mutex: Use p->on_cpu for the adaptive spin
[deliverable/linux.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/stop_machine.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/debugfs.h>
71 #include <linux/ctype.h>
72 #include <linux/ftrace.h>
73 #include <linux/slab.h>
74
75 #include <asm/tlb.h>
76 #include <asm/irq_regs.h>
77 #include <asm/mutex.h>
78
79 #include "sched_cpupri.h"
80 #include "workqueue_sched.h"
81 #include "sched_autogroup.h"
82
83 #define CREATE_TRACE_POINTS
84 #include <trace/events/sched.h>
85
86 /*
87 * Convert user-nice values [ -20 ... 0 ... 19 ]
88 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
89 * and back.
90 */
91 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
92 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
93 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
94
95 /*
96 * 'User priority' is the nice value converted to something we
97 * can work with better when scaling various scheduler parameters,
98 * it's a [ 0 ... 39 ] range.
99 */
100 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
101 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
102 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
103
104 /*
105 * Helpers for converting nanosecond timing to jiffy resolution
106 */
107 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
108
109 #define NICE_0_LOAD SCHED_LOAD_SCALE
110 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
111
112 /*
113 * These are the 'tuning knobs' of the scheduler:
114 *
115 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
116 * Timeslices get refilled after they expire.
117 */
118 #define DEF_TIMESLICE (100 * HZ / 1000)
119
120 /*
121 * single value that denotes runtime == period, ie unlimited time.
122 */
123 #define RUNTIME_INF ((u64)~0ULL)
124
125 static inline int rt_policy(int policy)
126 {
127 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
128 return 1;
129 return 0;
130 }
131
132 static inline int task_has_rt_policy(struct task_struct *p)
133 {
134 return rt_policy(p->policy);
135 }
136
137 /*
138 * This is the priority-queue data structure of the RT scheduling class:
139 */
140 struct rt_prio_array {
141 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
142 struct list_head queue[MAX_RT_PRIO];
143 };
144
145 struct rt_bandwidth {
146 /* nests inside the rq lock: */
147 raw_spinlock_t rt_runtime_lock;
148 ktime_t rt_period;
149 u64 rt_runtime;
150 struct hrtimer rt_period_timer;
151 };
152
153 static struct rt_bandwidth def_rt_bandwidth;
154
155 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
156
157 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
158 {
159 struct rt_bandwidth *rt_b =
160 container_of(timer, struct rt_bandwidth, rt_period_timer);
161 ktime_t now;
162 int overrun;
163 int idle = 0;
164
165 for (;;) {
166 now = hrtimer_cb_get_time(timer);
167 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
168
169 if (!overrun)
170 break;
171
172 idle = do_sched_rt_period_timer(rt_b, overrun);
173 }
174
175 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
176 }
177
178 static
179 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
180 {
181 rt_b->rt_period = ns_to_ktime(period);
182 rt_b->rt_runtime = runtime;
183
184 raw_spin_lock_init(&rt_b->rt_runtime_lock);
185
186 hrtimer_init(&rt_b->rt_period_timer,
187 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
188 rt_b->rt_period_timer.function = sched_rt_period_timer;
189 }
190
191 static inline int rt_bandwidth_enabled(void)
192 {
193 return sysctl_sched_rt_runtime >= 0;
194 }
195
196 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
197 {
198 ktime_t now;
199
200 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
201 return;
202
203 if (hrtimer_active(&rt_b->rt_period_timer))
204 return;
205
206 raw_spin_lock(&rt_b->rt_runtime_lock);
207 for (;;) {
208 unsigned long delta;
209 ktime_t soft, hard;
210
211 if (hrtimer_active(&rt_b->rt_period_timer))
212 break;
213
214 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
215 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
216
217 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
218 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
219 delta = ktime_to_ns(ktime_sub(hard, soft));
220 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
221 HRTIMER_MODE_ABS_PINNED, 0);
222 }
223 raw_spin_unlock(&rt_b->rt_runtime_lock);
224 }
225
226 #ifdef CONFIG_RT_GROUP_SCHED
227 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
228 {
229 hrtimer_cancel(&rt_b->rt_period_timer);
230 }
231 #endif
232
233 /*
234 * sched_domains_mutex serializes calls to arch_init_sched_domains,
235 * detach_destroy_domains and partition_sched_domains.
236 */
237 static DEFINE_MUTEX(sched_domains_mutex);
238
239 #ifdef CONFIG_CGROUP_SCHED
240
241 #include <linux/cgroup.h>
242
243 struct cfs_rq;
244
245 static LIST_HEAD(task_groups);
246
247 /* task group related information */
248 struct task_group {
249 struct cgroup_subsys_state css;
250
251 #ifdef CONFIG_FAIR_GROUP_SCHED
252 /* schedulable entities of this group on each cpu */
253 struct sched_entity **se;
254 /* runqueue "owned" by this group on each cpu */
255 struct cfs_rq **cfs_rq;
256 unsigned long shares;
257
258 atomic_t load_weight;
259 #endif
260
261 #ifdef CONFIG_RT_GROUP_SCHED
262 struct sched_rt_entity **rt_se;
263 struct rt_rq **rt_rq;
264
265 struct rt_bandwidth rt_bandwidth;
266 #endif
267
268 struct rcu_head rcu;
269 struct list_head list;
270
271 struct task_group *parent;
272 struct list_head siblings;
273 struct list_head children;
274
275 #ifdef CONFIG_SCHED_AUTOGROUP
276 struct autogroup *autogroup;
277 #endif
278 };
279
280 /* task_group_lock serializes the addition/removal of task groups */
281 static DEFINE_SPINLOCK(task_group_lock);
282
283 #ifdef CONFIG_FAIR_GROUP_SCHED
284
285 # define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
286
287 /*
288 * A weight of 0 or 1 can cause arithmetics problems.
289 * A weight of a cfs_rq is the sum of weights of which entities
290 * are queued on this cfs_rq, so a weight of a entity should not be
291 * too large, so as the shares value of a task group.
292 * (The default weight is 1024 - so there's no practical
293 * limitation from this.)
294 */
295 #define MIN_SHARES 2
296 #define MAX_SHARES (1UL << 18)
297
298 static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
299 #endif
300
301 /* Default task group.
302 * Every task in system belong to this group at bootup.
303 */
304 struct task_group root_task_group;
305
306 #endif /* CONFIG_CGROUP_SCHED */
307
308 /* CFS-related fields in a runqueue */
309 struct cfs_rq {
310 struct load_weight load;
311 unsigned long nr_running;
312
313 u64 exec_clock;
314 u64 min_vruntime;
315
316 struct rb_root tasks_timeline;
317 struct rb_node *rb_leftmost;
318
319 struct list_head tasks;
320 struct list_head *balance_iterator;
321
322 /*
323 * 'curr' points to currently running entity on this cfs_rq.
324 * It is set to NULL otherwise (i.e when none are currently running).
325 */
326 struct sched_entity *curr, *next, *last, *skip;
327
328 unsigned int nr_spread_over;
329
330 #ifdef CONFIG_FAIR_GROUP_SCHED
331 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
332
333 /*
334 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
335 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
336 * (like users, containers etc.)
337 *
338 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
339 * list is used during load balance.
340 */
341 int on_list;
342 struct list_head leaf_cfs_rq_list;
343 struct task_group *tg; /* group that "owns" this runqueue */
344
345 #ifdef CONFIG_SMP
346 /*
347 * the part of load.weight contributed by tasks
348 */
349 unsigned long task_weight;
350
351 /*
352 * h_load = weight * f(tg)
353 *
354 * Where f(tg) is the recursive weight fraction assigned to
355 * this group.
356 */
357 unsigned long h_load;
358
359 /*
360 * Maintaining per-cpu shares distribution for group scheduling
361 *
362 * load_stamp is the last time we updated the load average
363 * load_last is the last time we updated the load average and saw load
364 * load_unacc_exec_time is currently unaccounted execution time
365 */
366 u64 load_avg;
367 u64 load_period;
368 u64 load_stamp, load_last, load_unacc_exec_time;
369
370 unsigned long load_contribution;
371 #endif
372 #endif
373 };
374
375 /* Real-Time classes' related field in a runqueue: */
376 struct rt_rq {
377 struct rt_prio_array active;
378 unsigned long rt_nr_running;
379 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
380 struct {
381 int curr; /* highest queued rt task prio */
382 #ifdef CONFIG_SMP
383 int next; /* next highest */
384 #endif
385 } highest_prio;
386 #endif
387 #ifdef CONFIG_SMP
388 unsigned long rt_nr_migratory;
389 unsigned long rt_nr_total;
390 int overloaded;
391 struct plist_head pushable_tasks;
392 #endif
393 int rt_throttled;
394 u64 rt_time;
395 u64 rt_runtime;
396 /* Nests inside the rq lock: */
397 raw_spinlock_t rt_runtime_lock;
398
399 #ifdef CONFIG_RT_GROUP_SCHED
400 unsigned long rt_nr_boosted;
401
402 struct rq *rq;
403 struct list_head leaf_rt_rq_list;
404 struct task_group *tg;
405 #endif
406 };
407
408 #ifdef CONFIG_SMP
409
410 /*
411 * We add the notion of a root-domain which will be used to define per-domain
412 * variables. Each exclusive cpuset essentially defines an island domain by
413 * fully partitioning the member cpus from any other cpuset. Whenever a new
414 * exclusive cpuset is created, we also create and attach a new root-domain
415 * object.
416 *
417 */
418 struct root_domain {
419 atomic_t refcount;
420 cpumask_var_t span;
421 cpumask_var_t online;
422
423 /*
424 * The "RT overload" flag: it gets set if a CPU has more than
425 * one runnable RT task.
426 */
427 cpumask_var_t rto_mask;
428 atomic_t rto_count;
429 struct cpupri cpupri;
430 };
431
432 /*
433 * By default the system creates a single root-domain with all cpus as
434 * members (mimicking the global state we have today).
435 */
436 static struct root_domain def_root_domain;
437
438 #endif /* CONFIG_SMP */
439
440 /*
441 * This is the main, per-CPU runqueue data structure.
442 *
443 * Locking rule: those places that want to lock multiple runqueues
444 * (such as the load balancing or the thread migration code), lock
445 * acquire operations must be ordered by ascending &runqueue.
446 */
447 struct rq {
448 /* runqueue lock: */
449 raw_spinlock_t lock;
450
451 /*
452 * nr_running and cpu_load should be in the same cacheline because
453 * remote CPUs use both these fields when doing load calculation.
454 */
455 unsigned long nr_running;
456 #define CPU_LOAD_IDX_MAX 5
457 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
458 unsigned long last_load_update_tick;
459 #ifdef CONFIG_NO_HZ
460 u64 nohz_stamp;
461 unsigned char nohz_balance_kick;
462 #endif
463 unsigned int skip_clock_update;
464
465 /* capture load from *all* tasks on this cpu: */
466 struct load_weight load;
467 unsigned long nr_load_updates;
468 u64 nr_switches;
469
470 struct cfs_rq cfs;
471 struct rt_rq rt;
472
473 #ifdef CONFIG_FAIR_GROUP_SCHED
474 /* list of leaf cfs_rq on this cpu: */
475 struct list_head leaf_cfs_rq_list;
476 #endif
477 #ifdef CONFIG_RT_GROUP_SCHED
478 struct list_head leaf_rt_rq_list;
479 #endif
480
481 /*
482 * This is part of a global counter where only the total sum
483 * over all CPUs matters. A task can increase this counter on
484 * one CPU and if it got migrated afterwards it may decrease
485 * it on another CPU. Always updated under the runqueue lock:
486 */
487 unsigned long nr_uninterruptible;
488
489 struct task_struct *curr, *idle, *stop;
490 unsigned long next_balance;
491 struct mm_struct *prev_mm;
492
493 u64 clock;
494 u64 clock_task;
495
496 atomic_t nr_iowait;
497
498 #ifdef CONFIG_SMP
499 struct root_domain *rd;
500 struct sched_domain *sd;
501
502 unsigned long cpu_power;
503
504 unsigned char idle_at_tick;
505 /* For active balancing */
506 int post_schedule;
507 int active_balance;
508 int push_cpu;
509 struct cpu_stop_work active_balance_work;
510 /* cpu of this runqueue: */
511 int cpu;
512 int online;
513
514 unsigned long avg_load_per_task;
515
516 u64 rt_avg;
517 u64 age_stamp;
518 u64 idle_stamp;
519 u64 avg_idle;
520 #endif
521
522 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
523 u64 prev_irq_time;
524 #endif
525
526 /* calc_load related fields */
527 unsigned long calc_load_update;
528 long calc_load_active;
529
530 #ifdef CONFIG_SCHED_HRTICK
531 #ifdef CONFIG_SMP
532 int hrtick_csd_pending;
533 struct call_single_data hrtick_csd;
534 #endif
535 struct hrtimer hrtick_timer;
536 #endif
537
538 #ifdef CONFIG_SCHEDSTATS
539 /* latency stats */
540 struct sched_info rq_sched_info;
541 unsigned long long rq_cpu_time;
542 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
543
544 /* sys_sched_yield() stats */
545 unsigned int yld_count;
546
547 /* schedule() stats */
548 unsigned int sched_switch;
549 unsigned int sched_count;
550 unsigned int sched_goidle;
551
552 /* try_to_wake_up() stats */
553 unsigned int ttwu_count;
554 unsigned int ttwu_local;
555 #endif
556 };
557
558 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
559
560
561 static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
562
563 static inline int cpu_of(struct rq *rq)
564 {
565 #ifdef CONFIG_SMP
566 return rq->cpu;
567 #else
568 return 0;
569 #endif
570 }
571
572 #define rcu_dereference_check_sched_domain(p) \
573 rcu_dereference_check((p), \
574 rcu_read_lock_sched_held() || \
575 lockdep_is_held(&sched_domains_mutex))
576
577 /*
578 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
579 * See detach_destroy_domains: synchronize_sched for details.
580 *
581 * The domain tree of any CPU may only be accessed from within
582 * preempt-disabled sections.
583 */
584 #define for_each_domain(cpu, __sd) \
585 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
586
587 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
588 #define this_rq() (&__get_cpu_var(runqueues))
589 #define task_rq(p) cpu_rq(task_cpu(p))
590 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
591 #define raw_rq() (&__raw_get_cpu_var(runqueues))
592
593 #ifdef CONFIG_CGROUP_SCHED
594
595 /*
596 * Return the group to which this tasks belongs.
597 *
598 * We use task_subsys_state_check() and extend the RCU verification
599 * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
600 * holds that lock for each task it moves into the cgroup. Therefore
601 * by holding that lock, we pin the task to the current cgroup.
602 */
603 static inline struct task_group *task_group(struct task_struct *p)
604 {
605 struct task_group *tg;
606 struct cgroup_subsys_state *css;
607
608 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
609 lockdep_is_held(&task_rq(p)->lock));
610 tg = container_of(css, struct task_group, css);
611
612 return autogroup_task_group(p, tg);
613 }
614
615 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
616 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
617 {
618 #ifdef CONFIG_FAIR_GROUP_SCHED
619 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
620 p->se.parent = task_group(p)->se[cpu];
621 #endif
622
623 #ifdef CONFIG_RT_GROUP_SCHED
624 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
625 p->rt.parent = task_group(p)->rt_se[cpu];
626 #endif
627 }
628
629 #else /* CONFIG_CGROUP_SCHED */
630
631 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
632 static inline struct task_group *task_group(struct task_struct *p)
633 {
634 return NULL;
635 }
636
637 #endif /* CONFIG_CGROUP_SCHED */
638
639 static void update_rq_clock_task(struct rq *rq, s64 delta);
640
641 static void update_rq_clock(struct rq *rq)
642 {
643 s64 delta;
644
645 if (rq->skip_clock_update)
646 return;
647
648 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
649 rq->clock += delta;
650 update_rq_clock_task(rq, delta);
651 }
652
653 /*
654 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
655 */
656 #ifdef CONFIG_SCHED_DEBUG
657 # define const_debug __read_mostly
658 #else
659 # define const_debug static const
660 #endif
661
662 /**
663 * runqueue_is_locked - Returns true if the current cpu runqueue is locked
664 * @cpu: the processor in question.
665 *
666 * This interface allows printk to be called with the runqueue lock
667 * held and know whether or not it is OK to wake up the klogd.
668 */
669 int runqueue_is_locked(int cpu)
670 {
671 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
672 }
673
674 /*
675 * Debugging: various feature bits
676 */
677
678 #define SCHED_FEAT(name, enabled) \
679 __SCHED_FEAT_##name ,
680
681 enum {
682 #include "sched_features.h"
683 };
684
685 #undef SCHED_FEAT
686
687 #define SCHED_FEAT(name, enabled) \
688 (1UL << __SCHED_FEAT_##name) * enabled |
689
690 const_debug unsigned int sysctl_sched_features =
691 #include "sched_features.h"
692 0;
693
694 #undef SCHED_FEAT
695
696 #ifdef CONFIG_SCHED_DEBUG
697 #define SCHED_FEAT(name, enabled) \
698 #name ,
699
700 static __read_mostly char *sched_feat_names[] = {
701 #include "sched_features.h"
702 NULL
703 };
704
705 #undef SCHED_FEAT
706
707 static int sched_feat_show(struct seq_file *m, void *v)
708 {
709 int i;
710
711 for (i = 0; sched_feat_names[i]; i++) {
712 if (!(sysctl_sched_features & (1UL << i)))
713 seq_puts(m, "NO_");
714 seq_printf(m, "%s ", sched_feat_names[i]);
715 }
716 seq_puts(m, "\n");
717
718 return 0;
719 }
720
721 static ssize_t
722 sched_feat_write(struct file *filp, const char __user *ubuf,
723 size_t cnt, loff_t *ppos)
724 {
725 char buf[64];
726 char *cmp;
727 int neg = 0;
728 int i;
729
730 if (cnt > 63)
731 cnt = 63;
732
733 if (copy_from_user(&buf, ubuf, cnt))
734 return -EFAULT;
735
736 buf[cnt] = 0;
737 cmp = strstrip(buf);
738
739 if (strncmp(cmp, "NO_", 3) == 0) {
740 neg = 1;
741 cmp += 3;
742 }
743
744 for (i = 0; sched_feat_names[i]; i++) {
745 if (strcmp(cmp, sched_feat_names[i]) == 0) {
746 if (neg)
747 sysctl_sched_features &= ~(1UL << i);
748 else
749 sysctl_sched_features |= (1UL << i);
750 break;
751 }
752 }
753
754 if (!sched_feat_names[i])
755 return -EINVAL;
756
757 *ppos += cnt;
758
759 return cnt;
760 }
761
762 static int sched_feat_open(struct inode *inode, struct file *filp)
763 {
764 return single_open(filp, sched_feat_show, NULL);
765 }
766
767 static const struct file_operations sched_feat_fops = {
768 .open = sched_feat_open,
769 .write = sched_feat_write,
770 .read = seq_read,
771 .llseek = seq_lseek,
772 .release = single_release,
773 };
774
775 static __init int sched_init_debug(void)
776 {
777 debugfs_create_file("sched_features", 0644, NULL, NULL,
778 &sched_feat_fops);
779
780 return 0;
781 }
782 late_initcall(sched_init_debug);
783
784 #endif
785
786 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
787
788 /*
789 * Number of tasks to iterate in a single balance run.
790 * Limited because this is done with IRQs disabled.
791 */
792 const_debug unsigned int sysctl_sched_nr_migrate = 32;
793
794 /*
795 * period over which we average the RT time consumption, measured
796 * in ms.
797 *
798 * default: 1s
799 */
800 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
801
802 /*
803 * period over which we measure -rt task cpu usage in us.
804 * default: 1s
805 */
806 unsigned int sysctl_sched_rt_period = 1000000;
807
808 static __read_mostly int scheduler_running;
809
810 /*
811 * part of the period that we allow rt tasks to run in us.
812 * default: 0.95s
813 */
814 int sysctl_sched_rt_runtime = 950000;
815
816 static inline u64 global_rt_period(void)
817 {
818 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
819 }
820
821 static inline u64 global_rt_runtime(void)
822 {
823 if (sysctl_sched_rt_runtime < 0)
824 return RUNTIME_INF;
825
826 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
827 }
828
829 #ifndef prepare_arch_switch
830 # define prepare_arch_switch(next) do { } while (0)
831 #endif
832 #ifndef finish_arch_switch
833 # define finish_arch_switch(prev) do { } while (0)
834 #endif
835
836 static inline int task_current(struct rq *rq, struct task_struct *p)
837 {
838 return rq->curr == p;
839 }
840
841 static inline int task_running(struct rq *rq, struct task_struct *p)
842 {
843 #ifdef CONFIG_SMP
844 return p->on_cpu;
845 #else
846 return task_current(rq, p);
847 #endif
848 }
849
850 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
851 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
852 {
853 #ifdef CONFIG_SMP
854 /*
855 * We can optimise this out completely for !SMP, because the
856 * SMP rebalancing from interrupt is the only thing that cares
857 * here.
858 */
859 next->on_cpu = 1;
860 #endif
861 }
862
863 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
864 {
865 #ifdef CONFIG_SMP
866 /*
867 * After ->on_cpu is cleared, the task can be moved to a different CPU.
868 * We must ensure this doesn't happen until the switch is completely
869 * finished.
870 */
871 smp_wmb();
872 prev->on_cpu = 0;
873 #endif
874 #ifdef CONFIG_DEBUG_SPINLOCK
875 /* this is a valid case when another task releases the spinlock */
876 rq->lock.owner = current;
877 #endif
878 /*
879 * If we are tracking spinlock dependencies then we have to
880 * fix up the runqueue lock - which gets 'carried over' from
881 * prev into current:
882 */
883 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
884
885 raw_spin_unlock_irq(&rq->lock);
886 }
887
888 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
889 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
890 {
891 #ifdef CONFIG_SMP
892 /*
893 * We can optimise this out completely for !SMP, because the
894 * SMP rebalancing from interrupt is the only thing that cares
895 * here.
896 */
897 next->on_cpu = 1;
898 #endif
899 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
900 raw_spin_unlock_irq(&rq->lock);
901 #else
902 raw_spin_unlock(&rq->lock);
903 #endif
904 }
905
906 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
907 {
908 #ifdef CONFIG_SMP
909 /*
910 * After ->on_cpu is cleared, the task can be moved to a different CPU.
911 * We must ensure this doesn't happen until the switch is completely
912 * finished.
913 */
914 smp_wmb();
915 prev->on_cpu = 0;
916 #endif
917 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
918 local_irq_enable();
919 #endif
920 }
921 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
922
923 /*
924 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
925 * against ttwu().
926 */
927 static inline int task_is_waking(struct task_struct *p)
928 {
929 return unlikely(p->state == TASK_WAKING);
930 }
931
932 /*
933 * __task_rq_lock - lock the runqueue a given task resides on.
934 * Must be called interrupts disabled.
935 */
936 static inline struct rq *__task_rq_lock(struct task_struct *p)
937 __acquires(rq->lock)
938 {
939 struct rq *rq;
940
941 for (;;) {
942 rq = task_rq(p);
943 raw_spin_lock(&rq->lock);
944 if (likely(rq == task_rq(p)))
945 return rq;
946 raw_spin_unlock(&rq->lock);
947 }
948 }
949
950 /*
951 * task_rq_lock - lock the runqueue a given task resides on and disable
952 * interrupts. Note the ordering: we can safely lookup the task_rq without
953 * explicitly disabling preemption.
954 */
955 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
956 __acquires(rq->lock)
957 {
958 struct rq *rq;
959
960 for (;;) {
961 local_irq_save(*flags);
962 rq = task_rq(p);
963 raw_spin_lock(&rq->lock);
964 if (likely(rq == task_rq(p)))
965 return rq;
966 raw_spin_unlock_irqrestore(&rq->lock, *flags);
967 }
968 }
969
970 static void __task_rq_unlock(struct rq *rq)
971 __releases(rq->lock)
972 {
973 raw_spin_unlock(&rq->lock);
974 }
975
976 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
977 __releases(rq->lock)
978 {
979 raw_spin_unlock_irqrestore(&rq->lock, *flags);
980 }
981
982 /*
983 * this_rq_lock - lock this runqueue and disable interrupts.
984 */
985 static struct rq *this_rq_lock(void)
986 __acquires(rq->lock)
987 {
988 struct rq *rq;
989
990 local_irq_disable();
991 rq = this_rq();
992 raw_spin_lock(&rq->lock);
993
994 return rq;
995 }
996
997 #ifdef CONFIG_SCHED_HRTICK
998 /*
999 * Use HR-timers to deliver accurate preemption points.
1000 *
1001 * Its all a bit involved since we cannot program an hrt while holding the
1002 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1003 * reschedule event.
1004 *
1005 * When we get rescheduled we reprogram the hrtick_timer outside of the
1006 * rq->lock.
1007 */
1008
1009 /*
1010 * Use hrtick when:
1011 * - enabled by features
1012 * - hrtimer is actually high res
1013 */
1014 static inline int hrtick_enabled(struct rq *rq)
1015 {
1016 if (!sched_feat(HRTICK))
1017 return 0;
1018 if (!cpu_active(cpu_of(rq)))
1019 return 0;
1020 return hrtimer_is_hres_active(&rq->hrtick_timer);
1021 }
1022
1023 static void hrtick_clear(struct rq *rq)
1024 {
1025 if (hrtimer_active(&rq->hrtick_timer))
1026 hrtimer_cancel(&rq->hrtick_timer);
1027 }
1028
1029 /*
1030 * High-resolution timer tick.
1031 * Runs from hardirq context with interrupts disabled.
1032 */
1033 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1034 {
1035 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1036
1037 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1038
1039 raw_spin_lock(&rq->lock);
1040 update_rq_clock(rq);
1041 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1042 raw_spin_unlock(&rq->lock);
1043
1044 return HRTIMER_NORESTART;
1045 }
1046
1047 #ifdef CONFIG_SMP
1048 /*
1049 * called from hardirq (IPI) context
1050 */
1051 static void __hrtick_start(void *arg)
1052 {
1053 struct rq *rq = arg;
1054
1055 raw_spin_lock(&rq->lock);
1056 hrtimer_restart(&rq->hrtick_timer);
1057 rq->hrtick_csd_pending = 0;
1058 raw_spin_unlock(&rq->lock);
1059 }
1060
1061 /*
1062 * Called to set the hrtick timer state.
1063 *
1064 * called with rq->lock held and irqs disabled
1065 */
1066 static void hrtick_start(struct rq *rq, u64 delay)
1067 {
1068 struct hrtimer *timer = &rq->hrtick_timer;
1069 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1070
1071 hrtimer_set_expires(timer, time);
1072
1073 if (rq == this_rq()) {
1074 hrtimer_restart(timer);
1075 } else if (!rq->hrtick_csd_pending) {
1076 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1077 rq->hrtick_csd_pending = 1;
1078 }
1079 }
1080
1081 static int
1082 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1083 {
1084 int cpu = (int)(long)hcpu;
1085
1086 switch (action) {
1087 case CPU_UP_CANCELED:
1088 case CPU_UP_CANCELED_FROZEN:
1089 case CPU_DOWN_PREPARE:
1090 case CPU_DOWN_PREPARE_FROZEN:
1091 case CPU_DEAD:
1092 case CPU_DEAD_FROZEN:
1093 hrtick_clear(cpu_rq(cpu));
1094 return NOTIFY_OK;
1095 }
1096
1097 return NOTIFY_DONE;
1098 }
1099
1100 static __init void init_hrtick(void)
1101 {
1102 hotcpu_notifier(hotplug_hrtick, 0);
1103 }
1104 #else
1105 /*
1106 * Called to set the hrtick timer state.
1107 *
1108 * called with rq->lock held and irqs disabled
1109 */
1110 static void hrtick_start(struct rq *rq, u64 delay)
1111 {
1112 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1113 HRTIMER_MODE_REL_PINNED, 0);
1114 }
1115
1116 static inline void init_hrtick(void)
1117 {
1118 }
1119 #endif /* CONFIG_SMP */
1120
1121 static void init_rq_hrtick(struct rq *rq)
1122 {
1123 #ifdef CONFIG_SMP
1124 rq->hrtick_csd_pending = 0;
1125
1126 rq->hrtick_csd.flags = 0;
1127 rq->hrtick_csd.func = __hrtick_start;
1128 rq->hrtick_csd.info = rq;
1129 #endif
1130
1131 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1132 rq->hrtick_timer.function = hrtick;
1133 }
1134 #else /* CONFIG_SCHED_HRTICK */
1135 static inline void hrtick_clear(struct rq *rq)
1136 {
1137 }
1138
1139 static inline void init_rq_hrtick(struct rq *rq)
1140 {
1141 }
1142
1143 static inline void init_hrtick(void)
1144 {
1145 }
1146 #endif /* CONFIG_SCHED_HRTICK */
1147
1148 /*
1149 * resched_task - mark a task 'to be rescheduled now'.
1150 *
1151 * On UP this means the setting of the need_resched flag, on SMP it
1152 * might also involve a cross-CPU call to trigger the scheduler on
1153 * the target CPU.
1154 */
1155 #ifdef CONFIG_SMP
1156
1157 #ifndef tsk_is_polling
1158 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1159 #endif
1160
1161 static void resched_task(struct task_struct *p)
1162 {
1163 int cpu;
1164
1165 assert_raw_spin_locked(&task_rq(p)->lock);
1166
1167 if (test_tsk_need_resched(p))
1168 return;
1169
1170 set_tsk_need_resched(p);
1171
1172 cpu = task_cpu(p);
1173 if (cpu == smp_processor_id())
1174 return;
1175
1176 /* NEED_RESCHED must be visible before we test polling */
1177 smp_mb();
1178 if (!tsk_is_polling(p))
1179 smp_send_reschedule(cpu);
1180 }
1181
1182 static void resched_cpu(int cpu)
1183 {
1184 struct rq *rq = cpu_rq(cpu);
1185 unsigned long flags;
1186
1187 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
1188 return;
1189 resched_task(cpu_curr(cpu));
1190 raw_spin_unlock_irqrestore(&rq->lock, flags);
1191 }
1192
1193 #ifdef CONFIG_NO_HZ
1194 /*
1195 * In the semi idle case, use the nearest busy cpu for migrating timers
1196 * from an idle cpu. This is good for power-savings.
1197 *
1198 * We don't do similar optimization for completely idle system, as
1199 * selecting an idle cpu will add more delays to the timers than intended
1200 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1201 */
1202 int get_nohz_timer_target(void)
1203 {
1204 int cpu = smp_processor_id();
1205 int i;
1206 struct sched_domain *sd;
1207
1208 for_each_domain(cpu, sd) {
1209 for_each_cpu(i, sched_domain_span(sd))
1210 if (!idle_cpu(i))
1211 return i;
1212 }
1213 return cpu;
1214 }
1215 /*
1216 * When add_timer_on() enqueues a timer into the timer wheel of an
1217 * idle CPU then this timer might expire before the next timer event
1218 * which is scheduled to wake up that CPU. In case of a completely
1219 * idle system the next event might even be infinite time into the
1220 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1221 * leaves the inner idle loop so the newly added timer is taken into
1222 * account when the CPU goes back to idle and evaluates the timer
1223 * wheel for the next timer event.
1224 */
1225 void wake_up_idle_cpu(int cpu)
1226 {
1227 struct rq *rq = cpu_rq(cpu);
1228
1229 if (cpu == smp_processor_id())
1230 return;
1231
1232 /*
1233 * This is safe, as this function is called with the timer
1234 * wheel base lock of (cpu) held. When the CPU is on the way
1235 * to idle and has not yet set rq->curr to idle then it will
1236 * be serialized on the timer wheel base lock and take the new
1237 * timer into account automatically.
1238 */
1239 if (rq->curr != rq->idle)
1240 return;
1241
1242 /*
1243 * We can set TIF_RESCHED on the idle task of the other CPU
1244 * lockless. The worst case is that the other CPU runs the
1245 * idle task through an additional NOOP schedule()
1246 */
1247 set_tsk_need_resched(rq->idle);
1248
1249 /* NEED_RESCHED must be visible before we test polling */
1250 smp_mb();
1251 if (!tsk_is_polling(rq->idle))
1252 smp_send_reschedule(cpu);
1253 }
1254
1255 #endif /* CONFIG_NO_HZ */
1256
1257 static u64 sched_avg_period(void)
1258 {
1259 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1260 }
1261
1262 static void sched_avg_update(struct rq *rq)
1263 {
1264 s64 period = sched_avg_period();
1265
1266 while ((s64)(rq->clock - rq->age_stamp) > period) {
1267 /*
1268 * Inline assembly required to prevent the compiler
1269 * optimising this loop into a divmod call.
1270 * See __iter_div_u64_rem() for another example of this.
1271 */
1272 asm("" : "+rm" (rq->age_stamp));
1273 rq->age_stamp += period;
1274 rq->rt_avg /= 2;
1275 }
1276 }
1277
1278 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1279 {
1280 rq->rt_avg += rt_delta;
1281 sched_avg_update(rq);
1282 }
1283
1284 #else /* !CONFIG_SMP */
1285 static void resched_task(struct task_struct *p)
1286 {
1287 assert_raw_spin_locked(&task_rq(p)->lock);
1288 set_tsk_need_resched(p);
1289 }
1290
1291 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1292 {
1293 }
1294
1295 static void sched_avg_update(struct rq *rq)
1296 {
1297 }
1298 #endif /* CONFIG_SMP */
1299
1300 #if BITS_PER_LONG == 32
1301 # define WMULT_CONST (~0UL)
1302 #else
1303 # define WMULT_CONST (1UL << 32)
1304 #endif
1305
1306 #define WMULT_SHIFT 32
1307
1308 /*
1309 * Shift right and round:
1310 */
1311 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1312
1313 /*
1314 * delta *= weight / lw
1315 */
1316 static unsigned long
1317 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1318 struct load_weight *lw)
1319 {
1320 u64 tmp;
1321
1322 if (!lw->inv_weight) {
1323 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1324 lw->inv_weight = 1;
1325 else
1326 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1327 / (lw->weight+1);
1328 }
1329
1330 tmp = (u64)delta_exec * weight;
1331 /*
1332 * Check whether we'd overflow the 64-bit multiplication:
1333 */
1334 if (unlikely(tmp > WMULT_CONST))
1335 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1336 WMULT_SHIFT/2);
1337 else
1338 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1339
1340 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1341 }
1342
1343 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1344 {
1345 lw->weight += inc;
1346 lw->inv_weight = 0;
1347 }
1348
1349 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1350 {
1351 lw->weight -= dec;
1352 lw->inv_weight = 0;
1353 }
1354
1355 static inline void update_load_set(struct load_weight *lw, unsigned long w)
1356 {
1357 lw->weight = w;
1358 lw->inv_weight = 0;
1359 }
1360
1361 /*
1362 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1363 * of tasks with abnormal "nice" values across CPUs the contribution that
1364 * each task makes to its run queue's load is weighted according to its
1365 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1366 * scaled version of the new time slice allocation that they receive on time
1367 * slice expiry etc.
1368 */
1369
1370 #define WEIGHT_IDLEPRIO 3
1371 #define WMULT_IDLEPRIO 1431655765
1372
1373 /*
1374 * Nice levels are multiplicative, with a gentle 10% change for every
1375 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1376 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1377 * that remained on nice 0.
1378 *
1379 * The "10% effect" is relative and cumulative: from _any_ nice level,
1380 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1381 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1382 * If a task goes up by ~10% and another task goes down by ~10% then
1383 * the relative distance between them is ~25%.)
1384 */
1385 static const int prio_to_weight[40] = {
1386 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1387 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1388 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1389 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1390 /* 0 */ 1024, 820, 655, 526, 423,
1391 /* 5 */ 335, 272, 215, 172, 137,
1392 /* 10 */ 110, 87, 70, 56, 45,
1393 /* 15 */ 36, 29, 23, 18, 15,
1394 };
1395
1396 /*
1397 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1398 *
1399 * In cases where the weight does not change often, we can use the
1400 * precalculated inverse to speed up arithmetics by turning divisions
1401 * into multiplications:
1402 */
1403 static const u32 prio_to_wmult[40] = {
1404 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1405 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1406 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1407 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1408 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1409 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1410 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1411 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1412 };
1413
1414 /* Time spent by the tasks of the cpu accounting group executing in ... */
1415 enum cpuacct_stat_index {
1416 CPUACCT_STAT_USER, /* ... user mode */
1417 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1418
1419 CPUACCT_STAT_NSTATS,
1420 };
1421
1422 #ifdef CONFIG_CGROUP_CPUACCT
1423 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1424 static void cpuacct_update_stats(struct task_struct *tsk,
1425 enum cpuacct_stat_index idx, cputime_t val);
1426 #else
1427 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1428 static inline void cpuacct_update_stats(struct task_struct *tsk,
1429 enum cpuacct_stat_index idx, cputime_t val) {}
1430 #endif
1431
1432 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1433 {
1434 update_load_add(&rq->load, load);
1435 }
1436
1437 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1438 {
1439 update_load_sub(&rq->load, load);
1440 }
1441
1442 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1443 typedef int (*tg_visitor)(struct task_group *, void *);
1444
1445 /*
1446 * Iterate the full tree, calling @down when first entering a node and @up when
1447 * leaving it for the final time.
1448 */
1449 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1450 {
1451 struct task_group *parent, *child;
1452 int ret;
1453
1454 rcu_read_lock();
1455 parent = &root_task_group;
1456 down:
1457 ret = (*down)(parent, data);
1458 if (ret)
1459 goto out_unlock;
1460 list_for_each_entry_rcu(child, &parent->children, siblings) {
1461 parent = child;
1462 goto down;
1463
1464 up:
1465 continue;
1466 }
1467 ret = (*up)(parent, data);
1468 if (ret)
1469 goto out_unlock;
1470
1471 child = parent;
1472 parent = parent->parent;
1473 if (parent)
1474 goto up;
1475 out_unlock:
1476 rcu_read_unlock();
1477
1478 return ret;
1479 }
1480
1481 static int tg_nop(struct task_group *tg, void *data)
1482 {
1483 return 0;
1484 }
1485 #endif
1486
1487 #ifdef CONFIG_SMP
1488 /* Used instead of source_load when we know the type == 0 */
1489 static unsigned long weighted_cpuload(const int cpu)
1490 {
1491 return cpu_rq(cpu)->load.weight;
1492 }
1493
1494 /*
1495 * Return a low guess at the load of a migration-source cpu weighted
1496 * according to the scheduling class and "nice" value.
1497 *
1498 * We want to under-estimate the load of migration sources, to
1499 * balance conservatively.
1500 */
1501 static unsigned long source_load(int cpu, int type)
1502 {
1503 struct rq *rq = cpu_rq(cpu);
1504 unsigned long total = weighted_cpuload(cpu);
1505
1506 if (type == 0 || !sched_feat(LB_BIAS))
1507 return total;
1508
1509 return min(rq->cpu_load[type-1], total);
1510 }
1511
1512 /*
1513 * Return a high guess at the load of a migration-target cpu weighted
1514 * according to the scheduling class and "nice" value.
1515 */
1516 static unsigned long target_load(int cpu, int type)
1517 {
1518 struct rq *rq = cpu_rq(cpu);
1519 unsigned long total = weighted_cpuload(cpu);
1520
1521 if (type == 0 || !sched_feat(LB_BIAS))
1522 return total;
1523
1524 return max(rq->cpu_load[type-1], total);
1525 }
1526
1527 static unsigned long power_of(int cpu)
1528 {
1529 return cpu_rq(cpu)->cpu_power;
1530 }
1531
1532 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1533
1534 static unsigned long cpu_avg_load_per_task(int cpu)
1535 {
1536 struct rq *rq = cpu_rq(cpu);
1537 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1538
1539 if (nr_running)
1540 rq->avg_load_per_task = rq->load.weight / nr_running;
1541 else
1542 rq->avg_load_per_task = 0;
1543
1544 return rq->avg_load_per_task;
1545 }
1546
1547 #ifdef CONFIG_FAIR_GROUP_SCHED
1548
1549 /*
1550 * Compute the cpu's hierarchical load factor for each task group.
1551 * This needs to be done in a top-down fashion because the load of a child
1552 * group is a fraction of its parents load.
1553 */
1554 static int tg_load_down(struct task_group *tg, void *data)
1555 {
1556 unsigned long load;
1557 long cpu = (long)data;
1558
1559 if (!tg->parent) {
1560 load = cpu_rq(cpu)->load.weight;
1561 } else {
1562 load = tg->parent->cfs_rq[cpu]->h_load;
1563 load *= tg->se[cpu]->load.weight;
1564 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1565 }
1566
1567 tg->cfs_rq[cpu]->h_load = load;
1568
1569 return 0;
1570 }
1571
1572 static void update_h_load(long cpu)
1573 {
1574 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1575 }
1576
1577 #endif
1578
1579 #ifdef CONFIG_PREEMPT
1580
1581 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1582
1583 /*
1584 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1585 * way at the expense of forcing extra atomic operations in all
1586 * invocations. This assures that the double_lock is acquired using the
1587 * same underlying policy as the spinlock_t on this architecture, which
1588 * reduces latency compared to the unfair variant below. However, it
1589 * also adds more overhead and therefore may reduce throughput.
1590 */
1591 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1592 __releases(this_rq->lock)
1593 __acquires(busiest->lock)
1594 __acquires(this_rq->lock)
1595 {
1596 raw_spin_unlock(&this_rq->lock);
1597 double_rq_lock(this_rq, busiest);
1598
1599 return 1;
1600 }
1601
1602 #else
1603 /*
1604 * Unfair double_lock_balance: Optimizes throughput at the expense of
1605 * latency by eliminating extra atomic operations when the locks are
1606 * already in proper order on entry. This favors lower cpu-ids and will
1607 * grant the double lock to lower cpus over higher ids under contention,
1608 * regardless of entry order into the function.
1609 */
1610 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1611 __releases(this_rq->lock)
1612 __acquires(busiest->lock)
1613 __acquires(this_rq->lock)
1614 {
1615 int ret = 0;
1616
1617 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1618 if (busiest < this_rq) {
1619 raw_spin_unlock(&this_rq->lock);
1620 raw_spin_lock(&busiest->lock);
1621 raw_spin_lock_nested(&this_rq->lock,
1622 SINGLE_DEPTH_NESTING);
1623 ret = 1;
1624 } else
1625 raw_spin_lock_nested(&busiest->lock,
1626 SINGLE_DEPTH_NESTING);
1627 }
1628 return ret;
1629 }
1630
1631 #endif /* CONFIG_PREEMPT */
1632
1633 /*
1634 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1635 */
1636 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1637 {
1638 if (unlikely(!irqs_disabled())) {
1639 /* printk() doesn't work good under rq->lock */
1640 raw_spin_unlock(&this_rq->lock);
1641 BUG_ON(1);
1642 }
1643
1644 return _double_lock_balance(this_rq, busiest);
1645 }
1646
1647 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1648 __releases(busiest->lock)
1649 {
1650 raw_spin_unlock(&busiest->lock);
1651 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1652 }
1653
1654 /*
1655 * double_rq_lock - safely lock two runqueues
1656 *
1657 * Note this does not disable interrupts like task_rq_lock,
1658 * you need to do so manually before calling.
1659 */
1660 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1661 __acquires(rq1->lock)
1662 __acquires(rq2->lock)
1663 {
1664 BUG_ON(!irqs_disabled());
1665 if (rq1 == rq2) {
1666 raw_spin_lock(&rq1->lock);
1667 __acquire(rq2->lock); /* Fake it out ;) */
1668 } else {
1669 if (rq1 < rq2) {
1670 raw_spin_lock(&rq1->lock);
1671 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1672 } else {
1673 raw_spin_lock(&rq2->lock);
1674 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1675 }
1676 }
1677 }
1678
1679 /*
1680 * double_rq_unlock - safely unlock two runqueues
1681 *
1682 * Note this does not restore interrupts like task_rq_unlock,
1683 * you need to do so manually after calling.
1684 */
1685 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1686 __releases(rq1->lock)
1687 __releases(rq2->lock)
1688 {
1689 raw_spin_unlock(&rq1->lock);
1690 if (rq1 != rq2)
1691 raw_spin_unlock(&rq2->lock);
1692 else
1693 __release(rq2->lock);
1694 }
1695
1696 #else /* CONFIG_SMP */
1697
1698 /*
1699 * double_rq_lock - safely lock two runqueues
1700 *
1701 * Note this does not disable interrupts like task_rq_lock,
1702 * you need to do so manually before calling.
1703 */
1704 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1705 __acquires(rq1->lock)
1706 __acquires(rq2->lock)
1707 {
1708 BUG_ON(!irqs_disabled());
1709 BUG_ON(rq1 != rq2);
1710 raw_spin_lock(&rq1->lock);
1711 __acquire(rq2->lock); /* Fake it out ;) */
1712 }
1713
1714 /*
1715 * double_rq_unlock - safely unlock two runqueues
1716 *
1717 * Note this does not restore interrupts like task_rq_unlock,
1718 * you need to do so manually after calling.
1719 */
1720 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1721 __releases(rq1->lock)
1722 __releases(rq2->lock)
1723 {
1724 BUG_ON(rq1 != rq2);
1725 raw_spin_unlock(&rq1->lock);
1726 __release(rq2->lock);
1727 }
1728
1729 #endif
1730
1731 static void calc_load_account_idle(struct rq *this_rq);
1732 static void update_sysctl(void);
1733 static int get_update_sysctl_factor(void);
1734 static void update_cpu_load(struct rq *this_rq);
1735
1736 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1737 {
1738 set_task_rq(p, cpu);
1739 #ifdef CONFIG_SMP
1740 /*
1741 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1742 * successfuly executed on another CPU. We must ensure that updates of
1743 * per-task data have been completed by this moment.
1744 */
1745 smp_wmb();
1746 task_thread_info(p)->cpu = cpu;
1747 #endif
1748 }
1749
1750 static const struct sched_class rt_sched_class;
1751
1752 #define sched_class_highest (&stop_sched_class)
1753 #define for_each_class(class) \
1754 for (class = sched_class_highest; class; class = class->next)
1755
1756 #include "sched_stats.h"
1757
1758 static void inc_nr_running(struct rq *rq)
1759 {
1760 rq->nr_running++;
1761 }
1762
1763 static void dec_nr_running(struct rq *rq)
1764 {
1765 rq->nr_running--;
1766 }
1767
1768 static void set_load_weight(struct task_struct *p)
1769 {
1770 /*
1771 * SCHED_IDLE tasks get minimal weight:
1772 */
1773 if (p->policy == SCHED_IDLE) {
1774 p->se.load.weight = WEIGHT_IDLEPRIO;
1775 p->se.load.inv_weight = WMULT_IDLEPRIO;
1776 return;
1777 }
1778
1779 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1780 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1781 }
1782
1783 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1784 {
1785 update_rq_clock(rq);
1786 sched_info_queued(p);
1787 p->sched_class->enqueue_task(rq, p, flags);
1788 p->se.on_rq = 1;
1789 }
1790
1791 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1792 {
1793 update_rq_clock(rq);
1794 sched_info_dequeued(p);
1795 p->sched_class->dequeue_task(rq, p, flags);
1796 p->se.on_rq = 0;
1797 }
1798
1799 /*
1800 * activate_task - move a task to the runqueue.
1801 */
1802 static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1803 {
1804 if (task_contributes_to_load(p))
1805 rq->nr_uninterruptible--;
1806
1807 enqueue_task(rq, p, flags);
1808 inc_nr_running(rq);
1809 }
1810
1811 /*
1812 * deactivate_task - remove a task from the runqueue.
1813 */
1814 static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1815 {
1816 if (task_contributes_to_load(p))
1817 rq->nr_uninterruptible++;
1818
1819 dequeue_task(rq, p, flags);
1820 dec_nr_running(rq);
1821 }
1822
1823 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1824
1825 /*
1826 * There are no locks covering percpu hardirq/softirq time.
1827 * They are only modified in account_system_vtime, on corresponding CPU
1828 * with interrupts disabled. So, writes are safe.
1829 * They are read and saved off onto struct rq in update_rq_clock().
1830 * This may result in other CPU reading this CPU's irq time and can
1831 * race with irq/account_system_vtime on this CPU. We would either get old
1832 * or new value with a side effect of accounting a slice of irq time to wrong
1833 * task when irq is in progress while we read rq->clock. That is a worthy
1834 * compromise in place of having locks on each irq in account_system_time.
1835 */
1836 static DEFINE_PER_CPU(u64, cpu_hardirq_time);
1837 static DEFINE_PER_CPU(u64, cpu_softirq_time);
1838
1839 static DEFINE_PER_CPU(u64, irq_start_time);
1840 static int sched_clock_irqtime;
1841
1842 void enable_sched_clock_irqtime(void)
1843 {
1844 sched_clock_irqtime = 1;
1845 }
1846
1847 void disable_sched_clock_irqtime(void)
1848 {
1849 sched_clock_irqtime = 0;
1850 }
1851
1852 #ifndef CONFIG_64BIT
1853 static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
1854
1855 static inline void irq_time_write_begin(void)
1856 {
1857 __this_cpu_inc(irq_time_seq.sequence);
1858 smp_wmb();
1859 }
1860
1861 static inline void irq_time_write_end(void)
1862 {
1863 smp_wmb();
1864 __this_cpu_inc(irq_time_seq.sequence);
1865 }
1866
1867 static inline u64 irq_time_read(int cpu)
1868 {
1869 u64 irq_time;
1870 unsigned seq;
1871
1872 do {
1873 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1874 irq_time = per_cpu(cpu_softirq_time, cpu) +
1875 per_cpu(cpu_hardirq_time, cpu);
1876 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1877
1878 return irq_time;
1879 }
1880 #else /* CONFIG_64BIT */
1881 static inline void irq_time_write_begin(void)
1882 {
1883 }
1884
1885 static inline void irq_time_write_end(void)
1886 {
1887 }
1888
1889 static inline u64 irq_time_read(int cpu)
1890 {
1891 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1892 }
1893 #endif /* CONFIG_64BIT */
1894
1895 /*
1896 * Called before incrementing preempt_count on {soft,}irq_enter
1897 * and before decrementing preempt_count on {soft,}irq_exit.
1898 */
1899 void account_system_vtime(struct task_struct *curr)
1900 {
1901 unsigned long flags;
1902 s64 delta;
1903 int cpu;
1904
1905 if (!sched_clock_irqtime)
1906 return;
1907
1908 local_irq_save(flags);
1909
1910 cpu = smp_processor_id();
1911 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
1912 __this_cpu_add(irq_start_time, delta);
1913
1914 irq_time_write_begin();
1915 /*
1916 * We do not account for softirq time from ksoftirqd here.
1917 * We want to continue accounting softirq time to ksoftirqd thread
1918 * in that case, so as not to confuse scheduler with a special task
1919 * that do not consume any time, but still wants to run.
1920 */
1921 if (hardirq_count())
1922 __this_cpu_add(cpu_hardirq_time, delta);
1923 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
1924 __this_cpu_add(cpu_softirq_time, delta);
1925
1926 irq_time_write_end();
1927 local_irq_restore(flags);
1928 }
1929 EXPORT_SYMBOL_GPL(account_system_vtime);
1930
1931 static void update_rq_clock_task(struct rq *rq, s64 delta)
1932 {
1933 s64 irq_delta;
1934
1935 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
1936
1937 /*
1938 * Since irq_time is only updated on {soft,}irq_exit, we might run into
1939 * this case when a previous update_rq_clock() happened inside a
1940 * {soft,}irq region.
1941 *
1942 * When this happens, we stop ->clock_task and only update the
1943 * prev_irq_time stamp to account for the part that fit, so that a next
1944 * update will consume the rest. This ensures ->clock_task is
1945 * monotonic.
1946 *
1947 * It does however cause some slight miss-attribution of {soft,}irq
1948 * time, a more accurate solution would be to update the irq_time using
1949 * the current rq->clock timestamp, except that would require using
1950 * atomic ops.
1951 */
1952 if (irq_delta > delta)
1953 irq_delta = delta;
1954
1955 rq->prev_irq_time += irq_delta;
1956 delta -= irq_delta;
1957 rq->clock_task += delta;
1958
1959 if (irq_delta && sched_feat(NONIRQ_POWER))
1960 sched_rt_avg_update(rq, irq_delta);
1961 }
1962
1963 static int irqtime_account_hi_update(void)
1964 {
1965 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1966 unsigned long flags;
1967 u64 latest_ns;
1968 int ret = 0;
1969
1970 local_irq_save(flags);
1971 latest_ns = this_cpu_read(cpu_hardirq_time);
1972 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
1973 ret = 1;
1974 local_irq_restore(flags);
1975 return ret;
1976 }
1977
1978 static int irqtime_account_si_update(void)
1979 {
1980 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1981 unsigned long flags;
1982 u64 latest_ns;
1983 int ret = 0;
1984
1985 local_irq_save(flags);
1986 latest_ns = this_cpu_read(cpu_softirq_time);
1987 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
1988 ret = 1;
1989 local_irq_restore(flags);
1990 return ret;
1991 }
1992
1993 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
1994
1995 #define sched_clock_irqtime (0)
1996
1997 static void update_rq_clock_task(struct rq *rq, s64 delta)
1998 {
1999 rq->clock_task += delta;
2000 }
2001
2002 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2003
2004 #include "sched_idletask.c"
2005 #include "sched_fair.c"
2006 #include "sched_rt.c"
2007 #include "sched_autogroup.c"
2008 #include "sched_stoptask.c"
2009 #ifdef CONFIG_SCHED_DEBUG
2010 # include "sched_debug.c"
2011 #endif
2012
2013 void sched_set_stop_task(int cpu, struct task_struct *stop)
2014 {
2015 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2016 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2017
2018 if (stop) {
2019 /*
2020 * Make it appear like a SCHED_FIFO task, its something
2021 * userspace knows about and won't get confused about.
2022 *
2023 * Also, it will make PI more or less work without too
2024 * much confusion -- but then, stop work should not
2025 * rely on PI working anyway.
2026 */
2027 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2028
2029 stop->sched_class = &stop_sched_class;
2030 }
2031
2032 cpu_rq(cpu)->stop = stop;
2033
2034 if (old_stop) {
2035 /*
2036 * Reset it back to a normal scheduling class so that
2037 * it can die in pieces.
2038 */
2039 old_stop->sched_class = &rt_sched_class;
2040 }
2041 }
2042
2043 /*
2044 * __normal_prio - return the priority that is based on the static prio
2045 */
2046 static inline int __normal_prio(struct task_struct *p)
2047 {
2048 return p->static_prio;
2049 }
2050
2051 /*
2052 * Calculate the expected normal priority: i.e. priority
2053 * without taking RT-inheritance into account. Might be
2054 * boosted by interactivity modifiers. Changes upon fork,
2055 * setprio syscalls, and whenever the interactivity
2056 * estimator recalculates.
2057 */
2058 static inline int normal_prio(struct task_struct *p)
2059 {
2060 int prio;
2061
2062 if (task_has_rt_policy(p))
2063 prio = MAX_RT_PRIO-1 - p->rt_priority;
2064 else
2065 prio = __normal_prio(p);
2066 return prio;
2067 }
2068
2069 /*
2070 * Calculate the current priority, i.e. the priority
2071 * taken into account by the scheduler. This value might
2072 * be boosted by RT tasks, or might be boosted by
2073 * interactivity modifiers. Will be RT if the task got
2074 * RT-boosted. If not then it returns p->normal_prio.
2075 */
2076 static int effective_prio(struct task_struct *p)
2077 {
2078 p->normal_prio = normal_prio(p);
2079 /*
2080 * If we are RT tasks or we were boosted to RT priority,
2081 * keep the priority unchanged. Otherwise, update priority
2082 * to the normal priority:
2083 */
2084 if (!rt_prio(p->prio))
2085 return p->normal_prio;
2086 return p->prio;
2087 }
2088
2089 /**
2090 * task_curr - is this task currently executing on a CPU?
2091 * @p: the task in question.
2092 */
2093 inline int task_curr(const struct task_struct *p)
2094 {
2095 return cpu_curr(task_cpu(p)) == p;
2096 }
2097
2098 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2099 const struct sched_class *prev_class,
2100 int oldprio)
2101 {
2102 if (prev_class != p->sched_class) {
2103 if (prev_class->switched_from)
2104 prev_class->switched_from(rq, p);
2105 p->sched_class->switched_to(rq, p);
2106 } else if (oldprio != p->prio)
2107 p->sched_class->prio_changed(rq, p, oldprio);
2108 }
2109
2110 static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2111 {
2112 const struct sched_class *class;
2113
2114 if (p->sched_class == rq->curr->sched_class) {
2115 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2116 } else {
2117 for_each_class(class) {
2118 if (class == rq->curr->sched_class)
2119 break;
2120 if (class == p->sched_class) {
2121 resched_task(rq->curr);
2122 break;
2123 }
2124 }
2125 }
2126
2127 /*
2128 * A queue event has occurred, and we're going to schedule. In
2129 * this case, we can save a useless back to back clock update.
2130 */
2131 if (rq->curr->se.on_rq && test_tsk_need_resched(rq->curr))
2132 rq->skip_clock_update = 1;
2133 }
2134
2135 #ifdef CONFIG_SMP
2136 /*
2137 * Is this task likely cache-hot:
2138 */
2139 static int
2140 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2141 {
2142 s64 delta;
2143
2144 if (p->sched_class != &fair_sched_class)
2145 return 0;
2146
2147 if (unlikely(p->policy == SCHED_IDLE))
2148 return 0;
2149
2150 /*
2151 * Buddy candidates are cache hot:
2152 */
2153 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
2154 (&p->se == cfs_rq_of(&p->se)->next ||
2155 &p->se == cfs_rq_of(&p->se)->last))
2156 return 1;
2157
2158 if (sysctl_sched_migration_cost == -1)
2159 return 1;
2160 if (sysctl_sched_migration_cost == 0)
2161 return 0;
2162
2163 delta = now - p->se.exec_start;
2164
2165 return delta < (s64)sysctl_sched_migration_cost;
2166 }
2167
2168 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2169 {
2170 #ifdef CONFIG_SCHED_DEBUG
2171 /*
2172 * We should never call set_task_cpu() on a blocked task,
2173 * ttwu() will sort out the placement.
2174 */
2175 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2176 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2177 #endif
2178
2179 trace_sched_migrate_task(p, new_cpu);
2180
2181 if (task_cpu(p) != new_cpu) {
2182 p->se.nr_migrations++;
2183 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2184 }
2185
2186 __set_task_cpu(p, new_cpu);
2187 }
2188
2189 struct migration_arg {
2190 struct task_struct *task;
2191 int dest_cpu;
2192 };
2193
2194 static int migration_cpu_stop(void *data);
2195
2196 /*
2197 * The task's runqueue lock must be held.
2198 * Returns true if you have to wait for migration thread.
2199 */
2200 static bool migrate_task(struct task_struct *p, struct rq *rq)
2201 {
2202 /*
2203 * If the task is not on a runqueue (and not running), then
2204 * the next wake-up will properly place the task.
2205 */
2206 return p->se.on_rq || task_running(rq, p);
2207 }
2208
2209 /*
2210 * wait_task_inactive - wait for a thread to unschedule.
2211 *
2212 * If @match_state is nonzero, it's the @p->state value just checked and
2213 * not expected to change. If it changes, i.e. @p might have woken up,
2214 * then return zero. When we succeed in waiting for @p to be off its CPU,
2215 * we return a positive number (its total switch count). If a second call
2216 * a short while later returns the same number, the caller can be sure that
2217 * @p has remained unscheduled the whole time.
2218 *
2219 * The caller must ensure that the task *will* unschedule sometime soon,
2220 * else this function might spin for a *long* time. This function can't
2221 * be called with interrupts off, or it may introduce deadlock with
2222 * smp_call_function() if an IPI is sent by the same process we are
2223 * waiting to become inactive.
2224 */
2225 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2226 {
2227 unsigned long flags;
2228 int running, on_rq;
2229 unsigned long ncsw;
2230 struct rq *rq;
2231
2232 for (;;) {
2233 /*
2234 * We do the initial early heuristics without holding
2235 * any task-queue locks at all. We'll only try to get
2236 * the runqueue lock when things look like they will
2237 * work out!
2238 */
2239 rq = task_rq(p);
2240
2241 /*
2242 * If the task is actively running on another CPU
2243 * still, just relax and busy-wait without holding
2244 * any locks.
2245 *
2246 * NOTE! Since we don't hold any locks, it's not
2247 * even sure that "rq" stays as the right runqueue!
2248 * But we don't care, since "task_running()" will
2249 * return false if the runqueue has changed and p
2250 * is actually now running somewhere else!
2251 */
2252 while (task_running(rq, p)) {
2253 if (match_state && unlikely(p->state != match_state))
2254 return 0;
2255 cpu_relax();
2256 }
2257
2258 /*
2259 * Ok, time to look more closely! We need the rq
2260 * lock now, to be *sure*. If we're wrong, we'll
2261 * just go back and repeat.
2262 */
2263 rq = task_rq_lock(p, &flags);
2264 trace_sched_wait_task(p);
2265 running = task_running(rq, p);
2266 on_rq = p->se.on_rq;
2267 ncsw = 0;
2268 if (!match_state || p->state == match_state)
2269 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2270 task_rq_unlock(rq, &flags);
2271
2272 /*
2273 * If it changed from the expected state, bail out now.
2274 */
2275 if (unlikely(!ncsw))
2276 break;
2277
2278 /*
2279 * Was it really running after all now that we
2280 * checked with the proper locks actually held?
2281 *
2282 * Oops. Go back and try again..
2283 */
2284 if (unlikely(running)) {
2285 cpu_relax();
2286 continue;
2287 }
2288
2289 /*
2290 * It's not enough that it's not actively running,
2291 * it must be off the runqueue _entirely_, and not
2292 * preempted!
2293 *
2294 * So if it was still runnable (but just not actively
2295 * running right now), it's preempted, and we should
2296 * yield - it could be a while.
2297 */
2298 if (unlikely(on_rq)) {
2299 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
2300
2301 set_current_state(TASK_UNINTERRUPTIBLE);
2302 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
2303 continue;
2304 }
2305
2306 /*
2307 * Ahh, all good. It wasn't running, and it wasn't
2308 * runnable, which means that it will never become
2309 * running in the future either. We're all done!
2310 */
2311 break;
2312 }
2313
2314 return ncsw;
2315 }
2316
2317 /***
2318 * kick_process - kick a running thread to enter/exit the kernel
2319 * @p: the to-be-kicked thread
2320 *
2321 * Cause a process which is running on another CPU to enter
2322 * kernel-mode, without any delay. (to get signals handled.)
2323 *
2324 * NOTE: this function doesn't have to take the runqueue lock,
2325 * because all it wants to ensure is that the remote task enters
2326 * the kernel. If the IPI races and the task has been migrated
2327 * to another CPU then no harm is done and the purpose has been
2328 * achieved as well.
2329 */
2330 void kick_process(struct task_struct *p)
2331 {
2332 int cpu;
2333
2334 preempt_disable();
2335 cpu = task_cpu(p);
2336 if ((cpu != smp_processor_id()) && task_curr(p))
2337 smp_send_reschedule(cpu);
2338 preempt_enable();
2339 }
2340 EXPORT_SYMBOL_GPL(kick_process);
2341 #endif /* CONFIG_SMP */
2342
2343 #ifdef CONFIG_SMP
2344 /*
2345 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2346 */
2347 static int select_fallback_rq(int cpu, struct task_struct *p)
2348 {
2349 int dest_cpu;
2350 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2351
2352 /* Look for allowed, online CPU in same node. */
2353 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2354 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2355 return dest_cpu;
2356
2357 /* Any allowed, online CPU? */
2358 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2359 if (dest_cpu < nr_cpu_ids)
2360 return dest_cpu;
2361
2362 /* No more Mr. Nice Guy. */
2363 dest_cpu = cpuset_cpus_allowed_fallback(p);
2364 /*
2365 * Don't tell them about moving exiting tasks or
2366 * kernel threads (both mm NULL), since they never
2367 * leave kernel.
2368 */
2369 if (p->mm && printk_ratelimit()) {
2370 printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
2371 task_pid_nr(p), p->comm, cpu);
2372 }
2373
2374 return dest_cpu;
2375 }
2376
2377 /*
2378 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
2379 */
2380 static inline
2381 int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
2382 {
2383 int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
2384
2385 /*
2386 * In order not to call set_task_cpu() on a blocking task we need
2387 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2388 * cpu.
2389 *
2390 * Since this is common to all placement strategies, this lives here.
2391 *
2392 * [ this allows ->select_task() to simply return task_cpu(p) and
2393 * not worry about this generic constraint ]
2394 */
2395 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
2396 !cpu_online(cpu)))
2397 cpu = select_fallback_rq(task_cpu(p), p);
2398
2399 return cpu;
2400 }
2401
2402 static void update_avg(u64 *avg, u64 sample)
2403 {
2404 s64 diff = sample - *avg;
2405 *avg += diff >> 3;
2406 }
2407 #endif
2408
2409 static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
2410 bool is_sync, bool is_migrate, bool is_local,
2411 unsigned long en_flags)
2412 {
2413 schedstat_inc(p, se.statistics.nr_wakeups);
2414 if (is_sync)
2415 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2416 if (is_migrate)
2417 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2418 if (is_local)
2419 schedstat_inc(p, se.statistics.nr_wakeups_local);
2420 else
2421 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2422
2423 activate_task(rq, p, en_flags);
2424 }
2425
2426 static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
2427 int wake_flags, bool success)
2428 {
2429 trace_sched_wakeup(p, success);
2430 check_preempt_curr(rq, p, wake_flags);
2431
2432 p->state = TASK_RUNNING;
2433 #ifdef CONFIG_SMP
2434 if (p->sched_class->task_woken)
2435 p->sched_class->task_woken(rq, p);
2436
2437 if (unlikely(rq->idle_stamp)) {
2438 u64 delta = rq->clock - rq->idle_stamp;
2439 u64 max = 2*sysctl_sched_migration_cost;
2440
2441 if (delta > max)
2442 rq->avg_idle = max;
2443 else
2444 update_avg(&rq->avg_idle, delta);
2445 rq->idle_stamp = 0;
2446 }
2447 #endif
2448 /* if a worker is waking up, notify workqueue */
2449 if ((p->flags & PF_WQ_WORKER) && success)
2450 wq_worker_waking_up(p, cpu_of(rq));
2451 }
2452
2453 /**
2454 * try_to_wake_up - wake up a thread
2455 * @p: the thread to be awakened
2456 * @state: the mask of task states that can be woken
2457 * @wake_flags: wake modifier flags (WF_*)
2458 *
2459 * Put it on the run-queue if it's not already there. The "current"
2460 * thread is always on the run-queue (except when the actual
2461 * re-schedule is in progress), and as such you're allowed to do
2462 * the simpler "current->state = TASK_RUNNING" to mark yourself
2463 * runnable without the overhead of this.
2464 *
2465 * Returns %true if @p was woken up, %false if it was already running
2466 * or @state didn't match @p's state.
2467 */
2468 static int try_to_wake_up(struct task_struct *p, unsigned int state,
2469 int wake_flags)
2470 {
2471 int cpu, orig_cpu, this_cpu, success = 0;
2472 unsigned long flags;
2473 unsigned long en_flags = ENQUEUE_WAKEUP;
2474 struct rq *rq;
2475
2476 this_cpu = get_cpu();
2477
2478 smp_wmb();
2479 rq = task_rq_lock(p, &flags);
2480 if (!(p->state & state))
2481 goto out;
2482
2483 if (p->se.on_rq)
2484 goto out_running;
2485
2486 cpu = task_cpu(p);
2487 orig_cpu = cpu;
2488
2489 #ifdef CONFIG_SMP
2490 if (unlikely(task_running(rq, p)))
2491 goto out_activate;
2492
2493 /*
2494 * In order to handle concurrent wakeups and release the rq->lock
2495 * we put the task in TASK_WAKING state.
2496 *
2497 * First fix up the nr_uninterruptible count:
2498 */
2499 if (task_contributes_to_load(p)) {
2500 if (likely(cpu_online(orig_cpu)))
2501 rq->nr_uninterruptible--;
2502 else
2503 this_rq()->nr_uninterruptible--;
2504 }
2505 p->state = TASK_WAKING;
2506
2507 if (p->sched_class->task_waking) {
2508 p->sched_class->task_waking(rq, p);
2509 en_flags |= ENQUEUE_WAKING;
2510 }
2511
2512 cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
2513 if (cpu != orig_cpu)
2514 set_task_cpu(p, cpu);
2515 __task_rq_unlock(rq);
2516
2517 rq = cpu_rq(cpu);
2518 raw_spin_lock(&rq->lock);
2519
2520 /*
2521 * We migrated the task without holding either rq->lock, however
2522 * since the task is not on the task list itself, nobody else
2523 * will try and migrate the task, hence the rq should match the
2524 * cpu we just moved it to.
2525 */
2526 WARN_ON(task_cpu(p) != cpu);
2527 WARN_ON(p->state != TASK_WAKING);
2528
2529 #ifdef CONFIG_SCHEDSTATS
2530 schedstat_inc(rq, ttwu_count);
2531 if (cpu == this_cpu)
2532 schedstat_inc(rq, ttwu_local);
2533 else {
2534 struct sched_domain *sd;
2535 for_each_domain(this_cpu, sd) {
2536 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2537 schedstat_inc(sd, ttwu_wake_remote);
2538 break;
2539 }
2540 }
2541 }
2542 #endif /* CONFIG_SCHEDSTATS */
2543
2544 out_activate:
2545 #endif /* CONFIG_SMP */
2546 ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu,
2547 cpu == this_cpu, en_flags);
2548 success = 1;
2549 out_running:
2550 ttwu_post_activation(p, rq, wake_flags, success);
2551 out:
2552 task_rq_unlock(rq, &flags);
2553 put_cpu();
2554
2555 return success;
2556 }
2557
2558 /**
2559 * try_to_wake_up_local - try to wake up a local task with rq lock held
2560 * @p: the thread to be awakened
2561 *
2562 * Put @p on the run-queue if it's not already there. The caller must
2563 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2564 * the current task. this_rq() stays locked over invocation.
2565 */
2566 static void try_to_wake_up_local(struct task_struct *p)
2567 {
2568 struct rq *rq = task_rq(p);
2569 bool success = false;
2570
2571 BUG_ON(rq != this_rq());
2572 BUG_ON(p == current);
2573 lockdep_assert_held(&rq->lock);
2574
2575 if (!(p->state & TASK_NORMAL))
2576 return;
2577
2578 if (!p->se.on_rq) {
2579 if (likely(!task_running(rq, p))) {
2580 schedstat_inc(rq, ttwu_count);
2581 schedstat_inc(rq, ttwu_local);
2582 }
2583 ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP);
2584 success = true;
2585 }
2586 ttwu_post_activation(p, rq, 0, success);
2587 }
2588
2589 /**
2590 * wake_up_process - Wake up a specific process
2591 * @p: The process to be woken up.
2592 *
2593 * Attempt to wake up the nominated process and move it to the set of runnable
2594 * processes. Returns 1 if the process was woken up, 0 if it was already
2595 * running.
2596 *
2597 * It may be assumed that this function implies a write memory barrier before
2598 * changing the task state if and only if any tasks are woken up.
2599 */
2600 int wake_up_process(struct task_struct *p)
2601 {
2602 return try_to_wake_up(p, TASK_ALL, 0);
2603 }
2604 EXPORT_SYMBOL(wake_up_process);
2605
2606 int wake_up_state(struct task_struct *p, unsigned int state)
2607 {
2608 return try_to_wake_up(p, state, 0);
2609 }
2610
2611 /*
2612 * Perform scheduler related setup for a newly forked process p.
2613 * p is forked by current.
2614 *
2615 * __sched_fork() is basic setup used by init_idle() too:
2616 */
2617 static void __sched_fork(struct task_struct *p)
2618 {
2619 p->se.exec_start = 0;
2620 p->se.sum_exec_runtime = 0;
2621 p->se.prev_sum_exec_runtime = 0;
2622 p->se.nr_migrations = 0;
2623 p->se.vruntime = 0;
2624
2625 #ifdef CONFIG_SCHEDSTATS
2626 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2627 #endif
2628
2629 INIT_LIST_HEAD(&p->rt.run_list);
2630 p->se.on_rq = 0;
2631 INIT_LIST_HEAD(&p->se.group_node);
2632
2633 #ifdef CONFIG_PREEMPT_NOTIFIERS
2634 INIT_HLIST_HEAD(&p->preempt_notifiers);
2635 #endif
2636 }
2637
2638 /*
2639 * fork()/clone()-time setup:
2640 */
2641 void sched_fork(struct task_struct *p, int clone_flags)
2642 {
2643 int cpu = get_cpu();
2644
2645 __sched_fork(p);
2646 /*
2647 * We mark the process as running here. This guarantees that
2648 * nobody will actually run it, and a signal or other external
2649 * event cannot wake it up and insert it on the runqueue either.
2650 */
2651 p->state = TASK_RUNNING;
2652
2653 /*
2654 * Revert to default priority/policy on fork if requested.
2655 */
2656 if (unlikely(p->sched_reset_on_fork)) {
2657 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2658 p->policy = SCHED_NORMAL;
2659 p->normal_prio = p->static_prio;
2660 }
2661
2662 if (PRIO_TO_NICE(p->static_prio) < 0) {
2663 p->static_prio = NICE_TO_PRIO(0);
2664 p->normal_prio = p->static_prio;
2665 set_load_weight(p);
2666 }
2667
2668 /*
2669 * We don't need the reset flag anymore after the fork. It has
2670 * fulfilled its duty:
2671 */
2672 p->sched_reset_on_fork = 0;
2673 }
2674
2675 /*
2676 * Make sure we do not leak PI boosting priority to the child.
2677 */
2678 p->prio = current->normal_prio;
2679
2680 if (!rt_prio(p->prio))
2681 p->sched_class = &fair_sched_class;
2682
2683 if (p->sched_class->task_fork)
2684 p->sched_class->task_fork(p);
2685
2686 /*
2687 * The child is not yet in the pid-hash so no cgroup attach races,
2688 * and the cgroup is pinned to this child due to cgroup_fork()
2689 * is ran before sched_fork().
2690 *
2691 * Silence PROVE_RCU.
2692 */
2693 rcu_read_lock();
2694 set_task_cpu(p, cpu);
2695 rcu_read_unlock();
2696
2697 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2698 if (likely(sched_info_on()))
2699 memset(&p->sched_info, 0, sizeof(p->sched_info));
2700 #endif
2701 #if defined(CONFIG_SMP)
2702 p->on_cpu = 0;
2703 #endif
2704 #ifdef CONFIG_PREEMPT
2705 /* Want to start with kernel preemption disabled. */
2706 task_thread_info(p)->preempt_count = 1;
2707 #endif
2708 #ifdef CONFIG_SMP
2709 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2710 #endif
2711
2712 put_cpu();
2713 }
2714
2715 /*
2716 * wake_up_new_task - wake up a newly created task for the first time.
2717 *
2718 * This function will do some initial scheduler statistics housekeeping
2719 * that must be done for every newly created context, then puts the task
2720 * on the runqueue and wakes it.
2721 */
2722 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2723 {
2724 unsigned long flags;
2725 struct rq *rq;
2726 int cpu __maybe_unused = get_cpu();
2727
2728 #ifdef CONFIG_SMP
2729 rq = task_rq_lock(p, &flags);
2730 p->state = TASK_WAKING;
2731
2732 /*
2733 * Fork balancing, do it here and not earlier because:
2734 * - cpus_allowed can change in the fork path
2735 * - any previously selected cpu might disappear through hotplug
2736 *
2737 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2738 * without people poking at ->cpus_allowed.
2739 */
2740 cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
2741 set_task_cpu(p, cpu);
2742
2743 p->state = TASK_RUNNING;
2744 task_rq_unlock(rq, &flags);
2745 #endif
2746
2747 rq = task_rq_lock(p, &flags);
2748 activate_task(rq, p, 0);
2749 trace_sched_wakeup_new(p, 1);
2750 check_preempt_curr(rq, p, WF_FORK);
2751 #ifdef CONFIG_SMP
2752 if (p->sched_class->task_woken)
2753 p->sched_class->task_woken(rq, p);
2754 #endif
2755 task_rq_unlock(rq, &flags);
2756 put_cpu();
2757 }
2758
2759 #ifdef CONFIG_PREEMPT_NOTIFIERS
2760
2761 /**
2762 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2763 * @notifier: notifier struct to register
2764 */
2765 void preempt_notifier_register(struct preempt_notifier *notifier)
2766 {
2767 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2768 }
2769 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2770
2771 /**
2772 * preempt_notifier_unregister - no longer interested in preemption notifications
2773 * @notifier: notifier struct to unregister
2774 *
2775 * This is safe to call from within a preemption notifier.
2776 */
2777 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2778 {
2779 hlist_del(&notifier->link);
2780 }
2781 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2782
2783 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2784 {
2785 struct preempt_notifier *notifier;
2786 struct hlist_node *node;
2787
2788 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2789 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2790 }
2791
2792 static void
2793 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2794 struct task_struct *next)
2795 {
2796 struct preempt_notifier *notifier;
2797 struct hlist_node *node;
2798
2799 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2800 notifier->ops->sched_out(notifier, next);
2801 }
2802
2803 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2804
2805 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2806 {
2807 }
2808
2809 static void
2810 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2811 struct task_struct *next)
2812 {
2813 }
2814
2815 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2816
2817 /**
2818 * prepare_task_switch - prepare to switch tasks
2819 * @rq: the runqueue preparing to switch
2820 * @prev: the current task that is being switched out
2821 * @next: the task we are going to switch to.
2822 *
2823 * This is called with the rq lock held and interrupts off. It must
2824 * be paired with a subsequent finish_task_switch after the context
2825 * switch.
2826 *
2827 * prepare_task_switch sets up locking and calls architecture specific
2828 * hooks.
2829 */
2830 static inline void
2831 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2832 struct task_struct *next)
2833 {
2834 sched_info_switch(prev, next);
2835 perf_event_task_sched_out(prev, next);
2836 fire_sched_out_preempt_notifiers(prev, next);
2837 prepare_lock_switch(rq, next);
2838 prepare_arch_switch(next);
2839 trace_sched_switch(prev, next);
2840 }
2841
2842 /**
2843 * finish_task_switch - clean up after a task-switch
2844 * @rq: runqueue associated with task-switch
2845 * @prev: the thread we just switched away from.
2846 *
2847 * finish_task_switch must be called after the context switch, paired
2848 * with a prepare_task_switch call before the context switch.
2849 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2850 * and do any other architecture-specific cleanup actions.
2851 *
2852 * Note that we may have delayed dropping an mm in context_switch(). If
2853 * so, we finish that here outside of the runqueue lock. (Doing it
2854 * with the lock held can cause deadlocks; see schedule() for
2855 * details.)
2856 */
2857 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2858 __releases(rq->lock)
2859 {
2860 struct mm_struct *mm = rq->prev_mm;
2861 long prev_state;
2862
2863 rq->prev_mm = NULL;
2864
2865 /*
2866 * A task struct has one reference for the use as "current".
2867 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2868 * schedule one last time. The schedule call will never return, and
2869 * the scheduled task must drop that reference.
2870 * The test for TASK_DEAD must occur while the runqueue locks are
2871 * still held, otherwise prev could be scheduled on another cpu, die
2872 * there before we look at prev->state, and then the reference would
2873 * be dropped twice.
2874 * Manfred Spraul <manfred@colorfullife.com>
2875 */
2876 prev_state = prev->state;
2877 finish_arch_switch(prev);
2878 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2879 local_irq_disable();
2880 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2881 perf_event_task_sched_in(current);
2882 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2883 local_irq_enable();
2884 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2885 finish_lock_switch(rq, prev);
2886
2887 fire_sched_in_preempt_notifiers(current);
2888 if (mm)
2889 mmdrop(mm);
2890 if (unlikely(prev_state == TASK_DEAD)) {
2891 /*
2892 * Remove function-return probe instances associated with this
2893 * task and put them back on the free list.
2894 */
2895 kprobe_flush_task(prev);
2896 put_task_struct(prev);
2897 }
2898 }
2899
2900 #ifdef CONFIG_SMP
2901
2902 /* assumes rq->lock is held */
2903 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2904 {
2905 if (prev->sched_class->pre_schedule)
2906 prev->sched_class->pre_schedule(rq, prev);
2907 }
2908
2909 /* rq->lock is NOT held, but preemption is disabled */
2910 static inline void post_schedule(struct rq *rq)
2911 {
2912 if (rq->post_schedule) {
2913 unsigned long flags;
2914
2915 raw_spin_lock_irqsave(&rq->lock, flags);
2916 if (rq->curr->sched_class->post_schedule)
2917 rq->curr->sched_class->post_schedule(rq);
2918 raw_spin_unlock_irqrestore(&rq->lock, flags);
2919
2920 rq->post_schedule = 0;
2921 }
2922 }
2923
2924 #else
2925
2926 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2927 {
2928 }
2929
2930 static inline void post_schedule(struct rq *rq)
2931 {
2932 }
2933
2934 #endif
2935
2936 /**
2937 * schedule_tail - first thing a freshly forked thread must call.
2938 * @prev: the thread we just switched away from.
2939 */
2940 asmlinkage void schedule_tail(struct task_struct *prev)
2941 __releases(rq->lock)
2942 {
2943 struct rq *rq = this_rq();
2944
2945 finish_task_switch(rq, prev);
2946
2947 /*
2948 * FIXME: do we need to worry about rq being invalidated by the
2949 * task_switch?
2950 */
2951 post_schedule(rq);
2952
2953 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2954 /* In this case, finish_task_switch does not reenable preemption */
2955 preempt_enable();
2956 #endif
2957 if (current->set_child_tid)
2958 put_user(task_pid_vnr(current), current->set_child_tid);
2959 }
2960
2961 /*
2962 * context_switch - switch to the new MM and the new
2963 * thread's register state.
2964 */
2965 static inline void
2966 context_switch(struct rq *rq, struct task_struct *prev,
2967 struct task_struct *next)
2968 {
2969 struct mm_struct *mm, *oldmm;
2970
2971 prepare_task_switch(rq, prev, next);
2972
2973 mm = next->mm;
2974 oldmm = prev->active_mm;
2975 /*
2976 * For paravirt, this is coupled with an exit in switch_to to
2977 * combine the page table reload and the switch backend into
2978 * one hypercall.
2979 */
2980 arch_start_context_switch(prev);
2981
2982 if (!mm) {
2983 next->active_mm = oldmm;
2984 atomic_inc(&oldmm->mm_count);
2985 enter_lazy_tlb(oldmm, next);
2986 } else
2987 switch_mm(oldmm, mm, next);
2988
2989 if (!prev->mm) {
2990 prev->active_mm = NULL;
2991 rq->prev_mm = oldmm;
2992 }
2993 /*
2994 * Since the runqueue lock will be released by the next
2995 * task (which is an invalid locking op but in the case
2996 * of the scheduler it's an obvious special-case), so we
2997 * do an early lockdep release here:
2998 */
2999 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
3000 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3001 #endif
3002
3003 /* Here we just switch the register state and the stack. */
3004 switch_to(prev, next, prev);
3005
3006 barrier();
3007 /*
3008 * this_rq must be evaluated again because prev may have moved
3009 * CPUs since it called schedule(), thus the 'rq' on its stack
3010 * frame will be invalid.
3011 */
3012 finish_task_switch(this_rq(), prev);
3013 }
3014
3015 /*
3016 * nr_running, nr_uninterruptible and nr_context_switches:
3017 *
3018 * externally visible scheduler statistics: current number of runnable
3019 * threads, current number of uninterruptible-sleeping threads, total
3020 * number of context switches performed since bootup.
3021 */
3022 unsigned long nr_running(void)
3023 {
3024 unsigned long i, sum = 0;
3025
3026 for_each_online_cpu(i)
3027 sum += cpu_rq(i)->nr_running;
3028
3029 return sum;
3030 }
3031
3032 unsigned long nr_uninterruptible(void)
3033 {
3034 unsigned long i, sum = 0;
3035
3036 for_each_possible_cpu(i)
3037 sum += cpu_rq(i)->nr_uninterruptible;
3038
3039 /*
3040 * Since we read the counters lockless, it might be slightly
3041 * inaccurate. Do not allow it to go below zero though:
3042 */
3043 if (unlikely((long)sum < 0))
3044 sum = 0;
3045
3046 return sum;
3047 }
3048
3049 unsigned long long nr_context_switches(void)
3050 {
3051 int i;
3052 unsigned long long sum = 0;
3053
3054 for_each_possible_cpu(i)
3055 sum += cpu_rq(i)->nr_switches;
3056
3057 return sum;
3058 }
3059
3060 unsigned long nr_iowait(void)
3061 {
3062 unsigned long i, sum = 0;
3063
3064 for_each_possible_cpu(i)
3065 sum += atomic_read(&cpu_rq(i)->nr_iowait);
3066
3067 return sum;
3068 }
3069
3070 unsigned long nr_iowait_cpu(int cpu)
3071 {
3072 struct rq *this = cpu_rq(cpu);
3073 return atomic_read(&this->nr_iowait);
3074 }
3075
3076 unsigned long this_cpu_load(void)
3077 {
3078 struct rq *this = this_rq();
3079 return this->cpu_load[0];
3080 }
3081
3082
3083 /* Variables and functions for calc_load */
3084 static atomic_long_t calc_load_tasks;
3085 static unsigned long calc_load_update;
3086 unsigned long avenrun[3];
3087 EXPORT_SYMBOL(avenrun);
3088
3089 static long calc_load_fold_active(struct rq *this_rq)
3090 {
3091 long nr_active, delta = 0;
3092
3093 nr_active = this_rq->nr_running;
3094 nr_active += (long) this_rq->nr_uninterruptible;
3095
3096 if (nr_active != this_rq->calc_load_active) {
3097 delta = nr_active - this_rq->calc_load_active;
3098 this_rq->calc_load_active = nr_active;
3099 }
3100
3101 return delta;
3102 }
3103
3104 static unsigned long
3105 calc_load(unsigned long load, unsigned long exp, unsigned long active)
3106 {
3107 load *= exp;
3108 load += active * (FIXED_1 - exp);
3109 load += 1UL << (FSHIFT - 1);
3110 return load >> FSHIFT;
3111 }
3112
3113 #ifdef CONFIG_NO_HZ
3114 /*
3115 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3116 *
3117 * When making the ILB scale, we should try to pull this in as well.
3118 */
3119 static atomic_long_t calc_load_tasks_idle;
3120
3121 static void calc_load_account_idle(struct rq *this_rq)
3122 {
3123 long delta;
3124
3125 delta = calc_load_fold_active(this_rq);
3126 if (delta)
3127 atomic_long_add(delta, &calc_load_tasks_idle);
3128 }
3129
3130 static long calc_load_fold_idle(void)
3131 {
3132 long delta = 0;
3133
3134 /*
3135 * Its got a race, we don't care...
3136 */
3137 if (atomic_long_read(&calc_load_tasks_idle))
3138 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
3139
3140 return delta;
3141 }
3142
3143 /**
3144 * fixed_power_int - compute: x^n, in O(log n) time
3145 *
3146 * @x: base of the power
3147 * @frac_bits: fractional bits of @x
3148 * @n: power to raise @x to.
3149 *
3150 * By exploiting the relation between the definition of the natural power
3151 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3152 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3153 * (where: n_i \elem {0, 1}, the binary vector representing n),
3154 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3155 * of course trivially computable in O(log_2 n), the length of our binary
3156 * vector.
3157 */
3158 static unsigned long
3159 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
3160 {
3161 unsigned long result = 1UL << frac_bits;
3162
3163 if (n) for (;;) {
3164 if (n & 1) {
3165 result *= x;
3166 result += 1UL << (frac_bits - 1);
3167 result >>= frac_bits;
3168 }
3169 n >>= 1;
3170 if (!n)
3171 break;
3172 x *= x;
3173 x += 1UL << (frac_bits - 1);
3174 x >>= frac_bits;
3175 }
3176
3177 return result;
3178 }
3179
3180 /*
3181 * a1 = a0 * e + a * (1 - e)
3182 *
3183 * a2 = a1 * e + a * (1 - e)
3184 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3185 * = a0 * e^2 + a * (1 - e) * (1 + e)
3186 *
3187 * a3 = a2 * e + a * (1 - e)
3188 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3189 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3190 *
3191 * ...
3192 *
3193 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3194 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3195 * = a0 * e^n + a * (1 - e^n)
3196 *
3197 * [1] application of the geometric series:
3198 *
3199 * n 1 - x^(n+1)
3200 * S_n := \Sum x^i = -------------
3201 * i=0 1 - x
3202 */
3203 static unsigned long
3204 calc_load_n(unsigned long load, unsigned long exp,
3205 unsigned long active, unsigned int n)
3206 {
3207
3208 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
3209 }
3210
3211 /*
3212 * NO_HZ can leave us missing all per-cpu ticks calling
3213 * calc_load_account_active(), but since an idle CPU folds its delta into
3214 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3215 * in the pending idle delta if our idle period crossed a load cycle boundary.
3216 *
3217 * Once we've updated the global active value, we need to apply the exponential
3218 * weights adjusted to the number of cycles missed.
3219 */
3220 static void calc_global_nohz(unsigned long ticks)
3221 {
3222 long delta, active, n;
3223
3224 if (time_before(jiffies, calc_load_update))
3225 return;
3226
3227 /*
3228 * If we crossed a calc_load_update boundary, make sure to fold
3229 * any pending idle changes, the respective CPUs might have
3230 * missed the tick driven calc_load_account_active() update
3231 * due to NO_HZ.
3232 */
3233 delta = calc_load_fold_idle();
3234 if (delta)
3235 atomic_long_add(delta, &calc_load_tasks);
3236
3237 /*
3238 * If we were idle for multiple load cycles, apply them.
3239 */
3240 if (ticks >= LOAD_FREQ) {
3241 n = ticks / LOAD_FREQ;
3242
3243 active = atomic_long_read(&calc_load_tasks);
3244 active = active > 0 ? active * FIXED_1 : 0;
3245
3246 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
3247 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
3248 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
3249
3250 calc_load_update += n * LOAD_FREQ;
3251 }
3252
3253 /*
3254 * Its possible the remainder of the above division also crosses
3255 * a LOAD_FREQ period, the regular check in calc_global_load()
3256 * which comes after this will take care of that.
3257 *
3258 * Consider us being 11 ticks before a cycle completion, and us
3259 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
3260 * age us 4 cycles, and the test in calc_global_load() will
3261 * pick up the final one.
3262 */
3263 }
3264 #else
3265 static void calc_load_account_idle(struct rq *this_rq)
3266 {
3267 }
3268
3269 static inline long calc_load_fold_idle(void)
3270 {
3271 return 0;
3272 }
3273
3274 static void calc_global_nohz(unsigned long ticks)
3275 {
3276 }
3277 #endif
3278
3279 /**
3280 * get_avenrun - get the load average array
3281 * @loads: pointer to dest load array
3282 * @offset: offset to add
3283 * @shift: shift count to shift the result left
3284 *
3285 * These values are estimates at best, so no need for locking.
3286 */
3287 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3288 {
3289 loads[0] = (avenrun[0] + offset) << shift;
3290 loads[1] = (avenrun[1] + offset) << shift;
3291 loads[2] = (avenrun[2] + offset) << shift;
3292 }
3293
3294 /*
3295 * calc_load - update the avenrun load estimates 10 ticks after the
3296 * CPUs have updated calc_load_tasks.
3297 */
3298 void calc_global_load(unsigned long ticks)
3299 {
3300 long active;
3301
3302 calc_global_nohz(ticks);
3303
3304 if (time_before(jiffies, calc_load_update + 10))
3305 return;
3306
3307 active = atomic_long_read(&calc_load_tasks);
3308 active = active > 0 ? active * FIXED_1 : 0;
3309
3310 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3311 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3312 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3313
3314 calc_load_update += LOAD_FREQ;
3315 }
3316
3317 /*
3318 * Called from update_cpu_load() to periodically update this CPU's
3319 * active count.
3320 */
3321 static void calc_load_account_active(struct rq *this_rq)
3322 {
3323 long delta;
3324
3325 if (time_before(jiffies, this_rq->calc_load_update))
3326 return;
3327
3328 delta = calc_load_fold_active(this_rq);
3329 delta += calc_load_fold_idle();
3330 if (delta)
3331 atomic_long_add(delta, &calc_load_tasks);
3332
3333 this_rq->calc_load_update += LOAD_FREQ;
3334 }
3335
3336 /*
3337 * The exact cpuload at various idx values, calculated at every tick would be
3338 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3339 *
3340 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3341 * on nth tick when cpu may be busy, then we have:
3342 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3343 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3344 *
3345 * decay_load_missed() below does efficient calculation of
3346 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3347 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3348 *
3349 * The calculation is approximated on a 128 point scale.
3350 * degrade_zero_ticks is the number of ticks after which load at any
3351 * particular idx is approximated to be zero.
3352 * degrade_factor is a precomputed table, a row for each load idx.
3353 * Each column corresponds to degradation factor for a power of two ticks,
3354 * based on 128 point scale.
3355 * Example:
3356 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3357 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3358 *
3359 * With this power of 2 load factors, we can degrade the load n times
3360 * by looking at 1 bits in n and doing as many mult/shift instead of
3361 * n mult/shifts needed by the exact degradation.
3362 */
3363 #define DEGRADE_SHIFT 7
3364 static const unsigned char
3365 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3366 static const unsigned char
3367 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3368 {0, 0, 0, 0, 0, 0, 0, 0},
3369 {64, 32, 8, 0, 0, 0, 0, 0},
3370 {96, 72, 40, 12, 1, 0, 0},
3371 {112, 98, 75, 43, 15, 1, 0},
3372 {120, 112, 98, 76, 45, 16, 2} };
3373
3374 /*
3375 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3376 * would be when CPU is idle and so we just decay the old load without
3377 * adding any new load.
3378 */
3379 static unsigned long
3380 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3381 {
3382 int j = 0;
3383
3384 if (!missed_updates)
3385 return load;
3386
3387 if (missed_updates >= degrade_zero_ticks[idx])
3388 return 0;
3389
3390 if (idx == 1)
3391 return load >> missed_updates;
3392
3393 while (missed_updates) {
3394 if (missed_updates % 2)
3395 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3396
3397 missed_updates >>= 1;
3398 j++;
3399 }
3400 return load;
3401 }
3402
3403 /*
3404 * Update rq->cpu_load[] statistics. This function is usually called every
3405 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3406 * every tick. We fix it up based on jiffies.
3407 */
3408 static void update_cpu_load(struct rq *this_rq)
3409 {
3410 unsigned long this_load = this_rq->load.weight;
3411 unsigned long curr_jiffies = jiffies;
3412 unsigned long pending_updates;
3413 int i, scale;
3414
3415 this_rq->nr_load_updates++;
3416
3417 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3418 if (curr_jiffies == this_rq->last_load_update_tick)
3419 return;
3420
3421 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3422 this_rq->last_load_update_tick = curr_jiffies;
3423
3424 /* Update our load: */
3425 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3426 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3427 unsigned long old_load, new_load;
3428
3429 /* scale is effectively 1 << i now, and >> i divides by scale */
3430
3431 old_load = this_rq->cpu_load[i];
3432 old_load = decay_load_missed(old_load, pending_updates - 1, i);
3433 new_load = this_load;
3434 /*
3435 * Round up the averaging division if load is increasing. This
3436 * prevents us from getting stuck on 9 if the load is 10, for
3437 * example.
3438 */
3439 if (new_load > old_load)
3440 new_load += scale - 1;
3441
3442 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
3443 }
3444
3445 sched_avg_update(this_rq);
3446 }
3447
3448 static void update_cpu_load_active(struct rq *this_rq)
3449 {
3450 update_cpu_load(this_rq);
3451
3452 calc_load_account_active(this_rq);
3453 }
3454
3455 #ifdef CONFIG_SMP
3456
3457 /*
3458 * sched_exec - execve() is a valuable balancing opportunity, because at
3459 * this point the task has the smallest effective memory and cache footprint.
3460 */
3461 void sched_exec(void)
3462 {
3463 struct task_struct *p = current;
3464 unsigned long flags;
3465 struct rq *rq;
3466 int dest_cpu;
3467
3468 rq = task_rq_lock(p, &flags);
3469 dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
3470 if (dest_cpu == smp_processor_id())
3471 goto unlock;
3472
3473 /*
3474 * select_task_rq() can race against ->cpus_allowed
3475 */
3476 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
3477 likely(cpu_active(dest_cpu)) && migrate_task(p, rq)) {
3478 struct migration_arg arg = { p, dest_cpu };
3479
3480 task_rq_unlock(rq, &flags);
3481 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
3482 return;
3483 }
3484 unlock:
3485 task_rq_unlock(rq, &flags);
3486 }
3487
3488 #endif
3489
3490 DEFINE_PER_CPU(struct kernel_stat, kstat);
3491
3492 EXPORT_PER_CPU_SYMBOL(kstat);
3493
3494 /*
3495 * Return any ns on the sched_clock that have not yet been accounted in
3496 * @p in case that task is currently running.
3497 *
3498 * Called with task_rq_lock() held on @rq.
3499 */
3500 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3501 {
3502 u64 ns = 0;
3503
3504 if (task_current(rq, p)) {
3505 update_rq_clock(rq);
3506 ns = rq->clock_task - p->se.exec_start;
3507 if ((s64)ns < 0)
3508 ns = 0;
3509 }
3510
3511 return ns;
3512 }
3513
3514 unsigned long long task_delta_exec(struct task_struct *p)
3515 {
3516 unsigned long flags;
3517 struct rq *rq;
3518 u64 ns = 0;
3519
3520 rq = task_rq_lock(p, &flags);
3521 ns = do_task_delta_exec(p, rq);
3522 task_rq_unlock(rq, &flags);
3523
3524 return ns;
3525 }
3526
3527 /*
3528 * Return accounted runtime for the task.
3529 * In case the task is currently running, return the runtime plus current's
3530 * pending runtime that have not been accounted yet.
3531 */
3532 unsigned long long task_sched_runtime(struct task_struct *p)
3533 {
3534 unsigned long flags;
3535 struct rq *rq;
3536 u64 ns = 0;
3537
3538 rq = task_rq_lock(p, &flags);
3539 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3540 task_rq_unlock(rq, &flags);
3541
3542 return ns;
3543 }
3544
3545 /*
3546 * Return sum_exec_runtime for the thread group.
3547 * In case the task is currently running, return the sum plus current's
3548 * pending runtime that have not been accounted yet.
3549 *
3550 * Note that the thread group might have other running tasks as well,
3551 * so the return value not includes other pending runtime that other
3552 * running tasks might have.
3553 */
3554 unsigned long long thread_group_sched_runtime(struct task_struct *p)
3555 {
3556 struct task_cputime totals;
3557 unsigned long flags;
3558 struct rq *rq;
3559 u64 ns;
3560
3561 rq = task_rq_lock(p, &flags);
3562 thread_group_cputime(p, &totals);
3563 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3564 task_rq_unlock(rq, &flags);
3565
3566 return ns;
3567 }
3568
3569 /*
3570 * Account user cpu time to a process.
3571 * @p: the process that the cpu time gets accounted to
3572 * @cputime: the cpu time spent in user space since the last update
3573 * @cputime_scaled: cputime scaled by cpu frequency
3574 */
3575 void account_user_time(struct task_struct *p, cputime_t cputime,
3576 cputime_t cputime_scaled)
3577 {
3578 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3579 cputime64_t tmp;
3580
3581 /* Add user time to process. */
3582 p->utime = cputime_add(p->utime, cputime);
3583 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3584 account_group_user_time(p, cputime);
3585
3586 /* Add user time to cpustat. */
3587 tmp = cputime_to_cputime64(cputime);
3588 if (TASK_NICE(p) > 0)
3589 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3590 else
3591 cpustat->user = cputime64_add(cpustat->user, tmp);
3592
3593 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3594 /* Account for user time used */
3595 acct_update_integrals(p);
3596 }
3597
3598 /*
3599 * Account guest cpu time to a process.
3600 * @p: the process that the cpu time gets accounted to
3601 * @cputime: the cpu time spent in virtual machine since the last update
3602 * @cputime_scaled: cputime scaled by cpu frequency
3603 */
3604 static void account_guest_time(struct task_struct *p, cputime_t cputime,
3605 cputime_t cputime_scaled)
3606 {
3607 cputime64_t tmp;
3608 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3609
3610 tmp = cputime_to_cputime64(cputime);
3611
3612 /* Add guest time to process. */
3613 p->utime = cputime_add(p->utime, cputime);
3614 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3615 account_group_user_time(p, cputime);
3616 p->gtime = cputime_add(p->gtime, cputime);
3617
3618 /* Add guest time to cpustat. */
3619 if (TASK_NICE(p) > 0) {
3620 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3621 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3622 } else {
3623 cpustat->user = cputime64_add(cpustat->user, tmp);
3624 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3625 }
3626 }
3627
3628 /*
3629 * Account system cpu time to a process and desired cpustat field
3630 * @p: the process that the cpu time gets accounted to
3631 * @cputime: the cpu time spent in kernel space since the last update
3632 * @cputime_scaled: cputime scaled by cpu frequency
3633 * @target_cputime64: pointer to cpustat field that has to be updated
3634 */
3635 static inline
3636 void __account_system_time(struct task_struct *p, cputime_t cputime,
3637 cputime_t cputime_scaled, cputime64_t *target_cputime64)
3638 {
3639 cputime64_t tmp = cputime_to_cputime64(cputime);
3640
3641 /* Add system time to process. */
3642 p->stime = cputime_add(p->stime, cputime);
3643 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3644 account_group_system_time(p, cputime);
3645
3646 /* Add system time to cpustat. */
3647 *target_cputime64 = cputime64_add(*target_cputime64, tmp);
3648 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3649
3650 /* Account for system time used */
3651 acct_update_integrals(p);
3652 }
3653
3654 /*
3655 * Account system cpu time to a process.
3656 * @p: the process that the cpu time gets accounted to
3657 * @hardirq_offset: the offset to subtract from hardirq_count()
3658 * @cputime: the cpu time spent in kernel space since the last update
3659 * @cputime_scaled: cputime scaled by cpu frequency
3660 */
3661 void account_system_time(struct task_struct *p, int hardirq_offset,
3662 cputime_t cputime, cputime_t cputime_scaled)
3663 {
3664 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3665 cputime64_t *target_cputime64;
3666
3667 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3668 account_guest_time(p, cputime, cputime_scaled);
3669 return;
3670 }
3671
3672 if (hardirq_count() - hardirq_offset)
3673 target_cputime64 = &cpustat->irq;
3674 else if (in_serving_softirq())
3675 target_cputime64 = &cpustat->softirq;
3676 else
3677 target_cputime64 = &cpustat->system;
3678
3679 __account_system_time(p, cputime, cputime_scaled, target_cputime64);
3680 }
3681
3682 /*
3683 * Account for involuntary wait time.
3684 * @cputime: the cpu time spent in involuntary wait
3685 */
3686 void account_steal_time(cputime_t cputime)
3687 {
3688 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3689 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3690
3691 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3692 }
3693
3694 /*
3695 * Account for idle time.
3696 * @cputime: the cpu time spent in idle wait
3697 */
3698 void account_idle_time(cputime_t cputime)
3699 {
3700 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3701 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3702 struct rq *rq = this_rq();
3703
3704 if (atomic_read(&rq->nr_iowait) > 0)
3705 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3706 else
3707 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
3708 }
3709
3710 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
3711
3712 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
3713 /*
3714 * Account a tick to a process and cpustat
3715 * @p: the process that the cpu time gets accounted to
3716 * @user_tick: is the tick from userspace
3717 * @rq: the pointer to rq
3718 *
3719 * Tick demultiplexing follows the order
3720 * - pending hardirq update
3721 * - pending softirq update
3722 * - user_time
3723 * - idle_time
3724 * - system time
3725 * - check for guest_time
3726 * - else account as system_time
3727 *
3728 * Check for hardirq is done both for system and user time as there is
3729 * no timer going off while we are on hardirq and hence we may never get an
3730 * opportunity to update it solely in system time.
3731 * p->stime and friends are only updated on system time and not on irq
3732 * softirq as those do not count in task exec_runtime any more.
3733 */
3734 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3735 struct rq *rq)
3736 {
3737 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3738 cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
3739 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3740
3741 if (irqtime_account_hi_update()) {
3742 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3743 } else if (irqtime_account_si_update()) {
3744 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3745 } else if (this_cpu_ksoftirqd() == p) {
3746 /*
3747 * ksoftirqd time do not get accounted in cpu_softirq_time.
3748 * So, we have to handle it separately here.
3749 * Also, p->stime needs to be updated for ksoftirqd.
3750 */
3751 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3752 &cpustat->softirq);
3753 } else if (user_tick) {
3754 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3755 } else if (p == rq->idle) {
3756 account_idle_time(cputime_one_jiffy);
3757 } else if (p->flags & PF_VCPU) { /* System time or guest time */
3758 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
3759 } else {
3760 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3761 &cpustat->system);
3762 }
3763 }
3764
3765 static void irqtime_account_idle_ticks(int ticks)
3766 {
3767 int i;
3768 struct rq *rq = this_rq();
3769
3770 for (i = 0; i < ticks; i++)
3771 irqtime_account_process_tick(current, 0, rq);
3772 }
3773 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
3774 static void irqtime_account_idle_ticks(int ticks) {}
3775 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3776 struct rq *rq) {}
3777 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
3778
3779 /*
3780 * Account a single tick of cpu time.
3781 * @p: the process that the cpu time gets accounted to
3782 * @user_tick: indicates if the tick is a user or a system tick
3783 */
3784 void account_process_tick(struct task_struct *p, int user_tick)
3785 {
3786 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3787 struct rq *rq = this_rq();
3788
3789 if (sched_clock_irqtime) {
3790 irqtime_account_process_tick(p, user_tick, rq);
3791 return;
3792 }
3793
3794 if (user_tick)
3795 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3796 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3797 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3798 one_jiffy_scaled);
3799 else
3800 account_idle_time(cputime_one_jiffy);
3801 }
3802
3803 /*
3804 * Account multiple ticks of steal time.
3805 * @p: the process from which the cpu time has been stolen
3806 * @ticks: number of stolen ticks
3807 */
3808 void account_steal_ticks(unsigned long ticks)
3809 {
3810 account_steal_time(jiffies_to_cputime(ticks));
3811 }
3812
3813 /*
3814 * Account multiple ticks of idle time.
3815 * @ticks: number of stolen ticks
3816 */
3817 void account_idle_ticks(unsigned long ticks)
3818 {
3819
3820 if (sched_clock_irqtime) {
3821 irqtime_account_idle_ticks(ticks);
3822 return;
3823 }
3824
3825 account_idle_time(jiffies_to_cputime(ticks));
3826 }
3827
3828 #endif
3829
3830 /*
3831 * Use precise platform statistics if available:
3832 */
3833 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
3834 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3835 {
3836 *ut = p->utime;
3837 *st = p->stime;
3838 }
3839
3840 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3841 {
3842 struct task_cputime cputime;
3843
3844 thread_group_cputime(p, &cputime);
3845
3846 *ut = cputime.utime;
3847 *st = cputime.stime;
3848 }
3849 #else
3850
3851 #ifndef nsecs_to_cputime
3852 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
3853 #endif
3854
3855 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3856 {
3857 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
3858
3859 /*
3860 * Use CFS's precise accounting:
3861 */
3862 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3863
3864 if (total) {
3865 u64 temp = rtime;
3866
3867 temp *= utime;
3868 do_div(temp, total);
3869 utime = (cputime_t)temp;
3870 } else
3871 utime = rtime;
3872
3873 /*
3874 * Compare with previous values, to keep monotonicity:
3875 */
3876 p->prev_utime = max(p->prev_utime, utime);
3877 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
3878
3879 *ut = p->prev_utime;
3880 *st = p->prev_stime;
3881 }
3882
3883 /*
3884 * Must be called with siglock held.
3885 */
3886 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3887 {
3888 struct signal_struct *sig = p->signal;
3889 struct task_cputime cputime;
3890 cputime_t rtime, utime, total;
3891
3892 thread_group_cputime(p, &cputime);
3893
3894 total = cputime_add(cputime.utime, cputime.stime);
3895 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3896
3897 if (total) {
3898 u64 temp = rtime;
3899
3900 temp *= cputime.utime;
3901 do_div(temp, total);
3902 utime = (cputime_t)temp;
3903 } else
3904 utime = rtime;
3905
3906 sig->prev_utime = max(sig->prev_utime, utime);
3907 sig->prev_stime = max(sig->prev_stime,
3908 cputime_sub(rtime, sig->prev_utime));
3909
3910 *ut = sig->prev_utime;
3911 *st = sig->prev_stime;
3912 }
3913 #endif
3914
3915 /*
3916 * This function gets called by the timer code, with HZ frequency.
3917 * We call it with interrupts disabled.
3918 *
3919 * It also gets called by the fork code, when changing the parent's
3920 * timeslices.
3921 */
3922 void scheduler_tick(void)
3923 {
3924 int cpu = smp_processor_id();
3925 struct rq *rq = cpu_rq(cpu);
3926 struct task_struct *curr = rq->curr;
3927
3928 sched_clock_tick();
3929
3930 raw_spin_lock(&rq->lock);
3931 update_rq_clock(rq);
3932 update_cpu_load_active(rq);
3933 curr->sched_class->task_tick(rq, curr, 0);
3934 raw_spin_unlock(&rq->lock);
3935
3936 perf_event_task_tick();
3937
3938 #ifdef CONFIG_SMP
3939 rq->idle_at_tick = idle_cpu(cpu);
3940 trigger_load_balance(rq, cpu);
3941 #endif
3942 }
3943
3944 notrace unsigned long get_parent_ip(unsigned long addr)
3945 {
3946 if (in_lock_functions(addr)) {
3947 addr = CALLER_ADDR2;
3948 if (in_lock_functions(addr))
3949 addr = CALLER_ADDR3;
3950 }
3951 return addr;
3952 }
3953
3954 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3955 defined(CONFIG_PREEMPT_TRACER))
3956
3957 void __kprobes add_preempt_count(int val)
3958 {
3959 #ifdef CONFIG_DEBUG_PREEMPT
3960 /*
3961 * Underflow?
3962 */
3963 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3964 return;
3965 #endif
3966 preempt_count() += val;
3967 #ifdef CONFIG_DEBUG_PREEMPT
3968 /*
3969 * Spinlock count overflowing soon?
3970 */
3971 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3972 PREEMPT_MASK - 10);
3973 #endif
3974 if (preempt_count() == val)
3975 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3976 }
3977 EXPORT_SYMBOL(add_preempt_count);
3978
3979 void __kprobes sub_preempt_count(int val)
3980 {
3981 #ifdef CONFIG_DEBUG_PREEMPT
3982 /*
3983 * Underflow?
3984 */
3985 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3986 return;
3987 /*
3988 * Is the spinlock portion underflowing?
3989 */
3990 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3991 !(preempt_count() & PREEMPT_MASK)))
3992 return;
3993 #endif
3994
3995 if (preempt_count() == val)
3996 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3997 preempt_count() -= val;
3998 }
3999 EXPORT_SYMBOL(sub_preempt_count);
4000
4001 #endif
4002
4003 /*
4004 * Print scheduling while atomic bug:
4005 */
4006 static noinline void __schedule_bug(struct task_struct *prev)
4007 {
4008 struct pt_regs *regs = get_irq_regs();
4009
4010 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4011 prev->comm, prev->pid, preempt_count());
4012
4013 debug_show_held_locks(prev);
4014 print_modules();
4015 if (irqs_disabled())
4016 print_irqtrace_events(prev);
4017
4018 if (regs)
4019 show_regs(regs);
4020 else
4021 dump_stack();
4022 }
4023
4024 /*
4025 * Various schedule()-time debugging checks and statistics:
4026 */
4027 static inline void schedule_debug(struct task_struct *prev)
4028 {
4029 /*
4030 * Test if we are atomic. Since do_exit() needs to call into
4031 * schedule() atomically, we ignore that path for now.
4032 * Otherwise, whine if we are scheduling when we should not be.
4033 */
4034 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
4035 __schedule_bug(prev);
4036
4037 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4038
4039 schedstat_inc(this_rq(), sched_count);
4040 #ifdef CONFIG_SCHEDSTATS
4041 if (unlikely(prev->lock_depth >= 0)) {
4042 schedstat_inc(this_rq(), rq_sched_info.bkl_count);
4043 schedstat_inc(prev, sched_info.bkl_count);
4044 }
4045 #endif
4046 }
4047
4048 static void put_prev_task(struct rq *rq, struct task_struct *prev)
4049 {
4050 if (prev->se.on_rq)
4051 update_rq_clock(rq);
4052 prev->sched_class->put_prev_task(rq, prev);
4053 }
4054
4055 /*
4056 * Pick up the highest-prio task:
4057 */
4058 static inline struct task_struct *
4059 pick_next_task(struct rq *rq)
4060 {
4061 const struct sched_class *class;
4062 struct task_struct *p;
4063
4064 /*
4065 * Optimization: we know that if all tasks are in
4066 * the fair class we can call that function directly:
4067 */
4068 if (likely(rq->nr_running == rq->cfs.nr_running)) {
4069 p = fair_sched_class.pick_next_task(rq);
4070 if (likely(p))
4071 return p;
4072 }
4073
4074 for_each_class(class) {
4075 p = class->pick_next_task(rq);
4076 if (p)
4077 return p;
4078 }
4079
4080 BUG(); /* the idle class will always have a runnable task */
4081 }
4082
4083 /*
4084 * schedule() is the main scheduler function.
4085 */
4086 asmlinkage void __sched schedule(void)
4087 {
4088 struct task_struct *prev, *next;
4089 unsigned long *switch_count;
4090 struct rq *rq;
4091 int cpu;
4092
4093 need_resched:
4094 preempt_disable();
4095 cpu = smp_processor_id();
4096 rq = cpu_rq(cpu);
4097 rcu_note_context_switch(cpu);
4098 prev = rq->curr;
4099
4100 schedule_debug(prev);
4101
4102 if (sched_feat(HRTICK))
4103 hrtick_clear(rq);
4104
4105 raw_spin_lock_irq(&rq->lock);
4106
4107 switch_count = &prev->nivcsw;
4108 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4109 if (unlikely(signal_pending_state(prev->state, prev))) {
4110 prev->state = TASK_RUNNING;
4111 } else {
4112 /*
4113 * If a worker is going to sleep, notify and
4114 * ask workqueue whether it wants to wake up a
4115 * task to maintain concurrency. If so, wake
4116 * up the task.
4117 */
4118 if (prev->flags & PF_WQ_WORKER) {
4119 struct task_struct *to_wakeup;
4120
4121 to_wakeup = wq_worker_sleeping(prev, cpu);
4122 if (to_wakeup)
4123 try_to_wake_up_local(to_wakeup);
4124 }
4125 deactivate_task(rq, prev, DEQUEUE_SLEEP);
4126
4127 /*
4128 * If we are going to sleep and we have plugged IO queued, make
4129 * sure to submit it to avoid deadlocks.
4130 */
4131 if (blk_needs_flush_plug(prev)) {
4132 raw_spin_unlock(&rq->lock);
4133 blk_flush_plug(prev);
4134 raw_spin_lock(&rq->lock);
4135 }
4136 }
4137 switch_count = &prev->nvcsw;
4138 }
4139
4140 pre_schedule(rq, prev);
4141
4142 if (unlikely(!rq->nr_running))
4143 idle_balance(cpu, rq);
4144
4145 put_prev_task(rq, prev);
4146 next = pick_next_task(rq);
4147 clear_tsk_need_resched(prev);
4148 rq->skip_clock_update = 0;
4149
4150 if (likely(prev != next)) {
4151 rq->nr_switches++;
4152 rq->curr = next;
4153 ++*switch_count;
4154
4155 context_switch(rq, prev, next); /* unlocks the rq */
4156 /*
4157 * The context switch have flipped the stack from under us
4158 * and restored the local variables which were saved when
4159 * this task called schedule() in the past. prev == current
4160 * is still correct, but it can be moved to another cpu/rq.
4161 */
4162 cpu = smp_processor_id();
4163 rq = cpu_rq(cpu);
4164 } else
4165 raw_spin_unlock_irq(&rq->lock);
4166
4167 post_schedule(rq);
4168
4169 preempt_enable_no_resched();
4170 if (need_resched())
4171 goto need_resched;
4172 }
4173 EXPORT_SYMBOL(schedule);
4174
4175 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
4176
4177 static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
4178 {
4179 bool ret = false;
4180
4181 rcu_read_lock();
4182 if (lock->owner != owner)
4183 goto fail;
4184
4185 /*
4186 * Ensure we emit the owner->on_cpu, dereference _after_ checking
4187 * lock->owner still matches owner, if that fails, owner might
4188 * point to free()d memory, if it still matches, the rcu_read_lock()
4189 * ensures the memory stays valid.
4190 */
4191 barrier();
4192
4193 ret = owner->on_cpu;
4194 fail:
4195 rcu_read_unlock();
4196
4197 return ret;
4198 }
4199
4200 /*
4201 * Look out! "owner" is an entirely speculative pointer
4202 * access and not reliable.
4203 */
4204 int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
4205 {
4206 if (!sched_feat(OWNER_SPIN))
4207 return 0;
4208
4209 while (owner_running(lock, owner)) {
4210 if (need_resched())
4211 return 0;
4212
4213 arch_mutex_cpu_relax();
4214 }
4215
4216 /*
4217 * If the owner changed to another task there is likely
4218 * heavy contention, stop spinning.
4219 */
4220 if (lock->owner)
4221 return 0;
4222
4223 return 1;
4224 }
4225 #endif
4226
4227 #ifdef CONFIG_PREEMPT
4228 /*
4229 * this is the entry point to schedule() from in-kernel preemption
4230 * off of preempt_enable. Kernel preemptions off return from interrupt
4231 * occur there and call schedule directly.
4232 */
4233 asmlinkage void __sched notrace preempt_schedule(void)
4234 {
4235 struct thread_info *ti = current_thread_info();
4236
4237 /*
4238 * If there is a non-zero preempt_count or interrupts are disabled,
4239 * we do not want to preempt the current task. Just return..
4240 */
4241 if (likely(ti->preempt_count || irqs_disabled()))
4242 return;
4243
4244 do {
4245 add_preempt_count_notrace(PREEMPT_ACTIVE);
4246 schedule();
4247 sub_preempt_count_notrace(PREEMPT_ACTIVE);
4248
4249 /*
4250 * Check again in case we missed a preemption opportunity
4251 * between schedule and now.
4252 */
4253 barrier();
4254 } while (need_resched());
4255 }
4256 EXPORT_SYMBOL(preempt_schedule);
4257
4258 /*
4259 * this is the entry point to schedule() from kernel preemption
4260 * off of irq context.
4261 * Note, that this is called and return with irqs disabled. This will
4262 * protect us against recursive calling from irq.
4263 */
4264 asmlinkage void __sched preempt_schedule_irq(void)
4265 {
4266 struct thread_info *ti = current_thread_info();
4267
4268 /* Catch callers which need to be fixed */
4269 BUG_ON(ti->preempt_count || !irqs_disabled());
4270
4271 do {
4272 add_preempt_count(PREEMPT_ACTIVE);
4273 local_irq_enable();
4274 schedule();
4275 local_irq_disable();
4276 sub_preempt_count(PREEMPT_ACTIVE);
4277
4278 /*
4279 * Check again in case we missed a preemption opportunity
4280 * between schedule and now.
4281 */
4282 barrier();
4283 } while (need_resched());
4284 }
4285
4286 #endif /* CONFIG_PREEMPT */
4287
4288 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
4289 void *key)
4290 {
4291 return try_to_wake_up(curr->private, mode, wake_flags);
4292 }
4293 EXPORT_SYMBOL(default_wake_function);
4294
4295 /*
4296 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4297 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4298 * number) then we wake all the non-exclusive tasks and one exclusive task.
4299 *
4300 * There are circumstances in which we can try to wake a task which has already
4301 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4302 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4303 */
4304 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4305 int nr_exclusive, int wake_flags, void *key)
4306 {
4307 wait_queue_t *curr, *next;
4308
4309 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4310 unsigned flags = curr->flags;
4311
4312 if (curr->func(curr, mode, wake_flags, key) &&
4313 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4314 break;
4315 }
4316 }
4317
4318 /**
4319 * __wake_up - wake up threads blocked on a waitqueue.
4320 * @q: the waitqueue
4321 * @mode: which threads
4322 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4323 * @key: is directly passed to the wakeup function
4324 *
4325 * It may be assumed that this function implies a write memory barrier before
4326 * changing the task state if and only if any tasks are woken up.
4327 */
4328 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4329 int nr_exclusive, void *key)
4330 {
4331 unsigned long flags;
4332
4333 spin_lock_irqsave(&q->lock, flags);
4334 __wake_up_common(q, mode, nr_exclusive, 0, key);
4335 spin_unlock_irqrestore(&q->lock, flags);
4336 }
4337 EXPORT_SYMBOL(__wake_up);
4338
4339 /*
4340 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4341 */
4342 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4343 {
4344 __wake_up_common(q, mode, 1, 0, NULL);
4345 }
4346 EXPORT_SYMBOL_GPL(__wake_up_locked);
4347
4348 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4349 {
4350 __wake_up_common(q, mode, 1, 0, key);
4351 }
4352 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4353
4354 /**
4355 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
4356 * @q: the waitqueue
4357 * @mode: which threads
4358 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4359 * @key: opaque value to be passed to wakeup targets
4360 *
4361 * The sync wakeup differs that the waker knows that it will schedule
4362 * away soon, so while the target thread will be woken up, it will not
4363 * be migrated to another CPU - ie. the two threads are 'synchronized'
4364 * with each other. This can prevent needless bouncing between CPUs.
4365 *
4366 * On UP it can prevent extra preemption.
4367 *
4368 * It may be assumed that this function implies a write memory barrier before
4369 * changing the task state if and only if any tasks are woken up.
4370 */
4371 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4372 int nr_exclusive, void *key)
4373 {
4374 unsigned long flags;
4375 int wake_flags = WF_SYNC;
4376
4377 if (unlikely(!q))
4378 return;
4379
4380 if (unlikely(!nr_exclusive))
4381 wake_flags = 0;
4382
4383 spin_lock_irqsave(&q->lock, flags);
4384 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
4385 spin_unlock_irqrestore(&q->lock, flags);
4386 }
4387 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4388
4389 /*
4390 * __wake_up_sync - see __wake_up_sync_key()
4391 */
4392 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4393 {
4394 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4395 }
4396 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4397
4398 /**
4399 * complete: - signals a single thread waiting on this completion
4400 * @x: holds the state of this particular completion
4401 *
4402 * This will wake up a single thread waiting on this completion. Threads will be
4403 * awakened in the same order in which they were queued.
4404 *
4405 * See also complete_all(), wait_for_completion() and related routines.
4406 *
4407 * It may be assumed that this function implies a write memory barrier before
4408 * changing the task state if and only if any tasks are woken up.
4409 */
4410 void complete(struct completion *x)
4411 {
4412 unsigned long flags;
4413
4414 spin_lock_irqsave(&x->wait.lock, flags);
4415 x->done++;
4416 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4417 spin_unlock_irqrestore(&x->wait.lock, flags);
4418 }
4419 EXPORT_SYMBOL(complete);
4420
4421 /**
4422 * complete_all: - signals all threads waiting on this completion
4423 * @x: holds the state of this particular completion
4424 *
4425 * This will wake up all threads waiting on this particular completion event.
4426 *
4427 * It may be assumed that this function implies a write memory barrier before
4428 * changing the task state if and only if any tasks are woken up.
4429 */
4430 void complete_all(struct completion *x)
4431 {
4432 unsigned long flags;
4433
4434 spin_lock_irqsave(&x->wait.lock, flags);
4435 x->done += UINT_MAX/2;
4436 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4437 spin_unlock_irqrestore(&x->wait.lock, flags);
4438 }
4439 EXPORT_SYMBOL(complete_all);
4440
4441 static inline long __sched
4442 do_wait_for_common(struct completion *x, long timeout, int state)
4443 {
4444 if (!x->done) {
4445 DECLARE_WAITQUEUE(wait, current);
4446
4447 __add_wait_queue_tail_exclusive(&x->wait, &wait);
4448 do {
4449 if (signal_pending_state(state, current)) {
4450 timeout = -ERESTARTSYS;
4451 break;
4452 }
4453 __set_current_state(state);
4454 spin_unlock_irq(&x->wait.lock);
4455 timeout = schedule_timeout(timeout);
4456 spin_lock_irq(&x->wait.lock);
4457 } while (!x->done && timeout);
4458 __remove_wait_queue(&x->wait, &wait);
4459 if (!x->done)
4460 return timeout;
4461 }
4462 x->done--;
4463 return timeout ?: 1;
4464 }
4465
4466 static long __sched
4467 wait_for_common(struct completion *x, long timeout, int state)
4468 {
4469 might_sleep();
4470
4471 spin_lock_irq(&x->wait.lock);
4472 timeout = do_wait_for_common(x, timeout, state);
4473 spin_unlock_irq(&x->wait.lock);
4474 return timeout;
4475 }
4476
4477 /**
4478 * wait_for_completion: - waits for completion of a task
4479 * @x: holds the state of this particular completion
4480 *
4481 * This waits to be signaled for completion of a specific task. It is NOT
4482 * interruptible and there is no timeout.
4483 *
4484 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4485 * and interrupt capability. Also see complete().
4486 */
4487 void __sched wait_for_completion(struct completion *x)
4488 {
4489 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4490 }
4491 EXPORT_SYMBOL(wait_for_completion);
4492
4493 /**
4494 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4495 * @x: holds the state of this particular completion
4496 * @timeout: timeout value in jiffies
4497 *
4498 * This waits for either a completion of a specific task to be signaled or for a
4499 * specified timeout to expire. The timeout is in jiffies. It is not
4500 * interruptible.
4501 */
4502 unsigned long __sched
4503 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4504 {
4505 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4506 }
4507 EXPORT_SYMBOL(wait_for_completion_timeout);
4508
4509 /**
4510 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4511 * @x: holds the state of this particular completion
4512 *
4513 * This waits for completion of a specific task to be signaled. It is
4514 * interruptible.
4515 */
4516 int __sched wait_for_completion_interruptible(struct completion *x)
4517 {
4518 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4519 if (t == -ERESTARTSYS)
4520 return t;
4521 return 0;
4522 }
4523 EXPORT_SYMBOL(wait_for_completion_interruptible);
4524
4525 /**
4526 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4527 * @x: holds the state of this particular completion
4528 * @timeout: timeout value in jiffies
4529 *
4530 * This waits for either a completion of a specific task to be signaled or for a
4531 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4532 */
4533 long __sched
4534 wait_for_completion_interruptible_timeout(struct completion *x,
4535 unsigned long timeout)
4536 {
4537 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4538 }
4539 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4540
4541 /**
4542 * wait_for_completion_killable: - waits for completion of a task (killable)
4543 * @x: holds the state of this particular completion
4544 *
4545 * This waits to be signaled for completion of a specific task. It can be
4546 * interrupted by a kill signal.
4547 */
4548 int __sched wait_for_completion_killable(struct completion *x)
4549 {
4550 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4551 if (t == -ERESTARTSYS)
4552 return t;
4553 return 0;
4554 }
4555 EXPORT_SYMBOL(wait_for_completion_killable);
4556
4557 /**
4558 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4559 * @x: holds the state of this particular completion
4560 * @timeout: timeout value in jiffies
4561 *
4562 * This waits for either a completion of a specific task to be
4563 * signaled or for a specified timeout to expire. It can be
4564 * interrupted by a kill signal. The timeout is in jiffies.
4565 */
4566 long __sched
4567 wait_for_completion_killable_timeout(struct completion *x,
4568 unsigned long timeout)
4569 {
4570 return wait_for_common(x, timeout, TASK_KILLABLE);
4571 }
4572 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4573
4574 /**
4575 * try_wait_for_completion - try to decrement a completion without blocking
4576 * @x: completion structure
4577 *
4578 * Returns: 0 if a decrement cannot be done without blocking
4579 * 1 if a decrement succeeded.
4580 *
4581 * If a completion is being used as a counting completion,
4582 * attempt to decrement the counter without blocking. This
4583 * enables us to avoid waiting if the resource the completion
4584 * is protecting is not available.
4585 */
4586 bool try_wait_for_completion(struct completion *x)
4587 {
4588 unsigned long flags;
4589 int ret = 1;
4590
4591 spin_lock_irqsave(&x->wait.lock, flags);
4592 if (!x->done)
4593 ret = 0;
4594 else
4595 x->done--;
4596 spin_unlock_irqrestore(&x->wait.lock, flags);
4597 return ret;
4598 }
4599 EXPORT_SYMBOL(try_wait_for_completion);
4600
4601 /**
4602 * completion_done - Test to see if a completion has any waiters
4603 * @x: completion structure
4604 *
4605 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4606 * 1 if there are no waiters.
4607 *
4608 */
4609 bool completion_done(struct completion *x)
4610 {
4611 unsigned long flags;
4612 int ret = 1;
4613
4614 spin_lock_irqsave(&x->wait.lock, flags);
4615 if (!x->done)
4616 ret = 0;
4617 spin_unlock_irqrestore(&x->wait.lock, flags);
4618 return ret;
4619 }
4620 EXPORT_SYMBOL(completion_done);
4621
4622 static long __sched
4623 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4624 {
4625 unsigned long flags;
4626 wait_queue_t wait;
4627
4628 init_waitqueue_entry(&wait, current);
4629
4630 __set_current_state(state);
4631
4632 spin_lock_irqsave(&q->lock, flags);
4633 __add_wait_queue(q, &wait);
4634 spin_unlock(&q->lock);
4635 timeout = schedule_timeout(timeout);
4636 spin_lock_irq(&q->lock);
4637 __remove_wait_queue(q, &wait);
4638 spin_unlock_irqrestore(&q->lock, flags);
4639
4640 return timeout;
4641 }
4642
4643 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4644 {
4645 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4646 }
4647 EXPORT_SYMBOL(interruptible_sleep_on);
4648
4649 long __sched
4650 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4651 {
4652 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4653 }
4654 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4655
4656 void __sched sleep_on(wait_queue_head_t *q)
4657 {
4658 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4659 }
4660 EXPORT_SYMBOL(sleep_on);
4661
4662 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4663 {
4664 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4665 }
4666 EXPORT_SYMBOL(sleep_on_timeout);
4667
4668 #ifdef CONFIG_RT_MUTEXES
4669
4670 /*
4671 * rt_mutex_setprio - set the current priority of a task
4672 * @p: task
4673 * @prio: prio value (kernel-internal form)
4674 *
4675 * This function changes the 'effective' priority of a task. It does
4676 * not touch ->normal_prio like __setscheduler().
4677 *
4678 * Used by the rt_mutex code to implement priority inheritance logic.
4679 */
4680 void rt_mutex_setprio(struct task_struct *p, int prio)
4681 {
4682 unsigned long flags;
4683 int oldprio, on_rq, running;
4684 struct rq *rq;
4685 const struct sched_class *prev_class;
4686
4687 BUG_ON(prio < 0 || prio > MAX_PRIO);
4688
4689 rq = task_rq_lock(p, &flags);
4690
4691 trace_sched_pi_setprio(p, prio);
4692 oldprio = p->prio;
4693 prev_class = p->sched_class;
4694 on_rq = p->se.on_rq;
4695 running = task_current(rq, p);
4696 if (on_rq)
4697 dequeue_task(rq, p, 0);
4698 if (running)
4699 p->sched_class->put_prev_task(rq, p);
4700
4701 if (rt_prio(prio))
4702 p->sched_class = &rt_sched_class;
4703 else
4704 p->sched_class = &fair_sched_class;
4705
4706 p->prio = prio;
4707
4708 if (running)
4709 p->sched_class->set_curr_task(rq);
4710 if (on_rq)
4711 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
4712
4713 check_class_changed(rq, p, prev_class, oldprio);
4714 task_rq_unlock(rq, &flags);
4715 }
4716
4717 #endif
4718
4719 void set_user_nice(struct task_struct *p, long nice)
4720 {
4721 int old_prio, delta, on_rq;
4722 unsigned long flags;
4723 struct rq *rq;
4724
4725 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4726 return;
4727 /*
4728 * We have to be careful, if called from sys_setpriority(),
4729 * the task might be in the middle of scheduling on another CPU.
4730 */
4731 rq = task_rq_lock(p, &flags);
4732 /*
4733 * The RT priorities are set via sched_setscheduler(), but we still
4734 * allow the 'normal' nice value to be set - but as expected
4735 * it wont have any effect on scheduling until the task is
4736 * SCHED_FIFO/SCHED_RR:
4737 */
4738 if (task_has_rt_policy(p)) {
4739 p->static_prio = NICE_TO_PRIO(nice);
4740 goto out_unlock;
4741 }
4742 on_rq = p->se.on_rq;
4743 if (on_rq)
4744 dequeue_task(rq, p, 0);
4745
4746 p->static_prio = NICE_TO_PRIO(nice);
4747 set_load_weight(p);
4748 old_prio = p->prio;
4749 p->prio = effective_prio(p);
4750 delta = p->prio - old_prio;
4751
4752 if (on_rq) {
4753 enqueue_task(rq, p, 0);
4754 /*
4755 * If the task increased its priority or is running and
4756 * lowered its priority, then reschedule its CPU:
4757 */
4758 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4759 resched_task(rq->curr);
4760 }
4761 out_unlock:
4762 task_rq_unlock(rq, &flags);
4763 }
4764 EXPORT_SYMBOL(set_user_nice);
4765
4766 /*
4767 * can_nice - check if a task can reduce its nice value
4768 * @p: task
4769 * @nice: nice value
4770 */
4771 int can_nice(const struct task_struct *p, const int nice)
4772 {
4773 /* convert nice value [19,-20] to rlimit style value [1,40] */
4774 int nice_rlim = 20 - nice;
4775
4776 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4777 capable(CAP_SYS_NICE));
4778 }
4779
4780 #ifdef __ARCH_WANT_SYS_NICE
4781
4782 /*
4783 * sys_nice - change the priority of the current process.
4784 * @increment: priority increment
4785 *
4786 * sys_setpriority is a more generic, but much slower function that
4787 * does similar things.
4788 */
4789 SYSCALL_DEFINE1(nice, int, increment)
4790 {
4791 long nice, retval;
4792
4793 /*
4794 * Setpriority might change our priority at the same moment.
4795 * We don't have to worry. Conceptually one call occurs first
4796 * and we have a single winner.
4797 */
4798 if (increment < -40)
4799 increment = -40;
4800 if (increment > 40)
4801 increment = 40;
4802
4803 nice = TASK_NICE(current) + increment;
4804 if (nice < -20)
4805 nice = -20;
4806 if (nice > 19)
4807 nice = 19;
4808
4809 if (increment < 0 && !can_nice(current, nice))
4810 return -EPERM;
4811
4812 retval = security_task_setnice(current, nice);
4813 if (retval)
4814 return retval;
4815
4816 set_user_nice(current, nice);
4817 return 0;
4818 }
4819
4820 #endif
4821
4822 /**
4823 * task_prio - return the priority value of a given task.
4824 * @p: the task in question.
4825 *
4826 * This is the priority value as seen by users in /proc.
4827 * RT tasks are offset by -200. Normal tasks are centered
4828 * around 0, value goes from -16 to +15.
4829 */
4830 int task_prio(const struct task_struct *p)
4831 {
4832 return p->prio - MAX_RT_PRIO;
4833 }
4834
4835 /**
4836 * task_nice - return the nice value of a given task.
4837 * @p: the task in question.
4838 */
4839 int task_nice(const struct task_struct *p)
4840 {
4841 return TASK_NICE(p);
4842 }
4843 EXPORT_SYMBOL(task_nice);
4844
4845 /**
4846 * idle_cpu - is a given cpu idle currently?
4847 * @cpu: the processor in question.
4848 */
4849 int idle_cpu(int cpu)
4850 {
4851 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4852 }
4853
4854 /**
4855 * idle_task - return the idle task for a given cpu.
4856 * @cpu: the processor in question.
4857 */
4858 struct task_struct *idle_task(int cpu)
4859 {
4860 return cpu_rq(cpu)->idle;
4861 }
4862
4863 /**
4864 * find_process_by_pid - find a process with a matching PID value.
4865 * @pid: the pid in question.
4866 */
4867 static struct task_struct *find_process_by_pid(pid_t pid)
4868 {
4869 return pid ? find_task_by_vpid(pid) : current;
4870 }
4871
4872 /* Actually do priority change: must hold rq lock. */
4873 static void
4874 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4875 {
4876 BUG_ON(p->se.on_rq);
4877
4878 p->policy = policy;
4879 p->rt_priority = prio;
4880 p->normal_prio = normal_prio(p);
4881 /* we are holding p->pi_lock already */
4882 p->prio = rt_mutex_getprio(p);
4883 if (rt_prio(p->prio))
4884 p->sched_class = &rt_sched_class;
4885 else
4886 p->sched_class = &fair_sched_class;
4887 set_load_weight(p);
4888 }
4889
4890 /*
4891 * check the target process has a UID that matches the current process's
4892 */
4893 static bool check_same_owner(struct task_struct *p)
4894 {
4895 const struct cred *cred = current_cred(), *pcred;
4896 bool match;
4897
4898 rcu_read_lock();
4899 pcred = __task_cred(p);
4900 if (cred->user->user_ns == pcred->user->user_ns)
4901 match = (cred->euid == pcred->euid ||
4902 cred->euid == pcred->uid);
4903 else
4904 match = false;
4905 rcu_read_unlock();
4906 return match;
4907 }
4908
4909 static int __sched_setscheduler(struct task_struct *p, int policy,
4910 const struct sched_param *param, bool user)
4911 {
4912 int retval, oldprio, oldpolicy = -1, on_rq, running;
4913 unsigned long flags;
4914 const struct sched_class *prev_class;
4915 struct rq *rq;
4916 int reset_on_fork;
4917
4918 /* may grab non-irq protected spin_locks */
4919 BUG_ON(in_interrupt());
4920 recheck:
4921 /* double check policy once rq lock held */
4922 if (policy < 0) {
4923 reset_on_fork = p->sched_reset_on_fork;
4924 policy = oldpolicy = p->policy;
4925 } else {
4926 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4927 policy &= ~SCHED_RESET_ON_FORK;
4928
4929 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4930 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4931 policy != SCHED_IDLE)
4932 return -EINVAL;
4933 }
4934
4935 /*
4936 * Valid priorities for SCHED_FIFO and SCHED_RR are
4937 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4938 * SCHED_BATCH and SCHED_IDLE is 0.
4939 */
4940 if (param->sched_priority < 0 ||
4941 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4942 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4943 return -EINVAL;
4944 if (rt_policy(policy) != (param->sched_priority != 0))
4945 return -EINVAL;
4946
4947 /*
4948 * Allow unprivileged RT tasks to decrease priority:
4949 */
4950 if (user && !capable(CAP_SYS_NICE)) {
4951 if (rt_policy(policy)) {
4952 unsigned long rlim_rtprio =
4953 task_rlimit(p, RLIMIT_RTPRIO);
4954
4955 /* can't set/change the rt policy */
4956 if (policy != p->policy && !rlim_rtprio)
4957 return -EPERM;
4958
4959 /* can't increase priority */
4960 if (param->sched_priority > p->rt_priority &&
4961 param->sched_priority > rlim_rtprio)
4962 return -EPERM;
4963 }
4964
4965 /*
4966 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4967 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4968 */
4969 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
4970 if (!can_nice(p, TASK_NICE(p)))
4971 return -EPERM;
4972 }
4973
4974 /* can't change other user's priorities */
4975 if (!check_same_owner(p))
4976 return -EPERM;
4977
4978 /* Normal users shall not reset the sched_reset_on_fork flag */
4979 if (p->sched_reset_on_fork && !reset_on_fork)
4980 return -EPERM;
4981 }
4982
4983 if (user) {
4984 retval = security_task_setscheduler(p);
4985 if (retval)
4986 return retval;
4987 }
4988
4989 /*
4990 * make sure no PI-waiters arrive (or leave) while we are
4991 * changing the priority of the task:
4992 */
4993 raw_spin_lock_irqsave(&p->pi_lock, flags);
4994 /*
4995 * To be able to change p->policy safely, the appropriate
4996 * runqueue lock must be held.
4997 */
4998 rq = __task_rq_lock(p);
4999
5000 /*
5001 * Changing the policy of the stop threads its a very bad idea
5002 */
5003 if (p == rq->stop) {
5004 __task_rq_unlock(rq);
5005 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5006 return -EINVAL;
5007 }
5008
5009 /*
5010 * If not changing anything there's no need to proceed further:
5011 */
5012 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
5013 param->sched_priority == p->rt_priority))) {
5014
5015 __task_rq_unlock(rq);
5016 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5017 return 0;
5018 }
5019
5020 #ifdef CONFIG_RT_GROUP_SCHED
5021 if (user) {
5022 /*
5023 * Do not allow realtime tasks into groups that have no runtime
5024 * assigned.
5025 */
5026 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5027 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5028 !task_group_is_autogroup(task_group(p))) {
5029 __task_rq_unlock(rq);
5030 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5031 return -EPERM;
5032 }
5033 }
5034 #endif
5035
5036 /* recheck policy now with rq lock held */
5037 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5038 policy = oldpolicy = -1;
5039 __task_rq_unlock(rq);
5040 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5041 goto recheck;
5042 }
5043 on_rq = p->se.on_rq;
5044 running = task_current(rq, p);
5045 if (on_rq)
5046 deactivate_task(rq, p, 0);
5047 if (running)
5048 p->sched_class->put_prev_task(rq, p);
5049
5050 p->sched_reset_on_fork = reset_on_fork;
5051
5052 oldprio = p->prio;
5053 prev_class = p->sched_class;
5054 __setscheduler(rq, p, policy, param->sched_priority);
5055
5056 if (running)
5057 p->sched_class->set_curr_task(rq);
5058 if (on_rq)
5059 activate_task(rq, p, 0);
5060
5061 check_class_changed(rq, p, prev_class, oldprio);
5062 __task_rq_unlock(rq);
5063 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5064
5065 rt_mutex_adjust_pi(p);
5066
5067 return 0;
5068 }
5069
5070 /**
5071 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5072 * @p: the task in question.
5073 * @policy: new policy.
5074 * @param: structure containing the new RT priority.
5075 *
5076 * NOTE that the task may be already dead.
5077 */
5078 int sched_setscheduler(struct task_struct *p, int policy,
5079 const struct sched_param *param)
5080 {
5081 return __sched_setscheduler(p, policy, param, true);
5082 }
5083 EXPORT_SYMBOL_GPL(sched_setscheduler);
5084
5085 /**
5086 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5087 * @p: the task in question.
5088 * @policy: new policy.
5089 * @param: structure containing the new RT priority.
5090 *
5091 * Just like sched_setscheduler, only don't bother checking if the
5092 * current context has permission. For example, this is needed in
5093 * stop_machine(): we create temporary high priority worker threads,
5094 * but our caller might not have that capability.
5095 */
5096 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5097 const struct sched_param *param)
5098 {
5099 return __sched_setscheduler(p, policy, param, false);
5100 }
5101
5102 static int
5103 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5104 {
5105 struct sched_param lparam;
5106 struct task_struct *p;
5107 int retval;
5108
5109 if (!param || pid < 0)
5110 return -EINVAL;
5111 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5112 return -EFAULT;
5113
5114 rcu_read_lock();
5115 retval = -ESRCH;
5116 p = find_process_by_pid(pid);
5117 if (p != NULL)
5118 retval = sched_setscheduler(p, policy, &lparam);
5119 rcu_read_unlock();
5120
5121 return retval;
5122 }
5123
5124 /**
5125 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5126 * @pid: the pid in question.
5127 * @policy: new policy.
5128 * @param: structure containing the new RT priority.
5129 */
5130 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5131 struct sched_param __user *, param)
5132 {
5133 /* negative values for policy are not valid */
5134 if (policy < 0)
5135 return -EINVAL;
5136
5137 return do_sched_setscheduler(pid, policy, param);
5138 }
5139
5140 /**
5141 * sys_sched_setparam - set/change the RT priority of a thread
5142 * @pid: the pid in question.
5143 * @param: structure containing the new RT priority.
5144 */
5145 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
5146 {
5147 return do_sched_setscheduler(pid, -1, param);
5148 }
5149
5150 /**
5151 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5152 * @pid: the pid in question.
5153 */
5154 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5155 {
5156 struct task_struct *p;
5157 int retval;
5158
5159 if (pid < 0)
5160 return -EINVAL;
5161
5162 retval = -ESRCH;
5163 rcu_read_lock();
5164 p = find_process_by_pid(pid);
5165 if (p) {
5166 retval = security_task_getscheduler(p);
5167 if (!retval)
5168 retval = p->policy
5169 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
5170 }
5171 rcu_read_unlock();
5172 return retval;
5173 }
5174
5175 /**
5176 * sys_sched_getparam - get the RT priority of a thread
5177 * @pid: the pid in question.
5178 * @param: structure containing the RT priority.
5179 */
5180 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5181 {
5182 struct sched_param lp;
5183 struct task_struct *p;
5184 int retval;
5185
5186 if (!param || pid < 0)
5187 return -EINVAL;
5188
5189 rcu_read_lock();
5190 p = find_process_by_pid(pid);
5191 retval = -ESRCH;
5192 if (!p)
5193 goto out_unlock;
5194
5195 retval = security_task_getscheduler(p);
5196 if (retval)
5197 goto out_unlock;
5198
5199 lp.sched_priority = p->rt_priority;
5200 rcu_read_unlock();
5201
5202 /*
5203 * This one might sleep, we cannot do it with a spinlock held ...
5204 */
5205 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5206
5207 return retval;
5208
5209 out_unlock:
5210 rcu_read_unlock();
5211 return retval;
5212 }
5213
5214 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5215 {
5216 cpumask_var_t cpus_allowed, new_mask;
5217 struct task_struct *p;
5218 int retval;
5219
5220 get_online_cpus();
5221 rcu_read_lock();
5222
5223 p = find_process_by_pid(pid);
5224 if (!p) {
5225 rcu_read_unlock();
5226 put_online_cpus();
5227 return -ESRCH;
5228 }
5229
5230 /* Prevent p going away */
5231 get_task_struct(p);
5232 rcu_read_unlock();
5233
5234 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5235 retval = -ENOMEM;
5236 goto out_put_task;
5237 }
5238 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5239 retval = -ENOMEM;
5240 goto out_free_cpus_allowed;
5241 }
5242 retval = -EPERM;
5243 if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
5244 goto out_unlock;
5245
5246 retval = security_task_setscheduler(p);
5247 if (retval)
5248 goto out_unlock;
5249
5250 cpuset_cpus_allowed(p, cpus_allowed);
5251 cpumask_and(new_mask, in_mask, cpus_allowed);
5252 again:
5253 retval = set_cpus_allowed_ptr(p, new_mask);
5254
5255 if (!retval) {
5256 cpuset_cpus_allowed(p, cpus_allowed);
5257 if (!cpumask_subset(new_mask, cpus_allowed)) {
5258 /*
5259 * We must have raced with a concurrent cpuset
5260 * update. Just reset the cpus_allowed to the
5261 * cpuset's cpus_allowed
5262 */
5263 cpumask_copy(new_mask, cpus_allowed);
5264 goto again;
5265 }
5266 }
5267 out_unlock:
5268 free_cpumask_var(new_mask);
5269 out_free_cpus_allowed:
5270 free_cpumask_var(cpus_allowed);
5271 out_put_task:
5272 put_task_struct(p);
5273 put_online_cpus();
5274 return retval;
5275 }
5276
5277 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5278 struct cpumask *new_mask)
5279 {
5280 if (len < cpumask_size())
5281 cpumask_clear(new_mask);
5282 else if (len > cpumask_size())
5283 len = cpumask_size();
5284
5285 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5286 }
5287
5288 /**
5289 * sys_sched_setaffinity - set the cpu affinity of a process
5290 * @pid: pid of the process
5291 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5292 * @user_mask_ptr: user-space pointer to the new cpu mask
5293 */
5294 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5295 unsigned long __user *, user_mask_ptr)
5296 {
5297 cpumask_var_t new_mask;
5298 int retval;
5299
5300 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5301 return -ENOMEM;
5302
5303 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5304 if (retval == 0)
5305 retval = sched_setaffinity(pid, new_mask);
5306 free_cpumask_var(new_mask);
5307 return retval;
5308 }
5309
5310 long sched_getaffinity(pid_t pid, struct cpumask *mask)
5311 {
5312 struct task_struct *p;
5313 unsigned long flags;
5314 struct rq *rq;
5315 int retval;
5316
5317 get_online_cpus();
5318 rcu_read_lock();
5319
5320 retval = -ESRCH;
5321 p = find_process_by_pid(pid);
5322 if (!p)
5323 goto out_unlock;
5324
5325 retval = security_task_getscheduler(p);
5326 if (retval)
5327 goto out_unlock;
5328
5329 rq = task_rq_lock(p, &flags);
5330 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
5331 task_rq_unlock(rq, &flags);
5332
5333 out_unlock:
5334 rcu_read_unlock();
5335 put_online_cpus();
5336
5337 return retval;
5338 }
5339
5340 /**
5341 * sys_sched_getaffinity - get the cpu affinity of a process
5342 * @pid: pid of the process
5343 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5344 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5345 */
5346 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5347 unsigned long __user *, user_mask_ptr)
5348 {
5349 int ret;
5350 cpumask_var_t mask;
5351
5352 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
5353 return -EINVAL;
5354 if (len & (sizeof(unsigned long)-1))
5355 return -EINVAL;
5356
5357 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5358 return -ENOMEM;
5359
5360 ret = sched_getaffinity(pid, mask);
5361 if (ret == 0) {
5362 size_t retlen = min_t(size_t, len, cpumask_size());
5363
5364 if (copy_to_user(user_mask_ptr, mask, retlen))
5365 ret = -EFAULT;
5366 else
5367 ret = retlen;
5368 }
5369 free_cpumask_var(mask);
5370
5371 return ret;
5372 }
5373
5374 /**
5375 * sys_sched_yield - yield the current processor to other threads.
5376 *
5377 * This function yields the current CPU to other tasks. If there are no
5378 * other threads running on this CPU then this function will return.
5379 */
5380 SYSCALL_DEFINE0(sched_yield)
5381 {
5382 struct rq *rq = this_rq_lock();
5383
5384 schedstat_inc(rq, yld_count);
5385 current->sched_class->yield_task(rq);
5386
5387 /*
5388 * Since we are going to call schedule() anyway, there's
5389 * no need to preempt or enable interrupts:
5390 */
5391 __release(rq->lock);
5392 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5393 do_raw_spin_unlock(&rq->lock);
5394 preempt_enable_no_resched();
5395
5396 schedule();
5397
5398 return 0;
5399 }
5400
5401 static inline int should_resched(void)
5402 {
5403 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5404 }
5405
5406 static void __cond_resched(void)
5407 {
5408 add_preempt_count(PREEMPT_ACTIVE);
5409 schedule();
5410 sub_preempt_count(PREEMPT_ACTIVE);
5411 }
5412
5413 int __sched _cond_resched(void)
5414 {
5415 if (should_resched()) {
5416 __cond_resched();
5417 return 1;
5418 }
5419 return 0;
5420 }
5421 EXPORT_SYMBOL(_cond_resched);
5422
5423 /*
5424 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5425 * call schedule, and on return reacquire the lock.
5426 *
5427 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5428 * operations here to prevent schedule() from being called twice (once via
5429 * spin_unlock(), once by hand).
5430 */
5431 int __cond_resched_lock(spinlock_t *lock)
5432 {
5433 int resched = should_resched();
5434 int ret = 0;
5435
5436 lockdep_assert_held(lock);
5437
5438 if (spin_needbreak(lock) || resched) {
5439 spin_unlock(lock);
5440 if (resched)
5441 __cond_resched();
5442 else
5443 cpu_relax();
5444 ret = 1;
5445 spin_lock(lock);
5446 }
5447 return ret;
5448 }
5449 EXPORT_SYMBOL(__cond_resched_lock);
5450
5451 int __sched __cond_resched_softirq(void)
5452 {
5453 BUG_ON(!in_softirq());
5454
5455 if (should_resched()) {
5456 local_bh_enable();
5457 __cond_resched();
5458 local_bh_disable();
5459 return 1;
5460 }
5461 return 0;
5462 }
5463 EXPORT_SYMBOL(__cond_resched_softirq);
5464
5465 /**
5466 * yield - yield the current processor to other threads.
5467 *
5468 * This is a shortcut for kernel-space yielding - it marks the
5469 * thread runnable and calls sys_sched_yield().
5470 */
5471 void __sched yield(void)
5472 {
5473 set_current_state(TASK_RUNNING);
5474 sys_sched_yield();
5475 }
5476 EXPORT_SYMBOL(yield);
5477
5478 /**
5479 * yield_to - yield the current processor to another thread in
5480 * your thread group, or accelerate that thread toward the
5481 * processor it's on.
5482 * @p: target task
5483 * @preempt: whether task preemption is allowed or not
5484 *
5485 * It's the caller's job to ensure that the target task struct
5486 * can't go away on us before we can do any checks.
5487 *
5488 * Returns true if we indeed boosted the target task.
5489 */
5490 bool __sched yield_to(struct task_struct *p, bool preempt)
5491 {
5492 struct task_struct *curr = current;
5493 struct rq *rq, *p_rq;
5494 unsigned long flags;
5495 bool yielded = 0;
5496
5497 local_irq_save(flags);
5498 rq = this_rq();
5499
5500 again:
5501 p_rq = task_rq(p);
5502 double_rq_lock(rq, p_rq);
5503 while (task_rq(p) != p_rq) {
5504 double_rq_unlock(rq, p_rq);
5505 goto again;
5506 }
5507
5508 if (!curr->sched_class->yield_to_task)
5509 goto out;
5510
5511 if (curr->sched_class != p->sched_class)
5512 goto out;
5513
5514 if (task_running(p_rq, p) || p->state)
5515 goto out;
5516
5517 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5518 if (yielded) {
5519 schedstat_inc(rq, yld_count);
5520 /*
5521 * Make p's CPU reschedule; pick_next_entity takes care of
5522 * fairness.
5523 */
5524 if (preempt && rq != p_rq)
5525 resched_task(p_rq->curr);
5526 }
5527
5528 out:
5529 double_rq_unlock(rq, p_rq);
5530 local_irq_restore(flags);
5531
5532 if (yielded)
5533 schedule();
5534
5535 return yielded;
5536 }
5537 EXPORT_SYMBOL_GPL(yield_to);
5538
5539 /*
5540 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5541 * that process accounting knows that this is a task in IO wait state.
5542 */
5543 void __sched io_schedule(void)
5544 {
5545 struct rq *rq = raw_rq();
5546
5547 delayacct_blkio_start();
5548 atomic_inc(&rq->nr_iowait);
5549 blk_flush_plug(current);
5550 current->in_iowait = 1;
5551 schedule();
5552 current->in_iowait = 0;
5553 atomic_dec(&rq->nr_iowait);
5554 delayacct_blkio_end();
5555 }
5556 EXPORT_SYMBOL(io_schedule);
5557
5558 long __sched io_schedule_timeout(long timeout)
5559 {
5560 struct rq *rq = raw_rq();
5561 long ret;
5562
5563 delayacct_blkio_start();
5564 atomic_inc(&rq->nr_iowait);
5565 blk_flush_plug(current);
5566 current->in_iowait = 1;
5567 ret = schedule_timeout(timeout);
5568 current->in_iowait = 0;
5569 atomic_dec(&rq->nr_iowait);
5570 delayacct_blkio_end();
5571 return ret;
5572 }
5573
5574 /**
5575 * sys_sched_get_priority_max - return maximum RT priority.
5576 * @policy: scheduling class.
5577 *
5578 * this syscall returns the maximum rt_priority that can be used
5579 * by a given scheduling class.
5580 */
5581 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5582 {
5583 int ret = -EINVAL;
5584
5585 switch (policy) {
5586 case SCHED_FIFO:
5587 case SCHED_RR:
5588 ret = MAX_USER_RT_PRIO-1;
5589 break;
5590 case SCHED_NORMAL:
5591 case SCHED_BATCH:
5592 case SCHED_IDLE:
5593 ret = 0;
5594 break;
5595 }
5596 return ret;
5597 }
5598
5599 /**
5600 * sys_sched_get_priority_min - return minimum RT priority.
5601 * @policy: scheduling class.
5602 *
5603 * this syscall returns the minimum rt_priority that can be used
5604 * by a given scheduling class.
5605 */
5606 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5607 {
5608 int ret = -EINVAL;
5609
5610 switch (policy) {
5611 case SCHED_FIFO:
5612 case SCHED_RR:
5613 ret = 1;
5614 break;
5615 case SCHED_NORMAL:
5616 case SCHED_BATCH:
5617 case SCHED_IDLE:
5618 ret = 0;
5619 }
5620 return ret;
5621 }
5622
5623 /**
5624 * sys_sched_rr_get_interval - return the default timeslice of a process.
5625 * @pid: pid of the process.
5626 * @interval: userspace pointer to the timeslice value.
5627 *
5628 * this syscall writes the default timeslice value of a given process
5629 * into the user-space timespec buffer. A value of '0' means infinity.
5630 */
5631 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5632 struct timespec __user *, interval)
5633 {
5634 struct task_struct *p;
5635 unsigned int time_slice;
5636 unsigned long flags;
5637 struct rq *rq;
5638 int retval;
5639 struct timespec t;
5640
5641 if (pid < 0)
5642 return -EINVAL;
5643
5644 retval = -ESRCH;
5645 rcu_read_lock();
5646 p = find_process_by_pid(pid);
5647 if (!p)
5648 goto out_unlock;
5649
5650 retval = security_task_getscheduler(p);
5651 if (retval)
5652 goto out_unlock;
5653
5654 rq = task_rq_lock(p, &flags);
5655 time_slice = p->sched_class->get_rr_interval(rq, p);
5656 task_rq_unlock(rq, &flags);
5657
5658 rcu_read_unlock();
5659 jiffies_to_timespec(time_slice, &t);
5660 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5661 return retval;
5662
5663 out_unlock:
5664 rcu_read_unlock();
5665 return retval;
5666 }
5667
5668 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5669
5670 void sched_show_task(struct task_struct *p)
5671 {
5672 unsigned long free = 0;
5673 unsigned state;
5674
5675 state = p->state ? __ffs(p->state) + 1 : 0;
5676 printk(KERN_INFO "%-15.15s %c", p->comm,
5677 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5678 #if BITS_PER_LONG == 32
5679 if (state == TASK_RUNNING)
5680 printk(KERN_CONT " running ");
5681 else
5682 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5683 #else
5684 if (state == TASK_RUNNING)
5685 printk(KERN_CONT " running task ");
5686 else
5687 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5688 #endif
5689 #ifdef CONFIG_DEBUG_STACK_USAGE
5690 free = stack_not_used(p);
5691 #endif
5692 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5693 task_pid_nr(p), task_pid_nr(p->real_parent),
5694 (unsigned long)task_thread_info(p)->flags);
5695
5696 show_stack(p, NULL);
5697 }
5698
5699 void show_state_filter(unsigned long state_filter)
5700 {
5701 struct task_struct *g, *p;
5702
5703 #if BITS_PER_LONG == 32
5704 printk(KERN_INFO
5705 " task PC stack pid father\n");
5706 #else
5707 printk(KERN_INFO
5708 " task PC stack pid father\n");
5709 #endif
5710 read_lock(&tasklist_lock);
5711 do_each_thread(g, p) {
5712 /*
5713 * reset the NMI-timeout, listing all files on a slow
5714 * console might take a lot of time:
5715 */
5716 touch_nmi_watchdog();
5717 if (!state_filter || (p->state & state_filter))
5718 sched_show_task(p);
5719 } while_each_thread(g, p);
5720
5721 touch_all_softlockup_watchdogs();
5722
5723 #ifdef CONFIG_SCHED_DEBUG
5724 sysrq_sched_debug_show();
5725 #endif
5726 read_unlock(&tasklist_lock);
5727 /*
5728 * Only show locks if all tasks are dumped:
5729 */
5730 if (!state_filter)
5731 debug_show_all_locks();
5732 }
5733
5734 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5735 {
5736 idle->sched_class = &idle_sched_class;
5737 }
5738
5739 /**
5740 * init_idle - set up an idle thread for a given CPU
5741 * @idle: task in question
5742 * @cpu: cpu the idle task belongs to
5743 *
5744 * NOTE: this function does not set the idle thread's NEED_RESCHED
5745 * flag, to make booting more robust.
5746 */
5747 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5748 {
5749 struct rq *rq = cpu_rq(cpu);
5750 unsigned long flags;
5751
5752 raw_spin_lock_irqsave(&rq->lock, flags);
5753
5754 __sched_fork(idle);
5755 idle->state = TASK_RUNNING;
5756 idle->se.exec_start = sched_clock();
5757
5758 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
5759 /*
5760 * We're having a chicken and egg problem, even though we are
5761 * holding rq->lock, the cpu isn't yet set to this cpu so the
5762 * lockdep check in task_group() will fail.
5763 *
5764 * Similar case to sched_fork(). / Alternatively we could
5765 * use task_rq_lock() here and obtain the other rq->lock.
5766 *
5767 * Silence PROVE_RCU
5768 */
5769 rcu_read_lock();
5770 __set_task_cpu(idle, cpu);
5771 rcu_read_unlock();
5772
5773 rq->curr = rq->idle = idle;
5774 #if defined(CONFIG_SMP)
5775 idle->on_cpu = 1;
5776 #endif
5777 raw_spin_unlock_irqrestore(&rq->lock, flags);
5778
5779 /* Set the preempt count _outside_ the spinlocks! */
5780 #if defined(CONFIG_PREEMPT)
5781 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5782 #else
5783 task_thread_info(idle)->preempt_count = 0;
5784 #endif
5785 /*
5786 * The idle tasks have their own, simple scheduling class:
5787 */
5788 idle->sched_class = &idle_sched_class;
5789 ftrace_graph_init_idle_task(idle, cpu);
5790 }
5791
5792 /*
5793 * In a system that switches off the HZ timer nohz_cpu_mask
5794 * indicates which cpus entered this state. This is used
5795 * in the rcu update to wait only for active cpus. For system
5796 * which do not switch off the HZ timer nohz_cpu_mask should
5797 * always be CPU_BITS_NONE.
5798 */
5799 cpumask_var_t nohz_cpu_mask;
5800
5801 /*
5802 * Increase the granularity value when there are more CPUs,
5803 * because with more CPUs the 'effective latency' as visible
5804 * to users decreases. But the relationship is not linear,
5805 * so pick a second-best guess by going with the log2 of the
5806 * number of CPUs.
5807 *
5808 * This idea comes from the SD scheduler of Con Kolivas:
5809 */
5810 static int get_update_sysctl_factor(void)
5811 {
5812 unsigned int cpus = min_t(int, num_online_cpus(), 8);
5813 unsigned int factor;
5814
5815 switch (sysctl_sched_tunable_scaling) {
5816 case SCHED_TUNABLESCALING_NONE:
5817 factor = 1;
5818 break;
5819 case SCHED_TUNABLESCALING_LINEAR:
5820 factor = cpus;
5821 break;
5822 case SCHED_TUNABLESCALING_LOG:
5823 default:
5824 factor = 1 + ilog2(cpus);
5825 break;
5826 }
5827
5828 return factor;
5829 }
5830
5831 static void update_sysctl(void)
5832 {
5833 unsigned int factor = get_update_sysctl_factor();
5834
5835 #define SET_SYSCTL(name) \
5836 (sysctl_##name = (factor) * normalized_sysctl_##name)
5837 SET_SYSCTL(sched_min_granularity);
5838 SET_SYSCTL(sched_latency);
5839 SET_SYSCTL(sched_wakeup_granularity);
5840 #undef SET_SYSCTL
5841 }
5842
5843 static inline void sched_init_granularity(void)
5844 {
5845 update_sysctl();
5846 }
5847
5848 #ifdef CONFIG_SMP
5849 /*
5850 * This is how migration works:
5851 *
5852 * 1) we invoke migration_cpu_stop() on the target CPU using
5853 * stop_one_cpu().
5854 * 2) stopper starts to run (implicitly forcing the migrated thread
5855 * off the CPU)
5856 * 3) it checks whether the migrated task is still in the wrong runqueue.
5857 * 4) if it's in the wrong runqueue then the migration thread removes
5858 * it and puts it into the right queue.
5859 * 5) stopper completes and stop_one_cpu() returns and the migration
5860 * is done.
5861 */
5862
5863 /*
5864 * Change a given task's CPU affinity. Migrate the thread to a
5865 * proper CPU and schedule it away if the CPU it's executing on
5866 * is removed from the allowed bitmask.
5867 *
5868 * NOTE: the caller must have a valid reference to the task, the
5869 * task must not exit() & deallocate itself prematurely. The
5870 * call is not atomic; no spinlocks may be held.
5871 */
5872 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
5873 {
5874 unsigned long flags;
5875 struct rq *rq;
5876 unsigned int dest_cpu;
5877 int ret = 0;
5878
5879 /*
5880 * Serialize against TASK_WAKING so that ttwu() and wunt() can
5881 * drop the rq->lock and still rely on ->cpus_allowed.
5882 */
5883 again:
5884 while (task_is_waking(p))
5885 cpu_relax();
5886 rq = task_rq_lock(p, &flags);
5887 if (task_is_waking(p)) {
5888 task_rq_unlock(rq, &flags);
5889 goto again;
5890 }
5891
5892 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
5893 ret = -EINVAL;
5894 goto out;
5895 }
5896
5897 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5898 !cpumask_equal(&p->cpus_allowed, new_mask))) {
5899 ret = -EINVAL;
5900 goto out;
5901 }
5902
5903 if (p->sched_class->set_cpus_allowed)
5904 p->sched_class->set_cpus_allowed(p, new_mask);
5905 else {
5906 cpumask_copy(&p->cpus_allowed, new_mask);
5907 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5908 }
5909
5910 /* Can the task run on the task's current CPU? If so, we're done */
5911 if (cpumask_test_cpu(task_cpu(p), new_mask))
5912 goto out;
5913
5914 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5915 if (migrate_task(p, rq)) {
5916 struct migration_arg arg = { p, dest_cpu };
5917 /* Need help from migration thread: drop lock and wait. */
5918 task_rq_unlock(rq, &flags);
5919 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
5920 tlb_migrate_finish(p->mm);
5921 return 0;
5922 }
5923 out:
5924 task_rq_unlock(rq, &flags);
5925
5926 return ret;
5927 }
5928 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5929
5930 /*
5931 * Move (not current) task off this cpu, onto dest cpu. We're doing
5932 * this because either it can't run here any more (set_cpus_allowed()
5933 * away from this CPU, or CPU going down), or because we're
5934 * attempting to rebalance this task on exec (sched_exec).
5935 *
5936 * So we race with normal scheduler movements, but that's OK, as long
5937 * as the task is no longer on this CPU.
5938 *
5939 * Returns non-zero if task was successfully migrated.
5940 */
5941 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5942 {
5943 struct rq *rq_dest, *rq_src;
5944 int ret = 0;
5945
5946 if (unlikely(!cpu_active(dest_cpu)))
5947 return ret;
5948
5949 rq_src = cpu_rq(src_cpu);
5950 rq_dest = cpu_rq(dest_cpu);
5951
5952 double_rq_lock(rq_src, rq_dest);
5953 /* Already moved. */
5954 if (task_cpu(p) != src_cpu)
5955 goto done;
5956 /* Affinity changed (again). */
5957 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
5958 goto fail;
5959
5960 /*
5961 * If we're not on a rq, the next wake-up will ensure we're
5962 * placed properly.
5963 */
5964 if (p->se.on_rq) {
5965 deactivate_task(rq_src, p, 0);
5966 set_task_cpu(p, dest_cpu);
5967 activate_task(rq_dest, p, 0);
5968 check_preempt_curr(rq_dest, p, 0);
5969 }
5970 done:
5971 ret = 1;
5972 fail:
5973 double_rq_unlock(rq_src, rq_dest);
5974 return ret;
5975 }
5976
5977 /*
5978 * migration_cpu_stop - this will be executed by a highprio stopper thread
5979 * and performs thread migration by bumping thread off CPU then
5980 * 'pushing' onto another runqueue.
5981 */
5982 static int migration_cpu_stop(void *data)
5983 {
5984 struct migration_arg *arg = data;
5985
5986 /*
5987 * The original target cpu might have gone down and we might
5988 * be on another cpu but it doesn't matter.
5989 */
5990 local_irq_disable();
5991 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5992 local_irq_enable();
5993 return 0;
5994 }
5995
5996 #ifdef CONFIG_HOTPLUG_CPU
5997
5998 /*
5999 * Ensures that the idle task is using init_mm right before its cpu goes
6000 * offline.
6001 */
6002 void idle_task_exit(void)
6003 {
6004 struct mm_struct *mm = current->active_mm;
6005
6006 BUG_ON(cpu_online(smp_processor_id()));
6007
6008 if (mm != &init_mm)
6009 switch_mm(mm, &init_mm, current);
6010 mmdrop(mm);
6011 }
6012
6013 /*
6014 * While a dead CPU has no uninterruptible tasks queued at this point,
6015 * it might still have a nonzero ->nr_uninterruptible counter, because
6016 * for performance reasons the counter is not stricly tracking tasks to
6017 * their home CPUs. So we just add the counter to another CPU's counter,
6018 * to keep the global sum constant after CPU-down:
6019 */
6020 static void migrate_nr_uninterruptible(struct rq *rq_src)
6021 {
6022 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
6023
6024 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6025 rq_src->nr_uninterruptible = 0;
6026 }
6027
6028 /*
6029 * remove the tasks which were accounted by rq from calc_load_tasks.
6030 */
6031 static void calc_global_load_remove(struct rq *rq)
6032 {
6033 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
6034 rq->calc_load_active = 0;
6035 }
6036
6037 /*
6038 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6039 * try_to_wake_up()->select_task_rq().
6040 *
6041 * Called with rq->lock held even though we'er in stop_machine() and
6042 * there's no concurrency possible, we hold the required locks anyway
6043 * because of lock validation efforts.
6044 */
6045 static void migrate_tasks(unsigned int dead_cpu)
6046 {
6047 struct rq *rq = cpu_rq(dead_cpu);
6048 struct task_struct *next, *stop = rq->stop;
6049 int dest_cpu;
6050
6051 /*
6052 * Fudge the rq selection such that the below task selection loop
6053 * doesn't get stuck on the currently eligible stop task.
6054 *
6055 * We're currently inside stop_machine() and the rq is either stuck
6056 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6057 * either way we should never end up calling schedule() until we're
6058 * done here.
6059 */
6060 rq->stop = NULL;
6061
6062 for ( ; ; ) {
6063 /*
6064 * There's this thread running, bail when that's the only
6065 * remaining thread.
6066 */
6067 if (rq->nr_running == 1)
6068 break;
6069
6070 next = pick_next_task(rq);
6071 BUG_ON(!next);
6072 next->sched_class->put_prev_task(rq, next);
6073
6074 /* Find suitable destination for @next, with force if needed. */
6075 dest_cpu = select_fallback_rq(dead_cpu, next);
6076 raw_spin_unlock(&rq->lock);
6077
6078 __migrate_task(next, dead_cpu, dest_cpu);
6079
6080 raw_spin_lock(&rq->lock);
6081 }
6082
6083 rq->stop = stop;
6084 }
6085
6086 #endif /* CONFIG_HOTPLUG_CPU */
6087
6088 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6089
6090 static struct ctl_table sd_ctl_dir[] = {
6091 {
6092 .procname = "sched_domain",
6093 .mode = 0555,
6094 },
6095 {}
6096 };
6097
6098 static struct ctl_table sd_ctl_root[] = {
6099 {
6100 .procname = "kernel",
6101 .mode = 0555,
6102 .child = sd_ctl_dir,
6103 },
6104 {}
6105 };
6106
6107 static struct ctl_table *sd_alloc_ctl_entry(int n)
6108 {
6109 struct ctl_table *entry =
6110 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6111
6112 return entry;
6113 }
6114
6115 static void sd_free_ctl_entry(struct ctl_table **tablep)
6116 {
6117 struct ctl_table *entry;
6118
6119 /*
6120 * In the intermediate directories, both the child directory and
6121 * procname are dynamically allocated and could fail but the mode
6122 * will always be set. In the lowest directory the names are
6123 * static strings and all have proc handlers.
6124 */
6125 for (entry = *tablep; entry->mode; entry++) {
6126 if (entry->child)
6127 sd_free_ctl_entry(&entry->child);
6128 if (entry->proc_handler == NULL)
6129 kfree(entry->procname);
6130 }
6131
6132 kfree(*tablep);
6133 *tablep = NULL;
6134 }
6135
6136 static void
6137 set_table_entry(struct ctl_table *entry,
6138 const char *procname, void *data, int maxlen,
6139 mode_t mode, proc_handler *proc_handler)
6140 {
6141 entry->procname = procname;
6142 entry->data = data;
6143 entry->maxlen = maxlen;
6144 entry->mode = mode;
6145 entry->proc_handler = proc_handler;
6146 }
6147
6148 static struct ctl_table *
6149 sd_alloc_ctl_domain_table(struct sched_domain *sd)
6150 {
6151 struct ctl_table *table = sd_alloc_ctl_entry(13);
6152
6153 if (table == NULL)
6154 return NULL;
6155
6156 set_table_entry(&table[0], "min_interval", &sd->min_interval,
6157 sizeof(long), 0644, proc_doulongvec_minmax);
6158 set_table_entry(&table[1], "max_interval", &sd->max_interval,
6159 sizeof(long), 0644, proc_doulongvec_minmax);
6160 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6161 sizeof(int), 0644, proc_dointvec_minmax);
6162 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6163 sizeof(int), 0644, proc_dointvec_minmax);
6164 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6165 sizeof(int), 0644, proc_dointvec_minmax);
6166 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6167 sizeof(int), 0644, proc_dointvec_minmax);
6168 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6169 sizeof(int), 0644, proc_dointvec_minmax);
6170 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6171 sizeof(int), 0644, proc_dointvec_minmax);
6172 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6173 sizeof(int), 0644, proc_dointvec_minmax);
6174 set_table_entry(&table[9], "cache_nice_tries",
6175 &sd->cache_nice_tries,
6176 sizeof(int), 0644, proc_dointvec_minmax);
6177 set_table_entry(&table[10], "flags", &sd->flags,
6178 sizeof(int), 0644, proc_dointvec_minmax);
6179 set_table_entry(&table[11], "name", sd->name,
6180 CORENAME_MAX_SIZE, 0444, proc_dostring);
6181 /* &table[12] is terminator */
6182
6183 return table;
6184 }
6185
6186 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6187 {
6188 struct ctl_table *entry, *table;
6189 struct sched_domain *sd;
6190 int domain_num = 0, i;
6191 char buf[32];
6192
6193 for_each_domain(cpu, sd)
6194 domain_num++;
6195 entry = table = sd_alloc_ctl_entry(domain_num + 1);
6196 if (table == NULL)
6197 return NULL;
6198
6199 i = 0;
6200 for_each_domain(cpu, sd) {
6201 snprintf(buf, 32, "domain%d", i);
6202 entry->procname = kstrdup(buf, GFP_KERNEL);
6203 entry->mode = 0555;
6204 entry->child = sd_alloc_ctl_domain_table(sd);
6205 entry++;
6206 i++;
6207 }
6208 return table;
6209 }
6210
6211 static struct ctl_table_header *sd_sysctl_header;
6212 static void register_sched_domain_sysctl(void)
6213 {
6214 int i, cpu_num = num_possible_cpus();
6215 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6216 char buf[32];
6217
6218 WARN_ON(sd_ctl_dir[0].child);
6219 sd_ctl_dir[0].child = entry;
6220
6221 if (entry == NULL)
6222 return;
6223
6224 for_each_possible_cpu(i) {
6225 snprintf(buf, 32, "cpu%d", i);
6226 entry->procname = kstrdup(buf, GFP_KERNEL);
6227 entry->mode = 0555;
6228 entry->child = sd_alloc_ctl_cpu_table(i);
6229 entry++;
6230 }
6231
6232 WARN_ON(sd_sysctl_header);
6233 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6234 }
6235
6236 /* may be called multiple times per register */
6237 static void unregister_sched_domain_sysctl(void)
6238 {
6239 if (sd_sysctl_header)
6240 unregister_sysctl_table(sd_sysctl_header);
6241 sd_sysctl_header = NULL;
6242 if (sd_ctl_dir[0].child)
6243 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6244 }
6245 #else
6246 static void register_sched_domain_sysctl(void)
6247 {
6248 }
6249 static void unregister_sched_domain_sysctl(void)
6250 {
6251 }
6252 #endif
6253
6254 static void set_rq_online(struct rq *rq)
6255 {
6256 if (!rq->online) {
6257 const struct sched_class *class;
6258
6259 cpumask_set_cpu(rq->cpu, rq->rd->online);
6260 rq->online = 1;
6261
6262 for_each_class(class) {
6263 if (class->rq_online)
6264 class->rq_online(rq);
6265 }
6266 }
6267 }
6268
6269 static void set_rq_offline(struct rq *rq)
6270 {
6271 if (rq->online) {
6272 const struct sched_class *class;
6273
6274 for_each_class(class) {
6275 if (class->rq_offline)
6276 class->rq_offline(rq);
6277 }
6278
6279 cpumask_clear_cpu(rq->cpu, rq->rd->online);
6280 rq->online = 0;
6281 }
6282 }
6283
6284 /*
6285 * migration_call - callback that gets triggered when a CPU is added.
6286 * Here we can start up the necessary migration thread for the new CPU.
6287 */
6288 static int __cpuinit
6289 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6290 {
6291 int cpu = (long)hcpu;
6292 unsigned long flags;
6293 struct rq *rq = cpu_rq(cpu);
6294
6295 switch (action & ~CPU_TASKS_FROZEN) {
6296
6297 case CPU_UP_PREPARE:
6298 rq->calc_load_update = calc_load_update;
6299 break;
6300
6301 case CPU_ONLINE:
6302 /* Update our root-domain */
6303 raw_spin_lock_irqsave(&rq->lock, flags);
6304 if (rq->rd) {
6305 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6306
6307 set_rq_online(rq);
6308 }
6309 raw_spin_unlock_irqrestore(&rq->lock, flags);
6310 break;
6311
6312 #ifdef CONFIG_HOTPLUG_CPU
6313 case CPU_DYING:
6314 /* Update our root-domain */
6315 raw_spin_lock_irqsave(&rq->lock, flags);
6316 if (rq->rd) {
6317 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6318 set_rq_offline(rq);
6319 }
6320 migrate_tasks(cpu);
6321 BUG_ON(rq->nr_running != 1); /* the migration thread */
6322 raw_spin_unlock_irqrestore(&rq->lock, flags);
6323
6324 migrate_nr_uninterruptible(rq);
6325 calc_global_load_remove(rq);
6326 break;
6327 #endif
6328 }
6329
6330 update_max_interval();
6331
6332 return NOTIFY_OK;
6333 }
6334
6335 /*
6336 * Register at high priority so that task migration (migrate_all_tasks)
6337 * happens before everything else. This has to be lower priority than
6338 * the notifier in the perf_event subsystem, though.
6339 */
6340 static struct notifier_block __cpuinitdata migration_notifier = {
6341 .notifier_call = migration_call,
6342 .priority = CPU_PRI_MIGRATION,
6343 };
6344
6345 static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
6346 unsigned long action, void *hcpu)
6347 {
6348 switch (action & ~CPU_TASKS_FROZEN) {
6349 case CPU_ONLINE:
6350 case CPU_DOWN_FAILED:
6351 set_cpu_active((long)hcpu, true);
6352 return NOTIFY_OK;
6353 default:
6354 return NOTIFY_DONE;
6355 }
6356 }
6357
6358 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
6359 unsigned long action, void *hcpu)
6360 {
6361 switch (action & ~CPU_TASKS_FROZEN) {
6362 case CPU_DOWN_PREPARE:
6363 set_cpu_active((long)hcpu, false);
6364 return NOTIFY_OK;
6365 default:
6366 return NOTIFY_DONE;
6367 }
6368 }
6369
6370 static int __init migration_init(void)
6371 {
6372 void *cpu = (void *)(long)smp_processor_id();
6373 int err;
6374
6375 /* Initialize migration for the boot CPU */
6376 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6377 BUG_ON(err == NOTIFY_BAD);
6378 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6379 register_cpu_notifier(&migration_notifier);
6380
6381 /* Register cpu active notifiers */
6382 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6383 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6384
6385 return 0;
6386 }
6387 early_initcall(migration_init);
6388 #endif
6389
6390 #ifdef CONFIG_SMP
6391
6392 #ifdef CONFIG_SCHED_DEBUG
6393
6394 static __read_mostly int sched_domain_debug_enabled;
6395
6396 static int __init sched_domain_debug_setup(char *str)
6397 {
6398 sched_domain_debug_enabled = 1;
6399
6400 return 0;
6401 }
6402 early_param("sched_debug", sched_domain_debug_setup);
6403
6404 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6405 struct cpumask *groupmask)
6406 {
6407 struct sched_group *group = sd->groups;
6408 char str[256];
6409
6410 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6411 cpumask_clear(groupmask);
6412
6413 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6414
6415 if (!(sd->flags & SD_LOAD_BALANCE)) {
6416 printk("does not load-balance\n");
6417 if (sd->parent)
6418 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6419 " has parent");
6420 return -1;
6421 }
6422
6423 printk(KERN_CONT "span %s level %s\n", str, sd->name);
6424
6425 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
6426 printk(KERN_ERR "ERROR: domain->span does not contain "
6427 "CPU%d\n", cpu);
6428 }
6429 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
6430 printk(KERN_ERR "ERROR: domain->groups does not contain"
6431 " CPU%d\n", cpu);
6432 }
6433
6434 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6435 do {
6436 if (!group) {
6437 printk("\n");
6438 printk(KERN_ERR "ERROR: group is NULL\n");
6439 break;
6440 }
6441
6442 if (!group->cpu_power) {
6443 printk(KERN_CONT "\n");
6444 printk(KERN_ERR "ERROR: domain->cpu_power not "
6445 "set\n");
6446 break;
6447 }
6448
6449 if (!cpumask_weight(sched_group_cpus(group))) {
6450 printk(KERN_CONT "\n");
6451 printk(KERN_ERR "ERROR: empty group\n");
6452 break;
6453 }
6454
6455 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
6456 printk(KERN_CONT "\n");
6457 printk(KERN_ERR "ERROR: repeated CPUs\n");
6458 break;
6459 }
6460
6461 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
6462
6463 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6464
6465 printk(KERN_CONT " %s", str);
6466 if (group->cpu_power != SCHED_LOAD_SCALE) {
6467 printk(KERN_CONT " (cpu_power = %d)",
6468 group->cpu_power);
6469 }
6470
6471 group = group->next;
6472 } while (group != sd->groups);
6473 printk(KERN_CONT "\n");
6474
6475 if (!cpumask_equal(sched_domain_span(sd), groupmask))
6476 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6477
6478 if (sd->parent &&
6479 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
6480 printk(KERN_ERR "ERROR: parent span is not a superset "
6481 "of domain->span\n");
6482 return 0;
6483 }
6484
6485 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6486 {
6487 cpumask_var_t groupmask;
6488 int level = 0;
6489
6490 if (!sched_domain_debug_enabled)
6491 return;
6492
6493 if (!sd) {
6494 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6495 return;
6496 }
6497
6498 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6499
6500 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6501 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6502 return;
6503 }
6504
6505 for (;;) {
6506 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6507 break;
6508 level++;
6509 sd = sd->parent;
6510 if (!sd)
6511 break;
6512 }
6513 free_cpumask_var(groupmask);
6514 }
6515 #else /* !CONFIG_SCHED_DEBUG */
6516 # define sched_domain_debug(sd, cpu) do { } while (0)
6517 #endif /* CONFIG_SCHED_DEBUG */
6518
6519 static int sd_degenerate(struct sched_domain *sd)
6520 {
6521 if (cpumask_weight(sched_domain_span(sd)) == 1)
6522 return 1;
6523
6524 /* Following flags need at least 2 groups */
6525 if (sd->flags & (SD_LOAD_BALANCE |
6526 SD_BALANCE_NEWIDLE |
6527 SD_BALANCE_FORK |
6528 SD_BALANCE_EXEC |
6529 SD_SHARE_CPUPOWER |
6530 SD_SHARE_PKG_RESOURCES)) {
6531 if (sd->groups != sd->groups->next)
6532 return 0;
6533 }
6534
6535 /* Following flags don't use groups */
6536 if (sd->flags & (SD_WAKE_AFFINE))
6537 return 0;
6538
6539 return 1;
6540 }
6541
6542 static int
6543 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6544 {
6545 unsigned long cflags = sd->flags, pflags = parent->flags;
6546
6547 if (sd_degenerate(parent))
6548 return 1;
6549
6550 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6551 return 0;
6552
6553 /* Flags needing groups don't count if only 1 group in parent */
6554 if (parent->groups == parent->groups->next) {
6555 pflags &= ~(SD_LOAD_BALANCE |
6556 SD_BALANCE_NEWIDLE |
6557 SD_BALANCE_FORK |
6558 SD_BALANCE_EXEC |
6559 SD_SHARE_CPUPOWER |
6560 SD_SHARE_PKG_RESOURCES);
6561 if (nr_node_ids == 1)
6562 pflags &= ~SD_SERIALIZE;
6563 }
6564 if (~cflags & pflags)
6565 return 0;
6566
6567 return 1;
6568 }
6569
6570 static void free_rootdomain(struct root_domain *rd)
6571 {
6572 synchronize_sched();
6573
6574 cpupri_cleanup(&rd->cpupri);
6575
6576 free_cpumask_var(rd->rto_mask);
6577 free_cpumask_var(rd->online);
6578 free_cpumask_var(rd->span);
6579 kfree(rd);
6580 }
6581
6582 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6583 {
6584 struct root_domain *old_rd = NULL;
6585 unsigned long flags;
6586
6587 raw_spin_lock_irqsave(&rq->lock, flags);
6588
6589 if (rq->rd) {
6590 old_rd = rq->rd;
6591
6592 if (cpumask_test_cpu(rq->cpu, old_rd->online))
6593 set_rq_offline(rq);
6594
6595 cpumask_clear_cpu(rq->cpu, old_rd->span);
6596
6597 /*
6598 * If we dont want to free the old_rt yet then
6599 * set old_rd to NULL to skip the freeing later
6600 * in this function:
6601 */
6602 if (!atomic_dec_and_test(&old_rd->refcount))
6603 old_rd = NULL;
6604 }
6605
6606 atomic_inc(&rd->refcount);
6607 rq->rd = rd;
6608
6609 cpumask_set_cpu(rq->cpu, rd->span);
6610 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6611 set_rq_online(rq);
6612
6613 raw_spin_unlock_irqrestore(&rq->lock, flags);
6614
6615 if (old_rd)
6616 free_rootdomain(old_rd);
6617 }
6618
6619 static int init_rootdomain(struct root_domain *rd)
6620 {
6621 memset(rd, 0, sizeof(*rd));
6622
6623 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
6624 goto out;
6625 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
6626 goto free_span;
6627 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
6628 goto free_online;
6629
6630 if (cpupri_init(&rd->cpupri) != 0)
6631 goto free_rto_mask;
6632 return 0;
6633
6634 free_rto_mask:
6635 free_cpumask_var(rd->rto_mask);
6636 free_online:
6637 free_cpumask_var(rd->online);
6638 free_span:
6639 free_cpumask_var(rd->span);
6640 out:
6641 return -ENOMEM;
6642 }
6643
6644 static void init_defrootdomain(void)
6645 {
6646 init_rootdomain(&def_root_domain);
6647
6648 atomic_set(&def_root_domain.refcount, 1);
6649 }
6650
6651 static struct root_domain *alloc_rootdomain(void)
6652 {
6653 struct root_domain *rd;
6654
6655 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6656 if (!rd)
6657 return NULL;
6658
6659 if (init_rootdomain(rd) != 0) {
6660 kfree(rd);
6661 return NULL;
6662 }
6663
6664 return rd;
6665 }
6666
6667 /*
6668 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6669 * hold the hotplug lock.
6670 */
6671 static void
6672 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6673 {
6674 struct rq *rq = cpu_rq(cpu);
6675 struct sched_domain *tmp;
6676
6677 for (tmp = sd; tmp; tmp = tmp->parent)
6678 tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
6679
6680 /* Remove the sched domains which do not contribute to scheduling. */
6681 for (tmp = sd; tmp; ) {
6682 struct sched_domain *parent = tmp->parent;
6683 if (!parent)
6684 break;
6685
6686 if (sd_parent_degenerate(tmp, parent)) {
6687 tmp->parent = parent->parent;
6688 if (parent->parent)
6689 parent->parent->child = tmp;
6690 } else
6691 tmp = tmp->parent;
6692 }
6693
6694 if (sd && sd_degenerate(sd)) {
6695 sd = sd->parent;
6696 if (sd)
6697 sd->child = NULL;
6698 }
6699
6700 sched_domain_debug(sd, cpu);
6701
6702 rq_attach_root(rq, rd);
6703 rcu_assign_pointer(rq->sd, sd);
6704 }
6705
6706 /* cpus with isolated domains */
6707 static cpumask_var_t cpu_isolated_map;
6708
6709 /* Setup the mask of cpus configured for isolated domains */
6710 static int __init isolated_cpu_setup(char *str)
6711 {
6712 alloc_bootmem_cpumask_var(&cpu_isolated_map);
6713 cpulist_parse(str, cpu_isolated_map);
6714 return 1;
6715 }
6716
6717 __setup("isolcpus=", isolated_cpu_setup);
6718
6719 /*
6720 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6721 * to a function which identifies what group(along with sched group) a CPU
6722 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6723 * (due to the fact that we keep track of groups covered with a struct cpumask).
6724 *
6725 * init_sched_build_groups will build a circular linked list of the groups
6726 * covered by the given span, and will set each group's ->cpumask correctly,
6727 * and ->cpu_power to 0.
6728 */
6729 static void
6730 init_sched_build_groups(const struct cpumask *span,
6731 const struct cpumask *cpu_map,
6732 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
6733 struct sched_group **sg,
6734 struct cpumask *tmpmask),
6735 struct cpumask *covered, struct cpumask *tmpmask)
6736 {
6737 struct sched_group *first = NULL, *last = NULL;
6738 int i;
6739
6740 cpumask_clear(covered);
6741
6742 for_each_cpu(i, span) {
6743 struct sched_group *sg;
6744 int group = group_fn(i, cpu_map, &sg, tmpmask);
6745 int j;
6746
6747 if (cpumask_test_cpu(i, covered))
6748 continue;
6749
6750 cpumask_clear(sched_group_cpus(sg));
6751 sg->cpu_power = 0;
6752
6753 for_each_cpu(j, span) {
6754 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6755 continue;
6756
6757 cpumask_set_cpu(j, covered);
6758 cpumask_set_cpu(j, sched_group_cpus(sg));
6759 }
6760 if (!first)
6761 first = sg;
6762 if (last)
6763 last->next = sg;
6764 last = sg;
6765 }
6766 last->next = first;
6767 }
6768
6769 #define SD_NODES_PER_DOMAIN 16
6770
6771 #ifdef CONFIG_NUMA
6772
6773 /**
6774 * find_next_best_node - find the next node to include in a sched_domain
6775 * @node: node whose sched_domain we're building
6776 * @used_nodes: nodes already in the sched_domain
6777 *
6778 * Find the next node to include in a given scheduling domain. Simply
6779 * finds the closest node not already in the @used_nodes map.
6780 *
6781 * Should use nodemask_t.
6782 */
6783 static int find_next_best_node(int node, nodemask_t *used_nodes)
6784 {
6785 int i, n, val, min_val, best_node = 0;
6786
6787 min_val = INT_MAX;
6788
6789 for (i = 0; i < nr_node_ids; i++) {
6790 /* Start at @node */
6791 n = (node + i) % nr_node_ids;
6792
6793 if (!nr_cpus_node(n))
6794 continue;
6795
6796 /* Skip already used nodes */
6797 if (node_isset(n, *used_nodes))
6798 continue;
6799
6800 /* Simple min distance search */
6801 val = node_distance(node, n);
6802
6803 if (val < min_val) {
6804 min_val = val;
6805 best_node = n;
6806 }
6807 }
6808
6809 node_set(best_node, *used_nodes);
6810 return best_node;
6811 }
6812
6813 /**
6814 * sched_domain_node_span - get a cpumask for a node's sched_domain
6815 * @node: node whose cpumask we're constructing
6816 * @span: resulting cpumask
6817 *
6818 * Given a node, construct a good cpumask for its sched_domain to span. It
6819 * should be one that prevents unnecessary balancing, but also spreads tasks
6820 * out optimally.
6821 */
6822 static void sched_domain_node_span(int node, struct cpumask *span)
6823 {
6824 nodemask_t used_nodes;
6825 int i;
6826
6827 cpumask_clear(span);
6828 nodes_clear(used_nodes);
6829
6830 cpumask_or(span, span, cpumask_of_node(node));
6831 node_set(node, used_nodes);
6832
6833 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6834 int next_node = find_next_best_node(node, &used_nodes);
6835
6836 cpumask_or(span, span, cpumask_of_node(next_node));
6837 }
6838 }
6839 #endif /* CONFIG_NUMA */
6840
6841 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6842
6843 /*
6844 * The cpus mask in sched_group and sched_domain hangs off the end.
6845 *
6846 * ( See the the comments in include/linux/sched.h:struct sched_group
6847 * and struct sched_domain. )
6848 */
6849 struct static_sched_group {
6850 struct sched_group sg;
6851 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6852 };
6853
6854 struct static_sched_domain {
6855 struct sched_domain sd;
6856 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6857 };
6858
6859 struct s_data {
6860 #ifdef CONFIG_NUMA
6861 int sd_allnodes;
6862 cpumask_var_t domainspan;
6863 cpumask_var_t covered;
6864 cpumask_var_t notcovered;
6865 #endif
6866 cpumask_var_t nodemask;
6867 cpumask_var_t this_sibling_map;
6868 cpumask_var_t this_core_map;
6869 cpumask_var_t this_book_map;
6870 cpumask_var_t send_covered;
6871 cpumask_var_t tmpmask;
6872 struct sched_group **sched_group_nodes;
6873 struct root_domain *rd;
6874 };
6875
6876 enum s_alloc {
6877 sa_sched_groups = 0,
6878 sa_rootdomain,
6879 sa_tmpmask,
6880 sa_send_covered,
6881 sa_this_book_map,
6882 sa_this_core_map,
6883 sa_this_sibling_map,
6884 sa_nodemask,
6885 sa_sched_group_nodes,
6886 #ifdef CONFIG_NUMA
6887 sa_notcovered,
6888 sa_covered,
6889 sa_domainspan,
6890 #endif
6891 sa_none,
6892 };
6893
6894 /*
6895 * SMT sched-domains:
6896 */
6897 #ifdef CONFIG_SCHED_SMT
6898 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
6899 static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
6900
6901 static int
6902 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6903 struct sched_group **sg, struct cpumask *unused)
6904 {
6905 if (sg)
6906 *sg = &per_cpu(sched_groups, cpu).sg;
6907 return cpu;
6908 }
6909 #endif /* CONFIG_SCHED_SMT */
6910
6911 /*
6912 * multi-core sched-domains:
6913 */
6914 #ifdef CONFIG_SCHED_MC
6915 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6916 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6917
6918 static int
6919 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6920 struct sched_group **sg, struct cpumask *mask)
6921 {
6922 int group;
6923 #ifdef CONFIG_SCHED_SMT
6924 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6925 group = cpumask_first(mask);
6926 #else
6927 group = cpu;
6928 #endif
6929 if (sg)
6930 *sg = &per_cpu(sched_group_core, group).sg;
6931 return group;
6932 }
6933 #endif /* CONFIG_SCHED_MC */
6934
6935 /*
6936 * book sched-domains:
6937 */
6938 #ifdef CONFIG_SCHED_BOOK
6939 static DEFINE_PER_CPU(struct static_sched_domain, book_domains);
6940 static DEFINE_PER_CPU(struct static_sched_group, sched_group_book);
6941
6942 static int
6943 cpu_to_book_group(int cpu, const struct cpumask *cpu_map,
6944 struct sched_group **sg, struct cpumask *mask)
6945 {
6946 int group = cpu;
6947 #ifdef CONFIG_SCHED_MC
6948 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6949 group = cpumask_first(mask);
6950 #elif defined(CONFIG_SCHED_SMT)
6951 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6952 group = cpumask_first(mask);
6953 #endif
6954 if (sg)
6955 *sg = &per_cpu(sched_group_book, group).sg;
6956 return group;
6957 }
6958 #endif /* CONFIG_SCHED_BOOK */
6959
6960 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6961 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
6962
6963 static int
6964 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6965 struct sched_group **sg, struct cpumask *mask)
6966 {
6967 int group;
6968 #ifdef CONFIG_SCHED_BOOK
6969 cpumask_and(mask, cpu_book_mask(cpu), cpu_map);
6970 group = cpumask_first(mask);
6971 #elif defined(CONFIG_SCHED_MC)
6972 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6973 group = cpumask_first(mask);
6974 #elif defined(CONFIG_SCHED_SMT)
6975 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6976 group = cpumask_first(mask);
6977 #else
6978 group = cpu;
6979 #endif
6980 if (sg)
6981 *sg = &per_cpu(sched_group_phys, group).sg;
6982 return group;
6983 }
6984
6985 #ifdef CONFIG_NUMA
6986 /*
6987 * The init_sched_build_groups can't handle what we want to do with node
6988 * groups, so roll our own. Now each node has its own list of groups which
6989 * gets dynamically allocated.
6990 */
6991 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
6992 static struct sched_group ***sched_group_nodes_bycpu;
6993
6994 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6995 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
6996
6997 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6998 struct sched_group **sg,
6999 struct cpumask *nodemask)
7000 {
7001 int group;
7002
7003 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
7004 group = cpumask_first(nodemask);
7005
7006 if (sg)
7007 *sg = &per_cpu(sched_group_allnodes, group).sg;
7008 return group;
7009 }
7010
7011 static void init_numa_sched_groups_power(struct sched_group *group_head)
7012 {
7013 struct sched_group *sg = group_head;
7014 int j;
7015
7016 if (!sg)
7017 return;
7018 do {
7019 for_each_cpu(j, sched_group_cpus(sg)) {
7020 struct sched_domain *sd;
7021
7022 sd = &per_cpu(phys_domains, j).sd;
7023 if (j != group_first_cpu(sd->groups)) {
7024 /*
7025 * Only add "power" once for each
7026 * physical package.
7027 */
7028 continue;
7029 }
7030
7031 sg->cpu_power += sd->groups->cpu_power;
7032 }
7033 sg = sg->next;
7034 } while (sg != group_head);
7035 }
7036
7037 static int build_numa_sched_groups(struct s_data *d,
7038 const struct cpumask *cpu_map, int num)
7039 {
7040 struct sched_domain *sd;
7041 struct sched_group *sg, *prev;
7042 int n, j;
7043
7044 cpumask_clear(d->covered);
7045 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
7046 if (cpumask_empty(d->nodemask)) {
7047 d->sched_group_nodes[num] = NULL;
7048 goto out;
7049 }
7050
7051 sched_domain_node_span(num, d->domainspan);
7052 cpumask_and(d->domainspan, d->domainspan, cpu_map);
7053
7054 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
7055 GFP_KERNEL, num);
7056 if (!sg) {
7057 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
7058 num);
7059 return -ENOMEM;
7060 }
7061 d->sched_group_nodes[num] = sg;
7062
7063 for_each_cpu(j, d->nodemask) {
7064 sd = &per_cpu(node_domains, j).sd;
7065 sd->groups = sg;
7066 }
7067
7068 sg->cpu_power = 0;
7069 cpumask_copy(sched_group_cpus(sg), d->nodemask);
7070 sg->next = sg;
7071 cpumask_or(d->covered, d->covered, d->nodemask);
7072
7073 prev = sg;
7074 for (j = 0; j < nr_node_ids; j++) {
7075 n = (num + j) % nr_node_ids;
7076 cpumask_complement(d->notcovered, d->covered);
7077 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
7078 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
7079 if (cpumask_empty(d->tmpmask))
7080 break;
7081 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
7082 if (cpumask_empty(d->tmpmask))
7083 continue;
7084 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
7085 GFP_KERNEL, num);
7086 if (!sg) {
7087 printk(KERN_WARNING
7088 "Can not alloc domain group for node %d\n", j);
7089 return -ENOMEM;
7090 }
7091 sg->cpu_power = 0;
7092 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
7093 sg->next = prev->next;
7094 cpumask_or(d->covered, d->covered, d->tmpmask);
7095 prev->next = sg;
7096 prev = sg;
7097 }
7098 out:
7099 return 0;
7100 }
7101 #endif /* CONFIG_NUMA */
7102
7103 #ifdef CONFIG_NUMA
7104 /* Free memory allocated for various sched_group structures */
7105 static void free_sched_groups(const struct cpumask *cpu_map,
7106 struct cpumask *nodemask)
7107 {
7108 int cpu, i;
7109
7110 for_each_cpu(cpu, cpu_map) {
7111 struct sched_group **sched_group_nodes
7112 = sched_group_nodes_bycpu[cpu];
7113
7114 if (!sched_group_nodes)
7115 continue;
7116
7117 for (i = 0; i < nr_node_ids; i++) {
7118 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7119
7120 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7121 if (cpumask_empty(nodemask))
7122 continue;
7123
7124 if (sg == NULL)
7125 continue;
7126 sg = sg->next;
7127 next_sg:
7128 oldsg = sg;
7129 sg = sg->next;
7130 kfree(oldsg);
7131 if (oldsg != sched_group_nodes[i])
7132 goto next_sg;
7133 }
7134 kfree(sched_group_nodes);
7135 sched_group_nodes_bycpu[cpu] = NULL;
7136 }
7137 }
7138 #else /* !CONFIG_NUMA */
7139 static void free_sched_groups(const struct cpumask *cpu_map,
7140 struct cpumask *nodemask)
7141 {
7142 }
7143 #endif /* CONFIG_NUMA */
7144
7145 /*
7146 * Initialize sched groups cpu_power.
7147 *
7148 * cpu_power indicates the capacity of sched group, which is used while
7149 * distributing the load between different sched groups in a sched domain.
7150 * Typically cpu_power for all the groups in a sched domain will be same unless
7151 * there are asymmetries in the topology. If there are asymmetries, group
7152 * having more cpu_power will pickup more load compared to the group having
7153 * less cpu_power.
7154 */
7155 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7156 {
7157 struct sched_domain *child;
7158 struct sched_group *group;
7159 long power;
7160 int weight;
7161
7162 WARN_ON(!sd || !sd->groups);
7163
7164 if (cpu != group_first_cpu(sd->groups))
7165 return;
7166
7167 sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups));
7168
7169 child = sd->child;
7170
7171 sd->groups->cpu_power = 0;
7172
7173 if (!child) {
7174 power = SCHED_LOAD_SCALE;
7175 weight = cpumask_weight(sched_domain_span(sd));
7176 /*
7177 * SMT siblings share the power of a single core.
7178 * Usually multiple threads get a better yield out of
7179 * that one core than a single thread would have,
7180 * reflect that in sd->smt_gain.
7181 */
7182 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
7183 power *= sd->smt_gain;
7184 power /= weight;
7185 power >>= SCHED_LOAD_SHIFT;
7186 }
7187 sd->groups->cpu_power += power;
7188 return;
7189 }
7190
7191 /*
7192 * Add cpu_power of each child group to this groups cpu_power.
7193 */
7194 group = child->groups;
7195 do {
7196 sd->groups->cpu_power += group->cpu_power;
7197 group = group->next;
7198 } while (group != child->groups);
7199 }
7200
7201 /*
7202 * Initializers for schedule domains
7203 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7204 */
7205
7206 #ifdef CONFIG_SCHED_DEBUG
7207 # define SD_INIT_NAME(sd, type) sd->name = #type
7208 #else
7209 # define SD_INIT_NAME(sd, type) do { } while (0)
7210 #endif
7211
7212 #define SD_INIT(sd, type) sd_init_##type(sd)
7213
7214 #define SD_INIT_FUNC(type) \
7215 static noinline void sd_init_##type(struct sched_domain *sd) \
7216 { \
7217 memset(sd, 0, sizeof(*sd)); \
7218 *sd = SD_##type##_INIT; \
7219 sd->level = SD_LV_##type; \
7220 SD_INIT_NAME(sd, type); \
7221 }
7222
7223 SD_INIT_FUNC(CPU)
7224 #ifdef CONFIG_NUMA
7225 SD_INIT_FUNC(ALLNODES)
7226 SD_INIT_FUNC(NODE)
7227 #endif
7228 #ifdef CONFIG_SCHED_SMT
7229 SD_INIT_FUNC(SIBLING)
7230 #endif
7231 #ifdef CONFIG_SCHED_MC
7232 SD_INIT_FUNC(MC)
7233 #endif
7234 #ifdef CONFIG_SCHED_BOOK
7235 SD_INIT_FUNC(BOOK)
7236 #endif
7237
7238 static int default_relax_domain_level = -1;
7239
7240 static int __init setup_relax_domain_level(char *str)
7241 {
7242 unsigned long val;
7243
7244 val = simple_strtoul(str, NULL, 0);
7245 if (val < SD_LV_MAX)
7246 default_relax_domain_level = val;
7247
7248 return 1;
7249 }
7250 __setup("relax_domain_level=", setup_relax_domain_level);
7251
7252 static void set_domain_attribute(struct sched_domain *sd,
7253 struct sched_domain_attr *attr)
7254 {
7255 int request;
7256
7257 if (!attr || attr->relax_domain_level < 0) {
7258 if (default_relax_domain_level < 0)
7259 return;
7260 else
7261 request = default_relax_domain_level;
7262 } else
7263 request = attr->relax_domain_level;
7264 if (request < sd->level) {
7265 /* turn off idle balance on this domain */
7266 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7267 } else {
7268 /* turn on idle balance on this domain */
7269 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7270 }
7271 }
7272
7273 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
7274 const struct cpumask *cpu_map)
7275 {
7276 switch (what) {
7277 case sa_sched_groups:
7278 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
7279 d->sched_group_nodes = NULL;
7280 case sa_rootdomain:
7281 free_rootdomain(d->rd); /* fall through */
7282 case sa_tmpmask:
7283 free_cpumask_var(d->tmpmask); /* fall through */
7284 case sa_send_covered:
7285 free_cpumask_var(d->send_covered); /* fall through */
7286 case sa_this_book_map:
7287 free_cpumask_var(d->this_book_map); /* fall through */
7288 case sa_this_core_map:
7289 free_cpumask_var(d->this_core_map); /* fall through */
7290 case sa_this_sibling_map:
7291 free_cpumask_var(d->this_sibling_map); /* fall through */
7292 case sa_nodemask:
7293 free_cpumask_var(d->nodemask); /* fall through */
7294 case sa_sched_group_nodes:
7295 #ifdef CONFIG_NUMA
7296 kfree(d->sched_group_nodes); /* fall through */
7297 case sa_notcovered:
7298 free_cpumask_var(d->notcovered); /* fall through */
7299 case sa_covered:
7300 free_cpumask_var(d->covered); /* fall through */
7301 case sa_domainspan:
7302 free_cpumask_var(d->domainspan); /* fall through */
7303 #endif
7304 case sa_none:
7305 break;
7306 }
7307 }
7308
7309 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
7310 const struct cpumask *cpu_map)
7311 {
7312 #ifdef CONFIG_NUMA
7313 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
7314 return sa_none;
7315 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
7316 return sa_domainspan;
7317 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
7318 return sa_covered;
7319 /* Allocate the per-node list of sched groups */
7320 d->sched_group_nodes = kcalloc(nr_node_ids,
7321 sizeof(struct sched_group *), GFP_KERNEL);
7322 if (!d->sched_group_nodes) {
7323 printk(KERN_WARNING "Can not alloc sched group node list\n");
7324 return sa_notcovered;
7325 }
7326 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
7327 #endif
7328 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
7329 return sa_sched_group_nodes;
7330 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
7331 return sa_nodemask;
7332 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
7333 return sa_this_sibling_map;
7334 if (!alloc_cpumask_var(&d->this_book_map, GFP_KERNEL))
7335 return sa_this_core_map;
7336 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
7337 return sa_this_book_map;
7338 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
7339 return sa_send_covered;
7340 d->rd = alloc_rootdomain();
7341 if (!d->rd) {
7342 printk(KERN_WARNING "Cannot alloc root domain\n");
7343 return sa_tmpmask;
7344 }
7345 return sa_rootdomain;
7346 }
7347
7348 static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
7349 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
7350 {
7351 struct sched_domain *sd = NULL;
7352 #ifdef CONFIG_NUMA
7353 struct sched_domain *parent;
7354
7355 d->sd_allnodes = 0;
7356 if (cpumask_weight(cpu_map) >
7357 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
7358 sd = &per_cpu(allnodes_domains, i).sd;
7359 SD_INIT(sd, ALLNODES);
7360 set_domain_attribute(sd, attr);
7361 cpumask_copy(sched_domain_span(sd), cpu_map);
7362 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
7363 d->sd_allnodes = 1;
7364 }
7365 parent = sd;
7366
7367 sd = &per_cpu(node_domains, i).sd;
7368 SD_INIT(sd, NODE);
7369 set_domain_attribute(sd, attr);
7370 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
7371 sd->parent = parent;
7372 if (parent)
7373 parent->child = sd;
7374 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
7375 #endif
7376 return sd;
7377 }
7378
7379 static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
7380 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7381 struct sched_domain *parent, int i)
7382 {
7383 struct sched_domain *sd;
7384 sd = &per_cpu(phys_domains, i).sd;
7385 SD_INIT(sd, CPU);
7386 set_domain_attribute(sd, attr);
7387 cpumask_copy(sched_domain_span(sd), d->nodemask);
7388 sd->parent = parent;
7389 if (parent)
7390 parent->child = sd;
7391 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
7392 return sd;
7393 }
7394
7395 static struct sched_domain *__build_book_sched_domain(struct s_data *d,
7396 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7397 struct sched_domain *parent, int i)
7398 {
7399 struct sched_domain *sd = parent;
7400 #ifdef CONFIG_SCHED_BOOK
7401 sd = &per_cpu(book_domains, i).sd;
7402 SD_INIT(sd, BOOK);
7403 set_domain_attribute(sd, attr);
7404 cpumask_and(sched_domain_span(sd), cpu_map, cpu_book_mask(i));
7405 sd->parent = parent;
7406 parent->child = sd;
7407 cpu_to_book_group(i, cpu_map, &sd->groups, d->tmpmask);
7408 #endif
7409 return sd;
7410 }
7411
7412 static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
7413 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7414 struct sched_domain *parent, int i)
7415 {
7416 struct sched_domain *sd = parent;
7417 #ifdef CONFIG_SCHED_MC
7418 sd = &per_cpu(core_domains, i).sd;
7419 SD_INIT(sd, MC);
7420 set_domain_attribute(sd, attr);
7421 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
7422 sd->parent = parent;
7423 parent->child = sd;
7424 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
7425 #endif
7426 return sd;
7427 }
7428
7429 static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
7430 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7431 struct sched_domain *parent, int i)
7432 {
7433 struct sched_domain *sd = parent;
7434 #ifdef CONFIG_SCHED_SMT
7435 sd = &per_cpu(cpu_domains, i).sd;
7436 SD_INIT(sd, SIBLING);
7437 set_domain_attribute(sd, attr);
7438 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
7439 sd->parent = parent;
7440 parent->child = sd;
7441 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
7442 #endif
7443 return sd;
7444 }
7445
7446 static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
7447 const struct cpumask *cpu_map, int cpu)
7448 {
7449 switch (l) {
7450 #ifdef CONFIG_SCHED_SMT
7451 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
7452 cpumask_and(d->this_sibling_map, cpu_map,
7453 topology_thread_cpumask(cpu));
7454 if (cpu == cpumask_first(d->this_sibling_map))
7455 init_sched_build_groups(d->this_sibling_map, cpu_map,
7456 &cpu_to_cpu_group,
7457 d->send_covered, d->tmpmask);
7458 break;
7459 #endif
7460 #ifdef CONFIG_SCHED_MC
7461 case SD_LV_MC: /* set up multi-core groups */
7462 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
7463 if (cpu == cpumask_first(d->this_core_map))
7464 init_sched_build_groups(d->this_core_map, cpu_map,
7465 &cpu_to_core_group,
7466 d->send_covered, d->tmpmask);
7467 break;
7468 #endif
7469 #ifdef CONFIG_SCHED_BOOK
7470 case SD_LV_BOOK: /* set up book groups */
7471 cpumask_and(d->this_book_map, cpu_map, cpu_book_mask(cpu));
7472 if (cpu == cpumask_first(d->this_book_map))
7473 init_sched_build_groups(d->this_book_map, cpu_map,
7474 &cpu_to_book_group,
7475 d->send_covered, d->tmpmask);
7476 break;
7477 #endif
7478 case SD_LV_CPU: /* set up physical groups */
7479 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
7480 if (!cpumask_empty(d->nodemask))
7481 init_sched_build_groups(d->nodemask, cpu_map,
7482 &cpu_to_phys_group,
7483 d->send_covered, d->tmpmask);
7484 break;
7485 #ifdef CONFIG_NUMA
7486 case SD_LV_ALLNODES:
7487 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
7488 d->send_covered, d->tmpmask);
7489 break;
7490 #endif
7491 default:
7492 break;
7493 }
7494 }
7495
7496 /*
7497 * Build sched domains for a given set of cpus and attach the sched domains
7498 * to the individual cpus
7499 */
7500 static int __build_sched_domains(const struct cpumask *cpu_map,
7501 struct sched_domain_attr *attr)
7502 {
7503 enum s_alloc alloc_state = sa_none;
7504 struct s_data d;
7505 struct sched_domain *sd;
7506 int i;
7507 #ifdef CONFIG_NUMA
7508 d.sd_allnodes = 0;
7509 #endif
7510
7511 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7512 if (alloc_state != sa_rootdomain)
7513 goto error;
7514 alloc_state = sa_sched_groups;
7515
7516 /*
7517 * Set up domains for cpus specified by the cpu_map.
7518 */
7519 for_each_cpu(i, cpu_map) {
7520 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
7521 cpu_map);
7522
7523 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
7524 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
7525 sd = __build_book_sched_domain(&d, cpu_map, attr, sd, i);
7526 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
7527 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
7528 }
7529
7530 for_each_cpu(i, cpu_map) {
7531 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
7532 build_sched_groups(&d, SD_LV_BOOK, cpu_map, i);
7533 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
7534 }
7535
7536 /* Set up physical groups */
7537 for (i = 0; i < nr_node_ids; i++)
7538 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
7539
7540 #ifdef CONFIG_NUMA
7541 /* Set up node groups */
7542 if (d.sd_allnodes)
7543 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
7544
7545 for (i = 0; i < nr_node_ids; i++)
7546 if (build_numa_sched_groups(&d, cpu_map, i))
7547 goto error;
7548 #endif
7549
7550 /* Calculate CPU power for physical packages and nodes */
7551 #ifdef CONFIG_SCHED_SMT
7552 for_each_cpu(i, cpu_map) {
7553 sd = &per_cpu(cpu_domains, i).sd;
7554 init_sched_groups_power(i, sd);
7555 }
7556 #endif
7557 #ifdef CONFIG_SCHED_MC
7558 for_each_cpu(i, cpu_map) {
7559 sd = &per_cpu(core_domains, i).sd;
7560 init_sched_groups_power(i, sd);
7561 }
7562 #endif
7563 #ifdef CONFIG_SCHED_BOOK
7564 for_each_cpu(i, cpu_map) {
7565 sd = &per_cpu(book_domains, i).sd;
7566 init_sched_groups_power(i, sd);
7567 }
7568 #endif
7569
7570 for_each_cpu(i, cpu_map) {
7571 sd = &per_cpu(phys_domains, i).sd;
7572 init_sched_groups_power(i, sd);
7573 }
7574
7575 #ifdef CONFIG_NUMA
7576 for (i = 0; i < nr_node_ids; i++)
7577 init_numa_sched_groups_power(d.sched_group_nodes[i]);
7578
7579 if (d.sd_allnodes) {
7580 struct sched_group *sg;
7581
7582 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7583 d.tmpmask);
7584 init_numa_sched_groups_power(sg);
7585 }
7586 #endif
7587
7588 /* Attach the domains */
7589 for_each_cpu(i, cpu_map) {
7590 #ifdef CONFIG_SCHED_SMT
7591 sd = &per_cpu(cpu_domains, i).sd;
7592 #elif defined(CONFIG_SCHED_MC)
7593 sd = &per_cpu(core_domains, i).sd;
7594 #elif defined(CONFIG_SCHED_BOOK)
7595 sd = &per_cpu(book_domains, i).sd;
7596 #else
7597 sd = &per_cpu(phys_domains, i).sd;
7598 #endif
7599 cpu_attach_domain(sd, d.rd, i);
7600 }
7601
7602 d.sched_group_nodes = NULL; /* don't free this we still need it */
7603 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7604 return 0;
7605
7606 error:
7607 __free_domain_allocs(&d, alloc_state, cpu_map);
7608 return -ENOMEM;
7609 }
7610
7611 static int build_sched_domains(const struct cpumask *cpu_map)
7612 {
7613 return __build_sched_domains(cpu_map, NULL);
7614 }
7615
7616 static cpumask_var_t *doms_cur; /* current sched domains */
7617 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7618 static struct sched_domain_attr *dattr_cur;
7619 /* attribues of custom domains in 'doms_cur' */
7620
7621 /*
7622 * Special case: If a kmalloc of a doms_cur partition (array of
7623 * cpumask) fails, then fallback to a single sched domain,
7624 * as determined by the single cpumask fallback_doms.
7625 */
7626 static cpumask_var_t fallback_doms;
7627
7628 /*
7629 * arch_update_cpu_topology lets virtualized architectures update the
7630 * cpu core maps. It is supposed to return 1 if the topology changed
7631 * or 0 if it stayed the same.
7632 */
7633 int __attribute__((weak)) arch_update_cpu_topology(void)
7634 {
7635 return 0;
7636 }
7637
7638 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7639 {
7640 int i;
7641 cpumask_var_t *doms;
7642
7643 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7644 if (!doms)
7645 return NULL;
7646 for (i = 0; i < ndoms; i++) {
7647 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7648 free_sched_domains(doms, i);
7649 return NULL;
7650 }
7651 }
7652 return doms;
7653 }
7654
7655 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7656 {
7657 unsigned int i;
7658 for (i = 0; i < ndoms; i++)
7659 free_cpumask_var(doms[i]);
7660 kfree(doms);
7661 }
7662
7663 /*
7664 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7665 * For now this just excludes isolated cpus, but could be used to
7666 * exclude other special cases in the future.
7667 */
7668 static int arch_init_sched_domains(const struct cpumask *cpu_map)
7669 {
7670 int err;
7671
7672 arch_update_cpu_topology();
7673 ndoms_cur = 1;
7674 doms_cur = alloc_sched_domains(ndoms_cur);
7675 if (!doms_cur)
7676 doms_cur = &fallback_doms;
7677 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7678 dattr_cur = NULL;
7679 err = build_sched_domains(doms_cur[0]);
7680 register_sched_domain_sysctl();
7681
7682 return err;
7683 }
7684
7685 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7686 struct cpumask *tmpmask)
7687 {
7688 free_sched_groups(cpu_map, tmpmask);
7689 }
7690
7691 /*
7692 * Detach sched domains from a group of cpus specified in cpu_map
7693 * These cpus will now be attached to the NULL domain
7694 */
7695 static void detach_destroy_domains(const struct cpumask *cpu_map)
7696 {
7697 /* Save because hotplug lock held. */
7698 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7699 int i;
7700
7701 for_each_cpu(i, cpu_map)
7702 cpu_attach_domain(NULL, &def_root_domain, i);
7703 synchronize_sched();
7704 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7705 }
7706
7707 /* handle null as "default" */
7708 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7709 struct sched_domain_attr *new, int idx_new)
7710 {
7711 struct sched_domain_attr tmp;
7712
7713 /* fast path */
7714 if (!new && !cur)
7715 return 1;
7716
7717 tmp = SD_ATTR_INIT;
7718 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7719 new ? (new + idx_new) : &tmp,
7720 sizeof(struct sched_domain_attr));
7721 }
7722
7723 /*
7724 * Partition sched domains as specified by the 'ndoms_new'
7725 * cpumasks in the array doms_new[] of cpumasks. This compares
7726 * doms_new[] to the current sched domain partitioning, doms_cur[].
7727 * It destroys each deleted domain and builds each new domain.
7728 *
7729 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7730 * The masks don't intersect (don't overlap.) We should setup one
7731 * sched domain for each mask. CPUs not in any of the cpumasks will
7732 * not be load balanced. If the same cpumask appears both in the
7733 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7734 * it as it is.
7735 *
7736 * The passed in 'doms_new' should be allocated using
7737 * alloc_sched_domains. This routine takes ownership of it and will
7738 * free_sched_domains it when done with it. If the caller failed the
7739 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7740 * and partition_sched_domains() will fallback to the single partition
7741 * 'fallback_doms', it also forces the domains to be rebuilt.
7742 *
7743 * If doms_new == NULL it will be replaced with cpu_online_mask.
7744 * ndoms_new == 0 is a special case for destroying existing domains,
7745 * and it will not create the default domain.
7746 *
7747 * Call with hotplug lock held
7748 */
7749 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7750 struct sched_domain_attr *dattr_new)
7751 {
7752 int i, j, n;
7753 int new_topology;
7754
7755 mutex_lock(&sched_domains_mutex);
7756
7757 /* always unregister in case we don't destroy any domains */
7758 unregister_sched_domain_sysctl();
7759
7760 /* Let architecture update cpu core mappings. */
7761 new_topology = arch_update_cpu_topology();
7762
7763 n = doms_new ? ndoms_new : 0;
7764
7765 /* Destroy deleted domains */
7766 for (i = 0; i < ndoms_cur; i++) {
7767 for (j = 0; j < n && !new_topology; j++) {
7768 if (cpumask_equal(doms_cur[i], doms_new[j])
7769 && dattrs_equal(dattr_cur, i, dattr_new, j))
7770 goto match1;
7771 }
7772 /* no match - a current sched domain not in new doms_new[] */
7773 detach_destroy_domains(doms_cur[i]);
7774 match1:
7775 ;
7776 }
7777
7778 if (doms_new == NULL) {
7779 ndoms_cur = 0;
7780 doms_new = &fallback_doms;
7781 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7782 WARN_ON_ONCE(dattr_new);
7783 }
7784
7785 /* Build new domains */
7786 for (i = 0; i < ndoms_new; i++) {
7787 for (j = 0; j < ndoms_cur && !new_topology; j++) {
7788 if (cpumask_equal(doms_new[i], doms_cur[j])
7789 && dattrs_equal(dattr_new, i, dattr_cur, j))
7790 goto match2;
7791 }
7792 /* no match - add a new doms_new */
7793 __build_sched_domains(doms_new[i],
7794 dattr_new ? dattr_new + i : NULL);
7795 match2:
7796 ;
7797 }
7798
7799 /* Remember the new sched domains */
7800 if (doms_cur != &fallback_doms)
7801 free_sched_domains(doms_cur, ndoms_cur);
7802 kfree(dattr_cur); /* kfree(NULL) is safe */
7803 doms_cur = doms_new;
7804 dattr_cur = dattr_new;
7805 ndoms_cur = ndoms_new;
7806
7807 register_sched_domain_sysctl();
7808
7809 mutex_unlock(&sched_domains_mutex);
7810 }
7811
7812 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7813 static void arch_reinit_sched_domains(void)
7814 {
7815 get_online_cpus();
7816
7817 /* Destroy domains first to force the rebuild */
7818 partition_sched_domains(0, NULL, NULL);
7819
7820 rebuild_sched_domains();
7821 put_online_cpus();
7822 }
7823
7824 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7825 {
7826 unsigned int level = 0;
7827
7828 if (sscanf(buf, "%u", &level) != 1)
7829 return -EINVAL;
7830
7831 /*
7832 * level is always be positive so don't check for
7833 * level < POWERSAVINGS_BALANCE_NONE which is 0
7834 * What happens on 0 or 1 byte write,
7835 * need to check for count as well?
7836 */
7837
7838 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7839 return -EINVAL;
7840
7841 if (smt)
7842 sched_smt_power_savings = level;
7843 else
7844 sched_mc_power_savings = level;
7845
7846 arch_reinit_sched_domains();
7847
7848 return count;
7849 }
7850
7851 #ifdef CONFIG_SCHED_MC
7852 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7853 struct sysdev_class_attribute *attr,
7854 char *page)
7855 {
7856 return sprintf(page, "%u\n", sched_mc_power_savings);
7857 }
7858 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7859 struct sysdev_class_attribute *attr,
7860 const char *buf, size_t count)
7861 {
7862 return sched_power_savings_store(buf, count, 0);
7863 }
7864 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7865 sched_mc_power_savings_show,
7866 sched_mc_power_savings_store);
7867 #endif
7868
7869 #ifdef CONFIG_SCHED_SMT
7870 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7871 struct sysdev_class_attribute *attr,
7872 char *page)
7873 {
7874 return sprintf(page, "%u\n", sched_smt_power_savings);
7875 }
7876 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7877 struct sysdev_class_attribute *attr,
7878 const char *buf, size_t count)
7879 {
7880 return sched_power_savings_store(buf, count, 1);
7881 }
7882 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7883 sched_smt_power_savings_show,
7884 sched_smt_power_savings_store);
7885 #endif
7886
7887 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7888 {
7889 int err = 0;
7890
7891 #ifdef CONFIG_SCHED_SMT
7892 if (smt_capable())
7893 err = sysfs_create_file(&cls->kset.kobj,
7894 &attr_sched_smt_power_savings.attr);
7895 #endif
7896 #ifdef CONFIG_SCHED_MC
7897 if (!err && mc_capable())
7898 err = sysfs_create_file(&cls->kset.kobj,
7899 &attr_sched_mc_power_savings.attr);
7900 #endif
7901 return err;
7902 }
7903 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7904
7905 /*
7906 * Update cpusets according to cpu_active mask. If cpusets are
7907 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7908 * around partition_sched_domains().
7909 */
7910 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7911 void *hcpu)
7912 {
7913 switch (action & ~CPU_TASKS_FROZEN) {
7914 case CPU_ONLINE:
7915 case CPU_DOWN_FAILED:
7916 cpuset_update_active_cpus();
7917 return NOTIFY_OK;
7918 default:
7919 return NOTIFY_DONE;
7920 }
7921 }
7922
7923 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7924 void *hcpu)
7925 {
7926 switch (action & ~CPU_TASKS_FROZEN) {
7927 case CPU_DOWN_PREPARE:
7928 cpuset_update_active_cpus();
7929 return NOTIFY_OK;
7930 default:
7931 return NOTIFY_DONE;
7932 }
7933 }
7934
7935 static int update_runtime(struct notifier_block *nfb,
7936 unsigned long action, void *hcpu)
7937 {
7938 int cpu = (int)(long)hcpu;
7939
7940 switch (action) {
7941 case CPU_DOWN_PREPARE:
7942 case CPU_DOWN_PREPARE_FROZEN:
7943 disable_runtime(cpu_rq(cpu));
7944 return NOTIFY_OK;
7945
7946 case CPU_DOWN_FAILED:
7947 case CPU_DOWN_FAILED_FROZEN:
7948 case CPU_ONLINE:
7949 case CPU_ONLINE_FROZEN:
7950 enable_runtime(cpu_rq(cpu));
7951 return NOTIFY_OK;
7952
7953 default:
7954 return NOTIFY_DONE;
7955 }
7956 }
7957
7958 void __init sched_init_smp(void)
7959 {
7960 cpumask_var_t non_isolated_cpus;
7961
7962 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7963 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7964
7965 #if defined(CONFIG_NUMA)
7966 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7967 GFP_KERNEL);
7968 BUG_ON(sched_group_nodes_bycpu == NULL);
7969 #endif
7970 get_online_cpus();
7971 mutex_lock(&sched_domains_mutex);
7972 arch_init_sched_domains(cpu_active_mask);
7973 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7974 if (cpumask_empty(non_isolated_cpus))
7975 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7976 mutex_unlock(&sched_domains_mutex);
7977 put_online_cpus();
7978
7979 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7980 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7981
7982 /* RT runtime code needs to handle some hotplug events */
7983 hotcpu_notifier(update_runtime, 0);
7984
7985 init_hrtick();
7986
7987 /* Move init over to a non-isolated CPU */
7988 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7989 BUG();
7990 sched_init_granularity();
7991 free_cpumask_var(non_isolated_cpus);
7992
7993 init_sched_rt_class();
7994 }
7995 #else
7996 void __init sched_init_smp(void)
7997 {
7998 sched_init_granularity();
7999 }
8000 #endif /* CONFIG_SMP */
8001
8002 const_debug unsigned int sysctl_timer_migration = 1;
8003
8004 int in_sched_functions(unsigned long addr)
8005 {
8006 return in_lock_functions(addr) ||
8007 (addr >= (unsigned long)__sched_text_start
8008 && addr < (unsigned long)__sched_text_end);
8009 }
8010
8011 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
8012 {
8013 cfs_rq->tasks_timeline = RB_ROOT;
8014 INIT_LIST_HEAD(&cfs_rq->tasks);
8015 #ifdef CONFIG_FAIR_GROUP_SCHED
8016 cfs_rq->rq = rq;
8017 /* allow initial update_cfs_load() to truncate */
8018 #ifdef CONFIG_SMP
8019 cfs_rq->load_stamp = 1;
8020 #endif
8021 #endif
8022 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8023 }
8024
8025 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8026 {
8027 struct rt_prio_array *array;
8028 int i;
8029
8030 array = &rt_rq->active;
8031 for (i = 0; i < MAX_RT_PRIO; i++) {
8032 INIT_LIST_HEAD(array->queue + i);
8033 __clear_bit(i, array->bitmap);
8034 }
8035 /* delimiter for bitsearch: */
8036 __set_bit(MAX_RT_PRIO, array->bitmap);
8037
8038 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
8039 rt_rq->highest_prio.curr = MAX_RT_PRIO;
8040 #ifdef CONFIG_SMP
8041 rt_rq->highest_prio.next = MAX_RT_PRIO;
8042 #endif
8043 #endif
8044 #ifdef CONFIG_SMP
8045 rt_rq->rt_nr_migratory = 0;
8046 rt_rq->overloaded = 0;
8047 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
8048 #endif
8049
8050 rt_rq->rt_time = 0;
8051 rt_rq->rt_throttled = 0;
8052 rt_rq->rt_runtime = 0;
8053 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
8054
8055 #ifdef CONFIG_RT_GROUP_SCHED
8056 rt_rq->rt_nr_boosted = 0;
8057 rt_rq->rq = rq;
8058 #endif
8059 }
8060
8061 #ifdef CONFIG_FAIR_GROUP_SCHED
8062 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8063 struct sched_entity *se, int cpu,
8064 struct sched_entity *parent)
8065 {
8066 struct rq *rq = cpu_rq(cpu);
8067 tg->cfs_rq[cpu] = cfs_rq;
8068 init_cfs_rq(cfs_rq, rq);
8069 cfs_rq->tg = tg;
8070
8071 tg->se[cpu] = se;
8072 /* se could be NULL for root_task_group */
8073 if (!se)
8074 return;
8075
8076 if (!parent)
8077 se->cfs_rq = &rq->cfs;
8078 else
8079 se->cfs_rq = parent->my_q;
8080
8081 se->my_q = cfs_rq;
8082 update_load_set(&se->load, 0);
8083 se->parent = parent;
8084 }
8085 #endif
8086
8087 #ifdef CONFIG_RT_GROUP_SCHED
8088 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8089 struct sched_rt_entity *rt_se, int cpu,
8090 struct sched_rt_entity *parent)
8091 {
8092 struct rq *rq = cpu_rq(cpu);
8093
8094 tg->rt_rq[cpu] = rt_rq;
8095 init_rt_rq(rt_rq, rq);
8096 rt_rq->tg = tg;
8097 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
8098
8099 tg->rt_se[cpu] = rt_se;
8100 if (!rt_se)
8101 return;
8102
8103 if (!parent)
8104 rt_se->rt_rq = &rq->rt;
8105 else
8106 rt_se->rt_rq = parent->my_q;
8107
8108 rt_se->my_q = rt_rq;
8109 rt_se->parent = parent;
8110 INIT_LIST_HEAD(&rt_se->run_list);
8111 }
8112 #endif
8113
8114 void __init sched_init(void)
8115 {
8116 int i, j;
8117 unsigned long alloc_size = 0, ptr;
8118
8119 #ifdef CONFIG_FAIR_GROUP_SCHED
8120 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8121 #endif
8122 #ifdef CONFIG_RT_GROUP_SCHED
8123 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8124 #endif
8125 #ifdef CONFIG_CPUMASK_OFFSTACK
8126 alloc_size += num_possible_cpus() * cpumask_size();
8127 #endif
8128 if (alloc_size) {
8129 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
8130
8131 #ifdef CONFIG_FAIR_GROUP_SCHED
8132 root_task_group.se = (struct sched_entity **)ptr;
8133 ptr += nr_cpu_ids * sizeof(void **);
8134
8135 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8136 ptr += nr_cpu_ids * sizeof(void **);
8137
8138 #endif /* CONFIG_FAIR_GROUP_SCHED */
8139 #ifdef CONFIG_RT_GROUP_SCHED
8140 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8141 ptr += nr_cpu_ids * sizeof(void **);
8142
8143 root_task_group.rt_rq = (struct rt_rq **)ptr;
8144 ptr += nr_cpu_ids * sizeof(void **);
8145
8146 #endif /* CONFIG_RT_GROUP_SCHED */
8147 #ifdef CONFIG_CPUMASK_OFFSTACK
8148 for_each_possible_cpu(i) {
8149 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
8150 ptr += cpumask_size();
8151 }
8152 #endif /* CONFIG_CPUMASK_OFFSTACK */
8153 }
8154
8155 #ifdef CONFIG_SMP
8156 init_defrootdomain();
8157 #endif
8158
8159 init_rt_bandwidth(&def_rt_bandwidth,
8160 global_rt_period(), global_rt_runtime());
8161
8162 #ifdef CONFIG_RT_GROUP_SCHED
8163 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8164 global_rt_period(), global_rt_runtime());
8165 #endif /* CONFIG_RT_GROUP_SCHED */
8166
8167 #ifdef CONFIG_CGROUP_SCHED
8168 list_add(&root_task_group.list, &task_groups);
8169 INIT_LIST_HEAD(&root_task_group.children);
8170 autogroup_init(&init_task);
8171 #endif /* CONFIG_CGROUP_SCHED */
8172
8173 for_each_possible_cpu(i) {
8174 struct rq *rq;
8175
8176 rq = cpu_rq(i);
8177 raw_spin_lock_init(&rq->lock);
8178 rq->nr_running = 0;
8179 rq->calc_load_active = 0;
8180 rq->calc_load_update = jiffies + LOAD_FREQ;
8181 init_cfs_rq(&rq->cfs, rq);
8182 init_rt_rq(&rq->rt, rq);
8183 #ifdef CONFIG_FAIR_GROUP_SCHED
8184 root_task_group.shares = root_task_group_load;
8185 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8186 /*
8187 * How much cpu bandwidth does root_task_group get?
8188 *
8189 * In case of task-groups formed thr' the cgroup filesystem, it
8190 * gets 100% of the cpu resources in the system. This overall
8191 * system cpu resource is divided among the tasks of
8192 * root_task_group and its child task-groups in a fair manner,
8193 * based on each entity's (task or task-group's) weight
8194 * (se->load.weight).
8195 *
8196 * In other words, if root_task_group has 10 tasks of weight
8197 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8198 * then A0's share of the cpu resource is:
8199 *
8200 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8201 *
8202 * We achieve this by letting root_task_group's tasks sit
8203 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
8204 */
8205 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
8206 #endif /* CONFIG_FAIR_GROUP_SCHED */
8207
8208 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8209 #ifdef CONFIG_RT_GROUP_SCHED
8210 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
8211 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
8212 #endif
8213
8214 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8215 rq->cpu_load[j] = 0;
8216
8217 rq->last_load_update_tick = jiffies;
8218
8219 #ifdef CONFIG_SMP
8220 rq->sd = NULL;
8221 rq->rd = NULL;
8222 rq->cpu_power = SCHED_LOAD_SCALE;
8223 rq->post_schedule = 0;
8224 rq->active_balance = 0;
8225 rq->next_balance = jiffies;
8226 rq->push_cpu = 0;
8227 rq->cpu = i;
8228 rq->online = 0;
8229 rq->idle_stamp = 0;
8230 rq->avg_idle = 2*sysctl_sched_migration_cost;
8231 rq_attach_root(rq, &def_root_domain);
8232 #ifdef CONFIG_NO_HZ
8233 rq->nohz_balance_kick = 0;
8234 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
8235 #endif
8236 #endif
8237 init_rq_hrtick(rq);
8238 atomic_set(&rq->nr_iowait, 0);
8239 }
8240
8241 set_load_weight(&init_task);
8242
8243 #ifdef CONFIG_PREEMPT_NOTIFIERS
8244 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8245 #endif
8246
8247 #ifdef CONFIG_SMP
8248 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8249 #endif
8250
8251 #ifdef CONFIG_RT_MUTEXES
8252 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
8253 #endif
8254
8255 /*
8256 * The boot idle thread does lazy MMU switching as well:
8257 */
8258 atomic_inc(&init_mm.mm_count);
8259 enter_lazy_tlb(&init_mm, current);
8260
8261 /*
8262 * Make us the idle thread. Technically, schedule() should not be
8263 * called from this thread, however somewhere below it might be,
8264 * but because we are the idle thread, we just pick up running again
8265 * when this runqueue becomes "idle".
8266 */
8267 init_idle(current, smp_processor_id());
8268
8269 calc_load_update = jiffies + LOAD_FREQ;
8270
8271 /*
8272 * During early bootup we pretend to be a normal task:
8273 */
8274 current->sched_class = &fair_sched_class;
8275
8276 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8277 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
8278 #ifdef CONFIG_SMP
8279 #ifdef CONFIG_NO_HZ
8280 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8281 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
8282 atomic_set(&nohz.load_balancer, nr_cpu_ids);
8283 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
8284 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
8285 #endif
8286 /* May be allocated at isolcpus cmdline parse time */
8287 if (cpu_isolated_map == NULL)
8288 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
8289 #endif /* SMP */
8290
8291 scheduler_running = 1;
8292 }
8293
8294 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8295 static inline int preempt_count_equals(int preempt_offset)
8296 {
8297 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
8298
8299 return (nested == preempt_offset);
8300 }
8301
8302 void __might_sleep(const char *file, int line, int preempt_offset)
8303 {
8304 #ifdef in_atomic
8305 static unsigned long prev_jiffy; /* ratelimiting */
8306
8307 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
8308 system_state != SYSTEM_RUNNING || oops_in_progress)
8309 return;
8310 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8311 return;
8312 prev_jiffy = jiffies;
8313
8314 printk(KERN_ERR
8315 "BUG: sleeping function called from invalid context at %s:%d\n",
8316 file, line);
8317 printk(KERN_ERR
8318 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8319 in_atomic(), irqs_disabled(),
8320 current->pid, current->comm);
8321
8322 debug_show_held_locks(current);
8323 if (irqs_disabled())
8324 print_irqtrace_events(current);
8325 dump_stack();
8326 #endif
8327 }
8328 EXPORT_SYMBOL(__might_sleep);
8329 #endif
8330
8331 #ifdef CONFIG_MAGIC_SYSRQ
8332 static void normalize_task(struct rq *rq, struct task_struct *p)
8333 {
8334 const struct sched_class *prev_class = p->sched_class;
8335 int old_prio = p->prio;
8336 int on_rq;
8337
8338 on_rq = p->se.on_rq;
8339 if (on_rq)
8340 deactivate_task(rq, p, 0);
8341 __setscheduler(rq, p, SCHED_NORMAL, 0);
8342 if (on_rq) {
8343 activate_task(rq, p, 0);
8344 resched_task(rq->curr);
8345 }
8346
8347 check_class_changed(rq, p, prev_class, old_prio);
8348 }
8349
8350 void normalize_rt_tasks(void)
8351 {
8352 struct task_struct *g, *p;
8353 unsigned long flags;
8354 struct rq *rq;
8355
8356 read_lock_irqsave(&tasklist_lock, flags);
8357 do_each_thread(g, p) {
8358 /*
8359 * Only normalize user tasks:
8360 */
8361 if (!p->mm)
8362 continue;
8363
8364 p->se.exec_start = 0;
8365 #ifdef CONFIG_SCHEDSTATS
8366 p->se.statistics.wait_start = 0;
8367 p->se.statistics.sleep_start = 0;
8368 p->se.statistics.block_start = 0;
8369 #endif
8370
8371 if (!rt_task(p)) {
8372 /*
8373 * Renice negative nice level userspace
8374 * tasks back to 0:
8375 */
8376 if (TASK_NICE(p) < 0 && p->mm)
8377 set_user_nice(p, 0);
8378 continue;
8379 }
8380
8381 raw_spin_lock(&p->pi_lock);
8382 rq = __task_rq_lock(p);
8383
8384 normalize_task(rq, p);
8385
8386 __task_rq_unlock(rq);
8387 raw_spin_unlock(&p->pi_lock);
8388 } while_each_thread(g, p);
8389
8390 read_unlock_irqrestore(&tasklist_lock, flags);
8391 }
8392
8393 #endif /* CONFIG_MAGIC_SYSRQ */
8394
8395 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
8396 /*
8397 * These functions are only useful for the IA64 MCA handling, or kdb.
8398 *
8399 * They can only be called when the whole system has been
8400 * stopped - every CPU needs to be quiescent, and no scheduling
8401 * activity can take place. Using them for anything else would
8402 * be a serious bug, and as a result, they aren't even visible
8403 * under any other configuration.
8404 */
8405
8406 /**
8407 * curr_task - return the current task for a given cpu.
8408 * @cpu: the processor in question.
8409 *
8410 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8411 */
8412 struct task_struct *curr_task(int cpu)
8413 {
8414 return cpu_curr(cpu);
8415 }
8416
8417 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8418
8419 #ifdef CONFIG_IA64
8420 /**
8421 * set_curr_task - set the current task for a given cpu.
8422 * @cpu: the processor in question.
8423 * @p: the task pointer to set.
8424 *
8425 * Description: This function must only be used when non-maskable interrupts
8426 * are serviced on a separate stack. It allows the architecture to switch the
8427 * notion of the current task on a cpu in a non-blocking manner. This function
8428 * must be called with all CPU's synchronized, and interrupts disabled, the
8429 * and caller must save the original value of the current task (see
8430 * curr_task() above) and restore that value before reenabling interrupts and
8431 * re-starting the system.
8432 *
8433 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8434 */
8435 void set_curr_task(int cpu, struct task_struct *p)
8436 {
8437 cpu_curr(cpu) = p;
8438 }
8439
8440 #endif
8441
8442 #ifdef CONFIG_FAIR_GROUP_SCHED
8443 static void free_fair_sched_group(struct task_group *tg)
8444 {
8445 int i;
8446
8447 for_each_possible_cpu(i) {
8448 if (tg->cfs_rq)
8449 kfree(tg->cfs_rq[i]);
8450 if (tg->se)
8451 kfree(tg->se[i]);
8452 }
8453
8454 kfree(tg->cfs_rq);
8455 kfree(tg->se);
8456 }
8457
8458 static
8459 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8460 {
8461 struct cfs_rq *cfs_rq;
8462 struct sched_entity *se;
8463 int i;
8464
8465 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8466 if (!tg->cfs_rq)
8467 goto err;
8468 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8469 if (!tg->se)
8470 goto err;
8471
8472 tg->shares = NICE_0_LOAD;
8473
8474 for_each_possible_cpu(i) {
8475 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8476 GFP_KERNEL, cpu_to_node(i));
8477 if (!cfs_rq)
8478 goto err;
8479
8480 se = kzalloc_node(sizeof(struct sched_entity),
8481 GFP_KERNEL, cpu_to_node(i));
8482 if (!se)
8483 goto err_free_rq;
8484
8485 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8486 }
8487
8488 return 1;
8489
8490 err_free_rq:
8491 kfree(cfs_rq);
8492 err:
8493 return 0;
8494 }
8495
8496 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8497 {
8498 struct rq *rq = cpu_rq(cpu);
8499 unsigned long flags;
8500
8501 /*
8502 * Only empty task groups can be destroyed; so we can speculatively
8503 * check on_list without danger of it being re-added.
8504 */
8505 if (!tg->cfs_rq[cpu]->on_list)
8506 return;
8507
8508 raw_spin_lock_irqsave(&rq->lock, flags);
8509 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8510 raw_spin_unlock_irqrestore(&rq->lock, flags);
8511 }
8512 #else /* !CONFG_FAIR_GROUP_SCHED */
8513 static inline void free_fair_sched_group(struct task_group *tg)
8514 {
8515 }
8516
8517 static inline
8518 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8519 {
8520 return 1;
8521 }
8522
8523 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8524 {
8525 }
8526 #endif /* CONFIG_FAIR_GROUP_SCHED */
8527
8528 #ifdef CONFIG_RT_GROUP_SCHED
8529 static void free_rt_sched_group(struct task_group *tg)
8530 {
8531 int i;
8532
8533 destroy_rt_bandwidth(&tg->rt_bandwidth);
8534
8535 for_each_possible_cpu(i) {
8536 if (tg->rt_rq)
8537 kfree(tg->rt_rq[i]);
8538 if (tg->rt_se)
8539 kfree(tg->rt_se[i]);
8540 }
8541
8542 kfree(tg->rt_rq);
8543 kfree(tg->rt_se);
8544 }
8545
8546 static
8547 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8548 {
8549 struct rt_rq *rt_rq;
8550 struct sched_rt_entity *rt_se;
8551 struct rq *rq;
8552 int i;
8553
8554 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8555 if (!tg->rt_rq)
8556 goto err;
8557 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8558 if (!tg->rt_se)
8559 goto err;
8560
8561 init_rt_bandwidth(&tg->rt_bandwidth,
8562 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8563
8564 for_each_possible_cpu(i) {
8565 rq = cpu_rq(i);
8566
8567 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8568 GFP_KERNEL, cpu_to_node(i));
8569 if (!rt_rq)
8570 goto err;
8571
8572 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8573 GFP_KERNEL, cpu_to_node(i));
8574 if (!rt_se)
8575 goto err_free_rq;
8576
8577 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
8578 }
8579
8580 return 1;
8581
8582 err_free_rq:
8583 kfree(rt_rq);
8584 err:
8585 return 0;
8586 }
8587 #else /* !CONFIG_RT_GROUP_SCHED */
8588 static inline void free_rt_sched_group(struct task_group *tg)
8589 {
8590 }
8591
8592 static inline
8593 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8594 {
8595 return 1;
8596 }
8597 #endif /* CONFIG_RT_GROUP_SCHED */
8598
8599 #ifdef CONFIG_CGROUP_SCHED
8600 static void free_sched_group(struct task_group *tg)
8601 {
8602 free_fair_sched_group(tg);
8603 free_rt_sched_group(tg);
8604 autogroup_free(tg);
8605 kfree(tg);
8606 }
8607
8608 /* allocate runqueue etc for a new task group */
8609 struct task_group *sched_create_group(struct task_group *parent)
8610 {
8611 struct task_group *tg;
8612 unsigned long flags;
8613
8614 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8615 if (!tg)
8616 return ERR_PTR(-ENOMEM);
8617
8618 if (!alloc_fair_sched_group(tg, parent))
8619 goto err;
8620
8621 if (!alloc_rt_sched_group(tg, parent))
8622 goto err;
8623
8624 spin_lock_irqsave(&task_group_lock, flags);
8625 list_add_rcu(&tg->list, &task_groups);
8626
8627 WARN_ON(!parent); /* root should already exist */
8628
8629 tg->parent = parent;
8630 INIT_LIST_HEAD(&tg->children);
8631 list_add_rcu(&tg->siblings, &parent->children);
8632 spin_unlock_irqrestore(&task_group_lock, flags);
8633
8634 return tg;
8635
8636 err:
8637 free_sched_group(tg);
8638 return ERR_PTR(-ENOMEM);
8639 }
8640
8641 /* rcu callback to free various structures associated with a task group */
8642 static void free_sched_group_rcu(struct rcu_head *rhp)
8643 {
8644 /* now it should be safe to free those cfs_rqs */
8645 free_sched_group(container_of(rhp, struct task_group, rcu));
8646 }
8647
8648 /* Destroy runqueue etc associated with a task group */
8649 void sched_destroy_group(struct task_group *tg)
8650 {
8651 unsigned long flags;
8652 int i;
8653
8654 /* end participation in shares distribution */
8655 for_each_possible_cpu(i)
8656 unregister_fair_sched_group(tg, i);
8657
8658 spin_lock_irqsave(&task_group_lock, flags);
8659 list_del_rcu(&tg->list);
8660 list_del_rcu(&tg->siblings);
8661 spin_unlock_irqrestore(&task_group_lock, flags);
8662
8663 /* wait for possible concurrent references to cfs_rqs complete */
8664 call_rcu(&tg->rcu, free_sched_group_rcu);
8665 }
8666
8667 /* change task's runqueue when it moves between groups.
8668 * The caller of this function should have put the task in its new group
8669 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8670 * reflect its new group.
8671 */
8672 void sched_move_task(struct task_struct *tsk)
8673 {
8674 int on_rq, running;
8675 unsigned long flags;
8676 struct rq *rq;
8677
8678 rq = task_rq_lock(tsk, &flags);
8679
8680 running = task_current(rq, tsk);
8681 on_rq = tsk->se.on_rq;
8682
8683 if (on_rq)
8684 dequeue_task(rq, tsk, 0);
8685 if (unlikely(running))
8686 tsk->sched_class->put_prev_task(rq, tsk);
8687
8688 #ifdef CONFIG_FAIR_GROUP_SCHED
8689 if (tsk->sched_class->task_move_group)
8690 tsk->sched_class->task_move_group(tsk, on_rq);
8691 else
8692 #endif
8693 set_task_rq(tsk, task_cpu(tsk));
8694
8695 if (unlikely(running))
8696 tsk->sched_class->set_curr_task(rq);
8697 if (on_rq)
8698 enqueue_task(rq, tsk, 0);
8699
8700 task_rq_unlock(rq, &flags);
8701 }
8702 #endif /* CONFIG_CGROUP_SCHED */
8703
8704 #ifdef CONFIG_FAIR_GROUP_SCHED
8705 static DEFINE_MUTEX(shares_mutex);
8706
8707 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8708 {
8709 int i;
8710 unsigned long flags;
8711
8712 /*
8713 * We can't change the weight of the root cgroup.
8714 */
8715 if (!tg->se[0])
8716 return -EINVAL;
8717
8718 if (shares < MIN_SHARES)
8719 shares = MIN_SHARES;
8720 else if (shares > MAX_SHARES)
8721 shares = MAX_SHARES;
8722
8723 mutex_lock(&shares_mutex);
8724 if (tg->shares == shares)
8725 goto done;
8726
8727 tg->shares = shares;
8728 for_each_possible_cpu(i) {
8729 struct rq *rq = cpu_rq(i);
8730 struct sched_entity *se;
8731
8732 se = tg->se[i];
8733 /* Propagate contribution to hierarchy */
8734 raw_spin_lock_irqsave(&rq->lock, flags);
8735 for_each_sched_entity(se)
8736 update_cfs_shares(group_cfs_rq(se));
8737 raw_spin_unlock_irqrestore(&rq->lock, flags);
8738 }
8739
8740 done:
8741 mutex_unlock(&shares_mutex);
8742 return 0;
8743 }
8744
8745 unsigned long sched_group_shares(struct task_group *tg)
8746 {
8747 return tg->shares;
8748 }
8749 #endif
8750
8751 #ifdef CONFIG_RT_GROUP_SCHED
8752 /*
8753 * Ensure that the real time constraints are schedulable.
8754 */
8755 static DEFINE_MUTEX(rt_constraints_mutex);
8756
8757 static unsigned long to_ratio(u64 period, u64 runtime)
8758 {
8759 if (runtime == RUNTIME_INF)
8760 return 1ULL << 20;
8761
8762 return div64_u64(runtime << 20, period);
8763 }
8764
8765 /* Must be called with tasklist_lock held */
8766 static inline int tg_has_rt_tasks(struct task_group *tg)
8767 {
8768 struct task_struct *g, *p;
8769
8770 do_each_thread(g, p) {
8771 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8772 return 1;
8773 } while_each_thread(g, p);
8774
8775 return 0;
8776 }
8777
8778 struct rt_schedulable_data {
8779 struct task_group *tg;
8780 u64 rt_period;
8781 u64 rt_runtime;
8782 };
8783
8784 static int tg_schedulable(struct task_group *tg, void *data)
8785 {
8786 struct rt_schedulable_data *d = data;
8787 struct task_group *child;
8788 unsigned long total, sum = 0;
8789 u64 period, runtime;
8790
8791 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8792 runtime = tg->rt_bandwidth.rt_runtime;
8793
8794 if (tg == d->tg) {
8795 period = d->rt_period;
8796 runtime = d->rt_runtime;
8797 }
8798
8799 /*
8800 * Cannot have more runtime than the period.
8801 */
8802 if (runtime > period && runtime != RUNTIME_INF)
8803 return -EINVAL;
8804
8805 /*
8806 * Ensure we don't starve existing RT tasks.
8807 */
8808 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8809 return -EBUSY;
8810
8811 total = to_ratio(period, runtime);
8812
8813 /*
8814 * Nobody can have more than the global setting allows.
8815 */
8816 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8817 return -EINVAL;
8818
8819 /*
8820 * The sum of our children's runtime should not exceed our own.
8821 */
8822 list_for_each_entry_rcu(child, &tg->children, siblings) {
8823 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8824 runtime = child->rt_bandwidth.rt_runtime;
8825
8826 if (child == d->tg) {
8827 period = d->rt_period;
8828 runtime = d->rt_runtime;
8829 }
8830
8831 sum += to_ratio(period, runtime);
8832 }
8833
8834 if (sum > total)
8835 return -EINVAL;
8836
8837 return 0;
8838 }
8839
8840 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8841 {
8842 struct rt_schedulable_data data = {
8843 .tg = tg,
8844 .rt_period = period,
8845 .rt_runtime = runtime,
8846 };
8847
8848 return walk_tg_tree(tg_schedulable, tg_nop, &data);
8849 }
8850
8851 static int tg_set_bandwidth(struct task_group *tg,
8852 u64 rt_period, u64 rt_runtime)
8853 {
8854 int i, err = 0;
8855
8856 mutex_lock(&rt_constraints_mutex);
8857 read_lock(&tasklist_lock);
8858 err = __rt_schedulable(tg, rt_period, rt_runtime);
8859 if (err)
8860 goto unlock;
8861
8862 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8863 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8864 tg->rt_bandwidth.rt_runtime = rt_runtime;
8865
8866 for_each_possible_cpu(i) {
8867 struct rt_rq *rt_rq = tg->rt_rq[i];
8868
8869 raw_spin_lock(&rt_rq->rt_runtime_lock);
8870 rt_rq->rt_runtime = rt_runtime;
8871 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8872 }
8873 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8874 unlock:
8875 read_unlock(&tasklist_lock);
8876 mutex_unlock(&rt_constraints_mutex);
8877
8878 return err;
8879 }
8880
8881 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8882 {
8883 u64 rt_runtime, rt_period;
8884
8885 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8886 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8887 if (rt_runtime_us < 0)
8888 rt_runtime = RUNTIME_INF;
8889
8890 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8891 }
8892
8893 long sched_group_rt_runtime(struct task_group *tg)
8894 {
8895 u64 rt_runtime_us;
8896
8897 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8898 return -1;
8899
8900 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8901 do_div(rt_runtime_us, NSEC_PER_USEC);
8902 return rt_runtime_us;
8903 }
8904
8905 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8906 {
8907 u64 rt_runtime, rt_period;
8908
8909 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8910 rt_runtime = tg->rt_bandwidth.rt_runtime;
8911
8912 if (rt_period == 0)
8913 return -EINVAL;
8914
8915 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8916 }
8917
8918 long sched_group_rt_period(struct task_group *tg)
8919 {
8920 u64 rt_period_us;
8921
8922 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8923 do_div(rt_period_us, NSEC_PER_USEC);
8924 return rt_period_us;
8925 }
8926
8927 static int sched_rt_global_constraints(void)
8928 {
8929 u64 runtime, period;
8930 int ret = 0;
8931
8932 if (sysctl_sched_rt_period <= 0)
8933 return -EINVAL;
8934
8935 runtime = global_rt_runtime();
8936 period = global_rt_period();
8937
8938 /*
8939 * Sanity check on the sysctl variables.
8940 */
8941 if (runtime > period && runtime != RUNTIME_INF)
8942 return -EINVAL;
8943
8944 mutex_lock(&rt_constraints_mutex);
8945 read_lock(&tasklist_lock);
8946 ret = __rt_schedulable(NULL, 0, 0);
8947 read_unlock(&tasklist_lock);
8948 mutex_unlock(&rt_constraints_mutex);
8949
8950 return ret;
8951 }
8952
8953 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8954 {
8955 /* Don't accept realtime tasks when there is no way for them to run */
8956 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8957 return 0;
8958
8959 return 1;
8960 }
8961
8962 #else /* !CONFIG_RT_GROUP_SCHED */
8963 static int sched_rt_global_constraints(void)
8964 {
8965 unsigned long flags;
8966 int i;
8967
8968 if (sysctl_sched_rt_period <= 0)
8969 return -EINVAL;
8970
8971 /*
8972 * There's always some RT tasks in the root group
8973 * -- migration, kstopmachine etc..
8974 */
8975 if (sysctl_sched_rt_runtime == 0)
8976 return -EBUSY;
8977
8978 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8979 for_each_possible_cpu(i) {
8980 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8981
8982 raw_spin_lock(&rt_rq->rt_runtime_lock);
8983 rt_rq->rt_runtime = global_rt_runtime();
8984 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8985 }
8986 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8987
8988 return 0;
8989 }
8990 #endif /* CONFIG_RT_GROUP_SCHED */
8991
8992 int sched_rt_handler(struct ctl_table *table, int write,
8993 void __user *buffer, size_t *lenp,
8994 loff_t *ppos)
8995 {
8996 int ret;
8997 int old_period, old_runtime;
8998 static DEFINE_MUTEX(mutex);
8999
9000 mutex_lock(&mutex);
9001 old_period = sysctl_sched_rt_period;
9002 old_runtime = sysctl_sched_rt_runtime;
9003
9004 ret = proc_dointvec(table, write, buffer, lenp, ppos);
9005
9006 if (!ret && write) {
9007 ret = sched_rt_global_constraints();
9008 if (ret) {
9009 sysctl_sched_rt_period = old_period;
9010 sysctl_sched_rt_runtime = old_runtime;
9011 } else {
9012 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9013 def_rt_bandwidth.rt_period =
9014 ns_to_ktime(global_rt_period());
9015 }
9016 }
9017 mutex_unlock(&mutex);
9018
9019 return ret;
9020 }
9021
9022 #ifdef CONFIG_CGROUP_SCHED
9023
9024 /* return corresponding task_group object of a cgroup */
9025 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9026 {
9027 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9028 struct task_group, css);
9029 }
9030
9031 static struct cgroup_subsys_state *
9032 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9033 {
9034 struct task_group *tg, *parent;
9035
9036 if (!cgrp->parent) {
9037 /* This is early initialization for the top cgroup */
9038 return &root_task_group.css;
9039 }
9040
9041 parent = cgroup_tg(cgrp->parent);
9042 tg = sched_create_group(parent);
9043 if (IS_ERR(tg))
9044 return ERR_PTR(-ENOMEM);
9045
9046 return &tg->css;
9047 }
9048
9049 static void
9050 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9051 {
9052 struct task_group *tg = cgroup_tg(cgrp);
9053
9054 sched_destroy_group(tg);
9055 }
9056
9057 static int
9058 cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
9059 {
9060 #ifdef CONFIG_RT_GROUP_SCHED
9061 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
9062 return -EINVAL;
9063 #else
9064 /* We don't support RT-tasks being in separate groups */
9065 if (tsk->sched_class != &fair_sched_class)
9066 return -EINVAL;
9067 #endif
9068 return 0;
9069 }
9070
9071 static int
9072 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9073 struct task_struct *tsk, bool threadgroup)
9074 {
9075 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
9076 if (retval)
9077 return retval;
9078 if (threadgroup) {
9079 struct task_struct *c;
9080 rcu_read_lock();
9081 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
9082 retval = cpu_cgroup_can_attach_task(cgrp, c);
9083 if (retval) {
9084 rcu_read_unlock();
9085 return retval;
9086 }
9087 }
9088 rcu_read_unlock();
9089 }
9090 return 0;
9091 }
9092
9093 static void
9094 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9095 struct cgroup *old_cont, struct task_struct *tsk,
9096 bool threadgroup)
9097 {
9098 sched_move_task(tsk);
9099 if (threadgroup) {
9100 struct task_struct *c;
9101 rcu_read_lock();
9102 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
9103 sched_move_task(c);
9104 }
9105 rcu_read_unlock();
9106 }
9107 }
9108
9109 static void
9110 cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
9111 struct cgroup *old_cgrp, struct task_struct *task)
9112 {
9113 /*
9114 * cgroup_exit() is called in the copy_process() failure path.
9115 * Ignore this case since the task hasn't ran yet, this avoids
9116 * trying to poke a half freed task state from generic code.
9117 */
9118 if (!(task->flags & PF_EXITING))
9119 return;
9120
9121 sched_move_task(task);
9122 }
9123
9124 #ifdef CONFIG_FAIR_GROUP_SCHED
9125 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9126 u64 shareval)
9127 {
9128 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9129 }
9130
9131 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9132 {
9133 struct task_group *tg = cgroup_tg(cgrp);
9134
9135 return (u64) tg->shares;
9136 }
9137 #endif /* CONFIG_FAIR_GROUP_SCHED */
9138
9139 #ifdef CONFIG_RT_GROUP_SCHED
9140 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9141 s64 val)
9142 {
9143 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
9144 }
9145
9146 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
9147 {
9148 return sched_group_rt_runtime(cgroup_tg(cgrp));
9149 }
9150
9151 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9152 u64 rt_period_us)
9153 {
9154 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9155 }
9156
9157 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9158 {
9159 return sched_group_rt_period(cgroup_tg(cgrp));
9160 }
9161 #endif /* CONFIG_RT_GROUP_SCHED */
9162
9163 static struct cftype cpu_files[] = {
9164 #ifdef CONFIG_FAIR_GROUP_SCHED
9165 {
9166 .name = "shares",
9167 .read_u64 = cpu_shares_read_u64,
9168 .write_u64 = cpu_shares_write_u64,
9169 },
9170 #endif
9171 #ifdef CONFIG_RT_GROUP_SCHED
9172 {
9173 .name = "rt_runtime_us",
9174 .read_s64 = cpu_rt_runtime_read,
9175 .write_s64 = cpu_rt_runtime_write,
9176 },
9177 {
9178 .name = "rt_period_us",
9179 .read_u64 = cpu_rt_period_read_uint,
9180 .write_u64 = cpu_rt_period_write_uint,
9181 },
9182 #endif
9183 };
9184
9185 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9186 {
9187 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9188 }
9189
9190 struct cgroup_subsys cpu_cgroup_subsys = {
9191 .name = "cpu",
9192 .create = cpu_cgroup_create,
9193 .destroy = cpu_cgroup_destroy,
9194 .can_attach = cpu_cgroup_can_attach,
9195 .attach = cpu_cgroup_attach,
9196 .exit = cpu_cgroup_exit,
9197 .populate = cpu_cgroup_populate,
9198 .subsys_id = cpu_cgroup_subsys_id,
9199 .early_init = 1,
9200 };
9201
9202 #endif /* CONFIG_CGROUP_SCHED */
9203
9204 #ifdef CONFIG_CGROUP_CPUACCT
9205
9206 /*
9207 * CPU accounting code for task groups.
9208 *
9209 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9210 * (balbir@in.ibm.com).
9211 */
9212
9213 /* track cpu usage of a group of tasks and its child groups */
9214 struct cpuacct {
9215 struct cgroup_subsys_state css;
9216 /* cpuusage holds pointer to a u64-type object on every cpu */
9217 u64 __percpu *cpuusage;
9218 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
9219 struct cpuacct *parent;
9220 };
9221
9222 struct cgroup_subsys cpuacct_subsys;
9223
9224 /* return cpu accounting group corresponding to this container */
9225 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9226 {
9227 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9228 struct cpuacct, css);
9229 }
9230
9231 /* return cpu accounting group to which this task belongs */
9232 static inline struct cpuacct *task_ca(struct task_struct *tsk)
9233 {
9234 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9235 struct cpuacct, css);
9236 }
9237
9238 /* create a new cpu accounting group */
9239 static struct cgroup_subsys_state *cpuacct_create(
9240 struct cgroup_subsys *ss, struct cgroup *cgrp)
9241 {
9242 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9243 int i;
9244
9245 if (!ca)
9246 goto out;
9247
9248 ca->cpuusage = alloc_percpu(u64);
9249 if (!ca->cpuusage)
9250 goto out_free_ca;
9251
9252 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9253 if (percpu_counter_init(&ca->cpustat[i], 0))
9254 goto out_free_counters;
9255
9256 if (cgrp->parent)
9257 ca->parent = cgroup_ca(cgrp->parent);
9258
9259 return &ca->css;
9260
9261 out_free_counters:
9262 while (--i >= 0)
9263 percpu_counter_destroy(&ca->cpustat[i]);
9264 free_percpu(ca->cpuusage);
9265 out_free_ca:
9266 kfree(ca);
9267 out:
9268 return ERR_PTR(-ENOMEM);
9269 }
9270
9271 /* destroy an existing cpu accounting group */
9272 static void
9273 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9274 {
9275 struct cpuacct *ca = cgroup_ca(cgrp);
9276 int i;
9277
9278 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9279 percpu_counter_destroy(&ca->cpustat[i]);
9280 free_percpu(ca->cpuusage);
9281 kfree(ca);
9282 }
9283
9284 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9285 {
9286 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9287 u64 data;
9288
9289 #ifndef CONFIG_64BIT
9290 /*
9291 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9292 */
9293 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9294 data = *cpuusage;
9295 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9296 #else
9297 data = *cpuusage;
9298 #endif
9299
9300 return data;
9301 }
9302
9303 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9304 {
9305 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9306
9307 #ifndef CONFIG_64BIT
9308 /*
9309 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9310 */
9311 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9312 *cpuusage = val;
9313 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9314 #else
9315 *cpuusage = val;
9316 #endif
9317 }
9318
9319 /* return total cpu usage (in nanoseconds) of a group */
9320 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9321 {
9322 struct cpuacct *ca = cgroup_ca(cgrp);
9323 u64 totalcpuusage = 0;
9324 int i;
9325
9326 for_each_present_cpu(i)
9327 totalcpuusage += cpuacct_cpuusage_read(ca, i);
9328
9329 return totalcpuusage;
9330 }
9331
9332 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9333 u64 reset)
9334 {
9335 struct cpuacct *ca = cgroup_ca(cgrp);
9336 int err = 0;
9337 int i;
9338
9339 if (reset) {
9340 err = -EINVAL;
9341 goto out;
9342 }
9343
9344 for_each_present_cpu(i)
9345 cpuacct_cpuusage_write(ca, i, 0);
9346
9347 out:
9348 return err;
9349 }
9350
9351 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9352 struct seq_file *m)
9353 {
9354 struct cpuacct *ca = cgroup_ca(cgroup);
9355 u64 percpu;
9356 int i;
9357
9358 for_each_present_cpu(i) {
9359 percpu = cpuacct_cpuusage_read(ca, i);
9360 seq_printf(m, "%llu ", (unsigned long long) percpu);
9361 }
9362 seq_printf(m, "\n");
9363 return 0;
9364 }
9365
9366 static const char *cpuacct_stat_desc[] = {
9367 [CPUACCT_STAT_USER] = "user",
9368 [CPUACCT_STAT_SYSTEM] = "system",
9369 };
9370
9371 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9372 struct cgroup_map_cb *cb)
9373 {
9374 struct cpuacct *ca = cgroup_ca(cgrp);
9375 int i;
9376
9377 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9378 s64 val = percpu_counter_read(&ca->cpustat[i]);
9379 val = cputime64_to_clock_t(val);
9380 cb->fill(cb, cpuacct_stat_desc[i], val);
9381 }
9382 return 0;
9383 }
9384
9385 static struct cftype files[] = {
9386 {
9387 .name = "usage",
9388 .read_u64 = cpuusage_read,
9389 .write_u64 = cpuusage_write,
9390 },
9391 {
9392 .name = "usage_percpu",
9393 .read_seq_string = cpuacct_percpu_seq_read,
9394 },
9395 {
9396 .name = "stat",
9397 .read_map = cpuacct_stats_show,
9398 },
9399 };
9400
9401 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9402 {
9403 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9404 }
9405
9406 /*
9407 * charge this task's execution time to its accounting group.
9408 *
9409 * called with rq->lock held.
9410 */
9411 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9412 {
9413 struct cpuacct *ca;
9414 int cpu;
9415
9416 if (unlikely(!cpuacct_subsys.active))
9417 return;
9418
9419 cpu = task_cpu(tsk);
9420
9421 rcu_read_lock();
9422
9423 ca = task_ca(tsk);
9424
9425 for (; ca; ca = ca->parent) {
9426 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9427 *cpuusage += cputime;
9428 }
9429
9430 rcu_read_unlock();
9431 }
9432
9433 /*
9434 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9435 * in cputime_t units. As a result, cpuacct_update_stats calls
9436 * percpu_counter_add with values large enough to always overflow the
9437 * per cpu batch limit causing bad SMP scalability.
9438 *
9439 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9440 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9441 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9442 */
9443 #ifdef CONFIG_SMP
9444 #define CPUACCT_BATCH \
9445 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9446 #else
9447 #define CPUACCT_BATCH 0
9448 #endif
9449
9450 /*
9451 * Charge the system/user time to the task's accounting group.
9452 */
9453 static void cpuacct_update_stats(struct task_struct *tsk,
9454 enum cpuacct_stat_index idx, cputime_t val)
9455 {
9456 struct cpuacct *ca;
9457 int batch = CPUACCT_BATCH;
9458
9459 if (unlikely(!cpuacct_subsys.active))
9460 return;
9461
9462 rcu_read_lock();
9463 ca = task_ca(tsk);
9464
9465 do {
9466 __percpu_counter_add(&ca->cpustat[idx], val, batch);
9467 ca = ca->parent;
9468 } while (ca);
9469 rcu_read_unlock();
9470 }
9471
9472 struct cgroup_subsys cpuacct_subsys = {
9473 .name = "cpuacct",
9474 .create = cpuacct_create,
9475 .destroy = cpuacct_destroy,
9476 .populate = cpuacct_populate,
9477 .subsys_id = cpuacct_subsys_id,
9478 };
9479 #endif /* CONFIG_CGROUP_CPUACCT */
9480
This page took 0.35905 seconds and 5 git commands to generate.