sched: Use a buddy to implement yield_task_fair()
[deliverable/linux.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/stop_machine.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
74 #include <linux/slab.h>
75
76 #include <asm/tlb.h>
77 #include <asm/irq_regs.h>
78 #include <asm/mutex.h>
79
80 #include "sched_cpupri.h"
81 #include "workqueue_sched.h"
82 #include "sched_autogroup.h"
83
84 #define CREATE_TRACE_POINTS
85 #include <trace/events/sched.h>
86
87 /*
88 * Convert user-nice values [ -20 ... 0 ... 19 ]
89 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
90 * and back.
91 */
92 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
93 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
94 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
95
96 /*
97 * 'User priority' is the nice value converted to something we
98 * can work with better when scaling various scheduler parameters,
99 * it's a [ 0 ... 39 ] range.
100 */
101 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
102 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
103 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
104
105 /*
106 * Helpers for converting nanosecond timing to jiffy resolution
107 */
108 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
109
110 #define NICE_0_LOAD SCHED_LOAD_SCALE
111 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
112
113 /*
114 * These are the 'tuning knobs' of the scheduler:
115 *
116 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
117 * Timeslices get refilled after they expire.
118 */
119 #define DEF_TIMESLICE (100 * HZ / 1000)
120
121 /*
122 * single value that denotes runtime == period, ie unlimited time.
123 */
124 #define RUNTIME_INF ((u64)~0ULL)
125
126 static inline int rt_policy(int policy)
127 {
128 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
129 return 1;
130 return 0;
131 }
132
133 static inline int task_has_rt_policy(struct task_struct *p)
134 {
135 return rt_policy(p->policy);
136 }
137
138 /*
139 * This is the priority-queue data structure of the RT scheduling class:
140 */
141 struct rt_prio_array {
142 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
143 struct list_head queue[MAX_RT_PRIO];
144 };
145
146 struct rt_bandwidth {
147 /* nests inside the rq lock: */
148 raw_spinlock_t rt_runtime_lock;
149 ktime_t rt_period;
150 u64 rt_runtime;
151 struct hrtimer rt_period_timer;
152 };
153
154 static struct rt_bandwidth def_rt_bandwidth;
155
156 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
157
158 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
159 {
160 struct rt_bandwidth *rt_b =
161 container_of(timer, struct rt_bandwidth, rt_period_timer);
162 ktime_t now;
163 int overrun;
164 int idle = 0;
165
166 for (;;) {
167 now = hrtimer_cb_get_time(timer);
168 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
169
170 if (!overrun)
171 break;
172
173 idle = do_sched_rt_period_timer(rt_b, overrun);
174 }
175
176 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
177 }
178
179 static
180 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
181 {
182 rt_b->rt_period = ns_to_ktime(period);
183 rt_b->rt_runtime = runtime;
184
185 raw_spin_lock_init(&rt_b->rt_runtime_lock);
186
187 hrtimer_init(&rt_b->rt_period_timer,
188 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
189 rt_b->rt_period_timer.function = sched_rt_period_timer;
190 }
191
192 static inline int rt_bandwidth_enabled(void)
193 {
194 return sysctl_sched_rt_runtime >= 0;
195 }
196
197 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
198 {
199 ktime_t now;
200
201 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
202 return;
203
204 if (hrtimer_active(&rt_b->rt_period_timer))
205 return;
206
207 raw_spin_lock(&rt_b->rt_runtime_lock);
208 for (;;) {
209 unsigned long delta;
210 ktime_t soft, hard;
211
212 if (hrtimer_active(&rt_b->rt_period_timer))
213 break;
214
215 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
216 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
217
218 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
219 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
220 delta = ktime_to_ns(ktime_sub(hard, soft));
221 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
222 HRTIMER_MODE_ABS_PINNED, 0);
223 }
224 raw_spin_unlock(&rt_b->rt_runtime_lock);
225 }
226
227 #ifdef CONFIG_RT_GROUP_SCHED
228 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
229 {
230 hrtimer_cancel(&rt_b->rt_period_timer);
231 }
232 #endif
233
234 /*
235 * sched_domains_mutex serializes calls to arch_init_sched_domains,
236 * detach_destroy_domains and partition_sched_domains.
237 */
238 static DEFINE_MUTEX(sched_domains_mutex);
239
240 #ifdef CONFIG_CGROUP_SCHED
241
242 #include <linux/cgroup.h>
243
244 struct cfs_rq;
245
246 static LIST_HEAD(task_groups);
247
248 /* task group related information */
249 struct task_group {
250 struct cgroup_subsys_state css;
251
252 #ifdef CONFIG_FAIR_GROUP_SCHED
253 /* schedulable entities of this group on each cpu */
254 struct sched_entity **se;
255 /* runqueue "owned" by this group on each cpu */
256 struct cfs_rq **cfs_rq;
257 unsigned long shares;
258
259 atomic_t load_weight;
260 #endif
261
262 #ifdef CONFIG_RT_GROUP_SCHED
263 struct sched_rt_entity **rt_se;
264 struct rt_rq **rt_rq;
265
266 struct rt_bandwidth rt_bandwidth;
267 #endif
268
269 struct rcu_head rcu;
270 struct list_head list;
271
272 struct task_group *parent;
273 struct list_head siblings;
274 struct list_head children;
275
276 #ifdef CONFIG_SCHED_AUTOGROUP
277 struct autogroup *autogroup;
278 #endif
279 };
280
281 /* task_group_lock serializes the addition/removal of task groups */
282 static DEFINE_SPINLOCK(task_group_lock);
283
284 #ifdef CONFIG_FAIR_GROUP_SCHED
285
286 # define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
287
288 /*
289 * A weight of 0 or 1 can cause arithmetics problems.
290 * A weight of a cfs_rq is the sum of weights of which entities
291 * are queued on this cfs_rq, so a weight of a entity should not be
292 * too large, so as the shares value of a task group.
293 * (The default weight is 1024 - so there's no practical
294 * limitation from this.)
295 */
296 #define MIN_SHARES 2
297 #define MAX_SHARES (1UL << 18)
298
299 static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
300 #endif
301
302 /* Default task group.
303 * Every task in system belong to this group at bootup.
304 */
305 struct task_group root_task_group;
306
307 #endif /* CONFIG_CGROUP_SCHED */
308
309 /* CFS-related fields in a runqueue */
310 struct cfs_rq {
311 struct load_weight load;
312 unsigned long nr_running;
313
314 u64 exec_clock;
315 u64 min_vruntime;
316
317 struct rb_root tasks_timeline;
318 struct rb_node *rb_leftmost;
319
320 struct list_head tasks;
321 struct list_head *balance_iterator;
322
323 /*
324 * 'curr' points to currently running entity on this cfs_rq.
325 * It is set to NULL otherwise (i.e when none are currently running).
326 */
327 struct sched_entity *curr, *next, *last, *skip;
328
329 unsigned int nr_spread_over;
330
331 #ifdef CONFIG_FAIR_GROUP_SCHED
332 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
333
334 /*
335 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
336 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
337 * (like users, containers etc.)
338 *
339 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
340 * list is used during load balance.
341 */
342 int on_list;
343 struct list_head leaf_cfs_rq_list;
344 struct task_group *tg; /* group that "owns" this runqueue */
345
346 #ifdef CONFIG_SMP
347 /*
348 * the part of load.weight contributed by tasks
349 */
350 unsigned long task_weight;
351
352 /*
353 * h_load = weight * f(tg)
354 *
355 * Where f(tg) is the recursive weight fraction assigned to
356 * this group.
357 */
358 unsigned long h_load;
359
360 /*
361 * Maintaining per-cpu shares distribution for group scheduling
362 *
363 * load_stamp is the last time we updated the load average
364 * load_last is the last time we updated the load average and saw load
365 * load_unacc_exec_time is currently unaccounted execution time
366 */
367 u64 load_avg;
368 u64 load_period;
369 u64 load_stamp, load_last, load_unacc_exec_time;
370
371 unsigned long load_contribution;
372 #endif
373 #endif
374 };
375
376 /* Real-Time classes' related field in a runqueue: */
377 struct rt_rq {
378 struct rt_prio_array active;
379 unsigned long rt_nr_running;
380 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
381 struct {
382 int curr; /* highest queued rt task prio */
383 #ifdef CONFIG_SMP
384 int next; /* next highest */
385 #endif
386 } highest_prio;
387 #endif
388 #ifdef CONFIG_SMP
389 unsigned long rt_nr_migratory;
390 unsigned long rt_nr_total;
391 int overloaded;
392 struct plist_head pushable_tasks;
393 #endif
394 int rt_throttled;
395 u64 rt_time;
396 u64 rt_runtime;
397 /* Nests inside the rq lock: */
398 raw_spinlock_t rt_runtime_lock;
399
400 #ifdef CONFIG_RT_GROUP_SCHED
401 unsigned long rt_nr_boosted;
402
403 struct rq *rq;
404 struct list_head leaf_rt_rq_list;
405 struct task_group *tg;
406 #endif
407 };
408
409 #ifdef CONFIG_SMP
410
411 /*
412 * We add the notion of a root-domain which will be used to define per-domain
413 * variables. Each exclusive cpuset essentially defines an island domain by
414 * fully partitioning the member cpus from any other cpuset. Whenever a new
415 * exclusive cpuset is created, we also create and attach a new root-domain
416 * object.
417 *
418 */
419 struct root_domain {
420 atomic_t refcount;
421 cpumask_var_t span;
422 cpumask_var_t online;
423
424 /*
425 * The "RT overload" flag: it gets set if a CPU has more than
426 * one runnable RT task.
427 */
428 cpumask_var_t rto_mask;
429 atomic_t rto_count;
430 struct cpupri cpupri;
431 };
432
433 /*
434 * By default the system creates a single root-domain with all cpus as
435 * members (mimicking the global state we have today).
436 */
437 static struct root_domain def_root_domain;
438
439 #endif /* CONFIG_SMP */
440
441 /*
442 * This is the main, per-CPU runqueue data structure.
443 *
444 * Locking rule: those places that want to lock multiple runqueues
445 * (such as the load balancing or the thread migration code), lock
446 * acquire operations must be ordered by ascending &runqueue.
447 */
448 struct rq {
449 /* runqueue lock: */
450 raw_spinlock_t lock;
451
452 /*
453 * nr_running and cpu_load should be in the same cacheline because
454 * remote CPUs use both these fields when doing load calculation.
455 */
456 unsigned long nr_running;
457 #define CPU_LOAD_IDX_MAX 5
458 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
459 unsigned long last_load_update_tick;
460 #ifdef CONFIG_NO_HZ
461 u64 nohz_stamp;
462 unsigned char nohz_balance_kick;
463 #endif
464 unsigned int skip_clock_update;
465
466 /* capture load from *all* tasks on this cpu: */
467 struct load_weight load;
468 unsigned long nr_load_updates;
469 u64 nr_switches;
470
471 struct cfs_rq cfs;
472 struct rt_rq rt;
473
474 #ifdef CONFIG_FAIR_GROUP_SCHED
475 /* list of leaf cfs_rq on this cpu: */
476 struct list_head leaf_cfs_rq_list;
477 #endif
478 #ifdef CONFIG_RT_GROUP_SCHED
479 struct list_head leaf_rt_rq_list;
480 #endif
481
482 /*
483 * This is part of a global counter where only the total sum
484 * over all CPUs matters. A task can increase this counter on
485 * one CPU and if it got migrated afterwards it may decrease
486 * it on another CPU. Always updated under the runqueue lock:
487 */
488 unsigned long nr_uninterruptible;
489
490 struct task_struct *curr, *idle, *stop;
491 unsigned long next_balance;
492 struct mm_struct *prev_mm;
493
494 u64 clock;
495 u64 clock_task;
496
497 atomic_t nr_iowait;
498
499 #ifdef CONFIG_SMP
500 struct root_domain *rd;
501 struct sched_domain *sd;
502
503 unsigned long cpu_power;
504
505 unsigned char idle_at_tick;
506 /* For active balancing */
507 int post_schedule;
508 int active_balance;
509 int push_cpu;
510 struct cpu_stop_work active_balance_work;
511 /* cpu of this runqueue: */
512 int cpu;
513 int online;
514
515 unsigned long avg_load_per_task;
516
517 u64 rt_avg;
518 u64 age_stamp;
519 u64 idle_stamp;
520 u64 avg_idle;
521 #endif
522
523 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
524 u64 prev_irq_time;
525 #endif
526
527 /* calc_load related fields */
528 unsigned long calc_load_update;
529 long calc_load_active;
530
531 #ifdef CONFIG_SCHED_HRTICK
532 #ifdef CONFIG_SMP
533 int hrtick_csd_pending;
534 struct call_single_data hrtick_csd;
535 #endif
536 struct hrtimer hrtick_timer;
537 #endif
538
539 #ifdef CONFIG_SCHEDSTATS
540 /* latency stats */
541 struct sched_info rq_sched_info;
542 unsigned long long rq_cpu_time;
543 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
544
545 /* sys_sched_yield() stats */
546 unsigned int yld_count;
547
548 /* schedule() stats */
549 unsigned int sched_switch;
550 unsigned int sched_count;
551 unsigned int sched_goidle;
552
553 /* try_to_wake_up() stats */
554 unsigned int ttwu_count;
555 unsigned int ttwu_local;
556 #endif
557 };
558
559 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
560
561
562 static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
563
564 static inline int cpu_of(struct rq *rq)
565 {
566 #ifdef CONFIG_SMP
567 return rq->cpu;
568 #else
569 return 0;
570 #endif
571 }
572
573 #define rcu_dereference_check_sched_domain(p) \
574 rcu_dereference_check((p), \
575 rcu_read_lock_sched_held() || \
576 lockdep_is_held(&sched_domains_mutex))
577
578 /*
579 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
580 * See detach_destroy_domains: synchronize_sched for details.
581 *
582 * The domain tree of any CPU may only be accessed from within
583 * preempt-disabled sections.
584 */
585 #define for_each_domain(cpu, __sd) \
586 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
587
588 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
589 #define this_rq() (&__get_cpu_var(runqueues))
590 #define task_rq(p) cpu_rq(task_cpu(p))
591 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
592 #define raw_rq() (&__raw_get_cpu_var(runqueues))
593
594 #ifdef CONFIG_CGROUP_SCHED
595
596 /*
597 * Return the group to which this tasks belongs.
598 *
599 * We use task_subsys_state_check() and extend the RCU verification
600 * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
601 * holds that lock for each task it moves into the cgroup. Therefore
602 * by holding that lock, we pin the task to the current cgroup.
603 */
604 static inline struct task_group *task_group(struct task_struct *p)
605 {
606 struct task_group *tg;
607 struct cgroup_subsys_state *css;
608
609 if (p->flags & PF_EXITING)
610 return &root_task_group;
611
612 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
613 lockdep_is_held(&task_rq(p)->lock));
614 tg = container_of(css, struct task_group, css);
615
616 return autogroup_task_group(p, tg);
617 }
618
619 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
620 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
621 {
622 #ifdef CONFIG_FAIR_GROUP_SCHED
623 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
624 p->se.parent = task_group(p)->se[cpu];
625 #endif
626
627 #ifdef CONFIG_RT_GROUP_SCHED
628 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
629 p->rt.parent = task_group(p)->rt_se[cpu];
630 #endif
631 }
632
633 #else /* CONFIG_CGROUP_SCHED */
634
635 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
636 static inline struct task_group *task_group(struct task_struct *p)
637 {
638 return NULL;
639 }
640
641 #endif /* CONFIG_CGROUP_SCHED */
642
643 static void update_rq_clock_task(struct rq *rq, s64 delta);
644
645 static void update_rq_clock(struct rq *rq)
646 {
647 s64 delta;
648
649 if (rq->skip_clock_update)
650 return;
651
652 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
653 rq->clock += delta;
654 update_rq_clock_task(rq, delta);
655 }
656
657 /*
658 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
659 */
660 #ifdef CONFIG_SCHED_DEBUG
661 # define const_debug __read_mostly
662 #else
663 # define const_debug static const
664 #endif
665
666 /**
667 * runqueue_is_locked
668 * @cpu: the processor in question.
669 *
670 * Returns true if the current cpu runqueue is locked.
671 * This interface allows printk to be called with the runqueue lock
672 * held and know whether or not it is OK to wake up the klogd.
673 */
674 int runqueue_is_locked(int cpu)
675 {
676 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
677 }
678
679 /*
680 * Debugging: various feature bits
681 */
682
683 #define SCHED_FEAT(name, enabled) \
684 __SCHED_FEAT_##name ,
685
686 enum {
687 #include "sched_features.h"
688 };
689
690 #undef SCHED_FEAT
691
692 #define SCHED_FEAT(name, enabled) \
693 (1UL << __SCHED_FEAT_##name) * enabled |
694
695 const_debug unsigned int sysctl_sched_features =
696 #include "sched_features.h"
697 0;
698
699 #undef SCHED_FEAT
700
701 #ifdef CONFIG_SCHED_DEBUG
702 #define SCHED_FEAT(name, enabled) \
703 #name ,
704
705 static __read_mostly char *sched_feat_names[] = {
706 #include "sched_features.h"
707 NULL
708 };
709
710 #undef SCHED_FEAT
711
712 static int sched_feat_show(struct seq_file *m, void *v)
713 {
714 int i;
715
716 for (i = 0; sched_feat_names[i]; i++) {
717 if (!(sysctl_sched_features & (1UL << i)))
718 seq_puts(m, "NO_");
719 seq_printf(m, "%s ", sched_feat_names[i]);
720 }
721 seq_puts(m, "\n");
722
723 return 0;
724 }
725
726 static ssize_t
727 sched_feat_write(struct file *filp, const char __user *ubuf,
728 size_t cnt, loff_t *ppos)
729 {
730 char buf[64];
731 char *cmp;
732 int neg = 0;
733 int i;
734
735 if (cnt > 63)
736 cnt = 63;
737
738 if (copy_from_user(&buf, ubuf, cnt))
739 return -EFAULT;
740
741 buf[cnt] = 0;
742 cmp = strstrip(buf);
743
744 if (strncmp(cmp, "NO_", 3) == 0) {
745 neg = 1;
746 cmp += 3;
747 }
748
749 for (i = 0; sched_feat_names[i]; i++) {
750 if (strcmp(cmp, sched_feat_names[i]) == 0) {
751 if (neg)
752 sysctl_sched_features &= ~(1UL << i);
753 else
754 sysctl_sched_features |= (1UL << i);
755 break;
756 }
757 }
758
759 if (!sched_feat_names[i])
760 return -EINVAL;
761
762 *ppos += cnt;
763
764 return cnt;
765 }
766
767 static int sched_feat_open(struct inode *inode, struct file *filp)
768 {
769 return single_open(filp, sched_feat_show, NULL);
770 }
771
772 static const struct file_operations sched_feat_fops = {
773 .open = sched_feat_open,
774 .write = sched_feat_write,
775 .read = seq_read,
776 .llseek = seq_lseek,
777 .release = single_release,
778 };
779
780 static __init int sched_init_debug(void)
781 {
782 debugfs_create_file("sched_features", 0644, NULL, NULL,
783 &sched_feat_fops);
784
785 return 0;
786 }
787 late_initcall(sched_init_debug);
788
789 #endif
790
791 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
792
793 /*
794 * Number of tasks to iterate in a single balance run.
795 * Limited because this is done with IRQs disabled.
796 */
797 const_debug unsigned int sysctl_sched_nr_migrate = 32;
798
799 /*
800 * period over which we average the RT time consumption, measured
801 * in ms.
802 *
803 * default: 1s
804 */
805 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
806
807 /*
808 * period over which we measure -rt task cpu usage in us.
809 * default: 1s
810 */
811 unsigned int sysctl_sched_rt_period = 1000000;
812
813 static __read_mostly int scheduler_running;
814
815 /*
816 * part of the period that we allow rt tasks to run in us.
817 * default: 0.95s
818 */
819 int sysctl_sched_rt_runtime = 950000;
820
821 static inline u64 global_rt_period(void)
822 {
823 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
824 }
825
826 static inline u64 global_rt_runtime(void)
827 {
828 if (sysctl_sched_rt_runtime < 0)
829 return RUNTIME_INF;
830
831 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
832 }
833
834 #ifndef prepare_arch_switch
835 # define prepare_arch_switch(next) do { } while (0)
836 #endif
837 #ifndef finish_arch_switch
838 # define finish_arch_switch(prev) do { } while (0)
839 #endif
840
841 static inline int task_current(struct rq *rq, struct task_struct *p)
842 {
843 return rq->curr == p;
844 }
845
846 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
847 static inline int task_running(struct rq *rq, struct task_struct *p)
848 {
849 return task_current(rq, p);
850 }
851
852 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
853 {
854 }
855
856 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
857 {
858 #ifdef CONFIG_DEBUG_SPINLOCK
859 /* this is a valid case when another task releases the spinlock */
860 rq->lock.owner = current;
861 #endif
862 /*
863 * If we are tracking spinlock dependencies then we have to
864 * fix up the runqueue lock - which gets 'carried over' from
865 * prev into current:
866 */
867 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
868
869 raw_spin_unlock_irq(&rq->lock);
870 }
871
872 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
873 static inline int task_running(struct rq *rq, struct task_struct *p)
874 {
875 #ifdef CONFIG_SMP
876 return p->oncpu;
877 #else
878 return task_current(rq, p);
879 #endif
880 }
881
882 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
883 {
884 #ifdef CONFIG_SMP
885 /*
886 * We can optimise this out completely for !SMP, because the
887 * SMP rebalancing from interrupt is the only thing that cares
888 * here.
889 */
890 next->oncpu = 1;
891 #endif
892 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
893 raw_spin_unlock_irq(&rq->lock);
894 #else
895 raw_spin_unlock(&rq->lock);
896 #endif
897 }
898
899 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
900 {
901 #ifdef CONFIG_SMP
902 /*
903 * After ->oncpu is cleared, the task can be moved to a different CPU.
904 * We must ensure this doesn't happen until the switch is completely
905 * finished.
906 */
907 smp_wmb();
908 prev->oncpu = 0;
909 #endif
910 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
911 local_irq_enable();
912 #endif
913 }
914 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
915
916 /*
917 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
918 * against ttwu().
919 */
920 static inline int task_is_waking(struct task_struct *p)
921 {
922 return unlikely(p->state == TASK_WAKING);
923 }
924
925 /*
926 * __task_rq_lock - lock the runqueue a given task resides on.
927 * Must be called interrupts disabled.
928 */
929 static inline struct rq *__task_rq_lock(struct task_struct *p)
930 __acquires(rq->lock)
931 {
932 struct rq *rq;
933
934 for (;;) {
935 rq = task_rq(p);
936 raw_spin_lock(&rq->lock);
937 if (likely(rq == task_rq(p)))
938 return rq;
939 raw_spin_unlock(&rq->lock);
940 }
941 }
942
943 /*
944 * task_rq_lock - lock the runqueue a given task resides on and disable
945 * interrupts. Note the ordering: we can safely lookup the task_rq without
946 * explicitly disabling preemption.
947 */
948 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
949 __acquires(rq->lock)
950 {
951 struct rq *rq;
952
953 for (;;) {
954 local_irq_save(*flags);
955 rq = task_rq(p);
956 raw_spin_lock(&rq->lock);
957 if (likely(rq == task_rq(p)))
958 return rq;
959 raw_spin_unlock_irqrestore(&rq->lock, *flags);
960 }
961 }
962
963 static void __task_rq_unlock(struct rq *rq)
964 __releases(rq->lock)
965 {
966 raw_spin_unlock(&rq->lock);
967 }
968
969 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
970 __releases(rq->lock)
971 {
972 raw_spin_unlock_irqrestore(&rq->lock, *flags);
973 }
974
975 /*
976 * this_rq_lock - lock this runqueue and disable interrupts.
977 */
978 static struct rq *this_rq_lock(void)
979 __acquires(rq->lock)
980 {
981 struct rq *rq;
982
983 local_irq_disable();
984 rq = this_rq();
985 raw_spin_lock(&rq->lock);
986
987 return rq;
988 }
989
990 #ifdef CONFIG_SCHED_HRTICK
991 /*
992 * Use HR-timers to deliver accurate preemption points.
993 *
994 * Its all a bit involved since we cannot program an hrt while holding the
995 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
996 * reschedule event.
997 *
998 * When we get rescheduled we reprogram the hrtick_timer outside of the
999 * rq->lock.
1000 */
1001
1002 /*
1003 * Use hrtick when:
1004 * - enabled by features
1005 * - hrtimer is actually high res
1006 */
1007 static inline int hrtick_enabled(struct rq *rq)
1008 {
1009 if (!sched_feat(HRTICK))
1010 return 0;
1011 if (!cpu_active(cpu_of(rq)))
1012 return 0;
1013 return hrtimer_is_hres_active(&rq->hrtick_timer);
1014 }
1015
1016 static void hrtick_clear(struct rq *rq)
1017 {
1018 if (hrtimer_active(&rq->hrtick_timer))
1019 hrtimer_cancel(&rq->hrtick_timer);
1020 }
1021
1022 /*
1023 * High-resolution timer tick.
1024 * Runs from hardirq context with interrupts disabled.
1025 */
1026 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1027 {
1028 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1029
1030 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1031
1032 raw_spin_lock(&rq->lock);
1033 update_rq_clock(rq);
1034 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1035 raw_spin_unlock(&rq->lock);
1036
1037 return HRTIMER_NORESTART;
1038 }
1039
1040 #ifdef CONFIG_SMP
1041 /*
1042 * called from hardirq (IPI) context
1043 */
1044 static void __hrtick_start(void *arg)
1045 {
1046 struct rq *rq = arg;
1047
1048 raw_spin_lock(&rq->lock);
1049 hrtimer_restart(&rq->hrtick_timer);
1050 rq->hrtick_csd_pending = 0;
1051 raw_spin_unlock(&rq->lock);
1052 }
1053
1054 /*
1055 * Called to set the hrtick timer state.
1056 *
1057 * called with rq->lock held and irqs disabled
1058 */
1059 static void hrtick_start(struct rq *rq, u64 delay)
1060 {
1061 struct hrtimer *timer = &rq->hrtick_timer;
1062 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1063
1064 hrtimer_set_expires(timer, time);
1065
1066 if (rq == this_rq()) {
1067 hrtimer_restart(timer);
1068 } else if (!rq->hrtick_csd_pending) {
1069 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1070 rq->hrtick_csd_pending = 1;
1071 }
1072 }
1073
1074 static int
1075 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1076 {
1077 int cpu = (int)(long)hcpu;
1078
1079 switch (action) {
1080 case CPU_UP_CANCELED:
1081 case CPU_UP_CANCELED_FROZEN:
1082 case CPU_DOWN_PREPARE:
1083 case CPU_DOWN_PREPARE_FROZEN:
1084 case CPU_DEAD:
1085 case CPU_DEAD_FROZEN:
1086 hrtick_clear(cpu_rq(cpu));
1087 return NOTIFY_OK;
1088 }
1089
1090 return NOTIFY_DONE;
1091 }
1092
1093 static __init void init_hrtick(void)
1094 {
1095 hotcpu_notifier(hotplug_hrtick, 0);
1096 }
1097 #else
1098 /*
1099 * Called to set the hrtick timer state.
1100 *
1101 * called with rq->lock held and irqs disabled
1102 */
1103 static void hrtick_start(struct rq *rq, u64 delay)
1104 {
1105 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1106 HRTIMER_MODE_REL_PINNED, 0);
1107 }
1108
1109 static inline void init_hrtick(void)
1110 {
1111 }
1112 #endif /* CONFIG_SMP */
1113
1114 static void init_rq_hrtick(struct rq *rq)
1115 {
1116 #ifdef CONFIG_SMP
1117 rq->hrtick_csd_pending = 0;
1118
1119 rq->hrtick_csd.flags = 0;
1120 rq->hrtick_csd.func = __hrtick_start;
1121 rq->hrtick_csd.info = rq;
1122 #endif
1123
1124 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1125 rq->hrtick_timer.function = hrtick;
1126 }
1127 #else /* CONFIG_SCHED_HRTICK */
1128 static inline void hrtick_clear(struct rq *rq)
1129 {
1130 }
1131
1132 static inline void init_rq_hrtick(struct rq *rq)
1133 {
1134 }
1135
1136 static inline void init_hrtick(void)
1137 {
1138 }
1139 #endif /* CONFIG_SCHED_HRTICK */
1140
1141 /*
1142 * resched_task - mark a task 'to be rescheduled now'.
1143 *
1144 * On UP this means the setting of the need_resched flag, on SMP it
1145 * might also involve a cross-CPU call to trigger the scheduler on
1146 * the target CPU.
1147 */
1148 #ifdef CONFIG_SMP
1149
1150 #ifndef tsk_is_polling
1151 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1152 #endif
1153
1154 static void resched_task(struct task_struct *p)
1155 {
1156 int cpu;
1157
1158 assert_raw_spin_locked(&task_rq(p)->lock);
1159
1160 if (test_tsk_need_resched(p))
1161 return;
1162
1163 set_tsk_need_resched(p);
1164
1165 cpu = task_cpu(p);
1166 if (cpu == smp_processor_id())
1167 return;
1168
1169 /* NEED_RESCHED must be visible before we test polling */
1170 smp_mb();
1171 if (!tsk_is_polling(p))
1172 smp_send_reschedule(cpu);
1173 }
1174
1175 static void resched_cpu(int cpu)
1176 {
1177 struct rq *rq = cpu_rq(cpu);
1178 unsigned long flags;
1179
1180 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
1181 return;
1182 resched_task(cpu_curr(cpu));
1183 raw_spin_unlock_irqrestore(&rq->lock, flags);
1184 }
1185
1186 #ifdef CONFIG_NO_HZ
1187 /*
1188 * In the semi idle case, use the nearest busy cpu for migrating timers
1189 * from an idle cpu. This is good for power-savings.
1190 *
1191 * We don't do similar optimization for completely idle system, as
1192 * selecting an idle cpu will add more delays to the timers than intended
1193 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1194 */
1195 int get_nohz_timer_target(void)
1196 {
1197 int cpu = smp_processor_id();
1198 int i;
1199 struct sched_domain *sd;
1200
1201 for_each_domain(cpu, sd) {
1202 for_each_cpu(i, sched_domain_span(sd))
1203 if (!idle_cpu(i))
1204 return i;
1205 }
1206 return cpu;
1207 }
1208 /*
1209 * When add_timer_on() enqueues a timer into the timer wheel of an
1210 * idle CPU then this timer might expire before the next timer event
1211 * which is scheduled to wake up that CPU. In case of a completely
1212 * idle system the next event might even be infinite time into the
1213 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1214 * leaves the inner idle loop so the newly added timer is taken into
1215 * account when the CPU goes back to idle and evaluates the timer
1216 * wheel for the next timer event.
1217 */
1218 void wake_up_idle_cpu(int cpu)
1219 {
1220 struct rq *rq = cpu_rq(cpu);
1221
1222 if (cpu == smp_processor_id())
1223 return;
1224
1225 /*
1226 * This is safe, as this function is called with the timer
1227 * wheel base lock of (cpu) held. When the CPU is on the way
1228 * to idle and has not yet set rq->curr to idle then it will
1229 * be serialized on the timer wheel base lock and take the new
1230 * timer into account automatically.
1231 */
1232 if (rq->curr != rq->idle)
1233 return;
1234
1235 /*
1236 * We can set TIF_RESCHED on the idle task of the other CPU
1237 * lockless. The worst case is that the other CPU runs the
1238 * idle task through an additional NOOP schedule()
1239 */
1240 set_tsk_need_resched(rq->idle);
1241
1242 /* NEED_RESCHED must be visible before we test polling */
1243 smp_mb();
1244 if (!tsk_is_polling(rq->idle))
1245 smp_send_reschedule(cpu);
1246 }
1247
1248 #endif /* CONFIG_NO_HZ */
1249
1250 static u64 sched_avg_period(void)
1251 {
1252 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1253 }
1254
1255 static void sched_avg_update(struct rq *rq)
1256 {
1257 s64 period = sched_avg_period();
1258
1259 while ((s64)(rq->clock - rq->age_stamp) > period) {
1260 /*
1261 * Inline assembly required to prevent the compiler
1262 * optimising this loop into a divmod call.
1263 * See __iter_div_u64_rem() for another example of this.
1264 */
1265 asm("" : "+rm" (rq->age_stamp));
1266 rq->age_stamp += period;
1267 rq->rt_avg /= 2;
1268 }
1269 }
1270
1271 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1272 {
1273 rq->rt_avg += rt_delta;
1274 sched_avg_update(rq);
1275 }
1276
1277 #else /* !CONFIG_SMP */
1278 static void resched_task(struct task_struct *p)
1279 {
1280 assert_raw_spin_locked(&task_rq(p)->lock);
1281 set_tsk_need_resched(p);
1282 }
1283
1284 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1285 {
1286 }
1287
1288 static void sched_avg_update(struct rq *rq)
1289 {
1290 }
1291 #endif /* CONFIG_SMP */
1292
1293 #if BITS_PER_LONG == 32
1294 # define WMULT_CONST (~0UL)
1295 #else
1296 # define WMULT_CONST (1UL << 32)
1297 #endif
1298
1299 #define WMULT_SHIFT 32
1300
1301 /*
1302 * Shift right and round:
1303 */
1304 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1305
1306 /*
1307 * delta *= weight / lw
1308 */
1309 static unsigned long
1310 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1311 struct load_weight *lw)
1312 {
1313 u64 tmp;
1314
1315 if (!lw->inv_weight) {
1316 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1317 lw->inv_weight = 1;
1318 else
1319 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1320 / (lw->weight+1);
1321 }
1322
1323 tmp = (u64)delta_exec * weight;
1324 /*
1325 * Check whether we'd overflow the 64-bit multiplication:
1326 */
1327 if (unlikely(tmp > WMULT_CONST))
1328 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1329 WMULT_SHIFT/2);
1330 else
1331 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1332
1333 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1334 }
1335
1336 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1337 {
1338 lw->weight += inc;
1339 lw->inv_weight = 0;
1340 }
1341
1342 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1343 {
1344 lw->weight -= dec;
1345 lw->inv_weight = 0;
1346 }
1347
1348 static inline void update_load_set(struct load_weight *lw, unsigned long w)
1349 {
1350 lw->weight = w;
1351 lw->inv_weight = 0;
1352 }
1353
1354 /*
1355 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1356 * of tasks with abnormal "nice" values across CPUs the contribution that
1357 * each task makes to its run queue's load is weighted according to its
1358 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1359 * scaled version of the new time slice allocation that they receive on time
1360 * slice expiry etc.
1361 */
1362
1363 #define WEIGHT_IDLEPRIO 3
1364 #define WMULT_IDLEPRIO 1431655765
1365
1366 /*
1367 * Nice levels are multiplicative, with a gentle 10% change for every
1368 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1369 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1370 * that remained on nice 0.
1371 *
1372 * The "10% effect" is relative and cumulative: from _any_ nice level,
1373 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1374 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1375 * If a task goes up by ~10% and another task goes down by ~10% then
1376 * the relative distance between them is ~25%.)
1377 */
1378 static const int prio_to_weight[40] = {
1379 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1380 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1381 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1382 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1383 /* 0 */ 1024, 820, 655, 526, 423,
1384 /* 5 */ 335, 272, 215, 172, 137,
1385 /* 10 */ 110, 87, 70, 56, 45,
1386 /* 15 */ 36, 29, 23, 18, 15,
1387 };
1388
1389 /*
1390 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1391 *
1392 * In cases where the weight does not change often, we can use the
1393 * precalculated inverse to speed up arithmetics by turning divisions
1394 * into multiplications:
1395 */
1396 static const u32 prio_to_wmult[40] = {
1397 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1398 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1399 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1400 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1401 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1402 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1403 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1404 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1405 };
1406
1407 /* Time spent by the tasks of the cpu accounting group executing in ... */
1408 enum cpuacct_stat_index {
1409 CPUACCT_STAT_USER, /* ... user mode */
1410 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1411
1412 CPUACCT_STAT_NSTATS,
1413 };
1414
1415 #ifdef CONFIG_CGROUP_CPUACCT
1416 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1417 static void cpuacct_update_stats(struct task_struct *tsk,
1418 enum cpuacct_stat_index idx, cputime_t val);
1419 #else
1420 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1421 static inline void cpuacct_update_stats(struct task_struct *tsk,
1422 enum cpuacct_stat_index idx, cputime_t val) {}
1423 #endif
1424
1425 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1426 {
1427 update_load_add(&rq->load, load);
1428 }
1429
1430 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1431 {
1432 update_load_sub(&rq->load, load);
1433 }
1434
1435 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1436 typedef int (*tg_visitor)(struct task_group *, void *);
1437
1438 /*
1439 * Iterate the full tree, calling @down when first entering a node and @up when
1440 * leaving it for the final time.
1441 */
1442 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1443 {
1444 struct task_group *parent, *child;
1445 int ret;
1446
1447 rcu_read_lock();
1448 parent = &root_task_group;
1449 down:
1450 ret = (*down)(parent, data);
1451 if (ret)
1452 goto out_unlock;
1453 list_for_each_entry_rcu(child, &parent->children, siblings) {
1454 parent = child;
1455 goto down;
1456
1457 up:
1458 continue;
1459 }
1460 ret = (*up)(parent, data);
1461 if (ret)
1462 goto out_unlock;
1463
1464 child = parent;
1465 parent = parent->parent;
1466 if (parent)
1467 goto up;
1468 out_unlock:
1469 rcu_read_unlock();
1470
1471 return ret;
1472 }
1473
1474 static int tg_nop(struct task_group *tg, void *data)
1475 {
1476 return 0;
1477 }
1478 #endif
1479
1480 #ifdef CONFIG_SMP
1481 /* Used instead of source_load when we know the type == 0 */
1482 static unsigned long weighted_cpuload(const int cpu)
1483 {
1484 return cpu_rq(cpu)->load.weight;
1485 }
1486
1487 /*
1488 * Return a low guess at the load of a migration-source cpu weighted
1489 * according to the scheduling class and "nice" value.
1490 *
1491 * We want to under-estimate the load of migration sources, to
1492 * balance conservatively.
1493 */
1494 static unsigned long source_load(int cpu, int type)
1495 {
1496 struct rq *rq = cpu_rq(cpu);
1497 unsigned long total = weighted_cpuload(cpu);
1498
1499 if (type == 0 || !sched_feat(LB_BIAS))
1500 return total;
1501
1502 return min(rq->cpu_load[type-1], total);
1503 }
1504
1505 /*
1506 * Return a high guess at the load of a migration-target cpu weighted
1507 * according to the scheduling class and "nice" value.
1508 */
1509 static unsigned long target_load(int cpu, int type)
1510 {
1511 struct rq *rq = cpu_rq(cpu);
1512 unsigned long total = weighted_cpuload(cpu);
1513
1514 if (type == 0 || !sched_feat(LB_BIAS))
1515 return total;
1516
1517 return max(rq->cpu_load[type-1], total);
1518 }
1519
1520 static unsigned long power_of(int cpu)
1521 {
1522 return cpu_rq(cpu)->cpu_power;
1523 }
1524
1525 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1526
1527 static unsigned long cpu_avg_load_per_task(int cpu)
1528 {
1529 struct rq *rq = cpu_rq(cpu);
1530 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1531
1532 if (nr_running)
1533 rq->avg_load_per_task = rq->load.weight / nr_running;
1534 else
1535 rq->avg_load_per_task = 0;
1536
1537 return rq->avg_load_per_task;
1538 }
1539
1540 #ifdef CONFIG_FAIR_GROUP_SCHED
1541
1542 /*
1543 * Compute the cpu's hierarchical load factor for each task group.
1544 * This needs to be done in a top-down fashion because the load of a child
1545 * group is a fraction of its parents load.
1546 */
1547 static int tg_load_down(struct task_group *tg, void *data)
1548 {
1549 unsigned long load;
1550 long cpu = (long)data;
1551
1552 if (!tg->parent) {
1553 load = cpu_rq(cpu)->load.weight;
1554 } else {
1555 load = tg->parent->cfs_rq[cpu]->h_load;
1556 load *= tg->se[cpu]->load.weight;
1557 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1558 }
1559
1560 tg->cfs_rq[cpu]->h_load = load;
1561
1562 return 0;
1563 }
1564
1565 static void update_h_load(long cpu)
1566 {
1567 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1568 }
1569
1570 #endif
1571
1572 #ifdef CONFIG_PREEMPT
1573
1574 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1575
1576 /*
1577 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1578 * way at the expense of forcing extra atomic operations in all
1579 * invocations. This assures that the double_lock is acquired using the
1580 * same underlying policy as the spinlock_t on this architecture, which
1581 * reduces latency compared to the unfair variant below. However, it
1582 * also adds more overhead and therefore may reduce throughput.
1583 */
1584 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1585 __releases(this_rq->lock)
1586 __acquires(busiest->lock)
1587 __acquires(this_rq->lock)
1588 {
1589 raw_spin_unlock(&this_rq->lock);
1590 double_rq_lock(this_rq, busiest);
1591
1592 return 1;
1593 }
1594
1595 #else
1596 /*
1597 * Unfair double_lock_balance: Optimizes throughput at the expense of
1598 * latency by eliminating extra atomic operations when the locks are
1599 * already in proper order on entry. This favors lower cpu-ids and will
1600 * grant the double lock to lower cpus over higher ids under contention,
1601 * regardless of entry order into the function.
1602 */
1603 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1604 __releases(this_rq->lock)
1605 __acquires(busiest->lock)
1606 __acquires(this_rq->lock)
1607 {
1608 int ret = 0;
1609
1610 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1611 if (busiest < this_rq) {
1612 raw_spin_unlock(&this_rq->lock);
1613 raw_spin_lock(&busiest->lock);
1614 raw_spin_lock_nested(&this_rq->lock,
1615 SINGLE_DEPTH_NESTING);
1616 ret = 1;
1617 } else
1618 raw_spin_lock_nested(&busiest->lock,
1619 SINGLE_DEPTH_NESTING);
1620 }
1621 return ret;
1622 }
1623
1624 #endif /* CONFIG_PREEMPT */
1625
1626 /*
1627 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1628 */
1629 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1630 {
1631 if (unlikely(!irqs_disabled())) {
1632 /* printk() doesn't work good under rq->lock */
1633 raw_spin_unlock(&this_rq->lock);
1634 BUG_ON(1);
1635 }
1636
1637 return _double_lock_balance(this_rq, busiest);
1638 }
1639
1640 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1641 __releases(busiest->lock)
1642 {
1643 raw_spin_unlock(&busiest->lock);
1644 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1645 }
1646
1647 /*
1648 * double_rq_lock - safely lock two runqueues
1649 *
1650 * Note this does not disable interrupts like task_rq_lock,
1651 * you need to do so manually before calling.
1652 */
1653 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1654 __acquires(rq1->lock)
1655 __acquires(rq2->lock)
1656 {
1657 BUG_ON(!irqs_disabled());
1658 if (rq1 == rq2) {
1659 raw_spin_lock(&rq1->lock);
1660 __acquire(rq2->lock); /* Fake it out ;) */
1661 } else {
1662 if (rq1 < rq2) {
1663 raw_spin_lock(&rq1->lock);
1664 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1665 } else {
1666 raw_spin_lock(&rq2->lock);
1667 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1668 }
1669 }
1670 }
1671
1672 /*
1673 * double_rq_unlock - safely unlock two runqueues
1674 *
1675 * Note this does not restore interrupts like task_rq_unlock,
1676 * you need to do so manually after calling.
1677 */
1678 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1679 __releases(rq1->lock)
1680 __releases(rq2->lock)
1681 {
1682 raw_spin_unlock(&rq1->lock);
1683 if (rq1 != rq2)
1684 raw_spin_unlock(&rq2->lock);
1685 else
1686 __release(rq2->lock);
1687 }
1688
1689 #endif
1690
1691 static void calc_load_account_idle(struct rq *this_rq);
1692 static void update_sysctl(void);
1693 static int get_update_sysctl_factor(void);
1694 static void update_cpu_load(struct rq *this_rq);
1695
1696 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1697 {
1698 set_task_rq(p, cpu);
1699 #ifdef CONFIG_SMP
1700 /*
1701 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1702 * successfuly executed on another CPU. We must ensure that updates of
1703 * per-task data have been completed by this moment.
1704 */
1705 smp_wmb();
1706 task_thread_info(p)->cpu = cpu;
1707 #endif
1708 }
1709
1710 static const struct sched_class rt_sched_class;
1711
1712 #define sched_class_highest (&stop_sched_class)
1713 #define for_each_class(class) \
1714 for (class = sched_class_highest; class; class = class->next)
1715
1716 #include "sched_stats.h"
1717
1718 static void inc_nr_running(struct rq *rq)
1719 {
1720 rq->nr_running++;
1721 }
1722
1723 static void dec_nr_running(struct rq *rq)
1724 {
1725 rq->nr_running--;
1726 }
1727
1728 static void set_load_weight(struct task_struct *p)
1729 {
1730 /*
1731 * SCHED_IDLE tasks get minimal weight:
1732 */
1733 if (p->policy == SCHED_IDLE) {
1734 p->se.load.weight = WEIGHT_IDLEPRIO;
1735 p->se.load.inv_weight = WMULT_IDLEPRIO;
1736 return;
1737 }
1738
1739 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1740 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1741 }
1742
1743 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1744 {
1745 update_rq_clock(rq);
1746 sched_info_queued(p);
1747 p->sched_class->enqueue_task(rq, p, flags);
1748 p->se.on_rq = 1;
1749 }
1750
1751 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1752 {
1753 update_rq_clock(rq);
1754 sched_info_dequeued(p);
1755 p->sched_class->dequeue_task(rq, p, flags);
1756 p->se.on_rq = 0;
1757 }
1758
1759 /*
1760 * activate_task - move a task to the runqueue.
1761 */
1762 static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1763 {
1764 if (task_contributes_to_load(p))
1765 rq->nr_uninterruptible--;
1766
1767 enqueue_task(rq, p, flags);
1768 inc_nr_running(rq);
1769 }
1770
1771 /*
1772 * deactivate_task - remove a task from the runqueue.
1773 */
1774 static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1775 {
1776 if (task_contributes_to_load(p))
1777 rq->nr_uninterruptible++;
1778
1779 dequeue_task(rq, p, flags);
1780 dec_nr_running(rq);
1781 }
1782
1783 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1784
1785 /*
1786 * There are no locks covering percpu hardirq/softirq time.
1787 * They are only modified in account_system_vtime, on corresponding CPU
1788 * with interrupts disabled. So, writes are safe.
1789 * They are read and saved off onto struct rq in update_rq_clock().
1790 * This may result in other CPU reading this CPU's irq time and can
1791 * race with irq/account_system_vtime on this CPU. We would either get old
1792 * or new value with a side effect of accounting a slice of irq time to wrong
1793 * task when irq is in progress while we read rq->clock. That is a worthy
1794 * compromise in place of having locks on each irq in account_system_time.
1795 */
1796 static DEFINE_PER_CPU(u64, cpu_hardirq_time);
1797 static DEFINE_PER_CPU(u64, cpu_softirq_time);
1798
1799 static DEFINE_PER_CPU(u64, irq_start_time);
1800 static int sched_clock_irqtime;
1801
1802 void enable_sched_clock_irqtime(void)
1803 {
1804 sched_clock_irqtime = 1;
1805 }
1806
1807 void disable_sched_clock_irqtime(void)
1808 {
1809 sched_clock_irqtime = 0;
1810 }
1811
1812 #ifndef CONFIG_64BIT
1813 static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
1814
1815 static inline void irq_time_write_begin(void)
1816 {
1817 __this_cpu_inc(irq_time_seq.sequence);
1818 smp_wmb();
1819 }
1820
1821 static inline void irq_time_write_end(void)
1822 {
1823 smp_wmb();
1824 __this_cpu_inc(irq_time_seq.sequence);
1825 }
1826
1827 static inline u64 irq_time_read(int cpu)
1828 {
1829 u64 irq_time;
1830 unsigned seq;
1831
1832 do {
1833 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1834 irq_time = per_cpu(cpu_softirq_time, cpu) +
1835 per_cpu(cpu_hardirq_time, cpu);
1836 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1837
1838 return irq_time;
1839 }
1840 #else /* CONFIG_64BIT */
1841 static inline void irq_time_write_begin(void)
1842 {
1843 }
1844
1845 static inline void irq_time_write_end(void)
1846 {
1847 }
1848
1849 static inline u64 irq_time_read(int cpu)
1850 {
1851 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1852 }
1853 #endif /* CONFIG_64BIT */
1854
1855 /*
1856 * Called before incrementing preempt_count on {soft,}irq_enter
1857 * and before decrementing preempt_count on {soft,}irq_exit.
1858 */
1859 void account_system_vtime(struct task_struct *curr)
1860 {
1861 unsigned long flags;
1862 s64 delta;
1863 int cpu;
1864
1865 if (!sched_clock_irqtime)
1866 return;
1867
1868 local_irq_save(flags);
1869
1870 cpu = smp_processor_id();
1871 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
1872 __this_cpu_add(irq_start_time, delta);
1873
1874 irq_time_write_begin();
1875 /*
1876 * We do not account for softirq time from ksoftirqd here.
1877 * We want to continue accounting softirq time to ksoftirqd thread
1878 * in that case, so as not to confuse scheduler with a special task
1879 * that do not consume any time, but still wants to run.
1880 */
1881 if (hardirq_count())
1882 __this_cpu_add(cpu_hardirq_time, delta);
1883 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
1884 __this_cpu_add(cpu_softirq_time, delta);
1885
1886 irq_time_write_end();
1887 local_irq_restore(flags);
1888 }
1889 EXPORT_SYMBOL_GPL(account_system_vtime);
1890
1891 static void update_rq_clock_task(struct rq *rq, s64 delta)
1892 {
1893 s64 irq_delta;
1894
1895 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
1896
1897 /*
1898 * Since irq_time is only updated on {soft,}irq_exit, we might run into
1899 * this case when a previous update_rq_clock() happened inside a
1900 * {soft,}irq region.
1901 *
1902 * When this happens, we stop ->clock_task and only update the
1903 * prev_irq_time stamp to account for the part that fit, so that a next
1904 * update will consume the rest. This ensures ->clock_task is
1905 * monotonic.
1906 *
1907 * It does however cause some slight miss-attribution of {soft,}irq
1908 * time, a more accurate solution would be to update the irq_time using
1909 * the current rq->clock timestamp, except that would require using
1910 * atomic ops.
1911 */
1912 if (irq_delta > delta)
1913 irq_delta = delta;
1914
1915 rq->prev_irq_time += irq_delta;
1916 delta -= irq_delta;
1917 rq->clock_task += delta;
1918
1919 if (irq_delta && sched_feat(NONIRQ_POWER))
1920 sched_rt_avg_update(rq, irq_delta);
1921 }
1922
1923 static int irqtime_account_hi_update(void)
1924 {
1925 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1926 unsigned long flags;
1927 u64 latest_ns;
1928 int ret = 0;
1929
1930 local_irq_save(flags);
1931 latest_ns = this_cpu_read(cpu_hardirq_time);
1932 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
1933 ret = 1;
1934 local_irq_restore(flags);
1935 return ret;
1936 }
1937
1938 static int irqtime_account_si_update(void)
1939 {
1940 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1941 unsigned long flags;
1942 u64 latest_ns;
1943 int ret = 0;
1944
1945 local_irq_save(flags);
1946 latest_ns = this_cpu_read(cpu_softirq_time);
1947 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
1948 ret = 1;
1949 local_irq_restore(flags);
1950 return ret;
1951 }
1952
1953 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
1954
1955 #define sched_clock_irqtime (0)
1956
1957 static void update_rq_clock_task(struct rq *rq, s64 delta)
1958 {
1959 rq->clock_task += delta;
1960 }
1961
1962 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
1963
1964 #include "sched_idletask.c"
1965 #include "sched_fair.c"
1966 #include "sched_rt.c"
1967 #include "sched_autogroup.c"
1968 #include "sched_stoptask.c"
1969 #ifdef CONFIG_SCHED_DEBUG
1970 # include "sched_debug.c"
1971 #endif
1972
1973 void sched_set_stop_task(int cpu, struct task_struct *stop)
1974 {
1975 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1976 struct task_struct *old_stop = cpu_rq(cpu)->stop;
1977
1978 if (stop) {
1979 /*
1980 * Make it appear like a SCHED_FIFO task, its something
1981 * userspace knows about and won't get confused about.
1982 *
1983 * Also, it will make PI more or less work without too
1984 * much confusion -- but then, stop work should not
1985 * rely on PI working anyway.
1986 */
1987 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
1988
1989 stop->sched_class = &stop_sched_class;
1990 }
1991
1992 cpu_rq(cpu)->stop = stop;
1993
1994 if (old_stop) {
1995 /*
1996 * Reset it back to a normal scheduling class so that
1997 * it can die in pieces.
1998 */
1999 old_stop->sched_class = &rt_sched_class;
2000 }
2001 }
2002
2003 /*
2004 * __normal_prio - return the priority that is based on the static prio
2005 */
2006 static inline int __normal_prio(struct task_struct *p)
2007 {
2008 return p->static_prio;
2009 }
2010
2011 /*
2012 * Calculate the expected normal priority: i.e. priority
2013 * without taking RT-inheritance into account. Might be
2014 * boosted by interactivity modifiers. Changes upon fork,
2015 * setprio syscalls, and whenever the interactivity
2016 * estimator recalculates.
2017 */
2018 static inline int normal_prio(struct task_struct *p)
2019 {
2020 int prio;
2021
2022 if (task_has_rt_policy(p))
2023 prio = MAX_RT_PRIO-1 - p->rt_priority;
2024 else
2025 prio = __normal_prio(p);
2026 return prio;
2027 }
2028
2029 /*
2030 * Calculate the current priority, i.e. the priority
2031 * taken into account by the scheduler. This value might
2032 * be boosted by RT tasks, or might be boosted by
2033 * interactivity modifiers. Will be RT if the task got
2034 * RT-boosted. If not then it returns p->normal_prio.
2035 */
2036 static int effective_prio(struct task_struct *p)
2037 {
2038 p->normal_prio = normal_prio(p);
2039 /*
2040 * If we are RT tasks or we were boosted to RT priority,
2041 * keep the priority unchanged. Otherwise, update priority
2042 * to the normal priority:
2043 */
2044 if (!rt_prio(p->prio))
2045 return p->normal_prio;
2046 return p->prio;
2047 }
2048
2049 /**
2050 * task_curr - is this task currently executing on a CPU?
2051 * @p: the task in question.
2052 */
2053 inline int task_curr(const struct task_struct *p)
2054 {
2055 return cpu_curr(task_cpu(p)) == p;
2056 }
2057
2058 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2059 const struct sched_class *prev_class,
2060 int oldprio)
2061 {
2062 if (prev_class != p->sched_class) {
2063 if (prev_class->switched_from)
2064 prev_class->switched_from(rq, p);
2065 p->sched_class->switched_to(rq, p);
2066 } else if (oldprio != p->prio)
2067 p->sched_class->prio_changed(rq, p, oldprio);
2068 }
2069
2070 static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2071 {
2072 const struct sched_class *class;
2073
2074 if (p->sched_class == rq->curr->sched_class) {
2075 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2076 } else {
2077 for_each_class(class) {
2078 if (class == rq->curr->sched_class)
2079 break;
2080 if (class == p->sched_class) {
2081 resched_task(rq->curr);
2082 break;
2083 }
2084 }
2085 }
2086
2087 /*
2088 * A queue event has occurred, and we're going to schedule. In
2089 * this case, we can save a useless back to back clock update.
2090 */
2091 if (rq->curr->se.on_rq && test_tsk_need_resched(rq->curr))
2092 rq->skip_clock_update = 1;
2093 }
2094
2095 #ifdef CONFIG_SMP
2096 /*
2097 * Is this task likely cache-hot:
2098 */
2099 static int
2100 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2101 {
2102 s64 delta;
2103
2104 if (p->sched_class != &fair_sched_class)
2105 return 0;
2106
2107 if (unlikely(p->policy == SCHED_IDLE))
2108 return 0;
2109
2110 /*
2111 * Buddy candidates are cache hot:
2112 */
2113 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
2114 (&p->se == cfs_rq_of(&p->se)->next ||
2115 &p->se == cfs_rq_of(&p->se)->last))
2116 return 1;
2117
2118 if (sysctl_sched_migration_cost == -1)
2119 return 1;
2120 if (sysctl_sched_migration_cost == 0)
2121 return 0;
2122
2123 delta = now - p->se.exec_start;
2124
2125 return delta < (s64)sysctl_sched_migration_cost;
2126 }
2127
2128 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2129 {
2130 #ifdef CONFIG_SCHED_DEBUG
2131 /*
2132 * We should never call set_task_cpu() on a blocked task,
2133 * ttwu() will sort out the placement.
2134 */
2135 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2136 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2137 #endif
2138
2139 trace_sched_migrate_task(p, new_cpu);
2140
2141 if (task_cpu(p) != new_cpu) {
2142 p->se.nr_migrations++;
2143 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2144 }
2145
2146 __set_task_cpu(p, new_cpu);
2147 }
2148
2149 struct migration_arg {
2150 struct task_struct *task;
2151 int dest_cpu;
2152 };
2153
2154 static int migration_cpu_stop(void *data);
2155
2156 /*
2157 * The task's runqueue lock must be held.
2158 * Returns true if you have to wait for migration thread.
2159 */
2160 static bool migrate_task(struct task_struct *p, struct rq *rq)
2161 {
2162 /*
2163 * If the task is not on a runqueue (and not running), then
2164 * the next wake-up will properly place the task.
2165 */
2166 return p->se.on_rq || task_running(rq, p);
2167 }
2168
2169 /*
2170 * wait_task_inactive - wait for a thread to unschedule.
2171 *
2172 * If @match_state is nonzero, it's the @p->state value just checked and
2173 * not expected to change. If it changes, i.e. @p might have woken up,
2174 * then return zero. When we succeed in waiting for @p to be off its CPU,
2175 * we return a positive number (its total switch count). If a second call
2176 * a short while later returns the same number, the caller can be sure that
2177 * @p has remained unscheduled the whole time.
2178 *
2179 * The caller must ensure that the task *will* unschedule sometime soon,
2180 * else this function might spin for a *long* time. This function can't
2181 * be called with interrupts off, or it may introduce deadlock with
2182 * smp_call_function() if an IPI is sent by the same process we are
2183 * waiting to become inactive.
2184 */
2185 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2186 {
2187 unsigned long flags;
2188 int running, on_rq;
2189 unsigned long ncsw;
2190 struct rq *rq;
2191
2192 for (;;) {
2193 /*
2194 * We do the initial early heuristics without holding
2195 * any task-queue locks at all. We'll only try to get
2196 * the runqueue lock when things look like they will
2197 * work out!
2198 */
2199 rq = task_rq(p);
2200
2201 /*
2202 * If the task is actively running on another CPU
2203 * still, just relax and busy-wait without holding
2204 * any locks.
2205 *
2206 * NOTE! Since we don't hold any locks, it's not
2207 * even sure that "rq" stays as the right runqueue!
2208 * But we don't care, since "task_running()" will
2209 * return false if the runqueue has changed and p
2210 * is actually now running somewhere else!
2211 */
2212 while (task_running(rq, p)) {
2213 if (match_state && unlikely(p->state != match_state))
2214 return 0;
2215 cpu_relax();
2216 }
2217
2218 /*
2219 * Ok, time to look more closely! We need the rq
2220 * lock now, to be *sure*. If we're wrong, we'll
2221 * just go back and repeat.
2222 */
2223 rq = task_rq_lock(p, &flags);
2224 trace_sched_wait_task(p);
2225 running = task_running(rq, p);
2226 on_rq = p->se.on_rq;
2227 ncsw = 0;
2228 if (!match_state || p->state == match_state)
2229 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2230 task_rq_unlock(rq, &flags);
2231
2232 /*
2233 * If it changed from the expected state, bail out now.
2234 */
2235 if (unlikely(!ncsw))
2236 break;
2237
2238 /*
2239 * Was it really running after all now that we
2240 * checked with the proper locks actually held?
2241 *
2242 * Oops. Go back and try again..
2243 */
2244 if (unlikely(running)) {
2245 cpu_relax();
2246 continue;
2247 }
2248
2249 /*
2250 * It's not enough that it's not actively running,
2251 * it must be off the runqueue _entirely_, and not
2252 * preempted!
2253 *
2254 * So if it was still runnable (but just not actively
2255 * running right now), it's preempted, and we should
2256 * yield - it could be a while.
2257 */
2258 if (unlikely(on_rq)) {
2259 schedule_timeout_uninterruptible(1);
2260 continue;
2261 }
2262
2263 /*
2264 * Ahh, all good. It wasn't running, and it wasn't
2265 * runnable, which means that it will never become
2266 * running in the future either. We're all done!
2267 */
2268 break;
2269 }
2270
2271 return ncsw;
2272 }
2273
2274 /***
2275 * kick_process - kick a running thread to enter/exit the kernel
2276 * @p: the to-be-kicked thread
2277 *
2278 * Cause a process which is running on another CPU to enter
2279 * kernel-mode, without any delay. (to get signals handled.)
2280 *
2281 * NOTE: this function doesnt have to take the runqueue lock,
2282 * because all it wants to ensure is that the remote task enters
2283 * the kernel. If the IPI races and the task has been migrated
2284 * to another CPU then no harm is done and the purpose has been
2285 * achieved as well.
2286 */
2287 void kick_process(struct task_struct *p)
2288 {
2289 int cpu;
2290
2291 preempt_disable();
2292 cpu = task_cpu(p);
2293 if ((cpu != smp_processor_id()) && task_curr(p))
2294 smp_send_reschedule(cpu);
2295 preempt_enable();
2296 }
2297 EXPORT_SYMBOL_GPL(kick_process);
2298 #endif /* CONFIG_SMP */
2299
2300 /**
2301 * task_oncpu_function_call - call a function on the cpu on which a task runs
2302 * @p: the task to evaluate
2303 * @func: the function to be called
2304 * @info: the function call argument
2305 *
2306 * Calls the function @func when the task is currently running. This might
2307 * be on the current CPU, which just calls the function directly
2308 */
2309 void task_oncpu_function_call(struct task_struct *p,
2310 void (*func) (void *info), void *info)
2311 {
2312 int cpu;
2313
2314 preempt_disable();
2315 cpu = task_cpu(p);
2316 if (task_curr(p))
2317 smp_call_function_single(cpu, func, info, 1);
2318 preempt_enable();
2319 }
2320
2321 #ifdef CONFIG_SMP
2322 /*
2323 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2324 */
2325 static int select_fallback_rq(int cpu, struct task_struct *p)
2326 {
2327 int dest_cpu;
2328 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2329
2330 /* Look for allowed, online CPU in same node. */
2331 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2332 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2333 return dest_cpu;
2334
2335 /* Any allowed, online CPU? */
2336 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2337 if (dest_cpu < nr_cpu_ids)
2338 return dest_cpu;
2339
2340 /* No more Mr. Nice Guy. */
2341 dest_cpu = cpuset_cpus_allowed_fallback(p);
2342 /*
2343 * Don't tell them about moving exiting tasks or
2344 * kernel threads (both mm NULL), since they never
2345 * leave kernel.
2346 */
2347 if (p->mm && printk_ratelimit()) {
2348 printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
2349 task_pid_nr(p), p->comm, cpu);
2350 }
2351
2352 return dest_cpu;
2353 }
2354
2355 /*
2356 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
2357 */
2358 static inline
2359 int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
2360 {
2361 int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
2362
2363 /*
2364 * In order not to call set_task_cpu() on a blocking task we need
2365 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2366 * cpu.
2367 *
2368 * Since this is common to all placement strategies, this lives here.
2369 *
2370 * [ this allows ->select_task() to simply return task_cpu(p) and
2371 * not worry about this generic constraint ]
2372 */
2373 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
2374 !cpu_online(cpu)))
2375 cpu = select_fallback_rq(task_cpu(p), p);
2376
2377 return cpu;
2378 }
2379
2380 static void update_avg(u64 *avg, u64 sample)
2381 {
2382 s64 diff = sample - *avg;
2383 *avg += diff >> 3;
2384 }
2385 #endif
2386
2387 static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
2388 bool is_sync, bool is_migrate, bool is_local,
2389 unsigned long en_flags)
2390 {
2391 schedstat_inc(p, se.statistics.nr_wakeups);
2392 if (is_sync)
2393 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2394 if (is_migrate)
2395 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2396 if (is_local)
2397 schedstat_inc(p, se.statistics.nr_wakeups_local);
2398 else
2399 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2400
2401 activate_task(rq, p, en_flags);
2402 }
2403
2404 static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
2405 int wake_flags, bool success)
2406 {
2407 trace_sched_wakeup(p, success);
2408 check_preempt_curr(rq, p, wake_flags);
2409
2410 p->state = TASK_RUNNING;
2411 #ifdef CONFIG_SMP
2412 if (p->sched_class->task_woken)
2413 p->sched_class->task_woken(rq, p);
2414
2415 if (unlikely(rq->idle_stamp)) {
2416 u64 delta = rq->clock - rq->idle_stamp;
2417 u64 max = 2*sysctl_sched_migration_cost;
2418
2419 if (delta > max)
2420 rq->avg_idle = max;
2421 else
2422 update_avg(&rq->avg_idle, delta);
2423 rq->idle_stamp = 0;
2424 }
2425 #endif
2426 /* if a worker is waking up, notify workqueue */
2427 if ((p->flags & PF_WQ_WORKER) && success)
2428 wq_worker_waking_up(p, cpu_of(rq));
2429 }
2430
2431 /**
2432 * try_to_wake_up - wake up a thread
2433 * @p: the thread to be awakened
2434 * @state: the mask of task states that can be woken
2435 * @wake_flags: wake modifier flags (WF_*)
2436 *
2437 * Put it on the run-queue if it's not already there. The "current"
2438 * thread is always on the run-queue (except when the actual
2439 * re-schedule is in progress), and as such you're allowed to do
2440 * the simpler "current->state = TASK_RUNNING" to mark yourself
2441 * runnable without the overhead of this.
2442 *
2443 * Returns %true if @p was woken up, %false if it was already running
2444 * or @state didn't match @p's state.
2445 */
2446 static int try_to_wake_up(struct task_struct *p, unsigned int state,
2447 int wake_flags)
2448 {
2449 int cpu, orig_cpu, this_cpu, success = 0;
2450 unsigned long flags;
2451 unsigned long en_flags = ENQUEUE_WAKEUP;
2452 struct rq *rq;
2453
2454 this_cpu = get_cpu();
2455
2456 smp_wmb();
2457 rq = task_rq_lock(p, &flags);
2458 if (!(p->state & state))
2459 goto out;
2460
2461 if (p->se.on_rq)
2462 goto out_running;
2463
2464 cpu = task_cpu(p);
2465 orig_cpu = cpu;
2466
2467 #ifdef CONFIG_SMP
2468 if (unlikely(task_running(rq, p)))
2469 goto out_activate;
2470
2471 /*
2472 * In order to handle concurrent wakeups and release the rq->lock
2473 * we put the task in TASK_WAKING state.
2474 *
2475 * First fix up the nr_uninterruptible count:
2476 */
2477 if (task_contributes_to_load(p)) {
2478 if (likely(cpu_online(orig_cpu)))
2479 rq->nr_uninterruptible--;
2480 else
2481 this_rq()->nr_uninterruptible--;
2482 }
2483 p->state = TASK_WAKING;
2484
2485 if (p->sched_class->task_waking) {
2486 p->sched_class->task_waking(rq, p);
2487 en_flags |= ENQUEUE_WAKING;
2488 }
2489
2490 cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
2491 if (cpu != orig_cpu)
2492 set_task_cpu(p, cpu);
2493 __task_rq_unlock(rq);
2494
2495 rq = cpu_rq(cpu);
2496 raw_spin_lock(&rq->lock);
2497
2498 /*
2499 * We migrated the task without holding either rq->lock, however
2500 * since the task is not on the task list itself, nobody else
2501 * will try and migrate the task, hence the rq should match the
2502 * cpu we just moved it to.
2503 */
2504 WARN_ON(task_cpu(p) != cpu);
2505 WARN_ON(p->state != TASK_WAKING);
2506
2507 #ifdef CONFIG_SCHEDSTATS
2508 schedstat_inc(rq, ttwu_count);
2509 if (cpu == this_cpu)
2510 schedstat_inc(rq, ttwu_local);
2511 else {
2512 struct sched_domain *sd;
2513 for_each_domain(this_cpu, sd) {
2514 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2515 schedstat_inc(sd, ttwu_wake_remote);
2516 break;
2517 }
2518 }
2519 }
2520 #endif /* CONFIG_SCHEDSTATS */
2521
2522 out_activate:
2523 #endif /* CONFIG_SMP */
2524 ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu,
2525 cpu == this_cpu, en_flags);
2526 success = 1;
2527 out_running:
2528 ttwu_post_activation(p, rq, wake_flags, success);
2529 out:
2530 task_rq_unlock(rq, &flags);
2531 put_cpu();
2532
2533 return success;
2534 }
2535
2536 /**
2537 * try_to_wake_up_local - try to wake up a local task with rq lock held
2538 * @p: the thread to be awakened
2539 *
2540 * Put @p on the run-queue if it's not already there. The caller must
2541 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2542 * the current task. this_rq() stays locked over invocation.
2543 */
2544 static void try_to_wake_up_local(struct task_struct *p)
2545 {
2546 struct rq *rq = task_rq(p);
2547 bool success = false;
2548
2549 BUG_ON(rq != this_rq());
2550 BUG_ON(p == current);
2551 lockdep_assert_held(&rq->lock);
2552
2553 if (!(p->state & TASK_NORMAL))
2554 return;
2555
2556 if (!p->se.on_rq) {
2557 if (likely(!task_running(rq, p))) {
2558 schedstat_inc(rq, ttwu_count);
2559 schedstat_inc(rq, ttwu_local);
2560 }
2561 ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP);
2562 success = true;
2563 }
2564 ttwu_post_activation(p, rq, 0, success);
2565 }
2566
2567 /**
2568 * wake_up_process - Wake up a specific process
2569 * @p: The process to be woken up.
2570 *
2571 * Attempt to wake up the nominated process and move it to the set of runnable
2572 * processes. Returns 1 if the process was woken up, 0 if it was already
2573 * running.
2574 *
2575 * It may be assumed that this function implies a write memory barrier before
2576 * changing the task state if and only if any tasks are woken up.
2577 */
2578 int wake_up_process(struct task_struct *p)
2579 {
2580 return try_to_wake_up(p, TASK_ALL, 0);
2581 }
2582 EXPORT_SYMBOL(wake_up_process);
2583
2584 int wake_up_state(struct task_struct *p, unsigned int state)
2585 {
2586 return try_to_wake_up(p, state, 0);
2587 }
2588
2589 /*
2590 * Perform scheduler related setup for a newly forked process p.
2591 * p is forked by current.
2592 *
2593 * __sched_fork() is basic setup used by init_idle() too:
2594 */
2595 static void __sched_fork(struct task_struct *p)
2596 {
2597 p->se.exec_start = 0;
2598 p->se.sum_exec_runtime = 0;
2599 p->se.prev_sum_exec_runtime = 0;
2600 p->se.nr_migrations = 0;
2601 p->se.vruntime = 0;
2602
2603 #ifdef CONFIG_SCHEDSTATS
2604 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2605 #endif
2606
2607 INIT_LIST_HEAD(&p->rt.run_list);
2608 p->se.on_rq = 0;
2609 INIT_LIST_HEAD(&p->se.group_node);
2610
2611 #ifdef CONFIG_PREEMPT_NOTIFIERS
2612 INIT_HLIST_HEAD(&p->preempt_notifiers);
2613 #endif
2614 }
2615
2616 /*
2617 * fork()/clone()-time setup:
2618 */
2619 void sched_fork(struct task_struct *p, int clone_flags)
2620 {
2621 int cpu = get_cpu();
2622
2623 __sched_fork(p);
2624 /*
2625 * We mark the process as running here. This guarantees that
2626 * nobody will actually run it, and a signal or other external
2627 * event cannot wake it up and insert it on the runqueue either.
2628 */
2629 p->state = TASK_RUNNING;
2630
2631 /*
2632 * Revert to default priority/policy on fork if requested.
2633 */
2634 if (unlikely(p->sched_reset_on_fork)) {
2635 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2636 p->policy = SCHED_NORMAL;
2637 p->normal_prio = p->static_prio;
2638 }
2639
2640 if (PRIO_TO_NICE(p->static_prio) < 0) {
2641 p->static_prio = NICE_TO_PRIO(0);
2642 p->normal_prio = p->static_prio;
2643 set_load_weight(p);
2644 }
2645
2646 /*
2647 * We don't need the reset flag anymore after the fork. It has
2648 * fulfilled its duty:
2649 */
2650 p->sched_reset_on_fork = 0;
2651 }
2652
2653 /*
2654 * Make sure we do not leak PI boosting priority to the child.
2655 */
2656 p->prio = current->normal_prio;
2657
2658 if (!rt_prio(p->prio))
2659 p->sched_class = &fair_sched_class;
2660
2661 if (p->sched_class->task_fork)
2662 p->sched_class->task_fork(p);
2663
2664 /*
2665 * The child is not yet in the pid-hash so no cgroup attach races,
2666 * and the cgroup is pinned to this child due to cgroup_fork()
2667 * is ran before sched_fork().
2668 *
2669 * Silence PROVE_RCU.
2670 */
2671 rcu_read_lock();
2672 set_task_cpu(p, cpu);
2673 rcu_read_unlock();
2674
2675 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2676 if (likely(sched_info_on()))
2677 memset(&p->sched_info, 0, sizeof(p->sched_info));
2678 #endif
2679 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2680 p->oncpu = 0;
2681 #endif
2682 #ifdef CONFIG_PREEMPT
2683 /* Want to start with kernel preemption disabled. */
2684 task_thread_info(p)->preempt_count = 1;
2685 #endif
2686 #ifdef CONFIG_SMP
2687 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2688 #endif
2689
2690 put_cpu();
2691 }
2692
2693 /*
2694 * wake_up_new_task - wake up a newly created task for the first time.
2695 *
2696 * This function will do some initial scheduler statistics housekeeping
2697 * that must be done for every newly created context, then puts the task
2698 * on the runqueue and wakes it.
2699 */
2700 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2701 {
2702 unsigned long flags;
2703 struct rq *rq;
2704 int cpu __maybe_unused = get_cpu();
2705
2706 #ifdef CONFIG_SMP
2707 rq = task_rq_lock(p, &flags);
2708 p->state = TASK_WAKING;
2709
2710 /*
2711 * Fork balancing, do it here and not earlier because:
2712 * - cpus_allowed can change in the fork path
2713 * - any previously selected cpu might disappear through hotplug
2714 *
2715 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2716 * without people poking at ->cpus_allowed.
2717 */
2718 cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
2719 set_task_cpu(p, cpu);
2720
2721 p->state = TASK_RUNNING;
2722 task_rq_unlock(rq, &flags);
2723 #endif
2724
2725 rq = task_rq_lock(p, &flags);
2726 activate_task(rq, p, 0);
2727 trace_sched_wakeup_new(p, 1);
2728 check_preempt_curr(rq, p, WF_FORK);
2729 #ifdef CONFIG_SMP
2730 if (p->sched_class->task_woken)
2731 p->sched_class->task_woken(rq, p);
2732 #endif
2733 task_rq_unlock(rq, &flags);
2734 put_cpu();
2735 }
2736
2737 #ifdef CONFIG_PREEMPT_NOTIFIERS
2738
2739 /**
2740 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2741 * @notifier: notifier struct to register
2742 */
2743 void preempt_notifier_register(struct preempt_notifier *notifier)
2744 {
2745 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2746 }
2747 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2748
2749 /**
2750 * preempt_notifier_unregister - no longer interested in preemption notifications
2751 * @notifier: notifier struct to unregister
2752 *
2753 * This is safe to call from within a preemption notifier.
2754 */
2755 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2756 {
2757 hlist_del(&notifier->link);
2758 }
2759 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2760
2761 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2762 {
2763 struct preempt_notifier *notifier;
2764 struct hlist_node *node;
2765
2766 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2767 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2768 }
2769
2770 static void
2771 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2772 struct task_struct *next)
2773 {
2774 struct preempt_notifier *notifier;
2775 struct hlist_node *node;
2776
2777 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2778 notifier->ops->sched_out(notifier, next);
2779 }
2780
2781 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2782
2783 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2784 {
2785 }
2786
2787 static void
2788 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2789 struct task_struct *next)
2790 {
2791 }
2792
2793 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2794
2795 /**
2796 * prepare_task_switch - prepare to switch tasks
2797 * @rq: the runqueue preparing to switch
2798 * @prev: the current task that is being switched out
2799 * @next: the task we are going to switch to.
2800 *
2801 * This is called with the rq lock held and interrupts off. It must
2802 * be paired with a subsequent finish_task_switch after the context
2803 * switch.
2804 *
2805 * prepare_task_switch sets up locking and calls architecture specific
2806 * hooks.
2807 */
2808 static inline void
2809 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2810 struct task_struct *next)
2811 {
2812 fire_sched_out_preempt_notifiers(prev, next);
2813 prepare_lock_switch(rq, next);
2814 prepare_arch_switch(next);
2815 }
2816
2817 /**
2818 * finish_task_switch - clean up after a task-switch
2819 * @rq: runqueue associated with task-switch
2820 * @prev: the thread we just switched away from.
2821 *
2822 * finish_task_switch must be called after the context switch, paired
2823 * with a prepare_task_switch call before the context switch.
2824 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2825 * and do any other architecture-specific cleanup actions.
2826 *
2827 * Note that we may have delayed dropping an mm in context_switch(). If
2828 * so, we finish that here outside of the runqueue lock. (Doing it
2829 * with the lock held can cause deadlocks; see schedule() for
2830 * details.)
2831 */
2832 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2833 __releases(rq->lock)
2834 {
2835 struct mm_struct *mm = rq->prev_mm;
2836 long prev_state;
2837
2838 rq->prev_mm = NULL;
2839
2840 /*
2841 * A task struct has one reference for the use as "current".
2842 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2843 * schedule one last time. The schedule call will never return, and
2844 * the scheduled task must drop that reference.
2845 * The test for TASK_DEAD must occur while the runqueue locks are
2846 * still held, otherwise prev could be scheduled on another cpu, die
2847 * there before we look at prev->state, and then the reference would
2848 * be dropped twice.
2849 * Manfred Spraul <manfred@colorfullife.com>
2850 */
2851 prev_state = prev->state;
2852 finish_arch_switch(prev);
2853 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2854 local_irq_disable();
2855 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2856 perf_event_task_sched_in(current);
2857 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2858 local_irq_enable();
2859 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2860 finish_lock_switch(rq, prev);
2861
2862 fire_sched_in_preempt_notifiers(current);
2863 if (mm)
2864 mmdrop(mm);
2865 if (unlikely(prev_state == TASK_DEAD)) {
2866 /*
2867 * Remove function-return probe instances associated with this
2868 * task and put them back on the free list.
2869 */
2870 kprobe_flush_task(prev);
2871 put_task_struct(prev);
2872 }
2873 }
2874
2875 #ifdef CONFIG_SMP
2876
2877 /* assumes rq->lock is held */
2878 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2879 {
2880 if (prev->sched_class->pre_schedule)
2881 prev->sched_class->pre_schedule(rq, prev);
2882 }
2883
2884 /* rq->lock is NOT held, but preemption is disabled */
2885 static inline void post_schedule(struct rq *rq)
2886 {
2887 if (rq->post_schedule) {
2888 unsigned long flags;
2889
2890 raw_spin_lock_irqsave(&rq->lock, flags);
2891 if (rq->curr->sched_class->post_schedule)
2892 rq->curr->sched_class->post_schedule(rq);
2893 raw_spin_unlock_irqrestore(&rq->lock, flags);
2894
2895 rq->post_schedule = 0;
2896 }
2897 }
2898
2899 #else
2900
2901 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2902 {
2903 }
2904
2905 static inline void post_schedule(struct rq *rq)
2906 {
2907 }
2908
2909 #endif
2910
2911 /**
2912 * schedule_tail - first thing a freshly forked thread must call.
2913 * @prev: the thread we just switched away from.
2914 */
2915 asmlinkage void schedule_tail(struct task_struct *prev)
2916 __releases(rq->lock)
2917 {
2918 struct rq *rq = this_rq();
2919
2920 finish_task_switch(rq, prev);
2921
2922 /*
2923 * FIXME: do we need to worry about rq being invalidated by the
2924 * task_switch?
2925 */
2926 post_schedule(rq);
2927
2928 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2929 /* In this case, finish_task_switch does not reenable preemption */
2930 preempt_enable();
2931 #endif
2932 if (current->set_child_tid)
2933 put_user(task_pid_vnr(current), current->set_child_tid);
2934 }
2935
2936 /*
2937 * context_switch - switch to the new MM and the new
2938 * thread's register state.
2939 */
2940 static inline void
2941 context_switch(struct rq *rq, struct task_struct *prev,
2942 struct task_struct *next)
2943 {
2944 struct mm_struct *mm, *oldmm;
2945
2946 prepare_task_switch(rq, prev, next);
2947 trace_sched_switch(prev, next);
2948 mm = next->mm;
2949 oldmm = prev->active_mm;
2950 /*
2951 * For paravirt, this is coupled with an exit in switch_to to
2952 * combine the page table reload and the switch backend into
2953 * one hypercall.
2954 */
2955 arch_start_context_switch(prev);
2956
2957 if (!mm) {
2958 next->active_mm = oldmm;
2959 atomic_inc(&oldmm->mm_count);
2960 enter_lazy_tlb(oldmm, next);
2961 } else
2962 switch_mm(oldmm, mm, next);
2963
2964 if (!prev->mm) {
2965 prev->active_mm = NULL;
2966 rq->prev_mm = oldmm;
2967 }
2968 /*
2969 * Since the runqueue lock will be released by the next
2970 * task (which is an invalid locking op but in the case
2971 * of the scheduler it's an obvious special-case), so we
2972 * do an early lockdep release here:
2973 */
2974 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2975 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2976 #endif
2977
2978 /* Here we just switch the register state and the stack. */
2979 switch_to(prev, next, prev);
2980
2981 barrier();
2982 /*
2983 * this_rq must be evaluated again because prev may have moved
2984 * CPUs since it called schedule(), thus the 'rq' on its stack
2985 * frame will be invalid.
2986 */
2987 finish_task_switch(this_rq(), prev);
2988 }
2989
2990 /*
2991 * nr_running, nr_uninterruptible and nr_context_switches:
2992 *
2993 * externally visible scheduler statistics: current number of runnable
2994 * threads, current number of uninterruptible-sleeping threads, total
2995 * number of context switches performed since bootup.
2996 */
2997 unsigned long nr_running(void)
2998 {
2999 unsigned long i, sum = 0;
3000
3001 for_each_online_cpu(i)
3002 sum += cpu_rq(i)->nr_running;
3003
3004 return sum;
3005 }
3006
3007 unsigned long nr_uninterruptible(void)
3008 {
3009 unsigned long i, sum = 0;
3010
3011 for_each_possible_cpu(i)
3012 sum += cpu_rq(i)->nr_uninterruptible;
3013
3014 /*
3015 * Since we read the counters lockless, it might be slightly
3016 * inaccurate. Do not allow it to go below zero though:
3017 */
3018 if (unlikely((long)sum < 0))
3019 sum = 0;
3020
3021 return sum;
3022 }
3023
3024 unsigned long long nr_context_switches(void)
3025 {
3026 int i;
3027 unsigned long long sum = 0;
3028
3029 for_each_possible_cpu(i)
3030 sum += cpu_rq(i)->nr_switches;
3031
3032 return sum;
3033 }
3034
3035 unsigned long nr_iowait(void)
3036 {
3037 unsigned long i, sum = 0;
3038
3039 for_each_possible_cpu(i)
3040 sum += atomic_read(&cpu_rq(i)->nr_iowait);
3041
3042 return sum;
3043 }
3044
3045 unsigned long nr_iowait_cpu(int cpu)
3046 {
3047 struct rq *this = cpu_rq(cpu);
3048 return atomic_read(&this->nr_iowait);
3049 }
3050
3051 unsigned long this_cpu_load(void)
3052 {
3053 struct rq *this = this_rq();
3054 return this->cpu_load[0];
3055 }
3056
3057
3058 /* Variables and functions for calc_load */
3059 static atomic_long_t calc_load_tasks;
3060 static unsigned long calc_load_update;
3061 unsigned long avenrun[3];
3062 EXPORT_SYMBOL(avenrun);
3063
3064 static long calc_load_fold_active(struct rq *this_rq)
3065 {
3066 long nr_active, delta = 0;
3067
3068 nr_active = this_rq->nr_running;
3069 nr_active += (long) this_rq->nr_uninterruptible;
3070
3071 if (nr_active != this_rq->calc_load_active) {
3072 delta = nr_active - this_rq->calc_load_active;
3073 this_rq->calc_load_active = nr_active;
3074 }
3075
3076 return delta;
3077 }
3078
3079 static unsigned long
3080 calc_load(unsigned long load, unsigned long exp, unsigned long active)
3081 {
3082 load *= exp;
3083 load += active * (FIXED_1 - exp);
3084 load += 1UL << (FSHIFT - 1);
3085 return load >> FSHIFT;
3086 }
3087
3088 #ifdef CONFIG_NO_HZ
3089 /*
3090 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3091 *
3092 * When making the ILB scale, we should try to pull this in as well.
3093 */
3094 static atomic_long_t calc_load_tasks_idle;
3095
3096 static void calc_load_account_idle(struct rq *this_rq)
3097 {
3098 long delta;
3099
3100 delta = calc_load_fold_active(this_rq);
3101 if (delta)
3102 atomic_long_add(delta, &calc_load_tasks_idle);
3103 }
3104
3105 static long calc_load_fold_idle(void)
3106 {
3107 long delta = 0;
3108
3109 /*
3110 * Its got a race, we don't care...
3111 */
3112 if (atomic_long_read(&calc_load_tasks_idle))
3113 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
3114
3115 return delta;
3116 }
3117
3118 /**
3119 * fixed_power_int - compute: x^n, in O(log n) time
3120 *
3121 * @x: base of the power
3122 * @frac_bits: fractional bits of @x
3123 * @n: power to raise @x to.
3124 *
3125 * By exploiting the relation between the definition of the natural power
3126 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3127 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3128 * (where: n_i \elem {0, 1}, the binary vector representing n),
3129 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3130 * of course trivially computable in O(log_2 n), the length of our binary
3131 * vector.
3132 */
3133 static unsigned long
3134 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
3135 {
3136 unsigned long result = 1UL << frac_bits;
3137
3138 if (n) for (;;) {
3139 if (n & 1) {
3140 result *= x;
3141 result += 1UL << (frac_bits - 1);
3142 result >>= frac_bits;
3143 }
3144 n >>= 1;
3145 if (!n)
3146 break;
3147 x *= x;
3148 x += 1UL << (frac_bits - 1);
3149 x >>= frac_bits;
3150 }
3151
3152 return result;
3153 }
3154
3155 /*
3156 * a1 = a0 * e + a * (1 - e)
3157 *
3158 * a2 = a1 * e + a * (1 - e)
3159 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3160 * = a0 * e^2 + a * (1 - e) * (1 + e)
3161 *
3162 * a3 = a2 * e + a * (1 - e)
3163 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3164 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3165 *
3166 * ...
3167 *
3168 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3169 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3170 * = a0 * e^n + a * (1 - e^n)
3171 *
3172 * [1] application of the geometric series:
3173 *
3174 * n 1 - x^(n+1)
3175 * S_n := \Sum x^i = -------------
3176 * i=0 1 - x
3177 */
3178 static unsigned long
3179 calc_load_n(unsigned long load, unsigned long exp,
3180 unsigned long active, unsigned int n)
3181 {
3182
3183 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
3184 }
3185
3186 /*
3187 * NO_HZ can leave us missing all per-cpu ticks calling
3188 * calc_load_account_active(), but since an idle CPU folds its delta into
3189 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3190 * in the pending idle delta if our idle period crossed a load cycle boundary.
3191 *
3192 * Once we've updated the global active value, we need to apply the exponential
3193 * weights adjusted to the number of cycles missed.
3194 */
3195 static void calc_global_nohz(unsigned long ticks)
3196 {
3197 long delta, active, n;
3198
3199 if (time_before(jiffies, calc_load_update))
3200 return;
3201
3202 /*
3203 * If we crossed a calc_load_update boundary, make sure to fold
3204 * any pending idle changes, the respective CPUs might have
3205 * missed the tick driven calc_load_account_active() update
3206 * due to NO_HZ.
3207 */
3208 delta = calc_load_fold_idle();
3209 if (delta)
3210 atomic_long_add(delta, &calc_load_tasks);
3211
3212 /*
3213 * If we were idle for multiple load cycles, apply them.
3214 */
3215 if (ticks >= LOAD_FREQ) {
3216 n = ticks / LOAD_FREQ;
3217
3218 active = atomic_long_read(&calc_load_tasks);
3219 active = active > 0 ? active * FIXED_1 : 0;
3220
3221 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
3222 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
3223 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
3224
3225 calc_load_update += n * LOAD_FREQ;
3226 }
3227
3228 /*
3229 * Its possible the remainder of the above division also crosses
3230 * a LOAD_FREQ period, the regular check in calc_global_load()
3231 * which comes after this will take care of that.
3232 *
3233 * Consider us being 11 ticks before a cycle completion, and us
3234 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
3235 * age us 4 cycles, and the test in calc_global_load() will
3236 * pick up the final one.
3237 */
3238 }
3239 #else
3240 static void calc_load_account_idle(struct rq *this_rq)
3241 {
3242 }
3243
3244 static inline long calc_load_fold_idle(void)
3245 {
3246 return 0;
3247 }
3248
3249 static void calc_global_nohz(unsigned long ticks)
3250 {
3251 }
3252 #endif
3253
3254 /**
3255 * get_avenrun - get the load average array
3256 * @loads: pointer to dest load array
3257 * @offset: offset to add
3258 * @shift: shift count to shift the result left
3259 *
3260 * These values are estimates at best, so no need for locking.
3261 */
3262 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3263 {
3264 loads[0] = (avenrun[0] + offset) << shift;
3265 loads[1] = (avenrun[1] + offset) << shift;
3266 loads[2] = (avenrun[2] + offset) << shift;
3267 }
3268
3269 /*
3270 * calc_load - update the avenrun load estimates 10 ticks after the
3271 * CPUs have updated calc_load_tasks.
3272 */
3273 void calc_global_load(unsigned long ticks)
3274 {
3275 long active;
3276
3277 calc_global_nohz(ticks);
3278
3279 if (time_before(jiffies, calc_load_update + 10))
3280 return;
3281
3282 active = atomic_long_read(&calc_load_tasks);
3283 active = active > 0 ? active * FIXED_1 : 0;
3284
3285 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3286 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3287 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3288
3289 calc_load_update += LOAD_FREQ;
3290 }
3291
3292 /*
3293 * Called from update_cpu_load() to periodically update this CPU's
3294 * active count.
3295 */
3296 static void calc_load_account_active(struct rq *this_rq)
3297 {
3298 long delta;
3299
3300 if (time_before(jiffies, this_rq->calc_load_update))
3301 return;
3302
3303 delta = calc_load_fold_active(this_rq);
3304 delta += calc_load_fold_idle();
3305 if (delta)
3306 atomic_long_add(delta, &calc_load_tasks);
3307
3308 this_rq->calc_load_update += LOAD_FREQ;
3309 }
3310
3311 /*
3312 * The exact cpuload at various idx values, calculated at every tick would be
3313 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3314 *
3315 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3316 * on nth tick when cpu may be busy, then we have:
3317 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3318 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3319 *
3320 * decay_load_missed() below does efficient calculation of
3321 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3322 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3323 *
3324 * The calculation is approximated on a 128 point scale.
3325 * degrade_zero_ticks is the number of ticks after which load at any
3326 * particular idx is approximated to be zero.
3327 * degrade_factor is a precomputed table, a row for each load idx.
3328 * Each column corresponds to degradation factor for a power of two ticks,
3329 * based on 128 point scale.
3330 * Example:
3331 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3332 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3333 *
3334 * With this power of 2 load factors, we can degrade the load n times
3335 * by looking at 1 bits in n and doing as many mult/shift instead of
3336 * n mult/shifts needed by the exact degradation.
3337 */
3338 #define DEGRADE_SHIFT 7
3339 static const unsigned char
3340 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3341 static const unsigned char
3342 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3343 {0, 0, 0, 0, 0, 0, 0, 0},
3344 {64, 32, 8, 0, 0, 0, 0, 0},
3345 {96, 72, 40, 12, 1, 0, 0},
3346 {112, 98, 75, 43, 15, 1, 0},
3347 {120, 112, 98, 76, 45, 16, 2} };
3348
3349 /*
3350 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3351 * would be when CPU is idle and so we just decay the old load without
3352 * adding any new load.
3353 */
3354 static unsigned long
3355 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3356 {
3357 int j = 0;
3358
3359 if (!missed_updates)
3360 return load;
3361
3362 if (missed_updates >= degrade_zero_ticks[idx])
3363 return 0;
3364
3365 if (idx == 1)
3366 return load >> missed_updates;
3367
3368 while (missed_updates) {
3369 if (missed_updates % 2)
3370 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3371
3372 missed_updates >>= 1;
3373 j++;
3374 }
3375 return load;
3376 }
3377
3378 /*
3379 * Update rq->cpu_load[] statistics. This function is usually called every
3380 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3381 * every tick. We fix it up based on jiffies.
3382 */
3383 static void update_cpu_load(struct rq *this_rq)
3384 {
3385 unsigned long this_load = this_rq->load.weight;
3386 unsigned long curr_jiffies = jiffies;
3387 unsigned long pending_updates;
3388 int i, scale;
3389
3390 this_rq->nr_load_updates++;
3391
3392 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3393 if (curr_jiffies == this_rq->last_load_update_tick)
3394 return;
3395
3396 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3397 this_rq->last_load_update_tick = curr_jiffies;
3398
3399 /* Update our load: */
3400 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3401 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3402 unsigned long old_load, new_load;
3403
3404 /* scale is effectively 1 << i now, and >> i divides by scale */
3405
3406 old_load = this_rq->cpu_load[i];
3407 old_load = decay_load_missed(old_load, pending_updates - 1, i);
3408 new_load = this_load;
3409 /*
3410 * Round up the averaging division if load is increasing. This
3411 * prevents us from getting stuck on 9 if the load is 10, for
3412 * example.
3413 */
3414 if (new_load > old_load)
3415 new_load += scale - 1;
3416
3417 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
3418 }
3419
3420 sched_avg_update(this_rq);
3421 }
3422
3423 static void update_cpu_load_active(struct rq *this_rq)
3424 {
3425 update_cpu_load(this_rq);
3426
3427 calc_load_account_active(this_rq);
3428 }
3429
3430 #ifdef CONFIG_SMP
3431
3432 /*
3433 * sched_exec - execve() is a valuable balancing opportunity, because at
3434 * this point the task has the smallest effective memory and cache footprint.
3435 */
3436 void sched_exec(void)
3437 {
3438 struct task_struct *p = current;
3439 unsigned long flags;
3440 struct rq *rq;
3441 int dest_cpu;
3442
3443 rq = task_rq_lock(p, &flags);
3444 dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
3445 if (dest_cpu == smp_processor_id())
3446 goto unlock;
3447
3448 /*
3449 * select_task_rq() can race against ->cpus_allowed
3450 */
3451 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
3452 likely(cpu_active(dest_cpu)) && migrate_task(p, rq)) {
3453 struct migration_arg arg = { p, dest_cpu };
3454
3455 task_rq_unlock(rq, &flags);
3456 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
3457 return;
3458 }
3459 unlock:
3460 task_rq_unlock(rq, &flags);
3461 }
3462
3463 #endif
3464
3465 DEFINE_PER_CPU(struct kernel_stat, kstat);
3466
3467 EXPORT_PER_CPU_SYMBOL(kstat);
3468
3469 /*
3470 * Return any ns on the sched_clock that have not yet been accounted in
3471 * @p in case that task is currently running.
3472 *
3473 * Called with task_rq_lock() held on @rq.
3474 */
3475 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3476 {
3477 u64 ns = 0;
3478
3479 if (task_current(rq, p)) {
3480 update_rq_clock(rq);
3481 ns = rq->clock_task - p->se.exec_start;
3482 if ((s64)ns < 0)
3483 ns = 0;
3484 }
3485
3486 return ns;
3487 }
3488
3489 unsigned long long task_delta_exec(struct task_struct *p)
3490 {
3491 unsigned long flags;
3492 struct rq *rq;
3493 u64 ns = 0;
3494
3495 rq = task_rq_lock(p, &flags);
3496 ns = do_task_delta_exec(p, rq);
3497 task_rq_unlock(rq, &flags);
3498
3499 return ns;
3500 }
3501
3502 /*
3503 * Return accounted runtime for the task.
3504 * In case the task is currently running, return the runtime plus current's
3505 * pending runtime that have not been accounted yet.
3506 */
3507 unsigned long long task_sched_runtime(struct task_struct *p)
3508 {
3509 unsigned long flags;
3510 struct rq *rq;
3511 u64 ns = 0;
3512
3513 rq = task_rq_lock(p, &flags);
3514 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3515 task_rq_unlock(rq, &flags);
3516
3517 return ns;
3518 }
3519
3520 /*
3521 * Return sum_exec_runtime for the thread group.
3522 * In case the task is currently running, return the sum plus current's
3523 * pending runtime that have not been accounted yet.
3524 *
3525 * Note that the thread group might have other running tasks as well,
3526 * so the return value not includes other pending runtime that other
3527 * running tasks might have.
3528 */
3529 unsigned long long thread_group_sched_runtime(struct task_struct *p)
3530 {
3531 struct task_cputime totals;
3532 unsigned long flags;
3533 struct rq *rq;
3534 u64 ns;
3535
3536 rq = task_rq_lock(p, &flags);
3537 thread_group_cputime(p, &totals);
3538 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3539 task_rq_unlock(rq, &flags);
3540
3541 return ns;
3542 }
3543
3544 /*
3545 * Account user cpu time to a process.
3546 * @p: the process that the cpu time gets accounted to
3547 * @cputime: the cpu time spent in user space since the last update
3548 * @cputime_scaled: cputime scaled by cpu frequency
3549 */
3550 void account_user_time(struct task_struct *p, cputime_t cputime,
3551 cputime_t cputime_scaled)
3552 {
3553 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3554 cputime64_t tmp;
3555
3556 /* Add user time to process. */
3557 p->utime = cputime_add(p->utime, cputime);
3558 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3559 account_group_user_time(p, cputime);
3560
3561 /* Add user time to cpustat. */
3562 tmp = cputime_to_cputime64(cputime);
3563 if (TASK_NICE(p) > 0)
3564 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3565 else
3566 cpustat->user = cputime64_add(cpustat->user, tmp);
3567
3568 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3569 /* Account for user time used */
3570 acct_update_integrals(p);
3571 }
3572
3573 /*
3574 * Account guest cpu time to a process.
3575 * @p: the process that the cpu time gets accounted to
3576 * @cputime: the cpu time spent in virtual machine since the last update
3577 * @cputime_scaled: cputime scaled by cpu frequency
3578 */
3579 static void account_guest_time(struct task_struct *p, cputime_t cputime,
3580 cputime_t cputime_scaled)
3581 {
3582 cputime64_t tmp;
3583 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3584
3585 tmp = cputime_to_cputime64(cputime);
3586
3587 /* Add guest time to process. */
3588 p->utime = cputime_add(p->utime, cputime);
3589 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3590 account_group_user_time(p, cputime);
3591 p->gtime = cputime_add(p->gtime, cputime);
3592
3593 /* Add guest time to cpustat. */
3594 if (TASK_NICE(p) > 0) {
3595 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3596 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3597 } else {
3598 cpustat->user = cputime64_add(cpustat->user, tmp);
3599 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3600 }
3601 }
3602
3603 /*
3604 * Account system cpu time to a process and desired cpustat field
3605 * @p: the process that the cpu time gets accounted to
3606 * @cputime: the cpu time spent in kernel space since the last update
3607 * @cputime_scaled: cputime scaled by cpu frequency
3608 * @target_cputime64: pointer to cpustat field that has to be updated
3609 */
3610 static inline
3611 void __account_system_time(struct task_struct *p, cputime_t cputime,
3612 cputime_t cputime_scaled, cputime64_t *target_cputime64)
3613 {
3614 cputime64_t tmp = cputime_to_cputime64(cputime);
3615
3616 /* Add system time to process. */
3617 p->stime = cputime_add(p->stime, cputime);
3618 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3619 account_group_system_time(p, cputime);
3620
3621 /* Add system time to cpustat. */
3622 *target_cputime64 = cputime64_add(*target_cputime64, tmp);
3623 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3624
3625 /* Account for system time used */
3626 acct_update_integrals(p);
3627 }
3628
3629 /*
3630 * Account system cpu time to a process.
3631 * @p: the process that the cpu time gets accounted to
3632 * @hardirq_offset: the offset to subtract from hardirq_count()
3633 * @cputime: the cpu time spent in kernel space since the last update
3634 * @cputime_scaled: cputime scaled by cpu frequency
3635 */
3636 void account_system_time(struct task_struct *p, int hardirq_offset,
3637 cputime_t cputime, cputime_t cputime_scaled)
3638 {
3639 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3640 cputime64_t *target_cputime64;
3641
3642 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3643 account_guest_time(p, cputime, cputime_scaled);
3644 return;
3645 }
3646
3647 if (hardirq_count() - hardirq_offset)
3648 target_cputime64 = &cpustat->irq;
3649 else if (in_serving_softirq())
3650 target_cputime64 = &cpustat->softirq;
3651 else
3652 target_cputime64 = &cpustat->system;
3653
3654 __account_system_time(p, cputime, cputime_scaled, target_cputime64);
3655 }
3656
3657 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
3658 /*
3659 * Account a tick to a process and cpustat
3660 * @p: the process that the cpu time gets accounted to
3661 * @user_tick: is the tick from userspace
3662 * @rq: the pointer to rq
3663 *
3664 * Tick demultiplexing follows the order
3665 * - pending hardirq update
3666 * - pending softirq update
3667 * - user_time
3668 * - idle_time
3669 * - system time
3670 * - check for guest_time
3671 * - else account as system_time
3672 *
3673 * Check for hardirq is done both for system and user time as there is
3674 * no timer going off while we are on hardirq and hence we may never get an
3675 * opportunity to update it solely in system time.
3676 * p->stime and friends are only updated on system time and not on irq
3677 * softirq as those do not count in task exec_runtime any more.
3678 */
3679 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3680 struct rq *rq)
3681 {
3682 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3683 cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
3684 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3685
3686 if (irqtime_account_hi_update()) {
3687 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3688 } else if (irqtime_account_si_update()) {
3689 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3690 } else if (this_cpu_ksoftirqd() == p) {
3691 /*
3692 * ksoftirqd time do not get accounted in cpu_softirq_time.
3693 * So, we have to handle it separately here.
3694 * Also, p->stime needs to be updated for ksoftirqd.
3695 */
3696 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3697 &cpustat->softirq);
3698 } else if (user_tick) {
3699 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3700 } else if (p == rq->idle) {
3701 account_idle_time(cputime_one_jiffy);
3702 } else if (p->flags & PF_VCPU) { /* System time or guest time */
3703 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
3704 } else {
3705 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3706 &cpustat->system);
3707 }
3708 }
3709
3710 static void irqtime_account_idle_ticks(int ticks)
3711 {
3712 int i;
3713 struct rq *rq = this_rq();
3714
3715 for (i = 0; i < ticks; i++)
3716 irqtime_account_process_tick(current, 0, rq);
3717 }
3718 #else
3719 static void irqtime_account_idle_ticks(int ticks) {}
3720 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3721 struct rq *rq) {}
3722 #endif
3723
3724 /*
3725 * Account for involuntary wait time.
3726 * @steal: the cpu time spent in involuntary wait
3727 */
3728 void account_steal_time(cputime_t cputime)
3729 {
3730 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3731 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3732
3733 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3734 }
3735
3736 /*
3737 * Account for idle time.
3738 * @cputime: the cpu time spent in idle wait
3739 */
3740 void account_idle_time(cputime_t cputime)
3741 {
3742 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3743 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3744 struct rq *rq = this_rq();
3745
3746 if (atomic_read(&rq->nr_iowait) > 0)
3747 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3748 else
3749 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
3750 }
3751
3752 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
3753
3754 /*
3755 * Account a single tick of cpu time.
3756 * @p: the process that the cpu time gets accounted to
3757 * @user_tick: indicates if the tick is a user or a system tick
3758 */
3759 void account_process_tick(struct task_struct *p, int user_tick)
3760 {
3761 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3762 struct rq *rq = this_rq();
3763
3764 if (sched_clock_irqtime) {
3765 irqtime_account_process_tick(p, user_tick, rq);
3766 return;
3767 }
3768
3769 if (user_tick)
3770 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3771 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3772 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3773 one_jiffy_scaled);
3774 else
3775 account_idle_time(cputime_one_jiffy);
3776 }
3777
3778 /*
3779 * Account multiple ticks of steal time.
3780 * @p: the process from which the cpu time has been stolen
3781 * @ticks: number of stolen ticks
3782 */
3783 void account_steal_ticks(unsigned long ticks)
3784 {
3785 account_steal_time(jiffies_to_cputime(ticks));
3786 }
3787
3788 /*
3789 * Account multiple ticks of idle time.
3790 * @ticks: number of stolen ticks
3791 */
3792 void account_idle_ticks(unsigned long ticks)
3793 {
3794
3795 if (sched_clock_irqtime) {
3796 irqtime_account_idle_ticks(ticks);
3797 return;
3798 }
3799
3800 account_idle_time(jiffies_to_cputime(ticks));
3801 }
3802
3803 #endif
3804
3805 /*
3806 * Use precise platform statistics if available:
3807 */
3808 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
3809 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3810 {
3811 *ut = p->utime;
3812 *st = p->stime;
3813 }
3814
3815 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3816 {
3817 struct task_cputime cputime;
3818
3819 thread_group_cputime(p, &cputime);
3820
3821 *ut = cputime.utime;
3822 *st = cputime.stime;
3823 }
3824 #else
3825
3826 #ifndef nsecs_to_cputime
3827 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
3828 #endif
3829
3830 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3831 {
3832 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
3833
3834 /*
3835 * Use CFS's precise accounting:
3836 */
3837 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3838
3839 if (total) {
3840 u64 temp = rtime;
3841
3842 temp *= utime;
3843 do_div(temp, total);
3844 utime = (cputime_t)temp;
3845 } else
3846 utime = rtime;
3847
3848 /*
3849 * Compare with previous values, to keep monotonicity:
3850 */
3851 p->prev_utime = max(p->prev_utime, utime);
3852 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
3853
3854 *ut = p->prev_utime;
3855 *st = p->prev_stime;
3856 }
3857
3858 /*
3859 * Must be called with siglock held.
3860 */
3861 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3862 {
3863 struct signal_struct *sig = p->signal;
3864 struct task_cputime cputime;
3865 cputime_t rtime, utime, total;
3866
3867 thread_group_cputime(p, &cputime);
3868
3869 total = cputime_add(cputime.utime, cputime.stime);
3870 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3871
3872 if (total) {
3873 u64 temp = rtime;
3874
3875 temp *= cputime.utime;
3876 do_div(temp, total);
3877 utime = (cputime_t)temp;
3878 } else
3879 utime = rtime;
3880
3881 sig->prev_utime = max(sig->prev_utime, utime);
3882 sig->prev_stime = max(sig->prev_stime,
3883 cputime_sub(rtime, sig->prev_utime));
3884
3885 *ut = sig->prev_utime;
3886 *st = sig->prev_stime;
3887 }
3888 #endif
3889
3890 /*
3891 * This function gets called by the timer code, with HZ frequency.
3892 * We call it with interrupts disabled.
3893 *
3894 * It also gets called by the fork code, when changing the parent's
3895 * timeslices.
3896 */
3897 void scheduler_tick(void)
3898 {
3899 int cpu = smp_processor_id();
3900 struct rq *rq = cpu_rq(cpu);
3901 struct task_struct *curr = rq->curr;
3902
3903 sched_clock_tick();
3904
3905 raw_spin_lock(&rq->lock);
3906 update_rq_clock(rq);
3907 update_cpu_load_active(rq);
3908 curr->sched_class->task_tick(rq, curr, 0);
3909 raw_spin_unlock(&rq->lock);
3910
3911 perf_event_task_tick();
3912
3913 #ifdef CONFIG_SMP
3914 rq->idle_at_tick = idle_cpu(cpu);
3915 trigger_load_balance(rq, cpu);
3916 #endif
3917 }
3918
3919 notrace unsigned long get_parent_ip(unsigned long addr)
3920 {
3921 if (in_lock_functions(addr)) {
3922 addr = CALLER_ADDR2;
3923 if (in_lock_functions(addr))
3924 addr = CALLER_ADDR3;
3925 }
3926 return addr;
3927 }
3928
3929 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3930 defined(CONFIG_PREEMPT_TRACER))
3931
3932 void __kprobes add_preempt_count(int val)
3933 {
3934 #ifdef CONFIG_DEBUG_PREEMPT
3935 /*
3936 * Underflow?
3937 */
3938 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3939 return;
3940 #endif
3941 preempt_count() += val;
3942 #ifdef CONFIG_DEBUG_PREEMPT
3943 /*
3944 * Spinlock count overflowing soon?
3945 */
3946 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3947 PREEMPT_MASK - 10);
3948 #endif
3949 if (preempt_count() == val)
3950 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3951 }
3952 EXPORT_SYMBOL(add_preempt_count);
3953
3954 void __kprobes sub_preempt_count(int val)
3955 {
3956 #ifdef CONFIG_DEBUG_PREEMPT
3957 /*
3958 * Underflow?
3959 */
3960 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3961 return;
3962 /*
3963 * Is the spinlock portion underflowing?
3964 */
3965 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3966 !(preempt_count() & PREEMPT_MASK)))
3967 return;
3968 #endif
3969
3970 if (preempt_count() == val)
3971 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3972 preempt_count() -= val;
3973 }
3974 EXPORT_SYMBOL(sub_preempt_count);
3975
3976 #endif
3977
3978 /*
3979 * Print scheduling while atomic bug:
3980 */
3981 static noinline void __schedule_bug(struct task_struct *prev)
3982 {
3983 struct pt_regs *regs = get_irq_regs();
3984
3985 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3986 prev->comm, prev->pid, preempt_count());
3987
3988 debug_show_held_locks(prev);
3989 print_modules();
3990 if (irqs_disabled())
3991 print_irqtrace_events(prev);
3992
3993 if (regs)
3994 show_regs(regs);
3995 else
3996 dump_stack();
3997 }
3998
3999 /*
4000 * Various schedule()-time debugging checks and statistics:
4001 */
4002 static inline void schedule_debug(struct task_struct *prev)
4003 {
4004 /*
4005 * Test if we are atomic. Since do_exit() needs to call into
4006 * schedule() atomically, we ignore that path for now.
4007 * Otherwise, whine if we are scheduling when we should not be.
4008 */
4009 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
4010 __schedule_bug(prev);
4011
4012 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4013
4014 schedstat_inc(this_rq(), sched_count);
4015 #ifdef CONFIG_SCHEDSTATS
4016 if (unlikely(prev->lock_depth >= 0)) {
4017 schedstat_inc(this_rq(), rq_sched_info.bkl_count);
4018 schedstat_inc(prev, sched_info.bkl_count);
4019 }
4020 #endif
4021 }
4022
4023 static void put_prev_task(struct rq *rq, struct task_struct *prev)
4024 {
4025 if (prev->se.on_rq)
4026 update_rq_clock(rq);
4027 prev->sched_class->put_prev_task(rq, prev);
4028 }
4029
4030 /*
4031 * Pick up the highest-prio task:
4032 */
4033 static inline struct task_struct *
4034 pick_next_task(struct rq *rq)
4035 {
4036 const struct sched_class *class;
4037 struct task_struct *p;
4038
4039 /*
4040 * Optimization: we know that if all tasks are in
4041 * the fair class we can call that function directly:
4042 */
4043 if (likely(rq->nr_running == rq->cfs.nr_running)) {
4044 p = fair_sched_class.pick_next_task(rq);
4045 if (likely(p))
4046 return p;
4047 }
4048
4049 for_each_class(class) {
4050 p = class->pick_next_task(rq);
4051 if (p)
4052 return p;
4053 }
4054
4055 BUG(); /* the idle class will always have a runnable task */
4056 }
4057
4058 /*
4059 * schedule() is the main scheduler function.
4060 */
4061 asmlinkage void __sched schedule(void)
4062 {
4063 struct task_struct *prev, *next;
4064 unsigned long *switch_count;
4065 struct rq *rq;
4066 int cpu;
4067
4068 need_resched:
4069 preempt_disable();
4070 cpu = smp_processor_id();
4071 rq = cpu_rq(cpu);
4072 rcu_note_context_switch(cpu);
4073 prev = rq->curr;
4074
4075 release_kernel_lock(prev);
4076 need_resched_nonpreemptible:
4077
4078 schedule_debug(prev);
4079
4080 if (sched_feat(HRTICK))
4081 hrtick_clear(rq);
4082
4083 raw_spin_lock_irq(&rq->lock);
4084
4085 switch_count = &prev->nivcsw;
4086 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4087 if (unlikely(signal_pending_state(prev->state, prev))) {
4088 prev->state = TASK_RUNNING;
4089 } else {
4090 /*
4091 * If a worker is going to sleep, notify and
4092 * ask workqueue whether it wants to wake up a
4093 * task to maintain concurrency. If so, wake
4094 * up the task.
4095 */
4096 if (prev->flags & PF_WQ_WORKER) {
4097 struct task_struct *to_wakeup;
4098
4099 to_wakeup = wq_worker_sleeping(prev, cpu);
4100 if (to_wakeup)
4101 try_to_wake_up_local(to_wakeup);
4102 }
4103 deactivate_task(rq, prev, DEQUEUE_SLEEP);
4104 }
4105 switch_count = &prev->nvcsw;
4106 }
4107
4108 pre_schedule(rq, prev);
4109
4110 if (unlikely(!rq->nr_running))
4111 idle_balance(cpu, rq);
4112
4113 put_prev_task(rq, prev);
4114 next = pick_next_task(rq);
4115 clear_tsk_need_resched(prev);
4116 rq->skip_clock_update = 0;
4117
4118 if (likely(prev != next)) {
4119 sched_info_switch(prev, next);
4120 perf_event_task_sched_out(prev, next);
4121
4122 rq->nr_switches++;
4123 rq->curr = next;
4124 ++*switch_count;
4125
4126 context_switch(rq, prev, next); /* unlocks the rq */
4127 /*
4128 * The context switch have flipped the stack from under us
4129 * and restored the local variables which were saved when
4130 * this task called schedule() in the past. prev == current
4131 * is still correct, but it can be moved to another cpu/rq.
4132 */
4133 cpu = smp_processor_id();
4134 rq = cpu_rq(cpu);
4135 } else
4136 raw_spin_unlock_irq(&rq->lock);
4137
4138 post_schedule(rq);
4139
4140 if (unlikely(reacquire_kernel_lock(prev)))
4141 goto need_resched_nonpreemptible;
4142
4143 preempt_enable_no_resched();
4144 if (need_resched())
4145 goto need_resched;
4146 }
4147 EXPORT_SYMBOL(schedule);
4148
4149 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
4150 /*
4151 * Look out! "owner" is an entirely speculative pointer
4152 * access and not reliable.
4153 */
4154 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
4155 {
4156 unsigned int cpu;
4157 struct rq *rq;
4158
4159 if (!sched_feat(OWNER_SPIN))
4160 return 0;
4161
4162 #ifdef CONFIG_DEBUG_PAGEALLOC
4163 /*
4164 * Need to access the cpu field knowing that
4165 * DEBUG_PAGEALLOC could have unmapped it if
4166 * the mutex owner just released it and exited.
4167 */
4168 if (probe_kernel_address(&owner->cpu, cpu))
4169 return 0;
4170 #else
4171 cpu = owner->cpu;
4172 #endif
4173
4174 /*
4175 * Even if the access succeeded (likely case),
4176 * the cpu field may no longer be valid.
4177 */
4178 if (cpu >= nr_cpumask_bits)
4179 return 0;
4180
4181 /*
4182 * We need to validate that we can do a
4183 * get_cpu() and that we have the percpu area.
4184 */
4185 if (!cpu_online(cpu))
4186 return 0;
4187
4188 rq = cpu_rq(cpu);
4189
4190 for (;;) {
4191 /*
4192 * Owner changed, break to re-assess state.
4193 */
4194 if (lock->owner != owner) {
4195 /*
4196 * If the lock has switched to a different owner,
4197 * we likely have heavy contention. Return 0 to quit
4198 * optimistic spinning and not contend further:
4199 */
4200 if (lock->owner)
4201 return 0;
4202 break;
4203 }
4204
4205 /*
4206 * Is that owner really running on that cpu?
4207 */
4208 if (task_thread_info(rq->curr) != owner || need_resched())
4209 return 0;
4210
4211 arch_mutex_cpu_relax();
4212 }
4213
4214 return 1;
4215 }
4216 #endif
4217
4218 #ifdef CONFIG_PREEMPT
4219 /*
4220 * this is the entry point to schedule() from in-kernel preemption
4221 * off of preempt_enable. Kernel preemptions off return from interrupt
4222 * occur there and call schedule directly.
4223 */
4224 asmlinkage void __sched notrace preempt_schedule(void)
4225 {
4226 struct thread_info *ti = current_thread_info();
4227
4228 /*
4229 * If there is a non-zero preempt_count or interrupts are disabled,
4230 * we do not want to preempt the current task. Just return..
4231 */
4232 if (likely(ti->preempt_count || irqs_disabled()))
4233 return;
4234
4235 do {
4236 add_preempt_count_notrace(PREEMPT_ACTIVE);
4237 schedule();
4238 sub_preempt_count_notrace(PREEMPT_ACTIVE);
4239
4240 /*
4241 * Check again in case we missed a preemption opportunity
4242 * between schedule and now.
4243 */
4244 barrier();
4245 } while (need_resched());
4246 }
4247 EXPORT_SYMBOL(preempt_schedule);
4248
4249 /*
4250 * this is the entry point to schedule() from kernel preemption
4251 * off of irq context.
4252 * Note, that this is called and return with irqs disabled. This will
4253 * protect us against recursive calling from irq.
4254 */
4255 asmlinkage void __sched preempt_schedule_irq(void)
4256 {
4257 struct thread_info *ti = current_thread_info();
4258
4259 /* Catch callers which need to be fixed */
4260 BUG_ON(ti->preempt_count || !irqs_disabled());
4261
4262 do {
4263 add_preempt_count(PREEMPT_ACTIVE);
4264 local_irq_enable();
4265 schedule();
4266 local_irq_disable();
4267 sub_preempt_count(PREEMPT_ACTIVE);
4268
4269 /*
4270 * Check again in case we missed a preemption opportunity
4271 * between schedule and now.
4272 */
4273 barrier();
4274 } while (need_resched());
4275 }
4276
4277 #endif /* CONFIG_PREEMPT */
4278
4279 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
4280 void *key)
4281 {
4282 return try_to_wake_up(curr->private, mode, wake_flags);
4283 }
4284 EXPORT_SYMBOL(default_wake_function);
4285
4286 /*
4287 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4288 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4289 * number) then we wake all the non-exclusive tasks and one exclusive task.
4290 *
4291 * There are circumstances in which we can try to wake a task which has already
4292 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4293 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4294 */
4295 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4296 int nr_exclusive, int wake_flags, void *key)
4297 {
4298 wait_queue_t *curr, *next;
4299
4300 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4301 unsigned flags = curr->flags;
4302
4303 if (curr->func(curr, mode, wake_flags, key) &&
4304 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4305 break;
4306 }
4307 }
4308
4309 /**
4310 * __wake_up - wake up threads blocked on a waitqueue.
4311 * @q: the waitqueue
4312 * @mode: which threads
4313 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4314 * @key: is directly passed to the wakeup function
4315 *
4316 * It may be assumed that this function implies a write memory barrier before
4317 * changing the task state if and only if any tasks are woken up.
4318 */
4319 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4320 int nr_exclusive, void *key)
4321 {
4322 unsigned long flags;
4323
4324 spin_lock_irqsave(&q->lock, flags);
4325 __wake_up_common(q, mode, nr_exclusive, 0, key);
4326 spin_unlock_irqrestore(&q->lock, flags);
4327 }
4328 EXPORT_SYMBOL(__wake_up);
4329
4330 /*
4331 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4332 */
4333 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4334 {
4335 __wake_up_common(q, mode, 1, 0, NULL);
4336 }
4337 EXPORT_SYMBOL_GPL(__wake_up_locked);
4338
4339 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4340 {
4341 __wake_up_common(q, mode, 1, 0, key);
4342 }
4343
4344 /**
4345 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
4346 * @q: the waitqueue
4347 * @mode: which threads
4348 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4349 * @key: opaque value to be passed to wakeup targets
4350 *
4351 * The sync wakeup differs that the waker knows that it will schedule
4352 * away soon, so while the target thread will be woken up, it will not
4353 * be migrated to another CPU - ie. the two threads are 'synchronized'
4354 * with each other. This can prevent needless bouncing between CPUs.
4355 *
4356 * On UP it can prevent extra preemption.
4357 *
4358 * It may be assumed that this function implies a write memory barrier before
4359 * changing the task state if and only if any tasks are woken up.
4360 */
4361 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4362 int nr_exclusive, void *key)
4363 {
4364 unsigned long flags;
4365 int wake_flags = WF_SYNC;
4366
4367 if (unlikely(!q))
4368 return;
4369
4370 if (unlikely(!nr_exclusive))
4371 wake_flags = 0;
4372
4373 spin_lock_irqsave(&q->lock, flags);
4374 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
4375 spin_unlock_irqrestore(&q->lock, flags);
4376 }
4377 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4378
4379 /*
4380 * __wake_up_sync - see __wake_up_sync_key()
4381 */
4382 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4383 {
4384 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4385 }
4386 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4387
4388 /**
4389 * complete: - signals a single thread waiting on this completion
4390 * @x: holds the state of this particular completion
4391 *
4392 * This will wake up a single thread waiting on this completion. Threads will be
4393 * awakened in the same order in which they were queued.
4394 *
4395 * See also complete_all(), wait_for_completion() and related routines.
4396 *
4397 * It may be assumed that this function implies a write memory barrier before
4398 * changing the task state if and only if any tasks are woken up.
4399 */
4400 void complete(struct completion *x)
4401 {
4402 unsigned long flags;
4403
4404 spin_lock_irqsave(&x->wait.lock, flags);
4405 x->done++;
4406 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4407 spin_unlock_irqrestore(&x->wait.lock, flags);
4408 }
4409 EXPORT_SYMBOL(complete);
4410
4411 /**
4412 * complete_all: - signals all threads waiting on this completion
4413 * @x: holds the state of this particular completion
4414 *
4415 * This will wake up all threads waiting on this particular completion event.
4416 *
4417 * It may be assumed that this function implies a write memory barrier before
4418 * changing the task state if and only if any tasks are woken up.
4419 */
4420 void complete_all(struct completion *x)
4421 {
4422 unsigned long flags;
4423
4424 spin_lock_irqsave(&x->wait.lock, flags);
4425 x->done += UINT_MAX/2;
4426 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4427 spin_unlock_irqrestore(&x->wait.lock, flags);
4428 }
4429 EXPORT_SYMBOL(complete_all);
4430
4431 static inline long __sched
4432 do_wait_for_common(struct completion *x, long timeout, int state)
4433 {
4434 if (!x->done) {
4435 DECLARE_WAITQUEUE(wait, current);
4436
4437 __add_wait_queue_tail_exclusive(&x->wait, &wait);
4438 do {
4439 if (signal_pending_state(state, current)) {
4440 timeout = -ERESTARTSYS;
4441 break;
4442 }
4443 __set_current_state(state);
4444 spin_unlock_irq(&x->wait.lock);
4445 timeout = schedule_timeout(timeout);
4446 spin_lock_irq(&x->wait.lock);
4447 } while (!x->done && timeout);
4448 __remove_wait_queue(&x->wait, &wait);
4449 if (!x->done)
4450 return timeout;
4451 }
4452 x->done--;
4453 return timeout ?: 1;
4454 }
4455
4456 static long __sched
4457 wait_for_common(struct completion *x, long timeout, int state)
4458 {
4459 might_sleep();
4460
4461 spin_lock_irq(&x->wait.lock);
4462 timeout = do_wait_for_common(x, timeout, state);
4463 spin_unlock_irq(&x->wait.lock);
4464 return timeout;
4465 }
4466
4467 /**
4468 * wait_for_completion: - waits for completion of a task
4469 * @x: holds the state of this particular completion
4470 *
4471 * This waits to be signaled for completion of a specific task. It is NOT
4472 * interruptible and there is no timeout.
4473 *
4474 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4475 * and interrupt capability. Also see complete().
4476 */
4477 void __sched wait_for_completion(struct completion *x)
4478 {
4479 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4480 }
4481 EXPORT_SYMBOL(wait_for_completion);
4482
4483 /**
4484 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4485 * @x: holds the state of this particular completion
4486 * @timeout: timeout value in jiffies
4487 *
4488 * This waits for either a completion of a specific task to be signaled or for a
4489 * specified timeout to expire. The timeout is in jiffies. It is not
4490 * interruptible.
4491 */
4492 unsigned long __sched
4493 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4494 {
4495 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4496 }
4497 EXPORT_SYMBOL(wait_for_completion_timeout);
4498
4499 /**
4500 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4501 * @x: holds the state of this particular completion
4502 *
4503 * This waits for completion of a specific task to be signaled. It is
4504 * interruptible.
4505 */
4506 int __sched wait_for_completion_interruptible(struct completion *x)
4507 {
4508 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4509 if (t == -ERESTARTSYS)
4510 return t;
4511 return 0;
4512 }
4513 EXPORT_SYMBOL(wait_for_completion_interruptible);
4514
4515 /**
4516 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4517 * @x: holds the state of this particular completion
4518 * @timeout: timeout value in jiffies
4519 *
4520 * This waits for either a completion of a specific task to be signaled or for a
4521 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4522 */
4523 long __sched
4524 wait_for_completion_interruptible_timeout(struct completion *x,
4525 unsigned long timeout)
4526 {
4527 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4528 }
4529 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4530
4531 /**
4532 * wait_for_completion_killable: - waits for completion of a task (killable)
4533 * @x: holds the state of this particular completion
4534 *
4535 * This waits to be signaled for completion of a specific task. It can be
4536 * interrupted by a kill signal.
4537 */
4538 int __sched wait_for_completion_killable(struct completion *x)
4539 {
4540 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4541 if (t == -ERESTARTSYS)
4542 return t;
4543 return 0;
4544 }
4545 EXPORT_SYMBOL(wait_for_completion_killable);
4546
4547 /**
4548 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4549 * @x: holds the state of this particular completion
4550 * @timeout: timeout value in jiffies
4551 *
4552 * This waits for either a completion of a specific task to be
4553 * signaled or for a specified timeout to expire. It can be
4554 * interrupted by a kill signal. The timeout is in jiffies.
4555 */
4556 long __sched
4557 wait_for_completion_killable_timeout(struct completion *x,
4558 unsigned long timeout)
4559 {
4560 return wait_for_common(x, timeout, TASK_KILLABLE);
4561 }
4562 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4563
4564 /**
4565 * try_wait_for_completion - try to decrement a completion without blocking
4566 * @x: completion structure
4567 *
4568 * Returns: 0 if a decrement cannot be done without blocking
4569 * 1 if a decrement succeeded.
4570 *
4571 * If a completion is being used as a counting completion,
4572 * attempt to decrement the counter without blocking. This
4573 * enables us to avoid waiting if the resource the completion
4574 * is protecting is not available.
4575 */
4576 bool try_wait_for_completion(struct completion *x)
4577 {
4578 unsigned long flags;
4579 int ret = 1;
4580
4581 spin_lock_irqsave(&x->wait.lock, flags);
4582 if (!x->done)
4583 ret = 0;
4584 else
4585 x->done--;
4586 spin_unlock_irqrestore(&x->wait.lock, flags);
4587 return ret;
4588 }
4589 EXPORT_SYMBOL(try_wait_for_completion);
4590
4591 /**
4592 * completion_done - Test to see if a completion has any waiters
4593 * @x: completion structure
4594 *
4595 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4596 * 1 if there are no waiters.
4597 *
4598 */
4599 bool completion_done(struct completion *x)
4600 {
4601 unsigned long flags;
4602 int ret = 1;
4603
4604 spin_lock_irqsave(&x->wait.lock, flags);
4605 if (!x->done)
4606 ret = 0;
4607 spin_unlock_irqrestore(&x->wait.lock, flags);
4608 return ret;
4609 }
4610 EXPORT_SYMBOL(completion_done);
4611
4612 static long __sched
4613 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4614 {
4615 unsigned long flags;
4616 wait_queue_t wait;
4617
4618 init_waitqueue_entry(&wait, current);
4619
4620 __set_current_state(state);
4621
4622 spin_lock_irqsave(&q->lock, flags);
4623 __add_wait_queue(q, &wait);
4624 spin_unlock(&q->lock);
4625 timeout = schedule_timeout(timeout);
4626 spin_lock_irq(&q->lock);
4627 __remove_wait_queue(q, &wait);
4628 spin_unlock_irqrestore(&q->lock, flags);
4629
4630 return timeout;
4631 }
4632
4633 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4634 {
4635 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4636 }
4637 EXPORT_SYMBOL(interruptible_sleep_on);
4638
4639 long __sched
4640 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4641 {
4642 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4643 }
4644 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4645
4646 void __sched sleep_on(wait_queue_head_t *q)
4647 {
4648 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4649 }
4650 EXPORT_SYMBOL(sleep_on);
4651
4652 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4653 {
4654 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4655 }
4656 EXPORT_SYMBOL(sleep_on_timeout);
4657
4658 #ifdef CONFIG_RT_MUTEXES
4659
4660 /*
4661 * rt_mutex_setprio - set the current priority of a task
4662 * @p: task
4663 * @prio: prio value (kernel-internal form)
4664 *
4665 * This function changes the 'effective' priority of a task. It does
4666 * not touch ->normal_prio like __setscheduler().
4667 *
4668 * Used by the rt_mutex code to implement priority inheritance logic.
4669 */
4670 void rt_mutex_setprio(struct task_struct *p, int prio)
4671 {
4672 unsigned long flags;
4673 int oldprio, on_rq, running;
4674 struct rq *rq;
4675 const struct sched_class *prev_class;
4676
4677 BUG_ON(prio < 0 || prio > MAX_PRIO);
4678
4679 rq = task_rq_lock(p, &flags);
4680
4681 trace_sched_pi_setprio(p, prio);
4682 oldprio = p->prio;
4683 prev_class = p->sched_class;
4684 on_rq = p->se.on_rq;
4685 running = task_current(rq, p);
4686 if (on_rq)
4687 dequeue_task(rq, p, 0);
4688 if (running)
4689 p->sched_class->put_prev_task(rq, p);
4690
4691 if (rt_prio(prio))
4692 p->sched_class = &rt_sched_class;
4693 else
4694 p->sched_class = &fair_sched_class;
4695
4696 p->prio = prio;
4697
4698 if (running)
4699 p->sched_class->set_curr_task(rq);
4700 if (on_rq)
4701 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
4702
4703 check_class_changed(rq, p, prev_class, oldprio);
4704 task_rq_unlock(rq, &flags);
4705 }
4706
4707 #endif
4708
4709 void set_user_nice(struct task_struct *p, long nice)
4710 {
4711 int old_prio, delta, on_rq;
4712 unsigned long flags;
4713 struct rq *rq;
4714
4715 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4716 return;
4717 /*
4718 * We have to be careful, if called from sys_setpriority(),
4719 * the task might be in the middle of scheduling on another CPU.
4720 */
4721 rq = task_rq_lock(p, &flags);
4722 /*
4723 * The RT priorities are set via sched_setscheduler(), but we still
4724 * allow the 'normal' nice value to be set - but as expected
4725 * it wont have any effect on scheduling until the task is
4726 * SCHED_FIFO/SCHED_RR:
4727 */
4728 if (task_has_rt_policy(p)) {
4729 p->static_prio = NICE_TO_PRIO(nice);
4730 goto out_unlock;
4731 }
4732 on_rq = p->se.on_rq;
4733 if (on_rq)
4734 dequeue_task(rq, p, 0);
4735
4736 p->static_prio = NICE_TO_PRIO(nice);
4737 set_load_weight(p);
4738 old_prio = p->prio;
4739 p->prio = effective_prio(p);
4740 delta = p->prio - old_prio;
4741
4742 if (on_rq) {
4743 enqueue_task(rq, p, 0);
4744 /*
4745 * If the task increased its priority or is running and
4746 * lowered its priority, then reschedule its CPU:
4747 */
4748 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4749 resched_task(rq->curr);
4750 }
4751 out_unlock:
4752 task_rq_unlock(rq, &flags);
4753 }
4754 EXPORT_SYMBOL(set_user_nice);
4755
4756 /*
4757 * can_nice - check if a task can reduce its nice value
4758 * @p: task
4759 * @nice: nice value
4760 */
4761 int can_nice(const struct task_struct *p, const int nice)
4762 {
4763 /* convert nice value [19,-20] to rlimit style value [1,40] */
4764 int nice_rlim = 20 - nice;
4765
4766 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4767 capable(CAP_SYS_NICE));
4768 }
4769
4770 #ifdef __ARCH_WANT_SYS_NICE
4771
4772 /*
4773 * sys_nice - change the priority of the current process.
4774 * @increment: priority increment
4775 *
4776 * sys_setpriority is a more generic, but much slower function that
4777 * does similar things.
4778 */
4779 SYSCALL_DEFINE1(nice, int, increment)
4780 {
4781 long nice, retval;
4782
4783 /*
4784 * Setpriority might change our priority at the same moment.
4785 * We don't have to worry. Conceptually one call occurs first
4786 * and we have a single winner.
4787 */
4788 if (increment < -40)
4789 increment = -40;
4790 if (increment > 40)
4791 increment = 40;
4792
4793 nice = TASK_NICE(current) + increment;
4794 if (nice < -20)
4795 nice = -20;
4796 if (nice > 19)
4797 nice = 19;
4798
4799 if (increment < 0 && !can_nice(current, nice))
4800 return -EPERM;
4801
4802 retval = security_task_setnice(current, nice);
4803 if (retval)
4804 return retval;
4805
4806 set_user_nice(current, nice);
4807 return 0;
4808 }
4809
4810 #endif
4811
4812 /**
4813 * task_prio - return the priority value of a given task.
4814 * @p: the task in question.
4815 *
4816 * This is the priority value as seen by users in /proc.
4817 * RT tasks are offset by -200. Normal tasks are centered
4818 * around 0, value goes from -16 to +15.
4819 */
4820 int task_prio(const struct task_struct *p)
4821 {
4822 return p->prio - MAX_RT_PRIO;
4823 }
4824
4825 /**
4826 * task_nice - return the nice value of a given task.
4827 * @p: the task in question.
4828 */
4829 int task_nice(const struct task_struct *p)
4830 {
4831 return TASK_NICE(p);
4832 }
4833 EXPORT_SYMBOL(task_nice);
4834
4835 /**
4836 * idle_cpu - is a given cpu idle currently?
4837 * @cpu: the processor in question.
4838 */
4839 int idle_cpu(int cpu)
4840 {
4841 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4842 }
4843
4844 /**
4845 * idle_task - return the idle task for a given cpu.
4846 * @cpu: the processor in question.
4847 */
4848 struct task_struct *idle_task(int cpu)
4849 {
4850 return cpu_rq(cpu)->idle;
4851 }
4852
4853 /**
4854 * find_process_by_pid - find a process with a matching PID value.
4855 * @pid: the pid in question.
4856 */
4857 static struct task_struct *find_process_by_pid(pid_t pid)
4858 {
4859 return pid ? find_task_by_vpid(pid) : current;
4860 }
4861
4862 /* Actually do priority change: must hold rq lock. */
4863 static void
4864 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4865 {
4866 BUG_ON(p->se.on_rq);
4867
4868 p->policy = policy;
4869 p->rt_priority = prio;
4870 p->normal_prio = normal_prio(p);
4871 /* we are holding p->pi_lock already */
4872 p->prio = rt_mutex_getprio(p);
4873 if (rt_prio(p->prio))
4874 p->sched_class = &rt_sched_class;
4875 else
4876 p->sched_class = &fair_sched_class;
4877 set_load_weight(p);
4878 }
4879
4880 /*
4881 * check the target process has a UID that matches the current process's
4882 */
4883 static bool check_same_owner(struct task_struct *p)
4884 {
4885 const struct cred *cred = current_cred(), *pcred;
4886 bool match;
4887
4888 rcu_read_lock();
4889 pcred = __task_cred(p);
4890 match = (cred->euid == pcred->euid ||
4891 cred->euid == pcred->uid);
4892 rcu_read_unlock();
4893 return match;
4894 }
4895
4896 static int __sched_setscheduler(struct task_struct *p, int policy,
4897 const struct sched_param *param, bool user)
4898 {
4899 int retval, oldprio, oldpolicy = -1, on_rq, running;
4900 unsigned long flags;
4901 const struct sched_class *prev_class;
4902 struct rq *rq;
4903 int reset_on_fork;
4904
4905 /* may grab non-irq protected spin_locks */
4906 BUG_ON(in_interrupt());
4907 recheck:
4908 /* double check policy once rq lock held */
4909 if (policy < 0) {
4910 reset_on_fork = p->sched_reset_on_fork;
4911 policy = oldpolicy = p->policy;
4912 } else {
4913 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4914 policy &= ~SCHED_RESET_ON_FORK;
4915
4916 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4917 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4918 policy != SCHED_IDLE)
4919 return -EINVAL;
4920 }
4921
4922 /*
4923 * Valid priorities for SCHED_FIFO and SCHED_RR are
4924 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4925 * SCHED_BATCH and SCHED_IDLE is 0.
4926 */
4927 if (param->sched_priority < 0 ||
4928 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4929 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4930 return -EINVAL;
4931 if (rt_policy(policy) != (param->sched_priority != 0))
4932 return -EINVAL;
4933
4934 /*
4935 * Allow unprivileged RT tasks to decrease priority:
4936 */
4937 if (user && !capable(CAP_SYS_NICE)) {
4938 if (rt_policy(policy)) {
4939 unsigned long rlim_rtprio =
4940 task_rlimit(p, RLIMIT_RTPRIO);
4941
4942 /* can't set/change the rt policy */
4943 if (policy != p->policy && !rlim_rtprio)
4944 return -EPERM;
4945
4946 /* can't increase priority */
4947 if (param->sched_priority > p->rt_priority &&
4948 param->sched_priority > rlim_rtprio)
4949 return -EPERM;
4950 }
4951 /*
4952 * Like positive nice levels, dont allow tasks to
4953 * move out of SCHED_IDLE either:
4954 */
4955 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4956 return -EPERM;
4957
4958 /* can't change other user's priorities */
4959 if (!check_same_owner(p))
4960 return -EPERM;
4961
4962 /* Normal users shall not reset the sched_reset_on_fork flag */
4963 if (p->sched_reset_on_fork && !reset_on_fork)
4964 return -EPERM;
4965 }
4966
4967 if (user) {
4968 retval = security_task_setscheduler(p);
4969 if (retval)
4970 return retval;
4971 }
4972
4973 /*
4974 * make sure no PI-waiters arrive (or leave) while we are
4975 * changing the priority of the task:
4976 */
4977 raw_spin_lock_irqsave(&p->pi_lock, flags);
4978 /*
4979 * To be able to change p->policy safely, the apropriate
4980 * runqueue lock must be held.
4981 */
4982 rq = __task_rq_lock(p);
4983
4984 /*
4985 * Changing the policy of the stop threads its a very bad idea
4986 */
4987 if (p == rq->stop) {
4988 __task_rq_unlock(rq);
4989 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4990 return -EINVAL;
4991 }
4992
4993 #ifdef CONFIG_RT_GROUP_SCHED
4994 if (user) {
4995 /*
4996 * Do not allow realtime tasks into groups that have no runtime
4997 * assigned.
4998 */
4999 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5000 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5001 !task_group_is_autogroup(task_group(p))) {
5002 __task_rq_unlock(rq);
5003 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5004 return -EPERM;
5005 }
5006 }
5007 #endif
5008
5009 /* recheck policy now with rq lock held */
5010 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5011 policy = oldpolicy = -1;
5012 __task_rq_unlock(rq);
5013 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5014 goto recheck;
5015 }
5016 on_rq = p->se.on_rq;
5017 running = task_current(rq, p);
5018 if (on_rq)
5019 deactivate_task(rq, p, 0);
5020 if (running)
5021 p->sched_class->put_prev_task(rq, p);
5022
5023 p->sched_reset_on_fork = reset_on_fork;
5024
5025 oldprio = p->prio;
5026 prev_class = p->sched_class;
5027 __setscheduler(rq, p, policy, param->sched_priority);
5028
5029 if (running)
5030 p->sched_class->set_curr_task(rq);
5031 if (on_rq)
5032 activate_task(rq, p, 0);
5033
5034 check_class_changed(rq, p, prev_class, oldprio);
5035 __task_rq_unlock(rq);
5036 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5037
5038 rt_mutex_adjust_pi(p);
5039
5040 return 0;
5041 }
5042
5043 /**
5044 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5045 * @p: the task in question.
5046 * @policy: new policy.
5047 * @param: structure containing the new RT priority.
5048 *
5049 * NOTE that the task may be already dead.
5050 */
5051 int sched_setscheduler(struct task_struct *p, int policy,
5052 const struct sched_param *param)
5053 {
5054 return __sched_setscheduler(p, policy, param, true);
5055 }
5056 EXPORT_SYMBOL_GPL(sched_setscheduler);
5057
5058 /**
5059 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5060 * @p: the task in question.
5061 * @policy: new policy.
5062 * @param: structure containing the new RT priority.
5063 *
5064 * Just like sched_setscheduler, only don't bother checking if the
5065 * current context has permission. For example, this is needed in
5066 * stop_machine(): we create temporary high priority worker threads,
5067 * but our caller might not have that capability.
5068 */
5069 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5070 const struct sched_param *param)
5071 {
5072 return __sched_setscheduler(p, policy, param, false);
5073 }
5074
5075 static int
5076 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5077 {
5078 struct sched_param lparam;
5079 struct task_struct *p;
5080 int retval;
5081
5082 if (!param || pid < 0)
5083 return -EINVAL;
5084 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5085 return -EFAULT;
5086
5087 rcu_read_lock();
5088 retval = -ESRCH;
5089 p = find_process_by_pid(pid);
5090 if (p != NULL)
5091 retval = sched_setscheduler(p, policy, &lparam);
5092 rcu_read_unlock();
5093
5094 return retval;
5095 }
5096
5097 /**
5098 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5099 * @pid: the pid in question.
5100 * @policy: new policy.
5101 * @param: structure containing the new RT priority.
5102 */
5103 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5104 struct sched_param __user *, param)
5105 {
5106 /* negative values for policy are not valid */
5107 if (policy < 0)
5108 return -EINVAL;
5109
5110 return do_sched_setscheduler(pid, policy, param);
5111 }
5112
5113 /**
5114 * sys_sched_setparam - set/change the RT priority of a thread
5115 * @pid: the pid in question.
5116 * @param: structure containing the new RT priority.
5117 */
5118 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
5119 {
5120 return do_sched_setscheduler(pid, -1, param);
5121 }
5122
5123 /**
5124 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5125 * @pid: the pid in question.
5126 */
5127 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5128 {
5129 struct task_struct *p;
5130 int retval;
5131
5132 if (pid < 0)
5133 return -EINVAL;
5134
5135 retval = -ESRCH;
5136 rcu_read_lock();
5137 p = find_process_by_pid(pid);
5138 if (p) {
5139 retval = security_task_getscheduler(p);
5140 if (!retval)
5141 retval = p->policy
5142 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
5143 }
5144 rcu_read_unlock();
5145 return retval;
5146 }
5147
5148 /**
5149 * sys_sched_getparam - get the RT priority of a thread
5150 * @pid: the pid in question.
5151 * @param: structure containing the RT priority.
5152 */
5153 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5154 {
5155 struct sched_param lp;
5156 struct task_struct *p;
5157 int retval;
5158
5159 if (!param || pid < 0)
5160 return -EINVAL;
5161
5162 rcu_read_lock();
5163 p = find_process_by_pid(pid);
5164 retval = -ESRCH;
5165 if (!p)
5166 goto out_unlock;
5167
5168 retval = security_task_getscheduler(p);
5169 if (retval)
5170 goto out_unlock;
5171
5172 lp.sched_priority = p->rt_priority;
5173 rcu_read_unlock();
5174
5175 /*
5176 * This one might sleep, we cannot do it with a spinlock held ...
5177 */
5178 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5179
5180 return retval;
5181
5182 out_unlock:
5183 rcu_read_unlock();
5184 return retval;
5185 }
5186
5187 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5188 {
5189 cpumask_var_t cpus_allowed, new_mask;
5190 struct task_struct *p;
5191 int retval;
5192
5193 get_online_cpus();
5194 rcu_read_lock();
5195
5196 p = find_process_by_pid(pid);
5197 if (!p) {
5198 rcu_read_unlock();
5199 put_online_cpus();
5200 return -ESRCH;
5201 }
5202
5203 /* Prevent p going away */
5204 get_task_struct(p);
5205 rcu_read_unlock();
5206
5207 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5208 retval = -ENOMEM;
5209 goto out_put_task;
5210 }
5211 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5212 retval = -ENOMEM;
5213 goto out_free_cpus_allowed;
5214 }
5215 retval = -EPERM;
5216 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
5217 goto out_unlock;
5218
5219 retval = security_task_setscheduler(p);
5220 if (retval)
5221 goto out_unlock;
5222
5223 cpuset_cpus_allowed(p, cpus_allowed);
5224 cpumask_and(new_mask, in_mask, cpus_allowed);
5225 again:
5226 retval = set_cpus_allowed_ptr(p, new_mask);
5227
5228 if (!retval) {
5229 cpuset_cpus_allowed(p, cpus_allowed);
5230 if (!cpumask_subset(new_mask, cpus_allowed)) {
5231 /*
5232 * We must have raced with a concurrent cpuset
5233 * update. Just reset the cpus_allowed to the
5234 * cpuset's cpus_allowed
5235 */
5236 cpumask_copy(new_mask, cpus_allowed);
5237 goto again;
5238 }
5239 }
5240 out_unlock:
5241 free_cpumask_var(new_mask);
5242 out_free_cpus_allowed:
5243 free_cpumask_var(cpus_allowed);
5244 out_put_task:
5245 put_task_struct(p);
5246 put_online_cpus();
5247 return retval;
5248 }
5249
5250 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5251 struct cpumask *new_mask)
5252 {
5253 if (len < cpumask_size())
5254 cpumask_clear(new_mask);
5255 else if (len > cpumask_size())
5256 len = cpumask_size();
5257
5258 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5259 }
5260
5261 /**
5262 * sys_sched_setaffinity - set the cpu affinity of a process
5263 * @pid: pid of the process
5264 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5265 * @user_mask_ptr: user-space pointer to the new cpu mask
5266 */
5267 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5268 unsigned long __user *, user_mask_ptr)
5269 {
5270 cpumask_var_t new_mask;
5271 int retval;
5272
5273 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5274 return -ENOMEM;
5275
5276 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5277 if (retval == 0)
5278 retval = sched_setaffinity(pid, new_mask);
5279 free_cpumask_var(new_mask);
5280 return retval;
5281 }
5282
5283 long sched_getaffinity(pid_t pid, struct cpumask *mask)
5284 {
5285 struct task_struct *p;
5286 unsigned long flags;
5287 struct rq *rq;
5288 int retval;
5289
5290 get_online_cpus();
5291 rcu_read_lock();
5292
5293 retval = -ESRCH;
5294 p = find_process_by_pid(pid);
5295 if (!p)
5296 goto out_unlock;
5297
5298 retval = security_task_getscheduler(p);
5299 if (retval)
5300 goto out_unlock;
5301
5302 rq = task_rq_lock(p, &flags);
5303 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
5304 task_rq_unlock(rq, &flags);
5305
5306 out_unlock:
5307 rcu_read_unlock();
5308 put_online_cpus();
5309
5310 return retval;
5311 }
5312
5313 /**
5314 * sys_sched_getaffinity - get the cpu affinity of a process
5315 * @pid: pid of the process
5316 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5317 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5318 */
5319 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5320 unsigned long __user *, user_mask_ptr)
5321 {
5322 int ret;
5323 cpumask_var_t mask;
5324
5325 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
5326 return -EINVAL;
5327 if (len & (sizeof(unsigned long)-1))
5328 return -EINVAL;
5329
5330 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5331 return -ENOMEM;
5332
5333 ret = sched_getaffinity(pid, mask);
5334 if (ret == 0) {
5335 size_t retlen = min_t(size_t, len, cpumask_size());
5336
5337 if (copy_to_user(user_mask_ptr, mask, retlen))
5338 ret = -EFAULT;
5339 else
5340 ret = retlen;
5341 }
5342 free_cpumask_var(mask);
5343
5344 return ret;
5345 }
5346
5347 /**
5348 * sys_sched_yield - yield the current processor to other threads.
5349 *
5350 * This function yields the current CPU to other tasks. If there are no
5351 * other threads running on this CPU then this function will return.
5352 */
5353 SYSCALL_DEFINE0(sched_yield)
5354 {
5355 struct rq *rq = this_rq_lock();
5356
5357 schedstat_inc(rq, yld_count);
5358 current->sched_class->yield_task(rq);
5359
5360 /*
5361 * Since we are going to call schedule() anyway, there's
5362 * no need to preempt or enable interrupts:
5363 */
5364 __release(rq->lock);
5365 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5366 do_raw_spin_unlock(&rq->lock);
5367 preempt_enable_no_resched();
5368
5369 schedule();
5370
5371 return 0;
5372 }
5373
5374 static inline int should_resched(void)
5375 {
5376 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5377 }
5378
5379 static void __cond_resched(void)
5380 {
5381 add_preempt_count(PREEMPT_ACTIVE);
5382 schedule();
5383 sub_preempt_count(PREEMPT_ACTIVE);
5384 }
5385
5386 int __sched _cond_resched(void)
5387 {
5388 if (should_resched()) {
5389 __cond_resched();
5390 return 1;
5391 }
5392 return 0;
5393 }
5394 EXPORT_SYMBOL(_cond_resched);
5395
5396 /*
5397 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5398 * call schedule, and on return reacquire the lock.
5399 *
5400 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5401 * operations here to prevent schedule() from being called twice (once via
5402 * spin_unlock(), once by hand).
5403 */
5404 int __cond_resched_lock(spinlock_t *lock)
5405 {
5406 int resched = should_resched();
5407 int ret = 0;
5408
5409 lockdep_assert_held(lock);
5410
5411 if (spin_needbreak(lock) || resched) {
5412 spin_unlock(lock);
5413 if (resched)
5414 __cond_resched();
5415 else
5416 cpu_relax();
5417 ret = 1;
5418 spin_lock(lock);
5419 }
5420 return ret;
5421 }
5422 EXPORT_SYMBOL(__cond_resched_lock);
5423
5424 int __sched __cond_resched_softirq(void)
5425 {
5426 BUG_ON(!in_softirq());
5427
5428 if (should_resched()) {
5429 local_bh_enable();
5430 __cond_resched();
5431 local_bh_disable();
5432 return 1;
5433 }
5434 return 0;
5435 }
5436 EXPORT_SYMBOL(__cond_resched_softirq);
5437
5438 /**
5439 * yield - yield the current processor to other threads.
5440 *
5441 * This is a shortcut for kernel-space yielding - it marks the
5442 * thread runnable and calls sys_sched_yield().
5443 */
5444 void __sched yield(void)
5445 {
5446 set_current_state(TASK_RUNNING);
5447 sys_sched_yield();
5448 }
5449 EXPORT_SYMBOL(yield);
5450
5451 /*
5452 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5453 * that process accounting knows that this is a task in IO wait state.
5454 */
5455 void __sched io_schedule(void)
5456 {
5457 struct rq *rq = raw_rq();
5458
5459 delayacct_blkio_start();
5460 atomic_inc(&rq->nr_iowait);
5461 current->in_iowait = 1;
5462 schedule();
5463 current->in_iowait = 0;
5464 atomic_dec(&rq->nr_iowait);
5465 delayacct_blkio_end();
5466 }
5467 EXPORT_SYMBOL(io_schedule);
5468
5469 long __sched io_schedule_timeout(long timeout)
5470 {
5471 struct rq *rq = raw_rq();
5472 long ret;
5473
5474 delayacct_blkio_start();
5475 atomic_inc(&rq->nr_iowait);
5476 current->in_iowait = 1;
5477 ret = schedule_timeout(timeout);
5478 current->in_iowait = 0;
5479 atomic_dec(&rq->nr_iowait);
5480 delayacct_blkio_end();
5481 return ret;
5482 }
5483
5484 /**
5485 * sys_sched_get_priority_max - return maximum RT priority.
5486 * @policy: scheduling class.
5487 *
5488 * this syscall returns the maximum rt_priority that can be used
5489 * by a given scheduling class.
5490 */
5491 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5492 {
5493 int ret = -EINVAL;
5494
5495 switch (policy) {
5496 case SCHED_FIFO:
5497 case SCHED_RR:
5498 ret = MAX_USER_RT_PRIO-1;
5499 break;
5500 case SCHED_NORMAL:
5501 case SCHED_BATCH:
5502 case SCHED_IDLE:
5503 ret = 0;
5504 break;
5505 }
5506 return ret;
5507 }
5508
5509 /**
5510 * sys_sched_get_priority_min - return minimum RT priority.
5511 * @policy: scheduling class.
5512 *
5513 * this syscall returns the minimum rt_priority that can be used
5514 * by a given scheduling class.
5515 */
5516 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5517 {
5518 int ret = -EINVAL;
5519
5520 switch (policy) {
5521 case SCHED_FIFO:
5522 case SCHED_RR:
5523 ret = 1;
5524 break;
5525 case SCHED_NORMAL:
5526 case SCHED_BATCH:
5527 case SCHED_IDLE:
5528 ret = 0;
5529 }
5530 return ret;
5531 }
5532
5533 /**
5534 * sys_sched_rr_get_interval - return the default timeslice of a process.
5535 * @pid: pid of the process.
5536 * @interval: userspace pointer to the timeslice value.
5537 *
5538 * this syscall writes the default timeslice value of a given process
5539 * into the user-space timespec buffer. A value of '0' means infinity.
5540 */
5541 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5542 struct timespec __user *, interval)
5543 {
5544 struct task_struct *p;
5545 unsigned int time_slice;
5546 unsigned long flags;
5547 struct rq *rq;
5548 int retval;
5549 struct timespec t;
5550
5551 if (pid < 0)
5552 return -EINVAL;
5553
5554 retval = -ESRCH;
5555 rcu_read_lock();
5556 p = find_process_by_pid(pid);
5557 if (!p)
5558 goto out_unlock;
5559
5560 retval = security_task_getscheduler(p);
5561 if (retval)
5562 goto out_unlock;
5563
5564 rq = task_rq_lock(p, &flags);
5565 time_slice = p->sched_class->get_rr_interval(rq, p);
5566 task_rq_unlock(rq, &flags);
5567
5568 rcu_read_unlock();
5569 jiffies_to_timespec(time_slice, &t);
5570 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5571 return retval;
5572
5573 out_unlock:
5574 rcu_read_unlock();
5575 return retval;
5576 }
5577
5578 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5579
5580 void sched_show_task(struct task_struct *p)
5581 {
5582 unsigned long free = 0;
5583 unsigned state;
5584
5585 state = p->state ? __ffs(p->state) + 1 : 0;
5586 printk(KERN_INFO "%-15.15s %c", p->comm,
5587 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5588 #if BITS_PER_LONG == 32
5589 if (state == TASK_RUNNING)
5590 printk(KERN_CONT " running ");
5591 else
5592 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5593 #else
5594 if (state == TASK_RUNNING)
5595 printk(KERN_CONT " running task ");
5596 else
5597 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5598 #endif
5599 #ifdef CONFIG_DEBUG_STACK_USAGE
5600 free = stack_not_used(p);
5601 #endif
5602 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5603 task_pid_nr(p), task_pid_nr(p->real_parent),
5604 (unsigned long)task_thread_info(p)->flags);
5605
5606 show_stack(p, NULL);
5607 }
5608
5609 void show_state_filter(unsigned long state_filter)
5610 {
5611 struct task_struct *g, *p;
5612
5613 #if BITS_PER_LONG == 32
5614 printk(KERN_INFO
5615 " task PC stack pid father\n");
5616 #else
5617 printk(KERN_INFO
5618 " task PC stack pid father\n");
5619 #endif
5620 read_lock(&tasklist_lock);
5621 do_each_thread(g, p) {
5622 /*
5623 * reset the NMI-timeout, listing all files on a slow
5624 * console might take alot of time:
5625 */
5626 touch_nmi_watchdog();
5627 if (!state_filter || (p->state & state_filter))
5628 sched_show_task(p);
5629 } while_each_thread(g, p);
5630
5631 touch_all_softlockup_watchdogs();
5632
5633 #ifdef CONFIG_SCHED_DEBUG
5634 sysrq_sched_debug_show();
5635 #endif
5636 read_unlock(&tasklist_lock);
5637 /*
5638 * Only show locks if all tasks are dumped:
5639 */
5640 if (!state_filter)
5641 debug_show_all_locks();
5642 }
5643
5644 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5645 {
5646 idle->sched_class = &idle_sched_class;
5647 }
5648
5649 /**
5650 * init_idle - set up an idle thread for a given CPU
5651 * @idle: task in question
5652 * @cpu: cpu the idle task belongs to
5653 *
5654 * NOTE: this function does not set the idle thread's NEED_RESCHED
5655 * flag, to make booting more robust.
5656 */
5657 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5658 {
5659 struct rq *rq = cpu_rq(cpu);
5660 unsigned long flags;
5661
5662 raw_spin_lock_irqsave(&rq->lock, flags);
5663
5664 __sched_fork(idle);
5665 idle->state = TASK_RUNNING;
5666 idle->se.exec_start = sched_clock();
5667
5668 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
5669 /*
5670 * We're having a chicken and egg problem, even though we are
5671 * holding rq->lock, the cpu isn't yet set to this cpu so the
5672 * lockdep check in task_group() will fail.
5673 *
5674 * Similar case to sched_fork(). / Alternatively we could
5675 * use task_rq_lock() here and obtain the other rq->lock.
5676 *
5677 * Silence PROVE_RCU
5678 */
5679 rcu_read_lock();
5680 __set_task_cpu(idle, cpu);
5681 rcu_read_unlock();
5682
5683 rq->curr = rq->idle = idle;
5684 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5685 idle->oncpu = 1;
5686 #endif
5687 raw_spin_unlock_irqrestore(&rq->lock, flags);
5688
5689 /* Set the preempt count _outside_ the spinlocks! */
5690 #if defined(CONFIG_PREEMPT)
5691 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5692 #else
5693 task_thread_info(idle)->preempt_count = 0;
5694 #endif
5695 /*
5696 * The idle tasks have their own, simple scheduling class:
5697 */
5698 idle->sched_class = &idle_sched_class;
5699 ftrace_graph_init_task(idle);
5700 }
5701
5702 /*
5703 * In a system that switches off the HZ timer nohz_cpu_mask
5704 * indicates which cpus entered this state. This is used
5705 * in the rcu update to wait only for active cpus. For system
5706 * which do not switch off the HZ timer nohz_cpu_mask should
5707 * always be CPU_BITS_NONE.
5708 */
5709 cpumask_var_t nohz_cpu_mask;
5710
5711 /*
5712 * Increase the granularity value when there are more CPUs,
5713 * because with more CPUs the 'effective latency' as visible
5714 * to users decreases. But the relationship is not linear,
5715 * so pick a second-best guess by going with the log2 of the
5716 * number of CPUs.
5717 *
5718 * This idea comes from the SD scheduler of Con Kolivas:
5719 */
5720 static int get_update_sysctl_factor(void)
5721 {
5722 unsigned int cpus = min_t(int, num_online_cpus(), 8);
5723 unsigned int factor;
5724
5725 switch (sysctl_sched_tunable_scaling) {
5726 case SCHED_TUNABLESCALING_NONE:
5727 factor = 1;
5728 break;
5729 case SCHED_TUNABLESCALING_LINEAR:
5730 factor = cpus;
5731 break;
5732 case SCHED_TUNABLESCALING_LOG:
5733 default:
5734 factor = 1 + ilog2(cpus);
5735 break;
5736 }
5737
5738 return factor;
5739 }
5740
5741 static void update_sysctl(void)
5742 {
5743 unsigned int factor = get_update_sysctl_factor();
5744
5745 #define SET_SYSCTL(name) \
5746 (sysctl_##name = (factor) * normalized_sysctl_##name)
5747 SET_SYSCTL(sched_min_granularity);
5748 SET_SYSCTL(sched_latency);
5749 SET_SYSCTL(sched_wakeup_granularity);
5750 #undef SET_SYSCTL
5751 }
5752
5753 static inline void sched_init_granularity(void)
5754 {
5755 update_sysctl();
5756 }
5757
5758 #ifdef CONFIG_SMP
5759 /*
5760 * This is how migration works:
5761 *
5762 * 1) we invoke migration_cpu_stop() on the target CPU using
5763 * stop_one_cpu().
5764 * 2) stopper starts to run (implicitly forcing the migrated thread
5765 * off the CPU)
5766 * 3) it checks whether the migrated task is still in the wrong runqueue.
5767 * 4) if it's in the wrong runqueue then the migration thread removes
5768 * it and puts it into the right queue.
5769 * 5) stopper completes and stop_one_cpu() returns and the migration
5770 * is done.
5771 */
5772
5773 /*
5774 * Change a given task's CPU affinity. Migrate the thread to a
5775 * proper CPU and schedule it away if the CPU it's executing on
5776 * is removed from the allowed bitmask.
5777 *
5778 * NOTE: the caller must have a valid reference to the task, the
5779 * task must not exit() & deallocate itself prematurely. The
5780 * call is not atomic; no spinlocks may be held.
5781 */
5782 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
5783 {
5784 unsigned long flags;
5785 struct rq *rq;
5786 unsigned int dest_cpu;
5787 int ret = 0;
5788
5789 /*
5790 * Serialize against TASK_WAKING so that ttwu() and wunt() can
5791 * drop the rq->lock and still rely on ->cpus_allowed.
5792 */
5793 again:
5794 while (task_is_waking(p))
5795 cpu_relax();
5796 rq = task_rq_lock(p, &flags);
5797 if (task_is_waking(p)) {
5798 task_rq_unlock(rq, &flags);
5799 goto again;
5800 }
5801
5802 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
5803 ret = -EINVAL;
5804 goto out;
5805 }
5806
5807 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5808 !cpumask_equal(&p->cpus_allowed, new_mask))) {
5809 ret = -EINVAL;
5810 goto out;
5811 }
5812
5813 if (p->sched_class->set_cpus_allowed)
5814 p->sched_class->set_cpus_allowed(p, new_mask);
5815 else {
5816 cpumask_copy(&p->cpus_allowed, new_mask);
5817 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5818 }
5819
5820 /* Can the task run on the task's current CPU? If so, we're done */
5821 if (cpumask_test_cpu(task_cpu(p), new_mask))
5822 goto out;
5823
5824 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5825 if (migrate_task(p, rq)) {
5826 struct migration_arg arg = { p, dest_cpu };
5827 /* Need help from migration thread: drop lock and wait. */
5828 task_rq_unlock(rq, &flags);
5829 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
5830 tlb_migrate_finish(p->mm);
5831 return 0;
5832 }
5833 out:
5834 task_rq_unlock(rq, &flags);
5835
5836 return ret;
5837 }
5838 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5839
5840 /*
5841 * Move (not current) task off this cpu, onto dest cpu. We're doing
5842 * this because either it can't run here any more (set_cpus_allowed()
5843 * away from this CPU, or CPU going down), or because we're
5844 * attempting to rebalance this task on exec (sched_exec).
5845 *
5846 * So we race with normal scheduler movements, but that's OK, as long
5847 * as the task is no longer on this CPU.
5848 *
5849 * Returns non-zero if task was successfully migrated.
5850 */
5851 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5852 {
5853 struct rq *rq_dest, *rq_src;
5854 int ret = 0;
5855
5856 if (unlikely(!cpu_active(dest_cpu)))
5857 return ret;
5858
5859 rq_src = cpu_rq(src_cpu);
5860 rq_dest = cpu_rq(dest_cpu);
5861
5862 double_rq_lock(rq_src, rq_dest);
5863 /* Already moved. */
5864 if (task_cpu(p) != src_cpu)
5865 goto done;
5866 /* Affinity changed (again). */
5867 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
5868 goto fail;
5869
5870 /*
5871 * If we're not on a rq, the next wake-up will ensure we're
5872 * placed properly.
5873 */
5874 if (p->se.on_rq) {
5875 deactivate_task(rq_src, p, 0);
5876 set_task_cpu(p, dest_cpu);
5877 activate_task(rq_dest, p, 0);
5878 check_preempt_curr(rq_dest, p, 0);
5879 }
5880 done:
5881 ret = 1;
5882 fail:
5883 double_rq_unlock(rq_src, rq_dest);
5884 return ret;
5885 }
5886
5887 /*
5888 * migration_cpu_stop - this will be executed by a highprio stopper thread
5889 * and performs thread migration by bumping thread off CPU then
5890 * 'pushing' onto another runqueue.
5891 */
5892 static int migration_cpu_stop(void *data)
5893 {
5894 struct migration_arg *arg = data;
5895
5896 /*
5897 * The original target cpu might have gone down and we might
5898 * be on another cpu but it doesn't matter.
5899 */
5900 local_irq_disable();
5901 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5902 local_irq_enable();
5903 return 0;
5904 }
5905
5906 #ifdef CONFIG_HOTPLUG_CPU
5907
5908 /*
5909 * Ensures that the idle task is using init_mm right before its cpu goes
5910 * offline.
5911 */
5912 void idle_task_exit(void)
5913 {
5914 struct mm_struct *mm = current->active_mm;
5915
5916 BUG_ON(cpu_online(smp_processor_id()));
5917
5918 if (mm != &init_mm)
5919 switch_mm(mm, &init_mm, current);
5920 mmdrop(mm);
5921 }
5922
5923 /*
5924 * While a dead CPU has no uninterruptible tasks queued at this point,
5925 * it might still have a nonzero ->nr_uninterruptible counter, because
5926 * for performance reasons the counter is not stricly tracking tasks to
5927 * their home CPUs. So we just add the counter to another CPU's counter,
5928 * to keep the global sum constant after CPU-down:
5929 */
5930 static void migrate_nr_uninterruptible(struct rq *rq_src)
5931 {
5932 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
5933
5934 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5935 rq_src->nr_uninterruptible = 0;
5936 }
5937
5938 /*
5939 * remove the tasks which were accounted by rq from calc_load_tasks.
5940 */
5941 static void calc_global_load_remove(struct rq *rq)
5942 {
5943 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5944 rq->calc_load_active = 0;
5945 }
5946
5947 /*
5948 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5949 * try_to_wake_up()->select_task_rq().
5950 *
5951 * Called with rq->lock held even though we'er in stop_machine() and
5952 * there's no concurrency possible, we hold the required locks anyway
5953 * because of lock validation efforts.
5954 */
5955 static void migrate_tasks(unsigned int dead_cpu)
5956 {
5957 struct rq *rq = cpu_rq(dead_cpu);
5958 struct task_struct *next, *stop = rq->stop;
5959 int dest_cpu;
5960
5961 /*
5962 * Fudge the rq selection such that the below task selection loop
5963 * doesn't get stuck on the currently eligible stop task.
5964 *
5965 * We're currently inside stop_machine() and the rq is either stuck
5966 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5967 * either way we should never end up calling schedule() until we're
5968 * done here.
5969 */
5970 rq->stop = NULL;
5971
5972 for ( ; ; ) {
5973 /*
5974 * There's this thread running, bail when that's the only
5975 * remaining thread.
5976 */
5977 if (rq->nr_running == 1)
5978 break;
5979
5980 next = pick_next_task(rq);
5981 BUG_ON(!next);
5982 next->sched_class->put_prev_task(rq, next);
5983
5984 /* Find suitable destination for @next, with force if needed. */
5985 dest_cpu = select_fallback_rq(dead_cpu, next);
5986 raw_spin_unlock(&rq->lock);
5987
5988 __migrate_task(next, dead_cpu, dest_cpu);
5989
5990 raw_spin_lock(&rq->lock);
5991 }
5992
5993 rq->stop = stop;
5994 }
5995
5996 #endif /* CONFIG_HOTPLUG_CPU */
5997
5998 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5999
6000 static struct ctl_table sd_ctl_dir[] = {
6001 {
6002 .procname = "sched_domain",
6003 .mode = 0555,
6004 },
6005 {}
6006 };
6007
6008 static struct ctl_table sd_ctl_root[] = {
6009 {
6010 .procname = "kernel",
6011 .mode = 0555,
6012 .child = sd_ctl_dir,
6013 },
6014 {}
6015 };
6016
6017 static struct ctl_table *sd_alloc_ctl_entry(int n)
6018 {
6019 struct ctl_table *entry =
6020 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6021
6022 return entry;
6023 }
6024
6025 static void sd_free_ctl_entry(struct ctl_table **tablep)
6026 {
6027 struct ctl_table *entry;
6028
6029 /*
6030 * In the intermediate directories, both the child directory and
6031 * procname are dynamically allocated and could fail but the mode
6032 * will always be set. In the lowest directory the names are
6033 * static strings and all have proc handlers.
6034 */
6035 for (entry = *tablep; entry->mode; entry++) {
6036 if (entry->child)
6037 sd_free_ctl_entry(&entry->child);
6038 if (entry->proc_handler == NULL)
6039 kfree(entry->procname);
6040 }
6041
6042 kfree(*tablep);
6043 *tablep = NULL;
6044 }
6045
6046 static void
6047 set_table_entry(struct ctl_table *entry,
6048 const char *procname, void *data, int maxlen,
6049 mode_t mode, proc_handler *proc_handler)
6050 {
6051 entry->procname = procname;
6052 entry->data = data;
6053 entry->maxlen = maxlen;
6054 entry->mode = mode;
6055 entry->proc_handler = proc_handler;
6056 }
6057
6058 static struct ctl_table *
6059 sd_alloc_ctl_domain_table(struct sched_domain *sd)
6060 {
6061 struct ctl_table *table = sd_alloc_ctl_entry(13);
6062
6063 if (table == NULL)
6064 return NULL;
6065
6066 set_table_entry(&table[0], "min_interval", &sd->min_interval,
6067 sizeof(long), 0644, proc_doulongvec_minmax);
6068 set_table_entry(&table[1], "max_interval", &sd->max_interval,
6069 sizeof(long), 0644, proc_doulongvec_minmax);
6070 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6071 sizeof(int), 0644, proc_dointvec_minmax);
6072 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6073 sizeof(int), 0644, proc_dointvec_minmax);
6074 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6075 sizeof(int), 0644, proc_dointvec_minmax);
6076 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6077 sizeof(int), 0644, proc_dointvec_minmax);
6078 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6079 sizeof(int), 0644, proc_dointvec_minmax);
6080 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6081 sizeof(int), 0644, proc_dointvec_minmax);
6082 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6083 sizeof(int), 0644, proc_dointvec_minmax);
6084 set_table_entry(&table[9], "cache_nice_tries",
6085 &sd->cache_nice_tries,
6086 sizeof(int), 0644, proc_dointvec_minmax);
6087 set_table_entry(&table[10], "flags", &sd->flags,
6088 sizeof(int), 0644, proc_dointvec_minmax);
6089 set_table_entry(&table[11], "name", sd->name,
6090 CORENAME_MAX_SIZE, 0444, proc_dostring);
6091 /* &table[12] is terminator */
6092
6093 return table;
6094 }
6095
6096 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6097 {
6098 struct ctl_table *entry, *table;
6099 struct sched_domain *sd;
6100 int domain_num = 0, i;
6101 char buf[32];
6102
6103 for_each_domain(cpu, sd)
6104 domain_num++;
6105 entry = table = sd_alloc_ctl_entry(domain_num + 1);
6106 if (table == NULL)
6107 return NULL;
6108
6109 i = 0;
6110 for_each_domain(cpu, sd) {
6111 snprintf(buf, 32, "domain%d", i);
6112 entry->procname = kstrdup(buf, GFP_KERNEL);
6113 entry->mode = 0555;
6114 entry->child = sd_alloc_ctl_domain_table(sd);
6115 entry++;
6116 i++;
6117 }
6118 return table;
6119 }
6120
6121 static struct ctl_table_header *sd_sysctl_header;
6122 static void register_sched_domain_sysctl(void)
6123 {
6124 int i, cpu_num = num_possible_cpus();
6125 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6126 char buf[32];
6127
6128 WARN_ON(sd_ctl_dir[0].child);
6129 sd_ctl_dir[0].child = entry;
6130
6131 if (entry == NULL)
6132 return;
6133
6134 for_each_possible_cpu(i) {
6135 snprintf(buf, 32, "cpu%d", i);
6136 entry->procname = kstrdup(buf, GFP_KERNEL);
6137 entry->mode = 0555;
6138 entry->child = sd_alloc_ctl_cpu_table(i);
6139 entry++;
6140 }
6141
6142 WARN_ON(sd_sysctl_header);
6143 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6144 }
6145
6146 /* may be called multiple times per register */
6147 static void unregister_sched_domain_sysctl(void)
6148 {
6149 if (sd_sysctl_header)
6150 unregister_sysctl_table(sd_sysctl_header);
6151 sd_sysctl_header = NULL;
6152 if (sd_ctl_dir[0].child)
6153 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6154 }
6155 #else
6156 static void register_sched_domain_sysctl(void)
6157 {
6158 }
6159 static void unregister_sched_domain_sysctl(void)
6160 {
6161 }
6162 #endif
6163
6164 static void set_rq_online(struct rq *rq)
6165 {
6166 if (!rq->online) {
6167 const struct sched_class *class;
6168
6169 cpumask_set_cpu(rq->cpu, rq->rd->online);
6170 rq->online = 1;
6171
6172 for_each_class(class) {
6173 if (class->rq_online)
6174 class->rq_online(rq);
6175 }
6176 }
6177 }
6178
6179 static void set_rq_offline(struct rq *rq)
6180 {
6181 if (rq->online) {
6182 const struct sched_class *class;
6183
6184 for_each_class(class) {
6185 if (class->rq_offline)
6186 class->rq_offline(rq);
6187 }
6188
6189 cpumask_clear_cpu(rq->cpu, rq->rd->online);
6190 rq->online = 0;
6191 }
6192 }
6193
6194 /*
6195 * migration_call - callback that gets triggered when a CPU is added.
6196 * Here we can start up the necessary migration thread for the new CPU.
6197 */
6198 static int __cpuinit
6199 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6200 {
6201 int cpu = (long)hcpu;
6202 unsigned long flags;
6203 struct rq *rq = cpu_rq(cpu);
6204
6205 switch (action & ~CPU_TASKS_FROZEN) {
6206
6207 case CPU_UP_PREPARE:
6208 rq->calc_load_update = calc_load_update;
6209 break;
6210
6211 case CPU_ONLINE:
6212 /* Update our root-domain */
6213 raw_spin_lock_irqsave(&rq->lock, flags);
6214 if (rq->rd) {
6215 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6216
6217 set_rq_online(rq);
6218 }
6219 raw_spin_unlock_irqrestore(&rq->lock, flags);
6220 break;
6221
6222 #ifdef CONFIG_HOTPLUG_CPU
6223 case CPU_DYING:
6224 /* Update our root-domain */
6225 raw_spin_lock_irqsave(&rq->lock, flags);
6226 if (rq->rd) {
6227 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6228 set_rq_offline(rq);
6229 }
6230 migrate_tasks(cpu);
6231 BUG_ON(rq->nr_running != 1); /* the migration thread */
6232 raw_spin_unlock_irqrestore(&rq->lock, flags);
6233
6234 migrate_nr_uninterruptible(rq);
6235 calc_global_load_remove(rq);
6236 break;
6237 #endif
6238 }
6239 return NOTIFY_OK;
6240 }
6241
6242 /*
6243 * Register at high priority so that task migration (migrate_all_tasks)
6244 * happens before everything else. This has to be lower priority than
6245 * the notifier in the perf_event subsystem, though.
6246 */
6247 static struct notifier_block __cpuinitdata migration_notifier = {
6248 .notifier_call = migration_call,
6249 .priority = CPU_PRI_MIGRATION,
6250 };
6251
6252 static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
6253 unsigned long action, void *hcpu)
6254 {
6255 switch (action & ~CPU_TASKS_FROZEN) {
6256 case CPU_ONLINE:
6257 case CPU_DOWN_FAILED:
6258 set_cpu_active((long)hcpu, true);
6259 return NOTIFY_OK;
6260 default:
6261 return NOTIFY_DONE;
6262 }
6263 }
6264
6265 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
6266 unsigned long action, void *hcpu)
6267 {
6268 switch (action & ~CPU_TASKS_FROZEN) {
6269 case CPU_DOWN_PREPARE:
6270 set_cpu_active((long)hcpu, false);
6271 return NOTIFY_OK;
6272 default:
6273 return NOTIFY_DONE;
6274 }
6275 }
6276
6277 static int __init migration_init(void)
6278 {
6279 void *cpu = (void *)(long)smp_processor_id();
6280 int err;
6281
6282 /* Initialize migration for the boot CPU */
6283 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6284 BUG_ON(err == NOTIFY_BAD);
6285 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6286 register_cpu_notifier(&migration_notifier);
6287
6288 /* Register cpu active notifiers */
6289 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6290 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6291
6292 return 0;
6293 }
6294 early_initcall(migration_init);
6295 #endif
6296
6297 #ifdef CONFIG_SMP
6298
6299 #ifdef CONFIG_SCHED_DEBUG
6300
6301 static __read_mostly int sched_domain_debug_enabled;
6302
6303 static int __init sched_domain_debug_setup(char *str)
6304 {
6305 sched_domain_debug_enabled = 1;
6306
6307 return 0;
6308 }
6309 early_param("sched_debug", sched_domain_debug_setup);
6310
6311 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6312 struct cpumask *groupmask)
6313 {
6314 struct sched_group *group = sd->groups;
6315 char str[256];
6316
6317 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6318 cpumask_clear(groupmask);
6319
6320 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6321
6322 if (!(sd->flags & SD_LOAD_BALANCE)) {
6323 printk("does not load-balance\n");
6324 if (sd->parent)
6325 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6326 " has parent");
6327 return -1;
6328 }
6329
6330 printk(KERN_CONT "span %s level %s\n", str, sd->name);
6331
6332 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
6333 printk(KERN_ERR "ERROR: domain->span does not contain "
6334 "CPU%d\n", cpu);
6335 }
6336 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
6337 printk(KERN_ERR "ERROR: domain->groups does not contain"
6338 " CPU%d\n", cpu);
6339 }
6340
6341 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6342 do {
6343 if (!group) {
6344 printk("\n");
6345 printk(KERN_ERR "ERROR: group is NULL\n");
6346 break;
6347 }
6348
6349 if (!group->cpu_power) {
6350 printk(KERN_CONT "\n");
6351 printk(KERN_ERR "ERROR: domain->cpu_power not "
6352 "set\n");
6353 break;
6354 }
6355
6356 if (!cpumask_weight(sched_group_cpus(group))) {
6357 printk(KERN_CONT "\n");
6358 printk(KERN_ERR "ERROR: empty group\n");
6359 break;
6360 }
6361
6362 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
6363 printk(KERN_CONT "\n");
6364 printk(KERN_ERR "ERROR: repeated CPUs\n");
6365 break;
6366 }
6367
6368 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
6369
6370 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6371
6372 printk(KERN_CONT " %s", str);
6373 if (group->cpu_power != SCHED_LOAD_SCALE) {
6374 printk(KERN_CONT " (cpu_power = %d)",
6375 group->cpu_power);
6376 }
6377
6378 group = group->next;
6379 } while (group != sd->groups);
6380 printk(KERN_CONT "\n");
6381
6382 if (!cpumask_equal(sched_domain_span(sd), groupmask))
6383 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6384
6385 if (sd->parent &&
6386 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
6387 printk(KERN_ERR "ERROR: parent span is not a superset "
6388 "of domain->span\n");
6389 return 0;
6390 }
6391
6392 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6393 {
6394 cpumask_var_t groupmask;
6395 int level = 0;
6396
6397 if (!sched_domain_debug_enabled)
6398 return;
6399
6400 if (!sd) {
6401 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6402 return;
6403 }
6404
6405 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6406
6407 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6408 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6409 return;
6410 }
6411
6412 for (;;) {
6413 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6414 break;
6415 level++;
6416 sd = sd->parent;
6417 if (!sd)
6418 break;
6419 }
6420 free_cpumask_var(groupmask);
6421 }
6422 #else /* !CONFIG_SCHED_DEBUG */
6423 # define sched_domain_debug(sd, cpu) do { } while (0)
6424 #endif /* CONFIG_SCHED_DEBUG */
6425
6426 static int sd_degenerate(struct sched_domain *sd)
6427 {
6428 if (cpumask_weight(sched_domain_span(sd)) == 1)
6429 return 1;
6430
6431 /* Following flags need at least 2 groups */
6432 if (sd->flags & (SD_LOAD_BALANCE |
6433 SD_BALANCE_NEWIDLE |
6434 SD_BALANCE_FORK |
6435 SD_BALANCE_EXEC |
6436 SD_SHARE_CPUPOWER |
6437 SD_SHARE_PKG_RESOURCES)) {
6438 if (sd->groups != sd->groups->next)
6439 return 0;
6440 }
6441
6442 /* Following flags don't use groups */
6443 if (sd->flags & (SD_WAKE_AFFINE))
6444 return 0;
6445
6446 return 1;
6447 }
6448
6449 static int
6450 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6451 {
6452 unsigned long cflags = sd->flags, pflags = parent->flags;
6453
6454 if (sd_degenerate(parent))
6455 return 1;
6456
6457 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6458 return 0;
6459
6460 /* Flags needing groups don't count if only 1 group in parent */
6461 if (parent->groups == parent->groups->next) {
6462 pflags &= ~(SD_LOAD_BALANCE |
6463 SD_BALANCE_NEWIDLE |
6464 SD_BALANCE_FORK |
6465 SD_BALANCE_EXEC |
6466 SD_SHARE_CPUPOWER |
6467 SD_SHARE_PKG_RESOURCES);
6468 if (nr_node_ids == 1)
6469 pflags &= ~SD_SERIALIZE;
6470 }
6471 if (~cflags & pflags)
6472 return 0;
6473
6474 return 1;
6475 }
6476
6477 static void free_rootdomain(struct root_domain *rd)
6478 {
6479 synchronize_sched();
6480
6481 cpupri_cleanup(&rd->cpupri);
6482
6483 free_cpumask_var(rd->rto_mask);
6484 free_cpumask_var(rd->online);
6485 free_cpumask_var(rd->span);
6486 kfree(rd);
6487 }
6488
6489 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6490 {
6491 struct root_domain *old_rd = NULL;
6492 unsigned long flags;
6493
6494 raw_spin_lock_irqsave(&rq->lock, flags);
6495
6496 if (rq->rd) {
6497 old_rd = rq->rd;
6498
6499 if (cpumask_test_cpu(rq->cpu, old_rd->online))
6500 set_rq_offline(rq);
6501
6502 cpumask_clear_cpu(rq->cpu, old_rd->span);
6503
6504 /*
6505 * If we dont want to free the old_rt yet then
6506 * set old_rd to NULL to skip the freeing later
6507 * in this function:
6508 */
6509 if (!atomic_dec_and_test(&old_rd->refcount))
6510 old_rd = NULL;
6511 }
6512
6513 atomic_inc(&rd->refcount);
6514 rq->rd = rd;
6515
6516 cpumask_set_cpu(rq->cpu, rd->span);
6517 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6518 set_rq_online(rq);
6519
6520 raw_spin_unlock_irqrestore(&rq->lock, flags);
6521
6522 if (old_rd)
6523 free_rootdomain(old_rd);
6524 }
6525
6526 static int init_rootdomain(struct root_domain *rd)
6527 {
6528 memset(rd, 0, sizeof(*rd));
6529
6530 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
6531 goto out;
6532 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
6533 goto free_span;
6534 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
6535 goto free_online;
6536
6537 if (cpupri_init(&rd->cpupri) != 0)
6538 goto free_rto_mask;
6539 return 0;
6540
6541 free_rto_mask:
6542 free_cpumask_var(rd->rto_mask);
6543 free_online:
6544 free_cpumask_var(rd->online);
6545 free_span:
6546 free_cpumask_var(rd->span);
6547 out:
6548 return -ENOMEM;
6549 }
6550
6551 static void init_defrootdomain(void)
6552 {
6553 init_rootdomain(&def_root_domain);
6554
6555 atomic_set(&def_root_domain.refcount, 1);
6556 }
6557
6558 static struct root_domain *alloc_rootdomain(void)
6559 {
6560 struct root_domain *rd;
6561
6562 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6563 if (!rd)
6564 return NULL;
6565
6566 if (init_rootdomain(rd) != 0) {
6567 kfree(rd);
6568 return NULL;
6569 }
6570
6571 return rd;
6572 }
6573
6574 /*
6575 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6576 * hold the hotplug lock.
6577 */
6578 static void
6579 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6580 {
6581 struct rq *rq = cpu_rq(cpu);
6582 struct sched_domain *tmp;
6583
6584 for (tmp = sd; tmp; tmp = tmp->parent)
6585 tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
6586
6587 /* Remove the sched domains which do not contribute to scheduling. */
6588 for (tmp = sd; tmp; ) {
6589 struct sched_domain *parent = tmp->parent;
6590 if (!parent)
6591 break;
6592
6593 if (sd_parent_degenerate(tmp, parent)) {
6594 tmp->parent = parent->parent;
6595 if (parent->parent)
6596 parent->parent->child = tmp;
6597 } else
6598 tmp = tmp->parent;
6599 }
6600
6601 if (sd && sd_degenerate(sd)) {
6602 sd = sd->parent;
6603 if (sd)
6604 sd->child = NULL;
6605 }
6606
6607 sched_domain_debug(sd, cpu);
6608
6609 rq_attach_root(rq, rd);
6610 rcu_assign_pointer(rq->sd, sd);
6611 }
6612
6613 /* cpus with isolated domains */
6614 static cpumask_var_t cpu_isolated_map;
6615
6616 /* Setup the mask of cpus configured for isolated domains */
6617 static int __init isolated_cpu_setup(char *str)
6618 {
6619 alloc_bootmem_cpumask_var(&cpu_isolated_map);
6620 cpulist_parse(str, cpu_isolated_map);
6621 return 1;
6622 }
6623
6624 __setup("isolcpus=", isolated_cpu_setup);
6625
6626 /*
6627 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6628 * to a function which identifies what group(along with sched group) a CPU
6629 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6630 * (due to the fact that we keep track of groups covered with a struct cpumask).
6631 *
6632 * init_sched_build_groups will build a circular linked list of the groups
6633 * covered by the given span, and will set each group's ->cpumask correctly,
6634 * and ->cpu_power to 0.
6635 */
6636 static void
6637 init_sched_build_groups(const struct cpumask *span,
6638 const struct cpumask *cpu_map,
6639 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
6640 struct sched_group **sg,
6641 struct cpumask *tmpmask),
6642 struct cpumask *covered, struct cpumask *tmpmask)
6643 {
6644 struct sched_group *first = NULL, *last = NULL;
6645 int i;
6646
6647 cpumask_clear(covered);
6648
6649 for_each_cpu(i, span) {
6650 struct sched_group *sg;
6651 int group = group_fn(i, cpu_map, &sg, tmpmask);
6652 int j;
6653
6654 if (cpumask_test_cpu(i, covered))
6655 continue;
6656
6657 cpumask_clear(sched_group_cpus(sg));
6658 sg->cpu_power = 0;
6659
6660 for_each_cpu(j, span) {
6661 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6662 continue;
6663
6664 cpumask_set_cpu(j, covered);
6665 cpumask_set_cpu(j, sched_group_cpus(sg));
6666 }
6667 if (!first)
6668 first = sg;
6669 if (last)
6670 last->next = sg;
6671 last = sg;
6672 }
6673 last->next = first;
6674 }
6675
6676 #define SD_NODES_PER_DOMAIN 16
6677
6678 #ifdef CONFIG_NUMA
6679
6680 /**
6681 * find_next_best_node - find the next node to include in a sched_domain
6682 * @node: node whose sched_domain we're building
6683 * @used_nodes: nodes already in the sched_domain
6684 *
6685 * Find the next node to include in a given scheduling domain. Simply
6686 * finds the closest node not already in the @used_nodes map.
6687 *
6688 * Should use nodemask_t.
6689 */
6690 static int find_next_best_node(int node, nodemask_t *used_nodes)
6691 {
6692 int i, n, val, min_val, best_node = 0;
6693
6694 min_val = INT_MAX;
6695
6696 for (i = 0; i < nr_node_ids; i++) {
6697 /* Start at @node */
6698 n = (node + i) % nr_node_ids;
6699
6700 if (!nr_cpus_node(n))
6701 continue;
6702
6703 /* Skip already used nodes */
6704 if (node_isset(n, *used_nodes))
6705 continue;
6706
6707 /* Simple min distance search */
6708 val = node_distance(node, n);
6709
6710 if (val < min_val) {
6711 min_val = val;
6712 best_node = n;
6713 }
6714 }
6715
6716 node_set(best_node, *used_nodes);
6717 return best_node;
6718 }
6719
6720 /**
6721 * sched_domain_node_span - get a cpumask for a node's sched_domain
6722 * @node: node whose cpumask we're constructing
6723 * @span: resulting cpumask
6724 *
6725 * Given a node, construct a good cpumask for its sched_domain to span. It
6726 * should be one that prevents unnecessary balancing, but also spreads tasks
6727 * out optimally.
6728 */
6729 static void sched_domain_node_span(int node, struct cpumask *span)
6730 {
6731 nodemask_t used_nodes;
6732 int i;
6733
6734 cpumask_clear(span);
6735 nodes_clear(used_nodes);
6736
6737 cpumask_or(span, span, cpumask_of_node(node));
6738 node_set(node, used_nodes);
6739
6740 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6741 int next_node = find_next_best_node(node, &used_nodes);
6742
6743 cpumask_or(span, span, cpumask_of_node(next_node));
6744 }
6745 }
6746 #endif /* CONFIG_NUMA */
6747
6748 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6749
6750 /*
6751 * The cpus mask in sched_group and sched_domain hangs off the end.
6752 *
6753 * ( See the the comments in include/linux/sched.h:struct sched_group
6754 * and struct sched_domain. )
6755 */
6756 struct static_sched_group {
6757 struct sched_group sg;
6758 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6759 };
6760
6761 struct static_sched_domain {
6762 struct sched_domain sd;
6763 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6764 };
6765
6766 struct s_data {
6767 #ifdef CONFIG_NUMA
6768 int sd_allnodes;
6769 cpumask_var_t domainspan;
6770 cpumask_var_t covered;
6771 cpumask_var_t notcovered;
6772 #endif
6773 cpumask_var_t nodemask;
6774 cpumask_var_t this_sibling_map;
6775 cpumask_var_t this_core_map;
6776 cpumask_var_t this_book_map;
6777 cpumask_var_t send_covered;
6778 cpumask_var_t tmpmask;
6779 struct sched_group **sched_group_nodes;
6780 struct root_domain *rd;
6781 };
6782
6783 enum s_alloc {
6784 sa_sched_groups = 0,
6785 sa_rootdomain,
6786 sa_tmpmask,
6787 sa_send_covered,
6788 sa_this_book_map,
6789 sa_this_core_map,
6790 sa_this_sibling_map,
6791 sa_nodemask,
6792 sa_sched_group_nodes,
6793 #ifdef CONFIG_NUMA
6794 sa_notcovered,
6795 sa_covered,
6796 sa_domainspan,
6797 #endif
6798 sa_none,
6799 };
6800
6801 /*
6802 * SMT sched-domains:
6803 */
6804 #ifdef CONFIG_SCHED_SMT
6805 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
6806 static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
6807
6808 static int
6809 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6810 struct sched_group **sg, struct cpumask *unused)
6811 {
6812 if (sg)
6813 *sg = &per_cpu(sched_groups, cpu).sg;
6814 return cpu;
6815 }
6816 #endif /* CONFIG_SCHED_SMT */
6817
6818 /*
6819 * multi-core sched-domains:
6820 */
6821 #ifdef CONFIG_SCHED_MC
6822 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6823 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6824
6825 static int
6826 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6827 struct sched_group **sg, struct cpumask *mask)
6828 {
6829 int group;
6830 #ifdef CONFIG_SCHED_SMT
6831 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6832 group = cpumask_first(mask);
6833 #else
6834 group = cpu;
6835 #endif
6836 if (sg)
6837 *sg = &per_cpu(sched_group_core, group).sg;
6838 return group;
6839 }
6840 #endif /* CONFIG_SCHED_MC */
6841
6842 /*
6843 * book sched-domains:
6844 */
6845 #ifdef CONFIG_SCHED_BOOK
6846 static DEFINE_PER_CPU(struct static_sched_domain, book_domains);
6847 static DEFINE_PER_CPU(struct static_sched_group, sched_group_book);
6848
6849 static int
6850 cpu_to_book_group(int cpu, const struct cpumask *cpu_map,
6851 struct sched_group **sg, struct cpumask *mask)
6852 {
6853 int group = cpu;
6854 #ifdef CONFIG_SCHED_MC
6855 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6856 group = cpumask_first(mask);
6857 #elif defined(CONFIG_SCHED_SMT)
6858 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6859 group = cpumask_first(mask);
6860 #endif
6861 if (sg)
6862 *sg = &per_cpu(sched_group_book, group).sg;
6863 return group;
6864 }
6865 #endif /* CONFIG_SCHED_BOOK */
6866
6867 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6868 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
6869
6870 static int
6871 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6872 struct sched_group **sg, struct cpumask *mask)
6873 {
6874 int group;
6875 #ifdef CONFIG_SCHED_BOOK
6876 cpumask_and(mask, cpu_book_mask(cpu), cpu_map);
6877 group = cpumask_first(mask);
6878 #elif defined(CONFIG_SCHED_MC)
6879 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6880 group = cpumask_first(mask);
6881 #elif defined(CONFIG_SCHED_SMT)
6882 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6883 group = cpumask_first(mask);
6884 #else
6885 group = cpu;
6886 #endif
6887 if (sg)
6888 *sg = &per_cpu(sched_group_phys, group).sg;
6889 return group;
6890 }
6891
6892 #ifdef CONFIG_NUMA
6893 /*
6894 * The init_sched_build_groups can't handle what we want to do with node
6895 * groups, so roll our own. Now each node has its own list of groups which
6896 * gets dynamically allocated.
6897 */
6898 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
6899 static struct sched_group ***sched_group_nodes_bycpu;
6900
6901 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6902 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
6903
6904 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6905 struct sched_group **sg,
6906 struct cpumask *nodemask)
6907 {
6908 int group;
6909
6910 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
6911 group = cpumask_first(nodemask);
6912
6913 if (sg)
6914 *sg = &per_cpu(sched_group_allnodes, group).sg;
6915 return group;
6916 }
6917
6918 static void init_numa_sched_groups_power(struct sched_group *group_head)
6919 {
6920 struct sched_group *sg = group_head;
6921 int j;
6922
6923 if (!sg)
6924 return;
6925 do {
6926 for_each_cpu(j, sched_group_cpus(sg)) {
6927 struct sched_domain *sd;
6928
6929 sd = &per_cpu(phys_domains, j).sd;
6930 if (j != group_first_cpu(sd->groups)) {
6931 /*
6932 * Only add "power" once for each
6933 * physical package.
6934 */
6935 continue;
6936 }
6937
6938 sg->cpu_power += sd->groups->cpu_power;
6939 }
6940 sg = sg->next;
6941 } while (sg != group_head);
6942 }
6943
6944 static int build_numa_sched_groups(struct s_data *d,
6945 const struct cpumask *cpu_map, int num)
6946 {
6947 struct sched_domain *sd;
6948 struct sched_group *sg, *prev;
6949 int n, j;
6950
6951 cpumask_clear(d->covered);
6952 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
6953 if (cpumask_empty(d->nodemask)) {
6954 d->sched_group_nodes[num] = NULL;
6955 goto out;
6956 }
6957
6958 sched_domain_node_span(num, d->domainspan);
6959 cpumask_and(d->domainspan, d->domainspan, cpu_map);
6960
6961 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6962 GFP_KERNEL, num);
6963 if (!sg) {
6964 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
6965 num);
6966 return -ENOMEM;
6967 }
6968 d->sched_group_nodes[num] = sg;
6969
6970 for_each_cpu(j, d->nodemask) {
6971 sd = &per_cpu(node_domains, j).sd;
6972 sd->groups = sg;
6973 }
6974
6975 sg->cpu_power = 0;
6976 cpumask_copy(sched_group_cpus(sg), d->nodemask);
6977 sg->next = sg;
6978 cpumask_or(d->covered, d->covered, d->nodemask);
6979
6980 prev = sg;
6981 for (j = 0; j < nr_node_ids; j++) {
6982 n = (num + j) % nr_node_ids;
6983 cpumask_complement(d->notcovered, d->covered);
6984 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
6985 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
6986 if (cpumask_empty(d->tmpmask))
6987 break;
6988 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
6989 if (cpumask_empty(d->tmpmask))
6990 continue;
6991 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6992 GFP_KERNEL, num);
6993 if (!sg) {
6994 printk(KERN_WARNING
6995 "Can not alloc domain group for node %d\n", j);
6996 return -ENOMEM;
6997 }
6998 sg->cpu_power = 0;
6999 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
7000 sg->next = prev->next;
7001 cpumask_or(d->covered, d->covered, d->tmpmask);
7002 prev->next = sg;
7003 prev = sg;
7004 }
7005 out:
7006 return 0;
7007 }
7008 #endif /* CONFIG_NUMA */
7009
7010 #ifdef CONFIG_NUMA
7011 /* Free memory allocated for various sched_group structures */
7012 static void free_sched_groups(const struct cpumask *cpu_map,
7013 struct cpumask *nodemask)
7014 {
7015 int cpu, i;
7016
7017 for_each_cpu(cpu, cpu_map) {
7018 struct sched_group **sched_group_nodes
7019 = sched_group_nodes_bycpu[cpu];
7020
7021 if (!sched_group_nodes)
7022 continue;
7023
7024 for (i = 0; i < nr_node_ids; i++) {
7025 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7026
7027 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7028 if (cpumask_empty(nodemask))
7029 continue;
7030
7031 if (sg == NULL)
7032 continue;
7033 sg = sg->next;
7034 next_sg:
7035 oldsg = sg;
7036 sg = sg->next;
7037 kfree(oldsg);
7038 if (oldsg != sched_group_nodes[i])
7039 goto next_sg;
7040 }
7041 kfree(sched_group_nodes);
7042 sched_group_nodes_bycpu[cpu] = NULL;
7043 }
7044 }
7045 #else /* !CONFIG_NUMA */
7046 static void free_sched_groups(const struct cpumask *cpu_map,
7047 struct cpumask *nodemask)
7048 {
7049 }
7050 #endif /* CONFIG_NUMA */
7051
7052 /*
7053 * Initialize sched groups cpu_power.
7054 *
7055 * cpu_power indicates the capacity of sched group, which is used while
7056 * distributing the load between different sched groups in a sched domain.
7057 * Typically cpu_power for all the groups in a sched domain will be same unless
7058 * there are asymmetries in the topology. If there are asymmetries, group
7059 * having more cpu_power will pickup more load compared to the group having
7060 * less cpu_power.
7061 */
7062 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7063 {
7064 struct sched_domain *child;
7065 struct sched_group *group;
7066 long power;
7067 int weight;
7068
7069 WARN_ON(!sd || !sd->groups);
7070
7071 if (cpu != group_first_cpu(sd->groups))
7072 return;
7073
7074 sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups));
7075
7076 child = sd->child;
7077
7078 sd->groups->cpu_power = 0;
7079
7080 if (!child) {
7081 power = SCHED_LOAD_SCALE;
7082 weight = cpumask_weight(sched_domain_span(sd));
7083 /*
7084 * SMT siblings share the power of a single core.
7085 * Usually multiple threads get a better yield out of
7086 * that one core than a single thread would have,
7087 * reflect that in sd->smt_gain.
7088 */
7089 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
7090 power *= sd->smt_gain;
7091 power /= weight;
7092 power >>= SCHED_LOAD_SHIFT;
7093 }
7094 sd->groups->cpu_power += power;
7095 return;
7096 }
7097
7098 /*
7099 * Add cpu_power of each child group to this groups cpu_power.
7100 */
7101 group = child->groups;
7102 do {
7103 sd->groups->cpu_power += group->cpu_power;
7104 group = group->next;
7105 } while (group != child->groups);
7106 }
7107
7108 /*
7109 * Initializers for schedule domains
7110 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7111 */
7112
7113 #ifdef CONFIG_SCHED_DEBUG
7114 # define SD_INIT_NAME(sd, type) sd->name = #type
7115 #else
7116 # define SD_INIT_NAME(sd, type) do { } while (0)
7117 #endif
7118
7119 #define SD_INIT(sd, type) sd_init_##type(sd)
7120
7121 #define SD_INIT_FUNC(type) \
7122 static noinline void sd_init_##type(struct sched_domain *sd) \
7123 { \
7124 memset(sd, 0, sizeof(*sd)); \
7125 *sd = SD_##type##_INIT; \
7126 sd->level = SD_LV_##type; \
7127 SD_INIT_NAME(sd, type); \
7128 }
7129
7130 SD_INIT_FUNC(CPU)
7131 #ifdef CONFIG_NUMA
7132 SD_INIT_FUNC(ALLNODES)
7133 SD_INIT_FUNC(NODE)
7134 #endif
7135 #ifdef CONFIG_SCHED_SMT
7136 SD_INIT_FUNC(SIBLING)
7137 #endif
7138 #ifdef CONFIG_SCHED_MC
7139 SD_INIT_FUNC(MC)
7140 #endif
7141 #ifdef CONFIG_SCHED_BOOK
7142 SD_INIT_FUNC(BOOK)
7143 #endif
7144
7145 static int default_relax_domain_level = -1;
7146
7147 static int __init setup_relax_domain_level(char *str)
7148 {
7149 unsigned long val;
7150
7151 val = simple_strtoul(str, NULL, 0);
7152 if (val < SD_LV_MAX)
7153 default_relax_domain_level = val;
7154
7155 return 1;
7156 }
7157 __setup("relax_domain_level=", setup_relax_domain_level);
7158
7159 static void set_domain_attribute(struct sched_domain *sd,
7160 struct sched_domain_attr *attr)
7161 {
7162 int request;
7163
7164 if (!attr || attr->relax_domain_level < 0) {
7165 if (default_relax_domain_level < 0)
7166 return;
7167 else
7168 request = default_relax_domain_level;
7169 } else
7170 request = attr->relax_domain_level;
7171 if (request < sd->level) {
7172 /* turn off idle balance on this domain */
7173 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7174 } else {
7175 /* turn on idle balance on this domain */
7176 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7177 }
7178 }
7179
7180 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
7181 const struct cpumask *cpu_map)
7182 {
7183 switch (what) {
7184 case sa_sched_groups:
7185 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
7186 d->sched_group_nodes = NULL;
7187 case sa_rootdomain:
7188 free_rootdomain(d->rd); /* fall through */
7189 case sa_tmpmask:
7190 free_cpumask_var(d->tmpmask); /* fall through */
7191 case sa_send_covered:
7192 free_cpumask_var(d->send_covered); /* fall through */
7193 case sa_this_book_map:
7194 free_cpumask_var(d->this_book_map); /* fall through */
7195 case sa_this_core_map:
7196 free_cpumask_var(d->this_core_map); /* fall through */
7197 case sa_this_sibling_map:
7198 free_cpumask_var(d->this_sibling_map); /* fall through */
7199 case sa_nodemask:
7200 free_cpumask_var(d->nodemask); /* fall through */
7201 case sa_sched_group_nodes:
7202 #ifdef CONFIG_NUMA
7203 kfree(d->sched_group_nodes); /* fall through */
7204 case sa_notcovered:
7205 free_cpumask_var(d->notcovered); /* fall through */
7206 case sa_covered:
7207 free_cpumask_var(d->covered); /* fall through */
7208 case sa_domainspan:
7209 free_cpumask_var(d->domainspan); /* fall through */
7210 #endif
7211 case sa_none:
7212 break;
7213 }
7214 }
7215
7216 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
7217 const struct cpumask *cpu_map)
7218 {
7219 #ifdef CONFIG_NUMA
7220 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
7221 return sa_none;
7222 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
7223 return sa_domainspan;
7224 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
7225 return sa_covered;
7226 /* Allocate the per-node list of sched groups */
7227 d->sched_group_nodes = kcalloc(nr_node_ids,
7228 sizeof(struct sched_group *), GFP_KERNEL);
7229 if (!d->sched_group_nodes) {
7230 printk(KERN_WARNING "Can not alloc sched group node list\n");
7231 return sa_notcovered;
7232 }
7233 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
7234 #endif
7235 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
7236 return sa_sched_group_nodes;
7237 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
7238 return sa_nodemask;
7239 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
7240 return sa_this_sibling_map;
7241 if (!alloc_cpumask_var(&d->this_book_map, GFP_KERNEL))
7242 return sa_this_core_map;
7243 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
7244 return sa_this_book_map;
7245 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
7246 return sa_send_covered;
7247 d->rd = alloc_rootdomain();
7248 if (!d->rd) {
7249 printk(KERN_WARNING "Cannot alloc root domain\n");
7250 return sa_tmpmask;
7251 }
7252 return sa_rootdomain;
7253 }
7254
7255 static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
7256 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
7257 {
7258 struct sched_domain *sd = NULL;
7259 #ifdef CONFIG_NUMA
7260 struct sched_domain *parent;
7261
7262 d->sd_allnodes = 0;
7263 if (cpumask_weight(cpu_map) >
7264 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
7265 sd = &per_cpu(allnodes_domains, i).sd;
7266 SD_INIT(sd, ALLNODES);
7267 set_domain_attribute(sd, attr);
7268 cpumask_copy(sched_domain_span(sd), cpu_map);
7269 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
7270 d->sd_allnodes = 1;
7271 }
7272 parent = sd;
7273
7274 sd = &per_cpu(node_domains, i).sd;
7275 SD_INIT(sd, NODE);
7276 set_domain_attribute(sd, attr);
7277 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
7278 sd->parent = parent;
7279 if (parent)
7280 parent->child = sd;
7281 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
7282 #endif
7283 return sd;
7284 }
7285
7286 static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
7287 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7288 struct sched_domain *parent, int i)
7289 {
7290 struct sched_domain *sd;
7291 sd = &per_cpu(phys_domains, i).sd;
7292 SD_INIT(sd, CPU);
7293 set_domain_attribute(sd, attr);
7294 cpumask_copy(sched_domain_span(sd), d->nodemask);
7295 sd->parent = parent;
7296 if (parent)
7297 parent->child = sd;
7298 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
7299 return sd;
7300 }
7301
7302 static struct sched_domain *__build_book_sched_domain(struct s_data *d,
7303 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7304 struct sched_domain *parent, int i)
7305 {
7306 struct sched_domain *sd = parent;
7307 #ifdef CONFIG_SCHED_BOOK
7308 sd = &per_cpu(book_domains, i).sd;
7309 SD_INIT(sd, BOOK);
7310 set_domain_attribute(sd, attr);
7311 cpumask_and(sched_domain_span(sd), cpu_map, cpu_book_mask(i));
7312 sd->parent = parent;
7313 parent->child = sd;
7314 cpu_to_book_group(i, cpu_map, &sd->groups, d->tmpmask);
7315 #endif
7316 return sd;
7317 }
7318
7319 static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
7320 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7321 struct sched_domain *parent, int i)
7322 {
7323 struct sched_domain *sd = parent;
7324 #ifdef CONFIG_SCHED_MC
7325 sd = &per_cpu(core_domains, i).sd;
7326 SD_INIT(sd, MC);
7327 set_domain_attribute(sd, attr);
7328 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
7329 sd->parent = parent;
7330 parent->child = sd;
7331 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
7332 #endif
7333 return sd;
7334 }
7335
7336 static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
7337 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7338 struct sched_domain *parent, int i)
7339 {
7340 struct sched_domain *sd = parent;
7341 #ifdef CONFIG_SCHED_SMT
7342 sd = &per_cpu(cpu_domains, i).sd;
7343 SD_INIT(sd, SIBLING);
7344 set_domain_attribute(sd, attr);
7345 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
7346 sd->parent = parent;
7347 parent->child = sd;
7348 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
7349 #endif
7350 return sd;
7351 }
7352
7353 static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
7354 const struct cpumask *cpu_map, int cpu)
7355 {
7356 switch (l) {
7357 #ifdef CONFIG_SCHED_SMT
7358 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
7359 cpumask_and(d->this_sibling_map, cpu_map,
7360 topology_thread_cpumask(cpu));
7361 if (cpu == cpumask_first(d->this_sibling_map))
7362 init_sched_build_groups(d->this_sibling_map, cpu_map,
7363 &cpu_to_cpu_group,
7364 d->send_covered, d->tmpmask);
7365 break;
7366 #endif
7367 #ifdef CONFIG_SCHED_MC
7368 case SD_LV_MC: /* set up multi-core groups */
7369 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
7370 if (cpu == cpumask_first(d->this_core_map))
7371 init_sched_build_groups(d->this_core_map, cpu_map,
7372 &cpu_to_core_group,
7373 d->send_covered, d->tmpmask);
7374 break;
7375 #endif
7376 #ifdef CONFIG_SCHED_BOOK
7377 case SD_LV_BOOK: /* set up book groups */
7378 cpumask_and(d->this_book_map, cpu_map, cpu_book_mask(cpu));
7379 if (cpu == cpumask_first(d->this_book_map))
7380 init_sched_build_groups(d->this_book_map, cpu_map,
7381 &cpu_to_book_group,
7382 d->send_covered, d->tmpmask);
7383 break;
7384 #endif
7385 case SD_LV_CPU: /* set up physical groups */
7386 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
7387 if (!cpumask_empty(d->nodemask))
7388 init_sched_build_groups(d->nodemask, cpu_map,
7389 &cpu_to_phys_group,
7390 d->send_covered, d->tmpmask);
7391 break;
7392 #ifdef CONFIG_NUMA
7393 case SD_LV_ALLNODES:
7394 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
7395 d->send_covered, d->tmpmask);
7396 break;
7397 #endif
7398 default:
7399 break;
7400 }
7401 }
7402
7403 /*
7404 * Build sched domains for a given set of cpus and attach the sched domains
7405 * to the individual cpus
7406 */
7407 static int __build_sched_domains(const struct cpumask *cpu_map,
7408 struct sched_domain_attr *attr)
7409 {
7410 enum s_alloc alloc_state = sa_none;
7411 struct s_data d;
7412 struct sched_domain *sd;
7413 int i;
7414 #ifdef CONFIG_NUMA
7415 d.sd_allnodes = 0;
7416 #endif
7417
7418 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7419 if (alloc_state != sa_rootdomain)
7420 goto error;
7421 alloc_state = sa_sched_groups;
7422
7423 /*
7424 * Set up domains for cpus specified by the cpu_map.
7425 */
7426 for_each_cpu(i, cpu_map) {
7427 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
7428 cpu_map);
7429
7430 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
7431 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
7432 sd = __build_book_sched_domain(&d, cpu_map, attr, sd, i);
7433 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
7434 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
7435 }
7436
7437 for_each_cpu(i, cpu_map) {
7438 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
7439 build_sched_groups(&d, SD_LV_BOOK, cpu_map, i);
7440 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
7441 }
7442
7443 /* Set up physical groups */
7444 for (i = 0; i < nr_node_ids; i++)
7445 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
7446
7447 #ifdef CONFIG_NUMA
7448 /* Set up node groups */
7449 if (d.sd_allnodes)
7450 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
7451
7452 for (i = 0; i < nr_node_ids; i++)
7453 if (build_numa_sched_groups(&d, cpu_map, i))
7454 goto error;
7455 #endif
7456
7457 /* Calculate CPU power for physical packages and nodes */
7458 #ifdef CONFIG_SCHED_SMT
7459 for_each_cpu(i, cpu_map) {
7460 sd = &per_cpu(cpu_domains, i).sd;
7461 init_sched_groups_power(i, sd);
7462 }
7463 #endif
7464 #ifdef CONFIG_SCHED_MC
7465 for_each_cpu(i, cpu_map) {
7466 sd = &per_cpu(core_domains, i).sd;
7467 init_sched_groups_power(i, sd);
7468 }
7469 #endif
7470 #ifdef CONFIG_SCHED_BOOK
7471 for_each_cpu(i, cpu_map) {
7472 sd = &per_cpu(book_domains, i).sd;
7473 init_sched_groups_power(i, sd);
7474 }
7475 #endif
7476
7477 for_each_cpu(i, cpu_map) {
7478 sd = &per_cpu(phys_domains, i).sd;
7479 init_sched_groups_power(i, sd);
7480 }
7481
7482 #ifdef CONFIG_NUMA
7483 for (i = 0; i < nr_node_ids; i++)
7484 init_numa_sched_groups_power(d.sched_group_nodes[i]);
7485
7486 if (d.sd_allnodes) {
7487 struct sched_group *sg;
7488
7489 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7490 d.tmpmask);
7491 init_numa_sched_groups_power(sg);
7492 }
7493 #endif
7494
7495 /* Attach the domains */
7496 for_each_cpu(i, cpu_map) {
7497 #ifdef CONFIG_SCHED_SMT
7498 sd = &per_cpu(cpu_domains, i).sd;
7499 #elif defined(CONFIG_SCHED_MC)
7500 sd = &per_cpu(core_domains, i).sd;
7501 #elif defined(CONFIG_SCHED_BOOK)
7502 sd = &per_cpu(book_domains, i).sd;
7503 #else
7504 sd = &per_cpu(phys_domains, i).sd;
7505 #endif
7506 cpu_attach_domain(sd, d.rd, i);
7507 }
7508
7509 d.sched_group_nodes = NULL; /* don't free this we still need it */
7510 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7511 return 0;
7512
7513 error:
7514 __free_domain_allocs(&d, alloc_state, cpu_map);
7515 return -ENOMEM;
7516 }
7517
7518 static int build_sched_domains(const struct cpumask *cpu_map)
7519 {
7520 return __build_sched_domains(cpu_map, NULL);
7521 }
7522
7523 static cpumask_var_t *doms_cur; /* current sched domains */
7524 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7525 static struct sched_domain_attr *dattr_cur;
7526 /* attribues of custom domains in 'doms_cur' */
7527
7528 /*
7529 * Special case: If a kmalloc of a doms_cur partition (array of
7530 * cpumask) fails, then fallback to a single sched domain,
7531 * as determined by the single cpumask fallback_doms.
7532 */
7533 static cpumask_var_t fallback_doms;
7534
7535 /*
7536 * arch_update_cpu_topology lets virtualized architectures update the
7537 * cpu core maps. It is supposed to return 1 if the topology changed
7538 * or 0 if it stayed the same.
7539 */
7540 int __attribute__((weak)) arch_update_cpu_topology(void)
7541 {
7542 return 0;
7543 }
7544
7545 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7546 {
7547 int i;
7548 cpumask_var_t *doms;
7549
7550 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7551 if (!doms)
7552 return NULL;
7553 for (i = 0; i < ndoms; i++) {
7554 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7555 free_sched_domains(doms, i);
7556 return NULL;
7557 }
7558 }
7559 return doms;
7560 }
7561
7562 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7563 {
7564 unsigned int i;
7565 for (i = 0; i < ndoms; i++)
7566 free_cpumask_var(doms[i]);
7567 kfree(doms);
7568 }
7569
7570 /*
7571 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7572 * For now this just excludes isolated cpus, but could be used to
7573 * exclude other special cases in the future.
7574 */
7575 static int arch_init_sched_domains(const struct cpumask *cpu_map)
7576 {
7577 int err;
7578
7579 arch_update_cpu_topology();
7580 ndoms_cur = 1;
7581 doms_cur = alloc_sched_domains(ndoms_cur);
7582 if (!doms_cur)
7583 doms_cur = &fallback_doms;
7584 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7585 dattr_cur = NULL;
7586 err = build_sched_domains(doms_cur[0]);
7587 register_sched_domain_sysctl();
7588
7589 return err;
7590 }
7591
7592 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7593 struct cpumask *tmpmask)
7594 {
7595 free_sched_groups(cpu_map, tmpmask);
7596 }
7597
7598 /*
7599 * Detach sched domains from a group of cpus specified in cpu_map
7600 * These cpus will now be attached to the NULL domain
7601 */
7602 static void detach_destroy_domains(const struct cpumask *cpu_map)
7603 {
7604 /* Save because hotplug lock held. */
7605 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7606 int i;
7607
7608 for_each_cpu(i, cpu_map)
7609 cpu_attach_domain(NULL, &def_root_domain, i);
7610 synchronize_sched();
7611 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7612 }
7613
7614 /* handle null as "default" */
7615 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7616 struct sched_domain_attr *new, int idx_new)
7617 {
7618 struct sched_domain_attr tmp;
7619
7620 /* fast path */
7621 if (!new && !cur)
7622 return 1;
7623
7624 tmp = SD_ATTR_INIT;
7625 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7626 new ? (new + idx_new) : &tmp,
7627 sizeof(struct sched_domain_attr));
7628 }
7629
7630 /*
7631 * Partition sched domains as specified by the 'ndoms_new'
7632 * cpumasks in the array doms_new[] of cpumasks. This compares
7633 * doms_new[] to the current sched domain partitioning, doms_cur[].
7634 * It destroys each deleted domain and builds each new domain.
7635 *
7636 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7637 * The masks don't intersect (don't overlap.) We should setup one
7638 * sched domain for each mask. CPUs not in any of the cpumasks will
7639 * not be load balanced. If the same cpumask appears both in the
7640 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7641 * it as it is.
7642 *
7643 * The passed in 'doms_new' should be allocated using
7644 * alloc_sched_domains. This routine takes ownership of it and will
7645 * free_sched_domains it when done with it. If the caller failed the
7646 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7647 * and partition_sched_domains() will fallback to the single partition
7648 * 'fallback_doms', it also forces the domains to be rebuilt.
7649 *
7650 * If doms_new == NULL it will be replaced with cpu_online_mask.
7651 * ndoms_new == 0 is a special case for destroying existing domains,
7652 * and it will not create the default domain.
7653 *
7654 * Call with hotplug lock held
7655 */
7656 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7657 struct sched_domain_attr *dattr_new)
7658 {
7659 int i, j, n;
7660 int new_topology;
7661
7662 mutex_lock(&sched_domains_mutex);
7663
7664 /* always unregister in case we don't destroy any domains */
7665 unregister_sched_domain_sysctl();
7666
7667 /* Let architecture update cpu core mappings. */
7668 new_topology = arch_update_cpu_topology();
7669
7670 n = doms_new ? ndoms_new : 0;
7671
7672 /* Destroy deleted domains */
7673 for (i = 0; i < ndoms_cur; i++) {
7674 for (j = 0; j < n && !new_topology; j++) {
7675 if (cpumask_equal(doms_cur[i], doms_new[j])
7676 && dattrs_equal(dattr_cur, i, dattr_new, j))
7677 goto match1;
7678 }
7679 /* no match - a current sched domain not in new doms_new[] */
7680 detach_destroy_domains(doms_cur[i]);
7681 match1:
7682 ;
7683 }
7684
7685 if (doms_new == NULL) {
7686 ndoms_cur = 0;
7687 doms_new = &fallback_doms;
7688 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7689 WARN_ON_ONCE(dattr_new);
7690 }
7691
7692 /* Build new domains */
7693 for (i = 0; i < ndoms_new; i++) {
7694 for (j = 0; j < ndoms_cur && !new_topology; j++) {
7695 if (cpumask_equal(doms_new[i], doms_cur[j])
7696 && dattrs_equal(dattr_new, i, dattr_cur, j))
7697 goto match2;
7698 }
7699 /* no match - add a new doms_new */
7700 __build_sched_domains(doms_new[i],
7701 dattr_new ? dattr_new + i : NULL);
7702 match2:
7703 ;
7704 }
7705
7706 /* Remember the new sched domains */
7707 if (doms_cur != &fallback_doms)
7708 free_sched_domains(doms_cur, ndoms_cur);
7709 kfree(dattr_cur); /* kfree(NULL) is safe */
7710 doms_cur = doms_new;
7711 dattr_cur = dattr_new;
7712 ndoms_cur = ndoms_new;
7713
7714 register_sched_domain_sysctl();
7715
7716 mutex_unlock(&sched_domains_mutex);
7717 }
7718
7719 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7720 static void arch_reinit_sched_domains(void)
7721 {
7722 get_online_cpus();
7723
7724 /* Destroy domains first to force the rebuild */
7725 partition_sched_domains(0, NULL, NULL);
7726
7727 rebuild_sched_domains();
7728 put_online_cpus();
7729 }
7730
7731 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7732 {
7733 unsigned int level = 0;
7734
7735 if (sscanf(buf, "%u", &level) != 1)
7736 return -EINVAL;
7737
7738 /*
7739 * level is always be positive so don't check for
7740 * level < POWERSAVINGS_BALANCE_NONE which is 0
7741 * What happens on 0 or 1 byte write,
7742 * need to check for count as well?
7743 */
7744
7745 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7746 return -EINVAL;
7747
7748 if (smt)
7749 sched_smt_power_savings = level;
7750 else
7751 sched_mc_power_savings = level;
7752
7753 arch_reinit_sched_domains();
7754
7755 return count;
7756 }
7757
7758 #ifdef CONFIG_SCHED_MC
7759 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7760 struct sysdev_class_attribute *attr,
7761 char *page)
7762 {
7763 return sprintf(page, "%u\n", sched_mc_power_savings);
7764 }
7765 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7766 struct sysdev_class_attribute *attr,
7767 const char *buf, size_t count)
7768 {
7769 return sched_power_savings_store(buf, count, 0);
7770 }
7771 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7772 sched_mc_power_savings_show,
7773 sched_mc_power_savings_store);
7774 #endif
7775
7776 #ifdef CONFIG_SCHED_SMT
7777 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7778 struct sysdev_class_attribute *attr,
7779 char *page)
7780 {
7781 return sprintf(page, "%u\n", sched_smt_power_savings);
7782 }
7783 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7784 struct sysdev_class_attribute *attr,
7785 const char *buf, size_t count)
7786 {
7787 return sched_power_savings_store(buf, count, 1);
7788 }
7789 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7790 sched_smt_power_savings_show,
7791 sched_smt_power_savings_store);
7792 #endif
7793
7794 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7795 {
7796 int err = 0;
7797
7798 #ifdef CONFIG_SCHED_SMT
7799 if (smt_capable())
7800 err = sysfs_create_file(&cls->kset.kobj,
7801 &attr_sched_smt_power_savings.attr);
7802 #endif
7803 #ifdef CONFIG_SCHED_MC
7804 if (!err && mc_capable())
7805 err = sysfs_create_file(&cls->kset.kobj,
7806 &attr_sched_mc_power_savings.attr);
7807 #endif
7808 return err;
7809 }
7810 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7811
7812 /*
7813 * Update cpusets according to cpu_active mask. If cpusets are
7814 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7815 * around partition_sched_domains().
7816 */
7817 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7818 void *hcpu)
7819 {
7820 switch (action & ~CPU_TASKS_FROZEN) {
7821 case CPU_ONLINE:
7822 case CPU_DOWN_FAILED:
7823 cpuset_update_active_cpus();
7824 return NOTIFY_OK;
7825 default:
7826 return NOTIFY_DONE;
7827 }
7828 }
7829
7830 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7831 void *hcpu)
7832 {
7833 switch (action & ~CPU_TASKS_FROZEN) {
7834 case CPU_DOWN_PREPARE:
7835 cpuset_update_active_cpus();
7836 return NOTIFY_OK;
7837 default:
7838 return NOTIFY_DONE;
7839 }
7840 }
7841
7842 static int update_runtime(struct notifier_block *nfb,
7843 unsigned long action, void *hcpu)
7844 {
7845 int cpu = (int)(long)hcpu;
7846
7847 switch (action) {
7848 case CPU_DOWN_PREPARE:
7849 case CPU_DOWN_PREPARE_FROZEN:
7850 disable_runtime(cpu_rq(cpu));
7851 return NOTIFY_OK;
7852
7853 case CPU_DOWN_FAILED:
7854 case CPU_DOWN_FAILED_FROZEN:
7855 case CPU_ONLINE:
7856 case CPU_ONLINE_FROZEN:
7857 enable_runtime(cpu_rq(cpu));
7858 return NOTIFY_OK;
7859
7860 default:
7861 return NOTIFY_DONE;
7862 }
7863 }
7864
7865 void __init sched_init_smp(void)
7866 {
7867 cpumask_var_t non_isolated_cpus;
7868
7869 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7870 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7871
7872 #if defined(CONFIG_NUMA)
7873 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7874 GFP_KERNEL);
7875 BUG_ON(sched_group_nodes_bycpu == NULL);
7876 #endif
7877 get_online_cpus();
7878 mutex_lock(&sched_domains_mutex);
7879 arch_init_sched_domains(cpu_active_mask);
7880 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7881 if (cpumask_empty(non_isolated_cpus))
7882 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7883 mutex_unlock(&sched_domains_mutex);
7884 put_online_cpus();
7885
7886 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7887 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7888
7889 /* RT runtime code needs to handle some hotplug events */
7890 hotcpu_notifier(update_runtime, 0);
7891
7892 init_hrtick();
7893
7894 /* Move init over to a non-isolated CPU */
7895 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7896 BUG();
7897 sched_init_granularity();
7898 free_cpumask_var(non_isolated_cpus);
7899
7900 init_sched_rt_class();
7901 }
7902 #else
7903 void __init sched_init_smp(void)
7904 {
7905 sched_init_granularity();
7906 }
7907 #endif /* CONFIG_SMP */
7908
7909 const_debug unsigned int sysctl_timer_migration = 1;
7910
7911 int in_sched_functions(unsigned long addr)
7912 {
7913 return in_lock_functions(addr) ||
7914 (addr >= (unsigned long)__sched_text_start
7915 && addr < (unsigned long)__sched_text_end);
7916 }
7917
7918 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
7919 {
7920 cfs_rq->tasks_timeline = RB_ROOT;
7921 INIT_LIST_HEAD(&cfs_rq->tasks);
7922 #ifdef CONFIG_FAIR_GROUP_SCHED
7923 cfs_rq->rq = rq;
7924 /* allow initial update_cfs_load() to truncate */
7925 #ifdef CONFIG_SMP
7926 cfs_rq->load_stamp = 1;
7927 #endif
7928 #endif
7929 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7930 }
7931
7932 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7933 {
7934 struct rt_prio_array *array;
7935 int i;
7936
7937 array = &rt_rq->active;
7938 for (i = 0; i < MAX_RT_PRIO; i++) {
7939 INIT_LIST_HEAD(array->queue + i);
7940 __clear_bit(i, array->bitmap);
7941 }
7942 /* delimiter for bitsearch: */
7943 __set_bit(MAX_RT_PRIO, array->bitmap);
7944
7945 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7946 rt_rq->highest_prio.curr = MAX_RT_PRIO;
7947 #ifdef CONFIG_SMP
7948 rt_rq->highest_prio.next = MAX_RT_PRIO;
7949 #endif
7950 #endif
7951 #ifdef CONFIG_SMP
7952 rt_rq->rt_nr_migratory = 0;
7953 rt_rq->overloaded = 0;
7954 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
7955 #endif
7956
7957 rt_rq->rt_time = 0;
7958 rt_rq->rt_throttled = 0;
7959 rt_rq->rt_runtime = 0;
7960 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
7961
7962 #ifdef CONFIG_RT_GROUP_SCHED
7963 rt_rq->rt_nr_boosted = 0;
7964 rt_rq->rq = rq;
7965 #endif
7966 }
7967
7968 #ifdef CONFIG_FAIR_GROUP_SCHED
7969 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7970 struct sched_entity *se, int cpu,
7971 struct sched_entity *parent)
7972 {
7973 struct rq *rq = cpu_rq(cpu);
7974 tg->cfs_rq[cpu] = cfs_rq;
7975 init_cfs_rq(cfs_rq, rq);
7976 cfs_rq->tg = tg;
7977
7978 tg->se[cpu] = se;
7979 /* se could be NULL for root_task_group */
7980 if (!se)
7981 return;
7982
7983 if (!parent)
7984 se->cfs_rq = &rq->cfs;
7985 else
7986 se->cfs_rq = parent->my_q;
7987
7988 se->my_q = cfs_rq;
7989 update_load_set(&se->load, 0);
7990 se->parent = parent;
7991 }
7992 #endif
7993
7994 #ifdef CONFIG_RT_GROUP_SCHED
7995 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7996 struct sched_rt_entity *rt_se, int cpu,
7997 struct sched_rt_entity *parent)
7998 {
7999 struct rq *rq = cpu_rq(cpu);
8000
8001 tg->rt_rq[cpu] = rt_rq;
8002 init_rt_rq(rt_rq, rq);
8003 rt_rq->tg = tg;
8004 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
8005
8006 tg->rt_se[cpu] = rt_se;
8007 if (!rt_se)
8008 return;
8009
8010 if (!parent)
8011 rt_se->rt_rq = &rq->rt;
8012 else
8013 rt_se->rt_rq = parent->my_q;
8014
8015 rt_se->my_q = rt_rq;
8016 rt_se->parent = parent;
8017 INIT_LIST_HEAD(&rt_se->run_list);
8018 }
8019 #endif
8020
8021 void __init sched_init(void)
8022 {
8023 int i, j;
8024 unsigned long alloc_size = 0, ptr;
8025
8026 #ifdef CONFIG_FAIR_GROUP_SCHED
8027 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8028 #endif
8029 #ifdef CONFIG_RT_GROUP_SCHED
8030 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8031 #endif
8032 #ifdef CONFIG_CPUMASK_OFFSTACK
8033 alloc_size += num_possible_cpus() * cpumask_size();
8034 #endif
8035 if (alloc_size) {
8036 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
8037
8038 #ifdef CONFIG_FAIR_GROUP_SCHED
8039 root_task_group.se = (struct sched_entity **)ptr;
8040 ptr += nr_cpu_ids * sizeof(void **);
8041
8042 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8043 ptr += nr_cpu_ids * sizeof(void **);
8044
8045 #endif /* CONFIG_FAIR_GROUP_SCHED */
8046 #ifdef CONFIG_RT_GROUP_SCHED
8047 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8048 ptr += nr_cpu_ids * sizeof(void **);
8049
8050 root_task_group.rt_rq = (struct rt_rq **)ptr;
8051 ptr += nr_cpu_ids * sizeof(void **);
8052
8053 #endif /* CONFIG_RT_GROUP_SCHED */
8054 #ifdef CONFIG_CPUMASK_OFFSTACK
8055 for_each_possible_cpu(i) {
8056 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
8057 ptr += cpumask_size();
8058 }
8059 #endif /* CONFIG_CPUMASK_OFFSTACK */
8060 }
8061
8062 #ifdef CONFIG_SMP
8063 init_defrootdomain();
8064 #endif
8065
8066 init_rt_bandwidth(&def_rt_bandwidth,
8067 global_rt_period(), global_rt_runtime());
8068
8069 #ifdef CONFIG_RT_GROUP_SCHED
8070 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8071 global_rt_period(), global_rt_runtime());
8072 #endif /* CONFIG_RT_GROUP_SCHED */
8073
8074 #ifdef CONFIG_CGROUP_SCHED
8075 list_add(&root_task_group.list, &task_groups);
8076 INIT_LIST_HEAD(&root_task_group.children);
8077 autogroup_init(&init_task);
8078 #endif /* CONFIG_CGROUP_SCHED */
8079
8080 for_each_possible_cpu(i) {
8081 struct rq *rq;
8082
8083 rq = cpu_rq(i);
8084 raw_spin_lock_init(&rq->lock);
8085 rq->nr_running = 0;
8086 rq->calc_load_active = 0;
8087 rq->calc_load_update = jiffies + LOAD_FREQ;
8088 init_cfs_rq(&rq->cfs, rq);
8089 init_rt_rq(&rq->rt, rq);
8090 #ifdef CONFIG_FAIR_GROUP_SCHED
8091 root_task_group.shares = root_task_group_load;
8092 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8093 /*
8094 * How much cpu bandwidth does root_task_group get?
8095 *
8096 * In case of task-groups formed thr' the cgroup filesystem, it
8097 * gets 100% of the cpu resources in the system. This overall
8098 * system cpu resource is divided among the tasks of
8099 * root_task_group and its child task-groups in a fair manner,
8100 * based on each entity's (task or task-group's) weight
8101 * (se->load.weight).
8102 *
8103 * In other words, if root_task_group has 10 tasks of weight
8104 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8105 * then A0's share of the cpu resource is:
8106 *
8107 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8108 *
8109 * We achieve this by letting root_task_group's tasks sit
8110 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
8111 */
8112 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
8113 #endif /* CONFIG_FAIR_GROUP_SCHED */
8114
8115 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8116 #ifdef CONFIG_RT_GROUP_SCHED
8117 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
8118 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
8119 #endif
8120
8121 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8122 rq->cpu_load[j] = 0;
8123
8124 rq->last_load_update_tick = jiffies;
8125
8126 #ifdef CONFIG_SMP
8127 rq->sd = NULL;
8128 rq->rd = NULL;
8129 rq->cpu_power = SCHED_LOAD_SCALE;
8130 rq->post_schedule = 0;
8131 rq->active_balance = 0;
8132 rq->next_balance = jiffies;
8133 rq->push_cpu = 0;
8134 rq->cpu = i;
8135 rq->online = 0;
8136 rq->idle_stamp = 0;
8137 rq->avg_idle = 2*sysctl_sched_migration_cost;
8138 rq_attach_root(rq, &def_root_domain);
8139 #ifdef CONFIG_NO_HZ
8140 rq->nohz_balance_kick = 0;
8141 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
8142 #endif
8143 #endif
8144 init_rq_hrtick(rq);
8145 atomic_set(&rq->nr_iowait, 0);
8146 }
8147
8148 set_load_weight(&init_task);
8149
8150 #ifdef CONFIG_PREEMPT_NOTIFIERS
8151 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8152 #endif
8153
8154 #ifdef CONFIG_SMP
8155 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8156 #endif
8157
8158 #ifdef CONFIG_RT_MUTEXES
8159 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
8160 #endif
8161
8162 /*
8163 * The boot idle thread does lazy MMU switching as well:
8164 */
8165 atomic_inc(&init_mm.mm_count);
8166 enter_lazy_tlb(&init_mm, current);
8167
8168 /*
8169 * Make us the idle thread. Technically, schedule() should not be
8170 * called from this thread, however somewhere below it might be,
8171 * but because we are the idle thread, we just pick up running again
8172 * when this runqueue becomes "idle".
8173 */
8174 init_idle(current, smp_processor_id());
8175
8176 calc_load_update = jiffies + LOAD_FREQ;
8177
8178 /*
8179 * During early bootup we pretend to be a normal task:
8180 */
8181 current->sched_class = &fair_sched_class;
8182
8183 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8184 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
8185 #ifdef CONFIG_SMP
8186 #ifdef CONFIG_NO_HZ
8187 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8188 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
8189 atomic_set(&nohz.load_balancer, nr_cpu_ids);
8190 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
8191 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
8192 #endif
8193 /* May be allocated at isolcpus cmdline parse time */
8194 if (cpu_isolated_map == NULL)
8195 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
8196 #endif /* SMP */
8197
8198 scheduler_running = 1;
8199 }
8200
8201 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8202 static inline int preempt_count_equals(int preempt_offset)
8203 {
8204 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
8205
8206 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
8207 }
8208
8209 void __might_sleep(const char *file, int line, int preempt_offset)
8210 {
8211 #ifdef in_atomic
8212 static unsigned long prev_jiffy; /* ratelimiting */
8213
8214 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
8215 system_state != SYSTEM_RUNNING || oops_in_progress)
8216 return;
8217 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8218 return;
8219 prev_jiffy = jiffies;
8220
8221 printk(KERN_ERR
8222 "BUG: sleeping function called from invalid context at %s:%d\n",
8223 file, line);
8224 printk(KERN_ERR
8225 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8226 in_atomic(), irqs_disabled(),
8227 current->pid, current->comm);
8228
8229 debug_show_held_locks(current);
8230 if (irqs_disabled())
8231 print_irqtrace_events(current);
8232 dump_stack();
8233 #endif
8234 }
8235 EXPORT_SYMBOL(__might_sleep);
8236 #endif
8237
8238 #ifdef CONFIG_MAGIC_SYSRQ
8239 static void normalize_task(struct rq *rq, struct task_struct *p)
8240 {
8241 const struct sched_class *prev_class = p->sched_class;
8242 int old_prio = p->prio;
8243 int on_rq;
8244
8245 on_rq = p->se.on_rq;
8246 if (on_rq)
8247 deactivate_task(rq, p, 0);
8248 __setscheduler(rq, p, SCHED_NORMAL, 0);
8249 if (on_rq) {
8250 activate_task(rq, p, 0);
8251 resched_task(rq->curr);
8252 }
8253
8254 check_class_changed(rq, p, prev_class, old_prio);
8255 }
8256
8257 void normalize_rt_tasks(void)
8258 {
8259 struct task_struct *g, *p;
8260 unsigned long flags;
8261 struct rq *rq;
8262
8263 read_lock_irqsave(&tasklist_lock, flags);
8264 do_each_thread(g, p) {
8265 /*
8266 * Only normalize user tasks:
8267 */
8268 if (!p->mm)
8269 continue;
8270
8271 p->se.exec_start = 0;
8272 #ifdef CONFIG_SCHEDSTATS
8273 p->se.statistics.wait_start = 0;
8274 p->se.statistics.sleep_start = 0;
8275 p->se.statistics.block_start = 0;
8276 #endif
8277
8278 if (!rt_task(p)) {
8279 /*
8280 * Renice negative nice level userspace
8281 * tasks back to 0:
8282 */
8283 if (TASK_NICE(p) < 0 && p->mm)
8284 set_user_nice(p, 0);
8285 continue;
8286 }
8287
8288 raw_spin_lock(&p->pi_lock);
8289 rq = __task_rq_lock(p);
8290
8291 normalize_task(rq, p);
8292
8293 __task_rq_unlock(rq);
8294 raw_spin_unlock(&p->pi_lock);
8295 } while_each_thread(g, p);
8296
8297 read_unlock_irqrestore(&tasklist_lock, flags);
8298 }
8299
8300 #endif /* CONFIG_MAGIC_SYSRQ */
8301
8302 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
8303 /*
8304 * These functions are only useful for the IA64 MCA handling, or kdb.
8305 *
8306 * They can only be called when the whole system has been
8307 * stopped - every CPU needs to be quiescent, and no scheduling
8308 * activity can take place. Using them for anything else would
8309 * be a serious bug, and as a result, they aren't even visible
8310 * under any other configuration.
8311 */
8312
8313 /**
8314 * curr_task - return the current task for a given cpu.
8315 * @cpu: the processor in question.
8316 *
8317 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8318 */
8319 struct task_struct *curr_task(int cpu)
8320 {
8321 return cpu_curr(cpu);
8322 }
8323
8324 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8325
8326 #ifdef CONFIG_IA64
8327 /**
8328 * set_curr_task - set the current task for a given cpu.
8329 * @cpu: the processor in question.
8330 * @p: the task pointer to set.
8331 *
8332 * Description: This function must only be used when non-maskable interrupts
8333 * are serviced on a separate stack. It allows the architecture to switch the
8334 * notion of the current task on a cpu in a non-blocking manner. This function
8335 * must be called with all CPU's synchronized, and interrupts disabled, the
8336 * and caller must save the original value of the current task (see
8337 * curr_task() above) and restore that value before reenabling interrupts and
8338 * re-starting the system.
8339 *
8340 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8341 */
8342 void set_curr_task(int cpu, struct task_struct *p)
8343 {
8344 cpu_curr(cpu) = p;
8345 }
8346
8347 #endif
8348
8349 #ifdef CONFIG_FAIR_GROUP_SCHED
8350 static void free_fair_sched_group(struct task_group *tg)
8351 {
8352 int i;
8353
8354 for_each_possible_cpu(i) {
8355 if (tg->cfs_rq)
8356 kfree(tg->cfs_rq[i]);
8357 if (tg->se)
8358 kfree(tg->se[i]);
8359 }
8360
8361 kfree(tg->cfs_rq);
8362 kfree(tg->se);
8363 }
8364
8365 static
8366 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8367 {
8368 struct cfs_rq *cfs_rq;
8369 struct sched_entity *se;
8370 struct rq *rq;
8371 int i;
8372
8373 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8374 if (!tg->cfs_rq)
8375 goto err;
8376 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8377 if (!tg->se)
8378 goto err;
8379
8380 tg->shares = NICE_0_LOAD;
8381
8382 for_each_possible_cpu(i) {
8383 rq = cpu_rq(i);
8384
8385 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8386 GFP_KERNEL, cpu_to_node(i));
8387 if (!cfs_rq)
8388 goto err;
8389
8390 se = kzalloc_node(sizeof(struct sched_entity),
8391 GFP_KERNEL, cpu_to_node(i));
8392 if (!se)
8393 goto err_free_rq;
8394
8395 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8396 }
8397
8398 return 1;
8399
8400 err_free_rq:
8401 kfree(cfs_rq);
8402 err:
8403 return 0;
8404 }
8405
8406 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8407 {
8408 struct rq *rq = cpu_rq(cpu);
8409 unsigned long flags;
8410
8411 /*
8412 * Only empty task groups can be destroyed; so we can speculatively
8413 * check on_list without danger of it being re-added.
8414 */
8415 if (!tg->cfs_rq[cpu]->on_list)
8416 return;
8417
8418 raw_spin_lock_irqsave(&rq->lock, flags);
8419 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8420 raw_spin_unlock_irqrestore(&rq->lock, flags);
8421 }
8422 #else /* !CONFG_FAIR_GROUP_SCHED */
8423 static inline void free_fair_sched_group(struct task_group *tg)
8424 {
8425 }
8426
8427 static inline
8428 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8429 {
8430 return 1;
8431 }
8432
8433 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8434 {
8435 }
8436 #endif /* CONFIG_FAIR_GROUP_SCHED */
8437
8438 #ifdef CONFIG_RT_GROUP_SCHED
8439 static void free_rt_sched_group(struct task_group *tg)
8440 {
8441 int i;
8442
8443 destroy_rt_bandwidth(&tg->rt_bandwidth);
8444
8445 for_each_possible_cpu(i) {
8446 if (tg->rt_rq)
8447 kfree(tg->rt_rq[i]);
8448 if (tg->rt_se)
8449 kfree(tg->rt_se[i]);
8450 }
8451
8452 kfree(tg->rt_rq);
8453 kfree(tg->rt_se);
8454 }
8455
8456 static
8457 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8458 {
8459 struct rt_rq *rt_rq;
8460 struct sched_rt_entity *rt_se;
8461 struct rq *rq;
8462 int i;
8463
8464 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8465 if (!tg->rt_rq)
8466 goto err;
8467 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8468 if (!tg->rt_se)
8469 goto err;
8470
8471 init_rt_bandwidth(&tg->rt_bandwidth,
8472 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8473
8474 for_each_possible_cpu(i) {
8475 rq = cpu_rq(i);
8476
8477 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8478 GFP_KERNEL, cpu_to_node(i));
8479 if (!rt_rq)
8480 goto err;
8481
8482 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8483 GFP_KERNEL, cpu_to_node(i));
8484 if (!rt_se)
8485 goto err_free_rq;
8486
8487 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
8488 }
8489
8490 return 1;
8491
8492 err_free_rq:
8493 kfree(rt_rq);
8494 err:
8495 return 0;
8496 }
8497 #else /* !CONFIG_RT_GROUP_SCHED */
8498 static inline void free_rt_sched_group(struct task_group *tg)
8499 {
8500 }
8501
8502 static inline
8503 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8504 {
8505 return 1;
8506 }
8507 #endif /* CONFIG_RT_GROUP_SCHED */
8508
8509 #ifdef CONFIG_CGROUP_SCHED
8510 static void free_sched_group(struct task_group *tg)
8511 {
8512 free_fair_sched_group(tg);
8513 free_rt_sched_group(tg);
8514 autogroup_free(tg);
8515 kfree(tg);
8516 }
8517
8518 /* allocate runqueue etc for a new task group */
8519 struct task_group *sched_create_group(struct task_group *parent)
8520 {
8521 struct task_group *tg;
8522 unsigned long flags;
8523
8524 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8525 if (!tg)
8526 return ERR_PTR(-ENOMEM);
8527
8528 if (!alloc_fair_sched_group(tg, parent))
8529 goto err;
8530
8531 if (!alloc_rt_sched_group(tg, parent))
8532 goto err;
8533
8534 spin_lock_irqsave(&task_group_lock, flags);
8535 list_add_rcu(&tg->list, &task_groups);
8536
8537 WARN_ON(!parent); /* root should already exist */
8538
8539 tg->parent = parent;
8540 INIT_LIST_HEAD(&tg->children);
8541 list_add_rcu(&tg->siblings, &parent->children);
8542 spin_unlock_irqrestore(&task_group_lock, flags);
8543
8544 return tg;
8545
8546 err:
8547 free_sched_group(tg);
8548 return ERR_PTR(-ENOMEM);
8549 }
8550
8551 /* rcu callback to free various structures associated with a task group */
8552 static void free_sched_group_rcu(struct rcu_head *rhp)
8553 {
8554 /* now it should be safe to free those cfs_rqs */
8555 free_sched_group(container_of(rhp, struct task_group, rcu));
8556 }
8557
8558 /* Destroy runqueue etc associated with a task group */
8559 void sched_destroy_group(struct task_group *tg)
8560 {
8561 unsigned long flags;
8562 int i;
8563
8564 /* end participation in shares distribution */
8565 for_each_possible_cpu(i)
8566 unregister_fair_sched_group(tg, i);
8567
8568 spin_lock_irqsave(&task_group_lock, flags);
8569 list_del_rcu(&tg->list);
8570 list_del_rcu(&tg->siblings);
8571 spin_unlock_irqrestore(&task_group_lock, flags);
8572
8573 /* wait for possible concurrent references to cfs_rqs complete */
8574 call_rcu(&tg->rcu, free_sched_group_rcu);
8575 }
8576
8577 /* change task's runqueue when it moves between groups.
8578 * The caller of this function should have put the task in its new group
8579 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8580 * reflect its new group.
8581 */
8582 void sched_move_task(struct task_struct *tsk)
8583 {
8584 int on_rq, running;
8585 unsigned long flags;
8586 struct rq *rq;
8587
8588 rq = task_rq_lock(tsk, &flags);
8589
8590 running = task_current(rq, tsk);
8591 on_rq = tsk->se.on_rq;
8592
8593 if (on_rq)
8594 dequeue_task(rq, tsk, 0);
8595 if (unlikely(running))
8596 tsk->sched_class->put_prev_task(rq, tsk);
8597
8598 #ifdef CONFIG_FAIR_GROUP_SCHED
8599 if (tsk->sched_class->task_move_group)
8600 tsk->sched_class->task_move_group(tsk, on_rq);
8601 else
8602 #endif
8603 set_task_rq(tsk, task_cpu(tsk));
8604
8605 if (unlikely(running))
8606 tsk->sched_class->set_curr_task(rq);
8607 if (on_rq)
8608 enqueue_task(rq, tsk, 0);
8609
8610 task_rq_unlock(rq, &flags);
8611 }
8612 #endif /* CONFIG_CGROUP_SCHED */
8613
8614 #ifdef CONFIG_FAIR_GROUP_SCHED
8615 static DEFINE_MUTEX(shares_mutex);
8616
8617 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8618 {
8619 int i;
8620 unsigned long flags;
8621
8622 /*
8623 * We can't change the weight of the root cgroup.
8624 */
8625 if (!tg->se[0])
8626 return -EINVAL;
8627
8628 if (shares < MIN_SHARES)
8629 shares = MIN_SHARES;
8630 else if (shares > MAX_SHARES)
8631 shares = MAX_SHARES;
8632
8633 mutex_lock(&shares_mutex);
8634 if (tg->shares == shares)
8635 goto done;
8636
8637 tg->shares = shares;
8638 for_each_possible_cpu(i) {
8639 struct rq *rq = cpu_rq(i);
8640 struct sched_entity *se;
8641
8642 se = tg->se[i];
8643 /* Propagate contribution to hierarchy */
8644 raw_spin_lock_irqsave(&rq->lock, flags);
8645 for_each_sched_entity(se)
8646 update_cfs_shares(group_cfs_rq(se));
8647 raw_spin_unlock_irqrestore(&rq->lock, flags);
8648 }
8649
8650 done:
8651 mutex_unlock(&shares_mutex);
8652 return 0;
8653 }
8654
8655 unsigned long sched_group_shares(struct task_group *tg)
8656 {
8657 return tg->shares;
8658 }
8659 #endif
8660
8661 #ifdef CONFIG_RT_GROUP_SCHED
8662 /*
8663 * Ensure that the real time constraints are schedulable.
8664 */
8665 static DEFINE_MUTEX(rt_constraints_mutex);
8666
8667 static unsigned long to_ratio(u64 period, u64 runtime)
8668 {
8669 if (runtime == RUNTIME_INF)
8670 return 1ULL << 20;
8671
8672 return div64_u64(runtime << 20, period);
8673 }
8674
8675 /* Must be called with tasklist_lock held */
8676 static inline int tg_has_rt_tasks(struct task_group *tg)
8677 {
8678 struct task_struct *g, *p;
8679
8680 do_each_thread(g, p) {
8681 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8682 return 1;
8683 } while_each_thread(g, p);
8684
8685 return 0;
8686 }
8687
8688 struct rt_schedulable_data {
8689 struct task_group *tg;
8690 u64 rt_period;
8691 u64 rt_runtime;
8692 };
8693
8694 static int tg_schedulable(struct task_group *tg, void *data)
8695 {
8696 struct rt_schedulable_data *d = data;
8697 struct task_group *child;
8698 unsigned long total, sum = 0;
8699 u64 period, runtime;
8700
8701 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8702 runtime = tg->rt_bandwidth.rt_runtime;
8703
8704 if (tg == d->tg) {
8705 period = d->rt_period;
8706 runtime = d->rt_runtime;
8707 }
8708
8709 /*
8710 * Cannot have more runtime than the period.
8711 */
8712 if (runtime > period && runtime != RUNTIME_INF)
8713 return -EINVAL;
8714
8715 /*
8716 * Ensure we don't starve existing RT tasks.
8717 */
8718 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8719 return -EBUSY;
8720
8721 total = to_ratio(period, runtime);
8722
8723 /*
8724 * Nobody can have more than the global setting allows.
8725 */
8726 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8727 return -EINVAL;
8728
8729 /*
8730 * The sum of our children's runtime should not exceed our own.
8731 */
8732 list_for_each_entry_rcu(child, &tg->children, siblings) {
8733 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8734 runtime = child->rt_bandwidth.rt_runtime;
8735
8736 if (child == d->tg) {
8737 period = d->rt_period;
8738 runtime = d->rt_runtime;
8739 }
8740
8741 sum += to_ratio(period, runtime);
8742 }
8743
8744 if (sum > total)
8745 return -EINVAL;
8746
8747 return 0;
8748 }
8749
8750 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8751 {
8752 struct rt_schedulable_data data = {
8753 .tg = tg,
8754 .rt_period = period,
8755 .rt_runtime = runtime,
8756 };
8757
8758 return walk_tg_tree(tg_schedulable, tg_nop, &data);
8759 }
8760
8761 static int tg_set_bandwidth(struct task_group *tg,
8762 u64 rt_period, u64 rt_runtime)
8763 {
8764 int i, err = 0;
8765
8766 mutex_lock(&rt_constraints_mutex);
8767 read_lock(&tasklist_lock);
8768 err = __rt_schedulable(tg, rt_period, rt_runtime);
8769 if (err)
8770 goto unlock;
8771
8772 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8773 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8774 tg->rt_bandwidth.rt_runtime = rt_runtime;
8775
8776 for_each_possible_cpu(i) {
8777 struct rt_rq *rt_rq = tg->rt_rq[i];
8778
8779 raw_spin_lock(&rt_rq->rt_runtime_lock);
8780 rt_rq->rt_runtime = rt_runtime;
8781 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8782 }
8783 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8784 unlock:
8785 read_unlock(&tasklist_lock);
8786 mutex_unlock(&rt_constraints_mutex);
8787
8788 return err;
8789 }
8790
8791 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8792 {
8793 u64 rt_runtime, rt_period;
8794
8795 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8796 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8797 if (rt_runtime_us < 0)
8798 rt_runtime = RUNTIME_INF;
8799
8800 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8801 }
8802
8803 long sched_group_rt_runtime(struct task_group *tg)
8804 {
8805 u64 rt_runtime_us;
8806
8807 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8808 return -1;
8809
8810 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8811 do_div(rt_runtime_us, NSEC_PER_USEC);
8812 return rt_runtime_us;
8813 }
8814
8815 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8816 {
8817 u64 rt_runtime, rt_period;
8818
8819 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8820 rt_runtime = tg->rt_bandwidth.rt_runtime;
8821
8822 if (rt_period == 0)
8823 return -EINVAL;
8824
8825 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8826 }
8827
8828 long sched_group_rt_period(struct task_group *tg)
8829 {
8830 u64 rt_period_us;
8831
8832 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8833 do_div(rt_period_us, NSEC_PER_USEC);
8834 return rt_period_us;
8835 }
8836
8837 static int sched_rt_global_constraints(void)
8838 {
8839 u64 runtime, period;
8840 int ret = 0;
8841
8842 if (sysctl_sched_rt_period <= 0)
8843 return -EINVAL;
8844
8845 runtime = global_rt_runtime();
8846 period = global_rt_period();
8847
8848 /*
8849 * Sanity check on the sysctl variables.
8850 */
8851 if (runtime > period && runtime != RUNTIME_INF)
8852 return -EINVAL;
8853
8854 mutex_lock(&rt_constraints_mutex);
8855 read_lock(&tasklist_lock);
8856 ret = __rt_schedulable(NULL, 0, 0);
8857 read_unlock(&tasklist_lock);
8858 mutex_unlock(&rt_constraints_mutex);
8859
8860 return ret;
8861 }
8862
8863 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8864 {
8865 /* Don't accept realtime tasks when there is no way for them to run */
8866 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8867 return 0;
8868
8869 return 1;
8870 }
8871
8872 #else /* !CONFIG_RT_GROUP_SCHED */
8873 static int sched_rt_global_constraints(void)
8874 {
8875 unsigned long flags;
8876 int i;
8877
8878 if (sysctl_sched_rt_period <= 0)
8879 return -EINVAL;
8880
8881 /*
8882 * There's always some RT tasks in the root group
8883 * -- migration, kstopmachine etc..
8884 */
8885 if (sysctl_sched_rt_runtime == 0)
8886 return -EBUSY;
8887
8888 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8889 for_each_possible_cpu(i) {
8890 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8891
8892 raw_spin_lock(&rt_rq->rt_runtime_lock);
8893 rt_rq->rt_runtime = global_rt_runtime();
8894 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8895 }
8896 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8897
8898 return 0;
8899 }
8900 #endif /* CONFIG_RT_GROUP_SCHED */
8901
8902 int sched_rt_handler(struct ctl_table *table, int write,
8903 void __user *buffer, size_t *lenp,
8904 loff_t *ppos)
8905 {
8906 int ret;
8907 int old_period, old_runtime;
8908 static DEFINE_MUTEX(mutex);
8909
8910 mutex_lock(&mutex);
8911 old_period = sysctl_sched_rt_period;
8912 old_runtime = sysctl_sched_rt_runtime;
8913
8914 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8915
8916 if (!ret && write) {
8917 ret = sched_rt_global_constraints();
8918 if (ret) {
8919 sysctl_sched_rt_period = old_period;
8920 sysctl_sched_rt_runtime = old_runtime;
8921 } else {
8922 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8923 def_rt_bandwidth.rt_period =
8924 ns_to_ktime(global_rt_period());
8925 }
8926 }
8927 mutex_unlock(&mutex);
8928
8929 return ret;
8930 }
8931
8932 #ifdef CONFIG_CGROUP_SCHED
8933
8934 /* return corresponding task_group object of a cgroup */
8935 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8936 {
8937 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8938 struct task_group, css);
8939 }
8940
8941 static struct cgroup_subsys_state *
8942 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8943 {
8944 struct task_group *tg, *parent;
8945
8946 if (!cgrp->parent) {
8947 /* This is early initialization for the top cgroup */
8948 return &root_task_group.css;
8949 }
8950
8951 parent = cgroup_tg(cgrp->parent);
8952 tg = sched_create_group(parent);
8953 if (IS_ERR(tg))
8954 return ERR_PTR(-ENOMEM);
8955
8956 return &tg->css;
8957 }
8958
8959 static void
8960 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8961 {
8962 struct task_group *tg = cgroup_tg(cgrp);
8963
8964 sched_destroy_group(tg);
8965 }
8966
8967 static int
8968 cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
8969 {
8970 #ifdef CONFIG_RT_GROUP_SCHED
8971 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
8972 return -EINVAL;
8973 #else
8974 /* We don't support RT-tasks being in separate groups */
8975 if (tsk->sched_class != &fair_sched_class)
8976 return -EINVAL;
8977 #endif
8978 return 0;
8979 }
8980
8981 static int
8982 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8983 struct task_struct *tsk, bool threadgroup)
8984 {
8985 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
8986 if (retval)
8987 return retval;
8988 if (threadgroup) {
8989 struct task_struct *c;
8990 rcu_read_lock();
8991 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8992 retval = cpu_cgroup_can_attach_task(cgrp, c);
8993 if (retval) {
8994 rcu_read_unlock();
8995 return retval;
8996 }
8997 }
8998 rcu_read_unlock();
8999 }
9000 return 0;
9001 }
9002
9003 static void
9004 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9005 struct cgroup *old_cont, struct task_struct *tsk,
9006 bool threadgroup)
9007 {
9008 sched_move_task(tsk);
9009 if (threadgroup) {
9010 struct task_struct *c;
9011 rcu_read_lock();
9012 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
9013 sched_move_task(c);
9014 }
9015 rcu_read_unlock();
9016 }
9017 }
9018
9019 static void
9020 cpu_cgroup_exit(struct cgroup_subsys *ss, struct task_struct *task)
9021 {
9022 /*
9023 * cgroup_exit() is called in the copy_process() failure path.
9024 * Ignore this case since the task hasn't ran yet, this avoids
9025 * trying to poke a half freed task state from generic code.
9026 */
9027 if (!(task->flags & PF_EXITING))
9028 return;
9029
9030 sched_move_task(task);
9031 }
9032
9033 #ifdef CONFIG_FAIR_GROUP_SCHED
9034 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9035 u64 shareval)
9036 {
9037 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9038 }
9039
9040 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9041 {
9042 struct task_group *tg = cgroup_tg(cgrp);
9043
9044 return (u64) tg->shares;
9045 }
9046 #endif /* CONFIG_FAIR_GROUP_SCHED */
9047
9048 #ifdef CONFIG_RT_GROUP_SCHED
9049 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9050 s64 val)
9051 {
9052 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
9053 }
9054
9055 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
9056 {
9057 return sched_group_rt_runtime(cgroup_tg(cgrp));
9058 }
9059
9060 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9061 u64 rt_period_us)
9062 {
9063 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9064 }
9065
9066 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9067 {
9068 return sched_group_rt_period(cgroup_tg(cgrp));
9069 }
9070 #endif /* CONFIG_RT_GROUP_SCHED */
9071
9072 static struct cftype cpu_files[] = {
9073 #ifdef CONFIG_FAIR_GROUP_SCHED
9074 {
9075 .name = "shares",
9076 .read_u64 = cpu_shares_read_u64,
9077 .write_u64 = cpu_shares_write_u64,
9078 },
9079 #endif
9080 #ifdef CONFIG_RT_GROUP_SCHED
9081 {
9082 .name = "rt_runtime_us",
9083 .read_s64 = cpu_rt_runtime_read,
9084 .write_s64 = cpu_rt_runtime_write,
9085 },
9086 {
9087 .name = "rt_period_us",
9088 .read_u64 = cpu_rt_period_read_uint,
9089 .write_u64 = cpu_rt_period_write_uint,
9090 },
9091 #endif
9092 };
9093
9094 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9095 {
9096 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9097 }
9098
9099 struct cgroup_subsys cpu_cgroup_subsys = {
9100 .name = "cpu",
9101 .create = cpu_cgroup_create,
9102 .destroy = cpu_cgroup_destroy,
9103 .can_attach = cpu_cgroup_can_attach,
9104 .attach = cpu_cgroup_attach,
9105 .exit = cpu_cgroup_exit,
9106 .populate = cpu_cgroup_populate,
9107 .subsys_id = cpu_cgroup_subsys_id,
9108 .early_init = 1,
9109 };
9110
9111 #endif /* CONFIG_CGROUP_SCHED */
9112
9113 #ifdef CONFIG_CGROUP_CPUACCT
9114
9115 /*
9116 * CPU accounting code for task groups.
9117 *
9118 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9119 * (balbir@in.ibm.com).
9120 */
9121
9122 /* track cpu usage of a group of tasks and its child groups */
9123 struct cpuacct {
9124 struct cgroup_subsys_state css;
9125 /* cpuusage holds pointer to a u64-type object on every cpu */
9126 u64 __percpu *cpuusage;
9127 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
9128 struct cpuacct *parent;
9129 };
9130
9131 struct cgroup_subsys cpuacct_subsys;
9132
9133 /* return cpu accounting group corresponding to this container */
9134 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9135 {
9136 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9137 struct cpuacct, css);
9138 }
9139
9140 /* return cpu accounting group to which this task belongs */
9141 static inline struct cpuacct *task_ca(struct task_struct *tsk)
9142 {
9143 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9144 struct cpuacct, css);
9145 }
9146
9147 /* create a new cpu accounting group */
9148 static struct cgroup_subsys_state *cpuacct_create(
9149 struct cgroup_subsys *ss, struct cgroup *cgrp)
9150 {
9151 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9152 int i;
9153
9154 if (!ca)
9155 goto out;
9156
9157 ca->cpuusage = alloc_percpu(u64);
9158 if (!ca->cpuusage)
9159 goto out_free_ca;
9160
9161 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9162 if (percpu_counter_init(&ca->cpustat[i], 0))
9163 goto out_free_counters;
9164
9165 if (cgrp->parent)
9166 ca->parent = cgroup_ca(cgrp->parent);
9167
9168 return &ca->css;
9169
9170 out_free_counters:
9171 while (--i >= 0)
9172 percpu_counter_destroy(&ca->cpustat[i]);
9173 free_percpu(ca->cpuusage);
9174 out_free_ca:
9175 kfree(ca);
9176 out:
9177 return ERR_PTR(-ENOMEM);
9178 }
9179
9180 /* destroy an existing cpu accounting group */
9181 static void
9182 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9183 {
9184 struct cpuacct *ca = cgroup_ca(cgrp);
9185 int i;
9186
9187 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9188 percpu_counter_destroy(&ca->cpustat[i]);
9189 free_percpu(ca->cpuusage);
9190 kfree(ca);
9191 }
9192
9193 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9194 {
9195 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9196 u64 data;
9197
9198 #ifndef CONFIG_64BIT
9199 /*
9200 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9201 */
9202 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9203 data = *cpuusage;
9204 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9205 #else
9206 data = *cpuusage;
9207 #endif
9208
9209 return data;
9210 }
9211
9212 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9213 {
9214 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9215
9216 #ifndef CONFIG_64BIT
9217 /*
9218 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9219 */
9220 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9221 *cpuusage = val;
9222 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9223 #else
9224 *cpuusage = val;
9225 #endif
9226 }
9227
9228 /* return total cpu usage (in nanoseconds) of a group */
9229 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9230 {
9231 struct cpuacct *ca = cgroup_ca(cgrp);
9232 u64 totalcpuusage = 0;
9233 int i;
9234
9235 for_each_present_cpu(i)
9236 totalcpuusage += cpuacct_cpuusage_read(ca, i);
9237
9238 return totalcpuusage;
9239 }
9240
9241 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9242 u64 reset)
9243 {
9244 struct cpuacct *ca = cgroup_ca(cgrp);
9245 int err = 0;
9246 int i;
9247
9248 if (reset) {
9249 err = -EINVAL;
9250 goto out;
9251 }
9252
9253 for_each_present_cpu(i)
9254 cpuacct_cpuusage_write(ca, i, 0);
9255
9256 out:
9257 return err;
9258 }
9259
9260 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9261 struct seq_file *m)
9262 {
9263 struct cpuacct *ca = cgroup_ca(cgroup);
9264 u64 percpu;
9265 int i;
9266
9267 for_each_present_cpu(i) {
9268 percpu = cpuacct_cpuusage_read(ca, i);
9269 seq_printf(m, "%llu ", (unsigned long long) percpu);
9270 }
9271 seq_printf(m, "\n");
9272 return 0;
9273 }
9274
9275 static const char *cpuacct_stat_desc[] = {
9276 [CPUACCT_STAT_USER] = "user",
9277 [CPUACCT_STAT_SYSTEM] = "system",
9278 };
9279
9280 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9281 struct cgroup_map_cb *cb)
9282 {
9283 struct cpuacct *ca = cgroup_ca(cgrp);
9284 int i;
9285
9286 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9287 s64 val = percpu_counter_read(&ca->cpustat[i]);
9288 val = cputime64_to_clock_t(val);
9289 cb->fill(cb, cpuacct_stat_desc[i], val);
9290 }
9291 return 0;
9292 }
9293
9294 static struct cftype files[] = {
9295 {
9296 .name = "usage",
9297 .read_u64 = cpuusage_read,
9298 .write_u64 = cpuusage_write,
9299 },
9300 {
9301 .name = "usage_percpu",
9302 .read_seq_string = cpuacct_percpu_seq_read,
9303 },
9304 {
9305 .name = "stat",
9306 .read_map = cpuacct_stats_show,
9307 },
9308 };
9309
9310 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9311 {
9312 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9313 }
9314
9315 /*
9316 * charge this task's execution time to its accounting group.
9317 *
9318 * called with rq->lock held.
9319 */
9320 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9321 {
9322 struct cpuacct *ca;
9323 int cpu;
9324
9325 if (unlikely(!cpuacct_subsys.active))
9326 return;
9327
9328 cpu = task_cpu(tsk);
9329
9330 rcu_read_lock();
9331
9332 ca = task_ca(tsk);
9333
9334 for (; ca; ca = ca->parent) {
9335 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9336 *cpuusage += cputime;
9337 }
9338
9339 rcu_read_unlock();
9340 }
9341
9342 /*
9343 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9344 * in cputime_t units. As a result, cpuacct_update_stats calls
9345 * percpu_counter_add with values large enough to always overflow the
9346 * per cpu batch limit causing bad SMP scalability.
9347 *
9348 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9349 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9350 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9351 */
9352 #ifdef CONFIG_SMP
9353 #define CPUACCT_BATCH \
9354 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9355 #else
9356 #define CPUACCT_BATCH 0
9357 #endif
9358
9359 /*
9360 * Charge the system/user time to the task's accounting group.
9361 */
9362 static void cpuacct_update_stats(struct task_struct *tsk,
9363 enum cpuacct_stat_index idx, cputime_t val)
9364 {
9365 struct cpuacct *ca;
9366 int batch = CPUACCT_BATCH;
9367
9368 if (unlikely(!cpuacct_subsys.active))
9369 return;
9370
9371 rcu_read_lock();
9372 ca = task_ca(tsk);
9373
9374 do {
9375 __percpu_counter_add(&ca->cpustat[idx], val, batch);
9376 ca = ca->parent;
9377 } while (ca);
9378 rcu_read_unlock();
9379 }
9380
9381 struct cgroup_subsys cpuacct_subsys = {
9382 .name = "cpuacct",
9383 .create = cpuacct_create,
9384 .destroy = cpuacct_destroy,
9385 .populate = cpuacct_populate,
9386 .subsys_id = cpuacct_subsys_id,
9387 };
9388 #endif /* CONFIG_CGROUP_CPUACCT */
9389
This page took 0.231158 seconds and 5 git commands to generate.