sched: rt-group: make rt groups scheduling configurable
[deliverable/linux.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/reciprocal_div.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69
70 #include <asm/tlb.h>
71 #include <asm/irq_regs.h>
72
73 /*
74 * Scheduler clock - returns current time in nanosec units.
75 * This is default implementation.
76 * Architectures and sub-architectures can override this.
77 */
78 unsigned long long __attribute__((weak)) sched_clock(void)
79 {
80 return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
81 }
82
83 /*
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
87 */
88 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
91
92 /*
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
96 */
97 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
100
101 /*
102 * Helpers for converting nanosecond timing to jiffy resolution
103 */
104 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
105
106 #define NICE_0_LOAD SCHED_LOAD_SCALE
107 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
108
109 /*
110 * These are the 'tuning knobs' of the scheduler:
111 *
112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
113 * Timeslices get refilled after they expire.
114 */
115 #define DEF_TIMESLICE (100 * HZ / 1000)
116
117 #ifdef CONFIG_SMP
118 /*
119 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
120 * Since cpu_power is a 'constant', we can use a reciprocal divide.
121 */
122 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
123 {
124 return reciprocal_divide(load, sg->reciprocal_cpu_power);
125 }
126
127 /*
128 * Each time a sched group cpu_power is changed,
129 * we must compute its reciprocal value
130 */
131 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
132 {
133 sg->__cpu_power += val;
134 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
135 }
136 #endif
137
138 static inline int rt_policy(int policy)
139 {
140 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
141 return 1;
142 return 0;
143 }
144
145 static inline int task_has_rt_policy(struct task_struct *p)
146 {
147 return rt_policy(p->policy);
148 }
149
150 /*
151 * This is the priority-queue data structure of the RT scheduling class:
152 */
153 struct rt_prio_array {
154 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
155 struct list_head queue[MAX_RT_PRIO];
156 };
157
158 #ifdef CONFIG_GROUP_SCHED
159
160 #include <linux/cgroup.h>
161
162 struct cfs_rq;
163
164 static LIST_HEAD(task_groups);
165
166 /* task group related information */
167 struct task_group {
168 #ifdef CONFIG_CGROUP_SCHED
169 struct cgroup_subsys_state css;
170 #endif
171
172 #ifdef CONFIG_FAIR_GROUP_SCHED
173 /* schedulable entities of this group on each cpu */
174 struct sched_entity **se;
175 /* runqueue "owned" by this group on each cpu */
176 struct cfs_rq **cfs_rq;
177
178 /*
179 * shares assigned to a task group governs how much of cpu bandwidth
180 * is allocated to the group. The more shares a group has, the more is
181 * the cpu bandwidth allocated to it.
182 *
183 * For ex, lets say that there are three task groups, A, B and C which
184 * have been assigned shares 1000, 2000 and 3000 respectively. Then,
185 * cpu bandwidth allocated by the scheduler to task groups A, B and C
186 * should be:
187 *
188 * Bw(A) = 1000/(1000+2000+3000) * 100 = 16.66%
189 * Bw(B) = 2000/(1000+2000+3000) * 100 = 33.33%
190 * Bw(C) = 3000/(1000+2000+3000) * 100 = 50%
191 *
192 * The weight assigned to a task group's schedulable entities on every
193 * cpu (task_group.se[a_cpu]->load.weight) is derived from the task
194 * group's shares. For ex: lets say that task group A has been
195 * assigned shares of 1000 and there are two CPUs in a system. Then,
196 *
197 * tg_A->se[0]->load.weight = tg_A->se[1]->load.weight = 1000;
198 *
199 * Note: It's not necessary that each of a task's group schedulable
200 * entity have the same weight on all CPUs. If the group
201 * has 2 of its tasks on CPU0 and 1 task on CPU1, then a
202 * better distribution of weight could be:
203 *
204 * tg_A->se[0]->load.weight = 2/3 * 2000 = 1333
205 * tg_A->se[1]->load.weight = 1/2 * 2000 = 667
206 *
207 * rebalance_shares() is responsible for distributing the shares of a
208 * task groups like this among the group's schedulable entities across
209 * cpus.
210 *
211 */
212 unsigned long shares;
213 #endif
214
215 #ifdef CONFIG_RT_GROUP_SCHED
216 struct sched_rt_entity **rt_se;
217 struct rt_rq **rt_rq;
218
219 u64 rt_runtime;
220 #endif
221
222 struct rcu_head rcu;
223 struct list_head list;
224 };
225
226 #ifdef CONFIG_FAIR_GROUP_SCHED
227 /* Default task group's sched entity on each cpu */
228 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
229 /* Default task group's cfs_rq on each cpu */
230 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
231
232 static struct sched_entity *init_sched_entity_p[NR_CPUS];
233 static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
234 #endif
235
236 #ifdef CONFIG_RT_GROUP_SCHED
237 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
238 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
239
240 static struct sched_rt_entity *init_sched_rt_entity_p[NR_CPUS];
241 static struct rt_rq *init_rt_rq_p[NR_CPUS];
242 #endif
243
244 /* task_group_lock serializes add/remove of task groups and also changes to
245 * a task group's cpu shares.
246 */
247 static DEFINE_SPINLOCK(task_group_lock);
248
249 /* doms_cur_mutex serializes access to doms_cur[] array */
250 static DEFINE_MUTEX(doms_cur_mutex);
251
252 #ifdef CONFIG_FAIR_GROUP_SCHED
253 #ifdef CONFIG_SMP
254 /* kernel thread that runs rebalance_shares() periodically */
255 static struct task_struct *lb_monitor_task;
256 static int load_balance_monitor(void *unused);
257 #endif
258
259 static void set_se_shares(struct sched_entity *se, unsigned long shares);
260
261 #ifdef CONFIG_USER_SCHED
262 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
263 #else
264 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
265 #endif
266
267 #define MIN_GROUP_SHARES 2
268
269 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
270 #endif
271
272 /* Default task group.
273 * Every task in system belong to this group at bootup.
274 */
275 struct task_group init_task_group = {
276 #ifdef CONFIG_FAIR_GROUP_SCHED
277 .se = init_sched_entity_p,
278 .cfs_rq = init_cfs_rq_p,
279 #endif
280
281 #ifdef CONFIG_RT_GROUP_SCHED
282 .rt_se = init_sched_rt_entity_p,
283 .rt_rq = init_rt_rq_p,
284 #endif
285 };
286
287 /* return group to which a task belongs */
288 static inline struct task_group *task_group(struct task_struct *p)
289 {
290 struct task_group *tg;
291
292 #ifdef CONFIG_USER_SCHED
293 tg = p->user->tg;
294 #elif defined(CONFIG_CGROUP_SCHED)
295 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
296 struct task_group, css);
297 #else
298 tg = &init_task_group;
299 #endif
300 return tg;
301 }
302
303 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
304 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
305 {
306 #ifdef CONFIG_FAIR_GROUP_SCHED
307 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
308 p->se.parent = task_group(p)->se[cpu];
309 #endif
310
311 #ifdef CONFIG_RT_GROUP_SCHED
312 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
313 p->rt.parent = task_group(p)->rt_se[cpu];
314 #endif
315 }
316
317 static inline void lock_doms_cur(void)
318 {
319 mutex_lock(&doms_cur_mutex);
320 }
321
322 static inline void unlock_doms_cur(void)
323 {
324 mutex_unlock(&doms_cur_mutex);
325 }
326
327 #else
328
329 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
330 static inline void lock_doms_cur(void) { }
331 static inline void unlock_doms_cur(void) { }
332
333 #endif /* CONFIG_GROUP_SCHED */
334
335 /* CFS-related fields in a runqueue */
336 struct cfs_rq {
337 struct load_weight load;
338 unsigned long nr_running;
339
340 u64 exec_clock;
341 u64 min_vruntime;
342
343 struct rb_root tasks_timeline;
344 struct rb_node *rb_leftmost;
345 struct rb_node *rb_load_balance_curr;
346 /* 'curr' points to currently running entity on this cfs_rq.
347 * It is set to NULL otherwise (i.e when none are currently running).
348 */
349 struct sched_entity *curr;
350
351 unsigned long nr_spread_over;
352
353 #ifdef CONFIG_FAIR_GROUP_SCHED
354 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
355
356 /*
357 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
358 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
359 * (like users, containers etc.)
360 *
361 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
362 * list is used during load balance.
363 */
364 struct list_head leaf_cfs_rq_list;
365 struct task_group *tg; /* group that "owns" this runqueue */
366 #endif
367 };
368
369 /* Real-Time classes' related field in a runqueue: */
370 struct rt_rq {
371 struct rt_prio_array active;
372 unsigned long rt_nr_running;
373 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
374 int highest_prio; /* highest queued rt task prio */
375 #endif
376 #ifdef CONFIG_SMP
377 unsigned long rt_nr_migratory;
378 int overloaded;
379 #endif
380 int rt_throttled;
381 u64 rt_time;
382
383 #ifdef CONFIG_RT_GROUP_SCHED
384 unsigned long rt_nr_boosted;
385
386 struct rq *rq;
387 struct list_head leaf_rt_rq_list;
388 struct task_group *tg;
389 struct sched_rt_entity *rt_se;
390 #endif
391 };
392
393 #ifdef CONFIG_SMP
394
395 /*
396 * We add the notion of a root-domain which will be used to define per-domain
397 * variables. Each exclusive cpuset essentially defines an island domain by
398 * fully partitioning the member cpus from any other cpuset. Whenever a new
399 * exclusive cpuset is created, we also create and attach a new root-domain
400 * object.
401 *
402 */
403 struct root_domain {
404 atomic_t refcount;
405 cpumask_t span;
406 cpumask_t online;
407
408 /*
409 * The "RT overload" flag: it gets set if a CPU has more than
410 * one runnable RT task.
411 */
412 cpumask_t rto_mask;
413 atomic_t rto_count;
414 };
415
416 /*
417 * By default the system creates a single root-domain with all cpus as
418 * members (mimicking the global state we have today).
419 */
420 static struct root_domain def_root_domain;
421
422 #endif
423
424 /*
425 * This is the main, per-CPU runqueue data structure.
426 *
427 * Locking rule: those places that want to lock multiple runqueues
428 * (such as the load balancing or the thread migration code), lock
429 * acquire operations must be ordered by ascending &runqueue.
430 */
431 struct rq {
432 /* runqueue lock: */
433 spinlock_t lock;
434
435 /*
436 * nr_running and cpu_load should be in the same cacheline because
437 * remote CPUs use both these fields when doing load calculation.
438 */
439 unsigned long nr_running;
440 #define CPU_LOAD_IDX_MAX 5
441 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
442 unsigned char idle_at_tick;
443 #ifdef CONFIG_NO_HZ
444 unsigned char in_nohz_recently;
445 #endif
446 /* capture load from *all* tasks on this cpu: */
447 struct load_weight load;
448 unsigned long nr_load_updates;
449 u64 nr_switches;
450
451 struct cfs_rq cfs;
452 struct rt_rq rt;
453 u64 rt_period_expire;
454 int rt_throttled;
455
456 #ifdef CONFIG_FAIR_GROUP_SCHED
457 /* list of leaf cfs_rq on this cpu: */
458 struct list_head leaf_cfs_rq_list;
459 #endif
460 #ifdef CONFIG_RT_GROUP_SCHED
461 struct list_head leaf_rt_rq_list;
462 #endif
463
464 /*
465 * This is part of a global counter where only the total sum
466 * over all CPUs matters. A task can increase this counter on
467 * one CPU and if it got migrated afterwards it may decrease
468 * it on another CPU. Always updated under the runqueue lock:
469 */
470 unsigned long nr_uninterruptible;
471
472 struct task_struct *curr, *idle;
473 unsigned long next_balance;
474 struct mm_struct *prev_mm;
475
476 u64 clock, prev_clock_raw;
477 s64 clock_max_delta;
478
479 unsigned int clock_warps, clock_overflows, clock_underflows;
480 u64 idle_clock;
481 unsigned int clock_deep_idle_events;
482 u64 tick_timestamp;
483
484 atomic_t nr_iowait;
485
486 #ifdef CONFIG_SMP
487 struct root_domain *rd;
488 struct sched_domain *sd;
489
490 /* For active balancing */
491 int active_balance;
492 int push_cpu;
493 /* cpu of this runqueue: */
494 int cpu;
495
496 struct task_struct *migration_thread;
497 struct list_head migration_queue;
498 #endif
499
500 #ifdef CONFIG_SCHED_HRTICK
501 unsigned long hrtick_flags;
502 ktime_t hrtick_expire;
503 struct hrtimer hrtick_timer;
504 #endif
505
506 #ifdef CONFIG_SCHEDSTATS
507 /* latency stats */
508 struct sched_info rq_sched_info;
509
510 /* sys_sched_yield() stats */
511 unsigned int yld_exp_empty;
512 unsigned int yld_act_empty;
513 unsigned int yld_both_empty;
514 unsigned int yld_count;
515
516 /* schedule() stats */
517 unsigned int sched_switch;
518 unsigned int sched_count;
519 unsigned int sched_goidle;
520
521 /* try_to_wake_up() stats */
522 unsigned int ttwu_count;
523 unsigned int ttwu_local;
524
525 /* BKL stats */
526 unsigned int bkl_count;
527 #endif
528 struct lock_class_key rq_lock_key;
529 };
530
531 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
532
533 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
534 {
535 rq->curr->sched_class->check_preempt_curr(rq, p);
536 }
537
538 static inline int cpu_of(struct rq *rq)
539 {
540 #ifdef CONFIG_SMP
541 return rq->cpu;
542 #else
543 return 0;
544 #endif
545 }
546
547 /*
548 * Update the per-runqueue clock, as finegrained as the platform can give
549 * us, but without assuming monotonicity, etc.:
550 */
551 static void __update_rq_clock(struct rq *rq)
552 {
553 u64 prev_raw = rq->prev_clock_raw;
554 u64 now = sched_clock();
555 s64 delta = now - prev_raw;
556 u64 clock = rq->clock;
557
558 #ifdef CONFIG_SCHED_DEBUG
559 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
560 #endif
561 /*
562 * Protect against sched_clock() occasionally going backwards:
563 */
564 if (unlikely(delta < 0)) {
565 clock++;
566 rq->clock_warps++;
567 } else {
568 /*
569 * Catch too large forward jumps too:
570 */
571 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
572 if (clock < rq->tick_timestamp + TICK_NSEC)
573 clock = rq->tick_timestamp + TICK_NSEC;
574 else
575 clock++;
576 rq->clock_overflows++;
577 } else {
578 if (unlikely(delta > rq->clock_max_delta))
579 rq->clock_max_delta = delta;
580 clock += delta;
581 }
582 }
583
584 rq->prev_clock_raw = now;
585 rq->clock = clock;
586 }
587
588 static void update_rq_clock(struct rq *rq)
589 {
590 if (likely(smp_processor_id() == cpu_of(rq)))
591 __update_rq_clock(rq);
592 }
593
594 /*
595 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
596 * See detach_destroy_domains: synchronize_sched for details.
597 *
598 * The domain tree of any CPU may only be accessed from within
599 * preempt-disabled sections.
600 */
601 #define for_each_domain(cpu, __sd) \
602 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
603
604 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
605 #define this_rq() (&__get_cpu_var(runqueues))
606 #define task_rq(p) cpu_rq(task_cpu(p))
607 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
608
609 unsigned long rt_needs_cpu(int cpu)
610 {
611 struct rq *rq = cpu_rq(cpu);
612 u64 delta;
613
614 if (!rq->rt_throttled)
615 return 0;
616
617 if (rq->clock > rq->rt_period_expire)
618 return 1;
619
620 delta = rq->rt_period_expire - rq->clock;
621 do_div(delta, NSEC_PER_SEC / HZ);
622
623 return (unsigned long)delta;
624 }
625
626 /*
627 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
628 */
629 #ifdef CONFIG_SCHED_DEBUG
630 # define const_debug __read_mostly
631 #else
632 # define const_debug static const
633 #endif
634
635 /*
636 * Debugging: various feature bits
637 */
638 enum {
639 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
640 SCHED_FEAT_WAKEUP_PREEMPT = 2,
641 SCHED_FEAT_START_DEBIT = 4,
642 SCHED_FEAT_TREE_AVG = 8,
643 SCHED_FEAT_APPROX_AVG = 16,
644 SCHED_FEAT_HRTICK = 32,
645 SCHED_FEAT_DOUBLE_TICK = 64,
646 };
647
648 const_debug unsigned int sysctl_sched_features =
649 SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
650 SCHED_FEAT_WAKEUP_PREEMPT * 1 |
651 SCHED_FEAT_START_DEBIT * 1 |
652 SCHED_FEAT_TREE_AVG * 0 |
653 SCHED_FEAT_APPROX_AVG * 0 |
654 SCHED_FEAT_HRTICK * 1 |
655 SCHED_FEAT_DOUBLE_TICK * 0;
656
657 #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
658
659 /*
660 * Number of tasks to iterate in a single balance run.
661 * Limited because this is done with IRQs disabled.
662 */
663 const_debug unsigned int sysctl_sched_nr_migrate = 32;
664
665 /*
666 * period over which we measure -rt task cpu usage in us.
667 * default: 1s
668 */
669 unsigned int sysctl_sched_rt_period = 1000000;
670
671 /*
672 * part of the period that we allow rt tasks to run in us.
673 * default: 0.95s
674 */
675 int sysctl_sched_rt_runtime = 950000;
676
677 /*
678 * single value that denotes runtime == period, ie unlimited time.
679 */
680 #define RUNTIME_INF ((u64)~0ULL)
681
682 /*
683 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
684 * clock constructed from sched_clock():
685 */
686 unsigned long long cpu_clock(int cpu)
687 {
688 unsigned long long now;
689 unsigned long flags;
690 struct rq *rq;
691
692 local_irq_save(flags);
693 rq = cpu_rq(cpu);
694 /*
695 * Only call sched_clock() if the scheduler has already been
696 * initialized (some code might call cpu_clock() very early):
697 */
698 if (rq->idle)
699 update_rq_clock(rq);
700 now = rq->clock;
701 local_irq_restore(flags);
702
703 return now;
704 }
705 EXPORT_SYMBOL_GPL(cpu_clock);
706
707 #ifndef prepare_arch_switch
708 # define prepare_arch_switch(next) do { } while (0)
709 #endif
710 #ifndef finish_arch_switch
711 # define finish_arch_switch(prev) do { } while (0)
712 #endif
713
714 static inline int task_current(struct rq *rq, struct task_struct *p)
715 {
716 return rq->curr == p;
717 }
718
719 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
720 static inline int task_running(struct rq *rq, struct task_struct *p)
721 {
722 return task_current(rq, p);
723 }
724
725 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
726 {
727 }
728
729 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
730 {
731 #ifdef CONFIG_DEBUG_SPINLOCK
732 /* this is a valid case when another task releases the spinlock */
733 rq->lock.owner = current;
734 #endif
735 /*
736 * If we are tracking spinlock dependencies then we have to
737 * fix up the runqueue lock - which gets 'carried over' from
738 * prev into current:
739 */
740 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
741
742 spin_unlock_irq(&rq->lock);
743 }
744
745 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
746 static inline int task_running(struct rq *rq, struct task_struct *p)
747 {
748 #ifdef CONFIG_SMP
749 return p->oncpu;
750 #else
751 return task_current(rq, p);
752 #endif
753 }
754
755 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
756 {
757 #ifdef CONFIG_SMP
758 /*
759 * We can optimise this out completely for !SMP, because the
760 * SMP rebalancing from interrupt is the only thing that cares
761 * here.
762 */
763 next->oncpu = 1;
764 #endif
765 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
766 spin_unlock_irq(&rq->lock);
767 #else
768 spin_unlock(&rq->lock);
769 #endif
770 }
771
772 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
773 {
774 #ifdef CONFIG_SMP
775 /*
776 * After ->oncpu is cleared, the task can be moved to a different CPU.
777 * We must ensure this doesn't happen until the switch is completely
778 * finished.
779 */
780 smp_wmb();
781 prev->oncpu = 0;
782 #endif
783 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
784 local_irq_enable();
785 #endif
786 }
787 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
788
789 /*
790 * __task_rq_lock - lock the runqueue a given task resides on.
791 * Must be called interrupts disabled.
792 */
793 static inline struct rq *__task_rq_lock(struct task_struct *p)
794 __acquires(rq->lock)
795 {
796 for (;;) {
797 struct rq *rq = task_rq(p);
798 spin_lock(&rq->lock);
799 if (likely(rq == task_rq(p)))
800 return rq;
801 spin_unlock(&rq->lock);
802 }
803 }
804
805 /*
806 * task_rq_lock - lock the runqueue a given task resides on and disable
807 * interrupts. Note the ordering: we can safely lookup the task_rq without
808 * explicitly disabling preemption.
809 */
810 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
811 __acquires(rq->lock)
812 {
813 struct rq *rq;
814
815 for (;;) {
816 local_irq_save(*flags);
817 rq = task_rq(p);
818 spin_lock(&rq->lock);
819 if (likely(rq == task_rq(p)))
820 return rq;
821 spin_unlock_irqrestore(&rq->lock, *flags);
822 }
823 }
824
825 static void __task_rq_unlock(struct rq *rq)
826 __releases(rq->lock)
827 {
828 spin_unlock(&rq->lock);
829 }
830
831 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
832 __releases(rq->lock)
833 {
834 spin_unlock_irqrestore(&rq->lock, *flags);
835 }
836
837 /*
838 * this_rq_lock - lock this runqueue and disable interrupts.
839 */
840 static struct rq *this_rq_lock(void)
841 __acquires(rq->lock)
842 {
843 struct rq *rq;
844
845 local_irq_disable();
846 rq = this_rq();
847 spin_lock(&rq->lock);
848
849 return rq;
850 }
851
852 /*
853 * We are going deep-idle (irqs are disabled):
854 */
855 void sched_clock_idle_sleep_event(void)
856 {
857 struct rq *rq = cpu_rq(smp_processor_id());
858
859 spin_lock(&rq->lock);
860 __update_rq_clock(rq);
861 spin_unlock(&rq->lock);
862 rq->clock_deep_idle_events++;
863 }
864 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
865
866 /*
867 * We just idled delta nanoseconds (called with irqs disabled):
868 */
869 void sched_clock_idle_wakeup_event(u64 delta_ns)
870 {
871 struct rq *rq = cpu_rq(smp_processor_id());
872 u64 now = sched_clock();
873
874 rq->idle_clock += delta_ns;
875 /*
876 * Override the previous timestamp and ignore all
877 * sched_clock() deltas that occured while we idled,
878 * and use the PM-provided delta_ns to advance the
879 * rq clock:
880 */
881 spin_lock(&rq->lock);
882 rq->prev_clock_raw = now;
883 rq->clock += delta_ns;
884 spin_unlock(&rq->lock);
885 touch_softlockup_watchdog();
886 }
887 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
888
889 static void __resched_task(struct task_struct *p, int tif_bit);
890
891 static inline void resched_task(struct task_struct *p)
892 {
893 __resched_task(p, TIF_NEED_RESCHED);
894 }
895
896 #ifdef CONFIG_SCHED_HRTICK
897 /*
898 * Use HR-timers to deliver accurate preemption points.
899 *
900 * Its all a bit involved since we cannot program an hrt while holding the
901 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
902 * reschedule event.
903 *
904 * When we get rescheduled we reprogram the hrtick_timer outside of the
905 * rq->lock.
906 */
907 static inline void resched_hrt(struct task_struct *p)
908 {
909 __resched_task(p, TIF_HRTICK_RESCHED);
910 }
911
912 static inline void resched_rq(struct rq *rq)
913 {
914 unsigned long flags;
915
916 spin_lock_irqsave(&rq->lock, flags);
917 resched_task(rq->curr);
918 spin_unlock_irqrestore(&rq->lock, flags);
919 }
920
921 enum {
922 HRTICK_SET, /* re-programm hrtick_timer */
923 HRTICK_RESET, /* not a new slice */
924 };
925
926 /*
927 * Use hrtick when:
928 * - enabled by features
929 * - hrtimer is actually high res
930 */
931 static inline int hrtick_enabled(struct rq *rq)
932 {
933 if (!sched_feat(HRTICK))
934 return 0;
935 return hrtimer_is_hres_active(&rq->hrtick_timer);
936 }
937
938 /*
939 * Called to set the hrtick timer state.
940 *
941 * called with rq->lock held and irqs disabled
942 */
943 static void hrtick_start(struct rq *rq, u64 delay, int reset)
944 {
945 assert_spin_locked(&rq->lock);
946
947 /*
948 * preempt at: now + delay
949 */
950 rq->hrtick_expire =
951 ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
952 /*
953 * indicate we need to program the timer
954 */
955 __set_bit(HRTICK_SET, &rq->hrtick_flags);
956 if (reset)
957 __set_bit(HRTICK_RESET, &rq->hrtick_flags);
958
959 /*
960 * New slices are called from the schedule path and don't need a
961 * forced reschedule.
962 */
963 if (reset)
964 resched_hrt(rq->curr);
965 }
966
967 static void hrtick_clear(struct rq *rq)
968 {
969 if (hrtimer_active(&rq->hrtick_timer))
970 hrtimer_cancel(&rq->hrtick_timer);
971 }
972
973 /*
974 * Update the timer from the possible pending state.
975 */
976 static void hrtick_set(struct rq *rq)
977 {
978 ktime_t time;
979 int set, reset;
980 unsigned long flags;
981
982 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
983
984 spin_lock_irqsave(&rq->lock, flags);
985 set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
986 reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
987 time = rq->hrtick_expire;
988 clear_thread_flag(TIF_HRTICK_RESCHED);
989 spin_unlock_irqrestore(&rq->lock, flags);
990
991 if (set) {
992 hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
993 if (reset && !hrtimer_active(&rq->hrtick_timer))
994 resched_rq(rq);
995 } else
996 hrtick_clear(rq);
997 }
998
999 /*
1000 * High-resolution timer tick.
1001 * Runs from hardirq context with interrupts disabled.
1002 */
1003 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1004 {
1005 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1006
1007 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1008
1009 spin_lock(&rq->lock);
1010 __update_rq_clock(rq);
1011 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1012 spin_unlock(&rq->lock);
1013
1014 return HRTIMER_NORESTART;
1015 }
1016
1017 static inline void init_rq_hrtick(struct rq *rq)
1018 {
1019 rq->hrtick_flags = 0;
1020 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1021 rq->hrtick_timer.function = hrtick;
1022 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
1023 }
1024
1025 void hrtick_resched(void)
1026 {
1027 struct rq *rq;
1028 unsigned long flags;
1029
1030 if (!test_thread_flag(TIF_HRTICK_RESCHED))
1031 return;
1032
1033 local_irq_save(flags);
1034 rq = cpu_rq(smp_processor_id());
1035 hrtick_set(rq);
1036 local_irq_restore(flags);
1037 }
1038 #else
1039 static inline void hrtick_clear(struct rq *rq)
1040 {
1041 }
1042
1043 static inline void hrtick_set(struct rq *rq)
1044 {
1045 }
1046
1047 static inline void init_rq_hrtick(struct rq *rq)
1048 {
1049 }
1050
1051 void hrtick_resched(void)
1052 {
1053 }
1054 #endif
1055
1056 /*
1057 * resched_task - mark a task 'to be rescheduled now'.
1058 *
1059 * On UP this means the setting of the need_resched flag, on SMP it
1060 * might also involve a cross-CPU call to trigger the scheduler on
1061 * the target CPU.
1062 */
1063 #ifdef CONFIG_SMP
1064
1065 #ifndef tsk_is_polling
1066 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1067 #endif
1068
1069 static void __resched_task(struct task_struct *p, int tif_bit)
1070 {
1071 int cpu;
1072
1073 assert_spin_locked(&task_rq(p)->lock);
1074
1075 if (unlikely(test_tsk_thread_flag(p, tif_bit)))
1076 return;
1077
1078 set_tsk_thread_flag(p, tif_bit);
1079
1080 cpu = task_cpu(p);
1081 if (cpu == smp_processor_id())
1082 return;
1083
1084 /* NEED_RESCHED must be visible before we test polling */
1085 smp_mb();
1086 if (!tsk_is_polling(p))
1087 smp_send_reschedule(cpu);
1088 }
1089
1090 static void resched_cpu(int cpu)
1091 {
1092 struct rq *rq = cpu_rq(cpu);
1093 unsigned long flags;
1094
1095 if (!spin_trylock_irqsave(&rq->lock, flags))
1096 return;
1097 resched_task(cpu_curr(cpu));
1098 spin_unlock_irqrestore(&rq->lock, flags);
1099 }
1100 #else
1101 static void __resched_task(struct task_struct *p, int tif_bit)
1102 {
1103 assert_spin_locked(&task_rq(p)->lock);
1104 set_tsk_thread_flag(p, tif_bit);
1105 }
1106 #endif
1107
1108 #if BITS_PER_LONG == 32
1109 # define WMULT_CONST (~0UL)
1110 #else
1111 # define WMULT_CONST (1UL << 32)
1112 #endif
1113
1114 #define WMULT_SHIFT 32
1115
1116 /*
1117 * Shift right and round:
1118 */
1119 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1120
1121 static unsigned long
1122 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1123 struct load_weight *lw)
1124 {
1125 u64 tmp;
1126
1127 if (unlikely(!lw->inv_weight))
1128 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
1129
1130 tmp = (u64)delta_exec * weight;
1131 /*
1132 * Check whether we'd overflow the 64-bit multiplication:
1133 */
1134 if (unlikely(tmp > WMULT_CONST))
1135 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1136 WMULT_SHIFT/2);
1137 else
1138 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1139
1140 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1141 }
1142
1143 static inline unsigned long
1144 calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
1145 {
1146 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
1147 }
1148
1149 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1150 {
1151 lw->weight += inc;
1152 }
1153
1154 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1155 {
1156 lw->weight -= dec;
1157 }
1158
1159 /*
1160 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1161 * of tasks with abnormal "nice" values across CPUs the contribution that
1162 * each task makes to its run queue's load is weighted according to its
1163 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1164 * scaled version of the new time slice allocation that they receive on time
1165 * slice expiry etc.
1166 */
1167
1168 #define WEIGHT_IDLEPRIO 2
1169 #define WMULT_IDLEPRIO (1 << 31)
1170
1171 /*
1172 * Nice levels are multiplicative, with a gentle 10% change for every
1173 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1174 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1175 * that remained on nice 0.
1176 *
1177 * The "10% effect" is relative and cumulative: from _any_ nice level,
1178 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1179 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1180 * If a task goes up by ~10% and another task goes down by ~10% then
1181 * the relative distance between them is ~25%.)
1182 */
1183 static const int prio_to_weight[40] = {
1184 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1185 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1186 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1187 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1188 /* 0 */ 1024, 820, 655, 526, 423,
1189 /* 5 */ 335, 272, 215, 172, 137,
1190 /* 10 */ 110, 87, 70, 56, 45,
1191 /* 15 */ 36, 29, 23, 18, 15,
1192 };
1193
1194 /*
1195 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1196 *
1197 * In cases where the weight does not change often, we can use the
1198 * precalculated inverse to speed up arithmetics by turning divisions
1199 * into multiplications:
1200 */
1201 static const u32 prio_to_wmult[40] = {
1202 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1203 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1204 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1205 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1206 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1207 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1208 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1209 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1210 };
1211
1212 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1213
1214 /*
1215 * runqueue iterator, to support SMP load-balancing between different
1216 * scheduling classes, without having to expose their internal data
1217 * structures to the load-balancing proper:
1218 */
1219 struct rq_iterator {
1220 void *arg;
1221 struct task_struct *(*start)(void *);
1222 struct task_struct *(*next)(void *);
1223 };
1224
1225 #ifdef CONFIG_SMP
1226 static unsigned long
1227 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1228 unsigned long max_load_move, struct sched_domain *sd,
1229 enum cpu_idle_type idle, int *all_pinned,
1230 int *this_best_prio, struct rq_iterator *iterator);
1231
1232 static int
1233 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1234 struct sched_domain *sd, enum cpu_idle_type idle,
1235 struct rq_iterator *iterator);
1236 #endif
1237
1238 #ifdef CONFIG_CGROUP_CPUACCT
1239 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1240 #else
1241 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1242 #endif
1243
1244 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1245 {
1246 update_load_add(&rq->load, load);
1247 }
1248
1249 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1250 {
1251 update_load_sub(&rq->load, load);
1252 }
1253
1254 #ifdef CONFIG_SMP
1255 static unsigned long source_load(int cpu, int type);
1256 static unsigned long target_load(int cpu, int type);
1257 static unsigned long cpu_avg_load_per_task(int cpu);
1258 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1259 #endif /* CONFIG_SMP */
1260
1261 #include "sched_stats.h"
1262 #include "sched_idletask.c"
1263 #include "sched_fair.c"
1264 #include "sched_rt.c"
1265 #ifdef CONFIG_SCHED_DEBUG
1266 # include "sched_debug.c"
1267 #endif
1268
1269 #define sched_class_highest (&rt_sched_class)
1270
1271 static void inc_nr_running(struct rq *rq)
1272 {
1273 rq->nr_running++;
1274 }
1275
1276 static void dec_nr_running(struct rq *rq)
1277 {
1278 rq->nr_running--;
1279 }
1280
1281 static void set_load_weight(struct task_struct *p)
1282 {
1283 if (task_has_rt_policy(p)) {
1284 p->se.load.weight = prio_to_weight[0] * 2;
1285 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1286 return;
1287 }
1288
1289 /*
1290 * SCHED_IDLE tasks get minimal weight:
1291 */
1292 if (p->policy == SCHED_IDLE) {
1293 p->se.load.weight = WEIGHT_IDLEPRIO;
1294 p->se.load.inv_weight = WMULT_IDLEPRIO;
1295 return;
1296 }
1297
1298 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1299 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1300 }
1301
1302 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1303 {
1304 sched_info_queued(p);
1305 p->sched_class->enqueue_task(rq, p, wakeup);
1306 p->se.on_rq = 1;
1307 }
1308
1309 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1310 {
1311 p->sched_class->dequeue_task(rq, p, sleep);
1312 p->se.on_rq = 0;
1313 }
1314
1315 /*
1316 * __normal_prio - return the priority that is based on the static prio
1317 */
1318 static inline int __normal_prio(struct task_struct *p)
1319 {
1320 return p->static_prio;
1321 }
1322
1323 /*
1324 * Calculate the expected normal priority: i.e. priority
1325 * without taking RT-inheritance into account. Might be
1326 * boosted by interactivity modifiers. Changes upon fork,
1327 * setprio syscalls, and whenever the interactivity
1328 * estimator recalculates.
1329 */
1330 static inline int normal_prio(struct task_struct *p)
1331 {
1332 int prio;
1333
1334 if (task_has_rt_policy(p))
1335 prio = MAX_RT_PRIO-1 - p->rt_priority;
1336 else
1337 prio = __normal_prio(p);
1338 return prio;
1339 }
1340
1341 /*
1342 * Calculate the current priority, i.e. the priority
1343 * taken into account by the scheduler. This value might
1344 * be boosted by RT tasks, or might be boosted by
1345 * interactivity modifiers. Will be RT if the task got
1346 * RT-boosted. If not then it returns p->normal_prio.
1347 */
1348 static int effective_prio(struct task_struct *p)
1349 {
1350 p->normal_prio = normal_prio(p);
1351 /*
1352 * If we are RT tasks or we were boosted to RT priority,
1353 * keep the priority unchanged. Otherwise, update priority
1354 * to the normal priority:
1355 */
1356 if (!rt_prio(p->prio))
1357 return p->normal_prio;
1358 return p->prio;
1359 }
1360
1361 /*
1362 * activate_task - move a task to the runqueue.
1363 */
1364 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1365 {
1366 if (task_contributes_to_load(p))
1367 rq->nr_uninterruptible--;
1368
1369 enqueue_task(rq, p, wakeup);
1370 inc_nr_running(rq);
1371 }
1372
1373 /*
1374 * deactivate_task - remove a task from the runqueue.
1375 */
1376 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1377 {
1378 if (task_contributes_to_load(p))
1379 rq->nr_uninterruptible++;
1380
1381 dequeue_task(rq, p, sleep);
1382 dec_nr_running(rq);
1383 }
1384
1385 /**
1386 * task_curr - is this task currently executing on a CPU?
1387 * @p: the task in question.
1388 */
1389 inline int task_curr(const struct task_struct *p)
1390 {
1391 return cpu_curr(task_cpu(p)) == p;
1392 }
1393
1394 /* Used instead of source_load when we know the type == 0 */
1395 unsigned long weighted_cpuload(const int cpu)
1396 {
1397 return cpu_rq(cpu)->load.weight;
1398 }
1399
1400 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1401 {
1402 set_task_rq(p, cpu);
1403 #ifdef CONFIG_SMP
1404 /*
1405 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1406 * successfuly executed on another CPU. We must ensure that updates of
1407 * per-task data have been completed by this moment.
1408 */
1409 smp_wmb();
1410 task_thread_info(p)->cpu = cpu;
1411 #endif
1412 }
1413
1414 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1415 const struct sched_class *prev_class,
1416 int oldprio, int running)
1417 {
1418 if (prev_class != p->sched_class) {
1419 if (prev_class->switched_from)
1420 prev_class->switched_from(rq, p, running);
1421 p->sched_class->switched_to(rq, p, running);
1422 } else
1423 p->sched_class->prio_changed(rq, p, oldprio, running);
1424 }
1425
1426 #ifdef CONFIG_SMP
1427
1428 /*
1429 * Is this task likely cache-hot:
1430 */
1431 static int
1432 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1433 {
1434 s64 delta;
1435
1436 if (p->sched_class != &fair_sched_class)
1437 return 0;
1438
1439 if (sysctl_sched_migration_cost == -1)
1440 return 1;
1441 if (sysctl_sched_migration_cost == 0)
1442 return 0;
1443
1444 delta = now - p->se.exec_start;
1445
1446 return delta < (s64)sysctl_sched_migration_cost;
1447 }
1448
1449
1450 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1451 {
1452 int old_cpu = task_cpu(p);
1453 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1454 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1455 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1456 u64 clock_offset;
1457
1458 clock_offset = old_rq->clock - new_rq->clock;
1459
1460 #ifdef CONFIG_SCHEDSTATS
1461 if (p->se.wait_start)
1462 p->se.wait_start -= clock_offset;
1463 if (p->se.sleep_start)
1464 p->se.sleep_start -= clock_offset;
1465 if (p->se.block_start)
1466 p->se.block_start -= clock_offset;
1467 if (old_cpu != new_cpu) {
1468 schedstat_inc(p, se.nr_migrations);
1469 if (task_hot(p, old_rq->clock, NULL))
1470 schedstat_inc(p, se.nr_forced2_migrations);
1471 }
1472 #endif
1473 p->se.vruntime -= old_cfsrq->min_vruntime -
1474 new_cfsrq->min_vruntime;
1475
1476 __set_task_cpu(p, new_cpu);
1477 }
1478
1479 struct migration_req {
1480 struct list_head list;
1481
1482 struct task_struct *task;
1483 int dest_cpu;
1484
1485 struct completion done;
1486 };
1487
1488 /*
1489 * The task's runqueue lock must be held.
1490 * Returns true if you have to wait for migration thread.
1491 */
1492 static int
1493 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1494 {
1495 struct rq *rq = task_rq(p);
1496
1497 /*
1498 * If the task is not on a runqueue (and not running), then
1499 * it is sufficient to simply update the task's cpu field.
1500 */
1501 if (!p->se.on_rq && !task_running(rq, p)) {
1502 set_task_cpu(p, dest_cpu);
1503 return 0;
1504 }
1505
1506 init_completion(&req->done);
1507 req->task = p;
1508 req->dest_cpu = dest_cpu;
1509 list_add(&req->list, &rq->migration_queue);
1510
1511 return 1;
1512 }
1513
1514 /*
1515 * wait_task_inactive - wait for a thread to unschedule.
1516 *
1517 * The caller must ensure that the task *will* unschedule sometime soon,
1518 * else this function might spin for a *long* time. This function can't
1519 * be called with interrupts off, or it may introduce deadlock with
1520 * smp_call_function() if an IPI is sent by the same process we are
1521 * waiting to become inactive.
1522 */
1523 void wait_task_inactive(struct task_struct *p)
1524 {
1525 unsigned long flags;
1526 int running, on_rq;
1527 struct rq *rq;
1528
1529 for (;;) {
1530 /*
1531 * We do the initial early heuristics without holding
1532 * any task-queue locks at all. We'll only try to get
1533 * the runqueue lock when things look like they will
1534 * work out!
1535 */
1536 rq = task_rq(p);
1537
1538 /*
1539 * If the task is actively running on another CPU
1540 * still, just relax and busy-wait without holding
1541 * any locks.
1542 *
1543 * NOTE! Since we don't hold any locks, it's not
1544 * even sure that "rq" stays as the right runqueue!
1545 * But we don't care, since "task_running()" will
1546 * return false if the runqueue has changed and p
1547 * is actually now running somewhere else!
1548 */
1549 while (task_running(rq, p))
1550 cpu_relax();
1551
1552 /*
1553 * Ok, time to look more closely! We need the rq
1554 * lock now, to be *sure*. If we're wrong, we'll
1555 * just go back and repeat.
1556 */
1557 rq = task_rq_lock(p, &flags);
1558 running = task_running(rq, p);
1559 on_rq = p->se.on_rq;
1560 task_rq_unlock(rq, &flags);
1561
1562 /*
1563 * Was it really running after all now that we
1564 * checked with the proper locks actually held?
1565 *
1566 * Oops. Go back and try again..
1567 */
1568 if (unlikely(running)) {
1569 cpu_relax();
1570 continue;
1571 }
1572
1573 /*
1574 * It's not enough that it's not actively running,
1575 * it must be off the runqueue _entirely_, and not
1576 * preempted!
1577 *
1578 * So if it wa still runnable (but just not actively
1579 * running right now), it's preempted, and we should
1580 * yield - it could be a while.
1581 */
1582 if (unlikely(on_rq)) {
1583 schedule_timeout_uninterruptible(1);
1584 continue;
1585 }
1586
1587 /*
1588 * Ahh, all good. It wasn't running, and it wasn't
1589 * runnable, which means that it will never become
1590 * running in the future either. We're all done!
1591 */
1592 break;
1593 }
1594 }
1595
1596 /***
1597 * kick_process - kick a running thread to enter/exit the kernel
1598 * @p: the to-be-kicked thread
1599 *
1600 * Cause a process which is running on another CPU to enter
1601 * kernel-mode, without any delay. (to get signals handled.)
1602 *
1603 * NOTE: this function doesnt have to take the runqueue lock,
1604 * because all it wants to ensure is that the remote task enters
1605 * the kernel. If the IPI races and the task has been migrated
1606 * to another CPU then no harm is done and the purpose has been
1607 * achieved as well.
1608 */
1609 void kick_process(struct task_struct *p)
1610 {
1611 int cpu;
1612
1613 preempt_disable();
1614 cpu = task_cpu(p);
1615 if ((cpu != smp_processor_id()) && task_curr(p))
1616 smp_send_reschedule(cpu);
1617 preempt_enable();
1618 }
1619
1620 /*
1621 * Return a low guess at the load of a migration-source cpu weighted
1622 * according to the scheduling class and "nice" value.
1623 *
1624 * We want to under-estimate the load of migration sources, to
1625 * balance conservatively.
1626 */
1627 static unsigned long source_load(int cpu, int type)
1628 {
1629 struct rq *rq = cpu_rq(cpu);
1630 unsigned long total = weighted_cpuload(cpu);
1631
1632 if (type == 0)
1633 return total;
1634
1635 return min(rq->cpu_load[type-1], total);
1636 }
1637
1638 /*
1639 * Return a high guess at the load of a migration-target cpu weighted
1640 * according to the scheduling class and "nice" value.
1641 */
1642 static unsigned long target_load(int cpu, int type)
1643 {
1644 struct rq *rq = cpu_rq(cpu);
1645 unsigned long total = weighted_cpuload(cpu);
1646
1647 if (type == 0)
1648 return total;
1649
1650 return max(rq->cpu_load[type-1], total);
1651 }
1652
1653 /*
1654 * Return the average load per task on the cpu's run queue
1655 */
1656 static unsigned long cpu_avg_load_per_task(int cpu)
1657 {
1658 struct rq *rq = cpu_rq(cpu);
1659 unsigned long total = weighted_cpuload(cpu);
1660 unsigned long n = rq->nr_running;
1661
1662 return n ? total / n : SCHED_LOAD_SCALE;
1663 }
1664
1665 /*
1666 * find_idlest_group finds and returns the least busy CPU group within the
1667 * domain.
1668 */
1669 static struct sched_group *
1670 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1671 {
1672 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1673 unsigned long min_load = ULONG_MAX, this_load = 0;
1674 int load_idx = sd->forkexec_idx;
1675 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1676
1677 do {
1678 unsigned long load, avg_load;
1679 int local_group;
1680 int i;
1681
1682 /* Skip over this group if it has no CPUs allowed */
1683 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1684 continue;
1685
1686 local_group = cpu_isset(this_cpu, group->cpumask);
1687
1688 /* Tally up the load of all CPUs in the group */
1689 avg_load = 0;
1690
1691 for_each_cpu_mask(i, group->cpumask) {
1692 /* Bias balancing toward cpus of our domain */
1693 if (local_group)
1694 load = source_load(i, load_idx);
1695 else
1696 load = target_load(i, load_idx);
1697
1698 avg_load += load;
1699 }
1700
1701 /* Adjust by relative CPU power of the group */
1702 avg_load = sg_div_cpu_power(group,
1703 avg_load * SCHED_LOAD_SCALE);
1704
1705 if (local_group) {
1706 this_load = avg_load;
1707 this = group;
1708 } else if (avg_load < min_load) {
1709 min_load = avg_load;
1710 idlest = group;
1711 }
1712 } while (group = group->next, group != sd->groups);
1713
1714 if (!idlest || 100*this_load < imbalance*min_load)
1715 return NULL;
1716 return idlest;
1717 }
1718
1719 /*
1720 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1721 */
1722 static int
1723 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1724 {
1725 cpumask_t tmp;
1726 unsigned long load, min_load = ULONG_MAX;
1727 int idlest = -1;
1728 int i;
1729
1730 /* Traverse only the allowed CPUs */
1731 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1732
1733 for_each_cpu_mask(i, tmp) {
1734 load = weighted_cpuload(i);
1735
1736 if (load < min_load || (load == min_load && i == this_cpu)) {
1737 min_load = load;
1738 idlest = i;
1739 }
1740 }
1741
1742 return idlest;
1743 }
1744
1745 /*
1746 * sched_balance_self: balance the current task (running on cpu) in domains
1747 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1748 * SD_BALANCE_EXEC.
1749 *
1750 * Balance, ie. select the least loaded group.
1751 *
1752 * Returns the target CPU number, or the same CPU if no balancing is needed.
1753 *
1754 * preempt must be disabled.
1755 */
1756 static int sched_balance_self(int cpu, int flag)
1757 {
1758 struct task_struct *t = current;
1759 struct sched_domain *tmp, *sd = NULL;
1760
1761 for_each_domain(cpu, tmp) {
1762 /*
1763 * If power savings logic is enabled for a domain, stop there.
1764 */
1765 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1766 break;
1767 if (tmp->flags & flag)
1768 sd = tmp;
1769 }
1770
1771 while (sd) {
1772 cpumask_t span;
1773 struct sched_group *group;
1774 int new_cpu, weight;
1775
1776 if (!(sd->flags & flag)) {
1777 sd = sd->child;
1778 continue;
1779 }
1780
1781 span = sd->span;
1782 group = find_idlest_group(sd, t, cpu);
1783 if (!group) {
1784 sd = sd->child;
1785 continue;
1786 }
1787
1788 new_cpu = find_idlest_cpu(group, t, cpu);
1789 if (new_cpu == -1 || new_cpu == cpu) {
1790 /* Now try balancing at a lower domain level of cpu */
1791 sd = sd->child;
1792 continue;
1793 }
1794
1795 /* Now try balancing at a lower domain level of new_cpu */
1796 cpu = new_cpu;
1797 sd = NULL;
1798 weight = cpus_weight(span);
1799 for_each_domain(cpu, tmp) {
1800 if (weight <= cpus_weight(tmp->span))
1801 break;
1802 if (tmp->flags & flag)
1803 sd = tmp;
1804 }
1805 /* while loop will break here if sd == NULL */
1806 }
1807
1808 return cpu;
1809 }
1810
1811 #endif /* CONFIG_SMP */
1812
1813 /***
1814 * try_to_wake_up - wake up a thread
1815 * @p: the to-be-woken-up thread
1816 * @state: the mask of task states that can be woken
1817 * @sync: do a synchronous wakeup?
1818 *
1819 * Put it on the run-queue if it's not already there. The "current"
1820 * thread is always on the run-queue (except when the actual
1821 * re-schedule is in progress), and as such you're allowed to do
1822 * the simpler "current->state = TASK_RUNNING" to mark yourself
1823 * runnable without the overhead of this.
1824 *
1825 * returns failure only if the task is already active.
1826 */
1827 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1828 {
1829 int cpu, orig_cpu, this_cpu, success = 0;
1830 unsigned long flags;
1831 long old_state;
1832 struct rq *rq;
1833
1834 rq = task_rq_lock(p, &flags);
1835 old_state = p->state;
1836 if (!(old_state & state))
1837 goto out;
1838
1839 if (p->se.on_rq)
1840 goto out_running;
1841
1842 cpu = task_cpu(p);
1843 orig_cpu = cpu;
1844 this_cpu = smp_processor_id();
1845
1846 #ifdef CONFIG_SMP
1847 if (unlikely(task_running(rq, p)))
1848 goto out_activate;
1849
1850 cpu = p->sched_class->select_task_rq(p, sync);
1851 if (cpu != orig_cpu) {
1852 set_task_cpu(p, cpu);
1853 task_rq_unlock(rq, &flags);
1854 /* might preempt at this point */
1855 rq = task_rq_lock(p, &flags);
1856 old_state = p->state;
1857 if (!(old_state & state))
1858 goto out;
1859 if (p->se.on_rq)
1860 goto out_running;
1861
1862 this_cpu = smp_processor_id();
1863 cpu = task_cpu(p);
1864 }
1865
1866 #ifdef CONFIG_SCHEDSTATS
1867 schedstat_inc(rq, ttwu_count);
1868 if (cpu == this_cpu)
1869 schedstat_inc(rq, ttwu_local);
1870 else {
1871 struct sched_domain *sd;
1872 for_each_domain(this_cpu, sd) {
1873 if (cpu_isset(cpu, sd->span)) {
1874 schedstat_inc(sd, ttwu_wake_remote);
1875 break;
1876 }
1877 }
1878 }
1879 #endif
1880
1881 out_activate:
1882 #endif /* CONFIG_SMP */
1883 schedstat_inc(p, se.nr_wakeups);
1884 if (sync)
1885 schedstat_inc(p, se.nr_wakeups_sync);
1886 if (orig_cpu != cpu)
1887 schedstat_inc(p, se.nr_wakeups_migrate);
1888 if (cpu == this_cpu)
1889 schedstat_inc(p, se.nr_wakeups_local);
1890 else
1891 schedstat_inc(p, se.nr_wakeups_remote);
1892 update_rq_clock(rq);
1893 activate_task(rq, p, 1);
1894 check_preempt_curr(rq, p);
1895 success = 1;
1896
1897 out_running:
1898 p->state = TASK_RUNNING;
1899 #ifdef CONFIG_SMP
1900 if (p->sched_class->task_wake_up)
1901 p->sched_class->task_wake_up(rq, p);
1902 #endif
1903 out:
1904 task_rq_unlock(rq, &flags);
1905
1906 return success;
1907 }
1908
1909 int wake_up_process(struct task_struct *p)
1910 {
1911 return try_to_wake_up(p, TASK_ALL, 0);
1912 }
1913 EXPORT_SYMBOL(wake_up_process);
1914
1915 int wake_up_state(struct task_struct *p, unsigned int state)
1916 {
1917 return try_to_wake_up(p, state, 0);
1918 }
1919
1920 /*
1921 * Perform scheduler related setup for a newly forked process p.
1922 * p is forked by current.
1923 *
1924 * __sched_fork() is basic setup used by init_idle() too:
1925 */
1926 static void __sched_fork(struct task_struct *p)
1927 {
1928 p->se.exec_start = 0;
1929 p->se.sum_exec_runtime = 0;
1930 p->se.prev_sum_exec_runtime = 0;
1931
1932 #ifdef CONFIG_SCHEDSTATS
1933 p->se.wait_start = 0;
1934 p->se.sum_sleep_runtime = 0;
1935 p->se.sleep_start = 0;
1936 p->se.block_start = 0;
1937 p->se.sleep_max = 0;
1938 p->se.block_max = 0;
1939 p->se.exec_max = 0;
1940 p->se.slice_max = 0;
1941 p->se.wait_max = 0;
1942 #endif
1943
1944 INIT_LIST_HEAD(&p->rt.run_list);
1945 p->se.on_rq = 0;
1946
1947 #ifdef CONFIG_PREEMPT_NOTIFIERS
1948 INIT_HLIST_HEAD(&p->preempt_notifiers);
1949 #endif
1950
1951 /*
1952 * We mark the process as running here, but have not actually
1953 * inserted it onto the runqueue yet. This guarantees that
1954 * nobody will actually run it, and a signal or other external
1955 * event cannot wake it up and insert it on the runqueue either.
1956 */
1957 p->state = TASK_RUNNING;
1958 }
1959
1960 /*
1961 * fork()/clone()-time setup:
1962 */
1963 void sched_fork(struct task_struct *p, int clone_flags)
1964 {
1965 int cpu = get_cpu();
1966
1967 __sched_fork(p);
1968
1969 #ifdef CONFIG_SMP
1970 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1971 #endif
1972 set_task_cpu(p, cpu);
1973
1974 /*
1975 * Make sure we do not leak PI boosting priority to the child:
1976 */
1977 p->prio = current->normal_prio;
1978 if (!rt_prio(p->prio))
1979 p->sched_class = &fair_sched_class;
1980
1981 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1982 if (likely(sched_info_on()))
1983 memset(&p->sched_info, 0, sizeof(p->sched_info));
1984 #endif
1985 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1986 p->oncpu = 0;
1987 #endif
1988 #ifdef CONFIG_PREEMPT
1989 /* Want to start with kernel preemption disabled. */
1990 task_thread_info(p)->preempt_count = 1;
1991 #endif
1992 put_cpu();
1993 }
1994
1995 /*
1996 * wake_up_new_task - wake up a newly created task for the first time.
1997 *
1998 * This function will do some initial scheduler statistics housekeeping
1999 * that must be done for every newly created context, then puts the task
2000 * on the runqueue and wakes it.
2001 */
2002 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2003 {
2004 unsigned long flags;
2005 struct rq *rq;
2006
2007 rq = task_rq_lock(p, &flags);
2008 BUG_ON(p->state != TASK_RUNNING);
2009 update_rq_clock(rq);
2010
2011 p->prio = effective_prio(p);
2012
2013 if (!p->sched_class->task_new || !current->se.on_rq) {
2014 activate_task(rq, p, 0);
2015 } else {
2016 /*
2017 * Let the scheduling class do new task startup
2018 * management (if any):
2019 */
2020 p->sched_class->task_new(rq, p);
2021 inc_nr_running(rq);
2022 }
2023 check_preempt_curr(rq, p);
2024 #ifdef CONFIG_SMP
2025 if (p->sched_class->task_wake_up)
2026 p->sched_class->task_wake_up(rq, p);
2027 #endif
2028 task_rq_unlock(rq, &flags);
2029 }
2030
2031 #ifdef CONFIG_PREEMPT_NOTIFIERS
2032
2033 /**
2034 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2035 * @notifier: notifier struct to register
2036 */
2037 void preempt_notifier_register(struct preempt_notifier *notifier)
2038 {
2039 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2040 }
2041 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2042
2043 /**
2044 * preempt_notifier_unregister - no longer interested in preemption notifications
2045 * @notifier: notifier struct to unregister
2046 *
2047 * This is safe to call from within a preemption notifier.
2048 */
2049 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2050 {
2051 hlist_del(&notifier->link);
2052 }
2053 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2054
2055 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2056 {
2057 struct preempt_notifier *notifier;
2058 struct hlist_node *node;
2059
2060 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2061 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2062 }
2063
2064 static void
2065 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2066 struct task_struct *next)
2067 {
2068 struct preempt_notifier *notifier;
2069 struct hlist_node *node;
2070
2071 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2072 notifier->ops->sched_out(notifier, next);
2073 }
2074
2075 #else
2076
2077 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2078 {
2079 }
2080
2081 static void
2082 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2083 struct task_struct *next)
2084 {
2085 }
2086
2087 #endif
2088
2089 /**
2090 * prepare_task_switch - prepare to switch tasks
2091 * @rq: the runqueue preparing to switch
2092 * @prev: the current task that is being switched out
2093 * @next: the task we are going to switch to.
2094 *
2095 * This is called with the rq lock held and interrupts off. It must
2096 * be paired with a subsequent finish_task_switch after the context
2097 * switch.
2098 *
2099 * prepare_task_switch sets up locking and calls architecture specific
2100 * hooks.
2101 */
2102 static inline void
2103 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2104 struct task_struct *next)
2105 {
2106 fire_sched_out_preempt_notifiers(prev, next);
2107 prepare_lock_switch(rq, next);
2108 prepare_arch_switch(next);
2109 }
2110
2111 /**
2112 * finish_task_switch - clean up after a task-switch
2113 * @rq: runqueue associated with task-switch
2114 * @prev: the thread we just switched away from.
2115 *
2116 * finish_task_switch must be called after the context switch, paired
2117 * with a prepare_task_switch call before the context switch.
2118 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2119 * and do any other architecture-specific cleanup actions.
2120 *
2121 * Note that we may have delayed dropping an mm in context_switch(). If
2122 * so, we finish that here outside of the runqueue lock. (Doing it
2123 * with the lock held can cause deadlocks; see schedule() for
2124 * details.)
2125 */
2126 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2127 __releases(rq->lock)
2128 {
2129 struct mm_struct *mm = rq->prev_mm;
2130 long prev_state;
2131
2132 rq->prev_mm = NULL;
2133
2134 /*
2135 * A task struct has one reference for the use as "current".
2136 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2137 * schedule one last time. The schedule call will never return, and
2138 * the scheduled task must drop that reference.
2139 * The test for TASK_DEAD must occur while the runqueue locks are
2140 * still held, otherwise prev could be scheduled on another cpu, die
2141 * there before we look at prev->state, and then the reference would
2142 * be dropped twice.
2143 * Manfred Spraul <manfred@colorfullife.com>
2144 */
2145 prev_state = prev->state;
2146 finish_arch_switch(prev);
2147 finish_lock_switch(rq, prev);
2148 #ifdef CONFIG_SMP
2149 if (current->sched_class->post_schedule)
2150 current->sched_class->post_schedule(rq);
2151 #endif
2152
2153 fire_sched_in_preempt_notifiers(current);
2154 if (mm)
2155 mmdrop(mm);
2156 if (unlikely(prev_state == TASK_DEAD)) {
2157 /*
2158 * Remove function-return probe instances associated with this
2159 * task and put them back on the free list.
2160 */
2161 kprobe_flush_task(prev);
2162 put_task_struct(prev);
2163 }
2164 }
2165
2166 /**
2167 * schedule_tail - first thing a freshly forked thread must call.
2168 * @prev: the thread we just switched away from.
2169 */
2170 asmlinkage void schedule_tail(struct task_struct *prev)
2171 __releases(rq->lock)
2172 {
2173 struct rq *rq = this_rq();
2174
2175 finish_task_switch(rq, prev);
2176 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2177 /* In this case, finish_task_switch does not reenable preemption */
2178 preempt_enable();
2179 #endif
2180 if (current->set_child_tid)
2181 put_user(task_pid_vnr(current), current->set_child_tid);
2182 }
2183
2184 /*
2185 * context_switch - switch to the new MM and the new
2186 * thread's register state.
2187 */
2188 static inline void
2189 context_switch(struct rq *rq, struct task_struct *prev,
2190 struct task_struct *next)
2191 {
2192 struct mm_struct *mm, *oldmm;
2193
2194 prepare_task_switch(rq, prev, next);
2195 mm = next->mm;
2196 oldmm = prev->active_mm;
2197 /*
2198 * For paravirt, this is coupled with an exit in switch_to to
2199 * combine the page table reload and the switch backend into
2200 * one hypercall.
2201 */
2202 arch_enter_lazy_cpu_mode();
2203
2204 if (unlikely(!mm)) {
2205 next->active_mm = oldmm;
2206 atomic_inc(&oldmm->mm_count);
2207 enter_lazy_tlb(oldmm, next);
2208 } else
2209 switch_mm(oldmm, mm, next);
2210
2211 if (unlikely(!prev->mm)) {
2212 prev->active_mm = NULL;
2213 rq->prev_mm = oldmm;
2214 }
2215 /*
2216 * Since the runqueue lock will be released by the next
2217 * task (which is an invalid locking op but in the case
2218 * of the scheduler it's an obvious special-case), so we
2219 * do an early lockdep release here:
2220 */
2221 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2222 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2223 #endif
2224
2225 /* Here we just switch the register state and the stack. */
2226 switch_to(prev, next, prev);
2227
2228 barrier();
2229 /*
2230 * this_rq must be evaluated again because prev may have moved
2231 * CPUs since it called schedule(), thus the 'rq' on its stack
2232 * frame will be invalid.
2233 */
2234 finish_task_switch(this_rq(), prev);
2235 }
2236
2237 /*
2238 * nr_running, nr_uninterruptible and nr_context_switches:
2239 *
2240 * externally visible scheduler statistics: current number of runnable
2241 * threads, current number of uninterruptible-sleeping threads, total
2242 * number of context switches performed since bootup.
2243 */
2244 unsigned long nr_running(void)
2245 {
2246 unsigned long i, sum = 0;
2247
2248 for_each_online_cpu(i)
2249 sum += cpu_rq(i)->nr_running;
2250
2251 return sum;
2252 }
2253
2254 unsigned long nr_uninterruptible(void)
2255 {
2256 unsigned long i, sum = 0;
2257
2258 for_each_possible_cpu(i)
2259 sum += cpu_rq(i)->nr_uninterruptible;
2260
2261 /*
2262 * Since we read the counters lockless, it might be slightly
2263 * inaccurate. Do not allow it to go below zero though:
2264 */
2265 if (unlikely((long)sum < 0))
2266 sum = 0;
2267
2268 return sum;
2269 }
2270
2271 unsigned long long nr_context_switches(void)
2272 {
2273 int i;
2274 unsigned long long sum = 0;
2275
2276 for_each_possible_cpu(i)
2277 sum += cpu_rq(i)->nr_switches;
2278
2279 return sum;
2280 }
2281
2282 unsigned long nr_iowait(void)
2283 {
2284 unsigned long i, sum = 0;
2285
2286 for_each_possible_cpu(i)
2287 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2288
2289 return sum;
2290 }
2291
2292 unsigned long nr_active(void)
2293 {
2294 unsigned long i, running = 0, uninterruptible = 0;
2295
2296 for_each_online_cpu(i) {
2297 running += cpu_rq(i)->nr_running;
2298 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2299 }
2300
2301 if (unlikely((long)uninterruptible < 0))
2302 uninterruptible = 0;
2303
2304 return running + uninterruptible;
2305 }
2306
2307 /*
2308 * Update rq->cpu_load[] statistics. This function is usually called every
2309 * scheduler tick (TICK_NSEC).
2310 */
2311 static void update_cpu_load(struct rq *this_rq)
2312 {
2313 unsigned long this_load = this_rq->load.weight;
2314 int i, scale;
2315
2316 this_rq->nr_load_updates++;
2317
2318 /* Update our load: */
2319 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2320 unsigned long old_load, new_load;
2321
2322 /* scale is effectively 1 << i now, and >> i divides by scale */
2323
2324 old_load = this_rq->cpu_load[i];
2325 new_load = this_load;
2326 /*
2327 * Round up the averaging division if load is increasing. This
2328 * prevents us from getting stuck on 9 if the load is 10, for
2329 * example.
2330 */
2331 if (new_load > old_load)
2332 new_load += scale-1;
2333 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2334 }
2335 }
2336
2337 #ifdef CONFIG_SMP
2338
2339 /*
2340 * double_rq_lock - safely lock two runqueues
2341 *
2342 * Note this does not disable interrupts like task_rq_lock,
2343 * you need to do so manually before calling.
2344 */
2345 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2346 __acquires(rq1->lock)
2347 __acquires(rq2->lock)
2348 {
2349 BUG_ON(!irqs_disabled());
2350 if (rq1 == rq2) {
2351 spin_lock(&rq1->lock);
2352 __acquire(rq2->lock); /* Fake it out ;) */
2353 } else {
2354 if (rq1 < rq2) {
2355 spin_lock(&rq1->lock);
2356 spin_lock(&rq2->lock);
2357 } else {
2358 spin_lock(&rq2->lock);
2359 spin_lock(&rq1->lock);
2360 }
2361 }
2362 update_rq_clock(rq1);
2363 update_rq_clock(rq2);
2364 }
2365
2366 /*
2367 * double_rq_unlock - safely unlock two runqueues
2368 *
2369 * Note this does not restore interrupts like task_rq_unlock,
2370 * you need to do so manually after calling.
2371 */
2372 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2373 __releases(rq1->lock)
2374 __releases(rq2->lock)
2375 {
2376 spin_unlock(&rq1->lock);
2377 if (rq1 != rq2)
2378 spin_unlock(&rq2->lock);
2379 else
2380 __release(rq2->lock);
2381 }
2382
2383 /*
2384 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2385 */
2386 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2387 __releases(this_rq->lock)
2388 __acquires(busiest->lock)
2389 __acquires(this_rq->lock)
2390 {
2391 int ret = 0;
2392
2393 if (unlikely(!irqs_disabled())) {
2394 /* printk() doesn't work good under rq->lock */
2395 spin_unlock(&this_rq->lock);
2396 BUG_ON(1);
2397 }
2398 if (unlikely(!spin_trylock(&busiest->lock))) {
2399 if (busiest < this_rq) {
2400 spin_unlock(&this_rq->lock);
2401 spin_lock(&busiest->lock);
2402 spin_lock(&this_rq->lock);
2403 ret = 1;
2404 } else
2405 spin_lock(&busiest->lock);
2406 }
2407 return ret;
2408 }
2409
2410 /*
2411 * If dest_cpu is allowed for this process, migrate the task to it.
2412 * This is accomplished by forcing the cpu_allowed mask to only
2413 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2414 * the cpu_allowed mask is restored.
2415 */
2416 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2417 {
2418 struct migration_req req;
2419 unsigned long flags;
2420 struct rq *rq;
2421
2422 rq = task_rq_lock(p, &flags);
2423 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2424 || unlikely(cpu_is_offline(dest_cpu)))
2425 goto out;
2426
2427 /* force the process onto the specified CPU */
2428 if (migrate_task(p, dest_cpu, &req)) {
2429 /* Need to wait for migration thread (might exit: take ref). */
2430 struct task_struct *mt = rq->migration_thread;
2431
2432 get_task_struct(mt);
2433 task_rq_unlock(rq, &flags);
2434 wake_up_process(mt);
2435 put_task_struct(mt);
2436 wait_for_completion(&req.done);
2437
2438 return;
2439 }
2440 out:
2441 task_rq_unlock(rq, &flags);
2442 }
2443
2444 /*
2445 * sched_exec - execve() is a valuable balancing opportunity, because at
2446 * this point the task has the smallest effective memory and cache footprint.
2447 */
2448 void sched_exec(void)
2449 {
2450 int new_cpu, this_cpu = get_cpu();
2451 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2452 put_cpu();
2453 if (new_cpu != this_cpu)
2454 sched_migrate_task(current, new_cpu);
2455 }
2456
2457 /*
2458 * pull_task - move a task from a remote runqueue to the local runqueue.
2459 * Both runqueues must be locked.
2460 */
2461 static void pull_task(struct rq *src_rq, struct task_struct *p,
2462 struct rq *this_rq, int this_cpu)
2463 {
2464 deactivate_task(src_rq, p, 0);
2465 set_task_cpu(p, this_cpu);
2466 activate_task(this_rq, p, 0);
2467 /*
2468 * Note that idle threads have a prio of MAX_PRIO, for this test
2469 * to be always true for them.
2470 */
2471 check_preempt_curr(this_rq, p);
2472 }
2473
2474 /*
2475 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2476 */
2477 static
2478 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2479 struct sched_domain *sd, enum cpu_idle_type idle,
2480 int *all_pinned)
2481 {
2482 /*
2483 * We do not migrate tasks that are:
2484 * 1) running (obviously), or
2485 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2486 * 3) are cache-hot on their current CPU.
2487 */
2488 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2489 schedstat_inc(p, se.nr_failed_migrations_affine);
2490 return 0;
2491 }
2492 *all_pinned = 0;
2493
2494 if (task_running(rq, p)) {
2495 schedstat_inc(p, se.nr_failed_migrations_running);
2496 return 0;
2497 }
2498
2499 /*
2500 * Aggressive migration if:
2501 * 1) task is cache cold, or
2502 * 2) too many balance attempts have failed.
2503 */
2504
2505 if (!task_hot(p, rq->clock, sd) ||
2506 sd->nr_balance_failed > sd->cache_nice_tries) {
2507 #ifdef CONFIG_SCHEDSTATS
2508 if (task_hot(p, rq->clock, sd)) {
2509 schedstat_inc(sd, lb_hot_gained[idle]);
2510 schedstat_inc(p, se.nr_forced_migrations);
2511 }
2512 #endif
2513 return 1;
2514 }
2515
2516 if (task_hot(p, rq->clock, sd)) {
2517 schedstat_inc(p, se.nr_failed_migrations_hot);
2518 return 0;
2519 }
2520 return 1;
2521 }
2522
2523 static unsigned long
2524 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2525 unsigned long max_load_move, struct sched_domain *sd,
2526 enum cpu_idle_type idle, int *all_pinned,
2527 int *this_best_prio, struct rq_iterator *iterator)
2528 {
2529 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
2530 struct task_struct *p;
2531 long rem_load_move = max_load_move;
2532
2533 if (max_load_move == 0)
2534 goto out;
2535
2536 pinned = 1;
2537
2538 /*
2539 * Start the load-balancing iterator:
2540 */
2541 p = iterator->start(iterator->arg);
2542 next:
2543 if (!p || loops++ > sysctl_sched_nr_migrate)
2544 goto out;
2545 /*
2546 * To help distribute high priority tasks across CPUs we don't
2547 * skip a task if it will be the highest priority task (i.e. smallest
2548 * prio value) on its new queue regardless of its load weight
2549 */
2550 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2551 SCHED_LOAD_SCALE_FUZZ;
2552 if ((skip_for_load && p->prio >= *this_best_prio) ||
2553 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2554 p = iterator->next(iterator->arg);
2555 goto next;
2556 }
2557
2558 pull_task(busiest, p, this_rq, this_cpu);
2559 pulled++;
2560 rem_load_move -= p->se.load.weight;
2561
2562 /*
2563 * We only want to steal up to the prescribed amount of weighted load.
2564 */
2565 if (rem_load_move > 0) {
2566 if (p->prio < *this_best_prio)
2567 *this_best_prio = p->prio;
2568 p = iterator->next(iterator->arg);
2569 goto next;
2570 }
2571 out:
2572 /*
2573 * Right now, this is one of only two places pull_task() is called,
2574 * so we can safely collect pull_task() stats here rather than
2575 * inside pull_task().
2576 */
2577 schedstat_add(sd, lb_gained[idle], pulled);
2578
2579 if (all_pinned)
2580 *all_pinned = pinned;
2581
2582 return max_load_move - rem_load_move;
2583 }
2584
2585 /*
2586 * move_tasks tries to move up to max_load_move weighted load from busiest to
2587 * this_rq, as part of a balancing operation within domain "sd".
2588 * Returns 1 if successful and 0 otherwise.
2589 *
2590 * Called with both runqueues locked.
2591 */
2592 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2593 unsigned long max_load_move,
2594 struct sched_domain *sd, enum cpu_idle_type idle,
2595 int *all_pinned)
2596 {
2597 const struct sched_class *class = sched_class_highest;
2598 unsigned long total_load_moved = 0;
2599 int this_best_prio = this_rq->curr->prio;
2600
2601 do {
2602 total_load_moved +=
2603 class->load_balance(this_rq, this_cpu, busiest,
2604 max_load_move - total_load_moved,
2605 sd, idle, all_pinned, &this_best_prio);
2606 class = class->next;
2607 } while (class && max_load_move > total_load_moved);
2608
2609 return total_load_moved > 0;
2610 }
2611
2612 static int
2613 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2614 struct sched_domain *sd, enum cpu_idle_type idle,
2615 struct rq_iterator *iterator)
2616 {
2617 struct task_struct *p = iterator->start(iterator->arg);
2618 int pinned = 0;
2619
2620 while (p) {
2621 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2622 pull_task(busiest, p, this_rq, this_cpu);
2623 /*
2624 * Right now, this is only the second place pull_task()
2625 * is called, so we can safely collect pull_task()
2626 * stats here rather than inside pull_task().
2627 */
2628 schedstat_inc(sd, lb_gained[idle]);
2629
2630 return 1;
2631 }
2632 p = iterator->next(iterator->arg);
2633 }
2634
2635 return 0;
2636 }
2637
2638 /*
2639 * move_one_task tries to move exactly one task from busiest to this_rq, as
2640 * part of active balancing operations within "domain".
2641 * Returns 1 if successful and 0 otherwise.
2642 *
2643 * Called with both runqueues locked.
2644 */
2645 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2646 struct sched_domain *sd, enum cpu_idle_type idle)
2647 {
2648 const struct sched_class *class;
2649
2650 for (class = sched_class_highest; class; class = class->next)
2651 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
2652 return 1;
2653
2654 return 0;
2655 }
2656
2657 /*
2658 * find_busiest_group finds and returns the busiest CPU group within the
2659 * domain. It calculates and returns the amount of weighted load which
2660 * should be moved to restore balance via the imbalance parameter.
2661 */
2662 static struct sched_group *
2663 find_busiest_group(struct sched_domain *sd, int this_cpu,
2664 unsigned long *imbalance, enum cpu_idle_type idle,
2665 int *sd_idle, cpumask_t *cpus, int *balance)
2666 {
2667 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2668 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2669 unsigned long max_pull;
2670 unsigned long busiest_load_per_task, busiest_nr_running;
2671 unsigned long this_load_per_task, this_nr_running;
2672 int load_idx, group_imb = 0;
2673 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2674 int power_savings_balance = 1;
2675 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2676 unsigned long min_nr_running = ULONG_MAX;
2677 struct sched_group *group_min = NULL, *group_leader = NULL;
2678 #endif
2679
2680 max_load = this_load = total_load = total_pwr = 0;
2681 busiest_load_per_task = busiest_nr_running = 0;
2682 this_load_per_task = this_nr_running = 0;
2683 if (idle == CPU_NOT_IDLE)
2684 load_idx = sd->busy_idx;
2685 else if (idle == CPU_NEWLY_IDLE)
2686 load_idx = sd->newidle_idx;
2687 else
2688 load_idx = sd->idle_idx;
2689
2690 do {
2691 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
2692 int local_group;
2693 int i;
2694 int __group_imb = 0;
2695 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2696 unsigned long sum_nr_running, sum_weighted_load;
2697
2698 local_group = cpu_isset(this_cpu, group->cpumask);
2699
2700 if (local_group)
2701 balance_cpu = first_cpu(group->cpumask);
2702
2703 /* Tally up the load of all CPUs in the group */
2704 sum_weighted_load = sum_nr_running = avg_load = 0;
2705 max_cpu_load = 0;
2706 min_cpu_load = ~0UL;
2707
2708 for_each_cpu_mask(i, group->cpumask) {
2709 struct rq *rq;
2710
2711 if (!cpu_isset(i, *cpus))
2712 continue;
2713
2714 rq = cpu_rq(i);
2715
2716 if (*sd_idle && rq->nr_running)
2717 *sd_idle = 0;
2718
2719 /* Bias balancing toward cpus of our domain */
2720 if (local_group) {
2721 if (idle_cpu(i) && !first_idle_cpu) {
2722 first_idle_cpu = 1;
2723 balance_cpu = i;
2724 }
2725
2726 load = target_load(i, load_idx);
2727 } else {
2728 load = source_load(i, load_idx);
2729 if (load > max_cpu_load)
2730 max_cpu_load = load;
2731 if (min_cpu_load > load)
2732 min_cpu_load = load;
2733 }
2734
2735 avg_load += load;
2736 sum_nr_running += rq->nr_running;
2737 sum_weighted_load += weighted_cpuload(i);
2738 }
2739
2740 /*
2741 * First idle cpu or the first cpu(busiest) in this sched group
2742 * is eligible for doing load balancing at this and above
2743 * domains. In the newly idle case, we will allow all the cpu's
2744 * to do the newly idle load balance.
2745 */
2746 if (idle != CPU_NEWLY_IDLE && local_group &&
2747 balance_cpu != this_cpu && balance) {
2748 *balance = 0;
2749 goto ret;
2750 }
2751
2752 total_load += avg_load;
2753 total_pwr += group->__cpu_power;
2754
2755 /* Adjust by relative CPU power of the group */
2756 avg_load = sg_div_cpu_power(group,
2757 avg_load * SCHED_LOAD_SCALE);
2758
2759 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
2760 __group_imb = 1;
2761
2762 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2763
2764 if (local_group) {
2765 this_load = avg_load;
2766 this = group;
2767 this_nr_running = sum_nr_running;
2768 this_load_per_task = sum_weighted_load;
2769 } else if (avg_load > max_load &&
2770 (sum_nr_running > group_capacity || __group_imb)) {
2771 max_load = avg_load;
2772 busiest = group;
2773 busiest_nr_running = sum_nr_running;
2774 busiest_load_per_task = sum_weighted_load;
2775 group_imb = __group_imb;
2776 }
2777
2778 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2779 /*
2780 * Busy processors will not participate in power savings
2781 * balance.
2782 */
2783 if (idle == CPU_NOT_IDLE ||
2784 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2785 goto group_next;
2786
2787 /*
2788 * If the local group is idle or completely loaded
2789 * no need to do power savings balance at this domain
2790 */
2791 if (local_group && (this_nr_running >= group_capacity ||
2792 !this_nr_running))
2793 power_savings_balance = 0;
2794
2795 /*
2796 * If a group is already running at full capacity or idle,
2797 * don't include that group in power savings calculations
2798 */
2799 if (!power_savings_balance || sum_nr_running >= group_capacity
2800 || !sum_nr_running)
2801 goto group_next;
2802
2803 /*
2804 * Calculate the group which has the least non-idle load.
2805 * This is the group from where we need to pick up the load
2806 * for saving power
2807 */
2808 if ((sum_nr_running < min_nr_running) ||
2809 (sum_nr_running == min_nr_running &&
2810 first_cpu(group->cpumask) <
2811 first_cpu(group_min->cpumask))) {
2812 group_min = group;
2813 min_nr_running = sum_nr_running;
2814 min_load_per_task = sum_weighted_load /
2815 sum_nr_running;
2816 }
2817
2818 /*
2819 * Calculate the group which is almost near its
2820 * capacity but still has some space to pick up some load
2821 * from other group and save more power
2822 */
2823 if (sum_nr_running <= group_capacity - 1) {
2824 if (sum_nr_running > leader_nr_running ||
2825 (sum_nr_running == leader_nr_running &&
2826 first_cpu(group->cpumask) >
2827 first_cpu(group_leader->cpumask))) {
2828 group_leader = group;
2829 leader_nr_running = sum_nr_running;
2830 }
2831 }
2832 group_next:
2833 #endif
2834 group = group->next;
2835 } while (group != sd->groups);
2836
2837 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2838 goto out_balanced;
2839
2840 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2841
2842 if (this_load >= avg_load ||
2843 100*max_load <= sd->imbalance_pct*this_load)
2844 goto out_balanced;
2845
2846 busiest_load_per_task /= busiest_nr_running;
2847 if (group_imb)
2848 busiest_load_per_task = min(busiest_load_per_task, avg_load);
2849
2850 /*
2851 * We're trying to get all the cpus to the average_load, so we don't
2852 * want to push ourselves above the average load, nor do we wish to
2853 * reduce the max loaded cpu below the average load, as either of these
2854 * actions would just result in more rebalancing later, and ping-pong
2855 * tasks around. Thus we look for the minimum possible imbalance.
2856 * Negative imbalances (*we* are more loaded than anyone else) will
2857 * be counted as no imbalance for these purposes -- we can't fix that
2858 * by pulling tasks to us. Be careful of negative numbers as they'll
2859 * appear as very large values with unsigned longs.
2860 */
2861 if (max_load <= busiest_load_per_task)
2862 goto out_balanced;
2863
2864 /*
2865 * In the presence of smp nice balancing, certain scenarios can have
2866 * max load less than avg load(as we skip the groups at or below
2867 * its cpu_power, while calculating max_load..)
2868 */
2869 if (max_load < avg_load) {
2870 *imbalance = 0;
2871 goto small_imbalance;
2872 }
2873
2874 /* Don't want to pull so many tasks that a group would go idle */
2875 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2876
2877 /* How much load to actually move to equalise the imbalance */
2878 *imbalance = min(max_pull * busiest->__cpu_power,
2879 (avg_load - this_load) * this->__cpu_power)
2880 / SCHED_LOAD_SCALE;
2881
2882 /*
2883 * if *imbalance is less than the average load per runnable task
2884 * there is no gaurantee that any tasks will be moved so we'll have
2885 * a think about bumping its value to force at least one task to be
2886 * moved
2887 */
2888 if (*imbalance < busiest_load_per_task) {
2889 unsigned long tmp, pwr_now, pwr_move;
2890 unsigned int imbn;
2891
2892 small_imbalance:
2893 pwr_move = pwr_now = 0;
2894 imbn = 2;
2895 if (this_nr_running) {
2896 this_load_per_task /= this_nr_running;
2897 if (busiest_load_per_task > this_load_per_task)
2898 imbn = 1;
2899 } else
2900 this_load_per_task = SCHED_LOAD_SCALE;
2901
2902 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2903 busiest_load_per_task * imbn) {
2904 *imbalance = busiest_load_per_task;
2905 return busiest;
2906 }
2907
2908 /*
2909 * OK, we don't have enough imbalance to justify moving tasks,
2910 * however we may be able to increase total CPU power used by
2911 * moving them.
2912 */
2913
2914 pwr_now += busiest->__cpu_power *
2915 min(busiest_load_per_task, max_load);
2916 pwr_now += this->__cpu_power *
2917 min(this_load_per_task, this_load);
2918 pwr_now /= SCHED_LOAD_SCALE;
2919
2920 /* Amount of load we'd subtract */
2921 tmp = sg_div_cpu_power(busiest,
2922 busiest_load_per_task * SCHED_LOAD_SCALE);
2923 if (max_load > tmp)
2924 pwr_move += busiest->__cpu_power *
2925 min(busiest_load_per_task, max_load - tmp);
2926
2927 /* Amount of load we'd add */
2928 if (max_load * busiest->__cpu_power <
2929 busiest_load_per_task * SCHED_LOAD_SCALE)
2930 tmp = sg_div_cpu_power(this,
2931 max_load * busiest->__cpu_power);
2932 else
2933 tmp = sg_div_cpu_power(this,
2934 busiest_load_per_task * SCHED_LOAD_SCALE);
2935 pwr_move += this->__cpu_power *
2936 min(this_load_per_task, this_load + tmp);
2937 pwr_move /= SCHED_LOAD_SCALE;
2938
2939 /* Move if we gain throughput */
2940 if (pwr_move > pwr_now)
2941 *imbalance = busiest_load_per_task;
2942 }
2943
2944 return busiest;
2945
2946 out_balanced:
2947 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2948 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2949 goto ret;
2950
2951 if (this == group_leader && group_leader != group_min) {
2952 *imbalance = min_load_per_task;
2953 return group_min;
2954 }
2955 #endif
2956 ret:
2957 *imbalance = 0;
2958 return NULL;
2959 }
2960
2961 /*
2962 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2963 */
2964 static struct rq *
2965 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2966 unsigned long imbalance, cpumask_t *cpus)
2967 {
2968 struct rq *busiest = NULL, *rq;
2969 unsigned long max_load = 0;
2970 int i;
2971
2972 for_each_cpu_mask(i, group->cpumask) {
2973 unsigned long wl;
2974
2975 if (!cpu_isset(i, *cpus))
2976 continue;
2977
2978 rq = cpu_rq(i);
2979 wl = weighted_cpuload(i);
2980
2981 if (rq->nr_running == 1 && wl > imbalance)
2982 continue;
2983
2984 if (wl > max_load) {
2985 max_load = wl;
2986 busiest = rq;
2987 }
2988 }
2989
2990 return busiest;
2991 }
2992
2993 /*
2994 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2995 * so long as it is large enough.
2996 */
2997 #define MAX_PINNED_INTERVAL 512
2998
2999 /*
3000 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3001 * tasks if there is an imbalance.
3002 */
3003 static int load_balance(int this_cpu, struct rq *this_rq,
3004 struct sched_domain *sd, enum cpu_idle_type idle,
3005 int *balance)
3006 {
3007 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3008 struct sched_group *group;
3009 unsigned long imbalance;
3010 struct rq *busiest;
3011 cpumask_t cpus = CPU_MASK_ALL;
3012 unsigned long flags;
3013
3014 /*
3015 * When power savings policy is enabled for the parent domain, idle
3016 * sibling can pick up load irrespective of busy siblings. In this case,
3017 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3018 * portraying it as CPU_NOT_IDLE.
3019 */
3020 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3021 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3022 sd_idle = 1;
3023
3024 schedstat_inc(sd, lb_count[idle]);
3025
3026 redo:
3027 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3028 &cpus, balance);
3029
3030 if (*balance == 0)
3031 goto out_balanced;
3032
3033 if (!group) {
3034 schedstat_inc(sd, lb_nobusyg[idle]);
3035 goto out_balanced;
3036 }
3037
3038 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
3039 if (!busiest) {
3040 schedstat_inc(sd, lb_nobusyq[idle]);
3041 goto out_balanced;
3042 }
3043
3044 BUG_ON(busiest == this_rq);
3045
3046 schedstat_add(sd, lb_imbalance[idle], imbalance);
3047
3048 ld_moved = 0;
3049 if (busiest->nr_running > 1) {
3050 /*
3051 * Attempt to move tasks. If find_busiest_group has found
3052 * an imbalance but busiest->nr_running <= 1, the group is
3053 * still unbalanced. ld_moved simply stays zero, so it is
3054 * correctly treated as an imbalance.
3055 */
3056 local_irq_save(flags);
3057 double_rq_lock(this_rq, busiest);
3058 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3059 imbalance, sd, idle, &all_pinned);
3060 double_rq_unlock(this_rq, busiest);
3061 local_irq_restore(flags);
3062
3063 /*
3064 * some other cpu did the load balance for us.
3065 */
3066 if (ld_moved && this_cpu != smp_processor_id())
3067 resched_cpu(this_cpu);
3068
3069 /* All tasks on this runqueue were pinned by CPU affinity */
3070 if (unlikely(all_pinned)) {
3071 cpu_clear(cpu_of(busiest), cpus);
3072 if (!cpus_empty(cpus))
3073 goto redo;
3074 goto out_balanced;
3075 }
3076 }
3077
3078 if (!ld_moved) {
3079 schedstat_inc(sd, lb_failed[idle]);
3080 sd->nr_balance_failed++;
3081
3082 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
3083
3084 spin_lock_irqsave(&busiest->lock, flags);
3085
3086 /* don't kick the migration_thread, if the curr
3087 * task on busiest cpu can't be moved to this_cpu
3088 */
3089 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3090 spin_unlock_irqrestore(&busiest->lock, flags);
3091 all_pinned = 1;
3092 goto out_one_pinned;
3093 }
3094
3095 if (!busiest->active_balance) {
3096 busiest->active_balance = 1;
3097 busiest->push_cpu = this_cpu;
3098 active_balance = 1;
3099 }
3100 spin_unlock_irqrestore(&busiest->lock, flags);
3101 if (active_balance)
3102 wake_up_process(busiest->migration_thread);
3103
3104 /*
3105 * We've kicked active balancing, reset the failure
3106 * counter.
3107 */
3108 sd->nr_balance_failed = sd->cache_nice_tries+1;
3109 }
3110 } else
3111 sd->nr_balance_failed = 0;
3112
3113 if (likely(!active_balance)) {
3114 /* We were unbalanced, so reset the balancing interval */
3115 sd->balance_interval = sd->min_interval;
3116 } else {
3117 /*
3118 * If we've begun active balancing, start to back off. This
3119 * case may not be covered by the all_pinned logic if there
3120 * is only 1 task on the busy runqueue (because we don't call
3121 * move_tasks).
3122 */
3123 if (sd->balance_interval < sd->max_interval)
3124 sd->balance_interval *= 2;
3125 }
3126
3127 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3128 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3129 return -1;
3130 return ld_moved;
3131
3132 out_balanced:
3133 schedstat_inc(sd, lb_balanced[idle]);
3134
3135 sd->nr_balance_failed = 0;
3136
3137 out_one_pinned:
3138 /* tune up the balancing interval */
3139 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3140 (sd->balance_interval < sd->max_interval))
3141 sd->balance_interval *= 2;
3142
3143 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3144 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3145 return -1;
3146 return 0;
3147 }
3148
3149 /*
3150 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3151 * tasks if there is an imbalance.
3152 *
3153 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3154 * this_rq is locked.
3155 */
3156 static int
3157 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
3158 {
3159 struct sched_group *group;
3160 struct rq *busiest = NULL;
3161 unsigned long imbalance;
3162 int ld_moved = 0;
3163 int sd_idle = 0;
3164 int all_pinned = 0;
3165 cpumask_t cpus = CPU_MASK_ALL;
3166
3167 /*
3168 * When power savings policy is enabled for the parent domain, idle
3169 * sibling can pick up load irrespective of busy siblings. In this case,
3170 * let the state of idle sibling percolate up as IDLE, instead of
3171 * portraying it as CPU_NOT_IDLE.
3172 */
3173 if (sd->flags & SD_SHARE_CPUPOWER &&
3174 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3175 sd_idle = 1;
3176
3177 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3178 redo:
3179 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3180 &sd_idle, &cpus, NULL);
3181 if (!group) {
3182 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3183 goto out_balanced;
3184 }
3185
3186 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
3187 &cpus);
3188 if (!busiest) {
3189 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3190 goto out_balanced;
3191 }
3192
3193 BUG_ON(busiest == this_rq);
3194
3195 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3196
3197 ld_moved = 0;
3198 if (busiest->nr_running > 1) {
3199 /* Attempt to move tasks */
3200 double_lock_balance(this_rq, busiest);
3201 /* this_rq->clock is already updated */
3202 update_rq_clock(busiest);
3203 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3204 imbalance, sd, CPU_NEWLY_IDLE,
3205 &all_pinned);
3206 spin_unlock(&busiest->lock);
3207
3208 if (unlikely(all_pinned)) {
3209 cpu_clear(cpu_of(busiest), cpus);
3210 if (!cpus_empty(cpus))
3211 goto redo;
3212 }
3213 }
3214
3215 if (!ld_moved) {
3216 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3217 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3218 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3219 return -1;
3220 } else
3221 sd->nr_balance_failed = 0;
3222
3223 return ld_moved;
3224
3225 out_balanced:
3226 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3227 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3228 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3229 return -1;
3230 sd->nr_balance_failed = 0;
3231
3232 return 0;
3233 }
3234
3235 /*
3236 * idle_balance is called by schedule() if this_cpu is about to become
3237 * idle. Attempts to pull tasks from other CPUs.
3238 */
3239 static void idle_balance(int this_cpu, struct rq *this_rq)
3240 {
3241 struct sched_domain *sd;
3242 int pulled_task = -1;
3243 unsigned long next_balance = jiffies + HZ;
3244
3245 for_each_domain(this_cpu, sd) {
3246 unsigned long interval;
3247
3248 if (!(sd->flags & SD_LOAD_BALANCE))
3249 continue;
3250
3251 if (sd->flags & SD_BALANCE_NEWIDLE)
3252 /* If we've pulled tasks over stop searching: */
3253 pulled_task = load_balance_newidle(this_cpu,
3254 this_rq, sd);
3255
3256 interval = msecs_to_jiffies(sd->balance_interval);
3257 if (time_after(next_balance, sd->last_balance + interval))
3258 next_balance = sd->last_balance + interval;
3259 if (pulled_task)
3260 break;
3261 }
3262 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3263 /*
3264 * We are going idle. next_balance may be set based on
3265 * a busy processor. So reset next_balance.
3266 */
3267 this_rq->next_balance = next_balance;
3268 }
3269 }
3270
3271 /*
3272 * active_load_balance is run by migration threads. It pushes running tasks
3273 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3274 * running on each physical CPU where possible, and avoids physical /
3275 * logical imbalances.
3276 *
3277 * Called with busiest_rq locked.
3278 */
3279 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3280 {
3281 int target_cpu = busiest_rq->push_cpu;
3282 struct sched_domain *sd;
3283 struct rq *target_rq;
3284
3285 /* Is there any task to move? */
3286 if (busiest_rq->nr_running <= 1)
3287 return;
3288
3289 target_rq = cpu_rq(target_cpu);
3290
3291 /*
3292 * This condition is "impossible", if it occurs
3293 * we need to fix it. Originally reported by
3294 * Bjorn Helgaas on a 128-cpu setup.
3295 */
3296 BUG_ON(busiest_rq == target_rq);
3297
3298 /* move a task from busiest_rq to target_rq */
3299 double_lock_balance(busiest_rq, target_rq);
3300 update_rq_clock(busiest_rq);
3301 update_rq_clock(target_rq);
3302
3303 /* Search for an sd spanning us and the target CPU. */
3304 for_each_domain(target_cpu, sd) {
3305 if ((sd->flags & SD_LOAD_BALANCE) &&
3306 cpu_isset(busiest_cpu, sd->span))
3307 break;
3308 }
3309
3310 if (likely(sd)) {
3311 schedstat_inc(sd, alb_count);
3312
3313 if (move_one_task(target_rq, target_cpu, busiest_rq,
3314 sd, CPU_IDLE))
3315 schedstat_inc(sd, alb_pushed);
3316 else
3317 schedstat_inc(sd, alb_failed);
3318 }
3319 spin_unlock(&target_rq->lock);
3320 }
3321
3322 #ifdef CONFIG_NO_HZ
3323 static struct {
3324 atomic_t load_balancer;
3325 cpumask_t cpu_mask;
3326 } nohz ____cacheline_aligned = {
3327 .load_balancer = ATOMIC_INIT(-1),
3328 .cpu_mask = CPU_MASK_NONE,
3329 };
3330
3331 /*
3332 * This routine will try to nominate the ilb (idle load balancing)
3333 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3334 * load balancing on behalf of all those cpus. If all the cpus in the system
3335 * go into this tickless mode, then there will be no ilb owner (as there is
3336 * no need for one) and all the cpus will sleep till the next wakeup event
3337 * arrives...
3338 *
3339 * For the ilb owner, tick is not stopped. And this tick will be used
3340 * for idle load balancing. ilb owner will still be part of
3341 * nohz.cpu_mask..
3342 *
3343 * While stopping the tick, this cpu will become the ilb owner if there
3344 * is no other owner. And will be the owner till that cpu becomes busy
3345 * or if all cpus in the system stop their ticks at which point
3346 * there is no need for ilb owner.
3347 *
3348 * When the ilb owner becomes busy, it nominates another owner, during the
3349 * next busy scheduler_tick()
3350 */
3351 int select_nohz_load_balancer(int stop_tick)
3352 {
3353 int cpu = smp_processor_id();
3354
3355 if (stop_tick) {
3356 cpu_set(cpu, nohz.cpu_mask);
3357 cpu_rq(cpu)->in_nohz_recently = 1;
3358
3359 /*
3360 * If we are going offline and still the leader, give up!
3361 */
3362 if (cpu_is_offline(cpu) &&
3363 atomic_read(&nohz.load_balancer) == cpu) {
3364 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3365 BUG();
3366 return 0;
3367 }
3368
3369 /* time for ilb owner also to sleep */
3370 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3371 if (atomic_read(&nohz.load_balancer) == cpu)
3372 atomic_set(&nohz.load_balancer, -1);
3373 return 0;
3374 }
3375
3376 if (atomic_read(&nohz.load_balancer) == -1) {
3377 /* make me the ilb owner */
3378 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3379 return 1;
3380 } else if (atomic_read(&nohz.load_balancer) == cpu)
3381 return 1;
3382 } else {
3383 if (!cpu_isset(cpu, nohz.cpu_mask))
3384 return 0;
3385
3386 cpu_clear(cpu, nohz.cpu_mask);
3387
3388 if (atomic_read(&nohz.load_balancer) == cpu)
3389 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3390 BUG();
3391 }
3392 return 0;
3393 }
3394 #endif
3395
3396 static DEFINE_SPINLOCK(balancing);
3397
3398 /*
3399 * It checks each scheduling domain to see if it is due to be balanced,
3400 * and initiates a balancing operation if so.
3401 *
3402 * Balancing parameters are set up in arch_init_sched_domains.
3403 */
3404 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3405 {
3406 int balance = 1;
3407 struct rq *rq = cpu_rq(cpu);
3408 unsigned long interval;
3409 struct sched_domain *sd;
3410 /* Earliest time when we have to do rebalance again */
3411 unsigned long next_balance = jiffies + 60*HZ;
3412 int update_next_balance = 0;
3413
3414 for_each_domain(cpu, sd) {
3415 if (!(sd->flags & SD_LOAD_BALANCE))
3416 continue;
3417
3418 interval = sd->balance_interval;
3419 if (idle != CPU_IDLE)
3420 interval *= sd->busy_factor;
3421
3422 /* scale ms to jiffies */
3423 interval = msecs_to_jiffies(interval);
3424 if (unlikely(!interval))
3425 interval = 1;
3426 if (interval > HZ*NR_CPUS/10)
3427 interval = HZ*NR_CPUS/10;
3428
3429
3430 if (sd->flags & SD_SERIALIZE) {
3431 if (!spin_trylock(&balancing))
3432 goto out;
3433 }
3434
3435 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3436 if (load_balance(cpu, rq, sd, idle, &balance)) {
3437 /*
3438 * We've pulled tasks over so either we're no
3439 * longer idle, or one of our SMT siblings is
3440 * not idle.
3441 */
3442 idle = CPU_NOT_IDLE;
3443 }
3444 sd->last_balance = jiffies;
3445 }
3446 if (sd->flags & SD_SERIALIZE)
3447 spin_unlock(&balancing);
3448 out:
3449 if (time_after(next_balance, sd->last_balance + interval)) {
3450 next_balance = sd->last_balance + interval;
3451 update_next_balance = 1;
3452 }
3453
3454 /*
3455 * Stop the load balance at this level. There is another
3456 * CPU in our sched group which is doing load balancing more
3457 * actively.
3458 */
3459 if (!balance)
3460 break;
3461 }
3462
3463 /*
3464 * next_balance will be updated only when there is a need.
3465 * When the cpu is attached to null domain for ex, it will not be
3466 * updated.
3467 */
3468 if (likely(update_next_balance))
3469 rq->next_balance = next_balance;
3470 }
3471
3472 /*
3473 * run_rebalance_domains is triggered when needed from the scheduler tick.
3474 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3475 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3476 */
3477 static void run_rebalance_domains(struct softirq_action *h)
3478 {
3479 int this_cpu = smp_processor_id();
3480 struct rq *this_rq = cpu_rq(this_cpu);
3481 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3482 CPU_IDLE : CPU_NOT_IDLE;
3483
3484 rebalance_domains(this_cpu, idle);
3485
3486 #ifdef CONFIG_NO_HZ
3487 /*
3488 * If this cpu is the owner for idle load balancing, then do the
3489 * balancing on behalf of the other idle cpus whose ticks are
3490 * stopped.
3491 */
3492 if (this_rq->idle_at_tick &&
3493 atomic_read(&nohz.load_balancer) == this_cpu) {
3494 cpumask_t cpus = nohz.cpu_mask;
3495 struct rq *rq;
3496 int balance_cpu;
3497
3498 cpu_clear(this_cpu, cpus);
3499 for_each_cpu_mask(balance_cpu, cpus) {
3500 /*
3501 * If this cpu gets work to do, stop the load balancing
3502 * work being done for other cpus. Next load
3503 * balancing owner will pick it up.
3504 */
3505 if (need_resched())
3506 break;
3507
3508 rebalance_domains(balance_cpu, CPU_IDLE);
3509
3510 rq = cpu_rq(balance_cpu);
3511 if (time_after(this_rq->next_balance, rq->next_balance))
3512 this_rq->next_balance = rq->next_balance;
3513 }
3514 }
3515 #endif
3516 }
3517
3518 /*
3519 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3520 *
3521 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3522 * idle load balancing owner or decide to stop the periodic load balancing,
3523 * if the whole system is idle.
3524 */
3525 static inline void trigger_load_balance(struct rq *rq, int cpu)
3526 {
3527 #ifdef CONFIG_NO_HZ
3528 /*
3529 * If we were in the nohz mode recently and busy at the current
3530 * scheduler tick, then check if we need to nominate new idle
3531 * load balancer.
3532 */
3533 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3534 rq->in_nohz_recently = 0;
3535
3536 if (atomic_read(&nohz.load_balancer) == cpu) {
3537 cpu_clear(cpu, nohz.cpu_mask);
3538 atomic_set(&nohz.load_balancer, -1);
3539 }
3540
3541 if (atomic_read(&nohz.load_balancer) == -1) {
3542 /*
3543 * simple selection for now: Nominate the
3544 * first cpu in the nohz list to be the next
3545 * ilb owner.
3546 *
3547 * TBD: Traverse the sched domains and nominate
3548 * the nearest cpu in the nohz.cpu_mask.
3549 */
3550 int ilb = first_cpu(nohz.cpu_mask);
3551
3552 if (ilb != NR_CPUS)
3553 resched_cpu(ilb);
3554 }
3555 }
3556
3557 /*
3558 * If this cpu is idle and doing idle load balancing for all the
3559 * cpus with ticks stopped, is it time for that to stop?
3560 */
3561 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3562 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3563 resched_cpu(cpu);
3564 return;
3565 }
3566
3567 /*
3568 * If this cpu is idle and the idle load balancing is done by
3569 * someone else, then no need raise the SCHED_SOFTIRQ
3570 */
3571 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3572 cpu_isset(cpu, nohz.cpu_mask))
3573 return;
3574 #endif
3575 if (time_after_eq(jiffies, rq->next_balance))
3576 raise_softirq(SCHED_SOFTIRQ);
3577 }
3578
3579 #else /* CONFIG_SMP */
3580
3581 /*
3582 * on UP we do not need to balance between CPUs:
3583 */
3584 static inline void idle_balance(int cpu, struct rq *rq)
3585 {
3586 }
3587
3588 #endif
3589
3590 DEFINE_PER_CPU(struct kernel_stat, kstat);
3591
3592 EXPORT_PER_CPU_SYMBOL(kstat);
3593
3594 /*
3595 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3596 * that have not yet been banked in case the task is currently running.
3597 */
3598 unsigned long long task_sched_runtime(struct task_struct *p)
3599 {
3600 unsigned long flags;
3601 u64 ns, delta_exec;
3602 struct rq *rq;
3603
3604 rq = task_rq_lock(p, &flags);
3605 ns = p->se.sum_exec_runtime;
3606 if (task_current(rq, p)) {
3607 update_rq_clock(rq);
3608 delta_exec = rq->clock - p->se.exec_start;
3609 if ((s64)delta_exec > 0)
3610 ns += delta_exec;
3611 }
3612 task_rq_unlock(rq, &flags);
3613
3614 return ns;
3615 }
3616
3617 /*
3618 * Account user cpu time to a process.
3619 * @p: the process that the cpu time gets accounted to
3620 * @cputime: the cpu time spent in user space since the last update
3621 */
3622 void account_user_time(struct task_struct *p, cputime_t cputime)
3623 {
3624 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3625 cputime64_t tmp;
3626
3627 p->utime = cputime_add(p->utime, cputime);
3628
3629 /* Add user time to cpustat. */
3630 tmp = cputime_to_cputime64(cputime);
3631 if (TASK_NICE(p) > 0)
3632 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3633 else
3634 cpustat->user = cputime64_add(cpustat->user, tmp);
3635 }
3636
3637 /*
3638 * Account guest cpu time to a process.
3639 * @p: the process that the cpu time gets accounted to
3640 * @cputime: the cpu time spent in virtual machine since the last update
3641 */
3642 static void account_guest_time(struct task_struct *p, cputime_t cputime)
3643 {
3644 cputime64_t tmp;
3645 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3646
3647 tmp = cputime_to_cputime64(cputime);
3648
3649 p->utime = cputime_add(p->utime, cputime);
3650 p->gtime = cputime_add(p->gtime, cputime);
3651
3652 cpustat->user = cputime64_add(cpustat->user, tmp);
3653 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3654 }
3655
3656 /*
3657 * Account scaled user cpu time to a process.
3658 * @p: the process that the cpu time gets accounted to
3659 * @cputime: the cpu time spent in user space since the last update
3660 */
3661 void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
3662 {
3663 p->utimescaled = cputime_add(p->utimescaled, cputime);
3664 }
3665
3666 /*
3667 * Account system cpu time to a process.
3668 * @p: the process that the cpu time gets accounted to
3669 * @hardirq_offset: the offset to subtract from hardirq_count()
3670 * @cputime: the cpu time spent in kernel space since the last update
3671 */
3672 void account_system_time(struct task_struct *p, int hardirq_offset,
3673 cputime_t cputime)
3674 {
3675 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3676 struct rq *rq = this_rq();
3677 cputime64_t tmp;
3678
3679 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
3680 return account_guest_time(p, cputime);
3681
3682 p->stime = cputime_add(p->stime, cputime);
3683
3684 /* Add system time to cpustat. */
3685 tmp = cputime_to_cputime64(cputime);
3686 if (hardirq_count() - hardirq_offset)
3687 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3688 else if (softirq_count())
3689 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3690 else if (p != rq->idle)
3691 cpustat->system = cputime64_add(cpustat->system, tmp);
3692 else if (atomic_read(&rq->nr_iowait) > 0)
3693 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3694 else
3695 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3696 /* Account for system time used */
3697 acct_update_integrals(p);
3698 }
3699
3700 /*
3701 * Account scaled system cpu time to a process.
3702 * @p: the process that the cpu time gets accounted to
3703 * @hardirq_offset: the offset to subtract from hardirq_count()
3704 * @cputime: the cpu time spent in kernel space since the last update
3705 */
3706 void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
3707 {
3708 p->stimescaled = cputime_add(p->stimescaled, cputime);
3709 }
3710
3711 /*
3712 * Account for involuntary wait time.
3713 * @p: the process from which the cpu time has been stolen
3714 * @steal: the cpu time spent in involuntary wait
3715 */
3716 void account_steal_time(struct task_struct *p, cputime_t steal)
3717 {
3718 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3719 cputime64_t tmp = cputime_to_cputime64(steal);
3720 struct rq *rq = this_rq();
3721
3722 if (p == rq->idle) {
3723 p->stime = cputime_add(p->stime, steal);
3724 if (atomic_read(&rq->nr_iowait) > 0)
3725 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3726 else
3727 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3728 } else
3729 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3730 }
3731
3732 /*
3733 * This function gets called by the timer code, with HZ frequency.
3734 * We call it with interrupts disabled.
3735 *
3736 * It also gets called by the fork code, when changing the parent's
3737 * timeslices.
3738 */
3739 void scheduler_tick(void)
3740 {
3741 int cpu = smp_processor_id();
3742 struct rq *rq = cpu_rq(cpu);
3743 struct task_struct *curr = rq->curr;
3744 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
3745
3746 spin_lock(&rq->lock);
3747 __update_rq_clock(rq);
3748 /*
3749 * Let rq->clock advance by at least TICK_NSEC:
3750 */
3751 if (unlikely(rq->clock < next_tick)) {
3752 rq->clock = next_tick;
3753 rq->clock_underflows++;
3754 }
3755 rq->tick_timestamp = rq->clock;
3756 update_cpu_load(rq);
3757 curr->sched_class->task_tick(rq, curr, 0);
3758 update_sched_rt_period(rq);
3759 spin_unlock(&rq->lock);
3760
3761 #ifdef CONFIG_SMP
3762 rq->idle_at_tick = idle_cpu(cpu);
3763 trigger_load_balance(rq, cpu);
3764 #endif
3765 }
3766
3767 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3768
3769 void add_preempt_count(int val)
3770 {
3771 /*
3772 * Underflow?
3773 */
3774 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3775 return;
3776 preempt_count() += val;
3777 /*
3778 * Spinlock count overflowing soon?
3779 */
3780 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3781 PREEMPT_MASK - 10);
3782 }
3783 EXPORT_SYMBOL(add_preempt_count);
3784
3785 void sub_preempt_count(int val)
3786 {
3787 /*
3788 * Underflow?
3789 */
3790 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3791 return;
3792 /*
3793 * Is the spinlock portion underflowing?
3794 */
3795 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3796 !(preempt_count() & PREEMPT_MASK)))
3797 return;
3798
3799 preempt_count() -= val;
3800 }
3801 EXPORT_SYMBOL(sub_preempt_count);
3802
3803 #endif
3804
3805 /*
3806 * Print scheduling while atomic bug:
3807 */
3808 static noinline void __schedule_bug(struct task_struct *prev)
3809 {
3810 struct pt_regs *regs = get_irq_regs();
3811
3812 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3813 prev->comm, prev->pid, preempt_count());
3814
3815 debug_show_held_locks(prev);
3816 if (irqs_disabled())
3817 print_irqtrace_events(prev);
3818
3819 if (regs)
3820 show_regs(regs);
3821 else
3822 dump_stack();
3823 }
3824
3825 /*
3826 * Various schedule()-time debugging checks and statistics:
3827 */
3828 static inline void schedule_debug(struct task_struct *prev)
3829 {
3830 /*
3831 * Test if we are atomic. Since do_exit() needs to call into
3832 * schedule() atomically, we ignore that path for now.
3833 * Otherwise, whine if we are scheduling when we should not be.
3834 */
3835 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3836 __schedule_bug(prev);
3837
3838 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3839
3840 schedstat_inc(this_rq(), sched_count);
3841 #ifdef CONFIG_SCHEDSTATS
3842 if (unlikely(prev->lock_depth >= 0)) {
3843 schedstat_inc(this_rq(), bkl_count);
3844 schedstat_inc(prev, sched_info.bkl_count);
3845 }
3846 #endif
3847 }
3848
3849 /*
3850 * Pick up the highest-prio task:
3851 */
3852 static inline struct task_struct *
3853 pick_next_task(struct rq *rq, struct task_struct *prev)
3854 {
3855 const struct sched_class *class;
3856 struct task_struct *p;
3857
3858 /*
3859 * Optimization: we know that if all tasks are in
3860 * the fair class we can call that function directly:
3861 */
3862 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3863 p = fair_sched_class.pick_next_task(rq);
3864 if (likely(p))
3865 return p;
3866 }
3867
3868 class = sched_class_highest;
3869 for ( ; ; ) {
3870 p = class->pick_next_task(rq);
3871 if (p)
3872 return p;
3873 /*
3874 * Will never be NULL as the idle class always
3875 * returns a non-NULL p:
3876 */
3877 class = class->next;
3878 }
3879 }
3880
3881 /*
3882 * schedule() is the main scheduler function.
3883 */
3884 asmlinkage void __sched schedule(void)
3885 {
3886 struct task_struct *prev, *next;
3887 long *switch_count;
3888 struct rq *rq;
3889 int cpu;
3890
3891 need_resched:
3892 preempt_disable();
3893 cpu = smp_processor_id();
3894 rq = cpu_rq(cpu);
3895 rcu_qsctr_inc(cpu);
3896 prev = rq->curr;
3897 switch_count = &prev->nivcsw;
3898
3899 release_kernel_lock(prev);
3900 need_resched_nonpreemptible:
3901
3902 schedule_debug(prev);
3903
3904 hrtick_clear(rq);
3905
3906 /*
3907 * Do the rq-clock update outside the rq lock:
3908 */
3909 local_irq_disable();
3910 __update_rq_clock(rq);
3911 spin_lock(&rq->lock);
3912 clear_tsk_need_resched(prev);
3913
3914 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3915 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3916 unlikely(signal_pending(prev)))) {
3917 prev->state = TASK_RUNNING;
3918 } else {
3919 deactivate_task(rq, prev, 1);
3920 }
3921 switch_count = &prev->nvcsw;
3922 }
3923
3924 #ifdef CONFIG_SMP
3925 if (prev->sched_class->pre_schedule)
3926 prev->sched_class->pre_schedule(rq, prev);
3927 #endif
3928
3929 if (unlikely(!rq->nr_running))
3930 idle_balance(cpu, rq);
3931
3932 prev->sched_class->put_prev_task(rq, prev);
3933 next = pick_next_task(rq, prev);
3934
3935 sched_info_switch(prev, next);
3936
3937 if (likely(prev != next)) {
3938 rq->nr_switches++;
3939 rq->curr = next;
3940 ++*switch_count;
3941
3942 context_switch(rq, prev, next); /* unlocks the rq */
3943 /*
3944 * the context switch might have flipped the stack from under
3945 * us, hence refresh the local variables.
3946 */
3947 cpu = smp_processor_id();
3948 rq = cpu_rq(cpu);
3949 } else
3950 spin_unlock_irq(&rq->lock);
3951
3952 hrtick_set(rq);
3953
3954 if (unlikely(reacquire_kernel_lock(current) < 0))
3955 goto need_resched_nonpreemptible;
3956
3957 preempt_enable_no_resched();
3958 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3959 goto need_resched;
3960 }
3961 EXPORT_SYMBOL(schedule);
3962
3963 #ifdef CONFIG_PREEMPT
3964 /*
3965 * this is the entry point to schedule() from in-kernel preemption
3966 * off of preempt_enable. Kernel preemptions off return from interrupt
3967 * occur there and call schedule directly.
3968 */
3969 asmlinkage void __sched preempt_schedule(void)
3970 {
3971 struct thread_info *ti = current_thread_info();
3972 struct task_struct *task = current;
3973 int saved_lock_depth;
3974
3975 /*
3976 * If there is a non-zero preempt_count or interrupts are disabled,
3977 * we do not want to preempt the current task. Just return..
3978 */
3979 if (likely(ti->preempt_count || irqs_disabled()))
3980 return;
3981
3982 do {
3983 add_preempt_count(PREEMPT_ACTIVE);
3984
3985 /*
3986 * We keep the big kernel semaphore locked, but we
3987 * clear ->lock_depth so that schedule() doesnt
3988 * auto-release the semaphore:
3989 */
3990 saved_lock_depth = task->lock_depth;
3991 task->lock_depth = -1;
3992 schedule();
3993 task->lock_depth = saved_lock_depth;
3994 sub_preempt_count(PREEMPT_ACTIVE);
3995
3996 /*
3997 * Check again in case we missed a preemption opportunity
3998 * between schedule and now.
3999 */
4000 barrier();
4001 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4002 }
4003 EXPORT_SYMBOL(preempt_schedule);
4004
4005 /*
4006 * this is the entry point to schedule() from kernel preemption
4007 * off of irq context.
4008 * Note, that this is called and return with irqs disabled. This will
4009 * protect us against recursive calling from irq.
4010 */
4011 asmlinkage void __sched preempt_schedule_irq(void)
4012 {
4013 struct thread_info *ti = current_thread_info();
4014 struct task_struct *task = current;
4015 int saved_lock_depth;
4016
4017 /* Catch callers which need to be fixed */
4018 BUG_ON(ti->preempt_count || !irqs_disabled());
4019
4020 do {
4021 add_preempt_count(PREEMPT_ACTIVE);
4022
4023 /*
4024 * We keep the big kernel semaphore locked, but we
4025 * clear ->lock_depth so that schedule() doesnt
4026 * auto-release the semaphore:
4027 */
4028 saved_lock_depth = task->lock_depth;
4029 task->lock_depth = -1;
4030 local_irq_enable();
4031 schedule();
4032 local_irq_disable();
4033 task->lock_depth = saved_lock_depth;
4034 sub_preempt_count(PREEMPT_ACTIVE);
4035
4036 /*
4037 * Check again in case we missed a preemption opportunity
4038 * between schedule and now.
4039 */
4040 barrier();
4041 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4042 }
4043
4044 #endif /* CONFIG_PREEMPT */
4045
4046 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4047 void *key)
4048 {
4049 return try_to_wake_up(curr->private, mode, sync);
4050 }
4051 EXPORT_SYMBOL(default_wake_function);
4052
4053 /*
4054 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4055 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4056 * number) then we wake all the non-exclusive tasks and one exclusive task.
4057 *
4058 * There are circumstances in which we can try to wake a task which has already
4059 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4060 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4061 */
4062 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4063 int nr_exclusive, int sync, void *key)
4064 {
4065 wait_queue_t *curr, *next;
4066
4067 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4068 unsigned flags = curr->flags;
4069
4070 if (curr->func(curr, mode, sync, key) &&
4071 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4072 break;
4073 }
4074 }
4075
4076 /**
4077 * __wake_up - wake up threads blocked on a waitqueue.
4078 * @q: the waitqueue
4079 * @mode: which threads
4080 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4081 * @key: is directly passed to the wakeup function
4082 */
4083 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4084 int nr_exclusive, void *key)
4085 {
4086 unsigned long flags;
4087
4088 spin_lock_irqsave(&q->lock, flags);
4089 __wake_up_common(q, mode, nr_exclusive, 0, key);
4090 spin_unlock_irqrestore(&q->lock, flags);
4091 }
4092 EXPORT_SYMBOL(__wake_up);
4093
4094 /*
4095 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4096 */
4097 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4098 {
4099 __wake_up_common(q, mode, 1, 0, NULL);
4100 }
4101
4102 /**
4103 * __wake_up_sync - wake up threads blocked on a waitqueue.
4104 * @q: the waitqueue
4105 * @mode: which threads
4106 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4107 *
4108 * The sync wakeup differs that the waker knows that it will schedule
4109 * away soon, so while the target thread will be woken up, it will not
4110 * be migrated to another CPU - ie. the two threads are 'synchronized'
4111 * with each other. This can prevent needless bouncing between CPUs.
4112 *
4113 * On UP it can prevent extra preemption.
4114 */
4115 void
4116 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4117 {
4118 unsigned long flags;
4119 int sync = 1;
4120
4121 if (unlikely(!q))
4122 return;
4123
4124 if (unlikely(!nr_exclusive))
4125 sync = 0;
4126
4127 spin_lock_irqsave(&q->lock, flags);
4128 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4129 spin_unlock_irqrestore(&q->lock, flags);
4130 }
4131 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4132
4133 void complete(struct completion *x)
4134 {
4135 unsigned long flags;
4136
4137 spin_lock_irqsave(&x->wait.lock, flags);
4138 x->done++;
4139 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4140 spin_unlock_irqrestore(&x->wait.lock, flags);
4141 }
4142 EXPORT_SYMBOL(complete);
4143
4144 void complete_all(struct completion *x)
4145 {
4146 unsigned long flags;
4147
4148 spin_lock_irqsave(&x->wait.lock, flags);
4149 x->done += UINT_MAX/2;
4150 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4151 spin_unlock_irqrestore(&x->wait.lock, flags);
4152 }
4153 EXPORT_SYMBOL(complete_all);
4154
4155 static inline long __sched
4156 do_wait_for_common(struct completion *x, long timeout, int state)
4157 {
4158 if (!x->done) {
4159 DECLARE_WAITQUEUE(wait, current);
4160
4161 wait.flags |= WQ_FLAG_EXCLUSIVE;
4162 __add_wait_queue_tail(&x->wait, &wait);
4163 do {
4164 if ((state == TASK_INTERRUPTIBLE &&
4165 signal_pending(current)) ||
4166 (state == TASK_KILLABLE &&
4167 fatal_signal_pending(current))) {
4168 __remove_wait_queue(&x->wait, &wait);
4169 return -ERESTARTSYS;
4170 }
4171 __set_current_state(state);
4172 spin_unlock_irq(&x->wait.lock);
4173 timeout = schedule_timeout(timeout);
4174 spin_lock_irq(&x->wait.lock);
4175 if (!timeout) {
4176 __remove_wait_queue(&x->wait, &wait);
4177 return timeout;
4178 }
4179 } while (!x->done);
4180 __remove_wait_queue(&x->wait, &wait);
4181 }
4182 x->done--;
4183 return timeout;
4184 }
4185
4186 static long __sched
4187 wait_for_common(struct completion *x, long timeout, int state)
4188 {
4189 might_sleep();
4190
4191 spin_lock_irq(&x->wait.lock);
4192 timeout = do_wait_for_common(x, timeout, state);
4193 spin_unlock_irq(&x->wait.lock);
4194 return timeout;
4195 }
4196
4197 void __sched wait_for_completion(struct completion *x)
4198 {
4199 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4200 }
4201 EXPORT_SYMBOL(wait_for_completion);
4202
4203 unsigned long __sched
4204 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4205 {
4206 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4207 }
4208 EXPORT_SYMBOL(wait_for_completion_timeout);
4209
4210 int __sched wait_for_completion_interruptible(struct completion *x)
4211 {
4212 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4213 if (t == -ERESTARTSYS)
4214 return t;
4215 return 0;
4216 }
4217 EXPORT_SYMBOL(wait_for_completion_interruptible);
4218
4219 unsigned long __sched
4220 wait_for_completion_interruptible_timeout(struct completion *x,
4221 unsigned long timeout)
4222 {
4223 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4224 }
4225 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4226
4227 int __sched wait_for_completion_killable(struct completion *x)
4228 {
4229 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4230 if (t == -ERESTARTSYS)
4231 return t;
4232 return 0;
4233 }
4234 EXPORT_SYMBOL(wait_for_completion_killable);
4235
4236 static long __sched
4237 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4238 {
4239 unsigned long flags;
4240 wait_queue_t wait;
4241
4242 init_waitqueue_entry(&wait, current);
4243
4244 __set_current_state(state);
4245
4246 spin_lock_irqsave(&q->lock, flags);
4247 __add_wait_queue(q, &wait);
4248 spin_unlock(&q->lock);
4249 timeout = schedule_timeout(timeout);
4250 spin_lock_irq(&q->lock);
4251 __remove_wait_queue(q, &wait);
4252 spin_unlock_irqrestore(&q->lock, flags);
4253
4254 return timeout;
4255 }
4256
4257 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4258 {
4259 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4260 }
4261 EXPORT_SYMBOL(interruptible_sleep_on);
4262
4263 long __sched
4264 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4265 {
4266 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4267 }
4268 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4269
4270 void __sched sleep_on(wait_queue_head_t *q)
4271 {
4272 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4273 }
4274 EXPORT_SYMBOL(sleep_on);
4275
4276 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4277 {
4278 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4279 }
4280 EXPORT_SYMBOL(sleep_on_timeout);
4281
4282 #ifdef CONFIG_RT_MUTEXES
4283
4284 /*
4285 * rt_mutex_setprio - set the current priority of a task
4286 * @p: task
4287 * @prio: prio value (kernel-internal form)
4288 *
4289 * This function changes the 'effective' priority of a task. It does
4290 * not touch ->normal_prio like __setscheduler().
4291 *
4292 * Used by the rt_mutex code to implement priority inheritance logic.
4293 */
4294 void rt_mutex_setprio(struct task_struct *p, int prio)
4295 {
4296 unsigned long flags;
4297 int oldprio, on_rq, running;
4298 struct rq *rq;
4299 const struct sched_class *prev_class = p->sched_class;
4300
4301 BUG_ON(prio < 0 || prio > MAX_PRIO);
4302
4303 rq = task_rq_lock(p, &flags);
4304 update_rq_clock(rq);
4305
4306 oldprio = p->prio;
4307 on_rq = p->se.on_rq;
4308 running = task_current(rq, p);
4309 if (on_rq) {
4310 dequeue_task(rq, p, 0);
4311 if (running)
4312 p->sched_class->put_prev_task(rq, p);
4313 }
4314
4315 if (rt_prio(prio))
4316 p->sched_class = &rt_sched_class;
4317 else
4318 p->sched_class = &fair_sched_class;
4319
4320 p->prio = prio;
4321
4322 if (on_rq) {
4323 if (running)
4324 p->sched_class->set_curr_task(rq);
4325
4326 enqueue_task(rq, p, 0);
4327
4328 check_class_changed(rq, p, prev_class, oldprio, running);
4329 }
4330 task_rq_unlock(rq, &flags);
4331 }
4332
4333 #endif
4334
4335 void set_user_nice(struct task_struct *p, long nice)
4336 {
4337 int old_prio, delta, on_rq;
4338 unsigned long flags;
4339 struct rq *rq;
4340
4341 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4342 return;
4343 /*
4344 * We have to be careful, if called from sys_setpriority(),
4345 * the task might be in the middle of scheduling on another CPU.
4346 */
4347 rq = task_rq_lock(p, &flags);
4348 update_rq_clock(rq);
4349 /*
4350 * The RT priorities are set via sched_setscheduler(), but we still
4351 * allow the 'normal' nice value to be set - but as expected
4352 * it wont have any effect on scheduling until the task is
4353 * SCHED_FIFO/SCHED_RR:
4354 */
4355 if (task_has_rt_policy(p)) {
4356 p->static_prio = NICE_TO_PRIO(nice);
4357 goto out_unlock;
4358 }
4359 on_rq = p->se.on_rq;
4360 if (on_rq)
4361 dequeue_task(rq, p, 0);
4362
4363 p->static_prio = NICE_TO_PRIO(nice);
4364 set_load_weight(p);
4365 old_prio = p->prio;
4366 p->prio = effective_prio(p);
4367 delta = p->prio - old_prio;
4368
4369 if (on_rq) {
4370 enqueue_task(rq, p, 0);
4371 /*
4372 * If the task increased its priority or is running and
4373 * lowered its priority, then reschedule its CPU:
4374 */
4375 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4376 resched_task(rq->curr);
4377 }
4378 out_unlock:
4379 task_rq_unlock(rq, &flags);
4380 }
4381 EXPORT_SYMBOL(set_user_nice);
4382
4383 /*
4384 * can_nice - check if a task can reduce its nice value
4385 * @p: task
4386 * @nice: nice value
4387 */
4388 int can_nice(const struct task_struct *p, const int nice)
4389 {
4390 /* convert nice value [19,-20] to rlimit style value [1,40] */
4391 int nice_rlim = 20 - nice;
4392
4393 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4394 capable(CAP_SYS_NICE));
4395 }
4396
4397 #ifdef __ARCH_WANT_SYS_NICE
4398
4399 /*
4400 * sys_nice - change the priority of the current process.
4401 * @increment: priority increment
4402 *
4403 * sys_setpriority is a more generic, but much slower function that
4404 * does similar things.
4405 */
4406 asmlinkage long sys_nice(int increment)
4407 {
4408 long nice, retval;
4409
4410 /*
4411 * Setpriority might change our priority at the same moment.
4412 * We don't have to worry. Conceptually one call occurs first
4413 * and we have a single winner.
4414 */
4415 if (increment < -40)
4416 increment = -40;
4417 if (increment > 40)
4418 increment = 40;
4419
4420 nice = PRIO_TO_NICE(current->static_prio) + increment;
4421 if (nice < -20)
4422 nice = -20;
4423 if (nice > 19)
4424 nice = 19;
4425
4426 if (increment < 0 && !can_nice(current, nice))
4427 return -EPERM;
4428
4429 retval = security_task_setnice(current, nice);
4430 if (retval)
4431 return retval;
4432
4433 set_user_nice(current, nice);
4434 return 0;
4435 }
4436
4437 #endif
4438
4439 /**
4440 * task_prio - return the priority value of a given task.
4441 * @p: the task in question.
4442 *
4443 * This is the priority value as seen by users in /proc.
4444 * RT tasks are offset by -200. Normal tasks are centered
4445 * around 0, value goes from -16 to +15.
4446 */
4447 int task_prio(const struct task_struct *p)
4448 {
4449 return p->prio - MAX_RT_PRIO;
4450 }
4451
4452 /**
4453 * task_nice - return the nice value of a given task.
4454 * @p: the task in question.
4455 */
4456 int task_nice(const struct task_struct *p)
4457 {
4458 return TASK_NICE(p);
4459 }
4460 EXPORT_SYMBOL_GPL(task_nice);
4461
4462 /**
4463 * idle_cpu - is a given cpu idle currently?
4464 * @cpu: the processor in question.
4465 */
4466 int idle_cpu(int cpu)
4467 {
4468 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4469 }
4470
4471 /**
4472 * idle_task - return the idle task for a given cpu.
4473 * @cpu: the processor in question.
4474 */
4475 struct task_struct *idle_task(int cpu)
4476 {
4477 return cpu_rq(cpu)->idle;
4478 }
4479
4480 /**
4481 * find_process_by_pid - find a process with a matching PID value.
4482 * @pid: the pid in question.
4483 */
4484 static struct task_struct *find_process_by_pid(pid_t pid)
4485 {
4486 return pid ? find_task_by_vpid(pid) : current;
4487 }
4488
4489 /* Actually do priority change: must hold rq lock. */
4490 static void
4491 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4492 {
4493 BUG_ON(p->se.on_rq);
4494
4495 p->policy = policy;
4496 switch (p->policy) {
4497 case SCHED_NORMAL:
4498 case SCHED_BATCH:
4499 case SCHED_IDLE:
4500 p->sched_class = &fair_sched_class;
4501 break;
4502 case SCHED_FIFO:
4503 case SCHED_RR:
4504 p->sched_class = &rt_sched_class;
4505 break;
4506 }
4507
4508 p->rt_priority = prio;
4509 p->normal_prio = normal_prio(p);
4510 /* we are holding p->pi_lock already */
4511 p->prio = rt_mutex_getprio(p);
4512 set_load_weight(p);
4513 }
4514
4515 /**
4516 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4517 * @p: the task in question.
4518 * @policy: new policy.
4519 * @param: structure containing the new RT priority.
4520 *
4521 * NOTE that the task may be already dead.
4522 */
4523 int sched_setscheduler(struct task_struct *p, int policy,
4524 struct sched_param *param)
4525 {
4526 int retval, oldprio, oldpolicy = -1, on_rq, running;
4527 unsigned long flags;
4528 const struct sched_class *prev_class = p->sched_class;
4529 struct rq *rq;
4530
4531 /* may grab non-irq protected spin_locks */
4532 BUG_ON(in_interrupt());
4533 recheck:
4534 /* double check policy once rq lock held */
4535 if (policy < 0)
4536 policy = oldpolicy = p->policy;
4537 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4538 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4539 policy != SCHED_IDLE)
4540 return -EINVAL;
4541 /*
4542 * Valid priorities for SCHED_FIFO and SCHED_RR are
4543 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4544 * SCHED_BATCH and SCHED_IDLE is 0.
4545 */
4546 if (param->sched_priority < 0 ||
4547 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4548 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4549 return -EINVAL;
4550 if (rt_policy(policy) != (param->sched_priority != 0))
4551 return -EINVAL;
4552
4553 /*
4554 * Allow unprivileged RT tasks to decrease priority:
4555 */
4556 if (!capable(CAP_SYS_NICE)) {
4557 if (rt_policy(policy)) {
4558 unsigned long rlim_rtprio;
4559
4560 if (!lock_task_sighand(p, &flags))
4561 return -ESRCH;
4562 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4563 unlock_task_sighand(p, &flags);
4564
4565 /* can't set/change the rt policy */
4566 if (policy != p->policy && !rlim_rtprio)
4567 return -EPERM;
4568
4569 /* can't increase priority */
4570 if (param->sched_priority > p->rt_priority &&
4571 param->sched_priority > rlim_rtprio)
4572 return -EPERM;
4573 }
4574 /*
4575 * Like positive nice levels, dont allow tasks to
4576 * move out of SCHED_IDLE either:
4577 */
4578 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4579 return -EPERM;
4580
4581 /* can't change other user's priorities */
4582 if ((current->euid != p->euid) &&
4583 (current->euid != p->uid))
4584 return -EPERM;
4585 }
4586
4587 retval = security_task_setscheduler(p, policy, param);
4588 if (retval)
4589 return retval;
4590 /*
4591 * make sure no PI-waiters arrive (or leave) while we are
4592 * changing the priority of the task:
4593 */
4594 spin_lock_irqsave(&p->pi_lock, flags);
4595 /*
4596 * To be able to change p->policy safely, the apropriate
4597 * runqueue lock must be held.
4598 */
4599 rq = __task_rq_lock(p);
4600 /* recheck policy now with rq lock held */
4601 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4602 policy = oldpolicy = -1;
4603 __task_rq_unlock(rq);
4604 spin_unlock_irqrestore(&p->pi_lock, flags);
4605 goto recheck;
4606 }
4607 update_rq_clock(rq);
4608 on_rq = p->se.on_rq;
4609 running = task_current(rq, p);
4610 if (on_rq) {
4611 deactivate_task(rq, p, 0);
4612 if (running)
4613 p->sched_class->put_prev_task(rq, p);
4614 }
4615
4616 oldprio = p->prio;
4617 __setscheduler(rq, p, policy, param->sched_priority);
4618
4619 if (on_rq) {
4620 if (running)
4621 p->sched_class->set_curr_task(rq);
4622
4623 activate_task(rq, p, 0);
4624
4625 check_class_changed(rq, p, prev_class, oldprio, running);
4626 }
4627 __task_rq_unlock(rq);
4628 spin_unlock_irqrestore(&p->pi_lock, flags);
4629
4630 rt_mutex_adjust_pi(p);
4631
4632 return 0;
4633 }
4634 EXPORT_SYMBOL_GPL(sched_setscheduler);
4635
4636 static int
4637 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4638 {
4639 struct sched_param lparam;
4640 struct task_struct *p;
4641 int retval;
4642
4643 if (!param || pid < 0)
4644 return -EINVAL;
4645 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4646 return -EFAULT;
4647
4648 rcu_read_lock();
4649 retval = -ESRCH;
4650 p = find_process_by_pid(pid);
4651 if (p != NULL)
4652 retval = sched_setscheduler(p, policy, &lparam);
4653 rcu_read_unlock();
4654
4655 return retval;
4656 }
4657
4658 /**
4659 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4660 * @pid: the pid in question.
4661 * @policy: new policy.
4662 * @param: structure containing the new RT priority.
4663 */
4664 asmlinkage long
4665 sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4666 {
4667 /* negative values for policy are not valid */
4668 if (policy < 0)
4669 return -EINVAL;
4670
4671 return do_sched_setscheduler(pid, policy, param);
4672 }
4673
4674 /**
4675 * sys_sched_setparam - set/change the RT priority of a thread
4676 * @pid: the pid in question.
4677 * @param: structure containing the new RT priority.
4678 */
4679 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4680 {
4681 return do_sched_setscheduler(pid, -1, param);
4682 }
4683
4684 /**
4685 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4686 * @pid: the pid in question.
4687 */
4688 asmlinkage long sys_sched_getscheduler(pid_t pid)
4689 {
4690 struct task_struct *p;
4691 int retval;
4692
4693 if (pid < 0)
4694 return -EINVAL;
4695
4696 retval = -ESRCH;
4697 read_lock(&tasklist_lock);
4698 p = find_process_by_pid(pid);
4699 if (p) {
4700 retval = security_task_getscheduler(p);
4701 if (!retval)
4702 retval = p->policy;
4703 }
4704 read_unlock(&tasklist_lock);
4705 return retval;
4706 }
4707
4708 /**
4709 * sys_sched_getscheduler - get the RT priority of a thread
4710 * @pid: the pid in question.
4711 * @param: structure containing the RT priority.
4712 */
4713 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4714 {
4715 struct sched_param lp;
4716 struct task_struct *p;
4717 int retval;
4718
4719 if (!param || pid < 0)
4720 return -EINVAL;
4721
4722 read_lock(&tasklist_lock);
4723 p = find_process_by_pid(pid);
4724 retval = -ESRCH;
4725 if (!p)
4726 goto out_unlock;
4727
4728 retval = security_task_getscheduler(p);
4729 if (retval)
4730 goto out_unlock;
4731
4732 lp.sched_priority = p->rt_priority;
4733 read_unlock(&tasklist_lock);
4734
4735 /*
4736 * This one might sleep, we cannot do it with a spinlock held ...
4737 */
4738 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4739
4740 return retval;
4741
4742 out_unlock:
4743 read_unlock(&tasklist_lock);
4744 return retval;
4745 }
4746
4747 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4748 {
4749 cpumask_t cpus_allowed;
4750 struct task_struct *p;
4751 int retval;
4752
4753 get_online_cpus();
4754 read_lock(&tasklist_lock);
4755
4756 p = find_process_by_pid(pid);
4757 if (!p) {
4758 read_unlock(&tasklist_lock);
4759 put_online_cpus();
4760 return -ESRCH;
4761 }
4762
4763 /*
4764 * It is not safe to call set_cpus_allowed with the
4765 * tasklist_lock held. We will bump the task_struct's
4766 * usage count and then drop tasklist_lock.
4767 */
4768 get_task_struct(p);
4769 read_unlock(&tasklist_lock);
4770
4771 retval = -EPERM;
4772 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4773 !capable(CAP_SYS_NICE))
4774 goto out_unlock;
4775
4776 retval = security_task_setscheduler(p, 0, NULL);
4777 if (retval)
4778 goto out_unlock;
4779
4780 cpus_allowed = cpuset_cpus_allowed(p);
4781 cpus_and(new_mask, new_mask, cpus_allowed);
4782 again:
4783 retval = set_cpus_allowed(p, new_mask);
4784
4785 if (!retval) {
4786 cpus_allowed = cpuset_cpus_allowed(p);
4787 if (!cpus_subset(new_mask, cpus_allowed)) {
4788 /*
4789 * We must have raced with a concurrent cpuset
4790 * update. Just reset the cpus_allowed to the
4791 * cpuset's cpus_allowed
4792 */
4793 new_mask = cpus_allowed;
4794 goto again;
4795 }
4796 }
4797 out_unlock:
4798 put_task_struct(p);
4799 put_online_cpus();
4800 return retval;
4801 }
4802
4803 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4804 cpumask_t *new_mask)
4805 {
4806 if (len < sizeof(cpumask_t)) {
4807 memset(new_mask, 0, sizeof(cpumask_t));
4808 } else if (len > sizeof(cpumask_t)) {
4809 len = sizeof(cpumask_t);
4810 }
4811 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4812 }
4813
4814 /**
4815 * sys_sched_setaffinity - set the cpu affinity of a process
4816 * @pid: pid of the process
4817 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4818 * @user_mask_ptr: user-space pointer to the new cpu mask
4819 */
4820 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4821 unsigned long __user *user_mask_ptr)
4822 {
4823 cpumask_t new_mask;
4824 int retval;
4825
4826 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4827 if (retval)
4828 return retval;
4829
4830 return sched_setaffinity(pid, new_mask);
4831 }
4832
4833 /*
4834 * Represents all cpu's present in the system
4835 * In systems capable of hotplug, this map could dynamically grow
4836 * as new cpu's are detected in the system via any platform specific
4837 * method, such as ACPI for e.g.
4838 */
4839
4840 cpumask_t cpu_present_map __read_mostly;
4841 EXPORT_SYMBOL(cpu_present_map);
4842
4843 #ifndef CONFIG_SMP
4844 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4845 EXPORT_SYMBOL(cpu_online_map);
4846
4847 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4848 EXPORT_SYMBOL(cpu_possible_map);
4849 #endif
4850
4851 long sched_getaffinity(pid_t pid, cpumask_t *mask)
4852 {
4853 struct task_struct *p;
4854 int retval;
4855
4856 get_online_cpus();
4857 read_lock(&tasklist_lock);
4858
4859 retval = -ESRCH;
4860 p = find_process_by_pid(pid);
4861 if (!p)
4862 goto out_unlock;
4863
4864 retval = security_task_getscheduler(p);
4865 if (retval)
4866 goto out_unlock;
4867
4868 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
4869
4870 out_unlock:
4871 read_unlock(&tasklist_lock);
4872 put_online_cpus();
4873
4874 return retval;
4875 }
4876
4877 /**
4878 * sys_sched_getaffinity - get the cpu affinity of a process
4879 * @pid: pid of the process
4880 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4881 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4882 */
4883 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4884 unsigned long __user *user_mask_ptr)
4885 {
4886 int ret;
4887 cpumask_t mask;
4888
4889 if (len < sizeof(cpumask_t))
4890 return -EINVAL;
4891
4892 ret = sched_getaffinity(pid, &mask);
4893 if (ret < 0)
4894 return ret;
4895
4896 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4897 return -EFAULT;
4898
4899 return sizeof(cpumask_t);
4900 }
4901
4902 /**
4903 * sys_sched_yield - yield the current processor to other threads.
4904 *
4905 * This function yields the current CPU to other tasks. If there are no
4906 * other threads running on this CPU then this function will return.
4907 */
4908 asmlinkage long sys_sched_yield(void)
4909 {
4910 struct rq *rq = this_rq_lock();
4911
4912 schedstat_inc(rq, yld_count);
4913 current->sched_class->yield_task(rq);
4914
4915 /*
4916 * Since we are going to call schedule() anyway, there's
4917 * no need to preempt or enable interrupts:
4918 */
4919 __release(rq->lock);
4920 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4921 _raw_spin_unlock(&rq->lock);
4922 preempt_enable_no_resched();
4923
4924 schedule();
4925
4926 return 0;
4927 }
4928
4929 static void __cond_resched(void)
4930 {
4931 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4932 __might_sleep(__FILE__, __LINE__);
4933 #endif
4934 /*
4935 * The BKS might be reacquired before we have dropped
4936 * PREEMPT_ACTIVE, which could trigger a second
4937 * cond_resched() call.
4938 */
4939 do {
4940 add_preempt_count(PREEMPT_ACTIVE);
4941 schedule();
4942 sub_preempt_count(PREEMPT_ACTIVE);
4943 } while (need_resched());
4944 }
4945
4946 #if !defined(CONFIG_PREEMPT) || defined(CONFIG_PREEMPT_VOLUNTARY)
4947 int __sched _cond_resched(void)
4948 {
4949 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4950 system_state == SYSTEM_RUNNING) {
4951 __cond_resched();
4952 return 1;
4953 }
4954 return 0;
4955 }
4956 EXPORT_SYMBOL(_cond_resched);
4957 #endif
4958
4959 /*
4960 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4961 * call schedule, and on return reacquire the lock.
4962 *
4963 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4964 * operations here to prevent schedule() from being called twice (once via
4965 * spin_unlock(), once by hand).
4966 */
4967 int cond_resched_lock(spinlock_t *lock)
4968 {
4969 int resched = need_resched() && system_state == SYSTEM_RUNNING;
4970 int ret = 0;
4971
4972 if (spin_needbreak(lock) || resched) {
4973 spin_unlock(lock);
4974 if (resched && need_resched())
4975 __cond_resched();
4976 else
4977 cpu_relax();
4978 ret = 1;
4979 spin_lock(lock);
4980 }
4981 return ret;
4982 }
4983 EXPORT_SYMBOL(cond_resched_lock);
4984
4985 int __sched cond_resched_softirq(void)
4986 {
4987 BUG_ON(!in_softirq());
4988
4989 if (need_resched() && system_state == SYSTEM_RUNNING) {
4990 local_bh_enable();
4991 __cond_resched();
4992 local_bh_disable();
4993 return 1;
4994 }
4995 return 0;
4996 }
4997 EXPORT_SYMBOL(cond_resched_softirq);
4998
4999 /**
5000 * yield - yield the current processor to other threads.
5001 *
5002 * This is a shortcut for kernel-space yielding - it marks the
5003 * thread runnable and calls sys_sched_yield().
5004 */
5005 void __sched yield(void)
5006 {
5007 set_current_state(TASK_RUNNING);
5008 sys_sched_yield();
5009 }
5010 EXPORT_SYMBOL(yield);
5011
5012 /*
5013 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5014 * that process accounting knows that this is a task in IO wait state.
5015 *
5016 * But don't do that if it is a deliberate, throttling IO wait (this task
5017 * has set its backing_dev_info: the queue against which it should throttle)
5018 */
5019 void __sched io_schedule(void)
5020 {
5021 struct rq *rq = &__raw_get_cpu_var(runqueues);
5022
5023 delayacct_blkio_start();
5024 atomic_inc(&rq->nr_iowait);
5025 schedule();
5026 atomic_dec(&rq->nr_iowait);
5027 delayacct_blkio_end();
5028 }
5029 EXPORT_SYMBOL(io_schedule);
5030
5031 long __sched io_schedule_timeout(long timeout)
5032 {
5033 struct rq *rq = &__raw_get_cpu_var(runqueues);
5034 long ret;
5035
5036 delayacct_blkio_start();
5037 atomic_inc(&rq->nr_iowait);
5038 ret = schedule_timeout(timeout);
5039 atomic_dec(&rq->nr_iowait);
5040 delayacct_blkio_end();
5041 return ret;
5042 }
5043
5044 /**
5045 * sys_sched_get_priority_max - return maximum RT priority.
5046 * @policy: scheduling class.
5047 *
5048 * this syscall returns the maximum rt_priority that can be used
5049 * by a given scheduling class.
5050 */
5051 asmlinkage long sys_sched_get_priority_max(int policy)
5052 {
5053 int ret = -EINVAL;
5054
5055 switch (policy) {
5056 case SCHED_FIFO:
5057 case SCHED_RR:
5058 ret = MAX_USER_RT_PRIO-1;
5059 break;
5060 case SCHED_NORMAL:
5061 case SCHED_BATCH:
5062 case SCHED_IDLE:
5063 ret = 0;
5064 break;
5065 }
5066 return ret;
5067 }
5068
5069 /**
5070 * sys_sched_get_priority_min - return minimum RT priority.
5071 * @policy: scheduling class.
5072 *
5073 * this syscall returns the minimum rt_priority that can be used
5074 * by a given scheduling class.
5075 */
5076 asmlinkage long sys_sched_get_priority_min(int policy)
5077 {
5078 int ret = -EINVAL;
5079
5080 switch (policy) {
5081 case SCHED_FIFO:
5082 case SCHED_RR:
5083 ret = 1;
5084 break;
5085 case SCHED_NORMAL:
5086 case SCHED_BATCH:
5087 case SCHED_IDLE:
5088 ret = 0;
5089 }
5090 return ret;
5091 }
5092
5093 /**
5094 * sys_sched_rr_get_interval - return the default timeslice of a process.
5095 * @pid: pid of the process.
5096 * @interval: userspace pointer to the timeslice value.
5097 *
5098 * this syscall writes the default timeslice value of a given process
5099 * into the user-space timespec buffer. A value of '0' means infinity.
5100 */
5101 asmlinkage
5102 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5103 {
5104 struct task_struct *p;
5105 unsigned int time_slice;
5106 int retval;
5107 struct timespec t;
5108
5109 if (pid < 0)
5110 return -EINVAL;
5111
5112 retval = -ESRCH;
5113 read_lock(&tasklist_lock);
5114 p = find_process_by_pid(pid);
5115 if (!p)
5116 goto out_unlock;
5117
5118 retval = security_task_getscheduler(p);
5119 if (retval)
5120 goto out_unlock;
5121
5122 /*
5123 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5124 * tasks that are on an otherwise idle runqueue:
5125 */
5126 time_slice = 0;
5127 if (p->policy == SCHED_RR) {
5128 time_slice = DEF_TIMESLICE;
5129 } else {
5130 struct sched_entity *se = &p->se;
5131 unsigned long flags;
5132 struct rq *rq;
5133
5134 rq = task_rq_lock(p, &flags);
5135 if (rq->cfs.load.weight)
5136 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
5137 task_rq_unlock(rq, &flags);
5138 }
5139 read_unlock(&tasklist_lock);
5140 jiffies_to_timespec(time_slice, &t);
5141 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5142 return retval;
5143
5144 out_unlock:
5145 read_unlock(&tasklist_lock);
5146 return retval;
5147 }
5148
5149 static const char stat_nam[] = "RSDTtZX";
5150
5151 void sched_show_task(struct task_struct *p)
5152 {
5153 unsigned long free = 0;
5154 unsigned state;
5155
5156 state = p->state ? __ffs(p->state) + 1 : 0;
5157 printk(KERN_INFO "%-13.13s %c", p->comm,
5158 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5159 #if BITS_PER_LONG == 32
5160 if (state == TASK_RUNNING)
5161 printk(KERN_CONT " running ");
5162 else
5163 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5164 #else
5165 if (state == TASK_RUNNING)
5166 printk(KERN_CONT " running task ");
5167 else
5168 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5169 #endif
5170 #ifdef CONFIG_DEBUG_STACK_USAGE
5171 {
5172 unsigned long *n = end_of_stack(p);
5173 while (!*n)
5174 n++;
5175 free = (unsigned long)n - (unsigned long)end_of_stack(p);
5176 }
5177 #endif
5178 printk(KERN_CONT "%5lu %5d %6d\n", free,
5179 task_pid_nr(p), task_pid_nr(p->real_parent));
5180
5181 show_stack(p, NULL);
5182 }
5183
5184 void show_state_filter(unsigned long state_filter)
5185 {
5186 struct task_struct *g, *p;
5187
5188 #if BITS_PER_LONG == 32
5189 printk(KERN_INFO
5190 " task PC stack pid father\n");
5191 #else
5192 printk(KERN_INFO
5193 " task PC stack pid father\n");
5194 #endif
5195 read_lock(&tasklist_lock);
5196 do_each_thread(g, p) {
5197 /*
5198 * reset the NMI-timeout, listing all files on a slow
5199 * console might take alot of time:
5200 */
5201 touch_nmi_watchdog();
5202 if (!state_filter || (p->state & state_filter))
5203 sched_show_task(p);
5204 } while_each_thread(g, p);
5205
5206 touch_all_softlockup_watchdogs();
5207
5208 #ifdef CONFIG_SCHED_DEBUG
5209 sysrq_sched_debug_show();
5210 #endif
5211 read_unlock(&tasklist_lock);
5212 /*
5213 * Only show locks if all tasks are dumped:
5214 */
5215 if (state_filter == -1)
5216 debug_show_all_locks();
5217 }
5218
5219 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5220 {
5221 idle->sched_class = &idle_sched_class;
5222 }
5223
5224 /**
5225 * init_idle - set up an idle thread for a given CPU
5226 * @idle: task in question
5227 * @cpu: cpu the idle task belongs to
5228 *
5229 * NOTE: this function does not set the idle thread's NEED_RESCHED
5230 * flag, to make booting more robust.
5231 */
5232 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5233 {
5234 struct rq *rq = cpu_rq(cpu);
5235 unsigned long flags;
5236
5237 __sched_fork(idle);
5238 idle->se.exec_start = sched_clock();
5239
5240 idle->prio = idle->normal_prio = MAX_PRIO;
5241 idle->cpus_allowed = cpumask_of_cpu(cpu);
5242 __set_task_cpu(idle, cpu);
5243
5244 spin_lock_irqsave(&rq->lock, flags);
5245 rq->curr = rq->idle = idle;
5246 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5247 idle->oncpu = 1;
5248 #endif
5249 spin_unlock_irqrestore(&rq->lock, flags);
5250
5251 /* Set the preempt count _outside_ the spinlocks! */
5252 task_thread_info(idle)->preempt_count = 0;
5253
5254 /*
5255 * The idle tasks have their own, simple scheduling class:
5256 */
5257 idle->sched_class = &idle_sched_class;
5258 }
5259
5260 /*
5261 * In a system that switches off the HZ timer nohz_cpu_mask
5262 * indicates which cpus entered this state. This is used
5263 * in the rcu update to wait only for active cpus. For system
5264 * which do not switch off the HZ timer nohz_cpu_mask should
5265 * always be CPU_MASK_NONE.
5266 */
5267 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5268
5269 /*
5270 * Increase the granularity value when there are more CPUs,
5271 * because with more CPUs the 'effective latency' as visible
5272 * to users decreases. But the relationship is not linear,
5273 * so pick a second-best guess by going with the log2 of the
5274 * number of CPUs.
5275 *
5276 * This idea comes from the SD scheduler of Con Kolivas:
5277 */
5278 static inline void sched_init_granularity(void)
5279 {
5280 unsigned int factor = 1 + ilog2(num_online_cpus());
5281 const unsigned long limit = 200000000;
5282
5283 sysctl_sched_min_granularity *= factor;
5284 if (sysctl_sched_min_granularity > limit)
5285 sysctl_sched_min_granularity = limit;
5286
5287 sysctl_sched_latency *= factor;
5288 if (sysctl_sched_latency > limit)
5289 sysctl_sched_latency = limit;
5290
5291 sysctl_sched_wakeup_granularity *= factor;
5292 sysctl_sched_batch_wakeup_granularity *= factor;
5293 }
5294
5295 #ifdef CONFIG_SMP
5296 /*
5297 * This is how migration works:
5298 *
5299 * 1) we queue a struct migration_req structure in the source CPU's
5300 * runqueue and wake up that CPU's migration thread.
5301 * 2) we down() the locked semaphore => thread blocks.
5302 * 3) migration thread wakes up (implicitly it forces the migrated
5303 * thread off the CPU)
5304 * 4) it gets the migration request and checks whether the migrated
5305 * task is still in the wrong runqueue.
5306 * 5) if it's in the wrong runqueue then the migration thread removes
5307 * it and puts it into the right queue.
5308 * 6) migration thread up()s the semaphore.
5309 * 7) we wake up and the migration is done.
5310 */
5311
5312 /*
5313 * Change a given task's CPU affinity. Migrate the thread to a
5314 * proper CPU and schedule it away if the CPU it's executing on
5315 * is removed from the allowed bitmask.
5316 *
5317 * NOTE: the caller must have a valid reference to the task, the
5318 * task must not exit() & deallocate itself prematurely. The
5319 * call is not atomic; no spinlocks may be held.
5320 */
5321 int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
5322 {
5323 struct migration_req req;
5324 unsigned long flags;
5325 struct rq *rq;
5326 int ret = 0;
5327
5328 rq = task_rq_lock(p, &flags);
5329 if (!cpus_intersects(new_mask, cpu_online_map)) {
5330 ret = -EINVAL;
5331 goto out;
5332 }
5333
5334 if (p->sched_class->set_cpus_allowed)
5335 p->sched_class->set_cpus_allowed(p, &new_mask);
5336 else {
5337 p->cpus_allowed = new_mask;
5338 p->rt.nr_cpus_allowed = cpus_weight(new_mask);
5339 }
5340
5341 /* Can the task run on the task's current CPU? If so, we're done */
5342 if (cpu_isset(task_cpu(p), new_mask))
5343 goto out;
5344
5345 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
5346 /* Need help from migration thread: drop lock and wait. */
5347 task_rq_unlock(rq, &flags);
5348 wake_up_process(rq->migration_thread);
5349 wait_for_completion(&req.done);
5350 tlb_migrate_finish(p->mm);
5351 return 0;
5352 }
5353 out:
5354 task_rq_unlock(rq, &flags);
5355
5356 return ret;
5357 }
5358 EXPORT_SYMBOL_GPL(set_cpus_allowed);
5359
5360 /*
5361 * Move (not current) task off this cpu, onto dest cpu. We're doing
5362 * this because either it can't run here any more (set_cpus_allowed()
5363 * away from this CPU, or CPU going down), or because we're
5364 * attempting to rebalance this task on exec (sched_exec).
5365 *
5366 * So we race with normal scheduler movements, but that's OK, as long
5367 * as the task is no longer on this CPU.
5368 *
5369 * Returns non-zero if task was successfully migrated.
5370 */
5371 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5372 {
5373 struct rq *rq_dest, *rq_src;
5374 int ret = 0, on_rq;
5375
5376 if (unlikely(cpu_is_offline(dest_cpu)))
5377 return ret;
5378
5379 rq_src = cpu_rq(src_cpu);
5380 rq_dest = cpu_rq(dest_cpu);
5381
5382 double_rq_lock(rq_src, rq_dest);
5383 /* Already moved. */
5384 if (task_cpu(p) != src_cpu)
5385 goto out;
5386 /* Affinity changed (again). */
5387 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5388 goto out;
5389
5390 on_rq = p->se.on_rq;
5391 if (on_rq)
5392 deactivate_task(rq_src, p, 0);
5393
5394 set_task_cpu(p, dest_cpu);
5395 if (on_rq) {
5396 activate_task(rq_dest, p, 0);
5397 check_preempt_curr(rq_dest, p);
5398 }
5399 ret = 1;
5400 out:
5401 double_rq_unlock(rq_src, rq_dest);
5402 return ret;
5403 }
5404
5405 /*
5406 * migration_thread - this is a highprio system thread that performs
5407 * thread migration by bumping thread off CPU then 'pushing' onto
5408 * another runqueue.
5409 */
5410 static int migration_thread(void *data)
5411 {
5412 int cpu = (long)data;
5413 struct rq *rq;
5414
5415 rq = cpu_rq(cpu);
5416 BUG_ON(rq->migration_thread != current);
5417
5418 set_current_state(TASK_INTERRUPTIBLE);
5419 while (!kthread_should_stop()) {
5420 struct migration_req *req;
5421 struct list_head *head;
5422
5423 spin_lock_irq(&rq->lock);
5424
5425 if (cpu_is_offline(cpu)) {
5426 spin_unlock_irq(&rq->lock);
5427 goto wait_to_die;
5428 }
5429
5430 if (rq->active_balance) {
5431 active_load_balance(rq, cpu);
5432 rq->active_balance = 0;
5433 }
5434
5435 head = &rq->migration_queue;
5436
5437 if (list_empty(head)) {
5438 spin_unlock_irq(&rq->lock);
5439 schedule();
5440 set_current_state(TASK_INTERRUPTIBLE);
5441 continue;
5442 }
5443 req = list_entry(head->next, struct migration_req, list);
5444 list_del_init(head->next);
5445
5446 spin_unlock(&rq->lock);
5447 __migrate_task(req->task, cpu, req->dest_cpu);
5448 local_irq_enable();
5449
5450 complete(&req->done);
5451 }
5452 __set_current_state(TASK_RUNNING);
5453 return 0;
5454
5455 wait_to_die:
5456 /* Wait for kthread_stop */
5457 set_current_state(TASK_INTERRUPTIBLE);
5458 while (!kthread_should_stop()) {
5459 schedule();
5460 set_current_state(TASK_INTERRUPTIBLE);
5461 }
5462 __set_current_state(TASK_RUNNING);
5463 return 0;
5464 }
5465
5466 #ifdef CONFIG_HOTPLUG_CPU
5467
5468 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5469 {
5470 int ret;
5471
5472 local_irq_disable();
5473 ret = __migrate_task(p, src_cpu, dest_cpu);
5474 local_irq_enable();
5475 return ret;
5476 }
5477
5478 /*
5479 * Figure out where task on dead CPU should go, use force if necessary.
5480 * NOTE: interrupts should be disabled by the caller
5481 */
5482 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5483 {
5484 unsigned long flags;
5485 cpumask_t mask;
5486 struct rq *rq;
5487 int dest_cpu;
5488
5489 do {
5490 /* On same node? */
5491 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5492 cpus_and(mask, mask, p->cpus_allowed);
5493 dest_cpu = any_online_cpu(mask);
5494
5495 /* On any allowed CPU? */
5496 if (dest_cpu == NR_CPUS)
5497 dest_cpu = any_online_cpu(p->cpus_allowed);
5498
5499 /* No more Mr. Nice Guy. */
5500 if (dest_cpu == NR_CPUS) {
5501 cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
5502 /*
5503 * Try to stay on the same cpuset, where the
5504 * current cpuset may be a subset of all cpus.
5505 * The cpuset_cpus_allowed_locked() variant of
5506 * cpuset_cpus_allowed() will not block. It must be
5507 * called within calls to cpuset_lock/cpuset_unlock.
5508 */
5509 rq = task_rq_lock(p, &flags);
5510 p->cpus_allowed = cpus_allowed;
5511 dest_cpu = any_online_cpu(p->cpus_allowed);
5512 task_rq_unlock(rq, &flags);
5513
5514 /*
5515 * Don't tell them about moving exiting tasks or
5516 * kernel threads (both mm NULL), since they never
5517 * leave kernel.
5518 */
5519 if (p->mm && printk_ratelimit()) {
5520 printk(KERN_INFO "process %d (%s) no "
5521 "longer affine to cpu%d\n",
5522 task_pid_nr(p), p->comm, dead_cpu);
5523 }
5524 }
5525 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
5526 }
5527
5528 /*
5529 * While a dead CPU has no uninterruptible tasks queued at this point,
5530 * it might still have a nonzero ->nr_uninterruptible counter, because
5531 * for performance reasons the counter is not stricly tracking tasks to
5532 * their home CPUs. So we just add the counter to another CPU's counter,
5533 * to keep the global sum constant after CPU-down:
5534 */
5535 static void migrate_nr_uninterruptible(struct rq *rq_src)
5536 {
5537 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
5538 unsigned long flags;
5539
5540 local_irq_save(flags);
5541 double_rq_lock(rq_src, rq_dest);
5542 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5543 rq_src->nr_uninterruptible = 0;
5544 double_rq_unlock(rq_src, rq_dest);
5545 local_irq_restore(flags);
5546 }
5547
5548 /* Run through task list and migrate tasks from the dead cpu. */
5549 static void migrate_live_tasks(int src_cpu)
5550 {
5551 struct task_struct *p, *t;
5552
5553 read_lock(&tasklist_lock);
5554
5555 do_each_thread(t, p) {
5556 if (p == current)
5557 continue;
5558
5559 if (task_cpu(p) == src_cpu)
5560 move_task_off_dead_cpu(src_cpu, p);
5561 } while_each_thread(t, p);
5562
5563 read_unlock(&tasklist_lock);
5564 }
5565
5566 /*
5567 * Schedules idle task to be the next runnable task on current CPU.
5568 * It does so by boosting its priority to highest possible.
5569 * Used by CPU offline code.
5570 */
5571 void sched_idle_next(void)
5572 {
5573 int this_cpu = smp_processor_id();
5574 struct rq *rq = cpu_rq(this_cpu);
5575 struct task_struct *p = rq->idle;
5576 unsigned long flags;
5577
5578 /* cpu has to be offline */
5579 BUG_ON(cpu_online(this_cpu));
5580
5581 /*
5582 * Strictly not necessary since rest of the CPUs are stopped by now
5583 * and interrupts disabled on the current cpu.
5584 */
5585 spin_lock_irqsave(&rq->lock, flags);
5586
5587 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5588
5589 update_rq_clock(rq);
5590 activate_task(rq, p, 0);
5591
5592 spin_unlock_irqrestore(&rq->lock, flags);
5593 }
5594
5595 /*
5596 * Ensures that the idle task is using init_mm right before its cpu goes
5597 * offline.
5598 */
5599 void idle_task_exit(void)
5600 {
5601 struct mm_struct *mm = current->active_mm;
5602
5603 BUG_ON(cpu_online(smp_processor_id()));
5604
5605 if (mm != &init_mm)
5606 switch_mm(mm, &init_mm, current);
5607 mmdrop(mm);
5608 }
5609
5610 /* called under rq->lock with disabled interrupts */
5611 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5612 {
5613 struct rq *rq = cpu_rq(dead_cpu);
5614
5615 /* Must be exiting, otherwise would be on tasklist. */
5616 BUG_ON(!p->exit_state);
5617
5618 /* Cannot have done final schedule yet: would have vanished. */
5619 BUG_ON(p->state == TASK_DEAD);
5620
5621 get_task_struct(p);
5622
5623 /*
5624 * Drop lock around migration; if someone else moves it,
5625 * that's OK. No task can be added to this CPU, so iteration is
5626 * fine.
5627 */
5628 spin_unlock_irq(&rq->lock);
5629 move_task_off_dead_cpu(dead_cpu, p);
5630 spin_lock_irq(&rq->lock);
5631
5632 put_task_struct(p);
5633 }
5634
5635 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5636 static void migrate_dead_tasks(unsigned int dead_cpu)
5637 {
5638 struct rq *rq = cpu_rq(dead_cpu);
5639 struct task_struct *next;
5640
5641 for ( ; ; ) {
5642 if (!rq->nr_running)
5643 break;
5644 update_rq_clock(rq);
5645 next = pick_next_task(rq, rq->curr);
5646 if (!next)
5647 break;
5648 migrate_dead(dead_cpu, next);
5649
5650 }
5651 }
5652 #endif /* CONFIG_HOTPLUG_CPU */
5653
5654 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5655
5656 static struct ctl_table sd_ctl_dir[] = {
5657 {
5658 .procname = "sched_domain",
5659 .mode = 0555,
5660 },
5661 {0, },
5662 };
5663
5664 static struct ctl_table sd_ctl_root[] = {
5665 {
5666 .ctl_name = CTL_KERN,
5667 .procname = "kernel",
5668 .mode = 0555,
5669 .child = sd_ctl_dir,
5670 },
5671 {0, },
5672 };
5673
5674 static struct ctl_table *sd_alloc_ctl_entry(int n)
5675 {
5676 struct ctl_table *entry =
5677 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5678
5679 return entry;
5680 }
5681
5682 static void sd_free_ctl_entry(struct ctl_table **tablep)
5683 {
5684 struct ctl_table *entry;
5685
5686 /*
5687 * In the intermediate directories, both the child directory and
5688 * procname are dynamically allocated and could fail but the mode
5689 * will always be set. In the lowest directory the names are
5690 * static strings and all have proc handlers.
5691 */
5692 for (entry = *tablep; entry->mode; entry++) {
5693 if (entry->child)
5694 sd_free_ctl_entry(&entry->child);
5695 if (entry->proc_handler == NULL)
5696 kfree(entry->procname);
5697 }
5698
5699 kfree(*tablep);
5700 *tablep = NULL;
5701 }
5702
5703 static void
5704 set_table_entry(struct ctl_table *entry,
5705 const char *procname, void *data, int maxlen,
5706 mode_t mode, proc_handler *proc_handler)
5707 {
5708 entry->procname = procname;
5709 entry->data = data;
5710 entry->maxlen = maxlen;
5711 entry->mode = mode;
5712 entry->proc_handler = proc_handler;
5713 }
5714
5715 static struct ctl_table *
5716 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5717 {
5718 struct ctl_table *table = sd_alloc_ctl_entry(12);
5719
5720 if (table == NULL)
5721 return NULL;
5722
5723 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5724 sizeof(long), 0644, proc_doulongvec_minmax);
5725 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5726 sizeof(long), 0644, proc_doulongvec_minmax);
5727 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5728 sizeof(int), 0644, proc_dointvec_minmax);
5729 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5730 sizeof(int), 0644, proc_dointvec_minmax);
5731 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5732 sizeof(int), 0644, proc_dointvec_minmax);
5733 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5734 sizeof(int), 0644, proc_dointvec_minmax);
5735 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5736 sizeof(int), 0644, proc_dointvec_minmax);
5737 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5738 sizeof(int), 0644, proc_dointvec_minmax);
5739 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5740 sizeof(int), 0644, proc_dointvec_minmax);
5741 set_table_entry(&table[9], "cache_nice_tries",
5742 &sd->cache_nice_tries,
5743 sizeof(int), 0644, proc_dointvec_minmax);
5744 set_table_entry(&table[10], "flags", &sd->flags,
5745 sizeof(int), 0644, proc_dointvec_minmax);
5746 /* &table[11] is terminator */
5747
5748 return table;
5749 }
5750
5751 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5752 {
5753 struct ctl_table *entry, *table;
5754 struct sched_domain *sd;
5755 int domain_num = 0, i;
5756 char buf[32];
5757
5758 for_each_domain(cpu, sd)
5759 domain_num++;
5760 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5761 if (table == NULL)
5762 return NULL;
5763
5764 i = 0;
5765 for_each_domain(cpu, sd) {
5766 snprintf(buf, 32, "domain%d", i);
5767 entry->procname = kstrdup(buf, GFP_KERNEL);
5768 entry->mode = 0555;
5769 entry->child = sd_alloc_ctl_domain_table(sd);
5770 entry++;
5771 i++;
5772 }
5773 return table;
5774 }
5775
5776 static struct ctl_table_header *sd_sysctl_header;
5777 static void register_sched_domain_sysctl(void)
5778 {
5779 int i, cpu_num = num_online_cpus();
5780 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5781 char buf[32];
5782
5783 WARN_ON(sd_ctl_dir[0].child);
5784 sd_ctl_dir[0].child = entry;
5785
5786 if (entry == NULL)
5787 return;
5788
5789 for_each_online_cpu(i) {
5790 snprintf(buf, 32, "cpu%d", i);
5791 entry->procname = kstrdup(buf, GFP_KERNEL);
5792 entry->mode = 0555;
5793 entry->child = sd_alloc_ctl_cpu_table(i);
5794 entry++;
5795 }
5796
5797 WARN_ON(sd_sysctl_header);
5798 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5799 }
5800
5801 /* may be called multiple times per register */
5802 static void unregister_sched_domain_sysctl(void)
5803 {
5804 if (sd_sysctl_header)
5805 unregister_sysctl_table(sd_sysctl_header);
5806 sd_sysctl_header = NULL;
5807 if (sd_ctl_dir[0].child)
5808 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5809 }
5810 #else
5811 static void register_sched_domain_sysctl(void)
5812 {
5813 }
5814 static void unregister_sched_domain_sysctl(void)
5815 {
5816 }
5817 #endif
5818
5819 /*
5820 * migration_call - callback that gets triggered when a CPU is added.
5821 * Here we can start up the necessary migration thread for the new CPU.
5822 */
5823 static int __cpuinit
5824 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5825 {
5826 struct task_struct *p;
5827 int cpu = (long)hcpu;
5828 unsigned long flags;
5829 struct rq *rq;
5830
5831 switch (action) {
5832
5833 case CPU_UP_PREPARE:
5834 case CPU_UP_PREPARE_FROZEN:
5835 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
5836 if (IS_ERR(p))
5837 return NOTIFY_BAD;
5838 kthread_bind(p, cpu);
5839 /* Must be high prio: stop_machine expects to yield to it. */
5840 rq = task_rq_lock(p, &flags);
5841 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5842 task_rq_unlock(rq, &flags);
5843 cpu_rq(cpu)->migration_thread = p;
5844 break;
5845
5846 case CPU_ONLINE:
5847 case CPU_ONLINE_FROZEN:
5848 /* Strictly unnecessary, as first user will wake it. */
5849 wake_up_process(cpu_rq(cpu)->migration_thread);
5850
5851 /* Update our root-domain */
5852 rq = cpu_rq(cpu);
5853 spin_lock_irqsave(&rq->lock, flags);
5854 if (rq->rd) {
5855 BUG_ON(!cpu_isset(cpu, rq->rd->span));
5856 cpu_set(cpu, rq->rd->online);
5857 }
5858 spin_unlock_irqrestore(&rq->lock, flags);
5859 break;
5860
5861 #ifdef CONFIG_HOTPLUG_CPU
5862 case CPU_UP_CANCELED:
5863 case CPU_UP_CANCELED_FROZEN:
5864 if (!cpu_rq(cpu)->migration_thread)
5865 break;
5866 /* Unbind it from offline cpu so it can run. Fall thru. */
5867 kthread_bind(cpu_rq(cpu)->migration_thread,
5868 any_online_cpu(cpu_online_map));
5869 kthread_stop(cpu_rq(cpu)->migration_thread);
5870 cpu_rq(cpu)->migration_thread = NULL;
5871 break;
5872
5873 case CPU_DEAD:
5874 case CPU_DEAD_FROZEN:
5875 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
5876 migrate_live_tasks(cpu);
5877 rq = cpu_rq(cpu);
5878 kthread_stop(rq->migration_thread);
5879 rq->migration_thread = NULL;
5880 /* Idle task back to normal (off runqueue, low prio) */
5881 spin_lock_irq(&rq->lock);
5882 update_rq_clock(rq);
5883 deactivate_task(rq, rq->idle, 0);
5884 rq->idle->static_prio = MAX_PRIO;
5885 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5886 rq->idle->sched_class = &idle_sched_class;
5887 migrate_dead_tasks(cpu);
5888 spin_unlock_irq(&rq->lock);
5889 cpuset_unlock();
5890 migrate_nr_uninterruptible(rq);
5891 BUG_ON(rq->nr_running != 0);
5892
5893 /*
5894 * No need to migrate the tasks: it was best-effort if
5895 * they didn't take sched_hotcpu_mutex. Just wake up
5896 * the requestors.
5897 */
5898 spin_lock_irq(&rq->lock);
5899 while (!list_empty(&rq->migration_queue)) {
5900 struct migration_req *req;
5901
5902 req = list_entry(rq->migration_queue.next,
5903 struct migration_req, list);
5904 list_del_init(&req->list);
5905 complete(&req->done);
5906 }
5907 spin_unlock_irq(&rq->lock);
5908 break;
5909
5910 case CPU_DOWN_PREPARE:
5911 /* Update our root-domain */
5912 rq = cpu_rq(cpu);
5913 spin_lock_irqsave(&rq->lock, flags);
5914 if (rq->rd) {
5915 BUG_ON(!cpu_isset(cpu, rq->rd->span));
5916 cpu_clear(cpu, rq->rd->online);
5917 }
5918 spin_unlock_irqrestore(&rq->lock, flags);
5919 break;
5920 #endif
5921 }
5922 return NOTIFY_OK;
5923 }
5924
5925 /* Register at highest priority so that task migration (migrate_all_tasks)
5926 * happens before everything else.
5927 */
5928 static struct notifier_block __cpuinitdata migration_notifier = {
5929 .notifier_call = migration_call,
5930 .priority = 10
5931 };
5932
5933 void __init migration_init(void)
5934 {
5935 void *cpu = (void *)(long)smp_processor_id();
5936 int err;
5937
5938 /* Start one for the boot CPU: */
5939 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5940 BUG_ON(err == NOTIFY_BAD);
5941 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5942 register_cpu_notifier(&migration_notifier);
5943 }
5944 #endif
5945
5946 #ifdef CONFIG_SMP
5947
5948 /* Number of possible processor ids */
5949 int nr_cpu_ids __read_mostly = NR_CPUS;
5950 EXPORT_SYMBOL(nr_cpu_ids);
5951
5952 #ifdef CONFIG_SCHED_DEBUG
5953
5954 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
5955 {
5956 struct sched_group *group = sd->groups;
5957 cpumask_t groupmask;
5958 char str[NR_CPUS];
5959
5960 cpumask_scnprintf(str, NR_CPUS, sd->span);
5961 cpus_clear(groupmask);
5962
5963 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5964
5965 if (!(sd->flags & SD_LOAD_BALANCE)) {
5966 printk("does not load-balance\n");
5967 if (sd->parent)
5968 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5969 " has parent");
5970 return -1;
5971 }
5972
5973 printk(KERN_CONT "span %s\n", str);
5974
5975 if (!cpu_isset(cpu, sd->span)) {
5976 printk(KERN_ERR "ERROR: domain->span does not contain "
5977 "CPU%d\n", cpu);
5978 }
5979 if (!cpu_isset(cpu, group->cpumask)) {
5980 printk(KERN_ERR "ERROR: domain->groups does not contain"
5981 " CPU%d\n", cpu);
5982 }
5983
5984 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5985 do {
5986 if (!group) {
5987 printk("\n");
5988 printk(KERN_ERR "ERROR: group is NULL\n");
5989 break;
5990 }
5991
5992 if (!group->__cpu_power) {
5993 printk(KERN_CONT "\n");
5994 printk(KERN_ERR "ERROR: domain->cpu_power not "
5995 "set\n");
5996 break;
5997 }
5998
5999 if (!cpus_weight(group->cpumask)) {
6000 printk(KERN_CONT "\n");
6001 printk(KERN_ERR "ERROR: empty group\n");
6002 break;
6003 }
6004
6005 if (cpus_intersects(groupmask, group->cpumask)) {
6006 printk(KERN_CONT "\n");
6007 printk(KERN_ERR "ERROR: repeated CPUs\n");
6008 break;
6009 }
6010
6011 cpus_or(groupmask, groupmask, group->cpumask);
6012
6013 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
6014 printk(KERN_CONT " %s", str);
6015
6016 group = group->next;
6017 } while (group != sd->groups);
6018 printk(KERN_CONT "\n");
6019
6020 if (!cpus_equal(sd->span, groupmask))
6021 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6022
6023 if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
6024 printk(KERN_ERR "ERROR: parent span is not a superset "
6025 "of domain->span\n");
6026 return 0;
6027 }
6028
6029 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6030 {
6031 int level = 0;
6032
6033 if (!sd) {
6034 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6035 return;
6036 }
6037
6038 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6039
6040 for (;;) {
6041 if (sched_domain_debug_one(sd, cpu, level))
6042 break;
6043 level++;
6044 sd = sd->parent;
6045 if (!sd)
6046 break;
6047 }
6048 }
6049 #else
6050 # define sched_domain_debug(sd, cpu) do { } while (0)
6051 #endif
6052
6053 static int sd_degenerate(struct sched_domain *sd)
6054 {
6055 if (cpus_weight(sd->span) == 1)
6056 return 1;
6057
6058 /* Following flags need at least 2 groups */
6059 if (sd->flags & (SD_LOAD_BALANCE |
6060 SD_BALANCE_NEWIDLE |
6061 SD_BALANCE_FORK |
6062 SD_BALANCE_EXEC |
6063 SD_SHARE_CPUPOWER |
6064 SD_SHARE_PKG_RESOURCES)) {
6065 if (sd->groups != sd->groups->next)
6066 return 0;
6067 }
6068
6069 /* Following flags don't use groups */
6070 if (sd->flags & (SD_WAKE_IDLE |
6071 SD_WAKE_AFFINE |
6072 SD_WAKE_BALANCE))
6073 return 0;
6074
6075 return 1;
6076 }
6077
6078 static int
6079 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6080 {
6081 unsigned long cflags = sd->flags, pflags = parent->flags;
6082
6083 if (sd_degenerate(parent))
6084 return 1;
6085
6086 if (!cpus_equal(sd->span, parent->span))
6087 return 0;
6088
6089 /* Does parent contain flags not in child? */
6090 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6091 if (cflags & SD_WAKE_AFFINE)
6092 pflags &= ~SD_WAKE_BALANCE;
6093 /* Flags needing groups don't count if only 1 group in parent */
6094 if (parent->groups == parent->groups->next) {
6095 pflags &= ~(SD_LOAD_BALANCE |
6096 SD_BALANCE_NEWIDLE |
6097 SD_BALANCE_FORK |
6098 SD_BALANCE_EXEC |
6099 SD_SHARE_CPUPOWER |
6100 SD_SHARE_PKG_RESOURCES);
6101 }
6102 if (~cflags & pflags)
6103 return 0;
6104
6105 return 1;
6106 }
6107
6108 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6109 {
6110 unsigned long flags;
6111 const struct sched_class *class;
6112
6113 spin_lock_irqsave(&rq->lock, flags);
6114
6115 if (rq->rd) {
6116 struct root_domain *old_rd = rq->rd;
6117
6118 for (class = sched_class_highest; class; class = class->next) {
6119 if (class->leave_domain)
6120 class->leave_domain(rq);
6121 }
6122
6123 cpu_clear(rq->cpu, old_rd->span);
6124 cpu_clear(rq->cpu, old_rd->online);
6125
6126 if (atomic_dec_and_test(&old_rd->refcount))
6127 kfree(old_rd);
6128 }
6129
6130 atomic_inc(&rd->refcount);
6131 rq->rd = rd;
6132
6133 cpu_set(rq->cpu, rd->span);
6134 if (cpu_isset(rq->cpu, cpu_online_map))
6135 cpu_set(rq->cpu, rd->online);
6136
6137 for (class = sched_class_highest; class; class = class->next) {
6138 if (class->join_domain)
6139 class->join_domain(rq);
6140 }
6141
6142 spin_unlock_irqrestore(&rq->lock, flags);
6143 }
6144
6145 static void init_rootdomain(struct root_domain *rd)
6146 {
6147 memset(rd, 0, sizeof(*rd));
6148
6149 cpus_clear(rd->span);
6150 cpus_clear(rd->online);
6151 }
6152
6153 static void init_defrootdomain(void)
6154 {
6155 init_rootdomain(&def_root_domain);
6156 atomic_set(&def_root_domain.refcount, 1);
6157 }
6158
6159 static struct root_domain *alloc_rootdomain(void)
6160 {
6161 struct root_domain *rd;
6162
6163 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6164 if (!rd)
6165 return NULL;
6166
6167 init_rootdomain(rd);
6168
6169 return rd;
6170 }
6171
6172 /*
6173 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6174 * hold the hotplug lock.
6175 */
6176 static void
6177 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6178 {
6179 struct rq *rq = cpu_rq(cpu);
6180 struct sched_domain *tmp;
6181
6182 /* Remove the sched domains which do not contribute to scheduling. */
6183 for (tmp = sd; tmp; tmp = tmp->parent) {
6184 struct sched_domain *parent = tmp->parent;
6185 if (!parent)
6186 break;
6187 if (sd_parent_degenerate(tmp, parent)) {
6188 tmp->parent = parent->parent;
6189 if (parent->parent)
6190 parent->parent->child = tmp;
6191 }
6192 }
6193
6194 if (sd && sd_degenerate(sd)) {
6195 sd = sd->parent;
6196 if (sd)
6197 sd->child = NULL;
6198 }
6199
6200 sched_domain_debug(sd, cpu);
6201
6202 rq_attach_root(rq, rd);
6203 rcu_assign_pointer(rq->sd, sd);
6204 }
6205
6206 /* cpus with isolated domains */
6207 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
6208
6209 /* Setup the mask of cpus configured for isolated domains */
6210 static int __init isolated_cpu_setup(char *str)
6211 {
6212 int ints[NR_CPUS], i;
6213
6214 str = get_options(str, ARRAY_SIZE(ints), ints);
6215 cpus_clear(cpu_isolated_map);
6216 for (i = 1; i <= ints[0]; i++)
6217 if (ints[i] < NR_CPUS)
6218 cpu_set(ints[i], cpu_isolated_map);
6219 return 1;
6220 }
6221
6222 __setup("isolcpus=", isolated_cpu_setup);
6223
6224 /*
6225 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6226 * to a function which identifies what group(along with sched group) a CPU
6227 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6228 * (due to the fact that we keep track of groups covered with a cpumask_t).
6229 *
6230 * init_sched_build_groups will build a circular linked list of the groups
6231 * covered by the given span, and will set each group's ->cpumask correctly,
6232 * and ->cpu_power to 0.
6233 */
6234 static void
6235 init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
6236 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6237 struct sched_group **sg))
6238 {
6239 struct sched_group *first = NULL, *last = NULL;
6240 cpumask_t covered = CPU_MASK_NONE;
6241 int i;
6242
6243 for_each_cpu_mask(i, span) {
6244 struct sched_group *sg;
6245 int group = group_fn(i, cpu_map, &sg);
6246 int j;
6247
6248 if (cpu_isset(i, covered))
6249 continue;
6250
6251 sg->cpumask = CPU_MASK_NONE;
6252 sg->__cpu_power = 0;
6253
6254 for_each_cpu_mask(j, span) {
6255 if (group_fn(j, cpu_map, NULL) != group)
6256 continue;
6257
6258 cpu_set(j, covered);
6259 cpu_set(j, sg->cpumask);
6260 }
6261 if (!first)
6262 first = sg;
6263 if (last)
6264 last->next = sg;
6265 last = sg;
6266 }
6267 last->next = first;
6268 }
6269
6270 #define SD_NODES_PER_DOMAIN 16
6271
6272 #ifdef CONFIG_NUMA
6273
6274 /**
6275 * find_next_best_node - find the next node to include in a sched_domain
6276 * @node: node whose sched_domain we're building
6277 * @used_nodes: nodes already in the sched_domain
6278 *
6279 * Find the next node to include in a given scheduling domain. Simply
6280 * finds the closest node not already in the @used_nodes map.
6281 *
6282 * Should use nodemask_t.
6283 */
6284 static int find_next_best_node(int node, unsigned long *used_nodes)
6285 {
6286 int i, n, val, min_val, best_node = 0;
6287
6288 min_val = INT_MAX;
6289
6290 for (i = 0; i < MAX_NUMNODES; i++) {
6291 /* Start at @node */
6292 n = (node + i) % MAX_NUMNODES;
6293
6294 if (!nr_cpus_node(n))
6295 continue;
6296
6297 /* Skip already used nodes */
6298 if (test_bit(n, used_nodes))
6299 continue;
6300
6301 /* Simple min distance search */
6302 val = node_distance(node, n);
6303
6304 if (val < min_val) {
6305 min_val = val;
6306 best_node = n;
6307 }
6308 }
6309
6310 set_bit(best_node, used_nodes);
6311 return best_node;
6312 }
6313
6314 /**
6315 * sched_domain_node_span - get a cpumask for a node's sched_domain
6316 * @node: node whose cpumask we're constructing
6317 * @size: number of nodes to include in this span
6318 *
6319 * Given a node, construct a good cpumask for its sched_domain to span. It
6320 * should be one that prevents unnecessary balancing, but also spreads tasks
6321 * out optimally.
6322 */
6323 static cpumask_t sched_domain_node_span(int node)
6324 {
6325 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
6326 cpumask_t span, nodemask;
6327 int i;
6328
6329 cpus_clear(span);
6330 bitmap_zero(used_nodes, MAX_NUMNODES);
6331
6332 nodemask = node_to_cpumask(node);
6333 cpus_or(span, span, nodemask);
6334 set_bit(node, used_nodes);
6335
6336 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6337 int next_node = find_next_best_node(node, used_nodes);
6338
6339 nodemask = node_to_cpumask(next_node);
6340 cpus_or(span, span, nodemask);
6341 }
6342
6343 return span;
6344 }
6345 #endif
6346
6347 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6348
6349 /*
6350 * SMT sched-domains:
6351 */
6352 #ifdef CONFIG_SCHED_SMT
6353 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6354 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6355
6356 static int
6357 cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6358 {
6359 if (sg)
6360 *sg = &per_cpu(sched_group_cpus, cpu);
6361 return cpu;
6362 }
6363 #endif
6364
6365 /*
6366 * multi-core sched-domains:
6367 */
6368 #ifdef CONFIG_SCHED_MC
6369 static DEFINE_PER_CPU(struct sched_domain, core_domains);
6370 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6371 #endif
6372
6373 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6374 static int
6375 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6376 {
6377 int group;
6378 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6379 cpus_and(mask, mask, *cpu_map);
6380 group = first_cpu(mask);
6381 if (sg)
6382 *sg = &per_cpu(sched_group_core, group);
6383 return group;
6384 }
6385 #elif defined(CONFIG_SCHED_MC)
6386 static int
6387 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6388 {
6389 if (sg)
6390 *sg = &per_cpu(sched_group_core, cpu);
6391 return cpu;
6392 }
6393 #endif
6394
6395 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6396 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6397
6398 static int
6399 cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6400 {
6401 int group;
6402 #ifdef CONFIG_SCHED_MC
6403 cpumask_t mask = cpu_coregroup_map(cpu);
6404 cpus_and(mask, mask, *cpu_map);
6405 group = first_cpu(mask);
6406 #elif defined(CONFIG_SCHED_SMT)
6407 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6408 cpus_and(mask, mask, *cpu_map);
6409 group = first_cpu(mask);
6410 #else
6411 group = cpu;
6412 #endif
6413 if (sg)
6414 *sg = &per_cpu(sched_group_phys, group);
6415 return group;
6416 }
6417
6418 #ifdef CONFIG_NUMA
6419 /*
6420 * The init_sched_build_groups can't handle what we want to do with node
6421 * groups, so roll our own. Now each node has its own list of groups which
6422 * gets dynamically allocated.
6423 */
6424 static DEFINE_PER_CPU(struct sched_domain, node_domains);
6425 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
6426
6427 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6428 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6429
6430 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6431 struct sched_group **sg)
6432 {
6433 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
6434 int group;
6435
6436 cpus_and(nodemask, nodemask, *cpu_map);
6437 group = first_cpu(nodemask);
6438
6439 if (sg)
6440 *sg = &per_cpu(sched_group_allnodes, group);
6441 return group;
6442 }
6443
6444 static void init_numa_sched_groups_power(struct sched_group *group_head)
6445 {
6446 struct sched_group *sg = group_head;
6447 int j;
6448
6449 if (!sg)
6450 return;
6451 do {
6452 for_each_cpu_mask(j, sg->cpumask) {
6453 struct sched_domain *sd;
6454
6455 sd = &per_cpu(phys_domains, j);
6456 if (j != first_cpu(sd->groups->cpumask)) {
6457 /*
6458 * Only add "power" once for each
6459 * physical package.
6460 */
6461 continue;
6462 }
6463
6464 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6465 }
6466 sg = sg->next;
6467 } while (sg != group_head);
6468 }
6469 #endif
6470
6471 #ifdef CONFIG_NUMA
6472 /* Free memory allocated for various sched_group structures */
6473 static void free_sched_groups(const cpumask_t *cpu_map)
6474 {
6475 int cpu, i;
6476
6477 for_each_cpu_mask(cpu, *cpu_map) {
6478 struct sched_group **sched_group_nodes
6479 = sched_group_nodes_bycpu[cpu];
6480
6481 if (!sched_group_nodes)
6482 continue;
6483
6484 for (i = 0; i < MAX_NUMNODES; i++) {
6485 cpumask_t nodemask = node_to_cpumask(i);
6486 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6487
6488 cpus_and(nodemask, nodemask, *cpu_map);
6489 if (cpus_empty(nodemask))
6490 continue;
6491
6492 if (sg == NULL)
6493 continue;
6494 sg = sg->next;
6495 next_sg:
6496 oldsg = sg;
6497 sg = sg->next;
6498 kfree(oldsg);
6499 if (oldsg != sched_group_nodes[i])
6500 goto next_sg;
6501 }
6502 kfree(sched_group_nodes);
6503 sched_group_nodes_bycpu[cpu] = NULL;
6504 }
6505 }
6506 #else
6507 static void free_sched_groups(const cpumask_t *cpu_map)
6508 {
6509 }
6510 #endif
6511
6512 /*
6513 * Initialize sched groups cpu_power.
6514 *
6515 * cpu_power indicates the capacity of sched group, which is used while
6516 * distributing the load between different sched groups in a sched domain.
6517 * Typically cpu_power for all the groups in a sched domain will be same unless
6518 * there are asymmetries in the topology. If there are asymmetries, group
6519 * having more cpu_power will pickup more load compared to the group having
6520 * less cpu_power.
6521 *
6522 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6523 * the maximum number of tasks a group can handle in the presence of other idle
6524 * or lightly loaded groups in the same sched domain.
6525 */
6526 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6527 {
6528 struct sched_domain *child;
6529 struct sched_group *group;
6530
6531 WARN_ON(!sd || !sd->groups);
6532
6533 if (cpu != first_cpu(sd->groups->cpumask))
6534 return;
6535
6536 child = sd->child;
6537
6538 sd->groups->__cpu_power = 0;
6539
6540 /*
6541 * For perf policy, if the groups in child domain share resources
6542 * (for example cores sharing some portions of the cache hierarchy
6543 * or SMT), then set this domain groups cpu_power such that each group
6544 * can handle only one task, when there are other idle groups in the
6545 * same sched domain.
6546 */
6547 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6548 (child->flags &
6549 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6550 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6551 return;
6552 }
6553
6554 /*
6555 * add cpu_power of each child group to this groups cpu_power
6556 */
6557 group = child->groups;
6558 do {
6559 sg_inc_cpu_power(sd->groups, group->__cpu_power);
6560 group = group->next;
6561 } while (group != child->groups);
6562 }
6563
6564 /*
6565 * Build sched domains for a given set of cpus and attach the sched domains
6566 * to the individual cpus
6567 */
6568 static int build_sched_domains(const cpumask_t *cpu_map)
6569 {
6570 int i;
6571 struct root_domain *rd;
6572 #ifdef CONFIG_NUMA
6573 struct sched_group **sched_group_nodes = NULL;
6574 int sd_allnodes = 0;
6575
6576 /*
6577 * Allocate the per-node list of sched groups
6578 */
6579 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
6580 GFP_KERNEL);
6581 if (!sched_group_nodes) {
6582 printk(KERN_WARNING "Can not alloc sched group node list\n");
6583 return -ENOMEM;
6584 }
6585 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6586 #endif
6587
6588 rd = alloc_rootdomain();
6589 if (!rd) {
6590 printk(KERN_WARNING "Cannot alloc root domain\n");
6591 return -ENOMEM;
6592 }
6593
6594 /*
6595 * Set up domains for cpus specified by the cpu_map.
6596 */
6597 for_each_cpu_mask(i, *cpu_map) {
6598 struct sched_domain *sd = NULL, *p;
6599 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6600
6601 cpus_and(nodemask, nodemask, *cpu_map);
6602
6603 #ifdef CONFIG_NUMA
6604 if (cpus_weight(*cpu_map) >
6605 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6606 sd = &per_cpu(allnodes_domains, i);
6607 *sd = SD_ALLNODES_INIT;
6608 sd->span = *cpu_map;
6609 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6610 p = sd;
6611 sd_allnodes = 1;
6612 } else
6613 p = NULL;
6614
6615 sd = &per_cpu(node_domains, i);
6616 *sd = SD_NODE_INIT;
6617 sd->span = sched_domain_node_span(cpu_to_node(i));
6618 sd->parent = p;
6619 if (p)
6620 p->child = sd;
6621 cpus_and(sd->span, sd->span, *cpu_map);
6622 #endif
6623
6624 p = sd;
6625 sd = &per_cpu(phys_domains, i);
6626 *sd = SD_CPU_INIT;
6627 sd->span = nodemask;
6628 sd->parent = p;
6629 if (p)
6630 p->child = sd;
6631 cpu_to_phys_group(i, cpu_map, &sd->groups);
6632
6633 #ifdef CONFIG_SCHED_MC
6634 p = sd;
6635 sd = &per_cpu(core_domains, i);
6636 *sd = SD_MC_INIT;
6637 sd->span = cpu_coregroup_map(i);
6638 cpus_and(sd->span, sd->span, *cpu_map);
6639 sd->parent = p;
6640 p->child = sd;
6641 cpu_to_core_group(i, cpu_map, &sd->groups);
6642 #endif
6643
6644 #ifdef CONFIG_SCHED_SMT
6645 p = sd;
6646 sd = &per_cpu(cpu_domains, i);
6647 *sd = SD_SIBLING_INIT;
6648 sd->span = per_cpu(cpu_sibling_map, i);
6649 cpus_and(sd->span, sd->span, *cpu_map);
6650 sd->parent = p;
6651 p->child = sd;
6652 cpu_to_cpu_group(i, cpu_map, &sd->groups);
6653 #endif
6654 }
6655
6656 #ifdef CONFIG_SCHED_SMT
6657 /* Set up CPU (sibling) groups */
6658 for_each_cpu_mask(i, *cpu_map) {
6659 cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
6660 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
6661 if (i != first_cpu(this_sibling_map))
6662 continue;
6663
6664 init_sched_build_groups(this_sibling_map, cpu_map,
6665 &cpu_to_cpu_group);
6666 }
6667 #endif
6668
6669 #ifdef CONFIG_SCHED_MC
6670 /* Set up multi-core groups */
6671 for_each_cpu_mask(i, *cpu_map) {
6672 cpumask_t this_core_map = cpu_coregroup_map(i);
6673 cpus_and(this_core_map, this_core_map, *cpu_map);
6674 if (i != first_cpu(this_core_map))
6675 continue;
6676 init_sched_build_groups(this_core_map, cpu_map,
6677 &cpu_to_core_group);
6678 }
6679 #endif
6680
6681 /* Set up physical groups */
6682 for (i = 0; i < MAX_NUMNODES; i++) {
6683 cpumask_t nodemask = node_to_cpumask(i);
6684
6685 cpus_and(nodemask, nodemask, *cpu_map);
6686 if (cpus_empty(nodemask))
6687 continue;
6688
6689 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
6690 }
6691
6692 #ifdef CONFIG_NUMA
6693 /* Set up node groups */
6694 if (sd_allnodes)
6695 init_sched_build_groups(*cpu_map, cpu_map,
6696 &cpu_to_allnodes_group);
6697
6698 for (i = 0; i < MAX_NUMNODES; i++) {
6699 /* Set up node groups */
6700 struct sched_group *sg, *prev;
6701 cpumask_t nodemask = node_to_cpumask(i);
6702 cpumask_t domainspan;
6703 cpumask_t covered = CPU_MASK_NONE;
6704 int j;
6705
6706 cpus_and(nodemask, nodemask, *cpu_map);
6707 if (cpus_empty(nodemask)) {
6708 sched_group_nodes[i] = NULL;
6709 continue;
6710 }
6711
6712 domainspan = sched_domain_node_span(i);
6713 cpus_and(domainspan, domainspan, *cpu_map);
6714
6715 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6716 if (!sg) {
6717 printk(KERN_WARNING "Can not alloc domain group for "
6718 "node %d\n", i);
6719 goto error;
6720 }
6721 sched_group_nodes[i] = sg;
6722 for_each_cpu_mask(j, nodemask) {
6723 struct sched_domain *sd;
6724
6725 sd = &per_cpu(node_domains, j);
6726 sd->groups = sg;
6727 }
6728 sg->__cpu_power = 0;
6729 sg->cpumask = nodemask;
6730 sg->next = sg;
6731 cpus_or(covered, covered, nodemask);
6732 prev = sg;
6733
6734 for (j = 0; j < MAX_NUMNODES; j++) {
6735 cpumask_t tmp, notcovered;
6736 int n = (i + j) % MAX_NUMNODES;
6737
6738 cpus_complement(notcovered, covered);
6739 cpus_and(tmp, notcovered, *cpu_map);
6740 cpus_and(tmp, tmp, domainspan);
6741 if (cpus_empty(tmp))
6742 break;
6743
6744 nodemask = node_to_cpumask(n);
6745 cpus_and(tmp, tmp, nodemask);
6746 if (cpus_empty(tmp))
6747 continue;
6748
6749 sg = kmalloc_node(sizeof(struct sched_group),
6750 GFP_KERNEL, i);
6751 if (!sg) {
6752 printk(KERN_WARNING
6753 "Can not alloc domain group for node %d\n", j);
6754 goto error;
6755 }
6756 sg->__cpu_power = 0;
6757 sg->cpumask = tmp;
6758 sg->next = prev->next;
6759 cpus_or(covered, covered, tmp);
6760 prev->next = sg;
6761 prev = sg;
6762 }
6763 }
6764 #endif
6765
6766 /* Calculate CPU power for physical packages and nodes */
6767 #ifdef CONFIG_SCHED_SMT
6768 for_each_cpu_mask(i, *cpu_map) {
6769 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6770
6771 init_sched_groups_power(i, sd);
6772 }
6773 #endif
6774 #ifdef CONFIG_SCHED_MC
6775 for_each_cpu_mask(i, *cpu_map) {
6776 struct sched_domain *sd = &per_cpu(core_domains, i);
6777
6778 init_sched_groups_power(i, sd);
6779 }
6780 #endif
6781
6782 for_each_cpu_mask(i, *cpu_map) {
6783 struct sched_domain *sd = &per_cpu(phys_domains, i);
6784
6785 init_sched_groups_power(i, sd);
6786 }
6787
6788 #ifdef CONFIG_NUMA
6789 for (i = 0; i < MAX_NUMNODES; i++)
6790 init_numa_sched_groups_power(sched_group_nodes[i]);
6791
6792 if (sd_allnodes) {
6793 struct sched_group *sg;
6794
6795 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6796 init_numa_sched_groups_power(sg);
6797 }
6798 #endif
6799
6800 /* Attach the domains */
6801 for_each_cpu_mask(i, *cpu_map) {
6802 struct sched_domain *sd;
6803 #ifdef CONFIG_SCHED_SMT
6804 sd = &per_cpu(cpu_domains, i);
6805 #elif defined(CONFIG_SCHED_MC)
6806 sd = &per_cpu(core_domains, i);
6807 #else
6808 sd = &per_cpu(phys_domains, i);
6809 #endif
6810 cpu_attach_domain(sd, rd, i);
6811 }
6812
6813 return 0;
6814
6815 #ifdef CONFIG_NUMA
6816 error:
6817 free_sched_groups(cpu_map);
6818 return -ENOMEM;
6819 #endif
6820 }
6821
6822 static cpumask_t *doms_cur; /* current sched domains */
6823 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6824
6825 /*
6826 * Special case: If a kmalloc of a doms_cur partition (array of
6827 * cpumask_t) fails, then fallback to a single sched domain,
6828 * as determined by the single cpumask_t fallback_doms.
6829 */
6830 static cpumask_t fallback_doms;
6831
6832 /*
6833 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6834 * For now this just excludes isolated cpus, but could be used to
6835 * exclude other special cases in the future.
6836 */
6837 static int arch_init_sched_domains(const cpumask_t *cpu_map)
6838 {
6839 int err;
6840
6841 ndoms_cur = 1;
6842 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6843 if (!doms_cur)
6844 doms_cur = &fallback_doms;
6845 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
6846 err = build_sched_domains(doms_cur);
6847 register_sched_domain_sysctl();
6848
6849 return err;
6850 }
6851
6852 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
6853 {
6854 free_sched_groups(cpu_map);
6855 }
6856
6857 /*
6858 * Detach sched domains from a group of cpus specified in cpu_map
6859 * These cpus will now be attached to the NULL domain
6860 */
6861 static void detach_destroy_domains(const cpumask_t *cpu_map)
6862 {
6863 int i;
6864
6865 unregister_sched_domain_sysctl();
6866
6867 for_each_cpu_mask(i, *cpu_map)
6868 cpu_attach_domain(NULL, &def_root_domain, i);
6869 synchronize_sched();
6870 arch_destroy_sched_domains(cpu_map);
6871 }
6872
6873 /*
6874 * Partition sched domains as specified by the 'ndoms_new'
6875 * cpumasks in the array doms_new[] of cpumasks. This compares
6876 * doms_new[] to the current sched domain partitioning, doms_cur[].
6877 * It destroys each deleted domain and builds each new domain.
6878 *
6879 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
6880 * The masks don't intersect (don't overlap.) We should setup one
6881 * sched domain for each mask. CPUs not in any of the cpumasks will
6882 * not be load balanced. If the same cpumask appears both in the
6883 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6884 * it as it is.
6885 *
6886 * The passed in 'doms_new' should be kmalloc'd. This routine takes
6887 * ownership of it and will kfree it when done with it. If the caller
6888 * failed the kmalloc call, then it can pass in doms_new == NULL,
6889 * and partition_sched_domains() will fallback to the single partition
6890 * 'fallback_doms'.
6891 *
6892 * Call with hotplug lock held
6893 */
6894 void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
6895 {
6896 int i, j;
6897
6898 lock_doms_cur();
6899
6900 /* always unregister in case we don't destroy any domains */
6901 unregister_sched_domain_sysctl();
6902
6903 if (doms_new == NULL) {
6904 ndoms_new = 1;
6905 doms_new = &fallback_doms;
6906 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
6907 }
6908
6909 /* Destroy deleted domains */
6910 for (i = 0; i < ndoms_cur; i++) {
6911 for (j = 0; j < ndoms_new; j++) {
6912 if (cpus_equal(doms_cur[i], doms_new[j]))
6913 goto match1;
6914 }
6915 /* no match - a current sched domain not in new doms_new[] */
6916 detach_destroy_domains(doms_cur + i);
6917 match1:
6918 ;
6919 }
6920
6921 /* Build new domains */
6922 for (i = 0; i < ndoms_new; i++) {
6923 for (j = 0; j < ndoms_cur; j++) {
6924 if (cpus_equal(doms_new[i], doms_cur[j]))
6925 goto match2;
6926 }
6927 /* no match - add a new doms_new */
6928 build_sched_domains(doms_new + i);
6929 match2:
6930 ;
6931 }
6932
6933 /* Remember the new sched domains */
6934 if (doms_cur != &fallback_doms)
6935 kfree(doms_cur);
6936 doms_cur = doms_new;
6937 ndoms_cur = ndoms_new;
6938
6939 register_sched_domain_sysctl();
6940
6941 unlock_doms_cur();
6942 }
6943
6944 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6945 static int arch_reinit_sched_domains(void)
6946 {
6947 int err;
6948
6949 get_online_cpus();
6950 detach_destroy_domains(&cpu_online_map);
6951 err = arch_init_sched_domains(&cpu_online_map);
6952 put_online_cpus();
6953
6954 return err;
6955 }
6956
6957 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6958 {
6959 int ret;
6960
6961 if (buf[0] != '0' && buf[0] != '1')
6962 return -EINVAL;
6963
6964 if (smt)
6965 sched_smt_power_savings = (buf[0] == '1');
6966 else
6967 sched_mc_power_savings = (buf[0] == '1');
6968
6969 ret = arch_reinit_sched_domains();
6970
6971 return ret ? ret : count;
6972 }
6973
6974 #ifdef CONFIG_SCHED_MC
6975 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6976 {
6977 return sprintf(page, "%u\n", sched_mc_power_savings);
6978 }
6979 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6980 const char *buf, size_t count)
6981 {
6982 return sched_power_savings_store(buf, count, 0);
6983 }
6984 static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6985 sched_mc_power_savings_store);
6986 #endif
6987
6988 #ifdef CONFIG_SCHED_SMT
6989 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6990 {
6991 return sprintf(page, "%u\n", sched_smt_power_savings);
6992 }
6993 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6994 const char *buf, size_t count)
6995 {
6996 return sched_power_savings_store(buf, count, 1);
6997 }
6998 static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6999 sched_smt_power_savings_store);
7000 #endif
7001
7002 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7003 {
7004 int err = 0;
7005
7006 #ifdef CONFIG_SCHED_SMT
7007 if (smt_capable())
7008 err = sysfs_create_file(&cls->kset.kobj,
7009 &attr_sched_smt_power_savings.attr);
7010 #endif
7011 #ifdef CONFIG_SCHED_MC
7012 if (!err && mc_capable())
7013 err = sysfs_create_file(&cls->kset.kobj,
7014 &attr_sched_mc_power_savings.attr);
7015 #endif
7016 return err;
7017 }
7018 #endif
7019
7020 /*
7021 * Force a reinitialization of the sched domains hierarchy. The domains
7022 * and groups cannot be updated in place without racing with the balancing
7023 * code, so we temporarily attach all running cpus to the NULL domain
7024 * which will prevent rebalancing while the sched domains are recalculated.
7025 */
7026 static int update_sched_domains(struct notifier_block *nfb,
7027 unsigned long action, void *hcpu)
7028 {
7029 switch (action) {
7030 case CPU_UP_PREPARE:
7031 case CPU_UP_PREPARE_FROZEN:
7032 case CPU_DOWN_PREPARE:
7033 case CPU_DOWN_PREPARE_FROZEN:
7034 detach_destroy_domains(&cpu_online_map);
7035 return NOTIFY_OK;
7036
7037 case CPU_UP_CANCELED:
7038 case CPU_UP_CANCELED_FROZEN:
7039 case CPU_DOWN_FAILED:
7040 case CPU_DOWN_FAILED_FROZEN:
7041 case CPU_ONLINE:
7042 case CPU_ONLINE_FROZEN:
7043 case CPU_DEAD:
7044 case CPU_DEAD_FROZEN:
7045 /*
7046 * Fall through and re-initialise the domains.
7047 */
7048 break;
7049 default:
7050 return NOTIFY_DONE;
7051 }
7052
7053 /* The hotplug lock is already held by cpu_up/cpu_down */
7054 arch_init_sched_domains(&cpu_online_map);
7055
7056 return NOTIFY_OK;
7057 }
7058
7059 void __init sched_init_smp(void)
7060 {
7061 cpumask_t non_isolated_cpus;
7062
7063 get_online_cpus();
7064 arch_init_sched_domains(&cpu_online_map);
7065 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7066 if (cpus_empty(non_isolated_cpus))
7067 cpu_set(smp_processor_id(), non_isolated_cpus);
7068 put_online_cpus();
7069 /* XXX: Theoretical race here - CPU may be hotplugged now */
7070 hotcpu_notifier(update_sched_domains, 0);
7071
7072 /* Move init over to a non-isolated CPU */
7073 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
7074 BUG();
7075 sched_init_granularity();
7076
7077 #ifdef CONFIG_FAIR_GROUP_SCHED
7078 if (nr_cpu_ids == 1)
7079 return;
7080
7081 lb_monitor_task = kthread_create(load_balance_monitor, NULL,
7082 "group_balance");
7083 if (!IS_ERR(lb_monitor_task)) {
7084 lb_monitor_task->flags |= PF_NOFREEZE;
7085 wake_up_process(lb_monitor_task);
7086 } else {
7087 printk(KERN_ERR "Could not create load balance monitor thread"
7088 "(error = %ld) \n", PTR_ERR(lb_monitor_task));
7089 }
7090 #endif
7091 }
7092 #else
7093 void __init sched_init_smp(void)
7094 {
7095 sched_init_granularity();
7096 }
7097 #endif /* CONFIG_SMP */
7098
7099 int in_sched_functions(unsigned long addr)
7100 {
7101 return in_lock_functions(addr) ||
7102 (addr >= (unsigned long)__sched_text_start
7103 && addr < (unsigned long)__sched_text_end);
7104 }
7105
7106 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
7107 {
7108 cfs_rq->tasks_timeline = RB_ROOT;
7109 #ifdef CONFIG_FAIR_GROUP_SCHED
7110 cfs_rq->rq = rq;
7111 #endif
7112 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7113 }
7114
7115 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7116 {
7117 struct rt_prio_array *array;
7118 int i;
7119
7120 array = &rt_rq->active;
7121 for (i = 0; i < MAX_RT_PRIO; i++) {
7122 INIT_LIST_HEAD(array->queue + i);
7123 __clear_bit(i, array->bitmap);
7124 }
7125 /* delimiter for bitsearch: */
7126 __set_bit(MAX_RT_PRIO, array->bitmap);
7127
7128 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7129 rt_rq->highest_prio = MAX_RT_PRIO;
7130 #endif
7131 #ifdef CONFIG_SMP
7132 rt_rq->rt_nr_migratory = 0;
7133 rt_rq->overloaded = 0;
7134 #endif
7135
7136 rt_rq->rt_time = 0;
7137 rt_rq->rt_throttled = 0;
7138
7139 #ifdef CONFIG_RT_GROUP_SCHED
7140 rt_rq->rt_nr_boosted = 0;
7141 rt_rq->rq = rq;
7142 #endif
7143 }
7144
7145 #ifdef CONFIG_FAIR_GROUP_SCHED
7146 static void init_tg_cfs_entry(struct rq *rq, struct task_group *tg,
7147 struct cfs_rq *cfs_rq, struct sched_entity *se,
7148 int cpu, int add)
7149 {
7150 tg->cfs_rq[cpu] = cfs_rq;
7151 init_cfs_rq(cfs_rq, rq);
7152 cfs_rq->tg = tg;
7153 if (add)
7154 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7155
7156 tg->se[cpu] = se;
7157 se->cfs_rq = &rq->cfs;
7158 se->my_q = cfs_rq;
7159 se->load.weight = tg->shares;
7160 se->load.inv_weight = div64_64(1ULL<<32, se->load.weight);
7161 se->parent = NULL;
7162 }
7163 #endif
7164
7165 #ifdef CONFIG_RT_GROUP_SCHED
7166 static void init_tg_rt_entry(struct rq *rq, struct task_group *tg,
7167 struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
7168 int cpu, int add)
7169 {
7170 tg->rt_rq[cpu] = rt_rq;
7171 init_rt_rq(rt_rq, rq);
7172 rt_rq->tg = tg;
7173 rt_rq->rt_se = rt_se;
7174 if (add)
7175 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7176
7177 tg->rt_se[cpu] = rt_se;
7178 rt_se->rt_rq = &rq->rt;
7179 rt_se->my_q = rt_rq;
7180 rt_se->parent = NULL;
7181 INIT_LIST_HEAD(&rt_se->run_list);
7182 }
7183 #endif
7184
7185 void __init sched_init(void)
7186 {
7187 int highest_cpu = 0;
7188 int i, j;
7189
7190 #ifdef CONFIG_SMP
7191 init_defrootdomain();
7192 #endif
7193
7194 #ifdef CONFIG_GROUP_SCHED
7195 list_add(&init_task_group.list, &task_groups);
7196 #endif
7197
7198 for_each_possible_cpu(i) {
7199 struct rq *rq;
7200
7201 rq = cpu_rq(i);
7202 spin_lock_init(&rq->lock);
7203 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7204 rq->nr_running = 0;
7205 rq->clock = 1;
7206 init_cfs_rq(&rq->cfs, rq);
7207 init_rt_rq(&rq->rt, rq);
7208 #ifdef CONFIG_FAIR_GROUP_SCHED
7209 init_task_group.shares = init_task_group_load;
7210 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7211 init_tg_cfs_entry(rq, &init_task_group,
7212 &per_cpu(init_cfs_rq, i),
7213 &per_cpu(init_sched_entity, i), i, 1);
7214
7215 #endif
7216 #ifdef CONFIG_RT_GROUP_SCHED
7217 init_task_group.rt_runtime =
7218 sysctl_sched_rt_runtime * NSEC_PER_USEC;
7219 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7220 init_tg_rt_entry(rq, &init_task_group,
7221 &per_cpu(init_rt_rq, i),
7222 &per_cpu(init_sched_rt_entity, i), i, 1);
7223 #endif
7224 rq->rt_period_expire = 0;
7225 rq->rt_throttled = 0;
7226
7227 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7228 rq->cpu_load[j] = 0;
7229 #ifdef CONFIG_SMP
7230 rq->sd = NULL;
7231 rq->rd = NULL;
7232 rq->active_balance = 0;
7233 rq->next_balance = jiffies;
7234 rq->push_cpu = 0;
7235 rq->cpu = i;
7236 rq->migration_thread = NULL;
7237 INIT_LIST_HEAD(&rq->migration_queue);
7238 rq_attach_root(rq, &def_root_domain);
7239 #endif
7240 init_rq_hrtick(rq);
7241 atomic_set(&rq->nr_iowait, 0);
7242 highest_cpu = i;
7243 }
7244
7245 set_load_weight(&init_task);
7246
7247 #ifdef CONFIG_PREEMPT_NOTIFIERS
7248 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7249 #endif
7250
7251 #ifdef CONFIG_SMP
7252 nr_cpu_ids = highest_cpu + 1;
7253 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
7254 #endif
7255
7256 #ifdef CONFIG_RT_MUTEXES
7257 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
7258 #endif
7259
7260 /*
7261 * The boot idle thread does lazy MMU switching as well:
7262 */
7263 atomic_inc(&init_mm.mm_count);
7264 enter_lazy_tlb(&init_mm, current);
7265
7266 /*
7267 * Make us the idle thread. Technically, schedule() should not be
7268 * called from this thread, however somewhere below it might be,
7269 * but because we are the idle thread, we just pick up running again
7270 * when this runqueue becomes "idle".
7271 */
7272 init_idle(current, smp_processor_id());
7273 /*
7274 * During early bootup we pretend to be a normal task:
7275 */
7276 current->sched_class = &fair_sched_class;
7277 }
7278
7279 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7280 void __might_sleep(char *file, int line)
7281 {
7282 #ifdef in_atomic
7283 static unsigned long prev_jiffy; /* ratelimiting */
7284
7285 if ((in_atomic() || irqs_disabled()) &&
7286 system_state == SYSTEM_RUNNING && !oops_in_progress) {
7287 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7288 return;
7289 prev_jiffy = jiffies;
7290 printk(KERN_ERR "BUG: sleeping function called from invalid"
7291 " context at %s:%d\n", file, line);
7292 printk("in_atomic():%d, irqs_disabled():%d\n",
7293 in_atomic(), irqs_disabled());
7294 debug_show_held_locks(current);
7295 if (irqs_disabled())
7296 print_irqtrace_events(current);
7297 dump_stack();
7298 }
7299 #endif
7300 }
7301 EXPORT_SYMBOL(__might_sleep);
7302 #endif
7303
7304 #ifdef CONFIG_MAGIC_SYSRQ
7305 static void normalize_task(struct rq *rq, struct task_struct *p)
7306 {
7307 int on_rq;
7308 update_rq_clock(rq);
7309 on_rq = p->se.on_rq;
7310 if (on_rq)
7311 deactivate_task(rq, p, 0);
7312 __setscheduler(rq, p, SCHED_NORMAL, 0);
7313 if (on_rq) {
7314 activate_task(rq, p, 0);
7315 resched_task(rq->curr);
7316 }
7317 }
7318
7319 void normalize_rt_tasks(void)
7320 {
7321 struct task_struct *g, *p;
7322 unsigned long flags;
7323 struct rq *rq;
7324
7325 read_lock_irqsave(&tasklist_lock, flags);
7326 do_each_thread(g, p) {
7327 /*
7328 * Only normalize user tasks:
7329 */
7330 if (!p->mm)
7331 continue;
7332
7333 p->se.exec_start = 0;
7334 #ifdef CONFIG_SCHEDSTATS
7335 p->se.wait_start = 0;
7336 p->se.sleep_start = 0;
7337 p->se.block_start = 0;
7338 #endif
7339 task_rq(p)->clock = 0;
7340
7341 if (!rt_task(p)) {
7342 /*
7343 * Renice negative nice level userspace
7344 * tasks back to 0:
7345 */
7346 if (TASK_NICE(p) < 0 && p->mm)
7347 set_user_nice(p, 0);
7348 continue;
7349 }
7350
7351 spin_lock(&p->pi_lock);
7352 rq = __task_rq_lock(p);
7353
7354 normalize_task(rq, p);
7355
7356 __task_rq_unlock(rq);
7357 spin_unlock(&p->pi_lock);
7358 } while_each_thread(g, p);
7359
7360 read_unlock_irqrestore(&tasklist_lock, flags);
7361 }
7362
7363 #endif /* CONFIG_MAGIC_SYSRQ */
7364
7365 #ifdef CONFIG_IA64
7366 /*
7367 * These functions are only useful for the IA64 MCA handling.
7368 *
7369 * They can only be called when the whole system has been
7370 * stopped - every CPU needs to be quiescent, and no scheduling
7371 * activity can take place. Using them for anything else would
7372 * be a serious bug, and as a result, they aren't even visible
7373 * under any other configuration.
7374 */
7375
7376 /**
7377 * curr_task - return the current task for a given cpu.
7378 * @cpu: the processor in question.
7379 *
7380 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7381 */
7382 struct task_struct *curr_task(int cpu)
7383 {
7384 return cpu_curr(cpu);
7385 }
7386
7387 /**
7388 * set_curr_task - set the current task for a given cpu.
7389 * @cpu: the processor in question.
7390 * @p: the task pointer to set.
7391 *
7392 * Description: This function must only be used when non-maskable interrupts
7393 * are serviced on a separate stack. It allows the architecture to switch the
7394 * notion of the current task on a cpu in a non-blocking manner. This function
7395 * must be called with all CPU's synchronized, and interrupts disabled, the
7396 * and caller must save the original value of the current task (see
7397 * curr_task() above) and restore that value before reenabling interrupts and
7398 * re-starting the system.
7399 *
7400 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7401 */
7402 void set_curr_task(int cpu, struct task_struct *p)
7403 {
7404 cpu_curr(cpu) = p;
7405 }
7406
7407 #endif
7408
7409 #ifdef CONFIG_GROUP_SCHED
7410
7411 #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
7412 /*
7413 * distribute shares of all task groups among their schedulable entities,
7414 * to reflect load distribution across cpus.
7415 */
7416 static int rebalance_shares(struct sched_domain *sd, int this_cpu)
7417 {
7418 struct cfs_rq *cfs_rq;
7419 struct rq *rq = cpu_rq(this_cpu);
7420 cpumask_t sdspan = sd->span;
7421 int balanced = 1;
7422
7423 /* Walk thr' all the task groups that we have */
7424 for_each_leaf_cfs_rq(rq, cfs_rq) {
7425 int i;
7426 unsigned long total_load = 0, total_shares;
7427 struct task_group *tg = cfs_rq->tg;
7428
7429 /* Gather total task load of this group across cpus */
7430 for_each_cpu_mask(i, sdspan)
7431 total_load += tg->cfs_rq[i]->load.weight;
7432
7433 /* Nothing to do if this group has no load */
7434 if (!total_load)
7435 continue;
7436
7437 /*
7438 * tg->shares represents the number of cpu shares the task group
7439 * is eligible to hold on a single cpu. On N cpus, it is
7440 * eligible to hold (N * tg->shares) number of cpu shares.
7441 */
7442 total_shares = tg->shares * cpus_weight(sdspan);
7443
7444 /*
7445 * redistribute total_shares across cpus as per the task load
7446 * distribution.
7447 */
7448 for_each_cpu_mask(i, sdspan) {
7449 unsigned long local_load, local_shares;
7450
7451 local_load = tg->cfs_rq[i]->load.weight;
7452 local_shares = (local_load * total_shares) / total_load;
7453 if (!local_shares)
7454 local_shares = MIN_GROUP_SHARES;
7455 if (local_shares == tg->se[i]->load.weight)
7456 continue;
7457
7458 spin_lock_irq(&cpu_rq(i)->lock);
7459 set_se_shares(tg->se[i], local_shares);
7460 spin_unlock_irq(&cpu_rq(i)->lock);
7461 balanced = 0;
7462 }
7463 }
7464
7465 return balanced;
7466 }
7467
7468 /*
7469 * How frequently should we rebalance_shares() across cpus?
7470 *
7471 * The more frequently we rebalance shares, the more accurate is the fairness
7472 * of cpu bandwidth distribution between task groups. However higher frequency
7473 * also implies increased scheduling overhead.
7474 *
7475 * sysctl_sched_min_bal_int_shares represents the minimum interval between
7476 * consecutive calls to rebalance_shares() in the same sched domain.
7477 *
7478 * sysctl_sched_max_bal_int_shares represents the maximum interval between
7479 * consecutive calls to rebalance_shares() in the same sched domain.
7480 *
7481 * These settings allows for the appropriate trade-off between accuracy of
7482 * fairness and the associated overhead.
7483 *
7484 */
7485
7486 /* default: 8ms, units: milliseconds */
7487 const_debug unsigned int sysctl_sched_min_bal_int_shares = 8;
7488
7489 /* default: 128ms, units: milliseconds */
7490 const_debug unsigned int sysctl_sched_max_bal_int_shares = 128;
7491
7492 /* kernel thread that runs rebalance_shares() periodically */
7493 static int load_balance_monitor(void *unused)
7494 {
7495 unsigned int timeout = sysctl_sched_min_bal_int_shares;
7496 struct sched_param schedparm;
7497 int ret;
7498
7499 /*
7500 * We don't want this thread's execution to be limited by the shares
7501 * assigned to default group (init_task_group). Hence make it run
7502 * as a SCHED_RR RT task at the lowest priority.
7503 */
7504 schedparm.sched_priority = 1;
7505 ret = sched_setscheduler(current, SCHED_RR, &schedparm);
7506 if (ret)
7507 printk(KERN_ERR "Couldn't set SCHED_RR policy for load balance"
7508 " monitor thread (error = %d) \n", ret);
7509
7510 while (!kthread_should_stop()) {
7511 int i, cpu, balanced = 1;
7512
7513 /* Prevent cpus going down or coming up */
7514 get_online_cpus();
7515 /* lockout changes to doms_cur[] array */
7516 lock_doms_cur();
7517 /*
7518 * Enter a rcu read-side critical section to safely walk rq->sd
7519 * chain on various cpus and to walk task group list
7520 * (rq->leaf_cfs_rq_list) in rebalance_shares().
7521 */
7522 rcu_read_lock();
7523
7524 for (i = 0; i < ndoms_cur; i++) {
7525 cpumask_t cpumap = doms_cur[i];
7526 struct sched_domain *sd = NULL, *sd_prev = NULL;
7527
7528 cpu = first_cpu(cpumap);
7529
7530 /* Find the highest domain at which to balance shares */
7531 for_each_domain(cpu, sd) {
7532 if (!(sd->flags & SD_LOAD_BALANCE))
7533 continue;
7534 sd_prev = sd;
7535 }
7536
7537 sd = sd_prev;
7538 /* sd == NULL? No load balance reqd in this domain */
7539 if (!sd)
7540 continue;
7541
7542 balanced &= rebalance_shares(sd, cpu);
7543 }
7544
7545 rcu_read_unlock();
7546
7547 unlock_doms_cur();
7548 put_online_cpus();
7549
7550 if (!balanced)
7551 timeout = sysctl_sched_min_bal_int_shares;
7552 else if (timeout < sysctl_sched_max_bal_int_shares)
7553 timeout *= 2;
7554
7555 msleep_interruptible(timeout);
7556 }
7557
7558 return 0;
7559 }
7560 #endif /* CONFIG_SMP */
7561
7562 static void free_sched_group(struct task_group *tg)
7563 {
7564 int i;
7565
7566 for_each_possible_cpu(i) {
7567 #ifdef CONFIG_FAIR_GROUP_SCHED
7568 if (tg->cfs_rq)
7569 kfree(tg->cfs_rq[i]);
7570 if (tg->se)
7571 kfree(tg->se[i]);
7572 #endif
7573 #ifdef CONFIG_RT_GROUP_SCHED
7574 if (tg->rt_rq)
7575 kfree(tg->rt_rq[i]);
7576 if (tg->rt_se)
7577 kfree(tg->rt_se[i]);
7578 #endif
7579 }
7580
7581 #ifdef CONFIG_FAIR_GROUP_SCHED
7582 kfree(tg->cfs_rq);
7583 kfree(tg->se);
7584 #endif
7585 #ifdef CONFIG_RT_GROUP_SCHED
7586 kfree(tg->rt_rq);
7587 kfree(tg->rt_se);
7588 #endif
7589 kfree(tg);
7590 }
7591
7592 /* allocate runqueue etc for a new task group */
7593 struct task_group *sched_create_group(void)
7594 {
7595 struct task_group *tg;
7596 #ifdef CONFIG_FAIR_GROUP_SCHED
7597 struct cfs_rq *cfs_rq;
7598 struct sched_entity *se;
7599 #endif
7600 #ifdef CONFIG_RT_GROUP_SCHED
7601 struct rt_rq *rt_rq;
7602 struct sched_rt_entity *rt_se;
7603 #endif
7604 struct rq *rq;
7605 unsigned long flags;
7606 int i;
7607
7608 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7609 if (!tg)
7610 return ERR_PTR(-ENOMEM);
7611
7612 #ifdef CONFIG_FAIR_GROUP_SCHED
7613 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
7614 if (!tg->cfs_rq)
7615 goto err;
7616 tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
7617 if (!tg->se)
7618 goto err;
7619
7620 tg->shares = NICE_0_LOAD;
7621 #endif
7622
7623 #ifdef CONFIG_RT_GROUP_SCHED
7624 tg->rt_rq = kzalloc(sizeof(rt_rq) * NR_CPUS, GFP_KERNEL);
7625 if (!tg->rt_rq)
7626 goto err;
7627 tg->rt_se = kzalloc(sizeof(rt_se) * NR_CPUS, GFP_KERNEL);
7628 if (!tg->rt_se)
7629 goto err;
7630
7631 tg->rt_runtime = 0;
7632 #endif
7633
7634 for_each_possible_cpu(i) {
7635 rq = cpu_rq(i);
7636
7637 #ifdef CONFIG_FAIR_GROUP_SCHED
7638 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
7639 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
7640 if (!cfs_rq)
7641 goto err;
7642
7643 se = kmalloc_node(sizeof(struct sched_entity),
7644 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
7645 if (!se)
7646 goto err;
7647
7648 init_tg_cfs_entry(rq, tg, cfs_rq, se, i, 0);
7649 #endif
7650
7651 #ifdef CONFIG_RT_GROUP_SCHED
7652 rt_rq = kmalloc_node(sizeof(struct rt_rq),
7653 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
7654 if (!rt_rq)
7655 goto err;
7656
7657 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
7658 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
7659 if (!rt_se)
7660 goto err;
7661
7662 init_tg_rt_entry(rq, tg, rt_rq, rt_se, i, 0);
7663 #endif
7664 }
7665
7666 spin_lock_irqsave(&task_group_lock, flags);
7667 for_each_possible_cpu(i) {
7668 rq = cpu_rq(i);
7669 #ifdef CONFIG_FAIR_GROUP_SCHED
7670 cfs_rq = tg->cfs_rq[i];
7671 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7672 #endif
7673 #ifdef CONFIG_RT_GROUP_SCHED
7674 rt_rq = tg->rt_rq[i];
7675 list_add_rcu(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7676 #endif
7677 }
7678 list_add_rcu(&tg->list, &task_groups);
7679 spin_unlock_irqrestore(&task_group_lock, flags);
7680
7681 return tg;
7682
7683 err:
7684 free_sched_group(tg);
7685 return ERR_PTR(-ENOMEM);
7686 }
7687
7688 /* rcu callback to free various structures associated with a task group */
7689 static void free_sched_group_rcu(struct rcu_head *rhp)
7690 {
7691 /* now it should be safe to free those cfs_rqs */
7692 free_sched_group(container_of(rhp, struct task_group, rcu));
7693 }
7694
7695 /* Destroy runqueue etc associated with a task group */
7696 void sched_destroy_group(struct task_group *tg)
7697 {
7698 unsigned long flags;
7699 int i;
7700
7701 spin_lock_irqsave(&task_group_lock, flags);
7702 for_each_possible_cpu(i) {
7703 #ifdef CONFIG_FAIR_GROUP_SCHED
7704 list_del_rcu(&tg->cfs_rq[i]->leaf_cfs_rq_list);
7705 #endif
7706 #ifdef CONFIG_RT_GROUP_SCHED
7707 list_del_rcu(&tg->rt_rq[i]->leaf_rt_rq_list);
7708 #endif
7709 }
7710 list_del_rcu(&tg->list);
7711 spin_unlock_irqrestore(&task_group_lock, flags);
7712
7713 /* wait for possible concurrent references to cfs_rqs complete */
7714 call_rcu(&tg->rcu, free_sched_group_rcu);
7715 }
7716
7717 /* change task's runqueue when it moves between groups.
7718 * The caller of this function should have put the task in its new group
7719 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7720 * reflect its new group.
7721 */
7722 void sched_move_task(struct task_struct *tsk)
7723 {
7724 int on_rq, running;
7725 unsigned long flags;
7726 struct rq *rq;
7727
7728 rq = task_rq_lock(tsk, &flags);
7729
7730 update_rq_clock(rq);
7731
7732 running = task_current(rq, tsk);
7733 on_rq = tsk->se.on_rq;
7734
7735 if (on_rq) {
7736 dequeue_task(rq, tsk, 0);
7737 if (unlikely(running))
7738 tsk->sched_class->put_prev_task(rq, tsk);
7739 }
7740
7741 set_task_rq(tsk, task_cpu(tsk));
7742
7743 if (on_rq) {
7744 if (unlikely(running))
7745 tsk->sched_class->set_curr_task(rq);
7746 enqueue_task(rq, tsk, 0);
7747 }
7748
7749 task_rq_unlock(rq, &flags);
7750 }
7751
7752 #ifdef CONFIG_FAIR_GROUP_SCHED
7753 /* rq->lock to be locked by caller */
7754 static void set_se_shares(struct sched_entity *se, unsigned long shares)
7755 {
7756 struct cfs_rq *cfs_rq = se->cfs_rq;
7757 struct rq *rq = cfs_rq->rq;
7758 int on_rq;
7759
7760 if (!shares)
7761 shares = MIN_GROUP_SHARES;
7762
7763 on_rq = se->on_rq;
7764 if (on_rq) {
7765 dequeue_entity(cfs_rq, se, 0);
7766 dec_cpu_load(rq, se->load.weight);
7767 }
7768
7769 se->load.weight = shares;
7770 se->load.inv_weight = div64_64((1ULL<<32), shares);
7771
7772 if (on_rq) {
7773 enqueue_entity(cfs_rq, se, 0);
7774 inc_cpu_load(rq, se->load.weight);
7775 }
7776 }
7777
7778 static DEFINE_MUTEX(shares_mutex);
7779
7780 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7781 {
7782 int i;
7783 struct cfs_rq *cfs_rq;
7784 struct rq *rq;
7785 unsigned long flags;
7786
7787 mutex_lock(&shares_mutex);
7788 if (tg->shares == shares)
7789 goto done;
7790
7791 if (shares < MIN_GROUP_SHARES)
7792 shares = MIN_GROUP_SHARES;
7793
7794 /*
7795 * Prevent any load balance activity (rebalance_shares,
7796 * load_balance_fair) from referring to this group first,
7797 * by taking it off the rq->leaf_cfs_rq_list on each cpu.
7798 */
7799 spin_lock_irqsave(&task_group_lock, flags);
7800 for_each_possible_cpu(i) {
7801 cfs_rq = tg->cfs_rq[i];
7802 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
7803 }
7804 spin_unlock_irqrestore(&task_group_lock, flags);
7805
7806 /* wait for any ongoing reference to this group to finish */
7807 synchronize_sched();
7808
7809 /*
7810 * Now we are free to modify the group's share on each cpu
7811 * w/o tripping rebalance_share or load_balance_fair.
7812 */
7813 tg->shares = shares;
7814 for_each_possible_cpu(i) {
7815 spin_lock_irq(&cpu_rq(i)->lock);
7816 set_se_shares(tg->se[i], shares);
7817 spin_unlock_irq(&cpu_rq(i)->lock);
7818 }
7819
7820 /*
7821 * Enable load balance activity on this group, by inserting it back on
7822 * each cpu's rq->leaf_cfs_rq_list.
7823 */
7824 spin_lock_irqsave(&task_group_lock, flags);
7825 for_each_possible_cpu(i) {
7826 rq = cpu_rq(i);
7827 cfs_rq = tg->cfs_rq[i];
7828 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7829 }
7830 spin_unlock_irqrestore(&task_group_lock, flags);
7831 done:
7832 mutex_unlock(&shares_mutex);
7833 return 0;
7834 }
7835
7836 unsigned long sched_group_shares(struct task_group *tg)
7837 {
7838 return tg->shares;
7839 }
7840 #endif
7841
7842 #ifdef CONFIG_RT_GROUP_SCHED
7843 /*
7844 * Ensure that the real time constraints are schedulable.
7845 */
7846 static DEFINE_MUTEX(rt_constraints_mutex);
7847
7848 static unsigned long to_ratio(u64 period, u64 runtime)
7849 {
7850 if (runtime == RUNTIME_INF)
7851 return 1ULL << 16;
7852
7853 runtime *= (1ULL << 16);
7854 div64_64(runtime, period);
7855 return runtime;
7856 }
7857
7858 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7859 {
7860 struct task_group *tgi;
7861 unsigned long total = 0;
7862 unsigned long global_ratio =
7863 to_ratio(sysctl_sched_rt_period,
7864 sysctl_sched_rt_runtime < 0 ?
7865 RUNTIME_INF : sysctl_sched_rt_runtime);
7866
7867 rcu_read_lock();
7868 list_for_each_entry_rcu(tgi, &task_groups, list) {
7869 if (tgi == tg)
7870 continue;
7871
7872 total += to_ratio(period, tgi->rt_runtime);
7873 }
7874 rcu_read_unlock();
7875
7876 return total + to_ratio(period, runtime) < global_ratio;
7877 }
7878
7879 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7880 {
7881 u64 rt_runtime, rt_period;
7882 int err = 0;
7883
7884 rt_period = sysctl_sched_rt_period * NSEC_PER_USEC;
7885 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7886 if (rt_runtime_us == -1)
7887 rt_runtime = rt_period;
7888
7889 mutex_lock(&rt_constraints_mutex);
7890 if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
7891 err = -EINVAL;
7892 goto unlock;
7893 }
7894 if (rt_runtime_us == -1)
7895 rt_runtime = RUNTIME_INF;
7896 tg->rt_runtime = rt_runtime;
7897 unlock:
7898 mutex_unlock(&rt_constraints_mutex);
7899
7900 return err;
7901 }
7902
7903 long sched_group_rt_runtime(struct task_group *tg)
7904 {
7905 u64 rt_runtime_us;
7906
7907 if (tg->rt_runtime == RUNTIME_INF)
7908 return -1;
7909
7910 rt_runtime_us = tg->rt_runtime;
7911 do_div(rt_runtime_us, NSEC_PER_USEC);
7912 return rt_runtime_us;
7913 }
7914 #endif
7915 #endif /* CONFIG_GROUP_SCHED */
7916
7917 #ifdef CONFIG_CGROUP_SCHED
7918
7919 /* return corresponding task_group object of a cgroup */
7920 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7921 {
7922 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7923 struct task_group, css);
7924 }
7925
7926 static struct cgroup_subsys_state *
7927 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
7928 {
7929 struct task_group *tg;
7930
7931 if (!cgrp->parent) {
7932 /* This is early initialization for the top cgroup */
7933 init_task_group.css.cgroup = cgrp;
7934 return &init_task_group.css;
7935 }
7936
7937 /* we support only 1-level deep hierarchical scheduler atm */
7938 if (cgrp->parent->parent)
7939 return ERR_PTR(-EINVAL);
7940
7941 tg = sched_create_group();
7942 if (IS_ERR(tg))
7943 return ERR_PTR(-ENOMEM);
7944
7945 /* Bind the cgroup to task_group object we just created */
7946 tg->css.cgroup = cgrp;
7947
7948 return &tg->css;
7949 }
7950
7951 static void
7952 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
7953 {
7954 struct task_group *tg = cgroup_tg(cgrp);
7955
7956 sched_destroy_group(tg);
7957 }
7958
7959 static int
7960 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7961 struct task_struct *tsk)
7962 {
7963 /* We don't support RT-tasks being in separate groups */
7964 if (tsk->sched_class != &fair_sched_class)
7965 return -EINVAL;
7966
7967 return 0;
7968 }
7969
7970 static void
7971 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7972 struct cgroup *old_cont, struct task_struct *tsk)
7973 {
7974 sched_move_task(tsk);
7975 }
7976
7977 #ifdef CONFIG_FAIR_GROUP_SCHED
7978 static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7979 u64 shareval)
7980 {
7981 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
7982 }
7983
7984 static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
7985 {
7986 struct task_group *tg = cgroup_tg(cgrp);
7987
7988 return (u64) tg->shares;
7989 }
7990 #endif
7991
7992 #ifdef CONFIG_RT_GROUP_SCHED
7993 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7994 struct file *file,
7995 const char __user *userbuf,
7996 size_t nbytes, loff_t *unused_ppos)
7997 {
7998 char buffer[64];
7999 int retval = 0;
8000 s64 val;
8001 char *end;
8002
8003 if (!nbytes)
8004 return -EINVAL;
8005 if (nbytes >= sizeof(buffer))
8006 return -E2BIG;
8007 if (copy_from_user(buffer, userbuf, nbytes))
8008 return -EFAULT;
8009
8010 buffer[nbytes] = 0; /* nul-terminate */
8011
8012 /* strip newline if necessary */
8013 if (nbytes && (buffer[nbytes-1] == '\n'))
8014 buffer[nbytes-1] = 0;
8015 val = simple_strtoll(buffer, &end, 0);
8016 if (*end)
8017 return -EINVAL;
8018
8019 /* Pass to subsystem */
8020 retval = sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
8021 if (!retval)
8022 retval = nbytes;
8023 return retval;
8024 }
8025
8026 static ssize_t cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft,
8027 struct file *file,
8028 char __user *buf, size_t nbytes,
8029 loff_t *ppos)
8030 {
8031 char tmp[64];
8032 long val = sched_group_rt_runtime(cgroup_tg(cgrp));
8033 int len = sprintf(tmp, "%ld\n", val);
8034
8035 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
8036 }
8037 #endif
8038
8039 static struct cftype cpu_files[] = {
8040 #ifdef CONFIG_FAIR_GROUP_SCHED
8041 {
8042 .name = "shares",
8043 .read_uint = cpu_shares_read_uint,
8044 .write_uint = cpu_shares_write_uint,
8045 },
8046 #endif
8047 #ifdef CONFIG_RT_GROUP_SCHED
8048 {
8049 .name = "rt_runtime_us",
8050 .read = cpu_rt_runtime_read,
8051 .write = cpu_rt_runtime_write,
8052 },
8053 #endif
8054 };
8055
8056 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8057 {
8058 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8059 }
8060
8061 struct cgroup_subsys cpu_cgroup_subsys = {
8062 .name = "cpu",
8063 .create = cpu_cgroup_create,
8064 .destroy = cpu_cgroup_destroy,
8065 .can_attach = cpu_cgroup_can_attach,
8066 .attach = cpu_cgroup_attach,
8067 .populate = cpu_cgroup_populate,
8068 .subsys_id = cpu_cgroup_subsys_id,
8069 .early_init = 1,
8070 };
8071
8072 #endif /* CONFIG_CGROUP_SCHED */
8073
8074 #ifdef CONFIG_CGROUP_CPUACCT
8075
8076 /*
8077 * CPU accounting code for task groups.
8078 *
8079 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8080 * (balbir@in.ibm.com).
8081 */
8082
8083 /* track cpu usage of a group of tasks */
8084 struct cpuacct {
8085 struct cgroup_subsys_state css;
8086 /* cpuusage holds pointer to a u64-type object on every cpu */
8087 u64 *cpuusage;
8088 };
8089
8090 struct cgroup_subsys cpuacct_subsys;
8091
8092 /* return cpu accounting group corresponding to this container */
8093 static inline struct cpuacct *cgroup_ca(struct cgroup *cont)
8094 {
8095 return container_of(cgroup_subsys_state(cont, cpuacct_subsys_id),
8096 struct cpuacct, css);
8097 }
8098
8099 /* return cpu accounting group to which this task belongs */
8100 static inline struct cpuacct *task_ca(struct task_struct *tsk)
8101 {
8102 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8103 struct cpuacct, css);
8104 }
8105
8106 /* create a new cpu accounting group */
8107 static struct cgroup_subsys_state *cpuacct_create(
8108 struct cgroup_subsys *ss, struct cgroup *cont)
8109 {
8110 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8111
8112 if (!ca)
8113 return ERR_PTR(-ENOMEM);
8114
8115 ca->cpuusage = alloc_percpu(u64);
8116 if (!ca->cpuusage) {
8117 kfree(ca);
8118 return ERR_PTR(-ENOMEM);
8119 }
8120
8121 return &ca->css;
8122 }
8123
8124 /* destroy an existing cpu accounting group */
8125 static void
8126 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
8127 {
8128 struct cpuacct *ca = cgroup_ca(cont);
8129
8130 free_percpu(ca->cpuusage);
8131 kfree(ca);
8132 }
8133
8134 /* return total cpu usage (in nanoseconds) of a group */
8135 static u64 cpuusage_read(struct cgroup *cont, struct cftype *cft)
8136 {
8137 struct cpuacct *ca = cgroup_ca(cont);
8138 u64 totalcpuusage = 0;
8139 int i;
8140
8141 for_each_possible_cpu(i) {
8142 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
8143
8144 /*
8145 * Take rq->lock to make 64-bit addition safe on 32-bit
8146 * platforms.
8147 */
8148 spin_lock_irq(&cpu_rq(i)->lock);
8149 totalcpuusage += *cpuusage;
8150 spin_unlock_irq(&cpu_rq(i)->lock);
8151 }
8152
8153 return totalcpuusage;
8154 }
8155
8156 static struct cftype files[] = {
8157 {
8158 .name = "usage",
8159 .read_uint = cpuusage_read,
8160 },
8161 };
8162
8163 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8164 {
8165 return cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
8166 }
8167
8168 /*
8169 * charge this task's execution time to its accounting group.
8170 *
8171 * called with rq->lock held.
8172 */
8173 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8174 {
8175 struct cpuacct *ca;
8176
8177 if (!cpuacct_subsys.active)
8178 return;
8179
8180 ca = task_ca(tsk);
8181 if (ca) {
8182 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
8183
8184 *cpuusage += cputime;
8185 }
8186 }
8187
8188 struct cgroup_subsys cpuacct_subsys = {
8189 .name = "cpuacct",
8190 .create = cpuacct_create,
8191 .destroy = cpuacct_destroy,
8192 .populate = cpuacct_populate,
8193 .subsys_id = cpuacct_subsys_id,
8194 };
8195 #endif /* CONFIG_CGROUP_CPUACCT */
This page took 0.20789 seconds and 5 git commands to generate.