54d67b94f1a9f159e7f9ea07f9ab0e2bc626c569
[deliverable/linux.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/reciprocal_div.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/bootmem.h>
72 #include <linux/debugfs.h>
73 #include <linux/ctype.h>
74 #include <linux/ftrace.h>
75 #include <trace/sched.h>
76
77 #include <asm/tlb.h>
78 #include <asm/irq_regs.h>
79
80 #include "sched_cpupri.h"
81
82 /*
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85 * and back.
86 */
87 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
90
91 /*
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
95 */
96 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
99
100 /*
101 * Helpers for converting nanosecond timing to jiffy resolution
102 */
103 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
104
105 #define NICE_0_LOAD SCHED_LOAD_SCALE
106 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
107
108 /*
109 * These are the 'tuning knobs' of the scheduler:
110 *
111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
112 * Timeslices get refilled after they expire.
113 */
114 #define DEF_TIMESLICE (100 * HZ / 1000)
115
116 /*
117 * single value that denotes runtime == period, ie unlimited time.
118 */
119 #define RUNTIME_INF ((u64)~0ULL)
120
121 DEFINE_TRACE(sched_wait_task);
122 DEFINE_TRACE(sched_wakeup);
123 DEFINE_TRACE(sched_wakeup_new);
124 DEFINE_TRACE(sched_switch);
125 DEFINE_TRACE(sched_migrate_task);
126
127 #ifdef CONFIG_SMP
128
129 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
130
131 /*
132 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
133 * Since cpu_power is a 'constant', we can use a reciprocal divide.
134 */
135 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
136 {
137 return reciprocal_divide(load, sg->reciprocal_cpu_power);
138 }
139
140 /*
141 * Each time a sched group cpu_power is changed,
142 * we must compute its reciprocal value
143 */
144 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
145 {
146 sg->__cpu_power += val;
147 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
148 }
149 #endif
150
151 static inline int rt_policy(int policy)
152 {
153 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
154 return 1;
155 return 0;
156 }
157
158 static inline int task_has_rt_policy(struct task_struct *p)
159 {
160 return rt_policy(p->policy);
161 }
162
163 /*
164 * This is the priority-queue data structure of the RT scheduling class:
165 */
166 struct rt_prio_array {
167 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
168 struct list_head queue[MAX_RT_PRIO];
169 };
170
171 struct rt_bandwidth {
172 /* nests inside the rq lock: */
173 spinlock_t rt_runtime_lock;
174 ktime_t rt_period;
175 u64 rt_runtime;
176 struct hrtimer rt_period_timer;
177 };
178
179 static struct rt_bandwidth def_rt_bandwidth;
180
181 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
182
183 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
184 {
185 struct rt_bandwidth *rt_b =
186 container_of(timer, struct rt_bandwidth, rt_period_timer);
187 ktime_t now;
188 int overrun;
189 int idle = 0;
190
191 for (;;) {
192 now = hrtimer_cb_get_time(timer);
193 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
194
195 if (!overrun)
196 break;
197
198 idle = do_sched_rt_period_timer(rt_b, overrun);
199 }
200
201 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
202 }
203
204 static
205 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
206 {
207 rt_b->rt_period = ns_to_ktime(period);
208 rt_b->rt_runtime = runtime;
209
210 spin_lock_init(&rt_b->rt_runtime_lock);
211
212 hrtimer_init(&rt_b->rt_period_timer,
213 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
214 rt_b->rt_period_timer.function = sched_rt_period_timer;
215 }
216
217 static inline int rt_bandwidth_enabled(void)
218 {
219 return sysctl_sched_rt_runtime >= 0;
220 }
221
222 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
223 {
224 ktime_t now;
225
226 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
227 return;
228
229 if (hrtimer_active(&rt_b->rt_period_timer))
230 return;
231
232 spin_lock(&rt_b->rt_runtime_lock);
233 for (;;) {
234 unsigned long delta;
235 ktime_t soft, hard;
236
237 if (hrtimer_active(&rt_b->rt_period_timer))
238 break;
239
240 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
241 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
242
243 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
244 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
245 delta = ktime_to_ns(ktime_sub(hard, soft));
246 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
247 HRTIMER_MODE_ABS, 0);
248 }
249 spin_unlock(&rt_b->rt_runtime_lock);
250 }
251
252 #ifdef CONFIG_RT_GROUP_SCHED
253 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
254 {
255 hrtimer_cancel(&rt_b->rt_period_timer);
256 }
257 #endif
258
259 /*
260 * sched_domains_mutex serializes calls to arch_init_sched_domains,
261 * detach_destroy_domains and partition_sched_domains.
262 */
263 static DEFINE_MUTEX(sched_domains_mutex);
264
265 #ifdef CONFIG_GROUP_SCHED
266
267 #include <linux/cgroup.h>
268
269 struct cfs_rq;
270
271 static LIST_HEAD(task_groups);
272
273 /* task group related information */
274 struct task_group {
275 #ifdef CONFIG_CGROUP_SCHED
276 struct cgroup_subsys_state css;
277 #endif
278
279 #ifdef CONFIG_USER_SCHED
280 uid_t uid;
281 #endif
282
283 #ifdef CONFIG_FAIR_GROUP_SCHED
284 /* schedulable entities of this group on each cpu */
285 struct sched_entity **se;
286 /* runqueue "owned" by this group on each cpu */
287 struct cfs_rq **cfs_rq;
288 unsigned long shares;
289 #endif
290
291 #ifdef CONFIG_RT_GROUP_SCHED
292 struct sched_rt_entity **rt_se;
293 struct rt_rq **rt_rq;
294
295 struct rt_bandwidth rt_bandwidth;
296 #endif
297
298 struct rcu_head rcu;
299 struct list_head list;
300
301 struct task_group *parent;
302 struct list_head siblings;
303 struct list_head children;
304 };
305
306 #ifdef CONFIG_USER_SCHED
307
308 /* Helper function to pass uid information to create_sched_user() */
309 void set_tg_uid(struct user_struct *user)
310 {
311 user->tg->uid = user->uid;
312 }
313
314 /*
315 * Root task group.
316 * Every UID task group (including init_task_group aka UID-0) will
317 * be a child to this group.
318 */
319 struct task_group root_task_group;
320
321 #ifdef CONFIG_FAIR_GROUP_SCHED
322 /* Default task group's sched entity on each cpu */
323 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
324 /* Default task group's cfs_rq on each cpu */
325 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
326 #endif /* CONFIG_FAIR_GROUP_SCHED */
327
328 #ifdef CONFIG_RT_GROUP_SCHED
329 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
330 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
331 #endif /* CONFIG_RT_GROUP_SCHED */
332 #else /* !CONFIG_USER_SCHED */
333 #define root_task_group init_task_group
334 #endif /* CONFIG_USER_SCHED */
335
336 /* task_group_lock serializes add/remove of task groups and also changes to
337 * a task group's cpu shares.
338 */
339 static DEFINE_SPINLOCK(task_group_lock);
340
341 #ifdef CONFIG_SMP
342 static int root_task_group_empty(void)
343 {
344 return list_empty(&root_task_group.children);
345 }
346 #endif
347
348 #ifdef CONFIG_FAIR_GROUP_SCHED
349 #ifdef CONFIG_USER_SCHED
350 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
351 #else /* !CONFIG_USER_SCHED */
352 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
353 #endif /* CONFIG_USER_SCHED */
354
355 /*
356 * A weight of 0 or 1 can cause arithmetics problems.
357 * A weight of a cfs_rq is the sum of weights of which entities
358 * are queued on this cfs_rq, so a weight of a entity should not be
359 * too large, so as the shares value of a task group.
360 * (The default weight is 1024 - so there's no practical
361 * limitation from this.)
362 */
363 #define MIN_SHARES 2
364 #define MAX_SHARES (1UL << 18)
365
366 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
367 #endif
368
369 /* Default task group.
370 * Every task in system belong to this group at bootup.
371 */
372 struct task_group init_task_group;
373
374 /* return group to which a task belongs */
375 static inline struct task_group *task_group(struct task_struct *p)
376 {
377 struct task_group *tg;
378
379 #ifdef CONFIG_USER_SCHED
380 rcu_read_lock();
381 tg = __task_cred(p)->user->tg;
382 rcu_read_unlock();
383 #elif defined(CONFIG_CGROUP_SCHED)
384 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
385 struct task_group, css);
386 #else
387 tg = &init_task_group;
388 #endif
389 return tg;
390 }
391
392 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
393 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
394 {
395 #ifdef CONFIG_FAIR_GROUP_SCHED
396 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
397 p->se.parent = task_group(p)->se[cpu];
398 #endif
399
400 #ifdef CONFIG_RT_GROUP_SCHED
401 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
402 p->rt.parent = task_group(p)->rt_se[cpu];
403 #endif
404 }
405
406 #else
407
408 #ifdef CONFIG_SMP
409 static int root_task_group_empty(void)
410 {
411 return 1;
412 }
413 #endif
414
415 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
416 static inline struct task_group *task_group(struct task_struct *p)
417 {
418 return NULL;
419 }
420
421 #endif /* CONFIG_GROUP_SCHED */
422
423 /* CFS-related fields in a runqueue */
424 struct cfs_rq {
425 struct load_weight load;
426 unsigned long nr_running;
427
428 u64 exec_clock;
429 u64 min_vruntime;
430
431 struct rb_root tasks_timeline;
432 struct rb_node *rb_leftmost;
433
434 struct list_head tasks;
435 struct list_head *balance_iterator;
436
437 /*
438 * 'curr' points to currently running entity on this cfs_rq.
439 * It is set to NULL otherwise (i.e when none are currently running).
440 */
441 struct sched_entity *curr, *next, *last;
442
443 unsigned int nr_spread_over;
444
445 #ifdef CONFIG_FAIR_GROUP_SCHED
446 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
447
448 /*
449 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
450 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
451 * (like users, containers etc.)
452 *
453 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
454 * list is used during load balance.
455 */
456 struct list_head leaf_cfs_rq_list;
457 struct task_group *tg; /* group that "owns" this runqueue */
458
459 #ifdef CONFIG_SMP
460 /*
461 * the part of load.weight contributed by tasks
462 */
463 unsigned long task_weight;
464
465 /*
466 * h_load = weight * f(tg)
467 *
468 * Where f(tg) is the recursive weight fraction assigned to
469 * this group.
470 */
471 unsigned long h_load;
472
473 /*
474 * this cpu's part of tg->shares
475 */
476 unsigned long shares;
477
478 /*
479 * load.weight at the time we set shares
480 */
481 unsigned long rq_weight;
482 #endif
483 #endif
484 };
485
486 /* Real-Time classes' related field in a runqueue: */
487 struct rt_rq {
488 struct rt_prio_array active;
489 unsigned long rt_nr_running;
490 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
491 struct {
492 int curr; /* highest queued rt task prio */
493 #ifdef CONFIG_SMP
494 int next; /* next highest */
495 #endif
496 } highest_prio;
497 #endif
498 #ifdef CONFIG_SMP
499 unsigned long rt_nr_migratory;
500 int overloaded;
501 struct plist_head pushable_tasks;
502 #endif
503 int rt_throttled;
504 u64 rt_time;
505 u64 rt_runtime;
506 /* Nests inside the rq lock: */
507 spinlock_t rt_runtime_lock;
508
509 #ifdef CONFIG_RT_GROUP_SCHED
510 unsigned long rt_nr_boosted;
511
512 struct rq *rq;
513 struct list_head leaf_rt_rq_list;
514 struct task_group *tg;
515 struct sched_rt_entity *rt_se;
516 #endif
517 };
518
519 #ifdef CONFIG_SMP
520
521 /*
522 * We add the notion of a root-domain which will be used to define per-domain
523 * variables. Each exclusive cpuset essentially defines an island domain by
524 * fully partitioning the member cpus from any other cpuset. Whenever a new
525 * exclusive cpuset is created, we also create and attach a new root-domain
526 * object.
527 *
528 */
529 struct root_domain {
530 atomic_t refcount;
531 cpumask_var_t span;
532 cpumask_var_t online;
533
534 /*
535 * The "RT overload" flag: it gets set if a CPU has more than
536 * one runnable RT task.
537 */
538 cpumask_var_t rto_mask;
539 atomic_t rto_count;
540 #ifdef CONFIG_SMP
541 struct cpupri cpupri;
542 #endif
543 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
544 /*
545 * Preferred wake up cpu nominated by sched_mc balance that will be
546 * used when most cpus are idle in the system indicating overall very
547 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
548 */
549 unsigned int sched_mc_preferred_wakeup_cpu;
550 #endif
551 };
552
553 /*
554 * By default the system creates a single root-domain with all cpus as
555 * members (mimicking the global state we have today).
556 */
557 static struct root_domain def_root_domain;
558
559 #endif
560
561 /*
562 * This is the main, per-CPU runqueue data structure.
563 *
564 * Locking rule: those places that want to lock multiple runqueues
565 * (such as the load balancing or the thread migration code), lock
566 * acquire operations must be ordered by ascending &runqueue.
567 */
568 struct rq {
569 /* runqueue lock: */
570 spinlock_t lock;
571
572 /*
573 * nr_running and cpu_load should be in the same cacheline because
574 * remote CPUs use both these fields when doing load calculation.
575 */
576 unsigned long nr_running;
577 #define CPU_LOAD_IDX_MAX 5
578 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
579 #ifdef CONFIG_NO_HZ
580 unsigned long last_tick_seen;
581 unsigned char in_nohz_recently;
582 #endif
583 /* capture load from *all* tasks on this cpu: */
584 struct load_weight load;
585 unsigned long nr_load_updates;
586 u64 nr_switches;
587
588 struct cfs_rq cfs;
589 struct rt_rq rt;
590
591 #ifdef CONFIG_FAIR_GROUP_SCHED
592 /* list of leaf cfs_rq on this cpu: */
593 struct list_head leaf_cfs_rq_list;
594 #endif
595 #ifdef CONFIG_RT_GROUP_SCHED
596 struct list_head leaf_rt_rq_list;
597 #endif
598
599 /*
600 * This is part of a global counter where only the total sum
601 * over all CPUs matters. A task can increase this counter on
602 * one CPU and if it got migrated afterwards it may decrease
603 * it on another CPU. Always updated under the runqueue lock:
604 */
605 unsigned long nr_uninterruptible;
606
607 struct task_struct *curr, *idle;
608 unsigned long next_balance;
609 struct mm_struct *prev_mm;
610
611 u64 clock;
612
613 atomic_t nr_iowait;
614
615 #ifdef CONFIG_SMP
616 struct root_domain *rd;
617 struct sched_domain *sd;
618
619 unsigned char idle_at_tick;
620 /* For active balancing */
621 int active_balance;
622 int push_cpu;
623 /* cpu of this runqueue: */
624 int cpu;
625 int online;
626
627 unsigned long avg_load_per_task;
628
629 struct task_struct *migration_thread;
630 struct list_head migration_queue;
631 #endif
632
633 #ifdef CONFIG_SCHED_HRTICK
634 #ifdef CONFIG_SMP
635 int hrtick_csd_pending;
636 struct call_single_data hrtick_csd;
637 #endif
638 struct hrtimer hrtick_timer;
639 #endif
640
641 #ifdef CONFIG_SCHEDSTATS
642 /* latency stats */
643 struct sched_info rq_sched_info;
644 unsigned long long rq_cpu_time;
645 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
646
647 /* sys_sched_yield() stats */
648 unsigned int yld_count;
649
650 /* schedule() stats */
651 unsigned int sched_switch;
652 unsigned int sched_count;
653 unsigned int sched_goidle;
654
655 /* try_to_wake_up() stats */
656 unsigned int ttwu_count;
657 unsigned int ttwu_local;
658
659 /* BKL stats */
660 unsigned int bkl_count;
661 #endif
662 };
663
664 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
665
666 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
667 {
668 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
669 }
670
671 static inline int cpu_of(struct rq *rq)
672 {
673 #ifdef CONFIG_SMP
674 return rq->cpu;
675 #else
676 return 0;
677 #endif
678 }
679
680 /*
681 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
682 * See detach_destroy_domains: synchronize_sched for details.
683 *
684 * The domain tree of any CPU may only be accessed from within
685 * preempt-disabled sections.
686 */
687 #define for_each_domain(cpu, __sd) \
688 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
689
690 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
691 #define this_rq() (&__get_cpu_var(runqueues))
692 #define task_rq(p) cpu_rq(task_cpu(p))
693 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
694
695 static inline void update_rq_clock(struct rq *rq)
696 {
697 rq->clock = sched_clock_cpu(cpu_of(rq));
698 }
699
700 /*
701 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
702 */
703 #ifdef CONFIG_SCHED_DEBUG
704 # define const_debug __read_mostly
705 #else
706 # define const_debug static const
707 #endif
708
709 /**
710 * runqueue_is_locked
711 *
712 * Returns true if the current cpu runqueue is locked.
713 * This interface allows printk to be called with the runqueue lock
714 * held and know whether or not it is OK to wake up the klogd.
715 */
716 int runqueue_is_locked(void)
717 {
718 int cpu = get_cpu();
719 struct rq *rq = cpu_rq(cpu);
720 int ret;
721
722 ret = spin_is_locked(&rq->lock);
723 put_cpu();
724 return ret;
725 }
726
727 /*
728 * Debugging: various feature bits
729 */
730
731 #define SCHED_FEAT(name, enabled) \
732 __SCHED_FEAT_##name ,
733
734 enum {
735 #include "sched_features.h"
736 };
737
738 #undef SCHED_FEAT
739
740 #define SCHED_FEAT(name, enabled) \
741 (1UL << __SCHED_FEAT_##name) * enabled |
742
743 const_debug unsigned int sysctl_sched_features =
744 #include "sched_features.h"
745 0;
746
747 #undef SCHED_FEAT
748
749 #ifdef CONFIG_SCHED_DEBUG
750 #define SCHED_FEAT(name, enabled) \
751 #name ,
752
753 static __read_mostly char *sched_feat_names[] = {
754 #include "sched_features.h"
755 NULL
756 };
757
758 #undef SCHED_FEAT
759
760 static int sched_feat_show(struct seq_file *m, void *v)
761 {
762 int i;
763
764 for (i = 0; sched_feat_names[i]; i++) {
765 if (!(sysctl_sched_features & (1UL << i)))
766 seq_puts(m, "NO_");
767 seq_printf(m, "%s ", sched_feat_names[i]);
768 }
769 seq_puts(m, "\n");
770
771 return 0;
772 }
773
774 static ssize_t
775 sched_feat_write(struct file *filp, const char __user *ubuf,
776 size_t cnt, loff_t *ppos)
777 {
778 char buf[64];
779 char *cmp = buf;
780 int neg = 0;
781 int i;
782
783 if (cnt > 63)
784 cnt = 63;
785
786 if (copy_from_user(&buf, ubuf, cnt))
787 return -EFAULT;
788
789 buf[cnt] = 0;
790
791 if (strncmp(buf, "NO_", 3) == 0) {
792 neg = 1;
793 cmp += 3;
794 }
795
796 for (i = 0; sched_feat_names[i]; i++) {
797 int len = strlen(sched_feat_names[i]);
798
799 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
800 if (neg)
801 sysctl_sched_features &= ~(1UL << i);
802 else
803 sysctl_sched_features |= (1UL << i);
804 break;
805 }
806 }
807
808 if (!sched_feat_names[i])
809 return -EINVAL;
810
811 filp->f_pos += cnt;
812
813 return cnt;
814 }
815
816 static int sched_feat_open(struct inode *inode, struct file *filp)
817 {
818 return single_open(filp, sched_feat_show, NULL);
819 }
820
821 static struct file_operations sched_feat_fops = {
822 .open = sched_feat_open,
823 .write = sched_feat_write,
824 .read = seq_read,
825 .llseek = seq_lseek,
826 .release = single_release,
827 };
828
829 static __init int sched_init_debug(void)
830 {
831 debugfs_create_file("sched_features", 0644, NULL, NULL,
832 &sched_feat_fops);
833
834 return 0;
835 }
836 late_initcall(sched_init_debug);
837
838 #endif
839
840 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
841
842 /*
843 * Number of tasks to iterate in a single balance run.
844 * Limited because this is done with IRQs disabled.
845 */
846 const_debug unsigned int sysctl_sched_nr_migrate = 32;
847
848 /*
849 * ratelimit for updating the group shares.
850 * default: 0.25ms
851 */
852 unsigned int sysctl_sched_shares_ratelimit = 250000;
853
854 /*
855 * Inject some fuzzyness into changing the per-cpu group shares
856 * this avoids remote rq-locks at the expense of fairness.
857 * default: 4
858 */
859 unsigned int sysctl_sched_shares_thresh = 4;
860
861 /*
862 * period over which we measure -rt task cpu usage in us.
863 * default: 1s
864 */
865 unsigned int sysctl_sched_rt_period = 1000000;
866
867 static __read_mostly int scheduler_running;
868
869 /*
870 * part of the period that we allow rt tasks to run in us.
871 * default: 0.95s
872 */
873 int sysctl_sched_rt_runtime = 950000;
874
875 static inline u64 global_rt_period(void)
876 {
877 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
878 }
879
880 static inline u64 global_rt_runtime(void)
881 {
882 if (sysctl_sched_rt_runtime < 0)
883 return RUNTIME_INF;
884
885 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
886 }
887
888 #ifndef prepare_arch_switch
889 # define prepare_arch_switch(next) do { } while (0)
890 #endif
891 #ifndef finish_arch_switch
892 # define finish_arch_switch(prev) do { } while (0)
893 #endif
894
895 static inline int task_current(struct rq *rq, struct task_struct *p)
896 {
897 return rq->curr == p;
898 }
899
900 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
901 static inline int task_running(struct rq *rq, struct task_struct *p)
902 {
903 return task_current(rq, p);
904 }
905
906 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
907 {
908 }
909
910 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
911 {
912 #ifdef CONFIG_DEBUG_SPINLOCK
913 /* this is a valid case when another task releases the spinlock */
914 rq->lock.owner = current;
915 #endif
916 /*
917 * If we are tracking spinlock dependencies then we have to
918 * fix up the runqueue lock - which gets 'carried over' from
919 * prev into current:
920 */
921 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
922
923 spin_unlock_irq(&rq->lock);
924 }
925
926 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
927 static inline int task_running(struct rq *rq, struct task_struct *p)
928 {
929 #ifdef CONFIG_SMP
930 return p->oncpu;
931 #else
932 return task_current(rq, p);
933 #endif
934 }
935
936 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
937 {
938 #ifdef CONFIG_SMP
939 /*
940 * We can optimise this out completely for !SMP, because the
941 * SMP rebalancing from interrupt is the only thing that cares
942 * here.
943 */
944 next->oncpu = 1;
945 #endif
946 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
947 spin_unlock_irq(&rq->lock);
948 #else
949 spin_unlock(&rq->lock);
950 #endif
951 }
952
953 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
954 {
955 #ifdef CONFIG_SMP
956 /*
957 * After ->oncpu is cleared, the task can be moved to a different CPU.
958 * We must ensure this doesn't happen until the switch is completely
959 * finished.
960 */
961 smp_wmb();
962 prev->oncpu = 0;
963 #endif
964 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
965 local_irq_enable();
966 #endif
967 }
968 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
969
970 /*
971 * __task_rq_lock - lock the runqueue a given task resides on.
972 * Must be called interrupts disabled.
973 */
974 static inline struct rq *__task_rq_lock(struct task_struct *p)
975 __acquires(rq->lock)
976 {
977 for (;;) {
978 struct rq *rq = task_rq(p);
979 spin_lock(&rq->lock);
980 if (likely(rq == task_rq(p)))
981 return rq;
982 spin_unlock(&rq->lock);
983 }
984 }
985
986 /*
987 * task_rq_lock - lock the runqueue a given task resides on and disable
988 * interrupts. Note the ordering: we can safely lookup the task_rq without
989 * explicitly disabling preemption.
990 */
991 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
992 __acquires(rq->lock)
993 {
994 struct rq *rq;
995
996 for (;;) {
997 local_irq_save(*flags);
998 rq = task_rq(p);
999 spin_lock(&rq->lock);
1000 if (likely(rq == task_rq(p)))
1001 return rq;
1002 spin_unlock_irqrestore(&rq->lock, *flags);
1003 }
1004 }
1005
1006 void task_rq_unlock_wait(struct task_struct *p)
1007 {
1008 struct rq *rq = task_rq(p);
1009
1010 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
1011 spin_unlock_wait(&rq->lock);
1012 }
1013
1014 static void __task_rq_unlock(struct rq *rq)
1015 __releases(rq->lock)
1016 {
1017 spin_unlock(&rq->lock);
1018 }
1019
1020 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1021 __releases(rq->lock)
1022 {
1023 spin_unlock_irqrestore(&rq->lock, *flags);
1024 }
1025
1026 /*
1027 * this_rq_lock - lock this runqueue and disable interrupts.
1028 */
1029 static struct rq *this_rq_lock(void)
1030 __acquires(rq->lock)
1031 {
1032 struct rq *rq;
1033
1034 local_irq_disable();
1035 rq = this_rq();
1036 spin_lock(&rq->lock);
1037
1038 return rq;
1039 }
1040
1041 #ifdef CONFIG_SCHED_HRTICK
1042 /*
1043 * Use HR-timers to deliver accurate preemption points.
1044 *
1045 * Its all a bit involved since we cannot program an hrt while holding the
1046 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1047 * reschedule event.
1048 *
1049 * When we get rescheduled we reprogram the hrtick_timer outside of the
1050 * rq->lock.
1051 */
1052
1053 /*
1054 * Use hrtick when:
1055 * - enabled by features
1056 * - hrtimer is actually high res
1057 */
1058 static inline int hrtick_enabled(struct rq *rq)
1059 {
1060 if (!sched_feat(HRTICK))
1061 return 0;
1062 if (!cpu_active(cpu_of(rq)))
1063 return 0;
1064 return hrtimer_is_hres_active(&rq->hrtick_timer);
1065 }
1066
1067 static void hrtick_clear(struct rq *rq)
1068 {
1069 if (hrtimer_active(&rq->hrtick_timer))
1070 hrtimer_cancel(&rq->hrtick_timer);
1071 }
1072
1073 /*
1074 * High-resolution timer tick.
1075 * Runs from hardirq context with interrupts disabled.
1076 */
1077 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1078 {
1079 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1080
1081 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1082
1083 spin_lock(&rq->lock);
1084 update_rq_clock(rq);
1085 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1086 spin_unlock(&rq->lock);
1087
1088 return HRTIMER_NORESTART;
1089 }
1090
1091 #ifdef CONFIG_SMP
1092 /*
1093 * called from hardirq (IPI) context
1094 */
1095 static void __hrtick_start(void *arg)
1096 {
1097 struct rq *rq = arg;
1098
1099 spin_lock(&rq->lock);
1100 hrtimer_restart(&rq->hrtick_timer);
1101 rq->hrtick_csd_pending = 0;
1102 spin_unlock(&rq->lock);
1103 }
1104
1105 /*
1106 * Called to set the hrtick timer state.
1107 *
1108 * called with rq->lock held and irqs disabled
1109 */
1110 static void hrtick_start(struct rq *rq, u64 delay)
1111 {
1112 struct hrtimer *timer = &rq->hrtick_timer;
1113 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1114
1115 hrtimer_set_expires(timer, time);
1116
1117 if (rq == this_rq()) {
1118 hrtimer_restart(timer);
1119 } else if (!rq->hrtick_csd_pending) {
1120 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1121 rq->hrtick_csd_pending = 1;
1122 }
1123 }
1124
1125 static int
1126 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1127 {
1128 int cpu = (int)(long)hcpu;
1129
1130 switch (action) {
1131 case CPU_UP_CANCELED:
1132 case CPU_UP_CANCELED_FROZEN:
1133 case CPU_DOWN_PREPARE:
1134 case CPU_DOWN_PREPARE_FROZEN:
1135 case CPU_DEAD:
1136 case CPU_DEAD_FROZEN:
1137 hrtick_clear(cpu_rq(cpu));
1138 return NOTIFY_OK;
1139 }
1140
1141 return NOTIFY_DONE;
1142 }
1143
1144 static __init void init_hrtick(void)
1145 {
1146 hotcpu_notifier(hotplug_hrtick, 0);
1147 }
1148 #else
1149 /*
1150 * Called to set the hrtick timer state.
1151 *
1152 * called with rq->lock held and irqs disabled
1153 */
1154 static void hrtick_start(struct rq *rq, u64 delay)
1155 {
1156 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1157 HRTIMER_MODE_REL, 0);
1158 }
1159
1160 static inline void init_hrtick(void)
1161 {
1162 }
1163 #endif /* CONFIG_SMP */
1164
1165 static void init_rq_hrtick(struct rq *rq)
1166 {
1167 #ifdef CONFIG_SMP
1168 rq->hrtick_csd_pending = 0;
1169
1170 rq->hrtick_csd.flags = 0;
1171 rq->hrtick_csd.func = __hrtick_start;
1172 rq->hrtick_csd.info = rq;
1173 #endif
1174
1175 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1176 rq->hrtick_timer.function = hrtick;
1177 }
1178 #else /* CONFIG_SCHED_HRTICK */
1179 static inline void hrtick_clear(struct rq *rq)
1180 {
1181 }
1182
1183 static inline void init_rq_hrtick(struct rq *rq)
1184 {
1185 }
1186
1187 static inline void init_hrtick(void)
1188 {
1189 }
1190 #endif /* CONFIG_SCHED_HRTICK */
1191
1192 /*
1193 * resched_task - mark a task 'to be rescheduled now'.
1194 *
1195 * On UP this means the setting of the need_resched flag, on SMP it
1196 * might also involve a cross-CPU call to trigger the scheduler on
1197 * the target CPU.
1198 */
1199 #ifdef CONFIG_SMP
1200
1201 #ifndef tsk_is_polling
1202 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1203 #endif
1204
1205 static void resched_task(struct task_struct *p)
1206 {
1207 int cpu;
1208
1209 assert_spin_locked(&task_rq(p)->lock);
1210
1211 if (test_tsk_need_resched(p))
1212 return;
1213
1214 set_tsk_need_resched(p);
1215
1216 cpu = task_cpu(p);
1217 if (cpu == smp_processor_id())
1218 return;
1219
1220 /* NEED_RESCHED must be visible before we test polling */
1221 smp_mb();
1222 if (!tsk_is_polling(p))
1223 smp_send_reschedule(cpu);
1224 }
1225
1226 static void resched_cpu(int cpu)
1227 {
1228 struct rq *rq = cpu_rq(cpu);
1229 unsigned long flags;
1230
1231 if (!spin_trylock_irqsave(&rq->lock, flags))
1232 return;
1233 resched_task(cpu_curr(cpu));
1234 spin_unlock_irqrestore(&rq->lock, flags);
1235 }
1236
1237 #ifdef CONFIG_NO_HZ
1238 /*
1239 * When add_timer_on() enqueues a timer into the timer wheel of an
1240 * idle CPU then this timer might expire before the next timer event
1241 * which is scheduled to wake up that CPU. In case of a completely
1242 * idle system the next event might even be infinite time into the
1243 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1244 * leaves the inner idle loop so the newly added timer is taken into
1245 * account when the CPU goes back to idle and evaluates the timer
1246 * wheel for the next timer event.
1247 */
1248 void wake_up_idle_cpu(int cpu)
1249 {
1250 struct rq *rq = cpu_rq(cpu);
1251
1252 if (cpu == smp_processor_id())
1253 return;
1254
1255 /*
1256 * This is safe, as this function is called with the timer
1257 * wheel base lock of (cpu) held. When the CPU is on the way
1258 * to idle and has not yet set rq->curr to idle then it will
1259 * be serialized on the timer wheel base lock and take the new
1260 * timer into account automatically.
1261 */
1262 if (rq->curr != rq->idle)
1263 return;
1264
1265 /*
1266 * We can set TIF_RESCHED on the idle task of the other CPU
1267 * lockless. The worst case is that the other CPU runs the
1268 * idle task through an additional NOOP schedule()
1269 */
1270 set_tsk_need_resched(rq->idle);
1271
1272 /* NEED_RESCHED must be visible before we test polling */
1273 smp_mb();
1274 if (!tsk_is_polling(rq->idle))
1275 smp_send_reschedule(cpu);
1276 }
1277 #endif /* CONFIG_NO_HZ */
1278
1279 #else /* !CONFIG_SMP */
1280 static void resched_task(struct task_struct *p)
1281 {
1282 assert_spin_locked(&task_rq(p)->lock);
1283 set_tsk_need_resched(p);
1284 }
1285 #endif /* CONFIG_SMP */
1286
1287 #if BITS_PER_LONG == 32
1288 # define WMULT_CONST (~0UL)
1289 #else
1290 # define WMULT_CONST (1UL << 32)
1291 #endif
1292
1293 #define WMULT_SHIFT 32
1294
1295 /*
1296 * Shift right and round:
1297 */
1298 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1299
1300 /*
1301 * delta *= weight / lw
1302 */
1303 static unsigned long
1304 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1305 struct load_weight *lw)
1306 {
1307 u64 tmp;
1308
1309 if (!lw->inv_weight) {
1310 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1311 lw->inv_weight = 1;
1312 else
1313 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1314 / (lw->weight+1);
1315 }
1316
1317 tmp = (u64)delta_exec * weight;
1318 /*
1319 * Check whether we'd overflow the 64-bit multiplication:
1320 */
1321 if (unlikely(tmp > WMULT_CONST))
1322 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1323 WMULT_SHIFT/2);
1324 else
1325 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1326
1327 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1328 }
1329
1330 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1331 {
1332 lw->weight += inc;
1333 lw->inv_weight = 0;
1334 }
1335
1336 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1337 {
1338 lw->weight -= dec;
1339 lw->inv_weight = 0;
1340 }
1341
1342 /*
1343 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1344 * of tasks with abnormal "nice" values across CPUs the contribution that
1345 * each task makes to its run queue's load is weighted according to its
1346 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1347 * scaled version of the new time slice allocation that they receive on time
1348 * slice expiry etc.
1349 */
1350
1351 #define WEIGHT_IDLEPRIO 3
1352 #define WMULT_IDLEPRIO 1431655765
1353
1354 /*
1355 * Nice levels are multiplicative, with a gentle 10% change for every
1356 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1357 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1358 * that remained on nice 0.
1359 *
1360 * The "10% effect" is relative and cumulative: from _any_ nice level,
1361 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1362 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1363 * If a task goes up by ~10% and another task goes down by ~10% then
1364 * the relative distance between them is ~25%.)
1365 */
1366 static const int prio_to_weight[40] = {
1367 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1368 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1369 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1370 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1371 /* 0 */ 1024, 820, 655, 526, 423,
1372 /* 5 */ 335, 272, 215, 172, 137,
1373 /* 10 */ 110, 87, 70, 56, 45,
1374 /* 15 */ 36, 29, 23, 18, 15,
1375 };
1376
1377 /*
1378 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1379 *
1380 * In cases where the weight does not change often, we can use the
1381 * precalculated inverse to speed up arithmetics by turning divisions
1382 * into multiplications:
1383 */
1384 static const u32 prio_to_wmult[40] = {
1385 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1386 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1387 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1388 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1389 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1390 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1391 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1392 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1393 };
1394
1395 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1396
1397 /*
1398 * runqueue iterator, to support SMP load-balancing between different
1399 * scheduling classes, without having to expose their internal data
1400 * structures to the load-balancing proper:
1401 */
1402 struct rq_iterator {
1403 void *arg;
1404 struct task_struct *(*start)(void *);
1405 struct task_struct *(*next)(void *);
1406 };
1407
1408 #ifdef CONFIG_SMP
1409 static unsigned long
1410 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1411 unsigned long max_load_move, struct sched_domain *sd,
1412 enum cpu_idle_type idle, int *all_pinned,
1413 int *this_best_prio, struct rq_iterator *iterator);
1414
1415 static int
1416 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1417 struct sched_domain *sd, enum cpu_idle_type idle,
1418 struct rq_iterator *iterator);
1419 #endif
1420
1421 /* Time spent by the tasks of the cpu accounting group executing in ... */
1422 enum cpuacct_stat_index {
1423 CPUACCT_STAT_USER, /* ... user mode */
1424 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1425
1426 CPUACCT_STAT_NSTATS,
1427 };
1428
1429 #ifdef CONFIG_CGROUP_CPUACCT
1430 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1431 static void cpuacct_update_stats(struct task_struct *tsk,
1432 enum cpuacct_stat_index idx, cputime_t val);
1433 #else
1434 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1435 static inline void cpuacct_update_stats(struct task_struct *tsk,
1436 enum cpuacct_stat_index idx, cputime_t val) {}
1437 #endif
1438
1439 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1440 {
1441 update_load_add(&rq->load, load);
1442 }
1443
1444 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1445 {
1446 update_load_sub(&rq->load, load);
1447 }
1448
1449 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1450 typedef int (*tg_visitor)(struct task_group *, void *);
1451
1452 /*
1453 * Iterate the full tree, calling @down when first entering a node and @up when
1454 * leaving it for the final time.
1455 */
1456 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1457 {
1458 struct task_group *parent, *child;
1459 int ret;
1460
1461 rcu_read_lock();
1462 parent = &root_task_group;
1463 down:
1464 ret = (*down)(parent, data);
1465 if (ret)
1466 goto out_unlock;
1467 list_for_each_entry_rcu(child, &parent->children, siblings) {
1468 parent = child;
1469 goto down;
1470
1471 up:
1472 continue;
1473 }
1474 ret = (*up)(parent, data);
1475 if (ret)
1476 goto out_unlock;
1477
1478 child = parent;
1479 parent = parent->parent;
1480 if (parent)
1481 goto up;
1482 out_unlock:
1483 rcu_read_unlock();
1484
1485 return ret;
1486 }
1487
1488 static int tg_nop(struct task_group *tg, void *data)
1489 {
1490 return 0;
1491 }
1492 #endif
1493
1494 #ifdef CONFIG_SMP
1495 static unsigned long source_load(int cpu, int type);
1496 static unsigned long target_load(int cpu, int type);
1497 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1498
1499 static unsigned long cpu_avg_load_per_task(int cpu)
1500 {
1501 struct rq *rq = cpu_rq(cpu);
1502 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1503
1504 if (nr_running)
1505 rq->avg_load_per_task = rq->load.weight / nr_running;
1506 else
1507 rq->avg_load_per_task = 0;
1508
1509 return rq->avg_load_per_task;
1510 }
1511
1512 #ifdef CONFIG_FAIR_GROUP_SCHED
1513
1514 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1515
1516 /*
1517 * Calculate and set the cpu's group shares.
1518 */
1519 static void
1520 update_group_shares_cpu(struct task_group *tg, int cpu,
1521 unsigned long sd_shares, unsigned long sd_rq_weight)
1522 {
1523 unsigned long shares;
1524 unsigned long rq_weight;
1525
1526 if (!tg->se[cpu])
1527 return;
1528
1529 rq_weight = tg->cfs_rq[cpu]->rq_weight;
1530
1531 /*
1532 * \Sum shares * rq_weight
1533 * shares = -----------------------
1534 * \Sum rq_weight
1535 *
1536 */
1537 shares = (sd_shares * rq_weight) / sd_rq_weight;
1538 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1539
1540 if (abs(shares - tg->se[cpu]->load.weight) >
1541 sysctl_sched_shares_thresh) {
1542 struct rq *rq = cpu_rq(cpu);
1543 unsigned long flags;
1544
1545 spin_lock_irqsave(&rq->lock, flags);
1546 tg->cfs_rq[cpu]->shares = shares;
1547
1548 __set_se_shares(tg->se[cpu], shares);
1549 spin_unlock_irqrestore(&rq->lock, flags);
1550 }
1551 }
1552
1553 /*
1554 * Re-compute the task group their per cpu shares over the given domain.
1555 * This needs to be done in a bottom-up fashion because the rq weight of a
1556 * parent group depends on the shares of its child groups.
1557 */
1558 static int tg_shares_up(struct task_group *tg, void *data)
1559 {
1560 unsigned long weight, rq_weight = 0;
1561 unsigned long shares = 0;
1562 struct sched_domain *sd = data;
1563 int i;
1564
1565 for_each_cpu(i, sched_domain_span(sd)) {
1566 /*
1567 * If there are currently no tasks on the cpu pretend there
1568 * is one of average load so that when a new task gets to
1569 * run here it will not get delayed by group starvation.
1570 */
1571 weight = tg->cfs_rq[i]->load.weight;
1572 if (!weight)
1573 weight = NICE_0_LOAD;
1574
1575 tg->cfs_rq[i]->rq_weight = weight;
1576 rq_weight += weight;
1577 shares += tg->cfs_rq[i]->shares;
1578 }
1579
1580 if ((!shares && rq_weight) || shares > tg->shares)
1581 shares = tg->shares;
1582
1583 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1584 shares = tg->shares;
1585
1586 for_each_cpu(i, sched_domain_span(sd))
1587 update_group_shares_cpu(tg, i, shares, rq_weight);
1588
1589 return 0;
1590 }
1591
1592 /*
1593 * Compute the cpu's hierarchical load factor for each task group.
1594 * This needs to be done in a top-down fashion because the load of a child
1595 * group is a fraction of its parents load.
1596 */
1597 static int tg_load_down(struct task_group *tg, void *data)
1598 {
1599 unsigned long load;
1600 long cpu = (long)data;
1601
1602 if (!tg->parent) {
1603 load = cpu_rq(cpu)->load.weight;
1604 } else {
1605 load = tg->parent->cfs_rq[cpu]->h_load;
1606 load *= tg->cfs_rq[cpu]->shares;
1607 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1608 }
1609
1610 tg->cfs_rq[cpu]->h_load = load;
1611
1612 return 0;
1613 }
1614
1615 static void update_shares(struct sched_domain *sd)
1616 {
1617 u64 now = cpu_clock(raw_smp_processor_id());
1618 s64 elapsed = now - sd->last_update;
1619
1620 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1621 sd->last_update = now;
1622 walk_tg_tree(tg_nop, tg_shares_up, sd);
1623 }
1624 }
1625
1626 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1627 {
1628 spin_unlock(&rq->lock);
1629 update_shares(sd);
1630 spin_lock(&rq->lock);
1631 }
1632
1633 static void update_h_load(long cpu)
1634 {
1635 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1636 }
1637
1638 #else
1639
1640 static inline void update_shares(struct sched_domain *sd)
1641 {
1642 }
1643
1644 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1645 {
1646 }
1647
1648 #endif
1649
1650 #ifdef CONFIG_PREEMPT
1651
1652 /*
1653 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1654 * way at the expense of forcing extra atomic operations in all
1655 * invocations. This assures that the double_lock is acquired using the
1656 * same underlying policy as the spinlock_t on this architecture, which
1657 * reduces latency compared to the unfair variant below. However, it
1658 * also adds more overhead and therefore may reduce throughput.
1659 */
1660 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1661 __releases(this_rq->lock)
1662 __acquires(busiest->lock)
1663 __acquires(this_rq->lock)
1664 {
1665 spin_unlock(&this_rq->lock);
1666 double_rq_lock(this_rq, busiest);
1667
1668 return 1;
1669 }
1670
1671 #else
1672 /*
1673 * Unfair double_lock_balance: Optimizes throughput at the expense of
1674 * latency by eliminating extra atomic operations when the locks are
1675 * already in proper order on entry. This favors lower cpu-ids and will
1676 * grant the double lock to lower cpus over higher ids under contention,
1677 * regardless of entry order into the function.
1678 */
1679 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1680 __releases(this_rq->lock)
1681 __acquires(busiest->lock)
1682 __acquires(this_rq->lock)
1683 {
1684 int ret = 0;
1685
1686 if (unlikely(!spin_trylock(&busiest->lock))) {
1687 if (busiest < this_rq) {
1688 spin_unlock(&this_rq->lock);
1689 spin_lock(&busiest->lock);
1690 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1691 ret = 1;
1692 } else
1693 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1694 }
1695 return ret;
1696 }
1697
1698 #endif /* CONFIG_PREEMPT */
1699
1700 /*
1701 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1702 */
1703 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1704 {
1705 if (unlikely(!irqs_disabled())) {
1706 /* printk() doesn't work good under rq->lock */
1707 spin_unlock(&this_rq->lock);
1708 BUG_ON(1);
1709 }
1710
1711 return _double_lock_balance(this_rq, busiest);
1712 }
1713
1714 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1715 __releases(busiest->lock)
1716 {
1717 spin_unlock(&busiest->lock);
1718 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1719 }
1720 #endif
1721
1722 #ifdef CONFIG_FAIR_GROUP_SCHED
1723 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1724 {
1725 #ifdef CONFIG_SMP
1726 cfs_rq->shares = shares;
1727 #endif
1728 }
1729 #endif
1730
1731 #include "sched_stats.h"
1732 #include "sched_idletask.c"
1733 #include "sched_fair.c"
1734 #include "sched_rt.c"
1735 #ifdef CONFIG_SCHED_DEBUG
1736 # include "sched_debug.c"
1737 #endif
1738
1739 #define sched_class_highest (&rt_sched_class)
1740 #define for_each_class(class) \
1741 for (class = sched_class_highest; class; class = class->next)
1742
1743 static void inc_nr_running(struct rq *rq)
1744 {
1745 rq->nr_running++;
1746 }
1747
1748 static void dec_nr_running(struct rq *rq)
1749 {
1750 rq->nr_running--;
1751 }
1752
1753 static void set_load_weight(struct task_struct *p)
1754 {
1755 if (task_has_rt_policy(p)) {
1756 p->se.load.weight = prio_to_weight[0] * 2;
1757 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1758 return;
1759 }
1760
1761 /*
1762 * SCHED_IDLE tasks get minimal weight:
1763 */
1764 if (p->policy == SCHED_IDLE) {
1765 p->se.load.weight = WEIGHT_IDLEPRIO;
1766 p->se.load.inv_weight = WMULT_IDLEPRIO;
1767 return;
1768 }
1769
1770 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1771 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1772 }
1773
1774 static void update_avg(u64 *avg, u64 sample)
1775 {
1776 s64 diff = sample - *avg;
1777 *avg += diff >> 3;
1778 }
1779
1780 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1781 {
1782 if (wakeup)
1783 p->se.start_runtime = p->se.sum_exec_runtime;
1784
1785 sched_info_queued(p);
1786 p->sched_class->enqueue_task(rq, p, wakeup);
1787 p->se.on_rq = 1;
1788 }
1789
1790 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1791 {
1792 if (sleep) {
1793 if (p->se.last_wakeup) {
1794 update_avg(&p->se.avg_overlap,
1795 p->se.sum_exec_runtime - p->se.last_wakeup);
1796 p->se.last_wakeup = 0;
1797 } else {
1798 update_avg(&p->se.avg_wakeup,
1799 sysctl_sched_wakeup_granularity);
1800 }
1801 }
1802
1803 sched_info_dequeued(p);
1804 p->sched_class->dequeue_task(rq, p, sleep);
1805 p->se.on_rq = 0;
1806 }
1807
1808 /*
1809 * __normal_prio - return the priority that is based on the static prio
1810 */
1811 static inline int __normal_prio(struct task_struct *p)
1812 {
1813 return p->static_prio;
1814 }
1815
1816 /*
1817 * Calculate the expected normal priority: i.e. priority
1818 * without taking RT-inheritance into account. Might be
1819 * boosted by interactivity modifiers. Changes upon fork,
1820 * setprio syscalls, and whenever the interactivity
1821 * estimator recalculates.
1822 */
1823 static inline int normal_prio(struct task_struct *p)
1824 {
1825 int prio;
1826
1827 if (task_has_rt_policy(p))
1828 prio = MAX_RT_PRIO-1 - p->rt_priority;
1829 else
1830 prio = __normal_prio(p);
1831 return prio;
1832 }
1833
1834 /*
1835 * Calculate the current priority, i.e. the priority
1836 * taken into account by the scheduler. This value might
1837 * be boosted by RT tasks, or might be boosted by
1838 * interactivity modifiers. Will be RT if the task got
1839 * RT-boosted. If not then it returns p->normal_prio.
1840 */
1841 static int effective_prio(struct task_struct *p)
1842 {
1843 p->normal_prio = normal_prio(p);
1844 /*
1845 * If we are RT tasks or we were boosted to RT priority,
1846 * keep the priority unchanged. Otherwise, update priority
1847 * to the normal priority:
1848 */
1849 if (!rt_prio(p->prio))
1850 return p->normal_prio;
1851 return p->prio;
1852 }
1853
1854 /*
1855 * activate_task - move a task to the runqueue.
1856 */
1857 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1858 {
1859 if (task_contributes_to_load(p))
1860 rq->nr_uninterruptible--;
1861
1862 enqueue_task(rq, p, wakeup);
1863 inc_nr_running(rq);
1864 }
1865
1866 /*
1867 * deactivate_task - remove a task from the runqueue.
1868 */
1869 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1870 {
1871 if (task_contributes_to_load(p))
1872 rq->nr_uninterruptible++;
1873
1874 dequeue_task(rq, p, sleep);
1875 dec_nr_running(rq);
1876 }
1877
1878 /**
1879 * task_curr - is this task currently executing on a CPU?
1880 * @p: the task in question.
1881 */
1882 inline int task_curr(const struct task_struct *p)
1883 {
1884 return cpu_curr(task_cpu(p)) == p;
1885 }
1886
1887 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1888 {
1889 set_task_rq(p, cpu);
1890 #ifdef CONFIG_SMP
1891 /*
1892 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1893 * successfuly executed on another CPU. We must ensure that updates of
1894 * per-task data have been completed by this moment.
1895 */
1896 smp_wmb();
1897 task_thread_info(p)->cpu = cpu;
1898 #endif
1899 }
1900
1901 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1902 const struct sched_class *prev_class,
1903 int oldprio, int running)
1904 {
1905 if (prev_class != p->sched_class) {
1906 if (prev_class->switched_from)
1907 prev_class->switched_from(rq, p, running);
1908 p->sched_class->switched_to(rq, p, running);
1909 } else
1910 p->sched_class->prio_changed(rq, p, oldprio, running);
1911 }
1912
1913 #ifdef CONFIG_SMP
1914
1915 /* Used instead of source_load when we know the type == 0 */
1916 static unsigned long weighted_cpuload(const int cpu)
1917 {
1918 return cpu_rq(cpu)->load.weight;
1919 }
1920
1921 /*
1922 * Is this task likely cache-hot:
1923 */
1924 static int
1925 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1926 {
1927 s64 delta;
1928
1929 /*
1930 * Buddy candidates are cache hot:
1931 */
1932 if (sched_feat(CACHE_HOT_BUDDY) &&
1933 (&p->se == cfs_rq_of(&p->se)->next ||
1934 &p->se == cfs_rq_of(&p->se)->last))
1935 return 1;
1936
1937 if (p->sched_class != &fair_sched_class)
1938 return 0;
1939
1940 if (sysctl_sched_migration_cost == -1)
1941 return 1;
1942 if (sysctl_sched_migration_cost == 0)
1943 return 0;
1944
1945 delta = now - p->se.exec_start;
1946
1947 return delta < (s64)sysctl_sched_migration_cost;
1948 }
1949
1950
1951 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1952 {
1953 int old_cpu = task_cpu(p);
1954 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1955 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1956 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1957 u64 clock_offset;
1958
1959 clock_offset = old_rq->clock - new_rq->clock;
1960
1961 trace_sched_migrate_task(p, task_cpu(p), new_cpu);
1962
1963 #ifdef CONFIG_SCHEDSTATS
1964 if (p->se.wait_start)
1965 p->se.wait_start -= clock_offset;
1966 if (p->se.sleep_start)
1967 p->se.sleep_start -= clock_offset;
1968 if (p->se.block_start)
1969 p->se.block_start -= clock_offset;
1970 if (old_cpu != new_cpu) {
1971 schedstat_inc(p, se.nr_migrations);
1972 if (task_hot(p, old_rq->clock, NULL))
1973 schedstat_inc(p, se.nr_forced2_migrations);
1974 }
1975 #endif
1976 p->se.vruntime -= old_cfsrq->min_vruntime -
1977 new_cfsrq->min_vruntime;
1978
1979 __set_task_cpu(p, new_cpu);
1980 }
1981
1982 struct migration_req {
1983 struct list_head list;
1984
1985 struct task_struct *task;
1986 int dest_cpu;
1987
1988 struct completion done;
1989 };
1990
1991 /*
1992 * The task's runqueue lock must be held.
1993 * Returns true if you have to wait for migration thread.
1994 */
1995 static int
1996 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1997 {
1998 struct rq *rq = task_rq(p);
1999
2000 /*
2001 * If the task is not on a runqueue (and not running), then
2002 * it is sufficient to simply update the task's cpu field.
2003 */
2004 if (!p->se.on_rq && !task_running(rq, p)) {
2005 set_task_cpu(p, dest_cpu);
2006 return 0;
2007 }
2008
2009 init_completion(&req->done);
2010 req->task = p;
2011 req->dest_cpu = dest_cpu;
2012 list_add(&req->list, &rq->migration_queue);
2013
2014 return 1;
2015 }
2016
2017 /*
2018 * wait_task_inactive - wait for a thread to unschedule.
2019 *
2020 * If @match_state is nonzero, it's the @p->state value just checked and
2021 * not expected to change. If it changes, i.e. @p might have woken up,
2022 * then return zero. When we succeed in waiting for @p to be off its CPU,
2023 * we return a positive number (its total switch count). If a second call
2024 * a short while later returns the same number, the caller can be sure that
2025 * @p has remained unscheduled the whole time.
2026 *
2027 * The caller must ensure that the task *will* unschedule sometime soon,
2028 * else this function might spin for a *long* time. This function can't
2029 * be called with interrupts off, or it may introduce deadlock with
2030 * smp_call_function() if an IPI is sent by the same process we are
2031 * waiting to become inactive.
2032 */
2033 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2034 {
2035 unsigned long flags;
2036 int running, on_rq;
2037 unsigned long ncsw;
2038 struct rq *rq;
2039
2040 for (;;) {
2041 /*
2042 * We do the initial early heuristics without holding
2043 * any task-queue locks at all. We'll only try to get
2044 * the runqueue lock when things look like they will
2045 * work out!
2046 */
2047 rq = task_rq(p);
2048
2049 /*
2050 * If the task is actively running on another CPU
2051 * still, just relax and busy-wait without holding
2052 * any locks.
2053 *
2054 * NOTE! Since we don't hold any locks, it's not
2055 * even sure that "rq" stays as the right runqueue!
2056 * But we don't care, since "task_running()" will
2057 * return false if the runqueue has changed and p
2058 * is actually now running somewhere else!
2059 */
2060 while (task_running(rq, p)) {
2061 if (match_state && unlikely(p->state != match_state))
2062 return 0;
2063 cpu_relax();
2064 }
2065
2066 /*
2067 * Ok, time to look more closely! We need the rq
2068 * lock now, to be *sure*. If we're wrong, we'll
2069 * just go back and repeat.
2070 */
2071 rq = task_rq_lock(p, &flags);
2072 trace_sched_wait_task(rq, p);
2073 running = task_running(rq, p);
2074 on_rq = p->se.on_rq;
2075 ncsw = 0;
2076 if (!match_state || p->state == match_state)
2077 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2078 task_rq_unlock(rq, &flags);
2079
2080 /*
2081 * If it changed from the expected state, bail out now.
2082 */
2083 if (unlikely(!ncsw))
2084 break;
2085
2086 /*
2087 * Was it really running after all now that we
2088 * checked with the proper locks actually held?
2089 *
2090 * Oops. Go back and try again..
2091 */
2092 if (unlikely(running)) {
2093 cpu_relax();
2094 continue;
2095 }
2096
2097 /*
2098 * It's not enough that it's not actively running,
2099 * it must be off the runqueue _entirely_, and not
2100 * preempted!
2101 *
2102 * So if it was still runnable (but just not actively
2103 * running right now), it's preempted, and we should
2104 * yield - it could be a while.
2105 */
2106 if (unlikely(on_rq)) {
2107 schedule_timeout_uninterruptible(1);
2108 continue;
2109 }
2110
2111 /*
2112 * Ahh, all good. It wasn't running, and it wasn't
2113 * runnable, which means that it will never become
2114 * running in the future either. We're all done!
2115 */
2116 break;
2117 }
2118
2119 return ncsw;
2120 }
2121
2122 /***
2123 * kick_process - kick a running thread to enter/exit the kernel
2124 * @p: the to-be-kicked thread
2125 *
2126 * Cause a process which is running on another CPU to enter
2127 * kernel-mode, without any delay. (to get signals handled.)
2128 *
2129 * NOTE: this function doesnt have to take the runqueue lock,
2130 * because all it wants to ensure is that the remote task enters
2131 * the kernel. If the IPI races and the task has been migrated
2132 * to another CPU then no harm is done and the purpose has been
2133 * achieved as well.
2134 */
2135 void kick_process(struct task_struct *p)
2136 {
2137 int cpu;
2138
2139 preempt_disable();
2140 cpu = task_cpu(p);
2141 if ((cpu != smp_processor_id()) && task_curr(p))
2142 smp_send_reschedule(cpu);
2143 preempt_enable();
2144 }
2145
2146 /*
2147 * Return a low guess at the load of a migration-source cpu weighted
2148 * according to the scheduling class and "nice" value.
2149 *
2150 * We want to under-estimate the load of migration sources, to
2151 * balance conservatively.
2152 */
2153 static unsigned long source_load(int cpu, int type)
2154 {
2155 struct rq *rq = cpu_rq(cpu);
2156 unsigned long total = weighted_cpuload(cpu);
2157
2158 if (type == 0 || !sched_feat(LB_BIAS))
2159 return total;
2160
2161 return min(rq->cpu_load[type-1], total);
2162 }
2163
2164 /*
2165 * Return a high guess at the load of a migration-target cpu weighted
2166 * according to the scheduling class and "nice" value.
2167 */
2168 static unsigned long target_load(int cpu, int type)
2169 {
2170 struct rq *rq = cpu_rq(cpu);
2171 unsigned long total = weighted_cpuload(cpu);
2172
2173 if (type == 0 || !sched_feat(LB_BIAS))
2174 return total;
2175
2176 return max(rq->cpu_load[type-1], total);
2177 }
2178
2179 /*
2180 * find_idlest_group finds and returns the least busy CPU group within the
2181 * domain.
2182 */
2183 static struct sched_group *
2184 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2185 {
2186 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2187 unsigned long min_load = ULONG_MAX, this_load = 0;
2188 int load_idx = sd->forkexec_idx;
2189 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2190
2191 do {
2192 unsigned long load, avg_load;
2193 int local_group;
2194 int i;
2195
2196 /* Skip over this group if it has no CPUs allowed */
2197 if (!cpumask_intersects(sched_group_cpus(group),
2198 &p->cpus_allowed))
2199 continue;
2200
2201 local_group = cpumask_test_cpu(this_cpu,
2202 sched_group_cpus(group));
2203
2204 /* Tally up the load of all CPUs in the group */
2205 avg_load = 0;
2206
2207 for_each_cpu(i, sched_group_cpus(group)) {
2208 /* Bias balancing toward cpus of our domain */
2209 if (local_group)
2210 load = source_load(i, load_idx);
2211 else
2212 load = target_load(i, load_idx);
2213
2214 avg_load += load;
2215 }
2216
2217 /* Adjust by relative CPU power of the group */
2218 avg_load = sg_div_cpu_power(group,
2219 avg_load * SCHED_LOAD_SCALE);
2220
2221 if (local_group) {
2222 this_load = avg_load;
2223 this = group;
2224 } else if (avg_load < min_load) {
2225 min_load = avg_load;
2226 idlest = group;
2227 }
2228 } while (group = group->next, group != sd->groups);
2229
2230 if (!idlest || 100*this_load < imbalance*min_load)
2231 return NULL;
2232 return idlest;
2233 }
2234
2235 /*
2236 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2237 */
2238 static int
2239 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
2240 {
2241 unsigned long load, min_load = ULONG_MAX;
2242 int idlest = -1;
2243 int i;
2244
2245 /* Traverse only the allowed CPUs */
2246 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2247 load = weighted_cpuload(i);
2248
2249 if (load < min_load || (load == min_load && i == this_cpu)) {
2250 min_load = load;
2251 idlest = i;
2252 }
2253 }
2254
2255 return idlest;
2256 }
2257
2258 /*
2259 * sched_balance_self: balance the current task (running on cpu) in domains
2260 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2261 * SD_BALANCE_EXEC.
2262 *
2263 * Balance, ie. select the least loaded group.
2264 *
2265 * Returns the target CPU number, or the same CPU if no balancing is needed.
2266 *
2267 * preempt must be disabled.
2268 */
2269 static int sched_balance_self(int cpu, int flag)
2270 {
2271 struct task_struct *t = current;
2272 struct sched_domain *tmp, *sd = NULL;
2273
2274 for_each_domain(cpu, tmp) {
2275 /*
2276 * If power savings logic is enabled for a domain, stop there.
2277 */
2278 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2279 break;
2280 if (tmp->flags & flag)
2281 sd = tmp;
2282 }
2283
2284 if (sd)
2285 update_shares(sd);
2286
2287 while (sd) {
2288 struct sched_group *group;
2289 int new_cpu, weight;
2290
2291 if (!(sd->flags & flag)) {
2292 sd = sd->child;
2293 continue;
2294 }
2295
2296 group = find_idlest_group(sd, t, cpu);
2297 if (!group) {
2298 sd = sd->child;
2299 continue;
2300 }
2301
2302 new_cpu = find_idlest_cpu(group, t, cpu);
2303 if (new_cpu == -1 || new_cpu == cpu) {
2304 /* Now try balancing at a lower domain level of cpu */
2305 sd = sd->child;
2306 continue;
2307 }
2308
2309 /* Now try balancing at a lower domain level of new_cpu */
2310 cpu = new_cpu;
2311 weight = cpumask_weight(sched_domain_span(sd));
2312 sd = NULL;
2313 for_each_domain(cpu, tmp) {
2314 if (weight <= cpumask_weight(sched_domain_span(tmp)))
2315 break;
2316 if (tmp->flags & flag)
2317 sd = tmp;
2318 }
2319 /* while loop will break here if sd == NULL */
2320 }
2321
2322 return cpu;
2323 }
2324
2325 #endif /* CONFIG_SMP */
2326
2327 /***
2328 * try_to_wake_up - wake up a thread
2329 * @p: the to-be-woken-up thread
2330 * @state: the mask of task states that can be woken
2331 * @sync: do a synchronous wakeup?
2332 *
2333 * Put it on the run-queue if it's not already there. The "current"
2334 * thread is always on the run-queue (except when the actual
2335 * re-schedule is in progress), and as such you're allowed to do
2336 * the simpler "current->state = TASK_RUNNING" to mark yourself
2337 * runnable without the overhead of this.
2338 *
2339 * returns failure only if the task is already active.
2340 */
2341 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2342 {
2343 int cpu, orig_cpu, this_cpu, success = 0;
2344 unsigned long flags;
2345 long old_state;
2346 struct rq *rq;
2347
2348 if (!sched_feat(SYNC_WAKEUPS))
2349 sync = 0;
2350
2351 #ifdef CONFIG_SMP
2352 if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
2353 struct sched_domain *sd;
2354
2355 this_cpu = raw_smp_processor_id();
2356 cpu = task_cpu(p);
2357
2358 for_each_domain(this_cpu, sd) {
2359 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2360 update_shares(sd);
2361 break;
2362 }
2363 }
2364 }
2365 #endif
2366
2367 smp_wmb();
2368 rq = task_rq_lock(p, &flags);
2369 update_rq_clock(rq);
2370 old_state = p->state;
2371 if (!(old_state & state))
2372 goto out;
2373
2374 if (p->se.on_rq)
2375 goto out_running;
2376
2377 cpu = task_cpu(p);
2378 orig_cpu = cpu;
2379 this_cpu = smp_processor_id();
2380
2381 #ifdef CONFIG_SMP
2382 if (unlikely(task_running(rq, p)))
2383 goto out_activate;
2384
2385 cpu = p->sched_class->select_task_rq(p, sync);
2386 if (cpu != orig_cpu) {
2387 set_task_cpu(p, cpu);
2388 task_rq_unlock(rq, &flags);
2389 /* might preempt at this point */
2390 rq = task_rq_lock(p, &flags);
2391 old_state = p->state;
2392 if (!(old_state & state))
2393 goto out;
2394 if (p->se.on_rq)
2395 goto out_running;
2396
2397 this_cpu = smp_processor_id();
2398 cpu = task_cpu(p);
2399 }
2400
2401 #ifdef CONFIG_SCHEDSTATS
2402 schedstat_inc(rq, ttwu_count);
2403 if (cpu == this_cpu)
2404 schedstat_inc(rq, ttwu_local);
2405 else {
2406 struct sched_domain *sd;
2407 for_each_domain(this_cpu, sd) {
2408 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2409 schedstat_inc(sd, ttwu_wake_remote);
2410 break;
2411 }
2412 }
2413 }
2414 #endif /* CONFIG_SCHEDSTATS */
2415
2416 out_activate:
2417 #endif /* CONFIG_SMP */
2418 schedstat_inc(p, se.nr_wakeups);
2419 if (sync)
2420 schedstat_inc(p, se.nr_wakeups_sync);
2421 if (orig_cpu != cpu)
2422 schedstat_inc(p, se.nr_wakeups_migrate);
2423 if (cpu == this_cpu)
2424 schedstat_inc(p, se.nr_wakeups_local);
2425 else
2426 schedstat_inc(p, se.nr_wakeups_remote);
2427 activate_task(rq, p, 1);
2428 success = 1;
2429
2430 /*
2431 * Only attribute actual wakeups done by this task.
2432 */
2433 if (!in_interrupt()) {
2434 struct sched_entity *se = &current->se;
2435 u64 sample = se->sum_exec_runtime;
2436
2437 if (se->last_wakeup)
2438 sample -= se->last_wakeup;
2439 else
2440 sample -= se->start_runtime;
2441 update_avg(&se->avg_wakeup, sample);
2442
2443 se->last_wakeup = se->sum_exec_runtime;
2444 }
2445
2446 out_running:
2447 trace_sched_wakeup(rq, p, success);
2448 check_preempt_curr(rq, p, sync);
2449
2450 p->state = TASK_RUNNING;
2451 #ifdef CONFIG_SMP
2452 if (p->sched_class->task_wake_up)
2453 p->sched_class->task_wake_up(rq, p);
2454 #endif
2455 out:
2456 task_rq_unlock(rq, &flags);
2457
2458 return success;
2459 }
2460
2461 int wake_up_process(struct task_struct *p)
2462 {
2463 return try_to_wake_up(p, TASK_ALL, 0);
2464 }
2465 EXPORT_SYMBOL(wake_up_process);
2466
2467 int wake_up_state(struct task_struct *p, unsigned int state)
2468 {
2469 return try_to_wake_up(p, state, 0);
2470 }
2471
2472 /*
2473 * Perform scheduler related setup for a newly forked process p.
2474 * p is forked by current.
2475 *
2476 * __sched_fork() is basic setup used by init_idle() too:
2477 */
2478 static void __sched_fork(struct task_struct *p)
2479 {
2480 p->se.exec_start = 0;
2481 p->se.sum_exec_runtime = 0;
2482 p->se.prev_sum_exec_runtime = 0;
2483 p->se.last_wakeup = 0;
2484 p->se.avg_overlap = 0;
2485 p->se.start_runtime = 0;
2486 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
2487
2488 #ifdef CONFIG_SCHEDSTATS
2489 p->se.wait_start = 0;
2490 p->se.sum_sleep_runtime = 0;
2491 p->se.sleep_start = 0;
2492 p->se.block_start = 0;
2493 p->se.sleep_max = 0;
2494 p->se.block_max = 0;
2495 p->se.exec_max = 0;
2496 p->se.slice_max = 0;
2497 p->se.wait_max = 0;
2498 #endif
2499
2500 INIT_LIST_HEAD(&p->rt.run_list);
2501 p->se.on_rq = 0;
2502 INIT_LIST_HEAD(&p->se.group_node);
2503
2504 #ifdef CONFIG_PREEMPT_NOTIFIERS
2505 INIT_HLIST_HEAD(&p->preempt_notifiers);
2506 #endif
2507
2508 /*
2509 * We mark the process as running here, but have not actually
2510 * inserted it onto the runqueue yet. This guarantees that
2511 * nobody will actually run it, and a signal or other external
2512 * event cannot wake it up and insert it on the runqueue either.
2513 */
2514 p->state = TASK_RUNNING;
2515 }
2516
2517 /*
2518 * fork()/clone()-time setup:
2519 */
2520 void sched_fork(struct task_struct *p, int clone_flags)
2521 {
2522 int cpu = get_cpu();
2523
2524 __sched_fork(p);
2525
2526 #ifdef CONFIG_SMP
2527 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2528 #endif
2529 set_task_cpu(p, cpu);
2530
2531 /*
2532 * Make sure we do not leak PI boosting priority to the child:
2533 */
2534 p->prio = current->normal_prio;
2535 if (!rt_prio(p->prio))
2536 p->sched_class = &fair_sched_class;
2537
2538 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2539 if (likely(sched_info_on()))
2540 memset(&p->sched_info, 0, sizeof(p->sched_info));
2541 #endif
2542 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2543 p->oncpu = 0;
2544 #endif
2545 #ifdef CONFIG_PREEMPT
2546 /* Want to start with kernel preemption disabled. */
2547 task_thread_info(p)->preempt_count = 1;
2548 #endif
2549 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2550
2551 put_cpu();
2552 }
2553
2554 /*
2555 * wake_up_new_task - wake up a newly created task for the first time.
2556 *
2557 * This function will do some initial scheduler statistics housekeeping
2558 * that must be done for every newly created context, then puts the task
2559 * on the runqueue and wakes it.
2560 */
2561 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2562 {
2563 unsigned long flags;
2564 struct rq *rq;
2565
2566 rq = task_rq_lock(p, &flags);
2567 BUG_ON(p->state != TASK_RUNNING);
2568 update_rq_clock(rq);
2569
2570 p->prio = effective_prio(p);
2571
2572 if (!p->sched_class->task_new || !current->se.on_rq) {
2573 activate_task(rq, p, 0);
2574 } else {
2575 /*
2576 * Let the scheduling class do new task startup
2577 * management (if any):
2578 */
2579 p->sched_class->task_new(rq, p);
2580 inc_nr_running(rq);
2581 }
2582 trace_sched_wakeup_new(rq, p, 1);
2583 check_preempt_curr(rq, p, 0);
2584 #ifdef CONFIG_SMP
2585 if (p->sched_class->task_wake_up)
2586 p->sched_class->task_wake_up(rq, p);
2587 #endif
2588 task_rq_unlock(rq, &flags);
2589 }
2590
2591 #ifdef CONFIG_PREEMPT_NOTIFIERS
2592
2593 /**
2594 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2595 * @notifier: notifier struct to register
2596 */
2597 void preempt_notifier_register(struct preempt_notifier *notifier)
2598 {
2599 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2600 }
2601 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2602
2603 /**
2604 * preempt_notifier_unregister - no longer interested in preemption notifications
2605 * @notifier: notifier struct to unregister
2606 *
2607 * This is safe to call from within a preemption notifier.
2608 */
2609 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2610 {
2611 hlist_del(&notifier->link);
2612 }
2613 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2614
2615 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2616 {
2617 struct preempt_notifier *notifier;
2618 struct hlist_node *node;
2619
2620 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2621 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2622 }
2623
2624 static void
2625 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2626 struct task_struct *next)
2627 {
2628 struct preempt_notifier *notifier;
2629 struct hlist_node *node;
2630
2631 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2632 notifier->ops->sched_out(notifier, next);
2633 }
2634
2635 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2636
2637 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2638 {
2639 }
2640
2641 static void
2642 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2643 struct task_struct *next)
2644 {
2645 }
2646
2647 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2648
2649 /**
2650 * prepare_task_switch - prepare to switch tasks
2651 * @rq: the runqueue preparing to switch
2652 * @prev: the current task that is being switched out
2653 * @next: the task we are going to switch to.
2654 *
2655 * This is called with the rq lock held and interrupts off. It must
2656 * be paired with a subsequent finish_task_switch after the context
2657 * switch.
2658 *
2659 * prepare_task_switch sets up locking and calls architecture specific
2660 * hooks.
2661 */
2662 static inline void
2663 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2664 struct task_struct *next)
2665 {
2666 fire_sched_out_preempt_notifiers(prev, next);
2667 prepare_lock_switch(rq, next);
2668 prepare_arch_switch(next);
2669 }
2670
2671 /**
2672 * finish_task_switch - clean up after a task-switch
2673 * @rq: runqueue associated with task-switch
2674 * @prev: the thread we just switched away from.
2675 *
2676 * finish_task_switch must be called after the context switch, paired
2677 * with a prepare_task_switch call before the context switch.
2678 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2679 * and do any other architecture-specific cleanup actions.
2680 *
2681 * Note that we may have delayed dropping an mm in context_switch(). If
2682 * so, we finish that here outside of the runqueue lock. (Doing it
2683 * with the lock held can cause deadlocks; see schedule() for
2684 * details.)
2685 */
2686 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2687 __releases(rq->lock)
2688 {
2689 struct mm_struct *mm = rq->prev_mm;
2690 long prev_state;
2691 #ifdef CONFIG_SMP
2692 int post_schedule = 0;
2693
2694 if (current->sched_class->needs_post_schedule)
2695 post_schedule = current->sched_class->needs_post_schedule(rq);
2696 #endif
2697
2698 rq->prev_mm = NULL;
2699
2700 /*
2701 * A task struct has one reference for the use as "current".
2702 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2703 * schedule one last time. The schedule call will never return, and
2704 * the scheduled task must drop that reference.
2705 * The test for TASK_DEAD must occur while the runqueue locks are
2706 * still held, otherwise prev could be scheduled on another cpu, die
2707 * there before we look at prev->state, and then the reference would
2708 * be dropped twice.
2709 * Manfred Spraul <manfred@colorfullife.com>
2710 */
2711 prev_state = prev->state;
2712 finish_arch_switch(prev);
2713 finish_lock_switch(rq, prev);
2714 #ifdef CONFIG_SMP
2715 if (post_schedule)
2716 current->sched_class->post_schedule(rq);
2717 #endif
2718
2719 fire_sched_in_preempt_notifiers(current);
2720 if (mm)
2721 mmdrop(mm);
2722 if (unlikely(prev_state == TASK_DEAD)) {
2723 /*
2724 * Remove function-return probe instances associated with this
2725 * task and put them back on the free list.
2726 */
2727 kprobe_flush_task(prev);
2728 put_task_struct(prev);
2729 }
2730 }
2731
2732 /**
2733 * schedule_tail - first thing a freshly forked thread must call.
2734 * @prev: the thread we just switched away from.
2735 */
2736 asmlinkage void schedule_tail(struct task_struct *prev)
2737 __releases(rq->lock)
2738 {
2739 struct rq *rq = this_rq();
2740
2741 finish_task_switch(rq, prev);
2742 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2743 /* In this case, finish_task_switch does not reenable preemption */
2744 preempt_enable();
2745 #endif
2746 if (current->set_child_tid)
2747 put_user(task_pid_vnr(current), current->set_child_tid);
2748 }
2749
2750 /*
2751 * context_switch - switch to the new MM and the new
2752 * thread's register state.
2753 */
2754 static inline void
2755 context_switch(struct rq *rq, struct task_struct *prev,
2756 struct task_struct *next)
2757 {
2758 struct mm_struct *mm, *oldmm;
2759
2760 prepare_task_switch(rq, prev, next);
2761 trace_sched_switch(rq, prev, next);
2762 mm = next->mm;
2763 oldmm = prev->active_mm;
2764 /*
2765 * For paravirt, this is coupled with an exit in switch_to to
2766 * combine the page table reload and the switch backend into
2767 * one hypercall.
2768 */
2769 arch_enter_lazy_cpu_mode();
2770
2771 if (unlikely(!mm)) {
2772 next->active_mm = oldmm;
2773 atomic_inc(&oldmm->mm_count);
2774 enter_lazy_tlb(oldmm, next);
2775 } else
2776 switch_mm(oldmm, mm, next);
2777
2778 if (unlikely(!prev->mm)) {
2779 prev->active_mm = NULL;
2780 rq->prev_mm = oldmm;
2781 }
2782 /*
2783 * Since the runqueue lock will be released by the next
2784 * task (which is an invalid locking op but in the case
2785 * of the scheduler it's an obvious special-case), so we
2786 * do an early lockdep release here:
2787 */
2788 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2789 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2790 #endif
2791
2792 /* Here we just switch the register state and the stack. */
2793 switch_to(prev, next, prev);
2794
2795 barrier();
2796 /*
2797 * this_rq must be evaluated again because prev may have moved
2798 * CPUs since it called schedule(), thus the 'rq' on its stack
2799 * frame will be invalid.
2800 */
2801 finish_task_switch(this_rq(), prev);
2802 }
2803
2804 /*
2805 * nr_running, nr_uninterruptible and nr_context_switches:
2806 *
2807 * externally visible scheduler statistics: current number of runnable
2808 * threads, current number of uninterruptible-sleeping threads, total
2809 * number of context switches performed since bootup.
2810 */
2811 unsigned long nr_running(void)
2812 {
2813 unsigned long i, sum = 0;
2814
2815 for_each_online_cpu(i)
2816 sum += cpu_rq(i)->nr_running;
2817
2818 return sum;
2819 }
2820
2821 unsigned long nr_uninterruptible(void)
2822 {
2823 unsigned long i, sum = 0;
2824
2825 for_each_possible_cpu(i)
2826 sum += cpu_rq(i)->nr_uninterruptible;
2827
2828 /*
2829 * Since we read the counters lockless, it might be slightly
2830 * inaccurate. Do not allow it to go below zero though:
2831 */
2832 if (unlikely((long)sum < 0))
2833 sum = 0;
2834
2835 return sum;
2836 }
2837
2838 unsigned long long nr_context_switches(void)
2839 {
2840 int i;
2841 unsigned long long sum = 0;
2842
2843 for_each_possible_cpu(i)
2844 sum += cpu_rq(i)->nr_switches;
2845
2846 return sum;
2847 }
2848
2849 unsigned long nr_iowait(void)
2850 {
2851 unsigned long i, sum = 0;
2852
2853 for_each_possible_cpu(i)
2854 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2855
2856 return sum;
2857 }
2858
2859 unsigned long nr_active(void)
2860 {
2861 unsigned long i, running = 0, uninterruptible = 0;
2862
2863 for_each_online_cpu(i) {
2864 running += cpu_rq(i)->nr_running;
2865 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2866 }
2867
2868 if (unlikely((long)uninterruptible < 0))
2869 uninterruptible = 0;
2870
2871 return running + uninterruptible;
2872 }
2873
2874 /*
2875 * Update rq->cpu_load[] statistics. This function is usually called every
2876 * scheduler tick (TICK_NSEC).
2877 */
2878 static void update_cpu_load(struct rq *this_rq)
2879 {
2880 unsigned long this_load = this_rq->load.weight;
2881 int i, scale;
2882
2883 this_rq->nr_load_updates++;
2884
2885 /* Update our load: */
2886 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2887 unsigned long old_load, new_load;
2888
2889 /* scale is effectively 1 << i now, and >> i divides by scale */
2890
2891 old_load = this_rq->cpu_load[i];
2892 new_load = this_load;
2893 /*
2894 * Round up the averaging division if load is increasing. This
2895 * prevents us from getting stuck on 9 if the load is 10, for
2896 * example.
2897 */
2898 if (new_load > old_load)
2899 new_load += scale-1;
2900 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2901 }
2902 }
2903
2904 #ifdef CONFIG_SMP
2905
2906 /*
2907 * double_rq_lock - safely lock two runqueues
2908 *
2909 * Note this does not disable interrupts like task_rq_lock,
2910 * you need to do so manually before calling.
2911 */
2912 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2913 __acquires(rq1->lock)
2914 __acquires(rq2->lock)
2915 {
2916 BUG_ON(!irqs_disabled());
2917 if (rq1 == rq2) {
2918 spin_lock(&rq1->lock);
2919 __acquire(rq2->lock); /* Fake it out ;) */
2920 } else {
2921 if (rq1 < rq2) {
2922 spin_lock(&rq1->lock);
2923 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
2924 } else {
2925 spin_lock(&rq2->lock);
2926 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
2927 }
2928 }
2929 update_rq_clock(rq1);
2930 update_rq_clock(rq2);
2931 }
2932
2933 /*
2934 * double_rq_unlock - safely unlock two runqueues
2935 *
2936 * Note this does not restore interrupts like task_rq_unlock,
2937 * you need to do so manually after calling.
2938 */
2939 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2940 __releases(rq1->lock)
2941 __releases(rq2->lock)
2942 {
2943 spin_unlock(&rq1->lock);
2944 if (rq1 != rq2)
2945 spin_unlock(&rq2->lock);
2946 else
2947 __release(rq2->lock);
2948 }
2949
2950 /*
2951 * If dest_cpu is allowed for this process, migrate the task to it.
2952 * This is accomplished by forcing the cpu_allowed mask to only
2953 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2954 * the cpu_allowed mask is restored.
2955 */
2956 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2957 {
2958 struct migration_req req;
2959 unsigned long flags;
2960 struct rq *rq;
2961
2962 rq = task_rq_lock(p, &flags);
2963 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
2964 || unlikely(!cpu_active(dest_cpu)))
2965 goto out;
2966
2967 /* force the process onto the specified CPU */
2968 if (migrate_task(p, dest_cpu, &req)) {
2969 /* Need to wait for migration thread (might exit: take ref). */
2970 struct task_struct *mt = rq->migration_thread;
2971
2972 get_task_struct(mt);
2973 task_rq_unlock(rq, &flags);
2974 wake_up_process(mt);
2975 put_task_struct(mt);
2976 wait_for_completion(&req.done);
2977
2978 return;
2979 }
2980 out:
2981 task_rq_unlock(rq, &flags);
2982 }
2983
2984 /*
2985 * sched_exec - execve() is a valuable balancing opportunity, because at
2986 * this point the task has the smallest effective memory and cache footprint.
2987 */
2988 void sched_exec(void)
2989 {
2990 int new_cpu, this_cpu = get_cpu();
2991 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2992 put_cpu();
2993 if (new_cpu != this_cpu)
2994 sched_migrate_task(current, new_cpu);
2995 }
2996
2997 /*
2998 * pull_task - move a task from a remote runqueue to the local runqueue.
2999 * Both runqueues must be locked.
3000 */
3001 static void pull_task(struct rq *src_rq, struct task_struct *p,
3002 struct rq *this_rq, int this_cpu)
3003 {
3004 deactivate_task(src_rq, p, 0);
3005 set_task_cpu(p, this_cpu);
3006 activate_task(this_rq, p, 0);
3007 /*
3008 * Note that idle threads have a prio of MAX_PRIO, for this test
3009 * to be always true for them.
3010 */
3011 check_preempt_curr(this_rq, p, 0);
3012 }
3013
3014 /*
3015 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3016 */
3017 static
3018 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
3019 struct sched_domain *sd, enum cpu_idle_type idle,
3020 int *all_pinned)
3021 {
3022 int tsk_cache_hot = 0;
3023 /*
3024 * We do not migrate tasks that are:
3025 * 1) running (obviously), or
3026 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3027 * 3) are cache-hot on their current CPU.
3028 */
3029 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3030 schedstat_inc(p, se.nr_failed_migrations_affine);
3031 return 0;
3032 }
3033 *all_pinned = 0;
3034
3035 if (task_running(rq, p)) {
3036 schedstat_inc(p, se.nr_failed_migrations_running);
3037 return 0;
3038 }
3039
3040 /*
3041 * Aggressive migration if:
3042 * 1) task is cache cold, or
3043 * 2) too many balance attempts have failed.
3044 */
3045
3046 tsk_cache_hot = task_hot(p, rq->clock, sd);
3047 if (!tsk_cache_hot ||
3048 sd->nr_balance_failed > sd->cache_nice_tries) {
3049 #ifdef CONFIG_SCHEDSTATS
3050 if (tsk_cache_hot) {
3051 schedstat_inc(sd, lb_hot_gained[idle]);
3052 schedstat_inc(p, se.nr_forced_migrations);
3053 }
3054 #endif
3055 return 1;
3056 }
3057
3058 if (tsk_cache_hot) {
3059 schedstat_inc(p, se.nr_failed_migrations_hot);
3060 return 0;
3061 }
3062 return 1;
3063 }
3064
3065 static unsigned long
3066 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3067 unsigned long max_load_move, struct sched_domain *sd,
3068 enum cpu_idle_type idle, int *all_pinned,
3069 int *this_best_prio, struct rq_iterator *iterator)
3070 {
3071 int loops = 0, pulled = 0, pinned = 0;
3072 struct task_struct *p;
3073 long rem_load_move = max_load_move;
3074
3075 if (max_load_move == 0)
3076 goto out;
3077
3078 pinned = 1;
3079
3080 /*
3081 * Start the load-balancing iterator:
3082 */
3083 p = iterator->start(iterator->arg);
3084 next:
3085 if (!p || loops++ > sysctl_sched_nr_migrate)
3086 goto out;
3087
3088 if ((p->se.load.weight >> 1) > rem_load_move ||
3089 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3090 p = iterator->next(iterator->arg);
3091 goto next;
3092 }
3093
3094 pull_task(busiest, p, this_rq, this_cpu);
3095 pulled++;
3096 rem_load_move -= p->se.load.weight;
3097
3098 #ifdef CONFIG_PREEMPT
3099 /*
3100 * NEWIDLE balancing is a source of latency, so preemptible kernels
3101 * will stop after the first task is pulled to minimize the critical
3102 * section.
3103 */
3104 if (idle == CPU_NEWLY_IDLE)
3105 goto out;
3106 #endif
3107
3108 /*
3109 * We only want to steal up to the prescribed amount of weighted load.
3110 */
3111 if (rem_load_move > 0) {
3112 if (p->prio < *this_best_prio)
3113 *this_best_prio = p->prio;
3114 p = iterator->next(iterator->arg);
3115 goto next;
3116 }
3117 out:
3118 /*
3119 * Right now, this is one of only two places pull_task() is called,
3120 * so we can safely collect pull_task() stats here rather than
3121 * inside pull_task().
3122 */
3123 schedstat_add(sd, lb_gained[idle], pulled);
3124
3125 if (all_pinned)
3126 *all_pinned = pinned;
3127
3128 return max_load_move - rem_load_move;
3129 }
3130
3131 /*
3132 * move_tasks tries to move up to max_load_move weighted load from busiest to
3133 * this_rq, as part of a balancing operation within domain "sd".
3134 * Returns 1 if successful and 0 otherwise.
3135 *
3136 * Called with both runqueues locked.
3137 */
3138 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3139 unsigned long max_load_move,
3140 struct sched_domain *sd, enum cpu_idle_type idle,
3141 int *all_pinned)
3142 {
3143 const struct sched_class *class = sched_class_highest;
3144 unsigned long total_load_moved = 0;
3145 int this_best_prio = this_rq->curr->prio;
3146
3147 do {
3148 total_load_moved +=
3149 class->load_balance(this_rq, this_cpu, busiest,
3150 max_load_move - total_load_moved,
3151 sd, idle, all_pinned, &this_best_prio);
3152 class = class->next;
3153
3154 #ifdef CONFIG_PREEMPT
3155 /*
3156 * NEWIDLE balancing is a source of latency, so preemptible
3157 * kernels will stop after the first task is pulled to minimize
3158 * the critical section.
3159 */
3160 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3161 break;
3162 #endif
3163 } while (class && max_load_move > total_load_moved);
3164
3165 return total_load_moved > 0;
3166 }
3167
3168 static int
3169 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3170 struct sched_domain *sd, enum cpu_idle_type idle,
3171 struct rq_iterator *iterator)
3172 {
3173 struct task_struct *p = iterator->start(iterator->arg);
3174 int pinned = 0;
3175
3176 while (p) {
3177 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3178 pull_task(busiest, p, this_rq, this_cpu);
3179 /*
3180 * Right now, this is only the second place pull_task()
3181 * is called, so we can safely collect pull_task()
3182 * stats here rather than inside pull_task().
3183 */
3184 schedstat_inc(sd, lb_gained[idle]);
3185
3186 return 1;
3187 }
3188 p = iterator->next(iterator->arg);
3189 }
3190
3191 return 0;
3192 }
3193
3194 /*
3195 * move_one_task tries to move exactly one task from busiest to this_rq, as
3196 * part of active balancing operations within "domain".
3197 * Returns 1 if successful and 0 otherwise.
3198 *
3199 * Called with both runqueues locked.
3200 */
3201 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3202 struct sched_domain *sd, enum cpu_idle_type idle)
3203 {
3204 const struct sched_class *class;
3205
3206 for (class = sched_class_highest; class; class = class->next)
3207 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3208 return 1;
3209
3210 return 0;
3211 }
3212 /********** Helpers for find_busiest_group ************************/
3213 /*
3214 * sd_lb_stats - Structure to store the statistics of a sched_domain
3215 * during load balancing.
3216 */
3217 struct sd_lb_stats {
3218 struct sched_group *busiest; /* Busiest group in this sd */
3219 struct sched_group *this; /* Local group in this sd */
3220 unsigned long total_load; /* Total load of all groups in sd */
3221 unsigned long total_pwr; /* Total power of all groups in sd */
3222 unsigned long avg_load; /* Average load across all groups in sd */
3223
3224 /** Statistics of this group */
3225 unsigned long this_load;
3226 unsigned long this_load_per_task;
3227 unsigned long this_nr_running;
3228
3229 /* Statistics of the busiest group */
3230 unsigned long max_load;
3231 unsigned long busiest_load_per_task;
3232 unsigned long busiest_nr_running;
3233
3234 int group_imb; /* Is there imbalance in this sd */
3235 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3236 int power_savings_balance; /* Is powersave balance needed for this sd */
3237 struct sched_group *group_min; /* Least loaded group in sd */
3238 struct sched_group *group_leader; /* Group which relieves group_min */
3239 unsigned long min_load_per_task; /* load_per_task in group_min */
3240 unsigned long leader_nr_running; /* Nr running of group_leader */
3241 unsigned long min_nr_running; /* Nr running of group_min */
3242 #endif
3243 };
3244
3245 /*
3246 * sg_lb_stats - stats of a sched_group required for load_balancing
3247 */
3248 struct sg_lb_stats {
3249 unsigned long avg_load; /*Avg load across the CPUs of the group */
3250 unsigned long group_load; /* Total load over the CPUs of the group */
3251 unsigned long sum_nr_running; /* Nr tasks running in the group */
3252 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3253 unsigned long group_capacity;
3254 int group_imb; /* Is there an imbalance in the group ? */
3255 };
3256
3257 /**
3258 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3259 * @group: The group whose first cpu is to be returned.
3260 */
3261 static inline unsigned int group_first_cpu(struct sched_group *group)
3262 {
3263 return cpumask_first(sched_group_cpus(group));
3264 }
3265
3266 /**
3267 * get_sd_load_idx - Obtain the load index for a given sched domain.
3268 * @sd: The sched_domain whose load_idx is to be obtained.
3269 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3270 */
3271 static inline int get_sd_load_idx(struct sched_domain *sd,
3272 enum cpu_idle_type idle)
3273 {
3274 int load_idx;
3275
3276 switch (idle) {
3277 case CPU_NOT_IDLE:
3278 load_idx = sd->busy_idx;
3279 break;
3280
3281 case CPU_NEWLY_IDLE:
3282 load_idx = sd->newidle_idx;
3283 break;
3284 default:
3285 load_idx = sd->idle_idx;
3286 break;
3287 }
3288
3289 return load_idx;
3290 }
3291
3292
3293 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3294 /**
3295 * init_sd_power_savings_stats - Initialize power savings statistics for
3296 * the given sched_domain, during load balancing.
3297 *
3298 * @sd: Sched domain whose power-savings statistics are to be initialized.
3299 * @sds: Variable containing the statistics for sd.
3300 * @idle: Idle status of the CPU at which we're performing load-balancing.
3301 */
3302 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3303 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3304 {
3305 /*
3306 * Busy processors will not participate in power savings
3307 * balance.
3308 */
3309 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3310 sds->power_savings_balance = 0;
3311 else {
3312 sds->power_savings_balance = 1;
3313 sds->min_nr_running = ULONG_MAX;
3314 sds->leader_nr_running = 0;
3315 }
3316 }
3317
3318 /**
3319 * update_sd_power_savings_stats - Update the power saving stats for a
3320 * sched_domain while performing load balancing.
3321 *
3322 * @group: sched_group belonging to the sched_domain under consideration.
3323 * @sds: Variable containing the statistics of the sched_domain
3324 * @local_group: Does group contain the CPU for which we're performing
3325 * load balancing ?
3326 * @sgs: Variable containing the statistics of the group.
3327 */
3328 static inline void update_sd_power_savings_stats(struct sched_group *group,
3329 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3330 {
3331
3332 if (!sds->power_savings_balance)
3333 return;
3334
3335 /*
3336 * If the local group is idle or completely loaded
3337 * no need to do power savings balance at this domain
3338 */
3339 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3340 !sds->this_nr_running))
3341 sds->power_savings_balance = 0;
3342
3343 /*
3344 * If a group is already running at full capacity or idle,
3345 * don't include that group in power savings calculations
3346 */
3347 if (!sds->power_savings_balance ||
3348 sgs->sum_nr_running >= sgs->group_capacity ||
3349 !sgs->sum_nr_running)
3350 return;
3351
3352 /*
3353 * Calculate the group which has the least non-idle load.
3354 * This is the group from where we need to pick up the load
3355 * for saving power
3356 */
3357 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3358 (sgs->sum_nr_running == sds->min_nr_running &&
3359 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3360 sds->group_min = group;
3361 sds->min_nr_running = sgs->sum_nr_running;
3362 sds->min_load_per_task = sgs->sum_weighted_load /
3363 sgs->sum_nr_running;
3364 }
3365
3366 /*
3367 * Calculate the group which is almost near its
3368 * capacity but still has some space to pick up some load
3369 * from other group and save more power
3370 */
3371 if (sgs->sum_nr_running > sgs->group_capacity - 1)
3372 return;
3373
3374 if (sgs->sum_nr_running > sds->leader_nr_running ||
3375 (sgs->sum_nr_running == sds->leader_nr_running &&
3376 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3377 sds->group_leader = group;
3378 sds->leader_nr_running = sgs->sum_nr_running;
3379 }
3380 }
3381
3382 /**
3383 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3384 * @sds: Variable containing the statistics of the sched_domain
3385 * under consideration.
3386 * @this_cpu: Cpu at which we're currently performing load-balancing.
3387 * @imbalance: Variable to store the imbalance.
3388 *
3389 * Description:
3390 * Check if we have potential to perform some power-savings balance.
3391 * If yes, set the busiest group to be the least loaded group in the
3392 * sched_domain, so that it's CPUs can be put to idle.
3393 *
3394 * Returns 1 if there is potential to perform power-savings balance.
3395 * Else returns 0.
3396 */
3397 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3398 int this_cpu, unsigned long *imbalance)
3399 {
3400 if (!sds->power_savings_balance)
3401 return 0;
3402
3403 if (sds->this != sds->group_leader ||
3404 sds->group_leader == sds->group_min)
3405 return 0;
3406
3407 *imbalance = sds->min_load_per_task;
3408 sds->busiest = sds->group_min;
3409
3410 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3411 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
3412 group_first_cpu(sds->group_leader);
3413 }
3414
3415 return 1;
3416
3417 }
3418 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3419 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3420 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3421 {
3422 return;
3423 }
3424
3425 static inline void update_sd_power_savings_stats(struct sched_group *group,
3426 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3427 {
3428 return;
3429 }
3430
3431 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3432 int this_cpu, unsigned long *imbalance)
3433 {
3434 return 0;
3435 }
3436 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3437
3438
3439 /**
3440 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3441 * @group: sched_group whose statistics are to be updated.
3442 * @this_cpu: Cpu for which load balance is currently performed.
3443 * @idle: Idle status of this_cpu
3444 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3445 * @sd_idle: Idle status of the sched_domain containing group.
3446 * @local_group: Does group contain this_cpu.
3447 * @cpus: Set of cpus considered for load balancing.
3448 * @balance: Should we balance.
3449 * @sgs: variable to hold the statistics for this group.
3450 */
3451 static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
3452 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3453 int local_group, const struct cpumask *cpus,
3454 int *balance, struct sg_lb_stats *sgs)
3455 {
3456 unsigned long load, max_cpu_load, min_cpu_load;
3457 int i;
3458 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3459 unsigned long sum_avg_load_per_task;
3460 unsigned long avg_load_per_task;
3461
3462 if (local_group)
3463 balance_cpu = group_first_cpu(group);
3464
3465 /* Tally up the load of all CPUs in the group */
3466 sum_avg_load_per_task = avg_load_per_task = 0;
3467 max_cpu_load = 0;
3468 min_cpu_load = ~0UL;
3469
3470 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3471 struct rq *rq = cpu_rq(i);
3472
3473 if (*sd_idle && rq->nr_running)
3474 *sd_idle = 0;
3475
3476 /* Bias balancing toward cpus of our domain */
3477 if (local_group) {
3478 if (idle_cpu(i) && !first_idle_cpu) {
3479 first_idle_cpu = 1;
3480 balance_cpu = i;
3481 }
3482
3483 load = target_load(i, load_idx);
3484 } else {
3485 load = source_load(i, load_idx);
3486 if (load > max_cpu_load)
3487 max_cpu_load = load;
3488 if (min_cpu_load > load)
3489 min_cpu_load = load;
3490 }
3491
3492 sgs->group_load += load;
3493 sgs->sum_nr_running += rq->nr_running;
3494 sgs->sum_weighted_load += weighted_cpuload(i);
3495
3496 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3497 }
3498
3499 /*
3500 * First idle cpu or the first cpu(busiest) in this sched group
3501 * is eligible for doing load balancing at this and above
3502 * domains. In the newly idle case, we will allow all the cpu's
3503 * to do the newly idle load balance.
3504 */
3505 if (idle != CPU_NEWLY_IDLE && local_group &&
3506 balance_cpu != this_cpu && balance) {
3507 *balance = 0;
3508 return;
3509 }
3510
3511 /* Adjust by relative CPU power of the group */
3512 sgs->avg_load = sg_div_cpu_power(group,
3513 sgs->group_load * SCHED_LOAD_SCALE);
3514
3515
3516 /*
3517 * Consider the group unbalanced when the imbalance is larger
3518 * than the average weight of two tasks.
3519 *
3520 * APZ: with cgroup the avg task weight can vary wildly and
3521 * might not be a suitable number - should we keep a
3522 * normalized nr_running number somewhere that negates
3523 * the hierarchy?
3524 */
3525 avg_load_per_task = sg_div_cpu_power(group,
3526 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3527
3528 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3529 sgs->group_imb = 1;
3530
3531 sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3532
3533 }
3534
3535 /**
3536 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3537 * @sd: sched_domain whose statistics are to be updated.
3538 * @this_cpu: Cpu for which load balance is currently performed.
3539 * @idle: Idle status of this_cpu
3540 * @sd_idle: Idle status of the sched_domain containing group.
3541 * @cpus: Set of cpus considered for load balancing.
3542 * @balance: Should we balance.
3543 * @sds: variable to hold the statistics for this sched_domain.
3544 */
3545 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3546 enum cpu_idle_type idle, int *sd_idle,
3547 const struct cpumask *cpus, int *balance,
3548 struct sd_lb_stats *sds)
3549 {
3550 struct sched_group *group = sd->groups;
3551 struct sg_lb_stats sgs;
3552 int load_idx;
3553
3554 init_sd_power_savings_stats(sd, sds, idle);
3555 load_idx = get_sd_load_idx(sd, idle);
3556
3557 do {
3558 int local_group;
3559
3560 local_group = cpumask_test_cpu(this_cpu,
3561 sched_group_cpus(group));
3562 memset(&sgs, 0, sizeof(sgs));
3563 update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle,
3564 local_group, cpus, balance, &sgs);
3565
3566 if (local_group && balance && !(*balance))
3567 return;
3568
3569 sds->total_load += sgs.group_load;
3570 sds->total_pwr += group->__cpu_power;
3571
3572 if (local_group) {
3573 sds->this_load = sgs.avg_load;
3574 sds->this = group;
3575 sds->this_nr_running = sgs.sum_nr_running;
3576 sds->this_load_per_task = sgs.sum_weighted_load;
3577 } else if (sgs.avg_load > sds->max_load &&
3578 (sgs.sum_nr_running > sgs.group_capacity ||
3579 sgs.group_imb)) {
3580 sds->max_load = sgs.avg_load;
3581 sds->busiest = group;
3582 sds->busiest_nr_running = sgs.sum_nr_running;
3583 sds->busiest_load_per_task = sgs.sum_weighted_load;
3584 sds->group_imb = sgs.group_imb;
3585 }
3586
3587 update_sd_power_savings_stats(group, sds, local_group, &sgs);
3588 group = group->next;
3589 } while (group != sd->groups);
3590
3591 }
3592
3593 /**
3594 * fix_small_imbalance - Calculate the minor imbalance that exists
3595 * amongst the groups of a sched_domain, during
3596 * load balancing.
3597 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3598 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3599 * @imbalance: Variable to store the imbalance.
3600 */
3601 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3602 int this_cpu, unsigned long *imbalance)
3603 {
3604 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3605 unsigned int imbn = 2;
3606
3607 if (sds->this_nr_running) {
3608 sds->this_load_per_task /= sds->this_nr_running;
3609 if (sds->busiest_load_per_task >
3610 sds->this_load_per_task)
3611 imbn = 1;
3612 } else
3613 sds->this_load_per_task =
3614 cpu_avg_load_per_task(this_cpu);
3615
3616 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3617 sds->busiest_load_per_task * imbn) {
3618 *imbalance = sds->busiest_load_per_task;
3619 return;
3620 }
3621
3622 /*
3623 * OK, we don't have enough imbalance to justify moving tasks,
3624 * however we may be able to increase total CPU power used by
3625 * moving them.
3626 */
3627
3628 pwr_now += sds->busiest->__cpu_power *
3629 min(sds->busiest_load_per_task, sds->max_load);
3630 pwr_now += sds->this->__cpu_power *
3631 min(sds->this_load_per_task, sds->this_load);
3632 pwr_now /= SCHED_LOAD_SCALE;
3633
3634 /* Amount of load we'd subtract */
3635 tmp = sg_div_cpu_power(sds->busiest,
3636 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3637 if (sds->max_load > tmp)
3638 pwr_move += sds->busiest->__cpu_power *
3639 min(sds->busiest_load_per_task, sds->max_load - tmp);
3640
3641 /* Amount of load we'd add */
3642 if (sds->max_load * sds->busiest->__cpu_power <
3643 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3644 tmp = sg_div_cpu_power(sds->this,
3645 sds->max_load * sds->busiest->__cpu_power);
3646 else
3647 tmp = sg_div_cpu_power(sds->this,
3648 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3649 pwr_move += sds->this->__cpu_power *
3650 min(sds->this_load_per_task, sds->this_load + tmp);
3651 pwr_move /= SCHED_LOAD_SCALE;
3652
3653 /* Move if we gain throughput */
3654 if (pwr_move > pwr_now)
3655 *imbalance = sds->busiest_load_per_task;
3656 }
3657
3658 /**
3659 * calculate_imbalance - Calculate the amount of imbalance present within the
3660 * groups of a given sched_domain during load balance.
3661 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3662 * @this_cpu: Cpu for which currently load balance is being performed.
3663 * @imbalance: The variable to store the imbalance.
3664 */
3665 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3666 unsigned long *imbalance)
3667 {
3668 unsigned long max_pull;
3669 /*
3670 * In the presence of smp nice balancing, certain scenarios can have
3671 * max load less than avg load(as we skip the groups at or below
3672 * its cpu_power, while calculating max_load..)
3673 */
3674 if (sds->max_load < sds->avg_load) {
3675 *imbalance = 0;
3676 return fix_small_imbalance(sds, this_cpu, imbalance);
3677 }
3678
3679 /* Don't want to pull so many tasks that a group would go idle */
3680 max_pull = min(sds->max_load - sds->avg_load,
3681 sds->max_load - sds->busiest_load_per_task);
3682
3683 /* How much load to actually move to equalise the imbalance */
3684 *imbalance = min(max_pull * sds->busiest->__cpu_power,
3685 (sds->avg_load - sds->this_load) * sds->this->__cpu_power)
3686 / SCHED_LOAD_SCALE;
3687
3688 /*
3689 * if *imbalance is less than the average load per runnable task
3690 * there is no gaurantee that any tasks will be moved so we'll have
3691 * a think about bumping its value to force at least one task to be
3692 * moved
3693 */
3694 if (*imbalance < sds->busiest_load_per_task)
3695 return fix_small_imbalance(sds, this_cpu, imbalance);
3696
3697 }
3698 /******* find_busiest_group() helpers end here *********************/
3699
3700 /**
3701 * find_busiest_group - Returns the busiest group within the sched_domain
3702 * if there is an imbalance. If there isn't an imbalance, and
3703 * the user has opted for power-savings, it returns a group whose
3704 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3705 * such a group exists.
3706 *
3707 * Also calculates the amount of weighted load which should be moved
3708 * to restore balance.
3709 *
3710 * @sd: The sched_domain whose busiest group is to be returned.
3711 * @this_cpu: The cpu for which load balancing is currently being performed.
3712 * @imbalance: Variable which stores amount of weighted load which should
3713 * be moved to restore balance/put a group to idle.
3714 * @idle: The idle status of this_cpu.
3715 * @sd_idle: The idleness of sd
3716 * @cpus: The set of CPUs under consideration for load-balancing.
3717 * @balance: Pointer to a variable indicating if this_cpu
3718 * is the appropriate cpu to perform load balancing at this_level.
3719 *
3720 * Returns: - the busiest group if imbalance exists.
3721 * - If no imbalance and user has opted for power-savings balance,
3722 * return the least loaded group whose CPUs can be
3723 * put to idle by rebalancing its tasks onto our group.
3724 */
3725 static struct sched_group *
3726 find_busiest_group(struct sched_domain *sd, int this_cpu,
3727 unsigned long *imbalance, enum cpu_idle_type idle,
3728 int *sd_idle, const struct cpumask *cpus, int *balance)
3729 {
3730 struct sd_lb_stats sds;
3731
3732 memset(&sds, 0, sizeof(sds));
3733
3734 /*
3735 * Compute the various statistics relavent for load balancing at
3736 * this level.
3737 */
3738 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3739 balance, &sds);
3740
3741 /* Cases where imbalance does not exist from POV of this_cpu */
3742 /* 1) this_cpu is not the appropriate cpu to perform load balancing
3743 * at this level.
3744 * 2) There is no busy sibling group to pull from.
3745 * 3) This group is the busiest group.
3746 * 4) This group is more busy than the avg busieness at this
3747 * sched_domain.
3748 * 5) The imbalance is within the specified limit.
3749 * 6) Any rebalance would lead to ping-pong
3750 */
3751 if (balance && !(*balance))
3752 goto ret;
3753
3754 if (!sds.busiest || sds.busiest_nr_running == 0)
3755 goto out_balanced;
3756
3757 if (sds.this_load >= sds.max_load)
3758 goto out_balanced;
3759
3760 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
3761
3762 if (sds.this_load >= sds.avg_load)
3763 goto out_balanced;
3764
3765 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
3766 goto out_balanced;
3767
3768 sds.busiest_load_per_task /= sds.busiest_nr_running;
3769 if (sds.group_imb)
3770 sds.busiest_load_per_task =
3771 min(sds.busiest_load_per_task, sds.avg_load);
3772
3773 /*
3774 * We're trying to get all the cpus to the average_load, so we don't
3775 * want to push ourselves above the average load, nor do we wish to
3776 * reduce the max loaded cpu below the average load, as either of these
3777 * actions would just result in more rebalancing later, and ping-pong
3778 * tasks around. Thus we look for the minimum possible imbalance.
3779 * Negative imbalances (*we* are more loaded than anyone else) will
3780 * be counted as no imbalance for these purposes -- we can't fix that
3781 * by pulling tasks to us. Be careful of negative numbers as they'll
3782 * appear as very large values with unsigned longs.
3783 */
3784 if (sds.max_load <= sds.busiest_load_per_task)
3785 goto out_balanced;
3786
3787 /* Looks like there is an imbalance. Compute it */
3788 calculate_imbalance(&sds, this_cpu, imbalance);
3789 return sds.busiest;
3790
3791 out_balanced:
3792 /*
3793 * There is no obvious imbalance. But check if we can do some balancing
3794 * to save power.
3795 */
3796 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
3797 return sds.busiest;
3798 ret:
3799 *imbalance = 0;
3800 return NULL;
3801 }
3802
3803 /*
3804 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3805 */
3806 static struct rq *
3807 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3808 unsigned long imbalance, const struct cpumask *cpus)
3809 {
3810 struct rq *busiest = NULL, *rq;
3811 unsigned long max_load = 0;
3812 int i;
3813
3814 for_each_cpu(i, sched_group_cpus(group)) {
3815 unsigned long wl;
3816
3817 if (!cpumask_test_cpu(i, cpus))
3818 continue;
3819
3820 rq = cpu_rq(i);
3821 wl = weighted_cpuload(i);
3822
3823 if (rq->nr_running == 1 && wl > imbalance)
3824 continue;
3825
3826 if (wl > max_load) {
3827 max_load = wl;
3828 busiest = rq;
3829 }
3830 }
3831
3832 return busiest;
3833 }
3834
3835 /*
3836 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3837 * so long as it is large enough.
3838 */
3839 #define MAX_PINNED_INTERVAL 512
3840
3841 /* Working cpumask for load_balance and load_balance_newidle. */
3842 static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
3843
3844 /*
3845 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3846 * tasks if there is an imbalance.
3847 */
3848 static int load_balance(int this_cpu, struct rq *this_rq,
3849 struct sched_domain *sd, enum cpu_idle_type idle,
3850 int *balance)
3851 {
3852 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3853 struct sched_group *group;
3854 unsigned long imbalance;
3855 struct rq *busiest;
3856 unsigned long flags;
3857 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
3858
3859 cpumask_setall(cpus);
3860
3861 /*
3862 * When power savings policy is enabled for the parent domain, idle
3863 * sibling can pick up load irrespective of busy siblings. In this case,
3864 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3865 * portraying it as CPU_NOT_IDLE.
3866 */
3867 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3868 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3869 sd_idle = 1;
3870
3871 schedstat_inc(sd, lb_count[idle]);
3872
3873 redo:
3874 update_shares(sd);
3875 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3876 cpus, balance);
3877
3878 if (*balance == 0)
3879 goto out_balanced;
3880
3881 if (!group) {
3882 schedstat_inc(sd, lb_nobusyg[idle]);
3883 goto out_balanced;
3884 }
3885
3886 busiest = find_busiest_queue(group, idle, imbalance, cpus);
3887 if (!busiest) {
3888 schedstat_inc(sd, lb_nobusyq[idle]);
3889 goto out_balanced;
3890 }
3891
3892 BUG_ON(busiest == this_rq);
3893
3894 schedstat_add(sd, lb_imbalance[idle], imbalance);
3895
3896 ld_moved = 0;
3897 if (busiest->nr_running > 1) {
3898 /*
3899 * Attempt to move tasks. If find_busiest_group has found
3900 * an imbalance but busiest->nr_running <= 1, the group is
3901 * still unbalanced. ld_moved simply stays zero, so it is
3902 * correctly treated as an imbalance.
3903 */
3904 local_irq_save(flags);
3905 double_rq_lock(this_rq, busiest);
3906 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3907 imbalance, sd, idle, &all_pinned);
3908 double_rq_unlock(this_rq, busiest);
3909 local_irq_restore(flags);
3910
3911 /*
3912 * some other cpu did the load balance for us.
3913 */
3914 if (ld_moved && this_cpu != smp_processor_id())
3915 resched_cpu(this_cpu);
3916
3917 /* All tasks on this runqueue were pinned by CPU affinity */
3918 if (unlikely(all_pinned)) {
3919 cpumask_clear_cpu(cpu_of(busiest), cpus);
3920 if (!cpumask_empty(cpus))
3921 goto redo;
3922 goto out_balanced;
3923 }
3924 }
3925
3926 if (!ld_moved) {
3927 schedstat_inc(sd, lb_failed[idle]);
3928 sd->nr_balance_failed++;
3929
3930 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
3931
3932 spin_lock_irqsave(&busiest->lock, flags);
3933
3934 /* don't kick the migration_thread, if the curr
3935 * task on busiest cpu can't be moved to this_cpu
3936 */
3937 if (!cpumask_test_cpu(this_cpu,
3938 &busiest->curr->cpus_allowed)) {
3939 spin_unlock_irqrestore(&busiest->lock, flags);
3940 all_pinned = 1;
3941 goto out_one_pinned;
3942 }
3943
3944 if (!busiest->active_balance) {
3945 busiest->active_balance = 1;
3946 busiest->push_cpu = this_cpu;
3947 active_balance = 1;
3948 }
3949 spin_unlock_irqrestore(&busiest->lock, flags);
3950 if (active_balance)
3951 wake_up_process(busiest->migration_thread);
3952
3953 /*
3954 * We've kicked active balancing, reset the failure
3955 * counter.
3956 */
3957 sd->nr_balance_failed = sd->cache_nice_tries+1;
3958 }
3959 } else
3960 sd->nr_balance_failed = 0;
3961
3962 if (likely(!active_balance)) {
3963 /* We were unbalanced, so reset the balancing interval */
3964 sd->balance_interval = sd->min_interval;
3965 } else {
3966 /*
3967 * If we've begun active balancing, start to back off. This
3968 * case may not be covered by the all_pinned logic if there
3969 * is only 1 task on the busy runqueue (because we don't call
3970 * move_tasks).
3971 */
3972 if (sd->balance_interval < sd->max_interval)
3973 sd->balance_interval *= 2;
3974 }
3975
3976 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3977 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3978 ld_moved = -1;
3979
3980 goto out;
3981
3982 out_balanced:
3983 schedstat_inc(sd, lb_balanced[idle]);
3984
3985 sd->nr_balance_failed = 0;
3986
3987 out_one_pinned:
3988 /* tune up the balancing interval */
3989 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3990 (sd->balance_interval < sd->max_interval))
3991 sd->balance_interval *= 2;
3992
3993 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3994 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3995 ld_moved = -1;
3996 else
3997 ld_moved = 0;
3998 out:
3999 if (ld_moved)
4000 update_shares(sd);
4001 return ld_moved;
4002 }
4003
4004 /*
4005 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4006 * tasks if there is an imbalance.
4007 *
4008 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
4009 * this_rq is locked.
4010 */
4011 static int
4012 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
4013 {
4014 struct sched_group *group;
4015 struct rq *busiest = NULL;
4016 unsigned long imbalance;
4017 int ld_moved = 0;
4018 int sd_idle = 0;
4019 int all_pinned = 0;
4020 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4021
4022 cpumask_setall(cpus);
4023
4024 /*
4025 * When power savings policy is enabled for the parent domain, idle
4026 * sibling can pick up load irrespective of busy siblings. In this case,
4027 * let the state of idle sibling percolate up as IDLE, instead of
4028 * portraying it as CPU_NOT_IDLE.
4029 */
4030 if (sd->flags & SD_SHARE_CPUPOWER &&
4031 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4032 sd_idle = 1;
4033
4034 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4035 redo:
4036 update_shares_locked(this_rq, sd);
4037 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4038 &sd_idle, cpus, NULL);
4039 if (!group) {
4040 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4041 goto out_balanced;
4042 }
4043
4044 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
4045 if (!busiest) {
4046 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4047 goto out_balanced;
4048 }
4049
4050 BUG_ON(busiest == this_rq);
4051
4052 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4053
4054 ld_moved = 0;
4055 if (busiest->nr_running > 1) {
4056 /* Attempt to move tasks */
4057 double_lock_balance(this_rq, busiest);
4058 /* this_rq->clock is already updated */
4059 update_rq_clock(busiest);
4060 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4061 imbalance, sd, CPU_NEWLY_IDLE,
4062 &all_pinned);
4063 double_unlock_balance(this_rq, busiest);
4064
4065 if (unlikely(all_pinned)) {
4066 cpumask_clear_cpu(cpu_of(busiest), cpus);
4067 if (!cpumask_empty(cpus))
4068 goto redo;
4069 }
4070 }
4071
4072 if (!ld_moved) {
4073 int active_balance = 0;
4074
4075 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4076 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4077 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4078 return -1;
4079
4080 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4081 return -1;
4082
4083 if (sd->nr_balance_failed++ < 2)
4084 return -1;
4085
4086 /*
4087 * The only task running in a non-idle cpu can be moved to this
4088 * cpu in an attempt to completely freeup the other CPU
4089 * package. The same method used to move task in load_balance()
4090 * have been extended for load_balance_newidle() to speedup
4091 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4092 *
4093 * The package power saving logic comes from
4094 * find_busiest_group(). If there are no imbalance, then
4095 * f_b_g() will return NULL. However when sched_mc={1,2} then
4096 * f_b_g() will select a group from which a running task may be
4097 * pulled to this cpu in order to make the other package idle.
4098 * If there is no opportunity to make a package idle and if
4099 * there are no imbalance, then f_b_g() will return NULL and no
4100 * action will be taken in load_balance_newidle().
4101 *
4102 * Under normal task pull operation due to imbalance, there
4103 * will be more than one task in the source run queue and
4104 * move_tasks() will succeed. ld_moved will be true and this
4105 * active balance code will not be triggered.
4106 */
4107
4108 /* Lock busiest in correct order while this_rq is held */
4109 double_lock_balance(this_rq, busiest);
4110
4111 /*
4112 * don't kick the migration_thread, if the curr
4113 * task on busiest cpu can't be moved to this_cpu
4114 */
4115 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4116 double_unlock_balance(this_rq, busiest);
4117 all_pinned = 1;
4118 return ld_moved;
4119 }
4120
4121 if (!busiest->active_balance) {
4122 busiest->active_balance = 1;
4123 busiest->push_cpu = this_cpu;
4124 active_balance = 1;
4125 }
4126
4127 double_unlock_balance(this_rq, busiest);
4128 /*
4129 * Should not call ttwu while holding a rq->lock
4130 */
4131 spin_unlock(&this_rq->lock);
4132 if (active_balance)
4133 wake_up_process(busiest->migration_thread);
4134 spin_lock(&this_rq->lock);
4135
4136 } else
4137 sd->nr_balance_failed = 0;
4138
4139 update_shares_locked(this_rq, sd);
4140 return ld_moved;
4141
4142 out_balanced:
4143 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4144 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4145 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4146 return -1;
4147 sd->nr_balance_failed = 0;
4148
4149 return 0;
4150 }
4151
4152 /*
4153 * idle_balance is called by schedule() if this_cpu is about to become
4154 * idle. Attempts to pull tasks from other CPUs.
4155 */
4156 static void idle_balance(int this_cpu, struct rq *this_rq)
4157 {
4158 struct sched_domain *sd;
4159 int pulled_task = 0;
4160 unsigned long next_balance = jiffies + HZ;
4161
4162 for_each_domain(this_cpu, sd) {
4163 unsigned long interval;
4164
4165 if (!(sd->flags & SD_LOAD_BALANCE))
4166 continue;
4167
4168 if (sd->flags & SD_BALANCE_NEWIDLE)
4169 /* If we've pulled tasks over stop searching: */
4170 pulled_task = load_balance_newidle(this_cpu, this_rq,
4171 sd);
4172
4173 interval = msecs_to_jiffies(sd->balance_interval);
4174 if (time_after(next_balance, sd->last_balance + interval))
4175 next_balance = sd->last_balance + interval;
4176 if (pulled_task)
4177 break;
4178 }
4179 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4180 /*
4181 * We are going idle. next_balance may be set based on
4182 * a busy processor. So reset next_balance.
4183 */
4184 this_rq->next_balance = next_balance;
4185 }
4186 }
4187
4188 /*
4189 * active_load_balance is run by migration threads. It pushes running tasks
4190 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4191 * running on each physical CPU where possible, and avoids physical /
4192 * logical imbalances.
4193 *
4194 * Called with busiest_rq locked.
4195 */
4196 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
4197 {
4198 int target_cpu = busiest_rq->push_cpu;
4199 struct sched_domain *sd;
4200 struct rq *target_rq;
4201
4202 /* Is there any task to move? */
4203 if (busiest_rq->nr_running <= 1)
4204 return;
4205
4206 target_rq = cpu_rq(target_cpu);
4207
4208 /*
4209 * This condition is "impossible", if it occurs
4210 * we need to fix it. Originally reported by
4211 * Bjorn Helgaas on a 128-cpu setup.
4212 */
4213 BUG_ON(busiest_rq == target_rq);
4214
4215 /* move a task from busiest_rq to target_rq */
4216 double_lock_balance(busiest_rq, target_rq);
4217 update_rq_clock(busiest_rq);
4218 update_rq_clock(target_rq);
4219
4220 /* Search for an sd spanning us and the target CPU. */
4221 for_each_domain(target_cpu, sd) {
4222 if ((sd->flags & SD_LOAD_BALANCE) &&
4223 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4224 break;
4225 }
4226
4227 if (likely(sd)) {
4228 schedstat_inc(sd, alb_count);
4229
4230 if (move_one_task(target_rq, target_cpu, busiest_rq,
4231 sd, CPU_IDLE))
4232 schedstat_inc(sd, alb_pushed);
4233 else
4234 schedstat_inc(sd, alb_failed);
4235 }
4236 double_unlock_balance(busiest_rq, target_rq);
4237 }
4238
4239 #ifdef CONFIG_NO_HZ
4240 static struct {
4241 atomic_t load_balancer;
4242 cpumask_var_t cpu_mask;
4243 cpumask_var_t ilb_grp_nohz_mask;
4244 } nohz ____cacheline_aligned = {
4245 .load_balancer = ATOMIC_INIT(-1),
4246 };
4247
4248 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4249 /**
4250 * lowest_flag_domain - Return lowest sched_domain containing flag.
4251 * @cpu: The cpu whose lowest level of sched domain is to
4252 * be returned.
4253 * @flag: The flag to check for the lowest sched_domain
4254 * for the given cpu.
4255 *
4256 * Returns the lowest sched_domain of a cpu which contains the given flag.
4257 */
4258 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4259 {
4260 struct sched_domain *sd;
4261
4262 for_each_domain(cpu, sd)
4263 if (sd && (sd->flags & flag))
4264 break;
4265
4266 return sd;
4267 }
4268
4269 /**
4270 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4271 * @cpu: The cpu whose domains we're iterating over.
4272 * @sd: variable holding the value of the power_savings_sd
4273 * for cpu.
4274 * @flag: The flag to filter the sched_domains to be iterated.
4275 *
4276 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4277 * set, starting from the lowest sched_domain to the highest.
4278 */
4279 #define for_each_flag_domain(cpu, sd, flag) \
4280 for (sd = lowest_flag_domain(cpu, flag); \
4281 (sd && (sd->flags & flag)); sd = sd->parent)
4282
4283 /**
4284 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4285 * @ilb_group: group to be checked for semi-idleness
4286 *
4287 * Returns: 1 if the group is semi-idle. 0 otherwise.
4288 *
4289 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4290 * and atleast one non-idle CPU. This helper function checks if the given
4291 * sched_group is semi-idle or not.
4292 */
4293 static inline int is_semi_idle_group(struct sched_group *ilb_group)
4294 {
4295 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4296 sched_group_cpus(ilb_group));
4297
4298 /*
4299 * A sched_group is semi-idle when it has atleast one busy cpu
4300 * and atleast one idle cpu.
4301 */
4302 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4303 return 0;
4304
4305 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4306 return 0;
4307
4308 return 1;
4309 }
4310 /**
4311 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4312 * @cpu: The cpu which is nominating a new idle_load_balancer.
4313 *
4314 * Returns: Returns the id of the idle load balancer if it exists,
4315 * Else, returns >= nr_cpu_ids.
4316 *
4317 * This algorithm picks the idle load balancer such that it belongs to a
4318 * semi-idle powersavings sched_domain. The idea is to try and avoid
4319 * completely idle packages/cores just for the purpose of idle load balancing
4320 * when there are other idle cpu's which are better suited for that job.
4321 */
4322 static int find_new_ilb(int cpu)
4323 {
4324 struct sched_domain *sd;
4325 struct sched_group *ilb_group;
4326
4327 /*
4328 * Have idle load balancer selection from semi-idle packages only
4329 * when power-aware load balancing is enabled
4330 */
4331 if (!(sched_smt_power_savings || sched_mc_power_savings))
4332 goto out_done;
4333
4334 /*
4335 * Optimize for the case when we have no idle CPUs or only one
4336 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4337 */
4338 if (cpumask_weight(nohz.cpu_mask) < 2)
4339 goto out_done;
4340
4341 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4342 ilb_group = sd->groups;
4343
4344 do {
4345 if (is_semi_idle_group(ilb_group))
4346 return cpumask_first(nohz.ilb_grp_nohz_mask);
4347
4348 ilb_group = ilb_group->next;
4349
4350 } while (ilb_group != sd->groups);
4351 }
4352
4353 out_done:
4354 return cpumask_first(nohz.cpu_mask);
4355 }
4356 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4357 static inline int find_new_ilb(int call_cpu)
4358 {
4359 return cpumask_first(nohz.cpu_mask);
4360 }
4361 #endif
4362
4363 /*
4364 * This routine will try to nominate the ilb (idle load balancing)
4365 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4366 * load balancing on behalf of all those cpus. If all the cpus in the system
4367 * go into this tickless mode, then there will be no ilb owner (as there is
4368 * no need for one) and all the cpus will sleep till the next wakeup event
4369 * arrives...
4370 *
4371 * For the ilb owner, tick is not stopped. And this tick will be used
4372 * for idle load balancing. ilb owner will still be part of
4373 * nohz.cpu_mask..
4374 *
4375 * While stopping the tick, this cpu will become the ilb owner if there
4376 * is no other owner. And will be the owner till that cpu becomes busy
4377 * or if all cpus in the system stop their ticks at which point
4378 * there is no need for ilb owner.
4379 *
4380 * When the ilb owner becomes busy, it nominates another owner, during the
4381 * next busy scheduler_tick()
4382 */
4383 int select_nohz_load_balancer(int stop_tick)
4384 {
4385 int cpu = smp_processor_id();
4386
4387 if (stop_tick) {
4388 cpu_rq(cpu)->in_nohz_recently = 1;
4389
4390 if (!cpu_active(cpu)) {
4391 if (atomic_read(&nohz.load_balancer) != cpu)
4392 return 0;
4393
4394 /*
4395 * If we are going offline and still the leader,
4396 * give up!
4397 */
4398 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4399 BUG();
4400
4401 return 0;
4402 }
4403
4404 cpumask_set_cpu(cpu, nohz.cpu_mask);
4405
4406 /* time for ilb owner also to sleep */
4407 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4408 if (atomic_read(&nohz.load_balancer) == cpu)
4409 atomic_set(&nohz.load_balancer, -1);
4410 return 0;
4411 }
4412
4413 if (atomic_read(&nohz.load_balancer) == -1) {
4414 /* make me the ilb owner */
4415 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4416 return 1;
4417 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4418 int new_ilb;
4419
4420 if (!(sched_smt_power_savings ||
4421 sched_mc_power_savings))
4422 return 1;
4423 /*
4424 * Check to see if there is a more power-efficient
4425 * ilb.
4426 */
4427 new_ilb = find_new_ilb(cpu);
4428 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4429 atomic_set(&nohz.load_balancer, -1);
4430 resched_cpu(new_ilb);
4431 return 0;
4432 }
4433 return 1;
4434 }
4435 } else {
4436 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4437 return 0;
4438
4439 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4440
4441 if (atomic_read(&nohz.load_balancer) == cpu)
4442 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4443 BUG();
4444 }
4445 return 0;
4446 }
4447 #endif
4448
4449 static DEFINE_SPINLOCK(balancing);
4450
4451 /*
4452 * It checks each scheduling domain to see if it is due to be balanced,
4453 * and initiates a balancing operation if so.
4454 *
4455 * Balancing parameters are set up in arch_init_sched_domains.
4456 */
4457 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4458 {
4459 int balance = 1;
4460 struct rq *rq = cpu_rq(cpu);
4461 unsigned long interval;
4462 struct sched_domain *sd;
4463 /* Earliest time when we have to do rebalance again */
4464 unsigned long next_balance = jiffies + 60*HZ;
4465 int update_next_balance = 0;
4466 int need_serialize;
4467
4468 for_each_domain(cpu, sd) {
4469 if (!(sd->flags & SD_LOAD_BALANCE))
4470 continue;
4471
4472 interval = sd->balance_interval;
4473 if (idle != CPU_IDLE)
4474 interval *= sd->busy_factor;
4475
4476 /* scale ms to jiffies */
4477 interval = msecs_to_jiffies(interval);
4478 if (unlikely(!interval))
4479 interval = 1;
4480 if (interval > HZ*NR_CPUS/10)
4481 interval = HZ*NR_CPUS/10;
4482
4483 need_serialize = sd->flags & SD_SERIALIZE;
4484
4485 if (need_serialize) {
4486 if (!spin_trylock(&balancing))
4487 goto out;
4488 }
4489
4490 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4491 if (load_balance(cpu, rq, sd, idle, &balance)) {
4492 /*
4493 * We've pulled tasks over so either we're no
4494 * longer idle, or one of our SMT siblings is
4495 * not idle.
4496 */
4497 idle = CPU_NOT_IDLE;
4498 }
4499 sd->last_balance = jiffies;
4500 }
4501 if (need_serialize)
4502 spin_unlock(&balancing);
4503 out:
4504 if (time_after(next_balance, sd->last_balance + interval)) {
4505 next_balance = sd->last_balance + interval;
4506 update_next_balance = 1;
4507 }
4508
4509 /*
4510 * Stop the load balance at this level. There is another
4511 * CPU in our sched group which is doing load balancing more
4512 * actively.
4513 */
4514 if (!balance)
4515 break;
4516 }
4517
4518 /*
4519 * next_balance will be updated only when there is a need.
4520 * When the cpu is attached to null domain for ex, it will not be
4521 * updated.
4522 */
4523 if (likely(update_next_balance))
4524 rq->next_balance = next_balance;
4525 }
4526
4527 /*
4528 * run_rebalance_domains is triggered when needed from the scheduler tick.
4529 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4530 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4531 */
4532 static void run_rebalance_domains(struct softirq_action *h)
4533 {
4534 int this_cpu = smp_processor_id();
4535 struct rq *this_rq = cpu_rq(this_cpu);
4536 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4537 CPU_IDLE : CPU_NOT_IDLE;
4538
4539 rebalance_domains(this_cpu, idle);
4540
4541 #ifdef CONFIG_NO_HZ
4542 /*
4543 * If this cpu is the owner for idle load balancing, then do the
4544 * balancing on behalf of the other idle cpus whose ticks are
4545 * stopped.
4546 */
4547 if (this_rq->idle_at_tick &&
4548 atomic_read(&nohz.load_balancer) == this_cpu) {
4549 struct rq *rq;
4550 int balance_cpu;
4551
4552 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4553 if (balance_cpu == this_cpu)
4554 continue;
4555
4556 /*
4557 * If this cpu gets work to do, stop the load balancing
4558 * work being done for other cpus. Next load
4559 * balancing owner will pick it up.
4560 */
4561 if (need_resched())
4562 break;
4563
4564 rebalance_domains(balance_cpu, CPU_IDLE);
4565
4566 rq = cpu_rq(balance_cpu);
4567 if (time_after(this_rq->next_balance, rq->next_balance))
4568 this_rq->next_balance = rq->next_balance;
4569 }
4570 }
4571 #endif
4572 }
4573
4574 static inline int on_null_domain(int cpu)
4575 {
4576 return !rcu_dereference(cpu_rq(cpu)->sd);
4577 }
4578
4579 /*
4580 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4581 *
4582 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4583 * idle load balancing owner or decide to stop the periodic load balancing,
4584 * if the whole system is idle.
4585 */
4586 static inline void trigger_load_balance(struct rq *rq, int cpu)
4587 {
4588 #ifdef CONFIG_NO_HZ
4589 /*
4590 * If we were in the nohz mode recently and busy at the current
4591 * scheduler tick, then check if we need to nominate new idle
4592 * load balancer.
4593 */
4594 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4595 rq->in_nohz_recently = 0;
4596
4597 if (atomic_read(&nohz.load_balancer) == cpu) {
4598 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4599 atomic_set(&nohz.load_balancer, -1);
4600 }
4601
4602 if (atomic_read(&nohz.load_balancer) == -1) {
4603 int ilb = find_new_ilb(cpu);
4604
4605 if (ilb < nr_cpu_ids)
4606 resched_cpu(ilb);
4607 }
4608 }
4609
4610 /*
4611 * If this cpu is idle and doing idle load balancing for all the
4612 * cpus with ticks stopped, is it time for that to stop?
4613 */
4614 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4615 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4616 resched_cpu(cpu);
4617 return;
4618 }
4619
4620 /*
4621 * If this cpu is idle and the idle load balancing is done by
4622 * someone else, then no need raise the SCHED_SOFTIRQ
4623 */
4624 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4625 cpumask_test_cpu(cpu, nohz.cpu_mask))
4626 return;
4627 #endif
4628 /* Don't need to rebalance while attached to NULL domain */
4629 if (time_after_eq(jiffies, rq->next_balance) &&
4630 likely(!on_null_domain(cpu)))
4631 raise_softirq(SCHED_SOFTIRQ);
4632 }
4633
4634 #else /* CONFIG_SMP */
4635
4636 /*
4637 * on UP we do not need to balance between CPUs:
4638 */
4639 static inline void idle_balance(int cpu, struct rq *rq)
4640 {
4641 }
4642
4643 #endif
4644
4645 DEFINE_PER_CPU(struct kernel_stat, kstat);
4646
4647 EXPORT_PER_CPU_SYMBOL(kstat);
4648
4649 /*
4650 * Return any ns on the sched_clock that have not yet been accounted in
4651 * @p in case that task is currently running.
4652 *
4653 * Called with task_rq_lock() held on @rq.
4654 */
4655 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4656 {
4657 u64 ns = 0;
4658
4659 if (task_current(rq, p)) {
4660 update_rq_clock(rq);
4661 ns = rq->clock - p->se.exec_start;
4662 if ((s64)ns < 0)
4663 ns = 0;
4664 }
4665
4666 return ns;
4667 }
4668
4669 unsigned long long task_delta_exec(struct task_struct *p)
4670 {
4671 unsigned long flags;
4672 struct rq *rq;
4673 u64 ns = 0;
4674
4675 rq = task_rq_lock(p, &flags);
4676 ns = do_task_delta_exec(p, rq);
4677 task_rq_unlock(rq, &flags);
4678
4679 return ns;
4680 }
4681
4682 /*
4683 * Return accounted runtime for the task.
4684 * In case the task is currently running, return the runtime plus current's
4685 * pending runtime that have not been accounted yet.
4686 */
4687 unsigned long long task_sched_runtime(struct task_struct *p)
4688 {
4689 unsigned long flags;
4690 struct rq *rq;
4691 u64 ns = 0;
4692
4693 rq = task_rq_lock(p, &flags);
4694 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4695 task_rq_unlock(rq, &flags);
4696
4697 return ns;
4698 }
4699
4700 /*
4701 * Return sum_exec_runtime for the thread group.
4702 * In case the task is currently running, return the sum plus current's
4703 * pending runtime that have not been accounted yet.
4704 *
4705 * Note that the thread group might have other running tasks as well,
4706 * so the return value not includes other pending runtime that other
4707 * running tasks might have.
4708 */
4709 unsigned long long thread_group_sched_runtime(struct task_struct *p)
4710 {
4711 struct task_cputime totals;
4712 unsigned long flags;
4713 struct rq *rq;
4714 u64 ns;
4715
4716 rq = task_rq_lock(p, &flags);
4717 thread_group_cputime(p, &totals);
4718 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
4719 task_rq_unlock(rq, &flags);
4720
4721 return ns;
4722 }
4723
4724 /*
4725 * Account user cpu time to a process.
4726 * @p: the process that the cpu time gets accounted to
4727 * @cputime: the cpu time spent in user space since the last update
4728 * @cputime_scaled: cputime scaled by cpu frequency
4729 */
4730 void account_user_time(struct task_struct *p, cputime_t cputime,
4731 cputime_t cputime_scaled)
4732 {
4733 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4734 cputime64_t tmp;
4735
4736 /* Add user time to process. */
4737 p->utime = cputime_add(p->utime, cputime);
4738 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4739 account_group_user_time(p, cputime);
4740
4741 /* Add user time to cpustat. */
4742 tmp = cputime_to_cputime64(cputime);
4743 if (TASK_NICE(p) > 0)
4744 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4745 else
4746 cpustat->user = cputime64_add(cpustat->user, tmp);
4747
4748 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
4749 /* Account for user time used */
4750 acct_update_integrals(p);
4751 }
4752
4753 /*
4754 * Account guest cpu time to a process.
4755 * @p: the process that the cpu time gets accounted to
4756 * @cputime: the cpu time spent in virtual machine since the last update
4757 * @cputime_scaled: cputime scaled by cpu frequency
4758 */
4759 static void account_guest_time(struct task_struct *p, cputime_t cputime,
4760 cputime_t cputime_scaled)
4761 {
4762 cputime64_t tmp;
4763 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4764
4765 tmp = cputime_to_cputime64(cputime);
4766
4767 /* Add guest time to process. */
4768 p->utime = cputime_add(p->utime, cputime);
4769 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4770 account_group_user_time(p, cputime);
4771 p->gtime = cputime_add(p->gtime, cputime);
4772
4773 /* Add guest time to cpustat. */
4774 cpustat->user = cputime64_add(cpustat->user, tmp);
4775 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4776 }
4777
4778 /*
4779 * Account system cpu time to a process.
4780 * @p: the process that the cpu time gets accounted to
4781 * @hardirq_offset: the offset to subtract from hardirq_count()
4782 * @cputime: the cpu time spent in kernel space since the last update
4783 * @cputime_scaled: cputime scaled by cpu frequency
4784 */
4785 void account_system_time(struct task_struct *p, int hardirq_offset,
4786 cputime_t cputime, cputime_t cputime_scaled)
4787 {
4788 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4789 cputime64_t tmp;
4790
4791 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4792 account_guest_time(p, cputime, cputime_scaled);
4793 return;
4794 }
4795
4796 /* Add system time to process. */
4797 p->stime = cputime_add(p->stime, cputime);
4798 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
4799 account_group_system_time(p, cputime);
4800
4801 /* Add system time to cpustat. */
4802 tmp = cputime_to_cputime64(cputime);
4803 if (hardirq_count() - hardirq_offset)
4804 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4805 else if (softirq_count())
4806 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4807 else
4808 cpustat->system = cputime64_add(cpustat->system, tmp);
4809
4810 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
4811
4812 /* Account for system time used */
4813 acct_update_integrals(p);
4814 }
4815
4816 /*
4817 * Account for involuntary wait time.
4818 * @steal: the cpu time spent in involuntary wait
4819 */
4820 void account_steal_time(cputime_t cputime)
4821 {
4822 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4823 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4824
4825 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
4826 }
4827
4828 /*
4829 * Account for idle time.
4830 * @cputime: the cpu time spent in idle wait
4831 */
4832 void account_idle_time(cputime_t cputime)
4833 {
4834 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4835 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4836 struct rq *rq = this_rq();
4837
4838 if (atomic_read(&rq->nr_iowait) > 0)
4839 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
4840 else
4841 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
4842 }
4843
4844 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
4845
4846 /*
4847 * Account a single tick of cpu time.
4848 * @p: the process that the cpu time gets accounted to
4849 * @user_tick: indicates if the tick is a user or a system tick
4850 */
4851 void account_process_tick(struct task_struct *p, int user_tick)
4852 {
4853 cputime_t one_jiffy = jiffies_to_cputime(1);
4854 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
4855 struct rq *rq = this_rq();
4856
4857 if (user_tick)
4858 account_user_time(p, one_jiffy, one_jiffy_scaled);
4859 else if (p != rq->idle)
4860 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
4861 one_jiffy_scaled);
4862 else
4863 account_idle_time(one_jiffy);
4864 }
4865
4866 /*
4867 * Account multiple ticks of steal time.
4868 * @p: the process from which the cpu time has been stolen
4869 * @ticks: number of stolen ticks
4870 */
4871 void account_steal_ticks(unsigned long ticks)
4872 {
4873 account_steal_time(jiffies_to_cputime(ticks));
4874 }
4875
4876 /*
4877 * Account multiple ticks of idle time.
4878 * @ticks: number of stolen ticks
4879 */
4880 void account_idle_ticks(unsigned long ticks)
4881 {
4882 account_idle_time(jiffies_to_cputime(ticks));
4883 }
4884
4885 #endif
4886
4887 /*
4888 * Use precise platform statistics if available:
4889 */
4890 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
4891 cputime_t task_utime(struct task_struct *p)
4892 {
4893 return p->utime;
4894 }
4895
4896 cputime_t task_stime(struct task_struct *p)
4897 {
4898 return p->stime;
4899 }
4900 #else
4901 cputime_t task_utime(struct task_struct *p)
4902 {
4903 clock_t utime = cputime_to_clock_t(p->utime),
4904 total = utime + cputime_to_clock_t(p->stime);
4905 u64 temp;
4906
4907 /*
4908 * Use CFS's precise accounting:
4909 */
4910 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
4911
4912 if (total) {
4913 temp *= utime;
4914 do_div(temp, total);
4915 }
4916 utime = (clock_t)temp;
4917
4918 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
4919 return p->prev_utime;
4920 }
4921
4922 cputime_t task_stime(struct task_struct *p)
4923 {
4924 clock_t stime;
4925
4926 /*
4927 * Use CFS's precise accounting. (we subtract utime from
4928 * the total, to make sure the total observed by userspace
4929 * grows monotonically - apps rely on that):
4930 */
4931 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
4932 cputime_to_clock_t(task_utime(p));
4933
4934 if (stime >= 0)
4935 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
4936
4937 return p->prev_stime;
4938 }
4939 #endif
4940
4941 inline cputime_t task_gtime(struct task_struct *p)
4942 {
4943 return p->gtime;
4944 }
4945
4946 /*
4947 * This function gets called by the timer code, with HZ frequency.
4948 * We call it with interrupts disabled.
4949 *
4950 * It also gets called by the fork code, when changing the parent's
4951 * timeslices.
4952 */
4953 void scheduler_tick(void)
4954 {
4955 int cpu = smp_processor_id();
4956 struct rq *rq = cpu_rq(cpu);
4957 struct task_struct *curr = rq->curr;
4958
4959 sched_clock_tick();
4960
4961 spin_lock(&rq->lock);
4962 update_rq_clock(rq);
4963 update_cpu_load(rq);
4964 curr->sched_class->task_tick(rq, curr, 0);
4965 spin_unlock(&rq->lock);
4966
4967 #ifdef CONFIG_SMP
4968 rq->idle_at_tick = idle_cpu(cpu);
4969 trigger_load_balance(rq, cpu);
4970 #endif
4971 }
4972
4973 unsigned long get_parent_ip(unsigned long addr)
4974 {
4975 if (in_lock_functions(addr)) {
4976 addr = CALLER_ADDR2;
4977 if (in_lock_functions(addr))
4978 addr = CALLER_ADDR3;
4979 }
4980 return addr;
4981 }
4982
4983 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4984 defined(CONFIG_PREEMPT_TRACER))
4985
4986 void __kprobes add_preempt_count(int val)
4987 {
4988 #ifdef CONFIG_DEBUG_PREEMPT
4989 /*
4990 * Underflow?
4991 */
4992 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4993 return;
4994 #endif
4995 preempt_count() += val;
4996 #ifdef CONFIG_DEBUG_PREEMPT
4997 /*
4998 * Spinlock count overflowing soon?
4999 */
5000 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5001 PREEMPT_MASK - 10);
5002 #endif
5003 if (preempt_count() == val)
5004 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5005 }
5006 EXPORT_SYMBOL(add_preempt_count);
5007
5008 void __kprobes sub_preempt_count(int val)
5009 {
5010 #ifdef CONFIG_DEBUG_PREEMPT
5011 /*
5012 * Underflow?
5013 */
5014 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5015 return;
5016 /*
5017 * Is the spinlock portion underflowing?
5018 */
5019 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5020 !(preempt_count() & PREEMPT_MASK)))
5021 return;
5022 #endif
5023
5024 if (preempt_count() == val)
5025 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5026 preempt_count() -= val;
5027 }
5028 EXPORT_SYMBOL(sub_preempt_count);
5029
5030 #endif
5031
5032 /*
5033 * Print scheduling while atomic bug:
5034 */
5035 static noinline void __schedule_bug(struct task_struct *prev)
5036 {
5037 struct pt_regs *regs = get_irq_regs();
5038
5039 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5040 prev->comm, prev->pid, preempt_count());
5041
5042 debug_show_held_locks(prev);
5043 print_modules();
5044 if (irqs_disabled())
5045 print_irqtrace_events(prev);
5046
5047 if (regs)
5048 show_regs(regs);
5049 else
5050 dump_stack();
5051 }
5052
5053 /*
5054 * Various schedule()-time debugging checks and statistics:
5055 */
5056 static inline void schedule_debug(struct task_struct *prev)
5057 {
5058 /*
5059 * Test if we are atomic. Since do_exit() needs to call into
5060 * schedule() atomically, we ignore that path for now.
5061 * Otherwise, whine if we are scheduling when we should not be.
5062 */
5063 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
5064 __schedule_bug(prev);
5065
5066 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5067
5068 schedstat_inc(this_rq(), sched_count);
5069 #ifdef CONFIG_SCHEDSTATS
5070 if (unlikely(prev->lock_depth >= 0)) {
5071 schedstat_inc(this_rq(), bkl_count);
5072 schedstat_inc(prev, sched_info.bkl_count);
5073 }
5074 #endif
5075 }
5076
5077 static void put_prev_task(struct rq *rq, struct task_struct *prev)
5078 {
5079 if (prev->state == TASK_RUNNING) {
5080 u64 runtime = prev->se.sum_exec_runtime;
5081
5082 runtime -= prev->se.prev_sum_exec_runtime;
5083 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5084
5085 /*
5086 * In order to avoid avg_overlap growing stale when we are
5087 * indeed overlapping and hence not getting put to sleep, grow
5088 * the avg_overlap on preemption.
5089 *
5090 * We use the average preemption runtime because that
5091 * correlates to the amount of cache footprint a task can
5092 * build up.
5093 */
5094 update_avg(&prev->se.avg_overlap, runtime);
5095 }
5096 prev->sched_class->put_prev_task(rq, prev);
5097 }
5098
5099 /*
5100 * Pick up the highest-prio task:
5101 */
5102 static inline struct task_struct *
5103 pick_next_task(struct rq *rq)
5104 {
5105 const struct sched_class *class;
5106 struct task_struct *p;
5107
5108 /*
5109 * Optimization: we know that if all tasks are in
5110 * the fair class we can call that function directly:
5111 */
5112 if (likely(rq->nr_running == rq->cfs.nr_running)) {
5113 p = fair_sched_class.pick_next_task(rq);
5114 if (likely(p))
5115 return p;
5116 }
5117
5118 class = sched_class_highest;
5119 for ( ; ; ) {
5120 p = class->pick_next_task(rq);
5121 if (p)
5122 return p;
5123 /*
5124 * Will never be NULL as the idle class always
5125 * returns a non-NULL p:
5126 */
5127 class = class->next;
5128 }
5129 }
5130
5131 /*
5132 * schedule() is the main scheduler function.
5133 */
5134 asmlinkage void __sched schedule(void)
5135 {
5136 struct task_struct *prev, *next;
5137 unsigned long *switch_count;
5138 struct rq *rq;
5139 int cpu;
5140
5141 need_resched:
5142 preempt_disable();
5143 cpu = smp_processor_id();
5144 rq = cpu_rq(cpu);
5145 rcu_qsctr_inc(cpu);
5146 prev = rq->curr;
5147 switch_count = &prev->nivcsw;
5148
5149 release_kernel_lock(prev);
5150 need_resched_nonpreemptible:
5151
5152 schedule_debug(prev);
5153
5154 if (sched_feat(HRTICK))
5155 hrtick_clear(rq);
5156
5157 spin_lock_irq(&rq->lock);
5158 update_rq_clock(rq);
5159 clear_tsk_need_resched(prev);
5160
5161 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5162 if (unlikely(signal_pending_state(prev->state, prev)))
5163 prev->state = TASK_RUNNING;
5164 else
5165 deactivate_task(rq, prev, 1);
5166 switch_count = &prev->nvcsw;
5167 }
5168
5169 #ifdef CONFIG_SMP
5170 if (prev->sched_class->pre_schedule)
5171 prev->sched_class->pre_schedule(rq, prev);
5172 #endif
5173
5174 if (unlikely(!rq->nr_running))
5175 idle_balance(cpu, rq);
5176
5177 put_prev_task(rq, prev);
5178 next = pick_next_task(rq);
5179
5180 if (likely(prev != next)) {
5181 sched_info_switch(prev, next);
5182
5183 rq->nr_switches++;
5184 rq->curr = next;
5185 ++*switch_count;
5186
5187 context_switch(rq, prev, next); /* unlocks the rq */
5188 /*
5189 * the context switch might have flipped the stack from under
5190 * us, hence refresh the local variables.
5191 */
5192 cpu = smp_processor_id();
5193 rq = cpu_rq(cpu);
5194 } else
5195 spin_unlock_irq(&rq->lock);
5196
5197 if (unlikely(reacquire_kernel_lock(current) < 0))
5198 goto need_resched_nonpreemptible;
5199
5200 preempt_enable_no_resched();
5201 if (need_resched())
5202 goto need_resched;
5203 }
5204 EXPORT_SYMBOL(schedule);
5205
5206 #ifdef CONFIG_SMP
5207 /*
5208 * Look out! "owner" is an entirely speculative pointer
5209 * access and not reliable.
5210 */
5211 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5212 {
5213 unsigned int cpu;
5214 struct rq *rq;
5215
5216 if (!sched_feat(OWNER_SPIN))
5217 return 0;
5218
5219 #ifdef CONFIG_DEBUG_PAGEALLOC
5220 /*
5221 * Need to access the cpu field knowing that
5222 * DEBUG_PAGEALLOC could have unmapped it if
5223 * the mutex owner just released it and exited.
5224 */
5225 if (probe_kernel_address(&owner->cpu, cpu))
5226 goto out;
5227 #else
5228 cpu = owner->cpu;
5229 #endif
5230
5231 /*
5232 * Even if the access succeeded (likely case),
5233 * the cpu field may no longer be valid.
5234 */
5235 if (cpu >= nr_cpumask_bits)
5236 goto out;
5237
5238 /*
5239 * We need to validate that we can do a
5240 * get_cpu() and that we have the percpu area.
5241 */
5242 if (!cpu_online(cpu))
5243 goto out;
5244
5245 rq = cpu_rq(cpu);
5246
5247 for (;;) {
5248 /*
5249 * Owner changed, break to re-assess state.
5250 */
5251 if (lock->owner != owner)
5252 break;
5253
5254 /*
5255 * Is that owner really running on that cpu?
5256 */
5257 if (task_thread_info(rq->curr) != owner || need_resched())
5258 return 0;
5259
5260 cpu_relax();
5261 }
5262 out:
5263 return 1;
5264 }
5265 #endif
5266
5267 #ifdef CONFIG_PREEMPT
5268 /*
5269 * this is the entry point to schedule() from in-kernel preemption
5270 * off of preempt_enable. Kernel preemptions off return from interrupt
5271 * occur there and call schedule directly.
5272 */
5273 asmlinkage void __sched preempt_schedule(void)
5274 {
5275 struct thread_info *ti = current_thread_info();
5276
5277 /*
5278 * If there is a non-zero preempt_count or interrupts are disabled,
5279 * we do not want to preempt the current task. Just return..
5280 */
5281 if (likely(ti->preempt_count || irqs_disabled()))
5282 return;
5283
5284 do {
5285 add_preempt_count(PREEMPT_ACTIVE);
5286 schedule();
5287 sub_preempt_count(PREEMPT_ACTIVE);
5288
5289 /*
5290 * Check again in case we missed a preemption opportunity
5291 * between schedule and now.
5292 */
5293 barrier();
5294 } while (need_resched());
5295 }
5296 EXPORT_SYMBOL(preempt_schedule);
5297
5298 /*
5299 * this is the entry point to schedule() from kernel preemption
5300 * off of irq context.
5301 * Note, that this is called and return with irqs disabled. This will
5302 * protect us against recursive calling from irq.
5303 */
5304 asmlinkage void __sched preempt_schedule_irq(void)
5305 {
5306 struct thread_info *ti = current_thread_info();
5307
5308 /* Catch callers which need to be fixed */
5309 BUG_ON(ti->preempt_count || !irqs_disabled());
5310
5311 do {
5312 add_preempt_count(PREEMPT_ACTIVE);
5313 local_irq_enable();
5314 schedule();
5315 local_irq_disable();
5316 sub_preempt_count(PREEMPT_ACTIVE);
5317
5318 /*
5319 * Check again in case we missed a preemption opportunity
5320 * between schedule and now.
5321 */
5322 barrier();
5323 } while (need_resched());
5324 }
5325
5326 #endif /* CONFIG_PREEMPT */
5327
5328 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
5329 void *key)
5330 {
5331 return try_to_wake_up(curr->private, mode, sync);
5332 }
5333 EXPORT_SYMBOL(default_wake_function);
5334
5335 /*
5336 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5337 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
5338 * number) then we wake all the non-exclusive tasks and one exclusive task.
5339 *
5340 * There are circumstances in which we can try to wake a task which has already
5341 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
5342 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5343 */
5344 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
5345 int nr_exclusive, int sync, void *key)
5346 {
5347 wait_queue_t *curr, *next;
5348
5349 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5350 unsigned flags = curr->flags;
5351
5352 if (curr->func(curr, mode, sync, key) &&
5353 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
5354 break;
5355 }
5356 }
5357
5358 /**
5359 * __wake_up - wake up threads blocked on a waitqueue.
5360 * @q: the waitqueue
5361 * @mode: which threads
5362 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5363 * @key: is directly passed to the wakeup function
5364 */
5365 void __wake_up(wait_queue_head_t *q, unsigned int mode,
5366 int nr_exclusive, void *key)
5367 {
5368 unsigned long flags;
5369
5370 spin_lock_irqsave(&q->lock, flags);
5371 __wake_up_common(q, mode, nr_exclusive, 0, key);
5372 spin_unlock_irqrestore(&q->lock, flags);
5373 }
5374 EXPORT_SYMBOL(__wake_up);
5375
5376 /*
5377 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5378 */
5379 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
5380 {
5381 __wake_up_common(q, mode, 1, 0, NULL);
5382 }
5383
5384 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5385 {
5386 __wake_up_common(q, mode, 1, 0, key);
5387 }
5388
5389 /**
5390 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
5391 * @q: the waitqueue
5392 * @mode: which threads
5393 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5394 * @key: opaque value to be passed to wakeup targets
5395 *
5396 * The sync wakeup differs that the waker knows that it will schedule
5397 * away soon, so while the target thread will be woken up, it will not
5398 * be migrated to another CPU - ie. the two threads are 'synchronized'
5399 * with each other. This can prevent needless bouncing between CPUs.
5400 *
5401 * On UP it can prevent extra preemption.
5402 */
5403 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5404 int nr_exclusive, void *key)
5405 {
5406 unsigned long flags;
5407 int sync = 1;
5408
5409 if (unlikely(!q))
5410 return;
5411
5412 if (unlikely(!nr_exclusive))
5413 sync = 0;
5414
5415 spin_lock_irqsave(&q->lock, flags);
5416 __wake_up_common(q, mode, nr_exclusive, sync, key);
5417 spin_unlock_irqrestore(&q->lock, flags);
5418 }
5419 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5420
5421 /*
5422 * __wake_up_sync - see __wake_up_sync_key()
5423 */
5424 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5425 {
5426 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5427 }
5428 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5429
5430 /**
5431 * complete: - signals a single thread waiting on this completion
5432 * @x: holds the state of this particular completion
5433 *
5434 * This will wake up a single thread waiting on this completion. Threads will be
5435 * awakened in the same order in which they were queued.
5436 *
5437 * See also complete_all(), wait_for_completion() and related routines.
5438 */
5439 void complete(struct completion *x)
5440 {
5441 unsigned long flags;
5442
5443 spin_lock_irqsave(&x->wait.lock, flags);
5444 x->done++;
5445 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
5446 spin_unlock_irqrestore(&x->wait.lock, flags);
5447 }
5448 EXPORT_SYMBOL(complete);
5449
5450 /**
5451 * complete_all: - signals all threads waiting on this completion
5452 * @x: holds the state of this particular completion
5453 *
5454 * This will wake up all threads waiting on this particular completion event.
5455 */
5456 void complete_all(struct completion *x)
5457 {
5458 unsigned long flags;
5459
5460 spin_lock_irqsave(&x->wait.lock, flags);
5461 x->done += UINT_MAX/2;
5462 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
5463 spin_unlock_irqrestore(&x->wait.lock, flags);
5464 }
5465 EXPORT_SYMBOL(complete_all);
5466
5467 static inline long __sched
5468 do_wait_for_common(struct completion *x, long timeout, int state)
5469 {
5470 if (!x->done) {
5471 DECLARE_WAITQUEUE(wait, current);
5472
5473 wait.flags |= WQ_FLAG_EXCLUSIVE;
5474 __add_wait_queue_tail(&x->wait, &wait);
5475 do {
5476 if (signal_pending_state(state, current)) {
5477 timeout = -ERESTARTSYS;
5478 break;
5479 }
5480 __set_current_state(state);
5481 spin_unlock_irq(&x->wait.lock);
5482 timeout = schedule_timeout(timeout);
5483 spin_lock_irq(&x->wait.lock);
5484 } while (!x->done && timeout);
5485 __remove_wait_queue(&x->wait, &wait);
5486 if (!x->done)
5487 return timeout;
5488 }
5489 x->done--;
5490 return timeout ?: 1;
5491 }
5492
5493 static long __sched
5494 wait_for_common(struct completion *x, long timeout, int state)
5495 {
5496 might_sleep();
5497
5498 spin_lock_irq(&x->wait.lock);
5499 timeout = do_wait_for_common(x, timeout, state);
5500 spin_unlock_irq(&x->wait.lock);
5501 return timeout;
5502 }
5503
5504 /**
5505 * wait_for_completion: - waits for completion of a task
5506 * @x: holds the state of this particular completion
5507 *
5508 * This waits to be signaled for completion of a specific task. It is NOT
5509 * interruptible and there is no timeout.
5510 *
5511 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5512 * and interrupt capability. Also see complete().
5513 */
5514 void __sched wait_for_completion(struct completion *x)
5515 {
5516 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
5517 }
5518 EXPORT_SYMBOL(wait_for_completion);
5519
5520 /**
5521 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5522 * @x: holds the state of this particular completion
5523 * @timeout: timeout value in jiffies
5524 *
5525 * This waits for either a completion of a specific task to be signaled or for a
5526 * specified timeout to expire. The timeout is in jiffies. It is not
5527 * interruptible.
5528 */
5529 unsigned long __sched
5530 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
5531 {
5532 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
5533 }
5534 EXPORT_SYMBOL(wait_for_completion_timeout);
5535
5536 /**
5537 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5538 * @x: holds the state of this particular completion
5539 *
5540 * This waits for completion of a specific task to be signaled. It is
5541 * interruptible.
5542 */
5543 int __sched wait_for_completion_interruptible(struct completion *x)
5544 {
5545 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5546 if (t == -ERESTARTSYS)
5547 return t;
5548 return 0;
5549 }
5550 EXPORT_SYMBOL(wait_for_completion_interruptible);
5551
5552 /**
5553 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5554 * @x: holds the state of this particular completion
5555 * @timeout: timeout value in jiffies
5556 *
5557 * This waits for either a completion of a specific task to be signaled or for a
5558 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5559 */
5560 unsigned long __sched
5561 wait_for_completion_interruptible_timeout(struct completion *x,
5562 unsigned long timeout)
5563 {
5564 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
5565 }
5566 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
5567
5568 /**
5569 * wait_for_completion_killable: - waits for completion of a task (killable)
5570 * @x: holds the state of this particular completion
5571 *
5572 * This waits to be signaled for completion of a specific task. It can be
5573 * interrupted by a kill signal.
5574 */
5575 int __sched wait_for_completion_killable(struct completion *x)
5576 {
5577 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5578 if (t == -ERESTARTSYS)
5579 return t;
5580 return 0;
5581 }
5582 EXPORT_SYMBOL(wait_for_completion_killable);
5583
5584 /**
5585 * try_wait_for_completion - try to decrement a completion without blocking
5586 * @x: completion structure
5587 *
5588 * Returns: 0 if a decrement cannot be done without blocking
5589 * 1 if a decrement succeeded.
5590 *
5591 * If a completion is being used as a counting completion,
5592 * attempt to decrement the counter without blocking. This
5593 * enables us to avoid waiting if the resource the completion
5594 * is protecting is not available.
5595 */
5596 bool try_wait_for_completion(struct completion *x)
5597 {
5598 int ret = 1;
5599
5600 spin_lock_irq(&x->wait.lock);
5601 if (!x->done)
5602 ret = 0;
5603 else
5604 x->done--;
5605 spin_unlock_irq(&x->wait.lock);
5606 return ret;
5607 }
5608 EXPORT_SYMBOL(try_wait_for_completion);
5609
5610 /**
5611 * completion_done - Test to see if a completion has any waiters
5612 * @x: completion structure
5613 *
5614 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5615 * 1 if there are no waiters.
5616 *
5617 */
5618 bool completion_done(struct completion *x)
5619 {
5620 int ret = 1;
5621
5622 spin_lock_irq(&x->wait.lock);
5623 if (!x->done)
5624 ret = 0;
5625 spin_unlock_irq(&x->wait.lock);
5626 return ret;
5627 }
5628 EXPORT_SYMBOL(completion_done);
5629
5630 static long __sched
5631 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
5632 {
5633 unsigned long flags;
5634 wait_queue_t wait;
5635
5636 init_waitqueue_entry(&wait, current);
5637
5638 __set_current_state(state);
5639
5640 spin_lock_irqsave(&q->lock, flags);
5641 __add_wait_queue(q, &wait);
5642 spin_unlock(&q->lock);
5643 timeout = schedule_timeout(timeout);
5644 spin_lock_irq(&q->lock);
5645 __remove_wait_queue(q, &wait);
5646 spin_unlock_irqrestore(&q->lock, flags);
5647
5648 return timeout;
5649 }
5650
5651 void __sched interruptible_sleep_on(wait_queue_head_t *q)
5652 {
5653 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5654 }
5655 EXPORT_SYMBOL(interruptible_sleep_on);
5656
5657 long __sched
5658 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
5659 {
5660 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
5661 }
5662 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5663
5664 void __sched sleep_on(wait_queue_head_t *q)
5665 {
5666 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5667 }
5668 EXPORT_SYMBOL(sleep_on);
5669
5670 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
5671 {
5672 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
5673 }
5674 EXPORT_SYMBOL(sleep_on_timeout);
5675
5676 #ifdef CONFIG_RT_MUTEXES
5677
5678 /*
5679 * rt_mutex_setprio - set the current priority of a task
5680 * @p: task
5681 * @prio: prio value (kernel-internal form)
5682 *
5683 * This function changes the 'effective' priority of a task. It does
5684 * not touch ->normal_prio like __setscheduler().
5685 *
5686 * Used by the rt_mutex code to implement priority inheritance logic.
5687 */
5688 void rt_mutex_setprio(struct task_struct *p, int prio)
5689 {
5690 unsigned long flags;
5691 int oldprio, on_rq, running;
5692 struct rq *rq;
5693 const struct sched_class *prev_class = p->sched_class;
5694
5695 BUG_ON(prio < 0 || prio > MAX_PRIO);
5696
5697 rq = task_rq_lock(p, &flags);
5698 update_rq_clock(rq);
5699
5700 oldprio = p->prio;
5701 on_rq = p->se.on_rq;
5702 running = task_current(rq, p);
5703 if (on_rq)
5704 dequeue_task(rq, p, 0);
5705 if (running)
5706 p->sched_class->put_prev_task(rq, p);
5707
5708 if (rt_prio(prio))
5709 p->sched_class = &rt_sched_class;
5710 else
5711 p->sched_class = &fair_sched_class;
5712
5713 p->prio = prio;
5714
5715 if (running)
5716 p->sched_class->set_curr_task(rq);
5717 if (on_rq) {
5718 enqueue_task(rq, p, 0);
5719
5720 check_class_changed(rq, p, prev_class, oldprio, running);
5721 }
5722 task_rq_unlock(rq, &flags);
5723 }
5724
5725 #endif
5726
5727 void set_user_nice(struct task_struct *p, long nice)
5728 {
5729 int old_prio, delta, on_rq;
5730 unsigned long flags;
5731 struct rq *rq;
5732
5733 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5734 return;
5735 /*
5736 * We have to be careful, if called from sys_setpriority(),
5737 * the task might be in the middle of scheduling on another CPU.
5738 */
5739 rq = task_rq_lock(p, &flags);
5740 update_rq_clock(rq);
5741 /*
5742 * The RT priorities are set via sched_setscheduler(), but we still
5743 * allow the 'normal' nice value to be set - but as expected
5744 * it wont have any effect on scheduling until the task is
5745 * SCHED_FIFO/SCHED_RR:
5746 */
5747 if (task_has_rt_policy(p)) {
5748 p->static_prio = NICE_TO_PRIO(nice);
5749 goto out_unlock;
5750 }
5751 on_rq = p->se.on_rq;
5752 if (on_rq)
5753 dequeue_task(rq, p, 0);
5754
5755 p->static_prio = NICE_TO_PRIO(nice);
5756 set_load_weight(p);
5757 old_prio = p->prio;
5758 p->prio = effective_prio(p);
5759 delta = p->prio - old_prio;
5760
5761 if (on_rq) {
5762 enqueue_task(rq, p, 0);
5763 /*
5764 * If the task increased its priority or is running and
5765 * lowered its priority, then reschedule its CPU:
5766 */
5767 if (delta < 0 || (delta > 0 && task_running(rq, p)))
5768 resched_task(rq->curr);
5769 }
5770 out_unlock:
5771 task_rq_unlock(rq, &flags);
5772 }
5773 EXPORT_SYMBOL(set_user_nice);
5774
5775 /*
5776 * can_nice - check if a task can reduce its nice value
5777 * @p: task
5778 * @nice: nice value
5779 */
5780 int can_nice(const struct task_struct *p, const int nice)
5781 {
5782 /* convert nice value [19,-20] to rlimit style value [1,40] */
5783 int nice_rlim = 20 - nice;
5784
5785 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5786 capable(CAP_SYS_NICE));
5787 }
5788
5789 #ifdef __ARCH_WANT_SYS_NICE
5790
5791 /*
5792 * sys_nice - change the priority of the current process.
5793 * @increment: priority increment
5794 *
5795 * sys_setpriority is a more generic, but much slower function that
5796 * does similar things.
5797 */
5798 SYSCALL_DEFINE1(nice, int, increment)
5799 {
5800 long nice, retval;
5801
5802 /*
5803 * Setpriority might change our priority at the same moment.
5804 * We don't have to worry. Conceptually one call occurs first
5805 * and we have a single winner.
5806 */
5807 if (increment < -40)
5808 increment = -40;
5809 if (increment > 40)
5810 increment = 40;
5811
5812 nice = TASK_NICE(current) + increment;
5813 if (nice < -20)
5814 nice = -20;
5815 if (nice > 19)
5816 nice = 19;
5817
5818 if (increment < 0 && !can_nice(current, nice))
5819 return -EPERM;
5820
5821 retval = security_task_setnice(current, nice);
5822 if (retval)
5823 return retval;
5824
5825 set_user_nice(current, nice);
5826 return 0;
5827 }
5828
5829 #endif
5830
5831 /**
5832 * task_prio - return the priority value of a given task.
5833 * @p: the task in question.
5834 *
5835 * This is the priority value as seen by users in /proc.
5836 * RT tasks are offset by -200. Normal tasks are centered
5837 * around 0, value goes from -16 to +15.
5838 */
5839 int task_prio(const struct task_struct *p)
5840 {
5841 return p->prio - MAX_RT_PRIO;
5842 }
5843
5844 /**
5845 * task_nice - return the nice value of a given task.
5846 * @p: the task in question.
5847 */
5848 int task_nice(const struct task_struct *p)
5849 {
5850 return TASK_NICE(p);
5851 }
5852 EXPORT_SYMBOL(task_nice);
5853
5854 /**
5855 * idle_cpu - is a given cpu idle currently?
5856 * @cpu: the processor in question.
5857 */
5858 int idle_cpu(int cpu)
5859 {
5860 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5861 }
5862
5863 /**
5864 * idle_task - return the idle task for a given cpu.
5865 * @cpu: the processor in question.
5866 */
5867 struct task_struct *idle_task(int cpu)
5868 {
5869 return cpu_rq(cpu)->idle;
5870 }
5871
5872 /**
5873 * find_process_by_pid - find a process with a matching PID value.
5874 * @pid: the pid in question.
5875 */
5876 static struct task_struct *find_process_by_pid(pid_t pid)
5877 {
5878 return pid ? find_task_by_vpid(pid) : current;
5879 }
5880
5881 /* Actually do priority change: must hold rq lock. */
5882 static void
5883 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
5884 {
5885 BUG_ON(p->se.on_rq);
5886
5887 p->policy = policy;
5888 switch (p->policy) {
5889 case SCHED_NORMAL:
5890 case SCHED_BATCH:
5891 case SCHED_IDLE:
5892 p->sched_class = &fair_sched_class;
5893 break;
5894 case SCHED_FIFO:
5895 case SCHED_RR:
5896 p->sched_class = &rt_sched_class;
5897 break;
5898 }
5899
5900 p->rt_priority = prio;
5901 p->normal_prio = normal_prio(p);
5902 /* we are holding p->pi_lock already */
5903 p->prio = rt_mutex_getprio(p);
5904 set_load_weight(p);
5905 }
5906
5907 /*
5908 * check the target process has a UID that matches the current process's
5909 */
5910 static bool check_same_owner(struct task_struct *p)
5911 {
5912 const struct cred *cred = current_cred(), *pcred;
5913 bool match;
5914
5915 rcu_read_lock();
5916 pcred = __task_cred(p);
5917 match = (cred->euid == pcred->euid ||
5918 cred->euid == pcred->uid);
5919 rcu_read_unlock();
5920 return match;
5921 }
5922
5923 static int __sched_setscheduler(struct task_struct *p, int policy,
5924 struct sched_param *param, bool user)
5925 {
5926 int retval, oldprio, oldpolicy = -1, on_rq, running;
5927 unsigned long flags;
5928 const struct sched_class *prev_class = p->sched_class;
5929 struct rq *rq;
5930
5931 /* may grab non-irq protected spin_locks */
5932 BUG_ON(in_interrupt());
5933 recheck:
5934 /* double check policy once rq lock held */
5935 if (policy < 0)
5936 policy = oldpolicy = p->policy;
5937 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
5938 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5939 policy != SCHED_IDLE)
5940 return -EINVAL;
5941 /*
5942 * Valid priorities for SCHED_FIFO and SCHED_RR are
5943 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5944 * SCHED_BATCH and SCHED_IDLE is 0.
5945 */
5946 if (param->sched_priority < 0 ||
5947 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5948 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
5949 return -EINVAL;
5950 if (rt_policy(policy) != (param->sched_priority != 0))
5951 return -EINVAL;
5952
5953 /*
5954 * Allow unprivileged RT tasks to decrease priority:
5955 */
5956 if (user && !capable(CAP_SYS_NICE)) {
5957 if (rt_policy(policy)) {
5958 unsigned long rlim_rtprio;
5959
5960 if (!lock_task_sighand(p, &flags))
5961 return -ESRCH;
5962 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5963 unlock_task_sighand(p, &flags);
5964
5965 /* can't set/change the rt policy */
5966 if (policy != p->policy && !rlim_rtprio)
5967 return -EPERM;
5968
5969 /* can't increase priority */
5970 if (param->sched_priority > p->rt_priority &&
5971 param->sched_priority > rlim_rtprio)
5972 return -EPERM;
5973 }
5974 /*
5975 * Like positive nice levels, dont allow tasks to
5976 * move out of SCHED_IDLE either:
5977 */
5978 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5979 return -EPERM;
5980
5981 /* can't change other user's priorities */
5982 if (!check_same_owner(p))
5983 return -EPERM;
5984 }
5985
5986 if (user) {
5987 #ifdef CONFIG_RT_GROUP_SCHED
5988 /*
5989 * Do not allow realtime tasks into groups that have no runtime
5990 * assigned.
5991 */
5992 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5993 task_group(p)->rt_bandwidth.rt_runtime == 0)
5994 return -EPERM;
5995 #endif
5996
5997 retval = security_task_setscheduler(p, policy, param);
5998 if (retval)
5999 return retval;
6000 }
6001
6002 /*
6003 * make sure no PI-waiters arrive (or leave) while we are
6004 * changing the priority of the task:
6005 */
6006 spin_lock_irqsave(&p->pi_lock, flags);
6007 /*
6008 * To be able to change p->policy safely, the apropriate
6009 * runqueue lock must be held.
6010 */
6011 rq = __task_rq_lock(p);
6012 /* recheck policy now with rq lock held */
6013 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6014 policy = oldpolicy = -1;
6015 __task_rq_unlock(rq);
6016 spin_unlock_irqrestore(&p->pi_lock, flags);
6017 goto recheck;
6018 }
6019 update_rq_clock(rq);
6020 on_rq = p->se.on_rq;
6021 running = task_current(rq, p);
6022 if (on_rq)
6023 deactivate_task(rq, p, 0);
6024 if (running)
6025 p->sched_class->put_prev_task(rq, p);
6026
6027 oldprio = p->prio;
6028 __setscheduler(rq, p, policy, param->sched_priority);
6029
6030 if (running)
6031 p->sched_class->set_curr_task(rq);
6032 if (on_rq) {
6033 activate_task(rq, p, 0);
6034
6035 check_class_changed(rq, p, prev_class, oldprio, running);
6036 }
6037 __task_rq_unlock(rq);
6038 spin_unlock_irqrestore(&p->pi_lock, flags);
6039
6040 rt_mutex_adjust_pi(p);
6041
6042 return 0;
6043 }
6044
6045 /**
6046 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6047 * @p: the task in question.
6048 * @policy: new policy.
6049 * @param: structure containing the new RT priority.
6050 *
6051 * NOTE that the task may be already dead.
6052 */
6053 int sched_setscheduler(struct task_struct *p, int policy,
6054 struct sched_param *param)
6055 {
6056 return __sched_setscheduler(p, policy, param, true);
6057 }
6058 EXPORT_SYMBOL_GPL(sched_setscheduler);
6059
6060 /**
6061 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6062 * @p: the task in question.
6063 * @policy: new policy.
6064 * @param: structure containing the new RT priority.
6065 *
6066 * Just like sched_setscheduler, only don't bother checking if the
6067 * current context has permission. For example, this is needed in
6068 * stop_machine(): we create temporary high priority worker threads,
6069 * but our caller might not have that capability.
6070 */
6071 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6072 struct sched_param *param)
6073 {
6074 return __sched_setscheduler(p, policy, param, false);
6075 }
6076
6077 static int
6078 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
6079 {
6080 struct sched_param lparam;
6081 struct task_struct *p;
6082 int retval;
6083
6084 if (!param || pid < 0)
6085 return -EINVAL;
6086 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6087 return -EFAULT;
6088
6089 rcu_read_lock();
6090 retval = -ESRCH;
6091 p = find_process_by_pid(pid);
6092 if (p != NULL)
6093 retval = sched_setscheduler(p, policy, &lparam);
6094 rcu_read_unlock();
6095
6096 return retval;
6097 }
6098
6099 /**
6100 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6101 * @pid: the pid in question.
6102 * @policy: new policy.
6103 * @param: structure containing the new RT priority.
6104 */
6105 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6106 struct sched_param __user *, param)
6107 {
6108 /* negative values for policy are not valid */
6109 if (policy < 0)
6110 return -EINVAL;
6111
6112 return do_sched_setscheduler(pid, policy, param);
6113 }
6114
6115 /**
6116 * sys_sched_setparam - set/change the RT priority of a thread
6117 * @pid: the pid in question.
6118 * @param: structure containing the new RT priority.
6119 */
6120 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
6121 {
6122 return do_sched_setscheduler(pid, -1, param);
6123 }
6124
6125 /**
6126 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6127 * @pid: the pid in question.
6128 */
6129 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
6130 {
6131 struct task_struct *p;
6132 int retval;
6133
6134 if (pid < 0)
6135 return -EINVAL;
6136
6137 retval = -ESRCH;
6138 read_lock(&tasklist_lock);
6139 p = find_process_by_pid(pid);
6140 if (p) {
6141 retval = security_task_getscheduler(p);
6142 if (!retval)
6143 retval = p->policy;
6144 }
6145 read_unlock(&tasklist_lock);
6146 return retval;
6147 }
6148
6149 /**
6150 * sys_sched_getscheduler - get the RT priority of a thread
6151 * @pid: the pid in question.
6152 * @param: structure containing the RT priority.
6153 */
6154 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
6155 {
6156 struct sched_param lp;
6157 struct task_struct *p;
6158 int retval;
6159
6160 if (!param || pid < 0)
6161 return -EINVAL;
6162
6163 read_lock(&tasklist_lock);
6164 p = find_process_by_pid(pid);
6165 retval = -ESRCH;
6166 if (!p)
6167 goto out_unlock;
6168
6169 retval = security_task_getscheduler(p);
6170 if (retval)
6171 goto out_unlock;
6172
6173 lp.sched_priority = p->rt_priority;
6174 read_unlock(&tasklist_lock);
6175
6176 /*
6177 * This one might sleep, we cannot do it with a spinlock held ...
6178 */
6179 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6180
6181 return retval;
6182
6183 out_unlock:
6184 read_unlock(&tasklist_lock);
6185 return retval;
6186 }
6187
6188 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
6189 {
6190 cpumask_var_t cpus_allowed, new_mask;
6191 struct task_struct *p;
6192 int retval;
6193
6194 get_online_cpus();
6195 read_lock(&tasklist_lock);
6196
6197 p = find_process_by_pid(pid);
6198 if (!p) {
6199 read_unlock(&tasklist_lock);
6200 put_online_cpus();
6201 return -ESRCH;
6202 }
6203
6204 /*
6205 * It is not safe to call set_cpus_allowed with the
6206 * tasklist_lock held. We will bump the task_struct's
6207 * usage count and then drop tasklist_lock.
6208 */
6209 get_task_struct(p);
6210 read_unlock(&tasklist_lock);
6211
6212 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6213 retval = -ENOMEM;
6214 goto out_put_task;
6215 }
6216 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6217 retval = -ENOMEM;
6218 goto out_free_cpus_allowed;
6219 }
6220 retval = -EPERM;
6221 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
6222 goto out_unlock;
6223
6224 retval = security_task_setscheduler(p, 0, NULL);
6225 if (retval)
6226 goto out_unlock;
6227
6228 cpuset_cpus_allowed(p, cpus_allowed);
6229 cpumask_and(new_mask, in_mask, cpus_allowed);
6230 again:
6231 retval = set_cpus_allowed_ptr(p, new_mask);
6232
6233 if (!retval) {
6234 cpuset_cpus_allowed(p, cpus_allowed);
6235 if (!cpumask_subset(new_mask, cpus_allowed)) {
6236 /*
6237 * We must have raced with a concurrent cpuset
6238 * update. Just reset the cpus_allowed to the
6239 * cpuset's cpus_allowed
6240 */
6241 cpumask_copy(new_mask, cpus_allowed);
6242 goto again;
6243 }
6244 }
6245 out_unlock:
6246 free_cpumask_var(new_mask);
6247 out_free_cpus_allowed:
6248 free_cpumask_var(cpus_allowed);
6249 out_put_task:
6250 put_task_struct(p);
6251 put_online_cpus();
6252 return retval;
6253 }
6254
6255 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6256 struct cpumask *new_mask)
6257 {
6258 if (len < cpumask_size())
6259 cpumask_clear(new_mask);
6260 else if (len > cpumask_size())
6261 len = cpumask_size();
6262
6263 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6264 }
6265
6266 /**
6267 * sys_sched_setaffinity - set the cpu affinity of a process
6268 * @pid: pid of the process
6269 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6270 * @user_mask_ptr: user-space pointer to the new cpu mask
6271 */
6272 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6273 unsigned long __user *, user_mask_ptr)
6274 {
6275 cpumask_var_t new_mask;
6276 int retval;
6277
6278 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6279 return -ENOMEM;
6280
6281 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6282 if (retval == 0)
6283 retval = sched_setaffinity(pid, new_mask);
6284 free_cpumask_var(new_mask);
6285 return retval;
6286 }
6287
6288 long sched_getaffinity(pid_t pid, struct cpumask *mask)
6289 {
6290 struct task_struct *p;
6291 int retval;
6292
6293 get_online_cpus();
6294 read_lock(&tasklist_lock);
6295
6296 retval = -ESRCH;
6297 p = find_process_by_pid(pid);
6298 if (!p)
6299 goto out_unlock;
6300
6301 retval = security_task_getscheduler(p);
6302 if (retval)
6303 goto out_unlock;
6304
6305 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
6306
6307 out_unlock:
6308 read_unlock(&tasklist_lock);
6309 put_online_cpus();
6310
6311 return retval;
6312 }
6313
6314 /**
6315 * sys_sched_getaffinity - get the cpu affinity of a process
6316 * @pid: pid of the process
6317 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6318 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6319 */
6320 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6321 unsigned long __user *, user_mask_ptr)
6322 {
6323 int ret;
6324 cpumask_var_t mask;
6325
6326 if (len < cpumask_size())
6327 return -EINVAL;
6328
6329 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6330 return -ENOMEM;
6331
6332 ret = sched_getaffinity(pid, mask);
6333 if (ret == 0) {
6334 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6335 ret = -EFAULT;
6336 else
6337 ret = cpumask_size();
6338 }
6339 free_cpumask_var(mask);
6340
6341 return ret;
6342 }
6343
6344 /**
6345 * sys_sched_yield - yield the current processor to other threads.
6346 *
6347 * This function yields the current CPU to other tasks. If there are no
6348 * other threads running on this CPU then this function will return.
6349 */
6350 SYSCALL_DEFINE0(sched_yield)
6351 {
6352 struct rq *rq = this_rq_lock();
6353
6354 schedstat_inc(rq, yld_count);
6355 current->sched_class->yield_task(rq);
6356
6357 /*
6358 * Since we are going to call schedule() anyway, there's
6359 * no need to preempt or enable interrupts:
6360 */
6361 __release(rq->lock);
6362 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
6363 _raw_spin_unlock(&rq->lock);
6364 preempt_enable_no_resched();
6365
6366 schedule();
6367
6368 return 0;
6369 }
6370
6371 static void __cond_resched(void)
6372 {
6373 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6374 __might_sleep(__FILE__, __LINE__);
6375 #endif
6376 /*
6377 * The BKS might be reacquired before we have dropped
6378 * PREEMPT_ACTIVE, which could trigger a second
6379 * cond_resched() call.
6380 */
6381 do {
6382 add_preempt_count(PREEMPT_ACTIVE);
6383 schedule();
6384 sub_preempt_count(PREEMPT_ACTIVE);
6385 } while (need_resched());
6386 }
6387
6388 int __sched _cond_resched(void)
6389 {
6390 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
6391 system_state == SYSTEM_RUNNING) {
6392 __cond_resched();
6393 return 1;
6394 }
6395 return 0;
6396 }
6397 EXPORT_SYMBOL(_cond_resched);
6398
6399 /*
6400 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
6401 * call schedule, and on return reacquire the lock.
6402 *
6403 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
6404 * operations here to prevent schedule() from being called twice (once via
6405 * spin_unlock(), once by hand).
6406 */
6407 int cond_resched_lock(spinlock_t *lock)
6408 {
6409 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6410 int ret = 0;
6411
6412 if (spin_needbreak(lock) || resched) {
6413 spin_unlock(lock);
6414 if (resched && need_resched())
6415 __cond_resched();
6416 else
6417 cpu_relax();
6418 ret = 1;
6419 spin_lock(lock);
6420 }
6421 return ret;
6422 }
6423 EXPORT_SYMBOL(cond_resched_lock);
6424
6425 int __sched cond_resched_softirq(void)
6426 {
6427 BUG_ON(!in_softirq());
6428
6429 if (need_resched() && system_state == SYSTEM_RUNNING) {
6430 local_bh_enable();
6431 __cond_resched();
6432 local_bh_disable();
6433 return 1;
6434 }
6435 return 0;
6436 }
6437 EXPORT_SYMBOL(cond_resched_softirq);
6438
6439 /**
6440 * yield - yield the current processor to other threads.
6441 *
6442 * This is a shortcut for kernel-space yielding - it marks the
6443 * thread runnable and calls sys_sched_yield().
6444 */
6445 void __sched yield(void)
6446 {
6447 set_current_state(TASK_RUNNING);
6448 sys_sched_yield();
6449 }
6450 EXPORT_SYMBOL(yield);
6451
6452 /*
6453 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6454 * that process accounting knows that this is a task in IO wait state.
6455 *
6456 * But don't do that if it is a deliberate, throttling IO wait (this task
6457 * has set its backing_dev_info: the queue against which it should throttle)
6458 */
6459 void __sched io_schedule(void)
6460 {
6461 struct rq *rq = &__raw_get_cpu_var(runqueues);
6462
6463 delayacct_blkio_start();
6464 atomic_inc(&rq->nr_iowait);
6465 schedule();
6466 atomic_dec(&rq->nr_iowait);
6467 delayacct_blkio_end();
6468 }
6469 EXPORT_SYMBOL(io_schedule);
6470
6471 long __sched io_schedule_timeout(long timeout)
6472 {
6473 struct rq *rq = &__raw_get_cpu_var(runqueues);
6474 long ret;
6475
6476 delayacct_blkio_start();
6477 atomic_inc(&rq->nr_iowait);
6478 ret = schedule_timeout(timeout);
6479 atomic_dec(&rq->nr_iowait);
6480 delayacct_blkio_end();
6481 return ret;
6482 }
6483
6484 /**
6485 * sys_sched_get_priority_max - return maximum RT priority.
6486 * @policy: scheduling class.
6487 *
6488 * this syscall returns the maximum rt_priority that can be used
6489 * by a given scheduling class.
6490 */
6491 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
6492 {
6493 int ret = -EINVAL;
6494
6495 switch (policy) {
6496 case SCHED_FIFO:
6497 case SCHED_RR:
6498 ret = MAX_USER_RT_PRIO-1;
6499 break;
6500 case SCHED_NORMAL:
6501 case SCHED_BATCH:
6502 case SCHED_IDLE:
6503 ret = 0;
6504 break;
6505 }
6506 return ret;
6507 }
6508
6509 /**
6510 * sys_sched_get_priority_min - return minimum RT priority.
6511 * @policy: scheduling class.
6512 *
6513 * this syscall returns the minimum rt_priority that can be used
6514 * by a given scheduling class.
6515 */
6516 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
6517 {
6518 int ret = -EINVAL;
6519
6520 switch (policy) {
6521 case SCHED_FIFO:
6522 case SCHED_RR:
6523 ret = 1;
6524 break;
6525 case SCHED_NORMAL:
6526 case SCHED_BATCH:
6527 case SCHED_IDLE:
6528 ret = 0;
6529 }
6530 return ret;
6531 }
6532
6533 /**
6534 * sys_sched_rr_get_interval - return the default timeslice of a process.
6535 * @pid: pid of the process.
6536 * @interval: userspace pointer to the timeslice value.
6537 *
6538 * this syscall writes the default timeslice value of a given process
6539 * into the user-space timespec buffer. A value of '0' means infinity.
6540 */
6541 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6542 struct timespec __user *, interval)
6543 {
6544 struct task_struct *p;
6545 unsigned int time_slice;
6546 int retval;
6547 struct timespec t;
6548
6549 if (pid < 0)
6550 return -EINVAL;
6551
6552 retval = -ESRCH;
6553 read_lock(&tasklist_lock);
6554 p = find_process_by_pid(pid);
6555 if (!p)
6556 goto out_unlock;
6557
6558 retval = security_task_getscheduler(p);
6559 if (retval)
6560 goto out_unlock;
6561
6562 /*
6563 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
6564 * tasks that are on an otherwise idle runqueue:
6565 */
6566 time_slice = 0;
6567 if (p->policy == SCHED_RR) {
6568 time_slice = DEF_TIMESLICE;
6569 } else if (p->policy != SCHED_FIFO) {
6570 struct sched_entity *se = &p->se;
6571 unsigned long flags;
6572 struct rq *rq;
6573
6574 rq = task_rq_lock(p, &flags);
6575 if (rq->cfs.load.weight)
6576 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
6577 task_rq_unlock(rq, &flags);
6578 }
6579 read_unlock(&tasklist_lock);
6580 jiffies_to_timespec(time_slice, &t);
6581 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
6582 return retval;
6583
6584 out_unlock:
6585 read_unlock(&tasklist_lock);
6586 return retval;
6587 }
6588
6589 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6590
6591 void sched_show_task(struct task_struct *p)
6592 {
6593 unsigned long free = 0;
6594 unsigned state;
6595
6596 state = p->state ? __ffs(p->state) + 1 : 0;
6597 printk(KERN_INFO "%-13.13s %c", p->comm,
6598 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6599 #if BITS_PER_LONG == 32
6600 if (state == TASK_RUNNING)
6601 printk(KERN_CONT " running ");
6602 else
6603 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
6604 #else
6605 if (state == TASK_RUNNING)
6606 printk(KERN_CONT " running task ");
6607 else
6608 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
6609 #endif
6610 #ifdef CONFIG_DEBUG_STACK_USAGE
6611 free = stack_not_used(p);
6612 #endif
6613 printk(KERN_CONT "%5lu %5d %6d\n", free,
6614 task_pid_nr(p), task_pid_nr(p->real_parent));
6615
6616 show_stack(p, NULL);
6617 }
6618
6619 void show_state_filter(unsigned long state_filter)
6620 {
6621 struct task_struct *g, *p;
6622
6623 #if BITS_PER_LONG == 32
6624 printk(KERN_INFO
6625 " task PC stack pid father\n");
6626 #else
6627 printk(KERN_INFO
6628 " task PC stack pid father\n");
6629 #endif
6630 read_lock(&tasklist_lock);
6631 do_each_thread(g, p) {
6632 /*
6633 * reset the NMI-timeout, listing all files on a slow
6634 * console might take alot of time:
6635 */
6636 touch_nmi_watchdog();
6637 if (!state_filter || (p->state & state_filter))
6638 sched_show_task(p);
6639 } while_each_thread(g, p);
6640
6641 touch_all_softlockup_watchdogs();
6642
6643 #ifdef CONFIG_SCHED_DEBUG
6644 sysrq_sched_debug_show();
6645 #endif
6646 read_unlock(&tasklist_lock);
6647 /*
6648 * Only show locks if all tasks are dumped:
6649 */
6650 if (state_filter == -1)
6651 debug_show_all_locks();
6652 }
6653
6654 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6655 {
6656 idle->sched_class = &idle_sched_class;
6657 }
6658
6659 /**
6660 * init_idle - set up an idle thread for a given CPU
6661 * @idle: task in question
6662 * @cpu: cpu the idle task belongs to
6663 *
6664 * NOTE: this function does not set the idle thread's NEED_RESCHED
6665 * flag, to make booting more robust.
6666 */
6667 void __cpuinit init_idle(struct task_struct *idle, int cpu)
6668 {
6669 struct rq *rq = cpu_rq(cpu);
6670 unsigned long flags;
6671
6672 spin_lock_irqsave(&rq->lock, flags);
6673
6674 __sched_fork(idle);
6675 idle->se.exec_start = sched_clock();
6676
6677 idle->prio = idle->normal_prio = MAX_PRIO;
6678 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6679 __set_task_cpu(idle, cpu);
6680
6681 rq->curr = rq->idle = idle;
6682 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6683 idle->oncpu = 1;
6684 #endif
6685 spin_unlock_irqrestore(&rq->lock, flags);
6686
6687 /* Set the preempt count _outside_ the spinlocks! */
6688 #if defined(CONFIG_PREEMPT)
6689 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6690 #else
6691 task_thread_info(idle)->preempt_count = 0;
6692 #endif
6693 /*
6694 * The idle tasks have their own, simple scheduling class:
6695 */
6696 idle->sched_class = &idle_sched_class;
6697 ftrace_graph_init_task(idle);
6698 }
6699
6700 /*
6701 * In a system that switches off the HZ timer nohz_cpu_mask
6702 * indicates which cpus entered this state. This is used
6703 * in the rcu update to wait only for active cpus. For system
6704 * which do not switch off the HZ timer nohz_cpu_mask should
6705 * always be CPU_BITS_NONE.
6706 */
6707 cpumask_var_t nohz_cpu_mask;
6708
6709 /*
6710 * Increase the granularity value when there are more CPUs,
6711 * because with more CPUs the 'effective latency' as visible
6712 * to users decreases. But the relationship is not linear,
6713 * so pick a second-best guess by going with the log2 of the
6714 * number of CPUs.
6715 *
6716 * This idea comes from the SD scheduler of Con Kolivas:
6717 */
6718 static inline void sched_init_granularity(void)
6719 {
6720 unsigned int factor = 1 + ilog2(num_online_cpus());
6721 const unsigned long limit = 200000000;
6722
6723 sysctl_sched_min_granularity *= factor;
6724 if (sysctl_sched_min_granularity > limit)
6725 sysctl_sched_min_granularity = limit;
6726
6727 sysctl_sched_latency *= factor;
6728 if (sysctl_sched_latency > limit)
6729 sysctl_sched_latency = limit;
6730
6731 sysctl_sched_wakeup_granularity *= factor;
6732
6733 sysctl_sched_shares_ratelimit *= factor;
6734 }
6735
6736 #ifdef CONFIG_SMP
6737 /*
6738 * This is how migration works:
6739 *
6740 * 1) we queue a struct migration_req structure in the source CPU's
6741 * runqueue and wake up that CPU's migration thread.
6742 * 2) we down() the locked semaphore => thread blocks.
6743 * 3) migration thread wakes up (implicitly it forces the migrated
6744 * thread off the CPU)
6745 * 4) it gets the migration request and checks whether the migrated
6746 * task is still in the wrong runqueue.
6747 * 5) if it's in the wrong runqueue then the migration thread removes
6748 * it and puts it into the right queue.
6749 * 6) migration thread up()s the semaphore.
6750 * 7) we wake up and the migration is done.
6751 */
6752
6753 /*
6754 * Change a given task's CPU affinity. Migrate the thread to a
6755 * proper CPU and schedule it away if the CPU it's executing on
6756 * is removed from the allowed bitmask.
6757 *
6758 * NOTE: the caller must have a valid reference to the task, the
6759 * task must not exit() & deallocate itself prematurely. The
6760 * call is not atomic; no spinlocks may be held.
6761 */
6762 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
6763 {
6764 struct migration_req req;
6765 unsigned long flags;
6766 struct rq *rq;
6767 int ret = 0;
6768
6769 rq = task_rq_lock(p, &flags);
6770 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
6771 ret = -EINVAL;
6772 goto out;
6773 }
6774
6775 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
6776 !cpumask_equal(&p->cpus_allowed, new_mask))) {
6777 ret = -EINVAL;
6778 goto out;
6779 }
6780
6781 if (p->sched_class->set_cpus_allowed)
6782 p->sched_class->set_cpus_allowed(p, new_mask);
6783 else {
6784 cpumask_copy(&p->cpus_allowed, new_mask);
6785 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
6786 }
6787
6788 /* Can the task run on the task's current CPU? If so, we're done */
6789 if (cpumask_test_cpu(task_cpu(p), new_mask))
6790 goto out;
6791
6792 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
6793 /* Need help from migration thread: drop lock and wait. */
6794 task_rq_unlock(rq, &flags);
6795 wake_up_process(rq->migration_thread);
6796 wait_for_completion(&req.done);
6797 tlb_migrate_finish(p->mm);
6798 return 0;
6799 }
6800 out:
6801 task_rq_unlock(rq, &flags);
6802
6803 return ret;
6804 }
6805 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
6806
6807 /*
6808 * Move (not current) task off this cpu, onto dest cpu. We're doing
6809 * this because either it can't run here any more (set_cpus_allowed()
6810 * away from this CPU, or CPU going down), or because we're
6811 * attempting to rebalance this task on exec (sched_exec).
6812 *
6813 * So we race with normal scheduler movements, but that's OK, as long
6814 * as the task is no longer on this CPU.
6815 *
6816 * Returns non-zero if task was successfully migrated.
6817 */
6818 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
6819 {
6820 struct rq *rq_dest, *rq_src;
6821 int ret = 0, on_rq;
6822
6823 if (unlikely(!cpu_active(dest_cpu)))
6824 return ret;
6825
6826 rq_src = cpu_rq(src_cpu);
6827 rq_dest = cpu_rq(dest_cpu);
6828
6829 double_rq_lock(rq_src, rq_dest);
6830 /* Already moved. */
6831 if (task_cpu(p) != src_cpu)
6832 goto done;
6833 /* Affinity changed (again). */
6834 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6835 goto fail;
6836
6837 on_rq = p->se.on_rq;
6838 if (on_rq)
6839 deactivate_task(rq_src, p, 0);
6840
6841 set_task_cpu(p, dest_cpu);
6842 if (on_rq) {
6843 activate_task(rq_dest, p, 0);
6844 check_preempt_curr(rq_dest, p, 0);
6845 }
6846 done:
6847 ret = 1;
6848 fail:
6849 double_rq_unlock(rq_src, rq_dest);
6850 return ret;
6851 }
6852
6853 /*
6854 * migration_thread - this is a highprio system thread that performs
6855 * thread migration by bumping thread off CPU then 'pushing' onto
6856 * another runqueue.
6857 */
6858 static int migration_thread(void *data)
6859 {
6860 int cpu = (long)data;
6861 struct rq *rq;
6862
6863 rq = cpu_rq(cpu);
6864 BUG_ON(rq->migration_thread != current);
6865
6866 set_current_state(TASK_INTERRUPTIBLE);
6867 while (!kthread_should_stop()) {
6868 struct migration_req *req;
6869 struct list_head *head;
6870
6871 spin_lock_irq(&rq->lock);
6872
6873 if (cpu_is_offline(cpu)) {
6874 spin_unlock_irq(&rq->lock);
6875 goto wait_to_die;
6876 }
6877
6878 if (rq->active_balance) {
6879 active_load_balance(rq, cpu);
6880 rq->active_balance = 0;
6881 }
6882
6883 head = &rq->migration_queue;
6884
6885 if (list_empty(head)) {
6886 spin_unlock_irq(&rq->lock);
6887 schedule();
6888 set_current_state(TASK_INTERRUPTIBLE);
6889 continue;
6890 }
6891 req = list_entry(head->next, struct migration_req, list);
6892 list_del_init(head->next);
6893
6894 spin_unlock(&rq->lock);
6895 __migrate_task(req->task, cpu, req->dest_cpu);
6896 local_irq_enable();
6897
6898 complete(&req->done);
6899 }
6900 __set_current_state(TASK_RUNNING);
6901 return 0;
6902
6903 wait_to_die:
6904 /* Wait for kthread_stop */
6905 set_current_state(TASK_INTERRUPTIBLE);
6906 while (!kthread_should_stop()) {
6907 schedule();
6908 set_current_state(TASK_INTERRUPTIBLE);
6909 }
6910 __set_current_state(TASK_RUNNING);
6911 return 0;
6912 }
6913
6914 #ifdef CONFIG_HOTPLUG_CPU
6915
6916 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6917 {
6918 int ret;
6919
6920 local_irq_disable();
6921 ret = __migrate_task(p, src_cpu, dest_cpu);
6922 local_irq_enable();
6923 return ret;
6924 }
6925
6926 /*
6927 * Figure out where task on dead CPU should go, use force if necessary.
6928 */
6929 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
6930 {
6931 int dest_cpu;
6932 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
6933
6934 again:
6935 /* Look for allowed, online CPU in same node. */
6936 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
6937 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6938 goto move;
6939
6940 /* Any allowed, online CPU? */
6941 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
6942 if (dest_cpu < nr_cpu_ids)
6943 goto move;
6944
6945 /* No more Mr. Nice Guy. */
6946 if (dest_cpu >= nr_cpu_ids) {
6947 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
6948 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
6949
6950 /*
6951 * Don't tell them about moving exiting tasks or
6952 * kernel threads (both mm NULL), since they never
6953 * leave kernel.
6954 */
6955 if (p->mm && printk_ratelimit()) {
6956 printk(KERN_INFO "process %d (%s) no "
6957 "longer affine to cpu%d\n",
6958 task_pid_nr(p), p->comm, dead_cpu);
6959 }
6960 }
6961
6962 move:
6963 /* It can have affinity changed while we were choosing. */
6964 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
6965 goto again;
6966 }
6967
6968 /*
6969 * While a dead CPU has no uninterruptible tasks queued at this point,
6970 * it might still have a nonzero ->nr_uninterruptible counter, because
6971 * for performance reasons the counter is not stricly tracking tasks to
6972 * their home CPUs. So we just add the counter to another CPU's counter,
6973 * to keep the global sum constant after CPU-down:
6974 */
6975 static void migrate_nr_uninterruptible(struct rq *rq_src)
6976 {
6977 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
6978 unsigned long flags;
6979
6980 local_irq_save(flags);
6981 double_rq_lock(rq_src, rq_dest);
6982 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6983 rq_src->nr_uninterruptible = 0;
6984 double_rq_unlock(rq_src, rq_dest);
6985 local_irq_restore(flags);
6986 }
6987
6988 /* Run through task list and migrate tasks from the dead cpu. */
6989 static void migrate_live_tasks(int src_cpu)
6990 {
6991 struct task_struct *p, *t;
6992
6993 read_lock(&tasklist_lock);
6994
6995 do_each_thread(t, p) {
6996 if (p == current)
6997 continue;
6998
6999 if (task_cpu(p) == src_cpu)
7000 move_task_off_dead_cpu(src_cpu, p);
7001 } while_each_thread(t, p);
7002
7003 read_unlock(&tasklist_lock);
7004 }
7005
7006 /*
7007 * Schedules idle task to be the next runnable task on current CPU.
7008 * It does so by boosting its priority to highest possible.
7009 * Used by CPU offline code.
7010 */
7011 void sched_idle_next(void)
7012 {
7013 int this_cpu = smp_processor_id();
7014 struct rq *rq = cpu_rq(this_cpu);
7015 struct task_struct *p = rq->idle;
7016 unsigned long flags;
7017
7018 /* cpu has to be offline */
7019 BUG_ON(cpu_online(this_cpu));
7020
7021 /*
7022 * Strictly not necessary since rest of the CPUs are stopped by now
7023 * and interrupts disabled on the current cpu.
7024 */
7025 spin_lock_irqsave(&rq->lock, flags);
7026
7027 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7028
7029 update_rq_clock(rq);
7030 activate_task(rq, p, 0);
7031
7032 spin_unlock_irqrestore(&rq->lock, flags);
7033 }
7034
7035 /*
7036 * Ensures that the idle task is using init_mm right before its cpu goes
7037 * offline.
7038 */
7039 void idle_task_exit(void)
7040 {
7041 struct mm_struct *mm = current->active_mm;
7042
7043 BUG_ON(cpu_online(smp_processor_id()));
7044
7045 if (mm != &init_mm)
7046 switch_mm(mm, &init_mm, current);
7047 mmdrop(mm);
7048 }
7049
7050 /* called under rq->lock with disabled interrupts */
7051 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
7052 {
7053 struct rq *rq = cpu_rq(dead_cpu);
7054
7055 /* Must be exiting, otherwise would be on tasklist. */
7056 BUG_ON(!p->exit_state);
7057
7058 /* Cannot have done final schedule yet: would have vanished. */
7059 BUG_ON(p->state == TASK_DEAD);
7060
7061 get_task_struct(p);
7062
7063 /*
7064 * Drop lock around migration; if someone else moves it,
7065 * that's OK. No task can be added to this CPU, so iteration is
7066 * fine.
7067 */
7068 spin_unlock_irq(&rq->lock);
7069 move_task_off_dead_cpu(dead_cpu, p);
7070 spin_lock_irq(&rq->lock);
7071
7072 put_task_struct(p);
7073 }
7074
7075 /* release_task() removes task from tasklist, so we won't find dead tasks. */
7076 static void migrate_dead_tasks(unsigned int dead_cpu)
7077 {
7078 struct rq *rq = cpu_rq(dead_cpu);
7079 struct task_struct *next;
7080
7081 for ( ; ; ) {
7082 if (!rq->nr_running)
7083 break;
7084 update_rq_clock(rq);
7085 next = pick_next_task(rq);
7086 if (!next)
7087 break;
7088 next->sched_class->put_prev_task(rq, next);
7089 migrate_dead(dead_cpu, next);
7090
7091 }
7092 }
7093 #endif /* CONFIG_HOTPLUG_CPU */
7094
7095 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7096
7097 static struct ctl_table sd_ctl_dir[] = {
7098 {
7099 .procname = "sched_domain",
7100 .mode = 0555,
7101 },
7102 {0, },
7103 };
7104
7105 static struct ctl_table sd_ctl_root[] = {
7106 {
7107 .ctl_name = CTL_KERN,
7108 .procname = "kernel",
7109 .mode = 0555,
7110 .child = sd_ctl_dir,
7111 },
7112 {0, },
7113 };
7114
7115 static struct ctl_table *sd_alloc_ctl_entry(int n)
7116 {
7117 struct ctl_table *entry =
7118 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
7119
7120 return entry;
7121 }
7122
7123 static void sd_free_ctl_entry(struct ctl_table **tablep)
7124 {
7125 struct ctl_table *entry;
7126
7127 /*
7128 * In the intermediate directories, both the child directory and
7129 * procname are dynamically allocated and could fail but the mode
7130 * will always be set. In the lowest directory the names are
7131 * static strings and all have proc handlers.
7132 */
7133 for (entry = *tablep; entry->mode; entry++) {
7134 if (entry->child)
7135 sd_free_ctl_entry(&entry->child);
7136 if (entry->proc_handler == NULL)
7137 kfree(entry->procname);
7138 }
7139
7140 kfree(*tablep);
7141 *tablep = NULL;
7142 }
7143
7144 static void
7145 set_table_entry(struct ctl_table *entry,
7146 const char *procname, void *data, int maxlen,
7147 mode_t mode, proc_handler *proc_handler)
7148 {
7149 entry->procname = procname;
7150 entry->data = data;
7151 entry->maxlen = maxlen;
7152 entry->mode = mode;
7153 entry->proc_handler = proc_handler;
7154 }
7155
7156 static struct ctl_table *
7157 sd_alloc_ctl_domain_table(struct sched_domain *sd)
7158 {
7159 struct ctl_table *table = sd_alloc_ctl_entry(13);
7160
7161 if (table == NULL)
7162 return NULL;
7163
7164 set_table_entry(&table[0], "min_interval", &sd->min_interval,
7165 sizeof(long), 0644, proc_doulongvec_minmax);
7166 set_table_entry(&table[1], "max_interval", &sd->max_interval,
7167 sizeof(long), 0644, proc_doulongvec_minmax);
7168 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
7169 sizeof(int), 0644, proc_dointvec_minmax);
7170 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
7171 sizeof(int), 0644, proc_dointvec_minmax);
7172 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
7173 sizeof(int), 0644, proc_dointvec_minmax);
7174 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
7175 sizeof(int), 0644, proc_dointvec_minmax);
7176 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
7177 sizeof(int), 0644, proc_dointvec_minmax);
7178 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
7179 sizeof(int), 0644, proc_dointvec_minmax);
7180 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
7181 sizeof(int), 0644, proc_dointvec_minmax);
7182 set_table_entry(&table[9], "cache_nice_tries",
7183 &sd->cache_nice_tries,
7184 sizeof(int), 0644, proc_dointvec_minmax);
7185 set_table_entry(&table[10], "flags", &sd->flags,
7186 sizeof(int), 0644, proc_dointvec_minmax);
7187 set_table_entry(&table[11], "name", sd->name,
7188 CORENAME_MAX_SIZE, 0444, proc_dostring);
7189 /* &table[12] is terminator */
7190
7191 return table;
7192 }
7193
7194 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7195 {
7196 struct ctl_table *entry, *table;
7197 struct sched_domain *sd;
7198 int domain_num = 0, i;
7199 char buf[32];
7200
7201 for_each_domain(cpu, sd)
7202 domain_num++;
7203 entry = table = sd_alloc_ctl_entry(domain_num + 1);
7204 if (table == NULL)
7205 return NULL;
7206
7207 i = 0;
7208 for_each_domain(cpu, sd) {
7209 snprintf(buf, 32, "domain%d", i);
7210 entry->procname = kstrdup(buf, GFP_KERNEL);
7211 entry->mode = 0555;
7212 entry->child = sd_alloc_ctl_domain_table(sd);
7213 entry++;
7214 i++;
7215 }
7216 return table;
7217 }
7218
7219 static struct ctl_table_header *sd_sysctl_header;
7220 static void register_sched_domain_sysctl(void)
7221 {
7222 int i, cpu_num = num_online_cpus();
7223 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7224 char buf[32];
7225
7226 WARN_ON(sd_ctl_dir[0].child);
7227 sd_ctl_dir[0].child = entry;
7228
7229 if (entry == NULL)
7230 return;
7231
7232 for_each_online_cpu(i) {
7233 snprintf(buf, 32, "cpu%d", i);
7234 entry->procname = kstrdup(buf, GFP_KERNEL);
7235 entry->mode = 0555;
7236 entry->child = sd_alloc_ctl_cpu_table(i);
7237 entry++;
7238 }
7239
7240 WARN_ON(sd_sysctl_header);
7241 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7242 }
7243
7244 /* may be called multiple times per register */
7245 static void unregister_sched_domain_sysctl(void)
7246 {
7247 if (sd_sysctl_header)
7248 unregister_sysctl_table(sd_sysctl_header);
7249 sd_sysctl_header = NULL;
7250 if (sd_ctl_dir[0].child)
7251 sd_free_ctl_entry(&sd_ctl_dir[0].child);
7252 }
7253 #else
7254 static void register_sched_domain_sysctl(void)
7255 {
7256 }
7257 static void unregister_sched_domain_sysctl(void)
7258 {
7259 }
7260 #endif
7261
7262 static void set_rq_online(struct rq *rq)
7263 {
7264 if (!rq->online) {
7265 const struct sched_class *class;
7266
7267 cpumask_set_cpu(rq->cpu, rq->rd->online);
7268 rq->online = 1;
7269
7270 for_each_class(class) {
7271 if (class->rq_online)
7272 class->rq_online(rq);
7273 }
7274 }
7275 }
7276
7277 static void set_rq_offline(struct rq *rq)
7278 {
7279 if (rq->online) {
7280 const struct sched_class *class;
7281
7282 for_each_class(class) {
7283 if (class->rq_offline)
7284 class->rq_offline(rq);
7285 }
7286
7287 cpumask_clear_cpu(rq->cpu, rq->rd->online);
7288 rq->online = 0;
7289 }
7290 }
7291
7292 /*
7293 * migration_call - callback that gets triggered when a CPU is added.
7294 * Here we can start up the necessary migration thread for the new CPU.
7295 */
7296 static int __cpuinit
7297 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
7298 {
7299 struct task_struct *p;
7300 int cpu = (long)hcpu;
7301 unsigned long flags;
7302 struct rq *rq;
7303
7304 switch (action) {
7305
7306 case CPU_UP_PREPARE:
7307 case CPU_UP_PREPARE_FROZEN:
7308 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
7309 if (IS_ERR(p))
7310 return NOTIFY_BAD;
7311 kthread_bind(p, cpu);
7312 /* Must be high prio: stop_machine expects to yield to it. */
7313 rq = task_rq_lock(p, &flags);
7314 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7315 task_rq_unlock(rq, &flags);
7316 cpu_rq(cpu)->migration_thread = p;
7317 break;
7318
7319 case CPU_ONLINE:
7320 case CPU_ONLINE_FROZEN:
7321 /* Strictly unnecessary, as first user will wake it. */
7322 wake_up_process(cpu_rq(cpu)->migration_thread);
7323
7324 /* Update our root-domain */
7325 rq = cpu_rq(cpu);
7326 spin_lock_irqsave(&rq->lock, flags);
7327 if (rq->rd) {
7328 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7329
7330 set_rq_online(rq);
7331 }
7332 spin_unlock_irqrestore(&rq->lock, flags);
7333 break;
7334
7335 #ifdef CONFIG_HOTPLUG_CPU
7336 case CPU_UP_CANCELED:
7337 case CPU_UP_CANCELED_FROZEN:
7338 if (!cpu_rq(cpu)->migration_thread)
7339 break;
7340 /* Unbind it from offline cpu so it can run. Fall thru. */
7341 kthread_bind(cpu_rq(cpu)->migration_thread,
7342 cpumask_any(cpu_online_mask));
7343 kthread_stop(cpu_rq(cpu)->migration_thread);
7344 cpu_rq(cpu)->migration_thread = NULL;
7345 break;
7346
7347 case CPU_DEAD:
7348 case CPU_DEAD_FROZEN:
7349 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
7350 migrate_live_tasks(cpu);
7351 rq = cpu_rq(cpu);
7352 kthread_stop(rq->migration_thread);
7353 rq->migration_thread = NULL;
7354 /* Idle task back to normal (off runqueue, low prio) */
7355 spin_lock_irq(&rq->lock);
7356 update_rq_clock(rq);
7357 deactivate_task(rq, rq->idle, 0);
7358 rq->idle->static_prio = MAX_PRIO;
7359 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7360 rq->idle->sched_class = &idle_sched_class;
7361 migrate_dead_tasks(cpu);
7362 spin_unlock_irq(&rq->lock);
7363 cpuset_unlock();
7364 migrate_nr_uninterruptible(rq);
7365 BUG_ON(rq->nr_running != 0);
7366
7367 /*
7368 * No need to migrate the tasks: it was best-effort if
7369 * they didn't take sched_hotcpu_mutex. Just wake up
7370 * the requestors.
7371 */
7372 spin_lock_irq(&rq->lock);
7373 while (!list_empty(&rq->migration_queue)) {
7374 struct migration_req *req;
7375
7376 req = list_entry(rq->migration_queue.next,
7377 struct migration_req, list);
7378 list_del_init(&req->list);
7379 spin_unlock_irq(&rq->lock);
7380 complete(&req->done);
7381 spin_lock_irq(&rq->lock);
7382 }
7383 spin_unlock_irq(&rq->lock);
7384 break;
7385
7386 case CPU_DYING:
7387 case CPU_DYING_FROZEN:
7388 /* Update our root-domain */
7389 rq = cpu_rq(cpu);
7390 spin_lock_irqsave(&rq->lock, flags);
7391 if (rq->rd) {
7392 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7393 set_rq_offline(rq);
7394 }
7395 spin_unlock_irqrestore(&rq->lock, flags);
7396 break;
7397 #endif
7398 }
7399 return NOTIFY_OK;
7400 }
7401
7402 /* Register at highest priority so that task migration (migrate_all_tasks)
7403 * happens before everything else.
7404 */
7405 static struct notifier_block __cpuinitdata migration_notifier = {
7406 .notifier_call = migration_call,
7407 .priority = 10
7408 };
7409
7410 static int __init migration_init(void)
7411 {
7412 void *cpu = (void *)(long)smp_processor_id();
7413 int err;
7414
7415 /* Start one for the boot CPU: */
7416 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7417 BUG_ON(err == NOTIFY_BAD);
7418 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7419 register_cpu_notifier(&migration_notifier);
7420
7421 return err;
7422 }
7423 early_initcall(migration_init);
7424 #endif
7425
7426 #ifdef CONFIG_SMP
7427
7428 #ifdef CONFIG_SCHED_DEBUG
7429
7430 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7431 struct cpumask *groupmask)
7432 {
7433 struct sched_group *group = sd->groups;
7434 char str[256];
7435
7436 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7437 cpumask_clear(groupmask);
7438
7439 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7440
7441 if (!(sd->flags & SD_LOAD_BALANCE)) {
7442 printk("does not load-balance\n");
7443 if (sd->parent)
7444 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7445 " has parent");
7446 return -1;
7447 }
7448
7449 printk(KERN_CONT "span %s level %s\n", str, sd->name);
7450
7451 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
7452 printk(KERN_ERR "ERROR: domain->span does not contain "
7453 "CPU%d\n", cpu);
7454 }
7455 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
7456 printk(KERN_ERR "ERROR: domain->groups does not contain"
7457 " CPU%d\n", cpu);
7458 }
7459
7460 printk(KERN_DEBUG "%*s groups:", level + 1, "");
7461 do {
7462 if (!group) {
7463 printk("\n");
7464 printk(KERN_ERR "ERROR: group is NULL\n");
7465 break;
7466 }
7467
7468 if (!group->__cpu_power) {
7469 printk(KERN_CONT "\n");
7470 printk(KERN_ERR "ERROR: domain->cpu_power not "
7471 "set\n");
7472 break;
7473 }
7474
7475 if (!cpumask_weight(sched_group_cpus(group))) {
7476 printk(KERN_CONT "\n");
7477 printk(KERN_ERR "ERROR: empty group\n");
7478 break;
7479 }
7480
7481 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
7482 printk(KERN_CONT "\n");
7483 printk(KERN_ERR "ERROR: repeated CPUs\n");
7484 break;
7485 }
7486
7487 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
7488
7489 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7490 printk(KERN_CONT " %s (__cpu_power = %d)", str,
7491 group->__cpu_power);
7492
7493 group = group->next;
7494 } while (group != sd->groups);
7495 printk(KERN_CONT "\n");
7496
7497 if (!cpumask_equal(sched_domain_span(sd), groupmask))
7498 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
7499
7500 if (sd->parent &&
7501 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
7502 printk(KERN_ERR "ERROR: parent span is not a superset "
7503 "of domain->span\n");
7504 return 0;
7505 }
7506
7507 static void sched_domain_debug(struct sched_domain *sd, int cpu)
7508 {
7509 cpumask_var_t groupmask;
7510 int level = 0;
7511
7512 if (!sd) {
7513 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7514 return;
7515 }
7516
7517 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7518
7519 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7520 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7521 return;
7522 }
7523
7524 for (;;) {
7525 if (sched_domain_debug_one(sd, cpu, level, groupmask))
7526 break;
7527 level++;
7528 sd = sd->parent;
7529 if (!sd)
7530 break;
7531 }
7532 free_cpumask_var(groupmask);
7533 }
7534 #else /* !CONFIG_SCHED_DEBUG */
7535 # define sched_domain_debug(sd, cpu) do { } while (0)
7536 #endif /* CONFIG_SCHED_DEBUG */
7537
7538 static int sd_degenerate(struct sched_domain *sd)
7539 {
7540 if (cpumask_weight(sched_domain_span(sd)) == 1)
7541 return 1;
7542
7543 /* Following flags need at least 2 groups */
7544 if (sd->flags & (SD_LOAD_BALANCE |
7545 SD_BALANCE_NEWIDLE |
7546 SD_BALANCE_FORK |
7547 SD_BALANCE_EXEC |
7548 SD_SHARE_CPUPOWER |
7549 SD_SHARE_PKG_RESOURCES)) {
7550 if (sd->groups != sd->groups->next)
7551 return 0;
7552 }
7553
7554 /* Following flags don't use groups */
7555 if (sd->flags & (SD_WAKE_IDLE |
7556 SD_WAKE_AFFINE |
7557 SD_WAKE_BALANCE))
7558 return 0;
7559
7560 return 1;
7561 }
7562
7563 static int
7564 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7565 {
7566 unsigned long cflags = sd->flags, pflags = parent->flags;
7567
7568 if (sd_degenerate(parent))
7569 return 1;
7570
7571 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7572 return 0;
7573
7574 /* Does parent contain flags not in child? */
7575 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
7576 if (cflags & SD_WAKE_AFFINE)
7577 pflags &= ~SD_WAKE_BALANCE;
7578 /* Flags needing groups don't count if only 1 group in parent */
7579 if (parent->groups == parent->groups->next) {
7580 pflags &= ~(SD_LOAD_BALANCE |
7581 SD_BALANCE_NEWIDLE |
7582 SD_BALANCE_FORK |
7583 SD_BALANCE_EXEC |
7584 SD_SHARE_CPUPOWER |
7585 SD_SHARE_PKG_RESOURCES);
7586 if (nr_node_ids == 1)
7587 pflags &= ~SD_SERIALIZE;
7588 }
7589 if (~cflags & pflags)
7590 return 0;
7591
7592 return 1;
7593 }
7594
7595 static void free_rootdomain(struct root_domain *rd)
7596 {
7597 cpupri_cleanup(&rd->cpupri);
7598
7599 free_cpumask_var(rd->rto_mask);
7600 free_cpumask_var(rd->online);
7601 free_cpumask_var(rd->span);
7602 kfree(rd);
7603 }
7604
7605 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7606 {
7607 struct root_domain *old_rd = NULL;
7608 unsigned long flags;
7609
7610 spin_lock_irqsave(&rq->lock, flags);
7611
7612 if (rq->rd) {
7613 old_rd = rq->rd;
7614
7615 if (cpumask_test_cpu(rq->cpu, old_rd->online))
7616 set_rq_offline(rq);
7617
7618 cpumask_clear_cpu(rq->cpu, old_rd->span);
7619
7620 /*
7621 * If we dont want to free the old_rt yet then
7622 * set old_rd to NULL to skip the freeing later
7623 * in this function:
7624 */
7625 if (!atomic_dec_and_test(&old_rd->refcount))
7626 old_rd = NULL;
7627 }
7628
7629 atomic_inc(&rd->refcount);
7630 rq->rd = rd;
7631
7632 cpumask_set_cpu(rq->cpu, rd->span);
7633 if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
7634 set_rq_online(rq);
7635
7636 spin_unlock_irqrestore(&rq->lock, flags);
7637
7638 if (old_rd)
7639 free_rootdomain(old_rd);
7640 }
7641
7642 static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
7643 {
7644 memset(rd, 0, sizeof(*rd));
7645
7646 if (bootmem) {
7647 alloc_bootmem_cpumask_var(&def_root_domain.span);
7648 alloc_bootmem_cpumask_var(&def_root_domain.online);
7649 alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
7650 cpupri_init(&rd->cpupri, true);
7651 return 0;
7652 }
7653
7654 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
7655 goto out;
7656 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
7657 goto free_span;
7658 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
7659 goto free_online;
7660
7661 if (cpupri_init(&rd->cpupri, false) != 0)
7662 goto free_rto_mask;
7663 return 0;
7664
7665 free_rto_mask:
7666 free_cpumask_var(rd->rto_mask);
7667 free_online:
7668 free_cpumask_var(rd->online);
7669 free_span:
7670 free_cpumask_var(rd->span);
7671 out:
7672 return -ENOMEM;
7673 }
7674
7675 static void init_defrootdomain(void)
7676 {
7677 init_rootdomain(&def_root_domain, true);
7678
7679 atomic_set(&def_root_domain.refcount, 1);
7680 }
7681
7682 static struct root_domain *alloc_rootdomain(void)
7683 {
7684 struct root_domain *rd;
7685
7686 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7687 if (!rd)
7688 return NULL;
7689
7690 if (init_rootdomain(rd, false) != 0) {
7691 kfree(rd);
7692 return NULL;
7693 }
7694
7695 return rd;
7696 }
7697
7698 /*
7699 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
7700 * hold the hotplug lock.
7701 */
7702 static void
7703 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
7704 {
7705 struct rq *rq = cpu_rq(cpu);
7706 struct sched_domain *tmp;
7707
7708 /* Remove the sched domains which do not contribute to scheduling. */
7709 for (tmp = sd; tmp; ) {
7710 struct sched_domain *parent = tmp->parent;
7711 if (!parent)
7712 break;
7713
7714 if (sd_parent_degenerate(tmp, parent)) {
7715 tmp->parent = parent->parent;
7716 if (parent->parent)
7717 parent->parent->child = tmp;
7718 } else
7719 tmp = tmp->parent;
7720 }
7721
7722 if (sd && sd_degenerate(sd)) {
7723 sd = sd->parent;
7724 if (sd)
7725 sd->child = NULL;
7726 }
7727
7728 sched_domain_debug(sd, cpu);
7729
7730 rq_attach_root(rq, rd);
7731 rcu_assign_pointer(rq->sd, sd);
7732 }
7733
7734 /* cpus with isolated domains */
7735 static cpumask_var_t cpu_isolated_map;
7736
7737 /* Setup the mask of cpus configured for isolated domains */
7738 static int __init isolated_cpu_setup(char *str)
7739 {
7740 cpulist_parse(str, cpu_isolated_map);
7741 return 1;
7742 }
7743
7744 __setup("isolcpus=", isolated_cpu_setup);
7745
7746 /*
7747 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
7748 * to a function which identifies what group(along with sched group) a CPU
7749 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
7750 * (due to the fact that we keep track of groups covered with a struct cpumask).
7751 *
7752 * init_sched_build_groups will build a circular linked list of the groups
7753 * covered by the given span, and will set each group's ->cpumask correctly,
7754 * and ->cpu_power to 0.
7755 */
7756 static void
7757 init_sched_build_groups(const struct cpumask *span,
7758 const struct cpumask *cpu_map,
7759 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7760 struct sched_group **sg,
7761 struct cpumask *tmpmask),
7762 struct cpumask *covered, struct cpumask *tmpmask)
7763 {
7764 struct sched_group *first = NULL, *last = NULL;
7765 int i;
7766
7767 cpumask_clear(covered);
7768
7769 for_each_cpu(i, span) {
7770 struct sched_group *sg;
7771 int group = group_fn(i, cpu_map, &sg, tmpmask);
7772 int j;
7773
7774 if (cpumask_test_cpu(i, covered))
7775 continue;
7776
7777 cpumask_clear(sched_group_cpus(sg));
7778 sg->__cpu_power = 0;
7779
7780 for_each_cpu(j, span) {
7781 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
7782 continue;
7783
7784 cpumask_set_cpu(j, covered);
7785 cpumask_set_cpu(j, sched_group_cpus(sg));
7786 }
7787 if (!first)
7788 first = sg;
7789 if (last)
7790 last->next = sg;
7791 last = sg;
7792 }
7793 last->next = first;
7794 }
7795
7796 #define SD_NODES_PER_DOMAIN 16
7797
7798 #ifdef CONFIG_NUMA
7799
7800 /**
7801 * find_next_best_node - find the next node to include in a sched_domain
7802 * @node: node whose sched_domain we're building
7803 * @used_nodes: nodes already in the sched_domain
7804 *
7805 * Find the next node to include in a given scheduling domain. Simply
7806 * finds the closest node not already in the @used_nodes map.
7807 *
7808 * Should use nodemask_t.
7809 */
7810 static int find_next_best_node(int node, nodemask_t *used_nodes)
7811 {
7812 int i, n, val, min_val, best_node = 0;
7813
7814 min_val = INT_MAX;
7815
7816 for (i = 0; i < nr_node_ids; i++) {
7817 /* Start at @node */
7818 n = (node + i) % nr_node_ids;
7819
7820 if (!nr_cpus_node(n))
7821 continue;
7822
7823 /* Skip already used nodes */
7824 if (node_isset(n, *used_nodes))
7825 continue;
7826
7827 /* Simple min distance search */
7828 val = node_distance(node, n);
7829
7830 if (val < min_val) {
7831 min_val = val;
7832 best_node = n;
7833 }
7834 }
7835
7836 node_set(best_node, *used_nodes);
7837 return best_node;
7838 }
7839
7840 /**
7841 * sched_domain_node_span - get a cpumask for a node's sched_domain
7842 * @node: node whose cpumask we're constructing
7843 * @span: resulting cpumask
7844 *
7845 * Given a node, construct a good cpumask for its sched_domain to span. It
7846 * should be one that prevents unnecessary balancing, but also spreads tasks
7847 * out optimally.
7848 */
7849 static void sched_domain_node_span(int node, struct cpumask *span)
7850 {
7851 nodemask_t used_nodes;
7852 int i;
7853
7854 cpumask_clear(span);
7855 nodes_clear(used_nodes);
7856
7857 cpumask_or(span, span, cpumask_of_node(node));
7858 node_set(node, used_nodes);
7859
7860 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7861 int next_node = find_next_best_node(node, &used_nodes);
7862
7863 cpumask_or(span, span, cpumask_of_node(next_node));
7864 }
7865 }
7866 #endif /* CONFIG_NUMA */
7867
7868 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7869
7870 /*
7871 * The cpus mask in sched_group and sched_domain hangs off the end.
7872 * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
7873 * for nr_cpu_ids < CONFIG_NR_CPUS.
7874 */
7875 struct static_sched_group {
7876 struct sched_group sg;
7877 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
7878 };
7879
7880 struct static_sched_domain {
7881 struct sched_domain sd;
7882 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
7883 };
7884
7885 /*
7886 * SMT sched-domains:
7887 */
7888 #ifdef CONFIG_SCHED_SMT
7889 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
7890 static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
7891
7892 static int
7893 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
7894 struct sched_group **sg, struct cpumask *unused)
7895 {
7896 if (sg)
7897 *sg = &per_cpu(sched_group_cpus, cpu).sg;
7898 return cpu;
7899 }
7900 #endif /* CONFIG_SCHED_SMT */
7901
7902 /*
7903 * multi-core sched-domains:
7904 */
7905 #ifdef CONFIG_SCHED_MC
7906 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
7907 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
7908 #endif /* CONFIG_SCHED_MC */
7909
7910 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
7911 static int
7912 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7913 struct sched_group **sg, struct cpumask *mask)
7914 {
7915 int group;
7916
7917 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
7918 group = cpumask_first(mask);
7919 if (sg)
7920 *sg = &per_cpu(sched_group_core, group).sg;
7921 return group;
7922 }
7923 #elif defined(CONFIG_SCHED_MC)
7924 static int
7925 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7926 struct sched_group **sg, struct cpumask *unused)
7927 {
7928 if (sg)
7929 *sg = &per_cpu(sched_group_core, cpu).sg;
7930 return cpu;
7931 }
7932 #endif
7933
7934 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
7935 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
7936
7937 static int
7938 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
7939 struct sched_group **sg, struct cpumask *mask)
7940 {
7941 int group;
7942 #ifdef CONFIG_SCHED_MC
7943 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
7944 group = cpumask_first(mask);
7945 #elif defined(CONFIG_SCHED_SMT)
7946 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
7947 group = cpumask_first(mask);
7948 #else
7949 group = cpu;
7950 #endif
7951 if (sg)
7952 *sg = &per_cpu(sched_group_phys, group).sg;
7953 return group;
7954 }
7955
7956 #ifdef CONFIG_NUMA
7957 /*
7958 * The init_sched_build_groups can't handle what we want to do with node
7959 * groups, so roll our own. Now each node has its own list of groups which
7960 * gets dynamically allocated.
7961 */
7962 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
7963 static struct sched_group ***sched_group_nodes_bycpu;
7964
7965 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
7966 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
7967
7968 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
7969 struct sched_group **sg,
7970 struct cpumask *nodemask)
7971 {
7972 int group;
7973
7974 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
7975 group = cpumask_first(nodemask);
7976
7977 if (sg)
7978 *sg = &per_cpu(sched_group_allnodes, group).sg;
7979 return group;
7980 }
7981
7982 static void init_numa_sched_groups_power(struct sched_group *group_head)
7983 {
7984 struct sched_group *sg = group_head;
7985 int j;
7986
7987 if (!sg)
7988 return;
7989 do {
7990 for_each_cpu(j, sched_group_cpus(sg)) {
7991 struct sched_domain *sd;
7992
7993 sd = &per_cpu(phys_domains, j).sd;
7994 if (j != group_first_cpu(sd->groups)) {
7995 /*
7996 * Only add "power" once for each
7997 * physical package.
7998 */
7999 continue;
8000 }
8001
8002 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
8003 }
8004 sg = sg->next;
8005 } while (sg != group_head);
8006 }
8007 #endif /* CONFIG_NUMA */
8008
8009 #ifdef CONFIG_NUMA
8010 /* Free memory allocated for various sched_group structures */
8011 static void free_sched_groups(const struct cpumask *cpu_map,
8012 struct cpumask *nodemask)
8013 {
8014 int cpu, i;
8015
8016 for_each_cpu(cpu, cpu_map) {
8017 struct sched_group **sched_group_nodes
8018 = sched_group_nodes_bycpu[cpu];
8019
8020 if (!sched_group_nodes)
8021 continue;
8022
8023 for (i = 0; i < nr_node_ids; i++) {
8024 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8025
8026 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8027 if (cpumask_empty(nodemask))
8028 continue;
8029
8030 if (sg == NULL)
8031 continue;
8032 sg = sg->next;
8033 next_sg:
8034 oldsg = sg;
8035 sg = sg->next;
8036 kfree(oldsg);
8037 if (oldsg != sched_group_nodes[i])
8038 goto next_sg;
8039 }
8040 kfree(sched_group_nodes);
8041 sched_group_nodes_bycpu[cpu] = NULL;
8042 }
8043 }
8044 #else /* !CONFIG_NUMA */
8045 static void free_sched_groups(const struct cpumask *cpu_map,
8046 struct cpumask *nodemask)
8047 {
8048 }
8049 #endif /* CONFIG_NUMA */
8050
8051 /*
8052 * Initialize sched groups cpu_power.
8053 *
8054 * cpu_power indicates the capacity of sched group, which is used while
8055 * distributing the load between different sched groups in a sched domain.
8056 * Typically cpu_power for all the groups in a sched domain will be same unless
8057 * there are asymmetries in the topology. If there are asymmetries, group
8058 * having more cpu_power will pickup more load compared to the group having
8059 * less cpu_power.
8060 *
8061 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
8062 * the maximum number of tasks a group can handle in the presence of other idle
8063 * or lightly loaded groups in the same sched domain.
8064 */
8065 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8066 {
8067 struct sched_domain *child;
8068 struct sched_group *group;
8069
8070 WARN_ON(!sd || !sd->groups);
8071
8072 if (cpu != group_first_cpu(sd->groups))
8073 return;
8074
8075 child = sd->child;
8076
8077 sd->groups->__cpu_power = 0;
8078
8079 /*
8080 * For perf policy, if the groups in child domain share resources
8081 * (for example cores sharing some portions of the cache hierarchy
8082 * or SMT), then set this domain groups cpu_power such that each group
8083 * can handle only one task, when there are other idle groups in the
8084 * same sched domain.
8085 */
8086 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
8087 (child->flags &
8088 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
8089 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
8090 return;
8091 }
8092
8093 /*
8094 * add cpu_power of each child group to this groups cpu_power
8095 */
8096 group = child->groups;
8097 do {
8098 sg_inc_cpu_power(sd->groups, group->__cpu_power);
8099 group = group->next;
8100 } while (group != child->groups);
8101 }
8102
8103 /*
8104 * Initializers for schedule domains
8105 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8106 */
8107
8108 #ifdef CONFIG_SCHED_DEBUG
8109 # define SD_INIT_NAME(sd, type) sd->name = #type
8110 #else
8111 # define SD_INIT_NAME(sd, type) do { } while (0)
8112 #endif
8113
8114 #define SD_INIT(sd, type) sd_init_##type(sd)
8115
8116 #define SD_INIT_FUNC(type) \
8117 static noinline void sd_init_##type(struct sched_domain *sd) \
8118 { \
8119 memset(sd, 0, sizeof(*sd)); \
8120 *sd = SD_##type##_INIT; \
8121 sd->level = SD_LV_##type; \
8122 SD_INIT_NAME(sd, type); \
8123 }
8124
8125 SD_INIT_FUNC(CPU)
8126 #ifdef CONFIG_NUMA
8127 SD_INIT_FUNC(ALLNODES)
8128 SD_INIT_FUNC(NODE)
8129 #endif
8130 #ifdef CONFIG_SCHED_SMT
8131 SD_INIT_FUNC(SIBLING)
8132 #endif
8133 #ifdef CONFIG_SCHED_MC
8134 SD_INIT_FUNC(MC)
8135 #endif
8136
8137 static int default_relax_domain_level = -1;
8138
8139 static int __init setup_relax_domain_level(char *str)
8140 {
8141 unsigned long val;
8142
8143 val = simple_strtoul(str, NULL, 0);
8144 if (val < SD_LV_MAX)
8145 default_relax_domain_level = val;
8146
8147 return 1;
8148 }
8149 __setup("relax_domain_level=", setup_relax_domain_level);
8150
8151 static void set_domain_attribute(struct sched_domain *sd,
8152 struct sched_domain_attr *attr)
8153 {
8154 int request;
8155
8156 if (!attr || attr->relax_domain_level < 0) {
8157 if (default_relax_domain_level < 0)
8158 return;
8159 else
8160 request = default_relax_domain_level;
8161 } else
8162 request = attr->relax_domain_level;
8163 if (request < sd->level) {
8164 /* turn off idle balance on this domain */
8165 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
8166 } else {
8167 /* turn on idle balance on this domain */
8168 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
8169 }
8170 }
8171
8172 /*
8173 * Build sched domains for a given set of cpus and attach the sched domains
8174 * to the individual cpus
8175 */
8176 static int __build_sched_domains(const struct cpumask *cpu_map,
8177 struct sched_domain_attr *attr)
8178 {
8179 int i, err = -ENOMEM;
8180 struct root_domain *rd;
8181 cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
8182 tmpmask;
8183 #ifdef CONFIG_NUMA
8184 cpumask_var_t domainspan, covered, notcovered;
8185 struct sched_group **sched_group_nodes = NULL;
8186 int sd_allnodes = 0;
8187
8188 if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
8189 goto out;
8190 if (!alloc_cpumask_var(&covered, GFP_KERNEL))
8191 goto free_domainspan;
8192 if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
8193 goto free_covered;
8194 #endif
8195
8196 if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
8197 goto free_notcovered;
8198 if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
8199 goto free_nodemask;
8200 if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
8201 goto free_this_sibling_map;
8202 if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
8203 goto free_this_core_map;
8204 if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
8205 goto free_send_covered;
8206
8207 #ifdef CONFIG_NUMA
8208 /*
8209 * Allocate the per-node list of sched groups
8210 */
8211 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
8212 GFP_KERNEL);
8213 if (!sched_group_nodes) {
8214 printk(KERN_WARNING "Can not alloc sched group node list\n");
8215 goto free_tmpmask;
8216 }
8217 #endif
8218
8219 rd = alloc_rootdomain();
8220 if (!rd) {
8221 printk(KERN_WARNING "Cannot alloc root domain\n");
8222 goto free_sched_groups;
8223 }
8224
8225 #ifdef CONFIG_NUMA
8226 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
8227 #endif
8228
8229 /*
8230 * Set up domains for cpus specified by the cpu_map.
8231 */
8232 for_each_cpu(i, cpu_map) {
8233 struct sched_domain *sd = NULL, *p;
8234
8235 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
8236
8237 #ifdef CONFIG_NUMA
8238 if (cpumask_weight(cpu_map) >
8239 SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
8240 sd = &per_cpu(allnodes_domains, i).sd;
8241 SD_INIT(sd, ALLNODES);
8242 set_domain_attribute(sd, attr);
8243 cpumask_copy(sched_domain_span(sd), cpu_map);
8244 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
8245 p = sd;
8246 sd_allnodes = 1;
8247 } else
8248 p = NULL;
8249
8250 sd = &per_cpu(node_domains, i).sd;
8251 SD_INIT(sd, NODE);
8252 set_domain_attribute(sd, attr);
8253 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8254 sd->parent = p;
8255 if (p)
8256 p->child = sd;
8257 cpumask_and(sched_domain_span(sd),
8258 sched_domain_span(sd), cpu_map);
8259 #endif
8260
8261 p = sd;
8262 sd = &per_cpu(phys_domains, i).sd;
8263 SD_INIT(sd, CPU);
8264 set_domain_attribute(sd, attr);
8265 cpumask_copy(sched_domain_span(sd), nodemask);
8266 sd->parent = p;
8267 if (p)
8268 p->child = sd;
8269 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
8270
8271 #ifdef CONFIG_SCHED_MC
8272 p = sd;
8273 sd = &per_cpu(core_domains, i).sd;
8274 SD_INIT(sd, MC);
8275 set_domain_attribute(sd, attr);
8276 cpumask_and(sched_domain_span(sd), cpu_map,
8277 cpu_coregroup_mask(i));
8278 sd->parent = p;
8279 p->child = sd;
8280 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
8281 #endif
8282
8283 #ifdef CONFIG_SCHED_SMT
8284 p = sd;
8285 sd = &per_cpu(cpu_domains, i).sd;
8286 SD_INIT(sd, SIBLING);
8287 set_domain_attribute(sd, attr);
8288 cpumask_and(sched_domain_span(sd),
8289 topology_thread_cpumask(i), cpu_map);
8290 sd->parent = p;
8291 p->child = sd;
8292 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
8293 #endif
8294 }
8295
8296 #ifdef CONFIG_SCHED_SMT
8297 /* Set up CPU (sibling) groups */
8298 for_each_cpu(i, cpu_map) {
8299 cpumask_and(this_sibling_map,
8300 topology_thread_cpumask(i), cpu_map);
8301 if (i != cpumask_first(this_sibling_map))
8302 continue;
8303
8304 init_sched_build_groups(this_sibling_map, cpu_map,
8305 &cpu_to_cpu_group,
8306 send_covered, tmpmask);
8307 }
8308 #endif
8309
8310 #ifdef CONFIG_SCHED_MC
8311 /* Set up multi-core groups */
8312 for_each_cpu(i, cpu_map) {
8313 cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
8314 if (i != cpumask_first(this_core_map))
8315 continue;
8316
8317 init_sched_build_groups(this_core_map, cpu_map,
8318 &cpu_to_core_group,
8319 send_covered, tmpmask);
8320 }
8321 #endif
8322
8323 /* Set up physical groups */
8324 for (i = 0; i < nr_node_ids; i++) {
8325 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8326 if (cpumask_empty(nodemask))
8327 continue;
8328
8329 init_sched_build_groups(nodemask, cpu_map,
8330 &cpu_to_phys_group,
8331 send_covered, tmpmask);
8332 }
8333
8334 #ifdef CONFIG_NUMA
8335 /* Set up node groups */
8336 if (sd_allnodes) {
8337 init_sched_build_groups(cpu_map, cpu_map,
8338 &cpu_to_allnodes_group,
8339 send_covered, tmpmask);
8340 }
8341
8342 for (i = 0; i < nr_node_ids; i++) {
8343 /* Set up node groups */
8344 struct sched_group *sg, *prev;
8345 int j;
8346
8347 cpumask_clear(covered);
8348 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8349 if (cpumask_empty(nodemask)) {
8350 sched_group_nodes[i] = NULL;
8351 continue;
8352 }
8353
8354 sched_domain_node_span(i, domainspan);
8355 cpumask_and(domainspan, domainspan, cpu_map);
8356
8357 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8358 GFP_KERNEL, i);
8359 if (!sg) {
8360 printk(KERN_WARNING "Can not alloc domain group for "
8361 "node %d\n", i);
8362 goto error;
8363 }
8364 sched_group_nodes[i] = sg;
8365 for_each_cpu(j, nodemask) {
8366 struct sched_domain *sd;
8367
8368 sd = &per_cpu(node_domains, j).sd;
8369 sd->groups = sg;
8370 }
8371 sg->__cpu_power = 0;
8372 cpumask_copy(sched_group_cpus(sg), nodemask);
8373 sg->next = sg;
8374 cpumask_or(covered, covered, nodemask);
8375 prev = sg;
8376
8377 for (j = 0; j < nr_node_ids; j++) {
8378 int n = (i + j) % nr_node_ids;
8379
8380 cpumask_complement(notcovered, covered);
8381 cpumask_and(tmpmask, notcovered, cpu_map);
8382 cpumask_and(tmpmask, tmpmask, domainspan);
8383 if (cpumask_empty(tmpmask))
8384 break;
8385
8386 cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
8387 if (cpumask_empty(tmpmask))
8388 continue;
8389
8390 sg = kmalloc_node(sizeof(struct sched_group) +
8391 cpumask_size(),
8392 GFP_KERNEL, i);
8393 if (!sg) {
8394 printk(KERN_WARNING
8395 "Can not alloc domain group for node %d\n", j);
8396 goto error;
8397 }
8398 sg->__cpu_power = 0;
8399 cpumask_copy(sched_group_cpus(sg), tmpmask);
8400 sg->next = prev->next;
8401 cpumask_or(covered, covered, tmpmask);
8402 prev->next = sg;
8403 prev = sg;
8404 }
8405 }
8406 #endif
8407
8408 /* Calculate CPU power for physical packages and nodes */
8409 #ifdef CONFIG_SCHED_SMT
8410 for_each_cpu(i, cpu_map) {
8411 struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
8412
8413 init_sched_groups_power(i, sd);
8414 }
8415 #endif
8416 #ifdef CONFIG_SCHED_MC
8417 for_each_cpu(i, cpu_map) {
8418 struct sched_domain *sd = &per_cpu(core_domains, i).sd;
8419
8420 init_sched_groups_power(i, sd);
8421 }
8422 #endif
8423
8424 for_each_cpu(i, cpu_map) {
8425 struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
8426
8427 init_sched_groups_power(i, sd);
8428 }
8429
8430 #ifdef CONFIG_NUMA
8431 for (i = 0; i < nr_node_ids; i++)
8432 init_numa_sched_groups_power(sched_group_nodes[i]);
8433
8434 if (sd_allnodes) {
8435 struct sched_group *sg;
8436
8437 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8438 tmpmask);
8439 init_numa_sched_groups_power(sg);
8440 }
8441 #endif
8442
8443 /* Attach the domains */
8444 for_each_cpu(i, cpu_map) {
8445 struct sched_domain *sd;
8446 #ifdef CONFIG_SCHED_SMT
8447 sd = &per_cpu(cpu_domains, i).sd;
8448 #elif defined(CONFIG_SCHED_MC)
8449 sd = &per_cpu(core_domains, i).sd;
8450 #else
8451 sd = &per_cpu(phys_domains, i).sd;
8452 #endif
8453 cpu_attach_domain(sd, rd, i);
8454 }
8455
8456 err = 0;
8457
8458 free_tmpmask:
8459 free_cpumask_var(tmpmask);
8460 free_send_covered:
8461 free_cpumask_var(send_covered);
8462 free_this_core_map:
8463 free_cpumask_var(this_core_map);
8464 free_this_sibling_map:
8465 free_cpumask_var(this_sibling_map);
8466 free_nodemask:
8467 free_cpumask_var(nodemask);
8468 free_notcovered:
8469 #ifdef CONFIG_NUMA
8470 free_cpumask_var(notcovered);
8471 free_covered:
8472 free_cpumask_var(covered);
8473 free_domainspan:
8474 free_cpumask_var(domainspan);
8475 out:
8476 #endif
8477 return err;
8478
8479 free_sched_groups:
8480 #ifdef CONFIG_NUMA
8481 kfree(sched_group_nodes);
8482 #endif
8483 goto free_tmpmask;
8484
8485 #ifdef CONFIG_NUMA
8486 error:
8487 free_sched_groups(cpu_map, tmpmask);
8488 free_rootdomain(rd);
8489 goto free_tmpmask;
8490 #endif
8491 }
8492
8493 static int build_sched_domains(const struct cpumask *cpu_map)
8494 {
8495 return __build_sched_domains(cpu_map, NULL);
8496 }
8497
8498 static struct cpumask *doms_cur; /* current sched domains */
8499 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
8500 static struct sched_domain_attr *dattr_cur;
8501 /* attribues of custom domains in 'doms_cur' */
8502
8503 /*
8504 * Special case: If a kmalloc of a doms_cur partition (array of
8505 * cpumask) fails, then fallback to a single sched domain,
8506 * as determined by the single cpumask fallback_doms.
8507 */
8508 static cpumask_var_t fallback_doms;
8509
8510 /*
8511 * arch_update_cpu_topology lets virtualized architectures update the
8512 * cpu core maps. It is supposed to return 1 if the topology changed
8513 * or 0 if it stayed the same.
8514 */
8515 int __attribute__((weak)) arch_update_cpu_topology(void)
8516 {
8517 return 0;
8518 }
8519
8520 /*
8521 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
8522 * For now this just excludes isolated cpus, but could be used to
8523 * exclude other special cases in the future.
8524 */
8525 static int arch_init_sched_domains(const struct cpumask *cpu_map)
8526 {
8527 int err;
8528
8529 arch_update_cpu_topology();
8530 ndoms_cur = 1;
8531 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
8532 if (!doms_cur)
8533 doms_cur = fallback_doms;
8534 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
8535 dattr_cur = NULL;
8536 err = build_sched_domains(doms_cur);
8537 register_sched_domain_sysctl();
8538
8539 return err;
8540 }
8541
8542 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
8543 struct cpumask *tmpmask)
8544 {
8545 free_sched_groups(cpu_map, tmpmask);
8546 }
8547
8548 /*
8549 * Detach sched domains from a group of cpus specified in cpu_map
8550 * These cpus will now be attached to the NULL domain
8551 */
8552 static void detach_destroy_domains(const struct cpumask *cpu_map)
8553 {
8554 /* Save because hotplug lock held. */
8555 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
8556 int i;
8557
8558 for_each_cpu(i, cpu_map)
8559 cpu_attach_domain(NULL, &def_root_domain, i);
8560 synchronize_sched();
8561 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
8562 }
8563
8564 /* handle null as "default" */
8565 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8566 struct sched_domain_attr *new, int idx_new)
8567 {
8568 struct sched_domain_attr tmp;
8569
8570 /* fast path */
8571 if (!new && !cur)
8572 return 1;
8573
8574 tmp = SD_ATTR_INIT;
8575 return !memcmp(cur ? (cur + idx_cur) : &tmp,
8576 new ? (new + idx_new) : &tmp,
8577 sizeof(struct sched_domain_attr));
8578 }
8579
8580 /*
8581 * Partition sched domains as specified by the 'ndoms_new'
8582 * cpumasks in the array doms_new[] of cpumasks. This compares
8583 * doms_new[] to the current sched domain partitioning, doms_cur[].
8584 * It destroys each deleted domain and builds each new domain.
8585 *
8586 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
8587 * The masks don't intersect (don't overlap.) We should setup one
8588 * sched domain for each mask. CPUs not in any of the cpumasks will
8589 * not be load balanced. If the same cpumask appears both in the
8590 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8591 * it as it is.
8592 *
8593 * The passed in 'doms_new' should be kmalloc'd. This routine takes
8594 * ownership of it and will kfree it when done with it. If the caller
8595 * failed the kmalloc call, then it can pass in doms_new == NULL &&
8596 * ndoms_new == 1, and partition_sched_domains() will fallback to
8597 * the single partition 'fallback_doms', it also forces the domains
8598 * to be rebuilt.
8599 *
8600 * If doms_new == NULL it will be replaced with cpu_online_mask.
8601 * ndoms_new == 0 is a special case for destroying existing domains,
8602 * and it will not create the default domain.
8603 *
8604 * Call with hotplug lock held
8605 */
8606 /* FIXME: Change to struct cpumask *doms_new[] */
8607 void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
8608 struct sched_domain_attr *dattr_new)
8609 {
8610 int i, j, n;
8611 int new_topology;
8612
8613 mutex_lock(&sched_domains_mutex);
8614
8615 /* always unregister in case we don't destroy any domains */
8616 unregister_sched_domain_sysctl();
8617
8618 /* Let architecture update cpu core mappings. */
8619 new_topology = arch_update_cpu_topology();
8620
8621 n = doms_new ? ndoms_new : 0;
8622
8623 /* Destroy deleted domains */
8624 for (i = 0; i < ndoms_cur; i++) {
8625 for (j = 0; j < n && !new_topology; j++) {
8626 if (cpumask_equal(&doms_cur[i], &doms_new[j])
8627 && dattrs_equal(dattr_cur, i, dattr_new, j))
8628 goto match1;
8629 }
8630 /* no match - a current sched domain not in new doms_new[] */
8631 detach_destroy_domains(doms_cur + i);
8632 match1:
8633 ;
8634 }
8635
8636 if (doms_new == NULL) {
8637 ndoms_cur = 0;
8638 doms_new = fallback_doms;
8639 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
8640 WARN_ON_ONCE(dattr_new);
8641 }
8642
8643 /* Build new domains */
8644 for (i = 0; i < ndoms_new; i++) {
8645 for (j = 0; j < ndoms_cur && !new_topology; j++) {
8646 if (cpumask_equal(&doms_new[i], &doms_cur[j])
8647 && dattrs_equal(dattr_new, i, dattr_cur, j))
8648 goto match2;
8649 }
8650 /* no match - add a new doms_new */
8651 __build_sched_domains(doms_new + i,
8652 dattr_new ? dattr_new + i : NULL);
8653 match2:
8654 ;
8655 }
8656
8657 /* Remember the new sched domains */
8658 if (doms_cur != fallback_doms)
8659 kfree(doms_cur);
8660 kfree(dattr_cur); /* kfree(NULL) is safe */
8661 doms_cur = doms_new;
8662 dattr_cur = dattr_new;
8663 ndoms_cur = ndoms_new;
8664
8665 register_sched_domain_sysctl();
8666
8667 mutex_unlock(&sched_domains_mutex);
8668 }
8669
8670 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
8671 static void arch_reinit_sched_domains(void)
8672 {
8673 get_online_cpus();
8674
8675 /* Destroy domains first to force the rebuild */
8676 partition_sched_domains(0, NULL, NULL);
8677
8678 rebuild_sched_domains();
8679 put_online_cpus();
8680 }
8681
8682 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
8683 {
8684 unsigned int level = 0;
8685
8686 if (sscanf(buf, "%u", &level) != 1)
8687 return -EINVAL;
8688
8689 /*
8690 * level is always be positive so don't check for
8691 * level < POWERSAVINGS_BALANCE_NONE which is 0
8692 * What happens on 0 or 1 byte write,
8693 * need to check for count as well?
8694 */
8695
8696 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
8697 return -EINVAL;
8698
8699 if (smt)
8700 sched_smt_power_savings = level;
8701 else
8702 sched_mc_power_savings = level;
8703
8704 arch_reinit_sched_domains();
8705
8706 return count;
8707 }
8708
8709 #ifdef CONFIG_SCHED_MC
8710 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
8711 char *page)
8712 {
8713 return sprintf(page, "%u\n", sched_mc_power_savings);
8714 }
8715 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
8716 const char *buf, size_t count)
8717 {
8718 return sched_power_savings_store(buf, count, 0);
8719 }
8720 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
8721 sched_mc_power_savings_show,
8722 sched_mc_power_savings_store);
8723 #endif
8724
8725 #ifdef CONFIG_SCHED_SMT
8726 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
8727 char *page)
8728 {
8729 return sprintf(page, "%u\n", sched_smt_power_savings);
8730 }
8731 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
8732 const char *buf, size_t count)
8733 {
8734 return sched_power_savings_store(buf, count, 1);
8735 }
8736 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
8737 sched_smt_power_savings_show,
8738 sched_smt_power_savings_store);
8739 #endif
8740
8741 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
8742 {
8743 int err = 0;
8744
8745 #ifdef CONFIG_SCHED_SMT
8746 if (smt_capable())
8747 err = sysfs_create_file(&cls->kset.kobj,
8748 &attr_sched_smt_power_savings.attr);
8749 #endif
8750 #ifdef CONFIG_SCHED_MC
8751 if (!err && mc_capable())
8752 err = sysfs_create_file(&cls->kset.kobj,
8753 &attr_sched_mc_power_savings.attr);
8754 #endif
8755 return err;
8756 }
8757 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
8758
8759 #ifndef CONFIG_CPUSETS
8760 /*
8761 * Add online and remove offline CPUs from the scheduler domains.
8762 * When cpusets are enabled they take over this function.
8763 */
8764 static int update_sched_domains(struct notifier_block *nfb,
8765 unsigned long action, void *hcpu)
8766 {
8767 switch (action) {
8768 case CPU_ONLINE:
8769 case CPU_ONLINE_FROZEN:
8770 case CPU_DEAD:
8771 case CPU_DEAD_FROZEN:
8772 partition_sched_domains(1, NULL, NULL);
8773 return NOTIFY_OK;
8774
8775 default:
8776 return NOTIFY_DONE;
8777 }
8778 }
8779 #endif
8780
8781 static int update_runtime(struct notifier_block *nfb,
8782 unsigned long action, void *hcpu)
8783 {
8784 int cpu = (int)(long)hcpu;
8785
8786 switch (action) {
8787 case CPU_DOWN_PREPARE:
8788 case CPU_DOWN_PREPARE_FROZEN:
8789 disable_runtime(cpu_rq(cpu));
8790 return NOTIFY_OK;
8791
8792 case CPU_DOWN_FAILED:
8793 case CPU_DOWN_FAILED_FROZEN:
8794 case CPU_ONLINE:
8795 case CPU_ONLINE_FROZEN:
8796 enable_runtime(cpu_rq(cpu));
8797 return NOTIFY_OK;
8798
8799 default:
8800 return NOTIFY_DONE;
8801 }
8802 }
8803
8804 void __init sched_init_smp(void)
8805 {
8806 cpumask_var_t non_isolated_cpus;
8807
8808 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
8809
8810 #if defined(CONFIG_NUMA)
8811 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
8812 GFP_KERNEL);
8813 BUG_ON(sched_group_nodes_bycpu == NULL);
8814 #endif
8815 get_online_cpus();
8816 mutex_lock(&sched_domains_mutex);
8817 arch_init_sched_domains(cpu_online_mask);
8818 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
8819 if (cpumask_empty(non_isolated_cpus))
8820 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
8821 mutex_unlock(&sched_domains_mutex);
8822 put_online_cpus();
8823
8824 #ifndef CONFIG_CPUSETS
8825 /* XXX: Theoretical race here - CPU may be hotplugged now */
8826 hotcpu_notifier(update_sched_domains, 0);
8827 #endif
8828
8829 /* RT runtime code needs to handle some hotplug events */
8830 hotcpu_notifier(update_runtime, 0);
8831
8832 init_hrtick();
8833
8834 /* Move init over to a non-isolated CPU */
8835 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
8836 BUG();
8837 sched_init_granularity();
8838 free_cpumask_var(non_isolated_cpus);
8839
8840 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
8841 init_sched_rt_class();
8842 }
8843 #else
8844 void __init sched_init_smp(void)
8845 {
8846 sched_init_granularity();
8847 }
8848 #endif /* CONFIG_SMP */
8849
8850 int in_sched_functions(unsigned long addr)
8851 {
8852 return in_lock_functions(addr) ||
8853 (addr >= (unsigned long)__sched_text_start
8854 && addr < (unsigned long)__sched_text_end);
8855 }
8856
8857 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
8858 {
8859 cfs_rq->tasks_timeline = RB_ROOT;
8860 INIT_LIST_HEAD(&cfs_rq->tasks);
8861 #ifdef CONFIG_FAIR_GROUP_SCHED
8862 cfs_rq->rq = rq;
8863 #endif
8864 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8865 }
8866
8867 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8868 {
8869 struct rt_prio_array *array;
8870 int i;
8871
8872 array = &rt_rq->active;
8873 for (i = 0; i < MAX_RT_PRIO; i++) {
8874 INIT_LIST_HEAD(array->queue + i);
8875 __clear_bit(i, array->bitmap);
8876 }
8877 /* delimiter for bitsearch: */
8878 __set_bit(MAX_RT_PRIO, array->bitmap);
8879
8880 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
8881 rt_rq->highest_prio.curr = MAX_RT_PRIO;
8882 #ifdef CONFIG_SMP
8883 rt_rq->highest_prio.next = MAX_RT_PRIO;
8884 #endif
8885 #endif
8886 #ifdef CONFIG_SMP
8887 rt_rq->rt_nr_migratory = 0;
8888 rt_rq->overloaded = 0;
8889 plist_head_init(&rq->rt.pushable_tasks, &rq->lock);
8890 #endif
8891
8892 rt_rq->rt_time = 0;
8893 rt_rq->rt_throttled = 0;
8894 rt_rq->rt_runtime = 0;
8895 spin_lock_init(&rt_rq->rt_runtime_lock);
8896
8897 #ifdef CONFIG_RT_GROUP_SCHED
8898 rt_rq->rt_nr_boosted = 0;
8899 rt_rq->rq = rq;
8900 #endif
8901 }
8902
8903 #ifdef CONFIG_FAIR_GROUP_SCHED
8904 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8905 struct sched_entity *se, int cpu, int add,
8906 struct sched_entity *parent)
8907 {
8908 struct rq *rq = cpu_rq(cpu);
8909 tg->cfs_rq[cpu] = cfs_rq;
8910 init_cfs_rq(cfs_rq, rq);
8911 cfs_rq->tg = tg;
8912 if (add)
8913 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8914
8915 tg->se[cpu] = se;
8916 /* se could be NULL for init_task_group */
8917 if (!se)
8918 return;
8919
8920 if (!parent)
8921 se->cfs_rq = &rq->cfs;
8922 else
8923 se->cfs_rq = parent->my_q;
8924
8925 se->my_q = cfs_rq;
8926 se->load.weight = tg->shares;
8927 se->load.inv_weight = 0;
8928 se->parent = parent;
8929 }
8930 #endif
8931
8932 #ifdef CONFIG_RT_GROUP_SCHED
8933 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8934 struct sched_rt_entity *rt_se, int cpu, int add,
8935 struct sched_rt_entity *parent)
8936 {
8937 struct rq *rq = cpu_rq(cpu);
8938
8939 tg->rt_rq[cpu] = rt_rq;
8940 init_rt_rq(rt_rq, rq);
8941 rt_rq->tg = tg;
8942 rt_rq->rt_se = rt_se;
8943 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
8944 if (add)
8945 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8946
8947 tg->rt_se[cpu] = rt_se;
8948 if (!rt_se)
8949 return;
8950
8951 if (!parent)
8952 rt_se->rt_rq = &rq->rt;
8953 else
8954 rt_se->rt_rq = parent->my_q;
8955
8956 rt_se->my_q = rt_rq;
8957 rt_se->parent = parent;
8958 INIT_LIST_HEAD(&rt_se->run_list);
8959 }
8960 #endif
8961
8962 void __init sched_init(void)
8963 {
8964 int i, j;
8965 unsigned long alloc_size = 0, ptr;
8966
8967 #ifdef CONFIG_FAIR_GROUP_SCHED
8968 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8969 #endif
8970 #ifdef CONFIG_RT_GROUP_SCHED
8971 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8972 #endif
8973 #ifdef CONFIG_USER_SCHED
8974 alloc_size *= 2;
8975 #endif
8976 #ifdef CONFIG_CPUMASK_OFFSTACK
8977 alloc_size += num_possible_cpus() * cpumask_size();
8978 #endif
8979 /*
8980 * As sched_init() is called before page_alloc is setup,
8981 * we use alloc_bootmem().
8982 */
8983 if (alloc_size) {
8984 ptr = (unsigned long)alloc_bootmem(alloc_size);
8985
8986 #ifdef CONFIG_FAIR_GROUP_SCHED
8987 init_task_group.se = (struct sched_entity **)ptr;
8988 ptr += nr_cpu_ids * sizeof(void **);
8989
8990 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8991 ptr += nr_cpu_ids * sizeof(void **);
8992
8993 #ifdef CONFIG_USER_SCHED
8994 root_task_group.se = (struct sched_entity **)ptr;
8995 ptr += nr_cpu_ids * sizeof(void **);
8996
8997 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8998 ptr += nr_cpu_ids * sizeof(void **);
8999 #endif /* CONFIG_USER_SCHED */
9000 #endif /* CONFIG_FAIR_GROUP_SCHED */
9001 #ifdef CONFIG_RT_GROUP_SCHED
9002 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9003 ptr += nr_cpu_ids * sizeof(void **);
9004
9005 init_task_group.rt_rq = (struct rt_rq **)ptr;
9006 ptr += nr_cpu_ids * sizeof(void **);
9007
9008 #ifdef CONFIG_USER_SCHED
9009 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9010 ptr += nr_cpu_ids * sizeof(void **);
9011
9012 root_task_group.rt_rq = (struct rt_rq **)ptr;
9013 ptr += nr_cpu_ids * sizeof(void **);
9014 #endif /* CONFIG_USER_SCHED */
9015 #endif /* CONFIG_RT_GROUP_SCHED */
9016 #ifdef CONFIG_CPUMASK_OFFSTACK
9017 for_each_possible_cpu(i) {
9018 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9019 ptr += cpumask_size();
9020 }
9021 #endif /* CONFIG_CPUMASK_OFFSTACK */
9022 }
9023
9024 #ifdef CONFIG_SMP
9025 init_defrootdomain();
9026 #endif
9027
9028 init_rt_bandwidth(&def_rt_bandwidth,
9029 global_rt_period(), global_rt_runtime());
9030
9031 #ifdef CONFIG_RT_GROUP_SCHED
9032 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9033 global_rt_period(), global_rt_runtime());
9034 #ifdef CONFIG_USER_SCHED
9035 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9036 global_rt_period(), RUNTIME_INF);
9037 #endif /* CONFIG_USER_SCHED */
9038 #endif /* CONFIG_RT_GROUP_SCHED */
9039
9040 #ifdef CONFIG_GROUP_SCHED
9041 list_add(&init_task_group.list, &task_groups);
9042 INIT_LIST_HEAD(&init_task_group.children);
9043
9044 #ifdef CONFIG_USER_SCHED
9045 INIT_LIST_HEAD(&root_task_group.children);
9046 init_task_group.parent = &root_task_group;
9047 list_add(&init_task_group.siblings, &root_task_group.children);
9048 #endif /* CONFIG_USER_SCHED */
9049 #endif /* CONFIG_GROUP_SCHED */
9050
9051 for_each_possible_cpu(i) {
9052 struct rq *rq;
9053
9054 rq = cpu_rq(i);
9055 spin_lock_init(&rq->lock);
9056 rq->nr_running = 0;
9057 init_cfs_rq(&rq->cfs, rq);
9058 init_rt_rq(&rq->rt, rq);
9059 #ifdef CONFIG_FAIR_GROUP_SCHED
9060 init_task_group.shares = init_task_group_load;
9061 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9062 #ifdef CONFIG_CGROUP_SCHED
9063 /*
9064 * How much cpu bandwidth does init_task_group get?
9065 *
9066 * In case of task-groups formed thr' the cgroup filesystem, it
9067 * gets 100% of the cpu resources in the system. This overall
9068 * system cpu resource is divided among the tasks of
9069 * init_task_group and its child task-groups in a fair manner,
9070 * based on each entity's (task or task-group's) weight
9071 * (se->load.weight).
9072 *
9073 * In other words, if init_task_group has 10 tasks of weight
9074 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9075 * then A0's share of the cpu resource is:
9076 *
9077 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9078 *
9079 * We achieve this by letting init_task_group's tasks sit
9080 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9081 */
9082 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
9083 #elif defined CONFIG_USER_SCHED
9084 root_task_group.shares = NICE_0_LOAD;
9085 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
9086 /*
9087 * In case of task-groups formed thr' the user id of tasks,
9088 * init_task_group represents tasks belonging to root user.
9089 * Hence it forms a sibling of all subsequent groups formed.
9090 * In this case, init_task_group gets only a fraction of overall
9091 * system cpu resource, based on the weight assigned to root
9092 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9093 * by letting tasks of init_task_group sit in a separate cfs_rq
9094 * (init_cfs_rq) and having one entity represent this group of
9095 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9096 */
9097 init_tg_cfs_entry(&init_task_group,
9098 &per_cpu(init_cfs_rq, i),
9099 &per_cpu(init_sched_entity, i), i, 1,
9100 root_task_group.se[i]);
9101
9102 #endif
9103 #endif /* CONFIG_FAIR_GROUP_SCHED */
9104
9105 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9106 #ifdef CONFIG_RT_GROUP_SCHED
9107 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
9108 #ifdef CONFIG_CGROUP_SCHED
9109 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
9110 #elif defined CONFIG_USER_SCHED
9111 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
9112 init_tg_rt_entry(&init_task_group,
9113 &per_cpu(init_rt_rq, i),
9114 &per_cpu(init_sched_rt_entity, i), i, 1,
9115 root_task_group.rt_se[i]);
9116 #endif
9117 #endif
9118
9119 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9120 rq->cpu_load[j] = 0;
9121 #ifdef CONFIG_SMP
9122 rq->sd = NULL;
9123 rq->rd = NULL;
9124 rq->active_balance = 0;
9125 rq->next_balance = jiffies;
9126 rq->push_cpu = 0;
9127 rq->cpu = i;
9128 rq->online = 0;
9129 rq->migration_thread = NULL;
9130 INIT_LIST_HEAD(&rq->migration_queue);
9131 rq_attach_root(rq, &def_root_domain);
9132 #endif
9133 init_rq_hrtick(rq);
9134 atomic_set(&rq->nr_iowait, 0);
9135 }
9136
9137 set_load_weight(&init_task);
9138
9139 #ifdef CONFIG_PREEMPT_NOTIFIERS
9140 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9141 #endif
9142
9143 #ifdef CONFIG_SMP
9144 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9145 #endif
9146
9147 #ifdef CONFIG_RT_MUTEXES
9148 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9149 #endif
9150
9151 /*
9152 * The boot idle thread does lazy MMU switching as well:
9153 */
9154 atomic_inc(&init_mm.mm_count);
9155 enter_lazy_tlb(&init_mm, current);
9156
9157 /*
9158 * Make us the idle thread. Technically, schedule() should not be
9159 * called from this thread, however somewhere below it might be,
9160 * but because we are the idle thread, we just pick up running again
9161 * when this runqueue becomes "idle".
9162 */
9163 init_idle(current, smp_processor_id());
9164 /*
9165 * During early bootup we pretend to be a normal task:
9166 */
9167 current->sched_class = &fair_sched_class;
9168
9169 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9170 alloc_bootmem_cpumask_var(&nohz_cpu_mask);
9171 #ifdef CONFIG_SMP
9172 #ifdef CONFIG_NO_HZ
9173 alloc_bootmem_cpumask_var(&nohz.cpu_mask);
9174 alloc_bootmem_cpumask_var(&nohz.ilb_grp_nohz_mask);
9175 #endif
9176 alloc_bootmem_cpumask_var(&cpu_isolated_map);
9177 #endif /* SMP */
9178
9179 scheduler_running = 1;
9180 }
9181
9182 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9183 void __might_sleep(char *file, int line)
9184 {
9185 #ifdef in_atomic
9186 static unsigned long prev_jiffy; /* ratelimiting */
9187
9188 if ((!in_atomic() && !irqs_disabled()) ||
9189 system_state != SYSTEM_RUNNING || oops_in_progress)
9190 return;
9191 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9192 return;
9193 prev_jiffy = jiffies;
9194
9195 printk(KERN_ERR
9196 "BUG: sleeping function called from invalid context at %s:%d\n",
9197 file, line);
9198 printk(KERN_ERR
9199 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9200 in_atomic(), irqs_disabled(),
9201 current->pid, current->comm);
9202
9203 debug_show_held_locks(current);
9204 if (irqs_disabled())
9205 print_irqtrace_events(current);
9206 dump_stack();
9207 #endif
9208 }
9209 EXPORT_SYMBOL(__might_sleep);
9210 #endif
9211
9212 #ifdef CONFIG_MAGIC_SYSRQ
9213 static void normalize_task(struct rq *rq, struct task_struct *p)
9214 {
9215 int on_rq;
9216
9217 update_rq_clock(rq);
9218 on_rq = p->se.on_rq;
9219 if (on_rq)
9220 deactivate_task(rq, p, 0);
9221 __setscheduler(rq, p, SCHED_NORMAL, 0);
9222 if (on_rq) {
9223 activate_task(rq, p, 0);
9224 resched_task(rq->curr);
9225 }
9226 }
9227
9228 void normalize_rt_tasks(void)
9229 {
9230 struct task_struct *g, *p;
9231 unsigned long flags;
9232 struct rq *rq;
9233
9234 read_lock_irqsave(&tasklist_lock, flags);
9235 do_each_thread(g, p) {
9236 /*
9237 * Only normalize user tasks:
9238 */
9239 if (!p->mm)
9240 continue;
9241
9242 p->se.exec_start = 0;
9243 #ifdef CONFIG_SCHEDSTATS
9244 p->se.wait_start = 0;
9245 p->se.sleep_start = 0;
9246 p->se.block_start = 0;
9247 #endif
9248
9249 if (!rt_task(p)) {
9250 /*
9251 * Renice negative nice level userspace
9252 * tasks back to 0:
9253 */
9254 if (TASK_NICE(p) < 0 && p->mm)
9255 set_user_nice(p, 0);
9256 continue;
9257 }
9258
9259 spin_lock(&p->pi_lock);
9260 rq = __task_rq_lock(p);
9261
9262 normalize_task(rq, p);
9263
9264 __task_rq_unlock(rq);
9265 spin_unlock(&p->pi_lock);
9266 } while_each_thread(g, p);
9267
9268 read_unlock_irqrestore(&tasklist_lock, flags);
9269 }
9270
9271 #endif /* CONFIG_MAGIC_SYSRQ */
9272
9273 #ifdef CONFIG_IA64
9274 /*
9275 * These functions are only useful for the IA64 MCA handling.
9276 *
9277 * They can only be called when the whole system has been
9278 * stopped - every CPU needs to be quiescent, and no scheduling
9279 * activity can take place. Using them for anything else would
9280 * be a serious bug, and as a result, they aren't even visible
9281 * under any other configuration.
9282 */
9283
9284 /**
9285 * curr_task - return the current task for a given cpu.
9286 * @cpu: the processor in question.
9287 *
9288 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9289 */
9290 struct task_struct *curr_task(int cpu)
9291 {
9292 return cpu_curr(cpu);
9293 }
9294
9295 /**
9296 * set_curr_task - set the current task for a given cpu.
9297 * @cpu: the processor in question.
9298 * @p: the task pointer to set.
9299 *
9300 * Description: This function must only be used when non-maskable interrupts
9301 * are serviced on a separate stack. It allows the architecture to switch the
9302 * notion of the current task on a cpu in a non-blocking manner. This function
9303 * must be called with all CPU's synchronized, and interrupts disabled, the
9304 * and caller must save the original value of the current task (see
9305 * curr_task() above) and restore that value before reenabling interrupts and
9306 * re-starting the system.
9307 *
9308 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9309 */
9310 void set_curr_task(int cpu, struct task_struct *p)
9311 {
9312 cpu_curr(cpu) = p;
9313 }
9314
9315 #endif
9316
9317 #ifdef CONFIG_FAIR_GROUP_SCHED
9318 static void free_fair_sched_group(struct task_group *tg)
9319 {
9320 int i;
9321
9322 for_each_possible_cpu(i) {
9323 if (tg->cfs_rq)
9324 kfree(tg->cfs_rq[i]);
9325 if (tg->se)
9326 kfree(tg->se[i]);
9327 }
9328
9329 kfree(tg->cfs_rq);
9330 kfree(tg->se);
9331 }
9332
9333 static
9334 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9335 {
9336 struct cfs_rq *cfs_rq;
9337 struct sched_entity *se;
9338 struct rq *rq;
9339 int i;
9340
9341 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9342 if (!tg->cfs_rq)
9343 goto err;
9344 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9345 if (!tg->se)
9346 goto err;
9347
9348 tg->shares = NICE_0_LOAD;
9349
9350 for_each_possible_cpu(i) {
9351 rq = cpu_rq(i);
9352
9353 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9354 GFP_KERNEL, cpu_to_node(i));
9355 if (!cfs_rq)
9356 goto err;
9357
9358 se = kzalloc_node(sizeof(struct sched_entity),
9359 GFP_KERNEL, cpu_to_node(i));
9360 if (!se)
9361 goto err;
9362
9363 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9364 }
9365
9366 return 1;
9367
9368 err:
9369 return 0;
9370 }
9371
9372 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9373 {
9374 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9375 &cpu_rq(cpu)->leaf_cfs_rq_list);
9376 }
9377
9378 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9379 {
9380 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9381 }
9382 #else /* !CONFG_FAIR_GROUP_SCHED */
9383 static inline void free_fair_sched_group(struct task_group *tg)
9384 {
9385 }
9386
9387 static inline
9388 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9389 {
9390 return 1;
9391 }
9392
9393 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9394 {
9395 }
9396
9397 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9398 {
9399 }
9400 #endif /* CONFIG_FAIR_GROUP_SCHED */
9401
9402 #ifdef CONFIG_RT_GROUP_SCHED
9403 static void free_rt_sched_group(struct task_group *tg)
9404 {
9405 int i;
9406
9407 destroy_rt_bandwidth(&tg->rt_bandwidth);
9408
9409 for_each_possible_cpu(i) {
9410 if (tg->rt_rq)
9411 kfree(tg->rt_rq[i]);
9412 if (tg->rt_se)
9413 kfree(tg->rt_se[i]);
9414 }
9415
9416 kfree(tg->rt_rq);
9417 kfree(tg->rt_se);
9418 }
9419
9420 static
9421 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9422 {
9423 struct rt_rq *rt_rq;
9424 struct sched_rt_entity *rt_se;
9425 struct rq *rq;
9426 int i;
9427
9428 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9429 if (!tg->rt_rq)
9430 goto err;
9431 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9432 if (!tg->rt_se)
9433 goto err;
9434
9435 init_rt_bandwidth(&tg->rt_bandwidth,
9436 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9437
9438 for_each_possible_cpu(i) {
9439 rq = cpu_rq(i);
9440
9441 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9442 GFP_KERNEL, cpu_to_node(i));
9443 if (!rt_rq)
9444 goto err;
9445
9446 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9447 GFP_KERNEL, cpu_to_node(i));
9448 if (!rt_se)
9449 goto err;
9450
9451 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
9452 }
9453
9454 return 1;
9455
9456 err:
9457 return 0;
9458 }
9459
9460 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9461 {
9462 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9463 &cpu_rq(cpu)->leaf_rt_rq_list);
9464 }
9465
9466 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9467 {
9468 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9469 }
9470 #else /* !CONFIG_RT_GROUP_SCHED */
9471 static inline void free_rt_sched_group(struct task_group *tg)
9472 {
9473 }
9474
9475 static inline
9476 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9477 {
9478 return 1;
9479 }
9480
9481 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9482 {
9483 }
9484
9485 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9486 {
9487 }
9488 #endif /* CONFIG_RT_GROUP_SCHED */
9489
9490 #ifdef CONFIG_GROUP_SCHED
9491 static void free_sched_group(struct task_group *tg)
9492 {
9493 free_fair_sched_group(tg);
9494 free_rt_sched_group(tg);
9495 kfree(tg);
9496 }
9497
9498 /* allocate runqueue etc for a new task group */
9499 struct task_group *sched_create_group(struct task_group *parent)
9500 {
9501 struct task_group *tg;
9502 unsigned long flags;
9503 int i;
9504
9505 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9506 if (!tg)
9507 return ERR_PTR(-ENOMEM);
9508
9509 if (!alloc_fair_sched_group(tg, parent))
9510 goto err;
9511
9512 if (!alloc_rt_sched_group(tg, parent))
9513 goto err;
9514
9515 spin_lock_irqsave(&task_group_lock, flags);
9516 for_each_possible_cpu(i) {
9517 register_fair_sched_group(tg, i);
9518 register_rt_sched_group(tg, i);
9519 }
9520 list_add_rcu(&tg->list, &task_groups);
9521
9522 WARN_ON(!parent); /* root should already exist */
9523
9524 tg->parent = parent;
9525 INIT_LIST_HEAD(&tg->children);
9526 list_add_rcu(&tg->siblings, &parent->children);
9527 spin_unlock_irqrestore(&task_group_lock, flags);
9528
9529 return tg;
9530
9531 err:
9532 free_sched_group(tg);
9533 return ERR_PTR(-ENOMEM);
9534 }
9535
9536 /* rcu callback to free various structures associated with a task group */
9537 static void free_sched_group_rcu(struct rcu_head *rhp)
9538 {
9539 /* now it should be safe to free those cfs_rqs */
9540 free_sched_group(container_of(rhp, struct task_group, rcu));
9541 }
9542
9543 /* Destroy runqueue etc associated with a task group */
9544 void sched_destroy_group(struct task_group *tg)
9545 {
9546 unsigned long flags;
9547 int i;
9548
9549 spin_lock_irqsave(&task_group_lock, flags);
9550 for_each_possible_cpu(i) {
9551 unregister_fair_sched_group(tg, i);
9552 unregister_rt_sched_group(tg, i);
9553 }
9554 list_del_rcu(&tg->list);
9555 list_del_rcu(&tg->siblings);
9556 spin_unlock_irqrestore(&task_group_lock, flags);
9557
9558 /* wait for possible concurrent references to cfs_rqs complete */
9559 call_rcu(&tg->rcu, free_sched_group_rcu);
9560 }
9561
9562 /* change task's runqueue when it moves between groups.
9563 * The caller of this function should have put the task in its new group
9564 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
9565 * reflect its new group.
9566 */
9567 void sched_move_task(struct task_struct *tsk)
9568 {
9569 int on_rq, running;
9570 unsigned long flags;
9571 struct rq *rq;
9572
9573 rq = task_rq_lock(tsk, &flags);
9574
9575 update_rq_clock(rq);
9576
9577 running = task_current(rq, tsk);
9578 on_rq = tsk->se.on_rq;
9579
9580 if (on_rq)
9581 dequeue_task(rq, tsk, 0);
9582 if (unlikely(running))
9583 tsk->sched_class->put_prev_task(rq, tsk);
9584
9585 set_task_rq(tsk, task_cpu(tsk));
9586
9587 #ifdef CONFIG_FAIR_GROUP_SCHED
9588 if (tsk->sched_class->moved_group)
9589 tsk->sched_class->moved_group(tsk);
9590 #endif
9591
9592 if (unlikely(running))
9593 tsk->sched_class->set_curr_task(rq);
9594 if (on_rq)
9595 enqueue_task(rq, tsk, 0);
9596
9597 task_rq_unlock(rq, &flags);
9598 }
9599 #endif /* CONFIG_GROUP_SCHED */
9600
9601 #ifdef CONFIG_FAIR_GROUP_SCHED
9602 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
9603 {
9604 struct cfs_rq *cfs_rq = se->cfs_rq;
9605 int on_rq;
9606
9607 on_rq = se->on_rq;
9608 if (on_rq)
9609 dequeue_entity(cfs_rq, se, 0);
9610
9611 se->load.weight = shares;
9612 se->load.inv_weight = 0;
9613
9614 if (on_rq)
9615 enqueue_entity(cfs_rq, se, 0);
9616 }
9617
9618 static void set_se_shares(struct sched_entity *se, unsigned long shares)
9619 {
9620 struct cfs_rq *cfs_rq = se->cfs_rq;
9621 struct rq *rq = cfs_rq->rq;
9622 unsigned long flags;
9623
9624 spin_lock_irqsave(&rq->lock, flags);
9625 __set_se_shares(se, shares);
9626 spin_unlock_irqrestore(&rq->lock, flags);
9627 }
9628
9629 static DEFINE_MUTEX(shares_mutex);
9630
9631 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
9632 {
9633 int i;
9634 unsigned long flags;
9635
9636 /*
9637 * We can't change the weight of the root cgroup.
9638 */
9639 if (!tg->se[0])
9640 return -EINVAL;
9641
9642 if (shares < MIN_SHARES)
9643 shares = MIN_SHARES;
9644 else if (shares > MAX_SHARES)
9645 shares = MAX_SHARES;
9646
9647 mutex_lock(&shares_mutex);
9648 if (tg->shares == shares)
9649 goto done;
9650
9651 spin_lock_irqsave(&task_group_lock, flags);
9652 for_each_possible_cpu(i)
9653 unregister_fair_sched_group(tg, i);
9654 list_del_rcu(&tg->siblings);
9655 spin_unlock_irqrestore(&task_group_lock, flags);
9656
9657 /* wait for any ongoing reference to this group to finish */
9658 synchronize_sched();
9659
9660 /*
9661 * Now we are free to modify the group's share on each cpu
9662 * w/o tripping rebalance_share or load_balance_fair.
9663 */
9664 tg->shares = shares;
9665 for_each_possible_cpu(i) {
9666 /*
9667 * force a rebalance
9668 */
9669 cfs_rq_set_shares(tg->cfs_rq[i], 0);
9670 set_se_shares(tg->se[i], shares);
9671 }
9672
9673 /*
9674 * Enable load balance activity on this group, by inserting it back on
9675 * each cpu's rq->leaf_cfs_rq_list.
9676 */
9677 spin_lock_irqsave(&task_group_lock, flags);
9678 for_each_possible_cpu(i)
9679 register_fair_sched_group(tg, i);
9680 list_add_rcu(&tg->siblings, &tg->parent->children);
9681 spin_unlock_irqrestore(&task_group_lock, flags);
9682 done:
9683 mutex_unlock(&shares_mutex);
9684 return 0;
9685 }
9686
9687 unsigned long sched_group_shares(struct task_group *tg)
9688 {
9689 return tg->shares;
9690 }
9691 #endif
9692
9693 #ifdef CONFIG_RT_GROUP_SCHED
9694 /*
9695 * Ensure that the real time constraints are schedulable.
9696 */
9697 static DEFINE_MUTEX(rt_constraints_mutex);
9698
9699 static unsigned long to_ratio(u64 period, u64 runtime)
9700 {
9701 if (runtime == RUNTIME_INF)
9702 return 1ULL << 20;
9703
9704 return div64_u64(runtime << 20, period);
9705 }
9706
9707 /* Must be called with tasklist_lock held */
9708 static inline int tg_has_rt_tasks(struct task_group *tg)
9709 {
9710 struct task_struct *g, *p;
9711
9712 do_each_thread(g, p) {
9713 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
9714 return 1;
9715 } while_each_thread(g, p);
9716
9717 return 0;
9718 }
9719
9720 struct rt_schedulable_data {
9721 struct task_group *tg;
9722 u64 rt_period;
9723 u64 rt_runtime;
9724 };
9725
9726 static int tg_schedulable(struct task_group *tg, void *data)
9727 {
9728 struct rt_schedulable_data *d = data;
9729 struct task_group *child;
9730 unsigned long total, sum = 0;
9731 u64 period, runtime;
9732
9733 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9734 runtime = tg->rt_bandwidth.rt_runtime;
9735
9736 if (tg == d->tg) {
9737 period = d->rt_period;
9738 runtime = d->rt_runtime;
9739 }
9740
9741 #ifdef CONFIG_USER_SCHED
9742 if (tg == &root_task_group) {
9743 period = global_rt_period();
9744 runtime = global_rt_runtime();
9745 }
9746 #endif
9747
9748 /*
9749 * Cannot have more runtime than the period.
9750 */
9751 if (runtime > period && runtime != RUNTIME_INF)
9752 return -EINVAL;
9753
9754 /*
9755 * Ensure we don't starve existing RT tasks.
9756 */
9757 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
9758 return -EBUSY;
9759
9760 total = to_ratio(period, runtime);
9761
9762 /*
9763 * Nobody can have more than the global setting allows.
9764 */
9765 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
9766 return -EINVAL;
9767
9768 /*
9769 * The sum of our children's runtime should not exceed our own.
9770 */
9771 list_for_each_entry_rcu(child, &tg->children, siblings) {
9772 period = ktime_to_ns(child->rt_bandwidth.rt_period);
9773 runtime = child->rt_bandwidth.rt_runtime;
9774
9775 if (child == d->tg) {
9776 period = d->rt_period;
9777 runtime = d->rt_runtime;
9778 }
9779
9780 sum += to_ratio(period, runtime);
9781 }
9782
9783 if (sum > total)
9784 return -EINVAL;
9785
9786 return 0;
9787 }
9788
9789 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
9790 {
9791 struct rt_schedulable_data data = {
9792 .tg = tg,
9793 .rt_period = period,
9794 .rt_runtime = runtime,
9795 };
9796
9797 return walk_tg_tree(tg_schedulable, tg_nop, &data);
9798 }
9799
9800 static int tg_set_bandwidth(struct task_group *tg,
9801 u64 rt_period, u64 rt_runtime)
9802 {
9803 int i, err = 0;
9804
9805 mutex_lock(&rt_constraints_mutex);
9806 read_lock(&tasklist_lock);
9807 err = __rt_schedulable(tg, rt_period, rt_runtime);
9808 if (err)
9809 goto unlock;
9810
9811 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9812 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
9813 tg->rt_bandwidth.rt_runtime = rt_runtime;
9814
9815 for_each_possible_cpu(i) {
9816 struct rt_rq *rt_rq = tg->rt_rq[i];
9817
9818 spin_lock(&rt_rq->rt_runtime_lock);
9819 rt_rq->rt_runtime = rt_runtime;
9820 spin_unlock(&rt_rq->rt_runtime_lock);
9821 }
9822 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9823 unlock:
9824 read_unlock(&tasklist_lock);
9825 mutex_unlock(&rt_constraints_mutex);
9826
9827 return err;
9828 }
9829
9830 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
9831 {
9832 u64 rt_runtime, rt_period;
9833
9834 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9835 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
9836 if (rt_runtime_us < 0)
9837 rt_runtime = RUNTIME_INF;
9838
9839 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9840 }
9841
9842 long sched_group_rt_runtime(struct task_group *tg)
9843 {
9844 u64 rt_runtime_us;
9845
9846 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9847 return -1;
9848
9849 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9850 do_div(rt_runtime_us, NSEC_PER_USEC);
9851 return rt_runtime_us;
9852 }
9853
9854 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
9855 {
9856 u64 rt_runtime, rt_period;
9857
9858 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
9859 rt_runtime = tg->rt_bandwidth.rt_runtime;
9860
9861 if (rt_period == 0)
9862 return -EINVAL;
9863
9864 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9865 }
9866
9867 long sched_group_rt_period(struct task_group *tg)
9868 {
9869 u64 rt_period_us;
9870
9871 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
9872 do_div(rt_period_us, NSEC_PER_USEC);
9873 return rt_period_us;
9874 }
9875
9876 static int sched_rt_global_constraints(void)
9877 {
9878 u64 runtime, period;
9879 int ret = 0;
9880
9881 if (sysctl_sched_rt_period <= 0)
9882 return -EINVAL;
9883
9884 runtime = global_rt_runtime();
9885 period = global_rt_period();
9886
9887 /*
9888 * Sanity check on the sysctl variables.
9889 */
9890 if (runtime > period && runtime != RUNTIME_INF)
9891 return -EINVAL;
9892
9893 mutex_lock(&rt_constraints_mutex);
9894 read_lock(&tasklist_lock);
9895 ret = __rt_schedulable(NULL, 0, 0);
9896 read_unlock(&tasklist_lock);
9897 mutex_unlock(&rt_constraints_mutex);
9898
9899 return ret;
9900 }
9901
9902 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
9903 {
9904 /* Don't accept realtime tasks when there is no way for them to run */
9905 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
9906 return 0;
9907
9908 return 1;
9909 }
9910
9911 #else /* !CONFIG_RT_GROUP_SCHED */
9912 static int sched_rt_global_constraints(void)
9913 {
9914 unsigned long flags;
9915 int i;
9916
9917 if (sysctl_sched_rt_period <= 0)
9918 return -EINVAL;
9919
9920 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9921 for_each_possible_cpu(i) {
9922 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9923
9924 spin_lock(&rt_rq->rt_runtime_lock);
9925 rt_rq->rt_runtime = global_rt_runtime();
9926 spin_unlock(&rt_rq->rt_runtime_lock);
9927 }
9928 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9929
9930 return 0;
9931 }
9932 #endif /* CONFIG_RT_GROUP_SCHED */
9933
9934 int sched_rt_handler(struct ctl_table *table, int write,
9935 struct file *filp, void __user *buffer, size_t *lenp,
9936 loff_t *ppos)
9937 {
9938 int ret;
9939 int old_period, old_runtime;
9940 static DEFINE_MUTEX(mutex);
9941
9942 mutex_lock(&mutex);
9943 old_period = sysctl_sched_rt_period;
9944 old_runtime = sysctl_sched_rt_runtime;
9945
9946 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
9947
9948 if (!ret && write) {
9949 ret = sched_rt_global_constraints();
9950 if (ret) {
9951 sysctl_sched_rt_period = old_period;
9952 sysctl_sched_rt_runtime = old_runtime;
9953 } else {
9954 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9955 def_rt_bandwidth.rt_period =
9956 ns_to_ktime(global_rt_period());
9957 }
9958 }
9959 mutex_unlock(&mutex);
9960
9961 return ret;
9962 }
9963
9964 #ifdef CONFIG_CGROUP_SCHED
9965
9966 /* return corresponding task_group object of a cgroup */
9967 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9968 {
9969 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9970 struct task_group, css);
9971 }
9972
9973 static struct cgroup_subsys_state *
9974 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9975 {
9976 struct task_group *tg, *parent;
9977
9978 if (!cgrp->parent) {
9979 /* This is early initialization for the top cgroup */
9980 return &init_task_group.css;
9981 }
9982
9983 parent = cgroup_tg(cgrp->parent);
9984 tg = sched_create_group(parent);
9985 if (IS_ERR(tg))
9986 return ERR_PTR(-ENOMEM);
9987
9988 return &tg->css;
9989 }
9990
9991 static void
9992 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9993 {
9994 struct task_group *tg = cgroup_tg(cgrp);
9995
9996 sched_destroy_group(tg);
9997 }
9998
9999 static int
10000 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10001 struct task_struct *tsk)
10002 {
10003 #ifdef CONFIG_RT_GROUP_SCHED
10004 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
10005 return -EINVAL;
10006 #else
10007 /* We don't support RT-tasks being in separate groups */
10008 if (tsk->sched_class != &fair_sched_class)
10009 return -EINVAL;
10010 #endif
10011
10012 return 0;
10013 }
10014
10015 static void
10016 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10017 struct cgroup *old_cont, struct task_struct *tsk)
10018 {
10019 sched_move_task(tsk);
10020 }
10021
10022 #ifdef CONFIG_FAIR_GROUP_SCHED
10023 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
10024 u64 shareval)
10025 {
10026 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
10027 }
10028
10029 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
10030 {
10031 struct task_group *tg = cgroup_tg(cgrp);
10032
10033 return (u64) tg->shares;
10034 }
10035 #endif /* CONFIG_FAIR_GROUP_SCHED */
10036
10037 #ifdef CONFIG_RT_GROUP_SCHED
10038 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
10039 s64 val)
10040 {
10041 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
10042 }
10043
10044 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
10045 {
10046 return sched_group_rt_runtime(cgroup_tg(cgrp));
10047 }
10048
10049 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10050 u64 rt_period_us)
10051 {
10052 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10053 }
10054
10055 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10056 {
10057 return sched_group_rt_period(cgroup_tg(cgrp));
10058 }
10059 #endif /* CONFIG_RT_GROUP_SCHED */
10060
10061 static struct cftype cpu_files[] = {
10062 #ifdef CONFIG_FAIR_GROUP_SCHED
10063 {
10064 .name = "shares",
10065 .read_u64 = cpu_shares_read_u64,
10066 .write_u64 = cpu_shares_write_u64,
10067 },
10068 #endif
10069 #ifdef CONFIG_RT_GROUP_SCHED
10070 {
10071 .name = "rt_runtime_us",
10072 .read_s64 = cpu_rt_runtime_read,
10073 .write_s64 = cpu_rt_runtime_write,
10074 },
10075 {
10076 .name = "rt_period_us",
10077 .read_u64 = cpu_rt_period_read_uint,
10078 .write_u64 = cpu_rt_period_write_uint,
10079 },
10080 #endif
10081 };
10082
10083 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10084 {
10085 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
10086 }
10087
10088 struct cgroup_subsys cpu_cgroup_subsys = {
10089 .name = "cpu",
10090 .create = cpu_cgroup_create,
10091 .destroy = cpu_cgroup_destroy,
10092 .can_attach = cpu_cgroup_can_attach,
10093 .attach = cpu_cgroup_attach,
10094 .populate = cpu_cgroup_populate,
10095 .subsys_id = cpu_cgroup_subsys_id,
10096 .early_init = 1,
10097 };
10098
10099 #endif /* CONFIG_CGROUP_SCHED */
10100
10101 #ifdef CONFIG_CGROUP_CPUACCT
10102
10103 /*
10104 * CPU accounting code for task groups.
10105 *
10106 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10107 * (balbir@in.ibm.com).
10108 */
10109
10110 /* track cpu usage of a group of tasks and its child groups */
10111 struct cpuacct {
10112 struct cgroup_subsys_state css;
10113 /* cpuusage holds pointer to a u64-type object on every cpu */
10114 u64 *cpuusage;
10115 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
10116 struct cpuacct *parent;
10117 };
10118
10119 struct cgroup_subsys cpuacct_subsys;
10120
10121 /* return cpu accounting group corresponding to this container */
10122 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
10123 {
10124 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
10125 struct cpuacct, css);
10126 }
10127
10128 /* return cpu accounting group to which this task belongs */
10129 static inline struct cpuacct *task_ca(struct task_struct *tsk)
10130 {
10131 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10132 struct cpuacct, css);
10133 }
10134
10135 /* create a new cpu accounting group */
10136 static struct cgroup_subsys_state *cpuacct_create(
10137 struct cgroup_subsys *ss, struct cgroup *cgrp)
10138 {
10139 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
10140 int i;
10141
10142 if (!ca)
10143 goto out;
10144
10145 ca->cpuusage = alloc_percpu(u64);
10146 if (!ca->cpuusage)
10147 goto out_free_ca;
10148
10149 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10150 if (percpu_counter_init(&ca->cpustat[i], 0))
10151 goto out_free_counters;
10152
10153 if (cgrp->parent)
10154 ca->parent = cgroup_ca(cgrp->parent);
10155
10156 return &ca->css;
10157
10158 out_free_counters:
10159 while (--i >= 0)
10160 percpu_counter_destroy(&ca->cpustat[i]);
10161 free_percpu(ca->cpuusage);
10162 out_free_ca:
10163 kfree(ca);
10164 out:
10165 return ERR_PTR(-ENOMEM);
10166 }
10167
10168 /* destroy an existing cpu accounting group */
10169 static void
10170 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10171 {
10172 struct cpuacct *ca = cgroup_ca(cgrp);
10173 int i;
10174
10175 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10176 percpu_counter_destroy(&ca->cpustat[i]);
10177 free_percpu(ca->cpuusage);
10178 kfree(ca);
10179 }
10180
10181 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10182 {
10183 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10184 u64 data;
10185
10186 #ifndef CONFIG_64BIT
10187 /*
10188 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10189 */
10190 spin_lock_irq(&cpu_rq(cpu)->lock);
10191 data = *cpuusage;
10192 spin_unlock_irq(&cpu_rq(cpu)->lock);
10193 #else
10194 data = *cpuusage;
10195 #endif
10196
10197 return data;
10198 }
10199
10200 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10201 {
10202 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10203
10204 #ifndef CONFIG_64BIT
10205 /*
10206 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10207 */
10208 spin_lock_irq(&cpu_rq(cpu)->lock);
10209 *cpuusage = val;
10210 spin_unlock_irq(&cpu_rq(cpu)->lock);
10211 #else
10212 *cpuusage = val;
10213 #endif
10214 }
10215
10216 /* return total cpu usage (in nanoseconds) of a group */
10217 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10218 {
10219 struct cpuacct *ca = cgroup_ca(cgrp);
10220 u64 totalcpuusage = 0;
10221 int i;
10222
10223 for_each_present_cpu(i)
10224 totalcpuusage += cpuacct_cpuusage_read(ca, i);
10225
10226 return totalcpuusage;
10227 }
10228
10229 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10230 u64 reset)
10231 {
10232 struct cpuacct *ca = cgroup_ca(cgrp);
10233 int err = 0;
10234 int i;
10235
10236 if (reset) {
10237 err = -EINVAL;
10238 goto out;
10239 }
10240
10241 for_each_present_cpu(i)
10242 cpuacct_cpuusage_write(ca, i, 0);
10243
10244 out:
10245 return err;
10246 }
10247
10248 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10249 struct seq_file *m)
10250 {
10251 struct cpuacct *ca = cgroup_ca(cgroup);
10252 u64 percpu;
10253 int i;
10254
10255 for_each_present_cpu(i) {
10256 percpu = cpuacct_cpuusage_read(ca, i);
10257 seq_printf(m, "%llu ", (unsigned long long) percpu);
10258 }
10259 seq_printf(m, "\n");
10260 return 0;
10261 }
10262
10263 static const char *cpuacct_stat_desc[] = {
10264 [CPUACCT_STAT_USER] = "user",
10265 [CPUACCT_STAT_SYSTEM] = "system",
10266 };
10267
10268 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10269 struct cgroup_map_cb *cb)
10270 {
10271 struct cpuacct *ca = cgroup_ca(cgrp);
10272 int i;
10273
10274 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10275 s64 val = percpu_counter_read(&ca->cpustat[i]);
10276 val = cputime64_to_clock_t(val);
10277 cb->fill(cb, cpuacct_stat_desc[i], val);
10278 }
10279 return 0;
10280 }
10281
10282 static struct cftype files[] = {
10283 {
10284 .name = "usage",
10285 .read_u64 = cpuusage_read,
10286 .write_u64 = cpuusage_write,
10287 },
10288 {
10289 .name = "usage_percpu",
10290 .read_seq_string = cpuacct_percpu_seq_read,
10291 },
10292 {
10293 .name = "stat",
10294 .read_map = cpuacct_stats_show,
10295 },
10296 };
10297
10298 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10299 {
10300 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10301 }
10302
10303 /*
10304 * charge this task's execution time to its accounting group.
10305 *
10306 * called with rq->lock held.
10307 */
10308 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10309 {
10310 struct cpuacct *ca;
10311 int cpu;
10312
10313 if (unlikely(!cpuacct_subsys.active))
10314 return;
10315
10316 cpu = task_cpu(tsk);
10317
10318 rcu_read_lock();
10319
10320 ca = task_ca(tsk);
10321
10322 for (; ca; ca = ca->parent) {
10323 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10324 *cpuusage += cputime;
10325 }
10326
10327 rcu_read_unlock();
10328 }
10329
10330 /*
10331 * Charge the system/user time to the task's accounting group.
10332 */
10333 static void cpuacct_update_stats(struct task_struct *tsk,
10334 enum cpuacct_stat_index idx, cputime_t val)
10335 {
10336 struct cpuacct *ca;
10337
10338 if (unlikely(!cpuacct_subsys.active))
10339 return;
10340
10341 rcu_read_lock();
10342 ca = task_ca(tsk);
10343
10344 do {
10345 percpu_counter_add(&ca->cpustat[idx], val);
10346 ca = ca->parent;
10347 } while (ca);
10348 rcu_read_unlock();
10349 }
10350
10351 struct cgroup_subsys cpuacct_subsys = {
10352 .name = "cpuacct",
10353 .create = cpuacct_create,
10354 .destroy = cpuacct_destroy,
10355 .populate = cpuacct_populate,
10356 .subsys_id = cpuacct_subsys_id,
10357 };
10358 #endif /* CONFIG_CGROUP_CPUACCT */
This page took 0.251899 seconds and 5 git commands to generate.