4382 for_each_class(class) {
4383 p
= class->pick_next_task(rq
);
4388 BUG(); /* the idle class will always have a runnable task */
4392 * __schedule() is the main scheduler function.
4394 static void __sched
__schedule(void)
4396 struct task_struct
*prev
, *next
;
4397 unsigned long *switch_count
;
4403 cpu
= smp_processor_id();
4405 rcu_note_context_switch(cpu
);
4408 schedule_debug(prev
);
4410 if (sched_feat(HRTICK
))
4413 raw_spin_lock_irq(&rq
->lock
);
4415 switch_count
= &prev
->nivcsw
;
4416 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
4417 if (unlikely(signal_pending_state(prev
->state
, prev
))) {
4418 prev
->state
= TASK_RUNNING
;
4420 deactivate_task(rq
, prev
, DEQUEUE_SLEEP
);
4424 * If a worker went to sleep, notify and ask workqueue
4425 * whether it wants to wake up a task to maintain
4428 if (prev
->flags
& PF_WQ_WORKER
) {
4429 struct task_struct
*to_wakeup
;
4431 to_wakeup
= wq_worker_sleeping(prev
, cpu
);
4433 try_to_wake_up_local(to_wakeup
);
4436 switch_count
= &prev
->nvcsw
;
4439 pre_schedule(rq
, prev
);
4441 if (unlikely(!rq
->nr_running
))
4442 idle_balance(cpu
, rq
);
4444 put_prev_task(rq
, prev
);
4445 next
= pick_next_task(rq
);
4446 clear_tsk_need_resched(prev
);
4447 rq
->skip_clock_update
= 0;
4449 if (likely(prev
!= next
)) {
4454 context_switch(rq
, prev
, next
); /* unlocks the rq */
4456 * The context switch have flipped the stack from under us
4457 * and restored the local variables which were saved when
4458 * this task called schedule() in the past. prev == current
4459 * is still correct, but it can be moved to another cpu/rq.
4461 cpu
= smp_processor_id();
4464 raw_spin_unlock_irq(&rq
->lock
);
4468 preempt_enable_no_resched();
4473 static inline void sched_submit_work(struct task_struct
*tsk
)
4478 * If we are going to sleep and we have plugged IO queued,
4479 * make sure to submit it to avoid deadlocks.
4481 if (blk_needs_flush_plug(tsk
))
4482 blk_schedule_flush_plug(tsk
);
4485 asmlinkage
void __sched
schedule(void)
4487 struct task_struct
*tsk
= current
;
4489 sched_submit_work(tsk
);
4492 EXPORT_SYMBOL(schedule
);
4494 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
4496 static inline bool owner_running(struct mutex
*lock
, struct task_struct
*owner
)
4498 if (lock
->owner
!= owner
)
4502 * Ensure we emit the owner->on_cpu, dereference _after_ checking
4503 * lock->owner still matches owner, if that fails, owner might
4504 * point to free()d memory, if it still matches, the rcu_read_lock()
4505 * ensures the memory stays valid.
4509 return owner
->on_cpu
;
4513 * Look out! "owner" is an entirely speculative pointer
4514 * access and not reliable.
4516 int mutex_spin_on_owner(struct mutex
*lock
, struct task_struct
*owner
)
4518 if (!sched_feat(OWNER_SPIN
))
4522 while (owner_running(lock
, owner
)) {
4526 arch_mutex_cpu_relax();
4531 * We break out the loop above on need_resched() and when the
4532 * owner changed, which is a sign for heavy contention. Return
4533 * success only when lock->owner is NULL.
4535 return lock
->owner
== NULL
;
4539 #ifdef CONFIG_PREEMPT
4541 * this is the entry point to schedule() from in-kernel preemption
4542 * off of preempt_enable. Kernel preemptions off return from interrupt
4543 * occur there and call schedule directly.
4545 asmlinkage
void __sched notrace
preempt_schedule(void)
4547 struct thread_info
*ti
= current_thread_info();
4550 * If there is a non-zero preempt_count or interrupts are disabled,
4551 * we do not want to preempt the current task. Just return..
4553 if (likely(ti
->preempt_count
|| irqs_disabled()))
4557 add_preempt_count_notrace(PREEMPT_ACTIVE
);
4559 sub_preempt_count_notrace(PREEMPT_ACTIVE
);
4562 * Check again in case we missed a preemption opportunity
4563 * between schedule and now.
4566 } while (need_resched());
4568 EXPORT_SYMBOL(preempt_schedule
);
4571 * this is the entry point to schedule() from kernel preemption
4572 * off of irq context.
4573 * Note, that this is called and return with irqs disabled. This will
4574 * protect us against recursive calling from irq.
4576 asmlinkage
void __sched
preempt_schedule_irq(void)
4578 struct thread_info
*ti
= current_thread_info();
4580 /* Catch callers which need to be fixed */
4581 BUG_ON(ti
->preempt_count
|| !irqs_disabled());
4584 add_preempt_count(PREEMPT_ACTIVE
);
4587 local_irq_disable();
4588 sub_preempt_count(PREEMPT_ACTIVE
);
4591 * Check again in case we missed a preemption opportunity
4592 * between schedule and now.
4595 } while (need_resched());
4598 #endif /* CONFIG_PREEMPT */
4600 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int wake_flags
,
4603 return try_to_wake_up(curr
->private, mode
, wake_flags
);
4605 EXPORT_SYMBOL(default_wake_function
);
4608 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4609 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4610 * number) then we wake all the non-exclusive tasks and one exclusive task.
4612 * There are circumstances in which we can try to wake a task which has already
4613 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4614 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4616 static void __wake_up_common(wait_queue_head_t
*q
, unsigned int mode
,
4617 int nr_exclusive
, int wake_flags
, void *key
)
4619 wait_queue_t
*curr
, *next
;
4621 list_for_each_entry_safe(curr
, next
, &q
->task_list
, task_list
) {
4622 unsigned flags
= curr
->flags
;
4624 if (curr
->func(curr
, mode
, wake_flags
, key
) &&
4625 (flags
& WQ_FLAG_EXCLUSIVE
) && !--nr_exclusive
)
4631 * __wake_up - wake up threads blocked on a waitqueue.
4633 * @mode: which threads
4634 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4635 * @key: is directly passed to the wakeup function
4637 * It may be assumed that this function implies a write memory barrier before
4638 * changing the task state if and only if any tasks are woken up.
4640 void __wake_up(wait_queue_head_t
*q
, unsigned int mode
,
4641 int nr_exclusive
, void *key
)
4643 unsigned long flags
;
4645 spin_lock_irqsave(&q
->lock
, flags
);
4646 __wake_up_common(q
, mode
, nr_exclusive
, 0, key
);
4647 spin_unlock_irqrestore(&q
->lock
, flags
);
4649 EXPORT_SYMBOL(__wake_up
);
4652 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4654 void __wake_up_locked(wait_queue_head_t
*q
, unsigned int mode
)
4656 __wake_up_common(q
, mode
, 1, 0, NULL
);
4658 EXPORT_SYMBOL_GPL(__wake_up_locked
);
4660 void __wake_up_locked_key(wait_queue_head_t
*q
, unsigned int mode
, void *key
)
4662 __wake_up_common(q
, mode
, 1, 0, key
);
4664 EXPORT_SYMBOL_GPL(__wake_up_locked_key
);
4667 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
4669 * @mode: which threads
4670 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4671 * @key: opaque value to be passed to wakeup targets
4673 * The sync wakeup differs that the waker knows that it will schedule
4674 * away soon, so while the target thread will be woken up, it will not
4675 * be migrated to another CPU - ie. the two threads are 'synchronized'
4676 * with each other. This can prevent needless bouncing between CPUs.
4678 * On UP it can prevent extra preemption.
4680 * It may be assumed that this function implies a write memory barrier before
4681 * changing the task state if and only if any tasks are woken up.
4683 void __wake_up_sync_key(wait_queue_head_t
*q
, unsigned int mode
,
4684 int nr_exclusive
, void *key
)
4686 unsigned long flags
;
4687 int wake_flags
= WF_SYNC
;
4692 if (unlikely(!nr_exclusive
))
4695 spin_lock_irqsave(&q
->lock
, flags
);
4696 __wake_up_common(q
, mode
, nr_exclusive
, wake_flags
, key
);
4697 spin_unlock_irqrestore(&q
->lock
, flags
);
4699 EXPORT_SYMBOL_GPL(__wake_up_sync_key
);
4702 * __wake_up_sync - see __wake_up_sync_key()
4704 void __wake_up_sync(wait_queue_head_t
*q
, unsigned int mode
, int nr_exclusive
)
4706 __wake_up_sync_key(q
, mode
, nr_exclusive
, NULL
);
4708 EXPORT_SYMBOL_GPL(__wake_up_sync
); /* For internal use only */
4711 * complete: - signals a single thread waiting on this completion
4712 * @x: holds the state of this particular completion
4714 * This will wake up a single thread waiting on this completion. Threads will be
4715 * awakened in the same order in which they were queued.
4717 * See also complete_all(), wait_for_completion() and related routines.
4719 * It may be assumed that this function implies a write memory barrier before
4720 * changing the task state if and only if any tasks are woken up.
4722 void complete(struct completion
*x
)
4724 unsigned long flags
;
4726 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4728 __wake_up_common(&x
->wait
, TASK_NORMAL
, 1, 0, NULL
);
4729 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4731 EXPORT_SYMBOL(complete
);
4734 * complete_all: - signals all threads waiting on this completion
4735 * @x: holds the state of this particular completion
4737 * This will wake up all threads waiting on this particular completion event.
4739 * It may be assumed that this function implies a write memory barrier before
4740 * changing the task state if and only if any tasks are woken up.
4742 void complete_all(struct completion
*x
)
4744 unsigned long flags
;
4746 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4747 x
->done
+= UINT_MAX
/2;
4748 __wake_up_common(&x
->wait
, TASK_NORMAL
, 0, 0, NULL
);
4749 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4751 EXPORT_SYMBOL(complete_all
);
4753 static inline long __sched
4754 do_wait_for_common(struct completion
*x
, long timeout
, int state
)
4757 DECLARE_WAITQUEUE(wait
, current
);
4759 __add_wait_queue_tail_exclusive(&x
->wait
, &wait
);
4761 if (signal_pending_state(state
, current
)) {
4762 timeout
= -ERESTARTSYS
;
4765 __set_current_state(state
);
4766 spin_unlock_irq(&x
->wait
.lock
);
4767 timeout
= schedule_timeout(timeout
);
4768 spin_lock_irq(&x
->wait
.lock
);
4769 } while (!x
->done
&& timeout
);
4770 __remove_wait_queue(&x
->wait
, &wait
);
4775 return timeout
?: 1;
4779 wait_for_common(struct completion
*x
, long timeout
, int state
)
4783 spin_lock_irq(&x
->wait
.lock
);
4784 timeout
= do_wait_for_common(x
, timeout
, state
);
4785 spin_unlock_irq(&x
->wait
.lock
);
4790 * wait_for_completion: - waits for completion of a task
4791 * @x: holds the state of this particular completion
4793 * This waits to be signaled for completion of a specific task. It is NOT
4794 * interruptible and there is no timeout.
4796 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4797 * and interrupt capability. Also see complete().
4799 void __sched
wait_for_completion(struct completion
*x
)
4801 wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_UNINTERRUPTIBLE
);
4803 EXPORT_SYMBOL(wait_for_completion
);
4806 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4807 * @x: holds the state of this particular completion
4808 * @timeout: timeout value in jiffies
4810 * This waits for either a completion of a specific task to be signaled or for a
4811 * specified timeout to expire. The timeout is in jiffies. It is not
4814 unsigned long __sched
4815 wait_for_completion_timeout(struct completion
*x
, unsigned long timeout
)
4817 return wait_for_common(x
, timeout
, TASK_UNINTERRUPTIBLE
);
4819 EXPORT_SYMBOL(wait_for_completion_timeout
);
4822 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4823 * @x: holds the state of this particular completion
4825 * This waits for completion of a specific task to be signaled. It is
4828 int __sched
wait_for_completion_interruptible(struct completion
*x
)
4830 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_INTERRUPTIBLE
);
4831 if (t
== -ERESTARTSYS
)
4835 EXPORT_SYMBOL(wait_for_completion_interruptible
);
4838 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4839 * @x: holds the state of this particular completion
4840 * @timeout: timeout value in jiffies
4842 * This waits for either a completion of a specific task to be signaled or for a
4843 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4846 wait_for_completion_interruptible_timeout(struct completion
*x
,
4847 unsigned long timeout
)
4849 return wait_for_common(x
, timeout
, TASK_INTERRUPTIBLE
);
4851 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout
);
4854 * wait_for_completion_killable: - waits for completion of a task (killable)
4855 * @x: holds the state of this particular completion
4857 * This waits to be signaled for completion of a specific task. It can be
4858 * interrupted by a kill signal.
4860 int __sched
wait_for_completion_killable(struct completion
*x
)
4862 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_KILLABLE
);
4863 if (t
== -ERESTARTSYS
)
4867 EXPORT_SYMBOL(wait_for_completion_killable
);
4870 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4871 * @x: holds the state of this particular completion
4872 * @timeout: timeout value in jiffies
4874 * This waits for either a completion of a specific task to be
4875 * signaled or for a specified timeout to expire. It can be
4876 * interrupted by a kill signal. The timeout is in jiffies.
4879 wait_for_completion_killable_timeout(struct completion
*x
,
4880 unsigned long timeout
)
4882 return wait_for_common(x
, timeout
, TASK_KILLABLE
);
4884 EXPORT_SYMBOL(wait_for_completion_killable_timeout
);
4887 * try_wait_for_completion - try to decrement a completion without blocking
4888 * @x: completion structure
4890 * Returns: 0 if a decrement cannot be done without blocking
4891 * 1 if a decrement succeeded.
4893 * If a completion is being used as a counting completion,
4894 * attempt to decrement the counter without blocking. This
4895 * enables us to avoid waiting if the resource the completion
4896 * is protecting is not available.
4898 bool try_wait_for_completion(struct completion
*x
)
4900 unsigned long flags
;
4903 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4908 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4911 EXPORT_SYMBOL(try_wait_for_completion
);
4914 * completion_done - Test to see if a completion has any waiters
4915 * @x: completion structure
4917 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4918 * 1 if there are no waiters.
4921 bool completion_done(struct completion
*x
)
4923 unsigned long flags
;
4926 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4929 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4932 EXPORT_SYMBOL(completion_done
);
4935 sleep_on_common(wait_queue_head_t
*q
, int state
, long timeout
)
4937 unsigned long flags
;
4940 init_waitqueue_entry(&wait
, current
);
4942 __set_current_state(state
);
4944 spin_lock_irqsave(&q
->lock
, flags
);
4945 __add_wait_queue(q
, &wait
);
4946 spin_unlock(&q
->lock
);
4947 timeout
= schedule_timeout(timeout
);
4948 spin_lock_irq(&q
->lock
);
4949 __remove_wait_queue(q
, &wait
);
4950 spin_unlock_irqrestore(&q
->lock
, flags
);
4955 void __sched
interruptible_sleep_on(wait_queue_head_t
*q
)
4957 sleep_on_common(q
, TASK_INTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
4959 EXPORT_SYMBOL(interruptible_sleep_on
);
4962 interruptible_sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
4964 return sleep_on_common(q
, TASK_INTERRUPTIBLE
, timeout
);
4966 EXPORT_SYMBOL(interruptible_sleep_on_timeout
);
4968 void __sched
sleep_on(wait_queue_head_t
*q
)
4970 sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
4972 EXPORT_SYMBOL(sleep_on
);
4974 long __sched
sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
4976 return sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, timeout
);
4978 EXPORT_SYMBOL(sleep_on_timeout
);
4980 #ifdef CONFIG_RT_MUTEXES
4983 * rt_mutex_setprio - set the current priority of a task
4985 * @prio: prio value (kernel-internal form)
4987 * This function changes the 'effective' priority of a task. It does
4988 * not touch ->normal_prio like __setscheduler().
4990 * Used by the rt_mutex code to implement priority inheritance logic.
4992 void rt_mutex_setprio(struct task_struct
*p
, int prio
)
4994 int oldprio
, on_rq
, running
;
4996 const struct sched_class
*prev_class
;
4998 BUG_ON(prio
< 0 || prio
> MAX_PRIO
);
5000 rq
= __task_rq_lock(p
);
5002 trace_sched_pi_setprio(p
, prio
);
5004 prev_class
= p
->sched_class
;
5006 running
= task_current(rq
, p
);
5008 dequeue_task(rq
, p
, 0);
5010 p
->sched_class
->put_prev_task(rq
, p
);
5013 p
->sched_class
= &rt_sched_class
;
5015 p
->sched_class
= &fair_sched_class
;
5020 p
->sched_class
->set_curr_task(rq
);
5022 enqueue_task(rq
, p
, oldprio
< prio
? ENQUEUE_HEAD
: 0);
5024 check_class_changed(rq
, p
, prev_class
, oldprio
);
5025 __task_rq_unlock(rq
);
5030 void set_user_nice(struct task_struct
*p
, long nice
)
5032 int old_prio
, delta
, on_rq
;
5033 unsigned long flags
;
5036 if (TASK_NICE(p
) == nice
|| nice
< -20 || nice
> 19)
5039 * We have to be careful, if called from sys_setpriority(),
5040 * the task might be in the middle of scheduling on another CPU.
5042 rq
= task_rq_lock(p
, &flags
);
5044 * The RT priorities are set via sched_setscheduler(), but we still
5045 * allow the 'normal' nice value to be set - but as expected
5046 * it wont have any effect on scheduling until the task is
5047 * SCHED_FIFO/SCHED_RR:
5049 if (task_has_rt_policy(p
)) {
5050 p
->static_prio
= NICE_TO_PRIO(nice
);
5055 dequeue_task(rq
, p
, 0);
5057 p
->static_prio
= NICE_TO_PRIO(nice
);
5060 p
->prio
= effective_prio(p
);
5061 delta
= p
->prio
- old_prio
;
5064 enqueue_task(rq
, p
, 0);
5066 * If the task increased its priority or is running and
5067 * lowered its priority, then reschedule its CPU:
5069 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
5070 resched_task(rq
->curr
);
5073 task_rq_unlock(rq
, p
, &flags
);
5075 EXPORT_SYMBOL(set_user_nice
);
5078 * can_nice - check if a task can reduce its nice value
5082 int can_nice(const struct task_struct
*p
, const int nice
)
5084 /* convert nice value [19,-20] to rlimit style value [1,40] */
5085 int nice_rlim
= 20 - nice
;
5087 return (nice_rlim
<= task_rlimit(p
, RLIMIT_NICE
) ||
5088 capable(CAP_SYS_NICE
));
5091 #ifdef __ARCH_WANT_SYS_NICE
5094 * sys_nice - change the priority of the current process.
5095 * @increment: priority increment
5097 * sys_setpriority is a more generic, but much slower function that
5098 * does similar things.
5100 SYSCALL_DEFINE1(nice
, int, increment
)
5105 * Setpriority might change our priority at the same moment.
5106 * We don't have to worry. Conceptually one call occurs first
5107 * and we have a single winner.
5109 if (increment
< -40)
5114 nice
= TASK_NICE(current
) + increment
;
5120 if (increment
< 0 && !can_nice(current
, nice
))
5123 retval
= security_task_setnice(current
, nice
);
5127 set_user_nice(current
, nice
);
5134 * task_prio - return the priority value of a given task.
5135 * @p: the task in question.
5137 * This is the priority value as seen by users in /proc.
5138 * RT tasks are offset by -200. Normal tasks are centered
5139 * around 0, value goes from -16 to +15.
5141 int task_prio(const struct task_struct
*p
)
5143 return p
->prio
- MAX_RT_PRIO
;
5147 * task_nice - return the nice value of a given task.
5148 * @p: the task in question.
5150 int task_nice(const struct task_struct
*p
)
5152 return TASK_NICE(p
);
5154 EXPORT_SYMBOL(task_nice
);
5157 * idle_cpu - is a given cpu idle currently?
5158 * @cpu: the processor in question.
5160 int idle_cpu(int cpu
)
5162 struct rq
*rq
= cpu_rq(cpu
);
5164 if (rq
->curr
!= rq
->idle
)
5171 if (!llist_empty(&rq
->wake_list
))
5179 * idle_task - return the idle task for a given cpu.
5180 * @cpu: the processor in question.
5182 struct task_struct
*idle_task(int cpu
)
5184 return cpu_rq(cpu
)->idle
;
5188 * find_process_by_pid - find a process with a matching PID value.
5189 * @pid: the pid in question.
5191 static struct task_struct
*find_process_by_pid(pid_t pid
)
5193 return pid
? find_task_by_vpid(pid
) : current
;
5196 /* Actually do priority change: must hold rq lock. */
5198 __setscheduler(struct rq
*rq
, struct task_struct
*p
, int policy
, int prio
)
5201 p
->rt_priority
= prio
;
5202 p
->normal_prio
= normal_prio(p
);
5203 /* we are holding p->pi_lock already */
5204 p
->prio
= rt_mutex_getprio(p
);
5205 if (rt_prio(p
->prio
))
5206 p
->sched_class
= &rt_sched_class
;
5208 p
->sched_class
= &fair_sched_class
;
5213 * check the target process has a UID that matches the current process's
5215 static bool check_same_owner(struct task_struct
*p
)
5217 const struct cred
*cred
= current_cred(), *pcred
;
5221 pcred
= __task_cred(p
);
5222 if (cred
->user
->user_ns
== pcred
->user
->user_ns
)
5223 match
= (cred
->euid
== pcred
->euid
||
5224 cred
->euid
== pcred
->uid
);
5231 static int __sched_setscheduler(struct task_struct
*p
, int policy
,
5232 const struct sched_param
*param
, bool user
)
5234 int retval
, oldprio
, oldpolicy
= -1, on_rq
, running
;
5235 unsigned long flags
;
5236 const struct sched_class
*prev_class
;
5240 /* may grab non-irq protected spin_locks */
5241 BUG_ON(in_interrupt());
5243 /* double check policy once rq lock held */
5245 reset_on_fork
= p
->sched_reset_on_fork
;
5246 policy
= oldpolicy
= p
->policy
;
5248 reset_on_fork
= !!(policy
& SCHED_RESET_ON_FORK
);
5249 policy
&= ~SCHED_RESET_ON_FORK
;
5251 if (policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
5252 policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
&&
5253 policy
!= SCHED_IDLE
)
5258 * Valid priorities for SCHED_FIFO and SCHED_RR are
5259 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5260 * SCHED_BATCH and SCHED_IDLE is 0.
5262 if (param
->sched_priority
< 0 ||
5263 (p
->mm
&& param
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
5264 (!p
->mm
&& param
->sched_priority
> MAX_RT_PRIO
-1))
5266 if (rt_policy(policy
) != (param
->sched_priority
!= 0))
5270 * Allow unprivileged RT tasks to decrease priority:
5272 if (user
&& !capable(CAP_SYS_NICE
)) {
5273 if (rt_policy(policy
)) {
5274 unsigned long rlim_rtprio
=
5275 task_rlimit(p
, RLIMIT_RTPRIO
);
5277 /* can't set/change the rt policy */
5278 if (policy
!= p
->policy
&& !rlim_rtprio
)
5281 /* can't increase priority */
5282 if (param
->sched_priority
> p
->rt_priority
&&
5283 param
->sched_priority
> rlim_rtprio
)
5288 * Treat SCHED_IDLE as nice 20. Only allow a switch to
5289 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
5291 if (p
->policy
== SCHED_IDLE
&& policy
!= SCHED_IDLE
) {
5292 if (!can_nice(p
, TASK_NICE(p
)))
5296 /* can't change other user's priorities */
5297 if (!check_same_owner(p
))
5300 /* Normal users shall not reset the sched_reset_on_fork flag */
5301 if (p
->sched_reset_on_fork
&& !reset_on_fork
)
5306 retval
= security_task_setscheduler(p
);
5312 * make sure no PI-waiters arrive (or leave) while we are
5313 * changing the priority of the task:
5315 * To be able to change p->policy safely, the appropriate
5316 * runqueue lock must be held.
5318 rq
= task_rq_lock(p
, &flags
);
5321 * Changing the policy of the stop threads its a very bad idea
5323 if (p
== rq
->stop
) {
5324 task_rq_unlock(rq
, p
, &flags
);
5329 * If not changing anything there's no need to proceed further:
5331 if (unlikely(policy
== p
->policy
&& (!rt_policy(policy
) ||
5332 param
->sched_priority
== p
->rt_priority
))) {
5334 __task_rq_unlock(rq
);
5335 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
5339 #ifdef CONFIG_RT_GROUP_SCHED
5342 * Do not allow realtime tasks into groups that have no runtime
5345 if (rt_bandwidth_enabled() && rt_policy(policy
) &&
5346 task_group(p
)->rt_bandwidth
.rt_runtime
== 0 &&
5347 !task_group_is_autogroup(task_group(p
))) {
5348 task_rq_unlock(rq
, p
, &flags
);
5354 /* recheck policy now with rq lock held */
5355 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
5356 policy
= oldpolicy
= -1;
5357 task_rq_unlock(rq
, p
, &flags
);
5361 running
= task_current(rq
, p
);
5363 deactivate_task(rq
, p
, 0);
5365 p
->sched_class
->put_prev_task(rq
, p
);
5367 p
->sched_reset_on_fork
= reset_on_fork
;
5370 prev_class
= p
->sched_class
;
5371 __setscheduler(rq
, p
, policy
, param
->sched_priority
);
5374 p
->sched_class
->set_curr_task(rq
);
5376 activate_task(rq
, p
, 0);
5378 check_class_changed(rq
, p
, prev_class
, oldprio
);
5379 task_rq_unlock(rq
, p
, &flags
);
5381 rt_mutex_adjust_pi(p
);
5387 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5388 * @p: the task in question.
5389 * @policy: new policy.
5390 * @param: structure containing the new RT priority.
5392 * NOTE that the task may be already dead.
5394 int sched_setscheduler(struct task_struct
*p
, int policy
,
5395 const struct sched_param
*param
)
5397 return __sched_setscheduler(p
, policy
, param
, true);
5399 EXPORT_SYMBOL_GPL(sched_setscheduler
);
5402 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5403 * @p: the task in question.
5404 * @policy: new policy.
5405 * @param: structure containing the new RT priority.
5407 * Just like sched_setscheduler, only don't bother checking if the
5408 * current context has permission. For example, this is needed in
5409 * stop_machine(): we create temporary high priority worker threads,
5410 * but our caller might not have that capability.
5412 int sched_setscheduler_nocheck(struct task_struct
*p
, int policy
,
5413 const struct sched_param
*param
)
5415 return __sched_setscheduler(p
, policy
, param
, false);
5419 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
5421 struct sched_param lparam
;
5422 struct task_struct
*p
;
5425 if (!param
|| pid
< 0)
5427 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
5432 p
= find_process_by_pid(pid
);
5434 retval
= sched_setscheduler(p
, policy
, &lparam
);
5441 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5442 * @pid: the pid in question.
5443 * @policy: new policy.
5444 * @param: structure containing the new RT priority.
5446 SYSCALL_DEFINE3(sched_setscheduler
, pid_t
, pid
, int, policy
,
5447 struct sched_param __user
*, param
)
5449 /* negative values for policy are not valid */
5453 return do_sched_setscheduler(pid
, policy
, param
);
5457 * sys_sched_setparam - set/change the RT priority of a thread
5458 * @pid: the pid in question.
5459 * @param: structure containing the new RT priority.
5461 SYSCALL_DEFINE2(sched_setparam
, pid_t
, pid
, struct sched_param __user
*, param
)
5463 return do_sched_setscheduler(pid
, -1, param
);
5467 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5468 * @pid: the pid in question.
5470 SYSCALL_DEFINE1(sched_getscheduler
, pid_t
, pid
)
5472 struct task_struct
*p
;
5480 p
= find_process_by_pid(pid
);
5482 retval
= security_task_getscheduler(p
);
5485 | (p
->sched_reset_on_fork
? SCHED_RESET_ON_FORK
: 0);
5492 * sys_sched_getparam - get the RT priority of a thread
5493 * @pid: the pid in question.
5494 * @param: structure containing the RT priority.
5496 SYSCALL_DEFINE2(sched_getparam
, pid_t
, pid
, struct sched_param __user
*, param
)
5498 struct sched_param lp
;
5499 struct task_struct
*p
;
5502 if (!param
|| pid
< 0)
5506 p
= find_process_by_pid(pid
);
5511 retval
= security_task_getscheduler(p
);
5515 lp
.sched_priority
= p
->rt_priority
;
5519 * This one might sleep, we cannot do it with a spinlock held ...
5521 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
5530 long sched_setaffinity(pid_t pid
, const struct cpumask
*in_mask
)
5532 cpumask_var_t cpus_allowed
, new_mask
;
5533 struct task_struct
*p
;
5539 p
= find_process_by_pid(pid
);
5546 /* Prevent p going away */
5550 if (!alloc_cpumask_var(&cpus_allowed
, GFP_KERNEL
)) {
5554 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
)) {
5556 goto out_free_cpus_allowed
;
5559 if (!check_same_owner(p
) && !task_ns_capable(p
, CAP_SYS_NICE
))
5562 retval
= security_task_setscheduler(p
);
5566 cpuset_cpus_allowed(p
, cpus_allowed
);
5567 cpumask_and(new_mask
, in_mask
, cpus_allowed
);
5569 retval
= set_cpus_allowed_ptr(p
, new_mask
);
5572 cpuset_cpus_allowed(p
, cpus_allowed
);
5573 if (!cpumask_subset(new_mask
, cpus_allowed
)) {
5575 * We must have raced with a concurrent cpuset
5576 * update. Just reset the cpus_allowed to the
5577 * cpuset's cpus_allowed
5579 cpumask_copy(new_mask
, cpus_allowed
);
5584 free_cpumask_var(new_mask
);
5585 out_free_cpus_allowed
:
5586 free_cpumask_var(cpus_allowed
);
5593 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
5594 struct cpumask
*new_mask
)
5596 if (len
< cpumask_size())
5597 cpumask_clear(new_mask
);
5598 else if (len
> cpumask_size())
5599 len
= cpumask_size();
5601 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
5605 * sys_sched_setaffinity - set the cpu affinity of a process
5606 * @pid: pid of the process
5607 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5608 * @user_mask_ptr: user-space pointer to the new cpu mask
5610 SYSCALL_DEFINE3(sched_setaffinity
, pid_t
, pid
, unsigned int, len
,
5611 unsigned long __user
*, user_mask_ptr
)
5613 cpumask_var_t new_mask
;
5616 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
))
5619 retval
= get_user_cpu_mask(user_mask_ptr
, len
, new_mask
);
5621 retval
= sched_setaffinity(pid
, new_mask
);
5622 free_cpumask_var(new_mask
);
5626 long sched_getaffinity(pid_t pid
, struct cpumask
*mask
)
5628 struct task_struct
*p
;
5629 unsigned long flags
;
5636 p
= find_process_by_pid(pid
);
5640 retval
= security_task_getscheduler(p
);
5644 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
5645 cpumask_and(mask
, &p
->cpus_allowed
, cpu_online_mask
);
5646 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
5656 * sys_sched_getaffinity - get the cpu affinity of a process
5657 * @pid: pid of the process
5658 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5659 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5661 SYSCALL_DEFINE3(sched_getaffinity
, pid_t
, pid
, unsigned int, len
,
5662 unsigned long __user
*, user_mask_ptr
)
5667 if ((len
* BITS_PER_BYTE
) < nr_cpu_ids
)
5669 if (len
& (sizeof(unsigned long)-1))
5672 if (!alloc_cpumask_var(&mask
, GFP_KERNEL
))
5675 ret
= sched_getaffinity(pid
, mask
);
5677 size_t retlen
= min_t(size_t, len
, cpumask_size());
5679 if (copy_to_user(user_mask_ptr
, mask
, retlen
))
5684 free_cpumask_var(mask
);
5690 * sys_sched_yield - yield the current processor to other threads.
5692 * This function yields the current CPU to other tasks. If there are no
5693 * other threads running on this CPU then this function will return.
5695 SYSCALL_DEFINE0(sched_yield
)
5697 struct rq
*rq
= this_rq_lock();
5699 schedstat_inc(rq
, yld_count
);
5700 current
->sched_class
->yield_task(rq
);
5703 * Since we are going to call schedule() anyway, there's
5704 * no need to preempt or enable interrupts:
5706 __release(rq
->lock
);
5707 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
5708 do_raw_spin_unlock(&rq
->lock
);
5709 preempt_enable_no_resched();
5716 static inline int should_resched(void)
5718 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE
);
5721 static void __cond_resched(void)
5723 add_preempt_count(PREEMPT_ACTIVE
);
5725 sub_preempt_count(PREEMPT_ACTIVE
);
5728 int __sched
_cond_resched(void)
5730 if (should_resched()) {
5736 EXPORT_SYMBOL(_cond_resched
);
5739 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5740 * call schedule, and on return reacquire the lock.
5742 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5743 * operations here to prevent schedule() from being called twice (once via
5744 * spin_unlock(), once by hand).
5746 int __cond_resched_lock(spinlock_t
*lock
)
5748 int resched
= should_resched();
5751 lockdep_assert_held(lock
);
5753 if (spin_needbreak(lock
) || resched
) {
5764 EXPORT_SYMBOL(__cond_resched_lock
);
5766 int __sched
__cond_resched_softirq(void)
5768 BUG_ON(!in_softirq());
5770 if (should_resched()) {
5778 EXPORT_SYMBOL(__cond_resched_softirq
);
5781 * yield - yield the current processor to other threads.
5783 * This is a shortcut for kernel-space yielding - it marks the
5784 * thread runnable and calls sys_sched_yield().
5786 void __sched
yield(void)
5788 set_current_state(TASK_RUNNING
);
5791 EXPORT_SYMBOL(yield
);
5794 * yield_to - yield the current processor to another thread in
5795 * your thread group, or accelerate that thread toward the
5796 * processor it's on.
5798 * @preempt: whether task preemption is allowed or not
5800 * It's the caller's job to ensure that the target task struct
5801 * can't go away on us before we can do any checks.
5803 * Returns true if we indeed boosted the target task.
5805 bool __sched
yield_to(struct task_struct
*p
, bool preempt
)
5807 struct task_struct
*curr
= current
;
5808 struct rq
*rq
, *p_rq
;
5809 unsigned long flags
;
5812 local_irq_save(flags
);
5817 double_rq_lock(rq
, p_rq
);
5818 while (task_rq(p
) != p_rq
) {
5819 double_rq_unlock(rq
, p_rq
);
5823 if (!curr
->sched_class
->yield_to_task
)
5826 if (curr
->sched_class
!= p
->sched_class
)
5829 if (task_running(p_rq
, p
) || p
->state
)
5832 yielded
= curr
->sched_class
->yield_to_task(rq
, p
, preempt
);
5834 schedstat_inc(rq
, yld_count
);
5836 * Make p's CPU reschedule; pick_next_entity takes care of
5839 if (preempt
&& rq
!= p_rq
)
5840 resched_task(p_rq
->curr
);
5844 double_rq_unlock(rq
, p_rq
);
5845 local_irq_restore(flags
);
5852 EXPORT_SYMBOL_GPL(yield_to
);
5855 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5856 * that process accounting knows that this is a task in IO wait state.
5858 void __sched
io_schedule(void)
5860 struct rq
*rq
= raw_rq();
5862 delayacct_blkio_start();
5863 atomic_inc(&rq
->nr_iowait
);
5864 blk_flush_plug(current
);
5865 current
->in_iowait
= 1;
5867 current
->in_iowait
= 0;
5868 atomic_dec(&rq
->nr_iowait
);
5869 delayacct_blkio_end();
5871 EXPORT_SYMBOL(io_schedule
);
5873 long __sched
io_schedule_timeout(long timeout
)
5875 struct rq
*rq
= raw_rq();
5878 delayacct_blkio_start();
5879 atomic_inc(&rq
->nr_iowait
);
5880 blk_flush_plug(current
);
5881 current
->in_iowait
= 1;
5882 ret
= schedule_timeout(timeout
);
5883 current
->in_iowait
= 0;
5884 atomic_dec(&rq
->nr_iowait
);
5885 delayacct_blkio_end();
5890 * sys_sched_get_priority_max - return maximum RT priority.
5891 * @policy: scheduling class.
5893 * this syscall returns the maximum rt_priority that can be used
5894 * by a given scheduling class.
5896 SYSCALL_DEFINE1(sched_get_priority_max
, int, policy
)
5903 ret
= MAX_USER_RT_PRIO
-1;
5915 * sys_sched_get_priority_min - return minimum RT priority.
5916 * @policy: scheduling class.
5918 * this syscall returns the minimum rt_priority that can be used
5919 * by a given scheduling class.
5921 SYSCALL_DEFINE1(sched_get_priority_min
, int, policy
)
5939 * sys_sched_rr_get_interval - return the default timeslice of a process.
5940 * @pid: pid of the process.
5941 * @interval: userspace pointer to the timeslice value.
5943 * this syscall writes the default timeslice value of a given process
5944 * into the user-space timespec buffer. A value of '0' means infinity.
5946 SYSCALL_DEFINE2(sched_rr_get_interval
, pid_t
, pid
,
5947 struct timespec __user
*, interval
)
5949 struct task_struct
*p
;
5950 unsigned int time_slice
;
5951 unsigned long flags
;
5961 p
= find_process_by_pid(pid
);
5965 retval
= security_task_getscheduler(p
);
5969 rq
= task_rq_lock(p
, &flags
);
5970 time_slice
= p
->sched_class
->get_rr_interval(rq
, p
);
5971 task_rq_unlock(rq
, p
, &flags
);
5974 jiffies_to_timespec(time_slice
, &t
);
5975 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
5983 static const char stat_nam
[] = TASK_STATE_TO_CHAR_STR
;
5985 void sched_show_task(struct task_struct
*p
)
5987 unsigned long free
= 0;
5990 state
= p
->state
? __ffs(p
->state
) + 1 : 0;
5991 printk(KERN_INFO
"%-15.15s %c", p
->comm
,
5992 state
< sizeof(stat_nam
) - 1 ? stat_nam
[state
] : '?');
5993 #if BITS_PER_LONG == 32
5994 if (state
== TASK_RUNNING
)
5995 printk(KERN_CONT
" running ");
5997 printk(KERN_CONT
" %08lx ", thread_saved_pc(p
));
5999 if (state
== TASK_RUNNING
)
6000 printk(KERN_CONT
" running task ");
6002 printk(KERN_CONT
" %016lx ", thread_saved_pc(p
));
6004 #ifdef CONFIG_DEBUG_STACK_USAGE
6005 free
= stack_not_used(p
);
6007 printk(KERN_CONT
"%5lu %5d %6d 0x%08lx\n", free
,
6008 task_pid_nr(p
), task_pid_nr(p
->real_parent
),
6009 (unsigned long)task_thread_info(p
)->flags
);
6011 show_stack(p
, NULL
);
6014 void show_state_filter(unsigned long state_filter
)
6016 struct task_struct
*g
, *p
;
6018 #if BITS_PER_LONG == 32
6020 " task PC stack pid father\n");
6023 " task PC stack pid father\n");
6026 do_each_thread(g
, p
) {
6028 * reset the NMI-timeout, listing all files on a slow
6029 * console might take a lot of time:
6031 touch_nmi_watchdog();
6032 if (!state_filter
|| (p
->state
& state_filter
))
6034 } while_each_thread(g
, p
);
6036 touch_all_softlockup_watchdogs();
6038 #ifdef CONFIG_SCHED_DEBUG
6039 sysrq_sched_debug_show();
6043 * Only show locks if all tasks are dumped:
6046 debug_show_all_locks();
6049 void __cpuinit
init_idle_bootup_task(struct task_struct
*idle
)
6051 idle
->sched_class
= &idle_sched_class
;
6055 * init_idle - set up an idle thread for a given CPU
6056 * @idle: task in question
6057 * @cpu: cpu the idle task belongs to
6059 * NOTE: this function does not set the idle thread's NEED_RESCHED
6060 * flag, to make booting more robust.
6062 void __cpuinit
init_idle(struct task_struct
*idle
, int cpu
)
6064 struct rq
*rq
= cpu_rq(cpu
);
6065 unsigned long flags
;
6067 raw_spin_lock_irqsave(&rq
->lock
, flags
);
6070 idle
->state
= TASK_RUNNING
;
6071 idle
->se
.exec_start
= sched_clock();
6073 do_set_cpus_allowed(idle
, cpumask_of(cpu
));
6075 * We're having a chicken and egg problem, even though we are
6076 * holding rq->lock, the cpu isn't yet set to this cpu so the
6077 * lockdep check in task_group() will fail.
6079 * Similar case to sched_fork(). / Alternatively we could
6080 * use task_rq_lock() here and obtain the other rq->lock.
6085 __set_task_cpu(idle
, cpu
);
6088 rq
->curr
= rq
->idle
= idle
;
6089 #if defined(CONFIG_SMP)
6092 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
6094 /* Set the preempt count _outside_ the spinlocks! */
6095 task_thread_info(idle
)->preempt_count
= 0;
6098 * The idle tasks have their own, simple scheduling class:
6100 idle
->sched_class
= &idle_sched_class
;
6101 ftrace_graph_init_idle_task(idle
, cpu
);
6105 * Increase the granularity value when there are more CPUs,
6106 * because with more CPUs the 'effective latency' as visible
6107 * to users decreases. But the relationship is not linear,
6108 * so pick a second-best guess by going with the log2 of the
6111 * This idea comes from the SD scheduler of Con Kolivas:
6113 static int get_update_sysctl_factor(void)
6115 unsigned int cpus
= min_t(int, num_online_cpus(), 8);
6116 unsigned int factor
;
6118 switch (sysctl_sched_tunable_scaling
) {
6119 case SCHED_TUNABLESCALING_NONE
:
6122 case SCHED_TUNABLESCALING_LINEAR
:
6125 case SCHED_TUNABLESCALING_LOG
:
6127 factor
= 1 + ilog2(cpus
);
6134 static void update_sysctl(void)
6136 unsigned int factor
= get_update_sysctl_factor();
6138 #define SET_SYSCTL(name) \
6139 (sysctl_##name = (factor) * normalized_sysctl_##name)
6140 SET_SYSCTL(sched_min_granularity
);
6141 SET_SYSCTL(sched_latency
);
6142 SET_SYSCTL(sched_wakeup_granularity
);
6146 static inline void sched_init_granularity(void)
6152 void do_set_cpus_allowed(struct task_struct
*p
, const struct cpumask
*new_mask
)
6154 if (p
->sched_class
&& p
->sched_class
->set_cpus_allowed
)
6155 p
->sched_class
->set_cpus_allowed(p
, new_mask
);
6157 cpumask_copy(&p
->cpus_allowed
, new_mask
);
6158 p
->rt
.nr_cpus_allowed
= cpumask_weight(new_mask
);
6162 * This is how migration works:
6164 * 1) we invoke migration_cpu_stop() on the target CPU using
6166 * 2) stopper starts to run (implicitly forcing the migrated thread
6168 * 3) it checks whether the migrated task is still in the wrong runqueue.
6169 * 4) if it's in the wrong runqueue then the migration thread removes
6170 * it and puts it into the right queue.
6171 * 5) stopper completes and stop_one_cpu() returns and the migration
6176 * Change a given task's CPU affinity. Migrate the thread to a
6177 * proper CPU and schedule it away if the CPU it's executing on
6178 * is removed from the allowed bitmask.
6180 * NOTE: the caller must have a valid reference to the task, the
6181 * task must not exit() & deallocate itself prematurely. The
6182 * call is not atomic; no spinlocks may be held.
6184 int set_cpus_allowed_ptr(struct task_struct
*p
, const struct cpumask
*new_mask
)
6186 unsigned long flags
;
6188 unsigned int dest_cpu
;
6191 rq
= task_rq_lock(p
, &flags
);
6193 if (cpumask_equal(&p
->cpus_allowed
, new_mask
))
6196 if (!cpumask_intersects(new_mask
, cpu_active_mask
)) {
6201 if (unlikely((p
->flags
& PF_THREAD_BOUND
) && p
!= current
)) {
6206 do_set_cpus_allowed(p
, new_mask
);
6208 /* Can the task run on the task's current CPU? If so, we're done */
6209 if (cpumask_test_cpu(task_cpu(p
), new_mask
))
6212 dest_cpu
= cpumask_any_and(cpu_active_mask
, new_mask
);
6214 struct migration_arg arg
= { p
, dest_cpu
};
6215 /* Need help from migration thread: drop lock and wait. */
6216 task_rq_unlock(rq
, p
, &flags
);
6217 stop_one_cpu(cpu_of(rq
), migration_cpu_stop
, &arg
);
6218 tlb_migrate_finish(p
->mm
);
6222 task_rq_unlock(rq
, p
, &flags
);
6226 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr
);
6229 * Move (not current) task off this cpu, onto dest cpu. We're doing
6230 * this because either it can't run here any more (set_cpus_allowed()
6231 * away from this CPU, or CPU going down), or because we're
6232 * attempting to rebalance this task on exec (sched_exec).
6234 * So we race with normal scheduler movements, but that's OK, as long
6235 * as the task is no longer on this CPU.
6237 * Returns non-zero if task was successfully migrated.
6239 static int __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
6241 struct rq
*rq_dest
, *rq_src
;
6244 if (unlikely(!cpu_active(dest_cpu
)))
6247 rq_src
= cpu_rq(src_cpu
);
6248 rq_dest
= cpu_rq(dest_cpu
);
6250 raw_spin_lock(&p
->pi_lock
);
6251 double_rq_lock(rq_src
, rq_dest
);
6252 /* Already moved. */
6253 if (task_cpu(p
) != src_cpu
)
6255 /* Affinity changed (again). */
6256 if (!cpumask_test_cpu(dest_cpu
, tsk_cpus_allowed(p
)))
6260 * If we're not on a rq, the next wake-up will ensure we're
6264 deactivate_task(rq_src
, p
, 0);
6265 set_task_cpu(p
, dest_cpu
);
6266 activate_task(rq_dest
, p
, 0);
6267 check_preempt_curr(rq_dest
, p
, 0);
6272 double_rq_unlock(rq_src
, rq_dest
);
6273 raw_spin_unlock(&p
->pi_lock
);
6278 * migration_cpu_stop - this will be executed by a highprio stopper thread
6279 * and performs thread migration by bumping thread off CPU then
6280 * 'pushing' onto another runqueue.
6282 static int migration_cpu_stop(void *data
)
6284 struct migration_arg
*arg
= data
;
6287 * The original target cpu might have gone down and we might
6288 * be on another cpu but it doesn't matter.
6290 local_irq_disable();
6291 __migrate_task(arg
->task
, raw_smp_processor_id(), arg
->dest_cpu
);
6296 #ifdef CONFIG_HOTPLUG_CPU
6299 * Ensures that the idle task is using init_mm right before its cpu goes
6302 void idle_task_exit(void)
6304 struct mm_struct
*mm
= current
->active_mm
;
6306 BUG_ON(cpu_online(smp_processor_id()));
6309 switch_mm(mm
, &init_mm
, current
);
6314 * While a dead CPU has no uninterruptible tasks queued at this point,
6315 * it might still have a nonzero ->nr_uninterruptible counter, because
6316 * for performance reasons the counter is not stricly tracking tasks to
6317 * their home CPUs. So we just add the counter to another CPU's counter,
6318 * to keep the global sum constant after CPU-down:
6320 static void migrate_nr_uninterruptible(struct rq
*rq_src
)
6322 struct rq
*rq_dest
= cpu_rq(cpumask_any(cpu_active_mask
));
6324 rq_dest
->nr_uninterruptible
+= rq_src
->nr_uninterruptible
;
6325 rq_src
->nr_uninterruptible
= 0;
6329 * remove the tasks which were accounted by rq from calc_load_tasks.
6331 static void calc_global_load_remove(struct rq
*rq
)
6333 atomic_long_sub(rq
->calc_load_active
, &calc_load_tasks
);
6334 rq
->calc_load_active
= 0;
6337 #ifdef CONFIG_CFS_BANDWIDTH
6338 static void unthrottle_offline_cfs_rqs(struct rq
*rq
)
6340 struct cfs_rq
*cfs_rq
;
6342 for_each_leaf_cfs_rq(rq
, cfs_rq
) {
6343 struct cfs_bandwidth
*cfs_b
= tg_cfs_bandwidth(cfs_rq
->tg
);
6345 if (!cfs_rq
->runtime_enabled
)
6349 * clock_task is not advancing so we just need to make sure
6350 * there's some valid quota amount
6352 cfs_rq
->runtime_remaining
= cfs_b
->quota
;
6353 if (cfs_rq_throttled(cfs_rq
))
6354 unthrottle_cfs_rq(cfs_rq
);
6358 static void unthrottle_offline_cfs_rqs(struct rq
*rq
) {}
6362 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6363 * try_to_wake_up()->select_task_rq().
6365 * Called with rq->lock held even though we'er in stop_machine() and
6366 * there's no concurrency possible, we hold the required locks anyway
6367 * because of lock validation efforts.
6369 static void migrate_tasks(unsigned int dead_cpu
)
6371 struct rq
*rq
= cpu_rq(dead_cpu
);
6372 struct task_struct
*next
, *stop
= rq
->stop
;
6376 * Fudge the rq selection such that the below task selection loop
6377 * doesn't get stuck on the currently eligible stop task.
6379 * We're currently inside stop_machine() and the rq is either stuck
6380 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6381 * either way we should never end up calling schedule() until we're
6386 /* Ensure any throttled groups are reachable by pick_next_task */
6387 unthrottle_offline_cfs_rqs(rq
);
6391 * There's this thread running, bail when that's the only
6394 if (rq
->nr_running
== 1)
6397 next
= pick_next_task(rq
);
6399 next
->sched_class
->put_prev_task(rq
, next
);
6401 /* Find suitable destination for @next, with force if needed. */
6402 dest_cpu
= select_fallback_rq(dead_cpu
, next
);
6403 raw_spin_unlock(&rq
->lock
);
6405 __migrate_task(next
, dead_cpu
, dest_cpu
);
6407 raw_spin_lock(&rq
->lock
);
6413 #endif /* CONFIG_HOTPLUG_CPU */
6415 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6417 static struct ctl_table sd_ctl_dir
[] = {
6419 .procname
= "sched_domain",
6425 static struct ctl_table sd_ctl_root
[] = {
6427 .procname
= "kernel",
6429 .child
= sd_ctl_dir
,
6434 static struct ctl_table
*sd_alloc_ctl_entry(int n
)
6436 struct ctl_table
*entry
=
6437 kcalloc(n
, sizeof(struct ctl_table
), GFP_KERNEL
);
6442 static void sd_free_ctl_entry(struct ctl_table
**tablep
)
6444 struct ctl_table
*entry
;
6447 * In the intermediate directories, both the child directory and
6448 * procname are dynamically allocated and could fail but the mode
6449 * will always be set. In the lowest directory the names are
6450 * static strings and all have proc handlers.
6452 for (entry
= *tablep
; entry
->mode
; entry
++) {
6454 sd_free_ctl_entry(&entry
->child
);
6455 if (entry
->proc_handler
== NULL
)
6456 kfree(entry
->procname
);
6464 set_table_entry(struct ctl_table
*entry
,
6465 const char *procname
, void *data
, int maxlen
,
6466 mode_t mode
, proc_handler
*proc_handler
)
6468 entry
->procname
= procname
;
6470 entry
->maxlen
= maxlen
;
6472 entry
->proc_handler
= proc_handler
;
6475 static struct ctl_table
*
6476 sd_alloc_ctl_domain_table(struct sched_domain
*sd
)
6478 struct ctl_table
*table
= sd_alloc_ctl_entry(13);
6483 set_table_entry(&table
[0], "min_interval", &sd
->min_interval
,
6484 sizeof(long), 0644, proc_doulongvec_minmax
);
6485 set_table_entry(&table
[1], "max_interval", &sd
->max_interval
,
6486 sizeof(long), 0644, proc_doulongvec_minmax
);
6487 set_table_entry(&table
[2], "busy_idx", &sd
->busy_idx
,
6488 sizeof(int), 0644, proc_dointvec_minmax
);
6489 set_table_entry(&table
[3], "idle_idx", &sd
->idle_idx
,
6490 sizeof(int), 0644, proc_dointvec_minmax
);
6491 set_table_entry(&table
[4], "newidle_idx", &sd
->newidle_idx
,
6492 sizeof(int), 0644, proc_dointvec_minmax
);
6493 set_table_entry(&table
[5], "wake_idx", &sd
->wake_idx
,
6494 sizeof(int), 0644, proc_dointvec_minmax
);
6495 set_table_entry(&table
[6], "forkexec_idx", &sd
->forkexec_idx
,
6496 sizeof(int), 0644, proc_dointvec_minmax
);
6497 set_table_entry(&table
[7], "busy_factor", &sd
->busy_factor
,
6498 sizeof(int), 0644, proc_dointvec_minmax
);
6499 set_table_entry(&table
[8], "imbalance_pct", &sd
->imbalance_pct
,
6500 sizeof(int), 0644, proc_dointvec_minmax
);
6501 set_table_entry(&table
[9], "cache_nice_tries",
6502 &sd
->cache_nice_tries
,
6503 sizeof(int), 0644, proc_dointvec_minmax
);
6504 set_table_entry(&table
[10], "flags", &sd
->flags
,
6505 sizeof(int), 0644, proc_dointvec_minmax
);
6506 set_table_entry(&table
[11], "name", sd
->name
,
6507 CORENAME_MAX_SIZE
, 0444, proc_dostring
);
6508 /* &table[12] is terminator */
6513 static ctl_table
*sd_alloc_ctl_cpu_table(int cpu
)
6515 struct ctl_table
*entry
, *table
;
6516 struct sched_domain
*sd
;
6517 int domain_num
= 0, i
;
6520 for_each_domain(cpu
, sd
)
6522 entry
= table
= sd_alloc_ctl_entry(domain_num
+ 1);
6527 for_each_domain(cpu
, sd
) {
6528 snprintf(buf
, 32, "domain%d", i
);
6529 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
6531 entry
->child
= sd_alloc_ctl_domain_table(sd
);
6538 static struct ctl_table_header
*sd_sysctl_header
;
6539 static void register_sched_domain_sysctl(void)
6541 int i
, cpu_num
= num_possible_cpus();
6542 struct ctl_table
*entry
= sd_alloc_ctl_entry(cpu_num
+ 1);
6545 WARN_ON(sd_ctl_dir
[0].child
);
6546 sd_ctl_dir
[0].child
= entry
;
6551 for_each_possible_cpu(i
) {
6552 snprintf(buf
, 32, "cpu%d", i
);
6553 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
6555 entry
->child
= sd_alloc_ctl_cpu_table(i
);
6559 WARN_ON(sd_sysctl_header
);
6560 sd_sysctl_header
= register_sysctl_table(sd_ctl_root
);
6563 /* may be called multiple times per register */
6564 static void unregister_sched_domain_sysctl(void)
6566 if (sd_sysctl_header
)
6567 unregister_sysctl_table(sd_sysctl_header
);
6568 sd_sysctl_header
= NULL
;
6569 if (sd_ctl_dir
[0].child
)
6570 sd_free_ctl_entry(&sd_ctl_dir
[0].child
);
6573 static void register_sched_domain_sysctl(void)
6576 static void unregister_sched_domain_sysctl(void)
6581 static void set_rq_online(struct rq
*rq
)
6584 const struct sched_class
*class;
6586 cpumask_set_cpu(rq
->cpu
, rq
->rd
->online
);
6589 for_each_class(class) {
6590 if (class->rq_online
)
6591 class->rq_online(rq
);
6596 static void set_rq_offline(struct rq
*rq
)
6599 const struct sched_class
*class;
6601 for_each_class(class) {
6602 if (class->rq_offline
)
6603 class->rq_offline(rq
);
6606 cpumask_clear_cpu(rq
->cpu
, rq
->rd
->online
);
6612 * migration_call - callback that gets triggered when a CPU is added.
6613 * Here we can start up the necessary migration thread for the new CPU.
6615 static int __cpuinit
6616 migration_call(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
6618 int cpu
= (long)hcpu
;
6619 unsigned long flags
;
6620 struct rq
*rq
= cpu_rq(cpu
);
6622 switch (action
& ~CPU_TASKS_FROZEN
) {
6624 case CPU_UP_PREPARE
:
6625 rq
->calc_load_update
= calc_load_update
;
6629 /* Update our root-domain */
6630 raw_spin_lock_irqsave(&rq
->lock
, flags
);
6632 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
6636 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
6639 #ifdef CONFIG_HOTPLUG_CPU
6641 sched_ttwu_pending();
6642 /* Update our root-domain */
6643 raw_spin_lock_irqsave(&rq
->lock
, flags
);
6645 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
6649 BUG_ON(rq
->nr_running
!= 1); /* the migration thread */
6650 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
6652 migrate_nr_uninterruptible(rq
);
6653 calc_global_load_remove(rq
);
6658 update_max_interval();
6664 * Register at high priority so that task migration (migrate_all_tasks)
6665 * happens before everything else. This has to be lower priority than
6666 * the notifier in the perf_event subsystem, though.
6668 static struct notifier_block __cpuinitdata migration_notifier
= {
6669 .notifier_call
= migration_call
,
6670 .priority
= CPU_PRI_MIGRATION
,
6673 static int __cpuinit
sched_cpu_active(struct notifier_block
*nfb
,
6674 unsigned long action
, void *hcpu
)
6676 switch (action
& ~CPU_TASKS_FROZEN
) {
6678 case CPU_DOWN_FAILED
:
6679 set_cpu_active((long)hcpu
, true);
6686 static int __cpuinit
sched_cpu_inactive(struct notifier_block
*nfb
,
6687 unsigned long action
, void *hcpu
)
6689 switch (action
& ~CPU_TASKS_FROZEN
) {
6690 case CPU_DOWN_PREPARE
:
6691 set_cpu_active((long)hcpu
, false);
6698 static int __init
migration_init(void)
6700 void *cpu
= (void *)(long)smp_processor_id();
6703 /* Initialize migration for the boot CPU */
6704 err
= migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
6705 BUG_ON(err
== NOTIFY_BAD
);
6706 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
6707 register_cpu_notifier(&migration_notifier
);
6709 /* Register cpu active notifiers */
6710 cpu_notifier(sched_cpu_active
, CPU_PRI_SCHED_ACTIVE
);
6711 cpu_notifier(sched_cpu_inactive
, CPU_PRI_SCHED_INACTIVE
);
6715 early_initcall(migration_init
);
6720 static cpumask_var_t sched_domains_tmpmask
; /* sched_domains_mutex */
6722 #ifdef CONFIG_SCHED_DEBUG
6724 static __read_mostly
int sched_domain_debug_enabled
;
6726 static int __init
sched_domain_debug_setup(char *str
)
6728 sched_domain_debug_enabled
= 1;
6732 early_param("sched_debug", sched_domain_debug_setup
);
6734 static int sched_domain_debug_one(struct sched_domain
*sd
, int cpu
, int level
,
6735 struct cpumask
*groupmask
)
6737 struct sched_group
*group
= sd
->groups
;
6740 cpulist_scnprintf(str
, sizeof(str
), sched_domain_span(sd
));
6741 cpumask_clear(groupmask
);
6743 printk(KERN_DEBUG
"%*s domain %d: ", level
, "", level
);
6745 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
6746 printk("does not load-balance\n");
6748 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain"
6753 printk(KERN_CONT
"span %s level %s\n", str
, sd
->name
);
6755 if (!cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
6756 printk(KERN_ERR
"ERROR: domain->span does not contain "
6759 if (!cpumask_test_cpu(cpu
, sched_group_cpus(group
))) {
6760 printk(KERN_ERR
"ERROR: domain->groups does not contain"
6764 printk(KERN_DEBUG
"%*s groups:", level
+ 1, "");
6768 printk(KERN_ERR
"ERROR: group is NULL\n");
6772 if (!group
->sgp
->power
) {
6773 printk(KERN_CONT
"\n");
6774 printk(KERN_ERR
"ERROR: domain->cpu_power not "
6779 if (!cpumask_weight(sched_group_cpus(group
))) {
6780 printk(KERN_CONT
"\n");
6781 printk(KERN_ERR
"ERROR: empty group\n");
6785 if (cpumask_intersects(groupmask
, sched_group_cpus(group
))) {
6786 printk(KERN_CONT
"\n");
6787 printk(KERN_ERR
"ERROR: repeated CPUs\n");
6791 cpumask_or(groupmask
, groupmask
, sched_group_cpus(group
));
6793 cpulist_scnprintf(str
, sizeof(str
), sched_group_cpus(group
));
6795 printk(KERN_CONT
" %s", str
);
6796 if (group
->sgp
->power
!= SCHED_POWER_SCALE
) {
6797 printk(KERN_CONT
" (cpu_power = %d)",
6801 group
= group
->next
;
6802 } while (group
!= sd
->groups
);
6803 printk(KERN_CONT
"\n");
6805 if (!cpumask_equal(sched_domain_span(sd
), groupmask
))
6806 printk(KERN_ERR
"ERROR: groups don't span domain->span\n");
6809 !cpumask_subset(groupmask
, sched_domain_span(sd
->parent
)))
6810 printk(KERN_ERR
"ERROR: parent span is not a superset "
6811 "of domain->span\n");
6815 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
6819 if (!sched_domain_debug_enabled
)
6823 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
6827 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
6830 if (sched_domain_debug_one(sd
, cpu
, level
, sched_domains_tmpmask
))
6838 #else /* !CONFIG_SCHED_DEBUG */
6839 # define sched_domain_debug(sd, cpu) do { } while (0)
6840 #endif /* CONFIG_SCHED_DEBUG */
6842 static int sd_degenerate(struct sched_domain
*sd
)
6844 if (cpumask_weight(sched_domain_span(sd
)) == 1)
6847 /* Following flags need at least 2 groups */
6848 if (sd
->flags
& (SD_LOAD_BALANCE
|
6849 SD_BALANCE_NEWIDLE
|
6853 SD_SHARE_PKG_RESOURCES
)) {
6854 if (sd
->groups
!= sd
->groups
->next
)
6858 /* Following flags don't use groups */
6859 if (sd
->flags
& (SD_WAKE_AFFINE
))
6866 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
6868 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
6870 if (sd_degenerate(parent
))
6873 if (!cpumask_equal(sched_domain_span(sd
), sched_domain_span(parent
)))
6876 /* Flags needing groups don't count if only 1 group in parent */
6877 if (parent
->groups
== parent
->groups
->next
) {
6878 pflags
&= ~(SD_LOAD_BALANCE
|
6879 SD_BALANCE_NEWIDLE
|
6883 SD_SHARE_PKG_RESOURCES
);
6884 if (nr_node_ids
== 1)
6885 pflags
&= ~SD_SERIALIZE
;
6887 if (~cflags
& pflags
)
6893 static void free_rootdomain(struct rcu_head
*rcu
)
6895 struct root_domain
*rd
= container_of(rcu
, struct root_domain
, rcu
);
6897 cpupri_cleanup(&rd
->cpupri
);
6898 free_cpumask_var(rd
->rto_mask
);
6899 free_cpumask_var(rd
->online
);
6900 free_cpumask_var(rd
->span
);
6904 static void rq_attach_root(struct rq
*rq
, struct root_domain
*rd
)
6906 struct root_domain
*old_rd
= NULL
;
6907 unsigned long flags
;
6909 raw_spin_lock_irqsave(&rq
->lock
, flags
);
6914 if (cpumask_test_cpu(rq
->cpu
, old_rd
->online
))
6917 cpumask_clear_cpu(rq
->cpu
, old_rd
->span
);
6920 * If we dont want to free the old_rt yet then
6921 * set old_rd to NULL to skip the freeing later
6924 if (!atomic_dec_and_test(&old_rd
->refcount
))
6928 atomic_inc(&rd
->refcount
);
6931 cpumask_set_cpu(rq
->cpu
, rd
->span
);
6932 if (cpumask_test_cpu(rq
->cpu
, cpu_active_mask
))
6935 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
6938 call_rcu_sched(&old_rd
->rcu
, free_rootdomain
);
6941 static int init_rootdomain(struct root_domain
*rd
)
6943 memset(rd
, 0, sizeof(*rd
));
6945 if (!alloc_cpumask_var(&rd
->span
, GFP_KERNEL
))
6947 if (!alloc_cpumask_var(&rd
->online
, GFP_KERNEL
))
6949 if (!alloc_cpumask_var(&rd
->rto_mask
, GFP_KERNEL
))
6952 if (cpupri_init(&rd
->cpupri
) != 0)
6957 free_cpumask_var(rd
->rto_mask
);
6959 free_cpumask_var(rd
->online
);
6961 free_cpumask_var(rd
->span
);
6966 static void init_defrootdomain(void)
6968 init_rootdomain(&def_root_domain
);
6970 atomic_set(&def_root_domain
.refcount
, 1);
6973 static struct root_domain
*alloc_rootdomain(void)
6975 struct root_domain
*rd
;
6977 rd
= kmalloc(sizeof(*rd
), GFP_KERNEL
);
6981 if (init_rootdomain(rd
) != 0) {
6989 static void free_sched_groups(struct sched_group
*sg
, int free_sgp
)
6991 struct sched_group
*tmp
, *first
;
7000 if (free_sgp
&& atomic_dec_and_test(&sg
->sgp
->ref
))
7005 } while (sg
!= first
);
7008 static void free_sched_domain(struct rcu_head
*rcu
)
7010 struct sched_domain
*sd
= container_of(rcu
, struct sched_domain
, rcu
);
7013 * If its an overlapping domain it has private groups, iterate and
7016 if (sd
->flags
& SD_OVERLAP
) {
7017 free_sched_groups(sd
->groups
, 1);
7018 } else if (atomic_dec_and_test(&sd
->groups
->ref
)) {
7019 kfree(sd
->groups
->sgp
);
7025 static void destroy_sched_domain(struct sched_domain
*sd
, int cpu
)
7027 call_rcu(&sd
->rcu
, free_sched_domain
);
7030 static void destroy_sched_domains(struct sched_domain
*sd
, int cpu
)
7032 for (; sd
; sd
= sd
->parent
)
7033 destroy_sched_domain(sd
, cpu
);
7037 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
7038 * hold the hotplug lock.
7041 cpu_attach_domain(struct sched_domain
*sd
, struct root_domain
*rd
, int cpu
)
7043 struct rq
*rq
= cpu_rq(cpu
);
7044 struct sched_domain
*tmp
;
7046 /* Remove the sched domains which do not contribute to scheduling. */
7047 for (tmp
= sd
; tmp
; ) {
7048 struct sched_domain
*parent
= tmp
->parent
;
7052 if (sd_parent_degenerate(tmp
, parent
)) {
7053 tmp
->parent
= parent
->parent
;
7055 parent
->parent
->child
= tmp
;
7056 destroy_sched_domain(parent
, cpu
);
7061 if (sd
&& sd_degenerate(sd
)) {
7064 destroy_sched_domain(tmp
, cpu
);
7069 sched_domain_debug(sd
, cpu
);
7071 rq_attach_root(rq
, rd
);
7073 rcu_assign_pointer(rq
->sd
, sd
);
7074 destroy_sched_domains(tmp
, cpu
);
7077 /* cpus with isolated domains */
7078 static cpumask_var_t cpu_isolated_map
;
7080 /* Setup the mask of cpus configured for isolated domains */
7081 static int __init
isolated_cpu_setup(char *str
)
7083 alloc_bootmem_cpumask_var(&cpu_isolated_map
);
7084 cpulist_parse(str
, cpu_isolated_map
);
7088 __setup("isolcpus=", isolated_cpu_setup
);
7093 * find_next_best_node - find the next node to include in a sched_domain
7094 * @node: node whose sched_domain we're building
7095 * @used_nodes: nodes already in the sched_domain
7097 * Find the next node to include in a given scheduling domain. Simply
7098 * finds the closest node not already in the @used_nodes map.
7100 * Should use nodemask_t.
7102 static int find_next_best_node(int node
, nodemask_t
*used_nodes
)
7104 int i
, n
, val
, min_val
, best_node
= -1;
7108 for (i
= 0; i
< nr_node_ids
; i
++) {
7109 /* Start at @node */
7110 n
= (node
+ i
) % nr_node_ids
;
7112 if (!nr_cpus_node(n
))
7115 /* Skip already used nodes */
7116 if (node_isset(n
, *used_nodes
))
7119 /* Simple min distance search */
7120 val
= node_distance(node
, n
);
7122 if (val
< min_val
) {
7128 if (best_node
!= -1)
7129 node_set(best_node
, *used_nodes
);
7134 * sched_domain_node_span - get a cpumask for a node's sched_domain
7135 * @node: node whose cpumask we're constructing
7136 * @span: resulting cpumask
7138 * Given a node, construct a good cpumask for its sched_domain to span. It
7139 * should be one that prevents unnecessary balancing, but also spreads tasks
7142 static void sched_domain_node_span(int node
, struct cpumask
*span
)
7144 nodemask_t used_nodes
;
7147 cpumask_clear(span
);
7148 nodes_clear(used_nodes
);
7150 cpumask_or(span
, span
, cpumask_of_node(node
));
7151 node_set(node
, used_nodes
);
7153 for (i
= 1; i
< SD_NODES_PER_DOMAIN
; i
++) {
7154 int next_node
= find_next_best_node(node
, &used_nodes
);
7157 cpumask_or(span
, span
, cpumask_of_node(next_node
));
7161 static const struct cpumask
*cpu_node_mask(int cpu
)
7163 lockdep_assert_held(&sched_domains_mutex
);
7165 sched_domain_node_span(cpu_to_node(cpu
), sched_domains_tmpmask
);
7167 return sched_domains_tmpmask
;
7170 static const struct cpumask
*cpu_allnodes_mask(int cpu
)
7172 return cpu_possible_mask
;
7174 #endif /* CONFIG_NUMA */
7176 static const struct cpumask
*cpu_cpu_mask(int cpu
)
7178 return cpumask_of_node(cpu_to_node(cpu
));
7181 int sched_smt_power_savings
= 0, sched_mc_power_savings
= 0;
7184 struct sched_domain
**__percpu sd
;
7185 struct sched_group
**__percpu sg
;
7186 struct sched_group_power
**__percpu sgp
;
7190 struct sched_domain
** __percpu sd
;
7191 struct root_domain
*rd
;
7201 struct sched_domain_topology_level
;
7203 typedef struct sched_domain
*(*sched_domain_init_f
)(struct sched_domain_topology_level
*tl
, int cpu
);
7204 typedef const struct cpumask
*(*sched_domain_mask_f
)(int cpu
);
7206 #define SDTL_OVERLAP 0x01
7208 struct sched_domain_topology_level
{
7209 sched_domain_init_f init
;
7210 sched_domain_mask_f mask
;
7212 struct sd_data data
;
7216 build_overlap_sched_groups(struct sched_domain
*sd
, int cpu
)
7218 struct sched_group
*first
= NULL
, *last
= NULL
, *groups
= NULL
, *sg
;
7219 const struct cpumask
*span
= sched_domain_span(sd
);
7220 struct cpumask
*covered
= sched_domains_tmpmask
;
7221 struct sd_data
*sdd
= sd
->private;
7222 struct sched_domain
*child
;
7225 cpumask_clear(covered
);
7227 for_each_cpu(i
, span
) {
7228 struct cpumask
*sg_span
;
7230 if (cpumask_test_cpu(i
, covered
))
7233 sg
= kzalloc_node(sizeof(struct sched_group
) + cpumask_size(),
7234 GFP_KERNEL
, cpu_to_node(i
));
7239 sg_span
= sched_group_cpus(sg
);
7241 child
= *per_cpu_ptr(sdd
->sd
, i
);
7243 child
= child
->child
;
7244 cpumask_copy(sg_span
, sched_domain_span(child
));
7246 cpumask_set_cpu(i
, sg_span
);
7248 cpumask_or(covered
, covered
, sg_span
);
7250 sg
->sgp
= *per_cpu_ptr(sdd
->sgp
, cpumask_first(sg_span
));
7251 atomic_inc(&sg
->sgp
->ref
);
7253 if (cpumask_test_cpu(cpu
, sg_span
))
7263 sd
->groups
= groups
;
7268 free_sched_groups(first
, 0);
7273 static int get_group(int cpu
, struct sd_data
*sdd
, struct sched_group
**sg
)
7275 struct sched_domain
*sd
= *per_cpu_ptr(sdd
->sd
, cpu
);
7276 struct sched_domain
*child
= sd
->child
;
7279 cpu
= cpumask_first(sched_domain_span(child
));
7282 *sg
= *per_cpu_ptr(sdd
->sg
, cpu
);
7283 (*sg
)->sgp
= *per_cpu_ptr(sdd
->sgp
, cpu
);
7284 atomic_set(&(*sg
)->sgp
->ref
, 1); /* for claim_allocations */
7291 * build_sched_groups will build a circular linked list of the groups
7292 * covered by the given span, and will set each group's ->cpumask correctly,
7293 * and ->cpu_power to 0.
7295 * Assumes the sched_domain tree is fully constructed
7298 build_sched_groups(struct sched_domain
*sd
, int cpu
)
7300 struct sched_group
*first
= NULL
, *last
= NULL
;
7301 struct sd_data
*sdd
= sd
->private;
7302 const struct cpumask
*span
= sched_domain_span(sd
);
7303 struct cpumask
*covered
;
7306 get_group(cpu
, sdd
, &sd
->groups
);
7307 atomic_inc(&sd
->groups
->ref
);
7309 if (cpu
!= cpumask_first(sched_domain_span(sd
)))
7312 lockdep_assert_held(&sched_domains_mutex
);
7313 covered
= sched_domains_tmpmask
;
7315 cpumask_clear(covered
);
7317 for_each_cpu(i
, span
) {
7318 struct sched_group
*sg
;
7319 int group
= get_group(i
, sdd
, &sg
);
7322 if (cpumask_test_cpu(i
, covered
))
7325 cpumask_clear(sched_group_cpus(sg
));
7328 for_each_cpu(j
, span
) {
7329 if (get_group(j
, sdd
, NULL
) != group
)
7332 cpumask_set_cpu(j
, covered
);
7333 cpumask_set_cpu(j
, sched_group_cpus(sg
));
7348 * Initialize sched groups cpu_power.
7350 * cpu_power indicates the capacity of sched group, which is used while
7351 * distributing the load between different sched groups in a sched domain.
7352 * Typically cpu_power for all the groups in a sched domain will be same unless
7353 * there are asymmetries in the topology. If there are asymmetries, group
7354 * having more cpu_power will pickup more load compared to the group having
7357 static void init_sched_groups_power(int cpu
, struct sched_domain
*sd
)
7359 struct sched_group
*sg
= sd
->groups
;
7361 WARN_ON(!sd
|| !sg
);
7364 sg
->group_weight
= cpumask_weight(sched_group_cpus(sg
));
7366 } while (sg
!= sd
->groups
);
7368 if (cpu
!= group_first_cpu(sg
))
7371 update_group_power(sd
, cpu
);
7375 * Initializers for schedule domains
7376 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7379 #ifdef CONFIG_SCHED_DEBUG
7380 # define SD_INIT_NAME(sd, type) sd->name = #type
7382 # define SD_INIT_NAME(sd, type) do { } while (0)
7385 #define SD_INIT_FUNC(type) \
7386 static noinline struct sched_domain * \
7387 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
7389 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
7390 *sd = SD_##type##_INIT; \
7391 SD_INIT_NAME(sd, type); \
7392 sd->private = &tl->data; \
7398 SD_INIT_FUNC(ALLNODES
)
7401 #ifdef CONFIG_SCHED_SMT
7402 SD_INIT_FUNC(SIBLING
)
7404 #ifdef CONFIG_SCHED_MC
7407 #ifdef CONFIG_SCHED_BOOK
7411 static int default_relax_domain_level
= -1;
7412 int sched_domain_level_max
;
7414 static int __init
setup_relax_domain_level(char *str
)
7418 val
= simple_strtoul(str
, NULL
, 0);
7419 if (val
< sched_domain_level_max
)
7420 default_relax_domain_level
= val
;
7424 __setup("relax_domain_level=", setup_relax_domain_level
);
7426 static void set_domain_attribute(struct sched_domain
*sd
,
7427 struct sched_domain_attr
*attr
)
7431 if (!attr
|| attr
->relax_domain_level
< 0) {
7432 if (default_relax_domain_level
< 0)
7435 request
= default_relax_domain_level
;
7437 request
= attr
->relax_domain_level
;
7438 if (request
< sd
->level
) {
7439 /* turn off idle balance on this domain */
7440 sd
->flags
&= ~(SD_BALANCE_WAKE
|SD_BALANCE_NEWIDLE
);
7442 /* turn on idle balance on this domain */
7443 sd
->flags
|= (SD_BALANCE_WAKE
|SD_BALANCE_NEWIDLE
);
7447 static void __sdt_free(const struct cpumask
*cpu_map
);
7448 static int __sdt_alloc(const struct cpumask
*cpu_map
);
7450 static void __free_domain_allocs(struct s_data
*d
, enum s_alloc what
,
7451 const struct cpumask
*cpu_map
)
7455 if (!atomic_read(&d
->rd
->refcount
))
7456 free_rootdomain(&d
->rd
->rcu
); /* fall through */
7458 free_percpu(d
->sd
); /* fall through */
7460 __sdt_free(cpu_map
); /* fall through */
7466 static enum s_alloc
__visit_domain_allocation_hell(struct s_data
*d
,
7467 const struct cpumask
*cpu_map
)
7469 memset(d
, 0, sizeof(*d
));
7471 if (__sdt_alloc(cpu_map
))
7472 return sa_sd_storage
;
7473 d
->sd
= alloc_percpu(struct sched_domain
*);
7475 return sa_sd_storage
;
7476 d
->rd
= alloc_rootdomain();
7479 return sa_rootdomain
;
7483 * NULL the sd_data elements we've used to build the sched_domain and
7484 * sched_group structure so that the subsequent __free_domain_allocs()
7485 * will not free the data we're using.
7487 static void claim_allocations(int cpu
, struct sched_domain
*sd
)
7489 struct sd_data
*sdd
= sd
->private;
7491 WARN_ON_ONCE(*per_cpu_ptr(sdd
->sd
, cpu
) != sd
);
7492 *per_cpu_ptr(sdd
->sd
, cpu
) = NULL
;
7494 if (atomic_read(&(*per_cpu_ptr(sdd
->sg
, cpu
))->ref
))
7495 *per_cpu_ptr(sdd
->sg
, cpu
) = NULL
;
7497 if (atomic_read(&(*per_cpu_ptr(sdd
->sgp
, cpu
))->ref
))
7498 *per_cpu_ptr(sdd
->sgp
, cpu
) = NULL
;
7501 #ifdef CONFIG_SCHED_SMT
7502 static const struct cpumask
*cpu_smt_mask(int cpu
)
7504 return topology_thread_cpumask(cpu
);
7509 * Topology list, bottom-up.
7511 static struct sched_domain_topology_level default_topology
[] = {
7512 #ifdef CONFIG_SCHED_SMT
7513 { sd_init_SIBLING
, cpu_smt_mask
, },
7515 #ifdef CONFIG_SCHED_MC
7516 { sd_init_MC
, cpu_coregroup_mask
, },
7518 #ifdef CONFIG_SCHED_BOOK
7519 { sd_init_BOOK
, cpu_book_mask
, },
7521 { sd_init_CPU
, cpu_cpu_mask
, },
7523 { sd_init_NODE
, cpu_node_mask
, SDTL_OVERLAP
, },
7524 { sd_init_ALLNODES
, cpu_allnodes_mask
, },
7529 static struct sched_domain_topology_level
*sched_domain_topology
= default_topology
;
7531 static int __sdt_alloc(const struct cpumask
*cpu_map
)
7533 struct sched_domain_topology_level
*tl
;
7536 for (tl
= sched_domain_topology
; tl
->init
; tl
++) {
7537 struct sd_data
*sdd
= &tl
->data
;
7539 sdd
->sd
= alloc_percpu(struct sched_domain
*);
7543 sdd
->sg
= alloc_percpu(struct sched_group
*);
7547 sdd
->sgp
= alloc_percpu(struct sched_group_power
*);
7551 for_each_cpu(j
, cpu_map
) {
7552 struct sched_domain
*sd
;
7553 struct sched_group
*sg
;
7554 struct sched_group_power
*sgp
;
7556 sd
= kzalloc_node(sizeof(struct sched_domain
) + cpumask_size(),
7557 GFP_KERNEL
, cpu_to_node(j
));
7561 *per_cpu_ptr(sdd
->sd
, j
) = sd
;
7563 sg
= kzalloc_node(sizeof(struct sched_group
) + cpumask_size(),
7564 GFP_KERNEL
, cpu_to_node(j
));
7568 *per_cpu_ptr(sdd
->sg
, j
) = sg
;
7570 sgp
= kzalloc_node(sizeof(struct sched_group_power
),
7571 GFP_KERNEL
, cpu_to_node(j
));
7575 *per_cpu_ptr(sdd
->sgp
, j
) = sgp
;
7582 static void __sdt_free(const struct cpumask
*cpu_map
)
7584 struct sched_domain_topology_level
*tl
;
7587 for (tl
= sched_domain_topology
; tl
->init
; tl
++) {
7588 struct sd_data
*sdd
= &tl
->data
;
7590 for_each_cpu(j
, cpu_map
) {
7591 struct sched_domain
*sd
= *per_cpu_ptr(sdd
->sd
, j
);
7592 if (sd
&& (sd
->flags
& SD_OVERLAP
))
7593 free_sched_groups(sd
->groups
, 0);
7594 kfree(*per_cpu_ptr(sdd
->sd
, j
));
7595 kfree(*per_cpu_ptr(sdd
->sg
, j
));
7596 kfree(*per_cpu_ptr(sdd
->sgp
, j
));
7598 free_percpu(sdd
->sd
);
7599 free_percpu(sdd
->sg
);
7600 free_percpu(sdd
->sgp
);
7604 struct sched_domain
*build_sched_domain(struct sched_domain_topology_level
*tl
,
7605 struct s_data
*d
, const struct cpumask
*cpu_map
,
7606 struct sched_domain_attr
*attr
, struct sched_domain
*child
,
7609 struct sched_domain
*sd
= tl
->init(tl
, cpu
);
7613 set_domain_attribute(sd
, attr
);
7614 cpumask_and(sched_domain_span(sd
), cpu_map
, tl
->mask(cpu
));
7616 sd
->level
= child
->level
+ 1;
7617 sched_domain_level_max
= max(sched_domain_level_max
, sd
->level
);
7626 * Build sched domains for a given set of cpus and attach the sched domains
7627 * to the individual cpus
7629 static int build_sched_domains(const struct cpumask
*cpu_map
,
7630 struct sched_domain_attr
*attr
)
7632 enum s_alloc alloc_state
= sa_none
;
7633 struct sched_domain
*sd
;
7635 int i
, ret
= -ENOMEM
;
7637 alloc_state
= __visit_domain_allocation_hell(&d
, cpu_map
);
7638 if (alloc_state
!= sa_rootdomain
)
7641 /* Set up domains for cpus specified by the cpu_map. */
7642 for_each_cpu(i
, cpu_map
) {
7643 struct sched_domain_topology_level
*tl
;
7646 for (tl
= sched_domain_topology
; tl
->init
; tl
++) {
7647 sd
= build_sched_domain(tl
, &d
, cpu_map
, attr
, sd
, i
);
7648 if (tl
->flags
& SDTL_OVERLAP
|| sched_feat(FORCE_SD_OVERLAP
))
7649 sd
->flags
|= SD_OVERLAP
;
7650 if (cpumask_equal(cpu_map
, sched_domain_span(sd
)))
7657 *per_cpu_ptr(d
.sd
, i
) = sd
;
7660 /* Build the groups for the domains */
7661 for_each_cpu(i
, cpu_map
) {
7662 for (sd
= *per_cpu_ptr(d
.sd
, i
); sd
; sd
= sd
->parent
) {
7663 sd
->span_weight
= cpumask_weight(sched_domain_span(sd
));
7664 if (sd
->flags
& SD_OVERLAP
) {
7665 if (build_overlap_sched_groups(sd
, i
))
7668 if (build_sched_groups(sd
, i
))
7674 /* Calculate CPU power for physical packages and nodes */
7675 for (i
= nr_cpumask_bits
-1; i
>= 0; i
--) {
7676 if (!cpumask_test_cpu(i
, cpu_map
))
7679 for (sd
= *per_cpu_ptr(d
.sd
, i
); sd
; sd
= sd
->parent
) {
7680 claim_allocations(i
, sd
);
7681 init_sched_groups_power(i
, sd
);
7685 /* Attach the domains */
7687 for_each_cpu(i
, cpu_map
) {
7688 sd
= *per_cpu_ptr(d
.sd
, i
);
7689 cpu_attach_domain(sd
, d
.rd
, i
);
7695 __free_domain_allocs(&d
, alloc_state
, cpu_map
);
7699 static cpumask_var_t
*doms_cur
; /* current sched domains */
7700 static int ndoms_cur
; /* number of sched domains in 'doms_cur' */
7701 static struct sched_domain_attr
*dattr_cur
;
7702 /* attribues of custom domains in 'doms_cur' */
7705 * Special case: If a kmalloc of a doms_cur partition (array of
7706 * cpumask) fails, then fallback to a single sched domain,
7707 * as determined by the single cpumask fallback_doms.
7709 static cpumask_var_t fallback_doms
;
7712 * arch_update_cpu_topology lets virtualized architectures update the
7713 * cpu core maps. It is supposed to return 1 if the topology changed
7714 * or 0 if it stayed the same.
7716 int __attribute__((weak
)) arch_update_cpu_topology(void)
7721 cpumask_var_t
*alloc_sched_domains(unsigned int ndoms
)
7724 cpumask_var_t
*doms
;
7726 doms
= kmalloc(sizeof(*doms
) * ndoms
, GFP_KERNEL
);
7729 for (i
= 0; i
< ndoms
; i
++) {
7730 if (!alloc_cpumask_var(&doms
[i
], GFP_KERNEL
)) {
7731 free_sched_domains(doms
, i
);
7738 void free_sched_domains(cpumask_var_t doms
[], unsigned int ndoms
)
7741 for (i
= 0; i
< ndoms
; i
++)
7742 free_cpumask_var(doms
[i
]);
7747 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7748 * For now this just excludes isolated cpus, but could be used to
7749 * exclude other special cases in the future.
7751 static int init_sched_domains(const struct cpumask
*cpu_map
)
7755 arch_update_cpu_topology();
7757 doms_cur
= alloc_sched_domains(ndoms_cur
);
7759 doms_cur
= &fallback_doms
;
7760 cpumask_andnot(doms_cur
[0], cpu_map
, cpu_isolated_map
);
7762 err
= build_sched_domains(doms_cur
[0], NULL
);
7763 register_sched_domain_sysctl();
7769 * Detach sched domains from a group of cpus specified in cpu_map
7770 * These cpus will now be attached to the NULL domain
7772 static void detach_destroy_domains(const struct cpumask
*cpu_map
)
7777 for_each_cpu(i
, cpu_map
)
7778 cpu_attach_domain(NULL
, &def_root_domain
, i
);
7782 /* handle null as "default" */
7783 static int dattrs_equal(struct sched_domain_attr
*cur
, int idx_cur
,
7784 struct sched_domain_attr
*new, int idx_new
)
7786 struct sched_domain_attr tmp
;
7793 return !memcmp(cur
? (cur
+ idx_cur
) : &tmp
,
7794 new ? (new + idx_new
) : &tmp
,
7795 sizeof(struct sched_domain_attr
));
7799 * Partition sched domains as specified by the 'ndoms_new'
7800 * cpumasks in the array doms_new[] of cpumasks. This compares
7801 * doms_new[] to the current sched domain partitioning, doms_cur[].
7802 * It destroys each deleted domain and builds each new domain.
7804 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7805 * The masks don't intersect (don't overlap.) We should setup one
7806 * sched domain for each mask. CPUs not in any of the cpumasks will
7807 * not be load balanced. If the same cpumask appears both in the
7808 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7811 * The passed in 'doms_new' should be allocated using
7812 * alloc_sched_domains. This routine takes ownership of it and will
7813 * free_sched_domains it when done with it. If the caller failed the
7814 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7815 * and partition_sched_domains() will fallback to the single partition
7816 * 'fallback_doms', it also forces the domains to be rebuilt.
7818 * If doms_new == NULL it will be replaced with cpu_online_mask.
7819 * ndoms_new == 0 is a special case for destroying existing domains,
7820 * and it will not create the default domain.
7822 * Call with hotplug lock held
7824 void partition_sched_domains(int ndoms_new
, cpumask_var_t doms_new
[],
7825 struct sched_domain_attr
*dattr_new
)
7830 mutex_lock(&sched_domains_mutex
);
7832 /* always unregister in case we don't destroy any domains */
7833 unregister_sched_domain_sysctl();
7835 /* Let architecture update cpu core mappings. */
7836 new_topology
= arch_update_cpu_topology();
7838 n
= doms_new
? ndoms_new
: 0;
7840 /* Destroy deleted domains */
7841 for (i
= 0; i
< ndoms_cur
; i
++) {
7842 for (j
= 0; j
< n
&& !new_topology
; j
++) {
7843 if (cpumask_equal(doms_cur
[i
], doms_new
[j
])
7844 && dattrs_equal(dattr_cur
, i
, dattr_new
, j
))
7847 /* no match - a current sched domain not in new doms_new[] */
7848 detach_destroy_domains(doms_cur
[i
]);
7853 if (doms_new
== NULL
) {
7855 doms_new
= &fallback_doms
;
7856 cpumask_andnot(doms_new
[0], cpu_active_mask
, cpu_isolated_map
);
7857 WARN_ON_ONCE(dattr_new
);
7860 /* Build new domains */
7861 for (i
= 0; i
< ndoms_new
; i
++) {
7862 for (j
= 0; j
< ndoms_cur
&& !new_topology
; j
++) {
7863 if (cpumask_equal(doms_new
[i
], doms_cur
[j
])
7864 && dattrs_equal(dattr_new
, i
, dattr_cur
, j
))
7867 /* no match - add a new doms_new */
7868 build_sched_domains(doms_new
[i
], dattr_new
? dattr_new
+ i
: NULL
);
7873 /* Remember the new sched domains */
7874 if (doms_cur
!= &fallback_doms
)
7875 free_sched_domains(doms_cur
, ndoms_cur
);
7876 kfree(dattr_cur
); /* kfree(NULL) is safe */
7877 doms_cur
= doms_new
;
7878 dattr_cur
= dattr_new
;
7879 ndoms_cur
= ndoms_new
;
7881 register_sched_domain_sysctl();
7883 mutex_unlock(&sched_domains_mutex
);
7886 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7887 static void reinit_sched_domains(void)
7891 /* Destroy domains first to force the rebuild */
7892 partition_sched_domains(0, NULL
, NULL
);
7894 rebuild_sched_domains();
7898 static ssize_t
sched_power_savings_store(const char *buf
, size_t count
, int smt
)
7900 unsigned int level
= 0;
7902 if (sscanf(buf
, "%u", &level
) != 1)
7906 * level is always be positive so don't check for
7907 * level < POWERSAVINGS_BALANCE_NONE which is 0
7908 * What happens on 0 or 1 byte write,
7909 * need to check for count as well?
7912 if (level
>= MAX_POWERSAVINGS_BALANCE_LEVELS
)
7916 sched_smt_power_savings
= level
;
7918 sched_mc_power_savings
= level
;
7920 reinit_sched_domains();
7925 #ifdef CONFIG_SCHED_MC
7926 static ssize_t
sched_mc_power_savings_show(struct device
*dev
,
7927 struct device_attribute
*attr
,
7930 return sprintf(buf
, "%u\n", sched_mc_power_savings
);
7932 static ssize_t
sched_mc_power_savings_store(struct device
*dev
,
7933 struct device_attribute
*attr
,
7934 const char *buf
, size_t count
)
7936 return sched_power_savings_store(buf
, count
, 0);
7938 static DEVICE_ATTR(sched_mc_power_savings
, 0644,
7939 sched_mc_power_savings_show
,
7940 sched_mc_power_savings_store
);
7943 #ifdef CONFIG_SCHED_SMT
7944 static ssize_t
sched_smt_power_savings_show(struct device
*dev
,
7945 struct device_attribute
*attr
,
7948 return sprintf(buf
, "%u\n", sched_smt_power_savings
);
7950 static ssize_t
sched_smt_power_savings_store(struct device
*dev
,
7951 struct device_attribute
*attr
,
7952 const char *buf
, size_t count
)
7954 return sched_power_savings_store(buf
, count
, 1);
7956 static DEVICE_ATTR(sched_smt_power_savings
, 0644,
7957 sched_smt_power_savings_show
,
7958 sched_smt_power_savings_store
);
7961 int __init
sched_create_sysfs_power_savings_entries(struct device
*dev
)
7965 #ifdef CONFIG_SCHED_SMT
7967 err
= device_create_file(dev
, &dev_attr_sched_smt_power_savings
);
7969 #ifdef CONFIG_SCHED_MC
7970 if (!err
&& mc_capable())
7971 err
= device_create_file(dev
, &dev_attr_sched_mc_power_savings
);
7975 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7978 * Update cpusets according to cpu_active mask. If cpusets are
7979 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7980 * around partition_sched_domains().
7982 static int cpuset_cpu_active(struct notifier_block
*nfb
, unsigned long action
,
7985 switch (action
& ~CPU_TASKS_FROZEN
) {
7987 case CPU_DOWN_FAILED
:
7988 cpuset_update_active_cpus();
7995 static int cpuset_cpu_inactive(struct notifier_block
*nfb
, unsigned long action
,
7998 switch (action
& ~CPU_TASKS_FROZEN
) {
7999 case CPU_DOWN_PREPARE
:
8000 cpuset_update_active_cpus();
8007 static int update_runtime(struct notifier_block
*nfb
,
8008 unsigned long action
, void *hcpu
)
8010 int cpu
= (int)(long)hcpu
;
8013 case CPU_DOWN_PREPARE
:
8014 case CPU_DOWN_PREPARE_FROZEN
:
8015 disable_runtime(cpu_rq(cpu
));
8018 case CPU_DOWN_FAILED
:
8019 case CPU_DOWN_FAILED_FROZEN
:
8021 case CPU_ONLINE_FROZEN
:
8022 enable_runtime(cpu_rq(cpu
));
8030 void __init
sched_init_smp(void)
8032 cpumask_var_t non_isolated_cpus
;
8034 alloc_cpumask_var(&non_isolated_cpus
, GFP_KERNEL
);
8035 alloc_cpumask_var(&fallback_doms
, GFP_KERNEL
);
8038 mutex_lock(&sched_domains_mutex
);
8039 init_sched_domains(cpu_active_mask
);
8040 cpumask_andnot(non_isolated_cpus
, cpu_possible_mask
, cpu_isolated_map
);
8041 if (cpumask_empty(non_isolated_cpus
))
8042 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus
);
8043 mutex_unlock(&sched_domains_mutex
);
8046 hotcpu_notifier(cpuset_cpu_active
, CPU_PRI_CPUSET_ACTIVE
);
8047 hotcpu_notifier(cpuset_cpu_inactive
, CPU_PRI_CPUSET_INACTIVE
);
8049 /* RT runtime code needs to handle some hotplug events */
8050 hotcpu_notifier(update_runtime
, 0);
8054 /* Move init over to a non-isolated CPU */
8055 if (set_cpus_allowed_ptr(current
, non_isolated_cpus
) < 0)
8057 sched_init_granularity();
8058 free_cpumask_var(non_isolated_cpus
);
8060 init_sched_rt_class();
8063 void __init
sched_init_smp(void)
8065 sched_init_granularity();
8067 #endif /* CONFIG_SMP */
8069 const_debug
unsigned int sysctl_timer_migration
= 1;
8071 int in_sched_functions(unsigned long addr
)
8073 return in_lock_functions(addr
) ||
8074 (addr
>= (unsigned long)__sched_text_start
8075 && addr
< (unsigned long)__sched_text_end
);
8078 static void init_cfs_rq(struct cfs_rq
*cfs_rq
)
8080 cfs_rq
->tasks_timeline
= RB_ROOT
;
8081 INIT_LIST_HEAD(&cfs_rq
->tasks
);
8082 cfs_rq
->min_vruntime
= (u64
)(-(1LL << 20));
8083 #ifndef CONFIG_64BIT
8084 cfs_rq
->min_vruntime_copy
= cfs_rq
->min_vruntime
;
8088 static void init_rt_rq(struct rt_rq
*rt_rq
, struct rq
*rq
)
8090 struct rt_prio_array
*array
;
8093 array
= &rt_rq
->active
;
8094 for (i
= 0; i
< MAX_RT_PRIO
; i
++) {
8095 INIT_LIST_HEAD(array
->queue
+ i
);
8096 __clear_bit(i
, array
->bitmap
);
8098 /* delimiter for bitsearch: */
8099 __set_bit(MAX_RT_PRIO
, array
->bitmap
);
8101 #if defined CONFIG_SMP
8102 rt_rq
->highest_prio
.curr
= MAX_RT_PRIO
;
8103 rt_rq
->highest_prio
.next
= MAX_RT_PRIO
;
8104 rt_rq
->rt_nr_migratory
= 0;
8105 rt_rq
->overloaded
= 0;
8106 plist_head_init(&rt_rq
->pushable_tasks
);
8110 rt_rq
->rt_throttled
= 0;
8111 rt_rq
->rt_runtime
= 0;
8112 raw_spin_lock_init(&rt_rq
->rt_runtime_lock
);
8115 #ifdef CONFIG_FAIR_GROUP_SCHED
8116 static void init_tg_cfs_entry(struct task_group
*tg
, struct cfs_rq
*cfs_rq
,
8117 struct sched_entity
*se
, int cpu
,
8118 struct sched_entity
*parent
)
8120 struct rq
*rq
= cpu_rq(cpu
);
8125 /* allow initial update_cfs_load() to truncate */
8126 cfs_rq
->load_stamp
= 1;
8128 init_cfs_rq_runtime(cfs_rq
);
8130 tg
->cfs_rq
[cpu
] = cfs_rq
;
8133 /* se could be NULL for root_task_group */
8138 se
->cfs_rq
= &rq
->cfs
;
8140 se
->cfs_rq
= parent
->my_q
;
8143 update_load_set(&se
->load
, 0);
8144 se
->parent
= parent
;
8148 #ifdef CONFIG_RT_GROUP_SCHED
8149 static void init_tg_rt_entry(struct task_group
*tg
, struct rt_rq
*rt_rq
,
8150 struct sched_rt_entity
*rt_se
, int cpu
,
8151 struct sched_rt_entity
*parent
)
8153 struct rq
*rq
= cpu_rq(cpu
);
8155 rt_rq
->highest_prio
.curr
= MAX_RT_PRIO
;
8156 rt_rq
->rt_nr_boosted
= 0;
8160 tg
->rt_rq
[cpu
] = rt_rq
;
8161 tg
->rt_se
[cpu
] = rt_se
;
8167 rt_se
->rt_rq
= &rq
->rt
;
8169 rt_se
->rt_rq
= parent
->my_q
;
8171 rt_se
->my_q
= rt_rq
;
8172 rt_se
->parent
= parent
;
8173 INIT_LIST_HEAD(&rt_se
->run_list
);
8177 void __init
sched_init(void)
8180 unsigned long alloc_size
= 0, ptr
;
8182 #ifdef CONFIG_FAIR_GROUP_SCHED
8183 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
8185 #ifdef CONFIG_RT_GROUP_SCHED
8186 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
8188 #ifdef CONFIG_CPUMASK_OFFSTACK
8189 alloc_size
+= num_possible_cpus() * cpumask_size();
8192 ptr
= (unsigned long)kzalloc(alloc_size
, GFP_NOWAIT
);
8194 #ifdef CONFIG_FAIR_GROUP_SCHED
8195 root_task_group
.se
= (struct sched_entity
**)ptr
;
8196 ptr
+= nr_cpu_ids
* sizeof(void **);
8198 root_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
8199 ptr
+= nr_cpu_ids
* sizeof(void **);
8201 #endif /* CONFIG_FAIR_GROUP_SCHED */
8202 #ifdef CONFIG_RT_GROUP_SCHED
8203 root_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
8204 ptr
+= nr_cpu_ids
* sizeof(void **);
8206 root_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
8207 ptr
+= nr_cpu_ids
* sizeof(void **);
8209 #endif /* CONFIG_RT_GROUP_SCHED */
8210 #ifdef CONFIG_CPUMASK_OFFSTACK
8211 for_each_possible_cpu(i
) {
8212 per_cpu(load_balance_tmpmask
, i
) = (void *)ptr
;
8213 ptr
+= cpumask_size();
8215 #endif /* CONFIG_CPUMASK_OFFSTACK */
8219 init_defrootdomain();
8222 init_rt_bandwidth(&def_rt_bandwidth
,
8223 global_rt_period(), global_rt_runtime());
8225 #ifdef CONFIG_RT_GROUP_SCHED
8226 init_rt_bandwidth(&root_task_group
.rt_bandwidth
,
8227 global_rt_period(), global_rt_runtime());
8228 #endif /* CONFIG_RT_GROUP_SCHED */
8230 #ifdef CONFIG_CGROUP_SCHED
8231 list_add(&root_task_group
.list
, &task_groups
);
8232 INIT_LIST_HEAD(&root_task_group
.children
);
8233 autogroup_init(&init_task
);
8234 #endif /* CONFIG_CGROUP_SCHED */
8236 for_each_possible_cpu(i
) {
8240 raw_spin_lock_init(&rq
->lock
);
8242 rq
->calc_load_active
= 0;
8243 rq
->calc_load_update
= jiffies
+ LOAD_FREQ
;
8244 init_cfs_rq(&rq
->cfs
);
8245 init_rt_rq(&rq
->rt
, rq
);
8246 #ifdef CONFIG_FAIR_GROUP_SCHED
8247 root_task_group
.shares
= root_task_group_load
;
8248 INIT_LIST_HEAD(&rq
->leaf_cfs_rq_list
);
8250 * How much cpu bandwidth does root_task_group get?
8252 * In case of task-groups formed thr' the cgroup filesystem, it
8253 * gets 100% of the cpu resources in the system. This overall
8254 * system cpu resource is divided among the tasks of
8255 * root_task_group and its child task-groups in a fair manner,
8256 * based on each entity's (task or task-group's) weight
8257 * (se->load.weight).
8259 * In other words, if root_task_group has 10 tasks of weight
8260 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8261 * then A0's share of the cpu resource is:
8263 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8265 * We achieve this by letting root_task_group's tasks sit
8266 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
8268 init_cfs_bandwidth(&root_task_group
.cfs_bandwidth
);
8269 init_tg_cfs_entry(&root_task_group
, &rq
->cfs
, NULL
, i
, NULL
);
8270 #endif /* CONFIG_FAIR_GROUP_SCHED */
8272 rq
->rt
.rt_runtime
= def_rt_bandwidth
.rt_runtime
;
8273 #ifdef CONFIG_RT_GROUP_SCHED
8274 INIT_LIST_HEAD(&rq
->leaf_rt_rq_list
);
8275 init_tg_rt_entry(&root_task_group
, &rq
->rt
, NULL
, i
, NULL
);
8278 for (j
= 0; j
< CPU_LOAD_IDX_MAX
; j
++)
8279 rq
->cpu_load
[j
] = 0;
8281 rq
->last_load_update_tick
= jiffies
;
8286 rq
->cpu_power
= SCHED_POWER_SCALE
;
8287 rq
->post_schedule
= 0;
8288 rq
->active_balance
= 0;
8289 rq
->next_balance
= jiffies
;
8294 rq
->avg_idle
= 2*sysctl_sched_migration_cost
;
8295 rq_attach_root(rq
, &def_root_domain
);
8297 rq
->nohz_balance_kick
= 0;
8301 atomic_set(&rq
->nr_iowait
, 0);
8304 set_load_weight(&init_task
);
8306 #ifdef CONFIG_PREEMPT_NOTIFIERS
8307 INIT_HLIST_HEAD(&init_task
.preempt_notifiers
);
8311 open_softirq(SCHED_SOFTIRQ
, run_rebalance_domains
);
8314 #ifdef CONFIG_RT_MUTEXES
8315 plist_head_init(&init_task
.pi_waiters
);
8319 * The boot idle thread does lazy MMU switching as well:
8321 atomic_inc(&init_mm
.mm_count
);
8322 enter_lazy_tlb(&init_mm
, current
);
8325 * Make us the idle thread. Technically, schedule() should not be
8326 * called from this thread, however somewhere below it might be,
8327 * but because we are the idle thread, we just pick up running again
8328 * when this runqueue becomes "idle".
8330 init_idle(current
, smp_processor_id());
8332 calc_load_update
= jiffies
+ LOAD_FREQ
;
8335 * During early bootup we pretend to be a normal task:
8337 current
->sched_class
= &fair_sched_class
;
8340 zalloc_cpumask_var(&sched_domains_tmpmask
, GFP_NOWAIT
);
8342 zalloc_cpumask_var(&nohz
.idle_cpus_mask
, GFP_NOWAIT
);
8343 alloc_cpumask_var(&nohz
.grp_idle_mask
, GFP_NOWAIT
);
8344 atomic_set(&nohz
.load_balancer
, nr_cpu_ids
);
8345 atomic_set(&nohz
.first_pick_cpu
, nr_cpu_ids
);
8346 atomic_set(&nohz
.second_pick_cpu
, nr_cpu_ids
);
8348 /* May be allocated at isolcpus cmdline parse time */
8349 if (cpu_isolated_map
== NULL
)
8350 zalloc_cpumask_var(&cpu_isolated_map
, GFP_NOWAIT
);
8353 scheduler_running
= 1;
8356 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
8357 static inline int preempt_count_equals(int preempt_offset
)
8359 int nested
= (preempt_count() & ~PREEMPT_ACTIVE
) + rcu_preempt_depth();
8361 return (nested
== preempt_offset
);
8364 void __might_sleep(const char *file
, int line
, int preempt_offset
)
8366 static unsigned long prev_jiffy
; /* ratelimiting */
8368 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
8369 if ((preempt_count_equals(preempt_offset
) && !irqs_disabled()) ||
8370 system_state
!= SYSTEM_RUNNING
|| oops_in_progress
)
8372 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
8374 prev_jiffy
= jiffies
;
8377 "BUG: sleeping function called from invalid context at %s:%d\n",
8380 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8381 in_atomic(), irqs_disabled(),
8382 current
->pid
, current
->comm
);
8384 debug_show_held_locks(current
);
8385 if (irqs_disabled())
8386 print_irqtrace_events(current
);
8389 EXPORT_SYMBOL(__might_sleep
);
8392 #ifdef CONFIG_MAGIC_SYSRQ
8393 static void normalize_task(struct rq
*rq
, struct task_struct
*p
)
8395 const struct sched_class
*prev_class
= p
->sched_class
;
8396 int old_prio
= p
->prio
;
8401 deactivate_task(rq
, p
, 0);
8402 __setscheduler(rq
, p
, SCHED_NORMAL
, 0);
8404 activate_task(rq
, p
, 0);
8405 resched_task(rq
->curr
);
8408 check_class_changed(rq
, p
, prev_class
, old_prio
);
8411 void normalize_rt_tasks(void)
8413 struct task_struct
*g
, *p
;
8414 unsigned long flags
;
8417 read_lock_irqsave(&tasklist_lock
, flags
);
8418 do_each_thread(g
, p
) {
8420 * Only normalize user tasks:
8425 p
->se
.exec_start
= 0;
8426 #ifdef CONFIG_SCHEDSTATS
8427 p
->se
.statistics
.wait_start
= 0;
8428 p
->se
.statistics
.sleep_start
= 0;
8429 p
->se
.statistics
.block_start
= 0;
8434 * Renice negative nice level userspace
8437 if (TASK_NICE(p
) < 0 && p
->mm
)
8438 set_user_nice(p
, 0);
8442 raw_spin_lock(&p
->pi_lock
);
8443 rq
= __task_rq_lock(p
);
8445 normalize_task(rq
, p
);
8447 __task_rq_unlock(rq
);
8448 raw_spin_unlock(&p
->pi_lock
);
8449 } while_each_thread(g
, p
);
8451 read_unlock_irqrestore(&tasklist_lock
, flags
);
8454 #endif /* CONFIG_MAGIC_SYSRQ */
8456 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
8458 * These functions are only useful for the IA64 MCA handling, or kdb.
8460 * They can only be called when the whole system has been
8461 * stopped - every CPU needs to be quiescent, and no scheduling
8462 * activity can take place. Using them for anything else would
8463 * be a serious bug, and as a result, they aren't even visible
8464 * under any other configuration.
8468 * curr_task - return the current task for a given cpu.
8469 * @cpu: the processor in question.
8471 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8473 struct task_struct
*curr_task(int cpu
)
8475 return cpu_curr(cpu
);
8478 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8482 * set_curr_task - set the current task for a given cpu.
8483 * @cpu: the processor in question.
8484 * @p: the task pointer to set.
8486 * Description: This function must only be used when non-maskable interrupts
8487 * are serviced on a separate stack. It allows the architecture to switch the
8488 * notion of the current task on a cpu in a non-blocking manner. This function
8489 * must be called with all CPU's synchronized, and interrupts disabled, the
8490 * and caller must save the original value of the current task (see
8491 * curr_task() above) and restore that value before reenabling interrupts and
8492 * re-starting the system.
8494 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8496 void set_curr_task(int cpu
, struct task_struct
*p
)
8503 #ifdef CONFIG_FAIR_GROUP_SCHED
8504 static void free_fair_sched_group(struct task_group
*tg
)
8508 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg
));
8510 for_each_possible_cpu(i
) {
8512 kfree(tg
->cfs_rq
[i
]);
8522 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8524 struct cfs_rq
*cfs_rq
;
8525 struct sched_entity
*se
;
8528 tg
->cfs_rq
= kzalloc(sizeof(cfs_rq
) * nr_cpu_ids
, GFP_KERNEL
);
8531 tg
->se
= kzalloc(sizeof(se
) * nr_cpu_ids
, GFP_KERNEL
);
8535 tg
->shares
= NICE_0_LOAD
;
8537 init_cfs_bandwidth(tg_cfs_bandwidth(tg
));
8539 for_each_possible_cpu(i
) {
8540 cfs_rq
= kzalloc_node(sizeof(struct cfs_rq
),
8541 GFP_KERNEL
, cpu_to_node(i
));
8545 se
= kzalloc_node(sizeof(struct sched_entity
),
8546 GFP_KERNEL
, cpu_to_node(i
));
8550 init_cfs_rq(cfs_rq
);
8551 init_tg_cfs_entry(tg
, cfs_rq
, se
, i
, parent
->se
[i
]);
8562 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
8564 struct rq
*rq
= cpu_rq(cpu
);
8565 unsigned long flags
;
8568 * Only empty task groups can be destroyed; so we can speculatively
8569 * check on_list without danger of it being re-added.
8571 if (!tg
->cfs_rq
[cpu
]->on_list
)
8574 raw_spin_lock_irqsave(&rq
->lock
, flags
);
8575 list_del_leaf_cfs_rq(tg
->cfs_rq
[cpu
]);
8576 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
8578 #else /* !CONFIG_FAIR_GROUP_SCHED */
8579 static inline void free_fair_sched_group(struct task_group
*tg
)
8584 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8589 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
8592 #endif /* CONFIG_FAIR_GROUP_SCHED */
8594 #ifdef CONFIG_RT_GROUP_SCHED
8595 static void free_rt_sched_group(struct task_group
*tg
)
8600 destroy_rt_bandwidth(&tg
->rt_bandwidth
);
8602 for_each_possible_cpu(i
) {
8604 kfree(tg
->rt_rq
[i
]);
8606 kfree(tg
->rt_se
[i
]);
8614 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8616 struct rt_rq
*rt_rq
;
8617 struct sched_rt_entity
*rt_se
;
8620 tg
->rt_rq
= kzalloc(sizeof(rt_rq
) * nr_cpu_ids
, GFP_KERNEL
);
8623 tg
->rt_se
= kzalloc(sizeof(rt_se
) * nr_cpu_ids
, GFP_KERNEL
);
8627 init_rt_bandwidth(&tg
->rt_bandwidth
,
8628 ktime_to_ns(def_rt_bandwidth
.rt_period
), 0);
8630 for_each_possible_cpu(i
) {
8631 rt_rq
= kzalloc_node(sizeof(struct rt_rq
),
8632 GFP_KERNEL
, cpu_to_node(i
));
8636 rt_se
= kzalloc_node(sizeof(struct sched_rt_entity
),
8637 GFP_KERNEL
, cpu_to_node(i
));
8641 init_rt_rq(rt_rq
, cpu_rq(i
));
8642 rt_rq
->rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
8643 init_tg_rt_entry(tg
, rt_rq
, rt_se
, i
, parent
->rt_se
[i
]);
8653 #else /* !CONFIG_RT_GROUP_SCHED */
8654 static inline void free_rt_sched_group(struct task_group
*tg
)
8659 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8663 #endif /* CONFIG_RT_GROUP_SCHED */
8665 #ifdef CONFIG_CGROUP_SCHED
8666 static void free_sched_group(struct task_group
*tg
)
8668 free_fair_sched_group(tg
);
8669 free_rt_sched_group(tg
);
8674 /* allocate runqueue etc for a new task group */
8675 struct task_group
*sched_create_group(struct task_group
*parent
)
8677 struct task_group
*tg
;
8678 unsigned long flags
;
8680 tg
= kzalloc(sizeof(*tg
), GFP_KERNEL
);
8682 return ERR_PTR(-ENOMEM
);
8684 if (!alloc_fair_sched_group(tg
, parent
))
8687 if (!alloc_rt_sched_group(tg
, parent
))
8690 spin_lock_irqsave(&task_group_lock
, flags
);
8691 list_add_rcu(&tg
->list
, &task_groups
);
8693 WARN_ON(!parent
); /* root should already exist */
8695 tg
->parent
= parent
;
8696 INIT_LIST_HEAD(&tg
->children
);
8697 list_add_rcu(&tg
->siblings
, &parent
->children
);
8698 spin_unlock_irqrestore(&task_group_lock
, flags
);
8703 free_sched_group(tg
);
8704 return ERR_PTR(-ENOMEM
);
8707 /* rcu callback to free various structures associated with a task group */
8708 static void free_sched_group_rcu(struct rcu_head
*rhp
)
8710 /* now it should be safe to free those cfs_rqs */
8711 free_sched_group(container_of(rhp
, struct task_group
, rcu
));
8714 /* Destroy runqueue etc associated with a task group */
8715 void sched_destroy_group(struct task_group
*tg
)
8717 unsigned long flags
;
8720 /* end participation in shares distribution */
8721 for_each_possible_cpu(i
)
8722 unregister_fair_sched_group(tg
, i
);
8724 spin_lock_irqsave(&task_group_lock
, flags
);
8725 list_del_rcu(&tg
->list
);
8726 list_del_rcu(&tg
->siblings
);
8727 spin_unlock_irqrestore(&task_group_lock
, flags
);
8729 /* wait for possible concurrent references to cfs_rqs complete */
8730 call_rcu(&tg
->rcu
, free_sched_group_rcu
);
8733 /* change task's runqueue when it moves between groups.
8734 * The caller of this function should have put the task in its new group
8735 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8736 * reflect its new group.
8738 void sched_move_task(struct task_struct
*tsk
)
8741 unsigned long flags
;
8744 rq
= task_rq_lock(tsk
, &flags
);
8746 running
= task_current(rq
, tsk
);
8750 dequeue_task(rq
, tsk
, 0);
8751 if (unlikely(running
))
8752 tsk
->sched_class
->put_prev_task(rq
, tsk
);
8754 #ifdef CONFIG_FAIR_GROUP_SCHED
8755 if (tsk
->sched_class
->task_move_group
)
8756 tsk
->sched_class
->task_move_group(tsk
, on_rq
);
8759 set_task_rq(tsk
, task_cpu(tsk
));
8761 if (unlikely(running
))
8762 tsk
->sched_class
->set_curr_task(rq
);
8764 enqueue_task(rq
, tsk
, 0);
8766 task_rq_unlock(rq
, tsk
, &flags
);
8768 #endif /* CONFIG_CGROUP_SCHED */
8770 #ifdef CONFIG_FAIR_GROUP_SCHED
8771 static DEFINE_MUTEX(shares_mutex
);
8773 int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
)
8776 unsigned long flags
;
8779 * We can't change the weight of the root cgroup.
8784 shares
= clamp(shares
, scale_load(MIN_SHARES
), scale_load(MAX_SHARES
));
8786 mutex_lock(&shares_mutex
);
8787 if (tg
->shares
== shares
)
8790 tg
->shares
= shares
;
8791 for_each_possible_cpu(i
) {
8792 struct rq
*rq
= cpu_rq(i
);
8793 struct sched_entity
*se
;
8796 /* Propagate contribution to hierarchy */
8797 raw_spin_lock_irqsave(&rq
->lock
, flags
);
8798 for_each_sched_entity(se
)
8799 update_cfs_shares(group_cfs_rq(se
));
8800 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
8804 mutex_unlock(&shares_mutex
);
8808 unsigned long sched_group_shares(struct task_group
*tg
)
8814 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
8815 static unsigned long to_ratio(u64 period
, u64 runtime
)
8817 if (runtime
== RUNTIME_INF
)
8820 return div64_u64(runtime
<< 20, period
);
8824 #ifdef CONFIG_RT_GROUP_SCHED
8826 * Ensure that the real time constraints are schedulable.
8828 static DEFINE_MUTEX(rt_constraints_mutex
);
8830 /* Must be called with tasklist_lock held */
8831 static inline int tg_has_rt_tasks(struct task_group
*tg
)
8833 struct task_struct
*g
, *p
;
8835 do_each_thread(g
, p
) {
8836 if (rt_task(p
) && rt_rq_of_se(&p
->rt
)->tg
== tg
)
8838 } while_each_thread(g
, p
);
8843 struct rt_schedulable_data
{
8844 struct task_group
*tg
;
8849 static int tg_rt_schedulable(struct task_group
*tg
, void *data
)
8851 struct rt_schedulable_data
*d
= data
;
8852 struct task_group
*child
;
8853 unsigned long total
, sum
= 0;
8854 u64 period
, runtime
;
8856 period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8857 runtime
= tg
->rt_bandwidth
.rt_runtime
;
8860 period
= d
->rt_period
;
8861 runtime
= d
->rt_runtime
;
8865 * Cannot have more runtime than the period.
8867 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
8871 * Ensure we don't starve existing RT tasks.
8873 if (rt_bandwidth_enabled() && !runtime
&& tg_has_rt_tasks(tg
))
8876 total
= to_ratio(period
, runtime
);
8879 * Nobody can have more than the global setting allows.
8881 if (total
> to_ratio(global_rt_period(), global_rt_runtime()))
8885 * The sum of our children's runtime should not exceed our own.
8887 list_for_each_entry_rcu(child
, &tg
->children
, siblings
) {
8888 period
= ktime_to_ns(child
->rt_bandwidth
.rt_period
);
8889 runtime
= child
->rt_bandwidth
.rt_runtime
;
8891 if (child
== d
->tg
) {
8892 period
= d
->rt_period
;
8893 runtime
= d
->rt_runtime
;
8896 sum
+= to_ratio(period
, runtime
);
8905 static int __rt_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
)
8909 struct rt_schedulable_data data
= {
8911 .rt_period
= period
,
8912 .rt_runtime
= runtime
,
8916 ret
= walk_tg_tree(tg_rt_schedulable
, tg_nop
, &data
);
8922 static int tg_set_rt_bandwidth(struct task_group
*tg
,
8923 u64 rt_period
, u64 rt_runtime
)
8927 mutex_lock(&rt_constraints_mutex
);
8928 read_lock(&tasklist_lock
);
8929 err
= __rt_schedulable(tg
, rt_period
, rt_runtime
);
8933 raw_spin_lock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
8934 tg
->rt_bandwidth
.rt_period
= ns_to_ktime(rt_period
);
8935 tg
->rt_bandwidth
.rt_runtime
= rt_runtime
;
8937 for_each_possible_cpu(i
) {
8938 struct rt_rq
*rt_rq
= tg
->rt_rq
[i
];
8940 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
8941 rt_rq
->rt_runtime
= rt_runtime
;
8942 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
8944 raw_spin_unlock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
8946 read_unlock(&tasklist_lock
);
8947 mutex_unlock(&rt_constraints_mutex
);
8952 int sched_group_set_rt_runtime(struct task_group
*tg
, long rt_runtime_us
)
8954 u64 rt_runtime
, rt_period
;
8956 rt_period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8957 rt_runtime
= (u64
)rt_runtime_us
* NSEC_PER_USEC
;
8958 if (rt_runtime_us
< 0)
8959 rt_runtime
= RUNTIME_INF
;
8961 return tg_set_rt_bandwidth(tg
, rt_period
, rt_runtime
);
8964 long sched_group_rt_runtime(struct task_group
*tg
)
8968 if (tg
->rt_bandwidth
.rt_runtime
== RUNTIME_INF
)
8971 rt_runtime_us
= tg
->rt_bandwidth
.rt_runtime
;
8972 do_div(rt_runtime_us
, NSEC_PER_USEC
);
8973 return rt_runtime_us
;
8976 int sched_group_set_rt_period(struct task_group
*tg
, long rt_period_us
)
8978 u64 rt_runtime
, rt_period
;
8980 rt_period
= (u64
)rt_period_us
* NSEC_PER_USEC
;
8981 rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
8986 return tg_set_rt_bandwidth(tg
, rt_period
, rt_runtime
);
8989 long sched_group_rt_period(struct task_group
*tg
)
8993 rt_period_us
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8994 do_div(rt_period_us
, NSEC_PER_USEC
);
8995 return rt_period_us
;
8998 static int sched_rt_global_constraints(void)
9000 u64 runtime
, period
;
9003 if (sysctl_sched_rt_period
<= 0)
9006 runtime
= global_rt_runtime();
9007 period
= global_rt_period();
9010 * Sanity check on the sysctl variables.
9012 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
9015 mutex_lock(&rt_constraints_mutex
);
9016 read_lock(&tasklist_lock
);
9017 ret
= __rt_schedulable(NULL
, 0, 0);
9018 read_unlock(&tasklist_lock
);
9019 mutex_unlock(&rt_constraints_mutex
);
9024 int sched_rt_can_attach(struct task_group
*tg
, struct task_struct
*tsk
)
9026 /* Don't accept realtime tasks when there is no way for them to run */
9027 if (rt_task(tsk
) && tg
->rt_bandwidth
.rt_runtime
== 0)
9033 #else /* !CONFIG_RT_GROUP_SCHED */
9034 static int sched_rt_global_constraints(void)
9036 unsigned long flags
;
9039 if (sysctl_sched_rt_period
<= 0)
9043 * There's always some RT tasks in the root group
9044 * -- migration, kstopmachine etc..
9046 if (sysctl_sched_rt_runtime
== 0)
9049 raw_spin_lock_irqsave(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
9050 for_each_possible_cpu(i
) {
9051 struct rt_rq
*rt_rq
= &cpu_rq(i
)->rt
;
9053 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
9054 rt_rq
->rt_runtime
= global_rt_runtime();
9055 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
9057 raw_spin_unlock_irqrestore(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
9061 #endif /* CONFIG_RT_GROUP_SCHED */
9063 int sched_rt_handler(struct ctl_table
*table
, int write
,
9064 void __user
*buffer
, size_t *lenp
,
9068 int old_period
, old_runtime
;
9069 static DEFINE_MUTEX(mutex
);
9072 old_period
= sysctl_sched_rt_period
;
9073 old_runtime
= sysctl_sched_rt_runtime
;
9075 ret
= proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
9077 if (!ret
&& write
) {
9078 ret
= sched_rt_global_constraints();
9080 sysctl_sched_rt_period
= old_period
;
9081 sysctl_sched_rt_runtime
= old_runtime
;
9083 def_rt_bandwidth
.rt_runtime
= global_rt_runtime();
9084 def_rt_bandwidth
.rt_period
=
9085 ns_to_ktime(global_rt_period());
9088 mutex_unlock(&mutex
);
9093 #ifdef CONFIG_CGROUP_SCHED
9095 /* return corresponding task_group object of a cgroup */
9096 static inline struct task_group
*cgroup_tg(struct cgroup
*cgrp
)
9098 return container_of(cgroup_subsys_state(cgrp
, cpu_cgroup_subsys_id
),
9099 struct task_group
, css
);
9102 static struct cgroup_subsys_state
*
9103 cpu_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9105 struct task_group
*tg
, *parent
;
9107 if (!cgrp
->parent
) {
9108 /* This is early initialization for the top cgroup */
9109 return &root_task_group
.css
;
9112 parent
= cgroup_tg(cgrp
->parent
);
9113 tg
= sched_create_group(parent
);
9115 return ERR_PTR(-ENOMEM
);
9121 cpu_cgroup_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9123 struct task_group
*tg
= cgroup_tg(cgrp
);
9125 sched_destroy_group(tg
);
9129 cpu_cgroup_can_attach_task(struct cgroup
*cgrp
, struct task_struct
*tsk
)
9131 #ifdef CONFIG_RT_GROUP_SCHED
9132 if (!sched_rt_can_attach(cgroup_tg(cgrp
), tsk
))
9135 /* We don't support RT-tasks being in separate groups */
9136 if (tsk
->sched_class
!= &fair_sched_class
)
9143 cpu_cgroup_attach_task(struct cgroup
*cgrp
, struct task_struct
*tsk
)
9145 sched_move_task(tsk
);
9149 cpu_cgroup_exit(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
9150 struct cgroup
*old_cgrp
, struct task_struct
*task
)
9153 * cgroup_exit() is called in the copy_process() failure path.
9154 * Ignore this case since the task hasn't ran yet, this avoids
9155 * trying to poke a half freed task state from generic code.
9157 if (!(task
->flags
& PF_EXITING
))
9160 sched_move_task(task
);
9163 #ifdef CONFIG_FAIR_GROUP_SCHED
9164 static int cpu_shares_write_u64(struct cgroup
*cgrp
, struct cftype
*cftype
,
9167 return sched_group_set_shares(cgroup_tg(cgrp
), scale_load(shareval
));
9170 static u64
cpu_shares_read_u64(struct cgroup
*cgrp
, struct cftype
*cft
)
9172 struct task_group
*tg
= cgroup_tg(cgrp
);
9174 return (u64
) scale_load_down(tg
->shares
);
9177 #ifdef CONFIG_CFS_BANDWIDTH
9178 static DEFINE_MUTEX(cfs_constraints_mutex
);
9180 const u64 max_cfs_quota_period
= 1 * NSEC_PER_SEC
; /* 1s */
9181 const u64 min_cfs_quota_period
= 1 * NSEC_PER_MSEC
; /* 1ms */
9183 static int __cfs_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
);
9185 static int tg_set_cfs_bandwidth(struct task_group
*tg
, u64 period
, u64 quota
)
9187 int i
, ret
= 0, runtime_enabled
;
9188 struct cfs_bandwidth
*cfs_b
= tg_cfs_bandwidth(tg
);
9190 if (tg
== &root_task_group
)
9194 * Ensure we have at some amount of bandwidth every period. This is
9195 * to prevent reaching a state of large arrears when throttled via
9196 * entity_tick() resulting in prolonged exit starvation.
9198 if (quota
< min_cfs_quota_period
|| period
< min_cfs_quota_period
)
9202 * Likewise, bound things on the otherside by preventing insane quota
9203 * periods. This also allows us to normalize in computing quota
9206 if (period
> max_cfs_quota_period
)
9209 mutex_lock(&cfs_constraints_mutex
);
9210 ret
= __cfs_schedulable(tg
, period
, quota
);
9214 runtime_enabled
= quota
!= RUNTIME_INF
;
9215 raw_spin_lock_irq(&cfs_b
->lock
);
9216 cfs_b
->period
= ns_to_ktime(period
);
9217 cfs_b
->quota
= quota
;
9219 __refill_cfs_bandwidth_runtime(cfs_b
);
9220 /* restart the period timer (if active) to handle new period expiry */
9221 if (runtime_enabled
&& cfs_b
->timer_active
) {
9222 /* force a reprogram */
9223 cfs_b
->timer_active
= 0;
9224 __start_cfs_bandwidth(cfs_b
);
9226 raw_spin_unlock_irq(&cfs_b
->lock
);
9228 for_each_possible_cpu(i
) {
9229 struct cfs_rq
*cfs_rq
= tg
->cfs_rq
[i
];
9230 struct rq
*rq
= rq_of(cfs_rq
);
9232 raw_spin_lock_irq(&rq
->lock
);
9233 cfs_rq
->runtime_enabled
= runtime_enabled
;
9234 cfs_rq
->runtime_remaining
= 0;
9236 if (cfs_rq_throttled(cfs_rq
))
9237 unthrottle_cfs_rq(cfs_rq
);
9238 raw_spin_unlock_irq(&rq
->lock
);
9241 mutex_unlock(&cfs_constraints_mutex
);
9246 int tg_set_cfs_quota(struct task_group
*tg
, long cfs_quota_us
)
9250 period
= ktime_to_ns(tg_cfs_bandwidth(tg
)->period
);
9251 if (cfs_quota_us
< 0)
9252 quota
= RUNTIME_INF
;
9254 quota
= (u64
)cfs_quota_us
* NSEC_PER_USEC
;
9256 return tg_set_cfs_bandwidth(tg
, period
, quota
);
9259 long tg_get_cfs_quota(struct task_group
*tg
)
9263 if (tg_cfs_bandwidth(tg
)->quota
== RUNTIME_INF
)
9266 quota_us
= tg_cfs_bandwidth(tg
)->quota
;
9267 do_div(quota_us
, NSEC_PER_USEC
);
9272 int tg_set_cfs_period(struct task_group
*tg
, long cfs_period_us
)
9276 period
= (u64
)cfs_period_us
* NSEC_PER_USEC
;
9277 quota
= tg_cfs_bandwidth(tg
)->quota
;
9282 return tg_set_cfs_bandwidth(tg
, period
, quota
);
9285 long tg_get_cfs_period(struct task_group
*tg
)
9289 cfs_period_us
= ktime_to_ns(tg_cfs_bandwidth(tg
)->period
);
9290 do_div(cfs_period_us
, NSEC_PER_USEC
);
9292 return cfs_period_us
;
9295 static s64
cpu_cfs_quota_read_s64(struct cgroup
*cgrp
, struct cftype
*cft
)
9297 return tg_get_cfs_quota(cgroup_tg(cgrp
));
9300 static int cpu_cfs_quota_write_s64(struct cgroup
*cgrp
, struct cftype
*cftype
,
9303 return tg_set_cfs_quota(cgroup_tg(cgrp
), cfs_quota_us
);
9306 static u64
cpu_cfs_period_read_u64(struct cgroup
*cgrp
, struct cftype
*cft
)
9308 return tg_get_cfs_period(cgroup_tg(cgrp
));
9311 static int cpu_cfs_period_write_u64(struct cgroup
*cgrp
, struct cftype
*cftype
,
9314 return tg_set_cfs_period(cgroup_tg(cgrp
), cfs_period_us
);
9317 struct cfs_schedulable_data
{
9318 struct task_group
*tg
;
9323 * normalize group quota/period to be quota/max_period
9324 * note: units are usecs
9326 static u64
normalize_cfs_quota(struct task_group
*tg
,
9327 struct cfs_schedulable_data
*d
)
9335 period
= tg_get_cfs_period(tg
);
9336 quota
= tg_get_cfs_quota(tg
);
9339 /* note: these should typically be equivalent */
9340 if (quota
== RUNTIME_INF
|| quota
== -1)
9343 return to_ratio(period
, quota
);
9346 static int tg_cfs_schedulable_down(struct task_group
*tg
, void *data
)
9348 struct cfs_schedulable_data
*d
= data
;
9349 struct cfs_bandwidth
*cfs_b
= tg_cfs_bandwidth(tg
);
9350 s64 quota
= 0, parent_quota
= -1;
9353 quota
= RUNTIME_INF
;
9355 struct cfs_bandwidth
*parent_b
= tg_cfs_bandwidth(tg
->parent
);
9357 quota
= normalize_cfs_quota(tg
, d
);
9358 parent_quota
= parent_b
->hierarchal_quota
;
9361 * ensure max(child_quota) <= parent_quota, inherit when no
9364 if (quota
== RUNTIME_INF
)
9365 quota
= parent_quota
;
9366 else if (parent_quota
!= RUNTIME_INF
&& quota
> parent_quota
)
9369 cfs_b
->hierarchal_quota
= quota
;
9374 static int __cfs_schedulable(struct task_group
*tg
, u64 period
, u64 quota
)
9377 struct cfs_schedulable_data data
= {
9383 if (quota
!= RUNTIME_INF
) {
9384 do_div(data
.period
, NSEC_PER_USEC
);
9385 do_div(data
.quota
, NSEC_PER_USEC
);
9389 ret
= walk_tg_tree(tg_cfs_schedulable_down
, tg_nop
, &data
);
9395 static int cpu_stats_show(struct cgroup
*cgrp
, struct cftype
*cft
,
9396 struct cgroup_map_cb
*cb
)
9398 struct task_group
*tg
= cgroup_tg(cgrp
);
9399 struct cfs_bandwidth
*cfs_b
= tg_cfs_bandwidth(tg
);
9401 cb
->fill(cb
, "nr_periods", cfs_b
->nr_periods
);
9402 cb
->fill(cb
, "nr_throttled", cfs_b
->nr_throttled
);
9403 cb
->fill(cb
, "throttled_time", cfs_b
->throttled_time
);
9407 #endif /* CONFIG_CFS_BANDWIDTH */
9408 #endif /* CONFIG_FAIR_GROUP_SCHED */
9410 #ifdef CONFIG_RT_GROUP_SCHED
9411 static int cpu_rt_runtime_write(struct cgroup
*cgrp
, struct cftype
*cft
,
9414 return sched_group_set_rt_runtime(cgroup_tg(cgrp
), val
);
9417 static s64
cpu_rt_runtime_read(struct cgroup
*cgrp
, struct cftype
*cft
)
9419 return sched_group_rt_runtime(cgroup_tg(cgrp
));
9422 static int cpu_rt_period_write_uint(struct cgroup
*cgrp
, struct cftype
*cftype
,
9425 return sched_group_set_rt_period(cgroup_tg(cgrp
), rt_period_us
);
9428 static u64
cpu_rt_period_read_uint(struct cgroup
*cgrp
, struct cftype
*cft
)
9430 return sched_group_rt_period(cgroup_tg(cgrp
));
9432 #endif /* CONFIG_RT_GROUP_SCHED */
9434 static struct cftype cpu_files
[] = {
9435 #ifdef CONFIG_FAIR_GROUP_SCHED
9438 .read_u64
= cpu_shares_read_u64
,
9439 .write_u64
= cpu_shares_write_u64
,
9442 #ifdef CONFIG_CFS_BANDWIDTH
9444 .name
= "cfs_quota_us",
9445 .read_s64
= cpu_cfs_quota_read_s64
,
9446 .write_s64
= cpu_cfs_quota_write_s64
,
9449 .name
= "cfs_period_us",
9450 .read_u64
= cpu_cfs_period_read_u64
,
9451 .write_u64
= cpu_cfs_period_write_u64
,
9455 .read_map
= cpu_stats_show
,
9458 #ifdef CONFIG_RT_GROUP_SCHED
9460 .name
= "rt_runtime_us",
9461 .read_s64
= cpu_rt_runtime_read
,
9462 .write_s64
= cpu_rt_runtime_write
,
9465 .name
= "rt_period_us",
9466 .read_u64
= cpu_rt_period_read_uint
,
9467 .write_u64
= cpu_rt_period_write_uint
,
9472 static int cpu_cgroup_populate(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
9474 return cgroup_add_files(cont
, ss
, cpu_files
, ARRAY_SIZE(cpu_files
));
9477 struct cgroup_subsys cpu_cgroup_subsys
= {
9479 .create
= cpu_cgroup_create
,
9480 .destroy
= cpu_cgroup_destroy
,
9481 .can_attach_task
= cpu_cgroup_can_attach_task
,
9482 .attach_task
= cpu_cgroup_attach_task
,
9483 .exit
= cpu_cgroup_exit
,
9484 .populate
= cpu_cgroup_populate
,
9485 .subsys_id
= cpu_cgroup_subsys_id
,
9489 #endif /* CONFIG_CGROUP_SCHED */
9491 #ifdef CONFIG_CGROUP_CPUACCT
9494 * CPU accounting code for task groups.
9496 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9497 * (balbir@in.ibm.com).
9500 /* track cpu usage of a group of tasks and its child groups */
9502 struct cgroup_subsys_state css
;
9503 /* cpuusage holds pointer to a u64-type object on every cpu */
9504 u64 __percpu
*cpuusage
;
9505 struct percpu_counter cpustat
[CPUACCT_STAT_NSTATS
];
9506 struct cpuacct
*parent
;
9509 struct cgroup_subsys cpuacct_subsys
;
9511 /* return cpu accounting group corresponding to this container */
9512 static inline struct cpuacct
*cgroup_ca(struct cgroup
*cgrp
)
9514 return container_of(cgroup_subsys_state(cgrp
, cpuacct_subsys_id
),
9515 struct cpuacct
, css
);
9518 /* return cpu accounting group to which this task belongs */
9519 static inline struct cpuacct
*task_ca(struct task_struct
*tsk
)
9521 return container_of(task_subsys_state(tsk
, cpuacct_subsys_id
),
9522 struct cpuacct
, css
);
9525 /* create a new cpu accounting group */
9526 static struct cgroup_subsys_state
*cpuacct_create(
9527 struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9529 struct cpuacct
*ca
= kzalloc(sizeof(*ca
), GFP_KERNEL
);
9535 ca
->cpuusage
= alloc_percpu(u64
);
9539 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++)
9540 if (percpu_counter_init(&ca
->cpustat
[i
], 0))
9541 goto out_free_counters
;
9544 ca
->parent
= cgroup_ca(cgrp
->parent
);
9550 percpu_counter_destroy(&ca
->cpustat
[i
]);
9551 free_percpu(ca
->cpuusage
);
9555 return ERR_PTR(-ENOMEM
);
9558 /* destroy an existing cpu accounting group */
9560 cpuacct_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9562 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9565 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++)
9566 percpu_counter_destroy(&ca
->cpustat
[i
]);
9567 free_percpu(ca
->cpuusage
);
9571 static u64
cpuacct_cpuusage_read(struct cpuacct
*ca
, int cpu
)
9573 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
9576 #ifndef CONFIG_64BIT
9578 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9580 raw_spin_lock_irq(&cpu_rq(cpu
)->lock
);
9582 raw_spin_unlock_irq(&cpu_rq(cpu
)->lock
);
9590 static void cpuacct_cpuusage_write(struct cpuacct
*ca
, int cpu
, u64 val
)
9592 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
9594 #ifndef CONFIG_64BIT
9596 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9598 raw_spin_lock_irq(&cpu_rq(cpu
)->lock
);
9600 raw_spin_unlock_irq(&cpu_rq(cpu
)->lock
);
9606 /* return total cpu usage (in nanoseconds) of a group */
9607 static u64
cpuusage_read(struct cgroup
*cgrp
, struct cftype
*cft
)
9609 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9610 u64 totalcpuusage
= 0;
9613 for_each_present_cpu(i
)
9614 totalcpuusage
+= cpuacct_cpuusage_read(ca
, i
);
9616 return totalcpuusage
;
9619 static int cpuusage_write(struct cgroup
*cgrp
, struct cftype
*cftype
,
9622 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9631 for_each_present_cpu(i
)
9632 cpuacct_cpuusage_write(ca
, i
, 0);
9638 static int cpuacct_percpu_seq_read(struct cgroup
*cgroup
, struct cftype
*cft
,
9641 struct cpuacct
*ca
= cgroup_ca(cgroup
);
9645 for_each_present_cpu(i
) {
9646 percpu
= cpuacct_cpuusage_read(ca
, i
);
9647 seq_printf(m
, "%llu ", (unsigned long long) percpu
);
9649 seq_printf(m
, "\n");
9653 static const char *cpuacct_stat_desc
[] = {
9654 [CPUACCT_STAT_USER
] = "user",
9655 [CPUACCT_STAT_SYSTEM
] = "system",
9658 static int cpuacct_stats_show(struct cgroup
*cgrp
, struct cftype
*cft
,
9659 struct cgroup_map_cb
*cb
)
9661 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9664 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++) {
9665 s64 val
= percpu_counter_read(&ca
->cpustat
[i
]);
9666 val
= cputime64_to_clock_t(val
);
9667 cb
->fill(cb
, cpuacct_stat_desc
[i
], val
);
9672 static struct cftype files
[] = {
9675 .read_u64
= cpuusage_read
,
9676 .write_u64
= cpuusage_write
,
9679 .name
= "usage_percpu",
9680 .read_seq_string
= cpuacct_percpu_seq_read
,
9684 .read_map
= cpuacct_stats_show
,
9688 static int cpuacct_populate(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9690 return cgroup_add_files(cgrp
, ss
, files
, ARRAY_SIZE(files
));
9694 * charge this task's execution time to its accounting group.
9696 * called with rq->lock held.
9698 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
)
9703 if (unlikely(!cpuacct_subsys
.active
))
9706 cpu
= task_cpu(tsk
);
9712 for (; ca
; ca
= ca
->parent
) {
9713 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
9714 *cpuusage
+= cputime
;
9721 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9722 * in cputime_t units. As a result, cpuacct_update_stats calls
9723 * percpu_counter_add with values large enough to always overflow the
9724 * per cpu batch limit causing bad SMP scalability.
9726 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9727 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9728 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9731 #define CPUACCT_BATCH \
9732 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9734 #define CPUACCT_BATCH 0
9738 * Charge the system/user time to the task's accounting group.
9740 static void cpuacct_update_stats(struct task_struct
*tsk
,
9741 enum cpuacct_stat_index idx
, cputime_t val
)
9744 int batch
= CPUACCT_BATCH
;
9746 if (unlikely(!cpuacct_subsys
.active
))
9753 __percpu_counter_add(&ca
->cpustat
[idx
], val
, batch
);
9759 struct cgroup_subsys cpuacct_subsys
= {
9761 .create
= cpuacct_create
,
9762 .destroy
= cpuacct_destroy
,
9763 .populate
= cpuacct_populate
,
9764 .subsys_id
= cpuacct_subsys_id
,
9766 #endif /* CONFIG_CGROUP_CPUACCT */