7fe334ead4f945b30a86986b0ff4563b0253f25f
[deliverable/linux.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/reciprocal_div.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70
71 #include <asm/tlb.h>
72 #include <asm/irq_regs.h>
73
74 /*
75 * Scheduler clock - returns current time in nanosec units.
76 * This is default implementation.
77 * Architectures and sub-architectures can override this.
78 */
79 unsigned long long __attribute__((weak)) sched_clock(void)
80 {
81 return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
82 }
83
84 /*
85 * Convert user-nice values [ -20 ... 0 ... 19 ]
86 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
87 * and back.
88 */
89 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
90 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
91 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
92
93 /*
94 * 'User priority' is the nice value converted to something we
95 * can work with better when scaling various scheduler parameters,
96 * it's a [ 0 ... 39 ] range.
97 */
98 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
99 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
100 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
101
102 /*
103 * Helpers for converting nanosecond timing to jiffy resolution
104 */
105 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
106
107 #define NICE_0_LOAD SCHED_LOAD_SCALE
108 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
109
110 /*
111 * These are the 'tuning knobs' of the scheduler:
112 *
113 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
114 * Timeslices get refilled after they expire.
115 */
116 #define DEF_TIMESLICE (100 * HZ / 1000)
117
118 #ifdef CONFIG_SMP
119 /*
120 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
121 * Since cpu_power is a 'constant', we can use a reciprocal divide.
122 */
123 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
124 {
125 return reciprocal_divide(load, sg->reciprocal_cpu_power);
126 }
127
128 /*
129 * Each time a sched group cpu_power is changed,
130 * we must compute its reciprocal value
131 */
132 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
133 {
134 sg->__cpu_power += val;
135 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
136 }
137 #endif
138
139 static inline int rt_policy(int policy)
140 {
141 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
142 return 1;
143 return 0;
144 }
145
146 static inline int task_has_rt_policy(struct task_struct *p)
147 {
148 return rt_policy(p->policy);
149 }
150
151 /*
152 * This is the priority-queue data structure of the RT scheduling class:
153 */
154 struct rt_prio_array {
155 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
156 struct list_head queue[MAX_RT_PRIO];
157 };
158
159 #ifdef CONFIG_GROUP_SCHED
160
161 #include <linux/cgroup.h>
162
163 struct cfs_rq;
164
165 static LIST_HEAD(task_groups);
166
167 /* task group related information */
168 struct task_group {
169 #ifdef CONFIG_CGROUP_SCHED
170 struct cgroup_subsys_state css;
171 #endif
172
173 #ifdef CONFIG_FAIR_GROUP_SCHED
174 /* schedulable entities of this group on each cpu */
175 struct sched_entity **se;
176 /* runqueue "owned" by this group on each cpu */
177 struct cfs_rq **cfs_rq;
178 unsigned long shares;
179 #endif
180
181 #ifdef CONFIG_RT_GROUP_SCHED
182 struct sched_rt_entity **rt_se;
183 struct rt_rq **rt_rq;
184
185 u64 rt_runtime;
186 #endif
187
188 struct rcu_head rcu;
189 struct list_head list;
190 };
191
192 #ifdef CONFIG_FAIR_GROUP_SCHED
193 /* Default task group's sched entity on each cpu */
194 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
195 /* Default task group's cfs_rq on each cpu */
196 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
197
198 static struct sched_entity *init_sched_entity_p[NR_CPUS];
199 static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
200 #endif
201
202 #ifdef CONFIG_RT_GROUP_SCHED
203 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
204 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
205
206 static struct sched_rt_entity *init_sched_rt_entity_p[NR_CPUS];
207 static struct rt_rq *init_rt_rq_p[NR_CPUS];
208 #endif
209
210 /* task_group_lock serializes add/remove of task groups and also changes to
211 * a task group's cpu shares.
212 */
213 static DEFINE_SPINLOCK(task_group_lock);
214
215 /* doms_cur_mutex serializes access to doms_cur[] array */
216 static DEFINE_MUTEX(doms_cur_mutex);
217
218 #ifdef CONFIG_FAIR_GROUP_SCHED
219 #ifdef CONFIG_USER_SCHED
220 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
221 #else
222 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
223 #endif
224
225 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
226 #endif
227
228 /* Default task group.
229 * Every task in system belong to this group at bootup.
230 */
231 struct task_group init_task_group = {
232 #ifdef CONFIG_FAIR_GROUP_SCHED
233 .se = init_sched_entity_p,
234 .cfs_rq = init_cfs_rq_p,
235 #endif
236
237 #ifdef CONFIG_RT_GROUP_SCHED
238 .rt_se = init_sched_rt_entity_p,
239 .rt_rq = init_rt_rq_p,
240 #endif
241 };
242
243 /* return group to which a task belongs */
244 static inline struct task_group *task_group(struct task_struct *p)
245 {
246 struct task_group *tg;
247
248 #ifdef CONFIG_USER_SCHED
249 tg = p->user->tg;
250 #elif defined(CONFIG_CGROUP_SCHED)
251 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
252 struct task_group, css);
253 #else
254 tg = &init_task_group;
255 #endif
256 return tg;
257 }
258
259 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
260 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
261 {
262 #ifdef CONFIG_FAIR_GROUP_SCHED
263 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
264 p->se.parent = task_group(p)->se[cpu];
265 #endif
266
267 #ifdef CONFIG_RT_GROUP_SCHED
268 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
269 p->rt.parent = task_group(p)->rt_se[cpu];
270 #endif
271 }
272
273 static inline void lock_doms_cur(void)
274 {
275 mutex_lock(&doms_cur_mutex);
276 }
277
278 static inline void unlock_doms_cur(void)
279 {
280 mutex_unlock(&doms_cur_mutex);
281 }
282
283 #else
284
285 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
286 static inline void lock_doms_cur(void) { }
287 static inline void unlock_doms_cur(void) { }
288
289 #endif /* CONFIG_GROUP_SCHED */
290
291 /* CFS-related fields in a runqueue */
292 struct cfs_rq {
293 struct load_weight load;
294 unsigned long nr_running;
295
296 u64 exec_clock;
297 u64 min_vruntime;
298
299 struct rb_root tasks_timeline;
300 struct rb_node *rb_leftmost;
301 struct rb_node *rb_load_balance_curr;
302 /* 'curr' points to currently running entity on this cfs_rq.
303 * It is set to NULL otherwise (i.e when none are currently running).
304 */
305 struct sched_entity *curr, *next;
306
307 unsigned long nr_spread_over;
308
309 #ifdef CONFIG_FAIR_GROUP_SCHED
310 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
311
312 /*
313 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
314 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
315 * (like users, containers etc.)
316 *
317 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
318 * list is used during load balance.
319 */
320 struct list_head leaf_cfs_rq_list;
321 struct task_group *tg; /* group that "owns" this runqueue */
322 #endif
323 };
324
325 /* Real-Time classes' related field in a runqueue: */
326 struct rt_rq {
327 struct rt_prio_array active;
328 unsigned long rt_nr_running;
329 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
330 int highest_prio; /* highest queued rt task prio */
331 #endif
332 #ifdef CONFIG_SMP
333 unsigned long rt_nr_migratory;
334 int overloaded;
335 #endif
336 int rt_throttled;
337 u64 rt_time;
338
339 #ifdef CONFIG_RT_GROUP_SCHED
340 unsigned long rt_nr_boosted;
341
342 struct rq *rq;
343 struct list_head leaf_rt_rq_list;
344 struct task_group *tg;
345 struct sched_rt_entity *rt_se;
346 #endif
347 };
348
349 #ifdef CONFIG_SMP
350
351 /*
352 * We add the notion of a root-domain which will be used to define per-domain
353 * variables. Each exclusive cpuset essentially defines an island domain by
354 * fully partitioning the member cpus from any other cpuset. Whenever a new
355 * exclusive cpuset is created, we also create and attach a new root-domain
356 * object.
357 *
358 */
359 struct root_domain {
360 atomic_t refcount;
361 cpumask_t span;
362 cpumask_t online;
363
364 /*
365 * The "RT overload" flag: it gets set if a CPU has more than
366 * one runnable RT task.
367 */
368 cpumask_t rto_mask;
369 atomic_t rto_count;
370 };
371
372 /*
373 * By default the system creates a single root-domain with all cpus as
374 * members (mimicking the global state we have today).
375 */
376 static struct root_domain def_root_domain;
377
378 #endif
379
380 /*
381 * This is the main, per-CPU runqueue data structure.
382 *
383 * Locking rule: those places that want to lock multiple runqueues
384 * (such as the load balancing or the thread migration code), lock
385 * acquire operations must be ordered by ascending &runqueue.
386 */
387 struct rq {
388 /* runqueue lock: */
389 spinlock_t lock;
390
391 /*
392 * nr_running and cpu_load should be in the same cacheline because
393 * remote CPUs use both these fields when doing load calculation.
394 */
395 unsigned long nr_running;
396 #define CPU_LOAD_IDX_MAX 5
397 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
398 unsigned char idle_at_tick;
399 #ifdef CONFIG_NO_HZ
400 unsigned char in_nohz_recently;
401 #endif
402 /* capture load from *all* tasks on this cpu: */
403 struct load_weight load;
404 unsigned long nr_load_updates;
405 u64 nr_switches;
406
407 struct cfs_rq cfs;
408 struct rt_rq rt;
409 u64 rt_period_expire;
410 int rt_throttled;
411
412 #ifdef CONFIG_FAIR_GROUP_SCHED
413 /* list of leaf cfs_rq on this cpu: */
414 struct list_head leaf_cfs_rq_list;
415 #endif
416 #ifdef CONFIG_RT_GROUP_SCHED
417 struct list_head leaf_rt_rq_list;
418 #endif
419
420 /*
421 * This is part of a global counter where only the total sum
422 * over all CPUs matters. A task can increase this counter on
423 * one CPU and if it got migrated afterwards it may decrease
424 * it on another CPU. Always updated under the runqueue lock:
425 */
426 unsigned long nr_uninterruptible;
427
428 struct task_struct *curr, *idle;
429 unsigned long next_balance;
430 struct mm_struct *prev_mm;
431
432 u64 clock, prev_clock_raw;
433 s64 clock_max_delta;
434
435 unsigned int clock_warps, clock_overflows, clock_underflows;
436 u64 idle_clock;
437 unsigned int clock_deep_idle_events;
438 u64 tick_timestamp;
439
440 atomic_t nr_iowait;
441
442 #ifdef CONFIG_SMP
443 struct root_domain *rd;
444 struct sched_domain *sd;
445
446 /* For active balancing */
447 int active_balance;
448 int push_cpu;
449 /* cpu of this runqueue: */
450 int cpu;
451
452 struct task_struct *migration_thread;
453 struct list_head migration_queue;
454 #endif
455
456 #ifdef CONFIG_SCHED_HRTICK
457 unsigned long hrtick_flags;
458 ktime_t hrtick_expire;
459 struct hrtimer hrtick_timer;
460 #endif
461
462 #ifdef CONFIG_SCHEDSTATS
463 /* latency stats */
464 struct sched_info rq_sched_info;
465
466 /* sys_sched_yield() stats */
467 unsigned int yld_exp_empty;
468 unsigned int yld_act_empty;
469 unsigned int yld_both_empty;
470 unsigned int yld_count;
471
472 /* schedule() stats */
473 unsigned int sched_switch;
474 unsigned int sched_count;
475 unsigned int sched_goidle;
476
477 /* try_to_wake_up() stats */
478 unsigned int ttwu_count;
479 unsigned int ttwu_local;
480
481 /* BKL stats */
482 unsigned int bkl_count;
483 #endif
484 struct lock_class_key rq_lock_key;
485 };
486
487 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
488
489 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
490 {
491 rq->curr->sched_class->check_preempt_curr(rq, p);
492 }
493
494 static inline int cpu_of(struct rq *rq)
495 {
496 #ifdef CONFIG_SMP
497 return rq->cpu;
498 #else
499 return 0;
500 #endif
501 }
502
503 /*
504 * Update the per-runqueue clock, as finegrained as the platform can give
505 * us, but without assuming monotonicity, etc.:
506 */
507 static void __update_rq_clock(struct rq *rq)
508 {
509 u64 prev_raw = rq->prev_clock_raw;
510 u64 now = sched_clock();
511 s64 delta = now - prev_raw;
512 u64 clock = rq->clock;
513
514 #ifdef CONFIG_SCHED_DEBUG
515 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
516 #endif
517 /*
518 * Protect against sched_clock() occasionally going backwards:
519 */
520 if (unlikely(delta < 0)) {
521 clock++;
522 rq->clock_warps++;
523 } else {
524 /*
525 * Catch too large forward jumps too:
526 */
527 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
528 if (clock < rq->tick_timestamp + TICK_NSEC)
529 clock = rq->tick_timestamp + TICK_NSEC;
530 else
531 clock++;
532 rq->clock_overflows++;
533 } else {
534 if (unlikely(delta > rq->clock_max_delta))
535 rq->clock_max_delta = delta;
536 clock += delta;
537 }
538 }
539
540 rq->prev_clock_raw = now;
541 rq->clock = clock;
542 }
543
544 static void update_rq_clock(struct rq *rq)
545 {
546 if (likely(smp_processor_id() == cpu_of(rq)))
547 __update_rq_clock(rq);
548 }
549
550 /*
551 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
552 * See detach_destroy_domains: synchronize_sched for details.
553 *
554 * The domain tree of any CPU may only be accessed from within
555 * preempt-disabled sections.
556 */
557 #define for_each_domain(cpu, __sd) \
558 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
559
560 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
561 #define this_rq() (&__get_cpu_var(runqueues))
562 #define task_rq(p) cpu_rq(task_cpu(p))
563 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
564
565 unsigned long rt_needs_cpu(int cpu)
566 {
567 struct rq *rq = cpu_rq(cpu);
568 u64 delta;
569
570 if (!rq->rt_throttled)
571 return 0;
572
573 if (rq->clock > rq->rt_period_expire)
574 return 1;
575
576 delta = rq->rt_period_expire - rq->clock;
577 do_div(delta, NSEC_PER_SEC / HZ);
578
579 return (unsigned long)delta;
580 }
581
582 /*
583 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
584 */
585 #ifdef CONFIG_SCHED_DEBUG
586 # define const_debug __read_mostly
587 #else
588 # define const_debug static const
589 #endif
590
591 /*
592 * Debugging: various feature bits
593 */
594 enum {
595 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
596 SCHED_FEAT_WAKEUP_PREEMPT = 2,
597 SCHED_FEAT_START_DEBIT = 4,
598 SCHED_FEAT_HRTICK = 8,
599 SCHED_FEAT_DOUBLE_TICK = 16,
600 };
601
602 const_debug unsigned int sysctl_sched_features =
603 SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
604 SCHED_FEAT_WAKEUP_PREEMPT * 1 |
605 SCHED_FEAT_START_DEBIT * 1 |
606 SCHED_FEAT_HRTICK * 1 |
607 SCHED_FEAT_DOUBLE_TICK * 0;
608
609 #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
610
611 /*
612 * Number of tasks to iterate in a single balance run.
613 * Limited because this is done with IRQs disabled.
614 */
615 const_debug unsigned int sysctl_sched_nr_migrate = 32;
616
617 /*
618 * period over which we measure -rt task cpu usage in us.
619 * default: 1s
620 */
621 unsigned int sysctl_sched_rt_period = 1000000;
622
623 static __read_mostly int scheduler_running;
624
625 /*
626 * part of the period that we allow rt tasks to run in us.
627 * default: 0.95s
628 */
629 int sysctl_sched_rt_runtime = 950000;
630
631 /*
632 * single value that denotes runtime == period, ie unlimited time.
633 */
634 #define RUNTIME_INF ((u64)~0ULL)
635
636 static const unsigned long long time_sync_thresh = 100000;
637
638 static DEFINE_PER_CPU(unsigned long long, time_offset);
639 static DEFINE_PER_CPU(unsigned long long, prev_cpu_time);
640
641 /*
642 * Global lock which we take every now and then to synchronize
643 * the CPUs time. This method is not warp-safe, but it's good
644 * enough to synchronize slowly diverging time sources and thus
645 * it's good enough for tracing:
646 */
647 static DEFINE_SPINLOCK(time_sync_lock);
648 static unsigned long long prev_global_time;
649
650 static unsigned long long __sync_cpu_clock(cycles_t time, int cpu)
651 {
652 unsigned long flags;
653
654 spin_lock_irqsave(&time_sync_lock, flags);
655
656 if (time < prev_global_time) {
657 per_cpu(time_offset, cpu) += prev_global_time - time;
658 time = prev_global_time;
659 } else {
660 prev_global_time = time;
661 }
662
663 spin_unlock_irqrestore(&time_sync_lock, flags);
664
665 return time;
666 }
667
668 static unsigned long long __cpu_clock(int cpu)
669 {
670 unsigned long long now;
671 unsigned long flags;
672 struct rq *rq;
673
674 /*
675 * Only call sched_clock() if the scheduler has already been
676 * initialized (some code might call cpu_clock() very early):
677 */
678 if (unlikely(!scheduler_running))
679 return 0;
680
681 local_irq_save(flags);
682 rq = cpu_rq(cpu);
683 update_rq_clock(rq);
684 now = rq->clock;
685 local_irq_restore(flags);
686
687 return now;
688 }
689
690 /*
691 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
692 * clock constructed from sched_clock():
693 */
694 unsigned long long cpu_clock(int cpu)
695 {
696 unsigned long long prev_cpu_time, time, delta_time;
697
698 prev_cpu_time = per_cpu(prev_cpu_time, cpu);
699 time = __cpu_clock(cpu) + per_cpu(time_offset, cpu);
700 delta_time = time-prev_cpu_time;
701
702 if (unlikely(delta_time > time_sync_thresh))
703 time = __sync_cpu_clock(time, cpu);
704
705 return time;
706 }
707 EXPORT_SYMBOL_GPL(cpu_clock);
708
709 #ifndef prepare_arch_switch
710 # define prepare_arch_switch(next) do { } while (0)
711 #endif
712 #ifndef finish_arch_switch
713 # define finish_arch_switch(prev) do { } while (0)
714 #endif
715
716 static inline int task_current(struct rq *rq, struct task_struct *p)
717 {
718 return rq->curr == p;
719 }
720
721 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
722 static inline int task_running(struct rq *rq, struct task_struct *p)
723 {
724 return task_current(rq, p);
725 }
726
727 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
728 {
729 }
730
731 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
732 {
733 #ifdef CONFIG_DEBUG_SPINLOCK
734 /* this is a valid case when another task releases the spinlock */
735 rq->lock.owner = current;
736 #endif
737 /*
738 * If we are tracking spinlock dependencies then we have to
739 * fix up the runqueue lock - which gets 'carried over' from
740 * prev into current:
741 */
742 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
743
744 spin_unlock_irq(&rq->lock);
745 }
746
747 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
748 static inline int task_running(struct rq *rq, struct task_struct *p)
749 {
750 #ifdef CONFIG_SMP
751 return p->oncpu;
752 #else
753 return task_current(rq, p);
754 #endif
755 }
756
757 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
758 {
759 #ifdef CONFIG_SMP
760 /*
761 * We can optimise this out completely for !SMP, because the
762 * SMP rebalancing from interrupt is the only thing that cares
763 * here.
764 */
765 next->oncpu = 1;
766 #endif
767 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
768 spin_unlock_irq(&rq->lock);
769 #else
770 spin_unlock(&rq->lock);
771 #endif
772 }
773
774 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
775 {
776 #ifdef CONFIG_SMP
777 /*
778 * After ->oncpu is cleared, the task can be moved to a different CPU.
779 * We must ensure this doesn't happen until the switch is completely
780 * finished.
781 */
782 smp_wmb();
783 prev->oncpu = 0;
784 #endif
785 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
786 local_irq_enable();
787 #endif
788 }
789 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
790
791 /*
792 * __task_rq_lock - lock the runqueue a given task resides on.
793 * Must be called interrupts disabled.
794 */
795 static inline struct rq *__task_rq_lock(struct task_struct *p)
796 __acquires(rq->lock)
797 {
798 for (;;) {
799 struct rq *rq = task_rq(p);
800 spin_lock(&rq->lock);
801 if (likely(rq == task_rq(p)))
802 return rq;
803 spin_unlock(&rq->lock);
804 }
805 }
806
807 /*
808 * task_rq_lock - lock the runqueue a given task resides on and disable
809 * interrupts. Note the ordering: we can safely lookup the task_rq without
810 * explicitly disabling preemption.
811 */
812 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
813 __acquires(rq->lock)
814 {
815 struct rq *rq;
816
817 for (;;) {
818 local_irq_save(*flags);
819 rq = task_rq(p);
820 spin_lock(&rq->lock);
821 if (likely(rq == task_rq(p)))
822 return rq;
823 spin_unlock_irqrestore(&rq->lock, *flags);
824 }
825 }
826
827 static void __task_rq_unlock(struct rq *rq)
828 __releases(rq->lock)
829 {
830 spin_unlock(&rq->lock);
831 }
832
833 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
834 __releases(rq->lock)
835 {
836 spin_unlock_irqrestore(&rq->lock, *flags);
837 }
838
839 /*
840 * this_rq_lock - lock this runqueue and disable interrupts.
841 */
842 static struct rq *this_rq_lock(void)
843 __acquires(rq->lock)
844 {
845 struct rq *rq;
846
847 local_irq_disable();
848 rq = this_rq();
849 spin_lock(&rq->lock);
850
851 return rq;
852 }
853
854 /*
855 * We are going deep-idle (irqs are disabled):
856 */
857 void sched_clock_idle_sleep_event(void)
858 {
859 struct rq *rq = cpu_rq(smp_processor_id());
860
861 spin_lock(&rq->lock);
862 __update_rq_clock(rq);
863 spin_unlock(&rq->lock);
864 rq->clock_deep_idle_events++;
865 }
866 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
867
868 /*
869 * We just idled delta nanoseconds (called with irqs disabled):
870 */
871 void sched_clock_idle_wakeup_event(u64 delta_ns)
872 {
873 struct rq *rq = cpu_rq(smp_processor_id());
874 u64 now = sched_clock();
875
876 rq->idle_clock += delta_ns;
877 /*
878 * Override the previous timestamp and ignore all
879 * sched_clock() deltas that occured while we idled,
880 * and use the PM-provided delta_ns to advance the
881 * rq clock:
882 */
883 spin_lock(&rq->lock);
884 rq->prev_clock_raw = now;
885 rq->clock += delta_ns;
886 spin_unlock(&rq->lock);
887 touch_softlockup_watchdog();
888 }
889 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
890
891 static void __resched_task(struct task_struct *p, int tif_bit);
892
893 static inline void resched_task(struct task_struct *p)
894 {
895 __resched_task(p, TIF_NEED_RESCHED);
896 }
897
898 #ifdef CONFIG_SCHED_HRTICK
899 /*
900 * Use HR-timers to deliver accurate preemption points.
901 *
902 * Its all a bit involved since we cannot program an hrt while holding the
903 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
904 * reschedule event.
905 *
906 * When we get rescheduled we reprogram the hrtick_timer outside of the
907 * rq->lock.
908 */
909 static inline void resched_hrt(struct task_struct *p)
910 {
911 __resched_task(p, TIF_HRTICK_RESCHED);
912 }
913
914 static inline void resched_rq(struct rq *rq)
915 {
916 unsigned long flags;
917
918 spin_lock_irqsave(&rq->lock, flags);
919 resched_task(rq->curr);
920 spin_unlock_irqrestore(&rq->lock, flags);
921 }
922
923 enum {
924 HRTICK_SET, /* re-programm hrtick_timer */
925 HRTICK_RESET, /* not a new slice */
926 };
927
928 /*
929 * Use hrtick when:
930 * - enabled by features
931 * - hrtimer is actually high res
932 */
933 static inline int hrtick_enabled(struct rq *rq)
934 {
935 if (!sched_feat(HRTICK))
936 return 0;
937 return hrtimer_is_hres_active(&rq->hrtick_timer);
938 }
939
940 /*
941 * Called to set the hrtick timer state.
942 *
943 * called with rq->lock held and irqs disabled
944 */
945 static void hrtick_start(struct rq *rq, u64 delay, int reset)
946 {
947 assert_spin_locked(&rq->lock);
948
949 /*
950 * preempt at: now + delay
951 */
952 rq->hrtick_expire =
953 ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
954 /*
955 * indicate we need to program the timer
956 */
957 __set_bit(HRTICK_SET, &rq->hrtick_flags);
958 if (reset)
959 __set_bit(HRTICK_RESET, &rq->hrtick_flags);
960
961 /*
962 * New slices are called from the schedule path and don't need a
963 * forced reschedule.
964 */
965 if (reset)
966 resched_hrt(rq->curr);
967 }
968
969 static void hrtick_clear(struct rq *rq)
970 {
971 if (hrtimer_active(&rq->hrtick_timer))
972 hrtimer_cancel(&rq->hrtick_timer);
973 }
974
975 /*
976 * Update the timer from the possible pending state.
977 */
978 static void hrtick_set(struct rq *rq)
979 {
980 ktime_t time;
981 int set, reset;
982 unsigned long flags;
983
984 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
985
986 spin_lock_irqsave(&rq->lock, flags);
987 set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
988 reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
989 time = rq->hrtick_expire;
990 clear_thread_flag(TIF_HRTICK_RESCHED);
991 spin_unlock_irqrestore(&rq->lock, flags);
992
993 if (set) {
994 hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
995 if (reset && !hrtimer_active(&rq->hrtick_timer))
996 resched_rq(rq);
997 } else
998 hrtick_clear(rq);
999 }
1000
1001 /*
1002 * High-resolution timer tick.
1003 * Runs from hardirq context with interrupts disabled.
1004 */
1005 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1006 {
1007 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1008
1009 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1010
1011 spin_lock(&rq->lock);
1012 __update_rq_clock(rq);
1013 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1014 spin_unlock(&rq->lock);
1015
1016 return HRTIMER_NORESTART;
1017 }
1018
1019 static inline void init_rq_hrtick(struct rq *rq)
1020 {
1021 rq->hrtick_flags = 0;
1022 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1023 rq->hrtick_timer.function = hrtick;
1024 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
1025 }
1026
1027 void hrtick_resched(void)
1028 {
1029 struct rq *rq;
1030 unsigned long flags;
1031
1032 if (!test_thread_flag(TIF_HRTICK_RESCHED))
1033 return;
1034
1035 local_irq_save(flags);
1036 rq = cpu_rq(smp_processor_id());
1037 hrtick_set(rq);
1038 local_irq_restore(flags);
1039 }
1040 #else
1041 static inline void hrtick_clear(struct rq *rq)
1042 {
1043 }
1044
1045 static inline void hrtick_set(struct rq *rq)
1046 {
1047 }
1048
1049 static inline void init_rq_hrtick(struct rq *rq)
1050 {
1051 }
1052
1053 void hrtick_resched(void)
1054 {
1055 }
1056 #endif
1057
1058 /*
1059 * resched_task - mark a task 'to be rescheduled now'.
1060 *
1061 * On UP this means the setting of the need_resched flag, on SMP it
1062 * might also involve a cross-CPU call to trigger the scheduler on
1063 * the target CPU.
1064 */
1065 #ifdef CONFIG_SMP
1066
1067 #ifndef tsk_is_polling
1068 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1069 #endif
1070
1071 static void __resched_task(struct task_struct *p, int tif_bit)
1072 {
1073 int cpu;
1074
1075 assert_spin_locked(&task_rq(p)->lock);
1076
1077 if (unlikely(test_tsk_thread_flag(p, tif_bit)))
1078 return;
1079
1080 set_tsk_thread_flag(p, tif_bit);
1081
1082 cpu = task_cpu(p);
1083 if (cpu == smp_processor_id())
1084 return;
1085
1086 /* NEED_RESCHED must be visible before we test polling */
1087 smp_mb();
1088 if (!tsk_is_polling(p))
1089 smp_send_reschedule(cpu);
1090 }
1091
1092 static void resched_cpu(int cpu)
1093 {
1094 struct rq *rq = cpu_rq(cpu);
1095 unsigned long flags;
1096
1097 if (!spin_trylock_irqsave(&rq->lock, flags))
1098 return;
1099 resched_task(cpu_curr(cpu));
1100 spin_unlock_irqrestore(&rq->lock, flags);
1101 }
1102
1103 #ifdef CONFIG_NO_HZ
1104 /*
1105 * When add_timer_on() enqueues a timer into the timer wheel of an
1106 * idle CPU then this timer might expire before the next timer event
1107 * which is scheduled to wake up that CPU. In case of a completely
1108 * idle system the next event might even be infinite time into the
1109 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1110 * leaves the inner idle loop so the newly added timer is taken into
1111 * account when the CPU goes back to idle and evaluates the timer
1112 * wheel for the next timer event.
1113 */
1114 void wake_up_idle_cpu(int cpu)
1115 {
1116 struct rq *rq = cpu_rq(cpu);
1117
1118 if (cpu == smp_processor_id())
1119 return;
1120
1121 /*
1122 * This is safe, as this function is called with the timer
1123 * wheel base lock of (cpu) held. When the CPU is on the way
1124 * to idle and has not yet set rq->curr to idle then it will
1125 * be serialized on the timer wheel base lock and take the new
1126 * timer into account automatically.
1127 */
1128 if (rq->curr != rq->idle)
1129 return;
1130
1131 /*
1132 * We can set TIF_RESCHED on the idle task of the other CPU
1133 * lockless. The worst case is that the other CPU runs the
1134 * idle task through an additional NOOP schedule()
1135 */
1136 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1137
1138 /* NEED_RESCHED must be visible before we test polling */
1139 smp_mb();
1140 if (!tsk_is_polling(rq->idle))
1141 smp_send_reschedule(cpu);
1142 }
1143 #endif
1144
1145 #else
1146 static void __resched_task(struct task_struct *p, int tif_bit)
1147 {
1148 assert_spin_locked(&task_rq(p)->lock);
1149 set_tsk_thread_flag(p, tif_bit);
1150 }
1151 #endif
1152
1153 #if BITS_PER_LONG == 32
1154 # define WMULT_CONST (~0UL)
1155 #else
1156 # define WMULT_CONST (1UL << 32)
1157 #endif
1158
1159 #define WMULT_SHIFT 32
1160
1161 /*
1162 * Shift right and round:
1163 */
1164 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1165
1166 static unsigned long
1167 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1168 struct load_weight *lw)
1169 {
1170 u64 tmp;
1171
1172 if (unlikely(!lw->inv_weight))
1173 lw->inv_weight = (WMULT_CONST-lw->weight/2) / (lw->weight+1);
1174
1175 tmp = (u64)delta_exec * weight;
1176 /*
1177 * Check whether we'd overflow the 64-bit multiplication:
1178 */
1179 if (unlikely(tmp > WMULT_CONST))
1180 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1181 WMULT_SHIFT/2);
1182 else
1183 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1184
1185 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1186 }
1187
1188 static inline unsigned long
1189 calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
1190 {
1191 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
1192 }
1193
1194 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1195 {
1196 lw->weight += inc;
1197 lw->inv_weight = 0;
1198 }
1199
1200 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1201 {
1202 lw->weight -= dec;
1203 lw->inv_weight = 0;
1204 }
1205
1206 /*
1207 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1208 * of tasks with abnormal "nice" values across CPUs the contribution that
1209 * each task makes to its run queue's load is weighted according to its
1210 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1211 * scaled version of the new time slice allocation that they receive on time
1212 * slice expiry etc.
1213 */
1214
1215 #define WEIGHT_IDLEPRIO 2
1216 #define WMULT_IDLEPRIO (1 << 31)
1217
1218 /*
1219 * Nice levels are multiplicative, with a gentle 10% change for every
1220 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1221 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1222 * that remained on nice 0.
1223 *
1224 * The "10% effect" is relative and cumulative: from _any_ nice level,
1225 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1226 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1227 * If a task goes up by ~10% and another task goes down by ~10% then
1228 * the relative distance between them is ~25%.)
1229 */
1230 static const int prio_to_weight[40] = {
1231 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1232 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1233 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1234 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1235 /* 0 */ 1024, 820, 655, 526, 423,
1236 /* 5 */ 335, 272, 215, 172, 137,
1237 /* 10 */ 110, 87, 70, 56, 45,
1238 /* 15 */ 36, 29, 23, 18, 15,
1239 };
1240
1241 /*
1242 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1243 *
1244 * In cases where the weight does not change often, we can use the
1245 * precalculated inverse to speed up arithmetics by turning divisions
1246 * into multiplications:
1247 */
1248 static const u32 prio_to_wmult[40] = {
1249 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1250 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1251 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1252 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1253 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1254 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1255 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1256 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1257 };
1258
1259 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1260
1261 /*
1262 * runqueue iterator, to support SMP load-balancing between different
1263 * scheduling classes, without having to expose their internal data
1264 * structures to the load-balancing proper:
1265 */
1266 struct rq_iterator {
1267 void *arg;
1268 struct task_struct *(*start)(void *);
1269 struct task_struct *(*next)(void *);
1270 };
1271
1272 #ifdef CONFIG_SMP
1273 static unsigned long
1274 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1275 unsigned long max_load_move, struct sched_domain *sd,
1276 enum cpu_idle_type idle, int *all_pinned,
1277 int *this_best_prio, struct rq_iterator *iterator);
1278
1279 static int
1280 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1281 struct sched_domain *sd, enum cpu_idle_type idle,
1282 struct rq_iterator *iterator);
1283 #endif
1284
1285 #ifdef CONFIG_CGROUP_CPUACCT
1286 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1287 #else
1288 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1289 #endif
1290
1291 #ifdef CONFIG_SMP
1292 static unsigned long source_load(int cpu, int type);
1293 static unsigned long target_load(int cpu, int type);
1294 static unsigned long cpu_avg_load_per_task(int cpu);
1295 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1296 #endif /* CONFIG_SMP */
1297
1298 #include "sched_stats.h"
1299 #include "sched_idletask.c"
1300 #include "sched_fair.c"
1301 #include "sched_rt.c"
1302 #ifdef CONFIG_SCHED_DEBUG
1303 # include "sched_debug.c"
1304 #endif
1305
1306 #define sched_class_highest (&rt_sched_class)
1307
1308 static inline void inc_load(struct rq *rq, const struct task_struct *p)
1309 {
1310 update_load_add(&rq->load, p->se.load.weight);
1311 }
1312
1313 static inline void dec_load(struct rq *rq, const struct task_struct *p)
1314 {
1315 update_load_sub(&rq->load, p->se.load.weight);
1316 }
1317
1318 static void inc_nr_running(struct task_struct *p, struct rq *rq)
1319 {
1320 rq->nr_running++;
1321 inc_load(rq, p);
1322 }
1323
1324 static void dec_nr_running(struct task_struct *p, struct rq *rq)
1325 {
1326 rq->nr_running--;
1327 dec_load(rq, p);
1328 }
1329
1330 static void set_load_weight(struct task_struct *p)
1331 {
1332 if (task_has_rt_policy(p)) {
1333 p->se.load.weight = prio_to_weight[0] * 2;
1334 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1335 return;
1336 }
1337
1338 /*
1339 * SCHED_IDLE tasks get minimal weight:
1340 */
1341 if (p->policy == SCHED_IDLE) {
1342 p->se.load.weight = WEIGHT_IDLEPRIO;
1343 p->se.load.inv_weight = WMULT_IDLEPRIO;
1344 return;
1345 }
1346
1347 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1348 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1349 }
1350
1351 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1352 {
1353 sched_info_queued(p);
1354 p->sched_class->enqueue_task(rq, p, wakeup);
1355 p->se.on_rq = 1;
1356 }
1357
1358 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1359 {
1360 p->sched_class->dequeue_task(rq, p, sleep);
1361 p->se.on_rq = 0;
1362 }
1363
1364 /*
1365 * __normal_prio - return the priority that is based on the static prio
1366 */
1367 static inline int __normal_prio(struct task_struct *p)
1368 {
1369 return p->static_prio;
1370 }
1371
1372 /*
1373 * Calculate the expected normal priority: i.e. priority
1374 * without taking RT-inheritance into account. Might be
1375 * boosted by interactivity modifiers. Changes upon fork,
1376 * setprio syscalls, and whenever the interactivity
1377 * estimator recalculates.
1378 */
1379 static inline int normal_prio(struct task_struct *p)
1380 {
1381 int prio;
1382
1383 if (task_has_rt_policy(p))
1384 prio = MAX_RT_PRIO-1 - p->rt_priority;
1385 else
1386 prio = __normal_prio(p);
1387 return prio;
1388 }
1389
1390 /*
1391 * Calculate the current priority, i.e. the priority
1392 * taken into account by the scheduler. This value might
1393 * be boosted by RT tasks, or might be boosted by
1394 * interactivity modifiers. Will be RT if the task got
1395 * RT-boosted. If not then it returns p->normal_prio.
1396 */
1397 static int effective_prio(struct task_struct *p)
1398 {
1399 p->normal_prio = normal_prio(p);
1400 /*
1401 * If we are RT tasks or we were boosted to RT priority,
1402 * keep the priority unchanged. Otherwise, update priority
1403 * to the normal priority:
1404 */
1405 if (!rt_prio(p->prio))
1406 return p->normal_prio;
1407 return p->prio;
1408 }
1409
1410 /*
1411 * activate_task - move a task to the runqueue.
1412 */
1413 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1414 {
1415 if (task_contributes_to_load(p))
1416 rq->nr_uninterruptible--;
1417
1418 enqueue_task(rq, p, wakeup);
1419 inc_nr_running(p, rq);
1420 }
1421
1422 /*
1423 * deactivate_task - remove a task from the runqueue.
1424 */
1425 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1426 {
1427 if (task_contributes_to_load(p))
1428 rq->nr_uninterruptible++;
1429
1430 dequeue_task(rq, p, sleep);
1431 dec_nr_running(p, rq);
1432 }
1433
1434 /**
1435 * task_curr - is this task currently executing on a CPU?
1436 * @p: the task in question.
1437 */
1438 inline int task_curr(const struct task_struct *p)
1439 {
1440 return cpu_curr(task_cpu(p)) == p;
1441 }
1442
1443 /* Used instead of source_load when we know the type == 0 */
1444 unsigned long weighted_cpuload(const int cpu)
1445 {
1446 return cpu_rq(cpu)->load.weight;
1447 }
1448
1449 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1450 {
1451 set_task_rq(p, cpu);
1452 #ifdef CONFIG_SMP
1453 /*
1454 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1455 * successfuly executed on another CPU. We must ensure that updates of
1456 * per-task data have been completed by this moment.
1457 */
1458 smp_wmb();
1459 task_thread_info(p)->cpu = cpu;
1460 #endif
1461 }
1462
1463 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1464 const struct sched_class *prev_class,
1465 int oldprio, int running)
1466 {
1467 if (prev_class != p->sched_class) {
1468 if (prev_class->switched_from)
1469 prev_class->switched_from(rq, p, running);
1470 p->sched_class->switched_to(rq, p, running);
1471 } else
1472 p->sched_class->prio_changed(rq, p, oldprio, running);
1473 }
1474
1475 #ifdef CONFIG_SMP
1476
1477 /*
1478 * Is this task likely cache-hot:
1479 */
1480 static int
1481 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1482 {
1483 s64 delta;
1484
1485 /*
1486 * Buddy candidates are cache hot:
1487 */
1488 if (&p->se == cfs_rq_of(&p->se)->next)
1489 return 1;
1490
1491 if (p->sched_class != &fair_sched_class)
1492 return 0;
1493
1494 if (sysctl_sched_migration_cost == -1)
1495 return 1;
1496 if (sysctl_sched_migration_cost == 0)
1497 return 0;
1498
1499 delta = now - p->se.exec_start;
1500
1501 return delta < (s64)sysctl_sched_migration_cost;
1502 }
1503
1504
1505 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1506 {
1507 int old_cpu = task_cpu(p);
1508 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1509 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1510 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1511 u64 clock_offset;
1512
1513 clock_offset = old_rq->clock - new_rq->clock;
1514
1515 #ifdef CONFIG_SCHEDSTATS
1516 if (p->se.wait_start)
1517 p->se.wait_start -= clock_offset;
1518 if (p->se.sleep_start)
1519 p->se.sleep_start -= clock_offset;
1520 if (p->se.block_start)
1521 p->se.block_start -= clock_offset;
1522 if (old_cpu != new_cpu) {
1523 schedstat_inc(p, se.nr_migrations);
1524 if (task_hot(p, old_rq->clock, NULL))
1525 schedstat_inc(p, se.nr_forced2_migrations);
1526 }
1527 #endif
1528 p->se.vruntime -= old_cfsrq->min_vruntime -
1529 new_cfsrq->min_vruntime;
1530
1531 __set_task_cpu(p, new_cpu);
1532 }
1533
1534 struct migration_req {
1535 struct list_head list;
1536
1537 struct task_struct *task;
1538 int dest_cpu;
1539
1540 struct completion done;
1541 };
1542
1543 /*
1544 * The task's runqueue lock must be held.
1545 * Returns true if you have to wait for migration thread.
1546 */
1547 static int
1548 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1549 {
1550 struct rq *rq = task_rq(p);
1551
1552 /*
1553 * If the task is not on a runqueue (and not running), then
1554 * it is sufficient to simply update the task's cpu field.
1555 */
1556 if (!p->se.on_rq && !task_running(rq, p)) {
1557 set_task_cpu(p, dest_cpu);
1558 return 0;
1559 }
1560
1561 init_completion(&req->done);
1562 req->task = p;
1563 req->dest_cpu = dest_cpu;
1564 list_add(&req->list, &rq->migration_queue);
1565
1566 return 1;
1567 }
1568
1569 /*
1570 * wait_task_inactive - wait for a thread to unschedule.
1571 *
1572 * The caller must ensure that the task *will* unschedule sometime soon,
1573 * else this function might spin for a *long* time. This function can't
1574 * be called with interrupts off, or it may introduce deadlock with
1575 * smp_call_function() if an IPI is sent by the same process we are
1576 * waiting to become inactive.
1577 */
1578 void wait_task_inactive(struct task_struct *p)
1579 {
1580 unsigned long flags;
1581 int running, on_rq;
1582 struct rq *rq;
1583
1584 for (;;) {
1585 /*
1586 * We do the initial early heuristics without holding
1587 * any task-queue locks at all. We'll only try to get
1588 * the runqueue lock when things look like they will
1589 * work out!
1590 */
1591 rq = task_rq(p);
1592
1593 /*
1594 * If the task is actively running on another CPU
1595 * still, just relax and busy-wait without holding
1596 * any locks.
1597 *
1598 * NOTE! Since we don't hold any locks, it's not
1599 * even sure that "rq" stays as the right runqueue!
1600 * But we don't care, since "task_running()" will
1601 * return false if the runqueue has changed and p
1602 * is actually now running somewhere else!
1603 */
1604 while (task_running(rq, p))
1605 cpu_relax();
1606
1607 /*
1608 * Ok, time to look more closely! We need the rq
1609 * lock now, to be *sure*. If we're wrong, we'll
1610 * just go back and repeat.
1611 */
1612 rq = task_rq_lock(p, &flags);
1613 running = task_running(rq, p);
1614 on_rq = p->se.on_rq;
1615 task_rq_unlock(rq, &flags);
1616
1617 /*
1618 * Was it really running after all now that we
1619 * checked with the proper locks actually held?
1620 *
1621 * Oops. Go back and try again..
1622 */
1623 if (unlikely(running)) {
1624 cpu_relax();
1625 continue;
1626 }
1627
1628 /*
1629 * It's not enough that it's not actively running,
1630 * it must be off the runqueue _entirely_, and not
1631 * preempted!
1632 *
1633 * So if it wa still runnable (but just not actively
1634 * running right now), it's preempted, and we should
1635 * yield - it could be a while.
1636 */
1637 if (unlikely(on_rq)) {
1638 schedule_timeout_uninterruptible(1);
1639 continue;
1640 }
1641
1642 /*
1643 * Ahh, all good. It wasn't running, and it wasn't
1644 * runnable, which means that it will never become
1645 * running in the future either. We're all done!
1646 */
1647 break;
1648 }
1649 }
1650
1651 /***
1652 * kick_process - kick a running thread to enter/exit the kernel
1653 * @p: the to-be-kicked thread
1654 *
1655 * Cause a process which is running on another CPU to enter
1656 * kernel-mode, without any delay. (to get signals handled.)
1657 *
1658 * NOTE: this function doesnt have to take the runqueue lock,
1659 * because all it wants to ensure is that the remote task enters
1660 * the kernel. If the IPI races and the task has been migrated
1661 * to another CPU then no harm is done and the purpose has been
1662 * achieved as well.
1663 */
1664 void kick_process(struct task_struct *p)
1665 {
1666 int cpu;
1667
1668 preempt_disable();
1669 cpu = task_cpu(p);
1670 if ((cpu != smp_processor_id()) && task_curr(p))
1671 smp_send_reschedule(cpu);
1672 preempt_enable();
1673 }
1674
1675 /*
1676 * Return a low guess at the load of a migration-source cpu weighted
1677 * according to the scheduling class and "nice" value.
1678 *
1679 * We want to under-estimate the load of migration sources, to
1680 * balance conservatively.
1681 */
1682 static unsigned long source_load(int cpu, int type)
1683 {
1684 struct rq *rq = cpu_rq(cpu);
1685 unsigned long total = weighted_cpuload(cpu);
1686
1687 if (type == 0)
1688 return total;
1689
1690 return min(rq->cpu_load[type-1], total);
1691 }
1692
1693 /*
1694 * Return a high guess at the load of a migration-target cpu weighted
1695 * according to the scheduling class and "nice" value.
1696 */
1697 static unsigned long target_load(int cpu, int type)
1698 {
1699 struct rq *rq = cpu_rq(cpu);
1700 unsigned long total = weighted_cpuload(cpu);
1701
1702 if (type == 0)
1703 return total;
1704
1705 return max(rq->cpu_load[type-1], total);
1706 }
1707
1708 /*
1709 * Return the average load per task on the cpu's run queue
1710 */
1711 static unsigned long cpu_avg_load_per_task(int cpu)
1712 {
1713 struct rq *rq = cpu_rq(cpu);
1714 unsigned long total = weighted_cpuload(cpu);
1715 unsigned long n = rq->nr_running;
1716
1717 return n ? total / n : SCHED_LOAD_SCALE;
1718 }
1719
1720 /*
1721 * find_idlest_group finds and returns the least busy CPU group within the
1722 * domain.
1723 */
1724 static struct sched_group *
1725 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1726 {
1727 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1728 unsigned long min_load = ULONG_MAX, this_load = 0;
1729 int load_idx = sd->forkexec_idx;
1730 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1731
1732 do {
1733 unsigned long load, avg_load;
1734 int local_group;
1735 int i;
1736
1737 /* Skip over this group if it has no CPUs allowed */
1738 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1739 continue;
1740
1741 local_group = cpu_isset(this_cpu, group->cpumask);
1742
1743 /* Tally up the load of all CPUs in the group */
1744 avg_load = 0;
1745
1746 for_each_cpu_mask(i, group->cpumask) {
1747 /* Bias balancing toward cpus of our domain */
1748 if (local_group)
1749 load = source_load(i, load_idx);
1750 else
1751 load = target_load(i, load_idx);
1752
1753 avg_load += load;
1754 }
1755
1756 /* Adjust by relative CPU power of the group */
1757 avg_load = sg_div_cpu_power(group,
1758 avg_load * SCHED_LOAD_SCALE);
1759
1760 if (local_group) {
1761 this_load = avg_load;
1762 this = group;
1763 } else if (avg_load < min_load) {
1764 min_load = avg_load;
1765 idlest = group;
1766 }
1767 } while (group = group->next, group != sd->groups);
1768
1769 if (!idlest || 100*this_load < imbalance*min_load)
1770 return NULL;
1771 return idlest;
1772 }
1773
1774 /*
1775 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1776 */
1777 static int
1778 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1779 {
1780 cpumask_t tmp;
1781 unsigned long load, min_load = ULONG_MAX;
1782 int idlest = -1;
1783 int i;
1784
1785 /* Traverse only the allowed CPUs */
1786 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1787
1788 for_each_cpu_mask(i, tmp) {
1789 load = weighted_cpuload(i);
1790
1791 if (load < min_load || (load == min_load && i == this_cpu)) {
1792 min_load = load;
1793 idlest = i;
1794 }
1795 }
1796
1797 return idlest;
1798 }
1799
1800 /*
1801 * sched_balance_self: balance the current task (running on cpu) in domains
1802 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1803 * SD_BALANCE_EXEC.
1804 *
1805 * Balance, ie. select the least loaded group.
1806 *
1807 * Returns the target CPU number, or the same CPU if no balancing is needed.
1808 *
1809 * preempt must be disabled.
1810 */
1811 static int sched_balance_self(int cpu, int flag)
1812 {
1813 struct task_struct *t = current;
1814 struct sched_domain *tmp, *sd = NULL;
1815
1816 for_each_domain(cpu, tmp) {
1817 /*
1818 * If power savings logic is enabled for a domain, stop there.
1819 */
1820 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1821 break;
1822 if (tmp->flags & flag)
1823 sd = tmp;
1824 }
1825
1826 while (sd) {
1827 cpumask_t span;
1828 struct sched_group *group;
1829 int new_cpu, weight;
1830
1831 if (!(sd->flags & flag)) {
1832 sd = sd->child;
1833 continue;
1834 }
1835
1836 span = sd->span;
1837 group = find_idlest_group(sd, t, cpu);
1838 if (!group) {
1839 sd = sd->child;
1840 continue;
1841 }
1842
1843 new_cpu = find_idlest_cpu(group, t, cpu);
1844 if (new_cpu == -1 || new_cpu == cpu) {
1845 /* Now try balancing at a lower domain level of cpu */
1846 sd = sd->child;
1847 continue;
1848 }
1849
1850 /* Now try balancing at a lower domain level of new_cpu */
1851 cpu = new_cpu;
1852 sd = NULL;
1853 weight = cpus_weight(span);
1854 for_each_domain(cpu, tmp) {
1855 if (weight <= cpus_weight(tmp->span))
1856 break;
1857 if (tmp->flags & flag)
1858 sd = tmp;
1859 }
1860 /* while loop will break here if sd == NULL */
1861 }
1862
1863 return cpu;
1864 }
1865
1866 #endif /* CONFIG_SMP */
1867
1868 /***
1869 * try_to_wake_up - wake up a thread
1870 * @p: the to-be-woken-up thread
1871 * @state: the mask of task states that can be woken
1872 * @sync: do a synchronous wakeup?
1873 *
1874 * Put it on the run-queue if it's not already there. The "current"
1875 * thread is always on the run-queue (except when the actual
1876 * re-schedule is in progress), and as such you're allowed to do
1877 * the simpler "current->state = TASK_RUNNING" to mark yourself
1878 * runnable without the overhead of this.
1879 *
1880 * returns failure only if the task is already active.
1881 */
1882 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1883 {
1884 int cpu, orig_cpu, this_cpu, success = 0;
1885 unsigned long flags;
1886 long old_state;
1887 struct rq *rq;
1888
1889 smp_wmb();
1890 rq = task_rq_lock(p, &flags);
1891 old_state = p->state;
1892 if (!(old_state & state))
1893 goto out;
1894
1895 if (p->se.on_rq)
1896 goto out_running;
1897
1898 cpu = task_cpu(p);
1899 orig_cpu = cpu;
1900 this_cpu = smp_processor_id();
1901
1902 #ifdef CONFIG_SMP
1903 if (unlikely(task_running(rq, p)))
1904 goto out_activate;
1905
1906 cpu = p->sched_class->select_task_rq(p, sync);
1907 if (cpu != orig_cpu) {
1908 set_task_cpu(p, cpu);
1909 task_rq_unlock(rq, &flags);
1910 /* might preempt at this point */
1911 rq = task_rq_lock(p, &flags);
1912 old_state = p->state;
1913 if (!(old_state & state))
1914 goto out;
1915 if (p->se.on_rq)
1916 goto out_running;
1917
1918 this_cpu = smp_processor_id();
1919 cpu = task_cpu(p);
1920 }
1921
1922 #ifdef CONFIG_SCHEDSTATS
1923 schedstat_inc(rq, ttwu_count);
1924 if (cpu == this_cpu)
1925 schedstat_inc(rq, ttwu_local);
1926 else {
1927 struct sched_domain *sd;
1928 for_each_domain(this_cpu, sd) {
1929 if (cpu_isset(cpu, sd->span)) {
1930 schedstat_inc(sd, ttwu_wake_remote);
1931 break;
1932 }
1933 }
1934 }
1935 #endif
1936
1937 out_activate:
1938 #endif /* CONFIG_SMP */
1939 schedstat_inc(p, se.nr_wakeups);
1940 if (sync)
1941 schedstat_inc(p, se.nr_wakeups_sync);
1942 if (orig_cpu != cpu)
1943 schedstat_inc(p, se.nr_wakeups_migrate);
1944 if (cpu == this_cpu)
1945 schedstat_inc(p, se.nr_wakeups_local);
1946 else
1947 schedstat_inc(p, se.nr_wakeups_remote);
1948 update_rq_clock(rq);
1949 activate_task(rq, p, 1);
1950 success = 1;
1951
1952 out_running:
1953 check_preempt_curr(rq, p);
1954
1955 p->state = TASK_RUNNING;
1956 #ifdef CONFIG_SMP
1957 if (p->sched_class->task_wake_up)
1958 p->sched_class->task_wake_up(rq, p);
1959 #endif
1960 out:
1961 task_rq_unlock(rq, &flags);
1962
1963 return success;
1964 }
1965
1966 int wake_up_process(struct task_struct *p)
1967 {
1968 return try_to_wake_up(p, TASK_ALL, 0);
1969 }
1970 EXPORT_SYMBOL(wake_up_process);
1971
1972 int wake_up_state(struct task_struct *p, unsigned int state)
1973 {
1974 return try_to_wake_up(p, state, 0);
1975 }
1976
1977 /*
1978 * Perform scheduler related setup for a newly forked process p.
1979 * p is forked by current.
1980 *
1981 * __sched_fork() is basic setup used by init_idle() too:
1982 */
1983 static void __sched_fork(struct task_struct *p)
1984 {
1985 p->se.exec_start = 0;
1986 p->se.sum_exec_runtime = 0;
1987 p->se.prev_sum_exec_runtime = 0;
1988 p->se.last_wakeup = 0;
1989 p->se.avg_overlap = 0;
1990
1991 #ifdef CONFIG_SCHEDSTATS
1992 p->se.wait_start = 0;
1993 p->se.sum_sleep_runtime = 0;
1994 p->se.sleep_start = 0;
1995 p->se.block_start = 0;
1996 p->se.sleep_max = 0;
1997 p->se.block_max = 0;
1998 p->se.exec_max = 0;
1999 p->se.slice_max = 0;
2000 p->se.wait_max = 0;
2001 #endif
2002
2003 INIT_LIST_HEAD(&p->rt.run_list);
2004 p->se.on_rq = 0;
2005
2006 #ifdef CONFIG_PREEMPT_NOTIFIERS
2007 INIT_HLIST_HEAD(&p->preempt_notifiers);
2008 #endif
2009
2010 /*
2011 * We mark the process as running here, but have not actually
2012 * inserted it onto the runqueue yet. This guarantees that
2013 * nobody will actually run it, and a signal or other external
2014 * event cannot wake it up and insert it on the runqueue either.
2015 */
2016 p->state = TASK_RUNNING;
2017 }
2018
2019 /*
2020 * fork()/clone()-time setup:
2021 */
2022 void sched_fork(struct task_struct *p, int clone_flags)
2023 {
2024 int cpu = get_cpu();
2025
2026 __sched_fork(p);
2027
2028 #ifdef CONFIG_SMP
2029 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2030 #endif
2031 set_task_cpu(p, cpu);
2032
2033 /*
2034 * Make sure we do not leak PI boosting priority to the child:
2035 */
2036 p->prio = current->normal_prio;
2037 if (!rt_prio(p->prio))
2038 p->sched_class = &fair_sched_class;
2039
2040 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2041 if (likely(sched_info_on()))
2042 memset(&p->sched_info, 0, sizeof(p->sched_info));
2043 #endif
2044 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2045 p->oncpu = 0;
2046 #endif
2047 #ifdef CONFIG_PREEMPT
2048 /* Want to start with kernel preemption disabled. */
2049 task_thread_info(p)->preempt_count = 1;
2050 #endif
2051 put_cpu();
2052 }
2053
2054 /*
2055 * wake_up_new_task - wake up a newly created task for the first time.
2056 *
2057 * This function will do some initial scheduler statistics housekeeping
2058 * that must be done for every newly created context, then puts the task
2059 * on the runqueue and wakes it.
2060 */
2061 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2062 {
2063 unsigned long flags;
2064 struct rq *rq;
2065
2066 rq = task_rq_lock(p, &flags);
2067 BUG_ON(p->state != TASK_RUNNING);
2068 update_rq_clock(rq);
2069
2070 p->prio = effective_prio(p);
2071
2072 if (!p->sched_class->task_new || !current->se.on_rq) {
2073 activate_task(rq, p, 0);
2074 } else {
2075 /*
2076 * Let the scheduling class do new task startup
2077 * management (if any):
2078 */
2079 p->sched_class->task_new(rq, p);
2080 inc_nr_running(p, rq);
2081 }
2082 check_preempt_curr(rq, p);
2083 #ifdef CONFIG_SMP
2084 if (p->sched_class->task_wake_up)
2085 p->sched_class->task_wake_up(rq, p);
2086 #endif
2087 task_rq_unlock(rq, &flags);
2088 }
2089
2090 #ifdef CONFIG_PREEMPT_NOTIFIERS
2091
2092 /**
2093 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2094 * @notifier: notifier struct to register
2095 */
2096 void preempt_notifier_register(struct preempt_notifier *notifier)
2097 {
2098 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2099 }
2100 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2101
2102 /**
2103 * preempt_notifier_unregister - no longer interested in preemption notifications
2104 * @notifier: notifier struct to unregister
2105 *
2106 * This is safe to call from within a preemption notifier.
2107 */
2108 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2109 {
2110 hlist_del(&notifier->link);
2111 }
2112 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2113
2114 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2115 {
2116 struct preempt_notifier *notifier;
2117 struct hlist_node *node;
2118
2119 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2120 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2121 }
2122
2123 static void
2124 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2125 struct task_struct *next)
2126 {
2127 struct preempt_notifier *notifier;
2128 struct hlist_node *node;
2129
2130 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2131 notifier->ops->sched_out(notifier, next);
2132 }
2133
2134 #else
2135
2136 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2137 {
2138 }
2139
2140 static void
2141 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2142 struct task_struct *next)
2143 {
2144 }
2145
2146 #endif
2147
2148 /**
2149 * prepare_task_switch - prepare to switch tasks
2150 * @rq: the runqueue preparing to switch
2151 * @prev: the current task that is being switched out
2152 * @next: the task we are going to switch to.
2153 *
2154 * This is called with the rq lock held and interrupts off. It must
2155 * be paired with a subsequent finish_task_switch after the context
2156 * switch.
2157 *
2158 * prepare_task_switch sets up locking and calls architecture specific
2159 * hooks.
2160 */
2161 static inline void
2162 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2163 struct task_struct *next)
2164 {
2165 fire_sched_out_preempt_notifiers(prev, next);
2166 prepare_lock_switch(rq, next);
2167 prepare_arch_switch(next);
2168 }
2169
2170 /**
2171 * finish_task_switch - clean up after a task-switch
2172 * @rq: runqueue associated with task-switch
2173 * @prev: the thread we just switched away from.
2174 *
2175 * finish_task_switch must be called after the context switch, paired
2176 * with a prepare_task_switch call before the context switch.
2177 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2178 * and do any other architecture-specific cleanup actions.
2179 *
2180 * Note that we may have delayed dropping an mm in context_switch(). If
2181 * so, we finish that here outside of the runqueue lock. (Doing it
2182 * with the lock held can cause deadlocks; see schedule() for
2183 * details.)
2184 */
2185 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2186 __releases(rq->lock)
2187 {
2188 struct mm_struct *mm = rq->prev_mm;
2189 long prev_state;
2190
2191 rq->prev_mm = NULL;
2192
2193 /*
2194 * A task struct has one reference for the use as "current".
2195 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2196 * schedule one last time. The schedule call will never return, and
2197 * the scheduled task must drop that reference.
2198 * The test for TASK_DEAD must occur while the runqueue locks are
2199 * still held, otherwise prev could be scheduled on another cpu, die
2200 * there before we look at prev->state, and then the reference would
2201 * be dropped twice.
2202 * Manfred Spraul <manfred@colorfullife.com>
2203 */
2204 prev_state = prev->state;
2205 finish_arch_switch(prev);
2206 finish_lock_switch(rq, prev);
2207 #ifdef CONFIG_SMP
2208 if (current->sched_class->post_schedule)
2209 current->sched_class->post_schedule(rq);
2210 #endif
2211
2212 fire_sched_in_preempt_notifiers(current);
2213 if (mm)
2214 mmdrop(mm);
2215 if (unlikely(prev_state == TASK_DEAD)) {
2216 /*
2217 * Remove function-return probe instances associated with this
2218 * task and put them back on the free list.
2219 */
2220 kprobe_flush_task(prev);
2221 put_task_struct(prev);
2222 }
2223 }
2224
2225 /**
2226 * schedule_tail - first thing a freshly forked thread must call.
2227 * @prev: the thread we just switched away from.
2228 */
2229 asmlinkage void schedule_tail(struct task_struct *prev)
2230 __releases(rq->lock)
2231 {
2232 struct rq *rq = this_rq();
2233
2234 finish_task_switch(rq, prev);
2235 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2236 /* In this case, finish_task_switch does not reenable preemption */
2237 preempt_enable();
2238 #endif
2239 if (current->set_child_tid)
2240 put_user(task_pid_vnr(current), current->set_child_tid);
2241 }
2242
2243 /*
2244 * context_switch - switch to the new MM and the new
2245 * thread's register state.
2246 */
2247 static inline void
2248 context_switch(struct rq *rq, struct task_struct *prev,
2249 struct task_struct *next)
2250 {
2251 struct mm_struct *mm, *oldmm;
2252
2253 prepare_task_switch(rq, prev, next);
2254 mm = next->mm;
2255 oldmm = prev->active_mm;
2256 /*
2257 * For paravirt, this is coupled with an exit in switch_to to
2258 * combine the page table reload and the switch backend into
2259 * one hypercall.
2260 */
2261 arch_enter_lazy_cpu_mode();
2262
2263 if (unlikely(!mm)) {
2264 next->active_mm = oldmm;
2265 atomic_inc(&oldmm->mm_count);
2266 enter_lazy_tlb(oldmm, next);
2267 } else
2268 switch_mm(oldmm, mm, next);
2269
2270 if (unlikely(!prev->mm)) {
2271 prev->active_mm = NULL;
2272 rq->prev_mm = oldmm;
2273 }
2274 /*
2275 * Since the runqueue lock will be released by the next
2276 * task (which is an invalid locking op but in the case
2277 * of the scheduler it's an obvious special-case), so we
2278 * do an early lockdep release here:
2279 */
2280 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2281 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2282 #endif
2283
2284 /* Here we just switch the register state and the stack. */
2285 switch_to(prev, next, prev);
2286
2287 barrier();
2288 /*
2289 * this_rq must be evaluated again because prev may have moved
2290 * CPUs since it called schedule(), thus the 'rq' on its stack
2291 * frame will be invalid.
2292 */
2293 finish_task_switch(this_rq(), prev);
2294 }
2295
2296 /*
2297 * nr_running, nr_uninterruptible and nr_context_switches:
2298 *
2299 * externally visible scheduler statistics: current number of runnable
2300 * threads, current number of uninterruptible-sleeping threads, total
2301 * number of context switches performed since bootup.
2302 */
2303 unsigned long nr_running(void)
2304 {
2305 unsigned long i, sum = 0;
2306
2307 for_each_online_cpu(i)
2308 sum += cpu_rq(i)->nr_running;
2309
2310 return sum;
2311 }
2312
2313 unsigned long nr_uninterruptible(void)
2314 {
2315 unsigned long i, sum = 0;
2316
2317 for_each_possible_cpu(i)
2318 sum += cpu_rq(i)->nr_uninterruptible;
2319
2320 /*
2321 * Since we read the counters lockless, it might be slightly
2322 * inaccurate. Do not allow it to go below zero though:
2323 */
2324 if (unlikely((long)sum < 0))
2325 sum = 0;
2326
2327 return sum;
2328 }
2329
2330 unsigned long long nr_context_switches(void)
2331 {
2332 int i;
2333 unsigned long long sum = 0;
2334
2335 for_each_possible_cpu(i)
2336 sum += cpu_rq(i)->nr_switches;
2337
2338 return sum;
2339 }
2340
2341 unsigned long nr_iowait(void)
2342 {
2343 unsigned long i, sum = 0;
2344
2345 for_each_possible_cpu(i)
2346 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2347
2348 return sum;
2349 }
2350
2351 unsigned long nr_active(void)
2352 {
2353 unsigned long i, running = 0, uninterruptible = 0;
2354
2355 for_each_online_cpu(i) {
2356 running += cpu_rq(i)->nr_running;
2357 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2358 }
2359
2360 if (unlikely((long)uninterruptible < 0))
2361 uninterruptible = 0;
2362
2363 return running + uninterruptible;
2364 }
2365
2366 /*
2367 * Update rq->cpu_load[] statistics. This function is usually called every
2368 * scheduler tick (TICK_NSEC).
2369 */
2370 static void update_cpu_load(struct rq *this_rq)
2371 {
2372 unsigned long this_load = this_rq->load.weight;
2373 int i, scale;
2374
2375 this_rq->nr_load_updates++;
2376
2377 /* Update our load: */
2378 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2379 unsigned long old_load, new_load;
2380
2381 /* scale is effectively 1 << i now, and >> i divides by scale */
2382
2383 old_load = this_rq->cpu_load[i];
2384 new_load = this_load;
2385 /*
2386 * Round up the averaging division if load is increasing. This
2387 * prevents us from getting stuck on 9 if the load is 10, for
2388 * example.
2389 */
2390 if (new_load > old_load)
2391 new_load += scale-1;
2392 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2393 }
2394 }
2395
2396 #ifdef CONFIG_SMP
2397
2398 /*
2399 * double_rq_lock - safely lock two runqueues
2400 *
2401 * Note this does not disable interrupts like task_rq_lock,
2402 * you need to do so manually before calling.
2403 */
2404 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2405 __acquires(rq1->lock)
2406 __acquires(rq2->lock)
2407 {
2408 BUG_ON(!irqs_disabled());
2409 if (rq1 == rq2) {
2410 spin_lock(&rq1->lock);
2411 __acquire(rq2->lock); /* Fake it out ;) */
2412 } else {
2413 if (rq1 < rq2) {
2414 spin_lock(&rq1->lock);
2415 spin_lock(&rq2->lock);
2416 } else {
2417 spin_lock(&rq2->lock);
2418 spin_lock(&rq1->lock);
2419 }
2420 }
2421 update_rq_clock(rq1);
2422 update_rq_clock(rq2);
2423 }
2424
2425 /*
2426 * double_rq_unlock - safely unlock two runqueues
2427 *
2428 * Note this does not restore interrupts like task_rq_unlock,
2429 * you need to do so manually after calling.
2430 */
2431 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2432 __releases(rq1->lock)
2433 __releases(rq2->lock)
2434 {
2435 spin_unlock(&rq1->lock);
2436 if (rq1 != rq2)
2437 spin_unlock(&rq2->lock);
2438 else
2439 __release(rq2->lock);
2440 }
2441
2442 /*
2443 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2444 */
2445 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2446 __releases(this_rq->lock)
2447 __acquires(busiest->lock)
2448 __acquires(this_rq->lock)
2449 {
2450 int ret = 0;
2451
2452 if (unlikely(!irqs_disabled())) {
2453 /* printk() doesn't work good under rq->lock */
2454 spin_unlock(&this_rq->lock);
2455 BUG_ON(1);
2456 }
2457 if (unlikely(!spin_trylock(&busiest->lock))) {
2458 if (busiest < this_rq) {
2459 spin_unlock(&this_rq->lock);
2460 spin_lock(&busiest->lock);
2461 spin_lock(&this_rq->lock);
2462 ret = 1;
2463 } else
2464 spin_lock(&busiest->lock);
2465 }
2466 return ret;
2467 }
2468
2469 /*
2470 * If dest_cpu is allowed for this process, migrate the task to it.
2471 * This is accomplished by forcing the cpu_allowed mask to only
2472 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2473 * the cpu_allowed mask is restored.
2474 */
2475 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2476 {
2477 struct migration_req req;
2478 unsigned long flags;
2479 struct rq *rq;
2480
2481 rq = task_rq_lock(p, &flags);
2482 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2483 || unlikely(cpu_is_offline(dest_cpu)))
2484 goto out;
2485
2486 /* force the process onto the specified CPU */
2487 if (migrate_task(p, dest_cpu, &req)) {
2488 /* Need to wait for migration thread (might exit: take ref). */
2489 struct task_struct *mt = rq->migration_thread;
2490
2491 get_task_struct(mt);
2492 task_rq_unlock(rq, &flags);
2493 wake_up_process(mt);
2494 put_task_struct(mt);
2495 wait_for_completion(&req.done);
2496
2497 return;
2498 }
2499 out:
2500 task_rq_unlock(rq, &flags);
2501 }
2502
2503 /*
2504 * sched_exec - execve() is a valuable balancing opportunity, because at
2505 * this point the task has the smallest effective memory and cache footprint.
2506 */
2507 void sched_exec(void)
2508 {
2509 int new_cpu, this_cpu = get_cpu();
2510 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2511 put_cpu();
2512 if (new_cpu != this_cpu)
2513 sched_migrate_task(current, new_cpu);
2514 }
2515
2516 /*
2517 * pull_task - move a task from a remote runqueue to the local runqueue.
2518 * Both runqueues must be locked.
2519 */
2520 static void pull_task(struct rq *src_rq, struct task_struct *p,
2521 struct rq *this_rq, int this_cpu)
2522 {
2523 deactivate_task(src_rq, p, 0);
2524 set_task_cpu(p, this_cpu);
2525 activate_task(this_rq, p, 0);
2526 /*
2527 * Note that idle threads have a prio of MAX_PRIO, for this test
2528 * to be always true for them.
2529 */
2530 check_preempt_curr(this_rq, p);
2531 }
2532
2533 /*
2534 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2535 */
2536 static
2537 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2538 struct sched_domain *sd, enum cpu_idle_type idle,
2539 int *all_pinned)
2540 {
2541 /*
2542 * We do not migrate tasks that are:
2543 * 1) running (obviously), or
2544 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2545 * 3) are cache-hot on their current CPU.
2546 */
2547 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2548 schedstat_inc(p, se.nr_failed_migrations_affine);
2549 return 0;
2550 }
2551 *all_pinned = 0;
2552
2553 if (task_running(rq, p)) {
2554 schedstat_inc(p, se.nr_failed_migrations_running);
2555 return 0;
2556 }
2557
2558 /*
2559 * Aggressive migration if:
2560 * 1) task is cache cold, or
2561 * 2) too many balance attempts have failed.
2562 */
2563
2564 if (!task_hot(p, rq->clock, sd) ||
2565 sd->nr_balance_failed > sd->cache_nice_tries) {
2566 #ifdef CONFIG_SCHEDSTATS
2567 if (task_hot(p, rq->clock, sd)) {
2568 schedstat_inc(sd, lb_hot_gained[idle]);
2569 schedstat_inc(p, se.nr_forced_migrations);
2570 }
2571 #endif
2572 return 1;
2573 }
2574
2575 if (task_hot(p, rq->clock, sd)) {
2576 schedstat_inc(p, se.nr_failed_migrations_hot);
2577 return 0;
2578 }
2579 return 1;
2580 }
2581
2582 static unsigned long
2583 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2584 unsigned long max_load_move, struct sched_domain *sd,
2585 enum cpu_idle_type idle, int *all_pinned,
2586 int *this_best_prio, struct rq_iterator *iterator)
2587 {
2588 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
2589 struct task_struct *p;
2590 long rem_load_move = max_load_move;
2591
2592 if (max_load_move == 0)
2593 goto out;
2594
2595 pinned = 1;
2596
2597 /*
2598 * Start the load-balancing iterator:
2599 */
2600 p = iterator->start(iterator->arg);
2601 next:
2602 if (!p || loops++ > sysctl_sched_nr_migrate)
2603 goto out;
2604 /*
2605 * To help distribute high priority tasks across CPUs we don't
2606 * skip a task if it will be the highest priority task (i.e. smallest
2607 * prio value) on its new queue regardless of its load weight
2608 */
2609 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2610 SCHED_LOAD_SCALE_FUZZ;
2611 if ((skip_for_load && p->prio >= *this_best_prio) ||
2612 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2613 p = iterator->next(iterator->arg);
2614 goto next;
2615 }
2616
2617 pull_task(busiest, p, this_rq, this_cpu);
2618 pulled++;
2619 rem_load_move -= p->se.load.weight;
2620
2621 /*
2622 * We only want to steal up to the prescribed amount of weighted load.
2623 */
2624 if (rem_load_move > 0) {
2625 if (p->prio < *this_best_prio)
2626 *this_best_prio = p->prio;
2627 p = iterator->next(iterator->arg);
2628 goto next;
2629 }
2630 out:
2631 /*
2632 * Right now, this is one of only two places pull_task() is called,
2633 * so we can safely collect pull_task() stats here rather than
2634 * inside pull_task().
2635 */
2636 schedstat_add(sd, lb_gained[idle], pulled);
2637
2638 if (all_pinned)
2639 *all_pinned = pinned;
2640
2641 return max_load_move - rem_load_move;
2642 }
2643
2644 /*
2645 * move_tasks tries to move up to max_load_move weighted load from busiest to
2646 * this_rq, as part of a balancing operation within domain "sd".
2647 * Returns 1 if successful and 0 otherwise.
2648 *
2649 * Called with both runqueues locked.
2650 */
2651 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2652 unsigned long max_load_move,
2653 struct sched_domain *sd, enum cpu_idle_type idle,
2654 int *all_pinned)
2655 {
2656 const struct sched_class *class = sched_class_highest;
2657 unsigned long total_load_moved = 0;
2658 int this_best_prio = this_rq->curr->prio;
2659
2660 do {
2661 total_load_moved +=
2662 class->load_balance(this_rq, this_cpu, busiest,
2663 max_load_move - total_load_moved,
2664 sd, idle, all_pinned, &this_best_prio);
2665 class = class->next;
2666 } while (class && max_load_move > total_load_moved);
2667
2668 return total_load_moved > 0;
2669 }
2670
2671 static int
2672 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2673 struct sched_domain *sd, enum cpu_idle_type idle,
2674 struct rq_iterator *iterator)
2675 {
2676 struct task_struct *p = iterator->start(iterator->arg);
2677 int pinned = 0;
2678
2679 while (p) {
2680 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2681 pull_task(busiest, p, this_rq, this_cpu);
2682 /*
2683 * Right now, this is only the second place pull_task()
2684 * is called, so we can safely collect pull_task()
2685 * stats here rather than inside pull_task().
2686 */
2687 schedstat_inc(sd, lb_gained[idle]);
2688
2689 return 1;
2690 }
2691 p = iterator->next(iterator->arg);
2692 }
2693
2694 return 0;
2695 }
2696
2697 /*
2698 * move_one_task tries to move exactly one task from busiest to this_rq, as
2699 * part of active balancing operations within "domain".
2700 * Returns 1 if successful and 0 otherwise.
2701 *
2702 * Called with both runqueues locked.
2703 */
2704 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2705 struct sched_domain *sd, enum cpu_idle_type idle)
2706 {
2707 const struct sched_class *class;
2708
2709 for (class = sched_class_highest; class; class = class->next)
2710 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
2711 return 1;
2712
2713 return 0;
2714 }
2715
2716 /*
2717 * find_busiest_group finds and returns the busiest CPU group within the
2718 * domain. It calculates and returns the amount of weighted load which
2719 * should be moved to restore balance via the imbalance parameter.
2720 */
2721 static struct sched_group *
2722 find_busiest_group(struct sched_domain *sd, int this_cpu,
2723 unsigned long *imbalance, enum cpu_idle_type idle,
2724 int *sd_idle, cpumask_t *cpus, int *balance)
2725 {
2726 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2727 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2728 unsigned long max_pull;
2729 unsigned long busiest_load_per_task, busiest_nr_running;
2730 unsigned long this_load_per_task, this_nr_running;
2731 int load_idx, group_imb = 0;
2732 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2733 int power_savings_balance = 1;
2734 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2735 unsigned long min_nr_running = ULONG_MAX;
2736 struct sched_group *group_min = NULL, *group_leader = NULL;
2737 #endif
2738
2739 max_load = this_load = total_load = total_pwr = 0;
2740 busiest_load_per_task = busiest_nr_running = 0;
2741 this_load_per_task = this_nr_running = 0;
2742 if (idle == CPU_NOT_IDLE)
2743 load_idx = sd->busy_idx;
2744 else if (idle == CPU_NEWLY_IDLE)
2745 load_idx = sd->newidle_idx;
2746 else
2747 load_idx = sd->idle_idx;
2748
2749 do {
2750 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
2751 int local_group;
2752 int i;
2753 int __group_imb = 0;
2754 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2755 unsigned long sum_nr_running, sum_weighted_load;
2756
2757 local_group = cpu_isset(this_cpu, group->cpumask);
2758
2759 if (local_group)
2760 balance_cpu = first_cpu(group->cpumask);
2761
2762 /* Tally up the load of all CPUs in the group */
2763 sum_weighted_load = sum_nr_running = avg_load = 0;
2764 max_cpu_load = 0;
2765 min_cpu_load = ~0UL;
2766
2767 for_each_cpu_mask(i, group->cpumask) {
2768 struct rq *rq;
2769
2770 if (!cpu_isset(i, *cpus))
2771 continue;
2772
2773 rq = cpu_rq(i);
2774
2775 if (*sd_idle && rq->nr_running)
2776 *sd_idle = 0;
2777
2778 /* Bias balancing toward cpus of our domain */
2779 if (local_group) {
2780 if (idle_cpu(i) && !first_idle_cpu) {
2781 first_idle_cpu = 1;
2782 balance_cpu = i;
2783 }
2784
2785 load = target_load(i, load_idx);
2786 } else {
2787 load = source_load(i, load_idx);
2788 if (load > max_cpu_load)
2789 max_cpu_load = load;
2790 if (min_cpu_load > load)
2791 min_cpu_load = load;
2792 }
2793
2794 avg_load += load;
2795 sum_nr_running += rq->nr_running;
2796 sum_weighted_load += weighted_cpuload(i);
2797 }
2798
2799 /*
2800 * First idle cpu or the first cpu(busiest) in this sched group
2801 * is eligible for doing load balancing at this and above
2802 * domains. In the newly idle case, we will allow all the cpu's
2803 * to do the newly idle load balance.
2804 */
2805 if (idle != CPU_NEWLY_IDLE && local_group &&
2806 balance_cpu != this_cpu && balance) {
2807 *balance = 0;
2808 goto ret;
2809 }
2810
2811 total_load += avg_load;
2812 total_pwr += group->__cpu_power;
2813
2814 /* Adjust by relative CPU power of the group */
2815 avg_load = sg_div_cpu_power(group,
2816 avg_load * SCHED_LOAD_SCALE);
2817
2818 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
2819 __group_imb = 1;
2820
2821 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2822
2823 if (local_group) {
2824 this_load = avg_load;
2825 this = group;
2826 this_nr_running = sum_nr_running;
2827 this_load_per_task = sum_weighted_load;
2828 } else if (avg_load > max_load &&
2829 (sum_nr_running > group_capacity || __group_imb)) {
2830 max_load = avg_load;
2831 busiest = group;
2832 busiest_nr_running = sum_nr_running;
2833 busiest_load_per_task = sum_weighted_load;
2834 group_imb = __group_imb;
2835 }
2836
2837 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2838 /*
2839 * Busy processors will not participate in power savings
2840 * balance.
2841 */
2842 if (idle == CPU_NOT_IDLE ||
2843 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2844 goto group_next;
2845
2846 /*
2847 * If the local group is idle or completely loaded
2848 * no need to do power savings balance at this domain
2849 */
2850 if (local_group && (this_nr_running >= group_capacity ||
2851 !this_nr_running))
2852 power_savings_balance = 0;
2853
2854 /*
2855 * If a group is already running at full capacity or idle,
2856 * don't include that group in power savings calculations
2857 */
2858 if (!power_savings_balance || sum_nr_running >= group_capacity
2859 || !sum_nr_running)
2860 goto group_next;
2861
2862 /*
2863 * Calculate the group which has the least non-idle load.
2864 * This is the group from where we need to pick up the load
2865 * for saving power
2866 */
2867 if ((sum_nr_running < min_nr_running) ||
2868 (sum_nr_running == min_nr_running &&
2869 first_cpu(group->cpumask) <
2870 first_cpu(group_min->cpumask))) {
2871 group_min = group;
2872 min_nr_running = sum_nr_running;
2873 min_load_per_task = sum_weighted_load /
2874 sum_nr_running;
2875 }
2876
2877 /*
2878 * Calculate the group which is almost near its
2879 * capacity but still has some space to pick up some load
2880 * from other group and save more power
2881 */
2882 if (sum_nr_running <= group_capacity - 1) {
2883 if (sum_nr_running > leader_nr_running ||
2884 (sum_nr_running == leader_nr_running &&
2885 first_cpu(group->cpumask) >
2886 first_cpu(group_leader->cpumask))) {
2887 group_leader = group;
2888 leader_nr_running = sum_nr_running;
2889 }
2890 }
2891 group_next:
2892 #endif
2893 group = group->next;
2894 } while (group != sd->groups);
2895
2896 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2897 goto out_balanced;
2898
2899 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2900
2901 if (this_load >= avg_load ||
2902 100*max_load <= sd->imbalance_pct*this_load)
2903 goto out_balanced;
2904
2905 busiest_load_per_task /= busiest_nr_running;
2906 if (group_imb)
2907 busiest_load_per_task = min(busiest_load_per_task, avg_load);
2908
2909 /*
2910 * We're trying to get all the cpus to the average_load, so we don't
2911 * want to push ourselves above the average load, nor do we wish to
2912 * reduce the max loaded cpu below the average load, as either of these
2913 * actions would just result in more rebalancing later, and ping-pong
2914 * tasks around. Thus we look for the minimum possible imbalance.
2915 * Negative imbalances (*we* are more loaded than anyone else) will
2916 * be counted as no imbalance for these purposes -- we can't fix that
2917 * by pulling tasks to us. Be careful of negative numbers as they'll
2918 * appear as very large values with unsigned longs.
2919 */
2920 if (max_load <= busiest_load_per_task)
2921 goto out_balanced;
2922
2923 /*
2924 * In the presence of smp nice balancing, certain scenarios can have
2925 * max load less than avg load(as we skip the groups at or below
2926 * its cpu_power, while calculating max_load..)
2927 */
2928 if (max_load < avg_load) {
2929 *imbalance = 0;
2930 goto small_imbalance;
2931 }
2932
2933 /* Don't want to pull so many tasks that a group would go idle */
2934 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2935
2936 /* How much load to actually move to equalise the imbalance */
2937 *imbalance = min(max_pull * busiest->__cpu_power,
2938 (avg_load - this_load) * this->__cpu_power)
2939 / SCHED_LOAD_SCALE;
2940
2941 /*
2942 * if *imbalance is less than the average load per runnable task
2943 * there is no gaurantee that any tasks will be moved so we'll have
2944 * a think about bumping its value to force at least one task to be
2945 * moved
2946 */
2947 if (*imbalance < busiest_load_per_task) {
2948 unsigned long tmp, pwr_now, pwr_move;
2949 unsigned int imbn;
2950
2951 small_imbalance:
2952 pwr_move = pwr_now = 0;
2953 imbn = 2;
2954 if (this_nr_running) {
2955 this_load_per_task /= this_nr_running;
2956 if (busiest_load_per_task > this_load_per_task)
2957 imbn = 1;
2958 } else
2959 this_load_per_task = SCHED_LOAD_SCALE;
2960
2961 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2962 busiest_load_per_task * imbn) {
2963 *imbalance = busiest_load_per_task;
2964 return busiest;
2965 }
2966
2967 /*
2968 * OK, we don't have enough imbalance to justify moving tasks,
2969 * however we may be able to increase total CPU power used by
2970 * moving them.
2971 */
2972
2973 pwr_now += busiest->__cpu_power *
2974 min(busiest_load_per_task, max_load);
2975 pwr_now += this->__cpu_power *
2976 min(this_load_per_task, this_load);
2977 pwr_now /= SCHED_LOAD_SCALE;
2978
2979 /* Amount of load we'd subtract */
2980 tmp = sg_div_cpu_power(busiest,
2981 busiest_load_per_task * SCHED_LOAD_SCALE);
2982 if (max_load > tmp)
2983 pwr_move += busiest->__cpu_power *
2984 min(busiest_load_per_task, max_load - tmp);
2985
2986 /* Amount of load we'd add */
2987 if (max_load * busiest->__cpu_power <
2988 busiest_load_per_task * SCHED_LOAD_SCALE)
2989 tmp = sg_div_cpu_power(this,
2990 max_load * busiest->__cpu_power);
2991 else
2992 tmp = sg_div_cpu_power(this,
2993 busiest_load_per_task * SCHED_LOAD_SCALE);
2994 pwr_move += this->__cpu_power *
2995 min(this_load_per_task, this_load + tmp);
2996 pwr_move /= SCHED_LOAD_SCALE;
2997
2998 /* Move if we gain throughput */
2999 if (pwr_move > pwr_now)
3000 *imbalance = busiest_load_per_task;
3001 }
3002
3003 return busiest;
3004
3005 out_balanced:
3006 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3007 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3008 goto ret;
3009
3010 if (this == group_leader && group_leader != group_min) {
3011 *imbalance = min_load_per_task;
3012 return group_min;
3013 }
3014 #endif
3015 ret:
3016 *imbalance = 0;
3017 return NULL;
3018 }
3019
3020 /*
3021 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3022 */
3023 static struct rq *
3024 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3025 unsigned long imbalance, cpumask_t *cpus)
3026 {
3027 struct rq *busiest = NULL, *rq;
3028 unsigned long max_load = 0;
3029 int i;
3030
3031 for_each_cpu_mask(i, group->cpumask) {
3032 unsigned long wl;
3033
3034 if (!cpu_isset(i, *cpus))
3035 continue;
3036
3037 rq = cpu_rq(i);
3038 wl = weighted_cpuload(i);
3039
3040 if (rq->nr_running == 1 && wl > imbalance)
3041 continue;
3042
3043 if (wl > max_load) {
3044 max_load = wl;
3045 busiest = rq;
3046 }
3047 }
3048
3049 return busiest;
3050 }
3051
3052 /*
3053 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3054 * so long as it is large enough.
3055 */
3056 #define MAX_PINNED_INTERVAL 512
3057
3058 /*
3059 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3060 * tasks if there is an imbalance.
3061 */
3062 static int load_balance(int this_cpu, struct rq *this_rq,
3063 struct sched_domain *sd, enum cpu_idle_type idle,
3064 int *balance)
3065 {
3066 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3067 struct sched_group *group;
3068 unsigned long imbalance;
3069 struct rq *busiest;
3070 cpumask_t cpus = CPU_MASK_ALL;
3071 unsigned long flags;
3072
3073 /*
3074 * When power savings policy is enabled for the parent domain, idle
3075 * sibling can pick up load irrespective of busy siblings. In this case,
3076 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3077 * portraying it as CPU_NOT_IDLE.
3078 */
3079 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3080 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3081 sd_idle = 1;
3082
3083 schedstat_inc(sd, lb_count[idle]);
3084
3085 redo:
3086 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3087 &cpus, balance);
3088
3089 if (*balance == 0)
3090 goto out_balanced;
3091
3092 if (!group) {
3093 schedstat_inc(sd, lb_nobusyg[idle]);
3094 goto out_balanced;
3095 }
3096
3097 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
3098 if (!busiest) {
3099 schedstat_inc(sd, lb_nobusyq[idle]);
3100 goto out_balanced;
3101 }
3102
3103 BUG_ON(busiest == this_rq);
3104
3105 schedstat_add(sd, lb_imbalance[idle], imbalance);
3106
3107 ld_moved = 0;
3108 if (busiest->nr_running > 1) {
3109 /*
3110 * Attempt to move tasks. If find_busiest_group has found
3111 * an imbalance but busiest->nr_running <= 1, the group is
3112 * still unbalanced. ld_moved simply stays zero, so it is
3113 * correctly treated as an imbalance.
3114 */
3115 local_irq_save(flags);
3116 double_rq_lock(this_rq, busiest);
3117 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3118 imbalance, sd, idle, &all_pinned);
3119 double_rq_unlock(this_rq, busiest);
3120 local_irq_restore(flags);
3121
3122 /*
3123 * some other cpu did the load balance for us.
3124 */
3125 if (ld_moved && this_cpu != smp_processor_id())
3126 resched_cpu(this_cpu);
3127
3128 /* All tasks on this runqueue were pinned by CPU affinity */
3129 if (unlikely(all_pinned)) {
3130 cpu_clear(cpu_of(busiest), cpus);
3131 if (!cpus_empty(cpus))
3132 goto redo;
3133 goto out_balanced;
3134 }
3135 }
3136
3137 if (!ld_moved) {
3138 schedstat_inc(sd, lb_failed[idle]);
3139 sd->nr_balance_failed++;
3140
3141 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
3142
3143 spin_lock_irqsave(&busiest->lock, flags);
3144
3145 /* don't kick the migration_thread, if the curr
3146 * task on busiest cpu can't be moved to this_cpu
3147 */
3148 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3149 spin_unlock_irqrestore(&busiest->lock, flags);
3150 all_pinned = 1;
3151 goto out_one_pinned;
3152 }
3153
3154 if (!busiest->active_balance) {
3155 busiest->active_balance = 1;
3156 busiest->push_cpu = this_cpu;
3157 active_balance = 1;
3158 }
3159 spin_unlock_irqrestore(&busiest->lock, flags);
3160 if (active_balance)
3161 wake_up_process(busiest->migration_thread);
3162
3163 /*
3164 * We've kicked active balancing, reset the failure
3165 * counter.
3166 */
3167 sd->nr_balance_failed = sd->cache_nice_tries+1;
3168 }
3169 } else
3170 sd->nr_balance_failed = 0;
3171
3172 if (likely(!active_balance)) {
3173 /* We were unbalanced, so reset the balancing interval */
3174 sd->balance_interval = sd->min_interval;
3175 } else {
3176 /*
3177 * If we've begun active balancing, start to back off. This
3178 * case may not be covered by the all_pinned logic if there
3179 * is only 1 task on the busy runqueue (because we don't call
3180 * move_tasks).
3181 */
3182 if (sd->balance_interval < sd->max_interval)
3183 sd->balance_interval *= 2;
3184 }
3185
3186 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3187 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3188 return -1;
3189 return ld_moved;
3190
3191 out_balanced:
3192 schedstat_inc(sd, lb_balanced[idle]);
3193
3194 sd->nr_balance_failed = 0;
3195
3196 out_one_pinned:
3197 /* tune up the balancing interval */
3198 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3199 (sd->balance_interval < sd->max_interval))
3200 sd->balance_interval *= 2;
3201
3202 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3203 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3204 return -1;
3205 return 0;
3206 }
3207
3208 /*
3209 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3210 * tasks if there is an imbalance.
3211 *
3212 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3213 * this_rq is locked.
3214 */
3215 static int
3216 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
3217 {
3218 struct sched_group *group;
3219 struct rq *busiest = NULL;
3220 unsigned long imbalance;
3221 int ld_moved = 0;
3222 int sd_idle = 0;
3223 int all_pinned = 0;
3224 cpumask_t cpus = CPU_MASK_ALL;
3225
3226 /*
3227 * When power savings policy is enabled for the parent domain, idle
3228 * sibling can pick up load irrespective of busy siblings. In this case,
3229 * let the state of idle sibling percolate up as IDLE, instead of
3230 * portraying it as CPU_NOT_IDLE.
3231 */
3232 if (sd->flags & SD_SHARE_CPUPOWER &&
3233 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3234 sd_idle = 1;
3235
3236 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3237 redo:
3238 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3239 &sd_idle, &cpus, NULL);
3240 if (!group) {
3241 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3242 goto out_balanced;
3243 }
3244
3245 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
3246 &cpus);
3247 if (!busiest) {
3248 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3249 goto out_balanced;
3250 }
3251
3252 BUG_ON(busiest == this_rq);
3253
3254 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3255
3256 ld_moved = 0;
3257 if (busiest->nr_running > 1) {
3258 /* Attempt to move tasks */
3259 double_lock_balance(this_rq, busiest);
3260 /* this_rq->clock is already updated */
3261 update_rq_clock(busiest);
3262 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3263 imbalance, sd, CPU_NEWLY_IDLE,
3264 &all_pinned);
3265 spin_unlock(&busiest->lock);
3266
3267 if (unlikely(all_pinned)) {
3268 cpu_clear(cpu_of(busiest), cpus);
3269 if (!cpus_empty(cpus))
3270 goto redo;
3271 }
3272 }
3273
3274 if (!ld_moved) {
3275 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3276 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3277 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3278 return -1;
3279 } else
3280 sd->nr_balance_failed = 0;
3281
3282 return ld_moved;
3283
3284 out_balanced:
3285 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3286 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3287 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3288 return -1;
3289 sd->nr_balance_failed = 0;
3290
3291 return 0;
3292 }
3293
3294 /*
3295 * idle_balance is called by schedule() if this_cpu is about to become
3296 * idle. Attempts to pull tasks from other CPUs.
3297 */
3298 static void idle_balance(int this_cpu, struct rq *this_rq)
3299 {
3300 struct sched_domain *sd;
3301 int pulled_task = -1;
3302 unsigned long next_balance = jiffies + HZ;
3303
3304 for_each_domain(this_cpu, sd) {
3305 unsigned long interval;
3306
3307 if (!(sd->flags & SD_LOAD_BALANCE))
3308 continue;
3309
3310 if (sd->flags & SD_BALANCE_NEWIDLE)
3311 /* If we've pulled tasks over stop searching: */
3312 pulled_task = load_balance_newidle(this_cpu,
3313 this_rq, sd);
3314
3315 interval = msecs_to_jiffies(sd->balance_interval);
3316 if (time_after(next_balance, sd->last_balance + interval))
3317 next_balance = sd->last_balance + interval;
3318 if (pulled_task)
3319 break;
3320 }
3321 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3322 /*
3323 * We are going idle. next_balance may be set based on
3324 * a busy processor. So reset next_balance.
3325 */
3326 this_rq->next_balance = next_balance;
3327 }
3328 }
3329
3330 /*
3331 * active_load_balance is run by migration threads. It pushes running tasks
3332 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3333 * running on each physical CPU where possible, and avoids physical /
3334 * logical imbalances.
3335 *
3336 * Called with busiest_rq locked.
3337 */
3338 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3339 {
3340 int target_cpu = busiest_rq->push_cpu;
3341 struct sched_domain *sd;
3342 struct rq *target_rq;
3343
3344 /* Is there any task to move? */
3345 if (busiest_rq->nr_running <= 1)
3346 return;
3347
3348 target_rq = cpu_rq(target_cpu);
3349
3350 /*
3351 * This condition is "impossible", if it occurs
3352 * we need to fix it. Originally reported by
3353 * Bjorn Helgaas on a 128-cpu setup.
3354 */
3355 BUG_ON(busiest_rq == target_rq);
3356
3357 /* move a task from busiest_rq to target_rq */
3358 double_lock_balance(busiest_rq, target_rq);
3359 update_rq_clock(busiest_rq);
3360 update_rq_clock(target_rq);
3361
3362 /* Search for an sd spanning us and the target CPU. */
3363 for_each_domain(target_cpu, sd) {
3364 if ((sd->flags & SD_LOAD_BALANCE) &&
3365 cpu_isset(busiest_cpu, sd->span))
3366 break;
3367 }
3368
3369 if (likely(sd)) {
3370 schedstat_inc(sd, alb_count);
3371
3372 if (move_one_task(target_rq, target_cpu, busiest_rq,
3373 sd, CPU_IDLE))
3374 schedstat_inc(sd, alb_pushed);
3375 else
3376 schedstat_inc(sd, alb_failed);
3377 }
3378 spin_unlock(&target_rq->lock);
3379 }
3380
3381 #ifdef CONFIG_NO_HZ
3382 static struct {
3383 atomic_t load_balancer;
3384 cpumask_t cpu_mask;
3385 } nohz ____cacheline_aligned = {
3386 .load_balancer = ATOMIC_INIT(-1),
3387 .cpu_mask = CPU_MASK_NONE,
3388 };
3389
3390 /*
3391 * This routine will try to nominate the ilb (idle load balancing)
3392 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3393 * load balancing on behalf of all those cpus. If all the cpus in the system
3394 * go into this tickless mode, then there will be no ilb owner (as there is
3395 * no need for one) and all the cpus will sleep till the next wakeup event
3396 * arrives...
3397 *
3398 * For the ilb owner, tick is not stopped. And this tick will be used
3399 * for idle load balancing. ilb owner will still be part of
3400 * nohz.cpu_mask..
3401 *
3402 * While stopping the tick, this cpu will become the ilb owner if there
3403 * is no other owner. And will be the owner till that cpu becomes busy
3404 * or if all cpus in the system stop their ticks at which point
3405 * there is no need for ilb owner.
3406 *
3407 * When the ilb owner becomes busy, it nominates another owner, during the
3408 * next busy scheduler_tick()
3409 */
3410 int select_nohz_load_balancer(int stop_tick)
3411 {
3412 int cpu = smp_processor_id();
3413
3414 if (stop_tick) {
3415 cpu_set(cpu, nohz.cpu_mask);
3416 cpu_rq(cpu)->in_nohz_recently = 1;
3417
3418 /*
3419 * If we are going offline and still the leader, give up!
3420 */
3421 if (cpu_is_offline(cpu) &&
3422 atomic_read(&nohz.load_balancer) == cpu) {
3423 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3424 BUG();
3425 return 0;
3426 }
3427
3428 /* time for ilb owner also to sleep */
3429 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3430 if (atomic_read(&nohz.load_balancer) == cpu)
3431 atomic_set(&nohz.load_balancer, -1);
3432 return 0;
3433 }
3434
3435 if (atomic_read(&nohz.load_balancer) == -1) {
3436 /* make me the ilb owner */
3437 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3438 return 1;
3439 } else if (atomic_read(&nohz.load_balancer) == cpu)
3440 return 1;
3441 } else {
3442 if (!cpu_isset(cpu, nohz.cpu_mask))
3443 return 0;
3444
3445 cpu_clear(cpu, nohz.cpu_mask);
3446
3447 if (atomic_read(&nohz.load_balancer) == cpu)
3448 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3449 BUG();
3450 }
3451 return 0;
3452 }
3453 #endif
3454
3455 static DEFINE_SPINLOCK(balancing);
3456
3457 /*
3458 * It checks each scheduling domain to see if it is due to be balanced,
3459 * and initiates a balancing operation if so.
3460 *
3461 * Balancing parameters are set up in arch_init_sched_domains.
3462 */
3463 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3464 {
3465 int balance = 1;
3466 struct rq *rq = cpu_rq(cpu);
3467 unsigned long interval;
3468 struct sched_domain *sd;
3469 /* Earliest time when we have to do rebalance again */
3470 unsigned long next_balance = jiffies + 60*HZ;
3471 int update_next_balance = 0;
3472
3473 for_each_domain(cpu, sd) {
3474 if (!(sd->flags & SD_LOAD_BALANCE))
3475 continue;
3476
3477 interval = sd->balance_interval;
3478 if (idle != CPU_IDLE)
3479 interval *= sd->busy_factor;
3480
3481 /* scale ms to jiffies */
3482 interval = msecs_to_jiffies(interval);
3483 if (unlikely(!interval))
3484 interval = 1;
3485 if (interval > HZ*NR_CPUS/10)
3486 interval = HZ*NR_CPUS/10;
3487
3488
3489 if (sd->flags & SD_SERIALIZE) {
3490 if (!spin_trylock(&balancing))
3491 goto out;
3492 }
3493
3494 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3495 if (load_balance(cpu, rq, sd, idle, &balance)) {
3496 /*
3497 * We've pulled tasks over so either we're no
3498 * longer idle, or one of our SMT siblings is
3499 * not idle.
3500 */
3501 idle = CPU_NOT_IDLE;
3502 }
3503 sd->last_balance = jiffies;
3504 }
3505 if (sd->flags & SD_SERIALIZE)
3506 spin_unlock(&balancing);
3507 out:
3508 if (time_after(next_balance, sd->last_balance + interval)) {
3509 next_balance = sd->last_balance + interval;
3510 update_next_balance = 1;
3511 }
3512
3513 /*
3514 * Stop the load balance at this level. There is another
3515 * CPU in our sched group which is doing load balancing more
3516 * actively.
3517 */
3518 if (!balance)
3519 break;
3520 }
3521
3522 /*
3523 * next_balance will be updated only when there is a need.
3524 * When the cpu is attached to null domain for ex, it will not be
3525 * updated.
3526 */
3527 if (likely(update_next_balance))
3528 rq->next_balance = next_balance;
3529 }
3530
3531 /*
3532 * run_rebalance_domains is triggered when needed from the scheduler tick.
3533 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3534 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3535 */
3536 static void run_rebalance_domains(struct softirq_action *h)
3537 {
3538 int this_cpu = smp_processor_id();
3539 struct rq *this_rq = cpu_rq(this_cpu);
3540 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3541 CPU_IDLE : CPU_NOT_IDLE;
3542
3543 rebalance_domains(this_cpu, idle);
3544
3545 #ifdef CONFIG_NO_HZ
3546 /*
3547 * If this cpu is the owner for idle load balancing, then do the
3548 * balancing on behalf of the other idle cpus whose ticks are
3549 * stopped.
3550 */
3551 if (this_rq->idle_at_tick &&
3552 atomic_read(&nohz.load_balancer) == this_cpu) {
3553 cpumask_t cpus = nohz.cpu_mask;
3554 struct rq *rq;
3555 int balance_cpu;
3556
3557 cpu_clear(this_cpu, cpus);
3558 for_each_cpu_mask(balance_cpu, cpus) {
3559 /*
3560 * If this cpu gets work to do, stop the load balancing
3561 * work being done for other cpus. Next load
3562 * balancing owner will pick it up.
3563 */
3564 if (need_resched())
3565 break;
3566
3567 rebalance_domains(balance_cpu, CPU_IDLE);
3568
3569 rq = cpu_rq(balance_cpu);
3570 if (time_after(this_rq->next_balance, rq->next_balance))
3571 this_rq->next_balance = rq->next_balance;
3572 }
3573 }
3574 #endif
3575 }
3576
3577 /*
3578 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3579 *
3580 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3581 * idle load balancing owner or decide to stop the periodic load balancing,
3582 * if the whole system is idle.
3583 */
3584 static inline void trigger_load_balance(struct rq *rq, int cpu)
3585 {
3586 #ifdef CONFIG_NO_HZ
3587 /*
3588 * If we were in the nohz mode recently and busy at the current
3589 * scheduler tick, then check if we need to nominate new idle
3590 * load balancer.
3591 */
3592 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3593 rq->in_nohz_recently = 0;
3594
3595 if (atomic_read(&nohz.load_balancer) == cpu) {
3596 cpu_clear(cpu, nohz.cpu_mask);
3597 atomic_set(&nohz.load_balancer, -1);
3598 }
3599
3600 if (atomic_read(&nohz.load_balancer) == -1) {
3601 /*
3602 * simple selection for now: Nominate the
3603 * first cpu in the nohz list to be the next
3604 * ilb owner.
3605 *
3606 * TBD: Traverse the sched domains and nominate
3607 * the nearest cpu in the nohz.cpu_mask.
3608 */
3609 int ilb = first_cpu(nohz.cpu_mask);
3610
3611 if (ilb != NR_CPUS)
3612 resched_cpu(ilb);
3613 }
3614 }
3615
3616 /*
3617 * If this cpu is idle and doing idle load balancing for all the
3618 * cpus with ticks stopped, is it time for that to stop?
3619 */
3620 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3621 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3622 resched_cpu(cpu);
3623 return;
3624 }
3625
3626 /*
3627 * If this cpu is idle and the idle load balancing is done by
3628 * someone else, then no need raise the SCHED_SOFTIRQ
3629 */
3630 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3631 cpu_isset(cpu, nohz.cpu_mask))
3632 return;
3633 #endif
3634 if (time_after_eq(jiffies, rq->next_balance))
3635 raise_softirq(SCHED_SOFTIRQ);
3636 }
3637
3638 #else /* CONFIG_SMP */
3639
3640 /*
3641 * on UP we do not need to balance between CPUs:
3642 */
3643 static inline void idle_balance(int cpu, struct rq *rq)
3644 {
3645 }
3646
3647 #endif
3648
3649 DEFINE_PER_CPU(struct kernel_stat, kstat);
3650
3651 EXPORT_PER_CPU_SYMBOL(kstat);
3652
3653 /*
3654 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3655 * that have not yet been banked in case the task is currently running.
3656 */
3657 unsigned long long task_sched_runtime(struct task_struct *p)
3658 {
3659 unsigned long flags;
3660 u64 ns, delta_exec;
3661 struct rq *rq;
3662
3663 rq = task_rq_lock(p, &flags);
3664 ns = p->se.sum_exec_runtime;
3665 if (task_current(rq, p)) {
3666 update_rq_clock(rq);
3667 delta_exec = rq->clock - p->se.exec_start;
3668 if ((s64)delta_exec > 0)
3669 ns += delta_exec;
3670 }
3671 task_rq_unlock(rq, &flags);
3672
3673 return ns;
3674 }
3675
3676 /*
3677 * Account user cpu time to a process.
3678 * @p: the process that the cpu time gets accounted to
3679 * @cputime: the cpu time spent in user space since the last update
3680 */
3681 void account_user_time(struct task_struct *p, cputime_t cputime)
3682 {
3683 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3684 cputime64_t tmp;
3685
3686 p->utime = cputime_add(p->utime, cputime);
3687
3688 /* Add user time to cpustat. */
3689 tmp = cputime_to_cputime64(cputime);
3690 if (TASK_NICE(p) > 0)
3691 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3692 else
3693 cpustat->user = cputime64_add(cpustat->user, tmp);
3694 }
3695
3696 /*
3697 * Account guest cpu time to a process.
3698 * @p: the process that the cpu time gets accounted to
3699 * @cputime: the cpu time spent in virtual machine since the last update
3700 */
3701 static void account_guest_time(struct task_struct *p, cputime_t cputime)
3702 {
3703 cputime64_t tmp;
3704 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3705
3706 tmp = cputime_to_cputime64(cputime);
3707
3708 p->utime = cputime_add(p->utime, cputime);
3709 p->gtime = cputime_add(p->gtime, cputime);
3710
3711 cpustat->user = cputime64_add(cpustat->user, tmp);
3712 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3713 }
3714
3715 /*
3716 * Account scaled user cpu time to a process.
3717 * @p: the process that the cpu time gets accounted to
3718 * @cputime: the cpu time spent in user space since the last update
3719 */
3720 void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
3721 {
3722 p->utimescaled = cputime_add(p->utimescaled, cputime);
3723 }
3724
3725 /*
3726 * Account system cpu time to a process.
3727 * @p: the process that the cpu time gets accounted to
3728 * @hardirq_offset: the offset to subtract from hardirq_count()
3729 * @cputime: the cpu time spent in kernel space since the last update
3730 */
3731 void account_system_time(struct task_struct *p, int hardirq_offset,
3732 cputime_t cputime)
3733 {
3734 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3735 struct rq *rq = this_rq();
3736 cputime64_t tmp;
3737
3738 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
3739 return account_guest_time(p, cputime);
3740
3741 p->stime = cputime_add(p->stime, cputime);
3742
3743 /* Add system time to cpustat. */
3744 tmp = cputime_to_cputime64(cputime);
3745 if (hardirq_count() - hardirq_offset)
3746 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3747 else if (softirq_count())
3748 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3749 else if (p != rq->idle)
3750 cpustat->system = cputime64_add(cpustat->system, tmp);
3751 else if (atomic_read(&rq->nr_iowait) > 0)
3752 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3753 else
3754 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3755 /* Account for system time used */
3756 acct_update_integrals(p);
3757 }
3758
3759 /*
3760 * Account scaled system cpu time to a process.
3761 * @p: the process that the cpu time gets accounted to
3762 * @hardirq_offset: the offset to subtract from hardirq_count()
3763 * @cputime: the cpu time spent in kernel space since the last update
3764 */
3765 void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
3766 {
3767 p->stimescaled = cputime_add(p->stimescaled, cputime);
3768 }
3769
3770 /*
3771 * Account for involuntary wait time.
3772 * @p: the process from which the cpu time has been stolen
3773 * @steal: the cpu time spent in involuntary wait
3774 */
3775 void account_steal_time(struct task_struct *p, cputime_t steal)
3776 {
3777 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3778 cputime64_t tmp = cputime_to_cputime64(steal);
3779 struct rq *rq = this_rq();
3780
3781 if (p == rq->idle) {
3782 p->stime = cputime_add(p->stime, steal);
3783 if (atomic_read(&rq->nr_iowait) > 0)
3784 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3785 else
3786 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3787 } else
3788 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3789 }
3790
3791 /*
3792 * This function gets called by the timer code, with HZ frequency.
3793 * We call it with interrupts disabled.
3794 *
3795 * It also gets called by the fork code, when changing the parent's
3796 * timeslices.
3797 */
3798 void scheduler_tick(void)
3799 {
3800 int cpu = smp_processor_id();
3801 struct rq *rq = cpu_rq(cpu);
3802 struct task_struct *curr = rq->curr;
3803 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
3804
3805 spin_lock(&rq->lock);
3806 __update_rq_clock(rq);
3807 /*
3808 * Let rq->clock advance by at least TICK_NSEC:
3809 */
3810 if (unlikely(rq->clock < next_tick)) {
3811 rq->clock = next_tick;
3812 rq->clock_underflows++;
3813 }
3814 rq->tick_timestamp = rq->clock;
3815 update_cpu_load(rq);
3816 curr->sched_class->task_tick(rq, curr, 0);
3817 update_sched_rt_period(rq);
3818 spin_unlock(&rq->lock);
3819
3820 #ifdef CONFIG_SMP
3821 rq->idle_at_tick = idle_cpu(cpu);
3822 trigger_load_balance(rq, cpu);
3823 #endif
3824 }
3825
3826 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3827
3828 void __kprobes add_preempt_count(int val)
3829 {
3830 /*
3831 * Underflow?
3832 */
3833 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3834 return;
3835 preempt_count() += val;
3836 /*
3837 * Spinlock count overflowing soon?
3838 */
3839 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3840 PREEMPT_MASK - 10);
3841 }
3842 EXPORT_SYMBOL(add_preempt_count);
3843
3844 void __kprobes sub_preempt_count(int val)
3845 {
3846 /*
3847 * Underflow?
3848 */
3849 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3850 return;
3851 /*
3852 * Is the spinlock portion underflowing?
3853 */
3854 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3855 !(preempt_count() & PREEMPT_MASK)))
3856 return;
3857
3858 preempt_count() -= val;
3859 }
3860 EXPORT_SYMBOL(sub_preempt_count);
3861
3862 #endif
3863
3864 /*
3865 * Print scheduling while atomic bug:
3866 */
3867 static noinline void __schedule_bug(struct task_struct *prev)
3868 {
3869 struct pt_regs *regs = get_irq_regs();
3870
3871 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3872 prev->comm, prev->pid, preempt_count());
3873
3874 debug_show_held_locks(prev);
3875 if (irqs_disabled())
3876 print_irqtrace_events(prev);
3877
3878 if (regs)
3879 show_regs(regs);
3880 else
3881 dump_stack();
3882 }
3883
3884 /*
3885 * Various schedule()-time debugging checks and statistics:
3886 */
3887 static inline void schedule_debug(struct task_struct *prev)
3888 {
3889 /*
3890 * Test if we are atomic. Since do_exit() needs to call into
3891 * schedule() atomically, we ignore that path for now.
3892 * Otherwise, whine if we are scheduling when we should not be.
3893 */
3894 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3895 __schedule_bug(prev);
3896
3897 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3898
3899 schedstat_inc(this_rq(), sched_count);
3900 #ifdef CONFIG_SCHEDSTATS
3901 if (unlikely(prev->lock_depth >= 0)) {
3902 schedstat_inc(this_rq(), bkl_count);
3903 schedstat_inc(prev, sched_info.bkl_count);
3904 }
3905 #endif
3906 }
3907
3908 /*
3909 * Pick up the highest-prio task:
3910 */
3911 static inline struct task_struct *
3912 pick_next_task(struct rq *rq, struct task_struct *prev)
3913 {
3914 const struct sched_class *class;
3915 struct task_struct *p;
3916
3917 /*
3918 * Optimization: we know that if all tasks are in
3919 * the fair class we can call that function directly:
3920 */
3921 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3922 p = fair_sched_class.pick_next_task(rq);
3923 if (likely(p))
3924 return p;
3925 }
3926
3927 class = sched_class_highest;
3928 for ( ; ; ) {
3929 p = class->pick_next_task(rq);
3930 if (p)
3931 return p;
3932 /*
3933 * Will never be NULL as the idle class always
3934 * returns a non-NULL p:
3935 */
3936 class = class->next;
3937 }
3938 }
3939
3940 /*
3941 * schedule() is the main scheduler function.
3942 */
3943 asmlinkage void __sched schedule(void)
3944 {
3945 struct task_struct *prev, *next;
3946 unsigned long *switch_count;
3947 struct rq *rq;
3948 int cpu;
3949
3950 need_resched:
3951 preempt_disable();
3952 cpu = smp_processor_id();
3953 rq = cpu_rq(cpu);
3954 rcu_qsctr_inc(cpu);
3955 prev = rq->curr;
3956 switch_count = &prev->nivcsw;
3957
3958 release_kernel_lock(prev);
3959 need_resched_nonpreemptible:
3960
3961 schedule_debug(prev);
3962
3963 hrtick_clear(rq);
3964
3965 /*
3966 * Do the rq-clock update outside the rq lock:
3967 */
3968 local_irq_disable();
3969 __update_rq_clock(rq);
3970 spin_lock(&rq->lock);
3971 clear_tsk_need_resched(prev);
3972
3973 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3974 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3975 signal_pending(prev))) {
3976 prev->state = TASK_RUNNING;
3977 } else {
3978 deactivate_task(rq, prev, 1);
3979 }
3980 switch_count = &prev->nvcsw;
3981 }
3982
3983 #ifdef CONFIG_SMP
3984 if (prev->sched_class->pre_schedule)
3985 prev->sched_class->pre_schedule(rq, prev);
3986 #endif
3987
3988 if (unlikely(!rq->nr_running))
3989 idle_balance(cpu, rq);
3990
3991 prev->sched_class->put_prev_task(rq, prev);
3992 next = pick_next_task(rq, prev);
3993
3994 sched_info_switch(prev, next);
3995
3996 if (likely(prev != next)) {
3997 rq->nr_switches++;
3998 rq->curr = next;
3999 ++*switch_count;
4000
4001 context_switch(rq, prev, next); /* unlocks the rq */
4002 /*
4003 * the context switch might have flipped the stack from under
4004 * us, hence refresh the local variables.
4005 */
4006 cpu = smp_processor_id();
4007 rq = cpu_rq(cpu);
4008 } else
4009 spin_unlock_irq(&rq->lock);
4010
4011 hrtick_set(rq);
4012
4013 if (unlikely(reacquire_kernel_lock(current) < 0))
4014 goto need_resched_nonpreemptible;
4015
4016 preempt_enable_no_resched();
4017 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4018 goto need_resched;
4019 }
4020 EXPORT_SYMBOL(schedule);
4021
4022 #ifdef CONFIG_PREEMPT
4023 /*
4024 * this is the entry point to schedule() from in-kernel preemption
4025 * off of preempt_enable. Kernel preemptions off return from interrupt
4026 * occur there and call schedule directly.
4027 */
4028 asmlinkage void __sched preempt_schedule(void)
4029 {
4030 struct thread_info *ti = current_thread_info();
4031 struct task_struct *task = current;
4032 int saved_lock_depth;
4033
4034 /*
4035 * If there is a non-zero preempt_count or interrupts are disabled,
4036 * we do not want to preempt the current task. Just return..
4037 */
4038 if (likely(ti->preempt_count || irqs_disabled()))
4039 return;
4040
4041 do {
4042 add_preempt_count(PREEMPT_ACTIVE);
4043
4044 /*
4045 * We keep the big kernel semaphore locked, but we
4046 * clear ->lock_depth so that schedule() doesnt
4047 * auto-release the semaphore:
4048 */
4049 saved_lock_depth = task->lock_depth;
4050 task->lock_depth = -1;
4051 schedule();
4052 task->lock_depth = saved_lock_depth;
4053 sub_preempt_count(PREEMPT_ACTIVE);
4054
4055 /*
4056 * Check again in case we missed a preemption opportunity
4057 * between schedule and now.
4058 */
4059 barrier();
4060 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4061 }
4062 EXPORT_SYMBOL(preempt_schedule);
4063
4064 /*
4065 * this is the entry point to schedule() from kernel preemption
4066 * off of irq context.
4067 * Note, that this is called and return with irqs disabled. This will
4068 * protect us against recursive calling from irq.
4069 */
4070 asmlinkage void __sched preempt_schedule_irq(void)
4071 {
4072 struct thread_info *ti = current_thread_info();
4073 struct task_struct *task = current;
4074 int saved_lock_depth;
4075
4076 /* Catch callers which need to be fixed */
4077 BUG_ON(ti->preempt_count || !irqs_disabled());
4078
4079 do {
4080 add_preempt_count(PREEMPT_ACTIVE);
4081
4082 /*
4083 * We keep the big kernel semaphore locked, but we
4084 * clear ->lock_depth so that schedule() doesnt
4085 * auto-release the semaphore:
4086 */
4087 saved_lock_depth = task->lock_depth;
4088 task->lock_depth = -1;
4089 local_irq_enable();
4090 schedule();
4091 local_irq_disable();
4092 task->lock_depth = saved_lock_depth;
4093 sub_preempt_count(PREEMPT_ACTIVE);
4094
4095 /*
4096 * Check again in case we missed a preemption opportunity
4097 * between schedule and now.
4098 */
4099 barrier();
4100 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4101 }
4102
4103 #endif /* CONFIG_PREEMPT */
4104
4105 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4106 void *key)
4107 {
4108 return try_to_wake_up(curr->private, mode, sync);
4109 }
4110 EXPORT_SYMBOL(default_wake_function);
4111
4112 /*
4113 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4114 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4115 * number) then we wake all the non-exclusive tasks and one exclusive task.
4116 *
4117 * There are circumstances in which we can try to wake a task which has already
4118 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4119 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4120 */
4121 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4122 int nr_exclusive, int sync, void *key)
4123 {
4124 wait_queue_t *curr, *next;
4125
4126 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4127 unsigned flags = curr->flags;
4128
4129 if (curr->func(curr, mode, sync, key) &&
4130 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4131 break;
4132 }
4133 }
4134
4135 /**
4136 * __wake_up - wake up threads blocked on a waitqueue.
4137 * @q: the waitqueue
4138 * @mode: which threads
4139 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4140 * @key: is directly passed to the wakeup function
4141 */
4142 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4143 int nr_exclusive, void *key)
4144 {
4145 unsigned long flags;
4146
4147 spin_lock_irqsave(&q->lock, flags);
4148 __wake_up_common(q, mode, nr_exclusive, 0, key);
4149 spin_unlock_irqrestore(&q->lock, flags);
4150 }
4151 EXPORT_SYMBOL(__wake_up);
4152
4153 /*
4154 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4155 */
4156 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4157 {
4158 __wake_up_common(q, mode, 1, 0, NULL);
4159 }
4160
4161 /**
4162 * __wake_up_sync - wake up threads blocked on a waitqueue.
4163 * @q: the waitqueue
4164 * @mode: which threads
4165 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4166 *
4167 * The sync wakeup differs that the waker knows that it will schedule
4168 * away soon, so while the target thread will be woken up, it will not
4169 * be migrated to another CPU - ie. the two threads are 'synchronized'
4170 * with each other. This can prevent needless bouncing between CPUs.
4171 *
4172 * On UP it can prevent extra preemption.
4173 */
4174 void
4175 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4176 {
4177 unsigned long flags;
4178 int sync = 1;
4179
4180 if (unlikely(!q))
4181 return;
4182
4183 if (unlikely(!nr_exclusive))
4184 sync = 0;
4185
4186 spin_lock_irqsave(&q->lock, flags);
4187 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4188 spin_unlock_irqrestore(&q->lock, flags);
4189 }
4190 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4191
4192 void complete(struct completion *x)
4193 {
4194 unsigned long flags;
4195
4196 spin_lock_irqsave(&x->wait.lock, flags);
4197 x->done++;
4198 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4199 spin_unlock_irqrestore(&x->wait.lock, flags);
4200 }
4201 EXPORT_SYMBOL(complete);
4202
4203 void complete_all(struct completion *x)
4204 {
4205 unsigned long flags;
4206
4207 spin_lock_irqsave(&x->wait.lock, flags);
4208 x->done += UINT_MAX/2;
4209 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4210 spin_unlock_irqrestore(&x->wait.lock, flags);
4211 }
4212 EXPORT_SYMBOL(complete_all);
4213
4214 static inline long __sched
4215 do_wait_for_common(struct completion *x, long timeout, int state)
4216 {
4217 if (!x->done) {
4218 DECLARE_WAITQUEUE(wait, current);
4219
4220 wait.flags |= WQ_FLAG_EXCLUSIVE;
4221 __add_wait_queue_tail(&x->wait, &wait);
4222 do {
4223 if ((state == TASK_INTERRUPTIBLE &&
4224 signal_pending(current)) ||
4225 (state == TASK_KILLABLE &&
4226 fatal_signal_pending(current))) {
4227 __remove_wait_queue(&x->wait, &wait);
4228 return -ERESTARTSYS;
4229 }
4230 __set_current_state(state);
4231 spin_unlock_irq(&x->wait.lock);
4232 timeout = schedule_timeout(timeout);
4233 spin_lock_irq(&x->wait.lock);
4234 if (!timeout) {
4235 __remove_wait_queue(&x->wait, &wait);
4236 return timeout;
4237 }
4238 } while (!x->done);
4239 __remove_wait_queue(&x->wait, &wait);
4240 }
4241 x->done--;
4242 return timeout;
4243 }
4244
4245 static long __sched
4246 wait_for_common(struct completion *x, long timeout, int state)
4247 {
4248 might_sleep();
4249
4250 spin_lock_irq(&x->wait.lock);
4251 timeout = do_wait_for_common(x, timeout, state);
4252 spin_unlock_irq(&x->wait.lock);
4253 return timeout;
4254 }
4255
4256 void __sched wait_for_completion(struct completion *x)
4257 {
4258 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4259 }
4260 EXPORT_SYMBOL(wait_for_completion);
4261
4262 unsigned long __sched
4263 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4264 {
4265 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4266 }
4267 EXPORT_SYMBOL(wait_for_completion_timeout);
4268
4269 int __sched wait_for_completion_interruptible(struct completion *x)
4270 {
4271 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4272 if (t == -ERESTARTSYS)
4273 return t;
4274 return 0;
4275 }
4276 EXPORT_SYMBOL(wait_for_completion_interruptible);
4277
4278 unsigned long __sched
4279 wait_for_completion_interruptible_timeout(struct completion *x,
4280 unsigned long timeout)
4281 {
4282 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4283 }
4284 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4285
4286 int __sched wait_for_completion_killable(struct completion *x)
4287 {
4288 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4289 if (t == -ERESTARTSYS)
4290 return t;
4291 return 0;
4292 }
4293 EXPORT_SYMBOL(wait_for_completion_killable);
4294
4295 static long __sched
4296 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4297 {
4298 unsigned long flags;
4299 wait_queue_t wait;
4300
4301 init_waitqueue_entry(&wait, current);
4302
4303 __set_current_state(state);
4304
4305 spin_lock_irqsave(&q->lock, flags);
4306 __add_wait_queue(q, &wait);
4307 spin_unlock(&q->lock);
4308 timeout = schedule_timeout(timeout);
4309 spin_lock_irq(&q->lock);
4310 __remove_wait_queue(q, &wait);
4311 spin_unlock_irqrestore(&q->lock, flags);
4312
4313 return timeout;
4314 }
4315
4316 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4317 {
4318 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4319 }
4320 EXPORT_SYMBOL(interruptible_sleep_on);
4321
4322 long __sched
4323 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4324 {
4325 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4326 }
4327 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4328
4329 void __sched sleep_on(wait_queue_head_t *q)
4330 {
4331 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4332 }
4333 EXPORT_SYMBOL(sleep_on);
4334
4335 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4336 {
4337 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4338 }
4339 EXPORT_SYMBOL(sleep_on_timeout);
4340
4341 #ifdef CONFIG_RT_MUTEXES
4342
4343 /*
4344 * rt_mutex_setprio - set the current priority of a task
4345 * @p: task
4346 * @prio: prio value (kernel-internal form)
4347 *
4348 * This function changes the 'effective' priority of a task. It does
4349 * not touch ->normal_prio like __setscheduler().
4350 *
4351 * Used by the rt_mutex code to implement priority inheritance logic.
4352 */
4353 void rt_mutex_setprio(struct task_struct *p, int prio)
4354 {
4355 unsigned long flags;
4356 int oldprio, on_rq, running;
4357 struct rq *rq;
4358 const struct sched_class *prev_class = p->sched_class;
4359
4360 BUG_ON(prio < 0 || prio > MAX_PRIO);
4361
4362 rq = task_rq_lock(p, &flags);
4363 update_rq_clock(rq);
4364
4365 oldprio = p->prio;
4366 on_rq = p->se.on_rq;
4367 running = task_current(rq, p);
4368 if (on_rq)
4369 dequeue_task(rq, p, 0);
4370 if (running)
4371 p->sched_class->put_prev_task(rq, p);
4372
4373 if (rt_prio(prio))
4374 p->sched_class = &rt_sched_class;
4375 else
4376 p->sched_class = &fair_sched_class;
4377
4378 p->prio = prio;
4379
4380 if (running)
4381 p->sched_class->set_curr_task(rq);
4382 if (on_rq) {
4383 enqueue_task(rq, p, 0);
4384
4385 check_class_changed(rq, p, prev_class, oldprio, running);
4386 }
4387 task_rq_unlock(rq, &flags);
4388 }
4389
4390 #endif
4391
4392 void set_user_nice(struct task_struct *p, long nice)
4393 {
4394 int old_prio, delta, on_rq;
4395 unsigned long flags;
4396 struct rq *rq;
4397
4398 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4399 return;
4400 /*
4401 * We have to be careful, if called from sys_setpriority(),
4402 * the task might be in the middle of scheduling on another CPU.
4403 */
4404 rq = task_rq_lock(p, &flags);
4405 update_rq_clock(rq);
4406 /*
4407 * The RT priorities are set via sched_setscheduler(), but we still
4408 * allow the 'normal' nice value to be set - but as expected
4409 * it wont have any effect on scheduling until the task is
4410 * SCHED_FIFO/SCHED_RR:
4411 */
4412 if (task_has_rt_policy(p)) {
4413 p->static_prio = NICE_TO_PRIO(nice);
4414 goto out_unlock;
4415 }
4416 on_rq = p->se.on_rq;
4417 if (on_rq) {
4418 dequeue_task(rq, p, 0);
4419 dec_load(rq, p);
4420 }
4421
4422 p->static_prio = NICE_TO_PRIO(nice);
4423 set_load_weight(p);
4424 old_prio = p->prio;
4425 p->prio = effective_prio(p);
4426 delta = p->prio - old_prio;
4427
4428 if (on_rq) {
4429 enqueue_task(rq, p, 0);
4430 inc_load(rq, p);
4431 /*
4432 * If the task increased its priority or is running and
4433 * lowered its priority, then reschedule its CPU:
4434 */
4435 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4436 resched_task(rq->curr);
4437 }
4438 out_unlock:
4439 task_rq_unlock(rq, &flags);
4440 }
4441 EXPORT_SYMBOL(set_user_nice);
4442
4443 /*
4444 * can_nice - check if a task can reduce its nice value
4445 * @p: task
4446 * @nice: nice value
4447 */
4448 int can_nice(const struct task_struct *p, const int nice)
4449 {
4450 /* convert nice value [19,-20] to rlimit style value [1,40] */
4451 int nice_rlim = 20 - nice;
4452
4453 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4454 capable(CAP_SYS_NICE));
4455 }
4456
4457 #ifdef __ARCH_WANT_SYS_NICE
4458
4459 /*
4460 * sys_nice - change the priority of the current process.
4461 * @increment: priority increment
4462 *
4463 * sys_setpriority is a more generic, but much slower function that
4464 * does similar things.
4465 */
4466 asmlinkage long sys_nice(int increment)
4467 {
4468 long nice, retval;
4469
4470 /*
4471 * Setpriority might change our priority at the same moment.
4472 * We don't have to worry. Conceptually one call occurs first
4473 * and we have a single winner.
4474 */
4475 if (increment < -40)
4476 increment = -40;
4477 if (increment > 40)
4478 increment = 40;
4479
4480 nice = PRIO_TO_NICE(current->static_prio) + increment;
4481 if (nice < -20)
4482 nice = -20;
4483 if (nice > 19)
4484 nice = 19;
4485
4486 if (increment < 0 && !can_nice(current, nice))
4487 return -EPERM;
4488
4489 retval = security_task_setnice(current, nice);
4490 if (retval)
4491 return retval;
4492
4493 set_user_nice(current, nice);
4494 return 0;
4495 }
4496
4497 #endif
4498
4499 /**
4500 * task_prio - return the priority value of a given task.
4501 * @p: the task in question.
4502 *
4503 * This is the priority value as seen by users in /proc.
4504 * RT tasks are offset by -200. Normal tasks are centered
4505 * around 0, value goes from -16 to +15.
4506 */
4507 int task_prio(const struct task_struct *p)
4508 {
4509 return p->prio - MAX_RT_PRIO;
4510 }
4511
4512 /**
4513 * task_nice - return the nice value of a given task.
4514 * @p: the task in question.
4515 */
4516 int task_nice(const struct task_struct *p)
4517 {
4518 return TASK_NICE(p);
4519 }
4520 EXPORT_SYMBOL(task_nice);
4521
4522 /**
4523 * idle_cpu - is a given cpu idle currently?
4524 * @cpu: the processor in question.
4525 */
4526 int idle_cpu(int cpu)
4527 {
4528 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4529 }
4530
4531 /**
4532 * idle_task - return the idle task for a given cpu.
4533 * @cpu: the processor in question.
4534 */
4535 struct task_struct *idle_task(int cpu)
4536 {
4537 return cpu_rq(cpu)->idle;
4538 }
4539
4540 /**
4541 * find_process_by_pid - find a process with a matching PID value.
4542 * @pid: the pid in question.
4543 */
4544 static struct task_struct *find_process_by_pid(pid_t pid)
4545 {
4546 return pid ? find_task_by_vpid(pid) : current;
4547 }
4548
4549 /* Actually do priority change: must hold rq lock. */
4550 static void
4551 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4552 {
4553 BUG_ON(p->se.on_rq);
4554
4555 p->policy = policy;
4556 switch (p->policy) {
4557 case SCHED_NORMAL:
4558 case SCHED_BATCH:
4559 case SCHED_IDLE:
4560 p->sched_class = &fair_sched_class;
4561 break;
4562 case SCHED_FIFO:
4563 case SCHED_RR:
4564 p->sched_class = &rt_sched_class;
4565 break;
4566 }
4567
4568 p->rt_priority = prio;
4569 p->normal_prio = normal_prio(p);
4570 /* we are holding p->pi_lock already */
4571 p->prio = rt_mutex_getprio(p);
4572 set_load_weight(p);
4573 }
4574
4575 /**
4576 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4577 * @p: the task in question.
4578 * @policy: new policy.
4579 * @param: structure containing the new RT priority.
4580 *
4581 * NOTE that the task may be already dead.
4582 */
4583 int sched_setscheduler(struct task_struct *p, int policy,
4584 struct sched_param *param)
4585 {
4586 int retval, oldprio, oldpolicy = -1, on_rq, running;
4587 unsigned long flags;
4588 const struct sched_class *prev_class = p->sched_class;
4589 struct rq *rq;
4590
4591 /* may grab non-irq protected spin_locks */
4592 BUG_ON(in_interrupt());
4593 recheck:
4594 /* double check policy once rq lock held */
4595 if (policy < 0)
4596 policy = oldpolicy = p->policy;
4597 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4598 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4599 policy != SCHED_IDLE)
4600 return -EINVAL;
4601 /*
4602 * Valid priorities for SCHED_FIFO and SCHED_RR are
4603 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4604 * SCHED_BATCH and SCHED_IDLE is 0.
4605 */
4606 if (param->sched_priority < 0 ||
4607 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4608 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4609 return -EINVAL;
4610 if (rt_policy(policy) != (param->sched_priority != 0))
4611 return -EINVAL;
4612
4613 /*
4614 * Allow unprivileged RT tasks to decrease priority:
4615 */
4616 if (!capable(CAP_SYS_NICE)) {
4617 if (rt_policy(policy)) {
4618 unsigned long rlim_rtprio;
4619
4620 if (!lock_task_sighand(p, &flags))
4621 return -ESRCH;
4622 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4623 unlock_task_sighand(p, &flags);
4624
4625 /* can't set/change the rt policy */
4626 if (policy != p->policy && !rlim_rtprio)
4627 return -EPERM;
4628
4629 /* can't increase priority */
4630 if (param->sched_priority > p->rt_priority &&
4631 param->sched_priority > rlim_rtprio)
4632 return -EPERM;
4633 }
4634 /*
4635 * Like positive nice levels, dont allow tasks to
4636 * move out of SCHED_IDLE either:
4637 */
4638 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4639 return -EPERM;
4640
4641 /* can't change other user's priorities */
4642 if ((current->euid != p->euid) &&
4643 (current->euid != p->uid))
4644 return -EPERM;
4645 }
4646
4647 #ifdef CONFIG_RT_GROUP_SCHED
4648 /*
4649 * Do not allow realtime tasks into groups that have no runtime
4650 * assigned.
4651 */
4652 if (rt_policy(policy) && task_group(p)->rt_runtime == 0)
4653 return -EPERM;
4654 #endif
4655
4656 retval = security_task_setscheduler(p, policy, param);
4657 if (retval)
4658 return retval;
4659 /*
4660 * make sure no PI-waiters arrive (or leave) while we are
4661 * changing the priority of the task:
4662 */
4663 spin_lock_irqsave(&p->pi_lock, flags);
4664 /*
4665 * To be able to change p->policy safely, the apropriate
4666 * runqueue lock must be held.
4667 */
4668 rq = __task_rq_lock(p);
4669 /* recheck policy now with rq lock held */
4670 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4671 policy = oldpolicy = -1;
4672 __task_rq_unlock(rq);
4673 spin_unlock_irqrestore(&p->pi_lock, flags);
4674 goto recheck;
4675 }
4676 update_rq_clock(rq);
4677 on_rq = p->se.on_rq;
4678 running = task_current(rq, p);
4679 if (on_rq)
4680 deactivate_task(rq, p, 0);
4681 if (running)
4682 p->sched_class->put_prev_task(rq, p);
4683
4684 oldprio = p->prio;
4685 __setscheduler(rq, p, policy, param->sched_priority);
4686
4687 if (running)
4688 p->sched_class->set_curr_task(rq);
4689 if (on_rq) {
4690 activate_task(rq, p, 0);
4691
4692 check_class_changed(rq, p, prev_class, oldprio, running);
4693 }
4694 __task_rq_unlock(rq);
4695 spin_unlock_irqrestore(&p->pi_lock, flags);
4696
4697 rt_mutex_adjust_pi(p);
4698
4699 return 0;
4700 }
4701 EXPORT_SYMBOL_GPL(sched_setscheduler);
4702
4703 static int
4704 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4705 {
4706 struct sched_param lparam;
4707 struct task_struct *p;
4708 int retval;
4709
4710 if (!param || pid < 0)
4711 return -EINVAL;
4712 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4713 return -EFAULT;
4714
4715 rcu_read_lock();
4716 retval = -ESRCH;
4717 p = find_process_by_pid(pid);
4718 if (p != NULL)
4719 retval = sched_setscheduler(p, policy, &lparam);
4720 rcu_read_unlock();
4721
4722 return retval;
4723 }
4724
4725 /**
4726 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4727 * @pid: the pid in question.
4728 * @policy: new policy.
4729 * @param: structure containing the new RT priority.
4730 */
4731 asmlinkage long
4732 sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4733 {
4734 /* negative values for policy are not valid */
4735 if (policy < 0)
4736 return -EINVAL;
4737
4738 return do_sched_setscheduler(pid, policy, param);
4739 }
4740
4741 /**
4742 * sys_sched_setparam - set/change the RT priority of a thread
4743 * @pid: the pid in question.
4744 * @param: structure containing the new RT priority.
4745 */
4746 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4747 {
4748 return do_sched_setscheduler(pid, -1, param);
4749 }
4750
4751 /**
4752 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4753 * @pid: the pid in question.
4754 */
4755 asmlinkage long sys_sched_getscheduler(pid_t pid)
4756 {
4757 struct task_struct *p;
4758 int retval;
4759
4760 if (pid < 0)
4761 return -EINVAL;
4762
4763 retval = -ESRCH;
4764 read_lock(&tasklist_lock);
4765 p = find_process_by_pid(pid);
4766 if (p) {
4767 retval = security_task_getscheduler(p);
4768 if (!retval)
4769 retval = p->policy;
4770 }
4771 read_unlock(&tasklist_lock);
4772 return retval;
4773 }
4774
4775 /**
4776 * sys_sched_getscheduler - get the RT priority of a thread
4777 * @pid: the pid in question.
4778 * @param: structure containing the RT priority.
4779 */
4780 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4781 {
4782 struct sched_param lp;
4783 struct task_struct *p;
4784 int retval;
4785
4786 if (!param || pid < 0)
4787 return -EINVAL;
4788
4789 read_lock(&tasklist_lock);
4790 p = find_process_by_pid(pid);
4791 retval = -ESRCH;
4792 if (!p)
4793 goto out_unlock;
4794
4795 retval = security_task_getscheduler(p);
4796 if (retval)
4797 goto out_unlock;
4798
4799 lp.sched_priority = p->rt_priority;
4800 read_unlock(&tasklist_lock);
4801
4802 /*
4803 * This one might sleep, we cannot do it with a spinlock held ...
4804 */
4805 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4806
4807 return retval;
4808
4809 out_unlock:
4810 read_unlock(&tasklist_lock);
4811 return retval;
4812 }
4813
4814 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4815 {
4816 cpumask_t cpus_allowed;
4817 struct task_struct *p;
4818 int retval;
4819
4820 get_online_cpus();
4821 read_lock(&tasklist_lock);
4822
4823 p = find_process_by_pid(pid);
4824 if (!p) {
4825 read_unlock(&tasklist_lock);
4826 put_online_cpus();
4827 return -ESRCH;
4828 }
4829
4830 /*
4831 * It is not safe to call set_cpus_allowed with the
4832 * tasklist_lock held. We will bump the task_struct's
4833 * usage count and then drop tasklist_lock.
4834 */
4835 get_task_struct(p);
4836 read_unlock(&tasklist_lock);
4837
4838 retval = -EPERM;
4839 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4840 !capable(CAP_SYS_NICE))
4841 goto out_unlock;
4842
4843 retval = security_task_setscheduler(p, 0, NULL);
4844 if (retval)
4845 goto out_unlock;
4846
4847 cpus_allowed = cpuset_cpus_allowed(p);
4848 cpus_and(new_mask, new_mask, cpus_allowed);
4849 again:
4850 retval = set_cpus_allowed(p, new_mask);
4851
4852 if (!retval) {
4853 cpus_allowed = cpuset_cpus_allowed(p);
4854 if (!cpus_subset(new_mask, cpus_allowed)) {
4855 /*
4856 * We must have raced with a concurrent cpuset
4857 * update. Just reset the cpus_allowed to the
4858 * cpuset's cpus_allowed
4859 */
4860 new_mask = cpus_allowed;
4861 goto again;
4862 }
4863 }
4864 out_unlock:
4865 put_task_struct(p);
4866 put_online_cpus();
4867 return retval;
4868 }
4869
4870 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4871 cpumask_t *new_mask)
4872 {
4873 if (len < sizeof(cpumask_t)) {
4874 memset(new_mask, 0, sizeof(cpumask_t));
4875 } else if (len > sizeof(cpumask_t)) {
4876 len = sizeof(cpumask_t);
4877 }
4878 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4879 }
4880
4881 /**
4882 * sys_sched_setaffinity - set the cpu affinity of a process
4883 * @pid: pid of the process
4884 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4885 * @user_mask_ptr: user-space pointer to the new cpu mask
4886 */
4887 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4888 unsigned long __user *user_mask_ptr)
4889 {
4890 cpumask_t new_mask;
4891 int retval;
4892
4893 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4894 if (retval)
4895 return retval;
4896
4897 return sched_setaffinity(pid, new_mask);
4898 }
4899
4900 /*
4901 * Represents all cpu's present in the system
4902 * In systems capable of hotplug, this map could dynamically grow
4903 * as new cpu's are detected in the system via any platform specific
4904 * method, such as ACPI for e.g.
4905 */
4906
4907 cpumask_t cpu_present_map __read_mostly;
4908 EXPORT_SYMBOL(cpu_present_map);
4909
4910 #ifndef CONFIG_SMP
4911 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4912 EXPORT_SYMBOL(cpu_online_map);
4913
4914 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4915 EXPORT_SYMBOL(cpu_possible_map);
4916 #endif
4917
4918 long sched_getaffinity(pid_t pid, cpumask_t *mask)
4919 {
4920 struct task_struct *p;
4921 int retval;
4922
4923 get_online_cpus();
4924 read_lock(&tasklist_lock);
4925
4926 retval = -ESRCH;
4927 p = find_process_by_pid(pid);
4928 if (!p)
4929 goto out_unlock;
4930
4931 retval = security_task_getscheduler(p);
4932 if (retval)
4933 goto out_unlock;
4934
4935 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
4936
4937 out_unlock:
4938 read_unlock(&tasklist_lock);
4939 put_online_cpus();
4940
4941 return retval;
4942 }
4943
4944 /**
4945 * sys_sched_getaffinity - get the cpu affinity of a process
4946 * @pid: pid of the process
4947 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4948 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4949 */
4950 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4951 unsigned long __user *user_mask_ptr)
4952 {
4953 int ret;
4954 cpumask_t mask;
4955
4956 if (len < sizeof(cpumask_t))
4957 return -EINVAL;
4958
4959 ret = sched_getaffinity(pid, &mask);
4960 if (ret < 0)
4961 return ret;
4962
4963 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4964 return -EFAULT;
4965
4966 return sizeof(cpumask_t);
4967 }
4968
4969 /**
4970 * sys_sched_yield - yield the current processor to other threads.
4971 *
4972 * This function yields the current CPU to other tasks. If there are no
4973 * other threads running on this CPU then this function will return.
4974 */
4975 asmlinkage long sys_sched_yield(void)
4976 {
4977 struct rq *rq = this_rq_lock();
4978
4979 schedstat_inc(rq, yld_count);
4980 current->sched_class->yield_task(rq);
4981
4982 /*
4983 * Since we are going to call schedule() anyway, there's
4984 * no need to preempt or enable interrupts:
4985 */
4986 __release(rq->lock);
4987 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4988 _raw_spin_unlock(&rq->lock);
4989 preempt_enable_no_resched();
4990
4991 schedule();
4992
4993 return 0;
4994 }
4995
4996 static void __cond_resched(void)
4997 {
4998 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4999 __might_sleep(__FILE__, __LINE__);
5000 #endif
5001 /*
5002 * The BKS might be reacquired before we have dropped
5003 * PREEMPT_ACTIVE, which could trigger a second
5004 * cond_resched() call.
5005 */
5006 do {
5007 add_preempt_count(PREEMPT_ACTIVE);
5008 schedule();
5009 sub_preempt_count(PREEMPT_ACTIVE);
5010 } while (need_resched());
5011 }
5012
5013 #if !defined(CONFIG_PREEMPT) || defined(CONFIG_PREEMPT_VOLUNTARY)
5014 int __sched _cond_resched(void)
5015 {
5016 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5017 system_state == SYSTEM_RUNNING) {
5018 __cond_resched();
5019 return 1;
5020 }
5021 return 0;
5022 }
5023 EXPORT_SYMBOL(_cond_resched);
5024 #endif
5025
5026 /*
5027 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5028 * call schedule, and on return reacquire the lock.
5029 *
5030 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5031 * operations here to prevent schedule() from being called twice (once via
5032 * spin_unlock(), once by hand).
5033 */
5034 int cond_resched_lock(spinlock_t *lock)
5035 {
5036 int resched = need_resched() && system_state == SYSTEM_RUNNING;
5037 int ret = 0;
5038
5039 if (spin_needbreak(lock) || resched) {
5040 spin_unlock(lock);
5041 if (resched && need_resched())
5042 __cond_resched();
5043 else
5044 cpu_relax();
5045 ret = 1;
5046 spin_lock(lock);
5047 }
5048 return ret;
5049 }
5050 EXPORT_SYMBOL(cond_resched_lock);
5051
5052 int __sched cond_resched_softirq(void)
5053 {
5054 BUG_ON(!in_softirq());
5055
5056 if (need_resched() && system_state == SYSTEM_RUNNING) {
5057 local_bh_enable();
5058 __cond_resched();
5059 local_bh_disable();
5060 return 1;
5061 }
5062 return 0;
5063 }
5064 EXPORT_SYMBOL(cond_resched_softirq);
5065
5066 /**
5067 * yield - yield the current processor to other threads.
5068 *
5069 * This is a shortcut for kernel-space yielding - it marks the
5070 * thread runnable and calls sys_sched_yield().
5071 */
5072 void __sched yield(void)
5073 {
5074 set_current_state(TASK_RUNNING);
5075 sys_sched_yield();
5076 }
5077 EXPORT_SYMBOL(yield);
5078
5079 /*
5080 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5081 * that process accounting knows that this is a task in IO wait state.
5082 *
5083 * But don't do that if it is a deliberate, throttling IO wait (this task
5084 * has set its backing_dev_info: the queue against which it should throttle)
5085 */
5086 void __sched io_schedule(void)
5087 {
5088 struct rq *rq = &__raw_get_cpu_var(runqueues);
5089
5090 delayacct_blkio_start();
5091 atomic_inc(&rq->nr_iowait);
5092 schedule();
5093 atomic_dec(&rq->nr_iowait);
5094 delayacct_blkio_end();
5095 }
5096 EXPORT_SYMBOL(io_schedule);
5097
5098 long __sched io_schedule_timeout(long timeout)
5099 {
5100 struct rq *rq = &__raw_get_cpu_var(runqueues);
5101 long ret;
5102
5103 delayacct_blkio_start();
5104 atomic_inc(&rq->nr_iowait);
5105 ret = schedule_timeout(timeout);
5106 atomic_dec(&rq->nr_iowait);
5107 delayacct_blkio_end();
5108 return ret;
5109 }
5110
5111 /**
5112 * sys_sched_get_priority_max - return maximum RT priority.
5113 * @policy: scheduling class.
5114 *
5115 * this syscall returns the maximum rt_priority that can be used
5116 * by a given scheduling class.
5117 */
5118 asmlinkage long sys_sched_get_priority_max(int policy)
5119 {
5120 int ret = -EINVAL;
5121
5122 switch (policy) {
5123 case SCHED_FIFO:
5124 case SCHED_RR:
5125 ret = MAX_USER_RT_PRIO-1;
5126 break;
5127 case SCHED_NORMAL:
5128 case SCHED_BATCH:
5129 case SCHED_IDLE:
5130 ret = 0;
5131 break;
5132 }
5133 return ret;
5134 }
5135
5136 /**
5137 * sys_sched_get_priority_min - return minimum RT priority.
5138 * @policy: scheduling class.
5139 *
5140 * this syscall returns the minimum rt_priority that can be used
5141 * by a given scheduling class.
5142 */
5143 asmlinkage long sys_sched_get_priority_min(int policy)
5144 {
5145 int ret = -EINVAL;
5146
5147 switch (policy) {
5148 case SCHED_FIFO:
5149 case SCHED_RR:
5150 ret = 1;
5151 break;
5152 case SCHED_NORMAL:
5153 case SCHED_BATCH:
5154 case SCHED_IDLE:
5155 ret = 0;
5156 }
5157 return ret;
5158 }
5159
5160 /**
5161 * sys_sched_rr_get_interval - return the default timeslice of a process.
5162 * @pid: pid of the process.
5163 * @interval: userspace pointer to the timeslice value.
5164 *
5165 * this syscall writes the default timeslice value of a given process
5166 * into the user-space timespec buffer. A value of '0' means infinity.
5167 */
5168 asmlinkage
5169 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5170 {
5171 struct task_struct *p;
5172 unsigned int time_slice;
5173 int retval;
5174 struct timespec t;
5175
5176 if (pid < 0)
5177 return -EINVAL;
5178
5179 retval = -ESRCH;
5180 read_lock(&tasklist_lock);
5181 p = find_process_by_pid(pid);
5182 if (!p)
5183 goto out_unlock;
5184
5185 retval = security_task_getscheduler(p);
5186 if (retval)
5187 goto out_unlock;
5188
5189 /*
5190 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5191 * tasks that are on an otherwise idle runqueue:
5192 */
5193 time_slice = 0;
5194 if (p->policy == SCHED_RR) {
5195 time_slice = DEF_TIMESLICE;
5196 } else if (p->policy != SCHED_FIFO) {
5197 struct sched_entity *se = &p->se;
5198 unsigned long flags;
5199 struct rq *rq;
5200
5201 rq = task_rq_lock(p, &flags);
5202 if (rq->cfs.load.weight)
5203 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
5204 task_rq_unlock(rq, &flags);
5205 }
5206 read_unlock(&tasklist_lock);
5207 jiffies_to_timespec(time_slice, &t);
5208 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5209 return retval;
5210
5211 out_unlock:
5212 read_unlock(&tasklist_lock);
5213 return retval;
5214 }
5215
5216 static const char stat_nam[] = "RSDTtZX";
5217
5218 void sched_show_task(struct task_struct *p)
5219 {
5220 unsigned long free = 0;
5221 unsigned state;
5222
5223 state = p->state ? __ffs(p->state) + 1 : 0;
5224 printk(KERN_INFO "%-13.13s %c", p->comm,
5225 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5226 #if BITS_PER_LONG == 32
5227 if (state == TASK_RUNNING)
5228 printk(KERN_CONT " running ");
5229 else
5230 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5231 #else
5232 if (state == TASK_RUNNING)
5233 printk(KERN_CONT " running task ");
5234 else
5235 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5236 #endif
5237 #ifdef CONFIG_DEBUG_STACK_USAGE
5238 {
5239 unsigned long *n = end_of_stack(p);
5240 while (!*n)
5241 n++;
5242 free = (unsigned long)n - (unsigned long)end_of_stack(p);
5243 }
5244 #endif
5245 printk(KERN_CONT "%5lu %5d %6d\n", free,
5246 task_pid_nr(p), task_pid_nr(p->real_parent));
5247
5248 show_stack(p, NULL);
5249 }
5250
5251 void show_state_filter(unsigned long state_filter)
5252 {
5253 struct task_struct *g, *p;
5254
5255 #if BITS_PER_LONG == 32
5256 printk(KERN_INFO
5257 " task PC stack pid father\n");
5258 #else
5259 printk(KERN_INFO
5260 " task PC stack pid father\n");
5261 #endif
5262 read_lock(&tasklist_lock);
5263 do_each_thread(g, p) {
5264 /*
5265 * reset the NMI-timeout, listing all files on a slow
5266 * console might take alot of time:
5267 */
5268 touch_nmi_watchdog();
5269 if (!state_filter || (p->state & state_filter))
5270 sched_show_task(p);
5271 } while_each_thread(g, p);
5272
5273 touch_all_softlockup_watchdogs();
5274
5275 #ifdef CONFIG_SCHED_DEBUG
5276 sysrq_sched_debug_show();
5277 #endif
5278 read_unlock(&tasklist_lock);
5279 /*
5280 * Only show locks if all tasks are dumped:
5281 */
5282 if (state_filter == -1)
5283 debug_show_all_locks();
5284 }
5285
5286 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5287 {
5288 idle->sched_class = &idle_sched_class;
5289 }
5290
5291 /**
5292 * init_idle - set up an idle thread for a given CPU
5293 * @idle: task in question
5294 * @cpu: cpu the idle task belongs to
5295 *
5296 * NOTE: this function does not set the idle thread's NEED_RESCHED
5297 * flag, to make booting more robust.
5298 */
5299 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5300 {
5301 struct rq *rq = cpu_rq(cpu);
5302 unsigned long flags;
5303
5304 __sched_fork(idle);
5305 idle->se.exec_start = sched_clock();
5306
5307 idle->prio = idle->normal_prio = MAX_PRIO;
5308 idle->cpus_allowed = cpumask_of_cpu(cpu);
5309 __set_task_cpu(idle, cpu);
5310
5311 spin_lock_irqsave(&rq->lock, flags);
5312 rq->curr = rq->idle = idle;
5313 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5314 idle->oncpu = 1;
5315 #endif
5316 spin_unlock_irqrestore(&rq->lock, flags);
5317
5318 /* Set the preempt count _outside_ the spinlocks! */
5319 task_thread_info(idle)->preempt_count = 0;
5320
5321 /*
5322 * The idle tasks have their own, simple scheduling class:
5323 */
5324 idle->sched_class = &idle_sched_class;
5325 }
5326
5327 /*
5328 * In a system that switches off the HZ timer nohz_cpu_mask
5329 * indicates which cpus entered this state. This is used
5330 * in the rcu update to wait only for active cpus. For system
5331 * which do not switch off the HZ timer nohz_cpu_mask should
5332 * always be CPU_MASK_NONE.
5333 */
5334 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5335
5336 /*
5337 * Increase the granularity value when there are more CPUs,
5338 * because with more CPUs the 'effective latency' as visible
5339 * to users decreases. But the relationship is not linear,
5340 * so pick a second-best guess by going with the log2 of the
5341 * number of CPUs.
5342 *
5343 * This idea comes from the SD scheduler of Con Kolivas:
5344 */
5345 static inline void sched_init_granularity(void)
5346 {
5347 unsigned int factor = 1 + ilog2(num_online_cpus());
5348 const unsigned long limit = 200000000;
5349
5350 sysctl_sched_min_granularity *= factor;
5351 if (sysctl_sched_min_granularity > limit)
5352 sysctl_sched_min_granularity = limit;
5353
5354 sysctl_sched_latency *= factor;
5355 if (sysctl_sched_latency > limit)
5356 sysctl_sched_latency = limit;
5357
5358 sysctl_sched_wakeup_granularity *= factor;
5359 sysctl_sched_batch_wakeup_granularity *= factor;
5360 }
5361
5362 #ifdef CONFIG_SMP
5363 /*
5364 * This is how migration works:
5365 *
5366 * 1) we queue a struct migration_req structure in the source CPU's
5367 * runqueue and wake up that CPU's migration thread.
5368 * 2) we down() the locked semaphore => thread blocks.
5369 * 3) migration thread wakes up (implicitly it forces the migrated
5370 * thread off the CPU)
5371 * 4) it gets the migration request and checks whether the migrated
5372 * task is still in the wrong runqueue.
5373 * 5) if it's in the wrong runqueue then the migration thread removes
5374 * it and puts it into the right queue.
5375 * 6) migration thread up()s the semaphore.
5376 * 7) we wake up and the migration is done.
5377 */
5378
5379 /*
5380 * Change a given task's CPU affinity. Migrate the thread to a
5381 * proper CPU and schedule it away if the CPU it's executing on
5382 * is removed from the allowed bitmask.
5383 *
5384 * NOTE: the caller must have a valid reference to the task, the
5385 * task must not exit() & deallocate itself prematurely. The
5386 * call is not atomic; no spinlocks may be held.
5387 */
5388 int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
5389 {
5390 struct migration_req req;
5391 unsigned long flags;
5392 struct rq *rq;
5393 int ret = 0;
5394
5395 rq = task_rq_lock(p, &flags);
5396 if (!cpus_intersects(new_mask, cpu_online_map)) {
5397 ret = -EINVAL;
5398 goto out;
5399 }
5400
5401 if (p->sched_class->set_cpus_allowed)
5402 p->sched_class->set_cpus_allowed(p, &new_mask);
5403 else {
5404 p->cpus_allowed = new_mask;
5405 p->rt.nr_cpus_allowed = cpus_weight(new_mask);
5406 }
5407
5408 /* Can the task run on the task's current CPU? If so, we're done */
5409 if (cpu_isset(task_cpu(p), new_mask))
5410 goto out;
5411
5412 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
5413 /* Need help from migration thread: drop lock and wait. */
5414 task_rq_unlock(rq, &flags);
5415 wake_up_process(rq->migration_thread);
5416 wait_for_completion(&req.done);
5417 tlb_migrate_finish(p->mm);
5418 return 0;
5419 }
5420 out:
5421 task_rq_unlock(rq, &flags);
5422
5423 return ret;
5424 }
5425 EXPORT_SYMBOL_GPL(set_cpus_allowed);
5426
5427 /*
5428 * Move (not current) task off this cpu, onto dest cpu. We're doing
5429 * this because either it can't run here any more (set_cpus_allowed()
5430 * away from this CPU, or CPU going down), or because we're
5431 * attempting to rebalance this task on exec (sched_exec).
5432 *
5433 * So we race with normal scheduler movements, but that's OK, as long
5434 * as the task is no longer on this CPU.
5435 *
5436 * Returns non-zero if task was successfully migrated.
5437 */
5438 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5439 {
5440 struct rq *rq_dest, *rq_src;
5441 int ret = 0, on_rq;
5442
5443 if (unlikely(cpu_is_offline(dest_cpu)))
5444 return ret;
5445
5446 rq_src = cpu_rq(src_cpu);
5447 rq_dest = cpu_rq(dest_cpu);
5448
5449 double_rq_lock(rq_src, rq_dest);
5450 /* Already moved. */
5451 if (task_cpu(p) != src_cpu)
5452 goto out;
5453 /* Affinity changed (again). */
5454 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5455 goto out;
5456
5457 on_rq = p->se.on_rq;
5458 if (on_rq)
5459 deactivate_task(rq_src, p, 0);
5460
5461 set_task_cpu(p, dest_cpu);
5462 if (on_rq) {
5463 activate_task(rq_dest, p, 0);
5464 check_preempt_curr(rq_dest, p);
5465 }
5466 ret = 1;
5467 out:
5468 double_rq_unlock(rq_src, rq_dest);
5469 return ret;
5470 }
5471
5472 /*
5473 * migration_thread - this is a highprio system thread that performs
5474 * thread migration by bumping thread off CPU then 'pushing' onto
5475 * another runqueue.
5476 */
5477 static int migration_thread(void *data)
5478 {
5479 int cpu = (long)data;
5480 struct rq *rq;
5481
5482 rq = cpu_rq(cpu);
5483 BUG_ON(rq->migration_thread != current);
5484
5485 set_current_state(TASK_INTERRUPTIBLE);
5486 while (!kthread_should_stop()) {
5487 struct migration_req *req;
5488 struct list_head *head;
5489
5490 spin_lock_irq(&rq->lock);
5491
5492 if (cpu_is_offline(cpu)) {
5493 spin_unlock_irq(&rq->lock);
5494 goto wait_to_die;
5495 }
5496
5497 if (rq->active_balance) {
5498 active_load_balance(rq, cpu);
5499 rq->active_balance = 0;
5500 }
5501
5502 head = &rq->migration_queue;
5503
5504 if (list_empty(head)) {
5505 spin_unlock_irq(&rq->lock);
5506 schedule();
5507 set_current_state(TASK_INTERRUPTIBLE);
5508 continue;
5509 }
5510 req = list_entry(head->next, struct migration_req, list);
5511 list_del_init(head->next);
5512
5513 spin_unlock(&rq->lock);
5514 __migrate_task(req->task, cpu, req->dest_cpu);
5515 local_irq_enable();
5516
5517 complete(&req->done);
5518 }
5519 __set_current_state(TASK_RUNNING);
5520 return 0;
5521
5522 wait_to_die:
5523 /* Wait for kthread_stop */
5524 set_current_state(TASK_INTERRUPTIBLE);
5525 while (!kthread_should_stop()) {
5526 schedule();
5527 set_current_state(TASK_INTERRUPTIBLE);
5528 }
5529 __set_current_state(TASK_RUNNING);
5530 return 0;
5531 }
5532
5533 #ifdef CONFIG_HOTPLUG_CPU
5534
5535 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5536 {
5537 int ret;
5538
5539 local_irq_disable();
5540 ret = __migrate_task(p, src_cpu, dest_cpu);
5541 local_irq_enable();
5542 return ret;
5543 }
5544
5545 /*
5546 * Figure out where task on dead CPU should go, use force if necessary.
5547 * NOTE: interrupts should be disabled by the caller
5548 */
5549 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5550 {
5551 unsigned long flags;
5552 cpumask_t mask;
5553 struct rq *rq;
5554 int dest_cpu;
5555
5556 do {
5557 /* On same node? */
5558 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5559 cpus_and(mask, mask, p->cpus_allowed);
5560 dest_cpu = any_online_cpu(mask);
5561
5562 /* On any allowed CPU? */
5563 if (dest_cpu == NR_CPUS)
5564 dest_cpu = any_online_cpu(p->cpus_allowed);
5565
5566 /* No more Mr. Nice Guy. */
5567 if (dest_cpu == NR_CPUS) {
5568 cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
5569 /*
5570 * Try to stay on the same cpuset, where the
5571 * current cpuset may be a subset of all cpus.
5572 * The cpuset_cpus_allowed_locked() variant of
5573 * cpuset_cpus_allowed() will not block. It must be
5574 * called within calls to cpuset_lock/cpuset_unlock.
5575 */
5576 rq = task_rq_lock(p, &flags);
5577 p->cpus_allowed = cpus_allowed;
5578 dest_cpu = any_online_cpu(p->cpus_allowed);
5579 task_rq_unlock(rq, &flags);
5580
5581 /*
5582 * Don't tell them about moving exiting tasks or
5583 * kernel threads (both mm NULL), since they never
5584 * leave kernel.
5585 */
5586 if (p->mm && printk_ratelimit()) {
5587 printk(KERN_INFO "process %d (%s) no "
5588 "longer affine to cpu%d\n",
5589 task_pid_nr(p), p->comm, dead_cpu);
5590 }
5591 }
5592 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
5593 }
5594
5595 /*
5596 * While a dead CPU has no uninterruptible tasks queued at this point,
5597 * it might still have a nonzero ->nr_uninterruptible counter, because
5598 * for performance reasons the counter is not stricly tracking tasks to
5599 * their home CPUs. So we just add the counter to another CPU's counter,
5600 * to keep the global sum constant after CPU-down:
5601 */
5602 static void migrate_nr_uninterruptible(struct rq *rq_src)
5603 {
5604 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
5605 unsigned long flags;
5606
5607 local_irq_save(flags);
5608 double_rq_lock(rq_src, rq_dest);
5609 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5610 rq_src->nr_uninterruptible = 0;
5611 double_rq_unlock(rq_src, rq_dest);
5612 local_irq_restore(flags);
5613 }
5614
5615 /* Run through task list and migrate tasks from the dead cpu. */
5616 static void migrate_live_tasks(int src_cpu)
5617 {
5618 struct task_struct *p, *t;
5619
5620 read_lock(&tasklist_lock);
5621
5622 do_each_thread(t, p) {
5623 if (p == current)
5624 continue;
5625
5626 if (task_cpu(p) == src_cpu)
5627 move_task_off_dead_cpu(src_cpu, p);
5628 } while_each_thread(t, p);
5629
5630 read_unlock(&tasklist_lock);
5631 }
5632
5633 /*
5634 * Schedules idle task to be the next runnable task on current CPU.
5635 * It does so by boosting its priority to highest possible.
5636 * Used by CPU offline code.
5637 */
5638 void sched_idle_next(void)
5639 {
5640 int this_cpu = smp_processor_id();
5641 struct rq *rq = cpu_rq(this_cpu);
5642 struct task_struct *p = rq->idle;
5643 unsigned long flags;
5644
5645 /* cpu has to be offline */
5646 BUG_ON(cpu_online(this_cpu));
5647
5648 /*
5649 * Strictly not necessary since rest of the CPUs are stopped by now
5650 * and interrupts disabled on the current cpu.
5651 */
5652 spin_lock_irqsave(&rq->lock, flags);
5653
5654 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5655
5656 update_rq_clock(rq);
5657 activate_task(rq, p, 0);
5658
5659 spin_unlock_irqrestore(&rq->lock, flags);
5660 }
5661
5662 /*
5663 * Ensures that the idle task is using init_mm right before its cpu goes
5664 * offline.
5665 */
5666 void idle_task_exit(void)
5667 {
5668 struct mm_struct *mm = current->active_mm;
5669
5670 BUG_ON(cpu_online(smp_processor_id()));
5671
5672 if (mm != &init_mm)
5673 switch_mm(mm, &init_mm, current);
5674 mmdrop(mm);
5675 }
5676
5677 /* called under rq->lock with disabled interrupts */
5678 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5679 {
5680 struct rq *rq = cpu_rq(dead_cpu);
5681
5682 /* Must be exiting, otherwise would be on tasklist. */
5683 BUG_ON(!p->exit_state);
5684
5685 /* Cannot have done final schedule yet: would have vanished. */
5686 BUG_ON(p->state == TASK_DEAD);
5687
5688 get_task_struct(p);
5689
5690 /*
5691 * Drop lock around migration; if someone else moves it,
5692 * that's OK. No task can be added to this CPU, so iteration is
5693 * fine.
5694 */
5695 spin_unlock_irq(&rq->lock);
5696 move_task_off_dead_cpu(dead_cpu, p);
5697 spin_lock_irq(&rq->lock);
5698
5699 put_task_struct(p);
5700 }
5701
5702 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5703 static void migrate_dead_tasks(unsigned int dead_cpu)
5704 {
5705 struct rq *rq = cpu_rq(dead_cpu);
5706 struct task_struct *next;
5707
5708 for ( ; ; ) {
5709 if (!rq->nr_running)
5710 break;
5711 update_rq_clock(rq);
5712 next = pick_next_task(rq, rq->curr);
5713 if (!next)
5714 break;
5715 migrate_dead(dead_cpu, next);
5716
5717 }
5718 }
5719 #endif /* CONFIG_HOTPLUG_CPU */
5720
5721 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5722
5723 static struct ctl_table sd_ctl_dir[] = {
5724 {
5725 .procname = "sched_domain",
5726 .mode = 0555,
5727 },
5728 {0, },
5729 };
5730
5731 static struct ctl_table sd_ctl_root[] = {
5732 {
5733 .ctl_name = CTL_KERN,
5734 .procname = "kernel",
5735 .mode = 0555,
5736 .child = sd_ctl_dir,
5737 },
5738 {0, },
5739 };
5740
5741 static struct ctl_table *sd_alloc_ctl_entry(int n)
5742 {
5743 struct ctl_table *entry =
5744 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5745
5746 return entry;
5747 }
5748
5749 static void sd_free_ctl_entry(struct ctl_table **tablep)
5750 {
5751 struct ctl_table *entry;
5752
5753 /*
5754 * In the intermediate directories, both the child directory and
5755 * procname are dynamically allocated and could fail but the mode
5756 * will always be set. In the lowest directory the names are
5757 * static strings and all have proc handlers.
5758 */
5759 for (entry = *tablep; entry->mode; entry++) {
5760 if (entry->child)
5761 sd_free_ctl_entry(&entry->child);
5762 if (entry->proc_handler == NULL)
5763 kfree(entry->procname);
5764 }
5765
5766 kfree(*tablep);
5767 *tablep = NULL;
5768 }
5769
5770 static void
5771 set_table_entry(struct ctl_table *entry,
5772 const char *procname, void *data, int maxlen,
5773 mode_t mode, proc_handler *proc_handler)
5774 {
5775 entry->procname = procname;
5776 entry->data = data;
5777 entry->maxlen = maxlen;
5778 entry->mode = mode;
5779 entry->proc_handler = proc_handler;
5780 }
5781
5782 static struct ctl_table *
5783 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5784 {
5785 struct ctl_table *table = sd_alloc_ctl_entry(12);
5786
5787 if (table == NULL)
5788 return NULL;
5789
5790 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5791 sizeof(long), 0644, proc_doulongvec_minmax);
5792 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5793 sizeof(long), 0644, proc_doulongvec_minmax);
5794 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5795 sizeof(int), 0644, proc_dointvec_minmax);
5796 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5797 sizeof(int), 0644, proc_dointvec_minmax);
5798 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5799 sizeof(int), 0644, proc_dointvec_minmax);
5800 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5801 sizeof(int), 0644, proc_dointvec_minmax);
5802 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5803 sizeof(int), 0644, proc_dointvec_minmax);
5804 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5805 sizeof(int), 0644, proc_dointvec_minmax);
5806 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5807 sizeof(int), 0644, proc_dointvec_minmax);
5808 set_table_entry(&table[9], "cache_nice_tries",
5809 &sd->cache_nice_tries,
5810 sizeof(int), 0644, proc_dointvec_minmax);
5811 set_table_entry(&table[10], "flags", &sd->flags,
5812 sizeof(int), 0644, proc_dointvec_minmax);
5813 /* &table[11] is terminator */
5814
5815 return table;
5816 }
5817
5818 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5819 {
5820 struct ctl_table *entry, *table;
5821 struct sched_domain *sd;
5822 int domain_num = 0, i;
5823 char buf[32];
5824
5825 for_each_domain(cpu, sd)
5826 domain_num++;
5827 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5828 if (table == NULL)
5829 return NULL;
5830
5831 i = 0;
5832 for_each_domain(cpu, sd) {
5833 snprintf(buf, 32, "domain%d", i);
5834 entry->procname = kstrdup(buf, GFP_KERNEL);
5835 entry->mode = 0555;
5836 entry->child = sd_alloc_ctl_domain_table(sd);
5837 entry++;
5838 i++;
5839 }
5840 return table;
5841 }
5842
5843 static struct ctl_table_header *sd_sysctl_header;
5844 static void register_sched_domain_sysctl(void)
5845 {
5846 int i, cpu_num = num_online_cpus();
5847 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5848 char buf[32];
5849
5850 WARN_ON(sd_ctl_dir[0].child);
5851 sd_ctl_dir[0].child = entry;
5852
5853 if (entry == NULL)
5854 return;
5855
5856 for_each_online_cpu(i) {
5857 snprintf(buf, 32, "cpu%d", i);
5858 entry->procname = kstrdup(buf, GFP_KERNEL);
5859 entry->mode = 0555;
5860 entry->child = sd_alloc_ctl_cpu_table(i);
5861 entry++;
5862 }
5863
5864 WARN_ON(sd_sysctl_header);
5865 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5866 }
5867
5868 /* may be called multiple times per register */
5869 static void unregister_sched_domain_sysctl(void)
5870 {
5871 if (sd_sysctl_header)
5872 unregister_sysctl_table(sd_sysctl_header);
5873 sd_sysctl_header = NULL;
5874 if (sd_ctl_dir[0].child)
5875 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5876 }
5877 #else
5878 static void register_sched_domain_sysctl(void)
5879 {
5880 }
5881 static void unregister_sched_domain_sysctl(void)
5882 {
5883 }
5884 #endif
5885
5886 /*
5887 * migration_call - callback that gets triggered when a CPU is added.
5888 * Here we can start up the necessary migration thread for the new CPU.
5889 */
5890 static int __cpuinit
5891 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5892 {
5893 struct task_struct *p;
5894 int cpu = (long)hcpu;
5895 unsigned long flags;
5896 struct rq *rq;
5897
5898 switch (action) {
5899
5900 case CPU_UP_PREPARE:
5901 case CPU_UP_PREPARE_FROZEN:
5902 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
5903 if (IS_ERR(p))
5904 return NOTIFY_BAD;
5905 kthread_bind(p, cpu);
5906 /* Must be high prio: stop_machine expects to yield to it. */
5907 rq = task_rq_lock(p, &flags);
5908 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5909 task_rq_unlock(rq, &flags);
5910 cpu_rq(cpu)->migration_thread = p;
5911 break;
5912
5913 case CPU_ONLINE:
5914 case CPU_ONLINE_FROZEN:
5915 /* Strictly unnecessary, as first user will wake it. */
5916 wake_up_process(cpu_rq(cpu)->migration_thread);
5917
5918 /* Update our root-domain */
5919 rq = cpu_rq(cpu);
5920 spin_lock_irqsave(&rq->lock, flags);
5921 if (rq->rd) {
5922 BUG_ON(!cpu_isset(cpu, rq->rd->span));
5923 cpu_set(cpu, rq->rd->online);
5924 }
5925 spin_unlock_irqrestore(&rq->lock, flags);
5926 break;
5927
5928 #ifdef CONFIG_HOTPLUG_CPU
5929 case CPU_UP_CANCELED:
5930 case CPU_UP_CANCELED_FROZEN:
5931 if (!cpu_rq(cpu)->migration_thread)
5932 break;
5933 /* Unbind it from offline cpu so it can run. Fall thru. */
5934 kthread_bind(cpu_rq(cpu)->migration_thread,
5935 any_online_cpu(cpu_online_map));
5936 kthread_stop(cpu_rq(cpu)->migration_thread);
5937 cpu_rq(cpu)->migration_thread = NULL;
5938 break;
5939
5940 case CPU_DEAD:
5941 case CPU_DEAD_FROZEN:
5942 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
5943 migrate_live_tasks(cpu);
5944 rq = cpu_rq(cpu);
5945 kthread_stop(rq->migration_thread);
5946 rq->migration_thread = NULL;
5947 /* Idle task back to normal (off runqueue, low prio) */
5948 spin_lock_irq(&rq->lock);
5949 update_rq_clock(rq);
5950 deactivate_task(rq, rq->idle, 0);
5951 rq->idle->static_prio = MAX_PRIO;
5952 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5953 rq->idle->sched_class = &idle_sched_class;
5954 migrate_dead_tasks(cpu);
5955 spin_unlock_irq(&rq->lock);
5956 cpuset_unlock();
5957 migrate_nr_uninterruptible(rq);
5958 BUG_ON(rq->nr_running != 0);
5959
5960 /*
5961 * No need to migrate the tasks: it was best-effort if
5962 * they didn't take sched_hotcpu_mutex. Just wake up
5963 * the requestors.
5964 */
5965 spin_lock_irq(&rq->lock);
5966 while (!list_empty(&rq->migration_queue)) {
5967 struct migration_req *req;
5968
5969 req = list_entry(rq->migration_queue.next,
5970 struct migration_req, list);
5971 list_del_init(&req->list);
5972 complete(&req->done);
5973 }
5974 spin_unlock_irq(&rq->lock);
5975 break;
5976
5977 case CPU_DYING:
5978 case CPU_DYING_FROZEN:
5979 /* Update our root-domain */
5980 rq = cpu_rq(cpu);
5981 spin_lock_irqsave(&rq->lock, flags);
5982 if (rq->rd) {
5983 BUG_ON(!cpu_isset(cpu, rq->rd->span));
5984 cpu_clear(cpu, rq->rd->online);
5985 }
5986 spin_unlock_irqrestore(&rq->lock, flags);
5987 break;
5988 #endif
5989 }
5990 return NOTIFY_OK;
5991 }
5992
5993 /* Register at highest priority so that task migration (migrate_all_tasks)
5994 * happens before everything else.
5995 */
5996 static struct notifier_block __cpuinitdata migration_notifier = {
5997 .notifier_call = migration_call,
5998 .priority = 10
5999 };
6000
6001 void __init migration_init(void)
6002 {
6003 void *cpu = (void *)(long)smp_processor_id();
6004 int err;
6005
6006 /* Start one for the boot CPU: */
6007 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6008 BUG_ON(err == NOTIFY_BAD);
6009 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6010 register_cpu_notifier(&migration_notifier);
6011 }
6012 #endif
6013
6014 #ifdef CONFIG_SMP
6015
6016 /* Number of possible processor ids */
6017 int nr_cpu_ids __read_mostly = NR_CPUS;
6018 EXPORT_SYMBOL(nr_cpu_ids);
6019
6020 #ifdef CONFIG_SCHED_DEBUG
6021
6022 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
6023 {
6024 struct sched_group *group = sd->groups;
6025 cpumask_t groupmask;
6026 char str[NR_CPUS];
6027
6028 cpumask_scnprintf(str, NR_CPUS, sd->span);
6029 cpus_clear(groupmask);
6030
6031 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6032
6033 if (!(sd->flags & SD_LOAD_BALANCE)) {
6034 printk("does not load-balance\n");
6035 if (sd->parent)
6036 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6037 " has parent");
6038 return -1;
6039 }
6040
6041 printk(KERN_CONT "span %s\n", str);
6042
6043 if (!cpu_isset(cpu, sd->span)) {
6044 printk(KERN_ERR "ERROR: domain->span does not contain "
6045 "CPU%d\n", cpu);
6046 }
6047 if (!cpu_isset(cpu, group->cpumask)) {
6048 printk(KERN_ERR "ERROR: domain->groups does not contain"
6049 " CPU%d\n", cpu);
6050 }
6051
6052 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6053 do {
6054 if (!group) {
6055 printk("\n");
6056 printk(KERN_ERR "ERROR: group is NULL\n");
6057 break;
6058 }
6059
6060 if (!group->__cpu_power) {
6061 printk(KERN_CONT "\n");
6062 printk(KERN_ERR "ERROR: domain->cpu_power not "
6063 "set\n");
6064 break;
6065 }
6066
6067 if (!cpus_weight(group->cpumask)) {
6068 printk(KERN_CONT "\n");
6069 printk(KERN_ERR "ERROR: empty group\n");
6070 break;
6071 }
6072
6073 if (cpus_intersects(groupmask, group->cpumask)) {
6074 printk(KERN_CONT "\n");
6075 printk(KERN_ERR "ERROR: repeated CPUs\n");
6076 break;
6077 }
6078
6079 cpus_or(groupmask, groupmask, group->cpumask);
6080
6081 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
6082 printk(KERN_CONT " %s", str);
6083
6084 group = group->next;
6085 } while (group != sd->groups);
6086 printk(KERN_CONT "\n");
6087
6088 if (!cpus_equal(sd->span, groupmask))
6089 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6090
6091 if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
6092 printk(KERN_ERR "ERROR: parent span is not a superset "
6093 "of domain->span\n");
6094 return 0;
6095 }
6096
6097 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6098 {
6099 int level = 0;
6100
6101 if (!sd) {
6102 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6103 return;
6104 }
6105
6106 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6107
6108 for (;;) {
6109 if (sched_domain_debug_one(sd, cpu, level))
6110 break;
6111 level++;
6112 sd = sd->parent;
6113 if (!sd)
6114 break;
6115 }
6116 }
6117 #else
6118 # define sched_domain_debug(sd, cpu) do { } while (0)
6119 #endif
6120
6121 static int sd_degenerate(struct sched_domain *sd)
6122 {
6123 if (cpus_weight(sd->span) == 1)
6124 return 1;
6125
6126 /* Following flags need at least 2 groups */
6127 if (sd->flags & (SD_LOAD_BALANCE |
6128 SD_BALANCE_NEWIDLE |
6129 SD_BALANCE_FORK |
6130 SD_BALANCE_EXEC |
6131 SD_SHARE_CPUPOWER |
6132 SD_SHARE_PKG_RESOURCES)) {
6133 if (sd->groups != sd->groups->next)
6134 return 0;
6135 }
6136
6137 /* Following flags don't use groups */
6138 if (sd->flags & (SD_WAKE_IDLE |
6139 SD_WAKE_AFFINE |
6140 SD_WAKE_BALANCE))
6141 return 0;
6142
6143 return 1;
6144 }
6145
6146 static int
6147 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6148 {
6149 unsigned long cflags = sd->flags, pflags = parent->flags;
6150
6151 if (sd_degenerate(parent))
6152 return 1;
6153
6154 if (!cpus_equal(sd->span, parent->span))
6155 return 0;
6156
6157 /* Does parent contain flags not in child? */
6158 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6159 if (cflags & SD_WAKE_AFFINE)
6160 pflags &= ~SD_WAKE_BALANCE;
6161 /* Flags needing groups don't count if only 1 group in parent */
6162 if (parent->groups == parent->groups->next) {
6163 pflags &= ~(SD_LOAD_BALANCE |
6164 SD_BALANCE_NEWIDLE |
6165 SD_BALANCE_FORK |
6166 SD_BALANCE_EXEC |
6167 SD_SHARE_CPUPOWER |
6168 SD_SHARE_PKG_RESOURCES);
6169 }
6170 if (~cflags & pflags)
6171 return 0;
6172
6173 return 1;
6174 }
6175
6176 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6177 {
6178 unsigned long flags;
6179 const struct sched_class *class;
6180
6181 spin_lock_irqsave(&rq->lock, flags);
6182
6183 if (rq->rd) {
6184 struct root_domain *old_rd = rq->rd;
6185
6186 for (class = sched_class_highest; class; class = class->next) {
6187 if (class->leave_domain)
6188 class->leave_domain(rq);
6189 }
6190
6191 cpu_clear(rq->cpu, old_rd->span);
6192 cpu_clear(rq->cpu, old_rd->online);
6193
6194 if (atomic_dec_and_test(&old_rd->refcount))
6195 kfree(old_rd);
6196 }
6197
6198 atomic_inc(&rd->refcount);
6199 rq->rd = rd;
6200
6201 cpu_set(rq->cpu, rd->span);
6202 if (cpu_isset(rq->cpu, cpu_online_map))
6203 cpu_set(rq->cpu, rd->online);
6204
6205 for (class = sched_class_highest; class; class = class->next) {
6206 if (class->join_domain)
6207 class->join_domain(rq);
6208 }
6209
6210 spin_unlock_irqrestore(&rq->lock, flags);
6211 }
6212
6213 static void init_rootdomain(struct root_domain *rd)
6214 {
6215 memset(rd, 0, sizeof(*rd));
6216
6217 cpus_clear(rd->span);
6218 cpus_clear(rd->online);
6219 }
6220
6221 static void init_defrootdomain(void)
6222 {
6223 init_rootdomain(&def_root_domain);
6224 atomic_set(&def_root_domain.refcount, 1);
6225 }
6226
6227 static struct root_domain *alloc_rootdomain(void)
6228 {
6229 struct root_domain *rd;
6230
6231 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6232 if (!rd)
6233 return NULL;
6234
6235 init_rootdomain(rd);
6236
6237 return rd;
6238 }
6239
6240 /*
6241 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6242 * hold the hotplug lock.
6243 */
6244 static void
6245 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6246 {
6247 struct rq *rq = cpu_rq(cpu);
6248 struct sched_domain *tmp;
6249
6250 /* Remove the sched domains which do not contribute to scheduling. */
6251 for (tmp = sd; tmp; tmp = tmp->parent) {
6252 struct sched_domain *parent = tmp->parent;
6253 if (!parent)
6254 break;
6255 if (sd_parent_degenerate(tmp, parent)) {
6256 tmp->parent = parent->parent;
6257 if (parent->parent)
6258 parent->parent->child = tmp;
6259 }
6260 }
6261
6262 if (sd && sd_degenerate(sd)) {
6263 sd = sd->parent;
6264 if (sd)
6265 sd->child = NULL;
6266 }
6267
6268 sched_domain_debug(sd, cpu);
6269
6270 rq_attach_root(rq, rd);
6271 rcu_assign_pointer(rq->sd, sd);
6272 }
6273
6274 /* cpus with isolated domains */
6275 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
6276
6277 /* Setup the mask of cpus configured for isolated domains */
6278 static int __init isolated_cpu_setup(char *str)
6279 {
6280 int ints[NR_CPUS], i;
6281
6282 str = get_options(str, ARRAY_SIZE(ints), ints);
6283 cpus_clear(cpu_isolated_map);
6284 for (i = 1; i <= ints[0]; i++)
6285 if (ints[i] < NR_CPUS)
6286 cpu_set(ints[i], cpu_isolated_map);
6287 return 1;
6288 }
6289
6290 __setup("isolcpus=", isolated_cpu_setup);
6291
6292 /*
6293 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6294 * to a function which identifies what group(along with sched group) a CPU
6295 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6296 * (due to the fact that we keep track of groups covered with a cpumask_t).
6297 *
6298 * init_sched_build_groups will build a circular linked list of the groups
6299 * covered by the given span, and will set each group's ->cpumask correctly,
6300 * and ->cpu_power to 0.
6301 */
6302 static void
6303 init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
6304 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6305 struct sched_group **sg))
6306 {
6307 struct sched_group *first = NULL, *last = NULL;
6308 cpumask_t covered = CPU_MASK_NONE;
6309 int i;
6310
6311 for_each_cpu_mask(i, span) {
6312 struct sched_group *sg;
6313 int group = group_fn(i, cpu_map, &sg);
6314 int j;
6315
6316 if (cpu_isset(i, covered))
6317 continue;
6318
6319 sg->cpumask = CPU_MASK_NONE;
6320 sg->__cpu_power = 0;
6321
6322 for_each_cpu_mask(j, span) {
6323 if (group_fn(j, cpu_map, NULL) != group)
6324 continue;
6325
6326 cpu_set(j, covered);
6327 cpu_set(j, sg->cpumask);
6328 }
6329 if (!first)
6330 first = sg;
6331 if (last)
6332 last->next = sg;
6333 last = sg;
6334 }
6335 last->next = first;
6336 }
6337
6338 #define SD_NODES_PER_DOMAIN 16
6339
6340 #ifdef CONFIG_NUMA
6341
6342 /**
6343 * find_next_best_node - find the next node to include in a sched_domain
6344 * @node: node whose sched_domain we're building
6345 * @used_nodes: nodes already in the sched_domain
6346 *
6347 * Find the next node to include in a given scheduling domain. Simply
6348 * finds the closest node not already in the @used_nodes map.
6349 *
6350 * Should use nodemask_t.
6351 */
6352 static int find_next_best_node(int node, unsigned long *used_nodes)
6353 {
6354 int i, n, val, min_val, best_node = 0;
6355
6356 min_val = INT_MAX;
6357
6358 for (i = 0; i < MAX_NUMNODES; i++) {
6359 /* Start at @node */
6360 n = (node + i) % MAX_NUMNODES;
6361
6362 if (!nr_cpus_node(n))
6363 continue;
6364
6365 /* Skip already used nodes */
6366 if (test_bit(n, used_nodes))
6367 continue;
6368
6369 /* Simple min distance search */
6370 val = node_distance(node, n);
6371
6372 if (val < min_val) {
6373 min_val = val;
6374 best_node = n;
6375 }
6376 }
6377
6378 set_bit(best_node, used_nodes);
6379 return best_node;
6380 }
6381
6382 /**
6383 * sched_domain_node_span - get a cpumask for a node's sched_domain
6384 * @node: node whose cpumask we're constructing
6385 * @size: number of nodes to include in this span
6386 *
6387 * Given a node, construct a good cpumask for its sched_domain to span. It
6388 * should be one that prevents unnecessary balancing, but also spreads tasks
6389 * out optimally.
6390 */
6391 static cpumask_t sched_domain_node_span(int node)
6392 {
6393 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
6394 cpumask_t span, nodemask;
6395 int i;
6396
6397 cpus_clear(span);
6398 bitmap_zero(used_nodes, MAX_NUMNODES);
6399
6400 nodemask = node_to_cpumask(node);
6401 cpus_or(span, span, nodemask);
6402 set_bit(node, used_nodes);
6403
6404 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6405 int next_node = find_next_best_node(node, used_nodes);
6406
6407 nodemask = node_to_cpumask(next_node);
6408 cpus_or(span, span, nodemask);
6409 }
6410
6411 return span;
6412 }
6413 #endif
6414
6415 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6416
6417 /*
6418 * SMT sched-domains:
6419 */
6420 #ifdef CONFIG_SCHED_SMT
6421 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6422 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6423
6424 static int
6425 cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6426 {
6427 if (sg)
6428 *sg = &per_cpu(sched_group_cpus, cpu);
6429 return cpu;
6430 }
6431 #endif
6432
6433 /*
6434 * multi-core sched-domains:
6435 */
6436 #ifdef CONFIG_SCHED_MC
6437 static DEFINE_PER_CPU(struct sched_domain, core_domains);
6438 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6439 #endif
6440
6441 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6442 static int
6443 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6444 {
6445 int group;
6446 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6447 cpus_and(mask, mask, *cpu_map);
6448 group = first_cpu(mask);
6449 if (sg)
6450 *sg = &per_cpu(sched_group_core, group);
6451 return group;
6452 }
6453 #elif defined(CONFIG_SCHED_MC)
6454 static int
6455 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6456 {
6457 if (sg)
6458 *sg = &per_cpu(sched_group_core, cpu);
6459 return cpu;
6460 }
6461 #endif
6462
6463 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6464 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6465
6466 static int
6467 cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6468 {
6469 int group;
6470 #ifdef CONFIG_SCHED_MC
6471 cpumask_t mask = cpu_coregroup_map(cpu);
6472 cpus_and(mask, mask, *cpu_map);
6473 group = first_cpu(mask);
6474 #elif defined(CONFIG_SCHED_SMT)
6475 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6476 cpus_and(mask, mask, *cpu_map);
6477 group = first_cpu(mask);
6478 #else
6479 group = cpu;
6480 #endif
6481 if (sg)
6482 *sg = &per_cpu(sched_group_phys, group);
6483 return group;
6484 }
6485
6486 #ifdef CONFIG_NUMA
6487 /*
6488 * The init_sched_build_groups can't handle what we want to do with node
6489 * groups, so roll our own. Now each node has its own list of groups which
6490 * gets dynamically allocated.
6491 */
6492 static DEFINE_PER_CPU(struct sched_domain, node_domains);
6493 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
6494
6495 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6496 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6497
6498 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6499 struct sched_group **sg)
6500 {
6501 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
6502 int group;
6503
6504 cpus_and(nodemask, nodemask, *cpu_map);
6505 group = first_cpu(nodemask);
6506
6507 if (sg)
6508 *sg = &per_cpu(sched_group_allnodes, group);
6509 return group;
6510 }
6511
6512 static void init_numa_sched_groups_power(struct sched_group *group_head)
6513 {
6514 struct sched_group *sg = group_head;
6515 int j;
6516
6517 if (!sg)
6518 return;
6519 do {
6520 for_each_cpu_mask(j, sg->cpumask) {
6521 struct sched_domain *sd;
6522
6523 sd = &per_cpu(phys_domains, j);
6524 if (j != first_cpu(sd->groups->cpumask)) {
6525 /*
6526 * Only add "power" once for each
6527 * physical package.
6528 */
6529 continue;
6530 }
6531
6532 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6533 }
6534 sg = sg->next;
6535 } while (sg != group_head);
6536 }
6537 #endif
6538
6539 #ifdef CONFIG_NUMA
6540 /* Free memory allocated for various sched_group structures */
6541 static void free_sched_groups(const cpumask_t *cpu_map)
6542 {
6543 int cpu, i;
6544
6545 for_each_cpu_mask(cpu, *cpu_map) {
6546 struct sched_group **sched_group_nodes
6547 = sched_group_nodes_bycpu[cpu];
6548
6549 if (!sched_group_nodes)
6550 continue;
6551
6552 for (i = 0; i < MAX_NUMNODES; i++) {
6553 cpumask_t nodemask = node_to_cpumask(i);
6554 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6555
6556 cpus_and(nodemask, nodemask, *cpu_map);
6557 if (cpus_empty(nodemask))
6558 continue;
6559
6560 if (sg == NULL)
6561 continue;
6562 sg = sg->next;
6563 next_sg:
6564 oldsg = sg;
6565 sg = sg->next;
6566 kfree(oldsg);
6567 if (oldsg != sched_group_nodes[i])
6568 goto next_sg;
6569 }
6570 kfree(sched_group_nodes);
6571 sched_group_nodes_bycpu[cpu] = NULL;
6572 }
6573 }
6574 #else
6575 static void free_sched_groups(const cpumask_t *cpu_map)
6576 {
6577 }
6578 #endif
6579
6580 /*
6581 * Initialize sched groups cpu_power.
6582 *
6583 * cpu_power indicates the capacity of sched group, which is used while
6584 * distributing the load between different sched groups in a sched domain.
6585 * Typically cpu_power for all the groups in a sched domain will be same unless
6586 * there are asymmetries in the topology. If there are asymmetries, group
6587 * having more cpu_power will pickup more load compared to the group having
6588 * less cpu_power.
6589 *
6590 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6591 * the maximum number of tasks a group can handle in the presence of other idle
6592 * or lightly loaded groups in the same sched domain.
6593 */
6594 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6595 {
6596 struct sched_domain *child;
6597 struct sched_group *group;
6598
6599 WARN_ON(!sd || !sd->groups);
6600
6601 if (cpu != first_cpu(sd->groups->cpumask))
6602 return;
6603
6604 child = sd->child;
6605
6606 sd->groups->__cpu_power = 0;
6607
6608 /*
6609 * For perf policy, if the groups in child domain share resources
6610 * (for example cores sharing some portions of the cache hierarchy
6611 * or SMT), then set this domain groups cpu_power such that each group
6612 * can handle only one task, when there are other idle groups in the
6613 * same sched domain.
6614 */
6615 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6616 (child->flags &
6617 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6618 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6619 return;
6620 }
6621
6622 /*
6623 * add cpu_power of each child group to this groups cpu_power
6624 */
6625 group = child->groups;
6626 do {
6627 sg_inc_cpu_power(sd->groups, group->__cpu_power);
6628 group = group->next;
6629 } while (group != child->groups);
6630 }
6631
6632 /*
6633 * Build sched domains for a given set of cpus and attach the sched domains
6634 * to the individual cpus
6635 */
6636 static int build_sched_domains(const cpumask_t *cpu_map)
6637 {
6638 int i;
6639 struct root_domain *rd;
6640 #ifdef CONFIG_NUMA
6641 struct sched_group **sched_group_nodes = NULL;
6642 int sd_allnodes = 0;
6643
6644 /*
6645 * Allocate the per-node list of sched groups
6646 */
6647 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
6648 GFP_KERNEL);
6649 if (!sched_group_nodes) {
6650 printk(KERN_WARNING "Can not alloc sched group node list\n");
6651 return -ENOMEM;
6652 }
6653 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6654 #endif
6655
6656 rd = alloc_rootdomain();
6657 if (!rd) {
6658 printk(KERN_WARNING "Cannot alloc root domain\n");
6659 return -ENOMEM;
6660 }
6661
6662 /*
6663 * Set up domains for cpus specified by the cpu_map.
6664 */
6665 for_each_cpu_mask(i, *cpu_map) {
6666 struct sched_domain *sd = NULL, *p;
6667 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6668
6669 cpus_and(nodemask, nodemask, *cpu_map);
6670
6671 #ifdef CONFIG_NUMA
6672 if (cpus_weight(*cpu_map) >
6673 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6674 sd = &per_cpu(allnodes_domains, i);
6675 *sd = SD_ALLNODES_INIT;
6676 sd->span = *cpu_map;
6677 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6678 p = sd;
6679 sd_allnodes = 1;
6680 } else
6681 p = NULL;
6682
6683 sd = &per_cpu(node_domains, i);
6684 *sd = SD_NODE_INIT;
6685 sd->span = sched_domain_node_span(cpu_to_node(i));
6686 sd->parent = p;
6687 if (p)
6688 p->child = sd;
6689 cpus_and(sd->span, sd->span, *cpu_map);
6690 #endif
6691
6692 p = sd;
6693 sd = &per_cpu(phys_domains, i);
6694 *sd = SD_CPU_INIT;
6695 sd->span = nodemask;
6696 sd->parent = p;
6697 if (p)
6698 p->child = sd;
6699 cpu_to_phys_group(i, cpu_map, &sd->groups);
6700
6701 #ifdef CONFIG_SCHED_MC
6702 p = sd;
6703 sd = &per_cpu(core_domains, i);
6704 *sd = SD_MC_INIT;
6705 sd->span = cpu_coregroup_map(i);
6706 cpus_and(sd->span, sd->span, *cpu_map);
6707 sd->parent = p;
6708 p->child = sd;
6709 cpu_to_core_group(i, cpu_map, &sd->groups);
6710 #endif
6711
6712 #ifdef CONFIG_SCHED_SMT
6713 p = sd;
6714 sd = &per_cpu(cpu_domains, i);
6715 *sd = SD_SIBLING_INIT;
6716 sd->span = per_cpu(cpu_sibling_map, i);
6717 cpus_and(sd->span, sd->span, *cpu_map);
6718 sd->parent = p;
6719 p->child = sd;
6720 cpu_to_cpu_group(i, cpu_map, &sd->groups);
6721 #endif
6722 }
6723
6724 #ifdef CONFIG_SCHED_SMT
6725 /* Set up CPU (sibling) groups */
6726 for_each_cpu_mask(i, *cpu_map) {
6727 cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
6728 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
6729 if (i != first_cpu(this_sibling_map))
6730 continue;
6731
6732 init_sched_build_groups(this_sibling_map, cpu_map,
6733 &cpu_to_cpu_group);
6734 }
6735 #endif
6736
6737 #ifdef CONFIG_SCHED_MC
6738 /* Set up multi-core groups */
6739 for_each_cpu_mask(i, *cpu_map) {
6740 cpumask_t this_core_map = cpu_coregroup_map(i);
6741 cpus_and(this_core_map, this_core_map, *cpu_map);
6742 if (i != first_cpu(this_core_map))
6743 continue;
6744 init_sched_build_groups(this_core_map, cpu_map,
6745 &cpu_to_core_group);
6746 }
6747 #endif
6748
6749 /* Set up physical groups */
6750 for (i = 0; i < MAX_NUMNODES; i++) {
6751 cpumask_t nodemask = node_to_cpumask(i);
6752
6753 cpus_and(nodemask, nodemask, *cpu_map);
6754 if (cpus_empty(nodemask))
6755 continue;
6756
6757 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
6758 }
6759
6760 #ifdef CONFIG_NUMA
6761 /* Set up node groups */
6762 if (sd_allnodes)
6763 init_sched_build_groups(*cpu_map, cpu_map,
6764 &cpu_to_allnodes_group);
6765
6766 for (i = 0; i < MAX_NUMNODES; i++) {
6767 /* Set up node groups */
6768 struct sched_group *sg, *prev;
6769 cpumask_t nodemask = node_to_cpumask(i);
6770 cpumask_t domainspan;
6771 cpumask_t covered = CPU_MASK_NONE;
6772 int j;
6773
6774 cpus_and(nodemask, nodemask, *cpu_map);
6775 if (cpus_empty(nodemask)) {
6776 sched_group_nodes[i] = NULL;
6777 continue;
6778 }
6779
6780 domainspan = sched_domain_node_span(i);
6781 cpus_and(domainspan, domainspan, *cpu_map);
6782
6783 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6784 if (!sg) {
6785 printk(KERN_WARNING "Can not alloc domain group for "
6786 "node %d\n", i);
6787 goto error;
6788 }
6789 sched_group_nodes[i] = sg;
6790 for_each_cpu_mask(j, nodemask) {
6791 struct sched_domain *sd;
6792
6793 sd = &per_cpu(node_domains, j);
6794 sd->groups = sg;
6795 }
6796 sg->__cpu_power = 0;
6797 sg->cpumask = nodemask;
6798 sg->next = sg;
6799 cpus_or(covered, covered, nodemask);
6800 prev = sg;
6801
6802 for (j = 0; j < MAX_NUMNODES; j++) {
6803 cpumask_t tmp, notcovered;
6804 int n = (i + j) % MAX_NUMNODES;
6805
6806 cpus_complement(notcovered, covered);
6807 cpus_and(tmp, notcovered, *cpu_map);
6808 cpus_and(tmp, tmp, domainspan);
6809 if (cpus_empty(tmp))
6810 break;
6811
6812 nodemask = node_to_cpumask(n);
6813 cpus_and(tmp, tmp, nodemask);
6814 if (cpus_empty(tmp))
6815 continue;
6816
6817 sg = kmalloc_node(sizeof(struct sched_group),
6818 GFP_KERNEL, i);
6819 if (!sg) {
6820 printk(KERN_WARNING
6821 "Can not alloc domain group for node %d\n", j);
6822 goto error;
6823 }
6824 sg->__cpu_power = 0;
6825 sg->cpumask = tmp;
6826 sg->next = prev->next;
6827 cpus_or(covered, covered, tmp);
6828 prev->next = sg;
6829 prev = sg;
6830 }
6831 }
6832 #endif
6833
6834 /* Calculate CPU power for physical packages and nodes */
6835 #ifdef CONFIG_SCHED_SMT
6836 for_each_cpu_mask(i, *cpu_map) {
6837 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6838
6839 init_sched_groups_power(i, sd);
6840 }
6841 #endif
6842 #ifdef CONFIG_SCHED_MC
6843 for_each_cpu_mask(i, *cpu_map) {
6844 struct sched_domain *sd = &per_cpu(core_domains, i);
6845
6846 init_sched_groups_power(i, sd);
6847 }
6848 #endif
6849
6850 for_each_cpu_mask(i, *cpu_map) {
6851 struct sched_domain *sd = &per_cpu(phys_domains, i);
6852
6853 init_sched_groups_power(i, sd);
6854 }
6855
6856 #ifdef CONFIG_NUMA
6857 for (i = 0; i < MAX_NUMNODES; i++)
6858 init_numa_sched_groups_power(sched_group_nodes[i]);
6859
6860 if (sd_allnodes) {
6861 struct sched_group *sg;
6862
6863 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6864 init_numa_sched_groups_power(sg);
6865 }
6866 #endif
6867
6868 /* Attach the domains */
6869 for_each_cpu_mask(i, *cpu_map) {
6870 struct sched_domain *sd;
6871 #ifdef CONFIG_SCHED_SMT
6872 sd = &per_cpu(cpu_domains, i);
6873 #elif defined(CONFIG_SCHED_MC)
6874 sd = &per_cpu(core_domains, i);
6875 #else
6876 sd = &per_cpu(phys_domains, i);
6877 #endif
6878 cpu_attach_domain(sd, rd, i);
6879 }
6880
6881 return 0;
6882
6883 #ifdef CONFIG_NUMA
6884 error:
6885 free_sched_groups(cpu_map);
6886 return -ENOMEM;
6887 #endif
6888 }
6889
6890 static cpumask_t *doms_cur; /* current sched domains */
6891 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6892
6893 /*
6894 * Special case: If a kmalloc of a doms_cur partition (array of
6895 * cpumask_t) fails, then fallback to a single sched domain,
6896 * as determined by the single cpumask_t fallback_doms.
6897 */
6898 static cpumask_t fallback_doms;
6899
6900 void __attribute__((weak)) arch_update_cpu_topology(void)
6901 {
6902 }
6903
6904 /*
6905 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6906 * For now this just excludes isolated cpus, but could be used to
6907 * exclude other special cases in the future.
6908 */
6909 static int arch_init_sched_domains(const cpumask_t *cpu_map)
6910 {
6911 int err;
6912
6913 arch_update_cpu_topology();
6914 ndoms_cur = 1;
6915 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6916 if (!doms_cur)
6917 doms_cur = &fallback_doms;
6918 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
6919 err = build_sched_domains(doms_cur);
6920 register_sched_domain_sysctl();
6921
6922 return err;
6923 }
6924
6925 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
6926 {
6927 free_sched_groups(cpu_map);
6928 }
6929
6930 /*
6931 * Detach sched domains from a group of cpus specified in cpu_map
6932 * These cpus will now be attached to the NULL domain
6933 */
6934 static void detach_destroy_domains(const cpumask_t *cpu_map)
6935 {
6936 int i;
6937
6938 unregister_sched_domain_sysctl();
6939
6940 for_each_cpu_mask(i, *cpu_map)
6941 cpu_attach_domain(NULL, &def_root_domain, i);
6942 synchronize_sched();
6943 arch_destroy_sched_domains(cpu_map);
6944 }
6945
6946 /*
6947 * Partition sched domains as specified by the 'ndoms_new'
6948 * cpumasks in the array doms_new[] of cpumasks. This compares
6949 * doms_new[] to the current sched domain partitioning, doms_cur[].
6950 * It destroys each deleted domain and builds each new domain.
6951 *
6952 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
6953 * The masks don't intersect (don't overlap.) We should setup one
6954 * sched domain for each mask. CPUs not in any of the cpumasks will
6955 * not be load balanced. If the same cpumask appears both in the
6956 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6957 * it as it is.
6958 *
6959 * The passed in 'doms_new' should be kmalloc'd. This routine takes
6960 * ownership of it and will kfree it when done with it. If the caller
6961 * failed the kmalloc call, then it can pass in doms_new == NULL,
6962 * and partition_sched_domains() will fallback to the single partition
6963 * 'fallback_doms'.
6964 *
6965 * Call with hotplug lock held
6966 */
6967 void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
6968 {
6969 int i, j;
6970
6971 lock_doms_cur();
6972
6973 /* always unregister in case we don't destroy any domains */
6974 unregister_sched_domain_sysctl();
6975
6976 if (doms_new == NULL) {
6977 ndoms_new = 1;
6978 doms_new = &fallback_doms;
6979 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
6980 }
6981
6982 /* Destroy deleted domains */
6983 for (i = 0; i < ndoms_cur; i++) {
6984 for (j = 0; j < ndoms_new; j++) {
6985 if (cpus_equal(doms_cur[i], doms_new[j]))
6986 goto match1;
6987 }
6988 /* no match - a current sched domain not in new doms_new[] */
6989 detach_destroy_domains(doms_cur + i);
6990 match1:
6991 ;
6992 }
6993
6994 /* Build new domains */
6995 for (i = 0; i < ndoms_new; i++) {
6996 for (j = 0; j < ndoms_cur; j++) {
6997 if (cpus_equal(doms_new[i], doms_cur[j]))
6998 goto match2;
6999 }
7000 /* no match - add a new doms_new */
7001 build_sched_domains(doms_new + i);
7002 match2:
7003 ;
7004 }
7005
7006 /* Remember the new sched domains */
7007 if (doms_cur != &fallback_doms)
7008 kfree(doms_cur);
7009 doms_cur = doms_new;
7010 ndoms_cur = ndoms_new;
7011
7012 register_sched_domain_sysctl();
7013
7014 unlock_doms_cur();
7015 }
7016
7017 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7018 int arch_reinit_sched_domains(void)
7019 {
7020 int err;
7021
7022 get_online_cpus();
7023 detach_destroy_domains(&cpu_online_map);
7024 err = arch_init_sched_domains(&cpu_online_map);
7025 put_online_cpus();
7026
7027 return err;
7028 }
7029
7030 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7031 {
7032 int ret;
7033
7034 if (buf[0] != '0' && buf[0] != '1')
7035 return -EINVAL;
7036
7037 if (smt)
7038 sched_smt_power_savings = (buf[0] == '1');
7039 else
7040 sched_mc_power_savings = (buf[0] == '1');
7041
7042 ret = arch_reinit_sched_domains();
7043
7044 return ret ? ret : count;
7045 }
7046
7047 #ifdef CONFIG_SCHED_MC
7048 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
7049 {
7050 return sprintf(page, "%u\n", sched_mc_power_savings);
7051 }
7052 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
7053 const char *buf, size_t count)
7054 {
7055 return sched_power_savings_store(buf, count, 0);
7056 }
7057 static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
7058 sched_mc_power_savings_store);
7059 #endif
7060
7061 #ifdef CONFIG_SCHED_SMT
7062 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
7063 {
7064 return sprintf(page, "%u\n", sched_smt_power_savings);
7065 }
7066 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
7067 const char *buf, size_t count)
7068 {
7069 return sched_power_savings_store(buf, count, 1);
7070 }
7071 static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
7072 sched_smt_power_savings_store);
7073 #endif
7074
7075 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7076 {
7077 int err = 0;
7078
7079 #ifdef CONFIG_SCHED_SMT
7080 if (smt_capable())
7081 err = sysfs_create_file(&cls->kset.kobj,
7082 &attr_sched_smt_power_savings.attr);
7083 #endif
7084 #ifdef CONFIG_SCHED_MC
7085 if (!err && mc_capable())
7086 err = sysfs_create_file(&cls->kset.kobj,
7087 &attr_sched_mc_power_savings.attr);
7088 #endif
7089 return err;
7090 }
7091 #endif
7092
7093 /*
7094 * Force a reinitialization of the sched domains hierarchy. The domains
7095 * and groups cannot be updated in place without racing with the balancing
7096 * code, so we temporarily attach all running cpus to the NULL domain
7097 * which will prevent rebalancing while the sched domains are recalculated.
7098 */
7099 static int update_sched_domains(struct notifier_block *nfb,
7100 unsigned long action, void *hcpu)
7101 {
7102 switch (action) {
7103 case CPU_UP_PREPARE:
7104 case CPU_UP_PREPARE_FROZEN:
7105 case CPU_DOWN_PREPARE:
7106 case CPU_DOWN_PREPARE_FROZEN:
7107 detach_destroy_domains(&cpu_online_map);
7108 return NOTIFY_OK;
7109
7110 case CPU_UP_CANCELED:
7111 case CPU_UP_CANCELED_FROZEN:
7112 case CPU_DOWN_FAILED:
7113 case CPU_DOWN_FAILED_FROZEN:
7114 case CPU_ONLINE:
7115 case CPU_ONLINE_FROZEN:
7116 case CPU_DEAD:
7117 case CPU_DEAD_FROZEN:
7118 /*
7119 * Fall through and re-initialise the domains.
7120 */
7121 break;
7122 default:
7123 return NOTIFY_DONE;
7124 }
7125
7126 /* The hotplug lock is already held by cpu_up/cpu_down */
7127 arch_init_sched_domains(&cpu_online_map);
7128
7129 return NOTIFY_OK;
7130 }
7131
7132 void __init sched_init_smp(void)
7133 {
7134 cpumask_t non_isolated_cpus;
7135
7136 get_online_cpus();
7137 arch_init_sched_domains(&cpu_online_map);
7138 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7139 if (cpus_empty(non_isolated_cpus))
7140 cpu_set(smp_processor_id(), non_isolated_cpus);
7141 put_online_cpus();
7142 /* XXX: Theoretical race here - CPU may be hotplugged now */
7143 hotcpu_notifier(update_sched_domains, 0);
7144
7145 /* Move init over to a non-isolated CPU */
7146 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
7147 BUG();
7148 sched_init_granularity();
7149 }
7150 #else
7151 void __init sched_init_smp(void)
7152 {
7153 sched_init_granularity();
7154 }
7155 #endif /* CONFIG_SMP */
7156
7157 int in_sched_functions(unsigned long addr)
7158 {
7159 return in_lock_functions(addr) ||
7160 (addr >= (unsigned long)__sched_text_start
7161 && addr < (unsigned long)__sched_text_end);
7162 }
7163
7164 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
7165 {
7166 cfs_rq->tasks_timeline = RB_ROOT;
7167 #ifdef CONFIG_FAIR_GROUP_SCHED
7168 cfs_rq->rq = rq;
7169 #endif
7170 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7171 }
7172
7173 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7174 {
7175 struct rt_prio_array *array;
7176 int i;
7177
7178 array = &rt_rq->active;
7179 for (i = 0; i < MAX_RT_PRIO; i++) {
7180 INIT_LIST_HEAD(array->queue + i);
7181 __clear_bit(i, array->bitmap);
7182 }
7183 /* delimiter for bitsearch: */
7184 __set_bit(MAX_RT_PRIO, array->bitmap);
7185
7186 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7187 rt_rq->highest_prio = MAX_RT_PRIO;
7188 #endif
7189 #ifdef CONFIG_SMP
7190 rt_rq->rt_nr_migratory = 0;
7191 rt_rq->overloaded = 0;
7192 #endif
7193
7194 rt_rq->rt_time = 0;
7195 rt_rq->rt_throttled = 0;
7196
7197 #ifdef CONFIG_RT_GROUP_SCHED
7198 rt_rq->rt_nr_boosted = 0;
7199 rt_rq->rq = rq;
7200 #endif
7201 }
7202
7203 #ifdef CONFIG_FAIR_GROUP_SCHED
7204 static void init_tg_cfs_entry(struct rq *rq, struct task_group *tg,
7205 struct cfs_rq *cfs_rq, struct sched_entity *se,
7206 int cpu, int add)
7207 {
7208 tg->cfs_rq[cpu] = cfs_rq;
7209 init_cfs_rq(cfs_rq, rq);
7210 cfs_rq->tg = tg;
7211 if (add)
7212 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7213
7214 tg->se[cpu] = se;
7215 se->cfs_rq = &rq->cfs;
7216 se->my_q = cfs_rq;
7217 se->load.weight = tg->shares;
7218 se->load.inv_weight = div64_64(1ULL<<32, se->load.weight);
7219 se->parent = NULL;
7220 }
7221 #endif
7222
7223 #ifdef CONFIG_RT_GROUP_SCHED
7224 static void init_tg_rt_entry(struct rq *rq, struct task_group *tg,
7225 struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
7226 int cpu, int add)
7227 {
7228 tg->rt_rq[cpu] = rt_rq;
7229 init_rt_rq(rt_rq, rq);
7230 rt_rq->tg = tg;
7231 rt_rq->rt_se = rt_se;
7232 if (add)
7233 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7234
7235 tg->rt_se[cpu] = rt_se;
7236 rt_se->rt_rq = &rq->rt;
7237 rt_se->my_q = rt_rq;
7238 rt_se->parent = NULL;
7239 INIT_LIST_HEAD(&rt_se->run_list);
7240 }
7241 #endif
7242
7243 void __init sched_init(void)
7244 {
7245 int highest_cpu = 0;
7246 int i, j;
7247
7248 #ifdef CONFIG_SMP
7249 init_defrootdomain();
7250 #endif
7251
7252 #ifdef CONFIG_GROUP_SCHED
7253 list_add(&init_task_group.list, &task_groups);
7254 #endif
7255
7256 for_each_possible_cpu(i) {
7257 struct rq *rq;
7258
7259 rq = cpu_rq(i);
7260 spin_lock_init(&rq->lock);
7261 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7262 rq->nr_running = 0;
7263 rq->clock = 1;
7264 init_cfs_rq(&rq->cfs, rq);
7265 init_rt_rq(&rq->rt, rq);
7266 #ifdef CONFIG_FAIR_GROUP_SCHED
7267 init_task_group.shares = init_task_group_load;
7268 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7269 init_tg_cfs_entry(rq, &init_task_group,
7270 &per_cpu(init_cfs_rq, i),
7271 &per_cpu(init_sched_entity, i), i, 1);
7272
7273 #endif
7274 #ifdef CONFIG_RT_GROUP_SCHED
7275 init_task_group.rt_runtime =
7276 sysctl_sched_rt_runtime * NSEC_PER_USEC;
7277 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7278 init_tg_rt_entry(rq, &init_task_group,
7279 &per_cpu(init_rt_rq, i),
7280 &per_cpu(init_sched_rt_entity, i), i, 1);
7281 #endif
7282 rq->rt_period_expire = 0;
7283 rq->rt_throttled = 0;
7284
7285 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7286 rq->cpu_load[j] = 0;
7287 #ifdef CONFIG_SMP
7288 rq->sd = NULL;
7289 rq->rd = NULL;
7290 rq->active_balance = 0;
7291 rq->next_balance = jiffies;
7292 rq->push_cpu = 0;
7293 rq->cpu = i;
7294 rq->migration_thread = NULL;
7295 INIT_LIST_HEAD(&rq->migration_queue);
7296 rq_attach_root(rq, &def_root_domain);
7297 #endif
7298 init_rq_hrtick(rq);
7299 atomic_set(&rq->nr_iowait, 0);
7300 highest_cpu = i;
7301 }
7302
7303 set_load_weight(&init_task);
7304
7305 #ifdef CONFIG_PREEMPT_NOTIFIERS
7306 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7307 #endif
7308
7309 #ifdef CONFIG_SMP
7310 nr_cpu_ids = highest_cpu + 1;
7311 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
7312 #endif
7313
7314 #ifdef CONFIG_RT_MUTEXES
7315 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
7316 #endif
7317
7318 /*
7319 * The boot idle thread does lazy MMU switching as well:
7320 */
7321 atomic_inc(&init_mm.mm_count);
7322 enter_lazy_tlb(&init_mm, current);
7323
7324 /*
7325 * Make us the idle thread. Technically, schedule() should not be
7326 * called from this thread, however somewhere below it might be,
7327 * but because we are the idle thread, we just pick up running again
7328 * when this runqueue becomes "idle".
7329 */
7330 init_idle(current, smp_processor_id());
7331 /*
7332 * During early bootup we pretend to be a normal task:
7333 */
7334 current->sched_class = &fair_sched_class;
7335
7336 scheduler_running = 1;
7337 }
7338
7339 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7340 void __might_sleep(char *file, int line)
7341 {
7342 #ifdef in_atomic
7343 static unsigned long prev_jiffy; /* ratelimiting */
7344
7345 if ((in_atomic() || irqs_disabled()) &&
7346 system_state == SYSTEM_RUNNING && !oops_in_progress) {
7347 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7348 return;
7349 prev_jiffy = jiffies;
7350 printk(KERN_ERR "BUG: sleeping function called from invalid"
7351 " context at %s:%d\n", file, line);
7352 printk("in_atomic():%d, irqs_disabled():%d\n",
7353 in_atomic(), irqs_disabled());
7354 debug_show_held_locks(current);
7355 if (irqs_disabled())
7356 print_irqtrace_events(current);
7357 dump_stack();
7358 }
7359 #endif
7360 }
7361 EXPORT_SYMBOL(__might_sleep);
7362 #endif
7363
7364 #ifdef CONFIG_MAGIC_SYSRQ
7365 static void normalize_task(struct rq *rq, struct task_struct *p)
7366 {
7367 int on_rq;
7368 update_rq_clock(rq);
7369 on_rq = p->se.on_rq;
7370 if (on_rq)
7371 deactivate_task(rq, p, 0);
7372 __setscheduler(rq, p, SCHED_NORMAL, 0);
7373 if (on_rq) {
7374 activate_task(rq, p, 0);
7375 resched_task(rq->curr);
7376 }
7377 }
7378
7379 void normalize_rt_tasks(void)
7380 {
7381 struct task_struct *g, *p;
7382 unsigned long flags;
7383 struct rq *rq;
7384
7385 read_lock_irqsave(&tasklist_lock, flags);
7386 do_each_thread(g, p) {
7387 /*
7388 * Only normalize user tasks:
7389 */
7390 if (!p->mm)
7391 continue;
7392
7393 p->se.exec_start = 0;
7394 #ifdef CONFIG_SCHEDSTATS
7395 p->se.wait_start = 0;
7396 p->se.sleep_start = 0;
7397 p->se.block_start = 0;
7398 #endif
7399 task_rq(p)->clock = 0;
7400
7401 if (!rt_task(p)) {
7402 /*
7403 * Renice negative nice level userspace
7404 * tasks back to 0:
7405 */
7406 if (TASK_NICE(p) < 0 && p->mm)
7407 set_user_nice(p, 0);
7408 continue;
7409 }
7410
7411 spin_lock(&p->pi_lock);
7412 rq = __task_rq_lock(p);
7413
7414 normalize_task(rq, p);
7415
7416 __task_rq_unlock(rq);
7417 spin_unlock(&p->pi_lock);
7418 } while_each_thread(g, p);
7419
7420 read_unlock_irqrestore(&tasklist_lock, flags);
7421 }
7422
7423 #endif /* CONFIG_MAGIC_SYSRQ */
7424
7425 #ifdef CONFIG_IA64
7426 /*
7427 * These functions are only useful for the IA64 MCA handling.
7428 *
7429 * They can only be called when the whole system has been
7430 * stopped - every CPU needs to be quiescent, and no scheduling
7431 * activity can take place. Using them for anything else would
7432 * be a serious bug, and as a result, they aren't even visible
7433 * under any other configuration.
7434 */
7435
7436 /**
7437 * curr_task - return the current task for a given cpu.
7438 * @cpu: the processor in question.
7439 *
7440 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7441 */
7442 struct task_struct *curr_task(int cpu)
7443 {
7444 return cpu_curr(cpu);
7445 }
7446
7447 /**
7448 * set_curr_task - set the current task for a given cpu.
7449 * @cpu: the processor in question.
7450 * @p: the task pointer to set.
7451 *
7452 * Description: This function must only be used when non-maskable interrupts
7453 * are serviced on a separate stack. It allows the architecture to switch the
7454 * notion of the current task on a cpu in a non-blocking manner. This function
7455 * must be called with all CPU's synchronized, and interrupts disabled, the
7456 * and caller must save the original value of the current task (see
7457 * curr_task() above) and restore that value before reenabling interrupts and
7458 * re-starting the system.
7459 *
7460 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7461 */
7462 void set_curr_task(int cpu, struct task_struct *p)
7463 {
7464 cpu_curr(cpu) = p;
7465 }
7466
7467 #endif
7468
7469 #ifdef CONFIG_GROUP_SCHED
7470
7471 #ifdef CONFIG_FAIR_GROUP_SCHED
7472 static void free_fair_sched_group(struct task_group *tg)
7473 {
7474 int i;
7475
7476 for_each_possible_cpu(i) {
7477 if (tg->cfs_rq)
7478 kfree(tg->cfs_rq[i]);
7479 if (tg->se)
7480 kfree(tg->se[i]);
7481 }
7482
7483 kfree(tg->cfs_rq);
7484 kfree(tg->se);
7485 }
7486
7487 static int alloc_fair_sched_group(struct task_group *tg)
7488 {
7489 struct cfs_rq *cfs_rq;
7490 struct sched_entity *se;
7491 struct rq *rq;
7492 int i;
7493
7494 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
7495 if (!tg->cfs_rq)
7496 goto err;
7497 tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
7498 if (!tg->se)
7499 goto err;
7500
7501 tg->shares = NICE_0_LOAD;
7502
7503 for_each_possible_cpu(i) {
7504 rq = cpu_rq(i);
7505
7506 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
7507 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
7508 if (!cfs_rq)
7509 goto err;
7510
7511 se = kmalloc_node(sizeof(struct sched_entity),
7512 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
7513 if (!se)
7514 goto err;
7515
7516 init_tg_cfs_entry(rq, tg, cfs_rq, se, i, 0);
7517 }
7518
7519 return 1;
7520
7521 err:
7522 return 0;
7523 }
7524
7525 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7526 {
7527 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
7528 &cpu_rq(cpu)->leaf_cfs_rq_list);
7529 }
7530
7531 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
7532 {
7533 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
7534 }
7535 #else
7536 static inline void free_fair_sched_group(struct task_group *tg)
7537 {
7538 }
7539
7540 static inline int alloc_fair_sched_group(struct task_group *tg)
7541 {
7542 return 1;
7543 }
7544
7545 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7546 {
7547 }
7548
7549 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
7550 {
7551 }
7552 #endif
7553
7554 #ifdef CONFIG_RT_GROUP_SCHED
7555 static void free_rt_sched_group(struct task_group *tg)
7556 {
7557 int i;
7558
7559 for_each_possible_cpu(i) {
7560 if (tg->rt_rq)
7561 kfree(tg->rt_rq[i]);
7562 if (tg->rt_se)
7563 kfree(tg->rt_se[i]);
7564 }
7565
7566 kfree(tg->rt_rq);
7567 kfree(tg->rt_se);
7568 }
7569
7570 static int alloc_rt_sched_group(struct task_group *tg)
7571 {
7572 struct rt_rq *rt_rq;
7573 struct sched_rt_entity *rt_se;
7574 struct rq *rq;
7575 int i;
7576
7577 tg->rt_rq = kzalloc(sizeof(rt_rq) * NR_CPUS, GFP_KERNEL);
7578 if (!tg->rt_rq)
7579 goto err;
7580 tg->rt_se = kzalloc(sizeof(rt_se) * NR_CPUS, GFP_KERNEL);
7581 if (!tg->rt_se)
7582 goto err;
7583
7584 tg->rt_runtime = 0;
7585
7586 for_each_possible_cpu(i) {
7587 rq = cpu_rq(i);
7588
7589 rt_rq = kmalloc_node(sizeof(struct rt_rq),
7590 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
7591 if (!rt_rq)
7592 goto err;
7593
7594 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
7595 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
7596 if (!rt_se)
7597 goto err;
7598
7599 init_tg_rt_entry(rq, tg, rt_rq, rt_se, i, 0);
7600 }
7601
7602 return 1;
7603
7604 err:
7605 return 0;
7606 }
7607
7608 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
7609 {
7610 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
7611 &cpu_rq(cpu)->leaf_rt_rq_list);
7612 }
7613
7614 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
7615 {
7616 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
7617 }
7618 #else
7619 static inline void free_rt_sched_group(struct task_group *tg)
7620 {
7621 }
7622
7623 static inline int alloc_rt_sched_group(struct task_group *tg)
7624 {
7625 return 1;
7626 }
7627
7628 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
7629 {
7630 }
7631
7632 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
7633 {
7634 }
7635 #endif
7636
7637 static void free_sched_group(struct task_group *tg)
7638 {
7639 free_fair_sched_group(tg);
7640 free_rt_sched_group(tg);
7641 kfree(tg);
7642 }
7643
7644 /* allocate runqueue etc for a new task group */
7645 struct task_group *sched_create_group(void)
7646 {
7647 struct task_group *tg;
7648 unsigned long flags;
7649 int i;
7650
7651 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7652 if (!tg)
7653 return ERR_PTR(-ENOMEM);
7654
7655 if (!alloc_fair_sched_group(tg))
7656 goto err;
7657
7658 if (!alloc_rt_sched_group(tg))
7659 goto err;
7660
7661 spin_lock_irqsave(&task_group_lock, flags);
7662 for_each_possible_cpu(i) {
7663 register_fair_sched_group(tg, i);
7664 register_rt_sched_group(tg, i);
7665 }
7666 list_add_rcu(&tg->list, &task_groups);
7667 spin_unlock_irqrestore(&task_group_lock, flags);
7668
7669 return tg;
7670
7671 err:
7672 free_sched_group(tg);
7673 return ERR_PTR(-ENOMEM);
7674 }
7675
7676 /* rcu callback to free various structures associated with a task group */
7677 static void free_sched_group_rcu(struct rcu_head *rhp)
7678 {
7679 /* now it should be safe to free those cfs_rqs */
7680 free_sched_group(container_of(rhp, struct task_group, rcu));
7681 }
7682
7683 /* Destroy runqueue etc associated with a task group */
7684 void sched_destroy_group(struct task_group *tg)
7685 {
7686 unsigned long flags;
7687 int i;
7688
7689 spin_lock_irqsave(&task_group_lock, flags);
7690 for_each_possible_cpu(i) {
7691 unregister_fair_sched_group(tg, i);
7692 unregister_rt_sched_group(tg, i);
7693 }
7694 list_del_rcu(&tg->list);
7695 spin_unlock_irqrestore(&task_group_lock, flags);
7696
7697 /* wait for possible concurrent references to cfs_rqs complete */
7698 call_rcu(&tg->rcu, free_sched_group_rcu);
7699 }
7700
7701 /* change task's runqueue when it moves between groups.
7702 * The caller of this function should have put the task in its new group
7703 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7704 * reflect its new group.
7705 */
7706 void sched_move_task(struct task_struct *tsk)
7707 {
7708 int on_rq, running;
7709 unsigned long flags;
7710 struct rq *rq;
7711
7712 rq = task_rq_lock(tsk, &flags);
7713
7714 update_rq_clock(rq);
7715
7716 running = task_current(rq, tsk);
7717 on_rq = tsk->se.on_rq;
7718
7719 if (on_rq)
7720 dequeue_task(rq, tsk, 0);
7721 if (unlikely(running))
7722 tsk->sched_class->put_prev_task(rq, tsk);
7723
7724 set_task_rq(tsk, task_cpu(tsk));
7725
7726 #ifdef CONFIG_FAIR_GROUP_SCHED
7727 if (tsk->sched_class->moved_group)
7728 tsk->sched_class->moved_group(tsk);
7729 #endif
7730
7731 if (unlikely(running))
7732 tsk->sched_class->set_curr_task(rq);
7733 if (on_rq)
7734 enqueue_task(rq, tsk, 0);
7735
7736 task_rq_unlock(rq, &flags);
7737 }
7738
7739 #ifdef CONFIG_FAIR_GROUP_SCHED
7740 static void set_se_shares(struct sched_entity *se, unsigned long shares)
7741 {
7742 struct cfs_rq *cfs_rq = se->cfs_rq;
7743 struct rq *rq = cfs_rq->rq;
7744 int on_rq;
7745
7746 spin_lock_irq(&rq->lock);
7747
7748 on_rq = se->on_rq;
7749 if (on_rq)
7750 dequeue_entity(cfs_rq, se, 0);
7751
7752 se->load.weight = shares;
7753 se->load.inv_weight = div64_64((1ULL<<32), shares);
7754
7755 if (on_rq)
7756 enqueue_entity(cfs_rq, se, 0);
7757
7758 spin_unlock_irq(&rq->lock);
7759 }
7760
7761 static DEFINE_MUTEX(shares_mutex);
7762
7763 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7764 {
7765 int i;
7766 unsigned long flags;
7767
7768 /*
7769 * A weight of 0 or 1 can cause arithmetics problems.
7770 * (The default weight is 1024 - so there's no practical
7771 * limitation from this.)
7772 */
7773 if (shares < 2)
7774 shares = 2;
7775
7776 mutex_lock(&shares_mutex);
7777 if (tg->shares == shares)
7778 goto done;
7779
7780 spin_lock_irqsave(&task_group_lock, flags);
7781 for_each_possible_cpu(i)
7782 unregister_fair_sched_group(tg, i);
7783 spin_unlock_irqrestore(&task_group_lock, flags);
7784
7785 /* wait for any ongoing reference to this group to finish */
7786 synchronize_sched();
7787
7788 /*
7789 * Now we are free to modify the group's share on each cpu
7790 * w/o tripping rebalance_share or load_balance_fair.
7791 */
7792 tg->shares = shares;
7793 for_each_possible_cpu(i)
7794 set_se_shares(tg->se[i], shares);
7795
7796 /*
7797 * Enable load balance activity on this group, by inserting it back on
7798 * each cpu's rq->leaf_cfs_rq_list.
7799 */
7800 spin_lock_irqsave(&task_group_lock, flags);
7801 for_each_possible_cpu(i)
7802 register_fair_sched_group(tg, i);
7803 spin_unlock_irqrestore(&task_group_lock, flags);
7804 done:
7805 mutex_unlock(&shares_mutex);
7806 return 0;
7807 }
7808
7809 unsigned long sched_group_shares(struct task_group *tg)
7810 {
7811 return tg->shares;
7812 }
7813 #endif
7814
7815 #ifdef CONFIG_RT_GROUP_SCHED
7816 /*
7817 * Ensure that the real time constraints are schedulable.
7818 */
7819 static DEFINE_MUTEX(rt_constraints_mutex);
7820
7821 static unsigned long to_ratio(u64 period, u64 runtime)
7822 {
7823 if (runtime == RUNTIME_INF)
7824 return 1ULL << 16;
7825
7826 return div64_64(runtime << 16, period);
7827 }
7828
7829 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7830 {
7831 struct task_group *tgi;
7832 unsigned long total = 0;
7833 unsigned long global_ratio =
7834 to_ratio(sysctl_sched_rt_period,
7835 sysctl_sched_rt_runtime < 0 ?
7836 RUNTIME_INF : sysctl_sched_rt_runtime);
7837
7838 rcu_read_lock();
7839 list_for_each_entry_rcu(tgi, &task_groups, list) {
7840 if (tgi == tg)
7841 continue;
7842
7843 total += to_ratio(period, tgi->rt_runtime);
7844 }
7845 rcu_read_unlock();
7846
7847 return total + to_ratio(period, runtime) < global_ratio;
7848 }
7849
7850 /* Must be called with tasklist_lock held */
7851 static inline int tg_has_rt_tasks(struct task_group *tg)
7852 {
7853 struct task_struct *g, *p;
7854 do_each_thread(g, p) {
7855 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
7856 return 1;
7857 } while_each_thread(g, p);
7858 return 0;
7859 }
7860
7861 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7862 {
7863 u64 rt_runtime, rt_period;
7864 int err = 0;
7865
7866 rt_period = (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
7867 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7868 if (rt_runtime_us == -1)
7869 rt_runtime = RUNTIME_INF;
7870
7871 mutex_lock(&rt_constraints_mutex);
7872 read_lock(&tasklist_lock);
7873 if (rt_runtime_us == 0 && tg_has_rt_tasks(tg)) {
7874 err = -EBUSY;
7875 goto unlock;
7876 }
7877 if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
7878 err = -EINVAL;
7879 goto unlock;
7880 }
7881 tg->rt_runtime = rt_runtime;
7882 unlock:
7883 read_unlock(&tasklist_lock);
7884 mutex_unlock(&rt_constraints_mutex);
7885
7886 return err;
7887 }
7888
7889 long sched_group_rt_runtime(struct task_group *tg)
7890 {
7891 u64 rt_runtime_us;
7892
7893 if (tg->rt_runtime == RUNTIME_INF)
7894 return -1;
7895
7896 rt_runtime_us = tg->rt_runtime;
7897 do_div(rt_runtime_us, NSEC_PER_USEC);
7898 return rt_runtime_us;
7899 }
7900 #endif
7901 #endif /* CONFIG_GROUP_SCHED */
7902
7903 #ifdef CONFIG_CGROUP_SCHED
7904
7905 /* return corresponding task_group object of a cgroup */
7906 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7907 {
7908 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7909 struct task_group, css);
7910 }
7911
7912 static struct cgroup_subsys_state *
7913 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
7914 {
7915 struct task_group *tg;
7916
7917 if (!cgrp->parent) {
7918 /* This is early initialization for the top cgroup */
7919 init_task_group.css.cgroup = cgrp;
7920 return &init_task_group.css;
7921 }
7922
7923 /* we support only 1-level deep hierarchical scheduler atm */
7924 if (cgrp->parent->parent)
7925 return ERR_PTR(-EINVAL);
7926
7927 tg = sched_create_group();
7928 if (IS_ERR(tg))
7929 return ERR_PTR(-ENOMEM);
7930
7931 /* Bind the cgroup to task_group object we just created */
7932 tg->css.cgroup = cgrp;
7933
7934 return &tg->css;
7935 }
7936
7937 static void
7938 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
7939 {
7940 struct task_group *tg = cgroup_tg(cgrp);
7941
7942 sched_destroy_group(tg);
7943 }
7944
7945 static int
7946 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7947 struct task_struct *tsk)
7948 {
7949 #ifdef CONFIG_RT_GROUP_SCHED
7950 /* Don't accept realtime tasks when there is no way for them to run */
7951 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_runtime == 0)
7952 return -EINVAL;
7953 #else
7954 /* We don't support RT-tasks being in separate groups */
7955 if (tsk->sched_class != &fair_sched_class)
7956 return -EINVAL;
7957 #endif
7958
7959 return 0;
7960 }
7961
7962 static void
7963 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7964 struct cgroup *old_cont, struct task_struct *tsk)
7965 {
7966 sched_move_task(tsk);
7967 }
7968
7969 #ifdef CONFIG_FAIR_GROUP_SCHED
7970 static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7971 u64 shareval)
7972 {
7973 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
7974 }
7975
7976 static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
7977 {
7978 struct task_group *tg = cgroup_tg(cgrp);
7979
7980 return (u64) tg->shares;
7981 }
7982 #endif
7983
7984 #ifdef CONFIG_RT_GROUP_SCHED
7985 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7986 struct file *file,
7987 const char __user *userbuf,
7988 size_t nbytes, loff_t *unused_ppos)
7989 {
7990 char buffer[64];
7991 int retval = 0;
7992 s64 val;
7993 char *end;
7994
7995 if (!nbytes)
7996 return -EINVAL;
7997 if (nbytes >= sizeof(buffer))
7998 return -E2BIG;
7999 if (copy_from_user(buffer, userbuf, nbytes))
8000 return -EFAULT;
8001
8002 buffer[nbytes] = 0; /* nul-terminate */
8003
8004 /* strip newline if necessary */
8005 if (nbytes && (buffer[nbytes-1] == '\n'))
8006 buffer[nbytes-1] = 0;
8007 val = simple_strtoll(buffer, &end, 0);
8008 if (*end)
8009 return -EINVAL;
8010
8011 /* Pass to subsystem */
8012 retval = sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
8013 if (!retval)
8014 retval = nbytes;
8015 return retval;
8016 }
8017
8018 static ssize_t cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft,
8019 struct file *file,
8020 char __user *buf, size_t nbytes,
8021 loff_t *ppos)
8022 {
8023 char tmp[64];
8024 long val = sched_group_rt_runtime(cgroup_tg(cgrp));
8025 int len = sprintf(tmp, "%ld\n", val);
8026
8027 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
8028 }
8029 #endif
8030
8031 static struct cftype cpu_files[] = {
8032 #ifdef CONFIG_FAIR_GROUP_SCHED
8033 {
8034 .name = "shares",
8035 .read_uint = cpu_shares_read_uint,
8036 .write_uint = cpu_shares_write_uint,
8037 },
8038 #endif
8039 #ifdef CONFIG_RT_GROUP_SCHED
8040 {
8041 .name = "rt_runtime_us",
8042 .read = cpu_rt_runtime_read,
8043 .write = cpu_rt_runtime_write,
8044 },
8045 #endif
8046 };
8047
8048 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8049 {
8050 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8051 }
8052
8053 struct cgroup_subsys cpu_cgroup_subsys = {
8054 .name = "cpu",
8055 .create = cpu_cgroup_create,
8056 .destroy = cpu_cgroup_destroy,
8057 .can_attach = cpu_cgroup_can_attach,
8058 .attach = cpu_cgroup_attach,
8059 .populate = cpu_cgroup_populate,
8060 .subsys_id = cpu_cgroup_subsys_id,
8061 .early_init = 1,
8062 };
8063
8064 #endif /* CONFIG_CGROUP_SCHED */
8065
8066 #ifdef CONFIG_CGROUP_CPUACCT
8067
8068 /*
8069 * CPU accounting code for task groups.
8070 *
8071 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8072 * (balbir@in.ibm.com).
8073 */
8074
8075 /* track cpu usage of a group of tasks */
8076 struct cpuacct {
8077 struct cgroup_subsys_state css;
8078 /* cpuusage holds pointer to a u64-type object on every cpu */
8079 u64 *cpuusage;
8080 };
8081
8082 struct cgroup_subsys cpuacct_subsys;
8083
8084 /* return cpu accounting group corresponding to this container */
8085 static inline struct cpuacct *cgroup_ca(struct cgroup *cont)
8086 {
8087 return container_of(cgroup_subsys_state(cont, cpuacct_subsys_id),
8088 struct cpuacct, css);
8089 }
8090
8091 /* return cpu accounting group to which this task belongs */
8092 static inline struct cpuacct *task_ca(struct task_struct *tsk)
8093 {
8094 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8095 struct cpuacct, css);
8096 }
8097
8098 /* create a new cpu accounting group */
8099 static struct cgroup_subsys_state *cpuacct_create(
8100 struct cgroup_subsys *ss, struct cgroup *cont)
8101 {
8102 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8103
8104 if (!ca)
8105 return ERR_PTR(-ENOMEM);
8106
8107 ca->cpuusage = alloc_percpu(u64);
8108 if (!ca->cpuusage) {
8109 kfree(ca);
8110 return ERR_PTR(-ENOMEM);
8111 }
8112
8113 return &ca->css;
8114 }
8115
8116 /* destroy an existing cpu accounting group */
8117 static void
8118 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
8119 {
8120 struct cpuacct *ca = cgroup_ca(cont);
8121
8122 free_percpu(ca->cpuusage);
8123 kfree(ca);
8124 }
8125
8126 /* return total cpu usage (in nanoseconds) of a group */
8127 static u64 cpuusage_read(struct cgroup *cont, struct cftype *cft)
8128 {
8129 struct cpuacct *ca = cgroup_ca(cont);
8130 u64 totalcpuusage = 0;
8131 int i;
8132
8133 for_each_possible_cpu(i) {
8134 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
8135
8136 /*
8137 * Take rq->lock to make 64-bit addition safe on 32-bit
8138 * platforms.
8139 */
8140 spin_lock_irq(&cpu_rq(i)->lock);
8141 totalcpuusage += *cpuusage;
8142 spin_unlock_irq(&cpu_rq(i)->lock);
8143 }
8144
8145 return totalcpuusage;
8146 }
8147
8148 static struct cftype files[] = {
8149 {
8150 .name = "usage",
8151 .read_uint = cpuusage_read,
8152 },
8153 };
8154
8155 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8156 {
8157 return cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
8158 }
8159
8160 /*
8161 * charge this task's execution time to its accounting group.
8162 *
8163 * called with rq->lock held.
8164 */
8165 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8166 {
8167 struct cpuacct *ca;
8168
8169 if (!cpuacct_subsys.active)
8170 return;
8171
8172 ca = task_ca(tsk);
8173 if (ca) {
8174 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
8175
8176 *cpuusage += cputime;
8177 }
8178 }
8179
8180 struct cgroup_subsys cpuacct_subsys = {
8181 .name = "cpuacct",
8182 .create = cpuacct_create,
8183 .destroy = cpuacct_destroy,
8184 .populate = cpuacct_populate,
8185 .subsys_id = cpuacct_subsys_id,
8186 };
8187 #endif /* CONFIG_CGROUP_CPUACCT */
This page took 0.187141 seconds and 4 git commands to generate.