Merge branch 'sched-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_counter.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/kthread.h>
59 #include <linux/proc_fs.h>
60 #include <linux/seq_file.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/reciprocal_div.h>
68 #include <linux/unistd.h>
69 #include <linux/pagemap.h>
70 #include <linux/hrtimer.h>
71 #include <linux/tick.h>
72 #include <linux/debugfs.h>
73 #include <linux/ctype.h>
74 #include <linux/ftrace.h>
75
76 #include <asm/tlb.h>
77 #include <asm/irq_regs.h>
78
79 #include "sched_cpupri.h"
80
81 #define CREATE_TRACE_POINTS
82 #include <trace/events/sched.h>
83
84 /*
85 * Convert user-nice values [ -20 ... 0 ... 19 ]
86 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
87 * and back.
88 */
89 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
90 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
91 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
92
93 /*
94 * 'User priority' is the nice value converted to something we
95 * can work with better when scaling various scheduler parameters,
96 * it's a [ 0 ... 39 ] range.
97 */
98 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
99 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
100 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
101
102 /*
103 * Helpers for converting nanosecond timing to jiffy resolution
104 */
105 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
106
107 #define NICE_0_LOAD SCHED_LOAD_SCALE
108 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
109
110 /*
111 * These are the 'tuning knobs' of the scheduler:
112 *
113 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
114 * Timeslices get refilled after they expire.
115 */
116 #define DEF_TIMESLICE (100 * HZ / 1000)
117
118 /*
119 * single value that denotes runtime == period, ie unlimited time.
120 */
121 #define RUNTIME_INF ((u64)~0ULL)
122
123 #ifdef CONFIG_SMP
124
125 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
126
127 /*
128 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
129 * Since cpu_power is a 'constant', we can use a reciprocal divide.
130 */
131 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
132 {
133 return reciprocal_divide(load, sg->reciprocal_cpu_power);
134 }
135
136 /*
137 * Each time a sched group cpu_power is changed,
138 * we must compute its reciprocal value
139 */
140 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
141 {
142 sg->__cpu_power += val;
143 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
144 }
145 #endif
146
147 static inline int rt_policy(int policy)
148 {
149 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
150 return 1;
151 return 0;
152 }
153
154 static inline int task_has_rt_policy(struct task_struct *p)
155 {
156 return rt_policy(p->policy);
157 }
158
159 /*
160 * This is the priority-queue data structure of the RT scheduling class:
161 */
162 struct rt_prio_array {
163 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
164 struct list_head queue[MAX_RT_PRIO];
165 };
166
167 struct rt_bandwidth {
168 /* nests inside the rq lock: */
169 spinlock_t rt_runtime_lock;
170 ktime_t rt_period;
171 u64 rt_runtime;
172 struct hrtimer rt_period_timer;
173 };
174
175 static struct rt_bandwidth def_rt_bandwidth;
176
177 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
178
179 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
180 {
181 struct rt_bandwidth *rt_b =
182 container_of(timer, struct rt_bandwidth, rt_period_timer);
183 ktime_t now;
184 int overrun;
185 int idle = 0;
186
187 for (;;) {
188 now = hrtimer_cb_get_time(timer);
189 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
190
191 if (!overrun)
192 break;
193
194 idle = do_sched_rt_period_timer(rt_b, overrun);
195 }
196
197 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
198 }
199
200 static
201 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
202 {
203 rt_b->rt_period = ns_to_ktime(period);
204 rt_b->rt_runtime = runtime;
205
206 spin_lock_init(&rt_b->rt_runtime_lock);
207
208 hrtimer_init(&rt_b->rt_period_timer,
209 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
210 rt_b->rt_period_timer.function = sched_rt_period_timer;
211 }
212
213 static inline int rt_bandwidth_enabled(void)
214 {
215 return sysctl_sched_rt_runtime >= 0;
216 }
217
218 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
219 {
220 ktime_t now;
221
222 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
223 return;
224
225 if (hrtimer_active(&rt_b->rt_period_timer))
226 return;
227
228 spin_lock(&rt_b->rt_runtime_lock);
229 for (;;) {
230 unsigned long delta;
231 ktime_t soft, hard;
232
233 if (hrtimer_active(&rt_b->rt_period_timer))
234 break;
235
236 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
237 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
238
239 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
240 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
241 delta = ktime_to_ns(ktime_sub(hard, soft));
242 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
243 HRTIMER_MODE_ABS_PINNED, 0);
244 }
245 spin_unlock(&rt_b->rt_runtime_lock);
246 }
247
248 #ifdef CONFIG_RT_GROUP_SCHED
249 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
250 {
251 hrtimer_cancel(&rt_b->rt_period_timer);
252 }
253 #endif
254
255 /*
256 * sched_domains_mutex serializes calls to arch_init_sched_domains,
257 * detach_destroy_domains and partition_sched_domains.
258 */
259 static DEFINE_MUTEX(sched_domains_mutex);
260
261 #ifdef CONFIG_GROUP_SCHED
262
263 #include <linux/cgroup.h>
264
265 struct cfs_rq;
266
267 static LIST_HEAD(task_groups);
268
269 /* task group related information */
270 struct task_group {
271 #ifdef CONFIG_CGROUP_SCHED
272 struct cgroup_subsys_state css;
273 #endif
274
275 #ifdef CONFIG_USER_SCHED
276 uid_t uid;
277 #endif
278
279 #ifdef CONFIG_FAIR_GROUP_SCHED
280 /* schedulable entities of this group on each cpu */
281 struct sched_entity **se;
282 /* runqueue "owned" by this group on each cpu */
283 struct cfs_rq **cfs_rq;
284 unsigned long shares;
285 #endif
286
287 #ifdef CONFIG_RT_GROUP_SCHED
288 struct sched_rt_entity **rt_se;
289 struct rt_rq **rt_rq;
290
291 struct rt_bandwidth rt_bandwidth;
292 #endif
293
294 struct rcu_head rcu;
295 struct list_head list;
296
297 struct task_group *parent;
298 struct list_head siblings;
299 struct list_head children;
300 };
301
302 #ifdef CONFIG_USER_SCHED
303
304 /* Helper function to pass uid information to create_sched_user() */
305 void set_tg_uid(struct user_struct *user)
306 {
307 user->tg->uid = user->uid;
308 }
309
310 /*
311 * Root task group.
312 * Every UID task group (including init_task_group aka UID-0) will
313 * be a child to this group.
314 */
315 struct task_group root_task_group;
316
317 #ifdef CONFIG_FAIR_GROUP_SCHED
318 /* Default task group's sched entity on each cpu */
319 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
320 /* Default task group's cfs_rq on each cpu */
321 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
322 #endif /* CONFIG_FAIR_GROUP_SCHED */
323
324 #ifdef CONFIG_RT_GROUP_SCHED
325 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
326 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
327 #endif /* CONFIG_RT_GROUP_SCHED */
328 #else /* !CONFIG_USER_SCHED */
329 #define root_task_group init_task_group
330 #endif /* CONFIG_USER_SCHED */
331
332 /* task_group_lock serializes add/remove of task groups and also changes to
333 * a task group's cpu shares.
334 */
335 static DEFINE_SPINLOCK(task_group_lock);
336
337 #ifdef CONFIG_SMP
338 static int root_task_group_empty(void)
339 {
340 return list_empty(&root_task_group.children);
341 }
342 #endif
343
344 #ifdef CONFIG_FAIR_GROUP_SCHED
345 #ifdef CONFIG_USER_SCHED
346 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
347 #else /* !CONFIG_USER_SCHED */
348 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
349 #endif /* CONFIG_USER_SCHED */
350
351 /*
352 * A weight of 0 or 1 can cause arithmetics problems.
353 * A weight of a cfs_rq is the sum of weights of which entities
354 * are queued on this cfs_rq, so a weight of a entity should not be
355 * too large, so as the shares value of a task group.
356 * (The default weight is 1024 - so there's no practical
357 * limitation from this.)
358 */
359 #define MIN_SHARES 2
360 #define MAX_SHARES (1UL << 18)
361
362 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
363 #endif
364
365 /* Default task group.
366 * Every task in system belong to this group at bootup.
367 */
368 struct task_group init_task_group;
369
370 /* return group to which a task belongs */
371 static inline struct task_group *task_group(struct task_struct *p)
372 {
373 struct task_group *tg;
374
375 #ifdef CONFIG_USER_SCHED
376 rcu_read_lock();
377 tg = __task_cred(p)->user->tg;
378 rcu_read_unlock();
379 #elif defined(CONFIG_CGROUP_SCHED)
380 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
381 struct task_group, css);
382 #else
383 tg = &init_task_group;
384 #endif
385 return tg;
386 }
387
388 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
389 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
390 {
391 #ifdef CONFIG_FAIR_GROUP_SCHED
392 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
393 p->se.parent = task_group(p)->se[cpu];
394 #endif
395
396 #ifdef CONFIG_RT_GROUP_SCHED
397 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
398 p->rt.parent = task_group(p)->rt_se[cpu];
399 #endif
400 }
401
402 #else
403
404 #ifdef CONFIG_SMP
405 static int root_task_group_empty(void)
406 {
407 return 1;
408 }
409 #endif
410
411 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
412 static inline struct task_group *task_group(struct task_struct *p)
413 {
414 return NULL;
415 }
416
417 #endif /* CONFIG_GROUP_SCHED */
418
419 /* CFS-related fields in a runqueue */
420 struct cfs_rq {
421 struct load_weight load;
422 unsigned long nr_running;
423
424 u64 exec_clock;
425 u64 min_vruntime;
426
427 struct rb_root tasks_timeline;
428 struct rb_node *rb_leftmost;
429
430 struct list_head tasks;
431 struct list_head *balance_iterator;
432
433 /*
434 * 'curr' points to currently running entity on this cfs_rq.
435 * It is set to NULL otherwise (i.e when none are currently running).
436 */
437 struct sched_entity *curr, *next, *last;
438
439 unsigned int nr_spread_over;
440
441 #ifdef CONFIG_FAIR_GROUP_SCHED
442 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
443
444 /*
445 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
446 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
447 * (like users, containers etc.)
448 *
449 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
450 * list is used during load balance.
451 */
452 struct list_head leaf_cfs_rq_list;
453 struct task_group *tg; /* group that "owns" this runqueue */
454
455 #ifdef CONFIG_SMP
456 /*
457 * the part of load.weight contributed by tasks
458 */
459 unsigned long task_weight;
460
461 /*
462 * h_load = weight * f(tg)
463 *
464 * Where f(tg) is the recursive weight fraction assigned to
465 * this group.
466 */
467 unsigned long h_load;
468
469 /*
470 * this cpu's part of tg->shares
471 */
472 unsigned long shares;
473
474 /*
475 * load.weight at the time we set shares
476 */
477 unsigned long rq_weight;
478 #endif
479 #endif
480 };
481
482 /* Real-Time classes' related field in a runqueue: */
483 struct rt_rq {
484 struct rt_prio_array active;
485 unsigned long rt_nr_running;
486 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
487 struct {
488 int curr; /* highest queued rt task prio */
489 #ifdef CONFIG_SMP
490 int next; /* next highest */
491 #endif
492 } highest_prio;
493 #endif
494 #ifdef CONFIG_SMP
495 unsigned long rt_nr_migratory;
496 int overloaded;
497 struct plist_head pushable_tasks;
498 #endif
499 int rt_throttled;
500 u64 rt_time;
501 u64 rt_runtime;
502 /* Nests inside the rq lock: */
503 spinlock_t rt_runtime_lock;
504
505 #ifdef CONFIG_RT_GROUP_SCHED
506 unsigned long rt_nr_boosted;
507
508 struct rq *rq;
509 struct list_head leaf_rt_rq_list;
510 struct task_group *tg;
511 struct sched_rt_entity *rt_se;
512 #endif
513 };
514
515 #ifdef CONFIG_SMP
516
517 /*
518 * We add the notion of a root-domain which will be used to define per-domain
519 * variables. Each exclusive cpuset essentially defines an island domain by
520 * fully partitioning the member cpus from any other cpuset. Whenever a new
521 * exclusive cpuset is created, we also create and attach a new root-domain
522 * object.
523 *
524 */
525 struct root_domain {
526 atomic_t refcount;
527 cpumask_var_t span;
528 cpumask_var_t online;
529
530 /*
531 * The "RT overload" flag: it gets set if a CPU has more than
532 * one runnable RT task.
533 */
534 cpumask_var_t rto_mask;
535 atomic_t rto_count;
536 #ifdef CONFIG_SMP
537 struct cpupri cpupri;
538 #endif
539 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
540 /*
541 * Preferred wake up cpu nominated by sched_mc balance that will be
542 * used when most cpus are idle in the system indicating overall very
543 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
544 */
545 unsigned int sched_mc_preferred_wakeup_cpu;
546 #endif
547 };
548
549 /*
550 * By default the system creates a single root-domain with all cpus as
551 * members (mimicking the global state we have today).
552 */
553 static struct root_domain def_root_domain;
554
555 #endif
556
557 /*
558 * This is the main, per-CPU runqueue data structure.
559 *
560 * Locking rule: those places that want to lock multiple runqueues
561 * (such as the load balancing or the thread migration code), lock
562 * acquire operations must be ordered by ascending &runqueue.
563 */
564 struct rq {
565 /* runqueue lock: */
566 spinlock_t lock;
567
568 /*
569 * nr_running and cpu_load should be in the same cacheline because
570 * remote CPUs use both these fields when doing load calculation.
571 */
572 unsigned long nr_running;
573 #define CPU_LOAD_IDX_MAX 5
574 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
575 #ifdef CONFIG_NO_HZ
576 unsigned long last_tick_seen;
577 unsigned char in_nohz_recently;
578 #endif
579 /* capture load from *all* tasks on this cpu: */
580 struct load_weight load;
581 unsigned long nr_load_updates;
582 u64 nr_switches;
583 u64 nr_migrations_in;
584
585 struct cfs_rq cfs;
586 struct rt_rq rt;
587
588 #ifdef CONFIG_FAIR_GROUP_SCHED
589 /* list of leaf cfs_rq on this cpu: */
590 struct list_head leaf_cfs_rq_list;
591 #endif
592 #ifdef CONFIG_RT_GROUP_SCHED
593 struct list_head leaf_rt_rq_list;
594 #endif
595
596 /*
597 * This is part of a global counter where only the total sum
598 * over all CPUs matters. A task can increase this counter on
599 * one CPU and if it got migrated afterwards it may decrease
600 * it on another CPU. Always updated under the runqueue lock:
601 */
602 unsigned long nr_uninterruptible;
603
604 struct task_struct *curr, *idle;
605 unsigned long next_balance;
606 struct mm_struct *prev_mm;
607
608 u64 clock;
609
610 atomic_t nr_iowait;
611
612 #ifdef CONFIG_SMP
613 struct root_domain *rd;
614 struct sched_domain *sd;
615
616 unsigned char idle_at_tick;
617 /* For active balancing */
618 int active_balance;
619 int push_cpu;
620 /* cpu of this runqueue: */
621 int cpu;
622 int online;
623
624 unsigned long avg_load_per_task;
625
626 struct task_struct *migration_thread;
627 struct list_head migration_queue;
628 #endif
629
630 /* calc_load related fields */
631 unsigned long calc_load_update;
632 long calc_load_active;
633
634 #ifdef CONFIG_SCHED_HRTICK
635 #ifdef CONFIG_SMP
636 int hrtick_csd_pending;
637 struct call_single_data hrtick_csd;
638 #endif
639 struct hrtimer hrtick_timer;
640 #endif
641
642 #ifdef CONFIG_SCHEDSTATS
643 /* latency stats */
644 struct sched_info rq_sched_info;
645 unsigned long long rq_cpu_time;
646 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
647
648 /* sys_sched_yield() stats */
649 unsigned int yld_count;
650
651 /* schedule() stats */
652 unsigned int sched_switch;
653 unsigned int sched_count;
654 unsigned int sched_goidle;
655
656 /* try_to_wake_up() stats */
657 unsigned int ttwu_count;
658 unsigned int ttwu_local;
659
660 /* BKL stats */
661 unsigned int bkl_count;
662 #endif
663 };
664
665 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
666
667 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
668 {
669 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
670 }
671
672 static inline int cpu_of(struct rq *rq)
673 {
674 #ifdef CONFIG_SMP
675 return rq->cpu;
676 #else
677 return 0;
678 #endif
679 }
680
681 /*
682 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
683 * See detach_destroy_domains: synchronize_sched for details.
684 *
685 * The domain tree of any CPU may only be accessed from within
686 * preempt-disabled sections.
687 */
688 #define for_each_domain(cpu, __sd) \
689 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
690
691 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
692 #define this_rq() (&__get_cpu_var(runqueues))
693 #define task_rq(p) cpu_rq(task_cpu(p))
694 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
695
696 inline void update_rq_clock(struct rq *rq)
697 {
698 rq->clock = sched_clock_cpu(cpu_of(rq));
699 }
700
701 /*
702 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
703 */
704 #ifdef CONFIG_SCHED_DEBUG
705 # define const_debug __read_mostly
706 #else
707 # define const_debug static const
708 #endif
709
710 /**
711 * runqueue_is_locked
712 *
713 * Returns true if the current cpu runqueue is locked.
714 * This interface allows printk to be called with the runqueue lock
715 * held and know whether or not it is OK to wake up the klogd.
716 */
717 int runqueue_is_locked(void)
718 {
719 int cpu = get_cpu();
720 struct rq *rq = cpu_rq(cpu);
721 int ret;
722
723 ret = spin_is_locked(&rq->lock);
724 put_cpu();
725 return ret;
726 }
727
728 /*
729 * Debugging: various feature bits
730 */
731
732 #define SCHED_FEAT(name, enabled) \
733 __SCHED_FEAT_##name ,
734
735 enum {
736 #include "sched_features.h"
737 };
738
739 #undef SCHED_FEAT
740
741 #define SCHED_FEAT(name, enabled) \
742 (1UL << __SCHED_FEAT_##name) * enabled |
743
744 const_debug unsigned int sysctl_sched_features =
745 #include "sched_features.h"
746 0;
747
748 #undef SCHED_FEAT
749
750 #ifdef CONFIG_SCHED_DEBUG
751 #define SCHED_FEAT(name, enabled) \
752 #name ,
753
754 static __read_mostly char *sched_feat_names[] = {
755 #include "sched_features.h"
756 NULL
757 };
758
759 #undef SCHED_FEAT
760
761 static int sched_feat_show(struct seq_file *m, void *v)
762 {
763 int i;
764
765 for (i = 0; sched_feat_names[i]; i++) {
766 if (!(sysctl_sched_features & (1UL << i)))
767 seq_puts(m, "NO_");
768 seq_printf(m, "%s ", sched_feat_names[i]);
769 }
770 seq_puts(m, "\n");
771
772 return 0;
773 }
774
775 static ssize_t
776 sched_feat_write(struct file *filp, const char __user *ubuf,
777 size_t cnt, loff_t *ppos)
778 {
779 char buf[64];
780 char *cmp = buf;
781 int neg = 0;
782 int i;
783
784 if (cnt > 63)
785 cnt = 63;
786
787 if (copy_from_user(&buf, ubuf, cnt))
788 return -EFAULT;
789
790 buf[cnt] = 0;
791
792 if (strncmp(buf, "NO_", 3) == 0) {
793 neg = 1;
794 cmp += 3;
795 }
796
797 for (i = 0; sched_feat_names[i]; i++) {
798 int len = strlen(sched_feat_names[i]);
799
800 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
801 if (neg)
802 sysctl_sched_features &= ~(1UL << i);
803 else
804 sysctl_sched_features |= (1UL << i);
805 break;
806 }
807 }
808
809 if (!sched_feat_names[i])
810 return -EINVAL;
811
812 filp->f_pos += cnt;
813
814 return cnt;
815 }
816
817 static int sched_feat_open(struct inode *inode, struct file *filp)
818 {
819 return single_open(filp, sched_feat_show, NULL);
820 }
821
822 static struct file_operations sched_feat_fops = {
823 .open = sched_feat_open,
824 .write = sched_feat_write,
825 .read = seq_read,
826 .llseek = seq_lseek,
827 .release = single_release,
828 };
829
830 static __init int sched_init_debug(void)
831 {
832 debugfs_create_file("sched_features", 0644, NULL, NULL,
833 &sched_feat_fops);
834
835 return 0;
836 }
837 late_initcall(sched_init_debug);
838
839 #endif
840
841 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
842
843 /*
844 * Number of tasks to iterate in a single balance run.
845 * Limited because this is done with IRQs disabled.
846 */
847 const_debug unsigned int sysctl_sched_nr_migrate = 32;
848
849 /*
850 * ratelimit for updating the group shares.
851 * default: 0.25ms
852 */
853 unsigned int sysctl_sched_shares_ratelimit = 250000;
854
855 /*
856 * Inject some fuzzyness into changing the per-cpu group shares
857 * this avoids remote rq-locks at the expense of fairness.
858 * default: 4
859 */
860 unsigned int sysctl_sched_shares_thresh = 4;
861
862 /*
863 * period over which we measure -rt task cpu usage in us.
864 * default: 1s
865 */
866 unsigned int sysctl_sched_rt_period = 1000000;
867
868 static __read_mostly int scheduler_running;
869
870 /*
871 * part of the period that we allow rt tasks to run in us.
872 * default: 0.95s
873 */
874 int sysctl_sched_rt_runtime = 950000;
875
876 static inline u64 global_rt_period(void)
877 {
878 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
879 }
880
881 static inline u64 global_rt_runtime(void)
882 {
883 if (sysctl_sched_rt_runtime < 0)
884 return RUNTIME_INF;
885
886 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
887 }
888
889 #ifndef prepare_arch_switch
890 # define prepare_arch_switch(next) do { } while (0)
891 #endif
892 #ifndef finish_arch_switch
893 # define finish_arch_switch(prev) do { } while (0)
894 #endif
895
896 static inline int task_current(struct rq *rq, struct task_struct *p)
897 {
898 return rq->curr == p;
899 }
900
901 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
902 static inline int task_running(struct rq *rq, struct task_struct *p)
903 {
904 return task_current(rq, p);
905 }
906
907 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
908 {
909 }
910
911 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
912 {
913 #ifdef CONFIG_DEBUG_SPINLOCK
914 /* this is a valid case when another task releases the spinlock */
915 rq->lock.owner = current;
916 #endif
917 /*
918 * If we are tracking spinlock dependencies then we have to
919 * fix up the runqueue lock - which gets 'carried over' from
920 * prev into current:
921 */
922 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
923
924 spin_unlock_irq(&rq->lock);
925 }
926
927 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
928 static inline int task_running(struct rq *rq, struct task_struct *p)
929 {
930 #ifdef CONFIG_SMP
931 return p->oncpu;
932 #else
933 return task_current(rq, p);
934 #endif
935 }
936
937 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
938 {
939 #ifdef CONFIG_SMP
940 /*
941 * We can optimise this out completely for !SMP, because the
942 * SMP rebalancing from interrupt is the only thing that cares
943 * here.
944 */
945 next->oncpu = 1;
946 #endif
947 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
948 spin_unlock_irq(&rq->lock);
949 #else
950 spin_unlock(&rq->lock);
951 #endif
952 }
953
954 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
955 {
956 #ifdef CONFIG_SMP
957 /*
958 * After ->oncpu is cleared, the task can be moved to a different CPU.
959 * We must ensure this doesn't happen until the switch is completely
960 * finished.
961 */
962 smp_wmb();
963 prev->oncpu = 0;
964 #endif
965 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
966 local_irq_enable();
967 #endif
968 }
969 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
970
971 /*
972 * __task_rq_lock - lock the runqueue a given task resides on.
973 * Must be called interrupts disabled.
974 */
975 static inline struct rq *__task_rq_lock(struct task_struct *p)
976 __acquires(rq->lock)
977 {
978 for (;;) {
979 struct rq *rq = task_rq(p);
980 spin_lock(&rq->lock);
981 if (likely(rq == task_rq(p)))
982 return rq;
983 spin_unlock(&rq->lock);
984 }
985 }
986
987 /*
988 * task_rq_lock - lock the runqueue a given task resides on and disable
989 * interrupts. Note the ordering: we can safely lookup the task_rq without
990 * explicitly disabling preemption.
991 */
992 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
993 __acquires(rq->lock)
994 {
995 struct rq *rq;
996
997 for (;;) {
998 local_irq_save(*flags);
999 rq = task_rq(p);
1000 spin_lock(&rq->lock);
1001 if (likely(rq == task_rq(p)))
1002 return rq;
1003 spin_unlock_irqrestore(&rq->lock, *flags);
1004 }
1005 }
1006
1007 void task_rq_unlock_wait(struct task_struct *p)
1008 {
1009 struct rq *rq = task_rq(p);
1010
1011 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
1012 spin_unlock_wait(&rq->lock);
1013 }
1014
1015 static void __task_rq_unlock(struct rq *rq)
1016 __releases(rq->lock)
1017 {
1018 spin_unlock(&rq->lock);
1019 }
1020
1021 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1022 __releases(rq->lock)
1023 {
1024 spin_unlock_irqrestore(&rq->lock, *flags);
1025 }
1026
1027 /*
1028 * this_rq_lock - lock this runqueue and disable interrupts.
1029 */
1030 static struct rq *this_rq_lock(void)
1031 __acquires(rq->lock)
1032 {
1033 struct rq *rq;
1034
1035 local_irq_disable();
1036 rq = this_rq();
1037 spin_lock(&rq->lock);
1038
1039 return rq;
1040 }
1041
1042 #ifdef CONFIG_SCHED_HRTICK
1043 /*
1044 * Use HR-timers to deliver accurate preemption points.
1045 *
1046 * Its all a bit involved since we cannot program an hrt while holding the
1047 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1048 * reschedule event.
1049 *
1050 * When we get rescheduled we reprogram the hrtick_timer outside of the
1051 * rq->lock.
1052 */
1053
1054 /*
1055 * Use hrtick when:
1056 * - enabled by features
1057 * - hrtimer is actually high res
1058 */
1059 static inline int hrtick_enabled(struct rq *rq)
1060 {
1061 if (!sched_feat(HRTICK))
1062 return 0;
1063 if (!cpu_active(cpu_of(rq)))
1064 return 0;
1065 return hrtimer_is_hres_active(&rq->hrtick_timer);
1066 }
1067
1068 static void hrtick_clear(struct rq *rq)
1069 {
1070 if (hrtimer_active(&rq->hrtick_timer))
1071 hrtimer_cancel(&rq->hrtick_timer);
1072 }
1073
1074 /*
1075 * High-resolution timer tick.
1076 * Runs from hardirq context with interrupts disabled.
1077 */
1078 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1079 {
1080 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1081
1082 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1083
1084 spin_lock(&rq->lock);
1085 update_rq_clock(rq);
1086 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1087 spin_unlock(&rq->lock);
1088
1089 return HRTIMER_NORESTART;
1090 }
1091
1092 #ifdef CONFIG_SMP
1093 /*
1094 * called from hardirq (IPI) context
1095 */
1096 static void __hrtick_start(void *arg)
1097 {
1098 struct rq *rq = arg;
1099
1100 spin_lock(&rq->lock);
1101 hrtimer_restart(&rq->hrtick_timer);
1102 rq->hrtick_csd_pending = 0;
1103 spin_unlock(&rq->lock);
1104 }
1105
1106 /*
1107 * Called to set the hrtick timer state.
1108 *
1109 * called with rq->lock held and irqs disabled
1110 */
1111 static void hrtick_start(struct rq *rq, u64 delay)
1112 {
1113 struct hrtimer *timer = &rq->hrtick_timer;
1114 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1115
1116 hrtimer_set_expires(timer, time);
1117
1118 if (rq == this_rq()) {
1119 hrtimer_restart(timer);
1120 } else if (!rq->hrtick_csd_pending) {
1121 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1122 rq->hrtick_csd_pending = 1;
1123 }
1124 }
1125
1126 static int
1127 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1128 {
1129 int cpu = (int)(long)hcpu;
1130
1131 switch (action) {
1132 case CPU_UP_CANCELED:
1133 case CPU_UP_CANCELED_FROZEN:
1134 case CPU_DOWN_PREPARE:
1135 case CPU_DOWN_PREPARE_FROZEN:
1136 case CPU_DEAD:
1137 case CPU_DEAD_FROZEN:
1138 hrtick_clear(cpu_rq(cpu));
1139 return NOTIFY_OK;
1140 }
1141
1142 return NOTIFY_DONE;
1143 }
1144
1145 static __init void init_hrtick(void)
1146 {
1147 hotcpu_notifier(hotplug_hrtick, 0);
1148 }
1149 #else
1150 /*
1151 * Called to set the hrtick timer state.
1152 *
1153 * called with rq->lock held and irqs disabled
1154 */
1155 static void hrtick_start(struct rq *rq, u64 delay)
1156 {
1157 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1158 HRTIMER_MODE_REL_PINNED, 0);
1159 }
1160
1161 static inline void init_hrtick(void)
1162 {
1163 }
1164 #endif /* CONFIG_SMP */
1165
1166 static void init_rq_hrtick(struct rq *rq)
1167 {
1168 #ifdef CONFIG_SMP
1169 rq->hrtick_csd_pending = 0;
1170
1171 rq->hrtick_csd.flags = 0;
1172 rq->hrtick_csd.func = __hrtick_start;
1173 rq->hrtick_csd.info = rq;
1174 #endif
1175
1176 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1177 rq->hrtick_timer.function = hrtick;
1178 }
1179 #else /* CONFIG_SCHED_HRTICK */
1180 static inline void hrtick_clear(struct rq *rq)
1181 {
1182 }
1183
1184 static inline void init_rq_hrtick(struct rq *rq)
1185 {
1186 }
1187
1188 static inline void init_hrtick(void)
1189 {
1190 }
1191 #endif /* CONFIG_SCHED_HRTICK */
1192
1193 /*
1194 * resched_task - mark a task 'to be rescheduled now'.
1195 *
1196 * On UP this means the setting of the need_resched flag, on SMP it
1197 * might also involve a cross-CPU call to trigger the scheduler on
1198 * the target CPU.
1199 */
1200 #ifdef CONFIG_SMP
1201
1202 #ifndef tsk_is_polling
1203 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1204 #endif
1205
1206 static void resched_task(struct task_struct *p)
1207 {
1208 int cpu;
1209
1210 assert_spin_locked(&task_rq(p)->lock);
1211
1212 if (test_tsk_need_resched(p))
1213 return;
1214
1215 set_tsk_need_resched(p);
1216
1217 cpu = task_cpu(p);
1218 if (cpu == smp_processor_id())
1219 return;
1220
1221 /* NEED_RESCHED must be visible before we test polling */
1222 smp_mb();
1223 if (!tsk_is_polling(p))
1224 smp_send_reschedule(cpu);
1225 }
1226
1227 static void resched_cpu(int cpu)
1228 {
1229 struct rq *rq = cpu_rq(cpu);
1230 unsigned long flags;
1231
1232 if (!spin_trylock_irqsave(&rq->lock, flags))
1233 return;
1234 resched_task(cpu_curr(cpu));
1235 spin_unlock_irqrestore(&rq->lock, flags);
1236 }
1237
1238 #ifdef CONFIG_NO_HZ
1239 /*
1240 * When add_timer_on() enqueues a timer into the timer wheel of an
1241 * idle CPU then this timer might expire before the next timer event
1242 * which is scheduled to wake up that CPU. In case of a completely
1243 * idle system the next event might even be infinite time into the
1244 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1245 * leaves the inner idle loop so the newly added timer is taken into
1246 * account when the CPU goes back to idle and evaluates the timer
1247 * wheel for the next timer event.
1248 */
1249 void wake_up_idle_cpu(int cpu)
1250 {
1251 struct rq *rq = cpu_rq(cpu);
1252
1253 if (cpu == smp_processor_id())
1254 return;
1255
1256 /*
1257 * This is safe, as this function is called with the timer
1258 * wheel base lock of (cpu) held. When the CPU is on the way
1259 * to idle and has not yet set rq->curr to idle then it will
1260 * be serialized on the timer wheel base lock and take the new
1261 * timer into account automatically.
1262 */
1263 if (rq->curr != rq->idle)
1264 return;
1265
1266 /*
1267 * We can set TIF_RESCHED on the idle task of the other CPU
1268 * lockless. The worst case is that the other CPU runs the
1269 * idle task through an additional NOOP schedule()
1270 */
1271 set_tsk_need_resched(rq->idle);
1272
1273 /* NEED_RESCHED must be visible before we test polling */
1274 smp_mb();
1275 if (!tsk_is_polling(rq->idle))
1276 smp_send_reschedule(cpu);
1277 }
1278 #endif /* CONFIG_NO_HZ */
1279
1280 #else /* !CONFIG_SMP */
1281 static void resched_task(struct task_struct *p)
1282 {
1283 assert_spin_locked(&task_rq(p)->lock);
1284 set_tsk_need_resched(p);
1285 }
1286 #endif /* CONFIG_SMP */
1287
1288 #if BITS_PER_LONG == 32
1289 # define WMULT_CONST (~0UL)
1290 #else
1291 # define WMULT_CONST (1UL << 32)
1292 #endif
1293
1294 #define WMULT_SHIFT 32
1295
1296 /*
1297 * Shift right and round:
1298 */
1299 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1300
1301 /*
1302 * delta *= weight / lw
1303 */
1304 static unsigned long
1305 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1306 struct load_weight *lw)
1307 {
1308 u64 tmp;
1309
1310 if (!lw->inv_weight) {
1311 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1312 lw->inv_weight = 1;
1313 else
1314 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1315 / (lw->weight+1);
1316 }
1317
1318 tmp = (u64)delta_exec * weight;
1319 /*
1320 * Check whether we'd overflow the 64-bit multiplication:
1321 */
1322 if (unlikely(tmp > WMULT_CONST))
1323 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1324 WMULT_SHIFT/2);
1325 else
1326 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1327
1328 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1329 }
1330
1331 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1332 {
1333 lw->weight += inc;
1334 lw->inv_weight = 0;
1335 }
1336
1337 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1338 {
1339 lw->weight -= dec;
1340 lw->inv_weight = 0;
1341 }
1342
1343 /*
1344 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1345 * of tasks with abnormal "nice" values across CPUs the contribution that
1346 * each task makes to its run queue's load is weighted according to its
1347 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1348 * scaled version of the new time slice allocation that they receive on time
1349 * slice expiry etc.
1350 */
1351
1352 #define WEIGHT_IDLEPRIO 3
1353 #define WMULT_IDLEPRIO 1431655765
1354
1355 /*
1356 * Nice levels are multiplicative, with a gentle 10% change for every
1357 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1358 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1359 * that remained on nice 0.
1360 *
1361 * The "10% effect" is relative and cumulative: from _any_ nice level,
1362 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1363 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1364 * If a task goes up by ~10% and another task goes down by ~10% then
1365 * the relative distance between them is ~25%.)
1366 */
1367 static const int prio_to_weight[40] = {
1368 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1369 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1370 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1371 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1372 /* 0 */ 1024, 820, 655, 526, 423,
1373 /* 5 */ 335, 272, 215, 172, 137,
1374 /* 10 */ 110, 87, 70, 56, 45,
1375 /* 15 */ 36, 29, 23, 18, 15,
1376 };
1377
1378 /*
1379 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1380 *
1381 * In cases where the weight does not change often, we can use the
1382 * precalculated inverse to speed up arithmetics by turning divisions
1383 * into multiplications:
1384 */
1385 static const u32 prio_to_wmult[40] = {
1386 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1387 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1388 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1389 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1390 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1391 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1392 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1393 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1394 };
1395
1396 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1397
1398 /*
1399 * runqueue iterator, to support SMP load-balancing between different
1400 * scheduling classes, without having to expose their internal data
1401 * structures to the load-balancing proper:
1402 */
1403 struct rq_iterator {
1404 void *arg;
1405 struct task_struct *(*start)(void *);
1406 struct task_struct *(*next)(void *);
1407 };
1408
1409 #ifdef CONFIG_SMP
1410 static unsigned long
1411 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1412 unsigned long max_load_move, struct sched_domain *sd,
1413 enum cpu_idle_type idle, int *all_pinned,
1414 int *this_best_prio, struct rq_iterator *iterator);
1415
1416 static int
1417 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1418 struct sched_domain *sd, enum cpu_idle_type idle,
1419 struct rq_iterator *iterator);
1420 #endif
1421
1422 /* Time spent by the tasks of the cpu accounting group executing in ... */
1423 enum cpuacct_stat_index {
1424 CPUACCT_STAT_USER, /* ... user mode */
1425 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1426
1427 CPUACCT_STAT_NSTATS,
1428 };
1429
1430 #ifdef CONFIG_CGROUP_CPUACCT
1431 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1432 static void cpuacct_update_stats(struct task_struct *tsk,
1433 enum cpuacct_stat_index idx, cputime_t val);
1434 #else
1435 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1436 static inline void cpuacct_update_stats(struct task_struct *tsk,
1437 enum cpuacct_stat_index idx, cputime_t val) {}
1438 #endif
1439
1440 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1441 {
1442 update_load_add(&rq->load, load);
1443 }
1444
1445 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1446 {
1447 update_load_sub(&rq->load, load);
1448 }
1449
1450 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1451 typedef int (*tg_visitor)(struct task_group *, void *);
1452
1453 /*
1454 * Iterate the full tree, calling @down when first entering a node and @up when
1455 * leaving it for the final time.
1456 */
1457 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1458 {
1459 struct task_group *parent, *child;
1460 int ret;
1461
1462 rcu_read_lock();
1463 parent = &root_task_group;
1464 down:
1465 ret = (*down)(parent, data);
1466 if (ret)
1467 goto out_unlock;
1468 list_for_each_entry_rcu(child, &parent->children, siblings) {
1469 parent = child;
1470 goto down;
1471
1472 up:
1473 continue;
1474 }
1475 ret = (*up)(parent, data);
1476 if (ret)
1477 goto out_unlock;
1478
1479 child = parent;
1480 parent = parent->parent;
1481 if (parent)
1482 goto up;
1483 out_unlock:
1484 rcu_read_unlock();
1485
1486 return ret;
1487 }
1488
1489 static int tg_nop(struct task_group *tg, void *data)
1490 {
1491 return 0;
1492 }
1493 #endif
1494
1495 #ifdef CONFIG_SMP
1496 static unsigned long source_load(int cpu, int type);
1497 static unsigned long target_load(int cpu, int type);
1498 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1499
1500 static unsigned long cpu_avg_load_per_task(int cpu)
1501 {
1502 struct rq *rq = cpu_rq(cpu);
1503 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1504
1505 if (nr_running)
1506 rq->avg_load_per_task = rq->load.weight / nr_running;
1507 else
1508 rq->avg_load_per_task = 0;
1509
1510 return rq->avg_load_per_task;
1511 }
1512
1513 #ifdef CONFIG_FAIR_GROUP_SCHED
1514
1515 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1516
1517 /*
1518 * Calculate and set the cpu's group shares.
1519 */
1520 static void
1521 update_group_shares_cpu(struct task_group *tg, int cpu,
1522 unsigned long sd_shares, unsigned long sd_rq_weight)
1523 {
1524 unsigned long shares;
1525 unsigned long rq_weight;
1526
1527 if (!tg->se[cpu])
1528 return;
1529
1530 rq_weight = tg->cfs_rq[cpu]->rq_weight;
1531
1532 /*
1533 * \Sum shares * rq_weight
1534 * shares = -----------------------
1535 * \Sum rq_weight
1536 *
1537 */
1538 shares = (sd_shares * rq_weight) / sd_rq_weight;
1539 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1540
1541 if (abs(shares - tg->se[cpu]->load.weight) >
1542 sysctl_sched_shares_thresh) {
1543 struct rq *rq = cpu_rq(cpu);
1544 unsigned long flags;
1545
1546 spin_lock_irqsave(&rq->lock, flags);
1547 tg->cfs_rq[cpu]->shares = shares;
1548
1549 __set_se_shares(tg->se[cpu], shares);
1550 spin_unlock_irqrestore(&rq->lock, flags);
1551 }
1552 }
1553
1554 /*
1555 * Re-compute the task group their per cpu shares over the given domain.
1556 * This needs to be done in a bottom-up fashion because the rq weight of a
1557 * parent group depends on the shares of its child groups.
1558 */
1559 static int tg_shares_up(struct task_group *tg, void *data)
1560 {
1561 unsigned long weight, rq_weight = 0;
1562 unsigned long shares = 0;
1563 struct sched_domain *sd = data;
1564 int i;
1565
1566 for_each_cpu(i, sched_domain_span(sd)) {
1567 /*
1568 * If there are currently no tasks on the cpu pretend there
1569 * is one of average load so that when a new task gets to
1570 * run here it will not get delayed by group starvation.
1571 */
1572 weight = tg->cfs_rq[i]->load.weight;
1573 if (!weight)
1574 weight = NICE_0_LOAD;
1575
1576 tg->cfs_rq[i]->rq_weight = weight;
1577 rq_weight += weight;
1578 shares += tg->cfs_rq[i]->shares;
1579 }
1580
1581 if ((!shares && rq_weight) || shares > tg->shares)
1582 shares = tg->shares;
1583
1584 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1585 shares = tg->shares;
1586
1587 for_each_cpu(i, sched_domain_span(sd))
1588 update_group_shares_cpu(tg, i, shares, rq_weight);
1589
1590 return 0;
1591 }
1592
1593 /*
1594 * Compute the cpu's hierarchical load factor for each task group.
1595 * This needs to be done in a top-down fashion because the load of a child
1596 * group is a fraction of its parents load.
1597 */
1598 static int tg_load_down(struct task_group *tg, void *data)
1599 {
1600 unsigned long load;
1601 long cpu = (long)data;
1602
1603 if (!tg->parent) {
1604 load = cpu_rq(cpu)->load.weight;
1605 } else {
1606 load = tg->parent->cfs_rq[cpu]->h_load;
1607 load *= tg->cfs_rq[cpu]->shares;
1608 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1609 }
1610
1611 tg->cfs_rq[cpu]->h_load = load;
1612
1613 return 0;
1614 }
1615
1616 static void update_shares(struct sched_domain *sd)
1617 {
1618 u64 now = cpu_clock(raw_smp_processor_id());
1619 s64 elapsed = now - sd->last_update;
1620
1621 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1622 sd->last_update = now;
1623 walk_tg_tree(tg_nop, tg_shares_up, sd);
1624 }
1625 }
1626
1627 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1628 {
1629 spin_unlock(&rq->lock);
1630 update_shares(sd);
1631 spin_lock(&rq->lock);
1632 }
1633
1634 static void update_h_load(long cpu)
1635 {
1636 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1637 }
1638
1639 #else
1640
1641 static inline void update_shares(struct sched_domain *sd)
1642 {
1643 }
1644
1645 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1646 {
1647 }
1648
1649 #endif
1650
1651 #ifdef CONFIG_PREEMPT
1652
1653 /*
1654 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1655 * way at the expense of forcing extra atomic operations in all
1656 * invocations. This assures that the double_lock is acquired using the
1657 * same underlying policy as the spinlock_t on this architecture, which
1658 * reduces latency compared to the unfair variant below. However, it
1659 * also adds more overhead and therefore may reduce throughput.
1660 */
1661 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1662 __releases(this_rq->lock)
1663 __acquires(busiest->lock)
1664 __acquires(this_rq->lock)
1665 {
1666 spin_unlock(&this_rq->lock);
1667 double_rq_lock(this_rq, busiest);
1668
1669 return 1;
1670 }
1671
1672 #else
1673 /*
1674 * Unfair double_lock_balance: Optimizes throughput at the expense of
1675 * latency by eliminating extra atomic operations when the locks are
1676 * already in proper order on entry. This favors lower cpu-ids and will
1677 * grant the double lock to lower cpus over higher ids under contention,
1678 * regardless of entry order into the function.
1679 */
1680 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1681 __releases(this_rq->lock)
1682 __acquires(busiest->lock)
1683 __acquires(this_rq->lock)
1684 {
1685 int ret = 0;
1686
1687 if (unlikely(!spin_trylock(&busiest->lock))) {
1688 if (busiest < this_rq) {
1689 spin_unlock(&this_rq->lock);
1690 spin_lock(&busiest->lock);
1691 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1692 ret = 1;
1693 } else
1694 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1695 }
1696 return ret;
1697 }
1698
1699 #endif /* CONFIG_PREEMPT */
1700
1701 /*
1702 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1703 */
1704 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1705 {
1706 if (unlikely(!irqs_disabled())) {
1707 /* printk() doesn't work good under rq->lock */
1708 spin_unlock(&this_rq->lock);
1709 BUG_ON(1);
1710 }
1711
1712 return _double_lock_balance(this_rq, busiest);
1713 }
1714
1715 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1716 __releases(busiest->lock)
1717 {
1718 spin_unlock(&busiest->lock);
1719 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1720 }
1721 #endif
1722
1723 #ifdef CONFIG_FAIR_GROUP_SCHED
1724 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1725 {
1726 #ifdef CONFIG_SMP
1727 cfs_rq->shares = shares;
1728 #endif
1729 }
1730 #endif
1731
1732 static void calc_load_account_active(struct rq *this_rq);
1733
1734 #include "sched_stats.h"
1735 #include "sched_idletask.c"
1736 #include "sched_fair.c"
1737 #include "sched_rt.c"
1738 #ifdef CONFIG_SCHED_DEBUG
1739 # include "sched_debug.c"
1740 #endif
1741
1742 #define sched_class_highest (&rt_sched_class)
1743 #define for_each_class(class) \
1744 for (class = sched_class_highest; class; class = class->next)
1745
1746 static void inc_nr_running(struct rq *rq)
1747 {
1748 rq->nr_running++;
1749 }
1750
1751 static void dec_nr_running(struct rq *rq)
1752 {
1753 rq->nr_running--;
1754 }
1755
1756 static void set_load_weight(struct task_struct *p)
1757 {
1758 if (task_has_rt_policy(p)) {
1759 p->se.load.weight = prio_to_weight[0] * 2;
1760 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1761 return;
1762 }
1763
1764 /*
1765 * SCHED_IDLE tasks get minimal weight:
1766 */
1767 if (p->policy == SCHED_IDLE) {
1768 p->se.load.weight = WEIGHT_IDLEPRIO;
1769 p->se.load.inv_weight = WMULT_IDLEPRIO;
1770 return;
1771 }
1772
1773 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1774 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1775 }
1776
1777 static void update_avg(u64 *avg, u64 sample)
1778 {
1779 s64 diff = sample - *avg;
1780 *avg += diff >> 3;
1781 }
1782
1783 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1784 {
1785 if (wakeup)
1786 p->se.start_runtime = p->se.sum_exec_runtime;
1787
1788 sched_info_queued(p);
1789 p->sched_class->enqueue_task(rq, p, wakeup);
1790 p->se.on_rq = 1;
1791 }
1792
1793 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1794 {
1795 if (sleep) {
1796 if (p->se.last_wakeup) {
1797 update_avg(&p->se.avg_overlap,
1798 p->se.sum_exec_runtime - p->se.last_wakeup);
1799 p->se.last_wakeup = 0;
1800 } else {
1801 update_avg(&p->se.avg_wakeup,
1802 sysctl_sched_wakeup_granularity);
1803 }
1804 }
1805
1806 sched_info_dequeued(p);
1807 p->sched_class->dequeue_task(rq, p, sleep);
1808 p->se.on_rq = 0;
1809 }
1810
1811 /*
1812 * __normal_prio - return the priority that is based on the static prio
1813 */
1814 static inline int __normal_prio(struct task_struct *p)
1815 {
1816 return p->static_prio;
1817 }
1818
1819 /*
1820 * Calculate the expected normal priority: i.e. priority
1821 * without taking RT-inheritance into account. Might be
1822 * boosted by interactivity modifiers. Changes upon fork,
1823 * setprio syscalls, and whenever the interactivity
1824 * estimator recalculates.
1825 */
1826 static inline int normal_prio(struct task_struct *p)
1827 {
1828 int prio;
1829
1830 if (task_has_rt_policy(p))
1831 prio = MAX_RT_PRIO-1 - p->rt_priority;
1832 else
1833 prio = __normal_prio(p);
1834 return prio;
1835 }
1836
1837 /*
1838 * Calculate the current priority, i.e. the priority
1839 * taken into account by the scheduler. This value might
1840 * be boosted by RT tasks, or might be boosted by
1841 * interactivity modifiers. Will be RT if the task got
1842 * RT-boosted. If not then it returns p->normal_prio.
1843 */
1844 static int effective_prio(struct task_struct *p)
1845 {
1846 p->normal_prio = normal_prio(p);
1847 /*
1848 * If we are RT tasks or we were boosted to RT priority,
1849 * keep the priority unchanged. Otherwise, update priority
1850 * to the normal priority:
1851 */
1852 if (!rt_prio(p->prio))
1853 return p->normal_prio;
1854 return p->prio;
1855 }
1856
1857 /*
1858 * activate_task - move a task to the runqueue.
1859 */
1860 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1861 {
1862 if (task_contributes_to_load(p))
1863 rq->nr_uninterruptible--;
1864
1865 enqueue_task(rq, p, wakeup);
1866 inc_nr_running(rq);
1867 }
1868
1869 /*
1870 * deactivate_task - remove a task from the runqueue.
1871 */
1872 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1873 {
1874 if (task_contributes_to_load(p))
1875 rq->nr_uninterruptible++;
1876
1877 dequeue_task(rq, p, sleep);
1878 dec_nr_running(rq);
1879 }
1880
1881 /**
1882 * task_curr - is this task currently executing on a CPU?
1883 * @p: the task in question.
1884 */
1885 inline int task_curr(const struct task_struct *p)
1886 {
1887 return cpu_curr(task_cpu(p)) == p;
1888 }
1889
1890 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1891 {
1892 set_task_rq(p, cpu);
1893 #ifdef CONFIG_SMP
1894 /*
1895 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1896 * successfuly executed on another CPU. We must ensure that updates of
1897 * per-task data have been completed by this moment.
1898 */
1899 smp_wmb();
1900 task_thread_info(p)->cpu = cpu;
1901 #endif
1902 }
1903
1904 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1905 const struct sched_class *prev_class,
1906 int oldprio, int running)
1907 {
1908 if (prev_class != p->sched_class) {
1909 if (prev_class->switched_from)
1910 prev_class->switched_from(rq, p, running);
1911 p->sched_class->switched_to(rq, p, running);
1912 } else
1913 p->sched_class->prio_changed(rq, p, oldprio, running);
1914 }
1915
1916 #ifdef CONFIG_SMP
1917
1918 /* Used instead of source_load when we know the type == 0 */
1919 static unsigned long weighted_cpuload(const int cpu)
1920 {
1921 return cpu_rq(cpu)->load.weight;
1922 }
1923
1924 /*
1925 * Is this task likely cache-hot:
1926 */
1927 static int
1928 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1929 {
1930 s64 delta;
1931
1932 /*
1933 * Buddy candidates are cache hot:
1934 */
1935 if (sched_feat(CACHE_HOT_BUDDY) &&
1936 (&p->se == cfs_rq_of(&p->se)->next ||
1937 &p->se == cfs_rq_of(&p->se)->last))
1938 return 1;
1939
1940 if (p->sched_class != &fair_sched_class)
1941 return 0;
1942
1943 if (sysctl_sched_migration_cost == -1)
1944 return 1;
1945 if (sysctl_sched_migration_cost == 0)
1946 return 0;
1947
1948 delta = now - p->se.exec_start;
1949
1950 return delta < (s64)sysctl_sched_migration_cost;
1951 }
1952
1953
1954 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1955 {
1956 int old_cpu = task_cpu(p);
1957 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1958 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1959 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1960 u64 clock_offset;
1961
1962 clock_offset = old_rq->clock - new_rq->clock;
1963
1964 trace_sched_migrate_task(p, new_cpu);
1965
1966 #ifdef CONFIG_SCHEDSTATS
1967 if (p->se.wait_start)
1968 p->se.wait_start -= clock_offset;
1969 if (p->se.sleep_start)
1970 p->se.sleep_start -= clock_offset;
1971 if (p->se.block_start)
1972 p->se.block_start -= clock_offset;
1973 #endif
1974 if (old_cpu != new_cpu) {
1975 p->se.nr_migrations++;
1976 new_rq->nr_migrations_in++;
1977 #ifdef CONFIG_SCHEDSTATS
1978 if (task_hot(p, old_rq->clock, NULL))
1979 schedstat_inc(p, se.nr_forced2_migrations);
1980 #endif
1981 perf_counter_task_migration(p, new_cpu);
1982 }
1983 p->se.vruntime -= old_cfsrq->min_vruntime -
1984 new_cfsrq->min_vruntime;
1985
1986 __set_task_cpu(p, new_cpu);
1987 }
1988
1989 struct migration_req {
1990 struct list_head list;
1991
1992 struct task_struct *task;
1993 int dest_cpu;
1994
1995 struct completion done;
1996 };
1997
1998 /*
1999 * The task's runqueue lock must be held.
2000 * Returns true if you have to wait for migration thread.
2001 */
2002 static int
2003 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
2004 {
2005 struct rq *rq = task_rq(p);
2006
2007 /*
2008 * If the task is not on a runqueue (and not running), then
2009 * it is sufficient to simply update the task's cpu field.
2010 */
2011 if (!p->se.on_rq && !task_running(rq, p)) {
2012 set_task_cpu(p, dest_cpu);
2013 return 0;
2014 }
2015
2016 init_completion(&req->done);
2017 req->task = p;
2018 req->dest_cpu = dest_cpu;
2019 list_add(&req->list, &rq->migration_queue);
2020
2021 return 1;
2022 }
2023
2024 /*
2025 * wait_task_context_switch - wait for a thread to complete at least one
2026 * context switch.
2027 *
2028 * @p must not be current.
2029 */
2030 void wait_task_context_switch(struct task_struct *p)
2031 {
2032 unsigned long nvcsw, nivcsw, flags;
2033 int running;
2034 struct rq *rq;
2035
2036 nvcsw = p->nvcsw;
2037 nivcsw = p->nivcsw;
2038 for (;;) {
2039 /*
2040 * The runqueue is assigned before the actual context
2041 * switch. We need to take the runqueue lock.
2042 *
2043 * We could check initially without the lock but it is
2044 * very likely that we need to take the lock in every
2045 * iteration.
2046 */
2047 rq = task_rq_lock(p, &flags);
2048 running = task_running(rq, p);
2049 task_rq_unlock(rq, &flags);
2050
2051 if (likely(!running))
2052 break;
2053 /*
2054 * The switch count is incremented before the actual
2055 * context switch. We thus wait for two switches to be
2056 * sure at least one completed.
2057 */
2058 if ((p->nvcsw - nvcsw) > 1)
2059 break;
2060 if ((p->nivcsw - nivcsw) > 1)
2061 break;
2062
2063 cpu_relax();
2064 }
2065 }
2066
2067 /*
2068 * wait_task_inactive - wait for a thread to unschedule.
2069 *
2070 * If @match_state is nonzero, it's the @p->state value just checked and
2071 * not expected to change. If it changes, i.e. @p might have woken up,
2072 * then return zero. When we succeed in waiting for @p to be off its CPU,
2073 * we return a positive number (its total switch count). If a second call
2074 * a short while later returns the same number, the caller can be sure that
2075 * @p has remained unscheduled the whole time.
2076 *
2077 * The caller must ensure that the task *will* unschedule sometime soon,
2078 * else this function might spin for a *long* time. This function can't
2079 * be called with interrupts off, or it may introduce deadlock with
2080 * smp_call_function() if an IPI is sent by the same process we are
2081 * waiting to become inactive.
2082 */
2083 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2084 {
2085 unsigned long flags;
2086 int running, on_rq;
2087 unsigned long ncsw;
2088 struct rq *rq;
2089
2090 for (;;) {
2091 /*
2092 * We do the initial early heuristics without holding
2093 * any task-queue locks at all. We'll only try to get
2094 * the runqueue lock when things look like they will
2095 * work out!
2096 */
2097 rq = task_rq(p);
2098
2099 /*
2100 * If the task is actively running on another CPU
2101 * still, just relax and busy-wait without holding
2102 * any locks.
2103 *
2104 * NOTE! Since we don't hold any locks, it's not
2105 * even sure that "rq" stays as the right runqueue!
2106 * But we don't care, since "task_running()" will
2107 * return false if the runqueue has changed and p
2108 * is actually now running somewhere else!
2109 */
2110 while (task_running(rq, p)) {
2111 if (match_state && unlikely(p->state != match_state))
2112 return 0;
2113 cpu_relax();
2114 }
2115
2116 /*
2117 * Ok, time to look more closely! We need the rq
2118 * lock now, to be *sure*. If we're wrong, we'll
2119 * just go back and repeat.
2120 */
2121 rq = task_rq_lock(p, &flags);
2122 trace_sched_wait_task(rq, p);
2123 running = task_running(rq, p);
2124 on_rq = p->se.on_rq;
2125 ncsw = 0;
2126 if (!match_state || p->state == match_state)
2127 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2128 task_rq_unlock(rq, &flags);
2129
2130 /*
2131 * If it changed from the expected state, bail out now.
2132 */
2133 if (unlikely(!ncsw))
2134 break;
2135
2136 /*
2137 * Was it really running after all now that we
2138 * checked with the proper locks actually held?
2139 *
2140 * Oops. Go back and try again..
2141 */
2142 if (unlikely(running)) {
2143 cpu_relax();
2144 continue;
2145 }
2146
2147 /*
2148 * It's not enough that it's not actively running,
2149 * it must be off the runqueue _entirely_, and not
2150 * preempted!
2151 *
2152 * So if it was still runnable (but just not actively
2153 * running right now), it's preempted, and we should
2154 * yield - it could be a while.
2155 */
2156 if (unlikely(on_rq)) {
2157 schedule_timeout_uninterruptible(1);
2158 continue;
2159 }
2160
2161 /*
2162 * Ahh, all good. It wasn't running, and it wasn't
2163 * runnable, which means that it will never become
2164 * running in the future either. We're all done!
2165 */
2166 break;
2167 }
2168
2169 return ncsw;
2170 }
2171
2172 /***
2173 * kick_process - kick a running thread to enter/exit the kernel
2174 * @p: the to-be-kicked thread
2175 *
2176 * Cause a process which is running on another CPU to enter
2177 * kernel-mode, without any delay. (to get signals handled.)
2178 *
2179 * NOTE: this function doesnt have to take the runqueue lock,
2180 * because all it wants to ensure is that the remote task enters
2181 * the kernel. If the IPI races and the task has been migrated
2182 * to another CPU then no harm is done and the purpose has been
2183 * achieved as well.
2184 */
2185 void kick_process(struct task_struct *p)
2186 {
2187 int cpu;
2188
2189 preempt_disable();
2190 cpu = task_cpu(p);
2191 if ((cpu != smp_processor_id()) && task_curr(p))
2192 smp_send_reschedule(cpu);
2193 preempt_enable();
2194 }
2195 EXPORT_SYMBOL_GPL(kick_process);
2196
2197 /*
2198 * Return a low guess at the load of a migration-source cpu weighted
2199 * according to the scheduling class and "nice" value.
2200 *
2201 * We want to under-estimate the load of migration sources, to
2202 * balance conservatively.
2203 */
2204 static unsigned long source_load(int cpu, int type)
2205 {
2206 struct rq *rq = cpu_rq(cpu);
2207 unsigned long total = weighted_cpuload(cpu);
2208
2209 if (type == 0 || !sched_feat(LB_BIAS))
2210 return total;
2211
2212 return min(rq->cpu_load[type-1], total);
2213 }
2214
2215 /*
2216 * Return a high guess at the load of a migration-target cpu weighted
2217 * according to the scheduling class and "nice" value.
2218 */
2219 static unsigned long target_load(int cpu, int type)
2220 {
2221 struct rq *rq = cpu_rq(cpu);
2222 unsigned long total = weighted_cpuload(cpu);
2223
2224 if (type == 0 || !sched_feat(LB_BIAS))
2225 return total;
2226
2227 return max(rq->cpu_load[type-1], total);
2228 }
2229
2230 /*
2231 * find_idlest_group finds and returns the least busy CPU group within the
2232 * domain.
2233 */
2234 static struct sched_group *
2235 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2236 {
2237 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2238 unsigned long min_load = ULONG_MAX, this_load = 0;
2239 int load_idx = sd->forkexec_idx;
2240 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2241
2242 do {
2243 unsigned long load, avg_load;
2244 int local_group;
2245 int i;
2246
2247 /* Skip over this group if it has no CPUs allowed */
2248 if (!cpumask_intersects(sched_group_cpus(group),
2249 &p->cpus_allowed))
2250 continue;
2251
2252 local_group = cpumask_test_cpu(this_cpu,
2253 sched_group_cpus(group));
2254
2255 /* Tally up the load of all CPUs in the group */
2256 avg_load = 0;
2257
2258 for_each_cpu(i, sched_group_cpus(group)) {
2259 /* Bias balancing toward cpus of our domain */
2260 if (local_group)
2261 load = source_load(i, load_idx);
2262 else
2263 load = target_load(i, load_idx);
2264
2265 avg_load += load;
2266 }
2267
2268 /* Adjust by relative CPU power of the group */
2269 avg_load = sg_div_cpu_power(group,
2270 avg_load * SCHED_LOAD_SCALE);
2271
2272 if (local_group) {
2273 this_load = avg_load;
2274 this = group;
2275 } else if (avg_load < min_load) {
2276 min_load = avg_load;
2277 idlest = group;
2278 }
2279 } while (group = group->next, group != sd->groups);
2280
2281 if (!idlest || 100*this_load < imbalance*min_load)
2282 return NULL;
2283 return idlest;
2284 }
2285
2286 /*
2287 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2288 */
2289 static int
2290 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
2291 {
2292 unsigned long load, min_load = ULONG_MAX;
2293 int idlest = -1;
2294 int i;
2295
2296 /* Traverse only the allowed CPUs */
2297 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2298 load = weighted_cpuload(i);
2299
2300 if (load < min_load || (load == min_load && i == this_cpu)) {
2301 min_load = load;
2302 idlest = i;
2303 }
2304 }
2305
2306 return idlest;
2307 }
2308
2309 /*
2310 * sched_balance_self: balance the current task (running on cpu) in domains
2311 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2312 * SD_BALANCE_EXEC.
2313 *
2314 * Balance, ie. select the least loaded group.
2315 *
2316 * Returns the target CPU number, or the same CPU if no balancing is needed.
2317 *
2318 * preempt must be disabled.
2319 */
2320 static int sched_balance_self(int cpu, int flag)
2321 {
2322 struct task_struct *t = current;
2323 struct sched_domain *tmp, *sd = NULL;
2324
2325 for_each_domain(cpu, tmp) {
2326 /*
2327 * If power savings logic is enabled for a domain, stop there.
2328 */
2329 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2330 break;
2331 if (tmp->flags & flag)
2332 sd = tmp;
2333 }
2334
2335 if (sd)
2336 update_shares(sd);
2337
2338 while (sd) {
2339 struct sched_group *group;
2340 int new_cpu, weight;
2341
2342 if (!(sd->flags & flag)) {
2343 sd = sd->child;
2344 continue;
2345 }
2346
2347 group = find_idlest_group(sd, t, cpu);
2348 if (!group) {
2349 sd = sd->child;
2350 continue;
2351 }
2352
2353 new_cpu = find_idlest_cpu(group, t, cpu);
2354 if (new_cpu == -1 || new_cpu == cpu) {
2355 /* Now try balancing at a lower domain level of cpu */
2356 sd = sd->child;
2357 continue;
2358 }
2359
2360 /* Now try balancing at a lower domain level of new_cpu */
2361 cpu = new_cpu;
2362 weight = cpumask_weight(sched_domain_span(sd));
2363 sd = NULL;
2364 for_each_domain(cpu, tmp) {
2365 if (weight <= cpumask_weight(sched_domain_span(tmp)))
2366 break;
2367 if (tmp->flags & flag)
2368 sd = tmp;
2369 }
2370 /* while loop will break here if sd == NULL */
2371 }
2372
2373 return cpu;
2374 }
2375
2376 #endif /* CONFIG_SMP */
2377
2378 /**
2379 * task_oncpu_function_call - call a function on the cpu on which a task runs
2380 * @p: the task to evaluate
2381 * @func: the function to be called
2382 * @info: the function call argument
2383 *
2384 * Calls the function @func when the task is currently running. This might
2385 * be on the current CPU, which just calls the function directly
2386 */
2387 void task_oncpu_function_call(struct task_struct *p,
2388 void (*func) (void *info), void *info)
2389 {
2390 int cpu;
2391
2392 preempt_disable();
2393 cpu = task_cpu(p);
2394 if (task_curr(p))
2395 smp_call_function_single(cpu, func, info, 1);
2396 preempt_enable();
2397 }
2398
2399 /***
2400 * try_to_wake_up - wake up a thread
2401 * @p: the to-be-woken-up thread
2402 * @state: the mask of task states that can be woken
2403 * @sync: do a synchronous wakeup?
2404 *
2405 * Put it on the run-queue if it's not already there. The "current"
2406 * thread is always on the run-queue (except when the actual
2407 * re-schedule is in progress), and as such you're allowed to do
2408 * the simpler "current->state = TASK_RUNNING" to mark yourself
2409 * runnable without the overhead of this.
2410 *
2411 * returns failure only if the task is already active.
2412 */
2413 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2414 {
2415 int cpu, orig_cpu, this_cpu, success = 0;
2416 unsigned long flags;
2417 long old_state;
2418 struct rq *rq;
2419
2420 if (!sched_feat(SYNC_WAKEUPS))
2421 sync = 0;
2422
2423 #ifdef CONFIG_SMP
2424 if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
2425 struct sched_domain *sd;
2426
2427 this_cpu = raw_smp_processor_id();
2428 cpu = task_cpu(p);
2429
2430 for_each_domain(this_cpu, sd) {
2431 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2432 update_shares(sd);
2433 break;
2434 }
2435 }
2436 }
2437 #endif
2438
2439 smp_wmb();
2440 rq = task_rq_lock(p, &flags);
2441 update_rq_clock(rq);
2442 old_state = p->state;
2443 if (!(old_state & state))
2444 goto out;
2445
2446 if (p->se.on_rq)
2447 goto out_running;
2448
2449 cpu = task_cpu(p);
2450 orig_cpu = cpu;
2451 this_cpu = smp_processor_id();
2452
2453 #ifdef CONFIG_SMP
2454 if (unlikely(task_running(rq, p)))
2455 goto out_activate;
2456
2457 cpu = p->sched_class->select_task_rq(p, sync);
2458 if (cpu != orig_cpu) {
2459 set_task_cpu(p, cpu);
2460 task_rq_unlock(rq, &flags);
2461 /* might preempt at this point */
2462 rq = task_rq_lock(p, &flags);
2463 old_state = p->state;
2464 if (!(old_state & state))
2465 goto out;
2466 if (p->se.on_rq)
2467 goto out_running;
2468
2469 this_cpu = smp_processor_id();
2470 cpu = task_cpu(p);
2471 }
2472
2473 #ifdef CONFIG_SCHEDSTATS
2474 schedstat_inc(rq, ttwu_count);
2475 if (cpu == this_cpu)
2476 schedstat_inc(rq, ttwu_local);
2477 else {
2478 struct sched_domain *sd;
2479 for_each_domain(this_cpu, sd) {
2480 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2481 schedstat_inc(sd, ttwu_wake_remote);
2482 break;
2483 }
2484 }
2485 }
2486 #endif /* CONFIG_SCHEDSTATS */
2487
2488 out_activate:
2489 #endif /* CONFIG_SMP */
2490 schedstat_inc(p, se.nr_wakeups);
2491 if (sync)
2492 schedstat_inc(p, se.nr_wakeups_sync);
2493 if (orig_cpu != cpu)
2494 schedstat_inc(p, se.nr_wakeups_migrate);
2495 if (cpu == this_cpu)
2496 schedstat_inc(p, se.nr_wakeups_local);
2497 else
2498 schedstat_inc(p, se.nr_wakeups_remote);
2499 activate_task(rq, p, 1);
2500 success = 1;
2501
2502 /*
2503 * Only attribute actual wakeups done by this task.
2504 */
2505 if (!in_interrupt()) {
2506 struct sched_entity *se = &current->se;
2507 u64 sample = se->sum_exec_runtime;
2508
2509 if (se->last_wakeup)
2510 sample -= se->last_wakeup;
2511 else
2512 sample -= se->start_runtime;
2513 update_avg(&se->avg_wakeup, sample);
2514
2515 se->last_wakeup = se->sum_exec_runtime;
2516 }
2517
2518 out_running:
2519 trace_sched_wakeup(rq, p, success);
2520 check_preempt_curr(rq, p, sync);
2521
2522 p->state = TASK_RUNNING;
2523 #ifdef CONFIG_SMP
2524 if (p->sched_class->task_wake_up)
2525 p->sched_class->task_wake_up(rq, p);
2526 #endif
2527 out:
2528 task_rq_unlock(rq, &flags);
2529
2530 return success;
2531 }
2532
2533 /**
2534 * wake_up_process - Wake up a specific process
2535 * @p: The process to be woken up.
2536 *
2537 * Attempt to wake up the nominated process and move it to the set of runnable
2538 * processes. Returns 1 if the process was woken up, 0 if it was already
2539 * running.
2540 *
2541 * It may be assumed that this function implies a write memory barrier before
2542 * changing the task state if and only if any tasks are woken up.
2543 */
2544 int wake_up_process(struct task_struct *p)
2545 {
2546 return try_to_wake_up(p, TASK_ALL, 0);
2547 }
2548 EXPORT_SYMBOL(wake_up_process);
2549
2550 int wake_up_state(struct task_struct *p, unsigned int state)
2551 {
2552 return try_to_wake_up(p, state, 0);
2553 }
2554
2555 /*
2556 * Perform scheduler related setup for a newly forked process p.
2557 * p is forked by current.
2558 *
2559 * __sched_fork() is basic setup used by init_idle() too:
2560 */
2561 static void __sched_fork(struct task_struct *p)
2562 {
2563 p->se.exec_start = 0;
2564 p->se.sum_exec_runtime = 0;
2565 p->se.prev_sum_exec_runtime = 0;
2566 p->se.nr_migrations = 0;
2567 p->se.last_wakeup = 0;
2568 p->se.avg_overlap = 0;
2569 p->se.start_runtime = 0;
2570 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
2571
2572 #ifdef CONFIG_SCHEDSTATS
2573 p->se.wait_start = 0;
2574 p->se.sum_sleep_runtime = 0;
2575 p->se.sleep_start = 0;
2576 p->se.block_start = 0;
2577 p->se.sleep_max = 0;
2578 p->se.block_max = 0;
2579 p->se.exec_max = 0;
2580 p->se.slice_max = 0;
2581 p->se.wait_max = 0;
2582 #endif
2583
2584 INIT_LIST_HEAD(&p->rt.run_list);
2585 p->se.on_rq = 0;
2586 INIT_LIST_HEAD(&p->se.group_node);
2587
2588 #ifdef CONFIG_PREEMPT_NOTIFIERS
2589 INIT_HLIST_HEAD(&p->preempt_notifiers);
2590 #endif
2591
2592 /*
2593 * We mark the process as running here, but have not actually
2594 * inserted it onto the runqueue yet. This guarantees that
2595 * nobody will actually run it, and a signal or other external
2596 * event cannot wake it up and insert it on the runqueue either.
2597 */
2598 p->state = TASK_RUNNING;
2599 }
2600
2601 /*
2602 * fork()/clone()-time setup:
2603 */
2604 void sched_fork(struct task_struct *p, int clone_flags)
2605 {
2606 int cpu = get_cpu();
2607
2608 __sched_fork(p);
2609
2610 #ifdef CONFIG_SMP
2611 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2612 #endif
2613 set_task_cpu(p, cpu);
2614
2615 /*
2616 * Make sure we do not leak PI boosting priority to the child:
2617 */
2618 p->prio = current->normal_prio;
2619 if (!rt_prio(p->prio))
2620 p->sched_class = &fair_sched_class;
2621
2622 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2623 if (likely(sched_info_on()))
2624 memset(&p->sched_info, 0, sizeof(p->sched_info));
2625 #endif
2626 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2627 p->oncpu = 0;
2628 #endif
2629 #ifdef CONFIG_PREEMPT
2630 /* Want to start with kernel preemption disabled. */
2631 task_thread_info(p)->preempt_count = 1;
2632 #endif
2633 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2634
2635 put_cpu();
2636 }
2637
2638 /*
2639 * wake_up_new_task - wake up a newly created task for the first time.
2640 *
2641 * This function will do some initial scheduler statistics housekeeping
2642 * that must be done for every newly created context, then puts the task
2643 * on the runqueue and wakes it.
2644 */
2645 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2646 {
2647 unsigned long flags;
2648 struct rq *rq;
2649
2650 rq = task_rq_lock(p, &flags);
2651 BUG_ON(p->state != TASK_RUNNING);
2652 update_rq_clock(rq);
2653
2654 p->prio = effective_prio(p);
2655
2656 if (!p->sched_class->task_new || !current->se.on_rq) {
2657 activate_task(rq, p, 0);
2658 } else {
2659 /*
2660 * Let the scheduling class do new task startup
2661 * management (if any):
2662 */
2663 p->sched_class->task_new(rq, p);
2664 inc_nr_running(rq);
2665 }
2666 trace_sched_wakeup_new(rq, p, 1);
2667 check_preempt_curr(rq, p, 0);
2668 #ifdef CONFIG_SMP
2669 if (p->sched_class->task_wake_up)
2670 p->sched_class->task_wake_up(rq, p);
2671 #endif
2672 task_rq_unlock(rq, &flags);
2673 }
2674
2675 #ifdef CONFIG_PREEMPT_NOTIFIERS
2676
2677 /**
2678 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2679 * @notifier: notifier struct to register
2680 */
2681 void preempt_notifier_register(struct preempt_notifier *notifier)
2682 {
2683 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2684 }
2685 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2686
2687 /**
2688 * preempt_notifier_unregister - no longer interested in preemption notifications
2689 * @notifier: notifier struct to unregister
2690 *
2691 * This is safe to call from within a preemption notifier.
2692 */
2693 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2694 {
2695 hlist_del(&notifier->link);
2696 }
2697 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2698
2699 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2700 {
2701 struct preempt_notifier *notifier;
2702 struct hlist_node *node;
2703
2704 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2705 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2706 }
2707
2708 static void
2709 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2710 struct task_struct *next)
2711 {
2712 struct preempt_notifier *notifier;
2713 struct hlist_node *node;
2714
2715 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2716 notifier->ops->sched_out(notifier, next);
2717 }
2718
2719 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2720
2721 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2722 {
2723 }
2724
2725 static void
2726 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2727 struct task_struct *next)
2728 {
2729 }
2730
2731 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2732
2733 /**
2734 * prepare_task_switch - prepare to switch tasks
2735 * @rq: the runqueue preparing to switch
2736 * @prev: the current task that is being switched out
2737 * @next: the task we are going to switch to.
2738 *
2739 * This is called with the rq lock held and interrupts off. It must
2740 * be paired with a subsequent finish_task_switch after the context
2741 * switch.
2742 *
2743 * prepare_task_switch sets up locking and calls architecture specific
2744 * hooks.
2745 */
2746 static inline void
2747 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2748 struct task_struct *next)
2749 {
2750 fire_sched_out_preempt_notifiers(prev, next);
2751 prepare_lock_switch(rq, next);
2752 prepare_arch_switch(next);
2753 }
2754
2755 /**
2756 * finish_task_switch - clean up after a task-switch
2757 * @rq: runqueue associated with task-switch
2758 * @prev: the thread we just switched away from.
2759 *
2760 * finish_task_switch must be called after the context switch, paired
2761 * with a prepare_task_switch call before the context switch.
2762 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2763 * and do any other architecture-specific cleanup actions.
2764 *
2765 * Note that we may have delayed dropping an mm in context_switch(). If
2766 * so, we finish that here outside of the runqueue lock. (Doing it
2767 * with the lock held can cause deadlocks; see schedule() for
2768 * details.)
2769 */
2770 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2771 __releases(rq->lock)
2772 {
2773 struct mm_struct *mm = rq->prev_mm;
2774 long prev_state;
2775 #ifdef CONFIG_SMP
2776 int post_schedule = 0;
2777
2778 if (current->sched_class->needs_post_schedule)
2779 post_schedule = current->sched_class->needs_post_schedule(rq);
2780 #endif
2781
2782 rq->prev_mm = NULL;
2783
2784 /*
2785 * A task struct has one reference for the use as "current".
2786 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2787 * schedule one last time. The schedule call will never return, and
2788 * the scheduled task must drop that reference.
2789 * The test for TASK_DEAD must occur while the runqueue locks are
2790 * still held, otherwise prev could be scheduled on another cpu, die
2791 * there before we look at prev->state, and then the reference would
2792 * be dropped twice.
2793 * Manfred Spraul <manfred@colorfullife.com>
2794 */
2795 prev_state = prev->state;
2796 finish_arch_switch(prev);
2797 perf_counter_task_sched_in(current, cpu_of(rq));
2798 finish_lock_switch(rq, prev);
2799 #ifdef CONFIG_SMP
2800 if (post_schedule)
2801 current->sched_class->post_schedule(rq);
2802 #endif
2803
2804 fire_sched_in_preempt_notifiers(current);
2805 if (mm)
2806 mmdrop(mm);
2807 if (unlikely(prev_state == TASK_DEAD)) {
2808 /*
2809 * Remove function-return probe instances associated with this
2810 * task and put them back on the free list.
2811 */
2812 kprobe_flush_task(prev);
2813 put_task_struct(prev);
2814 }
2815 }
2816
2817 /**
2818 * schedule_tail - first thing a freshly forked thread must call.
2819 * @prev: the thread we just switched away from.
2820 */
2821 asmlinkage void schedule_tail(struct task_struct *prev)
2822 __releases(rq->lock)
2823 {
2824 struct rq *rq = this_rq();
2825
2826 finish_task_switch(rq, prev);
2827 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2828 /* In this case, finish_task_switch does not reenable preemption */
2829 preempt_enable();
2830 #endif
2831 if (current->set_child_tid)
2832 put_user(task_pid_vnr(current), current->set_child_tid);
2833 }
2834
2835 /*
2836 * context_switch - switch to the new MM and the new
2837 * thread's register state.
2838 */
2839 static inline void
2840 context_switch(struct rq *rq, struct task_struct *prev,
2841 struct task_struct *next)
2842 {
2843 struct mm_struct *mm, *oldmm;
2844
2845 prepare_task_switch(rq, prev, next);
2846 trace_sched_switch(rq, prev, next);
2847 mm = next->mm;
2848 oldmm = prev->active_mm;
2849 /*
2850 * For paravirt, this is coupled with an exit in switch_to to
2851 * combine the page table reload and the switch backend into
2852 * one hypercall.
2853 */
2854 arch_start_context_switch(prev);
2855
2856 if (unlikely(!mm)) {
2857 next->active_mm = oldmm;
2858 atomic_inc(&oldmm->mm_count);
2859 enter_lazy_tlb(oldmm, next);
2860 } else
2861 switch_mm(oldmm, mm, next);
2862
2863 if (unlikely(!prev->mm)) {
2864 prev->active_mm = NULL;
2865 rq->prev_mm = oldmm;
2866 }
2867 /*
2868 * Since the runqueue lock will be released by the next
2869 * task (which is an invalid locking op but in the case
2870 * of the scheduler it's an obvious special-case), so we
2871 * do an early lockdep release here:
2872 */
2873 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2874 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2875 #endif
2876
2877 /* Here we just switch the register state and the stack. */
2878 switch_to(prev, next, prev);
2879
2880 barrier();
2881 /*
2882 * this_rq must be evaluated again because prev may have moved
2883 * CPUs since it called schedule(), thus the 'rq' on its stack
2884 * frame will be invalid.
2885 */
2886 finish_task_switch(this_rq(), prev);
2887 }
2888
2889 /*
2890 * nr_running, nr_uninterruptible and nr_context_switches:
2891 *
2892 * externally visible scheduler statistics: current number of runnable
2893 * threads, current number of uninterruptible-sleeping threads, total
2894 * number of context switches performed since bootup.
2895 */
2896 unsigned long nr_running(void)
2897 {
2898 unsigned long i, sum = 0;
2899
2900 for_each_online_cpu(i)
2901 sum += cpu_rq(i)->nr_running;
2902
2903 return sum;
2904 }
2905
2906 unsigned long nr_uninterruptible(void)
2907 {
2908 unsigned long i, sum = 0;
2909
2910 for_each_possible_cpu(i)
2911 sum += cpu_rq(i)->nr_uninterruptible;
2912
2913 /*
2914 * Since we read the counters lockless, it might be slightly
2915 * inaccurate. Do not allow it to go below zero though:
2916 */
2917 if (unlikely((long)sum < 0))
2918 sum = 0;
2919
2920 return sum;
2921 }
2922
2923 unsigned long long nr_context_switches(void)
2924 {
2925 int i;
2926 unsigned long long sum = 0;
2927
2928 for_each_possible_cpu(i)
2929 sum += cpu_rq(i)->nr_switches;
2930
2931 return sum;
2932 }
2933
2934 unsigned long nr_iowait(void)
2935 {
2936 unsigned long i, sum = 0;
2937
2938 for_each_possible_cpu(i)
2939 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2940
2941 return sum;
2942 }
2943
2944 /* Variables and functions for calc_load */
2945 static atomic_long_t calc_load_tasks;
2946 static unsigned long calc_load_update;
2947 unsigned long avenrun[3];
2948 EXPORT_SYMBOL(avenrun);
2949
2950 /**
2951 * get_avenrun - get the load average array
2952 * @loads: pointer to dest load array
2953 * @offset: offset to add
2954 * @shift: shift count to shift the result left
2955 *
2956 * These values are estimates at best, so no need for locking.
2957 */
2958 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2959 {
2960 loads[0] = (avenrun[0] + offset) << shift;
2961 loads[1] = (avenrun[1] + offset) << shift;
2962 loads[2] = (avenrun[2] + offset) << shift;
2963 }
2964
2965 static unsigned long
2966 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2967 {
2968 load *= exp;
2969 load += active * (FIXED_1 - exp);
2970 return load >> FSHIFT;
2971 }
2972
2973 /*
2974 * calc_load - update the avenrun load estimates 10 ticks after the
2975 * CPUs have updated calc_load_tasks.
2976 */
2977 void calc_global_load(void)
2978 {
2979 unsigned long upd = calc_load_update + 10;
2980 long active;
2981
2982 if (time_before(jiffies, upd))
2983 return;
2984
2985 active = atomic_long_read(&calc_load_tasks);
2986 active = active > 0 ? active * FIXED_1 : 0;
2987
2988 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2989 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2990 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2991
2992 calc_load_update += LOAD_FREQ;
2993 }
2994
2995 /*
2996 * Either called from update_cpu_load() or from a cpu going idle
2997 */
2998 static void calc_load_account_active(struct rq *this_rq)
2999 {
3000 long nr_active, delta;
3001
3002 nr_active = this_rq->nr_running;
3003 nr_active += (long) this_rq->nr_uninterruptible;
3004
3005 if (nr_active != this_rq->calc_load_active) {
3006 delta = nr_active - this_rq->calc_load_active;
3007 this_rq->calc_load_active = nr_active;
3008 atomic_long_add(delta, &calc_load_tasks);
3009 }
3010 }
3011
3012 /*
3013 * Externally visible per-cpu scheduler statistics:
3014 * cpu_nr_migrations(cpu) - number of migrations into that cpu
3015 */
3016 u64 cpu_nr_migrations(int cpu)
3017 {
3018 return cpu_rq(cpu)->nr_migrations_in;
3019 }
3020
3021 /*
3022 * Update rq->cpu_load[] statistics. This function is usually called every
3023 * scheduler tick (TICK_NSEC).
3024 */
3025 static void update_cpu_load(struct rq *this_rq)
3026 {
3027 unsigned long this_load = this_rq->load.weight;
3028 int i, scale;
3029
3030 this_rq->nr_load_updates++;
3031
3032 /* Update our load: */
3033 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3034 unsigned long old_load, new_load;
3035
3036 /* scale is effectively 1 << i now, and >> i divides by scale */
3037
3038 old_load = this_rq->cpu_load[i];
3039 new_load = this_load;
3040 /*
3041 * Round up the averaging division if load is increasing. This
3042 * prevents us from getting stuck on 9 if the load is 10, for
3043 * example.
3044 */
3045 if (new_load > old_load)
3046 new_load += scale-1;
3047 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3048 }
3049
3050 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3051 this_rq->calc_load_update += LOAD_FREQ;
3052 calc_load_account_active(this_rq);
3053 }
3054 }
3055
3056 #ifdef CONFIG_SMP
3057
3058 /*
3059 * double_rq_lock - safely lock two runqueues
3060 *
3061 * Note this does not disable interrupts like task_rq_lock,
3062 * you need to do so manually before calling.
3063 */
3064 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
3065 __acquires(rq1->lock)
3066 __acquires(rq2->lock)
3067 {
3068 BUG_ON(!irqs_disabled());
3069 if (rq1 == rq2) {
3070 spin_lock(&rq1->lock);
3071 __acquire(rq2->lock); /* Fake it out ;) */
3072 } else {
3073 if (rq1 < rq2) {
3074 spin_lock(&rq1->lock);
3075 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
3076 } else {
3077 spin_lock(&rq2->lock);
3078 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
3079 }
3080 }
3081 update_rq_clock(rq1);
3082 update_rq_clock(rq2);
3083 }
3084
3085 /*
3086 * double_rq_unlock - safely unlock two runqueues
3087 *
3088 * Note this does not restore interrupts like task_rq_unlock,
3089 * you need to do so manually after calling.
3090 */
3091 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
3092 __releases(rq1->lock)
3093 __releases(rq2->lock)
3094 {
3095 spin_unlock(&rq1->lock);
3096 if (rq1 != rq2)
3097 spin_unlock(&rq2->lock);
3098 else
3099 __release(rq2->lock);
3100 }
3101
3102 /*
3103 * If dest_cpu is allowed for this process, migrate the task to it.
3104 * This is accomplished by forcing the cpu_allowed mask to only
3105 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
3106 * the cpu_allowed mask is restored.
3107 */
3108 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
3109 {
3110 struct migration_req req;
3111 unsigned long flags;
3112 struct rq *rq;
3113
3114 rq = task_rq_lock(p, &flags);
3115 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3116 || unlikely(!cpu_active(dest_cpu)))
3117 goto out;
3118
3119 /* force the process onto the specified CPU */
3120 if (migrate_task(p, dest_cpu, &req)) {
3121 /* Need to wait for migration thread (might exit: take ref). */
3122 struct task_struct *mt = rq->migration_thread;
3123
3124 get_task_struct(mt);
3125 task_rq_unlock(rq, &flags);
3126 wake_up_process(mt);
3127 put_task_struct(mt);
3128 wait_for_completion(&req.done);
3129
3130 return;
3131 }
3132 out:
3133 task_rq_unlock(rq, &flags);
3134 }
3135
3136 /*
3137 * sched_exec - execve() is a valuable balancing opportunity, because at
3138 * this point the task has the smallest effective memory and cache footprint.
3139 */
3140 void sched_exec(void)
3141 {
3142 int new_cpu, this_cpu = get_cpu();
3143 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
3144 put_cpu();
3145 if (new_cpu != this_cpu)
3146 sched_migrate_task(current, new_cpu);
3147 }
3148
3149 /*
3150 * pull_task - move a task from a remote runqueue to the local runqueue.
3151 * Both runqueues must be locked.
3152 */
3153 static void pull_task(struct rq *src_rq, struct task_struct *p,
3154 struct rq *this_rq, int this_cpu)
3155 {
3156 deactivate_task(src_rq, p, 0);
3157 set_task_cpu(p, this_cpu);
3158 activate_task(this_rq, p, 0);
3159 /*
3160 * Note that idle threads have a prio of MAX_PRIO, for this test
3161 * to be always true for them.
3162 */
3163 check_preempt_curr(this_rq, p, 0);
3164 }
3165
3166 /*
3167 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3168 */
3169 static
3170 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
3171 struct sched_domain *sd, enum cpu_idle_type idle,
3172 int *all_pinned)
3173 {
3174 int tsk_cache_hot = 0;
3175 /*
3176 * We do not migrate tasks that are:
3177 * 1) running (obviously), or
3178 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3179 * 3) are cache-hot on their current CPU.
3180 */
3181 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3182 schedstat_inc(p, se.nr_failed_migrations_affine);
3183 return 0;
3184 }
3185 *all_pinned = 0;
3186
3187 if (task_running(rq, p)) {
3188 schedstat_inc(p, se.nr_failed_migrations_running);
3189 return 0;
3190 }
3191
3192 /*
3193 * Aggressive migration if:
3194 * 1) task is cache cold, or
3195 * 2) too many balance attempts have failed.
3196 */
3197
3198 tsk_cache_hot = task_hot(p, rq->clock, sd);
3199 if (!tsk_cache_hot ||
3200 sd->nr_balance_failed > sd->cache_nice_tries) {
3201 #ifdef CONFIG_SCHEDSTATS
3202 if (tsk_cache_hot) {
3203 schedstat_inc(sd, lb_hot_gained[idle]);
3204 schedstat_inc(p, se.nr_forced_migrations);
3205 }
3206 #endif
3207 return 1;
3208 }
3209
3210 if (tsk_cache_hot) {
3211 schedstat_inc(p, se.nr_failed_migrations_hot);
3212 return 0;
3213 }
3214 return 1;
3215 }
3216
3217 static unsigned long
3218 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3219 unsigned long max_load_move, struct sched_domain *sd,
3220 enum cpu_idle_type idle, int *all_pinned,
3221 int *this_best_prio, struct rq_iterator *iterator)
3222 {
3223 int loops = 0, pulled = 0, pinned = 0;
3224 struct task_struct *p;
3225 long rem_load_move = max_load_move;
3226
3227 if (max_load_move == 0)
3228 goto out;
3229
3230 pinned = 1;
3231
3232 /*
3233 * Start the load-balancing iterator:
3234 */
3235 p = iterator->start(iterator->arg);
3236 next:
3237 if (!p || loops++ > sysctl_sched_nr_migrate)
3238 goto out;
3239
3240 if ((p->se.load.weight >> 1) > rem_load_move ||
3241 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3242 p = iterator->next(iterator->arg);
3243 goto next;
3244 }
3245
3246 pull_task(busiest, p, this_rq, this_cpu);
3247 pulled++;
3248 rem_load_move -= p->se.load.weight;
3249
3250 #ifdef CONFIG_PREEMPT
3251 /*
3252 * NEWIDLE balancing is a source of latency, so preemptible kernels
3253 * will stop after the first task is pulled to minimize the critical
3254 * section.
3255 */
3256 if (idle == CPU_NEWLY_IDLE)
3257 goto out;
3258 #endif
3259
3260 /*
3261 * We only want to steal up to the prescribed amount of weighted load.
3262 */
3263 if (rem_load_move > 0) {
3264 if (p->prio < *this_best_prio)
3265 *this_best_prio = p->prio;
3266 p = iterator->next(iterator->arg);
3267 goto next;
3268 }
3269 out:
3270 /*
3271 * Right now, this is one of only two places pull_task() is called,
3272 * so we can safely collect pull_task() stats here rather than
3273 * inside pull_task().
3274 */
3275 schedstat_add(sd, lb_gained[idle], pulled);
3276
3277 if (all_pinned)
3278 *all_pinned = pinned;
3279
3280 return max_load_move - rem_load_move;
3281 }
3282
3283 /*
3284 * move_tasks tries to move up to max_load_move weighted load from busiest to
3285 * this_rq, as part of a balancing operation within domain "sd".
3286 * Returns 1 if successful and 0 otherwise.
3287 *
3288 * Called with both runqueues locked.
3289 */
3290 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3291 unsigned long max_load_move,
3292 struct sched_domain *sd, enum cpu_idle_type idle,
3293 int *all_pinned)
3294 {
3295 const struct sched_class *class = sched_class_highest;
3296 unsigned long total_load_moved = 0;
3297 int this_best_prio = this_rq->curr->prio;
3298
3299 do {
3300 total_load_moved +=
3301 class->load_balance(this_rq, this_cpu, busiest,
3302 max_load_move - total_load_moved,
3303 sd, idle, all_pinned, &this_best_prio);
3304 class = class->next;
3305
3306 #ifdef CONFIG_PREEMPT
3307 /*
3308 * NEWIDLE balancing is a source of latency, so preemptible
3309 * kernels will stop after the first task is pulled to minimize
3310 * the critical section.
3311 */
3312 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3313 break;
3314 #endif
3315 } while (class && max_load_move > total_load_moved);
3316
3317 return total_load_moved > 0;
3318 }
3319
3320 static int
3321 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3322 struct sched_domain *sd, enum cpu_idle_type idle,
3323 struct rq_iterator *iterator)
3324 {
3325 struct task_struct *p = iterator->start(iterator->arg);
3326 int pinned = 0;
3327
3328 while (p) {
3329 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3330 pull_task(busiest, p, this_rq, this_cpu);
3331 /*
3332 * Right now, this is only the second place pull_task()
3333 * is called, so we can safely collect pull_task()
3334 * stats here rather than inside pull_task().
3335 */
3336 schedstat_inc(sd, lb_gained[idle]);
3337
3338 return 1;
3339 }
3340 p = iterator->next(iterator->arg);
3341 }
3342
3343 return 0;
3344 }
3345
3346 /*
3347 * move_one_task tries to move exactly one task from busiest to this_rq, as
3348 * part of active balancing operations within "domain".
3349 * Returns 1 if successful and 0 otherwise.
3350 *
3351 * Called with both runqueues locked.
3352 */
3353 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3354 struct sched_domain *sd, enum cpu_idle_type idle)
3355 {
3356 const struct sched_class *class;
3357
3358 for (class = sched_class_highest; class; class = class->next)
3359 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3360 return 1;
3361
3362 return 0;
3363 }
3364 /********** Helpers for find_busiest_group ************************/
3365 /*
3366 * sd_lb_stats - Structure to store the statistics of a sched_domain
3367 * during load balancing.
3368 */
3369 struct sd_lb_stats {
3370 struct sched_group *busiest; /* Busiest group in this sd */
3371 struct sched_group *this; /* Local group in this sd */
3372 unsigned long total_load; /* Total load of all groups in sd */
3373 unsigned long total_pwr; /* Total power of all groups in sd */
3374 unsigned long avg_load; /* Average load across all groups in sd */
3375
3376 /** Statistics of this group */
3377 unsigned long this_load;
3378 unsigned long this_load_per_task;
3379 unsigned long this_nr_running;
3380
3381 /* Statistics of the busiest group */
3382 unsigned long max_load;
3383 unsigned long busiest_load_per_task;
3384 unsigned long busiest_nr_running;
3385
3386 int group_imb; /* Is there imbalance in this sd */
3387 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3388 int power_savings_balance; /* Is powersave balance needed for this sd */
3389 struct sched_group *group_min; /* Least loaded group in sd */
3390 struct sched_group *group_leader; /* Group which relieves group_min */
3391 unsigned long min_load_per_task; /* load_per_task in group_min */
3392 unsigned long leader_nr_running; /* Nr running of group_leader */
3393 unsigned long min_nr_running; /* Nr running of group_min */
3394 #endif
3395 };
3396
3397 /*
3398 * sg_lb_stats - stats of a sched_group required for load_balancing
3399 */
3400 struct sg_lb_stats {
3401 unsigned long avg_load; /*Avg load across the CPUs of the group */
3402 unsigned long group_load; /* Total load over the CPUs of the group */
3403 unsigned long sum_nr_running; /* Nr tasks running in the group */
3404 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3405 unsigned long group_capacity;
3406 int group_imb; /* Is there an imbalance in the group ? */
3407 };
3408
3409 /**
3410 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3411 * @group: The group whose first cpu is to be returned.
3412 */
3413 static inline unsigned int group_first_cpu(struct sched_group *group)
3414 {
3415 return cpumask_first(sched_group_cpus(group));
3416 }
3417
3418 /**
3419 * get_sd_load_idx - Obtain the load index for a given sched domain.
3420 * @sd: The sched_domain whose load_idx is to be obtained.
3421 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3422 */
3423 static inline int get_sd_load_idx(struct sched_domain *sd,
3424 enum cpu_idle_type idle)
3425 {
3426 int load_idx;
3427
3428 switch (idle) {
3429 case CPU_NOT_IDLE:
3430 load_idx = sd->busy_idx;
3431 break;
3432
3433 case CPU_NEWLY_IDLE:
3434 load_idx = sd->newidle_idx;
3435 break;
3436 default:
3437 load_idx = sd->idle_idx;
3438 break;
3439 }
3440
3441 return load_idx;
3442 }
3443
3444
3445 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3446 /**
3447 * init_sd_power_savings_stats - Initialize power savings statistics for
3448 * the given sched_domain, during load balancing.
3449 *
3450 * @sd: Sched domain whose power-savings statistics are to be initialized.
3451 * @sds: Variable containing the statistics for sd.
3452 * @idle: Idle status of the CPU at which we're performing load-balancing.
3453 */
3454 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3455 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3456 {
3457 /*
3458 * Busy processors will not participate in power savings
3459 * balance.
3460 */
3461 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3462 sds->power_savings_balance = 0;
3463 else {
3464 sds->power_savings_balance = 1;
3465 sds->min_nr_running = ULONG_MAX;
3466 sds->leader_nr_running = 0;
3467 }
3468 }
3469
3470 /**
3471 * update_sd_power_savings_stats - Update the power saving stats for a
3472 * sched_domain while performing load balancing.
3473 *
3474 * @group: sched_group belonging to the sched_domain under consideration.
3475 * @sds: Variable containing the statistics of the sched_domain
3476 * @local_group: Does group contain the CPU for which we're performing
3477 * load balancing ?
3478 * @sgs: Variable containing the statistics of the group.
3479 */
3480 static inline void update_sd_power_savings_stats(struct sched_group *group,
3481 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3482 {
3483
3484 if (!sds->power_savings_balance)
3485 return;
3486
3487 /*
3488 * If the local group is idle or completely loaded
3489 * no need to do power savings balance at this domain
3490 */
3491 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3492 !sds->this_nr_running))
3493 sds->power_savings_balance = 0;
3494
3495 /*
3496 * If a group is already running at full capacity or idle,
3497 * don't include that group in power savings calculations
3498 */
3499 if (!sds->power_savings_balance ||
3500 sgs->sum_nr_running >= sgs->group_capacity ||
3501 !sgs->sum_nr_running)
3502 return;
3503
3504 /*
3505 * Calculate the group which has the least non-idle load.
3506 * This is the group from where we need to pick up the load
3507 * for saving power
3508 */
3509 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3510 (sgs->sum_nr_running == sds->min_nr_running &&
3511 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3512 sds->group_min = group;
3513 sds->min_nr_running = sgs->sum_nr_running;
3514 sds->min_load_per_task = sgs->sum_weighted_load /
3515 sgs->sum_nr_running;
3516 }
3517
3518 /*
3519 * Calculate the group which is almost near its
3520 * capacity but still has some space to pick up some load
3521 * from other group and save more power
3522 */
3523 if (sgs->sum_nr_running > sgs->group_capacity - 1)
3524 return;
3525
3526 if (sgs->sum_nr_running > sds->leader_nr_running ||
3527 (sgs->sum_nr_running == sds->leader_nr_running &&
3528 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3529 sds->group_leader = group;
3530 sds->leader_nr_running = sgs->sum_nr_running;
3531 }
3532 }
3533
3534 /**
3535 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3536 * @sds: Variable containing the statistics of the sched_domain
3537 * under consideration.
3538 * @this_cpu: Cpu at which we're currently performing load-balancing.
3539 * @imbalance: Variable to store the imbalance.
3540 *
3541 * Description:
3542 * Check if we have potential to perform some power-savings balance.
3543 * If yes, set the busiest group to be the least loaded group in the
3544 * sched_domain, so that it's CPUs can be put to idle.
3545 *
3546 * Returns 1 if there is potential to perform power-savings balance.
3547 * Else returns 0.
3548 */
3549 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3550 int this_cpu, unsigned long *imbalance)
3551 {
3552 if (!sds->power_savings_balance)
3553 return 0;
3554
3555 if (sds->this != sds->group_leader ||
3556 sds->group_leader == sds->group_min)
3557 return 0;
3558
3559 *imbalance = sds->min_load_per_task;
3560 sds->busiest = sds->group_min;
3561
3562 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3563 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
3564 group_first_cpu(sds->group_leader);
3565 }
3566
3567 return 1;
3568
3569 }
3570 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3571 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3572 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3573 {
3574 return;
3575 }
3576
3577 static inline void update_sd_power_savings_stats(struct sched_group *group,
3578 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3579 {
3580 return;
3581 }
3582
3583 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3584 int this_cpu, unsigned long *imbalance)
3585 {
3586 return 0;
3587 }
3588 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3589
3590
3591 /**
3592 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3593 * @group: sched_group whose statistics are to be updated.
3594 * @this_cpu: Cpu for which load balance is currently performed.
3595 * @idle: Idle status of this_cpu
3596 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3597 * @sd_idle: Idle status of the sched_domain containing group.
3598 * @local_group: Does group contain this_cpu.
3599 * @cpus: Set of cpus considered for load balancing.
3600 * @balance: Should we balance.
3601 * @sgs: variable to hold the statistics for this group.
3602 */
3603 static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
3604 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3605 int local_group, const struct cpumask *cpus,
3606 int *balance, struct sg_lb_stats *sgs)
3607 {
3608 unsigned long load, max_cpu_load, min_cpu_load;
3609 int i;
3610 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3611 unsigned long sum_avg_load_per_task;
3612 unsigned long avg_load_per_task;
3613
3614 if (local_group)
3615 balance_cpu = group_first_cpu(group);
3616
3617 /* Tally up the load of all CPUs in the group */
3618 sum_avg_load_per_task = avg_load_per_task = 0;
3619 max_cpu_load = 0;
3620 min_cpu_load = ~0UL;
3621
3622 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3623 struct rq *rq = cpu_rq(i);
3624
3625 if (*sd_idle && rq->nr_running)
3626 *sd_idle = 0;
3627
3628 /* Bias balancing toward cpus of our domain */
3629 if (local_group) {
3630 if (idle_cpu(i) && !first_idle_cpu) {
3631 first_idle_cpu = 1;
3632 balance_cpu = i;
3633 }
3634
3635 load = target_load(i, load_idx);
3636 } else {
3637 load = source_load(i, load_idx);
3638 if (load > max_cpu_load)
3639 max_cpu_load = load;
3640 if (min_cpu_load > load)
3641 min_cpu_load = load;
3642 }
3643
3644 sgs->group_load += load;
3645 sgs->sum_nr_running += rq->nr_running;
3646 sgs->sum_weighted_load += weighted_cpuload(i);
3647
3648 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3649 }
3650
3651 /*
3652 * First idle cpu or the first cpu(busiest) in this sched group
3653 * is eligible for doing load balancing at this and above
3654 * domains. In the newly idle case, we will allow all the cpu's
3655 * to do the newly idle load balance.
3656 */
3657 if (idle != CPU_NEWLY_IDLE && local_group &&
3658 balance_cpu != this_cpu && balance) {
3659 *balance = 0;
3660 return;
3661 }
3662
3663 /* Adjust by relative CPU power of the group */
3664 sgs->avg_load = sg_div_cpu_power(group,
3665 sgs->group_load * SCHED_LOAD_SCALE);
3666
3667
3668 /*
3669 * Consider the group unbalanced when the imbalance is larger
3670 * than the average weight of two tasks.
3671 *
3672 * APZ: with cgroup the avg task weight can vary wildly and
3673 * might not be a suitable number - should we keep a
3674 * normalized nr_running number somewhere that negates
3675 * the hierarchy?
3676 */
3677 avg_load_per_task = sg_div_cpu_power(group,
3678 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3679
3680 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3681 sgs->group_imb = 1;
3682
3683 sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3684
3685 }
3686
3687 /**
3688 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3689 * @sd: sched_domain whose statistics are to be updated.
3690 * @this_cpu: Cpu for which load balance is currently performed.
3691 * @idle: Idle status of this_cpu
3692 * @sd_idle: Idle status of the sched_domain containing group.
3693 * @cpus: Set of cpus considered for load balancing.
3694 * @balance: Should we balance.
3695 * @sds: variable to hold the statistics for this sched_domain.
3696 */
3697 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3698 enum cpu_idle_type idle, int *sd_idle,
3699 const struct cpumask *cpus, int *balance,
3700 struct sd_lb_stats *sds)
3701 {
3702 struct sched_group *group = sd->groups;
3703 struct sg_lb_stats sgs;
3704 int load_idx;
3705
3706 init_sd_power_savings_stats(sd, sds, idle);
3707 load_idx = get_sd_load_idx(sd, idle);
3708
3709 do {
3710 int local_group;
3711
3712 local_group = cpumask_test_cpu(this_cpu,
3713 sched_group_cpus(group));
3714 memset(&sgs, 0, sizeof(sgs));
3715 update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle,
3716 local_group, cpus, balance, &sgs);
3717
3718 if (local_group && balance && !(*balance))
3719 return;
3720
3721 sds->total_load += sgs.group_load;
3722 sds->total_pwr += group->__cpu_power;
3723
3724 if (local_group) {
3725 sds->this_load = sgs.avg_load;
3726 sds->this = group;
3727 sds->this_nr_running = sgs.sum_nr_running;
3728 sds->this_load_per_task = sgs.sum_weighted_load;
3729 } else if (sgs.avg_load > sds->max_load &&
3730 (sgs.sum_nr_running > sgs.group_capacity ||
3731 sgs.group_imb)) {
3732 sds->max_load = sgs.avg_load;
3733 sds->busiest = group;
3734 sds->busiest_nr_running = sgs.sum_nr_running;
3735 sds->busiest_load_per_task = sgs.sum_weighted_load;
3736 sds->group_imb = sgs.group_imb;
3737 }
3738
3739 update_sd_power_savings_stats(group, sds, local_group, &sgs);
3740 group = group->next;
3741 } while (group != sd->groups);
3742
3743 }
3744
3745 /**
3746 * fix_small_imbalance - Calculate the minor imbalance that exists
3747 * amongst the groups of a sched_domain, during
3748 * load balancing.
3749 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3750 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3751 * @imbalance: Variable to store the imbalance.
3752 */
3753 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3754 int this_cpu, unsigned long *imbalance)
3755 {
3756 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3757 unsigned int imbn = 2;
3758
3759 if (sds->this_nr_running) {
3760 sds->this_load_per_task /= sds->this_nr_running;
3761 if (sds->busiest_load_per_task >
3762 sds->this_load_per_task)
3763 imbn = 1;
3764 } else
3765 sds->this_load_per_task =
3766 cpu_avg_load_per_task(this_cpu);
3767
3768 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3769 sds->busiest_load_per_task * imbn) {
3770 *imbalance = sds->busiest_load_per_task;
3771 return;
3772 }
3773
3774 /*
3775 * OK, we don't have enough imbalance to justify moving tasks,
3776 * however we may be able to increase total CPU power used by
3777 * moving them.
3778 */
3779
3780 pwr_now += sds->busiest->__cpu_power *
3781 min(sds->busiest_load_per_task, sds->max_load);
3782 pwr_now += sds->this->__cpu_power *
3783 min(sds->this_load_per_task, sds->this_load);
3784 pwr_now /= SCHED_LOAD_SCALE;
3785
3786 /* Amount of load we'd subtract */
3787 tmp = sg_div_cpu_power(sds->busiest,
3788 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3789 if (sds->max_load > tmp)
3790 pwr_move += sds->busiest->__cpu_power *
3791 min(sds->busiest_load_per_task, sds->max_load - tmp);
3792
3793 /* Amount of load we'd add */
3794 if (sds->max_load * sds->busiest->__cpu_power <
3795 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3796 tmp = sg_div_cpu_power(sds->this,
3797 sds->max_load * sds->busiest->__cpu_power);
3798 else
3799 tmp = sg_div_cpu_power(sds->this,
3800 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3801 pwr_move += sds->this->__cpu_power *
3802 min(sds->this_load_per_task, sds->this_load + tmp);
3803 pwr_move /= SCHED_LOAD_SCALE;
3804
3805 /* Move if we gain throughput */
3806 if (pwr_move > pwr_now)
3807 *imbalance = sds->busiest_load_per_task;
3808 }
3809
3810 /**
3811 * calculate_imbalance - Calculate the amount of imbalance present within the
3812 * groups of a given sched_domain during load balance.
3813 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3814 * @this_cpu: Cpu for which currently load balance is being performed.
3815 * @imbalance: The variable to store the imbalance.
3816 */
3817 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3818 unsigned long *imbalance)
3819 {
3820 unsigned long max_pull;
3821 /*
3822 * In the presence of smp nice balancing, certain scenarios can have
3823 * max load less than avg load(as we skip the groups at or below
3824 * its cpu_power, while calculating max_load..)
3825 */
3826 if (sds->max_load < sds->avg_load) {
3827 *imbalance = 0;
3828 return fix_small_imbalance(sds, this_cpu, imbalance);
3829 }
3830
3831 /* Don't want to pull so many tasks that a group would go idle */
3832 max_pull = min(sds->max_load - sds->avg_load,
3833 sds->max_load - sds->busiest_load_per_task);
3834
3835 /* How much load to actually move to equalise the imbalance */
3836 *imbalance = min(max_pull * sds->busiest->__cpu_power,
3837 (sds->avg_load - sds->this_load) * sds->this->__cpu_power)
3838 / SCHED_LOAD_SCALE;
3839
3840 /*
3841 * if *imbalance is less than the average load per runnable task
3842 * there is no gaurantee that any tasks will be moved so we'll have
3843 * a think about bumping its value to force at least one task to be
3844 * moved
3845 */
3846 if (*imbalance < sds->busiest_load_per_task)
3847 return fix_small_imbalance(sds, this_cpu, imbalance);
3848
3849 }
3850 /******* find_busiest_group() helpers end here *********************/
3851
3852 /**
3853 * find_busiest_group - Returns the busiest group within the sched_domain
3854 * if there is an imbalance. If there isn't an imbalance, and
3855 * the user has opted for power-savings, it returns a group whose
3856 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3857 * such a group exists.
3858 *
3859 * Also calculates the amount of weighted load which should be moved
3860 * to restore balance.
3861 *
3862 * @sd: The sched_domain whose busiest group is to be returned.
3863 * @this_cpu: The cpu for which load balancing is currently being performed.
3864 * @imbalance: Variable which stores amount of weighted load which should
3865 * be moved to restore balance/put a group to idle.
3866 * @idle: The idle status of this_cpu.
3867 * @sd_idle: The idleness of sd
3868 * @cpus: The set of CPUs under consideration for load-balancing.
3869 * @balance: Pointer to a variable indicating if this_cpu
3870 * is the appropriate cpu to perform load balancing at this_level.
3871 *
3872 * Returns: - the busiest group if imbalance exists.
3873 * - If no imbalance and user has opted for power-savings balance,
3874 * return the least loaded group whose CPUs can be
3875 * put to idle by rebalancing its tasks onto our group.
3876 */
3877 static struct sched_group *
3878 find_busiest_group(struct sched_domain *sd, int this_cpu,
3879 unsigned long *imbalance, enum cpu_idle_type idle,
3880 int *sd_idle, const struct cpumask *cpus, int *balance)
3881 {
3882 struct sd_lb_stats sds;
3883
3884 memset(&sds, 0, sizeof(sds));
3885
3886 /*
3887 * Compute the various statistics relavent for load balancing at
3888 * this level.
3889 */
3890 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3891 balance, &sds);
3892
3893 /* Cases where imbalance does not exist from POV of this_cpu */
3894 /* 1) this_cpu is not the appropriate cpu to perform load balancing
3895 * at this level.
3896 * 2) There is no busy sibling group to pull from.
3897 * 3) This group is the busiest group.
3898 * 4) This group is more busy than the avg busieness at this
3899 * sched_domain.
3900 * 5) The imbalance is within the specified limit.
3901 * 6) Any rebalance would lead to ping-pong
3902 */
3903 if (balance && !(*balance))
3904 goto ret;
3905
3906 if (!sds.busiest || sds.busiest_nr_running == 0)
3907 goto out_balanced;
3908
3909 if (sds.this_load >= sds.max_load)
3910 goto out_balanced;
3911
3912 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
3913
3914 if (sds.this_load >= sds.avg_load)
3915 goto out_balanced;
3916
3917 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
3918 goto out_balanced;
3919
3920 sds.busiest_load_per_task /= sds.busiest_nr_running;
3921 if (sds.group_imb)
3922 sds.busiest_load_per_task =
3923 min(sds.busiest_load_per_task, sds.avg_load);
3924
3925 /*
3926 * We're trying to get all the cpus to the average_load, so we don't
3927 * want to push ourselves above the average load, nor do we wish to
3928 * reduce the max loaded cpu below the average load, as either of these
3929 * actions would just result in more rebalancing later, and ping-pong
3930 * tasks around. Thus we look for the minimum possible imbalance.
3931 * Negative imbalances (*we* are more loaded than anyone else) will
3932 * be counted as no imbalance for these purposes -- we can't fix that
3933 * by pulling tasks to us. Be careful of negative numbers as they'll
3934 * appear as very large values with unsigned longs.
3935 */
3936 if (sds.max_load <= sds.busiest_load_per_task)
3937 goto out_balanced;
3938
3939 /* Looks like there is an imbalance. Compute it */
3940 calculate_imbalance(&sds, this_cpu, imbalance);
3941 return sds.busiest;
3942
3943 out_balanced:
3944 /*
3945 * There is no obvious imbalance. But check if we can do some balancing
3946 * to save power.
3947 */
3948 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
3949 return sds.busiest;
3950 ret:
3951 *imbalance = 0;
3952 return NULL;
3953 }
3954
3955 /*
3956 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3957 */
3958 static struct rq *
3959 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3960 unsigned long imbalance, const struct cpumask *cpus)
3961 {
3962 struct rq *busiest = NULL, *rq;
3963 unsigned long max_load = 0;
3964 int i;
3965
3966 for_each_cpu(i, sched_group_cpus(group)) {
3967 unsigned long wl;
3968
3969 if (!cpumask_test_cpu(i, cpus))
3970 continue;
3971
3972 rq = cpu_rq(i);
3973 wl = weighted_cpuload(i);
3974
3975 if (rq->nr_running == 1 && wl > imbalance)
3976 continue;
3977
3978 if (wl > max_load) {
3979 max_load = wl;
3980 busiest = rq;
3981 }
3982 }
3983
3984 return busiest;
3985 }
3986
3987 /*
3988 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3989 * so long as it is large enough.
3990 */
3991 #define MAX_PINNED_INTERVAL 512
3992
3993 /* Working cpumask for load_balance and load_balance_newidle. */
3994 static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
3995
3996 /*
3997 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3998 * tasks if there is an imbalance.
3999 */
4000 static int load_balance(int this_cpu, struct rq *this_rq,
4001 struct sched_domain *sd, enum cpu_idle_type idle,
4002 int *balance)
4003 {
4004 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
4005 struct sched_group *group;
4006 unsigned long imbalance;
4007 struct rq *busiest;
4008 unsigned long flags;
4009 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4010
4011 cpumask_setall(cpus);
4012
4013 /*
4014 * When power savings policy is enabled for the parent domain, idle
4015 * sibling can pick up load irrespective of busy siblings. In this case,
4016 * let the state of idle sibling percolate up as CPU_IDLE, instead of
4017 * portraying it as CPU_NOT_IDLE.
4018 */
4019 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
4020 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4021 sd_idle = 1;
4022
4023 schedstat_inc(sd, lb_count[idle]);
4024
4025 redo:
4026 update_shares(sd);
4027 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
4028 cpus, balance);
4029
4030 if (*balance == 0)
4031 goto out_balanced;
4032
4033 if (!group) {
4034 schedstat_inc(sd, lb_nobusyg[idle]);
4035 goto out_balanced;
4036 }
4037
4038 busiest = find_busiest_queue(group, idle, imbalance, cpus);
4039 if (!busiest) {
4040 schedstat_inc(sd, lb_nobusyq[idle]);
4041 goto out_balanced;
4042 }
4043
4044 BUG_ON(busiest == this_rq);
4045
4046 schedstat_add(sd, lb_imbalance[idle], imbalance);
4047
4048 ld_moved = 0;
4049 if (busiest->nr_running > 1) {
4050 /*
4051 * Attempt to move tasks. If find_busiest_group has found
4052 * an imbalance but busiest->nr_running <= 1, the group is
4053 * still unbalanced. ld_moved simply stays zero, so it is
4054 * correctly treated as an imbalance.
4055 */
4056 local_irq_save(flags);
4057 double_rq_lock(this_rq, busiest);
4058 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4059 imbalance, sd, idle, &all_pinned);
4060 double_rq_unlock(this_rq, busiest);
4061 local_irq_restore(flags);
4062
4063 /*
4064 * some other cpu did the load balance for us.
4065 */
4066 if (ld_moved && this_cpu != smp_processor_id())
4067 resched_cpu(this_cpu);
4068
4069 /* All tasks on this runqueue were pinned by CPU affinity */
4070 if (unlikely(all_pinned)) {
4071 cpumask_clear_cpu(cpu_of(busiest), cpus);
4072 if (!cpumask_empty(cpus))
4073 goto redo;
4074 goto out_balanced;
4075 }
4076 }
4077
4078 if (!ld_moved) {
4079 schedstat_inc(sd, lb_failed[idle]);
4080 sd->nr_balance_failed++;
4081
4082 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
4083
4084 spin_lock_irqsave(&busiest->lock, flags);
4085
4086 /* don't kick the migration_thread, if the curr
4087 * task on busiest cpu can't be moved to this_cpu
4088 */
4089 if (!cpumask_test_cpu(this_cpu,
4090 &busiest->curr->cpus_allowed)) {
4091 spin_unlock_irqrestore(&busiest->lock, flags);
4092 all_pinned = 1;
4093 goto out_one_pinned;
4094 }
4095
4096 if (!busiest->active_balance) {
4097 busiest->active_balance = 1;
4098 busiest->push_cpu = this_cpu;
4099 active_balance = 1;
4100 }
4101 spin_unlock_irqrestore(&busiest->lock, flags);
4102 if (active_balance)
4103 wake_up_process(busiest->migration_thread);
4104
4105 /*
4106 * We've kicked active balancing, reset the failure
4107 * counter.
4108 */
4109 sd->nr_balance_failed = sd->cache_nice_tries+1;
4110 }
4111 } else
4112 sd->nr_balance_failed = 0;
4113
4114 if (likely(!active_balance)) {
4115 /* We were unbalanced, so reset the balancing interval */
4116 sd->balance_interval = sd->min_interval;
4117 } else {
4118 /*
4119 * If we've begun active balancing, start to back off. This
4120 * case may not be covered by the all_pinned logic if there
4121 * is only 1 task on the busy runqueue (because we don't call
4122 * move_tasks).
4123 */
4124 if (sd->balance_interval < sd->max_interval)
4125 sd->balance_interval *= 2;
4126 }
4127
4128 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4129 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4130 ld_moved = -1;
4131
4132 goto out;
4133
4134 out_balanced:
4135 schedstat_inc(sd, lb_balanced[idle]);
4136
4137 sd->nr_balance_failed = 0;
4138
4139 out_one_pinned:
4140 /* tune up the balancing interval */
4141 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4142 (sd->balance_interval < sd->max_interval))
4143 sd->balance_interval *= 2;
4144
4145 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4146 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4147 ld_moved = -1;
4148 else
4149 ld_moved = 0;
4150 out:
4151 if (ld_moved)
4152 update_shares(sd);
4153 return ld_moved;
4154 }
4155
4156 /*
4157 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4158 * tasks if there is an imbalance.
4159 *
4160 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
4161 * this_rq is locked.
4162 */
4163 static int
4164 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
4165 {
4166 struct sched_group *group;
4167 struct rq *busiest = NULL;
4168 unsigned long imbalance;
4169 int ld_moved = 0;
4170 int sd_idle = 0;
4171 int all_pinned = 0;
4172 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4173
4174 cpumask_setall(cpus);
4175
4176 /*
4177 * When power savings policy is enabled for the parent domain, idle
4178 * sibling can pick up load irrespective of busy siblings. In this case,
4179 * let the state of idle sibling percolate up as IDLE, instead of
4180 * portraying it as CPU_NOT_IDLE.
4181 */
4182 if (sd->flags & SD_SHARE_CPUPOWER &&
4183 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4184 sd_idle = 1;
4185
4186 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4187 redo:
4188 update_shares_locked(this_rq, sd);
4189 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4190 &sd_idle, cpus, NULL);
4191 if (!group) {
4192 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4193 goto out_balanced;
4194 }
4195
4196 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
4197 if (!busiest) {
4198 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4199 goto out_balanced;
4200 }
4201
4202 BUG_ON(busiest == this_rq);
4203
4204 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4205
4206 ld_moved = 0;
4207 if (busiest->nr_running > 1) {
4208 /* Attempt to move tasks */
4209 double_lock_balance(this_rq, busiest);
4210 /* this_rq->clock is already updated */
4211 update_rq_clock(busiest);
4212 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4213 imbalance, sd, CPU_NEWLY_IDLE,
4214 &all_pinned);
4215 double_unlock_balance(this_rq, busiest);
4216
4217 if (unlikely(all_pinned)) {
4218 cpumask_clear_cpu(cpu_of(busiest), cpus);
4219 if (!cpumask_empty(cpus))
4220 goto redo;
4221 }
4222 }
4223
4224 if (!ld_moved) {
4225 int active_balance = 0;
4226
4227 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4228 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4229 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4230 return -1;
4231
4232 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4233 return -1;
4234
4235 if (sd->nr_balance_failed++ < 2)
4236 return -1;
4237
4238 /*
4239 * The only task running in a non-idle cpu can be moved to this
4240 * cpu in an attempt to completely freeup the other CPU
4241 * package. The same method used to move task in load_balance()
4242 * have been extended for load_balance_newidle() to speedup
4243 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4244 *
4245 * The package power saving logic comes from
4246 * find_busiest_group(). If there are no imbalance, then
4247 * f_b_g() will return NULL. However when sched_mc={1,2} then
4248 * f_b_g() will select a group from which a running task may be
4249 * pulled to this cpu in order to make the other package idle.
4250 * If there is no opportunity to make a package idle and if
4251 * there are no imbalance, then f_b_g() will return NULL and no
4252 * action will be taken in load_balance_newidle().
4253 *
4254 * Under normal task pull operation due to imbalance, there
4255 * will be more than one task in the source run queue and
4256 * move_tasks() will succeed. ld_moved will be true and this
4257 * active balance code will not be triggered.
4258 */
4259
4260 /* Lock busiest in correct order while this_rq is held */
4261 double_lock_balance(this_rq, busiest);
4262
4263 /*
4264 * don't kick the migration_thread, if the curr
4265 * task on busiest cpu can't be moved to this_cpu
4266 */
4267 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4268 double_unlock_balance(this_rq, busiest);
4269 all_pinned = 1;
4270 return ld_moved;
4271 }
4272
4273 if (!busiest->active_balance) {
4274 busiest->active_balance = 1;
4275 busiest->push_cpu = this_cpu;
4276 active_balance = 1;
4277 }
4278
4279 double_unlock_balance(this_rq, busiest);
4280 /*
4281 * Should not call ttwu while holding a rq->lock
4282 */
4283 spin_unlock(&this_rq->lock);
4284 if (active_balance)
4285 wake_up_process(busiest->migration_thread);
4286 spin_lock(&this_rq->lock);
4287
4288 } else
4289 sd->nr_balance_failed = 0;
4290
4291 update_shares_locked(this_rq, sd);
4292 return ld_moved;
4293
4294 out_balanced:
4295 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4296 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4297 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4298 return -1;
4299 sd->nr_balance_failed = 0;
4300
4301 return 0;
4302 }
4303
4304 /*
4305 * idle_balance is called by schedule() if this_cpu is about to become
4306 * idle. Attempts to pull tasks from other CPUs.
4307 */
4308 static void idle_balance(int this_cpu, struct rq *this_rq)
4309 {
4310 struct sched_domain *sd;
4311 int pulled_task = 0;
4312 unsigned long next_balance = jiffies + HZ;
4313
4314 for_each_domain(this_cpu, sd) {
4315 unsigned long interval;
4316
4317 if (!(sd->flags & SD_LOAD_BALANCE))
4318 continue;
4319
4320 if (sd->flags & SD_BALANCE_NEWIDLE)
4321 /* If we've pulled tasks over stop searching: */
4322 pulled_task = load_balance_newidle(this_cpu, this_rq,
4323 sd);
4324
4325 interval = msecs_to_jiffies(sd->balance_interval);
4326 if (time_after(next_balance, sd->last_balance + interval))
4327 next_balance = sd->last_balance + interval;
4328 if (pulled_task)
4329 break;
4330 }
4331 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4332 /*
4333 * We are going idle. next_balance may be set based on
4334 * a busy processor. So reset next_balance.
4335 */
4336 this_rq->next_balance = next_balance;
4337 }
4338 }
4339
4340 /*
4341 * active_load_balance is run by migration threads. It pushes running tasks
4342 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4343 * running on each physical CPU where possible, and avoids physical /
4344 * logical imbalances.
4345 *
4346 * Called with busiest_rq locked.
4347 */
4348 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
4349 {
4350 int target_cpu = busiest_rq->push_cpu;
4351 struct sched_domain *sd;
4352 struct rq *target_rq;
4353
4354 /* Is there any task to move? */
4355 if (busiest_rq->nr_running <= 1)
4356 return;
4357
4358 target_rq = cpu_rq(target_cpu);
4359
4360 /*
4361 * This condition is "impossible", if it occurs
4362 * we need to fix it. Originally reported by
4363 * Bjorn Helgaas on a 128-cpu setup.
4364 */
4365 BUG_ON(busiest_rq == target_rq);
4366
4367 /* move a task from busiest_rq to target_rq */
4368 double_lock_balance(busiest_rq, target_rq);
4369 update_rq_clock(busiest_rq);
4370 update_rq_clock(target_rq);
4371
4372 /* Search for an sd spanning us and the target CPU. */
4373 for_each_domain(target_cpu, sd) {
4374 if ((sd->flags & SD_LOAD_BALANCE) &&
4375 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4376 break;
4377 }
4378
4379 if (likely(sd)) {
4380 schedstat_inc(sd, alb_count);
4381
4382 if (move_one_task(target_rq, target_cpu, busiest_rq,
4383 sd, CPU_IDLE))
4384 schedstat_inc(sd, alb_pushed);
4385 else
4386 schedstat_inc(sd, alb_failed);
4387 }
4388 double_unlock_balance(busiest_rq, target_rq);
4389 }
4390
4391 #ifdef CONFIG_NO_HZ
4392 static struct {
4393 atomic_t load_balancer;
4394 cpumask_var_t cpu_mask;
4395 cpumask_var_t ilb_grp_nohz_mask;
4396 } nohz ____cacheline_aligned = {
4397 .load_balancer = ATOMIC_INIT(-1),
4398 };
4399
4400 int get_nohz_load_balancer(void)
4401 {
4402 return atomic_read(&nohz.load_balancer);
4403 }
4404
4405 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4406 /**
4407 * lowest_flag_domain - Return lowest sched_domain containing flag.
4408 * @cpu: The cpu whose lowest level of sched domain is to
4409 * be returned.
4410 * @flag: The flag to check for the lowest sched_domain
4411 * for the given cpu.
4412 *
4413 * Returns the lowest sched_domain of a cpu which contains the given flag.
4414 */
4415 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4416 {
4417 struct sched_domain *sd;
4418
4419 for_each_domain(cpu, sd)
4420 if (sd && (sd->flags & flag))
4421 break;
4422
4423 return sd;
4424 }
4425
4426 /**
4427 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4428 * @cpu: The cpu whose domains we're iterating over.
4429 * @sd: variable holding the value of the power_savings_sd
4430 * for cpu.
4431 * @flag: The flag to filter the sched_domains to be iterated.
4432 *
4433 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4434 * set, starting from the lowest sched_domain to the highest.
4435 */
4436 #define for_each_flag_domain(cpu, sd, flag) \
4437 for (sd = lowest_flag_domain(cpu, flag); \
4438 (sd && (sd->flags & flag)); sd = sd->parent)
4439
4440 /**
4441 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4442 * @ilb_group: group to be checked for semi-idleness
4443 *
4444 * Returns: 1 if the group is semi-idle. 0 otherwise.
4445 *
4446 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4447 * and atleast one non-idle CPU. This helper function checks if the given
4448 * sched_group is semi-idle or not.
4449 */
4450 static inline int is_semi_idle_group(struct sched_group *ilb_group)
4451 {
4452 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4453 sched_group_cpus(ilb_group));
4454
4455 /*
4456 * A sched_group is semi-idle when it has atleast one busy cpu
4457 * and atleast one idle cpu.
4458 */
4459 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4460 return 0;
4461
4462 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4463 return 0;
4464
4465 return 1;
4466 }
4467 /**
4468 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4469 * @cpu: The cpu which is nominating a new idle_load_balancer.
4470 *
4471 * Returns: Returns the id of the idle load balancer if it exists,
4472 * Else, returns >= nr_cpu_ids.
4473 *
4474 * This algorithm picks the idle load balancer such that it belongs to a
4475 * semi-idle powersavings sched_domain. The idea is to try and avoid
4476 * completely idle packages/cores just for the purpose of idle load balancing
4477 * when there are other idle cpu's which are better suited for that job.
4478 */
4479 static int find_new_ilb(int cpu)
4480 {
4481 struct sched_domain *sd;
4482 struct sched_group *ilb_group;
4483
4484 /*
4485 * Have idle load balancer selection from semi-idle packages only
4486 * when power-aware load balancing is enabled
4487 */
4488 if (!(sched_smt_power_savings || sched_mc_power_savings))
4489 goto out_done;
4490
4491 /*
4492 * Optimize for the case when we have no idle CPUs or only one
4493 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4494 */
4495 if (cpumask_weight(nohz.cpu_mask) < 2)
4496 goto out_done;
4497
4498 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4499 ilb_group = sd->groups;
4500
4501 do {
4502 if (is_semi_idle_group(ilb_group))
4503 return cpumask_first(nohz.ilb_grp_nohz_mask);
4504
4505 ilb_group = ilb_group->next;
4506
4507 } while (ilb_group != sd->groups);
4508 }
4509
4510 out_done:
4511 return cpumask_first(nohz.cpu_mask);
4512 }
4513 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4514 static inline int find_new_ilb(int call_cpu)
4515 {
4516 return cpumask_first(nohz.cpu_mask);
4517 }
4518 #endif
4519
4520 /*
4521 * This routine will try to nominate the ilb (idle load balancing)
4522 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4523 * load balancing on behalf of all those cpus. If all the cpus in the system
4524 * go into this tickless mode, then there will be no ilb owner (as there is
4525 * no need for one) and all the cpus will sleep till the next wakeup event
4526 * arrives...
4527 *
4528 * For the ilb owner, tick is not stopped. And this tick will be used
4529 * for idle load balancing. ilb owner will still be part of
4530 * nohz.cpu_mask..
4531 *
4532 * While stopping the tick, this cpu will become the ilb owner if there
4533 * is no other owner. And will be the owner till that cpu becomes busy
4534 * or if all cpus in the system stop their ticks at which point
4535 * there is no need for ilb owner.
4536 *
4537 * When the ilb owner becomes busy, it nominates another owner, during the
4538 * next busy scheduler_tick()
4539 */
4540 int select_nohz_load_balancer(int stop_tick)
4541 {
4542 int cpu = smp_processor_id();
4543
4544 if (stop_tick) {
4545 cpu_rq(cpu)->in_nohz_recently = 1;
4546
4547 if (!cpu_active(cpu)) {
4548 if (atomic_read(&nohz.load_balancer) != cpu)
4549 return 0;
4550
4551 /*
4552 * If we are going offline and still the leader,
4553 * give up!
4554 */
4555 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4556 BUG();
4557
4558 return 0;
4559 }
4560
4561 cpumask_set_cpu(cpu, nohz.cpu_mask);
4562
4563 /* time for ilb owner also to sleep */
4564 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4565 if (atomic_read(&nohz.load_balancer) == cpu)
4566 atomic_set(&nohz.load_balancer, -1);
4567 return 0;
4568 }
4569
4570 if (atomic_read(&nohz.load_balancer) == -1) {
4571 /* make me the ilb owner */
4572 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4573 return 1;
4574 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4575 int new_ilb;
4576
4577 if (!(sched_smt_power_savings ||
4578 sched_mc_power_savings))
4579 return 1;
4580 /*
4581 * Check to see if there is a more power-efficient
4582 * ilb.
4583 */
4584 new_ilb = find_new_ilb(cpu);
4585 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4586 atomic_set(&nohz.load_balancer, -1);
4587 resched_cpu(new_ilb);
4588 return 0;
4589 }
4590 return 1;
4591 }
4592 } else {
4593 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4594 return 0;
4595
4596 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4597
4598 if (atomic_read(&nohz.load_balancer) == cpu)
4599 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4600 BUG();
4601 }
4602 return 0;
4603 }
4604 #endif
4605
4606 static DEFINE_SPINLOCK(balancing);
4607
4608 /*
4609 * It checks each scheduling domain to see if it is due to be balanced,
4610 * and initiates a balancing operation if so.
4611 *
4612 * Balancing parameters are set up in arch_init_sched_domains.
4613 */
4614 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4615 {
4616 int balance = 1;
4617 struct rq *rq = cpu_rq(cpu);
4618 unsigned long interval;
4619 struct sched_domain *sd;
4620 /* Earliest time when we have to do rebalance again */
4621 unsigned long next_balance = jiffies + 60*HZ;
4622 int update_next_balance = 0;
4623 int need_serialize;
4624
4625 for_each_domain(cpu, sd) {
4626 if (!(sd->flags & SD_LOAD_BALANCE))
4627 continue;
4628
4629 interval = sd->balance_interval;
4630 if (idle != CPU_IDLE)
4631 interval *= sd->busy_factor;
4632
4633 /* scale ms to jiffies */
4634 interval = msecs_to_jiffies(interval);
4635 if (unlikely(!interval))
4636 interval = 1;
4637 if (interval > HZ*NR_CPUS/10)
4638 interval = HZ*NR_CPUS/10;
4639
4640 need_serialize = sd->flags & SD_SERIALIZE;
4641
4642 if (need_serialize) {
4643 if (!spin_trylock(&balancing))
4644 goto out;
4645 }
4646
4647 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4648 if (load_balance(cpu, rq, sd, idle, &balance)) {
4649 /*
4650 * We've pulled tasks over so either we're no
4651 * longer idle, or one of our SMT siblings is
4652 * not idle.
4653 */
4654 idle = CPU_NOT_IDLE;
4655 }
4656 sd->last_balance = jiffies;
4657 }
4658 if (need_serialize)
4659 spin_unlock(&balancing);
4660 out:
4661 if (time_after(next_balance, sd->last_balance + interval)) {
4662 next_balance = sd->last_balance + interval;
4663 update_next_balance = 1;
4664 }
4665
4666 /*
4667 * Stop the load balance at this level. There is another
4668 * CPU in our sched group which is doing load balancing more
4669 * actively.
4670 */
4671 if (!balance)
4672 break;
4673 }
4674
4675 /*
4676 * next_balance will be updated only when there is a need.
4677 * When the cpu is attached to null domain for ex, it will not be
4678 * updated.
4679 */
4680 if (likely(update_next_balance))
4681 rq->next_balance = next_balance;
4682 }
4683
4684 /*
4685 * run_rebalance_domains is triggered when needed from the scheduler tick.
4686 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4687 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4688 */
4689 static void run_rebalance_domains(struct softirq_action *h)
4690 {
4691 int this_cpu = smp_processor_id();
4692 struct rq *this_rq = cpu_rq(this_cpu);
4693 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4694 CPU_IDLE : CPU_NOT_IDLE;
4695
4696 rebalance_domains(this_cpu, idle);
4697
4698 #ifdef CONFIG_NO_HZ
4699 /*
4700 * If this cpu is the owner for idle load balancing, then do the
4701 * balancing on behalf of the other idle cpus whose ticks are
4702 * stopped.
4703 */
4704 if (this_rq->idle_at_tick &&
4705 atomic_read(&nohz.load_balancer) == this_cpu) {
4706 struct rq *rq;
4707 int balance_cpu;
4708
4709 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4710 if (balance_cpu == this_cpu)
4711 continue;
4712
4713 /*
4714 * If this cpu gets work to do, stop the load balancing
4715 * work being done for other cpus. Next load
4716 * balancing owner will pick it up.
4717 */
4718 if (need_resched())
4719 break;
4720
4721 rebalance_domains(balance_cpu, CPU_IDLE);
4722
4723 rq = cpu_rq(balance_cpu);
4724 if (time_after(this_rq->next_balance, rq->next_balance))
4725 this_rq->next_balance = rq->next_balance;
4726 }
4727 }
4728 #endif
4729 }
4730
4731 static inline int on_null_domain(int cpu)
4732 {
4733 return !rcu_dereference(cpu_rq(cpu)->sd);
4734 }
4735
4736 /*
4737 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4738 *
4739 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4740 * idle load balancing owner or decide to stop the periodic load balancing,
4741 * if the whole system is idle.
4742 */
4743 static inline void trigger_load_balance(struct rq *rq, int cpu)
4744 {
4745 #ifdef CONFIG_NO_HZ
4746 /*
4747 * If we were in the nohz mode recently and busy at the current
4748 * scheduler tick, then check if we need to nominate new idle
4749 * load balancer.
4750 */
4751 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4752 rq->in_nohz_recently = 0;
4753
4754 if (atomic_read(&nohz.load_balancer) == cpu) {
4755 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4756 atomic_set(&nohz.load_balancer, -1);
4757 }
4758
4759 if (atomic_read(&nohz.load_balancer) == -1) {
4760 int ilb = find_new_ilb(cpu);
4761
4762 if (ilb < nr_cpu_ids)
4763 resched_cpu(ilb);
4764 }
4765 }
4766
4767 /*
4768 * If this cpu is idle and doing idle load balancing for all the
4769 * cpus with ticks stopped, is it time for that to stop?
4770 */
4771 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4772 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4773 resched_cpu(cpu);
4774 return;
4775 }
4776
4777 /*
4778 * If this cpu is idle and the idle load balancing is done by
4779 * someone else, then no need raise the SCHED_SOFTIRQ
4780 */
4781 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4782 cpumask_test_cpu(cpu, nohz.cpu_mask))
4783 return;
4784 #endif
4785 /* Don't need to rebalance while attached to NULL domain */
4786 if (time_after_eq(jiffies, rq->next_balance) &&
4787 likely(!on_null_domain(cpu)))
4788 raise_softirq(SCHED_SOFTIRQ);
4789 }
4790
4791 #else /* CONFIG_SMP */
4792
4793 /*
4794 * on UP we do not need to balance between CPUs:
4795 */
4796 static inline void idle_balance(int cpu, struct rq *rq)
4797 {
4798 }
4799
4800 #endif
4801
4802 DEFINE_PER_CPU(struct kernel_stat, kstat);
4803
4804 EXPORT_PER_CPU_SYMBOL(kstat);
4805
4806 /*
4807 * Return any ns on the sched_clock that have not yet been accounted in
4808 * @p in case that task is currently running.
4809 *
4810 * Called with task_rq_lock() held on @rq.
4811 */
4812 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4813 {
4814 u64 ns = 0;
4815
4816 if (task_current(rq, p)) {
4817 update_rq_clock(rq);
4818 ns = rq->clock - p->se.exec_start;
4819 if ((s64)ns < 0)
4820 ns = 0;
4821 }
4822
4823 return ns;
4824 }
4825
4826 unsigned long long task_delta_exec(struct task_struct *p)
4827 {
4828 unsigned long flags;
4829 struct rq *rq;
4830 u64 ns = 0;
4831
4832 rq = task_rq_lock(p, &flags);
4833 ns = do_task_delta_exec(p, rq);
4834 task_rq_unlock(rq, &flags);
4835
4836 return ns;
4837 }
4838
4839 /*
4840 * Return accounted runtime for the task.
4841 * In case the task is currently running, return the runtime plus current's
4842 * pending runtime that have not been accounted yet.
4843 */
4844 unsigned long long task_sched_runtime(struct task_struct *p)
4845 {
4846 unsigned long flags;
4847 struct rq *rq;
4848 u64 ns = 0;
4849
4850 rq = task_rq_lock(p, &flags);
4851 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4852 task_rq_unlock(rq, &flags);
4853
4854 return ns;
4855 }
4856
4857 /*
4858 * Return sum_exec_runtime for the thread group.
4859 * In case the task is currently running, return the sum plus current's
4860 * pending runtime that have not been accounted yet.
4861 *
4862 * Note that the thread group might have other running tasks as well,
4863 * so the return value not includes other pending runtime that other
4864 * running tasks might have.
4865 */
4866 unsigned long long thread_group_sched_runtime(struct task_struct *p)
4867 {
4868 struct task_cputime totals;
4869 unsigned long flags;
4870 struct rq *rq;
4871 u64 ns;
4872
4873 rq = task_rq_lock(p, &flags);
4874 thread_group_cputime(p, &totals);
4875 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
4876 task_rq_unlock(rq, &flags);
4877
4878 return ns;
4879 }
4880
4881 /*
4882 * Account user cpu time to a process.
4883 * @p: the process that the cpu time gets accounted to
4884 * @cputime: the cpu time spent in user space since the last update
4885 * @cputime_scaled: cputime scaled by cpu frequency
4886 */
4887 void account_user_time(struct task_struct *p, cputime_t cputime,
4888 cputime_t cputime_scaled)
4889 {
4890 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4891 cputime64_t tmp;
4892
4893 /* Add user time to process. */
4894 p->utime = cputime_add(p->utime, cputime);
4895 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4896 account_group_user_time(p, cputime);
4897
4898 /* Add user time to cpustat. */
4899 tmp = cputime_to_cputime64(cputime);
4900 if (TASK_NICE(p) > 0)
4901 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4902 else
4903 cpustat->user = cputime64_add(cpustat->user, tmp);
4904
4905 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
4906 /* Account for user time used */
4907 acct_update_integrals(p);
4908 }
4909
4910 /*
4911 * Account guest cpu time to a process.
4912 * @p: the process that the cpu time gets accounted to
4913 * @cputime: the cpu time spent in virtual machine since the last update
4914 * @cputime_scaled: cputime scaled by cpu frequency
4915 */
4916 static void account_guest_time(struct task_struct *p, cputime_t cputime,
4917 cputime_t cputime_scaled)
4918 {
4919 cputime64_t tmp;
4920 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4921
4922 tmp = cputime_to_cputime64(cputime);
4923
4924 /* Add guest time to process. */
4925 p->utime = cputime_add(p->utime, cputime);
4926 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4927 account_group_user_time(p, cputime);
4928 p->gtime = cputime_add(p->gtime, cputime);
4929
4930 /* Add guest time to cpustat. */
4931 cpustat->user = cputime64_add(cpustat->user, tmp);
4932 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4933 }
4934
4935 /*
4936 * Account system cpu time to a process.
4937 * @p: the process that the cpu time gets accounted to
4938 * @hardirq_offset: the offset to subtract from hardirq_count()
4939 * @cputime: the cpu time spent in kernel space since the last update
4940 * @cputime_scaled: cputime scaled by cpu frequency
4941 */
4942 void account_system_time(struct task_struct *p, int hardirq_offset,
4943 cputime_t cputime, cputime_t cputime_scaled)
4944 {
4945 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4946 cputime64_t tmp;
4947
4948 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4949 account_guest_time(p, cputime, cputime_scaled);
4950 return;
4951 }
4952
4953 /* Add system time to process. */
4954 p->stime = cputime_add(p->stime, cputime);
4955 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
4956 account_group_system_time(p, cputime);
4957
4958 /* Add system time to cpustat. */
4959 tmp = cputime_to_cputime64(cputime);
4960 if (hardirq_count() - hardirq_offset)
4961 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4962 else if (softirq_count())
4963 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4964 else
4965 cpustat->system = cputime64_add(cpustat->system, tmp);
4966
4967 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
4968
4969 /* Account for system time used */
4970 acct_update_integrals(p);
4971 }
4972
4973 /*
4974 * Account for involuntary wait time.
4975 * @steal: the cpu time spent in involuntary wait
4976 */
4977 void account_steal_time(cputime_t cputime)
4978 {
4979 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4980 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4981
4982 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
4983 }
4984
4985 /*
4986 * Account for idle time.
4987 * @cputime: the cpu time spent in idle wait
4988 */
4989 void account_idle_time(cputime_t cputime)
4990 {
4991 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4992 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4993 struct rq *rq = this_rq();
4994
4995 if (atomic_read(&rq->nr_iowait) > 0)
4996 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
4997 else
4998 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
4999 }
5000
5001 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
5002
5003 /*
5004 * Account a single tick of cpu time.
5005 * @p: the process that the cpu time gets accounted to
5006 * @user_tick: indicates if the tick is a user or a system tick
5007 */
5008 void account_process_tick(struct task_struct *p, int user_tick)
5009 {
5010 cputime_t one_jiffy = jiffies_to_cputime(1);
5011 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
5012 struct rq *rq = this_rq();
5013
5014 if (user_tick)
5015 account_user_time(p, one_jiffy, one_jiffy_scaled);
5016 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
5017 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
5018 one_jiffy_scaled);
5019 else
5020 account_idle_time(one_jiffy);
5021 }
5022
5023 /*
5024 * Account multiple ticks of steal time.
5025 * @p: the process from which the cpu time has been stolen
5026 * @ticks: number of stolen ticks
5027 */
5028 void account_steal_ticks(unsigned long ticks)
5029 {
5030 account_steal_time(jiffies_to_cputime(ticks));
5031 }
5032
5033 /*
5034 * Account multiple ticks of idle time.
5035 * @ticks: number of stolen ticks
5036 */
5037 void account_idle_ticks(unsigned long ticks)
5038 {
5039 account_idle_time(jiffies_to_cputime(ticks));
5040 }
5041
5042 #endif
5043
5044 /*
5045 * Use precise platform statistics if available:
5046 */
5047 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
5048 cputime_t task_utime(struct task_struct *p)
5049 {
5050 return p->utime;
5051 }
5052
5053 cputime_t task_stime(struct task_struct *p)
5054 {
5055 return p->stime;
5056 }
5057 #else
5058 cputime_t task_utime(struct task_struct *p)
5059 {
5060 clock_t utime = cputime_to_clock_t(p->utime),
5061 total = utime + cputime_to_clock_t(p->stime);
5062 u64 temp;
5063
5064 /*
5065 * Use CFS's precise accounting:
5066 */
5067 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
5068
5069 if (total) {
5070 temp *= utime;
5071 do_div(temp, total);
5072 }
5073 utime = (clock_t)temp;
5074
5075 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
5076 return p->prev_utime;
5077 }
5078
5079 cputime_t task_stime(struct task_struct *p)
5080 {
5081 clock_t stime;
5082
5083 /*
5084 * Use CFS's precise accounting. (we subtract utime from
5085 * the total, to make sure the total observed by userspace
5086 * grows monotonically - apps rely on that):
5087 */
5088 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
5089 cputime_to_clock_t(task_utime(p));
5090
5091 if (stime >= 0)
5092 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
5093
5094 return p->prev_stime;
5095 }
5096 #endif
5097
5098 inline cputime_t task_gtime(struct task_struct *p)
5099 {
5100 return p->gtime;
5101 }
5102
5103 /*
5104 * This function gets called by the timer code, with HZ frequency.
5105 * We call it with interrupts disabled.
5106 *
5107 * It also gets called by the fork code, when changing the parent's
5108 * timeslices.
5109 */
5110 void scheduler_tick(void)
5111 {
5112 int cpu = smp_processor_id();
5113 struct rq *rq = cpu_rq(cpu);
5114 struct task_struct *curr = rq->curr;
5115
5116 sched_clock_tick();
5117
5118 spin_lock(&rq->lock);
5119 update_rq_clock(rq);
5120 update_cpu_load(rq);
5121 curr->sched_class->task_tick(rq, curr, 0);
5122 spin_unlock(&rq->lock);
5123
5124 perf_counter_task_tick(curr, cpu);
5125
5126 #ifdef CONFIG_SMP
5127 rq->idle_at_tick = idle_cpu(cpu);
5128 trigger_load_balance(rq, cpu);
5129 #endif
5130 }
5131
5132 notrace unsigned long get_parent_ip(unsigned long addr)
5133 {
5134 if (in_lock_functions(addr)) {
5135 addr = CALLER_ADDR2;
5136 if (in_lock_functions(addr))
5137 addr = CALLER_ADDR3;
5138 }
5139 return addr;
5140 }
5141
5142 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5143 defined(CONFIG_PREEMPT_TRACER))
5144
5145 void __kprobes add_preempt_count(int val)
5146 {
5147 #ifdef CONFIG_DEBUG_PREEMPT
5148 /*
5149 * Underflow?
5150 */
5151 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5152 return;
5153 #endif
5154 preempt_count() += val;
5155 #ifdef CONFIG_DEBUG_PREEMPT
5156 /*
5157 * Spinlock count overflowing soon?
5158 */
5159 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5160 PREEMPT_MASK - 10);
5161 #endif
5162 if (preempt_count() == val)
5163 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5164 }
5165 EXPORT_SYMBOL(add_preempt_count);
5166
5167 void __kprobes sub_preempt_count(int val)
5168 {
5169 #ifdef CONFIG_DEBUG_PREEMPT
5170 /*
5171 * Underflow?
5172 */
5173 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5174 return;
5175 /*
5176 * Is the spinlock portion underflowing?
5177 */
5178 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5179 !(preempt_count() & PREEMPT_MASK)))
5180 return;
5181 #endif
5182
5183 if (preempt_count() == val)
5184 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5185 preempt_count() -= val;
5186 }
5187 EXPORT_SYMBOL(sub_preempt_count);
5188
5189 #endif
5190
5191 /*
5192 * Print scheduling while atomic bug:
5193 */
5194 static noinline void __schedule_bug(struct task_struct *prev)
5195 {
5196 struct pt_regs *regs = get_irq_regs();
5197
5198 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5199 prev->comm, prev->pid, preempt_count());
5200
5201 debug_show_held_locks(prev);
5202 print_modules();
5203 if (irqs_disabled())
5204 print_irqtrace_events(prev);
5205
5206 if (regs)
5207 show_regs(regs);
5208 else
5209 dump_stack();
5210 }
5211
5212 /*
5213 * Various schedule()-time debugging checks and statistics:
5214 */
5215 static inline void schedule_debug(struct task_struct *prev)
5216 {
5217 /*
5218 * Test if we are atomic. Since do_exit() needs to call into
5219 * schedule() atomically, we ignore that path for now.
5220 * Otherwise, whine if we are scheduling when we should not be.
5221 */
5222 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
5223 __schedule_bug(prev);
5224
5225 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5226
5227 schedstat_inc(this_rq(), sched_count);
5228 #ifdef CONFIG_SCHEDSTATS
5229 if (unlikely(prev->lock_depth >= 0)) {
5230 schedstat_inc(this_rq(), bkl_count);
5231 schedstat_inc(prev, sched_info.bkl_count);
5232 }
5233 #endif
5234 }
5235
5236 static void put_prev_task(struct rq *rq, struct task_struct *prev)
5237 {
5238 if (prev->state == TASK_RUNNING) {
5239 u64 runtime = prev->se.sum_exec_runtime;
5240
5241 runtime -= prev->se.prev_sum_exec_runtime;
5242 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5243
5244 /*
5245 * In order to avoid avg_overlap growing stale when we are
5246 * indeed overlapping and hence not getting put to sleep, grow
5247 * the avg_overlap on preemption.
5248 *
5249 * We use the average preemption runtime because that
5250 * correlates to the amount of cache footprint a task can
5251 * build up.
5252 */
5253 update_avg(&prev->se.avg_overlap, runtime);
5254 }
5255 prev->sched_class->put_prev_task(rq, prev);
5256 }
5257
5258 /*
5259 * Pick up the highest-prio task:
5260 */
5261 static inline struct task_struct *
5262 pick_next_task(struct rq *rq)
5263 {
5264 const struct sched_class *class;
5265 struct task_struct *p;
5266
5267 /*
5268 * Optimization: we know that if all tasks are in
5269 * the fair class we can call that function directly:
5270 */
5271 if (likely(rq->nr_running == rq->cfs.nr_running)) {
5272 p = fair_sched_class.pick_next_task(rq);
5273 if (likely(p))
5274 return p;
5275 }
5276
5277 class = sched_class_highest;
5278 for ( ; ; ) {
5279 p = class->pick_next_task(rq);
5280 if (p)
5281 return p;
5282 /*
5283 * Will never be NULL as the idle class always
5284 * returns a non-NULL p:
5285 */
5286 class = class->next;
5287 }
5288 }
5289
5290 /*
5291 * schedule() is the main scheduler function.
5292 */
5293 asmlinkage void __sched schedule(void)
5294 {
5295 struct task_struct *prev, *next;
5296 unsigned long *switch_count;
5297 struct rq *rq;
5298 int cpu;
5299
5300 need_resched:
5301 preempt_disable();
5302 cpu = smp_processor_id();
5303 rq = cpu_rq(cpu);
5304 rcu_qsctr_inc(cpu);
5305 prev = rq->curr;
5306 switch_count = &prev->nivcsw;
5307
5308 release_kernel_lock(prev);
5309 need_resched_nonpreemptible:
5310
5311 schedule_debug(prev);
5312
5313 if (sched_feat(HRTICK))
5314 hrtick_clear(rq);
5315
5316 spin_lock_irq(&rq->lock);
5317 update_rq_clock(rq);
5318 clear_tsk_need_resched(prev);
5319
5320 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5321 if (unlikely(signal_pending_state(prev->state, prev)))
5322 prev->state = TASK_RUNNING;
5323 else
5324 deactivate_task(rq, prev, 1);
5325 switch_count = &prev->nvcsw;
5326 }
5327
5328 #ifdef CONFIG_SMP
5329 if (prev->sched_class->pre_schedule)
5330 prev->sched_class->pre_schedule(rq, prev);
5331 #endif
5332
5333 if (unlikely(!rq->nr_running))
5334 idle_balance(cpu, rq);
5335
5336 put_prev_task(rq, prev);
5337 next = pick_next_task(rq);
5338
5339 if (likely(prev != next)) {
5340 sched_info_switch(prev, next);
5341 perf_counter_task_sched_out(prev, next, cpu);
5342
5343 rq->nr_switches++;
5344 rq->curr = next;
5345 ++*switch_count;
5346
5347 context_switch(rq, prev, next); /* unlocks the rq */
5348 /*
5349 * the context switch might have flipped the stack from under
5350 * us, hence refresh the local variables.
5351 */
5352 cpu = smp_processor_id();
5353 rq = cpu_rq(cpu);
5354 } else
5355 spin_unlock_irq(&rq->lock);
5356
5357 if (unlikely(reacquire_kernel_lock(current) < 0))
5358 goto need_resched_nonpreemptible;
5359
5360 preempt_enable_no_resched();
5361 if (need_resched())
5362 goto need_resched;
5363 }
5364 EXPORT_SYMBOL(schedule);
5365
5366 #ifdef CONFIG_SMP
5367 /*
5368 * Look out! "owner" is an entirely speculative pointer
5369 * access and not reliable.
5370 */
5371 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5372 {
5373 unsigned int cpu;
5374 struct rq *rq;
5375
5376 if (!sched_feat(OWNER_SPIN))
5377 return 0;
5378
5379 #ifdef CONFIG_DEBUG_PAGEALLOC
5380 /*
5381 * Need to access the cpu field knowing that
5382 * DEBUG_PAGEALLOC could have unmapped it if
5383 * the mutex owner just released it and exited.
5384 */
5385 if (probe_kernel_address(&owner->cpu, cpu))
5386 goto out;
5387 #else
5388 cpu = owner->cpu;
5389 #endif
5390
5391 /*
5392 * Even if the access succeeded (likely case),
5393 * the cpu field may no longer be valid.
5394 */
5395 if (cpu >= nr_cpumask_bits)
5396 goto out;
5397
5398 /*
5399 * We need to validate that we can do a
5400 * get_cpu() and that we have the percpu area.
5401 */
5402 if (!cpu_online(cpu))
5403 goto out;
5404
5405 rq = cpu_rq(cpu);
5406
5407 for (;;) {
5408 /*
5409 * Owner changed, break to re-assess state.
5410 */
5411 if (lock->owner != owner)
5412 break;
5413
5414 /*
5415 * Is that owner really running on that cpu?
5416 */
5417 if (task_thread_info(rq->curr) != owner || need_resched())
5418 return 0;
5419
5420 cpu_relax();
5421 }
5422 out:
5423 return 1;
5424 }
5425 #endif
5426
5427 #ifdef CONFIG_PREEMPT
5428 /*
5429 * this is the entry point to schedule() from in-kernel preemption
5430 * off of preempt_enable. Kernel preemptions off return from interrupt
5431 * occur there and call schedule directly.
5432 */
5433 asmlinkage void __sched preempt_schedule(void)
5434 {
5435 struct thread_info *ti = current_thread_info();
5436
5437 /*
5438 * If there is a non-zero preempt_count or interrupts are disabled,
5439 * we do not want to preempt the current task. Just return..
5440 */
5441 if (likely(ti->preempt_count || irqs_disabled()))
5442 return;
5443
5444 do {
5445 add_preempt_count(PREEMPT_ACTIVE);
5446 schedule();
5447 sub_preempt_count(PREEMPT_ACTIVE);
5448
5449 /*
5450 * Check again in case we missed a preemption opportunity
5451 * between schedule and now.
5452 */
5453 barrier();
5454 } while (need_resched());
5455 }
5456 EXPORT_SYMBOL(preempt_schedule);
5457
5458 /*
5459 * this is the entry point to schedule() from kernel preemption
5460 * off of irq context.
5461 * Note, that this is called and return with irqs disabled. This will
5462 * protect us against recursive calling from irq.
5463 */
5464 asmlinkage void __sched preempt_schedule_irq(void)
5465 {
5466 struct thread_info *ti = current_thread_info();
5467
5468 /* Catch callers which need to be fixed */
5469 BUG_ON(ti->preempt_count || !irqs_disabled());
5470
5471 do {
5472 add_preempt_count(PREEMPT_ACTIVE);
5473 local_irq_enable();
5474 schedule();
5475 local_irq_disable();
5476 sub_preempt_count(PREEMPT_ACTIVE);
5477
5478 /*
5479 * Check again in case we missed a preemption opportunity
5480 * between schedule and now.
5481 */
5482 barrier();
5483 } while (need_resched());
5484 }
5485
5486 #endif /* CONFIG_PREEMPT */
5487
5488 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
5489 void *key)
5490 {
5491 return try_to_wake_up(curr->private, mode, sync);
5492 }
5493 EXPORT_SYMBOL(default_wake_function);
5494
5495 /*
5496 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5497 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
5498 * number) then we wake all the non-exclusive tasks and one exclusive task.
5499 *
5500 * There are circumstances in which we can try to wake a task which has already
5501 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
5502 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5503 */
5504 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
5505 int nr_exclusive, int sync, void *key)
5506 {
5507 wait_queue_t *curr, *next;
5508
5509 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5510 unsigned flags = curr->flags;
5511
5512 if (curr->func(curr, mode, sync, key) &&
5513 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
5514 break;
5515 }
5516 }
5517
5518 /**
5519 * __wake_up - wake up threads blocked on a waitqueue.
5520 * @q: the waitqueue
5521 * @mode: which threads
5522 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5523 * @key: is directly passed to the wakeup function
5524 *
5525 * It may be assumed that this function implies a write memory barrier before
5526 * changing the task state if and only if any tasks are woken up.
5527 */
5528 void __wake_up(wait_queue_head_t *q, unsigned int mode,
5529 int nr_exclusive, void *key)
5530 {
5531 unsigned long flags;
5532
5533 spin_lock_irqsave(&q->lock, flags);
5534 __wake_up_common(q, mode, nr_exclusive, 0, key);
5535 spin_unlock_irqrestore(&q->lock, flags);
5536 }
5537 EXPORT_SYMBOL(__wake_up);
5538
5539 /*
5540 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5541 */
5542 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
5543 {
5544 __wake_up_common(q, mode, 1, 0, NULL);
5545 }
5546
5547 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5548 {
5549 __wake_up_common(q, mode, 1, 0, key);
5550 }
5551
5552 /**
5553 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
5554 * @q: the waitqueue
5555 * @mode: which threads
5556 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5557 * @key: opaque value to be passed to wakeup targets
5558 *
5559 * The sync wakeup differs that the waker knows that it will schedule
5560 * away soon, so while the target thread will be woken up, it will not
5561 * be migrated to another CPU - ie. the two threads are 'synchronized'
5562 * with each other. This can prevent needless bouncing between CPUs.
5563 *
5564 * On UP it can prevent extra preemption.
5565 *
5566 * It may be assumed that this function implies a write memory barrier before
5567 * changing the task state if and only if any tasks are woken up.
5568 */
5569 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5570 int nr_exclusive, void *key)
5571 {
5572 unsigned long flags;
5573 int sync = 1;
5574
5575 if (unlikely(!q))
5576 return;
5577
5578 if (unlikely(!nr_exclusive))
5579 sync = 0;
5580
5581 spin_lock_irqsave(&q->lock, flags);
5582 __wake_up_common(q, mode, nr_exclusive, sync, key);
5583 spin_unlock_irqrestore(&q->lock, flags);
5584 }
5585 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5586
5587 /*
5588 * __wake_up_sync - see __wake_up_sync_key()
5589 */
5590 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5591 {
5592 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5593 }
5594 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5595
5596 /**
5597 * complete: - signals a single thread waiting on this completion
5598 * @x: holds the state of this particular completion
5599 *
5600 * This will wake up a single thread waiting on this completion. Threads will be
5601 * awakened in the same order in which they were queued.
5602 *
5603 * See also complete_all(), wait_for_completion() and related routines.
5604 *
5605 * It may be assumed that this function implies a write memory barrier before
5606 * changing the task state if and only if any tasks are woken up.
5607 */
5608 void complete(struct completion *x)
5609 {
5610 unsigned long flags;
5611
5612 spin_lock_irqsave(&x->wait.lock, flags);
5613 x->done++;
5614 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
5615 spin_unlock_irqrestore(&x->wait.lock, flags);
5616 }
5617 EXPORT_SYMBOL(complete);
5618
5619 /**
5620 * complete_all: - signals all threads waiting on this completion
5621 * @x: holds the state of this particular completion
5622 *
5623 * This will wake up all threads waiting on this particular completion event.
5624 *
5625 * It may be assumed that this function implies a write memory barrier before
5626 * changing the task state if and only if any tasks are woken up.
5627 */
5628 void complete_all(struct completion *x)
5629 {
5630 unsigned long flags;
5631
5632 spin_lock_irqsave(&x->wait.lock, flags);
5633 x->done += UINT_MAX/2;
5634 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
5635 spin_unlock_irqrestore(&x->wait.lock, flags);
5636 }
5637 EXPORT_SYMBOL(complete_all);
5638
5639 static inline long __sched
5640 do_wait_for_common(struct completion *x, long timeout, int state)
5641 {
5642 if (!x->done) {
5643 DECLARE_WAITQUEUE(wait, current);
5644
5645 wait.flags |= WQ_FLAG_EXCLUSIVE;
5646 __add_wait_queue_tail(&x->wait, &wait);
5647 do {
5648 if (signal_pending_state(state, current)) {
5649 timeout = -ERESTARTSYS;
5650 break;
5651 }
5652 __set_current_state(state);
5653 spin_unlock_irq(&x->wait.lock);
5654 timeout = schedule_timeout(timeout);
5655 spin_lock_irq(&x->wait.lock);
5656 } while (!x->done && timeout);
5657 __remove_wait_queue(&x->wait, &wait);
5658 if (!x->done)
5659 return timeout;
5660 }
5661 x->done--;
5662 return timeout ?: 1;
5663 }
5664
5665 static long __sched
5666 wait_for_common(struct completion *x, long timeout, int state)
5667 {
5668 might_sleep();
5669
5670 spin_lock_irq(&x->wait.lock);
5671 timeout = do_wait_for_common(x, timeout, state);
5672 spin_unlock_irq(&x->wait.lock);
5673 return timeout;
5674 }
5675
5676 /**
5677 * wait_for_completion: - waits for completion of a task
5678 * @x: holds the state of this particular completion
5679 *
5680 * This waits to be signaled for completion of a specific task. It is NOT
5681 * interruptible and there is no timeout.
5682 *
5683 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5684 * and interrupt capability. Also see complete().
5685 */
5686 void __sched wait_for_completion(struct completion *x)
5687 {
5688 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
5689 }
5690 EXPORT_SYMBOL(wait_for_completion);
5691
5692 /**
5693 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5694 * @x: holds the state of this particular completion
5695 * @timeout: timeout value in jiffies
5696 *
5697 * This waits for either a completion of a specific task to be signaled or for a
5698 * specified timeout to expire. The timeout is in jiffies. It is not
5699 * interruptible.
5700 */
5701 unsigned long __sched
5702 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
5703 {
5704 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
5705 }
5706 EXPORT_SYMBOL(wait_for_completion_timeout);
5707
5708 /**
5709 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5710 * @x: holds the state of this particular completion
5711 *
5712 * This waits for completion of a specific task to be signaled. It is
5713 * interruptible.
5714 */
5715 int __sched wait_for_completion_interruptible(struct completion *x)
5716 {
5717 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5718 if (t == -ERESTARTSYS)
5719 return t;
5720 return 0;
5721 }
5722 EXPORT_SYMBOL(wait_for_completion_interruptible);
5723
5724 /**
5725 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5726 * @x: holds the state of this particular completion
5727 * @timeout: timeout value in jiffies
5728 *
5729 * This waits for either a completion of a specific task to be signaled or for a
5730 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5731 */
5732 unsigned long __sched
5733 wait_for_completion_interruptible_timeout(struct completion *x,
5734 unsigned long timeout)
5735 {
5736 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
5737 }
5738 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
5739
5740 /**
5741 * wait_for_completion_killable: - waits for completion of a task (killable)
5742 * @x: holds the state of this particular completion
5743 *
5744 * This waits to be signaled for completion of a specific task. It can be
5745 * interrupted by a kill signal.
5746 */
5747 int __sched wait_for_completion_killable(struct completion *x)
5748 {
5749 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5750 if (t == -ERESTARTSYS)
5751 return t;
5752 return 0;
5753 }
5754 EXPORT_SYMBOL(wait_for_completion_killable);
5755
5756 /**
5757 * try_wait_for_completion - try to decrement a completion without blocking
5758 * @x: completion structure
5759 *
5760 * Returns: 0 if a decrement cannot be done without blocking
5761 * 1 if a decrement succeeded.
5762 *
5763 * If a completion is being used as a counting completion,
5764 * attempt to decrement the counter without blocking. This
5765 * enables us to avoid waiting if the resource the completion
5766 * is protecting is not available.
5767 */
5768 bool try_wait_for_completion(struct completion *x)
5769 {
5770 int ret = 1;
5771
5772 spin_lock_irq(&x->wait.lock);
5773 if (!x->done)
5774 ret = 0;
5775 else
5776 x->done--;
5777 spin_unlock_irq(&x->wait.lock);
5778 return ret;
5779 }
5780 EXPORT_SYMBOL(try_wait_for_completion);
5781
5782 /**
5783 * completion_done - Test to see if a completion has any waiters
5784 * @x: completion structure
5785 *
5786 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5787 * 1 if there are no waiters.
5788 *
5789 */
5790 bool completion_done(struct completion *x)
5791 {
5792 int ret = 1;
5793
5794 spin_lock_irq(&x->wait.lock);
5795 if (!x->done)
5796 ret = 0;
5797 spin_unlock_irq(&x->wait.lock);
5798 return ret;
5799 }
5800 EXPORT_SYMBOL(completion_done);
5801
5802 static long __sched
5803 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
5804 {
5805 unsigned long flags;
5806 wait_queue_t wait;
5807
5808 init_waitqueue_entry(&wait, current);
5809
5810 __set_current_state(state);
5811
5812 spin_lock_irqsave(&q->lock, flags);
5813 __add_wait_queue(q, &wait);
5814 spin_unlock(&q->lock);
5815 timeout = schedule_timeout(timeout);
5816 spin_lock_irq(&q->lock);
5817 __remove_wait_queue(q, &wait);
5818 spin_unlock_irqrestore(&q->lock, flags);
5819
5820 return timeout;
5821 }
5822
5823 void __sched interruptible_sleep_on(wait_queue_head_t *q)
5824 {
5825 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5826 }
5827 EXPORT_SYMBOL(interruptible_sleep_on);
5828
5829 long __sched
5830 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
5831 {
5832 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
5833 }
5834 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5835
5836 void __sched sleep_on(wait_queue_head_t *q)
5837 {
5838 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5839 }
5840 EXPORT_SYMBOL(sleep_on);
5841
5842 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
5843 {
5844 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
5845 }
5846 EXPORT_SYMBOL(sleep_on_timeout);
5847
5848 #ifdef CONFIG_RT_MUTEXES
5849
5850 /*
5851 * rt_mutex_setprio - set the current priority of a task
5852 * @p: task
5853 * @prio: prio value (kernel-internal form)
5854 *
5855 * This function changes the 'effective' priority of a task. It does
5856 * not touch ->normal_prio like __setscheduler().
5857 *
5858 * Used by the rt_mutex code to implement priority inheritance logic.
5859 */
5860 void rt_mutex_setprio(struct task_struct *p, int prio)
5861 {
5862 unsigned long flags;
5863 int oldprio, on_rq, running;
5864 struct rq *rq;
5865 const struct sched_class *prev_class = p->sched_class;
5866
5867 BUG_ON(prio < 0 || prio > MAX_PRIO);
5868
5869 rq = task_rq_lock(p, &flags);
5870 update_rq_clock(rq);
5871
5872 oldprio = p->prio;
5873 on_rq = p->se.on_rq;
5874 running = task_current(rq, p);
5875 if (on_rq)
5876 dequeue_task(rq, p, 0);
5877 if (running)
5878 p->sched_class->put_prev_task(rq, p);
5879
5880 if (rt_prio(prio))
5881 p->sched_class = &rt_sched_class;
5882 else
5883 p->sched_class = &fair_sched_class;
5884
5885 p->prio = prio;
5886
5887 if (running)
5888 p->sched_class->set_curr_task(rq);
5889 if (on_rq) {
5890 enqueue_task(rq, p, 0);
5891
5892 check_class_changed(rq, p, prev_class, oldprio, running);
5893 }
5894 task_rq_unlock(rq, &flags);
5895 }
5896
5897 #endif
5898
5899 void set_user_nice(struct task_struct *p, long nice)
5900 {
5901 int old_prio, delta, on_rq;
5902 unsigned long flags;
5903 struct rq *rq;
5904
5905 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5906 return;
5907 /*
5908 * We have to be careful, if called from sys_setpriority(),
5909 * the task might be in the middle of scheduling on another CPU.
5910 */
5911 rq = task_rq_lock(p, &flags);
5912 update_rq_clock(rq);
5913 /*
5914 * The RT priorities are set via sched_setscheduler(), but we still
5915 * allow the 'normal' nice value to be set - but as expected
5916 * it wont have any effect on scheduling until the task is
5917 * SCHED_FIFO/SCHED_RR:
5918 */
5919 if (task_has_rt_policy(p)) {
5920 p->static_prio = NICE_TO_PRIO(nice);
5921 goto out_unlock;
5922 }
5923 on_rq = p->se.on_rq;
5924 if (on_rq)
5925 dequeue_task(rq, p, 0);
5926
5927 p->static_prio = NICE_TO_PRIO(nice);
5928 set_load_weight(p);
5929 old_prio = p->prio;
5930 p->prio = effective_prio(p);
5931 delta = p->prio - old_prio;
5932
5933 if (on_rq) {
5934 enqueue_task(rq, p, 0);
5935 /*
5936 * If the task increased its priority or is running and
5937 * lowered its priority, then reschedule its CPU:
5938 */
5939 if (delta < 0 || (delta > 0 && task_running(rq, p)))
5940 resched_task(rq->curr);
5941 }
5942 out_unlock:
5943 task_rq_unlock(rq, &flags);
5944 }
5945 EXPORT_SYMBOL(set_user_nice);
5946
5947 /*
5948 * can_nice - check if a task can reduce its nice value
5949 * @p: task
5950 * @nice: nice value
5951 */
5952 int can_nice(const struct task_struct *p, const int nice)
5953 {
5954 /* convert nice value [19,-20] to rlimit style value [1,40] */
5955 int nice_rlim = 20 - nice;
5956
5957 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5958 capable(CAP_SYS_NICE));
5959 }
5960
5961 #ifdef __ARCH_WANT_SYS_NICE
5962
5963 /*
5964 * sys_nice - change the priority of the current process.
5965 * @increment: priority increment
5966 *
5967 * sys_setpriority is a more generic, but much slower function that
5968 * does similar things.
5969 */
5970 SYSCALL_DEFINE1(nice, int, increment)
5971 {
5972 long nice, retval;
5973
5974 /*
5975 * Setpriority might change our priority at the same moment.
5976 * We don't have to worry. Conceptually one call occurs first
5977 * and we have a single winner.
5978 */
5979 if (increment < -40)
5980 increment = -40;
5981 if (increment > 40)
5982 increment = 40;
5983
5984 nice = TASK_NICE(current) + increment;
5985 if (nice < -20)
5986 nice = -20;
5987 if (nice > 19)
5988 nice = 19;
5989
5990 if (increment < 0 && !can_nice(current, nice))
5991 return -EPERM;
5992
5993 retval = security_task_setnice(current, nice);
5994 if (retval)
5995 return retval;
5996
5997 set_user_nice(current, nice);
5998 return 0;
5999 }
6000
6001 #endif
6002
6003 /**
6004 * task_prio - return the priority value of a given task.
6005 * @p: the task in question.
6006 *
6007 * This is the priority value as seen by users in /proc.
6008 * RT tasks are offset by -200. Normal tasks are centered
6009 * around 0, value goes from -16 to +15.
6010 */
6011 int task_prio(const struct task_struct *p)
6012 {
6013 return p->prio - MAX_RT_PRIO;
6014 }
6015
6016 /**
6017 * task_nice - return the nice value of a given task.
6018 * @p: the task in question.
6019 */
6020 int task_nice(const struct task_struct *p)
6021 {
6022 return TASK_NICE(p);
6023 }
6024 EXPORT_SYMBOL(task_nice);
6025
6026 /**
6027 * idle_cpu - is a given cpu idle currently?
6028 * @cpu: the processor in question.
6029 */
6030 int idle_cpu(int cpu)
6031 {
6032 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6033 }
6034
6035 /**
6036 * idle_task - return the idle task for a given cpu.
6037 * @cpu: the processor in question.
6038 */
6039 struct task_struct *idle_task(int cpu)
6040 {
6041 return cpu_rq(cpu)->idle;
6042 }
6043
6044 /**
6045 * find_process_by_pid - find a process with a matching PID value.
6046 * @pid: the pid in question.
6047 */
6048 static struct task_struct *find_process_by_pid(pid_t pid)
6049 {
6050 return pid ? find_task_by_vpid(pid) : current;
6051 }
6052
6053 /* Actually do priority change: must hold rq lock. */
6054 static void
6055 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
6056 {
6057 BUG_ON(p->se.on_rq);
6058
6059 p->policy = policy;
6060 switch (p->policy) {
6061 case SCHED_NORMAL:
6062 case SCHED_BATCH:
6063 case SCHED_IDLE:
6064 p->sched_class = &fair_sched_class;
6065 break;
6066 case SCHED_FIFO:
6067 case SCHED_RR:
6068 p->sched_class = &rt_sched_class;
6069 break;
6070 }
6071
6072 p->rt_priority = prio;
6073 p->normal_prio = normal_prio(p);
6074 /* we are holding p->pi_lock already */
6075 p->prio = rt_mutex_getprio(p);
6076 set_load_weight(p);
6077 }
6078
6079 /*
6080 * check the target process has a UID that matches the current process's
6081 */
6082 static bool check_same_owner(struct task_struct *p)
6083 {
6084 const struct cred *cred = current_cred(), *pcred;
6085 bool match;
6086
6087 rcu_read_lock();
6088 pcred = __task_cred(p);
6089 match = (cred->euid == pcred->euid ||
6090 cred->euid == pcred->uid);
6091 rcu_read_unlock();
6092 return match;
6093 }
6094
6095 static int __sched_setscheduler(struct task_struct *p, int policy,
6096 struct sched_param *param, bool user)
6097 {
6098 int retval, oldprio, oldpolicy = -1, on_rq, running;
6099 unsigned long flags;
6100 const struct sched_class *prev_class = p->sched_class;
6101 struct rq *rq;
6102
6103 /* may grab non-irq protected spin_locks */
6104 BUG_ON(in_interrupt());
6105 recheck:
6106 /* double check policy once rq lock held */
6107 if (policy < 0)
6108 policy = oldpolicy = p->policy;
6109 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
6110 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6111 policy != SCHED_IDLE)
6112 return -EINVAL;
6113 /*
6114 * Valid priorities for SCHED_FIFO and SCHED_RR are
6115 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6116 * SCHED_BATCH and SCHED_IDLE is 0.
6117 */
6118 if (param->sched_priority < 0 ||
6119 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
6120 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
6121 return -EINVAL;
6122 if (rt_policy(policy) != (param->sched_priority != 0))
6123 return -EINVAL;
6124
6125 /*
6126 * Allow unprivileged RT tasks to decrease priority:
6127 */
6128 if (user && !capable(CAP_SYS_NICE)) {
6129 if (rt_policy(policy)) {
6130 unsigned long rlim_rtprio;
6131
6132 if (!lock_task_sighand(p, &flags))
6133 return -ESRCH;
6134 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6135 unlock_task_sighand(p, &flags);
6136
6137 /* can't set/change the rt policy */
6138 if (policy != p->policy && !rlim_rtprio)
6139 return -EPERM;
6140
6141 /* can't increase priority */
6142 if (param->sched_priority > p->rt_priority &&
6143 param->sched_priority > rlim_rtprio)
6144 return -EPERM;
6145 }
6146 /*
6147 * Like positive nice levels, dont allow tasks to
6148 * move out of SCHED_IDLE either:
6149 */
6150 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6151 return -EPERM;
6152
6153 /* can't change other user's priorities */
6154 if (!check_same_owner(p))
6155 return -EPERM;
6156 }
6157
6158 if (user) {
6159 #ifdef CONFIG_RT_GROUP_SCHED
6160 /*
6161 * Do not allow realtime tasks into groups that have no runtime
6162 * assigned.
6163 */
6164 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6165 task_group(p)->rt_bandwidth.rt_runtime == 0)
6166 return -EPERM;
6167 #endif
6168
6169 retval = security_task_setscheduler(p, policy, param);
6170 if (retval)
6171 return retval;
6172 }
6173
6174 /*
6175 * make sure no PI-waiters arrive (or leave) while we are
6176 * changing the priority of the task:
6177 */
6178 spin_lock_irqsave(&p->pi_lock, flags);
6179 /*
6180 * To be able to change p->policy safely, the apropriate
6181 * runqueue lock must be held.
6182 */
6183 rq = __task_rq_lock(p);
6184 /* recheck policy now with rq lock held */
6185 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6186 policy = oldpolicy = -1;
6187 __task_rq_unlock(rq);
6188 spin_unlock_irqrestore(&p->pi_lock, flags);
6189 goto recheck;
6190 }
6191 update_rq_clock(rq);
6192 on_rq = p->se.on_rq;
6193 running = task_current(rq, p);
6194 if (on_rq)
6195 deactivate_task(rq, p, 0);
6196 if (running)
6197 p->sched_class->put_prev_task(rq, p);
6198
6199 oldprio = p->prio;
6200 __setscheduler(rq, p, policy, param->sched_priority);
6201
6202 if (running)
6203 p->sched_class->set_curr_task(rq);
6204 if (on_rq) {
6205 activate_task(rq, p, 0);
6206
6207 check_class_changed(rq, p, prev_class, oldprio, running);
6208 }
6209 __task_rq_unlock(rq);
6210 spin_unlock_irqrestore(&p->pi_lock, flags);
6211
6212 rt_mutex_adjust_pi(p);
6213
6214 return 0;
6215 }
6216
6217 /**
6218 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6219 * @p: the task in question.
6220 * @policy: new policy.
6221 * @param: structure containing the new RT priority.
6222 *
6223 * NOTE that the task may be already dead.
6224 */
6225 int sched_setscheduler(struct task_struct *p, int policy,
6226 struct sched_param *param)
6227 {
6228 return __sched_setscheduler(p, policy, param, true);
6229 }
6230 EXPORT_SYMBOL_GPL(sched_setscheduler);
6231
6232 /**
6233 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6234 * @p: the task in question.
6235 * @policy: new policy.
6236 * @param: structure containing the new RT priority.
6237 *
6238 * Just like sched_setscheduler, only don't bother checking if the
6239 * current context has permission. For example, this is needed in
6240 * stop_machine(): we create temporary high priority worker threads,
6241 * but our caller might not have that capability.
6242 */
6243 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6244 struct sched_param *param)
6245 {
6246 return __sched_setscheduler(p, policy, param, false);
6247 }
6248
6249 static int
6250 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
6251 {
6252 struct sched_param lparam;
6253 struct task_struct *p;
6254 int retval;
6255
6256 if (!param || pid < 0)
6257 return -EINVAL;
6258 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6259 return -EFAULT;
6260
6261 rcu_read_lock();
6262 retval = -ESRCH;
6263 p = find_process_by_pid(pid);
6264 if (p != NULL)
6265 retval = sched_setscheduler(p, policy, &lparam);
6266 rcu_read_unlock();
6267
6268 return retval;
6269 }
6270
6271 /**
6272 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6273 * @pid: the pid in question.
6274 * @policy: new policy.
6275 * @param: structure containing the new RT priority.
6276 */
6277 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6278 struct sched_param __user *, param)
6279 {
6280 /* negative values for policy are not valid */
6281 if (policy < 0)
6282 return -EINVAL;
6283
6284 return do_sched_setscheduler(pid, policy, param);
6285 }
6286
6287 /**
6288 * sys_sched_setparam - set/change the RT priority of a thread
6289 * @pid: the pid in question.
6290 * @param: structure containing the new RT priority.
6291 */
6292 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
6293 {
6294 return do_sched_setscheduler(pid, -1, param);
6295 }
6296
6297 /**
6298 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6299 * @pid: the pid in question.
6300 */
6301 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
6302 {
6303 struct task_struct *p;
6304 int retval;
6305
6306 if (pid < 0)
6307 return -EINVAL;
6308
6309 retval = -ESRCH;
6310 read_lock(&tasklist_lock);
6311 p = find_process_by_pid(pid);
6312 if (p) {
6313 retval = security_task_getscheduler(p);
6314 if (!retval)
6315 retval = p->policy;
6316 }
6317 read_unlock(&tasklist_lock);
6318 return retval;
6319 }
6320
6321 /**
6322 * sys_sched_getscheduler - get the RT priority of a thread
6323 * @pid: the pid in question.
6324 * @param: structure containing the RT priority.
6325 */
6326 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
6327 {
6328 struct sched_param lp;
6329 struct task_struct *p;
6330 int retval;
6331
6332 if (!param || pid < 0)
6333 return -EINVAL;
6334
6335 read_lock(&tasklist_lock);
6336 p = find_process_by_pid(pid);
6337 retval = -ESRCH;
6338 if (!p)
6339 goto out_unlock;
6340
6341 retval = security_task_getscheduler(p);
6342 if (retval)
6343 goto out_unlock;
6344
6345 lp.sched_priority = p->rt_priority;
6346 read_unlock(&tasklist_lock);
6347
6348 /*
6349 * This one might sleep, we cannot do it with a spinlock held ...
6350 */
6351 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6352
6353 return retval;
6354
6355 out_unlock:
6356 read_unlock(&tasklist_lock);
6357 return retval;
6358 }
6359
6360 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
6361 {
6362 cpumask_var_t cpus_allowed, new_mask;
6363 struct task_struct *p;
6364 int retval;
6365
6366 get_online_cpus();
6367 read_lock(&tasklist_lock);
6368
6369 p = find_process_by_pid(pid);
6370 if (!p) {
6371 read_unlock(&tasklist_lock);
6372 put_online_cpus();
6373 return -ESRCH;
6374 }
6375
6376 /*
6377 * It is not safe to call set_cpus_allowed with the
6378 * tasklist_lock held. We will bump the task_struct's
6379 * usage count and then drop tasklist_lock.
6380 */
6381 get_task_struct(p);
6382 read_unlock(&tasklist_lock);
6383
6384 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6385 retval = -ENOMEM;
6386 goto out_put_task;
6387 }
6388 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6389 retval = -ENOMEM;
6390 goto out_free_cpus_allowed;
6391 }
6392 retval = -EPERM;
6393 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
6394 goto out_unlock;
6395
6396 retval = security_task_setscheduler(p, 0, NULL);
6397 if (retval)
6398 goto out_unlock;
6399
6400 cpuset_cpus_allowed(p, cpus_allowed);
6401 cpumask_and(new_mask, in_mask, cpus_allowed);
6402 again:
6403 retval = set_cpus_allowed_ptr(p, new_mask);
6404
6405 if (!retval) {
6406 cpuset_cpus_allowed(p, cpus_allowed);
6407 if (!cpumask_subset(new_mask, cpus_allowed)) {
6408 /*
6409 * We must have raced with a concurrent cpuset
6410 * update. Just reset the cpus_allowed to the
6411 * cpuset's cpus_allowed
6412 */
6413 cpumask_copy(new_mask, cpus_allowed);
6414 goto again;
6415 }
6416 }
6417 out_unlock:
6418 free_cpumask_var(new_mask);
6419 out_free_cpus_allowed:
6420 free_cpumask_var(cpus_allowed);
6421 out_put_task:
6422 put_task_struct(p);
6423 put_online_cpus();
6424 return retval;
6425 }
6426
6427 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6428 struct cpumask *new_mask)
6429 {
6430 if (len < cpumask_size())
6431 cpumask_clear(new_mask);
6432 else if (len > cpumask_size())
6433 len = cpumask_size();
6434
6435 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6436 }
6437
6438 /**
6439 * sys_sched_setaffinity - set the cpu affinity of a process
6440 * @pid: pid of the process
6441 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6442 * @user_mask_ptr: user-space pointer to the new cpu mask
6443 */
6444 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6445 unsigned long __user *, user_mask_ptr)
6446 {
6447 cpumask_var_t new_mask;
6448 int retval;
6449
6450 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6451 return -ENOMEM;
6452
6453 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6454 if (retval == 0)
6455 retval = sched_setaffinity(pid, new_mask);
6456 free_cpumask_var(new_mask);
6457 return retval;
6458 }
6459
6460 long sched_getaffinity(pid_t pid, struct cpumask *mask)
6461 {
6462 struct task_struct *p;
6463 int retval;
6464
6465 get_online_cpus();
6466 read_lock(&tasklist_lock);
6467
6468 retval = -ESRCH;
6469 p = find_process_by_pid(pid);
6470 if (!p)
6471 goto out_unlock;
6472
6473 retval = security_task_getscheduler(p);
6474 if (retval)
6475 goto out_unlock;
6476
6477 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
6478
6479 out_unlock:
6480 read_unlock(&tasklist_lock);
6481 put_online_cpus();
6482
6483 return retval;
6484 }
6485
6486 /**
6487 * sys_sched_getaffinity - get the cpu affinity of a process
6488 * @pid: pid of the process
6489 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6490 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6491 */
6492 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6493 unsigned long __user *, user_mask_ptr)
6494 {
6495 int ret;
6496 cpumask_var_t mask;
6497
6498 if (len < cpumask_size())
6499 return -EINVAL;
6500
6501 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6502 return -ENOMEM;
6503
6504 ret = sched_getaffinity(pid, mask);
6505 if (ret == 0) {
6506 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6507 ret = -EFAULT;
6508 else
6509 ret = cpumask_size();
6510 }
6511 free_cpumask_var(mask);
6512
6513 return ret;
6514 }
6515
6516 /**
6517 * sys_sched_yield - yield the current processor to other threads.
6518 *
6519 * This function yields the current CPU to other tasks. If there are no
6520 * other threads running on this CPU then this function will return.
6521 */
6522 SYSCALL_DEFINE0(sched_yield)
6523 {
6524 struct rq *rq = this_rq_lock();
6525
6526 schedstat_inc(rq, yld_count);
6527 current->sched_class->yield_task(rq);
6528
6529 /*
6530 * Since we are going to call schedule() anyway, there's
6531 * no need to preempt or enable interrupts:
6532 */
6533 __release(rq->lock);
6534 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
6535 _raw_spin_unlock(&rq->lock);
6536 preempt_enable_no_resched();
6537
6538 schedule();
6539
6540 return 0;
6541 }
6542
6543 static void __cond_resched(void)
6544 {
6545 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6546 __might_sleep(__FILE__, __LINE__);
6547 #endif
6548 /*
6549 * The BKS might be reacquired before we have dropped
6550 * PREEMPT_ACTIVE, which could trigger a second
6551 * cond_resched() call.
6552 */
6553 do {
6554 add_preempt_count(PREEMPT_ACTIVE);
6555 schedule();
6556 sub_preempt_count(PREEMPT_ACTIVE);
6557 } while (need_resched());
6558 }
6559
6560 int __sched _cond_resched(void)
6561 {
6562 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
6563 system_state == SYSTEM_RUNNING) {
6564 __cond_resched();
6565 return 1;
6566 }
6567 return 0;
6568 }
6569 EXPORT_SYMBOL(_cond_resched);
6570
6571 /*
6572 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
6573 * call schedule, and on return reacquire the lock.
6574 *
6575 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
6576 * operations here to prevent schedule() from being called twice (once via
6577 * spin_unlock(), once by hand).
6578 */
6579 int cond_resched_lock(spinlock_t *lock)
6580 {
6581 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6582 int ret = 0;
6583
6584 if (spin_needbreak(lock) || resched) {
6585 spin_unlock(lock);
6586 if (resched && need_resched())
6587 __cond_resched();
6588 else
6589 cpu_relax();
6590 ret = 1;
6591 spin_lock(lock);
6592 }
6593 return ret;
6594 }
6595 EXPORT_SYMBOL(cond_resched_lock);
6596
6597 int __sched cond_resched_softirq(void)
6598 {
6599 BUG_ON(!in_softirq());
6600
6601 if (need_resched() && system_state == SYSTEM_RUNNING) {
6602 local_bh_enable();
6603 __cond_resched();
6604 local_bh_disable();
6605 return 1;
6606 }
6607 return 0;
6608 }
6609 EXPORT_SYMBOL(cond_resched_softirq);
6610
6611 /**
6612 * yield - yield the current processor to other threads.
6613 *
6614 * This is a shortcut for kernel-space yielding - it marks the
6615 * thread runnable and calls sys_sched_yield().
6616 */
6617 void __sched yield(void)
6618 {
6619 set_current_state(TASK_RUNNING);
6620 sys_sched_yield();
6621 }
6622 EXPORT_SYMBOL(yield);
6623
6624 /*
6625 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6626 * that process accounting knows that this is a task in IO wait state.
6627 *
6628 * But don't do that if it is a deliberate, throttling IO wait (this task
6629 * has set its backing_dev_info: the queue against which it should throttle)
6630 */
6631 void __sched io_schedule(void)
6632 {
6633 struct rq *rq = &__raw_get_cpu_var(runqueues);
6634
6635 delayacct_blkio_start();
6636 atomic_inc(&rq->nr_iowait);
6637 schedule();
6638 atomic_dec(&rq->nr_iowait);
6639 delayacct_blkio_end();
6640 }
6641 EXPORT_SYMBOL(io_schedule);
6642
6643 long __sched io_schedule_timeout(long timeout)
6644 {
6645 struct rq *rq = &__raw_get_cpu_var(runqueues);
6646 long ret;
6647
6648 delayacct_blkio_start();
6649 atomic_inc(&rq->nr_iowait);
6650 ret = schedule_timeout(timeout);
6651 atomic_dec(&rq->nr_iowait);
6652 delayacct_blkio_end();
6653 return ret;
6654 }
6655
6656 /**
6657 * sys_sched_get_priority_max - return maximum RT priority.
6658 * @policy: scheduling class.
6659 *
6660 * this syscall returns the maximum rt_priority that can be used
6661 * by a given scheduling class.
6662 */
6663 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
6664 {
6665 int ret = -EINVAL;
6666
6667 switch (policy) {
6668 case SCHED_FIFO:
6669 case SCHED_RR:
6670 ret = MAX_USER_RT_PRIO-1;
6671 break;
6672 case SCHED_NORMAL:
6673 case SCHED_BATCH:
6674 case SCHED_IDLE:
6675 ret = 0;
6676 break;
6677 }
6678 return ret;
6679 }
6680
6681 /**
6682 * sys_sched_get_priority_min - return minimum RT priority.
6683 * @policy: scheduling class.
6684 *
6685 * this syscall returns the minimum rt_priority that can be used
6686 * by a given scheduling class.
6687 */
6688 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
6689 {
6690 int ret = -EINVAL;
6691
6692 switch (policy) {
6693 case SCHED_FIFO:
6694 case SCHED_RR:
6695 ret = 1;
6696 break;
6697 case SCHED_NORMAL:
6698 case SCHED_BATCH:
6699 case SCHED_IDLE:
6700 ret = 0;
6701 }
6702 return ret;
6703 }
6704
6705 /**
6706 * sys_sched_rr_get_interval - return the default timeslice of a process.
6707 * @pid: pid of the process.
6708 * @interval: userspace pointer to the timeslice value.
6709 *
6710 * this syscall writes the default timeslice value of a given process
6711 * into the user-space timespec buffer. A value of '0' means infinity.
6712 */
6713 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6714 struct timespec __user *, interval)
6715 {
6716 struct task_struct *p;
6717 unsigned int time_slice;
6718 int retval;
6719 struct timespec t;
6720
6721 if (pid < 0)
6722 return -EINVAL;
6723
6724 retval = -ESRCH;
6725 read_lock(&tasklist_lock);
6726 p = find_process_by_pid(pid);
6727 if (!p)
6728 goto out_unlock;
6729
6730 retval = security_task_getscheduler(p);
6731 if (retval)
6732 goto out_unlock;
6733
6734 /*
6735 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
6736 * tasks that are on an otherwise idle runqueue:
6737 */
6738 time_slice = 0;
6739 if (p->policy == SCHED_RR) {
6740 time_slice = DEF_TIMESLICE;
6741 } else if (p->policy != SCHED_FIFO) {
6742 struct sched_entity *se = &p->se;
6743 unsigned long flags;
6744 struct rq *rq;
6745
6746 rq = task_rq_lock(p, &flags);
6747 if (rq->cfs.load.weight)
6748 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
6749 task_rq_unlock(rq, &flags);
6750 }
6751 read_unlock(&tasklist_lock);
6752 jiffies_to_timespec(time_slice, &t);
6753 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
6754 return retval;
6755
6756 out_unlock:
6757 read_unlock(&tasklist_lock);
6758 return retval;
6759 }
6760
6761 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6762
6763 void sched_show_task(struct task_struct *p)
6764 {
6765 unsigned long free = 0;
6766 unsigned state;
6767
6768 state = p->state ? __ffs(p->state) + 1 : 0;
6769 printk(KERN_INFO "%-13.13s %c", p->comm,
6770 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6771 #if BITS_PER_LONG == 32
6772 if (state == TASK_RUNNING)
6773 printk(KERN_CONT " running ");
6774 else
6775 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
6776 #else
6777 if (state == TASK_RUNNING)
6778 printk(KERN_CONT " running task ");
6779 else
6780 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
6781 #endif
6782 #ifdef CONFIG_DEBUG_STACK_USAGE
6783 free = stack_not_used(p);
6784 #endif
6785 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6786 task_pid_nr(p), task_pid_nr(p->real_parent),
6787 (unsigned long)task_thread_info(p)->flags);
6788
6789 show_stack(p, NULL);
6790 }
6791
6792 void show_state_filter(unsigned long state_filter)
6793 {
6794 struct task_struct *g, *p;
6795
6796 #if BITS_PER_LONG == 32
6797 printk(KERN_INFO
6798 " task PC stack pid father\n");
6799 #else
6800 printk(KERN_INFO
6801 " task PC stack pid father\n");
6802 #endif
6803 read_lock(&tasklist_lock);
6804 do_each_thread(g, p) {
6805 /*
6806 * reset the NMI-timeout, listing all files on a slow
6807 * console might take alot of time:
6808 */
6809 touch_nmi_watchdog();
6810 if (!state_filter || (p->state & state_filter))
6811 sched_show_task(p);
6812 } while_each_thread(g, p);
6813
6814 touch_all_softlockup_watchdogs();
6815
6816 #ifdef CONFIG_SCHED_DEBUG
6817 sysrq_sched_debug_show();
6818 #endif
6819 read_unlock(&tasklist_lock);
6820 /*
6821 * Only show locks if all tasks are dumped:
6822 */
6823 if (state_filter == -1)
6824 debug_show_all_locks();
6825 }
6826
6827 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6828 {
6829 idle->sched_class = &idle_sched_class;
6830 }
6831
6832 /**
6833 * init_idle - set up an idle thread for a given CPU
6834 * @idle: task in question
6835 * @cpu: cpu the idle task belongs to
6836 *
6837 * NOTE: this function does not set the idle thread's NEED_RESCHED
6838 * flag, to make booting more robust.
6839 */
6840 void __cpuinit init_idle(struct task_struct *idle, int cpu)
6841 {
6842 struct rq *rq = cpu_rq(cpu);
6843 unsigned long flags;
6844
6845 spin_lock_irqsave(&rq->lock, flags);
6846
6847 __sched_fork(idle);
6848 idle->se.exec_start = sched_clock();
6849
6850 idle->prio = idle->normal_prio = MAX_PRIO;
6851 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6852 __set_task_cpu(idle, cpu);
6853
6854 rq->curr = rq->idle = idle;
6855 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6856 idle->oncpu = 1;
6857 #endif
6858 spin_unlock_irqrestore(&rq->lock, flags);
6859
6860 /* Set the preempt count _outside_ the spinlocks! */
6861 #if defined(CONFIG_PREEMPT)
6862 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6863 #else
6864 task_thread_info(idle)->preempt_count = 0;
6865 #endif
6866 /*
6867 * The idle tasks have their own, simple scheduling class:
6868 */
6869 idle->sched_class = &idle_sched_class;
6870 ftrace_graph_init_task(idle);
6871 }
6872
6873 /*
6874 * In a system that switches off the HZ timer nohz_cpu_mask
6875 * indicates which cpus entered this state. This is used
6876 * in the rcu update to wait only for active cpus. For system
6877 * which do not switch off the HZ timer nohz_cpu_mask should
6878 * always be CPU_BITS_NONE.
6879 */
6880 cpumask_var_t nohz_cpu_mask;
6881
6882 /*
6883 * Increase the granularity value when there are more CPUs,
6884 * because with more CPUs the 'effective latency' as visible
6885 * to users decreases. But the relationship is not linear,
6886 * so pick a second-best guess by going with the log2 of the
6887 * number of CPUs.
6888 *
6889 * This idea comes from the SD scheduler of Con Kolivas:
6890 */
6891 static inline void sched_init_granularity(void)
6892 {
6893 unsigned int factor = 1 + ilog2(num_online_cpus());
6894 const unsigned long limit = 200000000;
6895
6896 sysctl_sched_min_granularity *= factor;
6897 if (sysctl_sched_min_granularity > limit)
6898 sysctl_sched_min_granularity = limit;
6899
6900 sysctl_sched_latency *= factor;
6901 if (sysctl_sched_latency > limit)
6902 sysctl_sched_latency = limit;
6903
6904 sysctl_sched_wakeup_granularity *= factor;
6905
6906 sysctl_sched_shares_ratelimit *= factor;
6907 }
6908
6909 #ifdef CONFIG_SMP
6910 /*
6911 * This is how migration works:
6912 *
6913 * 1) we queue a struct migration_req structure in the source CPU's
6914 * runqueue and wake up that CPU's migration thread.
6915 * 2) we down() the locked semaphore => thread blocks.
6916 * 3) migration thread wakes up (implicitly it forces the migrated
6917 * thread off the CPU)
6918 * 4) it gets the migration request and checks whether the migrated
6919 * task is still in the wrong runqueue.
6920 * 5) if it's in the wrong runqueue then the migration thread removes
6921 * it and puts it into the right queue.
6922 * 6) migration thread up()s the semaphore.
6923 * 7) we wake up and the migration is done.
6924 */
6925
6926 /*
6927 * Change a given task's CPU affinity. Migrate the thread to a
6928 * proper CPU and schedule it away if the CPU it's executing on
6929 * is removed from the allowed bitmask.
6930 *
6931 * NOTE: the caller must have a valid reference to the task, the
6932 * task must not exit() & deallocate itself prematurely. The
6933 * call is not atomic; no spinlocks may be held.
6934 */
6935 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
6936 {
6937 struct migration_req req;
6938 unsigned long flags;
6939 struct rq *rq;
6940 int ret = 0;
6941
6942 rq = task_rq_lock(p, &flags);
6943 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
6944 ret = -EINVAL;
6945 goto out;
6946 }
6947
6948 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
6949 !cpumask_equal(&p->cpus_allowed, new_mask))) {
6950 ret = -EINVAL;
6951 goto out;
6952 }
6953
6954 if (p->sched_class->set_cpus_allowed)
6955 p->sched_class->set_cpus_allowed(p, new_mask);
6956 else {
6957 cpumask_copy(&p->cpus_allowed, new_mask);
6958 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
6959 }
6960
6961 /* Can the task run on the task's current CPU? If so, we're done */
6962 if (cpumask_test_cpu(task_cpu(p), new_mask))
6963 goto out;
6964
6965 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
6966 /* Need help from migration thread: drop lock and wait. */
6967 task_rq_unlock(rq, &flags);
6968 wake_up_process(rq->migration_thread);
6969 wait_for_completion(&req.done);
6970 tlb_migrate_finish(p->mm);
6971 return 0;
6972 }
6973 out:
6974 task_rq_unlock(rq, &flags);
6975
6976 return ret;
6977 }
6978 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
6979
6980 /*
6981 * Move (not current) task off this cpu, onto dest cpu. We're doing
6982 * this because either it can't run here any more (set_cpus_allowed()
6983 * away from this CPU, or CPU going down), or because we're
6984 * attempting to rebalance this task on exec (sched_exec).
6985 *
6986 * So we race with normal scheduler movements, but that's OK, as long
6987 * as the task is no longer on this CPU.
6988 *
6989 * Returns non-zero if task was successfully migrated.
6990 */
6991 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
6992 {
6993 struct rq *rq_dest, *rq_src;
6994 int ret = 0, on_rq;
6995
6996 if (unlikely(!cpu_active(dest_cpu)))
6997 return ret;
6998
6999 rq_src = cpu_rq(src_cpu);
7000 rq_dest = cpu_rq(dest_cpu);
7001
7002 double_rq_lock(rq_src, rq_dest);
7003 /* Already moved. */
7004 if (task_cpu(p) != src_cpu)
7005 goto done;
7006 /* Affinity changed (again). */
7007 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7008 goto fail;
7009
7010 on_rq = p->se.on_rq;
7011 if (on_rq)
7012 deactivate_task(rq_src, p, 0);
7013
7014 set_task_cpu(p, dest_cpu);
7015 if (on_rq) {
7016 activate_task(rq_dest, p, 0);
7017 check_preempt_curr(rq_dest, p, 0);
7018 }
7019 done:
7020 ret = 1;
7021 fail:
7022 double_rq_unlock(rq_src, rq_dest);
7023 return ret;
7024 }
7025
7026 /*
7027 * migration_thread - this is a highprio system thread that performs
7028 * thread migration by bumping thread off CPU then 'pushing' onto
7029 * another runqueue.
7030 */
7031 static int migration_thread(void *data)
7032 {
7033 int cpu = (long)data;
7034 struct rq *rq;
7035
7036 rq = cpu_rq(cpu);
7037 BUG_ON(rq->migration_thread != current);
7038
7039 set_current_state(TASK_INTERRUPTIBLE);
7040 while (!kthread_should_stop()) {
7041 struct migration_req *req;
7042 struct list_head *head;
7043
7044 spin_lock_irq(&rq->lock);
7045
7046 if (cpu_is_offline(cpu)) {
7047 spin_unlock_irq(&rq->lock);
7048 break;
7049 }
7050
7051 if (rq->active_balance) {
7052 active_load_balance(rq, cpu);
7053 rq->active_balance = 0;
7054 }
7055
7056 head = &rq->migration_queue;
7057
7058 if (list_empty(head)) {
7059 spin_unlock_irq(&rq->lock);
7060 schedule();
7061 set_current_state(TASK_INTERRUPTIBLE);
7062 continue;
7063 }
7064 req = list_entry(head->next, struct migration_req, list);
7065 list_del_init(head->next);
7066
7067 spin_unlock(&rq->lock);
7068 __migrate_task(req->task, cpu, req->dest_cpu);
7069 local_irq_enable();
7070
7071 complete(&req->done);
7072 }
7073 __set_current_state(TASK_RUNNING);
7074
7075 return 0;
7076 }
7077
7078 #ifdef CONFIG_HOTPLUG_CPU
7079
7080 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7081 {
7082 int ret;
7083
7084 local_irq_disable();
7085 ret = __migrate_task(p, src_cpu, dest_cpu);
7086 local_irq_enable();
7087 return ret;
7088 }
7089
7090 /*
7091 * Figure out where task on dead CPU should go, use force if necessary.
7092 */
7093 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
7094 {
7095 int dest_cpu;
7096 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
7097
7098 again:
7099 /* Look for allowed, online CPU in same node. */
7100 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
7101 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7102 goto move;
7103
7104 /* Any allowed, online CPU? */
7105 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
7106 if (dest_cpu < nr_cpu_ids)
7107 goto move;
7108
7109 /* No more Mr. Nice Guy. */
7110 if (dest_cpu >= nr_cpu_ids) {
7111 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
7112 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
7113
7114 /*
7115 * Don't tell them about moving exiting tasks or
7116 * kernel threads (both mm NULL), since they never
7117 * leave kernel.
7118 */
7119 if (p->mm && printk_ratelimit()) {
7120 printk(KERN_INFO "process %d (%s) no "
7121 "longer affine to cpu%d\n",
7122 task_pid_nr(p), p->comm, dead_cpu);
7123 }
7124 }
7125
7126 move:
7127 /* It can have affinity changed while we were choosing. */
7128 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7129 goto again;
7130 }
7131
7132 /*
7133 * While a dead CPU has no uninterruptible tasks queued at this point,
7134 * it might still have a nonzero ->nr_uninterruptible counter, because
7135 * for performance reasons the counter is not stricly tracking tasks to
7136 * their home CPUs. So we just add the counter to another CPU's counter,
7137 * to keep the global sum constant after CPU-down:
7138 */
7139 static void migrate_nr_uninterruptible(struct rq *rq_src)
7140 {
7141 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
7142 unsigned long flags;
7143
7144 local_irq_save(flags);
7145 double_rq_lock(rq_src, rq_dest);
7146 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7147 rq_src->nr_uninterruptible = 0;
7148 double_rq_unlock(rq_src, rq_dest);
7149 local_irq_restore(flags);
7150 }
7151
7152 /* Run through task list and migrate tasks from the dead cpu. */
7153 static void migrate_live_tasks(int src_cpu)
7154 {
7155 struct task_struct *p, *t;
7156
7157 read_lock(&tasklist_lock);
7158
7159 do_each_thread(t, p) {
7160 if (p == current)
7161 continue;
7162
7163 if (task_cpu(p) == src_cpu)
7164 move_task_off_dead_cpu(src_cpu, p);
7165 } while_each_thread(t, p);
7166
7167 read_unlock(&tasklist_lock);
7168 }
7169
7170 /*
7171 * Schedules idle task to be the next runnable task on current CPU.
7172 * It does so by boosting its priority to highest possible.
7173 * Used by CPU offline code.
7174 */
7175 void sched_idle_next(void)
7176 {
7177 int this_cpu = smp_processor_id();
7178 struct rq *rq = cpu_rq(this_cpu);
7179 struct task_struct *p = rq->idle;
7180 unsigned long flags;
7181
7182 /* cpu has to be offline */
7183 BUG_ON(cpu_online(this_cpu));
7184
7185 /*
7186 * Strictly not necessary since rest of the CPUs are stopped by now
7187 * and interrupts disabled on the current cpu.
7188 */
7189 spin_lock_irqsave(&rq->lock, flags);
7190
7191 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7192
7193 update_rq_clock(rq);
7194 activate_task(rq, p, 0);
7195
7196 spin_unlock_irqrestore(&rq->lock, flags);
7197 }
7198
7199 /*
7200 * Ensures that the idle task is using init_mm right before its cpu goes
7201 * offline.
7202 */
7203 void idle_task_exit(void)
7204 {
7205 struct mm_struct *mm = current->active_mm;
7206
7207 BUG_ON(cpu_online(smp_processor_id()));
7208
7209 if (mm != &init_mm)
7210 switch_mm(mm, &init_mm, current);
7211 mmdrop(mm);
7212 }
7213
7214 /* called under rq->lock with disabled interrupts */
7215 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
7216 {
7217 struct rq *rq = cpu_rq(dead_cpu);
7218
7219 /* Must be exiting, otherwise would be on tasklist. */
7220 BUG_ON(!p->exit_state);
7221
7222 /* Cannot have done final schedule yet: would have vanished. */
7223 BUG_ON(p->state == TASK_DEAD);
7224
7225 get_task_struct(p);
7226
7227 /*
7228 * Drop lock around migration; if someone else moves it,
7229 * that's OK. No task can be added to this CPU, so iteration is
7230 * fine.
7231 */
7232 spin_unlock_irq(&rq->lock);
7233 move_task_off_dead_cpu(dead_cpu, p);
7234 spin_lock_irq(&rq->lock);
7235
7236 put_task_struct(p);
7237 }
7238
7239 /* release_task() removes task from tasklist, so we won't find dead tasks. */
7240 static void migrate_dead_tasks(unsigned int dead_cpu)
7241 {
7242 struct rq *rq = cpu_rq(dead_cpu);
7243 struct task_struct *next;
7244
7245 for ( ; ; ) {
7246 if (!rq->nr_running)
7247 break;
7248 update_rq_clock(rq);
7249 next = pick_next_task(rq);
7250 if (!next)
7251 break;
7252 next->sched_class->put_prev_task(rq, next);
7253 migrate_dead(dead_cpu, next);
7254
7255 }
7256 }
7257
7258 /*
7259 * remove the tasks which were accounted by rq from calc_load_tasks.
7260 */
7261 static void calc_global_load_remove(struct rq *rq)
7262 {
7263 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
7264 }
7265 #endif /* CONFIG_HOTPLUG_CPU */
7266
7267 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7268
7269 static struct ctl_table sd_ctl_dir[] = {
7270 {
7271 .procname = "sched_domain",
7272 .mode = 0555,
7273 },
7274 {0, },
7275 };
7276
7277 static struct ctl_table sd_ctl_root[] = {
7278 {
7279 .ctl_name = CTL_KERN,
7280 .procname = "kernel",
7281 .mode = 0555,
7282 .child = sd_ctl_dir,
7283 },
7284 {0, },
7285 };
7286
7287 static struct ctl_table *sd_alloc_ctl_entry(int n)
7288 {
7289 struct ctl_table *entry =
7290 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
7291
7292 return entry;
7293 }
7294
7295 static void sd_free_ctl_entry(struct ctl_table **tablep)
7296 {
7297 struct ctl_table *entry;
7298
7299 /*
7300 * In the intermediate directories, both the child directory and
7301 * procname are dynamically allocated and could fail but the mode
7302 * will always be set. In the lowest directory the names are
7303 * static strings and all have proc handlers.
7304 */
7305 for (entry = *tablep; entry->mode; entry++) {
7306 if (entry->child)
7307 sd_free_ctl_entry(&entry->child);
7308 if (entry->proc_handler == NULL)
7309 kfree(entry->procname);
7310 }
7311
7312 kfree(*tablep);
7313 *tablep = NULL;
7314 }
7315
7316 static void
7317 set_table_entry(struct ctl_table *entry,
7318 const char *procname, void *data, int maxlen,
7319 mode_t mode, proc_handler *proc_handler)
7320 {
7321 entry->procname = procname;
7322 entry->data = data;
7323 entry->maxlen = maxlen;
7324 entry->mode = mode;
7325 entry->proc_handler = proc_handler;
7326 }
7327
7328 static struct ctl_table *
7329 sd_alloc_ctl_domain_table(struct sched_domain *sd)
7330 {
7331 struct ctl_table *table = sd_alloc_ctl_entry(13);
7332
7333 if (table == NULL)
7334 return NULL;
7335
7336 set_table_entry(&table[0], "min_interval", &sd->min_interval,
7337 sizeof(long), 0644, proc_doulongvec_minmax);
7338 set_table_entry(&table[1], "max_interval", &sd->max_interval,
7339 sizeof(long), 0644, proc_doulongvec_minmax);
7340 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
7341 sizeof(int), 0644, proc_dointvec_minmax);
7342 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
7343 sizeof(int), 0644, proc_dointvec_minmax);
7344 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
7345 sizeof(int), 0644, proc_dointvec_minmax);
7346 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
7347 sizeof(int), 0644, proc_dointvec_minmax);
7348 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
7349 sizeof(int), 0644, proc_dointvec_minmax);
7350 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
7351 sizeof(int), 0644, proc_dointvec_minmax);
7352 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
7353 sizeof(int), 0644, proc_dointvec_minmax);
7354 set_table_entry(&table[9], "cache_nice_tries",
7355 &sd->cache_nice_tries,
7356 sizeof(int), 0644, proc_dointvec_minmax);
7357 set_table_entry(&table[10], "flags", &sd->flags,
7358 sizeof(int), 0644, proc_dointvec_minmax);
7359 set_table_entry(&table[11], "name", sd->name,
7360 CORENAME_MAX_SIZE, 0444, proc_dostring);
7361 /* &table[12] is terminator */
7362
7363 return table;
7364 }
7365
7366 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7367 {
7368 struct ctl_table *entry, *table;
7369 struct sched_domain *sd;
7370 int domain_num = 0, i;
7371 char buf[32];
7372
7373 for_each_domain(cpu, sd)
7374 domain_num++;
7375 entry = table = sd_alloc_ctl_entry(domain_num + 1);
7376 if (table == NULL)
7377 return NULL;
7378
7379 i = 0;
7380 for_each_domain(cpu, sd) {
7381 snprintf(buf, 32, "domain%d", i);
7382 entry->procname = kstrdup(buf, GFP_KERNEL);
7383 entry->mode = 0555;
7384 entry->child = sd_alloc_ctl_domain_table(sd);
7385 entry++;
7386 i++;
7387 }
7388 return table;
7389 }
7390
7391 static struct ctl_table_header *sd_sysctl_header;
7392 static void register_sched_domain_sysctl(void)
7393 {
7394 int i, cpu_num = num_online_cpus();
7395 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7396 char buf[32];
7397
7398 WARN_ON(sd_ctl_dir[0].child);
7399 sd_ctl_dir[0].child = entry;
7400
7401 if (entry == NULL)
7402 return;
7403
7404 for_each_online_cpu(i) {
7405 snprintf(buf, 32, "cpu%d", i);
7406 entry->procname = kstrdup(buf, GFP_KERNEL);
7407 entry->mode = 0555;
7408 entry->child = sd_alloc_ctl_cpu_table(i);
7409 entry++;
7410 }
7411
7412 WARN_ON(sd_sysctl_header);
7413 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7414 }
7415
7416 /* may be called multiple times per register */
7417 static void unregister_sched_domain_sysctl(void)
7418 {
7419 if (sd_sysctl_header)
7420 unregister_sysctl_table(sd_sysctl_header);
7421 sd_sysctl_header = NULL;
7422 if (sd_ctl_dir[0].child)
7423 sd_free_ctl_entry(&sd_ctl_dir[0].child);
7424 }
7425 #else
7426 static void register_sched_domain_sysctl(void)
7427 {
7428 }
7429 static void unregister_sched_domain_sysctl(void)
7430 {
7431 }
7432 #endif
7433
7434 static void set_rq_online(struct rq *rq)
7435 {
7436 if (!rq->online) {
7437 const struct sched_class *class;
7438
7439 cpumask_set_cpu(rq->cpu, rq->rd->online);
7440 rq->online = 1;
7441
7442 for_each_class(class) {
7443 if (class->rq_online)
7444 class->rq_online(rq);
7445 }
7446 }
7447 }
7448
7449 static void set_rq_offline(struct rq *rq)
7450 {
7451 if (rq->online) {
7452 const struct sched_class *class;
7453
7454 for_each_class(class) {
7455 if (class->rq_offline)
7456 class->rq_offline(rq);
7457 }
7458
7459 cpumask_clear_cpu(rq->cpu, rq->rd->online);
7460 rq->online = 0;
7461 }
7462 }
7463
7464 /*
7465 * migration_call - callback that gets triggered when a CPU is added.
7466 * Here we can start up the necessary migration thread for the new CPU.
7467 */
7468 static int __cpuinit
7469 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
7470 {
7471 struct task_struct *p;
7472 int cpu = (long)hcpu;
7473 unsigned long flags;
7474 struct rq *rq;
7475
7476 switch (action) {
7477
7478 case CPU_UP_PREPARE:
7479 case CPU_UP_PREPARE_FROZEN:
7480 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
7481 if (IS_ERR(p))
7482 return NOTIFY_BAD;
7483 kthread_bind(p, cpu);
7484 /* Must be high prio: stop_machine expects to yield to it. */
7485 rq = task_rq_lock(p, &flags);
7486 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7487 task_rq_unlock(rq, &flags);
7488 get_task_struct(p);
7489 cpu_rq(cpu)->migration_thread = p;
7490 break;
7491
7492 case CPU_ONLINE:
7493 case CPU_ONLINE_FROZEN:
7494 /* Strictly unnecessary, as first user will wake it. */
7495 wake_up_process(cpu_rq(cpu)->migration_thread);
7496
7497 /* Update our root-domain */
7498 rq = cpu_rq(cpu);
7499 spin_lock_irqsave(&rq->lock, flags);
7500 rq->calc_load_update = calc_load_update;
7501 rq->calc_load_active = 0;
7502 if (rq->rd) {
7503 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7504
7505 set_rq_online(rq);
7506 }
7507 spin_unlock_irqrestore(&rq->lock, flags);
7508 break;
7509
7510 #ifdef CONFIG_HOTPLUG_CPU
7511 case CPU_UP_CANCELED:
7512 case CPU_UP_CANCELED_FROZEN:
7513 if (!cpu_rq(cpu)->migration_thread)
7514 break;
7515 /* Unbind it from offline cpu so it can run. Fall thru. */
7516 kthread_bind(cpu_rq(cpu)->migration_thread,
7517 cpumask_any(cpu_online_mask));
7518 kthread_stop(cpu_rq(cpu)->migration_thread);
7519 put_task_struct(cpu_rq(cpu)->migration_thread);
7520 cpu_rq(cpu)->migration_thread = NULL;
7521 break;
7522
7523 case CPU_DEAD:
7524 case CPU_DEAD_FROZEN:
7525 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
7526 migrate_live_tasks(cpu);
7527 rq = cpu_rq(cpu);
7528 kthread_stop(rq->migration_thread);
7529 put_task_struct(rq->migration_thread);
7530 rq->migration_thread = NULL;
7531 /* Idle task back to normal (off runqueue, low prio) */
7532 spin_lock_irq(&rq->lock);
7533 update_rq_clock(rq);
7534 deactivate_task(rq, rq->idle, 0);
7535 rq->idle->static_prio = MAX_PRIO;
7536 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7537 rq->idle->sched_class = &idle_sched_class;
7538 migrate_dead_tasks(cpu);
7539 spin_unlock_irq(&rq->lock);
7540 cpuset_unlock();
7541 migrate_nr_uninterruptible(rq);
7542 BUG_ON(rq->nr_running != 0);
7543 calc_global_load_remove(rq);
7544 /*
7545 * No need to migrate the tasks: it was best-effort if
7546 * they didn't take sched_hotcpu_mutex. Just wake up
7547 * the requestors.
7548 */
7549 spin_lock_irq(&rq->lock);
7550 while (!list_empty(&rq->migration_queue)) {
7551 struct migration_req *req;
7552
7553 req = list_entry(rq->migration_queue.next,
7554 struct migration_req, list);
7555 list_del_init(&req->list);
7556 spin_unlock_irq(&rq->lock);
7557 complete(&req->done);
7558 spin_lock_irq(&rq->lock);
7559 }
7560 spin_unlock_irq(&rq->lock);
7561 break;
7562
7563 case CPU_DYING:
7564 case CPU_DYING_FROZEN:
7565 /* Update our root-domain */
7566 rq = cpu_rq(cpu);
7567 spin_lock_irqsave(&rq->lock, flags);
7568 if (rq->rd) {
7569 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7570 set_rq_offline(rq);
7571 }
7572 spin_unlock_irqrestore(&rq->lock, flags);
7573 break;
7574 #endif
7575 }
7576 return NOTIFY_OK;
7577 }
7578
7579 /*
7580 * Register at high priority so that task migration (migrate_all_tasks)
7581 * happens before everything else. This has to be lower priority than
7582 * the notifier in the perf_counter subsystem, though.
7583 */
7584 static struct notifier_block __cpuinitdata migration_notifier = {
7585 .notifier_call = migration_call,
7586 .priority = 10
7587 };
7588
7589 static int __init migration_init(void)
7590 {
7591 void *cpu = (void *)(long)smp_processor_id();
7592 int err;
7593
7594 /* Start one for the boot CPU: */
7595 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7596 BUG_ON(err == NOTIFY_BAD);
7597 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7598 register_cpu_notifier(&migration_notifier);
7599
7600 return err;
7601 }
7602 early_initcall(migration_init);
7603 #endif
7604
7605 #ifdef CONFIG_SMP
7606
7607 #ifdef CONFIG_SCHED_DEBUG
7608
7609 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7610 struct cpumask *groupmask)
7611 {
7612 struct sched_group *group = sd->groups;
7613 char str[256];
7614
7615 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7616 cpumask_clear(groupmask);
7617
7618 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7619
7620 if (!(sd->flags & SD_LOAD_BALANCE)) {
7621 printk("does not load-balance\n");
7622 if (sd->parent)
7623 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7624 " has parent");
7625 return -1;
7626 }
7627
7628 printk(KERN_CONT "span %s level %s\n", str, sd->name);
7629
7630 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
7631 printk(KERN_ERR "ERROR: domain->span does not contain "
7632 "CPU%d\n", cpu);
7633 }
7634 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
7635 printk(KERN_ERR "ERROR: domain->groups does not contain"
7636 " CPU%d\n", cpu);
7637 }
7638
7639 printk(KERN_DEBUG "%*s groups:", level + 1, "");
7640 do {
7641 if (!group) {
7642 printk("\n");
7643 printk(KERN_ERR "ERROR: group is NULL\n");
7644 break;
7645 }
7646
7647 if (!group->__cpu_power) {
7648 printk(KERN_CONT "\n");
7649 printk(KERN_ERR "ERROR: domain->cpu_power not "
7650 "set\n");
7651 break;
7652 }
7653
7654 if (!cpumask_weight(sched_group_cpus(group))) {
7655 printk(KERN_CONT "\n");
7656 printk(KERN_ERR "ERROR: empty group\n");
7657 break;
7658 }
7659
7660 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
7661 printk(KERN_CONT "\n");
7662 printk(KERN_ERR "ERROR: repeated CPUs\n");
7663 break;
7664 }
7665
7666 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
7667
7668 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7669
7670 printk(KERN_CONT " %s", str);
7671 if (group->__cpu_power != SCHED_LOAD_SCALE) {
7672 printk(KERN_CONT " (__cpu_power = %d)",
7673 group->__cpu_power);
7674 }
7675
7676 group = group->next;
7677 } while (group != sd->groups);
7678 printk(KERN_CONT "\n");
7679
7680 if (!cpumask_equal(sched_domain_span(sd), groupmask))
7681 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
7682
7683 if (sd->parent &&
7684 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
7685 printk(KERN_ERR "ERROR: parent span is not a superset "
7686 "of domain->span\n");
7687 return 0;
7688 }
7689
7690 static void sched_domain_debug(struct sched_domain *sd, int cpu)
7691 {
7692 cpumask_var_t groupmask;
7693 int level = 0;
7694
7695 if (!sd) {
7696 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7697 return;
7698 }
7699
7700 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7701
7702 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7703 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7704 return;
7705 }
7706
7707 for (;;) {
7708 if (sched_domain_debug_one(sd, cpu, level, groupmask))
7709 break;
7710 level++;
7711 sd = sd->parent;
7712 if (!sd)
7713 break;
7714 }
7715 free_cpumask_var(groupmask);
7716 }
7717 #else /* !CONFIG_SCHED_DEBUG */
7718 # define sched_domain_debug(sd, cpu) do { } while (0)
7719 #endif /* CONFIG_SCHED_DEBUG */
7720
7721 static int sd_degenerate(struct sched_domain *sd)
7722 {
7723 if (cpumask_weight(sched_domain_span(sd)) == 1)
7724 return 1;
7725
7726 /* Following flags need at least 2 groups */
7727 if (sd->flags & (SD_LOAD_BALANCE |
7728 SD_BALANCE_NEWIDLE |
7729 SD_BALANCE_FORK |
7730 SD_BALANCE_EXEC |
7731 SD_SHARE_CPUPOWER |
7732 SD_SHARE_PKG_RESOURCES)) {
7733 if (sd->groups != sd->groups->next)
7734 return 0;
7735 }
7736
7737 /* Following flags don't use groups */
7738 if (sd->flags & (SD_WAKE_IDLE |
7739 SD_WAKE_AFFINE |
7740 SD_WAKE_BALANCE))
7741 return 0;
7742
7743 return 1;
7744 }
7745
7746 static int
7747 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7748 {
7749 unsigned long cflags = sd->flags, pflags = parent->flags;
7750
7751 if (sd_degenerate(parent))
7752 return 1;
7753
7754 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7755 return 0;
7756
7757 /* Does parent contain flags not in child? */
7758 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
7759 if (cflags & SD_WAKE_AFFINE)
7760 pflags &= ~SD_WAKE_BALANCE;
7761 /* Flags needing groups don't count if only 1 group in parent */
7762 if (parent->groups == parent->groups->next) {
7763 pflags &= ~(SD_LOAD_BALANCE |
7764 SD_BALANCE_NEWIDLE |
7765 SD_BALANCE_FORK |
7766 SD_BALANCE_EXEC |
7767 SD_SHARE_CPUPOWER |
7768 SD_SHARE_PKG_RESOURCES);
7769 if (nr_node_ids == 1)
7770 pflags &= ~SD_SERIALIZE;
7771 }
7772 if (~cflags & pflags)
7773 return 0;
7774
7775 return 1;
7776 }
7777
7778 static void free_rootdomain(struct root_domain *rd)
7779 {
7780 cpupri_cleanup(&rd->cpupri);
7781
7782 free_cpumask_var(rd->rto_mask);
7783 free_cpumask_var(rd->online);
7784 free_cpumask_var(rd->span);
7785 kfree(rd);
7786 }
7787
7788 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7789 {
7790 struct root_domain *old_rd = NULL;
7791 unsigned long flags;
7792
7793 spin_lock_irqsave(&rq->lock, flags);
7794
7795 if (rq->rd) {
7796 old_rd = rq->rd;
7797
7798 if (cpumask_test_cpu(rq->cpu, old_rd->online))
7799 set_rq_offline(rq);
7800
7801 cpumask_clear_cpu(rq->cpu, old_rd->span);
7802
7803 /*
7804 * If we dont want to free the old_rt yet then
7805 * set old_rd to NULL to skip the freeing later
7806 * in this function:
7807 */
7808 if (!atomic_dec_and_test(&old_rd->refcount))
7809 old_rd = NULL;
7810 }
7811
7812 atomic_inc(&rd->refcount);
7813 rq->rd = rd;
7814
7815 cpumask_set_cpu(rq->cpu, rd->span);
7816 if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
7817 set_rq_online(rq);
7818
7819 spin_unlock_irqrestore(&rq->lock, flags);
7820
7821 if (old_rd)
7822 free_rootdomain(old_rd);
7823 }
7824
7825 static int init_rootdomain(struct root_domain *rd, bool bootmem)
7826 {
7827 gfp_t gfp = GFP_KERNEL;
7828
7829 memset(rd, 0, sizeof(*rd));
7830
7831 if (bootmem)
7832 gfp = GFP_NOWAIT;
7833
7834 if (!alloc_cpumask_var(&rd->span, gfp))
7835 goto out;
7836 if (!alloc_cpumask_var(&rd->online, gfp))
7837 goto free_span;
7838 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
7839 goto free_online;
7840
7841 if (cpupri_init(&rd->cpupri, bootmem) != 0)
7842 goto free_rto_mask;
7843 return 0;
7844
7845 free_rto_mask:
7846 free_cpumask_var(rd->rto_mask);
7847 free_online:
7848 free_cpumask_var(rd->online);
7849 free_span:
7850 free_cpumask_var(rd->span);
7851 out:
7852 return -ENOMEM;
7853 }
7854
7855 static void init_defrootdomain(void)
7856 {
7857 init_rootdomain(&def_root_domain, true);
7858
7859 atomic_set(&def_root_domain.refcount, 1);
7860 }
7861
7862 static struct root_domain *alloc_rootdomain(void)
7863 {
7864 struct root_domain *rd;
7865
7866 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7867 if (!rd)
7868 return NULL;
7869
7870 if (init_rootdomain(rd, false) != 0) {
7871 kfree(rd);
7872 return NULL;
7873 }
7874
7875 return rd;
7876 }
7877
7878 /*
7879 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
7880 * hold the hotplug lock.
7881 */
7882 static void
7883 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
7884 {
7885 struct rq *rq = cpu_rq(cpu);
7886 struct sched_domain *tmp;
7887
7888 /* Remove the sched domains which do not contribute to scheduling. */
7889 for (tmp = sd; tmp; ) {
7890 struct sched_domain *parent = tmp->parent;
7891 if (!parent)
7892 break;
7893
7894 if (sd_parent_degenerate(tmp, parent)) {
7895 tmp->parent = parent->parent;
7896 if (parent->parent)
7897 parent->parent->child = tmp;
7898 } else
7899 tmp = tmp->parent;
7900 }
7901
7902 if (sd && sd_degenerate(sd)) {
7903 sd = sd->parent;
7904 if (sd)
7905 sd->child = NULL;
7906 }
7907
7908 sched_domain_debug(sd, cpu);
7909
7910 rq_attach_root(rq, rd);
7911 rcu_assign_pointer(rq->sd, sd);
7912 }
7913
7914 /* cpus with isolated domains */
7915 static cpumask_var_t cpu_isolated_map;
7916
7917 /* Setup the mask of cpus configured for isolated domains */
7918 static int __init isolated_cpu_setup(char *str)
7919 {
7920 cpulist_parse(str, cpu_isolated_map);
7921 return 1;
7922 }
7923
7924 __setup("isolcpus=", isolated_cpu_setup);
7925
7926 /*
7927 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
7928 * to a function which identifies what group(along with sched group) a CPU
7929 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
7930 * (due to the fact that we keep track of groups covered with a struct cpumask).
7931 *
7932 * init_sched_build_groups will build a circular linked list of the groups
7933 * covered by the given span, and will set each group's ->cpumask correctly,
7934 * and ->cpu_power to 0.
7935 */
7936 static void
7937 init_sched_build_groups(const struct cpumask *span,
7938 const struct cpumask *cpu_map,
7939 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7940 struct sched_group **sg,
7941 struct cpumask *tmpmask),
7942 struct cpumask *covered, struct cpumask *tmpmask)
7943 {
7944 struct sched_group *first = NULL, *last = NULL;
7945 int i;
7946
7947 cpumask_clear(covered);
7948
7949 for_each_cpu(i, span) {
7950 struct sched_group *sg;
7951 int group = group_fn(i, cpu_map, &sg, tmpmask);
7952 int j;
7953
7954 if (cpumask_test_cpu(i, covered))
7955 continue;
7956
7957 cpumask_clear(sched_group_cpus(sg));
7958 sg->__cpu_power = 0;
7959
7960 for_each_cpu(j, span) {
7961 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
7962 continue;
7963
7964 cpumask_set_cpu(j, covered);
7965 cpumask_set_cpu(j, sched_group_cpus(sg));
7966 }
7967 if (!first)
7968 first = sg;
7969 if (last)
7970 last->next = sg;
7971 last = sg;
7972 }
7973 last->next = first;
7974 }
7975
7976 #define SD_NODES_PER_DOMAIN 16
7977
7978 #ifdef CONFIG_NUMA
7979
7980 /**
7981 * find_next_best_node - find the next node to include in a sched_domain
7982 * @node: node whose sched_domain we're building
7983 * @used_nodes: nodes already in the sched_domain
7984 *
7985 * Find the next node to include in a given scheduling domain. Simply
7986 * finds the closest node not already in the @used_nodes map.
7987 *
7988 * Should use nodemask_t.
7989 */
7990 static int find_next_best_node(int node, nodemask_t *used_nodes)
7991 {
7992 int i, n, val, min_val, best_node = 0;
7993
7994 min_val = INT_MAX;
7995
7996 for (i = 0; i < nr_node_ids; i++) {
7997 /* Start at @node */
7998 n = (node + i) % nr_node_ids;
7999
8000 if (!nr_cpus_node(n))
8001 continue;
8002
8003 /* Skip already used nodes */
8004 if (node_isset(n, *used_nodes))
8005 continue;
8006
8007 /* Simple min distance search */
8008 val = node_distance(node, n);
8009
8010 if (val < min_val) {
8011 min_val = val;
8012 best_node = n;
8013 }
8014 }
8015
8016 node_set(best_node, *used_nodes);
8017 return best_node;
8018 }
8019
8020 /**
8021 * sched_domain_node_span - get a cpumask for a node's sched_domain
8022 * @node: node whose cpumask we're constructing
8023 * @span: resulting cpumask
8024 *
8025 * Given a node, construct a good cpumask for its sched_domain to span. It
8026 * should be one that prevents unnecessary balancing, but also spreads tasks
8027 * out optimally.
8028 */
8029 static void sched_domain_node_span(int node, struct cpumask *span)
8030 {
8031 nodemask_t used_nodes;
8032 int i;
8033
8034 cpumask_clear(span);
8035 nodes_clear(used_nodes);
8036
8037 cpumask_or(span, span, cpumask_of_node(node));
8038 node_set(node, used_nodes);
8039
8040 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
8041 int next_node = find_next_best_node(node, &used_nodes);
8042
8043 cpumask_or(span, span, cpumask_of_node(next_node));
8044 }
8045 }
8046 #endif /* CONFIG_NUMA */
8047
8048 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
8049
8050 /*
8051 * The cpus mask in sched_group and sched_domain hangs off the end.
8052 *
8053 * ( See the the comments in include/linux/sched.h:struct sched_group
8054 * and struct sched_domain. )
8055 */
8056 struct static_sched_group {
8057 struct sched_group sg;
8058 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8059 };
8060
8061 struct static_sched_domain {
8062 struct sched_domain sd;
8063 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8064 };
8065
8066 /*
8067 * SMT sched-domains:
8068 */
8069 #ifdef CONFIG_SCHED_SMT
8070 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8071 static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
8072
8073 static int
8074 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8075 struct sched_group **sg, struct cpumask *unused)
8076 {
8077 if (sg)
8078 *sg = &per_cpu(sched_group_cpus, cpu).sg;
8079 return cpu;
8080 }
8081 #endif /* CONFIG_SCHED_SMT */
8082
8083 /*
8084 * multi-core sched-domains:
8085 */
8086 #ifdef CONFIG_SCHED_MC
8087 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8088 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
8089 #endif /* CONFIG_SCHED_MC */
8090
8091 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
8092 static int
8093 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8094 struct sched_group **sg, struct cpumask *mask)
8095 {
8096 int group;
8097
8098 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8099 group = cpumask_first(mask);
8100 if (sg)
8101 *sg = &per_cpu(sched_group_core, group).sg;
8102 return group;
8103 }
8104 #elif defined(CONFIG_SCHED_MC)
8105 static int
8106 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8107 struct sched_group **sg, struct cpumask *unused)
8108 {
8109 if (sg)
8110 *sg = &per_cpu(sched_group_core, cpu).sg;
8111 return cpu;
8112 }
8113 #endif
8114
8115 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8116 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
8117
8118 static int
8119 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8120 struct sched_group **sg, struct cpumask *mask)
8121 {
8122 int group;
8123 #ifdef CONFIG_SCHED_MC
8124 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
8125 group = cpumask_first(mask);
8126 #elif defined(CONFIG_SCHED_SMT)
8127 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8128 group = cpumask_first(mask);
8129 #else
8130 group = cpu;
8131 #endif
8132 if (sg)
8133 *sg = &per_cpu(sched_group_phys, group).sg;
8134 return group;
8135 }
8136
8137 #ifdef CONFIG_NUMA
8138 /*
8139 * The init_sched_build_groups can't handle what we want to do with node
8140 * groups, so roll our own. Now each node has its own list of groups which
8141 * gets dynamically allocated.
8142 */
8143 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
8144 static struct sched_group ***sched_group_nodes_bycpu;
8145
8146 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
8147 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
8148
8149 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8150 struct sched_group **sg,
8151 struct cpumask *nodemask)
8152 {
8153 int group;
8154
8155 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
8156 group = cpumask_first(nodemask);
8157
8158 if (sg)
8159 *sg = &per_cpu(sched_group_allnodes, group).sg;
8160 return group;
8161 }
8162
8163 static void init_numa_sched_groups_power(struct sched_group *group_head)
8164 {
8165 struct sched_group *sg = group_head;
8166 int j;
8167
8168 if (!sg)
8169 return;
8170 do {
8171 for_each_cpu(j, sched_group_cpus(sg)) {
8172 struct sched_domain *sd;
8173
8174 sd = &per_cpu(phys_domains, j).sd;
8175 if (j != group_first_cpu(sd->groups)) {
8176 /*
8177 * Only add "power" once for each
8178 * physical package.
8179 */
8180 continue;
8181 }
8182
8183 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
8184 }
8185 sg = sg->next;
8186 } while (sg != group_head);
8187 }
8188 #endif /* CONFIG_NUMA */
8189
8190 #ifdef CONFIG_NUMA
8191 /* Free memory allocated for various sched_group structures */
8192 static void free_sched_groups(const struct cpumask *cpu_map,
8193 struct cpumask *nodemask)
8194 {
8195 int cpu, i;
8196
8197 for_each_cpu(cpu, cpu_map) {
8198 struct sched_group **sched_group_nodes
8199 = sched_group_nodes_bycpu[cpu];
8200
8201 if (!sched_group_nodes)
8202 continue;
8203
8204 for (i = 0; i < nr_node_ids; i++) {
8205 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8206
8207 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8208 if (cpumask_empty(nodemask))
8209 continue;
8210
8211 if (sg == NULL)
8212 continue;
8213 sg = sg->next;
8214 next_sg:
8215 oldsg = sg;
8216 sg = sg->next;
8217 kfree(oldsg);
8218 if (oldsg != sched_group_nodes[i])
8219 goto next_sg;
8220 }
8221 kfree(sched_group_nodes);
8222 sched_group_nodes_bycpu[cpu] = NULL;
8223 }
8224 }
8225 #else /* !CONFIG_NUMA */
8226 static void free_sched_groups(const struct cpumask *cpu_map,
8227 struct cpumask *nodemask)
8228 {
8229 }
8230 #endif /* CONFIG_NUMA */
8231
8232 /*
8233 * Initialize sched groups cpu_power.
8234 *
8235 * cpu_power indicates the capacity of sched group, which is used while
8236 * distributing the load between different sched groups in a sched domain.
8237 * Typically cpu_power for all the groups in a sched domain will be same unless
8238 * there are asymmetries in the topology. If there are asymmetries, group
8239 * having more cpu_power will pickup more load compared to the group having
8240 * less cpu_power.
8241 *
8242 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
8243 * the maximum number of tasks a group can handle in the presence of other idle
8244 * or lightly loaded groups in the same sched domain.
8245 */
8246 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8247 {
8248 struct sched_domain *child;
8249 struct sched_group *group;
8250
8251 WARN_ON(!sd || !sd->groups);
8252
8253 if (cpu != group_first_cpu(sd->groups))
8254 return;
8255
8256 child = sd->child;
8257
8258 sd->groups->__cpu_power = 0;
8259
8260 /*
8261 * For perf policy, if the groups in child domain share resources
8262 * (for example cores sharing some portions of the cache hierarchy
8263 * or SMT), then set this domain groups cpu_power such that each group
8264 * can handle only one task, when there are other idle groups in the
8265 * same sched domain.
8266 */
8267 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
8268 (child->flags &
8269 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
8270 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
8271 return;
8272 }
8273
8274 /*
8275 * add cpu_power of each child group to this groups cpu_power
8276 */
8277 group = child->groups;
8278 do {
8279 sg_inc_cpu_power(sd->groups, group->__cpu_power);
8280 group = group->next;
8281 } while (group != child->groups);
8282 }
8283
8284 /*
8285 * Initializers for schedule domains
8286 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8287 */
8288
8289 #ifdef CONFIG_SCHED_DEBUG
8290 # define SD_INIT_NAME(sd, type) sd->name = #type
8291 #else
8292 # define SD_INIT_NAME(sd, type) do { } while (0)
8293 #endif
8294
8295 #define SD_INIT(sd, type) sd_init_##type(sd)
8296
8297 #define SD_INIT_FUNC(type) \
8298 static noinline void sd_init_##type(struct sched_domain *sd) \
8299 { \
8300 memset(sd, 0, sizeof(*sd)); \
8301 *sd = SD_##type##_INIT; \
8302 sd->level = SD_LV_##type; \
8303 SD_INIT_NAME(sd, type); \
8304 }
8305
8306 SD_INIT_FUNC(CPU)
8307 #ifdef CONFIG_NUMA
8308 SD_INIT_FUNC(ALLNODES)
8309 SD_INIT_FUNC(NODE)
8310 #endif
8311 #ifdef CONFIG_SCHED_SMT
8312 SD_INIT_FUNC(SIBLING)
8313 #endif
8314 #ifdef CONFIG_SCHED_MC
8315 SD_INIT_FUNC(MC)
8316 #endif
8317
8318 static int default_relax_domain_level = -1;
8319
8320 static int __init setup_relax_domain_level(char *str)
8321 {
8322 unsigned long val;
8323
8324 val = simple_strtoul(str, NULL, 0);
8325 if (val < SD_LV_MAX)
8326 default_relax_domain_level = val;
8327
8328 return 1;
8329 }
8330 __setup("relax_domain_level=", setup_relax_domain_level);
8331
8332 static void set_domain_attribute(struct sched_domain *sd,
8333 struct sched_domain_attr *attr)
8334 {
8335 int request;
8336
8337 if (!attr || attr->relax_domain_level < 0) {
8338 if (default_relax_domain_level < 0)
8339 return;
8340 else
8341 request = default_relax_domain_level;
8342 } else
8343 request = attr->relax_domain_level;
8344 if (request < sd->level) {
8345 /* turn off idle balance on this domain */
8346 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
8347 } else {
8348 /* turn on idle balance on this domain */
8349 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
8350 }
8351 }
8352
8353 /*
8354 * Build sched domains for a given set of cpus and attach the sched domains
8355 * to the individual cpus
8356 */
8357 static int __build_sched_domains(const struct cpumask *cpu_map,
8358 struct sched_domain_attr *attr)
8359 {
8360 int i, err = -ENOMEM;
8361 struct root_domain *rd;
8362 cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
8363 tmpmask;
8364 #ifdef CONFIG_NUMA
8365 cpumask_var_t domainspan, covered, notcovered;
8366 struct sched_group **sched_group_nodes = NULL;
8367 int sd_allnodes = 0;
8368
8369 if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
8370 goto out;
8371 if (!alloc_cpumask_var(&covered, GFP_KERNEL))
8372 goto free_domainspan;
8373 if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
8374 goto free_covered;
8375 #endif
8376
8377 if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
8378 goto free_notcovered;
8379 if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
8380 goto free_nodemask;
8381 if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
8382 goto free_this_sibling_map;
8383 if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
8384 goto free_this_core_map;
8385 if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
8386 goto free_send_covered;
8387
8388 #ifdef CONFIG_NUMA
8389 /*
8390 * Allocate the per-node list of sched groups
8391 */
8392 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
8393 GFP_KERNEL);
8394 if (!sched_group_nodes) {
8395 printk(KERN_WARNING "Can not alloc sched group node list\n");
8396 goto free_tmpmask;
8397 }
8398 #endif
8399
8400 rd = alloc_rootdomain();
8401 if (!rd) {
8402 printk(KERN_WARNING "Cannot alloc root domain\n");
8403 goto free_sched_groups;
8404 }
8405
8406 #ifdef CONFIG_NUMA
8407 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
8408 #endif
8409
8410 /*
8411 * Set up domains for cpus specified by the cpu_map.
8412 */
8413 for_each_cpu(i, cpu_map) {
8414 struct sched_domain *sd = NULL, *p;
8415
8416 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
8417
8418 #ifdef CONFIG_NUMA
8419 if (cpumask_weight(cpu_map) >
8420 SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
8421 sd = &per_cpu(allnodes_domains, i).sd;
8422 SD_INIT(sd, ALLNODES);
8423 set_domain_attribute(sd, attr);
8424 cpumask_copy(sched_domain_span(sd), cpu_map);
8425 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
8426 p = sd;
8427 sd_allnodes = 1;
8428 } else
8429 p = NULL;
8430
8431 sd = &per_cpu(node_domains, i).sd;
8432 SD_INIT(sd, NODE);
8433 set_domain_attribute(sd, attr);
8434 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8435 sd->parent = p;
8436 if (p)
8437 p->child = sd;
8438 cpumask_and(sched_domain_span(sd),
8439 sched_domain_span(sd), cpu_map);
8440 #endif
8441
8442 p = sd;
8443 sd = &per_cpu(phys_domains, i).sd;
8444 SD_INIT(sd, CPU);
8445 set_domain_attribute(sd, attr);
8446 cpumask_copy(sched_domain_span(sd), nodemask);
8447 sd->parent = p;
8448 if (p)
8449 p->child = sd;
8450 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
8451
8452 #ifdef CONFIG_SCHED_MC
8453 p = sd;
8454 sd = &per_cpu(core_domains, i).sd;
8455 SD_INIT(sd, MC);
8456 set_domain_attribute(sd, attr);
8457 cpumask_and(sched_domain_span(sd), cpu_map,
8458 cpu_coregroup_mask(i));
8459 sd->parent = p;
8460 p->child = sd;
8461 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
8462 #endif
8463
8464 #ifdef CONFIG_SCHED_SMT
8465 p = sd;
8466 sd = &per_cpu(cpu_domains, i).sd;
8467 SD_INIT(sd, SIBLING);
8468 set_domain_attribute(sd, attr);
8469 cpumask_and(sched_domain_span(sd),
8470 topology_thread_cpumask(i), cpu_map);
8471 sd->parent = p;
8472 p->child = sd;
8473 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
8474 #endif
8475 }
8476
8477 #ifdef CONFIG_SCHED_SMT
8478 /* Set up CPU (sibling) groups */
8479 for_each_cpu(i, cpu_map) {
8480 cpumask_and(this_sibling_map,
8481 topology_thread_cpumask(i), cpu_map);
8482 if (i != cpumask_first(this_sibling_map))
8483 continue;
8484
8485 init_sched_build_groups(this_sibling_map, cpu_map,
8486 &cpu_to_cpu_group,
8487 send_covered, tmpmask);
8488 }
8489 #endif
8490
8491 #ifdef CONFIG_SCHED_MC
8492 /* Set up multi-core groups */
8493 for_each_cpu(i, cpu_map) {
8494 cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
8495 if (i != cpumask_first(this_core_map))
8496 continue;
8497
8498 init_sched_build_groups(this_core_map, cpu_map,
8499 &cpu_to_core_group,
8500 send_covered, tmpmask);
8501 }
8502 #endif
8503
8504 /* Set up physical groups */
8505 for (i = 0; i < nr_node_ids; i++) {
8506 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8507 if (cpumask_empty(nodemask))
8508 continue;
8509
8510 init_sched_build_groups(nodemask, cpu_map,
8511 &cpu_to_phys_group,
8512 send_covered, tmpmask);
8513 }
8514
8515 #ifdef CONFIG_NUMA
8516 /* Set up node groups */
8517 if (sd_allnodes) {
8518 init_sched_build_groups(cpu_map, cpu_map,
8519 &cpu_to_allnodes_group,
8520 send_covered, tmpmask);
8521 }
8522
8523 for (i = 0; i < nr_node_ids; i++) {
8524 /* Set up node groups */
8525 struct sched_group *sg, *prev;
8526 int j;
8527
8528 cpumask_clear(covered);
8529 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8530 if (cpumask_empty(nodemask)) {
8531 sched_group_nodes[i] = NULL;
8532 continue;
8533 }
8534
8535 sched_domain_node_span(i, domainspan);
8536 cpumask_and(domainspan, domainspan, cpu_map);
8537
8538 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8539 GFP_KERNEL, i);
8540 if (!sg) {
8541 printk(KERN_WARNING "Can not alloc domain group for "
8542 "node %d\n", i);
8543 goto error;
8544 }
8545 sched_group_nodes[i] = sg;
8546 for_each_cpu(j, nodemask) {
8547 struct sched_domain *sd;
8548
8549 sd = &per_cpu(node_domains, j).sd;
8550 sd->groups = sg;
8551 }
8552 sg->__cpu_power = 0;
8553 cpumask_copy(sched_group_cpus(sg), nodemask);
8554 sg->next = sg;
8555 cpumask_or(covered, covered, nodemask);
8556 prev = sg;
8557
8558 for (j = 0; j < nr_node_ids; j++) {
8559 int n = (i + j) % nr_node_ids;
8560
8561 cpumask_complement(notcovered, covered);
8562 cpumask_and(tmpmask, notcovered, cpu_map);
8563 cpumask_and(tmpmask, tmpmask, domainspan);
8564 if (cpumask_empty(tmpmask))
8565 break;
8566
8567 cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
8568 if (cpumask_empty(tmpmask))
8569 continue;
8570
8571 sg = kmalloc_node(sizeof(struct sched_group) +
8572 cpumask_size(),
8573 GFP_KERNEL, i);
8574 if (!sg) {
8575 printk(KERN_WARNING
8576 "Can not alloc domain group for node %d\n", j);
8577 goto error;
8578 }
8579 sg->__cpu_power = 0;
8580 cpumask_copy(sched_group_cpus(sg), tmpmask);
8581 sg->next = prev->next;
8582 cpumask_or(covered, covered, tmpmask);
8583 prev->next = sg;
8584 prev = sg;
8585 }
8586 }
8587 #endif
8588
8589 /* Calculate CPU power for physical packages and nodes */
8590 #ifdef CONFIG_SCHED_SMT
8591 for_each_cpu(i, cpu_map) {
8592 struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
8593
8594 init_sched_groups_power(i, sd);
8595 }
8596 #endif
8597 #ifdef CONFIG_SCHED_MC
8598 for_each_cpu(i, cpu_map) {
8599 struct sched_domain *sd = &per_cpu(core_domains, i).sd;
8600
8601 init_sched_groups_power(i, sd);
8602 }
8603 #endif
8604
8605 for_each_cpu(i, cpu_map) {
8606 struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
8607
8608 init_sched_groups_power(i, sd);
8609 }
8610
8611 #ifdef CONFIG_NUMA
8612 for (i = 0; i < nr_node_ids; i++)
8613 init_numa_sched_groups_power(sched_group_nodes[i]);
8614
8615 if (sd_allnodes) {
8616 struct sched_group *sg;
8617
8618 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8619 tmpmask);
8620 init_numa_sched_groups_power(sg);
8621 }
8622 #endif
8623
8624 /* Attach the domains */
8625 for_each_cpu(i, cpu_map) {
8626 struct sched_domain *sd;
8627 #ifdef CONFIG_SCHED_SMT
8628 sd = &per_cpu(cpu_domains, i).sd;
8629 #elif defined(CONFIG_SCHED_MC)
8630 sd = &per_cpu(core_domains, i).sd;
8631 #else
8632 sd = &per_cpu(phys_domains, i).sd;
8633 #endif
8634 cpu_attach_domain(sd, rd, i);
8635 }
8636
8637 err = 0;
8638
8639 free_tmpmask:
8640 free_cpumask_var(tmpmask);
8641 free_send_covered:
8642 free_cpumask_var(send_covered);
8643 free_this_core_map:
8644 free_cpumask_var(this_core_map);
8645 free_this_sibling_map:
8646 free_cpumask_var(this_sibling_map);
8647 free_nodemask:
8648 free_cpumask_var(nodemask);
8649 free_notcovered:
8650 #ifdef CONFIG_NUMA
8651 free_cpumask_var(notcovered);
8652 free_covered:
8653 free_cpumask_var(covered);
8654 free_domainspan:
8655 free_cpumask_var(domainspan);
8656 out:
8657 #endif
8658 return err;
8659
8660 free_sched_groups:
8661 #ifdef CONFIG_NUMA
8662 kfree(sched_group_nodes);
8663 #endif
8664 goto free_tmpmask;
8665
8666 #ifdef CONFIG_NUMA
8667 error:
8668 free_sched_groups(cpu_map, tmpmask);
8669 free_rootdomain(rd);
8670 goto free_tmpmask;
8671 #endif
8672 }
8673
8674 static int build_sched_domains(const struct cpumask *cpu_map)
8675 {
8676 return __build_sched_domains(cpu_map, NULL);
8677 }
8678
8679 static struct cpumask *doms_cur; /* current sched domains */
8680 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
8681 static struct sched_domain_attr *dattr_cur;
8682 /* attribues of custom domains in 'doms_cur' */
8683
8684 /*
8685 * Special case: If a kmalloc of a doms_cur partition (array of
8686 * cpumask) fails, then fallback to a single sched domain,
8687 * as determined by the single cpumask fallback_doms.
8688 */
8689 static cpumask_var_t fallback_doms;
8690
8691 /*
8692 * arch_update_cpu_topology lets virtualized architectures update the
8693 * cpu core maps. It is supposed to return 1 if the topology changed
8694 * or 0 if it stayed the same.
8695 */
8696 int __attribute__((weak)) arch_update_cpu_topology(void)
8697 {
8698 return 0;
8699 }
8700
8701 /*
8702 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
8703 * For now this just excludes isolated cpus, but could be used to
8704 * exclude other special cases in the future.
8705 */
8706 static int arch_init_sched_domains(const struct cpumask *cpu_map)
8707 {
8708 int err;
8709
8710 arch_update_cpu_topology();
8711 ndoms_cur = 1;
8712 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
8713 if (!doms_cur)
8714 doms_cur = fallback_doms;
8715 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
8716 dattr_cur = NULL;
8717 err = build_sched_domains(doms_cur);
8718 register_sched_domain_sysctl();
8719
8720 return err;
8721 }
8722
8723 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
8724 struct cpumask *tmpmask)
8725 {
8726 free_sched_groups(cpu_map, tmpmask);
8727 }
8728
8729 /*
8730 * Detach sched domains from a group of cpus specified in cpu_map
8731 * These cpus will now be attached to the NULL domain
8732 */
8733 static void detach_destroy_domains(const struct cpumask *cpu_map)
8734 {
8735 /* Save because hotplug lock held. */
8736 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
8737 int i;
8738
8739 for_each_cpu(i, cpu_map)
8740 cpu_attach_domain(NULL, &def_root_domain, i);
8741 synchronize_sched();
8742 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
8743 }
8744
8745 /* handle null as "default" */
8746 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8747 struct sched_domain_attr *new, int idx_new)
8748 {
8749 struct sched_domain_attr tmp;
8750
8751 /* fast path */
8752 if (!new && !cur)
8753 return 1;
8754
8755 tmp = SD_ATTR_INIT;
8756 return !memcmp(cur ? (cur + idx_cur) : &tmp,
8757 new ? (new + idx_new) : &tmp,
8758 sizeof(struct sched_domain_attr));
8759 }
8760
8761 /*
8762 * Partition sched domains as specified by the 'ndoms_new'
8763 * cpumasks in the array doms_new[] of cpumasks. This compares
8764 * doms_new[] to the current sched domain partitioning, doms_cur[].
8765 * It destroys each deleted domain and builds each new domain.
8766 *
8767 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
8768 * The masks don't intersect (don't overlap.) We should setup one
8769 * sched domain for each mask. CPUs not in any of the cpumasks will
8770 * not be load balanced. If the same cpumask appears both in the
8771 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8772 * it as it is.
8773 *
8774 * The passed in 'doms_new' should be kmalloc'd. This routine takes
8775 * ownership of it and will kfree it when done with it. If the caller
8776 * failed the kmalloc call, then it can pass in doms_new == NULL &&
8777 * ndoms_new == 1, and partition_sched_domains() will fallback to
8778 * the single partition 'fallback_doms', it also forces the domains
8779 * to be rebuilt.
8780 *
8781 * If doms_new == NULL it will be replaced with cpu_online_mask.
8782 * ndoms_new == 0 is a special case for destroying existing domains,
8783 * and it will not create the default domain.
8784 *
8785 * Call with hotplug lock held
8786 */
8787 /* FIXME: Change to struct cpumask *doms_new[] */
8788 void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
8789 struct sched_domain_attr *dattr_new)
8790 {
8791 int i, j, n;
8792 int new_topology;
8793
8794 mutex_lock(&sched_domains_mutex);
8795
8796 /* always unregister in case we don't destroy any domains */
8797 unregister_sched_domain_sysctl();
8798
8799 /* Let architecture update cpu core mappings. */
8800 new_topology = arch_update_cpu_topology();
8801
8802 n = doms_new ? ndoms_new : 0;
8803
8804 /* Destroy deleted domains */
8805 for (i = 0; i < ndoms_cur; i++) {
8806 for (j = 0; j < n && !new_topology; j++) {
8807 if (cpumask_equal(&doms_cur[i], &doms_new[j])
8808 && dattrs_equal(dattr_cur, i, dattr_new, j))
8809 goto match1;
8810 }
8811 /* no match - a current sched domain not in new doms_new[] */
8812 detach_destroy_domains(doms_cur + i);
8813 match1:
8814 ;
8815 }
8816
8817 if (doms_new == NULL) {
8818 ndoms_cur = 0;
8819 doms_new = fallback_doms;
8820 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
8821 WARN_ON_ONCE(dattr_new);
8822 }
8823
8824 /* Build new domains */
8825 for (i = 0; i < ndoms_new; i++) {
8826 for (j = 0; j < ndoms_cur && !new_topology; j++) {
8827 if (cpumask_equal(&doms_new[i], &doms_cur[j])
8828 && dattrs_equal(dattr_new, i, dattr_cur, j))
8829 goto match2;
8830 }
8831 /* no match - add a new doms_new */
8832 __build_sched_domains(doms_new + i,
8833 dattr_new ? dattr_new + i : NULL);
8834 match2:
8835 ;
8836 }
8837
8838 /* Remember the new sched domains */
8839 if (doms_cur != fallback_doms)
8840 kfree(doms_cur);
8841 kfree(dattr_cur); /* kfree(NULL) is safe */
8842 doms_cur = doms_new;
8843 dattr_cur = dattr_new;
8844 ndoms_cur = ndoms_new;
8845
8846 register_sched_domain_sysctl();
8847
8848 mutex_unlock(&sched_domains_mutex);
8849 }
8850
8851 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
8852 static void arch_reinit_sched_domains(void)
8853 {
8854 get_online_cpus();
8855
8856 /* Destroy domains first to force the rebuild */
8857 partition_sched_domains(0, NULL, NULL);
8858
8859 rebuild_sched_domains();
8860 put_online_cpus();
8861 }
8862
8863 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
8864 {
8865 unsigned int level = 0;
8866
8867 if (sscanf(buf, "%u", &level) != 1)
8868 return -EINVAL;
8869
8870 /*
8871 * level is always be positive so don't check for
8872 * level < POWERSAVINGS_BALANCE_NONE which is 0
8873 * What happens on 0 or 1 byte write,
8874 * need to check for count as well?
8875 */
8876
8877 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
8878 return -EINVAL;
8879
8880 if (smt)
8881 sched_smt_power_savings = level;
8882 else
8883 sched_mc_power_savings = level;
8884
8885 arch_reinit_sched_domains();
8886
8887 return count;
8888 }
8889
8890 #ifdef CONFIG_SCHED_MC
8891 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
8892 char *page)
8893 {
8894 return sprintf(page, "%u\n", sched_mc_power_savings);
8895 }
8896 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
8897 const char *buf, size_t count)
8898 {
8899 return sched_power_savings_store(buf, count, 0);
8900 }
8901 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
8902 sched_mc_power_savings_show,
8903 sched_mc_power_savings_store);
8904 #endif
8905
8906 #ifdef CONFIG_SCHED_SMT
8907 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
8908 char *page)
8909 {
8910 return sprintf(page, "%u\n", sched_smt_power_savings);
8911 }
8912 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
8913 const char *buf, size_t count)
8914 {
8915 return sched_power_savings_store(buf, count, 1);
8916 }
8917 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
8918 sched_smt_power_savings_show,
8919 sched_smt_power_savings_store);
8920 #endif
8921
8922 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
8923 {
8924 int err = 0;
8925
8926 #ifdef CONFIG_SCHED_SMT
8927 if (smt_capable())
8928 err = sysfs_create_file(&cls->kset.kobj,
8929 &attr_sched_smt_power_savings.attr);
8930 #endif
8931 #ifdef CONFIG_SCHED_MC
8932 if (!err && mc_capable())
8933 err = sysfs_create_file(&cls->kset.kobj,
8934 &attr_sched_mc_power_savings.attr);
8935 #endif
8936 return err;
8937 }
8938 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
8939
8940 #ifndef CONFIG_CPUSETS
8941 /*
8942 * Add online and remove offline CPUs from the scheduler domains.
8943 * When cpusets are enabled they take over this function.
8944 */
8945 static int update_sched_domains(struct notifier_block *nfb,
8946 unsigned long action, void *hcpu)
8947 {
8948 switch (action) {
8949 case CPU_ONLINE:
8950 case CPU_ONLINE_FROZEN:
8951 case CPU_DEAD:
8952 case CPU_DEAD_FROZEN:
8953 partition_sched_domains(1, NULL, NULL);
8954 return NOTIFY_OK;
8955
8956 default:
8957 return NOTIFY_DONE;
8958 }
8959 }
8960 #endif
8961
8962 static int update_runtime(struct notifier_block *nfb,
8963 unsigned long action, void *hcpu)
8964 {
8965 int cpu = (int)(long)hcpu;
8966
8967 switch (action) {
8968 case CPU_DOWN_PREPARE:
8969 case CPU_DOWN_PREPARE_FROZEN:
8970 disable_runtime(cpu_rq(cpu));
8971 return NOTIFY_OK;
8972
8973 case CPU_DOWN_FAILED:
8974 case CPU_DOWN_FAILED_FROZEN:
8975 case CPU_ONLINE:
8976 case CPU_ONLINE_FROZEN:
8977 enable_runtime(cpu_rq(cpu));
8978 return NOTIFY_OK;
8979
8980 default:
8981 return NOTIFY_DONE;
8982 }
8983 }
8984
8985 void __init sched_init_smp(void)
8986 {
8987 cpumask_var_t non_isolated_cpus;
8988
8989 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
8990
8991 #if defined(CONFIG_NUMA)
8992 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
8993 GFP_KERNEL);
8994 BUG_ON(sched_group_nodes_bycpu == NULL);
8995 #endif
8996 get_online_cpus();
8997 mutex_lock(&sched_domains_mutex);
8998 arch_init_sched_domains(cpu_online_mask);
8999 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9000 if (cpumask_empty(non_isolated_cpus))
9001 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
9002 mutex_unlock(&sched_domains_mutex);
9003 put_online_cpus();
9004
9005 #ifndef CONFIG_CPUSETS
9006 /* XXX: Theoretical race here - CPU may be hotplugged now */
9007 hotcpu_notifier(update_sched_domains, 0);
9008 #endif
9009
9010 /* RT runtime code needs to handle some hotplug events */
9011 hotcpu_notifier(update_runtime, 0);
9012
9013 init_hrtick();
9014
9015 /* Move init over to a non-isolated CPU */
9016 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
9017 BUG();
9018 sched_init_granularity();
9019 free_cpumask_var(non_isolated_cpus);
9020
9021 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
9022 init_sched_rt_class();
9023 }
9024 #else
9025 void __init sched_init_smp(void)
9026 {
9027 sched_init_granularity();
9028 }
9029 #endif /* CONFIG_SMP */
9030
9031 const_debug unsigned int sysctl_timer_migration = 1;
9032
9033 int in_sched_functions(unsigned long addr)
9034 {
9035 return in_lock_functions(addr) ||
9036 (addr >= (unsigned long)__sched_text_start
9037 && addr < (unsigned long)__sched_text_end);
9038 }
9039
9040 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
9041 {
9042 cfs_rq->tasks_timeline = RB_ROOT;
9043 INIT_LIST_HEAD(&cfs_rq->tasks);
9044 #ifdef CONFIG_FAIR_GROUP_SCHED
9045 cfs_rq->rq = rq;
9046 #endif
9047 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9048 }
9049
9050 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9051 {
9052 struct rt_prio_array *array;
9053 int i;
9054
9055 array = &rt_rq->active;
9056 for (i = 0; i < MAX_RT_PRIO; i++) {
9057 INIT_LIST_HEAD(array->queue + i);
9058 __clear_bit(i, array->bitmap);
9059 }
9060 /* delimiter for bitsearch: */
9061 __set_bit(MAX_RT_PRIO, array->bitmap);
9062
9063 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
9064 rt_rq->highest_prio.curr = MAX_RT_PRIO;
9065 #ifdef CONFIG_SMP
9066 rt_rq->highest_prio.next = MAX_RT_PRIO;
9067 #endif
9068 #endif
9069 #ifdef CONFIG_SMP
9070 rt_rq->rt_nr_migratory = 0;
9071 rt_rq->overloaded = 0;
9072 plist_head_init(&rq->rt.pushable_tasks, &rq->lock);
9073 #endif
9074
9075 rt_rq->rt_time = 0;
9076 rt_rq->rt_throttled = 0;
9077 rt_rq->rt_runtime = 0;
9078 spin_lock_init(&rt_rq->rt_runtime_lock);
9079
9080 #ifdef CONFIG_RT_GROUP_SCHED
9081 rt_rq->rt_nr_boosted = 0;
9082 rt_rq->rq = rq;
9083 #endif
9084 }
9085
9086 #ifdef CONFIG_FAIR_GROUP_SCHED
9087 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9088 struct sched_entity *se, int cpu, int add,
9089 struct sched_entity *parent)
9090 {
9091 struct rq *rq = cpu_rq(cpu);
9092 tg->cfs_rq[cpu] = cfs_rq;
9093 init_cfs_rq(cfs_rq, rq);
9094 cfs_rq->tg = tg;
9095 if (add)
9096 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9097
9098 tg->se[cpu] = se;
9099 /* se could be NULL for init_task_group */
9100 if (!se)
9101 return;
9102
9103 if (!parent)
9104 se->cfs_rq = &rq->cfs;
9105 else
9106 se->cfs_rq = parent->my_q;
9107
9108 se->my_q = cfs_rq;
9109 se->load.weight = tg->shares;
9110 se->load.inv_weight = 0;
9111 se->parent = parent;
9112 }
9113 #endif
9114
9115 #ifdef CONFIG_RT_GROUP_SCHED
9116 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9117 struct sched_rt_entity *rt_se, int cpu, int add,
9118 struct sched_rt_entity *parent)
9119 {
9120 struct rq *rq = cpu_rq(cpu);
9121
9122 tg->rt_rq[cpu] = rt_rq;
9123 init_rt_rq(rt_rq, rq);
9124 rt_rq->tg = tg;
9125 rt_rq->rt_se = rt_se;
9126 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
9127 if (add)
9128 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9129
9130 tg->rt_se[cpu] = rt_se;
9131 if (!rt_se)
9132 return;
9133
9134 if (!parent)
9135 rt_se->rt_rq = &rq->rt;
9136 else
9137 rt_se->rt_rq = parent->my_q;
9138
9139 rt_se->my_q = rt_rq;
9140 rt_se->parent = parent;
9141 INIT_LIST_HEAD(&rt_se->run_list);
9142 }
9143 #endif
9144
9145 void __init sched_init(void)
9146 {
9147 int i, j;
9148 unsigned long alloc_size = 0, ptr;
9149
9150 #ifdef CONFIG_FAIR_GROUP_SCHED
9151 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9152 #endif
9153 #ifdef CONFIG_RT_GROUP_SCHED
9154 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9155 #endif
9156 #ifdef CONFIG_USER_SCHED
9157 alloc_size *= 2;
9158 #endif
9159 #ifdef CONFIG_CPUMASK_OFFSTACK
9160 alloc_size += num_possible_cpus() * cpumask_size();
9161 #endif
9162 /*
9163 * As sched_init() is called before page_alloc is setup,
9164 * we use alloc_bootmem().
9165 */
9166 if (alloc_size) {
9167 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
9168
9169 #ifdef CONFIG_FAIR_GROUP_SCHED
9170 init_task_group.se = (struct sched_entity **)ptr;
9171 ptr += nr_cpu_ids * sizeof(void **);
9172
9173 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9174 ptr += nr_cpu_ids * sizeof(void **);
9175
9176 #ifdef CONFIG_USER_SCHED
9177 root_task_group.se = (struct sched_entity **)ptr;
9178 ptr += nr_cpu_ids * sizeof(void **);
9179
9180 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9181 ptr += nr_cpu_ids * sizeof(void **);
9182 #endif /* CONFIG_USER_SCHED */
9183 #endif /* CONFIG_FAIR_GROUP_SCHED */
9184 #ifdef CONFIG_RT_GROUP_SCHED
9185 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9186 ptr += nr_cpu_ids * sizeof(void **);
9187
9188 init_task_group.rt_rq = (struct rt_rq **)ptr;
9189 ptr += nr_cpu_ids * sizeof(void **);
9190
9191 #ifdef CONFIG_USER_SCHED
9192 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9193 ptr += nr_cpu_ids * sizeof(void **);
9194
9195 root_task_group.rt_rq = (struct rt_rq **)ptr;
9196 ptr += nr_cpu_ids * sizeof(void **);
9197 #endif /* CONFIG_USER_SCHED */
9198 #endif /* CONFIG_RT_GROUP_SCHED */
9199 #ifdef CONFIG_CPUMASK_OFFSTACK
9200 for_each_possible_cpu(i) {
9201 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9202 ptr += cpumask_size();
9203 }
9204 #endif /* CONFIG_CPUMASK_OFFSTACK */
9205 }
9206
9207 #ifdef CONFIG_SMP
9208 init_defrootdomain();
9209 #endif
9210
9211 init_rt_bandwidth(&def_rt_bandwidth,
9212 global_rt_period(), global_rt_runtime());
9213
9214 #ifdef CONFIG_RT_GROUP_SCHED
9215 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9216 global_rt_period(), global_rt_runtime());
9217 #ifdef CONFIG_USER_SCHED
9218 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9219 global_rt_period(), RUNTIME_INF);
9220 #endif /* CONFIG_USER_SCHED */
9221 #endif /* CONFIG_RT_GROUP_SCHED */
9222
9223 #ifdef CONFIG_GROUP_SCHED
9224 list_add(&init_task_group.list, &task_groups);
9225 INIT_LIST_HEAD(&init_task_group.children);
9226
9227 #ifdef CONFIG_USER_SCHED
9228 INIT_LIST_HEAD(&root_task_group.children);
9229 init_task_group.parent = &root_task_group;
9230 list_add(&init_task_group.siblings, &root_task_group.children);
9231 #endif /* CONFIG_USER_SCHED */
9232 #endif /* CONFIG_GROUP_SCHED */
9233
9234 for_each_possible_cpu(i) {
9235 struct rq *rq;
9236
9237 rq = cpu_rq(i);
9238 spin_lock_init(&rq->lock);
9239 rq->nr_running = 0;
9240 rq->calc_load_active = 0;
9241 rq->calc_load_update = jiffies + LOAD_FREQ;
9242 init_cfs_rq(&rq->cfs, rq);
9243 init_rt_rq(&rq->rt, rq);
9244 #ifdef CONFIG_FAIR_GROUP_SCHED
9245 init_task_group.shares = init_task_group_load;
9246 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9247 #ifdef CONFIG_CGROUP_SCHED
9248 /*
9249 * How much cpu bandwidth does init_task_group get?
9250 *
9251 * In case of task-groups formed thr' the cgroup filesystem, it
9252 * gets 100% of the cpu resources in the system. This overall
9253 * system cpu resource is divided among the tasks of
9254 * init_task_group and its child task-groups in a fair manner,
9255 * based on each entity's (task or task-group's) weight
9256 * (se->load.weight).
9257 *
9258 * In other words, if init_task_group has 10 tasks of weight
9259 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9260 * then A0's share of the cpu resource is:
9261 *
9262 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9263 *
9264 * We achieve this by letting init_task_group's tasks sit
9265 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9266 */
9267 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
9268 #elif defined CONFIG_USER_SCHED
9269 root_task_group.shares = NICE_0_LOAD;
9270 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
9271 /*
9272 * In case of task-groups formed thr' the user id of tasks,
9273 * init_task_group represents tasks belonging to root user.
9274 * Hence it forms a sibling of all subsequent groups formed.
9275 * In this case, init_task_group gets only a fraction of overall
9276 * system cpu resource, based on the weight assigned to root
9277 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9278 * by letting tasks of init_task_group sit in a separate cfs_rq
9279 * (init_cfs_rq) and having one entity represent this group of
9280 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9281 */
9282 init_tg_cfs_entry(&init_task_group,
9283 &per_cpu(init_cfs_rq, i),
9284 &per_cpu(init_sched_entity, i), i, 1,
9285 root_task_group.se[i]);
9286
9287 #endif
9288 #endif /* CONFIG_FAIR_GROUP_SCHED */
9289
9290 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9291 #ifdef CONFIG_RT_GROUP_SCHED
9292 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
9293 #ifdef CONFIG_CGROUP_SCHED
9294 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
9295 #elif defined CONFIG_USER_SCHED
9296 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
9297 init_tg_rt_entry(&init_task_group,
9298 &per_cpu(init_rt_rq, i),
9299 &per_cpu(init_sched_rt_entity, i), i, 1,
9300 root_task_group.rt_se[i]);
9301 #endif
9302 #endif
9303
9304 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9305 rq->cpu_load[j] = 0;
9306 #ifdef CONFIG_SMP
9307 rq->sd = NULL;
9308 rq->rd = NULL;
9309 rq->active_balance = 0;
9310 rq->next_balance = jiffies;
9311 rq->push_cpu = 0;
9312 rq->cpu = i;
9313 rq->online = 0;
9314 rq->migration_thread = NULL;
9315 INIT_LIST_HEAD(&rq->migration_queue);
9316 rq_attach_root(rq, &def_root_domain);
9317 #endif
9318 init_rq_hrtick(rq);
9319 atomic_set(&rq->nr_iowait, 0);
9320 }
9321
9322 set_load_weight(&init_task);
9323
9324 #ifdef CONFIG_PREEMPT_NOTIFIERS
9325 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9326 #endif
9327
9328 #ifdef CONFIG_SMP
9329 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9330 #endif
9331
9332 #ifdef CONFIG_RT_MUTEXES
9333 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9334 #endif
9335
9336 /*
9337 * The boot idle thread does lazy MMU switching as well:
9338 */
9339 atomic_inc(&init_mm.mm_count);
9340 enter_lazy_tlb(&init_mm, current);
9341
9342 /*
9343 * Make us the idle thread. Technically, schedule() should not be
9344 * called from this thread, however somewhere below it might be,
9345 * but because we are the idle thread, we just pick up running again
9346 * when this runqueue becomes "idle".
9347 */
9348 init_idle(current, smp_processor_id());
9349
9350 calc_load_update = jiffies + LOAD_FREQ;
9351
9352 /*
9353 * During early bootup we pretend to be a normal task:
9354 */
9355 current->sched_class = &fair_sched_class;
9356
9357 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9358 alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
9359 #ifdef CONFIG_SMP
9360 #ifdef CONFIG_NO_HZ
9361 alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
9362 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
9363 #endif
9364 alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
9365 #endif /* SMP */
9366
9367 perf_counter_init();
9368
9369 scheduler_running = 1;
9370 }
9371
9372 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9373 void __might_sleep(char *file, int line)
9374 {
9375 #ifdef in_atomic
9376 static unsigned long prev_jiffy; /* ratelimiting */
9377
9378 if ((!in_atomic() && !irqs_disabled()) ||
9379 system_state != SYSTEM_RUNNING || oops_in_progress)
9380 return;
9381 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9382 return;
9383 prev_jiffy = jiffies;
9384
9385 printk(KERN_ERR
9386 "BUG: sleeping function called from invalid context at %s:%d\n",
9387 file, line);
9388 printk(KERN_ERR
9389 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9390 in_atomic(), irqs_disabled(),
9391 current->pid, current->comm);
9392
9393 debug_show_held_locks(current);
9394 if (irqs_disabled())
9395 print_irqtrace_events(current);
9396 dump_stack();
9397 #endif
9398 }
9399 EXPORT_SYMBOL(__might_sleep);
9400 #endif
9401
9402 #ifdef CONFIG_MAGIC_SYSRQ
9403 static void normalize_task(struct rq *rq, struct task_struct *p)
9404 {
9405 int on_rq;
9406
9407 update_rq_clock(rq);
9408 on_rq = p->se.on_rq;
9409 if (on_rq)
9410 deactivate_task(rq, p, 0);
9411 __setscheduler(rq, p, SCHED_NORMAL, 0);
9412 if (on_rq) {
9413 activate_task(rq, p, 0);
9414 resched_task(rq->curr);
9415 }
9416 }
9417
9418 void normalize_rt_tasks(void)
9419 {
9420 struct task_struct *g, *p;
9421 unsigned long flags;
9422 struct rq *rq;
9423
9424 read_lock_irqsave(&tasklist_lock, flags);
9425 do_each_thread(g, p) {
9426 /*
9427 * Only normalize user tasks:
9428 */
9429 if (!p->mm)
9430 continue;
9431
9432 p->se.exec_start = 0;
9433 #ifdef CONFIG_SCHEDSTATS
9434 p->se.wait_start = 0;
9435 p->se.sleep_start = 0;
9436 p->se.block_start = 0;
9437 #endif
9438
9439 if (!rt_task(p)) {
9440 /*
9441 * Renice negative nice level userspace
9442 * tasks back to 0:
9443 */
9444 if (TASK_NICE(p) < 0 && p->mm)
9445 set_user_nice(p, 0);
9446 continue;
9447 }
9448
9449 spin_lock(&p->pi_lock);
9450 rq = __task_rq_lock(p);
9451
9452 normalize_task(rq, p);
9453
9454 __task_rq_unlock(rq);
9455 spin_unlock(&p->pi_lock);
9456 } while_each_thread(g, p);
9457
9458 read_unlock_irqrestore(&tasklist_lock, flags);
9459 }
9460
9461 #endif /* CONFIG_MAGIC_SYSRQ */
9462
9463 #ifdef CONFIG_IA64
9464 /*
9465 * These functions are only useful for the IA64 MCA handling.
9466 *
9467 * They can only be called when the whole system has been
9468 * stopped - every CPU needs to be quiescent, and no scheduling
9469 * activity can take place. Using them for anything else would
9470 * be a serious bug, and as a result, they aren't even visible
9471 * under any other configuration.
9472 */
9473
9474 /**
9475 * curr_task - return the current task for a given cpu.
9476 * @cpu: the processor in question.
9477 *
9478 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9479 */
9480 struct task_struct *curr_task(int cpu)
9481 {
9482 return cpu_curr(cpu);
9483 }
9484
9485 /**
9486 * set_curr_task - set the current task for a given cpu.
9487 * @cpu: the processor in question.
9488 * @p: the task pointer to set.
9489 *
9490 * Description: This function must only be used when non-maskable interrupts
9491 * are serviced on a separate stack. It allows the architecture to switch the
9492 * notion of the current task on a cpu in a non-blocking manner. This function
9493 * must be called with all CPU's synchronized, and interrupts disabled, the
9494 * and caller must save the original value of the current task (see
9495 * curr_task() above) and restore that value before reenabling interrupts and
9496 * re-starting the system.
9497 *
9498 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9499 */
9500 void set_curr_task(int cpu, struct task_struct *p)
9501 {
9502 cpu_curr(cpu) = p;
9503 }
9504
9505 #endif
9506
9507 #ifdef CONFIG_FAIR_GROUP_SCHED
9508 static void free_fair_sched_group(struct task_group *tg)
9509 {
9510 int i;
9511
9512 for_each_possible_cpu(i) {
9513 if (tg->cfs_rq)
9514 kfree(tg->cfs_rq[i]);
9515 if (tg->se)
9516 kfree(tg->se[i]);
9517 }
9518
9519 kfree(tg->cfs_rq);
9520 kfree(tg->se);
9521 }
9522
9523 static
9524 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9525 {
9526 struct cfs_rq *cfs_rq;
9527 struct sched_entity *se;
9528 struct rq *rq;
9529 int i;
9530
9531 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9532 if (!tg->cfs_rq)
9533 goto err;
9534 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9535 if (!tg->se)
9536 goto err;
9537
9538 tg->shares = NICE_0_LOAD;
9539
9540 for_each_possible_cpu(i) {
9541 rq = cpu_rq(i);
9542
9543 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9544 GFP_KERNEL, cpu_to_node(i));
9545 if (!cfs_rq)
9546 goto err;
9547
9548 se = kzalloc_node(sizeof(struct sched_entity),
9549 GFP_KERNEL, cpu_to_node(i));
9550 if (!se)
9551 goto err;
9552
9553 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9554 }
9555
9556 return 1;
9557
9558 err:
9559 return 0;
9560 }
9561
9562 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9563 {
9564 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9565 &cpu_rq(cpu)->leaf_cfs_rq_list);
9566 }
9567
9568 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9569 {
9570 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9571 }
9572 #else /* !CONFG_FAIR_GROUP_SCHED */
9573 static inline void free_fair_sched_group(struct task_group *tg)
9574 {
9575 }
9576
9577 static inline
9578 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9579 {
9580 return 1;
9581 }
9582
9583 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9584 {
9585 }
9586
9587 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9588 {
9589 }
9590 #endif /* CONFIG_FAIR_GROUP_SCHED */
9591
9592 #ifdef CONFIG_RT_GROUP_SCHED
9593 static void free_rt_sched_group(struct task_group *tg)
9594 {
9595 int i;
9596
9597 destroy_rt_bandwidth(&tg->rt_bandwidth);
9598
9599 for_each_possible_cpu(i) {
9600 if (tg->rt_rq)
9601 kfree(tg->rt_rq[i]);
9602 if (tg->rt_se)
9603 kfree(tg->rt_se[i]);
9604 }
9605
9606 kfree(tg->rt_rq);
9607 kfree(tg->rt_se);
9608 }
9609
9610 static
9611 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9612 {
9613 struct rt_rq *rt_rq;
9614 struct sched_rt_entity *rt_se;
9615 struct rq *rq;
9616 int i;
9617
9618 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9619 if (!tg->rt_rq)
9620 goto err;
9621 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9622 if (!tg->rt_se)
9623 goto err;
9624
9625 init_rt_bandwidth(&tg->rt_bandwidth,
9626 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9627
9628 for_each_possible_cpu(i) {
9629 rq = cpu_rq(i);
9630
9631 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9632 GFP_KERNEL, cpu_to_node(i));
9633 if (!rt_rq)
9634 goto err;
9635
9636 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9637 GFP_KERNEL, cpu_to_node(i));
9638 if (!rt_se)
9639 goto err;
9640
9641 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
9642 }
9643
9644 return 1;
9645
9646 err:
9647 return 0;
9648 }
9649
9650 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9651 {
9652 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9653 &cpu_rq(cpu)->leaf_rt_rq_list);
9654 }
9655
9656 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9657 {
9658 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9659 }
9660 #else /* !CONFIG_RT_GROUP_SCHED */
9661 static inline void free_rt_sched_group(struct task_group *tg)
9662 {
9663 }
9664
9665 static inline
9666 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9667 {
9668 return 1;
9669 }
9670
9671 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9672 {
9673 }
9674
9675 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9676 {
9677 }
9678 #endif /* CONFIG_RT_GROUP_SCHED */
9679
9680 #ifdef CONFIG_GROUP_SCHED
9681 static void free_sched_group(struct task_group *tg)
9682 {
9683 free_fair_sched_group(tg);
9684 free_rt_sched_group(tg);
9685 kfree(tg);
9686 }
9687
9688 /* allocate runqueue etc for a new task group */
9689 struct task_group *sched_create_group(struct task_group *parent)
9690 {
9691 struct task_group *tg;
9692 unsigned long flags;
9693 int i;
9694
9695 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9696 if (!tg)
9697 return ERR_PTR(-ENOMEM);
9698
9699 if (!alloc_fair_sched_group(tg, parent))
9700 goto err;
9701
9702 if (!alloc_rt_sched_group(tg, parent))
9703 goto err;
9704
9705 spin_lock_irqsave(&task_group_lock, flags);
9706 for_each_possible_cpu(i) {
9707 register_fair_sched_group(tg, i);
9708 register_rt_sched_group(tg, i);
9709 }
9710 list_add_rcu(&tg->list, &task_groups);
9711
9712 WARN_ON(!parent); /* root should already exist */
9713
9714 tg->parent = parent;
9715 INIT_LIST_HEAD(&tg->children);
9716 list_add_rcu(&tg->siblings, &parent->children);
9717 spin_unlock_irqrestore(&task_group_lock, flags);
9718
9719 return tg;
9720
9721 err:
9722 free_sched_group(tg);
9723 return ERR_PTR(-ENOMEM);
9724 }
9725
9726 /* rcu callback to free various structures associated with a task group */
9727 static void free_sched_group_rcu(struct rcu_head *rhp)
9728 {
9729 /* now it should be safe to free those cfs_rqs */
9730 free_sched_group(container_of(rhp, struct task_group, rcu));
9731 }
9732
9733 /* Destroy runqueue etc associated with a task group */
9734 void sched_destroy_group(struct task_group *tg)
9735 {
9736 unsigned long flags;
9737 int i;
9738
9739 spin_lock_irqsave(&task_group_lock, flags);
9740 for_each_possible_cpu(i) {
9741 unregister_fair_sched_group(tg, i);
9742 unregister_rt_sched_group(tg, i);
9743 }
9744 list_del_rcu(&tg->list);
9745 list_del_rcu(&tg->siblings);
9746 spin_unlock_irqrestore(&task_group_lock, flags);
9747
9748 /* wait for possible concurrent references to cfs_rqs complete */
9749 call_rcu(&tg->rcu, free_sched_group_rcu);
9750 }
9751
9752 /* change task's runqueue when it moves between groups.
9753 * The caller of this function should have put the task in its new group
9754 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
9755 * reflect its new group.
9756 */
9757 void sched_move_task(struct task_struct *tsk)
9758 {
9759 int on_rq, running;
9760 unsigned long flags;
9761 struct rq *rq;
9762
9763 rq = task_rq_lock(tsk, &flags);
9764
9765 update_rq_clock(rq);
9766
9767 running = task_current(rq, tsk);
9768 on_rq = tsk->se.on_rq;
9769
9770 if (on_rq)
9771 dequeue_task(rq, tsk, 0);
9772 if (unlikely(running))
9773 tsk->sched_class->put_prev_task(rq, tsk);
9774
9775 set_task_rq(tsk, task_cpu(tsk));
9776
9777 #ifdef CONFIG_FAIR_GROUP_SCHED
9778 if (tsk->sched_class->moved_group)
9779 tsk->sched_class->moved_group(tsk);
9780 #endif
9781
9782 if (unlikely(running))
9783 tsk->sched_class->set_curr_task(rq);
9784 if (on_rq)
9785 enqueue_task(rq, tsk, 0);
9786
9787 task_rq_unlock(rq, &flags);
9788 }
9789 #endif /* CONFIG_GROUP_SCHED */
9790
9791 #ifdef CONFIG_FAIR_GROUP_SCHED
9792 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
9793 {
9794 struct cfs_rq *cfs_rq = se->cfs_rq;
9795 int on_rq;
9796
9797 on_rq = se->on_rq;
9798 if (on_rq)
9799 dequeue_entity(cfs_rq, se, 0);
9800
9801 se->load.weight = shares;
9802 se->load.inv_weight = 0;
9803
9804 if (on_rq)
9805 enqueue_entity(cfs_rq, se, 0);
9806 }
9807
9808 static void set_se_shares(struct sched_entity *se, unsigned long shares)
9809 {
9810 struct cfs_rq *cfs_rq = se->cfs_rq;
9811 struct rq *rq = cfs_rq->rq;
9812 unsigned long flags;
9813
9814 spin_lock_irqsave(&rq->lock, flags);
9815 __set_se_shares(se, shares);
9816 spin_unlock_irqrestore(&rq->lock, flags);
9817 }
9818
9819 static DEFINE_MUTEX(shares_mutex);
9820
9821 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
9822 {
9823 int i;
9824 unsigned long flags;
9825
9826 /*
9827 * We can't change the weight of the root cgroup.
9828 */
9829 if (!tg->se[0])
9830 return -EINVAL;
9831
9832 if (shares < MIN_SHARES)
9833 shares = MIN_SHARES;
9834 else if (shares > MAX_SHARES)
9835 shares = MAX_SHARES;
9836
9837 mutex_lock(&shares_mutex);
9838 if (tg->shares == shares)
9839 goto done;
9840
9841 spin_lock_irqsave(&task_group_lock, flags);
9842 for_each_possible_cpu(i)
9843 unregister_fair_sched_group(tg, i);
9844 list_del_rcu(&tg->siblings);
9845 spin_unlock_irqrestore(&task_group_lock, flags);
9846
9847 /* wait for any ongoing reference to this group to finish */
9848 synchronize_sched();
9849
9850 /*
9851 * Now we are free to modify the group's share on each cpu
9852 * w/o tripping rebalance_share or load_balance_fair.
9853 */
9854 tg->shares = shares;
9855 for_each_possible_cpu(i) {
9856 /*
9857 * force a rebalance
9858 */
9859 cfs_rq_set_shares(tg->cfs_rq[i], 0);
9860 set_se_shares(tg->se[i], shares);
9861 }
9862
9863 /*
9864 * Enable load balance activity on this group, by inserting it back on
9865 * each cpu's rq->leaf_cfs_rq_list.
9866 */
9867 spin_lock_irqsave(&task_group_lock, flags);
9868 for_each_possible_cpu(i)
9869 register_fair_sched_group(tg, i);
9870 list_add_rcu(&tg->siblings, &tg->parent->children);
9871 spin_unlock_irqrestore(&task_group_lock, flags);
9872 done:
9873 mutex_unlock(&shares_mutex);
9874 return 0;
9875 }
9876
9877 unsigned long sched_group_shares(struct task_group *tg)
9878 {
9879 return tg->shares;
9880 }
9881 #endif
9882
9883 #ifdef CONFIG_RT_GROUP_SCHED
9884 /*
9885 * Ensure that the real time constraints are schedulable.
9886 */
9887 static DEFINE_MUTEX(rt_constraints_mutex);
9888
9889 static unsigned long to_ratio(u64 period, u64 runtime)
9890 {
9891 if (runtime == RUNTIME_INF)
9892 return 1ULL << 20;
9893
9894 return div64_u64(runtime << 20, period);
9895 }
9896
9897 /* Must be called with tasklist_lock held */
9898 static inline int tg_has_rt_tasks(struct task_group *tg)
9899 {
9900 struct task_struct *g, *p;
9901
9902 do_each_thread(g, p) {
9903 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
9904 return 1;
9905 } while_each_thread(g, p);
9906
9907 return 0;
9908 }
9909
9910 struct rt_schedulable_data {
9911 struct task_group *tg;
9912 u64 rt_period;
9913 u64 rt_runtime;
9914 };
9915
9916 static int tg_schedulable(struct task_group *tg, void *data)
9917 {
9918 struct rt_schedulable_data *d = data;
9919 struct task_group *child;
9920 unsigned long total, sum = 0;
9921 u64 period, runtime;
9922
9923 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9924 runtime = tg->rt_bandwidth.rt_runtime;
9925
9926 if (tg == d->tg) {
9927 period = d->rt_period;
9928 runtime = d->rt_runtime;
9929 }
9930
9931 #ifdef CONFIG_USER_SCHED
9932 if (tg == &root_task_group) {
9933 period = global_rt_period();
9934 runtime = global_rt_runtime();
9935 }
9936 #endif
9937
9938 /*
9939 * Cannot have more runtime than the period.
9940 */
9941 if (runtime > period && runtime != RUNTIME_INF)
9942 return -EINVAL;
9943
9944 /*
9945 * Ensure we don't starve existing RT tasks.
9946 */
9947 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
9948 return -EBUSY;
9949
9950 total = to_ratio(period, runtime);
9951
9952 /*
9953 * Nobody can have more than the global setting allows.
9954 */
9955 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
9956 return -EINVAL;
9957
9958 /*
9959 * The sum of our children's runtime should not exceed our own.
9960 */
9961 list_for_each_entry_rcu(child, &tg->children, siblings) {
9962 period = ktime_to_ns(child->rt_bandwidth.rt_period);
9963 runtime = child->rt_bandwidth.rt_runtime;
9964
9965 if (child == d->tg) {
9966 period = d->rt_period;
9967 runtime = d->rt_runtime;
9968 }
9969
9970 sum += to_ratio(period, runtime);
9971 }
9972
9973 if (sum > total)
9974 return -EINVAL;
9975
9976 return 0;
9977 }
9978
9979 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
9980 {
9981 struct rt_schedulable_data data = {
9982 .tg = tg,
9983 .rt_period = period,
9984 .rt_runtime = runtime,
9985 };
9986
9987 return walk_tg_tree(tg_schedulable, tg_nop, &data);
9988 }
9989
9990 static int tg_set_bandwidth(struct task_group *tg,
9991 u64 rt_period, u64 rt_runtime)
9992 {
9993 int i, err = 0;
9994
9995 mutex_lock(&rt_constraints_mutex);
9996 read_lock(&tasklist_lock);
9997 err = __rt_schedulable(tg, rt_period, rt_runtime);
9998 if (err)
9999 goto unlock;
10000
10001 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10002 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10003 tg->rt_bandwidth.rt_runtime = rt_runtime;
10004
10005 for_each_possible_cpu(i) {
10006 struct rt_rq *rt_rq = tg->rt_rq[i];
10007
10008 spin_lock(&rt_rq->rt_runtime_lock);
10009 rt_rq->rt_runtime = rt_runtime;
10010 spin_unlock(&rt_rq->rt_runtime_lock);
10011 }
10012 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10013 unlock:
10014 read_unlock(&tasklist_lock);
10015 mutex_unlock(&rt_constraints_mutex);
10016
10017 return err;
10018 }
10019
10020 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10021 {
10022 u64 rt_runtime, rt_period;
10023
10024 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10025 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10026 if (rt_runtime_us < 0)
10027 rt_runtime = RUNTIME_INF;
10028
10029 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10030 }
10031
10032 long sched_group_rt_runtime(struct task_group *tg)
10033 {
10034 u64 rt_runtime_us;
10035
10036 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
10037 return -1;
10038
10039 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
10040 do_div(rt_runtime_us, NSEC_PER_USEC);
10041 return rt_runtime_us;
10042 }
10043
10044 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10045 {
10046 u64 rt_runtime, rt_period;
10047
10048 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10049 rt_runtime = tg->rt_bandwidth.rt_runtime;
10050
10051 if (rt_period == 0)
10052 return -EINVAL;
10053
10054 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10055 }
10056
10057 long sched_group_rt_period(struct task_group *tg)
10058 {
10059 u64 rt_period_us;
10060
10061 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10062 do_div(rt_period_us, NSEC_PER_USEC);
10063 return rt_period_us;
10064 }
10065
10066 static int sched_rt_global_constraints(void)
10067 {
10068 u64 runtime, period;
10069 int ret = 0;
10070
10071 if (sysctl_sched_rt_period <= 0)
10072 return -EINVAL;
10073
10074 runtime = global_rt_runtime();
10075 period = global_rt_period();
10076
10077 /*
10078 * Sanity check on the sysctl variables.
10079 */
10080 if (runtime > period && runtime != RUNTIME_INF)
10081 return -EINVAL;
10082
10083 mutex_lock(&rt_constraints_mutex);
10084 read_lock(&tasklist_lock);
10085 ret = __rt_schedulable(NULL, 0, 0);
10086 read_unlock(&tasklist_lock);
10087 mutex_unlock(&rt_constraints_mutex);
10088
10089 return ret;
10090 }
10091
10092 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10093 {
10094 /* Don't accept realtime tasks when there is no way for them to run */
10095 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10096 return 0;
10097
10098 return 1;
10099 }
10100
10101 #else /* !CONFIG_RT_GROUP_SCHED */
10102 static int sched_rt_global_constraints(void)
10103 {
10104 unsigned long flags;
10105 int i;
10106
10107 if (sysctl_sched_rt_period <= 0)
10108 return -EINVAL;
10109
10110 /*
10111 * There's always some RT tasks in the root group
10112 * -- migration, kstopmachine etc..
10113 */
10114 if (sysctl_sched_rt_runtime == 0)
10115 return -EBUSY;
10116
10117 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10118 for_each_possible_cpu(i) {
10119 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10120
10121 spin_lock(&rt_rq->rt_runtime_lock);
10122 rt_rq->rt_runtime = global_rt_runtime();
10123 spin_unlock(&rt_rq->rt_runtime_lock);
10124 }
10125 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10126
10127 return 0;
10128 }
10129 #endif /* CONFIG_RT_GROUP_SCHED */
10130
10131 int sched_rt_handler(struct ctl_table *table, int write,
10132 struct file *filp, void __user *buffer, size_t *lenp,
10133 loff_t *ppos)
10134 {
10135 int ret;
10136 int old_period, old_runtime;
10137 static DEFINE_MUTEX(mutex);
10138
10139 mutex_lock(&mutex);
10140 old_period = sysctl_sched_rt_period;
10141 old_runtime = sysctl_sched_rt_runtime;
10142
10143 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
10144
10145 if (!ret && write) {
10146 ret = sched_rt_global_constraints();
10147 if (ret) {
10148 sysctl_sched_rt_period = old_period;
10149 sysctl_sched_rt_runtime = old_runtime;
10150 } else {
10151 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10152 def_rt_bandwidth.rt_period =
10153 ns_to_ktime(global_rt_period());
10154 }
10155 }
10156 mutex_unlock(&mutex);
10157
10158 return ret;
10159 }
10160
10161 #ifdef CONFIG_CGROUP_SCHED
10162
10163 /* return corresponding task_group object of a cgroup */
10164 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
10165 {
10166 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10167 struct task_group, css);
10168 }
10169
10170 static struct cgroup_subsys_state *
10171 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
10172 {
10173 struct task_group *tg, *parent;
10174
10175 if (!cgrp->parent) {
10176 /* This is early initialization for the top cgroup */
10177 return &init_task_group.css;
10178 }
10179
10180 parent = cgroup_tg(cgrp->parent);
10181 tg = sched_create_group(parent);
10182 if (IS_ERR(tg))
10183 return ERR_PTR(-ENOMEM);
10184
10185 return &tg->css;
10186 }
10187
10188 static void
10189 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10190 {
10191 struct task_group *tg = cgroup_tg(cgrp);
10192
10193 sched_destroy_group(tg);
10194 }
10195
10196 static int
10197 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10198 struct task_struct *tsk)
10199 {
10200 #ifdef CONFIG_RT_GROUP_SCHED
10201 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
10202 return -EINVAL;
10203 #else
10204 /* We don't support RT-tasks being in separate groups */
10205 if (tsk->sched_class != &fair_sched_class)
10206 return -EINVAL;
10207 #endif
10208
10209 return 0;
10210 }
10211
10212 static void
10213 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10214 struct cgroup *old_cont, struct task_struct *tsk)
10215 {
10216 sched_move_task(tsk);
10217 }
10218
10219 #ifdef CONFIG_FAIR_GROUP_SCHED
10220 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
10221 u64 shareval)
10222 {
10223 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
10224 }
10225
10226 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
10227 {
10228 struct task_group *tg = cgroup_tg(cgrp);
10229
10230 return (u64) tg->shares;
10231 }
10232 #endif /* CONFIG_FAIR_GROUP_SCHED */
10233
10234 #ifdef CONFIG_RT_GROUP_SCHED
10235 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
10236 s64 val)
10237 {
10238 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
10239 }
10240
10241 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
10242 {
10243 return sched_group_rt_runtime(cgroup_tg(cgrp));
10244 }
10245
10246 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10247 u64 rt_period_us)
10248 {
10249 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10250 }
10251
10252 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10253 {
10254 return sched_group_rt_period(cgroup_tg(cgrp));
10255 }
10256 #endif /* CONFIG_RT_GROUP_SCHED */
10257
10258 static struct cftype cpu_files[] = {
10259 #ifdef CONFIG_FAIR_GROUP_SCHED
10260 {
10261 .name = "shares",
10262 .read_u64 = cpu_shares_read_u64,
10263 .write_u64 = cpu_shares_write_u64,
10264 },
10265 #endif
10266 #ifdef CONFIG_RT_GROUP_SCHED
10267 {
10268 .name = "rt_runtime_us",
10269 .read_s64 = cpu_rt_runtime_read,
10270 .write_s64 = cpu_rt_runtime_write,
10271 },
10272 {
10273 .name = "rt_period_us",
10274 .read_u64 = cpu_rt_period_read_uint,
10275 .write_u64 = cpu_rt_period_write_uint,
10276 },
10277 #endif
10278 };
10279
10280 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10281 {
10282 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
10283 }
10284
10285 struct cgroup_subsys cpu_cgroup_subsys = {
10286 .name = "cpu",
10287 .create = cpu_cgroup_create,
10288 .destroy = cpu_cgroup_destroy,
10289 .can_attach = cpu_cgroup_can_attach,
10290 .attach = cpu_cgroup_attach,
10291 .populate = cpu_cgroup_populate,
10292 .subsys_id = cpu_cgroup_subsys_id,
10293 .early_init = 1,
10294 };
10295
10296 #endif /* CONFIG_CGROUP_SCHED */
10297
10298 #ifdef CONFIG_CGROUP_CPUACCT
10299
10300 /*
10301 * CPU accounting code for task groups.
10302 *
10303 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10304 * (balbir@in.ibm.com).
10305 */
10306
10307 /* track cpu usage of a group of tasks and its child groups */
10308 struct cpuacct {
10309 struct cgroup_subsys_state css;
10310 /* cpuusage holds pointer to a u64-type object on every cpu */
10311 u64 *cpuusage;
10312 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
10313 struct cpuacct *parent;
10314 };
10315
10316 struct cgroup_subsys cpuacct_subsys;
10317
10318 /* return cpu accounting group corresponding to this container */
10319 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
10320 {
10321 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
10322 struct cpuacct, css);
10323 }
10324
10325 /* return cpu accounting group to which this task belongs */
10326 static inline struct cpuacct *task_ca(struct task_struct *tsk)
10327 {
10328 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10329 struct cpuacct, css);
10330 }
10331
10332 /* create a new cpu accounting group */
10333 static struct cgroup_subsys_state *cpuacct_create(
10334 struct cgroup_subsys *ss, struct cgroup *cgrp)
10335 {
10336 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
10337 int i;
10338
10339 if (!ca)
10340 goto out;
10341
10342 ca->cpuusage = alloc_percpu(u64);
10343 if (!ca->cpuusage)
10344 goto out_free_ca;
10345
10346 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10347 if (percpu_counter_init(&ca->cpustat[i], 0))
10348 goto out_free_counters;
10349
10350 if (cgrp->parent)
10351 ca->parent = cgroup_ca(cgrp->parent);
10352
10353 return &ca->css;
10354
10355 out_free_counters:
10356 while (--i >= 0)
10357 percpu_counter_destroy(&ca->cpustat[i]);
10358 free_percpu(ca->cpuusage);
10359 out_free_ca:
10360 kfree(ca);
10361 out:
10362 return ERR_PTR(-ENOMEM);
10363 }
10364
10365 /* destroy an existing cpu accounting group */
10366 static void
10367 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10368 {
10369 struct cpuacct *ca = cgroup_ca(cgrp);
10370 int i;
10371
10372 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10373 percpu_counter_destroy(&ca->cpustat[i]);
10374 free_percpu(ca->cpuusage);
10375 kfree(ca);
10376 }
10377
10378 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10379 {
10380 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10381 u64 data;
10382
10383 #ifndef CONFIG_64BIT
10384 /*
10385 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10386 */
10387 spin_lock_irq(&cpu_rq(cpu)->lock);
10388 data = *cpuusage;
10389 spin_unlock_irq(&cpu_rq(cpu)->lock);
10390 #else
10391 data = *cpuusage;
10392 #endif
10393
10394 return data;
10395 }
10396
10397 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10398 {
10399 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10400
10401 #ifndef CONFIG_64BIT
10402 /*
10403 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10404 */
10405 spin_lock_irq(&cpu_rq(cpu)->lock);
10406 *cpuusage = val;
10407 spin_unlock_irq(&cpu_rq(cpu)->lock);
10408 #else
10409 *cpuusage = val;
10410 #endif
10411 }
10412
10413 /* return total cpu usage (in nanoseconds) of a group */
10414 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10415 {
10416 struct cpuacct *ca = cgroup_ca(cgrp);
10417 u64 totalcpuusage = 0;
10418 int i;
10419
10420 for_each_present_cpu(i)
10421 totalcpuusage += cpuacct_cpuusage_read(ca, i);
10422
10423 return totalcpuusage;
10424 }
10425
10426 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10427 u64 reset)
10428 {
10429 struct cpuacct *ca = cgroup_ca(cgrp);
10430 int err = 0;
10431 int i;
10432
10433 if (reset) {
10434 err = -EINVAL;
10435 goto out;
10436 }
10437
10438 for_each_present_cpu(i)
10439 cpuacct_cpuusage_write(ca, i, 0);
10440
10441 out:
10442 return err;
10443 }
10444
10445 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10446 struct seq_file *m)
10447 {
10448 struct cpuacct *ca = cgroup_ca(cgroup);
10449 u64 percpu;
10450 int i;
10451
10452 for_each_present_cpu(i) {
10453 percpu = cpuacct_cpuusage_read(ca, i);
10454 seq_printf(m, "%llu ", (unsigned long long) percpu);
10455 }
10456 seq_printf(m, "\n");
10457 return 0;
10458 }
10459
10460 static const char *cpuacct_stat_desc[] = {
10461 [CPUACCT_STAT_USER] = "user",
10462 [CPUACCT_STAT_SYSTEM] = "system",
10463 };
10464
10465 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10466 struct cgroup_map_cb *cb)
10467 {
10468 struct cpuacct *ca = cgroup_ca(cgrp);
10469 int i;
10470
10471 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10472 s64 val = percpu_counter_read(&ca->cpustat[i]);
10473 val = cputime64_to_clock_t(val);
10474 cb->fill(cb, cpuacct_stat_desc[i], val);
10475 }
10476 return 0;
10477 }
10478
10479 static struct cftype files[] = {
10480 {
10481 .name = "usage",
10482 .read_u64 = cpuusage_read,
10483 .write_u64 = cpuusage_write,
10484 },
10485 {
10486 .name = "usage_percpu",
10487 .read_seq_string = cpuacct_percpu_seq_read,
10488 },
10489 {
10490 .name = "stat",
10491 .read_map = cpuacct_stats_show,
10492 },
10493 };
10494
10495 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10496 {
10497 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10498 }
10499
10500 /*
10501 * charge this task's execution time to its accounting group.
10502 *
10503 * called with rq->lock held.
10504 */
10505 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10506 {
10507 struct cpuacct *ca;
10508 int cpu;
10509
10510 if (unlikely(!cpuacct_subsys.active))
10511 return;
10512
10513 cpu = task_cpu(tsk);
10514
10515 rcu_read_lock();
10516
10517 ca = task_ca(tsk);
10518
10519 for (; ca; ca = ca->parent) {
10520 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10521 *cpuusage += cputime;
10522 }
10523
10524 rcu_read_unlock();
10525 }
10526
10527 /*
10528 * Charge the system/user time to the task's accounting group.
10529 */
10530 static void cpuacct_update_stats(struct task_struct *tsk,
10531 enum cpuacct_stat_index idx, cputime_t val)
10532 {
10533 struct cpuacct *ca;
10534
10535 if (unlikely(!cpuacct_subsys.active))
10536 return;
10537
10538 rcu_read_lock();
10539 ca = task_ca(tsk);
10540
10541 do {
10542 percpu_counter_add(&ca->cpustat[idx], val);
10543 ca = ca->parent;
10544 } while (ca);
10545 rcu_read_unlock();
10546 }
10547
10548 struct cgroup_subsys cpuacct_subsys = {
10549 .name = "cpuacct",
10550 .create = cpuacct_create,
10551 .destroy = cpuacct_destroy,
10552 .populate = cpuacct_populate,
10553 .subsys_id = cpuacct_subsys_id,
10554 };
10555 #endif /* CONFIG_CGROUP_CPUACCT */
This page took 0.449269 seconds and 5 git commands to generate.