68ed6f4f3c1398e0ef36c3719989afc06e0adeae
[deliverable/linux.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/kthread.h>
59 #include <linux/proc_fs.h>
60 #include <linux/seq_file.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
74
75 #include <asm/tlb.h>
76 #include <asm/irq_regs.h>
77
78 #include "sched_cpupri.h"
79
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/sched.h>
82
83 /*
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
87 */
88 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
91
92 /*
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
96 */
97 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
100
101 /*
102 * Helpers for converting nanosecond timing to jiffy resolution
103 */
104 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
105
106 #define NICE_0_LOAD SCHED_LOAD_SCALE
107 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
108
109 /*
110 * These are the 'tuning knobs' of the scheduler:
111 *
112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
113 * Timeslices get refilled after they expire.
114 */
115 #define DEF_TIMESLICE (100 * HZ / 1000)
116
117 /*
118 * single value that denotes runtime == period, ie unlimited time.
119 */
120 #define RUNTIME_INF ((u64)~0ULL)
121
122 static inline int rt_policy(int policy)
123 {
124 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
125 return 1;
126 return 0;
127 }
128
129 static inline int task_has_rt_policy(struct task_struct *p)
130 {
131 return rt_policy(p->policy);
132 }
133
134 /*
135 * This is the priority-queue data structure of the RT scheduling class:
136 */
137 struct rt_prio_array {
138 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
139 struct list_head queue[MAX_RT_PRIO];
140 };
141
142 struct rt_bandwidth {
143 /* nests inside the rq lock: */
144 raw_spinlock_t rt_runtime_lock;
145 ktime_t rt_period;
146 u64 rt_runtime;
147 struct hrtimer rt_period_timer;
148 };
149
150 static struct rt_bandwidth def_rt_bandwidth;
151
152 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
153
154 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
155 {
156 struct rt_bandwidth *rt_b =
157 container_of(timer, struct rt_bandwidth, rt_period_timer);
158 ktime_t now;
159 int overrun;
160 int idle = 0;
161
162 for (;;) {
163 now = hrtimer_cb_get_time(timer);
164 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
165
166 if (!overrun)
167 break;
168
169 idle = do_sched_rt_period_timer(rt_b, overrun);
170 }
171
172 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
173 }
174
175 static
176 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
177 {
178 rt_b->rt_period = ns_to_ktime(period);
179 rt_b->rt_runtime = runtime;
180
181 raw_spin_lock_init(&rt_b->rt_runtime_lock);
182
183 hrtimer_init(&rt_b->rt_period_timer,
184 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
185 rt_b->rt_period_timer.function = sched_rt_period_timer;
186 }
187
188 static inline int rt_bandwidth_enabled(void)
189 {
190 return sysctl_sched_rt_runtime >= 0;
191 }
192
193 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
194 {
195 ktime_t now;
196
197 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
198 return;
199
200 if (hrtimer_active(&rt_b->rt_period_timer))
201 return;
202
203 raw_spin_lock(&rt_b->rt_runtime_lock);
204 for (;;) {
205 unsigned long delta;
206 ktime_t soft, hard;
207
208 if (hrtimer_active(&rt_b->rt_period_timer))
209 break;
210
211 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
212 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
213
214 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
215 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
216 delta = ktime_to_ns(ktime_sub(hard, soft));
217 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
218 HRTIMER_MODE_ABS_PINNED, 0);
219 }
220 raw_spin_unlock(&rt_b->rt_runtime_lock);
221 }
222
223 #ifdef CONFIG_RT_GROUP_SCHED
224 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
225 {
226 hrtimer_cancel(&rt_b->rt_period_timer);
227 }
228 #endif
229
230 /*
231 * sched_domains_mutex serializes calls to arch_init_sched_domains,
232 * detach_destroy_domains and partition_sched_domains.
233 */
234 static DEFINE_MUTEX(sched_domains_mutex);
235
236 #ifdef CONFIG_CGROUP_SCHED
237
238 #include <linux/cgroup.h>
239
240 struct cfs_rq;
241
242 static LIST_HEAD(task_groups);
243
244 /* task group related information */
245 struct task_group {
246 struct cgroup_subsys_state css;
247
248 #ifdef CONFIG_FAIR_GROUP_SCHED
249 /* schedulable entities of this group on each cpu */
250 struct sched_entity **se;
251 /* runqueue "owned" by this group on each cpu */
252 struct cfs_rq **cfs_rq;
253 unsigned long shares;
254 #endif
255
256 #ifdef CONFIG_RT_GROUP_SCHED
257 struct sched_rt_entity **rt_se;
258 struct rt_rq **rt_rq;
259
260 struct rt_bandwidth rt_bandwidth;
261 #endif
262
263 struct rcu_head rcu;
264 struct list_head list;
265
266 struct task_group *parent;
267 struct list_head siblings;
268 struct list_head children;
269 };
270
271 #define root_task_group init_task_group
272
273 /* task_group_lock serializes add/remove of task groups and also changes to
274 * a task group's cpu shares.
275 */
276 static DEFINE_SPINLOCK(task_group_lock);
277
278 #ifdef CONFIG_FAIR_GROUP_SCHED
279
280 #ifdef CONFIG_SMP
281 static int root_task_group_empty(void)
282 {
283 return list_empty(&root_task_group.children);
284 }
285 #endif
286
287 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
288
289 /*
290 * A weight of 0 or 1 can cause arithmetics problems.
291 * A weight of a cfs_rq is the sum of weights of which entities
292 * are queued on this cfs_rq, so a weight of a entity should not be
293 * too large, so as the shares value of a task group.
294 * (The default weight is 1024 - so there's no practical
295 * limitation from this.)
296 */
297 #define MIN_SHARES 2
298 #define MAX_SHARES (1UL << 18)
299
300 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
301 #endif
302
303 /* Default task group.
304 * Every task in system belong to this group at bootup.
305 */
306 struct task_group init_task_group;
307
308 /* return group to which a task belongs */
309 static inline struct task_group *task_group(struct task_struct *p)
310 {
311 struct task_group *tg;
312
313 #ifdef CONFIG_CGROUP_SCHED
314 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
315 struct task_group, css);
316 #else
317 tg = &init_task_group;
318 #endif
319 return tg;
320 }
321
322 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
323 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
324 {
325 #ifdef CONFIG_FAIR_GROUP_SCHED
326 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
327 p->se.parent = task_group(p)->se[cpu];
328 #endif
329
330 #ifdef CONFIG_RT_GROUP_SCHED
331 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
332 p->rt.parent = task_group(p)->rt_se[cpu];
333 #endif
334 }
335
336 #else
337
338 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
339 static inline struct task_group *task_group(struct task_struct *p)
340 {
341 return NULL;
342 }
343
344 #endif /* CONFIG_CGROUP_SCHED */
345
346 /* CFS-related fields in a runqueue */
347 struct cfs_rq {
348 struct load_weight load;
349 unsigned long nr_running;
350
351 u64 exec_clock;
352 u64 min_vruntime;
353
354 struct rb_root tasks_timeline;
355 struct rb_node *rb_leftmost;
356
357 struct list_head tasks;
358 struct list_head *balance_iterator;
359
360 /*
361 * 'curr' points to currently running entity on this cfs_rq.
362 * It is set to NULL otherwise (i.e when none are currently running).
363 */
364 struct sched_entity *curr, *next, *last;
365
366 unsigned int nr_spread_over;
367
368 #ifdef CONFIG_FAIR_GROUP_SCHED
369 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
370
371 /*
372 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
373 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
374 * (like users, containers etc.)
375 *
376 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
377 * list is used during load balance.
378 */
379 struct list_head leaf_cfs_rq_list;
380 struct task_group *tg; /* group that "owns" this runqueue */
381
382 #ifdef CONFIG_SMP
383 /*
384 * the part of load.weight contributed by tasks
385 */
386 unsigned long task_weight;
387
388 /*
389 * h_load = weight * f(tg)
390 *
391 * Where f(tg) is the recursive weight fraction assigned to
392 * this group.
393 */
394 unsigned long h_load;
395
396 /*
397 * this cpu's part of tg->shares
398 */
399 unsigned long shares;
400
401 /*
402 * load.weight at the time we set shares
403 */
404 unsigned long rq_weight;
405 #endif
406 #endif
407 };
408
409 /* Real-Time classes' related field in a runqueue: */
410 struct rt_rq {
411 struct rt_prio_array active;
412 unsigned long rt_nr_running;
413 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
414 struct {
415 int curr; /* highest queued rt task prio */
416 #ifdef CONFIG_SMP
417 int next; /* next highest */
418 #endif
419 } highest_prio;
420 #endif
421 #ifdef CONFIG_SMP
422 unsigned long rt_nr_migratory;
423 unsigned long rt_nr_total;
424 int overloaded;
425 struct plist_head pushable_tasks;
426 #endif
427 int rt_throttled;
428 u64 rt_time;
429 u64 rt_runtime;
430 /* Nests inside the rq lock: */
431 raw_spinlock_t rt_runtime_lock;
432
433 #ifdef CONFIG_RT_GROUP_SCHED
434 unsigned long rt_nr_boosted;
435
436 struct rq *rq;
437 struct list_head leaf_rt_rq_list;
438 struct task_group *tg;
439 #endif
440 };
441
442 #ifdef CONFIG_SMP
443
444 /*
445 * We add the notion of a root-domain which will be used to define per-domain
446 * variables. Each exclusive cpuset essentially defines an island domain by
447 * fully partitioning the member cpus from any other cpuset. Whenever a new
448 * exclusive cpuset is created, we also create and attach a new root-domain
449 * object.
450 *
451 */
452 struct root_domain {
453 atomic_t refcount;
454 cpumask_var_t span;
455 cpumask_var_t online;
456
457 /*
458 * The "RT overload" flag: it gets set if a CPU has more than
459 * one runnable RT task.
460 */
461 cpumask_var_t rto_mask;
462 atomic_t rto_count;
463 #ifdef CONFIG_SMP
464 struct cpupri cpupri;
465 #endif
466 };
467
468 /*
469 * By default the system creates a single root-domain with all cpus as
470 * members (mimicking the global state we have today).
471 */
472 static struct root_domain def_root_domain;
473
474 #endif
475
476 /*
477 * This is the main, per-CPU runqueue data structure.
478 *
479 * Locking rule: those places that want to lock multiple runqueues
480 * (such as the load balancing or the thread migration code), lock
481 * acquire operations must be ordered by ascending &runqueue.
482 */
483 struct rq {
484 /* runqueue lock: */
485 raw_spinlock_t lock;
486
487 /*
488 * nr_running and cpu_load should be in the same cacheline because
489 * remote CPUs use both these fields when doing load calculation.
490 */
491 unsigned long nr_running;
492 #define CPU_LOAD_IDX_MAX 5
493 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
494 #ifdef CONFIG_NO_HZ
495 u64 nohz_stamp;
496 unsigned char in_nohz_recently;
497 #endif
498 /* capture load from *all* tasks on this cpu: */
499 struct load_weight load;
500 unsigned long nr_load_updates;
501 u64 nr_switches;
502
503 struct cfs_rq cfs;
504 struct rt_rq rt;
505
506 #ifdef CONFIG_FAIR_GROUP_SCHED
507 /* list of leaf cfs_rq on this cpu: */
508 struct list_head leaf_cfs_rq_list;
509 #endif
510 #ifdef CONFIG_RT_GROUP_SCHED
511 struct list_head leaf_rt_rq_list;
512 #endif
513
514 /*
515 * This is part of a global counter where only the total sum
516 * over all CPUs matters. A task can increase this counter on
517 * one CPU and if it got migrated afterwards it may decrease
518 * it on another CPU. Always updated under the runqueue lock:
519 */
520 unsigned long nr_uninterruptible;
521
522 struct task_struct *curr, *idle;
523 unsigned long next_balance;
524 struct mm_struct *prev_mm;
525
526 u64 clock;
527
528 atomic_t nr_iowait;
529
530 #ifdef CONFIG_SMP
531 struct root_domain *rd;
532 struct sched_domain *sd;
533
534 unsigned char idle_at_tick;
535 /* For active balancing */
536 int post_schedule;
537 int active_balance;
538 int push_cpu;
539 /* cpu of this runqueue: */
540 int cpu;
541 int online;
542
543 unsigned long avg_load_per_task;
544
545 struct task_struct *migration_thread;
546 struct list_head migration_queue;
547
548 u64 rt_avg;
549 u64 age_stamp;
550 u64 idle_stamp;
551 u64 avg_idle;
552 #endif
553
554 /* calc_load related fields */
555 unsigned long calc_load_update;
556 long calc_load_active;
557
558 #ifdef CONFIG_SCHED_HRTICK
559 #ifdef CONFIG_SMP
560 int hrtick_csd_pending;
561 struct call_single_data hrtick_csd;
562 #endif
563 struct hrtimer hrtick_timer;
564 #endif
565
566 #ifdef CONFIG_SCHEDSTATS
567 /* latency stats */
568 struct sched_info rq_sched_info;
569 unsigned long long rq_cpu_time;
570 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
571
572 /* sys_sched_yield() stats */
573 unsigned int yld_count;
574
575 /* schedule() stats */
576 unsigned int sched_switch;
577 unsigned int sched_count;
578 unsigned int sched_goidle;
579
580 /* try_to_wake_up() stats */
581 unsigned int ttwu_count;
582 unsigned int ttwu_local;
583
584 /* BKL stats */
585 unsigned int bkl_count;
586 #endif
587 };
588
589 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
590
591 static inline
592 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
593 {
594 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
595 }
596
597 static inline int cpu_of(struct rq *rq)
598 {
599 #ifdef CONFIG_SMP
600 return rq->cpu;
601 #else
602 return 0;
603 #endif
604 }
605
606 #define rcu_dereference_check_sched_domain(p) \
607 rcu_dereference_check((p), \
608 rcu_read_lock_sched_held() || \
609 lockdep_is_held(&sched_domains_mutex))
610
611 /*
612 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
613 * See detach_destroy_domains: synchronize_sched for details.
614 *
615 * The domain tree of any CPU may only be accessed from within
616 * preempt-disabled sections.
617 */
618 #define for_each_domain(cpu, __sd) \
619 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
620
621 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
622 #define this_rq() (&__get_cpu_var(runqueues))
623 #define task_rq(p) cpu_rq(task_cpu(p))
624 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
625 #define raw_rq() (&__raw_get_cpu_var(runqueues))
626
627 inline void update_rq_clock(struct rq *rq)
628 {
629 rq->clock = sched_clock_cpu(cpu_of(rq));
630 }
631
632 /*
633 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
634 */
635 #ifdef CONFIG_SCHED_DEBUG
636 # define const_debug __read_mostly
637 #else
638 # define const_debug static const
639 #endif
640
641 /**
642 * runqueue_is_locked
643 * @cpu: the processor in question.
644 *
645 * Returns true if the current cpu runqueue is locked.
646 * This interface allows printk to be called with the runqueue lock
647 * held and know whether or not it is OK to wake up the klogd.
648 */
649 int runqueue_is_locked(int cpu)
650 {
651 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
652 }
653
654 /*
655 * Debugging: various feature bits
656 */
657
658 #define SCHED_FEAT(name, enabled) \
659 __SCHED_FEAT_##name ,
660
661 enum {
662 #include "sched_features.h"
663 };
664
665 #undef SCHED_FEAT
666
667 #define SCHED_FEAT(name, enabled) \
668 (1UL << __SCHED_FEAT_##name) * enabled |
669
670 const_debug unsigned int sysctl_sched_features =
671 #include "sched_features.h"
672 0;
673
674 #undef SCHED_FEAT
675
676 #ifdef CONFIG_SCHED_DEBUG
677 #define SCHED_FEAT(name, enabled) \
678 #name ,
679
680 static __read_mostly char *sched_feat_names[] = {
681 #include "sched_features.h"
682 NULL
683 };
684
685 #undef SCHED_FEAT
686
687 static int sched_feat_show(struct seq_file *m, void *v)
688 {
689 int i;
690
691 for (i = 0; sched_feat_names[i]; i++) {
692 if (!(sysctl_sched_features & (1UL << i)))
693 seq_puts(m, "NO_");
694 seq_printf(m, "%s ", sched_feat_names[i]);
695 }
696 seq_puts(m, "\n");
697
698 return 0;
699 }
700
701 static ssize_t
702 sched_feat_write(struct file *filp, const char __user *ubuf,
703 size_t cnt, loff_t *ppos)
704 {
705 char buf[64];
706 char *cmp = buf;
707 int neg = 0;
708 int i;
709
710 if (cnt > 63)
711 cnt = 63;
712
713 if (copy_from_user(&buf, ubuf, cnt))
714 return -EFAULT;
715
716 buf[cnt] = 0;
717
718 if (strncmp(buf, "NO_", 3) == 0) {
719 neg = 1;
720 cmp += 3;
721 }
722
723 for (i = 0; sched_feat_names[i]; i++) {
724 int len = strlen(sched_feat_names[i]);
725
726 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
727 if (neg)
728 sysctl_sched_features &= ~(1UL << i);
729 else
730 sysctl_sched_features |= (1UL << i);
731 break;
732 }
733 }
734
735 if (!sched_feat_names[i])
736 return -EINVAL;
737
738 *ppos += cnt;
739
740 return cnt;
741 }
742
743 static int sched_feat_open(struct inode *inode, struct file *filp)
744 {
745 return single_open(filp, sched_feat_show, NULL);
746 }
747
748 static const struct file_operations sched_feat_fops = {
749 .open = sched_feat_open,
750 .write = sched_feat_write,
751 .read = seq_read,
752 .llseek = seq_lseek,
753 .release = single_release,
754 };
755
756 static __init int sched_init_debug(void)
757 {
758 debugfs_create_file("sched_features", 0644, NULL, NULL,
759 &sched_feat_fops);
760
761 return 0;
762 }
763 late_initcall(sched_init_debug);
764
765 #endif
766
767 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
768
769 /*
770 * Number of tasks to iterate in a single balance run.
771 * Limited because this is done with IRQs disabled.
772 */
773 const_debug unsigned int sysctl_sched_nr_migrate = 32;
774
775 /*
776 * ratelimit for updating the group shares.
777 * default: 0.25ms
778 */
779 unsigned int sysctl_sched_shares_ratelimit = 250000;
780 unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
781
782 /*
783 * Inject some fuzzyness into changing the per-cpu group shares
784 * this avoids remote rq-locks at the expense of fairness.
785 * default: 4
786 */
787 unsigned int sysctl_sched_shares_thresh = 4;
788
789 /*
790 * period over which we average the RT time consumption, measured
791 * in ms.
792 *
793 * default: 1s
794 */
795 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
796
797 /*
798 * period over which we measure -rt task cpu usage in us.
799 * default: 1s
800 */
801 unsigned int sysctl_sched_rt_period = 1000000;
802
803 static __read_mostly int scheduler_running;
804
805 /*
806 * part of the period that we allow rt tasks to run in us.
807 * default: 0.95s
808 */
809 int sysctl_sched_rt_runtime = 950000;
810
811 static inline u64 global_rt_period(void)
812 {
813 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
814 }
815
816 static inline u64 global_rt_runtime(void)
817 {
818 if (sysctl_sched_rt_runtime < 0)
819 return RUNTIME_INF;
820
821 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
822 }
823
824 #ifndef prepare_arch_switch
825 # define prepare_arch_switch(next) do { } while (0)
826 #endif
827 #ifndef finish_arch_switch
828 # define finish_arch_switch(prev) do { } while (0)
829 #endif
830
831 static inline int task_current(struct rq *rq, struct task_struct *p)
832 {
833 return rq->curr == p;
834 }
835
836 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
837 static inline int task_running(struct rq *rq, struct task_struct *p)
838 {
839 return task_current(rq, p);
840 }
841
842 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
843 {
844 }
845
846 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
847 {
848 #ifdef CONFIG_DEBUG_SPINLOCK
849 /* this is a valid case when another task releases the spinlock */
850 rq->lock.owner = current;
851 #endif
852 /*
853 * If we are tracking spinlock dependencies then we have to
854 * fix up the runqueue lock - which gets 'carried over' from
855 * prev into current:
856 */
857 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
858
859 raw_spin_unlock_irq(&rq->lock);
860 }
861
862 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
863 static inline int task_running(struct rq *rq, struct task_struct *p)
864 {
865 #ifdef CONFIG_SMP
866 return p->oncpu;
867 #else
868 return task_current(rq, p);
869 #endif
870 }
871
872 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
873 {
874 #ifdef CONFIG_SMP
875 /*
876 * We can optimise this out completely for !SMP, because the
877 * SMP rebalancing from interrupt is the only thing that cares
878 * here.
879 */
880 next->oncpu = 1;
881 #endif
882 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
883 raw_spin_unlock_irq(&rq->lock);
884 #else
885 raw_spin_unlock(&rq->lock);
886 #endif
887 }
888
889 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
890 {
891 #ifdef CONFIG_SMP
892 /*
893 * After ->oncpu is cleared, the task can be moved to a different CPU.
894 * We must ensure this doesn't happen until the switch is completely
895 * finished.
896 */
897 smp_wmb();
898 prev->oncpu = 0;
899 #endif
900 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
901 local_irq_enable();
902 #endif
903 }
904 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
905
906 /*
907 * Check whether the task is waking, we use this to synchronize against
908 * ttwu() so that task_cpu() reports a stable number.
909 *
910 * We need to make an exception for PF_STARTING tasks because the fork
911 * path might require task_rq_lock() to work, eg. it can call
912 * set_cpus_allowed_ptr() from the cpuset clone_ns code.
913 */
914 static inline int task_is_waking(struct task_struct *p)
915 {
916 return unlikely((p->state == TASK_WAKING) && !(p->flags & PF_STARTING));
917 }
918
919 /*
920 * __task_rq_lock - lock the runqueue a given task resides on.
921 * Must be called interrupts disabled.
922 */
923 static inline struct rq *__task_rq_lock(struct task_struct *p)
924 __acquires(rq->lock)
925 {
926 struct rq *rq;
927
928 for (;;) {
929 while (task_is_waking(p))
930 cpu_relax();
931 rq = task_rq(p);
932 raw_spin_lock(&rq->lock);
933 if (likely(rq == task_rq(p) && !task_is_waking(p)))
934 return rq;
935 raw_spin_unlock(&rq->lock);
936 }
937 }
938
939 /*
940 * task_rq_lock - lock the runqueue a given task resides on and disable
941 * interrupts. Note the ordering: we can safely lookup the task_rq without
942 * explicitly disabling preemption.
943 */
944 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
945 __acquires(rq->lock)
946 {
947 struct rq *rq;
948
949 for (;;) {
950 while (task_is_waking(p))
951 cpu_relax();
952 local_irq_save(*flags);
953 rq = task_rq(p);
954 raw_spin_lock(&rq->lock);
955 if (likely(rq == task_rq(p) && !task_is_waking(p)))
956 return rq;
957 raw_spin_unlock_irqrestore(&rq->lock, *flags);
958 }
959 }
960
961 void task_rq_unlock_wait(struct task_struct *p)
962 {
963 struct rq *rq = task_rq(p);
964
965 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
966 raw_spin_unlock_wait(&rq->lock);
967 }
968
969 static void __task_rq_unlock(struct rq *rq)
970 __releases(rq->lock)
971 {
972 raw_spin_unlock(&rq->lock);
973 }
974
975 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
976 __releases(rq->lock)
977 {
978 raw_spin_unlock_irqrestore(&rq->lock, *flags);
979 }
980
981 /*
982 * this_rq_lock - lock this runqueue and disable interrupts.
983 */
984 static struct rq *this_rq_lock(void)
985 __acquires(rq->lock)
986 {
987 struct rq *rq;
988
989 local_irq_disable();
990 rq = this_rq();
991 raw_spin_lock(&rq->lock);
992
993 return rq;
994 }
995
996 #ifdef CONFIG_SCHED_HRTICK
997 /*
998 * Use HR-timers to deliver accurate preemption points.
999 *
1000 * Its all a bit involved since we cannot program an hrt while holding the
1001 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1002 * reschedule event.
1003 *
1004 * When we get rescheduled we reprogram the hrtick_timer outside of the
1005 * rq->lock.
1006 */
1007
1008 /*
1009 * Use hrtick when:
1010 * - enabled by features
1011 * - hrtimer is actually high res
1012 */
1013 static inline int hrtick_enabled(struct rq *rq)
1014 {
1015 if (!sched_feat(HRTICK))
1016 return 0;
1017 if (!cpu_active(cpu_of(rq)))
1018 return 0;
1019 return hrtimer_is_hres_active(&rq->hrtick_timer);
1020 }
1021
1022 static void hrtick_clear(struct rq *rq)
1023 {
1024 if (hrtimer_active(&rq->hrtick_timer))
1025 hrtimer_cancel(&rq->hrtick_timer);
1026 }
1027
1028 /*
1029 * High-resolution timer tick.
1030 * Runs from hardirq context with interrupts disabled.
1031 */
1032 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1033 {
1034 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1035
1036 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1037
1038 raw_spin_lock(&rq->lock);
1039 update_rq_clock(rq);
1040 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1041 raw_spin_unlock(&rq->lock);
1042
1043 return HRTIMER_NORESTART;
1044 }
1045
1046 #ifdef CONFIG_SMP
1047 /*
1048 * called from hardirq (IPI) context
1049 */
1050 static void __hrtick_start(void *arg)
1051 {
1052 struct rq *rq = arg;
1053
1054 raw_spin_lock(&rq->lock);
1055 hrtimer_restart(&rq->hrtick_timer);
1056 rq->hrtick_csd_pending = 0;
1057 raw_spin_unlock(&rq->lock);
1058 }
1059
1060 /*
1061 * Called to set the hrtick timer state.
1062 *
1063 * called with rq->lock held and irqs disabled
1064 */
1065 static void hrtick_start(struct rq *rq, u64 delay)
1066 {
1067 struct hrtimer *timer = &rq->hrtick_timer;
1068 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1069
1070 hrtimer_set_expires(timer, time);
1071
1072 if (rq == this_rq()) {
1073 hrtimer_restart(timer);
1074 } else if (!rq->hrtick_csd_pending) {
1075 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1076 rq->hrtick_csd_pending = 1;
1077 }
1078 }
1079
1080 static int
1081 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1082 {
1083 int cpu = (int)(long)hcpu;
1084
1085 switch (action) {
1086 case CPU_UP_CANCELED:
1087 case CPU_UP_CANCELED_FROZEN:
1088 case CPU_DOWN_PREPARE:
1089 case CPU_DOWN_PREPARE_FROZEN:
1090 case CPU_DEAD:
1091 case CPU_DEAD_FROZEN:
1092 hrtick_clear(cpu_rq(cpu));
1093 return NOTIFY_OK;
1094 }
1095
1096 return NOTIFY_DONE;
1097 }
1098
1099 static __init void init_hrtick(void)
1100 {
1101 hotcpu_notifier(hotplug_hrtick, 0);
1102 }
1103 #else
1104 /*
1105 * Called to set the hrtick timer state.
1106 *
1107 * called with rq->lock held and irqs disabled
1108 */
1109 static void hrtick_start(struct rq *rq, u64 delay)
1110 {
1111 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1112 HRTIMER_MODE_REL_PINNED, 0);
1113 }
1114
1115 static inline void init_hrtick(void)
1116 {
1117 }
1118 #endif /* CONFIG_SMP */
1119
1120 static void init_rq_hrtick(struct rq *rq)
1121 {
1122 #ifdef CONFIG_SMP
1123 rq->hrtick_csd_pending = 0;
1124
1125 rq->hrtick_csd.flags = 0;
1126 rq->hrtick_csd.func = __hrtick_start;
1127 rq->hrtick_csd.info = rq;
1128 #endif
1129
1130 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1131 rq->hrtick_timer.function = hrtick;
1132 }
1133 #else /* CONFIG_SCHED_HRTICK */
1134 static inline void hrtick_clear(struct rq *rq)
1135 {
1136 }
1137
1138 static inline void init_rq_hrtick(struct rq *rq)
1139 {
1140 }
1141
1142 static inline void init_hrtick(void)
1143 {
1144 }
1145 #endif /* CONFIG_SCHED_HRTICK */
1146
1147 /*
1148 * resched_task - mark a task 'to be rescheduled now'.
1149 *
1150 * On UP this means the setting of the need_resched flag, on SMP it
1151 * might also involve a cross-CPU call to trigger the scheduler on
1152 * the target CPU.
1153 */
1154 #ifdef CONFIG_SMP
1155
1156 #ifndef tsk_is_polling
1157 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1158 #endif
1159
1160 static void resched_task(struct task_struct *p)
1161 {
1162 int cpu;
1163
1164 assert_raw_spin_locked(&task_rq(p)->lock);
1165
1166 if (test_tsk_need_resched(p))
1167 return;
1168
1169 set_tsk_need_resched(p);
1170
1171 cpu = task_cpu(p);
1172 if (cpu == smp_processor_id())
1173 return;
1174
1175 /* NEED_RESCHED must be visible before we test polling */
1176 smp_mb();
1177 if (!tsk_is_polling(p))
1178 smp_send_reschedule(cpu);
1179 }
1180
1181 static void resched_cpu(int cpu)
1182 {
1183 struct rq *rq = cpu_rq(cpu);
1184 unsigned long flags;
1185
1186 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
1187 return;
1188 resched_task(cpu_curr(cpu));
1189 raw_spin_unlock_irqrestore(&rq->lock, flags);
1190 }
1191
1192 #ifdef CONFIG_NO_HZ
1193 /*
1194 * When add_timer_on() enqueues a timer into the timer wheel of an
1195 * idle CPU then this timer might expire before the next timer event
1196 * which is scheduled to wake up that CPU. In case of a completely
1197 * idle system the next event might even be infinite time into the
1198 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1199 * leaves the inner idle loop so the newly added timer is taken into
1200 * account when the CPU goes back to idle and evaluates the timer
1201 * wheel for the next timer event.
1202 */
1203 void wake_up_idle_cpu(int cpu)
1204 {
1205 struct rq *rq = cpu_rq(cpu);
1206
1207 if (cpu == smp_processor_id())
1208 return;
1209
1210 /*
1211 * This is safe, as this function is called with the timer
1212 * wheel base lock of (cpu) held. When the CPU is on the way
1213 * to idle and has not yet set rq->curr to idle then it will
1214 * be serialized on the timer wheel base lock and take the new
1215 * timer into account automatically.
1216 */
1217 if (rq->curr != rq->idle)
1218 return;
1219
1220 /*
1221 * We can set TIF_RESCHED on the idle task of the other CPU
1222 * lockless. The worst case is that the other CPU runs the
1223 * idle task through an additional NOOP schedule()
1224 */
1225 set_tsk_need_resched(rq->idle);
1226
1227 /* NEED_RESCHED must be visible before we test polling */
1228 smp_mb();
1229 if (!tsk_is_polling(rq->idle))
1230 smp_send_reschedule(cpu);
1231 }
1232
1233 int nohz_ratelimit(int cpu)
1234 {
1235 struct rq *rq = cpu_rq(cpu);
1236 u64 diff = rq->clock - rq->nohz_stamp;
1237
1238 rq->nohz_stamp = rq->clock;
1239
1240 return diff < (NSEC_PER_SEC / HZ) >> 1;
1241 }
1242
1243 #endif /* CONFIG_NO_HZ */
1244
1245 static u64 sched_avg_period(void)
1246 {
1247 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1248 }
1249
1250 static void sched_avg_update(struct rq *rq)
1251 {
1252 s64 period = sched_avg_period();
1253
1254 while ((s64)(rq->clock - rq->age_stamp) > period) {
1255 rq->age_stamp += period;
1256 rq->rt_avg /= 2;
1257 }
1258 }
1259
1260 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1261 {
1262 rq->rt_avg += rt_delta;
1263 sched_avg_update(rq);
1264 }
1265
1266 #else /* !CONFIG_SMP */
1267 static void resched_task(struct task_struct *p)
1268 {
1269 assert_raw_spin_locked(&task_rq(p)->lock);
1270 set_tsk_need_resched(p);
1271 }
1272
1273 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1274 {
1275 }
1276 #endif /* CONFIG_SMP */
1277
1278 #if BITS_PER_LONG == 32
1279 # define WMULT_CONST (~0UL)
1280 #else
1281 # define WMULT_CONST (1UL << 32)
1282 #endif
1283
1284 #define WMULT_SHIFT 32
1285
1286 /*
1287 * Shift right and round:
1288 */
1289 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1290
1291 /*
1292 * delta *= weight / lw
1293 */
1294 static unsigned long
1295 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1296 struct load_weight *lw)
1297 {
1298 u64 tmp;
1299
1300 if (!lw->inv_weight) {
1301 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1302 lw->inv_weight = 1;
1303 else
1304 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1305 / (lw->weight+1);
1306 }
1307
1308 tmp = (u64)delta_exec * weight;
1309 /*
1310 * Check whether we'd overflow the 64-bit multiplication:
1311 */
1312 if (unlikely(tmp > WMULT_CONST))
1313 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1314 WMULT_SHIFT/2);
1315 else
1316 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1317
1318 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1319 }
1320
1321 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1322 {
1323 lw->weight += inc;
1324 lw->inv_weight = 0;
1325 }
1326
1327 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1328 {
1329 lw->weight -= dec;
1330 lw->inv_weight = 0;
1331 }
1332
1333 /*
1334 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1335 * of tasks with abnormal "nice" values across CPUs the contribution that
1336 * each task makes to its run queue's load is weighted according to its
1337 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1338 * scaled version of the new time slice allocation that they receive on time
1339 * slice expiry etc.
1340 */
1341
1342 #define WEIGHT_IDLEPRIO 3
1343 #define WMULT_IDLEPRIO 1431655765
1344
1345 /*
1346 * Nice levels are multiplicative, with a gentle 10% change for every
1347 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1348 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1349 * that remained on nice 0.
1350 *
1351 * The "10% effect" is relative and cumulative: from _any_ nice level,
1352 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1353 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1354 * If a task goes up by ~10% and another task goes down by ~10% then
1355 * the relative distance between them is ~25%.)
1356 */
1357 static const int prio_to_weight[40] = {
1358 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1359 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1360 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1361 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1362 /* 0 */ 1024, 820, 655, 526, 423,
1363 /* 5 */ 335, 272, 215, 172, 137,
1364 /* 10 */ 110, 87, 70, 56, 45,
1365 /* 15 */ 36, 29, 23, 18, 15,
1366 };
1367
1368 /*
1369 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1370 *
1371 * In cases where the weight does not change often, we can use the
1372 * precalculated inverse to speed up arithmetics by turning divisions
1373 * into multiplications:
1374 */
1375 static const u32 prio_to_wmult[40] = {
1376 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1377 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1378 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1379 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1380 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1381 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1382 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1383 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1384 };
1385
1386 /* Time spent by the tasks of the cpu accounting group executing in ... */
1387 enum cpuacct_stat_index {
1388 CPUACCT_STAT_USER, /* ... user mode */
1389 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1390
1391 CPUACCT_STAT_NSTATS,
1392 };
1393
1394 #ifdef CONFIG_CGROUP_CPUACCT
1395 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1396 static void cpuacct_update_stats(struct task_struct *tsk,
1397 enum cpuacct_stat_index idx, cputime_t val);
1398 #else
1399 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1400 static inline void cpuacct_update_stats(struct task_struct *tsk,
1401 enum cpuacct_stat_index idx, cputime_t val) {}
1402 #endif
1403
1404 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1405 {
1406 update_load_add(&rq->load, load);
1407 }
1408
1409 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1410 {
1411 update_load_sub(&rq->load, load);
1412 }
1413
1414 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1415 typedef int (*tg_visitor)(struct task_group *, void *);
1416
1417 /*
1418 * Iterate the full tree, calling @down when first entering a node and @up when
1419 * leaving it for the final time.
1420 */
1421 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1422 {
1423 struct task_group *parent, *child;
1424 int ret;
1425
1426 rcu_read_lock();
1427 parent = &root_task_group;
1428 down:
1429 ret = (*down)(parent, data);
1430 if (ret)
1431 goto out_unlock;
1432 list_for_each_entry_rcu(child, &parent->children, siblings) {
1433 parent = child;
1434 goto down;
1435
1436 up:
1437 continue;
1438 }
1439 ret = (*up)(parent, data);
1440 if (ret)
1441 goto out_unlock;
1442
1443 child = parent;
1444 parent = parent->parent;
1445 if (parent)
1446 goto up;
1447 out_unlock:
1448 rcu_read_unlock();
1449
1450 return ret;
1451 }
1452
1453 static int tg_nop(struct task_group *tg, void *data)
1454 {
1455 return 0;
1456 }
1457 #endif
1458
1459 #ifdef CONFIG_SMP
1460 /* Used instead of source_load when we know the type == 0 */
1461 static unsigned long weighted_cpuload(const int cpu)
1462 {
1463 return cpu_rq(cpu)->load.weight;
1464 }
1465
1466 /*
1467 * Return a low guess at the load of a migration-source cpu weighted
1468 * according to the scheduling class and "nice" value.
1469 *
1470 * We want to under-estimate the load of migration sources, to
1471 * balance conservatively.
1472 */
1473 static unsigned long source_load(int cpu, int type)
1474 {
1475 struct rq *rq = cpu_rq(cpu);
1476 unsigned long total = weighted_cpuload(cpu);
1477
1478 if (type == 0 || !sched_feat(LB_BIAS))
1479 return total;
1480
1481 return min(rq->cpu_load[type-1], total);
1482 }
1483
1484 /*
1485 * Return a high guess at the load of a migration-target cpu weighted
1486 * according to the scheduling class and "nice" value.
1487 */
1488 static unsigned long target_load(int cpu, int type)
1489 {
1490 struct rq *rq = cpu_rq(cpu);
1491 unsigned long total = weighted_cpuload(cpu);
1492
1493 if (type == 0 || !sched_feat(LB_BIAS))
1494 return total;
1495
1496 return max(rq->cpu_load[type-1], total);
1497 }
1498
1499 static struct sched_group *group_of(int cpu)
1500 {
1501 struct sched_domain *sd = rcu_dereference_sched(cpu_rq(cpu)->sd);
1502
1503 if (!sd)
1504 return NULL;
1505
1506 return sd->groups;
1507 }
1508
1509 static unsigned long power_of(int cpu)
1510 {
1511 struct sched_group *group = group_of(cpu);
1512
1513 if (!group)
1514 return SCHED_LOAD_SCALE;
1515
1516 return group->cpu_power;
1517 }
1518
1519 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1520
1521 static unsigned long cpu_avg_load_per_task(int cpu)
1522 {
1523 struct rq *rq = cpu_rq(cpu);
1524 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1525
1526 if (nr_running)
1527 rq->avg_load_per_task = rq->load.weight / nr_running;
1528 else
1529 rq->avg_load_per_task = 0;
1530
1531 return rq->avg_load_per_task;
1532 }
1533
1534 #ifdef CONFIG_FAIR_GROUP_SCHED
1535
1536 static __read_mostly unsigned long *update_shares_data;
1537
1538 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1539
1540 /*
1541 * Calculate and set the cpu's group shares.
1542 */
1543 static void update_group_shares_cpu(struct task_group *tg, int cpu,
1544 unsigned long sd_shares,
1545 unsigned long sd_rq_weight,
1546 unsigned long *usd_rq_weight)
1547 {
1548 unsigned long shares, rq_weight;
1549 int boost = 0;
1550
1551 rq_weight = usd_rq_weight[cpu];
1552 if (!rq_weight) {
1553 boost = 1;
1554 rq_weight = NICE_0_LOAD;
1555 }
1556
1557 /*
1558 * \Sum_j shares_j * rq_weight_i
1559 * shares_i = -----------------------------
1560 * \Sum_j rq_weight_j
1561 */
1562 shares = (sd_shares * rq_weight) / sd_rq_weight;
1563 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1564
1565 if (abs(shares - tg->se[cpu]->load.weight) >
1566 sysctl_sched_shares_thresh) {
1567 struct rq *rq = cpu_rq(cpu);
1568 unsigned long flags;
1569
1570 raw_spin_lock_irqsave(&rq->lock, flags);
1571 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
1572 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1573 __set_se_shares(tg->se[cpu], shares);
1574 raw_spin_unlock_irqrestore(&rq->lock, flags);
1575 }
1576 }
1577
1578 /*
1579 * Re-compute the task group their per cpu shares over the given domain.
1580 * This needs to be done in a bottom-up fashion because the rq weight of a
1581 * parent group depends on the shares of its child groups.
1582 */
1583 static int tg_shares_up(struct task_group *tg, void *data)
1584 {
1585 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
1586 unsigned long *usd_rq_weight;
1587 struct sched_domain *sd = data;
1588 unsigned long flags;
1589 int i;
1590
1591 if (!tg->se[0])
1592 return 0;
1593
1594 local_irq_save(flags);
1595 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1596
1597 for_each_cpu(i, sched_domain_span(sd)) {
1598 weight = tg->cfs_rq[i]->load.weight;
1599 usd_rq_weight[i] = weight;
1600
1601 rq_weight += weight;
1602 /*
1603 * If there are currently no tasks on the cpu pretend there
1604 * is one of average load so that when a new task gets to
1605 * run here it will not get delayed by group starvation.
1606 */
1607 if (!weight)
1608 weight = NICE_0_LOAD;
1609
1610 sum_weight += weight;
1611 shares += tg->cfs_rq[i]->shares;
1612 }
1613
1614 if (!rq_weight)
1615 rq_weight = sum_weight;
1616
1617 if ((!shares && rq_weight) || shares > tg->shares)
1618 shares = tg->shares;
1619
1620 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1621 shares = tg->shares;
1622
1623 for_each_cpu(i, sched_domain_span(sd))
1624 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1625
1626 local_irq_restore(flags);
1627
1628 return 0;
1629 }
1630
1631 /*
1632 * Compute the cpu's hierarchical load factor for each task group.
1633 * This needs to be done in a top-down fashion because the load of a child
1634 * group is a fraction of its parents load.
1635 */
1636 static int tg_load_down(struct task_group *tg, void *data)
1637 {
1638 unsigned long load;
1639 long cpu = (long)data;
1640
1641 if (!tg->parent) {
1642 load = cpu_rq(cpu)->load.weight;
1643 } else {
1644 load = tg->parent->cfs_rq[cpu]->h_load;
1645 load *= tg->cfs_rq[cpu]->shares;
1646 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1647 }
1648
1649 tg->cfs_rq[cpu]->h_load = load;
1650
1651 return 0;
1652 }
1653
1654 static void update_shares(struct sched_domain *sd)
1655 {
1656 s64 elapsed;
1657 u64 now;
1658
1659 if (root_task_group_empty())
1660 return;
1661
1662 now = cpu_clock(raw_smp_processor_id());
1663 elapsed = now - sd->last_update;
1664
1665 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1666 sd->last_update = now;
1667 walk_tg_tree(tg_nop, tg_shares_up, sd);
1668 }
1669 }
1670
1671 static void update_h_load(long cpu)
1672 {
1673 if (root_task_group_empty())
1674 return;
1675
1676 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1677 }
1678
1679 #else
1680
1681 static inline void update_shares(struct sched_domain *sd)
1682 {
1683 }
1684
1685 #endif
1686
1687 #ifdef CONFIG_PREEMPT
1688
1689 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1690
1691 /*
1692 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1693 * way at the expense of forcing extra atomic operations in all
1694 * invocations. This assures that the double_lock is acquired using the
1695 * same underlying policy as the spinlock_t on this architecture, which
1696 * reduces latency compared to the unfair variant below. However, it
1697 * also adds more overhead and therefore may reduce throughput.
1698 */
1699 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1700 __releases(this_rq->lock)
1701 __acquires(busiest->lock)
1702 __acquires(this_rq->lock)
1703 {
1704 raw_spin_unlock(&this_rq->lock);
1705 double_rq_lock(this_rq, busiest);
1706
1707 return 1;
1708 }
1709
1710 #else
1711 /*
1712 * Unfair double_lock_balance: Optimizes throughput at the expense of
1713 * latency by eliminating extra atomic operations when the locks are
1714 * already in proper order on entry. This favors lower cpu-ids and will
1715 * grant the double lock to lower cpus over higher ids under contention,
1716 * regardless of entry order into the function.
1717 */
1718 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1719 __releases(this_rq->lock)
1720 __acquires(busiest->lock)
1721 __acquires(this_rq->lock)
1722 {
1723 int ret = 0;
1724
1725 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1726 if (busiest < this_rq) {
1727 raw_spin_unlock(&this_rq->lock);
1728 raw_spin_lock(&busiest->lock);
1729 raw_spin_lock_nested(&this_rq->lock,
1730 SINGLE_DEPTH_NESTING);
1731 ret = 1;
1732 } else
1733 raw_spin_lock_nested(&busiest->lock,
1734 SINGLE_DEPTH_NESTING);
1735 }
1736 return ret;
1737 }
1738
1739 #endif /* CONFIG_PREEMPT */
1740
1741 /*
1742 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1743 */
1744 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1745 {
1746 if (unlikely(!irqs_disabled())) {
1747 /* printk() doesn't work good under rq->lock */
1748 raw_spin_unlock(&this_rq->lock);
1749 BUG_ON(1);
1750 }
1751
1752 return _double_lock_balance(this_rq, busiest);
1753 }
1754
1755 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1756 __releases(busiest->lock)
1757 {
1758 raw_spin_unlock(&busiest->lock);
1759 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1760 }
1761
1762 /*
1763 * double_rq_lock - safely lock two runqueues
1764 *
1765 * Note this does not disable interrupts like task_rq_lock,
1766 * you need to do so manually before calling.
1767 */
1768 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1769 __acquires(rq1->lock)
1770 __acquires(rq2->lock)
1771 {
1772 BUG_ON(!irqs_disabled());
1773 if (rq1 == rq2) {
1774 raw_spin_lock(&rq1->lock);
1775 __acquire(rq2->lock); /* Fake it out ;) */
1776 } else {
1777 if (rq1 < rq2) {
1778 raw_spin_lock(&rq1->lock);
1779 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1780 } else {
1781 raw_spin_lock(&rq2->lock);
1782 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1783 }
1784 }
1785 update_rq_clock(rq1);
1786 update_rq_clock(rq2);
1787 }
1788
1789 /*
1790 * double_rq_unlock - safely unlock two runqueues
1791 *
1792 * Note this does not restore interrupts like task_rq_unlock,
1793 * you need to do so manually after calling.
1794 */
1795 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1796 __releases(rq1->lock)
1797 __releases(rq2->lock)
1798 {
1799 raw_spin_unlock(&rq1->lock);
1800 if (rq1 != rq2)
1801 raw_spin_unlock(&rq2->lock);
1802 else
1803 __release(rq2->lock);
1804 }
1805
1806 #endif
1807
1808 #ifdef CONFIG_FAIR_GROUP_SCHED
1809 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1810 {
1811 #ifdef CONFIG_SMP
1812 cfs_rq->shares = shares;
1813 #endif
1814 }
1815 #endif
1816
1817 static void calc_load_account_active(struct rq *this_rq);
1818 static void update_sysctl(void);
1819 static int get_update_sysctl_factor(void);
1820
1821 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1822 {
1823 set_task_rq(p, cpu);
1824 #ifdef CONFIG_SMP
1825 /*
1826 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1827 * successfuly executed on another CPU. We must ensure that updates of
1828 * per-task data have been completed by this moment.
1829 */
1830 smp_wmb();
1831 task_thread_info(p)->cpu = cpu;
1832 #endif
1833 }
1834
1835 static const struct sched_class rt_sched_class;
1836
1837 #define sched_class_highest (&rt_sched_class)
1838 #define for_each_class(class) \
1839 for (class = sched_class_highest; class; class = class->next)
1840
1841 #include "sched_stats.h"
1842
1843 static void inc_nr_running(struct rq *rq)
1844 {
1845 rq->nr_running++;
1846 }
1847
1848 static void dec_nr_running(struct rq *rq)
1849 {
1850 rq->nr_running--;
1851 }
1852
1853 static void set_load_weight(struct task_struct *p)
1854 {
1855 if (task_has_rt_policy(p)) {
1856 p->se.load.weight = prio_to_weight[0] * 2;
1857 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1858 return;
1859 }
1860
1861 /*
1862 * SCHED_IDLE tasks get minimal weight:
1863 */
1864 if (p->policy == SCHED_IDLE) {
1865 p->se.load.weight = WEIGHT_IDLEPRIO;
1866 p->se.load.inv_weight = WMULT_IDLEPRIO;
1867 return;
1868 }
1869
1870 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1871 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1872 }
1873
1874 static void update_avg(u64 *avg, u64 sample)
1875 {
1876 s64 diff = sample - *avg;
1877 *avg += diff >> 3;
1878 }
1879
1880 static void
1881 enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, bool head)
1882 {
1883 sched_info_queued(p);
1884 p->sched_class->enqueue_task(rq, p, wakeup, head);
1885 p->se.on_rq = 1;
1886 }
1887
1888 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1889 {
1890 sched_info_dequeued(p);
1891 p->sched_class->dequeue_task(rq, p, sleep);
1892 p->se.on_rq = 0;
1893 }
1894
1895 /*
1896 * activate_task - move a task to the runqueue.
1897 */
1898 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1899 {
1900 if (task_contributes_to_load(p))
1901 rq->nr_uninterruptible--;
1902
1903 enqueue_task(rq, p, wakeup, false);
1904 inc_nr_running(rq);
1905 }
1906
1907 /*
1908 * deactivate_task - remove a task from the runqueue.
1909 */
1910 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1911 {
1912 if (task_contributes_to_load(p))
1913 rq->nr_uninterruptible++;
1914
1915 dequeue_task(rq, p, sleep);
1916 dec_nr_running(rq);
1917 }
1918
1919 #include "sched_idletask.c"
1920 #include "sched_fair.c"
1921 #include "sched_rt.c"
1922 #ifdef CONFIG_SCHED_DEBUG
1923 # include "sched_debug.c"
1924 #endif
1925
1926 /*
1927 * __normal_prio - return the priority that is based on the static prio
1928 */
1929 static inline int __normal_prio(struct task_struct *p)
1930 {
1931 return p->static_prio;
1932 }
1933
1934 /*
1935 * Calculate the expected normal priority: i.e. priority
1936 * without taking RT-inheritance into account. Might be
1937 * boosted by interactivity modifiers. Changes upon fork,
1938 * setprio syscalls, and whenever the interactivity
1939 * estimator recalculates.
1940 */
1941 static inline int normal_prio(struct task_struct *p)
1942 {
1943 int prio;
1944
1945 if (task_has_rt_policy(p))
1946 prio = MAX_RT_PRIO-1 - p->rt_priority;
1947 else
1948 prio = __normal_prio(p);
1949 return prio;
1950 }
1951
1952 /*
1953 * Calculate the current priority, i.e. the priority
1954 * taken into account by the scheduler. This value might
1955 * be boosted by RT tasks, or might be boosted by
1956 * interactivity modifiers. Will be RT if the task got
1957 * RT-boosted. If not then it returns p->normal_prio.
1958 */
1959 static int effective_prio(struct task_struct *p)
1960 {
1961 p->normal_prio = normal_prio(p);
1962 /*
1963 * If we are RT tasks or we were boosted to RT priority,
1964 * keep the priority unchanged. Otherwise, update priority
1965 * to the normal priority:
1966 */
1967 if (!rt_prio(p->prio))
1968 return p->normal_prio;
1969 return p->prio;
1970 }
1971
1972 /**
1973 * task_curr - is this task currently executing on a CPU?
1974 * @p: the task in question.
1975 */
1976 inline int task_curr(const struct task_struct *p)
1977 {
1978 return cpu_curr(task_cpu(p)) == p;
1979 }
1980
1981 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1982 const struct sched_class *prev_class,
1983 int oldprio, int running)
1984 {
1985 if (prev_class != p->sched_class) {
1986 if (prev_class->switched_from)
1987 prev_class->switched_from(rq, p, running);
1988 p->sched_class->switched_to(rq, p, running);
1989 } else
1990 p->sched_class->prio_changed(rq, p, oldprio, running);
1991 }
1992
1993 #ifdef CONFIG_SMP
1994 /*
1995 * Is this task likely cache-hot:
1996 */
1997 static int
1998 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1999 {
2000 s64 delta;
2001
2002 if (p->sched_class != &fair_sched_class)
2003 return 0;
2004
2005 /*
2006 * Buddy candidates are cache hot:
2007 */
2008 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
2009 (&p->se == cfs_rq_of(&p->se)->next ||
2010 &p->se == cfs_rq_of(&p->se)->last))
2011 return 1;
2012
2013 if (sysctl_sched_migration_cost == -1)
2014 return 1;
2015 if (sysctl_sched_migration_cost == 0)
2016 return 0;
2017
2018 delta = now - p->se.exec_start;
2019
2020 return delta < (s64)sysctl_sched_migration_cost;
2021 }
2022
2023 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2024 {
2025 #ifdef CONFIG_SCHED_DEBUG
2026 /*
2027 * We should never call set_task_cpu() on a blocked task,
2028 * ttwu() will sort out the placement.
2029 */
2030 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2031 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2032 #endif
2033
2034 trace_sched_migrate_task(p, new_cpu);
2035
2036 if (task_cpu(p) != new_cpu) {
2037 p->se.nr_migrations++;
2038 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2039 }
2040
2041 __set_task_cpu(p, new_cpu);
2042 }
2043
2044 struct migration_req {
2045 struct list_head list;
2046
2047 struct task_struct *task;
2048 int dest_cpu;
2049
2050 struct completion done;
2051 };
2052
2053 /*
2054 * The task's runqueue lock must be held.
2055 * Returns true if you have to wait for migration thread.
2056 */
2057 static int
2058 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
2059 {
2060 struct rq *rq = task_rq(p);
2061
2062 /*
2063 * If the task is not on a runqueue (and not running), then
2064 * the next wake-up will properly place the task.
2065 */
2066 if (!p->se.on_rq && !task_running(rq, p))
2067 return 0;
2068
2069 init_completion(&req->done);
2070 req->task = p;
2071 req->dest_cpu = dest_cpu;
2072 list_add(&req->list, &rq->migration_queue);
2073
2074 return 1;
2075 }
2076
2077 /*
2078 * wait_task_context_switch - wait for a thread to complete at least one
2079 * context switch.
2080 *
2081 * @p must not be current.
2082 */
2083 void wait_task_context_switch(struct task_struct *p)
2084 {
2085 unsigned long nvcsw, nivcsw, flags;
2086 int running;
2087 struct rq *rq;
2088
2089 nvcsw = p->nvcsw;
2090 nivcsw = p->nivcsw;
2091 for (;;) {
2092 /*
2093 * The runqueue is assigned before the actual context
2094 * switch. We need to take the runqueue lock.
2095 *
2096 * We could check initially without the lock but it is
2097 * very likely that we need to take the lock in every
2098 * iteration.
2099 */
2100 rq = task_rq_lock(p, &flags);
2101 running = task_running(rq, p);
2102 task_rq_unlock(rq, &flags);
2103
2104 if (likely(!running))
2105 break;
2106 /*
2107 * The switch count is incremented before the actual
2108 * context switch. We thus wait for two switches to be
2109 * sure at least one completed.
2110 */
2111 if ((p->nvcsw - nvcsw) > 1)
2112 break;
2113 if ((p->nivcsw - nivcsw) > 1)
2114 break;
2115
2116 cpu_relax();
2117 }
2118 }
2119
2120 /*
2121 * wait_task_inactive - wait for a thread to unschedule.
2122 *
2123 * If @match_state is nonzero, it's the @p->state value just checked and
2124 * not expected to change. If it changes, i.e. @p might have woken up,
2125 * then return zero. When we succeed in waiting for @p to be off its CPU,
2126 * we return a positive number (its total switch count). If a second call
2127 * a short while later returns the same number, the caller can be sure that
2128 * @p has remained unscheduled the whole time.
2129 *
2130 * The caller must ensure that the task *will* unschedule sometime soon,
2131 * else this function might spin for a *long* time. This function can't
2132 * be called with interrupts off, or it may introduce deadlock with
2133 * smp_call_function() if an IPI is sent by the same process we are
2134 * waiting to become inactive.
2135 */
2136 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2137 {
2138 unsigned long flags;
2139 int running, on_rq;
2140 unsigned long ncsw;
2141 struct rq *rq;
2142
2143 for (;;) {
2144 /*
2145 * We do the initial early heuristics without holding
2146 * any task-queue locks at all. We'll only try to get
2147 * the runqueue lock when things look like they will
2148 * work out!
2149 */
2150 rq = task_rq(p);
2151
2152 /*
2153 * If the task is actively running on another CPU
2154 * still, just relax and busy-wait without holding
2155 * any locks.
2156 *
2157 * NOTE! Since we don't hold any locks, it's not
2158 * even sure that "rq" stays as the right runqueue!
2159 * But we don't care, since "task_running()" will
2160 * return false if the runqueue has changed and p
2161 * is actually now running somewhere else!
2162 */
2163 while (task_running(rq, p)) {
2164 if (match_state && unlikely(p->state != match_state))
2165 return 0;
2166 cpu_relax();
2167 }
2168
2169 /*
2170 * Ok, time to look more closely! We need the rq
2171 * lock now, to be *sure*. If we're wrong, we'll
2172 * just go back and repeat.
2173 */
2174 rq = task_rq_lock(p, &flags);
2175 trace_sched_wait_task(rq, p);
2176 running = task_running(rq, p);
2177 on_rq = p->se.on_rq;
2178 ncsw = 0;
2179 if (!match_state || p->state == match_state)
2180 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2181 task_rq_unlock(rq, &flags);
2182
2183 /*
2184 * If it changed from the expected state, bail out now.
2185 */
2186 if (unlikely(!ncsw))
2187 break;
2188
2189 /*
2190 * Was it really running after all now that we
2191 * checked with the proper locks actually held?
2192 *
2193 * Oops. Go back and try again..
2194 */
2195 if (unlikely(running)) {
2196 cpu_relax();
2197 continue;
2198 }
2199
2200 /*
2201 * It's not enough that it's not actively running,
2202 * it must be off the runqueue _entirely_, and not
2203 * preempted!
2204 *
2205 * So if it was still runnable (but just not actively
2206 * running right now), it's preempted, and we should
2207 * yield - it could be a while.
2208 */
2209 if (unlikely(on_rq)) {
2210 schedule_timeout_uninterruptible(1);
2211 continue;
2212 }
2213
2214 /*
2215 * Ahh, all good. It wasn't running, and it wasn't
2216 * runnable, which means that it will never become
2217 * running in the future either. We're all done!
2218 */
2219 break;
2220 }
2221
2222 return ncsw;
2223 }
2224
2225 /***
2226 * kick_process - kick a running thread to enter/exit the kernel
2227 * @p: the to-be-kicked thread
2228 *
2229 * Cause a process which is running on another CPU to enter
2230 * kernel-mode, without any delay. (to get signals handled.)
2231 *
2232 * NOTE: this function doesnt have to take the runqueue lock,
2233 * because all it wants to ensure is that the remote task enters
2234 * the kernel. If the IPI races and the task has been migrated
2235 * to another CPU then no harm is done and the purpose has been
2236 * achieved as well.
2237 */
2238 void kick_process(struct task_struct *p)
2239 {
2240 int cpu;
2241
2242 preempt_disable();
2243 cpu = task_cpu(p);
2244 if ((cpu != smp_processor_id()) && task_curr(p))
2245 smp_send_reschedule(cpu);
2246 preempt_enable();
2247 }
2248 EXPORT_SYMBOL_GPL(kick_process);
2249 #endif /* CONFIG_SMP */
2250
2251 /**
2252 * task_oncpu_function_call - call a function on the cpu on which a task runs
2253 * @p: the task to evaluate
2254 * @func: the function to be called
2255 * @info: the function call argument
2256 *
2257 * Calls the function @func when the task is currently running. This might
2258 * be on the current CPU, which just calls the function directly
2259 */
2260 void task_oncpu_function_call(struct task_struct *p,
2261 void (*func) (void *info), void *info)
2262 {
2263 int cpu;
2264
2265 preempt_disable();
2266 cpu = task_cpu(p);
2267 if (task_curr(p))
2268 smp_call_function_single(cpu, func, info, 1);
2269 preempt_enable();
2270 }
2271
2272 #ifdef CONFIG_SMP
2273 static int select_fallback_rq(int cpu, struct task_struct *p)
2274 {
2275 int dest_cpu;
2276 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2277
2278 /* Look for allowed, online CPU in same node. */
2279 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2280 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2281 return dest_cpu;
2282
2283 /* Any allowed, online CPU? */
2284 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2285 if (dest_cpu < nr_cpu_ids)
2286 return dest_cpu;
2287
2288 /* No more Mr. Nice Guy. */
2289 if (dest_cpu >= nr_cpu_ids) {
2290 rcu_read_lock();
2291 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
2292 rcu_read_unlock();
2293 dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
2294
2295 /*
2296 * Don't tell them about moving exiting tasks or
2297 * kernel threads (both mm NULL), since they never
2298 * leave kernel.
2299 */
2300 if (p->mm && printk_ratelimit()) {
2301 printk(KERN_INFO "process %d (%s) no "
2302 "longer affine to cpu%d\n",
2303 task_pid_nr(p), p->comm, cpu);
2304 }
2305 }
2306
2307 return dest_cpu;
2308 }
2309
2310 /*
2311 * Gets called from 3 sites (exec, fork, wakeup), since it is called without
2312 * holding rq->lock we need to ensure ->cpus_allowed is stable, this is done
2313 * by:
2314 *
2315 * exec: is unstable, retry loop
2316 * fork & wake-up: serialize ->cpus_allowed against TASK_WAKING
2317 */
2318 static inline
2319 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
2320 {
2321 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
2322
2323 /*
2324 * In order not to call set_task_cpu() on a blocking task we need
2325 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2326 * cpu.
2327 *
2328 * Since this is common to all placement strategies, this lives here.
2329 *
2330 * [ this allows ->select_task() to simply return task_cpu(p) and
2331 * not worry about this generic constraint ]
2332 */
2333 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
2334 !cpu_online(cpu)))
2335 cpu = select_fallback_rq(task_cpu(p), p);
2336
2337 return cpu;
2338 }
2339 #endif
2340
2341 /***
2342 * try_to_wake_up - wake up a thread
2343 * @p: the to-be-woken-up thread
2344 * @state: the mask of task states that can be woken
2345 * @sync: do a synchronous wakeup?
2346 *
2347 * Put it on the run-queue if it's not already there. The "current"
2348 * thread is always on the run-queue (except when the actual
2349 * re-schedule is in progress), and as such you're allowed to do
2350 * the simpler "current->state = TASK_RUNNING" to mark yourself
2351 * runnable without the overhead of this.
2352 *
2353 * returns failure only if the task is already active.
2354 */
2355 static int try_to_wake_up(struct task_struct *p, unsigned int state,
2356 int wake_flags)
2357 {
2358 int cpu, orig_cpu, this_cpu, success = 0;
2359 unsigned long flags;
2360 struct rq *rq;
2361
2362 if (!sched_feat(SYNC_WAKEUPS))
2363 wake_flags &= ~WF_SYNC;
2364
2365 this_cpu = get_cpu();
2366
2367 smp_wmb();
2368 rq = task_rq_lock(p, &flags);
2369 update_rq_clock(rq);
2370 if (!(p->state & state))
2371 goto out;
2372
2373 if (p->se.on_rq)
2374 goto out_running;
2375
2376 cpu = task_cpu(p);
2377 orig_cpu = cpu;
2378
2379 #ifdef CONFIG_SMP
2380 if (unlikely(task_running(rq, p)))
2381 goto out_activate;
2382
2383 /*
2384 * In order to handle concurrent wakeups and release the rq->lock
2385 * we put the task in TASK_WAKING state.
2386 *
2387 * First fix up the nr_uninterruptible count:
2388 */
2389 if (task_contributes_to_load(p))
2390 rq->nr_uninterruptible--;
2391 p->state = TASK_WAKING;
2392
2393 if (p->sched_class->task_waking)
2394 p->sched_class->task_waking(rq, p);
2395
2396 __task_rq_unlock(rq);
2397
2398 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
2399 if (cpu != orig_cpu) {
2400 /*
2401 * Since we migrate the task without holding any rq->lock,
2402 * we need to be careful with task_rq_lock(), since that
2403 * might end up locking an invalid rq.
2404 */
2405 set_task_cpu(p, cpu);
2406 }
2407
2408 rq = cpu_rq(cpu);
2409 raw_spin_lock(&rq->lock);
2410 update_rq_clock(rq);
2411
2412 /*
2413 * We migrated the task without holding either rq->lock, however
2414 * since the task is not on the task list itself, nobody else
2415 * will try and migrate the task, hence the rq should match the
2416 * cpu we just moved it to.
2417 */
2418 WARN_ON(task_cpu(p) != cpu);
2419 WARN_ON(p->state != TASK_WAKING);
2420
2421 #ifdef CONFIG_SCHEDSTATS
2422 schedstat_inc(rq, ttwu_count);
2423 if (cpu == this_cpu)
2424 schedstat_inc(rq, ttwu_local);
2425 else {
2426 struct sched_domain *sd;
2427 for_each_domain(this_cpu, sd) {
2428 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2429 schedstat_inc(sd, ttwu_wake_remote);
2430 break;
2431 }
2432 }
2433 }
2434 #endif /* CONFIG_SCHEDSTATS */
2435
2436 out_activate:
2437 #endif /* CONFIG_SMP */
2438 schedstat_inc(p, se.statistics.nr_wakeups);
2439 if (wake_flags & WF_SYNC)
2440 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2441 if (orig_cpu != cpu)
2442 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2443 if (cpu == this_cpu)
2444 schedstat_inc(p, se.statistics.nr_wakeups_local);
2445 else
2446 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2447 activate_task(rq, p, 1);
2448 success = 1;
2449
2450 out_running:
2451 trace_sched_wakeup(rq, p, success);
2452 check_preempt_curr(rq, p, wake_flags);
2453
2454 p->state = TASK_RUNNING;
2455 #ifdef CONFIG_SMP
2456 if (p->sched_class->task_woken)
2457 p->sched_class->task_woken(rq, p);
2458
2459 if (unlikely(rq->idle_stamp)) {
2460 u64 delta = rq->clock - rq->idle_stamp;
2461 u64 max = 2*sysctl_sched_migration_cost;
2462
2463 if (delta > max)
2464 rq->avg_idle = max;
2465 else
2466 update_avg(&rq->avg_idle, delta);
2467 rq->idle_stamp = 0;
2468 }
2469 #endif
2470 out:
2471 task_rq_unlock(rq, &flags);
2472 put_cpu();
2473
2474 return success;
2475 }
2476
2477 /**
2478 * wake_up_process - Wake up a specific process
2479 * @p: The process to be woken up.
2480 *
2481 * Attempt to wake up the nominated process and move it to the set of runnable
2482 * processes. Returns 1 if the process was woken up, 0 if it was already
2483 * running.
2484 *
2485 * It may be assumed that this function implies a write memory barrier before
2486 * changing the task state if and only if any tasks are woken up.
2487 */
2488 int wake_up_process(struct task_struct *p)
2489 {
2490 return try_to_wake_up(p, TASK_ALL, 0);
2491 }
2492 EXPORT_SYMBOL(wake_up_process);
2493
2494 int wake_up_state(struct task_struct *p, unsigned int state)
2495 {
2496 return try_to_wake_up(p, state, 0);
2497 }
2498
2499 /*
2500 * Perform scheduler related setup for a newly forked process p.
2501 * p is forked by current.
2502 *
2503 * __sched_fork() is basic setup used by init_idle() too:
2504 */
2505 static void __sched_fork(struct task_struct *p)
2506 {
2507 p->se.exec_start = 0;
2508 p->se.sum_exec_runtime = 0;
2509 p->se.prev_sum_exec_runtime = 0;
2510 p->se.nr_migrations = 0;
2511
2512 #ifdef CONFIG_SCHEDSTATS
2513 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2514 #endif
2515
2516 INIT_LIST_HEAD(&p->rt.run_list);
2517 p->se.on_rq = 0;
2518 INIT_LIST_HEAD(&p->se.group_node);
2519
2520 #ifdef CONFIG_PREEMPT_NOTIFIERS
2521 INIT_HLIST_HEAD(&p->preempt_notifiers);
2522 #endif
2523 }
2524
2525 /*
2526 * fork()/clone()-time setup:
2527 */
2528 void sched_fork(struct task_struct *p, int clone_flags)
2529 {
2530 int cpu = get_cpu();
2531
2532 __sched_fork(p);
2533 /*
2534 * We mark the process as waking here. This guarantees that
2535 * nobody will actually run it, and a signal or other external
2536 * event cannot wake it up and insert it on the runqueue either.
2537 */
2538 p->state = TASK_WAKING;
2539
2540 /*
2541 * Revert to default priority/policy on fork if requested.
2542 */
2543 if (unlikely(p->sched_reset_on_fork)) {
2544 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2545 p->policy = SCHED_NORMAL;
2546 p->normal_prio = p->static_prio;
2547 }
2548
2549 if (PRIO_TO_NICE(p->static_prio) < 0) {
2550 p->static_prio = NICE_TO_PRIO(0);
2551 p->normal_prio = p->static_prio;
2552 set_load_weight(p);
2553 }
2554
2555 /*
2556 * We don't need the reset flag anymore after the fork. It has
2557 * fulfilled its duty:
2558 */
2559 p->sched_reset_on_fork = 0;
2560 }
2561
2562 /*
2563 * Make sure we do not leak PI boosting priority to the child.
2564 */
2565 p->prio = current->normal_prio;
2566
2567 if (!rt_prio(p->prio))
2568 p->sched_class = &fair_sched_class;
2569
2570 if (p->sched_class->task_fork)
2571 p->sched_class->task_fork(p);
2572
2573 set_task_cpu(p, cpu);
2574
2575 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2576 if (likely(sched_info_on()))
2577 memset(&p->sched_info, 0, sizeof(p->sched_info));
2578 #endif
2579 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2580 p->oncpu = 0;
2581 #endif
2582 #ifdef CONFIG_PREEMPT
2583 /* Want to start with kernel preemption disabled. */
2584 task_thread_info(p)->preempt_count = 1;
2585 #endif
2586 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2587
2588 put_cpu();
2589 }
2590
2591 /*
2592 * wake_up_new_task - wake up a newly created task for the first time.
2593 *
2594 * This function will do some initial scheduler statistics housekeeping
2595 * that must be done for every newly created context, then puts the task
2596 * on the runqueue and wakes it.
2597 */
2598 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2599 {
2600 unsigned long flags;
2601 struct rq *rq;
2602 int cpu = get_cpu();
2603
2604 #ifdef CONFIG_SMP
2605 /*
2606 * Fork balancing, do it here and not earlier because:
2607 * - cpus_allowed can change in the fork path
2608 * - any previously selected cpu might disappear through hotplug
2609 *
2610 * We still have TASK_WAKING but PF_STARTING is gone now, meaning
2611 * ->cpus_allowed is stable, we have preemption disabled, meaning
2612 * cpu_online_mask is stable.
2613 */
2614 cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
2615 set_task_cpu(p, cpu);
2616 #endif
2617
2618 /*
2619 * Since the task is not on the rq and we still have TASK_WAKING set
2620 * nobody else will migrate this task.
2621 */
2622 rq = cpu_rq(cpu);
2623 raw_spin_lock_irqsave(&rq->lock, flags);
2624
2625 BUG_ON(p->state != TASK_WAKING);
2626 p->state = TASK_RUNNING;
2627 update_rq_clock(rq);
2628 activate_task(rq, p, 0);
2629 trace_sched_wakeup_new(rq, p, 1);
2630 check_preempt_curr(rq, p, WF_FORK);
2631 #ifdef CONFIG_SMP
2632 if (p->sched_class->task_woken)
2633 p->sched_class->task_woken(rq, p);
2634 #endif
2635 task_rq_unlock(rq, &flags);
2636 put_cpu();
2637 }
2638
2639 #ifdef CONFIG_PREEMPT_NOTIFIERS
2640
2641 /**
2642 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2643 * @notifier: notifier struct to register
2644 */
2645 void preempt_notifier_register(struct preempt_notifier *notifier)
2646 {
2647 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2648 }
2649 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2650
2651 /**
2652 * preempt_notifier_unregister - no longer interested in preemption notifications
2653 * @notifier: notifier struct to unregister
2654 *
2655 * This is safe to call from within a preemption notifier.
2656 */
2657 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2658 {
2659 hlist_del(&notifier->link);
2660 }
2661 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2662
2663 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2664 {
2665 struct preempt_notifier *notifier;
2666 struct hlist_node *node;
2667
2668 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2669 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2670 }
2671
2672 static void
2673 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2674 struct task_struct *next)
2675 {
2676 struct preempt_notifier *notifier;
2677 struct hlist_node *node;
2678
2679 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2680 notifier->ops->sched_out(notifier, next);
2681 }
2682
2683 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2684
2685 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2686 {
2687 }
2688
2689 static void
2690 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2691 struct task_struct *next)
2692 {
2693 }
2694
2695 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2696
2697 /**
2698 * prepare_task_switch - prepare to switch tasks
2699 * @rq: the runqueue preparing to switch
2700 * @prev: the current task that is being switched out
2701 * @next: the task we are going to switch to.
2702 *
2703 * This is called with the rq lock held and interrupts off. It must
2704 * be paired with a subsequent finish_task_switch after the context
2705 * switch.
2706 *
2707 * prepare_task_switch sets up locking and calls architecture specific
2708 * hooks.
2709 */
2710 static inline void
2711 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2712 struct task_struct *next)
2713 {
2714 fire_sched_out_preempt_notifiers(prev, next);
2715 prepare_lock_switch(rq, next);
2716 prepare_arch_switch(next);
2717 }
2718
2719 /**
2720 * finish_task_switch - clean up after a task-switch
2721 * @rq: runqueue associated with task-switch
2722 * @prev: the thread we just switched away from.
2723 *
2724 * finish_task_switch must be called after the context switch, paired
2725 * with a prepare_task_switch call before the context switch.
2726 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2727 * and do any other architecture-specific cleanup actions.
2728 *
2729 * Note that we may have delayed dropping an mm in context_switch(). If
2730 * so, we finish that here outside of the runqueue lock. (Doing it
2731 * with the lock held can cause deadlocks; see schedule() for
2732 * details.)
2733 */
2734 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2735 __releases(rq->lock)
2736 {
2737 struct mm_struct *mm = rq->prev_mm;
2738 long prev_state;
2739
2740 rq->prev_mm = NULL;
2741
2742 /*
2743 * A task struct has one reference for the use as "current".
2744 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2745 * schedule one last time. The schedule call will never return, and
2746 * the scheduled task must drop that reference.
2747 * The test for TASK_DEAD must occur while the runqueue locks are
2748 * still held, otherwise prev could be scheduled on another cpu, die
2749 * there before we look at prev->state, and then the reference would
2750 * be dropped twice.
2751 * Manfred Spraul <manfred@colorfullife.com>
2752 */
2753 prev_state = prev->state;
2754 finish_arch_switch(prev);
2755 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2756 local_irq_disable();
2757 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2758 perf_event_task_sched_in(current);
2759 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2760 local_irq_enable();
2761 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2762 finish_lock_switch(rq, prev);
2763
2764 fire_sched_in_preempt_notifiers(current);
2765 if (mm)
2766 mmdrop(mm);
2767 if (unlikely(prev_state == TASK_DEAD)) {
2768 /*
2769 * Remove function-return probe instances associated with this
2770 * task and put them back on the free list.
2771 */
2772 kprobe_flush_task(prev);
2773 put_task_struct(prev);
2774 }
2775 }
2776
2777 #ifdef CONFIG_SMP
2778
2779 /* assumes rq->lock is held */
2780 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2781 {
2782 if (prev->sched_class->pre_schedule)
2783 prev->sched_class->pre_schedule(rq, prev);
2784 }
2785
2786 /* rq->lock is NOT held, but preemption is disabled */
2787 static inline void post_schedule(struct rq *rq)
2788 {
2789 if (rq->post_schedule) {
2790 unsigned long flags;
2791
2792 raw_spin_lock_irqsave(&rq->lock, flags);
2793 if (rq->curr->sched_class->post_schedule)
2794 rq->curr->sched_class->post_schedule(rq);
2795 raw_spin_unlock_irqrestore(&rq->lock, flags);
2796
2797 rq->post_schedule = 0;
2798 }
2799 }
2800
2801 #else
2802
2803 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2804 {
2805 }
2806
2807 static inline void post_schedule(struct rq *rq)
2808 {
2809 }
2810
2811 #endif
2812
2813 /**
2814 * schedule_tail - first thing a freshly forked thread must call.
2815 * @prev: the thread we just switched away from.
2816 */
2817 asmlinkage void schedule_tail(struct task_struct *prev)
2818 __releases(rq->lock)
2819 {
2820 struct rq *rq = this_rq();
2821
2822 finish_task_switch(rq, prev);
2823
2824 /*
2825 * FIXME: do we need to worry about rq being invalidated by the
2826 * task_switch?
2827 */
2828 post_schedule(rq);
2829
2830 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2831 /* In this case, finish_task_switch does not reenable preemption */
2832 preempt_enable();
2833 #endif
2834 if (current->set_child_tid)
2835 put_user(task_pid_vnr(current), current->set_child_tid);
2836 }
2837
2838 /*
2839 * context_switch - switch to the new MM and the new
2840 * thread's register state.
2841 */
2842 static inline void
2843 context_switch(struct rq *rq, struct task_struct *prev,
2844 struct task_struct *next)
2845 {
2846 struct mm_struct *mm, *oldmm;
2847
2848 prepare_task_switch(rq, prev, next);
2849 trace_sched_switch(rq, prev, next);
2850 mm = next->mm;
2851 oldmm = prev->active_mm;
2852 /*
2853 * For paravirt, this is coupled with an exit in switch_to to
2854 * combine the page table reload and the switch backend into
2855 * one hypercall.
2856 */
2857 arch_start_context_switch(prev);
2858
2859 if (likely(!mm)) {
2860 next->active_mm = oldmm;
2861 atomic_inc(&oldmm->mm_count);
2862 enter_lazy_tlb(oldmm, next);
2863 } else
2864 switch_mm(oldmm, mm, next);
2865
2866 if (likely(!prev->mm)) {
2867 prev->active_mm = NULL;
2868 rq->prev_mm = oldmm;
2869 }
2870 /*
2871 * Since the runqueue lock will be released by the next
2872 * task (which is an invalid locking op but in the case
2873 * of the scheduler it's an obvious special-case), so we
2874 * do an early lockdep release here:
2875 */
2876 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2877 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2878 #endif
2879
2880 /* Here we just switch the register state and the stack. */
2881 switch_to(prev, next, prev);
2882
2883 barrier();
2884 /*
2885 * this_rq must be evaluated again because prev may have moved
2886 * CPUs since it called schedule(), thus the 'rq' on its stack
2887 * frame will be invalid.
2888 */
2889 finish_task_switch(this_rq(), prev);
2890 }
2891
2892 /*
2893 * nr_running, nr_uninterruptible and nr_context_switches:
2894 *
2895 * externally visible scheduler statistics: current number of runnable
2896 * threads, current number of uninterruptible-sleeping threads, total
2897 * number of context switches performed since bootup.
2898 */
2899 unsigned long nr_running(void)
2900 {
2901 unsigned long i, sum = 0;
2902
2903 for_each_online_cpu(i)
2904 sum += cpu_rq(i)->nr_running;
2905
2906 return sum;
2907 }
2908
2909 unsigned long nr_uninterruptible(void)
2910 {
2911 unsigned long i, sum = 0;
2912
2913 for_each_possible_cpu(i)
2914 sum += cpu_rq(i)->nr_uninterruptible;
2915
2916 /*
2917 * Since we read the counters lockless, it might be slightly
2918 * inaccurate. Do not allow it to go below zero though:
2919 */
2920 if (unlikely((long)sum < 0))
2921 sum = 0;
2922
2923 return sum;
2924 }
2925
2926 unsigned long long nr_context_switches(void)
2927 {
2928 int i;
2929 unsigned long long sum = 0;
2930
2931 for_each_possible_cpu(i)
2932 sum += cpu_rq(i)->nr_switches;
2933
2934 return sum;
2935 }
2936
2937 unsigned long nr_iowait(void)
2938 {
2939 unsigned long i, sum = 0;
2940
2941 for_each_possible_cpu(i)
2942 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2943
2944 return sum;
2945 }
2946
2947 unsigned long nr_iowait_cpu(void)
2948 {
2949 struct rq *this = this_rq();
2950 return atomic_read(&this->nr_iowait);
2951 }
2952
2953 unsigned long this_cpu_load(void)
2954 {
2955 struct rq *this = this_rq();
2956 return this->cpu_load[0];
2957 }
2958
2959
2960 /* Variables and functions for calc_load */
2961 static atomic_long_t calc_load_tasks;
2962 static unsigned long calc_load_update;
2963 unsigned long avenrun[3];
2964 EXPORT_SYMBOL(avenrun);
2965
2966 /**
2967 * get_avenrun - get the load average array
2968 * @loads: pointer to dest load array
2969 * @offset: offset to add
2970 * @shift: shift count to shift the result left
2971 *
2972 * These values are estimates at best, so no need for locking.
2973 */
2974 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2975 {
2976 loads[0] = (avenrun[0] + offset) << shift;
2977 loads[1] = (avenrun[1] + offset) << shift;
2978 loads[2] = (avenrun[2] + offset) << shift;
2979 }
2980
2981 static unsigned long
2982 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2983 {
2984 load *= exp;
2985 load += active * (FIXED_1 - exp);
2986 return load >> FSHIFT;
2987 }
2988
2989 /*
2990 * calc_load - update the avenrun load estimates 10 ticks after the
2991 * CPUs have updated calc_load_tasks.
2992 */
2993 void calc_global_load(void)
2994 {
2995 unsigned long upd = calc_load_update + 10;
2996 long active;
2997
2998 if (time_before(jiffies, upd))
2999 return;
3000
3001 active = atomic_long_read(&calc_load_tasks);
3002 active = active > 0 ? active * FIXED_1 : 0;
3003
3004 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3005 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3006 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3007
3008 calc_load_update += LOAD_FREQ;
3009 }
3010
3011 /*
3012 * Either called from update_cpu_load() or from a cpu going idle
3013 */
3014 static void calc_load_account_active(struct rq *this_rq)
3015 {
3016 long nr_active, delta;
3017
3018 nr_active = this_rq->nr_running;
3019 nr_active += (long) this_rq->nr_uninterruptible;
3020
3021 if (nr_active != this_rq->calc_load_active) {
3022 delta = nr_active - this_rq->calc_load_active;
3023 this_rq->calc_load_active = nr_active;
3024 atomic_long_add(delta, &calc_load_tasks);
3025 }
3026 }
3027
3028 /*
3029 * Update rq->cpu_load[] statistics. This function is usually called every
3030 * scheduler tick (TICK_NSEC).
3031 */
3032 static void update_cpu_load(struct rq *this_rq)
3033 {
3034 unsigned long this_load = this_rq->load.weight;
3035 int i, scale;
3036
3037 this_rq->nr_load_updates++;
3038
3039 /* Update our load: */
3040 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3041 unsigned long old_load, new_load;
3042
3043 /* scale is effectively 1 << i now, and >> i divides by scale */
3044
3045 old_load = this_rq->cpu_load[i];
3046 new_load = this_load;
3047 /*
3048 * Round up the averaging division if load is increasing. This
3049 * prevents us from getting stuck on 9 if the load is 10, for
3050 * example.
3051 */
3052 if (new_load > old_load)
3053 new_load += scale-1;
3054 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3055 }
3056
3057 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3058 this_rq->calc_load_update += LOAD_FREQ;
3059 calc_load_account_active(this_rq);
3060 }
3061 }
3062
3063 #ifdef CONFIG_SMP
3064
3065 /*
3066 * sched_exec - execve() is a valuable balancing opportunity, because at
3067 * this point the task has the smallest effective memory and cache footprint.
3068 */
3069 void sched_exec(void)
3070 {
3071 struct task_struct *p = current;
3072 struct migration_req req;
3073 int dest_cpu, this_cpu;
3074 unsigned long flags;
3075 struct rq *rq;
3076
3077 again:
3078 this_cpu = get_cpu();
3079 dest_cpu = select_task_rq(p, SD_BALANCE_EXEC, 0);
3080 if (dest_cpu == this_cpu) {
3081 put_cpu();
3082 return;
3083 }
3084
3085 rq = task_rq_lock(p, &flags);
3086 put_cpu();
3087
3088 /*
3089 * select_task_rq() can race against ->cpus_allowed
3090 */
3091 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3092 || unlikely(!cpu_active(dest_cpu))) {
3093 task_rq_unlock(rq, &flags);
3094 goto again;
3095 }
3096
3097 /* force the process onto the specified CPU */
3098 if (migrate_task(p, dest_cpu, &req)) {
3099 /* Need to wait for migration thread (might exit: take ref). */
3100 struct task_struct *mt = rq->migration_thread;
3101
3102 get_task_struct(mt);
3103 task_rq_unlock(rq, &flags);
3104 wake_up_process(mt);
3105 put_task_struct(mt);
3106 wait_for_completion(&req.done);
3107
3108 return;
3109 }
3110 task_rq_unlock(rq, &flags);
3111 }
3112
3113 #endif
3114
3115 DEFINE_PER_CPU(struct kernel_stat, kstat);
3116
3117 EXPORT_PER_CPU_SYMBOL(kstat);
3118
3119 /*
3120 * Return any ns on the sched_clock that have not yet been accounted in
3121 * @p in case that task is currently running.
3122 *
3123 * Called with task_rq_lock() held on @rq.
3124 */
3125 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3126 {
3127 u64 ns = 0;
3128
3129 if (task_current(rq, p)) {
3130 update_rq_clock(rq);
3131 ns = rq->clock - p->se.exec_start;
3132 if ((s64)ns < 0)
3133 ns = 0;
3134 }
3135
3136 return ns;
3137 }
3138
3139 unsigned long long task_delta_exec(struct task_struct *p)
3140 {
3141 unsigned long flags;
3142 struct rq *rq;
3143 u64 ns = 0;
3144
3145 rq = task_rq_lock(p, &flags);
3146 ns = do_task_delta_exec(p, rq);
3147 task_rq_unlock(rq, &flags);
3148
3149 return ns;
3150 }
3151
3152 /*
3153 * Return accounted runtime for the task.
3154 * In case the task is currently running, return the runtime plus current's
3155 * pending runtime that have not been accounted yet.
3156 */
3157 unsigned long long task_sched_runtime(struct task_struct *p)
3158 {
3159 unsigned long flags;
3160 struct rq *rq;
3161 u64 ns = 0;
3162
3163 rq = task_rq_lock(p, &flags);
3164 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3165 task_rq_unlock(rq, &flags);
3166
3167 return ns;
3168 }
3169
3170 /*
3171 * Return sum_exec_runtime for the thread group.
3172 * In case the task is currently running, return the sum plus current's
3173 * pending runtime that have not been accounted yet.
3174 *
3175 * Note that the thread group might have other running tasks as well,
3176 * so the return value not includes other pending runtime that other
3177 * running tasks might have.
3178 */
3179 unsigned long long thread_group_sched_runtime(struct task_struct *p)
3180 {
3181 struct task_cputime totals;
3182 unsigned long flags;
3183 struct rq *rq;
3184 u64 ns;
3185
3186 rq = task_rq_lock(p, &flags);
3187 thread_group_cputime(p, &totals);
3188 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3189 task_rq_unlock(rq, &flags);
3190
3191 return ns;
3192 }
3193
3194 /*
3195 * Account user cpu time to a process.
3196 * @p: the process that the cpu time gets accounted to
3197 * @cputime: the cpu time spent in user space since the last update
3198 * @cputime_scaled: cputime scaled by cpu frequency
3199 */
3200 void account_user_time(struct task_struct *p, cputime_t cputime,
3201 cputime_t cputime_scaled)
3202 {
3203 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3204 cputime64_t tmp;
3205
3206 /* Add user time to process. */
3207 p->utime = cputime_add(p->utime, cputime);
3208 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3209 account_group_user_time(p, cputime);
3210
3211 /* Add user time to cpustat. */
3212 tmp = cputime_to_cputime64(cputime);
3213 if (TASK_NICE(p) > 0)
3214 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3215 else
3216 cpustat->user = cputime64_add(cpustat->user, tmp);
3217
3218 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3219 /* Account for user time used */
3220 acct_update_integrals(p);
3221 }
3222
3223 /*
3224 * Account guest cpu time to a process.
3225 * @p: the process that the cpu time gets accounted to
3226 * @cputime: the cpu time spent in virtual machine since the last update
3227 * @cputime_scaled: cputime scaled by cpu frequency
3228 */
3229 static void account_guest_time(struct task_struct *p, cputime_t cputime,
3230 cputime_t cputime_scaled)
3231 {
3232 cputime64_t tmp;
3233 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3234
3235 tmp = cputime_to_cputime64(cputime);
3236
3237 /* Add guest time to process. */
3238 p->utime = cputime_add(p->utime, cputime);
3239 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3240 account_group_user_time(p, cputime);
3241 p->gtime = cputime_add(p->gtime, cputime);
3242
3243 /* Add guest time to cpustat. */
3244 if (TASK_NICE(p) > 0) {
3245 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3246 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3247 } else {
3248 cpustat->user = cputime64_add(cpustat->user, tmp);
3249 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3250 }
3251 }
3252
3253 /*
3254 * Account system cpu time to a process.
3255 * @p: the process that the cpu time gets accounted to
3256 * @hardirq_offset: the offset to subtract from hardirq_count()
3257 * @cputime: the cpu time spent in kernel space since the last update
3258 * @cputime_scaled: cputime scaled by cpu frequency
3259 */
3260 void account_system_time(struct task_struct *p, int hardirq_offset,
3261 cputime_t cputime, cputime_t cputime_scaled)
3262 {
3263 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3264 cputime64_t tmp;
3265
3266 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3267 account_guest_time(p, cputime, cputime_scaled);
3268 return;
3269 }
3270
3271 /* Add system time to process. */
3272 p->stime = cputime_add(p->stime, cputime);
3273 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3274 account_group_system_time(p, cputime);
3275
3276 /* Add system time to cpustat. */
3277 tmp = cputime_to_cputime64(cputime);
3278 if (hardirq_count() - hardirq_offset)
3279 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3280 else if (softirq_count())
3281 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3282 else
3283 cpustat->system = cputime64_add(cpustat->system, tmp);
3284
3285 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3286
3287 /* Account for system time used */
3288 acct_update_integrals(p);
3289 }
3290
3291 /*
3292 * Account for involuntary wait time.
3293 * @steal: the cpu time spent in involuntary wait
3294 */
3295 void account_steal_time(cputime_t cputime)
3296 {
3297 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3298 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3299
3300 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3301 }
3302
3303 /*
3304 * Account for idle time.
3305 * @cputime: the cpu time spent in idle wait
3306 */
3307 void account_idle_time(cputime_t cputime)
3308 {
3309 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3310 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3311 struct rq *rq = this_rq();
3312
3313 if (atomic_read(&rq->nr_iowait) > 0)
3314 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3315 else
3316 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
3317 }
3318
3319 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
3320
3321 /*
3322 * Account a single tick of cpu time.
3323 * @p: the process that the cpu time gets accounted to
3324 * @user_tick: indicates if the tick is a user or a system tick
3325 */
3326 void account_process_tick(struct task_struct *p, int user_tick)
3327 {
3328 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3329 struct rq *rq = this_rq();
3330
3331 if (user_tick)
3332 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3333 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3334 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3335 one_jiffy_scaled);
3336 else
3337 account_idle_time(cputime_one_jiffy);
3338 }
3339
3340 /*
3341 * Account multiple ticks of steal time.
3342 * @p: the process from which the cpu time has been stolen
3343 * @ticks: number of stolen ticks
3344 */
3345 void account_steal_ticks(unsigned long ticks)
3346 {
3347 account_steal_time(jiffies_to_cputime(ticks));
3348 }
3349
3350 /*
3351 * Account multiple ticks of idle time.
3352 * @ticks: number of stolen ticks
3353 */
3354 void account_idle_ticks(unsigned long ticks)
3355 {
3356 account_idle_time(jiffies_to_cputime(ticks));
3357 }
3358
3359 #endif
3360
3361 /*
3362 * Use precise platform statistics if available:
3363 */
3364 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
3365 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3366 {
3367 *ut = p->utime;
3368 *st = p->stime;
3369 }
3370
3371 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3372 {
3373 struct task_cputime cputime;
3374
3375 thread_group_cputime(p, &cputime);
3376
3377 *ut = cputime.utime;
3378 *st = cputime.stime;
3379 }
3380 #else
3381
3382 #ifndef nsecs_to_cputime
3383 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
3384 #endif
3385
3386 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3387 {
3388 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
3389
3390 /*
3391 * Use CFS's precise accounting:
3392 */
3393 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3394
3395 if (total) {
3396 u64 temp;
3397
3398 temp = (u64)(rtime * utime);
3399 do_div(temp, total);
3400 utime = (cputime_t)temp;
3401 } else
3402 utime = rtime;
3403
3404 /*
3405 * Compare with previous values, to keep monotonicity:
3406 */
3407 p->prev_utime = max(p->prev_utime, utime);
3408 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
3409
3410 *ut = p->prev_utime;
3411 *st = p->prev_stime;
3412 }
3413
3414 /*
3415 * Must be called with siglock held.
3416 */
3417 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3418 {
3419 struct signal_struct *sig = p->signal;
3420 struct task_cputime cputime;
3421 cputime_t rtime, utime, total;
3422
3423 thread_group_cputime(p, &cputime);
3424
3425 total = cputime_add(cputime.utime, cputime.stime);
3426 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3427
3428 if (total) {
3429 u64 temp;
3430
3431 temp = (u64)(rtime * cputime.utime);
3432 do_div(temp, total);
3433 utime = (cputime_t)temp;
3434 } else
3435 utime = rtime;
3436
3437 sig->prev_utime = max(sig->prev_utime, utime);
3438 sig->prev_stime = max(sig->prev_stime,
3439 cputime_sub(rtime, sig->prev_utime));
3440
3441 *ut = sig->prev_utime;
3442 *st = sig->prev_stime;
3443 }
3444 #endif
3445
3446 /*
3447 * This function gets called by the timer code, with HZ frequency.
3448 * We call it with interrupts disabled.
3449 *
3450 * It also gets called by the fork code, when changing the parent's
3451 * timeslices.
3452 */
3453 void scheduler_tick(void)
3454 {
3455 int cpu = smp_processor_id();
3456 struct rq *rq = cpu_rq(cpu);
3457 struct task_struct *curr = rq->curr;
3458
3459 sched_clock_tick();
3460
3461 raw_spin_lock(&rq->lock);
3462 update_rq_clock(rq);
3463 update_cpu_load(rq);
3464 curr->sched_class->task_tick(rq, curr, 0);
3465 raw_spin_unlock(&rq->lock);
3466
3467 perf_event_task_tick(curr);
3468
3469 #ifdef CONFIG_SMP
3470 rq->idle_at_tick = idle_cpu(cpu);
3471 trigger_load_balance(rq, cpu);
3472 #endif
3473 }
3474
3475 notrace unsigned long get_parent_ip(unsigned long addr)
3476 {
3477 if (in_lock_functions(addr)) {
3478 addr = CALLER_ADDR2;
3479 if (in_lock_functions(addr))
3480 addr = CALLER_ADDR3;
3481 }
3482 return addr;
3483 }
3484
3485 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3486 defined(CONFIG_PREEMPT_TRACER))
3487
3488 void __kprobes add_preempt_count(int val)
3489 {
3490 #ifdef CONFIG_DEBUG_PREEMPT
3491 /*
3492 * Underflow?
3493 */
3494 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3495 return;
3496 #endif
3497 preempt_count() += val;
3498 #ifdef CONFIG_DEBUG_PREEMPT
3499 /*
3500 * Spinlock count overflowing soon?
3501 */
3502 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3503 PREEMPT_MASK - 10);
3504 #endif
3505 if (preempt_count() == val)
3506 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3507 }
3508 EXPORT_SYMBOL(add_preempt_count);
3509
3510 void __kprobes sub_preempt_count(int val)
3511 {
3512 #ifdef CONFIG_DEBUG_PREEMPT
3513 /*
3514 * Underflow?
3515 */
3516 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3517 return;
3518 /*
3519 * Is the spinlock portion underflowing?
3520 */
3521 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3522 !(preempt_count() & PREEMPT_MASK)))
3523 return;
3524 #endif
3525
3526 if (preempt_count() == val)
3527 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3528 preempt_count() -= val;
3529 }
3530 EXPORT_SYMBOL(sub_preempt_count);
3531
3532 #endif
3533
3534 /*
3535 * Print scheduling while atomic bug:
3536 */
3537 static noinline void __schedule_bug(struct task_struct *prev)
3538 {
3539 struct pt_regs *regs = get_irq_regs();
3540
3541 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3542 prev->comm, prev->pid, preempt_count());
3543
3544 debug_show_held_locks(prev);
3545 print_modules();
3546 if (irqs_disabled())
3547 print_irqtrace_events(prev);
3548
3549 if (regs)
3550 show_regs(regs);
3551 else
3552 dump_stack();
3553 }
3554
3555 /*
3556 * Various schedule()-time debugging checks and statistics:
3557 */
3558 static inline void schedule_debug(struct task_struct *prev)
3559 {
3560 /*
3561 * Test if we are atomic. Since do_exit() needs to call into
3562 * schedule() atomically, we ignore that path for now.
3563 * Otherwise, whine if we are scheduling when we should not be.
3564 */
3565 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
3566 __schedule_bug(prev);
3567
3568 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3569
3570 schedstat_inc(this_rq(), sched_count);
3571 #ifdef CONFIG_SCHEDSTATS
3572 if (unlikely(prev->lock_depth >= 0)) {
3573 schedstat_inc(this_rq(), bkl_count);
3574 schedstat_inc(prev, sched_info.bkl_count);
3575 }
3576 #endif
3577 }
3578
3579 static void put_prev_task(struct rq *rq, struct task_struct *prev)
3580 {
3581 prev->sched_class->put_prev_task(rq, prev);
3582 }
3583
3584 /*
3585 * Pick up the highest-prio task:
3586 */
3587 static inline struct task_struct *
3588 pick_next_task(struct rq *rq)
3589 {
3590 const struct sched_class *class;
3591 struct task_struct *p;
3592
3593 /*
3594 * Optimization: we know that if all tasks are in
3595 * the fair class we can call that function directly:
3596 */
3597 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3598 p = fair_sched_class.pick_next_task(rq);
3599 if (likely(p))
3600 return p;
3601 }
3602
3603 class = sched_class_highest;
3604 for ( ; ; ) {
3605 p = class->pick_next_task(rq);
3606 if (p)
3607 return p;
3608 /*
3609 * Will never be NULL as the idle class always
3610 * returns a non-NULL p:
3611 */
3612 class = class->next;
3613 }
3614 }
3615
3616 /*
3617 * schedule() is the main scheduler function.
3618 */
3619 asmlinkage void __sched schedule(void)
3620 {
3621 struct task_struct *prev, *next;
3622 unsigned long *switch_count;
3623 struct rq *rq;
3624 int cpu;
3625
3626 need_resched:
3627 preempt_disable();
3628 cpu = smp_processor_id();
3629 rq = cpu_rq(cpu);
3630 rcu_sched_qs(cpu);
3631 prev = rq->curr;
3632 switch_count = &prev->nivcsw;
3633
3634 release_kernel_lock(prev);
3635 need_resched_nonpreemptible:
3636
3637 schedule_debug(prev);
3638
3639 if (sched_feat(HRTICK))
3640 hrtick_clear(rq);
3641
3642 raw_spin_lock_irq(&rq->lock);
3643 update_rq_clock(rq);
3644 clear_tsk_need_resched(prev);
3645
3646 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3647 if (unlikely(signal_pending_state(prev->state, prev)))
3648 prev->state = TASK_RUNNING;
3649 else
3650 deactivate_task(rq, prev, 1);
3651 switch_count = &prev->nvcsw;
3652 }
3653
3654 pre_schedule(rq, prev);
3655
3656 if (unlikely(!rq->nr_running))
3657 idle_balance(cpu, rq);
3658
3659 put_prev_task(rq, prev);
3660 next = pick_next_task(rq);
3661
3662 if (likely(prev != next)) {
3663 sched_info_switch(prev, next);
3664 perf_event_task_sched_out(prev, next);
3665
3666 rq->nr_switches++;
3667 rq->curr = next;
3668 ++*switch_count;
3669
3670 context_switch(rq, prev, next); /* unlocks the rq */
3671 /*
3672 * the context switch might have flipped the stack from under
3673 * us, hence refresh the local variables.
3674 */
3675 cpu = smp_processor_id();
3676 rq = cpu_rq(cpu);
3677 } else
3678 raw_spin_unlock_irq(&rq->lock);
3679
3680 post_schedule(rq);
3681
3682 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3683 prev = rq->curr;
3684 switch_count = &prev->nivcsw;
3685 goto need_resched_nonpreemptible;
3686 }
3687
3688 preempt_enable_no_resched();
3689 if (need_resched())
3690 goto need_resched;
3691 }
3692 EXPORT_SYMBOL(schedule);
3693
3694 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3695 /*
3696 * Look out! "owner" is an entirely speculative pointer
3697 * access and not reliable.
3698 */
3699 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
3700 {
3701 unsigned int cpu;
3702 struct rq *rq;
3703
3704 if (!sched_feat(OWNER_SPIN))
3705 return 0;
3706
3707 #ifdef CONFIG_DEBUG_PAGEALLOC
3708 /*
3709 * Need to access the cpu field knowing that
3710 * DEBUG_PAGEALLOC could have unmapped it if
3711 * the mutex owner just released it and exited.
3712 */
3713 if (probe_kernel_address(&owner->cpu, cpu))
3714 goto out;
3715 #else
3716 cpu = owner->cpu;
3717 #endif
3718
3719 /*
3720 * Even if the access succeeded (likely case),
3721 * the cpu field may no longer be valid.
3722 */
3723 if (cpu >= nr_cpumask_bits)
3724 goto out;
3725
3726 /*
3727 * We need to validate that we can do a
3728 * get_cpu() and that we have the percpu area.
3729 */
3730 if (!cpu_online(cpu))
3731 goto out;
3732
3733 rq = cpu_rq(cpu);
3734
3735 for (;;) {
3736 /*
3737 * Owner changed, break to re-assess state.
3738 */
3739 if (lock->owner != owner)
3740 break;
3741
3742 /*
3743 * Is that owner really running on that cpu?
3744 */
3745 if (task_thread_info(rq->curr) != owner || need_resched())
3746 return 0;
3747
3748 cpu_relax();
3749 }
3750 out:
3751 return 1;
3752 }
3753 #endif
3754
3755 #ifdef CONFIG_PREEMPT
3756 /*
3757 * this is the entry point to schedule() from in-kernel preemption
3758 * off of preempt_enable. Kernel preemptions off return from interrupt
3759 * occur there and call schedule directly.
3760 */
3761 asmlinkage void __sched preempt_schedule(void)
3762 {
3763 struct thread_info *ti = current_thread_info();
3764
3765 /*
3766 * If there is a non-zero preempt_count or interrupts are disabled,
3767 * we do not want to preempt the current task. Just return..
3768 */
3769 if (likely(ti->preempt_count || irqs_disabled()))
3770 return;
3771
3772 do {
3773 add_preempt_count(PREEMPT_ACTIVE);
3774 schedule();
3775 sub_preempt_count(PREEMPT_ACTIVE);
3776
3777 /*
3778 * Check again in case we missed a preemption opportunity
3779 * between schedule and now.
3780 */
3781 barrier();
3782 } while (need_resched());
3783 }
3784 EXPORT_SYMBOL(preempt_schedule);
3785
3786 /*
3787 * this is the entry point to schedule() from kernel preemption
3788 * off of irq context.
3789 * Note, that this is called and return with irqs disabled. This will
3790 * protect us against recursive calling from irq.
3791 */
3792 asmlinkage void __sched preempt_schedule_irq(void)
3793 {
3794 struct thread_info *ti = current_thread_info();
3795
3796 /* Catch callers which need to be fixed */
3797 BUG_ON(ti->preempt_count || !irqs_disabled());
3798
3799 do {
3800 add_preempt_count(PREEMPT_ACTIVE);
3801 local_irq_enable();
3802 schedule();
3803 local_irq_disable();
3804 sub_preempt_count(PREEMPT_ACTIVE);
3805
3806 /*
3807 * Check again in case we missed a preemption opportunity
3808 * between schedule and now.
3809 */
3810 barrier();
3811 } while (need_resched());
3812 }
3813
3814 #endif /* CONFIG_PREEMPT */
3815
3816 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3817 void *key)
3818 {
3819 return try_to_wake_up(curr->private, mode, wake_flags);
3820 }
3821 EXPORT_SYMBOL(default_wake_function);
3822
3823 /*
3824 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3825 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3826 * number) then we wake all the non-exclusive tasks and one exclusive task.
3827 *
3828 * There are circumstances in which we can try to wake a task which has already
3829 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3830 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3831 */
3832 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3833 int nr_exclusive, int wake_flags, void *key)
3834 {
3835 wait_queue_t *curr, *next;
3836
3837 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3838 unsigned flags = curr->flags;
3839
3840 if (curr->func(curr, mode, wake_flags, key) &&
3841 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3842 break;
3843 }
3844 }
3845
3846 /**
3847 * __wake_up - wake up threads blocked on a waitqueue.
3848 * @q: the waitqueue
3849 * @mode: which threads
3850 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3851 * @key: is directly passed to the wakeup function
3852 *
3853 * It may be assumed that this function implies a write memory barrier before
3854 * changing the task state if and only if any tasks are woken up.
3855 */
3856 void __wake_up(wait_queue_head_t *q, unsigned int mode,
3857 int nr_exclusive, void *key)
3858 {
3859 unsigned long flags;
3860
3861 spin_lock_irqsave(&q->lock, flags);
3862 __wake_up_common(q, mode, nr_exclusive, 0, key);
3863 spin_unlock_irqrestore(&q->lock, flags);
3864 }
3865 EXPORT_SYMBOL(__wake_up);
3866
3867 /*
3868 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3869 */
3870 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3871 {
3872 __wake_up_common(q, mode, 1, 0, NULL);
3873 }
3874
3875 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3876 {
3877 __wake_up_common(q, mode, 1, 0, key);
3878 }
3879
3880 /**
3881 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3882 * @q: the waitqueue
3883 * @mode: which threads
3884 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3885 * @key: opaque value to be passed to wakeup targets
3886 *
3887 * The sync wakeup differs that the waker knows that it will schedule
3888 * away soon, so while the target thread will be woken up, it will not
3889 * be migrated to another CPU - ie. the two threads are 'synchronized'
3890 * with each other. This can prevent needless bouncing between CPUs.
3891 *
3892 * On UP it can prevent extra preemption.
3893 *
3894 * It may be assumed that this function implies a write memory barrier before
3895 * changing the task state if and only if any tasks are woken up.
3896 */
3897 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3898 int nr_exclusive, void *key)
3899 {
3900 unsigned long flags;
3901 int wake_flags = WF_SYNC;
3902
3903 if (unlikely(!q))
3904 return;
3905
3906 if (unlikely(!nr_exclusive))
3907 wake_flags = 0;
3908
3909 spin_lock_irqsave(&q->lock, flags);
3910 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3911 spin_unlock_irqrestore(&q->lock, flags);
3912 }
3913 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3914
3915 /*
3916 * __wake_up_sync - see __wake_up_sync_key()
3917 */
3918 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3919 {
3920 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3921 }
3922 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3923
3924 /**
3925 * complete: - signals a single thread waiting on this completion
3926 * @x: holds the state of this particular completion
3927 *
3928 * This will wake up a single thread waiting on this completion. Threads will be
3929 * awakened in the same order in which they were queued.
3930 *
3931 * See also complete_all(), wait_for_completion() and related routines.
3932 *
3933 * It may be assumed that this function implies a write memory barrier before
3934 * changing the task state if and only if any tasks are woken up.
3935 */
3936 void complete(struct completion *x)
3937 {
3938 unsigned long flags;
3939
3940 spin_lock_irqsave(&x->wait.lock, flags);
3941 x->done++;
3942 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3943 spin_unlock_irqrestore(&x->wait.lock, flags);
3944 }
3945 EXPORT_SYMBOL(complete);
3946
3947 /**
3948 * complete_all: - signals all threads waiting on this completion
3949 * @x: holds the state of this particular completion
3950 *
3951 * This will wake up all threads waiting on this particular completion event.
3952 *
3953 * It may be assumed that this function implies a write memory barrier before
3954 * changing the task state if and only if any tasks are woken up.
3955 */
3956 void complete_all(struct completion *x)
3957 {
3958 unsigned long flags;
3959
3960 spin_lock_irqsave(&x->wait.lock, flags);
3961 x->done += UINT_MAX/2;
3962 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
3963 spin_unlock_irqrestore(&x->wait.lock, flags);
3964 }
3965 EXPORT_SYMBOL(complete_all);
3966
3967 static inline long __sched
3968 do_wait_for_common(struct completion *x, long timeout, int state)
3969 {
3970 if (!x->done) {
3971 DECLARE_WAITQUEUE(wait, current);
3972
3973 wait.flags |= WQ_FLAG_EXCLUSIVE;
3974 __add_wait_queue_tail(&x->wait, &wait);
3975 do {
3976 if (signal_pending_state(state, current)) {
3977 timeout = -ERESTARTSYS;
3978 break;
3979 }
3980 __set_current_state(state);
3981 spin_unlock_irq(&x->wait.lock);
3982 timeout = schedule_timeout(timeout);
3983 spin_lock_irq(&x->wait.lock);
3984 } while (!x->done && timeout);
3985 __remove_wait_queue(&x->wait, &wait);
3986 if (!x->done)
3987 return timeout;
3988 }
3989 x->done--;
3990 return timeout ?: 1;
3991 }
3992
3993 static long __sched
3994 wait_for_common(struct completion *x, long timeout, int state)
3995 {
3996 might_sleep();
3997
3998 spin_lock_irq(&x->wait.lock);
3999 timeout = do_wait_for_common(x, timeout, state);
4000 spin_unlock_irq(&x->wait.lock);
4001 return timeout;
4002 }
4003
4004 /**
4005 * wait_for_completion: - waits for completion of a task
4006 * @x: holds the state of this particular completion
4007 *
4008 * This waits to be signaled for completion of a specific task. It is NOT
4009 * interruptible and there is no timeout.
4010 *
4011 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4012 * and interrupt capability. Also see complete().
4013 */
4014 void __sched wait_for_completion(struct completion *x)
4015 {
4016 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4017 }
4018 EXPORT_SYMBOL(wait_for_completion);
4019
4020 /**
4021 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4022 * @x: holds the state of this particular completion
4023 * @timeout: timeout value in jiffies
4024 *
4025 * This waits for either a completion of a specific task to be signaled or for a
4026 * specified timeout to expire. The timeout is in jiffies. It is not
4027 * interruptible.
4028 */
4029 unsigned long __sched
4030 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4031 {
4032 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4033 }
4034 EXPORT_SYMBOL(wait_for_completion_timeout);
4035
4036 /**
4037 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4038 * @x: holds the state of this particular completion
4039 *
4040 * This waits for completion of a specific task to be signaled. It is
4041 * interruptible.
4042 */
4043 int __sched wait_for_completion_interruptible(struct completion *x)
4044 {
4045 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4046 if (t == -ERESTARTSYS)
4047 return t;
4048 return 0;
4049 }
4050 EXPORT_SYMBOL(wait_for_completion_interruptible);
4051
4052 /**
4053 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4054 * @x: holds the state of this particular completion
4055 * @timeout: timeout value in jiffies
4056 *
4057 * This waits for either a completion of a specific task to be signaled or for a
4058 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4059 */
4060 unsigned long __sched
4061 wait_for_completion_interruptible_timeout(struct completion *x,
4062 unsigned long timeout)
4063 {
4064 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4065 }
4066 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4067
4068 /**
4069 * wait_for_completion_killable: - waits for completion of a task (killable)
4070 * @x: holds the state of this particular completion
4071 *
4072 * This waits to be signaled for completion of a specific task. It can be
4073 * interrupted by a kill signal.
4074 */
4075 int __sched wait_for_completion_killable(struct completion *x)
4076 {
4077 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4078 if (t == -ERESTARTSYS)
4079 return t;
4080 return 0;
4081 }
4082 EXPORT_SYMBOL(wait_for_completion_killable);
4083
4084 /**
4085 * try_wait_for_completion - try to decrement a completion without blocking
4086 * @x: completion structure
4087 *
4088 * Returns: 0 if a decrement cannot be done without blocking
4089 * 1 if a decrement succeeded.
4090 *
4091 * If a completion is being used as a counting completion,
4092 * attempt to decrement the counter without blocking. This
4093 * enables us to avoid waiting if the resource the completion
4094 * is protecting is not available.
4095 */
4096 bool try_wait_for_completion(struct completion *x)
4097 {
4098 unsigned long flags;
4099 int ret = 1;
4100
4101 spin_lock_irqsave(&x->wait.lock, flags);
4102 if (!x->done)
4103 ret = 0;
4104 else
4105 x->done--;
4106 spin_unlock_irqrestore(&x->wait.lock, flags);
4107 return ret;
4108 }
4109 EXPORT_SYMBOL(try_wait_for_completion);
4110
4111 /**
4112 * completion_done - Test to see if a completion has any waiters
4113 * @x: completion structure
4114 *
4115 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4116 * 1 if there are no waiters.
4117 *
4118 */
4119 bool completion_done(struct completion *x)
4120 {
4121 unsigned long flags;
4122 int ret = 1;
4123
4124 spin_lock_irqsave(&x->wait.lock, flags);
4125 if (!x->done)
4126 ret = 0;
4127 spin_unlock_irqrestore(&x->wait.lock, flags);
4128 return ret;
4129 }
4130 EXPORT_SYMBOL(completion_done);
4131
4132 static long __sched
4133 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4134 {
4135 unsigned long flags;
4136 wait_queue_t wait;
4137
4138 init_waitqueue_entry(&wait, current);
4139
4140 __set_current_state(state);
4141
4142 spin_lock_irqsave(&q->lock, flags);
4143 __add_wait_queue(q, &wait);
4144 spin_unlock(&q->lock);
4145 timeout = schedule_timeout(timeout);
4146 spin_lock_irq(&q->lock);
4147 __remove_wait_queue(q, &wait);
4148 spin_unlock_irqrestore(&q->lock, flags);
4149
4150 return timeout;
4151 }
4152
4153 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4154 {
4155 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4156 }
4157 EXPORT_SYMBOL(interruptible_sleep_on);
4158
4159 long __sched
4160 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4161 {
4162 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4163 }
4164 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4165
4166 void __sched sleep_on(wait_queue_head_t *q)
4167 {
4168 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4169 }
4170 EXPORT_SYMBOL(sleep_on);
4171
4172 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4173 {
4174 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4175 }
4176 EXPORT_SYMBOL(sleep_on_timeout);
4177
4178 #ifdef CONFIG_RT_MUTEXES
4179
4180 /*
4181 * rt_mutex_setprio - set the current priority of a task
4182 * @p: task
4183 * @prio: prio value (kernel-internal form)
4184 *
4185 * This function changes the 'effective' priority of a task. It does
4186 * not touch ->normal_prio like __setscheduler().
4187 *
4188 * Used by the rt_mutex code to implement priority inheritance logic.
4189 */
4190 void rt_mutex_setprio(struct task_struct *p, int prio)
4191 {
4192 unsigned long flags;
4193 int oldprio, on_rq, running;
4194 struct rq *rq;
4195 const struct sched_class *prev_class;
4196
4197 BUG_ON(prio < 0 || prio > MAX_PRIO);
4198
4199 rq = task_rq_lock(p, &flags);
4200 update_rq_clock(rq);
4201
4202 oldprio = p->prio;
4203 prev_class = p->sched_class;
4204 on_rq = p->se.on_rq;
4205 running = task_current(rq, p);
4206 if (on_rq)
4207 dequeue_task(rq, p, 0);
4208 if (running)
4209 p->sched_class->put_prev_task(rq, p);
4210
4211 if (rt_prio(prio))
4212 p->sched_class = &rt_sched_class;
4213 else
4214 p->sched_class = &fair_sched_class;
4215
4216 p->prio = prio;
4217
4218 if (running)
4219 p->sched_class->set_curr_task(rq);
4220 if (on_rq) {
4221 enqueue_task(rq, p, 0, oldprio < prio);
4222
4223 check_class_changed(rq, p, prev_class, oldprio, running);
4224 }
4225 task_rq_unlock(rq, &flags);
4226 }
4227
4228 #endif
4229
4230 void set_user_nice(struct task_struct *p, long nice)
4231 {
4232 int old_prio, delta, on_rq;
4233 unsigned long flags;
4234 struct rq *rq;
4235
4236 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4237 return;
4238 /*
4239 * We have to be careful, if called from sys_setpriority(),
4240 * the task might be in the middle of scheduling on another CPU.
4241 */
4242 rq = task_rq_lock(p, &flags);
4243 update_rq_clock(rq);
4244 /*
4245 * The RT priorities are set via sched_setscheduler(), but we still
4246 * allow the 'normal' nice value to be set - but as expected
4247 * it wont have any effect on scheduling until the task is
4248 * SCHED_FIFO/SCHED_RR:
4249 */
4250 if (task_has_rt_policy(p)) {
4251 p->static_prio = NICE_TO_PRIO(nice);
4252 goto out_unlock;
4253 }
4254 on_rq = p->se.on_rq;
4255 if (on_rq)
4256 dequeue_task(rq, p, 0);
4257
4258 p->static_prio = NICE_TO_PRIO(nice);
4259 set_load_weight(p);
4260 old_prio = p->prio;
4261 p->prio = effective_prio(p);
4262 delta = p->prio - old_prio;
4263
4264 if (on_rq) {
4265 enqueue_task(rq, p, 0, false);
4266 /*
4267 * If the task increased its priority or is running and
4268 * lowered its priority, then reschedule its CPU:
4269 */
4270 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4271 resched_task(rq->curr);
4272 }
4273 out_unlock:
4274 task_rq_unlock(rq, &flags);
4275 }
4276 EXPORT_SYMBOL(set_user_nice);
4277
4278 /*
4279 * can_nice - check if a task can reduce its nice value
4280 * @p: task
4281 * @nice: nice value
4282 */
4283 int can_nice(const struct task_struct *p, const int nice)
4284 {
4285 /* convert nice value [19,-20] to rlimit style value [1,40] */
4286 int nice_rlim = 20 - nice;
4287
4288 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4289 capable(CAP_SYS_NICE));
4290 }
4291
4292 #ifdef __ARCH_WANT_SYS_NICE
4293
4294 /*
4295 * sys_nice - change the priority of the current process.
4296 * @increment: priority increment
4297 *
4298 * sys_setpriority is a more generic, but much slower function that
4299 * does similar things.
4300 */
4301 SYSCALL_DEFINE1(nice, int, increment)
4302 {
4303 long nice, retval;
4304
4305 /*
4306 * Setpriority might change our priority at the same moment.
4307 * We don't have to worry. Conceptually one call occurs first
4308 * and we have a single winner.
4309 */
4310 if (increment < -40)
4311 increment = -40;
4312 if (increment > 40)
4313 increment = 40;
4314
4315 nice = TASK_NICE(current) + increment;
4316 if (nice < -20)
4317 nice = -20;
4318 if (nice > 19)
4319 nice = 19;
4320
4321 if (increment < 0 && !can_nice(current, nice))
4322 return -EPERM;
4323
4324 retval = security_task_setnice(current, nice);
4325 if (retval)
4326 return retval;
4327
4328 set_user_nice(current, nice);
4329 return 0;
4330 }
4331
4332 #endif
4333
4334 /**
4335 * task_prio - return the priority value of a given task.
4336 * @p: the task in question.
4337 *
4338 * This is the priority value as seen by users in /proc.
4339 * RT tasks are offset by -200. Normal tasks are centered
4340 * around 0, value goes from -16 to +15.
4341 */
4342 int task_prio(const struct task_struct *p)
4343 {
4344 return p->prio - MAX_RT_PRIO;
4345 }
4346
4347 /**
4348 * task_nice - return the nice value of a given task.
4349 * @p: the task in question.
4350 */
4351 int task_nice(const struct task_struct *p)
4352 {
4353 return TASK_NICE(p);
4354 }
4355 EXPORT_SYMBOL(task_nice);
4356
4357 /**
4358 * idle_cpu - is a given cpu idle currently?
4359 * @cpu: the processor in question.
4360 */
4361 int idle_cpu(int cpu)
4362 {
4363 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4364 }
4365
4366 /**
4367 * idle_task - return the idle task for a given cpu.
4368 * @cpu: the processor in question.
4369 */
4370 struct task_struct *idle_task(int cpu)
4371 {
4372 return cpu_rq(cpu)->idle;
4373 }
4374
4375 /**
4376 * find_process_by_pid - find a process with a matching PID value.
4377 * @pid: the pid in question.
4378 */
4379 static struct task_struct *find_process_by_pid(pid_t pid)
4380 {
4381 return pid ? find_task_by_vpid(pid) : current;
4382 }
4383
4384 /* Actually do priority change: must hold rq lock. */
4385 static void
4386 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4387 {
4388 BUG_ON(p->se.on_rq);
4389
4390 p->policy = policy;
4391 p->rt_priority = prio;
4392 p->normal_prio = normal_prio(p);
4393 /* we are holding p->pi_lock already */
4394 p->prio = rt_mutex_getprio(p);
4395 if (rt_prio(p->prio))
4396 p->sched_class = &rt_sched_class;
4397 else
4398 p->sched_class = &fair_sched_class;
4399 set_load_weight(p);
4400 }
4401
4402 /*
4403 * check the target process has a UID that matches the current process's
4404 */
4405 static bool check_same_owner(struct task_struct *p)
4406 {
4407 const struct cred *cred = current_cred(), *pcred;
4408 bool match;
4409
4410 rcu_read_lock();
4411 pcred = __task_cred(p);
4412 match = (cred->euid == pcred->euid ||
4413 cred->euid == pcred->uid);
4414 rcu_read_unlock();
4415 return match;
4416 }
4417
4418 static int __sched_setscheduler(struct task_struct *p, int policy,
4419 struct sched_param *param, bool user)
4420 {
4421 int retval, oldprio, oldpolicy = -1, on_rq, running;
4422 unsigned long flags;
4423 const struct sched_class *prev_class;
4424 struct rq *rq;
4425 int reset_on_fork;
4426
4427 /* may grab non-irq protected spin_locks */
4428 BUG_ON(in_interrupt());
4429 recheck:
4430 /* double check policy once rq lock held */
4431 if (policy < 0) {
4432 reset_on_fork = p->sched_reset_on_fork;
4433 policy = oldpolicy = p->policy;
4434 } else {
4435 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4436 policy &= ~SCHED_RESET_ON_FORK;
4437
4438 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4439 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4440 policy != SCHED_IDLE)
4441 return -EINVAL;
4442 }
4443
4444 /*
4445 * Valid priorities for SCHED_FIFO and SCHED_RR are
4446 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4447 * SCHED_BATCH and SCHED_IDLE is 0.
4448 */
4449 if (param->sched_priority < 0 ||
4450 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4451 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4452 return -EINVAL;
4453 if (rt_policy(policy) != (param->sched_priority != 0))
4454 return -EINVAL;
4455
4456 /*
4457 * Allow unprivileged RT tasks to decrease priority:
4458 */
4459 if (user && !capable(CAP_SYS_NICE)) {
4460 if (rt_policy(policy)) {
4461 unsigned long rlim_rtprio;
4462
4463 if (!lock_task_sighand(p, &flags))
4464 return -ESRCH;
4465 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4466 unlock_task_sighand(p, &flags);
4467
4468 /* can't set/change the rt policy */
4469 if (policy != p->policy && !rlim_rtprio)
4470 return -EPERM;
4471
4472 /* can't increase priority */
4473 if (param->sched_priority > p->rt_priority &&
4474 param->sched_priority > rlim_rtprio)
4475 return -EPERM;
4476 }
4477 /*
4478 * Like positive nice levels, dont allow tasks to
4479 * move out of SCHED_IDLE either:
4480 */
4481 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4482 return -EPERM;
4483
4484 /* can't change other user's priorities */
4485 if (!check_same_owner(p))
4486 return -EPERM;
4487
4488 /* Normal users shall not reset the sched_reset_on_fork flag */
4489 if (p->sched_reset_on_fork && !reset_on_fork)
4490 return -EPERM;
4491 }
4492
4493 if (user) {
4494 #ifdef CONFIG_RT_GROUP_SCHED
4495 /*
4496 * Do not allow realtime tasks into groups that have no runtime
4497 * assigned.
4498 */
4499 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4500 task_group(p)->rt_bandwidth.rt_runtime == 0)
4501 return -EPERM;
4502 #endif
4503
4504 retval = security_task_setscheduler(p, policy, param);
4505 if (retval)
4506 return retval;
4507 }
4508
4509 /*
4510 * make sure no PI-waiters arrive (or leave) while we are
4511 * changing the priority of the task:
4512 */
4513 raw_spin_lock_irqsave(&p->pi_lock, flags);
4514 /*
4515 * To be able to change p->policy safely, the apropriate
4516 * runqueue lock must be held.
4517 */
4518 rq = __task_rq_lock(p);
4519 /* recheck policy now with rq lock held */
4520 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4521 policy = oldpolicy = -1;
4522 __task_rq_unlock(rq);
4523 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4524 goto recheck;
4525 }
4526 update_rq_clock(rq);
4527 on_rq = p->se.on_rq;
4528 running = task_current(rq, p);
4529 if (on_rq)
4530 deactivate_task(rq, p, 0);
4531 if (running)
4532 p->sched_class->put_prev_task(rq, p);
4533
4534 p->sched_reset_on_fork = reset_on_fork;
4535
4536 oldprio = p->prio;
4537 prev_class = p->sched_class;
4538 __setscheduler(rq, p, policy, param->sched_priority);
4539
4540 if (running)
4541 p->sched_class->set_curr_task(rq);
4542 if (on_rq) {
4543 activate_task(rq, p, 0);
4544
4545 check_class_changed(rq, p, prev_class, oldprio, running);
4546 }
4547 __task_rq_unlock(rq);
4548 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4549
4550 rt_mutex_adjust_pi(p);
4551
4552 return 0;
4553 }
4554
4555 /**
4556 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4557 * @p: the task in question.
4558 * @policy: new policy.
4559 * @param: structure containing the new RT priority.
4560 *
4561 * NOTE that the task may be already dead.
4562 */
4563 int sched_setscheduler(struct task_struct *p, int policy,
4564 struct sched_param *param)
4565 {
4566 return __sched_setscheduler(p, policy, param, true);
4567 }
4568 EXPORT_SYMBOL_GPL(sched_setscheduler);
4569
4570 /**
4571 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4572 * @p: the task in question.
4573 * @policy: new policy.
4574 * @param: structure containing the new RT priority.
4575 *
4576 * Just like sched_setscheduler, only don't bother checking if the
4577 * current context has permission. For example, this is needed in
4578 * stop_machine(): we create temporary high priority worker threads,
4579 * but our caller might not have that capability.
4580 */
4581 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4582 struct sched_param *param)
4583 {
4584 return __sched_setscheduler(p, policy, param, false);
4585 }
4586
4587 static int
4588 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4589 {
4590 struct sched_param lparam;
4591 struct task_struct *p;
4592 int retval;
4593
4594 if (!param || pid < 0)
4595 return -EINVAL;
4596 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4597 return -EFAULT;
4598
4599 rcu_read_lock();
4600 retval = -ESRCH;
4601 p = find_process_by_pid(pid);
4602 if (p != NULL)
4603 retval = sched_setscheduler(p, policy, &lparam);
4604 rcu_read_unlock();
4605
4606 return retval;
4607 }
4608
4609 /**
4610 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4611 * @pid: the pid in question.
4612 * @policy: new policy.
4613 * @param: structure containing the new RT priority.
4614 */
4615 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4616 struct sched_param __user *, param)
4617 {
4618 /* negative values for policy are not valid */
4619 if (policy < 0)
4620 return -EINVAL;
4621
4622 return do_sched_setscheduler(pid, policy, param);
4623 }
4624
4625 /**
4626 * sys_sched_setparam - set/change the RT priority of a thread
4627 * @pid: the pid in question.
4628 * @param: structure containing the new RT priority.
4629 */
4630 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4631 {
4632 return do_sched_setscheduler(pid, -1, param);
4633 }
4634
4635 /**
4636 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4637 * @pid: the pid in question.
4638 */
4639 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4640 {
4641 struct task_struct *p;
4642 int retval;
4643
4644 if (pid < 0)
4645 return -EINVAL;
4646
4647 retval = -ESRCH;
4648 rcu_read_lock();
4649 p = find_process_by_pid(pid);
4650 if (p) {
4651 retval = security_task_getscheduler(p);
4652 if (!retval)
4653 retval = p->policy
4654 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4655 }
4656 rcu_read_unlock();
4657 return retval;
4658 }
4659
4660 /**
4661 * sys_sched_getparam - get the RT priority of a thread
4662 * @pid: the pid in question.
4663 * @param: structure containing the RT priority.
4664 */
4665 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4666 {
4667 struct sched_param lp;
4668 struct task_struct *p;
4669 int retval;
4670
4671 if (!param || pid < 0)
4672 return -EINVAL;
4673
4674 rcu_read_lock();
4675 p = find_process_by_pid(pid);
4676 retval = -ESRCH;
4677 if (!p)
4678 goto out_unlock;
4679
4680 retval = security_task_getscheduler(p);
4681 if (retval)
4682 goto out_unlock;
4683
4684 lp.sched_priority = p->rt_priority;
4685 rcu_read_unlock();
4686
4687 /*
4688 * This one might sleep, we cannot do it with a spinlock held ...
4689 */
4690 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4691
4692 return retval;
4693
4694 out_unlock:
4695 rcu_read_unlock();
4696 return retval;
4697 }
4698
4699 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4700 {
4701 cpumask_var_t cpus_allowed, new_mask;
4702 struct task_struct *p;
4703 int retval;
4704
4705 get_online_cpus();
4706 rcu_read_lock();
4707
4708 p = find_process_by_pid(pid);
4709 if (!p) {
4710 rcu_read_unlock();
4711 put_online_cpus();
4712 return -ESRCH;
4713 }
4714
4715 /* Prevent p going away */
4716 get_task_struct(p);
4717 rcu_read_unlock();
4718
4719 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4720 retval = -ENOMEM;
4721 goto out_put_task;
4722 }
4723 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4724 retval = -ENOMEM;
4725 goto out_free_cpus_allowed;
4726 }
4727 retval = -EPERM;
4728 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
4729 goto out_unlock;
4730
4731 retval = security_task_setscheduler(p, 0, NULL);
4732 if (retval)
4733 goto out_unlock;
4734
4735 cpuset_cpus_allowed(p, cpus_allowed);
4736 cpumask_and(new_mask, in_mask, cpus_allowed);
4737 again:
4738 retval = set_cpus_allowed_ptr(p, new_mask);
4739
4740 if (!retval) {
4741 cpuset_cpus_allowed(p, cpus_allowed);
4742 if (!cpumask_subset(new_mask, cpus_allowed)) {
4743 /*
4744 * We must have raced with a concurrent cpuset
4745 * update. Just reset the cpus_allowed to the
4746 * cpuset's cpus_allowed
4747 */
4748 cpumask_copy(new_mask, cpus_allowed);
4749 goto again;
4750 }
4751 }
4752 out_unlock:
4753 free_cpumask_var(new_mask);
4754 out_free_cpus_allowed:
4755 free_cpumask_var(cpus_allowed);
4756 out_put_task:
4757 put_task_struct(p);
4758 put_online_cpus();
4759 return retval;
4760 }
4761
4762 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4763 struct cpumask *new_mask)
4764 {
4765 if (len < cpumask_size())
4766 cpumask_clear(new_mask);
4767 else if (len > cpumask_size())
4768 len = cpumask_size();
4769
4770 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4771 }
4772
4773 /**
4774 * sys_sched_setaffinity - set the cpu affinity of a process
4775 * @pid: pid of the process
4776 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4777 * @user_mask_ptr: user-space pointer to the new cpu mask
4778 */
4779 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4780 unsigned long __user *, user_mask_ptr)
4781 {
4782 cpumask_var_t new_mask;
4783 int retval;
4784
4785 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4786 return -ENOMEM;
4787
4788 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4789 if (retval == 0)
4790 retval = sched_setaffinity(pid, new_mask);
4791 free_cpumask_var(new_mask);
4792 return retval;
4793 }
4794
4795 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4796 {
4797 struct task_struct *p;
4798 unsigned long flags;
4799 struct rq *rq;
4800 int retval;
4801
4802 get_online_cpus();
4803 rcu_read_lock();
4804
4805 retval = -ESRCH;
4806 p = find_process_by_pid(pid);
4807 if (!p)
4808 goto out_unlock;
4809
4810 retval = security_task_getscheduler(p);
4811 if (retval)
4812 goto out_unlock;
4813
4814 rq = task_rq_lock(p, &flags);
4815 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4816 task_rq_unlock(rq, &flags);
4817
4818 out_unlock:
4819 rcu_read_unlock();
4820 put_online_cpus();
4821
4822 return retval;
4823 }
4824
4825 /**
4826 * sys_sched_getaffinity - get the cpu affinity of a process
4827 * @pid: pid of the process
4828 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4829 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4830 */
4831 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4832 unsigned long __user *, user_mask_ptr)
4833 {
4834 int ret;
4835 cpumask_var_t mask;
4836
4837 if (len < cpumask_size())
4838 return -EINVAL;
4839
4840 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4841 return -ENOMEM;
4842
4843 ret = sched_getaffinity(pid, mask);
4844 if (ret == 0) {
4845 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
4846 ret = -EFAULT;
4847 else
4848 ret = cpumask_size();
4849 }
4850 free_cpumask_var(mask);
4851
4852 return ret;
4853 }
4854
4855 /**
4856 * sys_sched_yield - yield the current processor to other threads.
4857 *
4858 * This function yields the current CPU to other tasks. If there are no
4859 * other threads running on this CPU then this function will return.
4860 */
4861 SYSCALL_DEFINE0(sched_yield)
4862 {
4863 struct rq *rq = this_rq_lock();
4864
4865 schedstat_inc(rq, yld_count);
4866 current->sched_class->yield_task(rq);
4867
4868 /*
4869 * Since we are going to call schedule() anyway, there's
4870 * no need to preempt or enable interrupts:
4871 */
4872 __release(rq->lock);
4873 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4874 do_raw_spin_unlock(&rq->lock);
4875 preempt_enable_no_resched();
4876
4877 schedule();
4878
4879 return 0;
4880 }
4881
4882 static inline int should_resched(void)
4883 {
4884 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4885 }
4886
4887 static void __cond_resched(void)
4888 {
4889 add_preempt_count(PREEMPT_ACTIVE);
4890 schedule();
4891 sub_preempt_count(PREEMPT_ACTIVE);
4892 }
4893
4894 int __sched _cond_resched(void)
4895 {
4896 if (should_resched()) {
4897 __cond_resched();
4898 return 1;
4899 }
4900 return 0;
4901 }
4902 EXPORT_SYMBOL(_cond_resched);
4903
4904 /*
4905 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4906 * call schedule, and on return reacquire the lock.
4907 *
4908 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4909 * operations here to prevent schedule() from being called twice (once via
4910 * spin_unlock(), once by hand).
4911 */
4912 int __cond_resched_lock(spinlock_t *lock)
4913 {
4914 int resched = should_resched();
4915 int ret = 0;
4916
4917 lockdep_assert_held(lock);
4918
4919 if (spin_needbreak(lock) || resched) {
4920 spin_unlock(lock);
4921 if (resched)
4922 __cond_resched();
4923 else
4924 cpu_relax();
4925 ret = 1;
4926 spin_lock(lock);
4927 }
4928 return ret;
4929 }
4930 EXPORT_SYMBOL(__cond_resched_lock);
4931
4932 int __sched __cond_resched_softirq(void)
4933 {
4934 BUG_ON(!in_softirq());
4935
4936 if (should_resched()) {
4937 local_bh_enable();
4938 __cond_resched();
4939 local_bh_disable();
4940 return 1;
4941 }
4942 return 0;
4943 }
4944 EXPORT_SYMBOL(__cond_resched_softirq);
4945
4946 /**
4947 * yield - yield the current processor to other threads.
4948 *
4949 * This is a shortcut for kernel-space yielding - it marks the
4950 * thread runnable and calls sys_sched_yield().
4951 */
4952 void __sched yield(void)
4953 {
4954 set_current_state(TASK_RUNNING);
4955 sys_sched_yield();
4956 }
4957 EXPORT_SYMBOL(yield);
4958
4959 /*
4960 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4961 * that process accounting knows that this is a task in IO wait state.
4962 */
4963 void __sched io_schedule(void)
4964 {
4965 struct rq *rq = raw_rq();
4966
4967 delayacct_blkio_start();
4968 atomic_inc(&rq->nr_iowait);
4969 current->in_iowait = 1;
4970 schedule();
4971 current->in_iowait = 0;
4972 atomic_dec(&rq->nr_iowait);
4973 delayacct_blkio_end();
4974 }
4975 EXPORT_SYMBOL(io_schedule);
4976
4977 long __sched io_schedule_timeout(long timeout)
4978 {
4979 struct rq *rq = raw_rq();
4980 long ret;
4981
4982 delayacct_blkio_start();
4983 atomic_inc(&rq->nr_iowait);
4984 current->in_iowait = 1;
4985 ret = schedule_timeout(timeout);
4986 current->in_iowait = 0;
4987 atomic_dec(&rq->nr_iowait);
4988 delayacct_blkio_end();
4989 return ret;
4990 }
4991
4992 /**
4993 * sys_sched_get_priority_max - return maximum RT priority.
4994 * @policy: scheduling class.
4995 *
4996 * this syscall returns the maximum rt_priority that can be used
4997 * by a given scheduling class.
4998 */
4999 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5000 {
5001 int ret = -EINVAL;
5002
5003 switch (policy) {
5004 case SCHED_FIFO:
5005 case SCHED_RR:
5006 ret = MAX_USER_RT_PRIO-1;
5007 break;
5008 case SCHED_NORMAL:
5009 case SCHED_BATCH:
5010 case SCHED_IDLE:
5011 ret = 0;
5012 break;
5013 }
5014 return ret;
5015 }
5016
5017 /**
5018 * sys_sched_get_priority_min - return minimum RT priority.
5019 * @policy: scheduling class.
5020 *
5021 * this syscall returns the minimum rt_priority that can be used
5022 * by a given scheduling class.
5023 */
5024 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5025 {
5026 int ret = -EINVAL;
5027
5028 switch (policy) {
5029 case SCHED_FIFO:
5030 case SCHED_RR:
5031 ret = 1;
5032 break;
5033 case SCHED_NORMAL:
5034 case SCHED_BATCH:
5035 case SCHED_IDLE:
5036 ret = 0;
5037 }
5038 return ret;
5039 }
5040
5041 /**
5042 * sys_sched_rr_get_interval - return the default timeslice of a process.
5043 * @pid: pid of the process.
5044 * @interval: userspace pointer to the timeslice value.
5045 *
5046 * this syscall writes the default timeslice value of a given process
5047 * into the user-space timespec buffer. A value of '0' means infinity.
5048 */
5049 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5050 struct timespec __user *, interval)
5051 {
5052 struct task_struct *p;
5053 unsigned int time_slice;
5054 unsigned long flags;
5055 struct rq *rq;
5056 int retval;
5057 struct timespec t;
5058
5059 if (pid < 0)
5060 return -EINVAL;
5061
5062 retval = -ESRCH;
5063 rcu_read_lock();
5064 p = find_process_by_pid(pid);
5065 if (!p)
5066 goto out_unlock;
5067
5068 retval = security_task_getscheduler(p);
5069 if (retval)
5070 goto out_unlock;
5071
5072 rq = task_rq_lock(p, &flags);
5073 time_slice = p->sched_class->get_rr_interval(rq, p);
5074 task_rq_unlock(rq, &flags);
5075
5076 rcu_read_unlock();
5077 jiffies_to_timespec(time_slice, &t);
5078 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5079 return retval;
5080
5081 out_unlock:
5082 rcu_read_unlock();
5083 return retval;
5084 }
5085
5086 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5087
5088 void sched_show_task(struct task_struct *p)
5089 {
5090 unsigned long free = 0;
5091 unsigned state;
5092
5093 state = p->state ? __ffs(p->state) + 1 : 0;
5094 printk(KERN_INFO "%-13.13s %c", p->comm,
5095 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5096 #if BITS_PER_LONG == 32
5097 if (state == TASK_RUNNING)
5098 printk(KERN_CONT " running ");
5099 else
5100 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5101 #else
5102 if (state == TASK_RUNNING)
5103 printk(KERN_CONT " running task ");
5104 else
5105 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5106 #endif
5107 #ifdef CONFIG_DEBUG_STACK_USAGE
5108 free = stack_not_used(p);
5109 #endif
5110 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5111 task_pid_nr(p), task_pid_nr(p->real_parent),
5112 (unsigned long)task_thread_info(p)->flags);
5113
5114 show_stack(p, NULL);
5115 }
5116
5117 void show_state_filter(unsigned long state_filter)
5118 {
5119 struct task_struct *g, *p;
5120
5121 #if BITS_PER_LONG == 32
5122 printk(KERN_INFO
5123 " task PC stack pid father\n");
5124 #else
5125 printk(KERN_INFO
5126 " task PC stack pid father\n");
5127 #endif
5128 read_lock(&tasklist_lock);
5129 do_each_thread(g, p) {
5130 /*
5131 * reset the NMI-timeout, listing all files on a slow
5132 * console might take alot of time:
5133 */
5134 touch_nmi_watchdog();
5135 if (!state_filter || (p->state & state_filter))
5136 sched_show_task(p);
5137 } while_each_thread(g, p);
5138
5139 touch_all_softlockup_watchdogs();
5140
5141 #ifdef CONFIG_SCHED_DEBUG
5142 sysrq_sched_debug_show();
5143 #endif
5144 read_unlock(&tasklist_lock);
5145 /*
5146 * Only show locks if all tasks are dumped:
5147 */
5148 if (!state_filter)
5149 debug_show_all_locks();
5150 }
5151
5152 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5153 {
5154 idle->sched_class = &idle_sched_class;
5155 }
5156
5157 /**
5158 * init_idle - set up an idle thread for a given CPU
5159 * @idle: task in question
5160 * @cpu: cpu the idle task belongs to
5161 *
5162 * NOTE: this function does not set the idle thread's NEED_RESCHED
5163 * flag, to make booting more robust.
5164 */
5165 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5166 {
5167 struct rq *rq = cpu_rq(cpu);
5168 unsigned long flags;
5169
5170 raw_spin_lock_irqsave(&rq->lock, flags);
5171
5172 __sched_fork(idle);
5173 idle->state = TASK_RUNNING;
5174 idle->se.exec_start = sched_clock();
5175
5176 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
5177 __set_task_cpu(idle, cpu);
5178
5179 rq->curr = rq->idle = idle;
5180 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5181 idle->oncpu = 1;
5182 #endif
5183 raw_spin_unlock_irqrestore(&rq->lock, flags);
5184
5185 /* Set the preempt count _outside_ the spinlocks! */
5186 #if defined(CONFIG_PREEMPT)
5187 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5188 #else
5189 task_thread_info(idle)->preempt_count = 0;
5190 #endif
5191 /*
5192 * The idle tasks have their own, simple scheduling class:
5193 */
5194 idle->sched_class = &idle_sched_class;
5195 ftrace_graph_init_task(idle);
5196 }
5197
5198 /*
5199 * In a system that switches off the HZ timer nohz_cpu_mask
5200 * indicates which cpus entered this state. This is used
5201 * in the rcu update to wait only for active cpus. For system
5202 * which do not switch off the HZ timer nohz_cpu_mask should
5203 * always be CPU_BITS_NONE.
5204 */
5205 cpumask_var_t nohz_cpu_mask;
5206
5207 /*
5208 * Increase the granularity value when there are more CPUs,
5209 * because with more CPUs the 'effective latency' as visible
5210 * to users decreases. But the relationship is not linear,
5211 * so pick a second-best guess by going with the log2 of the
5212 * number of CPUs.
5213 *
5214 * This idea comes from the SD scheduler of Con Kolivas:
5215 */
5216 static int get_update_sysctl_factor(void)
5217 {
5218 unsigned int cpus = min_t(int, num_online_cpus(), 8);
5219 unsigned int factor;
5220
5221 switch (sysctl_sched_tunable_scaling) {
5222 case SCHED_TUNABLESCALING_NONE:
5223 factor = 1;
5224 break;
5225 case SCHED_TUNABLESCALING_LINEAR:
5226 factor = cpus;
5227 break;
5228 case SCHED_TUNABLESCALING_LOG:
5229 default:
5230 factor = 1 + ilog2(cpus);
5231 break;
5232 }
5233
5234 return factor;
5235 }
5236
5237 static void update_sysctl(void)
5238 {
5239 unsigned int factor = get_update_sysctl_factor();
5240
5241 #define SET_SYSCTL(name) \
5242 (sysctl_##name = (factor) * normalized_sysctl_##name)
5243 SET_SYSCTL(sched_min_granularity);
5244 SET_SYSCTL(sched_latency);
5245 SET_SYSCTL(sched_wakeup_granularity);
5246 SET_SYSCTL(sched_shares_ratelimit);
5247 #undef SET_SYSCTL
5248 }
5249
5250 static inline void sched_init_granularity(void)
5251 {
5252 update_sysctl();
5253 }
5254
5255 #ifdef CONFIG_SMP
5256 /*
5257 * This is how migration works:
5258 *
5259 * 1) we queue a struct migration_req structure in the source CPU's
5260 * runqueue and wake up that CPU's migration thread.
5261 * 2) we down() the locked semaphore => thread blocks.
5262 * 3) migration thread wakes up (implicitly it forces the migrated
5263 * thread off the CPU)
5264 * 4) it gets the migration request and checks whether the migrated
5265 * task is still in the wrong runqueue.
5266 * 5) if it's in the wrong runqueue then the migration thread removes
5267 * it and puts it into the right queue.
5268 * 6) migration thread up()s the semaphore.
5269 * 7) we wake up and the migration is done.
5270 */
5271
5272 /*
5273 * Change a given task's CPU affinity. Migrate the thread to a
5274 * proper CPU and schedule it away if the CPU it's executing on
5275 * is removed from the allowed bitmask.
5276 *
5277 * NOTE: the caller must have a valid reference to the task, the
5278 * task must not exit() & deallocate itself prematurely. The
5279 * call is not atomic; no spinlocks may be held.
5280 */
5281 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
5282 {
5283 struct migration_req req;
5284 unsigned long flags;
5285 struct rq *rq;
5286 int ret = 0;
5287
5288 rq = task_rq_lock(p, &flags);
5289
5290 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
5291 ret = -EINVAL;
5292 goto out;
5293 }
5294
5295 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5296 !cpumask_equal(&p->cpus_allowed, new_mask))) {
5297 ret = -EINVAL;
5298 goto out;
5299 }
5300
5301 if (p->sched_class->set_cpus_allowed)
5302 p->sched_class->set_cpus_allowed(p, new_mask);
5303 else {
5304 cpumask_copy(&p->cpus_allowed, new_mask);
5305 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5306 }
5307
5308 /* Can the task run on the task's current CPU? If so, we're done */
5309 if (cpumask_test_cpu(task_cpu(p), new_mask))
5310 goto out;
5311
5312 if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
5313 /* Need help from migration thread: drop lock and wait. */
5314 struct task_struct *mt = rq->migration_thread;
5315
5316 get_task_struct(mt);
5317 task_rq_unlock(rq, &flags);
5318 wake_up_process(rq->migration_thread);
5319 put_task_struct(mt);
5320 wait_for_completion(&req.done);
5321 tlb_migrate_finish(p->mm);
5322 return 0;
5323 }
5324 out:
5325 task_rq_unlock(rq, &flags);
5326
5327 return ret;
5328 }
5329 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5330
5331 /*
5332 * Move (not current) task off this cpu, onto dest cpu. We're doing
5333 * this because either it can't run here any more (set_cpus_allowed()
5334 * away from this CPU, or CPU going down), or because we're
5335 * attempting to rebalance this task on exec (sched_exec).
5336 *
5337 * So we race with normal scheduler movements, but that's OK, as long
5338 * as the task is no longer on this CPU.
5339 *
5340 * Returns non-zero if task was successfully migrated.
5341 */
5342 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5343 {
5344 struct rq *rq_dest, *rq_src;
5345 int ret = 0;
5346
5347 if (unlikely(!cpu_active(dest_cpu)))
5348 return ret;
5349
5350 rq_src = cpu_rq(src_cpu);
5351 rq_dest = cpu_rq(dest_cpu);
5352
5353 double_rq_lock(rq_src, rq_dest);
5354 /* Already moved. */
5355 if (task_cpu(p) != src_cpu)
5356 goto done;
5357 /* Affinity changed (again). */
5358 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
5359 goto fail;
5360
5361 /*
5362 * If we're not on a rq, the next wake-up will ensure we're
5363 * placed properly.
5364 */
5365 if (p->se.on_rq) {
5366 deactivate_task(rq_src, p, 0);
5367 set_task_cpu(p, dest_cpu);
5368 activate_task(rq_dest, p, 0);
5369 check_preempt_curr(rq_dest, p, 0);
5370 }
5371 done:
5372 ret = 1;
5373 fail:
5374 double_rq_unlock(rq_src, rq_dest);
5375 return ret;
5376 }
5377
5378 #define RCU_MIGRATION_IDLE 0
5379 #define RCU_MIGRATION_NEED_QS 1
5380 #define RCU_MIGRATION_GOT_QS 2
5381 #define RCU_MIGRATION_MUST_SYNC 3
5382
5383 /*
5384 * migration_thread - this is a highprio system thread that performs
5385 * thread migration by bumping thread off CPU then 'pushing' onto
5386 * another runqueue.
5387 */
5388 static int migration_thread(void *data)
5389 {
5390 int badcpu;
5391 int cpu = (long)data;
5392 struct rq *rq;
5393
5394 rq = cpu_rq(cpu);
5395 BUG_ON(rq->migration_thread != current);
5396
5397 set_current_state(TASK_INTERRUPTIBLE);
5398 while (!kthread_should_stop()) {
5399 struct migration_req *req;
5400 struct list_head *head;
5401
5402 raw_spin_lock_irq(&rq->lock);
5403
5404 if (cpu_is_offline(cpu)) {
5405 raw_spin_unlock_irq(&rq->lock);
5406 break;
5407 }
5408
5409 if (rq->active_balance) {
5410 active_load_balance(rq, cpu);
5411 rq->active_balance = 0;
5412 }
5413
5414 head = &rq->migration_queue;
5415
5416 if (list_empty(head)) {
5417 raw_spin_unlock_irq(&rq->lock);
5418 schedule();
5419 set_current_state(TASK_INTERRUPTIBLE);
5420 continue;
5421 }
5422 req = list_entry(head->next, struct migration_req, list);
5423 list_del_init(head->next);
5424
5425 if (req->task != NULL) {
5426 raw_spin_unlock(&rq->lock);
5427 __migrate_task(req->task, cpu, req->dest_cpu);
5428 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
5429 req->dest_cpu = RCU_MIGRATION_GOT_QS;
5430 raw_spin_unlock(&rq->lock);
5431 } else {
5432 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
5433 raw_spin_unlock(&rq->lock);
5434 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
5435 }
5436 local_irq_enable();
5437
5438 complete(&req->done);
5439 }
5440 __set_current_state(TASK_RUNNING);
5441
5442 return 0;
5443 }
5444
5445 #ifdef CONFIG_HOTPLUG_CPU
5446
5447 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5448 {
5449 int ret;
5450
5451 local_irq_disable();
5452 ret = __migrate_task(p, src_cpu, dest_cpu);
5453 local_irq_enable();
5454 return ret;
5455 }
5456
5457 /*
5458 * Figure out where task on dead CPU should go, use force if necessary.
5459 */
5460 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5461 {
5462 int dest_cpu;
5463
5464 again:
5465 dest_cpu = select_fallback_rq(dead_cpu, p);
5466
5467 /* It can have affinity changed while we were choosing. */
5468 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
5469 goto again;
5470 }
5471
5472 /*
5473 * While a dead CPU has no uninterruptible tasks queued at this point,
5474 * it might still have a nonzero ->nr_uninterruptible counter, because
5475 * for performance reasons the counter is not stricly tracking tasks to
5476 * their home CPUs. So we just add the counter to another CPU's counter,
5477 * to keep the global sum constant after CPU-down:
5478 */
5479 static void migrate_nr_uninterruptible(struct rq *rq_src)
5480 {
5481 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
5482 unsigned long flags;
5483
5484 local_irq_save(flags);
5485 double_rq_lock(rq_src, rq_dest);
5486 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5487 rq_src->nr_uninterruptible = 0;
5488 double_rq_unlock(rq_src, rq_dest);
5489 local_irq_restore(flags);
5490 }
5491
5492 /* Run through task list and migrate tasks from the dead cpu. */
5493 static void migrate_live_tasks(int src_cpu)
5494 {
5495 struct task_struct *p, *t;
5496
5497 read_lock(&tasklist_lock);
5498
5499 do_each_thread(t, p) {
5500 if (p == current)
5501 continue;
5502
5503 if (task_cpu(p) == src_cpu)
5504 move_task_off_dead_cpu(src_cpu, p);
5505 } while_each_thread(t, p);
5506
5507 read_unlock(&tasklist_lock);
5508 }
5509
5510 /*
5511 * Schedules idle task to be the next runnable task on current CPU.
5512 * It does so by boosting its priority to highest possible.
5513 * Used by CPU offline code.
5514 */
5515 void sched_idle_next(void)
5516 {
5517 int this_cpu = smp_processor_id();
5518 struct rq *rq = cpu_rq(this_cpu);
5519 struct task_struct *p = rq->idle;
5520 unsigned long flags;
5521
5522 /* cpu has to be offline */
5523 BUG_ON(cpu_online(this_cpu));
5524
5525 /*
5526 * Strictly not necessary since rest of the CPUs are stopped by now
5527 * and interrupts disabled on the current cpu.
5528 */
5529 raw_spin_lock_irqsave(&rq->lock, flags);
5530
5531 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5532
5533 update_rq_clock(rq);
5534 activate_task(rq, p, 0);
5535
5536 raw_spin_unlock_irqrestore(&rq->lock, flags);
5537 }
5538
5539 /*
5540 * Ensures that the idle task is using init_mm right before its cpu goes
5541 * offline.
5542 */
5543 void idle_task_exit(void)
5544 {
5545 struct mm_struct *mm = current->active_mm;
5546
5547 BUG_ON(cpu_online(smp_processor_id()));
5548
5549 if (mm != &init_mm)
5550 switch_mm(mm, &init_mm, current);
5551 mmdrop(mm);
5552 }
5553
5554 /* called under rq->lock with disabled interrupts */
5555 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5556 {
5557 struct rq *rq = cpu_rq(dead_cpu);
5558
5559 /* Must be exiting, otherwise would be on tasklist. */
5560 BUG_ON(!p->exit_state);
5561
5562 /* Cannot have done final schedule yet: would have vanished. */
5563 BUG_ON(p->state == TASK_DEAD);
5564
5565 get_task_struct(p);
5566
5567 /*
5568 * Drop lock around migration; if someone else moves it,
5569 * that's OK. No task can be added to this CPU, so iteration is
5570 * fine.
5571 */
5572 raw_spin_unlock_irq(&rq->lock);
5573 move_task_off_dead_cpu(dead_cpu, p);
5574 raw_spin_lock_irq(&rq->lock);
5575
5576 put_task_struct(p);
5577 }
5578
5579 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5580 static void migrate_dead_tasks(unsigned int dead_cpu)
5581 {
5582 struct rq *rq = cpu_rq(dead_cpu);
5583 struct task_struct *next;
5584
5585 for ( ; ; ) {
5586 if (!rq->nr_running)
5587 break;
5588 update_rq_clock(rq);
5589 next = pick_next_task(rq);
5590 if (!next)
5591 break;
5592 next->sched_class->put_prev_task(rq, next);
5593 migrate_dead(dead_cpu, next);
5594
5595 }
5596 }
5597
5598 /*
5599 * remove the tasks which were accounted by rq from calc_load_tasks.
5600 */
5601 static void calc_global_load_remove(struct rq *rq)
5602 {
5603 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5604 rq->calc_load_active = 0;
5605 }
5606 #endif /* CONFIG_HOTPLUG_CPU */
5607
5608 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5609
5610 static struct ctl_table sd_ctl_dir[] = {
5611 {
5612 .procname = "sched_domain",
5613 .mode = 0555,
5614 },
5615 {}
5616 };
5617
5618 static struct ctl_table sd_ctl_root[] = {
5619 {
5620 .procname = "kernel",
5621 .mode = 0555,
5622 .child = sd_ctl_dir,
5623 },
5624 {}
5625 };
5626
5627 static struct ctl_table *sd_alloc_ctl_entry(int n)
5628 {
5629 struct ctl_table *entry =
5630 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5631
5632 return entry;
5633 }
5634
5635 static void sd_free_ctl_entry(struct ctl_table **tablep)
5636 {
5637 struct ctl_table *entry;
5638
5639 /*
5640 * In the intermediate directories, both the child directory and
5641 * procname are dynamically allocated and could fail but the mode
5642 * will always be set. In the lowest directory the names are
5643 * static strings and all have proc handlers.
5644 */
5645 for (entry = *tablep; entry->mode; entry++) {
5646 if (entry->child)
5647 sd_free_ctl_entry(&entry->child);
5648 if (entry->proc_handler == NULL)
5649 kfree(entry->procname);
5650 }
5651
5652 kfree(*tablep);
5653 *tablep = NULL;
5654 }
5655
5656 static void
5657 set_table_entry(struct ctl_table *entry,
5658 const char *procname, void *data, int maxlen,
5659 mode_t mode, proc_handler *proc_handler)
5660 {
5661 entry->procname = procname;
5662 entry->data = data;
5663 entry->maxlen = maxlen;
5664 entry->mode = mode;
5665 entry->proc_handler = proc_handler;
5666 }
5667
5668 static struct ctl_table *
5669 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5670 {
5671 struct ctl_table *table = sd_alloc_ctl_entry(13);
5672
5673 if (table == NULL)
5674 return NULL;
5675
5676 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5677 sizeof(long), 0644, proc_doulongvec_minmax);
5678 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5679 sizeof(long), 0644, proc_doulongvec_minmax);
5680 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5681 sizeof(int), 0644, proc_dointvec_minmax);
5682 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5683 sizeof(int), 0644, proc_dointvec_minmax);
5684 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5685 sizeof(int), 0644, proc_dointvec_minmax);
5686 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5687 sizeof(int), 0644, proc_dointvec_minmax);
5688 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5689 sizeof(int), 0644, proc_dointvec_minmax);
5690 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5691 sizeof(int), 0644, proc_dointvec_minmax);
5692 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5693 sizeof(int), 0644, proc_dointvec_minmax);
5694 set_table_entry(&table[9], "cache_nice_tries",
5695 &sd->cache_nice_tries,
5696 sizeof(int), 0644, proc_dointvec_minmax);
5697 set_table_entry(&table[10], "flags", &sd->flags,
5698 sizeof(int), 0644, proc_dointvec_minmax);
5699 set_table_entry(&table[11], "name", sd->name,
5700 CORENAME_MAX_SIZE, 0444, proc_dostring);
5701 /* &table[12] is terminator */
5702
5703 return table;
5704 }
5705
5706 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5707 {
5708 struct ctl_table *entry, *table;
5709 struct sched_domain *sd;
5710 int domain_num = 0, i;
5711 char buf[32];
5712
5713 for_each_domain(cpu, sd)
5714 domain_num++;
5715 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5716 if (table == NULL)
5717 return NULL;
5718
5719 i = 0;
5720 for_each_domain(cpu, sd) {
5721 snprintf(buf, 32, "domain%d", i);
5722 entry->procname = kstrdup(buf, GFP_KERNEL);
5723 entry->mode = 0555;
5724 entry->child = sd_alloc_ctl_domain_table(sd);
5725 entry++;
5726 i++;
5727 }
5728 return table;
5729 }
5730
5731 static struct ctl_table_header *sd_sysctl_header;
5732 static void register_sched_domain_sysctl(void)
5733 {
5734 int i, cpu_num = num_possible_cpus();
5735 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5736 char buf[32];
5737
5738 WARN_ON(sd_ctl_dir[0].child);
5739 sd_ctl_dir[0].child = entry;
5740
5741 if (entry == NULL)
5742 return;
5743
5744 for_each_possible_cpu(i) {
5745 snprintf(buf, 32, "cpu%d", i);
5746 entry->procname = kstrdup(buf, GFP_KERNEL);
5747 entry->mode = 0555;
5748 entry->child = sd_alloc_ctl_cpu_table(i);
5749 entry++;
5750 }
5751
5752 WARN_ON(sd_sysctl_header);
5753 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5754 }
5755
5756 /* may be called multiple times per register */
5757 static void unregister_sched_domain_sysctl(void)
5758 {
5759 if (sd_sysctl_header)
5760 unregister_sysctl_table(sd_sysctl_header);
5761 sd_sysctl_header = NULL;
5762 if (sd_ctl_dir[0].child)
5763 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5764 }
5765 #else
5766 static void register_sched_domain_sysctl(void)
5767 {
5768 }
5769 static void unregister_sched_domain_sysctl(void)
5770 {
5771 }
5772 #endif
5773
5774 static void set_rq_online(struct rq *rq)
5775 {
5776 if (!rq->online) {
5777 const struct sched_class *class;
5778
5779 cpumask_set_cpu(rq->cpu, rq->rd->online);
5780 rq->online = 1;
5781
5782 for_each_class(class) {
5783 if (class->rq_online)
5784 class->rq_online(rq);
5785 }
5786 }
5787 }
5788
5789 static void set_rq_offline(struct rq *rq)
5790 {
5791 if (rq->online) {
5792 const struct sched_class *class;
5793
5794 for_each_class(class) {
5795 if (class->rq_offline)
5796 class->rq_offline(rq);
5797 }
5798
5799 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5800 rq->online = 0;
5801 }
5802 }
5803
5804 /*
5805 * migration_call - callback that gets triggered when a CPU is added.
5806 * Here we can start up the necessary migration thread for the new CPU.
5807 */
5808 static int __cpuinit
5809 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5810 {
5811 struct task_struct *p;
5812 int cpu = (long)hcpu;
5813 unsigned long flags;
5814 struct rq *rq;
5815
5816 switch (action) {
5817
5818 case CPU_UP_PREPARE:
5819 case CPU_UP_PREPARE_FROZEN:
5820 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
5821 if (IS_ERR(p))
5822 return NOTIFY_BAD;
5823 kthread_bind(p, cpu);
5824 /* Must be high prio: stop_machine expects to yield to it. */
5825 rq = task_rq_lock(p, &flags);
5826 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5827 task_rq_unlock(rq, &flags);
5828 get_task_struct(p);
5829 cpu_rq(cpu)->migration_thread = p;
5830 rq->calc_load_update = calc_load_update;
5831 break;
5832
5833 case CPU_ONLINE:
5834 case CPU_ONLINE_FROZEN:
5835 /* Strictly unnecessary, as first user will wake it. */
5836 wake_up_process(cpu_rq(cpu)->migration_thread);
5837
5838 /* Update our root-domain */
5839 rq = cpu_rq(cpu);
5840 raw_spin_lock_irqsave(&rq->lock, flags);
5841 if (rq->rd) {
5842 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5843
5844 set_rq_online(rq);
5845 }
5846 raw_spin_unlock_irqrestore(&rq->lock, flags);
5847 break;
5848
5849 #ifdef CONFIG_HOTPLUG_CPU
5850 case CPU_UP_CANCELED:
5851 case CPU_UP_CANCELED_FROZEN:
5852 if (!cpu_rq(cpu)->migration_thread)
5853 break;
5854 /* Unbind it from offline cpu so it can run. Fall thru. */
5855 kthread_bind(cpu_rq(cpu)->migration_thread,
5856 cpumask_any(cpu_online_mask));
5857 kthread_stop(cpu_rq(cpu)->migration_thread);
5858 put_task_struct(cpu_rq(cpu)->migration_thread);
5859 cpu_rq(cpu)->migration_thread = NULL;
5860 break;
5861
5862 case CPU_DEAD:
5863 case CPU_DEAD_FROZEN:
5864 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
5865 migrate_live_tasks(cpu);
5866 rq = cpu_rq(cpu);
5867 kthread_stop(rq->migration_thread);
5868 put_task_struct(rq->migration_thread);
5869 rq->migration_thread = NULL;
5870 /* Idle task back to normal (off runqueue, low prio) */
5871 raw_spin_lock_irq(&rq->lock);
5872 update_rq_clock(rq);
5873 deactivate_task(rq, rq->idle, 0);
5874 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5875 rq->idle->sched_class = &idle_sched_class;
5876 migrate_dead_tasks(cpu);
5877 raw_spin_unlock_irq(&rq->lock);
5878 cpuset_unlock();
5879 migrate_nr_uninterruptible(rq);
5880 BUG_ON(rq->nr_running != 0);
5881 calc_global_load_remove(rq);
5882 /*
5883 * No need to migrate the tasks: it was best-effort if
5884 * they didn't take sched_hotcpu_mutex. Just wake up
5885 * the requestors.
5886 */
5887 raw_spin_lock_irq(&rq->lock);
5888 while (!list_empty(&rq->migration_queue)) {
5889 struct migration_req *req;
5890
5891 req = list_entry(rq->migration_queue.next,
5892 struct migration_req, list);
5893 list_del_init(&req->list);
5894 raw_spin_unlock_irq(&rq->lock);
5895 complete(&req->done);
5896 raw_spin_lock_irq(&rq->lock);
5897 }
5898 raw_spin_unlock_irq(&rq->lock);
5899 break;
5900
5901 case CPU_DYING:
5902 case CPU_DYING_FROZEN:
5903 /* Update our root-domain */
5904 rq = cpu_rq(cpu);
5905 raw_spin_lock_irqsave(&rq->lock, flags);
5906 if (rq->rd) {
5907 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5908 set_rq_offline(rq);
5909 }
5910 raw_spin_unlock_irqrestore(&rq->lock, flags);
5911 break;
5912 #endif
5913 }
5914 return NOTIFY_OK;
5915 }
5916
5917 /*
5918 * Register at high priority so that task migration (migrate_all_tasks)
5919 * happens before everything else. This has to be lower priority than
5920 * the notifier in the perf_event subsystem, though.
5921 */
5922 static struct notifier_block __cpuinitdata migration_notifier = {
5923 .notifier_call = migration_call,
5924 .priority = 10
5925 };
5926
5927 static int __init migration_init(void)
5928 {
5929 void *cpu = (void *)(long)smp_processor_id();
5930 int err;
5931
5932 /* Start one for the boot CPU: */
5933 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5934 BUG_ON(err == NOTIFY_BAD);
5935 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5936 register_cpu_notifier(&migration_notifier);
5937
5938 return 0;
5939 }
5940 early_initcall(migration_init);
5941 #endif
5942
5943 #ifdef CONFIG_SMP
5944
5945 #ifdef CONFIG_SCHED_DEBUG
5946
5947 static __read_mostly int sched_domain_debug_enabled;
5948
5949 static int __init sched_domain_debug_setup(char *str)
5950 {
5951 sched_domain_debug_enabled = 1;
5952
5953 return 0;
5954 }
5955 early_param("sched_debug", sched_domain_debug_setup);
5956
5957 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5958 struct cpumask *groupmask)
5959 {
5960 struct sched_group *group = sd->groups;
5961 char str[256];
5962
5963 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5964 cpumask_clear(groupmask);
5965
5966 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5967
5968 if (!(sd->flags & SD_LOAD_BALANCE)) {
5969 printk("does not load-balance\n");
5970 if (sd->parent)
5971 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5972 " has parent");
5973 return -1;
5974 }
5975
5976 printk(KERN_CONT "span %s level %s\n", str, sd->name);
5977
5978 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5979 printk(KERN_ERR "ERROR: domain->span does not contain "
5980 "CPU%d\n", cpu);
5981 }
5982 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5983 printk(KERN_ERR "ERROR: domain->groups does not contain"
5984 " CPU%d\n", cpu);
5985 }
5986
5987 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5988 do {
5989 if (!group) {
5990 printk("\n");
5991 printk(KERN_ERR "ERROR: group is NULL\n");
5992 break;
5993 }
5994
5995 if (!group->cpu_power) {
5996 printk(KERN_CONT "\n");
5997 printk(KERN_ERR "ERROR: domain->cpu_power not "
5998 "set\n");
5999 break;
6000 }
6001
6002 if (!cpumask_weight(sched_group_cpus(group))) {
6003 printk(KERN_CONT "\n");
6004 printk(KERN_ERR "ERROR: empty group\n");
6005 break;
6006 }
6007
6008 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
6009 printk(KERN_CONT "\n");
6010 printk(KERN_ERR "ERROR: repeated CPUs\n");
6011 break;
6012 }
6013
6014 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
6015
6016 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6017
6018 printk(KERN_CONT " %s", str);
6019 if (group->cpu_power != SCHED_LOAD_SCALE) {
6020 printk(KERN_CONT " (cpu_power = %d)",
6021 group->cpu_power);
6022 }
6023
6024 group = group->next;
6025 } while (group != sd->groups);
6026 printk(KERN_CONT "\n");
6027
6028 if (!cpumask_equal(sched_domain_span(sd), groupmask))
6029 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6030
6031 if (sd->parent &&
6032 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
6033 printk(KERN_ERR "ERROR: parent span is not a superset "
6034 "of domain->span\n");
6035 return 0;
6036 }
6037
6038 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6039 {
6040 cpumask_var_t groupmask;
6041 int level = 0;
6042
6043 if (!sched_domain_debug_enabled)
6044 return;
6045
6046 if (!sd) {
6047 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6048 return;
6049 }
6050
6051 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6052
6053 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6054 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6055 return;
6056 }
6057
6058 for (;;) {
6059 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6060 break;
6061 level++;
6062 sd = sd->parent;
6063 if (!sd)
6064 break;
6065 }
6066 free_cpumask_var(groupmask);
6067 }
6068 #else /* !CONFIG_SCHED_DEBUG */
6069 # define sched_domain_debug(sd, cpu) do { } while (0)
6070 #endif /* CONFIG_SCHED_DEBUG */
6071
6072 static int sd_degenerate(struct sched_domain *sd)
6073 {
6074 if (cpumask_weight(sched_domain_span(sd)) == 1)
6075 return 1;
6076
6077 /* Following flags need at least 2 groups */
6078 if (sd->flags & (SD_LOAD_BALANCE |
6079 SD_BALANCE_NEWIDLE |
6080 SD_BALANCE_FORK |
6081 SD_BALANCE_EXEC |
6082 SD_SHARE_CPUPOWER |
6083 SD_SHARE_PKG_RESOURCES)) {
6084 if (sd->groups != sd->groups->next)
6085 return 0;
6086 }
6087
6088 /* Following flags don't use groups */
6089 if (sd->flags & (SD_WAKE_AFFINE))
6090 return 0;
6091
6092 return 1;
6093 }
6094
6095 static int
6096 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6097 {
6098 unsigned long cflags = sd->flags, pflags = parent->flags;
6099
6100 if (sd_degenerate(parent))
6101 return 1;
6102
6103 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6104 return 0;
6105
6106 /* Flags needing groups don't count if only 1 group in parent */
6107 if (parent->groups == parent->groups->next) {
6108 pflags &= ~(SD_LOAD_BALANCE |
6109 SD_BALANCE_NEWIDLE |
6110 SD_BALANCE_FORK |
6111 SD_BALANCE_EXEC |
6112 SD_SHARE_CPUPOWER |
6113 SD_SHARE_PKG_RESOURCES);
6114 if (nr_node_ids == 1)
6115 pflags &= ~SD_SERIALIZE;
6116 }
6117 if (~cflags & pflags)
6118 return 0;
6119
6120 return 1;
6121 }
6122
6123 static void free_rootdomain(struct root_domain *rd)
6124 {
6125 synchronize_sched();
6126
6127 cpupri_cleanup(&rd->cpupri);
6128
6129 free_cpumask_var(rd->rto_mask);
6130 free_cpumask_var(rd->online);
6131 free_cpumask_var(rd->span);
6132 kfree(rd);
6133 }
6134
6135 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6136 {
6137 struct root_domain *old_rd = NULL;
6138 unsigned long flags;
6139
6140 raw_spin_lock_irqsave(&rq->lock, flags);
6141
6142 if (rq->rd) {
6143 old_rd = rq->rd;
6144
6145 if (cpumask_test_cpu(rq->cpu, old_rd->online))
6146 set_rq_offline(rq);
6147
6148 cpumask_clear_cpu(rq->cpu, old_rd->span);
6149
6150 /*
6151 * If we dont want to free the old_rt yet then
6152 * set old_rd to NULL to skip the freeing later
6153 * in this function:
6154 */
6155 if (!atomic_dec_and_test(&old_rd->refcount))
6156 old_rd = NULL;
6157 }
6158
6159 atomic_inc(&rd->refcount);
6160 rq->rd = rd;
6161
6162 cpumask_set_cpu(rq->cpu, rd->span);
6163 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6164 set_rq_online(rq);
6165
6166 raw_spin_unlock_irqrestore(&rq->lock, flags);
6167
6168 if (old_rd)
6169 free_rootdomain(old_rd);
6170 }
6171
6172 static int init_rootdomain(struct root_domain *rd, bool bootmem)
6173 {
6174 gfp_t gfp = GFP_KERNEL;
6175
6176 memset(rd, 0, sizeof(*rd));
6177
6178 if (bootmem)
6179 gfp = GFP_NOWAIT;
6180
6181 if (!alloc_cpumask_var(&rd->span, gfp))
6182 goto out;
6183 if (!alloc_cpumask_var(&rd->online, gfp))
6184 goto free_span;
6185 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
6186 goto free_online;
6187
6188 if (cpupri_init(&rd->cpupri, bootmem) != 0)
6189 goto free_rto_mask;
6190 return 0;
6191
6192 free_rto_mask:
6193 free_cpumask_var(rd->rto_mask);
6194 free_online:
6195 free_cpumask_var(rd->online);
6196 free_span:
6197 free_cpumask_var(rd->span);
6198 out:
6199 return -ENOMEM;
6200 }
6201
6202 static void init_defrootdomain(void)
6203 {
6204 init_rootdomain(&def_root_domain, true);
6205
6206 atomic_set(&def_root_domain.refcount, 1);
6207 }
6208
6209 static struct root_domain *alloc_rootdomain(void)
6210 {
6211 struct root_domain *rd;
6212
6213 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6214 if (!rd)
6215 return NULL;
6216
6217 if (init_rootdomain(rd, false) != 0) {
6218 kfree(rd);
6219 return NULL;
6220 }
6221
6222 return rd;
6223 }
6224
6225 /*
6226 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6227 * hold the hotplug lock.
6228 */
6229 static void
6230 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6231 {
6232 struct rq *rq = cpu_rq(cpu);
6233 struct sched_domain *tmp;
6234
6235 /* Remove the sched domains which do not contribute to scheduling. */
6236 for (tmp = sd; tmp; ) {
6237 struct sched_domain *parent = tmp->parent;
6238 if (!parent)
6239 break;
6240
6241 if (sd_parent_degenerate(tmp, parent)) {
6242 tmp->parent = parent->parent;
6243 if (parent->parent)
6244 parent->parent->child = tmp;
6245 } else
6246 tmp = tmp->parent;
6247 }
6248
6249 if (sd && sd_degenerate(sd)) {
6250 sd = sd->parent;
6251 if (sd)
6252 sd->child = NULL;
6253 }
6254
6255 sched_domain_debug(sd, cpu);
6256
6257 rq_attach_root(rq, rd);
6258 rcu_assign_pointer(rq->sd, sd);
6259 }
6260
6261 /* cpus with isolated domains */
6262 static cpumask_var_t cpu_isolated_map;
6263
6264 /* Setup the mask of cpus configured for isolated domains */
6265 static int __init isolated_cpu_setup(char *str)
6266 {
6267 alloc_bootmem_cpumask_var(&cpu_isolated_map);
6268 cpulist_parse(str, cpu_isolated_map);
6269 return 1;
6270 }
6271
6272 __setup("isolcpus=", isolated_cpu_setup);
6273
6274 /*
6275 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6276 * to a function which identifies what group(along with sched group) a CPU
6277 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6278 * (due to the fact that we keep track of groups covered with a struct cpumask).
6279 *
6280 * init_sched_build_groups will build a circular linked list of the groups
6281 * covered by the given span, and will set each group's ->cpumask correctly,
6282 * and ->cpu_power to 0.
6283 */
6284 static void
6285 init_sched_build_groups(const struct cpumask *span,
6286 const struct cpumask *cpu_map,
6287 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
6288 struct sched_group **sg,
6289 struct cpumask *tmpmask),
6290 struct cpumask *covered, struct cpumask *tmpmask)
6291 {
6292 struct sched_group *first = NULL, *last = NULL;
6293 int i;
6294
6295 cpumask_clear(covered);
6296
6297 for_each_cpu(i, span) {
6298 struct sched_group *sg;
6299 int group = group_fn(i, cpu_map, &sg, tmpmask);
6300 int j;
6301
6302 if (cpumask_test_cpu(i, covered))
6303 continue;
6304
6305 cpumask_clear(sched_group_cpus(sg));
6306 sg->cpu_power = 0;
6307
6308 for_each_cpu(j, span) {
6309 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6310 continue;
6311
6312 cpumask_set_cpu(j, covered);
6313 cpumask_set_cpu(j, sched_group_cpus(sg));
6314 }
6315 if (!first)
6316 first = sg;
6317 if (last)
6318 last->next = sg;
6319 last = sg;
6320 }
6321 last->next = first;
6322 }
6323
6324 #define SD_NODES_PER_DOMAIN 16
6325
6326 #ifdef CONFIG_NUMA
6327
6328 /**
6329 * find_next_best_node - find the next node to include in a sched_domain
6330 * @node: node whose sched_domain we're building
6331 * @used_nodes: nodes already in the sched_domain
6332 *
6333 * Find the next node to include in a given scheduling domain. Simply
6334 * finds the closest node not already in the @used_nodes map.
6335 *
6336 * Should use nodemask_t.
6337 */
6338 static int find_next_best_node(int node, nodemask_t *used_nodes)
6339 {
6340 int i, n, val, min_val, best_node = 0;
6341
6342 min_val = INT_MAX;
6343
6344 for (i = 0; i < nr_node_ids; i++) {
6345 /* Start at @node */
6346 n = (node + i) % nr_node_ids;
6347
6348 if (!nr_cpus_node(n))
6349 continue;
6350
6351 /* Skip already used nodes */
6352 if (node_isset(n, *used_nodes))
6353 continue;
6354
6355 /* Simple min distance search */
6356 val = node_distance(node, n);
6357
6358 if (val < min_val) {
6359 min_val = val;
6360 best_node = n;
6361 }
6362 }
6363
6364 node_set(best_node, *used_nodes);
6365 return best_node;
6366 }
6367
6368 /**
6369 * sched_domain_node_span - get a cpumask for a node's sched_domain
6370 * @node: node whose cpumask we're constructing
6371 * @span: resulting cpumask
6372 *
6373 * Given a node, construct a good cpumask for its sched_domain to span. It
6374 * should be one that prevents unnecessary balancing, but also spreads tasks
6375 * out optimally.
6376 */
6377 static void sched_domain_node_span(int node, struct cpumask *span)
6378 {
6379 nodemask_t used_nodes;
6380 int i;
6381
6382 cpumask_clear(span);
6383 nodes_clear(used_nodes);
6384
6385 cpumask_or(span, span, cpumask_of_node(node));
6386 node_set(node, used_nodes);
6387
6388 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6389 int next_node = find_next_best_node(node, &used_nodes);
6390
6391 cpumask_or(span, span, cpumask_of_node(next_node));
6392 }
6393 }
6394 #endif /* CONFIG_NUMA */
6395
6396 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6397
6398 /*
6399 * The cpus mask in sched_group and sched_domain hangs off the end.
6400 *
6401 * ( See the the comments in include/linux/sched.h:struct sched_group
6402 * and struct sched_domain. )
6403 */
6404 struct static_sched_group {
6405 struct sched_group sg;
6406 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6407 };
6408
6409 struct static_sched_domain {
6410 struct sched_domain sd;
6411 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6412 };
6413
6414 struct s_data {
6415 #ifdef CONFIG_NUMA
6416 int sd_allnodes;
6417 cpumask_var_t domainspan;
6418 cpumask_var_t covered;
6419 cpumask_var_t notcovered;
6420 #endif
6421 cpumask_var_t nodemask;
6422 cpumask_var_t this_sibling_map;
6423 cpumask_var_t this_core_map;
6424 cpumask_var_t send_covered;
6425 cpumask_var_t tmpmask;
6426 struct sched_group **sched_group_nodes;
6427 struct root_domain *rd;
6428 };
6429
6430 enum s_alloc {
6431 sa_sched_groups = 0,
6432 sa_rootdomain,
6433 sa_tmpmask,
6434 sa_send_covered,
6435 sa_this_core_map,
6436 sa_this_sibling_map,
6437 sa_nodemask,
6438 sa_sched_group_nodes,
6439 #ifdef CONFIG_NUMA
6440 sa_notcovered,
6441 sa_covered,
6442 sa_domainspan,
6443 #endif
6444 sa_none,
6445 };
6446
6447 /*
6448 * SMT sched-domains:
6449 */
6450 #ifdef CONFIG_SCHED_SMT
6451 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
6452 static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
6453
6454 static int
6455 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6456 struct sched_group **sg, struct cpumask *unused)
6457 {
6458 if (sg)
6459 *sg = &per_cpu(sched_groups, cpu).sg;
6460 return cpu;
6461 }
6462 #endif /* CONFIG_SCHED_SMT */
6463
6464 /*
6465 * multi-core sched-domains:
6466 */
6467 #ifdef CONFIG_SCHED_MC
6468 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6469 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6470 #endif /* CONFIG_SCHED_MC */
6471
6472 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6473 static int
6474 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6475 struct sched_group **sg, struct cpumask *mask)
6476 {
6477 int group;
6478
6479 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6480 group = cpumask_first(mask);
6481 if (sg)
6482 *sg = &per_cpu(sched_group_core, group).sg;
6483 return group;
6484 }
6485 #elif defined(CONFIG_SCHED_MC)
6486 static int
6487 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6488 struct sched_group **sg, struct cpumask *unused)
6489 {
6490 if (sg)
6491 *sg = &per_cpu(sched_group_core, cpu).sg;
6492 return cpu;
6493 }
6494 #endif
6495
6496 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6497 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
6498
6499 static int
6500 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6501 struct sched_group **sg, struct cpumask *mask)
6502 {
6503 int group;
6504 #ifdef CONFIG_SCHED_MC
6505 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6506 group = cpumask_first(mask);
6507 #elif defined(CONFIG_SCHED_SMT)
6508 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6509 group = cpumask_first(mask);
6510 #else
6511 group = cpu;
6512 #endif
6513 if (sg)
6514 *sg = &per_cpu(sched_group_phys, group).sg;
6515 return group;
6516 }
6517
6518 #ifdef CONFIG_NUMA
6519 /*
6520 * The init_sched_build_groups can't handle what we want to do with node
6521 * groups, so roll our own. Now each node has its own list of groups which
6522 * gets dynamically allocated.
6523 */
6524 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
6525 static struct sched_group ***sched_group_nodes_bycpu;
6526
6527 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6528 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
6529
6530 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6531 struct sched_group **sg,
6532 struct cpumask *nodemask)
6533 {
6534 int group;
6535
6536 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
6537 group = cpumask_first(nodemask);
6538
6539 if (sg)
6540 *sg = &per_cpu(sched_group_allnodes, group).sg;
6541 return group;
6542 }
6543
6544 static void init_numa_sched_groups_power(struct sched_group *group_head)
6545 {
6546 struct sched_group *sg = group_head;
6547 int j;
6548
6549 if (!sg)
6550 return;
6551 do {
6552 for_each_cpu(j, sched_group_cpus(sg)) {
6553 struct sched_domain *sd;
6554
6555 sd = &per_cpu(phys_domains, j).sd;
6556 if (j != group_first_cpu(sd->groups)) {
6557 /*
6558 * Only add "power" once for each
6559 * physical package.
6560 */
6561 continue;
6562 }
6563
6564 sg->cpu_power += sd->groups->cpu_power;
6565 }
6566 sg = sg->next;
6567 } while (sg != group_head);
6568 }
6569
6570 static int build_numa_sched_groups(struct s_data *d,
6571 const struct cpumask *cpu_map, int num)
6572 {
6573 struct sched_domain *sd;
6574 struct sched_group *sg, *prev;
6575 int n, j;
6576
6577 cpumask_clear(d->covered);
6578 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
6579 if (cpumask_empty(d->nodemask)) {
6580 d->sched_group_nodes[num] = NULL;
6581 goto out;
6582 }
6583
6584 sched_domain_node_span(num, d->domainspan);
6585 cpumask_and(d->domainspan, d->domainspan, cpu_map);
6586
6587 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6588 GFP_KERNEL, num);
6589 if (!sg) {
6590 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
6591 num);
6592 return -ENOMEM;
6593 }
6594 d->sched_group_nodes[num] = sg;
6595
6596 for_each_cpu(j, d->nodemask) {
6597 sd = &per_cpu(node_domains, j).sd;
6598 sd->groups = sg;
6599 }
6600
6601 sg->cpu_power = 0;
6602 cpumask_copy(sched_group_cpus(sg), d->nodemask);
6603 sg->next = sg;
6604 cpumask_or(d->covered, d->covered, d->nodemask);
6605
6606 prev = sg;
6607 for (j = 0; j < nr_node_ids; j++) {
6608 n = (num + j) % nr_node_ids;
6609 cpumask_complement(d->notcovered, d->covered);
6610 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
6611 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
6612 if (cpumask_empty(d->tmpmask))
6613 break;
6614 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
6615 if (cpumask_empty(d->tmpmask))
6616 continue;
6617 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6618 GFP_KERNEL, num);
6619 if (!sg) {
6620 printk(KERN_WARNING
6621 "Can not alloc domain group for node %d\n", j);
6622 return -ENOMEM;
6623 }
6624 sg->cpu_power = 0;
6625 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
6626 sg->next = prev->next;
6627 cpumask_or(d->covered, d->covered, d->tmpmask);
6628 prev->next = sg;
6629 prev = sg;
6630 }
6631 out:
6632 return 0;
6633 }
6634 #endif /* CONFIG_NUMA */
6635
6636 #ifdef CONFIG_NUMA
6637 /* Free memory allocated for various sched_group structures */
6638 static void free_sched_groups(const struct cpumask *cpu_map,
6639 struct cpumask *nodemask)
6640 {
6641 int cpu, i;
6642
6643 for_each_cpu(cpu, cpu_map) {
6644 struct sched_group **sched_group_nodes
6645 = sched_group_nodes_bycpu[cpu];
6646
6647 if (!sched_group_nodes)
6648 continue;
6649
6650 for (i = 0; i < nr_node_ids; i++) {
6651 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6652
6653 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
6654 if (cpumask_empty(nodemask))
6655 continue;
6656
6657 if (sg == NULL)
6658 continue;
6659 sg = sg->next;
6660 next_sg:
6661 oldsg = sg;
6662 sg = sg->next;
6663 kfree(oldsg);
6664 if (oldsg != sched_group_nodes[i])
6665 goto next_sg;
6666 }
6667 kfree(sched_group_nodes);
6668 sched_group_nodes_bycpu[cpu] = NULL;
6669 }
6670 }
6671 #else /* !CONFIG_NUMA */
6672 static void free_sched_groups(const struct cpumask *cpu_map,
6673 struct cpumask *nodemask)
6674 {
6675 }
6676 #endif /* CONFIG_NUMA */
6677
6678 /*
6679 * Initialize sched groups cpu_power.
6680 *
6681 * cpu_power indicates the capacity of sched group, which is used while
6682 * distributing the load between different sched groups in a sched domain.
6683 * Typically cpu_power for all the groups in a sched domain will be same unless
6684 * there are asymmetries in the topology. If there are asymmetries, group
6685 * having more cpu_power will pickup more load compared to the group having
6686 * less cpu_power.
6687 */
6688 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6689 {
6690 struct sched_domain *child;
6691 struct sched_group *group;
6692 long power;
6693 int weight;
6694
6695 WARN_ON(!sd || !sd->groups);
6696
6697 if (cpu != group_first_cpu(sd->groups))
6698 return;
6699
6700 child = sd->child;
6701
6702 sd->groups->cpu_power = 0;
6703
6704 if (!child) {
6705 power = SCHED_LOAD_SCALE;
6706 weight = cpumask_weight(sched_domain_span(sd));
6707 /*
6708 * SMT siblings share the power of a single core.
6709 * Usually multiple threads get a better yield out of
6710 * that one core than a single thread would have,
6711 * reflect that in sd->smt_gain.
6712 */
6713 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
6714 power *= sd->smt_gain;
6715 power /= weight;
6716 power >>= SCHED_LOAD_SHIFT;
6717 }
6718 sd->groups->cpu_power += power;
6719 return;
6720 }
6721
6722 /*
6723 * Add cpu_power of each child group to this groups cpu_power.
6724 */
6725 group = child->groups;
6726 do {
6727 sd->groups->cpu_power += group->cpu_power;
6728 group = group->next;
6729 } while (group != child->groups);
6730 }
6731
6732 /*
6733 * Initializers for schedule domains
6734 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6735 */
6736
6737 #ifdef CONFIG_SCHED_DEBUG
6738 # define SD_INIT_NAME(sd, type) sd->name = #type
6739 #else
6740 # define SD_INIT_NAME(sd, type) do { } while (0)
6741 #endif
6742
6743 #define SD_INIT(sd, type) sd_init_##type(sd)
6744
6745 #define SD_INIT_FUNC(type) \
6746 static noinline void sd_init_##type(struct sched_domain *sd) \
6747 { \
6748 memset(sd, 0, sizeof(*sd)); \
6749 *sd = SD_##type##_INIT; \
6750 sd->level = SD_LV_##type; \
6751 SD_INIT_NAME(sd, type); \
6752 }
6753
6754 SD_INIT_FUNC(CPU)
6755 #ifdef CONFIG_NUMA
6756 SD_INIT_FUNC(ALLNODES)
6757 SD_INIT_FUNC(NODE)
6758 #endif
6759 #ifdef CONFIG_SCHED_SMT
6760 SD_INIT_FUNC(SIBLING)
6761 #endif
6762 #ifdef CONFIG_SCHED_MC
6763 SD_INIT_FUNC(MC)
6764 #endif
6765
6766 static int default_relax_domain_level = -1;
6767
6768 static int __init setup_relax_domain_level(char *str)
6769 {
6770 unsigned long val;
6771
6772 val = simple_strtoul(str, NULL, 0);
6773 if (val < SD_LV_MAX)
6774 default_relax_domain_level = val;
6775
6776 return 1;
6777 }
6778 __setup("relax_domain_level=", setup_relax_domain_level);
6779
6780 static void set_domain_attribute(struct sched_domain *sd,
6781 struct sched_domain_attr *attr)
6782 {
6783 int request;
6784
6785 if (!attr || attr->relax_domain_level < 0) {
6786 if (default_relax_domain_level < 0)
6787 return;
6788 else
6789 request = default_relax_domain_level;
6790 } else
6791 request = attr->relax_domain_level;
6792 if (request < sd->level) {
6793 /* turn off idle balance on this domain */
6794 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6795 } else {
6796 /* turn on idle balance on this domain */
6797 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6798 }
6799 }
6800
6801 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6802 const struct cpumask *cpu_map)
6803 {
6804 switch (what) {
6805 case sa_sched_groups:
6806 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
6807 d->sched_group_nodes = NULL;
6808 case sa_rootdomain:
6809 free_rootdomain(d->rd); /* fall through */
6810 case sa_tmpmask:
6811 free_cpumask_var(d->tmpmask); /* fall through */
6812 case sa_send_covered:
6813 free_cpumask_var(d->send_covered); /* fall through */
6814 case sa_this_core_map:
6815 free_cpumask_var(d->this_core_map); /* fall through */
6816 case sa_this_sibling_map:
6817 free_cpumask_var(d->this_sibling_map); /* fall through */
6818 case sa_nodemask:
6819 free_cpumask_var(d->nodemask); /* fall through */
6820 case sa_sched_group_nodes:
6821 #ifdef CONFIG_NUMA
6822 kfree(d->sched_group_nodes); /* fall through */
6823 case sa_notcovered:
6824 free_cpumask_var(d->notcovered); /* fall through */
6825 case sa_covered:
6826 free_cpumask_var(d->covered); /* fall through */
6827 case sa_domainspan:
6828 free_cpumask_var(d->domainspan); /* fall through */
6829 #endif
6830 case sa_none:
6831 break;
6832 }
6833 }
6834
6835 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6836 const struct cpumask *cpu_map)
6837 {
6838 #ifdef CONFIG_NUMA
6839 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
6840 return sa_none;
6841 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
6842 return sa_domainspan;
6843 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
6844 return sa_covered;
6845 /* Allocate the per-node list of sched groups */
6846 d->sched_group_nodes = kcalloc(nr_node_ids,
6847 sizeof(struct sched_group *), GFP_KERNEL);
6848 if (!d->sched_group_nodes) {
6849 printk(KERN_WARNING "Can not alloc sched group node list\n");
6850 return sa_notcovered;
6851 }
6852 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
6853 #endif
6854 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
6855 return sa_sched_group_nodes;
6856 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
6857 return sa_nodemask;
6858 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
6859 return sa_this_sibling_map;
6860 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
6861 return sa_this_core_map;
6862 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
6863 return sa_send_covered;
6864 d->rd = alloc_rootdomain();
6865 if (!d->rd) {
6866 printk(KERN_WARNING "Cannot alloc root domain\n");
6867 return sa_tmpmask;
6868 }
6869 return sa_rootdomain;
6870 }
6871
6872 static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
6873 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
6874 {
6875 struct sched_domain *sd = NULL;
6876 #ifdef CONFIG_NUMA
6877 struct sched_domain *parent;
6878
6879 d->sd_allnodes = 0;
6880 if (cpumask_weight(cpu_map) >
6881 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
6882 sd = &per_cpu(allnodes_domains, i).sd;
6883 SD_INIT(sd, ALLNODES);
6884 set_domain_attribute(sd, attr);
6885 cpumask_copy(sched_domain_span(sd), cpu_map);
6886 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
6887 d->sd_allnodes = 1;
6888 }
6889 parent = sd;
6890
6891 sd = &per_cpu(node_domains, i).sd;
6892 SD_INIT(sd, NODE);
6893 set_domain_attribute(sd, attr);
6894 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
6895 sd->parent = parent;
6896 if (parent)
6897 parent->child = sd;
6898 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
6899 #endif
6900 return sd;
6901 }
6902
6903 static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
6904 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6905 struct sched_domain *parent, int i)
6906 {
6907 struct sched_domain *sd;
6908 sd = &per_cpu(phys_domains, i).sd;
6909 SD_INIT(sd, CPU);
6910 set_domain_attribute(sd, attr);
6911 cpumask_copy(sched_domain_span(sd), d->nodemask);
6912 sd->parent = parent;
6913 if (parent)
6914 parent->child = sd;
6915 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
6916 return sd;
6917 }
6918
6919 static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
6920 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6921 struct sched_domain *parent, int i)
6922 {
6923 struct sched_domain *sd = parent;
6924 #ifdef CONFIG_SCHED_MC
6925 sd = &per_cpu(core_domains, i).sd;
6926 SD_INIT(sd, MC);
6927 set_domain_attribute(sd, attr);
6928 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
6929 sd->parent = parent;
6930 parent->child = sd;
6931 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
6932 #endif
6933 return sd;
6934 }
6935
6936 static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
6937 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6938 struct sched_domain *parent, int i)
6939 {
6940 struct sched_domain *sd = parent;
6941 #ifdef CONFIG_SCHED_SMT
6942 sd = &per_cpu(cpu_domains, i).sd;
6943 SD_INIT(sd, SIBLING);
6944 set_domain_attribute(sd, attr);
6945 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
6946 sd->parent = parent;
6947 parent->child = sd;
6948 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
6949 #endif
6950 return sd;
6951 }
6952
6953 static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
6954 const struct cpumask *cpu_map, int cpu)
6955 {
6956 switch (l) {
6957 #ifdef CONFIG_SCHED_SMT
6958 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
6959 cpumask_and(d->this_sibling_map, cpu_map,
6960 topology_thread_cpumask(cpu));
6961 if (cpu == cpumask_first(d->this_sibling_map))
6962 init_sched_build_groups(d->this_sibling_map, cpu_map,
6963 &cpu_to_cpu_group,
6964 d->send_covered, d->tmpmask);
6965 break;
6966 #endif
6967 #ifdef CONFIG_SCHED_MC
6968 case SD_LV_MC: /* set up multi-core groups */
6969 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
6970 if (cpu == cpumask_first(d->this_core_map))
6971 init_sched_build_groups(d->this_core_map, cpu_map,
6972 &cpu_to_core_group,
6973 d->send_covered, d->tmpmask);
6974 break;
6975 #endif
6976 case SD_LV_CPU: /* set up physical groups */
6977 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
6978 if (!cpumask_empty(d->nodemask))
6979 init_sched_build_groups(d->nodemask, cpu_map,
6980 &cpu_to_phys_group,
6981 d->send_covered, d->tmpmask);
6982 break;
6983 #ifdef CONFIG_NUMA
6984 case SD_LV_ALLNODES:
6985 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
6986 d->send_covered, d->tmpmask);
6987 break;
6988 #endif
6989 default:
6990 break;
6991 }
6992 }
6993
6994 /*
6995 * Build sched domains for a given set of cpus and attach the sched domains
6996 * to the individual cpus
6997 */
6998 static int __build_sched_domains(const struct cpumask *cpu_map,
6999 struct sched_domain_attr *attr)
7000 {
7001 enum s_alloc alloc_state = sa_none;
7002 struct s_data d;
7003 struct sched_domain *sd;
7004 int i;
7005 #ifdef CONFIG_NUMA
7006 d.sd_allnodes = 0;
7007 #endif
7008
7009 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7010 if (alloc_state != sa_rootdomain)
7011 goto error;
7012 alloc_state = sa_sched_groups;
7013
7014 /*
7015 * Set up domains for cpus specified by the cpu_map.
7016 */
7017 for_each_cpu(i, cpu_map) {
7018 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
7019 cpu_map);
7020
7021 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
7022 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
7023 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
7024 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
7025 }
7026
7027 for_each_cpu(i, cpu_map) {
7028 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
7029 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
7030 }
7031
7032 /* Set up physical groups */
7033 for (i = 0; i < nr_node_ids; i++)
7034 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
7035
7036 #ifdef CONFIG_NUMA
7037 /* Set up node groups */
7038 if (d.sd_allnodes)
7039 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
7040
7041 for (i = 0; i < nr_node_ids; i++)
7042 if (build_numa_sched_groups(&d, cpu_map, i))
7043 goto error;
7044 #endif
7045
7046 /* Calculate CPU power for physical packages and nodes */
7047 #ifdef CONFIG_SCHED_SMT
7048 for_each_cpu(i, cpu_map) {
7049 sd = &per_cpu(cpu_domains, i).sd;
7050 init_sched_groups_power(i, sd);
7051 }
7052 #endif
7053 #ifdef CONFIG_SCHED_MC
7054 for_each_cpu(i, cpu_map) {
7055 sd = &per_cpu(core_domains, i).sd;
7056 init_sched_groups_power(i, sd);
7057 }
7058 #endif
7059
7060 for_each_cpu(i, cpu_map) {
7061 sd = &per_cpu(phys_domains, i).sd;
7062 init_sched_groups_power(i, sd);
7063 }
7064
7065 #ifdef CONFIG_NUMA
7066 for (i = 0; i < nr_node_ids; i++)
7067 init_numa_sched_groups_power(d.sched_group_nodes[i]);
7068
7069 if (d.sd_allnodes) {
7070 struct sched_group *sg;
7071
7072 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7073 d.tmpmask);
7074 init_numa_sched_groups_power(sg);
7075 }
7076 #endif
7077
7078 /* Attach the domains */
7079 for_each_cpu(i, cpu_map) {
7080 #ifdef CONFIG_SCHED_SMT
7081 sd = &per_cpu(cpu_domains, i).sd;
7082 #elif defined(CONFIG_SCHED_MC)
7083 sd = &per_cpu(core_domains, i).sd;
7084 #else
7085 sd = &per_cpu(phys_domains, i).sd;
7086 #endif
7087 cpu_attach_domain(sd, d.rd, i);
7088 }
7089
7090 d.sched_group_nodes = NULL; /* don't free this we still need it */
7091 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7092 return 0;
7093
7094 error:
7095 __free_domain_allocs(&d, alloc_state, cpu_map);
7096 return -ENOMEM;
7097 }
7098
7099 static int build_sched_domains(const struct cpumask *cpu_map)
7100 {
7101 return __build_sched_domains(cpu_map, NULL);
7102 }
7103
7104 static cpumask_var_t *doms_cur; /* current sched domains */
7105 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7106 static struct sched_domain_attr *dattr_cur;
7107 /* attribues of custom domains in 'doms_cur' */
7108
7109 /*
7110 * Special case: If a kmalloc of a doms_cur partition (array of
7111 * cpumask) fails, then fallback to a single sched domain,
7112 * as determined by the single cpumask fallback_doms.
7113 */
7114 static cpumask_var_t fallback_doms;
7115
7116 /*
7117 * arch_update_cpu_topology lets virtualized architectures update the
7118 * cpu core maps. It is supposed to return 1 if the topology changed
7119 * or 0 if it stayed the same.
7120 */
7121 int __attribute__((weak)) arch_update_cpu_topology(void)
7122 {
7123 return 0;
7124 }
7125
7126 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7127 {
7128 int i;
7129 cpumask_var_t *doms;
7130
7131 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7132 if (!doms)
7133 return NULL;
7134 for (i = 0; i < ndoms; i++) {
7135 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7136 free_sched_domains(doms, i);
7137 return NULL;
7138 }
7139 }
7140 return doms;
7141 }
7142
7143 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7144 {
7145 unsigned int i;
7146 for (i = 0; i < ndoms; i++)
7147 free_cpumask_var(doms[i]);
7148 kfree(doms);
7149 }
7150
7151 /*
7152 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7153 * For now this just excludes isolated cpus, but could be used to
7154 * exclude other special cases in the future.
7155 */
7156 static int arch_init_sched_domains(const struct cpumask *cpu_map)
7157 {
7158 int err;
7159
7160 arch_update_cpu_topology();
7161 ndoms_cur = 1;
7162 doms_cur = alloc_sched_domains(ndoms_cur);
7163 if (!doms_cur)
7164 doms_cur = &fallback_doms;
7165 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7166 dattr_cur = NULL;
7167 err = build_sched_domains(doms_cur[0]);
7168 register_sched_domain_sysctl();
7169
7170 return err;
7171 }
7172
7173 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7174 struct cpumask *tmpmask)
7175 {
7176 free_sched_groups(cpu_map, tmpmask);
7177 }
7178
7179 /*
7180 * Detach sched domains from a group of cpus specified in cpu_map
7181 * These cpus will now be attached to the NULL domain
7182 */
7183 static void detach_destroy_domains(const struct cpumask *cpu_map)
7184 {
7185 /* Save because hotplug lock held. */
7186 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7187 int i;
7188
7189 for_each_cpu(i, cpu_map)
7190 cpu_attach_domain(NULL, &def_root_domain, i);
7191 synchronize_sched();
7192 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7193 }
7194
7195 /* handle null as "default" */
7196 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7197 struct sched_domain_attr *new, int idx_new)
7198 {
7199 struct sched_domain_attr tmp;
7200
7201 /* fast path */
7202 if (!new && !cur)
7203 return 1;
7204
7205 tmp = SD_ATTR_INIT;
7206 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7207 new ? (new + idx_new) : &tmp,
7208 sizeof(struct sched_domain_attr));
7209 }
7210
7211 /*
7212 * Partition sched domains as specified by the 'ndoms_new'
7213 * cpumasks in the array doms_new[] of cpumasks. This compares
7214 * doms_new[] to the current sched domain partitioning, doms_cur[].
7215 * It destroys each deleted domain and builds each new domain.
7216 *
7217 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7218 * The masks don't intersect (don't overlap.) We should setup one
7219 * sched domain for each mask. CPUs not in any of the cpumasks will
7220 * not be load balanced. If the same cpumask appears both in the
7221 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7222 * it as it is.
7223 *
7224 * The passed in 'doms_new' should be allocated using
7225 * alloc_sched_domains. This routine takes ownership of it and will
7226 * free_sched_domains it when done with it. If the caller failed the
7227 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7228 * and partition_sched_domains() will fallback to the single partition
7229 * 'fallback_doms', it also forces the domains to be rebuilt.
7230 *
7231 * If doms_new == NULL it will be replaced with cpu_online_mask.
7232 * ndoms_new == 0 is a special case for destroying existing domains,
7233 * and it will not create the default domain.
7234 *
7235 * Call with hotplug lock held
7236 */
7237 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7238 struct sched_domain_attr *dattr_new)
7239 {
7240 int i, j, n;
7241 int new_topology;
7242
7243 mutex_lock(&sched_domains_mutex);
7244
7245 /* always unregister in case we don't destroy any domains */
7246 unregister_sched_domain_sysctl();
7247
7248 /* Let architecture update cpu core mappings. */
7249 new_topology = arch_update_cpu_topology();
7250
7251 n = doms_new ? ndoms_new : 0;
7252
7253 /* Destroy deleted domains */
7254 for (i = 0; i < ndoms_cur; i++) {
7255 for (j = 0; j < n && !new_topology; j++) {
7256 if (cpumask_equal(doms_cur[i], doms_new[j])
7257 && dattrs_equal(dattr_cur, i, dattr_new, j))
7258 goto match1;
7259 }
7260 /* no match - a current sched domain not in new doms_new[] */
7261 detach_destroy_domains(doms_cur[i]);
7262 match1:
7263 ;
7264 }
7265
7266 if (doms_new == NULL) {
7267 ndoms_cur = 0;
7268 doms_new = &fallback_doms;
7269 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7270 WARN_ON_ONCE(dattr_new);
7271 }
7272
7273 /* Build new domains */
7274 for (i = 0; i < ndoms_new; i++) {
7275 for (j = 0; j < ndoms_cur && !new_topology; j++) {
7276 if (cpumask_equal(doms_new[i], doms_cur[j])
7277 && dattrs_equal(dattr_new, i, dattr_cur, j))
7278 goto match2;
7279 }
7280 /* no match - add a new doms_new */
7281 __build_sched_domains(doms_new[i],
7282 dattr_new ? dattr_new + i : NULL);
7283 match2:
7284 ;
7285 }
7286
7287 /* Remember the new sched domains */
7288 if (doms_cur != &fallback_doms)
7289 free_sched_domains(doms_cur, ndoms_cur);
7290 kfree(dattr_cur); /* kfree(NULL) is safe */
7291 doms_cur = doms_new;
7292 dattr_cur = dattr_new;
7293 ndoms_cur = ndoms_new;
7294
7295 register_sched_domain_sysctl();
7296
7297 mutex_unlock(&sched_domains_mutex);
7298 }
7299
7300 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7301 static void arch_reinit_sched_domains(void)
7302 {
7303 get_online_cpus();
7304
7305 /* Destroy domains first to force the rebuild */
7306 partition_sched_domains(0, NULL, NULL);
7307
7308 rebuild_sched_domains();
7309 put_online_cpus();
7310 }
7311
7312 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7313 {
7314 unsigned int level = 0;
7315
7316 if (sscanf(buf, "%u", &level) != 1)
7317 return -EINVAL;
7318
7319 /*
7320 * level is always be positive so don't check for
7321 * level < POWERSAVINGS_BALANCE_NONE which is 0
7322 * What happens on 0 or 1 byte write,
7323 * need to check for count as well?
7324 */
7325
7326 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7327 return -EINVAL;
7328
7329 if (smt)
7330 sched_smt_power_savings = level;
7331 else
7332 sched_mc_power_savings = level;
7333
7334 arch_reinit_sched_domains();
7335
7336 return count;
7337 }
7338
7339 #ifdef CONFIG_SCHED_MC
7340 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7341 char *page)
7342 {
7343 return sprintf(page, "%u\n", sched_mc_power_savings);
7344 }
7345 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7346 const char *buf, size_t count)
7347 {
7348 return sched_power_savings_store(buf, count, 0);
7349 }
7350 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7351 sched_mc_power_savings_show,
7352 sched_mc_power_savings_store);
7353 #endif
7354
7355 #ifdef CONFIG_SCHED_SMT
7356 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7357 char *page)
7358 {
7359 return sprintf(page, "%u\n", sched_smt_power_savings);
7360 }
7361 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7362 const char *buf, size_t count)
7363 {
7364 return sched_power_savings_store(buf, count, 1);
7365 }
7366 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7367 sched_smt_power_savings_show,
7368 sched_smt_power_savings_store);
7369 #endif
7370
7371 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7372 {
7373 int err = 0;
7374
7375 #ifdef CONFIG_SCHED_SMT
7376 if (smt_capable())
7377 err = sysfs_create_file(&cls->kset.kobj,
7378 &attr_sched_smt_power_savings.attr);
7379 #endif
7380 #ifdef CONFIG_SCHED_MC
7381 if (!err && mc_capable())
7382 err = sysfs_create_file(&cls->kset.kobj,
7383 &attr_sched_mc_power_savings.attr);
7384 #endif
7385 return err;
7386 }
7387 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7388
7389 #ifndef CONFIG_CPUSETS
7390 /*
7391 * Add online and remove offline CPUs from the scheduler domains.
7392 * When cpusets are enabled they take over this function.
7393 */
7394 static int update_sched_domains(struct notifier_block *nfb,
7395 unsigned long action, void *hcpu)
7396 {
7397 switch (action) {
7398 case CPU_ONLINE:
7399 case CPU_ONLINE_FROZEN:
7400 case CPU_DOWN_PREPARE:
7401 case CPU_DOWN_PREPARE_FROZEN:
7402 case CPU_DOWN_FAILED:
7403 case CPU_DOWN_FAILED_FROZEN:
7404 partition_sched_domains(1, NULL, NULL);
7405 return NOTIFY_OK;
7406
7407 default:
7408 return NOTIFY_DONE;
7409 }
7410 }
7411 #endif
7412
7413 static int update_runtime(struct notifier_block *nfb,
7414 unsigned long action, void *hcpu)
7415 {
7416 int cpu = (int)(long)hcpu;
7417
7418 switch (action) {
7419 case CPU_DOWN_PREPARE:
7420 case CPU_DOWN_PREPARE_FROZEN:
7421 disable_runtime(cpu_rq(cpu));
7422 return NOTIFY_OK;
7423
7424 case CPU_DOWN_FAILED:
7425 case CPU_DOWN_FAILED_FROZEN:
7426 case CPU_ONLINE:
7427 case CPU_ONLINE_FROZEN:
7428 enable_runtime(cpu_rq(cpu));
7429 return NOTIFY_OK;
7430
7431 default:
7432 return NOTIFY_DONE;
7433 }
7434 }
7435
7436 void __init sched_init_smp(void)
7437 {
7438 cpumask_var_t non_isolated_cpus;
7439
7440 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7441 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7442
7443 #if defined(CONFIG_NUMA)
7444 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7445 GFP_KERNEL);
7446 BUG_ON(sched_group_nodes_bycpu == NULL);
7447 #endif
7448 get_online_cpus();
7449 mutex_lock(&sched_domains_mutex);
7450 arch_init_sched_domains(cpu_active_mask);
7451 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7452 if (cpumask_empty(non_isolated_cpus))
7453 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7454 mutex_unlock(&sched_domains_mutex);
7455 put_online_cpus();
7456
7457 #ifndef CONFIG_CPUSETS
7458 /* XXX: Theoretical race here - CPU may be hotplugged now */
7459 hotcpu_notifier(update_sched_domains, 0);
7460 #endif
7461
7462 /* RT runtime code needs to handle some hotplug events */
7463 hotcpu_notifier(update_runtime, 0);
7464
7465 init_hrtick();
7466
7467 /* Move init over to a non-isolated CPU */
7468 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7469 BUG();
7470 sched_init_granularity();
7471 free_cpumask_var(non_isolated_cpus);
7472
7473 init_sched_rt_class();
7474 }
7475 #else
7476 void __init sched_init_smp(void)
7477 {
7478 sched_init_granularity();
7479 }
7480 #endif /* CONFIG_SMP */
7481
7482 const_debug unsigned int sysctl_timer_migration = 1;
7483
7484 int in_sched_functions(unsigned long addr)
7485 {
7486 return in_lock_functions(addr) ||
7487 (addr >= (unsigned long)__sched_text_start
7488 && addr < (unsigned long)__sched_text_end);
7489 }
7490
7491 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
7492 {
7493 cfs_rq->tasks_timeline = RB_ROOT;
7494 INIT_LIST_HEAD(&cfs_rq->tasks);
7495 #ifdef CONFIG_FAIR_GROUP_SCHED
7496 cfs_rq->rq = rq;
7497 #endif
7498 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7499 }
7500
7501 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7502 {
7503 struct rt_prio_array *array;
7504 int i;
7505
7506 array = &rt_rq->active;
7507 for (i = 0; i < MAX_RT_PRIO; i++) {
7508 INIT_LIST_HEAD(array->queue + i);
7509 __clear_bit(i, array->bitmap);
7510 }
7511 /* delimiter for bitsearch: */
7512 __set_bit(MAX_RT_PRIO, array->bitmap);
7513
7514 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7515 rt_rq->highest_prio.curr = MAX_RT_PRIO;
7516 #ifdef CONFIG_SMP
7517 rt_rq->highest_prio.next = MAX_RT_PRIO;
7518 #endif
7519 #endif
7520 #ifdef CONFIG_SMP
7521 rt_rq->rt_nr_migratory = 0;
7522 rt_rq->overloaded = 0;
7523 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
7524 #endif
7525
7526 rt_rq->rt_time = 0;
7527 rt_rq->rt_throttled = 0;
7528 rt_rq->rt_runtime = 0;
7529 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
7530
7531 #ifdef CONFIG_RT_GROUP_SCHED
7532 rt_rq->rt_nr_boosted = 0;
7533 rt_rq->rq = rq;
7534 #endif
7535 }
7536
7537 #ifdef CONFIG_FAIR_GROUP_SCHED
7538 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7539 struct sched_entity *se, int cpu, int add,
7540 struct sched_entity *parent)
7541 {
7542 struct rq *rq = cpu_rq(cpu);
7543 tg->cfs_rq[cpu] = cfs_rq;
7544 init_cfs_rq(cfs_rq, rq);
7545 cfs_rq->tg = tg;
7546 if (add)
7547 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7548
7549 tg->se[cpu] = se;
7550 /* se could be NULL for init_task_group */
7551 if (!se)
7552 return;
7553
7554 if (!parent)
7555 se->cfs_rq = &rq->cfs;
7556 else
7557 se->cfs_rq = parent->my_q;
7558
7559 se->my_q = cfs_rq;
7560 se->load.weight = tg->shares;
7561 se->load.inv_weight = 0;
7562 se->parent = parent;
7563 }
7564 #endif
7565
7566 #ifdef CONFIG_RT_GROUP_SCHED
7567 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7568 struct sched_rt_entity *rt_se, int cpu, int add,
7569 struct sched_rt_entity *parent)
7570 {
7571 struct rq *rq = cpu_rq(cpu);
7572
7573 tg->rt_rq[cpu] = rt_rq;
7574 init_rt_rq(rt_rq, rq);
7575 rt_rq->tg = tg;
7576 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
7577 if (add)
7578 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7579
7580 tg->rt_se[cpu] = rt_se;
7581 if (!rt_se)
7582 return;
7583
7584 if (!parent)
7585 rt_se->rt_rq = &rq->rt;
7586 else
7587 rt_se->rt_rq = parent->my_q;
7588
7589 rt_se->my_q = rt_rq;
7590 rt_se->parent = parent;
7591 INIT_LIST_HEAD(&rt_se->run_list);
7592 }
7593 #endif
7594
7595 void __init sched_init(void)
7596 {
7597 int i, j;
7598 unsigned long alloc_size = 0, ptr;
7599
7600 #ifdef CONFIG_FAIR_GROUP_SCHED
7601 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7602 #endif
7603 #ifdef CONFIG_RT_GROUP_SCHED
7604 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7605 #endif
7606 #ifdef CONFIG_CPUMASK_OFFSTACK
7607 alloc_size += num_possible_cpus() * cpumask_size();
7608 #endif
7609 if (alloc_size) {
7610 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7611
7612 #ifdef CONFIG_FAIR_GROUP_SCHED
7613 init_task_group.se = (struct sched_entity **)ptr;
7614 ptr += nr_cpu_ids * sizeof(void **);
7615
7616 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7617 ptr += nr_cpu_ids * sizeof(void **);
7618
7619 #endif /* CONFIG_FAIR_GROUP_SCHED */
7620 #ifdef CONFIG_RT_GROUP_SCHED
7621 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7622 ptr += nr_cpu_ids * sizeof(void **);
7623
7624 init_task_group.rt_rq = (struct rt_rq **)ptr;
7625 ptr += nr_cpu_ids * sizeof(void **);
7626
7627 #endif /* CONFIG_RT_GROUP_SCHED */
7628 #ifdef CONFIG_CPUMASK_OFFSTACK
7629 for_each_possible_cpu(i) {
7630 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7631 ptr += cpumask_size();
7632 }
7633 #endif /* CONFIG_CPUMASK_OFFSTACK */
7634 }
7635
7636 #ifdef CONFIG_SMP
7637 init_defrootdomain();
7638 #endif
7639
7640 init_rt_bandwidth(&def_rt_bandwidth,
7641 global_rt_period(), global_rt_runtime());
7642
7643 #ifdef CONFIG_RT_GROUP_SCHED
7644 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7645 global_rt_period(), global_rt_runtime());
7646 #endif /* CONFIG_RT_GROUP_SCHED */
7647
7648 #ifdef CONFIG_CGROUP_SCHED
7649 list_add(&init_task_group.list, &task_groups);
7650 INIT_LIST_HEAD(&init_task_group.children);
7651
7652 #endif /* CONFIG_CGROUP_SCHED */
7653
7654 #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
7655 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
7656 __alignof__(unsigned long));
7657 #endif
7658 for_each_possible_cpu(i) {
7659 struct rq *rq;
7660
7661 rq = cpu_rq(i);
7662 raw_spin_lock_init(&rq->lock);
7663 rq->nr_running = 0;
7664 rq->calc_load_active = 0;
7665 rq->calc_load_update = jiffies + LOAD_FREQ;
7666 init_cfs_rq(&rq->cfs, rq);
7667 init_rt_rq(&rq->rt, rq);
7668 #ifdef CONFIG_FAIR_GROUP_SCHED
7669 init_task_group.shares = init_task_group_load;
7670 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7671 #ifdef CONFIG_CGROUP_SCHED
7672 /*
7673 * How much cpu bandwidth does init_task_group get?
7674 *
7675 * In case of task-groups formed thr' the cgroup filesystem, it
7676 * gets 100% of the cpu resources in the system. This overall
7677 * system cpu resource is divided among the tasks of
7678 * init_task_group and its child task-groups in a fair manner,
7679 * based on each entity's (task or task-group's) weight
7680 * (se->load.weight).
7681 *
7682 * In other words, if init_task_group has 10 tasks of weight
7683 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7684 * then A0's share of the cpu resource is:
7685 *
7686 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7687 *
7688 * We achieve this by letting init_task_group's tasks sit
7689 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7690 */
7691 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
7692 #endif
7693 #endif /* CONFIG_FAIR_GROUP_SCHED */
7694
7695 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7696 #ifdef CONFIG_RT_GROUP_SCHED
7697 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7698 #ifdef CONFIG_CGROUP_SCHED
7699 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
7700 #endif
7701 #endif
7702
7703 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7704 rq->cpu_load[j] = 0;
7705 #ifdef CONFIG_SMP
7706 rq->sd = NULL;
7707 rq->rd = NULL;
7708 rq->post_schedule = 0;
7709 rq->active_balance = 0;
7710 rq->next_balance = jiffies;
7711 rq->push_cpu = 0;
7712 rq->cpu = i;
7713 rq->online = 0;
7714 rq->migration_thread = NULL;
7715 rq->idle_stamp = 0;
7716 rq->avg_idle = 2*sysctl_sched_migration_cost;
7717 INIT_LIST_HEAD(&rq->migration_queue);
7718 rq_attach_root(rq, &def_root_domain);
7719 #endif
7720 init_rq_hrtick(rq);
7721 atomic_set(&rq->nr_iowait, 0);
7722 }
7723
7724 set_load_weight(&init_task);
7725
7726 #ifdef CONFIG_PREEMPT_NOTIFIERS
7727 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7728 #endif
7729
7730 #ifdef CONFIG_SMP
7731 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7732 #endif
7733
7734 #ifdef CONFIG_RT_MUTEXES
7735 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
7736 #endif
7737
7738 /*
7739 * The boot idle thread does lazy MMU switching as well:
7740 */
7741 atomic_inc(&init_mm.mm_count);
7742 enter_lazy_tlb(&init_mm, current);
7743
7744 /*
7745 * Make us the idle thread. Technically, schedule() should not be
7746 * called from this thread, however somewhere below it might be,
7747 * but because we are the idle thread, we just pick up running again
7748 * when this runqueue becomes "idle".
7749 */
7750 init_idle(current, smp_processor_id());
7751
7752 calc_load_update = jiffies + LOAD_FREQ;
7753
7754 /*
7755 * During early bootup we pretend to be a normal task:
7756 */
7757 current->sched_class = &fair_sched_class;
7758
7759 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
7760 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
7761 #ifdef CONFIG_SMP
7762 #ifdef CONFIG_NO_HZ
7763 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
7764 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7765 #endif
7766 /* May be allocated at isolcpus cmdline parse time */
7767 if (cpu_isolated_map == NULL)
7768 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7769 #endif /* SMP */
7770
7771 perf_event_init();
7772
7773 scheduler_running = 1;
7774 }
7775
7776 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7777 static inline int preempt_count_equals(int preempt_offset)
7778 {
7779 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7780
7781 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
7782 }
7783
7784 void __might_sleep(const char *file, int line, int preempt_offset)
7785 {
7786 #ifdef in_atomic
7787 static unsigned long prev_jiffy; /* ratelimiting */
7788
7789 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7790 system_state != SYSTEM_RUNNING || oops_in_progress)
7791 return;
7792 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7793 return;
7794 prev_jiffy = jiffies;
7795
7796 printk(KERN_ERR
7797 "BUG: sleeping function called from invalid context at %s:%d\n",
7798 file, line);
7799 printk(KERN_ERR
7800 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7801 in_atomic(), irqs_disabled(),
7802 current->pid, current->comm);
7803
7804 debug_show_held_locks(current);
7805 if (irqs_disabled())
7806 print_irqtrace_events(current);
7807 dump_stack();
7808 #endif
7809 }
7810 EXPORT_SYMBOL(__might_sleep);
7811 #endif
7812
7813 #ifdef CONFIG_MAGIC_SYSRQ
7814 static void normalize_task(struct rq *rq, struct task_struct *p)
7815 {
7816 int on_rq;
7817
7818 update_rq_clock(rq);
7819 on_rq = p->se.on_rq;
7820 if (on_rq)
7821 deactivate_task(rq, p, 0);
7822 __setscheduler(rq, p, SCHED_NORMAL, 0);
7823 if (on_rq) {
7824 activate_task(rq, p, 0);
7825 resched_task(rq->curr);
7826 }
7827 }
7828
7829 void normalize_rt_tasks(void)
7830 {
7831 struct task_struct *g, *p;
7832 unsigned long flags;
7833 struct rq *rq;
7834
7835 read_lock_irqsave(&tasklist_lock, flags);
7836 do_each_thread(g, p) {
7837 /*
7838 * Only normalize user tasks:
7839 */
7840 if (!p->mm)
7841 continue;
7842
7843 p->se.exec_start = 0;
7844 #ifdef CONFIG_SCHEDSTATS
7845 p->se.statistics.wait_start = 0;
7846 p->se.statistics.sleep_start = 0;
7847 p->se.statistics.block_start = 0;
7848 #endif
7849
7850 if (!rt_task(p)) {
7851 /*
7852 * Renice negative nice level userspace
7853 * tasks back to 0:
7854 */
7855 if (TASK_NICE(p) < 0 && p->mm)
7856 set_user_nice(p, 0);
7857 continue;
7858 }
7859
7860 raw_spin_lock(&p->pi_lock);
7861 rq = __task_rq_lock(p);
7862
7863 normalize_task(rq, p);
7864
7865 __task_rq_unlock(rq);
7866 raw_spin_unlock(&p->pi_lock);
7867 } while_each_thread(g, p);
7868
7869 read_unlock_irqrestore(&tasklist_lock, flags);
7870 }
7871
7872 #endif /* CONFIG_MAGIC_SYSRQ */
7873
7874 #ifdef CONFIG_IA64
7875 /*
7876 * These functions are only useful for the IA64 MCA handling.
7877 *
7878 * They can only be called when the whole system has been
7879 * stopped - every CPU needs to be quiescent, and no scheduling
7880 * activity can take place. Using them for anything else would
7881 * be a serious bug, and as a result, they aren't even visible
7882 * under any other configuration.
7883 */
7884
7885 /**
7886 * curr_task - return the current task for a given cpu.
7887 * @cpu: the processor in question.
7888 *
7889 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7890 */
7891 struct task_struct *curr_task(int cpu)
7892 {
7893 return cpu_curr(cpu);
7894 }
7895
7896 /**
7897 * set_curr_task - set the current task for a given cpu.
7898 * @cpu: the processor in question.
7899 * @p: the task pointer to set.
7900 *
7901 * Description: This function must only be used when non-maskable interrupts
7902 * are serviced on a separate stack. It allows the architecture to switch the
7903 * notion of the current task on a cpu in a non-blocking manner. This function
7904 * must be called with all CPU's synchronized, and interrupts disabled, the
7905 * and caller must save the original value of the current task (see
7906 * curr_task() above) and restore that value before reenabling interrupts and
7907 * re-starting the system.
7908 *
7909 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7910 */
7911 void set_curr_task(int cpu, struct task_struct *p)
7912 {
7913 cpu_curr(cpu) = p;
7914 }
7915
7916 #endif
7917
7918 #ifdef CONFIG_FAIR_GROUP_SCHED
7919 static void free_fair_sched_group(struct task_group *tg)
7920 {
7921 int i;
7922
7923 for_each_possible_cpu(i) {
7924 if (tg->cfs_rq)
7925 kfree(tg->cfs_rq[i]);
7926 if (tg->se)
7927 kfree(tg->se[i]);
7928 }
7929
7930 kfree(tg->cfs_rq);
7931 kfree(tg->se);
7932 }
7933
7934 static
7935 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7936 {
7937 struct cfs_rq *cfs_rq;
7938 struct sched_entity *se;
7939 struct rq *rq;
7940 int i;
7941
7942 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7943 if (!tg->cfs_rq)
7944 goto err;
7945 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7946 if (!tg->se)
7947 goto err;
7948
7949 tg->shares = NICE_0_LOAD;
7950
7951 for_each_possible_cpu(i) {
7952 rq = cpu_rq(i);
7953
7954 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7955 GFP_KERNEL, cpu_to_node(i));
7956 if (!cfs_rq)
7957 goto err;
7958
7959 se = kzalloc_node(sizeof(struct sched_entity),
7960 GFP_KERNEL, cpu_to_node(i));
7961 if (!se)
7962 goto err_free_rq;
7963
7964 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
7965 }
7966
7967 return 1;
7968
7969 err_free_rq:
7970 kfree(cfs_rq);
7971 err:
7972 return 0;
7973 }
7974
7975 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7976 {
7977 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
7978 &cpu_rq(cpu)->leaf_cfs_rq_list);
7979 }
7980
7981 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
7982 {
7983 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
7984 }
7985 #else /* !CONFG_FAIR_GROUP_SCHED */
7986 static inline void free_fair_sched_group(struct task_group *tg)
7987 {
7988 }
7989
7990 static inline
7991 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7992 {
7993 return 1;
7994 }
7995
7996 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7997 {
7998 }
7999
8000 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8001 {
8002 }
8003 #endif /* CONFIG_FAIR_GROUP_SCHED */
8004
8005 #ifdef CONFIG_RT_GROUP_SCHED
8006 static void free_rt_sched_group(struct task_group *tg)
8007 {
8008 int i;
8009
8010 destroy_rt_bandwidth(&tg->rt_bandwidth);
8011
8012 for_each_possible_cpu(i) {
8013 if (tg->rt_rq)
8014 kfree(tg->rt_rq[i]);
8015 if (tg->rt_se)
8016 kfree(tg->rt_se[i]);
8017 }
8018
8019 kfree(tg->rt_rq);
8020 kfree(tg->rt_se);
8021 }
8022
8023 static
8024 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8025 {
8026 struct rt_rq *rt_rq;
8027 struct sched_rt_entity *rt_se;
8028 struct rq *rq;
8029 int i;
8030
8031 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8032 if (!tg->rt_rq)
8033 goto err;
8034 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8035 if (!tg->rt_se)
8036 goto err;
8037
8038 init_rt_bandwidth(&tg->rt_bandwidth,
8039 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8040
8041 for_each_possible_cpu(i) {
8042 rq = cpu_rq(i);
8043
8044 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8045 GFP_KERNEL, cpu_to_node(i));
8046 if (!rt_rq)
8047 goto err;
8048
8049 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8050 GFP_KERNEL, cpu_to_node(i));
8051 if (!rt_se)
8052 goto err_free_rq;
8053
8054 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
8055 }
8056
8057 return 1;
8058
8059 err_free_rq:
8060 kfree(rt_rq);
8061 err:
8062 return 0;
8063 }
8064
8065 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8066 {
8067 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8068 &cpu_rq(cpu)->leaf_rt_rq_list);
8069 }
8070
8071 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8072 {
8073 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8074 }
8075 #else /* !CONFIG_RT_GROUP_SCHED */
8076 static inline void free_rt_sched_group(struct task_group *tg)
8077 {
8078 }
8079
8080 static inline
8081 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8082 {
8083 return 1;
8084 }
8085
8086 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8087 {
8088 }
8089
8090 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8091 {
8092 }
8093 #endif /* CONFIG_RT_GROUP_SCHED */
8094
8095 #ifdef CONFIG_CGROUP_SCHED
8096 static void free_sched_group(struct task_group *tg)
8097 {
8098 free_fair_sched_group(tg);
8099 free_rt_sched_group(tg);
8100 kfree(tg);
8101 }
8102
8103 /* allocate runqueue etc for a new task group */
8104 struct task_group *sched_create_group(struct task_group *parent)
8105 {
8106 struct task_group *tg;
8107 unsigned long flags;
8108 int i;
8109
8110 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8111 if (!tg)
8112 return ERR_PTR(-ENOMEM);
8113
8114 if (!alloc_fair_sched_group(tg, parent))
8115 goto err;
8116
8117 if (!alloc_rt_sched_group(tg, parent))
8118 goto err;
8119
8120 spin_lock_irqsave(&task_group_lock, flags);
8121 for_each_possible_cpu(i) {
8122 register_fair_sched_group(tg, i);
8123 register_rt_sched_group(tg, i);
8124 }
8125 list_add_rcu(&tg->list, &task_groups);
8126
8127 WARN_ON(!parent); /* root should already exist */
8128
8129 tg->parent = parent;
8130 INIT_LIST_HEAD(&tg->children);
8131 list_add_rcu(&tg->siblings, &parent->children);
8132 spin_unlock_irqrestore(&task_group_lock, flags);
8133
8134 return tg;
8135
8136 err:
8137 free_sched_group(tg);
8138 return ERR_PTR(-ENOMEM);
8139 }
8140
8141 /* rcu callback to free various structures associated with a task group */
8142 static void free_sched_group_rcu(struct rcu_head *rhp)
8143 {
8144 /* now it should be safe to free those cfs_rqs */
8145 free_sched_group(container_of(rhp, struct task_group, rcu));
8146 }
8147
8148 /* Destroy runqueue etc associated with a task group */
8149 void sched_destroy_group(struct task_group *tg)
8150 {
8151 unsigned long flags;
8152 int i;
8153
8154 spin_lock_irqsave(&task_group_lock, flags);
8155 for_each_possible_cpu(i) {
8156 unregister_fair_sched_group(tg, i);
8157 unregister_rt_sched_group(tg, i);
8158 }
8159 list_del_rcu(&tg->list);
8160 list_del_rcu(&tg->siblings);
8161 spin_unlock_irqrestore(&task_group_lock, flags);
8162
8163 /* wait for possible concurrent references to cfs_rqs complete */
8164 call_rcu(&tg->rcu, free_sched_group_rcu);
8165 }
8166
8167 /* change task's runqueue when it moves between groups.
8168 * The caller of this function should have put the task in its new group
8169 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8170 * reflect its new group.
8171 */
8172 void sched_move_task(struct task_struct *tsk)
8173 {
8174 int on_rq, running;
8175 unsigned long flags;
8176 struct rq *rq;
8177
8178 rq = task_rq_lock(tsk, &flags);
8179
8180 update_rq_clock(rq);
8181
8182 running = task_current(rq, tsk);
8183 on_rq = tsk->se.on_rq;
8184
8185 if (on_rq)
8186 dequeue_task(rq, tsk, 0);
8187 if (unlikely(running))
8188 tsk->sched_class->put_prev_task(rq, tsk);
8189
8190 set_task_rq(tsk, task_cpu(tsk));
8191
8192 #ifdef CONFIG_FAIR_GROUP_SCHED
8193 if (tsk->sched_class->moved_group)
8194 tsk->sched_class->moved_group(tsk, on_rq);
8195 #endif
8196
8197 if (unlikely(running))
8198 tsk->sched_class->set_curr_task(rq);
8199 if (on_rq)
8200 enqueue_task(rq, tsk, 0, false);
8201
8202 task_rq_unlock(rq, &flags);
8203 }
8204 #endif /* CONFIG_CGROUP_SCHED */
8205
8206 #ifdef CONFIG_FAIR_GROUP_SCHED
8207 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
8208 {
8209 struct cfs_rq *cfs_rq = se->cfs_rq;
8210 int on_rq;
8211
8212 on_rq = se->on_rq;
8213 if (on_rq)
8214 dequeue_entity(cfs_rq, se, 0);
8215
8216 se->load.weight = shares;
8217 se->load.inv_weight = 0;
8218
8219 if (on_rq)
8220 enqueue_entity(cfs_rq, se, 0);
8221 }
8222
8223 static void set_se_shares(struct sched_entity *se, unsigned long shares)
8224 {
8225 struct cfs_rq *cfs_rq = se->cfs_rq;
8226 struct rq *rq = cfs_rq->rq;
8227 unsigned long flags;
8228
8229 raw_spin_lock_irqsave(&rq->lock, flags);
8230 __set_se_shares(se, shares);
8231 raw_spin_unlock_irqrestore(&rq->lock, flags);
8232 }
8233
8234 static DEFINE_MUTEX(shares_mutex);
8235
8236 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8237 {
8238 int i;
8239 unsigned long flags;
8240
8241 /*
8242 * We can't change the weight of the root cgroup.
8243 */
8244 if (!tg->se[0])
8245 return -EINVAL;
8246
8247 if (shares < MIN_SHARES)
8248 shares = MIN_SHARES;
8249 else if (shares > MAX_SHARES)
8250 shares = MAX_SHARES;
8251
8252 mutex_lock(&shares_mutex);
8253 if (tg->shares == shares)
8254 goto done;
8255
8256 spin_lock_irqsave(&task_group_lock, flags);
8257 for_each_possible_cpu(i)
8258 unregister_fair_sched_group(tg, i);
8259 list_del_rcu(&tg->siblings);
8260 spin_unlock_irqrestore(&task_group_lock, flags);
8261
8262 /* wait for any ongoing reference to this group to finish */
8263 synchronize_sched();
8264
8265 /*
8266 * Now we are free to modify the group's share on each cpu
8267 * w/o tripping rebalance_share or load_balance_fair.
8268 */
8269 tg->shares = shares;
8270 for_each_possible_cpu(i) {
8271 /*
8272 * force a rebalance
8273 */
8274 cfs_rq_set_shares(tg->cfs_rq[i], 0);
8275 set_se_shares(tg->se[i], shares);
8276 }
8277
8278 /*
8279 * Enable load balance activity on this group, by inserting it back on
8280 * each cpu's rq->leaf_cfs_rq_list.
8281 */
8282 spin_lock_irqsave(&task_group_lock, flags);
8283 for_each_possible_cpu(i)
8284 register_fair_sched_group(tg, i);
8285 list_add_rcu(&tg->siblings, &tg->parent->children);
8286 spin_unlock_irqrestore(&task_group_lock, flags);
8287 done:
8288 mutex_unlock(&shares_mutex);
8289 return 0;
8290 }
8291
8292 unsigned long sched_group_shares(struct task_group *tg)
8293 {
8294 return tg->shares;
8295 }
8296 #endif
8297
8298 #ifdef CONFIG_RT_GROUP_SCHED
8299 /*
8300 * Ensure that the real time constraints are schedulable.
8301 */
8302 static DEFINE_MUTEX(rt_constraints_mutex);
8303
8304 static unsigned long to_ratio(u64 period, u64 runtime)
8305 {
8306 if (runtime == RUNTIME_INF)
8307 return 1ULL << 20;
8308
8309 return div64_u64(runtime << 20, period);
8310 }
8311
8312 /* Must be called with tasklist_lock held */
8313 static inline int tg_has_rt_tasks(struct task_group *tg)
8314 {
8315 struct task_struct *g, *p;
8316
8317 do_each_thread(g, p) {
8318 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8319 return 1;
8320 } while_each_thread(g, p);
8321
8322 return 0;
8323 }
8324
8325 struct rt_schedulable_data {
8326 struct task_group *tg;
8327 u64 rt_period;
8328 u64 rt_runtime;
8329 };
8330
8331 static int tg_schedulable(struct task_group *tg, void *data)
8332 {
8333 struct rt_schedulable_data *d = data;
8334 struct task_group *child;
8335 unsigned long total, sum = 0;
8336 u64 period, runtime;
8337
8338 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8339 runtime = tg->rt_bandwidth.rt_runtime;
8340
8341 if (tg == d->tg) {
8342 period = d->rt_period;
8343 runtime = d->rt_runtime;
8344 }
8345
8346 /*
8347 * Cannot have more runtime than the period.
8348 */
8349 if (runtime > period && runtime != RUNTIME_INF)
8350 return -EINVAL;
8351
8352 /*
8353 * Ensure we don't starve existing RT tasks.
8354 */
8355 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8356 return -EBUSY;
8357
8358 total = to_ratio(period, runtime);
8359
8360 /*
8361 * Nobody can have more than the global setting allows.
8362 */
8363 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8364 return -EINVAL;
8365
8366 /*
8367 * The sum of our children's runtime should not exceed our own.
8368 */
8369 list_for_each_entry_rcu(child, &tg->children, siblings) {
8370 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8371 runtime = child->rt_bandwidth.rt_runtime;
8372
8373 if (child == d->tg) {
8374 period = d->rt_period;
8375 runtime = d->rt_runtime;
8376 }
8377
8378 sum += to_ratio(period, runtime);
8379 }
8380
8381 if (sum > total)
8382 return -EINVAL;
8383
8384 return 0;
8385 }
8386
8387 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8388 {
8389 struct rt_schedulable_data data = {
8390 .tg = tg,
8391 .rt_period = period,
8392 .rt_runtime = runtime,
8393 };
8394
8395 return walk_tg_tree(tg_schedulable, tg_nop, &data);
8396 }
8397
8398 static int tg_set_bandwidth(struct task_group *tg,
8399 u64 rt_period, u64 rt_runtime)
8400 {
8401 int i, err = 0;
8402
8403 mutex_lock(&rt_constraints_mutex);
8404 read_lock(&tasklist_lock);
8405 err = __rt_schedulable(tg, rt_period, rt_runtime);
8406 if (err)
8407 goto unlock;
8408
8409 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8410 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8411 tg->rt_bandwidth.rt_runtime = rt_runtime;
8412
8413 for_each_possible_cpu(i) {
8414 struct rt_rq *rt_rq = tg->rt_rq[i];
8415
8416 raw_spin_lock(&rt_rq->rt_runtime_lock);
8417 rt_rq->rt_runtime = rt_runtime;
8418 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8419 }
8420 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8421 unlock:
8422 read_unlock(&tasklist_lock);
8423 mutex_unlock(&rt_constraints_mutex);
8424
8425 return err;
8426 }
8427
8428 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8429 {
8430 u64 rt_runtime, rt_period;
8431
8432 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8433 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8434 if (rt_runtime_us < 0)
8435 rt_runtime = RUNTIME_INF;
8436
8437 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8438 }
8439
8440 long sched_group_rt_runtime(struct task_group *tg)
8441 {
8442 u64 rt_runtime_us;
8443
8444 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8445 return -1;
8446
8447 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8448 do_div(rt_runtime_us, NSEC_PER_USEC);
8449 return rt_runtime_us;
8450 }
8451
8452 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8453 {
8454 u64 rt_runtime, rt_period;
8455
8456 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8457 rt_runtime = tg->rt_bandwidth.rt_runtime;
8458
8459 if (rt_period == 0)
8460 return -EINVAL;
8461
8462 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8463 }
8464
8465 long sched_group_rt_period(struct task_group *tg)
8466 {
8467 u64 rt_period_us;
8468
8469 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8470 do_div(rt_period_us, NSEC_PER_USEC);
8471 return rt_period_us;
8472 }
8473
8474 static int sched_rt_global_constraints(void)
8475 {
8476 u64 runtime, period;
8477 int ret = 0;
8478
8479 if (sysctl_sched_rt_period <= 0)
8480 return -EINVAL;
8481
8482 runtime = global_rt_runtime();
8483 period = global_rt_period();
8484
8485 /*
8486 * Sanity check on the sysctl variables.
8487 */
8488 if (runtime > period && runtime != RUNTIME_INF)
8489 return -EINVAL;
8490
8491 mutex_lock(&rt_constraints_mutex);
8492 read_lock(&tasklist_lock);
8493 ret = __rt_schedulable(NULL, 0, 0);
8494 read_unlock(&tasklist_lock);
8495 mutex_unlock(&rt_constraints_mutex);
8496
8497 return ret;
8498 }
8499
8500 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8501 {
8502 /* Don't accept realtime tasks when there is no way for them to run */
8503 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8504 return 0;
8505
8506 return 1;
8507 }
8508
8509 #else /* !CONFIG_RT_GROUP_SCHED */
8510 static int sched_rt_global_constraints(void)
8511 {
8512 unsigned long flags;
8513 int i;
8514
8515 if (sysctl_sched_rt_period <= 0)
8516 return -EINVAL;
8517
8518 /*
8519 * There's always some RT tasks in the root group
8520 * -- migration, kstopmachine etc..
8521 */
8522 if (sysctl_sched_rt_runtime == 0)
8523 return -EBUSY;
8524
8525 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8526 for_each_possible_cpu(i) {
8527 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8528
8529 raw_spin_lock(&rt_rq->rt_runtime_lock);
8530 rt_rq->rt_runtime = global_rt_runtime();
8531 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8532 }
8533 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8534
8535 return 0;
8536 }
8537 #endif /* CONFIG_RT_GROUP_SCHED */
8538
8539 int sched_rt_handler(struct ctl_table *table, int write,
8540 void __user *buffer, size_t *lenp,
8541 loff_t *ppos)
8542 {
8543 int ret;
8544 int old_period, old_runtime;
8545 static DEFINE_MUTEX(mutex);
8546
8547 mutex_lock(&mutex);
8548 old_period = sysctl_sched_rt_period;
8549 old_runtime = sysctl_sched_rt_runtime;
8550
8551 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8552
8553 if (!ret && write) {
8554 ret = sched_rt_global_constraints();
8555 if (ret) {
8556 sysctl_sched_rt_period = old_period;
8557 sysctl_sched_rt_runtime = old_runtime;
8558 } else {
8559 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8560 def_rt_bandwidth.rt_period =
8561 ns_to_ktime(global_rt_period());
8562 }
8563 }
8564 mutex_unlock(&mutex);
8565
8566 return ret;
8567 }
8568
8569 #ifdef CONFIG_CGROUP_SCHED
8570
8571 /* return corresponding task_group object of a cgroup */
8572 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8573 {
8574 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8575 struct task_group, css);
8576 }
8577
8578 static struct cgroup_subsys_state *
8579 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8580 {
8581 struct task_group *tg, *parent;
8582
8583 if (!cgrp->parent) {
8584 /* This is early initialization for the top cgroup */
8585 return &init_task_group.css;
8586 }
8587
8588 parent = cgroup_tg(cgrp->parent);
8589 tg = sched_create_group(parent);
8590 if (IS_ERR(tg))
8591 return ERR_PTR(-ENOMEM);
8592
8593 return &tg->css;
8594 }
8595
8596 static void
8597 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8598 {
8599 struct task_group *tg = cgroup_tg(cgrp);
8600
8601 sched_destroy_group(tg);
8602 }
8603
8604 static int
8605 cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
8606 {
8607 #ifdef CONFIG_RT_GROUP_SCHED
8608 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
8609 return -EINVAL;
8610 #else
8611 /* We don't support RT-tasks being in separate groups */
8612 if (tsk->sched_class != &fair_sched_class)
8613 return -EINVAL;
8614 #endif
8615 return 0;
8616 }
8617
8618 static int
8619 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8620 struct task_struct *tsk, bool threadgroup)
8621 {
8622 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
8623 if (retval)
8624 return retval;
8625 if (threadgroup) {
8626 struct task_struct *c;
8627 rcu_read_lock();
8628 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8629 retval = cpu_cgroup_can_attach_task(cgrp, c);
8630 if (retval) {
8631 rcu_read_unlock();
8632 return retval;
8633 }
8634 }
8635 rcu_read_unlock();
8636 }
8637 return 0;
8638 }
8639
8640 static void
8641 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8642 struct cgroup *old_cont, struct task_struct *tsk,
8643 bool threadgroup)
8644 {
8645 sched_move_task(tsk);
8646 if (threadgroup) {
8647 struct task_struct *c;
8648 rcu_read_lock();
8649 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8650 sched_move_task(c);
8651 }
8652 rcu_read_unlock();
8653 }
8654 }
8655
8656 #ifdef CONFIG_FAIR_GROUP_SCHED
8657 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8658 u64 shareval)
8659 {
8660 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8661 }
8662
8663 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8664 {
8665 struct task_group *tg = cgroup_tg(cgrp);
8666
8667 return (u64) tg->shares;
8668 }
8669 #endif /* CONFIG_FAIR_GROUP_SCHED */
8670
8671 #ifdef CONFIG_RT_GROUP_SCHED
8672 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8673 s64 val)
8674 {
8675 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
8676 }
8677
8678 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
8679 {
8680 return sched_group_rt_runtime(cgroup_tg(cgrp));
8681 }
8682
8683 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8684 u64 rt_period_us)
8685 {
8686 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8687 }
8688
8689 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8690 {
8691 return sched_group_rt_period(cgroup_tg(cgrp));
8692 }
8693 #endif /* CONFIG_RT_GROUP_SCHED */
8694
8695 static struct cftype cpu_files[] = {
8696 #ifdef CONFIG_FAIR_GROUP_SCHED
8697 {
8698 .name = "shares",
8699 .read_u64 = cpu_shares_read_u64,
8700 .write_u64 = cpu_shares_write_u64,
8701 },
8702 #endif
8703 #ifdef CONFIG_RT_GROUP_SCHED
8704 {
8705 .name = "rt_runtime_us",
8706 .read_s64 = cpu_rt_runtime_read,
8707 .write_s64 = cpu_rt_runtime_write,
8708 },
8709 {
8710 .name = "rt_period_us",
8711 .read_u64 = cpu_rt_period_read_uint,
8712 .write_u64 = cpu_rt_period_write_uint,
8713 },
8714 #endif
8715 };
8716
8717 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8718 {
8719 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8720 }
8721
8722 struct cgroup_subsys cpu_cgroup_subsys = {
8723 .name = "cpu",
8724 .create = cpu_cgroup_create,
8725 .destroy = cpu_cgroup_destroy,
8726 .can_attach = cpu_cgroup_can_attach,
8727 .attach = cpu_cgroup_attach,
8728 .populate = cpu_cgroup_populate,
8729 .subsys_id = cpu_cgroup_subsys_id,
8730 .early_init = 1,
8731 };
8732
8733 #endif /* CONFIG_CGROUP_SCHED */
8734
8735 #ifdef CONFIG_CGROUP_CPUACCT
8736
8737 /*
8738 * CPU accounting code for task groups.
8739 *
8740 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8741 * (balbir@in.ibm.com).
8742 */
8743
8744 /* track cpu usage of a group of tasks and its child groups */
8745 struct cpuacct {
8746 struct cgroup_subsys_state css;
8747 /* cpuusage holds pointer to a u64-type object on every cpu */
8748 u64 *cpuusage;
8749 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
8750 struct cpuacct *parent;
8751 };
8752
8753 struct cgroup_subsys cpuacct_subsys;
8754
8755 /* return cpu accounting group corresponding to this container */
8756 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8757 {
8758 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8759 struct cpuacct, css);
8760 }
8761
8762 /* return cpu accounting group to which this task belongs */
8763 static inline struct cpuacct *task_ca(struct task_struct *tsk)
8764 {
8765 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8766 struct cpuacct, css);
8767 }
8768
8769 /* create a new cpu accounting group */
8770 static struct cgroup_subsys_state *cpuacct_create(
8771 struct cgroup_subsys *ss, struct cgroup *cgrp)
8772 {
8773 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8774 int i;
8775
8776 if (!ca)
8777 goto out;
8778
8779 ca->cpuusage = alloc_percpu(u64);
8780 if (!ca->cpuusage)
8781 goto out_free_ca;
8782
8783 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8784 if (percpu_counter_init(&ca->cpustat[i], 0))
8785 goto out_free_counters;
8786
8787 if (cgrp->parent)
8788 ca->parent = cgroup_ca(cgrp->parent);
8789
8790 return &ca->css;
8791
8792 out_free_counters:
8793 while (--i >= 0)
8794 percpu_counter_destroy(&ca->cpustat[i]);
8795 free_percpu(ca->cpuusage);
8796 out_free_ca:
8797 kfree(ca);
8798 out:
8799 return ERR_PTR(-ENOMEM);
8800 }
8801
8802 /* destroy an existing cpu accounting group */
8803 static void
8804 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8805 {
8806 struct cpuacct *ca = cgroup_ca(cgrp);
8807 int i;
8808
8809 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8810 percpu_counter_destroy(&ca->cpustat[i]);
8811 free_percpu(ca->cpuusage);
8812 kfree(ca);
8813 }
8814
8815 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8816 {
8817 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8818 u64 data;
8819
8820 #ifndef CONFIG_64BIT
8821 /*
8822 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8823 */
8824 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8825 data = *cpuusage;
8826 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8827 #else
8828 data = *cpuusage;
8829 #endif
8830
8831 return data;
8832 }
8833
8834 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8835 {
8836 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8837
8838 #ifndef CONFIG_64BIT
8839 /*
8840 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8841 */
8842 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8843 *cpuusage = val;
8844 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8845 #else
8846 *cpuusage = val;
8847 #endif
8848 }
8849
8850 /* return total cpu usage (in nanoseconds) of a group */
8851 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8852 {
8853 struct cpuacct *ca = cgroup_ca(cgrp);
8854 u64 totalcpuusage = 0;
8855 int i;
8856
8857 for_each_present_cpu(i)
8858 totalcpuusage += cpuacct_cpuusage_read(ca, i);
8859
8860 return totalcpuusage;
8861 }
8862
8863 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8864 u64 reset)
8865 {
8866 struct cpuacct *ca = cgroup_ca(cgrp);
8867 int err = 0;
8868 int i;
8869
8870 if (reset) {
8871 err = -EINVAL;
8872 goto out;
8873 }
8874
8875 for_each_present_cpu(i)
8876 cpuacct_cpuusage_write(ca, i, 0);
8877
8878 out:
8879 return err;
8880 }
8881
8882 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8883 struct seq_file *m)
8884 {
8885 struct cpuacct *ca = cgroup_ca(cgroup);
8886 u64 percpu;
8887 int i;
8888
8889 for_each_present_cpu(i) {
8890 percpu = cpuacct_cpuusage_read(ca, i);
8891 seq_printf(m, "%llu ", (unsigned long long) percpu);
8892 }
8893 seq_printf(m, "\n");
8894 return 0;
8895 }
8896
8897 static const char *cpuacct_stat_desc[] = {
8898 [CPUACCT_STAT_USER] = "user",
8899 [CPUACCT_STAT_SYSTEM] = "system",
8900 };
8901
8902 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8903 struct cgroup_map_cb *cb)
8904 {
8905 struct cpuacct *ca = cgroup_ca(cgrp);
8906 int i;
8907
8908 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
8909 s64 val = percpu_counter_read(&ca->cpustat[i]);
8910 val = cputime64_to_clock_t(val);
8911 cb->fill(cb, cpuacct_stat_desc[i], val);
8912 }
8913 return 0;
8914 }
8915
8916 static struct cftype files[] = {
8917 {
8918 .name = "usage",
8919 .read_u64 = cpuusage_read,
8920 .write_u64 = cpuusage_write,
8921 },
8922 {
8923 .name = "usage_percpu",
8924 .read_seq_string = cpuacct_percpu_seq_read,
8925 },
8926 {
8927 .name = "stat",
8928 .read_map = cpuacct_stats_show,
8929 },
8930 };
8931
8932 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
8933 {
8934 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
8935 }
8936
8937 /*
8938 * charge this task's execution time to its accounting group.
8939 *
8940 * called with rq->lock held.
8941 */
8942 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8943 {
8944 struct cpuacct *ca;
8945 int cpu;
8946
8947 if (unlikely(!cpuacct_subsys.active))
8948 return;
8949
8950 cpu = task_cpu(tsk);
8951
8952 rcu_read_lock();
8953
8954 ca = task_ca(tsk);
8955
8956 for (; ca; ca = ca->parent) {
8957 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8958 *cpuusage += cputime;
8959 }
8960
8961 rcu_read_unlock();
8962 }
8963
8964 /*
8965 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
8966 * in cputime_t units. As a result, cpuacct_update_stats calls
8967 * percpu_counter_add with values large enough to always overflow the
8968 * per cpu batch limit causing bad SMP scalability.
8969 *
8970 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
8971 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
8972 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
8973 */
8974 #ifdef CONFIG_SMP
8975 #define CPUACCT_BATCH \
8976 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
8977 #else
8978 #define CPUACCT_BATCH 0
8979 #endif
8980
8981 /*
8982 * Charge the system/user time to the task's accounting group.
8983 */
8984 static void cpuacct_update_stats(struct task_struct *tsk,
8985 enum cpuacct_stat_index idx, cputime_t val)
8986 {
8987 struct cpuacct *ca;
8988 int batch = CPUACCT_BATCH;
8989
8990 if (unlikely(!cpuacct_subsys.active))
8991 return;
8992
8993 rcu_read_lock();
8994 ca = task_ca(tsk);
8995
8996 do {
8997 __percpu_counter_add(&ca->cpustat[idx], val, batch);
8998 ca = ca->parent;
8999 } while (ca);
9000 rcu_read_unlock();
9001 }
9002
9003 struct cgroup_subsys cpuacct_subsys = {
9004 .name = "cpuacct",
9005 .create = cpuacct_create,
9006 .destroy = cpuacct_destroy,
9007 .populate = cpuacct_populate,
9008 .subsys_id = cpuacct_subsys_id,
9009 };
9010 #endif /* CONFIG_CGROUP_CPUACCT */
9011
9012 #ifndef CONFIG_SMP
9013
9014 int rcu_expedited_torture_stats(char *page)
9015 {
9016 return 0;
9017 }
9018 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
9019
9020 void synchronize_sched_expedited(void)
9021 {
9022 }
9023 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9024
9025 #else /* #ifndef CONFIG_SMP */
9026
9027 static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
9028 static DEFINE_MUTEX(rcu_sched_expedited_mutex);
9029
9030 #define RCU_EXPEDITED_STATE_POST -2
9031 #define RCU_EXPEDITED_STATE_IDLE -1
9032
9033 static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
9034
9035 int rcu_expedited_torture_stats(char *page)
9036 {
9037 int cnt = 0;
9038 int cpu;
9039
9040 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
9041 for_each_online_cpu(cpu) {
9042 cnt += sprintf(&page[cnt], " %d:%d",
9043 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
9044 }
9045 cnt += sprintf(&page[cnt], "\n");
9046 return cnt;
9047 }
9048 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
9049
9050 static long synchronize_sched_expedited_count;
9051
9052 /*
9053 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
9054 * approach to force grace period to end quickly. This consumes
9055 * significant time on all CPUs, and is thus not recommended for
9056 * any sort of common-case code.
9057 *
9058 * Note that it is illegal to call this function while holding any
9059 * lock that is acquired by a CPU-hotplug notifier. Failing to
9060 * observe this restriction will result in deadlock.
9061 */
9062 void synchronize_sched_expedited(void)
9063 {
9064 int cpu;
9065 unsigned long flags;
9066 bool need_full_sync = 0;
9067 struct rq *rq;
9068 struct migration_req *req;
9069 long snap;
9070 int trycount = 0;
9071
9072 smp_mb(); /* ensure prior mod happens before capturing snap. */
9073 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
9074 get_online_cpus();
9075 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
9076 put_online_cpus();
9077 if (trycount++ < 10)
9078 udelay(trycount * num_online_cpus());
9079 else {
9080 synchronize_sched();
9081 return;
9082 }
9083 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
9084 smp_mb(); /* ensure test happens before caller kfree */
9085 return;
9086 }
9087 get_online_cpus();
9088 }
9089 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
9090 for_each_online_cpu(cpu) {
9091 rq = cpu_rq(cpu);
9092 req = &per_cpu(rcu_migration_req, cpu);
9093 init_completion(&req->done);
9094 req->task = NULL;
9095 req->dest_cpu = RCU_MIGRATION_NEED_QS;
9096 raw_spin_lock_irqsave(&rq->lock, flags);
9097 list_add(&req->list, &rq->migration_queue);
9098 raw_spin_unlock_irqrestore(&rq->lock, flags);
9099 wake_up_process(rq->migration_thread);
9100 }
9101 for_each_online_cpu(cpu) {
9102 rcu_expedited_state = cpu;
9103 req = &per_cpu(rcu_migration_req, cpu);
9104 rq = cpu_rq(cpu);
9105 wait_for_completion(&req->done);
9106 raw_spin_lock_irqsave(&rq->lock, flags);
9107 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
9108 need_full_sync = 1;
9109 req->dest_cpu = RCU_MIGRATION_IDLE;
9110 raw_spin_unlock_irqrestore(&rq->lock, flags);
9111 }
9112 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
9113 synchronize_sched_expedited_count++;
9114 mutex_unlock(&rcu_sched_expedited_mutex);
9115 put_online_cpus();
9116 if (need_full_sync)
9117 synchronize_sched();
9118 }
9119 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9120
9121 #endif /* #else #ifndef CONFIG_SMP */
This page took 0.292629 seconds and 4 git commands to generate.