sched: Export account_system_vtime()
[deliverable/linux.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/stop_machine.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
74 #include <linux/slab.h>
75
76 #include <asm/tlb.h>
77 #include <asm/irq_regs.h>
78
79 #include "sched_cpupri.h"
80 #include "workqueue_sched.h"
81
82 #define CREATE_TRACE_POINTS
83 #include <trace/events/sched.h>
84
85 /*
86 * Convert user-nice values [ -20 ... 0 ... 19 ]
87 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
88 * and back.
89 */
90 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
91 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
92 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
93
94 /*
95 * 'User priority' is the nice value converted to something we
96 * can work with better when scaling various scheduler parameters,
97 * it's a [ 0 ... 39 ] range.
98 */
99 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
100 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
101 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
102
103 /*
104 * Helpers for converting nanosecond timing to jiffy resolution
105 */
106 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
107
108 #define NICE_0_LOAD SCHED_LOAD_SCALE
109 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
110
111 /*
112 * These are the 'tuning knobs' of the scheduler:
113 *
114 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
115 * Timeslices get refilled after they expire.
116 */
117 #define DEF_TIMESLICE (100 * HZ / 1000)
118
119 /*
120 * single value that denotes runtime == period, ie unlimited time.
121 */
122 #define RUNTIME_INF ((u64)~0ULL)
123
124 static inline int rt_policy(int policy)
125 {
126 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
127 return 1;
128 return 0;
129 }
130
131 static inline int task_has_rt_policy(struct task_struct *p)
132 {
133 return rt_policy(p->policy);
134 }
135
136 /*
137 * This is the priority-queue data structure of the RT scheduling class:
138 */
139 struct rt_prio_array {
140 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
141 struct list_head queue[MAX_RT_PRIO];
142 };
143
144 struct rt_bandwidth {
145 /* nests inside the rq lock: */
146 raw_spinlock_t rt_runtime_lock;
147 ktime_t rt_period;
148 u64 rt_runtime;
149 struct hrtimer rt_period_timer;
150 };
151
152 static struct rt_bandwidth def_rt_bandwidth;
153
154 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
155
156 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
157 {
158 struct rt_bandwidth *rt_b =
159 container_of(timer, struct rt_bandwidth, rt_period_timer);
160 ktime_t now;
161 int overrun;
162 int idle = 0;
163
164 for (;;) {
165 now = hrtimer_cb_get_time(timer);
166 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
167
168 if (!overrun)
169 break;
170
171 idle = do_sched_rt_period_timer(rt_b, overrun);
172 }
173
174 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
175 }
176
177 static
178 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
179 {
180 rt_b->rt_period = ns_to_ktime(period);
181 rt_b->rt_runtime = runtime;
182
183 raw_spin_lock_init(&rt_b->rt_runtime_lock);
184
185 hrtimer_init(&rt_b->rt_period_timer,
186 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
187 rt_b->rt_period_timer.function = sched_rt_period_timer;
188 }
189
190 static inline int rt_bandwidth_enabled(void)
191 {
192 return sysctl_sched_rt_runtime >= 0;
193 }
194
195 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
196 {
197 ktime_t now;
198
199 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
200 return;
201
202 if (hrtimer_active(&rt_b->rt_period_timer))
203 return;
204
205 raw_spin_lock(&rt_b->rt_runtime_lock);
206 for (;;) {
207 unsigned long delta;
208 ktime_t soft, hard;
209
210 if (hrtimer_active(&rt_b->rt_period_timer))
211 break;
212
213 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
214 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
215
216 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
217 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
218 delta = ktime_to_ns(ktime_sub(hard, soft));
219 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
220 HRTIMER_MODE_ABS_PINNED, 0);
221 }
222 raw_spin_unlock(&rt_b->rt_runtime_lock);
223 }
224
225 #ifdef CONFIG_RT_GROUP_SCHED
226 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
227 {
228 hrtimer_cancel(&rt_b->rt_period_timer);
229 }
230 #endif
231
232 /*
233 * sched_domains_mutex serializes calls to arch_init_sched_domains,
234 * detach_destroy_domains and partition_sched_domains.
235 */
236 static DEFINE_MUTEX(sched_domains_mutex);
237
238 #ifdef CONFIG_CGROUP_SCHED
239
240 #include <linux/cgroup.h>
241
242 struct cfs_rq;
243
244 static LIST_HEAD(task_groups);
245
246 /* task group related information */
247 struct task_group {
248 struct cgroup_subsys_state css;
249
250 #ifdef CONFIG_FAIR_GROUP_SCHED
251 /* schedulable entities of this group on each cpu */
252 struct sched_entity **se;
253 /* runqueue "owned" by this group on each cpu */
254 struct cfs_rq **cfs_rq;
255 unsigned long shares;
256 #endif
257
258 #ifdef CONFIG_RT_GROUP_SCHED
259 struct sched_rt_entity **rt_se;
260 struct rt_rq **rt_rq;
261
262 struct rt_bandwidth rt_bandwidth;
263 #endif
264
265 struct rcu_head rcu;
266 struct list_head list;
267
268 struct task_group *parent;
269 struct list_head siblings;
270 struct list_head children;
271 };
272
273 #define root_task_group init_task_group
274
275 /* task_group_lock serializes add/remove of task groups and also changes to
276 * a task group's cpu shares.
277 */
278 static DEFINE_SPINLOCK(task_group_lock);
279
280 #ifdef CONFIG_FAIR_GROUP_SCHED
281
282 #ifdef CONFIG_SMP
283 static int root_task_group_empty(void)
284 {
285 return list_empty(&root_task_group.children);
286 }
287 #endif
288
289 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
290
291 /*
292 * A weight of 0 or 1 can cause arithmetics problems.
293 * A weight of a cfs_rq is the sum of weights of which entities
294 * are queued on this cfs_rq, so a weight of a entity should not be
295 * too large, so as the shares value of a task group.
296 * (The default weight is 1024 - so there's no practical
297 * limitation from this.)
298 */
299 #define MIN_SHARES 2
300 #define MAX_SHARES (1UL << 18)
301
302 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
303 #endif
304
305 /* Default task group.
306 * Every task in system belong to this group at bootup.
307 */
308 struct task_group init_task_group;
309
310 #endif /* CONFIG_CGROUP_SCHED */
311
312 /* CFS-related fields in a runqueue */
313 struct cfs_rq {
314 struct load_weight load;
315 unsigned long nr_running;
316
317 u64 exec_clock;
318 u64 min_vruntime;
319
320 struct rb_root tasks_timeline;
321 struct rb_node *rb_leftmost;
322
323 struct list_head tasks;
324 struct list_head *balance_iterator;
325
326 /*
327 * 'curr' points to currently running entity on this cfs_rq.
328 * It is set to NULL otherwise (i.e when none are currently running).
329 */
330 struct sched_entity *curr, *next, *last;
331
332 unsigned int nr_spread_over;
333
334 #ifdef CONFIG_FAIR_GROUP_SCHED
335 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
336
337 /*
338 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
339 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
340 * (like users, containers etc.)
341 *
342 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
343 * list is used during load balance.
344 */
345 struct list_head leaf_cfs_rq_list;
346 struct task_group *tg; /* group that "owns" this runqueue */
347
348 #ifdef CONFIG_SMP
349 /*
350 * the part of load.weight contributed by tasks
351 */
352 unsigned long task_weight;
353
354 /*
355 * h_load = weight * f(tg)
356 *
357 * Where f(tg) is the recursive weight fraction assigned to
358 * this group.
359 */
360 unsigned long h_load;
361
362 /*
363 * this cpu's part of tg->shares
364 */
365 unsigned long shares;
366
367 /*
368 * load.weight at the time we set shares
369 */
370 unsigned long rq_weight;
371 #endif
372 #endif
373 };
374
375 /* Real-Time classes' related field in a runqueue: */
376 struct rt_rq {
377 struct rt_prio_array active;
378 unsigned long rt_nr_running;
379 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
380 struct {
381 int curr; /* highest queued rt task prio */
382 #ifdef CONFIG_SMP
383 int next; /* next highest */
384 #endif
385 } highest_prio;
386 #endif
387 #ifdef CONFIG_SMP
388 unsigned long rt_nr_migratory;
389 unsigned long rt_nr_total;
390 int overloaded;
391 struct plist_head pushable_tasks;
392 #endif
393 int rt_throttled;
394 u64 rt_time;
395 u64 rt_runtime;
396 /* Nests inside the rq lock: */
397 raw_spinlock_t rt_runtime_lock;
398
399 #ifdef CONFIG_RT_GROUP_SCHED
400 unsigned long rt_nr_boosted;
401
402 struct rq *rq;
403 struct list_head leaf_rt_rq_list;
404 struct task_group *tg;
405 #endif
406 };
407
408 #ifdef CONFIG_SMP
409
410 /*
411 * We add the notion of a root-domain which will be used to define per-domain
412 * variables. Each exclusive cpuset essentially defines an island domain by
413 * fully partitioning the member cpus from any other cpuset. Whenever a new
414 * exclusive cpuset is created, we also create and attach a new root-domain
415 * object.
416 *
417 */
418 struct root_domain {
419 atomic_t refcount;
420 cpumask_var_t span;
421 cpumask_var_t online;
422
423 /*
424 * The "RT overload" flag: it gets set if a CPU has more than
425 * one runnable RT task.
426 */
427 cpumask_var_t rto_mask;
428 atomic_t rto_count;
429 struct cpupri cpupri;
430 };
431
432 /*
433 * By default the system creates a single root-domain with all cpus as
434 * members (mimicking the global state we have today).
435 */
436 static struct root_domain def_root_domain;
437
438 #endif /* CONFIG_SMP */
439
440 /*
441 * This is the main, per-CPU runqueue data structure.
442 *
443 * Locking rule: those places that want to lock multiple runqueues
444 * (such as the load balancing or the thread migration code), lock
445 * acquire operations must be ordered by ascending &runqueue.
446 */
447 struct rq {
448 /* runqueue lock: */
449 raw_spinlock_t lock;
450
451 /*
452 * nr_running and cpu_load should be in the same cacheline because
453 * remote CPUs use both these fields when doing load calculation.
454 */
455 unsigned long nr_running;
456 #define CPU_LOAD_IDX_MAX 5
457 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
458 unsigned long last_load_update_tick;
459 #ifdef CONFIG_NO_HZ
460 u64 nohz_stamp;
461 unsigned char nohz_balance_kick;
462 #endif
463 unsigned int skip_clock_update;
464
465 /* capture load from *all* tasks on this cpu: */
466 struct load_weight load;
467 unsigned long nr_load_updates;
468 u64 nr_switches;
469
470 struct cfs_rq cfs;
471 struct rt_rq rt;
472
473 #ifdef CONFIG_FAIR_GROUP_SCHED
474 /* list of leaf cfs_rq on this cpu: */
475 struct list_head leaf_cfs_rq_list;
476 #endif
477 #ifdef CONFIG_RT_GROUP_SCHED
478 struct list_head leaf_rt_rq_list;
479 #endif
480
481 /*
482 * This is part of a global counter where only the total sum
483 * over all CPUs matters. A task can increase this counter on
484 * one CPU and if it got migrated afterwards it may decrease
485 * it on another CPU. Always updated under the runqueue lock:
486 */
487 unsigned long nr_uninterruptible;
488
489 struct task_struct *curr, *idle, *stop;
490 unsigned long next_balance;
491 struct mm_struct *prev_mm;
492
493 u64 clock;
494 u64 clock_task;
495
496 atomic_t nr_iowait;
497
498 #ifdef CONFIG_SMP
499 struct root_domain *rd;
500 struct sched_domain *sd;
501
502 unsigned long cpu_power;
503
504 unsigned char idle_at_tick;
505 /* For active balancing */
506 int post_schedule;
507 int active_balance;
508 int push_cpu;
509 struct cpu_stop_work active_balance_work;
510 /* cpu of this runqueue: */
511 int cpu;
512 int online;
513
514 unsigned long avg_load_per_task;
515
516 u64 rt_avg;
517 u64 age_stamp;
518 u64 idle_stamp;
519 u64 avg_idle;
520 #endif
521
522 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
523 u64 prev_irq_time;
524 #endif
525
526 /* calc_load related fields */
527 unsigned long calc_load_update;
528 long calc_load_active;
529
530 #ifdef CONFIG_SCHED_HRTICK
531 #ifdef CONFIG_SMP
532 int hrtick_csd_pending;
533 struct call_single_data hrtick_csd;
534 #endif
535 struct hrtimer hrtick_timer;
536 #endif
537
538 #ifdef CONFIG_SCHEDSTATS
539 /* latency stats */
540 struct sched_info rq_sched_info;
541 unsigned long long rq_cpu_time;
542 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
543
544 /* sys_sched_yield() stats */
545 unsigned int yld_count;
546
547 /* schedule() stats */
548 unsigned int sched_switch;
549 unsigned int sched_count;
550 unsigned int sched_goidle;
551
552 /* try_to_wake_up() stats */
553 unsigned int ttwu_count;
554 unsigned int ttwu_local;
555
556 /* BKL stats */
557 unsigned int bkl_count;
558 #endif
559 };
560
561 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
562
563 static inline
564 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
565 {
566 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
567
568 /*
569 * A queue event has occurred, and we're going to schedule. In
570 * this case, we can save a useless back to back clock update.
571 */
572 if (test_tsk_need_resched(p))
573 rq->skip_clock_update = 1;
574 }
575
576 static inline int cpu_of(struct rq *rq)
577 {
578 #ifdef CONFIG_SMP
579 return rq->cpu;
580 #else
581 return 0;
582 #endif
583 }
584
585 #define rcu_dereference_check_sched_domain(p) \
586 rcu_dereference_check((p), \
587 rcu_read_lock_sched_held() || \
588 lockdep_is_held(&sched_domains_mutex))
589
590 /*
591 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
592 * See detach_destroy_domains: synchronize_sched for details.
593 *
594 * The domain tree of any CPU may only be accessed from within
595 * preempt-disabled sections.
596 */
597 #define for_each_domain(cpu, __sd) \
598 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
599
600 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
601 #define this_rq() (&__get_cpu_var(runqueues))
602 #define task_rq(p) cpu_rq(task_cpu(p))
603 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
604 #define raw_rq() (&__raw_get_cpu_var(runqueues))
605
606 #ifdef CONFIG_CGROUP_SCHED
607
608 /*
609 * Return the group to which this tasks belongs.
610 *
611 * We use task_subsys_state_check() and extend the RCU verification
612 * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
613 * holds that lock for each task it moves into the cgroup. Therefore
614 * by holding that lock, we pin the task to the current cgroup.
615 */
616 static inline struct task_group *task_group(struct task_struct *p)
617 {
618 struct cgroup_subsys_state *css;
619
620 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
621 lockdep_is_held(&task_rq(p)->lock));
622 return container_of(css, struct task_group, css);
623 }
624
625 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
626 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
627 {
628 #ifdef CONFIG_FAIR_GROUP_SCHED
629 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
630 p->se.parent = task_group(p)->se[cpu];
631 #endif
632
633 #ifdef CONFIG_RT_GROUP_SCHED
634 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
635 p->rt.parent = task_group(p)->rt_se[cpu];
636 #endif
637 }
638
639 #else /* CONFIG_CGROUP_SCHED */
640
641 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
642 static inline struct task_group *task_group(struct task_struct *p)
643 {
644 return NULL;
645 }
646
647 #endif /* CONFIG_CGROUP_SCHED */
648
649 static u64 irq_time_cpu(int cpu);
650 static void sched_irq_time_avg_update(struct rq *rq, u64 irq_time);
651
652 inline void update_rq_clock(struct rq *rq)
653 {
654 if (!rq->skip_clock_update) {
655 int cpu = cpu_of(rq);
656 u64 irq_time;
657
658 rq->clock = sched_clock_cpu(cpu);
659 irq_time = irq_time_cpu(cpu);
660 if (rq->clock - irq_time > rq->clock_task)
661 rq->clock_task = rq->clock - irq_time;
662
663 sched_irq_time_avg_update(rq, irq_time);
664 }
665 }
666
667 /*
668 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
669 */
670 #ifdef CONFIG_SCHED_DEBUG
671 # define const_debug __read_mostly
672 #else
673 # define const_debug static const
674 #endif
675
676 /**
677 * runqueue_is_locked
678 * @cpu: the processor in question.
679 *
680 * Returns true if the current cpu runqueue is locked.
681 * This interface allows printk to be called with the runqueue lock
682 * held and know whether or not it is OK to wake up the klogd.
683 */
684 int runqueue_is_locked(int cpu)
685 {
686 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
687 }
688
689 /*
690 * Debugging: various feature bits
691 */
692
693 #define SCHED_FEAT(name, enabled) \
694 __SCHED_FEAT_##name ,
695
696 enum {
697 #include "sched_features.h"
698 };
699
700 #undef SCHED_FEAT
701
702 #define SCHED_FEAT(name, enabled) \
703 (1UL << __SCHED_FEAT_##name) * enabled |
704
705 const_debug unsigned int sysctl_sched_features =
706 #include "sched_features.h"
707 0;
708
709 #undef SCHED_FEAT
710
711 #ifdef CONFIG_SCHED_DEBUG
712 #define SCHED_FEAT(name, enabled) \
713 #name ,
714
715 static __read_mostly char *sched_feat_names[] = {
716 #include "sched_features.h"
717 NULL
718 };
719
720 #undef SCHED_FEAT
721
722 static int sched_feat_show(struct seq_file *m, void *v)
723 {
724 int i;
725
726 for (i = 0; sched_feat_names[i]; i++) {
727 if (!(sysctl_sched_features & (1UL << i)))
728 seq_puts(m, "NO_");
729 seq_printf(m, "%s ", sched_feat_names[i]);
730 }
731 seq_puts(m, "\n");
732
733 return 0;
734 }
735
736 static ssize_t
737 sched_feat_write(struct file *filp, const char __user *ubuf,
738 size_t cnt, loff_t *ppos)
739 {
740 char buf[64];
741 char *cmp;
742 int neg = 0;
743 int i;
744
745 if (cnt > 63)
746 cnt = 63;
747
748 if (copy_from_user(&buf, ubuf, cnt))
749 return -EFAULT;
750
751 buf[cnt] = 0;
752 cmp = strstrip(buf);
753
754 if (strncmp(buf, "NO_", 3) == 0) {
755 neg = 1;
756 cmp += 3;
757 }
758
759 for (i = 0; sched_feat_names[i]; i++) {
760 if (strcmp(cmp, sched_feat_names[i]) == 0) {
761 if (neg)
762 sysctl_sched_features &= ~(1UL << i);
763 else
764 sysctl_sched_features |= (1UL << i);
765 break;
766 }
767 }
768
769 if (!sched_feat_names[i])
770 return -EINVAL;
771
772 *ppos += cnt;
773
774 return cnt;
775 }
776
777 static int sched_feat_open(struct inode *inode, struct file *filp)
778 {
779 return single_open(filp, sched_feat_show, NULL);
780 }
781
782 static const struct file_operations sched_feat_fops = {
783 .open = sched_feat_open,
784 .write = sched_feat_write,
785 .read = seq_read,
786 .llseek = seq_lseek,
787 .release = single_release,
788 };
789
790 static __init int sched_init_debug(void)
791 {
792 debugfs_create_file("sched_features", 0644, NULL, NULL,
793 &sched_feat_fops);
794
795 return 0;
796 }
797 late_initcall(sched_init_debug);
798
799 #endif
800
801 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
802
803 /*
804 * Number of tasks to iterate in a single balance run.
805 * Limited because this is done with IRQs disabled.
806 */
807 const_debug unsigned int sysctl_sched_nr_migrate = 32;
808
809 /*
810 * ratelimit for updating the group shares.
811 * default: 0.25ms
812 */
813 unsigned int sysctl_sched_shares_ratelimit = 250000;
814 unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
815
816 /*
817 * Inject some fuzzyness into changing the per-cpu group shares
818 * this avoids remote rq-locks at the expense of fairness.
819 * default: 4
820 */
821 unsigned int sysctl_sched_shares_thresh = 4;
822
823 /*
824 * period over which we average the RT time consumption, measured
825 * in ms.
826 *
827 * default: 1s
828 */
829 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
830
831 /*
832 * period over which we measure -rt task cpu usage in us.
833 * default: 1s
834 */
835 unsigned int sysctl_sched_rt_period = 1000000;
836
837 static __read_mostly int scheduler_running;
838
839 /*
840 * part of the period that we allow rt tasks to run in us.
841 * default: 0.95s
842 */
843 int sysctl_sched_rt_runtime = 950000;
844
845 static inline u64 global_rt_period(void)
846 {
847 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
848 }
849
850 static inline u64 global_rt_runtime(void)
851 {
852 if (sysctl_sched_rt_runtime < 0)
853 return RUNTIME_INF;
854
855 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
856 }
857
858 #ifndef prepare_arch_switch
859 # define prepare_arch_switch(next) do { } while (0)
860 #endif
861 #ifndef finish_arch_switch
862 # define finish_arch_switch(prev) do { } while (0)
863 #endif
864
865 static inline int task_current(struct rq *rq, struct task_struct *p)
866 {
867 return rq->curr == p;
868 }
869
870 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
871 static inline int task_running(struct rq *rq, struct task_struct *p)
872 {
873 return task_current(rq, p);
874 }
875
876 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
877 {
878 }
879
880 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
881 {
882 #ifdef CONFIG_DEBUG_SPINLOCK
883 /* this is a valid case when another task releases the spinlock */
884 rq->lock.owner = current;
885 #endif
886 /*
887 * If we are tracking spinlock dependencies then we have to
888 * fix up the runqueue lock - which gets 'carried over' from
889 * prev into current:
890 */
891 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
892
893 raw_spin_unlock_irq(&rq->lock);
894 }
895
896 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
897 static inline int task_running(struct rq *rq, struct task_struct *p)
898 {
899 #ifdef CONFIG_SMP
900 return p->oncpu;
901 #else
902 return task_current(rq, p);
903 #endif
904 }
905
906 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
907 {
908 #ifdef CONFIG_SMP
909 /*
910 * We can optimise this out completely for !SMP, because the
911 * SMP rebalancing from interrupt is the only thing that cares
912 * here.
913 */
914 next->oncpu = 1;
915 #endif
916 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
917 raw_spin_unlock_irq(&rq->lock);
918 #else
919 raw_spin_unlock(&rq->lock);
920 #endif
921 }
922
923 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
924 {
925 #ifdef CONFIG_SMP
926 /*
927 * After ->oncpu is cleared, the task can be moved to a different CPU.
928 * We must ensure this doesn't happen until the switch is completely
929 * finished.
930 */
931 smp_wmb();
932 prev->oncpu = 0;
933 #endif
934 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
935 local_irq_enable();
936 #endif
937 }
938 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
939
940 /*
941 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
942 * against ttwu().
943 */
944 static inline int task_is_waking(struct task_struct *p)
945 {
946 return unlikely(p->state == TASK_WAKING);
947 }
948
949 /*
950 * __task_rq_lock - lock the runqueue a given task resides on.
951 * Must be called interrupts disabled.
952 */
953 static inline struct rq *__task_rq_lock(struct task_struct *p)
954 __acquires(rq->lock)
955 {
956 struct rq *rq;
957
958 for (;;) {
959 rq = task_rq(p);
960 raw_spin_lock(&rq->lock);
961 if (likely(rq == task_rq(p)))
962 return rq;
963 raw_spin_unlock(&rq->lock);
964 }
965 }
966
967 /*
968 * task_rq_lock - lock the runqueue a given task resides on and disable
969 * interrupts. Note the ordering: we can safely lookup the task_rq without
970 * explicitly disabling preemption.
971 */
972 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
973 __acquires(rq->lock)
974 {
975 struct rq *rq;
976
977 for (;;) {
978 local_irq_save(*flags);
979 rq = task_rq(p);
980 raw_spin_lock(&rq->lock);
981 if (likely(rq == task_rq(p)))
982 return rq;
983 raw_spin_unlock_irqrestore(&rq->lock, *flags);
984 }
985 }
986
987 static void __task_rq_unlock(struct rq *rq)
988 __releases(rq->lock)
989 {
990 raw_spin_unlock(&rq->lock);
991 }
992
993 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
994 __releases(rq->lock)
995 {
996 raw_spin_unlock_irqrestore(&rq->lock, *flags);
997 }
998
999 /*
1000 * this_rq_lock - lock this runqueue and disable interrupts.
1001 */
1002 static struct rq *this_rq_lock(void)
1003 __acquires(rq->lock)
1004 {
1005 struct rq *rq;
1006
1007 local_irq_disable();
1008 rq = this_rq();
1009 raw_spin_lock(&rq->lock);
1010
1011 return rq;
1012 }
1013
1014 #ifdef CONFIG_SCHED_HRTICK
1015 /*
1016 * Use HR-timers to deliver accurate preemption points.
1017 *
1018 * Its all a bit involved since we cannot program an hrt while holding the
1019 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1020 * reschedule event.
1021 *
1022 * When we get rescheduled we reprogram the hrtick_timer outside of the
1023 * rq->lock.
1024 */
1025
1026 /*
1027 * Use hrtick when:
1028 * - enabled by features
1029 * - hrtimer is actually high res
1030 */
1031 static inline int hrtick_enabled(struct rq *rq)
1032 {
1033 if (!sched_feat(HRTICK))
1034 return 0;
1035 if (!cpu_active(cpu_of(rq)))
1036 return 0;
1037 return hrtimer_is_hres_active(&rq->hrtick_timer);
1038 }
1039
1040 static void hrtick_clear(struct rq *rq)
1041 {
1042 if (hrtimer_active(&rq->hrtick_timer))
1043 hrtimer_cancel(&rq->hrtick_timer);
1044 }
1045
1046 /*
1047 * High-resolution timer tick.
1048 * Runs from hardirq context with interrupts disabled.
1049 */
1050 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1051 {
1052 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1053
1054 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1055
1056 raw_spin_lock(&rq->lock);
1057 update_rq_clock(rq);
1058 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1059 raw_spin_unlock(&rq->lock);
1060
1061 return HRTIMER_NORESTART;
1062 }
1063
1064 #ifdef CONFIG_SMP
1065 /*
1066 * called from hardirq (IPI) context
1067 */
1068 static void __hrtick_start(void *arg)
1069 {
1070 struct rq *rq = arg;
1071
1072 raw_spin_lock(&rq->lock);
1073 hrtimer_restart(&rq->hrtick_timer);
1074 rq->hrtick_csd_pending = 0;
1075 raw_spin_unlock(&rq->lock);
1076 }
1077
1078 /*
1079 * Called to set the hrtick timer state.
1080 *
1081 * called with rq->lock held and irqs disabled
1082 */
1083 static void hrtick_start(struct rq *rq, u64 delay)
1084 {
1085 struct hrtimer *timer = &rq->hrtick_timer;
1086 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1087
1088 hrtimer_set_expires(timer, time);
1089
1090 if (rq == this_rq()) {
1091 hrtimer_restart(timer);
1092 } else if (!rq->hrtick_csd_pending) {
1093 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1094 rq->hrtick_csd_pending = 1;
1095 }
1096 }
1097
1098 static int
1099 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1100 {
1101 int cpu = (int)(long)hcpu;
1102
1103 switch (action) {
1104 case CPU_UP_CANCELED:
1105 case CPU_UP_CANCELED_FROZEN:
1106 case CPU_DOWN_PREPARE:
1107 case CPU_DOWN_PREPARE_FROZEN:
1108 case CPU_DEAD:
1109 case CPU_DEAD_FROZEN:
1110 hrtick_clear(cpu_rq(cpu));
1111 return NOTIFY_OK;
1112 }
1113
1114 return NOTIFY_DONE;
1115 }
1116
1117 static __init void init_hrtick(void)
1118 {
1119 hotcpu_notifier(hotplug_hrtick, 0);
1120 }
1121 #else
1122 /*
1123 * Called to set the hrtick timer state.
1124 *
1125 * called with rq->lock held and irqs disabled
1126 */
1127 static void hrtick_start(struct rq *rq, u64 delay)
1128 {
1129 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1130 HRTIMER_MODE_REL_PINNED, 0);
1131 }
1132
1133 static inline void init_hrtick(void)
1134 {
1135 }
1136 #endif /* CONFIG_SMP */
1137
1138 static void init_rq_hrtick(struct rq *rq)
1139 {
1140 #ifdef CONFIG_SMP
1141 rq->hrtick_csd_pending = 0;
1142
1143 rq->hrtick_csd.flags = 0;
1144 rq->hrtick_csd.func = __hrtick_start;
1145 rq->hrtick_csd.info = rq;
1146 #endif
1147
1148 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1149 rq->hrtick_timer.function = hrtick;
1150 }
1151 #else /* CONFIG_SCHED_HRTICK */
1152 static inline void hrtick_clear(struct rq *rq)
1153 {
1154 }
1155
1156 static inline void init_rq_hrtick(struct rq *rq)
1157 {
1158 }
1159
1160 static inline void init_hrtick(void)
1161 {
1162 }
1163 #endif /* CONFIG_SCHED_HRTICK */
1164
1165 /*
1166 * resched_task - mark a task 'to be rescheduled now'.
1167 *
1168 * On UP this means the setting of the need_resched flag, on SMP it
1169 * might also involve a cross-CPU call to trigger the scheduler on
1170 * the target CPU.
1171 */
1172 #ifdef CONFIG_SMP
1173
1174 #ifndef tsk_is_polling
1175 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1176 #endif
1177
1178 static void resched_task(struct task_struct *p)
1179 {
1180 int cpu;
1181
1182 assert_raw_spin_locked(&task_rq(p)->lock);
1183
1184 if (test_tsk_need_resched(p))
1185 return;
1186
1187 set_tsk_need_resched(p);
1188
1189 cpu = task_cpu(p);
1190 if (cpu == smp_processor_id())
1191 return;
1192
1193 /* NEED_RESCHED must be visible before we test polling */
1194 smp_mb();
1195 if (!tsk_is_polling(p))
1196 smp_send_reschedule(cpu);
1197 }
1198
1199 static void resched_cpu(int cpu)
1200 {
1201 struct rq *rq = cpu_rq(cpu);
1202 unsigned long flags;
1203
1204 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
1205 return;
1206 resched_task(cpu_curr(cpu));
1207 raw_spin_unlock_irqrestore(&rq->lock, flags);
1208 }
1209
1210 #ifdef CONFIG_NO_HZ
1211 /*
1212 * In the semi idle case, use the nearest busy cpu for migrating timers
1213 * from an idle cpu. This is good for power-savings.
1214 *
1215 * We don't do similar optimization for completely idle system, as
1216 * selecting an idle cpu will add more delays to the timers than intended
1217 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1218 */
1219 int get_nohz_timer_target(void)
1220 {
1221 int cpu = smp_processor_id();
1222 int i;
1223 struct sched_domain *sd;
1224
1225 for_each_domain(cpu, sd) {
1226 for_each_cpu(i, sched_domain_span(sd))
1227 if (!idle_cpu(i))
1228 return i;
1229 }
1230 return cpu;
1231 }
1232 /*
1233 * When add_timer_on() enqueues a timer into the timer wheel of an
1234 * idle CPU then this timer might expire before the next timer event
1235 * which is scheduled to wake up that CPU. In case of a completely
1236 * idle system the next event might even be infinite time into the
1237 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1238 * leaves the inner idle loop so the newly added timer is taken into
1239 * account when the CPU goes back to idle and evaluates the timer
1240 * wheel for the next timer event.
1241 */
1242 void wake_up_idle_cpu(int cpu)
1243 {
1244 struct rq *rq = cpu_rq(cpu);
1245
1246 if (cpu == smp_processor_id())
1247 return;
1248
1249 /*
1250 * This is safe, as this function is called with the timer
1251 * wheel base lock of (cpu) held. When the CPU is on the way
1252 * to idle and has not yet set rq->curr to idle then it will
1253 * be serialized on the timer wheel base lock and take the new
1254 * timer into account automatically.
1255 */
1256 if (rq->curr != rq->idle)
1257 return;
1258
1259 /*
1260 * We can set TIF_RESCHED on the idle task of the other CPU
1261 * lockless. The worst case is that the other CPU runs the
1262 * idle task through an additional NOOP schedule()
1263 */
1264 set_tsk_need_resched(rq->idle);
1265
1266 /* NEED_RESCHED must be visible before we test polling */
1267 smp_mb();
1268 if (!tsk_is_polling(rq->idle))
1269 smp_send_reschedule(cpu);
1270 }
1271
1272 #endif /* CONFIG_NO_HZ */
1273
1274 static u64 sched_avg_period(void)
1275 {
1276 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1277 }
1278
1279 static void sched_avg_update(struct rq *rq)
1280 {
1281 s64 period = sched_avg_period();
1282
1283 while ((s64)(rq->clock - rq->age_stamp) > period) {
1284 /*
1285 * Inline assembly required to prevent the compiler
1286 * optimising this loop into a divmod call.
1287 * See __iter_div_u64_rem() for another example of this.
1288 */
1289 asm("" : "+rm" (rq->age_stamp));
1290 rq->age_stamp += period;
1291 rq->rt_avg /= 2;
1292 }
1293 }
1294
1295 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1296 {
1297 rq->rt_avg += rt_delta;
1298 sched_avg_update(rq);
1299 }
1300
1301 #else /* !CONFIG_SMP */
1302 static void resched_task(struct task_struct *p)
1303 {
1304 assert_raw_spin_locked(&task_rq(p)->lock);
1305 set_tsk_need_resched(p);
1306 }
1307
1308 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1309 {
1310 }
1311
1312 static void sched_avg_update(struct rq *rq)
1313 {
1314 }
1315 #endif /* CONFIG_SMP */
1316
1317 #if BITS_PER_LONG == 32
1318 # define WMULT_CONST (~0UL)
1319 #else
1320 # define WMULT_CONST (1UL << 32)
1321 #endif
1322
1323 #define WMULT_SHIFT 32
1324
1325 /*
1326 * Shift right and round:
1327 */
1328 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1329
1330 /*
1331 * delta *= weight / lw
1332 */
1333 static unsigned long
1334 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1335 struct load_weight *lw)
1336 {
1337 u64 tmp;
1338
1339 if (!lw->inv_weight) {
1340 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1341 lw->inv_weight = 1;
1342 else
1343 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1344 / (lw->weight+1);
1345 }
1346
1347 tmp = (u64)delta_exec * weight;
1348 /*
1349 * Check whether we'd overflow the 64-bit multiplication:
1350 */
1351 if (unlikely(tmp > WMULT_CONST))
1352 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1353 WMULT_SHIFT/2);
1354 else
1355 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1356
1357 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1358 }
1359
1360 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1361 {
1362 lw->weight += inc;
1363 lw->inv_weight = 0;
1364 }
1365
1366 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1367 {
1368 lw->weight -= dec;
1369 lw->inv_weight = 0;
1370 }
1371
1372 /*
1373 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1374 * of tasks with abnormal "nice" values across CPUs the contribution that
1375 * each task makes to its run queue's load is weighted according to its
1376 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1377 * scaled version of the new time slice allocation that they receive on time
1378 * slice expiry etc.
1379 */
1380
1381 #define WEIGHT_IDLEPRIO 3
1382 #define WMULT_IDLEPRIO 1431655765
1383
1384 /*
1385 * Nice levels are multiplicative, with a gentle 10% change for every
1386 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1387 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1388 * that remained on nice 0.
1389 *
1390 * The "10% effect" is relative and cumulative: from _any_ nice level,
1391 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1392 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1393 * If a task goes up by ~10% and another task goes down by ~10% then
1394 * the relative distance between them is ~25%.)
1395 */
1396 static const int prio_to_weight[40] = {
1397 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1398 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1399 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1400 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1401 /* 0 */ 1024, 820, 655, 526, 423,
1402 /* 5 */ 335, 272, 215, 172, 137,
1403 /* 10 */ 110, 87, 70, 56, 45,
1404 /* 15 */ 36, 29, 23, 18, 15,
1405 };
1406
1407 /*
1408 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1409 *
1410 * In cases where the weight does not change often, we can use the
1411 * precalculated inverse to speed up arithmetics by turning divisions
1412 * into multiplications:
1413 */
1414 static const u32 prio_to_wmult[40] = {
1415 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1416 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1417 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1418 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1419 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1420 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1421 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1422 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1423 };
1424
1425 /* Time spent by the tasks of the cpu accounting group executing in ... */
1426 enum cpuacct_stat_index {
1427 CPUACCT_STAT_USER, /* ... user mode */
1428 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1429
1430 CPUACCT_STAT_NSTATS,
1431 };
1432
1433 #ifdef CONFIG_CGROUP_CPUACCT
1434 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1435 static void cpuacct_update_stats(struct task_struct *tsk,
1436 enum cpuacct_stat_index idx, cputime_t val);
1437 #else
1438 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1439 static inline void cpuacct_update_stats(struct task_struct *tsk,
1440 enum cpuacct_stat_index idx, cputime_t val) {}
1441 #endif
1442
1443 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1444 {
1445 update_load_add(&rq->load, load);
1446 }
1447
1448 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1449 {
1450 update_load_sub(&rq->load, load);
1451 }
1452
1453 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1454 typedef int (*tg_visitor)(struct task_group *, void *);
1455
1456 /*
1457 * Iterate the full tree, calling @down when first entering a node and @up when
1458 * leaving it for the final time.
1459 */
1460 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1461 {
1462 struct task_group *parent, *child;
1463 int ret;
1464
1465 rcu_read_lock();
1466 parent = &root_task_group;
1467 down:
1468 ret = (*down)(parent, data);
1469 if (ret)
1470 goto out_unlock;
1471 list_for_each_entry_rcu(child, &parent->children, siblings) {
1472 parent = child;
1473 goto down;
1474
1475 up:
1476 continue;
1477 }
1478 ret = (*up)(parent, data);
1479 if (ret)
1480 goto out_unlock;
1481
1482 child = parent;
1483 parent = parent->parent;
1484 if (parent)
1485 goto up;
1486 out_unlock:
1487 rcu_read_unlock();
1488
1489 return ret;
1490 }
1491
1492 static int tg_nop(struct task_group *tg, void *data)
1493 {
1494 return 0;
1495 }
1496 #endif
1497
1498 #ifdef CONFIG_SMP
1499 /* Used instead of source_load when we know the type == 0 */
1500 static unsigned long weighted_cpuload(const int cpu)
1501 {
1502 return cpu_rq(cpu)->load.weight;
1503 }
1504
1505 /*
1506 * Return a low guess at the load of a migration-source cpu weighted
1507 * according to the scheduling class and "nice" value.
1508 *
1509 * We want to under-estimate the load of migration sources, to
1510 * balance conservatively.
1511 */
1512 static unsigned long source_load(int cpu, int type)
1513 {
1514 struct rq *rq = cpu_rq(cpu);
1515 unsigned long total = weighted_cpuload(cpu);
1516
1517 if (type == 0 || !sched_feat(LB_BIAS))
1518 return total;
1519
1520 return min(rq->cpu_load[type-1], total);
1521 }
1522
1523 /*
1524 * Return a high guess at the load of a migration-target cpu weighted
1525 * according to the scheduling class and "nice" value.
1526 */
1527 static unsigned long target_load(int cpu, int type)
1528 {
1529 struct rq *rq = cpu_rq(cpu);
1530 unsigned long total = weighted_cpuload(cpu);
1531
1532 if (type == 0 || !sched_feat(LB_BIAS))
1533 return total;
1534
1535 return max(rq->cpu_load[type-1], total);
1536 }
1537
1538 static unsigned long power_of(int cpu)
1539 {
1540 return cpu_rq(cpu)->cpu_power;
1541 }
1542
1543 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1544
1545 static unsigned long cpu_avg_load_per_task(int cpu)
1546 {
1547 struct rq *rq = cpu_rq(cpu);
1548 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1549
1550 if (nr_running)
1551 rq->avg_load_per_task = rq->load.weight / nr_running;
1552 else
1553 rq->avg_load_per_task = 0;
1554
1555 return rq->avg_load_per_task;
1556 }
1557
1558 #ifdef CONFIG_FAIR_GROUP_SCHED
1559
1560 static __read_mostly unsigned long __percpu *update_shares_data;
1561
1562 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1563
1564 /*
1565 * Calculate and set the cpu's group shares.
1566 */
1567 static void update_group_shares_cpu(struct task_group *tg, int cpu,
1568 unsigned long sd_shares,
1569 unsigned long sd_rq_weight,
1570 unsigned long *usd_rq_weight)
1571 {
1572 unsigned long shares, rq_weight;
1573 int boost = 0;
1574
1575 rq_weight = usd_rq_weight[cpu];
1576 if (!rq_weight) {
1577 boost = 1;
1578 rq_weight = NICE_0_LOAD;
1579 }
1580
1581 /*
1582 * \Sum_j shares_j * rq_weight_i
1583 * shares_i = -----------------------------
1584 * \Sum_j rq_weight_j
1585 */
1586 shares = (sd_shares * rq_weight) / sd_rq_weight;
1587 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1588
1589 if (abs(shares - tg->se[cpu]->load.weight) >
1590 sysctl_sched_shares_thresh) {
1591 struct rq *rq = cpu_rq(cpu);
1592 unsigned long flags;
1593
1594 raw_spin_lock_irqsave(&rq->lock, flags);
1595 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
1596 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1597 __set_se_shares(tg->se[cpu], shares);
1598 raw_spin_unlock_irqrestore(&rq->lock, flags);
1599 }
1600 }
1601
1602 /*
1603 * Re-compute the task group their per cpu shares over the given domain.
1604 * This needs to be done in a bottom-up fashion because the rq weight of a
1605 * parent group depends on the shares of its child groups.
1606 */
1607 static int tg_shares_up(struct task_group *tg, void *data)
1608 {
1609 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
1610 unsigned long *usd_rq_weight;
1611 struct sched_domain *sd = data;
1612 unsigned long flags;
1613 int i;
1614
1615 if (!tg->se[0])
1616 return 0;
1617
1618 local_irq_save(flags);
1619 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1620
1621 for_each_cpu(i, sched_domain_span(sd)) {
1622 weight = tg->cfs_rq[i]->load.weight;
1623 usd_rq_weight[i] = weight;
1624
1625 rq_weight += weight;
1626 /*
1627 * If there are currently no tasks on the cpu pretend there
1628 * is one of average load so that when a new task gets to
1629 * run here it will not get delayed by group starvation.
1630 */
1631 if (!weight)
1632 weight = NICE_0_LOAD;
1633
1634 sum_weight += weight;
1635 shares += tg->cfs_rq[i]->shares;
1636 }
1637
1638 if (!rq_weight)
1639 rq_weight = sum_weight;
1640
1641 if ((!shares && rq_weight) || shares > tg->shares)
1642 shares = tg->shares;
1643
1644 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1645 shares = tg->shares;
1646
1647 for_each_cpu(i, sched_domain_span(sd))
1648 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1649
1650 local_irq_restore(flags);
1651
1652 return 0;
1653 }
1654
1655 /*
1656 * Compute the cpu's hierarchical load factor for each task group.
1657 * This needs to be done in a top-down fashion because the load of a child
1658 * group is a fraction of its parents load.
1659 */
1660 static int tg_load_down(struct task_group *tg, void *data)
1661 {
1662 unsigned long load;
1663 long cpu = (long)data;
1664
1665 if (!tg->parent) {
1666 load = cpu_rq(cpu)->load.weight;
1667 } else {
1668 load = tg->parent->cfs_rq[cpu]->h_load;
1669 load *= tg->cfs_rq[cpu]->shares;
1670 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1671 }
1672
1673 tg->cfs_rq[cpu]->h_load = load;
1674
1675 return 0;
1676 }
1677
1678 static void update_shares(struct sched_domain *sd)
1679 {
1680 s64 elapsed;
1681 u64 now;
1682
1683 if (root_task_group_empty())
1684 return;
1685
1686 now = local_clock();
1687 elapsed = now - sd->last_update;
1688
1689 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1690 sd->last_update = now;
1691 walk_tg_tree(tg_nop, tg_shares_up, sd);
1692 }
1693 }
1694
1695 static void update_h_load(long cpu)
1696 {
1697 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1698 }
1699
1700 #else
1701
1702 static inline void update_shares(struct sched_domain *sd)
1703 {
1704 }
1705
1706 #endif
1707
1708 #ifdef CONFIG_PREEMPT
1709
1710 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1711
1712 /*
1713 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1714 * way at the expense of forcing extra atomic operations in all
1715 * invocations. This assures that the double_lock is acquired using the
1716 * same underlying policy as the spinlock_t on this architecture, which
1717 * reduces latency compared to the unfair variant below. However, it
1718 * also adds more overhead and therefore may reduce throughput.
1719 */
1720 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1721 __releases(this_rq->lock)
1722 __acquires(busiest->lock)
1723 __acquires(this_rq->lock)
1724 {
1725 raw_spin_unlock(&this_rq->lock);
1726 double_rq_lock(this_rq, busiest);
1727
1728 return 1;
1729 }
1730
1731 #else
1732 /*
1733 * Unfair double_lock_balance: Optimizes throughput at the expense of
1734 * latency by eliminating extra atomic operations when the locks are
1735 * already in proper order on entry. This favors lower cpu-ids and will
1736 * grant the double lock to lower cpus over higher ids under contention,
1737 * regardless of entry order into the function.
1738 */
1739 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1740 __releases(this_rq->lock)
1741 __acquires(busiest->lock)
1742 __acquires(this_rq->lock)
1743 {
1744 int ret = 0;
1745
1746 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1747 if (busiest < this_rq) {
1748 raw_spin_unlock(&this_rq->lock);
1749 raw_spin_lock(&busiest->lock);
1750 raw_spin_lock_nested(&this_rq->lock,
1751 SINGLE_DEPTH_NESTING);
1752 ret = 1;
1753 } else
1754 raw_spin_lock_nested(&busiest->lock,
1755 SINGLE_DEPTH_NESTING);
1756 }
1757 return ret;
1758 }
1759
1760 #endif /* CONFIG_PREEMPT */
1761
1762 /*
1763 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1764 */
1765 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1766 {
1767 if (unlikely(!irqs_disabled())) {
1768 /* printk() doesn't work good under rq->lock */
1769 raw_spin_unlock(&this_rq->lock);
1770 BUG_ON(1);
1771 }
1772
1773 return _double_lock_balance(this_rq, busiest);
1774 }
1775
1776 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1777 __releases(busiest->lock)
1778 {
1779 raw_spin_unlock(&busiest->lock);
1780 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1781 }
1782
1783 /*
1784 * double_rq_lock - safely lock two runqueues
1785 *
1786 * Note this does not disable interrupts like task_rq_lock,
1787 * you need to do so manually before calling.
1788 */
1789 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1790 __acquires(rq1->lock)
1791 __acquires(rq2->lock)
1792 {
1793 BUG_ON(!irqs_disabled());
1794 if (rq1 == rq2) {
1795 raw_spin_lock(&rq1->lock);
1796 __acquire(rq2->lock); /* Fake it out ;) */
1797 } else {
1798 if (rq1 < rq2) {
1799 raw_spin_lock(&rq1->lock);
1800 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1801 } else {
1802 raw_spin_lock(&rq2->lock);
1803 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1804 }
1805 }
1806 }
1807
1808 /*
1809 * double_rq_unlock - safely unlock two runqueues
1810 *
1811 * Note this does not restore interrupts like task_rq_unlock,
1812 * you need to do so manually after calling.
1813 */
1814 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1815 __releases(rq1->lock)
1816 __releases(rq2->lock)
1817 {
1818 raw_spin_unlock(&rq1->lock);
1819 if (rq1 != rq2)
1820 raw_spin_unlock(&rq2->lock);
1821 else
1822 __release(rq2->lock);
1823 }
1824
1825 #endif
1826
1827 #ifdef CONFIG_FAIR_GROUP_SCHED
1828 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1829 {
1830 #ifdef CONFIG_SMP
1831 cfs_rq->shares = shares;
1832 #endif
1833 }
1834 #endif
1835
1836 static void calc_load_account_idle(struct rq *this_rq);
1837 static void update_sysctl(void);
1838 static int get_update_sysctl_factor(void);
1839 static void update_cpu_load(struct rq *this_rq);
1840
1841 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1842 {
1843 set_task_rq(p, cpu);
1844 #ifdef CONFIG_SMP
1845 /*
1846 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1847 * successfuly executed on another CPU. We must ensure that updates of
1848 * per-task data have been completed by this moment.
1849 */
1850 smp_wmb();
1851 task_thread_info(p)->cpu = cpu;
1852 #endif
1853 }
1854
1855 static const struct sched_class rt_sched_class;
1856
1857 #define sched_class_highest (&stop_sched_class)
1858 #define for_each_class(class) \
1859 for (class = sched_class_highest; class; class = class->next)
1860
1861 #include "sched_stats.h"
1862
1863 static void inc_nr_running(struct rq *rq)
1864 {
1865 rq->nr_running++;
1866 }
1867
1868 static void dec_nr_running(struct rq *rq)
1869 {
1870 rq->nr_running--;
1871 }
1872
1873 static void set_load_weight(struct task_struct *p)
1874 {
1875 /*
1876 * SCHED_IDLE tasks get minimal weight:
1877 */
1878 if (p->policy == SCHED_IDLE) {
1879 p->se.load.weight = WEIGHT_IDLEPRIO;
1880 p->se.load.inv_weight = WMULT_IDLEPRIO;
1881 return;
1882 }
1883
1884 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1885 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1886 }
1887
1888 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1889 {
1890 update_rq_clock(rq);
1891 sched_info_queued(p);
1892 p->sched_class->enqueue_task(rq, p, flags);
1893 p->se.on_rq = 1;
1894 }
1895
1896 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1897 {
1898 update_rq_clock(rq);
1899 sched_info_dequeued(p);
1900 p->sched_class->dequeue_task(rq, p, flags);
1901 p->se.on_rq = 0;
1902 }
1903
1904 /*
1905 * activate_task - move a task to the runqueue.
1906 */
1907 static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1908 {
1909 if (task_contributes_to_load(p))
1910 rq->nr_uninterruptible--;
1911
1912 enqueue_task(rq, p, flags);
1913 inc_nr_running(rq);
1914 }
1915
1916 /*
1917 * deactivate_task - remove a task from the runqueue.
1918 */
1919 static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1920 {
1921 if (task_contributes_to_load(p))
1922 rq->nr_uninterruptible++;
1923
1924 dequeue_task(rq, p, flags);
1925 dec_nr_running(rq);
1926 }
1927
1928 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1929
1930 /*
1931 * There are no locks covering percpu hardirq/softirq time.
1932 * They are only modified in account_system_vtime, on corresponding CPU
1933 * with interrupts disabled. So, writes are safe.
1934 * They are read and saved off onto struct rq in update_rq_clock().
1935 * This may result in other CPU reading this CPU's irq time and can
1936 * race with irq/account_system_vtime on this CPU. We would either get old
1937 * or new value (or semi updated value on 32 bit) with a side effect of
1938 * accounting a slice of irq time to wrong task when irq is in progress
1939 * while we read rq->clock. That is a worthy compromise in place of having
1940 * locks on each irq in account_system_time.
1941 */
1942 static DEFINE_PER_CPU(u64, cpu_hardirq_time);
1943 static DEFINE_PER_CPU(u64, cpu_softirq_time);
1944
1945 static DEFINE_PER_CPU(u64, irq_start_time);
1946 static int sched_clock_irqtime;
1947
1948 void enable_sched_clock_irqtime(void)
1949 {
1950 sched_clock_irqtime = 1;
1951 }
1952
1953 void disable_sched_clock_irqtime(void)
1954 {
1955 sched_clock_irqtime = 0;
1956 }
1957
1958 static u64 irq_time_cpu(int cpu)
1959 {
1960 if (!sched_clock_irqtime)
1961 return 0;
1962
1963 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1964 }
1965
1966 void account_system_vtime(struct task_struct *curr)
1967 {
1968 unsigned long flags;
1969 int cpu;
1970 u64 now, delta;
1971
1972 if (!sched_clock_irqtime)
1973 return;
1974
1975 local_irq_save(flags);
1976
1977 cpu = smp_processor_id();
1978 now = sched_clock_cpu(cpu);
1979 delta = now - per_cpu(irq_start_time, cpu);
1980 per_cpu(irq_start_time, cpu) = now;
1981 /*
1982 * We do not account for softirq time from ksoftirqd here.
1983 * We want to continue accounting softirq time to ksoftirqd thread
1984 * in that case, so as not to confuse scheduler with a special task
1985 * that do not consume any time, but still wants to run.
1986 */
1987 if (hardirq_count())
1988 per_cpu(cpu_hardirq_time, cpu) += delta;
1989 else if (in_serving_softirq() && !(curr->flags & PF_KSOFTIRQD))
1990 per_cpu(cpu_softirq_time, cpu) += delta;
1991
1992 local_irq_restore(flags);
1993 }
1994 EXPORT_SYMBOL_GPL(account_system_vtime);
1995
1996 static void sched_irq_time_avg_update(struct rq *rq, u64 curr_irq_time)
1997 {
1998 if (sched_clock_irqtime && sched_feat(NONIRQ_POWER)) {
1999 u64 delta_irq = curr_irq_time - rq->prev_irq_time;
2000 rq->prev_irq_time = curr_irq_time;
2001 sched_rt_avg_update(rq, delta_irq);
2002 }
2003 }
2004
2005 #else
2006
2007 static u64 irq_time_cpu(int cpu)
2008 {
2009 return 0;
2010 }
2011
2012 static void sched_irq_time_avg_update(struct rq *rq, u64 curr_irq_time) { }
2013
2014 #endif
2015
2016 #include "sched_idletask.c"
2017 #include "sched_fair.c"
2018 #include "sched_rt.c"
2019 #include "sched_stoptask.c"
2020 #ifdef CONFIG_SCHED_DEBUG
2021 # include "sched_debug.c"
2022 #endif
2023
2024 void sched_set_stop_task(int cpu, struct task_struct *stop)
2025 {
2026 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2027 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2028
2029 if (stop) {
2030 /*
2031 * Make it appear like a SCHED_FIFO task, its something
2032 * userspace knows about and won't get confused about.
2033 *
2034 * Also, it will make PI more or less work without too
2035 * much confusion -- but then, stop work should not
2036 * rely on PI working anyway.
2037 */
2038 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2039
2040 stop->sched_class = &stop_sched_class;
2041 }
2042
2043 cpu_rq(cpu)->stop = stop;
2044
2045 if (old_stop) {
2046 /*
2047 * Reset it back to a normal scheduling class so that
2048 * it can die in pieces.
2049 */
2050 old_stop->sched_class = &rt_sched_class;
2051 }
2052 }
2053
2054 /*
2055 * __normal_prio - return the priority that is based on the static prio
2056 */
2057 static inline int __normal_prio(struct task_struct *p)
2058 {
2059 return p->static_prio;
2060 }
2061
2062 /*
2063 * Calculate the expected normal priority: i.e. priority
2064 * without taking RT-inheritance into account. Might be
2065 * boosted by interactivity modifiers. Changes upon fork,
2066 * setprio syscalls, and whenever the interactivity
2067 * estimator recalculates.
2068 */
2069 static inline int normal_prio(struct task_struct *p)
2070 {
2071 int prio;
2072
2073 if (task_has_rt_policy(p))
2074 prio = MAX_RT_PRIO-1 - p->rt_priority;
2075 else
2076 prio = __normal_prio(p);
2077 return prio;
2078 }
2079
2080 /*
2081 * Calculate the current priority, i.e. the priority
2082 * taken into account by the scheduler. This value might
2083 * be boosted by RT tasks, or might be boosted by
2084 * interactivity modifiers. Will be RT if the task got
2085 * RT-boosted. If not then it returns p->normal_prio.
2086 */
2087 static int effective_prio(struct task_struct *p)
2088 {
2089 p->normal_prio = normal_prio(p);
2090 /*
2091 * If we are RT tasks or we were boosted to RT priority,
2092 * keep the priority unchanged. Otherwise, update priority
2093 * to the normal priority:
2094 */
2095 if (!rt_prio(p->prio))
2096 return p->normal_prio;
2097 return p->prio;
2098 }
2099
2100 /**
2101 * task_curr - is this task currently executing on a CPU?
2102 * @p: the task in question.
2103 */
2104 inline int task_curr(const struct task_struct *p)
2105 {
2106 return cpu_curr(task_cpu(p)) == p;
2107 }
2108
2109 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2110 const struct sched_class *prev_class,
2111 int oldprio, int running)
2112 {
2113 if (prev_class != p->sched_class) {
2114 if (prev_class->switched_from)
2115 prev_class->switched_from(rq, p, running);
2116 p->sched_class->switched_to(rq, p, running);
2117 } else
2118 p->sched_class->prio_changed(rq, p, oldprio, running);
2119 }
2120
2121 #ifdef CONFIG_SMP
2122 /*
2123 * Is this task likely cache-hot:
2124 */
2125 static int
2126 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2127 {
2128 s64 delta;
2129
2130 if (p->sched_class != &fair_sched_class)
2131 return 0;
2132
2133 if (unlikely(p->policy == SCHED_IDLE))
2134 return 0;
2135
2136 /*
2137 * Buddy candidates are cache hot:
2138 */
2139 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
2140 (&p->se == cfs_rq_of(&p->se)->next ||
2141 &p->se == cfs_rq_of(&p->se)->last))
2142 return 1;
2143
2144 if (sysctl_sched_migration_cost == -1)
2145 return 1;
2146 if (sysctl_sched_migration_cost == 0)
2147 return 0;
2148
2149 delta = now - p->se.exec_start;
2150
2151 return delta < (s64)sysctl_sched_migration_cost;
2152 }
2153
2154 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2155 {
2156 #ifdef CONFIG_SCHED_DEBUG
2157 /*
2158 * We should never call set_task_cpu() on a blocked task,
2159 * ttwu() will sort out the placement.
2160 */
2161 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2162 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2163 #endif
2164
2165 trace_sched_migrate_task(p, new_cpu);
2166
2167 if (task_cpu(p) != new_cpu) {
2168 p->se.nr_migrations++;
2169 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2170 }
2171
2172 __set_task_cpu(p, new_cpu);
2173 }
2174
2175 struct migration_arg {
2176 struct task_struct *task;
2177 int dest_cpu;
2178 };
2179
2180 static int migration_cpu_stop(void *data);
2181
2182 /*
2183 * The task's runqueue lock must be held.
2184 * Returns true if you have to wait for migration thread.
2185 */
2186 static bool migrate_task(struct task_struct *p, int dest_cpu)
2187 {
2188 struct rq *rq = task_rq(p);
2189
2190 /*
2191 * If the task is not on a runqueue (and not running), then
2192 * the next wake-up will properly place the task.
2193 */
2194 return p->se.on_rq || task_running(rq, p);
2195 }
2196
2197 /*
2198 * wait_task_inactive - wait for a thread to unschedule.
2199 *
2200 * If @match_state is nonzero, it's the @p->state value just checked and
2201 * not expected to change. If it changes, i.e. @p might have woken up,
2202 * then return zero. When we succeed in waiting for @p to be off its CPU,
2203 * we return a positive number (its total switch count). If a second call
2204 * a short while later returns the same number, the caller can be sure that
2205 * @p has remained unscheduled the whole time.
2206 *
2207 * The caller must ensure that the task *will* unschedule sometime soon,
2208 * else this function might spin for a *long* time. This function can't
2209 * be called with interrupts off, or it may introduce deadlock with
2210 * smp_call_function() if an IPI is sent by the same process we are
2211 * waiting to become inactive.
2212 */
2213 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2214 {
2215 unsigned long flags;
2216 int running, on_rq;
2217 unsigned long ncsw;
2218 struct rq *rq;
2219
2220 for (;;) {
2221 /*
2222 * We do the initial early heuristics without holding
2223 * any task-queue locks at all. We'll only try to get
2224 * the runqueue lock when things look like they will
2225 * work out!
2226 */
2227 rq = task_rq(p);
2228
2229 /*
2230 * If the task is actively running on another CPU
2231 * still, just relax and busy-wait without holding
2232 * any locks.
2233 *
2234 * NOTE! Since we don't hold any locks, it's not
2235 * even sure that "rq" stays as the right runqueue!
2236 * But we don't care, since "task_running()" will
2237 * return false if the runqueue has changed and p
2238 * is actually now running somewhere else!
2239 */
2240 while (task_running(rq, p)) {
2241 if (match_state && unlikely(p->state != match_state))
2242 return 0;
2243 cpu_relax();
2244 }
2245
2246 /*
2247 * Ok, time to look more closely! We need the rq
2248 * lock now, to be *sure*. If we're wrong, we'll
2249 * just go back and repeat.
2250 */
2251 rq = task_rq_lock(p, &flags);
2252 trace_sched_wait_task(p);
2253 running = task_running(rq, p);
2254 on_rq = p->se.on_rq;
2255 ncsw = 0;
2256 if (!match_state || p->state == match_state)
2257 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2258 task_rq_unlock(rq, &flags);
2259
2260 /*
2261 * If it changed from the expected state, bail out now.
2262 */
2263 if (unlikely(!ncsw))
2264 break;
2265
2266 /*
2267 * Was it really running after all now that we
2268 * checked with the proper locks actually held?
2269 *
2270 * Oops. Go back and try again..
2271 */
2272 if (unlikely(running)) {
2273 cpu_relax();
2274 continue;
2275 }
2276
2277 /*
2278 * It's not enough that it's not actively running,
2279 * it must be off the runqueue _entirely_, and not
2280 * preempted!
2281 *
2282 * So if it was still runnable (but just not actively
2283 * running right now), it's preempted, and we should
2284 * yield - it could be a while.
2285 */
2286 if (unlikely(on_rq)) {
2287 schedule_timeout_uninterruptible(1);
2288 continue;
2289 }
2290
2291 /*
2292 * Ahh, all good. It wasn't running, and it wasn't
2293 * runnable, which means that it will never become
2294 * running in the future either. We're all done!
2295 */
2296 break;
2297 }
2298
2299 return ncsw;
2300 }
2301
2302 /***
2303 * kick_process - kick a running thread to enter/exit the kernel
2304 * @p: the to-be-kicked thread
2305 *
2306 * Cause a process which is running on another CPU to enter
2307 * kernel-mode, without any delay. (to get signals handled.)
2308 *
2309 * NOTE: this function doesnt have to take the runqueue lock,
2310 * because all it wants to ensure is that the remote task enters
2311 * the kernel. If the IPI races and the task has been migrated
2312 * to another CPU then no harm is done and the purpose has been
2313 * achieved as well.
2314 */
2315 void kick_process(struct task_struct *p)
2316 {
2317 int cpu;
2318
2319 preempt_disable();
2320 cpu = task_cpu(p);
2321 if ((cpu != smp_processor_id()) && task_curr(p))
2322 smp_send_reschedule(cpu);
2323 preempt_enable();
2324 }
2325 EXPORT_SYMBOL_GPL(kick_process);
2326 #endif /* CONFIG_SMP */
2327
2328 /**
2329 * task_oncpu_function_call - call a function on the cpu on which a task runs
2330 * @p: the task to evaluate
2331 * @func: the function to be called
2332 * @info: the function call argument
2333 *
2334 * Calls the function @func when the task is currently running. This might
2335 * be on the current CPU, which just calls the function directly
2336 */
2337 void task_oncpu_function_call(struct task_struct *p,
2338 void (*func) (void *info), void *info)
2339 {
2340 int cpu;
2341
2342 preempt_disable();
2343 cpu = task_cpu(p);
2344 if (task_curr(p))
2345 smp_call_function_single(cpu, func, info, 1);
2346 preempt_enable();
2347 }
2348
2349 #ifdef CONFIG_SMP
2350 /*
2351 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2352 */
2353 static int select_fallback_rq(int cpu, struct task_struct *p)
2354 {
2355 int dest_cpu;
2356 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2357
2358 /* Look for allowed, online CPU in same node. */
2359 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2360 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2361 return dest_cpu;
2362
2363 /* Any allowed, online CPU? */
2364 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2365 if (dest_cpu < nr_cpu_ids)
2366 return dest_cpu;
2367
2368 /* No more Mr. Nice Guy. */
2369 if (unlikely(dest_cpu >= nr_cpu_ids)) {
2370 dest_cpu = cpuset_cpus_allowed_fallback(p);
2371 /*
2372 * Don't tell them about moving exiting tasks or
2373 * kernel threads (both mm NULL), since they never
2374 * leave kernel.
2375 */
2376 if (p->mm && printk_ratelimit()) {
2377 printk(KERN_INFO "process %d (%s) no "
2378 "longer affine to cpu%d\n",
2379 task_pid_nr(p), p->comm, cpu);
2380 }
2381 }
2382
2383 return dest_cpu;
2384 }
2385
2386 /*
2387 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
2388 */
2389 static inline
2390 int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
2391 {
2392 int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
2393
2394 /*
2395 * In order not to call set_task_cpu() on a blocking task we need
2396 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2397 * cpu.
2398 *
2399 * Since this is common to all placement strategies, this lives here.
2400 *
2401 * [ this allows ->select_task() to simply return task_cpu(p) and
2402 * not worry about this generic constraint ]
2403 */
2404 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
2405 !cpu_online(cpu)))
2406 cpu = select_fallback_rq(task_cpu(p), p);
2407
2408 return cpu;
2409 }
2410
2411 static void update_avg(u64 *avg, u64 sample)
2412 {
2413 s64 diff = sample - *avg;
2414 *avg += diff >> 3;
2415 }
2416 #endif
2417
2418 static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
2419 bool is_sync, bool is_migrate, bool is_local,
2420 unsigned long en_flags)
2421 {
2422 schedstat_inc(p, se.statistics.nr_wakeups);
2423 if (is_sync)
2424 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2425 if (is_migrate)
2426 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2427 if (is_local)
2428 schedstat_inc(p, se.statistics.nr_wakeups_local);
2429 else
2430 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2431
2432 activate_task(rq, p, en_flags);
2433 }
2434
2435 static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
2436 int wake_flags, bool success)
2437 {
2438 trace_sched_wakeup(p, success);
2439 check_preempt_curr(rq, p, wake_flags);
2440
2441 p->state = TASK_RUNNING;
2442 #ifdef CONFIG_SMP
2443 if (p->sched_class->task_woken)
2444 p->sched_class->task_woken(rq, p);
2445
2446 if (unlikely(rq->idle_stamp)) {
2447 u64 delta = rq->clock - rq->idle_stamp;
2448 u64 max = 2*sysctl_sched_migration_cost;
2449
2450 if (delta > max)
2451 rq->avg_idle = max;
2452 else
2453 update_avg(&rq->avg_idle, delta);
2454 rq->idle_stamp = 0;
2455 }
2456 #endif
2457 /* if a worker is waking up, notify workqueue */
2458 if ((p->flags & PF_WQ_WORKER) && success)
2459 wq_worker_waking_up(p, cpu_of(rq));
2460 }
2461
2462 /**
2463 * try_to_wake_up - wake up a thread
2464 * @p: the thread to be awakened
2465 * @state: the mask of task states that can be woken
2466 * @wake_flags: wake modifier flags (WF_*)
2467 *
2468 * Put it on the run-queue if it's not already there. The "current"
2469 * thread is always on the run-queue (except when the actual
2470 * re-schedule is in progress), and as such you're allowed to do
2471 * the simpler "current->state = TASK_RUNNING" to mark yourself
2472 * runnable without the overhead of this.
2473 *
2474 * Returns %true if @p was woken up, %false if it was already running
2475 * or @state didn't match @p's state.
2476 */
2477 static int try_to_wake_up(struct task_struct *p, unsigned int state,
2478 int wake_flags)
2479 {
2480 int cpu, orig_cpu, this_cpu, success = 0;
2481 unsigned long flags;
2482 unsigned long en_flags = ENQUEUE_WAKEUP;
2483 struct rq *rq;
2484
2485 this_cpu = get_cpu();
2486
2487 smp_wmb();
2488 rq = task_rq_lock(p, &flags);
2489 if (!(p->state & state))
2490 goto out;
2491
2492 if (p->se.on_rq)
2493 goto out_running;
2494
2495 cpu = task_cpu(p);
2496 orig_cpu = cpu;
2497
2498 #ifdef CONFIG_SMP
2499 if (unlikely(task_running(rq, p)))
2500 goto out_activate;
2501
2502 /*
2503 * In order to handle concurrent wakeups and release the rq->lock
2504 * we put the task in TASK_WAKING state.
2505 *
2506 * First fix up the nr_uninterruptible count:
2507 */
2508 if (task_contributes_to_load(p)) {
2509 if (likely(cpu_online(orig_cpu)))
2510 rq->nr_uninterruptible--;
2511 else
2512 this_rq()->nr_uninterruptible--;
2513 }
2514 p->state = TASK_WAKING;
2515
2516 if (p->sched_class->task_waking) {
2517 p->sched_class->task_waking(rq, p);
2518 en_flags |= ENQUEUE_WAKING;
2519 }
2520
2521 cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
2522 if (cpu != orig_cpu)
2523 set_task_cpu(p, cpu);
2524 __task_rq_unlock(rq);
2525
2526 rq = cpu_rq(cpu);
2527 raw_spin_lock(&rq->lock);
2528
2529 /*
2530 * We migrated the task without holding either rq->lock, however
2531 * since the task is not on the task list itself, nobody else
2532 * will try and migrate the task, hence the rq should match the
2533 * cpu we just moved it to.
2534 */
2535 WARN_ON(task_cpu(p) != cpu);
2536 WARN_ON(p->state != TASK_WAKING);
2537
2538 #ifdef CONFIG_SCHEDSTATS
2539 schedstat_inc(rq, ttwu_count);
2540 if (cpu == this_cpu)
2541 schedstat_inc(rq, ttwu_local);
2542 else {
2543 struct sched_domain *sd;
2544 for_each_domain(this_cpu, sd) {
2545 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2546 schedstat_inc(sd, ttwu_wake_remote);
2547 break;
2548 }
2549 }
2550 }
2551 #endif /* CONFIG_SCHEDSTATS */
2552
2553 out_activate:
2554 #endif /* CONFIG_SMP */
2555 ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu,
2556 cpu == this_cpu, en_flags);
2557 success = 1;
2558 out_running:
2559 ttwu_post_activation(p, rq, wake_flags, success);
2560 out:
2561 task_rq_unlock(rq, &flags);
2562 put_cpu();
2563
2564 return success;
2565 }
2566
2567 /**
2568 * try_to_wake_up_local - try to wake up a local task with rq lock held
2569 * @p: the thread to be awakened
2570 *
2571 * Put @p on the run-queue if it's not alredy there. The caller must
2572 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2573 * the current task. this_rq() stays locked over invocation.
2574 */
2575 static void try_to_wake_up_local(struct task_struct *p)
2576 {
2577 struct rq *rq = task_rq(p);
2578 bool success = false;
2579
2580 BUG_ON(rq != this_rq());
2581 BUG_ON(p == current);
2582 lockdep_assert_held(&rq->lock);
2583
2584 if (!(p->state & TASK_NORMAL))
2585 return;
2586
2587 if (!p->se.on_rq) {
2588 if (likely(!task_running(rq, p))) {
2589 schedstat_inc(rq, ttwu_count);
2590 schedstat_inc(rq, ttwu_local);
2591 }
2592 ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP);
2593 success = true;
2594 }
2595 ttwu_post_activation(p, rq, 0, success);
2596 }
2597
2598 /**
2599 * wake_up_process - Wake up a specific process
2600 * @p: The process to be woken up.
2601 *
2602 * Attempt to wake up the nominated process and move it to the set of runnable
2603 * processes. Returns 1 if the process was woken up, 0 if it was already
2604 * running.
2605 *
2606 * It may be assumed that this function implies a write memory barrier before
2607 * changing the task state if and only if any tasks are woken up.
2608 */
2609 int wake_up_process(struct task_struct *p)
2610 {
2611 return try_to_wake_up(p, TASK_ALL, 0);
2612 }
2613 EXPORT_SYMBOL(wake_up_process);
2614
2615 int wake_up_state(struct task_struct *p, unsigned int state)
2616 {
2617 return try_to_wake_up(p, state, 0);
2618 }
2619
2620 /*
2621 * Perform scheduler related setup for a newly forked process p.
2622 * p is forked by current.
2623 *
2624 * __sched_fork() is basic setup used by init_idle() too:
2625 */
2626 static void __sched_fork(struct task_struct *p)
2627 {
2628 p->se.exec_start = 0;
2629 p->se.sum_exec_runtime = 0;
2630 p->se.prev_sum_exec_runtime = 0;
2631 p->se.nr_migrations = 0;
2632
2633 #ifdef CONFIG_SCHEDSTATS
2634 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2635 #endif
2636
2637 INIT_LIST_HEAD(&p->rt.run_list);
2638 p->se.on_rq = 0;
2639 INIT_LIST_HEAD(&p->se.group_node);
2640
2641 #ifdef CONFIG_PREEMPT_NOTIFIERS
2642 INIT_HLIST_HEAD(&p->preempt_notifiers);
2643 #endif
2644 }
2645
2646 /*
2647 * fork()/clone()-time setup:
2648 */
2649 void sched_fork(struct task_struct *p, int clone_flags)
2650 {
2651 int cpu = get_cpu();
2652
2653 __sched_fork(p);
2654 /*
2655 * We mark the process as running here. This guarantees that
2656 * nobody will actually run it, and a signal or other external
2657 * event cannot wake it up and insert it on the runqueue either.
2658 */
2659 p->state = TASK_RUNNING;
2660
2661 /*
2662 * Revert to default priority/policy on fork if requested.
2663 */
2664 if (unlikely(p->sched_reset_on_fork)) {
2665 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2666 p->policy = SCHED_NORMAL;
2667 p->normal_prio = p->static_prio;
2668 }
2669
2670 if (PRIO_TO_NICE(p->static_prio) < 0) {
2671 p->static_prio = NICE_TO_PRIO(0);
2672 p->normal_prio = p->static_prio;
2673 set_load_weight(p);
2674 }
2675
2676 /*
2677 * We don't need the reset flag anymore after the fork. It has
2678 * fulfilled its duty:
2679 */
2680 p->sched_reset_on_fork = 0;
2681 }
2682
2683 /*
2684 * Make sure we do not leak PI boosting priority to the child.
2685 */
2686 p->prio = current->normal_prio;
2687
2688 if (!rt_prio(p->prio))
2689 p->sched_class = &fair_sched_class;
2690
2691 if (p->sched_class->task_fork)
2692 p->sched_class->task_fork(p);
2693
2694 /*
2695 * The child is not yet in the pid-hash so no cgroup attach races,
2696 * and the cgroup is pinned to this child due to cgroup_fork()
2697 * is ran before sched_fork().
2698 *
2699 * Silence PROVE_RCU.
2700 */
2701 rcu_read_lock();
2702 set_task_cpu(p, cpu);
2703 rcu_read_unlock();
2704
2705 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2706 if (likely(sched_info_on()))
2707 memset(&p->sched_info, 0, sizeof(p->sched_info));
2708 #endif
2709 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2710 p->oncpu = 0;
2711 #endif
2712 #ifdef CONFIG_PREEMPT
2713 /* Want to start with kernel preemption disabled. */
2714 task_thread_info(p)->preempt_count = 1;
2715 #endif
2716 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2717
2718 put_cpu();
2719 }
2720
2721 /*
2722 * wake_up_new_task - wake up a newly created task for the first time.
2723 *
2724 * This function will do some initial scheduler statistics housekeeping
2725 * that must be done for every newly created context, then puts the task
2726 * on the runqueue and wakes it.
2727 */
2728 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2729 {
2730 unsigned long flags;
2731 struct rq *rq;
2732 int cpu __maybe_unused = get_cpu();
2733
2734 #ifdef CONFIG_SMP
2735 rq = task_rq_lock(p, &flags);
2736 p->state = TASK_WAKING;
2737
2738 /*
2739 * Fork balancing, do it here and not earlier because:
2740 * - cpus_allowed can change in the fork path
2741 * - any previously selected cpu might disappear through hotplug
2742 *
2743 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2744 * without people poking at ->cpus_allowed.
2745 */
2746 cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
2747 set_task_cpu(p, cpu);
2748
2749 p->state = TASK_RUNNING;
2750 task_rq_unlock(rq, &flags);
2751 #endif
2752
2753 rq = task_rq_lock(p, &flags);
2754 activate_task(rq, p, 0);
2755 trace_sched_wakeup_new(p, 1);
2756 check_preempt_curr(rq, p, WF_FORK);
2757 #ifdef CONFIG_SMP
2758 if (p->sched_class->task_woken)
2759 p->sched_class->task_woken(rq, p);
2760 #endif
2761 task_rq_unlock(rq, &flags);
2762 put_cpu();
2763 }
2764
2765 #ifdef CONFIG_PREEMPT_NOTIFIERS
2766
2767 /**
2768 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2769 * @notifier: notifier struct to register
2770 */
2771 void preempt_notifier_register(struct preempt_notifier *notifier)
2772 {
2773 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2774 }
2775 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2776
2777 /**
2778 * preempt_notifier_unregister - no longer interested in preemption notifications
2779 * @notifier: notifier struct to unregister
2780 *
2781 * This is safe to call from within a preemption notifier.
2782 */
2783 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2784 {
2785 hlist_del(&notifier->link);
2786 }
2787 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2788
2789 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2790 {
2791 struct preempt_notifier *notifier;
2792 struct hlist_node *node;
2793
2794 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2795 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2796 }
2797
2798 static void
2799 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2800 struct task_struct *next)
2801 {
2802 struct preempt_notifier *notifier;
2803 struct hlist_node *node;
2804
2805 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2806 notifier->ops->sched_out(notifier, next);
2807 }
2808
2809 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2810
2811 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2812 {
2813 }
2814
2815 static void
2816 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2817 struct task_struct *next)
2818 {
2819 }
2820
2821 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2822
2823 /**
2824 * prepare_task_switch - prepare to switch tasks
2825 * @rq: the runqueue preparing to switch
2826 * @prev: the current task that is being switched out
2827 * @next: the task we are going to switch to.
2828 *
2829 * This is called with the rq lock held and interrupts off. It must
2830 * be paired with a subsequent finish_task_switch after the context
2831 * switch.
2832 *
2833 * prepare_task_switch sets up locking and calls architecture specific
2834 * hooks.
2835 */
2836 static inline void
2837 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2838 struct task_struct *next)
2839 {
2840 fire_sched_out_preempt_notifiers(prev, next);
2841 prepare_lock_switch(rq, next);
2842 prepare_arch_switch(next);
2843 }
2844
2845 /**
2846 * finish_task_switch - clean up after a task-switch
2847 * @rq: runqueue associated with task-switch
2848 * @prev: the thread we just switched away from.
2849 *
2850 * finish_task_switch must be called after the context switch, paired
2851 * with a prepare_task_switch call before the context switch.
2852 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2853 * and do any other architecture-specific cleanup actions.
2854 *
2855 * Note that we may have delayed dropping an mm in context_switch(). If
2856 * so, we finish that here outside of the runqueue lock. (Doing it
2857 * with the lock held can cause deadlocks; see schedule() for
2858 * details.)
2859 */
2860 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2861 __releases(rq->lock)
2862 {
2863 struct mm_struct *mm = rq->prev_mm;
2864 long prev_state;
2865
2866 rq->prev_mm = NULL;
2867
2868 /*
2869 * A task struct has one reference for the use as "current".
2870 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2871 * schedule one last time. The schedule call will never return, and
2872 * the scheduled task must drop that reference.
2873 * The test for TASK_DEAD must occur while the runqueue locks are
2874 * still held, otherwise prev could be scheduled on another cpu, die
2875 * there before we look at prev->state, and then the reference would
2876 * be dropped twice.
2877 * Manfred Spraul <manfred@colorfullife.com>
2878 */
2879 prev_state = prev->state;
2880 finish_arch_switch(prev);
2881 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2882 local_irq_disable();
2883 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2884 perf_event_task_sched_in(current);
2885 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2886 local_irq_enable();
2887 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2888 finish_lock_switch(rq, prev);
2889
2890 fire_sched_in_preempt_notifiers(current);
2891 if (mm)
2892 mmdrop(mm);
2893 if (unlikely(prev_state == TASK_DEAD)) {
2894 /*
2895 * Remove function-return probe instances associated with this
2896 * task and put them back on the free list.
2897 */
2898 kprobe_flush_task(prev);
2899 put_task_struct(prev);
2900 }
2901 }
2902
2903 #ifdef CONFIG_SMP
2904
2905 /* assumes rq->lock is held */
2906 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2907 {
2908 if (prev->sched_class->pre_schedule)
2909 prev->sched_class->pre_schedule(rq, prev);
2910 }
2911
2912 /* rq->lock is NOT held, but preemption is disabled */
2913 static inline void post_schedule(struct rq *rq)
2914 {
2915 if (rq->post_schedule) {
2916 unsigned long flags;
2917
2918 raw_spin_lock_irqsave(&rq->lock, flags);
2919 if (rq->curr->sched_class->post_schedule)
2920 rq->curr->sched_class->post_schedule(rq);
2921 raw_spin_unlock_irqrestore(&rq->lock, flags);
2922
2923 rq->post_schedule = 0;
2924 }
2925 }
2926
2927 #else
2928
2929 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2930 {
2931 }
2932
2933 static inline void post_schedule(struct rq *rq)
2934 {
2935 }
2936
2937 #endif
2938
2939 /**
2940 * schedule_tail - first thing a freshly forked thread must call.
2941 * @prev: the thread we just switched away from.
2942 */
2943 asmlinkage void schedule_tail(struct task_struct *prev)
2944 __releases(rq->lock)
2945 {
2946 struct rq *rq = this_rq();
2947
2948 finish_task_switch(rq, prev);
2949
2950 /*
2951 * FIXME: do we need to worry about rq being invalidated by the
2952 * task_switch?
2953 */
2954 post_schedule(rq);
2955
2956 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2957 /* In this case, finish_task_switch does not reenable preemption */
2958 preempt_enable();
2959 #endif
2960 if (current->set_child_tid)
2961 put_user(task_pid_vnr(current), current->set_child_tid);
2962 }
2963
2964 /*
2965 * context_switch - switch to the new MM and the new
2966 * thread's register state.
2967 */
2968 static inline void
2969 context_switch(struct rq *rq, struct task_struct *prev,
2970 struct task_struct *next)
2971 {
2972 struct mm_struct *mm, *oldmm;
2973
2974 prepare_task_switch(rq, prev, next);
2975 trace_sched_switch(prev, next);
2976 mm = next->mm;
2977 oldmm = prev->active_mm;
2978 /*
2979 * For paravirt, this is coupled with an exit in switch_to to
2980 * combine the page table reload and the switch backend into
2981 * one hypercall.
2982 */
2983 arch_start_context_switch(prev);
2984
2985 if (!mm) {
2986 next->active_mm = oldmm;
2987 atomic_inc(&oldmm->mm_count);
2988 enter_lazy_tlb(oldmm, next);
2989 } else
2990 switch_mm(oldmm, mm, next);
2991
2992 if (!prev->mm) {
2993 prev->active_mm = NULL;
2994 rq->prev_mm = oldmm;
2995 }
2996 /*
2997 * Since the runqueue lock will be released by the next
2998 * task (which is an invalid locking op but in the case
2999 * of the scheduler it's an obvious special-case), so we
3000 * do an early lockdep release here:
3001 */
3002 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
3003 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3004 #endif
3005
3006 /* Here we just switch the register state and the stack. */
3007 switch_to(prev, next, prev);
3008
3009 barrier();
3010 /*
3011 * this_rq must be evaluated again because prev may have moved
3012 * CPUs since it called schedule(), thus the 'rq' on its stack
3013 * frame will be invalid.
3014 */
3015 finish_task_switch(this_rq(), prev);
3016 }
3017
3018 /*
3019 * nr_running, nr_uninterruptible and nr_context_switches:
3020 *
3021 * externally visible scheduler statistics: current number of runnable
3022 * threads, current number of uninterruptible-sleeping threads, total
3023 * number of context switches performed since bootup.
3024 */
3025 unsigned long nr_running(void)
3026 {
3027 unsigned long i, sum = 0;
3028
3029 for_each_online_cpu(i)
3030 sum += cpu_rq(i)->nr_running;
3031
3032 return sum;
3033 }
3034
3035 unsigned long nr_uninterruptible(void)
3036 {
3037 unsigned long i, sum = 0;
3038
3039 for_each_possible_cpu(i)
3040 sum += cpu_rq(i)->nr_uninterruptible;
3041
3042 /*
3043 * Since we read the counters lockless, it might be slightly
3044 * inaccurate. Do not allow it to go below zero though:
3045 */
3046 if (unlikely((long)sum < 0))
3047 sum = 0;
3048
3049 return sum;
3050 }
3051
3052 unsigned long long nr_context_switches(void)
3053 {
3054 int i;
3055 unsigned long long sum = 0;
3056
3057 for_each_possible_cpu(i)
3058 sum += cpu_rq(i)->nr_switches;
3059
3060 return sum;
3061 }
3062
3063 unsigned long nr_iowait(void)
3064 {
3065 unsigned long i, sum = 0;
3066
3067 for_each_possible_cpu(i)
3068 sum += atomic_read(&cpu_rq(i)->nr_iowait);
3069
3070 return sum;
3071 }
3072
3073 unsigned long nr_iowait_cpu(int cpu)
3074 {
3075 struct rq *this = cpu_rq(cpu);
3076 return atomic_read(&this->nr_iowait);
3077 }
3078
3079 unsigned long this_cpu_load(void)
3080 {
3081 struct rq *this = this_rq();
3082 return this->cpu_load[0];
3083 }
3084
3085
3086 /* Variables and functions for calc_load */
3087 static atomic_long_t calc_load_tasks;
3088 static unsigned long calc_load_update;
3089 unsigned long avenrun[3];
3090 EXPORT_SYMBOL(avenrun);
3091
3092 static long calc_load_fold_active(struct rq *this_rq)
3093 {
3094 long nr_active, delta = 0;
3095
3096 nr_active = this_rq->nr_running;
3097 nr_active += (long) this_rq->nr_uninterruptible;
3098
3099 if (nr_active != this_rq->calc_load_active) {
3100 delta = nr_active - this_rq->calc_load_active;
3101 this_rq->calc_load_active = nr_active;
3102 }
3103
3104 return delta;
3105 }
3106
3107 #ifdef CONFIG_NO_HZ
3108 /*
3109 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3110 *
3111 * When making the ILB scale, we should try to pull this in as well.
3112 */
3113 static atomic_long_t calc_load_tasks_idle;
3114
3115 static void calc_load_account_idle(struct rq *this_rq)
3116 {
3117 long delta;
3118
3119 delta = calc_load_fold_active(this_rq);
3120 if (delta)
3121 atomic_long_add(delta, &calc_load_tasks_idle);
3122 }
3123
3124 static long calc_load_fold_idle(void)
3125 {
3126 long delta = 0;
3127
3128 /*
3129 * Its got a race, we don't care...
3130 */
3131 if (atomic_long_read(&calc_load_tasks_idle))
3132 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
3133
3134 return delta;
3135 }
3136 #else
3137 static void calc_load_account_idle(struct rq *this_rq)
3138 {
3139 }
3140
3141 static inline long calc_load_fold_idle(void)
3142 {
3143 return 0;
3144 }
3145 #endif
3146
3147 /**
3148 * get_avenrun - get the load average array
3149 * @loads: pointer to dest load array
3150 * @offset: offset to add
3151 * @shift: shift count to shift the result left
3152 *
3153 * These values are estimates at best, so no need for locking.
3154 */
3155 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3156 {
3157 loads[0] = (avenrun[0] + offset) << shift;
3158 loads[1] = (avenrun[1] + offset) << shift;
3159 loads[2] = (avenrun[2] + offset) << shift;
3160 }
3161
3162 static unsigned long
3163 calc_load(unsigned long load, unsigned long exp, unsigned long active)
3164 {
3165 load *= exp;
3166 load += active * (FIXED_1 - exp);
3167 return load >> FSHIFT;
3168 }
3169
3170 /*
3171 * calc_load - update the avenrun load estimates 10 ticks after the
3172 * CPUs have updated calc_load_tasks.
3173 */
3174 void calc_global_load(void)
3175 {
3176 unsigned long upd = calc_load_update + 10;
3177 long active;
3178
3179 if (time_before(jiffies, upd))
3180 return;
3181
3182 active = atomic_long_read(&calc_load_tasks);
3183 active = active > 0 ? active * FIXED_1 : 0;
3184
3185 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3186 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3187 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3188
3189 calc_load_update += LOAD_FREQ;
3190 }
3191
3192 /*
3193 * Called from update_cpu_load() to periodically update this CPU's
3194 * active count.
3195 */
3196 static void calc_load_account_active(struct rq *this_rq)
3197 {
3198 long delta;
3199
3200 if (time_before(jiffies, this_rq->calc_load_update))
3201 return;
3202
3203 delta = calc_load_fold_active(this_rq);
3204 delta += calc_load_fold_idle();
3205 if (delta)
3206 atomic_long_add(delta, &calc_load_tasks);
3207
3208 this_rq->calc_load_update += LOAD_FREQ;
3209 }
3210
3211 /*
3212 * The exact cpuload at various idx values, calculated at every tick would be
3213 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3214 *
3215 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3216 * on nth tick when cpu may be busy, then we have:
3217 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3218 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3219 *
3220 * decay_load_missed() below does efficient calculation of
3221 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3222 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3223 *
3224 * The calculation is approximated on a 128 point scale.
3225 * degrade_zero_ticks is the number of ticks after which load at any
3226 * particular idx is approximated to be zero.
3227 * degrade_factor is a precomputed table, a row for each load idx.
3228 * Each column corresponds to degradation factor for a power of two ticks,
3229 * based on 128 point scale.
3230 * Example:
3231 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3232 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3233 *
3234 * With this power of 2 load factors, we can degrade the load n times
3235 * by looking at 1 bits in n and doing as many mult/shift instead of
3236 * n mult/shifts needed by the exact degradation.
3237 */
3238 #define DEGRADE_SHIFT 7
3239 static const unsigned char
3240 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3241 static const unsigned char
3242 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3243 {0, 0, 0, 0, 0, 0, 0, 0},
3244 {64, 32, 8, 0, 0, 0, 0, 0},
3245 {96, 72, 40, 12, 1, 0, 0},
3246 {112, 98, 75, 43, 15, 1, 0},
3247 {120, 112, 98, 76, 45, 16, 2} };
3248
3249 /*
3250 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3251 * would be when CPU is idle and so we just decay the old load without
3252 * adding any new load.
3253 */
3254 static unsigned long
3255 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3256 {
3257 int j = 0;
3258
3259 if (!missed_updates)
3260 return load;
3261
3262 if (missed_updates >= degrade_zero_ticks[idx])
3263 return 0;
3264
3265 if (idx == 1)
3266 return load >> missed_updates;
3267
3268 while (missed_updates) {
3269 if (missed_updates % 2)
3270 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3271
3272 missed_updates >>= 1;
3273 j++;
3274 }
3275 return load;
3276 }
3277
3278 /*
3279 * Update rq->cpu_load[] statistics. This function is usually called every
3280 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3281 * every tick. We fix it up based on jiffies.
3282 */
3283 static void update_cpu_load(struct rq *this_rq)
3284 {
3285 unsigned long this_load = this_rq->load.weight;
3286 unsigned long curr_jiffies = jiffies;
3287 unsigned long pending_updates;
3288 int i, scale;
3289
3290 this_rq->nr_load_updates++;
3291
3292 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3293 if (curr_jiffies == this_rq->last_load_update_tick)
3294 return;
3295
3296 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3297 this_rq->last_load_update_tick = curr_jiffies;
3298
3299 /* Update our load: */
3300 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3301 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3302 unsigned long old_load, new_load;
3303
3304 /* scale is effectively 1 << i now, and >> i divides by scale */
3305
3306 old_load = this_rq->cpu_load[i];
3307 old_load = decay_load_missed(old_load, pending_updates - 1, i);
3308 new_load = this_load;
3309 /*
3310 * Round up the averaging division if load is increasing. This
3311 * prevents us from getting stuck on 9 if the load is 10, for
3312 * example.
3313 */
3314 if (new_load > old_load)
3315 new_load += scale - 1;
3316
3317 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
3318 }
3319
3320 sched_avg_update(this_rq);
3321 }
3322
3323 static void update_cpu_load_active(struct rq *this_rq)
3324 {
3325 update_cpu_load(this_rq);
3326
3327 calc_load_account_active(this_rq);
3328 }
3329
3330 #ifdef CONFIG_SMP
3331
3332 /*
3333 * sched_exec - execve() is a valuable balancing opportunity, because at
3334 * this point the task has the smallest effective memory and cache footprint.
3335 */
3336 void sched_exec(void)
3337 {
3338 struct task_struct *p = current;
3339 unsigned long flags;
3340 struct rq *rq;
3341 int dest_cpu;
3342
3343 rq = task_rq_lock(p, &flags);
3344 dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
3345 if (dest_cpu == smp_processor_id())
3346 goto unlock;
3347
3348 /*
3349 * select_task_rq() can race against ->cpus_allowed
3350 */
3351 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
3352 likely(cpu_active(dest_cpu)) && migrate_task(p, dest_cpu)) {
3353 struct migration_arg arg = { p, dest_cpu };
3354
3355 task_rq_unlock(rq, &flags);
3356 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
3357 return;
3358 }
3359 unlock:
3360 task_rq_unlock(rq, &flags);
3361 }
3362
3363 #endif
3364
3365 DEFINE_PER_CPU(struct kernel_stat, kstat);
3366
3367 EXPORT_PER_CPU_SYMBOL(kstat);
3368
3369 /*
3370 * Return any ns on the sched_clock that have not yet been accounted in
3371 * @p in case that task is currently running.
3372 *
3373 * Called with task_rq_lock() held on @rq.
3374 */
3375 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3376 {
3377 u64 ns = 0;
3378
3379 if (task_current(rq, p)) {
3380 update_rq_clock(rq);
3381 ns = rq->clock_task - p->se.exec_start;
3382 if ((s64)ns < 0)
3383 ns = 0;
3384 }
3385
3386 return ns;
3387 }
3388
3389 unsigned long long task_delta_exec(struct task_struct *p)
3390 {
3391 unsigned long flags;
3392 struct rq *rq;
3393 u64 ns = 0;
3394
3395 rq = task_rq_lock(p, &flags);
3396 ns = do_task_delta_exec(p, rq);
3397 task_rq_unlock(rq, &flags);
3398
3399 return ns;
3400 }
3401
3402 /*
3403 * Return accounted runtime for the task.
3404 * In case the task is currently running, return the runtime plus current's
3405 * pending runtime that have not been accounted yet.
3406 */
3407 unsigned long long task_sched_runtime(struct task_struct *p)
3408 {
3409 unsigned long flags;
3410 struct rq *rq;
3411 u64 ns = 0;
3412
3413 rq = task_rq_lock(p, &flags);
3414 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3415 task_rq_unlock(rq, &flags);
3416
3417 return ns;
3418 }
3419
3420 /*
3421 * Return sum_exec_runtime for the thread group.
3422 * In case the task is currently running, return the sum plus current's
3423 * pending runtime that have not been accounted yet.
3424 *
3425 * Note that the thread group might have other running tasks as well,
3426 * so the return value not includes other pending runtime that other
3427 * running tasks might have.
3428 */
3429 unsigned long long thread_group_sched_runtime(struct task_struct *p)
3430 {
3431 struct task_cputime totals;
3432 unsigned long flags;
3433 struct rq *rq;
3434 u64 ns;
3435
3436 rq = task_rq_lock(p, &flags);
3437 thread_group_cputime(p, &totals);
3438 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3439 task_rq_unlock(rq, &flags);
3440
3441 return ns;
3442 }
3443
3444 /*
3445 * Account user cpu time to a process.
3446 * @p: the process that the cpu time gets accounted to
3447 * @cputime: the cpu time spent in user space since the last update
3448 * @cputime_scaled: cputime scaled by cpu frequency
3449 */
3450 void account_user_time(struct task_struct *p, cputime_t cputime,
3451 cputime_t cputime_scaled)
3452 {
3453 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3454 cputime64_t tmp;
3455
3456 /* Add user time to process. */
3457 p->utime = cputime_add(p->utime, cputime);
3458 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3459 account_group_user_time(p, cputime);
3460
3461 /* Add user time to cpustat. */
3462 tmp = cputime_to_cputime64(cputime);
3463 if (TASK_NICE(p) > 0)
3464 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3465 else
3466 cpustat->user = cputime64_add(cpustat->user, tmp);
3467
3468 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3469 /* Account for user time used */
3470 acct_update_integrals(p);
3471 }
3472
3473 /*
3474 * Account guest cpu time to a process.
3475 * @p: the process that the cpu time gets accounted to
3476 * @cputime: the cpu time spent in virtual machine since the last update
3477 * @cputime_scaled: cputime scaled by cpu frequency
3478 */
3479 static void account_guest_time(struct task_struct *p, cputime_t cputime,
3480 cputime_t cputime_scaled)
3481 {
3482 cputime64_t tmp;
3483 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3484
3485 tmp = cputime_to_cputime64(cputime);
3486
3487 /* Add guest time to process. */
3488 p->utime = cputime_add(p->utime, cputime);
3489 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3490 account_group_user_time(p, cputime);
3491 p->gtime = cputime_add(p->gtime, cputime);
3492
3493 /* Add guest time to cpustat. */
3494 if (TASK_NICE(p) > 0) {
3495 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3496 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3497 } else {
3498 cpustat->user = cputime64_add(cpustat->user, tmp);
3499 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3500 }
3501 }
3502
3503 /*
3504 * Account system cpu time to a process.
3505 * @p: the process that the cpu time gets accounted to
3506 * @hardirq_offset: the offset to subtract from hardirq_count()
3507 * @cputime: the cpu time spent in kernel space since the last update
3508 * @cputime_scaled: cputime scaled by cpu frequency
3509 */
3510 void account_system_time(struct task_struct *p, int hardirq_offset,
3511 cputime_t cputime, cputime_t cputime_scaled)
3512 {
3513 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3514 cputime64_t tmp;
3515
3516 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3517 account_guest_time(p, cputime, cputime_scaled);
3518 return;
3519 }
3520
3521 /* Add system time to process. */
3522 p->stime = cputime_add(p->stime, cputime);
3523 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3524 account_group_system_time(p, cputime);
3525
3526 /* Add system time to cpustat. */
3527 tmp = cputime_to_cputime64(cputime);
3528 if (hardirq_count() - hardirq_offset)
3529 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3530 else if (in_serving_softirq())
3531 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3532 else
3533 cpustat->system = cputime64_add(cpustat->system, tmp);
3534
3535 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3536
3537 /* Account for system time used */
3538 acct_update_integrals(p);
3539 }
3540
3541 /*
3542 * Account for involuntary wait time.
3543 * @steal: the cpu time spent in involuntary wait
3544 */
3545 void account_steal_time(cputime_t cputime)
3546 {
3547 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3548 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3549
3550 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3551 }
3552
3553 /*
3554 * Account for idle time.
3555 * @cputime: the cpu time spent in idle wait
3556 */
3557 void account_idle_time(cputime_t cputime)
3558 {
3559 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3560 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3561 struct rq *rq = this_rq();
3562
3563 if (atomic_read(&rq->nr_iowait) > 0)
3564 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3565 else
3566 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
3567 }
3568
3569 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
3570
3571 /*
3572 * Account a single tick of cpu time.
3573 * @p: the process that the cpu time gets accounted to
3574 * @user_tick: indicates if the tick is a user or a system tick
3575 */
3576 void account_process_tick(struct task_struct *p, int user_tick)
3577 {
3578 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3579 struct rq *rq = this_rq();
3580
3581 if (user_tick)
3582 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3583 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3584 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3585 one_jiffy_scaled);
3586 else
3587 account_idle_time(cputime_one_jiffy);
3588 }
3589
3590 /*
3591 * Account multiple ticks of steal time.
3592 * @p: the process from which the cpu time has been stolen
3593 * @ticks: number of stolen ticks
3594 */
3595 void account_steal_ticks(unsigned long ticks)
3596 {
3597 account_steal_time(jiffies_to_cputime(ticks));
3598 }
3599
3600 /*
3601 * Account multiple ticks of idle time.
3602 * @ticks: number of stolen ticks
3603 */
3604 void account_idle_ticks(unsigned long ticks)
3605 {
3606 account_idle_time(jiffies_to_cputime(ticks));
3607 }
3608
3609 #endif
3610
3611 /*
3612 * Use precise platform statistics if available:
3613 */
3614 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
3615 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3616 {
3617 *ut = p->utime;
3618 *st = p->stime;
3619 }
3620
3621 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3622 {
3623 struct task_cputime cputime;
3624
3625 thread_group_cputime(p, &cputime);
3626
3627 *ut = cputime.utime;
3628 *st = cputime.stime;
3629 }
3630 #else
3631
3632 #ifndef nsecs_to_cputime
3633 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
3634 #endif
3635
3636 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3637 {
3638 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
3639
3640 /*
3641 * Use CFS's precise accounting:
3642 */
3643 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3644
3645 if (total) {
3646 u64 temp = rtime;
3647
3648 temp *= utime;
3649 do_div(temp, total);
3650 utime = (cputime_t)temp;
3651 } else
3652 utime = rtime;
3653
3654 /*
3655 * Compare with previous values, to keep monotonicity:
3656 */
3657 p->prev_utime = max(p->prev_utime, utime);
3658 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
3659
3660 *ut = p->prev_utime;
3661 *st = p->prev_stime;
3662 }
3663
3664 /*
3665 * Must be called with siglock held.
3666 */
3667 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3668 {
3669 struct signal_struct *sig = p->signal;
3670 struct task_cputime cputime;
3671 cputime_t rtime, utime, total;
3672
3673 thread_group_cputime(p, &cputime);
3674
3675 total = cputime_add(cputime.utime, cputime.stime);
3676 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3677
3678 if (total) {
3679 u64 temp = rtime;
3680
3681 temp *= cputime.utime;
3682 do_div(temp, total);
3683 utime = (cputime_t)temp;
3684 } else
3685 utime = rtime;
3686
3687 sig->prev_utime = max(sig->prev_utime, utime);
3688 sig->prev_stime = max(sig->prev_stime,
3689 cputime_sub(rtime, sig->prev_utime));
3690
3691 *ut = sig->prev_utime;
3692 *st = sig->prev_stime;
3693 }
3694 #endif
3695
3696 /*
3697 * This function gets called by the timer code, with HZ frequency.
3698 * We call it with interrupts disabled.
3699 *
3700 * It also gets called by the fork code, when changing the parent's
3701 * timeslices.
3702 */
3703 void scheduler_tick(void)
3704 {
3705 int cpu = smp_processor_id();
3706 struct rq *rq = cpu_rq(cpu);
3707 struct task_struct *curr = rq->curr;
3708
3709 sched_clock_tick();
3710
3711 raw_spin_lock(&rq->lock);
3712 update_rq_clock(rq);
3713 update_cpu_load_active(rq);
3714 curr->sched_class->task_tick(rq, curr, 0);
3715 raw_spin_unlock(&rq->lock);
3716
3717 perf_event_task_tick(curr);
3718
3719 #ifdef CONFIG_SMP
3720 rq->idle_at_tick = idle_cpu(cpu);
3721 trigger_load_balance(rq, cpu);
3722 #endif
3723 }
3724
3725 notrace unsigned long get_parent_ip(unsigned long addr)
3726 {
3727 if (in_lock_functions(addr)) {
3728 addr = CALLER_ADDR2;
3729 if (in_lock_functions(addr))
3730 addr = CALLER_ADDR3;
3731 }
3732 return addr;
3733 }
3734
3735 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3736 defined(CONFIG_PREEMPT_TRACER))
3737
3738 void __kprobes add_preempt_count(int val)
3739 {
3740 #ifdef CONFIG_DEBUG_PREEMPT
3741 /*
3742 * Underflow?
3743 */
3744 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3745 return;
3746 #endif
3747 preempt_count() += val;
3748 #ifdef CONFIG_DEBUG_PREEMPT
3749 /*
3750 * Spinlock count overflowing soon?
3751 */
3752 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3753 PREEMPT_MASK - 10);
3754 #endif
3755 if (preempt_count() == val)
3756 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3757 }
3758 EXPORT_SYMBOL(add_preempt_count);
3759
3760 void __kprobes sub_preempt_count(int val)
3761 {
3762 #ifdef CONFIG_DEBUG_PREEMPT
3763 /*
3764 * Underflow?
3765 */
3766 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3767 return;
3768 /*
3769 * Is the spinlock portion underflowing?
3770 */
3771 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3772 !(preempt_count() & PREEMPT_MASK)))
3773 return;
3774 #endif
3775
3776 if (preempt_count() == val)
3777 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3778 preempt_count() -= val;
3779 }
3780 EXPORT_SYMBOL(sub_preempt_count);
3781
3782 #endif
3783
3784 /*
3785 * Print scheduling while atomic bug:
3786 */
3787 static noinline void __schedule_bug(struct task_struct *prev)
3788 {
3789 struct pt_regs *regs = get_irq_regs();
3790
3791 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3792 prev->comm, prev->pid, preempt_count());
3793
3794 debug_show_held_locks(prev);
3795 print_modules();
3796 if (irqs_disabled())
3797 print_irqtrace_events(prev);
3798
3799 if (regs)
3800 show_regs(regs);
3801 else
3802 dump_stack();
3803 }
3804
3805 /*
3806 * Various schedule()-time debugging checks and statistics:
3807 */
3808 static inline void schedule_debug(struct task_struct *prev)
3809 {
3810 /*
3811 * Test if we are atomic. Since do_exit() needs to call into
3812 * schedule() atomically, we ignore that path for now.
3813 * Otherwise, whine if we are scheduling when we should not be.
3814 */
3815 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
3816 __schedule_bug(prev);
3817
3818 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3819
3820 schedstat_inc(this_rq(), sched_count);
3821 #ifdef CONFIG_SCHEDSTATS
3822 if (unlikely(prev->lock_depth >= 0)) {
3823 schedstat_inc(this_rq(), bkl_count);
3824 schedstat_inc(prev, sched_info.bkl_count);
3825 }
3826 #endif
3827 }
3828
3829 static void put_prev_task(struct rq *rq, struct task_struct *prev)
3830 {
3831 if (prev->se.on_rq)
3832 update_rq_clock(rq);
3833 rq->skip_clock_update = 0;
3834 prev->sched_class->put_prev_task(rq, prev);
3835 }
3836
3837 /*
3838 * Pick up the highest-prio task:
3839 */
3840 static inline struct task_struct *
3841 pick_next_task(struct rq *rq)
3842 {
3843 const struct sched_class *class;
3844 struct task_struct *p;
3845
3846 /*
3847 * Optimization: we know that if all tasks are in
3848 * the fair class we can call that function directly:
3849 */
3850 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3851 p = fair_sched_class.pick_next_task(rq);
3852 if (likely(p))
3853 return p;
3854 }
3855
3856 for_each_class(class) {
3857 p = class->pick_next_task(rq);
3858 if (p)
3859 return p;
3860 }
3861
3862 BUG(); /* the idle class will always have a runnable task */
3863 }
3864
3865 /*
3866 * schedule() is the main scheduler function.
3867 */
3868 asmlinkage void __sched schedule(void)
3869 {
3870 struct task_struct *prev, *next;
3871 unsigned long *switch_count;
3872 struct rq *rq;
3873 int cpu;
3874
3875 need_resched:
3876 preempt_disable();
3877 cpu = smp_processor_id();
3878 rq = cpu_rq(cpu);
3879 rcu_note_context_switch(cpu);
3880 prev = rq->curr;
3881
3882 release_kernel_lock(prev);
3883 need_resched_nonpreemptible:
3884
3885 schedule_debug(prev);
3886
3887 if (sched_feat(HRTICK))
3888 hrtick_clear(rq);
3889
3890 raw_spin_lock_irq(&rq->lock);
3891 clear_tsk_need_resched(prev);
3892
3893 switch_count = &prev->nivcsw;
3894 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3895 if (unlikely(signal_pending_state(prev->state, prev))) {
3896 prev->state = TASK_RUNNING;
3897 } else {
3898 /*
3899 * If a worker is going to sleep, notify and
3900 * ask workqueue whether it wants to wake up a
3901 * task to maintain concurrency. If so, wake
3902 * up the task.
3903 */
3904 if (prev->flags & PF_WQ_WORKER) {
3905 struct task_struct *to_wakeup;
3906
3907 to_wakeup = wq_worker_sleeping(prev, cpu);
3908 if (to_wakeup)
3909 try_to_wake_up_local(to_wakeup);
3910 }
3911 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3912 }
3913 switch_count = &prev->nvcsw;
3914 }
3915
3916 pre_schedule(rq, prev);
3917
3918 if (unlikely(!rq->nr_running))
3919 idle_balance(cpu, rq);
3920
3921 put_prev_task(rq, prev);
3922 next = pick_next_task(rq);
3923
3924 if (likely(prev != next)) {
3925 sched_info_switch(prev, next);
3926 perf_event_task_sched_out(prev, next);
3927
3928 rq->nr_switches++;
3929 rq->curr = next;
3930 ++*switch_count;
3931
3932 context_switch(rq, prev, next); /* unlocks the rq */
3933 /*
3934 * The context switch have flipped the stack from under us
3935 * and restored the local variables which were saved when
3936 * this task called schedule() in the past. prev == current
3937 * is still correct, but it can be moved to another cpu/rq.
3938 */
3939 cpu = smp_processor_id();
3940 rq = cpu_rq(cpu);
3941 } else
3942 raw_spin_unlock_irq(&rq->lock);
3943
3944 post_schedule(rq);
3945
3946 if (unlikely(reacquire_kernel_lock(prev)))
3947 goto need_resched_nonpreemptible;
3948
3949 preempt_enable_no_resched();
3950 if (need_resched())
3951 goto need_resched;
3952 }
3953 EXPORT_SYMBOL(schedule);
3954
3955 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3956 /*
3957 * Look out! "owner" is an entirely speculative pointer
3958 * access and not reliable.
3959 */
3960 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
3961 {
3962 unsigned int cpu;
3963 struct rq *rq;
3964
3965 if (!sched_feat(OWNER_SPIN))
3966 return 0;
3967
3968 #ifdef CONFIG_DEBUG_PAGEALLOC
3969 /*
3970 * Need to access the cpu field knowing that
3971 * DEBUG_PAGEALLOC could have unmapped it if
3972 * the mutex owner just released it and exited.
3973 */
3974 if (probe_kernel_address(&owner->cpu, cpu))
3975 return 0;
3976 #else
3977 cpu = owner->cpu;
3978 #endif
3979
3980 /*
3981 * Even if the access succeeded (likely case),
3982 * the cpu field may no longer be valid.
3983 */
3984 if (cpu >= nr_cpumask_bits)
3985 return 0;
3986
3987 /*
3988 * We need to validate that we can do a
3989 * get_cpu() and that we have the percpu area.
3990 */
3991 if (!cpu_online(cpu))
3992 return 0;
3993
3994 rq = cpu_rq(cpu);
3995
3996 for (;;) {
3997 /*
3998 * Owner changed, break to re-assess state.
3999 */
4000 if (lock->owner != owner) {
4001 /*
4002 * If the lock has switched to a different owner,
4003 * we likely have heavy contention. Return 0 to quit
4004 * optimistic spinning and not contend further:
4005 */
4006 if (lock->owner)
4007 return 0;
4008 break;
4009 }
4010
4011 /*
4012 * Is that owner really running on that cpu?
4013 */
4014 if (task_thread_info(rq->curr) != owner || need_resched())
4015 return 0;
4016
4017 cpu_relax();
4018 }
4019
4020 return 1;
4021 }
4022 #endif
4023
4024 #ifdef CONFIG_PREEMPT
4025 /*
4026 * this is the entry point to schedule() from in-kernel preemption
4027 * off of preempt_enable. Kernel preemptions off return from interrupt
4028 * occur there and call schedule directly.
4029 */
4030 asmlinkage void __sched notrace preempt_schedule(void)
4031 {
4032 struct thread_info *ti = current_thread_info();
4033
4034 /*
4035 * If there is a non-zero preempt_count or interrupts are disabled,
4036 * we do not want to preempt the current task. Just return..
4037 */
4038 if (likely(ti->preempt_count || irqs_disabled()))
4039 return;
4040
4041 do {
4042 add_preempt_count_notrace(PREEMPT_ACTIVE);
4043 schedule();
4044 sub_preempt_count_notrace(PREEMPT_ACTIVE);
4045
4046 /*
4047 * Check again in case we missed a preemption opportunity
4048 * between schedule and now.
4049 */
4050 barrier();
4051 } while (need_resched());
4052 }
4053 EXPORT_SYMBOL(preempt_schedule);
4054
4055 /*
4056 * this is the entry point to schedule() from kernel preemption
4057 * off of irq context.
4058 * Note, that this is called and return with irqs disabled. This will
4059 * protect us against recursive calling from irq.
4060 */
4061 asmlinkage void __sched preempt_schedule_irq(void)
4062 {
4063 struct thread_info *ti = current_thread_info();
4064
4065 /* Catch callers which need to be fixed */
4066 BUG_ON(ti->preempt_count || !irqs_disabled());
4067
4068 do {
4069 add_preempt_count(PREEMPT_ACTIVE);
4070 local_irq_enable();
4071 schedule();
4072 local_irq_disable();
4073 sub_preempt_count(PREEMPT_ACTIVE);
4074
4075 /*
4076 * Check again in case we missed a preemption opportunity
4077 * between schedule and now.
4078 */
4079 barrier();
4080 } while (need_resched());
4081 }
4082
4083 #endif /* CONFIG_PREEMPT */
4084
4085 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
4086 void *key)
4087 {
4088 return try_to_wake_up(curr->private, mode, wake_flags);
4089 }
4090 EXPORT_SYMBOL(default_wake_function);
4091
4092 /*
4093 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4094 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4095 * number) then we wake all the non-exclusive tasks and one exclusive task.
4096 *
4097 * There are circumstances in which we can try to wake a task which has already
4098 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4099 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4100 */
4101 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4102 int nr_exclusive, int wake_flags, void *key)
4103 {
4104 wait_queue_t *curr, *next;
4105
4106 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4107 unsigned flags = curr->flags;
4108
4109 if (curr->func(curr, mode, wake_flags, key) &&
4110 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4111 break;
4112 }
4113 }
4114
4115 /**
4116 * __wake_up - wake up threads blocked on a waitqueue.
4117 * @q: the waitqueue
4118 * @mode: which threads
4119 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4120 * @key: is directly passed to the wakeup function
4121 *
4122 * It may be assumed that this function implies a write memory barrier before
4123 * changing the task state if and only if any tasks are woken up.
4124 */
4125 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4126 int nr_exclusive, void *key)
4127 {
4128 unsigned long flags;
4129
4130 spin_lock_irqsave(&q->lock, flags);
4131 __wake_up_common(q, mode, nr_exclusive, 0, key);
4132 spin_unlock_irqrestore(&q->lock, flags);
4133 }
4134 EXPORT_SYMBOL(__wake_up);
4135
4136 /*
4137 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4138 */
4139 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4140 {
4141 __wake_up_common(q, mode, 1, 0, NULL);
4142 }
4143 EXPORT_SYMBOL_GPL(__wake_up_locked);
4144
4145 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4146 {
4147 __wake_up_common(q, mode, 1, 0, key);
4148 }
4149
4150 /**
4151 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
4152 * @q: the waitqueue
4153 * @mode: which threads
4154 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4155 * @key: opaque value to be passed to wakeup targets
4156 *
4157 * The sync wakeup differs that the waker knows that it will schedule
4158 * away soon, so while the target thread will be woken up, it will not
4159 * be migrated to another CPU - ie. the two threads are 'synchronized'
4160 * with each other. This can prevent needless bouncing between CPUs.
4161 *
4162 * On UP it can prevent extra preemption.
4163 *
4164 * It may be assumed that this function implies a write memory barrier before
4165 * changing the task state if and only if any tasks are woken up.
4166 */
4167 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4168 int nr_exclusive, void *key)
4169 {
4170 unsigned long flags;
4171 int wake_flags = WF_SYNC;
4172
4173 if (unlikely(!q))
4174 return;
4175
4176 if (unlikely(!nr_exclusive))
4177 wake_flags = 0;
4178
4179 spin_lock_irqsave(&q->lock, flags);
4180 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
4181 spin_unlock_irqrestore(&q->lock, flags);
4182 }
4183 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4184
4185 /*
4186 * __wake_up_sync - see __wake_up_sync_key()
4187 */
4188 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4189 {
4190 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4191 }
4192 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4193
4194 /**
4195 * complete: - signals a single thread waiting on this completion
4196 * @x: holds the state of this particular completion
4197 *
4198 * This will wake up a single thread waiting on this completion. Threads will be
4199 * awakened in the same order in which they were queued.
4200 *
4201 * See also complete_all(), wait_for_completion() and related routines.
4202 *
4203 * It may be assumed that this function implies a write memory barrier before
4204 * changing the task state if and only if any tasks are woken up.
4205 */
4206 void complete(struct completion *x)
4207 {
4208 unsigned long flags;
4209
4210 spin_lock_irqsave(&x->wait.lock, flags);
4211 x->done++;
4212 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4213 spin_unlock_irqrestore(&x->wait.lock, flags);
4214 }
4215 EXPORT_SYMBOL(complete);
4216
4217 /**
4218 * complete_all: - signals all threads waiting on this completion
4219 * @x: holds the state of this particular completion
4220 *
4221 * This will wake up all threads waiting on this particular completion event.
4222 *
4223 * It may be assumed that this function implies a write memory barrier before
4224 * changing the task state if and only if any tasks are woken up.
4225 */
4226 void complete_all(struct completion *x)
4227 {
4228 unsigned long flags;
4229
4230 spin_lock_irqsave(&x->wait.lock, flags);
4231 x->done += UINT_MAX/2;
4232 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4233 spin_unlock_irqrestore(&x->wait.lock, flags);
4234 }
4235 EXPORT_SYMBOL(complete_all);
4236
4237 static inline long __sched
4238 do_wait_for_common(struct completion *x, long timeout, int state)
4239 {
4240 if (!x->done) {
4241 DECLARE_WAITQUEUE(wait, current);
4242
4243 __add_wait_queue_tail_exclusive(&x->wait, &wait);
4244 do {
4245 if (signal_pending_state(state, current)) {
4246 timeout = -ERESTARTSYS;
4247 break;
4248 }
4249 __set_current_state(state);
4250 spin_unlock_irq(&x->wait.lock);
4251 timeout = schedule_timeout(timeout);
4252 spin_lock_irq(&x->wait.lock);
4253 } while (!x->done && timeout);
4254 __remove_wait_queue(&x->wait, &wait);
4255 if (!x->done)
4256 return timeout;
4257 }
4258 x->done--;
4259 return timeout ?: 1;
4260 }
4261
4262 static long __sched
4263 wait_for_common(struct completion *x, long timeout, int state)
4264 {
4265 might_sleep();
4266
4267 spin_lock_irq(&x->wait.lock);
4268 timeout = do_wait_for_common(x, timeout, state);
4269 spin_unlock_irq(&x->wait.lock);
4270 return timeout;
4271 }
4272
4273 /**
4274 * wait_for_completion: - waits for completion of a task
4275 * @x: holds the state of this particular completion
4276 *
4277 * This waits to be signaled for completion of a specific task. It is NOT
4278 * interruptible and there is no timeout.
4279 *
4280 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4281 * and interrupt capability. Also see complete().
4282 */
4283 void __sched wait_for_completion(struct completion *x)
4284 {
4285 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4286 }
4287 EXPORT_SYMBOL(wait_for_completion);
4288
4289 /**
4290 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4291 * @x: holds the state of this particular completion
4292 * @timeout: timeout value in jiffies
4293 *
4294 * This waits for either a completion of a specific task to be signaled or for a
4295 * specified timeout to expire. The timeout is in jiffies. It is not
4296 * interruptible.
4297 */
4298 unsigned long __sched
4299 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4300 {
4301 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4302 }
4303 EXPORT_SYMBOL(wait_for_completion_timeout);
4304
4305 /**
4306 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4307 * @x: holds the state of this particular completion
4308 *
4309 * This waits for completion of a specific task to be signaled. It is
4310 * interruptible.
4311 */
4312 int __sched wait_for_completion_interruptible(struct completion *x)
4313 {
4314 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4315 if (t == -ERESTARTSYS)
4316 return t;
4317 return 0;
4318 }
4319 EXPORT_SYMBOL(wait_for_completion_interruptible);
4320
4321 /**
4322 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4323 * @x: holds the state of this particular completion
4324 * @timeout: timeout value in jiffies
4325 *
4326 * This waits for either a completion of a specific task to be signaled or for a
4327 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4328 */
4329 unsigned long __sched
4330 wait_for_completion_interruptible_timeout(struct completion *x,
4331 unsigned long timeout)
4332 {
4333 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4334 }
4335 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4336
4337 /**
4338 * wait_for_completion_killable: - waits for completion of a task (killable)
4339 * @x: holds the state of this particular completion
4340 *
4341 * This waits to be signaled for completion of a specific task. It can be
4342 * interrupted by a kill signal.
4343 */
4344 int __sched wait_for_completion_killable(struct completion *x)
4345 {
4346 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4347 if (t == -ERESTARTSYS)
4348 return t;
4349 return 0;
4350 }
4351 EXPORT_SYMBOL(wait_for_completion_killable);
4352
4353 /**
4354 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4355 * @x: holds the state of this particular completion
4356 * @timeout: timeout value in jiffies
4357 *
4358 * This waits for either a completion of a specific task to be
4359 * signaled or for a specified timeout to expire. It can be
4360 * interrupted by a kill signal. The timeout is in jiffies.
4361 */
4362 unsigned long __sched
4363 wait_for_completion_killable_timeout(struct completion *x,
4364 unsigned long timeout)
4365 {
4366 return wait_for_common(x, timeout, TASK_KILLABLE);
4367 }
4368 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4369
4370 /**
4371 * try_wait_for_completion - try to decrement a completion without blocking
4372 * @x: completion structure
4373 *
4374 * Returns: 0 if a decrement cannot be done without blocking
4375 * 1 if a decrement succeeded.
4376 *
4377 * If a completion is being used as a counting completion,
4378 * attempt to decrement the counter without blocking. This
4379 * enables us to avoid waiting if the resource the completion
4380 * is protecting is not available.
4381 */
4382 bool try_wait_for_completion(struct completion *x)
4383 {
4384 unsigned long flags;
4385 int ret = 1;
4386
4387 spin_lock_irqsave(&x->wait.lock, flags);
4388 if (!x->done)
4389 ret = 0;
4390 else
4391 x->done--;
4392 spin_unlock_irqrestore(&x->wait.lock, flags);
4393 return ret;
4394 }
4395 EXPORT_SYMBOL(try_wait_for_completion);
4396
4397 /**
4398 * completion_done - Test to see if a completion has any waiters
4399 * @x: completion structure
4400 *
4401 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4402 * 1 if there are no waiters.
4403 *
4404 */
4405 bool completion_done(struct completion *x)
4406 {
4407 unsigned long flags;
4408 int ret = 1;
4409
4410 spin_lock_irqsave(&x->wait.lock, flags);
4411 if (!x->done)
4412 ret = 0;
4413 spin_unlock_irqrestore(&x->wait.lock, flags);
4414 return ret;
4415 }
4416 EXPORT_SYMBOL(completion_done);
4417
4418 static long __sched
4419 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4420 {
4421 unsigned long flags;
4422 wait_queue_t wait;
4423
4424 init_waitqueue_entry(&wait, current);
4425
4426 __set_current_state(state);
4427
4428 spin_lock_irqsave(&q->lock, flags);
4429 __add_wait_queue(q, &wait);
4430 spin_unlock(&q->lock);
4431 timeout = schedule_timeout(timeout);
4432 spin_lock_irq(&q->lock);
4433 __remove_wait_queue(q, &wait);
4434 spin_unlock_irqrestore(&q->lock, flags);
4435
4436 return timeout;
4437 }
4438
4439 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4440 {
4441 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4442 }
4443 EXPORT_SYMBOL(interruptible_sleep_on);
4444
4445 long __sched
4446 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4447 {
4448 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4449 }
4450 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4451
4452 void __sched sleep_on(wait_queue_head_t *q)
4453 {
4454 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4455 }
4456 EXPORT_SYMBOL(sleep_on);
4457
4458 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4459 {
4460 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4461 }
4462 EXPORT_SYMBOL(sleep_on_timeout);
4463
4464 #ifdef CONFIG_RT_MUTEXES
4465
4466 /*
4467 * rt_mutex_setprio - set the current priority of a task
4468 * @p: task
4469 * @prio: prio value (kernel-internal form)
4470 *
4471 * This function changes the 'effective' priority of a task. It does
4472 * not touch ->normal_prio like __setscheduler().
4473 *
4474 * Used by the rt_mutex code to implement priority inheritance logic.
4475 */
4476 void rt_mutex_setprio(struct task_struct *p, int prio)
4477 {
4478 unsigned long flags;
4479 int oldprio, on_rq, running;
4480 struct rq *rq;
4481 const struct sched_class *prev_class;
4482
4483 BUG_ON(prio < 0 || prio > MAX_PRIO);
4484
4485 rq = task_rq_lock(p, &flags);
4486
4487 trace_sched_pi_setprio(p, prio);
4488 oldprio = p->prio;
4489 prev_class = p->sched_class;
4490 on_rq = p->se.on_rq;
4491 running = task_current(rq, p);
4492 if (on_rq)
4493 dequeue_task(rq, p, 0);
4494 if (running)
4495 p->sched_class->put_prev_task(rq, p);
4496
4497 if (rt_prio(prio))
4498 p->sched_class = &rt_sched_class;
4499 else
4500 p->sched_class = &fair_sched_class;
4501
4502 p->prio = prio;
4503
4504 if (running)
4505 p->sched_class->set_curr_task(rq);
4506 if (on_rq) {
4507 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
4508
4509 check_class_changed(rq, p, prev_class, oldprio, running);
4510 }
4511 task_rq_unlock(rq, &flags);
4512 }
4513
4514 #endif
4515
4516 void set_user_nice(struct task_struct *p, long nice)
4517 {
4518 int old_prio, delta, on_rq;
4519 unsigned long flags;
4520 struct rq *rq;
4521
4522 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4523 return;
4524 /*
4525 * We have to be careful, if called from sys_setpriority(),
4526 * the task might be in the middle of scheduling on another CPU.
4527 */
4528 rq = task_rq_lock(p, &flags);
4529 /*
4530 * The RT priorities are set via sched_setscheduler(), but we still
4531 * allow the 'normal' nice value to be set - but as expected
4532 * it wont have any effect on scheduling until the task is
4533 * SCHED_FIFO/SCHED_RR:
4534 */
4535 if (task_has_rt_policy(p)) {
4536 p->static_prio = NICE_TO_PRIO(nice);
4537 goto out_unlock;
4538 }
4539 on_rq = p->se.on_rq;
4540 if (on_rq)
4541 dequeue_task(rq, p, 0);
4542
4543 p->static_prio = NICE_TO_PRIO(nice);
4544 set_load_weight(p);
4545 old_prio = p->prio;
4546 p->prio = effective_prio(p);
4547 delta = p->prio - old_prio;
4548
4549 if (on_rq) {
4550 enqueue_task(rq, p, 0);
4551 /*
4552 * If the task increased its priority or is running and
4553 * lowered its priority, then reschedule its CPU:
4554 */
4555 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4556 resched_task(rq->curr);
4557 }
4558 out_unlock:
4559 task_rq_unlock(rq, &flags);
4560 }
4561 EXPORT_SYMBOL(set_user_nice);
4562
4563 /*
4564 * can_nice - check if a task can reduce its nice value
4565 * @p: task
4566 * @nice: nice value
4567 */
4568 int can_nice(const struct task_struct *p, const int nice)
4569 {
4570 /* convert nice value [19,-20] to rlimit style value [1,40] */
4571 int nice_rlim = 20 - nice;
4572
4573 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4574 capable(CAP_SYS_NICE));
4575 }
4576
4577 #ifdef __ARCH_WANT_SYS_NICE
4578
4579 /*
4580 * sys_nice - change the priority of the current process.
4581 * @increment: priority increment
4582 *
4583 * sys_setpriority is a more generic, but much slower function that
4584 * does similar things.
4585 */
4586 SYSCALL_DEFINE1(nice, int, increment)
4587 {
4588 long nice, retval;
4589
4590 /*
4591 * Setpriority might change our priority at the same moment.
4592 * We don't have to worry. Conceptually one call occurs first
4593 * and we have a single winner.
4594 */
4595 if (increment < -40)
4596 increment = -40;
4597 if (increment > 40)
4598 increment = 40;
4599
4600 nice = TASK_NICE(current) + increment;
4601 if (nice < -20)
4602 nice = -20;
4603 if (nice > 19)
4604 nice = 19;
4605
4606 if (increment < 0 && !can_nice(current, nice))
4607 return -EPERM;
4608
4609 retval = security_task_setnice(current, nice);
4610 if (retval)
4611 return retval;
4612
4613 set_user_nice(current, nice);
4614 return 0;
4615 }
4616
4617 #endif
4618
4619 /**
4620 * task_prio - return the priority value of a given task.
4621 * @p: the task in question.
4622 *
4623 * This is the priority value as seen by users in /proc.
4624 * RT tasks are offset by -200. Normal tasks are centered
4625 * around 0, value goes from -16 to +15.
4626 */
4627 int task_prio(const struct task_struct *p)
4628 {
4629 return p->prio - MAX_RT_PRIO;
4630 }
4631
4632 /**
4633 * task_nice - return the nice value of a given task.
4634 * @p: the task in question.
4635 */
4636 int task_nice(const struct task_struct *p)
4637 {
4638 return TASK_NICE(p);
4639 }
4640 EXPORT_SYMBOL(task_nice);
4641
4642 /**
4643 * idle_cpu - is a given cpu idle currently?
4644 * @cpu: the processor in question.
4645 */
4646 int idle_cpu(int cpu)
4647 {
4648 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4649 }
4650
4651 /**
4652 * idle_task - return the idle task for a given cpu.
4653 * @cpu: the processor in question.
4654 */
4655 struct task_struct *idle_task(int cpu)
4656 {
4657 return cpu_rq(cpu)->idle;
4658 }
4659
4660 /**
4661 * find_process_by_pid - find a process with a matching PID value.
4662 * @pid: the pid in question.
4663 */
4664 static struct task_struct *find_process_by_pid(pid_t pid)
4665 {
4666 return pid ? find_task_by_vpid(pid) : current;
4667 }
4668
4669 /* Actually do priority change: must hold rq lock. */
4670 static void
4671 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4672 {
4673 BUG_ON(p->se.on_rq);
4674
4675 p->policy = policy;
4676 p->rt_priority = prio;
4677 p->normal_prio = normal_prio(p);
4678 /* we are holding p->pi_lock already */
4679 p->prio = rt_mutex_getprio(p);
4680 if (rt_prio(p->prio))
4681 p->sched_class = &rt_sched_class;
4682 else
4683 p->sched_class = &fair_sched_class;
4684 set_load_weight(p);
4685 }
4686
4687 /*
4688 * check the target process has a UID that matches the current process's
4689 */
4690 static bool check_same_owner(struct task_struct *p)
4691 {
4692 const struct cred *cred = current_cred(), *pcred;
4693 bool match;
4694
4695 rcu_read_lock();
4696 pcred = __task_cred(p);
4697 match = (cred->euid == pcred->euid ||
4698 cred->euid == pcred->uid);
4699 rcu_read_unlock();
4700 return match;
4701 }
4702
4703 static int __sched_setscheduler(struct task_struct *p, int policy,
4704 struct sched_param *param, bool user)
4705 {
4706 int retval, oldprio, oldpolicy = -1, on_rq, running;
4707 unsigned long flags;
4708 const struct sched_class *prev_class;
4709 struct rq *rq;
4710 int reset_on_fork;
4711
4712 /* may grab non-irq protected spin_locks */
4713 BUG_ON(in_interrupt());
4714 recheck:
4715 /* double check policy once rq lock held */
4716 if (policy < 0) {
4717 reset_on_fork = p->sched_reset_on_fork;
4718 policy = oldpolicy = p->policy;
4719 } else {
4720 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4721 policy &= ~SCHED_RESET_ON_FORK;
4722
4723 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4724 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4725 policy != SCHED_IDLE)
4726 return -EINVAL;
4727 }
4728
4729 /*
4730 * Valid priorities for SCHED_FIFO and SCHED_RR are
4731 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4732 * SCHED_BATCH and SCHED_IDLE is 0.
4733 */
4734 if (param->sched_priority < 0 ||
4735 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4736 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4737 return -EINVAL;
4738 if (rt_policy(policy) != (param->sched_priority != 0))
4739 return -EINVAL;
4740
4741 /*
4742 * Allow unprivileged RT tasks to decrease priority:
4743 */
4744 if (user && !capable(CAP_SYS_NICE)) {
4745 if (rt_policy(policy)) {
4746 unsigned long rlim_rtprio =
4747 task_rlimit(p, RLIMIT_RTPRIO);
4748
4749 /* can't set/change the rt policy */
4750 if (policy != p->policy && !rlim_rtprio)
4751 return -EPERM;
4752
4753 /* can't increase priority */
4754 if (param->sched_priority > p->rt_priority &&
4755 param->sched_priority > rlim_rtprio)
4756 return -EPERM;
4757 }
4758 /*
4759 * Like positive nice levels, dont allow tasks to
4760 * move out of SCHED_IDLE either:
4761 */
4762 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4763 return -EPERM;
4764
4765 /* can't change other user's priorities */
4766 if (!check_same_owner(p))
4767 return -EPERM;
4768
4769 /* Normal users shall not reset the sched_reset_on_fork flag */
4770 if (p->sched_reset_on_fork && !reset_on_fork)
4771 return -EPERM;
4772 }
4773
4774 if (user) {
4775 retval = security_task_setscheduler(p, policy, param);
4776 if (retval)
4777 return retval;
4778 }
4779
4780 /*
4781 * make sure no PI-waiters arrive (or leave) while we are
4782 * changing the priority of the task:
4783 */
4784 raw_spin_lock_irqsave(&p->pi_lock, flags);
4785 /*
4786 * To be able to change p->policy safely, the apropriate
4787 * runqueue lock must be held.
4788 */
4789 rq = __task_rq_lock(p);
4790
4791 /*
4792 * Changing the policy of the stop threads its a very bad idea
4793 */
4794 if (p == rq->stop) {
4795 __task_rq_unlock(rq);
4796 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4797 return -EINVAL;
4798 }
4799
4800 #ifdef CONFIG_RT_GROUP_SCHED
4801 if (user) {
4802 /*
4803 * Do not allow realtime tasks into groups that have no runtime
4804 * assigned.
4805 */
4806 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4807 task_group(p)->rt_bandwidth.rt_runtime == 0) {
4808 __task_rq_unlock(rq);
4809 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4810 return -EPERM;
4811 }
4812 }
4813 #endif
4814
4815 /* recheck policy now with rq lock held */
4816 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4817 policy = oldpolicy = -1;
4818 __task_rq_unlock(rq);
4819 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4820 goto recheck;
4821 }
4822 on_rq = p->se.on_rq;
4823 running = task_current(rq, p);
4824 if (on_rq)
4825 deactivate_task(rq, p, 0);
4826 if (running)
4827 p->sched_class->put_prev_task(rq, p);
4828
4829 p->sched_reset_on_fork = reset_on_fork;
4830
4831 oldprio = p->prio;
4832 prev_class = p->sched_class;
4833 __setscheduler(rq, p, policy, param->sched_priority);
4834
4835 if (running)
4836 p->sched_class->set_curr_task(rq);
4837 if (on_rq) {
4838 activate_task(rq, p, 0);
4839
4840 check_class_changed(rq, p, prev_class, oldprio, running);
4841 }
4842 __task_rq_unlock(rq);
4843 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4844
4845 rt_mutex_adjust_pi(p);
4846
4847 return 0;
4848 }
4849
4850 /**
4851 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4852 * @p: the task in question.
4853 * @policy: new policy.
4854 * @param: structure containing the new RT priority.
4855 *
4856 * NOTE that the task may be already dead.
4857 */
4858 int sched_setscheduler(struct task_struct *p, int policy,
4859 struct sched_param *param)
4860 {
4861 return __sched_setscheduler(p, policy, param, true);
4862 }
4863 EXPORT_SYMBOL_GPL(sched_setscheduler);
4864
4865 /**
4866 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4867 * @p: the task in question.
4868 * @policy: new policy.
4869 * @param: structure containing the new RT priority.
4870 *
4871 * Just like sched_setscheduler, only don't bother checking if the
4872 * current context has permission. For example, this is needed in
4873 * stop_machine(): we create temporary high priority worker threads,
4874 * but our caller might not have that capability.
4875 */
4876 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4877 struct sched_param *param)
4878 {
4879 return __sched_setscheduler(p, policy, param, false);
4880 }
4881
4882 static int
4883 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4884 {
4885 struct sched_param lparam;
4886 struct task_struct *p;
4887 int retval;
4888
4889 if (!param || pid < 0)
4890 return -EINVAL;
4891 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4892 return -EFAULT;
4893
4894 rcu_read_lock();
4895 retval = -ESRCH;
4896 p = find_process_by_pid(pid);
4897 if (p != NULL)
4898 retval = sched_setscheduler(p, policy, &lparam);
4899 rcu_read_unlock();
4900
4901 return retval;
4902 }
4903
4904 /**
4905 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4906 * @pid: the pid in question.
4907 * @policy: new policy.
4908 * @param: structure containing the new RT priority.
4909 */
4910 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4911 struct sched_param __user *, param)
4912 {
4913 /* negative values for policy are not valid */
4914 if (policy < 0)
4915 return -EINVAL;
4916
4917 return do_sched_setscheduler(pid, policy, param);
4918 }
4919
4920 /**
4921 * sys_sched_setparam - set/change the RT priority of a thread
4922 * @pid: the pid in question.
4923 * @param: structure containing the new RT priority.
4924 */
4925 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4926 {
4927 return do_sched_setscheduler(pid, -1, param);
4928 }
4929
4930 /**
4931 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4932 * @pid: the pid in question.
4933 */
4934 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4935 {
4936 struct task_struct *p;
4937 int retval;
4938
4939 if (pid < 0)
4940 return -EINVAL;
4941
4942 retval = -ESRCH;
4943 rcu_read_lock();
4944 p = find_process_by_pid(pid);
4945 if (p) {
4946 retval = security_task_getscheduler(p);
4947 if (!retval)
4948 retval = p->policy
4949 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4950 }
4951 rcu_read_unlock();
4952 return retval;
4953 }
4954
4955 /**
4956 * sys_sched_getparam - get the RT priority of a thread
4957 * @pid: the pid in question.
4958 * @param: structure containing the RT priority.
4959 */
4960 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4961 {
4962 struct sched_param lp;
4963 struct task_struct *p;
4964 int retval;
4965
4966 if (!param || pid < 0)
4967 return -EINVAL;
4968
4969 rcu_read_lock();
4970 p = find_process_by_pid(pid);
4971 retval = -ESRCH;
4972 if (!p)
4973 goto out_unlock;
4974
4975 retval = security_task_getscheduler(p);
4976 if (retval)
4977 goto out_unlock;
4978
4979 lp.sched_priority = p->rt_priority;
4980 rcu_read_unlock();
4981
4982 /*
4983 * This one might sleep, we cannot do it with a spinlock held ...
4984 */
4985 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4986
4987 return retval;
4988
4989 out_unlock:
4990 rcu_read_unlock();
4991 return retval;
4992 }
4993
4994 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4995 {
4996 cpumask_var_t cpus_allowed, new_mask;
4997 struct task_struct *p;
4998 int retval;
4999
5000 get_online_cpus();
5001 rcu_read_lock();
5002
5003 p = find_process_by_pid(pid);
5004 if (!p) {
5005 rcu_read_unlock();
5006 put_online_cpus();
5007 return -ESRCH;
5008 }
5009
5010 /* Prevent p going away */
5011 get_task_struct(p);
5012 rcu_read_unlock();
5013
5014 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5015 retval = -ENOMEM;
5016 goto out_put_task;
5017 }
5018 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5019 retval = -ENOMEM;
5020 goto out_free_cpus_allowed;
5021 }
5022 retval = -EPERM;
5023 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
5024 goto out_unlock;
5025
5026 retval = security_task_setscheduler(p, 0, NULL);
5027 if (retval)
5028 goto out_unlock;
5029
5030 cpuset_cpus_allowed(p, cpus_allowed);
5031 cpumask_and(new_mask, in_mask, cpus_allowed);
5032 again:
5033 retval = set_cpus_allowed_ptr(p, new_mask);
5034
5035 if (!retval) {
5036 cpuset_cpus_allowed(p, cpus_allowed);
5037 if (!cpumask_subset(new_mask, cpus_allowed)) {
5038 /*
5039 * We must have raced with a concurrent cpuset
5040 * update. Just reset the cpus_allowed to the
5041 * cpuset's cpus_allowed
5042 */
5043 cpumask_copy(new_mask, cpus_allowed);
5044 goto again;
5045 }
5046 }
5047 out_unlock:
5048 free_cpumask_var(new_mask);
5049 out_free_cpus_allowed:
5050 free_cpumask_var(cpus_allowed);
5051 out_put_task:
5052 put_task_struct(p);
5053 put_online_cpus();
5054 return retval;
5055 }
5056
5057 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5058 struct cpumask *new_mask)
5059 {
5060 if (len < cpumask_size())
5061 cpumask_clear(new_mask);
5062 else if (len > cpumask_size())
5063 len = cpumask_size();
5064
5065 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5066 }
5067
5068 /**
5069 * sys_sched_setaffinity - set the cpu affinity of a process
5070 * @pid: pid of the process
5071 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5072 * @user_mask_ptr: user-space pointer to the new cpu mask
5073 */
5074 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5075 unsigned long __user *, user_mask_ptr)
5076 {
5077 cpumask_var_t new_mask;
5078 int retval;
5079
5080 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5081 return -ENOMEM;
5082
5083 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5084 if (retval == 0)
5085 retval = sched_setaffinity(pid, new_mask);
5086 free_cpumask_var(new_mask);
5087 return retval;
5088 }
5089
5090 long sched_getaffinity(pid_t pid, struct cpumask *mask)
5091 {
5092 struct task_struct *p;
5093 unsigned long flags;
5094 struct rq *rq;
5095 int retval;
5096
5097 get_online_cpus();
5098 rcu_read_lock();
5099
5100 retval = -ESRCH;
5101 p = find_process_by_pid(pid);
5102 if (!p)
5103 goto out_unlock;
5104
5105 retval = security_task_getscheduler(p);
5106 if (retval)
5107 goto out_unlock;
5108
5109 rq = task_rq_lock(p, &flags);
5110 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
5111 task_rq_unlock(rq, &flags);
5112
5113 out_unlock:
5114 rcu_read_unlock();
5115 put_online_cpus();
5116
5117 return retval;
5118 }
5119
5120 /**
5121 * sys_sched_getaffinity - get the cpu affinity of a process
5122 * @pid: pid of the process
5123 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5124 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5125 */
5126 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5127 unsigned long __user *, user_mask_ptr)
5128 {
5129 int ret;
5130 cpumask_var_t mask;
5131
5132 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
5133 return -EINVAL;
5134 if (len & (sizeof(unsigned long)-1))
5135 return -EINVAL;
5136
5137 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5138 return -ENOMEM;
5139
5140 ret = sched_getaffinity(pid, mask);
5141 if (ret == 0) {
5142 size_t retlen = min_t(size_t, len, cpumask_size());
5143
5144 if (copy_to_user(user_mask_ptr, mask, retlen))
5145 ret = -EFAULT;
5146 else
5147 ret = retlen;
5148 }
5149 free_cpumask_var(mask);
5150
5151 return ret;
5152 }
5153
5154 /**
5155 * sys_sched_yield - yield the current processor to other threads.
5156 *
5157 * This function yields the current CPU to other tasks. If there are no
5158 * other threads running on this CPU then this function will return.
5159 */
5160 SYSCALL_DEFINE0(sched_yield)
5161 {
5162 struct rq *rq = this_rq_lock();
5163
5164 schedstat_inc(rq, yld_count);
5165 current->sched_class->yield_task(rq);
5166
5167 /*
5168 * Since we are going to call schedule() anyway, there's
5169 * no need to preempt or enable interrupts:
5170 */
5171 __release(rq->lock);
5172 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5173 do_raw_spin_unlock(&rq->lock);
5174 preempt_enable_no_resched();
5175
5176 schedule();
5177
5178 return 0;
5179 }
5180
5181 static inline int should_resched(void)
5182 {
5183 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5184 }
5185
5186 static void __cond_resched(void)
5187 {
5188 add_preempt_count(PREEMPT_ACTIVE);
5189 schedule();
5190 sub_preempt_count(PREEMPT_ACTIVE);
5191 }
5192
5193 int __sched _cond_resched(void)
5194 {
5195 if (should_resched()) {
5196 __cond_resched();
5197 return 1;
5198 }
5199 return 0;
5200 }
5201 EXPORT_SYMBOL(_cond_resched);
5202
5203 /*
5204 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5205 * call schedule, and on return reacquire the lock.
5206 *
5207 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5208 * operations here to prevent schedule() from being called twice (once via
5209 * spin_unlock(), once by hand).
5210 */
5211 int __cond_resched_lock(spinlock_t *lock)
5212 {
5213 int resched = should_resched();
5214 int ret = 0;
5215
5216 lockdep_assert_held(lock);
5217
5218 if (spin_needbreak(lock) || resched) {
5219 spin_unlock(lock);
5220 if (resched)
5221 __cond_resched();
5222 else
5223 cpu_relax();
5224 ret = 1;
5225 spin_lock(lock);
5226 }
5227 return ret;
5228 }
5229 EXPORT_SYMBOL(__cond_resched_lock);
5230
5231 int __sched __cond_resched_softirq(void)
5232 {
5233 BUG_ON(!in_softirq());
5234
5235 if (should_resched()) {
5236 local_bh_enable();
5237 __cond_resched();
5238 local_bh_disable();
5239 return 1;
5240 }
5241 return 0;
5242 }
5243 EXPORT_SYMBOL(__cond_resched_softirq);
5244
5245 /**
5246 * yield - yield the current processor to other threads.
5247 *
5248 * This is a shortcut for kernel-space yielding - it marks the
5249 * thread runnable and calls sys_sched_yield().
5250 */
5251 void __sched yield(void)
5252 {
5253 set_current_state(TASK_RUNNING);
5254 sys_sched_yield();
5255 }
5256 EXPORT_SYMBOL(yield);
5257
5258 /*
5259 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5260 * that process accounting knows that this is a task in IO wait state.
5261 */
5262 void __sched io_schedule(void)
5263 {
5264 struct rq *rq = raw_rq();
5265
5266 delayacct_blkio_start();
5267 atomic_inc(&rq->nr_iowait);
5268 current->in_iowait = 1;
5269 schedule();
5270 current->in_iowait = 0;
5271 atomic_dec(&rq->nr_iowait);
5272 delayacct_blkio_end();
5273 }
5274 EXPORT_SYMBOL(io_schedule);
5275
5276 long __sched io_schedule_timeout(long timeout)
5277 {
5278 struct rq *rq = raw_rq();
5279 long ret;
5280
5281 delayacct_blkio_start();
5282 atomic_inc(&rq->nr_iowait);
5283 current->in_iowait = 1;
5284 ret = schedule_timeout(timeout);
5285 current->in_iowait = 0;
5286 atomic_dec(&rq->nr_iowait);
5287 delayacct_blkio_end();
5288 return ret;
5289 }
5290
5291 /**
5292 * sys_sched_get_priority_max - return maximum RT priority.
5293 * @policy: scheduling class.
5294 *
5295 * this syscall returns the maximum rt_priority that can be used
5296 * by a given scheduling class.
5297 */
5298 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5299 {
5300 int ret = -EINVAL;
5301
5302 switch (policy) {
5303 case SCHED_FIFO:
5304 case SCHED_RR:
5305 ret = MAX_USER_RT_PRIO-1;
5306 break;
5307 case SCHED_NORMAL:
5308 case SCHED_BATCH:
5309 case SCHED_IDLE:
5310 ret = 0;
5311 break;
5312 }
5313 return ret;
5314 }
5315
5316 /**
5317 * sys_sched_get_priority_min - return minimum RT priority.
5318 * @policy: scheduling class.
5319 *
5320 * this syscall returns the minimum rt_priority that can be used
5321 * by a given scheduling class.
5322 */
5323 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5324 {
5325 int ret = -EINVAL;
5326
5327 switch (policy) {
5328 case SCHED_FIFO:
5329 case SCHED_RR:
5330 ret = 1;
5331 break;
5332 case SCHED_NORMAL:
5333 case SCHED_BATCH:
5334 case SCHED_IDLE:
5335 ret = 0;
5336 }
5337 return ret;
5338 }
5339
5340 /**
5341 * sys_sched_rr_get_interval - return the default timeslice of a process.
5342 * @pid: pid of the process.
5343 * @interval: userspace pointer to the timeslice value.
5344 *
5345 * this syscall writes the default timeslice value of a given process
5346 * into the user-space timespec buffer. A value of '0' means infinity.
5347 */
5348 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5349 struct timespec __user *, interval)
5350 {
5351 struct task_struct *p;
5352 unsigned int time_slice;
5353 unsigned long flags;
5354 struct rq *rq;
5355 int retval;
5356 struct timespec t;
5357
5358 if (pid < 0)
5359 return -EINVAL;
5360
5361 retval = -ESRCH;
5362 rcu_read_lock();
5363 p = find_process_by_pid(pid);
5364 if (!p)
5365 goto out_unlock;
5366
5367 retval = security_task_getscheduler(p);
5368 if (retval)
5369 goto out_unlock;
5370
5371 rq = task_rq_lock(p, &flags);
5372 time_slice = p->sched_class->get_rr_interval(rq, p);
5373 task_rq_unlock(rq, &flags);
5374
5375 rcu_read_unlock();
5376 jiffies_to_timespec(time_slice, &t);
5377 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5378 return retval;
5379
5380 out_unlock:
5381 rcu_read_unlock();
5382 return retval;
5383 }
5384
5385 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5386
5387 void sched_show_task(struct task_struct *p)
5388 {
5389 unsigned long free = 0;
5390 unsigned state;
5391
5392 state = p->state ? __ffs(p->state) + 1 : 0;
5393 printk(KERN_INFO "%-13.13s %c", p->comm,
5394 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5395 #if BITS_PER_LONG == 32
5396 if (state == TASK_RUNNING)
5397 printk(KERN_CONT " running ");
5398 else
5399 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5400 #else
5401 if (state == TASK_RUNNING)
5402 printk(KERN_CONT " running task ");
5403 else
5404 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5405 #endif
5406 #ifdef CONFIG_DEBUG_STACK_USAGE
5407 free = stack_not_used(p);
5408 #endif
5409 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5410 task_pid_nr(p), task_pid_nr(p->real_parent),
5411 (unsigned long)task_thread_info(p)->flags);
5412
5413 show_stack(p, NULL);
5414 }
5415
5416 void show_state_filter(unsigned long state_filter)
5417 {
5418 struct task_struct *g, *p;
5419
5420 #if BITS_PER_LONG == 32
5421 printk(KERN_INFO
5422 " task PC stack pid father\n");
5423 #else
5424 printk(KERN_INFO
5425 " task PC stack pid father\n");
5426 #endif
5427 read_lock(&tasklist_lock);
5428 do_each_thread(g, p) {
5429 /*
5430 * reset the NMI-timeout, listing all files on a slow
5431 * console might take alot of time:
5432 */
5433 touch_nmi_watchdog();
5434 if (!state_filter || (p->state & state_filter))
5435 sched_show_task(p);
5436 } while_each_thread(g, p);
5437
5438 touch_all_softlockup_watchdogs();
5439
5440 #ifdef CONFIG_SCHED_DEBUG
5441 sysrq_sched_debug_show();
5442 #endif
5443 read_unlock(&tasklist_lock);
5444 /*
5445 * Only show locks if all tasks are dumped:
5446 */
5447 if (!state_filter)
5448 debug_show_all_locks();
5449 }
5450
5451 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5452 {
5453 idle->sched_class = &idle_sched_class;
5454 }
5455
5456 /**
5457 * init_idle - set up an idle thread for a given CPU
5458 * @idle: task in question
5459 * @cpu: cpu the idle task belongs to
5460 *
5461 * NOTE: this function does not set the idle thread's NEED_RESCHED
5462 * flag, to make booting more robust.
5463 */
5464 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5465 {
5466 struct rq *rq = cpu_rq(cpu);
5467 unsigned long flags;
5468
5469 raw_spin_lock_irqsave(&rq->lock, flags);
5470
5471 __sched_fork(idle);
5472 idle->state = TASK_RUNNING;
5473 idle->se.exec_start = sched_clock();
5474
5475 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
5476 __set_task_cpu(idle, cpu);
5477
5478 rq->curr = rq->idle = idle;
5479 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5480 idle->oncpu = 1;
5481 #endif
5482 raw_spin_unlock_irqrestore(&rq->lock, flags);
5483
5484 /* Set the preempt count _outside_ the spinlocks! */
5485 #if defined(CONFIG_PREEMPT)
5486 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5487 #else
5488 task_thread_info(idle)->preempt_count = 0;
5489 #endif
5490 /*
5491 * The idle tasks have their own, simple scheduling class:
5492 */
5493 idle->sched_class = &idle_sched_class;
5494 ftrace_graph_init_task(idle);
5495 }
5496
5497 /*
5498 * In a system that switches off the HZ timer nohz_cpu_mask
5499 * indicates which cpus entered this state. This is used
5500 * in the rcu update to wait only for active cpus. For system
5501 * which do not switch off the HZ timer nohz_cpu_mask should
5502 * always be CPU_BITS_NONE.
5503 */
5504 cpumask_var_t nohz_cpu_mask;
5505
5506 /*
5507 * Increase the granularity value when there are more CPUs,
5508 * because with more CPUs the 'effective latency' as visible
5509 * to users decreases. But the relationship is not linear,
5510 * so pick a second-best guess by going with the log2 of the
5511 * number of CPUs.
5512 *
5513 * This idea comes from the SD scheduler of Con Kolivas:
5514 */
5515 static int get_update_sysctl_factor(void)
5516 {
5517 unsigned int cpus = min_t(int, num_online_cpus(), 8);
5518 unsigned int factor;
5519
5520 switch (sysctl_sched_tunable_scaling) {
5521 case SCHED_TUNABLESCALING_NONE:
5522 factor = 1;
5523 break;
5524 case SCHED_TUNABLESCALING_LINEAR:
5525 factor = cpus;
5526 break;
5527 case SCHED_TUNABLESCALING_LOG:
5528 default:
5529 factor = 1 + ilog2(cpus);
5530 break;
5531 }
5532
5533 return factor;
5534 }
5535
5536 static void update_sysctl(void)
5537 {
5538 unsigned int factor = get_update_sysctl_factor();
5539
5540 #define SET_SYSCTL(name) \
5541 (sysctl_##name = (factor) * normalized_sysctl_##name)
5542 SET_SYSCTL(sched_min_granularity);
5543 SET_SYSCTL(sched_latency);
5544 SET_SYSCTL(sched_wakeup_granularity);
5545 SET_SYSCTL(sched_shares_ratelimit);
5546 #undef SET_SYSCTL
5547 }
5548
5549 static inline void sched_init_granularity(void)
5550 {
5551 update_sysctl();
5552 }
5553
5554 #ifdef CONFIG_SMP
5555 /*
5556 * This is how migration works:
5557 *
5558 * 1) we invoke migration_cpu_stop() on the target CPU using
5559 * stop_one_cpu().
5560 * 2) stopper starts to run (implicitly forcing the migrated thread
5561 * off the CPU)
5562 * 3) it checks whether the migrated task is still in the wrong runqueue.
5563 * 4) if it's in the wrong runqueue then the migration thread removes
5564 * it and puts it into the right queue.
5565 * 5) stopper completes and stop_one_cpu() returns and the migration
5566 * is done.
5567 */
5568
5569 /*
5570 * Change a given task's CPU affinity. Migrate the thread to a
5571 * proper CPU and schedule it away if the CPU it's executing on
5572 * is removed from the allowed bitmask.
5573 *
5574 * NOTE: the caller must have a valid reference to the task, the
5575 * task must not exit() & deallocate itself prematurely. The
5576 * call is not atomic; no spinlocks may be held.
5577 */
5578 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
5579 {
5580 unsigned long flags;
5581 struct rq *rq;
5582 unsigned int dest_cpu;
5583 int ret = 0;
5584
5585 /*
5586 * Serialize against TASK_WAKING so that ttwu() and wunt() can
5587 * drop the rq->lock and still rely on ->cpus_allowed.
5588 */
5589 again:
5590 while (task_is_waking(p))
5591 cpu_relax();
5592 rq = task_rq_lock(p, &flags);
5593 if (task_is_waking(p)) {
5594 task_rq_unlock(rq, &flags);
5595 goto again;
5596 }
5597
5598 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
5599 ret = -EINVAL;
5600 goto out;
5601 }
5602
5603 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5604 !cpumask_equal(&p->cpus_allowed, new_mask))) {
5605 ret = -EINVAL;
5606 goto out;
5607 }
5608
5609 if (p->sched_class->set_cpus_allowed)
5610 p->sched_class->set_cpus_allowed(p, new_mask);
5611 else {
5612 cpumask_copy(&p->cpus_allowed, new_mask);
5613 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5614 }
5615
5616 /* Can the task run on the task's current CPU? If so, we're done */
5617 if (cpumask_test_cpu(task_cpu(p), new_mask))
5618 goto out;
5619
5620 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5621 if (migrate_task(p, dest_cpu)) {
5622 struct migration_arg arg = { p, dest_cpu };
5623 /* Need help from migration thread: drop lock and wait. */
5624 task_rq_unlock(rq, &flags);
5625 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
5626 tlb_migrate_finish(p->mm);
5627 return 0;
5628 }
5629 out:
5630 task_rq_unlock(rq, &flags);
5631
5632 return ret;
5633 }
5634 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5635
5636 /*
5637 * Move (not current) task off this cpu, onto dest cpu. We're doing
5638 * this because either it can't run here any more (set_cpus_allowed()
5639 * away from this CPU, or CPU going down), or because we're
5640 * attempting to rebalance this task on exec (sched_exec).
5641 *
5642 * So we race with normal scheduler movements, but that's OK, as long
5643 * as the task is no longer on this CPU.
5644 *
5645 * Returns non-zero if task was successfully migrated.
5646 */
5647 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5648 {
5649 struct rq *rq_dest, *rq_src;
5650 int ret = 0;
5651
5652 if (unlikely(!cpu_active(dest_cpu)))
5653 return ret;
5654
5655 rq_src = cpu_rq(src_cpu);
5656 rq_dest = cpu_rq(dest_cpu);
5657
5658 double_rq_lock(rq_src, rq_dest);
5659 /* Already moved. */
5660 if (task_cpu(p) != src_cpu)
5661 goto done;
5662 /* Affinity changed (again). */
5663 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
5664 goto fail;
5665
5666 /*
5667 * If we're not on a rq, the next wake-up will ensure we're
5668 * placed properly.
5669 */
5670 if (p->se.on_rq) {
5671 deactivate_task(rq_src, p, 0);
5672 set_task_cpu(p, dest_cpu);
5673 activate_task(rq_dest, p, 0);
5674 check_preempt_curr(rq_dest, p, 0);
5675 }
5676 done:
5677 ret = 1;
5678 fail:
5679 double_rq_unlock(rq_src, rq_dest);
5680 return ret;
5681 }
5682
5683 /*
5684 * migration_cpu_stop - this will be executed by a highprio stopper thread
5685 * and performs thread migration by bumping thread off CPU then
5686 * 'pushing' onto another runqueue.
5687 */
5688 static int migration_cpu_stop(void *data)
5689 {
5690 struct migration_arg *arg = data;
5691
5692 /*
5693 * The original target cpu might have gone down and we might
5694 * be on another cpu but it doesn't matter.
5695 */
5696 local_irq_disable();
5697 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5698 local_irq_enable();
5699 return 0;
5700 }
5701
5702 #ifdef CONFIG_HOTPLUG_CPU
5703 /*
5704 * Figure out where task on dead CPU should go, use force if necessary.
5705 */
5706 void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5707 {
5708 struct rq *rq = cpu_rq(dead_cpu);
5709 int needs_cpu, uninitialized_var(dest_cpu);
5710 unsigned long flags;
5711
5712 local_irq_save(flags);
5713
5714 raw_spin_lock(&rq->lock);
5715 needs_cpu = (task_cpu(p) == dead_cpu) && (p->state != TASK_WAKING);
5716 if (needs_cpu)
5717 dest_cpu = select_fallback_rq(dead_cpu, p);
5718 raw_spin_unlock(&rq->lock);
5719 /*
5720 * It can only fail if we race with set_cpus_allowed(),
5721 * in the racer should migrate the task anyway.
5722 */
5723 if (needs_cpu)
5724 __migrate_task(p, dead_cpu, dest_cpu);
5725 local_irq_restore(flags);
5726 }
5727
5728 /*
5729 * While a dead CPU has no uninterruptible tasks queued at this point,
5730 * it might still have a nonzero ->nr_uninterruptible counter, because
5731 * for performance reasons the counter is not stricly tracking tasks to
5732 * their home CPUs. So we just add the counter to another CPU's counter,
5733 * to keep the global sum constant after CPU-down:
5734 */
5735 static void migrate_nr_uninterruptible(struct rq *rq_src)
5736 {
5737 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
5738 unsigned long flags;
5739
5740 local_irq_save(flags);
5741 double_rq_lock(rq_src, rq_dest);
5742 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5743 rq_src->nr_uninterruptible = 0;
5744 double_rq_unlock(rq_src, rq_dest);
5745 local_irq_restore(flags);
5746 }
5747
5748 /* Run through task list and migrate tasks from the dead cpu. */
5749 static void migrate_live_tasks(int src_cpu)
5750 {
5751 struct task_struct *p, *t;
5752
5753 read_lock(&tasklist_lock);
5754
5755 do_each_thread(t, p) {
5756 if (p == current)
5757 continue;
5758
5759 if (task_cpu(p) == src_cpu)
5760 move_task_off_dead_cpu(src_cpu, p);
5761 } while_each_thread(t, p);
5762
5763 read_unlock(&tasklist_lock);
5764 }
5765
5766 /*
5767 * Schedules idle task to be the next runnable task on current CPU.
5768 * It does so by boosting its priority to highest possible.
5769 * Used by CPU offline code.
5770 */
5771 void sched_idle_next(void)
5772 {
5773 int this_cpu = smp_processor_id();
5774 struct rq *rq = cpu_rq(this_cpu);
5775 struct task_struct *p = rq->idle;
5776 unsigned long flags;
5777
5778 /* cpu has to be offline */
5779 BUG_ON(cpu_online(this_cpu));
5780
5781 /*
5782 * Strictly not necessary since rest of the CPUs are stopped by now
5783 * and interrupts disabled on the current cpu.
5784 */
5785 raw_spin_lock_irqsave(&rq->lock, flags);
5786
5787 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5788
5789 activate_task(rq, p, 0);
5790
5791 raw_spin_unlock_irqrestore(&rq->lock, flags);
5792 }
5793
5794 /*
5795 * Ensures that the idle task is using init_mm right before its cpu goes
5796 * offline.
5797 */
5798 void idle_task_exit(void)
5799 {
5800 struct mm_struct *mm = current->active_mm;
5801
5802 BUG_ON(cpu_online(smp_processor_id()));
5803
5804 if (mm != &init_mm)
5805 switch_mm(mm, &init_mm, current);
5806 mmdrop(mm);
5807 }
5808
5809 /* called under rq->lock with disabled interrupts */
5810 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5811 {
5812 struct rq *rq = cpu_rq(dead_cpu);
5813
5814 /* Must be exiting, otherwise would be on tasklist. */
5815 BUG_ON(!p->exit_state);
5816
5817 /* Cannot have done final schedule yet: would have vanished. */
5818 BUG_ON(p->state == TASK_DEAD);
5819
5820 get_task_struct(p);
5821
5822 /*
5823 * Drop lock around migration; if someone else moves it,
5824 * that's OK. No task can be added to this CPU, so iteration is
5825 * fine.
5826 */
5827 raw_spin_unlock_irq(&rq->lock);
5828 move_task_off_dead_cpu(dead_cpu, p);
5829 raw_spin_lock_irq(&rq->lock);
5830
5831 put_task_struct(p);
5832 }
5833
5834 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5835 static void migrate_dead_tasks(unsigned int dead_cpu)
5836 {
5837 struct rq *rq = cpu_rq(dead_cpu);
5838 struct task_struct *next;
5839
5840 for ( ; ; ) {
5841 if (!rq->nr_running)
5842 break;
5843 next = pick_next_task(rq);
5844 if (!next)
5845 break;
5846 next->sched_class->put_prev_task(rq, next);
5847 migrate_dead(dead_cpu, next);
5848
5849 }
5850 }
5851
5852 /*
5853 * remove the tasks which were accounted by rq from calc_load_tasks.
5854 */
5855 static void calc_global_load_remove(struct rq *rq)
5856 {
5857 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5858 rq->calc_load_active = 0;
5859 }
5860 #endif /* CONFIG_HOTPLUG_CPU */
5861
5862 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5863
5864 static struct ctl_table sd_ctl_dir[] = {
5865 {
5866 .procname = "sched_domain",
5867 .mode = 0555,
5868 },
5869 {}
5870 };
5871
5872 static struct ctl_table sd_ctl_root[] = {
5873 {
5874 .procname = "kernel",
5875 .mode = 0555,
5876 .child = sd_ctl_dir,
5877 },
5878 {}
5879 };
5880
5881 static struct ctl_table *sd_alloc_ctl_entry(int n)
5882 {
5883 struct ctl_table *entry =
5884 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5885
5886 return entry;
5887 }
5888
5889 static void sd_free_ctl_entry(struct ctl_table **tablep)
5890 {
5891 struct ctl_table *entry;
5892
5893 /*
5894 * In the intermediate directories, both the child directory and
5895 * procname are dynamically allocated and could fail but the mode
5896 * will always be set. In the lowest directory the names are
5897 * static strings and all have proc handlers.
5898 */
5899 for (entry = *tablep; entry->mode; entry++) {
5900 if (entry->child)
5901 sd_free_ctl_entry(&entry->child);
5902 if (entry->proc_handler == NULL)
5903 kfree(entry->procname);
5904 }
5905
5906 kfree(*tablep);
5907 *tablep = NULL;
5908 }
5909
5910 static void
5911 set_table_entry(struct ctl_table *entry,
5912 const char *procname, void *data, int maxlen,
5913 mode_t mode, proc_handler *proc_handler)
5914 {
5915 entry->procname = procname;
5916 entry->data = data;
5917 entry->maxlen = maxlen;
5918 entry->mode = mode;
5919 entry->proc_handler = proc_handler;
5920 }
5921
5922 static struct ctl_table *
5923 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5924 {
5925 struct ctl_table *table = sd_alloc_ctl_entry(13);
5926
5927 if (table == NULL)
5928 return NULL;
5929
5930 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5931 sizeof(long), 0644, proc_doulongvec_minmax);
5932 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5933 sizeof(long), 0644, proc_doulongvec_minmax);
5934 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5935 sizeof(int), 0644, proc_dointvec_minmax);
5936 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5937 sizeof(int), 0644, proc_dointvec_minmax);
5938 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5939 sizeof(int), 0644, proc_dointvec_minmax);
5940 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5941 sizeof(int), 0644, proc_dointvec_minmax);
5942 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5943 sizeof(int), 0644, proc_dointvec_minmax);
5944 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5945 sizeof(int), 0644, proc_dointvec_minmax);
5946 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5947 sizeof(int), 0644, proc_dointvec_minmax);
5948 set_table_entry(&table[9], "cache_nice_tries",
5949 &sd->cache_nice_tries,
5950 sizeof(int), 0644, proc_dointvec_minmax);
5951 set_table_entry(&table[10], "flags", &sd->flags,
5952 sizeof(int), 0644, proc_dointvec_minmax);
5953 set_table_entry(&table[11], "name", sd->name,
5954 CORENAME_MAX_SIZE, 0444, proc_dostring);
5955 /* &table[12] is terminator */
5956
5957 return table;
5958 }
5959
5960 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5961 {
5962 struct ctl_table *entry, *table;
5963 struct sched_domain *sd;
5964 int domain_num = 0, i;
5965 char buf[32];
5966
5967 for_each_domain(cpu, sd)
5968 domain_num++;
5969 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5970 if (table == NULL)
5971 return NULL;
5972
5973 i = 0;
5974 for_each_domain(cpu, sd) {
5975 snprintf(buf, 32, "domain%d", i);
5976 entry->procname = kstrdup(buf, GFP_KERNEL);
5977 entry->mode = 0555;
5978 entry->child = sd_alloc_ctl_domain_table(sd);
5979 entry++;
5980 i++;
5981 }
5982 return table;
5983 }
5984
5985 static struct ctl_table_header *sd_sysctl_header;
5986 static void register_sched_domain_sysctl(void)
5987 {
5988 int i, cpu_num = num_possible_cpus();
5989 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5990 char buf[32];
5991
5992 WARN_ON(sd_ctl_dir[0].child);
5993 sd_ctl_dir[0].child = entry;
5994
5995 if (entry == NULL)
5996 return;
5997
5998 for_each_possible_cpu(i) {
5999 snprintf(buf, 32, "cpu%d", i);
6000 entry->procname = kstrdup(buf, GFP_KERNEL);
6001 entry->mode = 0555;
6002 entry->child = sd_alloc_ctl_cpu_table(i);
6003 entry++;
6004 }
6005
6006 WARN_ON(sd_sysctl_header);
6007 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6008 }
6009
6010 /* may be called multiple times per register */
6011 static void unregister_sched_domain_sysctl(void)
6012 {
6013 if (sd_sysctl_header)
6014 unregister_sysctl_table(sd_sysctl_header);
6015 sd_sysctl_header = NULL;
6016 if (sd_ctl_dir[0].child)
6017 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6018 }
6019 #else
6020 static void register_sched_domain_sysctl(void)
6021 {
6022 }
6023 static void unregister_sched_domain_sysctl(void)
6024 {
6025 }
6026 #endif
6027
6028 static void set_rq_online(struct rq *rq)
6029 {
6030 if (!rq->online) {
6031 const struct sched_class *class;
6032
6033 cpumask_set_cpu(rq->cpu, rq->rd->online);
6034 rq->online = 1;
6035
6036 for_each_class(class) {
6037 if (class->rq_online)
6038 class->rq_online(rq);
6039 }
6040 }
6041 }
6042
6043 static void set_rq_offline(struct rq *rq)
6044 {
6045 if (rq->online) {
6046 const struct sched_class *class;
6047
6048 for_each_class(class) {
6049 if (class->rq_offline)
6050 class->rq_offline(rq);
6051 }
6052
6053 cpumask_clear_cpu(rq->cpu, rq->rd->online);
6054 rq->online = 0;
6055 }
6056 }
6057
6058 /*
6059 * migration_call - callback that gets triggered when a CPU is added.
6060 * Here we can start up the necessary migration thread for the new CPU.
6061 */
6062 static int __cpuinit
6063 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6064 {
6065 int cpu = (long)hcpu;
6066 unsigned long flags;
6067 struct rq *rq = cpu_rq(cpu);
6068
6069 switch (action) {
6070
6071 case CPU_UP_PREPARE:
6072 case CPU_UP_PREPARE_FROZEN:
6073 rq->calc_load_update = calc_load_update;
6074 break;
6075
6076 case CPU_ONLINE:
6077 case CPU_ONLINE_FROZEN:
6078 /* Update our root-domain */
6079 raw_spin_lock_irqsave(&rq->lock, flags);
6080 if (rq->rd) {
6081 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6082
6083 set_rq_online(rq);
6084 }
6085 raw_spin_unlock_irqrestore(&rq->lock, flags);
6086 break;
6087
6088 #ifdef CONFIG_HOTPLUG_CPU
6089 case CPU_DEAD:
6090 case CPU_DEAD_FROZEN:
6091 migrate_live_tasks(cpu);
6092 /* Idle task back to normal (off runqueue, low prio) */
6093 raw_spin_lock_irq(&rq->lock);
6094 deactivate_task(rq, rq->idle, 0);
6095 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6096 rq->idle->sched_class = &idle_sched_class;
6097 migrate_dead_tasks(cpu);
6098 raw_spin_unlock_irq(&rq->lock);
6099 migrate_nr_uninterruptible(rq);
6100 BUG_ON(rq->nr_running != 0);
6101 calc_global_load_remove(rq);
6102 break;
6103
6104 case CPU_DYING:
6105 case CPU_DYING_FROZEN:
6106 /* Update our root-domain */
6107 raw_spin_lock_irqsave(&rq->lock, flags);
6108 if (rq->rd) {
6109 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6110 set_rq_offline(rq);
6111 }
6112 raw_spin_unlock_irqrestore(&rq->lock, flags);
6113 break;
6114 #endif
6115 }
6116 return NOTIFY_OK;
6117 }
6118
6119 /*
6120 * Register at high priority so that task migration (migrate_all_tasks)
6121 * happens before everything else. This has to be lower priority than
6122 * the notifier in the perf_event subsystem, though.
6123 */
6124 static struct notifier_block __cpuinitdata migration_notifier = {
6125 .notifier_call = migration_call,
6126 .priority = CPU_PRI_MIGRATION,
6127 };
6128
6129 static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
6130 unsigned long action, void *hcpu)
6131 {
6132 switch (action & ~CPU_TASKS_FROZEN) {
6133 case CPU_ONLINE:
6134 case CPU_DOWN_FAILED:
6135 set_cpu_active((long)hcpu, true);
6136 return NOTIFY_OK;
6137 default:
6138 return NOTIFY_DONE;
6139 }
6140 }
6141
6142 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
6143 unsigned long action, void *hcpu)
6144 {
6145 switch (action & ~CPU_TASKS_FROZEN) {
6146 case CPU_DOWN_PREPARE:
6147 set_cpu_active((long)hcpu, false);
6148 return NOTIFY_OK;
6149 default:
6150 return NOTIFY_DONE;
6151 }
6152 }
6153
6154 static int __init migration_init(void)
6155 {
6156 void *cpu = (void *)(long)smp_processor_id();
6157 int err;
6158
6159 /* Initialize migration for the boot CPU */
6160 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6161 BUG_ON(err == NOTIFY_BAD);
6162 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6163 register_cpu_notifier(&migration_notifier);
6164
6165 /* Register cpu active notifiers */
6166 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6167 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6168
6169 return 0;
6170 }
6171 early_initcall(migration_init);
6172 #endif
6173
6174 #ifdef CONFIG_SMP
6175
6176 #ifdef CONFIG_SCHED_DEBUG
6177
6178 static __read_mostly int sched_domain_debug_enabled;
6179
6180 static int __init sched_domain_debug_setup(char *str)
6181 {
6182 sched_domain_debug_enabled = 1;
6183
6184 return 0;
6185 }
6186 early_param("sched_debug", sched_domain_debug_setup);
6187
6188 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6189 struct cpumask *groupmask)
6190 {
6191 struct sched_group *group = sd->groups;
6192 char str[256];
6193
6194 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6195 cpumask_clear(groupmask);
6196
6197 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6198
6199 if (!(sd->flags & SD_LOAD_BALANCE)) {
6200 printk("does not load-balance\n");
6201 if (sd->parent)
6202 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6203 " has parent");
6204 return -1;
6205 }
6206
6207 printk(KERN_CONT "span %s level %s\n", str, sd->name);
6208
6209 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
6210 printk(KERN_ERR "ERROR: domain->span does not contain "
6211 "CPU%d\n", cpu);
6212 }
6213 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
6214 printk(KERN_ERR "ERROR: domain->groups does not contain"
6215 " CPU%d\n", cpu);
6216 }
6217
6218 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6219 do {
6220 if (!group) {
6221 printk("\n");
6222 printk(KERN_ERR "ERROR: group is NULL\n");
6223 break;
6224 }
6225
6226 if (!group->cpu_power) {
6227 printk(KERN_CONT "\n");
6228 printk(KERN_ERR "ERROR: domain->cpu_power not "
6229 "set\n");
6230 break;
6231 }
6232
6233 if (!cpumask_weight(sched_group_cpus(group))) {
6234 printk(KERN_CONT "\n");
6235 printk(KERN_ERR "ERROR: empty group\n");
6236 break;
6237 }
6238
6239 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
6240 printk(KERN_CONT "\n");
6241 printk(KERN_ERR "ERROR: repeated CPUs\n");
6242 break;
6243 }
6244
6245 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
6246
6247 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6248
6249 printk(KERN_CONT " %s", str);
6250 if (group->cpu_power != SCHED_LOAD_SCALE) {
6251 printk(KERN_CONT " (cpu_power = %d)",
6252 group->cpu_power);
6253 }
6254
6255 group = group->next;
6256 } while (group != sd->groups);
6257 printk(KERN_CONT "\n");
6258
6259 if (!cpumask_equal(sched_domain_span(sd), groupmask))
6260 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6261
6262 if (sd->parent &&
6263 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
6264 printk(KERN_ERR "ERROR: parent span is not a superset "
6265 "of domain->span\n");
6266 return 0;
6267 }
6268
6269 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6270 {
6271 cpumask_var_t groupmask;
6272 int level = 0;
6273
6274 if (!sched_domain_debug_enabled)
6275 return;
6276
6277 if (!sd) {
6278 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6279 return;
6280 }
6281
6282 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6283
6284 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6285 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6286 return;
6287 }
6288
6289 for (;;) {
6290 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6291 break;
6292 level++;
6293 sd = sd->parent;
6294 if (!sd)
6295 break;
6296 }
6297 free_cpumask_var(groupmask);
6298 }
6299 #else /* !CONFIG_SCHED_DEBUG */
6300 # define sched_domain_debug(sd, cpu) do { } while (0)
6301 #endif /* CONFIG_SCHED_DEBUG */
6302
6303 static int sd_degenerate(struct sched_domain *sd)
6304 {
6305 if (cpumask_weight(sched_domain_span(sd)) == 1)
6306 return 1;
6307
6308 /* Following flags need at least 2 groups */
6309 if (sd->flags & (SD_LOAD_BALANCE |
6310 SD_BALANCE_NEWIDLE |
6311 SD_BALANCE_FORK |
6312 SD_BALANCE_EXEC |
6313 SD_SHARE_CPUPOWER |
6314 SD_SHARE_PKG_RESOURCES)) {
6315 if (sd->groups != sd->groups->next)
6316 return 0;
6317 }
6318
6319 /* Following flags don't use groups */
6320 if (sd->flags & (SD_WAKE_AFFINE))
6321 return 0;
6322
6323 return 1;
6324 }
6325
6326 static int
6327 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6328 {
6329 unsigned long cflags = sd->flags, pflags = parent->flags;
6330
6331 if (sd_degenerate(parent))
6332 return 1;
6333
6334 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6335 return 0;
6336
6337 /* Flags needing groups don't count if only 1 group in parent */
6338 if (parent->groups == parent->groups->next) {
6339 pflags &= ~(SD_LOAD_BALANCE |
6340 SD_BALANCE_NEWIDLE |
6341 SD_BALANCE_FORK |
6342 SD_BALANCE_EXEC |
6343 SD_SHARE_CPUPOWER |
6344 SD_SHARE_PKG_RESOURCES);
6345 if (nr_node_ids == 1)
6346 pflags &= ~SD_SERIALIZE;
6347 }
6348 if (~cflags & pflags)
6349 return 0;
6350
6351 return 1;
6352 }
6353
6354 static void free_rootdomain(struct root_domain *rd)
6355 {
6356 synchronize_sched();
6357
6358 cpupri_cleanup(&rd->cpupri);
6359
6360 free_cpumask_var(rd->rto_mask);
6361 free_cpumask_var(rd->online);
6362 free_cpumask_var(rd->span);
6363 kfree(rd);
6364 }
6365
6366 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6367 {
6368 struct root_domain *old_rd = NULL;
6369 unsigned long flags;
6370
6371 raw_spin_lock_irqsave(&rq->lock, flags);
6372
6373 if (rq->rd) {
6374 old_rd = rq->rd;
6375
6376 if (cpumask_test_cpu(rq->cpu, old_rd->online))
6377 set_rq_offline(rq);
6378
6379 cpumask_clear_cpu(rq->cpu, old_rd->span);
6380
6381 /*
6382 * If we dont want to free the old_rt yet then
6383 * set old_rd to NULL to skip the freeing later
6384 * in this function:
6385 */
6386 if (!atomic_dec_and_test(&old_rd->refcount))
6387 old_rd = NULL;
6388 }
6389
6390 atomic_inc(&rd->refcount);
6391 rq->rd = rd;
6392
6393 cpumask_set_cpu(rq->cpu, rd->span);
6394 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6395 set_rq_online(rq);
6396
6397 raw_spin_unlock_irqrestore(&rq->lock, flags);
6398
6399 if (old_rd)
6400 free_rootdomain(old_rd);
6401 }
6402
6403 static int init_rootdomain(struct root_domain *rd)
6404 {
6405 memset(rd, 0, sizeof(*rd));
6406
6407 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
6408 goto out;
6409 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
6410 goto free_span;
6411 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
6412 goto free_online;
6413
6414 if (cpupri_init(&rd->cpupri) != 0)
6415 goto free_rto_mask;
6416 return 0;
6417
6418 free_rto_mask:
6419 free_cpumask_var(rd->rto_mask);
6420 free_online:
6421 free_cpumask_var(rd->online);
6422 free_span:
6423 free_cpumask_var(rd->span);
6424 out:
6425 return -ENOMEM;
6426 }
6427
6428 static void init_defrootdomain(void)
6429 {
6430 init_rootdomain(&def_root_domain);
6431
6432 atomic_set(&def_root_domain.refcount, 1);
6433 }
6434
6435 static struct root_domain *alloc_rootdomain(void)
6436 {
6437 struct root_domain *rd;
6438
6439 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6440 if (!rd)
6441 return NULL;
6442
6443 if (init_rootdomain(rd) != 0) {
6444 kfree(rd);
6445 return NULL;
6446 }
6447
6448 return rd;
6449 }
6450
6451 /*
6452 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6453 * hold the hotplug lock.
6454 */
6455 static void
6456 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6457 {
6458 struct rq *rq = cpu_rq(cpu);
6459 struct sched_domain *tmp;
6460
6461 for (tmp = sd; tmp; tmp = tmp->parent)
6462 tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
6463
6464 /* Remove the sched domains which do not contribute to scheduling. */
6465 for (tmp = sd; tmp; ) {
6466 struct sched_domain *parent = tmp->parent;
6467 if (!parent)
6468 break;
6469
6470 if (sd_parent_degenerate(tmp, parent)) {
6471 tmp->parent = parent->parent;
6472 if (parent->parent)
6473 parent->parent->child = tmp;
6474 } else
6475 tmp = tmp->parent;
6476 }
6477
6478 if (sd && sd_degenerate(sd)) {
6479 sd = sd->parent;
6480 if (sd)
6481 sd->child = NULL;
6482 }
6483
6484 sched_domain_debug(sd, cpu);
6485
6486 rq_attach_root(rq, rd);
6487 rcu_assign_pointer(rq->sd, sd);
6488 }
6489
6490 /* cpus with isolated domains */
6491 static cpumask_var_t cpu_isolated_map;
6492
6493 /* Setup the mask of cpus configured for isolated domains */
6494 static int __init isolated_cpu_setup(char *str)
6495 {
6496 alloc_bootmem_cpumask_var(&cpu_isolated_map);
6497 cpulist_parse(str, cpu_isolated_map);
6498 return 1;
6499 }
6500
6501 __setup("isolcpus=", isolated_cpu_setup);
6502
6503 /*
6504 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6505 * to a function which identifies what group(along with sched group) a CPU
6506 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6507 * (due to the fact that we keep track of groups covered with a struct cpumask).
6508 *
6509 * init_sched_build_groups will build a circular linked list of the groups
6510 * covered by the given span, and will set each group's ->cpumask correctly,
6511 * and ->cpu_power to 0.
6512 */
6513 static void
6514 init_sched_build_groups(const struct cpumask *span,
6515 const struct cpumask *cpu_map,
6516 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
6517 struct sched_group **sg,
6518 struct cpumask *tmpmask),
6519 struct cpumask *covered, struct cpumask *tmpmask)
6520 {
6521 struct sched_group *first = NULL, *last = NULL;
6522 int i;
6523
6524 cpumask_clear(covered);
6525
6526 for_each_cpu(i, span) {
6527 struct sched_group *sg;
6528 int group = group_fn(i, cpu_map, &sg, tmpmask);
6529 int j;
6530
6531 if (cpumask_test_cpu(i, covered))
6532 continue;
6533
6534 cpumask_clear(sched_group_cpus(sg));
6535 sg->cpu_power = 0;
6536
6537 for_each_cpu(j, span) {
6538 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6539 continue;
6540
6541 cpumask_set_cpu(j, covered);
6542 cpumask_set_cpu(j, sched_group_cpus(sg));
6543 }
6544 if (!first)
6545 first = sg;
6546 if (last)
6547 last->next = sg;
6548 last = sg;
6549 }
6550 last->next = first;
6551 }
6552
6553 #define SD_NODES_PER_DOMAIN 16
6554
6555 #ifdef CONFIG_NUMA
6556
6557 /**
6558 * find_next_best_node - find the next node to include in a sched_domain
6559 * @node: node whose sched_domain we're building
6560 * @used_nodes: nodes already in the sched_domain
6561 *
6562 * Find the next node to include in a given scheduling domain. Simply
6563 * finds the closest node not already in the @used_nodes map.
6564 *
6565 * Should use nodemask_t.
6566 */
6567 static int find_next_best_node(int node, nodemask_t *used_nodes)
6568 {
6569 int i, n, val, min_val, best_node = 0;
6570
6571 min_val = INT_MAX;
6572
6573 for (i = 0; i < nr_node_ids; i++) {
6574 /* Start at @node */
6575 n = (node + i) % nr_node_ids;
6576
6577 if (!nr_cpus_node(n))
6578 continue;
6579
6580 /* Skip already used nodes */
6581 if (node_isset(n, *used_nodes))
6582 continue;
6583
6584 /* Simple min distance search */
6585 val = node_distance(node, n);
6586
6587 if (val < min_val) {
6588 min_val = val;
6589 best_node = n;
6590 }
6591 }
6592
6593 node_set(best_node, *used_nodes);
6594 return best_node;
6595 }
6596
6597 /**
6598 * sched_domain_node_span - get a cpumask for a node's sched_domain
6599 * @node: node whose cpumask we're constructing
6600 * @span: resulting cpumask
6601 *
6602 * Given a node, construct a good cpumask for its sched_domain to span. It
6603 * should be one that prevents unnecessary balancing, but also spreads tasks
6604 * out optimally.
6605 */
6606 static void sched_domain_node_span(int node, struct cpumask *span)
6607 {
6608 nodemask_t used_nodes;
6609 int i;
6610
6611 cpumask_clear(span);
6612 nodes_clear(used_nodes);
6613
6614 cpumask_or(span, span, cpumask_of_node(node));
6615 node_set(node, used_nodes);
6616
6617 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6618 int next_node = find_next_best_node(node, &used_nodes);
6619
6620 cpumask_or(span, span, cpumask_of_node(next_node));
6621 }
6622 }
6623 #endif /* CONFIG_NUMA */
6624
6625 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6626
6627 /*
6628 * The cpus mask in sched_group and sched_domain hangs off the end.
6629 *
6630 * ( See the the comments in include/linux/sched.h:struct sched_group
6631 * and struct sched_domain. )
6632 */
6633 struct static_sched_group {
6634 struct sched_group sg;
6635 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6636 };
6637
6638 struct static_sched_domain {
6639 struct sched_domain sd;
6640 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6641 };
6642
6643 struct s_data {
6644 #ifdef CONFIG_NUMA
6645 int sd_allnodes;
6646 cpumask_var_t domainspan;
6647 cpumask_var_t covered;
6648 cpumask_var_t notcovered;
6649 #endif
6650 cpumask_var_t nodemask;
6651 cpumask_var_t this_sibling_map;
6652 cpumask_var_t this_core_map;
6653 cpumask_var_t this_book_map;
6654 cpumask_var_t send_covered;
6655 cpumask_var_t tmpmask;
6656 struct sched_group **sched_group_nodes;
6657 struct root_domain *rd;
6658 };
6659
6660 enum s_alloc {
6661 sa_sched_groups = 0,
6662 sa_rootdomain,
6663 sa_tmpmask,
6664 sa_send_covered,
6665 sa_this_book_map,
6666 sa_this_core_map,
6667 sa_this_sibling_map,
6668 sa_nodemask,
6669 sa_sched_group_nodes,
6670 #ifdef CONFIG_NUMA
6671 sa_notcovered,
6672 sa_covered,
6673 sa_domainspan,
6674 #endif
6675 sa_none,
6676 };
6677
6678 /*
6679 * SMT sched-domains:
6680 */
6681 #ifdef CONFIG_SCHED_SMT
6682 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
6683 static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
6684
6685 static int
6686 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6687 struct sched_group **sg, struct cpumask *unused)
6688 {
6689 if (sg)
6690 *sg = &per_cpu(sched_groups, cpu).sg;
6691 return cpu;
6692 }
6693 #endif /* CONFIG_SCHED_SMT */
6694
6695 /*
6696 * multi-core sched-domains:
6697 */
6698 #ifdef CONFIG_SCHED_MC
6699 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6700 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6701
6702 static int
6703 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6704 struct sched_group **sg, struct cpumask *mask)
6705 {
6706 int group;
6707 #ifdef CONFIG_SCHED_SMT
6708 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6709 group = cpumask_first(mask);
6710 #else
6711 group = cpu;
6712 #endif
6713 if (sg)
6714 *sg = &per_cpu(sched_group_core, group).sg;
6715 return group;
6716 }
6717 #endif /* CONFIG_SCHED_MC */
6718
6719 /*
6720 * book sched-domains:
6721 */
6722 #ifdef CONFIG_SCHED_BOOK
6723 static DEFINE_PER_CPU(struct static_sched_domain, book_domains);
6724 static DEFINE_PER_CPU(struct static_sched_group, sched_group_book);
6725
6726 static int
6727 cpu_to_book_group(int cpu, const struct cpumask *cpu_map,
6728 struct sched_group **sg, struct cpumask *mask)
6729 {
6730 int group = cpu;
6731 #ifdef CONFIG_SCHED_MC
6732 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6733 group = cpumask_first(mask);
6734 #elif defined(CONFIG_SCHED_SMT)
6735 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6736 group = cpumask_first(mask);
6737 #endif
6738 if (sg)
6739 *sg = &per_cpu(sched_group_book, group).sg;
6740 return group;
6741 }
6742 #endif /* CONFIG_SCHED_BOOK */
6743
6744 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6745 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
6746
6747 static int
6748 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6749 struct sched_group **sg, struct cpumask *mask)
6750 {
6751 int group;
6752 #ifdef CONFIG_SCHED_BOOK
6753 cpumask_and(mask, cpu_book_mask(cpu), cpu_map);
6754 group = cpumask_first(mask);
6755 #elif defined(CONFIG_SCHED_MC)
6756 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6757 group = cpumask_first(mask);
6758 #elif defined(CONFIG_SCHED_SMT)
6759 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6760 group = cpumask_first(mask);
6761 #else
6762 group = cpu;
6763 #endif
6764 if (sg)
6765 *sg = &per_cpu(sched_group_phys, group).sg;
6766 return group;
6767 }
6768
6769 #ifdef CONFIG_NUMA
6770 /*
6771 * The init_sched_build_groups can't handle what we want to do with node
6772 * groups, so roll our own. Now each node has its own list of groups which
6773 * gets dynamically allocated.
6774 */
6775 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
6776 static struct sched_group ***sched_group_nodes_bycpu;
6777
6778 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6779 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
6780
6781 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6782 struct sched_group **sg,
6783 struct cpumask *nodemask)
6784 {
6785 int group;
6786
6787 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
6788 group = cpumask_first(nodemask);
6789
6790 if (sg)
6791 *sg = &per_cpu(sched_group_allnodes, group).sg;
6792 return group;
6793 }
6794
6795 static void init_numa_sched_groups_power(struct sched_group *group_head)
6796 {
6797 struct sched_group *sg = group_head;
6798 int j;
6799
6800 if (!sg)
6801 return;
6802 do {
6803 for_each_cpu(j, sched_group_cpus(sg)) {
6804 struct sched_domain *sd;
6805
6806 sd = &per_cpu(phys_domains, j).sd;
6807 if (j != group_first_cpu(sd->groups)) {
6808 /*
6809 * Only add "power" once for each
6810 * physical package.
6811 */
6812 continue;
6813 }
6814
6815 sg->cpu_power += sd->groups->cpu_power;
6816 }
6817 sg = sg->next;
6818 } while (sg != group_head);
6819 }
6820
6821 static int build_numa_sched_groups(struct s_data *d,
6822 const struct cpumask *cpu_map, int num)
6823 {
6824 struct sched_domain *sd;
6825 struct sched_group *sg, *prev;
6826 int n, j;
6827
6828 cpumask_clear(d->covered);
6829 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
6830 if (cpumask_empty(d->nodemask)) {
6831 d->sched_group_nodes[num] = NULL;
6832 goto out;
6833 }
6834
6835 sched_domain_node_span(num, d->domainspan);
6836 cpumask_and(d->domainspan, d->domainspan, cpu_map);
6837
6838 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6839 GFP_KERNEL, num);
6840 if (!sg) {
6841 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
6842 num);
6843 return -ENOMEM;
6844 }
6845 d->sched_group_nodes[num] = sg;
6846
6847 for_each_cpu(j, d->nodemask) {
6848 sd = &per_cpu(node_domains, j).sd;
6849 sd->groups = sg;
6850 }
6851
6852 sg->cpu_power = 0;
6853 cpumask_copy(sched_group_cpus(sg), d->nodemask);
6854 sg->next = sg;
6855 cpumask_or(d->covered, d->covered, d->nodemask);
6856
6857 prev = sg;
6858 for (j = 0; j < nr_node_ids; j++) {
6859 n = (num + j) % nr_node_ids;
6860 cpumask_complement(d->notcovered, d->covered);
6861 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
6862 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
6863 if (cpumask_empty(d->tmpmask))
6864 break;
6865 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
6866 if (cpumask_empty(d->tmpmask))
6867 continue;
6868 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6869 GFP_KERNEL, num);
6870 if (!sg) {
6871 printk(KERN_WARNING
6872 "Can not alloc domain group for node %d\n", j);
6873 return -ENOMEM;
6874 }
6875 sg->cpu_power = 0;
6876 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
6877 sg->next = prev->next;
6878 cpumask_or(d->covered, d->covered, d->tmpmask);
6879 prev->next = sg;
6880 prev = sg;
6881 }
6882 out:
6883 return 0;
6884 }
6885 #endif /* CONFIG_NUMA */
6886
6887 #ifdef CONFIG_NUMA
6888 /* Free memory allocated for various sched_group structures */
6889 static void free_sched_groups(const struct cpumask *cpu_map,
6890 struct cpumask *nodemask)
6891 {
6892 int cpu, i;
6893
6894 for_each_cpu(cpu, cpu_map) {
6895 struct sched_group **sched_group_nodes
6896 = sched_group_nodes_bycpu[cpu];
6897
6898 if (!sched_group_nodes)
6899 continue;
6900
6901 for (i = 0; i < nr_node_ids; i++) {
6902 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6903
6904 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
6905 if (cpumask_empty(nodemask))
6906 continue;
6907
6908 if (sg == NULL)
6909 continue;
6910 sg = sg->next;
6911 next_sg:
6912 oldsg = sg;
6913 sg = sg->next;
6914 kfree(oldsg);
6915 if (oldsg != sched_group_nodes[i])
6916 goto next_sg;
6917 }
6918 kfree(sched_group_nodes);
6919 sched_group_nodes_bycpu[cpu] = NULL;
6920 }
6921 }
6922 #else /* !CONFIG_NUMA */
6923 static void free_sched_groups(const struct cpumask *cpu_map,
6924 struct cpumask *nodemask)
6925 {
6926 }
6927 #endif /* CONFIG_NUMA */
6928
6929 /*
6930 * Initialize sched groups cpu_power.
6931 *
6932 * cpu_power indicates the capacity of sched group, which is used while
6933 * distributing the load between different sched groups in a sched domain.
6934 * Typically cpu_power for all the groups in a sched domain will be same unless
6935 * there are asymmetries in the topology. If there are asymmetries, group
6936 * having more cpu_power will pickup more load compared to the group having
6937 * less cpu_power.
6938 */
6939 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6940 {
6941 struct sched_domain *child;
6942 struct sched_group *group;
6943 long power;
6944 int weight;
6945
6946 WARN_ON(!sd || !sd->groups);
6947
6948 if (cpu != group_first_cpu(sd->groups))
6949 return;
6950
6951 child = sd->child;
6952
6953 sd->groups->cpu_power = 0;
6954
6955 if (!child) {
6956 power = SCHED_LOAD_SCALE;
6957 weight = cpumask_weight(sched_domain_span(sd));
6958 /*
6959 * SMT siblings share the power of a single core.
6960 * Usually multiple threads get a better yield out of
6961 * that one core than a single thread would have,
6962 * reflect that in sd->smt_gain.
6963 */
6964 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
6965 power *= sd->smt_gain;
6966 power /= weight;
6967 power >>= SCHED_LOAD_SHIFT;
6968 }
6969 sd->groups->cpu_power += power;
6970 return;
6971 }
6972
6973 /*
6974 * Add cpu_power of each child group to this groups cpu_power.
6975 */
6976 group = child->groups;
6977 do {
6978 sd->groups->cpu_power += group->cpu_power;
6979 group = group->next;
6980 } while (group != child->groups);
6981 }
6982
6983 /*
6984 * Initializers for schedule domains
6985 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6986 */
6987
6988 #ifdef CONFIG_SCHED_DEBUG
6989 # define SD_INIT_NAME(sd, type) sd->name = #type
6990 #else
6991 # define SD_INIT_NAME(sd, type) do { } while (0)
6992 #endif
6993
6994 #define SD_INIT(sd, type) sd_init_##type(sd)
6995
6996 #define SD_INIT_FUNC(type) \
6997 static noinline void sd_init_##type(struct sched_domain *sd) \
6998 { \
6999 memset(sd, 0, sizeof(*sd)); \
7000 *sd = SD_##type##_INIT; \
7001 sd->level = SD_LV_##type; \
7002 SD_INIT_NAME(sd, type); \
7003 }
7004
7005 SD_INIT_FUNC(CPU)
7006 #ifdef CONFIG_NUMA
7007 SD_INIT_FUNC(ALLNODES)
7008 SD_INIT_FUNC(NODE)
7009 #endif
7010 #ifdef CONFIG_SCHED_SMT
7011 SD_INIT_FUNC(SIBLING)
7012 #endif
7013 #ifdef CONFIG_SCHED_MC
7014 SD_INIT_FUNC(MC)
7015 #endif
7016 #ifdef CONFIG_SCHED_BOOK
7017 SD_INIT_FUNC(BOOK)
7018 #endif
7019
7020 static int default_relax_domain_level = -1;
7021
7022 static int __init setup_relax_domain_level(char *str)
7023 {
7024 unsigned long val;
7025
7026 val = simple_strtoul(str, NULL, 0);
7027 if (val < SD_LV_MAX)
7028 default_relax_domain_level = val;
7029
7030 return 1;
7031 }
7032 __setup("relax_domain_level=", setup_relax_domain_level);
7033
7034 static void set_domain_attribute(struct sched_domain *sd,
7035 struct sched_domain_attr *attr)
7036 {
7037 int request;
7038
7039 if (!attr || attr->relax_domain_level < 0) {
7040 if (default_relax_domain_level < 0)
7041 return;
7042 else
7043 request = default_relax_domain_level;
7044 } else
7045 request = attr->relax_domain_level;
7046 if (request < sd->level) {
7047 /* turn off idle balance on this domain */
7048 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7049 } else {
7050 /* turn on idle balance on this domain */
7051 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7052 }
7053 }
7054
7055 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
7056 const struct cpumask *cpu_map)
7057 {
7058 switch (what) {
7059 case sa_sched_groups:
7060 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
7061 d->sched_group_nodes = NULL;
7062 case sa_rootdomain:
7063 free_rootdomain(d->rd); /* fall through */
7064 case sa_tmpmask:
7065 free_cpumask_var(d->tmpmask); /* fall through */
7066 case sa_send_covered:
7067 free_cpumask_var(d->send_covered); /* fall through */
7068 case sa_this_book_map:
7069 free_cpumask_var(d->this_book_map); /* fall through */
7070 case sa_this_core_map:
7071 free_cpumask_var(d->this_core_map); /* fall through */
7072 case sa_this_sibling_map:
7073 free_cpumask_var(d->this_sibling_map); /* fall through */
7074 case sa_nodemask:
7075 free_cpumask_var(d->nodemask); /* fall through */
7076 case sa_sched_group_nodes:
7077 #ifdef CONFIG_NUMA
7078 kfree(d->sched_group_nodes); /* fall through */
7079 case sa_notcovered:
7080 free_cpumask_var(d->notcovered); /* fall through */
7081 case sa_covered:
7082 free_cpumask_var(d->covered); /* fall through */
7083 case sa_domainspan:
7084 free_cpumask_var(d->domainspan); /* fall through */
7085 #endif
7086 case sa_none:
7087 break;
7088 }
7089 }
7090
7091 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
7092 const struct cpumask *cpu_map)
7093 {
7094 #ifdef CONFIG_NUMA
7095 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
7096 return sa_none;
7097 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
7098 return sa_domainspan;
7099 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
7100 return sa_covered;
7101 /* Allocate the per-node list of sched groups */
7102 d->sched_group_nodes = kcalloc(nr_node_ids,
7103 sizeof(struct sched_group *), GFP_KERNEL);
7104 if (!d->sched_group_nodes) {
7105 printk(KERN_WARNING "Can not alloc sched group node list\n");
7106 return sa_notcovered;
7107 }
7108 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
7109 #endif
7110 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
7111 return sa_sched_group_nodes;
7112 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
7113 return sa_nodemask;
7114 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
7115 return sa_this_sibling_map;
7116 if (!alloc_cpumask_var(&d->this_book_map, GFP_KERNEL))
7117 return sa_this_core_map;
7118 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
7119 return sa_this_book_map;
7120 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
7121 return sa_send_covered;
7122 d->rd = alloc_rootdomain();
7123 if (!d->rd) {
7124 printk(KERN_WARNING "Cannot alloc root domain\n");
7125 return sa_tmpmask;
7126 }
7127 return sa_rootdomain;
7128 }
7129
7130 static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
7131 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
7132 {
7133 struct sched_domain *sd = NULL;
7134 #ifdef CONFIG_NUMA
7135 struct sched_domain *parent;
7136
7137 d->sd_allnodes = 0;
7138 if (cpumask_weight(cpu_map) >
7139 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
7140 sd = &per_cpu(allnodes_domains, i).sd;
7141 SD_INIT(sd, ALLNODES);
7142 set_domain_attribute(sd, attr);
7143 cpumask_copy(sched_domain_span(sd), cpu_map);
7144 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
7145 d->sd_allnodes = 1;
7146 }
7147 parent = sd;
7148
7149 sd = &per_cpu(node_domains, i).sd;
7150 SD_INIT(sd, NODE);
7151 set_domain_attribute(sd, attr);
7152 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
7153 sd->parent = parent;
7154 if (parent)
7155 parent->child = sd;
7156 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
7157 #endif
7158 return sd;
7159 }
7160
7161 static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
7162 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7163 struct sched_domain *parent, int i)
7164 {
7165 struct sched_domain *sd;
7166 sd = &per_cpu(phys_domains, i).sd;
7167 SD_INIT(sd, CPU);
7168 set_domain_attribute(sd, attr);
7169 cpumask_copy(sched_domain_span(sd), d->nodemask);
7170 sd->parent = parent;
7171 if (parent)
7172 parent->child = sd;
7173 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
7174 return sd;
7175 }
7176
7177 static struct sched_domain *__build_book_sched_domain(struct s_data *d,
7178 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7179 struct sched_domain *parent, int i)
7180 {
7181 struct sched_domain *sd = parent;
7182 #ifdef CONFIG_SCHED_BOOK
7183 sd = &per_cpu(book_domains, i).sd;
7184 SD_INIT(sd, BOOK);
7185 set_domain_attribute(sd, attr);
7186 cpumask_and(sched_domain_span(sd), cpu_map, cpu_book_mask(i));
7187 sd->parent = parent;
7188 parent->child = sd;
7189 cpu_to_book_group(i, cpu_map, &sd->groups, d->tmpmask);
7190 #endif
7191 return sd;
7192 }
7193
7194 static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
7195 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7196 struct sched_domain *parent, int i)
7197 {
7198 struct sched_domain *sd = parent;
7199 #ifdef CONFIG_SCHED_MC
7200 sd = &per_cpu(core_domains, i).sd;
7201 SD_INIT(sd, MC);
7202 set_domain_attribute(sd, attr);
7203 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
7204 sd->parent = parent;
7205 parent->child = sd;
7206 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
7207 #endif
7208 return sd;
7209 }
7210
7211 static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
7212 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7213 struct sched_domain *parent, int i)
7214 {
7215 struct sched_domain *sd = parent;
7216 #ifdef CONFIG_SCHED_SMT
7217 sd = &per_cpu(cpu_domains, i).sd;
7218 SD_INIT(sd, SIBLING);
7219 set_domain_attribute(sd, attr);
7220 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
7221 sd->parent = parent;
7222 parent->child = sd;
7223 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
7224 #endif
7225 return sd;
7226 }
7227
7228 static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
7229 const struct cpumask *cpu_map, int cpu)
7230 {
7231 switch (l) {
7232 #ifdef CONFIG_SCHED_SMT
7233 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
7234 cpumask_and(d->this_sibling_map, cpu_map,
7235 topology_thread_cpumask(cpu));
7236 if (cpu == cpumask_first(d->this_sibling_map))
7237 init_sched_build_groups(d->this_sibling_map, cpu_map,
7238 &cpu_to_cpu_group,
7239 d->send_covered, d->tmpmask);
7240 break;
7241 #endif
7242 #ifdef CONFIG_SCHED_MC
7243 case SD_LV_MC: /* set up multi-core groups */
7244 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
7245 if (cpu == cpumask_first(d->this_core_map))
7246 init_sched_build_groups(d->this_core_map, cpu_map,
7247 &cpu_to_core_group,
7248 d->send_covered, d->tmpmask);
7249 break;
7250 #endif
7251 #ifdef CONFIG_SCHED_BOOK
7252 case SD_LV_BOOK: /* set up book groups */
7253 cpumask_and(d->this_book_map, cpu_map, cpu_book_mask(cpu));
7254 if (cpu == cpumask_first(d->this_book_map))
7255 init_sched_build_groups(d->this_book_map, cpu_map,
7256 &cpu_to_book_group,
7257 d->send_covered, d->tmpmask);
7258 break;
7259 #endif
7260 case SD_LV_CPU: /* set up physical groups */
7261 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
7262 if (!cpumask_empty(d->nodemask))
7263 init_sched_build_groups(d->nodemask, cpu_map,
7264 &cpu_to_phys_group,
7265 d->send_covered, d->tmpmask);
7266 break;
7267 #ifdef CONFIG_NUMA
7268 case SD_LV_ALLNODES:
7269 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
7270 d->send_covered, d->tmpmask);
7271 break;
7272 #endif
7273 default:
7274 break;
7275 }
7276 }
7277
7278 /*
7279 * Build sched domains for a given set of cpus and attach the sched domains
7280 * to the individual cpus
7281 */
7282 static int __build_sched_domains(const struct cpumask *cpu_map,
7283 struct sched_domain_attr *attr)
7284 {
7285 enum s_alloc alloc_state = sa_none;
7286 struct s_data d;
7287 struct sched_domain *sd;
7288 int i;
7289 #ifdef CONFIG_NUMA
7290 d.sd_allnodes = 0;
7291 #endif
7292
7293 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7294 if (alloc_state != sa_rootdomain)
7295 goto error;
7296 alloc_state = sa_sched_groups;
7297
7298 /*
7299 * Set up domains for cpus specified by the cpu_map.
7300 */
7301 for_each_cpu(i, cpu_map) {
7302 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
7303 cpu_map);
7304
7305 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
7306 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
7307 sd = __build_book_sched_domain(&d, cpu_map, attr, sd, i);
7308 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
7309 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
7310 }
7311
7312 for_each_cpu(i, cpu_map) {
7313 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
7314 build_sched_groups(&d, SD_LV_BOOK, cpu_map, i);
7315 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
7316 }
7317
7318 /* Set up physical groups */
7319 for (i = 0; i < nr_node_ids; i++)
7320 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
7321
7322 #ifdef CONFIG_NUMA
7323 /* Set up node groups */
7324 if (d.sd_allnodes)
7325 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
7326
7327 for (i = 0; i < nr_node_ids; i++)
7328 if (build_numa_sched_groups(&d, cpu_map, i))
7329 goto error;
7330 #endif
7331
7332 /* Calculate CPU power for physical packages and nodes */
7333 #ifdef CONFIG_SCHED_SMT
7334 for_each_cpu(i, cpu_map) {
7335 sd = &per_cpu(cpu_domains, i).sd;
7336 init_sched_groups_power(i, sd);
7337 }
7338 #endif
7339 #ifdef CONFIG_SCHED_MC
7340 for_each_cpu(i, cpu_map) {
7341 sd = &per_cpu(core_domains, i).sd;
7342 init_sched_groups_power(i, sd);
7343 }
7344 #endif
7345 #ifdef CONFIG_SCHED_BOOK
7346 for_each_cpu(i, cpu_map) {
7347 sd = &per_cpu(book_domains, i).sd;
7348 init_sched_groups_power(i, sd);
7349 }
7350 #endif
7351
7352 for_each_cpu(i, cpu_map) {
7353 sd = &per_cpu(phys_domains, i).sd;
7354 init_sched_groups_power(i, sd);
7355 }
7356
7357 #ifdef CONFIG_NUMA
7358 for (i = 0; i < nr_node_ids; i++)
7359 init_numa_sched_groups_power(d.sched_group_nodes[i]);
7360
7361 if (d.sd_allnodes) {
7362 struct sched_group *sg;
7363
7364 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7365 d.tmpmask);
7366 init_numa_sched_groups_power(sg);
7367 }
7368 #endif
7369
7370 /* Attach the domains */
7371 for_each_cpu(i, cpu_map) {
7372 #ifdef CONFIG_SCHED_SMT
7373 sd = &per_cpu(cpu_domains, i).sd;
7374 #elif defined(CONFIG_SCHED_MC)
7375 sd = &per_cpu(core_domains, i).sd;
7376 #elif defined(CONFIG_SCHED_BOOK)
7377 sd = &per_cpu(book_domains, i).sd;
7378 #else
7379 sd = &per_cpu(phys_domains, i).sd;
7380 #endif
7381 cpu_attach_domain(sd, d.rd, i);
7382 }
7383
7384 d.sched_group_nodes = NULL; /* don't free this we still need it */
7385 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7386 return 0;
7387
7388 error:
7389 __free_domain_allocs(&d, alloc_state, cpu_map);
7390 return -ENOMEM;
7391 }
7392
7393 static int build_sched_domains(const struct cpumask *cpu_map)
7394 {
7395 return __build_sched_domains(cpu_map, NULL);
7396 }
7397
7398 static cpumask_var_t *doms_cur; /* current sched domains */
7399 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7400 static struct sched_domain_attr *dattr_cur;
7401 /* attribues of custom domains in 'doms_cur' */
7402
7403 /*
7404 * Special case: If a kmalloc of a doms_cur partition (array of
7405 * cpumask) fails, then fallback to a single sched domain,
7406 * as determined by the single cpumask fallback_doms.
7407 */
7408 static cpumask_var_t fallback_doms;
7409
7410 /*
7411 * arch_update_cpu_topology lets virtualized architectures update the
7412 * cpu core maps. It is supposed to return 1 if the topology changed
7413 * or 0 if it stayed the same.
7414 */
7415 int __attribute__((weak)) arch_update_cpu_topology(void)
7416 {
7417 return 0;
7418 }
7419
7420 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7421 {
7422 int i;
7423 cpumask_var_t *doms;
7424
7425 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7426 if (!doms)
7427 return NULL;
7428 for (i = 0; i < ndoms; i++) {
7429 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7430 free_sched_domains(doms, i);
7431 return NULL;
7432 }
7433 }
7434 return doms;
7435 }
7436
7437 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7438 {
7439 unsigned int i;
7440 for (i = 0; i < ndoms; i++)
7441 free_cpumask_var(doms[i]);
7442 kfree(doms);
7443 }
7444
7445 /*
7446 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7447 * For now this just excludes isolated cpus, but could be used to
7448 * exclude other special cases in the future.
7449 */
7450 static int arch_init_sched_domains(const struct cpumask *cpu_map)
7451 {
7452 int err;
7453
7454 arch_update_cpu_topology();
7455 ndoms_cur = 1;
7456 doms_cur = alloc_sched_domains(ndoms_cur);
7457 if (!doms_cur)
7458 doms_cur = &fallback_doms;
7459 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7460 dattr_cur = NULL;
7461 err = build_sched_domains(doms_cur[0]);
7462 register_sched_domain_sysctl();
7463
7464 return err;
7465 }
7466
7467 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7468 struct cpumask *tmpmask)
7469 {
7470 free_sched_groups(cpu_map, tmpmask);
7471 }
7472
7473 /*
7474 * Detach sched domains from a group of cpus specified in cpu_map
7475 * These cpus will now be attached to the NULL domain
7476 */
7477 static void detach_destroy_domains(const struct cpumask *cpu_map)
7478 {
7479 /* Save because hotplug lock held. */
7480 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7481 int i;
7482
7483 for_each_cpu(i, cpu_map)
7484 cpu_attach_domain(NULL, &def_root_domain, i);
7485 synchronize_sched();
7486 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7487 }
7488
7489 /* handle null as "default" */
7490 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7491 struct sched_domain_attr *new, int idx_new)
7492 {
7493 struct sched_domain_attr tmp;
7494
7495 /* fast path */
7496 if (!new && !cur)
7497 return 1;
7498
7499 tmp = SD_ATTR_INIT;
7500 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7501 new ? (new + idx_new) : &tmp,
7502 sizeof(struct sched_domain_attr));
7503 }
7504
7505 /*
7506 * Partition sched domains as specified by the 'ndoms_new'
7507 * cpumasks in the array doms_new[] of cpumasks. This compares
7508 * doms_new[] to the current sched domain partitioning, doms_cur[].
7509 * It destroys each deleted domain and builds each new domain.
7510 *
7511 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7512 * The masks don't intersect (don't overlap.) We should setup one
7513 * sched domain for each mask. CPUs not in any of the cpumasks will
7514 * not be load balanced. If the same cpumask appears both in the
7515 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7516 * it as it is.
7517 *
7518 * The passed in 'doms_new' should be allocated using
7519 * alloc_sched_domains. This routine takes ownership of it and will
7520 * free_sched_domains it when done with it. If the caller failed the
7521 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7522 * and partition_sched_domains() will fallback to the single partition
7523 * 'fallback_doms', it also forces the domains to be rebuilt.
7524 *
7525 * If doms_new == NULL it will be replaced with cpu_online_mask.
7526 * ndoms_new == 0 is a special case for destroying existing domains,
7527 * and it will not create the default domain.
7528 *
7529 * Call with hotplug lock held
7530 */
7531 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7532 struct sched_domain_attr *dattr_new)
7533 {
7534 int i, j, n;
7535 int new_topology;
7536
7537 mutex_lock(&sched_domains_mutex);
7538
7539 /* always unregister in case we don't destroy any domains */
7540 unregister_sched_domain_sysctl();
7541
7542 /* Let architecture update cpu core mappings. */
7543 new_topology = arch_update_cpu_topology();
7544
7545 n = doms_new ? ndoms_new : 0;
7546
7547 /* Destroy deleted domains */
7548 for (i = 0; i < ndoms_cur; i++) {
7549 for (j = 0; j < n && !new_topology; j++) {
7550 if (cpumask_equal(doms_cur[i], doms_new[j])
7551 && dattrs_equal(dattr_cur, i, dattr_new, j))
7552 goto match1;
7553 }
7554 /* no match - a current sched domain not in new doms_new[] */
7555 detach_destroy_domains(doms_cur[i]);
7556 match1:
7557 ;
7558 }
7559
7560 if (doms_new == NULL) {
7561 ndoms_cur = 0;
7562 doms_new = &fallback_doms;
7563 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7564 WARN_ON_ONCE(dattr_new);
7565 }
7566
7567 /* Build new domains */
7568 for (i = 0; i < ndoms_new; i++) {
7569 for (j = 0; j < ndoms_cur && !new_topology; j++) {
7570 if (cpumask_equal(doms_new[i], doms_cur[j])
7571 && dattrs_equal(dattr_new, i, dattr_cur, j))
7572 goto match2;
7573 }
7574 /* no match - add a new doms_new */
7575 __build_sched_domains(doms_new[i],
7576 dattr_new ? dattr_new + i : NULL);
7577 match2:
7578 ;
7579 }
7580
7581 /* Remember the new sched domains */
7582 if (doms_cur != &fallback_doms)
7583 free_sched_domains(doms_cur, ndoms_cur);
7584 kfree(dattr_cur); /* kfree(NULL) is safe */
7585 doms_cur = doms_new;
7586 dattr_cur = dattr_new;
7587 ndoms_cur = ndoms_new;
7588
7589 register_sched_domain_sysctl();
7590
7591 mutex_unlock(&sched_domains_mutex);
7592 }
7593
7594 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7595 static void arch_reinit_sched_domains(void)
7596 {
7597 get_online_cpus();
7598
7599 /* Destroy domains first to force the rebuild */
7600 partition_sched_domains(0, NULL, NULL);
7601
7602 rebuild_sched_domains();
7603 put_online_cpus();
7604 }
7605
7606 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7607 {
7608 unsigned int level = 0;
7609
7610 if (sscanf(buf, "%u", &level) != 1)
7611 return -EINVAL;
7612
7613 /*
7614 * level is always be positive so don't check for
7615 * level < POWERSAVINGS_BALANCE_NONE which is 0
7616 * What happens on 0 or 1 byte write,
7617 * need to check for count as well?
7618 */
7619
7620 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7621 return -EINVAL;
7622
7623 if (smt)
7624 sched_smt_power_savings = level;
7625 else
7626 sched_mc_power_savings = level;
7627
7628 arch_reinit_sched_domains();
7629
7630 return count;
7631 }
7632
7633 #ifdef CONFIG_SCHED_MC
7634 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7635 struct sysdev_class_attribute *attr,
7636 char *page)
7637 {
7638 return sprintf(page, "%u\n", sched_mc_power_savings);
7639 }
7640 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7641 struct sysdev_class_attribute *attr,
7642 const char *buf, size_t count)
7643 {
7644 return sched_power_savings_store(buf, count, 0);
7645 }
7646 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7647 sched_mc_power_savings_show,
7648 sched_mc_power_savings_store);
7649 #endif
7650
7651 #ifdef CONFIG_SCHED_SMT
7652 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7653 struct sysdev_class_attribute *attr,
7654 char *page)
7655 {
7656 return sprintf(page, "%u\n", sched_smt_power_savings);
7657 }
7658 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7659 struct sysdev_class_attribute *attr,
7660 const char *buf, size_t count)
7661 {
7662 return sched_power_savings_store(buf, count, 1);
7663 }
7664 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7665 sched_smt_power_savings_show,
7666 sched_smt_power_savings_store);
7667 #endif
7668
7669 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7670 {
7671 int err = 0;
7672
7673 #ifdef CONFIG_SCHED_SMT
7674 if (smt_capable())
7675 err = sysfs_create_file(&cls->kset.kobj,
7676 &attr_sched_smt_power_savings.attr);
7677 #endif
7678 #ifdef CONFIG_SCHED_MC
7679 if (!err && mc_capable())
7680 err = sysfs_create_file(&cls->kset.kobj,
7681 &attr_sched_mc_power_savings.attr);
7682 #endif
7683 return err;
7684 }
7685 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7686
7687 /*
7688 * Update cpusets according to cpu_active mask. If cpusets are
7689 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7690 * around partition_sched_domains().
7691 */
7692 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7693 void *hcpu)
7694 {
7695 switch (action & ~CPU_TASKS_FROZEN) {
7696 case CPU_ONLINE:
7697 case CPU_DOWN_FAILED:
7698 cpuset_update_active_cpus();
7699 return NOTIFY_OK;
7700 default:
7701 return NOTIFY_DONE;
7702 }
7703 }
7704
7705 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7706 void *hcpu)
7707 {
7708 switch (action & ~CPU_TASKS_FROZEN) {
7709 case CPU_DOWN_PREPARE:
7710 cpuset_update_active_cpus();
7711 return NOTIFY_OK;
7712 default:
7713 return NOTIFY_DONE;
7714 }
7715 }
7716
7717 static int update_runtime(struct notifier_block *nfb,
7718 unsigned long action, void *hcpu)
7719 {
7720 int cpu = (int)(long)hcpu;
7721
7722 switch (action) {
7723 case CPU_DOWN_PREPARE:
7724 case CPU_DOWN_PREPARE_FROZEN:
7725 disable_runtime(cpu_rq(cpu));
7726 return NOTIFY_OK;
7727
7728 case CPU_DOWN_FAILED:
7729 case CPU_DOWN_FAILED_FROZEN:
7730 case CPU_ONLINE:
7731 case CPU_ONLINE_FROZEN:
7732 enable_runtime(cpu_rq(cpu));
7733 return NOTIFY_OK;
7734
7735 default:
7736 return NOTIFY_DONE;
7737 }
7738 }
7739
7740 void __init sched_init_smp(void)
7741 {
7742 cpumask_var_t non_isolated_cpus;
7743
7744 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7745 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7746
7747 #if defined(CONFIG_NUMA)
7748 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7749 GFP_KERNEL);
7750 BUG_ON(sched_group_nodes_bycpu == NULL);
7751 #endif
7752 get_online_cpus();
7753 mutex_lock(&sched_domains_mutex);
7754 arch_init_sched_domains(cpu_active_mask);
7755 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7756 if (cpumask_empty(non_isolated_cpus))
7757 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7758 mutex_unlock(&sched_domains_mutex);
7759 put_online_cpus();
7760
7761 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7762 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7763
7764 /* RT runtime code needs to handle some hotplug events */
7765 hotcpu_notifier(update_runtime, 0);
7766
7767 init_hrtick();
7768
7769 /* Move init over to a non-isolated CPU */
7770 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7771 BUG();
7772 sched_init_granularity();
7773 free_cpumask_var(non_isolated_cpus);
7774
7775 init_sched_rt_class();
7776 }
7777 #else
7778 void __init sched_init_smp(void)
7779 {
7780 sched_init_granularity();
7781 }
7782 #endif /* CONFIG_SMP */
7783
7784 const_debug unsigned int sysctl_timer_migration = 1;
7785
7786 int in_sched_functions(unsigned long addr)
7787 {
7788 return in_lock_functions(addr) ||
7789 (addr >= (unsigned long)__sched_text_start
7790 && addr < (unsigned long)__sched_text_end);
7791 }
7792
7793 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
7794 {
7795 cfs_rq->tasks_timeline = RB_ROOT;
7796 INIT_LIST_HEAD(&cfs_rq->tasks);
7797 #ifdef CONFIG_FAIR_GROUP_SCHED
7798 cfs_rq->rq = rq;
7799 #endif
7800 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7801 }
7802
7803 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7804 {
7805 struct rt_prio_array *array;
7806 int i;
7807
7808 array = &rt_rq->active;
7809 for (i = 0; i < MAX_RT_PRIO; i++) {
7810 INIT_LIST_HEAD(array->queue + i);
7811 __clear_bit(i, array->bitmap);
7812 }
7813 /* delimiter for bitsearch: */
7814 __set_bit(MAX_RT_PRIO, array->bitmap);
7815
7816 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7817 rt_rq->highest_prio.curr = MAX_RT_PRIO;
7818 #ifdef CONFIG_SMP
7819 rt_rq->highest_prio.next = MAX_RT_PRIO;
7820 #endif
7821 #endif
7822 #ifdef CONFIG_SMP
7823 rt_rq->rt_nr_migratory = 0;
7824 rt_rq->overloaded = 0;
7825 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
7826 #endif
7827
7828 rt_rq->rt_time = 0;
7829 rt_rq->rt_throttled = 0;
7830 rt_rq->rt_runtime = 0;
7831 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
7832
7833 #ifdef CONFIG_RT_GROUP_SCHED
7834 rt_rq->rt_nr_boosted = 0;
7835 rt_rq->rq = rq;
7836 #endif
7837 }
7838
7839 #ifdef CONFIG_FAIR_GROUP_SCHED
7840 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7841 struct sched_entity *se, int cpu, int add,
7842 struct sched_entity *parent)
7843 {
7844 struct rq *rq = cpu_rq(cpu);
7845 tg->cfs_rq[cpu] = cfs_rq;
7846 init_cfs_rq(cfs_rq, rq);
7847 cfs_rq->tg = tg;
7848 if (add)
7849 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7850
7851 tg->se[cpu] = se;
7852 /* se could be NULL for init_task_group */
7853 if (!se)
7854 return;
7855
7856 if (!parent)
7857 se->cfs_rq = &rq->cfs;
7858 else
7859 se->cfs_rq = parent->my_q;
7860
7861 se->my_q = cfs_rq;
7862 se->load.weight = tg->shares;
7863 se->load.inv_weight = 0;
7864 se->parent = parent;
7865 }
7866 #endif
7867
7868 #ifdef CONFIG_RT_GROUP_SCHED
7869 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7870 struct sched_rt_entity *rt_se, int cpu, int add,
7871 struct sched_rt_entity *parent)
7872 {
7873 struct rq *rq = cpu_rq(cpu);
7874
7875 tg->rt_rq[cpu] = rt_rq;
7876 init_rt_rq(rt_rq, rq);
7877 rt_rq->tg = tg;
7878 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
7879 if (add)
7880 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7881
7882 tg->rt_se[cpu] = rt_se;
7883 if (!rt_se)
7884 return;
7885
7886 if (!parent)
7887 rt_se->rt_rq = &rq->rt;
7888 else
7889 rt_se->rt_rq = parent->my_q;
7890
7891 rt_se->my_q = rt_rq;
7892 rt_se->parent = parent;
7893 INIT_LIST_HEAD(&rt_se->run_list);
7894 }
7895 #endif
7896
7897 void __init sched_init(void)
7898 {
7899 int i, j;
7900 unsigned long alloc_size = 0, ptr;
7901
7902 #ifdef CONFIG_FAIR_GROUP_SCHED
7903 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7904 #endif
7905 #ifdef CONFIG_RT_GROUP_SCHED
7906 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7907 #endif
7908 #ifdef CONFIG_CPUMASK_OFFSTACK
7909 alloc_size += num_possible_cpus() * cpumask_size();
7910 #endif
7911 if (alloc_size) {
7912 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7913
7914 #ifdef CONFIG_FAIR_GROUP_SCHED
7915 init_task_group.se = (struct sched_entity **)ptr;
7916 ptr += nr_cpu_ids * sizeof(void **);
7917
7918 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7919 ptr += nr_cpu_ids * sizeof(void **);
7920
7921 #endif /* CONFIG_FAIR_GROUP_SCHED */
7922 #ifdef CONFIG_RT_GROUP_SCHED
7923 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7924 ptr += nr_cpu_ids * sizeof(void **);
7925
7926 init_task_group.rt_rq = (struct rt_rq **)ptr;
7927 ptr += nr_cpu_ids * sizeof(void **);
7928
7929 #endif /* CONFIG_RT_GROUP_SCHED */
7930 #ifdef CONFIG_CPUMASK_OFFSTACK
7931 for_each_possible_cpu(i) {
7932 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7933 ptr += cpumask_size();
7934 }
7935 #endif /* CONFIG_CPUMASK_OFFSTACK */
7936 }
7937
7938 #ifdef CONFIG_SMP
7939 init_defrootdomain();
7940 #endif
7941
7942 init_rt_bandwidth(&def_rt_bandwidth,
7943 global_rt_period(), global_rt_runtime());
7944
7945 #ifdef CONFIG_RT_GROUP_SCHED
7946 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7947 global_rt_period(), global_rt_runtime());
7948 #endif /* CONFIG_RT_GROUP_SCHED */
7949
7950 #ifdef CONFIG_CGROUP_SCHED
7951 list_add(&init_task_group.list, &task_groups);
7952 INIT_LIST_HEAD(&init_task_group.children);
7953
7954 #endif /* CONFIG_CGROUP_SCHED */
7955
7956 #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
7957 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
7958 __alignof__(unsigned long));
7959 #endif
7960 for_each_possible_cpu(i) {
7961 struct rq *rq;
7962
7963 rq = cpu_rq(i);
7964 raw_spin_lock_init(&rq->lock);
7965 rq->nr_running = 0;
7966 rq->calc_load_active = 0;
7967 rq->calc_load_update = jiffies + LOAD_FREQ;
7968 init_cfs_rq(&rq->cfs, rq);
7969 init_rt_rq(&rq->rt, rq);
7970 #ifdef CONFIG_FAIR_GROUP_SCHED
7971 init_task_group.shares = init_task_group_load;
7972 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7973 #ifdef CONFIG_CGROUP_SCHED
7974 /*
7975 * How much cpu bandwidth does init_task_group get?
7976 *
7977 * In case of task-groups formed thr' the cgroup filesystem, it
7978 * gets 100% of the cpu resources in the system. This overall
7979 * system cpu resource is divided among the tasks of
7980 * init_task_group and its child task-groups in a fair manner,
7981 * based on each entity's (task or task-group's) weight
7982 * (se->load.weight).
7983 *
7984 * In other words, if init_task_group has 10 tasks of weight
7985 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7986 * then A0's share of the cpu resource is:
7987 *
7988 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7989 *
7990 * We achieve this by letting init_task_group's tasks sit
7991 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7992 */
7993 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
7994 #endif
7995 #endif /* CONFIG_FAIR_GROUP_SCHED */
7996
7997 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7998 #ifdef CONFIG_RT_GROUP_SCHED
7999 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
8000 #ifdef CONFIG_CGROUP_SCHED
8001 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
8002 #endif
8003 #endif
8004
8005 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8006 rq->cpu_load[j] = 0;
8007
8008 rq->last_load_update_tick = jiffies;
8009
8010 #ifdef CONFIG_SMP
8011 rq->sd = NULL;
8012 rq->rd = NULL;
8013 rq->cpu_power = SCHED_LOAD_SCALE;
8014 rq->post_schedule = 0;
8015 rq->active_balance = 0;
8016 rq->next_balance = jiffies;
8017 rq->push_cpu = 0;
8018 rq->cpu = i;
8019 rq->online = 0;
8020 rq->idle_stamp = 0;
8021 rq->avg_idle = 2*sysctl_sched_migration_cost;
8022 rq_attach_root(rq, &def_root_domain);
8023 #ifdef CONFIG_NO_HZ
8024 rq->nohz_balance_kick = 0;
8025 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
8026 #endif
8027 #endif
8028 init_rq_hrtick(rq);
8029 atomic_set(&rq->nr_iowait, 0);
8030 }
8031
8032 set_load_weight(&init_task);
8033
8034 #ifdef CONFIG_PREEMPT_NOTIFIERS
8035 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8036 #endif
8037
8038 #ifdef CONFIG_SMP
8039 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8040 #endif
8041
8042 #ifdef CONFIG_RT_MUTEXES
8043 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
8044 #endif
8045
8046 /*
8047 * The boot idle thread does lazy MMU switching as well:
8048 */
8049 atomic_inc(&init_mm.mm_count);
8050 enter_lazy_tlb(&init_mm, current);
8051
8052 /*
8053 * Make us the idle thread. Technically, schedule() should not be
8054 * called from this thread, however somewhere below it might be,
8055 * but because we are the idle thread, we just pick up running again
8056 * when this runqueue becomes "idle".
8057 */
8058 init_idle(current, smp_processor_id());
8059
8060 calc_load_update = jiffies + LOAD_FREQ;
8061
8062 /*
8063 * During early bootup we pretend to be a normal task:
8064 */
8065 current->sched_class = &fair_sched_class;
8066
8067 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8068 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
8069 #ifdef CONFIG_SMP
8070 #ifdef CONFIG_NO_HZ
8071 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8072 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
8073 atomic_set(&nohz.load_balancer, nr_cpu_ids);
8074 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
8075 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
8076 #endif
8077 /* May be allocated at isolcpus cmdline parse time */
8078 if (cpu_isolated_map == NULL)
8079 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
8080 #endif /* SMP */
8081
8082 perf_event_init();
8083
8084 scheduler_running = 1;
8085 }
8086
8087 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8088 static inline int preempt_count_equals(int preempt_offset)
8089 {
8090 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
8091
8092 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
8093 }
8094
8095 void __might_sleep(const char *file, int line, int preempt_offset)
8096 {
8097 #ifdef in_atomic
8098 static unsigned long prev_jiffy; /* ratelimiting */
8099
8100 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
8101 system_state != SYSTEM_RUNNING || oops_in_progress)
8102 return;
8103 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8104 return;
8105 prev_jiffy = jiffies;
8106
8107 printk(KERN_ERR
8108 "BUG: sleeping function called from invalid context at %s:%d\n",
8109 file, line);
8110 printk(KERN_ERR
8111 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8112 in_atomic(), irqs_disabled(),
8113 current->pid, current->comm);
8114
8115 debug_show_held_locks(current);
8116 if (irqs_disabled())
8117 print_irqtrace_events(current);
8118 dump_stack();
8119 #endif
8120 }
8121 EXPORT_SYMBOL(__might_sleep);
8122 #endif
8123
8124 #ifdef CONFIG_MAGIC_SYSRQ
8125 static void normalize_task(struct rq *rq, struct task_struct *p)
8126 {
8127 int on_rq;
8128
8129 on_rq = p->se.on_rq;
8130 if (on_rq)
8131 deactivate_task(rq, p, 0);
8132 __setscheduler(rq, p, SCHED_NORMAL, 0);
8133 if (on_rq) {
8134 activate_task(rq, p, 0);
8135 resched_task(rq->curr);
8136 }
8137 }
8138
8139 void normalize_rt_tasks(void)
8140 {
8141 struct task_struct *g, *p;
8142 unsigned long flags;
8143 struct rq *rq;
8144
8145 read_lock_irqsave(&tasklist_lock, flags);
8146 do_each_thread(g, p) {
8147 /*
8148 * Only normalize user tasks:
8149 */
8150 if (!p->mm)
8151 continue;
8152
8153 p->se.exec_start = 0;
8154 #ifdef CONFIG_SCHEDSTATS
8155 p->se.statistics.wait_start = 0;
8156 p->se.statistics.sleep_start = 0;
8157 p->se.statistics.block_start = 0;
8158 #endif
8159
8160 if (!rt_task(p)) {
8161 /*
8162 * Renice negative nice level userspace
8163 * tasks back to 0:
8164 */
8165 if (TASK_NICE(p) < 0 && p->mm)
8166 set_user_nice(p, 0);
8167 continue;
8168 }
8169
8170 raw_spin_lock(&p->pi_lock);
8171 rq = __task_rq_lock(p);
8172
8173 normalize_task(rq, p);
8174
8175 __task_rq_unlock(rq);
8176 raw_spin_unlock(&p->pi_lock);
8177 } while_each_thread(g, p);
8178
8179 read_unlock_irqrestore(&tasklist_lock, flags);
8180 }
8181
8182 #endif /* CONFIG_MAGIC_SYSRQ */
8183
8184 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
8185 /*
8186 * These functions are only useful for the IA64 MCA handling, or kdb.
8187 *
8188 * They can only be called when the whole system has been
8189 * stopped - every CPU needs to be quiescent, and no scheduling
8190 * activity can take place. Using them for anything else would
8191 * be a serious bug, and as a result, they aren't even visible
8192 * under any other configuration.
8193 */
8194
8195 /**
8196 * curr_task - return the current task for a given cpu.
8197 * @cpu: the processor in question.
8198 *
8199 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8200 */
8201 struct task_struct *curr_task(int cpu)
8202 {
8203 return cpu_curr(cpu);
8204 }
8205
8206 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8207
8208 #ifdef CONFIG_IA64
8209 /**
8210 * set_curr_task - set the current task for a given cpu.
8211 * @cpu: the processor in question.
8212 * @p: the task pointer to set.
8213 *
8214 * Description: This function must only be used when non-maskable interrupts
8215 * are serviced on a separate stack. It allows the architecture to switch the
8216 * notion of the current task on a cpu in a non-blocking manner. This function
8217 * must be called with all CPU's synchronized, and interrupts disabled, the
8218 * and caller must save the original value of the current task (see
8219 * curr_task() above) and restore that value before reenabling interrupts and
8220 * re-starting the system.
8221 *
8222 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8223 */
8224 void set_curr_task(int cpu, struct task_struct *p)
8225 {
8226 cpu_curr(cpu) = p;
8227 }
8228
8229 #endif
8230
8231 #ifdef CONFIG_FAIR_GROUP_SCHED
8232 static void free_fair_sched_group(struct task_group *tg)
8233 {
8234 int i;
8235
8236 for_each_possible_cpu(i) {
8237 if (tg->cfs_rq)
8238 kfree(tg->cfs_rq[i]);
8239 if (tg->se)
8240 kfree(tg->se[i]);
8241 }
8242
8243 kfree(tg->cfs_rq);
8244 kfree(tg->se);
8245 }
8246
8247 static
8248 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8249 {
8250 struct cfs_rq *cfs_rq;
8251 struct sched_entity *se;
8252 struct rq *rq;
8253 int i;
8254
8255 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8256 if (!tg->cfs_rq)
8257 goto err;
8258 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8259 if (!tg->se)
8260 goto err;
8261
8262 tg->shares = NICE_0_LOAD;
8263
8264 for_each_possible_cpu(i) {
8265 rq = cpu_rq(i);
8266
8267 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8268 GFP_KERNEL, cpu_to_node(i));
8269 if (!cfs_rq)
8270 goto err;
8271
8272 se = kzalloc_node(sizeof(struct sched_entity),
8273 GFP_KERNEL, cpu_to_node(i));
8274 if (!se)
8275 goto err_free_rq;
8276
8277 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
8278 }
8279
8280 return 1;
8281
8282 err_free_rq:
8283 kfree(cfs_rq);
8284 err:
8285 return 0;
8286 }
8287
8288 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8289 {
8290 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8291 &cpu_rq(cpu)->leaf_cfs_rq_list);
8292 }
8293
8294 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8295 {
8296 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8297 }
8298 #else /* !CONFG_FAIR_GROUP_SCHED */
8299 static inline void free_fair_sched_group(struct task_group *tg)
8300 {
8301 }
8302
8303 static inline
8304 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8305 {
8306 return 1;
8307 }
8308
8309 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8310 {
8311 }
8312
8313 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8314 {
8315 }
8316 #endif /* CONFIG_FAIR_GROUP_SCHED */
8317
8318 #ifdef CONFIG_RT_GROUP_SCHED
8319 static void free_rt_sched_group(struct task_group *tg)
8320 {
8321 int i;
8322
8323 destroy_rt_bandwidth(&tg->rt_bandwidth);
8324
8325 for_each_possible_cpu(i) {
8326 if (tg->rt_rq)
8327 kfree(tg->rt_rq[i]);
8328 if (tg->rt_se)
8329 kfree(tg->rt_se[i]);
8330 }
8331
8332 kfree(tg->rt_rq);
8333 kfree(tg->rt_se);
8334 }
8335
8336 static
8337 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8338 {
8339 struct rt_rq *rt_rq;
8340 struct sched_rt_entity *rt_se;
8341 struct rq *rq;
8342 int i;
8343
8344 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8345 if (!tg->rt_rq)
8346 goto err;
8347 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8348 if (!tg->rt_se)
8349 goto err;
8350
8351 init_rt_bandwidth(&tg->rt_bandwidth,
8352 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8353
8354 for_each_possible_cpu(i) {
8355 rq = cpu_rq(i);
8356
8357 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8358 GFP_KERNEL, cpu_to_node(i));
8359 if (!rt_rq)
8360 goto err;
8361
8362 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8363 GFP_KERNEL, cpu_to_node(i));
8364 if (!rt_se)
8365 goto err_free_rq;
8366
8367 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
8368 }
8369
8370 return 1;
8371
8372 err_free_rq:
8373 kfree(rt_rq);
8374 err:
8375 return 0;
8376 }
8377
8378 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8379 {
8380 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8381 &cpu_rq(cpu)->leaf_rt_rq_list);
8382 }
8383
8384 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8385 {
8386 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8387 }
8388 #else /* !CONFIG_RT_GROUP_SCHED */
8389 static inline void free_rt_sched_group(struct task_group *tg)
8390 {
8391 }
8392
8393 static inline
8394 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8395 {
8396 return 1;
8397 }
8398
8399 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8400 {
8401 }
8402
8403 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8404 {
8405 }
8406 #endif /* CONFIG_RT_GROUP_SCHED */
8407
8408 #ifdef CONFIG_CGROUP_SCHED
8409 static void free_sched_group(struct task_group *tg)
8410 {
8411 free_fair_sched_group(tg);
8412 free_rt_sched_group(tg);
8413 kfree(tg);
8414 }
8415
8416 /* allocate runqueue etc for a new task group */
8417 struct task_group *sched_create_group(struct task_group *parent)
8418 {
8419 struct task_group *tg;
8420 unsigned long flags;
8421 int i;
8422
8423 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8424 if (!tg)
8425 return ERR_PTR(-ENOMEM);
8426
8427 if (!alloc_fair_sched_group(tg, parent))
8428 goto err;
8429
8430 if (!alloc_rt_sched_group(tg, parent))
8431 goto err;
8432
8433 spin_lock_irqsave(&task_group_lock, flags);
8434 for_each_possible_cpu(i) {
8435 register_fair_sched_group(tg, i);
8436 register_rt_sched_group(tg, i);
8437 }
8438 list_add_rcu(&tg->list, &task_groups);
8439
8440 WARN_ON(!parent); /* root should already exist */
8441
8442 tg->parent = parent;
8443 INIT_LIST_HEAD(&tg->children);
8444 list_add_rcu(&tg->siblings, &parent->children);
8445 spin_unlock_irqrestore(&task_group_lock, flags);
8446
8447 return tg;
8448
8449 err:
8450 free_sched_group(tg);
8451 return ERR_PTR(-ENOMEM);
8452 }
8453
8454 /* rcu callback to free various structures associated with a task group */
8455 static void free_sched_group_rcu(struct rcu_head *rhp)
8456 {
8457 /* now it should be safe to free those cfs_rqs */
8458 free_sched_group(container_of(rhp, struct task_group, rcu));
8459 }
8460
8461 /* Destroy runqueue etc associated with a task group */
8462 void sched_destroy_group(struct task_group *tg)
8463 {
8464 unsigned long flags;
8465 int i;
8466
8467 spin_lock_irqsave(&task_group_lock, flags);
8468 for_each_possible_cpu(i) {
8469 unregister_fair_sched_group(tg, i);
8470 unregister_rt_sched_group(tg, i);
8471 }
8472 list_del_rcu(&tg->list);
8473 list_del_rcu(&tg->siblings);
8474 spin_unlock_irqrestore(&task_group_lock, flags);
8475
8476 /* wait for possible concurrent references to cfs_rqs complete */
8477 call_rcu(&tg->rcu, free_sched_group_rcu);
8478 }
8479
8480 /* change task's runqueue when it moves between groups.
8481 * The caller of this function should have put the task in its new group
8482 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8483 * reflect its new group.
8484 */
8485 void sched_move_task(struct task_struct *tsk)
8486 {
8487 int on_rq, running;
8488 unsigned long flags;
8489 struct rq *rq;
8490
8491 rq = task_rq_lock(tsk, &flags);
8492
8493 running = task_current(rq, tsk);
8494 on_rq = tsk->se.on_rq;
8495
8496 if (on_rq)
8497 dequeue_task(rq, tsk, 0);
8498 if (unlikely(running))
8499 tsk->sched_class->put_prev_task(rq, tsk);
8500
8501 set_task_rq(tsk, task_cpu(tsk));
8502
8503 #ifdef CONFIG_FAIR_GROUP_SCHED
8504 if (tsk->sched_class->moved_group)
8505 tsk->sched_class->moved_group(tsk, on_rq);
8506 #endif
8507
8508 if (unlikely(running))
8509 tsk->sched_class->set_curr_task(rq);
8510 if (on_rq)
8511 enqueue_task(rq, tsk, 0);
8512
8513 task_rq_unlock(rq, &flags);
8514 }
8515 #endif /* CONFIG_CGROUP_SCHED */
8516
8517 #ifdef CONFIG_FAIR_GROUP_SCHED
8518 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
8519 {
8520 struct cfs_rq *cfs_rq = se->cfs_rq;
8521 int on_rq;
8522
8523 on_rq = se->on_rq;
8524 if (on_rq)
8525 dequeue_entity(cfs_rq, se, 0);
8526
8527 se->load.weight = shares;
8528 se->load.inv_weight = 0;
8529
8530 if (on_rq)
8531 enqueue_entity(cfs_rq, se, 0);
8532 }
8533
8534 static void set_se_shares(struct sched_entity *se, unsigned long shares)
8535 {
8536 struct cfs_rq *cfs_rq = se->cfs_rq;
8537 struct rq *rq = cfs_rq->rq;
8538 unsigned long flags;
8539
8540 raw_spin_lock_irqsave(&rq->lock, flags);
8541 __set_se_shares(se, shares);
8542 raw_spin_unlock_irqrestore(&rq->lock, flags);
8543 }
8544
8545 static DEFINE_MUTEX(shares_mutex);
8546
8547 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8548 {
8549 int i;
8550 unsigned long flags;
8551
8552 /*
8553 * We can't change the weight of the root cgroup.
8554 */
8555 if (!tg->se[0])
8556 return -EINVAL;
8557
8558 if (shares < MIN_SHARES)
8559 shares = MIN_SHARES;
8560 else if (shares > MAX_SHARES)
8561 shares = MAX_SHARES;
8562
8563 mutex_lock(&shares_mutex);
8564 if (tg->shares == shares)
8565 goto done;
8566
8567 spin_lock_irqsave(&task_group_lock, flags);
8568 for_each_possible_cpu(i)
8569 unregister_fair_sched_group(tg, i);
8570 list_del_rcu(&tg->siblings);
8571 spin_unlock_irqrestore(&task_group_lock, flags);
8572
8573 /* wait for any ongoing reference to this group to finish */
8574 synchronize_sched();
8575
8576 /*
8577 * Now we are free to modify the group's share on each cpu
8578 * w/o tripping rebalance_share or load_balance_fair.
8579 */
8580 tg->shares = shares;
8581 for_each_possible_cpu(i) {
8582 /*
8583 * force a rebalance
8584 */
8585 cfs_rq_set_shares(tg->cfs_rq[i], 0);
8586 set_se_shares(tg->se[i], shares);
8587 }
8588
8589 /*
8590 * Enable load balance activity on this group, by inserting it back on
8591 * each cpu's rq->leaf_cfs_rq_list.
8592 */
8593 spin_lock_irqsave(&task_group_lock, flags);
8594 for_each_possible_cpu(i)
8595 register_fair_sched_group(tg, i);
8596 list_add_rcu(&tg->siblings, &tg->parent->children);
8597 spin_unlock_irqrestore(&task_group_lock, flags);
8598 done:
8599 mutex_unlock(&shares_mutex);
8600 return 0;
8601 }
8602
8603 unsigned long sched_group_shares(struct task_group *tg)
8604 {
8605 return tg->shares;
8606 }
8607 #endif
8608
8609 #ifdef CONFIG_RT_GROUP_SCHED
8610 /*
8611 * Ensure that the real time constraints are schedulable.
8612 */
8613 static DEFINE_MUTEX(rt_constraints_mutex);
8614
8615 static unsigned long to_ratio(u64 period, u64 runtime)
8616 {
8617 if (runtime == RUNTIME_INF)
8618 return 1ULL << 20;
8619
8620 return div64_u64(runtime << 20, period);
8621 }
8622
8623 /* Must be called with tasklist_lock held */
8624 static inline int tg_has_rt_tasks(struct task_group *tg)
8625 {
8626 struct task_struct *g, *p;
8627
8628 do_each_thread(g, p) {
8629 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8630 return 1;
8631 } while_each_thread(g, p);
8632
8633 return 0;
8634 }
8635
8636 struct rt_schedulable_data {
8637 struct task_group *tg;
8638 u64 rt_period;
8639 u64 rt_runtime;
8640 };
8641
8642 static int tg_schedulable(struct task_group *tg, void *data)
8643 {
8644 struct rt_schedulable_data *d = data;
8645 struct task_group *child;
8646 unsigned long total, sum = 0;
8647 u64 period, runtime;
8648
8649 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8650 runtime = tg->rt_bandwidth.rt_runtime;
8651
8652 if (tg == d->tg) {
8653 period = d->rt_period;
8654 runtime = d->rt_runtime;
8655 }
8656
8657 /*
8658 * Cannot have more runtime than the period.
8659 */
8660 if (runtime > period && runtime != RUNTIME_INF)
8661 return -EINVAL;
8662
8663 /*
8664 * Ensure we don't starve existing RT tasks.
8665 */
8666 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8667 return -EBUSY;
8668
8669 total = to_ratio(period, runtime);
8670
8671 /*
8672 * Nobody can have more than the global setting allows.
8673 */
8674 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8675 return -EINVAL;
8676
8677 /*
8678 * The sum of our children's runtime should not exceed our own.
8679 */
8680 list_for_each_entry_rcu(child, &tg->children, siblings) {
8681 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8682 runtime = child->rt_bandwidth.rt_runtime;
8683
8684 if (child == d->tg) {
8685 period = d->rt_period;
8686 runtime = d->rt_runtime;
8687 }
8688
8689 sum += to_ratio(period, runtime);
8690 }
8691
8692 if (sum > total)
8693 return -EINVAL;
8694
8695 return 0;
8696 }
8697
8698 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8699 {
8700 struct rt_schedulable_data data = {
8701 .tg = tg,
8702 .rt_period = period,
8703 .rt_runtime = runtime,
8704 };
8705
8706 return walk_tg_tree(tg_schedulable, tg_nop, &data);
8707 }
8708
8709 static int tg_set_bandwidth(struct task_group *tg,
8710 u64 rt_period, u64 rt_runtime)
8711 {
8712 int i, err = 0;
8713
8714 mutex_lock(&rt_constraints_mutex);
8715 read_lock(&tasklist_lock);
8716 err = __rt_schedulable(tg, rt_period, rt_runtime);
8717 if (err)
8718 goto unlock;
8719
8720 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8721 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8722 tg->rt_bandwidth.rt_runtime = rt_runtime;
8723
8724 for_each_possible_cpu(i) {
8725 struct rt_rq *rt_rq = tg->rt_rq[i];
8726
8727 raw_spin_lock(&rt_rq->rt_runtime_lock);
8728 rt_rq->rt_runtime = rt_runtime;
8729 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8730 }
8731 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8732 unlock:
8733 read_unlock(&tasklist_lock);
8734 mutex_unlock(&rt_constraints_mutex);
8735
8736 return err;
8737 }
8738
8739 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8740 {
8741 u64 rt_runtime, rt_period;
8742
8743 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8744 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8745 if (rt_runtime_us < 0)
8746 rt_runtime = RUNTIME_INF;
8747
8748 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8749 }
8750
8751 long sched_group_rt_runtime(struct task_group *tg)
8752 {
8753 u64 rt_runtime_us;
8754
8755 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8756 return -1;
8757
8758 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8759 do_div(rt_runtime_us, NSEC_PER_USEC);
8760 return rt_runtime_us;
8761 }
8762
8763 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8764 {
8765 u64 rt_runtime, rt_period;
8766
8767 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8768 rt_runtime = tg->rt_bandwidth.rt_runtime;
8769
8770 if (rt_period == 0)
8771 return -EINVAL;
8772
8773 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8774 }
8775
8776 long sched_group_rt_period(struct task_group *tg)
8777 {
8778 u64 rt_period_us;
8779
8780 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8781 do_div(rt_period_us, NSEC_PER_USEC);
8782 return rt_period_us;
8783 }
8784
8785 static int sched_rt_global_constraints(void)
8786 {
8787 u64 runtime, period;
8788 int ret = 0;
8789
8790 if (sysctl_sched_rt_period <= 0)
8791 return -EINVAL;
8792
8793 runtime = global_rt_runtime();
8794 period = global_rt_period();
8795
8796 /*
8797 * Sanity check on the sysctl variables.
8798 */
8799 if (runtime > period && runtime != RUNTIME_INF)
8800 return -EINVAL;
8801
8802 mutex_lock(&rt_constraints_mutex);
8803 read_lock(&tasklist_lock);
8804 ret = __rt_schedulable(NULL, 0, 0);
8805 read_unlock(&tasklist_lock);
8806 mutex_unlock(&rt_constraints_mutex);
8807
8808 return ret;
8809 }
8810
8811 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8812 {
8813 /* Don't accept realtime tasks when there is no way for them to run */
8814 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8815 return 0;
8816
8817 return 1;
8818 }
8819
8820 #else /* !CONFIG_RT_GROUP_SCHED */
8821 static int sched_rt_global_constraints(void)
8822 {
8823 unsigned long flags;
8824 int i;
8825
8826 if (sysctl_sched_rt_period <= 0)
8827 return -EINVAL;
8828
8829 /*
8830 * There's always some RT tasks in the root group
8831 * -- migration, kstopmachine etc..
8832 */
8833 if (sysctl_sched_rt_runtime == 0)
8834 return -EBUSY;
8835
8836 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8837 for_each_possible_cpu(i) {
8838 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8839
8840 raw_spin_lock(&rt_rq->rt_runtime_lock);
8841 rt_rq->rt_runtime = global_rt_runtime();
8842 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8843 }
8844 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8845
8846 return 0;
8847 }
8848 #endif /* CONFIG_RT_GROUP_SCHED */
8849
8850 int sched_rt_handler(struct ctl_table *table, int write,
8851 void __user *buffer, size_t *lenp,
8852 loff_t *ppos)
8853 {
8854 int ret;
8855 int old_period, old_runtime;
8856 static DEFINE_MUTEX(mutex);
8857
8858 mutex_lock(&mutex);
8859 old_period = sysctl_sched_rt_period;
8860 old_runtime = sysctl_sched_rt_runtime;
8861
8862 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8863
8864 if (!ret && write) {
8865 ret = sched_rt_global_constraints();
8866 if (ret) {
8867 sysctl_sched_rt_period = old_period;
8868 sysctl_sched_rt_runtime = old_runtime;
8869 } else {
8870 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8871 def_rt_bandwidth.rt_period =
8872 ns_to_ktime(global_rt_period());
8873 }
8874 }
8875 mutex_unlock(&mutex);
8876
8877 return ret;
8878 }
8879
8880 #ifdef CONFIG_CGROUP_SCHED
8881
8882 /* return corresponding task_group object of a cgroup */
8883 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8884 {
8885 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8886 struct task_group, css);
8887 }
8888
8889 static struct cgroup_subsys_state *
8890 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8891 {
8892 struct task_group *tg, *parent;
8893
8894 if (!cgrp->parent) {
8895 /* This is early initialization for the top cgroup */
8896 return &init_task_group.css;
8897 }
8898
8899 parent = cgroup_tg(cgrp->parent);
8900 tg = sched_create_group(parent);
8901 if (IS_ERR(tg))
8902 return ERR_PTR(-ENOMEM);
8903
8904 return &tg->css;
8905 }
8906
8907 static void
8908 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8909 {
8910 struct task_group *tg = cgroup_tg(cgrp);
8911
8912 sched_destroy_group(tg);
8913 }
8914
8915 static int
8916 cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
8917 {
8918 #ifdef CONFIG_RT_GROUP_SCHED
8919 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
8920 return -EINVAL;
8921 #else
8922 /* We don't support RT-tasks being in separate groups */
8923 if (tsk->sched_class != &fair_sched_class)
8924 return -EINVAL;
8925 #endif
8926 return 0;
8927 }
8928
8929 static int
8930 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8931 struct task_struct *tsk, bool threadgroup)
8932 {
8933 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
8934 if (retval)
8935 return retval;
8936 if (threadgroup) {
8937 struct task_struct *c;
8938 rcu_read_lock();
8939 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8940 retval = cpu_cgroup_can_attach_task(cgrp, c);
8941 if (retval) {
8942 rcu_read_unlock();
8943 return retval;
8944 }
8945 }
8946 rcu_read_unlock();
8947 }
8948 return 0;
8949 }
8950
8951 static void
8952 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8953 struct cgroup *old_cont, struct task_struct *tsk,
8954 bool threadgroup)
8955 {
8956 sched_move_task(tsk);
8957 if (threadgroup) {
8958 struct task_struct *c;
8959 rcu_read_lock();
8960 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8961 sched_move_task(c);
8962 }
8963 rcu_read_unlock();
8964 }
8965 }
8966
8967 #ifdef CONFIG_FAIR_GROUP_SCHED
8968 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8969 u64 shareval)
8970 {
8971 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8972 }
8973
8974 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8975 {
8976 struct task_group *tg = cgroup_tg(cgrp);
8977
8978 return (u64) tg->shares;
8979 }
8980 #endif /* CONFIG_FAIR_GROUP_SCHED */
8981
8982 #ifdef CONFIG_RT_GROUP_SCHED
8983 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8984 s64 val)
8985 {
8986 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
8987 }
8988
8989 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
8990 {
8991 return sched_group_rt_runtime(cgroup_tg(cgrp));
8992 }
8993
8994 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8995 u64 rt_period_us)
8996 {
8997 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8998 }
8999
9000 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9001 {
9002 return sched_group_rt_period(cgroup_tg(cgrp));
9003 }
9004 #endif /* CONFIG_RT_GROUP_SCHED */
9005
9006 static struct cftype cpu_files[] = {
9007 #ifdef CONFIG_FAIR_GROUP_SCHED
9008 {
9009 .name = "shares",
9010 .read_u64 = cpu_shares_read_u64,
9011 .write_u64 = cpu_shares_write_u64,
9012 },
9013 #endif
9014 #ifdef CONFIG_RT_GROUP_SCHED
9015 {
9016 .name = "rt_runtime_us",
9017 .read_s64 = cpu_rt_runtime_read,
9018 .write_s64 = cpu_rt_runtime_write,
9019 },
9020 {
9021 .name = "rt_period_us",
9022 .read_u64 = cpu_rt_period_read_uint,
9023 .write_u64 = cpu_rt_period_write_uint,
9024 },
9025 #endif
9026 };
9027
9028 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9029 {
9030 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9031 }
9032
9033 struct cgroup_subsys cpu_cgroup_subsys = {
9034 .name = "cpu",
9035 .create = cpu_cgroup_create,
9036 .destroy = cpu_cgroup_destroy,
9037 .can_attach = cpu_cgroup_can_attach,
9038 .attach = cpu_cgroup_attach,
9039 .populate = cpu_cgroup_populate,
9040 .subsys_id = cpu_cgroup_subsys_id,
9041 .early_init = 1,
9042 };
9043
9044 #endif /* CONFIG_CGROUP_SCHED */
9045
9046 #ifdef CONFIG_CGROUP_CPUACCT
9047
9048 /*
9049 * CPU accounting code for task groups.
9050 *
9051 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9052 * (balbir@in.ibm.com).
9053 */
9054
9055 /* track cpu usage of a group of tasks and its child groups */
9056 struct cpuacct {
9057 struct cgroup_subsys_state css;
9058 /* cpuusage holds pointer to a u64-type object on every cpu */
9059 u64 __percpu *cpuusage;
9060 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
9061 struct cpuacct *parent;
9062 };
9063
9064 struct cgroup_subsys cpuacct_subsys;
9065
9066 /* return cpu accounting group corresponding to this container */
9067 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9068 {
9069 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9070 struct cpuacct, css);
9071 }
9072
9073 /* return cpu accounting group to which this task belongs */
9074 static inline struct cpuacct *task_ca(struct task_struct *tsk)
9075 {
9076 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9077 struct cpuacct, css);
9078 }
9079
9080 /* create a new cpu accounting group */
9081 static struct cgroup_subsys_state *cpuacct_create(
9082 struct cgroup_subsys *ss, struct cgroup *cgrp)
9083 {
9084 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9085 int i;
9086
9087 if (!ca)
9088 goto out;
9089
9090 ca->cpuusage = alloc_percpu(u64);
9091 if (!ca->cpuusage)
9092 goto out_free_ca;
9093
9094 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9095 if (percpu_counter_init(&ca->cpustat[i], 0))
9096 goto out_free_counters;
9097
9098 if (cgrp->parent)
9099 ca->parent = cgroup_ca(cgrp->parent);
9100
9101 return &ca->css;
9102
9103 out_free_counters:
9104 while (--i >= 0)
9105 percpu_counter_destroy(&ca->cpustat[i]);
9106 free_percpu(ca->cpuusage);
9107 out_free_ca:
9108 kfree(ca);
9109 out:
9110 return ERR_PTR(-ENOMEM);
9111 }
9112
9113 /* destroy an existing cpu accounting group */
9114 static void
9115 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9116 {
9117 struct cpuacct *ca = cgroup_ca(cgrp);
9118 int i;
9119
9120 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9121 percpu_counter_destroy(&ca->cpustat[i]);
9122 free_percpu(ca->cpuusage);
9123 kfree(ca);
9124 }
9125
9126 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9127 {
9128 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9129 u64 data;
9130
9131 #ifndef CONFIG_64BIT
9132 /*
9133 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9134 */
9135 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9136 data = *cpuusage;
9137 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9138 #else
9139 data = *cpuusage;
9140 #endif
9141
9142 return data;
9143 }
9144
9145 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9146 {
9147 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9148
9149 #ifndef CONFIG_64BIT
9150 /*
9151 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9152 */
9153 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9154 *cpuusage = val;
9155 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9156 #else
9157 *cpuusage = val;
9158 #endif
9159 }
9160
9161 /* return total cpu usage (in nanoseconds) of a group */
9162 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9163 {
9164 struct cpuacct *ca = cgroup_ca(cgrp);
9165 u64 totalcpuusage = 0;
9166 int i;
9167
9168 for_each_present_cpu(i)
9169 totalcpuusage += cpuacct_cpuusage_read(ca, i);
9170
9171 return totalcpuusage;
9172 }
9173
9174 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9175 u64 reset)
9176 {
9177 struct cpuacct *ca = cgroup_ca(cgrp);
9178 int err = 0;
9179 int i;
9180
9181 if (reset) {
9182 err = -EINVAL;
9183 goto out;
9184 }
9185
9186 for_each_present_cpu(i)
9187 cpuacct_cpuusage_write(ca, i, 0);
9188
9189 out:
9190 return err;
9191 }
9192
9193 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9194 struct seq_file *m)
9195 {
9196 struct cpuacct *ca = cgroup_ca(cgroup);
9197 u64 percpu;
9198 int i;
9199
9200 for_each_present_cpu(i) {
9201 percpu = cpuacct_cpuusage_read(ca, i);
9202 seq_printf(m, "%llu ", (unsigned long long) percpu);
9203 }
9204 seq_printf(m, "\n");
9205 return 0;
9206 }
9207
9208 static const char *cpuacct_stat_desc[] = {
9209 [CPUACCT_STAT_USER] = "user",
9210 [CPUACCT_STAT_SYSTEM] = "system",
9211 };
9212
9213 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9214 struct cgroup_map_cb *cb)
9215 {
9216 struct cpuacct *ca = cgroup_ca(cgrp);
9217 int i;
9218
9219 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9220 s64 val = percpu_counter_read(&ca->cpustat[i]);
9221 val = cputime64_to_clock_t(val);
9222 cb->fill(cb, cpuacct_stat_desc[i], val);
9223 }
9224 return 0;
9225 }
9226
9227 static struct cftype files[] = {
9228 {
9229 .name = "usage",
9230 .read_u64 = cpuusage_read,
9231 .write_u64 = cpuusage_write,
9232 },
9233 {
9234 .name = "usage_percpu",
9235 .read_seq_string = cpuacct_percpu_seq_read,
9236 },
9237 {
9238 .name = "stat",
9239 .read_map = cpuacct_stats_show,
9240 },
9241 };
9242
9243 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9244 {
9245 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9246 }
9247
9248 /*
9249 * charge this task's execution time to its accounting group.
9250 *
9251 * called with rq->lock held.
9252 */
9253 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9254 {
9255 struct cpuacct *ca;
9256 int cpu;
9257
9258 if (unlikely(!cpuacct_subsys.active))
9259 return;
9260
9261 cpu = task_cpu(tsk);
9262
9263 rcu_read_lock();
9264
9265 ca = task_ca(tsk);
9266
9267 for (; ca; ca = ca->parent) {
9268 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9269 *cpuusage += cputime;
9270 }
9271
9272 rcu_read_unlock();
9273 }
9274
9275 /*
9276 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9277 * in cputime_t units. As a result, cpuacct_update_stats calls
9278 * percpu_counter_add with values large enough to always overflow the
9279 * per cpu batch limit causing bad SMP scalability.
9280 *
9281 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9282 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9283 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9284 */
9285 #ifdef CONFIG_SMP
9286 #define CPUACCT_BATCH \
9287 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9288 #else
9289 #define CPUACCT_BATCH 0
9290 #endif
9291
9292 /*
9293 * Charge the system/user time to the task's accounting group.
9294 */
9295 static void cpuacct_update_stats(struct task_struct *tsk,
9296 enum cpuacct_stat_index idx, cputime_t val)
9297 {
9298 struct cpuacct *ca;
9299 int batch = CPUACCT_BATCH;
9300
9301 if (unlikely(!cpuacct_subsys.active))
9302 return;
9303
9304 rcu_read_lock();
9305 ca = task_ca(tsk);
9306
9307 do {
9308 __percpu_counter_add(&ca->cpustat[idx], val, batch);
9309 ca = ca->parent;
9310 } while (ca);
9311 rcu_read_unlock();
9312 }
9313
9314 struct cgroup_subsys cpuacct_subsys = {
9315 .name = "cpuacct",
9316 .create = cpuacct_create,
9317 .destroy = cpuacct_destroy,
9318 .populate = cpuacct_populate,
9319 .subsys_id = cpuacct_subsys_id,
9320 };
9321 #endif /* CONFIG_CGROUP_CPUACCT */
9322
9323 #ifndef CONFIG_SMP
9324
9325 void synchronize_sched_expedited(void)
9326 {
9327 barrier();
9328 }
9329 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9330
9331 #else /* #ifndef CONFIG_SMP */
9332
9333 static atomic_t synchronize_sched_expedited_count = ATOMIC_INIT(0);
9334
9335 static int synchronize_sched_expedited_cpu_stop(void *data)
9336 {
9337 /*
9338 * There must be a full memory barrier on each affected CPU
9339 * between the time that try_stop_cpus() is called and the
9340 * time that it returns.
9341 *
9342 * In the current initial implementation of cpu_stop, the
9343 * above condition is already met when the control reaches
9344 * this point and the following smp_mb() is not strictly
9345 * necessary. Do smp_mb() anyway for documentation and
9346 * robustness against future implementation changes.
9347 */
9348 smp_mb(); /* See above comment block. */
9349 return 0;
9350 }
9351
9352 /*
9353 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
9354 * approach to force grace period to end quickly. This consumes
9355 * significant time on all CPUs, and is thus not recommended for
9356 * any sort of common-case code.
9357 *
9358 * Note that it is illegal to call this function while holding any
9359 * lock that is acquired by a CPU-hotplug notifier. Failing to
9360 * observe this restriction will result in deadlock.
9361 */
9362 void synchronize_sched_expedited(void)
9363 {
9364 int snap, trycount = 0;
9365
9366 smp_mb(); /* ensure prior mod happens before capturing snap. */
9367 snap = atomic_read(&synchronize_sched_expedited_count) + 1;
9368 get_online_cpus();
9369 while (try_stop_cpus(cpu_online_mask,
9370 synchronize_sched_expedited_cpu_stop,
9371 NULL) == -EAGAIN) {
9372 put_online_cpus();
9373 if (trycount++ < 10)
9374 udelay(trycount * num_online_cpus());
9375 else {
9376 synchronize_sched();
9377 return;
9378 }
9379 if (atomic_read(&synchronize_sched_expedited_count) - snap > 0) {
9380 smp_mb(); /* ensure test happens before caller kfree */
9381 return;
9382 }
9383 get_online_cpus();
9384 }
9385 atomic_inc(&synchronize_sched_expedited_count);
9386 smp_mb__after_atomic_inc(); /* ensure post-GP actions seen after GP. */
9387 put_online_cpus();
9388 }
9389 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9390
9391 #endif /* #else #ifndef CONFIG_SMP */
This page took 0.224826 seconds and 5 git commands to generate.