sched: emit thread info flags with stack trace
[deliverable/linux.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/reciprocal_div.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/bootmem.h>
72 #include <linux/debugfs.h>
73 #include <linux/ctype.h>
74 #include <linux/ftrace.h>
75 #include <trace/sched.h>
76
77 #include <asm/tlb.h>
78 #include <asm/irq_regs.h>
79
80 #include "sched_cpupri.h"
81
82 /*
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85 * and back.
86 */
87 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
90
91 /*
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
95 */
96 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
99
100 /*
101 * Helpers for converting nanosecond timing to jiffy resolution
102 */
103 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
104
105 #define NICE_0_LOAD SCHED_LOAD_SCALE
106 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
107
108 /*
109 * These are the 'tuning knobs' of the scheduler:
110 *
111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
112 * Timeslices get refilled after they expire.
113 */
114 #define DEF_TIMESLICE (100 * HZ / 1000)
115
116 /*
117 * single value that denotes runtime == period, ie unlimited time.
118 */
119 #define RUNTIME_INF ((u64)~0ULL)
120
121 DEFINE_TRACE(sched_wait_task);
122 DEFINE_TRACE(sched_wakeup);
123 DEFINE_TRACE(sched_wakeup_new);
124 DEFINE_TRACE(sched_switch);
125 DEFINE_TRACE(sched_migrate_task);
126
127 #ifdef CONFIG_SMP
128
129 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
130
131 /*
132 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
133 * Since cpu_power is a 'constant', we can use a reciprocal divide.
134 */
135 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
136 {
137 return reciprocal_divide(load, sg->reciprocal_cpu_power);
138 }
139
140 /*
141 * Each time a sched group cpu_power is changed,
142 * we must compute its reciprocal value
143 */
144 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
145 {
146 sg->__cpu_power += val;
147 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
148 }
149 #endif
150
151 static inline int rt_policy(int policy)
152 {
153 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
154 return 1;
155 return 0;
156 }
157
158 static inline int task_has_rt_policy(struct task_struct *p)
159 {
160 return rt_policy(p->policy);
161 }
162
163 /*
164 * This is the priority-queue data structure of the RT scheduling class:
165 */
166 struct rt_prio_array {
167 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
168 struct list_head queue[MAX_RT_PRIO];
169 };
170
171 struct rt_bandwidth {
172 /* nests inside the rq lock: */
173 spinlock_t rt_runtime_lock;
174 ktime_t rt_period;
175 u64 rt_runtime;
176 struct hrtimer rt_period_timer;
177 };
178
179 static struct rt_bandwidth def_rt_bandwidth;
180
181 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
182
183 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
184 {
185 struct rt_bandwidth *rt_b =
186 container_of(timer, struct rt_bandwidth, rt_period_timer);
187 ktime_t now;
188 int overrun;
189 int idle = 0;
190
191 for (;;) {
192 now = hrtimer_cb_get_time(timer);
193 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
194
195 if (!overrun)
196 break;
197
198 idle = do_sched_rt_period_timer(rt_b, overrun);
199 }
200
201 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
202 }
203
204 static
205 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
206 {
207 rt_b->rt_period = ns_to_ktime(period);
208 rt_b->rt_runtime = runtime;
209
210 spin_lock_init(&rt_b->rt_runtime_lock);
211
212 hrtimer_init(&rt_b->rt_period_timer,
213 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
214 rt_b->rt_period_timer.function = sched_rt_period_timer;
215 }
216
217 static inline int rt_bandwidth_enabled(void)
218 {
219 return sysctl_sched_rt_runtime >= 0;
220 }
221
222 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
223 {
224 ktime_t now;
225
226 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
227 return;
228
229 if (hrtimer_active(&rt_b->rt_period_timer))
230 return;
231
232 spin_lock(&rt_b->rt_runtime_lock);
233 for (;;) {
234 unsigned long delta;
235 ktime_t soft, hard;
236
237 if (hrtimer_active(&rt_b->rt_period_timer))
238 break;
239
240 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
241 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
242
243 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
244 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
245 delta = ktime_to_ns(ktime_sub(hard, soft));
246 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
247 HRTIMER_MODE_ABS, 0);
248 }
249 spin_unlock(&rt_b->rt_runtime_lock);
250 }
251
252 #ifdef CONFIG_RT_GROUP_SCHED
253 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
254 {
255 hrtimer_cancel(&rt_b->rt_period_timer);
256 }
257 #endif
258
259 /*
260 * sched_domains_mutex serializes calls to arch_init_sched_domains,
261 * detach_destroy_domains and partition_sched_domains.
262 */
263 static DEFINE_MUTEX(sched_domains_mutex);
264
265 #ifdef CONFIG_GROUP_SCHED
266
267 #include <linux/cgroup.h>
268
269 struct cfs_rq;
270
271 static LIST_HEAD(task_groups);
272
273 /* task group related information */
274 struct task_group {
275 #ifdef CONFIG_CGROUP_SCHED
276 struct cgroup_subsys_state css;
277 #endif
278
279 #ifdef CONFIG_USER_SCHED
280 uid_t uid;
281 #endif
282
283 #ifdef CONFIG_FAIR_GROUP_SCHED
284 /* schedulable entities of this group on each cpu */
285 struct sched_entity **se;
286 /* runqueue "owned" by this group on each cpu */
287 struct cfs_rq **cfs_rq;
288 unsigned long shares;
289 #endif
290
291 #ifdef CONFIG_RT_GROUP_SCHED
292 struct sched_rt_entity **rt_se;
293 struct rt_rq **rt_rq;
294
295 struct rt_bandwidth rt_bandwidth;
296 #endif
297
298 struct rcu_head rcu;
299 struct list_head list;
300
301 struct task_group *parent;
302 struct list_head siblings;
303 struct list_head children;
304 };
305
306 #ifdef CONFIG_USER_SCHED
307
308 /* Helper function to pass uid information to create_sched_user() */
309 void set_tg_uid(struct user_struct *user)
310 {
311 user->tg->uid = user->uid;
312 }
313
314 /*
315 * Root task group.
316 * Every UID task group (including init_task_group aka UID-0) will
317 * be a child to this group.
318 */
319 struct task_group root_task_group;
320
321 #ifdef CONFIG_FAIR_GROUP_SCHED
322 /* Default task group's sched entity on each cpu */
323 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
324 /* Default task group's cfs_rq on each cpu */
325 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
326 #endif /* CONFIG_FAIR_GROUP_SCHED */
327
328 #ifdef CONFIG_RT_GROUP_SCHED
329 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
330 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
331 #endif /* CONFIG_RT_GROUP_SCHED */
332 #else /* !CONFIG_USER_SCHED */
333 #define root_task_group init_task_group
334 #endif /* CONFIG_USER_SCHED */
335
336 /* task_group_lock serializes add/remove of task groups and also changes to
337 * a task group's cpu shares.
338 */
339 static DEFINE_SPINLOCK(task_group_lock);
340
341 #ifdef CONFIG_SMP
342 static int root_task_group_empty(void)
343 {
344 return list_empty(&root_task_group.children);
345 }
346 #endif
347
348 #ifdef CONFIG_FAIR_GROUP_SCHED
349 #ifdef CONFIG_USER_SCHED
350 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
351 #else /* !CONFIG_USER_SCHED */
352 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
353 #endif /* CONFIG_USER_SCHED */
354
355 /*
356 * A weight of 0 or 1 can cause arithmetics problems.
357 * A weight of a cfs_rq is the sum of weights of which entities
358 * are queued on this cfs_rq, so a weight of a entity should not be
359 * too large, so as the shares value of a task group.
360 * (The default weight is 1024 - so there's no practical
361 * limitation from this.)
362 */
363 #define MIN_SHARES 2
364 #define MAX_SHARES (1UL << 18)
365
366 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
367 #endif
368
369 /* Default task group.
370 * Every task in system belong to this group at bootup.
371 */
372 struct task_group init_task_group;
373
374 /* return group to which a task belongs */
375 static inline struct task_group *task_group(struct task_struct *p)
376 {
377 struct task_group *tg;
378
379 #ifdef CONFIG_USER_SCHED
380 rcu_read_lock();
381 tg = __task_cred(p)->user->tg;
382 rcu_read_unlock();
383 #elif defined(CONFIG_CGROUP_SCHED)
384 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
385 struct task_group, css);
386 #else
387 tg = &init_task_group;
388 #endif
389 return tg;
390 }
391
392 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
393 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
394 {
395 #ifdef CONFIG_FAIR_GROUP_SCHED
396 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
397 p->se.parent = task_group(p)->se[cpu];
398 #endif
399
400 #ifdef CONFIG_RT_GROUP_SCHED
401 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
402 p->rt.parent = task_group(p)->rt_se[cpu];
403 #endif
404 }
405
406 #else
407
408 #ifdef CONFIG_SMP
409 static int root_task_group_empty(void)
410 {
411 return 1;
412 }
413 #endif
414
415 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
416 static inline struct task_group *task_group(struct task_struct *p)
417 {
418 return NULL;
419 }
420
421 #endif /* CONFIG_GROUP_SCHED */
422
423 /* CFS-related fields in a runqueue */
424 struct cfs_rq {
425 struct load_weight load;
426 unsigned long nr_running;
427
428 u64 exec_clock;
429 u64 min_vruntime;
430
431 struct rb_root tasks_timeline;
432 struct rb_node *rb_leftmost;
433
434 struct list_head tasks;
435 struct list_head *balance_iterator;
436
437 /*
438 * 'curr' points to currently running entity on this cfs_rq.
439 * It is set to NULL otherwise (i.e when none are currently running).
440 */
441 struct sched_entity *curr, *next, *last;
442
443 unsigned int nr_spread_over;
444
445 #ifdef CONFIG_FAIR_GROUP_SCHED
446 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
447
448 /*
449 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
450 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
451 * (like users, containers etc.)
452 *
453 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
454 * list is used during load balance.
455 */
456 struct list_head leaf_cfs_rq_list;
457 struct task_group *tg; /* group that "owns" this runqueue */
458
459 #ifdef CONFIG_SMP
460 /*
461 * the part of load.weight contributed by tasks
462 */
463 unsigned long task_weight;
464
465 /*
466 * h_load = weight * f(tg)
467 *
468 * Where f(tg) is the recursive weight fraction assigned to
469 * this group.
470 */
471 unsigned long h_load;
472
473 /*
474 * this cpu's part of tg->shares
475 */
476 unsigned long shares;
477
478 /*
479 * load.weight at the time we set shares
480 */
481 unsigned long rq_weight;
482 #endif
483 #endif
484 };
485
486 /* Real-Time classes' related field in a runqueue: */
487 struct rt_rq {
488 struct rt_prio_array active;
489 unsigned long rt_nr_running;
490 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
491 struct {
492 int curr; /* highest queued rt task prio */
493 #ifdef CONFIG_SMP
494 int next; /* next highest */
495 #endif
496 } highest_prio;
497 #endif
498 #ifdef CONFIG_SMP
499 unsigned long rt_nr_migratory;
500 int overloaded;
501 struct plist_head pushable_tasks;
502 #endif
503 int rt_throttled;
504 u64 rt_time;
505 u64 rt_runtime;
506 /* Nests inside the rq lock: */
507 spinlock_t rt_runtime_lock;
508
509 #ifdef CONFIG_RT_GROUP_SCHED
510 unsigned long rt_nr_boosted;
511
512 struct rq *rq;
513 struct list_head leaf_rt_rq_list;
514 struct task_group *tg;
515 struct sched_rt_entity *rt_se;
516 #endif
517 };
518
519 #ifdef CONFIG_SMP
520
521 /*
522 * We add the notion of a root-domain which will be used to define per-domain
523 * variables. Each exclusive cpuset essentially defines an island domain by
524 * fully partitioning the member cpus from any other cpuset. Whenever a new
525 * exclusive cpuset is created, we also create and attach a new root-domain
526 * object.
527 *
528 */
529 struct root_domain {
530 atomic_t refcount;
531 cpumask_var_t span;
532 cpumask_var_t online;
533
534 /*
535 * The "RT overload" flag: it gets set if a CPU has more than
536 * one runnable RT task.
537 */
538 cpumask_var_t rto_mask;
539 atomic_t rto_count;
540 #ifdef CONFIG_SMP
541 struct cpupri cpupri;
542 #endif
543 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
544 /*
545 * Preferred wake up cpu nominated by sched_mc balance that will be
546 * used when most cpus are idle in the system indicating overall very
547 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
548 */
549 unsigned int sched_mc_preferred_wakeup_cpu;
550 #endif
551 };
552
553 /*
554 * By default the system creates a single root-domain with all cpus as
555 * members (mimicking the global state we have today).
556 */
557 static struct root_domain def_root_domain;
558
559 #endif
560
561 /*
562 * This is the main, per-CPU runqueue data structure.
563 *
564 * Locking rule: those places that want to lock multiple runqueues
565 * (such as the load balancing or the thread migration code), lock
566 * acquire operations must be ordered by ascending &runqueue.
567 */
568 struct rq {
569 /* runqueue lock: */
570 spinlock_t lock;
571
572 /*
573 * nr_running and cpu_load should be in the same cacheline because
574 * remote CPUs use both these fields when doing load calculation.
575 */
576 unsigned long nr_running;
577 #define CPU_LOAD_IDX_MAX 5
578 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
579 #ifdef CONFIG_NO_HZ
580 unsigned long last_tick_seen;
581 unsigned char in_nohz_recently;
582 #endif
583 /* capture load from *all* tasks on this cpu: */
584 struct load_weight load;
585 unsigned long nr_load_updates;
586 u64 nr_switches;
587
588 struct cfs_rq cfs;
589 struct rt_rq rt;
590
591 #ifdef CONFIG_FAIR_GROUP_SCHED
592 /* list of leaf cfs_rq on this cpu: */
593 struct list_head leaf_cfs_rq_list;
594 #endif
595 #ifdef CONFIG_RT_GROUP_SCHED
596 struct list_head leaf_rt_rq_list;
597 #endif
598
599 /*
600 * This is part of a global counter where only the total sum
601 * over all CPUs matters. A task can increase this counter on
602 * one CPU and if it got migrated afterwards it may decrease
603 * it on another CPU. Always updated under the runqueue lock:
604 */
605 unsigned long nr_uninterruptible;
606
607 struct task_struct *curr, *idle;
608 unsigned long next_balance;
609 struct mm_struct *prev_mm;
610
611 u64 clock;
612
613 atomic_t nr_iowait;
614
615 #ifdef CONFIG_SMP
616 struct root_domain *rd;
617 struct sched_domain *sd;
618
619 unsigned char idle_at_tick;
620 /* For active balancing */
621 int active_balance;
622 int push_cpu;
623 /* cpu of this runqueue: */
624 int cpu;
625 int online;
626
627 unsigned long avg_load_per_task;
628
629 struct task_struct *migration_thread;
630 struct list_head migration_queue;
631 #endif
632
633 #ifdef CONFIG_SCHED_HRTICK
634 #ifdef CONFIG_SMP
635 int hrtick_csd_pending;
636 struct call_single_data hrtick_csd;
637 #endif
638 struct hrtimer hrtick_timer;
639 #endif
640
641 #ifdef CONFIG_SCHEDSTATS
642 /* latency stats */
643 struct sched_info rq_sched_info;
644 unsigned long long rq_cpu_time;
645 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
646
647 /* sys_sched_yield() stats */
648 unsigned int yld_count;
649
650 /* schedule() stats */
651 unsigned int sched_switch;
652 unsigned int sched_count;
653 unsigned int sched_goidle;
654
655 /* try_to_wake_up() stats */
656 unsigned int ttwu_count;
657 unsigned int ttwu_local;
658
659 /* BKL stats */
660 unsigned int bkl_count;
661 #endif
662 };
663
664 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
665
666 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
667 {
668 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
669 }
670
671 static inline int cpu_of(struct rq *rq)
672 {
673 #ifdef CONFIG_SMP
674 return rq->cpu;
675 #else
676 return 0;
677 #endif
678 }
679
680 /*
681 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
682 * See detach_destroy_domains: synchronize_sched for details.
683 *
684 * The domain tree of any CPU may only be accessed from within
685 * preempt-disabled sections.
686 */
687 #define for_each_domain(cpu, __sd) \
688 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
689
690 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
691 #define this_rq() (&__get_cpu_var(runqueues))
692 #define task_rq(p) cpu_rq(task_cpu(p))
693 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
694
695 static inline void update_rq_clock(struct rq *rq)
696 {
697 rq->clock = sched_clock_cpu(cpu_of(rq));
698 }
699
700 /*
701 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
702 */
703 #ifdef CONFIG_SCHED_DEBUG
704 # define const_debug __read_mostly
705 #else
706 # define const_debug static const
707 #endif
708
709 /**
710 * runqueue_is_locked
711 *
712 * Returns true if the current cpu runqueue is locked.
713 * This interface allows printk to be called with the runqueue lock
714 * held and know whether or not it is OK to wake up the klogd.
715 */
716 int runqueue_is_locked(void)
717 {
718 int cpu = get_cpu();
719 struct rq *rq = cpu_rq(cpu);
720 int ret;
721
722 ret = spin_is_locked(&rq->lock);
723 put_cpu();
724 return ret;
725 }
726
727 /*
728 * Debugging: various feature bits
729 */
730
731 #define SCHED_FEAT(name, enabled) \
732 __SCHED_FEAT_##name ,
733
734 enum {
735 #include "sched_features.h"
736 };
737
738 #undef SCHED_FEAT
739
740 #define SCHED_FEAT(name, enabled) \
741 (1UL << __SCHED_FEAT_##name) * enabled |
742
743 const_debug unsigned int sysctl_sched_features =
744 #include "sched_features.h"
745 0;
746
747 #undef SCHED_FEAT
748
749 #ifdef CONFIG_SCHED_DEBUG
750 #define SCHED_FEAT(name, enabled) \
751 #name ,
752
753 static __read_mostly char *sched_feat_names[] = {
754 #include "sched_features.h"
755 NULL
756 };
757
758 #undef SCHED_FEAT
759
760 static int sched_feat_show(struct seq_file *m, void *v)
761 {
762 int i;
763
764 for (i = 0; sched_feat_names[i]; i++) {
765 if (!(sysctl_sched_features & (1UL << i)))
766 seq_puts(m, "NO_");
767 seq_printf(m, "%s ", sched_feat_names[i]);
768 }
769 seq_puts(m, "\n");
770
771 return 0;
772 }
773
774 static ssize_t
775 sched_feat_write(struct file *filp, const char __user *ubuf,
776 size_t cnt, loff_t *ppos)
777 {
778 char buf[64];
779 char *cmp = buf;
780 int neg = 0;
781 int i;
782
783 if (cnt > 63)
784 cnt = 63;
785
786 if (copy_from_user(&buf, ubuf, cnt))
787 return -EFAULT;
788
789 buf[cnt] = 0;
790
791 if (strncmp(buf, "NO_", 3) == 0) {
792 neg = 1;
793 cmp += 3;
794 }
795
796 for (i = 0; sched_feat_names[i]; i++) {
797 int len = strlen(sched_feat_names[i]);
798
799 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
800 if (neg)
801 sysctl_sched_features &= ~(1UL << i);
802 else
803 sysctl_sched_features |= (1UL << i);
804 break;
805 }
806 }
807
808 if (!sched_feat_names[i])
809 return -EINVAL;
810
811 filp->f_pos += cnt;
812
813 return cnt;
814 }
815
816 static int sched_feat_open(struct inode *inode, struct file *filp)
817 {
818 return single_open(filp, sched_feat_show, NULL);
819 }
820
821 static struct file_operations sched_feat_fops = {
822 .open = sched_feat_open,
823 .write = sched_feat_write,
824 .read = seq_read,
825 .llseek = seq_lseek,
826 .release = single_release,
827 };
828
829 static __init int sched_init_debug(void)
830 {
831 debugfs_create_file("sched_features", 0644, NULL, NULL,
832 &sched_feat_fops);
833
834 return 0;
835 }
836 late_initcall(sched_init_debug);
837
838 #endif
839
840 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
841
842 /*
843 * Number of tasks to iterate in a single balance run.
844 * Limited because this is done with IRQs disabled.
845 */
846 const_debug unsigned int sysctl_sched_nr_migrate = 32;
847
848 /*
849 * ratelimit for updating the group shares.
850 * default: 0.25ms
851 */
852 unsigned int sysctl_sched_shares_ratelimit = 250000;
853
854 /*
855 * Inject some fuzzyness into changing the per-cpu group shares
856 * this avoids remote rq-locks at the expense of fairness.
857 * default: 4
858 */
859 unsigned int sysctl_sched_shares_thresh = 4;
860
861 /*
862 * period over which we measure -rt task cpu usage in us.
863 * default: 1s
864 */
865 unsigned int sysctl_sched_rt_period = 1000000;
866
867 static __read_mostly int scheduler_running;
868
869 /*
870 * part of the period that we allow rt tasks to run in us.
871 * default: 0.95s
872 */
873 int sysctl_sched_rt_runtime = 950000;
874
875 static inline u64 global_rt_period(void)
876 {
877 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
878 }
879
880 static inline u64 global_rt_runtime(void)
881 {
882 if (sysctl_sched_rt_runtime < 0)
883 return RUNTIME_INF;
884
885 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
886 }
887
888 #ifndef prepare_arch_switch
889 # define prepare_arch_switch(next) do { } while (0)
890 #endif
891 #ifndef finish_arch_switch
892 # define finish_arch_switch(prev) do { } while (0)
893 #endif
894
895 static inline int task_current(struct rq *rq, struct task_struct *p)
896 {
897 return rq->curr == p;
898 }
899
900 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
901 static inline int task_running(struct rq *rq, struct task_struct *p)
902 {
903 return task_current(rq, p);
904 }
905
906 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
907 {
908 }
909
910 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
911 {
912 #ifdef CONFIG_DEBUG_SPINLOCK
913 /* this is a valid case when another task releases the spinlock */
914 rq->lock.owner = current;
915 #endif
916 /*
917 * If we are tracking spinlock dependencies then we have to
918 * fix up the runqueue lock - which gets 'carried over' from
919 * prev into current:
920 */
921 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
922
923 spin_unlock_irq(&rq->lock);
924 }
925
926 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
927 static inline int task_running(struct rq *rq, struct task_struct *p)
928 {
929 #ifdef CONFIG_SMP
930 return p->oncpu;
931 #else
932 return task_current(rq, p);
933 #endif
934 }
935
936 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
937 {
938 #ifdef CONFIG_SMP
939 /*
940 * We can optimise this out completely for !SMP, because the
941 * SMP rebalancing from interrupt is the only thing that cares
942 * here.
943 */
944 next->oncpu = 1;
945 #endif
946 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
947 spin_unlock_irq(&rq->lock);
948 #else
949 spin_unlock(&rq->lock);
950 #endif
951 }
952
953 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
954 {
955 #ifdef CONFIG_SMP
956 /*
957 * After ->oncpu is cleared, the task can be moved to a different CPU.
958 * We must ensure this doesn't happen until the switch is completely
959 * finished.
960 */
961 smp_wmb();
962 prev->oncpu = 0;
963 #endif
964 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
965 local_irq_enable();
966 #endif
967 }
968 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
969
970 /*
971 * __task_rq_lock - lock the runqueue a given task resides on.
972 * Must be called interrupts disabled.
973 */
974 static inline struct rq *__task_rq_lock(struct task_struct *p)
975 __acquires(rq->lock)
976 {
977 for (;;) {
978 struct rq *rq = task_rq(p);
979 spin_lock(&rq->lock);
980 if (likely(rq == task_rq(p)))
981 return rq;
982 spin_unlock(&rq->lock);
983 }
984 }
985
986 /*
987 * task_rq_lock - lock the runqueue a given task resides on and disable
988 * interrupts. Note the ordering: we can safely lookup the task_rq without
989 * explicitly disabling preemption.
990 */
991 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
992 __acquires(rq->lock)
993 {
994 struct rq *rq;
995
996 for (;;) {
997 local_irq_save(*flags);
998 rq = task_rq(p);
999 spin_lock(&rq->lock);
1000 if (likely(rq == task_rq(p)))
1001 return rq;
1002 spin_unlock_irqrestore(&rq->lock, *flags);
1003 }
1004 }
1005
1006 void task_rq_unlock_wait(struct task_struct *p)
1007 {
1008 struct rq *rq = task_rq(p);
1009
1010 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
1011 spin_unlock_wait(&rq->lock);
1012 }
1013
1014 static void __task_rq_unlock(struct rq *rq)
1015 __releases(rq->lock)
1016 {
1017 spin_unlock(&rq->lock);
1018 }
1019
1020 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1021 __releases(rq->lock)
1022 {
1023 spin_unlock_irqrestore(&rq->lock, *flags);
1024 }
1025
1026 /*
1027 * this_rq_lock - lock this runqueue and disable interrupts.
1028 */
1029 static struct rq *this_rq_lock(void)
1030 __acquires(rq->lock)
1031 {
1032 struct rq *rq;
1033
1034 local_irq_disable();
1035 rq = this_rq();
1036 spin_lock(&rq->lock);
1037
1038 return rq;
1039 }
1040
1041 #ifdef CONFIG_SCHED_HRTICK
1042 /*
1043 * Use HR-timers to deliver accurate preemption points.
1044 *
1045 * Its all a bit involved since we cannot program an hrt while holding the
1046 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1047 * reschedule event.
1048 *
1049 * When we get rescheduled we reprogram the hrtick_timer outside of the
1050 * rq->lock.
1051 */
1052
1053 /*
1054 * Use hrtick when:
1055 * - enabled by features
1056 * - hrtimer is actually high res
1057 */
1058 static inline int hrtick_enabled(struct rq *rq)
1059 {
1060 if (!sched_feat(HRTICK))
1061 return 0;
1062 if (!cpu_active(cpu_of(rq)))
1063 return 0;
1064 return hrtimer_is_hres_active(&rq->hrtick_timer);
1065 }
1066
1067 static void hrtick_clear(struct rq *rq)
1068 {
1069 if (hrtimer_active(&rq->hrtick_timer))
1070 hrtimer_cancel(&rq->hrtick_timer);
1071 }
1072
1073 /*
1074 * High-resolution timer tick.
1075 * Runs from hardirq context with interrupts disabled.
1076 */
1077 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1078 {
1079 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1080
1081 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1082
1083 spin_lock(&rq->lock);
1084 update_rq_clock(rq);
1085 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1086 spin_unlock(&rq->lock);
1087
1088 return HRTIMER_NORESTART;
1089 }
1090
1091 #ifdef CONFIG_SMP
1092 /*
1093 * called from hardirq (IPI) context
1094 */
1095 static void __hrtick_start(void *arg)
1096 {
1097 struct rq *rq = arg;
1098
1099 spin_lock(&rq->lock);
1100 hrtimer_restart(&rq->hrtick_timer);
1101 rq->hrtick_csd_pending = 0;
1102 spin_unlock(&rq->lock);
1103 }
1104
1105 /*
1106 * Called to set the hrtick timer state.
1107 *
1108 * called with rq->lock held and irqs disabled
1109 */
1110 static void hrtick_start(struct rq *rq, u64 delay)
1111 {
1112 struct hrtimer *timer = &rq->hrtick_timer;
1113 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1114
1115 hrtimer_set_expires(timer, time);
1116
1117 if (rq == this_rq()) {
1118 hrtimer_restart(timer);
1119 } else if (!rq->hrtick_csd_pending) {
1120 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1121 rq->hrtick_csd_pending = 1;
1122 }
1123 }
1124
1125 static int
1126 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1127 {
1128 int cpu = (int)(long)hcpu;
1129
1130 switch (action) {
1131 case CPU_UP_CANCELED:
1132 case CPU_UP_CANCELED_FROZEN:
1133 case CPU_DOWN_PREPARE:
1134 case CPU_DOWN_PREPARE_FROZEN:
1135 case CPU_DEAD:
1136 case CPU_DEAD_FROZEN:
1137 hrtick_clear(cpu_rq(cpu));
1138 return NOTIFY_OK;
1139 }
1140
1141 return NOTIFY_DONE;
1142 }
1143
1144 static __init void init_hrtick(void)
1145 {
1146 hotcpu_notifier(hotplug_hrtick, 0);
1147 }
1148 #else
1149 /*
1150 * Called to set the hrtick timer state.
1151 *
1152 * called with rq->lock held and irqs disabled
1153 */
1154 static void hrtick_start(struct rq *rq, u64 delay)
1155 {
1156 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1157 HRTIMER_MODE_REL, 0);
1158 }
1159
1160 static inline void init_hrtick(void)
1161 {
1162 }
1163 #endif /* CONFIG_SMP */
1164
1165 static void init_rq_hrtick(struct rq *rq)
1166 {
1167 #ifdef CONFIG_SMP
1168 rq->hrtick_csd_pending = 0;
1169
1170 rq->hrtick_csd.flags = 0;
1171 rq->hrtick_csd.func = __hrtick_start;
1172 rq->hrtick_csd.info = rq;
1173 #endif
1174
1175 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1176 rq->hrtick_timer.function = hrtick;
1177 }
1178 #else /* CONFIG_SCHED_HRTICK */
1179 static inline void hrtick_clear(struct rq *rq)
1180 {
1181 }
1182
1183 static inline void init_rq_hrtick(struct rq *rq)
1184 {
1185 }
1186
1187 static inline void init_hrtick(void)
1188 {
1189 }
1190 #endif /* CONFIG_SCHED_HRTICK */
1191
1192 /*
1193 * resched_task - mark a task 'to be rescheduled now'.
1194 *
1195 * On UP this means the setting of the need_resched flag, on SMP it
1196 * might also involve a cross-CPU call to trigger the scheduler on
1197 * the target CPU.
1198 */
1199 #ifdef CONFIG_SMP
1200
1201 #ifndef tsk_is_polling
1202 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1203 #endif
1204
1205 static void resched_task(struct task_struct *p)
1206 {
1207 int cpu;
1208
1209 assert_spin_locked(&task_rq(p)->lock);
1210
1211 if (test_tsk_need_resched(p))
1212 return;
1213
1214 set_tsk_need_resched(p);
1215
1216 cpu = task_cpu(p);
1217 if (cpu == smp_processor_id())
1218 return;
1219
1220 /* NEED_RESCHED must be visible before we test polling */
1221 smp_mb();
1222 if (!tsk_is_polling(p))
1223 smp_send_reschedule(cpu);
1224 }
1225
1226 static void resched_cpu(int cpu)
1227 {
1228 struct rq *rq = cpu_rq(cpu);
1229 unsigned long flags;
1230
1231 if (!spin_trylock_irqsave(&rq->lock, flags))
1232 return;
1233 resched_task(cpu_curr(cpu));
1234 spin_unlock_irqrestore(&rq->lock, flags);
1235 }
1236
1237 #ifdef CONFIG_NO_HZ
1238 /*
1239 * When add_timer_on() enqueues a timer into the timer wheel of an
1240 * idle CPU then this timer might expire before the next timer event
1241 * which is scheduled to wake up that CPU. In case of a completely
1242 * idle system the next event might even be infinite time into the
1243 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1244 * leaves the inner idle loop so the newly added timer is taken into
1245 * account when the CPU goes back to idle and evaluates the timer
1246 * wheel for the next timer event.
1247 */
1248 void wake_up_idle_cpu(int cpu)
1249 {
1250 struct rq *rq = cpu_rq(cpu);
1251
1252 if (cpu == smp_processor_id())
1253 return;
1254
1255 /*
1256 * This is safe, as this function is called with the timer
1257 * wheel base lock of (cpu) held. When the CPU is on the way
1258 * to idle and has not yet set rq->curr to idle then it will
1259 * be serialized on the timer wheel base lock and take the new
1260 * timer into account automatically.
1261 */
1262 if (rq->curr != rq->idle)
1263 return;
1264
1265 /*
1266 * We can set TIF_RESCHED on the idle task of the other CPU
1267 * lockless. The worst case is that the other CPU runs the
1268 * idle task through an additional NOOP schedule()
1269 */
1270 set_tsk_need_resched(rq->idle);
1271
1272 /* NEED_RESCHED must be visible before we test polling */
1273 smp_mb();
1274 if (!tsk_is_polling(rq->idle))
1275 smp_send_reschedule(cpu);
1276 }
1277 #endif /* CONFIG_NO_HZ */
1278
1279 #else /* !CONFIG_SMP */
1280 static void resched_task(struct task_struct *p)
1281 {
1282 assert_spin_locked(&task_rq(p)->lock);
1283 set_tsk_need_resched(p);
1284 }
1285 #endif /* CONFIG_SMP */
1286
1287 #if BITS_PER_LONG == 32
1288 # define WMULT_CONST (~0UL)
1289 #else
1290 # define WMULT_CONST (1UL << 32)
1291 #endif
1292
1293 #define WMULT_SHIFT 32
1294
1295 /*
1296 * Shift right and round:
1297 */
1298 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1299
1300 /*
1301 * delta *= weight / lw
1302 */
1303 static unsigned long
1304 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1305 struct load_weight *lw)
1306 {
1307 u64 tmp;
1308
1309 if (!lw->inv_weight) {
1310 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1311 lw->inv_weight = 1;
1312 else
1313 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1314 / (lw->weight+1);
1315 }
1316
1317 tmp = (u64)delta_exec * weight;
1318 /*
1319 * Check whether we'd overflow the 64-bit multiplication:
1320 */
1321 if (unlikely(tmp > WMULT_CONST))
1322 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1323 WMULT_SHIFT/2);
1324 else
1325 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1326
1327 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1328 }
1329
1330 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1331 {
1332 lw->weight += inc;
1333 lw->inv_weight = 0;
1334 }
1335
1336 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1337 {
1338 lw->weight -= dec;
1339 lw->inv_weight = 0;
1340 }
1341
1342 /*
1343 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1344 * of tasks with abnormal "nice" values across CPUs the contribution that
1345 * each task makes to its run queue's load is weighted according to its
1346 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1347 * scaled version of the new time slice allocation that they receive on time
1348 * slice expiry etc.
1349 */
1350
1351 #define WEIGHT_IDLEPRIO 3
1352 #define WMULT_IDLEPRIO 1431655765
1353
1354 /*
1355 * Nice levels are multiplicative, with a gentle 10% change for every
1356 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1357 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1358 * that remained on nice 0.
1359 *
1360 * The "10% effect" is relative and cumulative: from _any_ nice level,
1361 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1362 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1363 * If a task goes up by ~10% and another task goes down by ~10% then
1364 * the relative distance between them is ~25%.)
1365 */
1366 static const int prio_to_weight[40] = {
1367 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1368 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1369 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1370 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1371 /* 0 */ 1024, 820, 655, 526, 423,
1372 /* 5 */ 335, 272, 215, 172, 137,
1373 /* 10 */ 110, 87, 70, 56, 45,
1374 /* 15 */ 36, 29, 23, 18, 15,
1375 };
1376
1377 /*
1378 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1379 *
1380 * In cases where the weight does not change often, we can use the
1381 * precalculated inverse to speed up arithmetics by turning divisions
1382 * into multiplications:
1383 */
1384 static const u32 prio_to_wmult[40] = {
1385 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1386 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1387 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1388 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1389 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1390 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1391 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1392 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1393 };
1394
1395 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1396
1397 /*
1398 * runqueue iterator, to support SMP load-balancing between different
1399 * scheduling classes, without having to expose their internal data
1400 * structures to the load-balancing proper:
1401 */
1402 struct rq_iterator {
1403 void *arg;
1404 struct task_struct *(*start)(void *);
1405 struct task_struct *(*next)(void *);
1406 };
1407
1408 #ifdef CONFIG_SMP
1409 static unsigned long
1410 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1411 unsigned long max_load_move, struct sched_domain *sd,
1412 enum cpu_idle_type idle, int *all_pinned,
1413 int *this_best_prio, struct rq_iterator *iterator);
1414
1415 static int
1416 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1417 struct sched_domain *sd, enum cpu_idle_type idle,
1418 struct rq_iterator *iterator);
1419 #endif
1420
1421 /* Time spent by the tasks of the cpu accounting group executing in ... */
1422 enum cpuacct_stat_index {
1423 CPUACCT_STAT_USER, /* ... user mode */
1424 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1425
1426 CPUACCT_STAT_NSTATS,
1427 };
1428
1429 #ifdef CONFIG_CGROUP_CPUACCT
1430 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1431 static void cpuacct_update_stats(struct task_struct *tsk,
1432 enum cpuacct_stat_index idx, cputime_t val);
1433 #else
1434 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1435 static inline void cpuacct_update_stats(struct task_struct *tsk,
1436 enum cpuacct_stat_index idx, cputime_t val) {}
1437 #endif
1438
1439 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1440 {
1441 update_load_add(&rq->load, load);
1442 }
1443
1444 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1445 {
1446 update_load_sub(&rq->load, load);
1447 }
1448
1449 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1450 typedef int (*tg_visitor)(struct task_group *, void *);
1451
1452 /*
1453 * Iterate the full tree, calling @down when first entering a node and @up when
1454 * leaving it for the final time.
1455 */
1456 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1457 {
1458 struct task_group *parent, *child;
1459 int ret;
1460
1461 rcu_read_lock();
1462 parent = &root_task_group;
1463 down:
1464 ret = (*down)(parent, data);
1465 if (ret)
1466 goto out_unlock;
1467 list_for_each_entry_rcu(child, &parent->children, siblings) {
1468 parent = child;
1469 goto down;
1470
1471 up:
1472 continue;
1473 }
1474 ret = (*up)(parent, data);
1475 if (ret)
1476 goto out_unlock;
1477
1478 child = parent;
1479 parent = parent->parent;
1480 if (parent)
1481 goto up;
1482 out_unlock:
1483 rcu_read_unlock();
1484
1485 return ret;
1486 }
1487
1488 static int tg_nop(struct task_group *tg, void *data)
1489 {
1490 return 0;
1491 }
1492 #endif
1493
1494 #ifdef CONFIG_SMP
1495 static unsigned long source_load(int cpu, int type);
1496 static unsigned long target_load(int cpu, int type);
1497 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1498
1499 static unsigned long cpu_avg_load_per_task(int cpu)
1500 {
1501 struct rq *rq = cpu_rq(cpu);
1502 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1503
1504 if (nr_running)
1505 rq->avg_load_per_task = rq->load.weight / nr_running;
1506 else
1507 rq->avg_load_per_task = 0;
1508
1509 return rq->avg_load_per_task;
1510 }
1511
1512 #ifdef CONFIG_FAIR_GROUP_SCHED
1513
1514 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1515
1516 /*
1517 * Calculate and set the cpu's group shares.
1518 */
1519 static void
1520 update_group_shares_cpu(struct task_group *tg, int cpu,
1521 unsigned long sd_shares, unsigned long sd_rq_weight)
1522 {
1523 unsigned long shares;
1524 unsigned long rq_weight;
1525
1526 if (!tg->se[cpu])
1527 return;
1528
1529 rq_weight = tg->cfs_rq[cpu]->rq_weight;
1530
1531 /*
1532 * \Sum shares * rq_weight
1533 * shares = -----------------------
1534 * \Sum rq_weight
1535 *
1536 */
1537 shares = (sd_shares * rq_weight) / sd_rq_weight;
1538 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1539
1540 if (abs(shares - tg->se[cpu]->load.weight) >
1541 sysctl_sched_shares_thresh) {
1542 struct rq *rq = cpu_rq(cpu);
1543 unsigned long flags;
1544
1545 spin_lock_irqsave(&rq->lock, flags);
1546 tg->cfs_rq[cpu]->shares = shares;
1547
1548 __set_se_shares(tg->se[cpu], shares);
1549 spin_unlock_irqrestore(&rq->lock, flags);
1550 }
1551 }
1552
1553 /*
1554 * Re-compute the task group their per cpu shares over the given domain.
1555 * This needs to be done in a bottom-up fashion because the rq weight of a
1556 * parent group depends on the shares of its child groups.
1557 */
1558 static int tg_shares_up(struct task_group *tg, void *data)
1559 {
1560 unsigned long weight, rq_weight = 0;
1561 unsigned long shares = 0;
1562 struct sched_domain *sd = data;
1563 int i;
1564
1565 for_each_cpu(i, sched_domain_span(sd)) {
1566 /*
1567 * If there are currently no tasks on the cpu pretend there
1568 * is one of average load so that when a new task gets to
1569 * run here it will not get delayed by group starvation.
1570 */
1571 weight = tg->cfs_rq[i]->load.weight;
1572 if (!weight)
1573 weight = NICE_0_LOAD;
1574
1575 tg->cfs_rq[i]->rq_weight = weight;
1576 rq_weight += weight;
1577 shares += tg->cfs_rq[i]->shares;
1578 }
1579
1580 if ((!shares && rq_weight) || shares > tg->shares)
1581 shares = tg->shares;
1582
1583 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1584 shares = tg->shares;
1585
1586 for_each_cpu(i, sched_domain_span(sd))
1587 update_group_shares_cpu(tg, i, shares, rq_weight);
1588
1589 return 0;
1590 }
1591
1592 /*
1593 * Compute the cpu's hierarchical load factor for each task group.
1594 * This needs to be done in a top-down fashion because the load of a child
1595 * group is a fraction of its parents load.
1596 */
1597 static int tg_load_down(struct task_group *tg, void *data)
1598 {
1599 unsigned long load;
1600 long cpu = (long)data;
1601
1602 if (!tg->parent) {
1603 load = cpu_rq(cpu)->load.weight;
1604 } else {
1605 load = tg->parent->cfs_rq[cpu]->h_load;
1606 load *= tg->cfs_rq[cpu]->shares;
1607 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1608 }
1609
1610 tg->cfs_rq[cpu]->h_load = load;
1611
1612 return 0;
1613 }
1614
1615 static void update_shares(struct sched_domain *sd)
1616 {
1617 u64 now = cpu_clock(raw_smp_processor_id());
1618 s64 elapsed = now - sd->last_update;
1619
1620 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1621 sd->last_update = now;
1622 walk_tg_tree(tg_nop, tg_shares_up, sd);
1623 }
1624 }
1625
1626 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1627 {
1628 spin_unlock(&rq->lock);
1629 update_shares(sd);
1630 spin_lock(&rq->lock);
1631 }
1632
1633 static void update_h_load(long cpu)
1634 {
1635 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1636 }
1637
1638 #else
1639
1640 static inline void update_shares(struct sched_domain *sd)
1641 {
1642 }
1643
1644 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1645 {
1646 }
1647
1648 #endif
1649
1650 #ifdef CONFIG_PREEMPT
1651
1652 /*
1653 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1654 * way at the expense of forcing extra atomic operations in all
1655 * invocations. This assures that the double_lock is acquired using the
1656 * same underlying policy as the spinlock_t on this architecture, which
1657 * reduces latency compared to the unfair variant below. However, it
1658 * also adds more overhead and therefore may reduce throughput.
1659 */
1660 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1661 __releases(this_rq->lock)
1662 __acquires(busiest->lock)
1663 __acquires(this_rq->lock)
1664 {
1665 spin_unlock(&this_rq->lock);
1666 double_rq_lock(this_rq, busiest);
1667
1668 return 1;
1669 }
1670
1671 #else
1672 /*
1673 * Unfair double_lock_balance: Optimizes throughput at the expense of
1674 * latency by eliminating extra atomic operations when the locks are
1675 * already in proper order on entry. This favors lower cpu-ids and will
1676 * grant the double lock to lower cpus over higher ids under contention,
1677 * regardless of entry order into the function.
1678 */
1679 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1680 __releases(this_rq->lock)
1681 __acquires(busiest->lock)
1682 __acquires(this_rq->lock)
1683 {
1684 int ret = 0;
1685
1686 if (unlikely(!spin_trylock(&busiest->lock))) {
1687 if (busiest < this_rq) {
1688 spin_unlock(&this_rq->lock);
1689 spin_lock(&busiest->lock);
1690 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1691 ret = 1;
1692 } else
1693 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1694 }
1695 return ret;
1696 }
1697
1698 #endif /* CONFIG_PREEMPT */
1699
1700 /*
1701 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1702 */
1703 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1704 {
1705 if (unlikely(!irqs_disabled())) {
1706 /* printk() doesn't work good under rq->lock */
1707 spin_unlock(&this_rq->lock);
1708 BUG_ON(1);
1709 }
1710
1711 return _double_lock_balance(this_rq, busiest);
1712 }
1713
1714 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1715 __releases(busiest->lock)
1716 {
1717 spin_unlock(&busiest->lock);
1718 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1719 }
1720 #endif
1721
1722 #ifdef CONFIG_FAIR_GROUP_SCHED
1723 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1724 {
1725 #ifdef CONFIG_SMP
1726 cfs_rq->shares = shares;
1727 #endif
1728 }
1729 #endif
1730
1731 #include "sched_stats.h"
1732 #include "sched_idletask.c"
1733 #include "sched_fair.c"
1734 #include "sched_rt.c"
1735 #ifdef CONFIG_SCHED_DEBUG
1736 # include "sched_debug.c"
1737 #endif
1738
1739 #define sched_class_highest (&rt_sched_class)
1740 #define for_each_class(class) \
1741 for (class = sched_class_highest; class; class = class->next)
1742
1743 static void inc_nr_running(struct rq *rq)
1744 {
1745 rq->nr_running++;
1746 }
1747
1748 static void dec_nr_running(struct rq *rq)
1749 {
1750 rq->nr_running--;
1751 }
1752
1753 static void set_load_weight(struct task_struct *p)
1754 {
1755 if (task_has_rt_policy(p)) {
1756 p->se.load.weight = prio_to_weight[0] * 2;
1757 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1758 return;
1759 }
1760
1761 /*
1762 * SCHED_IDLE tasks get minimal weight:
1763 */
1764 if (p->policy == SCHED_IDLE) {
1765 p->se.load.weight = WEIGHT_IDLEPRIO;
1766 p->se.load.inv_weight = WMULT_IDLEPRIO;
1767 return;
1768 }
1769
1770 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1771 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1772 }
1773
1774 static void update_avg(u64 *avg, u64 sample)
1775 {
1776 s64 diff = sample - *avg;
1777 *avg += diff >> 3;
1778 }
1779
1780 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1781 {
1782 if (wakeup)
1783 p->se.start_runtime = p->se.sum_exec_runtime;
1784
1785 sched_info_queued(p);
1786 p->sched_class->enqueue_task(rq, p, wakeup);
1787 p->se.on_rq = 1;
1788 }
1789
1790 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1791 {
1792 if (sleep) {
1793 if (p->se.last_wakeup) {
1794 update_avg(&p->se.avg_overlap,
1795 p->se.sum_exec_runtime - p->se.last_wakeup);
1796 p->se.last_wakeup = 0;
1797 } else {
1798 update_avg(&p->se.avg_wakeup,
1799 sysctl_sched_wakeup_granularity);
1800 }
1801 }
1802
1803 sched_info_dequeued(p);
1804 p->sched_class->dequeue_task(rq, p, sleep);
1805 p->se.on_rq = 0;
1806 }
1807
1808 /*
1809 * __normal_prio - return the priority that is based on the static prio
1810 */
1811 static inline int __normal_prio(struct task_struct *p)
1812 {
1813 return p->static_prio;
1814 }
1815
1816 /*
1817 * Calculate the expected normal priority: i.e. priority
1818 * without taking RT-inheritance into account. Might be
1819 * boosted by interactivity modifiers. Changes upon fork,
1820 * setprio syscalls, and whenever the interactivity
1821 * estimator recalculates.
1822 */
1823 static inline int normal_prio(struct task_struct *p)
1824 {
1825 int prio;
1826
1827 if (task_has_rt_policy(p))
1828 prio = MAX_RT_PRIO-1 - p->rt_priority;
1829 else
1830 prio = __normal_prio(p);
1831 return prio;
1832 }
1833
1834 /*
1835 * Calculate the current priority, i.e. the priority
1836 * taken into account by the scheduler. This value might
1837 * be boosted by RT tasks, or might be boosted by
1838 * interactivity modifiers. Will be RT if the task got
1839 * RT-boosted. If not then it returns p->normal_prio.
1840 */
1841 static int effective_prio(struct task_struct *p)
1842 {
1843 p->normal_prio = normal_prio(p);
1844 /*
1845 * If we are RT tasks or we were boosted to RT priority,
1846 * keep the priority unchanged. Otherwise, update priority
1847 * to the normal priority:
1848 */
1849 if (!rt_prio(p->prio))
1850 return p->normal_prio;
1851 return p->prio;
1852 }
1853
1854 /*
1855 * activate_task - move a task to the runqueue.
1856 */
1857 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1858 {
1859 if (task_contributes_to_load(p))
1860 rq->nr_uninterruptible--;
1861
1862 enqueue_task(rq, p, wakeup);
1863 inc_nr_running(rq);
1864 }
1865
1866 /*
1867 * deactivate_task - remove a task from the runqueue.
1868 */
1869 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1870 {
1871 if (task_contributes_to_load(p))
1872 rq->nr_uninterruptible++;
1873
1874 dequeue_task(rq, p, sleep);
1875 dec_nr_running(rq);
1876 }
1877
1878 /**
1879 * task_curr - is this task currently executing on a CPU?
1880 * @p: the task in question.
1881 */
1882 inline int task_curr(const struct task_struct *p)
1883 {
1884 return cpu_curr(task_cpu(p)) == p;
1885 }
1886
1887 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1888 {
1889 set_task_rq(p, cpu);
1890 #ifdef CONFIG_SMP
1891 /*
1892 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1893 * successfuly executed on another CPU. We must ensure that updates of
1894 * per-task data have been completed by this moment.
1895 */
1896 smp_wmb();
1897 task_thread_info(p)->cpu = cpu;
1898 #endif
1899 }
1900
1901 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1902 const struct sched_class *prev_class,
1903 int oldprio, int running)
1904 {
1905 if (prev_class != p->sched_class) {
1906 if (prev_class->switched_from)
1907 prev_class->switched_from(rq, p, running);
1908 p->sched_class->switched_to(rq, p, running);
1909 } else
1910 p->sched_class->prio_changed(rq, p, oldprio, running);
1911 }
1912
1913 #ifdef CONFIG_SMP
1914
1915 /* Used instead of source_load when we know the type == 0 */
1916 static unsigned long weighted_cpuload(const int cpu)
1917 {
1918 return cpu_rq(cpu)->load.weight;
1919 }
1920
1921 /*
1922 * Is this task likely cache-hot:
1923 */
1924 static int
1925 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1926 {
1927 s64 delta;
1928
1929 /*
1930 * Buddy candidates are cache hot:
1931 */
1932 if (sched_feat(CACHE_HOT_BUDDY) &&
1933 (&p->se == cfs_rq_of(&p->se)->next ||
1934 &p->se == cfs_rq_of(&p->se)->last))
1935 return 1;
1936
1937 if (p->sched_class != &fair_sched_class)
1938 return 0;
1939
1940 if (sysctl_sched_migration_cost == -1)
1941 return 1;
1942 if (sysctl_sched_migration_cost == 0)
1943 return 0;
1944
1945 delta = now - p->se.exec_start;
1946
1947 return delta < (s64)sysctl_sched_migration_cost;
1948 }
1949
1950
1951 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1952 {
1953 int old_cpu = task_cpu(p);
1954 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1955 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1956 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1957 u64 clock_offset;
1958
1959 clock_offset = old_rq->clock - new_rq->clock;
1960
1961 trace_sched_migrate_task(p, task_cpu(p), new_cpu);
1962
1963 #ifdef CONFIG_SCHEDSTATS
1964 if (p->se.wait_start)
1965 p->se.wait_start -= clock_offset;
1966 if (p->se.sleep_start)
1967 p->se.sleep_start -= clock_offset;
1968 if (p->se.block_start)
1969 p->se.block_start -= clock_offset;
1970 if (old_cpu != new_cpu) {
1971 schedstat_inc(p, se.nr_migrations);
1972 if (task_hot(p, old_rq->clock, NULL))
1973 schedstat_inc(p, se.nr_forced2_migrations);
1974 }
1975 #endif
1976 p->se.vruntime -= old_cfsrq->min_vruntime -
1977 new_cfsrq->min_vruntime;
1978
1979 __set_task_cpu(p, new_cpu);
1980 }
1981
1982 struct migration_req {
1983 struct list_head list;
1984
1985 struct task_struct *task;
1986 int dest_cpu;
1987
1988 struct completion done;
1989 };
1990
1991 /*
1992 * The task's runqueue lock must be held.
1993 * Returns true if you have to wait for migration thread.
1994 */
1995 static int
1996 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1997 {
1998 struct rq *rq = task_rq(p);
1999
2000 /*
2001 * If the task is not on a runqueue (and not running), then
2002 * it is sufficient to simply update the task's cpu field.
2003 */
2004 if (!p->se.on_rq && !task_running(rq, p)) {
2005 set_task_cpu(p, dest_cpu);
2006 return 0;
2007 }
2008
2009 init_completion(&req->done);
2010 req->task = p;
2011 req->dest_cpu = dest_cpu;
2012 list_add(&req->list, &rq->migration_queue);
2013
2014 return 1;
2015 }
2016
2017 /*
2018 * wait_task_inactive - wait for a thread to unschedule.
2019 *
2020 * If @match_state is nonzero, it's the @p->state value just checked and
2021 * not expected to change. If it changes, i.e. @p might have woken up,
2022 * then return zero. When we succeed in waiting for @p to be off its CPU,
2023 * we return a positive number (its total switch count). If a second call
2024 * a short while later returns the same number, the caller can be sure that
2025 * @p has remained unscheduled the whole time.
2026 *
2027 * The caller must ensure that the task *will* unschedule sometime soon,
2028 * else this function might spin for a *long* time. This function can't
2029 * be called with interrupts off, or it may introduce deadlock with
2030 * smp_call_function() if an IPI is sent by the same process we are
2031 * waiting to become inactive.
2032 */
2033 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2034 {
2035 unsigned long flags;
2036 int running, on_rq;
2037 unsigned long ncsw;
2038 struct rq *rq;
2039
2040 for (;;) {
2041 /*
2042 * We do the initial early heuristics without holding
2043 * any task-queue locks at all. We'll only try to get
2044 * the runqueue lock when things look like they will
2045 * work out!
2046 */
2047 rq = task_rq(p);
2048
2049 /*
2050 * If the task is actively running on another CPU
2051 * still, just relax and busy-wait without holding
2052 * any locks.
2053 *
2054 * NOTE! Since we don't hold any locks, it's not
2055 * even sure that "rq" stays as the right runqueue!
2056 * But we don't care, since "task_running()" will
2057 * return false if the runqueue has changed and p
2058 * is actually now running somewhere else!
2059 */
2060 while (task_running(rq, p)) {
2061 if (match_state && unlikely(p->state != match_state))
2062 return 0;
2063 cpu_relax();
2064 }
2065
2066 /*
2067 * Ok, time to look more closely! We need the rq
2068 * lock now, to be *sure*. If we're wrong, we'll
2069 * just go back and repeat.
2070 */
2071 rq = task_rq_lock(p, &flags);
2072 trace_sched_wait_task(rq, p);
2073 running = task_running(rq, p);
2074 on_rq = p->se.on_rq;
2075 ncsw = 0;
2076 if (!match_state || p->state == match_state)
2077 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2078 task_rq_unlock(rq, &flags);
2079
2080 /*
2081 * If it changed from the expected state, bail out now.
2082 */
2083 if (unlikely(!ncsw))
2084 break;
2085
2086 /*
2087 * Was it really running after all now that we
2088 * checked with the proper locks actually held?
2089 *
2090 * Oops. Go back and try again..
2091 */
2092 if (unlikely(running)) {
2093 cpu_relax();
2094 continue;
2095 }
2096
2097 /*
2098 * It's not enough that it's not actively running,
2099 * it must be off the runqueue _entirely_, and not
2100 * preempted!
2101 *
2102 * So if it was still runnable (but just not actively
2103 * running right now), it's preempted, and we should
2104 * yield - it could be a while.
2105 */
2106 if (unlikely(on_rq)) {
2107 schedule_timeout_uninterruptible(1);
2108 continue;
2109 }
2110
2111 /*
2112 * Ahh, all good. It wasn't running, and it wasn't
2113 * runnable, which means that it will never become
2114 * running in the future either. We're all done!
2115 */
2116 break;
2117 }
2118
2119 return ncsw;
2120 }
2121
2122 /***
2123 * kick_process - kick a running thread to enter/exit the kernel
2124 * @p: the to-be-kicked thread
2125 *
2126 * Cause a process which is running on another CPU to enter
2127 * kernel-mode, without any delay. (to get signals handled.)
2128 *
2129 * NOTE: this function doesnt have to take the runqueue lock,
2130 * because all it wants to ensure is that the remote task enters
2131 * the kernel. If the IPI races and the task has been migrated
2132 * to another CPU then no harm is done and the purpose has been
2133 * achieved as well.
2134 */
2135 void kick_process(struct task_struct *p)
2136 {
2137 int cpu;
2138
2139 preempt_disable();
2140 cpu = task_cpu(p);
2141 if ((cpu != smp_processor_id()) && task_curr(p))
2142 smp_send_reschedule(cpu);
2143 preempt_enable();
2144 }
2145
2146 /*
2147 * Return a low guess at the load of a migration-source cpu weighted
2148 * according to the scheduling class and "nice" value.
2149 *
2150 * We want to under-estimate the load of migration sources, to
2151 * balance conservatively.
2152 */
2153 static unsigned long source_load(int cpu, int type)
2154 {
2155 struct rq *rq = cpu_rq(cpu);
2156 unsigned long total = weighted_cpuload(cpu);
2157
2158 if (type == 0 || !sched_feat(LB_BIAS))
2159 return total;
2160
2161 return min(rq->cpu_load[type-1], total);
2162 }
2163
2164 /*
2165 * Return a high guess at the load of a migration-target cpu weighted
2166 * according to the scheduling class and "nice" value.
2167 */
2168 static unsigned long target_load(int cpu, int type)
2169 {
2170 struct rq *rq = cpu_rq(cpu);
2171 unsigned long total = weighted_cpuload(cpu);
2172
2173 if (type == 0 || !sched_feat(LB_BIAS))
2174 return total;
2175
2176 return max(rq->cpu_load[type-1], total);
2177 }
2178
2179 /*
2180 * find_idlest_group finds and returns the least busy CPU group within the
2181 * domain.
2182 */
2183 static struct sched_group *
2184 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2185 {
2186 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2187 unsigned long min_load = ULONG_MAX, this_load = 0;
2188 int load_idx = sd->forkexec_idx;
2189 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2190
2191 do {
2192 unsigned long load, avg_load;
2193 int local_group;
2194 int i;
2195
2196 /* Skip over this group if it has no CPUs allowed */
2197 if (!cpumask_intersects(sched_group_cpus(group),
2198 &p->cpus_allowed))
2199 continue;
2200
2201 local_group = cpumask_test_cpu(this_cpu,
2202 sched_group_cpus(group));
2203
2204 /* Tally up the load of all CPUs in the group */
2205 avg_load = 0;
2206
2207 for_each_cpu(i, sched_group_cpus(group)) {
2208 /* Bias balancing toward cpus of our domain */
2209 if (local_group)
2210 load = source_load(i, load_idx);
2211 else
2212 load = target_load(i, load_idx);
2213
2214 avg_load += load;
2215 }
2216
2217 /* Adjust by relative CPU power of the group */
2218 avg_load = sg_div_cpu_power(group,
2219 avg_load * SCHED_LOAD_SCALE);
2220
2221 if (local_group) {
2222 this_load = avg_load;
2223 this = group;
2224 } else if (avg_load < min_load) {
2225 min_load = avg_load;
2226 idlest = group;
2227 }
2228 } while (group = group->next, group != sd->groups);
2229
2230 if (!idlest || 100*this_load < imbalance*min_load)
2231 return NULL;
2232 return idlest;
2233 }
2234
2235 /*
2236 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2237 */
2238 static int
2239 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
2240 {
2241 unsigned long load, min_load = ULONG_MAX;
2242 int idlest = -1;
2243 int i;
2244
2245 /* Traverse only the allowed CPUs */
2246 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2247 load = weighted_cpuload(i);
2248
2249 if (load < min_load || (load == min_load && i == this_cpu)) {
2250 min_load = load;
2251 idlest = i;
2252 }
2253 }
2254
2255 return idlest;
2256 }
2257
2258 /*
2259 * sched_balance_self: balance the current task (running on cpu) in domains
2260 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2261 * SD_BALANCE_EXEC.
2262 *
2263 * Balance, ie. select the least loaded group.
2264 *
2265 * Returns the target CPU number, or the same CPU if no balancing is needed.
2266 *
2267 * preempt must be disabled.
2268 */
2269 static int sched_balance_self(int cpu, int flag)
2270 {
2271 struct task_struct *t = current;
2272 struct sched_domain *tmp, *sd = NULL;
2273
2274 for_each_domain(cpu, tmp) {
2275 /*
2276 * If power savings logic is enabled for a domain, stop there.
2277 */
2278 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2279 break;
2280 if (tmp->flags & flag)
2281 sd = tmp;
2282 }
2283
2284 if (sd)
2285 update_shares(sd);
2286
2287 while (sd) {
2288 struct sched_group *group;
2289 int new_cpu, weight;
2290
2291 if (!(sd->flags & flag)) {
2292 sd = sd->child;
2293 continue;
2294 }
2295
2296 group = find_idlest_group(sd, t, cpu);
2297 if (!group) {
2298 sd = sd->child;
2299 continue;
2300 }
2301
2302 new_cpu = find_idlest_cpu(group, t, cpu);
2303 if (new_cpu == -1 || new_cpu == cpu) {
2304 /* Now try balancing at a lower domain level of cpu */
2305 sd = sd->child;
2306 continue;
2307 }
2308
2309 /* Now try balancing at a lower domain level of new_cpu */
2310 cpu = new_cpu;
2311 weight = cpumask_weight(sched_domain_span(sd));
2312 sd = NULL;
2313 for_each_domain(cpu, tmp) {
2314 if (weight <= cpumask_weight(sched_domain_span(tmp)))
2315 break;
2316 if (tmp->flags & flag)
2317 sd = tmp;
2318 }
2319 /* while loop will break here if sd == NULL */
2320 }
2321
2322 return cpu;
2323 }
2324
2325 #endif /* CONFIG_SMP */
2326
2327 /***
2328 * try_to_wake_up - wake up a thread
2329 * @p: the to-be-woken-up thread
2330 * @state: the mask of task states that can be woken
2331 * @sync: do a synchronous wakeup?
2332 *
2333 * Put it on the run-queue if it's not already there. The "current"
2334 * thread is always on the run-queue (except when the actual
2335 * re-schedule is in progress), and as such you're allowed to do
2336 * the simpler "current->state = TASK_RUNNING" to mark yourself
2337 * runnable without the overhead of this.
2338 *
2339 * returns failure only if the task is already active.
2340 */
2341 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2342 {
2343 int cpu, orig_cpu, this_cpu, success = 0;
2344 unsigned long flags;
2345 long old_state;
2346 struct rq *rq;
2347
2348 if (!sched_feat(SYNC_WAKEUPS))
2349 sync = 0;
2350
2351 #ifdef CONFIG_SMP
2352 if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
2353 struct sched_domain *sd;
2354
2355 this_cpu = raw_smp_processor_id();
2356 cpu = task_cpu(p);
2357
2358 for_each_domain(this_cpu, sd) {
2359 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2360 update_shares(sd);
2361 break;
2362 }
2363 }
2364 }
2365 #endif
2366
2367 smp_wmb();
2368 rq = task_rq_lock(p, &flags);
2369 update_rq_clock(rq);
2370 old_state = p->state;
2371 if (!(old_state & state))
2372 goto out;
2373
2374 if (p->se.on_rq)
2375 goto out_running;
2376
2377 cpu = task_cpu(p);
2378 orig_cpu = cpu;
2379 this_cpu = smp_processor_id();
2380
2381 #ifdef CONFIG_SMP
2382 if (unlikely(task_running(rq, p)))
2383 goto out_activate;
2384
2385 cpu = p->sched_class->select_task_rq(p, sync);
2386 if (cpu != orig_cpu) {
2387 set_task_cpu(p, cpu);
2388 task_rq_unlock(rq, &flags);
2389 /* might preempt at this point */
2390 rq = task_rq_lock(p, &flags);
2391 old_state = p->state;
2392 if (!(old_state & state))
2393 goto out;
2394 if (p->se.on_rq)
2395 goto out_running;
2396
2397 this_cpu = smp_processor_id();
2398 cpu = task_cpu(p);
2399 }
2400
2401 #ifdef CONFIG_SCHEDSTATS
2402 schedstat_inc(rq, ttwu_count);
2403 if (cpu == this_cpu)
2404 schedstat_inc(rq, ttwu_local);
2405 else {
2406 struct sched_domain *sd;
2407 for_each_domain(this_cpu, sd) {
2408 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2409 schedstat_inc(sd, ttwu_wake_remote);
2410 break;
2411 }
2412 }
2413 }
2414 #endif /* CONFIG_SCHEDSTATS */
2415
2416 out_activate:
2417 #endif /* CONFIG_SMP */
2418 schedstat_inc(p, se.nr_wakeups);
2419 if (sync)
2420 schedstat_inc(p, se.nr_wakeups_sync);
2421 if (orig_cpu != cpu)
2422 schedstat_inc(p, se.nr_wakeups_migrate);
2423 if (cpu == this_cpu)
2424 schedstat_inc(p, se.nr_wakeups_local);
2425 else
2426 schedstat_inc(p, se.nr_wakeups_remote);
2427 activate_task(rq, p, 1);
2428 success = 1;
2429
2430 /*
2431 * Only attribute actual wakeups done by this task.
2432 */
2433 if (!in_interrupt()) {
2434 struct sched_entity *se = &current->se;
2435 u64 sample = se->sum_exec_runtime;
2436
2437 if (se->last_wakeup)
2438 sample -= se->last_wakeup;
2439 else
2440 sample -= se->start_runtime;
2441 update_avg(&se->avg_wakeup, sample);
2442
2443 se->last_wakeup = se->sum_exec_runtime;
2444 }
2445
2446 out_running:
2447 trace_sched_wakeup(rq, p, success);
2448 check_preempt_curr(rq, p, sync);
2449
2450 p->state = TASK_RUNNING;
2451 #ifdef CONFIG_SMP
2452 if (p->sched_class->task_wake_up)
2453 p->sched_class->task_wake_up(rq, p);
2454 #endif
2455 out:
2456 task_rq_unlock(rq, &flags);
2457
2458 return success;
2459 }
2460
2461 int wake_up_process(struct task_struct *p)
2462 {
2463 return try_to_wake_up(p, TASK_ALL, 0);
2464 }
2465 EXPORT_SYMBOL(wake_up_process);
2466
2467 int wake_up_state(struct task_struct *p, unsigned int state)
2468 {
2469 return try_to_wake_up(p, state, 0);
2470 }
2471
2472 /*
2473 * Perform scheduler related setup for a newly forked process p.
2474 * p is forked by current.
2475 *
2476 * __sched_fork() is basic setup used by init_idle() too:
2477 */
2478 static void __sched_fork(struct task_struct *p)
2479 {
2480 p->se.exec_start = 0;
2481 p->se.sum_exec_runtime = 0;
2482 p->se.prev_sum_exec_runtime = 0;
2483 p->se.last_wakeup = 0;
2484 p->se.avg_overlap = 0;
2485 p->se.start_runtime = 0;
2486 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
2487
2488 #ifdef CONFIG_SCHEDSTATS
2489 p->se.wait_start = 0;
2490 p->se.sum_sleep_runtime = 0;
2491 p->se.sleep_start = 0;
2492 p->se.block_start = 0;
2493 p->se.sleep_max = 0;
2494 p->se.block_max = 0;
2495 p->se.exec_max = 0;
2496 p->se.slice_max = 0;
2497 p->se.wait_max = 0;
2498 #endif
2499
2500 INIT_LIST_HEAD(&p->rt.run_list);
2501 p->se.on_rq = 0;
2502 INIT_LIST_HEAD(&p->se.group_node);
2503
2504 #ifdef CONFIG_PREEMPT_NOTIFIERS
2505 INIT_HLIST_HEAD(&p->preempt_notifiers);
2506 #endif
2507
2508 /*
2509 * We mark the process as running here, but have not actually
2510 * inserted it onto the runqueue yet. This guarantees that
2511 * nobody will actually run it, and a signal or other external
2512 * event cannot wake it up and insert it on the runqueue either.
2513 */
2514 p->state = TASK_RUNNING;
2515 }
2516
2517 /*
2518 * fork()/clone()-time setup:
2519 */
2520 void sched_fork(struct task_struct *p, int clone_flags)
2521 {
2522 int cpu = get_cpu();
2523
2524 __sched_fork(p);
2525
2526 #ifdef CONFIG_SMP
2527 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2528 #endif
2529 set_task_cpu(p, cpu);
2530
2531 /*
2532 * Make sure we do not leak PI boosting priority to the child:
2533 */
2534 p->prio = current->normal_prio;
2535 if (!rt_prio(p->prio))
2536 p->sched_class = &fair_sched_class;
2537
2538 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2539 if (likely(sched_info_on()))
2540 memset(&p->sched_info, 0, sizeof(p->sched_info));
2541 #endif
2542 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2543 p->oncpu = 0;
2544 #endif
2545 #ifdef CONFIG_PREEMPT
2546 /* Want to start with kernel preemption disabled. */
2547 task_thread_info(p)->preempt_count = 1;
2548 #endif
2549 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2550
2551 put_cpu();
2552 }
2553
2554 /*
2555 * wake_up_new_task - wake up a newly created task for the first time.
2556 *
2557 * This function will do some initial scheduler statistics housekeeping
2558 * that must be done for every newly created context, then puts the task
2559 * on the runqueue and wakes it.
2560 */
2561 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2562 {
2563 unsigned long flags;
2564 struct rq *rq;
2565
2566 rq = task_rq_lock(p, &flags);
2567 BUG_ON(p->state != TASK_RUNNING);
2568 update_rq_clock(rq);
2569
2570 p->prio = effective_prio(p);
2571
2572 if (!p->sched_class->task_new || !current->se.on_rq) {
2573 activate_task(rq, p, 0);
2574 } else {
2575 /*
2576 * Let the scheduling class do new task startup
2577 * management (if any):
2578 */
2579 p->sched_class->task_new(rq, p);
2580 inc_nr_running(rq);
2581 }
2582 trace_sched_wakeup_new(rq, p, 1);
2583 check_preempt_curr(rq, p, 0);
2584 #ifdef CONFIG_SMP
2585 if (p->sched_class->task_wake_up)
2586 p->sched_class->task_wake_up(rq, p);
2587 #endif
2588 task_rq_unlock(rq, &flags);
2589 }
2590
2591 #ifdef CONFIG_PREEMPT_NOTIFIERS
2592
2593 /**
2594 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2595 * @notifier: notifier struct to register
2596 */
2597 void preempt_notifier_register(struct preempt_notifier *notifier)
2598 {
2599 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2600 }
2601 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2602
2603 /**
2604 * preempt_notifier_unregister - no longer interested in preemption notifications
2605 * @notifier: notifier struct to unregister
2606 *
2607 * This is safe to call from within a preemption notifier.
2608 */
2609 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2610 {
2611 hlist_del(&notifier->link);
2612 }
2613 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2614
2615 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2616 {
2617 struct preempt_notifier *notifier;
2618 struct hlist_node *node;
2619
2620 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2621 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2622 }
2623
2624 static void
2625 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2626 struct task_struct *next)
2627 {
2628 struct preempt_notifier *notifier;
2629 struct hlist_node *node;
2630
2631 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2632 notifier->ops->sched_out(notifier, next);
2633 }
2634
2635 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2636
2637 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2638 {
2639 }
2640
2641 static void
2642 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2643 struct task_struct *next)
2644 {
2645 }
2646
2647 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2648
2649 /**
2650 * prepare_task_switch - prepare to switch tasks
2651 * @rq: the runqueue preparing to switch
2652 * @prev: the current task that is being switched out
2653 * @next: the task we are going to switch to.
2654 *
2655 * This is called with the rq lock held and interrupts off. It must
2656 * be paired with a subsequent finish_task_switch after the context
2657 * switch.
2658 *
2659 * prepare_task_switch sets up locking and calls architecture specific
2660 * hooks.
2661 */
2662 static inline void
2663 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2664 struct task_struct *next)
2665 {
2666 fire_sched_out_preempt_notifiers(prev, next);
2667 prepare_lock_switch(rq, next);
2668 prepare_arch_switch(next);
2669 }
2670
2671 /**
2672 * finish_task_switch - clean up after a task-switch
2673 * @rq: runqueue associated with task-switch
2674 * @prev: the thread we just switched away from.
2675 *
2676 * finish_task_switch must be called after the context switch, paired
2677 * with a prepare_task_switch call before the context switch.
2678 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2679 * and do any other architecture-specific cleanup actions.
2680 *
2681 * Note that we may have delayed dropping an mm in context_switch(). If
2682 * so, we finish that here outside of the runqueue lock. (Doing it
2683 * with the lock held can cause deadlocks; see schedule() for
2684 * details.)
2685 */
2686 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2687 __releases(rq->lock)
2688 {
2689 struct mm_struct *mm = rq->prev_mm;
2690 long prev_state;
2691 #ifdef CONFIG_SMP
2692 int post_schedule = 0;
2693
2694 if (current->sched_class->needs_post_schedule)
2695 post_schedule = current->sched_class->needs_post_schedule(rq);
2696 #endif
2697
2698 rq->prev_mm = NULL;
2699
2700 /*
2701 * A task struct has one reference for the use as "current".
2702 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2703 * schedule one last time. The schedule call will never return, and
2704 * the scheduled task must drop that reference.
2705 * The test for TASK_DEAD must occur while the runqueue locks are
2706 * still held, otherwise prev could be scheduled on another cpu, die
2707 * there before we look at prev->state, and then the reference would
2708 * be dropped twice.
2709 * Manfred Spraul <manfred@colorfullife.com>
2710 */
2711 prev_state = prev->state;
2712 finish_arch_switch(prev);
2713 finish_lock_switch(rq, prev);
2714 #ifdef CONFIG_SMP
2715 if (post_schedule)
2716 current->sched_class->post_schedule(rq);
2717 #endif
2718
2719 fire_sched_in_preempt_notifiers(current);
2720 if (mm)
2721 mmdrop(mm);
2722 if (unlikely(prev_state == TASK_DEAD)) {
2723 /*
2724 * Remove function-return probe instances associated with this
2725 * task and put them back on the free list.
2726 */
2727 kprobe_flush_task(prev);
2728 put_task_struct(prev);
2729 }
2730 }
2731
2732 /**
2733 * schedule_tail - first thing a freshly forked thread must call.
2734 * @prev: the thread we just switched away from.
2735 */
2736 asmlinkage void schedule_tail(struct task_struct *prev)
2737 __releases(rq->lock)
2738 {
2739 struct rq *rq = this_rq();
2740
2741 finish_task_switch(rq, prev);
2742 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2743 /* In this case, finish_task_switch does not reenable preemption */
2744 preempt_enable();
2745 #endif
2746 if (current->set_child_tid)
2747 put_user(task_pid_vnr(current), current->set_child_tid);
2748 }
2749
2750 /*
2751 * context_switch - switch to the new MM and the new
2752 * thread's register state.
2753 */
2754 static inline void
2755 context_switch(struct rq *rq, struct task_struct *prev,
2756 struct task_struct *next)
2757 {
2758 struct mm_struct *mm, *oldmm;
2759
2760 prepare_task_switch(rq, prev, next);
2761 trace_sched_switch(rq, prev, next);
2762 mm = next->mm;
2763 oldmm = prev->active_mm;
2764 /*
2765 * For paravirt, this is coupled with an exit in switch_to to
2766 * combine the page table reload and the switch backend into
2767 * one hypercall.
2768 */
2769 arch_enter_lazy_cpu_mode();
2770
2771 if (unlikely(!mm)) {
2772 next->active_mm = oldmm;
2773 atomic_inc(&oldmm->mm_count);
2774 enter_lazy_tlb(oldmm, next);
2775 } else
2776 switch_mm(oldmm, mm, next);
2777
2778 if (unlikely(!prev->mm)) {
2779 prev->active_mm = NULL;
2780 rq->prev_mm = oldmm;
2781 }
2782 /*
2783 * Since the runqueue lock will be released by the next
2784 * task (which is an invalid locking op but in the case
2785 * of the scheduler it's an obvious special-case), so we
2786 * do an early lockdep release here:
2787 */
2788 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2789 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2790 #endif
2791
2792 /* Here we just switch the register state and the stack. */
2793 switch_to(prev, next, prev);
2794
2795 barrier();
2796 /*
2797 * this_rq must be evaluated again because prev may have moved
2798 * CPUs since it called schedule(), thus the 'rq' on its stack
2799 * frame will be invalid.
2800 */
2801 finish_task_switch(this_rq(), prev);
2802 }
2803
2804 /*
2805 * nr_running, nr_uninterruptible and nr_context_switches:
2806 *
2807 * externally visible scheduler statistics: current number of runnable
2808 * threads, current number of uninterruptible-sleeping threads, total
2809 * number of context switches performed since bootup.
2810 */
2811 unsigned long nr_running(void)
2812 {
2813 unsigned long i, sum = 0;
2814
2815 for_each_online_cpu(i)
2816 sum += cpu_rq(i)->nr_running;
2817
2818 return sum;
2819 }
2820
2821 unsigned long nr_uninterruptible(void)
2822 {
2823 unsigned long i, sum = 0;
2824
2825 for_each_possible_cpu(i)
2826 sum += cpu_rq(i)->nr_uninterruptible;
2827
2828 /*
2829 * Since we read the counters lockless, it might be slightly
2830 * inaccurate. Do not allow it to go below zero though:
2831 */
2832 if (unlikely((long)sum < 0))
2833 sum = 0;
2834
2835 return sum;
2836 }
2837
2838 unsigned long long nr_context_switches(void)
2839 {
2840 int i;
2841 unsigned long long sum = 0;
2842
2843 for_each_possible_cpu(i)
2844 sum += cpu_rq(i)->nr_switches;
2845
2846 return sum;
2847 }
2848
2849 unsigned long nr_iowait(void)
2850 {
2851 unsigned long i, sum = 0;
2852
2853 for_each_possible_cpu(i)
2854 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2855
2856 return sum;
2857 }
2858
2859 unsigned long nr_active(void)
2860 {
2861 unsigned long i, running = 0, uninterruptible = 0;
2862
2863 for_each_online_cpu(i) {
2864 running += cpu_rq(i)->nr_running;
2865 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2866 }
2867
2868 if (unlikely((long)uninterruptible < 0))
2869 uninterruptible = 0;
2870
2871 return running + uninterruptible;
2872 }
2873
2874 /*
2875 * Update rq->cpu_load[] statistics. This function is usually called every
2876 * scheduler tick (TICK_NSEC).
2877 */
2878 static void update_cpu_load(struct rq *this_rq)
2879 {
2880 unsigned long this_load = this_rq->load.weight;
2881 int i, scale;
2882
2883 this_rq->nr_load_updates++;
2884
2885 /* Update our load: */
2886 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2887 unsigned long old_load, new_load;
2888
2889 /* scale is effectively 1 << i now, and >> i divides by scale */
2890
2891 old_load = this_rq->cpu_load[i];
2892 new_load = this_load;
2893 /*
2894 * Round up the averaging division if load is increasing. This
2895 * prevents us from getting stuck on 9 if the load is 10, for
2896 * example.
2897 */
2898 if (new_load > old_load)
2899 new_load += scale-1;
2900 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2901 }
2902 }
2903
2904 #ifdef CONFIG_SMP
2905
2906 /*
2907 * double_rq_lock - safely lock two runqueues
2908 *
2909 * Note this does not disable interrupts like task_rq_lock,
2910 * you need to do so manually before calling.
2911 */
2912 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2913 __acquires(rq1->lock)
2914 __acquires(rq2->lock)
2915 {
2916 BUG_ON(!irqs_disabled());
2917 if (rq1 == rq2) {
2918 spin_lock(&rq1->lock);
2919 __acquire(rq2->lock); /* Fake it out ;) */
2920 } else {
2921 if (rq1 < rq2) {
2922 spin_lock(&rq1->lock);
2923 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
2924 } else {
2925 spin_lock(&rq2->lock);
2926 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
2927 }
2928 }
2929 update_rq_clock(rq1);
2930 update_rq_clock(rq2);
2931 }
2932
2933 /*
2934 * double_rq_unlock - safely unlock two runqueues
2935 *
2936 * Note this does not restore interrupts like task_rq_unlock,
2937 * you need to do so manually after calling.
2938 */
2939 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2940 __releases(rq1->lock)
2941 __releases(rq2->lock)
2942 {
2943 spin_unlock(&rq1->lock);
2944 if (rq1 != rq2)
2945 spin_unlock(&rq2->lock);
2946 else
2947 __release(rq2->lock);
2948 }
2949
2950 /*
2951 * If dest_cpu is allowed for this process, migrate the task to it.
2952 * This is accomplished by forcing the cpu_allowed mask to only
2953 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2954 * the cpu_allowed mask is restored.
2955 */
2956 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2957 {
2958 struct migration_req req;
2959 unsigned long flags;
2960 struct rq *rq;
2961
2962 rq = task_rq_lock(p, &flags);
2963 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
2964 || unlikely(!cpu_active(dest_cpu)))
2965 goto out;
2966
2967 /* force the process onto the specified CPU */
2968 if (migrate_task(p, dest_cpu, &req)) {
2969 /* Need to wait for migration thread (might exit: take ref). */
2970 struct task_struct *mt = rq->migration_thread;
2971
2972 get_task_struct(mt);
2973 task_rq_unlock(rq, &flags);
2974 wake_up_process(mt);
2975 put_task_struct(mt);
2976 wait_for_completion(&req.done);
2977
2978 return;
2979 }
2980 out:
2981 task_rq_unlock(rq, &flags);
2982 }
2983
2984 /*
2985 * sched_exec - execve() is a valuable balancing opportunity, because at
2986 * this point the task has the smallest effective memory and cache footprint.
2987 */
2988 void sched_exec(void)
2989 {
2990 int new_cpu, this_cpu = get_cpu();
2991 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2992 put_cpu();
2993 if (new_cpu != this_cpu)
2994 sched_migrate_task(current, new_cpu);
2995 }
2996
2997 /*
2998 * pull_task - move a task from a remote runqueue to the local runqueue.
2999 * Both runqueues must be locked.
3000 */
3001 static void pull_task(struct rq *src_rq, struct task_struct *p,
3002 struct rq *this_rq, int this_cpu)
3003 {
3004 deactivate_task(src_rq, p, 0);
3005 set_task_cpu(p, this_cpu);
3006 activate_task(this_rq, p, 0);
3007 /*
3008 * Note that idle threads have a prio of MAX_PRIO, for this test
3009 * to be always true for them.
3010 */
3011 check_preempt_curr(this_rq, p, 0);
3012 }
3013
3014 /*
3015 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3016 */
3017 static
3018 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
3019 struct sched_domain *sd, enum cpu_idle_type idle,
3020 int *all_pinned)
3021 {
3022 int tsk_cache_hot = 0;
3023 /*
3024 * We do not migrate tasks that are:
3025 * 1) running (obviously), or
3026 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3027 * 3) are cache-hot on their current CPU.
3028 */
3029 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3030 schedstat_inc(p, se.nr_failed_migrations_affine);
3031 return 0;
3032 }
3033 *all_pinned = 0;
3034
3035 if (task_running(rq, p)) {
3036 schedstat_inc(p, se.nr_failed_migrations_running);
3037 return 0;
3038 }
3039
3040 /*
3041 * Aggressive migration if:
3042 * 1) task is cache cold, or
3043 * 2) too many balance attempts have failed.
3044 */
3045
3046 tsk_cache_hot = task_hot(p, rq->clock, sd);
3047 if (!tsk_cache_hot ||
3048 sd->nr_balance_failed > sd->cache_nice_tries) {
3049 #ifdef CONFIG_SCHEDSTATS
3050 if (tsk_cache_hot) {
3051 schedstat_inc(sd, lb_hot_gained[idle]);
3052 schedstat_inc(p, se.nr_forced_migrations);
3053 }
3054 #endif
3055 return 1;
3056 }
3057
3058 if (tsk_cache_hot) {
3059 schedstat_inc(p, se.nr_failed_migrations_hot);
3060 return 0;
3061 }
3062 return 1;
3063 }
3064
3065 static unsigned long
3066 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3067 unsigned long max_load_move, struct sched_domain *sd,
3068 enum cpu_idle_type idle, int *all_pinned,
3069 int *this_best_prio, struct rq_iterator *iterator)
3070 {
3071 int loops = 0, pulled = 0, pinned = 0;
3072 struct task_struct *p;
3073 long rem_load_move = max_load_move;
3074
3075 if (max_load_move == 0)
3076 goto out;
3077
3078 pinned = 1;
3079
3080 /*
3081 * Start the load-balancing iterator:
3082 */
3083 p = iterator->start(iterator->arg);
3084 next:
3085 if (!p || loops++ > sysctl_sched_nr_migrate)
3086 goto out;
3087
3088 if ((p->se.load.weight >> 1) > rem_load_move ||
3089 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3090 p = iterator->next(iterator->arg);
3091 goto next;
3092 }
3093
3094 pull_task(busiest, p, this_rq, this_cpu);
3095 pulled++;
3096 rem_load_move -= p->se.load.weight;
3097
3098 #ifdef CONFIG_PREEMPT
3099 /*
3100 * NEWIDLE balancing is a source of latency, so preemptible kernels
3101 * will stop after the first task is pulled to minimize the critical
3102 * section.
3103 */
3104 if (idle == CPU_NEWLY_IDLE)
3105 goto out;
3106 #endif
3107
3108 /*
3109 * We only want to steal up to the prescribed amount of weighted load.
3110 */
3111 if (rem_load_move > 0) {
3112 if (p->prio < *this_best_prio)
3113 *this_best_prio = p->prio;
3114 p = iterator->next(iterator->arg);
3115 goto next;
3116 }
3117 out:
3118 /*
3119 * Right now, this is one of only two places pull_task() is called,
3120 * so we can safely collect pull_task() stats here rather than
3121 * inside pull_task().
3122 */
3123 schedstat_add(sd, lb_gained[idle], pulled);
3124
3125 if (all_pinned)
3126 *all_pinned = pinned;
3127
3128 return max_load_move - rem_load_move;
3129 }
3130
3131 /*
3132 * move_tasks tries to move up to max_load_move weighted load from busiest to
3133 * this_rq, as part of a balancing operation within domain "sd".
3134 * Returns 1 if successful and 0 otherwise.
3135 *
3136 * Called with both runqueues locked.
3137 */
3138 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3139 unsigned long max_load_move,
3140 struct sched_domain *sd, enum cpu_idle_type idle,
3141 int *all_pinned)
3142 {
3143 const struct sched_class *class = sched_class_highest;
3144 unsigned long total_load_moved = 0;
3145 int this_best_prio = this_rq->curr->prio;
3146
3147 do {
3148 total_load_moved +=
3149 class->load_balance(this_rq, this_cpu, busiest,
3150 max_load_move - total_load_moved,
3151 sd, idle, all_pinned, &this_best_prio);
3152 class = class->next;
3153
3154 #ifdef CONFIG_PREEMPT
3155 /*
3156 * NEWIDLE balancing is a source of latency, so preemptible
3157 * kernels will stop after the first task is pulled to minimize
3158 * the critical section.
3159 */
3160 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3161 break;
3162 #endif
3163 } while (class && max_load_move > total_load_moved);
3164
3165 return total_load_moved > 0;
3166 }
3167
3168 static int
3169 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3170 struct sched_domain *sd, enum cpu_idle_type idle,
3171 struct rq_iterator *iterator)
3172 {
3173 struct task_struct *p = iterator->start(iterator->arg);
3174 int pinned = 0;
3175
3176 while (p) {
3177 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3178 pull_task(busiest, p, this_rq, this_cpu);
3179 /*
3180 * Right now, this is only the second place pull_task()
3181 * is called, so we can safely collect pull_task()
3182 * stats here rather than inside pull_task().
3183 */
3184 schedstat_inc(sd, lb_gained[idle]);
3185
3186 return 1;
3187 }
3188 p = iterator->next(iterator->arg);
3189 }
3190
3191 return 0;
3192 }
3193
3194 /*
3195 * move_one_task tries to move exactly one task from busiest to this_rq, as
3196 * part of active balancing operations within "domain".
3197 * Returns 1 if successful and 0 otherwise.
3198 *
3199 * Called with both runqueues locked.
3200 */
3201 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3202 struct sched_domain *sd, enum cpu_idle_type idle)
3203 {
3204 const struct sched_class *class;
3205
3206 for (class = sched_class_highest; class; class = class->next)
3207 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3208 return 1;
3209
3210 return 0;
3211 }
3212 /********** Helpers for find_busiest_group ************************/
3213 /*
3214 * sd_lb_stats - Structure to store the statistics of a sched_domain
3215 * during load balancing.
3216 */
3217 struct sd_lb_stats {
3218 struct sched_group *busiest; /* Busiest group in this sd */
3219 struct sched_group *this; /* Local group in this sd */
3220 unsigned long total_load; /* Total load of all groups in sd */
3221 unsigned long total_pwr; /* Total power of all groups in sd */
3222 unsigned long avg_load; /* Average load across all groups in sd */
3223
3224 /** Statistics of this group */
3225 unsigned long this_load;
3226 unsigned long this_load_per_task;
3227 unsigned long this_nr_running;
3228
3229 /* Statistics of the busiest group */
3230 unsigned long max_load;
3231 unsigned long busiest_load_per_task;
3232 unsigned long busiest_nr_running;
3233
3234 int group_imb; /* Is there imbalance in this sd */
3235 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3236 int power_savings_balance; /* Is powersave balance needed for this sd */
3237 struct sched_group *group_min; /* Least loaded group in sd */
3238 struct sched_group *group_leader; /* Group which relieves group_min */
3239 unsigned long min_load_per_task; /* load_per_task in group_min */
3240 unsigned long leader_nr_running; /* Nr running of group_leader */
3241 unsigned long min_nr_running; /* Nr running of group_min */
3242 #endif
3243 };
3244
3245 /*
3246 * sg_lb_stats - stats of a sched_group required for load_balancing
3247 */
3248 struct sg_lb_stats {
3249 unsigned long avg_load; /*Avg load across the CPUs of the group */
3250 unsigned long group_load; /* Total load over the CPUs of the group */
3251 unsigned long sum_nr_running; /* Nr tasks running in the group */
3252 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3253 unsigned long group_capacity;
3254 int group_imb; /* Is there an imbalance in the group ? */
3255 };
3256
3257 /**
3258 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3259 * @group: The group whose first cpu is to be returned.
3260 */
3261 static inline unsigned int group_first_cpu(struct sched_group *group)
3262 {
3263 return cpumask_first(sched_group_cpus(group));
3264 }
3265
3266 /**
3267 * get_sd_load_idx - Obtain the load index for a given sched domain.
3268 * @sd: The sched_domain whose load_idx is to be obtained.
3269 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3270 */
3271 static inline int get_sd_load_idx(struct sched_domain *sd,
3272 enum cpu_idle_type idle)
3273 {
3274 int load_idx;
3275
3276 switch (idle) {
3277 case CPU_NOT_IDLE:
3278 load_idx = sd->busy_idx;
3279 break;
3280
3281 case CPU_NEWLY_IDLE:
3282 load_idx = sd->newidle_idx;
3283 break;
3284 default:
3285 load_idx = sd->idle_idx;
3286 break;
3287 }
3288
3289 return load_idx;
3290 }
3291
3292
3293 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3294 /**
3295 * init_sd_power_savings_stats - Initialize power savings statistics for
3296 * the given sched_domain, during load balancing.
3297 *
3298 * @sd: Sched domain whose power-savings statistics are to be initialized.
3299 * @sds: Variable containing the statistics for sd.
3300 * @idle: Idle status of the CPU at which we're performing load-balancing.
3301 */
3302 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3303 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3304 {
3305 /*
3306 * Busy processors will not participate in power savings
3307 * balance.
3308 */
3309 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3310 sds->power_savings_balance = 0;
3311 else {
3312 sds->power_savings_balance = 1;
3313 sds->min_nr_running = ULONG_MAX;
3314 sds->leader_nr_running = 0;
3315 }
3316 }
3317
3318 /**
3319 * update_sd_power_savings_stats - Update the power saving stats for a
3320 * sched_domain while performing load balancing.
3321 *
3322 * @group: sched_group belonging to the sched_domain under consideration.
3323 * @sds: Variable containing the statistics of the sched_domain
3324 * @local_group: Does group contain the CPU for which we're performing
3325 * load balancing ?
3326 * @sgs: Variable containing the statistics of the group.
3327 */
3328 static inline void update_sd_power_savings_stats(struct sched_group *group,
3329 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3330 {
3331
3332 if (!sds->power_savings_balance)
3333 return;
3334
3335 /*
3336 * If the local group is idle or completely loaded
3337 * no need to do power savings balance at this domain
3338 */
3339 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3340 !sds->this_nr_running))
3341 sds->power_savings_balance = 0;
3342
3343 /*
3344 * If a group is already running at full capacity or idle,
3345 * don't include that group in power savings calculations
3346 */
3347 if (!sds->power_savings_balance ||
3348 sgs->sum_nr_running >= sgs->group_capacity ||
3349 !sgs->sum_nr_running)
3350 return;
3351
3352 /*
3353 * Calculate the group which has the least non-idle load.
3354 * This is the group from where we need to pick up the load
3355 * for saving power
3356 */
3357 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3358 (sgs->sum_nr_running == sds->min_nr_running &&
3359 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3360 sds->group_min = group;
3361 sds->min_nr_running = sgs->sum_nr_running;
3362 sds->min_load_per_task = sgs->sum_weighted_load /
3363 sgs->sum_nr_running;
3364 }
3365
3366 /*
3367 * Calculate the group which is almost near its
3368 * capacity but still has some space to pick up some load
3369 * from other group and save more power
3370 */
3371 if (sgs->sum_nr_running > sgs->group_capacity - 1)
3372 return;
3373
3374 if (sgs->sum_nr_running > sds->leader_nr_running ||
3375 (sgs->sum_nr_running == sds->leader_nr_running &&
3376 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3377 sds->group_leader = group;
3378 sds->leader_nr_running = sgs->sum_nr_running;
3379 }
3380 }
3381
3382 /**
3383 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3384 * @sds: Variable containing the statistics of the sched_domain
3385 * under consideration.
3386 * @this_cpu: Cpu at which we're currently performing load-balancing.
3387 * @imbalance: Variable to store the imbalance.
3388 *
3389 * Description:
3390 * Check if we have potential to perform some power-savings balance.
3391 * If yes, set the busiest group to be the least loaded group in the
3392 * sched_domain, so that it's CPUs can be put to idle.
3393 *
3394 * Returns 1 if there is potential to perform power-savings balance.
3395 * Else returns 0.
3396 */
3397 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3398 int this_cpu, unsigned long *imbalance)
3399 {
3400 if (!sds->power_savings_balance)
3401 return 0;
3402
3403 if (sds->this != sds->group_leader ||
3404 sds->group_leader == sds->group_min)
3405 return 0;
3406
3407 *imbalance = sds->min_load_per_task;
3408 sds->busiest = sds->group_min;
3409
3410 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3411 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
3412 group_first_cpu(sds->group_leader);
3413 }
3414
3415 return 1;
3416
3417 }
3418 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3419 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3420 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3421 {
3422 return;
3423 }
3424
3425 static inline void update_sd_power_savings_stats(struct sched_group *group,
3426 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3427 {
3428 return;
3429 }
3430
3431 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3432 int this_cpu, unsigned long *imbalance)
3433 {
3434 return 0;
3435 }
3436 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3437
3438
3439 /**
3440 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3441 * @group: sched_group whose statistics are to be updated.
3442 * @this_cpu: Cpu for which load balance is currently performed.
3443 * @idle: Idle status of this_cpu
3444 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3445 * @sd_idle: Idle status of the sched_domain containing group.
3446 * @local_group: Does group contain this_cpu.
3447 * @cpus: Set of cpus considered for load balancing.
3448 * @balance: Should we balance.
3449 * @sgs: variable to hold the statistics for this group.
3450 */
3451 static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
3452 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3453 int local_group, const struct cpumask *cpus,
3454 int *balance, struct sg_lb_stats *sgs)
3455 {
3456 unsigned long load, max_cpu_load, min_cpu_load;
3457 int i;
3458 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3459 unsigned long sum_avg_load_per_task;
3460 unsigned long avg_load_per_task;
3461
3462 if (local_group)
3463 balance_cpu = group_first_cpu(group);
3464
3465 /* Tally up the load of all CPUs in the group */
3466 sum_avg_load_per_task = avg_load_per_task = 0;
3467 max_cpu_load = 0;
3468 min_cpu_load = ~0UL;
3469
3470 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3471 struct rq *rq = cpu_rq(i);
3472
3473 if (*sd_idle && rq->nr_running)
3474 *sd_idle = 0;
3475
3476 /* Bias balancing toward cpus of our domain */
3477 if (local_group) {
3478 if (idle_cpu(i) && !first_idle_cpu) {
3479 first_idle_cpu = 1;
3480 balance_cpu = i;
3481 }
3482
3483 load = target_load(i, load_idx);
3484 } else {
3485 load = source_load(i, load_idx);
3486 if (load > max_cpu_load)
3487 max_cpu_load = load;
3488 if (min_cpu_load > load)
3489 min_cpu_load = load;
3490 }
3491
3492 sgs->group_load += load;
3493 sgs->sum_nr_running += rq->nr_running;
3494 sgs->sum_weighted_load += weighted_cpuload(i);
3495
3496 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3497 }
3498
3499 /*
3500 * First idle cpu or the first cpu(busiest) in this sched group
3501 * is eligible for doing load balancing at this and above
3502 * domains. In the newly idle case, we will allow all the cpu's
3503 * to do the newly idle load balance.
3504 */
3505 if (idle != CPU_NEWLY_IDLE && local_group &&
3506 balance_cpu != this_cpu && balance) {
3507 *balance = 0;
3508 return;
3509 }
3510
3511 /* Adjust by relative CPU power of the group */
3512 sgs->avg_load = sg_div_cpu_power(group,
3513 sgs->group_load * SCHED_LOAD_SCALE);
3514
3515
3516 /*
3517 * Consider the group unbalanced when the imbalance is larger
3518 * than the average weight of two tasks.
3519 *
3520 * APZ: with cgroup the avg task weight can vary wildly and
3521 * might not be a suitable number - should we keep a
3522 * normalized nr_running number somewhere that negates
3523 * the hierarchy?
3524 */
3525 avg_load_per_task = sg_div_cpu_power(group,
3526 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3527
3528 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3529 sgs->group_imb = 1;
3530
3531 sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3532
3533 }
3534
3535 /**
3536 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3537 * @sd: sched_domain whose statistics are to be updated.
3538 * @this_cpu: Cpu for which load balance is currently performed.
3539 * @idle: Idle status of this_cpu
3540 * @sd_idle: Idle status of the sched_domain containing group.
3541 * @cpus: Set of cpus considered for load balancing.
3542 * @balance: Should we balance.
3543 * @sds: variable to hold the statistics for this sched_domain.
3544 */
3545 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3546 enum cpu_idle_type idle, int *sd_idle,
3547 const struct cpumask *cpus, int *balance,
3548 struct sd_lb_stats *sds)
3549 {
3550 struct sched_group *group = sd->groups;
3551 struct sg_lb_stats sgs;
3552 int load_idx;
3553
3554 init_sd_power_savings_stats(sd, sds, idle);
3555 load_idx = get_sd_load_idx(sd, idle);
3556
3557 do {
3558 int local_group;
3559
3560 local_group = cpumask_test_cpu(this_cpu,
3561 sched_group_cpus(group));
3562 memset(&sgs, 0, sizeof(sgs));
3563 update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle,
3564 local_group, cpus, balance, &sgs);
3565
3566 if (local_group && balance && !(*balance))
3567 return;
3568
3569 sds->total_load += sgs.group_load;
3570 sds->total_pwr += group->__cpu_power;
3571
3572 if (local_group) {
3573 sds->this_load = sgs.avg_load;
3574 sds->this = group;
3575 sds->this_nr_running = sgs.sum_nr_running;
3576 sds->this_load_per_task = sgs.sum_weighted_load;
3577 } else if (sgs.avg_load > sds->max_load &&
3578 (sgs.sum_nr_running > sgs.group_capacity ||
3579 sgs.group_imb)) {
3580 sds->max_load = sgs.avg_load;
3581 sds->busiest = group;
3582 sds->busiest_nr_running = sgs.sum_nr_running;
3583 sds->busiest_load_per_task = sgs.sum_weighted_load;
3584 sds->group_imb = sgs.group_imb;
3585 }
3586
3587 update_sd_power_savings_stats(group, sds, local_group, &sgs);
3588 group = group->next;
3589 } while (group != sd->groups);
3590
3591 }
3592
3593 /**
3594 * fix_small_imbalance - Calculate the minor imbalance that exists
3595 * amongst the groups of a sched_domain, during
3596 * load balancing.
3597 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3598 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3599 * @imbalance: Variable to store the imbalance.
3600 */
3601 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3602 int this_cpu, unsigned long *imbalance)
3603 {
3604 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3605 unsigned int imbn = 2;
3606
3607 if (sds->this_nr_running) {
3608 sds->this_load_per_task /= sds->this_nr_running;
3609 if (sds->busiest_load_per_task >
3610 sds->this_load_per_task)
3611 imbn = 1;
3612 } else
3613 sds->this_load_per_task =
3614 cpu_avg_load_per_task(this_cpu);
3615
3616 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3617 sds->busiest_load_per_task * imbn) {
3618 *imbalance = sds->busiest_load_per_task;
3619 return;
3620 }
3621
3622 /*
3623 * OK, we don't have enough imbalance to justify moving tasks,
3624 * however we may be able to increase total CPU power used by
3625 * moving them.
3626 */
3627
3628 pwr_now += sds->busiest->__cpu_power *
3629 min(sds->busiest_load_per_task, sds->max_load);
3630 pwr_now += sds->this->__cpu_power *
3631 min(sds->this_load_per_task, sds->this_load);
3632 pwr_now /= SCHED_LOAD_SCALE;
3633
3634 /* Amount of load we'd subtract */
3635 tmp = sg_div_cpu_power(sds->busiest,
3636 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3637 if (sds->max_load > tmp)
3638 pwr_move += sds->busiest->__cpu_power *
3639 min(sds->busiest_load_per_task, sds->max_load - tmp);
3640
3641 /* Amount of load we'd add */
3642 if (sds->max_load * sds->busiest->__cpu_power <
3643 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3644 tmp = sg_div_cpu_power(sds->this,
3645 sds->max_load * sds->busiest->__cpu_power);
3646 else
3647 tmp = sg_div_cpu_power(sds->this,
3648 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3649 pwr_move += sds->this->__cpu_power *
3650 min(sds->this_load_per_task, sds->this_load + tmp);
3651 pwr_move /= SCHED_LOAD_SCALE;
3652
3653 /* Move if we gain throughput */
3654 if (pwr_move > pwr_now)
3655 *imbalance = sds->busiest_load_per_task;
3656 }
3657
3658 /**
3659 * calculate_imbalance - Calculate the amount of imbalance present within the
3660 * groups of a given sched_domain during load balance.
3661 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3662 * @this_cpu: Cpu for which currently load balance is being performed.
3663 * @imbalance: The variable to store the imbalance.
3664 */
3665 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3666 unsigned long *imbalance)
3667 {
3668 unsigned long max_pull;
3669 /*
3670 * In the presence of smp nice balancing, certain scenarios can have
3671 * max load less than avg load(as we skip the groups at or below
3672 * its cpu_power, while calculating max_load..)
3673 */
3674 if (sds->max_load < sds->avg_load) {
3675 *imbalance = 0;
3676 return fix_small_imbalance(sds, this_cpu, imbalance);
3677 }
3678
3679 /* Don't want to pull so many tasks that a group would go idle */
3680 max_pull = min(sds->max_load - sds->avg_load,
3681 sds->max_load - sds->busiest_load_per_task);
3682
3683 /* How much load to actually move to equalise the imbalance */
3684 *imbalance = min(max_pull * sds->busiest->__cpu_power,
3685 (sds->avg_load - sds->this_load) * sds->this->__cpu_power)
3686 / SCHED_LOAD_SCALE;
3687
3688 /*
3689 * if *imbalance is less than the average load per runnable task
3690 * there is no gaurantee that any tasks will be moved so we'll have
3691 * a think about bumping its value to force at least one task to be
3692 * moved
3693 */
3694 if (*imbalance < sds->busiest_load_per_task)
3695 return fix_small_imbalance(sds, this_cpu, imbalance);
3696
3697 }
3698 /******* find_busiest_group() helpers end here *********************/
3699
3700 /**
3701 * find_busiest_group - Returns the busiest group within the sched_domain
3702 * if there is an imbalance. If there isn't an imbalance, and
3703 * the user has opted for power-savings, it returns a group whose
3704 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3705 * such a group exists.
3706 *
3707 * Also calculates the amount of weighted load which should be moved
3708 * to restore balance.
3709 *
3710 * @sd: The sched_domain whose busiest group is to be returned.
3711 * @this_cpu: The cpu for which load balancing is currently being performed.
3712 * @imbalance: Variable which stores amount of weighted load which should
3713 * be moved to restore balance/put a group to idle.
3714 * @idle: The idle status of this_cpu.
3715 * @sd_idle: The idleness of sd
3716 * @cpus: The set of CPUs under consideration for load-balancing.
3717 * @balance: Pointer to a variable indicating if this_cpu
3718 * is the appropriate cpu to perform load balancing at this_level.
3719 *
3720 * Returns: - the busiest group if imbalance exists.
3721 * - If no imbalance and user has opted for power-savings balance,
3722 * return the least loaded group whose CPUs can be
3723 * put to idle by rebalancing its tasks onto our group.
3724 */
3725 static struct sched_group *
3726 find_busiest_group(struct sched_domain *sd, int this_cpu,
3727 unsigned long *imbalance, enum cpu_idle_type idle,
3728 int *sd_idle, const struct cpumask *cpus, int *balance)
3729 {
3730 struct sd_lb_stats sds;
3731
3732 memset(&sds, 0, sizeof(sds));
3733
3734 /*
3735 * Compute the various statistics relavent for load balancing at
3736 * this level.
3737 */
3738 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3739 balance, &sds);
3740
3741 /* Cases where imbalance does not exist from POV of this_cpu */
3742 /* 1) this_cpu is not the appropriate cpu to perform load balancing
3743 * at this level.
3744 * 2) There is no busy sibling group to pull from.
3745 * 3) This group is the busiest group.
3746 * 4) This group is more busy than the avg busieness at this
3747 * sched_domain.
3748 * 5) The imbalance is within the specified limit.
3749 * 6) Any rebalance would lead to ping-pong
3750 */
3751 if (balance && !(*balance))
3752 goto ret;
3753
3754 if (!sds.busiest || sds.busiest_nr_running == 0)
3755 goto out_balanced;
3756
3757 if (sds.this_load >= sds.max_load)
3758 goto out_balanced;
3759
3760 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
3761
3762 if (sds.this_load >= sds.avg_load)
3763 goto out_balanced;
3764
3765 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
3766 goto out_balanced;
3767
3768 sds.busiest_load_per_task /= sds.busiest_nr_running;
3769 if (sds.group_imb)
3770 sds.busiest_load_per_task =
3771 min(sds.busiest_load_per_task, sds.avg_load);
3772
3773 /*
3774 * We're trying to get all the cpus to the average_load, so we don't
3775 * want to push ourselves above the average load, nor do we wish to
3776 * reduce the max loaded cpu below the average load, as either of these
3777 * actions would just result in more rebalancing later, and ping-pong
3778 * tasks around. Thus we look for the minimum possible imbalance.
3779 * Negative imbalances (*we* are more loaded than anyone else) will
3780 * be counted as no imbalance for these purposes -- we can't fix that
3781 * by pulling tasks to us. Be careful of negative numbers as they'll
3782 * appear as very large values with unsigned longs.
3783 */
3784 if (sds.max_load <= sds.busiest_load_per_task)
3785 goto out_balanced;
3786
3787 /* Looks like there is an imbalance. Compute it */
3788 calculate_imbalance(&sds, this_cpu, imbalance);
3789 return sds.busiest;
3790
3791 out_balanced:
3792 /*
3793 * There is no obvious imbalance. But check if we can do some balancing
3794 * to save power.
3795 */
3796 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
3797 return sds.busiest;
3798 ret:
3799 *imbalance = 0;
3800 return NULL;
3801 }
3802
3803 /*
3804 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3805 */
3806 static struct rq *
3807 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3808 unsigned long imbalance, const struct cpumask *cpus)
3809 {
3810 struct rq *busiest = NULL, *rq;
3811 unsigned long max_load = 0;
3812 int i;
3813
3814 for_each_cpu(i, sched_group_cpus(group)) {
3815 unsigned long wl;
3816
3817 if (!cpumask_test_cpu(i, cpus))
3818 continue;
3819
3820 rq = cpu_rq(i);
3821 wl = weighted_cpuload(i);
3822
3823 if (rq->nr_running == 1 && wl > imbalance)
3824 continue;
3825
3826 if (wl > max_load) {
3827 max_load = wl;
3828 busiest = rq;
3829 }
3830 }
3831
3832 return busiest;
3833 }
3834
3835 /*
3836 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3837 * so long as it is large enough.
3838 */
3839 #define MAX_PINNED_INTERVAL 512
3840
3841 /* Working cpumask for load_balance and load_balance_newidle. */
3842 static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
3843
3844 /*
3845 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3846 * tasks if there is an imbalance.
3847 */
3848 static int load_balance(int this_cpu, struct rq *this_rq,
3849 struct sched_domain *sd, enum cpu_idle_type idle,
3850 int *balance)
3851 {
3852 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3853 struct sched_group *group;
3854 unsigned long imbalance;
3855 struct rq *busiest;
3856 unsigned long flags;
3857 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
3858
3859 cpumask_setall(cpus);
3860
3861 /*
3862 * When power savings policy is enabled for the parent domain, idle
3863 * sibling can pick up load irrespective of busy siblings. In this case,
3864 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3865 * portraying it as CPU_NOT_IDLE.
3866 */
3867 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3868 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3869 sd_idle = 1;
3870
3871 schedstat_inc(sd, lb_count[idle]);
3872
3873 redo:
3874 update_shares(sd);
3875 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3876 cpus, balance);
3877
3878 if (*balance == 0)
3879 goto out_balanced;
3880
3881 if (!group) {
3882 schedstat_inc(sd, lb_nobusyg[idle]);
3883 goto out_balanced;
3884 }
3885
3886 busiest = find_busiest_queue(group, idle, imbalance, cpus);
3887 if (!busiest) {
3888 schedstat_inc(sd, lb_nobusyq[idle]);
3889 goto out_balanced;
3890 }
3891
3892 BUG_ON(busiest == this_rq);
3893
3894 schedstat_add(sd, lb_imbalance[idle], imbalance);
3895
3896 ld_moved = 0;
3897 if (busiest->nr_running > 1) {
3898 /*
3899 * Attempt to move tasks. If find_busiest_group has found
3900 * an imbalance but busiest->nr_running <= 1, the group is
3901 * still unbalanced. ld_moved simply stays zero, so it is
3902 * correctly treated as an imbalance.
3903 */
3904 local_irq_save(flags);
3905 double_rq_lock(this_rq, busiest);
3906 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3907 imbalance, sd, idle, &all_pinned);
3908 double_rq_unlock(this_rq, busiest);
3909 local_irq_restore(flags);
3910
3911 /*
3912 * some other cpu did the load balance for us.
3913 */
3914 if (ld_moved && this_cpu != smp_processor_id())
3915 resched_cpu(this_cpu);
3916
3917 /* All tasks on this runqueue were pinned by CPU affinity */
3918 if (unlikely(all_pinned)) {
3919 cpumask_clear_cpu(cpu_of(busiest), cpus);
3920 if (!cpumask_empty(cpus))
3921 goto redo;
3922 goto out_balanced;
3923 }
3924 }
3925
3926 if (!ld_moved) {
3927 schedstat_inc(sd, lb_failed[idle]);
3928 sd->nr_balance_failed++;
3929
3930 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
3931
3932 spin_lock_irqsave(&busiest->lock, flags);
3933
3934 /* don't kick the migration_thread, if the curr
3935 * task on busiest cpu can't be moved to this_cpu
3936 */
3937 if (!cpumask_test_cpu(this_cpu,
3938 &busiest->curr->cpus_allowed)) {
3939 spin_unlock_irqrestore(&busiest->lock, flags);
3940 all_pinned = 1;
3941 goto out_one_pinned;
3942 }
3943
3944 if (!busiest->active_balance) {
3945 busiest->active_balance = 1;
3946 busiest->push_cpu = this_cpu;
3947 active_balance = 1;
3948 }
3949 spin_unlock_irqrestore(&busiest->lock, flags);
3950 if (active_balance)
3951 wake_up_process(busiest->migration_thread);
3952
3953 /*
3954 * We've kicked active balancing, reset the failure
3955 * counter.
3956 */
3957 sd->nr_balance_failed = sd->cache_nice_tries+1;
3958 }
3959 } else
3960 sd->nr_balance_failed = 0;
3961
3962 if (likely(!active_balance)) {
3963 /* We were unbalanced, so reset the balancing interval */
3964 sd->balance_interval = sd->min_interval;
3965 } else {
3966 /*
3967 * If we've begun active balancing, start to back off. This
3968 * case may not be covered by the all_pinned logic if there
3969 * is only 1 task on the busy runqueue (because we don't call
3970 * move_tasks).
3971 */
3972 if (sd->balance_interval < sd->max_interval)
3973 sd->balance_interval *= 2;
3974 }
3975
3976 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3977 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3978 ld_moved = -1;
3979
3980 goto out;
3981
3982 out_balanced:
3983 schedstat_inc(sd, lb_balanced[idle]);
3984
3985 sd->nr_balance_failed = 0;
3986
3987 out_one_pinned:
3988 /* tune up the balancing interval */
3989 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3990 (sd->balance_interval < sd->max_interval))
3991 sd->balance_interval *= 2;
3992
3993 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3994 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3995 ld_moved = -1;
3996 else
3997 ld_moved = 0;
3998 out:
3999 if (ld_moved)
4000 update_shares(sd);
4001 return ld_moved;
4002 }
4003
4004 /*
4005 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4006 * tasks if there is an imbalance.
4007 *
4008 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
4009 * this_rq is locked.
4010 */
4011 static int
4012 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
4013 {
4014 struct sched_group *group;
4015 struct rq *busiest = NULL;
4016 unsigned long imbalance;
4017 int ld_moved = 0;
4018 int sd_idle = 0;
4019 int all_pinned = 0;
4020 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4021
4022 cpumask_setall(cpus);
4023
4024 /*
4025 * When power savings policy is enabled for the parent domain, idle
4026 * sibling can pick up load irrespective of busy siblings. In this case,
4027 * let the state of idle sibling percolate up as IDLE, instead of
4028 * portraying it as CPU_NOT_IDLE.
4029 */
4030 if (sd->flags & SD_SHARE_CPUPOWER &&
4031 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4032 sd_idle = 1;
4033
4034 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4035 redo:
4036 update_shares_locked(this_rq, sd);
4037 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4038 &sd_idle, cpus, NULL);
4039 if (!group) {
4040 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4041 goto out_balanced;
4042 }
4043
4044 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
4045 if (!busiest) {
4046 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4047 goto out_balanced;
4048 }
4049
4050 BUG_ON(busiest == this_rq);
4051
4052 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4053
4054 ld_moved = 0;
4055 if (busiest->nr_running > 1) {
4056 /* Attempt to move tasks */
4057 double_lock_balance(this_rq, busiest);
4058 /* this_rq->clock is already updated */
4059 update_rq_clock(busiest);
4060 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4061 imbalance, sd, CPU_NEWLY_IDLE,
4062 &all_pinned);
4063 double_unlock_balance(this_rq, busiest);
4064
4065 if (unlikely(all_pinned)) {
4066 cpumask_clear_cpu(cpu_of(busiest), cpus);
4067 if (!cpumask_empty(cpus))
4068 goto redo;
4069 }
4070 }
4071
4072 if (!ld_moved) {
4073 int active_balance = 0;
4074
4075 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4076 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4077 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4078 return -1;
4079
4080 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4081 return -1;
4082
4083 if (sd->nr_balance_failed++ < 2)
4084 return -1;
4085
4086 /*
4087 * The only task running in a non-idle cpu can be moved to this
4088 * cpu in an attempt to completely freeup the other CPU
4089 * package. The same method used to move task in load_balance()
4090 * have been extended for load_balance_newidle() to speedup
4091 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4092 *
4093 * The package power saving logic comes from
4094 * find_busiest_group(). If there are no imbalance, then
4095 * f_b_g() will return NULL. However when sched_mc={1,2} then
4096 * f_b_g() will select a group from which a running task may be
4097 * pulled to this cpu in order to make the other package idle.
4098 * If there is no opportunity to make a package idle and if
4099 * there are no imbalance, then f_b_g() will return NULL and no
4100 * action will be taken in load_balance_newidle().
4101 *
4102 * Under normal task pull operation due to imbalance, there
4103 * will be more than one task in the source run queue and
4104 * move_tasks() will succeed. ld_moved will be true and this
4105 * active balance code will not be triggered.
4106 */
4107
4108 /* Lock busiest in correct order while this_rq is held */
4109 double_lock_balance(this_rq, busiest);
4110
4111 /*
4112 * don't kick the migration_thread, if the curr
4113 * task on busiest cpu can't be moved to this_cpu
4114 */
4115 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4116 double_unlock_balance(this_rq, busiest);
4117 all_pinned = 1;
4118 return ld_moved;
4119 }
4120
4121 if (!busiest->active_balance) {
4122 busiest->active_balance = 1;
4123 busiest->push_cpu = this_cpu;
4124 active_balance = 1;
4125 }
4126
4127 double_unlock_balance(this_rq, busiest);
4128 /*
4129 * Should not call ttwu while holding a rq->lock
4130 */
4131 spin_unlock(&this_rq->lock);
4132 if (active_balance)
4133 wake_up_process(busiest->migration_thread);
4134 spin_lock(&this_rq->lock);
4135
4136 } else
4137 sd->nr_balance_failed = 0;
4138
4139 update_shares_locked(this_rq, sd);
4140 return ld_moved;
4141
4142 out_balanced:
4143 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4144 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4145 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4146 return -1;
4147 sd->nr_balance_failed = 0;
4148
4149 return 0;
4150 }
4151
4152 /*
4153 * idle_balance is called by schedule() if this_cpu is about to become
4154 * idle. Attempts to pull tasks from other CPUs.
4155 */
4156 static void idle_balance(int this_cpu, struct rq *this_rq)
4157 {
4158 struct sched_domain *sd;
4159 int pulled_task = 0;
4160 unsigned long next_balance = jiffies + HZ;
4161
4162 for_each_domain(this_cpu, sd) {
4163 unsigned long interval;
4164
4165 if (!(sd->flags & SD_LOAD_BALANCE))
4166 continue;
4167
4168 if (sd->flags & SD_BALANCE_NEWIDLE)
4169 /* If we've pulled tasks over stop searching: */
4170 pulled_task = load_balance_newidle(this_cpu, this_rq,
4171 sd);
4172
4173 interval = msecs_to_jiffies(sd->balance_interval);
4174 if (time_after(next_balance, sd->last_balance + interval))
4175 next_balance = sd->last_balance + interval;
4176 if (pulled_task)
4177 break;
4178 }
4179 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4180 /*
4181 * We are going idle. next_balance may be set based on
4182 * a busy processor. So reset next_balance.
4183 */
4184 this_rq->next_balance = next_balance;
4185 }
4186 }
4187
4188 /*
4189 * active_load_balance is run by migration threads. It pushes running tasks
4190 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4191 * running on each physical CPU where possible, and avoids physical /
4192 * logical imbalances.
4193 *
4194 * Called with busiest_rq locked.
4195 */
4196 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
4197 {
4198 int target_cpu = busiest_rq->push_cpu;
4199 struct sched_domain *sd;
4200 struct rq *target_rq;
4201
4202 /* Is there any task to move? */
4203 if (busiest_rq->nr_running <= 1)
4204 return;
4205
4206 target_rq = cpu_rq(target_cpu);
4207
4208 /*
4209 * This condition is "impossible", if it occurs
4210 * we need to fix it. Originally reported by
4211 * Bjorn Helgaas on a 128-cpu setup.
4212 */
4213 BUG_ON(busiest_rq == target_rq);
4214
4215 /* move a task from busiest_rq to target_rq */
4216 double_lock_balance(busiest_rq, target_rq);
4217 update_rq_clock(busiest_rq);
4218 update_rq_clock(target_rq);
4219
4220 /* Search for an sd spanning us and the target CPU. */
4221 for_each_domain(target_cpu, sd) {
4222 if ((sd->flags & SD_LOAD_BALANCE) &&
4223 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4224 break;
4225 }
4226
4227 if (likely(sd)) {
4228 schedstat_inc(sd, alb_count);
4229
4230 if (move_one_task(target_rq, target_cpu, busiest_rq,
4231 sd, CPU_IDLE))
4232 schedstat_inc(sd, alb_pushed);
4233 else
4234 schedstat_inc(sd, alb_failed);
4235 }
4236 double_unlock_balance(busiest_rq, target_rq);
4237 }
4238
4239 #ifdef CONFIG_NO_HZ
4240 static struct {
4241 atomic_t load_balancer;
4242 cpumask_var_t cpu_mask;
4243 cpumask_var_t ilb_grp_nohz_mask;
4244 } nohz ____cacheline_aligned = {
4245 .load_balancer = ATOMIC_INIT(-1),
4246 };
4247
4248 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4249 /**
4250 * lowest_flag_domain - Return lowest sched_domain containing flag.
4251 * @cpu: The cpu whose lowest level of sched domain is to
4252 * be returned.
4253 * @flag: The flag to check for the lowest sched_domain
4254 * for the given cpu.
4255 *
4256 * Returns the lowest sched_domain of a cpu which contains the given flag.
4257 */
4258 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4259 {
4260 struct sched_domain *sd;
4261
4262 for_each_domain(cpu, sd)
4263 if (sd && (sd->flags & flag))
4264 break;
4265
4266 return sd;
4267 }
4268
4269 /**
4270 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4271 * @cpu: The cpu whose domains we're iterating over.
4272 * @sd: variable holding the value of the power_savings_sd
4273 * for cpu.
4274 * @flag: The flag to filter the sched_domains to be iterated.
4275 *
4276 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4277 * set, starting from the lowest sched_domain to the highest.
4278 */
4279 #define for_each_flag_domain(cpu, sd, flag) \
4280 for (sd = lowest_flag_domain(cpu, flag); \
4281 (sd && (sd->flags & flag)); sd = sd->parent)
4282
4283 /**
4284 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4285 * @ilb_group: group to be checked for semi-idleness
4286 *
4287 * Returns: 1 if the group is semi-idle. 0 otherwise.
4288 *
4289 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4290 * and atleast one non-idle CPU. This helper function checks if the given
4291 * sched_group is semi-idle or not.
4292 */
4293 static inline int is_semi_idle_group(struct sched_group *ilb_group)
4294 {
4295 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4296 sched_group_cpus(ilb_group));
4297
4298 /*
4299 * A sched_group is semi-idle when it has atleast one busy cpu
4300 * and atleast one idle cpu.
4301 */
4302 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4303 return 0;
4304
4305 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4306 return 0;
4307
4308 return 1;
4309 }
4310 /**
4311 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4312 * @cpu: The cpu which is nominating a new idle_load_balancer.
4313 *
4314 * Returns: Returns the id of the idle load balancer if it exists,
4315 * Else, returns >= nr_cpu_ids.
4316 *
4317 * This algorithm picks the idle load balancer such that it belongs to a
4318 * semi-idle powersavings sched_domain. The idea is to try and avoid
4319 * completely idle packages/cores just for the purpose of idle load balancing
4320 * when there are other idle cpu's which are better suited for that job.
4321 */
4322 static int find_new_ilb(int cpu)
4323 {
4324 struct sched_domain *sd;
4325 struct sched_group *ilb_group;
4326
4327 /*
4328 * Have idle load balancer selection from semi-idle packages only
4329 * when power-aware load balancing is enabled
4330 */
4331 if (!(sched_smt_power_savings || sched_mc_power_savings))
4332 goto out_done;
4333
4334 /*
4335 * Optimize for the case when we have no idle CPUs or only one
4336 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4337 */
4338 if (cpumask_weight(nohz.cpu_mask) < 2)
4339 goto out_done;
4340
4341 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4342 ilb_group = sd->groups;
4343
4344 do {
4345 if (is_semi_idle_group(ilb_group))
4346 return cpumask_first(nohz.ilb_grp_nohz_mask);
4347
4348 ilb_group = ilb_group->next;
4349
4350 } while (ilb_group != sd->groups);
4351 }
4352
4353 out_done:
4354 return cpumask_first(nohz.cpu_mask);
4355 }
4356 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4357 static inline int find_new_ilb(int call_cpu)
4358 {
4359 return cpumask_first(nohz.cpu_mask);
4360 }
4361 #endif
4362
4363 /*
4364 * This routine will try to nominate the ilb (idle load balancing)
4365 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4366 * load balancing on behalf of all those cpus. If all the cpus in the system
4367 * go into this tickless mode, then there will be no ilb owner (as there is
4368 * no need for one) and all the cpus will sleep till the next wakeup event
4369 * arrives...
4370 *
4371 * For the ilb owner, tick is not stopped. And this tick will be used
4372 * for idle load balancing. ilb owner will still be part of
4373 * nohz.cpu_mask..
4374 *
4375 * While stopping the tick, this cpu will become the ilb owner if there
4376 * is no other owner. And will be the owner till that cpu becomes busy
4377 * or if all cpus in the system stop their ticks at which point
4378 * there is no need for ilb owner.
4379 *
4380 * When the ilb owner becomes busy, it nominates another owner, during the
4381 * next busy scheduler_tick()
4382 */
4383 int select_nohz_load_balancer(int stop_tick)
4384 {
4385 int cpu = smp_processor_id();
4386
4387 if (stop_tick) {
4388 cpu_rq(cpu)->in_nohz_recently = 1;
4389
4390 if (!cpu_active(cpu)) {
4391 if (atomic_read(&nohz.load_balancer) != cpu)
4392 return 0;
4393
4394 /*
4395 * If we are going offline and still the leader,
4396 * give up!
4397 */
4398 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4399 BUG();
4400
4401 return 0;
4402 }
4403
4404 cpumask_set_cpu(cpu, nohz.cpu_mask);
4405
4406 /* time for ilb owner also to sleep */
4407 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4408 if (atomic_read(&nohz.load_balancer) == cpu)
4409 atomic_set(&nohz.load_balancer, -1);
4410 return 0;
4411 }
4412
4413 if (atomic_read(&nohz.load_balancer) == -1) {
4414 /* make me the ilb owner */
4415 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4416 return 1;
4417 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4418 int new_ilb;
4419
4420 if (!(sched_smt_power_savings ||
4421 sched_mc_power_savings))
4422 return 1;
4423 /*
4424 * Check to see if there is a more power-efficient
4425 * ilb.
4426 */
4427 new_ilb = find_new_ilb(cpu);
4428 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4429 atomic_set(&nohz.load_balancer, -1);
4430 resched_cpu(new_ilb);
4431 return 0;
4432 }
4433 return 1;
4434 }
4435 } else {
4436 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4437 return 0;
4438
4439 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4440
4441 if (atomic_read(&nohz.load_balancer) == cpu)
4442 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4443 BUG();
4444 }
4445 return 0;
4446 }
4447 #endif
4448
4449 static DEFINE_SPINLOCK(balancing);
4450
4451 /*
4452 * It checks each scheduling domain to see if it is due to be balanced,
4453 * and initiates a balancing operation if so.
4454 *
4455 * Balancing parameters are set up in arch_init_sched_domains.
4456 */
4457 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4458 {
4459 int balance = 1;
4460 struct rq *rq = cpu_rq(cpu);
4461 unsigned long interval;
4462 struct sched_domain *sd;
4463 /* Earliest time when we have to do rebalance again */
4464 unsigned long next_balance = jiffies + 60*HZ;
4465 int update_next_balance = 0;
4466 int need_serialize;
4467
4468 for_each_domain(cpu, sd) {
4469 if (!(sd->flags & SD_LOAD_BALANCE))
4470 continue;
4471
4472 interval = sd->balance_interval;
4473 if (idle != CPU_IDLE)
4474 interval *= sd->busy_factor;
4475
4476 /* scale ms to jiffies */
4477 interval = msecs_to_jiffies(interval);
4478 if (unlikely(!interval))
4479 interval = 1;
4480 if (interval > HZ*NR_CPUS/10)
4481 interval = HZ*NR_CPUS/10;
4482
4483 need_serialize = sd->flags & SD_SERIALIZE;
4484
4485 if (need_serialize) {
4486 if (!spin_trylock(&balancing))
4487 goto out;
4488 }
4489
4490 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4491 if (load_balance(cpu, rq, sd, idle, &balance)) {
4492 /*
4493 * We've pulled tasks over so either we're no
4494 * longer idle, or one of our SMT siblings is
4495 * not idle.
4496 */
4497 idle = CPU_NOT_IDLE;
4498 }
4499 sd->last_balance = jiffies;
4500 }
4501 if (need_serialize)
4502 spin_unlock(&balancing);
4503 out:
4504 if (time_after(next_balance, sd->last_balance + interval)) {
4505 next_balance = sd->last_balance + interval;
4506 update_next_balance = 1;
4507 }
4508
4509 /*
4510 * Stop the load balance at this level. There is another
4511 * CPU in our sched group which is doing load balancing more
4512 * actively.
4513 */
4514 if (!balance)
4515 break;
4516 }
4517
4518 /*
4519 * next_balance will be updated only when there is a need.
4520 * When the cpu is attached to null domain for ex, it will not be
4521 * updated.
4522 */
4523 if (likely(update_next_balance))
4524 rq->next_balance = next_balance;
4525 }
4526
4527 /*
4528 * run_rebalance_domains is triggered when needed from the scheduler tick.
4529 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4530 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4531 */
4532 static void run_rebalance_domains(struct softirq_action *h)
4533 {
4534 int this_cpu = smp_processor_id();
4535 struct rq *this_rq = cpu_rq(this_cpu);
4536 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4537 CPU_IDLE : CPU_NOT_IDLE;
4538
4539 rebalance_domains(this_cpu, idle);
4540
4541 #ifdef CONFIG_NO_HZ
4542 /*
4543 * If this cpu is the owner for idle load balancing, then do the
4544 * balancing on behalf of the other idle cpus whose ticks are
4545 * stopped.
4546 */
4547 if (this_rq->idle_at_tick &&
4548 atomic_read(&nohz.load_balancer) == this_cpu) {
4549 struct rq *rq;
4550 int balance_cpu;
4551
4552 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4553 if (balance_cpu == this_cpu)
4554 continue;
4555
4556 /*
4557 * If this cpu gets work to do, stop the load balancing
4558 * work being done for other cpus. Next load
4559 * balancing owner will pick it up.
4560 */
4561 if (need_resched())
4562 break;
4563
4564 rebalance_domains(balance_cpu, CPU_IDLE);
4565
4566 rq = cpu_rq(balance_cpu);
4567 if (time_after(this_rq->next_balance, rq->next_balance))
4568 this_rq->next_balance = rq->next_balance;
4569 }
4570 }
4571 #endif
4572 }
4573
4574 static inline int on_null_domain(int cpu)
4575 {
4576 return !rcu_dereference(cpu_rq(cpu)->sd);
4577 }
4578
4579 /*
4580 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4581 *
4582 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4583 * idle load balancing owner or decide to stop the periodic load balancing,
4584 * if the whole system is idle.
4585 */
4586 static inline void trigger_load_balance(struct rq *rq, int cpu)
4587 {
4588 #ifdef CONFIG_NO_HZ
4589 /*
4590 * If we were in the nohz mode recently and busy at the current
4591 * scheduler tick, then check if we need to nominate new idle
4592 * load balancer.
4593 */
4594 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4595 rq->in_nohz_recently = 0;
4596
4597 if (atomic_read(&nohz.load_balancer) == cpu) {
4598 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4599 atomic_set(&nohz.load_balancer, -1);
4600 }
4601
4602 if (atomic_read(&nohz.load_balancer) == -1) {
4603 int ilb = find_new_ilb(cpu);
4604
4605 if (ilb < nr_cpu_ids)
4606 resched_cpu(ilb);
4607 }
4608 }
4609
4610 /*
4611 * If this cpu is idle and doing idle load balancing for all the
4612 * cpus with ticks stopped, is it time for that to stop?
4613 */
4614 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4615 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4616 resched_cpu(cpu);
4617 return;
4618 }
4619
4620 /*
4621 * If this cpu is idle and the idle load balancing is done by
4622 * someone else, then no need raise the SCHED_SOFTIRQ
4623 */
4624 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4625 cpumask_test_cpu(cpu, nohz.cpu_mask))
4626 return;
4627 #endif
4628 /* Don't need to rebalance while attached to NULL domain */
4629 if (time_after_eq(jiffies, rq->next_balance) &&
4630 likely(!on_null_domain(cpu)))
4631 raise_softirq(SCHED_SOFTIRQ);
4632 }
4633
4634 #else /* CONFIG_SMP */
4635
4636 /*
4637 * on UP we do not need to balance between CPUs:
4638 */
4639 static inline void idle_balance(int cpu, struct rq *rq)
4640 {
4641 }
4642
4643 #endif
4644
4645 DEFINE_PER_CPU(struct kernel_stat, kstat);
4646
4647 EXPORT_PER_CPU_SYMBOL(kstat);
4648
4649 /*
4650 * Return any ns on the sched_clock that have not yet been accounted in
4651 * @p in case that task is currently running.
4652 *
4653 * Called with task_rq_lock() held on @rq.
4654 */
4655 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4656 {
4657 u64 ns = 0;
4658
4659 if (task_current(rq, p)) {
4660 update_rq_clock(rq);
4661 ns = rq->clock - p->se.exec_start;
4662 if ((s64)ns < 0)
4663 ns = 0;
4664 }
4665
4666 return ns;
4667 }
4668
4669 unsigned long long task_delta_exec(struct task_struct *p)
4670 {
4671 unsigned long flags;
4672 struct rq *rq;
4673 u64 ns = 0;
4674
4675 rq = task_rq_lock(p, &flags);
4676 ns = do_task_delta_exec(p, rq);
4677 task_rq_unlock(rq, &flags);
4678
4679 return ns;
4680 }
4681
4682 /*
4683 * Return accounted runtime for the task.
4684 * In case the task is currently running, return the runtime plus current's
4685 * pending runtime that have not been accounted yet.
4686 */
4687 unsigned long long task_sched_runtime(struct task_struct *p)
4688 {
4689 unsigned long flags;
4690 struct rq *rq;
4691 u64 ns = 0;
4692
4693 rq = task_rq_lock(p, &flags);
4694 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4695 task_rq_unlock(rq, &flags);
4696
4697 return ns;
4698 }
4699
4700 /*
4701 * Return sum_exec_runtime for the thread group.
4702 * In case the task is currently running, return the sum plus current's
4703 * pending runtime that have not been accounted yet.
4704 *
4705 * Note that the thread group might have other running tasks as well,
4706 * so the return value not includes other pending runtime that other
4707 * running tasks might have.
4708 */
4709 unsigned long long thread_group_sched_runtime(struct task_struct *p)
4710 {
4711 struct task_cputime totals;
4712 unsigned long flags;
4713 struct rq *rq;
4714 u64 ns;
4715
4716 rq = task_rq_lock(p, &flags);
4717 thread_group_cputime(p, &totals);
4718 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
4719 task_rq_unlock(rq, &flags);
4720
4721 return ns;
4722 }
4723
4724 /*
4725 * Account user cpu time to a process.
4726 * @p: the process that the cpu time gets accounted to
4727 * @cputime: the cpu time spent in user space since the last update
4728 * @cputime_scaled: cputime scaled by cpu frequency
4729 */
4730 void account_user_time(struct task_struct *p, cputime_t cputime,
4731 cputime_t cputime_scaled)
4732 {
4733 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4734 cputime64_t tmp;
4735
4736 /* Add user time to process. */
4737 p->utime = cputime_add(p->utime, cputime);
4738 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4739 account_group_user_time(p, cputime);
4740
4741 /* Add user time to cpustat. */
4742 tmp = cputime_to_cputime64(cputime);
4743 if (TASK_NICE(p) > 0)
4744 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4745 else
4746 cpustat->user = cputime64_add(cpustat->user, tmp);
4747
4748 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
4749 /* Account for user time used */
4750 acct_update_integrals(p);
4751 }
4752
4753 /*
4754 * Account guest cpu time to a process.
4755 * @p: the process that the cpu time gets accounted to
4756 * @cputime: the cpu time spent in virtual machine since the last update
4757 * @cputime_scaled: cputime scaled by cpu frequency
4758 */
4759 static void account_guest_time(struct task_struct *p, cputime_t cputime,
4760 cputime_t cputime_scaled)
4761 {
4762 cputime64_t tmp;
4763 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4764
4765 tmp = cputime_to_cputime64(cputime);
4766
4767 /* Add guest time to process. */
4768 p->utime = cputime_add(p->utime, cputime);
4769 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4770 account_group_user_time(p, cputime);
4771 p->gtime = cputime_add(p->gtime, cputime);
4772
4773 /* Add guest time to cpustat. */
4774 cpustat->user = cputime64_add(cpustat->user, tmp);
4775 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4776 }
4777
4778 /*
4779 * Account system cpu time to a process.
4780 * @p: the process that the cpu time gets accounted to
4781 * @hardirq_offset: the offset to subtract from hardirq_count()
4782 * @cputime: the cpu time spent in kernel space since the last update
4783 * @cputime_scaled: cputime scaled by cpu frequency
4784 */
4785 void account_system_time(struct task_struct *p, int hardirq_offset,
4786 cputime_t cputime, cputime_t cputime_scaled)
4787 {
4788 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4789 cputime64_t tmp;
4790
4791 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4792 account_guest_time(p, cputime, cputime_scaled);
4793 return;
4794 }
4795
4796 /* Add system time to process. */
4797 p->stime = cputime_add(p->stime, cputime);
4798 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
4799 account_group_system_time(p, cputime);
4800
4801 /* Add system time to cpustat. */
4802 tmp = cputime_to_cputime64(cputime);
4803 if (hardirq_count() - hardirq_offset)
4804 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4805 else if (softirq_count())
4806 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4807 else
4808 cpustat->system = cputime64_add(cpustat->system, tmp);
4809
4810 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
4811
4812 /* Account for system time used */
4813 acct_update_integrals(p);
4814 }
4815
4816 /*
4817 * Account for involuntary wait time.
4818 * @steal: the cpu time spent in involuntary wait
4819 */
4820 void account_steal_time(cputime_t cputime)
4821 {
4822 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4823 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4824
4825 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
4826 }
4827
4828 /*
4829 * Account for idle time.
4830 * @cputime: the cpu time spent in idle wait
4831 */
4832 void account_idle_time(cputime_t cputime)
4833 {
4834 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4835 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4836 struct rq *rq = this_rq();
4837
4838 if (atomic_read(&rq->nr_iowait) > 0)
4839 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
4840 else
4841 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
4842 }
4843
4844 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
4845
4846 /*
4847 * Account a single tick of cpu time.
4848 * @p: the process that the cpu time gets accounted to
4849 * @user_tick: indicates if the tick is a user or a system tick
4850 */
4851 void account_process_tick(struct task_struct *p, int user_tick)
4852 {
4853 cputime_t one_jiffy = jiffies_to_cputime(1);
4854 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
4855 struct rq *rq = this_rq();
4856
4857 if (user_tick)
4858 account_user_time(p, one_jiffy, one_jiffy_scaled);
4859 else if (p != rq->idle)
4860 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
4861 one_jiffy_scaled);
4862 else
4863 account_idle_time(one_jiffy);
4864 }
4865
4866 /*
4867 * Account multiple ticks of steal time.
4868 * @p: the process from which the cpu time has been stolen
4869 * @ticks: number of stolen ticks
4870 */
4871 void account_steal_ticks(unsigned long ticks)
4872 {
4873 account_steal_time(jiffies_to_cputime(ticks));
4874 }
4875
4876 /*
4877 * Account multiple ticks of idle time.
4878 * @ticks: number of stolen ticks
4879 */
4880 void account_idle_ticks(unsigned long ticks)
4881 {
4882 account_idle_time(jiffies_to_cputime(ticks));
4883 }
4884
4885 #endif
4886
4887 /*
4888 * Use precise platform statistics if available:
4889 */
4890 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
4891 cputime_t task_utime(struct task_struct *p)
4892 {
4893 return p->utime;
4894 }
4895
4896 cputime_t task_stime(struct task_struct *p)
4897 {
4898 return p->stime;
4899 }
4900 #else
4901 cputime_t task_utime(struct task_struct *p)
4902 {
4903 clock_t utime = cputime_to_clock_t(p->utime),
4904 total = utime + cputime_to_clock_t(p->stime);
4905 u64 temp;
4906
4907 /*
4908 * Use CFS's precise accounting:
4909 */
4910 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
4911
4912 if (total) {
4913 temp *= utime;
4914 do_div(temp, total);
4915 }
4916 utime = (clock_t)temp;
4917
4918 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
4919 return p->prev_utime;
4920 }
4921
4922 cputime_t task_stime(struct task_struct *p)
4923 {
4924 clock_t stime;
4925
4926 /*
4927 * Use CFS's precise accounting. (we subtract utime from
4928 * the total, to make sure the total observed by userspace
4929 * grows monotonically - apps rely on that):
4930 */
4931 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
4932 cputime_to_clock_t(task_utime(p));
4933
4934 if (stime >= 0)
4935 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
4936
4937 return p->prev_stime;
4938 }
4939 #endif
4940
4941 inline cputime_t task_gtime(struct task_struct *p)
4942 {
4943 return p->gtime;
4944 }
4945
4946 /*
4947 * This function gets called by the timer code, with HZ frequency.
4948 * We call it with interrupts disabled.
4949 *
4950 * It also gets called by the fork code, when changing the parent's
4951 * timeslices.
4952 */
4953 void scheduler_tick(void)
4954 {
4955 int cpu = smp_processor_id();
4956 struct rq *rq = cpu_rq(cpu);
4957 struct task_struct *curr = rq->curr;
4958
4959 sched_clock_tick();
4960
4961 spin_lock(&rq->lock);
4962 update_rq_clock(rq);
4963 update_cpu_load(rq);
4964 curr->sched_class->task_tick(rq, curr, 0);
4965 spin_unlock(&rq->lock);
4966
4967 #ifdef CONFIG_SMP
4968 rq->idle_at_tick = idle_cpu(cpu);
4969 trigger_load_balance(rq, cpu);
4970 #endif
4971 }
4972
4973 unsigned long get_parent_ip(unsigned long addr)
4974 {
4975 if (in_lock_functions(addr)) {
4976 addr = CALLER_ADDR2;
4977 if (in_lock_functions(addr))
4978 addr = CALLER_ADDR3;
4979 }
4980 return addr;
4981 }
4982
4983 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4984 defined(CONFIG_PREEMPT_TRACER))
4985
4986 void __kprobes add_preempt_count(int val)
4987 {
4988 #ifdef CONFIG_DEBUG_PREEMPT
4989 /*
4990 * Underflow?
4991 */
4992 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4993 return;
4994 #endif
4995 preempt_count() += val;
4996 #ifdef CONFIG_DEBUG_PREEMPT
4997 /*
4998 * Spinlock count overflowing soon?
4999 */
5000 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5001 PREEMPT_MASK - 10);
5002 #endif
5003 if (preempt_count() == val)
5004 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5005 }
5006 EXPORT_SYMBOL(add_preempt_count);
5007
5008 void __kprobes sub_preempt_count(int val)
5009 {
5010 #ifdef CONFIG_DEBUG_PREEMPT
5011 /*
5012 * Underflow?
5013 */
5014 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5015 return;
5016 /*
5017 * Is the spinlock portion underflowing?
5018 */
5019 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5020 !(preempt_count() & PREEMPT_MASK)))
5021 return;
5022 #endif
5023
5024 if (preempt_count() == val)
5025 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5026 preempt_count() -= val;
5027 }
5028 EXPORT_SYMBOL(sub_preempt_count);
5029
5030 #endif
5031
5032 /*
5033 * Print scheduling while atomic bug:
5034 */
5035 static noinline void __schedule_bug(struct task_struct *prev)
5036 {
5037 struct pt_regs *regs = get_irq_regs();
5038
5039 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5040 prev->comm, prev->pid, preempt_count());
5041
5042 debug_show_held_locks(prev);
5043 print_modules();
5044 if (irqs_disabled())
5045 print_irqtrace_events(prev);
5046
5047 if (regs)
5048 show_regs(regs);
5049 else
5050 dump_stack();
5051 }
5052
5053 /*
5054 * Various schedule()-time debugging checks and statistics:
5055 */
5056 static inline void schedule_debug(struct task_struct *prev)
5057 {
5058 /*
5059 * Test if we are atomic. Since do_exit() needs to call into
5060 * schedule() atomically, we ignore that path for now.
5061 * Otherwise, whine if we are scheduling when we should not be.
5062 */
5063 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
5064 __schedule_bug(prev);
5065
5066 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5067
5068 schedstat_inc(this_rq(), sched_count);
5069 #ifdef CONFIG_SCHEDSTATS
5070 if (unlikely(prev->lock_depth >= 0)) {
5071 schedstat_inc(this_rq(), bkl_count);
5072 schedstat_inc(prev, sched_info.bkl_count);
5073 }
5074 #endif
5075 }
5076
5077 static void put_prev_task(struct rq *rq, struct task_struct *prev)
5078 {
5079 if (prev->state == TASK_RUNNING) {
5080 u64 runtime = prev->se.sum_exec_runtime;
5081
5082 runtime -= prev->se.prev_sum_exec_runtime;
5083 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5084
5085 /*
5086 * In order to avoid avg_overlap growing stale when we are
5087 * indeed overlapping and hence not getting put to sleep, grow
5088 * the avg_overlap on preemption.
5089 *
5090 * We use the average preemption runtime because that
5091 * correlates to the amount of cache footprint a task can
5092 * build up.
5093 */
5094 update_avg(&prev->se.avg_overlap, runtime);
5095 }
5096 prev->sched_class->put_prev_task(rq, prev);
5097 }
5098
5099 /*
5100 * Pick up the highest-prio task:
5101 */
5102 static inline struct task_struct *
5103 pick_next_task(struct rq *rq)
5104 {
5105 const struct sched_class *class;
5106 struct task_struct *p;
5107
5108 /*
5109 * Optimization: we know that if all tasks are in
5110 * the fair class we can call that function directly:
5111 */
5112 if (likely(rq->nr_running == rq->cfs.nr_running)) {
5113 p = fair_sched_class.pick_next_task(rq);
5114 if (likely(p))
5115 return p;
5116 }
5117
5118 class = sched_class_highest;
5119 for ( ; ; ) {
5120 p = class->pick_next_task(rq);
5121 if (p)
5122 return p;
5123 /*
5124 * Will never be NULL as the idle class always
5125 * returns a non-NULL p:
5126 */
5127 class = class->next;
5128 }
5129 }
5130
5131 /*
5132 * schedule() is the main scheduler function.
5133 */
5134 asmlinkage void __sched schedule(void)
5135 {
5136 struct task_struct *prev, *next;
5137 unsigned long *switch_count;
5138 struct rq *rq;
5139 int cpu;
5140
5141 need_resched:
5142 preempt_disable();
5143 cpu = smp_processor_id();
5144 rq = cpu_rq(cpu);
5145 rcu_qsctr_inc(cpu);
5146 prev = rq->curr;
5147 switch_count = &prev->nivcsw;
5148
5149 release_kernel_lock(prev);
5150 need_resched_nonpreemptible:
5151
5152 schedule_debug(prev);
5153
5154 if (sched_feat(HRTICK))
5155 hrtick_clear(rq);
5156
5157 spin_lock_irq(&rq->lock);
5158 update_rq_clock(rq);
5159 clear_tsk_need_resched(prev);
5160
5161 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5162 if (unlikely(signal_pending_state(prev->state, prev)))
5163 prev->state = TASK_RUNNING;
5164 else
5165 deactivate_task(rq, prev, 1);
5166 switch_count = &prev->nvcsw;
5167 }
5168
5169 #ifdef CONFIG_SMP
5170 if (prev->sched_class->pre_schedule)
5171 prev->sched_class->pre_schedule(rq, prev);
5172 #endif
5173
5174 if (unlikely(!rq->nr_running))
5175 idle_balance(cpu, rq);
5176
5177 put_prev_task(rq, prev);
5178 next = pick_next_task(rq);
5179
5180 if (likely(prev != next)) {
5181 sched_info_switch(prev, next);
5182
5183 rq->nr_switches++;
5184 rq->curr = next;
5185 ++*switch_count;
5186
5187 context_switch(rq, prev, next); /* unlocks the rq */
5188 /*
5189 * the context switch might have flipped the stack from under
5190 * us, hence refresh the local variables.
5191 */
5192 cpu = smp_processor_id();
5193 rq = cpu_rq(cpu);
5194 } else
5195 spin_unlock_irq(&rq->lock);
5196
5197 if (unlikely(reacquire_kernel_lock(current) < 0))
5198 goto need_resched_nonpreemptible;
5199
5200 preempt_enable_no_resched();
5201 if (need_resched())
5202 goto need_resched;
5203 }
5204 EXPORT_SYMBOL(schedule);
5205
5206 #ifdef CONFIG_SMP
5207 /*
5208 * Look out! "owner" is an entirely speculative pointer
5209 * access and not reliable.
5210 */
5211 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5212 {
5213 unsigned int cpu;
5214 struct rq *rq;
5215
5216 if (!sched_feat(OWNER_SPIN))
5217 return 0;
5218
5219 #ifdef CONFIG_DEBUG_PAGEALLOC
5220 /*
5221 * Need to access the cpu field knowing that
5222 * DEBUG_PAGEALLOC could have unmapped it if
5223 * the mutex owner just released it and exited.
5224 */
5225 if (probe_kernel_address(&owner->cpu, cpu))
5226 goto out;
5227 #else
5228 cpu = owner->cpu;
5229 #endif
5230
5231 /*
5232 * Even if the access succeeded (likely case),
5233 * the cpu field may no longer be valid.
5234 */
5235 if (cpu >= nr_cpumask_bits)
5236 goto out;
5237
5238 /*
5239 * We need to validate that we can do a
5240 * get_cpu() and that we have the percpu area.
5241 */
5242 if (!cpu_online(cpu))
5243 goto out;
5244
5245 rq = cpu_rq(cpu);
5246
5247 for (;;) {
5248 /*
5249 * Owner changed, break to re-assess state.
5250 */
5251 if (lock->owner != owner)
5252 break;
5253
5254 /*
5255 * Is that owner really running on that cpu?
5256 */
5257 if (task_thread_info(rq->curr) != owner || need_resched())
5258 return 0;
5259
5260 cpu_relax();
5261 }
5262 out:
5263 return 1;
5264 }
5265 #endif
5266
5267 #ifdef CONFIG_PREEMPT
5268 /*
5269 * this is the entry point to schedule() from in-kernel preemption
5270 * off of preempt_enable. Kernel preemptions off return from interrupt
5271 * occur there and call schedule directly.
5272 */
5273 asmlinkage void __sched preempt_schedule(void)
5274 {
5275 struct thread_info *ti = current_thread_info();
5276
5277 /*
5278 * If there is a non-zero preempt_count or interrupts are disabled,
5279 * we do not want to preempt the current task. Just return..
5280 */
5281 if (likely(ti->preempt_count || irqs_disabled()))
5282 return;
5283
5284 do {
5285 add_preempt_count(PREEMPT_ACTIVE);
5286 schedule();
5287 sub_preempt_count(PREEMPT_ACTIVE);
5288
5289 /*
5290 * Check again in case we missed a preemption opportunity
5291 * between schedule and now.
5292 */
5293 barrier();
5294 } while (need_resched());
5295 }
5296 EXPORT_SYMBOL(preempt_schedule);
5297
5298 /*
5299 * this is the entry point to schedule() from kernel preemption
5300 * off of irq context.
5301 * Note, that this is called and return with irqs disabled. This will
5302 * protect us against recursive calling from irq.
5303 */
5304 asmlinkage void __sched preempt_schedule_irq(void)
5305 {
5306 struct thread_info *ti = current_thread_info();
5307
5308 /* Catch callers which need to be fixed */
5309 BUG_ON(ti->preempt_count || !irqs_disabled());
5310
5311 do {
5312 add_preempt_count(PREEMPT_ACTIVE);
5313 local_irq_enable();
5314 schedule();
5315 local_irq_disable();
5316 sub_preempt_count(PREEMPT_ACTIVE);
5317
5318 /*
5319 * Check again in case we missed a preemption opportunity
5320 * between schedule and now.
5321 */
5322 barrier();
5323 } while (need_resched());
5324 }
5325
5326 #endif /* CONFIG_PREEMPT */
5327
5328 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
5329 void *key)
5330 {
5331 return try_to_wake_up(curr->private, mode, sync);
5332 }
5333 EXPORT_SYMBOL(default_wake_function);
5334
5335 /*
5336 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5337 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
5338 * number) then we wake all the non-exclusive tasks and one exclusive task.
5339 *
5340 * There are circumstances in which we can try to wake a task which has already
5341 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
5342 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5343 */
5344 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
5345 int nr_exclusive, int sync, void *key)
5346 {
5347 wait_queue_t *curr, *next;
5348
5349 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5350 unsigned flags = curr->flags;
5351
5352 if (curr->func(curr, mode, sync, key) &&
5353 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
5354 break;
5355 }
5356 }
5357
5358 /**
5359 * __wake_up - wake up threads blocked on a waitqueue.
5360 * @q: the waitqueue
5361 * @mode: which threads
5362 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5363 * @key: is directly passed to the wakeup function
5364 */
5365 void __wake_up(wait_queue_head_t *q, unsigned int mode,
5366 int nr_exclusive, void *key)
5367 {
5368 unsigned long flags;
5369
5370 spin_lock_irqsave(&q->lock, flags);
5371 __wake_up_common(q, mode, nr_exclusive, 0, key);
5372 spin_unlock_irqrestore(&q->lock, flags);
5373 }
5374 EXPORT_SYMBOL(__wake_up);
5375
5376 /*
5377 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5378 */
5379 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
5380 {
5381 __wake_up_common(q, mode, 1, 0, NULL);
5382 }
5383
5384 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5385 {
5386 __wake_up_common(q, mode, 1, 0, key);
5387 }
5388
5389 /**
5390 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
5391 * @q: the waitqueue
5392 * @mode: which threads
5393 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5394 * @key: opaque value to be passed to wakeup targets
5395 *
5396 * The sync wakeup differs that the waker knows that it will schedule
5397 * away soon, so while the target thread will be woken up, it will not
5398 * be migrated to another CPU - ie. the two threads are 'synchronized'
5399 * with each other. This can prevent needless bouncing between CPUs.
5400 *
5401 * On UP it can prevent extra preemption.
5402 */
5403 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5404 int nr_exclusive, void *key)
5405 {
5406 unsigned long flags;
5407 int sync = 1;
5408
5409 if (unlikely(!q))
5410 return;
5411
5412 if (unlikely(!nr_exclusive))
5413 sync = 0;
5414
5415 spin_lock_irqsave(&q->lock, flags);
5416 __wake_up_common(q, mode, nr_exclusive, sync, key);
5417 spin_unlock_irqrestore(&q->lock, flags);
5418 }
5419 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5420
5421 /*
5422 * __wake_up_sync - see __wake_up_sync_key()
5423 */
5424 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5425 {
5426 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5427 }
5428 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5429
5430 /**
5431 * complete: - signals a single thread waiting on this completion
5432 * @x: holds the state of this particular completion
5433 *
5434 * This will wake up a single thread waiting on this completion. Threads will be
5435 * awakened in the same order in which they were queued.
5436 *
5437 * See also complete_all(), wait_for_completion() and related routines.
5438 */
5439 void complete(struct completion *x)
5440 {
5441 unsigned long flags;
5442
5443 spin_lock_irqsave(&x->wait.lock, flags);
5444 x->done++;
5445 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
5446 spin_unlock_irqrestore(&x->wait.lock, flags);
5447 }
5448 EXPORT_SYMBOL(complete);
5449
5450 /**
5451 * complete_all: - signals all threads waiting on this completion
5452 * @x: holds the state of this particular completion
5453 *
5454 * This will wake up all threads waiting on this particular completion event.
5455 */
5456 void complete_all(struct completion *x)
5457 {
5458 unsigned long flags;
5459
5460 spin_lock_irqsave(&x->wait.lock, flags);
5461 x->done += UINT_MAX/2;
5462 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
5463 spin_unlock_irqrestore(&x->wait.lock, flags);
5464 }
5465 EXPORT_SYMBOL(complete_all);
5466
5467 static inline long __sched
5468 do_wait_for_common(struct completion *x, long timeout, int state)
5469 {
5470 if (!x->done) {
5471 DECLARE_WAITQUEUE(wait, current);
5472
5473 wait.flags |= WQ_FLAG_EXCLUSIVE;
5474 __add_wait_queue_tail(&x->wait, &wait);
5475 do {
5476 if (signal_pending_state(state, current)) {
5477 timeout = -ERESTARTSYS;
5478 break;
5479 }
5480 __set_current_state(state);
5481 spin_unlock_irq(&x->wait.lock);
5482 timeout = schedule_timeout(timeout);
5483 spin_lock_irq(&x->wait.lock);
5484 } while (!x->done && timeout);
5485 __remove_wait_queue(&x->wait, &wait);
5486 if (!x->done)
5487 return timeout;
5488 }
5489 x->done--;
5490 return timeout ?: 1;
5491 }
5492
5493 static long __sched
5494 wait_for_common(struct completion *x, long timeout, int state)
5495 {
5496 might_sleep();
5497
5498 spin_lock_irq(&x->wait.lock);
5499 timeout = do_wait_for_common(x, timeout, state);
5500 spin_unlock_irq(&x->wait.lock);
5501 return timeout;
5502 }
5503
5504 /**
5505 * wait_for_completion: - waits for completion of a task
5506 * @x: holds the state of this particular completion
5507 *
5508 * This waits to be signaled for completion of a specific task. It is NOT
5509 * interruptible and there is no timeout.
5510 *
5511 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5512 * and interrupt capability. Also see complete().
5513 */
5514 void __sched wait_for_completion(struct completion *x)
5515 {
5516 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
5517 }
5518 EXPORT_SYMBOL(wait_for_completion);
5519
5520 /**
5521 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5522 * @x: holds the state of this particular completion
5523 * @timeout: timeout value in jiffies
5524 *
5525 * This waits for either a completion of a specific task to be signaled or for a
5526 * specified timeout to expire. The timeout is in jiffies. It is not
5527 * interruptible.
5528 */
5529 unsigned long __sched
5530 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
5531 {
5532 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
5533 }
5534 EXPORT_SYMBOL(wait_for_completion_timeout);
5535
5536 /**
5537 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5538 * @x: holds the state of this particular completion
5539 *
5540 * This waits for completion of a specific task to be signaled. It is
5541 * interruptible.
5542 */
5543 int __sched wait_for_completion_interruptible(struct completion *x)
5544 {
5545 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5546 if (t == -ERESTARTSYS)
5547 return t;
5548 return 0;
5549 }
5550 EXPORT_SYMBOL(wait_for_completion_interruptible);
5551
5552 /**
5553 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5554 * @x: holds the state of this particular completion
5555 * @timeout: timeout value in jiffies
5556 *
5557 * This waits for either a completion of a specific task to be signaled or for a
5558 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5559 */
5560 unsigned long __sched
5561 wait_for_completion_interruptible_timeout(struct completion *x,
5562 unsigned long timeout)
5563 {
5564 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
5565 }
5566 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
5567
5568 /**
5569 * wait_for_completion_killable: - waits for completion of a task (killable)
5570 * @x: holds the state of this particular completion
5571 *
5572 * This waits to be signaled for completion of a specific task. It can be
5573 * interrupted by a kill signal.
5574 */
5575 int __sched wait_for_completion_killable(struct completion *x)
5576 {
5577 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5578 if (t == -ERESTARTSYS)
5579 return t;
5580 return 0;
5581 }
5582 EXPORT_SYMBOL(wait_for_completion_killable);
5583
5584 /**
5585 * try_wait_for_completion - try to decrement a completion without blocking
5586 * @x: completion structure
5587 *
5588 * Returns: 0 if a decrement cannot be done without blocking
5589 * 1 if a decrement succeeded.
5590 *
5591 * If a completion is being used as a counting completion,
5592 * attempt to decrement the counter without blocking. This
5593 * enables us to avoid waiting if the resource the completion
5594 * is protecting is not available.
5595 */
5596 bool try_wait_for_completion(struct completion *x)
5597 {
5598 int ret = 1;
5599
5600 spin_lock_irq(&x->wait.lock);
5601 if (!x->done)
5602 ret = 0;
5603 else
5604 x->done--;
5605 spin_unlock_irq(&x->wait.lock);
5606 return ret;
5607 }
5608 EXPORT_SYMBOL(try_wait_for_completion);
5609
5610 /**
5611 * completion_done - Test to see if a completion has any waiters
5612 * @x: completion structure
5613 *
5614 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5615 * 1 if there are no waiters.
5616 *
5617 */
5618 bool completion_done(struct completion *x)
5619 {
5620 int ret = 1;
5621
5622 spin_lock_irq(&x->wait.lock);
5623 if (!x->done)
5624 ret = 0;
5625 spin_unlock_irq(&x->wait.lock);
5626 return ret;
5627 }
5628 EXPORT_SYMBOL(completion_done);
5629
5630 static long __sched
5631 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
5632 {
5633 unsigned long flags;
5634 wait_queue_t wait;
5635
5636 init_waitqueue_entry(&wait, current);
5637
5638 __set_current_state(state);
5639
5640 spin_lock_irqsave(&q->lock, flags);
5641 __add_wait_queue(q, &wait);
5642 spin_unlock(&q->lock);
5643 timeout = schedule_timeout(timeout);
5644 spin_lock_irq(&q->lock);
5645 __remove_wait_queue(q, &wait);
5646 spin_unlock_irqrestore(&q->lock, flags);
5647
5648 return timeout;
5649 }
5650
5651 void __sched interruptible_sleep_on(wait_queue_head_t *q)
5652 {
5653 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5654 }
5655 EXPORT_SYMBOL(interruptible_sleep_on);
5656
5657 long __sched
5658 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
5659 {
5660 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
5661 }
5662 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5663
5664 void __sched sleep_on(wait_queue_head_t *q)
5665 {
5666 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5667 }
5668 EXPORT_SYMBOL(sleep_on);
5669
5670 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
5671 {
5672 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
5673 }
5674 EXPORT_SYMBOL(sleep_on_timeout);
5675
5676 #ifdef CONFIG_RT_MUTEXES
5677
5678 /*
5679 * rt_mutex_setprio - set the current priority of a task
5680 * @p: task
5681 * @prio: prio value (kernel-internal form)
5682 *
5683 * This function changes the 'effective' priority of a task. It does
5684 * not touch ->normal_prio like __setscheduler().
5685 *
5686 * Used by the rt_mutex code to implement priority inheritance logic.
5687 */
5688 void rt_mutex_setprio(struct task_struct *p, int prio)
5689 {
5690 unsigned long flags;
5691 int oldprio, on_rq, running;
5692 struct rq *rq;
5693 const struct sched_class *prev_class = p->sched_class;
5694
5695 BUG_ON(prio < 0 || prio > MAX_PRIO);
5696
5697 rq = task_rq_lock(p, &flags);
5698 update_rq_clock(rq);
5699
5700 oldprio = p->prio;
5701 on_rq = p->se.on_rq;
5702 running = task_current(rq, p);
5703 if (on_rq)
5704 dequeue_task(rq, p, 0);
5705 if (running)
5706 p->sched_class->put_prev_task(rq, p);
5707
5708 if (rt_prio(prio))
5709 p->sched_class = &rt_sched_class;
5710 else
5711 p->sched_class = &fair_sched_class;
5712
5713 p->prio = prio;
5714
5715 if (running)
5716 p->sched_class->set_curr_task(rq);
5717 if (on_rq) {
5718 enqueue_task(rq, p, 0);
5719
5720 check_class_changed(rq, p, prev_class, oldprio, running);
5721 }
5722 task_rq_unlock(rq, &flags);
5723 }
5724
5725 #endif
5726
5727 void set_user_nice(struct task_struct *p, long nice)
5728 {
5729 int old_prio, delta, on_rq;
5730 unsigned long flags;
5731 struct rq *rq;
5732
5733 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5734 return;
5735 /*
5736 * We have to be careful, if called from sys_setpriority(),
5737 * the task might be in the middle of scheduling on another CPU.
5738 */
5739 rq = task_rq_lock(p, &flags);
5740 update_rq_clock(rq);
5741 /*
5742 * The RT priorities are set via sched_setscheduler(), but we still
5743 * allow the 'normal' nice value to be set - but as expected
5744 * it wont have any effect on scheduling until the task is
5745 * SCHED_FIFO/SCHED_RR:
5746 */
5747 if (task_has_rt_policy(p)) {
5748 p->static_prio = NICE_TO_PRIO(nice);
5749 goto out_unlock;
5750 }
5751 on_rq = p->se.on_rq;
5752 if (on_rq)
5753 dequeue_task(rq, p, 0);
5754
5755 p->static_prio = NICE_TO_PRIO(nice);
5756 set_load_weight(p);
5757 old_prio = p->prio;
5758 p->prio = effective_prio(p);
5759 delta = p->prio - old_prio;
5760
5761 if (on_rq) {
5762 enqueue_task(rq, p, 0);
5763 /*
5764 * If the task increased its priority or is running and
5765 * lowered its priority, then reschedule its CPU:
5766 */
5767 if (delta < 0 || (delta > 0 && task_running(rq, p)))
5768 resched_task(rq->curr);
5769 }
5770 out_unlock:
5771 task_rq_unlock(rq, &flags);
5772 }
5773 EXPORT_SYMBOL(set_user_nice);
5774
5775 /*
5776 * can_nice - check if a task can reduce its nice value
5777 * @p: task
5778 * @nice: nice value
5779 */
5780 int can_nice(const struct task_struct *p, const int nice)
5781 {
5782 /* convert nice value [19,-20] to rlimit style value [1,40] */
5783 int nice_rlim = 20 - nice;
5784
5785 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5786 capable(CAP_SYS_NICE));
5787 }
5788
5789 #ifdef __ARCH_WANT_SYS_NICE
5790
5791 /*
5792 * sys_nice - change the priority of the current process.
5793 * @increment: priority increment
5794 *
5795 * sys_setpriority is a more generic, but much slower function that
5796 * does similar things.
5797 */
5798 SYSCALL_DEFINE1(nice, int, increment)
5799 {
5800 long nice, retval;
5801
5802 /*
5803 * Setpriority might change our priority at the same moment.
5804 * We don't have to worry. Conceptually one call occurs first
5805 * and we have a single winner.
5806 */
5807 if (increment < -40)
5808 increment = -40;
5809 if (increment > 40)
5810 increment = 40;
5811
5812 nice = TASK_NICE(current) + increment;
5813 if (nice < -20)
5814 nice = -20;
5815 if (nice > 19)
5816 nice = 19;
5817
5818 if (increment < 0 && !can_nice(current, nice))
5819 return -EPERM;
5820
5821 retval = security_task_setnice(current, nice);
5822 if (retval)
5823 return retval;
5824
5825 set_user_nice(current, nice);
5826 return 0;
5827 }
5828
5829 #endif
5830
5831 /**
5832 * task_prio - return the priority value of a given task.
5833 * @p: the task in question.
5834 *
5835 * This is the priority value as seen by users in /proc.
5836 * RT tasks are offset by -200. Normal tasks are centered
5837 * around 0, value goes from -16 to +15.
5838 */
5839 int task_prio(const struct task_struct *p)
5840 {
5841 return p->prio - MAX_RT_PRIO;
5842 }
5843
5844 /**
5845 * task_nice - return the nice value of a given task.
5846 * @p: the task in question.
5847 */
5848 int task_nice(const struct task_struct *p)
5849 {
5850 return TASK_NICE(p);
5851 }
5852 EXPORT_SYMBOL(task_nice);
5853
5854 /**
5855 * idle_cpu - is a given cpu idle currently?
5856 * @cpu: the processor in question.
5857 */
5858 int idle_cpu(int cpu)
5859 {
5860 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5861 }
5862
5863 /**
5864 * idle_task - return the idle task for a given cpu.
5865 * @cpu: the processor in question.
5866 */
5867 struct task_struct *idle_task(int cpu)
5868 {
5869 return cpu_rq(cpu)->idle;
5870 }
5871
5872 /**
5873 * find_process_by_pid - find a process with a matching PID value.
5874 * @pid: the pid in question.
5875 */
5876 static struct task_struct *find_process_by_pid(pid_t pid)
5877 {
5878 return pid ? find_task_by_vpid(pid) : current;
5879 }
5880
5881 /* Actually do priority change: must hold rq lock. */
5882 static void
5883 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
5884 {
5885 BUG_ON(p->se.on_rq);
5886
5887 p->policy = policy;
5888 switch (p->policy) {
5889 case SCHED_NORMAL:
5890 case SCHED_BATCH:
5891 case SCHED_IDLE:
5892 p->sched_class = &fair_sched_class;
5893 break;
5894 case SCHED_FIFO:
5895 case SCHED_RR:
5896 p->sched_class = &rt_sched_class;
5897 break;
5898 }
5899
5900 p->rt_priority = prio;
5901 p->normal_prio = normal_prio(p);
5902 /* we are holding p->pi_lock already */
5903 p->prio = rt_mutex_getprio(p);
5904 set_load_weight(p);
5905 }
5906
5907 /*
5908 * check the target process has a UID that matches the current process's
5909 */
5910 static bool check_same_owner(struct task_struct *p)
5911 {
5912 const struct cred *cred = current_cred(), *pcred;
5913 bool match;
5914
5915 rcu_read_lock();
5916 pcred = __task_cred(p);
5917 match = (cred->euid == pcred->euid ||
5918 cred->euid == pcred->uid);
5919 rcu_read_unlock();
5920 return match;
5921 }
5922
5923 static int __sched_setscheduler(struct task_struct *p, int policy,
5924 struct sched_param *param, bool user)
5925 {
5926 int retval, oldprio, oldpolicy = -1, on_rq, running;
5927 unsigned long flags;
5928 const struct sched_class *prev_class = p->sched_class;
5929 struct rq *rq;
5930
5931 /* may grab non-irq protected spin_locks */
5932 BUG_ON(in_interrupt());
5933 recheck:
5934 /* double check policy once rq lock held */
5935 if (policy < 0)
5936 policy = oldpolicy = p->policy;
5937 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
5938 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5939 policy != SCHED_IDLE)
5940 return -EINVAL;
5941 /*
5942 * Valid priorities for SCHED_FIFO and SCHED_RR are
5943 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5944 * SCHED_BATCH and SCHED_IDLE is 0.
5945 */
5946 if (param->sched_priority < 0 ||
5947 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5948 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
5949 return -EINVAL;
5950 if (rt_policy(policy) != (param->sched_priority != 0))
5951 return -EINVAL;
5952
5953 /*
5954 * Allow unprivileged RT tasks to decrease priority:
5955 */
5956 if (user && !capable(CAP_SYS_NICE)) {
5957 if (rt_policy(policy)) {
5958 unsigned long rlim_rtprio;
5959
5960 if (!lock_task_sighand(p, &flags))
5961 return -ESRCH;
5962 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5963 unlock_task_sighand(p, &flags);
5964
5965 /* can't set/change the rt policy */
5966 if (policy != p->policy && !rlim_rtprio)
5967 return -EPERM;
5968
5969 /* can't increase priority */
5970 if (param->sched_priority > p->rt_priority &&
5971 param->sched_priority > rlim_rtprio)
5972 return -EPERM;
5973 }
5974 /*
5975 * Like positive nice levels, dont allow tasks to
5976 * move out of SCHED_IDLE either:
5977 */
5978 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5979 return -EPERM;
5980
5981 /* can't change other user's priorities */
5982 if (!check_same_owner(p))
5983 return -EPERM;
5984 }
5985
5986 if (user) {
5987 #ifdef CONFIG_RT_GROUP_SCHED
5988 /*
5989 * Do not allow realtime tasks into groups that have no runtime
5990 * assigned.
5991 */
5992 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5993 task_group(p)->rt_bandwidth.rt_runtime == 0)
5994 return -EPERM;
5995 #endif
5996
5997 retval = security_task_setscheduler(p, policy, param);
5998 if (retval)
5999 return retval;
6000 }
6001
6002 /*
6003 * make sure no PI-waiters arrive (or leave) while we are
6004 * changing the priority of the task:
6005 */
6006 spin_lock_irqsave(&p->pi_lock, flags);
6007 /*
6008 * To be able to change p->policy safely, the apropriate
6009 * runqueue lock must be held.
6010 */
6011 rq = __task_rq_lock(p);
6012 /* recheck policy now with rq lock held */
6013 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6014 policy = oldpolicy = -1;
6015 __task_rq_unlock(rq);
6016 spin_unlock_irqrestore(&p->pi_lock, flags);
6017 goto recheck;
6018 }
6019 update_rq_clock(rq);
6020 on_rq = p->se.on_rq;
6021 running = task_current(rq, p);
6022 if (on_rq)
6023 deactivate_task(rq, p, 0);
6024 if (running)
6025 p->sched_class->put_prev_task(rq, p);
6026
6027 oldprio = p->prio;
6028 __setscheduler(rq, p, policy, param->sched_priority);
6029
6030 if (running)
6031 p->sched_class->set_curr_task(rq);
6032 if (on_rq) {
6033 activate_task(rq, p, 0);
6034
6035 check_class_changed(rq, p, prev_class, oldprio, running);
6036 }
6037 __task_rq_unlock(rq);
6038 spin_unlock_irqrestore(&p->pi_lock, flags);
6039
6040 rt_mutex_adjust_pi(p);
6041
6042 return 0;
6043 }
6044
6045 /**
6046 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6047 * @p: the task in question.
6048 * @policy: new policy.
6049 * @param: structure containing the new RT priority.
6050 *
6051 * NOTE that the task may be already dead.
6052 */
6053 int sched_setscheduler(struct task_struct *p, int policy,
6054 struct sched_param *param)
6055 {
6056 return __sched_setscheduler(p, policy, param, true);
6057 }
6058 EXPORT_SYMBOL_GPL(sched_setscheduler);
6059
6060 /**
6061 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6062 * @p: the task in question.
6063 * @policy: new policy.
6064 * @param: structure containing the new RT priority.
6065 *
6066 * Just like sched_setscheduler, only don't bother checking if the
6067 * current context has permission. For example, this is needed in
6068 * stop_machine(): we create temporary high priority worker threads,
6069 * but our caller might not have that capability.
6070 */
6071 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6072 struct sched_param *param)
6073 {
6074 return __sched_setscheduler(p, policy, param, false);
6075 }
6076
6077 static int
6078 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
6079 {
6080 struct sched_param lparam;
6081 struct task_struct *p;
6082 int retval;
6083
6084 if (!param || pid < 0)
6085 return -EINVAL;
6086 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6087 return -EFAULT;
6088
6089 rcu_read_lock();
6090 retval = -ESRCH;
6091 p = find_process_by_pid(pid);
6092 if (p != NULL)
6093 retval = sched_setscheduler(p, policy, &lparam);
6094 rcu_read_unlock();
6095
6096 return retval;
6097 }
6098
6099 /**
6100 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6101 * @pid: the pid in question.
6102 * @policy: new policy.
6103 * @param: structure containing the new RT priority.
6104 */
6105 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6106 struct sched_param __user *, param)
6107 {
6108 /* negative values for policy are not valid */
6109 if (policy < 0)
6110 return -EINVAL;
6111
6112 return do_sched_setscheduler(pid, policy, param);
6113 }
6114
6115 /**
6116 * sys_sched_setparam - set/change the RT priority of a thread
6117 * @pid: the pid in question.
6118 * @param: structure containing the new RT priority.
6119 */
6120 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
6121 {
6122 return do_sched_setscheduler(pid, -1, param);
6123 }
6124
6125 /**
6126 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6127 * @pid: the pid in question.
6128 */
6129 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
6130 {
6131 struct task_struct *p;
6132 int retval;
6133
6134 if (pid < 0)
6135 return -EINVAL;
6136
6137 retval = -ESRCH;
6138 read_lock(&tasklist_lock);
6139 p = find_process_by_pid(pid);
6140 if (p) {
6141 retval = security_task_getscheduler(p);
6142 if (!retval)
6143 retval = p->policy;
6144 }
6145 read_unlock(&tasklist_lock);
6146 return retval;
6147 }
6148
6149 /**
6150 * sys_sched_getscheduler - get the RT priority of a thread
6151 * @pid: the pid in question.
6152 * @param: structure containing the RT priority.
6153 */
6154 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
6155 {
6156 struct sched_param lp;
6157 struct task_struct *p;
6158 int retval;
6159
6160 if (!param || pid < 0)
6161 return -EINVAL;
6162
6163 read_lock(&tasklist_lock);
6164 p = find_process_by_pid(pid);
6165 retval = -ESRCH;
6166 if (!p)
6167 goto out_unlock;
6168
6169 retval = security_task_getscheduler(p);
6170 if (retval)
6171 goto out_unlock;
6172
6173 lp.sched_priority = p->rt_priority;
6174 read_unlock(&tasklist_lock);
6175
6176 /*
6177 * This one might sleep, we cannot do it with a spinlock held ...
6178 */
6179 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6180
6181 return retval;
6182
6183 out_unlock:
6184 read_unlock(&tasklist_lock);
6185 return retval;
6186 }
6187
6188 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
6189 {
6190 cpumask_var_t cpus_allowed, new_mask;
6191 struct task_struct *p;
6192 int retval;
6193
6194 get_online_cpus();
6195 read_lock(&tasklist_lock);
6196
6197 p = find_process_by_pid(pid);
6198 if (!p) {
6199 read_unlock(&tasklist_lock);
6200 put_online_cpus();
6201 return -ESRCH;
6202 }
6203
6204 /*
6205 * It is not safe to call set_cpus_allowed with the
6206 * tasklist_lock held. We will bump the task_struct's
6207 * usage count and then drop tasklist_lock.
6208 */
6209 get_task_struct(p);
6210 read_unlock(&tasklist_lock);
6211
6212 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6213 retval = -ENOMEM;
6214 goto out_put_task;
6215 }
6216 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6217 retval = -ENOMEM;
6218 goto out_free_cpus_allowed;
6219 }
6220 retval = -EPERM;
6221 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
6222 goto out_unlock;
6223
6224 retval = security_task_setscheduler(p, 0, NULL);
6225 if (retval)
6226 goto out_unlock;
6227
6228 cpuset_cpus_allowed(p, cpus_allowed);
6229 cpumask_and(new_mask, in_mask, cpus_allowed);
6230 again:
6231 retval = set_cpus_allowed_ptr(p, new_mask);
6232
6233 if (!retval) {
6234 cpuset_cpus_allowed(p, cpus_allowed);
6235 if (!cpumask_subset(new_mask, cpus_allowed)) {
6236 /*
6237 * We must have raced with a concurrent cpuset
6238 * update. Just reset the cpus_allowed to the
6239 * cpuset's cpus_allowed
6240 */
6241 cpumask_copy(new_mask, cpus_allowed);
6242 goto again;
6243 }
6244 }
6245 out_unlock:
6246 free_cpumask_var(new_mask);
6247 out_free_cpus_allowed:
6248 free_cpumask_var(cpus_allowed);
6249 out_put_task:
6250 put_task_struct(p);
6251 put_online_cpus();
6252 return retval;
6253 }
6254
6255 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6256 struct cpumask *new_mask)
6257 {
6258 if (len < cpumask_size())
6259 cpumask_clear(new_mask);
6260 else if (len > cpumask_size())
6261 len = cpumask_size();
6262
6263 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6264 }
6265
6266 /**
6267 * sys_sched_setaffinity - set the cpu affinity of a process
6268 * @pid: pid of the process
6269 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6270 * @user_mask_ptr: user-space pointer to the new cpu mask
6271 */
6272 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6273 unsigned long __user *, user_mask_ptr)
6274 {
6275 cpumask_var_t new_mask;
6276 int retval;
6277
6278 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6279 return -ENOMEM;
6280
6281 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6282 if (retval == 0)
6283 retval = sched_setaffinity(pid, new_mask);
6284 free_cpumask_var(new_mask);
6285 return retval;
6286 }
6287
6288 long sched_getaffinity(pid_t pid, struct cpumask *mask)
6289 {
6290 struct task_struct *p;
6291 int retval;
6292
6293 get_online_cpus();
6294 read_lock(&tasklist_lock);
6295
6296 retval = -ESRCH;
6297 p = find_process_by_pid(pid);
6298 if (!p)
6299 goto out_unlock;
6300
6301 retval = security_task_getscheduler(p);
6302 if (retval)
6303 goto out_unlock;
6304
6305 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
6306
6307 out_unlock:
6308 read_unlock(&tasklist_lock);
6309 put_online_cpus();
6310
6311 return retval;
6312 }
6313
6314 /**
6315 * sys_sched_getaffinity - get the cpu affinity of a process
6316 * @pid: pid of the process
6317 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6318 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6319 */
6320 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6321 unsigned long __user *, user_mask_ptr)
6322 {
6323 int ret;
6324 cpumask_var_t mask;
6325
6326 if (len < cpumask_size())
6327 return -EINVAL;
6328
6329 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6330 return -ENOMEM;
6331
6332 ret = sched_getaffinity(pid, mask);
6333 if (ret == 0) {
6334 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6335 ret = -EFAULT;
6336 else
6337 ret = cpumask_size();
6338 }
6339 free_cpumask_var(mask);
6340
6341 return ret;
6342 }
6343
6344 /**
6345 * sys_sched_yield - yield the current processor to other threads.
6346 *
6347 * This function yields the current CPU to other tasks. If there are no
6348 * other threads running on this CPU then this function will return.
6349 */
6350 SYSCALL_DEFINE0(sched_yield)
6351 {
6352 struct rq *rq = this_rq_lock();
6353
6354 schedstat_inc(rq, yld_count);
6355 current->sched_class->yield_task(rq);
6356
6357 /*
6358 * Since we are going to call schedule() anyway, there's
6359 * no need to preempt or enable interrupts:
6360 */
6361 __release(rq->lock);
6362 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
6363 _raw_spin_unlock(&rq->lock);
6364 preempt_enable_no_resched();
6365
6366 schedule();
6367
6368 return 0;
6369 }
6370
6371 static void __cond_resched(void)
6372 {
6373 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6374 __might_sleep(__FILE__, __LINE__);
6375 #endif
6376 /*
6377 * The BKS might be reacquired before we have dropped
6378 * PREEMPT_ACTIVE, which could trigger a second
6379 * cond_resched() call.
6380 */
6381 do {
6382 add_preempt_count(PREEMPT_ACTIVE);
6383 schedule();
6384 sub_preempt_count(PREEMPT_ACTIVE);
6385 } while (need_resched());
6386 }
6387
6388 int __sched _cond_resched(void)
6389 {
6390 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
6391 system_state == SYSTEM_RUNNING) {
6392 __cond_resched();
6393 return 1;
6394 }
6395 return 0;
6396 }
6397 EXPORT_SYMBOL(_cond_resched);
6398
6399 /*
6400 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
6401 * call schedule, and on return reacquire the lock.
6402 *
6403 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
6404 * operations here to prevent schedule() from being called twice (once via
6405 * spin_unlock(), once by hand).
6406 */
6407 int cond_resched_lock(spinlock_t *lock)
6408 {
6409 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6410 int ret = 0;
6411
6412 if (spin_needbreak(lock) || resched) {
6413 spin_unlock(lock);
6414 if (resched && need_resched())
6415 __cond_resched();
6416 else
6417 cpu_relax();
6418 ret = 1;
6419 spin_lock(lock);
6420 }
6421 return ret;
6422 }
6423 EXPORT_SYMBOL(cond_resched_lock);
6424
6425 int __sched cond_resched_softirq(void)
6426 {
6427 BUG_ON(!in_softirq());
6428
6429 if (need_resched() && system_state == SYSTEM_RUNNING) {
6430 local_bh_enable();
6431 __cond_resched();
6432 local_bh_disable();
6433 return 1;
6434 }
6435 return 0;
6436 }
6437 EXPORT_SYMBOL(cond_resched_softirq);
6438
6439 /**
6440 * yield - yield the current processor to other threads.
6441 *
6442 * This is a shortcut for kernel-space yielding - it marks the
6443 * thread runnable and calls sys_sched_yield().
6444 */
6445 void __sched yield(void)
6446 {
6447 set_current_state(TASK_RUNNING);
6448 sys_sched_yield();
6449 }
6450 EXPORT_SYMBOL(yield);
6451
6452 /*
6453 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6454 * that process accounting knows that this is a task in IO wait state.
6455 *
6456 * But don't do that if it is a deliberate, throttling IO wait (this task
6457 * has set its backing_dev_info: the queue against which it should throttle)
6458 */
6459 void __sched io_schedule(void)
6460 {
6461 struct rq *rq = &__raw_get_cpu_var(runqueues);
6462
6463 delayacct_blkio_start();
6464 atomic_inc(&rq->nr_iowait);
6465 schedule();
6466 atomic_dec(&rq->nr_iowait);
6467 delayacct_blkio_end();
6468 }
6469 EXPORT_SYMBOL(io_schedule);
6470
6471 long __sched io_schedule_timeout(long timeout)
6472 {
6473 struct rq *rq = &__raw_get_cpu_var(runqueues);
6474 long ret;
6475
6476 delayacct_blkio_start();
6477 atomic_inc(&rq->nr_iowait);
6478 ret = schedule_timeout(timeout);
6479 atomic_dec(&rq->nr_iowait);
6480 delayacct_blkio_end();
6481 return ret;
6482 }
6483
6484 /**
6485 * sys_sched_get_priority_max - return maximum RT priority.
6486 * @policy: scheduling class.
6487 *
6488 * this syscall returns the maximum rt_priority that can be used
6489 * by a given scheduling class.
6490 */
6491 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
6492 {
6493 int ret = -EINVAL;
6494
6495 switch (policy) {
6496 case SCHED_FIFO:
6497 case SCHED_RR:
6498 ret = MAX_USER_RT_PRIO-1;
6499 break;
6500 case SCHED_NORMAL:
6501 case SCHED_BATCH:
6502 case SCHED_IDLE:
6503 ret = 0;
6504 break;
6505 }
6506 return ret;
6507 }
6508
6509 /**
6510 * sys_sched_get_priority_min - return minimum RT priority.
6511 * @policy: scheduling class.
6512 *
6513 * this syscall returns the minimum rt_priority that can be used
6514 * by a given scheduling class.
6515 */
6516 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
6517 {
6518 int ret = -EINVAL;
6519
6520 switch (policy) {
6521 case SCHED_FIFO:
6522 case SCHED_RR:
6523 ret = 1;
6524 break;
6525 case SCHED_NORMAL:
6526 case SCHED_BATCH:
6527 case SCHED_IDLE:
6528 ret = 0;
6529 }
6530 return ret;
6531 }
6532
6533 /**
6534 * sys_sched_rr_get_interval - return the default timeslice of a process.
6535 * @pid: pid of the process.
6536 * @interval: userspace pointer to the timeslice value.
6537 *
6538 * this syscall writes the default timeslice value of a given process
6539 * into the user-space timespec buffer. A value of '0' means infinity.
6540 */
6541 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6542 struct timespec __user *, interval)
6543 {
6544 struct task_struct *p;
6545 unsigned int time_slice;
6546 int retval;
6547 struct timespec t;
6548
6549 if (pid < 0)
6550 return -EINVAL;
6551
6552 retval = -ESRCH;
6553 read_lock(&tasklist_lock);
6554 p = find_process_by_pid(pid);
6555 if (!p)
6556 goto out_unlock;
6557
6558 retval = security_task_getscheduler(p);
6559 if (retval)
6560 goto out_unlock;
6561
6562 /*
6563 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
6564 * tasks that are on an otherwise idle runqueue:
6565 */
6566 time_slice = 0;
6567 if (p->policy == SCHED_RR) {
6568 time_slice = DEF_TIMESLICE;
6569 } else if (p->policy != SCHED_FIFO) {
6570 struct sched_entity *se = &p->se;
6571 unsigned long flags;
6572 struct rq *rq;
6573
6574 rq = task_rq_lock(p, &flags);
6575 if (rq->cfs.load.weight)
6576 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
6577 task_rq_unlock(rq, &flags);
6578 }
6579 read_unlock(&tasklist_lock);
6580 jiffies_to_timespec(time_slice, &t);
6581 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
6582 return retval;
6583
6584 out_unlock:
6585 read_unlock(&tasklist_lock);
6586 return retval;
6587 }
6588
6589 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6590
6591 void sched_show_task(struct task_struct *p)
6592 {
6593 unsigned long free = 0;
6594 unsigned state;
6595
6596 state = p->state ? __ffs(p->state) + 1 : 0;
6597 printk(KERN_INFO "%-13.13s %c", p->comm,
6598 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6599 #if BITS_PER_LONG == 32
6600 if (state == TASK_RUNNING)
6601 printk(KERN_CONT " running ");
6602 else
6603 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
6604 #else
6605 if (state == TASK_RUNNING)
6606 printk(KERN_CONT " running task ");
6607 else
6608 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
6609 #endif
6610 #ifdef CONFIG_DEBUG_STACK_USAGE
6611 free = stack_not_used(p);
6612 #endif
6613 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6614 task_pid_nr(p), task_pid_nr(p->real_parent),
6615 (unsigned long)task_thread_info(p)->flags);
6616
6617 show_stack(p, NULL);
6618 }
6619
6620 void show_state_filter(unsigned long state_filter)
6621 {
6622 struct task_struct *g, *p;
6623
6624 #if BITS_PER_LONG == 32
6625 printk(KERN_INFO
6626 " task PC stack pid father\n");
6627 #else
6628 printk(KERN_INFO
6629 " task PC stack pid father\n");
6630 #endif
6631 read_lock(&tasklist_lock);
6632 do_each_thread(g, p) {
6633 /*
6634 * reset the NMI-timeout, listing all files on a slow
6635 * console might take alot of time:
6636 */
6637 touch_nmi_watchdog();
6638 if (!state_filter || (p->state & state_filter))
6639 sched_show_task(p);
6640 } while_each_thread(g, p);
6641
6642 touch_all_softlockup_watchdogs();
6643
6644 #ifdef CONFIG_SCHED_DEBUG
6645 sysrq_sched_debug_show();
6646 #endif
6647 read_unlock(&tasklist_lock);
6648 /*
6649 * Only show locks if all tasks are dumped:
6650 */
6651 if (state_filter == -1)
6652 debug_show_all_locks();
6653 }
6654
6655 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6656 {
6657 idle->sched_class = &idle_sched_class;
6658 }
6659
6660 /**
6661 * init_idle - set up an idle thread for a given CPU
6662 * @idle: task in question
6663 * @cpu: cpu the idle task belongs to
6664 *
6665 * NOTE: this function does not set the idle thread's NEED_RESCHED
6666 * flag, to make booting more robust.
6667 */
6668 void __cpuinit init_idle(struct task_struct *idle, int cpu)
6669 {
6670 struct rq *rq = cpu_rq(cpu);
6671 unsigned long flags;
6672
6673 spin_lock_irqsave(&rq->lock, flags);
6674
6675 __sched_fork(idle);
6676 idle->se.exec_start = sched_clock();
6677
6678 idle->prio = idle->normal_prio = MAX_PRIO;
6679 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6680 __set_task_cpu(idle, cpu);
6681
6682 rq->curr = rq->idle = idle;
6683 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6684 idle->oncpu = 1;
6685 #endif
6686 spin_unlock_irqrestore(&rq->lock, flags);
6687
6688 /* Set the preempt count _outside_ the spinlocks! */
6689 #if defined(CONFIG_PREEMPT)
6690 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6691 #else
6692 task_thread_info(idle)->preempt_count = 0;
6693 #endif
6694 /*
6695 * The idle tasks have their own, simple scheduling class:
6696 */
6697 idle->sched_class = &idle_sched_class;
6698 ftrace_graph_init_task(idle);
6699 }
6700
6701 /*
6702 * In a system that switches off the HZ timer nohz_cpu_mask
6703 * indicates which cpus entered this state. This is used
6704 * in the rcu update to wait only for active cpus. For system
6705 * which do not switch off the HZ timer nohz_cpu_mask should
6706 * always be CPU_BITS_NONE.
6707 */
6708 cpumask_var_t nohz_cpu_mask;
6709
6710 /*
6711 * Increase the granularity value when there are more CPUs,
6712 * because with more CPUs the 'effective latency' as visible
6713 * to users decreases. But the relationship is not linear,
6714 * so pick a second-best guess by going with the log2 of the
6715 * number of CPUs.
6716 *
6717 * This idea comes from the SD scheduler of Con Kolivas:
6718 */
6719 static inline void sched_init_granularity(void)
6720 {
6721 unsigned int factor = 1 + ilog2(num_online_cpus());
6722 const unsigned long limit = 200000000;
6723
6724 sysctl_sched_min_granularity *= factor;
6725 if (sysctl_sched_min_granularity > limit)
6726 sysctl_sched_min_granularity = limit;
6727
6728 sysctl_sched_latency *= factor;
6729 if (sysctl_sched_latency > limit)
6730 sysctl_sched_latency = limit;
6731
6732 sysctl_sched_wakeup_granularity *= factor;
6733
6734 sysctl_sched_shares_ratelimit *= factor;
6735 }
6736
6737 #ifdef CONFIG_SMP
6738 /*
6739 * This is how migration works:
6740 *
6741 * 1) we queue a struct migration_req structure in the source CPU's
6742 * runqueue and wake up that CPU's migration thread.
6743 * 2) we down() the locked semaphore => thread blocks.
6744 * 3) migration thread wakes up (implicitly it forces the migrated
6745 * thread off the CPU)
6746 * 4) it gets the migration request and checks whether the migrated
6747 * task is still in the wrong runqueue.
6748 * 5) if it's in the wrong runqueue then the migration thread removes
6749 * it and puts it into the right queue.
6750 * 6) migration thread up()s the semaphore.
6751 * 7) we wake up and the migration is done.
6752 */
6753
6754 /*
6755 * Change a given task's CPU affinity. Migrate the thread to a
6756 * proper CPU and schedule it away if the CPU it's executing on
6757 * is removed from the allowed bitmask.
6758 *
6759 * NOTE: the caller must have a valid reference to the task, the
6760 * task must not exit() & deallocate itself prematurely. The
6761 * call is not atomic; no spinlocks may be held.
6762 */
6763 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
6764 {
6765 struct migration_req req;
6766 unsigned long flags;
6767 struct rq *rq;
6768 int ret = 0;
6769
6770 rq = task_rq_lock(p, &flags);
6771 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
6772 ret = -EINVAL;
6773 goto out;
6774 }
6775
6776 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
6777 !cpumask_equal(&p->cpus_allowed, new_mask))) {
6778 ret = -EINVAL;
6779 goto out;
6780 }
6781
6782 if (p->sched_class->set_cpus_allowed)
6783 p->sched_class->set_cpus_allowed(p, new_mask);
6784 else {
6785 cpumask_copy(&p->cpus_allowed, new_mask);
6786 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
6787 }
6788
6789 /* Can the task run on the task's current CPU? If so, we're done */
6790 if (cpumask_test_cpu(task_cpu(p), new_mask))
6791 goto out;
6792
6793 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
6794 /* Need help from migration thread: drop lock and wait. */
6795 task_rq_unlock(rq, &flags);
6796 wake_up_process(rq->migration_thread);
6797 wait_for_completion(&req.done);
6798 tlb_migrate_finish(p->mm);
6799 return 0;
6800 }
6801 out:
6802 task_rq_unlock(rq, &flags);
6803
6804 return ret;
6805 }
6806 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
6807
6808 /*
6809 * Move (not current) task off this cpu, onto dest cpu. We're doing
6810 * this because either it can't run here any more (set_cpus_allowed()
6811 * away from this CPU, or CPU going down), or because we're
6812 * attempting to rebalance this task on exec (sched_exec).
6813 *
6814 * So we race with normal scheduler movements, but that's OK, as long
6815 * as the task is no longer on this CPU.
6816 *
6817 * Returns non-zero if task was successfully migrated.
6818 */
6819 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
6820 {
6821 struct rq *rq_dest, *rq_src;
6822 int ret = 0, on_rq;
6823
6824 if (unlikely(!cpu_active(dest_cpu)))
6825 return ret;
6826
6827 rq_src = cpu_rq(src_cpu);
6828 rq_dest = cpu_rq(dest_cpu);
6829
6830 double_rq_lock(rq_src, rq_dest);
6831 /* Already moved. */
6832 if (task_cpu(p) != src_cpu)
6833 goto done;
6834 /* Affinity changed (again). */
6835 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6836 goto fail;
6837
6838 on_rq = p->se.on_rq;
6839 if (on_rq)
6840 deactivate_task(rq_src, p, 0);
6841
6842 set_task_cpu(p, dest_cpu);
6843 if (on_rq) {
6844 activate_task(rq_dest, p, 0);
6845 check_preempt_curr(rq_dest, p, 0);
6846 }
6847 done:
6848 ret = 1;
6849 fail:
6850 double_rq_unlock(rq_src, rq_dest);
6851 return ret;
6852 }
6853
6854 /*
6855 * migration_thread - this is a highprio system thread that performs
6856 * thread migration by bumping thread off CPU then 'pushing' onto
6857 * another runqueue.
6858 */
6859 static int migration_thread(void *data)
6860 {
6861 int cpu = (long)data;
6862 struct rq *rq;
6863
6864 rq = cpu_rq(cpu);
6865 BUG_ON(rq->migration_thread != current);
6866
6867 set_current_state(TASK_INTERRUPTIBLE);
6868 while (!kthread_should_stop()) {
6869 struct migration_req *req;
6870 struct list_head *head;
6871
6872 spin_lock_irq(&rq->lock);
6873
6874 if (cpu_is_offline(cpu)) {
6875 spin_unlock_irq(&rq->lock);
6876 goto wait_to_die;
6877 }
6878
6879 if (rq->active_balance) {
6880 active_load_balance(rq, cpu);
6881 rq->active_balance = 0;
6882 }
6883
6884 head = &rq->migration_queue;
6885
6886 if (list_empty(head)) {
6887 spin_unlock_irq(&rq->lock);
6888 schedule();
6889 set_current_state(TASK_INTERRUPTIBLE);
6890 continue;
6891 }
6892 req = list_entry(head->next, struct migration_req, list);
6893 list_del_init(head->next);
6894
6895 spin_unlock(&rq->lock);
6896 __migrate_task(req->task, cpu, req->dest_cpu);
6897 local_irq_enable();
6898
6899 complete(&req->done);
6900 }
6901 __set_current_state(TASK_RUNNING);
6902 return 0;
6903
6904 wait_to_die:
6905 /* Wait for kthread_stop */
6906 set_current_state(TASK_INTERRUPTIBLE);
6907 while (!kthread_should_stop()) {
6908 schedule();
6909 set_current_state(TASK_INTERRUPTIBLE);
6910 }
6911 __set_current_state(TASK_RUNNING);
6912 return 0;
6913 }
6914
6915 #ifdef CONFIG_HOTPLUG_CPU
6916
6917 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6918 {
6919 int ret;
6920
6921 local_irq_disable();
6922 ret = __migrate_task(p, src_cpu, dest_cpu);
6923 local_irq_enable();
6924 return ret;
6925 }
6926
6927 /*
6928 * Figure out where task on dead CPU should go, use force if necessary.
6929 */
6930 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
6931 {
6932 int dest_cpu;
6933 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
6934
6935 again:
6936 /* Look for allowed, online CPU in same node. */
6937 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
6938 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6939 goto move;
6940
6941 /* Any allowed, online CPU? */
6942 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
6943 if (dest_cpu < nr_cpu_ids)
6944 goto move;
6945
6946 /* No more Mr. Nice Guy. */
6947 if (dest_cpu >= nr_cpu_ids) {
6948 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
6949 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
6950
6951 /*
6952 * Don't tell them about moving exiting tasks or
6953 * kernel threads (both mm NULL), since they never
6954 * leave kernel.
6955 */
6956 if (p->mm && printk_ratelimit()) {
6957 printk(KERN_INFO "process %d (%s) no "
6958 "longer affine to cpu%d\n",
6959 task_pid_nr(p), p->comm, dead_cpu);
6960 }
6961 }
6962
6963 move:
6964 /* It can have affinity changed while we were choosing. */
6965 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
6966 goto again;
6967 }
6968
6969 /*
6970 * While a dead CPU has no uninterruptible tasks queued at this point,
6971 * it might still have a nonzero ->nr_uninterruptible counter, because
6972 * for performance reasons the counter is not stricly tracking tasks to
6973 * their home CPUs. So we just add the counter to another CPU's counter,
6974 * to keep the global sum constant after CPU-down:
6975 */
6976 static void migrate_nr_uninterruptible(struct rq *rq_src)
6977 {
6978 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
6979 unsigned long flags;
6980
6981 local_irq_save(flags);
6982 double_rq_lock(rq_src, rq_dest);
6983 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6984 rq_src->nr_uninterruptible = 0;
6985 double_rq_unlock(rq_src, rq_dest);
6986 local_irq_restore(flags);
6987 }
6988
6989 /* Run through task list and migrate tasks from the dead cpu. */
6990 static void migrate_live_tasks(int src_cpu)
6991 {
6992 struct task_struct *p, *t;
6993
6994 read_lock(&tasklist_lock);
6995
6996 do_each_thread(t, p) {
6997 if (p == current)
6998 continue;
6999
7000 if (task_cpu(p) == src_cpu)
7001 move_task_off_dead_cpu(src_cpu, p);
7002 } while_each_thread(t, p);
7003
7004 read_unlock(&tasklist_lock);
7005 }
7006
7007 /*
7008 * Schedules idle task to be the next runnable task on current CPU.
7009 * It does so by boosting its priority to highest possible.
7010 * Used by CPU offline code.
7011 */
7012 void sched_idle_next(void)
7013 {
7014 int this_cpu = smp_processor_id();
7015 struct rq *rq = cpu_rq(this_cpu);
7016 struct task_struct *p = rq->idle;
7017 unsigned long flags;
7018
7019 /* cpu has to be offline */
7020 BUG_ON(cpu_online(this_cpu));
7021
7022 /*
7023 * Strictly not necessary since rest of the CPUs are stopped by now
7024 * and interrupts disabled on the current cpu.
7025 */
7026 spin_lock_irqsave(&rq->lock, flags);
7027
7028 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7029
7030 update_rq_clock(rq);
7031 activate_task(rq, p, 0);
7032
7033 spin_unlock_irqrestore(&rq->lock, flags);
7034 }
7035
7036 /*
7037 * Ensures that the idle task is using init_mm right before its cpu goes
7038 * offline.
7039 */
7040 void idle_task_exit(void)
7041 {
7042 struct mm_struct *mm = current->active_mm;
7043
7044 BUG_ON(cpu_online(smp_processor_id()));
7045
7046 if (mm != &init_mm)
7047 switch_mm(mm, &init_mm, current);
7048 mmdrop(mm);
7049 }
7050
7051 /* called under rq->lock with disabled interrupts */
7052 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
7053 {
7054 struct rq *rq = cpu_rq(dead_cpu);
7055
7056 /* Must be exiting, otherwise would be on tasklist. */
7057 BUG_ON(!p->exit_state);
7058
7059 /* Cannot have done final schedule yet: would have vanished. */
7060 BUG_ON(p->state == TASK_DEAD);
7061
7062 get_task_struct(p);
7063
7064 /*
7065 * Drop lock around migration; if someone else moves it,
7066 * that's OK. No task can be added to this CPU, so iteration is
7067 * fine.
7068 */
7069 spin_unlock_irq(&rq->lock);
7070 move_task_off_dead_cpu(dead_cpu, p);
7071 spin_lock_irq(&rq->lock);
7072
7073 put_task_struct(p);
7074 }
7075
7076 /* release_task() removes task from tasklist, so we won't find dead tasks. */
7077 static void migrate_dead_tasks(unsigned int dead_cpu)
7078 {
7079 struct rq *rq = cpu_rq(dead_cpu);
7080 struct task_struct *next;
7081
7082 for ( ; ; ) {
7083 if (!rq->nr_running)
7084 break;
7085 update_rq_clock(rq);
7086 next = pick_next_task(rq);
7087 if (!next)
7088 break;
7089 next->sched_class->put_prev_task(rq, next);
7090 migrate_dead(dead_cpu, next);
7091
7092 }
7093 }
7094 #endif /* CONFIG_HOTPLUG_CPU */
7095
7096 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7097
7098 static struct ctl_table sd_ctl_dir[] = {
7099 {
7100 .procname = "sched_domain",
7101 .mode = 0555,
7102 },
7103 {0, },
7104 };
7105
7106 static struct ctl_table sd_ctl_root[] = {
7107 {
7108 .ctl_name = CTL_KERN,
7109 .procname = "kernel",
7110 .mode = 0555,
7111 .child = sd_ctl_dir,
7112 },
7113 {0, },
7114 };
7115
7116 static struct ctl_table *sd_alloc_ctl_entry(int n)
7117 {
7118 struct ctl_table *entry =
7119 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
7120
7121 return entry;
7122 }
7123
7124 static void sd_free_ctl_entry(struct ctl_table **tablep)
7125 {
7126 struct ctl_table *entry;
7127
7128 /*
7129 * In the intermediate directories, both the child directory and
7130 * procname are dynamically allocated and could fail but the mode
7131 * will always be set. In the lowest directory the names are
7132 * static strings and all have proc handlers.
7133 */
7134 for (entry = *tablep; entry->mode; entry++) {
7135 if (entry->child)
7136 sd_free_ctl_entry(&entry->child);
7137 if (entry->proc_handler == NULL)
7138 kfree(entry->procname);
7139 }
7140
7141 kfree(*tablep);
7142 *tablep = NULL;
7143 }
7144
7145 static void
7146 set_table_entry(struct ctl_table *entry,
7147 const char *procname, void *data, int maxlen,
7148 mode_t mode, proc_handler *proc_handler)
7149 {
7150 entry->procname = procname;
7151 entry->data = data;
7152 entry->maxlen = maxlen;
7153 entry->mode = mode;
7154 entry->proc_handler = proc_handler;
7155 }
7156
7157 static struct ctl_table *
7158 sd_alloc_ctl_domain_table(struct sched_domain *sd)
7159 {
7160 struct ctl_table *table = sd_alloc_ctl_entry(13);
7161
7162 if (table == NULL)
7163 return NULL;
7164
7165 set_table_entry(&table[0], "min_interval", &sd->min_interval,
7166 sizeof(long), 0644, proc_doulongvec_minmax);
7167 set_table_entry(&table[1], "max_interval", &sd->max_interval,
7168 sizeof(long), 0644, proc_doulongvec_minmax);
7169 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
7170 sizeof(int), 0644, proc_dointvec_minmax);
7171 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
7172 sizeof(int), 0644, proc_dointvec_minmax);
7173 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
7174 sizeof(int), 0644, proc_dointvec_minmax);
7175 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
7176 sizeof(int), 0644, proc_dointvec_minmax);
7177 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
7178 sizeof(int), 0644, proc_dointvec_minmax);
7179 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
7180 sizeof(int), 0644, proc_dointvec_minmax);
7181 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
7182 sizeof(int), 0644, proc_dointvec_minmax);
7183 set_table_entry(&table[9], "cache_nice_tries",
7184 &sd->cache_nice_tries,
7185 sizeof(int), 0644, proc_dointvec_minmax);
7186 set_table_entry(&table[10], "flags", &sd->flags,
7187 sizeof(int), 0644, proc_dointvec_minmax);
7188 set_table_entry(&table[11], "name", sd->name,
7189 CORENAME_MAX_SIZE, 0444, proc_dostring);
7190 /* &table[12] is terminator */
7191
7192 return table;
7193 }
7194
7195 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7196 {
7197 struct ctl_table *entry, *table;
7198 struct sched_domain *sd;
7199 int domain_num = 0, i;
7200 char buf[32];
7201
7202 for_each_domain(cpu, sd)
7203 domain_num++;
7204 entry = table = sd_alloc_ctl_entry(domain_num + 1);
7205 if (table == NULL)
7206 return NULL;
7207
7208 i = 0;
7209 for_each_domain(cpu, sd) {
7210 snprintf(buf, 32, "domain%d", i);
7211 entry->procname = kstrdup(buf, GFP_KERNEL);
7212 entry->mode = 0555;
7213 entry->child = sd_alloc_ctl_domain_table(sd);
7214 entry++;
7215 i++;
7216 }
7217 return table;
7218 }
7219
7220 static struct ctl_table_header *sd_sysctl_header;
7221 static void register_sched_domain_sysctl(void)
7222 {
7223 int i, cpu_num = num_online_cpus();
7224 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7225 char buf[32];
7226
7227 WARN_ON(sd_ctl_dir[0].child);
7228 sd_ctl_dir[0].child = entry;
7229
7230 if (entry == NULL)
7231 return;
7232
7233 for_each_online_cpu(i) {
7234 snprintf(buf, 32, "cpu%d", i);
7235 entry->procname = kstrdup(buf, GFP_KERNEL);
7236 entry->mode = 0555;
7237 entry->child = sd_alloc_ctl_cpu_table(i);
7238 entry++;
7239 }
7240
7241 WARN_ON(sd_sysctl_header);
7242 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7243 }
7244
7245 /* may be called multiple times per register */
7246 static void unregister_sched_domain_sysctl(void)
7247 {
7248 if (sd_sysctl_header)
7249 unregister_sysctl_table(sd_sysctl_header);
7250 sd_sysctl_header = NULL;
7251 if (sd_ctl_dir[0].child)
7252 sd_free_ctl_entry(&sd_ctl_dir[0].child);
7253 }
7254 #else
7255 static void register_sched_domain_sysctl(void)
7256 {
7257 }
7258 static void unregister_sched_domain_sysctl(void)
7259 {
7260 }
7261 #endif
7262
7263 static void set_rq_online(struct rq *rq)
7264 {
7265 if (!rq->online) {
7266 const struct sched_class *class;
7267
7268 cpumask_set_cpu(rq->cpu, rq->rd->online);
7269 rq->online = 1;
7270
7271 for_each_class(class) {
7272 if (class->rq_online)
7273 class->rq_online(rq);
7274 }
7275 }
7276 }
7277
7278 static void set_rq_offline(struct rq *rq)
7279 {
7280 if (rq->online) {
7281 const struct sched_class *class;
7282
7283 for_each_class(class) {
7284 if (class->rq_offline)
7285 class->rq_offline(rq);
7286 }
7287
7288 cpumask_clear_cpu(rq->cpu, rq->rd->online);
7289 rq->online = 0;
7290 }
7291 }
7292
7293 /*
7294 * migration_call - callback that gets triggered when a CPU is added.
7295 * Here we can start up the necessary migration thread for the new CPU.
7296 */
7297 static int __cpuinit
7298 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
7299 {
7300 struct task_struct *p;
7301 int cpu = (long)hcpu;
7302 unsigned long flags;
7303 struct rq *rq;
7304
7305 switch (action) {
7306
7307 case CPU_UP_PREPARE:
7308 case CPU_UP_PREPARE_FROZEN:
7309 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
7310 if (IS_ERR(p))
7311 return NOTIFY_BAD;
7312 kthread_bind(p, cpu);
7313 /* Must be high prio: stop_machine expects to yield to it. */
7314 rq = task_rq_lock(p, &flags);
7315 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7316 task_rq_unlock(rq, &flags);
7317 cpu_rq(cpu)->migration_thread = p;
7318 break;
7319
7320 case CPU_ONLINE:
7321 case CPU_ONLINE_FROZEN:
7322 /* Strictly unnecessary, as first user will wake it. */
7323 wake_up_process(cpu_rq(cpu)->migration_thread);
7324
7325 /* Update our root-domain */
7326 rq = cpu_rq(cpu);
7327 spin_lock_irqsave(&rq->lock, flags);
7328 if (rq->rd) {
7329 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7330
7331 set_rq_online(rq);
7332 }
7333 spin_unlock_irqrestore(&rq->lock, flags);
7334 break;
7335
7336 #ifdef CONFIG_HOTPLUG_CPU
7337 case CPU_UP_CANCELED:
7338 case CPU_UP_CANCELED_FROZEN:
7339 if (!cpu_rq(cpu)->migration_thread)
7340 break;
7341 /* Unbind it from offline cpu so it can run. Fall thru. */
7342 kthread_bind(cpu_rq(cpu)->migration_thread,
7343 cpumask_any(cpu_online_mask));
7344 kthread_stop(cpu_rq(cpu)->migration_thread);
7345 cpu_rq(cpu)->migration_thread = NULL;
7346 break;
7347
7348 case CPU_DEAD:
7349 case CPU_DEAD_FROZEN:
7350 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
7351 migrate_live_tasks(cpu);
7352 rq = cpu_rq(cpu);
7353 kthread_stop(rq->migration_thread);
7354 rq->migration_thread = NULL;
7355 /* Idle task back to normal (off runqueue, low prio) */
7356 spin_lock_irq(&rq->lock);
7357 update_rq_clock(rq);
7358 deactivate_task(rq, rq->idle, 0);
7359 rq->idle->static_prio = MAX_PRIO;
7360 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7361 rq->idle->sched_class = &idle_sched_class;
7362 migrate_dead_tasks(cpu);
7363 spin_unlock_irq(&rq->lock);
7364 cpuset_unlock();
7365 migrate_nr_uninterruptible(rq);
7366 BUG_ON(rq->nr_running != 0);
7367
7368 /*
7369 * No need to migrate the tasks: it was best-effort if
7370 * they didn't take sched_hotcpu_mutex. Just wake up
7371 * the requestors.
7372 */
7373 spin_lock_irq(&rq->lock);
7374 while (!list_empty(&rq->migration_queue)) {
7375 struct migration_req *req;
7376
7377 req = list_entry(rq->migration_queue.next,
7378 struct migration_req, list);
7379 list_del_init(&req->list);
7380 spin_unlock_irq(&rq->lock);
7381 complete(&req->done);
7382 spin_lock_irq(&rq->lock);
7383 }
7384 spin_unlock_irq(&rq->lock);
7385 break;
7386
7387 case CPU_DYING:
7388 case CPU_DYING_FROZEN:
7389 /* Update our root-domain */
7390 rq = cpu_rq(cpu);
7391 spin_lock_irqsave(&rq->lock, flags);
7392 if (rq->rd) {
7393 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7394 set_rq_offline(rq);
7395 }
7396 spin_unlock_irqrestore(&rq->lock, flags);
7397 break;
7398 #endif
7399 }
7400 return NOTIFY_OK;
7401 }
7402
7403 /* Register at highest priority so that task migration (migrate_all_tasks)
7404 * happens before everything else.
7405 */
7406 static struct notifier_block __cpuinitdata migration_notifier = {
7407 .notifier_call = migration_call,
7408 .priority = 10
7409 };
7410
7411 static int __init migration_init(void)
7412 {
7413 void *cpu = (void *)(long)smp_processor_id();
7414 int err;
7415
7416 /* Start one for the boot CPU: */
7417 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7418 BUG_ON(err == NOTIFY_BAD);
7419 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7420 register_cpu_notifier(&migration_notifier);
7421
7422 return err;
7423 }
7424 early_initcall(migration_init);
7425 #endif
7426
7427 #ifdef CONFIG_SMP
7428
7429 #ifdef CONFIG_SCHED_DEBUG
7430
7431 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7432 struct cpumask *groupmask)
7433 {
7434 struct sched_group *group = sd->groups;
7435 char str[256];
7436
7437 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7438 cpumask_clear(groupmask);
7439
7440 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7441
7442 if (!(sd->flags & SD_LOAD_BALANCE)) {
7443 printk("does not load-balance\n");
7444 if (sd->parent)
7445 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7446 " has parent");
7447 return -1;
7448 }
7449
7450 printk(KERN_CONT "span %s level %s\n", str, sd->name);
7451
7452 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
7453 printk(KERN_ERR "ERROR: domain->span does not contain "
7454 "CPU%d\n", cpu);
7455 }
7456 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
7457 printk(KERN_ERR "ERROR: domain->groups does not contain"
7458 " CPU%d\n", cpu);
7459 }
7460
7461 printk(KERN_DEBUG "%*s groups:", level + 1, "");
7462 do {
7463 if (!group) {
7464 printk("\n");
7465 printk(KERN_ERR "ERROR: group is NULL\n");
7466 break;
7467 }
7468
7469 if (!group->__cpu_power) {
7470 printk(KERN_CONT "\n");
7471 printk(KERN_ERR "ERROR: domain->cpu_power not "
7472 "set\n");
7473 break;
7474 }
7475
7476 if (!cpumask_weight(sched_group_cpus(group))) {
7477 printk(KERN_CONT "\n");
7478 printk(KERN_ERR "ERROR: empty group\n");
7479 break;
7480 }
7481
7482 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
7483 printk(KERN_CONT "\n");
7484 printk(KERN_ERR "ERROR: repeated CPUs\n");
7485 break;
7486 }
7487
7488 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
7489
7490 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7491 printk(KERN_CONT " %s (__cpu_power = %d)", str,
7492 group->__cpu_power);
7493
7494 group = group->next;
7495 } while (group != sd->groups);
7496 printk(KERN_CONT "\n");
7497
7498 if (!cpumask_equal(sched_domain_span(sd), groupmask))
7499 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
7500
7501 if (sd->parent &&
7502 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
7503 printk(KERN_ERR "ERROR: parent span is not a superset "
7504 "of domain->span\n");
7505 return 0;
7506 }
7507
7508 static void sched_domain_debug(struct sched_domain *sd, int cpu)
7509 {
7510 cpumask_var_t groupmask;
7511 int level = 0;
7512
7513 if (!sd) {
7514 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7515 return;
7516 }
7517
7518 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7519
7520 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7521 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7522 return;
7523 }
7524
7525 for (;;) {
7526 if (sched_domain_debug_one(sd, cpu, level, groupmask))
7527 break;
7528 level++;
7529 sd = sd->parent;
7530 if (!sd)
7531 break;
7532 }
7533 free_cpumask_var(groupmask);
7534 }
7535 #else /* !CONFIG_SCHED_DEBUG */
7536 # define sched_domain_debug(sd, cpu) do { } while (0)
7537 #endif /* CONFIG_SCHED_DEBUG */
7538
7539 static int sd_degenerate(struct sched_domain *sd)
7540 {
7541 if (cpumask_weight(sched_domain_span(sd)) == 1)
7542 return 1;
7543
7544 /* Following flags need at least 2 groups */
7545 if (sd->flags & (SD_LOAD_BALANCE |
7546 SD_BALANCE_NEWIDLE |
7547 SD_BALANCE_FORK |
7548 SD_BALANCE_EXEC |
7549 SD_SHARE_CPUPOWER |
7550 SD_SHARE_PKG_RESOURCES)) {
7551 if (sd->groups != sd->groups->next)
7552 return 0;
7553 }
7554
7555 /* Following flags don't use groups */
7556 if (sd->flags & (SD_WAKE_IDLE |
7557 SD_WAKE_AFFINE |
7558 SD_WAKE_BALANCE))
7559 return 0;
7560
7561 return 1;
7562 }
7563
7564 static int
7565 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7566 {
7567 unsigned long cflags = sd->flags, pflags = parent->flags;
7568
7569 if (sd_degenerate(parent))
7570 return 1;
7571
7572 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7573 return 0;
7574
7575 /* Does parent contain flags not in child? */
7576 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
7577 if (cflags & SD_WAKE_AFFINE)
7578 pflags &= ~SD_WAKE_BALANCE;
7579 /* Flags needing groups don't count if only 1 group in parent */
7580 if (parent->groups == parent->groups->next) {
7581 pflags &= ~(SD_LOAD_BALANCE |
7582 SD_BALANCE_NEWIDLE |
7583 SD_BALANCE_FORK |
7584 SD_BALANCE_EXEC |
7585 SD_SHARE_CPUPOWER |
7586 SD_SHARE_PKG_RESOURCES);
7587 if (nr_node_ids == 1)
7588 pflags &= ~SD_SERIALIZE;
7589 }
7590 if (~cflags & pflags)
7591 return 0;
7592
7593 return 1;
7594 }
7595
7596 static void free_rootdomain(struct root_domain *rd)
7597 {
7598 cpupri_cleanup(&rd->cpupri);
7599
7600 free_cpumask_var(rd->rto_mask);
7601 free_cpumask_var(rd->online);
7602 free_cpumask_var(rd->span);
7603 kfree(rd);
7604 }
7605
7606 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7607 {
7608 struct root_domain *old_rd = NULL;
7609 unsigned long flags;
7610
7611 spin_lock_irqsave(&rq->lock, flags);
7612
7613 if (rq->rd) {
7614 old_rd = rq->rd;
7615
7616 if (cpumask_test_cpu(rq->cpu, old_rd->online))
7617 set_rq_offline(rq);
7618
7619 cpumask_clear_cpu(rq->cpu, old_rd->span);
7620
7621 /*
7622 * If we dont want to free the old_rt yet then
7623 * set old_rd to NULL to skip the freeing later
7624 * in this function:
7625 */
7626 if (!atomic_dec_and_test(&old_rd->refcount))
7627 old_rd = NULL;
7628 }
7629
7630 atomic_inc(&rd->refcount);
7631 rq->rd = rd;
7632
7633 cpumask_set_cpu(rq->cpu, rd->span);
7634 if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
7635 set_rq_online(rq);
7636
7637 spin_unlock_irqrestore(&rq->lock, flags);
7638
7639 if (old_rd)
7640 free_rootdomain(old_rd);
7641 }
7642
7643 static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
7644 {
7645 memset(rd, 0, sizeof(*rd));
7646
7647 if (bootmem) {
7648 alloc_bootmem_cpumask_var(&def_root_domain.span);
7649 alloc_bootmem_cpumask_var(&def_root_domain.online);
7650 alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
7651 cpupri_init(&rd->cpupri, true);
7652 return 0;
7653 }
7654
7655 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
7656 goto out;
7657 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
7658 goto free_span;
7659 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
7660 goto free_online;
7661
7662 if (cpupri_init(&rd->cpupri, false) != 0)
7663 goto free_rto_mask;
7664 return 0;
7665
7666 free_rto_mask:
7667 free_cpumask_var(rd->rto_mask);
7668 free_online:
7669 free_cpumask_var(rd->online);
7670 free_span:
7671 free_cpumask_var(rd->span);
7672 out:
7673 return -ENOMEM;
7674 }
7675
7676 static void init_defrootdomain(void)
7677 {
7678 init_rootdomain(&def_root_domain, true);
7679
7680 atomic_set(&def_root_domain.refcount, 1);
7681 }
7682
7683 static struct root_domain *alloc_rootdomain(void)
7684 {
7685 struct root_domain *rd;
7686
7687 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7688 if (!rd)
7689 return NULL;
7690
7691 if (init_rootdomain(rd, false) != 0) {
7692 kfree(rd);
7693 return NULL;
7694 }
7695
7696 return rd;
7697 }
7698
7699 /*
7700 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
7701 * hold the hotplug lock.
7702 */
7703 static void
7704 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
7705 {
7706 struct rq *rq = cpu_rq(cpu);
7707 struct sched_domain *tmp;
7708
7709 /* Remove the sched domains which do not contribute to scheduling. */
7710 for (tmp = sd; tmp; ) {
7711 struct sched_domain *parent = tmp->parent;
7712 if (!parent)
7713 break;
7714
7715 if (sd_parent_degenerate(tmp, parent)) {
7716 tmp->parent = parent->parent;
7717 if (parent->parent)
7718 parent->parent->child = tmp;
7719 } else
7720 tmp = tmp->parent;
7721 }
7722
7723 if (sd && sd_degenerate(sd)) {
7724 sd = sd->parent;
7725 if (sd)
7726 sd->child = NULL;
7727 }
7728
7729 sched_domain_debug(sd, cpu);
7730
7731 rq_attach_root(rq, rd);
7732 rcu_assign_pointer(rq->sd, sd);
7733 }
7734
7735 /* cpus with isolated domains */
7736 static cpumask_var_t cpu_isolated_map;
7737
7738 /* Setup the mask of cpus configured for isolated domains */
7739 static int __init isolated_cpu_setup(char *str)
7740 {
7741 cpulist_parse(str, cpu_isolated_map);
7742 return 1;
7743 }
7744
7745 __setup("isolcpus=", isolated_cpu_setup);
7746
7747 /*
7748 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
7749 * to a function which identifies what group(along with sched group) a CPU
7750 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
7751 * (due to the fact that we keep track of groups covered with a struct cpumask).
7752 *
7753 * init_sched_build_groups will build a circular linked list of the groups
7754 * covered by the given span, and will set each group's ->cpumask correctly,
7755 * and ->cpu_power to 0.
7756 */
7757 static void
7758 init_sched_build_groups(const struct cpumask *span,
7759 const struct cpumask *cpu_map,
7760 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7761 struct sched_group **sg,
7762 struct cpumask *tmpmask),
7763 struct cpumask *covered, struct cpumask *tmpmask)
7764 {
7765 struct sched_group *first = NULL, *last = NULL;
7766 int i;
7767
7768 cpumask_clear(covered);
7769
7770 for_each_cpu(i, span) {
7771 struct sched_group *sg;
7772 int group = group_fn(i, cpu_map, &sg, tmpmask);
7773 int j;
7774
7775 if (cpumask_test_cpu(i, covered))
7776 continue;
7777
7778 cpumask_clear(sched_group_cpus(sg));
7779 sg->__cpu_power = 0;
7780
7781 for_each_cpu(j, span) {
7782 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
7783 continue;
7784
7785 cpumask_set_cpu(j, covered);
7786 cpumask_set_cpu(j, sched_group_cpus(sg));
7787 }
7788 if (!first)
7789 first = sg;
7790 if (last)
7791 last->next = sg;
7792 last = sg;
7793 }
7794 last->next = first;
7795 }
7796
7797 #define SD_NODES_PER_DOMAIN 16
7798
7799 #ifdef CONFIG_NUMA
7800
7801 /**
7802 * find_next_best_node - find the next node to include in a sched_domain
7803 * @node: node whose sched_domain we're building
7804 * @used_nodes: nodes already in the sched_domain
7805 *
7806 * Find the next node to include in a given scheduling domain. Simply
7807 * finds the closest node not already in the @used_nodes map.
7808 *
7809 * Should use nodemask_t.
7810 */
7811 static int find_next_best_node(int node, nodemask_t *used_nodes)
7812 {
7813 int i, n, val, min_val, best_node = 0;
7814
7815 min_val = INT_MAX;
7816
7817 for (i = 0; i < nr_node_ids; i++) {
7818 /* Start at @node */
7819 n = (node + i) % nr_node_ids;
7820
7821 if (!nr_cpus_node(n))
7822 continue;
7823
7824 /* Skip already used nodes */
7825 if (node_isset(n, *used_nodes))
7826 continue;
7827
7828 /* Simple min distance search */
7829 val = node_distance(node, n);
7830
7831 if (val < min_val) {
7832 min_val = val;
7833 best_node = n;
7834 }
7835 }
7836
7837 node_set(best_node, *used_nodes);
7838 return best_node;
7839 }
7840
7841 /**
7842 * sched_domain_node_span - get a cpumask for a node's sched_domain
7843 * @node: node whose cpumask we're constructing
7844 * @span: resulting cpumask
7845 *
7846 * Given a node, construct a good cpumask for its sched_domain to span. It
7847 * should be one that prevents unnecessary balancing, but also spreads tasks
7848 * out optimally.
7849 */
7850 static void sched_domain_node_span(int node, struct cpumask *span)
7851 {
7852 nodemask_t used_nodes;
7853 int i;
7854
7855 cpumask_clear(span);
7856 nodes_clear(used_nodes);
7857
7858 cpumask_or(span, span, cpumask_of_node(node));
7859 node_set(node, used_nodes);
7860
7861 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7862 int next_node = find_next_best_node(node, &used_nodes);
7863
7864 cpumask_or(span, span, cpumask_of_node(next_node));
7865 }
7866 }
7867 #endif /* CONFIG_NUMA */
7868
7869 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7870
7871 /*
7872 * The cpus mask in sched_group and sched_domain hangs off the end.
7873 * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
7874 * for nr_cpu_ids < CONFIG_NR_CPUS.
7875 */
7876 struct static_sched_group {
7877 struct sched_group sg;
7878 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
7879 };
7880
7881 struct static_sched_domain {
7882 struct sched_domain sd;
7883 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
7884 };
7885
7886 /*
7887 * SMT sched-domains:
7888 */
7889 #ifdef CONFIG_SCHED_SMT
7890 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
7891 static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
7892
7893 static int
7894 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
7895 struct sched_group **sg, struct cpumask *unused)
7896 {
7897 if (sg)
7898 *sg = &per_cpu(sched_group_cpus, cpu).sg;
7899 return cpu;
7900 }
7901 #endif /* CONFIG_SCHED_SMT */
7902
7903 /*
7904 * multi-core sched-domains:
7905 */
7906 #ifdef CONFIG_SCHED_MC
7907 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
7908 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
7909 #endif /* CONFIG_SCHED_MC */
7910
7911 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
7912 static int
7913 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7914 struct sched_group **sg, struct cpumask *mask)
7915 {
7916 int group;
7917
7918 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
7919 group = cpumask_first(mask);
7920 if (sg)
7921 *sg = &per_cpu(sched_group_core, group).sg;
7922 return group;
7923 }
7924 #elif defined(CONFIG_SCHED_MC)
7925 static int
7926 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7927 struct sched_group **sg, struct cpumask *unused)
7928 {
7929 if (sg)
7930 *sg = &per_cpu(sched_group_core, cpu).sg;
7931 return cpu;
7932 }
7933 #endif
7934
7935 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
7936 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
7937
7938 static int
7939 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
7940 struct sched_group **sg, struct cpumask *mask)
7941 {
7942 int group;
7943 #ifdef CONFIG_SCHED_MC
7944 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
7945 group = cpumask_first(mask);
7946 #elif defined(CONFIG_SCHED_SMT)
7947 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
7948 group = cpumask_first(mask);
7949 #else
7950 group = cpu;
7951 #endif
7952 if (sg)
7953 *sg = &per_cpu(sched_group_phys, group).sg;
7954 return group;
7955 }
7956
7957 #ifdef CONFIG_NUMA
7958 /*
7959 * The init_sched_build_groups can't handle what we want to do with node
7960 * groups, so roll our own. Now each node has its own list of groups which
7961 * gets dynamically allocated.
7962 */
7963 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
7964 static struct sched_group ***sched_group_nodes_bycpu;
7965
7966 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
7967 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
7968
7969 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
7970 struct sched_group **sg,
7971 struct cpumask *nodemask)
7972 {
7973 int group;
7974
7975 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
7976 group = cpumask_first(nodemask);
7977
7978 if (sg)
7979 *sg = &per_cpu(sched_group_allnodes, group).sg;
7980 return group;
7981 }
7982
7983 static void init_numa_sched_groups_power(struct sched_group *group_head)
7984 {
7985 struct sched_group *sg = group_head;
7986 int j;
7987
7988 if (!sg)
7989 return;
7990 do {
7991 for_each_cpu(j, sched_group_cpus(sg)) {
7992 struct sched_domain *sd;
7993
7994 sd = &per_cpu(phys_domains, j).sd;
7995 if (j != group_first_cpu(sd->groups)) {
7996 /*
7997 * Only add "power" once for each
7998 * physical package.
7999 */
8000 continue;
8001 }
8002
8003 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
8004 }
8005 sg = sg->next;
8006 } while (sg != group_head);
8007 }
8008 #endif /* CONFIG_NUMA */
8009
8010 #ifdef CONFIG_NUMA
8011 /* Free memory allocated for various sched_group structures */
8012 static void free_sched_groups(const struct cpumask *cpu_map,
8013 struct cpumask *nodemask)
8014 {
8015 int cpu, i;
8016
8017 for_each_cpu(cpu, cpu_map) {
8018 struct sched_group **sched_group_nodes
8019 = sched_group_nodes_bycpu[cpu];
8020
8021 if (!sched_group_nodes)
8022 continue;
8023
8024 for (i = 0; i < nr_node_ids; i++) {
8025 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8026
8027 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8028 if (cpumask_empty(nodemask))
8029 continue;
8030
8031 if (sg == NULL)
8032 continue;
8033 sg = sg->next;
8034 next_sg:
8035 oldsg = sg;
8036 sg = sg->next;
8037 kfree(oldsg);
8038 if (oldsg != sched_group_nodes[i])
8039 goto next_sg;
8040 }
8041 kfree(sched_group_nodes);
8042 sched_group_nodes_bycpu[cpu] = NULL;
8043 }
8044 }
8045 #else /* !CONFIG_NUMA */
8046 static void free_sched_groups(const struct cpumask *cpu_map,
8047 struct cpumask *nodemask)
8048 {
8049 }
8050 #endif /* CONFIG_NUMA */
8051
8052 /*
8053 * Initialize sched groups cpu_power.
8054 *
8055 * cpu_power indicates the capacity of sched group, which is used while
8056 * distributing the load between different sched groups in a sched domain.
8057 * Typically cpu_power for all the groups in a sched domain will be same unless
8058 * there are asymmetries in the topology. If there are asymmetries, group
8059 * having more cpu_power will pickup more load compared to the group having
8060 * less cpu_power.
8061 *
8062 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
8063 * the maximum number of tasks a group can handle in the presence of other idle
8064 * or lightly loaded groups in the same sched domain.
8065 */
8066 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8067 {
8068 struct sched_domain *child;
8069 struct sched_group *group;
8070
8071 WARN_ON(!sd || !sd->groups);
8072
8073 if (cpu != group_first_cpu(sd->groups))
8074 return;
8075
8076 child = sd->child;
8077
8078 sd->groups->__cpu_power = 0;
8079
8080 /*
8081 * For perf policy, if the groups in child domain share resources
8082 * (for example cores sharing some portions of the cache hierarchy
8083 * or SMT), then set this domain groups cpu_power such that each group
8084 * can handle only one task, when there are other idle groups in the
8085 * same sched domain.
8086 */
8087 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
8088 (child->flags &
8089 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
8090 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
8091 return;
8092 }
8093
8094 /*
8095 * add cpu_power of each child group to this groups cpu_power
8096 */
8097 group = child->groups;
8098 do {
8099 sg_inc_cpu_power(sd->groups, group->__cpu_power);
8100 group = group->next;
8101 } while (group != child->groups);
8102 }
8103
8104 /*
8105 * Initializers for schedule domains
8106 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8107 */
8108
8109 #ifdef CONFIG_SCHED_DEBUG
8110 # define SD_INIT_NAME(sd, type) sd->name = #type
8111 #else
8112 # define SD_INIT_NAME(sd, type) do { } while (0)
8113 #endif
8114
8115 #define SD_INIT(sd, type) sd_init_##type(sd)
8116
8117 #define SD_INIT_FUNC(type) \
8118 static noinline void sd_init_##type(struct sched_domain *sd) \
8119 { \
8120 memset(sd, 0, sizeof(*sd)); \
8121 *sd = SD_##type##_INIT; \
8122 sd->level = SD_LV_##type; \
8123 SD_INIT_NAME(sd, type); \
8124 }
8125
8126 SD_INIT_FUNC(CPU)
8127 #ifdef CONFIG_NUMA
8128 SD_INIT_FUNC(ALLNODES)
8129 SD_INIT_FUNC(NODE)
8130 #endif
8131 #ifdef CONFIG_SCHED_SMT
8132 SD_INIT_FUNC(SIBLING)
8133 #endif
8134 #ifdef CONFIG_SCHED_MC
8135 SD_INIT_FUNC(MC)
8136 #endif
8137
8138 static int default_relax_domain_level = -1;
8139
8140 static int __init setup_relax_domain_level(char *str)
8141 {
8142 unsigned long val;
8143
8144 val = simple_strtoul(str, NULL, 0);
8145 if (val < SD_LV_MAX)
8146 default_relax_domain_level = val;
8147
8148 return 1;
8149 }
8150 __setup("relax_domain_level=", setup_relax_domain_level);
8151
8152 static void set_domain_attribute(struct sched_domain *sd,
8153 struct sched_domain_attr *attr)
8154 {
8155 int request;
8156
8157 if (!attr || attr->relax_domain_level < 0) {
8158 if (default_relax_domain_level < 0)
8159 return;
8160 else
8161 request = default_relax_domain_level;
8162 } else
8163 request = attr->relax_domain_level;
8164 if (request < sd->level) {
8165 /* turn off idle balance on this domain */
8166 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
8167 } else {
8168 /* turn on idle balance on this domain */
8169 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
8170 }
8171 }
8172
8173 /*
8174 * Build sched domains for a given set of cpus and attach the sched domains
8175 * to the individual cpus
8176 */
8177 static int __build_sched_domains(const struct cpumask *cpu_map,
8178 struct sched_domain_attr *attr)
8179 {
8180 int i, err = -ENOMEM;
8181 struct root_domain *rd;
8182 cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
8183 tmpmask;
8184 #ifdef CONFIG_NUMA
8185 cpumask_var_t domainspan, covered, notcovered;
8186 struct sched_group **sched_group_nodes = NULL;
8187 int sd_allnodes = 0;
8188
8189 if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
8190 goto out;
8191 if (!alloc_cpumask_var(&covered, GFP_KERNEL))
8192 goto free_domainspan;
8193 if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
8194 goto free_covered;
8195 #endif
8196
8197 if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
8198 goto free_notcovered;
8199 if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
8200 goto free_nodemask;
8201 if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
8202 goto free_this_sibling_map;
8203 if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
8204 goto free_this_core_map;
8205 if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
8206 goto free_send_covered;
8207
8208 #ifdef CONFIG_NUMA
8209 /*
8210 * Allocate the per-node list of sched groups
8211 */
8212 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
8213 GFP_KERNEL);
8214 if (!sched_group_nodes) {
8215 printk(KERN_WARNING "Can not alloc sched group node list\n");
8216 goto free_tmpmask;
8217 }
8218 #endif
8219
8220 rd = alloc_rootdomain();
8221 if (!rd) {
8222 printk(KERN_WARNING "Cannot alloc root domain\n");
8223 goto free_sched_groups;
8224 }
8225
8226 #ifdef CONFIG_NUMA
8227 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
8228 #endif
8229
8230 /*
8231 * Set up domains for cpus specified by the cpu_map.
8232 */
8233 for_each_cpu(i, cpu_map) {
8234 struct sched_domain *sd = NULL, *p;
8235
8236 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
8237
8238 #ifdef CONFIG_NUMA
8239 if (cpumask_weight(cpu_map) >
8240 SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
8241 sd = &per_cpu(allnodes_domains, i).sd;
8242 SD_INIT(sd, ALLNODES);
8243 set_domain_attribute(sd, attr);
8244 cpumask_copy(sched_domain_span(sd), cpu_map);
8245 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
8246 p = sd;
8247 sd_allnodes = 1;
8248 } else
8249 p = NULL;
8250
8251 sd = &per_cpu(node_domains, i).sd;
8252 SD_INIT(sd, NODE);
8253 set_domain_attribute(sd, attr);
8254 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8255 sd->parent = p;
8256 if (p)
8257 p->child = sd;
8258 cpumask_and(sched_domain_span(sd),
8259 sched_domain_span(sd), cpu_map);
8260 #endif
8261
8262 p = sd;
8263 sd = &per_cpu(phys_domains, i).sd;
8264 SD_INIT(sd, CPU);
8265 set_domain_attribute(sd, attr);
8266 cpumask_copy(sched_domain_span(sd), nodemask);
8267 sd->parent = p;
8268 if (p)
8269 p->child = sd;
8270 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
8271
8272 #ifdef CONFIG_SCHED_MC
8273 p = sd;
8274 sd = &per_cpu(core_domains, i).sd;
8275 SD_INIT(sd, MC);
8276 set_domain_attribute(sd, attr);
8277 cpumask_and(sched_domain_span(sd), cpu_map,
8278 cpu_coregroup_mask(i));
8279 sd->parent = p;
8280 p->child = sd;
8281 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
8282 #endif
8283
8284 #ifdef CONFIG_SCHED_SMT
8285 p = sd;
8286 sd = &per_cpu(cpu_domains, i).sd;
8287 SD_INIT(sd, SIBLING);
8288 set_domain_attribute(sd, attr);
8289 cpumask_and(sched_domain_span(sd),
8290 topology_thread_cpumask(i), cpu_map);
8291 sd->parent = p;
8292 p->child = sd;
8293 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
8294 #endif
8295 }
8296
8297 #ifdef CONFIG_SCHED_SMT
8298 /* Set up CPU (sibling) groups */
8299 for_each_cpu(i, cpu_map) {
8300 cpumask_and(this_sibling_map,
8301 topology_thread_cpumask(i), cpu_map);
8302 if (i != cpumask_first(this_sibling_map))
8303 continue;
8304
8305 init_sched_build_groups(this_sibling_map, cpu_map,
8306 &cpu_to_cpu_group,
8307 send_covered, tmpmask);
8308 }
8309 #endif
8310
8311 #ifdef CONFIG_SCHED_MC
8312 /* Set up multi-core groups */
8313 for_each_cpu(i, cpu_map) {
8314 cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
8315 if (i != cpumask_first(this_core_map))
8316 continue;
8317
8318 init_sched_build_groups(this_core_map, cpu_map,
8319 &cpu_to_core_group,
8320 send_covered, tmpmask);
8321 }
8322 #endif
8323
8324 /* Set up physical groups */
8325 for (i = 0; i < nr_node_ids; i++) {
8326 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8327 if (cpumask_empty(nodemask))
8328 continue;
8329
8330 init_sched_build_groups(nodemask, cpu_map,
8331 &cpu_to_phys_group,
8332 send_covered, tmpmask);
8333 }
8334
8335 #ifdef CONFIG_NUMA
8336 /* Set up node groups */
8337 if (sd_allnodes) {
8338 init_sched_build_groups(cpu_map, cpu_map,
8339 &cpu_to_allnodes_group,
8340 send_covered, tmpmask);
8341 }
8342
8343 for (i = 0; i < nr_node_ids; i++) {
8344 /* Set up node groups */
8345 struct sched_group *sg, *prev;
8346 int j;
8347
8348 cpumask_clear(covered);
8349 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8350 if (cpumask_empty(nodemask)) {
8351 sched_group_nodes[i] = NULL;
8352 continue;
8353 }
8354
8355 sched_domain_node_span(i, domainspan);
8356 cpumask_and(domainspan, domainspan, cpu_map);
8357
8358 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8359 GFP_KERNEL, i);
8360 if (!sg) {
8361 printk(KERN_WARNING "Can not alloc domain group for "
8362 "node %d\n", i);
8363 goto error;
8364 }
8365 sched_group_nodes[i] = sg;
8366 for_each_cpu(j, nodemask) {
8367 struct sched_domain *sd;
8368
8369 sd = &per_cpu(node_domains, j).sd;
8370 sd->groups = sg;
8371 }
8372 sg->__cpu_power = 0;
8373 cpumask_copy(sched_group_cpus(sg), nodemask);
8374 sg->next = sg;
8375 cpumask_or(covered, covered, nodemask);
8376 prev = sg;
8377
8378 for (j = 0; j < nr_node_ids; j++) {
8379 int n = (i + j) % nr_node_ids;
8380
8381 cpumask_complement(notcovered, covered);
8382 cpumask_and(tmpmask, notcovered, cpu_map);
8383 cpumask_and(tmpmask, tmpmask, domainspan);
8384 if (cpumask_empty(tmpmask))
8385 break;
8386
8387 cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
8388 if (cpumask_empty(tmpmask))
8389 continue;
8390
8391 sg = kmalloc_node(sizeof(struct sched_group) +
8392 cpumask_size(),
8393 GFP_KERNEL, i);
8394 if (!sg) {
8395 printk(KERN_WARNING
8396 "Can not alloc domain group for node %d\n", j);
8397 goto error;
8398 }
8399 sg->__cpu_power = 0;
8400 cpumask_copy(sched_group_cpus(sg), tmpmask);
8401 sg->next = prev->next;
8402 cpumask_or(covered, covered, tmpmask);
8403 prev->next = sg;
8404 prev = sg;
8405 }
8406 }
8407 #endif
8408
8409 /* Calculate CPU power for physical packages and nodes */
8410 #ifdef CONFIG_SCHED_SMT
8411 for_each_cpu(i, cpu_map) {
8412 struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
8413
8414 init_sched_groups_power(i, sd);
8415 }
8416 #endif
8417 #ifdef CONFIG_SCHED_MC
8418 for_each_cpu(i, cpu_map) {
8419 struct sched_domain *sd = &per_cpu(core_domains, i).sd;
8420
8421 init_sched_groups_power(i, sd);
8422 }
8423 #endif
8424
8425 for_each_cpu(i, cpu_map) {
8426 struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
8427
8428 init_sched_groups_power(i, sd);
8429 }
8430
8431 #ifdef CONFIG_NUMA
8432 for (i = 0; i < nr_node_ids; i++)
8433 init_numa_sched_groups_power(sched_group_nodes[i]);
8434
8435 if (sd_allnodes) {
8436 struct sched_group *sg;
8437
8438 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8439 tmpmask);
8440 init_numa_sched_groups_power(sg);
8441 }
8442 #endif
8443
8444 /* Attach the domains */
8445 for_each_cpu(i, cpu_map) {
8446 struct sched_domain *sd;
8447 #ifdef CONFIG_SCHED_SMT
8448 sd = &per_cpu(cpu_domains, i).sd;
8449 #elif defined(CONFIG_SCHED_MC)
8450 sd = &per_cpu(core_domains, i).sd;
8451 #else
8452 sd = &per_cpu(phys_domains, i).sd;
8453 #endif
8454 cpu_attach_domain(sd, rd, i);
8455 }
8456
8457 err = 0;
8458
8459 free_tmpmask:
8460 free_cpumask_var(tmpmask);
8461 free_send_covered:
8462 free_cpumask_var(send_covered);
8463 free_this_core_map:
8464 free_cpumask_var(this_core_map);
8465 free_this_sibling_map:
8466 free_cpumask_var(this_sibling_map);
8467 free_nodemask:
8468 free_cpumask_var(nodemask);
8469 free_notcovered:
8470 #ifdef CONFIG_NUMA
8471 free_cpumask_var(notcovered);
8472 free_covered:
8473 free_cpumask_var(covered);
8474 free_domainspan:
8475 free_cpumask_var(domainspan);
8476 out:
8477 #endif
8478 return err;
8479
8480 free_sched_groups:
8481 #ifdef CONFIG_NUMA
8482 kfree(sched_group_nodes);
8483 #endif
8484 goto free_tmpmask;
8485
8486 #ifdef CONFIG_NUMA
8487 error:
8488 free_sched_groups(cpu_map, tmpmask);
8489 free_rootdomain(rd);
8490 goto free_tmpmask;
8491 #endif
8492 }
8493
8494 static int build_sched_domains(const struct cpumask *cpu_map)
8495 {
8496 return __build_sched_domains(cpu_map, NULL);
8497 }
8498
8499 static struct cpumask *doms_cur; /* current sched domains */
8500 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
8501 static struct sched_domain_attr *dattr_cur;
8502 /* attribues of custom domains in 'doms_cur' */
8503
8504 /*
8505 * Special case: If a kmalloc of a doms_cur partition (array of
8506 * cpumask) fails, then fallback to a single sched domain,
8507 * as determined by the single cpumask fallback_doms.
8508 */
8509 static cpumask_var_t fallback_doms;
8510
8511 /*
8512 * arch_update_cpu_topology lets virtualized architectures update the
8513 * cpu core maps. It is supposed to return 1 if the topology changed
8514 * or 0 if it stayed the same.
8515 */
8516 int __attribute__((weak)) arch_update_cpu_topology(void)
8517 {
8518 return 0;
8519 }
8520
8521 /*
8522 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
8523 * For now this just excludes isolated cpus, but could be used to
8524 * exclude other special cases in the future.
8525 */
8526 static int arch_init_sched_domains(const struct cpumask *cpu_map)
8527 {
8528 int err;
8529
8530 arch_update_cpu_topology();
8531 ndoms_cur = 1;
8532 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
8533 if (!doms_cur)
8534 doms_cur = fallback_doms;
8535 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
8536 dattr_cur = NULL;
8537 err = build_sched_domains(doms_cur);
8538 register_sched_domain_sysctl();
8539
8540 return err;
8541 }
8542
8543 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
8544 struct cpumask *tmpmask)
8545 {
8546 free_sched_groups(cpu_map, tmpmask);
8547 }
8548
8549 /*
8550 * Detach sched domains from a group of cpus specified in cpu_map
8551 * These cpus will now be attached to the NULL domain
8552 */
8553 static void detach_destroy_domains(const struct cpumask *cpu_map)
8554 {
8555 /* Save because hotplug lock held. */
8556 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
8557 int i;
8558
8559 for_each_cpu(i, cpu_map)
8560 cpu_attach_domain(NULL, &def_root_domain, i);
8561 synchronize_sched();
8562 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
8563 }
8564
8565 /* handle null as "default" */
8566 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8567 struct sched_domain_attr *new, int idx_new)
8568 {
8569 struct sched_domain_attr tmp;
8570
8571 /* fast path */
8572 if (!new && !cur)
8573 return 1;
8574
8575 tmp = SD_ATTR_INIT;
8576 return !memcmp(cur ? (cur + idx_cur) : &tmp,
8577 new ? (new + idx_new) : &tmp,
8578 sizeof(struct sched_domain_attr));
8579 }
8580
8581 /*
8582 * Partition sched domains as specified by the 'ndoms_new'
8583 * cpumasks in the array doms_new[] of cpumasks. This compares
8584 * doms_new[] to the current sched domain partitioning, doms_cur[].
8585 * It destroys each deleted domain and builds each new domain.
8586 *
8587 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
8588 * The masks don't intersect (don't overlap.) We should setup one
8589 * sched domain for each mask. CPUs not in any of the cpumasks will
8590 * not be load balanced. If the same cpumask appears both in the
8591 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8592 * it as it is.
8593 *
8594 * The passed in 'doms_new' should be kmalloc'd. This routine takes
8595 * ownership of it and will kfree it when done with it. If the caller
8596 * failed the kmalloc call, then it can pass in doms_new == NULL &&
8597 * ndoms_new == 1, and partition_sched_domains() will fallback to
8598 * the single partition 'fallback_doms', it also forces the domains
8599 * to be rebuilt.
8600 *
8601 * If doms_new == NULL it will be replaced with cpu_online_mask.
8602 * ndoms_new == 0 is a special case for destroying existing domains,
8603 * and it will not create the default domain.
8604 *
8605 * Call with hotplug lock held
8606 */
8607 /* FIXME: Change to struct cpumask *doms_new[] */
8608 void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
8609 struct sched_domain_attr *dattr_new)
8610 {
8611 int i, j, n;
8612 int new_topology;
8613
8614 mutex_lock(&sched_domains_mutex);
8615
8616 /* always unregister in case we don't destroy any domains */
8617 unregister_sched_domain_sysctl();
8618
8619 /* Let architecture update cpu core mappings. */
8620 new_topology = arch_update_cpu_topology();
8621
8622 n = doms_new ? ndoms_new : 0;
8623
8624 /* Destroy deleted domains */
8625 for (i = 0; i < ndoms_cur; i++) {
8626 for (j = 0; j < n && !new_topology; j++) {
8627 if (cpumask_equal(&doms_cur[i], &doms_new[j])
8628 && dattrs_equal(dattr_cur, i, dattr_new, j))
8629 goto match1;
8630 }
8631 /* no match - a current sched domain not in new doms_new[] */
8632 detach_destroy_domains(doms_cur + i);
8633 match1:
8634 ;
8635 }
8636
8637 if (doms_new == NULL) {
8638 ndoms_cur = 0;
8639 doms_new = fallback_doms;
8640 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
8641 WARN_ON_ONCE(dattr_new);
8642 }
8643
8644 /* Build new domains */
8645 for (i = 0; i < ndoms_new; i++) {
8646 for (j = 0; j < ndoms_cur && !new_topology; j++) {
8647 if (cpumask_equal(&doms_new[i], &doms_cur[j])
8648 && dattrs_equal(dattr_new, i, dattr_cur, j))
8649 goto match2;
8650 }
8651 /* no match - add a new doms_new */
8652 __build_sched_domains(doms_new + i,
8653 dattr_new ? dattr_new + i : NULL);
8654 match2:
8655 ;
8656 }
8657
8658 /* Remember the new sched domains */
8659 if (doms_cur != fallback_doms)
8660 kfree(doms_cur);
8661 kfree(dattr_cur); /* kfree(NULL) is safe */
8662 doms_cur = doms_new;
8663 dattr_cur = dattr_new;
8664 ndoms_cur = ndoms_new;
8665
8666 register_sched_domain_sysctl();
8667
8668 mutex_unlock(&sched_domains_mutex);
8669 }
8670
8671 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
8672 static void arch_reinit_sched_domains(void)
8673 {
8674 get_online_cpus();
8675
8676 /* Destroy domains first to force the rebuild */
8677 partition_sched_domains(0, NULL, NULL);
8678
8679 rebuild_sched_domains();
8680 put_online_cpus();
8681 }
8682
8683 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
8684 {
8685 unsigned int level = 0;
8686
8687 if (sscanf(buf, "%u", &level) != 1)
8688 return -EINVAL;
8689
8690 /*
8691 * level is always be positive so don't check for
8692 * level < POWERSAVINGS_BALANCE_NONE which is 0
8693 * What happens on 0 or 1 byte write,
8694 * need to check for count as well?
8695 */
8696
8697 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
8698 return -EINVAL;
8699
8700 if (smt)
8701 sched_smt_power_savings = level;
8702 else
8703 sched_mc_power_savings = level;
8704
8705 arch_reinit_sched_domains();
8706
8707 return count;
8708 }
8709
8710 #ifdef CONFIG_SCHED_MC
8711 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
8712 char *page)
8713 {
8714 return sprintf(page, "%u\n", sched_mc_power_savings);
8715 }
8716 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
8717 const char *buf, size_t count)
8718 {
8719 return sched_power_savings_store(buf, count, 0);
8720 }
8721 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
8722 sched_mc_power_savings_show,
8723 sched_mc_power_savings_store);
8724 #endif
8725
8726 #ifdef CONFIG_SCHED_SMT
8727 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
8728 char *page)
8729 {
8730 return sprintf(page, "%u\n", sched_smt_power_savings);
8731 }
8732 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
8733 const char *buf, size_t count)
8734 {
8735 return sched_power_savings_store(buf, count, 1);
8736 }
8737 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
8738 sched_smt_power_savings_show,
8739 sched_smt_power_savings_store);
8740 #endif
8741
8742 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
8743 {
8744 int err = 0;
8745
8746 #ifdef CONFIG_SCHED_SMT
8747 if (smt_capable())
8748 err = sysfs_create_file(&cls->kset.kobj,
8749 &attr_sched_smt_power_savings.attr);
8750 #endif
8751 #ifdef CONFIG_SCHED_MC
8752 if (!err && mc_capable())
8753 err = sysfs_create_file(&cls->kset.kobj,
8754 &attr_sched_mc_power_savings.attr);
8755 #endif
8756 return err;
8757 }
8758 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
8759
8760 #ifndef CONFIG_CPUSETS
8761 /*
8762 * Add online and remove offline CPUs from the scheduler domains.
8763 * When cpusets are enabled they take over this function.
8764 */
8765 static int update_sched_domains(struct notifier_block *nfb,
8766 unsigned long action, void *hcpu)
8767 {
8768 switch (action) {
8769 case CPU_ONLINE:
8770 case CPU_ONLINE_FROZEN:
8771 case CPU_DEAD:
8772 case CPU_DEAD_FROZEN:
8773 partition_sched_domains(1, NULL, NULL);
8774 return NOTIFY_OK;
8775
8776 default:
8777 return NOTIFY_DONE;
8778 }
8779 }
8780 #endif
8781
8782 static int update_runtime(struct notifier_block *nfb,
8783 unsigned long action, void *hcpu)
8784 {
8785 int cpu = (int)(long)hcpu;
8786
8787 switch (action) {
8788 case CPU_DOWN_PREPARE:
8789 case CPU_DOWN_PREPARE_FROZEN:
8790 disable_runtime(cpu_rq(cpu));
8791 return NOTIFY_OK;
8792
8793 case CPU_DOWN_FAILED:
8794 case CPU_DOWN_FAILED_FROZEN:
8795 case CPU_ONLINE:
8796 case CPU_ONLINE_FROZEN:
8797 enable_runtime(cpu_rq(cpu));
8798 return NOTIFY_OK;
8799
8800 default:
8801 return NOTIFY_DONE;
8802 }
8803 }
8804
8805 void __init sched_init_smp(void)
8806 {
8807 cpumask_var_t non_isolated_cpus;
8808
8809 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
8810
8811 #if defined(CONFIG_NUMA)
8812 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
8813 GFP_KERNEL);
8814 BUG_ON(sched_group_nodes_bycpu == NULL);
8815 #endif
8816 get_online_cpus();
8817 mutex_lock(&sched_domains_mutex);
8818 arch_init_sched_domains(cpu_online_mask);
8819 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
8820 if (cpumask_empty(non_isolated_cpus))
8821 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
8822 mutex_unlock(&sched_domains_mutex);
8823 put_online_cpus();
8824
8825 #ifndef CONFIG_CPUSETS
8826 /* XXX: Theoretical race here - CPU may be hotplugged now */
8827 hotcpu_notifier(update_sched_domains, 0);
8828 #endif
8829
8830 /* RT runtime code needs to handle some hotplug events */
8831 hotcpu_notifier(update_runtime, 0);
8832
8833 init_hrtick();
8834
8835 /* Move init over to a non-isolated CPU */
8836 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
8837 BUG();
8838 sched_init_granularity();
8839 free_cpumask_var(non_isolated_cpus);
8840
8841 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
8842 init_sched_rt_class();
8843 }
8844 #else
8845 void __init sched_init_smp(void)
8846 {
8847 sched_init_granularity();
8848 }
8849 #endif /* CONFIG_SMP */
8850
8851 int in_sched_functions(unsigned long addr)
8852 {
8853 return in_lock_functions(addr) ||
8854 (addr >= (unsigned long)__sched_text_start
8855 && addr < (unsigned long)__sched_text_end);
8856 }
8857
8858 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
8859 {
8860 cfs_rq->tasks_timeline = RB_ROOT;
8861 INIT_LIST_HEAD(&cfs_rq->tasks);
8862 #ifdef CONFIG_FAIR_GROUP_SCHED
8863 cfs_rq->rq = rq;
8864 #endif
8865 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8866 }
8867
8868 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8869 {
8870 struct rt_prio_array *array;
8871 int i;
8872
8873 array = &rt_rq->active;
8874 for (i = 0; i < MAX_RT_PRIO; i++) {
8875 INIT_LIST_HEAD(array->queue + i);
8876 __clear_bit(i, array->bitmap);
8877 }
8878 /* delimiter for bitsearch: */
8879 __set_bit(MAX_RT_PRIO, array->bitmap);
8880
8881 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
8882 rt_rq->highest_prio.curr = MAX_RT_PRIO;
8883 #ifdef CONFIG_SMP
8884 rt_rq->highest_prio.next = MAX_RT_PRIO;
8885 #endif
8886 #endif
8887 #ifdef CONFIG_SMP
8888 rt_rq->rt_nr_migratory = 0;
8889 rt_rq->overloaded = 0;
8890 plist_head_init(&rq->rt.pushable_tasks, &rq->lock);
8891 #endif
8892
8893 rt_rq->rt_time = 0;
8894 rt_rq->rt_throttled = 0;
8895 rt_rq->rt_runtime = 0;
8896 spin_lock_init(&rt_rq->rt_runtime_lock);
8897
8898 #ifdef CONFIG_RT_GROUP_SCHED
8899 rt_rq->rt_nr_boosted = 0;
8900 rt_rq->rq = rq;
8901 #endif
8902 }
8903
8904 #ifdef CONFIG_FAIR_GROUP_SCHED
8905 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8906 struct sched_entity *se, int cpu, int add,
8907 struct sched_entity *parent)
8908 {
8909 struct rq *rq = cpu_rq(cpu);
8910 tg->cfs_rq[cpu] = cfs_rq;
8911 init_cfs_rq(cfs_rq, rq);
8912 cfs_rq->tg = tg;
8913 if (add)
8914 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8915
8916 tg->se[cpu] = se;
8917 /* se could be NULL for init_task_group */
8918 if (!se)
8919 return;
8920
8921 if (!parent)
8922 se->cfs_rq = &rq->cfs;
8923 else
8924 se->cfs_rq = parent->my_q;
8925
8926 se->my_q = cfs_rq;
8927 se->load.weight = tg->shares;
8928 se->load.inv_weight = 0;
8929 se->parent = parent;
8930 }
8931 #endif
8932
8933 #ifdef CONFIG_RT_GROUP_SCHED
8934 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8935 struct sched_rt_entity *rt_se, int cpu, int add,
8936 struct sched_rt_entity *parent)
8937 {
8938 struct rq *rq = cpu_rq(cpu);
8939
8940 tg->rt_rq[cpu] = rt_rq;
8941 init_rt_rq(rt_rq, rq);
8942 rt_rq->tg = tg;
8943 rt_rq->rt_se = rt_se;
8944 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
8945 if (add)
8946 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8947
8948 tg->rt_se[cpu] = rt_se;
8949 if (!rt_se)
8950 return;
8951
8952 if (!parent)
8953 rt_se->rt_rq = &rq->rt;
8954 else
8955 rt_se->rt_rq = parent->my_q;
8956
8957 rt_se->my_q = rt_rq;
8958 rt_se->parent = parent;
8959 INIT_LIST_HEAD(&rt_se->run_list);
8960 }
8961 #endif
8962
8963 void __init sched_init(void)
8964 {
8965 int i, j;
8966 unsigned long alloc_size = 0, ptr;
8967
8968 #ifdef CONFIG_FAIR_GROUP_SCHED
8969 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8970 #endif
8971 #ifdef CONFIG_RT_GROUP_SCHED
8972 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8973 #endif
8974 #ifdef CONFIG_USER_SCHED
8975 alloc_size *= 2;
8976 #endif
8977 #ifdef CONFIG_CPUMASK_OFFSTACK
8978 alloc_size += num_possible_cpus() * cpumask_size();
8979 #endif
8980 /*
8981 * As sched_init() is called before page_alloc is setup,
8982 * we use alloc_bootmem().
8983 */
8984 if (alloc_size) {
8985 ptr = (unsigned long)alloc_bootmem(alloc_size);
8986
8987 #ifdef CONFIG_FAIR_GROUP_SCHED
8988 init_task_group.se = (struct sched_entity **)ptr;
8989 ptr += nr_cpu_ids * sizeof(void **);
8990
8991 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8992 ptr += nr_cpu_ids * sizeof(void **);
8993
8994 #ifdef CONFIG_USER_SCHED
8995 root_task_group.se = (struct sched_entity **)ptr;
8996 ptr += nr_cpu_ids * sizeof(void **);
8997
8998 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8999 ptr += nr_cpu_ids * sizeof(void **);
9000 #endif /* CONFIG_USER_SCHED */
9001 #endif /* CONFIG_FAIR_GROUP_SCHED */
9002 #ifdef CONFIG_RT_GROUP_SCHED
9003 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9004 ptr += nr_cpu_ids * sizeof(void **);
9005
9006 init_task_group.rt_rq = (struct rt_rq **)ptr;
9007 ptr += nr_cpu_ids * sizeof(void **);
9008
9009 #ifdef CONFIG_USER_SCHED
9010 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9011 ptr += nr_cpu_ids * sizeof(void **);
9012
9013 root_task_group.rt_rq = (struct rt_rq **)ptr;
9014 ptr += nr_cpu_ids * sizeof(void **);
9015 #endif /* CONFIG_USER_SCHED */
9016 #endif /* CONFIG_RT_GROUP_SCHED */
9017 #ifdef CONFIG_CPUMASK_OFFSTACK
9018 for_each_possible_cpu(i) {
9019 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9020 ptr += cpumask_size();
9021 }
9022 #endif /* CONFIG_CPUMASK_OFFSTACK */
9023 }
9024
9025 #ifdef CONFIG_SMP
9026 init_defrootdomain();
9027 #endif
9028
9029 init_rt_bandwidth(&def_rt_bandwidth,
9030 global_rt_period(), global_rt_runtime());
9031
9032 #ifdef CONFIG_RT_GROUP_SCHED
9033 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9034 global_rt_period(), global_rt_runtime());
9035 #ifdef CONFIG_USER_SCHED
9036 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9037 global_rt_period(), RUNTIME_INF);
9038 #endif /* CONFIG_USER_SCHED */
9039 #endif /* CONFIG_RT_GROUP_SCHED */
9040
9041 #ifdef CONFIG_GROUP_SCHED
9042 list_add(&init_task_group.list, &task_groups);
9043 INIT_LIST_HEAD(&init_task_group.children);
9044
9045 #ifdef CONFIG_USER_SCHED
9046 INIT_LIST_HEAD(&root_task_group.children);
9047 init_task_group.parent = &root_task_group;
9048 list_add(&init_task_group.siblings, &root_task_group.children);
9049 #endif /* CONFIG_USER_SCHED */
9050 #endif /* CONFIG_GROUP_SCHED */
9051
9052 for_each_possible_cpu(i) {
9053 struct rq *rq;
9054
9055 rq = cpu_rq(i);
9056 spin_lock_init(&rq->lock);
9057 rq->nr_running = 0;
9058 init_cfs_rq(&rq->cfs, rq);
9059 init_rt_rq(&rq->rt, rq);
9060 #ifdef CONFIG_FAIR_GROUP_SCHED
9061 init_task_group.shares = init_task_group_load;
9062 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9063 #ifdef CONFIG_CGROUP_SCHED
9064 /*
9065 * How much cpu bandwidth does init_task_group get?
9066 *
9067 * In case of task-groups formed thr' the cgroup filesystem, it
9068 * gets 100% of the cpu resources in the system. This overall
9069 * system cpu resource is divided among the tasks of
9070 * init_task_group and its child task-groups in a fair manner,
9071 * based on each entity's (task or task-group's) weight
9072 * (se->load.weight).
9073 *
9074 * In other words, if init_task_group has 10 tasks of weight
9075 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9076 * then A0's share of the cpu resource is:
9077 *
9078 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9079 *
9080 * We achieve this by letting init_task_group's tasks sit
9081 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9082 */
9083 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
9084 #elif defined CONFIG_USER_SCHED
9085 root_task_group.shares = NICE_0_LOAD;
9086 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
9087 /*
9088 * In case of task-groups formed thr' the user id of tasks,
9089 * init_task_group represents tasks belonging to root user.
9090 * Hence it forms a sibling of all subsequent groups formed.
9091 * In this case, init_task_group gets only a fraction of overall
9092 * system cpu resource, based on the weight assigned to root
9093 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9094 * by letting tasks of init_task_group sit in a separate cfs_rq
9095 * (init_cfs_rq) and having one entity represent this group of
9096 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9097 */
9098 init_tg_cfs_entry(&init_task_group,
9099 &per_cpu(init_cfs_rq, i),
9100 &per_cpu(init_sched_entity, i), i, 1,
9101 root_task_group.se[i]);
9102
9103 #endif
9104 #endif /* CONFIG_FAIR_GROUP_SCHED */
9105
9106 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9107 #ifdef CONFIG_RT_GROUP_SCHED
9108 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
9109 #ifdef CONFIG_CGROUP_SCHED
9110 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
9111 #elif defined CONFIG_USER_SCHED
9112 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
9113 init_tg_rt_entry(&init_task_group,
9114 &per_cpu(init_rt_rq, i),
9115 &per_cpu(init_sched_rt_entity, i), i, 1,
9116 root_task_group.rt_se[i]);
9117 #endif
9118 #endif
9119
9120 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9121 rq->cpu_load[j] = 0;
9122 #ifdef CONFIG_SMP
9123 rq->sd = NULL;
9124 rq->rd = NULL;
9125 rq->active_balance = 0;
9126 rq->next_balance = jiffies;
9127 rq->push_cpu = 0;
9128 rq->cpu = i;
9129 rq->online = 0;
9130 rq->migration_thread = NULL;
9131 INIT_LIST_HEAD(&rq->migration_queue);
9132 rq_attach_root(rq, &def_root_domain);
9133 #endif
9134 init_rq_hrtick(rq);
9135 atomic_set(&rq->nr_iowait, 0);
9136 }
9137
9138 set_load_weight(&init_task);
9139
9140 #ifdef CONFIG_PREEMPT_NOTIFIERS
9141 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9142 #endif
9143
9144 #ifdef CONFIG_SMP
9145 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9146 #endif
9147
9148 #ifdef CONFIG_RT_MUTEXES
9149 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9150 #endif
9151
9152 /*
9153 * The boot idle thread does lazy MMU switching as well:
9154 */
9155 atomic_inc(&init_mm.mm_count);
9156 enter_lazy_tlb(&init_mm, current);
9157
9158 /*
9159 * Make us the idle thread. Technically, schedule() should not be
9160 * called from this thread, however somewhere below it might be,
9161 * but because we are the idle thread, we just pick up running again
9162 * when this runqueue becomes "idle".
9163 */
9164 init_idle(current, smp_processor_id());
9165 /*
9166 * During early bootup we pretend to be a normal task:
9167 */
9168 current->sched_class = &fair_sched_class;
9169
9170 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9171 alloc_bootmem_cpumask_var(&nohz_cpu_mask);
9172 #ifdef CONFIG_SMP
9173 #ifdef CONFIG_NO_HZ
9174 alloc_bootmem_cpumask_var(&nohz.cpu_mask);
9175 alloc_bootmem_cpumask_var(&nohz.ilb_grp_nohz_mask);
9176 #endif
9177 alloc_bootmem_cpumask_var(&cpu_isolated_map);
9178 #endif /* SMP */
9179
9180 scheduler_running = 1;
9181 }
9182
9183 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9184 void __might_sleep(char *file, int line)
9185 {
9186 #ifdef in_atomic
9187 static unsigned long prev_jiffy; /* ratelimiting */
9188
9189 if ((!in_atomic() && !irqs_disabled()) ||
9190 system_state != SYSTEM_RUNNING || oops_in_progress)
9191 return;
9192 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9193 return;
9194 prev_jiffy = jiffies;
9195
9196 printk(KERN_ERR
9197 "BUG: sleeping function called from invalid context at %s:%d\n",
9198 file, line);
9199 printk(KERN_ERR
9200 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9201 in_atomic(), irqs_disabled(),
9202 current->pid, current->comm);
9203
9204 debug_show_held_locks(current);
9205 if (irqs_disabled())
9206 print_irqtrace_events(current);
9207 dump_stack();
9208 #endif
9209 }
9210 EXPORT_SYMBOL(__might_sleep);
9211 #endif
9212
9213 #ifdef CONFIG_MAGIC_SYSRQ
9214 static void normalize_task(struct rq *rq, struct task_struct *p)
9215 {
9216 int on_rq;
9217
9218 update_rq_clock(rq);
9219 on_rq = p->se.on_rq;
9220 if (on_rq)
9221 deactivate_task(rq, p, 0);
9222 __setscheduler(rq, p, SCHED_NORMAL, 0);
9223 if (on_rq) {
9224 activate_task(rq, p, 0);
9225 resched_task(rq->curr);
9226 }
9227 }
9228
9229 void normalize_rt_tasks(void)
9230 {
9231 struct task_struct *g, *p;
9232 unsigned long flags;
9233 struct rq *rq;
9234
9235 read_lock_irqsave(&tasklist_lock, flags);
9236 do_each_thread(g, p) {
9237 /*
9238 * Only normalize user tasks:
9239 */
9240 if (!p->mm)
9241 continue;
9242
9243 p->se.exec_start = 0;
9244 #ifdef CONFIG_SCHEDSTATS
9245 p->se.wait_start = 0;
9246 p->se.sleep_start = 0;
9247 p->se.block_start = 0;
9248 #endif
9249
9250 if (!rt_task(p)) {
9251 /*
9252 * Renice negative nice level userspace
9253 * tasks back to 0:
9254 */
9255 if (TASK_NICE(p) < 0 && p->mm)
9256 set_user_nice(p, 0);
9257 continue;
9258 }
9259
9260 spin_lock(&p->pi_lock);
9261 rq = __task_rq_lock(p);
9262
9263 normalize_task(rq, p);
9264
9265 __task_rq_unlock(rq);
9266 spin_unlock(&p->pi_lock);
9267 } while_each_thread(g, p);
9268
9269 read_unlock_irqrestore(&tasklist_lock, flags);
9270 }
9271
9272 #endif /* CONFIG_MAGIC_SYSRQ */
9273
9274 #ifdef CONFIG_IA64
9275 /*
9276 * These functions are only useful for the IA64 MCA handling.
9277 *
9278 * They can only be called when the whole system has been
9279 * stopped - every CPU needs to be quiescent, and no scheduling
9280 * activity can take place. Using them for anything else would
9281 * be a serious bug, and as a result, they aren't even visible
9282 * under any other configuration.
9283 */
9284
9285 /**
9286 * curr_task - return the current task for a given cpu.
9287 * @cpu: the processor in question.
9288 *
9289 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9290 */
9291 struct task_struct *curr_task(int cpu)
9292 {
9293 return cpu_curr(cpu);
9294 }
9295
9296 /**
9297 * set_curr_task - set the current task for a given cpu.
9298 * @cpu: the processor in question.
9299 * @p: the task pointer to set.
9300 *
9301 * Description: This function must only be used when non-maskable interrupts
9302 * are serviced on a separate stack. It allows the architecture to switch the
9303 * notion of the current task on a cpu in a non-blocking manner. This function
9304 * must be called with all CPU's synchronized, and interrupts disabled, the
9305 * and caller must save the original value of the current task (see
9306 * curr_task() above) and restore that value before reenabling interrupts and
9307 * re-starting the system.
9308 *
9309 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9310 */
9311 void set_curr_task(int cpu, struct task_struct *p)
9312 {
9313 cpu_curr(cpu) = p;
9314 }
9315
9316 #endif
9317
9318 #ifdef CONFIG_FAIR_GROUP_SCHED
9319 static void free_fair_sched_group(struct task_group *tg)
9320 {
9321 int i;
9322
9323 for_each_possible_cpu(i) {
9324 if (tg->cfs_rq)
9325 kfree(tg->cfs_rq[i]);
9326 if (tg->se)
9327 kfree(tg->se[i]);
9328 }
9329
9330 kfree(tg->cfs_rq);
9331 kfree(tg->se);
9332 }
9333
9334 static
9335 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9336 {
9337 struct cfs_rq *cfs_rq;
9338 struct sched_entity *se;
9339 struct rq *rq;
9340 int i;
9341
9342 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9343 if (!tg->cfs_rq)
9344 goto err;
9345 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9346 if (!tg->se)
9347 goto err;
9348
9349 tg->shares = NICE_0_LOAD;
9350
9351 for_each_possible_cpu(i) {
9352 rq = cpu_rq(i);
9353
9354 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9355 GFP_KERNEL, cpu_to_node(i));
9356 if (!cfs_rq)
9357 goto err;
9358
9359 se = kzalloc_node(sizeof(struct sched_entity),
9360 GFP_KERNEL, cpu_to_node(i));
9361 if (!se)
9362 goto err;
9363
9364 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9365 }
9366
9367 return 1;
9368
9369 err:
9370 return 0;
9371 }
9372
9373 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9374 {
9375 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9376 &cpu_rq(cpu)->leaf_cfs_rq_list);
9377 }
9378
9379 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9380 {
9381 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9382 }
9383 #else /* !CONFG_FAIR_GROUP_SCHED */
9384 static inline void free_fair_sched_group(struct task_group *tg)
9385 {
9386 }
9387
9388 static inline
9389 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9390 {
9391 return 1;
9392 }
9393
9394 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9395 {
9396 }
9397
9398 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9399 {
9400 }
9401 #endif /* CONFIG_FAIR_GROUP_SCHED */
9402
9403 #ifdef CONFIG_RT_GROUP_SCHED
9404 static void free_rt_sched_group(struct task_group *tg)
9405 {
9406 int i;
9407
9408 destroy_rt_bandwidth(&tg->rt_bandwidth);
9409
9410 for_each_possible_cpu(i) {
9411 if (tg->rt_rq)
9412 kfree(tg->rt_rq[i]);
9413 if (tg->rt_se)
9414 kfree(tg->rt_se[i]);
9415 }
9416
9417 kfree(tg->rt_rq);
9418 kfree(tg->rt_se);
9419 }
9420
9421 static
9422 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9423 {
9424 struct rt_rq *rt_rq;
9425 struct sched_rt_entity *rt_se;
9426 struct rq *rq;
9427 int i;
9428
9429 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9430 if (!tg->rt_rq)
9431 goto err;
9432 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9433 if (!tg->rt_se)
9434 goto err;
9435
9436 init_rt_bandwidth(&tg->rt_bandwidth,
9437 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9438
9439 for_each_possible_cpu(i) {
9440 rq = cpu_rq(i);
9441
9442 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9443 GFP_KERNEL, cpu_to_node(i));
9444 if (!rt_rq)
9445 goto err;
9446
9447 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9448 GFP_KERNEL, cpu_to_node(i));
9449 if (!rt_se)
9450 goto err;
9451
9452 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
9453 }
9454
9455 return 1;
9456
9457 err:
9458 return 0;
9459 }
9460
9461 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9462 {
9463 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9464 &cpu_rq(cpu)->leaf_rt_rq_list);
9465 }
9466
9467 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9468 {
9469 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9470 }
9471 #else /* !CONFIG_RT_GROUP_SCHED */
9472 static inline void free_rt_sched_group(struct task_group *tg)
9473 {
9474 }
9475
9476 static inline
9477 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9478 {
9479 return 1;
9480 }
9481
9482 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9483 {
9484 }
9485
9486 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9487 {
9488 }
9489 #endif /* CONFIG_RT_GROUP_SCHED */
9490
9491 #ifdef CONFIG_GROUP_SCHED
9492 static void free_sched_group(struct task_group *tg)
9493 {
9494 free_fair_sched_group(tg);
9495 free_rt_sched_group(tg);
9496 kfree(tg);
9497 }
9498
9499 /* allocate runqueue etc for a new task group */
9500 struct task_group *sched_create_group(struct task_group *parent)
9501 {
9502 struct task_group *tg;
9503 unsigned long flags;
9504 int i;
9505
9506 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9507 if (!tg)
9508 return ERR_PTR(-ENOMEM);
9509
9510 if (!alloc_fair_sched_group(tg, parent))
9511 goto err;
9512
9513 if (!alloc_rt_sched_group(tg, parent))
9514 goto err;
9515
9516 spin_lock_irqsave(&task_group_lock, flags);
9517 for_each_possible_cpu(i) {
9518 register_fair_sched_group(tg, i);
9519 register_rt_sched_group(tg, i);
9520 }
9521 list_add_rcu(&tg->list, &task_groups);
9522
9523 WARN_ON(!parent); /* root should already exist */
9524
9525 tg->parent = parent;
9526 INIT_LIST_HEAD(&tg->children);
9527 list_add_rcu(&tg->siblings, &parent->children);
9528 spin_unlock_irqrestore(&task_group_lock, flags);
9529
9530 return tg;
9531
9532 err:
9533 free_sched_group(tg);
9534 return ERR_PTR(-ENOMEM);
9535 }
9536
9537 /* rcu callback to free various structures associated with a task group */
9538 static void free_sched_group_rcu(struct rcu_head *rhp)
9539 {
9540 /* now it should be safe to free those cfs_rqs */
9541 free_sched_group(container_of(rhp, struct task_group, rcu));
9542 }
9543
9544 /* Destroy runqueue etc associated with a task group */
9545 void sched_destroy_group(struct task_group *tg)
9546 {
9547 unsigned long flags;
9548 int i;
9549
9550 spin_lock_irqsave(&task_group_lock, flags);
9551 for_each_possible_cpu(i) {
9552 unregister_fair_sched_group(tg, i);
9553 unregister_rt_sched_group(tg, i);
9554 }
9555 list_del_rcu(&tg->list);
9556 list_del_rcu(&tg->siblings);
9557 spin_unlock_irqrestore(&task_group_lock, flags);
9558
9559 /* wait for possible concurrent references to cfs_rqs complete */
9560 call_rcu(&tg->rcu, free_sched_group_rcu);
9561 }
9562
9563 /* change task's runqueue when it moves between groups.
9564 * The caller of this function should have put the task in its new group
9565 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
9566 * reflect its new group.
9567 */
9568 void sched_move_task(struct task_struct *tsk)
9569 {
9570 int on_rq, running;
9571 unsigned long flags;
9572 struct rq *rq;
9573
9574 rq = task_rq_lock(tsk, &flags);
9575
9576 update_rq_clock(rq);
9577
9578 running = task_current(rq, tsk);
9579 on_rq = tsk->se.on_rq;
9580
9581 if (on_rq)
9582 dequeue_task(rq, tsk, 0);
9583 if (unlikely(running))
9584 tsk->sched_class->put_prev_task(rq, tsk);
9585
9586 set_task_rq(tsk, task_cpu(tsk));
9587
9588 #ifdef CONFIG_FAIR_GROUP_SCHED
9589 if (tsk->sched_class->moved_group)
9590 tsk->sched_class->moved_group(tsk);
9591 #endif
9592
9593 if (unlikely(running))
9594 tsk->sched_class->set_curr_task(rq);
9595 if (on_rq)
9596 enqueue_task(rq, tsk, 0);
9597
9598 task_rq_unlock(rq, &flags);
9599 }
9600 #endif /* CONFIG_GROUP_SCHED */
9601
9602 #ifdef CONFIG_FAIR_GROUP_SCHED
9603 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
9604 {
9605 struct cfs_rq *cfs_rq = se->cfs_rq;
9606 int on_rq;
9607
9608 on_rq = se->on_rq;
9609 if (on_rq)
9610 dequeue_entity(cfs_rq, se, 0);
9611
9612 se->load.weight = shares;
9613 se->load.inv_weight = 0;
9614
9615 if (on_rq)
9616 enqueue_entity(cfs_rq, se, 0);
9617 }
9618
9619 static void set_se_shares(struct sched_entity *se, unsigned long shares)
9620 {
9621 struct cfs_rq *cfs_rq = se->cfs_rq;
9622 struct rq *rq = cfs_rq->rq;
9623 unsigned long flags;
9624
9625 spin_lock_irqsave(&rq->lock, flags);
9626 __set_se_shares(se, shares);
9627 spin_unlock_irqrestore(&rq->lock, flags);
9628 }
9629
9630 static DEFINE_MUTEX(shares_mutex);
9631
9632 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
9633 {
9634 int i;
9635 unsigned long flags;
9636
9637 /*
9638 * We can't change the weight of the root cgroup.
9639 */
9640 if (!tg->se[0])
9641 return -EINVAL;
9642
9643 if (shares < MIN_SHARES)
9644 shares = MIN_SHARES;
9645 else if (shares > MAX_SHARES)
9646 shares = MAX_SHARES;
9647
9648 mutex_lock(&shares_mutex);
9649 if (tg->shares == shares)
9650 goto done;
9651
9652 spin_lock_irqsave(&task_group_lock, flags);
9653 for_each_possible_cpu(i)
9654 unregister_fair_sched_group(tg, i);
9655 list_del_rcu(&tg->siblings);
9656 spin_unlock_irqrestore(&task_group_lock, flags);
9657
9658 /* wait for any ongoing reference to this group to finish */
9659 synchronize_sched();
9660
9661 /*
9662 * Now we are free to modify the group's share on each cpu
9663 * w/o tripping rebalance_share or load_balance_fair.
9664 */
9665 tg->shares = shares;
9666 for_each_possible_cpu(i) {
9667 /*
9668 * force a rebalance
9669 */
9670 cfs_rq_set_shares(tg->cfs_rq[i], 0);
9671 set_se_shares(tg->se[i], shares);
9672 }
9673
9674 /*
9675 * Enable load balance activity on this group, by inserting it back on
9676 * each cpu's rq->leaf_cfs_rq_list.
9677 */
9678 spin_lock_irqsave(&task_group_lock, flags);
9679 for_each_possible_cpu(i)
9680 register_fair_sched_group(tg, i);
9681 list_add_rcu(&tg->siblings, &tg->parent->children);
9682 spin_unlock_irqrestore(&task_group_lock, flags);
9683 done:
9684 mutex_unlock(&shares_mutex);
9685 return 0;
9686 }
9687
9688 unsigned long sched_group_shares(struct task_group *tg)
9689 {
9690 return tg->shares;
9691 }
9692 #endif
9693
9694 #ifdef CONFIG_RT_GROUP_SCHED
9695 /*
9696 * Ensure that the real time constraints are schedulable.
9697 */
9698 static DEFINE_MUTEX(rt_constraints_mutex);
9699
9700 static unsigned long to_ratio(u64 period, u64 runtime)
9701 {
9702 if (runtime == RUNTIME_INF)
9703 return 1ULL << 20;
9704
9705 return div64_u64(runtime << 20, period);
9706 }
9707
9708 /* Must be called with tasklist_lock held */
9709 static inline int tg_has_rt_tasks(struct task_group *tg)
9710 {
9711 struct task_struct *g, *p;
9712
9713 do_each_thread(g, p) {
9714 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
9715 return 1;
9716 } while_each_thread(g, p);
9717
9718 return 0;
9719 }
9720
9721 struct rt_schedulable_data {
9722 struct task_group *tg;
9723 u64 rt_period;
9724 u64 rt_runtime;
9725 };
9726
9727 static int tg_schedulable(struct task_group *tg, void *data)
9728 {
9729 struct rt_schedulable_data *d = data;
9730 struct task_group *child;
9731 unsigned long total, sum = 0;
9732 u64 period, runtime;
9733
9734 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9735 runtime = tg->rt_bandwidth.rt_runtime;
9736
9737 if (tg == d->tg) {
9738 period = d->rt_period;
9739 runtime = d->rt_runtime;
9740 }
9741
9742 #ifdef CONFIG_USER_SCHED
9743 if (tg == &root_task_group) {
9744 period = global_rt_period();
9745 runtime = global_rt_runtime();
9746 }
9747 #endif
9748
9749 /*
9750 * Cannot have more runtime than the period.
9751 */
9752 if (runtime > period && runtime != RUNTIME_INF)
9753 return -EINVAL;
9754
9755 /*
9756 * Ensure we don't starve existing RT tasks.
9757 */
9758 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
9759 return -EBUSY;
9760
9761 total = to_ratio(period, runtime);
9762
9763 /*
9764 * Nobody can have more than the global setting allows.
9765 */
9766 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
9767 return -EINVAL;
9768
9769 /*
9770 * The sum of our children's runtime should not exceed our own.
9771 */
9772 list_for_each_entry_rcu(child, &tg->children, siblings) {
9773 period = ktime_to_ns(child->rt_bandwidth.rt_period);
9774 runtime = child->rt_bandwidth.rt_runtime;
9775
9776 if (child == d->tg) {
9777 period = d->rt_period;
9778 runtime = d->rt_runtime;
9779 }
9780
9781 sum += to_ratio(period, runtime);
9782 }
9783
9784 if (sum > total)
9785 return -EINVAL;
9786
9787 return 0;
9788 }
9789
9790 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
9791 {
9792 struct rt_schedulable_data data = {
9793 .tg = tg,
9794 .rt_period = period,
9795 .rt_runtime = runtime,
9796 };
9797
9798 return walk_tg_tree(tg_schedulable, tg_nop, &data);
9799 }
9800
9801 static int tg_set_bandwidth(struct task_group *tg,
9802 u64 rt_period, u64 rt_runtime)
9803 {
9804 int i, err = 0;
9805
9806 mutex_lock(&rt_constraints_mutex);
9807 read_lock(&tasklist_lock);
9808 err = __rt_schedulable(tg, rt_period, rt_runtime);
9809 if (err)
9810 goto unlock;
9811
9812 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9813 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
9814 tg->rt_bandwidth.rt_runtime = rt_runtime;
9815
9816 for_each_possible_cpu(i) {
9817 struct rt_rq *rt_rq = tg->rt_rq[i];
9818
9819 spin_lock(&rt_rq->rt_runtime_lock);
9820 rt_rq->rt_runtime = rt_runtime;
9821 spin_unlock(&rt_rq->rt_runtime_lock);
9822 }
9823 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9824 unlock:
9825 read_unlock(&tasklist_lock);
9826 mutex_unlock(&rt_constraints_mutex);
9827
9828 return err;
9829 }
9830
9831 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
9832 {
9833 u64 rt_runtime, rt_period;
9834
9835 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9836 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
9837 if (rt_runtime_us < 0)
9838 rt_runtime = RUNTIME_INF;
9839
9840 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9841 }
9842
9843 long sched_group_rt_runtime(struct task_group *tg)
9844 {
9845 u64 rt_runtime_us;
9846
9847 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9848 return -1;
9849
9850 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9851 do_div(rt_runtime_us, NSEC_PER_USEC);
9852 return rt_runtime_us;
9853 }
9854
9855 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
9856 {
9857 u64 rt_runtime, rt_period;
9858
9859 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
9860 rt_runtime = tg->rt_bandwidth.rt_runtime;
9861
9862 if (rt_period == 0)
9863 return -EINVAL;
9864
9865 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9866 }
9867
9868 long sched_group_rt_period(struct task_group *tg)
9869 {
9870 u64 rt_period_us;
9871
9872 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
9873 do_div(rt_period_us, NSEC_PER_USEC);
9874 return rt_period_us;
9875 }
9876
9877 static int sched_rt_global_constraints(void)
9878 {
9879 u64 runtime, period;
9880 int ret = 0;
9881
9882 if (sysctl_sched_rt_period <= 0)
9883 return -EINVAL;
9884
9885 runtime = global_rt_runtime();
9886 period = global_rt_period();
9887
9888 /*
9889 * Sanity check on the sysctl variables.
9890 */
9891 if (runtime > period && runtime != RUNTIME_INF)
9892 return -EINVAL;
9893
9894 mutex_lock(&rt_constraints_mutex);
9895 read_lock(&tasklist_lock);
9896 ret = __rt_schedulable(NULL, 0, 0);
9897 read_unlock(&tasklist_lock);
9898 mutex_unlock(&rt_constraints_mutex);
9899
9900 return ret;
9901 }
9902
9903 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
9904 {
9905 /* Don't accept realtime tasks when there is no way for them to run */
9906 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
9907 return 0;
9908
9909 return 1;
9910 }
9911
9912 #else /* !CONFIG_RT_GROUP_SCHED */
9913 static int sched_rt_global_constraints(void)
9914 {
9915 unsigned long flags;
9916 int i;
9917
9918 if (sysctl_sched_rt_period <= 0)
9919 return -EINVAL;
9920
9921 /*
9922 * There's always some RT tasks in the root group
9923 * -- migration, kstopmachine etc..
9924 */
9925 if (sysctl_sched_rt_runtime == 0)
9926 return -EBUSY;
9927
9928 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9929 for_each_possible_cpu(i) {
9930 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9931
9932 spin_lock(&rt_rq->rt_runtime_lock);
9933 rt_rq->rt_runtime = global_rt_runtime();
9934 spin_unlock(&rt_rq->rt_runtime_lock);
9935 }
9936 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9937
9938 return 0;
9939 }
9940 #endif /* CONFIG_RT_GROUP_SCHED */
9941
9942 int sched_rt_handler(struct ctl_table *table, int write,
9943 struct file *filp, void __user *buffer, size_t *lenp,
9944 loff_t *ppos)
9945 {
9946 int ret;
9947 int old_period, old_runtime;
9948 static DEFINE_MUTEX(mutex);
9949
9950 mutex_lock(&mutex);
9951 old_period = sysctl_sched_rt_period;
9952 old_runtime = sysctl_sched_rt_runtime;
9953
9954 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
9955
9956 if (!ret && write) {
9957 ret = sched_rt_global_constraints();
9958 if (ret) {
9959 sysctl_sched_rt_period = old_period;
9960 sysctl_sched_rt_runtime = old_runtime;
9961 } else {
9962 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9963 def_rt_bandwidth.rt_period =
9964 ns_to_ktime(global_rt_period());
9965 }
9966 }
9967 mutex_unlock(&mutex);
9968
9969 return ret;
9970 }
9971
9972 #ifdef CONFIG_CGROUP_SCHED
9973
9974 /* return corresponding task_group object of a cgroup */
9975 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9976 {
9977 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9978 struct task_group, css);
9979 }
9980
9981 static struct cgroup_subsys_state *
9982 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9983 {
9984 struct task_group *tg, *parent;
9985
9986 if (!cgrp->parent) {
9987 /* This is early initialization for the top cgroup */
9988 return &init_task_group.css;
9989 }
9990
9991 parent = cgroup_tg(cgrp->parent);
9992 tg = sched_create_group(parent);
9993 if (IS_ERR(tg))
9994 return ERR_PTR(-ENOMEM);
9995
9996 return &tg->css;
9997 }
9998
9999 static void
10000 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10001 {
10002 struct task_group *tg = cgroup_tg(cgrp);
10003
10004 sched_destroy_group(tg);
10005 }
10006
10007 static int
10008 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10009 struct task_struct *tsk)
10010 {
10011 #ifdef CONFIG_RT_GROUP_SCHED
10012 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
10013 return -EINVAL;
10014 #else
10015 /* We don't support RT-tasks being in separate groups */
10016 if (tsk->sched_class != &fair_sched_class)
10017 return -EINVAL;
10018 #endif
10019
10020 return 0;
10021 }
10022
10023 static void
10024 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10025 struct cgroup *old_cont, struct task_struct *tsk)
10026 {
10027 sched_move_task(tsk);
10028 }
10029
10030 #ifdef CONFIG_FAIR_GROUP_SCHED
10031 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
10032 u64 shareval)
10033 {
10034 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
10035 }
10036
10037 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
10038 {
10039 struct task_group *tg = cgroup_tg(cgrp);
10040
10041 return (u64) tg->shares;
10042 }
10043 #endif /* CONFIG_FAIR_GROUP_SCHED */
10044
10045 #ifdef CONFIG_RT_GROUP_SCHED
10046 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
10047 s64 val)
10048 {
10049 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
10050 }
10051
10052 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
10053 {
10054 return sched_group_rt_runtime(cgroup_tg(cgrp));
10055 }
10056
10057 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10058 u64 rt_period_us)
10059 {
10060 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10061 }
10062
10063 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10064 {
10065 return sched_group_rt_period(cgroup_tg(cgrp));
10066 }
10067 #endif /* CONFIG_RT_GROUP_SCHED */
10068
10069 static struct cftype cpu_files[] = {
10070 #ifdef CONFIG_FAIR_GROUP_SCHED
10071 {
10072 .name = "shares",
10073 .read_u64 = cpu_shares_read_u64,
10074 .write_u64 = cpu_shares_write_u64,
10075 },
10076 #endif
10077 #ifdef CONFIG_RT_GROUP_SCHED
10078 {
10079 .name = "rt_runtime_us",
10080 .read_s64 = cpu_rt_runtime_read,
10081 .write_s64 = cpu_rt_runtime_write,
10082 },
10083 {
10084 .name = "rt_period_us",
10085 .read_u64 = cpu_rt_period_read_uint,
10086 .write_u64 = cpu_rt_period_write_uint,
10087 },
10088 #endif
10089 };
10090
10091 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10092 {
10093 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
10094 }
10095
10096 struct cgroup_subsys cpu_cgroup_subsys = {
10097 .name = "cpu",
10098 .create = cpu_cgroup_create,
10099 .destroy = cpu_cgroup_destroy,
10100 .can_attach = cpu_cgroup_can_attach,
10101 .attach = cpu_cgroup_attach,
10102 .populate = cpu_cgroup_populate,
10103 .subsys_id = cpu_cgroup_subsys_id,
10104 .early_init = 1,
10105 };
10106
10107 #endif /* CONFIG_CGROUP_SCHED */
10108
10109 #ifdef CONFIG_CGROUP_CPUACCT
10110
10111 /*
10112 * CPU accounting code for task groups.
10113 *
10114 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10115 * (balbir@in.ibm.com).
10116 */
10117
10118 /* track cpu usage of a group of tasks and its child groups */
10119 struct cpuacct {
10120 struct cgroup_subsys_state css;
10121 /* cpuusage holds pointer to a u64-type object on every cpu */
10122 u64 *cpuusage;
10123 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
10124 struct cpuacct *parent;
10125 };
10126
10127 struct cgroup_subsys cpuacct_subsys;
10128
10129 /* return cpu accounting group corresponding to this container */
10130 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
10131 {
10132 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
10133 struct cpuacct, css);
10134 }
10135
10136 /* return cpu accounting group to which this task belongs */
10137 static inline struct cpuacct *task_ca(struct task_struct *tsk)
10138 {
10139 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10140 struct cpuacct, css);
10141 }
10142
10143 /* create a new cpu accounting group */
10144 static struct cgroup_subsys_state *cpuacct_create(
10145 struct cgroup_subsys *ss, struct cgroup *cgrp)
10146 {
10147 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
10148 int i;
10149
10150 if (!ca)
10151 goto out;
10152
10153 ca->cpuusage = alloc_percpu(u64);
10154 if (!ca->cpuusage)
10155 goto out_free_ca;
10156
10157 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10158 if (percpu_counter_init(&ca->cpustat[i], 0))
10159 goto out_free_counters;
10160
10161 if (cgrp->parent)
10162 ca->parent = cgroup_ca(cgrp->parent);
10163
10164 return &ca->css;
10165
10166 out_free_counters:
10167 while (--i >= 0)
10168 percpu_counter_destroy(&ca->cpustat[i]);
10169 free_percpu(ca->cpuusage);
10170 out_free_ca:
10171 kfree(ca);
10172 out:
10173 return ERR_PTR(-ENOMEM);
10174 }
10175
10176 /* destroy an existing cpu accounting group */
10177 static void
10178 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10179 {
10180 struct cpuacct *ca = cgroup_ca(cgrp);
10181 int i;
10182
10183 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10184 percpu_counter_destroy(&ca->cpustat[i]);
10185 free_percpu(ca->cpuusage);
10186 kfree(ca);
10187 }
10188
10189 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10190 {
10191 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10192 u64 data;
10193
10194 #ifndef CONFIG_64BIT
10195 /*
10196 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10197 */
10198 spin_lock_irq(&cpu_rq(cpu)->lock);
10199 data = *cpuusage;
10200 spin_unlock_irq(&cpu_rq(cpu)->lock);
10201 #else
10202 data = *cpuusage;
10203 #endif
10204
10205 return data;
10206 }
10207
10208 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10209 {
10210 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10211
10212 #ifndef CONFIG_64BIT
10213 /*
10214 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10215 */
10216 spin_lock_irq(&cpu_rq(cpu)->lock);
10217 *cpuusage = val;
10218 spin_unlock_irq(&cpu_rq(cpu)->lock);
10219 #else
10220 *cpuusage = val;
10221 #endif
10222 }
10223
10224 /* return total cpu usage (in nanoseconds) of a group */
10225 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10226 {
10227 struct cpuacct *ca = cgroup_ca(cgrp);
10228 u64 totalcpuusage = 0;
10229 int i;
10230
10231 for_each_present_cpu(i)
10232 totalcpuusage += cpuacct_cpuusage_read(ca, i);
10233
10234 return totalcpuusage;
10235 }
10236
10237 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10238 u64 reset)
10239 {
10240 struct cpuacct *ca = cgroup_ca(cgrp);
10241 int err = 0;
10242 int i;
10243
10244 if (reset) {
10245 err = -EINVAL;
10246 goto out;
10247 }
10248
10249 for_each_present_cpu(i)
10250 cpuacct_cpuusage_write(ca, i, 0);
10251
10252 out:
10253 return err;
10254 }
10255
10256 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10257 struct seq_file *m)
10258 {
10259 struct cpuacct *ca = cgroup_ca(cgroup);
10260 u64 percpu;
10261 int i;
10262
10263 for_each_present_cpu(i) {
10264 percpu = cpuacct_cpuusage_read(ca, i);
10265 seq_printf(m, "%llu ", (unsigned long long) percpu);
10266 }
10267 seq_printf(m, "\n");
10268 return 0;
10269 }
10270
10271 static const char *cpuacct_stat_desc[] = {
10272 [CPUACCT_STAT_USER] = "user",
10273 [CPUACCT_STAT_SYSTEM] = "system",
10274 };
10275
10276 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10277 struct cgroup_map_cb *cb)
10278 {
10279 struct cpuacct *ca = cgroup_ca(cgrp);
10280 int i;
10281
10282 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10283 s64 val = percpu_counter_read(&ca->cpustat[i]);
10284 val = cputime64_to_clock_t(val);
10285 cb->fill(cb, cpuacct_stat_desc[i], val);
10286 }
10287 return 0;
10288 }
10289
10290 static struct cftype files[] = {
10291 {
10292 .name = "usage",
10293 .read_u64 = cpuusage_read,
10294 .write_u64 = cpuusage_write,
10295 },
10296 {
10297 .name = "usage_percpu",
10298 .read_seq_string = cpuacct_percpu_seq_read,
10299 },
10300 {
10301 .name = "stat",
10302 .read_map = cpuacct_stats_show,
10303 },
10304 };
10305
10306 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10307 {
10308 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10309 }
10310
10311 /*
10312 * charge this task's execution time to its accounting group.
10313 *
10314 * called with rq->lock held.
10315 */
10316 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10317 {
10318 struct cpuacct *ca;
10319 int cpu;
10320
10321 if (unlikely(!cpuacct_subsys.active))
10322 return;
10323
10324 cpu = task_cpu(tsk);
10325
10326 rcu_read_lock();
10327
10328 ca = task_ca(tsk);
10329
10330 for (; ca; ca = ca->parent) {
10331 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10332 *cpuusage += cputime;
10333 }
10334
10335 rcu_read_unlock();
10336 }
10337
10338 /*
10339 * Charge the system/user time to the task's accounting group.
10340 */
10341 static void cpuacct_update_stats(struct task_struct *tsk,
10342 enum cpuacct_stat_index idx, cputime_t val)
10343 {
10344 struct cpuacct *ca;
10345
10346 if (unlikely(!cpuacct_subsys.active))
10347 return;
10348
10349 rcu_read_lock();
10350 ca = task_ca(tsk);
10351
10352 do {
10353 percpu_counter_add(&ca->cpustat[idx], val);
10354 ca = ca->parent;
10355 } while (ca);
10356 rcu_read_unlock();
10357 }
10358
10359 struct cgroup_subsys cpuacct_subsys = {
10360 .name = "cpuacct",
10361 .create = cpuacct_create,
10362 .destroy = cpuacct_destroy,
10363 .populate = cpuacct_populate,
10364 .subsys_id = cpuacct_subsys_id,
10365 };
10366 #endif /* CONFIG_CGROUP_CPUACCT */
This page took 0.33481 seconds and 5 git commands to generate.