9ca8ad05950bf13d23ea5cc1c2ce266df9bdc9f1
[deliverable/linux.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/stop_machine.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
74 #include <linux/slab.h>
75
76 #include <asm/tlb.h>
77 #include <asm/irq_regs.h>
78
79 #include "sched_cpupri.h"
80 #include "workqueue_sched.h"
81
82 #define CREATE_TRACE_POINTS
83 #include <trace/events/sched.h>
84
85 /*
86 * Convert user-nice values [ -20 ... 0 ... 19 ]
87 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
88 * and back.
89 */
90 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
91 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
92 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
93
94 /*
95 * 'User priority' is the nice value converted to something we
96 * can work with better when scaling various scheduler parameters,
97 * it's a [ 0 ... 39 ] range.
98 */
99 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
100 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
101 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
102
103 /*
104 * Helpers for converting nanosecond timing to jiffy resolution
105 */
106 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
107
108 #define NICE_0_LOAD SCHED_LOAD_SCALE
109 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
110
111 /*
112 * These are the 'tuning knobs' of the scheduler:
113 *
114 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
115 * Timeslices get refilled after they expire.
116 */
117 #define DEF_TIMESLICE (100 * HZ / 1000)
118
119 /*
120 * single value that denotes runtime == period, ie unlimited time.
121 */
122 #define RUNTIME_INF ((u64)~0ULL)
123
124 static inline int rt_policy(int policy)
125 {
126 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
127 return 1;
128 return 0;
129 }
130
131 static inline int task_has_rt_policy(struct task_struct *p)
132 {
133 return rt_policy(p->policy);
134 }
135
136 /*
137 * This is the priority-queue data structure of the RT scheduling class:
138 */
139 struct rt_prio_array {
140 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
141 struct list_head queue[MAX_RT_PRIO];
142 };
143
144 struct rt_bandwidth {
145 /* nests inside the rq lock: */
146 raw_spinlock_t rt_runtime_lock;
147 ktime_t rt_period;
148 u64 rt_runtime;
149 struct hrtimer rt_period_timer;
150 };
151
152 static struct rt_bandwidth def_rt_bandwidth;
153
154 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
155
156 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
157 {
158 struct rt_bandwidth *rt_b =
159 container_of(timer, struct rt_bandwidth, rt_period_timer);
160 ktime_t now;
161 int overrun;
162 int idle = 0;
163
164 for (;;) {
165 now = hrtimer_cb_get_time(timer);
166 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
167
168 if (!overrun)
169 break;
170
171 idle = do_sched_rt_period_timer(rt_b, overrun);
172 }
173
174 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
175 }
176
177 static
178 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
179 {
180 rt_b->rt_period = ns_to_ktime(period);
181 rt_b->rt_runtime = runtime;
182
183 raw_spin_lock_init(&rt_b->rt_runtime_lock);
184
185 hrtimer_init(&rt_b->rt_period_timer,
186 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
187 rt_b->rt_period_timer.function = sched_rt_period_timer;
188 }
189
190 static inline int rt_bandwidth_enabled(void)
191 {
192 return sysctl_sched_rt_runtime >= 0;
193 }
194
195 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
196 {
197 ktime_t now;
198
199 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
200 return;
201
202 if (hrtimer_active(&rt_b->rt_period_timer))
203 return;
204
205 raw_spin_lock(&rt_b->rt_runtime_lock);
206 for (;;) {
207 unsigned long delta;
208 ktime_t soft, hard;
209
210 if (hrtimer_active(&rt_b->rt_period_timer))
211 break;
212
213 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
214 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
215
216 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
217 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
218 delta = ktime_to_ns(ktime_sub(hard, soft));
219 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
220 HRTIMER_MODE_ABS_PINNED, 0);
221 }
222 raw_spin_unlock(&rt_b->rt_runtime_lock);
223 }
224
225 #ifdef CONFIG_RT_GROUP_SCHED
226 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
227 {
228 hrtimer_cancel(&rt_b->rt_period_timer);
229 }
230 #endif
231
232 /*
233 * sched_domains_mutex serializes calls to arch_init_sched_domains,
234 * detach_destroy_domains and partition_sched_domains.
235 */
236 static DEFINE_MUTEX(sched_domains_mutex);
237
238 #ifdef CONFIG_CGROUP_SCHED
239
240 #include <linux/cgroup.h>
241
242 struct cfs_rq;
243
244 static LIST_HEAD(task_groups);
245
246 /* task group related information */
247 struct task_group {
248 struct cgroup_subsys_state css;
249
250 #ifdef CONFIG_FAIR_GROUP_SCHED
251 /* schedulable entities of this group on each cpu */
252 struct sched_entity **se;
253 /* runqueue "owned" by this group on each cpu */
254 struct cfs_rq **cfs_rq;
255 unsigned long shares;
256 #endif
257
258 #ifdef CONFIG_RT_GROUP_SCHED
259 struct sched_rt_entity **rt_se;
260 struct rt_rq **rt_rq;
261
262 struct rt_bandwidth rt_bandwidth;
263 #endif
264
265 struct rcu_head rcu;
266 struct list_head list;
267
268 struct task_group *parent;
269 struct list_head siblings;
270 struct list_head children;
271 };
272
273 #define root_task_group init_task_group
274
275 /* task_group_lock serializes add/remove of task groups and also changes to
276 * a task group's cpu shares.
277 */
278 static DEFINE_SPINLOCK(task_group_lock);
279
280 #ifdef CONFIG_FAIR_GROUP_SCHED
281
282 #ifdef CONFIG_SMP
283 static int root_task_group_empty(void)
284 {
285 return list_empty(&root_task_group.children);
286 }
287 #endif
288
289 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
290
291 /*
292 * A weight of 0 or 1 can cause arithmetics problems.
293 * A weight of a cfs_rq is the sum of weights of which entities
294 * are queued on this cfs_rq, so a weight of a entity should not be
295 * too large, so as the shares value of a task group.
296 * (The default weight is 1024 - so there's no practical
297 * limitation from this.)
298 */
299 #define MIN_SHARES 2
300 #define MAX_SHARES (1UL << 18)
301
302 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
303 #endif
304
305 /* Default task group.
306 * Every task in system belong to this group at bootup.
307 */
308 struct task_group init_task_group;
309
310 #endif /* CONFIG_CGROUP_SCHED */
311
312 /* CFS-related fields in a runqueue */
313 struct cfs_rq {
314 struct load_weight load;
315 unsigned long nr_running;
316
317 u64 exec_clock;
318 u64 min_vruntime;
319
320 struct rb_root tasks_timeline;
321 struct rb_node *rb_leftmost;
322
323 struct list_head tasks;
324 struct list_head *balance_iterator;
325
326 /*
327 * 'curr' points to currently running entity on this cfs_rq.
328 * It is set to NULL otherwise (i.e when none are currently running).
329 */
330 struct sched_entity *curr, *next, *last;
331
332 unsigned int nr_spread_over;
333
334 #ifdef CONFIG_FAIR_GROUP_SCHED
335 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
336
337 /*
338 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
339 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
340 * (like users, containers etc.)
341 *
342 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
343 * list is used during load balance.
344 */
345 struct list_head leaf_cfs_rq_list;
346 struct task_group *tg; /* group that "owns" this runqueue */
347
348 #ifdef CONFIG_SMP
349 /*
350 * the part of load.weight contributed by tasks
351 */
352 unsigned long task_weight;
353
354 /*
355 * h_load = weight * f(tg)
356 *
357 * Where f(tg) is the recursive weight fraction assigned to
358 * this group.
359 */
360 unsigned long h_load;
361
362 /*
363 * this cpu's part of tg->shares
364 */
365 unsigned long shares;
366
367 /*
368 * load.weight at the time we set shares
369 */
370 unsigned long rq_weight;
371 #endif
372 #endif
373 };
374
375 /* Real-Time classes' related field in a runqueue: */
376 struct rt_rq {
377 struct rt_prio_array active;
378 unsigned long rt_nr_running;
379 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
380 struct {
381 int curr; /* highest queued rt task prio */
382 #ifdef CONFIG_SMP
383 int next; /* next highest */
384 #endif
385 } highest_prio;
386 #endif
387 #ifdef CONFIG_SMP
388 unsigned long rt_nr_migratory;
389 unsigned long rt_nr_total;
390 int overloaded;
391 struct plist_head pushable_tasks;
392 #endif
393 int rt_throttled;
394 u64 rt_time;
395 u64 rt_runtime;
396 /* Nests inside the rq lock: */
397 raw_spinlock_t rt_runtime_lock;
398
399 #ifdef CONFIG_RT_GROUP_SCHED
400 unsigned long rt_nr_boosted;
401
402 struct rq *rq;
403 struct list_head leaf_rt_rq_list;
404 struct task_group *tg;
405 #endif
406 };
407
408 #ifdef CONFIG_SMP
409
410 /*
411 * We add the notion of a root-domain which will be used to define per-domain
412 * variables. Each exclusive cpuset essentially defines an island domain by
413 * fully partitioning the member cpus from any other cpuset. Whenever a new
414 * exclusive cpuset is created, we also create and attach a new root-domain
415 * object.
416 *
417 */
418 struct root_domain {
419 atomic_t refcount;
420 cpumask_var_t span;
421 cpumask_var_t online;
422
423 /*
424 * The "RT overload" flag: it gets set if a CPU has more than
425 * one runnable RT task.
426 */
427 cpumask_var_t rto_mask;
428 atomic_t rto_count;
429 struct cpupri cpupri;
430 };
431
432 /*
433 * By default the system creates a single root-domain with all cpus as
434 * members (mimicking the global state we have today).
435 */
436 static struct root_domain def_root_domain;
437
438 #endif /* CONFIG_SMP */
439
440 /*
441 * This is the main, per-CPU runqueue data structure.
442 *
443 * Locking rule: those places that want to lock multiple runqueues
444 * (such as the load balancing or the thread migration code), lock
445 * acquire operations must be ordered by ascending &runqueue.
446 */
447 struct rq {
448 /* runqueue lock: */
449 raw_spinlock_t lock;
450
451 /*
452 * nr_running and cpu_load should be in the same cacheline because
453 * remote CPUs use both these fields when doing load calculation.
454 */
455 unsigned long nr_running;
456 #define CPU_LOAD_IDX_MAX 5
457 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
458 unsigned long last_load_update_tick;
459 #ifdef CONFIG_NO_HZ
460 u64 nohz_stamp;
461 unsigned char nohz_balance_kick;
462 #endif
463 unsigned int skip_clock_update;
464
465 /* capture load from *all* tasks on this cpu: */
466 struct load_weight load;
467 unsigned long nr_load_updates;
468 u64 nr_switches;
469
470 struct cfs_rq cfs;
471 struct rt_rq rt;
472
473 #ifdef CONFIG_FAIR_GROUP_SCHED
474 /* list of leaf cfs_rq on this cpu: */
475 struct list_head leaf_cfs_rq_list;
476 #endif
477 #ifdef CONFIG_RT_GROUP_SCHED
478 struct list_head leaf_rt_rq_list;
479 #endif
480
481 /*
482 * This is part of a global counter where only the total sum
483 * over all CPUs matters. A task can increase this counter on
484 * one CPU and if it got migrated afterwards it may decrease
485 * it on another CPU. Always updated under the runqueue lock:
486 */
487 unsigned long nr_uninterruptible;
488
489 struct task_struct *curr, *idle;
490 unsigned long next_balance;
491 struct mm_struct *prev_mm;
492
493 u64 clock;
494
495 atomic_t nr_iowait;
496
497 #ifdef CONFIG_SMP
498 struct root_domain *rd;
499 struct sched_domain *sd;
500
501 unsigned long cpu_power;
502
503 unsigned char idle_at_tick;
504 /* For active balancing */
505 int post_schedule;
506 int active_balance;
507 int push_cpu;
508 struct cpu_stop_work active_balance_work;
509 /* cpu of this runqueue: */
510 int cpu;
511 int online;
512
513 unsigned long avg_load_per_task;
514
515 u64 rt_avg;
516 u64 age_stamp;
517 u64 idle_stamp;
518 u64 avg_idle;
519 #endif
520
521 /* calc_load related fields */
522 unsigned long calc_load_update;
523 long calc_load_active;
524
525 #ifdef CONFIG_SCHED_HRTICK
526 #ifdef CONFIG_SMP
527 int hrtick_csd_pending;
528 struct call_single_data hrtick_csd;
529 #endif
530 struct hrtimer hrtick_timer;
531 #endif
532
533 #ifdef CONFIG_SCHEDSTATS
534 /* latency stats */
535 struct sched_info rq_sched_info;
536 unsigned long long rq_cpu_time;
537 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
538
539 /* sys_sched_yield() stats */
540 unsigned int yld_count;
541
542 /* schedule() stats */
543 unsigned int sched_switch;
544 unsigned int sched_count;
545 unsigned int sched_goidle;
546
547 /* try_to_wake_up() stats */
548 unsigned int ttwu_count;
549 unsigned int ttwu_local;
550
551 /* BKL stats */
552 unsigned int bkl_count;
553 #endif
554 };
555
556 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
557
558 static inline
559 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
560 {
561 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
562
563 /*
564 * A queue event has occurred, and we're going to schedule. In
565 * this case, we can save a useless back to back clock update.
566 */
567 if (test_tsk_need_resched(p))
568 rq->skip_clock_update = 1;
569 }
570
571 static inline int cpu_of(struct rq *rq)
572 {
573 #ifdef CONFIG_SMP
574 return rq->cpu;
575 #else
576 return 0;
577 #endif
578 }
579
580 #define rcu_dereference_check_sched_domain(p) \
581 rcu_dereference_check((p), \
582 rcu_read_lock_sched_held() || \
583 lockdep_is_held(&sched_domains_mutex))
584
585 /*
586 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
587 * See detach_destroy_domains: synchronize_sched for details.
588 *
589 * The domain tree of any CPU may only be accessed from within
590 * preempt-disabled sections.
591 */
592 #define for_each_domain(cpu, __sd) \
593 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
594
595 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
596 #define this_rq() (&__get_cpu_var(runqueues))
597 #define task_rq(p) cpu_rq(task_cpu(p))
598 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
599 #define raw_rq() (&__raw_get_cpu_var(runqueues))
600
601 #ifdef CONFIG_CGROUP_SCHED
602
603 /*
604 * Return the group to which this tasks belongs.
605 *
606 * We use task_subsys_state_check() and extend the RCU verification
607 * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
608 * holds that lock for each task it moves into the cgroup. Therefore
609 * by holding that lock, we pin the task to the current cgroup.
610 */
611 static inline struct task_group *task_group(struct task_struct *p)
612 {
613 struct cgroup_subsys_state *css;
614
615 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
616 lockdep_is_held(&task_rq(p)->lock));
617 return container_of(css, struct task_group, css);
618 }
619
620 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
621 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
622 {
623 #ifdef CONFIG_FAIR_GROUP_SCHED
624 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
625 p->se.parent = task_group(p)->se[cpu];
626 #endif
627
628 #ifdef CONFIG_RT_GROUP_SCHED
629 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
630 p->rt.parent = task_group(p)->rt_se[cpu];
631 #endif
632 }
633
634 #else /* CONFIG_CGROUP_SCHED */
635
636 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
637 static inline struct task_group *task_group(struct task_struct *p)
638 {
639 return NULL;
640 }
641
642 #endif /* CONFIG_CGROUP_SCHED */
643
644 inline void update_rq_clock(struct rq *rq)
645 {
646 if (!rq->skip_clock_update)
647 rq->clock = sched_clock_cpu(cpu_of(rq));
648 }
649
650 /*
651 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
652 */
653 #ifdef CONFIG_SCHED_DEBUG
654 # define const_debug __read_mostly
655 #else
656 # define const_debug static const
657 #endif
658
659 /**
660 * runqueue_is_locked
661 * @cpu: the processor in question.
662 *
663 * Returns true if the current cpu runqueue is locked.
664 * This interface allows printk to be called with the runqueue lock
665 * held and know whether or not it is OK to wake up the klogd.
666 */
667 int runqueue_is_locked(int cpu)
668 {
669 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
670 }
671
672 /*
673 * Debugging: various feature bits
674 */
675
676 #define SCHED_FEAT(name, enabled) \
677 __SCHED_FEAT_##name ,
678
679 enum {
680 #include "sched_features.h"
681 };
682
683 #undef SCHED_FEAT
684
685 #define SCHED_FEAT(name, enabled) \
686 (1UL << __SCHED_FEAT_##name) * enabled |
687
688 const_debug unsigned int sysctl_sched_features =
689 #include "sched_features.h"
690 0;
691
692 #undef SCHED_FEAT
693
694 #ifdef CONFIG_SCHED_DEBUG
695 #define SCHED_FEAT(name, enabled) \
696 #name ,
697
698 static __read_mostly char *sched_feat_names[] = {
699 #include "sched_features.h"
700 NULL
701 };
702
703 #undef SCHED_FEAT
704
705 static int sched_feat_show(struct seq_file *m, void *v)
706 {
707 int i;
708
709 for (i = 0; sched_feat_names[i]; i++) {
710 if (!(sysctl_sched_features & (1UL << i)))
711 seq_puts(m, "NO_");
712 seq_printf(m, "%s ", sched_feat_names[i]);
713 }
714 seq_puts(m, "\n");
715
716 return 0;
717 }
718
719 static ssize_t
720 sched_feat_write(struct file *filp, const char __user *ubuf,
721 size_t cnt, loff_t *ppos)
722 {
723 char buf[64];
724 char *cmp;
725 int neg = 0;
726 int i;
727
728 if (cnt > 63)
729 cnt = 63;
730
731 if (copy_from_user(&buf, ubuf, cnt))
732 return -EFAULT;
733
734 buf[cnt] = 0;
735 cmp = strstrip(buf);
736
737 if (strncmp(buf, "NO_", 3) == 0) {
738 neg = 1;
739 cmp += 3;
740 }
741
742 for (i = 0; sched_feat_names[i]; i++) {
743 if (strcmp(cmp, sched_feat_names[i]) == 0) {
744 if (neg)
745 sysctl_sched_features &= ~(1UL << i);
746 else
747 sysctl_sched_features |= (1UL << i);
748 break;
749 }
750 }
751
752 if (!sched_feat_names[i])
753 return -EINVAL;
754
755 *ppos += cnt;
756
757 return cnt;
758 }
759
760 static int sched_feat_open(struct inode *inode, struct file *filp)
761 {
762 return single_open(filp, sched_feat_show, NULL);
763 }
764
765 static const struct file_operations sched_feat_fops = {
766 .open = sched_feat_open,
767 .write = sched_feat_write,
768 .read = seq_read,
769 .llseek = seq_lseek,
770 .release = single_release,
771 };
772
773 static __init int sched_init_debug(void)
774 {
775 debugfs_create_file("sched_features", 0644, NULL, NULL,
776 &sched_feat_fops);
777
778 return 0;
779 }
780 late_initcall(sched_init_debug);
781
782 #endif
783
784 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
785
786 /*
787 * Number of tasks to iterate in a single balance run.
788 * Limited because this is done with IRQs disabled.
789 */
790 const_debug unsigned int sysctl_sched_nr_migrate = 32;
791
792 /*
793 * ratelimit for updating the group shares.
794 * default: 0.25ms
795 */
796 unsigned int sysctl_sched_shares_ratelimit = 250000;
797 unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
798
799 /*
800 * Inject some fuzzyness into changing the per-cpu group shares
801 * this avoids remote rq-locks at the expense of fairness.
802 * default: 4
803 */
804 unsigned int sysctl_sched_shares_thresh = 4;
805
806 /*
807 * period over which we average the RT time consumption, measured
808 * in ms.
809 *
810 * default: 1s
811 */
812 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
813
814 /*
815 * period over which we measure -rt task cpu usage in us.
816 * default: 1s
817 */
818 unsigned int sysctl_sched_rt_period = 1000000;
819
820 static __read_mostly int scheduler_running;
821
822 /*
823 * part of the period that we allow rt tasks to run in us.
824 * default: 0.95s
825 */
826 int sysctl_sched_rt_runtime = 950000;
827
828 static inline u64 global_rt_period(void)
829 {
830 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
831 }
832
833 static inline u64 global_rt_runtime(void)
834 {
835 if (sysctl_sched_rt_runtime < 0)
836 return RUNTIME_INF;
837
838 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
839 }
840
841 #ifndef prepare_arch_switch
842 # define prepare_arch_switch(next) do { } while (0)
843 #endif
844 #ifndef finish_arch_switch
845 # define finish_arch_switch(prev) do { } while (0)
846 #endif
847
848 static inline int task_current(struct rq *rq, struct task_struct *p)
849 {
850 return rq->curr == p;
851 }
852
853 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
854 static inline int task_running(struct rq *rq, struct task_struct *p)
855 {
856 return task_current(rq, p);
857 }
858
859 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
860 {
861 }
862
863 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
864 {
865 #ifdef CONFIG_DEBUG_SPINLOCK
866 /* this is a valid case when another task releases the spinlock */
867 rq->lock.owner = current;
868 #endif
869 /*
870 * If we are tracking spinlock dependencies then we have to
871 * fix up the runqueue lock - which gets 'carried over' from
872 * prev into current:
873 */
874 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
875
876 raw_spin_unlock_irq(&rq->lock);
877 }
878
879 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
880 static inline int task_running(struct rq *rq, struct task_struct *p)
881 {
882 #ifdef CONFIG_SMP
883 return p->oncpu;
884 #else
885 return task_current(rq, p);
886 #endif
887 }
888
889 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
890 {
891 #ifdef CONFIG_SMP
892 /*
893 * We can optimise this out completely for !SMP, because the
894 * SMP rebalancing from interrupt is the only thing that cares
895 * here.
896 */
897 next->oncpu = 1;
898 #endif
899 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
900 raw_spin_unlock_irq(&rq->lock);
901 #else
902 raw_spin_unlock(&rq->lock);
903 #endif
904 }
905
906 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
907 {
908 #ifdef CONFIG_SMP
909 /*
910 * After ->oncpu is cleared, the task can be moved to a different CPU.
911 * We must ensure this doesn't happen until the switch is completely
912 * finished.
913 */
914 smp_wmb();
915 prev->oncpu = 0;
916 #endif
917 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
918 local_irq_enable();
919 #endif
920 }
921 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
922
923 /*
924 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
925 * against ttwu().
926 */
927 static inline int task_is_waking(struct task_struct *p)
928 {
929 return unlikely(p->state == TASK_WAKING);
930 }
931
932 /*
933 * __task_rq_lock - lock the runqueue a given task resides on.
934 * Must be called interrupts disabled.
935 */
936 static inline struct rq *__task_rq_lock(struct task_struct *p)
937 __acquires(rq->lock)
938 {
939 struct rq *rq;
940
941 for (;;) {
942 rq = task_rq(p);
943 raw_spin_lock(&rq->lock);
944 if (likely(rq == task_rq(p)))
945 return rq;
946 raw_spin_unlock(&rq->lock);
947 }
948 }
949
950 /*
951 * task_rq_lock - lock the runqueue a given task resides on and disable
952 * interrupts. Note the ordering: we can safely lookup the task_rq without
953 * explicitly disabling preemption.
954 */
955 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
956 __acquires(rq->lock)
957 {
958 struct rq *rq;
959
960 for (;;) {
961 local_irq_save(*flags);
962 rq = task_rq(p);
963 raw_spin_lock(&rq->lock);
964 if (likely(rq == task_rq(p)))
965 return rq;
966 raw_spin_unlock_irqrestore(&rq->lock, *flags);
967 }
968 }
969
970 static void __task_rq_unlock(struct rq *rq)
971 __releases(rq->lock)
972 {
973 raw_spin_unlock(&rq->lock);
974 }
975
976 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
977 __releases(rq->lock)
978 {
979 raw_spin_unlock_irqrestore(&rq->lock, *flags);
980 }
981
982 /*
983 * this_rq_lock - lock this runqueue and disable interrupts.
984 */
985 static struct rq *this_rq_lock(void)
986 __acquires(rq->lock)
987 {
988 struct rq *rq;
989
990 local_irq_disable();
991 rq = this_rq();
992 raw_spin_lock(&rq->lock);
993
994 return rq;
995 }
996
997 #ifdef CONFIG_SCHED_HRTICK
998 /*
999 * Use HR-timers to deliver accurate preemption points.
1000 *
1001 * Its all a bit involved since we cannot program an hrt while holding the
1002 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1003 * reschedule event.
1004 *
1005 * When we get rescheduled we reprogram the hrtick_timer outside of the
1006 * rq->lock.
1007 */
1008
1009 /*
1010 * Use hrtick when:
1011 * - enabled by features
1012 * - hrtimer is actually high res
1013 */
1014 static inline int hrtick_enabled(struct rq *rq)
1015 {
1016 if (!sched_feat(HRTICK))
1017 return 0;
1018 if (!cpu_active(cpu_of(rq)))
1019 return 0;
1020 return hrtimer_is_hres_active(&rq->hrtick_timer);
1021 }
1022
1023 static void hrtick_clear(struct rq *rq)
1024 {
1025 if (hrtimer_active(&rq->hrtick_timer))
1026 hrtimer_cancel(&rq->hrtick_timer);
1027 }
1028
1029 /*
1030 * High-resolution timer tick.
1031 * Runs from hardirq context with interrupts disabled.
1032 */
1033 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1034 {
1035 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1036
1037 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1038
1039 raw_spin_lock(&rq->lock);
1040 update_rq_clock(rq);
1041 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1042 raw_spin_unlock(&rq->lock);
1043
1044 return HRTIMER_NORESTART;
1045 }
1046
1047 #ifdef CONFIG_SMP
1048 /*
1049 * called from hardirq (IPI) context
1050 */
1051 static void __hrtick_start(void *arg)
1052 {
1053 struct rq *rq = arg;
1054
1055 raw_spin_lock(&rq->lock);
1056 hrtimer_restart(&rq->hrtick_timer);
1057 rq->hrtick_csd_pending = 0;
1058 raw_spin_unlock(&rq->lock);
1059 }
1060
1061 /*
1062 * Called to set the hrtick timer state.
1063 *
1064 * called with rq->lock held and irqs disabled
1065 */
1066 static void hrtick_start(struct rq *rq, u64 delay)
1067 {
1068 struct hrtimer *timer = &rq->hrtick_timer;
1069 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1070
1071 hrtimer_set_expires(timer, time);
1072
1073 if (rq == this_rq()) {
1074 hrtimer_restart(timer);
1075 } else if (!rq->hrtick_csd_pending) {
1076 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1077 rq->hrtick_csd_pending = 1;
1078 }
1079 }
1080
1081 static int
1082 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1083 {
1084 int cpu = (int)(long)hcpu;
1085
1086 switch (action) {
1087 case CPU_UP_CANCELED:
1088 case CPU_UP_CANCELED_FROZEN:
1089 case CPU_DOWN_PREPARE:
1090 case CPU_DOWN_PREPARE_FROZEN:
1091 case CPU_DEAD:
1092 case CPU_DEAD_FROZEN:
1093 hrtick_clear(cpu_rq(cpu));
1094 return NOTIFY_OK;
1095 }
1096
1097 return NOTIFY_DONE;
1098 }
1099
1100 static __init void init_hrtick(void)
1101 {
1102 hotcpu_notifier(hotplug_hrtick, 0);
1103 }
1104 #else
1105 /*
1106 * Called to set the hrtick timer state.
1107 *
1108 * called with rq->lock held and irqs disabled
1109 */
1110 static void hrtick_start(struct rq *rq, u64 delay)
1111 {
1112 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1113 HRTIMER_MODE_REL_PINNED, 0);
1114 }
1115
1116 static inline void init_hrtick(void)
1117 {
1118 }
1119 #endif /* CONFIG_SMP */
1120
1121 static void init_rq_hrtick(struct rq *rq)
1122 {
1123 #ifdef CONFIG_SMP
1124 rq->hrtick_csd_pending = 0;
1125
1126 rq->hrtick_csd.flags = 0;
1127 rq->hrtick_csd.func = __hrtick_start;
1128 rq->hrtick_csd.info = rq;
1129 #endif
1130
1131 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1132 rq->hrtick_timer.function = hrtick;
1133 }
1134 #else /* CONFIG_SCHED_HRTICK */
1135 static inline void hrtick_clear(struct rq *rq)
1136 {
1137 }
1138
1139 static inline void init_rq_hrtick(struct rq *rq)
1140 {
1141 }
1142
1143 static inline void init_hrtick(void)
1144 {
1145 }
1146 #endif /* CONFIG_SCHED_HRTICK */
1147
1148 /*
1149 * resched_task - mark a task 'to be rescheduled now'.
1150 *
1151 * On UP this means the setting of the need_resched flag, on SMP it
1152 * might also involve a cross-CPU call to trigger the scheduler on
1153 * the target CPU.
1154 */
1155 #ifdef CONFIG_SMP
1156
1157 #ifndef tsk_is_polling
1158 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1159 #endif
1160
1161 static void resched_task(struct task_struct *p)
1162 {
1163 int cpu;
1164
1165 assert_raw_spin_locked(&task_rq(p)->lock);
1166
1167 if (test_tsk_need_resched(p))
1168 return;
1169
1170 set_tsk_need_resched(p);
1171
1172 cpu = task_cpu(p);
1173 if (cpu == smp_processor_id())
1174 return;
1175
1176 /* NEED_RESCHED must be visible before we test polling */
1177 smp_mb();
1178 if (!tsk_is_polling(p))
1179 smp_send_reschedule(cpu);
1180 }
1181
1182 static void resched_cpu(int cpu)
1183 {
1184 struct rq *rq = cpu_rq(cpu);
1185 unsigned long flags;
1186
1187 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
1188 return;
1189 resched_task(cpu_curr(cpu));
1190 raw_spin_unlock_irqrestore(&rq->lock, flags);
1191 }
1192
1193 #ifdef CONFIG_NO_HZ
1194 /*
1195 * In the semi idle case, use the nearest busy cpu for migrating timers
1196 * from an idle cpu. This is good for power-savings.
1197 *
1198 * We don't do similar optimization for completely idle system, as
1199 * selecting an idle cpu will add more delays to the timers than intended
1200 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1201 */
1202 int get_nohz_timer_target(void)
1203 {
1204 int cpu = smp_processor_id();
1205 int i;
1206 struct sched_domain *sd;
1207
1208 for_each_domain(cpu, sd) {
1209 for_each_cpu(i, sched_domain_span(sd))
1210 if (!idle_cpu(i))
1211 return i;
1212 }
1213 return cpu;
1214 }
1215 /*
1216 * When add_timer_on() enqueues a timer into the timer wheel of an
1217 * idle CPU then this timer might expire before the next timer event
1218 * which is scheduled to wake up that CPU. In case of a completely
1219 * idle system the next event might even be infinite time into the
1220 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1221 * leaves the inner idle loop so the newly added timer is taken into
1222 * account when the CPU goes back to idle and evaluates the timer
1223 * wheel for the next timer event.
1224 */
1225 void wake_up_idle_cpu(int cpu)
1226 {
1227 struct rq *rq = cpu_rq(cpu);
1228
1229 if (cpu == smp_processor_id())
1230 return;
1231
1232 /*
1233 * This is safe, as this function is called with the timer
1234 * wheel base lock of (cpu) held. When the CPU is on the way
1235 * to idle and has not yet set rq->curr to idle then it will
1236 * be serialized on the timer wheel base lock and take the new
1237 * timer into account automatically.
1238 */
1239 if (rq->curr != rq->idle)
1240 return;
1241
1242 /*
1243 * We can set TIF_RESCHED on the idle task of the other CPU
1244 * lockless. The worst case is that the other CPU runs the
1245 * idle task through an additional NOOP schedule()
1246 */
1247 set_tsk_need_resched(rq->idle);
1248
1249 /* NEED_RESCHED must be visible before we test polling */
1250 smp_mb();
1251 if (!tsk_is_polling(rq->idle))
1252 smp_send_reschedule(cpu);
1253 }
1254
1255 #endif /* CONFIG_NO_HZ */
1256
1257 static u64 sched_avg_period(void)
1258 {
1259 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1260 }
1261
1262 static void sched_avg_update(struct rq *rq)
1263 {
1264 s64 period = sched_avg_period();
1265
1266 while ((s64)(rq->clock - rq->age_stamp) > period) {
1267 /*
1268 * Inline assembly required to prevent the compiler
1269 * optimising this loop into a divmod call.
1270 * See __iter_div_u64_rem() for another example of this.
1271 */
1272 asm("" : "+rm" (rq->age_stamp));
1273 rq->age_stamp += period;
1274 rq->rt_avg /= 2;
1275 }
1276 }
1277
1278 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1279 {
1280 rq->rt_avg += rt_delta;
1281 sched_avg_update(rq);
1282 }
1283
1284 #else /* !CONFIG_SMP */
1285 static void resched_task(struct task_struct *p)
1286 {
1287 assert_raw_spin_locked(&task_rq(p)->lock);
1288 set_tsk_need_resched(p);
1289 }
1290
1291 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1292 {
1293 }
1294
1295 static void sched_avg_update(struct rq *rq)
1296 {
1297 }
1298 #endif /* CONFIG_SMP */
1299
1300 #if BITS_PER_LONG == 32
1301 # define WMULT_CONST (~0UL)
1302 #else
1303 # define WMULT_CONST (1UL << 32)
1304 #endif
1305
1306 #define WMULT_SHIFT 32
1307
1308 /*
1309 * Shift right and round:
1310 */
1311 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1312
1313 /*
1314 * delta *= weight / lw
1315 */
1316 static unsigned long
1317 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1318 struct load_weight *lw)
1319 {
1320 u64 tmp;
1321
1322 if (!lw->inv_weight) {
1323 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1324 lw->inv_weight = 1;
1325 else
1326 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1327 / (lw->weight+1);
1328 }
1329
1330 tmp = (u64)delta_exec * weight;
1331 /*
1332 * Check whether we'd overflow the 64-bit multiplication:
1333 */
1334 if (unlikely(tmp > WMULT_CONST))
1335 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1336 WMULT_SHIFT/2);
1337 else
1338 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1339
1340 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1341 }
1342
1343 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1344 {
1345 lw->weight += inc;
1346 lw->inv_weight = 0;
1347 }
1348
1349 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1350 {
1351 lw->weight -= dec;
1352 lw->inv_weight = 0;
1353 }
1354
1355 /*
1356 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1357 * of tasks with abnormal "nice" values across CPUs the contribution that
1358 * each task makes to its run queue's load is weighted according to its
1359 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1360 * scaled version of the new time slice allocation that they receive on time
1361 * slice expiry etc.
1362 */
1363
1364 #define WEIGHT_IDLEPRIO 3
1365 #define WMULT_IDLEPRIO 1431655765
1366
1367 /*
1368 * Nice levels are multiplicative, with a gentle 10% change for every
1369 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1370 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1371 * that remained on nice 0.
1372 *
1373 * The "10% effect" is relative and cumulative: from _any_ nice level,
1374 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1375 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1376 * If a task goes up by ~10% and another task goes down by ~10% then
1377 * the relative distance between them is ~25%.)
1378 */
1379 static const int prio_to_weight[40] = {
1380 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1381 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1382 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1383 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1384 /* 0 */ 1024, 820, 655, 526, 423,
1385 /* 5 */ 335, 272, 215, 172, 137,
1386 /* 10 */ 110, 87, 70, 56, 45,
1387 /* 15 */ 36, 29, 23, 18, 15,
1388 };
1389
1390 /*
1391 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1392 *
1393 * In cases where the weight does not change often, we can use the
1394 * precalculated inverse to speed up arithmetics by turning divisions
1395 * into multiplications:
1396 */
1397 static const u32 prio_to_wmult[40] = {
1398 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1399 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1400 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1401 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1402 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1403 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1404 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1405 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1406 };
1407
1408 /* Time spent by the tasks of the cpu accounting group executing in ... */
1409 enum cpuacct_stat_index {
1410 CPUACCT_STAT_USER, /* ... user mode */
1411 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1412
1413 CPUACCT_STAT_NSTATS,
1414 };
1415
1416 #ifdef CONFIG_CGROUP_CPUACCT
1417 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1418 static void cpuacct_update_stats(struct task_struct *tsk,
1419 enum cpuacct_stat_index idx, cputime_t val);
1420 #else
1421 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1422 static inline void cpuacct_update_stats(struct task_struct *tsk,
1423 enum cpuacct_stat_index idx, cputime_t val) {}
1424 #endif
1425
1426 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1427 {
1428 update_load_add(&rq->load, load);
1429 }
1430
1431 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1432 {
1433 update_load_sub(&rq->load, load);
1434 }
1435
1436 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1437 typedef int (*tg_visitor)(struct task_group *, void *);
1438
1439 /*
1440 * Iterate the full tree, calling @down when first entering a node and @up when
1441 * leaving it for the final time.
1442 */
1443 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1444 {
1445 struct task_group *parent, *child;
1446 int ret;
1447
1448 rcu_read_lock();
1449 parent = &root_task_group;
1450 down:
1451 ret = (*down)(parent, data);
1452 if (ret)
1453 goto out_unlock;
1454 list_for_each_entry_rcu(child, &parent->children, siblings) {
1455 parent = child;
1456 goto down;
1457
1458 up:
1459 continue;
1460 }
1461 ret = (*up)(parent, data);
1462 if (ret)
1463 goto out_unlock;
1464
1465 child = parent;
1466 parent = parent->parent;
1467 if (parent)
1468 goto up;
1469 out_unlock:
1470 rcu_read_unlock();
1471
1472 return ret;
1473 }
1474
1475 static int tg_nop(struct task_group *tg, void *data)
1476 {
1477 return 0;
1478 }
1479 #endif
1480
1481 #ifdef CONFIG_SMP
1482 /* Used instead of source_load when we know the type == 0 */
1483 static unsigned long weighted_cpuload(const int cpu)
1484 {
1485 return cpu_rq(cpu)->load.weight;
1486 }
1487
1488 /*
1489 * Return a low guess at the load of a migration-source cpu weighted
1490 * according to the scheduling class and "nice" value.
1491 *
1492 * We want to under-estimate the load of migration sources, to
1493 * balance conservatively.
1494 */
1495 static unsigned long source_load(int cpu, int type)
1496 {
1497 struct rq *rq = cpu_rq(cpu);
1498 unsigned long total = weighted_cpuload(cpu);
1499
1500 if (type == 0 || !sched_feat(LB_BIAS))
1501 return total;
1502
1503 return min(rq->cpu_load[type-1], total);
1504 }
1505
1506 /*
1507 * Return a high guess at the load of a migration-target cpu weighted
1508 * according to the scheduling class and "nice" value.
1509 */
1510 static unsigned long target_load(int cpu, int type)
1511 {
1512 struct rq *rq = cpu_rq(cpu);
1513 unsigned long total = weighted_cpuload(cpu);
1514
1515 if (type == 0 || !sched_feat(LB_BIAS))
1516 return total;
1517
1518 return max(rq->cpu_load[type-1], total);
1519 }
1520
1521 static unsigned long power_of(int cpu)
1522 {
1523 return cpu_rq(cpu)->cpu_power;
1524 }
1525
1526 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1527
1528 static unsigned long cpu_avg_load_per_task(int cpu)
1529 {
1530 struct rq *rq = cpu_rq(cpu);
1531 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1532
1533 if (nr_running)
1534 rq->avg_load_per_task = rq->load.weight / nr_running;
1535 else
1536 rq->avg_load_per_task = 0;
1537
1538 return rq->avg_load_per_task;
1539 }
1540
1541 #ifdef CONFIG_FAIR_GROUP_SCHED
1542
1543 static __read_mostly unsigned long __percpu *update_shares_data;
1544
1545 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1546
1547 /*
1548 * Calculate and set the cpu's group shares.
1549 */
1550 static void update_group_shares_cpu(struct task_group *tg, int cpu,
1551 unsigned long sd_shares,
1552 unsigned long sd_rq_weight,
1553 unsigned long *usd_rq_weight)
1554 {
1555 unsigned long shares, rq_weight;
1556 int boost = 0;
1557
1558 rq_weight = usd_rq_weight[cpu];
1559 if (!rq_weight) {
1560 boost = 1;
1561 rq_weight = NICE_0_LOAD;
1562 }
1563
1564 /*
1565 * \Sum_j shares_j * rq_weight_i
1566 * shares_i = -----------------------------
1567 * \Sum_j rq_weight_j
1568 */
1569 shares = (sd_shares * rq_weight) / sd_rq_weight;
1570 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1571
1572 if (abs(shares - tg->se[cpu]->load.weight) >
1573 sysctl_sched_shares_thresh) {
1574 struct rq *rq = cpu_rq(cpu);
1575 unsigned long flags;
1576
1577 raw_spin_lock_irqsave(&rq->lock, flags);
1578 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
1579 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1580 __set_se_shares(tg->se[cpu], shares);
1581 raw_spin_unlock_irqrestore(&rq->lock, flags);
1582 }
1583 }
1584
1585 /*
1586 * Re-compute the task group their per cpu shares over the given domain.
1587 * This needs to be done in a bottom-up fashion because the rq weight of a
1588 * parent group depends on the shares of its child groups.
1589 */
1590 static int tg_shares_up(struct task_group *tg, void *data)
1591 {
1592 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
1593 unsigned long *usd_rq_weight;
1594 struct sched_domain *sd = data;
1595 unsigned long flags;
1596 int i;
1597
1598 if (!tg->se[0])
1599 return 0;
1600
1601 local_irq_save(flags);
1602 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1603
1604 for_each_cpu(i, sched_domain_span(sd)) {
1605 weight = tg->cfs_rq[i]->load.weight;
1606 usd_rq_weight[i] = weight;
1607
1608 rq_weight += weight;
1609 /*
1610 * If there are currently no tasks on the cpu pretend there
1611 * is one of average load so that when a new task gets to
1612 * run here it will not get delayed by group starvation.
1613 */
1614 if (!weight)
1615 weight = NICE_0_LOAD;
1616
1617 sum_weight += weight;
1618 shares += tg->cfs_rq[i]->shares;
1619 }
1620
1621 if (!rq_weight)
1622 rq_weight = sum_weight;
1623
1624 if ((!shares && rq_weight) || shares > tg->shares)
1625 shares = tg->shares;
1626
1627 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1628 shares = tg->shares;
1629
1630 for_each_cpu(i, sched_domain_span(sd))
1631 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1632
1633 local_irq_restore(flags);
1634
1635 return 0;
1636 }
1637
1638 /*
1639 * Compute the cpu's hierarchical load factor for each task group.
1640 * This needs to be done in a top-down fashion because the load of a child
1641 * group is a fraction of its parents load.
1642 */
1643 static int tg_load_down(struct task_group *tg, void *data)
1644 {
1645 unsigned long load;
1646 long cpu = (long)data;
1647
1648 if (!tg->parent) {
1649 load = cpu_rq(cpu)->load.weight;
1650 } else {
1651 load = tg->parent->cfs_rq[cpu]->h_load;
1652 load *= tg->cfs_rq[cpu]->shares;
1653 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1654 }
1655
1656 tg->cfs_rq[cpu]->h_load = load;
1657
1658 return 0;
1659 }
1660
1661 static void update_shares(struct sched_domain *sd)
1662 {
1663 s64 elapsed;
1664 u64 now;
1665
1666 if (root_task_group_empty())
1667 return;
1668
1669 now = local_clock();
1670 elapsed = now - sd->last_update;
1671
1672 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1673 sd->last_update = now;
1674 walk_tg_tree(tg_nop, tg_shares_up, sd);
1675 }
1676 }
1677
1678 static void update_h_load(long cpu)
1679 {
1680 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1681 }
1682
1683 #else
1684
1685 static inline void update_shares(struct sched_domain *sd)
1686 {
1687 }
1688
1689 #endif
1690
1691 #ifdef CONFIG_PREEMPT
1692
1693 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1694
1695 /*
1696 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1697 * way at the expense of forcing extra atomic operations in all
1698 * invocations. This assures that the double_lock is acquired using the
1699 * same underlying policy as the spinlock_t on this architecture, which
1700 * reduces latency compared to the unfair variant below. However, it
1701 * also adds more overhead and therefore may reduce throughput.
1702 */
1703 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1704 __releases(this_rq->lock)
1705 __acquires(busiest->lock)
1706 __acquires(this_rq->lock)
1707 {
1708 raw_spin_unlock(&this_rq->lock);
1709 double_rq_lock(this_rq, busiest);
1710
1711 return 1;
1712 }
1713
1714 #else
1715 /*
1716 * Unfair double_lock_balance: Optimizes throughput at the expense of
1717 * latency by eliminating extra atomic operations when the locks are
1718 * already in proper order on entry. This favors lower cpu-ids and will
1719 * grant the double lock to lower cpus over higher ids under contention,
1720 * regardless of entry order into the function.
1721 */
1722 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1723 __releases(this_rq->lock)
1724 __acquires(busiest->lock)
1725 __acquires(this_rq->lock)
1726 {
1727 int ret = 0;
1728
1729 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1730 if (busiest < this_rq) {
1731 raw_spin_unlock(&this_rq->lock);
1732 raw_spin_lock(&busiest->lock);
1733 raw_spin_lock_nested(&this_rq->lock,
1734 SINGLE_DEPTH_NESTING);
1735 ret = 1;
1736 } else
1737 raw_spin_lock_nested(&busiest->lock,
1738 SINGLE_DEPTH_NESTING);
1739 }
1740 return ret;
1741 }
1742
1743 #endif /* CONFIG_PREEMPT */
1744
1745 /*
1746 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1747 */
1748 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1749 {
1750 if (unlikely(!irqs_disabled())) {
1751 /* printk() doesn't work good under rq->lock */
1752 raw_spin_unlock(&this_rq->lock);
1753 BUG_ON(1);
1754 }
1755
1756 return _double_lock_balance(this_rq, busiest);
1757 }
1758
1759 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1760 __releases(busiest->lock)
1761 {
1762 raw_spin_unlock(&busiest->lock);
1763 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1764 }
1765
1766 /*
1767 * double_rq_lock - safely lock two runqueues
1768 *
1769 * Note this does not disable interrupts like task_rq_lock,
1770 * you need to do so manually before calling.
1771 */
1772 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1773 __acquires(rq1->lock)
1774 __acquires(rq2->lock)
1775 {
1776 BUG_ON(!irqs_disabled());
1777 if (rq1 == rq2) {
1778 raw_spin_lock(&rq1->lock);
1779 __acquire(rq2->lock); /* Fake it out ;) */
1780 } else {
1781 if (rq1 < rq2) {
1782 raw_spin_lock(&rq1->lock);
1783 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1784 } else {
1785 raw_spin_lock(&rq2->lock);
1786 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1787 }
1788 }
1789 }
1790
1791 /*
1792 * double_rq_unlock - safely unlock two runqueues
1793 *
1794 * Note this does not restore interrupts like task_rq_unlock,
1795 * you need to do so manually after calling.
1796 */
1797 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1798 __releases(rq1->lock)
1799 __releases(rq2->lock)
1800 {
1801 raw_spin_unlock(&rq1->lock);
1802 if (rq1 != rq2)
1803 raw_spin_unlock(&rq2->lock);
1804 else
1805 __release(rq2->lock);
1806 }
1807
1808 #endif
1809
1810 #ifdef CONFIG_FAIR_GROUP_SCHED
1811 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1812 {
1813 #ifdef CONFIG_SMP
1814 cfs_rq->shares = shares;
1815 #endif
1816 }
1817 #endif
1818
1819 static void calc_load_account_idle(struct rq *this_rq);
1820 static void update_sysctl(void);
1821 static int get_update_sysctl_factor(void);
1822 static void update_cpu_load(struct rq *this_rq);
1823
1824 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1825 {
1826 set_task_rq(p, cpu);
1827 #ifdef CONFIG_SMP
1828 /*
1829 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1830 * successfuly executed on another CPU. We must ensure that updates of
1831 * per-task data have been completed by this moment.
1832 */
1833 smp_wmb();
1834 task_thread_info(p)->cpu = cpu;
1835 #endif
1836 }
1837
1838 static const struct sched_class rt_sched_class;
1839
1840 #define sched_class_highest (&rt_sched_class)
1841 #define for_each_class(class) \
1842 for (class = sched_class_highest; class; class = class->next)
1843
1844 #include "sched_stats.h"
1845
1846 static void inc_nr_running(struct rq *rq)
1847 {
1848 rq->nr_running++;
1849 }
1850
1851 static void dec_nr_running(struct rq *rq)
1852 {
1853 rq->nr_running--;
1854 }
1855
1856 static void set_load_weight(struct task_struct *p)
1857 {
1858 if (task_has_rt_policy(p)) {
1859 p->se.load.weight = 0;
1860 p->se.load.inv_weight = WMULT_CONST;
1861 return;
1862 }
1863
1864 /*
1865 * SCHED_IDLE tasks get minimal weight:
1866 */
1867 if (p->policy == SCHED_IDLE) {
1868 p->se.load.weight = WEIGHT_IDLEPRIO;
1869 p->se.load.inv_weight = WMULT_IDLEPRIO;
1870 return;
1871 }
1872
1873 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1874 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1875 }
1876
1877 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1878 {
1879 update_rq_clock(rq);
1880 sched_info_queued(p);
1881 p->sched_class->enqueue_task(rq, p, flags);
1882 p->se.on_rq = 1;
1883 }
1884
1885 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1886 {
1887 update_rq_clock(rq);
1888 sched_info_dequeued(p);
1889 p->sched_class->dequeue_task(rq, p, flags);
1890 p->se.on_rq = 0;
1891 }
1892
1893 /*
1894 * activate_task - move a task to the runqueue.
1895 */
1896 static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1897 {
1898 if (task_contributes_to_load(p))
1899 rq->nr_uninterruptible--;
1900
1901 enqueue_task(rq, p, flags);
1902 inc_nr_running(rq);
1903 }
1904
1905 /*
1906 * deactivate_task - remove a task from the runqueue.
1907 */
1908 static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1909 {
1910 if (task_contributes_to_load(p))
1911 rq->nr_uninterruptible++;
1912
1913 dequeue_task(rq, p, flags);
1914 dec_nr_running(rq);
1915 }
1916
1917 #include "sched_idletask.c"
1918 #include "sched_fair.c"
1919 #include "sched_rt.c"
1920 #ifdef CONFIG_SCHED_DEBUG
1921 # include "sched_debug.c"
1922 #endif
1923
1924 /*
1925 * __normal_prio - return the priority that is based on the static prio
1926 */
1927 static inline int __normal_prio(struct task_struct *p)
1928 {
1929 return p->static_prio;
1930 }
1931
1932 /*
1933 * Calculate the expected normal priority: i.e. priority
1934 * without taking RT-inheritance into account. Might be
1935 * boosted by interactivity modifiers. Changes upon fork,
1936 * setprio syscalls, and whenever the interactivity
1937 * estimator recalculates.
1938 */
1939 static inline int normal_prio(struct task_struct *p)
1940 {
1941 int prio;
1942
1943 if (task_has_rt_policy(p))
1944 prio = MAX_RT_PRIO-1 - p->rt_priority;
1945 else
1946 prio = __normal_prio(p);
1947 return prio;
1948 }
1949
1950 /*
1951 * Calculate the current priority, i.e. the priority
1952 * taken into account by the scheduler. This value might
1953 * be boosted by RT tasks, or might be boosted by
1954 * interactivity modifiers. Will be RT if the task got
1955 * RT-boosted. If not then it returns p->normal_prio.
1956 */
1957 static int effective_prio(struct task_struct *p)
1958 {
1959 p->normal_prio = normal_prio(p);
1960 /*
1961 * If we are RT tasks or we were boosted to RT priority,
1962 * keep the priority unchanged. Otherwise, update priority
1963 * to the normal priority:
1964 */
1965 if (!rt_prio(p->prio))
1966 return p->normal_prio;
1967 return p->prio;
1968 }
1969
1970 /**
1971 * task_curr - is this task currently executing on a CPU?
1972 * @p: the task in question.
1973 */
1974 inline int task_curr(const struct task_struct *p)
1975 {
1976 return cpu_curr(task_cpu(p)) == p;
1977 }
1978
1979 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1980 const struct sched_class *prev_class,
1981 int oldprio, int running)
1982 {
1983 if (prev_class != p->sched_class) {
1984 if (prev_class->switched_from)
1985 prev_class->switched_from(rq, p, running);
1986 p->sched_class->switched_to(rq, p, running);
1987 } else
1988 p->sched_class->prio_changed(rq, p, oldprio, running);
1989 }
1990
1991 #ifdef CONFIG_SMP
1992 /*
1993 * Is this task likely cache-hot:
1994 */
1995 static int
1996 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1997 {
1998 s64 delta;
1999
2000 if (p->sched_class != &fair_sched_class)
2001 return 0;
2002
2003 /*
2004 * Buddy candidates are cache hot:
2005 */
2006 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
2007 (&p->se == cfs_rq_of(&p->se)->next ||
2008 &p->se == cfs_rq_of(&p->se)->last))
2009 return 1;
2010
2011 if (sysctl_sched_migration_cost == -1)
2012 return 1;
2013 if (sysctl_sched_migration_cost == 0)
2014 return 0;
2015
2016 delta = now - p->se.exec_start;
2017
2018 return delta < (s64)sysctl_sched_migration_cost;
2019 }
2020
2021 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2022 {
2023 #ifdef CONFIG_SCHED_DEBUG
2024 /*
2025 * We should never call set_task_cpu() on a blocked task,
2026 * ttwu() will sort out the placement.
2027 */
2028 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2029 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2030 #endif
2031
2032 trace_sched_migrate_task(p, new_cpu);
2033
2034 if (task_cpu(p) != new_cpu) {
2035 p->se.nr_migrations++;
2036 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2037 }
2038
2039 __set_task_cpu(p, new_cpu);
2040 }
2041
2042 struct migration_arg {
2043 struct task_struct *task;
2044 int dest_cpu;
2045 };
2046
2047 static int migration_cpu_stop(void *data);
2048
2049 /*
2050 * The task's runqueue lock must be held.
2051 * Returns true if you have to wait for migration thread.
2052 */
2053 static bool migrate_task(struct task_struct *p, int dest_cpu)
2054 {
2055 struct rq *rq = task_rq(p);
2056
2057 /*
2058 * If the task is not on a runqueue (and not running), then
2059 * the next wake-up will properly place the task.
2060 */
2061 return p->se.on_rq || task_running(rq, p);
2062 }
2063
2064 /*
2065 * wait_task_inactive - wait for a thread to unschedule.
2066 *
2067 * If @match_state is nonzero, it's the @p->state value just checked and
2068 * not expected to change. If it changes, i.e. @p might have woken up,
2069 * then return zero. When we succeed in waiting for @p to be off its CPU,
2070 * we return a positive number (its total switch count). If a second call
2071 * a short while later returns the same number, the caller can be sure that
2072 * @p has remained unscheduled the whole time.
2073 *
2074 * The caller must ensure that the task *will* unschedule sometime soon,
2075 * else this function might spin for a *long* time. This function can't
2076 * be called with interrupts off, or it may introduce deadlock with
2077 * smp_call_function() if an IPI is sent by the same process we are
2078 * waiting to become inactive.
2079 */
2080 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2081 {
2082 unsigned long flags;
2083 int running, on_rq;
2084 unsigned long ncsw;
2085 struct rq *rq;
2086
2087 for (;;) {
2088 /*
2089 * We do the initial early heuristics without holding
2090 * any task-queue locks at all. We'll only try to get
2091 * the runqueue lock when things look like they will
2092 * work out!
2093 */
2094 rq = task_rq(p);
2095
2096 /*
2097 * If the task is actively running on another CPU
2098 * still, just relax and busy-wait without holding
2099 * any locks.
2100 *
2101 * NOTE! Since we don't hold any locks, it's not
2102 * even sure that "rq" stays as the right runqueue!
2103 * But we don't care, since "task_running()" will
2104 * return false if the runqueue has changed and p
2105 * is actually now running somewhere else!
2106 */
2107 while (task_running(rq, p)) {
2108 if (match_state && unlikely(p->state != match_state))
2109 return 0;
2110 cpu_relax();
2111 }
2112
2113 /*
2114 * Ok, time to look more closely! We need the rq
2115 * lock now, to be *sure*. If we're wrong, we'll
2116 * just go back and repeat.
2117 */
2118 rq = task_rq_lock(p, &flags);
2119 trace_sched_wait_task(p);
2120 running = task_running(rq, p);
2121 on_rq = p->se.on_rq;
2122 ncsw = 0;
2123 if (!match_state || p->state == match_state)
2124 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2125 task_rq_unlock(rq, &flags);
2126
2127 /*
2128 * If it changed from the expected state, bail out now.
2129 */
2130 if (unlikely(!ncsw))
2131 break;
2132
2133 /*
2134 * Was it really running after all now that we
2135 * checked with the proper locks actually held?
2136 *
2137 * Oops. Go back and try again..
2138 */
2139 if (unlikely(running)) {
2140 cpu_relax();
2141 continue;
2142 }
2143
2144 /*
2145 * It's not enough that it's not actively running,
2146 * it must be off the runqueue _entirely_, and not
2147 * preempted!
2148 *
2149 * So if it was still runnable (but just not actively
2150 * running right now), it's preempted, and we should
2151 * yield - it could be a while.
2152 */
2153 if (unlikely(on_rq)) {
2154 schedule_timeout_uninterruptible(1);
2155 continue;
2156 }
2157
2158 /*
2159 * Ahh, all good. It wasn't running, and it wasn't
2160 * runnable, which means that it will never become
2161 * running in the future either. We're all done!
2162 */
2163 break;
2164 }
2165
2166 return ncsw;
2167 }
2168
2169 /***
2170 * kick_process - kick a running thread to enter/exit the kernel
2171 * @p: the to-be-kicked thread
2172 *
2173 * Cause a process which is running on another CPU to enter
2174 * kernel-mode, without any delay. (to get signals handled.)
2175 *
2176 * NOTE: this function doesnt have to take the runqueue lock,
2177 * because all it wants to ensure is that the remote task enters
2178 * the kernel. If the IPI races and the task has been migrated
2179 * to another CPU then no harm is done and the purpose has been
2180 * achieved as well.
2181 */
2182 void kick_process(struct task_struct *p)
2183 {
2184 int cpu;
2185
2186 preempt_disable();
2187 cpu = task_cpu(p);
2188 if ((cpu != smp_processor_id()) && task_curr(p))
2189 smp_send_reschedule(cpu);
2190 preempt_enable();
2191 }
2192 EXPORT_SYMBOL_GPL(kick_process);
2193 #endif /* CONFIG_SMP */
2194
2195 /**
2196 * task_oncpu_function_call - call a function on the cpu on which a task runs
2197 * @p: the task to evaluate
2198 * @func: the function to be called
2199 * @info: the function call argument
2200 *
2201 * Calls the function @func when the task is currently running. This might
2202 * be on the current CPU, which just calls the function directly
2203 */
2204 void task_oncpu_function_call(struct task_struct *p,
2205 void (*func) (void *info), void *info)
2206 {
2207 int cpu;
2208
2209 preempt_disable();
2210 cpu = task_cpu(p);
2211 if (task_curr(p))
2212 smp_call_function_single(cpu, func, info, 1);
2213 preempt_enable();
2214 }
2215
2216 #ifdef CONFIG_SMP
2217 /*
2218 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2219 */
2220 static int select_fallback_rq(int cpu, struct task_struct *p)
2221 {
2222 int dest_cpu;
2223 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2224
2225 /* Look for allowed, online CPU in same node. */
2226 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2227 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2228 return dest_cpu;
2229
2230 /* Any allowed, online CPU? */
2231 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2232 if (dest_cpu < nr_cpu_ids)
2233 return dest_cpu;
2234
2235 /* No more Mr. Nice Guy. */
2236 if (unlikely(dest_cpu >= nr_cpu_ids)) {
2237 dest_cpu = cpuset_cpus_allowed_fallback(p);
2238 /*
2239 * Don't tell them about moving exiting tasks or
2240 * kernel threads (both mm NULL), since they never
2241 * leave kernel.
2242 */
2243 if (p->mm && printk_ratelimit()) {
2244 printk(KERN_INFO "process %d (%s) no "
2245 "longer affine to cpu%d\n",
2246 task_pid_nr(p), p->comm, cpu);
2247 }
2248 }
2249
2250 return dest_cpu;
2251 }
2252
2253 /*
2254 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
2255 */
2256 static inline
2257 int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
2258 {
2259 int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
2260
2261 /*
2262 * In order not to call set_task_cpu() on a blocking task we need
2263 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2264 * cpu.
2265 *
2266 * Since this is common to all placement strategies, this lives here.
2267 *
2268 * [ this allows ->select_task() to simply return task_cpu(p) and
2269 * not worry about this generic constraint ]
2270 */
2271 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
2272 !cpu_online(cpu)))
2273 cpu = select_fallback_rq(task_cpu(p), p);
2274
2275 return cpu;
2276 }
2277
2278 static void update_avg(u64 *avg, u64 sample)
2279 {
2280 s64 diff = sample - *avg;
2281 *avg += diff >> 3;
2282 }
2283 #endif
2284
2285 static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
2286 bool is_sync, bool is_migrate, bool is_local,
2287 unsigned long en_flags)
2288 {
2289 schedstat_inc(p, se.statistics.nr_wakeups);
2290 if (is_sync)
2291 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2292 if (is_migrate)
2293 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2294 if (is_local)
2295 schedstat_inc(p, se.statistics.nr_wakeups_local);
2296 else
2297 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2298
2299 activate_task(rq, p, en_flags);
2300 }
2301
2302 static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
2303 int wake_flags, bool success)
2304 {
2305 trace_sched_wakeup(p, success);
2306 check_preempt_curr(rq, p, wake_flags);
2307
2308 p->state = TASK_RUNNING;
2309 #ifdef CONFIG_SMP
2310 if (p->sched_class->task_woken)
2311 p->sched_class->task_woken(rq, p);
2312
2313 if (unlikely(rq->idle_stamp)) {
2314 u64 delta = rq->clock - rq->idle_stamp;
2315 u64 max = 2*sysctl_sched_migration_cost;
2316
2317 if (delta > max)
2318 rq->avg_idle = max;
2319 else
2320 update_avg(&rq->avg_idle, delta);
2321 rq->idle_stamp = 0;
2322 }
2323 #endif
2324 /* if a worker is waking up, notify workqueue */
2325 if ((p->flags & PF_WQ_WORKER) && success)
2326 wq_worker_waking_up(p, cpu_of(rq));
2327 }
2328
2329 /**
2330 * try_to_wake_up - wake up a thread
2331 * @p: the thread to be awakened
2332 * @state: the mask of task states that can be woken
2333 * @wake_flags: wake modifier flags (WF_*)
2334 *
2335 * Put it on the run-queue if it's not already there. The "current"
2336 * thread is always on the run-queue (except when the actual
2337 * re-schedule is in progress), and as such you're allowed to do
2338 * the simpler "current->state = TASK_RUNNING" to mark yourself
2339 * runnable without the overhead of this.
2340 *
2341 * Returns %true if @p was woken up, %false if it was already running
2342 * or @state didn't match @p's state.
2343 */
2344 static int try_to_wake_up(struct task_struct *p, unsigned int state,
2345 int wake_flags)
2346 {
2347 int cpu, orig_cpu, this_cpu, success = 0;
2348 unsigned long flags;
2349 unsigned long en_flags = ENQUEUE_WAKEUP;
2350 struct rq *rq;
2351
2352 this_cpu = get_cpu();
2353
2354 smp_wmb();
2355 rq = task_rq_lock(p, &flags);
2356 if (!(p->state & state))
2357 goto out;
2358
2359 if (p->se.on_rq)
2360 goto out_running;
2361
2362 cpu = task_cpu(p);
2363 orig_cpu = cpu;
2364
2365 #ifdef CONFIG_SMP
2366 if (unlikely(task_running(rq, p)))
2367 goto out_activate;
2368
2369 /*
2370 * In order to handle concurrent wakeups and release the rq->lock
2371 * we put the task in TASK_WAKING state.
2372 *
2373 * First fix up the nr_uninterruptible count:
2374 */
2375 if (task_contributes_to_load(p)) {
2376 if (likely(cpu_online(orig_cpu)))
2377 rq->nr_uninterruptible--;
2378 else
2379 this_rq()->nr_uninterruptible--;
2380 }
2381 p->state = TASK_WAKING;
2382
2383 if (p->sched_class->task_waking) {
2384 p->sched_class->task_waking(rq, p);
2385 en_flags |= ENQUEUE_WAKING;
2386 }
2387
2388 cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
2389 if (cpu != orig_cpu)
2390 set_task_cpu(p, cpu);
2391 __task_rq_unlock(rq);
2392
2393 rq = cpu_rq(cpu);
2394 raw_spin_lock(&rq->lock);
2395
2396 /*
2397 * We migrated the task without holding either rq->lock, however
2398 * since the task is not on the task list itself, nobody else
2399 * will try and migrate the task, hence the rq should match the
2400 * cpu we just moved it to.
2401 */
2402 WARN_ON(task_cpu(p) != cpu);
2403 WARN_ON(p->state != TASK_WAKING);
2404
2405 #ifdef CONFIG_SCHEDSTATS
2406 schedstat_inc(rq, ttwu_count);
2407 if (cpu == this_cpu)
2408 schedstat_inc(rq, ttwu_local);
2409 else {
2410 struct sched_domain *sd;
2411 for_each_domain(this_cpu, sd) {
2412 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2413 schedstat_inc(sd, ttwu_wake_remote);
2414 break;
2415 }
2416 }
2417 }
2418 #endif /* CONFIG_SCHEDSTATS */
2419
2420 out_activate:
2421 #endif /* CONFIG_SMP */
2422 ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu,
2423 cpu == this_cpu, en_flags);
2424 success = 1;
2425 out_running:
2426 ttwu_post_activation(p, rq, wake_flags, success);
2427 out:
2428 task_rq_unlock(rq, &flags);
2429 put_cpu();
2430
2431 return success;
2432 }
2433
2434 /**
2435 * try_to_wake_up_local - try to wake up a local task with rq lock held
2436 * @p: the thread to be awakened
2437 *
2438 * Put @p on the run-queue if it's not alredy there. The caller must
2439 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2440 * the current task. this_rq() stays locked over invocation.
2441 */
2442 static void try_to_wake_up_local(struct task_struct *p)
2443 {
2444 struct rq *rq = task_rq(p);
2445 bool success = false;
2446
2447 BUG_ON(rq != this_rq());
2448 BUG_ON(p == current);
2449 lockdep_assert_held(&rq->lock);
2450
2451 if (!(p->state & TASK_NORMAL))
2452 return;
2453
2454 if (!p->se.on_rq) {
2455 if (likely(!task_running(rq, p))) {
2456 schedstat_inc(rq, ttwu_count);
2457 schedstat_inc(rq, ttwu_local);
2458 }
2459 ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP);
2460 success = true;
2461 }
2462 ttwu_post_activation(p, rq, 0, success);
2463 }
2464
2465 /**
2466 * wake_up_process - Wake up a specific process
2467 * @p: The process to be woken up.
2468 *
2469 * Attempt to wake up the nominated process and move it to the set of runnable
2470 * processes. Returns 1 if the process was woken up, 0 if it was already
2471 * running.
2472 *
2473 * It may be assumed that this function implies a write memory barrier before
2474 * changing the task state if and only if any tasks are woken up.
2475 */
2476 int wake_up_process(struct task_struct *p)
2477 {
2478 return try_to_wake_up(p, TASK_ALL, 0);
2479 }
2480 EXPORT_SYMBOL(wake_up_process);
2481
2482 int wake_up_state(struct task_struct *p, unsigned int state)
2483 {
2484 return try_to_wake_up(p, state, 0);
2485 }
2486
2487 /*
2488 * Perform scheduler related setup for a newly forked process p.
2489 * p is forked by current.
2490 *
2491 * __sched_fork() is basic setup used by init_idle() too:
2492 */
2493 static void __sched_fork(struct task_struct *p)
2494 {
2495 p->se.exec_start = 0;
2496 p->se.sum_exec_runtime = 0;
2497 p->se.prev_sum_exec_runtime = 0;
2498 p->se.nr_migrations = 0;
2499
2500 #ifdef CONFIG_SCHEDSTATS
2501 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2502 #endif
2503
2504 INIT_LIST_HEAD(&p->rt.run_list);
2505 p->se.on_rq = 0;
2506 INIT_LIST_HEAD(&p->se.group_node);
2507
2508 #ifdef CONFIG_PREEMPT_NOTIFIERS
2509 INIT_HLIST_HEAD(&p->preempt_notifiers);
2510 #endif
2511 }
2512
2513 /*
2514 * fork()/clone()-time setup:
2515 */
2516 void sched_fork(struct task_struct *p, int clone_flags)
2517 {
2518 int cpu = get_cpu();
2519
2520 __sched_fork(p);
2521 /*
2522 * We mark the process as running here. This guarantees that
2523 * nobody will actually run it, and a signal or other external
2524 * event cannot wake it up and insert it on the runqueue either.
2525 */
2526 p->state = TASK_RUNNING;
2527
2528 /*
2529 * Revert to default priority/policy on fork if requested.
2530 */
2531 if (unlikely(p->sched_reset_on_fork)) {
2532 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2533 p->policy = SCHED_NORMAL;
2534 p->normal_prio = p->static_prio;
2535 }
2536
2537 if (PRIO_TO_NICE(p->static_prio) < 0) {
2538 p->static_prio = NICE_TO_PRIO(0);
2539 p->normal_prio = p->static_prio;
2540 set_load_weight(p);
2541 }
2542
2543 /*
2544 * We don't need the reset flag anymore after the fork. It has
2545 * fulfilled its duty:
2546 */
2547 p->sched_reset_on_fork = 0;
2548 }
2549
2550 /*
2551 * Make sure we do not leak PI boosting priority to the child.
2552 */
2553 p->prio = current->normal_prio;
2554
2555 if (!rt_prio(p->prio))
2556 p->sched_class = &fair_sched_class;
2557
2558 if (p->sched_class->task_fork)
2559 p->sched_class->task_fork(p);
2560
2561 /*
2562 * The child is not yet in the pid-hash so no cgroup attach races,
2563 * and the cgroup is pinned to this child due to cgroup_fork()
2564 * is ran before sched_fork().
2565 *
2566 * Silence PROVE_RCU.
2567 */
2568 rcu_read_lock();
2569 set_task_cpu(p, cpu);
2570 rcu_read_unlock();
2571
2572 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2573 if (likely(sched_info_on()))
2574 memset(&p->sched_info, 0, sizeof(p->sched_info));
2575 #endif
2576 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2577 p->oncpu = 0;
2578 #endif
2579 #ifdef CONFIG_PREEMPT
2580 /* Want to start with kernel preemption disabled. */
2581 task_thread_info(p)->preempt_count = 1;
2582 #endif
2583 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2584
2585 put_cpu();
2586 }
2587
2588 /*
2589 * wake_up_new_task - wake up a newly created task for the first time.
2590 *
2591 * This function will do some initial scheduler statistics housekeeping
2592 * that must be done for every newly created context, then puts the task
2593 * on the runqueue and wakes it.
2594 */
2595 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2596 {
2597 unsigned long flags;
2598 struct rq *rq;
2599 int cpu __maybe_unused = get_cpu();
2600
2601 #ifdef CONFIG_SMP
2602 rq = task_rq_lock(p, &flags);
2603 p->state = TASK_WAKING;
2604
2605 /*
2606 * Fork balancing, do it here and not earlier because:
2607 * - cpus_allowed can change in the fork path
2608 * - any previously selected cpu might disappear through hotplug
2609 *
2610 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2611 * without people poking at ->cpus_allowed.
2612 */
2613 cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
2614 set_task_cpu(p, cpu);
2615
2616 p->state = TASK_RUNNING;
2617 task_rq_unlock(rq, &flags);
2618 #endif
2619
2620 rq = task_rq_lock(p, &flags);
2621 activate_task(rq, p, 0);
2622 trace_sched_wakeup_new(p, 1);
2623 check_preempt_curr(rq, p, WF_FORK);
2624 #ifdef CONFIG_SMP
2625 if (p->sched_class->task_woken)
2626 p->sched_class->task_woken(rq, p);
2627 #endif
2628 task_rq_unlock(rq, &flags);
2629 put_cpu();
2630 }
2631
2632 #ifdef CONFIG_PREEMPT_NOTIFIERS
2633
2634 /**
2635 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2636 * @notifier: notifier struct to register
2637 */
2638 void preempt_notifier_register(struct preempt_notifier *notifier)
2639 {
2640 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2641 }
2642 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2643
2644 /**
2645 * preempt_notifier_unregister - no longer interested in preemption notifications
2646 * @notifier: notifier struct to unregister
2647 *
2648 * This is safe to call from within a preemption notifier.
2649 */
2650 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2651 {
2652 hlist_del(&notifier->link);
2653 }
2654 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2655
2656 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2657 {
2658 struct preempt_notifier *notifier;
2659 struct hlist_node *node;
2660
2661 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2662 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2663 }
2664
2665 static void
2666 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2667 struct task_struct *next)
2668 {
2669 struct preempt_notifier *notifier;
2670 struct hlist_node *node;
2671
2672 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2673 notifier->ops->sched_out(notifier, next);
2674 }
2675
2676 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2677
2678 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2679 {
2680 }
2681
2682 static void
2683 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2684 struct task_struct *next)
2685 {
2686 }
2687
2688 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2689
2690 /**
2691 * prepare_task_switch - prepare to switch tasks
2692 * @rq: the runqueue preparing to switch
2693 * @prev: the current task that is being switched out
2694 * @next: the task we are going to switch to.
2695 *
2696 * This is called with the rq lock held and interrupts off. It must
2697 * be paired with a subsequent finish_task_switch after the context
2698 * switch.
2699 *
2700 * prepare_task_switch sets up locking and calls architecture specific
2701 * hooks.
2702 */
2703 static inline void
2704 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2705 struct task_struct *next)
2706 {
2707 fire_sched_out_preempt_notifiers(prev, next);
2708 prepare_lock_switch(rq, next);
2709 prepare_arch_switch(next);
2710 }
2711
2712 /**
2713 * finish_task_switch - clean up after a task-switch
2714 * @rq: runqueue associated with task-switch
2715 * @prev: the thread we just switched away from.
2716 *
2717 * finish_task_switch must be called after the context switch, paired
2718 * with a prepare_task_switch call before the context switch.
2719 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2720 * and do any other architecture-specific cleanup actions.
2721 *
2722 * Note that we may have delayed dropping an mm in context_switch(). If
2723 * so, we finish that here outside of the runqueue lock. (Doing it
2724 * with the lock held can cause deadlocks; see schedule() for
2725 * details.)
2726 */
2727 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2728 __releases(rq->lock)
2729 {
2730 struct mm_struct *mm = rq->prev_mm;
2731 long prev_state;
2732
2733 rq->prev_mm = NULL;
2734
2735 /*
2736 * A task struct has one reference for the use as "current".
2737 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2738 * schedule one last time. The schedule call will never return, and
2739 * the scheduled task must drop that reference.
2740 * The test for TASK_DEAD must occur while the runqueue locks are
2741 * still held, otherwise prev could be scheduled on another cpu, die
2742 * there before we look at prev->state, and then the reference would
2743 * be dropped twice.
2744 * Manfred Spraul <manfred@colorfullife.com>
2745 */
2746 prev_state = prev->state;
2747 finish_arch_switch(prev);
2748 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2749 local_irq_disable();
2750 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2751 perf_event_task_sched_in(current);
2752 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2753 local_irq_enable();
2754 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2755 finish_lock_switch(rq, prev);
2756
2757 fire_sched_in_preempt_notifiers(current);
2758 if (mm)
2759 mmdrop(mm);
2760 if (unlikely(prev_state == TASK_DEAD)) {
2761 /*
2762 * Remove function-return probe instances associated with this
2763 * task and put them back on the free list.
2764 */
2765 kprobe_flush_task(prev);
2766 put_task_struct(prev);
2767 }
2768 }
2769
2770 #ifdef CONFIG_SMP
2771
2772 /* assumes rq->lock is held */
2773 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2774 {
2775 if (prev->sched_class->pre_schedule)
2776 prev->sched_class->pre_schedule(rq, prev);
2777 }
2778
2779 /* rq->lock is NOT held, but preemption is disabled */
2780 static inline void post_schedule(struct rq *rq)
2781 {
2782 if (rq->post_schedule) {
2783 unsigned long flags;
2784
2785 raw_spin_lock_irqsave(&rq->lock, flags);
2786 if (rq->curr->sched_class->post_schedule)
2787 rq->curr->sched_class->post_schedule(rq);
2788 raw_spin_unlock_irqrestore(&rq->lock, flags);
2789
2790 rq->post_schedule = 0;
2791 }
2792 }
2793
2794 #else
2795
2796 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2797 {
2798 }
2799
2800 static inline void post_schedule(struct rq *rq)
2801 {
2802 }
2803
2804 #endif
2805
2806 /**
2807 * schedule_tail - first thing a freshly forked thread must call.
2808 * @prev: the thread we just switched away from.
2809 */
2810 asmlinkage void schedule_tail(struct task_struct *prev)
2811 __releases(rq->lock)
2812 {
2813 struct rq *rq = this_rq();
2814
2815 finish_task_switch(rq, prev);
2816
2817 /*
2818 * FIXME: do we need to worry about rq being invalidated by the
2819 * task_switch?
2820 */
2821 post_schedule(rq);
2822
2823 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2824 /* In this case, finish_task_switch does not reenable preemption */
2825 preempt_enable();
2826 #endif
2827 if (current->set_child_tid)
2828 put_user(task_pid_vnr(current), current->set_child_tid);
2829 }
2830
2831 /*
2832 * context_switch - switch to the new MM and the new
2833 * thread's register state.
2834 */
2835 static inline void
2836 context_switch(struct rq *rq, struct task_struct *prev,
2837 struct task_struct *next)
2838 {
2839 struct mm_struct *mm, *oldmm;
2840
2841 prepare_task_switch(rq, prev, next);
2842 trace_sched_switch(prev, next);
2843 mm = next->mm;
2844 oldmm = prev->active_mm;
2845 /*
2846 * For paravirt, this is coupled with an exit in switch_to to
2847 * combine the page table reload and the switch backend into
2848 * one hypercall.
2849 */
2850 arch_start_context_switch(prev);
2851
2852 if (!mm) {
2853 next->active_mm = oldmm;
2854 atomic_inc(&oldmm->mm_count);
2855 enter_lazy_tlb(oldmm, next);
2856 } else
2857 switch_mm(oldmm, mm, next);
2858
2859 if (!prev->mm) {
2860 prev->active_mm = NULL;
2861 rq->prev_mm = oldmm;
2862 }
2863 /*
2864 * Since the runqueue lock will be released by the next
2865 * task (which is an invalid locking op but in the case
2866 * of the scheduler it's an obvious special-case), so we
2867 * do an early lockdep release here:
2868 */
2869 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2870 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2871 #endif
2872
2873 /* Here we just switch the register state and the stack. */
2874 switch_to(prev, next, prev);
2875
2876 barrier();
2877 /*
2878 * this_rq must be evaluated again because prev may have moved
2879 * CPUs since it called schedule(), thus the 'rq' on its stack
2880 * frame will be invalid.
2881 */
2882 finish_task_switch(this_rq(), prev);
2883 }
2884
2885 /*
2886 * nr_running, nr_uninterruptible and nr_context_switches:
2887 *
2888 * externally visible scheduler statistics: current number of runnable
2889 * threads, current number of uninterruptible-sleeping threads, total
2890 * number of context switches performed since bootup.
2891 */
2892 unsigned long nr_running(void)
2893 {
2894 unsigned long i, sum = 0;
2895
2896 for_each_online_cpu(i)
2897 sum += cpu_rq(i)->nr_running;
2898
2899 return sum;
2900 }
2901
2902 unsigned long nr_uninterruptible(void)
2903 {
2904 unsigned long i, sum = 0;
2905
2906 for_each_possible_cpu(i)
2907 sum += cpu_rq(i)->nr_uninterruptible;
2908
2909 /*
2910 * Since we read the counters lockless, it might be slightly
2911 * inaccurate. Do not allow it to go below zero though:
2912 */
2913 if (unlikely((long)sum < 0))
2914 sum = 0;
2915
2916 return sum;
2917 }
2918
2919 unsigned long long nr_context_switches(void)
2920 {
2921 int i;
2922 unsigned long long sum = 0;
2923
2924 for_each_possible_cpu(i)
2925 sum += cpu_rq(i)->nr_switches;
2926
2927 return sum;
2928 }
2929
2930 unsigned long nr_iowait(void)
2931 {
2932 unsigned long i, sum = 0;
2933
2934 for_each_possible_cpu(i)
2935 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2936
2937 return sum;
2938 }
2939
2940 unsigned long nr_iowait_cpu(int cpu)
2941 {
2942 struct rq *this = cpu_rq(cpu);
2943 return atomic_read(&this->nr_iowait);
2944 }
2945
2946 unsigned long this_cpu_load(void)
2947 {
2948 struct rq *this = this_rq();
2949 return this->cpu_load[0];
2950 }
2951
2952
2953 /* Variables and functions for calc_load */
2954 static atomic_long_t calc_load_tasks;
2955 static unsigned long calc_load_update;
2956 unsigned long avenrun[3];
2957 EXPORT_SYMBOL(avenrun);
2958
2959 static long calc_load_fold_active(struct rq *this_rq)
2960 {
2961 long nr_active, delta = 0;
2962
2963 nr_active = this_rq->nr_running;
2964 nr_active += (long) this_rq->nr_uninterruptible;
2965
2966 if (nr_active != this_rq->calc_load_active) {
2967 delta = nr_active - this_rq->calc_load_active;
2968 this_rq->calc_load_active = nr_active;
2969 }
2970
2971 return delta;
2972 }
2973
2974 #ifdef CONFIG_NO_HZ
2975 /*
2976 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
2977 *
2978 * When making the ILB scale, we should try to pull this in as well.
2979 */
2980 static atomic_long_t calc_load_tasks_idle;
2981
2982 static void calc_load_account_idle(struct rq *this_rq)
2983 {
2984 long delta;
2985
2986 delta = calc_load_fold_active(this_rq);
2987 if (delta)
2988 atomic_long_add(delta, &calc_load_tasks_idle);
2989 }
2990
2991 static long calc_load_fold_idle(void)
2992 {
2993 long delta = 0;
2994
2995 /*
2996 * Its got a race, we don't care...
2997 */
2998 if (atomic_long_read(&calc_load_tasks_idle))
2999 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
3000
3001 return delta;
3002 }
3003 #else
3004 static void calc_load_account_idle(struct rq *this_rq)
3005 {
3006 }
3007
3008 static inline long calc_load_fold_idle(void)
3009 {
3010 return 0;
3011 }
3012 #endif
3013
3014 /**
3015 * get_avenrun - get the load average array
3016 * @loads: pointer to dest load array
3017 * @offset: offset to add
3018 * @shift: shift count to shift the result left
3019 *
3020 * These values are estimates at best, so no need for locking.
3021 */
3022 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3023 {
3024 loads[0] = (avenrun[0] + offset) << shift;
3025 loads[1] = (avenrun[1] + offset) << shift;
3026 loads[2] = (avenrun[2] + offset) << shift;
3027 }
3028
3029 static unsigned long
3030 calc_load(unsigned long load, unsigned long exp, unsigned long active)
3031 {
3032 load *= exp;
3033 load += active * (FIXED_1 - exp);
3034 return load >> FSHIFT;
3035 }
3036
3037 /*
3038 * calc_load - update the avenrun load estimates 10 ticks after the
3039 * CPUs have updated calc_load_tasks.
3040 */
3041 void calc_global_load(void)
3042 {
3043 unsigned long upd = calc_load_update + 10;
3044 long active;
3045
3046 if (time_before(jiffies, upd))
3047 return;
3048
3049 active = atomic_long_read(&calc_load_tasks);
3050 active = active > 0 ? active * FIXED_1 : 0;
3051
3052 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3053 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3054 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3055
3056 calc_load_update += LOAD_FREQ;
3057 }
3058
3059 /*
3060 * Called from update_cpu_load() to periodically update this CPU's
3061 * active count.
3062 */
3063 static void calc_load_account_active(struct rq *this_rq)
3064 {
3065 long delta;
3066
3067 if (time_before(jiffies, this_rq->calc_load_update))
3068 return;
3069
3070 delta = calc_load_fold_active(this_rq);
3071 delta += calc_load_fold_idle();
3072 if (delta)
3073 atomic_long_add(delta, &calc_load_tasks);
3074
3075 this_rq->calc_load_update += LOAD_FREQ;
3076 }
3077
3078 /*
3079 * The exact cpuload at various idx values, calculated at every tick would be
3080 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3081 *
3082 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3083 * on nth tick when cpu may be busy, then we have:
3084 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3085 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3086 *
3087 * decay_load_missed() below does efficient calculation of
3088 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3089 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3090 *
3091 * The calculation is approximated on a 128 point scale.
3092 * degrade_zero_ticks is the number of ticks after which load at any
3093 * particular idx is approximated to be zero.
3094 * degrade_factor is a precomputed table, a row for each load idx.
3095 * Each column corresponds to degradation factor for a power of two ticks,
3096 * based on 128 point scale.
3097 * Example:
3098 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3099 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3100 *
3101 * With this power of 2 load factors, we can degrade the load n times
3102 * by looking at 1 bits in n and doing as many mult/shift instead of
3103 * n mult/shifts needed by the exact degradation.
3104 */
3105 #define DEGRADE_SHIFT 7
3106 static const unsigned char
3107 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3108 static const unsigned char
3109 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3110 {0, 0, 0, 0, 0, 0, 0, 0},
3111 {64, 32, 8, 0, 0, 0, 0, 0},
3112 {96, 72, 40, 12, 1, 0, 0},
3113 {112, 98, 75, 43, 15, 1, 0},
3114 {120, 112, 98, 76, 45, 16, 2} };
3115
3116 /*
3117 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3118 * would be when CPU is idle and so we just decay the old load without
3119 * adding any new load.
3120 */
3121 static unsigned long
3122 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3123 {
3124 int j = 0;
3125
3126 if (!missed_updates)
3127 return load;
3128
3129 if (missed_updates >= degrade_zero_ticks[idx])
3130 return 0;
3131
3132 if (idx == 1)
3133 return load >> missed_updates;
3134
3135 while (missed_updates) {
3136 if (missed_updates % 2)
3137 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3138
3139 missed_updates >>= 1;
3140 j++;
3141 }
3142 return load;
3143 }
3144
3145 /*
3146 * Update rq->cpu_load[] statistics. This function is usually called every
3147 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3148 * every tick. We fix it up based on jiffies.
3149 */
3150 static void update_cpu_load(struct rq *this_rq)
3151 {
3152 unsigned long this_load = this_rq->load.weight;
3153 unsigned long curr_jiffies = jiffies;
3154 unsigned long pending_updates;
3155 int i, scale;
3156
3157 this_rq->nr_load_updates++;
3158
3159 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3160 if (curr_jiffies == this_rq->last_load_update_tick)
3161 return;
3162
3163 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3164 this_rq->last_load_update_tick = curr_jiffies;
3165
3166 /* Update our load: */
3167 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3168 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3169 unsigned long old_load, new_load;
3170
3171 /* scale is effectively 1 << i now, and >> i divides by scale */
3172
3173 old_load = this_rq->cpu_load[i];
3174 old_load = decay_load_missed(old_load, pending_updates - 1, i);
3175 new_load = this_load;
3176 /*
3177 * Round up the averaging division if load is increasing. This
3178 * prevents us from getting stuck on 9 if the load is 10, for
3179 * example.
3180 */
3181 if (new_load > old_load)
3182 new_load += scale - 1;
3183
3184 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
3185 }
3186
3187 sched_avg_update(this_rq);
3188 }
3189
3190 static void update_cpu_load_active(struct rq *this_rq)
3191 {
3192 update_cpu_load(this_rq);
3193
3194 calc_load_account_active(this_rq);
3195 }
3196
3197 #ifdef CONFIG_SMP
3198
3199 /*
3200 * sched_exec - execve() is a valuable balancing opportunity, because at
3201 * this point the task has the smallest effective memory and cache footprint.
3202 */
3203 void sched_exec(void)
3204 {
3205 struct task_struct *p = current;
3206 unsigned long flags;
3207 struct rq *rq;
3208 int dest_cpu;
3209
3210 rq = task_rq_lock(p, &flags);
3211 dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
3212 if (dest_cpu == smp_processor_id())
3213 goto unlock;
3214
3215 /*
3216 * select_task_rq() can race against ->cpus_allowed
3217 */
3218 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
3219 likely(cpu_active(dest_cpu)) && migrate_task(p, dest_cpu)) {
3220 struct migration_arg arg = { p, dest_cpu };
3221
3222 task_rq_unlock(rq, &flags);
3223 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
3224 return;
3225 }
3226 unlock:
3227 task_rq_unlock(rq, &flags);
3228 }
3229
3230 #endif
3231
3232 DEFINE_PER_CPU(struct kernel_stat, kstat);
3233
3234 EXPORT_PER_CPU_SYMBOL(kstat);
3235
3236 /*
3237 * Return any ns on the sched_clock that have not yet been accounted in
3238 * @p in case that task is currently running.
3239 *
3240 * Called with task_rq_lock() held on @rq.
3241 */
3242 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3243 {
3244 u64 ns = 0;
3245
3246 if (task_current(rq, p)) {
3247 update_rq_clock(rq);
3248 ns = rq->clock - p->se.exec_start;
3249 if ((s64)ns < 0)
3250 ns = 0;
3251 }
3252
3253 return ns;
3254 }
3255
3256 unsigned long long task_delta_exec(struct task_struct *p)
3257 {
3258 unsigned long flags;
3259 struct rq *rq;
3260 u64 ns = 0;
3261
3262 rq = task_rq_lock(p, &flags);
3263 ns = do_task_delta_exec(p, rq);
3264 task_rq_unlock(rq, &flags);
3265
3266 return ns;
3267 }
3268
3269 /*
3270 * Return accounted runtime for the task.
3271 * In case the task is currently running, return the runtime plus current's
3272 * pending runtime that have not been accounted yet.
3273 */
3274 unsigned long long task_sched_runtime(struct task_struct *p)
3275 {
3276 unsigned long flags;
3277 struct rq *rq;
3278 u64 ns = 0;
3279
3280 rq = task_rq_lock(p, &flags);
3281 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3282 task_rq_unlock(rq, &flags);
3283
3284 return ns;
3285 }
3286
3287 /*
3288 * Return sum_exec_runtime for the thread group.
3289 * In case the task is currently running, return the sum plus current's
3290 * pending runtime that have not been accounted yet.
3291 *
3292 * Note that the thread group might have other running tasks as well,
3293 * so the return value not includes other pending runtime that other
3294 * running tasks might have.
3295 */
3296 unsigned long long thread_group_sched_runtime(struct task_struct *p)
3297 {
3298 struct task_cputime totals;
3299 unsigned long flags;
3300 struct rq *rq;
3301 u64 ns;
3302
3303 rq = task_rq_lock(p, &flags);
3304 thread_group_cputime(p, &totals);
3305 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3306 task_rq_unlock(rq, &flags);
3307
3308 return ns;
3309 }
3310
3311 /*
3312 * Account user cpu time to a process.
3313 * @p: the process that the cpu time gets accounted to
3314 * @cputime: the cpu time spent in user space since the last update
3315 * @cputime_scaled: cputime scaled by cpu frequency
3316 */
3317 void account_user_time(struct task_struct *p, cputime_t cputime,
3318 cputime_t cputime_scaled)
3319 {
3320 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3321 cputime64_t tmp;
3322
3323 /* Add user time to process. */
3324 p->utime = cputime_add(p->utime, cputime);
3325 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3326 account_group_user_time(p, cputime);
3327
3328 /* Add user time to cpustat. */
3329 tmp = cputime_to_cputime64(cputime);
3330 if (TASK_NICE(p) > 0)
3331 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3332 else
3333 cpustat->user = cputime64_add(cpustat->user, tmp);
3334
3335 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3336 /* Account for user time used */
3337 acct_update_integrals(p);
3338 }
3339
3340 /*
3341 * Account guest cpu time to a process.
3342 * @p: the process that the cpu time gets accounted to
3343 * @cputime: the cpu time spent in virtual machine since the last update
3344 * @cputime_scaled: cputime scaled by cpu frequency
3345 */
3346 static void account_guest_time(struct task_struct *p, cputime_t cputime,
3347 cputime_t cputime_scaled)
3348 {
3349 cputime64_t tmp;
3350 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3351
3352 tmp = cputime_to_cputime64(cputime);
3353
3354 /* Add guest time to process. */
3355 p->utime = cputime_add(p->utime, cputime);
3356 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3357 account_group_user_time(p, cputime);
3358 p->gtime = cputime_add(p->gtime, cputime);
3359
3360 /* Add guest time to cpustat. */
3361 if (TASK_NICE(p) > 0) {
3362 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3363 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3364 } else {
3365 cpustat->user = cputime64_add(cpustat->user, tmp);
3366 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3367 }
3368 }
3369
3370 /*
3371 * Account system cpu time to a process.
3372 * @p: the process that the cpu time gets accounted to
3373 * @hardirq_offset: the offset to subtract from hardirq_count()
3374 * @cputime: the cpu time spent in kernel space since the last update
3375 * @cputime_scaled: cputime scaled by cpu frequency
3376 */
3377 void account_system_time(struct task_struct *p, int hardirq_offset,
3378 cputime_t cputime, cputime_t cputime_scaled)
3379 {
3380 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3381 cputime64_t tmp;
3382
3383 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3384 account_guest_time(p, cputime, cputime_scaled);
3385 return;
3386 }
3387
3388 /* Add system time to process. */
3389 p->stime = cputime_add(p->stime, cputime);
3390 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3391 account_group_system_time(p, cputime);
3392
3393 /* Add system time to cpustat. */
3394 tmp = cputime_to_cputime64(cputime);
3395 if (hardirq_count() - hardirq_offset)
3396 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3397 else if (softirq_count())
3398 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3399 else
3400 cpustat->system = cputime64_add(cpustat->system, tmp);
3401
3402 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3403
3404 /* Account for system time used */
3405 acct_update_integrals(p);
3406 }
3407
3408 /*
3409 * Account for involuntary wait time.
3410 * @steal: the cpu time spent in involuntary wait
3411 */
3412 void account_steal_time(cputime_t cputime)
3413 {
3414 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3415 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3416
3417 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3418 }
3419
3420 /*
3421 * Account for idle time.
3422 * @cputime: the cpu time spent in idle wait
3423 */
3424 void account_idle_time(cputime_t cputime)
3425 {
3426 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3427 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3428 struct rq *rq = this_rq();
3429
3430 if (atomic_read(&rq->nr_iowait) > 0)
3431 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3432 else
3433 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
3434 }
3435
3436 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
3437
3438 /*
3439 * Account a single tick of cpu time.
3440 * @p: the process that the cpu time gets accounted to
3441 * @user_tick: indicates if the tick is a user or a system tick
3442 */
3443 void account_process_tick(struct task_struct *p, int user_tick)
3444 {
3445 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3446 struct rq *rq = this_rq();
3447
3448 if (user_tick)
3449 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3450 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3451 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3452 one_jiffy_scaled);
3453 else
3454 account_idle_time(cputime_one_jiffy);
3455 }
3456
3457 /*
3458 * Account multiple ticks of steal time.
3459 * @p: the process from which the cpu time has been stolen
3460 * @ticks: number of stolen ticks
3461 */
3462 void account_steal_ticks(unsigned long ticks)
3463 {
3464 account_steal_time(jiffies_to_cputime(ticks));
3465 }
3466
3467 /*
3468 * Account multiple ticks of idle time.
3469 * @ticks: number of stolen ticks
3470 */
3471 void account_idle_ticks(unsigned long ticks)
3472 {
3473 account_idle_time(jiffies_to_cputime(ticks));
3474 }
3475
3476 #endif
3477
3478 /*
3479 * Use precise platform statistics if available:
3480 */
3481 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
3482 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3483 {
3484 *ut = p->utime;
3485 *st = p->stime;
3486 }
3487
3488 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3489 {
3490 struct task_cputime cputime;
3491
3492 thread_group_cputime(p, &cputime);
3493
3494 *ut = cputime.utime;
3495 *st = cputime.stime;
3496 }
3497 #else
3498
3499 #ifndef nsecs_to_cputime
3500 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
3501 #endif
3502
3503 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3504 {
3505 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
3506
3507 /*
3508 * Use CFS's precise accounting:
3509 */
3510 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3511
3512 if (total) {
3513 u64 temp;
3514
3515 temp = (u64)(rtime * utime);
3516 do_div(temp, total);
3517 utime = (cputime_t)temp;
3518 } else
3519 utime = rtime;
3520
3521 /*
3522 * Compare with previous values, to keep monotonicity:
3523 */
3524 p->prev_utime = max(p->prev_utime, utime);
3525 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
3526
3527 *ut = p->prev_utime;
3528 *st = p->prev_stime;
3529 }
3530
3531 /*
3532 * Must be called with siglock held.
3533 */
3534 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3535 {
3536 struct signal_struct *sig = p->signal;
3537 struct task_cputime cputime;
3538 cputime_t rtime, utime, total;
3539
3540 thread_group_cputime(p, &cputime);
3541
3542 total = cputime_add(cputime.utime, cputime.stime);
3543 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3544
3545 if (total) {
3546 u64 temp;
3547
3548 temp = (u64)(rtime * cputime.utime);
3549 do_div(temp, total);
3550 utime = (cputime_t)temp;
3551 } else
3552 utime = rtime;
3553
3554 sig->prev_utime = max(sig->prev_utime, utime);
3555 sig->prev_stime = max(sig->prev_stime,
3556 cputime_sub(rtime, sig->prev_utime));
3557
3558 *ut = sig->prev_utime;
3559 *st = sig->prev_stime;
3560 }
3561 #endif
3562
3563 /*
3564 * This function gets called by the timer code, with HZ frequency.
3565 * We call it with interrupts disabled.
3566 *
3567 * It also gets called by the fork code, when changing the parent's
3568 * timeslices.
3569 */
3570 void scheduler_tick(void)
3571 {
3572 int cpu = smp_processor_id();
3573 struct rq *rq = cpu_rq(cpu);
3574 struct task_struct *curr = rq->curr;
3575
3576 sched_clock_tick();
3577
3578 raw_spin_lock(&rq->lock);
3579 update_rq_clock(rq);
3580 update_cpu_load_active(rq);
3581 curr->sched_class->task_tick(rq, curr, 0);
3582 raw_spin_unlock(&rq->lock);
3583
3584 perf_event_task_tick(curr);
3585
3586 #ifdef CONFIG_SMP
3587 rq->idle_at_tick = idle_cpu(cpu);
3588 trigger_load_balance(rq, cpu);
3589 #endif
3590 }
3591
3592 notrace unsigned long get_parent_ip(unsigned long addr)
3593 {
3594 if (in_lock_functions(addr)) {
3595 addr = CALLER_ADDR2;
3596 if (in_lock_functions(addr))
3597 addr = CALLER_ADDR3;
3598 }
3599 return addr;
3600 }
3601
3602 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3603 defined(CONFIG_PREEMPT_TRACER))
3604
3605 void __kprobes add_preempt_count(int val)
3606 {
3607 #ifdef CONFIG_DEBUG_PREEMPT
3608 /*
3609 * Underflow?
3610 */
3611 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3612 return;
3613 #endif
3614 preempt_count() += val;
3615 #ifdef CONFIG_DEBUG_PREEMPT
3616 /*
3617 * Spinlock count overflowing soon?
3618 */
3619 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3620 PREEMPT_MASK - 10);
3621 #endif
3622 if (preempt_count() == val)
3623 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3624 }
3625 EXPORT_SYMBOL(add_preempt_count);
3626
3627 void __kprobes sub_preempt_count(int val)
3628 {
3629 #ifdef CONFIG_DEBUG_PREEMPT
3630 /*
3631 * Underflow?
3632 */
3633 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3634 return;
3635 /*
3636 * Is the spinlock portion underflowing?
3637 */
3638 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3639 !(preempt_count() & PREEMPT_MASK)))
3640 return;
3641 #endif
3642
3643 if (preempt_count() == val)
3644 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3645 preempt_count() -= val;
3646 }
3647 EXPORT_SYMBOL(sub_preempt_count);
3648
3649 #endif
3650
3651 /*
3652 * Print scheduling while atomic bug:
3653 */
3654 static noinline void __schedule_bug(struct task_struct *prev)
3655 {
3656 struct pt_regs *regs = get_irq_regs();
3657
3658 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3659 prev->comm, prev->pid, preempt_count());
3660
3661 debug_show_held_locks(prev);
3662 print_modules();
3663 if (irqs_disabled())
3664 print_irqtrace_events(prev);
3665
3666 if (regs)
3667 show_regs(regs);
3668 else
3669 dump_stack();
3670 }
3671
3672 /*
3673 * Various schedule()-time debugging checks and statistics:
3674 */
3675 static inline void schedule_debug(struct task_struct *prev)
3676 {
3677 /*
3678 * Test if we are atomic. Since do_exit() needs to call into
3679 * schedule() atomically, we ignore that path for now.
3680 * Otherwise, whine if we are scheduling when we should not be.
3681 */
3682 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
3683 __schedule_bug(prev);
3684
3685 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3686
3687 schedstat_inc(this_rq(), sched_count);
3688 #ifdef CONFIG_SCHEDSTATS
3689 if (unlikely(prev->lock_depth >= 0)) {
3690 schedstat_inc(this_rq(), bkl_count);
3691 schedstat_inc(prev, sched_info.bkl_count);
3692 }
3693 #endif
3694 }
3695
3696 static void put_prev_task(struct rq *rq, struct task_struct *prev)
3697 {
3698 if (prev->se.on_rq)
3699 update_rq_clock(rq);
3700 rq->skip_clock_update = 0;
3701 prev->sched_class->put_prev_task(rq, prev);
3702 }
3703
3704 /*
3705 * Pick up the highest-prio task:
3706 */
3707 static inline struct task_struct *
3708 pick_next_task(struct rq *rq)
3709 {
3710 const struct sched_class *class;
3711 struct task_struct *p;
3712
3713 /*
3714 * Optimization: we know that if all tasks are in
3715 * the fair class we can call that function directly:
3716 */
3717 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3718 p = fair_sched_class.pick_next_task(rq);
3719 if (likely(p))
3720 return p;
3721 }
3722
3723 class = sched_class_highest;
3724 for ( ; ; ) {
3725 p = class->pick_next_task(rq);
3726 if (p)
3727 return p;
3728 /*
3729 * Will never be NULL as the idle class always
3730 * returns a non-NULL p:
3731 */
3732 class = class->next;
3733 }
3734 }
3735
3736 /*
3737 * schedule() is the main scheduler function.
3738 */
3739 asmlinkage void __sched schedule(void)
3740 {
3741 struct task_struct *prev, *next;
3742 unsigned long *switch_count;
3743 struct rq *rq;
3744 int cpu;
3745
3746 need_resched:
3747 preempt_disable();
3748 cpu = smp_processor_id();
3749 rq = cpu_rq(cpu);
3750 rcu_note_context_switch(cpu);
3751 prev = rq->curr;
3752
3753 release_kernel_lock(prev);
3754 need_resched_nonpreemptible:
3755
3756 schedule_debug(prev);
3757
3758 if (sched_feat(HRTICK))
3759 hrtick_clear(rq);
3760
3761 raw_spin_lock_irq(&rq->lock);
3762 clear_tsk_need_resched(prev);
3763
3764 switch_count = &prev->nivcsw;
3765 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3766 if (unlikely(signal_pending_state(prev->state, prev))) {
3767 prev->state = TASK_RUNNING;
3768 } else {
3769 /*
3770 * If a worker is going to sleep, notify and
3771 * ask workqueue whether it wants to wake up a
3772 * task to maintain concurrency. If so, wake
3773 * up the task.
3774 */
3775 if (prev->flags & PF_WQ_WORKER) {
3776 struct task_struct *to_wakeup;
3777
3778 to_wakeup = wq_worker_sleeping(prev, cpu);
3779 if (to_wakeup)
3780 try_to_wake_up_local(to_wakeup);
3781 }
3782 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3783 }
3784 switch_count = &prev->nvcsw;
3785 }
3786
3787 pre_schedule(rq, prev);
3788
3789 if (unlikely(!rq->nr_running))
3790 idle_balance(cpu, rq);
3791
3792 put_prev_task(rq, prev);
3793 next = pick_next_task(rq);
3794
3795 if (likely(prev != next)) {
3796 sched_info_switch(prev, next);
3797 perf_event_task_sched_out(prev, next);
3798
3799 rq->nr_switches++;
3800 rq->curr = next;
3801 ++*switch_count;
3802
3803 context_switch(rq, prev, next); /* unlocks the rq */
3804 /*
3805 * The context switch have flipped the stack from under us
3806 * and restored the local variables which were saved when
3807 * this task called schedule() in the past. prev == current
3808 * is still correct, but it can be moved to another cpu/rq.
3809 */
3810 cpu = smp_processor_id();
3811 rq = cpu_rq(cpu);
3812 } else
3813 raw_spin_unlock_irq(&rq->lock);
3814
3815 post_schedule(rq);
3816
3817 if (unlikely(reacquire_kernel_lock(prev)))
3818 goto need_resched_nonpreemptible;
3819
3820 preempt_enable_no_resched();
3821 if (need_resched())
3822 goto need_resched;
3823 }
3824 EXPORT_SYMBOL(schedule);
3825
3826 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3827 /*
3828 * Look out! "owner" is an entirely speculative pointer
3829 * access and not reliable.
3830 */
3831 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
3832 {
3833 unsigned int cpu;
3834 struct rq *rq;
3835
3836 if (!sched_feat(OWNER_SPIN))
3837 return 0;
3838
3839 #ifdef CONFIG_DEBUG_PAGEALLOC
3840 /*
3841 * Need to access the cpu field knowing that
3842 * DEBUG_PAGEALLOC could have unmapped it if
3843 * the mutex owner just released it and exited.
3844 */
3845 if (probe_kernel_address(&owner->cpu, cpu))
3846 return 0;
3847 #else
3848 cpu = owner->cpu;
3849 #endif
3850
3851 /*
3852 * Even if the access succeeded (likely case),
3853 * the cpu field may no longer be valid.
3854 */
3855 if (cpu >= nr_cpumask_bits)
3856 return 0;
3857
3858 /*
3859 * We need to validate that we can do a
3860 * get_cpu() and that we have the percpu area.
3861 */
3862 if (!cpu_online(cpu))
3863 return 0;
3864
3865 rq = cpu_rq(cpu);
3866
3867 for (;;) {
3868 /*
3869 * Owner changed, break to re-assess state.
3870 */
3871 if (lock->owner != owner) {
3872 /*
3873 * If the lock has switched to a different owner,
3874 * we likely have heavy contention. Return 0 to quit
3875 * optimistic spinning and not contend further:
3876 */
3877 if (lock->owner)
3878 return 0;
3879 break;
3880 }
3881
3882 /*
3883 * Is that owner really running on that cpu?
3884 */
3885 if (task_thread_info(rq->curr) != owner || need_resched())
3886 return 0;
3887
3888 cpu_relax();
3889 }
3890
3891 return 1;
3892 }
3893 #endif
3894
3895 #ifdef CONFIG_PREEMPT
3896 /*
3897 * this is the entry point to schedule() from in-kernel preemption
3898 * off of preempt_enable. Kernel preemptions off return from interrupt
3899 * occur there and call schedule directly.
3900 */
3901 asmlinkage void __sched notrace preempt_schedule(void)
3902 {
3903 struct thread_info *ti = current_thread_info();
3904
3905 /*
3906 * If there is a non-zero preempt_count or interrupts are disabled,
3907 * we do not want to preempt the current task. Just return..
3908 */
3909 if (likely(ti->preempt_count || irqs_disabled()))
3910 return;
3911
3912 do {
3913 add_preempt_count_notrace(PREEMPT_ACTIVE);
3914 schedule();
3915 sub_preempt_count_notrace(PREEMPT_ACTIVE);
3916
3917 /*
3918 * Check again in case we missed a preemption opportunity
3919 * between schedule and now.
3920 */
3921 barrier();
3922 } while (need_resched());
3923 }
3924 EXPORT_SYMBOL(preempt_schedule);
3925
3926 /*
3927 * this is the entry point to schedule() from kernel preemption
3928 * off of irq context.
3929 * Note, that this is called and return with irqs disabled. This will
3930 * protect us against recursive calling from irq.
3931 */
3932 asmlinkage void __sched preempt_schedule_irq(void)
3933 {
3934 struct thread_info *ti = current_thread_info();
3935
3936 /* Catch callers which need to be fixed */
3937 BUG_ON(ti->preempt_count || !irqs_disabled());
3938
3939 do {
3940 add_preempt_count(PREEMPT_ACTIVE);
3941 local_irq_enable();
3942 schedule();
3943 local_irq_disable();
3944 sub_preempt_count(PREEMPT_ACTIVE);
3945
3946 /*
3947 * Check again in case we missed a preemption opportunity
3948 * between schedule and now.
3949 */
3950 barrier();
3951 } while (need_resched());
3952 }
3953
3954 #endif /* CONFIG_PREEMPT */
3955
3956 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3957 void *key)
3958 {
3959 return try_to_wake_up(curr->private, mode, wake_flags);
3960 }
3961 EXPORT_SYMBOL(default_wake_function);
3962
3963 /*
3964 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3965 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3966 * number) then we wake all the non-exclusive tasks and one exclusive task.
3967 *
3968 * There are circumstances in which we can try to wake a task which has already
3969 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3970 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3971 */
3972 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3973 int nr_exclusive, int wake_flags, void *key)
3974 {
3975 wait_queue_t *curr, *next;
3976
3977 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3978 unsigned flags = curr->flags;
3979
3980 if (curr->func(curr, mode, wake_flags, key) &&
3981 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3982 break;
3983 }
3984 }
3985
3986 /**
3987 * __wake_up - wake up threads blocked on a waitqueue.
3988 * @q: the waitqueue
3989 * @mode: which threads
3990 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3991 * @key: is directly passed to the wakeup function
3992 *
3993 * It may be assumed that this function implies a write memory barrier before
3994 * changing the task state if and only if any tasks are woken up.
3995 */
3996 void __wake_up(wait_queue_head_t *q, unsigned int mode,
3997 int nr_exclusive, void *key)
3998 {
3999 unsigned long flags;
4000
4001 spin_lock_irqsave(&q->lock, flags);
4002 __wake_up_common(q, mode, nr_exclusive, 0, key);
4003 spin_unlock_irqrestore(&q->lock, flags);
4004 }
4005 EXPORT_SYMBOL(__wake_up);
4006
4007 /*
4008 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4009 */
4010 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4011 {
4012 __wake_up_common(q, mode, 1, 0, NULL);
4013 }
4014 EXPORT_SYMBOL_GPL(__wake_up_locked);
4015
4016 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4017 {
4018 __wake_up_common(q, mode, 1, 0, key);
4019 }
4020
4021 /**
4022 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
4023 * @q: the waitqueue
4024 * @mode: which threads
4025 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4026 * @key: opaque value to be passed to wakeup targets
4027 *
4028 * The sync wakeup differs that the waker knows that it will schedule
4029 * away soon, so while the target thread will be woken up, it will not
4030 * be migrated to another CPU - ie. the two threads are 'synchronized'
4031 * with each other. This can prevent needless bouncing between CPUs.
4032 *
4033 * On UP it can prevent extra preemption.
4034 *
4035 * It may be assumed that this function implies a write memory barrier before
4036 * changing the task state if and only if any tasks are woken up.
4037 */
4038 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4039 int nr_exclusive, void *key)
4040 {
4041 unsigned long flags;
4042 int wake_flags = WF_SYNC;
4043
4044 if (unlikely(!q))
4045 return;
4046
4047 if (unlikely(!nr_exclusive))
4048 wake_flags = 0;
4049
4050 spin_lock_irqsave(&q->lock, flags);
4051 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
4052 spin_unlock_irqrestore(&q->lock, flags);
4053 }
4054 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4055
4056 /*
4057 * __wake_up_sync - see __wake_up_sync_key()
4058 */
4059 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4060 {
4061 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4062 }
4063 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4064
4065 /**
4066 * complete: - signals a single thread waiting on this completion
4067 * @x: holds the state of this particular completion
4068 *
4069 * This will wake up a single thread waiting on this completion. Threads will be
4070 * awakened in the same order in which they were queued.
4071 *
4072 * See also complete_all(), wait_for_completion() and related routines.
4073 *
4074 * It may be assumed that this function implies a write memory barrier before
4075 * changing the task state if and only if any tasks are woken up.
4076 */
4077 void complete(struct completion *x)
4078 {
4079 unsigned long flags;
4080
4081 spin_lock_irqsave(&x->wait.lock, flags);
4082 x->done++;
4083 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4084 spin_unlock_irqrestore(&x->wait.lock, flags);
4085 }
4086 EXPORT_SYMBOL(complete);
4087
4088 /**
4089 * complete_all: - signals all threads waiting on this completion
4090 * @x: holds the state of this particular completion
4091 *
4092 * This will wake up all threads waiting on this particular completion event.
4093 *
4094 * It may be assumed that this function implies a write memory barrier before
4095 * changing the task state if and only if any tasks are woken up.
4096 */
4097 void complete_all(struct completion *x)
4098 {
4099 unsigned long flags;
4100
4101 spin_lock_irqsave(&x->wait.lock, flags);
4102 x->done += UINT_MAX/2;
4103 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4104 spin_unlock_irqrestore(&x->wait.lock, flags);
4105 }
4106 EXPORT_SYMBOL(complete_all);
4107
4108 static inline long __sched
4109 do_wait_for_common(struct completion *x, long timeout, int state)
4110 {
4111 if (!x->done) {
4112 DECLARE_WAITQUEUE(wait, current);
4113
4114 __add_wait_queue_tail_exclusive(&x->wait, &wait);
4115 do {
4116 if (signal_pending_state(state, current)) {
4117 timeout = -ERESTARTSYS;
4118 break;
4119 }
4120 __set_current_state(state);
4121 spin_unlock_irq(&x->wait.lock);
4122 timeout = schedule_timeout(timeout);
4123 spin_lock_irq(&x->wait.lock);
4124 } while (!x->done && timeout);
4125 __remove_wait_queue(&x->wait, &wait);
4126 if (!x->done)
4127 return timeout;
4128 }
4129 x->done--;
4130 return timeout ?: 1;
4131 }
4132
4133 static long __sched
4134 wait_for_common(struct completion *x, long timeout, int state)
4135 {
4136 might_sleep();
4137
4138 spin_lock_irq(&x->wait.lock);
4139 timeout = do_wait_for_common(x, timeout, state);
4140 spin_unlock_irq(&x->wait.lock);
4141 return timeout;
4142 }
4143
4144 /**
4145 * wait_for_completion: - waits for completion of a task
4146 * @x: holds the state of this particular completion
4147 *
4148 * This waits to be signaled for completion of a specific task. It is NOT
4149 * interruptible and there is no timeout.
4150 *
4151 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4152 * and interrupt capability. Also see complete().
4153 */
4154 void __sched wait_for_completion(struct completion *x)
4155 {
4156 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4157 }
4158 EXPORT_SYMBOL(wait_for_completion);
4159
4160 /**
4161 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4162 * @x: holds the state of this particular completion
4163 * @timeout: timeout value in jiffies
4164 *
4165 * This waits for either a completion of a specific task to be signaled or for a
4166 * specified timeout to expire. The timeout is in jiffies. It is not
4167 * interruptible.
4168 */
4169 unsigned long __sched
4170 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4171 {
4172 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4173 }
4174 EXPORT_SYMBOL(wait_for_completion_timeout);
4175
4176 /**
4177 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4178 * @x: holds the state of this particular completion
4179 *
4180 * This waits for completion of a specific task to be signaled. It is
4181 * interruptible.
4182 */
4183 int __sched wait_for_completion_interruptible(struct completion *x)
4184 {
4185 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4186 if (t == -ERESTARTSYS)
4187 return t;
4188 return 0;
4189 }
4190 EXPORT_SYMBOL(wait_for_completion_interruptible);
4191
4192 /**
4193 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4194 * @x: holds the state of this particular completion
4195 * @timeout: timeout value in jiffies
4196 *
4197 * This waits for either a completion of a specific task to be signaled or for a
4198 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4199 */
4200 unsigned long __sched
4201 wait_for_completion_interruptible_timeout(struct completion *x,
4202 unsigned long timeout)
4203 {
4204 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4205 }
4206 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4207
4208 /**
4209 * wait_for_completion_killable: - waits for completion of a task (killable)
4210 * @x: holds the state of this particular completion
4211 *
4212 * This waits to be signaled for completion of a specific task. It can be
4213 * interrupted by a kill signal.
4214 */
4215 int __sched wait_for_completion_killable(struct completion *x)
4216 {
4217 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4218 if (t == -ERESTARTSYS)
4219 return t;
4220 return 0;
4221 }
4222 EXPORT_SYMBOL(wait_for_completion_killable);
4223
4224 /**
4225 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4226 * @x: holds the state of this particular completion
4227 * @timeout: timeout value in jiffies
4228 *
4229 * This waits for either a completion of a specific task to be
4230 * signaled or for a specified timeout to expire. It can be
4231 * interrupted by a kill signal. The timeout is in jiffies.
4232 */
4233 unsigned long __sched
4234 wait_for_completion_killable_timeout(struct completion *x,
4235 unsigned long timeout)
4236 {
4237 return wait_for_common(x, timeout, TASK_KILLABLE);
4238 }
4239 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4240
4241 /**
4242 * try_wait_for_completion - try to decrement a completion without blocking
4243 * @x: completion structure
4244 *
4245 * Returns: 0 if a decrement cannot be done without blocking
4246 * 1 if a decrement succeeded.
4247 *
4248 * If a completion is being used as a counting completion,
4249 * attempt to decrement the counter without blocking. This
4250 * enables us to avoid waiting if the resource the completion
4251 * is protecting is not available.
4252 */
4253 bool try_wait_for_completion(struct completion *x)
4254 {
4255 unsigned long flags;
4256 int ret = 1;
4257
4258 spin_lock_irqsave(&x->wait.lock, flags);
4259 if (!x->done)
4260 ret = 0;
4261 else
4262 x->done--;
4263 spin_unlock_irqrestore(&x->wait.lock, flags);
4264 return ret;
4265 }
4266 EXPORT_SYMBOL(try_wait_for_completion);
4267
4268 /**
4269 * completion_done - Test to see if a completion has any waiters
4270 * @x: completion structure
4271 *
4272 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4273 * 1 if there are no waiters.
4274 *
4275 */
4276 bool completion_done(struct completion *x)
4277 {
4278 unsigned long flags;
4279 int ret = 1;
4280
4281 spin_lock_irqsave(&x->wait.lock, flags);
4282 if (!x->done)
4283 ret = 0;
4284 spin_unlock_irqrestore(&x->wait.lock, flags);
4285 return ret;
4286 }
4287 EXPORT_SYMBOL(completion_done);
4288
4289 static long __sched
4290 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4291 {
4292 unsigned long flags;
4293 wait_queue_t wait;
4294
4295 init_waitqueue_entry(&wait, current);
4296
4297 __set_current_state(state);
4298
4299 spin_lock_irqsave(&q->lock, flags);
4300 __add_wait_queue(q, &wait);
4301 spin_unlock(&q->lock);
4302 timeout = schedule_timeout(timeout);
4303 spin_lock_irq(&q->lock);
4304 __remove_wait_queue(q, &wait);
4305 spin_unlock_irqrestore(&q->lock, flags);
4306
4307 return timeout;
4308 }
4309
4310 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4311 {
4312 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4313 }
4314 EXPORT_SYMBOL(interruptible_sleep_on);
4315
4316 long __sched
4317 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4318 {
4319 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4320 }
4321 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4322
4323 void __sched sleep_on(wait_queue_head_t *q)
4324 {
4325 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4326 }
4327 EXPORT_SYMBOL(sleep_on);
4328
4329 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4330 {
4331 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4332 }
4333 EXPORT_SYMBOL(sleep_on_timeout);
4334
4335 #ifdef CONFIG_RT_MUTEXES
4336
4337 /*
4338 * rt_mutex_setprio - set the current priority of a task
4339 * @p: task
4340 * @prio: prio value (kernel-internal form)
4341 *
4342 * This function changes the 'effective' priority of a task. It does
4343 * not touch ->normal_prio like __setscheduler().
4344 *
4345 * Used by the rt_mutex code to implement priority inheritance logic.
4346 */
4347 void rt_mutex_setprio(struct task_struct *p, int prio)
4348 {
4349 unsigned long flags;
4350 int oldprio, on_rq, running;
4351 struct rq *rq;
4352 const struct sched_class *prev_class;
4353
4354 BUG_ON(prio < 0 || prio > MAX_PRIO);
4355
4356 rq = task_rq_lock(p, &flags);
4357
4358 oldprio = p->prio;
4359 prev_class = p->sched_class;
4360 on_rq = p->se.on_rq;
4361 running = task_current(rq, p);
4362 if (on_rq)
4363 dequeue_task(rq, p, 0);
4364 if (running)
4365 p->sched_class->put_prev_task(rq, p);
4366
4367 if (rt_prio(prio))
4368 p->sched_class = &rt_sched_class;
4369 else
4370 p->sched_class = &fair_sched_class;
4371
4372 p->prio = prio;
4373
4374 if (running)
4375 p->sched_class->set_curr_task(rq);
4376 if (on_rq) {
4377 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
4378
4379 check_class_changed(rq, p, prev_class, oldprio, running);
4380 }
4381 task_rq_unlock(rq, &flags);
4382 }
4383
4384 #endif
4385
4386 void set_user_nice(struct task_struct *p, long nice)
4387 {
4388 int old_prio, delta, on_rq;
4389 unsigned long flags;
4390 struct rq *rq;
4391
4392 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4393 return;
4394 /*
4395 * We have to be careful, if called from sys_setpriority(),
4396 * the task might be in the middle of scheduling on another CPU.
4397 */
4398 rq = task_rq_lock(p, &flags);
4399 /*
4400 * The RT priorities are set via sched_setscheduler(), but we still
4401 * allow the 'normal' nice value to be set - but as expected
4402 * it wont have any effect on scheduling until the task is
4403 * SCHED_FIFO/SCHED_RR:
4404 */
4405 if (task_has_rt_policy(p)) {
4406 p->static_prio = NICE_TO_PRIO(nice);
4407 goto out_unlock;
4408 }
4409 on_rq = p->se.on_rq;
4410 if (on_rq)
4411 dequeue_task(rq, p, 0);
4412
4413 p->static_prio = NICE_TO_PRIO(nice);
4414 set_load_weight(p);
4415 old_prio = p->prio;
4416 p->prio = effective_prio(p);
4417 delta = p->prio - old_prio;
4418
4419 if (on_rq) {
4420 enqueue_task(rq, p, 0);
4421 /*
4422 * If the task increased its priority or is running and
4423 * lowered its priority, then reschedule its CPU:
4424 */
4425 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4426 resched_task(rq->curr);
4427 }
4428 out_unlock:
4429 task_rq_unlock(rq, &flags);
4430 }
4431 EXPORT_SYMBOL(set_user_nice);
4432
4433 /*
4434 * can_nice - check if a task can reduce its nice value
4435 * @p: task
4436 * @nice: nice value
4437 */
4438 int can_nice(const struct task_struct *p, const int nice)
4439 {
4440 /* convert nice value [19,-20] to rlimit style value [1,40] */
4441 int nice_rlim = 20 - nice;
4442
4443 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4444 capable(CAP_SYS_NICE));
4445 }
4446
4447 #ifdef __ARCH_WANT_SYS_NICE
4448
4449 /*
4450 * sys_nice - change the priority of the current process.
4451 * @increment: priority increment
4452 *
4453 * sys_setpriority is a more generic, but much slower function that
4454 * does similar things.
4455 */
4456 SYSCALL_DEFINE1(nice, int, increment)
4457 {
4458 long nice, retval;
4459
4460 /*
4461 * Setpriority might change our priority at the same moment.
4462 * We don't have to worry. Conceptually one call occurs first
4463 * and we have a single winner.
4464 */
4465 if (increment < -40)
4466 increment = -40;
4467 if (increment > 40)
4468 increment = 40;
4469
4470 nice = TASK_NICE(current) + increment;
4471 if (nice < -20)
4472 nice = -20;
4473 if (nice > 19)
4474 nice = 19;
4475
4476 if (increment < 0 && !can_nice(current, nice))
4477 return -EPERM;
4478
4479 retval = security_task_setnice(current, nice);
4480 if (retval)
4481 return retval;
4482
4483 set_user_nice(current, nice);
4484 return 0;
4485 }
4486
4487 #endif
4488
4489 /**
4490 * task_prio - return the priority value of a given task.
4491 * @p: the task in question.
4492 *
4493 * This is the priority value as seen by users in /proc.
4494 * RT tasks are offset by -200. Normal tasks are centered
4495 * around 0, value goes from -16 to +15.
4496 */
4497 int task_prio(const struct task_struct *p)
4498 {
4499 return p->prio - MAX_RT_PRIO;
4500 }
4501
4502 /**
4503 * task_nice - return the nice value of a given task.
4504 * @p: the task in question.
4505 */
4506 int task_nice(const struct task_struct *p)
4507 {
4508 return TASK_NICE(p);
4509 }
4510 EXPORT_SYMBOL(task_nice);
4511
4512 /**
4513 * idle_cpu - is a given cpu idle currently?
4514 * @cpu: the processor in question.
4515 */
4516 int idle_cpu(int cpu)
4517 {
4518 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4519 }
4520
4521 /**
4522 * idle_task - return the idle task for a given cpu.
4523 * @cpu: the processor in question.
4524 */
4525 struct task_struct *idle_task(int cpu)
4526 {
4527 return cpu_rq(cpu)->idle;
4528 }
4529
4530 /**
4531 * find_process_by_pid - find a process with a matching PID value.
4532 * @pid: the pid in question.
4533 */
4534 static struct task_struct *find_process_by_pid(pid_t pid)
4535 {
4536 return pid ? find_task_by_vpid(pid) : current;
4537 }
4538
4539 /* Actually do priority change: must hold rq lock. */
4540 static void
4541 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4542 {
4543 BUG_ON(p->se.on_rq);
4544
4545 p->policy = policy;
4546 p->rt_priority = prio;
4547 p->normal_prio = normal_prio(p);
4548 /* we are holding p->pi_lock already */
4549 p->prio = rt_mutex_getprio(p);
4550 if (rt_prio(p->prio))
4551 p->sched_class = &rt_sched_class;
4552 else
4553 p->sched_class = &fair_sched_class;
4554 set_load_weight(p);
4555 }
4556
4557 /*
4558 * check the target process has a UID that matches the current process's
4559 */
4560 static bool check_same_owner(struct task_struct *p)
4561 {
4562 const struct cred *cred = current_cred(), *pcred;
4563 bool match;
4564
4565 rcu_read_lock();
4566 pcred = __task_cred(p);
4567 match = (cred->euid == pcred->euid ||
4568 cred->euid == pcred->uid);
4569 rcu_read_unlock();
4570 return match;
4571 }
4572
4573 static int __sched_setscheduler(struct task_struct *p, int policy,
4574 struct sched_param *param, bool user)
4575 {
4576 int retval, oldprio, oldpolicy = -1, on_rq, running;
4577 unsigned long flags;
4578 const struct sched_class *prev_class;
4579 struct rq *rq;
4580 int reset_on_fork;
4581
4582 /* may grab non-irq protected spin_locks */
4583 BUG_ON(in_interrupt());
4584 recheck:
4585 /* double check policy once rq lock held */
4586 if (policy < 0) {
4587 reset_on_fork = p->sched_reset_on_fork;
4588 policy = oldpolicy = p->policy;
4589 } else {
4590 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4591 policy &= ~SCHED_RESET_ON_FORK;
4592
4593 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4594 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4595 policy != SCHED_IDLE)
4596 return -EINVAL;
4597 }
4598
4599 /*
4600 * Valid priorities for SCHED_FIFO and SCHED_RR are
4601 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4602 * SCHED_BATCH and SCHED_IDLE is 0.
4603 */
4604 if (param->sched_priority < 0 ||
4605 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4606 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4607 return -EINVAL;
4608 if (rt_policy(policy) != (param->sched_priority != 0))
4609 return -EINVAL;
4610
4611 /*
4612 * Allow unprivileged RT tasks to decrease priority:
4613 */
4614 if (user && !capable(CAP_SYS_NICE)) {
4615 if (rt_policy(policy)) {
4616 unsigned long rlim_rtprio =
4617 task_rlimit(p, RLIMIT_RTPRIO);
4618
4619 /* can't set/change the rt policy */
4620 if (policy != p->policy && !rlim_rtprio)
4621 return -EPERM;
4622
4623 /* can't increase priority */
4624 if (param->sched_priority > p->rt_priority &&
4625 param->sched_priority > rlim_rtprio)
4626 return -EPERM;
4627 }
4628 /*
4629 * Like positive nice levels, dont allow tasks to
4630 * move out of SCHED_IDLE either:
4631 */
4632 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4633 return -EPERM;
4634
4635 /* can't change other user's priorities */
4636 if (!check_same_owner(p))
4637 return -EPERM;
4638
4639 /* Normal users shall not reset the sched_reset_on_fork flag */
4640 if (p->sched_reset_on_fork && !reset_on_fork)
4641 return -EPERM;
4642 }
4643
4644 if (user) {
4645 retval = security_task_setscheduler(p, policy, param);
4646 if (retval)
4647 return retval;
4648 }
4649
4650 /*
4651 * make sure no PI-waiters arrive (or leave) while we are
4652 * changing the priority of the task:
4653 */
4654 raw_spin_lock_irqsave(&p->pi_lock, flags);
4655 /*
4656 * To be able to change p->policy safely, the apropriate
4657 * runqueue lock must be held.
4658 */
4659 rq = __task_rq_lock(p);
4660
4661 #ifdef CONFIG_RT_GROUP_SCHED
4662 if (user) {
4663 /*
4664 * Do not allow realtime tasks into groups that have no runtime
4665 * assigned.
4666 */
4667 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4668 task_group(p)->rt_bandwidth.rt_runtime == 0) {
4669 __task_rq_unlock(rq);
4670 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4671 return -EPERM;
4672 }
4673 }
4674 #endif
4675
4676 /* recheck policy now with rq lock held */
4677 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4678 policy = oldpolicy = -1;
4679 __task_rq_unlock(rq);
4680 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4681 goto recheck;
4682 }
4683 on_rq = p->se.on_rq;
4684 running = task_current(rq, p);
4685 if (on_rq)
4686 deactivate_task(rq, p, 0);
4687 if (running)
4688 p->sched_class->put_prev_task(rq, p);
4689
4690 p->sched_reset_on_fork = reset_on_fork;
4691
4692 oldprio = p->prio;
4693 prev_class = p->sched_class;
4694 __setscheduler(rq, p, policy, param->sched_priority);
4695
4696 if (running)
4697 p->sched_class->set_curr_task(rq);
4698 if (on_rq) {
4699 activate_task(rq, p, 0);
4700
4701 check_class_changed(rq, p, prev_class, oldprio, running);
4702 }
4703 __task_rq_unlock(rq);
4704 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4705
4706 rt_mutex_adjust_pi(p);
4707
4708 return 0;
4709 }
4710
4711 /**
4712 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4713 * @p: the task in question.
4714 * @policy: new policy.
4715 * @param: structure containing the new RT priority.
4716 *
4717 * NOTE that the task may be already dead.
4718 */
4719 int sched_setscheduler(struct task_struct *p, int policy,
4720 struct sched_param *param)
4721 {
4722 return __sched_setscheduler(p, policy, param, true);
4723 }
4724 EXPORT_SYMBOL_GPL(sched_setscheduler);
4725
4726 /**
4727 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4728 * @p: the task in question.
4729 * @policy: new policy.
4730 * @param: structure containing the new RT priority.
4731 *
4732 * Just like sched_setscheduler, only don't bother checking if the
4733 * current context has permission. For example, this is needed in
4734 * stop_machine(): we create temporary high priority worker threads,
4735 * but our caller might not have that capability.
4736 */
4737 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4738 struct sched_param *param)
4739 {
4740 return __sched_setscheduler(p, policy, param, false);
4741 }
4742
4743 static int
4744 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4745 {
4746 struct sched_param lparam;
4747 struct task_struct *p;
4748 int retval;
4749
4750 if (!param || pid < 0)
4751 return -EINVAL;
4752 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4753 return -EFAULT;
4754
4755 rcu_read_lock();
4756 retval = -ESRCH;
4757 p = find_process_by_pid(pid);
4758 if (p != NULL)
4759 retval = sched_setscheduler(p, policy, &lparam);
4760 rcu_read_unlock();
4761
4762 return retval;
4763 }
4764
4765 /**
4766 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4767 * @pid: the pid in question.
4768 * @policy: new policy.
4769 * @param: structure containing the new RT priority.
4770 */
4771 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4772 struct sched_param __user *, param)
4773 {
4774 /* negative values for policy are not valid */
4775 if (policy < 0)
4776 return -EINVAL;
4777
4778 return do_sched_setscheduler(pid, policy, param);
4779 }
4780
4781 /**
4782 * sys_sched_setparam - set/change the RT priority of a thread
4783 * @pid: the pid in question.
4784 * @param: structure containing the new RT priority.
4785 */
4786 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4787 {
4788 return do_sched_setscheduler(pid, -1, param);
4789 }
4790
4791 /**
4792 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4793 * @pid: the pid in question.
4794 */
4795 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4796 {
4797 struct task_struct *p;
4798 int retval;
4799
4800 if (pid < 0)
4801 return -EINVAL;
4802
4803 retval = -ESRCH;
4804 rcu_read_lock();
4805 p = find_process_by_pid(pid);
4806 if (p) {
4807 retval = security_task_getscheduler(p);
4808 if (!retval)
4809 retval = p->policy
4810 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4811 }
4812 rcu_read_unlock();
4813 return retval;
4814 }
4815
4816 /**
4817 * sys_sched_getparam - get the RT priority of a thread
4818 * @pid: the pid in question.
4819 * @param: structure containing the RT priority.
4820 */
4821 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4822 {
4823 struct sched_param lp;
4824 struct task_struct *p;
4825 int retval;
4826
4827 if (!param || pid < 0)
4828 return -EINVAL;
4829
4830 rcu_read_lock();
4831 p = find_process_by_pid(pid);
4832 retval = -ESRCH;
4833 if (!p)
4834 goto out_unlock;
4835
4836 retval = security_task_getscheduler(p);
4837 if (retval)
4838 goto out_unlock;
4839
4840 lp.sched_priority = p->rt_priority;
4841 rcu_read_unlock();
4842
4843 /*
4844 * This one might sleep, we cannot do it with a spinlock held ...
4845 */
4846 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4847
4848 return retval;
4849
4850 out_unlock:
4851 rcu_read_unlock();
4852 return retval;
4853 }
4854
4855 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4856 {
4857 cpumask_var_t cpus_allowed, new_mask;
4858 struct task_struct *p;
4859 int retval;
4860
4861 get_online_cpus();
4862 rcu_read_lock();
4863
4864 p = find_process_by_pid(pid);
4865 if (!p) {
4866 rcu_read_unlock();
4867 put_online_cpus();
4868 return -ESRCH;
4869 }
4870
4871 /* Prevent p going away */
4872 get_task_struct(p);
4873 rcu_read_unlock();
4874
4875 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4876 retval = -ENOMEM;
4877 goto out_put_task;
4878 }
4879 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4880 retval = -ENOMEM;
4881 goto out_free_cpus_allowed;
4882 }
4883 retval = -EPERM;
4884 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
4885 goto out_unlock;
4886
4887 retval = security_task_setscheduler(p, 0, NULL);
4888 if (retval)
4889 goto out_unlock;
4890
4891 cpuset_cpus_allowed(p, cpus_allowed);
4892 cpumask_and(new_mask, in_mask, cpus_allowed);
4893 again:
4894 retval = set_cpus_allowed_ptr(p, new_mask);
4895
4896 if (!retval) {
4897 cpuset_cpus_allowed(p, cpus_allowed);
4898 if (!cpumask_subset(new_mask, cpus_allowed)) {
4899 /*
4900 * We must have raced with a concurrent cpuset
4901 * update. Just reset the cpus_allowed to the
4902 * cpuset's cpus_allowed
4903 */
4904 cpumask_copy(new_mask, cpus_allowed);
4905 goto again;
4906 }
4907 }
4908 out_unlock:
4909 free_cpumask_var(new_mask);
4910 out_free_cpus_allowed:
4911 free_cpumask_var(cpus_allowed);
4912 out_put_task:
4913 put_task_struct(p);
4914 put_online_cpus();
4915 return retval;
4916 }
4917
4918 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4919 struct cpumask *new_mask)
4920 {
4921 if (len < cpumask_size())
4922 cpumask_clear(new_mask);
4923 else if (len > cpumask_size())
4924 len = cpumask_size();
4925
4926 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4927 }
4928
4929 /**
4930 * sys_sched_setaffinity - set the cpu affinity of a process
4931 * @pid: pid of the process
4932 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4933 * @user_mask_ptr: user-space pointer to the new cpu mask
4934 */
4935 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4936 unsigned long __user *, user_mask_ptr)
4937 {
4938 cpumask_var_t new_mask;
4939 int retval;
4940
4941 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4942 return -ENOMEM;
4943
4944 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4945 if (retval == 0)
4946 retval = sched_setaffinity(pid, new_mask);
4947 free_cpumask_var(new_mask);
4948 return retval;
4949 }
4950
4951 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4952 {
4953 struct task_struct *p;
4954 unsigned long flags;
4955 struct rq *rq;
4956 int retval;
4957
4958 get_online_cpus();
4959 rcu_read_lock();
4960
4961 retval = -ESRCH;
4962 p = find_process_by_pid(pid);
4963 if (!p)
4964 goto out_unlock;
4965
4966 retval = security_task_getscheduler(p);
4967 if (retval)
4968 goto out_unlock;
4969
4970 rq = task_rq_lock(p, &flags);
4971 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4972 task_rq_unlock(rq, &flags);
4973
4974 out_unlock:
4975 rcu_read_unlock();
4976 put_online_cpus();
4977
4978 return retval;
4979 }
4980
4981 /**
4982 * sys_sched_getaffinity - get the cpu affinity of a process
4983 * @pid: pid of the process
4984 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4985 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4986 */
4987 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4988 unsigned long __user *, user_mask_ptr)
4989 {
4990 int ret;
4991 cpumask_var_t mask;
4992
4993 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4994 return -EINVAL;
4995 if (len & (sizeof(unsigned long)-1))
4996 return -EINVAL;
4997
4998 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4999 return -ENOMEM;
5000
5001 ret = sched_getaffinity(pid, mask);
5002 if (ret == 0) {
5003 size_t retlen = min_t(size_t, len, cpumask_size());
5004
5005 if (copy_to_user(user_mask_ptr, mask, retlen))
5006 ret = -EFAULT;
5007 else
5008 ret = retlen;
5009 }
5010 free_cpumask_var(mask);
5011
5012 return ret;
5013 }
5014
5015 /**
5016 * sys_sched_yield - yield the current processor to other threads.
5017 *
5018 * This function yields the current CPU to other tasks. If there are no
5019 * other threads running on this CPU then this function will return.
5020 */
5021 SYSCALL_DEFINE0(sched_yield)
5022 {
5023 struct rq *rq = this_rq_lock();
5024
5025 schedstat_inc(rq, yld_count);
5026 current->sched_class->yield_task(rq);
5027
5028 /*
5029 * Since we are going to call schedule() anyway, there's
5030 * no need to preempt or enable interrupts:
5031 */
5032 __release(rq->lock);
5033 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5034 do_raw_spin_unlock(&rq->lock);
5035 preempt_enable_no_resched();
5036
5037 schedule();
5038
5039 return 0;
5040 }
5041
5042 static inline int should_resched(void)
5043 {
5044 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5045 }
5046
5047 static void __cond_resched(void)
5048 {
5049 add_preempt_count(PREEMPT_ACTIVE);
5050 schedule();
5051 sub_preempt_count(PREEMPT_ACTIVE);
5052 }
5053
5054 int __sched _cond_resched(void)
5055 {
5056 if (should_resched()) {
5057 __cond_resched();
5058 return 1;
5059 }
5060 return 0;
5061 }
5062 EXPORT_SYMBOL(_cond_resched);
5063
5064 /*
5065 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5066 * call schedule, and on return reacquire the lock.
5067 *
5068 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5069 * operations here to prevent schedule() from being called twice (once via
5070 * spin_unlock(), once by hand).
5071 */
5072 int __cond_resched_lock(spinlock_t *lock)
5073 {
5074 int resched = should_resched();
5075 int ret = 0;
5076
5077 lockdep_assert_held(lock);
5078
5079 if (spin_needbreak(lock) || resched) {
5080 spin_unlock(lock);
5081 if (resched)
5082 __cond_resched();
5083 else
5084 cpu_relax();
5085 ret = 1;
5086 spin_lock(lock);
5087 }
5088 return ret;
5089 }
5090 EXPORT_SYMBOL(__cond_resched_lock);
5091
5092 int __sched __cond_resched_softirq(void)
5093 {
5094 BUG_ON(!in_softirq());
5095
5096 if (should_resched()) {
5097 local_bh_enable();
5098 __cond_resched();
5099 local_bh_disable();
5100 return 1;
5101 }
5102 return 0;
5103 }
5104 EXPORT_SYMBOL(__cond_resched_softirq);
5105
5106 /**
5107 * yield - yield the current processor to other threads.
5108 *
5109 * This is a shortcut for kernel-space yielding - it marks the
5110 * thread runnable and calls sys_sched_yield().
5111 */
5112 void __sched yield(void)
5113 {
5114 set_current_state(TASK_RUNNING);
5115 sys_sched_yield();
5116 }
5117 EXPORT_SYMBOL(yield);
5118
5119 /*
5120 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5121 * that process accounting knows that this is a task in IO wait state.
5122 */
5123 void __sched io_schedule(void)
5124 {
5125 struct rq *rq = raw_rq();
5126
5127 delayacct_blkio_start();
5128 atomic_inc(&rq->nr_iowait);
5129 current->in_iowait = 1;
5130 schedule();
5131 current->in_iowait = 0;
5132 atomic_dec(&rq->nr_iowait);
5133 delayacct_blkio_end();
5134 }
5135 EXPORT_SYMBOL(io_schedule);
5136
5137 long __sched io_schedule_timeout(long timeout)
5138 {
5139 struct rq *rq = raw_rq();
5140 long ret;
5141
5142 delayacct_blkio_start();
5143 atomic_inc(&rq->nr_iowait);
5144 current->in_iowait = 1;
5145 ret = schedule_timeout(timeout);
5146 current->in_iowait = 0;
5147 atomic_dec(&rq->nr_iowait);
5148 delayacct_blkio_end();
5149 return ret;
5150 }
5151
5152 /**
5153 * sys_sched_get_priority_max - return maximum RT priority.
5154 * @policy: scheduling class.
5155 *
5156 * this syscall returns the maximum rt_priority that can be used
5157 * by a given scheduling class.
5158 */
5159 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5160 {
5161 int ret = -EINVAL;
5162
5163 switch (policy) {
5164 case SCHED_FIFO:
5165 case SCHED_RR:
5166 ret = MAX_USER_RT_PRIO-1;
5167 break;
5168 case SCHED_NORMAL:
5169 case SCHED_BATCH:
5170 case SCHED_IDLE:
5171 ret = 0;
5172 break;
5173 }
5174 return ret;
5175 }
5176
5177 /**
5178 * sys_sched_get_priority_min - return minimum RT priority.
5179 * @policy: scheduling class.
5180 *
5181 * this syscall returns the minimum rt_priority that can be used
5182 * by a given scheduling class.
5183 */
5184 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5185 {
5186 int ret = -EINVAL;
5187
5188 switch (policy) {
5189 case SCHED_FIFO:
5190 case SCHED_RR:
5191 ret = 1;
5192 break;
5193 case SCHED_NORMAL:
5194 case SCHED_BATCH:
5195 case SCHED_IDLE:
5196 ret = 0;
5197 }
5198 return ret;
5199 }
5200
5201 /**
5202 * sys_sched_rr_get_interval - return the default timeslice of a process.
5203 * @pid: pid of the process.
5204 * @interval: userspace pointer to the timeslice value.
5205 *
5206 * this syscall writes the default timeslice value of a given process
5207 * into the user-space timespec buffer. A value of '0' means infinity.
5208 */
5209 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5210 struct timespec __user *, interval)
5211 {
5212 struct task_struct *p;
5213 unsigned int time_slice;
5214 unsigned long flags;
5215 struct rq *rq;
5216 int retval;
5217 struct timespec t;
5218
5219 if (pid < 0)
5220 return -EINVAL;
5221
5222 retval = -ESRCH;
5223 rcu_read_lock();
5224 p = find_process_by_pid(pid);
5225 if (!p)
5226 goto out_unlock;
5227
5228 retval = security_task_getscheduler(p);
5229 if (retval)
5230 goto out_unlock;
5231
5232 rq = task_rq_lock(p, &flags);
5233 time_slice = p->sched_class->get_rr_interval(rq, p);
5234 task_rq_unlock(rq, &flags);
5235
5236 rcu_read_unlock();
5237 jiffies_to_timespec(time_slice, &t);
5238 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5239 return retval;
5240
5241 out_unlock:
5242 rcu_read_unlock();
5243 return retval;
5244 }
5245
5246 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5247
5248 void sched_show_task(struct task_struct *p)
5249 {
5250 unsigned long free = 0;
5251 unsigned state;
5252
5253 state = p->state ? __ffs(p->state) + 1 : 0;
5254 printk(KERN_INFO "%-13.13s %c", p->comm,
5255 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5256 #if BITS_PER_LONG == 32
5257 if (state == TASK_RUNNING)
5258 printk(KERN_CONT " running ");
5259 else
5260 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5261 #else
5262 if (state == TASK_RUNNING)
5263 printk(KERN_CONT " running task ");
5264 else
5265 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5266 #endif
5267 #ifdef CONFIG_DEBUG_STACK_USAGE
5268 free = stack_not_used(p);
5269 #endif
5270 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5271 task_pid_nr(p), task_pid_nr(p->real_parent),
5272 (unsigned long)task_thread_info(p)->flags);
5273
5274 show_stack(p, NULL);
5275 }
5276
5277 void show_state_filter(unsigned long state_filter)
5278 {
5279 struct task_struct *g, *p;
5280
5281 #if BITS_PER_LONG == 32
5282 printk(KERN_INFO
5283 " task PC stack pid father\n");
5284 #else
5285 printk(KERN_INFO
5286 " task PC stack pid father\n");
5287 #endif
5288 read_lock(&tasklist_lock);
5289 do_each_thread(g, p) {
5290 /*
5291 * reset the NMI-timeout, listing all files on a slow
5292 * console might take alot of time:
5293 */
5294 touch_nmi_watchdog();
5295 if (!state_filter || (p->state & state_filter))
5296 sched_show_task(p);
5297 } while_each_thread(g, p);
5298
5299 touch_all_softlockup_watchdogs();
5300
5301 #ifdef CONFIG_SCHED_DEBUG
5302 sysrq_sched_debug_show();
5303 #endif
5304 read_unlock(&tasklist_lock);
5305 /*
5306 * Only show locks if all tasks are dumped:
5307 */
5308 if (!state_filter)
5309 debug_show_all_locks();
5310 }
5311
5312 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5313 {
5314 idle->sched_class = &idle_sched_class;
5315 }
5316
5317 /**
5318 * init_idle - set up an idle thread for a given CPU
5319 * @idle: task in question
5320 * @cpu: cpu the idle task belongs to
5321 *
5322 * NOTE: this function does not set the idle thread's NEED_RESCHED
5323 * flag, to make booting more robust.
5324 */
5325 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5326 {
5327 struct rq *rq = cpu_rq(cpu);
5328 unsigned long flags;
5329
5330 raw_spin_lock_irqsave(&rq->lock, flags);
5331
5332 __sched_fork(idle);
5333 idle->state = TASK_RUNNING;
5334 idle->se.exec_start = sched_clock();
5335
5336 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
5337 __set_task_cpu(idle, cpu);
5338
5339 rq->curr = rq->idle = idle;
5340 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5341 idle->oncpu = 1;
5342 #endif
5343 raw_spin_unlock_irqrestore(&rq->lock, flags);
5344
5345 /* Set the preempt count _outside_ the spinlocks! */
5346 #if defined(CONFIG_PREEMPT)
5347 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5348 #else
5349 task_thread_info(idle)->preempt_count = 0;
5350 #endif
5351 /*
5352 * The idle tasks have their own, simple scheduling class:
5353 */
5354 idle->sched_class = &idle_sched_class;
5355 ftrace_graph_init_task(idle);
5356 }
5357
5358 /*
5359 * In a system that switches off the HZ timer nohz_cpu_mask
5360 * indicates which cpus entered this state. This is used
5361 * in the rcu update to wait only for active cpus. For system
5362 * which do not switch off the HZ timer nohz_cpu_mask should
5363 * always be CPU_BITS_NONE.
5364 */
5365 cpumask_var_t nohz_cpu_mask;
5366
5367 /*
5368 * Increase the granularity value when there are more CPUs,
5369 * because with more CPUs the 'effective latency' as visible
5370 * to users decreases. But the relationship is not linear,
5371 * so pick a second-best guess by going with the log2 of the
5372 * number of CPUs.
5373 *
5374 * This idea comes from the SD scheduler of Con Kolivas:
5375 */
5376 static int get_update_sysctl_factor(void)
5377 {
5378 unsigned int cpus = min_t(int, num_online_cpus(), 8);
5379 unsigned int factor;
5380
5381 switch (sysctl_sched_tunable_scaling) {
5382 case SCHED_TUNABLESCALING_NONE:
5383 factor = 1;
5384 break;
5385 case SCHED_TUNABLESCALING_LINEAR:
5386 factor = cpus;
5387 break;
5388 case SCHED_TUNABLESCALING_LOG:
5389 default:
5390 factor = 1 + ilog2(cpus);
5391 break;
5392 }
5393
5394 return factor;
5395 }
5396
5397 static void update_sysctl(void)
5398 {
5399 unsigned int factor = get_update_sysctl_factor();
5400
5401 #define SET_SYSCTL(name) \
5402 (sysctl_##name = (factor) * normalized_sysctl_##name)
5403 SET_SYSCTL(sched_min_granularity);
5404 SET_SYSCTL(sched_latency);
5405 SET_SYSCTL(sched_wakeup_granularity);
5406 SET_SYSCTL(sched_shares_ratelimit);
5407 #undef SET_SYSCTL
5408 }
5409
5410 static inline void sched_init_granularity(void)
5411 {
5412 update_sysctl();
5413 }
5414
5415 #ifdef CONFIG_SMP
5416 /*
5417 * This is how migration works:
5418 *
5419 * 1) we invoke migration_cpu_stop() on the target CPU using
5420 * stop_one_cpu().
5421 * 2) stopper starts to run (implicitly forcing the migrated thread
5422 * off the CPU)
5423 * 3) it checks whether the migrated task is still in the wrong runqueue.
5424 * 4) if it's in the wrong runqueue then the migration thread removes
5425 * it and puts it into the right queue.
5426 * 5) stopper completes and stop_one_cpu() returns and the migration
5427 * is done.
5428 */
5429
5430 /*
5431 * Change a given task's CPU affinity. Migrate the thread to a
5432 * proper CPU and schedule it away if the CPU it's executing on
5433 * is removed from the allowed bitmask.
5434 *
5435 * NOTE: the caller must have a valid reference to the task, the
5436 * task must not exit() & deallocate itself prematurely. The
5437 * call is not atomic; no spinlocks may be held.
5438 */
5439 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
5440 {
5441 unsigned long flags;
5442 struct rq *rq;
5443 unsigned int dest_cpu;
5444 int ret = 0;
5445
5446 /*
5447 * Serialize against TASK_WAKING so that ttwu() and wunt() can
5448 * drop the rq->lock and still rely on ->cpus_allowed.
5449 */
5450 again:
5451 while (task_is_waking(p))
5452 cpu_relax();
5453 rq = task_rq_lock(p, &flags);
5454 if (task_is_waking(p)) {
5455 task_rq_unlock(rq, &flags);
5456 goto again;
5457 }
5458
5459 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
5460 ret = -EINVAL;
5461 goto out;
5462 }
5463
5464 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5465 !cpumask_equal(&p->cpus_allowed, new_mask))) {
5466 ret = -EINVAL;
5467 goto out;
5468 }
5469
5470 if (p->sched_class->set_cpus_allowed)
5471 p->sched_class->set_cpus_allowed(p, new_mask);
5472 else {
5473 cpumask_copy(&p->cpus_allowed, new_mask);
5474 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5475 }
5476
5477 /* Can the task run on the task's current CPU? If so, we're done */
5478 if (cpumask_test_cpu(task_cpu(p), new_mask))
5479 goto out;
5480
5481 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5482 if (migrate_task(p, dest_cpu)) {
5483 struct migration_arg arg = { p, dest_cpu };
5484 /* Need help from migration thread: drop lock and wait. */
5485 task_rq_unlock(rq, &flags);
5486 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
5487 tlb_migrate_finish(p->mm);
5488 return 0;
5489 }
5490 out:
5491 task_rq_unlock(rq, &flags);
5492
5493 return ret;
5494 }
5495 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5496
5497 /*
5498 * Move (not current) task off this cpu, onto dest cpu. We're doing
5499 * this because either it can't run here any more (set_cpus_allowed()
5500 * away from this CPU, or CPU going down), or because we're
5501 * attempting to rebalance this task on exec (sched_exec).
5502 *
5503 * So we race with normal scheduler movements, but that's OK, as long
5504 * as the task is no longer on this CPU.
5505 *
5506 * Returns non-zero if task was successfully migrated.
5507 */
5508 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5509 {
5510 struct rq *rq_dest, *rq_src;
5511 int ret = 0;
5512
5513 if (unlikely(!cpu_active(dest_cpu)))
5514 return ret;
5515
5516 rq_src = cpu_rq(src_cpu);
5517 rq_dest = cpu_rq(dest_cpu);
5518
5519 double_rq_lock(rq_src, rq_dest);
5520 /* Already moved. */
5521 if (task_cpu(p) != src_cpu)
5522 goto done;
5523 /* Affinity changed (again). */
5524 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
5525 goto fail;
5526
5527 /*
5528 * If we're not on a rq, the next wake-up will ensure we're
5529 * placed properly.
5530 */
5531 if (p->se.on_rq) {
5532 deactivate_task(rq_src, p, 0);
5533 set_task_cpu(p, dest_cpu);
5534 activate_task(rq_dest, p, 0);
5535 check_preempt_curr(rq_dest, p, 0);
5536 }
5537 done:
5538 ret = 1;
5539 fail:
5540 double_rq_unlock(rq_src, rq_dest);
5541 return ret;
5542 }
5543
5544 /*
5545 * migration_cpu_stop - this will be executed by a highprio stopper thread
5546 * and performs thread migration by bumping thread off CPU then
5547 * 'pushing' onto another runqueue.
5548 */
5549 static int migration_cpu_stop(void *data)
5550 {
5551 struct migration_arg *arg = data;
5552
5553 /*
5554 * The original target cpu might have gone down and we might
5555 * be on another cpu but it doesn't matter.
5556 */
5557 local_irq_disable();
5558 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5559 local_irq_enable();
5560 return 0;
5561 }
5562
5563 #ifdef CONFIG_HOTPLUG_CPU
5564 /*
5565 * Figure out where task on dead CPU should go, use force if necessary.
5566 */
5567 void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5568 {
5569 struct rq *rq = cpu_rq(dead_cpu);
5570 int needs_cpu, uninitialized_var(dest_cpu);
5571 unsigned long flags;
5572
5573 local_irq_save(flags);
5574
5575 raw_spin_lock(&rq->lock);
5576 needs_cpu = (task_cpu(p) == dead_cpu) && (p->state != TASK_WAKING);
5577 if (needs_cpu)
5578 dest_cpu = select_fallback_rq(dead_cpu, p);
5579 raw_spin_unlock(&rq->lock);
5580 /*
5581 * It can only fail if we race with set_cpus_allowed(),
5582 * in the racer should migrate the task anyway.
5583 */
5584 if (needs_cpu)
5585 __migrate_task(p, dead_cpu, dest_cpu);
5586 local_irq_restore(flags);
5587 }
5588
5589 /*
5590 * While a dead CPU has no uninterruptible tasks queued at this point,
5591 * it might still have a nonzero ->nr_uninterruptible counter, because
5592 * for performance reasons the counter is not stricly tracking tasks to
5593 * their home CPUs. So we just add the counter to another CPU's counter,
5594 * to keep the global sum constant after CPU-down:
5595 */
5596 static void migrate_nr_uninterruptible(struct rq *rq_src)
5597 {
5598 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
5599 unsigned long flags;
5600
5601 local_irq_save(flags);
5602 double_rq_lock(rq_src, rq_dest);
5603 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5604 rq_src->nr_uninterruptible = 0;
5605 double_rq_unlock(rq_src, rq_dest);
5606 local_irq_restore(flags);
5607 }
5608
5609 /* Run through task list and migrate tasks from the dead cpu. */
5610 static void migrate_live_tasks(int src_cpu)
5611 {
5612 struct task_struct *p, *t;
5613
5614 read_lock(&tasklist_lock);
5615
5616 do_each_thread(t, p) {
5617 if (p == current)
5618 continue;
5619
5620 if (task_cpu(p) == src_cpu)
5621 move_task_off_dead_cpu(src_cpu, p);
5622 } while_each_thread(t, p);
5623
5624 read_unlock(&tasklist_lock);
5625 }
5626
5627 /*
5628 * Schedules idle task to be the next runnable task on current CPU.
5629 * It does so by boosting its priority to highest possible.
5630 * Used by CPU offline code.
5631 */
5632 void sched_idle_next(void)
5633 {
5634 int this_cpu = smp_processor_id();
5635 struct rq *rq = cpu_rq(this_cpu);
5636 struct task_struct *p = rq->idle;
5637 unsigned long flags;
5638
5639 /* cpu has to be offline */
5640 BUG_ON(cpu_online(this_cpu));
5641
5642 /*
5643 * Strictly not necessary since rest of the CPUs are stopped by now
5644 * and interrupts disabled on the current cpu.
5645 */
5646 raw_spin_lock_irqsave(&rq->lock, flags);
5647
5648 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5649
5650 activate_task(rq, p, 0);
5651
5652 raw_spin_unlock_irqrestore(&rq->lock, flags);
5653 }
5654
5655 /*
5656 * Ensures that the idle task is using init_mm right before its cpu goes
5657 * offline.
5658 */
5659 void idle_task_exit(void)
5660 {
5661 struct mm_struct *mm = current->active_mm;
5662
5663 BUG_ON(cpu_online(smp_processor_id()));
5664
5665 if (mm != &init_mm)
5666 switch_mm(mm, &init_mm, current);
5667 mmdrop(mm);
5668 }
5669
5670 /* called under rq->lock with disabled interrupts */
5671 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5672 {
5673 struct rq *rq = cpu_rq(dead_cpu);
5674
5675 /* Must be exiting, otherwise would be on tasklist. */
5676 BUG_ON(!p->exit_state);
5677
5678 /* Cannot have done final schedule yet: would have vanished. */
5679 BUG_ON(p->state == TASK_DEAD);
5680
5681 get_task_struct(p);
5682
5683 /*
5684 * Drop lock around migration; if someone else moves it,
5685 * that's OK. No task can be added to this CPU, so iteration is
5686 * fine.
5687 */
5688 raw_spin_unlock_irq(&rq->lock);
5689 move_task_off_dead_cpu(dead_cpu, p);
5690 raw_spin_lock_irq(&rq->lock);
5691
5692 put_task_struct(p);
5693 }
5694
5695 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5696 static void migrate_dead_tasks(unsigned int dead_cpu)
5697 {
5698 struct rq *rq = cpu_rq(dead_cpu);
5699 struct task_struct *next;
5700
5701 for ( ; ; ) {
5702 if (!rq->nr_running)
5703 break;
5704 next = pick_next_task(rq);
5705 if (!next)
5706 break;
5707 next->sched_class->put_prev_task(rq, next);
5708 migrate_dead(dead_cpu, next);
5709
5710 }
5711 }
5712
5713 /*
5714 * remove the tasks which were accounted by rq from calc_load_tasks.
5715 */
5716 static void calc_global_load_remove(struct rq *rq)
5717 {
5718 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5719 rq->calc_load_active = 0;
5720 }
5721 #endif /* CONFIG_HOTPLUG_CPU */
5722
5723 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5724
5725 static struct ctl_table sd_ctl_dir[] = {
5726 {
5727 .procname = "sched_domain",
5728 .mode = 0555,
5729 },
5730 {}
5731 };
5732
5733 static struct ctl_table sd_ctl_root[] = {
5734 {
5735 .procname = "kernel",
5736 .mode = 0555,
5737 .child = sd_ctl_dir,
5738 },
5739 {}
5740 };
5741
5742 static struct ctl_table *sd_alloc_ctl_entry(int n)
5743 {
5744 struct ctl_table *entry =
5745 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5746
5747 return entry;
5748 }
5749
5750 static void sd_free_ctl_entry(struct ctl_table **tablep)
5751 {
5752 struct ctl_table *entry;
5753
5754 /*
5755 * In the intermediate directories, both the child directory and
5756 * procname are dynamically allocated and could fail but the mode
5757 * will always be set. In the lowest directory the names are
5758 * static strings and all have proc handlers.
5759 */
5760 for (entry = *tablep; entry->mode; entry++) {
5761 if (entry->child)
5762 sd_free_ctl_entry(&entry->child);
5763 if (entry->proc_handler == NULL)
5764 kfree(entry->procname);
5765 }
5766
5767 kfree(*tablep);
5768 *tablep = NULL;
5769 }
5770
5771 static void
5772 set_table_entry(struct ctl_table *entry,
5773 const char *procname, void *data, int maxlen,
5774 mode_t mode, proc_handler *proc_handler)
5775 {
5776 entry->procname = procname;
5777 entry->data = data;
5778 entry->maxlen = maxlen;
5779 entry->mode = mode;
5780 entry->proc_handler = proc_handler;
5781 }
5782
5783 static struct ctl_table *
5784 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5785 {
5786 struct ctl_table *table = sd_alloc_ctl_entry(13);
5787
5788 if (table == NULL)
5789 return NULL;
5790
5791 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5792 sizeof(long), 0644, proc_doulongvec_minmax);
5793 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5794 sizeof(long), 0644, proc_doulongvec_minmax);
5795 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5796 sizeof(int), 0644, proc_dointvec_minmax);
5797 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5798 sizeof(int), 0644, proc_dointvec_minmax);
5799 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5800 sizeof(int), 0644, proc_dointvec_minmax);
5801 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5802 sizeof(int), 0644, proc_dointvec_minmax);
5803 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5804 sizeof(int), 0644, proc_dointvec_minmax);
5805 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5806 sizeof(int), 0644, proc_dointvec_minmax);
5807 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5808 sizeof(int), 0644, proc_dointvec_minmax);
5809 set_table_entry(&table[9], "cache_nice_tries",
5810 &sd->cache_nice_tries,
5811 sizeof(int), 0644, proc_dointvec_minmax);
5812 set_table_entry(&table[10], "flags", &sd->flags,
5813 sizeof(int), 0644, proc_dointvec_minmax);
5814 set_table_entry(&table[11], "name", sd->name,
5815 CORENAME_MAX_SIZE, 0444, proc_dostring);
5816 /* &table[12] is terminator */
5817
5818 return table;
5819 }
5820
5821 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5822 {
5823 struct ctl_table *entry, *table;
5824 struct sched_domain *sd;
5825 int domain_num = 0, i;
5826 char buf[32];
5827
5828 for_each_domain(cpu, sd)
5829 domain_num++;
5830 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5831 if (table == NULL)
5832 return NULL;
5833
5834 i = 0;
5835 for_each_domain(cpu, sd) {
5836 snprintf(buf, 32, "domain%d", i);
5837 entry->procname = kstrdup(buf, GFP_KERNEL);
5838 entry->mode = 0555;
5839 entry->child = sd_alloc_ctl_domain_table(sd);
5840 entry++;
5841 i++;
5842 }
5843 return table;
5844 }
5845
5846 static struct ctl_table_header *sd_sysctl_header;
5847 static void register_sched_domain_sysctl(void)
5848 {
5849 int i, cpu_num = num_possible_cpus();
5850 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5851 char buf[32];
5852
5853 WARN_ON(sd_ctl_dir[0].child);
5854 sd_ctl_dir[0].child = entry;
5855
5856 if (entry == NULL)
5857 return;
5858
5859 for_each_possible_cpu(i) {
5860 snprintf(buf, 32, "cpu%d", i);
5861 entry->procname = kstrdup(buf, GFP_KERNEL);
5862 entry->mode = 0555;
5863 entry->child = sd_alloc_ctl_cpu_table(i);
5864 entry++;
5865 }
5866
5867 WARN_ON(sd_sysctl_header);
5868 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5869 }
5870
5871 /* may be called multiple times per register */
5872 static void unregister_sched_domain_sysctl(void)
5873 {
5874 if (sd_sysctl_header)
5875 unregister_sysctl_table(sd_sysctl_header);
5876 sd_sysctl_header = NULL;
5877 if (sd_ctl_dir[0].child)
5878 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5879 }
5880 #else
5881 static void register_sched_domain_sysctl(void)
5882 {
5883 }
5884 static void unregister_sched_domain_sysctl(void)
5885 {
5886 }
5887 #endif
5888
5889 static void set_rq_online(struct rq *rq)
5890 {
5891 if (!rq->online) {
5892 const struct sched_class *class;
5893
5894 cpumask_set_cpu(rq->cpu, rq->rd->online);
5895 rq->online = 1;
5896
5897 for_each_class(class) {
5898 if (class->rq_online)
5899 class->rq_online(rq);
5900 }
5901 }
5902 }
5903
5904 static void set_rq_offline(struct rq *rq)
5905 {
5906 if (rq->online) {
5907 const struct sched_class *class;
5908
5909 for_each_class(class) {
5910 if (class->rq_offline)
5911 class->rq_offline(rq);
5912 }
5913
5914 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5915 rq->online = 0;
5916 }
5917 }
5918
5919 /*
5920 * migration_call - callback that gets triggered when a CPU is added.
5921 * Here we can start up the necessary migration thread for the new CPU.
5922 */
5923 static int __cpuinit
5924 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5925 {
5926 int cpu = (long)hcpu;
5927 unsigned long flags;
5928 struct rq *rq = cpu_rq(cpu);
5929
5930 switch (action) {
5931
5932 case CPU_UP_PREPARE:
5933 case CPU_UP_PREPARE_FROZEN:
5934 rq->calc_load_update = calc_load_update;
5935 break;
5936
5937 case CPU_ONLINE:
5938 case CPU_ONLINE_FROZEN:
5939 /* Update our root-domain */
5940 raw_spin_lock_irqsave(&rq->lock, flags);
5941 if (rq->rd) {
5942 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5943
5944 set_rq_online(rq);
5945 }
5946 raw_spin_unlock_irqrestore(&rq->lock, flags);
5947 break;
5948
5949 #ifdef CONFIG_HOTPLUG_CPU
5950 case CPU_DEAD:
5951 case CPU_DEAD_FROZEN:
5952 migrate_live_tasks(cpu);
5953 /* Idle task back to normal (off runqueue, low prio) */
5954 raw_spin_lock_irq(&rq->lock);
5955 deactivate_task(rq, rq->idle, 0);
5956 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5957 rq->idle->sched_class = &idle_sched_class;
5958 migrate_dead_tasks(cpu);
5959 raw_spin_unlock_irq(&rq->lock);
5960 migrate_nr_uninterruptible(rq);
5961 BUG_ON(rq->nr_running != 0);
5962 calc_global_load_remove(rq);
5963 break;
5964
5965 case CPU_DYING:
5966 case CPU_DYING_FROZEN:
5967 /* Update our root-domain */
5968 raw_spin_lock_irqsave(&rq->lock, flags);
5969 if (rq->rd) {
5970 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5971 set_rq_offline(rq);
5972 }
5973 raw_spin_unlock_irqrestore(&rq->lock, flags);
5974 break;
5975 #endif
5976 }
5977 return NOTIFY_OK;
5978 }
5979
5980 /*
5981 * Register at high priority so that task migration (migrate_all_tasks)
5982 * happens before everything else. This has to be lower priority than
5983 * the notifier in the perf_event subsystem, though.
5984 */
5985 static struct notifier_block __cpuinitdata migration_notifier = {
5986 .notifier_call = migration_call,
5987 .priority = CPU_PRI_MIGRATION,
5988 };
5989
5990 static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5991 unsigned long action, void *hcpu)
5992 {
5993 switch (action & ~CPU_TASKS_FROZEN) {
5994 case CPU_ONLINE:
5995 case CPU_DOWN_FAILED:
5996 set_cpu_active((long)hcpu, true);
5997 return NOTIFY_OK;
5998 default:
5999 return NOTIFY_DONE;
6000 }
6001 }
6002
6003 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
6004 unsigned long action, void *hcpu)
6005 {
6006 switch (action & ~CPU_TASKS_FROZEN) {
6007 case CPU_DOWN_PREPARE:
6008 set_cpu_active((long)hcpu, false);
6009 return NOTIFY_OK;
6010 default:
6011 return NOTIFY_DONE;
6012 }
6013 }
6014
6015 static int __init migration_init(void)
6016 {
6017 void *cpu = (void *)(long)smp_processor_id();
6018 int err;
6019
6020 /* Initialize migration for the boot CPU */
6021 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6022 BUG_ON(err == NOTIFY_BAD);
6023 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6024 register_cpu_notifier(&migration_notifier);
6025
6026 /* Register cpu active notifiers */
6027 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6028 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6029
6030 return 0;
6031 }
6032 early_initcall(migration_init);
6033 #endif
6034
6035 #ifdef CONFIG_SMP
6036
6037 #ifdef CONFIG_SCHED_DEBUG
6038
6039 static __read_mostly int sched_domain_debug_enabled;
6040
6041 static int __init sched_domain_debug_setup(char *str)
6042 {
6043 sched_domain_debug_enabled = 1;
6044
6045 return 0;
6046 }
6047 early_param("sched_debug", sched_domain_debug_setup);
6048
6049 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6050 struct cpumask *groupmask)
6051 {
6052 struct sched_group *group = sd->groups;
6053 char str[256];
6054
6055 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6056 cpumask_clear(groupmask);
6057
6058 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6059
6060 if (!(sd->flags & SD_LOAD_BALANCE)) {
6061 printk("does not load-balance\n");
6062 if (sd->parent)
6063 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6064 " has parent");
6065 return -1;
6066 }
6067
6068 printk(KERN_CONT "span %s level %s\n", str, sd->name);
6069
6070 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
6071 printk(KERN_ERR "ERROR: domain->span does not contain "
6072 "CPU%d\n", cpu);
6073 }
6074 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
6075 printk(KERN_ERR "ERROR: domain->groups does not contain"
6076 " CPU%d\n", cpu);
6077 }
6078
6079 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6080 do {
6081 if (!group) {
6082 printk("\n");
6083 printk(KERN_ERR "ERROR: group is NULL\n");
6084 break;
6085 }
6086
6087 if (!group->cpu_power) {
6088 printk(KERN_CONT "\n");
6089 printk(KERN_ERR "ERROR: domain->cpu_power not "
6090 "set\n");
6091 break;
6092 }
6093
6094 if (!cpumask_weight(sched_group_cpus(group))) {
6095 printk(KERN_CONT "\n");
6096 printk(KERN_ERR "ERROR: empty group\n");
6097 break;
6098 }
6099
6100 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
6101 printk(KERN_CONT "\n");
6102 printk(KERN_ERR "ERROR: repeated CPUs\n");
6103 break;
6104 }
6105
6106 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
6107
6108 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6109
6110 printk(KERN_CONT " %s", str);
6111 if (group->cpu_power != SCHED_LOAD_SCALE) {
6112 printk(KERN_CONT " (cpu_power = %d)",
6113 group->cpu_power);
6114 }
6115
6116 group = group->next;
6117 } while (group != sd->groups);
6118 printk(KERN_CONT "\n");
6119
6120 if (!cpumask_equal(sched_domain_span(sd), groupmask))
6121 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6122
6123 if (sd->parent &&
6124 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
6125 printk(KERN_ERR "ERROR: parent span is not a superset "
6126 "of domain->span\n");
6127 return 0;
6128 }
6129
6130 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6131 {
6132 cpumask_var_t groupmask;
6133 int level = 0;
6134
6135 if (!sched_domain_debug_enabled)
6136 return;
6137
6138 if (!sd) {
6139 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6140 return;
6141 }
6142
6143 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6144
6145 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6146 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6147 return;
6148 }
6149
6150 for (;;) {
6151 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6152 break;
6153 level++;
6154 sd = sd->parent;
6155 if (!sd)
6156 break;
6157 }
6158 free_cpumask_var(groupmask);
6159 }
6160 #else /* !CONFIG_SCHED_DEBUG */
6161 # define sched_domain_debug(sd, cpu) do { } while (0)
6162 #endif /* CONFIG_SCHED_DEBUG */
6163
6164 static int sd_degenerate(struct sched_domain *sd)
6165 {
6166 if (cpumask_weight(sched_domain_span(sd)) == 1)
6167 return 1;
6168
6169 /* Following flags need at least 2 groups */
6170 if (sd->flags & (SD_LOAD_BALANCE |
6171 SD_BALANCE_NEWIDLE |
6172 SD_BALANCE_FORK |
6173 SD_BALANCE_EXEC |
6174 SD_SHARE_CPUPOWER |
6175 SD_SHARE_PKG_RESOURCES)) {
6176 if (sd->groups != sd->groups->next)
6177 return 0;
6178 }
6179
6180 /* Following flags don't use groups */
6181 if (sd->flags & (SD_WAKE_AFFINE))
6182 return 0;
6183
6184 return 1;
6185 }
6186
6187 static int
6188 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6189 {
6190 unsigned long cflags = sd->flags, pflags = parent->flags;
6191
6192 if (sd_degenerate(parent))
6193 return 1;
6194
6195 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6196 return 0;
6197
6198 /* Flags needing groups don't count if only 1 group in parent */
6199 if (parent->groups == parent->groups->next) {
6200 pflags &= ~(SD_LOAD_BALANCE |
6201 SD_BALANCE_NEWIDLE |
6202 SD_BALANCE_FORK |
6203 SD_BALANCE_EXEC |
6204 SD_SHARE_CPUPOWER |
6205 SD_SHARE_PKG_RESOURCES);
6206 if (nr_node_ids == 1)
6207 pflags &= ~SD_SERIALIZE;
6208 }
6209 if (~cflags & pflags)
6210 return 0;
6211
6212 return 1;
6213 }
6214
6215 static void free_rootdomain(struct root_domain *rd)
6216 {
6217 synchronize_sched();
6218
6219 cpupri_cleanup(&rd->cpupri);
6220
6221 free_cpumask_var(rd->rto_mask);
6222 free_cpumask_var(rd->online);
6223 free_cpumask_var(rd->span);
6224 kfree(rd);
6225 }
6226
6227 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6228 {
6229 struct root_domain *old_rd = NULL;
6230 unsigned long flags;
6231
6232 raw_spin_lock_irqsave(&rq->lock, flags);
6233
6234 if (rq->rd) {
6235 old_rd = rq->rd;
6236
6237 if (cpumask_test_cpu(rq->cpu, old_rd->online))
6238 set_rq_offline(rq);
6239
6240 cpumask_clear_cpu(rq->cpu, old_rd->span);
6241
6242 /*
6243 * If we dont want to free the old_rt yet then
6244 * set old_rd to NULL to skip the freeing later
6245 * in this function:
6246 */
6247 if (!atomic_dec_and_test(&old_rd->refcount))
6248 old_rd = NULL;
6249 }
6250
6251 atomic_inc(&rd->refcount);
6252 rq->rd = rd;
6253
6254 cpumask_set_cpu(rq->cpu, rd->span);
6255 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6256 set_rq_online(rq);
6257
6258 raw_spin_unlock_irqrestore(&rq->lock, flags);
6259
6260 if (old_rd)
6261 free_rootdomain(old_rd);
6262 }
6263
6264 static int init_rootdomain(struct root_domain *rd)
6265 {
6266 memset(rd, 0, sizeof(*rd));
6267
6268 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
6269 goto out;
6270 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
6271 goto free_span;
6272 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
6273 goto free_online;
6274
6275 if (cpupri_init(&rd->cpupri) != 0)
6276 goto free_rto_mask;
6277 return 0;
6278
6279 free_rto_mask:
6280 free_cpumask_var(rd->rto_mask);
6281 free_online:
6282 free_cpumask_var(rd->online);
6283 free_span:
6284 free_cpumask_var(rd->span);
6285 out:
6286 return -ENOMEM;
6287 }
6288
6289 static void init_defrootdomain(void)
6290 {
6291 init_rootdomain(&def_root_domain);
6292
6293 atomic_set(&def_root_domain.refcount, 1);
6294 }
6295
6296 static struct root_domain *alloc_rootdomain(void)
6297 {
6298 struct root_domain *rd;
6299
6300 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6301 if (!rd)
6302 return NULL;
6303
6304 if (init_rootdomain(rd) != 0) {
6305 kfree(rd);
6306 return NULL;
6307 }
6308
6309 return rd;
6310 }
6311
6312 /*
6313 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6314 * hold the hotplug lock.
6315 */
6316 static void
6317 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6318 {
6319 struct rq *rq = cpu_rq(cpu);
6320 struct sched_domain *tmp;
6321
6322 for (tmp = sd; tmp; tmp = tmp->parent)
6323 tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
6324
6325 /* Remove the sched domains which do not contribute to scheduling. */
6326 for (tmp = sd; tmp; ) {
6327 struct sched_domain *parent = tmp->parent;
6328 if (!parent)
6329 break;
6330
6331 if (sd_parent_degenerate(tmp, parent)) {
6332 tmp->parent = parent->parent;
6333 if (parent->parent)
6334 parent->parent->child = tmp;
6335 } else
6336 tmp = tmp->parent;
6337 }
6338
6339 if (sd && sd_degenerate(sd)) {
6340 sd = sd->parent;
6341 if (sd)
6342 sd->child = NULL;
6343 }
6344
6345 sched_domain_debug(sd, cpu);
6346
6347 rq_attach_root(rq, rd);
6348 rcu_assign_pointer(rq->sd, sd);
6349 }
6350
6351 /* cpus with isolated domains */
6352 static cpumask_var_t cpu_isolated_map;
6353
6354 /* Setup the mask of cpus configured for isolated domains */
6355 static int __init isolated_cpu_setup(char *str)
6356 {
6357 alloc_bootmem_cpumask_var(&cpu_isolated_map);
6358 cpulist_parse(str, cpu_isolated_map);
6359 return 1;
6360 }
6361
6362 __setup("isolcpus=", isolated_cpu_setup);
6363
6364 /*
6365 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6366 * to a function which identifies what group(along with sched group) a CPU
6367 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6368 * (due to the fact that we keep track of groups covered with a struct cpumask).
6369 *
6370 * init_sched_build_groups will build a circular linked list of the groups
6371 * covered by the given span, and will set each group's ->cpumask correctly,
6372 * and ->cpu_power to 0.
6373 */
6374 static void
6375 init_sched_build_groups(const struct cpumask *span,
6376 const struct cpumask *cpu_map,
6377 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
6378 struct sched_group **sg,
6379 struct cpumask *tmpmask),
6380 struct cpumask *covered, struct cpumask *tmpmask)
6381 {
6382 struct sched_group *first = NULL, *last = NULL;
6383 int i;
6384
6385 cpumask_clear(covered);
6386
6387 for_each_cpu(i, span) {
6388 struct sched_group *sg;
6389 int group = group_fn(i, cpu_map, &sg, tmpmask);
6390 int j;
6391
6392 if (cpumask_test_cpu(i, covered))
6393 continue;
6394
6395 cpumask_clear(sched_group_cpus(sg));
6396 sg->cpu_power = 0;
6397
6398 for_each_cpu(j, span) {
6399 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6400 continue;
6401
6402 cpumask_set_cpu(j, covered);
6403 cpumask_set_cpu(j, sched_group_cpus(sg));
6404 }
6405 if (!first)
6406 first = sg;
6407 if (last)
6408 last->next = sg;
6409 last = sg;
6410 }
6411 last->next = first;
6412 }
6413
6414 #define SD_NODES_PER_DOMAIN 16
6415
6416 #ifdef CONFIG_NUMA
6417
6418 /**
6419 * find_next_best_node - find the next node to include in a sched_domain
6420 * @node: node whose sched_domain we're building
6421 * @used_nodes: nodes already in the sched_domain
6422 *
6423 * Find the next node to include in a given scheduling domain. Simply
6424 * finds the closest node not already in the @used_nodes map.
6425 *
6426 * Should use nodemask_t.
6427 */
6428 static int find_next_best_node(int node, nodemask_t *used_nodes)
6429 {
6430 int i, n, val, min_val, best_node = 0;
6431
6432 min_val = INT_MAX;
6433
6434 for (i = 0; i < nr_node_ids; i++) {
6435 /* Start at @node */
6436 n = (node + i) % nr_node_ids;
6437
6438 if (!nr_cpus_node(n))
6439 continue;
6440
6441 /* Skip already used nodes */
6442 if (node_isset(n, *used_nodes))
6443 continue;
6444
6445 /* Simple min distance search */
6446 val = node_distance(node, n);
6447
6448 if (val < min_val) {
6449 min_val = val;
6450 best_node = n;
6451 }
6452 }
6453
6454 node_set(best_node, *used_nodes);
6455 return best_node;
6456 }
6457
6458 /**
6459 * sched_domain_node_span - get a cpumask for a node's sched_domain
6460 * @node: node whose cpumask we're constructing
6461 * @span: resulting cpumask
6462 *
6463 * Given a node, construct a good cpumask for its sched_domain to span. It
6464 * should be one that prevents unnecessary balancing, but also spreads tasks
6465 * out optimally.
6466 */
6467 static void sched_domain_node_span(int node, struct cpumask *span)
6468 {
6469 nodemask_t used_nodes;
6470 int i;
6471
6472 cpumask_clear(span);
6473 nodes_clear(used_nodes);
6474
6475 cpumask_or(span, span, cpumask_of_node(node));
6476 node_set(node, used_nodes);
6477
6478 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6479 int next_node = find_next_best_node(node, &used_nodes);
6480
6481 cpumask_or(span, span, cpumask_of_node(next_node));
6482 }
6483 }
6484 #endif /* CONFIG_NUMA */
6485
6486 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6487
6488 /*
6489 * The cpus mask in sched_group and sched_domain hangs off the end.
6490 *
6491 * ( See the the comments in include/linux/sched.h:struct sched_group
6492 * and struct sched_domain. )
6493 */
6494 struct static_sched_group {
6495 struct sched_group sg;
6496 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6497 };
6498
6499 struct static_sched_domain {
6500 struct sched_domain sd;
6501 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6502 };
6503
6504 struct s_data {
6505 #ifdef CONFIG_NUMA
6506 int sd_allnodes;
6507 cpumask_var_t domainspan;
6508 cpumask_var_t covered;
6509 cpumask_var_t notcovered;
6510 #endif
6511 cpumask_var_t nodemask;
6512 cpumask_var_t this_sibling_map;
6513 cpumask_var_t this_core_map;
6514 cpumask_var_t this_book_map;
6515 cpumask_var_t send_covered;
6516 cpumask_var_t tmpmask;
6517 struct sched_group **sched_group_nodes;
6518 struct root_domain *rd;
6519 };
6520
6521 enum s_alloc {
6522 sa_sched_groups = 0,
6523 sa_rootdomain,
6524 sa_tmpmask,
6525 sa_send_covered,
6526 sa_this_book_map,
6527 sa_this_core_map,
6528 sa_this_sibling_map,
6529 sa_nodemask,
6530 sa_sched_group_nodes,
6531 #ifdef CONFIG_NUMA
6532 sa_notcovered,
6533 sa_covered,
6534 sa_domainspan,
6535 #endif
6536 sa_none,
6537 };
6538
6539 /*
6540 * SMT sched-domains:
6541 */
6542 #ifdef CONFIG_SCHED_SMT
6543 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
6544 static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
6545
6546 static int
6547 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6548 struct sched_group **sg, struct cpumask *unused)
6549 {
6550 if (sg)
6551 *sg = &per_cpu(sched_groups, cpu).sg;
6552 return cpu;
6553 }
6554 #endif /* CONFIG_SCHED_SMT */
6555
6556 /*
6557 * multi-core sched-domains:
6558 */
6559 #ifdef CONFIG_SCHED_MC
6560 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6561 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6562
6563 static int
6564 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6565 struct sched_group **sg, struct cpumask *mask)
6566 {
6567 int group;
6568 #ifdef CONFIG_SCHED_SMT
6569 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6570 group = cpumask_first(mask);
6571 #else
6572 group = cpu;
6573 #endif
6574 if (sg)
6575 *sg = &per_cpu(sched_group_core, group).sg;
6576 return group;
6577 }
6578 #endif /* CONFIG_SCHED_MC */
6579
6580 /*
6581 * book sched-domains:
6582 */
6583 #ifdef CONFIG_SCHED_BOOK
6584 static DEFINE_PER_CPU(struct static_sched_domain, book_domains);
6585 static DEFINE_PER_CPU(struct static_sched_group, sched_group_book);
6586
6587 static int
6588 cpu_to_book_group(int cpu, const struct cpumask *cpu_map,
6589 struct sched_group **sg, struct cpumask *mask)
6590 {
6591 int group = cpu;
6592 #ifdef CONFIG_SCHED_MC
6593 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6594 group = cpumask_first(mask);
6595 #elif defined(CONFIG_SCHED_SMT)
6596 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6597 group = cpumask_first(mask);
6598 #endif
6599 if (sg)
6600 *sg = &per_cpu(sched_group_book, group).sg;
6601 return group;
6602 }
6603 #endif /* CONFIG_SCHED_BOOK */
6604
6605 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6606 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
6607
6608 static int
6609 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6610 struct sched_group **sg, struct cpumask *mask)
6611 {
6612 int group;
6613 #ifdef CONFIG_SCHED_BOOK
6614 cpumask_and(mask, cpu_book_mask(cpu), cpu_map);
6615 group = cpumask_first(mask);
6616 #elif defined(CONFIG_SCHED_MC)
6617 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6618 group = cpumask_first(mask);
6619 #elif defined(CONFIG_SCHED_SMT)
6620 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6621 group = cpumask_first(mask);
6622 #else
6623 group = cpu;
6624 #endif
6625 if (sg)
6626 *sg = &per_cpu(sched_group_phys, group).sg;
6627 return group;
6628 }
6629
6630 #ifdef CONFIG_NUMA
6631 /*
6632 * The init_sched_build_groups can't handle what we want to do with node
6633 * groups, so roll our own. Now each node has its own list of groups which
6634 * gets dynamically allocated.
6635 */
6636 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
6637 static struct sched_group ***sched_group_nodes_bycpu;
6638
6639 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6640 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
6641
6642 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6643 struct sched_group **sg,
6644 struct cpumask *nodemask)
6645 {
6646 int group;
6647
6648 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
6649 group = cpumask_first(nodemask);
6650
6651 if (sg)
6652 *sg = &per_cpu(sched_group_allnodes, group).sg;
6653 return group;
6654 }
6655
6656 static void init_numa_sched_groups_power(struct sched_group *group_head)
6657 {
6658 struct sched_group *sg = group_head;
6659 int j;
6660
6661 if (!sg)
6662 return;
6663 do {
6664 for_each_cpu(j, sched_group_cpus(sg)) {
6665 struct sched_domain *sd;
6666
6667 sd = &per_cpu(phys_domains, j).sd;
6668 if (j != group_first_cpu(sd->groups)) {
6669 /*
6670 * Only add "power" once for each
6671 * physical package.
6672 */
6673 continue;
6674 }
6675
6676 sg->cpu_power += sd->groups->cpu_power;
6677 }
6678 sg = sg->next;
6679 } while (sg != group_head);
6680 }
6681
6682 static int build_numa_sched_groups(struct s_data *d,
6683 const struct cpumask *cpu_map, int num)
6684 {
6685 struct sched_domain *sd;
6686 struct sched_group *sg, *prev;
6687 int n, j;
6688
6689 cpumask_clear(d->covered);
6690 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
6691 if (cpumask_empty(d->nodemask)) {
6692 d->sched_group_nodes[num] = NULL;
6693 goto out;
6694 }
6695
6696 sched_domain_node_span(num, d->domainspan);
6697 cpumask_and(d->domainspan, d->domainspan, cpu_map);
6698
6699 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6700 GFP_KERNEL, num);
6701 if (!sg) {
6702 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
6703 num);
6704 return -ENOMEM;
6705 }
6706 d->sched_group_nodes[num] = sg;
6707
6708 for_each_cpu(j, d->nodemask) {
6709 sd = &per_cpu(node_domains, j).sd;
6710 sd->groups = sg;
6711 }
6712
6713 sg->cpu_power = 0;
6714 cpumask_copy(sched_group_cpus(sg), d->nodemask);
6715 sg->next = sg;
6716 cpumask_or(d->covered, d->covered, d->nodemask);
6717
6718 prev = sg;
6719 for (j = 0; j < nr_node_ids; j++) {
6720 n = (num + j) % nr_node_ids;
6721 cpumask_complement(d->notcovered, d->covered);
6722 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
6723 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
6724 if (cpumask_empty(d->tmpmask))
6725 break;
6726 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
6727 if (cpumask_empty(d->tmpmask))
6728 continue;
6729 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6730 GFP_KERNEL, num);
6731 if (!sg) {
6732 printk(KERN_WARNING
6733 "Can not alloc domain group for node %d\n", j);
6734 return -ENOMEM;
6735 }
6736 sg->cpu_power = 0;
6737 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
6738 sg->next = prev->next;
6739 cpumask_or(d->covered, d->covered, d->tmpmask);
6740 prev->next = sg;
6741 prev = sg;
6742 }
6743 out:
6744 return 0;
6745 }
6746 #endif /* CONFIG_NUMA */
6747
6748 #ifdef CONFIG_NUMA
6749 /* Free memory allocated for various sched_group structures */
6750 static void free_sched_groups(const struct cpumask *cpu_map,
6751 struct cpumask *nodemask)
6752 {
6753 int cpu, i;
6754
6755 for_each_cpu(cpu, cpu_map) {
6756 struct sched_group **sched_group_nodes
6757 = sched_group_nodes_bycpu[cpu];
6758
6759 if (!sched_group_nodes)
6760 continue;
6761
6762 for (i = 0; i < nr_node_ids; i++) {
6763 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6764
6765 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
6766 if (cpumask_empty(nodemask))
6767 continue;
6768
6769 if (sg == NULL)
6770 continue;
6771 sg = sg->next;
6772 next_sg:
6773 oldsg = sg;
6774 sg = sg->next;
6775 kfree(oldsg);
6776 if (oldsg != sched_group_nodes[i])
6777 goto next_sg;
6778 }
6779 kfree(sched_group_nodes);
6780 sched_group_nodes_bycpu[cpu] = NULL;
6781 }
6782 }
6783 #else /* !CONFIG_NUMA */
6784 static void free_sched_groups(const struct cpumask *cpu_map,
6785 struct cpumask *nodemask)
6786 {
6787 }
6788 #endif /* CONFIG_NUMA */
6789
6790 /*
6791 * Initialize sched groups cpu_power.
6792 *
6793 * cpu_power indicates the capacity of sched group, which is used while
6794 * distributing the load between different sched groups in a sched domain.
6795 * Typically cpu_power for all the groups in a sched domain will be same unless
6796 * there are asymmetries in the topology. If there are asymmetries, group
6797 * having more cpu_power will pickup more load compared to the group having
6798 * less cpu_power.
6799 */
6800 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6801 {
6802 struct sched_domain *child;
6803 struct sched_group *group;
6804 long power;
6805 int weight;
6806
6807 WARN_ON(!sd || !sd->groups);
6808
6809 if (cpu != group_first_cpu(sd->groups))
6810 return;
6811
6812 child = sd->child;
6813
6814 sd->groups->cpu_power = 0;
6815
6816 if (!child) {
6817 power = SCHED_LOAD_SCALE;
6818 weight = cpumask_weight(sched_domain_span(sd));
6819 /*
6820 * SMT siblings share the power of a single core.
6821 * Usually multiple threads get a better yield out of
6822 * that one core than a single thread would have,
6823 * reflect that in sd->smt_gain.
6824 */
6825 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
6826 power *= sd->smt_gain;
6827 power /= weight;
6828 power >>= SCHED_LOAD_SHIFT;
6829 }
6830 sd->groups->cpu_power += power;
6831 return;
6832 }
6833
6834 /*
6835 * Add cpu_power of each child group to this groups cpu_power.
6836 */
6837 group = child->groups;
6838 do {
6839 sd->groups->cpu_power += group->cpu_power;
6840 group = group->next;
6841 } while (group != child->groups);
6842 }
6843
6844 /*
6845 * Initializers for schedule domains
6846 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6847 */
6848
6849 #ifdef CONFIG_SCHED_DEBUG
6850 # define SD_INIT_NAME(sd, type) sd->name = #type
6851 #else
6852 # define SD_INIT_NAME(sd, type) do { } while (0)
6853 #endif
6854
6855 #define SD_INIT(sd, type) sd_init_##type(sd)
6856
6857 #define SD_INIT_FUNC(type) \
6858 static noinline void sd_init_##type(struct sched_domain *sd) \
6859 { \
6860 memset(sd, 0, sizeof(*sd)); \
6861 *sd = SD_##type##_INIT; \
6862 sd->level = SD_LV_##type; \
6863 SD_INIT_NAME(sd, type); \
6864 }
6865
6866 SD_INIT_FUNC(CPU)
6867 #ifdef CONFIG_NUMA
6868 SD_INIT_FUNC(ALLNODES)
6869 SD_INIT_FUNC(NODE)
6870 #endif
6871 #ifdef CONFIG_SCHED_SMT
6872 SD_INIT_FUNC(SIBLING)
6873 #endif
6874 #ifdef CONFIG_SCHED_MC
6875 SD_INIT_FUNC(MC)
6876 #endif
6877 #ifdef CONFIG_SCHED_BOOK
6878 SD_INIT_FUNC(BOOK)
6879 #endif
6880
6881 static int default_relax_domain_level = -1;
6882
6883 static int __init setup_relax_domain_level(char *str)
6884 {
6885 unsigned long val;
6886
6887 val = simple_strtoul(str, NULL, 0);
6888 if (val < SD_LV_MAX)
6889 default_relax_domain_level = val;
6890
6891 return 1;
6892 }
6893 __setup("relax_domain_level=", setup_relax_domain_level);
6894
6895 static void set_domain_attribute(struct sched_domain *sd,
6896 struct sched_domain_attr *attr)
6897 {
6898 int request;
6899
6900 if (!attr || attr->relax_domain_level < 0) {
6901 if (default_relax_domain_level < 0)
6902 return;
6903 else
6904 request = default_relax_domain_level;
6905 } else
6906 request = attr->relax_domain_level;
6907 if (request < sd->level) {
6908 /* turn off idle balance on this domain */
6909 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6910 } else {
6911 /* turn on idle balance on this domain */
6912 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6913 }
6914 }
6915
6916 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6917 const struct cpumask *cpu_map)
6918 {
6919 switch (what) {
6920 case sa_sched_groups:
6921 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
6922 d->sched_group_nodes = NULL;
6923 case sa_rootdomain:
6924 free_rootdomain(d->rd); /* fall through */
6925 case sa_tmpmask:
6926 free_cpumask_var(d->tmpmask); /* fall through */
6927 case sa_send_covered:
6928 free_cpumask_var(d->send_covered); /* fall through */
6929 case sa_this_book_map:
6930 free_cpumask_var(d->this_book_map); /* fall through */
6931 case sa_this_core_map:
6932 free_cpumask_var(d->this_core_map); /* fall through */
6933 case sa_this_sibling_map:
6934 free_cpumask_var(d->this_sibling_map); /* fall through */
6935 case sa_nodemask:
6936 free_cpumask_var(d->nodemask); /* fall through */
6937 case sa_sched_group_nodes:
6938 #ifdef CONFIG_NUMA
6939 kfree(d->sched_group_nodes); /* fall through */
6940 case sa_notcovered:
6941 free_cpumask_var(d->notcovered); /* fall through */
6942 case sa_covered:
6943 free_cpumask_var(d->covered); /* fall through */
6944 case sa_domainspan:
6945 free_cpumask_var(d->domainspan); /* fall through */
6946 #endif
6947 case sa_none:
6948 break;
6949 }
6950 }
6951
6952 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6953 const struct cpumask *cpu_map)
6954 {
6955 #ifdef CONFIG_NUMA
6956 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
6957 return sa_none;
6958 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
6959 return sa_domainspan;
6960 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
6961 return sa_covered;
6962 /* Allocate the per-node list of sched groups */
6963 d->sched_group_nodes = kcalloc(nr_node_ids,
6964 sizeof(struct sched_group *), GFP_KERNEL);
6965 if (!d->sched_group_nodes) {
6966 printk(KERN_WARNING "Can not alloc sched group node list\n");
6967 return sa_notcovered;
6968 }
6969 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
6970 #endif
6971 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
6972 return sa_sched_group_nodes;
6973 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
6974 return sa_nodemask;
6975 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
6976 return sa_this_sibling_map;
6977 if (!alloc_cpumask_var(&d->this_book_map, GFP_KERNEL))
6978 return sa_this_core_map;
6979 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
6980 return sa_this_book_map;
6981 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
6982 return sa_send_covered;
6983 d->rd = alloc_rootdomain();
6984 if (!d->rd) {
6985 printk(KERN_WARNING "Cannot alloc root domain\n");
6986 return sa_tmpmask;
6987 }
6988 return sa_rootdomain;
6989 }
6990
6991 static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
6992 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
6993 {
6994 struct sched_domain *sd = NULL;
6995 #ifdef CONFIG_NUMA
6996 struct sched_domain *parent;
6997
6998 d->sd_allnodes = 0;
6999 if (cpumask_weight(cpu_map) >
7000 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
7001 sd = &per_cpu(allnodes_domains, i).sd;
7002 SD_INIT(sd, ALLNODES);
7003 set_domain_attribute(sd, attr);
7004 cpumask_copy(sched_domain_span(sd), cpu_map);
7005 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
7006 d->sd_allnodes = 1;
7007 }
7008 parent = sd;
7009
7010 sd = &per_cpu(node_domains, i).sd;
7011 SD_INIT(sd, NODE);
7012 set_domain_attribute(sd, attr);
7013 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
7014 sd->parent = parent;
7015 if (parent)
7016 parent->child = sd;
7017 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
7018 #endif
7019 return sd;
7020 }
7021
7022 static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
7023 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7024 struct sched_domain *parent, int i)
7025 {
7026 struct sched_domain *sd;
7027 sd = &per_cpu(phys_domains, i).sd;
7028 SD_INIT(sd, CPU);
7029 set_domain_attribute(sd, attr);
7030 cpumask_copy(sched_domain_span(sd), d->nodemask);
7031 sd->parent = parent;
7032 if (parent)
7033 parent->child = sd;
7034 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
7035 return sd;
7036 }
7037
7038 static struct sched_domain *__build_book_sched_domain(struct s_data *d,
7039 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7040 struct sched_domain *parent, int i)
7041 {
7042 struct sched_domain *sd = parent;
7043 #ifdef CONFIG_SCHED_BOOK
7044 sd = &per_cpu(book_domains, i).sd;
7045 SD_INIT(sd, BOOK);
7046 set_domain_attribute(sd, attr);
7047 cpumask_and(sched_domain_span(sd), cpu_map, cpu_book_mask(i));
7048 sd->parent = parent;
7049 parent->child = sd;
7050 cpu_to_book_group(i, cpu_map, &sd->groups, d->tmpmask);
7051 #endif
7052 return sd;
7053 }
7054
7055 static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
7056 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7057 struct sched_domain *parent, int i)
7058 {
7059 struct sched_domain *sd = parent;
7060 #ifdef CONFIG_SCHED_MC
7061 sd = &per_cpu(core_domains, i).sd;
7062 SD_INIT(sd, MC);
7063 set_domain_attribute(sd, attr);
7064 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
7065 sd->parent = parent;
7066 parent->child = sd;
7067 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
7068 #endif
7069 return sd;
7070 }
7071
7072 static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
7073 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7074 struct sched_domain *parent, int i)
7075 {
7076 struct sched_domain *sd = parent;
7077 #ifdef CONFIG_SCHED_SMT
7078 sd = &per_cpu(cpu_domains, i).sd;
7079 SD_INIT(sd, SIBLING);
7080 set_domain_attribute(sd, attr);
7081 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
7082 sd->parent = parent;
7083 parent->child = sd;
7084 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
7085 #endif
7086 return sd;
7087 }
7088
7089 static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
7090 const struct cpumask *cpu_map, int cpu)
7091 {
7092 switch (l) {
7093 #ifdef CONFIG_SCHED_SMT
7094 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
7095 cpumask_and(d->this_sibling_map, cpu_map,
7096 topology_thread_cpumask(cpu));
7097 if (cpu == cpumask_first(d->this_sibling_map))
7098 init_sched_build_groups(d->this_sibling_map, cpu_map,
7099 &cpu_to_cpu_group,
7100 d->send_covered, d->tmpmask);
7101 break;
7102 #endif
7103 #ifdef CONFIG_SCHED_MC
7104 case SD_LV_MC: /* set up multi-core groups */
7105 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
7106 if (cpu == cpumask_first(d->this_core_map))
7107 init_sched_build_groups(d->this_core_map, cpu_map,
7108 &cpu_to_core_group,
7109 d->send_covered, d->tmpmask);
7110 break;
7111 #endif
7112 #ifdef CONFIG_SCHED_BOOK
7113 case SD_LV_BOOK: /* set up book groups */
7114 cpumask_and(d->this_book_map, cpu_map, cpu_book_mask(cpu));
7115 if (cpu == cpumask_first(d->this_book_map))
7116 init_sched_build_groups(d->this_book_map, cpu_map,
7117 &cpu_to_book_group,
7118 d->send_covered, d->tmpmask);
7119 break;
7120 #endif
7121 case SD_LV_CPU: /* set up physical groups */
7122 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
7123 if (!cpumask_empty(d->nodemask))
7124 init_sched_build_groups(d->nodemask, cpu_map,
7125 &cpu_to_phys_group,
7126 d->send_covered, d->tmpmask);
7127 break;
7128 #ifdef CONFIG_NUMA
7129 case SD_LV_ALLNODES:
7130 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
7131 d->send_covered, d->tmpmask);
7132 break;
7133 #endif
7134 default:
7135 break;
7136 }
7137 }
7138
7139 /*
7140 * Build sched domains for a given set of cpus and attach the sched domains
7141 * to the individual cpus
7142 */
7143 static int __build_sched_domains(const struct cpumask *cpu_map,
7144 struct sched_domain_attr *attr)
7145 {
7146 enum s_alloc alloc_state = sa_none;
7147 struct s_data d;
7148 struct sched_domain *sd;
7149 int i;
7150 #ifdef CONFIG_NUMA
7151 d.sd_allnodes = 0;
7152 #endif
7153
7154 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7155 if (alloc_state != sa_rootdomain)
7156 goto error;
7157 alloc_state = sa_sched_groups;
7158
7159 /*
7160 * Set up domains for cpus specified by the cpu_map.
7161 */
7162 for_each_cpu(i, cpu_map) {
7163 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
7164 cpu_map);
7165
7166 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
7167 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
7168 sd = __build_book_sched_domain(&d, cpu_map, attr, sd, i);
7169 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
7170 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
7171 }
7172
7173 for_each_cpu(i, cpu_map) {
7174 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
7175 build_sched_groups(&d, SD_LV_BOOK, cpu_map, i);
7176 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
7177 }
7178
7179 /* Set up physical groups */
7180 for (i = 0; i < nr_node_ids; i++)
7181 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
7182
7183 #ifdef CONFIG_NUMA
7184 /* Set up node groups */
7185 if (d.sd_allnodes)
7186 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
7187
7188 for (i = 0; i < nr_node_ids; i++)
7189 if (build_numa_sched_groups(&d, cpu_map, i))
7190 goto error;
7191 #endif
7192
7193 /* Calculate CPU power for physical packages and nodes */
7194 #ifdef CONFIG_SCHED_SMT
7195 for_each_cpu(i, cpu_map) {
7196 sd = &per_cpu(cpu_domains, i).sd;
7197 init_sched_groups_power(i, sd);
7198 }
7199 #endif
7200 #ifdef CONFIG_SCHED_MC
7201 for_each_cpu(i, cpu_map) {
7202 sd = &per_cpu(core_domains, i).sd;
7203 init_sched_groups_power(i, sd);
7204 }
7205 #endif
7206 #ifdef CONFIG_SCHED_BOOK
7207 for_each_cpu(i, cpu_map) {
7208 sd = &per_cpu(book_domains, i).sd;
7209 init_sched_groups_power(i, sd);
7210 }
7211 #endif
7212
7213 for_each_cpu(i, cpu_map) {
7214 sd = &per_cpu(phys_domains, i).sd;
7215 init_sched_groups_power(i, sd);
7216 }
7217
7218 #ifdef CONFIG_NUMA
7219 for (i = 0; i < nr_node_ids; i++)
7220 init_numa_sched_groups_power(d.sched_group_nodes[i]);
7221
7222 if (d.sd_allnodes) {
7223 struct sched_group *sg;
7224
7225 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7226 d.tmpmask);
7227 init_numa_sched_groups_power(sg);
7228 }
7229 #endif
7230
7231 /* Attach the domains */
7232 for_each_cpu(i, cpu_map) {
7233 #ifdef CONFIG_SCHED_SMT
7234 sd = &per_cpu(cpu_domains, i).sd;
7235 #elif defined(CONFIG_SCHED_MC)
7236 sd = &per_cpu(core_domains, i).sd;
7237 #elif defined(CONFIG_SCHED_BOOK)
7238 sd = &per_cpu(book_domains, i).sd;
7239 #else
7240 sd = &per_cpu(phys_domains, i).sd;
7241 #endif
7242 cpu_attach_domain(sd, d.rd, i);
7243 }
7244
7245 d.sched_group_nodes = NULL; /* don't free this we still need it */
7246 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7247 return 0;
7248
7249 error:
7250 __free_domain_allocs(&d, alloc_state, cpu_map);
7251 return -ENOMEM;
7252 }
7253
7254 static int build_sched_domains(const struct cpumask *cpu_map)
7255 {
7256 return __build_sched_domains(cpu_map, NULL);
7257 }
7258
7259 static cpumask_var_t *doms_cur; /* current sched domains */
7260 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7261 static struct sched_domain_attr *dattr_cur;
7262 /* attribues of custom domains in 'doms_cur' */
7263
7264 /*
7265 * Special case: If a kmalloc of a doms_cur partition (array of
7266 * cpumask) fails, then fallback to a single sched domain,
7267 * as determined by the single cpumask fallback_doms.
7268 */
7269 static cpumask_var_t fallback_doms;
7270
7271 /*
7272 * arch_update_cpu_topology lets virtualized architectures update the
7273 * cpu core maps. It is supposed to return 1 if the topology changed
7274 * or 0 if it stayed the same.
7275 */
7276 int __attribute__((weak)) arch_update_cpu_topology(void)
7277 {
7278 return 0;
7279 }
7280
7281 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7282 {
7283 int i;
7284 cpumask_var_t *doms;
7285
7286 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7287 if (!doms)
7288 return NULL;
7289 for (i = 0; i < ndoms; i++) {
7290 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7291 free_sched_domains(doms, i);
7292 return NULL;
7293 }
7294 }
7295 return doms;
7296 }
7297
7298 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7299 {
7300 unsigned int i;
7301 for (i = 0; i < ndoms; i++)
7302 free_cpumask_var(doms[i]);
7303 kfree(doms);
7304 }
7305
7306 /*
7307 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7308 * For now this just excludes isolated cpus, but could be used to
7309 * exclude other special cases in the future.
7310 */
7311 static int arch_init_sched_domains(const struct cpumask *cpu_map)
7312 {
7313 int err;
7314
7315 arch_update_cpu_topology();
7316 ndoms_cur = 1;
7317 doms_cur = alloc_sched_domains(ndoms_cur);
7318 if (!doms_cur)
7319 doms_cur = &fallback_doms;
7320 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7321 dattr_cur = NULL;
7322 err = build_sched_domains(doms_cur[0]);
7323 register_sched_domain_sysctl();
7324
7325 return err;
7326 }
7327
7328 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7329 struct cpumask *tmpmask)
7330 {
7331 free_sched_groups(cpu_map, tmpmask);
7332 }
7333
7334 /*
7335 * Detach sched domains from a group of cpus specified in cpu_map
7336 * These cpus will now be attached to the NULL domain
7337 */
7338 static void detach_destroy_domains(const struct cpumask *cpu_map)
7339 {
7340 /* Save because hotplug lock held. */
7341 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7342 int i;
7343
7344 for_each_cpu(i, cpu_map)
7345 cpu_attach_domain(NULL, &def_root_domain, i);
7346 synchronize_sched();
7347 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7348 }
7349
7350 /* handle null as "default" */
7351 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7352 struct sched_domain_attr *new, int idx_new)
7353 {
7354 struct sched_domain_attr tmp;
7355
7356 /* fast path */
7357 if (!new && !cur)
7358 return 1;
7359
7360 tmp = SD_ATTR_INIT;
7361 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7362 new ? (new + idx_new) : &tmp,
7363 sizeof(struct sched_domain_attr));
7364 }
7365
7366 /*
7367 * Partition sched domains as specified by the 'ndoms_new'
7368 * cpumasks in the array doms_new[] of cpumasks. This compares
7369 * doms_new[] to the current sched domain partitioning, doms_cur[].
7370 * It destroys each deleted domain and builds each new domain.
7371 *
7372 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7373 * The masks don't intersect (don't overlap.) We should setup one
7374 * sched domain for each mask. CPUs not in any of the cpumasks will
7375 * not be load balanced. If the same cpumask appears both in the
7376 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7377 * it as it is.
7378 *
7379 * The passed in 'doms_new' should be allocated using
7380 * alloc_sched_domains. This routine takes ownership of it and will
7381 * free_sched_domains it when done with it. If the caller failed the
7382 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7383 * and partition_sched_domains() will fallback to the single partition
7384 * 'fallback_doms', it also forces the domains to be rebuilt.
7385 *
7386 * If doms_new == NULL it will be replaced with cpu_online_mask.
7387 * ndoms_new == 0 is a special case for destroying existing domains,
7388 * and it will not create the default domain.
7389 *
7390 * Call with hotplug lock held
7391 */
7392 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7393 struct sched_domain_attr *dattr_new)
7394 {
7395 int i, j, n;
7396 int new_topology;
7397
7398 mutex_lock(&sched_domains_mutex);
7399
7400 /* always unregister in case we don't destroy any domains */
7401 unregister_sched_domain_sysctl();
7402
7403 /* Let architecture update cpu core mappings. */
7404 new_topology = arch_update_cpu_topology();
7405
7406 n = doms_new ? ndoms_new : 0;
7407
7408 /* Destroy deleted domains */
7409 for (i = 0; i < ndoms_cur; i++) {
7410 for (j = 0; j < n && !new_topology; j++) {
7411 if (cpumask_equal(doms_cur[i], doms_new[j])
7412 && dattrs_equal(dattr_cur, i, dattr_new, j))
7413 goto match1;
7414 }
7415 /* no match - a current sched domain not in new doms_new[] */
7416 detach_destroy_domains(doms_cur[i]);
7417 match1:
7418 ;
7419 }
7420
7421 if (doms_new == NULL) {
7422 ndoms_cur = 0;
7423 doms_new = &fallback_doms;
7424 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7425 WARN_ON_ONCE(dattr_new);
7426 }
7427
7428 /* Build new domains */
7429 for (i = 0; i < ndoms_new; i++) {
7430 for (j = 0; j < ndoms_cur && !new_topology; j++) {
7431 if (cpumask_equal(doms_new[i], doms_cur[j])
7432 && dattrs_equal(dattr_new, i, dattr_cur, j))
7433 goto match2;
7434 }
7435 /* no match - add a new doms_new */
7436 __build_sched_domains(doms_new[i],
7437 dattr_new ? dattr_new + i : NULL);
7438 match2:
7439 ;
7440 }
7441
7442 /* Remember the new sched domains */
7443 if (doms_cur != &fallback_doms)
7444 free_sched_domains(doms_cur, ndoms_cur);
7445 kfree(dattr_cur); /* kfree(NULL) is safe */
7446 doms_cur = doms_new;
7447 dattr_cur = dattr_new;
7448 ndoms_cur = ndoms_new;
7449
7450 register_sched_domain_sysctl();
7451
7452 mutex_unlock(&sched_domains_mutex);
7453 }
7454
7455 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7456 static void arch_reinit_sched_domains(void)
7457 {
7458 get_online_cpus();
7459
7460 /* Destroy domains first to force the rebuild */
7461 partition_sched_domains(0, NULL, NULL);
7462
7463 rebuild_sched_domains();
7464 put_online_cpus();
7465 }
7466
7467 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7468 {
7469 unsigned int level = 0;
7470
7471 if (sscanf(buf, "%u", &level) != 1)
7472 return -EINVAL;
7473
7474 /*
7475 * level is always be positive so don't check for
7476 * level < POWERSAVINGS_BALANCE_NONE which is 0
7477 * What happens on 0 or 1 byte write,
7478 * need to check for count as well?
7479 */
7480
7481 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7482 return -EINVAL;
7483
7484 if (smt)
7485 sched_smt_power_savings = level;
7486 else
7487 sched_mc_power_savings = level;
7488
7489 arch_reinit_sched_domains();
7490
7491 return count;
7492 }
7493
7494 #ifdef CONFIG_SCHED_MC
7495 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7496 struct sysdev_class_attribute *attr,
7497 char *page)
7498 {
7499 return sprintf(page, "%u\n", sched_mc_power_savings);
7500 }
7501 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7502 struct sysdev_class_attribute *attr,
7503 const char *buf, size_t count)
7504 {
7505 return sched_power_savings_store(buf, count, 0);
7506 }
7507 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7508 sched_mc_power_savings_show,
7509 sched_mc_power_savings_store);
7510 #endif
7511
7512 #ifdef CONFIG_SCHED_SMT
7513 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7514 struct sysdev_class_attribute *attr,
7515 char *page)
7516 {
7517 return sprintf(page, "%u\n", sched_smt_power_savings);
7518 }
7519 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7520 struct sysdev_class_attribute *attr,
7521 const char *buf, size_t count)
7522 {
7523 return sched_power_savings_store(buf, count, 1);
7524 }
7525 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7526 sched_smt_power_savings_show,
7527 sched_smt_power_savings_store);
7528 #endif
7529
7530 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7531 {
7532 int err = 0;
7533
7534 #ifdef CONFIG_SCHED_SMT
7535 if (smt_capable())
7536 err = sysfs_create_file(&cls->kset.kobj,
7537 &attr_sched_smt_power_savings.attr);
7538 #endif
7539 #ifdef CONFIG_SCHED_MC
7540 if (!err && mc_capable())
7541 err = sysfs_create_file(&cls->kset.kobj,
7542 &attr_sched_mc_power_savings.attr);
7543 #endif
7544 return err;
7545 }
7546 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7547
7548 /*
7549 * Update cpusets according to cpu_active mask. If cpusets are
7550 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7551 * around partition_sched_domains().
7552 */
7553 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7554 void *hcpu)
7555 {
7556 switch (action & ~CPU_TASKS_FROZEN) {
7557 case CPU_ONLINE:
7558 case CPU_DOWN_FAILED:
7559 cpuset_update_active_cpus();
7560 return NOTIFY_OK;
7561 default:
7562 return NOTIFY_DONE;
7563 }
7564 }
7565
7566 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7567 void *hcpu)
7568 {
7569 switch (action & ~CPU_TASKS_FROZEN) {
7570 case CPU_DOWN_PREPARE:
7571 cpuset_update_active_cpus();
7572 return NOTIFY_OK;
7573 default:
7574 return NOTIFY_DONE;
7575 }
7576 }
7577
7578 static int update_runtime(struct notifier_block *nfb,
7579 unsigned long action, void *hcpu)
7580 {
7581 int cpu = (int)(long)hcpu;
7582
7583 switch (action) {
7584 case CPU_DOWN_PREPARE:
7585 case CPU_DOWN_PREPARE_FROZEN:
7586 disable_runtime(cpu_rq(cpu));
7587 return NOTIFY_OK;
7588
7589 case CPU_DOWN_FAILED:
7590 case CPU_DOWN_FAILED_FROZEN:
7591 case CPU_ONLINE:
7592 case CPU_ONLINE_FROZEN:
7593 enable_runtime(cpu_rq(cpu));
7594 return NOTIFY_OK;
7595
7596 default:
7597 return NOTIFY_DONE;
7598 }
7599 }
7600
7601 void __init sched_init_smp(void)
7602 {
7603 cpumask_var_t non_isolated_cpus;
7604
7605 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7606 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7607
7608 #if defined(CONFIG_NUMA)
7609 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7610 GFP_KERNEL);
7611 BUG_ON(sched_group_nodes_bycpu == NULL);
7612 #endif
7613 get_online_cpus();
7614 mutex_lock(&sched_domains_mutex);
7615 arch_init_sched_domains(cpu_active_mask);
7616 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7617 if (cpumask_empty(non_isolated_cpus))
7618 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7619 mutex_unlock(&sched_domains_mutex);
7620 put_online_cpus();
7621
7622 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7623 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7624
7625 /* RT runtime code needs to handle some hotplug events */
7626 hotcpu_notifier(update_runtime, 0);
7627
7628 init_hrtick();
7629
7630 /* Move init over to a non-isolated CPU */
7631 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7632 BUG();
7633 sched_init_granularity();
7634 free_cpumask_var(non_isolated_cpus);
7635
7636 init_sched_rt_class();
7637 }
7638 #else
7639 void __init sched_init_smp(void)
7640 {
7641 sched_init_granularity();
7642 }
7643 #endif /* CONFIG_SMP */
7644
7645 const_debug unsigned int sysctl_timer_migration = 1;
7646
7647 int in_sched_functions(unsigned long addr)
7648 {
7649 return in_lock_functions(addr) ||
7650 (addr >= (unsigned long)__sched_text_start
7651 && addr < (unsigned long)__sched_text_end);
7652 }
7653
7654 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
7655 {
7656 cfs_rq->tasks_timeline = RB_ROOT;
7657 INIT_LIST_HEAD(&cfs_rq->tasks);
7658 #ifdef CONFIG_FAIR_GROUP_SCHED
7659 cfs_rq->rq = rq;
7660 #endif
7661 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7662 }
7663
7664 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7665 {
7666 struct rt_prio_array *array;
7667 int i;
7668
7669 array = &rt_rq->active;
7670 for (i = 0; i < MAX_RT_PRIO; i++) {
7671 INIT_LIST_HEAD(array->queue + i);
7672 __clear_bit(i, array->bitmap);
7673 }
7674 /* delimiter for bitsearch: */
7675 __set_bit(MAX_RT_PRIO, array->bitmap);
7676
7677 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7678 rt_rq->highest_prio.curr = MAX_RT_PRIO;
7679 #ifdef CONFIG_SMP
7680 rt_rq->highest_prio.next = MAX_RT_PRIO;
7681 #endif
7682 #endif
7683 #ifdef CONFIG_SMP
7684 rt_rq->rt_nr_migratory = 0;
7685 rt_rq->overloaded = 0;
7686 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
7687 #endif
7688
7689 rt_rq->rt_time = 0;
7690 rt_rq->rt_throttled = 0;
7691 rt_rq->rt_runtime = 0;
7692 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
7693
7694 #ifdef CONFIG_RT_GROUP_SCHED
7695 rt_rq->rt_nr_boosted = 0;
7696 rt_rq->rq = rq;
7697 #endif
7698 }
7699
7700 #ifdef CONFIG_FAIR_GROUP_SCHED
7701 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7702 struct sched_entity *se, int cpu, int add,
7703 struct sched_entity *parent)
7704 {
7705 struct rq *rq = cpu_rq(cpu);
7706 tg->cfs_rq[cpu] = cfs_rq;
7707 init_cfs_rq(cfs_rq, rq);
7708 cfs_rq->tg = tg;
7709 if (add)
7710 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7711
7712 tg->se[cpu] = se;
7713 /* se could be NULL for init_task_group */
7714 if (!se)
7715 return;
7716
7717 if (!parent)
7718 se->cfs_rq = &rq->cfs;
7719 else
7720 se->cfs_rq = parent->my_q;
7721
7722 se->my_q = cfs_rq;
7723 se->load.weight = tg->shares;
7724 se->load.inv_weight = 0;
7725 se->parent = parent;
7726 }
7727 #endif
7728
7729 #ifdef CONFIG_RT_GROUP_SCHED
7730 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7731 struct sched_rt_entity *rt_se, int cpu, int add,
7732 struct sched_rt_entity *parent)
7733 {
7734 struct rq *rq = cpu_rq(cpu);
7735
7736 tg->rt_rq[cpu] = rt_rq;
7737 init_rt_rq(rt_rq, rq);
7738 rt_rq->tg = tg;
7739 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
7740 if (add)
7741 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7742
7743 tg->rt_se[cpu] = rt_se;
7744 if (!rt_se)
7745 return;
7746
7747 if (!parent)
7748 rt_se->rt_rq = &rq->rt;
7749 else
7750 rt_se->rt_rq = parent->my_q;
7751
7752 rt_se->my_q = rt_rq;
7753 rt_se->parent = parent;
7754 INIT_LIST_HEAD(&rt_se->run_list);
7755 }
7756 #endif
7757
7758 void __init sched_init(void)
7759 {
7760 int i, j;
7761 unsigned long alloc_size = 0, ptr;
7762
7763 #ifdef CONFIG_FAIR_GROUP_SCHED
7764 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7765 #endif
7766 #ifdef CONFIG_RT_GROUP_SCHED
7767 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7768 #endif
7769 #ifdef CONFIG_CPUMASK_OFFSTACK
7770 alloc_size += num_possible_cpus() * cpumask_size();
7771 #endif
7772 if (alloc_size) {
7773 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7774
7775 #ifdef CONFIG_FAIR_GROUP_SCHED
7776 init_task_group.se = (struct sched_entity **)ptr;
7777 ptr += nr_cpu_ids * sizeof(void **);
7778
7779 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7780 ptr += nr_cpu_ids * sizeof(void **);
7781
7782 #endif /* CONFIG_FAIR_GROUP_SCHED */
7783 #ifdef CONFIG_RT_GROUP_SCHED
7784 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7785 ptr += nr_cpu_ids * sizeof(void **);
7786
7787 init_task_group.rt_rq = (struct rt_rq **)ptr;
7788 ptr += nr_cpu_ids * sizeof(void **);
7789
7790 #endif /* CONFIG_RT_GROUP_SCHED */
7791 #ifdef CONFIG_CPUMASK_OFFSTACK
7792 for_each_possible_cpu(i) {
7793 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7794 ptr += cpumask_size();
7795 }
7796 #endif /* CONFIG_CPUMASK_OFFSTACK */
7797 }
7798
7799 #ifdef CONFIG_SMP
7800 init_defrootdomain();
7801 #endif
7802
7803 init_rt_bandwidth(&def_rt_bandwidth,
7804 global_rt_period(), global_rt_runtime());
7805
7806 #ifdef CONFIG_RT_GROUP_SCHED
7807 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7808 global_rt_period(), global_rt_runtime());
7809 #endif /* CONFIG_RT_GROUP_SCHED */
7810
7811 #ifdef CONFIG_CGROUP_SCHED
7812 list_add(&init_task_group.list, &task_groups);
7813 INIT_LIST_HEAD(&init_task_group.children);
7814
7815 #endif /* CONFIG_CGROUP_SCHED */
7816
7817 #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
7818 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
7819 __alignof__(unsigned long));
7820 #endif
7821 for_each_possible_cpu(i) {
7822 struct rq *rq;
7823
7824 rq = cpu_rq(i);
7825 raw_spin_lock_init(&rq->lock);
7826 rq->nr_running = 0;
7827 rq->calc_load_active = 0;
7828 rq->calc_load_update = jiffies + LOAD_FREQ;
7829 init_cfs_rq(&rq->cfs, rq);
7830 init_rt_rq(&rq->rt, rq);
7831 #ifdef CONFIG_FAIR_GROUP_SCHED
7832 init_task_group.shares = init_task_group_load;
7833 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7834 #ifdef CONFIG_CGROUP_SCHED
7835 /*
7836 * How much cpu bandwidth does init_task_group get?
7837 *
7838 * In case of task-groups formed thr' the cgroup filesystem, it
7839 * gets 100% of the cpu resources in the system. This overall
7840 * system cpu resource is divided among the tasks of
7841 * init_task_group and its child task-groups in a fair manner,
7842 * based on each entity's (task or task-group's) weight
7843 * (se->load.weight).
7844 *
7845 * In other words, if init_task_group has 10 tasks of weight
7846 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7847 * then A0's share of the cpu resource is:
7848 *
7849 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7850 *
7851 * We achieve this by letting init_task_group's tasks sit
7852 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7853 */
7854 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
7855 #endif
7856 #endif /* CONFIG_FAIR_GROUP_SCHED */
7857
7858 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7859 #ifdef CONFIG_RT_GROUP_SCHED
7860 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7861 #ifdef CONFIG_CGROUP_SCHED
7862 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
7863 #endif
7864 #endif
7865
7866 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7867 rq->cpu_load[j] = 0;
7868
7869 rq->last_load_update_tick = jiffies;
7870
7871 #ifdef CONFIG_SMP
7872 rq->sd = NULL;
7873 rq->rd = NULL;
7874 rq->cpu_power = SCHED_LOAD_SCALE;
7875 rq->post_schedule = 0;
7876 rq->active_balance = 0;
7877 rq->next_balance = jiffies;
7878 rq->push_cpu = 0;
7879 rq->cpu = i;
7880 rq->online = 0;
7881 rq->idle_stamp = 0;
7882 rq->avg_idle = 2*sysctl_sched_migration_cost;
7883 rq_attach_root(rq, &def_root_domain);
7884 #ifdef CONFIG_NO_HZ
7885 rq->nohz_balance_kick = 0;
7886 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
7887 #endif
7888 #endif
7889 init_rq_hrtick(rq);
7890 atomic_set(&rq->nr_iowait, 0);
7891 }
7892
7893 set_load_weight(&init_task);
7894
7895 #ifdef CONFIG_PREEMPT_NOTIFIERS
7896 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7897 #endif
7898
7899 #ifdef CONFIG_SMP
7900 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7901 #endif
7902
7903 #ifdef CONFIG_RT_MUTEXES
7904 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
7905 #endif
7906
7907 /*
7908 * The boot idle thread does lazy MMU switching as well:
7909 */
7910 atomic_inc(&init_mm.mm_count);
7911 enter_lazy_tlb(&init_mm, current);
7912
7913 /*
7914 * Make us the idle thread. Technically, schedule() should not be
7915 * called from this thread, however somewhere below it might be,
7916 * but because we are the idle thread, we just pick up running again
7917 * when this runqueue becomes "idle".
7918 */
7919 init_idle(current, smp_processor_id());
7920
7921 calc_load_update = jiffies + LOAD_FREQ;
7922
7923 /*
7924 * During early bootup we pretend to be a normal task:
7925 */
7926 current->sched_class = &fair_sched_class;
7927
7928 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
7929 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
7930 #ifdef CONFIG_SMP
7931 #ifdef CONFIG_NO_HZ
7932 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
7933 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
7934 atomic_set(&nohz.load_balancer, nr_cpu_ids);
7935 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
7936 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
7937 #endif
7938 /* May be allocated at isolcpus cmdline parse time */
7939 if (cpu_isolated_map == NULL)
7940 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7941 #endif /* SMP */
7942
7943 perf_event_init();
7944
7945 scheduler_running = 1;
7946 }
7947
7948 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7949 static inline int preempt_count_equals(int preempt_offset)
7950 {
7951 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7952
7953 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
7954 }
7955
7956 void __might_sleep(const char *file, int line, int preempt_offset)
7957 {
7958 #ifdef in_atomic
7959 static unsigned long prev_jiffy; /* ratelimiting */
7960
7961 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7962 system_state != SYSTEM_RUNNING || oops_in_progress)
7963 return;
7964 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7965 return;
7966 prev_jiffy = jiffies;
7967
7968 printk(KERN_ERR
7969 "BUG: sleeping function called from invalid context at %s:%d\n",
7970 file, line);
7971 printk(KERN_ERR
7972 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7973 in_atomic(), irqs_disabled(),
7974 current->pid, current->comm);
7975
7976 debug_show_held_locks(current);
7977 if (irqs_disabled())
7978 print_irqtrace_events(current);
7979 dump_stack();
7980 #endif
7981 }
7982 EXPORT_SYMBOL(__might_sleep);
7983 #endif
7984
7985 #ifdef CONFIG_MAGIC_SYSRQ
7986 static void normalize_task(struct rq *rq, struct task_struct *p)
7987 {
7988 int on_rq;
7989
7990 on_rq = p->se.on_rq;
7991 if (on_rq)
7992 deactivate_task(rq, p, 0);
7993 __setscheduler(rq, p, SCHED_NORMAL, 0);
7994 if (on_rq) {
7995 activate_task(rq, p, 0);
7996 resched_task(rq->curr);
7997 }
7998 }
7999
8000 void normalize_rt_tasks(void)
8001 {
8002 struct task_struct *g, *p;
8003 unsigned long flags;
8004 struct rq *rq;
8005
8006 read_lock_irqsave(&tasklist_lock, flags);
8007 do_each_thread(g, p) {
8008 /*
8009 * Only normalize user tasks:
8010 */
8011 if (!p->mm)
8012 continue;
8013
8014 p->se.exec_start = 0;
8015 #ifdef CONFIG_SCHEDSTATS
8016 p->se.statistics.wait_start = 0;
8017 p->se.statistics.sleep_start = 0;
8018 p->se.statistics.block_start = 0;
8019 #endif
8020
8021 if (!rt_task(p)) {
8022 /*
8023 * Renice negative nice level userspace
8024 * tasks back to 0:
8025 */
8026 if (TASK_NICE(p) < 0 && p->mm)
8027 set_user_nice(p, 0);
8028 continue;
8029 }
8030
8031 raw_spin_lock(&p->pi_lock);
8032 rq = __task_rq_lock(p);
8033
8034 normalize_task(rq, p);
8035
8036 __task_rq_unlock(rq);
8037 raw_spin_unlock(&p->pi_lock);
8038 } while_each_thread(g, p);
8039
8040 read_unlock_irqrestore(&tasklist_lock, flags);
8041 }
8042
8043 #endif /* CONFIG_MAGIC_SYSRQ */
8044
8045 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
8046 /*
8047 * These functions are only useful for the IA64 MCA handling, or kdb.
8048 *
8049 * They can only be called when the whole system has been
8050 * stopped - every CPU needs to be quiescent, and no scheduling
8051 * activity can take place. Using them for anything else would
8052 * be a serious bug, and as a result, they aren't even visible
8053 * under any other configuration.
8054 */
8055
8056 /**
8057 * curr_task - return the current task for a given cpu.
8058 * @cpu: the processor in question.
8059 *
8060 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8061 */
8062 struct task_struct *curr_task(int cpu)
8063 {
8064 return cpu_curr(cpu);
8065 }
8066
8067 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8068
8069 #ifdef CONFIG_IA64
8070 /**
8071 * set_curr_task - set the current task for a given cpu.
8072 * @cpu: the processor in question.
8073 * @p: the task pointer to set.
8074 *
8075 * Description: This function must only be used when non-maskable interrupts
8076 * are serviced on a separate stack. It allows the architecture to switch the
8077 * notion of the current task on a cpu in a non-blocking manner. This function
8078 * must be called with all CPU's synchronized, and interrupts disabled, the
8079 * and caller must save the original value of the current task (see
8080 * curr_task() above) and restore that value before reenabling interrupts and
8081 * re-starting the system.
8082 *
8083 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8084 */
8085 void set_curr_task(int cpu, struct task_struct *p)
8086 {
8087 cpu_curr(cpu) = p;
8088 }
8089
8090 #endif
8091
8092 #ifdef CONFIG_FAIR_GROUP_SCHED
8093 static void free_fair_sched_group(struct task_group *tg)
8094 {
8095 int i;
8096
8097 for_each_possible_cpu(i) {
8098 if (tg->cfs_rq)
8099 kfree(tg->cfs_rq[i]);
8100 if (tg->se)
8101 kfree(tg->se[i]);
8102 }
8103
8104 kfree(tg->cfs_rq);
8105 kfree(tg->se);
8106 }
8107
8108 static
8109 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8110 {
8111 struct cfs_rq *cfs_rq;
8112 struct sched_entity *se;
8113 struct rq *rq;
8114 int i;
8115
8116 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8117 if (!tg->cfs_rq)
8118 goto err;
8119 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8120 if (!tg->se)
8121 goto err;
8122
8123 tg->shares = NICE_0_LOAD;
8124
8125 for_each_possible_cpu(i) {
8126 rq = cpu_rq(i);
8127
8128 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8129 GFP_KERNEL, cpu_to_node(i));
8130 if (!cfs_rq)
8131 goto err;
8132
8133 se = kzalloc_node(sizeof(struct sched_entity),
8134 GFP_KERNEL, cpu_to_node(i));
8135 if (!se)
8136 goto err_free_rq;
8137
8138 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
8139 }
8140
8141 return 1;
8142
8143 err_free_rq:
8144 kfree(cfs_rq);
8145 err:
8146 return 0;
8147 }
8148
8149 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8150 {
8151 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8152 &cpu_rq(cpu)->leaf_cfs_rq_list);
8153 }
8154
8155 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8156 {
8157 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8158 }
8159 #else /* !CONFG_FAIR_GROUP_SCHED */
8160 static inline void free_fair_sched_group(struct task_group *tg)
8161 {
8162 }
8163
8164 static inline
8165 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8166 {
8167 return 1;
8168 }
8169
8170 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8171 {
8172 }
8173
8174 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8175 {
8176 }
8177 #endif /* CONFIG_FAIR_GROUP_SCHED */
8178
8179 #ifdef CONFIG_RT_GROUP_SCHED
8180 static void free_rt_sched_group(struct task_group *tg)
8181 {
8182 int i;
8183
8184 destroy_rt_bandwidth(&tg->rt_bandwidth);
8185
8186 for_each_possible_cpu(i) {
8187 if (tg->rt_rq)
8188 kfree(tg->rt_rq[i]);
8189 if (tg->rt_se)
8190 kfree(tg->rt_se[i]);
8191 }
8192
8193 kfree(tg->rt_rq);
8194 kfree(tg->rt_se);
8195 }
8196
8197 static
8198 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8199 {
8200 struct rt_rq *rt_rq;
8201 struct sched_rt_entity *rt_se;
8202 struct rq *rq;
8203 int i;
8204
8205 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8206 if (!tg->rt_rq)
8207 goto err;
8208 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8209 if (!tg->rt_se)
8210 goto err;
8211
8212 init_rt_bandwidth(&tg->rt_bandwidth,
8213 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8214
8215 for_each_possible_cpu(i) {
8216 rq = cpu_rq(i);
8217
8218 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8219 GFP_KERNEL, cpu_to_node(i));
8220 if (!rt_rq)
8221 goto err;
8222
8223 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8224 GFP_KERNEL, cpu_to_node(i));
8225 if (!rt_se)
8226 goto err_free_rq;
8227
8228 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
8229 }
8230
8231 return 1;
8232
8233 err_free_rq:
8234 kfree(rt_rq);
8235 err:
8236 return 0;
8237 }
8238
8239 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8240 {
8241 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8242 &cpu_rq(cpu)->leaf_rt_rq_list);
8243 }
8244
8245 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8246 {
8247 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8248 }
8249 #else /* !CONFIG_RT_GROUP_SCHED */
8250 static inline void free_rt_sched_group(struct task_group *tg)
8251 {
8252 }
8253
8254 static inline
8255 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8256 {
8257 return 1;
8258 }
8259
8260 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8261 {
8262 }
8263
8264 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8265 {
8266 }
8267 #endif /* CONFIG_RT_GROUP_SCHED */
8268
8269 #ifdef CONFIG_CGROUP_SCHED
8270 static void free_sched_group(struct task_group *tg)
8271 {
8272 free_fair_sched_group(tg);
8273 free_rt_sched_group(tg);
8274 kfree(tg);
8275 }
8276
8277 /* allocate runqueue etc for a new task group */
8278 struct task_group *sched_create_group(struct task_group *parent)
8279 {
8280 struct task_group *tg;
8281 unsigned long flags;
8282 int i;
8283
8284 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8285 if (!tg)
8286 return ERR_PTR(-ENOMEM);
8287
8288 if (!alloc_fair_sched_group(tg, parent))
8289 goto err;
8290
8291 if (!alloc_rt_sched_group(tg, parent))
8292 goto err;
8293
8294 spin_lock_irqsave(&task_group_lock, flags);
8295 for_each_possible_cpu(i) {
8296 register_fair_sched_group(tg, i);
8297 register_rt_sched_group(tg, i);
8298 }
8299 list_add_rcu(&tg->list, &task_groups);
8300
8301 WARN_ON(!parent); /* root should already exist */
8302
8303 tg->parent = parent;
8304 INIT_LIST_HEAD(&tg->children);
8305 list_add_rcu(&tg->siblings, &parent->children);
8306 spin_unlock_irqrestore(&task_group_lock, flags);
8307
8308 return tg;
8309
8310 err:
8311 free_sched_group(tg);
8312 return ERR_PTR(-ENOMEM);
8313 }
8314
8315 /* rcu callback to free various structures associated with a task group */
8316 static void free_sched_group_rcu(struct rcu_head *rhp)
8317 {
8318 /* now it should be safe to free those cfs_rqs */
8319 free_sched_group(container_of(rhp, struct task_group, rcu));
8320 }
8321
8322 /* Destroy runqueue etc associated with a task group */
8323 void sched_destroy_group(struct task_group *tg)
8324 {
8325 unsigned long flags;
8326 int i;
8327
8328 spin_lock_irqsave(&task_group_lock, flags);
8329 for_each_possible_cpu(i) {
8330 unregister_fair_sched_group(tg, i);
8331 unregister_rt_sched_group(tg, i);
8332 }
8333 list_del_rcu(&tg->list);
8334 list_del_rcu(&tg->siblings);
8335 spin_unlock_irqrestore(&task_group_lock, flags);
8336
8337 /* wait for possible concurrent references to cfs_rqs complete */
8338 call_rcu(&tg->rcu, free_sched_group_rcu);
8339 }
8340
8341 /* change task's runqueue when it moves between groups.
8342 * The caller of this function should have put the task in its new group
8343 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8344 * reflect its new group.
8345 */
8346 void sched_move_task(struct task_struct *tsk)
8347 {
8348 int on_rq, running;
8349 unsigned long flags;
8350 struct rq *rq;
8351
8352 rq = task_rq_lock(tsk, &flags);
8353
8354 running = task_current(rq, tsk);
8355 on_rq = tsk->se.on_rq;
8356
8357 if (on_rq)
8358 dequeue_task(rq, tsk, 0);
8359 if (unlikely(running))
8360 tsk->sched_class->put_prev_task(rq, tsk);
8361
8362 set_task_rq(tsk, task_cpu(tsk));
8363
8364 #ifdef CONFIG_FAIR_GROUP_SCHED
8365 if (tsk->sched_class->moved_group)
8366 tsk->sched_class->moved_group(tsk, on_rq);
8367 #endif
8368
8369 if (unlikely(running))
8370 tsk->sched_class->set_curr_task(rq);
8371 if (on_rq)
8372 enqueue_task(rq, tsk, 0);
8373
8374 task_rq_unlock(rq, &flags);
8375 }
8376 #endif /* CONFIG_CGROUP_SCHED */
8377
8378 #ifdef CONFIG_FAIR_GROUP_SCHED
8379 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
8380 {
8381 struct cfs_rq *cfs_rq = se->cfs_rq;
8382 int on_rq;
8383
8384 on_rq = se->on_rq;
8385 if (on_rq)
8386 dequeue_entity(cfs_rq, se, 0);
8387
8388 se->load.weight = shares;
8389 se->load.inv_weight = 0;
8390
8391 if (on_rq)
8392 enqueue_entity(cfs_rq, se, 0);
8393 }
8394
8395 static void set_se_shares(struct sched_entity *se, unsigned long shares)
8396 {
8397 struct cfs_rq *cfs_rq = se->cfs_rq;
8398 struct rq *rq = cfs_rq->rq;
8399 unsigned long flags;
8400
8401 raw_spin_lock_irqsave(&rq->lock, flags);
8402 __set_se_shares(se, shares);
8403 raw_spin_unlock_irqrestore(&rq->lock, flags);
8404 }
8405
8406 static DEFINE_MUTEX(shares_mutex);
8407
8408 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8409 {
8410 int i;
8411 unsigned long flags;
8412
8413 /*
8414 * We can't change the weight of the root cgroup.
8415 */
8416 if (!tg->se[0])
8417 return -EINVAL;
8418
8419 if (shares < MIN_SHARES)
8420 shares = MIN_SHARES;
8421 else if (shares > MAX_SHARES)
8422 shares = MAX_SHARES;
8423
8424 mutex_lock(&shares_mutex);
8425 if (tg->shares == shares)
8426 goto done;
8427
8428 spin_lock_irqsave(&task_group_lock, flags);
8429 for_each_possible_cpu(i)
8430 unregister_fair_sched_group(tg, i);
8431 list_del_rcu(&tg->siblings);
8432 spin_unlock_irqrestore(&task_group_lock, flags);
8433
8434 /* wait for any ongoing reference to this group to finish */
8435 synchronize_sched();
8436
8437 /*
8438 * Now we are free to modify the group's share on each cpu
8439 * w/o tripping rebalance_share or load_balance_fair.
8440 */
8441 tg->shares = shares;
8442 for_each_possible_cpu(i) {
8443 /*
8444 * force a rebalance
8445 */
8446 cfs_rq_set_shares(tg->cfs_rq[i], 0);
8447 set_se_shares(tg->se[i], shares);
8448 }
8449
8450 /*
8451 * Enable load balance activity on this group, by inserting it back on
8452 * each cpu's rq->leaf_cfs_rq_list.
8453 */
8454 spin_lock_irqsave(&task_group_lock, flags);
8455 for_each_possible_cpu(i)
8456 register_fair_sched_group(tg, i);
8457 list_add_rcu(&tg->siblings, &tg->parent->children);
8458 spin_unlock_irqrestore(&task_group_lock, flags);
8459 done:
8460 mutex_unlock(&shares_mutex);
8461 return 0;
8462 }
8463
8464 unsigned long sched_group_shares(struct task_group *tg)
8465 {
8466 return tg->shares;
8467 }
8468 #endif
8469
8470 #ifdef CONFIG_RT_GROUP_SCHED
8471 /*
8472 * Ensure that the real time constraints are schedulable.
8473 */
8474 static DEFINE_MUTEX(rt_constraints_mutex);
8475
8476 static unsigned long to_ratio(u64 period, u64 runtime)
8477 {
8478 if (runtime == RUNTIME_INF)
8479 return 1ULL << 20;
8480
8481 return div64_u64(runtime << 20, period);
8482 }
8483
8484 /* Must be called with tasklist_lock held */
8485 static inline int tg_has_rt_tasks(struct task_group *tg)
8486 {
8487 struct task_struct *g, *p;
8488
8489 do_each_thread(g, p) {
8490 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8491 return 1;
8492 } while_each_thread(g, p);
8493
8494 return 0;
8495 }
8496
8497 struct rt_schedulable_data {
8498 struct task_group *tg;
8499 u64 rt_period;
8500 u64 rt_runtime;
8501 };
8502
8503 static int tg_schedulable(struct task_group *tg, void *data)
8504 {
8505 struct rt_schedulable_data *d = data;
8506 struct task_group *child;
8507 unsigned long total, sum = 0;
8508 u64 period, runtime;
8509
8510 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8511 runtime = tg->rt_bandwidth.rt_runtime;
8512
8513 if (tg == d->tg) {
8514 period = d->rt_period;
8515 runtime = d->rt_runtime;
8516 }
8517
8518 /*
8519 * Cannot have more runtime than the period.
8520 */
8521 if (runtime > period && runtime != RUNTIME_INF)
8522 return -EINVAL;
8523
8524 /*
8525 * Ensure we don't starve existing RT tasks.
8526 */
8527 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8528 return -EBUSY;
8529
8530 total = to_ratio(period, runtime);
8531
8532 /*
8533 * Nobody can have more than the global setting allows.
8534 */
8535 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8536 return -EINVAL;
8537
8538 /*
8539 * The sum of our children's runtime should not exceed our own.
8540 */
8541 list_for_each_entry_rcu(child, &tg->children, siblings) {
8542 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8543 runtime = child->rt_bandwidth.rt_runtime;
8544
8545 if (child == d->tg) {
8546 period = d->rt_period;
8547 runtime = d->rt_runtime;
8548 }
8549
8550 sum += to_ratio(period, runtime);
8551 }
8552
8553 if (sum > total)
8554 return -EINVAL;
8555
8556 return 0;
8557 }
8558
8559 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8560 {
8561 struct rt_schedulable_data data = {
8562 .tg = tg,
8563 .rt_period = period,
8564 .rt_runtime = runtime,
8565 };
8566
8567 return walk_tg_tree(tg_schedulable, tg_nop, &data);
8568 }
8569
8570 static int tg_set_bandwidth(struct task_group *tg,
8571 u64 rt_period, u64 rt_runtime)
8572 {
8573 int i, err = 0;
8574
8575 mutex_lock(&rt_constraints_mutex);
8576 read_lock(&tasklist_lock);
8577 err = __rt_schedulable(tg, rt_period, rt_runtime);
8578 if (err)
8579 goto unlock;
8580
8581 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8582 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8583 tg->rt_bandwidth.rt_runtime = rt_runtime;
8584
8585 for_each_possible_cpu(i) {
8586 struct rt_rq *rt_rq = tg->rt_rq[i];
8587
8588 raw_spin_lock(&rt_rq->rt_runtime_lock);
8589 rt_rq->rt_runtime = rt_runtime;
8590 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8591 }
8592 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8593 unlock:
8594 read_unlock(&tasklist_lock);
8595 mutex_unlock(&rt_constraints_mutex);
8596
8597 return err;
8598 }
8599
8600 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8601 {
8602 u64 rt_runtime, rt_period;
8603
8604 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8605 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8606 if (rt_runtime_us < 0)
8607 rt_runtime = RUNTIME_INF;
8608
8609 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8610 }
8611
8612 long sched_group_rt_runtime(struct task_group *tg)
8613 {
8614 u64 rt_runtime_us;
8615
8616 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8617 return -1;
8618
8619 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8620 do_div(rt_runtime_us, NSEC_PER_USEC);
8621 return rt_runtime_us;
8622 }
8623
8624 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8625 {
8626 u64 rt_runtime, rt_period;
8627
8628 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8629 rt_runtime = tg->rt_bandwidth.rt_runtime;
8630
8631 if (rt_period == 0)
8632 return -EINVAL;
8633
8634 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8635 }
8636
8637 long sched_group_rt_period(struct task_group *tg)
8638 {
8639 u64 rt_period_us;
8640
8641 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8642 do_div(rt_period_us, NSEC_PER_USEC);
8643 return rt_period_us;
8644 }
8645
8646 static int sched_rt_global_constraints(void)
8647 {
8648 u64 runtime, period;
8649 int ret = 0;
8650
8651 if (sysctl_sched_rt_period <= 0)
8652 return -EINVAL;
8653
8654 runtime = global_rt_runtime();
8655 period = global_rt_period();
8656
8657 /*
8658 * Sanity check on the sysctl variables.
8659 */
8660 if (runtime > period && runtime != RUNTIME_INF)
8661 return -EINVAL;
8662
8663 mutex_lock(&rt_constraints_mutex);
8664 read_lock(&tasklist_lock);
8665 ret = __rt_schedulable(NULL, 0, 0);
8666 read_unlock(&tasklist_lock);
8667 mutex_unlock(&rt_constraints_mutex);
8668
8669 return ret;
8670 }
8671
8672 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8673 {
8674 /* Don't accept realtime tasks when there is no way for them to run */
8675 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8676 return 0;
8677
8678 return 1;
8679 }
8680
8681 #else /* !CONFIG_RT_GROUP_SCHED */
8682 static int sched_rt_global_constraints(void)
8683 {
8684 unsigned long flags;
8685 int i;
8686
8687 if (sysctl_sched_rt_period <= 0)
8688 return -EINVAL;
8689
8690 /*
8691 * There's always some RT tasks in the root group
8692 * -- migration, kstopmachine etc..
8693 */
8694 if (sysctl_sched_rt_runtime == 0)
8695 return -EBUSY;
8696
8697 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8698 for_each_possible_cpu(i) {
8699 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8700
8701 raw_spin_lock(&rt_rq->rt_runtime_lock);
8702 rt_rq->rt_runtime = global_rt_runtime();
8703 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8704 }
8705 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8706
8707 return 0;
8708 }
8709 #endif /* CONFIG_RT_GROUP_SCHED */
8710
8711 int sched_rt_handler(struct ctl_table *table, int write,
8712 void __user *buffer, size_t *lenp,
8713 loff_t *ppos)
8714 {
8715 int ret;
8716 int old_period, old_runtime;
8717 static DEFINE_MUTEX(mutex);
8718
8719 mutex_lock(&mutex);
8720 old_period = sysctl_sched_rt_period;
8721 old_runtime = sysctl_sched_rt_runtime;
8722
8723 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8724
8725 if (!ret && write) {
8726 ret = sched_rt_global_constraints();
8727 if (ret) {
8728 sysctl_sched_rt_period = old_period;
8729 sysctl_sched_rt_runtime = old_runtime;
8730 } else {
8731 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8732 def_rt_bandwidth.rt_period =
8733 ns_to_ktime(global_rt_period());
8734 }
8735 }
8736 mutex_unlock(&mutex);
8737
8738 return ret;
8739 }
8740
8741 #ifdef CONFIG_CGROUP_SCHED
8742
8743 /* return corresponding task_group object of a cgroup */
8744 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8745 {
8746 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8747 struct task_group, css);
8748 }
8749
8750 static struct cgroup_subsys_state *
8751 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8752 {
8753 struct task_group *tg, *parent;
8754
8755 if (!cgrp->parent) {
8756 /* This is early initialization for the top cgroup */
8757 return &init_task_group.css;
8758 }
8759
8760 parent = cgroup_tg(cgrp->parent);
8761 tg = sched_create_group(parent);
8762 if (IS_ERR(tg))
8763 return ERR_PTR(-ENOMEM);
8764
8765 return &tg->css;
8766 }
8767
8768 static void
8769 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8770 {
8771 struct task_group *tg = cgroup_tg(cgrp);
8772
8773 sched_destroy_group(tg);
8774 }
8775
8776 static int
8777 cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
8778 {
8779 #ifdef CONFIG_RT_GROUP_SCHED
8780 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
8781 return -EINVAL;
8782 #else
8783 /* We don't support RT-tasks being in separate groups */
8784 if (tsk->sched_class != &fair_sched_class)
8785 return -EINVAL;
8786 #endif
8787 return 0;
8788 }
8789
8790 static int
8791 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8792 struct task_struct *tsk, bool threadgroup)
8793 {
8794 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
8795 if (retval)
8796 return retval;
8797 if (threadgroup) {
8798 struct task_struct *c;
8799 rcu_read_lock();
8800 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8801 retval = cpu_cgroup_can_attach_task(cgrp, c);
8802 if (retval) {
8803 rcu_read_unlock();
8804 return retval;
8805 }
8806 }
8807 rcu_read_unlock();
8808 }
8809 return 0;
8810 }
8811
8812 static void
8813 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8814 struct cgroup *old_cont, struct task_struct *tsk,
8815 bool threadgroup)
8816 {
8817 sched_move_task(tsk);
8818 if (threadgroup) {
8819 struct task_struct *c;
8820 rcu_read_lock();
8821 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8822 sched_move_task(c);
8823 }
8824 rcu_read_unlock();
8825 }
8826 }
8827
8828 #ifdef CONFIG_FAIR_GROUP_SCHED
8829 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8830 u64 shareval)
8831 {
8832 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8833 }
8834
8835 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8836 {
8837 struct task_group *tg = cgroup_tg(cgrp);
8838
8839 return (u64) tg->shares;
8840 }
8841 #endif /* CONFIG_FAIR_GROUP_SCHED */
8842
8843 #ifdef CONFIG_RT_GROUP_SCHED
8844 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8845 s64 val)
8846 {
8847 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
8848 }
8849
8850 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
8851 {
8852 return sched_group_rt_runtime(cgroup_tg(cgrp));
8853 }
8854
8855 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8856 u64 rt_period_us)
8857 {
8858 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8859 }
8860
8861 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8862 {
8863 return sched_group_rt_period(cgroup_tg(cgrp));
8864 }
8865 #endif /* CONFIG_RT_GROUP_SCHED */
8866
8867 static struct cftype cpu_files[] = {
8868 #ifdef CONFIG_FAIR_GROUP_SCHED
8869 {
8870 .name = "shares",
8871 .read_u64 = cpu_shares_read_u64,
8872 .write_u64 = cpu_shares_write_u64,
8873 },
8874 #endif
8875 #ifdef CONFIG_RT_GROUP_SCHED
8876 {
8877 .name = "rt_runtime_us",
8878 .read_s64 = cpu_rt_runtime_read,
8879 .write_s64 = cpu_rt_runtime_write,
8880 },
8881 {
8882 .name = "rt_period_us",
8883 .read_u64 = cpu_rt_period_read_uint,
8884 .write_u64 = cpu_rt_period_write_uint,
8885 },
8886 #endif
8887 };
8888
8889 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8890 {
8891 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8892 }
8893
8894 struct cgroup_subsys cpu_cgroup_subsys = {
8895 .name = "cpu",
8896 .create = cpu_cgroup_create,
8897 .destroy = cpu_cgroup_destroy,
8898 .can_attach = cpu_cgroup_can_attach,
8899 .attach = cpu_cgroup_attach,
8900 .populate = cpu_cgroup_populate,
8901 .subsys_id = cpu_cgroup_subsys_id,
8902 .early_init = 1,
8903 };
8904
8905 #endif /* CONFIG_CGROUP_SCHED */
8906
8907 #ifdef CONFIG_CGROUP_CPUACCT
8908
8909 /*
8910 * CPU accounting code for task groups.
8911 *
8912 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8913 * (balbir@in.ibm.com).
8914 */
8915
8916 /* track cpu usage of a group of tasks and its child groups */
8917 struct cpuacct {
8918 struct cgroup_subsys_state css;
8919 /* cpuusage holds pointer to a u64-type object on every cpu */
8920 u64 __percpu *cpuusage;
8921 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
8922 struct cpuacct *parent;
8923 };
8924
8925 struct cgroup_subsys cpuacct_subsys;
8926
8927 /* return cpu accounting group corresponding to this container */
8928 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8929 {
8930 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8931 struct cpuacct, css);
8932 }
8933
8934 /* return cpu accounting group to which this task belongs */
8935 static inline struct cpuacct *task_ca(struct task_struct *tsk)
8936 {
8937 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8938 struct cpuacct, css);
8939 }
8940
8941 /* create a new cpu accounting group */
8942 static struct cgroup_subsys_state *cpuacct_create(
8943 struct cgroup_subsys *ss, struct cgroup *cgrp)
8944 {
8945 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8946 int i;
8947
8948 if (!ca)
8949 goto out;
8950
8951 ca->cpuusage = alloc_percpu(u64);
8952 if (!ca->cpuusage)
8953 goto out_free_ca;
8954
8955 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8956 if (percpu_counter_init(&ca->cpustat[i], 0))
8957 goto out_free_counters;
8958
8959 if (cgrp->parent)
8960 ca->parent = cgroup_ca(cgrp->parent);
8961
8962 return &ca->css;
8963
8964 out_free_counters:
8965 while (--i >= 0)
8966 percpu_counter_destroy(&ca->cpustat[i]);
8967 free_percpu(ca->cpuusage);
8968 out_free_ca:
8969 kfree(ca);
8970 out:
8971 return ERR_PTR(-ENOMEM);
8972 }
8973
8974 /* destroy an existing cpu accounting group */
8975 static void
8976 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8977 {
8978 struct cpuacct *ca = cgroup_ca(cgrp);
8979 int i;
8980
8981 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8982 percpu_counter_destroy(&ca->cpustat[i]);
8983 free_percpu(ca->cpuusage);
8984 kfree(ca);
8985 }
8986
8987 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8988 {
8989 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8990 u64 data;
8991
8992 #ifndef CONFIG_64BIT
8993 /*
8994 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8995 */
8996 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8997 data = *cpuusage;
8998 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8999 #else
9000 data = *cpuusage;
9001 #endif
9002
9003 return data;
9004 }
9005
9006 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9007 {
9008 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9009
9010 #ifndef CONFIG_64BIT
9011 /*
9012 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9013 */
9014 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9015 *cpuusage = val;
9016 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9017 #else
9018 *cpuusage = val;
9019 #endif
9020 }
9021
9022 /* return total cpu usage (in nanoseconds) of a group */
9023 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9024 {
9025 struct cpuacct *ca = cgroup_ca(cgrp);
9026 u64 totalcpuusage = 0;
9027 int i;
9028
9029 for_each_present_cpu(i)
9030 totalcpuusage += cpuacct_cpuusage_read(ca, i);
9031
9032 return totalcpuusage;
9033 }
9034
9035 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9036 u64 reset)
9037 {
9038 struct cpuacct *ca = cgroup_ca(cgrp);
9039 int err = 0;
9040 int i;
9041
9042 if (reset) {
9043 err = -EINVAL;
9044 goto out;
9045 }
9046
9047 for_each_present_cpu(i)
9048 cpuacct_cpuusage_write(ca, i, 0);
9049
9050 out:
9051 return err;
9052 }
9053
9054 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9055 struct seq_file *m)
9056 {
9057 struct cpuacct *ca = cgroup_ca(cgroup);
9058 u64 percpu;
9059 int i;
9060
9061 for_each_present_cpu(i) {
9062 percpu = cpuacct_cpuusage_read(ca, i);
9063 seq_printf(m, "%llu ", (unsigned long long) percpu);
9064 }
9065 seq_printf(m, "\n");
9066 return 0;
9067 }
9068
9069 static const char *cpuacct_stat_desc[] = {
9070 [CPUACCT_STAT_USER] = "user",
9071 [CPUACCT_STAT_SYSTEM] = "system",
9072 };
9073
9074 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9075 struct cgroup_map_cb *cb)
9076 {
9077 struct cpuacct *ca = cgroup_ca(cgrp);
9078 int i;
9079
9080 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9081 s64 val = percpu_counter_read(&ca->cpustat[i]);
9082 val = cputime64_to_clock_t(val);
9083 cb->fill(cb, cpuacct_stat_desc[i], val);
9084 }
9085 return 0;
9086 }
9087
9088 static struct cftype files[] = {
9089 {
9090 .name = "usage",
9091 .read_u64 = cpuusage_read,
9092 .write_u64 = cpuusage_write,
9093 },
9094 {
9095 .name = "usage_percpu",
9096 .read_seq_string = cpuacct_percpu_seq_read,
9097 },
9098 {
9099 .name = "stat",
9100 .read_map = cpuacct_stats_show,
9101 },
9102 };
9103
9104 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9105 {
9106 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9107 }
9108
9109 /*
9110 * charge this task's execution time to its accounting group.
9111 *
9112 * called with rq->lock held.
9113 */
9114 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9115 {
9116 struct cpuacct *ca;
9117 int cpu;
9118
9119 if (unlikely(!cpuacct_subsys.active))
9120 return;
9121
9122 cpu = task_cpu(tsk);
9123
9124 rcu_read_lock();
9125
9126 ca = task_ca(tsk);
9127
9128 for (; ca; ca = ca->parent) {
9129 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9130 *cpuusage += cputime;
9131 }
9132
9133 rcu_read_unlock();
9134 }
9135
9136 /*
9137 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9138 * in cputime_t units. As a result, cpuacct_update_stats calls
9139 * percpu_counter_add with values large enough to always overflow the
9140 * per cpu batch limit causing bad SMP scalability.
9141 *
9142 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9143 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9144 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9145 */
9146 #ifdef CONFIG_SMP
9147 #define CPUACCT_BATCH \
9148 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9149 #else
9150 #define CPUACCT_BATCH 0
9151 #endif
9152
9153 /*
9154 * Charge the system/user time to the task's accounting group.
9155 */
9156 static void cpuacct_update_stats(struct task_struct *tsk,
9157 enum cpuacct_stat_index idx, cputime_t val)
9158 {
9159 struct cpuacct *ca;
9160 int batch = CPUACCT_BATCH;
9161
9162 if (unlikely(!cpuacct_subsys.active))
9163 return;
9164
9165 rcu_read_lock();
9166 ca = task_ca(tsk);
9167
9168 do {
9169 __percpu_counter_add(&ca->cpustat[idx], val, batch);
9170 ca = ca->parent;
9171 } while (ca);
9172 rcu_read_unlock();
9173 }
9174
9175 struct cgroup_subsys cpuacct_subsys = {
9176 .name = "cpuacct",
9177 .create = cpuacct_create,
9178 .destroy = cpuacct_destroy,
9179 .populate = cpuacct_populate,
9180 .subsys_id = cpuacct_subsys_id,
9181 };
9182 #endif /* CONFIG_CGROUP_CPUACCT */
9183
9184 #ifndef CONFIG_SMP
9185
9186 void synchronize_sched_expedited(void)
9187 {
9188 barrier();
9189 }
9190 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9191
9192 #else /* #ifndef CONFIG_SMP */
9193
9194 static atomic_t synchronize_sched_expedited_count = ATOMIC_INIT(0);
9195
9196 static int synchronize_sched_expedited_cpu_stop(void *data)
9197 {
9198 /*
9199 * There must be a full memory barrier on each affected CPU
9200 * between the time that try_stop_cpus() is called and the
9201 * time that it returns.
9202 *
9203 * In the current initial implementation of cpu_stop, the
9204 * above condition is already met when the control reaches
9205 * this point and the following smp_mb() is not strictly
9206 * necessary. Do smp_mb() anyway for documentation and
9207 * robustness against future implementation changes.
9208 */
9209 smp_mb(); /* See above comment block. */
9210 return 0;
9211 }
9212
9213 /*
9214 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
9215 * approach to force grace period to end quickly. This consumes
9216 * significant time on all CPUs, and is thus not recommended for
9217 * any sort of common-case code.
9218 *
9219 * Note that it is illegal to call this function while holding any
9220 * lock that is acquired by a CPU-hotplug notifier. Failing to
9221 * observe this restriction will result in deadlock.
9222 */
9223 void synchronize_sched_expedited(void)
9224 {
9225 int snap, trycount = 0;
9226
9227 smp_mb(); /* ensure prior mod happens before capturing snap. */
9228 snap = atomic_read(&synchronize_sched_expedited_count) + 1;
9229 get_online_cpus();
9230 while (try_stop_cpus(cpu_online_mask,
9231 synchronize_sched_expedited_cpu_stop,
9232 NULL) == -EAGAIN) {
9233 put_online_cpus();
9234 if (trycount++ < 10)
9235 udelay(trycount * num_online_cpus());
9236 else {
9237 synchronize_sched();
9238 return;
9239 }
9240 if (atomic_read(&synchronize_sched_expedited_count) - snap > 0) {
9241 smp_mb(); /* ensure test happens before caller kfree */
9242 return;
9243 }
9244 get_online_cpus();
9245 }
9246 atomic_inc(&synchronize_sched_expedited_count);
9247 smp_mb__after_atomic_inc(); /* ensure post-GP actions seen after GP. */
9248 put_online_cpus();
9249 }
9250 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9251
9252 #endif /* #else #ifndef CONFIG_SMP */
This page took 0.228202 seconds and 4 git commands to generate.