Merge branch 'fix/hda' into for-linus
[deliverable/linux.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/kthread.h>
59 #include <linux/proc_fs.h>
60 #include <linux/seq_file.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
74 #include <linux/slab.h>
75
76 #include <asm/tlb.h>
77 #include <asm/irq_regs.h>
78
79 #include "sched_cpupri.h"
80
81 #define CREATE_TRACE_POINTS
82 #include <trace/events/sched.h>
83
84 /*
85 * Convert user-nice values [ -20 ... 0 ... 19 ]
86 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
87 * and back.
88 */
89 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
90 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
91 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
92
93 /*
94 * 'User priority' is the nice value converted to something we
95 * can work with better when scaling various scheduler parameters,
96 * it's a [ 0 ... 39 ] range.
97 */
98 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
99 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
100 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
101
102 /*
103 * Helpers for converting nanosecond timing to jiffy resolution
104 */
105 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
106
107 #define NICE_0_LOAD SCHED_LOAD_SCALE
108 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
109
110 /*
111 * These are the 'tuning knobs' of the scheduler:
112 *
113 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
114 * Timeslices get refilled after they expire.
115 */
116 #define DEF_TIMESLICE (100 * HZ / 1000)
117
118 /*
119 * single value that denotes runtime == period, ie unlimited time.
120 */
121 #define RUNTIME_INF ((u64)~0ULL)
122
123 static inline int rt_policy(int policy)
124 {
125 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
126 return 1;
127 return 0;
128 }
129
130 static inline int task_has_rt_policy(struct task_struct *p)
131 {
132 return rt_policy(p->policy);
133 }
134
135 /*
136 * This is the priority-queue data structure of the RT scheduling class:
137 */
138 struct rt_prio_array {
139 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
140 struct list_head queue[MAX_RT_PRIO];
141 };
142
143 struct rt_bandwidth {
144 /* nests inside the rq lock: */
145 raw_spinlock_t rt_runtime_lock;
146 ktime_t rt_period;
147 u64 rt_runtime;
148 struct hrtimer rt_period_timer;
149 };
150
151 static struct rt_bandwidth def_rt_bandwidth;
152
153 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
154
155 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
156 {
157 struct rt_bandwidth *rt_b =
158 container_of(timer, struct rt_bandwidth, rt_period_timer);
159 ktime_t now;
160 int overrun;
161 int idle = 0;
162
163 for (;;) {
164 now = hrtimer_cb_get_time(timer);
165 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
166
167 if (!overrun)
168 break;
169
170 idle = do_sched_rt_period_timer(rt_b, overrun);
171 }
172
173 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
174 }
175
176 static
177 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
178 {
179 rt_b->rt_period = ns_to_ktime(period);
180 rt_b->rt_runtime = runtime;
181
182 raw_spin_lock_init(&rt_b->rt_runtime_lock);
183
184 hrtimer_init(&rt_b->rt_period_timer,
185 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
186 rt_b->rt_period_timer.function = sched_rt_period_timer;
187 }
188
189 static inline int rt_bandwidth_enabled(void)
190 {
191 return sysctl_sched_rt_runtime >= 0;
192 }
193
194 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
195 {
196 ktime_t now;
197
198 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
199 return;
200
201 if (hrtimer_active(&rt_b->rt_period_timer))
202 return;
203
204 raw_spin_lock(&rt_b->rt_runtime_lock);
205 for (;;) {
206 unsigned long delta;
207 ktime_t soft, hard;
208
209 if (hrtimer_active(&rt_b->rt_period_timer))
210 break;
211
212 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
213 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
214
215 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
216 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
217 delta = ktime_to_ns(ktime_sub(hard, soft));
218 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
219 HRTIMER_MODE_ABS_PINNED, 0);
220 }
221 raw_spin_unlock(&rt_b->rt_runtime_lock);
222 }
223
224 #ifdef CONFIG_RT_GROUP_SCHED
225 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
226 {
227 hrtimer_cancel(&rt_b->rt_period_timer);
228 }
229 #endif
230
231 /*
232 * sched_domains_mutex serializes calls to arch_init_sched_domains,
233 * detach_destroy_domains and partition_sched_domains.
234 */
235 static DEFINE_MUTEX(sched_domains_mutex);
236
237 #ifdef CONFIG_CGROUP_SCHED
238
239 #include <linux/cgroup.h>
240
241 struct cfs_rq;
242
243 static LIST_HEAD(task_groups);
244
245 /* task group related information */
246 struct task_group {
247 struct cgroup_subsys_state css;
248
249 #ifdef CONFIG_FAIR_GROUP_SCHED
250 /* schedulable entities of this group on each cpu */
251 struct sched_entity **se;
252 /* runqueue "owned" by this group on each cpu */
253 struct cfs_rq **cfs_rq;
254 unsigned long shares;
255 #endif
256
257 #ifdef CONFIG_RT_GROUP_SCHED
258 struct sched_rt_entity **rt_se;
259 struct rt_rq **rt_rq;
260
261 struct rt_bandwidth rt_bandwidth;
262 #endif
263
264 struct rcu_head rcu;
265 struct list_head list;
266
267 struct task_group *parent;
268 struct list_head siblings;
269 struct list_head children;
270 };
271
272 #define root_task_group init_task_group
273
274 /* task_group_lock serializes add/remove of task groups and also changes to
275 * a task group's cpu shares.
276 */
277 static DEFINE_SPINLOCK(task_group_lock);
278
279 #ifdef CONFIG_FAIR_GROUP_SCHED
280
281 #ifdef CONFIG_SMP
282 static int root_task_group_empty(void)
283 {
284 return list_empty(&root_task_group.children);
285 }
286 #endif
287
288 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
289
290 /*
291 * A weight of 0 or 1 can cause arithmetics problems.
292 * A weight of a cfs_rq is the sum of weights of which entities
293 * are queued on this cfs_rq, so a weight of a entity should not be
294 * too large, so as the shares value of a task group.
295 * (The default weight is 1024 - so there's no practical
296 * limitation from this.)
297 */
298 #define MIN_SHARES 2
299 #define MAX_SHARES (1UL << 18)
300
301 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
302 #endif
303
304 /* Default task group.
305 * Every task in system belong to this group at bootup.
306 */
307 struct task_group init_task_group;
308
309 /* return group to which a task belongs */
310 static inline struct task_group *task_group(struct task_struct *p)
311 {
312 struct task_group *tg;
313
314 #ifdef CONFIG_CGROUP_SCHED
315 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
316 struct task_group, css);
317 #else
318 tg = &init_task_group;
319 #endif
320 return tg;
321 }
322
323 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
324 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
325 {
326 #ifdef CONFIG_FAIR_GROUP_SCHED
327 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
328 p->se.parent = task_group(p)->se[cpu];
329 #endif
330
331 #ifdef CONFIG_RT_GROUP_SCHED
332 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
333 p->rt.parent = task_group(p)->rt_se[cpu];
334 #endif
335 }
336
337 #else
338
339 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
340 static inline struct task_group *task_group(struct task_struct *p)
341 {
342 return NULL;
343 }
344
345 #endif /* CONFIG_CGROUP_SCHED */
346
347 /* CFS-related fields in a runqueue */
348 struct cfs_rq {
349 struct load_weight load;
350 unsigned long nr_running;
351
352 u64 exec_clock;
353 u64 min_vruntime;
354
355 struct rb_root tasks_timeline;
356 struct rb_node *rb_leftmost;
357
358 struct list_head tasks;
359 struct list_head *balance_iterator;
360
361 /*
362 * 'curr' points to currently running entity on this cfs_rq.
363 * It is set to NULL otherwise (i.e when none are currently running).
364 */
365 struct sched_entity *curr, *next, *last;
366
367 unsigned int nr_spread_over;
368
369 #ifdef CONFIG_FAIR_GROUP_SCHED
370 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
371
372 /*
373 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
374 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
375 * (like users, containers etc.)
376 *
377 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
378 * list is used during load balance.
379 */
380 struct list_head leaf_cfs_rq_list;
381 struct task_group *tg; /* group that "owns" this runqueue */
382
383 #ifdef CONFIG_SMP
384 /*
385 * the part of load.weight contributed by tasks
386 */
387 unsigned long task_weight;
388
389 /*
390 * h_load = weight * f(tg)
391 *
392 * Where f(tg) is the recursive weight fraction assigned to
393 * this group.
394 */
395 unsigned long h_load;
396
397 /*
398 * this cpu's part of tg->shares
399 */
400 unsigned long shares;
401
402 /*
403 * load.weight at the time we set shares
404 */
405 unsigned long rq_weight;
406 #endif
407 #endif
408 };
409
410 /* Real-Time classes' related field in a runqueue: */
411 struct rt_rq {
412 struct rt_prio_array active;
413 unsigned long rt_nr_running;
414 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
415 struct {
416 int curr; /* highest queued rt task prio */
417 #ifdef CONFIG_SMP
418 int next; /* next highest */
419 #endif
420 } highest_prio;
421 #endif
422 #ifdef CONFIG_SMP
423 unsigned long rt_nr_migratory;
424 unsigned long rt_nr_total;
425 int overloaded;
426 struct plist_head pushable_tasks;
427 #endif
428 int rt_throttled;
429 u64 rt_time;
430 u64 rt_runtime;
431 /* Nests inside the rq lock: */
432 raw_spinlock_t rt_runtime_lock;
433
434 #ifdef CONFIG_RT_GROUP_SCHED
435 unsigned long rt_nr_boosted;
436
437 struct rq *rq;
438 struct list_head leaf_rt_rq_list;
439 struct task_group *tg;
440 #endif
441 };
442
443 #ifdef CONFIG_SMP
444
445 /*
446 * We add the notion of a root-domain which will be used to define per-domain
447 * variables. Each exclusive cpuset essentially defines an island domain by
448 * fully partitioning the member cpus from any other cpuset. Whenever a new
449 * exclusive cpuset is created, we also create and attach a new root-domain
450 * object.
451 *
452 */
453 struct root_domain {
454 atomic_t refcount;
455 cpumask_var_t span;
456 cpumask_var_t online;
457
458 /*
459 * The "RT overload" flag: it gets set if a CPU has more than
460 * one runnable RT task.
461 */
462 cpumask_var_t rto_mask;
463 atomic_t rto_count;
464 #ifdef CONFIG_SMP
465 struct cpupri cpupri;
466 #endif
467 };
468
469 /*
470 * By default the system creates a single root-domain with all cpus as
471 * members (mimicking the global state we have today).
472 */
473 static struct root_domain def_root_domain;
474
475 #endif
476
477 /*
478 * This is the main, per-CPU runqueue data structure.
479 *
480 * Locking rule: those places that want to lock multiple runqueues
481 * (such as the load balancing or the thread migration code), lock
482 * acquire operations must be ordered by ascending &runqueue.
483 */
484 struct rq {
485 /* runqueue lock: */
486 raw_spinlock_t lock;
487
488 /*
489 * nr_running and cpu_load should be in the same cacheline because
490 * remote CPUs use both these fields when doing load calculation.
491 */
492 unsigned long nr_running;
493 #define CPU_LOAD_IDX_MAX 5
494 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
495 #ifdef CONFIG_NO_HZ
496 unsigned char in_nohz_recently;
497 #endif
498 /* capture load from *all* tasks on this cpu: */
499 struct load_weight load;
500 unsigned long nr_load_updates;
501 u64 nr_switches;
502
503 struct cfs_rq cfs;
504 struct rt_rq rt;
505
506 #ifdef CONFIG_FAIR_GROUP_SCHED
507 /* list of leaf cfs_rq on this cpu: */
508 struct list_head leaf_cfs_rq_list;
509 #endif
510 #ifdef CONFIG_RT_GROUP_SCHED
511 struct list_head leaf_rt_rq_list;
512 #endif
513
514 /*
515 * This is part of a global counter where only the total sum
516 * over all CPUs matters. A task can increase this counter on
517 * one CPU and if it got migrated afterwards it may decrease
518 * it on another CPU. Always updated under the runqueue lock:
519 */
520 unsigned long nr_uninterruptible;
521
522 struct task_struct *curr, *idle;
523 unsigned long next_balance;
524 struct mm_struct *prev_mm;
525
526 u64 clock;
527
528 atomic_t nr_iowait;
529
530 #ifdef CONFIG_SMP
531 struct root_domain *rd;
532 struct sched_domain *sd;
533
534 unsigned char idle_at_tick;
535 /* For active balancing */
536 int post_schedule;
537 int active_balance;
538 int push_cpu;
539 /* cpu of this runqueue: */
540 int cpu;
541 int online;
542
543 unsigned long avg_load_per_task;
544
545 struct task_struct *migration_thread;
546 struct list_head migration_queue;
547
548 u64 rt_avg;
549 u64 age_stamp;
550 u64 idle_stamp;
551 u64 avg_idle;
552 #endif
553
554 /* calc_load related fields */
555 unsigned long calc_load_update;
556 long calc_load_active;
557
558 #ifdef CONFIG_SCHED_HRTICK
559 #ifdef CONFIG_SMP
560 int hrtick_csd_pending;
561 struct call_single_data hrtick_csd;
562 #endif
563 struct hrtimer hrtick_timer;
564 #endif
565
566 #ifdef CONFIG_SCHEDSTATS
567 /* latency stats */
568 struct sched_info rq_sched_info;
569 unsigned long long rq_cpu_time;
570 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
571
572 /* sys_sched_yield() stats */
573 unsigned int yld_count;
574
575 /* schedule() stats */
576 unsigned int sched_switch;
577 unsigned int sched_count;
578 unsigned int sched_goidle;
579
580 /* try_to_wake_up() stats */
581 unsigned int ttwu_count;
582 unsigned int ttwu_local;
583
584 /* BKL stats */
585 unsigned int bkl_count;
586 #endif
587 };
588
589 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
590
591 static inline
592 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
593 {
594 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
595 }
596
597 static inline int cpu_of(struct rq *rq)
598 {
599 #ifdef CONFIG_SMP
600 return rq->cpu;
601 #else
602 return 0;
603 #endif
604 }
605
606 #define rcu_dereference_check_sched_domain(p) \
607 rcu_dereference_check((p), \
608 rcu_read_lock_sched_held() || \
609 lockdep_is_held(&sched_domains_mutex))
610
611 /*
612 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
613 * See detach_destroy_domains: synchronize_sched for details.
614 *
615 * The domain tree of any CPU may only be accessed from within
616 * preempt-disabled sections.
617 */
618 #define for_each_domain(cpu, __sd) \
619 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
620
621 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
622 #define this_rq() (&__get_cpu_var(runqueues))
623 #define task_rq(p) cpu_rq(task_cpu(p))
624 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
625 #define raw_rq() (&__raw_get_cpu_var(runqueues))
626
627 inline void update_rq_clock(struct rq *rq)
628 {
629 rq->clock = sched_clock_cpu(cpu_of(rq));
630 }
631
632 /*
633 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
634 */
635 #ifdef CONFIG_SCHED_DEBUG
636 # define const_debug __read_mostly
637 #else
638 # define const_debug static const
639 #endif
640
641 /**
642 * runqueue_is_locked
643 * @cpu: the processor in question.
644 *
645 * Returns true if the current cpu runqueue is locked.
646 * This interface allows printk to be called with the runqueue lock
647 * held and know whether or not it is OK to wake up the klogd.
648 */
649 int runqueue_is_locked(int cpu)
650 {
651 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
652 }
653
654 /*
655 * Debugging: various feature bits
656 */
657
658 #define SCHED_FEAT(name, enabled) \
659 __SCHED_FEAT_##name ,
660
661 enum {
662 #include "sched_features.h"
663 };
664
665 #undef SCHED_FEAT
666
667 #define SCHED_FEAT(name, enabled) \
668 (1UL << __SCHED_FEAT_##name) * enabled |
669
670 const_debug unsigned int sysctl_sched_features =
671 #include "sched_features.h"
672 0;
673
674 #undef SCHED_FEAT
675
676 #ifdef CONFIG_SCHED_DEBUG
677 #define SCHED_FEAT(name, enabled) \
678 #name ,
679
680 static __read_mostly char *sched_feat_names[] = {
681 #include "sched_features.h"
682 NULL
683 };
684
685 #undef SCHED_FEAT
686
687 static int sched_feat_show(struct seq_file *m, void *v)
688 {
689 int i;
690
691 for (i = 0; sched_feat_names[i]; i++) {
692 if (!(sysctl_sched_features & (1UL << i)))
693 seq_puts(m, "NO_");
694 seq_printf(m, "%s ", sched_feat_names[i]);
695 }
696 seq_puts(m, "\n");
697
698 return 0;
699 }
700
701 static ssize_t
702 sched_feat_write(struct file *filp, const char __user *ubuf,
703 size_t cnt, loff_t *ppos)
704 {
705 char buf[64];
706 char *cmp = buf;
707 int neg = 0;
708 int i;
709
710 if (cnt > 63)
711 cnt = 63;
712
713 if (copy_from_user(&buf, ubuf, cnt))
714 return -EFAULT;
715
716 buf[cnt] = 0;
717
718 if (strncmp(buf, "NO_", 3) == 0) {
719 neg = 1;
720 cmp += 3;
721 }
722
723 for (i = 0; sched_feat_names[i]; i++) {
724 int len = strlen(sched_feat_names[i]);
725
726 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
727 if (neg)
728 sysctl_sched_features &= ~(1UL << i);
729 else
730 sysctl_sched_features |= (1UL << i);
731 break;
732 }
733 }
734
735 if (!sched_feat_names[i])
736 return -EINVAL;
737
738 *ppos += cnt;
739
740 return cnt;
741 }
742
743 static int sched_feat_open(struct inode *inode, struct file *filp)
744 {
745 return single_open(filp, sched_feat_show, NULL);
746 }
747
748 static const struct file_operations sched_feat_fops = {
749 .open = sched_feat_open,
750 .write = sched_feat_write,
751 .read = seq_read,
752 .llseek = seq_lseek,
753 .release = single_release,
754 };
755
756 static __init int sched_init_debug(void)
757 {
758 debugfs_create_file("sched_features", 0644, NULL, NULL,
759 &sched_feat_fops);
760
761 return 0;
762 }
763 late_initcall(sched_init_debug);
764
765 #endif
766
767 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
768
769 /*
770 * Number of tasks to iterate in a single balance run.
771 * Limited because this is done with IRQs disabled.
772 */
773 const_debug unsigned int sysctl_sched_nr_migrate = 32;
774
775 /*
776 * ratelimit for updating the group shares.
777 * default: 0.25ms
778 */
779 unsigned int sysctl_sched_shares_ratelimit = 250000;
780 unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
781
782 /*
783 * Inject some fuzzyness into changing the per-cpu group shares
784 * this avoids remote rq-locks at the expense of fairness.
785 * default: 4
786 */
787 unsigned int sysctl_sched_shares_thresh = 4;
788
789 /*
790 * period over which we average the RT time consumption, measured
791 * in ms.
792 *
793 * default: 1s
794 */
795 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
796
797 /*
798 * period over which we measure -rt task cpu usage in us.
799 * default: 1s
800 */
801 unsigned int sysctl_sched_rt_period = 1000000;
802
803 static __read_mostly int scheduler_running;
804
805 /*
806 * part of the period that we allow rt tasks to run in us.
807 * default: 0.95s
808 */
809 int sysctl_sched_rt_runtime = 950000;
810
811 static inline u64 global_rt_period(void)
812 {
813 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
814 }
815
816 static inline u64 global_rt_runtime(void)
817 {
818 if (sysctl_sched_rt_runtime < 0)
819 return RUNTIME_INF;
820
821 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
822 }
823
824 #ifndef prepare_arch_switch
825 # define prepare_arch_switch(next) do { } while (0)
826 #endif
827 #ifndef finish_arch_switch
828 # define finish_arch_switch(prev) do { } while (0)
829 #endif
830
831 static inline int task_current(struct rq *rq, struct task_struct *p)
832 {
833 return rq->curr == p;
834 }
835
836 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
837 static inline int task_running(struct rq *rq, struct task_struct *p)
838 {
839 return task_current(rq, p);
840 }
841
842 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
843 {
844 }
845
846 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
847 {
848 #ifdef CONFIG_DEBUG_SPINLOCK
849 /* this is a valid case when another task releases the spinlock */
850 rq->lock.owner = current;
851 #endif
852 /*
853 * If we are tracking spinlock dependencies then we have to
854 * fix up the runqueue lock - which gets 'carried over' from
855 * prev into current:
856 */
857 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
858
859 raw_spin_unlock_irq(&rq->lock);
860 }
861
862 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
863 static inline int task_running(struct rq *rq, struct task_struct *p)
864 {
865 #ifdef CONFIG_SMP
866 return p->oncpu;
867 #else
868 return task_current(rq, p);
869 #endif
870 }
871
872 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
873 {
874 #ifdef CONFIG_SMP
875 /*
876 * We can optimise this out completely for !SMP, because the
877 * SMP rebalancing from interrupt is the only thing that cares
878 * here.
879 */
880 next->oncpu = 1;
881 #endif
882 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
883 raw_spin_unlock_irq(&rq->lock);
884 #else
885 raw_spin_unlock(&rq->lock);
886 #endif
887 }
888
889 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
890 {
891 #ifdef CONFIG_SMP
892 /*
893 * After ->oncpu is cleared, the task can be moved to a different CPU.
894 * We must ensure this doesn't happen until the switch is completely
895 * finished.
896 */
897 smp_wmb();
898 prev->oncpu = 0;
899 #endif
900 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
901 local_irq_enable();
902 #endif
903 }
904 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
905
906 /*
907 * Check whether the task is waking, we use this to synchronize against
908 * ttwu() so that task_cpu() reports a stable number.
909 *
910 * We need to make an exception for PF_STARTING tasks because the fork
911 * path might require task_rq_lock() to work, eg. it can call
912 * set_cpus_allowed_ptr() from the cpuset clone_ns code.
913 */
914 static inline int task_is_waking(struct task_struct *p)
915 {
916 return unlikely((p->state == TASK_WAKING) && !(p->flags & PF_STARTING));
917 }
918
919 /*
920 * __task_rq_lock - lock the runqueue a given task resides on.
921 * Must be called interrupts disabled.
922 */
923 static inline struct rq *__task_rq_lock(struct task_struct *p)
924 __acquires(rq->lock)
925 {
926 struct rq *rq;
927
928 for (;;) {
929 while (task_is_waking(p))
930 cpu_relax();
931 rq = task_rq(p);
932 raw_spin_lock(&rq->lock);
933 if (likely(rq == task_rq(p) && !task_is_waking(p)))
934 return rq;
935 raw_spin_unlock(&rq->lock);
936 }
937 }
938
939 /*
940 * task_rq_lock - lock the runqueue a given task resides on and disable
941 * interrupts. Note the ordering: we can safely lookup the task_rq without
942 * explicitly disabling preemption.
943 */
944 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
945 __acquires(rq->lock)
946 {
947 struct rq *rq;
948
949 for (;;) {
950 while (task_is_waking(p))
951 cpu_relax();
952 local_irq_save(*flags);
953 rq = task_rq(p);
954 raw_spin_lock(&rq->lock);
955 if (likely(rq == task_rq(p) && !task_is_waking(p)))
956 return rq;
957 raw_spin_unlock_irqrestore(&rq->lock, *flags);
958 }
959 }
960
961 void task_rq_unlock_wait(struct task_struct *p)
962 {
963 struct rq *rq = task_rq(p);
964
965 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
966 raw_spin_unlock_wait(&rq->lock);
967 }
968
969 static void __task_rq_unlock(struct rq *rq)
970 __releases(rq->lock)
971 {
972 raw_spin_unlock(&rq->lock);
973 }
974
975 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
976 __releases(rq->lock)
977 {
978 raw_spin_unlock_irqrestore(&rq->lock, *flags);
979 }
980
981 /*
982 * this_rq_lock - lock this runqueue and disable interrupts.
983 */
984 static struct rq *this_rq_lock(void)
985 __acquires(rq->lock)
986 {
987 struct rq *rq;
988
989 local_irq_disable();
990 rq = this_rq();
991 raw_spin_lock(&rq->lock);
992
993 return rq;
994 }
995
996 #ifdef CONFIG_SCHED_HRTICK
997 /*
998 * Use HR-timers to deliver accurate preemption points.
999 *
1000 * Its all a bit involved since we cannot program an hrt while holding the
1001 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1002 * reschedule event.
1003 *
1004 * When we get rescheduled we reprogram the hrtick_timer outside of the
1005 * rq->lock.
1006 */
1007
1008 /*
1009 * Use hrtick when:
1010 * - enabled by features
1011 * - hrtimer is actually high res
1012 */
1013 static inline int hrtick_enabled(struct rq *rq)
1014 {
1015 if (!sched_feat(HRTICK))
1016 return 0;
1017 if (!cpu_active(cpu_of(rq)))
1018 return 0;
1019 return hrtimer_is_hres_active(&rq->hrtick_timer);
1020 }
1021
1022 static void hrtick_clear(struct rq *rq)
1023 {
1024 if (hrtimer_active(&rq->hrtick_timer))
1025 hrtimer_cancel(&rq->hrtick_timer);
1026 }
1027
1028 /*
1029 * High-resolution timer tick.
1030 * Runs from hardirq context with interrupts disabled.
1031 */
1032 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1033 {
1034 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1035
1036 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1037
1038 raw_spin_lock(&rq->lock);
1039 update_rq_clock(rq);
1040 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1041 raw_spin_unlock(&rq->lock);
1042
1043 return HRTIMER_NORESTART;
1044 }
1045
1046 #ifdef CONFIG_SMP
1047 /*
1048 * called from hardirq (IPI) context
1049 */
1050 static void __hrtick_start(void *arg)
1051 {
1052 struct rq *rq = arg;
1053
1054 raw_spin_lock(&rq->lock);
1055 hrtimer_restart(&rq->hrtick_timer);
1056 rq->hrtick_csd_pending = 0;
1057 raw_spin_unlock(&rq->lock);
1058 }
1059
1060 /*
1061 * Called to set the hrtick timer state.
1062 *
1063 * called with rq->lock held and irqs disabled
1064 */
1065 static void hrtick_start(struct rq *rq, u64 delay)
1066 {
1067 struct hrtimer *timer = &rq->hrtick_timer;
1068 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1069
1070 hrtimer_set_expires(timer, time);
1071
1072 if (rq == this_rq()) {
1073 hrtimer_restart(timer);
1074 } else if (!rq->hrtick_csd_pending) {
1075 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1076 rq->hrtick_csd_pending = 1;
1077 }
1078 }
1079
1080 static int
1081 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1082 {
1083 int cpu = (int)(long)hcpu;
1084
1085 switch (action) {
1086 case CPU_UP_CANCELED:
1087 case CPU_UP_CANCELED_FROZEN:
1088 case CPU_DOWN_PREPARE:
1089 case CPU_DOWN_PREPARE_FROZEN:
1090 case CPU_DEAD:
1091 case CPU_DEAD_FROZEN:
1092 hrtick_clear(cpu_rq(cpu));
1093 return NOTIFY_OK;
1094 }
1095
1096 return NOTIFY_DONE;
1097 }
1098
1099 static __init void init_hrtick(void)
1100 {
1101 hotcpu_notifier(hotplug_hrtick, 0);
1102 }
1103 #else
1104 /*
1105 * Called to set the hrtick timer state.
1106 *
1107 * called with rq->lock held and irqs disabled
1108 */
1109 static void hrtick_start(struct rq *rq, u64 delay)
1110 {
1111 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1112 HRTIMER_MODE_REL_PINNED, 0);
1113 }
1114
1115 static inline void init_hrtick(void)
1116 {
1117 }
1118 #endif /* CONFIG_SMP */
1119
1120 static void init_rq_hrtick(struct rq *rq)
1121 {
1122 #ifdef CONFIG_SMP
1123 rq->hrtick_csd_pending = 0;
1124
1125 rq->hrtick_csd.flags = 0;
1126 rq->hrtick_csd.func = __hrtick_start;
1127 rq->hrtick_csd.info = rq;
1128 #endif
1129
1130 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1131 rq->hrtick_timer.function = hrtick;
1132 }
1133 #else /* CONFIG_SCHED_HRTICK */
1134 static inline void hrtick_clear(struct rq *rq)
1135 {
1136 }
1137
1138 static inline void init_rq_hrtick(struct rq *rq)
1139 {
1140 }
1141
1142 static inline void init_hrtick(void)
1143 {
1144 }
1145 #endif /* CONFIG_SCHED_HRTICK */
1146
1147 /*
1148 * resched_task - mark a task 'to be rescheduled now'.
1149 *
1150 * On UP this means the setting of the need_resched flag, on SMP it
1151 * might also involve a cross-CPU call to trigger the scheduler on
1152 * the target CPU.
1153 */
1154 #ifdef CONFIG_SMP
1155
1156 #ifndef tsk_is_polling
1157 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1158 #endif
1159
1160 static void resched_task(struct task_struct *p)
1161 {
1162 int cpu;
1163
1164 assert_raw_spin_locked(&task_rq(p)->lock);
1165
1166 if (test_tsk_need_resched(p))
1167 return;
1168
1169 set_tsk_need_resched(p);
1170
1171 cpu = task_cpu(p);
1172 if (cpu == smp_processor_id())
1173 return;
1174
1175 /* NEED_RESCHED must be visible before we test polling */
1176 smp_mb();
1177 if (!tsk_is_polling(p))
1178 smp_send_reschedule(cpu);
1179 }
1180
1181 static void resched_cpu(int cpu)
1182 {
1183 struct rq *rq = cpu_rq(cpu);
1184 unsigned long flags;
1185
1186 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
1187 return;
1188 resched_task(cpu_curr(cpu));
1189 raw_spin_unlock_irqrestore(&rq->lock, flags);
1190 }
1191
1192 #ifdef CONFIG_NO_HZ
1193 /*
1194 * When add_timer_on() enqueues a timer into the timer wheel of an
1195 * idle CPU then this timer might expire before the next timer event
1196 * which is scheduled to wake up that CPU. In case of a completely
1197 * idle system the next event might even be infinite time into the
1198 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1199 * leaves the inner idle loop so the newly added timer is taken into
1200 * account when the CPU goes back to idle and evaluates the timer
1201 * wheel for the next timer event.
1202 */
1203 void wake_up_idle_cpu(int cpu)
1204 {
1205 struct rq *rq = cpu_rq(cpu);
1206
1207 if (cpu == smp_processor_id())
1208 return;
1209
1210 /*
1211 * This is safe, as this function is called with the timer
1212 * wheel base lock of (cpu) held. When the CPU is on the way
1213 * to idle and has not yet set rq->curr to idle then it will
1214 * be serialized on the timer wheel base lock and take the new
1215 * timer into account automatically.
1216 */
1217 if (rq->curr != rq->idle)
1218 return;
1219
1220 /*
1221 * We can set TIF_RESCHED on the idle task of the other CPU
1222 * lockless. The worst case is that the other CPU runs the
1223 * idle task through an additional NOOP schedule()
1224 */
1225 set_tsk_need_resched(rq->idle);
1226
1227 /* NEED_RESCHED must be visible before we test polling */
1228 smp_mb();
1229 if (!tsk_is_polling(rq->idle))
1230 smp_send_reschedule(cpu);
1231 }
1232 #endif /* CONFIG_NO_HZ */
1233
1234 static u64 sched_avg_period(void)
1235 {
1236 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1237 }
1238
1239 static void sched_avg_update(struct rq *rq)
1240 {
1241 s64 period = sched_avg_period();
1242
1243 while ((s64)(rq->clock - rq->age_stamp) > period) {
1244 rq->age_stamp += period;
1245 rq->rt_avg /= 2;
1246 }
1247 }
1248
1249 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1250 {
1251 rq->rt_avg += rt_delta;
1252 sched_avg_update(rq);
1253 }
1254
1255 #else /* !CONFIG_SMP */
1256 static void resched_task(struct task_struct *p)
1257 {
1258 assert_raw_spin_locked(&task_rq(p)->lock);
1259 set_tsk_need_resched(p);
1260 }
1261
1262 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1263 {
1264 }
1265 #endif /* CONFIG_SMP */
1266
1267 #if BITS_PER_LONG == 32
1268 # define WMULT_CONST (~0UL)
1269 #else
1270 # define WMULT_CONST (1UL << 32)
1271 #endif
1272
1273 #define WMULT_SHIFT 32
1274
1275 /*
1276 * Shift right and round:
1277 */
1278 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1279
1280 /*
1281 * delta *= weight / lw
1282 */
1283 static unsigned long
1284 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1285 struct load_weight *lw)
1286 {
1287 u64 tmp;
1288
1289 if (!lw->inv_weight) {
1290 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1291 lw->inv_weight = 1;
1292 else
1293 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1294 / (lw->weight+1);
1295 }
1296
1297 tmp = (u64)delta_exec * weight;
1298 /*
1299 * Check whether we'd overflow the 64-bit multiplication:
1300 */
1301 if (unlikely(tmp > WMULT_CONST))
1302 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1303 WMULT_SHIFT/2);
1304 else
1305 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1306
1307 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1308 }
1309
1310 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1311 {
1312 lw->weight += inc;
1313 lw->inv_weight = 0;
1314 }
1315
1316 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1317 {
1318 lw->weight -= dec;
1319 lw->inv_weight = 0;
1320 }
1321
1322 /*
1323 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1324 * of tasks with abnormal "nice" values across CPUs the contribution that
1325 * each task makes to its run queue's load is weighted according to its
1326 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1327 * scaled version of the new time slice allocation that they receive on time
1328 * slice expiry etc.
1329 */
1330
1331 #define WEIGHT_IDLEPRIO 3
1332 #define WMULT_IDLEPRIO 1431655765
1333
1334 /*
1335 * Nice levels are multiplicative, with a gentle 10% change for every
1336 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1337 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1338 * that remained on nice 0.
1339 *
1340 * The "10% effect" is relative and cumulative: from _any_ nice level,
1341 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1342 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1343 * If a task goes up by ~10% and another task goes down by ~10% then
1344 * the relative distance between them is ~25%.)
1345 */
1346 static const int prio_to_weight[40] = {
1347 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1348 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1349 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1350 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1351 /* 0 */ 1024, 820, 655, 526, 423,
1352 /* 5 */ 335, 272, 215, 172, 137,
1353 /* 10 */ 110, 87, 70, 56, 45,
1354 /* 15 */ 36, 29, 23, 18, 15,
1355 };
1356
1357 /*
1358 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1359 *
1360 * In cases where the weight does not change often, we can use the
1361 * precalculated inverse to speed up arithmetics by turning divisions
1362 * into multiplications:
1363 */
1364 static const u32 prio_to_wmult[40] = {
1365 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1366 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1367 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1368 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1369 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1370 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1371 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1372 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1373 };
1374
1375 /* Time spent by the tasks of the cpu accounting group executing in ... */
1376 enum cpuacct_stat_index {
1377 CPUACCT_STAT_USER, /* ... user mode */
1378 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1379
1380 CPUACCT_STAT_NSTATS,
1381 };
1382
1383 #ifdef CONFIG_CGROUP_CPUACCT
1384 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1385 static void cpuacct_update_stats(struct task_struct *tsk,
1386 enum cpuacct_stat_index idx, cputime_t val);
1387 #else
1388 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1389 static inline void cpuacct_update_stats(struct task_struct *tsk,
1390 enum cpuacct_stat_index idx, cputime_t val) {}
1391 #endif
1392
1393 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1394 {
1395 update_load_add(&rq->load, load);
1396 }
1397
1398 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1399 {
1400 update_load_sub(&rq->load, load);
1401 }
1402
1403 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1404 typedef int (*tg_visitor)(struct task_group *, void *);
1405
1406 /*
1407 * Iterate the full tree, calling @down when first entering a node and @up when
1408 * leaving it for the final time.
1409 */
1410 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1411 {
1412 struct task_group *parent, *child;
1413 int ret;
1414
1415 rcu_read_lock();
1416 parent = &root_task_group;
1417 down:
1418 ret = (*down)(parent, data);
1419 if (ret)
1420 goto out_unlock;
1421 list_for_each_entry_rcu(child, &parent->children, siblings) {
1422 parent = child;
1423 goto down;
1424
1425 up:
1426 continue;
1427 }
1428 ret = (*up)(parent, data);
1429 if (ret)
1430 goto out_unlock;
1431
1432 child = parent;
1433 parent = parent->parent;
1434 if (parent)
1435 goto up;
1436 out_unlock:
1437 rcu_read_unlock();
1438
1439 return ret;
1440 }
1441
1442 static int tg_nop(struct task_group *tg, void *data)
1443 {
1444 return 0;
1445 }
1446 #endif
1447
1448 #ifdef CONFIG_SMP
1449 /* Used instead of source_load when we know the type == 0 */
1450 static unsigned long weighted_cpuload(const int cpu)
1451 {
1452 return cpu_rq(cpu)->load.weight;
1453 }
1454
1455 /*
1456 * Return a low guess at the load of a migration-source cpu weighted
1457 * according to the scheduling class and "nice" value.
1458 *
1459 * We want to under-estimate the load of migration sources, to
1460 * balance conservatively.
1461 */
1462 static unsigned long source_load(int cpu, int type)
1463 {
1464 struct rq *rq = cpu_rq(cpu);
1465 unsigned long total = weighted_cpuload(cpu);
1466
1467 if (type == 0 || !sched_feat(LB_BIAS))
1468 return total;
1469
1470 return min(rq->cpu_load[type-1], total);
1471 }
1472
1473 /*
1474 * Return a high guess at the load of a migration-target cpu weighted
1475 * according to the scheduling class and "nice" value.
1476 */
1477 static unsigned long target_load(int cpu, int type)
1478 {
1479 struct rq *rq = cpu_rq(cpu);
1480 unsigned long total = weighted_cpuload(cpu);
1481
1482 if (type == 0 || !sched_feat(LB_BIAS))
1483 return total;
1484
1485 return max(rq->cpu_load[type-1], total);
1486 }
1487
1488 static struct sched_group *group_of(int cpu)
1489 {
1490 struct sched_domain *sd = rcu_dereference_sched(cpu_rq(cpu)->sd);
1491
1492 if (!sd)
1493 return NULL;
1494
1495 return sd->groups;
1496 }
1497
1498 static unsigned long power_of(int cpu)
1499 {
1500 struct sched_group *group = group_of(cpu);
1501
1502 if (!group)
1503 return SCHED_LOAD_SCALE;
1504
1505 return group->cpu_power;
1506 }
1507
1508 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1509
1510 static unsigned long cpu_avg_load_per_task(int cpu)
1511 {
1512 struct rq *rq = cpu_rq(cpu);
1513 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1514
1515 if (nr_running)
1516 rq->avg_load_per_task = rq->load.weight / nr_running;
1517 else
1518 rq->avg_load_per_task = 0;
1519
1520 return rq->avg_load_per_task;
1521 }
1522
1523 #ifdef CONFIG_FAIR_GROUP_SCHED
1524
1525 static __read_mostly unsigned long __percpu *update_shares_data;
1526
1527 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1528
1529 /*
1530 * Calculate and set the cpu's group shares.
1531 */
1532 static void update_group_shares_cpu(struct task_group *tg, int cpu,
1533 unsigned long sd_shares,
1534 unsigned long sd_rq_weight,
1535 unsigned long *usd_rq_weight)
1536 {
1537 unsigned long shares, rq_weight;
1538 int boost = 0;
1539
1540 rq_weight = usd_rq_weight[cpu];
1541 if (!rq_weight) {
1542 boost = 1;
1543 rq_weight = NICE_0_LOAD;
1544 }
1545
1546 /*
1547 * \Sum_j shares_j * rq_weight_i
1548 * shares_i = -----------------------------
1549 * \Sum_j rq_weight_j
1550 */
1551 shares = (sd_shares * rq_weight) / sd_rq_weight;
1552 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1553
1554 if (abs(shares - tg->se[cpu]->load.weight) >
1555 sysctl_sched_shares_thresh) {
1556 struct rq *rq = cpu_rq(cpu);
1557 unsigned long flags;
1558
1559 raw_spin_lock_irqsave(&rq->lock, flags);
1560 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
1561 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1562 __set_se_shares(tg->se[cpu], shares);
1563 raw_spin_unlock_irqrestore(&rq->lock, flags);
1564 }
1565 }
1566
1567 /*
1568 * Re-compute the task group their per cpu shares over the given domain.
1569 * This needs to be done in a bottom-up fashion because the rq weight of a
1570 * parent group depends on the shares of its child groups.
1571 */
1572 static int tg_shares_up(struct task_group *tg, void *data)
1573 {
1574 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
1575 unsigned long *usd_rq_weight;
1576 struct sched_domain *sd = data;
1577 unsigned long flags;
1578 int i;
1579
1580 if (!tg->se[0])
1581 return 0;
1582
1583 local_irq_save(flags);
1584 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1585
1586 for_each_cpu(i, sched_domain_span(sd)) {
1587 weight = tg->cfs_rq[i]->load.weight;
1588 usd_rq_weight[i] = weight;
1589
1590 rq_weight += weight;
1591 /*
1592 * If there are currently no tasks on the cpu pretend there
1593 * is one of average load so that when a new task gets to
1594 * run here it will not get delayed by group starvation.
1595 */
1596 if (!weight)
1597 weight = NICE_0_LOAD;
1598
1599 sum_weight += weight;
1600 shares += tg->cfs_rq[i]->shares;
1601 }
1602
1603 if (!rq_weight)
1604 rq_weight = sum_weight;
1605
1606 if ((!shares && rq_weight) || shares > tg->shares)
1607 shares = tg->shares;
1608
1609 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1610 shares = tg->shares;
1611
1612 for_each_cpu(i, sched_domain_span(sd))
1613 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1614
1615 local_irq_restore(flags);
1616
1617 return 0;
1618 }
1619
1620 /*
1621 * Compute the cpu's hierarchical load factor for each task group.
1622 * This needs to be done in a top-down fashion because the load of a child
1623 * group is a fraction of its parents load.
1624 */
1625 static int tg_load_down(struct task_group *tg, void *data)
1626 {
1627 unsigned long load;
1628 long cpu = (long)data;
1629
1630 if (!tg->parent) {
1631 load = cpu_rq(cpu)->load.weight;
1632 } else {
1633 load = tg->parent->cfs_rq[cpu]->h_load;
1634 load *= tg->cfs_rq[cpu]->shares;
1635 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1636 }
1637
1638 tg->cfs_rq[cpu]->h_load = load;
1639
1640 return 0;
1641 }
1642
1643 static void update_shares(struct sched_domain *sd)
1644 {
1645 s64 elapsed;
1646 u64 now;
1647
1648 if (root_task_group_empty())
1649 return;
1650
1651 now = cpu_clock(raw_smp_processor_id());
1652 elapsed = now - sd->last_update;
1653
1654 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1655 sd->last_update = now;
1656 walk_tg_tree(tg_nop, tg_shares_up, sd);
1657 }
1658 }
1659
1660 static void update_h_load(long cpu)
1661 {
1662 if (root_task_group_empty())
1663 return;
1664
1665 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1666 }
1667
1668 #else
1669
1670 static inline void update_shares(struct sched_domain *sd)
1671 {
1672 }
1673
1674 #endif
1675
1676 #ifdef CONFIG_PREEMPT
1677
1678 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1679
1680 /*
1681 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1682 * way at the expense of forcing extra atomic operations in all
1683 * invocations. This assures that the double_lock is acquired using the
1684 * same underlying policy as the spinlock_t on this architecture, which
1685 * reduces latency compared to the unfair variant below. However, it
1686 * also adds more overhead and therefore may reduce throughput.
1687 */
1688 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1689 __releases(this_rq->lock)
1690 __acquires(busiest->lock)
1691 __acquires(this_rq->lock)
1692 {
1693 raw_spin_unlock(&this_rq->lock);
1694 double_rq_lock(this_rq, busiest);
1695
1696 return 1;
1697 }
1698
1699 #else
1700 /*
1701 * Unfair double_lock_balance: Optimizes throughput at the expense of
1702 * latency by eliminating extra atomic operations when the locks are
1703 * already in proper order on entry. This favors lower cpu-ids and will
1704 * grant the double lock to lower cpus over higher ids under contention,
1705 * regardless of entry order into the function.
1706 */
1707 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1708 __releases(this_rq->lock)
1709 __acquires(busiest->lock)
1710 __acquires(this_rq->lock)
1711 {
1712 int ret = 0;
1713
1714 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1715 if (busiest < this_rq) {
1716 raw_spin_unlock(&this_rq->lock);
1717 raw_spin_lock(&busiest->lock);
1718 raw_spin_lock_nested(&this_rq->lock,
1719 SINGLE_DEPTH_NESTING);
1720 ret = 1;
1721 } else
1722 raw_spin_lock_nested(&busiest->lock,
1723 SINGLE_DEPTH_NESTING);
1724 }
1725 return ret;
1726 }
1727
1728 #endif /* CONFIG_PREEMPT */
1729
1730 /*
1731 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1732 */
1733 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1734 {
1735 if (unlikely(!irqs_disabled())) {
1736 /* printk() doesn't work good under rq->lock */
1737 raw_spin_unlock(&this_rq->lock);
1738 BUG_ON(1);
1739 }
1740
1741 return _double_lock_balance(this_rq, busiest);
1742 }
1743
1744 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1745 __releases(busiest->lock)
1746 {
1747 raw_spin_unlock(&busiest->lock);
1748 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1749 }
1750
1751 /*
1752 * double_rq_lock - safely lock two runqueues
1753 *
1754 * Note this does not disable interrupts like task_rq_lock,
1755 * you need to do so manually before calling.
1756 */
1757 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1758 __acquires(rq1->lock)
1759 __acquires(rq2->lock)
1760 {
1761 BUG_ON(!irqs_disabled());
1762 if (rq1 == rq2) {
1763 raw_spin_lock(&rq1->lock);
1764 __acquire(rq2->lock); /* Fake it out ;) */
1765 } else {
1766 if (rq1 < rq2) {
1767 raw_spin_lock(&rq1->lock);
1768 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1769 } else {
1770 raw_spin_lock(&rq2->lock);
1771 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1772 }
1773 }
1774 update_rq_clock(rq1);
1775 update_rq_clock(rq2);
1776 }
1777
1778 /*
1779 * double_rq_unlock - safely unlock two runqueues
1780 *
1781 * Note this does not restore interrupts like task_rq_unlock,
1782 * you need to do so manually after calling.
1783 */
1784 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1785 __releases(rq1->lock)
1786 __releases(rq2->lock)
1787 {
1788 raw_spin_unlock(&rq1->lock);
1789 if (rq1 != rq2)
1790 raw_spin_unlock(&rq2->lock);
1791 else
1792 __release(rq2->lock);
1793 }
1794
1795 #endif
1796
1797 #ifdef CONFIG_FAIR_GROUP_SCHED
1798 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1799 {
1800 #ifdef CONFIG_SMP
1801 cfs_rq->shares = shares;
1802 #endif
1803 }
1804 #endif
1805
1806 static void calc_load_account_active(struct rq *this_rq);
1807 static void update_sysctl(void);
1808 static int get_update_sysctl_factor(void);
1809
1810 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1811 {
1812 set_task_rq(p, cpu);
1813 #ifdef CONFIG_SMP
1814 /*
1815 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1816 * successfuly executed on another CPU. We must ensure that updates of
1817 * per-task data have been completed by this moment.
1818 */
1819 smp_wmb();
1820 task_thread_info(p)->cpu = cpu;
1821 #endif
1822 }
1823
1824 static const struct sched_class rt_sched_class;
1825
1826 #define sched_class_highest (&rt_sched_class)
1827 #define for_each_class(class) \
1828 for (class = sched_class_highest; class; class = class->next)
1829
1830 #include "sched_stats.h"
1831
1832 static void inc_nr_running(struct rq *rq)
1833 {
1834 rq->nr_running++;
1835 }
1836
1837 static void dec_nr_running(struct rq *rq)
1838 {
1839 rq->nr_running--;
1840 }
1841
1842 static void set_load_weight(struct task_struct *p)
1843 {
1844 if (task_has_rt_policy(p)) {
1845 p->se.load.weight = prio_to_weight[0] * 2;
1846 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1847 return;
1848 }
1849
1850 /*
1851 * SCHED_IDLE tasks get minimal weight:
1852 */
1853 if (p->policy == SCHED_IDLE) {
1854 p->se.load.weight = WEIGHT_IDLEPRIO;
1855 p->se.load.inv_weight = WMULT_IDLEPRIO;
1856 return;
1857 }
1858
1859 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1860 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1861 }
1862
1863 static void update_avg(u64 *avg, u64 sample)
1864 {
1865 s64 diff = sample - *avg;
1866 *avg += diff >> 3;
1867 }
1868
1869 static void
1870 enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, bool head)
1871 {
1872 if (wakeup)
1873 p->se.start_runtime = p->se.sum_exec_runtime;
1874
1875 sched_info_queued(p);
1876 p->sched_class->enqueue_task(rq, p, wakeup, head);
1877 p->se.on_rq = 1;
1878 }
1879
1880 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1881 {
1882 if (sleep) {
1883 if (p->se.last_wakeup) {
1884 update_avg(&p->se.avg_overlap,
1885 p->se.sum_exec_runtime - p->se.last_wakeup);
1886 p->se.last_wakeup = 0;
1887 } else {
1888 update_avg(&p->se.avg_wakeup,
1889 sysctl_sched_wakeup_granularity);
1890 }
1891 }
1892
1893 sched_info_dequeued(p);
1894 p->sched_class->dequeue_task(rq, p, sleep);
1895 p->se.on_rq = 0;
1896 }
1897
1898 /*
1899 * activate_task - move a task to the runqueue.
1900 */
1901 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1902 {
1903 if (task_contributes_to_load(p))
1904 rq->nr_uninterruptible--;
1905
1906 enqueue_task(rq, p, wakeup, false);
1907 inc_nr_running(rq);
1908 }
1909
1910 /*
1911 * deactivate_task - remove a task from the runqueue.
1912 */
1913 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1914 {
1915 if (task_contributes_to_load(p))
1916 rq->nr_uninterruptible++;
1917
1918 dequeue_task(rq, p, sleep);
1919 dec_nr_running(rq);
1920 }
1921
1922 #include "sched_idletask.c"
1923 #include "sched_fair.c"
1924 #include "sched_rt.c"
1925 #ifdef CONFIG_SCHED_DEBUG
1926 # include "sched_debug.c"
1927 #endif
1928
1929 /*
1930 * __normal_prio - return the priority that is based on the static prio
1931 */
1932 static inline int __normal_prio(struct task_struct *p)
1933 {
1934 return p->static_prio;
1935 }
1936
1937 /*
1938 * Calculate the expected normal priority: i.e. priority
1939 * without taking RT-inheritance into account. Might be
1940 * boosted by interactivity modifiers. Changes upon fork,
1941 * setprio syscalls, and whenever the interactivity
1942 * estimator recalculates.
1943 */
1944 static inline int normal_prio(struct task_struct *p)
1945 {
1946 int prio;
1947
1948 if (task_has_rt_policy(p))
1949 prio = MAX_RT_PRIO-1 - p->rt_priority;
1950 else
1951 prio = __normal_prio(p);
1952 return prio;
1953 }
1954
1955 /*
1956 * Calculate the current priority, i.e. the priority
1957 * taken into account by the scheduler. This value might
1958 * be boosted by RT tasks, or might be boosted by
1959 * interactivity modifiers. Will be RT if the task got
1960 * RT-boosted. If not then it returns p->normal_prio.
1961 */
1962 static int effective_prio(struct task_struct *p)
1963 {
1964 p->normal_prio = normal_prio(p);
1965 /*
1966 * If we are RT tasks or we were boosted to RT priority,
1967 * keep the priority unchanged. Otherwise, update priority
1968 * to the normal priority:
1969 */
1970 if (!rt_prio(p->prio))
1971 return p->normal_prio;
1972 return p->prio;
1973 }
1974
1975 /**
1976 * task_curr - is this task currently executing on a CPU?
1977 * @p: the task in question.
1978 */
1979 inline int task_curr(const struct task_struct *p)
1980 {
1981 return cpu_curr(task_cpu(p)) == p;
1982 }
1983
1984 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1985 const struct sched_class *prev_class,
1986 int oldprio, int running)
1987 {
1988 if (prev_class != p->sched_class) {
1989 if (prev_class->switched_from)
1990 prev_class->switched_from(rq, p, running);
1991 p->sched_class->switched_to(rq, p, running);
1992 } else
1993 p->sched_class->prio_changed(rq, p, oldprio, running);
1994 }
1995
1996 #ifdef CONFIG_SMP
1997 /*
1998 * Is this task likely cache-hot:
1999 */
2000 static int
2001 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2002 {
2003 s64 delta;
2004
2005 if (p->sched_class != &fair_sched_class)
2006 return 0;
2007
2008 /*
2009 * Buddy candidates are cache hot:
2010 */
2011 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
2012 (&p->se == cfs_rq_of(&p->se)->next ||
2013 &p->se == cfs_rq_of(&p->se)->last))
2014 return 1;
2015
2016 if (sysctl_sched_migration_cost == -1)
2017 return 1;
2018 if (sysctl_sched_migration_cost == 0)
2019 return 0;
2020
2021 delta = now - p->se.exec_start;
2022
2023 return delta < (s64)sysctl_sched_migration_cost;
2024 }
2025
2026 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2027 {
2028 #ifdef CONFIG_SCHED_DEBUG
2029 /*
2030 * We should never call set_task_cpu() on a blocked task,
2031 * ttwu() will sort out the placement.
2032 */
2033 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2034 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2035 #endif
2036
2037 trace_sched_migrate_task(p, new_cpu);
2038
2039 if (task_cpu(p) != new_cpu) {
2040 p->se.nr_migrations++;
2041 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2042 }
2043
2044 __set_task_cpu(p, new_cpu);
2045 }
2046
2047 struct migration_req {
2048 struct list_head list;
2049
2050 struct task_struct *task;
2051 int dest_cpu;
2052
2053 struct completion done;
2054 };
2055
2056 /*
2057 * The task's runqueue lock must be held.
2058 * Returns true if you have to wait for migration thread.
2059 */
2060 static int
2061 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
2062 {
2063 struct rq *rq = task_rq(p);
2064
2065 /*
2066 * If the task is not on a runqueue (and not running), then
2067 * the next wake-up will properly place the task.
2068 */
2069 if (!p->se.on_rq && !task_running(rq, p))
2070 return 0;
2071
2072 init_completion(&req->done);
2073 req->task = p;
2074 req->dest_cpu = dest_cpu;
2075 list_add(&req->list, &rq->migration_queue);
2076
2077 return 1;
2078 }
2079
2080 /*
2081 * wait_task_context_switch - wait for a thread to complete at least one
2082 * context switch.
2083 *
2084 * @p must not be current.
2085 */
2086 void wait_task_context_switch(struct task_struct *p)
2087 {
2088 unsigned long nvcsw, nivcsw, flags;
2089 int running;
2090 struct rq *rq;
2091
2092 nvcsw = p->nvcsw;
2093 nivcsw = p->nivcsw;
2094 for (;;) {
2095 /*
2096 * The runqueue is assigned before the actual context
2097 * switch. We need to take the runqueue lock.
2098 *
2099 * We could check initially without the lock but it is
2100 * very likely that we need to take the lock in every
2101 * iteration.
2102 */
2103 rq = task_rq_lock(p, &flags);
2104 running = task_running(rq, p);
2105 task_rq_unlock(rq, &flags);
2106
2107 if (likely(!running))
2108 break;
2109 /*
2110 * The switch count is incremented before the actual
2111 * context switch. We thus wait for two switches to be
2112 * sure at least one completed.
2113 */
2114 if ((p->nvcsw - nvcsw) > 1)
2115 break;
2116 if ((p->nivcsw - nivcsw) > 1)
2117 break;
2118
2119 cpu_relax();
2120 }
2121 }
2122
2123 /*
2124 * wait_task_inactive - wait for a thread to unschedule.
2125 *
2126 * If @match_state is nonzero, it's the @p->state value just checked and
2127 * not expected to change. If it changes, i.e. @p might have woken up,
2128 * then return zero. When we succeed in waiting for @p to be off its CPU,
2129 * we return a positive number (its total switch count). If a second call
2130 * a short while later returns the same number, the caller can be sure that
2131 * @p has remained unscheduled the whole time.
2132 *
2133 * The caller must ensure that the task *will* unschedule sometime soon,
2134 * else this function might spin for a *long* time. This function can't
2135 * be called with interrupts off, or it may introduce deadlock with
2136 * smp_call_function() if an IPI is sent by the same process we are
2137 * waiting to become inactive.
2138 */
2139 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2140 {
2141 unsigned long flags;
2142 int running, on_rq;
2143 unsigned long ncsw;
2144 struct rq *rq;
2145
2146 for (;;) {
2147 /*
2148 * We do the initial early heuristics without holding
2149 * any task-queue locks at all. We'll only try to get
2150 * the runqueue lock when things look like they will
2151 * work out!
2152 */
2153 rq = task_rq(p);
2154
2155 /*
2156 * If the task is actively running on another CPU
2157 * still, just relax and busy-wait without holding
2158 * any locks.
2159 *
2160 * NOTE! Since we don't hold any locks, it's not
2161 * even sure that "rq" stays as the right runqueue!
2162 * But we don't care, since "task_running()" will
2163 * return false if the runqueue has changed and p
2164 * is actually now running somewhere else!
2165 */
2166 while (task_running(rq, p)) {
2167 if (match_state && unlikely(p->state != match_state))
2168 return 0;
2169 cpu_relax();
2170 }
2171
2172 /*
2173 * Ok, time to look more closely! We need the rq
2174 * lock now, to be *sure*. If we're wrong, we'll
2175 * just go back and repeat.
2176 */
2177 rq = task_rq_lock(p, &flags);
2178 trace_sched_wait_task(rq, p);
2179 running = task_running(rq, p);
2180 on_rq = p->se.on_rq;
2181 ncsw = 0;
2182 if (!match_state || p->state == match_state)
2183 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2184 task_rq_unlock(rq, &flags);
2185
2186 /*
2187 * If it changed from the expected state, bail out now.
2188 */
2189 if (unlikely(!ncsw))
2190 break;
2191
2192 /*
2193 * Was it really running after all now that we
2194 * checked with the proper locks actually held?
2195 *
2196 * Oops. Go back and try again..
2197 */
2198 if (unlikely(running)) {
2199 cpu_relax();
2200 continue;
2201 }
2202
2203 /*
2204 * It's not enough that it's not actively running,
2205 * it must be off the runqueue _entirely_, and not
2206 * preempted!
2207 *
2208 * So if it was still runnable (but just not actively
2209 * running right now), it's preempted, and we should
2210 * yield - it could be a while.
2211 */
2212 if (unlikely(on_rq)) {
2213 schedule_timeout_uninterruptible(1);
2214 continue;
2215 }
2216
2217 /*
2218 * Ahh, all good. It wasn't running, and it wasn't
2219 * runnable, which means that it will never become
2220 * running in the future either. We're all done!
2221 */
2222 break;
2223 }
2224
2225 return ncsw;
2226 }
2227
2228 /***
2229 * kick_process - kick a running thread to enter/exit the kernel
2230 * @p: the to-be-kicked thread
2231 *
2232 * Cause a process which is running on another CPU to enter
2233 * kernel-mode, without any delay. (to get signals handled.)
2234 *
2235 * NOTE: this function doesnt have to take the runqueue lock,
2236 * because all it wants to ensure is that the remote task enters
2237 * the kernel. If the IPI races and the task has been migrated
2238 * to another CPU then no harm is done and the purpose has been
2239 * achieved as well.
2240 */
2241 void kick_process(struct task_struct *p)
2242 {
2243 int cpu;
2244
2245 preempt_disable();
2246 cpu = task_cpu(p);
2247 if ((cpu != smp_processor_id()) && task_curr(p))
2248 smp_send_reschedule(cpu);
2249 preempt_enable();
2250 }
2251 EXPORT_SYMBOL_GPL(kick_process);
2252 #endif /* CONFIG_SMP */
2253
2254 /**
2255 * task_oncpu_function_call - call a function on the cpu on which a task runs
2256 * @p: the task to evaluate
2257 * @func: the function to be called
2258 * @info: the function call argument
2259 *
2260 * Calls the function @func when the task is currently running. This might
2261 * be on the current CPU, which just calls the function directly
2262 */
2263 void task_oncpu_function_call(struct task_struct *p,
2264 void (*func) (void *info), void *info)
2265 {
2266 int cpu;
2267
2268 preempt_disable();
2269 cpu = task_cpu(p);
2270 if (task_curr(p))
2271 smp_call_function_single(cpu, func, info, 1);
2272 preempt_enable();
2273 }
2274
2275 #ifdef CONFIG_SMP
2276 static int select_fallback_rq(int cpu, struct task_struct *p)
2277 {
2278 int dest_cpu;
2279 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2280
2281 /* Look for allowed, online CPU in same node. */
2282 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2283 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2284 return dest_cpu;
2285
2286 /* Any allowed, online CPU? */
2287 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2288 if (dest_cpu < nr_cpu_ids)
2289 return dest_cpu;
2290
2291 /* No more Mr. Nice Guy. */
2292 if (dest_cpu >= nr_cpu_ids) {
2293 rcu_read_lock();
2294 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
2295 rcu_read_unlock();
2296 dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
2297
2298 /*
2299 * Don't tell them about moving exiting tasks or
2300 * kernel threads (both mm NULL), since they never
2301 * leave kernel.
2302 */
2303 if (p->mm && printk_ratelimit()) {
2304 printk(KERN_INFO "process %d (%s) no "
2305 "longer affine to cpu%d\n",
2306 task_pid_nr(p), p->comm, cpu);
2307 }
2308 }
2309
2310 return dest_cpu;
2311 }
2312
2313 /*
2314 * Gets called from 3 sites (exec, fork, wakeup), since it is called without
2315 * holding rq->lock we need to ensure ->cpus_allowed is stable, this is done
2316 * by:
2317 *
2318 * exec: is unstable, retry loop
2319 * fork & wake-up: serialize ->cpus_allowed against TASK_WAKING
2320 */
2321 static inline
2322 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
2323 {
2324 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
2325
2326 /*
2327 * In order not to call set_task_cpu() on a blocking task we need
2328 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2329 * cpu.
2330 *
2331 * Since this is common to all placement strategies, this lives here.
2332 *
2333 * [ this allows ->select_task() to simply return task_cpu(p) and
2334 * not worry about this generic constraint ]
2335 */
2336 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
2337 !cpu_online(cpu)))
2338 cpu = select_fallback_rq(task_cpu(p), p);
2339
2340 return cpu;
2341 }
2342 #endif
2343
2344 /***
2345 * try_to_wake_up - wake up a thread
2346 * @p: the to-be-woken-up thread
2347 * @state: the mask of task states that can be woken
2348 * @sync: do a synchronous wakeup?
2349 *
2350 * Put it on the run-queue if it's not already there. The "current"
2351 * thread is always on the run-queue (except when the actual
2352 * re-schedule is in progress), and as such you're allowed to do
2353 * the simpler "current->state = TASK_RUNNING" to mark yourself
2354 * runnable without the overhead of this.
2355 *
2356 * returns failure only if the task is already active.
2357 */
2358 static int try_to_wake_up(struct task_struct *p, unsigned int state,
2359 int wake_flags)
2360 {
2361 int cpu, orig_cpu, this_cpu, success = 0;
2362 unsigned long flags;
2363 struct rq *rq;
2364
2365 if (!sched_feat(SYNC_WAKEUPS))
2366 wake_flags &= ~WF_SYNC;
2367
2368 this_cpu = get_cpu();
2369
2370 smp_wmb();
2371 rq = task_rq_lock(p, &flags);
2372 update_rq_clock(rq);
2373 if (!(p->state & state))
2374 goto out;
2375
2376 if (p->se.on_rq)
2377 goto out_running;
2378
2379 cpu = task_cpu(p);
2380 orig_cpu = cpu;
2381
2382 #ifdef CONFIG_SMP
2383 if (unlikely(task_running(rq, p)))
2384 goto out_activate;
2385
2386 /*
2387 * In order to handle concurrent wakeups and release the rq->lock
2388 * we put the task in TASK_WAKING state.
2389 *
2390 * First fix up the nr_uninterruptible count:
2391 */
2392 if (task_contributes_to_load(p))
2393 rq->nr_uninterruptible--;
2394 p->state = TASK_WAKING;
2395
2396 if (p->sched_class->task_waking)
2397 p->sched_class->task_waking(rq, p);
2398
2399 __task_rq_unlock(rq);
2400
2401 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
2402 if (cpu != orig_cpu) {
2403 /*
2404 * Since we migrate the task without holding any rq->lock,
2405 * we need to be careful with task_rq_lock(), since that
2406 * might end up locking an invalid rq.
2407 */
2408 set_task_cpu(p, cpu);
2409 }
2410
2411 rq = cpu_rq(cpu);
2412 raw_spin_lock(&rq->lock);
2413 update_rq_clock(rq);
2414
2415 /*
2416 * We migrated the task without holding either rq->lock, however
2417 * since the task is not on the task list itself, nobody else
2418 * will try and migrate the task, hence the rq should match the
2419 * cpu we just moved it to.
2420 */
2421 WARN_ON(task_cpu(p) != cpu);
2422 WARN_ON(p->state != TASK_WAKING);
2423
2424 #ifdef CONFIG_SCHEDSTATS
2425 schedstat_inc(rq, ttwu_count);
2426 if (cpu == this_cpu)
2427 schedstat_inc(rq, ttwu_local);
2428 else {
2429 struct sched_domain *sd;
2430 for_each_domain(this_cpu, sd) {
2431 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2432 schedstat_inc(sd, ttwu_wake_remote);
2433 break;
2434 }
2435 }
2436 }
2437 #endif /* CONFIG_SCHEDSTATS */
2438
2439 out_activate:
2440 #endif /* CONFIG_SMP */
2441 schedstat_inc(p, se.nr_wakeups);
2442 if (wake_flags & WF_SYNC)
2443 schedstat_inc(p, se.nr_wakeups_sync);
2444 if (orig_cpu != cpu)
2445 schedstat_inc(p, se.nr_wakeups_migrate);
2446 if (cpu == this_cpu)
2447 schedstat_inc(p, se.nr_wakeups_local);
2448 else
2449 schedstat_inc(p, se.nr_wakeups_remote);
2450 activate_task(rq, p, 1);
2451 success = 1;
2452
2453 /*
2454 * Only attribute actual wakeups done by this task.
2455 */
2456 if (!in_interrupt()) {
2457 struct sched_entity *se = &current->se;
2458 u64 sample = se->sum_exec_runtime;
2459
2460 if (se->last_wakeup)
2461 sample -= se->last_wakeup;
2462 else
2463 sample -= se->start_runtime;
2464 update_avg(&se->avg_wakeup, sample);
2465
2466 se->last_wakeup = se->sum_exec_runtime;
2467 }
2468
2469 out_running:
2470 trace_sched_wakeup(rq, p, success);
2471 check_preempt_curr(rq, p, wake_flags);
2472
2473 p->state = TASK_RUNNING;
2474 #ifdef CONFIG_SMP
2475 if (p->sched_class->task_woken)
2476 p->sched_class->task_woken(rq, p);
2477
2478 if (unlikely(rq->idle_stamp)) {
2479 u64 delta = rq->clock - rq->idle_stamp;
2480 u64 max = 2*sysctl_sched_migration_cost;
2481
2482 if (delta > max)
2483 rq->avg_idle = max;
2484 else
2485 update_avg(&rq->avg_idle, delta);
2486 rq->idle_stamp = 0;
2487 }
2488 #endif
2489 out:
2490 task_rq_unlock(rq, &flags);
2491 put_cpu();
2492
2493 return success;
2494 }
2495
2496 /**
2497 * wake_up_process - Wake up a specific process
2498 * @p: The process to be woken up.
2499 *
2500 * Attempt to wake up the nominated process and move it to the set of runnable
2501 * processes. Returns 1 if the process was woken up, 0 if it was already
2502 * running.
2503 *
2504 * It may be assumed that this function implies a write memory barrier before
2505 * changing the task state if and only if any tasks are woken up.
2506 */
2507 int wake_up_process(struct task_struct *p)
2508 {
2509 return try_to_wake_up(p, TASK_ALL, 0);
2510 }
2511 EXPORT_SYMBOL(wake_up_process);
2512
2513 int wake_up_state(struct task_struct *p, unsigned int state)
2514 {
2515 return try_to_wake_up(p, state, 0);
2516 }
2517
2518 /*
2519 * Perform scheduler related setup for a newly forked process p.
2520 * p is forked by current.
2521 *
2522 * __sched_fork() is basic setup used by init_idle() too:
2523 */
2524 static void __sched_fork(struct task_struct *p)
2525 {
2526 p->se.exec_start = 0;
2527 p->se.sum_exec_runtime = 0;
2528 p->se.prev_sum_exec_runtime = 0;
2529 p->se.nr_migrations = 0;
2530 p->se.last_wakeup = 0;
2531 p->se.avg_overlap = 0;
2532 p->se.start_runtime = 0;
2533 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
2534
2535 #ifdef CONFIG_SCHEDSTATS
2536 p->se.wait_start = 0;
2537 p->se.wait_max = 0;
2538 p->se.wait_count = 0;
2539 p->se.wait_sum = 0;
2540
2541 p->se.sleep_start = 0;
2542 p->se.sleep_max = 0;
2543 p->se.sum_sleep_runtime = 0;
2544
2545 p->se.block_start = 0;
2546 p->se.block_max = 0;
2547 p->se.exec_max = 0;
2548 p->se.slice_max = 0;
2549
2550 p->se.nr_migrations_cold = 0;
2551 p->se.nr_failed_migrations_affine = 0;
2552 p->se.nr_failed_migrations_running = 0;
2553 p->se.nr_failed_migrations_hot = 0;
2554 p->se.nr_forced_migrations = 0;
2555
2556 p->se.nr_wakeups = 0;
2557 p->se.nr_wakeups_sync = 0;
2558 p->se.nr_wakeups_migrate = 0;
2559 p->se.nr_wakeups_local = 0;
2560 p->se.nr_wakeups_remote = 0;
2561 p->se.nr_wakeups_affine = 0;
2562 p->se.nr_wakeups_affine_attempts = 0;
2563 p->se.nr_wakeups_passive = 0;
2564 p->se.nr_wakeups_idle = 0;
2565
2566 #endif
2567
2568 INIT_LIST_HEAD(&p->rt.run_list);
2569 p->se.on_rq = 0;
2570 INIT_LIST_HEAD(&p->se.group_node);
2571
2572 #ifdef CONFIG_PREEMPT_NOTIFIERS
2573 INIT_HLIST_HEAD(&p->preempt_notifiers);
2574 #endif
2575 }
2576
2577 /*
2578 * fork()/clone()-time setup:
2579 */
2580 void sched_fork(struct task_struct *p, int clone_flags)
2581 {
2582 int cpu = get_cpu();
2583
2584 __sched_fork(p);
2585 /*
2586 * We mark the process as waking here. This guarantees that
2587 * nobody will actually run it, and a signal or other external
2588 * event cannot wake it up and insert it on the runqueue either.
2589 */
2590 p->state = TASK_WAKING;
2591
2592 /*
2593 * Revert to default priority/policy on fork if requested.
2594 */
2595 if (unlikely(p->sched_reset_on_fork)) {
2596 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2597 p->policy = SCHED_NORMAL;
2598 p->normal_prio = p->static_prio;
2599 }
2600
2601 if (PRIO_TO_NICE(p->static_prio) < 0) {
2602 p->static_prio = NICE_TO_PRIO(0);
2603 p->normal_prio = p->static_prio;
2604 set_load_weight(p);
2605 }
2606
2607 /*
2608 * We don't need the reset flag anymore after the fork. It has
2609 * fulfilled its duty:
2610 */
2611 p->sched_reset_on_fork = 0;
2612 }
2613
2614 /*
2615 * Make sure we do not leak PI boosting priority to the child.
2616 */
2617 p->prio = current->normal_prio;
2618
2619 if (!rt_prio(p->prio))
2620 p->sched_class = &fair_sched_class;
2621
2622 if (p->sched_class->task_fork)
2623 p->sched_class->task_fork(p);
2624
2625 set_task_cpu(p, cpu);
2626
2627 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2628 if (likely(sched_info_on()))
2629 memset(&p->sched_info, 0, sizeof(p->sched_info));
2630 #endif
2631 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2632 p->oncpu = 0;
2633 #endif
2634 #ifdef CONFIG_PREEMPT
2635 /* Want to start with kernel preemption disabled. */
2636 task_thread_info(p)->preempt_count = 1;
2637 #endif
2638 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2639
2640 put_cpu();
2641 }
2642
2643 /*
2644 * wake_up_new_task - wake up a newly created task for the first time.
2645 *
2646 * This function will do some initial scheduler statistics housekeeping
2647 * that must be done for every newly created context, then puts the task
2648 * on the runqueue and wakes it.
2649 */
2650 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2651 {
2652 unsigned long flags;
2653 struct rq *rq;
2654 int cpu __maybe_unused = get_cpu();
2655
2656 #ifdef CONFIG_SMP
2657 /*
2658 * Fork balancing, do it here and not earlier because:
2659 * - cpus_allowed can change in the fork path
2660 * - any previously selected cpu might disappear through hotplug
2661 *
2662 * We still have TASK_WAKING but PF_STARTING is gone now, meaning
2663 * ->cpus_allowed is stable, we have preemption disabled, meaning
2664 * cpu_online_mask is stable.
2665 */
2666 cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
2667 set_task_cpu(p, cpu);
2668 #endif
2669
2670 /*
2671 * Since the task is not on the rq and we still have TASK_WAKING set
2672 * nobody else will migrate this task.
2673 */
2674 rq = cpu_rq(cpu);
2675 raw_spin_lock_irqsave(&rq->lock, flags);
2676
2677 BUG_ON(p->state != TASK_WAKING);
2678 p->state = TASK_RUNNING;
2679 update_rq_clock(rq);
2680 activate_task(rq, p, 0);
2681 trace_sched_wakeup_new(rq, p, 1);
2682 check_preempt_curr(rq, p, WF_FORK);
2683 #ifdef CONFIG_SMP
2684 if (p->sched_class->task_woken)
2685 p->sched_class->task_woken(rq, p);
2686 #endif
2687 task_rq_unlock(rq, &flags);
2688 put_cpu();
2689 }
2690
2691 #ifdef CONFIG_PREEMPT_NOTIFIERS
2692
2693 /**
2694 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2695 * @notifier: notifier struct to register
2696 */
2697 void preempt_notifier_register(struct preempt_notifier *notifier)
2698 {
2699 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2700 }
2701 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2702
2703 /**
2704 * preempt_notifier_unregister - no longer interested in preemption notifications
2705 * @notifier: notifier struct to unregister
2706 *
2707 * This is safe to call from within a preemption notifier.
2708 */
2709 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2710 {
2711 hlist_del(&notifier->link);
2712 }
2713 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2714
2715 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2716 {
2717 struct preempt_notifier *notifier;
2718 struct hlist_node *node;
2719
2720 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2721 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2722 }
2723
2724 static void
2725 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2726 struct task_struct *next)
2727 {
2728 struct preempt_notifier *notifier;
2729 struct hlist_node *node;
2730
2731 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2732 notifier->ops->sched_out(notifier, next);
2733 }
2734
2735 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2736
2737 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2738 {
2739 }
2740
2741 static void
2742 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2743 struct task_struct *next)
2744 {
2745 }
2746
2747 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2748
2749 /**
2750 * prepare_task_switch - prepare to switch tasks
2751 * @rq: the runqueue preparing to switch
2752 * @prev: the current task that is being switched out
2753 * @next: the task we are going to switch to.
2754 *
2755 * This is called with the rq lock held and interrupts off. It must
2756 * be paired with a subsequent finish_task_switch after the context
2757 * switch.
2758 *
2759 * prepare_task_switch sets up locking and calls architecture specific
2760 * hooks.
2761 */
2762 static inline void
2763 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2764 struct task_struct *next)
2765 {
2766 fire_sched_out_preempt_notifiers(prev, next);
2767 prepare_lock_switch(rq, next);
2768 prepare_arch_switch(next);
2769 }
2770
2771 /**
2772 * finish_task_switch - clean up after a task-switch
2773 * @rq: runqueue associated with task-switch
2774 * @prev: the thread we just switched away from.
2775 *
2776 * finish_task_switch must be called after the context switch, paired
2777 * with a prepare_task_switch call before the context switch.
2778 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2779 * and do any other architecture-specific cleanup actions.
2780 *
2781 * Note that we may have delayed dropping an mm in context_switch(). If
2782 * so, we finish that here outside of the runqueue lock. (Doing it
2783 * with the lock held can cause deadlocks; see schedule() for
2784 * details.)
2785 */
2786 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2787 __releases(rq->lock)
2788 {
2789 struct mm_struct *mm = rq->prev_mm;
2790 long prev_state;
2791
2792 rq->prev_mm = NULL;
2793
2794 /*
2795 * A task struct has one reference for the use as "current".
2796 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2797 * schedule one last time. The schedule call will never return, and
2798 * the scheduled task must drop that reference.
2799 * The test for TASK_DEAD must occur while the runqueue locks are
2800 * still held, otherwise prev could be scheduled on another cpu, die
2801 * there before we look at prev->state, and then the reference would
2802 * be dropped twice.
2803 * Manfred Spraul <manfred@colorfullife.com>
2804 */
2805 prev_state = prev->state;
2806 finish_arch_switch(prev);
2807 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2808 local_irq_disable();
2809 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2810 perf_event_task_sched_in(current);
2811 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2812 local_irq_enable();
2813 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2814 finish_lock_switch(rq, prev);
2815
2816 fire_sched_in_preempt_notifiers(current);
2817 if (mm)
2818 mmdrop(mm);
2819 if (unlikely(prev_state == TASK_DEAD)) {
2820 /*
2821 * Remove function-return probe instances associated with this
2822 * task and put them back on the free list.
2823 */
2824 kprobe_flush_task(prev);
2825 put_task_struct(prev);
2826 }
2827 }
2828
2829 #ifdef CONFIG_SMP
2830
2831 /* assumes rq->lock is held */
2832 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2833 {
2834 if (prev->sched_class->pre_schedule)
2835 prev->sched_class->pre_schedule(rq, prev);
2836 }
2837
2838 /* rq->lock is NOT held, but preemption is disabled */
2839 static inline void post_schedule(struct rq *rq)
2840 {
2841 if (rq->post_schedule) {
2842 unsigned long flags;
2843
2844 raw_spin_lock_irqsave(&rq->lock, flags);
2845 if (rq->curr->sched_class->post_schedule)
2846 rq->curr->sched_class->post_schedule(rq);
2847 raw_spin_unlock_irqrestore(&rq->lock, flags);
2848
2849 rq->post_schedule = 0;
2850 }
2851 }
2852
2853 #else
2854
2855 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2856 {
2857 }
2858
2859 static inline void post_schedule(struct rq *rq)
2860 {
2861 }
2862
2863 #endif
2864
2865 /**
2866 * schedule_tail - first thing a freshly forked thread must call.
2867 * @prev: the thread we just switched away from.
2868 */
2869 asmlinkage void schedule_tail(struct task_struct *prev)
2870 __releases(rq->lock)
2871 {
2872 struct rq *rq = this_rq();
2873
2874 finish_task_switch(rq, prev);
2875
2876 /*
2877 * FIXME: do we need to worry about rq being invalidated by the
2878 * task_switch?
2879 */
2880 post_schedule(rq);
2881
2882 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2883 /* In this case, finish_task_switch does not reenable preemption */
2884 preempt_enable();
2885 #endif
2886 if (current->set_child_tid)
2887 put_user(task_pid_vnr(current), current->set_child_tid);
2888 }
2889
2890 /*
2891 * context_switch - switch to the new MM and the new
2892 * thread's register state.
2893 */
2894 static inline void
2895 context_switch(struct rq *rq, struct task_struct *prev,
2896 struct task_struct *next)
2897 {
2898 struct mm_struct *mm, *oldmm;
2899
2900 prepare_task_switch(rq, prev, next);
2901 trace_sched_switch(rq, prev, next);
2902 mm = next->mm;
2903 oldmm = prev->active_mm;
2904 /*
2905 * For paravirt, this is coupled with an exit in switch_to to
2906 * combine the page table reload and the switch backend into
2907 * one hypercall.
2908 */
2909 arch_start_context_switch(prev);
2910
2911 if (likely(!mm)) {
2912 next->active_mm = oldmm;
2913 atomic_inc(&oldmm->mm_count);
2914 enter_lazy_tlb(oldmm, next);
2915 } else
2916 switch_mm(oldmm, mm, next);
2917
2918 if (likely(!prev->mm)) {
2919 prev->active_mm = NULL;
2920 rq->prev_mm = oldmm;
2921 }
2922 /*
2923 * Since the runqueue lock will be released by the next
2924 * task (which is an invalid locking op but in the case
2925 * of the scheduler it's an obvious special-case), so we
2926 * do an early lockdep release here:
2927 */
2928 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2929 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2930 #endif
2931
2932 /* Here we just switch the register state and the stack. */
2933 switch_to(prev, next, prev);
2934
2935 barrier();
2936 /*
2937 * this_rq must be evaluated again because prev may have moved
2938 * CPUs since it called schedule(), thus the 'rq' on its stack
2939 * frame will be invalid.
2940 */
2941 finish_task_switch(this_rq(), prev);
2942 }
2943
2944 /*
2945 * nr_running, nr_uninterruptible and nr_context_switches:
2946 *
2947 * externally visible scheduler statistics: current number of runnable
2948 * threads, current number of uninterruptible-sleeping threads, total
2949 * number of context switches performed since bootup.
2950 */
2951 unsigned long nr_running(void)
2952 {
2953 unsigned long i, sum = 0;
2954
2955 for_each_online_cpu(i)
2956 sum += cpu_rq(i)->nr_running;
2957
2958 return sum;
2959 }
2960
2961 unsigned long nr_uninterruptible(void)
2962 {
2963 unsigned long i, sum = 0;
2964
2965 for_each_possible_cpu(i)
2966 sum += cpu_rq(i)->nr_uninterruptible;
2967
2968 /*
2969 * Since we read the counters lockless, it might be slightly
2970 * inaccurate. Do not allow it to go below zero though:
2971 */
2972 if (unlikely((long)sum < 0))
2973 sum = 0;
2974
2975 return sum;
2976 }
2977
2978 unsigned long long nr_context_switches(void)
2979 {
2980 int i;
2981 unsigned long long sum = 0;
2982
2983 for_each_possible_cpu(i)
2984 sum += cpu_rq(i)->nr_switches;
2985
2986 return sum;
2987 }
2988
2989 unsigned long nr_iowait(void)
2990 {
2991 unsigned long i, sum = 0;
2992
2993 for_each_possible_cpu(i)
2994 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2995
2996 return sum;
2997 }
2998
2999 unsigned long nr_iowait_cpu(void)
3000 {
3001 struct rq *this = this_rq();
3002 return atomic_read(&this->nr_iowait);
3003 }
3004
3005 unsigned long this_cpu_load(void)
3006 {
3007 struct rq *this = this_rq();
3008 return this->cpu_load[0];
3009 }
3010
3011
3012 /* Variables and functions for calc_load */
3013 static atomic_long_t calc_load_tasks;
3014 static unsigned long calc_load_update;
3015 unsigned long avenrun[3];
3016 EXPORT_SYMBOL(avenrun);
3017
3018 /**
3019 * get_avenrun - get the load average array
3020 * @loads: pointer to dest load array
3021 * @offset: offset to add
3022 * @shift: shift count to shift the result left
3023 *
3024 * These values are estimates at best, so no need for locking.
3025 */
3026 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3027 {
3028 loads[0] = (avenrun[0] + offset) << shift;
3029 loads[1] = (avenrun[1] + offset) << shift;
3030 loads[2] = (avenrun[2] + offset) << shift;
3031 }
3032
3033 static unsigned long
3034 calc_load(unsigned long load, unsigned long exp, unsigned long active)
3035 {
3036 load *= exp;
3037 load += active * (FIXED_1 - exp);
3038 return load >> FSHIFT;
3039 }
3040
3041 /*
3042 * calc_load - update the avenrun load estimates 10 ticks after the
3043 * CPUs have updated calc_load_tasks.
3044 */
3045 void calc_global_load(void)
3046 {
3047 unsigned long upd = calc_load_update + 10;
3048 long active;
3049
3050 if (time_before(jiffies, upd))
3051 return;
3052
3053 active = atomic_long_read(&calc_load_tasks);
3054 active = active > 0 ? active * FIXED_1 : 0;
3055
3056 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3057 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3058 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3059
3060 calc_load_update += LOAD_FREQ;
3061 }
3062
3063 /*
3064 * Either called from update_cpu_load() or from a cpu going idle
3065 */
3066 static void calc_load_account_active(struct rq *this_rq)
3067 {
3068 long nr_active, delta;
3069
3070 nr_active = this_rq->nr_running;
3071 nr_active += (long) this_rq->nr_uninterruptible;
3072
3073 if (nr_active != this_rq->calc_load_active) {
3074 delta = nr_active - this_rq->calc_load_active;
3075 this_rq->calc_load_active = nr_active;
3076 atomic_long_add(delta, &calc_load_tasks);
3077 }
3078 }
3079
3080 /*
3081 * Update rq->cpu_load[] statistics. This function is usually called every
3082 * scheduler tick (TICK_NSEC).
3083 */
3084 static void update_cpu_load(struct rq *this_rq)
3085 {
3086 unsigned long this_load = this_rq->load.weight;
3087 int i, scale;
3088
3089 this_rq->nr_load_updates++;
3090
3091 /* Update our load: */
3092 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3093 unsigned long old_load, new_load;
3094
3095 /* scale is effectively 1 << i now, and >> i divides by scale */
3096
3097 old_load = this_rq->cpu_load[i];
3098 new_load = this_load;
3099 /*
3100 * Round up the averaging division if load is increasing. This
3101 * prevents us from getting stuck on 9 if the load is 10, for
3102 * example.
3103 */
3104 if (new_load > old_load)
3105 new_load += scale-1;
3106 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3107 }
3108
3109 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3110 this_rq->calc_load_update += LOAD_FREQ;
3111 calc_load_account_active(this_rq);
3112 }
3113 }
3114
3115 #ifdef CONFIG_SMP
3116
3117 /*
3118 * sched_exec - execve() is a valuable balancing opportunity, because at
3119 * this point the task has the smallest effective memory and cache footprint.
3120 */
3121 void sched_exec(void)
3122 {
3123 struct task_struct *p = current;
3124 struct migration_req req;
3125 int dest_cpu, this_cpu;
3126 unsigned long flags;
3127 struct rq *rq;
3128
3129 again:
3130 this_cpu = get_cpu();
3131 dest_cpu = select_task_rq(p, SD_BALANCE_EXEC, 0);
3132 if (dest_cpu == this_cpu) {
3133 put_cpu();
3134 return;
3135 }
3136
3137 rq = task_rq_lock(p, &flags);
3138 put_cpu();
3139
3140 /*
3141 * select_task_rq() can race against ->cpus_allowed
3142 */
3143 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3144 || unlikely(!cpu_active(dest_cpu))) {
3145 task_rq_unlock(rq, &flags);
3146 goto again;
3147 }
3148
3149 /* force the process onto the specified CPU */
3150 if (migrate_task(p, dest_cpu, &req)) {
3151 /* Need to wait for migration thread (might exit: take ref). */
3152 struct task_struct *mt = rq->migration_thread;
3153
3154 get_task_struct(mt);
3155 task_rq_unlock(rq, &flags);
3156 wake_up_process(mt);
3157 put_task_struct(mt);
3158 wait_for_completion(&req.done);
3159
3160 return;
3161 }
3162 task_rq_unlock(rq, &flags);
3163 }
3164
3165 #endif
3166
3167 DEFINE_PER_CPU(struct kernel_stat, kstat);
3168
3169 EXPORT_PER_CPU_SYMBOL(kstat);
3170
3171 /*
3172 * Return any ns on the sched_clock that have not yet been accounted in
3173 * @p in case that task is currently running.
3174 *
3175 * Called with task_rq_lock() held on @rq.
3176 */
3177 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3178 {
3179 u64 ns = 0;
3180
3181 if (task_current(rq, p)) {
3182 update_rq_clock(rq);
3183 ns = rq->clock - p->se.exec_start;
3184 if ((s64)ns < 0)
3185 ns = 0;
3186 }
3187
3188 return ns;
3189 }
3190
3191 unsigned long long task_delta_exec(struct task_struct *p)
3192 {
3193 unsigned long flags;
3194 struct rq *rq;
3195 u64 ns = 0;
3196
3197 rq = task_rq_lock(p, &flags);
3198 ns = do_task_delta_exec(p, rq);
3199 task_rq_unlock(rq, &flags);
3200
3201 return ns;
3202 }
3203
3204 /*
3205 * Return accounted runtime for the task.
3206 * In case the task is currently running, return the runtime plus current's
3207 * pending runtime that have not been accounted yet.
3208 */
3209 unsigned long long task_sched_runtime(struct task_struct *p)
3210 {
3211 unsigned long flags;
3212 struct rq *rq;
3213 u64 ns = 0;
3214
3215 rq = task_rq_lock(p, &flags);
3216 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3217 task_rq_unlock(rq, &flags);
3218
3219 return ns;
3220 }
3221
3222 /*
3223 * Return sum_exec_runtime for the thread group.
3224 * In case the task is currently running, return the sum plus current's
3225 * pending runtime that have not been accounted yet.
3226 *
3227 * Note that the thread group might have other running tasks as well,
3228 * so the return value not includes other pending runtime that other
3229 * running tasks might have.
3230 */
3231 unsigned long long thread_group_sched_runtime(struct task_struct *p)
3232 {
3233 struct task_cputime totals;
3234 unsigned long flags;
3235 struct rq *rq;
3236 u64 ns;
3237
3238 rq = task_rq_lock(p, &flags);
3239 thread_group_cputime(p, &totals);
3240 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3241 task_rq_unlock(rq, &flags);
3242
3243 return ns;
3244 }
3245
3246 /*
3247 * Account user cpu time to a process.
3248 * @p: the process that the cpu time gets accounted to
3249 * @cputime: the cpu time spent in user space since the last update
3250 * @cputime_scaled: cputime scaled by cpu frequency
3251 */
3252 void account_user_time(struct task_struct *p, cputime_t cputime,
3253 cputime_t cputime_scaled)
3254 {
3255 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3256 cputime64_t tmp;
3257
3258 /* Add user time to process. */
3259 p->utime = cputime_add(p->utime, cputime);
3260 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3261 account_group_user_time(p, cputime);
3262
3263 /* Add user time to cpustat. */
3264 tmp = cputime_to_cputime64(cputime);
3265 if (TASK_NICE(p) > 0)
3266 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3267 else
3268 cpustat->user = cputime64_add(cpustat->user, tmp);
3269
3270 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3271 /* Account for user time used */
3272 acct_update_integrals(p);
3273 }
3274
3275 /*
3276 * Account guest cpu time to a process.
3277 * @p: the process that the cpu time gets accounted to
3278 * @cputime: the cpu time spent in virtual machine since the last update
3279 * @cputime_scaled: cputime scaled by cpu frequency
3280 */
3281 static void account_guest_time(struct task_struct *p, cputime_t cputime,
3282 cputime_t cputime_scaled)
3283 {
3284 cputime64_t tmp;
3285 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3286
3287 tmp = cputime_to_cputime64(cputime);
3288
3289 /* Add guest time to process. */
3290 p->utime = cputime_add(p->utime, cputime);
3291 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3292 account_group_user_time(p, cputime);
3293 p->gtime = cputime_add(p->gtime, cputime);
3294
3295 /* Add guest time to cpustat. */
3296 if (TASK_NICE(p) > 0) {
3297 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3298 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3299 } else {
3300 cpustat->user = cputime64_add(cpustat->user, tmp);
3301 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3302 }
3303 }
3304
3305 /*
3306 * Account system cpu time to a process.
3307 * @p: the process that the cpu time gets accounted to
3308 * @hardirq_offset: the offset to subtract from hardirq_count()
3309 * @cputime: the cpu time spent in kernel space since the last update
3310 * @cputime_scaled: cputime scaled by cpu frequency
3311 */
3312 void account_system_time(struct task_struct *p, int hardirq_offset,
3313 cputime_t cputime, cputime_t cputime_scaled)
3314 {
3315 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3316 cputime64_t tmp;
3317
3318 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3319 account_guest_time(p, cputime, cputime_scaled);
3320 return;
3321 }
3322
3323 /* Add system time to process. */
3324 p->stime = cputime_add(p->stime, cputime);
3325 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3326 account_group_system_time(p, cputime);
3327
3328 /* Add system time to cpustat. */
3329 tmp = cputime_to_cputime64(cputime);
3330 if (hardirq_count() - hardirq_offset)
3331 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3332 else if (softirq_count())
3333 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3334 else
3335 cpustat->system = cputime64_add(cpustat->system, tmp);
3336
3337 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3338
3339 /* Account for system time used */
3340 acct_update_integrals(p);
3341 }
3342
3343 /*
3344 * Account for involuntary wait time.
3345 * @steal: the cpu time spent in involuntary wait
3346 */
3347 void account_steal_time(cputime_t cputime)
3348 {
3349 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3350 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3351
3352 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3353 }
3354
3355 /*
3356 * Account for idle time.
3357 * @cputime: the cpu time spent in idle wait
3358 */
3359 void account_idle_time(cputime_t cputime)
3360 {
3361 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3362 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3363 struct rq *rq = this_rq();
3364
3365 if (atomic_read(&rq->nr_iowait) > 0)
3366 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3367 else
3368 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
3369 }
3370
3371 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
3372
3373 /*
3374 * Account a single tick of cpu time.
3375 * @p: the process that the cpu time gets accounted to
3376 * @user_tick: indicates if the tick is a user or a system tick
3377 */
3378 void account_process_tick(struct task_struct *p, int user_tick)
3379 {
3380 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3381 struct rq *rq = this_rq();
3382
3383 if (user_tick)
3384 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3385 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3386 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3387 one_jiffy_scaled);
3388 else
3389 account_idle_time(cputime_one_jiffy);
3390 }
3391
3392 /*
3393 * Account multiple ticks of steal time.
3394 * @p: the process from which the cpu time has been stolen
3395 * @ticks: number of stolen ticks
3396 */
3397 void account_steal_ticks(unsigned long ticks)
3398 {
3399 account_steal_time(jiffies_to_cputime(ticks));
3400 }
3401
3402 /*
3403 * Account multiple ticks of idle time.
3404 * @ticks: number of stolen ticks
3405 */
3406 void account_idle_ticks(unsigned long ticks)
3407 {
3408 account_idle_time(jiffies_to_cputime(ticks));
3409 }
3410
3411 #endif
3412
3413 /*
3414 * Use precise platform statistics if available:
3415 */
3416 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
3417 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3418 {
3419 *ut = p->utime;
3420 *st = p->stime;
3421 }
3422
3423 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3424 {
3425 struct task_cputime cputime;
3426
3427 thread_group_cputime(p, &cputime);
3428
3429 *ut = cputime.utime;
3430 *st = cputime.stime;
3431 }
3432 #else
3433
3434 #ifndef nsecs_to_cputime
3435 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
3436 #endif
3437
3438 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3439 {
3440 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
3441
3442 /*
3443 * Use CFS's precise accounting:
3444 */
3445 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3446
3447 if (total) {
3448 u64 temp;
3449
3450 temp = (u64)(rtime * utime);
3451 do_div(temp, total);
3452 utime = (cputime_t)temp;
3453 } else
3454 utime = rtime;
3455
3456 /*
3457 * Compare with previous values, to keep monotonicity:
3458 */
3459 p->prev_utime = max(p->prev_utime, utime);
3460 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
3461
3462 *ut = p->prev_utime;
3463 *st = p->prev_stime;
3464 }
3465
3466 /*
3467 * Must be called with siglock held.
3468 */
3469 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3470 {
3471 struct signal_struct *sig = p->signal;
3472 struct task_cputime cputime;
3473 cputime_t rtime, utime, total;
3474
3475 thread_group_cputime(p, &cputime);
3476
3477 total = cputime_add(cputime.utime, cputime.stime);
3478 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3479
3480 if (total) {
3481 u64 temp;
3482
3483 temp = (u64)(rtime * cputime.utime);
3484 do_div(temp, total);
3485 utime = (cputime_t)temp;
3486 } else
3487 utime = rtime;
3488
3489 sig->prev_utime = max(sig->prev_utime, utime);
3490 sig->prev_stime = max(sig->prev_stime,
3491 cputime_sub(rtime, sig->prev_utime));
3492
3493 *ut = sig->prev_utime;
3494 *st = sig->prev_stime;
3495 }
3496 #endif
3497
3498 /*
3499 * This function gets called by the timer code, with HZ frequency.
3500 * We call it with interrupts disabled.
3501 *
3502 * It also gets called by the fork code, when changing the parent's
3503 * timeslices.
3504 */
3505 void scheduler_tick(void)
3506 {
3507 int cpu = smp_processor_id();
3508 struct rq *rq = cpu_rq(cpu);
3509 struct task_struct *curr = rq->curr;
3510
3511 sched_clock_tick();
3512
3513 raw_spin_lock(&rq->lock);
3514 update_rq_clock(rq);
3515 update_cpu_load(rq);
3516 curr->sched_class->task_tick(rq, curr, 0);
3517 raw_spin_unlock(&rq->lock);
3518
3519 perf_event_task_tick(curr);
3520
3521 #ifdef CONFIG_SMP
3522 rq->idle_at_tick = idle_cpu(cpu);
3523 trigger_load_balance(rq, cpu);
3524 #endif
3525 }
3526
3527 notrace unsigned long get_parent_ip(unsigned long addr)
3528 {
3529 if (in_lock_functions(addr)) {
3530 addr = CALLER_ADDR2;
3531 if (in_lock_functions(addr))
3532 addr = CALLER_ADDR3;
3533 }
3534 return addr;
3535 }
3536
3537 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3538 defined(CONFIG_PREEMPT_TRACER))
3539
3540 void __kprobes add_preempt_count(int val)
3541 {
3542 #ifdef CONFIG_DEBUG_PREEMPT
3543 /*
3544 * Underflow?
3545 */
3546 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3547 return;
3548 #endif
3549 preempt_count() += val;
3550 #ifdef CONFIG_DEBUG_PREEMPT
3551 /*
3552 * Spinlock count overflowing soon?
3553 */
3554 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3555 PREEMPT_MASK - 10);
3556 #endif
3557 if (preempt_count() == val)
3558 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3559 }
3560 EXPORT_SYMBOL(add_preempt_count);
3561
3562 void __kprobes sub_preempt_count(int val)
3563 {
3564 #ifdef CONFIG_DEBUG_PREEMPT
3565 /*
3566 * Underflow?
3567 */
3568 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3569 return;
3570 /*
3571 * Is the spinlock portion underflowing?
3572 */
3573 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3574 !(preempt_count() & PREEMPT_MASK)))
3575 return;
3576 #endif
3577
3578 if (preempt_count() == val)
3579 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3580 preempt_count() -= val;
3581 }
3582 EXPORT_SYMBOL(sub_preempt_count);
3583
3584 #endif
3585
3586 /*
3587 * Print scheduling while atomic bug:
3588 */
3589 static noinline void __schedule_bug(struct task_struct *prev)
3590 {
3591 struct pt_regs *regs = get_irq_regs();
3592
3593 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3594 prev->comm, prev->pid, preempt_count());
3595
3596 debug_show_held_locks(prev);
3597 print_modules();
3598 if (irqs_disabled())
3599 print_irqtrace_events(prev);
3600
3601 if (regs)
3602 show_regs(regs);
3603 else
3604 dump_stack();
3605 }
3606
3607 /*
3608 * Various schedule()-time debugging checks and statistics:
3609 */
3610 static inline void schedule_debug(struct task_struct *prev)
3611 {
3612 /*
3613 * Test if we are atomic. Since do_exit() needs to call into
3614 * schedule() atomically, we ignore that path for now.
3615 * Otherwise, whine if we are scheduling when we should not be.
3616 */
3617 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
3618 __schedule_bug(prev);
3619
3620 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3621
3622 schedstat_inc(this_rq(), sched_count);
3623 #ifdef CONFIG_SCHEDSTATS
3624 if (unlikely(prev->lock_depth >= 0)) {
3625 schedstat_inc(this_rq(), bkl_count);
3626 schedstat_inc(prev, sched_info.bkl_count);
3627 }
3628 #endif
3629 }
3630
3631 static void put_prev_task(struct rq *rq, struct task_struct *prev)
3632 {
3633 if (prev->state == TASK_RUNNING) {
3634 u64 runtime = prev->se.sum_exec_runtime;
3635
3636 runtime -= prev->se.prev_sum_exec_runtime;
3637 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
3638
3639 /*
3640 * In order to avoid avg_overlap growing stale when we are
3641 * indeed overlapping and hence not getting put to sleep, grow
3642 * the avg_overlap on preemption.
3643 *
3644 * We use the average preemption runtime because that
3645 * correlates to the amount of cache footprint a task can
3646 * build up.
3647 */
3648 update_avg(&prev->se.avg_overlap, runtime);
3649 }
3650 prev->sched_class->put_prev_task(rq, prev);
3651 }
3652
3653 /*
3654 * Pick up the highest-prio task:
3655 */
3656 static inline struct task_struct *
3657 pick_next_task(struct rq *rq)
3658 {
3659 const struct sched_class *class;
3660 struct task_struct *p;
3661
3662 /*
3663 * Optimization: we know that if all tasks are in
3664 * the fair class we can call that function directly:
3665 */
3666 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3667 p = fair_sched_class.pick_next_task(rq);
3668 if (likely(p))
3669 return p;
3670 }
3671
3672 class = sched_class_highest;
3673 for ( ; ; ) {
3674 p = class->pick_next_task(rq);
3675 if (p)
3676 return p;
3677 /*
3678 * Will never be NULL as the idle class always
3679 * returns a non-NULL p:
3680 */
3681 class = class->next;
3682 }
3683 }
3684
3685 /*
3686 * schedule() is the main scheduler function.
3687 */
3688 asmlinkage void __sched schedule(void)
3689 {
3690 struct task_struct *prev, *next;
3691 unsigned long *switch_count;
3692 struct rq *rq;
3693 int cpu;
3694
3695 need_resched:
3696 preempt_disable();
3697 cpu = smp_processor_id();
3698 rq = cpu_rq(cpu);
3699 rcu_sched_qs(cpu);
3700 prev = rq->curr;
3701 switch_count = &prev->nivcsw;
3702
3703 release_kernel_lock(prev);
3704 need_resched_nonpreemptible:
3705
3706 schedule_debug(prev);
3707
3708 if (sched_feat(HRTICK))
3709 hrtick_clear(rq);
3710
3711 raw_spin_lock_irq(&rq->lock);
3712 update_rq_clock(rq);
3713 clear_tsk_need_resched(prev);
3714
3715 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3716 if (unlikely(signal_pending_state(prev->state, prev)))
3717 prev->state = TASK_RUNNING;
3718 else
3719 deactivate_task(rq, prev, 1);
3720 switch_count = &prev->nvcsw;
3721 }
3722
3723 pre_schedule(rq, prev);
3724
3725 if (unlikely(!rq->nr_running))
3726 idle_balance(cpu, rq);
3727
3728 put_prev_task(rq, prev);
3729 next = pick_next_task(rq);
3730
3731 if (likely(prev != next)) {
3732 sched_info_switch(prev, next);
3733 perf_event_task_sched_out(prev, next);
3734
3735 rq->nr_switches++;
3736 rq->curr = next;
3737 ++*switch_count;
3738
3739 context_switch(rq, prev, next); /* unlocks the rq */
3740 /*
3741 * the context switch might have flipped the stack from under
3742 * us, hence refresh the local variables.
3743 */
3744 cpu = smp_processor_id();
3745 rq = cpu_rq(cpu);
3746 } else
3747 raw_spin_unlock_irq(&rq->lock);
3748
3749 post_schedule(rq);
3750
3751 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3752 prev = rq->curr;
3753 switch_count = &prev->nivcsw;
3754 goto need_resched_nonpreemptible;
3755 }
3756
3757 preempt_enable_no_resched();
3758 if (need_resched())
3759 goto need_resched;
3760 }
3761 EXPORT_SYMBOL(schedule);
3762
3763 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3764 /*
3765 * Look out! "owner" is an entirely speculative pointer
3766 * access and not reliable.
3767 */
3768 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
3769 {
3770 unsigned int cpu;
3771 struct rq *rq;
3772
3773 if (!sched_feat(OWNER_SPIN))
3774 return 0;
3775
3776 #ifdef CONFIG_DEBUG_PAGEALLOC
3777 /*
3778 * Need to access the cpu field knowing that
3779 * DEBUG_PAGEALLOC could have unmapped it if
3780 * the mutex owner just released it and exited.
3781 */
3782 if (probe_kernel_address(&owner->cpu, cpu))
3783 goto out;
3784 #else
3785 cpu = owner->cpu;
3786 #endif
3787
3788 /*
3789 * Even if the access succeeded (likely case),
3790 * the cpu field may no longer be valid.
3791 */
3792 if (cpu >= nr_cpumask_bits)
3793 goto out;
3794
3795 /*
3796 * We need to validate that we can do a
3797 * get_cpu() and that we have the percpu area.
3798 */
3799 if (!cpu_online(cpu))
3800 goto out;
3801
3802 rq = cpu_rq(cpu);
3803
3804 for (;;) {
3805 /*
3806 * Owner changed, break to re-assess state.
3807 */
3808 if (lock->owner != owner)
3809 break;
3810
3811 /*
3812 * Is that owner really running on that cpu?
3813 */
3814 if (task_thread_info(rq->curr) != owner || need_resched())
3815 return 0;
3816
3817 cpu_relax();
3818 }
3819 out:
3820 return 1;
3821 }
3822 #endif
3823
3824 #ifdef CONFIG_PREEMPT
3825 /*
3826 * this is the entry point to schedule() from in-kernel preemption
3827 * off of preempt_enable. Kernel preemptions off return from interrupt
3828 * occur there and call schedule directly.
3829 */
3830 asmlinkage void __sched preempt_schedule(void)
3831 {
3832 struct thread_info *ti = current_thread_info();
3833
3834 /*
3835 * If there is a non-zero preempt_count or interrupts are disabled,
3836 * we do not want to preempt the current task. Just return..
3837 */
3838 if (likely(ti->preempt_count || irqs_disabled()))
3839 return;
3840
3841 do {
3842 add_preempt_count(PREEMPT_ACTIVE);
3843 schedule();
3844 sub_preempt_count(PREEMPT_ACTIVE);
3845
3846 /*
3847 * Check again in case we missed a preemption opportunity
3848 * between schedule and now.
3849 */
3850 barrier();
3851 } while (need_resched());
3852 }
3853 EXPORT_SYMBOL(preempt_schedule);
3854
3855 /*
3856 * this is the entry point to schedule() from kernel preemption
3857 * off of irq context.
3858 * Note, that this is called and return with irqs disabled. This will
3859 * protect us against recursive calling from irq.
3860 */
3861 asmlinkage void __sched preempt_schedule_irq(void)
3862 {
3863 struct thread_info *ti = current_thread_info();
3864
3865 /* Catch callers which need to be fixed */
3866 BUG_ON(ti->preempt_count || !irqs_disabled());
3867
3868 do {
3869 add_preempt_count(PREEMPT_ACTIVE);
3870 local_irq_enable();
3871 schedule();
3872 local_irq_disable();
3873 sub_preempt_count(PREEMPT_ACTIVE);
3874
3875 /*
3876 * Check again in case we missed a preemption opportunity
3877 * between schedule and now.
3878 */
3879 barrier();
3880 } while (need_resched());
3881 }
3882
3883 #endif /* CONFIG_PREEMPT */
3884
3885 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3886 void *key)
3887 {
3888 return try_to_wake_up(curr->private, mode, wake_flags);
3889 }
3890 EXPORT_SYMBOL(default_wake_function);
3891
3892 /*
3893 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3894 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3895 * number) then we wake all the non-exclusive tasks and one exclusive task.
3896 *
3897 * There are circumstances in which we can try to wake a task which has already
3898 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3899 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3900 */
3901 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3902 int nr_exclusive, int wake_flags, void *key)
3903 {
3904 wait_queue_t *curr, *next;
3905
3906 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3907 unsigned flags = curr->flags;
3908
3909 if (curr->func(curr, mode, wake_flags, key) &&
3910 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3911 break;
3912 }
3913 }
3914
3915 /**
3916 * __wake_up - wake up threads blocked on a waitqueue.
3917 * @q: the waitqueue
3918 * @mode: which threads
3919 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3920 * @key: is directly passed to the wakeup function
3921 *
3922 * It may be assumed that this function implies a write memory barrier before
3923 * changing the task state if and only if any tasks are woken up.
3924 */
3925 void __wake_up(wait_queue_head_t *q, unsigned int mode,
3926 int nr_exclusive, void *key)
3927 {
3928 unsigned long flags;
3929
3930 spin_lock_irqsave(&q->lock, flags);
3931 __wake_up_common(q, mode, nr_exclusive, 0, key);
3932 spin_unlock_irqrestore(&q->lock, flags);
3933 }
3934 EXPORT_SYMBOL(__wake_up);
3935
3936 /*
3937 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3938 */
3939 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3940 {
3941 __wake_up_common(q, mode, 1, 0, NULL);
3942 }
3943
3944 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3945 {
3946 __wake_up_common(q, mode, 1, 0, key);
3947 }
3948
3949 /**
3950 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3951 * @q: the waitqueue
3952 * @mode: which threads
3953 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3954 * @key: opaque value to be passed to wakeup targets
3955 *
3956 * The sync wakeup differs that the waker knows that it will schedule
3957 * away soon, so while the target thread will be woken up, it will not
3958 * be migrated to another CPU - ie. the two threads are 'synchronized'
3959 * with each other. This can prevent needless bouncing between CPUs.
3960 *
3961 * On UP it can prevent extra preemption.
3962 *
3963 * It may be assumed that this function implies a write memory barrier before
3964 * changing the task state if and only if any tasks are woken up.
3965 */
3966 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3967 int nr_exclusive, void *key)
3968 {
3969 unsigned long flags;
3970 int wake_flags = WF_SYNC;
3971
3972 if (unlikely(!q))
3973 return;
3974
3975 if (unlikely(!nr_exclusive))
3976 wake_flags = 0;
3977
3978 spin_lock_irqsave(&q->lock, flags);
3979 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3980 spin_unlock_irqrestore(&q->lock, flags);
3981 }
3982 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3983
3984 /*
3985 * __wake_up_sync - see __wake_up_sync_key()
3986 */
3987 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3988 {
3989 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3990 }
3991 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3992
3993 /**
3994 * complete: - signals a single thread waiting on this completion
3995 * @x: holds the state of this particular completion
3996 *
3997 * This will wake up a single thread waiting on this completion. Threads will be
3998 * awakened in the same order in which they were queued.
3999 *
4000 * See also complete_all(), wait_for_completion() and related routines.
4001 *
4002 * It may be assumed that this function implies a write memory barrier before
4003 * changing the task state if and only if any tasks are woken up.
4004 */
4005 void complete(struct completion *x)
4006 {
4007 unsigned long flags;
4008
4009 spin_lock_irqsave(&x->wait.lock, flags);
4010 x->done++;
4011 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4012 spin_unlock_irqrestore(&x->wait.lock, flags);
4013 }
4014 EXPORT_SYMBOL(complete);
4015
4016 /**
4017 * complete_all: - signals all threads waiting on this completion
4018 * @x: holds the state of this particular completion
4019 *
4020 * This will wake up all threads waiting on this particular completion event.
4021 *
4022 * It may be assumed that this function implies a write memory barrier before
4023 * changing the task state if and only if any tasks are woken up.
4024 */
4025 void complete_all(struct completion *x)
4026 {
4027 unsigned long flags;
4028
4029 spin_lock_irqsave(&x->wait.lock, flags);
4030 x->done += UINT_MAX/2;
4031 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4032 spin_unlock_irqrestore(&x->wait.lock, flags);
4033 }
4034 EXPORT_SYMBOL(complete_all);
4035
4036 static inline long __sched
4037 do_wait_for_common(struct completion *x, long timeout, int state)
4038 {
4039 if (!x->done) {
4040 DECLARE_WAITQUEUE(wait, current);
4041
4042 wait.flags |= WQ_FLAG_EXCLUSIVE;
4043 __add_wait_queue_tail(&x->wait, &wait);
4044 do {
4045 if (signal_pending_state(state, current)) {
4046 timeout = -ERESTARTSYS;
4047 break;
4048 }
4049 __set_current_state(state);
4050 spin_unlock_irq(&x->wait.lock);
4051 timeout = schedule_timeout(timeout);
4052 spin_lock_irq(&x->wait.lock);
4053 } while (!x->done && timeout);
4054 __remove_wait_queue(&x->wait, &wait);
4055 if (!x->done)
4056 return timeout;
4057 }
4058 x->done--;
4059 return timeout ?: 1;
4060 }
4061
4062 static long __sched
4063 wait_for_common(struct completion *x, long timeout, int state)
4064 {
4065 might_sleep();
4066
4067 spin_lock_irq(&x->wait.lock);
4068 timeout = do_wait_for_common(x, timeout, state);
4069 spin_unlock_irq(&x->wait.lock);
4070 return timeout;
4071 }
4072
4073 /**
4074 * wait_for_completion: - waits for completion of a task
4075 * @x: holds the state of this particular completion
4076 *
4077 * This waits to be signaled for completion of a specific task. It is NOT
4078 * interruptible and there is no timeout.
4079 *
4080 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4081 * and interrupt capability. Also see complete().
4082 */
4083 void __sched wait_for_completion(struct completion *x)
4084 {
4085 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4086 }
4087 EXPORT_SYMBOL(wait_for_completion);
4088
4089 /**
4090 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4091 * @x: holds the state of this particular completion
4092 * @timeout: timeout value in jiffies
4093 *
4094 * This waits for either a completion of a specific task to be signaled or for a
4095 * specified timeout to expire. The timeout is in jiffies. It is not
4096 * interruptible.
4097 */
4098 unsigned long __sched
4099 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4100 {
4101 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4102 }
4103 EXPORT_SYMBOL(wait_for_completion_timeout);
4104
4105 /**
4106 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4107 * @x: holds the state of this particular completion
4108 *
4109 * This waits for completion of a specific task to be signaled. It is
4110 * interruptible.
4111 */
4112 int __sched wait_for_completion_interruptible(struct completion *x)
4113 {
4114 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4115 if (t == -ERESTARTSYS)
4116 return t;
4117 return 0;
4118 }
4119 EXPORT_SYMBOL(wait_for_completion_interruptible);
4120
4121 /**
4122 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4123 * @x: holds the state of this particular completion
4124 * @timeout: timeout value in jiffies
4125 *
4126 * This waits for either a completion of a specific task to be signaled or for a
4127 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4128 */
4129 unsigned long __sched
4130 wait_for_completion_interruptible_timeout(struct completion *x,
4131 unsigned long timeout)
4132 {
4133 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4134 }
4135 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4136
4137 /**
4138 * wait_for_completion_killable: - waits for completion of a task (killable)
4139 * @x: holds the state of this particular completion
4140 *
4141 * This waits to be signaled for completion of a specific task. It can be
4142 * interrupted by a kill signal.
4143 */
4144 int __sched wait_for_completion_killable(struct completion *x)
4145 {
4146 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4147 if (t == -ERESTARTSYS)
4148 return t;
4149 return 0;
4150 }
4151 EXPORT_SYMBOL(wait_for_completion_killable);
4152
4153 /**
4154 * try_wait_for_completion - try to decrement a completion without blocking
4155 * @x: completion structure
4156 *
4157 * Returns: 0 if a decrement cannot be done without blocking
4158 * 1 if a decrement succeeded.
4159 *
4160 * If a completion is being used as a counting completion,
4161 * attempt to decrement the counter without blocking. This
4162 * enables us to avoid waiting if the resource the completion
4163 * is protecting is not available.
4164 */
4165 bool try_wait_for_completion(struct completion *x)
4166 {
4167 unsigned long flags;
4168 int ret = 1;
4169
4170 spin_lock_irqsave(&x->wait.lock, flags);
4171 if (!x->done)
4172 ret = 0;
4173 else
4174 x->done--;
4175 spin_unlock_irqrestore(&x->wait.lock, flags);
4176 return ret;
4177 }
4178 EXPORT_SYMBOL(try_wait_for_completion);
4179
4180 /**
4181 * completion_done - Test to see if a completion has any waiters
4182 * @x: completion structure
4183 *
4184 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4185 * 1 if there are no waiters.
4186 *
4187 */
4188 bool completion_done(struct completion *x)
4189 {
4190 unsigned long flags;
4191 int ret = 1;
4192
4193 spin_lock_irqsave(&x->wait.lock, flags);
4194 if (!x->done)
4195 ret = 0;
4196 spin_unlock_irqrestore(&x->wait.lock, flags);
4197 return ret;
4198 }
4199 EXPORT_SYMBOL(completion_done);
4200
4201 static long __sched
4202 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4203 {
4204 unsigned long flags;
4205 wait_queue_t wait;
4206
4207 init_waitqueue_entry(&wait, current);
4208
4209 __set_current_state(state);
4210
4211 spin_lock_irqsave(&q->lock, flags);
4212 __add_wait_queue(q, &wait);
4213 spin_unlock(&q->lock);
4214 timeout = schedule_timeout(timeout);
4215 spin_lock_irq(&q->lock);
4216 __remove_wait_queue(q, &wait);
4217 spin_unlock_irqrestore(&q->lock, flags);
4218
4219 return timeout;
4220 }
4221
4222 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4223 {
4224 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4225 }
4226 EXPORT_SYMBOL(interruptible_sleep_on);
4227
4228 long __sched
4229 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4230 {
4231 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4232 }
4233 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4234
4235 void __sched sleep_on(wait_queue_head_t *q)
4236 {
4237 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4238 }
4239 EXPORT_SYMBOL(sleep_on);
4240
4241 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4242 {
4243 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4244 }
4245 EXPORT_SYMBOL(sleep_on_timeout);
4246
4247 #ifdef CONFIG_RT_MUTEXES
4248
4249 /*
4250 * rt_mutex_setprio - set the current priority of a task
4251 * @p: task
4252 * @prio: prio value (kernel-internal form)
4253 *
4254 * This function changes the 'effective' priority of a task. It does
4255 * not touch ->normal_prio like __setscheduler().
4256 *
4257 * Used by the rt_mutex code to implement priority inheritance logic.
4258 */
4259 void rt_mutex_setprio(struct task_struct *p, int prio)
4260 {
4261 unsigned long flags;
4262 int oldprio, on_rq, running;
4263 struct rq *rq;
4264 const struct sched_class *prev_class;
4265
4266 BUG_ON(prio < 0 || prio > MAX_PRIO);
4267
4268 rq = task_rq_lock(p, &flags);
4269 update_rq_clock(rq);
4270
4271 oldprio = p->prio;
4272 prev_class = p->sched_class;
4273 on_rq = p->se.on_rq;
4274 running = task_current(rq, p);
4275 if (on_rq)
4276 dequeue_task(rq, p, 0);
4277 if (running)
4278 p->sched_class->put_prev_task(rq, p);
4279
4280 if (rt_prio(prio))
4281 p->sched_class = &rt_sched_class;
4282 else
4283 p->sched_class = &fair_sched_class;
4284
4285 p->prio = prio;
4286
4287 if (running)
4288 p->sched_class->set_curr_task(rq);
4289 if (on_rq) {
4290 enqueue_task(rq, p, 0, oldprio < prio);
4291
4292 check_class_changed(rq, p, prev_class, oldprio, running);
4293 }
4294 task_rq_unlock(rq, &flags);
4295 }
4296
4297 #endif
4298
4299 void set_user_nice(struct task_struct *p, long nice)
4300 {
4301 int old_prio, delta, on_rq;
4302 unsigned long flags;
4303 struct rq *rq;
4304
4305 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4306 return;
4307 /*
4308 * We have to be careful, if called from sys_setpriority(),
4309 * the task might be in the middle of scheduling on another CPU.
4310 */
4311 rq = task_rq_lock(p, &flags);
4312 update_rq_clock(rq);
4313 /*
4314 * The RT priorities are set via sched_setscheduler(), but we still
4315 * allow the 'normal' nice value to be set - but as expected
4316 * it wont have any effect on scheduling until the task is
4317 * SCHED_FIFO/SCHED_RR:
4318 */
4319 if (task_has_rt_policy(p)) {
4320 p->static_prio = NICE_TO_PRIO(nice);
4321 goto out_unlock;
4322 }
4323 on_rq = p->se.on_rq;
4324 if (on_rq)
4325 dequeue_task(rq, p, 0);
4326
4327 p->static_prio = NICE_TO_PRIO(nice);
4328 set_load_weight(p);
4329 old_prio = p->prio;
4330 p->prio = effective_prio(p);
4331 delta = p->prio - old_prio;
4332
4333 if (on_rq) {
4334 enqueue_task(rq, p, 0, false);
4335 /*
4336 * If the task increased its priority or is running and
4337 * lowered its priority, then reschedule its CPU:
4338 */
4339 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4340 resched_task(rq->curr);
4341 }
4342 out_unlock:
4343 task_rq_unlock(rq, &flags);
4344 }
4345 EXPORT_SYMBOL(set_user_nice);
4346
4347 /*
4348 * can_nice - check if a task can reduce its nice value
4349 * @p: task
4350 * @nice: nice value
4351 */
4352 int can_nice(const struct task_struct *p, const int nice)
4353 {
4354 /* convert nice value [19,-20] to rlimit style value [1,40] */
4355 int nice_rlim = 20 - nice;
4356
4357 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4358 capable(CAP_SYS_NICE));
4359 }
4360
4361 #ifdef __ARCH_WANT_SYS_NICE
4362
4363 /*
4364 * sys_nice - change the priority of the current process.
4365 * @increment: priority increment
4366 *
4367 * sys_setpriority is a more generic, but much slower function that
4368 * does similar things.
4369 */
4370 SYSCALL_DEFINE1(nice, int, increment)
4371 {
4372 long nice, retval;
4373
4374 /*
4375 * Setpriority might change our priority at the same moment.
4376 * We don't have to worry. Conceptually one call occurs first
4377 * and we have a single winner.
4378 */
4379 if (increment < -40)
4380 increment = -40;
4381 if (increment > 40)
4382 increment = 40;
4383
4384 nice = TASK_NICE(current) + increment;
4385 if (nice < -20)
4386 nice = -20;
4387 if (nice > 19)
4388 nice = 19;
4389
4390 if (increment < 0 && !can_nice(current, nice))
4391 return -EPERM;
4392
4393 retval = security_task_setnice(current, nice);
4394 if (retval)
4395 return retval;
4396
4397 set_user_nice(current, nice);
4398 return 0;
4399 }
4400
4401 #endif
4402
4403 /**
4404 * task_prio - return the priority value of a given task.
4405 * @p: the task in question.
4406 *
4407 * This is the priority value as seen by users in /proc.
4408 * RT tasks are offset by -200. Normal tasks are centered
4409 * around 0, value goes from -16 to +15.
4410 */
4411 int task_prio(const struct task_struct *p)
4412 {
4413 return p->prio - MAX_RT_PRIO;
4414 }
4415
4416 /**
4417 * task_nice - return the nice value of a given task.
4418 * @p: the task in question.
4419 */
4420 int task_nice(const struct task_struct *p)
4421 {
4422 return TASK_NICE(p);
4423 }
4424 EXPORT_SYMBOL(task_nice);
4425
4426 /**
4427 * idle_cpu - is a given cpu idle currently?
4428 * @cpu: the processor in question.
4429 */
4430 int idle_cpu(int cpu)
4431 {
4432 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4433 }
4434
4435 /**
4436 * idle_task - return the idle task for a given cpu.
4437 * @cpu: the processor in question.
4438 */
4439 struct task_struct *idle_task(int cpu)
4440 {
4441 return cpu_rq(cpu)->idle;
4442 }
4443
4444 /**
4445 * find_process_by_pid - find a process with a matching PID value.
4446 * @pid: the pid in question.
4447 */
4448 static struct task_struct *find_process_by_pid(pid_t pid)
4449 {
4450 return pid ? find_task_by_vpid(pid) : current;
4451 }
4452
4453 /* Actually do priority change: must hold rq lock. */
4454 static void
4455 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4456 {
4457 BUG_ON(p->se.on_rq);
4458
4459 p->policy = policy;
4460 p->rt_priority = prio;
4461 p->normal_prio = normal_prio(p);
4462 /* we are holding p->pi_lock already */
4463 p->prio = rt_mutex_getprio(p);
4464 if (rt_prio(p->prio))
4465 p->sched_class = &rt_sched_class;
4466 else
4467 p->sched_class = &fair_sched_class;
4468 set_load_weight(p);
4469 }
4470
4471 /*
4472 * check the target process has a UID that matches the current process's
4473 */
4474 static bool check_same_owner(struct task_struct *p)
4475 {
4476 const struct cred *cred = current_cred(), *pcred;
4477 bool match;
4478
4479 rcu_read_lock();
4480 pcred = __task_cred(p);
4481 match = (cred->euid == pcred->euid ||
4482 cred->euid == pcred->uid);
4483 rcu_read_unlock();
4484 return match;
4485 }
4486
4487 static int __sched_setscheduler(struct task_struct *p, int policy,
4488 struct sched_param *param, bool user)
4489 {
4490 int retval, oldprio, oldpolicy = -1, on_rq, running;
4491 unsigned long flags;
4492 const struct sched_class *prev_class;
4493 struct rq *rq;
4494 int reset_on_fork;
4495
4496 /* may grab non-irq protected spin_locks */
4497 BUG_ON(in_interrupt());
4498 recheck:
4499 /* double check policy once rq lock held */
4500 if (policy < 0) {
4501 reset_on_fork = p->sched_reset_on_fork;
4502 policy = oldpolicy = p->policy;
4503 } else {
4504 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4505 policy &= ~SCHED_RESET_ON_FORK;
4506
4507 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4508 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4509 policy != SCHED_IDLE)
4510 return -EINVAL;
4511 }
4512
4513 /*
4514 * Valid priorities for SCHED_FIFO and SCHED_RR are
4515 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4516 * SCHED_BATCH and SCHED_IDLE is 0.
4517 */
4518 if (param->sched_priority < 0 ||
4519 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4520 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4521 return -EINVAL;
4522 if (rt_policy(policy) != (param->sched_priority != 0))
4523 return -EINVAL;
4524
4525 /*
4526 * Allow unprivileged RT tasks to decrease priority:
4527 */
4528 if (user && !capable(CAP_SYS_NICE)) {
4529 if (rt_policy(policy)) {
4530 unsigned long rlim_rtprio;
4531
4532 if (!lock_task_sighand(p, &flags))
4533 return -ESRCH;
4534 rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
4535 unlock_task_sighand(p, &flags);
4536
4537 /* can't set/change the rt policy */
4538 if (policy != p->policy && !rlim_rtprio)
4539 return -EPERM;
4540
4541 /* can't increase priority */
4542 if (param->sched_priority > p->rt_priority &&
4543 param->sched_priority > rlim_rtprio)
4544 return -EPERM;
4545 }
4546 /*
4547 * Like positive nice levels, dont allow tasks to
4548 * move out of SCHED_IDLE either:
4549 */
4550 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4551 return -EPERM;
4552
4553 /* can't change other user's priorities */
4554 if (!check_same_owner(p))
4555 return -EPERM;
4556
4557 /* Normal users shall not reset the sched_reset_on_fork flag */
4558 if (p->sched_reset_on_fork && !reset_on_fork)
4559 return -EPERM;
4560 }
4561
4562 if (user) {
4563 #ifdef CONFIG_RT_GROUP_SCHED
4564 /*
4565 * Do not allow realtime tasks into groups that have no runtime
4566 * assigned.
4567 */
4568 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4569 task_group(p)->rt_bandwidth.rt_runtime == 0)
4570 return -EPERM;
4571 #endif
4572
4573 retval = security_task_setscheduler(p, policy, param);
4574 if (retval)
4575 return retval;
4576 }
4577
4578 /*
4579 * make sure no PI-waiters arrive (or leave) while we are
4580 * changing the priority of the task:
4581 */
4582 raw_spin_lock_irqsave(&p->pi_lock, flags);
4583 /*
4584 * To be able to change p->policy safely, the apropriate
4585 * runqueue lock must be held.
4586 */
4587 rq = __task_rq_lock(p);
4588 /* recheck policy now with rq lock held */
4589 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4590 policy = oldpolicy = -1;
4591 __task_rq_unlock(rq);
4592 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4593 goto recheck;
4594 }
4595 update_rq_clock(rq);
4596 on_rq = p->se.on_rq;
4597 running = task_current(rq, p);
4598 if (on_rq)
4599 deactivate_task(rq, p, 0);
4600 if (running)
4601 p->sched_class->put_prev_task(rq, p);
4602
4603 p->sched_reset_on_fork = reset_on_fork;
4604
4605 oldprio = p->prio;
4606 prev_class = p->sched_class;
4607 __setscheduler(rq, p, policy, param->sched_priority);
4608
4609 if (running)
4610 p->sched_class->set_curr_task(rq);
4611 if (on_rq) {
4612 activate_task(rq, p, 0);
4613
4614 check_class_changed(rq, p, prev_class, oldprio, running);
4615 }
4616 __task_rq_unlock(rq);
4617 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4618
4619 rt_mutex_adjust_pi(p);
4620
4621 return 0;
4622 }
4623
4624 /**
4625 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4626 * @p: the task in question.
4627 * @policy: new policy.
4628 * @param: structure containing the new RT priority.
4629 *
4630 * NOTE that the task may be already dead.
4631 */
4632 int sched_setscheduler(struct task_struct *p, int policy,
4633 struct sched_param *param)
4634 {
4635 return __sched_setscheduler(p, policy, param, true);
4636 }
4637 EXPORT_SYMBOL_GPL(sched_setscheduler);
4638
4639 /**
4640 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4641 * @p: the task in question.
4642 * @policy: new policy.
4643 * @param: structure containing the new RT priority.
4644 *
4645 * Just like sched_setscheduler, only don't bother checking if the
4646 * current context has permission. For example, this is needed in
4647 * stop_machine(): we create temporary high priority worker threads,
4648 * but our caller might not have that capability.
4649 */
4650 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4651 struct sched_param *param)
4652 {
4653 return __sched_setscheduler(p, policy, param, false);
4654 }
4655
4656 static int
4657 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4658 {
4659 struct sched_param lparam;
4660 struct task_struct *p;
4661 int retval;
4662
4663 if (!param || pid < 0)
4664 return -EINVAL;
4665 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4666 return -EFAULT;
4667
4668 rcu_read_lock();
4669 retval = -ESRCH;
4670 p = find_process_by_pid(pid);
4671 if (p != NULL)
4672 retval = sched_setscheduler(p, policy, &lparam);
4673 rcu_read_unlock();
4674
4675 return retval;
4676 }
4677
4678 /**
4679 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4680 * @pid: the pid in question.
4681 * @policy: new policy.
4682 * @param: structure containing the new RT priority.
4683 */
4684 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4685 struct sched_param __user *, param)
4686 {
4687 /* negative values for policy are not valid */
4688 if (policy < 0)
4689 return -EINVAL;
4690
4691 return do_sched_setscheduler(pid, policy, param);
4692 }
4693
4694 /**
4695 * sys_sched_setparam - set/change the RT priority of a thread
4696 * @pid: the pid in question.
4697 * @param: structure containing the new RT priority.
4698 */
4699 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4700 {
4701 return do_sched_setscheduler(pid, -1, param);
4702 }
4703
4704 /**
4705 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4706 * @pid: the pid in question.
4707 */
4708 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4709 {
4710 struct task_struct *p;
4711 int retval;
4712
4713 if (pid < 0)
4714 return -EINVAL;
4715
4716 retval = -ESRCH;
4717 rcu_read_lock();
4718 p = find_process_by_pid(pid);
4719 if (p) {
4720 retval = security_task_getscheduler(p);
4721 if (!retval)
4722 retval = p->policy
4723 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4724 }
4725 rcu_read_unlock();
4726 return retval;
4727 }
4728
4729 /**
4730 * sys_sched_getparam - get the RT priority of a thread
4731 * @pid: the pid in question.
4732 * @param: structure containing the RT priority.
4733 */
4734 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4735 {
4736 struct sched_param lp;
4737 struct task_struct *p;
4738 int retval;
4739
4740 if (!param || pid < 0)
4741 return -EINVAL;
4742
4743 rcu_read_lock();
4744 p = find_process_by_pid(pid);
4745 retval = -ESRCH;
4746 if (!p)
4747 goto out_unlock;
4748
4749 retval = security_task_getscheduler(p);
4750 if (retval)
4751 goto out_unlock;
4752
4753 lp.sched_priority = p->rt_priority;
4754 rcu_read_unlock();
4755
4756 /*
4757 * This one might sleep, we cannot do it with a spinlock held ...
4758 */
4759 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4760
4761 return retval;
4762
4763 out_unlock:
4764 rcu_read_unlock();
4765 return retval;
4766 }
4767
4768 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4769 {
4770 cpumask_var_t cpus_allowed, new_mask;
4771 struct task_struct *p;
4772 int retval;
4773
4774 get_online_cpus();
4775 rcu_read_lock();
4776
4777 p = find_process_by_pid(pid);
4778 if (!p) {
4779 rcu_read_unlock();
4780 put_online_cpus();
4781 return -ESRCH;
4782 }
4783
4784 /* Prevent p going away */
4785 get_task_struct(p);
4786 rcu_read_unlock();
4787
4788 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4789 retval = -ENOMEM;
4790 goto out_put_task;
4791 }
4792 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4793 retval = -ENOMEM;
4794 goto out_free_cpus_allowed;
4795 }
4796 retval = -EPERM;
4797 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
4798 goto out_unlock;
4799
4800 retval = security_task_setscheduler(p, 0, NULL);
4801 if (retval)
4802 goto out_unlock;
4803
4804 cpuset_cpus_allowed(p, cpus_allowed);
4805 cpumask_and(new_mask, in_mask, cpus_allowed);
4806 again:
4807 retval = set_cpus_allowed_ptr(p, new_mask);
4808
4809 if (!retval) {
4810 cpuset_cpus_allowed(p, cpus_allowed);
4811 if (!cpumask_subset(new_mask, cpus_allowed)) {
4812 /*
4813 * We must have raced with a concurrent cpuset
4814 * update. Just reset the cpus_allowed to the
4815 * cpuset's cpus_allowed
4816 */
4817 cpumask_copy(new_mask, cpus_allowed);
4818 goto again;
4819 }
4820 }
4821 out_unlock:
4822 free_cpumask_var(new_mask);
4823 out_free_cpus_allowed:
4824 free_cpumask_var(cpus_allowed);
4825 out_put_task:
4826 put_task_struct(p);
4827 put_online_cpus();
4828 return retval;
4829 }
4830
4831 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4832 struct cpumask *new_mask)
4833 {
4834 if (len < cpumask_size())
4835 cpumask_clear(new_mask);
4836 else if (len > cpumask_size())
4837 len = cpumask_size();
4838
4839 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4840 }
4841
4842 /**
4843 * sys_sched_setaffinity - set the cpu affinity of a process
4844 * @pid: pid of the process
4845 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4846 * @user_mask_ptr: user-space pointer to the new cpu mask
4847 */
4848 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4849 unsigned long __user *, user_mask_ptr)
4850 {
4851 cpumask_var_t new_mask;
4852 int retval;
4853
4854 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4855 return -ENOMEM;
4856
4857 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4858 if (retval == 0)
4859 retval = sched_setaffinity(pid, new_mask);
4860 free_cpumask_var(new_mask);
4861 return retval;
4862 }
4863
4864 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4865 {
4866 struct task_struct *p;
4867 unsigned long flags;
4868 struct rq *rq;
4869 int retval;
4870
4871 get_online_cpus();
4872 rcu_read_lock();
4873
4874 retval = -ESRCH;
4875 p = find_process_by_pid(pid);
4876 if (!p)
4877 goto out_unlock;
4878
4879 retval = security_task_getscheduler(p);
4880 if (retval)
4881 goto out_unlock;
4882
4883 rq = task_rq_lock(p, &flags);
4884 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4885 task_rq_unlock(rq, &flags);
4886
4887 out_unlock:
4888 rcu_read_unlock();
4889 put_online_cpus();
4890
4891 return retval;
4892 }
4893
4894 /**
4895 * sys_sched_getaffinity - get the cpu affinity of a process
4896 * @pid: pid of the process
4897 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4898 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4899 */
4900 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4901 unsigned long __user *, user_mask_ptr)
4902 {
4903 int ret;
4904 cpumask_var_t mask;
4905
4906 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4907 return -EINVAL;
4908 if (len & (sizeof(unsigned long)-1))
4909 return -EINVAL;
4910
4911 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4912 return -ENOMEM;
4913
4914 ret = sched_getaffinity(pid, mask);
4915 if (ret == 0) {
4916 size_t retlen = min_t(size_t, len, cpumask_size());
4917
4918 if (copy_to_user(user_mask_ptr, mask, retlen))
4919 ret = -EFAULT;
4920 else
4921 ret = retlen;
4922 }
4923 free_cpumask_var(mask);
4924
4925 return ret;
4926 }
4927
4928 /**
4929 * sys_sched_yield - yield the current processor to other threads.
4930 *
4931 * This function yields the current CPU to other tasks. If there are no
4932 * other threads running on this CPU then this function will return.
4933 */
4934 SYSCALL_DEFINE0(sched_yield)
4935 {
4936 struct rq *rq = this_rq_lock();
4937
4938 schedstat_inc(rq, yld_count);
4939 current->sched_class->yield_task(rq);
4940
4941 /*
4942 * Since we are going to call schedule() anyway, there's
4943 * no need to preempt or enable interrupts:
4944 */
4945 __release(rq->lock);
4946 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4947 do_raw_spin_unlock(&rq->lock);
4948 preempt_enable_no_resched();
4949
4950 schedule();
4951
4952 return 0;
4953 }
4954
4955 static inline int should_resched(void)
4956 {
4957 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4958 }
4959
4960 static void __cond_resched(void)
4961 {
4962 add_preempt_count(PREEMPT_ACTIVE);
4963 schedule();
4964 sub_preempt_count(PREEMPT_ACTIVE);
4965 }
4966
4967 int __sched _cond_resched(void)
4968 {
4969 if (should_resched()) {
4970 __cond_resched();
4971 return 1;
4972 }
4973 return 0;
4974 }
4975 EXPORT_SYMBOL(_cond_resched);
4976
4977 /*
4978 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4979 * call schedule, and on return reacquire the lock.
4980 *
4981 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4982 * operations here to prevent schedule() from being called twice (once via
4983 * spin_unlock(), once by hand).
4984 */
4985 int __cond_resched_lock(spinlock_t *lock)
4986 {
4987 int resched = should_resched();
4988 int ret = 0;
4989
4990 lockdep_assert_held(lock);
4991
4992 if (spin_needbreak(lock) || resched) {
4993 spin_unlock(lock);
4994 if (resched)
4995 __cond_resched();
4996 else
4997 cpu_relax();
4998 ret = 1;
4999 spin_lock(lock);
5000 }
5001 return ret;
5002 }
5003 EXPORT_SYMBOL(__cond_resched_lock);
5004
5005 int __sched __cond_resched_softirq(void)
5006 {
5007 BUG_ON(!in_softirq());
5008
5009 if (should_resched()) {
5010 local_bh_enable();
5011 __cond_resched();
5012 local_bh_disable();
5013 return 1;
5014 }
5015 return 0;
5016 }
5017 EXPORT_SYMBOL(__cond_resched_softirq);
5018
5019 /**
5020 * yield - yield the current processor to other threads.
5021 *
5022 * This is a shortcut for kernel-space yielding - it marks the
5023 * thread runnable and calls sys_sched_yield().
5024 */
5025 void __sched yield(void)
5026 {
5027 set_current_state(TASK_RUNNING);
5028 sys_sched_yield();
5029 }
5030 EXPORT_SYMBOL(yield);
5031
5032 /*
5033 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5034 * that process accounting knows that this is a task in IO wait state.
5035 */
5036 void __sched io_schedule(void)
5037 {
5038 struct rq *rq = raw_rq();
5039
5040 delayacct_blkio_start();
5041 atomic_inc(&rq->nr_iowait);
5042 current->in_iowait = 1;
5043 schedule();
5044 current->in_iowait = 0;
5045 atomic_dec(&rq->nr_iowait);
5046 delayacct_blkio_end();
5047 }
5048 EXPORT_SYMBOL(io_schedule);
5049
5050 long __sched io_schedule_timeout(long timeout)
5051 {
5052 struct rq *rq = raw_rq();
5053 long ret;
5054
5055 delayacct_blkio_start();
5056 atomic_inc(&rq->nr_iowait);
5057 current->in_iowait = 1;
5058 ret = schedule_timeout(timeout);
5059 current->in_iowait = 0;
5060 atomic_dec(&rq->nr_iowait);
5061 delayacct_blkio_end();
5062 return ret;
5063 }
5064
5065 /**
5066 * sys_sched_get_priority_max - return maximum RT priority.
5067 * @policy: scheduling class.
5068 *
5069 * this syscall returns the maximum rt_priority that can be used
5070 * by a given scheduling class.
5071 */
5072 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5073 {
5074 int ret = -EINVAL;
5075
5076 switch (policy) {
5077 case SCHED_FIFO:
5078 case SCHED_RR:
5079 ret = MAX_USER_RT_PRIO-1;
5080 break;
5081 case SCHED_NORMAL:
5082 case SCHED_BATCH:
5083 case SCHED_IDLE:
5084 ret = 0;
5085 break;
5086 }
5087 return ret;
5088 }
5089
5090 /**
5091 * sys_sched_get_priority_min - return minimum RT priority.
5092 * @policy: scheduling class.
5093 *
5094 * this syscall returns the minimum rt_priority that can be used
5095 * by a given scheduling class.
5096 */
5097 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5098 {
5099 int ret = -EINVAL;
5100
5101 switch (policy) {
5102 case SCHED_FIFO:
5103 case SCHED_RR:
5104 ret = 1;
5105 break;
5106 case SCHED_NORMAL:
5107 case SCHED_BATCH:
5108 case SCHED_IDLE:
5109 ret = 0;
5110 }
5111 return ret;
5112 }
5113
5114 /**
5115 * sys_sched_rr_get_interval - return the default timeslice of a process.
5116 * @pid: pid of the process.
5117 * @interval: userspace pointer to the timeslice value.
5118 *
5119 * this syscall writes the default timeslice value of a given process
5120 * into the user-space timespec buffer. A value of '0' means infinity.
5121 */
5122 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5123 struct timespec __user *, interval)
5124 {
5125 struct task_struct *p;
5126 unsigned int time_slice;
5127 unsigned long flags;
5128 struct rq *rq;
5129 int retval;
5130 struct timespec t;
5131
5132 if (pid < 0)
5133 return -EINVAL;
5134
5135 retval = -ESRCH;
5136 rcu_read_lock();
5137 p = find_process_by_pid(pid);
5138 if (!p)
5139 goto out_unlock;
5140
5141 retval = security_task_getscheduler(p);
5142 if (retval)
5143 goto out_unlock;
5144
5145 rq = task_rq_lock(p, &flags);
5146 time_slice = p->sched_class->get_rr_interval(rq, p);
5147 task_rq_unlock(rq, &flags);
5148
5149 rcu_read_unlock();
5150 jiffies_to_timespec(time_slice, &t);
5151 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5152 return retval;
5153
5154 out_unlock:
5155 rcu_read_unlock();
5156 return retval;
5157 }
5158
5159 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5160
5161 void sched_show_task(struct task_struct *p)
5162 {
5163 unsigned long free = 0;
5164 unsigned state;
5165
5166 state = p->state ? __ffs(p->state) + 1 : 0;
5167 printk(KERN_INFO "%-13.13s %c", p->comm,
5168 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5169 #if BITS_PER_LONG == 32
5170 if (state == TASK_RUNNING)
5171 printk(KERN_CONT " running ");
5172 else
5173 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5174 #else
5175 if (state == TASK_RUNNING)
5176 printk(KERN_CONT " running task ");
5177 else
5178 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5179 #endif
5180 #ifdef CONFIG_DEBUG_STACK_USAGE
5181 free = stack_not_used(p);
5182 #endif
5183 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5184 task_pid_nr(p), task_pid_nr(p->real_parent),
5185 (unsigned long)task_thread_info(p)->flags);
5186
5187 show_stack(p, NULL);
5188 }
5189
5190 void show_state_filter(unsigned long state_filter)
5191 {
5192 struct task_struct *g, *p;
5193
5194 #if BITS_PER_LONG == 32
5195 printk(KERN_INFO
5196 " task PC stack pid father\n");
5197 #else
5198 printk(KERN_INFO
5199 " task PC stack pid father\n");
5200 #endif
5201 read_lock(&tasklist_lock);
5202 do_each_thread(g, p) {
5203 /*
5204 * reset the NMI-timeout, listing all files on a slow
5205 * console might take alot of time:
5206 */
5207 touch_nmi_watchdog();
5208 if (!state_filter || (p->state & state_filter))
5209 sched_show_task(p);
5210 } while_each_thread(g, p);
5211
5212 touch_all_softlockup_watchdogs();
5213
5214 #ifdef CONFIG_SCHED_DEBUG
5215 sysrq_sched_debug_show();
5216 #endif
5217 read_unlock(&tasklist_lock);
5218 /*
5219 * Only show locks if all tasks are dumped:
5220 */
5221 if (!state_filter)
5222 debug_show_all_locks();
5223 }
5224
5225 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5226 {
5227 idle->sched_class = &idle_sched_class;
5228 }
5229
5230 /**
5231 * init_idle - set up an idle thread for a given CPU
5232 * @idle: task in question
5233 * @cpu: cpu the idle task belongs to
5234 *
5235 * NOTE: this function does not set the idle thread's NEED_RESCHED
5236 * flag, to make booting more robust.
5237 */
5238 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5239 {
5240 struct rq *rq = cpu_rq(cpu);
5241 unsigned long flags;
5242
5243 raw_spin_lock_irqsave(&rq->lock, flags);
5244
5245 __sched_fork(idle);
5246 idle->state = TASK_RUNNING;
5247 idle->se.exec_start = sched_clock();
5248
5249 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
5250 __set_task_cpu(idle, cpu);
5251
5252 rq->curr = rq->idle = idle;
5253 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5254 idle->oncpu = 1;
5255 #endif
5256 raw_spin_unlock_irqrestore(&rq->lock, flags);
5257
5258 /* Set the preempt count _outside_ the spinlocks! */
5259 #if defined(CONFIG_PREEMPT)
5260 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5261 #else
5262 task_thread_info(idle)->preempt_count = 0;
5263 #endif
5264 /*
5265 * The idle tasks have their own, simple scheduling class:
5266 */
5267 idle->sched_class = &idle_sched_class;
5268 ftrace_graph_init_task(idle);
5269 }
5270
5271 /*
5272 * In a system that switches off the HZ timer nohz_cpu_mask
5273 * indicates which cpus entered this state. This is used
5274 * in the rcu update to wait only for active cpus. For system
5275 * which do not switch off the HZ timer nohz_cpu_mask should
5276 * always be CPU_BITS_NONE.
5277 */
5278 cpumask_var_t nohz_cpu_mask;
5279
5280 /*
5281 * Increase the granularity value when there are more CPUs,
5282 * because with more CPUs the 'effective latency' as visible
5283 * to users decreases. But the relationship is not linear,
5284 * so pick a second-best guess by going with the log2 of the
5285 * number of CPUs.
5286 *
5287 * This idea comes from the SD scheduler of Con Kolivas:
5288 */
5289 static int get_update_sysctl_factor(void)
5290 {
5291 unsigned int cpus = min_t(int, num_online_cpus(), 8);
5292 unsigned int factor;
5293
5294 switch (sysctl_sched_tunable_scaling) {
5295 case SCHED_TUNABLESCALING_NONE:
5296 factor = 1;
5297 break;
5298 case SCHED_TUNABLESCALING_LINEAR:
5299 factor = cpus;
5300 break;
5301 case SCHED_TUNABLESCALING_LOG:
5302 default:
5303 factor = 1 + ilog2(cpus);
5304 break;
5305 }
5306
5307 return factor;
5308 }
5309
5310 static void update_sysctl(void)
5311 {
5312 unsigned int factor = get_update_sysctl_factor();
5313
5314 #define SET_SYSCTL(name) \
5315 (sysctl_##name = (factor) * normalized_sysctl_##name)
5316 SET_SYSCTL(sched_min_granularity);
5317 SET_SYSCTL(sched_latency);
5318 SET_SYSCTL(sched_wakeup_granularity);
5319 SET_SYSCTL(sched_shares_ratelimit);
5320 #undef SET_SYSCTL
5321 }
5322
5323 static inline void sched_init_granularity(void)
5324 {
5325 update_sysctl();
5326 }
5327
5328 #ifdef CONFIG_SMP
5329 /*
5330 * This is how migration works:
5331 *
5332 * 1) we queue a struct migration_req structure in the source CPU's
5333 * runqueue and wake up that CPU's migration thread.
5334 * 2) we down() the locked semaphore => thread blocks.
5335 * 3) migration thread wakes up (implicitly it forces the migrated
5336 * thread off the CPU)
5337 * 4) it gets the migration request and checks whether the migrated
5338 * task is still in the wrong runqueue.
5339 * 5) if it's in the wrong runqueue then the migration thread removes
5340 * it and puts it into the right queue.
5341 * 6) migration thread up()s the semaphore.
5342 * 7) we wake up and the migration is done.
5343 */
5344
5345 /*
5346 * Change a given task's CPU affinity. Migrate the thread to a
5347 * proper CPU and schedule it away if the CPU it's executing on
5348 * is removed from the allowed bitmask.
5349 *
5350 * NOTE: the caller must have a valid reference to the task, the
5351 * task must not exit() & deallocate itself prematurely. The
5352 * call is not atomic; no spinlocks may be held.
5353 */
5354 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
5355 {
5356 struct migration_req req;
5357 unsigned long flags;
5358 struct rq *rq;
5359 int ret = 0;
5360
5361 rq = task_rq_lock(p, &flags);
5362
5363 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
5364 ret = -EINVAL;
5365 goto out;
5366 }
5367
5368 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5369 !cpumask_equal(&p->cpus_allowed, new_mask))) {
5370 ret = -EINVAL;
5371 goto out;
5372 }
5373
5374 if (p->sched_class->set_cpus_allowed)
5375 p->sched_class->set_cpus_allowed(p, new_mask);
5376 else {
5377 cpumask_copy(&p->cpus_allowed, new_mask);
5378 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5379 }
5380
5381 /* Can the task run on the task's current CPU? If so, we're done */
5382 if (cpumask_test_cpu(task_cpu(p), new_mask))
5383 goto out;
5384
5385 if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
5386 /* Need help from migration thread: drop lock and wait. */
5387 struct task_struct *mt = rq->migration_thread;
5388
5389 get_task_struct(mt);
5390 task_rq_unlock(rq, &flags);
5391 wake_up_process(mt);
5392 put_task_struct(mt);
5393 wait_for_completion(&req.done);
5394 tlb_migrate_finish(p->mm);
5395 return 0;
5396 }
5397 out:
5398 task_rq_unlock(rq, &flags);
5399
5400 return ret;
5401 }
5402 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5403
5404 /*
5405 * Move (not current) task off this cpu, onto dest cpu. We're doing
5406 * this because either it can't run here any more (set_cpus_allowed()
5407 * away from this CPU, or CPU going down), or because we're
5408 * attempting to rebalance this task on exec (sched_exec).
5409 *
5410 * So we race with normal scheduler movements, but that's OK, as long
5411 * as the task is no longer on this CPU.
5412 *
5413 * Returns non-zero if task was successfully migrated.
5414 */
5415 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5416 {
5417 struct rq *rq_dest, *rq_src;
5418 int ret = 0;
5419
5420 if (unlikely(!cpu_active(dest_cpu)))
5421 return ret;
5422
5423 rq_src = cpu_rq(src_cpu);
5424 rq_dest = cpu_rq(dest_cpu);
5425
5426 double_rq_lock(rq_src, rq_dest);
5427 /* Already moved. */
5428 if (task_cpu(p) != src_cpu)
5429 goto done;
5430 /* Affinity changed (again). */
5431 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
5432 goto fail;
5433
5434 /*
5435 * If we're not on a rq, the next wake-up will ensure we're
5436 * placed properly.
5437 */
5438 if (p->se.on_rq) {
5439 deactivate_task(rq_src, p, 0);
5440 set_task_cpu(p, dest_cpu);
5441 activate_task(rq_dest, p, 0);
5442 check_preempt_curr(rq_dest, p, 0);
5443 }
5444 done:
5445 ret = 1;
5446 fail:
5447 double_rq_unlock(rq_src, rq_dest);
5448 return ret;
5449 }
5450
5451 #define RCU_MIGRATION_IDLE 0
5452 #define RCU_MIGRATION_NEED_QS 1
5453 #define RCU_MIGRATION_GOT_QS 2
5454 #define RCU_MIGRATION_MUST_SYNC 3
5455
5456 /*
5457 * migration_thread - this is a highprio system thread that performs
5458 * thread migration by bumping thread off CPU then 'pushing' onto
5459 * another runqueue.
5460 */
5461 static int migration_thread(void *data)
5462 {
5463 int badcpu;
5464 int cpu = (long)data;
5465 struct rq *rq;
5466
5467 rq = cpu_rq(cpu);
5468 BUG_ON(rq->migration_thread != current);
5469
5470 set_current_state(TASK_INTERRUPTIBLE);
5471 while (!kthread_should_stop()) {
5472 struct migration_req *req;
5473 struct list_head *head;
5474
5475 raw_spin_lock_irq(&rq->lock);
5476
5477 if (cpu_is_offline(cpu)) {
5478 raw_spin_unlock_irq(&rq->lock);
5479 break;
5480 }
5481
5482 if (rq->active_balance) {
5483 active_load_balance(rq, cpu);
5484 rq->active_balance = 0;
5485 }
5486
5487 head = &rq->migration_queue;
5488
5489 if (list_empty(head)) {
5490 raw_spin_unlock_irq(&rq->lock);
5491 schedule();
5492 set_current_state(TASK_INTERRUPTIBLE);
5493 continue;
5494 }
5495 req = list_entry(head->next, struct migration_req, list);
5496 list_del_init(head->next);
5497
5498 if (req->task != NULL) {
5499 raw_spin_unlock(&rq->lock);
5500 __migrate_task(req->task, cpu, req->dest_cpu);
5501 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
5502 req->dest_cpu = RCU_MIGRATION_GOT_QS;
5503 raw_spin_unlock(&rq->lock);
5504 } else {
5505 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
5506 raw_spin_unlock(&rq->lock);
5507 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
5508 }
5509 local_irq_enable();
5510
5511 complete(&req->done);
5512 }
5513 __set_current_state(TASK_RUNNING);
5514
5515 return 0;
5516 }
5517
5518 #ifdef CONFIG_HOTPLUG_CPU
5519
5520 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5521 {
5522 int ret;
5523
5524 local_irq_disable();
5525 ret = __migrate_task(p, src_cpu, dest_cpu);
5526 local_irq_enable();
5527 return ret;
5528 }
5529
5530 /*
5531 * Figure out where task on dead CPU should go, use force if necessary.
5532 */
5533 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5534 {
5535 int dest_cpu;
5536
5537 again:
5538 dest_cpu = select_fallback_rq(dead_cpu, p);
5539
5540 /* It can have affinity changed while we were choosing. */
5541 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
5542 goto again;
5543 }
5544
5545 /*
5546 * While a dead CPU has no uninterruptible tasks queued at this point,
5547 * it might still have a nonzero ->nr_uninterruptible counter, because
5548 * for performance reasons the counter is not stricly tracking tasks to
5549 * their home CPUs. So we just add the counter to another CPU's counter,
5550 * to keep the global sum constant after CPU-down:
5551 */
5552 static void migrate_nr_uninterruptible(struct rq *rq_src)
5553 {
5554 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
5555 unsigned long flags;
5556
5557 local_irq_save(flags);
5558 double_rq_lock(rq_src, rq_dest);
5559 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5560 rq_src->nr_uninterruptible = 0;
5561 double_rq_unlock(rq_src, rq_dest);
5562 local_irq_restore(flags);
5563 }
5564
5565 /* Run through task list and migrate tasks from the dead cpu. */
5566 static void migrate_live_tasks(int src_cpu)
5567 {
5568 struct task_struct *p, *t;
5569
5570 read_lock(&tasklist_lock);
5571
5572 do_each_thread(t, p) {
5573 if (p == current)
5574 continue;
5575
5576 if (task_cpu(p) == src_cpu)
5577 move_task_off_dead_cpu(src_cpu, p);
5578 } while_each_thread(t, p);
5579
5580 read_unlock(&tasklist_lock);
5581 }
5582
5583 /*
5584 * Schedules idle task to be the next runnable task on current CPU.
5585 * It does so by boosting its priority to highest possible.
5586 * Used by CPU offline code.
5587 */
5588 void sched_idle_next(void)
5589 {
5590 int this_cpu = smp_processor_id();
5591 struct rq *rq = cpu_rq(this_cpu);
5592 struct task_struct *p = rq->idle;
5593 unsigned long flags;
5594
5595 /* cpu has to be offline */
5596 BUG_ON(cpu_online(this_cpu));
5597
5598 /*
5599 * Strictly not necessary since rest of the CPUs are stopped by now
5600 * and interrupts disabled on the current cpu.
5601 */
5602 raw_spin_lock_irqsave(&rq->lock, flags);
5603
5604 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5605
5606 update_rq_clock(rq);
5607 activate_task(rq, p, 0);
5608
5609 raw_spin_unlock_irqrestore(&rq->lock, flags);
5610 }
5611
5612 /*
5613 * Ensures that the idle task is using init_mm right before its cpu goes
5614 * offline.
5615 */
5616 void idle_task_exit(void)
5617 {
5618 struct mm_struct *mm = current->active_mm;
5619
5620 BUG_ON(cpu_online(smp_processor_id()));
5621
5622 if (mm != &init_mm)
5623 switch_mm(mm, &init_mm, current);
5624 mmdrop(mm);
5625 }
5626
5627 /* called under rq->lock with disabled interrupts */
5628 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5629 {
5630 struct rq *rq = cpu_rq(dead_cpu);
5631
5632 /* Must be exiting, otherwise would be on tasklist. */
5633 BUG_ON(!p->exit_state);
5634
5635 /* Cannot have done final schedule yet: would have vanished. */
5636 BUG_ON(p->state == TASK_DEAD);
5637
5638 get_task_struct(p);
5639
5640 /*
5641 * Drop lock around migration; if someone else moves it,
5642 * that's OK. No task can be added to this CPU, so iteration is
5643 * fine.
5644 */
5645 raw_spin_unlock_irq(&rq->lock);
5646 move_task_off_dead_cpu(dead_cpu, p);
5647 raw_spin_lock_irq(&rq->lock);
5648
5649 put_task_struct(p);
5650 }
5651
5652 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5653 static void migrate_dead_tasks(unsigned int dead_cpu)
5654 {
5655 struct rq *rq = cpu_rq(dead_cpu);
5656 struct task_struct *next;
5657
5658 for ( ; ; ) {
5659 if (!rq->nr_running)
5660 break;
5661 update_rq_clock(rq);
5662 next = pick_next_task(rq);
5663 if (!next)
5664 break;
5665 next->sched_class->put_prev_task(rq, next);
5666 migrate_dead(dead_cpu, next);
5667
5668 }
5669 }
5670
5671 /*
5672 * remove the tasks which were accounted by rq from calc_load_tasks.
5673 */
5674 static void calc_global_load_remove(struct rq *rq)
5675 {
5676 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5677 rq->calc_load_active = 0;
5678 }
5679 #endif /* CONFIG_HOTPLUG_CPU */
5680
5681 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5682
5683 static struct ctl_table sd_ctl_dir[] = {
5684 {
5685 .procname = "sched_domain",
5686 .mode = 0555,
5687 },
5688 {}
5689 };
5690
5691 static struct ctl_table sd_ctl_root[] = {
5692 {
5693 .procname = "kernel",
5694 .mode = 0555,
5695 .child = sd_ctl_dir,
5696 },
5697 {}
5698 };
5699
5700 static struct ctl_table *sd_alloc_ctl_entry(int n)
5701 {
5702 struct ctl_table *entry =
5703 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5704
5705 return entry;
5706 }
5707
5708 static void sd_free_ctl_entry(struct ctl_table **tablep)
5709 {
5710 struct ctl_table *entry;
5711
5712 /*
5713 * In the intermediate directories, both the child directory and
5714 * procname are dynamically allocated and could fail but the mode
5715 * will always be set. In the lowest directory the names are
5716 * static strings and all have proc handlers.
5717 */
5718 for (entry = *tablep; entry->mode; entry++) {
5719 if (entry->child)
5720 sd_free_ctl_entry(&entry->child);
5721 if (entry->proc_handler == NULL)
5722 kfree(entry->procname);
5723 }
5724
5725 kfree(*tablep);
5726 *tablep = NULL;
5727 }
5728
5729 static void
5730 set_table_entry(struct ctl_table *entry,
5731 const char *procname, void *data, int maxlen,
5732 mode_t mode, proc_handler *proc_handler)
5733 {
5734 entry->procname = procname;
5735 entry->data = data;
5736 entry->maxlen = maxlen;
5737 entry->mode = mode;
5738 entry->proc_handler = proc_handler;
5739 }
5740
5741 static struct ctl_table *
5742 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5743 {
5744 struct ctl_table *table = sd_alloc_ctl_entry(13);
5745
5746 if (table == NULL)
5747 return NULL;
5748
5749 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5750 sizeof(long), 0644, proc_doulongvec_minmax);
5751 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5752 sizeof(long), 0644, proc_doulongvec_minmax);
5753 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5754 sizeof(int), 0644, proc_dointvec_minmax);
5755 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5756 sizeof(int), 0644, proc_dointvec_minmax);
5757 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5758 sizeof(int), 0644, proc_dointvec_minmax);
5759 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5760 sizeof(int), 0644, proc_dointvec_minmax);
5761 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5762 sizeof(int), 0644, proc_dointvec_minmax);
5763 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5764 sizeof(int), 0644, proc_dointvec_minmax);
5765 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5766 sizeof(int), 0644, proc_dointvec_minmax);
5767 set_table_entry(&table[9], "cache_nice_tries",
5768 &sd->cache_nice_tries,
5769 sizeof(int), 0644, proc_dointvec_minmax);
5770 set_table_entry(&table[10], "flags", &sd->flags,
5771 sizeof(int), 0644, proc_dointvec_minmax);
5772 set_table_entry(&table[11], "name", sd->name,
5773 CORENAME_MAX_SIZE, 0444, proc_dostring);
5774 /* &table[12] is terminator */
5775
5776 return table;
5777 }
5778
5779 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5780 {
5781 struct ctl_table *entry, *table;
5782 struct sched_domain *sd;
5783 int domain_num = 0, i;
5784 char buf[32];
5785
5786 for_each_domain(cpu, sd)
5787 domain_num++;
5788 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5789 if (table == NULL)
5790 return NULL;
5791
5792 i = 0;
5793 for_each_domain(cpu, sd) {
5794 snprintf(buf, 32, "domain%d", i);
5795 entry->procname = kstrdup(buf, GFP_KERNEL);
5796 entry->mode = 0555;
5797 entry->child = sd_alloc_ctl_domain_table(sd);
5798 entry++;
5799 i++;
5800 }
5801 return table;
5802 }
5803
5804 static struct ctl_table_header *sd_sysctl_header;
5805 static void register_sched_domain_sysctl(void)
5806 {
5807 int i, cpu_num = num_possible_cpus();
5808 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5809 char buf[32];
5810
5811 WARN_ON(sd_ctl_dir[0].child);
5812 sd_ctl_dir[0].child = entry;
5813
5814 if (entry == NULL)
5815 return;
5816
5817 for_each_possible_cpu(i) {
5818 snprintf(buf, 32, "cpu%d", i);
5819 entry->procname = kstrdup(buf, GFP_KERNEL);
5820 entry->mode = 0555;
5821 entry->child = sd_alloc_ctl_cpu_table(i);
5822 entry++;
5823 }
5824
5825 WARN_ON(sd_sysctl_header);
5826 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5827 }
5828
5829 /* may be called multiple times per register */
5830 static void unregister_sched_domain_sysctl(void)
5831 {
5832 if (sd_sysctl_header)
5833 unregister_sysctl_table(sd_sysctl_header);
5834 sd_sysctl_header = NULL;
5835 if (sd_ctl_dir[0].child)
5836 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5837 }
5838 #else
5839 static void register_sched_domain_sysctl(void)
5840 {
5841 }
5842 static void unregister_sched_domain_sysctl(void)
5843 {
5844 }
5845 #endif
5846
5847 static void set_rq_online(struct rq *rq)
5848 {
5849 if (!rq->online) {
5850 const struct sched_class *class;
5851
5852 cpumask_set_cpu(rq->cpu, rq->rd->online);
5853 rq->online = 1;
5854
5855 for_each_class(class) {
5856 if (class->rq_online)
5857 class->rq_online(rq);
5858 }
5859 }
5860 }
5861
5862 static void set_rq_offline(struct rq *rq)
5863 {
5864 if (rq->online) {
5865 const struct sched_class *class;
5866
5867 for_each_class(class) {
5868 if (class->rq_offline)
5869 class->rq_offline(rq);
5870 }
5871
5872 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5873 rq->online = 0;
5874 }
5875 }
5876
5877 /*
5878 * migration_call - callback that gets triggered when a CPU is added.
5879 * Here we can start up the necessary migration thread for the new CPU.
5880 */
5881 static int __cpuinit
5882 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5883 {
5884 struct task_struct *p;
5885 int cpu = (long)hcpu;
5886 unsigned long flags;
5887 struct rq *rq;
5888
5889 switch (action) {
5890
5891 case CPU_UP_PREPARE:
5892 case CPU_UP_PREPARE_FROZEN:
5893 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
5894 if (IS_ERR(p))
5895 return NOTIFY_BAD;
5896 kthread_bind(p, cpu);
5897 /* Must be high prio: stop_machine expects to yield to it. */
5898 rq = task_rq_lock(p, &flags);
5899 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5900 task_rq_unlock(rq, &flags);
5901 get_task_struct(p);
5902 cpu_rq(cpu)->migration_thread = p;
5903 rq->calc_load_update = calc_load_update;
5904 break;
5905
5906 case CPU_ONLINE:
5907 case CPU_ONLINE_FROZEN:
5908 /* Strictly unnecessary, as first user will wake it. */
5909 wake_up_process(cpu_rq(cpu)->migration_thread);
5910
5911 /* Update our root-domain */
5912 rq = cpu_rq(cpu);
5913 raw_spin_lock_irqsave(&rq->lock, flags);
5914 if (rq->rd) {
5915 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5916
5917 set_rq_online(rq);
5918 }
5919 raw_spin_unlock_irqrestore(&rq->lock, flags);
5920 break;
5921
5922 #ifdef CONFIG_HOTPLUG_CPU
5923 case CPU_UP_CANCELED:
5924 case CPU_UP_CANCELED_FROZEN:
5925 if (!cpu_rq(cpu)->migration_thread)
5926 break;
5927 /* Unbind it from offline cpu so it can run. Fall thru. */
5928 kthread_bind(cpu_rq(cpu)->migration_thread,
5929 cpumask_any(cpu_online_mask));
5930 kthread_stop(cpu_rq(cpu)->migration_thread);
5931 put_task_struct(cpu_rq(cpu)->migration_thread);
5932 cpu_rq(cpu)->migration_thread = NULL;
5933 break;
5934
5935 case CPU_DEAD:
5936 case CPU_DEAD_FROZEN:
5937 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
5938 migrate_live_tasks(cpu);
5939 rq = cpu_rq(cpu);
5940 kthread_stop(rq->migration_thread);
5941 put_task_struct(rq->migration_thread);
5942 rq->migration_thread = NULL;
5943 /* Idle task back to normal (off runqueue, low prio) */
5944 raw_spin_lock_irq(&rq->lock);
5945 update_rq_clock(rq);
5946 deactivate_task(rq, rq->idle, 0);
5947 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5948 rq->idle->sched_class = &idle_sched_class;
5949 migrate_dead_tasks(cpu);
5950 raw_spin_unlock_irq(&rq->lock);
5951 cpuset_unlock();
5952 migrate_nr_uninterruptible(rq);
5953 BUG_ON(rq->nr_running != 0);
5954 calc_global_load_remove(rq);
5955 /*
5956 * No need to migrate the tasks: it was best-effort if
5957 * they didn't take sched_hotcpu_mutex. Just wake up
5958 * the requestors.
5959 */
5960 raw_spin_lock_irq(&rq->lock);
5961 while (!list_empty(&rq->migration_queue)) {
5962 struct migration_req *req;
5963
5964 req = list_entry(rq->migration_queue.next,
5965 struct migration_req, list);
5966 list_del_init(&req->list);
5967 raw_spin_unlock_irq(&rq->lock);
5968 complete(&req->done);
5969 raw_spin_lock_irq(&rq->lock);
5970 }
5971 raw_spin_unlock_irq(&rq->lock);
5972 break;
5973
5974 case CPU_DYING:
5975 case CPU_DYING_FROZEN:
5976 /* Update our root-domain */
5977 rq = cpu_rq(cpu);
5978 raw_spin_lock_irqsave(&rq->lock, flags);
5979 if (rq->rd) {
5980 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5981 set_rq_offline(rq);
5982 }
5983 raw_spin_unlock_irqrestore(&rq->lock, flags);
5984 break;
5985 #endif
5986 }
5987 return NOTIFY_OK;
5988 }
5989
5990 /*
5991 * Register at high priority so that task migration (migrate_all_tasks)
5992 * happens before everything else. This has to be lower priority than
5993 * the notifier in the perf_event subsystem, though.
5994 */
5995 static struct notifier_block __cpuinitdata migration_notifier = {
5996 .notifier_call = migration_call,
5997 .priority = 10
5998 };
5999
6000 static int __init migration_init(void)
6001 {
6002 void *cpu = (void *)(long)smp_processor_id();
6003 int err;
6004
6005 /* Start one for the boot CPU: */
6006 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6007 BUG_ON(err == NOTIFY_BAD);
6008 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6009 register_cpu_notifier(&migration_notifier);
6010
6011 return 0;
6012 }
6013 early_initcall(migration_init);
6014 #endif
6015
6016 #ifdef CONFIG_SMP
6017
6018 #ifdef CONFIG_SCHED_DEBUG
6019
6020 static __read_mostly int sched_domain_debug_enabled;
6021
6022 static int __init sched_domain_debug_setup(char *str)
6023 {
6024 sched_domain_debug_enabled = 1;
6025
6026 return 0;
6027 }
6028 early_param("sched_debug", sched_domain_debug_setup);
6029
6030 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6031 struct cpumask *groupmask)
6032 {
6033 struct sched_group *group = sd->groups;
6034 char str[256];
6035
6036 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6037 cpumask_clear(groupmask);
6038
6039 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6040
6041 if (!(sd->flags & SD_LOAD_BALANCE)) {
6042 printk("does not load-balance\n");
6043 if (sd->parent)
6044 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6045 " has parent");
6046 return -1;
6047 }
6048
6049 printk(KERN_CONT "span %s level %s\n", str, sd->name);
6050
6051 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
6052 printk(KERN_ERR "ERROR: domain->span does not contain "
6053 "CPU%d\n", cpu);
6054 }
6055 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
6056 printk(KERN_ERR "ERROR: domain->groups does not contain"
6057 " CPU%d\n", cpu);
6058 }
6059
6060 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6061 do {
6062 if (!group) {
6063 printk("\n");
6064 printk(KERN_ERR "ERROR: group is NULL\n");
6065 break;
6066 }
6067
6068 if (!group->cpu_power) {
6069 printk(KERN_CONT "\n");
6070 printk(KERN_ERR "ERROR: domain->cpu_power not "
6071 "set\n");
6072 break;
6073 }
6074
6075 if (!cpumask_weight(sched_group_cpus(group))) {
6076 printk(KERN_CONT "\n");
6077 printk(KERN_ERR "ERROR: empty group\n");
6078 break;
6079 }
6080
6081 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
6082 printk(KERN_CONT "\n");
6083 printk(KERN_ERR "ERROR: repeated CPUs\n");
6084 break;
6085 }
6086
6087 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
6088
6089 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6090
6091 printk(KERN_CONT " %s", str);
6092 if (group->cpu_power != SCHED_LOAD_SCALE) {
6093 printk(KERN_CONT " (cpu_power = %d)",
6094 group->cpu_power);
6095 }
6096
6097 group = group->next;
6098 } while (group != sd->groups);
6099 printk(KERN_CONT "\n");
6100
6101 if (!cpumask_equal(sched_domain_span(sd), groupmask))
6102 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6103
6104 if (sd->parent &&
6105 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
6106 printk(KERN_ERR "ERROR: parent span is not a superset "
6107 "of domain->span\n");
6108 return 0;
6109 }
6110
6111 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6112 {
6113 cpumask_var_t groupmask;
6114 int level = 0;
6115
6116 if (!sched_domain_debug_enabled)
6117 return;
6118
6119 if (!sd) {
6120 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6121 return;
6122 }
6123
6124 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6125
6126 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6127 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6128 return;
6129 }
6130
6131 for (;;) {
6132 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6133 break;
6134 level++;
6135 sd = sd->parent;
6136 if (!sd)
6137 break;
6138 }
6139 free_cpumask_var(groupmask);
6140 }
6141 #else /* !CONFIG_SCHED_DEBUG */
6142 # define sched_domain_debug(sd, cpu) do { } while (0)
6143 #endif /* CONFIG_SCHED_DEBUG */
6144
6145 static int sd_degenerate(struct sched_domain *sd)
6146 {
6147 if (cpumask_weight(sched_domain_span(sd)) == 1)
6148 return 1;
6149
6150 /* Following flags need at least 2 groups */
6151 if (sd->flags & (SD_LOAD_BALANCE |
6152 SD_BALANCE_NEWIDLE |
6153 SD_BALANCE_FORK |
6154 SD_BALANCE_EXEC |
6155 SD_SHARE_CPUPOWER |
6156 SD_SHARE_PKG_RESOURCES)) {
6157 if (sd->groups != sd->groups->next)
6158 return 0;
6159 }
6160
6161 /* Following flags don't use groups */
6162 if (sd->flags & (SD_WAKE_AFFINE))
6163 return 0;
6164
6165 return 1;
6166 }
6167
6168 static int
6169 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6170 {
6171 unsigned long cflags = sd->flags, pflags = parent->flags;
6172
6173 if (sd_degenerate(parent))
6174 return 1;
6175
6176 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6177 return 0;
6178
6179 /* Flags needing groups don't count if only 1 group in parent */
6180 if (parent->groups == parent->groups->next) {
6181 pflags &= ~(SD_LOAD_BALANCE |
6182 SD_BALANCE_NEWIDLE |
6183 SD_BALANCE_FORK |
6184 SD_BALANCE_EXEC |
6185 SD_SHARE_CPUPOWER |
6186 SD_SHARE_PKG_RESOURCES);
6187 if (nr_node_ids == 1)
6188 pflags &= ~SD_SERIALIZE;
6189 }
6190 if (~cflags & pflags)
6191 return 0;
6192
6193 return 1;
6194 }
6195
6196 static void free_rootdomain(struct root_domain *rd)
6197 {
6198 synchronize_sched();
6199
6200 cpupri_cleanup(&rd->cpupri);
6201
6202 free_cpumask_var(rd->rto_mask);
6203 free_cpumask_var(rd->online);
6204 free_cpumask_var(rd->span);
6205 kfree(rd);
6206 }
6207
6208 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6209 {
6210 struct root_domain *old_rd = NULL;
6211 unsigned long flags;
6212
6213 raw_spin_lock_irqsave(&rq->lock, flags);
6214
6215 if (rq->rd) {
6216 old_rd = rq->rd;
6217
6218 if (cpumask_test_cpu(rq->cpu, old_rd->online))
6219 set_rq_offline(rq);
6220
6221 cpumask_clear_cpu(rq->cpu, old_rd->span);
6222
6223 /*
6224 * If we dont want to free the old_rt yet then
6225 * set old_rd to NULL to skip the freeing later
6226 * in this function:
6227 */
6228 if (!atomic_dec_and_test(&old_rd->refcount))
6229 old_rd = NULL;
6230 }
6231
6232 atomic_inc(&rd->refcount);
6233 rq->rd = rd;
6234
6235 cpumask_set_cpu(rq->cpu, rd->span);
6236 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6237 set_rq_online(rq);
6238
6239 raw_spin_unlock_irqrestore(&rq->lock, flags);
6240
6241 if (old_rd)
6242 free_rootdomain(old_rd);
6243 }
6244
6245 static int init_rootdomain(struct root_domain *rd, bool bootmem)
6246 {
6247 gfp_t gfp = GFP_KERNEL;
6248
6249 memset(rd, 0, sizeof(*rd));
6250
6251 if (bootmem)
6252 gfp = GFP_NOWAIT;
6253
6254 if (!alloc_cpumask_var(&rd->span, gfp))
6255 goto out;
6256 if (!alloc_cpumask_var(&rd->online, gfp))
6257 goto free_span;
6258 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
6259 goto free_online;
6260
6261 if (cpupri_init(&rd->cpupri, bootmem) != 0)
6262 goto free_rto_mask;
6263 return 0;
6264
6265 free_rto_mask:
6266 free_cpumask_var(rd->rto_mask);
6267 free_online:
6268 free_cpumask_var(rd->online);
6269 free_span:
6270 free_cpumask_var(rd->span);
6271 out:
6272 return -ENOMEM;
6273 }
6274
6275 static void init_defrootdomain(void)
6276 {
6277 init_rootdomain(&def_root_domain, true);
6278
6279 atomic_set(&def_root_domain.refcount, 1);
6280 }
6281
6282 static struct root_domain *alloc_rootdomain(void)
6283 {
6284 struct root_domain *rd;
6285
6286 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6287 if (!rd)
6288 return NULL;
6289
6290 if (init_rootdomain(rd, false) != 0) {
6291 kfree(rd);
6292 return NULL;
6293 }
6294
6295 return rd;
6296 }
6297
6298 /*
6299 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6300 * hold the hotplug lock.
6301 */
6302 static void
6303 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6304 {
6305 struct rq *rq = cpu_rq(cpu);
6306 struct sched_domain *tmp;
6307
6308 /* Remove the sched domains which do not contribute to scheduling. */
6309 for (tmp = sd; tmp; ) {
6310 struct sched_domain *parent = tmp->parent;
6311 if (!parent)
6312 break;
6313
6314 if (sd_parent_degenerate(tmp, parent)) {
6315 tmp->parent = parent->parent;
6316 if (parent->parent)
6317 parent->parent->child = tmp;
6318 } else
6319 tmp = tmp->parent;
6320 }
6321
6322 if (sd && sd_degenerate(sd)) {
6323 sd = sd->parent;
6324 if (sd)
6325 sd->child = NULL;
6326 }
6327
6328 sched_domain_debug(sd, cpu);
6329
6330 rq_attach_root(rq, rd);
6331 rcu_assign_pointer(rq->sd, sd);
6332 }
6333
6334 /* cpus with isolated domains */
6335 static cpumask_var_t cpu_isolated_map;
6336
6337 /* Setup the mask of cpus configured for isolated domains */
6338 static int __init isolated_cpu_setup(char *str)
6339 {
6340 alloc_bootmem_cpumask_var(&cpu_isolated_map);
6341 cpulist_parse(str, cpu_isolated_map);
6342 return 1;
6343 }
6344
6345 __setup("isolcpus=", isolated_cpu_setup);
6346
6347 /*
6348 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6349 * to a function which identifies what group(along with sched group) a CPU
6350 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6351 * (due to the fact that we keep track of groups covered with a struct cpumask).
6352 *
6353 * init_sched_build_groups will build a circular linked list of the groups
6354 * covered by the given span, and will set each group's ->cpumask correctly,
6355 * and ->cpu_power to 0.
6356 */
6357 static void
6358 init_sched_build_groups(const struct cpumask *span,
6359 const struct cpumask *cpu_map,
6360 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
6361 struct sched_group **sg,
6362 struct cpumask *tmpmask),
6363 struct cpumask *covered, struct cpumask *tmpmask)
6364 {
6365 struct sched_group *first = NULL, *last = NULL;
6366 int i;
6367
6368 cpumask_clear(covered);
6369
6370 for_each_cpu(i, span) {
6371 struct sched_group *sg;
6372 int group = group_fn(i, cpu_map, &sg, tmpmask);
6373 int j;
6374
6375 if (cpumask_test_cpu(i, covered))
6376 continue;
6377
6378 cpumask_clear(sched_group_cpus(sg));
6379 sg->cpu_power = 0;
6380
6381 for_each_cpu(j, span) {
6382 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6383 continue;
6384
6385 cpumask_set_cpu(j, covered);
6386 cpumask_set_cpu(j, sched_group_cpus(sg));
6387 }
6388 if (!first)
6389 first = sg;
6390 if (last)
6391 last->next = sg;
6392 last = sg;
6393 }
6394 last->next = first;
6395 }
6396
6397 #define SD_NODES_PER_DOMAIN 16
6398
6399 #ifdef CONFIG_NUMA
6400
6401 /**
6402 * find_next_best_node - find the next node to include in a sched_domain
6403 * @node: node whose sched_domain we're building
6404 * @used_nodes: nodes already in the sched_domain
6405 *
6406 * Find the next node to include in a given scheduling domain. Simply
6407 * finds the closest node not already in the @used_nodes map.
6408 *
6409 * Should use nodemask_t.
6410 */
6411 static int find_next_best_node(int node, nodemask_t *used_nodes)
6412 {
6413 int i, n, val, min_val, best_node = 0;
6414
6415 min_val = INT_MAX;
6416
6417 for (i = 0; i < nr_node_ids; i++) {
6418 /* Start at @node */
6419 n = (node + i) % nr_node_ids;
6420
6421 if (!nr_cpus_node(n))
6422 continue;
6423
6424 /* Skip already used nodes */
6425 if (node_isset(n, *used_nodes))
6426 continue;
6427
6428 /* Simple min distance search */
6429 val = node_distance(node, n);
6430
6431 if (val < min_val) {
6432 min_val = val;
6433 best_node = n;
6434 }
6435 }
6436
6437 node_set(best_node, *used_nodes);
6438 return best_node;
6439 }
6440
6441 /**
6442 * sched_domain_node_span - get a cpumask for a node's sched_domain
6443 * @node: node whose cpumask we're constructing
6444 * @span: resulting cpumask
6445 *
6446 * Given a node, construct a good cpumask for its sched_domain to span. It
6447 * should be one that prevents unnecessary balancing, but also spreads tasks
6448 * out optimally.
6449 */
6450 static void sched_domain_node_span(int node, struct cpumask *span)
6451 {
6452 nodemask_t used_nodes;
6453 int i;
6454
6455 cpumask_clear(span);
6456 nodes_clear(used_nodes);
6457
6458 cpumask_or(span, span, cpumask_of_node(node));
6459 node_set(node, used_nodes);
6460
6461 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6462 int next_node = find_next_best_node(node, &used_nodes);
6463
6464 cpumask_or(span, span, cpumask_of_node(next_node));
6465 }
6466 }
6467 #endif /* CONFIG_NUMA */
6468
6469 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6470
6471 /*
6472 * The cpus mask in sched_group and sched_domain hangs off the end.
6473 *
6474 * ( See the the comments in include/linux/sched.h:struct sched_group
6475 * and struct sched_domain. )
6476 */
6477 struct static_sched_group {
6478 struct sched_group sg;
6479 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6480 };
6481
6482 struct static_sched_domain {
6483 struct sched_domain sd;
6484 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6485 };
6486
6487 struct s_data {
6488 #ifdef CONFIG_NUMA
6489 int sd_allnodes;
6490 cpumask_var_t domainspan;
6491 cpumask_var_t covered;
6492 cpumask_var_t notcovered;
6493 #endif
6494 cpumask_var_t nodemask;
6495 cpumask_var_t this_sibling_map;
6496 cpumask_var_t this_core_map;
6497 cpumask_var_t send_covered;
6498 cpumask_var_t tmpmask;
6499 struct sched_group **sched_group_nodes;
6500 struct root_domain *rd;
6501 };
6502
6503 enum s_alloc {
6504 sa_sched_groups = 0,
6505 sa_rootdomain,
6506 sa_tmpmask,
6507 sa_send_covered,
6508 sa_this_core_map,
6509 sa_this_sibling_map,
6510 sa_nodemask,
6511 sa_sched_group_nodes,
6512 #ifdef CONFIG_NUMA
6513 sa_notcovered,
6514 sa_covered,
6515 sa_domainspan,
6516 #endif
6517 sa_none,
6518 };
6519
6520 /*
6521 * SMT sched-domains:
6522 */
6523 #ifdef CONFIG_SCHED_SMT
6524 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
6525 static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
6526
6527 static int
6528 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6529 struct sched_group **sg, struct cpumask *unused)
6530 {
6531 if (sg)
6532 *sg = &per_cpu(sched_groups, cpu).sg;
6533 return cpu;
6534 }
6535 #endif /* CONFIG_SCHED_SMT */
6536
6537 /*
6538 * multi-core sched-domains:
6539 */
6540 #ifdef CONFIG_SCHED_MC
6541 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6542 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6543 #endif /* CONFIG_SCHED_MC */
6544
6545 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6546 static int
6547 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6548 struct sched_group **sg, struct cpumask *mask)
6549 {
6550 int group;
6551
6552 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6553 group = cpumask_first(mask);
6554 if (sg)
6555 *sg = &per_cpu(sched_group_core, group).sg;
6556 return group;
6557 }
6558 #elif defined(CONFIG_SCHED_MC)
6559 static int
6560 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6561 struct sched_group **sg, struct cpumask *unused)
6562 {
6563 if (sg)
6564 *sg = &per_cpu(sched_group_core, cpu).sg;
6565 return cpu;
6566 }
6567 #endif
6568
6569 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6570 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
6571
6572 static int
6573 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6574 struct sched_group **sg, struct cpumask *mask)
6575 {
6576 int group;
6577 #ifdef CONFIG_SCHED_MC
6578 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6579 group = cpumask_first(mask);
6580 #elif defined(CONFIG_SCHED_SMT)
6581 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6582 group = cpumask_first(mask);
6583 #else
6584 group = cpu;
6585 #endif
6586 if (sg)
6587 *sg = &per_cpu(sched_group_phys, group).sg;
6588 return group;
6589 }
6590
6591 #ifdef CONFIG_NUMA
6592 /*
6593 * The init_sched_build_groups can't handle what we want to do with node
6594 * groups, so roll our own. Now each node has its own list of groups which
6595 * gets dynamically allocated.
6596 */
6597 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
6598 static struct sched_group ***sched_group_nodes_bycpu;
6599
6600 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6601 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
6602
6603 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6604 struct sched_group **sg,
6605 struct cpumask *nodemask)
6606 {
6607 int group;
6608
6609 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
6610 group = cpumask_first(nodemask);
6611
6612 if (sg)
6613 *sg = &per_cpu(sched_group_allnodes, group).sg;
6614 return group;
6615 }
6616
6617 static void init_numa_sched_groups_power(struct sched_group *group_head)
6618 {
6619 struct sched_group *sg = group_head;
6620 int j;
6621
6622 if (!sg)
6623 return;
6624 do {
6625 for_each_cpu(j, sched_group_cpus(sg)) {
6626 struct sched_domain *sd;
6627
6628 sd = &per_cpu(phys_domains, j).sd;
6629 if (j != group_first_cpu(sd->groups)) {
6630 /*
6631 * Only add "power" once for each
6632 * physical package.
6633 */
6634 continue;
6635 }
6636
6637 sg->cpu_power += sd->groups->cpu_power;
6638 }
6639 sg = sg->next;
6640 } while (sg != group_head);
6641 }
6642
6643 static int build_numa_sched_groups(struct s_data *d,
6644 const struct cpumask *cpu_map, int num)
6645 {
6646 struct sched_domain *sd;
6647 struct sched_group *sg, *prev;
6648 int n, j;
6649
6650 cpumask_clear(d->covered);
6651 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
6652 if (cpumask_empty(d->nodemask)) {
6653 d->sched_group_nodes[num] = NULL;
6654 goto out;
6655 }
6656
6657 sched_domain_node_span(num, d->domainspan);
6658 cpumask_and(d->domainspan, d->domainspan, cpu_map);
6659
6660 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6661 GFP_KERNEL, num);
6662 if (!sg) {
6663 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
6664 num);
6665 return -ENOMEM;
6666 }
6667 d->sched_group_nodes[num] = sg;
6668
6669 for_each_cpu(j, d->nodemask) {
6670 sd = &per_cpu(node_domains, j).sd;
6671 sd->groups = sg;
6672 }
6673
6674 sg->cpu_power = 0;
6675 cpumask_copy(sched_group_cpus(sg), d->nodemask);
6676 sg->next = sg;
6677 cpumask_or(d->covered, d->covered, d->nodemask);
6678
6679 prev = sg;
6680 for (j = 0; j < nr_node_ids; j++) {
6681 n = (num + j) % nr_node_ids;
6682 cpumask_complement(d->notcovered, d->covered);
6683 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
6684 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
6685 if (cpumask_empty(d->tmpmask))
6686 break;
6687 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
6688 if (cpumask_empty(d->tmpmask))
6689 continue;
6690 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6691 GFP_KERNEL, num);
6692 if (!sg) {
6693 printk(KERN_WARNING
6694 "Can not alloc domain group for node %d\n", j);
6695 return -ENOMEM;
6696 }
6697 sg->cpu_power = 0;
6698 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
6699 sg->next = prev->next;
6700 cpumask_or(d->covered, d->covered, d->tmpmask);
6701 prev->next = sg;
6702 prev = sg;
6703 }
6704 out:
6705 return 0;
6706 }
6707 #endif /* CONFIG_NUMA */
6708
6709 #ifdef CONFIG_NUMA
6710 /* Free memory allocated for various sched_group structures */
6711 static void free_sched_groups(const struct cpumask *cpu_map,
6712 struct cpumask *nodemask)
6713 {
6714 int cpu, i;
6715
6716 for_each_cpu(cpu, cpu_map) {
6717 struct sched_group **sched_group_nodes
6718 = sched_group_nodes_bycpu[cpu];
6719
6720 if (!sched_group_nodes)
6721 continue;
6722
6723 for (i = 0; i < nr_node_ids; i++) {
6724 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6725
6726 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
6727 if (cpumask_empty(nodemask))
6728 continue;
6729
6730 if (sg == NULL)
6731 continue;
6732 sg = sg->next;
6733 next_sg:
6734 oldsg = sg;
6735 sg = sg->next;
6736 kfree(oldsg);
6737 if (oldsg != sched_group_nodes[i])
6738 goto next_sg;
6739 }
6740 kfree(sched_group_nodes);
6741 sched_group_nodes_bycpu[cpu] = NULL;
6742 }
6743 }
6744 #else /* !CONFIG_NUMA */
6745 static void free_sched_groups(const struct cpumask *cpu_map,
6746 struct cpumask *nodemask)
6747 {
6748 }
6749 #endif /* CONFIG_NUMA */
6750
6751 /*
6752 * Initialize sched groups cpu_power.
6753 *
6754 * cpu_power indicates the capacity of sched group, which is used while
6755 * distributing the load between different sched groups in a sched domain.
6756 * Typically cpu_power for all the groups in a sched domain will be same unless
6757 * there are asymmetries in the topology. If there are asymmetries, group
6758 * having more cpu_power will pickup more load compared to the group having
6759 * less cpu_power.
6760 */
6761 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6762 {
6763 struct sched_domain *child;
6764 struct sched_group *group;
6765 long power;
6766 int weight;
6767
6768 WARN_ON(!sd || !sd->groups);
6769
6770 if (cpu != group_first_cpu(sd->groups))
6771 return;
6772
6773 child = sd->child;
6774
6775 sd->groups->cpu_power = 0;
6776
6777 if (!child) {
6778 power = SCHED_LOAD_SCALE;
6779 weight = cpumask_weight(sched_domain_span(sd));
6780 /*
6781 * SMT siblings share the power of a single core.
6782 * Usually multiple threads get a better yield out of
6783 * that one core than a single thread would have,
6784 * reflect that in sd->smt_gain.
6785 */
6786 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
6787 power *= sd->smt_gain;
6788 power /= weight;
6789 power >>= SCHED_LOAD_SHIFT;
6790 }
6791 sd->groups->cpu_power += power;
6792 return;
6793 }
6794
6795 /*
6796 * Add cpu_power of each child group to this groups cpu_power.
6797 */
6798 group = child->groups;
6799 do {
6800 sd->groups->cpu_power += group->cpu_power;
6801 group = group->next;
6802 } while (group != child->groups);
6803 }
6804
6805 /*
6806 * Initializers for schedule domains
6807 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6808 */
6809
6810 #ifdef CONFIG_SCHED_DEBUG
6811 # define SD_INIT_NAME(sd, type) sd->name = #type
6812 #else
6813 # define SD_INIT_NAME(sd, type) do { } while (0)
6814 #endif
6815
6816 #define SD_INIT(sd, type) sd_init_##type(sd)
6817
6818 #define SD_INIT_FUNC(type) \
6819 static noinline void sd_init_##type(struct sched_domain *sd) \
6820 { \
6821 memset(sd, 0, sizeof(*sd)); \
6822 *sd = SD_##type##_INIT; \
6823 sd->level = SD_LV_##type; \
6824 SD_INIT_NAME(sd, type); \
6825 }
6826
6827 SD_INIT_FUNC(CPU)
6828 #ifdef CONFIG_NUMA
6829 SD_INIT_FUNC(ALLNODES)
6830 SD_INIT_FUNC(NODE)
6831 #endif
6832 #ifdef CONFIG_SCHED_SMT
6833 SD_INIT_FUNC(SIBLING)
6834 #endif
6835 #ifdef CONFIG_SCHED_MC
6836 SD_INIT_FUNC(MC)
6837 #endif
6838
6839 static int default_relax_domain_level = -1;
6840
6841 static int __init setup_relax_domain_level(char *str)
6842 {
6843 unsigned long val;
6844
6845 val = simple_strtoul(str, NULL, 0);
6846 if (val < SD_LV_MAX)
6847 default_relax_domain_level = val;
6848
6849 return 1;
6850 }
6851 __setup("relax_domain_level=", setup_relax_domain_level);
6852
6853 static void set_domain_attribute(struct sched_domain *sd,
6854 struct sched_domain_attr *attr)
6855 {
6856 int request;
6857
6858 if (!attr || attr->relax_domain_level < 0) {
6859 if (default_relax_domain_level < 0)
6860 return;
6861 else
6862 request = default_relax_domain_level;
6863 } else
6864 request = attr->relax_domain_level;
6865 if (request < sd->level) {
6866 /* turn off idle balance on this domain */
6867 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6868 } else {
6869 /* turn on idle balance on this domain */
6870 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6871 }
6872 }
6873
6874 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6875 const struct cpumask *cpu_map)
6876 {
6877 switch (what) {
6878 case sa_sched_groups:
6879 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
6880 d->sched_group_nodes = NULL;
6881 case sa_rootdomain:
6882 free_rootdomain(d->rd); /* fall through */
6883 case sa_tmpmask:
6884 free_cpumask_var(d->tmpmask); /* fall through */
6885 case sa_send_covered:
6886 free_cpumask_var(d->send_covered); /* fall through */
6887 case sa_this_core_map:
6888 free_cpumask_var(d->this_core_map); /* fall through */
6889 case sa_this_sibling_map:
6890 free_cpumask_var(d->this_sibling_map); /* fall through */
6891 case sa_nodemask:
6892 free_cpumask_var(d->nodemask); /* fall through */
6893 case sa_sched_group_nodes:
6894 #ifdef CONFIG_NUMA
6895 kfree(d->sched_group_nodes); /* fall through */
6896 case sa_notcovered:
6897 free_cpumask_var(d->notcovered); /* fall through */
6898 case sa_covered:
6899 free_cpumask_var(d->covered); /* fall through */
6900 case sa_domainspan:
6901 free_cpumask_var(d->domainspan); /* fall through */
6902 #endif
6903 case sa_none:
6904 break;
6905 }
6906 }
6907
6908 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6909 const struct cpumask *cpu_map)
6910 {
6911 #ifdef CONFIG_NUMA
6912 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
6913 return sa_none;
6914 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
6915 return sa_domainspan;
6916 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
6917 return sa_covered;
6918 /* Allocate the per-node list of sched groups */
6919 d->sched_group_nodes = kcalloc(nr_node_ids,
6920 sizeof(struct sched_group *), GFP_KERNEL);
6921 if (!d->sched_group_nodes) {
6922 printk(KERN_WARNING "Can not alloc sched group node list\n");
6923 return sa_notcovered;
6924 }
6925 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
6926 #endif
6927 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
6928 return sa_sched_group_nodes;
6929 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
6930 return sa_nodemask;
6931 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
6932 return sa_this_sibling_map;
6933 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
6934 return sa_this_core_map;
6935 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
6936 return sa_send_covered;
6937 d->rd = alloc_rootdomain();
6938 if (!d->rd) {
6939 printk(KERN_WARNING "Cannot alloc root domain\n");
6940 return sa_tmpmask;
6941 }
6942 return sa_rootdomain;
6943 }
6944
6945 static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
6946 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
6947 {
6948 struct sched_domain *sd = NULL;
6949 #ifdef CONFIG_NUMA
6950 struct sched_domain *parent;
6951
6952 d->sd_allnodes = 0;
6953 if (cpumask_weight(cpu_map) >
6954 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
6955 sd = &per_cpu(allnodes_domains, i).sd;
6956 SD_INIT(sd, ALLNODES);
6957 set_domain_attribute(sd, attr);
6958 cpumask_copy(sched_domain_span(sd), cpu_map);
6959 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
6960 d->sd_allnodes = 1;
6961 }
6962 parent = sd;
6963
6964 sd = &per_cpu(node_domains, i).sd;
6965 SD_INIT(sd, NODE);
6966 set_domain_attribute(sd, attr);
6967 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
6968 sd->parent = parent;
6969 if (parent)
6970 parent->child = sd;
6971 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
6972 #endif
6973 return sd;
6974 }
6975
6976 static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
6977 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6978 struct sched_domain *parent, int i)
6979 {
6980 struct sched_domain *sd;
6981 sd = &per_cpu(phys_domains, i).sd;
6982 SD_INIT(sd, CPU);
6983 set_domain_attribute(sd, attr);
6984 cpumask_copy(sched_domain_span(sd), d->nodemask);
6985 sd->parent = parent;
6986 if (parent)
6987 parent->child = sd;
6988 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
6989 return sd;
6990 }
6991
6992 static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
6993 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6994 struct sched_domain *parent, int i)
6995 {
6996 struct sched_domain *sd = parent;
6997 #ifdef CONFIG_SCHED_MC
6998 sd = &per_cpu(core_domains, i).sd;
6999 SD_INIT(sd, MC);
7000 set_domain_attribute(sd, attr);
7001 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
7002 sd->parent = parent;
7003 parent->child = sd;
7004 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
7005 #endif
7006 return sd;
7007 }
7008
7009 static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
7010 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7011 struct sched_domain *parent, int i)
7012 {
7013 struct sched_domain *sd = parent;
7014 #ifdef CONFIG_SCHED_SMT
7015 sd = &per_cpu(cpu_domains, i).sd;
7016 SD_INIT(sd, SIBLING);
7017 set_domain_attribute(sd, attr);
7018 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
7019 sd->parent = parent;
7020 parent->child = sd;
7021 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
7022 #endif
7023 return sd;
7024 }
7025
7026 static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
7027 const struct cpumask *cpu_map, int cpu)
7028 {
7029 switch (l) {
7030 #ifdef CONFIG_SCHED_SMT
7031 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
7032 cpumask_and(d->this_sibling_map, cpu_map,
7033 topology_thread_cpumask(cpu));
7034 if (cpu == cpumask_first(d->this_sibling_map))
7035 init_sched_build_groups(d->this_sibling_map, cpu_map,
7036 &cpu_to_cpu_group,
7037 d->send_covered, d->tmpmask);
7038 break;
7039 #endif
7040 #ifdef CONFIG_SCHED_MC
7041 case SD_LV_MC: /* set up multi-core groups */
7042 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
7043 if (cpu == cpumask_first(d->this_core_map))
7044 init_sched_build_groups(d->this_core_map, cpu_map,
7045 &cpu_to_core_group,
7046 d->send_covered, d->tmpmask);
7047 break;
7048 #endif
7049 case SD_LV_CPU: /* set up physical groups */
7050 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
7051 if (!cpumask_empty(d->nodemask))
7052 init_sched_build_groups(d->nodemask, cpu_map,
7053 &cpu_to_phys_group,
7054 d->send_covered, d->tmpmask);
7055 break;
7056 #ifdef CONFIG_NUMA
7057 case SD_LV_ALLNODES:
7058 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
7059 d->send_covered, d->tmpmask);
7060 break;
7061 #endif
7062 default:
7063 break;
7064 }
7065 }
7066
7067 /*
7068 * Build sched domains for a given set of cpus and attach the sched domains
7069 * to the individual cpus
7070 */
7071 static int __build_sched_domains(const struct cpumask *cpu_map,
7072 struct sched_domain_attr *attr)
7073 {
7074 enum s_alloc alloc_state = sa_none;
7075 struct s_data d;
7076 struct sched_domain *sd;
7077 int i;
7078 #ifdef CONFIG_NUMA
7079 d.sd_allnodes = 0;
7080 #endif
7081
7082 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7083 if (alloc_state != sa_rootdomain)
7084 goto error;
7085 alloc_state = sa_sched_groups;
7086
7087 /*
7088 * Set up domains for cpus specified by the cpu_map.
7089 */
7090 for_each_cpu(i, cpu_map) {
7091 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
7092 cpu_map);
7093
7094 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
7095 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
7096 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
7097 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
7098 }
7099
7100 for_each_cpu(i, cpu_map) {
7101 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
7102 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
7103 }
7104
7105 /* Set up physical groups */
7106 for (i = 0; i < nr_node_ids; i++)
7107 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
7108
7109 #ifdef CONFIG_NUMA
7110 /* Set up node groups */
7111 if (d.sd_allnodes)
7112 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
7113
7114 for (i = 0; i < nr_node_ids; i++)
7115 if (build_numa_sched_groups(&d, cpu_map, i))
7116 goto error;
7117 #endif
7118
7119 /* Calculate CPU power for physical packages and nodes */
7120 #ifdef CONFIG_SCHED_SMT
7121 for_each_cpu(i, cpu_map) {
7122 sd = &per_cpu(cpu_domains, i).sd;
7123 init_sched_groups_power(i, sd);
7124 }
7125 #endif
7126 #ifdef CONFIG_SCHED_MC
7127 for_each_cpu(i, cpu_map) {
7128 sd = &per_cpu(core_domains, i).sd;
7129 init_sched_groups_power(i, sd);
7130 }
7131 #endif
7132
7133 for_each_cpu(i, cpu_map) {
7134 sd = &per_cpu(phys_domains, i).sd;
7135 init_sched_groups_power(i, sd);
7136 }
7137
7138 #ifdef CONFIG_NUMA
7139 for (i = 0; i < nr_node_ids; i++)
7140 init_numa_sched_groups_power(d.sched_group_nodes[i]);
7141
7142 if (d.sd_allnodes) {
7143 struct sched_group *sg;
7144
7145 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7146 d.tmpmask);
7147 init_numa_sched_groups_power(sg);
7148 }
7149 #endif
7150
7151 /* Attach the domains */
7152 for_each_cpu(i, cpu_map) {
7153 #ifdef CONFIG_SCHED_SMT
7154 sd = &per_cpu(cpu_domains, i).sd;
7155 #elif defined(CONFIG_SCHED_MC)
7156 sd = &per_cpu(core_domains, i).sd;
7157 #else
7158 sd = &per_cpu(phys_domains, i).sd;
7159 #endif
7160 cpu_attach_domain(sd, d.rd, i);
7161 }
7162
7163 d.sched_group_nodes = NULL; /* don't free this we still need it */
7164 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7165 return 0;
7166
7167 error:
7168 __free_domain_allocs(&d, alloc_state, cpu_map);
7169 return -ENOMEM;
7170 }
7171
7172 static int build_sched_domains(const struct cpumask *cpu_map)
7173 {
7174 return __build_sched_domains(cpu_map, NULL);
7175 }
7176
7177 static cpumask_var_t *doms_cur; /* current sched domains */
7178 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7179 static struct sched_domain_attr *dattr_cur;
7180 /* attribues of custom domains in 'doms_cur' */
7181
7182 /*
7183 * Special case: If a kmalloc of a doms_cur partition (array of
7184 * cpumask) fails, then fallback to a single sched domain,
7185 * as determined by the single cpumask fallback_doms.
7186 */
7187 static cpumask_var_t fallback_doms;
7188
7189 /*
7190 * arch_update_cpu_topology lets virtualized architectures update the
7191 * cpu core maps. It is supposed to return 1 if the topology changed
7192 * or 0 if it stayed the same.
7193 */
7194 int __attribute__((weak)) arch_update_cpu_topology(void)
7195 {
7196 return 0;
7197 }
7198
7199 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7200 {
7201 int i;
7202 cpumask_var_t *doms;
7203
7204 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7205 if (!doms)
7206 return NULL;
7207 for (i = 0; i < ndoms; i++) {
7208 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7209 free_sched_domains(doms, i);
7210 return NULL;
7211 }
7212 }
7213 return doms;
7214 }
7215
7216 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7217 {
7218 unsigned int i;
7219 for (i = 0; i < ndoms; i++)
7220 free_cpumask_var(doms[i]);
7221 kfree(doms);
7222 }
7223
7224 /*
7225 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7226 * For now this just excludes isolated cpus, but could be used to
7227 * exclude other special cases in the future.
7228 */
7229 static int arch_init_sched_domains(const struct cpumask *cpu_map)
7230 {
7231 int err;
7232
7233 arch_update_cpu_topology();
7234 ndoms_cur = 1;
7235 doms_cur = alloc_sched_domains(ndoms_cur);
7236 if (!doms_cur)
7237 doms_cur = &fallback_doms;
7238 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7239 dattr_cur = NULL;
7240 err = build_sched_domains(doms_cur[0]);
7241 register_sched_domain_sysctl();
7242
7243 return err;
7244 }
7245
7246 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7247 struct cpumask *tmpmask)
7248 {
7249 free_sched_groups(cpu_map, tmpmask);
7250 }
7251
7252 /*
7253 * Detach sched domains from a group of cpus specified in cpu_map
7254 * These cpus will now be attached to the NULL domain
7255 */
7256 static void detach_destroy_domains(const struct cpumask *cpu_map)
7257 {
7258 /* Save because hotplug lock held. */
7259 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7260 int i;
7261
7262 for_each_cpu(i, cpu_map)
7263 cpu_attach_domain(NULL, &def_root_domain, i);
7264 synchronize_sched();
7265 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7266 }
7267
7268 /* handle null as "default" */
7269 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7270 struct sched_domain_attr *new, int idx_new)
7271 {
7272 struct sched_domain_attr tmp;
7273
7274 /* fast path */
7275 if (!new && !cur)
7276 return 1;
7277
7278 tmp = SD_ATTR_INIT;
7279 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7280 new ? (new + idx_new) : &tmp,
7281 sizeof(struct sched_domain_attr));
7282 }
7283
7284 /*
7285 * Partition sched domains as specified by the 'ndoms_new'
7286 * cpumasks in the array doms_new[] of cpumasks. This compares
7287 * doms_new[] to the current sched domain partitioning, doms_cur[].
7288 * It destroys each deleted domain and builds each new domain.
7289 *
7290 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7291 * The masks don't intersect (don't overlap.) We should setup one
7292 * sched domain for each mask. CPUs not in any of the cpumasks will
7293 * not be load balanced. If the same cpumask appears both in the
7294 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7295 * it as it is.
7296 *
7297 * The passed in 'doms_new' should be allocated using
7298 * alloc_sched_domains. This routine takes ownership of it and will
7299 * free_sched_domains it when done with it. If the caller failed the
7300 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7301 * and partition_sched_domains() will fallback to the single partition
7302 * 'fallback_doms', it also forces the domains to be rebuilt.
7303 *
7304 * If doms_new == NULL it will be replaced with cpu_online_mask.
7305 * ndoms_new == 0 is a special case for destroying existing domains,
7306 * and it will not create the default domain.
7307 *
7308 * Call with hotplug lock held
7309 */
7310 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7311 struct sched_domain_attr *dattr_new)
7312 {
7313 int i, j, n;
7314 int new_topology;
7315
7316 mutex_lock(&sched_domains_mutex);
7317
7318 /* always unregister in case we don't destroy any domains */
7319 unregister_sched_domain_sysctl();
7320
7321 /* Let architecture update cpu core mappings. */
7322 new_topology = arch_update_cpu_topology();
7323
7324 n = doms_new ? ndoms_new : 0;
7325
7326 /* Destroy deleted domains */
7327 for (i = 0; i < ndoms_cur; i++) {
7328 for (j = 0; j < n && !new_topology; j++) {
7329 if (cpumask_equal(doms_cur[i], doms_new[j])
7330 && dattrs_equal(dattr_cur, i, dattr_new, j))
7331 goto match1;
7332 }
7333 /* no match - a current sched domain not in new doms_new[] */
7334 detach_destroy_domains(doms_cur[i]);
7335 match1:
7336 ;
7337 }
7338
7339 if (doms_new == NULL) {
7340 ndoms_cur = 0;
7341 doms_new = &fallback_doms;
7342 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7343 WARN_ON_ONCE(dattr_new);
7344 }
7345
7346 /* Build new domains */
7347 for (i = 0; i < ndoms_new; i++) {
7348 for (j = 0; j < ndoms_cur && !new_topology; j++) {
7349 if (cpumask_equal(doms_new[i], doms_cur[j])
7350 && dattrs_equal(dattr_new, i, dattr_cur, j))
7351 goto match2;
7352 }
7353 /* no match - add a new doms_new */
7354 __build_sched_domains(doms_new[i],
7355 dattr_new ? dattr_new + i : NULL);
7356 match2:
7357 ;
7358 }
7359
7360 /* Remember the new sched domains */
7361 if (doms_cur != &fallback_doms)
7362 free_sched_domains(doms_cur, ndoms_cur);
7363 kfree(dattr_cur); /* kfree(NULL) is safe */
7364 doms_cur = doms_new;
7365 dattr_cur = dattr_new;
7366 ndoms_cur = ndoms_new;
7367
7368 register_sched_domain_sysctl();
7369
7370 mutex_unlock(&sched_domains_mutex);
7371 }
7372
7373 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7374 static void arch_reinit_sched_domains(void)
7375 {
7376 get_online_cpus();
7377
7378 /* Destroy domains first to force the rebuild */
7379 partition_sched_domains(0, NULL, NULL);
7380
7381 rebuild_sched_domains();
7382 put_online_cpus();
7383 }
7384
7385 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7386 {
7387 unsigned int level = 0;
7388
7389 if (sscanf(buf, "%u", &level) != 1)
7390 return -EINVAL;
7391
7392 /*
7393 * level is always be positive so don't check for
7394 * level < POWERSAVINGS_BALANCE_NONE which is 0
7395 * What happens on 0 or 1 byte write,
7396 * need to check for count as well?
7397 */
7398
7399 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7400 return -EINVAL;
7401
7402 if (smt)
7403 sched_smt_power_savings = level;
7404 else
7405 sched_mc_power_savings = level;
7406
7407 arch_reinit_sched_domains();
7408
7409 return count;
7410 }
7411
7412 #ifdef CONFIG_SCHED_MC
7413 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7414 struct sysdev_class_attribute *attr,
7415 char *page)
7416 {
7417 return sprintf(page, "%u\n", sched_mc_power_savings);
7418 }
7419 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7420 struct sysdev_class_attribute *attr,
7421 const char *buf, size_t count)
7422 {
7423 return sched_power_savings_store(buf, count, 0);
7424 }
7425 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7426 sched_mc_power_savings_show,
7427 sched_mc_power_savings_store);
7428 #endif
7429
7430 #ifdef CONFIG_SCHED_SMT
7431 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7432 struct sysdev_class_attribute *attr,
7433 char *page)
7434 {
7435 return sprintf(page, "%u\n", sched_smt_power_savings);
7436 }
7437 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7438 struct sysdev_class_attribute *attr,
7439 const char *buf, size_t count)
7440 {
7441 return sched_power_savings_store(buf, count, 1);
7442 }
7443 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7444 sched_smt_power_savings_show,
7445 sched_smt_power_savings_store);
7446 #endif
7447
7448 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7449 {
7450 int err = 0;
7451
7452 #ifdef CONFIG_SCHED_SMT
7453 if (smt_capable())
7454 err = sysfs_create_file(&cls->kset.kobj,
7455 &attr_sched_smt_power_savings.attr);
7456 #endif
7457 #ifdef CONFIG_SCHED_MC
7458 if (!err && mc_capable())
7459 err = sysfs_create_file(&cls->kset.kobj,
7460 &attr_sched_mc_power_savings.attr);
7461 #endif
7462 return err;
7463 }
7464 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7465
7466 #ifndef CONFIG_CPUSETS
7467 /*
7468 * Add online and remove offline CPUs from the scheduler domains.
7469 * When cpusets are enabled they take over this function.
7470 */
7471 static int update_sched_domains(struct notifier_block *nfb,
7472 unsigned long action, void *hcpu)
7473 {
7474 switch (action) {
7475 case CPU_ONLINE:
7476 case CPU_ONLINE_FROZEN:
7477 case CPU_DOWN_PREPARE:
7478 case CPU_DOWN_PREPARE_FROZEN:
7479 case CPU_DOWN_FAILED:
7480 case CPU_DOWN_FAILED_FROZEN:
7481 partition_sched_domains(1, NULL, NULL);
7482 return NOTIFY_OK;
7483
7484 default:
7485 return NOTIFY_DONE;
7486 }
7487 }
7488 #endif
7489
7490 static int update_runtime(struct notifier_block *nfb,
7491 unsigned long action, void *hcpu)
7492 {
7493 int cpu = (int)(long)hcpu;
7494
7495 switch (action) {
7496 case CPU_DOWN_PREPARE:
7497 case CPU_DOWN_PREPARE_FROZEN:
7498 disable_runtime(cpu_rq(cpu));
7499 return NOTIFY_OK;
7500
7501 case CPU_DOWN_FAILED:
7502 case CPU_DOWN_FAILED_FROZEN:
7503 case CPU_ONLINE:
7504 case CPU_ONLINE_FROZEN:
7505 enable_runtime(cpu_rq(cpu));
7506 return NOTIFY_OK;
7507
7508 default:
7509 return NOTIFY_DONE;
7510 }
7511 }
7512
7513 void __init sched_init_smp(void)
7514 {
7515 cpumask_var_t non_isolated_cpus;
7516
7517 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7518 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7519
7520 #if defined(CONFIG_NUMA)
7521 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7522 GFP_KERNEL);
7523 BUG_ON(sched_group_nodes_bycpu == NULL);
7524 #endif
7525 get_online_cpus();
7526 mutex_lock(&sched_domains_mutex);
7527 arch_init_sched_domains(cpu_active_mask);
7528 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7529 if (cpumask_empty(non_isolated_cpus))
7530 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7531 mutex_unlock(&sched_domains_mutex);
7532 put_online_cpus();
7533
7534 #ifndef CONFIG_CPUSETS
7535 /* XXX: Theoretical race here - CPU may be hotplugged now */
7536 hotcpu_notifier(update_sched_domains, 0);
7537 #endif
7538
7539 /* RT runtime code needs to handle some hotplug events */
7540 hotcpu_notifier(update_runtime, 0);
7541
7542 init_hrtick();
7543
7544 /* Move init over to a non-isolated CPU */
7545 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7546 BUG();
7547 sched_init_granularity();
7548 free_cpumask_var(non_isolated_cpus);
7549
7550 init_sched_rt_class();
7551 }
7552 #else
7553 void __init sched_init_smp(void)
7554 {
7555 sched_init_granularity();
7556 }
7557 #endif /* CONFIG_SMP */
7558
7559 const_debug unsigned int sysctl_timer_migration = 1;
7560
7561 int in_sched_functions(unsigned long addr)
7562 {
7563 return in_lock_functions(addr) ||
7564 (addr >= (unsigned long)__sched_text_start
7565 && addr < (unsigned long)__sched_text_end);
7566 }
7567
7568 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
7569 {
7570 cfs_rq->tasks_timeline = RB_ROOT;
7571 INIT_LIST_HEAD(&cfs_rq->tasks);
7572 #ifdef CONFIG_FAIR_GROUP_SCHED
7573 cfs_rq->rq = rq;
7574 #endif
7575 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7576 }
7577
7578 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7579 {
7580 struct rt_prio_array *array;
7581 int i;
7582
7583 array = &rt_rq->active;
7584 for (i = 0; i < MAX_RT_PRIO; i++) {
7585 INIT_LIST_HEAD(array->queue + i);
7586 __clear_bit(i, array->bitmap);
7587 }
7588 /* delimiter for bitsearch: */
7589 __set_bit(MAX_RT_PRIO, array->bitmap);
7590
7591 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7592 rt_rq->highest_prio.curr = MAX_RT_PRIO;
7593 #ifdef CONFIG_SMP
7594 rt_rq->highest_prio.next = MAX_RT_PRIO;
7595 #endif
7596 #endif
7597 #ifdef CONFIG_SMP
7598 rt_rq->rt_nr_migratory = 0;
7599 rt_rq->overloaded = 0;
7600 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
7601 #endif
7602
7603 rt_rq->rt_time = 0;
7604 rt_rq->rt_throttled = 0;
7605 rt_rq->rt_runtime = 0;
7606 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
7607
7608 #ifdef CONFIG_RT_GROUP_SCHED
7609 rt_rq->rt_nr_boosted = 0;
7610 rt_rq->rq = rq;
7611 #endif
7612 }
7613
7614 #ifdef CONFIG_FAIR_GROUP_SCHED
7615 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7616 struct sched_entity *se, int cpu, int add,
7617 struct sched_entity *parent)
7618 {
7619 struct rq *rq = cpu_rq(cpu);
7620 tg->cfs_rq[cpu] = cfs_rq;
7621 init_cfs_rq(cfs_rq, rq);
7622 cfs_rq->tg = tg;
7623 if (add)
7624 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7625
7626 tg->se[cpu] = se;
7627 /* se could be NULL for init_task_group */
7628 if (!se)
7629 return;
7630
7631 if (!parent)
7632 se->cfs_rq = &rq->cfs;
7633 else
7634 se->cfs_rq = parent->my_q;
7635
7636 se->my_q = cfs_rq;
7637 se->load.weight = tg->shares;
7638 se->load.inv_weight = 0;
7639 se->parent = parent;
7640 }
7641 #endif
7642
7643 #ifdef CONFIG_RT_GROUP_SCHED
7644 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7645 struct sched_rt_entity *rt_se, int cpu, int add,
7646 struct sched_rt_entity *parent)
7647 {
7648 struct rq *rq = cpu_rq(cpu);
7649
7650 tg->rt_rq[cpu] = rt_rq;
7651 init_rt_rq(rt_rq, rq);
7652 rt_rq->tg = tg;
7653 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
7654 if (add)
7655 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7656
7657 tg->rt_se[cpu] = rt_se;
7658 if (!rt_se)
7659 return;
7660
7661 if (!parent)
7662 rt_se->rt_rq = &rq->rt;
7663 else
7664 rt_se->rt_rq = parent->my_q;
7665
7666 rt_se->my_q = rt_rq;
7667 rt_se->parent = parent;
7668 INIT_LIST_HEAD(&rt_se->run_list);
7669 }
7670 #endif
7671
7672 void __init sched_init(void)
7673 {
7674 int i, j;
7675 unsigned long alloc_size = 0, ptr;
7676
7677 #ifdef CONFIG_FAIR_GROUP_SCHED
7678 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7679 #endif
7680 #ifdef CONFIG_RT_GROUP_SCHED
7681 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7682 #endif
7683 #ifdef CONFIG_CPUMASK_OFFSTACK
7684 alloc_size += num_possible_cpus() * cpumask_size();
7685 #endif
7686 if (alloc_size) {
7687 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7688
7689 #ifdef CONFIG_FAIR_GROUP_SCHED
7690 init_task_group.se = (struct sched_entity **)ptr;
7691 ptr += nr_cpu_ids * sizeof(void **);
7692
7693 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7694 ptr += nr_cpu_ids * sizeof(void **);
7695
7696 #endif /* CONFIG_FAIR_GROUP_SCHED */
7697 #ifdef CONFIG_RT_GROUP_SCHED
7698 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7699 ptr += nr_cpu_ids * sizeof(void **);
7700
7701 init_task_group.rt_rq = (struct rt_rq **)ptr;
7702 ptr += nr_cpu_ids * sizeof(void **);
7703
7704 #endif /* CONFIG_RT_GROUP_SCHED */
7705 #ifdef CONFIG_CPUMASK_OFFSTACK
7706 for_each_possible_cpu(i) {
7707 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7708 ptr += cpumask_size();
7709 }
7710 #endif /* CONFIG_CPUMASK_OFFSTACK */
7711 }
7712
7713 #ifdef CONFIG_SMP
7714 init_defrootdomain();
7715 #endif
7716
7717 init_rt_bandwidth(&def_rt_bandwidth,
7718 global_rt_period(), global_rt_runtime());
7719
7720 #ifdef CONFIG_RT_GROUP_SCHED
7721 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7722 global_rt_period(), global_rt_runtime());
7723 #endif /* CONFIG_RT_GROUP_SCHED */
7724
7725 #ifdef CONFIG_CGROUP_SCHED
7726 list_add(&init_task_group.list, &task_groups);
7727 INIT_LIST_HEAD(&init_task_group.children);
7728
7729 #endif /* CONFIG_CGROUP_SCHED */
7730
7731 #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
7732 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
7733 __alignof__(unsigned long));
7734 #endif
7735 for_each_possible_cpu(i) {
7736 struct rq *rq;
7737
7738 rq = cpu_rq(i);
7739 raw_spin_lock_init(&rq->lock);
7740 rq->nr_running = 0;
7741 rq->calc_load_active = 0;
7742 rq->calc_load_update = jiffies + LOAD_FREQ;
7743 init_cfs_rq(&rq->cfs, rq);
7744 init_rt_rq(&rq->rt, rq);
7745 #ifdef CONFIG_FAIR_GROUP_SCHED
7746 init_task_group.shares = init_task_group_load;
7747 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7748 #ifdef CONFIG_CGROUP_SCHED
7749 /*
7750 * How much cpu bandwidth does init_task_group get?
7751 *
7752 * In case of task-groups formed thr' the cgroup filesystem, it
7753 * gets 100% of the cpu resources in the system. This overall
7754 * system cpu resource is divided among the tasks of
7755 * init_task_group and its child task-groups in a fair manner,
7756 * based on each entity's (task or task-group's) weight
7757 * (se->load.weight).
7758 *
7759 * In other words, if init_task_group has 10 tasks of weight
7760 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7761 * then A0's share of the cpu resource is:
7762 *
7763 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7764 *
7765 * We achieve this by letting init_task_group's tasks sit
7766 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7767 */
7768 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
7769 #endif
7770 #endif /* CONFIG_FAIR_GROUP_SCHED */
7771
7772 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7773 #ifdef CONFIG_RT_GROUP_SCHED
7774 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7775 #ifdef CONFIG_CGROUP_SCHED
7776 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
7777 #endif
7778 #endif
7779
7780 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7781 rq->cpu_load[j] = 0;
7782 #ifdef CONFIG_SMP
7783 rq->sd = NULL;
7784 rq->rd = NULL;
7785 rq->post_schedule = 0;
7786 rq->active_balance = 0;
7787 rq->next_balance = jiffies;
7788 rq->push_cpu = 0;
7789 rq->cpu = i;
7790 rq->online = 0;
7791 rq->migration_thread = NULL;
7792 rq->idle_stamp = 0;
7793 rq->avg_idle = 2*sysctl_sched_migration_cost;
7794 INIT_LIST_HEAD(&rq->migration_queue);
7795 rq_attach_root(rq, &def_root_domain);
7796 #endif
7797 init_rq_hrtick(rq);
7798 atomic_set(&rq->nr_iowait, 0);
7799 }
7800
7801 set_load_weight(&init_task);
7802
7803 #ifdef CONFIG_PREEMPT_NOTIFIERS
7804 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7805 #endif
7806
7807 #ifdef CONFIG_SMP
7808 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7809 #endif
7810
7811 #ifdef CONFIG_RT_MUTEXES
7812 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
7813 #endif
7814
7815 /*
7816 * The boot idle thread does lazy MMU switching as well:
7817 */
7818 atomic_inc(&init_mm.mm_count);
7819 enter_lazy_tlb(&init_mm, current);
7820
7821 /*
7822 * Make us the idle thread. Technically, schedule() should not be
7823 * called from this thread, however somewhere below it might be,
7824 * but because we are the idle thread, we just pick up running again
7825 * when this runqueue becomes "idle".
7826 */
7827 init_idle(current, smp_processor_id());
7828
7829 calc_load_update = jiffies + LOAD_FREQ;
7830
7831 /*
7832 * During early bootup we pretend to be a normal task:
7833 */
7834 current->sched_class = &fair_sched_class;
7835
7836 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
7837 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
7838 #ifdef CONFIG_SMP
7839 #ifdef CONFIG_NO_HZ
7840 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
7841 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7842 #endif
7843 /* May be allocated at isolcpus cmdline parse time */
7844 if (cpu_isolated_map == NULL)
7845 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7846 #endif /* SMP */
7847
7848 perf_event_init();
7849
7850 scheduler_running = 1;
7851 }
7852
7853 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7854 static inline int preempt_count_equals(int preempt_offset)
7855 {
7856 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7857
7858 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
7859 }
7860
7861 void __might_sleep(const char *file, int line, int preempt_offset)
7862 {
7863 #ifdef in_atomic
7864 static unsigned long prev_jiffy; /* ratelimiting */
7865
7866 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7867 system_state != SYSTEM_RUNNING || oops_in_progress)
7868 return;
7869 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7870 return;
7871 prev_jiffy = jiffies;
7872
7873 printk(KERN_ERR
7874 "BUG: sleeping function called from invalid context at %s:%d\n",
7875 file, line);
7876 printk(KERN_ERR
7877 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7878 in_atomic(), irqs_disabled(),
7879 current->pid, current->comm);
7880
7881 debug_show_held_locks(current);
7882 if (irqs_disabled())
7883 print_irqtrace_events(current);
7884 dump_stack();
7885 #endif
7886 }
7887 EXPORT_SYMBOL(__might_sleep);
7888 #endif
7889
7890 #ifdef CONFIG_MAGIC_SYSRQ
7891 static void normalize_task(struct rq *rq, struct task_struct *p)
7892 {
7893 int on_rq;
7894
7895 update_rq_clock(rq);
7896 on_rq = p->se.on_rq;
7897 if (on_rq)
7898 deactivate_task(rq, p, 0);
7899 __setscheduler(rq, p, SCHED_NORMAL, 0);
7900 if (on_rq) {
7901 activate_task(rq, p, 0);
7902 resched_task(rq->curr);
7903 }
7904 }
7905
7906 void normalize_rt_tasks(void)
7907 {
7908 struct task_struct *g, *p;
7909 unsigned long flags;
7910 struct rq *rq;
7911
7912 read_lock_irqsave(&tasklist_lock, flags);
7913 do_each_thread(g, p) {
7914 /*
7915 * Only normalize user tasks:
7916 */
7917 if (!p->mm)
7918 continue;
7919
7920 p->se.exec_start = 0;
7921 #ifdef CONFIG_SCHEDSTATS
7922 p->se.wait_start = 0;
7923 p->se.sleep_start = 0;
7924 p->se.block_start = 0;
7925 #endif
7926
7927 if (!rt_task(p)) {
7928 /*
7929 * Renice negative nice level userspace
7930 * tasks back to 0:
7931 */
7932 if (TASK_NICE(p) < 0 && p->mm)
7933 set_user_nice(p, 0);
7934 continue;
7935 }
7936
7937 raw_spin_lock(&p->pi_lock);
7938 rq = __task_rq_lock(p);
7939
7940 normalize_task(rq, p);
7941
7942 __task_rq_unlock(rq);
7943 raw_spin_unlock(&p->pi_lock);
7944 } while_each_thread(g, p);
7945
7946 read_unlock_irqrestore(&tasklist_lock, flags);
7947 }
7948
7949 #endif /* CONFIG_MAGIC_SYSRQ */
7950
7951 #ifdef CONFIG_IA64
7952 /*
7953 * These functions are only useful for the IA64 MCA handling.
7954 *
7955 * They can only be called when the whole system has been
7956 * stopped - every CPU needs to be quiescent, and no scheduling
7957 * activity can take place. Using them for anything else would
7958 * be a serious bug, and as a result, they aren't even visible
7959 * under any other configuration.
7960 */
7961
7962 /**
7963 * curr_task - return the current task for a given cpu.
7964 * @cpu: the processor in question.
7965 *
7966 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7967 */
7968 struct task_struct *curr_task(int cpu)
7969 {
7970 return cpu_curr(cpu);
7971 }
7972
7973 /**
7974 * set_curr_task - set the current task for a given cpu.
7975 * @cpu: the processor in question.
7976 * @p: the task pointer to set.
7977 *
7978 * Description: This function must only be used when non-maskable interrupts
7979 * are serviced on a separate stack. It allows the architecture to switch the
7980 * notion of the current task on a cpu in a non-blocking manner. This function
7981 * must be called with all CPU's synchronized, and interrupts disabled, the
7982 * and caller must save the original value of the current task (see
7983 * curr_task() above) and restore that value before reenabling interrupts and
7984 * re-starting the system.
7985 *
7986 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7987 */
7988 void set_curr_task(int cpu, struct task_struct *p)
7989 {
7990 cpu_curr(cpu) = p;
7991 }
7992
7993 #endif
7994
7995 #ifdef CONFIG_FAIR_GROUP_SCHED
7996 static void free_fair_sched_group(struct task_group *tg)
7997 {
7998 int i;
7999
8000 for_each_possible_cpu(i) {
8001 if (tg->cfs_rq)
8002 kfree(tg->cfs_rq[i]);
8003 if (tg->se)
8004 kfree(tg->se[i]);
8005 }
8006
8007 kfree(tg->cfs_rq);
8008 kfree(tg->se);
8009 }
8010
8011 static
8012 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8013 {
8014 struct cfs_rq *cfs_rq;
8015 struct sched_entity *se;
8016 struct rq *rq;
8017 int i;
8018
8019 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8020 if (!tg->cfs_rq)
8021 goto err;
8022 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8023 if (!tg->se)
8024 goto err;
8025
8026 tg->shares = NICE_0_LOAD;
8027
8028 for_each_possible_cpu(i) {
8029 rq = cpu_rq(i);
8030
8031 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8032 GFP_KERNEL, cpu_to_node(i));
8033 if (!cfs_rq)
8034 goto err;
8035
8036 se = kzalloc_node(sizeof(struct sched_entity),
8037 GFP_KERNEL, cpu_to_node(i));
8038 if (!se)
8039 goto err_free_rq;
8040
8041 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
8042 }
8043
8044 return 1;
8045
8046 err_free_rq:
8047 kfree(cfs_rq);
8048 err:
8049 return 0;
8050 }
8051
8052 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8053 {
8054 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8055 &cpu_rq(cpu)->leaf_cfs_rq_list);
8056 }
8057
8058 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8059 {
8060 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8061 }
8062 #else /* !CONFG_FAIR_GROUP_SCHED */
8063 static inline void free_fair_sched_group(struct task_group *tg)
8064 {
8065 }
8066
8067 static inline
8068 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8069 {
8070 return 1;
8071 }
8072
8073 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8074 {
8075 }
8076
8077 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8078 {
8079 }
8080 #endif /* CONFIG_FAIR_GROUP_SCHED */
8081
8082 #ifdef CONFIG_RT_GROUP_SCHED
8083 static void free_rt_sched_group(struct task_group *tg)
8084 {
8085 int i;
8086
8087 destroy_rt_bandwidth(&tg->rt_bandwidth);
8088
8089 for_each_possible_cpu(i) {
8090 if (tg->rt_rq)
8091 kfree(tg->rt_rq[i]);
8092 if (tg->rt_se)
8093 kfree(tg->rt_se[i]);
8094 }
8095
8096 kfree(tg->rt_rq);
8097 kfree(tg->rt_se);
8098 }
8099
8100 static
8101 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8102 {
8103 struct rt_rq *rt_rq;
8104 struct sched_rt_entity *rt_se;
8105 struct rq *rq;
8106 int i;
8107
8108 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8109 if (!tg->rt_rq)
8110 goto err;
8111 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8112 if (!tg->rt_se)
8113 goto err;
8114
8115 init_rt_bandwidth(&tg->rt_bandwidth,
8116 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8117
8118 for_each_possible_cpu(i) {
8119 rq = cpu_rq(i);
8120
8121 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8122 GFP_KERNEL, cpu_to_node(i));
8123 if (!rt_rq)
8124 goto err;
8125
8126 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8127 GFP_KERNEL, cpu_to_node(i));
8128 if (!rt_se)
8129 goto err_free_rq;
8130
8131 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
8132 }
8133
8134 return 1;
8135
8136 err_free_rq:
8137 kfree(rt_rq);
8138 err:
8139 return 0;
8140 }
8141
8142 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8143 {
8144 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8145 &cpu_rq(cpu)->leaf_rt_rq_list);
8146 }
8147
8148 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8149 {
8150 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8151 }
8152 #else /* !CONFIG_RT_GROUP_SCHED */
8153 static inline void free_rt_sched_group(struct task_group *tg)
8154 {
8155 }
8156
8157 static inline
8158 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8159 {
8160 return 1;
8161 }
8162
8163 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8164 {
8165 }
8166
8167 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8168 {
8169 }
8170 #endif /* CONFIG_RT_GROUP_SCHED */
8171
8172 #ifdef CONFIG_CGROUP_SCHED
8173 static void free_sched_group(struct task_group *tg)
8174 {
8175 free_fair_sched_group(tg);
8176 free_rt_sched_group(tg);
8177 kfree(tg);
8178 }
8179
8180 /* allocate runqueue etc for a new task group */
8181 struct task_group *sched_create_group(struct task_group *parent)
8182 {
8183 struct task_group *tg;
8184 unsigned long flags;
8185 int i;
8186
8187 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8188 if (!tg)
8189 return ERR_PTR(-ENOMEM);
8190
8191 if (!alloc_fair_sched_group(tg, parent))
8192 goto err;
8193
8194 if (!alloc_rt_sched_group(tg, parent))
8195 goto err;
8196
8197 spin_lock_irqsave(&task_group_lock, flags);
8198 for_each_possible_cpu(i) {
8199 register_fair_sched_group(tg, i);
8200 register_rt_sched_group(tg, i);
8201 }
8202 list_add_rcu(&tg->list, &task_groups);
8203
8204 WARN_ON(!parent); /* root should already exist */
8205
8206 tg->parent = parent;
8207 INIT_LIST_HEAD(&tg->children);
8208 list_add_rcu(&tg->siblings, &parent->children);
8209 spin_unlock_irqrestore(&task_group_lock, flags);
8210
8211 return tg;
8212
8213 err:
8214 free_sched_group(tg);
8215 return ERR_PTR(-ENOMEM);
8216 }
8217
8218 /* rcu callback to free various structures associated with a task group */
8219 static void free_sched_group_rcu(struct rcu_head *rhp)
8220 {
8221 /* now it should be safe to free those cfs_rqs */
8222 free_sched_group(container_of(rhp, struct task_group, rcu));
8223 }
8224
8225 /* Destroy runqueue etc associated with a task group */
8226 void sched_destroy_group(struct task_group *tg)
8227 {
8228 unsigned long flags;
8229 int i;
8230
8231 spin_lock_irqsave(&task_group_lock, flags);
8232 for_each_possible_cpu(i) {
8233 unregister_fair_sched_group(tg, i);
8234 unregister_rt_sched_group(tg, i);
8235 }
8236 list_del_rcu(&tg->list);
8237 list_del_rcu(&tg->siblings);
8238 spin_unlock_irqrestore(&task_group_lock, flags);
8239
8240 /* wait for possible concurrent references to cfs_rqs complete */
8241 call_rcu(&tg->rcu, free_sched_group_rcu);
8242 }
8243
8244 /* change task's runqueue when it moves between groups.
8245 * The caller of this function should have put the task in its new group
8246 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8247 * reflect its new group.
8248 */
8249 void sched_move_task(struct task_struct *tsk)
8250 {
8251 int on_rq, running;
8252 unsigned long flags;
8253 struct rq *rq;
8254
8255 rq = task_rq_lock(tsk, &flags);
8256
8257 update_rq_clock(rq);
8258
8259 running = task_current(rq, tsk);
8260 on_rq = tsk->se.on_rq;
8261
8262 if (on_rq)
8263 dequeue_task(rq, tsk, 0);
8264 if (unlikely(running))
8265 tsk->sched_class->put_prev_task(rq, tsk);
8266
8267 set_task_rq(tsk, task_cpu(tsk));
8268
8269 #ifdef CONFIG_FAIR_GROUP_SCHED
8270 if (tsk->sched_class->moved_group)
8271 tsk->sched_class->moved_group(tsk, on_rq);
8272 #endif
8273
8274 if (unlikely(running))
8275 tsk->sched_class->set_curr_task(rq);
8276 if (on_rq)
8277 enqueue_task(rq, tsk, 0, false);
8278
8279 task_rq_unlock(rq, &flags);
8280 }
8281 #endif /* CONFIG_CGROUP_SCHED */
8282
8283 #ifdef CONFIG_FAIR_GROUP_SCHED
8284 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
8285 {
8286 struct cfs_rq *cfs_rq = se->cfs_rq;
8287 int on_rq;
8288
8289 on_rq = se->on_rq;
8290 if (on_rq)
8291 dequeue_entity(cfs_rq, se, 0);
8292
8293 se->load.weight = shares;
8294 se->load.inv_weight = 0;
8295
8296 if (on_rq)
8297 enqueue_entity(cfs_rq, se, 0);
8298 }
8299
8300 static void set_se_shares(struct sched_entity *se, unsigned long shares)
8301 {
8302 struct cfs_rq *cfs_rq = se->cfs_rq;
8303 struct rq *rq = cfs_rq->rq;
8304 unsigned long flags;
8305
8306 raw_spin_lock_irqsave(&rq->lock, flags);
8307 __set_se_shares(se, shares);
8308 raw_spin_unlock_irqrestore(&rq->lock, flags);
8309 }
8310
8311 static DEFINE_MUTEX(shares_mutex);
8312
8313 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8314 {
8315 int i;
8316 unsigned long flags;
8317
8318 /*
8319 * We can't change the weight of the root cgroup.
8320 */
8321 if (!tg->se[0])
8322 return -EINVAL;
8323
8324 if (shares < MIN_SHARES)
8325 shares = MIN_SHARES;
8326 else if (shares > MAX_SHARES)
8327 shares = MAX_SHARES;
8328
8329 mutex_lock(&shares_mutex);
8330 if (tg->shares == shares)
8331 goto done;
8332
8333 spin_lock_irqsave(&task_group_lock, flags);
8334 for_each_possible_cpu(i)
8335 unregister_fair_sched_group(tg, i);
8336 list_del_rcu(&tg->siblings);
8337 spin_unlock_irqrestore(&task_group_lock, flags);
8338
8339 /* wait for any ongoing reference to this group to finish */
8340 synchronize_sched();
8341
8342 /*
8343 * Now we are free to modify the group's share on each cpu
8344 * w/o tripping rebalance_share or load_balance_fair.
8345 */
8346 tg->shares = shares;
8347 for_each_possible_cpu(i) {
8348 /*
8349 * force a rebalance
8350 */
8351 cfs_rq_set_shares(tg->cfs_rq[i], 0);
8352 set_se_shares(tg->se[i], shares);
8353 }
8354
8355 /*
8356 * Enable load balance activity on this group, by inserting it back on
8357 * each cpu's rq->leaf_cfs_rq_list.
8358 */
8359 spin_lock_irqsave(&task_group_lock, flags);
8360 for_each_possible_cpu(i)
8361 register_fair_sched_group(tg, i);
8362 list_add_rcu(&tg->siblings, &tg->parent->children);
8363 spin_unlock_irqrestore(&task_group_lock, flags);
8364 done:
8365 mutex_unlock(&shares_mutex);
8366 return 0;
8367 }
8368
8369 unsigned long sched_group_shares(struct task_group *tg)
8370 {
8371 return tg->shares;
8372 }
8373 #endif
8374
8375 #ifdef CONFIG_RT_GROUP_SCHED
8376 /*
8377 * Ensure that the real time constraints are schedulable.
8378 */
8379 static DEFINE_MUTEX(rt_constraints_mutex);
8380
8381 static unsigned long to_ratio(u64 period, u64 runtime)
8382 {
8383 if (runtime == RUNTIME_INF)
8384 return 1ULL << 20;
8385
8386 return div64_u64(runtime << 20, period);
8387 }
8388
8389 /* Must be called with tasklist_lock held */
8390 static inline int tg_has_rt_tasks(struct task_group *tg)
8391 {
8392 struct task_struct *g, *p;
8393
8394 do_each_thread(g, p) {
8395 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8396 return 1;
8397 } while_each_thread(g, p);
8398
8399 return 0;
8400 }
8401
8402 struct rt_schedulable_data {
8403 struct task_group *tg;
8404 u64 rt_period;
8405 u64 rt_runtime;
8406 };
8407
8408 static int tg_schedulable(struct task_group *tg, void *data)
8409 {
8410 struct rt_schedulable_data *d = data;
8411 struct task_group *child;
8412 unsigned long total, sum = 0;
8413 u64 period, runtime;
8414
8415 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8416 runtime = tg->rt_bandwidth.rt_runtime;
8417
8418 if (tg == d->tg) {
8419 period = d->rt_period;
8420 runtime = d->rt_runtime;
8421 }
8422
8423 /*
8424 * Cannot have more runtime than the period.
8425 */
8426 if (runtime > period && runtime != RUNTIME_INF)
8427 return -EINVAL;
8428
8429 /*
8430 * Ensure we don't starve existing RT tasks.
8431 */
8432 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8433 return -EBUSY;
8434
8435 total = to_ratio(period, runtime);
8436
8437 /*
8438 * Nobody can have more than the global setting allows.
8439 */
8440 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8441 return -EINVAL;
8442
8443 /*
8444 * The sum of our children's runtime should not exceed our own.
8445 */
8446 list_for_each_entry_rcu(child, &tg->children, siblings) {
8447 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8448 runtime = child->rt_bandwidth.rt_runtime;
8449
8450 if (child == d->tg) {
8451 period = d->rt_period;
8452 runtime = d->rt_runtime;
8453 }
8454
8455 sum += to_ratio(period, runtime);
8456 }
8457
8458 if (sum > total)
8459 return -EINVAL;
8460
8461 return 0;
8462 }
8463
8464 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8465 {
8466 struct rt_schedulable_data data = {
8467 .tg = tg,
8468 .rt_period = period,
8469 .rt_runtime = runtime,
8470 };
8471
8472 return walk_tg_tree(tg_schedulable, tg_nop, &data);
8473 }
8474
8475 static int tg_set_bandwidth(struct task_group *tg,
8476 u64 rt_period, u64 rt_runtime)
8477 {
8478 int i, err = 0;
8479
8480 mutex_lock(&rt_constraints_mutex);
8481 read_lock(&tasklist_lock);
8482 err = __rt_schedulable(tg, rt_period, rt_runtime);
8483 if (err)
8484 goto unlock;
8485
8486 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8487 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8488 tg->rt_bandwidth.rt_runtime = rt_runtime;
8489
8490 for_each_possible_cpu(i) {
8491 struct rt_rq *rt_rq = tg->rt_rq[i];
8492
8493 raw_spin_lock(&rt_rq->rt_runtime_lock);
8494 rt_rq->rt_runtime = rt_runtime;
8495 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8496 }
8497 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8498 unlock:
8499 read_unlock(&tasklist_lock);
8500 mutex_unlock(&rt_constraints_mutex);
8501
8502 return err;
8503 }
8504
8505 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8506 {
8507 u64 rt_runtime, rt_period;
8508
8509 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8510 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8511 if (rt_runtime_us < 0)
8512 rt_runtime = RUNTIME_INF;
8513
8514 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8515 }
8516
8517 long sched_group_rt_runtime(struct task_group *tg)
8518 {
8519 u64 rt_runtime_us;
8520
8521 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8522 return -1;
8523
8524 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8525 do_div(rt_runtime_us, NSEC_PER_USEC);
8526 return rt_runtime_us;
8527 }
8528
8529 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8530 {
8531 u64 rt_runtime, rt_period;
8532
8533 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8534 rt_runtime = tg->rt_bandwidth.rt_runtime;
8535
8536 if (rt_period == 0)
8537 return -EINVAL;
8538
8539 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8540 }
8541
8542 long sched_group_rt_period(struct task_group *tg)
8543 {
8544 u64 rt_period_us;
8545
8546 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8547 do_div(rt_period_us, NSEC_PER_USEC);
8548 return rt_period_us;
8549 }
8550
8551 static int sched_rt_global_constraints(void)
8552 {
8553 u64 runtime, period;
8554 int ret = 0;
8555
8556 if (sysctl_sched_rt_period <= 0)
8557 return -EINVAL;
8558
8559 runtime = global_rt_runtime();
8560 period = global_rt_period();
8561
8562 /*
8563 * Sanity check on the sysctl variables.
8564 */
8565 if (runtime > period && runtime != RUNTIME_INF)
8566 return -EINVAL;
8567
8568 mutex_lock(&rt_constraints_mutex);
8569 read_lock(&tasklist_lock);
8570 ret = __rt_schedulable(NULL, 0, 0);
8571 read_unlock(&tasklist_lock);
8572 mutex_unlock(&rt_constraints_mutex);
8573
8574 return ret;
8575 }
8576
8577 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8578 {
8579 /* Don't accept realtime tasks when there is no way for them to run */
8580 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8581 return 0;
8582
8583 return 1;
8584 }
8585
8586 #else /* !CONFIG_RT_GROUP_SCHED */
8587 static int sched_rt_global_constraints(void)
8588 {
8589 unsigned long flags;
8590 int i;
8591
8592 if (sysctl_sched_rt_period <= 0)
8593 return -EINVAL;
8594
8595 /*
8596 * There's always some RT tasks in the root group
8597 * -- migration, kstopmachine etc..
8598 */
8599 if (sysctl_sched_rt_runtime == 0)
8600 return -EBUSY;
8601
8602 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8603 for_each_possible_cpu(i) {
8604 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8605
8606 raw_spin_lock(&rt_rq->rt_runtime_lock);
8607 rt_rq->rt_runtime = global_rt_runtime();
8608 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8609 }
8610 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8611
8612 return 0;
8613 }
8614 #endif /* CONFIG_RT_GROUP_SCHED */
8615
8616 int sched_rt_handler(struct ctl_table *table, int write,
8617 void __user *buffer, size_t *lenp,
8618 loff_t *ppos)
8619 {
8620 int ret;
8621 int old_period, old_runtime;
8622 static DEFINE_MUTEX(mutex);
8623
8624 mutex_lock(&mutex);
8625 old_period = sysctl_sched_rt_period;
8626 old_runtime = sysctl_sched_rt_runtime;
8627
8628 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8629
8630 if (!ret && write) {
8631 ret = sched_rt_global_constraints();
8632 if (ret) {
8633 sysctl_sched_rt_period = old_period;
8634 sysctl_sched_rt_runtime = old_runtime;
8635 } else {
8636 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8637 def_rt_bandwidth.rt_period =
8638 ns_to_ktime(global_rt_period());
8639 }
8640 }
8641 mutex_unlock(&mutex);
8642
8643 return ret;
8644 }
8645
8646 #ifdef CONFIG_CGROUP_SCHED
8647
8648 /* return corresponding task_group object of a cgroup */
8649 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8650 {
8651 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8652 struct task_group, css);
8653 }
8654
8655 static struct cgroup_subsys_state *
8656 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8657 {
8658 struct task_group *tg, *parent;
8659
8660 if (!cgrp->parent) {
8661 /* This is early initialization for the top cgroup */
8662 return &init_task_group.css;
8663 }
8664
8665 parent = cgroup_tg(cgrp->parent);
8666 tg = sched_create_group(parent);
8667 if (IS_ERR(tg))
8668 return ERR_PTR(-ENOMEM);
8669
8670 return &tg->css;
8671 }
8672
8673 static void
8674 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8675 {
8676 struct task_group *tg = cgroup_tg(cgrp);
8677
8678 sched_destroy_group(tg);
8679 }
8680
8681 static int
8682 cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
8683 {
8684 #ifdef CONFIG_RT_GROUP_SCHED
8685 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
8686 return -EINVAL;
8687 #else
8688 /* We don't support RT-tasks being in separate groups */
8689 if (tsk->sched_class != &fair_sched_class)
8690 return -EINVAL;
8691 #endif
8692 return 0;
8693 }
8694
8695 static int
8696 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8697 struct task_struct *tsk, bool threadgroup)
8698 {
8699 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
8700 if (retval)
8701 return retval;
8702 if (threadgroup) {
8703 struct task_struct *c;
8704 rcu_read_lock();
8705 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8706 retval = cpu_cgroup_can_attach_task(cgrp, c);
8707 if (retval) {
8708 rcu_read_unlock();
8709 return retval;
8710 }
8711 }
8712 rcu_read_unlock();
8713 }
8714 return 0;
8715 }
8716
8717 static void
8718 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8719 struct cgroup *old_cont, struct task_struct *tsk,
8720 bool threadgroup)
8721 {
8722 sched_move_task(tsk);
8723 if (threadgroup) {
8724 struct task_struct *c;
8725 rcu_read_lock();
8726 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8727 sched_move_task(c);
8728 }
8729 rcu_read_unlock();
8730 }
8731 }
8732
8733 #ifdef CONFIG_FAIR_GROUP_SCHED
8734 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8735 u64 shareval)
8736 {
8737 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8738 }
8739
8740 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8741 {
8742 struct task_group *tg = cgroup_tg(cgrp);
8743
8744 return (u64) tg->shares;
8745 }
8746 #endif /* CONFIG_FAIR_GROUP_SCHED */
8747
8748 #ifdef CONFIG_RT_GROUP_SCHED
8749 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8750 s64 val)
8751 {
8752 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
8753 }
8754
8755 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
8756 {
8757 return sched_group_rt_runtime(cgroup_tg(cgrp));
8758 }
8759
8760 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8761 u64 rt_period_us)
8762 {
8763 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8764 }
8765
8766 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8767 {
8768 return sched_group_rt_period(cgroup_tg(cgrp));
8769 }
8770 #endif /* CONFIG_RT_GROUP_SCHED */
8771
8772 static struct cftype cpu_files[] = {
8773 #ifdef CONFIG_FAIR_GROUP_SCHED
8774 {
8775 .name = "shares",
8776 .read_u64 = cpu_shares_read_u64,
8777 .write_u64 = cpu_shares_write_u64,
8778 },
8779 #endif
8780 #ifdef CONFIG_RT_GROUP_SCHED
8781 {
8782 .name = "rt_runtime_us",
8783 .read_s64 = cpu_rt_runtime_read,
8784 .write_s64 = cpu_rt_runtime_write,
8785 },
8786 {
8787 .name = "rt_period_us",
8788 .read_u64 = cpu_rt_period_read_uint,
8789 .write_u64 = cpu_rt_period_write_uint,
8790 },
8791 #endif
8792 };
8793
8794 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8795 {
8796 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8797 }
8798
8799 struct cgroup_subsys cpu_cgroup_subsys = {
8800 .name = "cpu",
8801 .create = cpu_cgroup_create,
8802 .destroy = cpu_cgroup_destroy,
8803 .can_attach = cpu_cgroup_can_attach,
8804 .attach = cpu_cgroup_attach,
8805 .populate = cpu_cgroup_populate,
8806 .subsys_id = cpu_cgroup_subsys_id,
8807 .early_init = 1,
8808 };
8809
8810 #endif /* CONFIG_CGROUP_SCHED */
8811
8812 #ifdef CONFIG_CGROUP_CPUACCT
8813
8814 /*
8815 * CPU accounting code for task groups.
8816 *
8817 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8818 * (balbir@in.ibm.com).
8819 */
8820
8821 /* track cpu usage of a group of tasks and its child groups */
8822 struct cpuacct {
8823 struct cgroup_subsys_state css;
8824 /* cpuusage holds pointer to a u64-type object on every cpu */
8825 u64 __percpu *cpuusage;
8826 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
8827 struct cpuacct *parent;
8828 };
8829
8830 struct cgroup_subsys cpuacct_subsys;
8831
8832 /* return cpu accounting group corresponding to this container */
8833 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8834 {
8835 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8836 struct cpuacct, css);
8837 }
8838
8839 /* return cpu accounting group to which this task belongs */
8840 static inline struct cpuacct *task_ca(struct task_struct *tsk)
8841 {
8842 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8843 struct cpuacct, css);
8844 }
8845
8846 /* create a new cpu accounting group */
8847 static struct cgroup_subsys_state *cpuacct_create(
8848 struct cgroup_subsys *ss, struct cgroup *cgrp)
8849 {
8850 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8851 int i;
8852
8853 if (!ca)
8854 goto out;
8855
8856 ca->cpuusage = alloc_percpu(u64);
8857 if (!ca->cpuusage)
8858 goto out_free_ca;
8859
8860 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8861 if (percpu_counter_init(&ca->cpustat[i], 0))
8862 goto out_free_counters;
8863
8864 if (cgrp->parent)
8865 ca->parent = cgroup_ca(cgrp->parent);
8866
8867 return &ca->css;
8868
8869 out_free_counters:
8870 while (--i >= 0)
8871 percpu_counter_destroy(&ca->cpustat[i]);
8872 free_percpu(ca->cpuusage);
8873 out_free_ca:
8874 kfree(ca);
8875 out:
8876 return ERR_PTR(-ENOMEM);
8877 }
8878
8879 /* destroy an existing cpu accounting group */
8880 static void
8881 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8882 {
8883 struct cpuacct *ca = cgroup_ca(cgrp);
8884 int i;
8885
8886 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8887 percpu_counter_destroy(&ca->cpustat[i]);
8888 free_percpu(ca->cpuusage);
8889 kfree(ca);
8890 }
8891
8892 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8893 {
8894 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8895 u64 data;
8896
8897 #ifndef CONFIG_64BIT
8898 /*
8899 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8900 */
8901 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8902 data = *cpuusage;
8903 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8904 #else
8905 data = *cpuusage;
8906 #endif
8907
8908 return data;
8909 }
8910
8911 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8912 {
8913 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8914
8915 #ifndef CONFIG_64BIT
8916 /*
8917 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8918 */
8919 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8920 *cpuusage = val;
8921 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8922 #else
8923 *cpuusage = val;
8924 #endif
8925 }
8926
8927 /* return total cpu usage (in nanoseconds) of a group */
8928 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8929 {
8930 struct cpuacct *ca = cgroup_ca(cgrp);
8931 u64 totalcpuusage = 0;
8932 int i;
8933
8934 for_each_present_cpu(i)
8935 totalcpuusage += cpuacct_cpuusage_read(ca, i);
8936
8937 return totalcpuusage;
8938 }
8939
8940 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8941 u64 reset)
8942 {
8943 struct cpuacct *ca = cgroup_ca(cgrp);
8944 int err = 0;
8945 int i;
8946
8947 if (reset) {
8948 err = -EINVAL;
8949 goto out;
8950 }
8951
8952 for_each_present_cpu(i)
8953 cpuacct_cpuusage_write(ca, i, 0);
8954
8955 out:
8956 return err;
8957 }
8958
8959 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8960 struct seq_file *m)
8961 {
8962 struct cpuacct *ca = cgroup_ca(cgroup);
8963 u64 percpu;
8964 int i;
8965
8966 for_each_present_cpu(i) {
8967 percpu = cpuacct_cpuusage_read(ca, i);
8968 seq_printf(m, "%llu ", (unsigned long long) percpu);
8969 }
8970 seq_printf(m, "\n");
8971 return 0;
8972 }
8973
8974 static const char *cpuacct_stat_desc[] = {
8975 [CPUACCT_STAT_USER] = "user",
8976 [CPUACCT_STAT_SYSTEM] = "system",
8977 };
8978
8979 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8980 struct cgroup_map_cb *cb)
8981 {
8982 struct cpuacct *ca = cgroup_ca(cgrp);
8983 int i;
8984
8985 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
8986 s64 val = percpu_counter_read(&ca->cpustat[i]);
8987 val = cputime64_to_clock_t(val);
8988 cb->fill(cb, cpuacct_stat_desc[i], val);
8989 }
8990 return 0;
8991 }
8992
8993 static struct cftype files[] = {
8994 {
8995 .name = "usage",
8996 .read_u64 = cpuusage_read,
8997 .write_u64 = cpuusage_write,
8998 },
8999 {
9000 .name = "usage_percpu",
9001 .read_seq_string = cpuacct_percpu_seq_read,
9002 },
9003 {
9004 .name = "stat",
9005 .read_map = cpuacct_stats_show,
9006 },
9007 };
9008
9009 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9010 {
9011 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9012 }
9013
9014 /*
9015 * charge this task's execution time to its accounting group.
9016 *
9017 * called with rq->lock held.
9018 */
9019 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9020 {
9021 struct cpuacct *ca;
9022 int cpu;
9023
9024 if (unlikely(!cpuacct_subsys.active))
9025 return;
9026
9027 cpu = task_cpu(tsk);
9028
9029 rcu_read_lock();
9030
9031 ca = task_ca(tsk);
9032
9033 for (; ca; ca = ca->parent) {
9034 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9035 *cpuusage += cputime;
9036 }
9037
9038 rcu_read_unlock();
9039 }
9040
9041 /*
9042 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9043 * in cputime_t units. As a result, cpuacct_update_stats calls
9044 * percpu_counter_add with values large enough to always overflow the
9045 * per cpu batch limit causing bad SMP scalability.
9046 *
9047 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9048 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9049 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9050 */
9051 #ifdef CONFIG_SMP
9052 #define CPUACCT_BATCH \
9053 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9054 #else
9055 #define CPUACCT_BATCH 0
9056 #endif
9057
9058 /*
9059 * Charge the system/user time to the task's accounting group.
9060 */
9061 static void cpuacct_update_stats(struct task_struct *tsk,
9062 enum cpuacct_stat_index idx, cputime_t val)
9063 {
9064 struct cpuacct *ca;
9065 int batch = CPUACCT_BATCH;
9066
9067 if (unlikely(!cpuacct_subsys.active))
9068 return;
9069
9070 rcu_read_lock();
9071 ca = task_ca(tsk);
9072
9073 do {
9074 __percpu_counter_add(&ca->cpustat[idx], val, batch);
9075 ca = ca->parent;
9076 } while (ca);
9077 rcu_read_unlock();
9078 }
9079
9080 struct cgroup_subsys cpuacct_subsys = {
9081 .name = "cpuacct",
9082 .create = cpuacct_create,
9083 .destroy = cpuacct_destroy,
9084 .populate = cpuacct_populate,
9085 .subsys_id = cpuacct_subsys_id,
9086 };
9087 #endif /* CONFIG_CGROUP_CPUACCT */
9088
9089 #ifndef CONFIG_SMP
9090
9091 int rcu_expedited_torture_stats(char *page)
9092 {
9093 return 0;
9094 }
9095 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
9096
9097 void synchronize_sched_expedited(void)
9098 {
9099 }
9100 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9101
9102 #else /* #ifndef CONFIG_SMP */
9103
9104 static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
9105 static DEFINE_MUTEX(rcu_sched_expedited_mutex);
9106
9107 #define RCU_EXPEDITED_STATE_POST -2
9108 #define RCU_EXPEDITED_STATE_IDLE -1
9109
9110 static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
9111
9112 int rcu_expedited_torture_stats(char *page)
9113 {
9114 int cnt = 0;
9115 int cpu;
9116
9117 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
9118 for_each_online_cpu(cpu) {
9119 cnt += sprintf(&page[cnt], " %d:%d",
9120 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
9121 }
9122 cnt += sprintf(&page[cnt], "\n");
9123 return cnt;
9124 }
9125 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
9126
9127 static long synchronize_sched_expedited_count;
9128
9129 /*
9130 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
9131 * approach to force grace period to end quickly. This consumes
9132 * significant time on all CPUs, and is thus not recommended for
9133 * any sort of common-case code.
9134 *
9135 * Note that it is illegal to call this function while holding any
9136 * lock that is acquired by a CPU-hotplug notifier. Failing to
9137 * observe this restriction will result in deadlock.
9138 */
9139 void synchronize_sched_expedited(void)
9140 {
9141 int cpu;
9142 unsigned long flags;
9143 bool need_full_sync = 0;
9144 struct rq *rq;
9145 struct migration_req *req;
9146 long snap;
9147 int trycount = 0;
9148
9149 smp_mb(); /* ensure prior mod happens before capturing snap. */
9150 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
9151 get_online_cpus();
9152 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
9153 put_online_cpus();
9154 if (trycount++ < 10)
9155 udelay(trycount * num_online_cpus());
9156 else {
9157 synchronize_sched();
9158 return;
9159 }
9160 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
9161 smp_mb(); /* ensure test happens before caller kfree */
9162 return;
9163 }
9164 get_online_cpus();
9165 }
9166 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
9167 for_each_online_cpu(cpu) {
9168 rq = cpu_rq(cpu);
9169 req = &per_cpu(rcu_migration_req, cpu);
9170 init_completion(&req->done);
9171 req->task = NULL;
9172 req->dest_cpu = RCU_MIGRATION_NEED_QS;
9173 raw_spin_lock_irqsave(&rq->lock, flags);
9174 list_add(&req->list, &rq->migration_queue);
9175 raw_spin_unlock_irqrestore(&rq->lock, flags);
9176 wake_up_process(rq->migration_thread);
9177 }
9178 for_each_online_cpu(cpu) {
9179 rcu_expedited_state = cpu;
9180 req = &per_cpu(rcu_migration_req, cpu);
9181 rq = cpu_rq(cpu);
9182 wait_for_completion(&req->done);
9183 raw_spin_lock_irqsave(&rq->lock, flags);
9184 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
9185 need_full_sync = 1;
9186 req->dest_cpu = RCU_MIGRATION_IDLE;
9187 raw_spin_unlock_irqrestore(&rq->lock, flags);
9188 }
9189 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
9190 synchronize_sched_expedited_count++;
9191 mutex_unlock(&rcu_sched_expedited_mutex);
9192 put_online_cpus();
9193 if (need_full_sync)
9194 synchronize_sched();
9195 }
9196 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9197
9198 #endif /* #else #ifndef CONFIG_SMP */
This page took 0.426312 seconds and 5 git commands to generate.