sched: Use resched IPI to kick off the nohz idle balance
[deliverable/linux.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/stop_machine.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/debugfs.h>
71 #include <linux/ctype.h>
72 #include <linux/ftrace.h>
73 #include <linux/slab.h>
74
75 #include <asm/tlb.h>
76 #include <asm/irq_regs.h>
77 #include <asm/mutex.h>
78 #ifdef CONFIG_PARAVIRT
79 #include <asm/paravirt.h>
80 #endif
81
82 #include "sched_cpupri.h"
83 #include "workqueue_sched.h"
84 #include "sched_autogroup.h"
85
86 #define CREATE_TRACE_POINTS
87 #include <trace/events/sched.h>
88
89 /*
90 * Convert user-nice values [ -20 ... 0 ... 19 ]
91 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
92 * and back.
93 */
94 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
95 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
96 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
97
98 /*
99 * 'User priority' is the nice value converted to something we
100 * can work with better when scaling various scheduler parameters,
101 * it's a [ 0 ... 39 ] range.
102 */
103 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
104 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
105 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
106
107 /*
108 * Helpers for converting nanosecond timing to jiffy resolution
109 */
110 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
111
112 #define NICE_0_LOAD SCHED_LOAD_SCALE
113 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
114
115 /*
116 * These are the 'tuning knobs' of the scheduler:
117 *
118 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
119 * Timeslices get refilled after they expire.
120 */
121 #define DEF_TIMESLICE (100 * HZ / 1000)
122
123 /*
124 * single value that denotes runtime == period, ie unlimited time.
125 */
126 #define RUNTIME_INF ((u64)~0ULL)
127
128 static inline int rt_policy(int policy)
129 {
130 if (policy == SCHED_FIFO || policy == SCHED_RR)
131 return 1;
132 return 0;
133 }
134
135 static inline int task_has_rt_policy(struct task_struct *p)
136 {
137 return rt_policy(p->policy);
138 }
139
140 /*
141 * This is the priority-queue data structure of the RT scheduling class:
142 */
143 struct rt_prio_array {
144 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
145 struct list_head queue[MAX_RT_PRIO];
146 };
147
148 struct rt_bandwidth {
149 /* nests inside the rq lock: */
150 raw_spinlock_t rt_runtime_lock;
151 ktime_t rt_period;
152 u64 rt_runtime;
153 struct hrtimer rt_period_timer;
154 };
155
156 static struct rt_bandwidth def_rt_bandwidth;
157
158 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
159
160 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
161 {
162 struct rt_bandwidth *rt_b =
163 container_of(timer, struct rt_bandwidth, rt_period_timer);
164 ktime_t now;
165 int overrun;
166 int idle = 0;
167
168 for (;;) {
169 now = hrtimer_cb_get_time(timer);
170 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
171
172 if (!overrun)
173 break;
174
175 idle = do_sched_rt_period_timer(rt_b, overrun);
176 }
177
178 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
179 }
180
181 static
182 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
183 {
184 rt_b->rt_period = ns_to_ktime(period);
185 rt_b->rt_runtime = runtime;
186
187 raw_spin_lock_init(&rt_b->rt_runtime_lock);
188
189 hrtimer_init(&rt_b->rt_period_timer,
190 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
191 rt_b->rt_period_timer.function = sched_rt_period_timer;
192 }
193
194 static inline int rt_bandwidth_enabled(void)
195 {
196 return sysctl_sched_rt_runtime >= 0;
197 }
198
199 static void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
200 {
201 unsigned long delta;
202 ktime_t soft, hard, now;
203
204 for (;;) {
205 if (hrtimer_active(period_timer))
206 break;
207
208 now = hrtimer_cb_get_time(period_timer);
209 hrtimer_forward(period_timer, now, period);
210
211 soft = hrtimer_get_softexpires(period_timer);
212 hard = hrtimer_get_expires(period_timer);
213 delta = ktime_to_ns(ktime_sub(hard, soft));
214 __hrtimer_start_range_ns(period_timer, soft, delta,
215 HRTIMER_MODE_ABS_PINNED, 0);
216 }
217 }
218
219 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
220 {
221 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
222 return;
223
224 if (hrtimer_active(&rt_b->rt_period_timer))
225 return;
226
227 raw_spin_lock(&rt_b->rt_runtime_lock);
228 start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period);
229 raw_spin_unlock(&rt_b->rt_runtime_lock);
230 }
231
232 #ifdef CONFIG_RT_GROUP_SCHED
233 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
234 {
235 hrtimer_cancel(&rt_b->rt_period_timer);
236 }
237 #endif
238
239 /*
240 * sched_domains_mutex serializes calls to init_sched_domains,
241 * detach_destroy_domains and partition_sched_domains.
242 */
243 static DEFINE_MUTEX(sched_domains_mutex);
244
245 #ifdef CONFIG_CGROUP_SCHED
246
247 #include <linux/cgroup.h>
248
249 struct cfs_rq;
250
251 static LIST_HEAD(task_groups);
252
253 struct cfs_bandwidth {
254 #ifdef CONFIG_CFS_BANDWIDTH
255 raw_spinlock_t lock;
256 ktime_t period;
257 u64 quota, runtime;
258 s64 hierarchal_quota;
259 u64 runtime_expires;
260
261 int idle, timer_active;
262 struct hrtimer period_timer, slack_timer;
263 struct list_head throttled_cfs_rq;
264
265 /* statistics */
266 int nr_periods, nr_throttled;
267 u64 throttled_time;
268 #endif
269 };
270
271 /* task group related information */
272 struct task_group {
273 struct cgroup_subsys_state css;
274
275 #ifdef CONFIG_FAIR_GROUP_SCHED
276 /* schedulable entities of this group on each cpu */
277 struct sched_entity **se;
278 /* runqueue "owned" by this group on each cpu */
279 struct cfs_rq **cfs_rq;
280 unsigned long shares;
281
282 atomic_t load_weight;
283 #endif
284
285 #ifdef CONFIG_RT_GROUP_SCHED
286 struct sched_rt_entity **rt_se;
287 struct rt_rq **rt_rq;
288
289 struct rt_bandwidth rt_bandwidth;
290 #endif
291
292 struct rcu_head rcu;
293 struct list_head list;
294
295 struct task_group *parent;
296 struct list_head siblings;
297 struct list_head children;
298
299 #ifdef CONFIG_SCHED_AUTOGROUP
300 struct autogroup *autogroup;
301 #endif
302
303 struct cfs_bandwidth cfs_bandwidth;
304 };
305
306 /* task_group_lock serializes the addition/removal of task groups */
307 static DEFINE_SPINLOCK(task_group_lock);
308
309 #ifdef CONFIG_FAIR_GROUP_SCHED
310
311 # define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
312
313 /*
314 * A weight of 0 or 1 can cause arithmetics problems.
315 * A weight of a cfs_rq is the sum of weights of which entities
316 * are queued on this cfs_rq, so a weight of a entity should not be
317 * too large, so as the shares value of a task group.
318 * (The default weight is 1024 - so there's no practical
319 * limitation from this.)
320 */
321 #define MIN_SHARES (1UL << 1)
322 #define MAX_SHARES (1UL << 18)
323
324 static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
325 #endif
326
327 /* Default task group.
328 * Every task in system belong to this group at bootup.
329 */
330 struct task_group root_task_group;
331
332 #endif /* CONFIG_CGROUP_SCHED */
333
334 /* CFS-related fields in a runqueue */
335 struct cfs_rq {
336 struct load_weight load;
337 unsigned long nr_running, h_nr_running;
338
339 u64 exec_clock;
340 u64 min_vruntime;
341 #ifndef CONFIG_64BIT
342 u64 min_vruntime_copy;
343 #endif
344
345 struct rb_root tasks_timeline;
346 struct rb_node *rb_leftmost;
347
348 struct list_head tasks;
349 struct list_head *balance_iterator;
350
351 /*
352 * 'curr' points to currently running entity on this cfs_rq.
353 * It is set to NULL otherwise (i.e when none are currently running).
354 */
355 struct sched_entity *curr, *next, *last, *skip;
356
357 #ifdef CONFIG_SCHED_DEBUG
358 unsigned int nr_spread_over;
359 #endif
360
361 #ifdef CONFIG_FAIR_GROUP_SCHED
362 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
363
364 /*
365 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
366 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
367 * (like users, containers etc.)
368 *
369 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
370 * list is used during load balance.
371 */
372 int on_list;
373 struct list_head leaf_cfs_rq_list;
374 struct task_group *tg; /* group that "owns" this runqueue */
375
376 #ifdef CONFIG_SMP
377 /*
378 * the part of load.weight contributed by tasks
379 */
380 unsigned long task_weight;
381
382 /*
383 * h_load = weight * f(tg)
384 *
385 * Where f(tg) is the recursive weight fraction assigned to
386 * this group.
387 */
388 unsigned long h_load;
389
390 /*
391 * Maintaining per-cpu shares distribution for group scheduling
392 *
393 * load_stamp is the last time we updated the load average
394 * load_last is the last time we updated the load average and saw load
395 * load_unacc_exec_time is currently unaccounted execution time
396 */
397 u64 load_avg;
398 u64 load_period;
399 u64 load_stamp, load_last, load_unacc_exec_time;
400
401 unsigned long load_contribution;
402 #endif
403 #ifdef CONFIG_CFS_BANDWIDTH
404 int runtime_enabled;
405 u64 runtime_expires;
406 s64 runtime_remaining;
407
408 u64 throttled_timestamp;
409 int throttled, throttle_count;
410 struct list_head throttled_list;
411 #endif
412 #endif
413 };
414
415 #ifdef CONFIG_FAIR_GROUP_SCHED
416 #ifdef CONFIG_CFS_BANDWIDTH
417 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
418 {
419 return &tg->cfs_bandwidth;
420 }
421
422 static inline u64 default_cfs_period(void);
423 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun);
424 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b);
425
426 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
427 {
428 struct cfs_bandwidth *cfs_b =
429 container_of(timer, struct cfs_bandwidth, slack_timer);
430 do_sched_cfs_slack_timer(cfs_b);
431
432 return HRTIMER_NORESTART;
433 }
434
435 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
436 {
437 struct cfs_bandwidth *cfs_b =
438 container_of(timer, struct cfs_bandwidth, period_timer);
439 ktime_t now;
440 int overrun;
441 int idle = 0;
442
443 for (;;) {
444 now = hrtimer_cb_get_time(timer);
445 overrun = hrtimer_forward(timer, now, cfs_b->period);
446
447 if (!overrun)
448 break;
449
450 idle = do_sched_cfs_period_timer(cfs_b, overrun);
451 }
452
453 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
454 }
455
456 static void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
457 {
458 raw_spin_lock_init(&cfs_b->lock);
459 cfs_b->runtime = 0;
460 cfs_b->quota = RUNTIME_INF;
461 cfs_b->period = ns_to_ktime(default_cfs_period());
462
463 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
464 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
465 cfs_b->period_timer.function = sched_cfs_period_timer;
466 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
467 cfs_b->slack_timer.function = sched_cfs_slack_timer;
468 }
469
470 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
471 {
472 cfs_rq->runtime_enabled = 0;
473 INIT_LIST_HEAD(&cfs_rq->throttled_list);
474 }
475
476 /* requires cfs_b->lock, may release to reprogram timer */
477 static void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
478 {
479 /*
480 * The timer may be active because we're trying to set a new bandwidth
481 * period or because we're racing with the tear-down path
482 * (timer_active==0 becomes visible before the hrtimer call-back
483 * terminates). In either case we ensure that it's re-programmed
484 */
485 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
486 raw_spin_unlock(&cfs_b->lock);
487 /* ensure cfs_b->lock is available while we wait */
488 hrtimer_cancel(&cfs_b->period_timer);
489
490 raw_spin_lock(&cfs_b->lock);
491 /* if someone else restarted the timer then we're done */
492 if (cfs_b->timer_active)
493 return;
494 }
495
496 cfs_b->timer_active = 1;
497 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
498 }
499
500 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
501 {
502 hrtimer_cancel(&cfs_b->period_timer);
503 hrtimer_cancel(&cfs_b->slack_timer);
504 }
505 #else
506 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
507 static void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
508 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
509
510 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
511 {
512 return NULL;
513 }
514 #endif /* CONFIG_CFS_BANDWIDTH */
515 #endif /* CONFIG_FAIR_GROUP_SCHED */
516
517 /* Real-Time classes' related field in a runqueue: */
518 struct rt_rq {
519 struct rt_prio_array active;
520 unsigned long rt_nr_running;
521 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
522 struct {
523 int curr; /* highest queued rt task prio */
524 #ifdef CONFIG_SMP
525 int next; /* next highest */
526 #endif
527 } highest_prio;
528 #endif
529 #ifdef CONFIG_SMP
530 unsigned long rt_nr_migratory;
531 unsigned long rt_nr_total;
532 int overloaded;
533 struct plist_head pushable_tasks;
534 #endif
535 int rt_throttled;
536 u64 rt_time;
537 u64 rt_runtime;
538 /* Nests inside the rq lock: */
539 raw_spinlock_t rt_runtime_lock;
540
541 #ifdef CONFIG_RT_GROUP_SCHED
542 unsigned long rt_nr_boosted;
543
544 struct rq *rq;
545 struct list_head leaf_rt_rq_list;
546 struct task_group *tg;
547 #endif
548 };
549
550 #ifdef CONFIG_SMP
551
552 /*
553 * We add the notion of a root-domain which will be used to define per-domain
554 * variables. Each exclusive cpuset essentially defines an island domain by
555 * fully partitioning the member cpus from any other cpuset. Whenever a new
556 * exclusive cpuset is created, we also create and attach a new root-domain
557 * object.
558 *
559 */
560 struct root_domain {
561 atomic_t refcount;
562 atomic_t rto_count;
563 struct rcu_head rcu;
564 cpumask_var_t span;
565 cpumask_var_t online;
566
567 /*
568 * The "RT overload" flag: it gets set if a CPU has more than
569 * one runnable RT task.
570 */
571 cpumask_var_t rto_mask;
572 struct cpupri cpupri;
573 };
574
575 /*
576 * By default the system creates a single root-domain with all cpus as
577 * members (mimicking the global state we have today).
578 */
579 static struct root_domain def_root_domain;
580
581 #endif /* CONFIG_SMP */
582
583 /*
584 * This is the main, per-CPU runqueue data structure.
585 *
586 * Locking rule: those places that want to lock multiple runqueues
587 * (such as the load balancing or the thread migration code), lock
588 * acquire operations must be ordered by ascending &runqueue.
589 */
590 struct rq {
591 /* runqueue lock: */
592 raw_spinlock_t lock;
593
594 /*
595 * nr_running and cpu_load should be in the same cacheline because
596 * remote CPUs use both these fields when doing load calculation.
597 */
598 unsigned long nr_running;
599 #define CPU_LOAD_IDX_MAX 5
600 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
601 unsigned long last_load_update_tick;
602 #ifdef CONFIG_NO_HZ
603 u64 nohz_stamp;
604 unsigned char nohz_balance_kick;
605 #endif
606 int skip_clock_update;
607
608 /* capture load from *all* tasks on this cpu: */
609 struct load_weight load;
610 unsigned long nr_load_updates;
611 u64 nr_switches;
612
613 struct cfs_rq cfs;
614 struct rt_rq rt;
615
616 #ifdef CONFIG_FAIR_GROUP_SCHED
617 /* list of leaf cfs_rq on this cpu: */
618 struct list_head leaf_cfs_rq_list;
619 #endif
620 #ifdef CONFIG_RT_GROUP_SCHED
621 struct list_head leaf_rt_rq_list;
622 #endif
623
624 /*
625 * This is part of a global counter where only the total sum
626 * over all CPUs matters. A task can increase this counter on
627 * one CPU and if it got migrated afterwards it may decrease
628 * it on another CPU. Always updated under the runqueue lock:
629 */
630 unsigned long nr_uninterruptible;
631
632 struct task_struct *curr, *idle, *stop;
633 unsigned long next_balance;
634 struct mm_struct *prev_mm;
635
636 u64 clock;
637 u64 clock_task;
638
639 atomic_t nr_iowait;
640
641 #ifdef CONFIG_SMP
642 struct root_domain *rd;
643 struct sched_domain *sd;
644
645 unsigned long cpu_power;
646
647 unsigned char idle_at_tick;
648 /* For active balancing */
649 int post_schedule;
650 int active_balance;
651 int push_cpu;
652 struct cpu_stop_work active_balance_work;
653 /* cpu of this runqueue: */
654 int cpu;
655 int online;
656
657 u64 rt_avg;
658 u64 age_stamp;
659 u64 idle_stamp;
660 u64 avg_idle;
661 #endif
662
663 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
664 u64 prev_irq_time;
665 #endif
666 #ifdef CONFIG_PARAVIRT
667 u64 prev_steal_time;
668 #endif
669 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
670 u64 prev_steal_time_rq;
671 #endif
672
673 /* calc_load related fields */
674 unsigned long calc_load_update;
675 long calc_load_active;
676
677 #ifdef CONFIG_SCHED_HRTICK
678 #ifdef CONFIG_SMP
679 int hrtick_csd_pending;
680 struct call_single_data hrtick_csd;
681 #endif
682 struct hrtimer hrtick_timer;
683 #endif
684
685 #ifdef CONFIG_SCHEDSTATS
686 /* latency stats */
687 struct sched_info rq_sched_info;
688 unsigned long long rq_cpu_time;
689 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
690
691 /* sys_sched_yield() stats */
692 unsigned int yld_count;
693
694 /* schedule() stats */
695 unsigned int sched_switch;
696 unsigned int sched_count;
697 unsigned int sched_goidle;
698
699 /* try_to_wake_up() stats */
700 unsigned int ttwu_count;
701 unsigned int ttwu_local;
702 #endif
703
704 #ifdef CONFIG_SMP
705 struct llist_head wake_list;
706 #endif
707 };
708
709 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
710
711
712 static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
713
714 static inline int cpu_of(struct rq *rq)
715 {
716 #ifdef CONFIG_SMP
717 return rq->cpu;
718 #else
719 return 0;
720 #endif
721 }
722
723 #define rcu_dereference_check_sched_domain(p) \
724 rcu_dereference_check((p), \
725 lockdep_is_held(&sched_domains_mutex))
726
727 /*
728 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
729 * See detach_destroy_domains: synchronize_sched for details.
730 *
731 * The domain tree of any CPU may only be accessed from within
732 * preempt-disabled sections.
733 */
734 #define for_each_domain(cpu, __sd) \
735 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
736
737 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
738 #define this_rq() (&__get_cpu_var(runqueues))
739 #define task_rq(p) cpu_rq(task_cpu(p))
740 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
741 #define raw_rq() (&__raw_get_cpu_var(runqueues))
742
743 #ifdef CONFIG_CGROUP_SCHED
744
745 /*
746 * Return the group to which this tasks belongs.
747 *
748 * We use task_subsys_state_check() and extend the RCU verification with
749 * pi->lock and rq->lock because cpu_cgroup_attach() holds those locks for each
750 * task it moves into the cgroup. Therefore by holding either of those locks,
751 * we pin the task to the current cgroup.
752 */
753 static inline struct task_group *task_group(struct task_struct *p)
754 {
755 struct task_group *tg;
756 struct cgroup_subsys_state *css;
757
758 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
759 lockdep_is_held(&p->pi_lock) ||
760 lockdep_is_held(&task_rq(p)->lock));
761 tg = container_of(css, struct task_group, css);
762
763 return autogroup_task_group(p, tg);
764 }
765
766 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
767 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
768 {
769 #ifdef CONFIG_FAIR_GROUP_SCHED
770 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
771 p->se.parent = task_group(p)->se[cpu];
772 #endif
773
774 #ifdef CONFIG_RT_GROUP_SCHED
775 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
776 p->rt.parent = task_group(p)->rt_se[cpu];
777 #endif
778 }
779
780 #else /* CONFIG_CGROUP_SCHED */
781
782 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
783 static inline struct task_group *task_group(struct task_struct *p)
784 {
785 return NULL;
786 }
787
788 #endif /* CONFIG_CGROUP_SCHED */
789
790 static void update_rq_clock_task(struct rq *rq, s64 delta);
791
792 static void update_rq_clock(struct rq *rq)
793 {
794 s64 delta;
795
796 if (rq->skip_clock_update > 0)
797 return;
798
799 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
800 rq->clock += delta;
801 update_rq_clock_task(rq, delta);
802 }
803
804 /*
805 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
806 */
807 #ifdef CONFIG_SCHED_DEBUG
808 # define const_debug __read_mostly
809 #else
810 # define const_debug static const
811 #endif
812
813 /**
814 * runqueue_is_locked - Returns true if the current cpu runqueue is locked
815 * @cpu: the processor in question.
816 *
817 * This interface allows printk to be called with the runqueue lock
818 * held and know whether or not it is OK to wake up the klogd.
819 */
820 int runqueue_is_locked(int cpu)
821 {
822 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
823 }
824
825 /*
826 * Debugging: various feature bits
827 */
828
829 #define SCHED_FEAT(name, enabled) \
830 __SCHED_FEAT_##name ,
831
832 enum {
833 #include "sched_features.h"
834 };
835
836 #undef SCHED_FEAT
837
838 #define SCHED_FEAT(name, enabled) \
839 (1UL << __SCHED_FEAT_##name) * enabled |
840
841 const_debug unsigned int sysctl_sched_features =
842 #include "sched_features.h"
843 0;
844
845 #undef SCHED_FEAT
846
847 #ifdef CONFIG_SCHED_DEBUG
848 #define SCHED_FEAT(name, enabled) \
849 #name ,
850
851 static __read_mostly char *sched_feat_names[] = {
852 #include "sched_features.h"
853 NULL
854 };
855
856 #undef SCHED_FEAT
857
858 static int sched_feat_show(struct seq_file *m, void *v)
859 {
860 int i;
861
862 for (i = 0; sched_feat_names[i]; i++) {
863 if (!(sysctl_sched_features & (1UL << i)))
864 seq_puts(m, "NO_");
865 seq_printf(m, "%s ", sched_feat_names[i]);
866 }
867 seq_puts(m, "\n");
868
869 return 0;
870 }
871
872 static ssize_t
873 sched_feat_write(struct file *filp, const char __user *ubuf,
874 size_t cnt, loff_t *ppos)
875 {
876 char buf[64];
877 char *cmp;
878 int neg = 0;
879 int i;
880
881 if (cnt > 63)
882 cnt = 63;
883
884 if (copy_from_user(&buf, ubuf, cnt))
885 return -EFAULT;
886
887 buf[cnt] = 0;
888 cmp = strstrip(buf);
889
890 if (strncmp(cmp, "NO_", 3) == 0) {
891 neg = 1;
892 cmp += 3;
893 }
894
895 for (i = 0; sched_feat_names[i]; i++) {
896 if (strcmp(cmp, sched_feat_names[i]) == 0) {
897 if (neg)
898 sysctl_sched_features &= ~(1UL << i);
899 else
900 sysctl_sched_features |= (1UL << i);
901 break;
902 }
903 }
904
905 if (!sched_feat_names[i])
906 return -EINVAL;
907
908 *ppos += cnt;
909
910 return cnt;
911 }
912
913 static int sched_feat_open(struct inode *inode, struct file *filp)
914 {
915 return single_open(filp, sched_feat_show, NULL);
916 }
917
918 static const struct file_operations sched_feat_fops = {
919 .open = sched_feat_open,
920 .write = sched_feat_write,
921 .read = seq_read,
922 .llseek = seq_lseek,
923 .release = single_release,
924 };
925
926 static __init int sched_init_debug(void)
927 {
928 debugfs_create_file("sched_features", 0644, NULL, NULL,
929 &sched_feat_fops);
930
931 return 0;
932 }
933 late_initcall(sched_init_debug);
934
935 #endif
936
937 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
938
939 /*
940 * Number of tasks to iterate in a single balance run.
941 * Limited because this is done with IRQs disabled.
942 */
943 const_debug unsigned int sysctl_sched_nr_migrate = 32;
944
945 /*
946 * period over which we average the RT time consumption, measured
947 * in ms.
948 *
949 * default: 1s
950 */
951 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
952
953 /*
954 * period over which we measure -rt task cpu usage in us.
955 * default: 1s
956 */
957 unsigned int sysctl_sched_rt_period = 1000000;
958
959 static __read_mostly int scheduler_running;
960
961 /*
962 * part of the period that we allow rt tasks to run in us.
963 * default: 0.95s
964 */
965 int sysctl_sched_rt_runtime = 950000;
966
967 static inline u64 global_rt_period(void)
968 {
969 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
970 }
971
972 static inline u64 global_rt_runtime(void)
973 {
974 if (sysctl_sched_rt_runtime < 0)
975 return RUNTIME_INF;
976
977 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
978 }
979
980 #ifndef prepare_arch_switch
981 # define prepare_arch_switch(next) do { } while (0)
982 #endif
983 #ifndef finish_arch_switch
984 # define finish_arch_switch(prev) do { } while (0)
985 #endif
986
987 static inline int task_current(struct rq *rq, struct task_struct *p)
988 {
989 return rq->curr == p;
990 }
991
992 static inline int task_running(struct rq *rq, struct task_struct *p)
993 {
994 #ifdef CONFIG_SMP
995 return p->on_cpu;
996 #else
997 return task_current(rq, p);
998 #endif
999 }
1000
1001 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1002 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1003 {
1004 #ifdef CONFIG_SMP
1005 /*
1006 * We can optimise this out completely for !SMP, because the
1007 * SMP rebalancing from interrupt is the only thing that cares
1008 * here.
1009 */
1010 next->on_cpu = 1;
1011 #endif
1012 }
1013
1014 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1015 {
1016 #ifdef CONFIG_SMP
1017 /*
1018 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1019 * We must ensure this doesn't happen until the switch is completely
1020 * finished.
1021 */
1022 smp_wmb();
1023 prev->on_cpu = 0;
1024 #endif
1025 #ifdef CONFIG_DEBUG_SPINLOCK
1026 /* this is a valid case when another task releases the spinlock */
1027 rq->lock.owner = current;
1028 #endif
1029 /*
1030 * If we are tracking spinlock dependencies then we have to
1031 * fix up the runqueue lock - which gets 'carried over' from
1032 * prev into current:
1033 */
1034 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
1035
1036 raw_spin_unlock_irq(&rq->lock);
1037 }
1038
1039 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
1040 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1041 {
1042 #ifdef CONFIG_SMP
1043 /*
1044 * We can optimise this out completely for !SMP, because the
1045 * SMP rebalancing from interrupt is the only thing that cares
1046 * here.
1047 */
1048 next->on_cpu = 1;
1049 #endif
1050 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1051 raw_spin_unlock_irq(&rq->lock);
1052 #else
1053 raw_spin_unlock(&rq->lock);
1054 #endif
1055 }
1056
1057 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1058 {
1059 #ifdef CONFIG_SMP
1060 /*
1061 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1062 * We must ensure this doesn't happen until the switch is completely
1063 * finished.
1064 */
1065 smp_wmb();
1066 prev->on_cpu = 0;
1067 #endif
1068 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1069 local_irq_enable();
1070 #endif
1071 }
1072 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1073
1074 /*
1075 * __task_rq_lock - lock the rq @p resides on.
1076 */
1077 static inline struct rq *__task_rq_lock(struct task_struct *p)
1078 __acquires(rq->lock)
1079 {
1080 struct rq *rq;
1081
1082 lockdep_assert_held(&p->pi_lock);
1083
1084 for (;;) {
1085 rq = task_rq(p);
1086 raw_spin_lock(&rq->lock);
1087 if (likely(rq == task_rq(p)))
1088 return rq;
1089 raw_spin_unlock(&rq->lock);
1090 }
1091 }
1092
1093 /*
1094 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1095 */
1096 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1097 __acquires(p->pi_lock)
1098 __acquires(rq->lock)
1099 {
1100 struct rq *rq;
1101
1102 for (;;) {
1103 raw_spin_lock_irqsave(&p->pi_lock, *flags);
1104 rq = task_rq(p);
1105 raw_spin_lock(&rq->lock);
1106 if (likely(rq == task_rq(p)))
1107 return rq;
1108 raw_spin_unlock(&rq->lock);
1109 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1110 }
1111 }
1112
1113 static void __task_rq_unlock(struct rq *rq)
1114 __releases(rq->lock)
1115 {
1116 raw_spin_unlock(&rq->lock);
1117 }
1118
1119 static inline void
1120 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1121 __releases(rq->lock)
1122 __releases(p->pi_lock)
1123 {
1124 raw_spin_unlock(&rq->lock);
1125 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1126 }
1127
1128 /*
1129 * this_rq_lock - lock this runqueue and disable interrupts.
1130 */
1131 static struct rq *this_rq_lock(void)
1132 __acquires(rq->lock)
1133 {
1134 struct rq *rq;
1135
1136 local_irq_disable();
1137 rq = this_rq();
1138 raw_spin_lock(&rq->lock);
1139
1140 return rq;
1141 }
1142
1143 #ifdef CONFIG_SCHED_HRTICK
1144 /*
1145 * Use HR-timers to deliver accurate preemption points.
1146 *
1147 * Its all a bit involved since we cannot program an hrt while holding the
1148 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1149 * reschedule event.
1150 *
1151 * When we get rescheduled we reprogram the hrtick_timer outside of the
1152 * rq->lock.
1153 */
1154
1155 /*
1156 * Use hrtick when:
1157 * - enabled by features
1158 * - hrtimer is actually high res
1159 */
1160 static inline int hrtick_enabled(struct rq *rq)
1161 {
1162 if (!sched_feat(HRTICK))
1163 return 0;
1164 if (!cpu_active(cpu_of(rq)))
1165 return 0;
1166 return hrtimer_is_hres_active(&rq->hrtick_timer);
1167 }
1168
1169 static void hrtick_clear(struct rq *rq)
1170 {
1171 if (hrtimer_active(&rq->hrtick_timer))
1172 hrtimer_cancel(&rq->hrtick_timer);
1173 }
1174
1175 /*
1176 * High-resolution timer tick.
1177 * Runs from hardirq context with interrupts disabled.
1178 */
1179 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1180 {
1181 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1182
1183 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1184
1185 raw_spin_lock(&rq->lock);
1186 update_rq_clock(rq);
1187 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1188 raw_spin_unlock(&rq->lock);
1189
1190 return HRTIMER_NORESTART;
1191 }
1192
1193 #ifdef CONFIG_SMP
1194 /*
1195 * called from hardirq (IPI) context
1196 */
1197 static void __hrtick_start(void *arg)
1198 {
1199 struct rq *rq = arg;
1200
1201 raw_spin_lock(&rq->lock);
1202 hrtimer_restart(&rq->hrtick_timer);
1203 rq->hrtick_csd_pending = 0;
1204 raw_spin_unlock(&rq->lock);
1205 }
1206
1207 /*
1208 * Called to set the hrtick timer state.
1209 *
1210 * called with rq->lock held and irqs disabled
1211 */
1212 static void hrtick_start(struct rq *rq, u64 delay)
1213 {
1214 struct hrtimer *timer = &rq->hrtick_timer;
1215 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1216
1217 hrtimer_set_expires(timer, time);
1218
1219 if (rq == this_rq()) {
1220 hrtimer_restart(timer);
1221 } else if (!rq->hrtick_csd_pending) {
1222 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1223 rq->hrtick_csd_pending = 1;
1224 }
1225 }
1226
1227 static int
1228 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1229 {
1230 int cpu = (int)(long)hcpu;
1231
1232 switch (action) {
1233 case CPU_UP_CANCELED:
1234 case CPU_UP_CANCELED_FROZEN:
1235 case CPU_DOWN_PREPARE:
1236 case CPU_DOWN_PREPARE_FROZEN:
1237 case CPU_DEAD:
1238 case CPU_DEAD_FROZEN:
1239 hrtick_clear(cpu_rq(cpu));
1240 return NOTIFY_OK;
1241 }
1242
1243 return NOTIFY_DONE;
1244 }
1245
1246 static __init void init_hrtick(void)
1247 {
1248 hotcpu_notifier(hotplug_hrtick, 0);
1249 }
1250 #else
1251 /*
1252 * Called to set the hrtick timer state.
1253 *
1254 * called with rq->lock held and irqs disabled
1255 */
1256 static void hrtick_start(struct rq *rq, u64 delay)
1257 {
1258 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1259 HRTIMER_MODE_REL_PINNED, 0);
1260 }
1261
1262 static inline void init_hrtick(void)
1263 {
1264 }
1265 #endif /* CONFIG_SMP */
1266
1267 static void init_rq_hrtick(struct rq *rq)
1268 {
1269 #ifdef CONFIG_SMP
1270 rq->hrtick_csd_pending = 0;
1271
1272 rq->hrtick_csd.flags = 0;
1273 rq->hrtick_csd.func = __hrtick_start;
1274 rq->hrtick_csd.info = rq;
1275 #endif
1276
1277 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1278 rq->hrtick_timer.function = hrtick;
1279 }
1280 #else /* CONFIG_SCHED_HRTICK */
1281 static inline void hrtick_clear(struct rq *rq)
1282 {
1283 }
1284
1285 static inline void init_rq_hrtick(struct rq *rq)
1286 {
1287 }
1288
1289 static inline void init_hrtick(void)
1290 {
1291 }
1292 #endif /* CONFIG_SCHED_HRTICK */
1293
1294 /*
1295 * resched_task - mark a task 'to be rescheduled now'.
1296 *
1297 * On UP this means the setting of the need_resched flag, on SMP it
1298 * might also involve a cross-CPU call to trigger the scheduler on
1299 * the target CPU.
1300 */
1301 #ifdef CONFIG_SMP
1302
1303 #ifndef tsk_is_polling
1304 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1305 #endif
1306
1307 static void resched_task(struct task_struct *p)
1308 {
1309 int cpu;
1310
1311 assert_raw_spin_locked(&task_rq(p)->lock);
1312
1313 if (test_tsk_need_resched(p))
1314 return;
1315
1316 set_tsk_need_resched(p);
1317
1318 cpu = task_cpu(p);
1319 if (cpu == smp_processor_id())
1320 return;
1321
1322 /* NEED_RESCHED must be visible before we test polling */
1323 smp_mb();
1324 if (!tsk_is_polling(p))
1325 smp_send_reschedule(cpu);
1326 }
1327
1328 static void resched_cpu(int cpu)
1329 {
1330 struct rq *rq = cpu_rq(cpu);
1331 unsigned long flags;
1332
1333 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
1334 return;
1335 resched_task(cpu_curr(cpu));
1336 raw_spin_unlock_irqrestore(&rq->lock, flags);
1337 }
1338
1339 #ifdef CONFIG_NO_HZ
1340 /*
1341 * In the semi idle case, use the nearest busy cpu for migrating timers
1342 * from an idle cpu. This is good for power-savings.
1343 *
1344 * We don't do similar optimization for completely idle system, as
1345 * selecting an idle cpu will add more delays to the timers than intended
1346 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1347 */
1348 int get_nohz_timer_target(void)
1349 {
1350 int cpu = smp_processor_id();
1351 int i;
1352 struct sched_domain *sd;
1353
1354 rcu_read_lock();
1355 for_each_domain(cpu, sd) {
1356 for_each_cpu(i, sched_domain_span(sd)) {
1357 if (!idle_cpu(i)) {
1358 cpu = i;
1359 goto unlock;
1360 }
1361 }
1362 }
1363 unlock:
1364 rcu_read_unlock();
1365 return cpu;
1366 }
1367 /*
1368 * When add_timer_on() enqueues a timer into the timer wheel of an
1369 * idle CPU then this timer might expire before the next timer event
1370 * which is scheduled to wake up that CPU. In case of a completely
1371 * idle system the next event might even be infinite time into the
1372 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1373 * leaves the inner idle loop so the newly added timer is taken into
1374 * account when the CPU goes back to idle and evaluates the timer
1375 * wheel for the next timer event.
1376 */
1377 void wake_up_idle_cpu(int cpu)
1378 {
1379 struct rq *rq = cpu_rq(cpu);
1380
1381 if (cpu == smp_processor_id())
1382 return;
1383
1384 /*
1385 * This is safe, as this function is called with the timer
1386 * wheel base lock of (cpu) held. When the CPU is on the way
1387 * to idle and has not yet set rq->curr to idle then it will
1388 * be serialized on the timer wheel base lock and take the new
1389 * timer into account automatically.
1390 */
1391 if (rq->curr != rq->idle)
1392 return;
1393
1394 /*
1395 * We can set TIF_RESCHED on the idle task of the other CPU
1396 * lockless. The worst case is that the other CPU runs the
1397 * idle task through an additional NOOP schedule()
1398 */
1399 set_tsk_need_resched(rq->idle);
1400
1401 /* NEED_RESCHED must be visible before we test polling */
1402 smp_mb();
1403 if (!tsk_is_polling(rq->idle))
1404 smp_send_reschedule(cpu);
1405 }
1406
1407 static inline bool got_nohz_idle_kick(void)
1408 {
1409 return idle_cpu(smp_processor_id()) && this_rq()->nohz_balance_kick;
1410 }
1411
1412 #else /* CONFIG_NO_HZ */
1413
1414 static inline bool got_nohz_idle_kick(void)
1415 {
1416 return false;
1417 }
1418
1419 #endif /* CONFIG_NO_HZ */
1420
1421 static u64 sched_avg_period(void)
1422 {
1423 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1424 }
1425
1426 static void sched_avg_update(struct rq *rq)
1427 {
1428 s64 period = sched_avg_period();
1429
1430 while ((s64)(rq->clock - rq->age_stamp) > period) {
1431 /*
1432 * Inline assembly required to prevent the compiler
1433 * optimising this loop into a divmod call.
1434 * See __iter_div_u64_rem() for another example of this.
1435 */
1436 asm("" : "+rm" (rq->age_stamp));
1437 rq->age_stamp += period;
1438 rq->rt_avg /= 2;
1439 }
1440 }
1441
1442 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1443 {
1444 rq->rt_avg += rt_delta;
1445 sched_avg_update(rq);
1446 }
1447
1448 #else /* !CONFIG_SMP */
1449 static void resched_task(struct task_struct *p)
1450 {
1451 assert_raw_spin_locked(&task_rq(p)->lock);
1452 set_tsk_need_resched(p);
1453 }
1454
1455 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1456 {
1457 }
1458
1459 static void sched_avg_update(struct rq *rq)
1460 {
1461 }
1462 #endif /* CONFIG_SMP */
1463
1464 #if BITS_PER_LONG == 32
1465 # define WMULT_CONST (~0UL)
1466 #else
1467 # define WMULT_CONST (1UL << 32)
1468 #endif
1469
1470 #define WMULT_SHIFT 32
1471
1472 /*
1473 * Shift right and round:
1474 */
1475 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1476
1477 /*
1478 * delta *= weight / lw
1479 */
1480 static unsigned long
1481 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1482 struct load_weight *lw)
1483 {
1484 u64 tmp;
1485
1486 /*
1487 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
1488 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
1489 * 2^SCHED_LOAD_RESOLUTION.
1490 */
1491 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
1492 tmp = (u64)delta_exec * scale_load_down(weight);
1493 else
1494 tmp = (u64)delta_exec;
1495
1496 if (!lw->inv_weight) {
1497 unsigned long w = scale_load_down(lw->weight);
1498
1499 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
1500 lw->inv_weight = 1;
1501 else if (unlikely(!w))
1502 lw->inv_weight = WMULT_CONST;
1503 else
1504 lw->inv_weight = WMULT_CONST / w;
1505 }
1506
1507 /*
1508 * Check whether we'd overflow the 64-bit multiplication:
1509 */
1510 if (unlikely(tmp > WMULT_CONST))
1511 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1512 WMULT_SHIFT/2);
1513 else
1514 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1515
1516 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1517 }
1518
1519 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1520 {
1521 lw->weight += inc;
1522 lw->inv_weight = 0;
1523 }
1524
1525 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1526 {
1527 lw->weight -= dec;
1528 lw->inv_weight = 0;
1529 }
1530
1531 static inline void update_load_set(struct load_weight *lw, unsigned long w)
1532 {
1533 lw->weight = w;
1534 lw->inv_weight = 0;
1535 }
1536
1537 /*
1538 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1539 * of tasks with abnormal "nice" values across CPUs the contribution that
1540 * each task makes to its run queue's load is weighted according to its
1541 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1542 * scaled version of the new time slice allocation that they receive on time
1543 * slice expiry etc.
1544 */
1545
1546 #define WEIGHT_IDLEPRIO 3
1547 #define WMULT_IDLEPRIO 1431655765
1548
1549 /*
1550 * Nice levels are multiplicative, with a gentle 10% change for every
1551 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1552 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1553 * that remained on nice 0.
1554 *
1555 * The "10% effect" is relative and cumulative: from _any_ nice level,
1556 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1557 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1558 * If a task goes up by ~10% and another task goes down by ~10% then
1559 * the relative distance between them is ~25%.)
1560 */
1561 static const int prio_to_weight[40] = {
1562 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1563 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1564 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1565 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1566 /* 0 */ 1024, 820, 655, 526, 423,
1567 /* 5 */ 335, 272, 215, 172, 137,
1568 /* 10 */ 110, 87, 70, 56, 45,
1569 /* 15 */ 36, 29, 23, 18, 15,
1570 };
1571
1572 /*
1573 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1574 *
1575 * In cases where the weight does not change often, we can use the
1576 * precalculated inverse to speed up arithmetics by turning divisions
1577 * into multiplications:
1578 */
1579 static const u32 prio_to_wmult[40] = {
1580 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1581 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1582 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1583 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1584 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1585 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1586 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1587 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1588 };
1589
1590 /* Time spent by the tasks of the cpu accounting group executing in ... */
1591 enum cpuacct_stat_index {
1592 CPUACCT_STAT_USER, /* ... user mode */
1593 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1594
1595 CPUACCT_STAT_NSTATS,
1596 };
1597
1598 #ifdef CONFIG_CGROUP_CPUACCT
1599 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1600 static void cpuacct_update_stats(struct task_struct *tsk,
1601 enum cpuacct_stat_index idx, cputime_t val);
1602 #else
1603 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1604 static inline void cpuacct_update_stats(struct task_struct *tsk,
1605 enum cpuacct_stat_index idx, cputime_t val) {}
1606 #endif
1607
1608 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1609 {
1610 update_load_add(&rq->load, load);
1611 }
1612
1613 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1614 {
1615 update_load_sub(&rq->load, load);
1616 }
1617
1618 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1619 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
1620 typedef int (*tg_visitor)(struct task_group *, void *);
1621
1622 /*
1623 * Iterate task_group tree rooted at *from, calling @down when first entering a
1624 * node and @up when leaving it for the final time.
1625 *
1626 * Caller must hold rcu_lock or sufficient equivalent.
1627 */
1628 static int walk_tg_tree_from(struct task_group *from,
1629 tg_visitor down, tg_visitor up, void *data)
1630 {
1631 struct task_group *parent, *child;
1632 int ret;
1633
1634 parent = from;
1635
1636 down:
1637 ret = (*down)(parent, data);
1638 if (ret)
1639 goto out;
1640 list_for_each_entry_rcu(child, &parent->children, siblings) {
1641 parent = child;
1642 goto down;
1643
1644 up:
1645 continue;
1646 }
1647 ret = (*up)(parent, data);
1648 if (ret || parent == from)
1649 goto out;
1650
1651 child = parent;
1652 parent = parent->parent;
1653 if (parent)
1654 goto up;
1655 out:
1656 return ret;
1657 }
1658
1659 /*
1660 * Iterate the full tree, calling @down when first entering a node and @up when
1661 * leaving it for the final time.
1662 *
1663 * Caller must hold rcu_lock or sufficient equivalent.
1664 */
1665
1666 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1667 {
1668 return walk_tg_tree_from(&root_task_group, down, up, data);
1669 }
1670
1671 static int tg_nop(struct task_group *tg, void *data)
1672 {
1673 return 0;
1674 }
1675 #endif
1676
1677 #ifdef CONFIG_SMP
1678 /* Used instead of source_load when we know the type == 0 */
1679 static unsigned long weighted_cpuload(const int cpu)
1680 {
1681 return cpu_rq(cpu)->load.weight;
1682 }
1683
1684 /*
1685 * Return a low guess at the load of a migration-source cpu weighted
1686 * according to the scheduling class and "nice" value.
1687 *
1688 * We want to under-estimate the load of migration sources, to
1689 * balance conservatively.
1690 */
1691 static unsigned long source_load(int cpu, int type)
1692 {
1693 struct rq *rq = cpu_rq(cpu);
1694 unsigned long total = weighted_cpuload(cpu);
1695
1696 if (type == 0 || !sched_feat(LB_BIAS))
1697 return total;
1698
1699 return min(rq->cpu_load[type-1], total);
1700 }
1701
1702 /*
1703 * Return a high guess at the load of a migration-target cpu weighted
1704 * according to the scheduling class and "nice" value.
1705 */
1706 static unsigned long target_load(int cpu, int type)
1707 {
1708 struct rq *rq = cpu_rq(cpu);
1709 unsigned long total = weighted_cpuload(cpu);
1710
1711 if (type == 0 || !sched_feat(LB_BIAS))
1712 return total;
1713
1714 return max(rq->cpu_load[type-1], total);
1715 }
1716
1717 static unsigned long power_of(int cpu)
1718 {
1719 return cpu_rq(cpu)->cpu_power;
1720 }
1721
1722 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1723
1724 static unsigned long cpu_avg_load_per_task(int cpu)
1725 {
1726 struct rq *rq = cpu_rq(cpu);
1727 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1728
1729 if (nr_running)
1730 return rq->load.weight / nr_running;
1731
1732 return 0;
1733 }
1734
1735 #ifdef CONFIG_PREEMPT
1736
1737 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1738
1739 /*
1740 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1741 * way at the expense of forcing extra atomic operations in all
1742 * invocations. This assures that the double_lock is acquired using the
1743 * same underlying policy as the spinlock_t on this architecture, which
1744 * reduces latency compared to the unfair variant below. However, it
1745 * also adds more overhead and therefore may reduce throughput.
1746 */
1747 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1748 __releases(this_rq->lock)
1749 __acquires(busiest->lock)
1750 __acquires(this_rq->lock)
1751 {
1752 raw_spin_unlock(&this_rq->lock);
1753 double_rq_lock(this_rq, busiest);
1754
1755 return 1;
1756 }
1757
1758 #else
1759 /*
1760 * Unfair double_lock_balance: Optimizes throughput at the expense of
1761 * latency by eliminating extra atomic operations when the locks are
1762 * already in proper order on entry. This favors lower cpu-ids and will
1763 * grant the double lock to lower cpus over higher ids under contention,
1764 * regardless of entry order into the function.
1765 */
1766 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1767 __releases(this_rq->lock)
1768 __acquires(busiest->lock)
1769 __acquires(this_rq->lock)
1770 {
1771 int ret = 0;
1772
1773 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1774 if (busiest < this_rq) {
1775 raw_spin_unlock(&this_rq->lock);
1776 raw_spin_lock(&busiest->lock);
1777 raw_spin_lock_nested(&this_rq->lock,
1778 SINGLE_DEPTH_NESTING);
1779 ret = 1;
1780 } else
1781 raw_spin_lock_nested(&busiest->lock,
1782 SINGLE_DEPTH_NESTING);
1783 }
1784 return ret;
1785 }
1786
1787 #endif /* CONFIG_PREEMPT */
1788
1789 /*
1790 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1791 */
1792 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1793 {
1794 if (unlikely(!irqs_disabled())) {
1795 /* printk() doesn't work good under rq->lock */
1796 raw_spin_unlock(&this_rq->lock);
1797 BUG_ON(1);
1798 }
1799
1800 return _double_lock_balance(this_rq, busiest);
1801 }
1802
1803 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1804 __releases(busiest->lock)
1805 {
1806 raw_spin_unlock(&busiest->lock);
1807 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1808 }
1809
1810 /*
1811 * double_rq_lock - safely lock two runqueues
1812 *
1813 * Note this does not disable interrupts like task_rq_lock,
1814 * you need to do so manually before calling.
1815 */
1816 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1817 __acquires(rq1->lock)
1818 __acquires(rq2->lock)
1819 {
1820 BUG_ON(!irqs_disabled());
1821 if (rq1 == rq2) {
1822 raw_spin_lock(&rq1->lock);
1823 __acquire(rq2->lock); /* Fake it out ;) */
1824 } else {
1825 if (rq1 < rq2) {
1826 raw_spin_lock(&rq1->lock);
1827 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1828 } else {
1829 raw_spin_lock(&rq2->lock);
1830 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1831 }
1832 }
1833 }
1834
1835 /*
1836 * double_rq_unlock - safely unlock two runqueues
1837 *
1838 * Note this does not restore interrupts like task_rq_unlock,
1839 * you need to do so manually after calling.
1840 */
1841 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1842 __releases(rq1->lock)
1843 __releases(rq2->lock)
1844 {
1845 raw_spin_unlock(&rq1->lock);
1846 if (rq1 != rq2)
1847 raw_spin_unlock(&rq2->lock);
1848 else
1849 __release(rq2->lock);
1850 }
1851
1852 #else /* CONFIG_SMP */
1853
1854 /*
1855 * double_rq_lock - safely lock two runqueues
1856 *
1857 * Note this does not disable interrupts like task_rq_lock,
1858 * you need to do so manually before calling.
1859 */
1860 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1861 __acquires(rq1->lock)
1862 __acquires(rq2->lock)
1863 {
1864 BUG_ON(!irqs_disabled());
1865 BUG_ON(rq1 != rq2);
1866 raw_spin_lock(&rq1->lock);
1867 __acquire(rq2->lock); /* Fake it out ;) */
1868 }
1869
1870 /*
1871 * double_rq_unlock - safely unlock two runqueues
1872 *
1873 * Note this does not restore interrupts like task_rq_unlock,
1874 * you need to do so manually after calling.
1875 */
1876 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1877 __releases(rq1->lock)
1878 __releases(rq2->lock)
1879 {
1880 BUG_ON(rq1 != rq2);
1881 raw_spin_unlock(&rq1->lock);
1882 __release(rq2->lock);
1883 }
1884
1885 #endif
1886
1887 static void calc_load_account_idle(struct rq *this_rq);
1888 static void update_sysctl(void);
1889 static int get_update_sysctl_factor(void);
1890 static void update_cpu_load(struct rq *this_rq);
1891
1892 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1893 {
1894 set_task_rq(p, cpu);
1895 #ifdef CONFIG_SMP
1896 /*
1897 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1898 * successfuly executed on another CPU. We must ensure that updates of
1899 * per-task data have been completed by this moment.
1900 */
1901 smp_wmb();
1902 task_thread_info(p)->cpu = cpu;
1903 #endif
1904 }
1905
1906 static const struct sched_class rt_sched_class;
1907
1908 #define sched_class_highest (&stop_sched_class)
1909 #define for_each_class(class) \
1910 for (class = sched_class_highest; class; class = class->next)
1911
1912 #include "sched_stats.h"
1913
1914 static void inc_nr_running(struct rq *rq)
1915 {
1916 rq->nr_running++;
1917 }
1918
1919 static void dec_nr_running(struct rq *rq)
1920 {
1921 rq->nr_running--;
1922 }
1923
1924 static void set_load_weight(struct task_struct *p)
1925 {
1926 int prio = p->static_prio - MAX_RT_PRIO;
1927 struct load_weight *load = &p->se.load;
1928
1929 /*
1930 * SCHED_IDLE tasks get minimal weight:
1931 */
1932 if (p->policy == SCHED_IDLE) {
1933 load->weight = scale_load(WEIGHT_IDLEPRIO);
1934 load->inv_weight = WMULT_IDLEPRIO;
1935 return;
1936 }
1937
1938 load->weight = scale_load(prio_to_weight[prio]);
1939 load->inv_weight = prio_to_wmult[prio];
1940 }
1941
1942 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1943 {
1944 update_rq_clock(rq);
1945 sched_info_queued(p);
1946 p->sched_class->enqueue_task(rq, p, flags);
1947 }
1948
1949 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1950 {
1951 update_rq_clock(rq);
1952 sched_info_dequeued(p);
1953 p->sched_class->dequeue_task(rq, p, flags);
1954 }
1955
1956 /*
1957 * activate_task - move a task to the runqueue.
1958 */
1959 static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1960 {
1961 if (task_contributes_to_load(p))
1962 rq->nr_uninterruptible--;
1963
1964 enqueue_task(rq, p, flags);
1965 }
1966
1967 /*
1968 * deactivate_task - remove a task from the runqueue.
1969 */
1970 static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1971 {
1972 if (task_contributes_to_load(p))
1973 rq->nr_uninterruptible++;
1974
1975 dequeue_task(rq, p, flags);
1976 }
1977
1978 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1979
1980 /*
1981 * There are no locks covering percpu hardirq/softirq time.
1982 * They are only modified in account_system_vtime, on corresponding CPU
1983 * with interrupts disabled. So, writes are safe.
1984 * They are read and saved off onto struct rq in update_rq_clock().
1985 * This may result in other CPU reading this CPU's irq time and can
1986 * race with irq/account_system_vtime on this CPU. We would either get old
1987 * or new value with a side effect of accounting a slice of irq time to wrong
1988 * task when irq is in progress while we read rq->clock. That is a worthy
1989 * compromise in place of having locks on each irq in account_system_time.
1990 */
1991 static DEFINE_PER_CPU(u64, cpu_hardirq_time);
1992 static DEFINE_PER_CPU(u64, cpu_softirq_time);
1993
1994 static DEFINE_PER_CPU(u64, irq_start_time);
1995 static int sched_clock_irqtime;
1996
1997 void enable_sched_clock_irqtime(void)
1998 {
1999 sched_clock_irqtime = 1;
2000 }
2001
2002 void disable_sched_clock_irqtime(void)
2003 {
2004 sched_clock_irqtime = 0;
2005 }
2006
2007 #ifndef CONFIG_64BIT
2008 static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
2009
2010 static inline void irq_time_write_begin(void)
2011 {
2012 __this_cpu_inc(irq_time_seq.sequence);
2013 smp_wmb();
2014 }
2015
2016 static inline void irq_time_write_end(void)
2017 {
2018 smp_wmb();
2019 __this_cpu_inc(irq_time_seq.sequence);
2020 }
2021
2022 static inline u64 irq_time_read(int cpu)
2023 {
2024 u64 irq_time;
2025 unsigned seq;
2026
2027 do {
2028 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
2029 irq_time = per_cpu(cpu_softirq_time, cpu) +
2030 per_cpu(cpu_hardirq_time, cpu);
2031 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
2032
2033 return irq_time;
2034 }
2035 #else /* CONFIG_64BIT */
2036 static inline void irq_time_write_begin(void)
2037 {
2038 }
2039
2040 static inline void irq_time_write_end(void)
2041 {
2042 }
2043
2044 static inline u64 irq_time_read(int cpu)
2045 {
2046 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
2047 }
2048 #endif /* CONFIG_64BIT */
2049
2050 /*
2051 * Called before incrementing preempt_count on {soft,}irq_enter
2052 * and before decrementing preempt_count on {soft,}irq_exit.
2053 */
2054 void account_system_vtime(struct task_struct *curr)
2055 {
2056 unsigned long flags;
2057 s64 delta;
2058 int cpu;
2059
2060 if (!sched_clock_irqtime)
2061 return;
2062
2063 local_irq_save(flags);
2064
2065 cpu = smp_processor_id();
2066 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
2067 __this_cpu_add(irq_start_time, delta);
2068
2069 irq_time_write_begin();
2070 /*
2071 * We do not account for softirq time from ksoftirqd here.
2072 * We want to continue accounting softirq time to ksoftirqd thread
2073 * in that case, so as not to confuse scheduler with a special task
2074 * that do not consume any time, but still wants to run.
2075 */
2076 if (hardirq_count())
2077 __this_cpu_add(cpu_hardirq_time, delta);
2078 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
2079 __this_cpu_add(cpu_softirq_time, delta);
2080
2081 irq_time_write_end();
2082 local_irq_restore(flags);
2083 }
2084 EXPORT_SYMBOL_GPL(account_system_vtime);
2085
2086 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2087
2088 #ifdef CONFIG_PARAVIRT
2089 static inline u64 steal_ticks(u64 steal)
2090 {
2091 if (unlikely(steal > NSEC_PER_SEC))
2092 return div_u64(steal, TICK_NSEC);
2093
2094 return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
2095 }
2096 #endif
2097
2098 static void update_rq_clock_task(struct rq *rq, s64 delta)
2099 {
2100 /*
2101 * In theory, the compile should just see 0 here, and optimize out the call
2102 * to sched_rt_avg_update. But I don't trust it...
2103 */
2104 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
2105 s64 steal = 0, irq_delta = 0;
2106 #endif
2107 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2108 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
2109
2110 /*
2111 * Since irq_time is only updated on {soft,}irq_exit, we might run into
2112 * this case when a previous update_rq_clock() happened inside a
2113 * {soft,}irq region.
2114 *
2115 * When this happens, we stop ->clock_task and only update the
2116 * prev_irq_time stamp to account for the part that fit, so that a next
2117 * update will consume the rest. This ensures ->clock_task is
2118 * monotonic.
2119 *
2120 * It does however cause some slight miss-attribution of {soft,}irq
2121 * time, a more accurate solution would be to update the irq_time using
2122 * the current rq->clock timestamp, except that would require using
2123 * atomic ops.
2124 */
2125 if (irq_delta > delta)
2126 irq_delta = delta;
2127
2128 rq->prev_irq_time += irq_delta;
2129 delta -= irq_delta;
2130 #endif
2131 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
2132 if (static_branch((&paravirt_steal_rq_enabled))) {
2133 u64 st;
2134
2135 steal = paravirt_steal_clock(cpu_of(rq));
2136 steal -= rq->prev_steal_time_rq;
2137
2138 if (unlikely(steal > delta))
2139 steal = delta;
2140
2141 st = steal_ticks(steal);
2142 steal = st * TICK_NSEC;
2143
2144 rq->prev_steal_time_rq += steal;
2145
2146 delta -= steal;
2147 }
2148 #endif
2149
2150 rq->clock_task += delta;
2151
2152 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
2153 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
2154 sched_rt_avg_update(rq, irq_delta + steal);
2155 #endif
2156 }
2157
2158 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2159 static int irqtime_account_hi_update(void)
2160 {
2161 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2162 unsigned long flags;
2163 u64 latest_ns;
2164 int ret = 0;
2165
2166 local_irq_save(flags);
2167 latest_ns = this_cpu_read(cpu_hardirq_time);
2168 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
2169 ret = 1;
2170 local_irq_restore(flags);
2171 return ret;
2172 }
2173
2174 static int irqtime_account_si_update(void)
2175 {
2176 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2177 unsigned long flags;
2178 u64 latest_ns;
2179 int ret = 0;
2180
2181 local_irq_save(flags);
2182 latest_ns = this_cpu_read(cpu_softirq_time);
2183 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
2184 ret = 1;
2185 local_irq_restore(flags);
2186 return ret;
2187 }
2188
2189 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
2190
2191 #define sched_clock_irqtime (0)
2192
2193 #endif
2194
2195 #include "sched_idletask.c"
2196 #include "sched_fair.c"
2197 #include "sched_rt.c"
2198 #include "sched_autogroup.c"
2199 #include "sched_stoptask.c"
2200 #ifdef CONFIG_SCHED_DEBUG
2201 # include "sched_debug.c"
2202 #endif
2203
2204 void sched_set_stop_task(int cpu, struct task_struct *stop)
2205 {
2206 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2207 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2208
2209 if (stop) {
2210 /*
2211 * Make it appear like a SCHED_FIFO task, its something
2212 * userspace knows about and won't get confused about.
2213 *
2214 * Also, it will make PI more or less work without too
2215 * much confusion -- but then, stop work should not
2216 * rely on PI working anyway.
2217 */
2218 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2219
2220 stop->sched_class = &stop_sched_class;
2221 }
2222
2223 cpu_rq(cpu)->stop = stop;
2224
2225 if (old_stop) {
2226 /*
2227 * Reset it back to a normal scheduling class so that
2228 * it can die in pieces.
2229 */
2230 old_stop->sched_class = &rt_sched_class;
2231 }
2232 }
2233
2234 /*
2235 * __normal_prio - return the priority that is based on the static prio
2236 */
2237 static inline int __normal_prio(struct task_struct *p)
2238 {
2239 return p->static_prio;
2240 }
2241
2242 /*
2243 * Calculate the expected normal priority: i.e. priority
2244 * without taking RT-inheritance into account. Might be
2245 * boosted by interactivity modifiers. Changes upon fork,
2246 * setprio syscalls, and whenever the interactivity
2247 * estimator recalculates.
2248 */
2249 static inline int normal_prio(struct task_struct *p)
2250 {
2251 int prio;
2252
2253 if (task_has_rt_policy(p))
2254 prio = MAX_RT_PRIO-1 - p->rt_priority;
2255 else
2256 prio = __normal_prio(p);
2257 return prio;
2258 }
2259
2260 /*
2261 * Calculate the current priority, i.e. the priority
2262 * taken into account by the scheduler. This value might
2263 * be boosted by RT tasks, or might be boosted by
2264 * interactivity modifiers. Will be RT if the task got
2265 * RT-boosted. If not then it returns p->normal_prio.
2266 */
2267 static int effective_prio(struct task_struct *p)
2268 {
2269 p->normal_prio = normal_prio(p);
2270 /*
2271 * If we are RT tasks or we were boosted to RT priority,
2272 * keep the priority unchanged. Otherwise, update priority
2273 * to the normal priority:
2274 */
2275 if (!rt_prio(p->prio))
2276 return p->normal_prio;
2277 return p->prio;
2278 }
2279
2280 /**
2281 * task_curr - is this task currently executing on a CPU?
2282 * @p: the task in question.
2283 */
2284 inline int task_curr(const struct task_struct *p)
2285 {
2286 return cpu_curr(task_cpu(p)) == p;
2287 }
2288
2289 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2290 const struct sched_class *prev_class,
2291 int oldprio)
2292 {
2293 if (prev_class != p->sched_class) {
2294 if (prev_class->switched_from)
2295 prev_class->switched_from(rq, p);
2296 p->sched_class->switched_to(rq, p);
2297 } else if (oldprio != p->prio)
2298 p->sched_class->prio_changed(rq, p, oldprio);
2299 }
2300
2301 static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2302 {
2303 const struct sched_class *class;
2304
2305 if (p->sched_class == rq->curr->sched_class) {
2306 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2307 } else {
2308 for_each_class(class) {
2309 if (class == rq->curr->sched_class)
2310 break;
2311 if (class == p->sched_class) {
2312 resched_task(rq->curr);
2313 break;
2314 }
2315 }
2316 }
2317
2318 /*
2319 * A queue event has occurred, and we're going to schedule. In
2320 * this case, we can save a useless back to back clock update.
2321 */
2322 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
2323 rq->skip_clock_update = 1;
2324 }
2325
2326 #ifdef CONFIG_SMP
2327 /*
2328 * Is this task likely cache-hot:
2329 */
2330 static int
2331 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2332 {
2333 s64 delta;
2334
2335 if (p->sched_class != &fair_sched_class)
2336 return 0;
2337
2338 if (unlikely(p->policy == SCHED_IDLE))
2339 return 0;
2340
2341 /*
2342 * Buddy candidates are cache hot:
2343 */
2344 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
2345 (&p->se == cfs_rq_of(&p->se)->next ||
2346 &p->se == cfs_rq_of(&p->se)->last))
2347 return 1;
2348
2349 if (sysctl_sched_migration_cost == -1)
2350 return 1;
2351 if (sysctl_sched_migration_cost == 0)
2352 return 0;
2353
2354 delta = now - p->se.exec_start;
2355
2356 return delta < (s64)sysctl_sched_migration_cost;
2357 }
2358
2359 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2360 {
2361 #ifdef CONFIG_SCHED_DEBUG
2362 /*
2363 * We should never call set_task_cpu() on a blocked task,
2364 * ttwu() will sort out the placement.
2365 */
2366 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2367 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2368
2369 #ifdef CONFIG_LOCKDEP
2370 /*
2371 * The caller should hold either p->pi_lock or rq->lock, when changing
2372 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
2373 *
2374 * sched_move_task() holds both and thus holding either pins the cgroup,
2375 * see set_task_rq().
2376 *
2377 * Furthermore, all task_rq users should acquire both locks, see
2378 * task_rq_lock().
2379 */
2380 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
2381 lockdep_is_held(&task_rq(p)->lock)));
2382 #endif
2383 #endif
2384
2385 trace_sched_migrate_task(p, new_cpu);
2386
2387 if (task_cpu(p) != new_cpu) {
2388 p->se.nr_migrations++;
2389 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
2390 }
2391
2392 __set_task_cpu(p, new_cpu);
2393 }
2394
2395 struct migration_arg {
2396 struct task_struct *task;
2397 int dest_cpu;
2398 };
2399
2400 static int migration_cpu_stop(void *data);
2401
2402 /*
2403 * wait_task_inactive - wait for a thread to unschedule.
2404 *
2405 * If @match_state is nonzero, it's the @p->state value just checked and
2406 * not expected to change. If it changes, i.e. @p might have woken up,
2407 * then return zero. When we succeed in waiting for @p to be off its CPU,
2408 * we return a positive number (its total switch count). If a second call
2409 * a short while later returns the same number, the caller can be sure that
2410 * @p has remained unscheduled the whole time.
2411 *
2412 * The caller must ensure that the task *will* unschedule sometime soon,
2413 * else this function might spin for a *long* time. This function can't
2414 * be called with interrupts off, or it may introduce deadlock with
2415 * smp_call_function() if an IPI is sent by the same process we are
2416 * waiting to become inactive.
2417 */
2418 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2419 {
2420 unsigned long flags;
2421 int running, on_rq;
2422 unsigned long ncsw;
2423 struct rq *rq;
2424
2425 for (;;) {
2426 /*
2427 * We do the initial early heuristics without holding
2428 * any task-queue locks at all. We'll only try to get
2429 * the runqueue lock when things look like they will
2430 * work out!
2431 */
2432 rq = task_rq(p);
2433
2434 /*
2435 * If the task is actively running on another CPU
2436 * still, just relax and busy-wait without holding
2437 * any locks.
2438 *
2439 * NOTE! Since we don't hold any locks, it's not
2440 * even sure that "rq" stays as the right runqueue!
2441 * But we don't care, since "task_running()" will
2442 * return false if the runqueue has changed and p
2443 * is actually now running somewhere else!
2444 */
2445 while (task_running(rq, p)) {
2446 if (match_state && unlikely(p->state != match_state))
2447 return 0;
2448 cpu_relax();
2449 }
2450
2451 /*
2452 * Ok, time to look more closely! We need the rq
2453 * lock now, to be *sure*. If we're wrong, we'll
2454 * just go back and repeat.
2455 */
2456 rq = task_rq_lock(p, &flags);
2457 trace_sched_wait_task(p);
2458 running = task_running(rq, p);
2459 on_rq = p->on_rq;
2460 ncsw = 0;
2461 if (!match_state || p->state == match_state)
2462 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2463 task_rq_unlock(rq, p, &flags);
2464
2465 /*
2466 * If it changed from the expected state, bail out now.
2467 */
2468 if (unlikely(!ncsw))
2469 break;
2470
2471 /*
2472 * Was it really running after all now that we
2473 * checked with the proper locks actually held?
2474 *
2475 * Oops. Go back and try again..
2476 */
2477 if (unlikely(running)) {
2478 cpu_relax();
2479 continue;
2480 }
2481
2482 /*
2483 * It's not enough that it's not actively running,
2484 * it must be off the runqueue _entirely_, and not
2485 * preempted!
2486 *
2487 * So if it was still runnable (but just not actively
2488 * running right now), it's preempted, and we should
2489 * yield - it could be a while.
2490 */
2491 if (unlikely(on_rq)) {
2492 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
2493
2494 set_current_state(TASK_UNINTERRUPTIBLE);
2495 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
2496 continue;
2497 }
2498
2499 /*
2500 * Ahh, all good. It wasn't running, and it wasn't
2501 * runnable, which means that it will never become
2502 * running in the future either. We're all done!
2503 */
2504 break;
2505 }
2506
2507 return ncsw;
2508 }
2509
2510 /***
2511 * kick_process - kick a running thread to enter/exit the kernel
2512 * @p: the to-be-kicked thread
2513 *
2514 * Cause a process which is running on another CPU to enter
2515 * kernel-mode, without any delay. (to get signals handled.)
2516 *
2517 * NOTE: this function doesn't have to take the runqueue lock,
2518 * because all it wants to ensure is that the remote task enters
2519 * the kernel. If the IPI races and the task has been migrated
2520 * to another CPU then no harm is done and the purpose has been
2521 * achieved as well.
2522 */
2523 void kick_process(struct task_struct *p)
2524 {
2525 int cpu;
2526
2527 preempt_disable();
2528 cpu = task_cpu(p);
2529 if ((cpu != smp_processor_id()) && task_curr(p))
2530 smp_send_reschedule(cpu);
2531 preempt_enable();
2532 }
2533 EXPORT_SYMBOL_GPL(kick_process);
2534 #endif /* CONFIG_SMP */
2535
2536 #ifdef CONFIG_SMP
2537 /*
2538 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
2539 */
2540 static int select_fallback_rq(int cpu, struct task_struct *p)
2541 {
2542 int dest_cpu;
2543 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2544
2545 /* Look for allowed, online CPU in same node. */
2546 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2547 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2548 return dest_cpu;
2549
2550 /* Any allowed, online CPU? */
2551 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2552 if (dest_cpu < nr_cpu_ids)
2553 return dest_cpu;
2554
2555 /* No more Mr. Nice Guy. */
2556 dest_cpu = cpuset_cpus_allowed_fallback(p);
2557 /*
2558 * Don't tell them about moving exiting tasks or
2559 * kernel threads (both mm NULL), since they never
2560 * leave kernel.
2561 */
2562 if (p->mm && printk_ratelimit()) {
2563 printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
2564 task_pid_nr(p), p->comm, cpu);
2565 }
2566
2567 return dest_cpu;
2568 }
2569
2570 /*
2571 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
2572 */
2573 static inline
2574 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
2575 {
2576 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
2577
2578 /*
2579 * In order not to call set_task_cpu() on a blocking task we need
2580 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2581 * cpu.
2582 *
2583 * Since this is common to all placement strategies, this lives here.
2584 *
2585 * [ this allows ->select_task() to simply return task_cpu(p) and
2586 * not worry about this generic constraint ]
2587 */
2588 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
2589 !cpu_online(cpu)))
2590 cpu = select_fallback_rq(task_cpu(p), p);
2591
2592 return cpu;
2593 }
2594
2595 static void update_avg(u64 *avg, u64 sample)
2596 {
2597 s64 diff = sample - *avg;
2598 *avg += diff >> 3;
2599 }
2600 #endif
2601
2602 static void
2603 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
2604 {
2605 #ifdef CONFIG_SCHEDSTATS
2606 struct rq *rq = this_rq();
2607
2608 #ifdef CONFIG_SMP
2609 int this_cpu = smp_processor_id();
2610
2611 if (cpu == this_cpu) {
2612 schedstat_inc(rq, ttwu_local);
2613 schedstat_inc(p, se.statistics.nr_wakeups_local);
2614 } else {
2615 struct sched_domain *sd;
2616
2617 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2618 rcu_read_lock();
2619 for_each_domain(this_cpu, sd) {
2620 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2621 schedstat_inc(sd, ttwu_wake_remote);
2622 break;
2623 }
2624 }
2625 rcu_read_unlock();
2626 }
2627
2628 if (wake_flags & WF_MIGRATED)
2629 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2630
2631 #endif /* CONFIG_SMP */
2632
2633 schedstat_inc(rq, ttwu_count);
2634 schedstat_inc(p, se.statistics.nr_wakeups);
2635
2636 if (wake_flags & WF_SYNC)
2637 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2638
2639 #endif /* CONFIG_SCHEDSTATS */
2640 }
2641
2642 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
2643 {
2644 activate_task(rq, p, en_flags);
2645 p->on_rq = 1;
2646
2647 /* if a worker is waking up, notify workqueue */
2648 if (p->flags & PF_WQ_WORKER)
2649 wq_worker_waking_up(p, cpu_of(rq));
2650 }
2651
2652 /*
2653 * Mark the task runnable and perform wakeup-preemption.
2654 */
2655 static void
2656 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
2657 {
2658 trace_sched_wakeup(p, true);
2659 check_preempt_curr(rq, p, wake_flags);
2660
2661 p->state = TASK_RUNNING;
2662 #ifdef CONFIG_SMP
2663 if (p->sched_class->task_woken)
2664 p->sched_class->task_woken(rq, p);
2665
2666 if (rq->idle_stamp) {
2667 u64 delta = rq->clock - rq->idle_stamp;
2668 u64 max = 2*sysctl_sched_migration_cost;
2669
2670 if (delta > max)
2671 rq->avg_idle = max;
2672 else
2673 update_avg(&rq->avg_idle, delta);
2674 rq->idle_stamp = 0;
2675 }
2676 #endif
2677 }
2678
2679 static void
2680 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
2681 {
2682 #ifdef CONFIG_SMP
2683 if (p->sched_contributes_to_load)
2684 rq->nr_uninterruptible--;
2685 #endif
2686
2687 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
2688 ttwu_do_wakeup(rq, p, wake_flags);
2689 }
2690
2691 /*
2692 * Called in case the task @p isn't fully descheduled from its runqueue,
2693 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2694 * since all we need to do is flip p->state to TASK_RUNNING, since
2695 * the task is still ->on_rq.
2696 */
2697 static int ttwu_remote(struct task_struct *p, int wake_flags)
2698 {
2699 struct rq *rq;
2700 int ret = 0;
2701
2702 rq = __task_rq_lock(p);
2703 if (p->on_rq) {
2704 ttwu_do_wakeup(rq, p, wake_flags);
2705 ret = 1;
2706 }
2707 __task_rq_unlock(rq);
2708
2709 return ret;
2710 }
2711
2712 #ifdef CONFIG_SMP
2713 static void sched_ttwu_pending(void)
2714 {
2715 struct rq *rq = this_rq();
2716 struct llist_node *llist = llist_del_all(&rq->wake_list);
2717 struct task_struct *p;
2718
2719 raw_spin_lock(&rq->lock);
2720
2721 while (llist) {
2722 p = llist_entry(llist, struct task_struct, wake_entry);
2723 llist = llist_next(llist);
2724 ttwu_do_activate(rq, p, 0);
2725 }
2726
2727 raw_spin_unlock(&rq->lock);
2728 }
2729
2730 void scheduler_ipi(void)
2731 {
2732 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
2733 return;
2734
2735 /*
2736 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
2737 * traditionally all their work was done from the interrupt return
2738 * path. Now that we actually do some work, we need to make sure
2739 * we do call them.
2740 *
2741 * Some archs already do call them, luckily irq_enter/exit nest
2742 * properly.
2743 *
2744 * Arguably we should visit all archs and update all handlers,
2745 * however a fair share of IPIs are still resched only so this would
2746 * somewhat pessimize the simple resched case.
2747 */
2748 irq_enter();
2749 sched_ttwu_pending();
2750
2751 /*
2752 * Check if someone kicked us for doing the nohz idle load balance.
2753 */
2754 if (unlikely(got_nohz_idle_kick() && !need_resched()))
2755 raise_softirq_irqoff(SCHED_SOFTIRQ);
2756 irq_exit();
2757 }
2758
2759 static void ttwu_queue_remote(struct task_struct *p, int cpu)
2760 {
2761 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
2762 smp_send_reschedule(cpu);
2763 }
2764
2765 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2766 static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
2767 {
2768 struct rq *rq;
2769 int ret = 0;
2770
2771 rq = __task_rq_lock(p);
2772 if (p->on_cpu) {
2773 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2774 ttwu_do_wakeup(rq, p, wake_flags);
2775 ret = 1;
2776 }
2777 __task_rq_unlock(rq);
2778
2779 return ret;
2780
2781 }
2782 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2783 #endif /* CONFIG_SMP */
2784
2785 static void ttwu_queue(struct task_struct *p, int cpu)
2786 {
2787 struct rq *rq = cpu_rq(cpu);
2788
2789 #if defined(CONFIG_SMP)
2790 if (sched_feat(TTWU_QUEUE) && cpu != smp_processor_id()) {
2791 sched_clock_cpu(cpu); /* sync clocks x-cpu */
2792 ttwu_queue_remote(p, cpu);
2793 return;
2794 }
2795 #endif
2796
2797 raw_spin_lock(&rq->lock);
2798 ttwu_do_activate(rq, p, 0);
2799 raw_spin_unlock(&rq->lock);
2800 }
2801
2802 /**
2803 * try_to_wake_up - wake up a thread
2804 * @p: the thread to be awakened
2805 * @state: the mask of task states that can be woken
2806 * @wake_flags: wake modifier flags (WF_*)
2807 *
2808 * Put it on the run-queue if it's not already there. The "current"
2809 * thread is always on the run-queue (except when the actual
2810 * re-schedule is in progress), and as such you're allowed to do
2811 * the simpler "current->state = TASK_RUNNING" to mark yourself
2812 * runnable without the overhead of this.
2813 *
2814 * Returns %true if @p was woken up, %false if it was already running
2815 * or @state didn't match @p's state.
2816 */
2817 static int
2818 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
2819 {
2820 unsigned long flags;
2821 int cpu, success = 0;
2822
2823 smp_wmb();
2824 raw_spin_lock_irqsave(&p->pi_lock, flags);
2825 if (!(p->state & state))
2826 goto out;
2827
2828 success = 1; /* we're going to change ->state */
2829 cpu = task_cpu(p);
2830
2831 if (p->on_rq && ttwu_remote(p, wake_flags))
2832 goto stat;
2833
2834 #ifdef CONFIG_SMP
2835 /*
2836 * If the owning (remote) cpu is still in the middle of schedule() with
2837 * this task as prev, wait until its done referencing the task.
2838 */
2839 while (p->on_cpu) {
2840 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2841 /*
2842 * In case the architecture enables interrupts in
2843 * context_switch(), we cannot busy wait, since that
2844 * would lead to deadlocks when an interrupt hits and
2845 * tries to wake up @prev. So bail and do a complete
2846 * remote wakeup.
2847 */
2848 if (ttwu_activate_remote(p, wake_flags))
2849 goto stat;
2850 #else
2851 cpu_relax();
2852 #endif
2853 }
2854 /*
2855 * Pairs with the smp_wmb() in finish_lock_switch().
2856 */
2857 smp_rmb();
2858
2859 p->sched_contributes_to_load = !!task_contributes_to_load(p);
2860 p->state = TASK_WAKING;
2861
2862 if (p->sched_class->task_waking)
2863 p->sched_class->task_waking(p);
2864
2865 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
2866 if (task_cpu(p) != cpu) {
2867 wake_flags |= WF_MIGRATED;
2868 set_task_cpu(p, cpu);
2869 }
2870 #endif /* CONFIG_SMP */
2871
2872 ttwu_queue(p, cpu);
2873 stat:
2874 ttwu_stat(p, cpu, wake_flags);
2875 out:
2876 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2877
2878 return success;
2879 }
2880
2881 /**
2882 * try_to_wake_up_local - try to wake up a local task with rq lock held
2883 * @p: the thread to be awakened
2884 *
2885 * Put @p on the run-queue if it's not already there. The caller must
2886 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2887 * the current task.
2888 */
2889 static void try_to_wake_up_local(struct task_struct *p)
2890 {
2891 struct rq *rq = task_rq(p);
2892
2893 BUG_ON(rq != this_rq());
2894 BUG_ON(p == current);
2895 lockdep_assert_held(&rq->lock);
2896
2897 if (!raw_spin_trylock(&p->pi_lock)) {
2898 raw_spin_unlock(&rq->lock);
2899 raw_spin_lock(&p->pi_lock);
2900 raw_spin_lock(&rq->lock);
2901 }
2902
2903 if (!(p->state & TASK_NORMAL))
2904 goto out;
2905
2906 if (!p->on_rq)
2907 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2908
2909 ttwu_do_wakeup(rq, p, 0);
2910 ttwu_stat(p, smp_processor_id(), 0);
2911 out:
2912 raw_spin_unlock(&p->pi_lock);
2913 }
2914
2915 /**
2916 * wake_up_process - Wake up a specific process
2917 * @p: The process to be woken up.
2918 *
2919 * Attempt to wake up the nominated process and move it to the set of runnable
2920 * processes. Returns 1 if the process was woken up, 0 if it was already
2921 * running.
2922 *
2923 * It may be assumed that this function implies a write memory barrier before
2924 * changing the task state if and only if any tasks are woken up.
2925 */
2926 int wake_up_process(struct task_struct *p)
2927 {
2928 return try_to_wake_up(p, TASK_ALL, 0);
2929 }
2930 EXPORT_SYMBOL(wake_up_process);
2931
2932 int wake_up_state(struct task_struct *p, unsigned int state)
2933 {
2934 return try_to_wake_up(p, state, 0);
2935 }
2936
2937 /*
2938 * Perform scheduler related setup for a newly forked process p.
2939 * p is forked by current.
2940 *
2941 * __sched_fork() is basic setup used by init_idle() too:
2942 */
2943 static void __sched_fork(struct task_struct *p)
2944 {
2945 p->on_rq = 0;
2946
2947 p->se.on_rq = 0;
2948 p->se.exec_start = 0;
2949 p->se.sum_exec_runtime = 0;
2950 p->se.prev_sum_exec_runtime = 0;
2951 p->se.nr_migrations = 0;
2952 p->se.vruntime = 0;
2953 INIT_LIST_HEAD(&p->se.group_node);
2954
2955 #ifdef CONFIG_SCHEDSTATS
2956 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2957 #endif
2958
2959 INIT_LIST_HEAD(&p->rt.run_list);
2960
2961 #ifdef CONFIG_PREEMPT_NOTIFIERS
2962 INIT_HLIST_HEAD(&p->preempt_notifiers);
2963 #endif
2964 }
2965
2966 /*
2967 * fork()/clone()-time setup:
2968 */
2969 void sched_fork(struct task_struct *p)
2970 {
2971 unsigned long flags;
2972 int cpu = get_cpu();
2973
2974 __sched_fork(p);
2975 /*
2976 * We mark the process as running here. This guarantees that
2977 * nobody will actually run it, and a signal or other external
2978 * event cannot wake it up and insert it on the runqueue either.
2979 */
2980 p->state = TASK_RUNNING;
2981
2982 /*
2983 * Make sure we do not leak PI boosting priority to the child.
2984 */
2985 p->prio = current->normal_prio;
2986
2987 /*
2988 * Revert to default priority/policy on fork if requested.
2989 */
2990 if (unlikely(p->sched_reset_on_fork)) {
2991 if (task_has_rt_policy(p)) {
2992 p->policy = SCHED_NORMAL;
2993 p->static_prio = NICE_TO_PRIO(0);
2994 p->rt_priority = 0;
2995 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2996 p->static_prio = NICE_TO_PRIO(0);
2997
2998 p->prio = p->normal_prio = __normal_prio(p);
2999 set_load_weight(p);
3000
3001 /*
3002 * We don't need the reset flag anymore after the fork. It has
3003 * fulfilled its duty:
3004 */
3005 p->sched_reset_on_fork = 0;
3006 }
3007
3008 if (!rt_prio(p->prio))
3009 p->sched_class = &fair_sched_class;
3010
3011 if (p->sched_class->task_fork)
3012 p->sched_class->task_fork(p);
3013
3014 /*
3015 * The child is not yet in the pid-hash so no cgroup attach races,
3016 * and the cgroup is pinned to this child due to cgroup_fork()
3017 * is ran before sched_fork().
3018 *
3019 * Silence PROVE_RCU.
3020 */
3021 raw_spin_lock_irqsave(&p->pi_lock, flags);
3022 set_task_cpu(p, cpu);
3023 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3024
3025 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
3026 if (likely(sched_info_on()))
3027 memset(&p->sched_info, 0, sizeof(p->sched_info));
3028 #endif
3029 #if defined(CONFIG_SMP)
3030 p->on_cpu = 0;
3031 #endif
3032 #ifdef CONFIG_PREEMPT_COUNT
3033 /* Want to start with kernel preemption disabled. */
3034 task_thread_info(p)->preempt_count = 1;
3035 #endif
3036 #ifdef CONFIG_SMP
3037 plist_node_init(&p->pushable_tasks, MAX_PRIO);
3038 #endif
3039
3040 put_cpu();
3041 }
3042
3043 /*
3044 * wake_up_new_task - wake up a newly created task for the first time.
3045 *
3046 * This function will do some initial scheduler statistics housekeeping
3047 * that must be done for every newly created context, then puts the task
3048 * on the runqueue and wakes it.
3049 */
3050 void wake_up_new_task(struct task_struct *p)
3051 {
3052 unsigned long flags;
3053 struct rq *rq;
3054
3055 raw_spin_lock_irqsave(&p->pi_lock, flags);
3056 #ifdef CONFIG_SMP
3057 /*
3058 * Fork balancing, do it here and not earlier because:
3059 * - cpus_allowed can change in the fork path
3060 * - any previously selected cpu might disappear through hotplug
3061 */
3062 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
3063 #endif
3064
3065 rq = __task_rq_lock(p);
3066 activate_task(rq, p, 0);
3067 p->on_rq = 1;
3068 trace_sched_wakeup_new(p, true);
3069 check_preempt_curr(rq, p, WF_FORK);
3070 #ifdef CONFIG_SMP
3071 if (p->sched_class->task_woken)
3072 p->sched_class->task_woken(rq, p);
3073 #endif
3074 task_rq_unlock(rq, p, &flags);
3075 }
3076
3077 #ifdef CONFIG_PREEMPT_NOTIFIERS
3078
3079 /**
3080 * preempt_notifier_register - tell me when current is being preempted & rescheduled
3081 * @notifier: notifier struct to register
3082 */
3083 void preempt_notifier_register(struct preempt_notifier *notifier)
3084 {
3085 hlist_add_head(&notifier->link, &current->preempt_notifiers);
3086 }
3087 EXPORT_SYMBOL_GPL(preempt_notifier_register);
3088
3089 /**
3090 * preempt_notifier_unregister - no longer interested in preemption notifications
3091 * @notifier: notifier struct to unregister
3092 *
3093 * This is safe to call from within a preemption notifier.
3094 */
3095 void preempt_notifier_unregister(struct preempt_notifier *notifier)
3096 {
3097 hlist_del(&notifier->link);
3098 }
3099 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
3100
3101 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3102 {
3103 struct preempt_notifier *notifier;
3104 struct hlist_node *node;
3105
3106 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
3107 notifier->ops->sched_in(notifier, raw_smp_processor_id());
3108 }
3109
3110 static void
3111 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3112 struct task_struct *next)
3113 {
3114 struct preempt_notifier *notifier;
3115 struct hlist_node *node;
3116
3117 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
3118 notifier->ops->sched_out(notifier, next);
3119 }
3120
3121 #else /* !CONFIG_PREEMPT_NOTIFIERS */
3122
3123 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3124 {
3125 }
3126
3127 static void
3128 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3129 struct task_struct *next)
3130 {
3131 }
3132
3133 #endif /* CONFIG_PREEMPT_NOTIFIERS */
3134
3135 /**
3136 * prepare_task_switch - prepare to switch tasks
3137 * @rq: the runqueue preparing to switch
3138 * @prev: the current task that is being switched out
3139 * @next: the task we are going to switch to.
3140 *
3141 * This is called with the rq lock held and interrupts off. It must
3142 * be paired with a subsequent finish_task_switch after the context
3143 * switch.
3144 *
3145 * prepare_task_switch sets up locking and calls architecture specific
3146 * hooks.
3147 */
3148 static inline void
3149 prepare_task_switch(struct rq *rq, struct task_struct *prev,
3150 struct task_struct *next)
3151 {
3152 sched_info_switch(prev, next);
3153 perf_event_task_sched_out(prev, next);
3154 fire_sched_out_preempt_notifiers(prev, next);
3155 prepare_lock_switch(rq, next);
3156 prepare_arch_switch(next);
3157 trace_sched_switch(prev, next);
3158 }
3159
3160 /**
3161 * finish_task_switch - clean up after a task-switch
3162 * @rq: runqueue associated with task-switch
3163 * @prev: the thread we just switched away from.
3164 *
3165 * finish_task_switch must be called after the context switch, paired
3166 * with a prepare_task_switch call before the context switch.
3167 * finish_task_switch will reconcile locking set up by prepare_task_switch,
3168 * and do any other architecture-specific cleanup actions.
3169 *
3170 * Note that we may have delayed dropping an mm in context_switch(). If
3171 * so, we finish that here outside of the runqueue lock. (Doing it
3172 * with the lock held can cause deadlocks; see schedule() for
3173 * details.)
3174 */
3175 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
3176 __releases(rq->lock)
3177 {
3178 struct mm_struct *mm = rq->prev_mm;
3179 long prev_state;
3180
3181 rq->prev_mm = NULL;
3182
3183 /*
3184 * A task struct has one reference for the use as "current".
3185 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
3186 * schedule one last time. The schedule call will never return, and
3187 * the scheduled task must drop that reference.
3188 * The test for TASK_DEAD must occur while the runqueue locks are
3189 * still held, otherwise prev could be scheduled on another cpu, die
3190 * there before we look at prev->state, and then the reference would
3191 * be dropped twice.
3192 * Manfred Spraul <manfred@colorfullife.com>
3193 */
3194 prev_state = prev->state;
3195 finish_arch_switch(prev);
3196 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
3197 local_irq_disable();
3198 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
3199 perf_event_task_sched_in(prev, current);
3200 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
3201 local_irq_enable();
3202 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
3203 finish_lock_switch(rq, prev);
3204
3205 fire_sched_in_preempt_notifiers(current);
3206 if (mm)
3207 mmdrop(mm);
3208 if (unlikely(prev_state == TASK_DEAD)) {
3209 /*
3210 * Remove function-return probe instances associated with this
3211 * task and put them back on the free list.
3212 */
3213 kprobe_flush_task(prev);
3214 put_task_struct(prev);
3215 }
3216 }
3217
3218 #ifdef CONFIG_SMP
3219
3220 /* assumes rq->lock is held */
3221 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
3222 {
3223 if (prev->sched_class->pre_schedule)
3224 prev->sched_class->pre_schedule(rq, prev);
3225 }
3226
3227 /* rq->lock is NOT held, but preemption is disabled */
3228 static inline void post_schedule(struct rq *rq)
3229 {
3230 if (rq->post_schedule) {
3231 unsigned long flags;
3232
3233 raw_spin_lock_irqsave(&rq->lock, flags);
3234 if (rq->curr->sched_class->post_schedule)
3235 rq->curr->sched_class->post_schedule(rq);
3236 raw_spin_unlock_irqrestore(&rq->lock, flags);
3237
3238 rq->post_schedule = 0;
3239 }
3240 }
3241
3242 #else
3243
3244 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
3245 {
3246 }
3247
3248 static inline void post_schedule(struct rq *rq)
3249 {
3250 }
3251
3252 #endif
3253
3254 /**
3255 * schedule_tail - first thing a freshly forked thread must call.
3256 * @prev: the thread we just switched away from.
3257 */
3258 asmlinkage void schedule_tail(struct task_struct *prev)
3259 __releases(rq->lock)
3260 {
3261 struct rq *rq = this_rq();
3262
3263 finish_task_switch(rq, prev);
3264
3265 /*
3266 * FIXME: do we need to worry about rq being invalidated by the
3267 * task_switch?
3268 */
3269 post_schedule(rq);
3270
3271 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
3272 /* In this case, finish_task_switch does not reenable preemption */
3273 preempt_enable();
3274 #endif
3275 if (current->set_child_tid)
3276 put_user(task_pid_vnr(current), current->set_child_tid);
3277 }
3278
3279 /*
3280 * context_switch - switch to the new MM and the new
3281 * thread's register state.
3282 */
3283 static inline void
3284 context_switch(struct rq *rq, struct task_struct *prev,
3285 struct task_struct *next)
3286 {
3287 struct mm_struct *mm, *oldmm;
3288
3289 prepare_task_switch(rq, prev, next);
3290
3291 mm = next->mm;
3292 oldmm = prev->active_mm;
3293 /*
3294 * For paravirt, this is coupled with an exit in switch_to to
3295 * combine the page table reload and the switch backend into
3296 * one hypercall.
3297 */
3298 arch_start_context_switch(prev);
3299
3300 if (!mm) {
3301 next->active_mm = oldmm;
3302 atomic_inc(&oldmm->mm_count);
3303 enter_lazy_tlb(oldmm, next);
3304 } else
3305 switch_mm(oldmm, mm, next);
3306
3307 if (!prev->mm) {
3308 prev->active_mm = NULL;
3309 rq->prev_mm = oldmm;
3310 }
3311 /*
3312 * Since the runqueue lock will be released by the next
3313 * task (which is an invalid locking op but in the case
3314 * of the scheduler it's an obvious special-case), so we
3315 * do an early lockdep release here:
3316 */
3317 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
3318 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3319 #endif
3320
3321 /* Here we just switch the register state and the stack. */
3322 switch_to(prev, next, prev);
3323
3324 barrier();
3325 /*
3326 * this_rq must be evaluated again because prev may have moved
3327 * CPUs since it called schedule(), thus the 'rq' on its stack
3328 * frame will be invalid.
3329 */
3330 finish_task_switch(this_rq(), prev);
3331 }
3332
3333 /*
3334 * nr_running, nr_uninterruptible and nr_context_switches:
3335 *
3336 * externally visible scheduler statistics: current number of runnable
3337 * threads, current number of uninterruptible-sleeping threads, total
3338 * number of context switches performed since bootup.
3339 */
3340 unsigned long nr_running(void)
3341 {
3342 unsigned long i, sum = 0;
3343
3344 for_each_online_cpu(i)
3345 sum += cpu_rq(i)->nr_running;
3346
3347 return sum;
3348 }
3349
3350 unsigned long nr_uninterruptible(void)
3351 {
3352 unsigned long i, sum = 0;
3353
3354 for_each_possible_cpu(i)
3355 sum += cpu_rq(i)->nr_uninterruptible;
3356
3357 /*
3358 * Since we read the counters lockless, it might be slightly
3359 * inaccurate. Do not allow it to go below zero though:
3360 */
3361 if (unlikely((long)sum < 0))
3362 sum = 0;
3363
3364 return sum;
3365 }
3366
3367 unsigned long long nr_context_switches(void)
3368 {
3369 int i;
3370 unsigned long long sum = 0;
3371
3372 for_each_possible_cpu(i)
3373 sum += cpu_rq(i)->nr_switches;
3374
3375 return sum;
3376 }
3377
3378 unsigned long nr_iowait(void)
3379 {
3380 unsigned long i, sum = 0;
3381
3382 for_each_possible_cpu(i)
3383 sum += atomic_read(&cpu_rq(i)->nr_iowait);
3384
3385 return sum;
3386 }
3387
3388 unsigned long nr_iowait_cpu(int cpu)
3389 {
3390 struct rq *this = cpu_rq(cpu);
3391 return atomic_read(&this->nr_iowait);
3392 }
3393
3394 unsigned long this_cpu_load(void)
3395 {
3396 struct rq *this = this_rq();
3397 return this->cpu_load[0];
3398 }
3399
3400
3401 /* Variables and functions for calc_load */
3402 static atomic_long_t calc_load_tasks;
3403 static unsigned long calc_load_update;
3404 unsigned long avenrun[3];
3405 EXPORT_SYMBOL(avenrun);
3406
3407 static long calc_load_fold_active(struct rq *this_rq)
3408 {
3409 long nr_active, delta = 0;
3410
3411 nr_active = this_rq->nr_running;
3412 nr_active += (long) this_rq->nr_uninterruptible;
3413
3414 if (nr_active != this_rq->calc_load_active) {
3415 delta = nr_active - this_rq->calc_load_active;
3416 this_rq->calc_load_active = nr_active;
3417 }
3418
3419 return delta;
3420 }
3421
3422 static unsigned long
3423 calc_load(unsigned long load, unsigned long exp, unsigned long active)
3424 {
3425 load *= exp;
3426 load += active * (FIXED_1 - exp);
3427 load += 1UL << (FSHIFT - 1);
3428 return load >> FSHIFT;
3429 }
3430
3431 #ifdef CONFIG_NO_HZ
3432 /*
3433 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3434 *
3435 * When making the ILB scale, we should try to pull this in as well.
3436 */
3437 static atomic_long_t calc_load_tasks_idle;
3438
3439 static void calc_load_account_idle(struct rq *this_rq)
3440 {
3441 long delta;
3442
3443 delta = calc_load_fold_active(this_rq);
3444 if (delta)
3445 atomic_long_add(delta, &calc_load_tasks_idle);
3446 }
3447
3448 static long calc_load_fold_idle(void)
3449 {
3450 long delta = 0;
3451
3452 /*
3453 * Its got a race, we don't care...
3454 */
3455 if (atomic_long_read(&calc_load_tasks_idle))
3456 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
3457
3458 return delta;
3459 }
3460
3461 /**
3462 * fixed_power_int - compute: x^n, in O(log n) time
3463 *
3464 * @x: base of the power
3465 * @frac_bits: fractional bits of @x
3466 * @n: power to raise @x to.
3467 *
3468 * By exploiting the relation between the definition of the natural power
3469 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3470 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3471 * (where: n_i \elem {0, 1}, the binary vector representing n),
3472 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3473 * of course trivially computable in O(log_2 n), the length of our binary
3474 * vector.
3475 */
3476 static unsigned long
3477 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
3478 {
3479 unsigned long result = 1UL << frac_bits;
3480
3481 if (n) for (;;) {
3482 if (n & 1) {
3483 result *= x;
3484 result += 1UL << (frac_bits - 1);
3485 result >>= frac_bits;
3486 }
3487 n >>= 1;
3488 if (!n)
3489 break;
3490 x *= x;
3491 x += 1UL << (frac_bits - 1);
3492 x >>= frac_bits;
3493 }
3494
3495 return result;
3496 }
3497
3498 /*
3499 * a1 = a0 * e + a * (1 - e)
3500 *
3501 * a2 = a1 * e + a * (1 - e)
3502 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3503 * = a0 * e^2 + a * (1 - e) * (1 + e)
3504 *
3505 * a3 = a2 * e + a * (1 - e)
3506 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3507 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3508 *
3509 * ...
3510 *
3511 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3512 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3513 * = a0 * e^n + a * (1 - e^n)
3514 *
3515 * [1] application of the geometric series:
3516 *
3517 * n 1 - x^(n+1)
3518 * S_n := \Sum x^i = -------------
3519 * i=0 1 - x
3520 */
3521 static unsigned long
3522 calc_load_n(unsigned long load, unsigned long exp,
3523 unsigned long active, unsigned int n)
3524 {
3525
3526 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
3527 }
3528
3529 /*
3530 * NO_HZ can leave us missing all per-cpu ticks calling
3531 * calc_load_account_active(), but since an idle CPU folds its delta into
3532 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3533 * in the pending idle delta if our idle period crossed a load cycle boundary.
3534 *
3535 * Once we've updated the global active value, we need to apply the exponential
3536 * weights adjusted to the number of cycles missed.
3537 */
3538 static void calc_global_nohz(unsigned long ticks)
3539 {
3540 long delta, active, n;
3541
3542 if (time_before(jiffies, calc_load_update))
3543 return;
3544
3545 /*
3546 * If we crossed a calc_load_update boundary, make sure to fold
3547 * any pending idle changes, the respective CPUs might have
3548 * missed the tick driven calc_load_account_active() update
3549 * due to NO_HZ.
3550 */
3551 delta = calc_load_fold_idle();
3552 if (delta)
3553 atomic_long_add(delta, &calc_load_tasks);
3554
3555 /*
3556 * If we were idle for multiple load cycles, apply them.
3557 */
3558 if (ticks >= LOAD_FREQ) {
3559 n = ticks / LOAD_FREQ;
3560
3561 active = atomic_long_read(&calc_load_tasks);
3562 active = active > 0 ? active * FIXED_1 : 0;
3563
3564 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
3565 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
3566 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
3567
3568 calc_load_update += n * LOAD_FREQ;
3569 }
3570
3571 /*
3572 * Its possible the remainder of the above division also crosses
3573 * a LOAD_FREQ period, the regular check in calc_global_load()
3574 * which comes after this will take care of that.
3575 *
3576 * Consider us being 11 ticks before a cycle completion, and us
3577 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
3578 * age us 4 cycles, and the test in calc_global_load() will
3579 * pick up the final one.
3580 */
3581 }
3582 #else
3583 static void calc_load_account_idle(struct rq *this_rq)
3584 {
3585 }
3586
3587 static inline long calc_load_fold_idle(void)
3588 {
3589 return 0;
3590 }
3591
3592 static void calc_global_nohz(unsigned long ticks)
3593 {
3594 }
3595 #endif
3596
3597 /**
3598 * get_avenrun - get the load average array
3599 * @loads: pointer to dest load array
3600 * @offset: offset to add
3601 * @shift: shift count to shift the result left
3602 *
3603 * These values are estimates at best, so no need for locking.
3604 */
3605 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3606 {
3607 loads[0] = (avenrun[0] + offset) << shift;
3608 loads[1] = (avenrun[1] + offset) << shift;
3609 loads[2] = (avenrun[2] + offset) << shift;
3610 }
3611
3612 /*
3613 * calc_load - update the avenrun load estimates 10 ticks after the
3614 * CPUs have updated calc_load_tasks.
3615 */
3616 void calc_global_load(unsigned long ticks)
3617 {
3618 long active;
3619
3620 calc_global_nohz(ticks);
3621
3622 if (time_before(jiffies, calc_load_update + 10))
3623 return;
3624
3625 active = atomic_long_read(&calc_load_tasks);
3626 active = active > 0 ? active * FIXED_1 : 0;
3627
3628 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3629 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3630 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3631
3632 calc_load_update += LOAD_FREQ;
3633 }
3634
3635 /*
3636 * Called from update_cpu_load() to periodically update this CPU's
3637 * active count.
3638 */
3639 static void calc_load_account_active(struct rq *this_rq)
3640 {
3641 long delta;
3642
3643 if (time_before(jiffies, this_rq->calc_load_update))
3644 return;
3645
3646 delta = calc_load_fold_active(this_rq);
3647 delta += calc_load_fold_idle();
3648 if (delta)
3649 atomic_long_add(delta, &calc_load_tasks);
3650
3651 this_rq->calc_load_update += LOAD_FREQ;
3652 }
3653
3654 /*
3655 * The exact cpuload at various idx values, calculated at every tick would be
3656 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3657 *
3658 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3659 * on nth tick when cpu may be busy, then we have:
3660 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3661 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3662 *
3663 * decay_load_missed() below does efficient calculation of
3664 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3665 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3666 *
3667 * The calculation is approximated on a 128 point scale.
3668 * degrade_zero_ticks is the number of ticks after which load at any
3669 * particular idx is approximated to be zero.
3670 * degrade_factor is a precomputed table, a row for each load idx.
3671 * Each column corresponds to degradation factor for a power of two ticks,
3672 * based on 128 point scale.
3673 * Example:
3674 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3675 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3676 *
3677 * With this power of 2 load factors, we can degrade the load n times
3678 * by looking at 1 bits in n and doing as many mult/shift instead of
3679 * n mult/shifts needed by the exact degradation.
3680 */
3681 #define DEGRADE_SHIFT 7
3682 static const unsigned char
3683 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3684 static const unsigned char
3685 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3686 {0, 0, 0, 0, 0, 0, 0, 0},
3687 {64, 32, 8, 0, 0, 0, 0, 0},
3688 {96, 72, 40, 12, 1, 0, 0},
3689 {112, 98, 75, 43, 15, 1, 0},
3690 {120, 112, 98, 76, 45, 16, 2} };
3691
3692 /*
3693 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3694 * would be when CPU is idle and so we just decay the old load without
3695 * adding any new load.
3696 */
3697 static unsigned long
3698 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3699 {
3700 int j = 0;
3701
3702 if (!missed_updates)
3703 return load;
3704
3705 if (missed_updates >= degrade_zero_ticks[idx])
3706 return 0;
3707
3708 if (idx == 1)
3709 return load >> missed_updates;
3710
3711 while (missed_updates) {
3712 if (missed_updates % 2)
3713 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3714
3715 missed_updates >>= 1;
3716 j++;
3717 }
3718 return load;
3719 }
3720
3721 /*
3722 * Update rq->cpu_load[] statistics. This function is usually called every
3723 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3724 * every tick. We fix it up based on jiffies.
3725 */
3726 static void update_cpu_load(struct rq *this_rq)
3727 {
3728 unsigned long this_load = this_rq->load.weight;
3729 unsigned long curr_jiffies = jiffies;
3730 unsigned long pending_updates;
3731 int i, scale;
3732
3733 this_rq->nr_load_updates++;
3734
3735 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3736 if (curr_jiffies == this_rq->last_load_update_tick)
3737 return;
3738
3739 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3740 this_rq->last_load_update_tick = curr_jiffies;
3741
3742 /* Update our load: */
3743 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3744 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3745 unsigned long old_load, new_load;
3746
3747 /* scale is effectively 1 << i now, and >> i divides by scale */
3748
3749 old_load = this_rq->cpu_load[i];
3750 old_load = decay_load_missed(old_load, pending_updates - 1, i);
3751 new_load = this_load;
3752 /*
3753 * Round up the averaging division if load is increasing. This
3754 * prevents us from getting stuck on 9 if the load is 10, for
3755 * example.
3756 */
3757 if (new_load > old_load)
3758 new_load += scale - 1;
3759
3760 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
3761 }
3762
3763 sched_avg_update(this_rq);
3764 }
3765
3766 static void update_cpu_load_active(struct rq *this_rq)
3767 {
3768 update_cpu_load(this_rq);
3769
3770 calc_load_account_active(this_rq);
3771 }
3772
3773 #ifdef CONFIG_SMP
3774
3775 /*
3776 * sched_exec - execve() is a valuable balancing opportunity, because at
3777 * this point the task has the smallest effective memory and cache footprint.
3778 */
3779 void sched_exec(void)
3780 {
3781 struct task_struct *p = current;
3782 unsigned long flags;
3783 int dest_cpu;
3784
3785 raw_spin_lock_irqsave(&p->pi_lock, flags);
3786 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
3787 if (dest_cpu == smp_processor_id())
3788 goto unlock;
3789
3790 if (likely(cpu_active(dest_cpu))) {
3791 struct migration_arg arg = { p, dest_cpu };
3792
3793 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3794 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
3795 return;
3796 }
3797 unlock:
3798 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3799 }
3800
3801 #endif
3802
3803 DEFINE_PER_CPU(struct kernel_stat, kstat);
3804
3805 EXPORT_PER_CPU_SYMBOL(kstat);
3806
3807 /*
3808 * Return any ns on the sched_clock that have not yet been accounted in
3809 * @p in case that task is currently running.
3810 *
3811 * Called with task_rq_lock() held on @rq.
3812 */
3813 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3814 {
3815 u64 ns = 0;
3816
3817 if (task_current(rq, p)) {
3818 update_rq_clock(rq);
3819 ns = rq->clock_task - p->se.exec_start;
3820 if ((s64)ns < 0)
3821 ns = 0;
3822 }
3823
3824 return ns;
3825 }
3826
3827 unsigned long long task_delta_exec(struct task_struct *p)
3828 {
3829 unsigned long flags;
3830 struct rq *rq;
3831 u64 ns = 0;
3832
3833 rq = task_rq_lock(p, &flags);
3834 ns = do_task_delta_exec(p, rq);
3835 task_rq_unlock(rq, p, &flags);
3836
3837 return ns;
3838 }
3839
3840 /*
3841 * Return accounted runtime for the task.
3842 * In case the task is currently running, return the runtime plus current's
3843 * pending runtime that have not been accounted yet.
3844 */
3845 unsigned long long task_sched_runtime(struct task_struct *p)
3846 {
3847 unsigned long flags;
3848 struct rq *rq;
3849 u64 ns = 0;
3850
3851 rq = task_rq_lock(p, &flags);
3852 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3853 task_rq_unlock(rq, p, &flags);
3854
3855 return ns;
3856 }
3857
3858 /*
3859 * Account user cpu time to a process.
3860 * @p: the process that the cpu time gets accounted to
3861 * @cputime: the cpu time spent in user space since the last update
3862 * @cputime_scaled: cputime scaled by cpu frequency
3863 */
3864 void account_user_time(struct task_struct *p, cputime_t cputime,
3865 cputime_t cputime_scaled)
3866 {
3867 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3868 cputime64_t tmp;
3869
3870 /* Add user time to process. */
3871 p->utime = cputime_add(p->utime, cputime);
3872 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3873 account_group_user_time(p, cputime);
3874
3875 /* Add user time to cpustat. */
3876 tmp = cputime_to_cputime64(cputime);
3877 if (TASK_NICE(p) > 0)
3878 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3879 else
3880 cpustat->user = cputime64_add(cpustat->user, tmp);
3881
3882 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3883 /* Account for user time used */
3884 acct_update_integrals(p);
3885 }
3886
3887 /*
3888 * Account guest cpu time to a process.
3889 * @p: the process that the cpu time gets accounted to
3890 * @cputime: the cpu time spent in virtual machine since the last update
3891 * @cputime_scaled: cputime scaled by cpu frequency
3892 */
3893 static void account_guest_time(struct task_struct *p, cputime_t cputime,
3894 cputime_t cputime_scaled)
3895 {
3896 cputime64_t tmp;
3897 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3898
3899 tmp = cputime_to_cputime64(cputime);
3900
3901 /* Add guest time to process. */
3902 p->utime = cputime_add(p->utime, cputime);
3903 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3904 account_group_user_time(p, cputime);
3905 p->gtime = cputime_add(p->gtime, cputime);
3906
3907 /* Add guest time to cpustat. */
3908 if (TASK_NICE(p) > 0) {
3909 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3910 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3911 } else {
3912 cpustat->user = cputime64_add(cpustat->user, tmp);
3913 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3914 }
3915 }
3916
3917 /*
3918 * Account system cpu time to a process and desired cpustat field
3919 * @p: the process that the cpu time gets accounted to
3920 * @cputime: the cpu time spent in kernel space since the last update
3921 * @cputime_scaled: cputime scaled by cpu frequency
3922 * @target_cputime64: pointer to cpustat field that has to be updated
3923 */
3924 static inline
3925 void __account_system_time(struct task_struct *p, cputime_t cputime,
3926 cputime_t cputime_scaled, cputime64_t *target_cputime64)
3927 {
3928 cputime64_t tmp = cputime_to_cputime64(cputime);
3929
3930 /* Add system time to process. */
3931 p->stime = cputime_add(p->stime, cputime);
3932 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3933 account_group_system_time(p, cputime);
3934
3935 /* Add system time to cpustat. */
3936 *target_cputime64 = cputime64_add(*target_cputime64, tmp);
3937 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3938
3939 /* Account for system time used */
3940 acct_update_integrals(p);
3941 }
3942
3943 /*
3944 * Account system cpu time to a process.
3945 * @p: the process that the cpu time gets accounted to
3946 * @hardirq_offset: the offset to subtract from hardirq_count()
3947 * @cputime: the cpu time spent in kernel space since the last update
3948 * @cputime_scaled: cputime scaled by cpu frequency
3949 */
3950 void account_system_time(struct task_struct *p, int hardirq_offset,
3951 cputime_t cputime, cputime_t cputime_scaled)
3952 {
3953 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3954 cputime64_t *target_cputime64;
3955
3956 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3957 account_guest_time(p, cputime, cputime_scaled);
3958 return;
3959 }
3960
3961 if (hardirq_count() - hardirq_offset)
3962 target_cputime64 = &cpustat->irq;
3963 else if (in_serving_softirq())
3964 target_cputime64 = &cpustat->softirq;
3965 else
3966 target_cputime64 = &cpustat->system;
3967
3968 __account_system_time(p, cputime, cputime_scaled, target_cputime64);
3969 }
3970
3971 /*
3972 * Account for involuntary wait time.
3973 * @cputime: the cpu time spent in involuntary wait
3974 */
3975 void account_steal_time(cputime_t cputime)
3976 {
3977 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3978 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3979
3980 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3981 }
3982
3983 /*
3984 * Account for idle time.
3985 * @cputime: the cpu time spent in idle wait
3986 */
3987 void account_idle_time(cputime_t cputime)
3988 {
3989 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3990 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3991 struct rq *rq = this_rq();
3992
3993 if (atomic_read(&rq->nr_iowait) > 0)
3994 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3995 else
3996 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
3997 }
3998
3999 static __always_inline bool steal_account_process_tick(void)
4000 {
4001 #ifdef CONFIG_PARAVIRT
4002 if (static_branch(&paravirt_steal_enabled)) {
4003 u64 steal, st = 0;
4004
4005 steal = paravirt_steal_clock(smp_processor_id());
4006 steal -= this_rq()->prev_steal_time;
4007
4008 st = steal_ticks(steal);
4009 this_rq()->prev_steal_time += st * TICK_NSEC;
4010
4011 account_steal_time(st);
4012 return st;
4013 }
4014 #endif
4015 return false;
4016 }
4017
4018 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
4019
4020 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
4021 /*
4022 * Account a tick to a process and cpustat
4023 * @p: the process that the cpu time gets accounted to
4024 * @user_tick: is the tick from userspace
4025 * @rq: the pointer to rq
4026 *
4027 * Tick demultiplexing follows the order
4028 * - pending hardirq update
4029 * - pending softirq update
4030 * - user_time
4031 * - idle_time
4032 * - system time
4033 * - check for guest_time
4034 * - else account as system_time
4035 *
4036 * Check for hardirq is done both for system and user time as there is
4037 * no timer going off while we are on hardirq and hence we may never get an
4038 * opportunity to update it solely in system time.
4039 * p->stime and friends are only updated on system time and not on irq
4040 * softirq as those do not count in task exec_runtime any more.
4041 */
4042 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
4043 struct rq *rq)
4044 {
4045 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
4046 cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
4047 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4048
4049 if (steal_account_process_tick())
4050 return;
4051
4052 if (irqtime_account_hi_update()) {
4053 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4054 } else if (irqtime_account_si_update()) {
4055 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4056 } else if (this_cpu_ksoftirqd() == p) {
4057 /*
4058 * ksoftirqd time do not get accounted in cpu_softirq_time.
4059 * So, we have to handle it separately here.
4060 * Also, p->stime needs to be updated for ksoftirqd.
4061 */
4062 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
4063 &cpustat->softirq);
4064 } else if (user_tick) {
4065 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
4066 } else if (p == rq->idle) {
4067 account_idle_time(cputime_one_jiffy);
4068 } else if (p->flags & PF_VCPU) { /* System time or guest time */
4069 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
4070 } else {
4071 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
4072 &cpustat->system);
4073 }
4074 }
4075
4076 static void irqtime_account_idle_ticks(int ticks)
4077 {
4078 int i;
4079 struct rq *rq = this_rq();
4080
4081 for (i = 0; i < ticks; i++)
4082 irqtime_account_process_tick(current, 0, rq);
4083 }
4084 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
4085 static void irqtime_account_idle_ticks(int ticks) {}
4086 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
4087 struct rq *rq) {}
4088 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
4089
4090 /*
4091 * Account a single tick of cpu time.
4092 * @p: the process that the cpu time gets accounted to
4093 * @user_tick: indicates if the tick is a user or a system tick
4094 */
4095 void account_process_tick(struct task_struct *p, int user_tick)
4096 {
4097 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
4098 struct rq *rq = this_rq();
4099
4100 if (sched_clock_irqtime) {
4101 irqtime_account_process_tick(p, user_tick, rq);
4102 return;
4103 }
4104
4105 if (steal_account_process_tick())
4106 return;
4107
4108 if (user_tick)
4109 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
4110 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
4111 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
4112 one_jiffy_scaled);
4113 else
4114 account_idle_time(cputime_one_jiffy);
4115 }
4116
4117 /*
4118 * Account multiple ticks of steal time.
4119 * @p: the process from which the cpu time has been stolen
4120 * @ticks: number of stolen ticks
4121 */
4122 void account_steal_ticks(unsigned long ticks)
4123 {
4124 account_steal_time(jiffies_to_cputime(ticks));
4125 }
4126
4127 /*
4128 * Account multiple ticks of idle time.
4129 * @ticks: number of stolen ticks
4130 */
4131 void account_idle_ticks(unsigned long ticks)
4132 {
4133
4134 if (sched_clock_irqtime) {
4135 irqtime_account_idle_ticks(ticks);
4136 return;
4137 }
4138
4139 account_idle_time(jiffies_to_cputime(ticks));
4140 }
4141
4142 #endif
4143
4144 /*
4145 * Use precise platform statistics if available:
4146 */
4147 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
4148 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
4149 {
4150 *ut = p->utime;
4151 *st = p->stime;
4152 }
4153
4154 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
4155 {
4156 struct task_cputime cputime;
4157
4158 thread_group_cputime(p, &cputime);
4159
4160 *ut = cputime.utime;
4161 *st = cputime.stime;
4162 }
4163 #else
4164
4165 #ifndef nsecs_to_cputime
4166 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
4167 #endif
4168
4169 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
4170 {
4171 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
4172
4173 /*
4174 * Use CFS's precise accounting:
4175 */
4176 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
4177
4178 if (total) {
4179 u64 temp = rtime;
4180
4181 temp *= utime;
4182 do_div(temp, total);
4183 utime = (cputime_t)temp;
4184 } else
4185 utime = rtime;
4186
4187 /*
4188 * Compare with previous values, to keep monotonicity:
4189 */
4190 p->prev_utime = max(p->prev_utime, utime);
4191 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
4192
4193 *ut = p->prev_utime;
4194 *st = p->prev_stime;
4195 }
4196
4197 /*
4198 * Must be called with siglock held.
4199 */
4200 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
4201 {
4202 struct signal_struct *sig = p->signal;
4203 struct task_cputime cputime;
4204 cputime_t rtime, utime, total;
4205
4206 thread_group_cputime(p, &cputime);
4207
4208 total = cputime_add(cputime.utime, cputime.stime);
4209 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
4210
4211 if (total) {
4212 u64 temp = rtime;
4213
4214 temp *= cputime.utime;
4215 do_div(temp, total);
4216 utime = (cputime_t)temp;
4217 } else
4218 utime = rtime;
4219
4220 sig->prev_utime = max(sig->prev_utime, utime);
4221 sig->prev_stime = max(sig->prev_stime,
4222 cputime_sub(rtime, sig->prev_utime));
4223
4224 *ut = sig->prev_utime;
4225 *st = sig->prev_stime;
4226 }
4227 #endif
4228
4229 /*
4230 * This function gets called by the timer code, with HZ frequency.
4231 * We call it with interrupts disabled.
4232 */
4233 void scheduler_tick(void)
4234 {
4235 int cpu = smp_processor_id();
4236 struct rq *rq = cpu_rq(cpu);
4237 struct task_struct *curr = rq->curr;
4238
4239 sched_clock_tick();
4240
4241 raw_spin_lock(&rq->lock);
4242 update_rq_clock(rq);
4243 update_cpu_load_active(rq);
4244 curr->sched_class->task_tick(rq, curr, 0);
4245 raw_spin_unlock(&rq->lock);
4246
4247 perf_event_task_tick();
4248
4249 #ifdef CONFIG_SMP
4250 rq->idle_at_tick = idle_cpu(cpu);
4251 trigger_load_balance(rq, cpu);
4252 #endif
4253 }
4254
4255 notrace unsigned long get_parent_ip(unsigned long addr)
4256 {
4257 if (in_lock_functions(addr)) {
4258 addr = CALLER_ADDR2;
4259 if (in_lock_functions(addr))
4260 addr = CALLER_ADDR3;
4261 }
4262 return addr;
4263 }
4264
4265 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4266 defined(CONFIG_PREEMPT_TRACER))
4267
4268 void __kprobes add_preempt_count(int val)
4269 {
4270 #ifdef CONFIG_DEBUG_PREEMPT
4271 /*
4272 * Underflow?
4273 */
4274 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4275 return;
4276 #endif
4277 preempt_count() += val;
4278 #ifdef CONFIG_DEBUG_PREEMPT
4279 /*
4280 * Spinlock count overflowing soon?
4281 */
4282 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4283 PREEMPT_MASK - 10);
4284 #endif
4285 if (preempt_count() == val)
4286 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4287 }
4288 EXPORT_SYMBOL(add_preempt_count);
4289
4290 void __kprobes sub_preempt_count(int val)
4291 {
4292 #ifdef CONFIG_DEBUG_PREEMPT
4293 /*
4294 * Underflow?
4295 */
4296 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4297 return;
4298 /*
4299 * Is the spinlock portion underflowing?
4300 */
4301 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4302 !(preempt_count() & PREEMPT_MASK)))
4303 return;
4304 #endif
4305
4306 if (preempt_count() == val)
4307 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4308 preempt_count() -= val;
4309 }
4310 EXPORT_SYMBOL(sub_preempt_count);
4311
4312 #endif
4313
4314 /*
4315 * Print scheduling while atomic bug:
4316 */
4317 static noinline void __schedule_bug(struct task_struct *prev)
4318 {
4319 struct pt_regs *regs = get_irq_regs();
4320
4321 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4322 prev->comm, prev->pid, preempt_count());
4323
4324 debug_show_held_locks(prev);
4325 print_modules();
4326 if (irqs_disabled())
4327 print_irqtrace_events(prev);
4328
4329 if (regs)
4330 show_regs(regs);
4331 else
4332 dump_stack();
4333 }
4334
4335 /*
4336 * Various schedule()-time debugging checks and statistics:
4337 */
4338 static inline void schedule_debug(struct task_struct *prev)
4339 {
4340 /*
4341 * Test if we are atomic. Since do_exit() needs to call into
4342 * schedule() atomically, we ignore that path for now.
4343 * Otherwise, whine if we are scheduling when we should not be.
4344 */
4345 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
4346 __schedule_bug(prev);
4347
4348 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4349
4350 schedstat_inc(this_rq(), sched_count);
4351 }
4352
4353 static void put_prev_task(struct rq *rq, struct task_struct *prev)
4354 {
4355 if (prev->on_rq || rq->skip_clock_update < 0)
4356 update_rq_clock(rq);
4357 prev->sched_class->put_prev_task(rq, prev);
4358 }
4359
4360 /*
4361 * Pick up the highest-prio task:
4362 */
4363 static inline struct task_struct *
4364 pick_next_task(struct rq *rq)
4365 {
4366 const struct sched_class *class;
4367 struct task_struct *p;
4368
4369 /*
4370 * Optimization: we know that if all tasks are in
4371 * the fair class we can call that function directly:
4372 */
4373 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
4374 p = fair_sched_class.pick_next_task(rq);
4375 if (likely(p))
4376 return p;
4377 }
4378
4379 for_each_class(class) {
4380 p = class->pick_next_task(rq);
4381 if (p)
4382 return p;
4383 }
4384
4385 BUG(); /* the idle class will always have a runnable task */
4386 }
4387
4388 /*
4389 * __schedule() is the main scheduler function.
4390 */
4391 static void __sched __schedule(void)
4392 {
4393 struct task_struct *prev, *next;
4394 unsigned long *switch_count;
4395 struct rq *rq;
4396 int cpu;
4397
4398 need_resched:
4399 preempt_disable();
4400 cpu = smp_processor_id();
4401 rq = cpu_rq(cpu);
4402 rcu_note_context_switch(cpu);
4403 prev = rq->curr;
4404
4405 schedule_debug(prev);
4406
4407 if (sched_feat(HRTICK))
4408 hrtick_clear(rq);
4409
4410 raw_spin_lock_irq(&rq->lock);
4411
4412 switch_count = &prev->nivcsw;
4413 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4414 if (unlikely(signal_pending_state(prev->state, prev))) {
4415 prev->state = TASK_RUNNING;
4416 } else {
4417 deactivate_task(rq, prev, DEQUEUE_SLEEP);
4418 prev->on_rq = 0;
4419
4420 /*
4421 * If a worker went to sleep, notify and ask workqueue
4422 * whether it wants to wake up a task to maintain
4423 * concurrency.
4424 */
4425 if (prev->flags & PF_WQ_WORKER) {
4426 struct task_struct *to_wakeup;
4427
4428 to_wakeup = wq_worker_sleeping(prev, cpu);
4429 if (to_wakeup)
4430 try_to_wake_up_local(to_wakeup);
4431 }
4432 }
4433 switch_count = &prev->nvcsw;
4434 }
4435
4436 pre_schedule(rq, prev);
4437
4438 if (unlikely(!rq->nr_running))
4439 idle_balance(cpu, rq);
4440
4441 put_prev_task(rq, prev);
4442 next = pick_next_task(rq);
4443 clear_tsk_need_resched(prev);
4444 rq->skip_clock_update = 0;
4445
4446 if (likely(prev != next)) {
4447 rq->nr_switches++;
4448 rq->curr = next;
4449 ++*switch_count;
4450
4451 context_switch(rq, prev, next); /* unlocks the rq */
4452 /*
4453 * The context switch have flipped the stack from under us
4454 * and restored the local variables which were saved when
4455 * this task called schedule() in the past. prev == current
4456 * is still correct, but it can be moved to another cpu/rq.
4457 */
4458 cpu = smp_processor_id();
4459 rq = cpu_rq(cpu);
4460 } else
4461 raw_spin_unlock_irq(&rq->lock);
4462
4463 post_schedule(rq);
4464
4465 preempt_enable_no_resched();
4466 if (need_resched())
4467 goto need_resched;
4468 }
4469
4470 static inline void sched_submit_work(struct task_struct *tsk)
4471 {
4472 if (!tsk->state)
4473 return;
4474 /*
4475 * If we are going to sleep and we have plugged IO queued,
4476 * make sure to submit it to avoid deadlocks.
4477 */
4478 if (blk_needs_flush_plug(tsk))
4479 blk_schedule_flush_plug(tsk);
4480 }
4481
4482 asmlinkage void __sched schedule(void)
4483 {
4484 struct task_struct *tsk = current;
4485
4486 sched_submit_work(tsk);
4487 __schedule();
4488 }
4489 EXPORT_SYMBOL(schedule);
4490
4491 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
4492
4493 static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
4494 {
4495 if (lock->owner != owner)
4496 return false;
4497
4498 /*
4499 * Ensure we emit the owner->on_cpu, dereference _after_ checking
4500 * lock->owner still matches owner, if that fails, owner might
4501 * point to free()d memory, if it still matches, the rcu_read_lock()
4502 * ensures the memory stays valid.
4503 */
4504 barrier();
4505
4506 return owner->on_cpu;
4507 }
4508
4509 /*
4510 * Look out! "owner" is an entirely speculative pointer
4511 * access and not reliable.
4512 */
4513 int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
4514 {
4515 if (!sched_feat(OWNER_SPIN))
4516 return 0;
4517
4518 rcu_read_lock();
4519 while (owner_running(lock, owner)) {
4520 if (need_resched())
4521 break;
4522
4523 arch_mutex_cpu_relax();
4524 }
4525 rcu_read_unlock();
4526
4527 /*
4528 * We break out the loop above on need_resched() and when the
4529 * owner changed, which is a sign for heavy contention. Return
4530 * success only when lock->owner is NULL.
4531 */
4532 return lock->owner == NULL;
4533 }
4534 #endif
4535
4536 #ifdef CONFIG_PREEMPT
4537 /*
4538 * this is the entry point to schedule() from in-kernel preemption
4539 * off of preempt_enable. Kernel preemptions off return from interrupt
4540 * occur there and call schedule directly.
4541 */
4542 asmlinkage void __sched notrace preempt_schedule(void)
4543 {
4544 struct thread_info *ti = current_thread_info();
4545
4546 /*
4547 * If there is a non-zero preempt_count or interrupts are disabled,
4548 * we do not want to preempt the current task. Just return..
4549 */
4550 if (likely(ti->preempt_count || irqs_disabled()))
4551 return;
4552
4553 do {
4554 add_preempt_count_notrace(PREEMPT_ACTIVE);
4555 __schedule();
4556 sub_preempt_count_notrace(PREEMPT_ACTIVE);
4557
4558 /*
4559 * Check again in case we missed a preemption opportunity
4560 * between schedule and now.
4561 */
4562 barrier();
4563 } while (need_resched());
4564 }
4565 EXPORT_SYMBOL(preempt_schedule);
4566
4567 /*
4568 * this is the entry point to schedule() from kernel preemption
4569 * off of irq context.
4570 * Note, that this is called and return with irqs disabled. This will
4571 * protect us against recursive calling from irq.
4572 */
4573 asmlinkage void __sched preempt_schedule_irq(void)
4574 {
4575 struct thread_info *ti = current_thread_info();
4576
4577 /* Catch callers which need to be fixed */
4578 BUG_ON(ti->preempt_count || !irqs_disabled());
4579
4580 do {
4581 add_preempt_count(PREEMPT_ACTIVE);
4582 local_irq_enable();
4583 __schedule();
4584 local_irq_disable();
4585 sub_preempt_count(PREEMPT_ACTIVE);
4586
4587 /*
4588 * Check again in case we missed a preemption opportunity
4589 * between schedule and now.
4590 */
4591 barrier();
4592 } while (need_resched());
4593 }
4594
4595 #endif /* CONFIG_PREEMPT */
4596
4597 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
4598 void *key)
4599 {
4600 return try_to_wake_up(curr->private, mode, wake_flags);
4601 }
4602 EXPORT_SYMBOL(default_wake_function);
4603
4604 /*
4605 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4606 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4607 * number) then we wake all the non-exclusive tasks and one exclusive task.
4608 *
4609 * There are circumstances in which we can try to wake a task which has already
4610 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4611 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4612 */
4613 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4614 int nr_exclusive, int wake_flags, void *key)
4615 {
4616 wait_queue_t *curr, *next;
4617
4618 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4619 unsigned flags = curr->flags;
4620
4621 if (curr->func(curr, mode, wake_flags, key) &&
4622 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4623 break;
4624 }
4625 }
4626
4627 /**
4628 * __wake_up - wake up threads blocked on a waitqueue.
4629 * @q: the waitqueue
4630 * @mode: which threads
4631 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4632 * @key: is directly passed to the wakeup function
4633 *
4634 * It may be assumed that this function implies a write memory barrier before
4635 * changing the task state if and only if any tasks are woken up.
4636 */
4637 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4638 int nr_exclusive, void *key)
4639 {
4640 unsigned long flags;
4641
4642 spin_lock_irqsave(&q->lock, flags);
4643 __wake_up_common(q, mode, nr_exclusive, 0, key);
4644 spin_unlock_irqrestore(&q->lock, flags);
4645 }
4646 EXPORT_SYMBOL(__wake_up);
4647
4648 /*
4649 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4650 */
4651 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4652 {
4653 __wake_up_common(q, mode, 1, 0, NULL);
4654 }
4655 EXPORT_SYMBOL_GPL(__wake_up_locked);
4656
4657 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4658 {
4659 __wake_up_common(q, mode, 1, 0, key);
4660 }
4661 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4662
4663 /**
4664 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
4665 * @q: the waitqueue
4666 * @mode: which threads
4667 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4668 * @key: opaque value to be passed to wakeup targets
4669 *
4670 * The sync wakeup differs that the waker knows that it will schedule
4671 * away soon, so while the target thread will be woken up, it will not
4672 * be migrated to another CPU - ie. the two threads are 'synchronized'
4673 * with each other. This can prevent needless bouncing between CPUs.
4674 *
4675 * On UP it can prevent extra preemption.
4676 *
4677 * It may be assumed that this function implies a write memory barrier before
4678 * changing the task state if and only if any tasks are woken up.
4679 */
4680 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4681 int nr_exclusive, void *key)
4682 {
4683 unsigned long flags;
4684 int wake_flags = WF_SYNC;
4685
4686 if (unlikely(!q))
4687 return;
4688
4689 if (unlikely(!nr_exclusive))
4690 wake_flags = 0;
4691
4692 spin_lock_irqsave(&q->lock, flags);
4693 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
4694 spin_unlock_irqrestore(&q->lock, flags);
4695 }
4696 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4697
4698 /*
4699 * __wake_up_sync - see __wake_up_sync_key()
4700 */
4701 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4702 {
4703 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4704 }
4705 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4706
4707 /**
4708 * complete: - signals a single thread waiting on this completion
4709 * @x: holds the state of this particular completion
4710 *
4711 * This will wake up a single thread waiting on this completion. Threads will be
4712 * awakened in the same order in which they were queued.
4713 *
4714 * See also complete_all(), wait_for_completion() and related routines.
4715 *
4716 * It may be assumed that this function implies a write memory barrier before
4717 * changing the task state if and only if any tasks are woken up.
4718 */
4719 void complete(struct completion *x)
4720 {
4721 unsigned long flags;
4722
4723 spin_lock_irqsave(&x->wait.lock, flags);
4724 x->done++;
4725 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4726 spin_unlock_irqrestore(&x->wait.lock, flags);
4727 }
4728 EXPORT_SYMBOL(complete);
4729
4730 /**
4731 * complete_all: - signals all threads waiting on this completion
4732 * @x: holds the state of this particular completion
4733 *
4734 * This will wake up all threads waiting on this particular completion event.
4735 *
4736 * It may be assumed that this function implies a write memory barrier before
4737 * changing the task state if and only if any tasks are woken up.
4738 */
4739 void complete_all(struct completion *x)
4740 {
4741 unsigned long flags;
4742
4743 spin_lock_irqsave(&x->wait.lock, flags);
4744 x->done += UINT_MAX/2;
4745 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4746 spin_unlock_irqrestore(&x->wait.lock, flags);
4747 }
4748 EXPORT_SYMBOL(complete_all);
4749
4750 static inline long __sched
4751 do_wait_for_common(struct completion *x, long timeout, int state)
4752 {
4753 if (!x->done) {
4754 DECLARE_WAITQUEUE(wait, current);
4755
4756 __add_wait_queue_tail_exclusive(&x->wait, &wait);
4757 do {
4758 if (signal_pending_state(state, current)) {
4759 timeout = -ERESTARTSYS;
4760 break;
4761 }
4762 __set_current_state(state);
4763 spin_unlock_irq(&x->wait.lock);
4764 timeout = schedule_timeout(timeout);
4765 spin_lock_irq(&x->wait.lock);
4766 } while (!x->done && timeout);
4767 __remove_wait_queue(&x->wait, &wait);
4768 if (!x->done)
4769 return timeout;
4770 }
4771 x->done--;
4772 return timeout ?: 1;
4773 }
4774
4775 static long __sched
4776 wait_for_common(struct completion *x, long timeout, int state)
4777 {
4778 might_sleep();
4779
4780 spin_lock_irq(&x->wait.lock);
4781 timeout = do_wait_for_common(x, timeout, state);
4782 spin_unlock_irq(&x->wait.lock);
4783 return timeout;
4784 }
4785
4786 /**
4787 * wait_for_completion: - waits for completion of a task
4788 * @x: holds the state of this particular completion
4789 *
4790 * This waits to be signaled for completion of a specific task. It is NOT
4791 * interruptible and there is no timeout.
4792 *
4793 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4794 * and interrupt capability. Also see complete().
4795 */
4796 void __sched wait_for_completion(struct completion *x)
4797 {
4798 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4799 }
4800 EXPORT_SYMBOL(wait_for_completion);
4801
4802 /**
4803 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4804 * @x: holds the state of this particular completion
4805 * @timeout: timeout value in jiffies
4806 *
4807 * This waits for either a completion of a specific task to be signaled or for a
4808 * specified timeout to expire. The timeout is in jiffies. It is not
4809 * interruptible.
4810 */
4811 unsigned long __sched
4812 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4813 {
4814 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4815 }
4816 EXPORT_SYMBOL(wait_for_completion_timeout);
4817
4818 /**
4819 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4820 * @x: holds the state of this particular completion
4821 *
4822 * This waits for completion of a specific task to be signaled. It is
4823 * interruptible.
4824 */
4825 int __sched wait_for_completion_interruptible(struct completion *x)
4826 {
4827 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4828 if (t == -ERESTARTSYS)
4829 return t;
4830 return 0;
4831 }
4832 EXPORT_SYMBOL(wait_for_completion_interruptible);
4833
4834 /**
4835 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4836 * @x: holds the state of this particular completion
4837 * @timeout: timeout value in jiffies
4838 *
4839 * This waits for either a completion of a specific task to be signaled or for a
4840 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4841 */
4842 long __sched
4843 wait_for_completion_interruptible_timeout(struct completion *x,
4844 unsigned long timeout)
4845 {
4846 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4847 }
4848 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4849
4850 /**
4851 * wait_for_completion_killable: - waits for completion of a task (killable)
4852 * @x: holds the state of this particular completion
4853 *
4854 * This waits to be signaled for completion of a specific task. It can be
4855 * interrupted by a kill signal.
4856 */
4857 int __sched wait_for_completion_killable(struct completion *x)
4858 {
4859 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4860 if (t == -ERESTARTSYS)
4861 return t;
4862 return 0;
4863 }
4864 EXPORT_SYMBOL(wait_for_completion_killable);
4865
4866 /**
4867 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4868 * @x: holds the state of this particular completion
4869 * @timeout: timeout value in jiffies
4870 *
4871 * This waits for either a completion of a specific task to be
4872 * signaled or for a specified timeout to expire. It can be
4873 * interrupted by a kill signal. The timeout is in jiffies.
4874 */
4875 long __sched
4876 wait_for_completion_killable_timeout(struct completion *x,
4877 unsigned long timeout)
4878 {
4879 return wait_for_common(x, timeout, TASK_KILLABLE);
4880 }
4881 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4882
4883 /**
4884 * try_wait_for_completion - try to decrement a completion without blocking
4885 * @x: completion structure
4886 *
4887 * Returns: 0 if a decrement cannot be done without blocking
4888 * 1 if a decrement succeeded.
4889 *
4890 * If a completion is being used as a counting completion,
4891 * attempt to decrement the counter without blocking. This
4892 * enables us to avoid waiting if the resource the completion
4893 * is protecting is not available.
4894 */
4895 bool try_wait_for_completion(struct completion *x)
4896 {
4897 unsigned long flags;
4898 int ret = 1;
4899
4900 spin_lock_irqsave(&x->wait.lock, flags);
4901 if (!x->done)
4902 ret = 0;
4903 else
4904 x->done--;
4905 spin_unlock_irqrestore(&x->wait.lock, flags);
4906 return ret;
4907 }
4908 EXPORT_SYMBOL(try_wait_for_completion);
4909
4910 /**
4911 * completion_done - Test to see if a completion has any waiters
4912 * @x: completion structure
4913 *
4914 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4915 * 1 if there are no waiters.
4916 *
4917 */
4918 bool completion_done(struct completion *x)
4919 {
4920 unsigned long flags;
4921 int ret = 1;
4922
4923 spin_lock_irqsave(&x->wait.lock, flags);
4924 if (!x->done)
4925 ret = 0;
4926 spin_unlock_irqrestore(&x->wait.lock, flags);
4927 return ret;
4928 }
4929 EXPORT_SYMBOL(completion_done);
4930
4931 static long __sched
4932 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4933 {
4934 unsigned long flags;
4935 wait_queue_t wait;
4936
4937 init_waitqueue_entry(&wait, current);
4938
4939 __set_current_state(state);
4940
4941 spin_lock_irqsave(&q->lock, flags);
4942 __add_wait_queue(q, &wait);
4943 spin_unlock(&q->lock);
4944 timeout = schedule_timeout(timeout);
4945 spin_lock_irq(&q->lock);
4946 __remove_wait_queue(q, &wait);
4947 spin_unlock_irqrestore(&q->lock, flags);
4948
4949 return timeout;
4950 }
4951
4952 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4953 {
4954 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4955 }
4956 EXPORT_SYMBOL(interruptible_sleep_on);
4957
4958 long __sched
4959 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4960 {
4961 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4962 }
4963 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4964
4965 void __sched sleep_on(wait_queue_head_t *q)
4966 {
4967 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4968 }
4969 EXPORT_SYMBOL(sleep_on);
4970
4971 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4972 {
4973 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4974 }
4975 EXPORT_SYMBOL(sleep_on_timeout);
4976
4977 #ifdef CONFIG_RT_MUTEXES
4978
4979 /*
4980 * rt_mutex_setprio - set the current priority of a task
4981 * @p: task
4982 * @prio: prio value (kernel-internal form)
4983 *
4984 * This function changes the 'effective' priority of a task. It does
4985 * not touch ->normal_prio like __setscheduler().
4986 *
4987 * Used by the rt_mutex code to implement priority inheritance logic.
4988 */
4989 void rt_mutex_setprio(struct task_struct *p, int prio)
4990 {
4991 int oldprio, on_rq, running;
4992 struct rq *rq;
4993 const struct sched_class *prev_class;
4994
4995 BUG_ON(prio < 0 || prio > MAX_PRIO);
4996
4997 rq = __task_rq_lock(p);
4998
4999 trace_sched_pi_setprio(p, prio);
5000 oldprio = p->prio;
5001 prev_class = p->sched_class;
5002 on_rq = p->on_rq;
5003 running = task_current(rq, p);
5004 if (on_rq)
5005 dequeue_task(rq, p, 0);
5006 if (running)
5007 p->sched_class->put_prev_task(rq, p);
5008
5009 if (rt_prio(prio))
5010 p->sched_class = &rt_sched_class;
5011 else
5012 p->sched_class = &fair_sched_class;
5013
5014 p->prio = prio;
5015
5016 if (running)
5017 p->sched_class->set_curr_task(rq);
5018 if (on_rq)
5019 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
5020
5021 check_class_changed(rq, p, prev_class, oldprio);
5022 __task_rq_unlock(rq);
5023 }
5024
5025 #endif
5026
5027 void set_user_nice(struct task_struct *p, long nice)
5028 {
5029 int old_prio, delta, on_rq;
5030 unsigned long flags;
5031 struct rq *rq;
5032
5033 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5034 return;
5035 /*
5036 * We have to be careful, if called from sys_setpriority(),
5037 * the task might be in the middle of scheduling on another CPU.
5038 */
5039 rq = task_rq_lock(p, &flags);
5040 /*
5041 * The RT priorities are set via sched_setscheduler(), but we still
5042 * allow the 'normal' nice value to be set - but as expected
5043 * it wont have any effect on scheduling until the task is
5044 * SCHED_FIFO/SCHED_RR:
5045 */
5046 if (task_has_rt_policy(p)) {
5047 p->static_prio = NICE_TO_PRIO(nice);
5048 goto out_unlock;
5049 }
5050 on_rq = p->on_rq;
5051 if (on_rq)
5052 dequeue_task(rq, p, 0);
5053
5054 p->static_prio = NICE_TO_PRIO(nice);
5055 set_load_weight(p);
5056 old_prio = p->prio;
5057 p->prio = effective_prio(p);
5058 delta = p->prio - old_prio;
5059
5060 if (on_rq) {
5061 enqueue_task(rq, p, 0);
5062 /*
5063 * If the task increased its priority or is running and
5064 * lowered its priority, then reschedule its CPU:
5065 */
5066 if (delta < 0 || (delta > 0 && task_running(rq, p)))
5067 resched_task(rq->curr);
5068 }
5069 out_unlock:
5070 task_rq_unlock(rq, p, &flags);
5071 }
5072 EXPORT_SYMBOL(set_user_nice);
5073
5074 /*
5075 * can_nice - check if a task can reduce its nice value
5076 * @p: task
5077 * @nice: nice value
5078 */
5079 int can_nice(const struct task_struct *p, const int nice)
5080 {
5081 /* convert nice value [19,-20] to rlimit style value [1,40] */
5082 int nice_rlim = 20 - nice;
5083
5084 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
5085 capable(CAP_SYS_NICE));
5086 }
5087
5088 #ifdef __ARCH_WANT_SYS_NICE
5089
5090 /*
5091 * sys_nice - change the priority of the current process.
5092 * @increment: priority increment
5093 *
5094 * sys_setpriority is a more generic, but much slower function that
5095 * does similar things.
5096 */
5097 SYSCALL_DEFINE1(nice, int, increment)
5098 {
5099 long nice, retval;
5100
5101 /*
5102 * Setpriority might change our priority at the same moment.
5103 * We don't have to worry. Conceptually one call occurs first
5104 * and we have a single winner.
5105 */
5106 if (increment < -40)
5107 increment = -40;
5108 if (increment > 40)
5109 increment = 40;
5110
5111 nice = TASK_NICE(current) + increment;
5112 if (nice < -20)
5113 nice = -20;
5114 if (nice > 19)
5115 nice = 19;
5116
5117 if (increment < 0 && !can_nice(current, nice))
5118 return -EPERM;
5119
5120 retval = security_task_setnice(current, nice);
5121 if (retval)
5122 return retval;
5123
5124 set_user_nice(current, nice);
5125 return 0;
5126 }
5127
5128 #endif
5129
5130 /**
5131 * task_prio - return the priority value of a given task.
5132 * @p: the task in question.
5133 *
5134 * This is the priority value as seen by users in /proc.
5135 * RT tasks are offset by -200. Normal tasks are centered
5136 * around 0, value goes from -16 to +15.
5137 */
5138 int task_prio(const struct task_struct *p)
5139 {
5140 return p->prio - MAX_RT_PRIO;
5141 }
5142
5143 /**
5144 * task_nice - return the nice value of a given task.
5145 * @p: the task in question.
5146 */
5147 int task_nice(const struct task_struct *p)
5148 {
5149 return TASK_NICE(p);
5150 }
5151 EXPORT_SYMBOL(task_nice);
5152
5153 /**
5154 * idle_cpu - is a given cpu idle currently?
5155 * @cpu: the processor in question.
5156 */
5157 int idle_cpu(int cpu)
5158 {
5159 struct rq *rq = cpu_rq(cpu);
5160
5161 if (rq->curr != rq->idle)
5162 return 0;
5163
5164 if (rq->nr_running)
5165 return 0;
5166
5167 #ifdef CONFIG_SMP
5168 if (!llist_empty(&rq->wake_list))
5169 return 0;
5170 #endif
5171
5172 return 1;
5173 }
5174
5175 /**
5176 * idle_task - return the idle task for a given cpu.
5177 * @cpu: the processor in question.
5178 */
5179 struct task_struct *idle_task(int cpu)
5180 {
5181 return cpu_rq(cpu)->idle;
5182 }
5183
5184 /**
5185 * find_process_by_pid - find a process with a matching PID value.
5186 * @pid: the pid in question.
5187 */
5188 static struct task_struct *find_process_by_pid(pid_t pid)
5189 {
5190 return pid ? find_task_by_vpid(pid) : current;
5191 }
5192
5193 /* Actually do priority change: must hold rq lock. */
5194 static void
5195 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
5196 {
5197 p->policy = policy;
5198 p->rt_priority = prio;
5199 p->normal_prio = normal_prio(p);
5200 /* we are holding p->pi_lock already */
5201 p->prio = rt_mutex_getprio(p);
5202 if (rt_prio(p->prio))
5203 p->sched_class = &rt_sched_class;
5204 else
5205 p->sched_class = &fair_sched_class;
5206 set_load_weight(p);
5207 }
5208
5209 /*
5210 * check the target process has a UID that matches the current process's
5211 */
5212 static bool check_same_owner(struct task_struct *p)
5213 {
5214 const struct cred *cred = current_cred(), *pcred;
5215 bool match;
5216
5217 rcu_read_lock();
5218 pcred = __task_cred(p);
5219 if (cred->user->user_ns == pcred->user->user_ns)
5220 match = (cred->euid == pcred->euid ||
5221 cred->euid == pcred->uid);
5222 else
5223 match = false;
5224 rcu_read_unlock();
5225 return match;
5226 }
5227
5228 static int __sched_setscheduler(struct task_struct *p, int policy,
5229 const struct sched_param *param, bool user)
5230 {
5231 int retval, oldprio, oldpolicy = -1, on_rq, running;
5232 unsigned long flags;
5233 const struct sched_class *prev_class;
5234 struct rq *rq;
5235 int reset_on_fork;
5236
5237 /* may grab non-irq protected spin_locks */
5238 BUG_ON(in_interrupt());
5239 recheck:
5240 /* double check policy once rq lock held */
5241 if (policy < 0) {
5242 reset_on_fork = p->sched_reset_on_fork;
5243 policy = oldpolicy = p->policy;
5244 } else {
5245 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
5246 policy &= ~SCHED_RESET_ON_FORK;
5247
5248 if (policy != SCHED_FIFO && policy != SCHED_RR &&
5249 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5250 policy != SCHED_IDLE)
5251 return -EINVAL;
5252 }
5253
5254 /*
5255 * Valid priorities for SCHED_FIFO and SCHED_RR are
5256 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5257 * SCHED_BATCH and SCHED_IDLE is 0.
5258 */
5259 if (param->sched_priority < 0 ||
5260 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5261 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
5262 return -EINVAL;
5263 if (rt_policy(policy) != (param->sched_priority != 0))
5264 return -EINVAL;
5265
5266 /*
5267 * Allow unprivileged RT tasks to decrease priority:
5268 */
5269 if (user && !capable(CAP_SYS_NICE)) {
5270 if (rt_policy(policy)) {
5271 unsigned long rlim_rtprio =
5272 task_rlimit(p, RLIMIT_RTPRIO);
5273
5274 /* can't set/change the rt policy */
5275 if (policy != p->policy && !rlim_rtprio)
5276 return -EPERM;
5277
5278 /* can't increase priority */
5279 if (param->sched_priority > p->rt_priority &&
5280 param->sched_priority > rlim_rtprio)
5281 return -EPERM;
5282 }
5283
5284 /*
5285 * Treat SCHED_IDLE as nice 20. Only allow a switch to
5286 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
5287 */
5288 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
5289 if (!can_nice(p, TASK_NICE(p)))
5290 return -EPERM;
5291 }
5292
5293 /* can't change other user's priorities */
5294 if (!check_same_owner(p))
5295 return -EPERM;
5296
5297 /* Normal users shall not reset the sched_reset_on_fork flag */
5298 if (p->sched_reset_on_fork && !reset_on_fork)
5299 return -EPERM;
5300 }
5301
5302 if (user) {
5303 retval = security_task_setscheduler(p);
5304 if (retval)
5305 return retval;
5306 }
5307
5308 /*
5309 * make sure no PI-waiters arrive (or leave) while we are
5310 * changing the priority of the task:
5311 *
5312 * To be able to change p->policy safely, the appropriate
5313 * runqueue lock must be held.
5314 */
5315 rq = task_rq_lock(p, &flags);
5316
5317 /*
5318 * Changing the policy of the stop threads its a very bad idea
5319 */
5320 if (p == rq->stop) {
5321 task_rq_unlock(rq, p, &flags);
5322 return -EINVAL;
5323 }
5324
5325 /*
5326 * If not changing anything there's no need to proceed further:
5327 */
5328 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
5329 param->sched_priority == p->rt_priority))) {
5330
5331 __task_rq_unlock(rq);
5332 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5333 return 0;
5334 }
5335
5336 #ifdef CONFIG_RT_GROUP_SCHED
5337 if (user) {
5338 /*
5339 * Do not allow realtime tasks into groups that have no runtime
5340 * assigned.
5341 */
5342 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5343 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5344 !task_group_is_autogroup(task_group(p))) {
5345 task_rq_unlock(rq, p, &flags);
5346 return -EPERM;
5347 }
5348 }
5349 #endif
5350
5351 /* recheck policy now with rq lock held */
5352 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5353 policy = oldpolicy = -1;
5354 task_rq_unlock(rq, p, &flags);
5355 goto recheck;
5356 }
5357 on_rq = p->on_rq;
5358 running = task_current(rq, p);
5359 if (on_rq)
5360 deactivate_task(rq, p, 0);
5361 if (running)
5362 p->sched_class->put_prev_task(rq, p);
5363
5364 p->sched_reset_on_fork = reset_on_fork;
5365
5366 oldprio = p->prio;
5367 prev_class = p->sched_class;
5368 __setscheduler(rq, p, policy, param->sched_priority);
5369
5370 if (running)
5371 p->sched_class->set_curr_task(rq);
5372 if (on_rq)
5373 activate_task(rq, p, 0);
5374
5375 check_class_changed(rq, p, prev_class, oldprio);
5376 task_rq_unlock(rq, p, &flags);
5377
5378 rt_mutex_adjust_pi(p);
5379
5380 return 0;
5381 }
5382
5383 /**
5384 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5385 * @p: the task in question.
5386 * @policy: new policy.
5387 * @param: structure containing the new RT priority.
5388 *
5389 * NOTE that the task may be already dead.
5390 */
5391 int sched_setscheduler(struct task_struct *p, int policy,
5392 const struct sched_param *param)
5393 {
5394 return __sched_setscheduler(p, policy, param, true);
5395 }
5396 EXPORT_SYMBOL_GPL(sched_setscheduler);
5397
5398 /**
5399 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5400 * @p: the task in question.
5401 * @policy: new policy.
5402 * @param: structure containing the new RT priority.
5403 *
5404 * Just like sched_setscheduler, only don't bother checking if the
5405 * current context has permission. For example, this is needed in
5406 * stop_machine(): we create temporary high priority worker threads,
5407 * but our caller might not have that capability.
5408 */
5409 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5410 const struct sched_param *param)
5411 {
5412 return __sched_setscheduler(p, policy, param, false);
5413 }
5414
5415 static int
5416 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5417 {
5418 struct sched_param lparam;
5419 struct task_struct *p;
5420 int retval;
5421
5422 if (!param || pid < 0)
5423 return -EINVAL;
5424 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5425 return -EFAULT;
5426
5427 rcu_read_lock();
5428 retval = -ESRCH;
5429 p = find_process_by_pid(pid);
5430 if (p != NULL)
5431 retval = sched_setscheduler(p, policy, &lparam);
5432 rcu_read_unlock();
5433
5434 return retval;
5435 }
5436
5437 /**
5438 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5439 * @pid: the pid in question.
5440 * @policy: new policy.
5441 * @param: structure containing the new RT priority.
5442 */
5443 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5444 struct sched_param __user *, param)
5445 {
5446 /* negative values for policy are not valid */
5447 if (policy < 0)
5448 return -EINVAL;
5449
5450 return do_sched_setscheduler(pid, policy, param);
5451 }
5452
5453 /**
5454 * sys_sched_setparam - set/change the RT priority of a thread
5455 * @pid: the pid in question.
5456 * @param: structure containing the new RT priority.
5457 */
5458 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
5459 {
5460 return do_sched_setscheduler(pid, -1, param);
5461 }
5462
5463 /**
5464 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5465 * @pid: the pid in question.
5466 */
5467 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5468 {
5469 struct task_struct *p;
5470 int retval;
5471
5472 if (pid < 0)
5473 return -EINVAL;
5474
5475 retval = -ESRCH;
5476 rcu_read_lock();
5477 p = find_process_by_pid(pid);
5478 if (p) {
5479 retval = security_task_getscheduler(p);
5480 if (!retval)
5481 retval = p->policy
5482 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
5483 }
5484 rcu_read_unlock();
5485 return retval;
5486 }
5487
5488 /**
5489 * sys_sched_getparam - get the RT priority of a thread
5490 * @pid: the pid in question.
5491 * @param: structure containing the RT priority.
5492 */
5493 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5494 {
5495 struct sched_param lp;
5496 struct task_struct *p;
5497 int retval;
5498
5499 if (!param || pid < 0)
5500 return -EINVAL;
5501
5502 rcu_read_lock();
5503 p = find_process_by_pid(pid);
5504 retval = -ESRCH;
5505 if (!p)
5506 goto out_unlock;
5507
5508 retval = security_task_getscheduler(p);
5509 if (retval)
5510 goto out_unlock;
5511
5512 lp.sched_priority = p->rt_priority;
5513 rcu_read_unlock();
5514
5515 /*
5516 * This one might sleep, we cannot do it with a spinlock held ...
5517 */
5518 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5519
5520 return retval;
5521
5522 out_unlock:
5523 rcu_read_unlock();
5524 return retval;
5525 }
5526
5527 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5528 {
5529 cpumask_var_t cpus_allowed, new_mask;
5530 struct task_struct *p;
5531 int retval;
5532
5533 get_online_cpus();
5534 rcu_read_lock();
5535
5536 p = find_process_by_pid(pid);
5537 if (!p) {
5538 rcu_read_unlock();
5539 put_online_cpus();
5540 return -ESRCH;
5541 }
5542
5543 /* Prevent p going away */
5544 get_task_struct(p);
5545 rcu_read_unlock();
5546
5547 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5548 retval = -ENOMEM;
5549 goto out_put_task;
5550 }
5551 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5552 retval = -ENOMEM;
5553 goto out_free_cpus_allowed;
5554 }
5555 retval = -EPERM;
5556 if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
5557 goto out_unlock;
5558
5559 retval = security_task_setscheduler(p);
5560 if (retval)
5561 goto out_unlock;
5562
5563 cpuset_cpus_allowed(p, cpus_allowed);
5564 cpumask_and(new_mask, in_mask, cpus_allowed);
5565 again:
5566 retval = set_cpus_allowed_ptr(p, new_mask);
5567
5568 if (!retval) {
5569 cpuset_cpus_allowed(p, cpus_allowed);
5570 if (!cpumask_subset(new_mask, cpus_allowed)) {
5571 /*
5572 * We must have raced with a concurrent cpuset
5573 * update. Just reset the cpus_allowed to the
5574 * cpuset's cpus_allowed
5575 */
5576 cpumask_copy(new_mask, cpus_allowed);
5577 goto again;
5578 }
5579 }
5580 out_unlock:
5581 free_cpumask_var(new_mask);
5582 out_free_cpus_allowed:
5583 free_cpumask_var(cpus_allowed);
5584 out_put_task:
5585 put_task_struct(p);
5586 put_online_cpus();
5587 return retval;
5588 }
5589
5590 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5591 struct cpumask *new_mask)
5592 {
5593 if (len < cpumask_size())
5594 cpumask_clear(new_mask);
5595 else if (len > cpumask_size())
5596 len = cpumask_size();
5597
5598 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5599 }
5600
5601 /**
5602 * sys_sched_setaffinity - set the cpu affinity of a process
5603 * @pid: pid of the process
5604 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5605 * @user_mask_ptr: user-space pointer to the new cpu mask
5606 */
5607 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5608 unsigned long __user *, user_mask_ptr)
5609 {
5610 cpumask_var_t new_mask;
5611 int retval;
5612
5613 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5614 return -ENOMEM;
5615
5616 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5617 if (retval == 0)
5618 retval = sched_setaffinity(pid, new_mask);
5619 free_cpumask_var(new_mask);
5620 return retval;
5621 }
5622
5623 long sched_getaffinity(pid_t pid, struct cpumask *mask)
5624 {
5625 struct task_struct *p;
5626 unsigned long flags;
5627 int retval;
5628
5629 get_online_cpus();
5630 rcu_read_lock();
5631
5632 retval = -ESRCH;
5633 p = find_process_by_pid(pid);
5634 if (!p)
5635 goto out_unlock;
5636
5637 retval = security_task_getscheduler(p);
5638 if (retval)
5639 goto out_unlock;
5640
5641 raw_spin_lock_irqsave(&p->pi_lock, flags);
5642 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
5643 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5644
5645 out_unlock:
5646 rcu_read_unlock();
5647 put_online_cpus();
5648
5649 return retval;
5650 }
5651
5652 /**
5653 * sys_sched_getaffinity - get the cpu affinity of a process
5654 * @pid: pid of the process
5655 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5656 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5657 */
5658 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5659 unsigned long __user *, user_mask_ptr)
5660 {
5661 int ret;
5662 cpumask_var_t mask;
5663
5664 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
5665 return -EINVAL;
5666 if (len & (sizeof(unsigned long)-1))
5667 return -EINVAL;
5668
5669 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5670 return -ENOMEM;
5671
5672 ret = sched_getaffinity(pid, mask);
5673 if (ret == 0) {
5674 size_t retlen = min_t(size_t, len, cpumask_size());
5675
5676 if (copy_to_user(user_mask_ptr, mask, retlen))
5677 ret = -EFAULT;
5678 else
5679 ret = retlen;
5680 }
5681 free_cpumask_var(mask);
5682
5683 return ret;
5684 }
5685
5686 /**
5687 * sys_sched_yield - yield the current processor to other threads.
5688 *
5689 * This function yields the current CPU to other tasks. If there are no
5690 * other threads running on this CPU then this function will return.
5691 */
5692 SYSCALL_DEFINE0(sched_yield)
5693 {
5694 struct rq *rq = this_rq_lock();
5695
5696 schedstat_inc(rq, yld_count);
5697 current->sched_class->yield_task(rq);
5698
5699 /*
5700 * Since we are going to call schedule() anyway, there's
5701 * no need to preempt or enable interrupts:
5702 */
5703 __release(rq->lock);
5704 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5705 do_raw_spin_unlock(&rq->lock);
5706 preempt_enable_no_resched();
5707
5708 schedule();
5709
5710 return 0;
5711 }
5712
5713 static inline int should_resched(void)
5714 {
5715 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5716 }
5717
5718 static void __cond_resched(void)
5719 {
5720 add_preempt_count(PREEMPT_ACTIVE);
5721 __schedule();
5722 sub_preempt_count(PREEMPT_ACTIVE);
5723 }
5724
5725 int __sched _cond_resched(void)
5726 {
5727 if (should_resched()) {
5728 __cond_resched();
5729 return 1;
5730 }
5731 return 0;
5732 }
5733 EXPORT_SYMBOL(_cond_resched);
5734
5735 /*
5736 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5737 * call schedule, and on return reacquire the lock.
5738 *
5739 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5740 * operations here to prevent schedule() from being called twice (once via
5741 * spin_unlock(), once by hand).
5742 */
5743 int __cond_resched_lock(spinlock_t *lock)
5744 {
5745 int resched = should_resched();
5746 int ret = 0;
5747
5748 lockdep_assert_held(lock);
5749
5750 if (spin_needbreak(lock) || resched) {
5751 spin_unlock(lock);
5752 if (resched)
5753 __cond_resched();
5754 else
5755 cpu_relax();
5756 ret = 1;
5757 spin_lock(lock);
5758 }
5759 return ret;
5760 }
5761 EXPORT_SYMBOL(__cond_resched_lock);
5762
5763 int __sched __cond_resched_softirq(void)
5764 {
5765 BUG_ON(!in_softirq());
5766
5767 if (should_resched()) {
5768 local_bh_enable();
5769 __cond_resched();
5770 local_bh_disable();
5771 return 1;
5772 }
5773 return 0;
5774 }
5775 EXPORT_SYMBOL(__cond_resched_softirq);
5776
5777 /**
5778 * yield - yield the current processor to other threads.
5779 *
5780 * This is a shortcut for kernel-space yielding - it marks the
5781 * thread runnable and calls sys_sched_yield().
5782 */
5783 void __sched yield(void)
5784 {
5785 set_current_state(TASK_RUNNING);
5786 sys_sched_yield();
5787 }
5788 EXPORT_SYMBOL(yield);
5789
5790 /**
5791 * yield_to - yield the current processor to another thread in
5792 * your thread group, or accelerate that thread toward the
5793 * processor it's on.
5794 * @p: target task
5795 * @preempt: whether task preemption is allowed or not
5796 *
5797 * It's the caller's job to ensure that the target task struct
5798 * can't go away on us before we can do any checks.
5799 *
5800 * Returns true if we indeed boosted the target task.
5801 */
5802 bool __sched yield_to(struct task_struct *p, bool preempt)
5803 {
5804 struct task_struct *curr = current;
5805 struct rq *rq, *p_rq;
5806 unsigned long flags;
5807 bool yielded = 0;
5808
5809 local_irq_save(flags);
5810 rq = this_rq();
5811
5812 again:
5813 p_rq = task_rq(p);
5814 double_rq_lock(rq, p_rq);
5815 while (task_rq(p) != p_rq) {
5816 double_rq_unlock(rq, p_rq);
5817 goto again;
5818 }
5819
5820 if (!curr->sched_class->yield_to_task)
5821 goto out;
5822
5823 if (curr->sched_class != p->sched_class)
5824 goto out;
5825
5826 if (task_running(p_rq, p) || p->state)
5827 goto out;
5828
5829 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5830 if (yielded) {
5831 schedstat_inc(rq, yld_count);
5832 /*
5833 * Make p's CPU reschedule; pick_next_entity takes care of
5834 * fairness.
5835 */
5836 if (preempt && rq != p_rq)
5837 resched_task(p_rq->curr);
5838 }
5839
5840 out:
5841 double_rq_unlock(rq, p_rq);
5842 local_irq_restore(flags);
5843
5844 if (yielded)
5845 schedule();
5846
5847 return yielded;
5848 }
5849 EXPORT_SYMBOL_GPL(yield_to);
5850
5851 /*
5852 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5853 * that process accounting knows that this is a task in IO wait state.
5854 */
5855 void __sched io_schedule(void)
5856 {
5857 struct rq *rq = raw_rq();
5858
5859 delayacct_blkio_start();
5860 atomic_inc(&rq->nr_iowait);
5861 blk_flush_plug(current);
5862 current->in_iowait = 1;
5863 schedule();
5864 current->in_iowait = 0;
5865 atomic_dec(&rq->nr_iowait);
5866 delayacct_blkio_end();
5867 }
5868 EXPORT_SYMBOL(io_schedule);
5869
5870 long __sched io_schedule_timeout(long timeout)
5871 {
5872 struct rq *rq = raw_rq();
5873 long ret;
5874
5875 delayacct_blkio_start();
5876 atomic_inc(&rq->nr_iowait);
5877 blk_flush_plug(current);
5878 current->in_iowait = 1;
5879 ret = schedule_timeout(timeout);
5880 current->in_iowait = 0;
5881 atomic_dec(&rq->nr_iowait);
5882 delayacct_blkio_end();
5883 return ret;
5884 }
5885
5886 /**
5887 * sys_sched_get_priority_max - return maximum RT priority.
5888 * @policy: scheduling class.
5889 *
5890 * this syscall returns the maximum rt_priority that can be used
5891 * by a given scheduling class.
5892 */
5893 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5894 {
5895 int ret = -EINVAL;
5896
5897 switch (policy) {
5898 case SCHED_FIFO:
5899 case SCHED_RR:
5900 ret = MAX_USER_RT_PRIO-1;
5901 break;
5902 case SCHED_NORMAL:
5903 case SCHED_BATCH:
5904 case SCHED_IDLE:
5905 ret = 0;
5906 break;
5907 }
5908 return ret;
5909 }
5910
5911 /**
5912 * sys_sched_get_priority_min - return minimum RT priority.
5913 * @policy: scheduling class.
5914 *
5915 * this syscall returns the minimum rt_priority that can be used
5916 * by a given scheduling class.
5917 */
5918 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5919 {
5920 int ret = -EINVAL;
5921
5922 switch (policy) {
5923 case SCHED_FIFO:
5924 case SCHED_RR:
5925 ret = 1;
5926 break;
5927 case SCHED_NORMAL:
5928 case SCHED_BATCH:
5929 case SCHED_IDLE:
5930 ret = 0;
5931 }
5932 return ret;
5933 }
5934
5935 /**
5936 * sys_sched_rr_get_interval - return the default timeslice of a process.
5937 * @pid: pid of the process.
5938 * @interval: userspace pointer to the timeslice value.
5939 *
5940 * this syscall writes the default timeslice value of a given process
5941 * into the user-space timespec buffer. A value of '0' means infinity.
5942 */
5943 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5944 struct timespec __user *, interval)
5945 {
5946 struct task_struct *p;
5947 unsigned int time_slice;
5948 unsigned long flags;
5949 struct rq *rq;
5950 int retval;
5951 struct timespec t;
5952
5953 if (pid < 0)
5954 return -EINVAL;
5955
5956 retval = -ESRCH;
5957 rcu_read_lock();
5958 p = find_process_by_pid(pid);
5959 if (!p)
5960 goto out_unlock;
5961
5962 retval = security_task_getscheduler(p);
5963 if (retval)
5964 goto out_unlock;
5965
5966 rq = task_rq_lock(p, &flags);
5967 time_slice = p->sched_class->get_rr_interval(rq, p);
5968 task_rq_unlock(rq, p, &flags);
5969
5970 rcu_read_unlock();
5971 jiffies_to_timespec(time_slice, &t);
5972 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5973 return retval;
5974
5975 out_unlock:
5976 rcu_read_unlock();
5977 return retval;
5978 }
5979
5980 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5981
5982 void sched_show_task(struct task_struct *p)
5983 {
5984 unsigned long free = 0;
5985 unsigned state;
5986
5987 state = p->state ? __ffs(p->state) + 1 : 0;
5988 printk(KERN_INFO "%-15.15s %c", p->comm,
5989 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5990 #if BITS_PER_LONG == 32
5991 if (state == TASK_RUNNING)
5992 printk(KERN_CONT " running ");
5993 else
5994 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5995 #else
5996 if (state == TASK_RUNNING)
5997 printk(KERN_CONT " running task ");
5998 else
5999 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
6000 #endif
6001 #ifdef CONFIG_DEBUG_STACK_USAGE
6002 free = stack_not_used(p);
6003 #endif
6004 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6005 task_pid_nr(p), task_pid_nr(p->real_parent),
6006 (unsigned long)task_thread_info(p)->flags);
6007
6008 show_stack(p, NULL);
6009 }
6010
6011 void show_state_filter(unsigned long state_filter)
6012 {
6013 struct task_struct *g, *p;
6014
6015 #if BITS_PER_LONG == 32
6016 printk(KERN_INFO
6017 " task PC stack pid father\n");
6018 #else
6019 printk(KERN_INFO
6020 " task PC stack pid father\n");
6021 #endif
6022 read_lock(&tasklist_lock);
6023 do_each_thread(g, p) {
6024 /*
6025 * reset the NMI-timeout, listing all files on a slow
6026 * console might take a lot of time:
6027 */
6028 touch_nmi_watchdog();
6029 if (!state_filter || (p->state & state_filter))
6030 sched_show_task(p);
6031 } while_each_thread(g, p);
6032
6033 touch_all_softlockup_watchdogs();
6034
6035 #ifdef CONFIG_SCHED_DEBUG
6036 sysrq_sched_debug_show();
6037 #endif
6038 read_unlock(&tasklist_lock);
6039 /*
6040 * Only show locks if all tasks are dumped:
6041 */
6042 if (!state_filter)
6043 debug_show_all_locks();
6044 }
6045
6046 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6047 {
6048 idle->sched_class = &idle_sched_class;
6049 }
6050
6051 /**
6052 * init_idle - set up an idle thread for a given CPU
6053 * @idle: task in question
6054 * @cpu: cpu the idle task belongs to
6055 *
6056 * NOTE: this function does not set the idle thread's NEED_RESCHED
6057 * flag, to make booting more robust.
6058 */
6059 void __cpuinit init_idle(struct task_struct *idle, int cpu)
6060 {
6061 struct rq *rq = cpu_rq(cpu);
6062 unsigned long flags;
6063
6064 raw_spin_lock_irqsave(&rq->lock, flags);
6065
6066 __sched_fork(idle);
6067 idle->state = TASK_RUNNING;
6068 idle->se.exec_start = sched_clock();
6069
6070 do_set_cpus_allowed(idle, cpumask_of(cpu));
6071 /*
6072 * We're having a chicken and egg problem, even though we are
6073 * holding rq->lock, the cpu isn't yet set to this cpu so the
6074 * lockdep check in task_group() will fail.
6075 *
6076 * Similar case to sched_fork(). / Alternatively we could
6077 * use task_rq_lock() here and obtain the other rq->lock.
6078 *
6079 * Silence PROVE_RCU
6080 */
6081 rcu_read_lock();
6082 __set_task_cpu(idle, cpu);
6083 rcu_read_unlock();
6084
6085 rq->curr = rq->idle = idle;
6086 #if defined(CONFIG_SMP)
6087 idle->on_cpu = 1;
6088 #endif
6089 raw_spin_unlock_irqrestore(&rq->lock, flags);
6090
6091 /* Set the preempt count _outside_ the spinlocks! */
6092 task_thread_info(idle)->preempt_count = 0;
6093
6094 /*
6095 * The idle tasks have their own, simple scheduling class:
6096 */
6097 idle->sched_class = &idle_sched_class;
6098 ftrace_graph_init_idle_task(idle, cpu);
6099 }
6100
6101 /*
6102 * In a system that switches off the HZ timer nohz_cpu_mask
6103 * indicates which cpus entered this state. This is used
6104 * in the rcu update to wait only for active cpus. For system
6105 * which do not switch off the HZ timer nohz_cpu_mask should
6106 * always be CPU_BITS_NONE.
6107 */
6108 cpumask_var_t nohz_cpu_mask;
6109
6110 /*
6111 * Increase the granularity value when there are more CPUs,
6112 * because with more CPUs the 'effective latency' as visible
6113 * to users decreases. But the relationship is not linear,
6114 * so pick a second-best guess by going with the log2 of the
6115 * number of CPUs.
6116 *
6117 * This idea comes from the SD scheduler of Con Kolivas:
6118 */
6119 static int get_update_sysctl_factor(void)
6120 {
6121 unsigned int cpus = min_t(int, num_online_cpus(), 8);
6122 unsigned int factor;
6123
6124 switch (sysctl_sched_tunable_scaling) {
6125 case SCHED_TUNABLESCALING_NONE:
6126 factor = 1;
6127 break;
6128 case SCHED_TUNABLESCALING_LINEAR:
6129 factor = cpus;
6130 break;
6131 case SCHED_TUNABLESCALING_LOG:
6132 default:
6133 factor = 1 + ilog2(cpus);
6134 break;
6135 }
6136
6137 return factor;
6138 }
6139
6140 static void update_sysctl(void)
6141 {
6142 unsigned int factor = get_update_sysctl_factor();
6143
6144 #define SET_SYSCTL(name) \
6145 (sysctl_##name = (factor) * normalized_sysctl_##name)
6146 SET_SYSCTL(sched_min_granularity);
6147 SET_SYSCTL(sched_latency);
6148 SET_SYSCTL(sched_wakeup_granularity);
6149 #undef SET_SYSCTL
6150 }
6151
6152 static inline void sched_init_granularity(void)
6153 {
6154 update_sysctl();
6155 }
6156
6157 #ifdef CONFIG_SMP
6158 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
6159 {
6160 if (p->sched_class && p->sched_class->set_cpus_allowed)
6161 p->sched_class->set_cpus_allowed(p, new_mask);
6162 else {
6163 cpumask_copy(&p->cpus_allowed, new_mask);
6164 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
6165 }
6166 }
6167
6168 /*
6169 * This is how migration works:
6170 *
6171 * 1) we invoke migration_cpu_stop() on the target CPU using
6172 * stop_one_cpu().
6173 * 2) stopper starts to run (implicitly forcing the migrated thread
6174 * off the CPU)
6175 * 3) it checks whether the migrated task is still in the wrong runqueue.
6176 * 4) if it's in the wrong runqueue then the migration thread removes
6177 * it and puts it into the right queue.
6178 * 5) stopper completes and stop_one_cpu() returns and the migration
6179 * is done.
6180 */
6181
6182 /*
6183 * Change a given task's CPU affinity. Migrate the thread to a
6184 * proper CPU and schedule it away if the CPU it's executing on
6185 * is removed from the allowed bitmask.
6186 *
6187 * NOTE: the caller must have a valid reference to the task, the
6188 * task must not exit() & deallocate itself prematurely. The
6189 * call is not atomic; no spinlocks may be held.
6190 */
6191 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
6192 {
6193 unsigned long flags;
6194 struct rq *rq;
6195 unsigned int dest_cpu;
6196 int ret = 0;
6197
6198 rq = task_rq_lock(p, &flags);
6199
6200 if (cpumask_equal(&p->cpus_allowed, new_mask))
6201 goto out;
6202
6203 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
6204 ret = -EINVAL;
6205 goto out;
6206 }
6207
6208 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
6209 ret = -EINVAL;
6210 goto out;
6211 }
6212
6213 do_set_cpus_allowed(p, new_mask);
6214
6215 /* Can the task run on the task's current CPU? If so, we're done */
6216 if (cpumask_test_cpu(task_cpu(p), new_mask))
6217 goto out;
6218
6219 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
6220 if (p->on_rq) {
6221 struct migration_arg arg = { p, dest_cpu };
6222 /* Need help from migration thread: drop lock and wait. */
6223 task_rq_unlock(rq, p, &flags);
6224 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
6225 tlb_migrate_finish(p->mm);
6226 return 0;
6227 }
6228 out:
6229 task_rq_unlock(rq, p, &flags);
6230
6231 return ret;
6232 }
6233 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
6234
6235 /*
6236 * Move (not current) task off this cpu, onto dest cpu. We're doing
6237 * this because either it can't run here any more (set_cpus_allowed()
6238 * away from this CPU, or CPU going down), or because we're
6239 * attempting to rebalance this task on exec (sched_exec).
6240 *
6241 * So we race with normal scheduler movements, but that's OK, as long
6242 * as the task is no longer on this CPU.
6243 *
6244 * Returns non-zero if task was successfully migrated.
6245 */
6246 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
6247 {
6248 struct rq *rq_dest, *rq_src;
6249 int ret = 0;
6250
6251 if (unlikely(!cpu_active(dest_cpu)))
6252 return ret;
6253
6254 rq_src = cpu_rq(src_cpu);
6255 rq_dest = cpu_rq(dest_cpu);
6256
6257 raw_spin_lock(&p->pi_lock);
6258 double_rq_lock(rq_src, rq_dest);
6259 /* Already moved. */
6260 if (task_cpu(p) != src_cpu)
6261 goto done;
6262 /* Affinity changed (again). */
6263 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6264 goto fail;
6265
6266 /*
6267 * If we're not on a rq, the next wake-up will ensure we're
6268 * placed properly.
6269 */
6270 if (p->on_rq) {
6271 deactivate_task(rq_src, p, 0);
6272 set_task_cpu(p, dest_cpu);
6273 activate_task(rq_dest, p, 0);
6274 check_preempt_curr(rq_dest, p, 0);
6275 }
6276 done:
6277 ret = 1;
6278 fail:
6279 double_rq_unlock(rq_src, rq_dest);
6280 raw_spin_unlock(&p->pi_lock);
6281 return ret;
6282 }
6283
6284 /*
6285 * migration_cpu_stop - this will be executed by a highprio stopper thread
6286 * and performs thread migration by bumping thread off CPU then
6287 * 'pushing' onto another runqueue.
6288 */
6289 static int migration_cpu_stop(void *data)
6290 {
6291 struct migration_arg *arg = data;
6292
6293 /*
6294 * The original target cpu might have gone down and we might
6295 * be on another cpu but it doesn't matter.
6296 */
6297 local_irq_disable();
6298 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
6299 local_irq_enable();
6300 return 0;
6301 }
6302
6303 #ifdef CONFIG_HOTPLUG_CPU
6304
6305 /*
6306 * Ensures that the idle task is using init_mm right before its cpu goes
6307 * offline.
6308 */
6309 void idle_task_exit(void)
6310 {
6311 struct mm_struct *mm = current->active_mm;
6312
6313 BUG_ON(cpu_online(smp_processor_id()));
6314
6315 if (mm != &init_mm)
6316 switch_mm(mm, &init_mm, current);
6317 mmdrop(mm);
6318 }
6319
6320 /*
6321 * While a dead CPU has no uninterruptible tasks queued at this point,
6322 * it might still have a nonzero ->nr_uninterruptible counter, because
6323 * for performance reasons the counter is not stricly tracking tasks to
6324 * their home CPUs. So we just add the counter to another CPU's counter,
6325 * to keep the global sum constant after CPU-down:
6326 */
6327 static void migrate_nr_uninterruptible(struct rq *rq_src)
6328 {
6329 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
6330
6331 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6332 rq_src->nr_uninterruptible = 0;
6333 }
6334
6335 /*
6336 * remove the tasks which were accounted by rq from calc_load_tasks.
6337 */
6338 static void calc_global_load_remove(struct rq *rq)
6339 {
6340 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
6341 rq->calc_load_active = 0;
6342 }
6343
6344 #ifdef CONFIG_CFS_BANDWIDTH
6345 static void unthrottle_offline_cfs_rqs(struct rq *rq)
6346 {
6347 struct cfs_rq *cfs_rq;
6348
6349 for_each_leaf_cfs_rq(rq, cfs_rq) {
6350 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
6351
6352 if (!cfs_rq->runtime_enabled)
6353 continue;
6354
6355 /*
6356 * clock_task is not advancing so we just need to make sure
6357 * there's some valid quota amount
6358 */
6359 cfs_rq->runtime_remaining = cfs_b->quota;
6360 if (cfs_rq_throttled(cfs_rq))
6361 unthrottle_cfs_rq(cfs_rq);
6362 }
6363 }
6364 #else
6365 static void unthrottle_offline_cfs_rqs(struct rq *rq) {}
6366 #endif
6367
6368 /*
6369 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6370 * try_to_wake_up()->select_task_rq().
6371 *
6372 * Called with rq->lock held even though we'er in stop_machine() and
6373 * there's no concurrency possible, we hold the required locks anyway
6374 * because of lock validation efforts.
6375 */
6376 static void migrate_tasks(unsigned int dead_cpu)
6377 {
6378 struct rq *rq = cpu_rq(dead_cpu);
6379 struct task_struct *next, *stop = rq->stop;
6380 int dest_cpu;
6381
6382 /*
6383 * Fudge the rq selection such that the below task selection loop
6384 * doesn't get stuck on the currently eligible stop task.
6385 *
6386 * We're currently inside stop_machine() and the rq is either stuck
6387 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6388 * either way we should never end up calling schedule() until we're
6389 * done here.
6390 */
6391 rq->stop = NULL;
6392
6393 /* Ensure any throttled groups are reachable by pick_next_task */
6394 unthrottle_offline_cfs_rqs(rq);
6395
6396 for ( ; ; ) {
6397 /*
6398 * There's this thread running, bail when that's the only
6399 * remaining thread.
6400 */
6401 if (rq->nr_running == 1)
6402 break;
6403
6404 next = pick_next_task(rq);
6405 BUG_ON(!next);
6406 next->sched_class->put_prev_task(rq, next);
6407
6408 /* Find suitable destination for @next, with force if needed. */
6409 dest_cpu = select_fallback_rq(dead_cpu, next);
6410 raw_spin_unlock(&rq->lock);
6411
6412 __migrate_task(next, dead_cpu, dest_cpu);
6413
6414 raw_spin_lock(&rq->lock);
6415 }
6416
6417 rq->stop = stop;
6418 }
6419
6420 #endif /* CONFIG_HOTPLUG_CPU */
6421
6422 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6423
6424 static struct ctl_table sd_ctl_dir[] = {
6425 {
6426 .procname = "sched_domain",
6427 .mode = 0555,
6428 },
6429 {}
6430 };
6431
6432 static struct ctl_table sd_ctl_root[] = {
6433 {
6434 .procname = "kernel",
6435 .mode = 0555,
6436 .child = sd_ctl_dir,
6437 },
6438 {}
6439 };
6440
6441 static struct ctl_table *sd_alloc_ctl_entry(int n)
6442 {
6443 struct ctl_table *entry =
6444 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6445
6446 return entry;
6447 }
6448
6449 static void sd_free_ctl_entry(struct ctl_table **tablep)
6450 {
6451 struct ctl_table *entry;
6452
6453 /*
6454 * In the intermediate directories, both the child directory and
6455 * procname are dynamically allocated and could fail but the mode
6456 * will always be set. In the lowest directory the names are
6457 * static strings and all have proc handlers.
6458 */
6459 for (entry = *tablep; entry->mode; entry++) {
6460 if (entry->child)
6461 sd_free_ctl_entry(&entry->child);
6462 if (entry->proc_handler == NULL)
6463 kfree(entry->procname);
6464 }
6465
6466 kfree(*tablep);
6467 *tablep = NULL;
6468 }
6469
6470 static void
6471 set_table_entry(struct ctl_table *entry,
6472 const char *procname, void *data, int maxlen,
6473 mode_t mode, proc_handler *proc_handler)
6474 {
6475 entry->procname = procname;
6476 entry->data = data;
6477 entry->maxlen = maxlen;
6478 entry->mode = mode;
6479 entry->proc_handler = proc_handler;
6480 }
6481
6482 static struct ctl_table *
6483 sd_alloc_ctl_domain_table(struct sched_domain *sd)
6484 {
6485 struct ctl_table *table = sd_alloc_ctl_entry(13);
6486
6487 if (table == NULL)
6488 return NULL;
6489
6490 set_table_entry(&table[0], "min_interval", &sd->min_interval,
6491 sizeof(long), 0644, proc_doulongvec_minmax);
6492 set_table_entry(&table[1], "max_interval", &sd->max_interval,
6493 sizeof(long), 0644, proc_doulongvec_minmax);
6494 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6495 sizeof(int), 0644, proc_dointvec_minmax);
6496 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6497 sizeof(int), 0644, proc_dointvec_minmax);
6498 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6499 sizeof(int), 0644, proc_dointvec_minmax);
6500 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6501 sizeof(int), 0644, proc_dointvec_minmax);
6502 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6503 sizeof(int), 0644, proc_dointvec_minmax);
6504 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6505 sizeof(int), 0644, proc_dointvec_minmax);
6506 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6507 sizeof(int), 0644, proc_dointvec_minmax);
6508 set_table_entry(&table[9], "cache_nice_tries",
6509 &sd->cache_nice_tries,
6510 sizeof(int), 0644, proc_dointvec_minmax);
6511 set_table_entry(&table[10], "flags", &sd->flags,
6512 sizeof(int), 0644, proc_dointvec_minmax);
6513 set_table_entry(&table[11], "name", sd->name,
6514 CORENAME_MAX_SIZE, 0444, proc_dostring);
6515 /* &table[12] is terminator */
6516
6517 return table;
6518 }
6519
6520 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6521 {
6522 struct ctl_table *entry, *table;
6523 struct sched_domain *sd;
6524 int domain_num = 0, i;
6525 char buf[32];
6526
6527 for_each_domain(cpu, sd)
6528 domain_num++;
6529 entry = table = sd_alloc_ctl_entry(domain_num + 1);
6530 if (table == NULL)
6531 return NULL;
6532
6533 i = 0;
6534 for_each_domain(cpu, sd) {
6535 snprintf(buf, 32, "domain%d", i);
6536 entry->procname = kstrdup(buf, GFP_KERNEL);
6537 entry->mode = 0555;
6538 entry->child = sd_alloc_ctl_domain_table(sd);
6539 entry++;
6540 i++;
6541 }
6542 return table;
6543 }
6544
6545 static struct ctl_table_header *sd_sysctl_header;
6546 static void register_sched_domain_sysctl(void)
6547 {
6548 int i, cpu_num = num_possible_cpus();
6549 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6550 char buf[32];
6551
6552 WARN_ON(sd_ctl_dir[0].child);
6553 sd_ctl_dir[0].child = entry;
6554
6555 if (entry == NULL)
6556 return;
6557
6558 for_each_possible_cpu(i) {
6559 snprintf(buf, 32, "cpu%d", i);
6560 entry->procname = kstrdup(buf, GFP_KERNEL);
6561 entry->mode = 0555;
6562 entry->child = sd_alloc_ctl_cpu_table(i);
6563 entry++;
6564 }
6565
6566 WARN_ON(sd_sysctl_header);
6567 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6568 }
6569
6570 /* may be called multiple times per register */
6571 static void unregister_sched_domain_sysctl(void)
6572 {
6573 if (sd_sysctl_header)
6574 unregister_sysctl_table(sd_sysctl_header);
6575 sd_sysctl_header = NULL;
6576 if (sd_ctl_dir[0].child)
6577 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6578 }
6579 #else
6580 static void register_sched_domain_sysctl(void)
6581 {
6582 }
6583 static void unregister_sched_domain_sysctl(void)
6584 {
6585 }
6586 #endif
6587
6588 static void set_rq_online(struct rq *rq)
6589 {
6590 if (!rq->online) {
6591 const struct sched_class *class;
6592
6593 cpumask_set_cpu(rq->cpu, rq->rd->online);
6594 rq->online = 1;
6595
6596 for_each_class(class) {
6597 if (class->rq_online)
6598 class->rq_online(rq);
6599 }
6600 }
6601 }
6602
6603 static void set_rq_offline(struct rq *rq)
6604 {
6605 if (rq->online) {
6606 const struct sched_class *class;
6607
6608 for_each_class(class) {
6609 if (class->rq_offline)
6610 class->rq_offline(rq);
6611 }
6612
6613 cpumask_clear_cpu(rq->cpu, rq->rd->online);
6614 rq->online = 0;
6615 }
6616 }
6617
6618 /*
6619 * migration_call - callback that gets triggered when a CPU is added.
6620 * Here we can start up the necessary migration thread for the new CPU.
6621 */
6622 static int __cpuinit
6623 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6624 {
6625 int cpu = (long)hcpu;
6626 unsigned long flags;
6627 struct rq *rq = cpu_rq(cpu);
6628
6629 switch (action & ~CPU_TASKS_FROZEN) {
6630
6631 case CPU_UP_PREPARE:
6632 rq->calc_load_update = calc_load_update;
6633 break;
6634
6635 case CPU_ONLINE:
6636 /* Update our root-domain */
6637 raw_spin_lock_irqsave(&rq->lock, flags);
6638 if (rq->rd) {
6639 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6640
6641 set_rq_online(rq);
6642 }
6643 raw_spin_unlock_irqrestore(&rq->lock, flags);
6644 break;
6645
6646 #ifdef CONFIG_HOTPLUG_CPU
6647 case CPU_DYING:
6648 sched_ttwu_pending();
6649 /* Update our root-domain */
6650 raw_spin_lock_irqsave(&rq->lock, flags);
6651 if (rq->rd) {
6652 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6653 set_rq_offline(rq);
6654 }
6655 migrate_tasks(cpu);
6656 BUG_ON(rq->nr_running != 1); /* the migration thread */
6657 raw_spin_unlock_irqrestore(&rq->lock, flags);
6658
6659 migrate_nr_uninterruptible(rq);
6660 calc_global_load_remove(rq);
6661 break;
6662 #endif
6663 }
6664
6665 update_max_interval();
6666
6667 return NOTIFY_OK;
6668 }
6669
6670 /*
6671 * Register at high priority so that task migration (migrate_all_tasks)
6672 * happens before everything else. This has to be lower priority than
6673 * the notifier in the perf_event subsystem, though.
6674 */
6675 static struct notifier_block __cpuinitdata migration_notifier = {
6676 .notifier_call = migration_call,
6677 .priority = CPU_PRI_MIGRATION,
6678 };
6679
6680 static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
6681 unsigned long action, void *hcpu)
6682 {
6683 switch (action & ~CPU_TASKS_FROZEN) {
6684 case CPU_ONLINE:
6685 case CPU_DOWN_FAILED:
6686 set_cpu_active((long)hcpu, true);
6687 return NOTIFY_OK;
6688 default:
6689 return NOTIFY_DONE;
6690 }
6691 }
6692
6693 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
6694 unsigned long action, void *hcpu)
6695 {
6696 switch (action & ~CPU_TASKS_FROZEN) {
6697 case CPU_DOWN_PREPARE:
6698 set_cpu_active((long)hcpu, false);
6699 return NOTIFY_OK;
6700 default:
6701 return NOTIFY_DONE;
6702 }
6703 }
6704
6705 static int __init migration_init(void)
6706 {
6707 void *cpu = (void *)(long)smp_processor_id();
6708 int err;
6709
6710 /* Initialize migration for the boot CPU */
6711 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6712 BUG_ON(err == NOTIFY_BAD);
6713 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6714 register_cpu_notifier(&migration_notifier);
6715
6716 /* Register cpu active notifiers */
6717 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6718 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6719
6720 return 0;
6721 }
6722 early_initcall(migration_init);
6723 #endif
6724
6725 #ifdef CONFIG_SMP
6726
6727 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
6728
6729 #ifdef CONFIG_SCHED_DEBUG
6730
6731 static __read_mostly int sched_domain_debug_enabled;
6732
6733 static int __init sched_domain_debug_setup(char *str)
6734 {
6735 sched_domain_debug_enabled = 1;
6736
6737 return 0;
6738 }
6739 early_param("sched_debug", sched_domain_debug_setup);
6740
6741 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6742 struct cpumask *groupmask)
6743 {
6744 struct sched_group *group = sd->groups;
6745 char str[256];
6746
6747 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6748 cpumask_clear(groupmask);
6749
6750 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6751
6752 if (!(sd->flags & SD_LOAD_BALANCE)) {
6753 printk("does not load-balance\n");
6754 if (sd->parent)
6755 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6756 " has parent");
6757 return -1;
6758 }
6759
6760 printk(KERN_CONT "span %s level %s\n", str, sd->name);
6761
6762 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
6763 printk(KERN_ERR "ERROR: domain->span does not contain "
6764 "CPU%d\n", cpu);
6765 }
6766 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
6767 printk(KERN_ERR "ERROR: domain->groups does not contain"
6768 " CPU%d\n", cpu);
6769 }
6770
6771 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6772 do {
6773 if (!group) {
6774 printk("\n");
6775 printk(KERN_ERR "ERROR: group is NULL\n");
6776 break;
6777 }
6778
6779 if (!group->sgp->power) {
6780 printk(KERN_CONT "\n");
6781 printk(KERN_ERR "ERROR: domain->cpu_power not "
6782 "set\n");
6783 break;
6784 }
6785
6786 if (!cpumask_weight(sched_group_cpus(group))) {
6787 printk(KERN_CONT "\n");
6788 printk(KERN_ERR "ERROR: empty group\n");
6789 break;
6790 }
6791
6792 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
6793 printk(KERN_CONT "\n");
6794 printk(KERN_ERR "ERROR: repeated CPUs\n");
6795 break;
6796 }
6797
6798 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
6799
6800 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6801
6802 printk(KERN_CONT " %s", str);
6803 if (group->sgp->power != SCHED_POWER_SCALE) {
6804 printk(KERN_CONT " (cpu_power = %d)",
6805 group->sgp->power);
6806 }
6807
6808 group = group->next;
6809 } while (group != sd->groups);
6810 printk(KERN_CONT "\n");
6811
6812 if (!cpumask_equal(sched_domain_span(sd), groupmask))
6813 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6814
6815 if (sd->parent &&
6816 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
6817 printk(KERN_ERR "ERROR: parent span is not a superset "
6818 "of domain->span\n");
6819 return 0;
6820 }
6821
6822 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6823 {
6824 int level = 0;
6825
6826 if (!sched_domain_debug_enabled)
6827 return;
6828
6829 if (!sd) {
6830 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6831 return;
6832 }
6833
6834 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6835
6836 for (;;) {
6837 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
6838 break;
6839 level++;
6840 sd = sd->parent;
6841 if (!sd)
6842 break;
6843 }
6844 }
6845 #else /* !CONFIG_SCHED_DEBUG */
6846 # define sched_domain_debug(sd, cpu) do { } while (0)
6847 #endif /* CONFIG_SCHED_DEBUG */
6848
6849 static int sd_degenerate(struct sched_domain *sd)
6850 {
6851 if (cpumask_weight(sched_domain_span(sd)) == 1)
6852 return 1;
6853
6854 /* Following flags need at least 2 groups */
6855 if (sd->flags & (SD_LOAD_BALANCE |
6856 SD_BALANCE_NEWIDLE |
6857 SD_BALANCE_FORK |
6858 SD_BALANCE_EXEC |
6859 SD_SHARE_CPUPOWER |
6860 SD_SHARE_PKG_RESOURCES)) {
6861 if (sd->groups != sd->groups->next)
6862 return 0;
6863 }
6864
6865 /* Following flags don't use groups */
6866 if (sd->flags & (SD_WAKE_AFFINE))
6867 return 0;
6868
6869 return 1;
6870 }
6871
6872 static int
6873 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6874 {
6875 unsigned long cflags = sd->flags, pflags = parent->flags;
6876
6877 if (sd_degenerate(parent))
6878 return 1;
6879
6880 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6881 return 0;
6882
6883 /* Flags needing groups don't count if only 1 group in parent */
6884 if (parent->groups == parent->groups->next) {
6885 pflags &= ~(SD_LOAD_BALANCE |
6886 SD_BALANCE_NEWIDLE |
6887 SD_BALANCE_FORK |
6888 SD_BALANCE_EXEC |
6889 SD_SHARE_CPUPOWER |
6890 SD_SHARE_PKG_RESOURCES);
6891 if (nr_node_ids == 1)
6892 pflags &= ~SD_SERIALIZE;
6893 }
6894 if (~cflags & pflags)
6895 return 0;
6896
6897 return 1;
6898 }
6899
6900 static void free_rootdomain(struct rcu_head *rcu)
6901 {
6902 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
6903
6904 cpupri_cleanup(&rd->cpupri);
6905 free_cpumask_var(rd->rto_mask);
6906 free_cpumask_var(rd->online);
6907 free_cpumask_var(rd->span);
6908 kfree(rd);
6909 }
6910
6911 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6912 {
6913 struct root_domain *old_rd = NULL;
6914 unsigned long flags;
6915
6916 raw_spin_lock_irqsave(&rq->lock, flags);
6917
6918 if (rq->rd) {
6919 old_rd = rq->rd;
6920
6921 if (cpumask_test_cpu(rq->cpu, old_rd->online))
6922 set_rq_offline(rq);
6923
6924 cpumask_clear_cpu(rq->cpu, old_rd->span);
6925
6926 /*
6927 * If we dont want to free the old_rt yet then
6928 * set old_rd to NULL to skip the freeing later
6929 * in this function:
6930 */
6931 if (!atomic_dec_and_test(&old_rd->refcount))
6932 old_rd = NULL;
6933 }
6934
6935 atomic_inc(&rd->refcount);
6936 rq->rd = rd;
6937
6938 cpumask_set_cpu(rq->cpu, rd->span);
6939 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6940 set_rq_online(rq);
6941
6942 raw_spin_unlock_irqrestore(&rq->lock, flags);
6943
6944 if (old_rd)
6945 call_rcu_sched(&old_rd->rcu, free_rootdomain);
6946 }
6947
6948 static int init_rootdomain(struct root_domain *rd)
6949 {
6950 memset(rd, 0, sizeof(*rd));
6951
6952 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
6953 goto out;
6954 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
6955 goto free_span;
6956 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
6957 goto free_online;
6958
6959 if (cpupri_init(&rd->cpupri) != 0)
6960 goto free_rto_mask;
6961 return 0;
6962
6963 free_rto_mask:
6964 free_cpumask_var(rd->rto_mask);
6965 free_online:
6966 free_cpumask_var(rd->online);
6967 free_span:
6968 free_cpumask_var(rd->span);
6969 out:
6970 return -ENOMEM;
6971 }
6972
6973 static void init_defrootdomain(void)
6974 {
6975 init_rootdomain(&def_root_domain);
6976
6977 atomic_set(&def_root_domain.refcount, 1);
6978 }
6979
6980 static struct root_domain *alloc_rootdomain(void)
6981 {
6982 struct root_domain *rd;
6983
6984 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6985 if (!rd)
6986 return NULL;
6987
6988 if (init_rootdomain(rd) != 0) {
6989 kfree(rd);
6990 return NULL;
6991 }
6992
6993 return rd;
6994 }
6995
6996 static void free_sched_groups(struct sched_group *sg, int free_sgp)
6997 {
6998 struct sched_group *tmp, *first;
6999
7000 if (!sg)
7001 return;
7002
7003 first = sg;
7004 do {
7005 tmp = sg->next;
7006
7007 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
7008 kfree(sg->sgp);
7009
7010 kfree(sg);
7011 sg = tmp;
7012 } while (sg != first);
7013 }
7014
7015 static void free_sched_domain(struct rcu_head *rcu)
7016 {
7017 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
7018
7019 /*
7020 * If its an overlapping domain it has private groups, iterate and
7021 * nuke them all.
7022 */
7023 if (sd->flags & SD_OVERLAP) {
7024 free_sched_groups(sd->groups, 1);
7025 } else if (atomic_dec_and_test(&sd->groups->ref)) {
7026 kfree(sd->groups->sgp);
7027 kfree(sd->groups);
7028 }
7029 kfree(sd);
7030 }
7031
7032 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
7033 {
7034 call_rcu(&sd->rcu, free_sched_domain);
7035 }
7036
7037 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
7038 {
7039 for (; sd; sd = sd->parent)
7040 destroy_sched_domain(sd, cpu);
7041 }
7042
7043 /*
7044 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
7045 * hold the hotplug lock.
7046 */
7047 static void
7048 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
7049 {
7050 struct rq *rq = cpu_rq(cpu);
7051 struct sched_domain *tmp;
7052
7053 /* Remove the sched domains which do not contribute to scheduling. */
7054 for (tmp = sd; tmp; ) {
7055 struct sched_domain *parent = tmp->parent;
7056 if (!parent)
7057 break;
7058
7059 if (sd_parent_degenerate(tmp, parent)) {
7060 tmp->parent = parent->parent;
7061 if (parent->parent)
7062 parent->parent->child = tmp;
7063 destroy_sched_domain(parent, cpu);
7064 } else
7065 tmp = tmp->parent;
7066 }
7067
7068 if (sd && sd_degenerate(sd)) {
7069 tmp = sd;
7070 sd = sd->parent;
7071 destroy_sched_domain(tmp, cpu);
7072 if (sd)
7073 sd->child = NULL;
7074 }
7075
7076 sched_domain_debug(sd, cpu);
7077
7078 rq_attach_root(rq, rd);
7079 tmp = rq->sd;
7080 rcu_assign_pointer(rq->sd, sd);
7081 destroy_sched_domains(tmp, cpu);
7082 }
7083
7084 /* cpus with isolated domains */
7085 static cpumask_var_t cpu_isolated_map;
7086
7087 /* Setup the mask of cpus configured for isolated domains */
7088 static int __init isolated_cpu_setup(char *str)
7089 {
7090 alloc_bootmem_cpumask_var(&cpu_isolated_map);
7091 cpulist_parse(str, cpu_isolated_map);
7092 return 1;
7093 }
7094
7095 __setup("isolcpus=", isolated_cpu_setup);
7096
7097 #define SD_NODES_PER_DOMAIN 16
7098
7099 #ifdef CONFIG_NUMA
7100
7101 /**
7102 * find_next_best_node - find the next node to include in a sched_domain
7103 * @node: node whose sched_domain we're building
7104 * @used_nodes: nodes already in the sched_domain
7105 *
7106 * Find the next node to include in a given scheduling domain. Simply
7107 * finds the closest node not already in the @used_nodes map.
7108 *
7109 * Should use nodemask_t.
7110 */
7111 static int find_next_best_node(int node, nodemask_t *used_nodes)
7112 {
7113 int i, n, val, min_val, best_node = -1;
7114
7115 min_val = INT_MAX;
7116
7117 for (i = 0; i < nr_node_ids; i++) {
7118 /* Start at @node */
7119 n = (node + i) % nr_node_ids;
7120
7121 if (!nr_cpus_node(n))
7122 continue;
7123
7124 /* Skip already used nodes */
7125 if (node_isset(n, *used_nodes))
7126 continue;
7127
7128 /* Simple min distance search */
7129 val = node_distance(node, n);
7130
7131 if (val < min_val) {
7132 min_val = val;
7133 best_node = n;
7134 }
7135 }
7136
7137 if (best_node != -1)
7138 node_set(best_node, *used_nodes);
7139 return best_node;
7140 }
7141
7142 /**
7143 * sched_domain_node_span - get a cpumask for a node's sched_domain
7144 * @node: node whose cpumask we're constructing
7145 * @span: resulting cpumask
7146 *
7147 * Given a node, construct a good cpumask for its sched_domain to span. It
7148 * should be one that prevents unnecessary balancing, but also spreads tasks
7149 * out optimally.
7150 */
7151 static void sched_domain_node_span(int node, struct cpumask *span)
7152 {
7153 nodemask_t used_nodes;
7154 int i;
7155
7156 cpumask_clear(span);
7157 nodes_clear(used_nodes);
7158
7159 cpumask_or(span, span, cpumask_of_node(node));
7160 node_set(node, used_nodes);
7161
7162 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7163 int next_node = find_next_best_node(node, &used_nodes);
7164 if (next_node < 0)
7165 break;
7166 cpumask_or(span, span, cpumask_of_node(next_node));
7167 }
7168 }
7169
7170 static const struct cpumask *cpu_node_mask(int cpu)
7171 {
7172 lockdep_assert_held(&sched_domains_mutex);
7173
7174 sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);
7175
7176 return sched_domains_tmpmask;
7177 }
7178
7179 static const struct cpumask *cpu_allnodes_mask(int cpu)
7180 {
7181 return cpu_possible_mask;
7182 }
7183 #endif /* CONFIG_NUMA */
7184
7185 static const struct cpumask *cpu_cpu_mask(int cpu)
7186 {
7187 return cpumask_of_node(cpu_to_node(cpu));
7188 }
7189
7190 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7191
7192 struct sd_data {
7193 struct sched_domain **__percpu sd;
7194 struct sched_group **__percpu sg;
7195 struct sched_group_power **__percpu sgp;
7196 };
7197
7198 struct s_data {
7199 struct sched_domain ** __percpu sd;
7200 struct root_domain *rd;
7201 };
7202
7203 enum s_alloc {
7204 sa_rootdomain,
7205 sa_sd,
7206 sa_sd_storage,
7207 sa_none,
7208 };
7209
7210 struct sched_domain_topology_level;
7211
7212 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
7213 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
7214
7215 #define SDTL_OVERLAP 0x01
7216
7217 struct sched_domain_topology_level {
7218 sched_domain_init_f init;
7219 sched_domain_mask_f mask;
7220 int flags;
7221 struct sd_data data;
7222 };
7223
7224 static int
7225 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
7226 {
7227 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
7228 const struct cpumask *span = sched_domain_span(sd);
7229 struct cpumask *covered = sched_domains_tmpmask;
7230 struct sd_data *sdd = sd->private;
7231 struct sched_domain *child;
7232 int i;
7233
7234 cpumask_clear(covered);
7235
7236 for_each_cpu(i, span) {
7237 struct cpumask *sg_span;
7238
7239 if (cpumask_test_cpu(i, covered))
7240 continue;
7241
7242 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
7243 GFP_KERNEL, cpu_to_node(i));
7244
7245 if (!sg)
7246 goto fail;
7247
7248 sg_span = sched_group_cpus(sg);
7249
7250 child = *per_cpu_ptr(sdd->sd, i);
7251 if (child->child) {
7252 child = child->child;
7253 cpumask_copy(sg_span, sched_domain_span(child));
7254 } else
7255 cpumask_set_cpu(i, sg_span);
7256
7257 cpumask_or(covered, covered, sg_span);
7258
7259 sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
7260 atomic_inc(&sg->sgp->ref);
7261
7262 if (cpumask_test_cpu(cpu, sg_span))
7263 groups = sg;
7264
7265 if (!first)
7266 first = sg;
7267 if (last)
7268 last->next = sg;
7269 last = sg;
7270 last->next = first;
7271 }
7272 sd->groups = groups;
7273
7274 return 0;
7275
7276 fail:
7277 free_sched_groups(first, 0);
7278
7279 return -ENOMEM;
7280 }
7281
7282 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
7283 {
7284 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
7285 struct sched_domain *child = sd->child;
7286
7287 if (child)
7288 cpu = cpumask_first(sched_domain_span(child));
7289
7290 if (sg) {
7291 *sg = *per_cpu_ptr(sdd->sg, cpu);
7292 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
7293 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
7294 }
7295
7296 return cpu;
7297 }
7298
7299 /*
7300 * build_sched_groups will build a circular linked list of the groups
7301 * covered by the given span, and will set each group's ->cpumask correctly,
7302 * and ->cpu_power to 0.
7303 *
7304 * Assumes the sched_domain tree is fully constructed
7305 */
7306 static int
7307 build_sched_groups(struct sched_domain *sd, int cpu)
7308 {
7309 struct sched_group *first = NULL, *last = NULL;
7310 struct sd_data *sdd = sd->private;
7311 const struct cpumask *span = sched_domain_span(sd);
7312 struct cpumask *covered;
7313 int i;
7314
7315 get_group(cpu, sdd, &sd->groups);
7316 atomic_inc(&sd->groups->ref);
7317
7318 if (cpu != cpumask_first(sched_domain_span(sd)))
7319 return 0;
7320
7321 lockdep_assert_held(&sched_domains_mutex);
7322 covered = sched_domains_tmpmask;
7323
7324 cpumask_clear(covered);
7325
7326 for_each_cpu(i, span) {
7327 struct sched_group *sg;
7328 int group = get_group(i, sdd, &sg);
7329 int j;
7330
7331 if (cpumask_test_cpu(i, covered))
7332 continue;
7333
7334 cpumask_clear(sched_group_cpus(sg));
7335 sg->sgp->power = 0;
7336
7337 for_each_cpu(j, span) {
7338 if (get_group(j, sdd, NULL) != group)
7339 continue;
7340
7341 cpumask_set_cpu(j, covered);
7342 cpumask_set_cpu(j, sched_group_cpus(sg));
7343 }
7344
7345 if (!first)
7346 first = sg;
7347 if (last)
7348 last->next = sg;
7349 last = sg;
7350 }
7351 last->next = first;
7352
7353 return 0;
7354 }
7355
7356 /*
7357 * Initialize sched groups cpu_power.
7358 *
7359 * cpu_power indicates the capacity of sched group, which is used while
7360 * distributing the load between different sched groups in a sched domain.
7361 * Typically cpu_power for all the groups in a sched domain will be same unless
7362 * there are asymmetries in the topology. If there are asymmetries, group
7363 * having more cpu_power will pickup more load compared to the group having
7364 * less cpu_power.
7365 */
7366 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7367 {
7368 struct sched_group *sg = sd->groups;
7369
7370 WARN_ON(!sd || !sg);
7371
7372 do {
7373 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
7374 sg = sg->next;
7375 } while (sg != sd->groups);
7376
7377 if (cpu != group_first_cpu(sg))
7378 return;
7379
7380 update_group_power(sd, cpu);
7381 }
7382
7383 /*
7384 * Initializers for schedule domains
7385 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7386 */
7387
7388 #ifdef CONFIG_SCHED_DEBUG
7389 # define SD_INIT_NAME(sd, type) sd->name = #type
7390 #else
7391 # define SD_INIT_NAME(sd, type) do { } while (0)
7392 #endif
7393
7394 #define SD_INIT_FUNC(type) \
7395 static noinline struct sched_domain * \
7396 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
7397 { \
7398 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
7399 *sd = SD_##type##_INIT; \
7400 SD_INIT_NAME(sd, type); \
7401 sd->private = &tl->data; \
7402 return sd; \
7403 }
7404
7405 SD_INIT_FUNC(CPU)
7406 #ifdef CONFIG_NUMA
7407 SD_INIT_FUNC(ALLNODES)
7408 SD_INIT_FUNC(NODE)
7409 #endif
7410 #ifdef CONFIG_SCHED_SMT
7411 SD_INIT_FUNC(SIBLING)
7412 #endif
7413 #ifdef CONFIG_SCHED_MC
7414 SD_INIT_FUNC(MC)
7415 #endif
7416 #ifdef CONFIG_SCHED_BOOK
7417 SD_INIT_FUNC(BOOK)
7418 #endif
7419
7420 static int default_relax_domain_level = -1;
7421 int sched_domain_level_max;
7422
7423 static int __init setup_relax_domain_level(char *str)
7424 {
7425 unsigned long val;
7426
7427 val = simple_strtoul(str, NULL, 0);
7428 if (val < sched_domain_level_max)
7429 default_relax_domain_level = val;
7430
7431 return 1;
7432 }
7433 __setup("relax_domain_level=", setup_relax_domain_level);
7434
7435 static void set_domain_attribute(struct sched_domain *sd,
7436 struct sched_domain_attr *attr)
7437 {
7438 int request;
7439
7440 if (!attr || attr->relax_domain_level < 0) {
7441 if (default_relax_domain_level < 0)
7442 return;
7443 else
7444 request = default_relax_domain_level;
7445 } else
7446 request = attr->relax_domain_level;
7447 if (request < sd->level) {
7448 /* turn off idle balance on this domain */
7449 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7450 } else {
7451 /* turn on idle balance on this domain */
7452 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7453 }
7454 }
7455
7456 static void __sdt_free(const struct cpumask *cpu_map);
7457 static int __sdt_alloc(const struct cpumask *cpu_map);
7458
7459 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
7460 const struct cpumask *cpu_map)
7461 {
7462 switch (what) {
7463 case sa_rootdomain:
7464 if (!atomic_read(&d->rd->refcount))
7465 free_rootdomain(&d->rd->rcu); /* fall through */
7466 case sa_sd:
7467 free_percpu(d->sd); /* fall through */
7468 case sa_sd_storage:
7469 __sdt_free(cpu_map); /* fall through */
7470 case sa_none:
7471 break;
7472 }
7473 }
7474
7475 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
7476 const struct cpumask *cpu_map)
7477 {
7478 memset(d, 0, sizeof(*d));
7479
7480 if (__sdt_alloc(cpu_map))
7481 return sa_sd_storage;
7482 d->sd = alloc_percpu(struct sched_domain *);
7483 if (!d->sd)
7484 return sa_sd_storage;
7485 d->rd = alloc_rootdomain();
7486 if (!d->rd)
7487 return sa_sd;
7488 return sa_rootdomain;
7489 }
7490
7491 /*
7492 * NULL the sd_data elements we've used to build the sched_domain and
7493 * sched_group structure so that the subsequent __free_domain_allocs()
7494 * will not free the data we're using.
7495 */
7496 static void claim_allocations(int cpu, struct sched_domain *sd)
7497 {
7498 struct sd_data *sdd = sd->private;
7499
7500 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
7501 *per_cpu_ptr(sdd->sd, cpu) = NULL;
7502
7503 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
7504 *per_cpu_ptr(sdd->sg, cpu) = NULL;
7505
7506 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
7507 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
7508 }
7509
7510 #ifdef CONFIG_SCHED_SMT
7511 static const struct cpumask *cpu_smt_mask(int cpu)
7512 {
7513 return topology_thread_cpumask(cpu);
7514 }
7515 #endif
7516
7517 /*
7518 * Topology list, bottom-up.
7519 */
7520 static struct sched_domain_topology_level default_topology[] = {
7521 #ifdef CONFIG_SCHED_SMT
7522 { sd_init_SIBLING, cpu_smt_mask, },
7523 #endif
7524 #ifdef CONFIG_SCHED_MC
7525 { sd_init_MC, cpu_coregroup_mask, },
7526 #endif
7527 #ifdef CONFIG_SCHED_BOOK
7528 { sd_init_BOOK, cpu_book_mask, },
7529 #endif
7530 { sd_init_CPU, cpu_cpu_mask, },
7531 #ifdef CONFIG_NUMA
7532 { sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, },
7533 { sd_init_ALLNODES, cpu_allnodes_mask, },
7534 #endif
7535 { NULL, },
7536 };
7537
7538 static struct sched_domain_topology_level *sched_domain_topology = default_topology;
7539
7540 static int __sdt_alloc(const struct cpumask *cpu_map)
7541 {
7542 struct sched_domain_topology_level *tl;
7543 int j;
7544
7545 for (tl = sched_domain_topology; tl->init; tl++) {
7546 struct sd_data *sdd = &tl->data;
7547
7548 sdd->sd = alloc_percpu(struct sched_domain *);
7549 if (!sdd->sd)
7550 return -ENOMEM;
7551
7552 sdd->sg = alloc_percpu(struct sched_group *);
7553 if (!sdd->sg)
7554 return -ENOMEM;
7555
7556 sdd->sgp = alloc_percpu(struct sched_group_power *);
7557 if (!sdd->sgp)
7558 return -ENOMEM;
7559
7560 for_each_cpu(j, cpu_map) {
7561 struct sched_domain *sd;
7562 struct sched_group *sg;
7563 struct sched_group_power *sgp;
7564
7565 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
7566 GFP_KERNEL, cpu_to_node(j));
7567 if (!sd)
7568 return -ENOMEM;
7569
7570 *per_cpu_ptr(sdd->sd, j) = sd;
7571
7572 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
7573 GFP_KERNEL, cpu_to_node(j));
7574 if (!sg)
7575 return -ENOMEM;
7576
7577 *per_cpu_ptr(sdd->sg, j) = sg;
7578
7579 sgp = kzalloc_node(sizeof(struct sched_group_power),
7580 GFP_KERNEL, cpu_to_node(j));
7581 if (!sgp)
7582 return -ENOMEM;
7583
7584 *per_cpu_ptr(sdd->sgp, j) = sgp;
7585 }
7586 }
7587
7588 return 0;
7589 }
7590
7591 static void __sdt_free(const struct cpumask *cpu_map)
7592 {
7593 struct sched_domain_topology_level *tl;
7594 int j;
7595
7596 for (tl = sched_domain_topology; tl->init; tl++) {
7597 struct sd_data *sdd = &tl->data;
7598
7599 for_each_cpu(j, cpu_map) {
7600 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j);
7601 if (sd && (sd->flags & SD_OVERLAP))
7602 free_sched_groups(sd->groups, 0);
7603 kfree(*per_cpu_ptr(sdd->sd, j));
7604 kfree(*per_cpu_ptr(sdd->sg, j));
7605 kfree(*per_cpu_ptr(sdd->sgp, j));
7606 }
7607 free_percpu(sdd->sd);
7608 free_percpu(sdd->sg);
7609 free_percpu(sdd->sgp);
7610 }
7611 }
7612
7613 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
7614 struct s_data *d, const struct cpumask *cpu_map,
7615 struct sched_domain_attr *attr, struct sched_domain *child,
7616 int cpu)
7617 {
7618 struct sched_domain *sd = tl->init(tl, cpu);
7619 if (!sd)
7620 return child;
7621
7622 set_domain_attribute(sd, attr);
7623 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
7624 if (child) {
7625 sd->level = child->level + 1;
7626 sched_domain_level_max = max(sched_domain_level_max, sd->level);
7627 child->parent = sd;
7628 }
7629 sd->child = child;
7630
7631 return sd;
7632 }
7633
7634 /*
7635 * Build sched domains for a given set of cpus and attach the sched domains
7636 * to the individual cpus
7637 */
7638 static int build_sched_domains(const struct cpumask *cpu_map,
7639 struct sched_domain_attr *attr)
7640 {
7641 enum s_alloc alloc_state = sa_none;
7642 struct sched_domain *sd;
7643 struct s_data d;
7644 int i, ret = -ENOMEM;
7645
7646 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7647 if (alloc_state != sa_rootdomain)
7648 goto error;
7649
7650 /* Set up domains for cpus specified by the cpu_map. */
7651 for_each_cpu(i, cpu_map) {
7652 struct sched_domain_topology_level *tl;
7653
7654 sd = NULL;
7655 for (tl = sched_domain_topology; tl->init; tl++) {
7656 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
7657 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
7658 sd->flags |= SD_OVERLAP;
7659 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
7660 break;
7661 }
7662
7663 while (sd->child)
7664 sd = sd->child;
7665
7666 *per_cpu_ptr(d.sd, i) = sd;
7667 }
7668
7669 /* Build the groups for the domains */
7670 for_each_cpu(i, cpu_map) {
7671 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7672 sd->span_weight = cpumask_weight(sched_domain_span(sd));
7673 if (sd->flags & SD_OVERLAP) {
7674 if (build_overlap_sched_groups(sd, i))
7675 goto error;
7676 } else {
7677 if (build_sched_groups(sd, i))
7678 goto error;
7679 }
7680 }
7681 }
7682
7683 /* Calculate CPU power for physical packages and nodes */
7684 for (i = nr_cpumask_bits-1; i >= 0; i--) {
7685 if (!cpumask_test_cpu(i, cpu_map))
7686 continue;
7687
7688 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7689 claim_allocations(i, sd);
7690 init_sched_groups_power(i, sd);
7691 }
7692 }
7693
7694 /* Attach the domains */
7695 rcu_read_lock();
7696 for_each_cpu(i, cpu_map) {
7697 sd = *per_cpu_ptr(d.sd, i);
7698 cpu_attach_domain(sd, d.rd, i);
7699 }
7700 rcu_read_unlock();
7701
7702 ret = 0;
7703 error:
7704 __free_domain_allocs(&d, alloc_state, cpu_map);
7705 return ret;
7706 }
7707
7708 static cpumask_var_t *doms_cur; /* current sched domains */
7709 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7710 static struct sched_domain_attr *dattr_cur;
7711 /* attribues of custom domains in 'doms_cur' */
7712
7713 /*
7714 * Special case: If a kmalloc of a doms_cur partition (array of
7715 * cpumask) fails, then fallback to a single sched domain,
7716 * as determined by the single cpumask fallback_doms.
7717 */
7718 static cpumask_var_t fallback_doms;
7719
7720 /*
7721 * arch_update_cpu_topology lets virtualized architectures update the
7722 * cpu core maps. It is supposed to return 1 if the topology changed
7723 * or 0 if it stayed the same.
7724 */
7725 int __attribute__((weak)) arch_update_cpu_topology(void)
7726 {
7727 return 0;
7728 }
7729
7730 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7731 {
7732 int i;
7733 cpumask_var_t *doms;
7734
7735 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7736 if (!doms)
7737 return NULL;
7738 for (i = 0; i < ndoms; i++) {
7739 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7740 free_sched_domains(doms, i);
7741 return NULL;
7742 }
7743 }
7744 return doms;
7745 }
7746
7747 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7748 {
7749 unsigned int i;
7750 for (i = 0; i < ndoms; i++)
7751 free_cpumask_var(doms[i]);
7752 kfree(doms);
7753 }
7754
7755 /*
7756 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7757 * For now this just excludes isolated cpus, but could be used to
7758 * exclude other special cases in the future.
7759 */
7760 static int init_sched_domains(const struct cpumask *cpu_map)
7761 {
7762 int err;
7763
7764 arch_update_cpu_topology();
7765 ndoms_cur = 1;
7766 doms_cur = alloc_sched_domains(ndoms_cur);
7767 if (!doms_cur)
7768 doms_cur = &fallback_doms;
7769 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7770 dattr_cur = NULL;
7771 err = build_sched_domains(doms_cur[0], NULL);
7772 register_sched_domain_sysctl();
7773
7774 return err;
7775 }
7776
7777 /*
7778 * Detach sched domains from a group of cpus specified in cpu_map
7779 * These cpus will now be attached to the NULL domain
7780 */
7781 static void detach_destroy_domains(const struct cpumask *cpu_map)
7782 {
7783 int i;
7784
7785 rcu_read_lock();
7786 for_each_cpu(i, cpu_map)
7787 cpu_attach_domain(NULL, &def_root_domain, i);
7788 rcu_read_unlock();
7789 }
7790
7791 /* handle null as "default" */
7792 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7793 struct sched_domain_attr *new, int idx_new)
7794 {
7795 struct sched_domain_attr tmp;
7796
7797 /* fast path */
7798 if (!new && !cur)
7799 return 1;
7800
7801 tmp = SD_ATTR_INIT;
7802 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7803 new ? (new + idx_new) : &tmp,
7804 sizeof(struct sched_domain_attr));
7805 }
7806
7807 /*
7808 * Partition sched domains as specified by the 'ndoms_new'
7809 * cpumasks in the array doms_new[] of cpumasks. This compares
7810 * doms_new[] to the current sched domain partitioning, doms_cur[].
7811 * It destroys each deleted domain and builds each new domain.
7812 *
7813 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7814 * The masks don't intersect (don't overlap.) We should setup one
7815 * sched domain for each mask. CPUs not in any of the cpumasks will
7816 * not be load balanced. If the same cpumask appears both in the
7817 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7818 * it as it is.
7819 *
7820 * The passed in 'doms_new' should be allocated using
7821 * alloc_sched_domains. This routine takes ownership of it and will
7822 * free_sched_domains it when done with it. If the caller failed the
7823 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7824 * and partition_sched_domains() will fallback to the single partition
7825 * 'fallback_doms', it also forces the domains to be rebuilt.
7826 *
7827 * If doms_new == NULL it will be replaced with cpu_online_mask.
7828 * ndoms_new == 0 is a special case for destroying existing domains,
7829 * and it will not create the default domain.
7830 *
7831 * Call with hotplug lock held
7832 */
7833 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7834 struct sched_domain_attr *dattr_new)
7835 {
7836 int i, j, n;
7837 int new_topology;
7838
7839 mutex_lock(&sched_domains_mutex);
7840
7841 /* always unregister in case we don't destroy any domains */
7842 unregister_sched_domain_sysctl();
7843
7844 /* Let architecture update cpu core mappings. */
7845 new_topology = arch_update_cpu_topology();
7846
7847 n = doms_new ? ndoms_new : 0;
7848
7849 /* Destroy deleted domains */
7850 for (i = 0; i < ndoms_cur; i++) {
7851 for (j = 0; j < n && !new_topology; j++) {
7852 if (cpumask_equal(doms_cur[i], doms_new[j])
7853 && dattrs_equal(dattr_cur, i, dattr_new, j))
7854 goto match1;
7855 }
7856 /* no match - a current sched domain not in new doms_new[] */
7857 detach_destroy_domains(doms_cur[i]);
7858 match1:
7859 ;
7860 }
7861
7862 if (doms_new == NULL) {
7863 ndoms_cur = 0;
7864 doms_new = &fallback_doms;
7865 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7866 WARN_ON_ONCE(dattr_new);
7867 }
7868
7869 /* Build new domains */
7870 for (i = 0; i < ndoms_new; i++) {
7871 for (j = 0; j < ndoms_cur && !new_topology; j++) {
7872 if (cpumask_equal(doms_new[i], doms_cur[j])
7873 && dattrs_equal(dattr_new, i, dattr_cur, j))
7874 goto match2;
7875 }
7876 /* no match - add a new doms_new */
7877 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7878 match2:
7879 ;
7880 }
7881
7882 /* Remember the new sched domains */
7883 if (doms_cur != &fallback_doms)
7884 free_sched_domains(doms_cur, ndoms_cur);
7885 kfree(dattr_cur); /* kfree(NULL) is safe */
7886 doms_cur = doms_new;
7887 dattr_cur = dattr_new;
7888 ndoms_cur = ndoms_new;
7889
7890 register_sched_domain_sysctl();
7891
7892 mutex_unlock(&sched_domains_mutex);
7893 }
7894
7895 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7896 static void reinit_sched_domains(void)
7897 {
7898 get_online_cpus();
7899
7900 /* Destroy domains first to force the rebuild */
7901 partition_sched_domains(0, NULL, NULL);
7902
7903 rebuild_sched_domains();
7904 put_online_cpus();
7905 }
7906
7907 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7908 {
7909 unsigned int level = 0;
7910
7911 if (sscanf(buf, "%u", &level) != 1)
7912 return -EINVAL;
7913
7914 /*
7915 * level is always be positive so don't check for
7916 * level < POWERSAVINGS_BALANCE_NONE which is 0
7917 * What happens on 0 or 1 byte write,
7918 * need to check for count as well?
7919 */
7920
7921 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7922 return -EINVAL;
7923
7924 if (smt)
7925 sched_smt_power_savings = level;
7926 else
7927 sched_mc_power_savings = level;
7928
7929 reinit_sched_domains();
7930
7931 return count;
7932 }
7933
7934 #ifdef CONFIG_SCHED_MC
7935 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7936 struct sysdev_class_attribute *attr,
7937 char *page)
7938 {
7939 return sprintf(page, "%u\n", sched_mc_power_savings);
7940 }
7941 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7942 struct sysdev_class_attribute *attr,
7943 const char *buf, size_t count)
7944 {
7945 return sched_power_savings_store(buf, count, 0);
7946 }
7947 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7948 sched_mc_power_savings_show,
7949 sched_mc_power_savings_store);
7950 #endif
7951
7952 #ifdef CONFIG_SCHED_SMT
7953 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7954 struct sysdev_class_attribute *attr,
7955 char *page)
7956 {
7957 return sprintf(page, "%u\n", sched_smt_power_savings);
7958 }
7959 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7960 struct sysdev_class_attribute *attr,
7961 const char *buf, size_t count)
7962 {
7963 return sched_power_savings_store(buf, count, 1);
7964 }
7965 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7966 sched_smt_power_savings_show,
7967 sched_smt_power_savings_store);
7968 #endif
7969
7970 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7971 {
7972 int err = 0;
7973
7974 #ifdef CONFIG_SCHED_SMT
7975 if (smt_capable())
7976 err = sysfs_create_file(&cls->kset.kobj,
7977 &attr_sched_smt_power_savings.attr);
7978 #endif
7979 #ifdef CONFIG_SCHED_MC
7980 if (!err && mc_capable())
7981 err = sysfs_create_file(&cls->kset.kobj,
7982 &attr_sched_mc_power_savings.attr);
7983 #endif
7984 return err;
7985 }
7986 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7987
7988 /*
7989 * Update cpusets according to cpu_active mask. If cpusets are
7990 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7991 * around partition_sched_domains().
7992 */
7993 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7994 void *hcpu)
7995 {
7996 switch (action & ~CPU_TASKS_FROZEN) {
7997 case CPU_ONLINE:
7998 case CPU_DOWN_FAILED:
7999 cpuset_update_active_cpus();
8000 return NOTIFY_OK;
8001 default:
8002 return NOTIFY_DONE;
8003 }
8004 }
8005
8006 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
8007 void *hcpu)
8008 {
8009 switch (action & ~CPU_TASKS_FROZEN) {
8010 case CPU_DOWN_PREPARE:
8011 cpuset_update_active_cpus();
8012 return NOTIFY_OK;
8013 default:
8014 return NOTIFY_DONE;
8015 }
8016 }
8017
8018 static int update_runtime(struct notifier_block *nfb,
8019 unsigned long action, void *hcpu)
8020 {
8021 int cpu = (int)(long)hcpu;
8022
8023 switch (action) {
8024 case CPU_DOWN_PREPARE:
8025 case CPU_DOWN_PREPARE_FROZEN:
8026 disable_runtime(cpu_rq(cpu));
8027 return NOTIFY_OK;
8028
8029 case CPU_DOWN_FAILED:
8030 case CPU_DOWN_FAILED_FROZEN:
8031 case CPU_ONLINE:
8032 case CPU_ONLINE_FROZEN:
8033 enable_runtime(cpu_rq(cpu));
8034 return NOTIFY_OK;
8035
8036 default:
8037 return NOTIFY_DONE;
8038 }
8039 }
8040
8041 void __init sched_init_smp(void)
8042 {
8043 cpumask_var_t non_isolated_cpus;
8044
8045 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
8046 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
8047
8048 get_online_cpus();
8049 mutex_lock(&sched_domains_mutex);
8050 init_sched_domains(cpu_active_mask);
8051 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
8052 if (cpumask_empty(non_isolated_cpus))
8053 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
8054 mutex_unlock(&sched_domains_mutex);
8055 put_online_cpus();
8056
8057 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
8058 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
8059
8060 /* RT runtime code needs to handle some hotplug events */
8061 hotcpu_notifier(update_runtime, 0);
8062
8063 init_hrtick();
8064
8065 /* Move init over to a non-isolated CPU */
8066 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
8067 BUG();
8068 sched_init_granularity();
8069 free_cpumask_var(non_isolated_cpus);
8070
8071 init_sched_rt_class();
8072 }
8073 #else
8074 void __init sched_init_smp(void)
8075 {
8076 sched_init_granularity();
8077 }
8078 #endif /* CONFIG_SMP */
8079
8080 const_debug unsigned int sysctl_timer_migration = 1;
8081
8082 int in_sched_functions(unsigned long addr)
8083 {
8084 return in_lock_functions(addr) ||
8085 (addr >= (unsigned long)__sched_text_start
8086 && addr < (unsigned long)__sched_text_end);
8087 }
8088
8089 static void init_cfs_rq(struct cfs_rq *cfs_rq)
8090 {
8091 cfs_rq->tasks_timeline = RB_ROOT;
8092 INIT_LIST_HEAD(&cfs_rq->tasks);
8093 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8094 #ifndef CONFIG_64BIT
8095 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
8096 #endif
8097 }
8098
8099 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8100 {
8101 struct rt_prio_array *array;
8102 int i;
8103
8104 array = &rt_rq->active;
8105 for (i = 0; i < MAX_RT_PRIO; i++) {
8106 INIT_LIST_HEAD(array->queue + i);
8107 __clear_bit(i, array->bitmap);
8108 }
8109 /* delimiter for bitsearch: */
8110 __set_bit(MAX_RT_PRIO, array->bitmap);
8111
8112 #if defined CONFIG_SMP
8113 rt_rq->highest_prio.curr = MAX_RT_PRIO;
8114 rt_rq->highest_prio.next = MAX_RT_PRIO;
8115 rt_rq->rt_nr_migratory = 0;
8116 rt_rq->overloaded = 0;
8117 plist_head_init(&rt_rq->pushable_tasks);
8118 #endif
8119
8120 rt_rq->rt_time = 0;
8121 rt_rq->rt_throttled = 0;
8122 rt_rq->rt_runtime = 0;
8123 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
8124 }
8125
8126 #ifdef CONFIG_FAIR_GROUP_SCHED
8127 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8128 struct sched_entity *se, int cpu,
8129 struct sched_entity *parent)
8130 {
8131 struct rq *rq = cpu_rq(cpu);
8132
8133 cfs_rq->tg = tg;
8134 cfs_rq->rq = rq;
8135 #ifdef CONFIG_SMP
8136 /* allow initial update_cfs_load() to truncate */
8137 cfs_rq->load_stamp = 1;
8138 #endif
8139 init_cfs_rq_runtime(cfs_rq);
8140
8141 tg->cfs_rq[cpu] = cfs_rq;
8142 tg->se[cpu] = se;
8143
8144 /* se could be NULL for root_task_group */
8145 if (!se)
8146 return;
8147
8148 if (!parent)
8149 se->cfs_rq = &rq->cfs;
8150 else
8151 se->cfs_rq = parent->my_q;
8152
8153 se->my_q = cfs_rq;
8154 update_load_set(&se->load, 0);
8155 se->parent = parent;
8156 }
8157 #endif
8158
8159 #ifdef CONFIG_RT_GROUP_SCHED
8160 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8161 struct sched_rt_entity *rt_se, int cpu,
8162 struct sched_rt_entity *parent)
8163 {
8164 struct rq *rq = cpu_rq(cpu);
8165
8166 rt_rq->highest_prio.curr = MAX_RT_PRIO;
8167 rt_rq->rt_nr_boosted = 0;
8168 rt_rq->rq = rq;
8169 rt_rq->tg = tg;
8170
8171 tg->rt_rq[cpu] = rt_rq;
8172 tg->rt_se[cpu] = rt_se;
8173
8174 if (!rt_se)
8175 return;
8176
8177 if (!parent)
8178 rt_se->rt_rq = &rq->rt;
8179 else
8180 rt_se->rt_rq = parent->my_q;
8181
8182 rt_se->my_q = rt_rq;
8183 rt_se->parent = parent;
8184 INIT_LIST_HEAD(&rt_se->run_list);
8185 }
8186 #endif
8187
8188 void __init sched_init(void)
8189 {
8190 int i, j;
8191 unsigned long alloc_size = 0, ptr;
8192
8193 #ifdef CONFIG_FAIR_GROUP_SCHED
8194 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8195 #endif
8196 #ifdef CONFIG_RT_GROUP_SCHED
8197 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8198 #endif
8199 #ifdef CONFIG_CPUMASK_OFFSTACK
8200 alloc_size += num_possible_cpus() * cpumask_size();
8201 #endif
8202 if (alloc_size) {
8203 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
8204
8205 #ifdef CONFIG_FAIR_GROUP_SCHED
8206 root_task_group.se = (struct sched_entity **)ptr;
8207 ptr += nr_cpu_ids * sizeof(void **);
8208
8209 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8210 ptr += nr_cpu_ids * sizeof(void **);
8211
8212 #endif /* CONFIG_FAIR_GROUP_SCHED */
8213 #ifdef CONFIG_RT_GROUP_SCHED
8214 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8215 ptr += nr_cpu_ids * sizeof(void **);
8216
8217 root_task_group.rt_rq = (struct rt_rq **)ptr;
8218 ptr += nr_cpu_ids * sizeof(void **);
8219
8220 #endif /* CONFIG_RT_GROUP_SCHED */
8221 #ifdef CONFIG_CPUMASK_OFFSTACK
8222 for_each_possible_cpu(i) {
8223 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
8224 ptr += cpumask_size();
8225 }
8226 #endif /* CONFIG_CPUMASK_OFFSTACK */
8227 }
8228
8229 #ifdef CONFIG_SMP
8230 init_defrootdomain();
8231 #endif
8232
8233 init_rt_bandwidth(&def_rt_bandwidth,
8234 global_rt_period(), global_rt_runtime());
8235
8236 #ifdef CONFIG_RT_GROUP_SCHED
8237 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8238 global_rt_period(), global_rt_runtime());
8239 #endif /* CONFIG_RT_GROUP_SCHED */
8240
8241 #ifdef CONFIG_CGROUP_SCHED
8242 list_add(&root_task_group.list, &task_groups);
8243 INIT_LIST_HEAD(&root_task_group.children);
8244 autogroup_init(&init_task);
8245 #endif /* CONFIG_CGROUP_SCHED */
8246
8247 for_each_possible_cpu(i) {
8248 struct rq *rq;
8249
8250 rq = cpu_rq(i);
8251 raw_spin_lock_init(&rq->lock);
8252 rq->nr_running = 0;
8253 rq->calc_load_active = 0;
8254 rq->calc_load_update = jiffies + LOAD_FREQ;
8255 init_cfs_rq(&rq->cfs);
8256 init_rt_rq(&rq->rt, rq);
8257 #ifdef CONFIG_FAIR_GROUP_SCHED
8258 root_task_group.shares = root_task_group_load;
8259 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8260 /*
8261 * How much cpu bandwidth does root_task_group get?
8262 *
8263 * In case of task-groups formed thr' the cgroup filesystem, it
8264 * gets 100% of the cpu resources in the system. This overall
8265 * system cpu resource is divided among the tasks of
8266 * root_task_group and its child task-groups in a fair manner,
8267 * based on each entity's (task or task-group's) weight
8268 * (se->load.weight).
8269 *
8270 * In other words, if root_task_group has 10 tasks of weight
8271 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8272 * then A0's share of the cpu resource is:
8273 *
8274 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8275 *
8276 * We achieve this by letting root_task_group's tasks sit
8277 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
8278 */
8279 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
8280 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
8281 #endif /* CONFIG_FAIR_GROUP_SCHED */
8282
8283 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8284 #ifdef CONFIG_RT_GROUP_SCHED
8285 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
8286 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
8287 #endif
8288
8289 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8290 rq->cpu_load[j] = 0;
8291
8292 rq->last_load_update_tick = jiffies;
8293
8294 #ifdef CONFIG_SMP
8295 rq->sd = NULL;
8296 rq->rd = NULL;
8297 rq->cpu_power = SCHED_POWER_SCALE;
8298 rq->post_schedule = 0;
8299 rq->active_balance = 0;
8300 rq->next_balance = jiffies;
8301 rq->push_cpu = 0;
8302 rq->cpu = i;
8303 rq->online = 0;
8304 rq->idle_stamp = 0;
8305 rq->avg_idle = 2*sysctl_sched_migration_cost;
8306 rq_attach_root(rq, &def_root_domain);
8307 #ifdef CONFIG_NO_HZ
8308 rq->nohz_balance_kick = 0;
8309 #endif
8310 #endif
8311 init_rq_hrtick(rq);
8312 atomic_set(&rq->nr_iowait, 0);
8313 }
8314
8315 set_load_weight(&init_task);
8316
8317 #ifdef CONFIG_PREEMPT_NOTIFIERS
8318 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8319 #endif
8320
8321 #ifdef CONFIG_SMP
8322 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8323 #endif
8324
8325 #ifdef CONFIG_RT_MUTEXES
8326 plist_head_init(&init_task.pi_waiters);
8327 #endif
8328
8329 /*
8330 * The boot idle thread does lazy MMU switching as well:
8331 */
8332 atomic_inc(&init_mm.mm_count);
8333 enter_lazy_tlb(&init_mm, current);
8334
8335 /*
8336 * Make us the idle thread. Technically, schedule() should not be
8337 * called from this thread, however somewhere below it might be,
8338 * but because we are the idle thread, we just pick up running again
8339 * when this runqueue becomes "idle".
8340 */
8341 init_idle(current, smp_processor_id());
8342
8343 calc_load_update = jiffies + LOAD_FREQ;
8344
8345 /*
8346 * During early bootup we pretend to be a normal task:
8347 */
8348 current->sched_class = &fair_sched_class;
8349
8350 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8351 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
8352 #ifdef CONFIG_SMP
8353 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
8354 #ifdef CONFIG_NO_HZ
8355 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8356 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
8357 atomic_set(&nohz.load_balancer, nr_cpu_ids);
8358 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
8359 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
8360 #endif
8361 /* May be allocated at isolcpus cmdline parse time */
8362 if (cpu_isolated_map == NULL)
8363 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
8364 #endif /* SMP */
8365
8366 scheduler_running = 1;
8367 }
8368
8369 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
8370 static inline int preempt_count_equals(int preempt_offset)
8371 {
8372 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
8373
8374 return (nested == preempt_offset);
8375 }
8376
8377 void __might_sleep(const char *file, int line, int preempt_offset)
8378 {
8379 static unsigned long prev_jiffy; /* ratelimiting */
8380
8381 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
8382 system_state != SYSTEM_RUNNING || oops_in_progress)
8383 return;
8384 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8385 return;
8386 prev_jiffy = jiffies;
8387
8388 printk(KERN_ERR
8389 "BUG: sleeping function called from invalid context at %s:%d\n",
8390 file, line);
8391 printk(KERN_ERR
8392 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8393 in_atomic(), irqs_disabled(),
8394 current->pid, current->comm);
8395
8396 debug_show_held_locks(current);
8397 if (irqs_disabled())
8398 print_irqtrace_events(current);
8399 dump_stack();
8400 }
8401 EXPORT_SYMBOL(__might_sleep);
8402 #endif
8403
8404 #ifdef CONFIG_MAGIC_SYSRQ
8405 static void normalize_task(struct rq *rq, struct task_struct *p)
8406 {
8407 const struct sched_class *prev_class = p->sched_class;
8408 int old_prio = p->prio;
8409 int on_rq;
8410
8411 on_rq = p->on_rq;
8412 if (on_rq)
8413 deactivate_task(rq, p, 0);
8414 __setscheduler(rq, p, SCHED_NORMAL, 0);
8415 if (on_rq) {
8416 activate_task(rq, p, 0);
8417 resched_task(rq->curr);
8418 }
8419
8420 check_class_changed(rq, p, prev_class, old_prio);
8421 }
8422
8423 void normalize_rt_tasks(void)
8424 {
8425 struct task_struct *g, *p;
8426 unsigned long flags;
8427 struct rq *rq;
8428
8429 read_lock_irqsave(&tasklist_lock, flags);
8430 do_each_thread(g, p) {
8431 /*
8432 * Only normalize user tasks:
8433 */
8434 if (!p->mm)
8435 continue;
8436
8437 p->se.exec_start = 0;
8438 #ifdef CONFIG_SCHEDSTATS
8439 p->se.statistics.wait_start = 0;
8440 p->se.statistics.sleep_start = 0;
8441 p->se.statistics.block_start = 0;
8442 #endif
8443
8444 if (!rt_task(p)) {
8445 /*
8446 * Renice negative nice level userspace
8447 * tasks back to 0:
8448 */
8449 if (TASK_NICE(p) < 0 && p->mm)
8450 set_user_nice(p, 0);
8451 continue;
8452 }
8453
8454 raw_spin_lock(&p->pi_lock);
8455 rq = __task_rq_lock(p);
8456
8457 normalize_task(rq, p);
8458
8459 __task_rq_unlock(rq);
8460 raw_spin_unlock(&p->pi_lock);
8461 } while_each_thread(g, p);
8462
8463 read_unlock_irqrestore(&tasklist_lock, flags);
8464 }
8465
8466 #endif /* CONFIG_MAGIC_SYSRQ */
8467
8468 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
8469 /*
8470 * These functions are only useful for the IA64 MCA handling, or kdb.
8471 *
8472 * They can only be called when the whole system has been
8473 * stopped - every CPU needs to be quiescent, and no scheduling
8474 * activity can take place. Using them for anything else would
8475 * be a serious bug, and as a result, they aren't even visible
8476 * under any other configuration.
8477 */
8478
8479 /**
8480 * curr_task - return the current task for a given cpu.
8481 * @cpu: the processor in question.
8482 *
8483 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8484 */
8485 struct task_struct *curr_task(int cpu)
8486 {
8487 return cpu_curr(cpu);
8488 }
8489
8490 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8491
8492 #ifdef CONFIG_IA64
8493 /**
8494 * set_curr_task - set the current task for a given cpu.
8495 * @cpu: the processor in question.
8496 * @p: the task pointer to set.
8497 *
8498 * Description: This function must only be used when non-maskable interrupts
8499 * are serviced on a separate stack. It allows the architecture to switch the
8500 * notion of the current task on a cpu in a non-blocking manner. This function
8501 * must be called with all CPU's synchronized, and interrupts disabled, the
8502 * and caller must save the original value of the current task (see
8503 * curr_task() above) and restore that value before reenabling interrupts and
8504 * re-starting the system.
8505 *
8506 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8507 */
8508 void set_curr_task(int cpu, struct task_struct *p)
8509 {
8510 cpu_curr(cpu) = p;
8511 }
8512
8513 #endif
8514
8515 #ifdef CONFIG_FAIR_GROUP_SCHED
8516 static void free_fair_sched_group(struct task_group *tg)
8517 {
8518 int i;
8519
8520 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8521
8522 for_each_possible_cpu(i) {
8523 if (tg->cfs_rq)
8524 kfree(tg->cfs_rq[i]);
8525 if (tg->se)
8526 kfree(tg->se[i]);
8527 }
8528
8529 kfree(tg->cfs_rq);
8530 kfree(tg->se);
8531 }
8532
8533 static
8534 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8535 {
8536 struct cfs_rq *cfs_rq;
8537 struct sched_entity *se;
8538 int i;
8539
8540 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8541 if (!tg->cfs_rq)
8542 goto err;
8543 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8544 if (!tg->se)
8545 goto err;
8546
8547 tg->shares = NICE_0_LOAD;
8548
8549 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8550
8551 for_each_possible_cpu(i) {
8552 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8553 GFP_KERNEL, cpu_to_node(i));
8554 if (!cfs_rq)
8555 goto err;
8556
8557 se = kzalloc_node(sizeof(struct sched_entity),
8558 GFP_KERNEL, cpu_to_node(i));
8559 if (!se)
8560 goto err_free_rq;
8561
8562 init_cfs_rq(cfs_rq);
8563 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8564 }
8565
8566 return 1;
8567
8568 err_free_rq:
8569 kfree(cfs_rq);
8570 err:
8571 return 0;
8572 }
8573
8574 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8575 {
8576 struct rq *rq = cpu_rq(cpu);
8577 unsigned long flags;
8578
8579 /*
8580 * Only empty task groups can be destroyed; so we can speculatively
8581 * check on_list without danger of it being re-added.
8582 */
8583 if (!tg->cfs_rq[cpu]->on_list)
8584 return;
8585
8586 raw_spin_lock_irqsave(&rq->lock, flags);
8587 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8588 raw_spin_unlock_irqrestore(&rq->lock, flags);
8589 }
8590 #else /* !CONFIG_FAIR_GROUP_SCHED */
8591 static inline void free_fair_sched_group(struct task_group *tg)
8592 {
8593 }
8594
8595 static inline
8596 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8597 {
8598 return 1;
8599 }
8600
8601 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8602 {
8603 }
8604 #endif /* CONFIG_FAIR_GROUP_SCHED */
8605
8606 #ifdef CONFIG_RT_GROUP_SCHED
8607 static void free_rt_sched_group(struct task_group *tg)
8608 {
8609 int i;
8610
8611 if (tg->rt_se)
8612 destroy_rt_bandwidth(&tg->rt_bandwidth);
8613
8614 for_each_possible_cpu(i) {
8615 if (tg->rt_rq)
8616 kfree(tg->rt_rq[i]);
8617 if (tg->rt_se)
8618 kfree(tg->rt_se[i]);
8619 }
8620
8621 kfree(tg->rt_rq);
8622 kfree(tg->rt_se);
8623 }
8624
8625 static
8626 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8627 {
8628 struct rt_rq *rt_rq;
8629 struct sched_rt_entity *rt_se;
8630 int i;
8631
8632 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8633 if (!tg->rt_rq)
8634 goto err;
8635 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8636 if (!tg->rt_se)
8637 goto err;
8638
8639 init_rt_bandwidth(&tg->rt_bandwidth,
8640 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8641
8642 for_each_possible_cpu(i) {
8643 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8644 GFP_KERNEL, cpu_to_node(i));
8645 if (!rt_rq)
8646 goto err;
8647
8648 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8649 GFP_KERNEL, cpu_to_node(i));
8650 if (!rt_se)
8651 goto err_free_rq;
8652
8653 init_rt_rq(rt_rq, cpu_rq(i));
8654 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
8655 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
8656 }
8657
8658 return 1;
8659
8660 err_free_rq:
8661 kfree(rt_rq);
8662 err:
8663 return 0;
8664 }
8665 #else /* !CONFIG_RT_GROUP_SCHED */
8666 static inline void free_rt_sched_group(struct task_group *tg)
8667 {
8668 }
8669
8670 static inline
8671 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8672 {
8673 return 1;
8674 }
8675 #endif /* CONFIG_RT_GROUP_SCHED */
8676
8677 #ifdef CONFIG_CGROUP_SCHED
8678 static void free_sched_group(struct task_group *tg)
8679 {
8680 free_fair_sched_group(tg);
8681 free_rt_sched_group(tg);
8682 autogroup_free(tg);
8683 kfree(tg);
8684 }
8685
8686 /* allocate runqueue etc for a new task group */
8687 struct task_group *sched_create_group(struct task_group *parent)
8688 {
8689 struct task_group *tg;
8690 unsigned long flags;
8691
8692 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8693 if (!tg)
8694 return ERR_PTR(-ENOMEM);
8695
8696 if (!alloc_fair_sched_group(tg, parent))
8697 goto err;
8698
8699 if (!alloc_rt_sched_group(tg, parent))
8700 goto err;
8701
8702 spin_lock_irqsave(&task_group_lock, flags);
8703 list_add_rcu(&tg->list, &task_groups);
8704
8705 WARN_ON(!parent); /* root should already exist */
8706
8707 tg->parent = parent;
8708 INIT_LIST_HEAD(&tg->children);
8709 list_add_rcu(&tg->siblings, &parent->children);
8710 spin_unlock_irqrestore(&task_group_lock, flags);
8711
8712 return tg;
8713
8714 err:
8715 free_sched_group(tg);
8716 return ERR_PTR(-ENOMEM);
8717 }
8718
8719 /* rcu callback to free various structures associated with a task group */
8720 static void free_sched_group_rcu(struct rcu_head *rhp)
8721 {
8722 /* now it should be safe to free those cfs_rqs */
8723 free_sched_group(container_of(rhp, struct task_group, rcu));
8724 }
8725
8726 /* Destroy runqueue etc associated with a task group */
8727 void sched_destroy_group(struct task_group *tg)
8728 {
8729 unsigned long flags;
8730 int i;
8731
8732 /* end participation in shares distribution */
8733 for_each_possible_cpu(i)
8734 unregister_fair_sched_group(tg, i);
8735
8736 spin_lock_irqsave(&task_group_lock, flags);
8737 list_del_rcu(&tg->list);
8738 list_del_rcu(&tg->siblings);
8739 spin_unlock_irqrestore(&task_group_lock, flags);
8740
8741 /* wait for possible concurrent references to cfs_rqs complete */
8742 call_rcu(&tg->rcu, free_sched_group_rcu);
8743 }
8744
8745 /* change task's runqueue when it moves between groups.
8746 * The caller of this function should have put the task in its new group
8747 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8748 * reflect its new group.
8749 */
8750 void sched_move_task(struct task_struct *tsk)
8751 {
8752 int on_rq, running;
8753 unsigned long flags;
8754 struct rq *rq;
8755
8756 rq = task_rq_lock(tsk, &flags);
8757
8758 running = task_current(rq, tsk);
8759 on_rq = tsk->on_rq;
8760
8761 if (on_rq)
8762 dequeue_task(rq, tsk, 0);
8763 if (unlikely(running))
8764 tsk->sched_class->put_prev_task(rq, tsk);
8765
8766 #ifdef CONFIG_FAIR_GROUP_SCHED
8767 if (tsk->sched_class->task_move_group)
8768 tsk->sched_class->task_move_group(tsk, on_rq);
8769 else
8770 #endif
8771 set_task_rq(tsk, task_cpu(tsk));
8772
8773 if (unlikely(running))
8774 tsk->sched_class->set_curr_task(rq);
8775 if (on_rq)
8776 enqueue_task(rq, tsk, 0);
8777
8778 task_rq_unlock(rq, tsk, &flags);
8779 }
8780 #endif /* CONFIG_CGROUP_SCHED */
8781
8782 #ifdef CONFIG_FAIR_GROUP_SCHED
8783 static DEFINE_MUTEX(shares_mutex);
8784
8785 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8786 {
8787 int i;
8788 unsigned long flags;
8789
8790 /*
8791 * We can't change the weight of the root cgroup.
8792 */
8793 if (!tg->se[0])
8794 return -EINVAL;
8795
8796 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8797
8798 mutex_lock(&shares_mutex);
8799 if (tg->shares == shares)
8800 goto done;
8801
8802 tg->shares = shares;
8803 for_each_possible_cpu(i) {
8804 struct rq *rq = cpu_rq(i);
8805 struct sched_entity *se;
8806
8807 se = tg->se[i];
8808 /* Propagate contribution to hierarchy */
8809 raw_spin_lock_irqsave(&rq->lock, flags);
8810 for_each_sched_entity(se)
8811 update_cfs_shares(group_cfs_rq(se));
8812 raw_spin_unlock_irqrestore(&rq->lock, flags);
8813 }
8814
8815 done:
8816 mutex_unlock(&shares_mutex);
8817 return 0;
8818 }
8819
8820 unsigned long sched_group_shares(struct task_group *tg)
8821 {
8822 return tg->shares;
8823 }
8824 #endif
8825
8826 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
8827 static unsigned long to_ratio(u64 period, u64 runtime)
8828 {
8829 if (runtime == RUNTIME_INF)
8830 return 1ULL << 20;
8831
8832 return div64_u64(runtime << 20, period);
8833 }
8834 #endif
8835
8836 #ifdef CONFIG_RT_GROUP_SCHED
8837 /*
8838 * Ensure that the real time constraints are schedulable.
8839 */
8840 static DEFINE_MUTEX(rt_constraints_mutex);
8841
8842 /* Must be called with tasklist_lock held */
8843 static inline int tg_has_rt_tasks(struct task_group *tg)
8844 {
8845 struct task_struct *g, *p;
8846
8847 do_each_thread(g, p) {
8848 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8849 return 1;
8850 } while_each_thread(g, p);
8851
8852 return 0;
8853 }
8854
8855 struct rt_schedulable_data {
8856 struct task_group *tg;
8857 u64 rt_period;
8858 u64 rt_runtime;
8859 };
8860
8861 static int tg_rt_schedulable(struct task_group *tg, void *data)
8862 {
8863 struct rt_schedulable_data *d = data;
8864 struct task_group *child;
8865 unsigned long total, sum = 0;
8866 u64 period, runtime;
8867
8868 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8869 runtime = tg->rt_bandwidth.rt_runtime;
8870
8871 if (tg == d->tg) {
8872 period = d->rt_period;
8873 runtime = d->rt_runtime;
8874 }
8875
8876 /*
8877 * Cannot have more runtime than the period.
8878 */
8879 if (runtime > period && runtime != RUNTIME_INF)
8880 return -EINVAL;
8881
8882 /*
8883 * Ensure we don't starve existing RT tasks.
8884 */
8885 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8886 return -EBUSY;
8887
8888 total = to_ratio(period, runtime);
8889
8890 /*
8891 * Nobody can have more than the global setting allows.
8892 */
8893 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8894 return -EINVAL;
8895
8896 /*
8897 * The sum of our children's runtime should not exceed our own.
8898 */
8899 list_for_each_entry_rcu(child, &tg->children, siblings) {
8900 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8901 runtime = child->rt_bandwidth.rt_runtime;
8902
8903 if (child == d->tg) {
8904 period = d->rt_period;
8905 runtime = d->rt_runtime;
8906 }
8907
8908 sum += to_ratio(period, runtime);
8909 }
8910
8911 if (sum > total)
8912 return -EINVAL;
8913
8914 return 0;
8915 }
8916
8917 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8918 {
8919 int ret;
8920
8921 struct rt_schedulable_data data = {
8922 .tg = tg,
8923 .rt_period = period,
8924 .rt_runtime = runtime,
8925 };
8926
8927 rcu_read_lock();
8928 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
8929 rcu_read_unlock();
8930
8931 return ret;
8932 }
8933
8934 static int tg_set_rt_bandwidth(struct task_group *tg,
8935 u64 rt_period, u64 rt_runtime)
8936 {
8937 int i, err = 0;
8938
8939 mutex_lock(&rt_constraints_mutex);
8940 read_lock(&tasklist_lock);
8941 err = __rt_schedulable(tg, rt_period, rt_runtime);
8942 if (err)
8943 goto unlock;
8944
8945 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8946 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8947 tg->rt_bandwidth.rt_runtime = rt_runtime;
8948
8949 for_each_possible_cpu(i) {
8950 struct rt_rq *rt_rq = tg->rt_rq[i];
8951
8952 raw_spin_lock(&rt_rq->rt_runtime_lock);
8953 rt_rq->rt_runtime = rt_runtime;
8954 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8955 }
8956 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8957 unlock:
8958 read_unlock(&tasklist_lock);
8959 mutex_unlock(&rt_constraints_mutex);
8960
8961 return err;
8962 }
8963
8964 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8965 {
8966 u64 rt_runtime, rt_period;
8967
8968 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8969 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8970 if (rt_runtime_us < 0)
8971 rt_runtime = RUNTIME_INF;
8972
8973 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
8974 }
8975
8976 long sched_group_rt_runtime(struct task_group *tg)
8977 {
8978 u64 rt_runtime_us;
8979
8980 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8981 return -1;
8982
8983 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8984 do_div(rt_runtime_us, NSEC_PER_USEC);
8985 return rt_runtime_us;
8986 }
8987
8988 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8989 {
8990 u64 rt_runtime, rt_period;
8991
8992 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8993 rt_runtime = tg->rt_bandwidth.rt_runtime;
8994
8995 if (rt_period == 0)
8996 return -EINVAL;
8997
8998 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
8999 }
9000
9001 long sched_group_rt_period(struct task_group *tg)
9002 {
9003 u64 rt_period_us;
9004
9005 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
9006 do_div(rt_period_us, NSEC_PER_USEC);
9007 return rt_period_us;
9008 }
9009
9010 static int sched_rt_global_constraints(void)
9011 {
9012 u64 runtime, period;
9013 int ret = 0;
9014
9015 if (sysctl_sched_rt_period <= 0)
9016 return -EINVAL;
9017
9018 runtime = global_rt_runtime();
9019 period = global_rt_period();
9020
9021 /*
9022 * Sanity check on the sysctl variables.
9023 */
9024 if (runtime > period && runtime != RUNTIME_INF)
9025 return -EINVAL;
9026
9027 mutex_lock(&rt_constraints_mutex);
9028 read_lock(&tasklist_lock);
9029 ret = __rt_schedulable(NULL, 0, 0);
9030 read_unlock(&tasklist_lock);
9031 mutex_unlock(&rt_constraints_mutex);
9032
9033 return ret;
9034 }
9035
9036 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
9037 {
9038 /* Don't accept realtime tasks when there is no way for them to run */
9039 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
9040 return 0;
9041
9042 return 1;
9043 }
9044
9045 #else /* !CONFIG_RT_GROUP_SCHED */
9046 static int sched_rt_global_constraints(void)
9047 {
9048 unsigned long flags;
9049 int i;
9050
9051 if (sysctl_sched_rt_period <= 0)
9052 return -EINVAL;
9053
9054 /*
9055 * There's always some RT tasks in the root group
9056 * -- migration, kstopmachine etc..
9057 */
9058 if (sysctl_sched_rt_runtime == 0)
9059 return -EBUSY;
9060
9061 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9062 for_each_possible_cpu(i) {
9063 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9064
9065 raw_spin_lock(&rt_rq->rt_runtime_lock);
9066 rt_rq->rt_runtime = global_rt_runtime();
9067 raw_spin_unlock(&rt_rq->rt_runtime_lock);
9068 }
9069 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9070
9071 return 0;
9072 }
9073 #endif /* CONFIG_RT_GROUP_SCHED */
9074
9075 int sched_rt_handler(struct ctl_table *table, int write,
9076 void __user *buffer, size_t *lenp,
9077 loff_t *ppos)
9078 {
9079 int ret;
9080 int old_period, old_runtime;
9081 static DEFINE_MUTEX(mutex);
9082
9083 mutex_lock(&mutex);
9084 old_period = sysctl_sched_rt_period;
9085 old_runtime = sysctl_sched_rt_runtime;
9086
9087 ret = proc_dointvec(table, write, buffer, lenp, ppos);
9088
9089 if (!ret && write) {
9090 ret = sched_rt_global_constraints();
9091 if (ret) {
9092 sysctl_sched_rt_period = old_period;
9093 sysctl_sched_rt_runtime = old_runtime;
9094 } else {
9095 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9096 def_rt_bandwidth.rt_period =
9097 ns_to_ktime(global_rt_period());
9098 }
9099 }
9100 mutex_unlock(&mutex);
9101
9102 return ret;
9103 }
9104
9105 #ifdef CONFIG_CGROUP_SCHED
9106
9107 /* return corresponding task_group object of a cgroup */
9108 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9109 {
9110 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9111 struct task_group, css);
9112 }
9113
9114 static struct cgroup_subsys_state *
9115 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9116 {
9117 struct task_group *tg, *parent;
9118
9119 if (!cgrp->parent) {
9120 /* This is early initialization for the top cgroup */
9121 return &root_task_group.css;
9122 }
9123
9124 parent = cgroup_tg(cgrp->parent);
9125 tg = sched_create_group(parent);
9126 if (IS_ERR(tg))
9127 return ERR_PTR(-ENOMEM);
9128
9129 return &tg->css;
9130 }
9131
9132 static void
9133 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9134 {
9135 struct task_group *tg = cgroup_tg(cgrp);
9136
9137 sched_destroy_group(tg);
9138 }
9139
9140 static int
9141 cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
9142 {
9143 #ifdef CONFIG_RT_GROUP_SCHED
9144 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
9145 return -EINVAL;
9146 #else
9147 /* We don't support RT-tasks being in separate groups */
9148 if (tsk->sched_class != &fair_sched_class)
9149 return -EINVAL;
9150 #endif
9151 return 0;
9152 }
9153
9154 static void
9155 cpu_cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
9156 {
9157 sched_move_task(tsk);
9158 }
9159
9160 static void
9161 cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
9162 struct cgroup *old_cgrp, struct task_struct *task)
9163 {
9164 /*
9165 * cgroup_exit() is called in the copy_process() failure path.
9166 * Ignore this case since the task hasn't ran yet, this avoids
9167 * trying to poke a half freed task state from generic code.
9168 */
9169 if (!(task->flags & PF_EXITING))
9170 return;
9171
9172 sched_move_task(task);
9173 }
9174
9175 #ifdef CONFIG_FAIR_GROUP_SCHED
9176 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9177 u64 shareval)
9178 {
9179 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
9180 }
9181
9182 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9183 {
9184 struct task_group *tg = cgroup_tg(cgrp);
9185
9186 return (u64) scale_load_down(tg->shares);
9187 }
9188
9189 #ifdef CONFIG_CFS_BANDWIDTH
9190 static DEFINE_MUTEX(cfs_constraints_mutex);
9191
9192 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
9193 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
9194
9195 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
9196
9197 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
9198 {
9199 int i, ret = 0, runtime_enabled;
9200 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
9201
9202 if (tg == &root_task_group)
9203 return -EINVAL;
9204
9205 /*
9206 * Ensure we have at some amount of bandwidth every period. This is
9207 * to prevent reaching a state of large arrears when throttled via
9208 * entity_tick() resulting in prolonged exit starvation.
9209 */
9210 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
9211 return -EINVAL;
9212
9213 /*
9214 * Likewise, bound things on the otherside by preventing insane quota
9215 * periods. This also allows us to normalize in computing quota
9216 * feasibility.
9217 */
9218 if (period > max_cfs_quota_period)
9219 return -EINVAL;
9220
9221 mutex_lock(&cfs_constraints_mutex);
9222 ret = __cfs_schedulable(tg, period, quota);
9223 if (ret)
9224 goto out_unlock;
9225
9226 runtime_enabled = quota != RUNTIME_INF;
9227 raw_spin_lock_irq(&cfs_b->lock);
9228 cfs_b->period = ns_to_ktime(period);
9229 cfs_b->quota = quota;
9230
9231 __refill_cfs_bandwidth_runtime(cfs_b);
9232 /* restart the period timer (if active) to handle new period expiry */
9233 if (runtime_enabled && cfs_b->timer_active) {
9234 /* force a reprogram */
9235 cfs_b->timer_active = 0;
9236 __start_cfs_bandwidth(cfs_b);
9237 }
9238 raw_spin_unlock_irq(&cfs_b->lock);
9239
9240 for_each_possible_cpu(i) {
9241 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
9242 struct rq *rq = rq_of(cfs_rq);
9243
9244 raw_spin_lock_irq(&rq->lock);
9245 cfs_rq->runtime_enabled = runtime_enabled;
9246 cfs_rq->runtime_remaining = 0;
9247
9248 if (cfs_rq_throttled(cfs_rq))
9249 unthrottle_cfs_rq(cfs_rq);
9250 raw_spin_unlock_irq(&rq->lock);
9251 }
9252 out_unlock:
9253 mutex_unlock(&cfs_constraints_mutex);
9254
9255 return ret;
9256 }
9257
9258 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
9259 {
9260 u64 quota, period;
9261
9262 period = ktime_to_ns(tg_cfs_bandwidth(tg)->period);
9263 if (cfs_quota_us < 0)
9264 quota = RUNTIME_INF;
9265 else
9266 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
9267
9268 return tg_set_cfs_bandwidth(tg, period, quota);
9269 }
9270
9271 long tg_get_cfs_quota(struct task_group *tg)
9272 {
9273 u64 quota_us;
9274
9275 if (tg_cfs_bandwidth(tg)->quota == RUNTIME_INF)
9276 return -1;
9277
9278 quota_us = tg_cfs_bandwidth(tg)->quota;
9279 do_div(quota_us, NSEC_PER_USEC);
9280
9281 return quota_us;
9282 }
9283
9284 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
9285 {
9286 u64 quota, period;
9287
9288 period = (u64)cfs_period_us * NSEC_PER_USEC;
9289 quota = tg_cfs_bandwidth(tg)->quota;
9290
9291 if (period <= 0)
9292 return -EINVAL;
9293
9294 return tg_set_cfs_bandwidth(tg, period, quota);
9295 }
9296
9297 long tg_get_cfs_period(struct task_group *tg)
9298 {
9299 u64 cfs_period_us;
9300
9301 cfs_period_us = ktime_to_ns(tg_cfs_bandwidth(tg)->period);
9302 do_div(cfs_period_us, NSEC_PER_USEC);
9303
9304 return cfs_period_us;
9305 }
9306
9307 static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
9308 {
9309 return tg_get_cfs_quota(cgroup_tg(cgrp));
9310 }
9311
9312 static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
9313 s64 cfs_quota_us)
9314 {
9315 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
9316 }
9317
9318 static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
9319 {
9320 return tg_get_cfs_period(cgroup_tg(cgrp));
9321 }
9322
9323 static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9324 u64 cfs_period_us)
9325 {
9326 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
9327 }
9328
9329 struct cfs_schedulable_data {
9330 struct task_group *tg;
9331 u64 period, quota;
9332 };
9333
9334 /*
9335 * normalize group quota/period to be quota/max_period
9336 * note: units are usecs
9337 */
9338 static u64 normalize_cfs_quota(struct task_group *tg,
9339 struct cfs_schedulable_data *d)
9340 {
9341 u64 quota, period;
9342
9343 if (tg == d->tg) {
9344 period = d->period;
9345 quota = d->quota;
9346 } else {
9347 period = tg_get_cfs_period(tg);
9348 quota = tg_get_cfs_quota(tg);
9349 }
9350
9351 /* note: these should typically be equivalent */
9352 if (quota == RUNTIME_INF || quota == -1)
9353 return RUNTIME_INF;
9354
9355 return to_ratio(period, quota);
9356 }
9357
9358 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
9359 {
9360 struct cfs_schedulable_data *d = data;
9361 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
9362 s64 quota = 0, parent_quota = -1;
9363
9364 if (!tg->parent) {
9365 quota = RUNTIME_INF;
9366 } else {
9367 struct cfs_bandwidth *parent_b = tg_cfs_bandwidth(tg->parent);
9368
9369 quota = normalize_cfs_quota(tg, d);
9370 parent_quota = parent_b->hierarchal_quota;
9371
9372 /*
9373 * ensure max(child_quota) <= parent_quota, inherit when no
9374 * limit is set
9375 */
9376 if (quota == RUNTIME_INF)
9377 quota = parent_quota;
9378 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
9379 return -EINVAL;
9380 }
9381 cfs_b->hierarchal_quota = quota;
9382
9383 return 0;
9384 }
9385
9386 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
9387 {
9388 int ret;
9389 struct cfs_schedulable_data data = {
9390 .tg = tg,
9391 .period = period,
9392 .quota = quota,
9393 };
9394
9395 if (quota != RUNTIME_INF) {
9396 do_div(data.period, NSEC_PER_USEC);
9397 do_div(data.quota, NSEC_PER_USEC);
9398 }
9399
9400 rcu_read_lock();
9401 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
9402 rcu_read_unlock();
9403
9404 return ret;
9405 }
9406
9407 static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
9408 struct cgroup_map_cb *cb)
9409 {
9410 struct task_group *tg = cgroup_tg(cgrp);
9411 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
9412
9413 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
9414 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
9415 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
9416
9417 return 0;
9418 }
9419 #endif /* CONFIG_CFS_BANDWIDTH */
9420 #endif /* CONFIG_FAIR_GROUP_SCHED */
9421
9422 #ifdef CONFIG_RT_GROUP_SCHED
9423 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9424 s64 val)
9425 {
9426 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
9427 }
9428
9429 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
9430 {
9431 return sched_group_rt_runtime(cgroup_tg(cgrp));
9432 }
9433
9434 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9435 u64 rt_period_us)
9436 {
9437 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9438 }
9439
9440 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9441 {
9442 return sched_group_rt_period(cgroup_tg(cgrp));
9443 }
9444 #endif /* CONFIG_RT_GROUP_SCHED */
9445
9446 static struct cftype cpu_files[] = {
9447 #ifdef CONFIG_FAIR_GROUP_SCHED
9448 {
9449 .name = "shares",
9450 .read_u64 = cpu_shares_read_u64,
9451 .write_u64 = cpu_shares_write_u64,
9452 },
9453 #endif
9454 #ifdef CONFIG_CFS_BANDWIDTH
9455 {
9456 .name = "cfs_quota_us",
9457 .read_s64 = cpu_cfs_quota_read_s64,
9458 .write_s64 = cpu_cfs_quota_write_s64,
9459 },
9460 {
9461 .name = "cfs_period_us",
9462 .read_u64 = cpu_cfs_period_read_u64,
9463 .write_u64 = cpu_cfs_period_write_u64,
9464 },
9465 {
9466 .name = "stat",
9467 .read_map = cpu_stats_show,
9468 },
9469 #endif
9470 #ifdef CONFIG_RT_GROUP_SCHED
9471 {
9472 .name = "rt_runtime_us",
9473 .read_s64 = cpu_rt_runtime_read,
9474 .write_s64 = cpu_rt_runtime_write,
9475 },
9476 {
9477 .name = "rt_period_us",
9478 .read_u64 = cpu_rt_period_read_uint,
9479 .write_u64 = cpu_rt_period_write_uint,
9480 },
9481 #endif
9482 };
9483
9484 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9485 {
9486 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9487 }
9488
9489 struct cgroup_subsys cpu_cgroup_subsys = {
9490 .name = "cpu",
9491 .create = cpu_cgroup_create,
9492 .destroy = cpu_cgroup_destroy,
9493 .can_attach_task = cpu_cgroup_can_attach_task,
9494 .attach_task = cpu_cgroup_attach_task,
9495 .exit = cpu_cgroup_exit,
9496 .populate = cpu_cgroup_populate,
9497 .subsys_id = cpu_cgroup_subsys_id,
9498 .early_init = 1,
9499 };
9500
9501 #endif /* CONFIG_CGROUP_SCHED */
9502
9503 #ifdef CONFIG_CGROUP_CPUACCT
9504
9505 /*
9506 * CPU accounting code for task groups.
9507 *
9508 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9509 * (balbir@in.ibm.com).
9510 */
9511
9512 /* track cpu usage of a group of tasks and its child groups */
9513 struct cpuacct {
9514 struct cgroup_subsys_state css;
9515 /* cpuusage holds pointer to a u64-type object on every cpu */
9516 u64 __percpu *cpuusage;
9517 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
9518 struct cpuacct *parent;
9519 };
9520
9521 struct cgroup_subsys cpuacct_subsys;
9522
9523 /* return cpu accounting group corresponding to this container */
9524 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9525 {
9526 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9527 struct cpuacct, css);
9528 }
9529
9530 /* return cpu accounting group to which this task belongs */
9531 static inline struct cpuacct *task_ca(struct task_struct *tsk)
9532 {
9533 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9534 struct cpuacct, css);
9535 }
9536
9537 /* create a new cpu accounting group */
9538 static struct cgroup_subsys_state *cpuacct_create(
9539 struct cgroup_subsys *ss, struct cgroup *cgrp)
9540 {
9541 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9542 int i;
9543
9544 if (!ca)
9545 goto out;
9546
9547 ca->cpuusage = alloc_percpu(u64);
9548 if (!ca->cpuusage)
9549 goto out_free_ca;
9550
9551 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9552 if (percpu_counter_init(&ca->cpustat[i], 0))
9553 goto out_free_counters;
9554
9555 if (cgrp->parent)
9556 ca->parent = cgroup_ca(cgrp->parent);
9557
9558 return &ca->css;
9559
9560 out_free_counters:
9561 while (--i >= 0)
9562 percpu_counter_destroy(&ca->cpustat[i]);
9563 free_percpu(ca->cpuusage);
9564 out_free_ca:
9565 kfree(ca);
9566 out:
9567 return ERR_PTR(-ENOMEM);
9568 }
9569
9570 /* destroy an existing cpu accounting group */
9571 static void
9572 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9573 {
9574 struct cpuacct *ca = cgroup_ca(cgrp);
9575 int i;
9576
9577 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9578 percpu_counter_destroy(&ca->cpustat[i]);
9579 free_percpu(ca->cpuusage);
9580 kfree(ca);
9581 }
9582
9583 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9584 {
9585 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9586 u64 data;
9587
9588 #ifndef CONFIG_64BIT
9589 /*
9590 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9591 */
9592 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9593 data = *cpuusage;
9594 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9595 #else
9596 data = *cpuusage;
9597 #endif
9598
9599 return data;
9600 }
9601
9602 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9603 {
9604 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9605
9606 #ifndef CONFIG_64BIT
9607 /*
9608 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9609 */
9610 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9611 *cpuusage = val;
9612 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9613 #else
9614 *cpuusage = val;
9615 #endif
9616 }
9617
9618 /* return total cpu usage (in nanoseconds) of a group */
9619 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9620 {
9621 struct cpuacct *ca = cgroup_ca(cgrp);
9622 u64 totalcpuusage = 0;
9623 int i;
9624
9625 for_each_present_cpu(i)
9626 totalcpuusage += cpuacct_cpuusage_read(ca, i);
9627
9628 return totalcpuusage;
9629 }
9630
9631 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9632 u64 reset)
9633 {
9634 struct cpuacct *ca = cgroup_ca(cgrp);
9635 int err = 0;
9636 int i;
9637
9638 if (reset) {
9639 err = -EINVAL;
9640 goto out;
9641 }
9642
9643 for_each_present_cpu(i)
9644 cpuacct_cpuusage_write(ca, i, 0);
9645
9646 out:
9647 return err;
9648 }
9649
9650 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9651 struct seq_file *m)
9652 {
9653 struct cpuacct *ca = cgroup_ca(cgroup);
9654 u64 percpu;
9655 int i;
9656
9657 for_each_present_cpu(i) {
9658 percpu = cpuacct_cpuusage_read(ca, i);
9659 seq_printf(m, "%llu ", (unsigned long long) percpu);
9660 }
9661 seq_printf(m, "\n");
9662 return 0;
9663 }
9664
9665 static const char *cpuacct_stat_desc[] = {
9666 [CPUACCT_STAT_USER] = "user",
9667 [CPUACCT_STAT_SYSTEM] = "system",
9668 };
9669
9670 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9671 struct cgroup_map_cb *cb)
9672 {
9673 struct cpuacct *ca = cgroup_ca(cgrp);
9674 int i;
9675
9676 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9677 s64 val = percpu_counter_read(&ca->cpustat[i]);
9678 val = cputime64_to_clock_t(val);
9679 cb->fill(cb, cpuacct_stat_desc[i], val);
9680 }
9681 return 0;
9682 }
9683
9684 static struct cftype files[] = {
9685 {
9686 .name = "usage",
9687 .read_u64 = cpuusage_read,
9688 .write_u64 = cpuusage_write,
9689 },
9690 {
9691 .name = "usage_percpu",
9692 .read_seq_string = cpuacct_percpu_seq_read,
9693 },
9694 {
9695 .name = "stat",
9696 .read_map = cpuacct_stats_show,
9697 },
9698 };
9699
9700 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9701 {
9702 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9703 }
9704
9705 /*
9706 * charge this task's execution time to its accounting group.
9707 *
9708 * called with rq->lock held.
9709 */
9710 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9711 {
9712 struct cpuacct *ca;
9713 int cpu;
9714
9715 if (unlikely(!cpuacct_subsys.active))
9716 return;
9717
9718 cpu = task_cpu(tsk);
9719
9720 rcu_read_lock();
9721
9722 ca = task_ca(tsk);
9723
9724 for (; ca; ca = ca->parent) {
9725 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9726 *cpuusage += cputime;
9727 }
9728
9729 rcu_read_unlock();
9730 }
9731
9732 /*
9733 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9734 * in cputime_t units. As a result, cpuacct_update_stats calls
9735 * percpu_counter_add with values large enough to always overflow the
9736 * per cpu batch limit causing bad SMP scalability.
9737 *
9738 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9739 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9740 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9741 */
9742 #ifdef CONFIG_SMP
9743 #define CPUACCT_BATCH \
9744 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9745 #else
9746 #define CPUACCT_BATCH 0
9747 #endif
9748
9749 /*
9750 * Charge the system/user time to the task's accounting group.
9751 */
9752 static void cpuacct_update_stats(struct task_struct *tsk,
9753 enum cpuacct_stat_index idx, cputime_t val)
9754 {
9755 struct cpuacct *ca;
9756 int batch = CPUACCT_BATCH;
9757
9758 if (unlikely(!cpuacct_subsys.active))
9759 return;
9760
9761 rcu_read_lock();
9762 ca = task_ca(tsk);
9763
9764 do {
9765 __percpu_counter_add(&ca->cpustat[idx], val, batch);
9766 ca = ca->parent;
9767 } while (ca);
9768 rcu_read_unlock();
9769 }
9770
9771 struct cgroup_subsys cpuacct_subsys = {
9772 .name = "cpuacct",
9773 .create = cpuacct_create,
9774 .destroy = cpuacct_destroy,
9775 .populate = cpuacct_populate,
9776 .subsys_id = cpuacct_subsys_id,
9777 };
9778 #endif /* CONFIG_CGROUP_CPUACCT */
This page took 0.247014 seconds and 5 git commands to generate.