hw-breakpoints: Check disabled breakpoints again
[deliverable/linux.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/kthread.h>
59 #include <linux/proc_fs.h>
60 #include <linux/seq_file.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
74 #include <linux/slab.h>
75
76 #include <asm/tlb.h>
77 #include <asm/irq_regs.h>
78
79 #include "sched_cpupri.h"
80
81 #define CREATE_TRACE_POINTS
82 #include <trace/events/sched.h>
83
84 /*
85 * Convert user-nice values [ -20 ... 0 ... 19 ]
86 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
87 * and back.
88 */
89 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
90 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
91 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
92
93 /*
94 * 'User priority' is the nice value converted to something we
95 * can work with better when scaling various scheduler parameters,
96 * it's a [ 0 ... 39 ] range.
97 */
98 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
99 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
100 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
101
102 /*
103 * Helpers for converting nanosecond timing to jiffy resolution
104 */
105 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
106
107 #define NICE_0_LOAD SCHED_LOAD_SCALE
108 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
109
110 /*
111 * These are the 'tuning knobs' of the scheduler:
112 *
113 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
114 * Timeslices get refilled after they expire.
115 */
116 #define DEF_TIMESLICE (100 * HZ / 1000)
117
118 /*
119 * single value that denotes runtime == period, ie unlimited time.
120 */
121 #define RUNTIME_INF ((u64)~0ULL)
122
123 static inline int rt_policy(int policy)
124 {
125 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
126 return 1;
127 return 0;
128 }
129
130 static inline int task_has_rt_policy(struct task_struct *p)
131 {
132 return rt_policy(p->policy);
133 }
134
135 /*
136 * This is the priority-queue data structure of the RT scheduling class:
137 */
138 struct rt_prio_array {
139 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
140 struct list_head queue[MAX_RT_PRIO];
141 };
142
143 struct rt_bandwidth {
144 /* nests inside the rq lock: */
145 raw_spinlock_t rt_runtime_lock;
146 ktime_t rt_period;
147 u64 rt_runtime;
148 struct hrtimer rt_period_timer;
149 };
150
151 static struct rt_bandwidth def_rt_bandwidth;
152
153 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
154
155 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
156 {
157 struct rt_bandwidth *rt_b =
158 container_of(timer, struct rt_bandwidth, rt_period_timer);
159 ktime_t now;
160 int overrun;
161 int idle = 0;
162
163 for (;;) {
164 now = hrtimer_cb_get_time(timer);
165 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
166
167 if (!overrun)
168 break;
169
170 idle = do_sched_rt_period_timer(rt_b, overrun);
171 }
172
173 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
174 }
175
176 static
177 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
178 {
179 rt_b->rt_period = ns_to_ktime(period);
180 rt_b->rt_runtime = runtime;
181
182 raw_spin_lock_init(&rt_b->rt_runtime_lock);
183
184 hrtimer_init(&rt_b->rt_period_timer,
185 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
186 rt_b->rt_period_timer.function = sched_rt_period_timer;
187 }
188
189 static inline int rt_bandwidth_enabled(void)
190 {
191 return sysctl_sched_rt_runtime >= 0;
192 }
193
194 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
195 {
196 ktime_t now;
197
198 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
199 return;
200
201 if (hrtimer_active(&rt_b->rt_period_timer))
202 return;
203
204 raw_spin_lock(&rt_b->rt_runtime_lock);
205 for (;;) {
206 unsigned long delta;
207 ktime_t soft, hard;
208
209 if (hrtimer_active(&rt_b->rt_period_timer))
210 break;
211
212 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
213 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
214
215 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
216 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
217 delta = ktime_to_ns(ktime_sub(hard, soft));
218 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
219 HRTIMER_MODE_ABS_PINNED, 0);
220 }
221 raw_spin_unlock(&rt_b->rt_runtime_lock);
222 }
223
224 #ifdef CONFIG_RT_GROUP_SCHED
225 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
226 {
227 hrtimer_cancel(&rt_b->rt_period_timer);
228 }
229 #endif
230
231 /*
232 * sched_domains_mutex serializes calls to arch_init_sched_domains,
233 * detach_destroy_domains and partition_sched_domains.
234 */
235 static DEFINE_MUTEX(sched_domains_mutex);
236
237 #ifdef CONFIG_CGROUP_SCHED
238
239 #include <linux/cgroup.h>
240
241 struct cfs_rq;
242
243 static LIST_HEAD(task_groups);
244
245 /* task group related information */
246 struct task_group {
247 struct cgroup_subsys_state css;
248
249 #ifdef CONFIG_FAIR_GROUP_SCHED
250 /* schedulable entities of this group on each cpu */
251 struct sched_entity **se;
252 /* runqueue "owned" by this group on each cpu */
253 struct cfs_rq **cfs_rq;
254 unsigned long shares;
255 #endif
256
257 #ifdef CONFIG_RT_GROUP_SCHED
258 struct sched_rt_entity **rt_se;
259 struct rt_rq **rt_rq;
260
261 struct rt_bandwidth rt_bandwidth;
262 #endif
263
264 struct rcu_head rcu;
265 struct list_head list;
266
267 struct task_group *parent;
268 struct list_head siblings;
269 struct list_head children;
270 };
271
272 #define root_task_group init_task_group
273
274 /* task_group_lock serializes add/remove of task groups and also changes to
275 * a task group's cpu shares.
276 */
277 static DEFINE_SPINLOCK(task_group_lock);
278
279 #ifdef CONFIG_FAIR_GROUP_SCHED
280
281 #ifdef CONFIG_SMP
282 static int root_task_group_empty(void)
283 {
284 return list_empty(&root_task_group.children);
285 }
286 #endif
287
288 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
289
290 /*
291 * A weight of 0 or 1 can cause arithmetics problems.
292 * A weight of a cfs_rq is the sum of weights of which entities
293 * are queued on this cfs_rq, so a weight of a entity should not be
294 * too large, so as the shares value of a task group.
295 * (The default weight is 1024 - so there's no practical
296 * limitation from this.)
297 */
298 #define MIN_SHARES 2
299 #define MAX_SHARES (1UL << 18)
300
301 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
302 #endif
303
304 /* Default task group.
305 * Every task in system belong to this group at bootup.
306 */
307 struct task_group init_task_group;
308
309 /* return group to which a task belongs */
310 static inline struct task_group *task_group(struct task_struct *p)
311 {
312 struct task_group *tg;
313
314 #ifdef CONFIG_CGROUP_SCHED
315 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
316 struct task_group, css);
317 #else
318 tg = &init_task_group;
319 #endif
320 return tg;
321 }
322
323 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
324 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
325 {
326 #ifdef CONFIG_FAIR_GROUP_SCHED
327 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
328 p->se.parent = task_group(p)->se[cpu];
329 #endif
330
331 #ifdef CONFIG_RT_GROUP_SCHED
332 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
333 p->rt.parent = task_group(p)->rt_se[cpu];
334 #endif
335 }
336
337 #else
338
339 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
340 static inline struct task_group *task_group(struct task_struct *p)
341 {
342 return NULL;
343 }
344
345 #endif /* CONFIG_CGROUP_SCHED */
346
347 /* CFS-related fields in a runqueue */
348 struct cfs_rq {
349 struct load_weight load;
350 unsigned long nr_running;
351
352 u64 exec_clock;
353 u64 min_vruntime;
354
355 struct rb_root tasks_timeline;
356 struct rb_node *rb_leftmost;
357
358 struct list_head tasks;
359 struct list_head *balance_iterator;
360
361 /*
362 * 'curr' points to currently running entity on this cfs_rq.
363 * It is set to NULL otherwise (i.e when none are currently running).
364 */
365 struct sched_entity *curr, *next, *last;
366
367 unsigned int nr_spread_over;
368
369 #ifdef CONFIG_FAIR_GROUP_SCHED
370 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
371
372 /*
373 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
374 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
375 * (like users, containers etc.)
376 *
377 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
378 * list is used during load balance.
379 */
380 struct list_head leaf_cfs_rq_list;
381 struct task_group *tg; /* group that "owns" this runqueue */
382
383 #ifdef CONFIG_SMP
384 /*
385 * the part of load.weight contributed by tasks
386 */
387 unsigned long task_weight;
388
389 /*
390 * h_load = weight * f(tg)
391 *
392 * Where f(tg) is the recursive weight fraction assigned to
393 * this group.
394 */
395 unsigned long h_load;
396
397 /*
398 * this cpu's part of tg->shares
399 */
400 unsigned long shares;
401
402 /*
403 * load.weight at the time we set shares
404 */
405 unsigned long rq_weight;
406 #endif
407 #endif
408 };
409
410 /* Real-Time classes' related field in a runqueue: */
411 struct rt_rq {
412 struct rt_prio_array active;
413 unsigned long rt_nr_running;
414 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
415 struct {
416 int curr; /* highest queued rt task prio */
417 #ifdef CONFIG_SMP
418 int next; /* next highest */
419 #endif
420 } highest_prio;
421 #endif
422 #ifdef CONFIG_SMP
423 unsigned long rt_nr_migratory;
424 unsigned long rt_nr_total;
425 int overloaded;
426 struct plist_head pushable_tasks;
427 #endif
428 int rt_throttled;
429 u64 rt_time;
430 u64 rt_runtime;
431 /* Nests inside the rq lock: */
432 raw_spinlock_t rt_runtime_lock;
433
434 #ifdef CONFIG_RT_GROUP_SCHED
435 unsigned long rt_nr_boosted;
436
437 struct rq *rq;
438 struct list_head leaf_rt_rq_list;
439 struct task_group *tg;
440 #endif
441 };
442
443 #ifdef CONFIG_SMP
444
445 /*
446 * We add the notion of a root-domain which will be used to define per-domain
447 * variables. Each exclusive cpuset essentially defines an island domain by
448 * fully partitioning the member cpus from any other cpuset. Whenever a new
449 * exclusive cpuset is created, we also create and attach a new root-domain
450 * object.
451 *
452 */
453 struct root_domain {
454 atomic_t refcount;
455 cpumask_var_t span;
456 cpumask_var_t online;
457
458 /*
459 * The "RT overload" flag: it gets set if a CPU has more than
460 * one runnable RT task.
461 */
462 cpumask_var_t rto_mask;
463 atomic_t rto_count;
464 #ifdef CONFIG_SMP
465 struct cpupri cpupri;
466 #endif
467 };
468
469 /*
470 * By default the system creates a single root-domain with all cpus as
471 * members (mimicking the global state we have today).
472 */
473 static struct root_domain def_root_domain;
474
475 #endif
476
477 /*
478 * This is the main, per-CPU runqueue data structure.
479 *
480 * Locking rule: those places that want to lock multiple runqueues
481 * (such as the load balancing or the thread migration code), lock
482 * acquire operations must be ordered by ascending &runqueue.
483 */
484 struct rq {
485 /* runqueue lock: */
486 raw_spinlock_t lock;
487
488 /*
489 * nr_running and cpu_load should be in the same cacheline because
490 * remote CPUs use both these fields when doing load calculation.
491 */
492 unsigned long nr_running;
493 #define CPU_LOAD_IDX_MAX 5
494 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
495 #ifdef CONFIG_NO_HZ
496 unsigned char in_nohz_recently;
497 #endif
498 /* capture load from *all* tasks on this cpu: */
499 struct load_weight load;
500 unsigned long nr_load_updates;
501 u64 nr_switches;
502
503 struct cfs_rq cfs;
504 struct rt_rq rt;
505
506 #ifdef CONFIG_FAIR_GROUP_SCHED
507 /* list of leaf cfs_rq on this cpu: */
508 struct list_head leaf_cfs_rq_list;
509 #endif
510 #ifdef CONFIG_RT_GROUP_SCHED
511 struct list_head leaf_rt_rq_list;
512 #endif
513
514 /*
515 * This is part of a global counter where only the total sum
516 * over all CPUs matters. A task can increase this counter on
517 * one CPU and if it got migrated afterwards it may decrease
518 * it on another CPU. Always updated under the runqueue lock:
519 */
520 unsigned long nr_uninterruptible;
521
522 struct task_struct *curr, *idle;
523 unsigned long next_balance;
524 struct mm_struct *prev_mm;
525
526 u64 clock;
527
528 atomic_t nr_iowait;
529
530 #ifdef CONFIG_SMP
531 struct root_domain *rd;
532 struct sched_domain *sd;
533
534 unsigned char idle_at_tick;
535 /* For active balancing */
536 int post_schedule;
537 int active_balance;
538 int push_cpu;
539 /* cpu of this runqueue: */
540 int cpu;
541 int online;
542
543 unsigned long avg_load_per_task;
544
545 struct task_struct *migration_thread;
546 struct list_head migration_queue;
547
548 u64 rt_avg;
549 u64 age_stamp;
550 u64 idle_stamp;
551 u64 avg_idle;
552 #endif
553
554 /* calc_load related fields */
555 unsigned long calc_load_update;
556 long calc_load_active;
557
558 #ifdef CONFIG_SCHED_HRTICK
559 #ifdef CONFIG_SMP
560 int hrtick_csd_pending;
561 struct call_single_data hrtick_csd;
562 #endif
563 struct hrtimer hrtick_timer;
564 #endif
565
566 #ifdef CONFIG_SCHEDSTATS
567 /* latency stats */
568 struct sched_info rq_sched_info;
569 unsigned long long rq_cpu_time;
570 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
571
572 /* sys_sched_yield() stats */
573 unsigned int yld_count;
574
575 /* schedule() stats */
576 unsigned int sched_switch;
577 unsigned int sched_count;
578 unsigned int sched_goidle;
579
580 /* try_to_wake_up() stats */
581 unsigned int ttwu_count;
582 unsigned int ttwu_local;
583
584 /* BKL stats */
585 unsigned int bkl_count;
586 #endif
587 };
588
589 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
590
591 static inline
592 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
593 {
594 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
595 }
596
597 static inline int cpu_of(struct rq *rq)
598 {
599 #ifdef CONFIG_SMP
600 return rq->cpu;
601 #else
602 return 0;
603 #endif
604 }
605
606 #define rcu_dereference_check_sched_domain(p) \
607 rcu_dereference_check((p), \
608 rcu_read_lock_sched_held() || \
609 lockdep_is_held(&sched_domains_mutex))
610
611 /*
612 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
613 * See detach_destroy_domains: synchronize_sched for details.
614 *
615 * The domain tree of any CPU may only be accessed from within
616 * preempt-disabled sections.
617 */
618 #define for_each_domain(cpu, __sd) \
619 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
620
621 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
622 #define this_rq() (&__get_cpu_var(runqueues))
623 #define task_rq(p) cpu_rq(task_cpu(p))
624 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
625 #define raw_rq() (&__raw_get_cpu_var(runqueues))
626
627 inline void update_rq_clock(struct rq *rq)
628 {
629 rq->clock = sched_clock_cpu(cpu_of(rq));
630 }
631
632 /*
633 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
634 */
635 #ifdef CONFIG_SCHED_DEBUG
636 # define const_debug __read_mostly
637 #else
638 # define const_debug static const
639 #endif
640
641 /**
642 * runqueue_is_locked
643 * @cpu: the processor in question.
644 *
645 * Returns true if the current cpu runqueue is locked.
646 * This interface allows printk to be called with the runqueue lock
647 * held and know whether or not it is OK to wake up the klogd.
648 */
649 int runqueue_is_locked(int cpu)
650 {
651 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
652 }
653
654 /*
655 * Debugging: various feature bits
656 */
657
658 #define SCHED_FEAT(name, enabled) \
659 __SCHED_FEAT_##name ,
660
661 enum {
662 #include "sched_features.h"
663 };
664
665 #undef SCHED_FEAT
666
667 #define SCHED_FEAT(name, enabled) \
668 (1UL << __SCHED_FEAT_##name) * enabled |
669
670 const_debug unsigned int sysctl_sched_features =
671 #include "sched_features.h"
672 0;
673
674 #undef SCHED_FEAT
675
676 #ifdef CONFIG_SCHED_DEBUG
677 #define SCHED_FEAT(name, enabled) \
678 #name ,
679
680 static __read_mostly char *sched_feat_names[] = {
681 #include "sched_features.h"
682 NULL
683 };
684
685 #undef SCHED_FEAT
686
687 static int sched_feat_show(struct seq_file *m, void *v)
688 {
689 int i;
690
691 for (i = 0; sched_feat_names[i]; i++) {
692 if (!(sysctl_sched_features & (1UL << i)))
693 seq_puts(m, "NO_");
694 seq_printf(m, "%s ", sched_feat_names[i]);
695 }
696 seq_puts(m, "\n");
697
698 return 0;
699 }
700
701 static ssize_t
702 sched_feat_write(struct file *filp, const char __user *ubuf,
703 size_t cnt, loff_t *ppos)
704 {
705 char buf[64];
706 char *cmp = buf;
707 int neg = 0;
708 int i;
709
710 if (cnt > 63)
711 cnt = 63;
712
713 if (copy_from_user(&buf, ubuf, cnt))
714 return -EFAULT;
715
716 buf[cnt] = 0;
717
718 if (strncmp(buf, "NO_", 3) == 0) {
719 neg = 1;
720 cmp += 3;
721 }
722
723 for (i = 0; sched_feat_names[i]; i++) {
724 int len = strlen(sched_feat_names[i]);
725
726 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
727 if (neg)
728 sysctl_sched_features &= ~(1UL << i);
729 else
730 sysctl_sched_features |= (1UL << i);
731 break;
732 }
733 }
734
735 if (!sched_feat_names[i])
736 return -EINVAL;
737
738 *ppos += cnt;
739
740 return cnt;
741 }
742
743 static int sched_feat_open(struct inode *inode, struct file *filp)
744 {
745 return single_open(filp, sched_feat_show, NULL);
746 }
747
748 static const struct file_operations sched_feat_fops = {
749 .open = sched_feat_open,
750 .write = sched_feat_write,
751 .read = seq_read,
752 .llseek = seq_lseek,
753 .release = single_release,
754 };
755
756 static __init int sched_init_debug(void)
757 {
758 debugfs_create_file("sched_features", 0644, NULL, NULL,
759 &sched_feat_fops);
760
761 return 0;
762 }
763 late_initcall(sched_init_debug);
764
765 #endif
766
767 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
768
769 /*
770 * Number of tasks to iterate in a single balance run.
771 * Limited because this is done with IRQs disabled.
772 */
773 const_debug unsigned int sysctl_sched_nr_migrate = 32;
774
775 /*
776 * ratelimit for updating the group shares.
777 * default: 0.25ms
778 */
779 unsigned int sysctl_sched_shares_ratelimit = 250000;
780 unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
781
782 /*
783 * Inject some fuzzyness into changing the per-cpu group shares
784 * this avoids remote rq-locks at the expense of fairness.
785 * default: 4
786 */
787 unsigned int sysctl_sched_shares_thresh = 4;
788
789 /*
790 * period over which we average the RT time consumption, measured
791 * in ms.
792 *
793 * default: 1s
794 */
795 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
796
797 /*
798 * period over which we measure -rt task cpu usage in us.
799 * default: 1s
800 */
801 unsigned int sysctl_sched_rt_period = 1000000;
802
803 static __read_mostly int scheduler_running;
804
805 /*
806 * part of the period that we allow rt tasks to run in us.
807 * default: 0.95s
808 */
809 int sysctl_sched_rt_runtime = 950000;
810
811 static inline u64 global_rt_period(void)
812 {
813 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
814 }
815
816 static inline u64 global_rt_runtime(void)
817 {
818 if (sysctl_sched_rt_runtime < 0)
819 return RUNTIME_INF;
820
821 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
822 }
823
824 #ifndef prepare_arch_switch
825 # define prepare_arch_switch(next) do { } while (0)
826 #endif
827 #ifndef finish_arch_switch
828 # define finish_arch_switch(prev) do { } while (0)
829 #endif
830
831 static inline int task_current(struct rq *rq, struct task_struct *p)
832 {
833 return rq->curr == p;
834 }
835
836 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
837 static inline int task_running(struct rq *rq, struct task_struct *p)
838 {
839 return task_current(rq, p);
840 }
841
842 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
843 {
844 }
845
846 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
847 {
848 #ifdef CONFIG_DEBUG_SPINLOCK
849 /* this is a valid case when another task releases the spinlock */
850 rq->lock.owner = current;
851 #endif
852 /*
853 * If we are tracking spinlock dependencies then we have to
854 * fix up the runqueue lock - which gets 'carried over' from
855 * prev into current:
856 */
857 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
858
859 raw_spin_unlock_irq(&rq->lock);
860 }
861
862 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
863 static inline int task_running(struct rq *rq, struct task_struct *p)
864 {
865 #ifdef CONFIG_SMP
866 return p->oncpu;
867 #else
868 return task_current(rq, p);
869 #endif
870 }
871
872 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
873 {
874 #ifdef CONFIG_SMP
875 /*
876 * We can optimise this out completely for !SMP, because the
877 * SMP rebalancing from interrupt is the only thing that cares
878 * here.
879 */
880 next->oncpu = 1;
881 #endif
882 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
883 raw_spin_unlock_irq(&rq->lock);
884 #else
885 raw_spin_unlock(&rq->lock);
886 #endif
887 }
888
889 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
890 {
891 #ifdef CONFIG_SMP
892 /*
893 * After ->oncpu is cleared, the task can be moved to a different CPU.
894 * We must ensure this doesn't happen until the switch is completely
895 * finished.
896 */
897 smp_wmb();
898 prev->oncpu = 0;
899 #endif
900 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
901 local_irq_enable();
902 #endif
903 }
904 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
905
906 /*
907 * Check whether the task is waking, we use this to synchronize against
908 * ttwu() so that task_cpu() reports a stable number.
909 *
910 * We need to make an exception for PF_STARTING tasks because the fork
911 * path might require task_rq_lock() to work, eg. it can call
912 * set_cpus_allowed_ptr() from the cpuset clone_ns code.
913 */
914 static inline int task_is_waking(struct task_struct *p)
915 {
916 return unlikely((p->state == TASK_WAKING) && !(p->flags & PF_STARTING));
917 }
918
919 /*
920 * __task_rq_lock - lock the runqueue a given task resides on.
921 * Must be called interrupts disabled.
922 */
923 static inline struct rq *__task_rq_lock(struct task_struct *p)
924 __acquires(rq->lock)
925 {
926 struct rq *rq;
927
928 for (;;) {
929 while (task_is_waking(p))
930 cpu_relax();
931 rq = task_rq(p);
932 raw_spin_lock(&rq->lock);
933 if (likely(rq == task_rq(p) && !task_is_waking(p)))
934 return rq;
935 raw_spin_unlock(&rq->lock);
936 }
937 }
938
939 /*
940 * task_rq_lock - lock the runqueue a given task resides on and disable
941 * interrupts. Note the ordering: we can safely lookup the task_rq without
942 * explicitly disabling preemption.
943 */
944 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
945 __acquires(rq->lock)
946 {
947 struct rq *rq;
948
949 for (;;) {
950 while (task_is_waking(p))
951 cpu_relax();
952 local_irq_save(*flags);
953 rq = task_rq(p);
954 raw_spin_lock(&rq->lock);
955 if (likely(rq == task_rq(p) && !task_is_waking(p)))
956 return rq;
957 raw_spin_unlock_irqrestore(&rq->lock, *flags);
958 }
959 }
960
961 void task_rq_unlock_wait(struct task_struct *p)
962 {
963 struct rq *rq = task_rq(p);
964
965 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
966 raw_spin_unlock_wait(&rq->lock);
967 }
968
969 static void __task_rq_unlock(struct rq *rq)
970 __releases(rq->lock)
971 {
972 raw_spin_unlock(&rq->lock);
973 }
974
975 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
976 __releases(rq->lock)
977 {
978 raw_spin_unlock_irqrestore(&rq->lock, *flags);
979 }
980
981 /*
982 * this_rq_lock - lock this runqueue and disable interrupts.
983 */
984 static struct rq *this_rq_lock(void)
985 __acquires(rq->lock)
986 {
987 struct rq *rq;
988
989 local_irq_disable();
990 rq = this_rq();
991 raw_spin_lock(&rq->lock);
992
993 return rq;
994 }
995
996 #ifdef CONFIG_SCHED_HRTICK
997 /*
998 * Use HR-timers to deliver accurate preemption points.
999 *
1000 * Its all a bit involved since we cannot program an hrt while holding the
1001 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1002 * reschedule event.
1003 *
1004 * When we get rescheduled we reprogram the hrtick_timer outside of the
1005 * rq->lock.
1006 */
1007
1008 /*
1009 * Use hrtick when:
1010 * - enabled by features
1011 * - hrtimer is actually high res
1012 */
1013 static inline int hrtick_enabled(struct rq *rq)
1014 {
1015 if (!sched_feat(HRTICK))
1016 return 0;
1017 if (!cpu_active(cpu_of(rq)))
1018 return 0;
1019 return hrtimer_is_hres_active(&rq->hrtick_timer);
1020 }
1021
1022 static void hrtick_clear(struct rq *rq)
1023 {
1024 if (hrtimer_active(&rq->hrtick_timer))
1025 hrtimer_cancel(&rq->hrtick_timer);
1026 }
1027
1028 /*
1029 * High-resolution timer tick.
1030 * Runs from hardirq context with interrupts disabled.
1031 */
1032 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1033 {
1034 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1035
1036 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1037
1038 raw_spin_lock(&rq->lock);
1039 update_rq_clock(rq);
1040 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1041 raw_spin_unlock(&rq->lock);
1042
1043 return HRTIMER_NORESTART;
1044 }
1045
1046 #ifdef CONFIG_SMP
1047 /*
1048 * called from hardirq (IPI) context
1049 */
1050 static void __hrtick_start(void *arg)
1051 {
1052 struct rq *rq = arg;
1053
1054 raw_spin_lock(&rq->lock);
1055 hrtimer_restart(&rq->hrtick_timer);
1056 rq->hrtick_csd_pending = 0;
1057 raw_spin_unlock(&rq->lock);
1058 }
1059
1060 /*
1061 * Called to set the hrtick timer state.
1062 *
1063 * called with rq->lock held and irqs disabled
1064 */
1065 static void hrtick_start(struct rq *rq, u64 delay)
1066 {
1067 struct hrtimer *timer = &rq->hrtick_timer;
1068 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1069
1070 hrtimer_set_expires(timer, time);
1071
1072 if (rq == this_rq()) {
1073 hrtimer_restart(timer);
1074 } else if (!rq->hrtick_csd_pending) {
1075 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1076 rq->hrtick_csd_pending = 1;
1077 }
1078 }
1079
1080 static int
1081 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1082 {
1083 int cpu = (int)(long)hcpu;
1084
1085 switch (action) {
1086 case CPU_UP_CANCELED:
1087 case CPU_UP_CANCELED_FROZEN:
1088 case CPU_DOWN_PREPARE:
1089 case CPU_DOWN_PREPARE_FROZEN:
1090 case CPU_DEAD:
1091 case CPU_DEAD_FROZEN:
1092 hrtick_clear(cpu_rq(cpu));
1093 return NOTIFY_OK;
1094 }
1095
1096 return NOTIFY_DONE;
1097 }
1098
1099 static __init void init_hrtick(void)
1100 {
1101 hotcpu_notifier(hotplug_hrtick, 0);
1102 }
1103 #else
1104 /*
1105 * Called to set the hrtick timer state.
1106 *
1107 * called with rq->lock held and irqs disabled
1108 */
1109 static void hrtick_start(struct rq *rq, u64 delay)
1110 {
1111 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1112 HRTIMER_MODE_REL_PINNED, 0);
1113 }
1114
1115 static inline void init_hrtick(void)
1116 {
1117 }
1118 #endif /* CONFIG_SMP */
1119
1120 static void init_rq_hrtick(struct rq *rq)
1121 {
1122 #ifdef CONFIG_SMP
1123 rq->hrtick_csd_pending = 0;
1124
1125 rq->hrtick_csd.flags = 0;
1126 rq->hrtick_csd.func = __hrtick_start;
1127 rq->hrtick_csd.info = rq;
1128 #endif
1129
1130 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1131 rq->hrtick_timer.function = hrtick;
1132 }
1133 #else /* CONFIG_SCHED_HRTICK */
1134 static inline void hrtick_clear(struct rq *rq)
1135 {
1136 }
1137
1138 static inline void init_rq_hrtick(struct rq *rq)
1139 {
1140 }
1141
1142 static inline void init_hrtick(void)
1143 {
1144 }
1145 #endif /* CONFIG_SCHED_HRTICK */
1146
1147 /*
1148 * resched_task - mark a task 'to be rescheduled now'.
1149 *
1150 * On UP this means the setting of the need_resched flag, on SMP it
1151 * might also involve a cross-CPU call to trigger the scheduler on
1152 * the target CPU.
1153 */
1154 #ifdef CONFIG_SMP
1155
1156 #ifndef tsk_is_polling
1157 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1158 #endif
1159
1160 static void resched_task(struct task_struct *p)
1161 {
1162 int cpu;
1163
1164 assert_raw_spin_locked(&task_rq(p)->lock);
1165
1166 if (test_tsk_need_resched(p))
1167 return;
1168
1169 set_tsk_need_resched(p);
1170
1171 cpu = task_cpu(p);
1172 if (cpu == smp_processor_id())
1173 return;
1174
1175 /* NEED_RESCHED must be visible before we test polling */
1176 smp_mb();
1177 if (!tsk_is_polling(p))
1178 smp_send_reschedule(cpu);
1179 }
1180
1181 static void resched_cpu(int cpu)
1182 {
1183 struct rq *rq = cpu_rq(cpu);
1184 unsigned long flags;
1185
1186 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
1187 return;
1188 resched_task(cpu_curr(cpu));
1189 raw_spin_unlock_irqrestore(&rq->lock, flags);
1190 }
1191
1192 #ifdef CONFIG_NO_HZ
1193 /*
1194 * When add_timer_on() enqueues a timer into the timer wheel of an
1195 * idle CPU then this timer might expire before the next timer event
1196 * which is scheduled to wake up that CPU. In case of a completely
1197 * idle system the next event might even be infinite time into the
1198 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1199 * leaves the inner idle loop so the newly added timer is taken into
1200 * account when the CPU goes back to idle and evaluates the timer
1201 * wheel for the next timer event.
1202 */
1203 void wake_up_idle_cpu(int cpu)
1204 {
1205 struct rq *rq = cpu_rq(cpu);
1206
1207 if (cpu == smp_processor_id())
1208 return;
1209
1210 /*
1211 * This is safe, as this function is called with the timer
1212 * wheel base lock of (cpu) held. When the CPU is on the way
1213 * to idle and has not yet set rq->curr to idle then it will
1214 * be serialized on the timer wheel base lock and take the new
1215 * timer into account automatically.
1216 */
1217 if (rq->curr != rq->idle)
1218 return;
1219
1220 /*
1221 * We can set TIF_RESCHED on the idle task of the other CPU
1222 * lockless. The worst case is that the other CPU runs the
1223 * idle task through an additional NOOP schedule()
1224 */
1225 set_tsk_need_resched(rq->idle);
1226
1227 /* NEED_RESCHED must be visible before we test polling */
1228 smp_mb();
1229 if (!tsk_is_polling(rq->idle))
1230 smp_send_reschedule(cpu);
1231 }
1232 #endif /* CONFIG_NO_HZ */
1233
1234 static u64 sched_avg_period(void)
1235 {
1236 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1237 }
1238
1239 static void sched_avg_update(struct rq *rq)
1240 {
1241 s64 period = sched_avg_period();
1242
1243 while ((s64)(rq->clock - rq->age_stamp) > period) {
1244 rq->age_stamp += period;
1245 rq->rt_avg /= 2;
1246 }
1247 }
1248
1249 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1250 {
1251 rq->rt_avg += rt_delta;
1252 sched_avg_update(rq);
1253 }
1254
1255 #else /* !CONFIG_SMP */
1256 static void resched_task(struct task_struct *p)
1257 {
1258 assert_raw_spin_locked(&task_rq(p)->lock);
1259 set_tsk_need_resched(p);
1260 }
1261
1262 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1263 {
1264 }
1265 #endif /* CONFIG_SMP */
1266
1267 #if BITS_PER_LONG == 32
1268 # define WMULT_CONST (~0UL)
1269 #else
1270 # define WMULT_CONST (1UL << 32)
1271 #endif
1272
1273 #define WMULT_SHIFT 32
1274
1275 /*
1276 * Shift right and round:
1277 */
1278 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1279
1280 /*
1281 * delta *= weight / lw
1282 */
1283 static unsigned long
1284 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1285 struct load_weight *lw)
1286 {
1287 u64 tmp;
1288
1289 if (!lw->inv_weight) {
1290 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1291 lw->inv_weight = 1;
1292 else
1293 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1294 / (lw->weight+1);
1295 }
1296
1297 tmp = (u64)delta_exec * weight;
1298 /*
1299 * Check whether we'd overflow the 64-bit multiplication:
1300 */
1301 if (unlikely(tmp > WMULT_CONST))
1302 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1303 WMULT_SHIFT/2);
1304 else
1305 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1306
1307 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1308 }
1309
1310 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1311 {
1312 lw->weight += inc;
1313 lw->inv_weight = 0;
1314 }
1315
1316 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1317 {
1318 lw->weight -= dec;
1319 lw->inv_weight = 0;
1320 }
1321
1322 /*
1323 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1324 * of tasks with abnormal "nice" values across CPUs the contribution that
1325 * each task makes to its run queue's load is weighted according to its
1326 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1327 * scaled version of the new time slice allocation that they receive on time
1328 * slice expiry etc.
1329 */
1330
1331 #define WEIGHT_IDLEPRIO 3
1332 #define WMULT_IDLEPRIO 1431655765
1333
1334 /*
1335 * Nice levels are multiplicative, with a gentle 10% change for every
1336 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1337 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1338 * that remained on nice 0.
1339 *
1340 * The "10% effect" is relative and cumulative: from _any_ nice level,
1341 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1342 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1343 * If a task goes up by ~10% and another task goes down by ~10% then
1344 * the relative distance between them is ~25%.)
1345 */
1346 static const int prio_to_weight[40] = {
1347 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1348 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1349 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1350 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1351 /* 0 */ 1024, 820, 655, 526, 423,
1352 /* 5 */ 335, 272, 215, 172, 137,
1353 /* 10 */ 110, 87, 70, 56, 45,
1354 /* 15 */ 36, 29, 23, 18, 15,
1355 };
1356
1357 /*
1358 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1359 *
1360 * In cases where the weight does not change often, we can use the
1361 * precalculated inverse to speed up arithmetics by turning divisions
1362 * into multiplications:
1363 */
1364 static const u32 prio_to_wmult[40] = {
1365 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1366 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1367 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1368 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1369 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1370 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1371 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1372 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1373 };
1374
1375 /* Time spent by the tasks of the cpu accounting group executing in ... */
1376 enum cpuacct_stat_index {
1377 CPUACCT_STAT_USER, /* ... user mode */
1378 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1379
1380 CPUACCT_STAT_NSTATS,
1381 };
1382
1383 #ifdef CONFIG_CGROUP_CPUACCT
1384 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1385 static void cpuacct_update_stats(struct task_struct *tsk,
1386 enum cpuacct_stat_index idx, cputime_t val);
1387 #else
1388 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1389 static inline void cpuacct_update_stats(struct task_struct *tsk,
1390 enum cpuacct_stat_index idx, cputime_t val) {}
1391 #endif
1392
1393 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1394 {
1395 update_load_add(&rq->load, load);
1396 }
1397
1398 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1399 {
1400 update_load_sub(&rq->load, load);
1401 }
1402
1403 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1404 typedef int (*tg_visitor)(struct task_group *, void *);
1405
1406 /*
1407 * Iterate the full tree, calling @down when first entering a node and @up when
1408 * leaving it for the final time.
1409 */
1410 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1411 {
1412 struct task_group *parent, *child;
1413 int ret;
1414
1415 rcu_read_lock();
1416 parent = &root_task_group;
1417 down:
1418 ret = (*down)(parent, data);
1419 if (ret)
1420 goto out_unlock;
1421 list_for_each_entry_rcu(child, &parent->children, siblings) {
1422 parent = child;
1423 goto down;
1424
1425 up:
1426 continue;
1427 }
1428 ret = (*up)(parent, data);
1429 if (ret)
1430 goto out_unlock;
1431
1432 child = parent;
1433 parent = parent->parent;
1434 if (parent)
1435 goto up;
1436 out_unlock:
1437 rcu_read_unlock();
1438
1439 return ret;
1440 }
1441
1442 static int tg_nop(struct task_group *tg, void *data)
1443 {
1444 return 0;
1445 }
1446 #endif
1447
1448 #ifdef CONFIG_SMP
1449 /* Used instead of source_load when we know the type == 0 */
1450 static unsigned long weighted_cpuload(const int cpu)
1451 {
1452 return cpu_rq(cpu)->load.weight;
1453 }
1454
1455 /*
1456 * Return a low guess at the load of a migration-source cpu weighted
1457 * according to the scheduling class and "nice" value.
1458 *
1459 * We want to under-estimate the load of migration sources, to
1460 * balance conservatively.
1461 */
1462 static unsigned long source_load(int cpu, int type)
1463 {
1464 struct rq *rq = cpu_rq(cpu);
1465 unsigned long total = weighted_cpuload(cpu);
1466
1467 if (type == 0 || !sched_feat(LB_BIAS))
1468 return total;
1469
1470 return min(rq->cpu_load[type-1], total);
1471 }
1472
1473 /*
1474 * Return a high guess at the load of a migration-target cpu weighted
1475 * according to the scheduling class and "nice" value.
1476 */
1477 static unsigned long target_load(int cpu, int type)
1478 {
1479 struct rq *rq = cpu_rq(cpu);
1480 unsigned long total = weighted_cpuload(cpu);
1481
1482 if (type == 0 || !sched_feat(LB_BIAS))
1483 return total;
1484
1485 return max(rq->cpu_load[type-1], total);
1486 }
1487
1488 static struct sched_group *group_of(int cpu)
1489 {
1490 struct sched_domain *sd = rcu_dereference_sched(cpu_rq(cpu)->sd);
1491
1492 if (!sd)
1493 return NULL;
1494
1495 return sd->groups;
1496 }
1497
1498 static unsigned long power_of(int cpu)
1499 {
1500 struct sched_group *group = group_of(cpu);
1501
1502 if (!group)
1503 return SCHED_LOAD_SCALE;
1504
1505 return group->cpu_power;
1506 }
1507
1508 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1509
1510 static unsigned long cpu_avg_load_per_task(int cpu)
1511 {
1512 struct rq *rq = cpu_rq(cpu);
1513 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1514
1515 if (nr_running)
1516 rq->avg_load_per_task = rq->load.weight / nr_running;
1517 else
1518 rq->avg_load_per_task = 0;
1519
1520 return rq->avg_load_per_task;
1521 }
1522
1523 #ifdef CONFIG_FAIR_GROUP_SCHED
1524
1525 static __read_mostly unsigned long __percpu *update_shares_data;
1526
1527 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1528
1529 /*
1530 * Calculate and set the cpu's group shares.
1531 */
1532 static void update_group_shares_cpu(struct task_group *tg, int cpu,
1533 unsigned long sd_shares,
1534 unsigned long sd_rq_weight,
1535 unsigned long *usd_rq_weight)
1536 {
1537 unsigned long shares, rq_weight;
1538 int boost = 0;
1539
1540 rq_weight = usd_rq_weight[cpu];
1541 if (!rq_weight) {
1542 boost = 1;
1543 rq_weight = NICE_0_LOAD;
1544 }
1545
1546 /*
1547 * \Sum_j shares_j * rq_weight_i
1548 * shares_i = -----------------------------
1549 * \Sum_j rq_weight_j
1550 */
1551 shares = (sd_shares * rq_weight) / sd_rq_weight;
1552 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1553
1554 if (abs(shares - tg->se[cpu]->load.weight) >
1555 sysctl_sched_shares_thresh) {
1556 struct rq *rq = cpu_rq(cpu);
1557 unsigned long flags;
1558
1559 raw_spin_lock_irqsave(&rq->lock, flags);
1560 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
1561 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1562 __set_se_shares(tg->se[cpu], shares);
1563 raw_spin_unlock_irqrestore(&rq->lock, flags);
1564 }
1565 }
1566
1567 /*
1568 * Re-compute the task group their per cpu shares over the given domain.
1569 * This needs to be done in a bottom-up fashion because the rq weight of a
1570 * parent group depends on the shares of its child groups.
1571 */
1572 static int tg_shares_up(struct task_group *tg, void *data)
1573 {
1574 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
1575 unsigned long *usd_rq_weight;
1576 struct sched_domain *sd = data;
1577 unsigned long flags;
1578 int i;
1579
1580 if (!tg->se[0])
1581 return 0;
1582
1583 local_irq_save(flags);
1584 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1585
1586 for_each_cpu(i, sched_domain_span(sd)) {
1587 weight = tg->cfs_rq[i]->load.weight;
1588 usd_rq_weight[i] = weight;
1589
1590 rq_weight += weight;
1591 /*
1592 * If there are currently no tasks on the cpu pretend there
1593 * is one of average load so that when a new task gets to
1594 * run here it will not get delayed by group starvation.
1595 */
1596 if (!weight)
1597 weight = NICE_0_LOAD;
1598
1599 sum_weight += weight;
1600 shares += tg->cfs_rq[i]->shares;
1601 }
1602
1603 if (!rq_weight)
1604 rq_weight = sum_weight;
1605
1606 if ((!shares && rq_weight) || shares > tg->shares)
1607 shares = tg->shares;
1608
1609 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1610 shares = tg->shares;
1611
1612 for_each_cpu(i, sched_domain_span(sd))
1613 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1614
1615 local_irq_restore(flags);
1616
1617 return 0;
1618 }
1619
1620 /*
1621 * Compute the cpu's hierarchical load factor for each task group.
1622 * This needs to be done in a top-down fashion because the load of a child
1623 * group is a fraction of its parents load.
1624 */
1625 static int tg_load_down(struct task_group *tg, void *data)
1626 {
1627 unsigned long load;
1628 long cpu = (long)data;
1629
1630 if (!tg->parent) {
1631 load = cpu_rq(cpu)->load.weight;
1632 } else {
1633 load = tg->parent->cfs_rq[cpu]->h_load;
1634 load *= tg->cfs_rq[cpu]->shares;
1635 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1636 }
1637
1638 tg->cfs_rq[cpu]->h_load = load;
1639
1640 return 0;
1641 }
1642
1643 static void update_shares(struct sched_domain *sd)
1644 {
1645 s64 elapsed;
1646 u64 now;
1647
1648 if (root_task_group_empty())
1649 return;
1650
1651 now = cpu_clock(raw_smp_processor_id());
1652 elapsed = now - sd->last_update;
1653
1654 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1655 sd->last_update = now;
1656 walk_tg_tree(tg_nop, tg_shares_up, sd);
1657 }
1658 }
1659
1660 static void update_h_load(long cpu)
1661 {
1662 if (root_task_group_empty())
1663 return;
1664
1665 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1666 }
1667
1668 #else
1669
1670 static inline void update_shares(struct sched_domain *sd)
1671 {
1672 }
1673
1674 #endif
1675
1676 #ifdef CONFIG_PREEMPT
1677
1678 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1679
1680 /*
1681 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1682 * way at the expense of forcing extra atomic operations in all
1683 * invocations. This assures that the double_lock is acquired using the
1684 * same underlying policy as the spinlock_t on this architecture, which
1685 * reduces latency compared to the unfair variant below. However, it
1686 * also adds more overhead and therefore may reduce throughput.
1687 */
1688 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1689 __releases(this_rq->lock)
1690 __acquires(busiest->lock)
1691 __acquires(this_rq->lock)
1692 {
1693 raw_spin_unlock(&this_rq->lock);
1694 double_rq_lock(this_rq, busiest);
1695
1696 return 1;
1697 }
1698
1699 #else
1700 /*
1701 * Unfair double_lock_balance: Optimizes throughput at the expense of
1702 * latency by eliminating extra atomic operations when the locks are
1703 * already in proper order on entry. This favors lower cpu-ids and will
1704 * grant the double lock to lower cpus over higher ids under contention,
1705 * regardless of entry order into the function.
1706 */
1707 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1708 __releases(this_rq->lock)
1709 __acquires(busiest->lock)
1710 __acquires(this_rq->lock)
1711 {
1712 int ret = 0;
1713
1714 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1715 if (busiest < this_rq) {
1716 raw_spin_unlock(&this_rq->lock);
1717 raw_spin_lock(&busiest->lock);
1718 raw_spin_lock_nested(&this_rq->lock,
1719 SINGLE_DEPTH_NESTING);
1720 ret = 1;
1721 } else
1722 raw_spin_lock_nested(&busiest->lock,
1723 SINGLE_DEPTH_NESTING);
1724 }
1725 return ret;
1726 }
1727
1728 #endif /* CONFIG_PREEMPT */
1729
1730 /*
1731 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1732 */
1733 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1734 {
1735 if (unlikely(!irqs_disabled())) {
1736 /* printk() doesn't work good under rq->lock */
1737 raw_spin_unlock(&this_rq->lock);
1738 BUG_ON(1);
1739 }
1740
1741 return _double_lock_balance(this_rq, busiest);
1742 }
1743
1744 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1745 __releases(busiest->lock)
1746 {
1747 raw_spin_unlock(&busiest->lock);
1748 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1749 }
1750
1751 /*
1752 * double_rq_lock - safely lock two runqueues
1753 *
1754 * Note this does not disable interrupts like task_rq_lock,
1755 * you need to do so manually before calling.
1756 */
1757 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1758 __acquires(rq1->lock)
1759 __acquires(rq2->lock)
1760 {
1761 BUG_ON(!irqs_disabled());
1762 if (rq1 == rq2) {
1763 raw_spin_lock(&rq1->lock);
1764 __acquire(rq2->lock); /* Fake it out ;) */
1765 } else {
1766 if (rq1 < rq2) {
1767 raw_spin_lock(&rq1->lock);
1768 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1769 } else {
1770 raw_spin_lock(&rq2->lock);
1771 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1772 }
1773 }
1774 update_rq_clock(rq1);
1775 update_rq_clock(rq2);
1776 }
1777
1778 /*
1779 * double_rq_unlock - safely unlock two runqueues
1780 *
1781 * Note this does not restore interrupts like task_rq_unlock,
1782 * you need to do so manually after calling.
1783 */
1784 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1785 __releases(rq1->lock)
1786 __releases(rq2->lock)
1787 {
1788 raw_spin_unlock(&rq1->lock);
1789 if (rq1 != rq2)
1790 raw_spin_unlock(&rq2->lock);
1791 else
1792 __release(rq2->lock);
1793 }
1794
1795 #endif
1796
1797 #ifdef CONFIG_FAIR_GROUP_SCHED
1798 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1799 {
1800 #ifdef CONFIG_SMP
1801 cfs_rq->shares = shares;
1802 #endif
1803 }
1804 #endif
1805
1806 static void calc_load_account_active(struct rq *this_rq);
1807 static void update_sysctl(void);
1808 static int get_update_sysctl_factor(void);
1809
1810 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1811 {
1812 set_task_rq(p, cpu);
1813 #ifdef CONFIG_SMP
1814 /*
1815 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1816 * successfuly executed on another CPU. We must ensure that updates of
1817 * per-task data have been completed by this moment.
1818 */
1819 smp_wmb();
1820 task_thread_info(p)->cpu = cpu;
1821 #endif
1822 }
1823
1824 static const struct sched_class rt_sched_class;
1825
1826 #define sched_class_highest (&rt_sched_class)
1827 #define for_each_class(class) \
1828 for (class = sched_class_highest; class; class = class->next)
1829
1830 #include "sched_stats.h"
1831
1832 static void inc_nr_running(struct rq *rq)
1833 {
1834 rq->nr_running++;
1835 }
1836
1837 static void dec_nr_running(struct rq *rq)
1838 {
1839 rq->nr_running--;
1840 }
1841
1842 static void set_load_weight(struct task_struct *p)
1843 {
1844 if (task_has_rt_policy(p)) {
1845 p->se.load.weight = prio_to_weight[0] * 2;
1846 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1847 return;
1848 }
1849
1850 /*
1851 * SCHED_IDLE tasks get minimal weight:
1852 */
1853 if (p->policy == SCHED_IDLE) {
1854 p->se.load.weight = WEIGHT_IDLEPRIO;
1855 p->se.load.inv_weight = WMULT_IDLEPRIO;
1856 return;
1857 }
1858
1859 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1860 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1861 }
1862
1863 static void update_avg(u64 *avg, u64 sample)
1864 {
1865 s64 diff = sample - *avg;
1866 *avg += diff >> 3;
1867 }
1868
1869 static void
1870 enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, bool head)
1871 {
1872 if (wakeup)
1873 p->se.start_runtime = p->se.sum_exec_runtime;
1874
1875 sched_info_queued(p);
1876 p->sched_class->enqueue_task(rq, p, wakeup, head);
1877 p->se.on_rq = 1;
1878 }
1879
1880 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1881 {
1882 if (sleep) {
1883 if (p->se.last_wakeup) {
1884 update_avg(&p->se.avg_overlap,
1885 p->se.sum_exec_runtime - p->se.last_wakeup);
1886 p->se.last_wakeup = 0;
1887 } else {
1888 update_avg(&p->se.avg_wakeup,
1889 sysctl_sched_wakeup_granularity);
1890 }
1891 }
1892
1893 sched_info_dequeued(p);
1894 p->sched_class->dequeue_task(rq, p, sleep);
1895 p->se.on_rq = 0;
1896 }
1897
1898 /*
1899 * activate_task - move a task to the runqueue.
1900 */
1901 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1902 {
1903 if (task_contributes_to_load(p))
1904 rq->nr_uninterruptible--;
1905
1906 enqueue_task(rq, p, wakeup, false);
1907 inc_nr_running(rq);
1908 }
1909
1910 /*
1911 * deactivate_task - remove a task from the runqueue.
1912 */
1913 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1914 {
1915 if (task_contributes_to_load(p))
1916 rq->nr_uninterruptible++;
1917
1918 dequeue_task(rq, p, sleep);
1919 dec_nr_running(rq);
1920 }
1921
1922 #include "sched_idletask.c"
1923 #include "sched_fair.c"
1924 #include "sched_rt.c"
1925 #ifdef CONFIG_SCHED_DEBUG
1926 # include "sched_debug.c"
1927 #endif
1928
1929 /*
1930 * __normal_prio - return the priority that is based on the static prio
1931 */
1932 static inline int __normal_prio(struct task_struct *p)
1933 {
1934 return p->static_prio;
1935 }
1936
1937 /*
1938 * Calculate the expected normal priority: i.e. priority
1939 * without taking RT-inheritance into account. Might be
1940 * boosted by interactivity modifiers. Changes upon fork,
1941 * setprio syscalls, and whenever the interactivity
1942 * estimator recalculates.
1943 */
1944 static inline int normal_prio(struct task_struct *p)
1945 {
1946 int prio;
1947
1948 if (task_has_rt_policy(p))
1949 prio = MAX_RT_PRIO-1 - p->rt_priority;
1950 else
1951 prio = __normal_prio(p);
1952 return prio;
1953 }
1954
1955 /*
1956 * Calculate the current priority, i.e. the priority
1957 * taken into account by the scheduler. This value might
1958 * be boosted by RT tasks, or might be boosted by
1959 * interactivity modifiers. Will be RT if the task got
1960 * RT-boosted. If not then it returns p->normal_prio.
1961 */
1962 static int effective_prio(struct task_struct *p)
1963 {
1964 p->normal_prio = normal_prio(p);
1965 /*
1966 * If we are RT tasks or we were boosted to RT priority,
1967 * keep the priority unchanged. Otherwise, update priority
1968 * to the normal priority:
1969 */
1970 if (!rt_prio(p->prio))
1971 return p->normal_prio;
1972 return p->prio;
1973 }
1974
1975 /**
1976 * task_curr - is this task currently executing on a CPU?
1977 * @p: the task in question.
1978 */
1979 inline int task_curr(const struct task_struct *p)
1980 {
1981 return cpu_curr(task_cpu(p)) == p;
1982 }
1983
1984 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1985 const struct sched_class *prev_class,
1986 int oldprio, int running)
1987 {
1988 if (prev_class != p->sched_class) {
1989 if (prev_class->switched_from)
1990 prev_class->switched_from(rq, p, running);
1991 p->sched_class->switched_to(rq, p, running);
1992 } else
1993 p->sched_class->prio_changed(rq, p, oldprio, running);
1994 }
1995
1996 #ifdef CONFIG_SMP
1997 /*
1998 * Is this task likely cache-hot:
1999 */
2000 static int
2001 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2002 {
2003 s64 delta;
2004
2005 if (p->sched_class != &fair_sched_class)
2006 return 0;
2007
2008 /*
2009 * Buddy candidates are cache hot:
2010 */
2011 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
2012 (&p->se == cfs_rq_of(&p->se)->next ||
2013 &p->se == cfs_rq_of(&p->se)->last))
2014 return 1;
2015
2016 if (sysctl_sched_migration_cost == -1)
2017 return 1;
2018 if (sysctl_sched_migration_cost == 0)
2019 return 0;
2020
2021 delta = now - p->se.exec_start;
2022
2023 return delta < (s64)sysctl_sched_migration_cost;
2024 }
2025
2026 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2027 {
2028 #ifdef CONFIG_SCHED_DEBUG
2029 /*
2030 * We should never call set_task_cpu() on a blocked task,
2031 * ttwu() will sort out the placement.
2032 */
2033 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2034 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2035 #endif
2036
2037 trace_sched_migrate_task(p, new_cpu);
2038
2039 if (task_cpu(p) != new_cpu) {
2040 p->se.nr_migrations++;
2041 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2042 }
2043
2044 __set_task_cpu(p, new_cpu);
2045 }
2046
2047 struct migration_req {
2048 struct list_head list;
2049
2050 struct task_struct *task;
2051 int dest_cpu;
2052
2053 struct completion done;
2054 };
2055
2056 /*
2057 * The task's runqueue lock must be held.
2058 * Returns true if you have to wait for migration thread.
2059 */
2060 static int
2061 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
2062 {
2063 struct rq *rq = task_rq(p);
2064
2065 /*
2066 * If the task is not on a runqueue (and not running), then
2067 * the next wake-up will properly place the task.
2068 */
2069 if (!p->se.on_rq && !task_running(rq, p))
2070 return 0;
2071
2072 init_completion(&req->done);
2073 req->task = p;
2074 req->dest_cpu = dest_cpu;
2075 list_add(&req->list, &rq->migration_queue);
2076
2077 return 1;
2078 }
2079
2080 /*
2081 * wait_task_inactive - wait for a thread to unschedule.
2082 *
2083 * If @match_state is nonzero, it's the @p->state value just checked and
2084 * not expected to change. If it changes, i.e. @p might have woken up,
2085 * then return zero. When we succeed in waiting for @p to be off its CPU,
2086 * we return a positive number (its total switch count). If a second call
2087 * a short while later returns the same number, the caller can be sure that
2088 * @p has remained unscheduled the whole time.
2089 *
2090 * The caller must ensure that the task *will* unschedule sometime soon,
2091 * else this function might spin for a *long* time. This function can't
2092 * be called with interrupts off, or it may introduce deadlock with
2093 * smp_call_function() if an IPI is sent by the same process we are
2094 * waiting to become inactive.
2095 */
2096 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2097 {
2098 unsigned long flags;
2099 int running, on_rq;
2100 unsigned long ncsw;
2101 struct rq *rq;
2102
2103 for (;;) {
2104 /*
2105 * We do the initial early heuristics without holding
2106 * any task-queue locks at all. We'll only try to get
2107 * the runqueue lock when things look like they will
2108 * work out!
2109 */
2110 rq = task_rq(p);
2111
2112 /*
2113 * If the task is actively running on another CPU
2114 * still, just relax and busy-wait without holding
2115 * any locks.
2116 *
2117 * NOTE! Since we don't hold any locks, it's not
2118 * even sure that "rq" stays as the right runqueue!
2119 * But we don't care, since "task_running()" will
2120 * return false if the runqueue has changed and p
2121 * is actually now running somewhere else!
2122 */
2123 while (task_running(rq, p)) {
2124 if (match_state && unlikely(p->state != match_state))
2125 return 0;
2126 cpu_relax();
2127 }
2128
2129 /*
2130 * Ok, time to look more closely! We need the rq
2131 * lock now, to be *sure*. If we're wrong, we'll
2132 * just go back and repeat.
2133 */
2134 rq = task_rq_lock(p, &flags);
2135 trace_sched_wait_task(rq, p);
2136 running = task_running(rq, p);
2137 on_rq = p->se.on_rq;
2138 ncsw = 0;
2139 if (!match_state || p->state == match_state)
2140 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2141 task_rq_unlock(rq, &flags);
2142
2143 /*
2144 * If it changed from the expected state, bail out now.
2145 */
2146 if (unlikely(!ncsw))
2147 break;
2148
2149 /*
2150 * Was it really running after all now that we
2151 * checked with the proper locks actually held?
2152 *
2153 * Oops. Go back and try again..
2154 */
2155 if (unlikely(running)) {
2156 cpu_relax();
2157 continue;
2158 }
2159
2160 /*
2161 * It's not enough that it's not actively running,
2162 * it must be off the runqueue _entirely_, and not
2163 * preempted!
2164 *
2165 * So if it was still runnable (but just not actively
2166 * running right now), it's preempted, and we should
2167 * yield - it could be a while.
2168 */
2169 if (unlikely(on_rq)) {
2170 schedule_timeout_uninterruptible(1);
2171 continue;
2172 }
2173
2174 /*
2175 * Ahh, all good. It wasn't running, and it wasn't
2176 * runnable, which means that it will never become
2177 * running in the future either. We're all done!
2178 */
2179 break;
2180 }
2181
2182 return ncsw;
2183 }
2184
2185 /***
2186 * kick_process - kick a running thread to enter/exit the kernel
2187 * @p: the to-be-kicked thread
2188 *
2189 * Cause a process which is running on another CPU to enter
2190 * kernel-mode, without any delay. (to get signals handled.)
2191 *
2192 * NOTE: this function doesnt have to take the runqueue lock,
2193 * because all it wants to ensure is that the remote task enters
2194 * the kernel. If the IPI races and the task has been migrated
2195 * to another CPU then no harm is done and the purpose has been
2196 * achieved as well.
2197 */
2198 void kick_process(struct task_struct *p)
2199 {
2200 int cpu;
2201
2202 preempt_disable();
2203 cpu = task_cpu(p);
2204 if ((cpu != smp_processor_id()) && task_curr(p))
2205 smp_send_reschedule(cpu);
2206 preempt_enable();
2207 }
2208 EXPORT_SYMBOL_GPL(kick_process);
2209 #endif /* CONFIG_SMP */
2210
2211 /**
2212 * task_oncpu_function_call - call a function on the cpu on which a task runs
2213 * @p: the task to evaluate
2214 * @func: the function to be called
2215 * @info: the function call argument
2216 *
2217 * Calls the function @func when the task is currently running. This might
2218 * be on the current CPU, which just calls the function directly
2219 */
2220 void task_oncpu_function_call(struct task_struct *p,
2221 void (*func) (void *info), void *info)
2222 {
2223 int cpu;
2224
2225 preempt_disable();
2226 cpu = task_cpu(p);
2227 if (task_curr(p))
2228 smp_call_function_single(cpu, func, info, 1);
2229 preempt_enable();
2230 }
2231
2232 #ifdef CONFIG_SMP
2233 static int select_fallback_rq(int cpu, struct task_struct *p)
2234 {
2235 int dest_cpu;
2236 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2237
2238 /* Look for allowed, online CPU in same node. */
2239 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2240 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2241 return dest_cpu;
2242
2243 /* Any allowed, online CPU? */
2244 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2245 if (dest_cpu < nr_cpu_ids)
2246 return dest_cpu;
2247
2248 /* No more Mr. Nice Guy. */
2249 if (dest_cpu >= nr_cpu_ids) {
2250 rcu_read_lock();
2251 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
2252 rcu_read_unlock();
2253 dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
2254
2255 /*
2256 * Don't tell them about moving exiting tasks or
2257 * kernel threads (both mm NULL), since they never
2258 * leave kernel.
2259 */
2260 if (p->mm && printk_ratelimit()) {
2261 printk(KERN_INFO "process %d (%s) no "
2262 "longer affine to cpu%d\n",
2263 task_pid_nr(p), p->comm, cpu);
2264 }
2265 }
2266
2267 return dest_cpu;
2268 }
2269
2270 /*
2271 * Gets called from 3 sites (exec, fork, wakeup), since it is called without
2272 * holding rq->lock we need to ensure ->cpus_allowed is stable, this is done
2273 * by:
2274 *
2275 * exec: is unstable, retry loop
2276 * fork & wake-up: serialize ->cpus_allowed against TASK_WAKING
2277 */
2278 static inline
2279 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
2280 {
2281 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
2282
2283 /*
2284 * In order not to call set_task_cpu() on a blocking task we need
2285 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2286 * cpu.
2287 *
2288 * Since this is common to all placement strategies, this lives here.
2289 *
2290 * [ this allows ->select_task() to simply return task_cpu(p) and
2291 * not worry about this generic constraint ]
2292 */
2293 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
2294 !cpu_online(cpu)))
2295 cpu = select_fallback_rq(task_cpu(p), p);
2296
2297 return cpu;
2298 }
2299 #endif
2300
2301 /***
2302 * try_to_wake_up - wake up a thread
2303 * @p: the to-be-woken-up thread
2304 * @state: the mask of task states that can be woken
2305 * @sync: do a synchronous wakeup?
2306 *
2307 * Put it on the run-queue if it's not already there. The "current"
2308 * thread is always on the run-queue (except when the actual
2309 * re-schedule is in progress), and as such you're allowed to do
2310 * the simpler "current->state = TASK_RUNNING" to mark yourself
2311 * runnable without the overhead of this.
2312 *
2313 * returns failure only if the task is already active.
2314 */
2315 static int try_to_wake_up(struct task_struct *p, unsigned int state,
2316 int wake_flags)
2317 {
2318 int cpu, orig_cpu, this_cpu, success = 0;
2319 unsigned long flags;
2320 struct rq *rq;
2321
2322 if (!sched_feat(SYNC_WAKEUPS))
2323 wake_flags &= ~WF_SYNC;
2324
2325 this_cpu = get_cpu();
2326
2327 smp_wmb();
2328 rq = task_rq_lock(p, &flags);
2329 update_rq_clock(rq);
2330 if (!(p->state & state))
2331 goto out;
2332
2333 if (p->se.on_rq)
2334 goto out_running;
2335
2336 cpu = task_cpu(p);
2337 orig_cpu = cpu;
2338
2339 #ifdef CONFIG_SMP
2340 if (unlikely(task_running(rq, p)))
2341 goto out_activate;
2342
2343 /*
2344 * In order to handle concurrent wakeups and release the rq->lock
2345 * we put the task in TASK_WAKING state.
2346 *
2347 * First fix up the nr_uninterruptible count:
2348 */
2349 if (task_contributes_to_load(p))
2350 rq->nr_uninterruptible--;
2351 p->state = TASK_WAKING;
2352
2353 if (p->sched_class->task_waking)
2354 p->sched_class->task_waking(rq, p);
2355
2356 __task_rq_unlock(rq);
2357
2358 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
2359 if (cpu != orig_cpu) {
2360 /*
2361 * Since we migrate the task without holding any rq->lock,
2362 * we need to be careful with task_rq_lock(), since that
2363 * might end up locking an invalid rq.
2364 */
2365 set_task_cpu(p, cpu);
2366 }
2367
2368 rq = cpu_rq(cpu);
2369 raw_spin_lock(&rq->lock);
2370 update_rq_clock(rq);
2371
2372 /*
2373 * We migrated the task without holding either rq->lock, however
2374 * since the task is not on the task list itself, nobody else
2375 * will try and migrate the task, hence the rq should match the
2376 * cpu we just moved it to.
2377 */
2378 WARN_ON(task_cpu(p) != cpu);
2379 WARN_ON(p->state != TASK_WAKING);
2380
2381 #ifdef CONFIG_SCHEDSTATS
2382 schedstat_inc(rq, ttwu_count);
2383 if (cpu == this_cpu)
2384 schedstat_inc(rq, ttwu_local);
2385 else {
2386 struct sched_domain *sd;
2387 for_each_domain(this_cpu, sd) {
2388 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2389 schedstat_inc(sd, ttwu_wake_remote);
2390 break;
2391 }
2392 }
2393 }
2394 #endif /* CONFIG_SCHEDSTATS */
2395
2396 out_activate:
2397 #endif /* CONFIG_SMP */
2398 schedstat_inc(p, se.nr_wakeups);
2399 if (wake_flags & WF_SYNC)
2400 schedstat_inc(p, se.nr_wakeups_sync);
2401 if (orig_cpu != cpu)
2402 schedstat_inc(p, se.nr_wakeups_migrate);
2403 if (cpu == this_cpu)
2404 schedstat_inc(p, se.nr_wakeups_local);
2405 else
2406 schedstat_inc(p, se.nr_wakeups_remote);
2407 activate_task(rq, p, 1);
2408 success = 1;
2409
2410 /*
2411 * Only attribute actual wakeups done by this task.
2412 */
2413 if (!in_interrupt()) {
2414 struct sched_entity *se = &current->se;
2415 u64 sample = se->sum_exec_runtime;
2416
2417 if (se->last_wakeup)
2418 sample -= se->last_wakeup;
2419 else
2420 sample -= se->start_runtime;
2421 update_avg(&se->avg_wakeup, sample);
2422
2423 se->last_wakeup = se->sum_exec_runtime;
2424 }
2425
2426 out_running:
2427 trace_sched_wakeup(rq, p, success);
2428 check_preempt_curr(rq, p, wake_flags);
2429
2430 p->state = TASK_RUNNING;
2431 #ifdef CONFIG_SMP
2432 if (p->sched_class->task_woken)
2433 p->sched_class->task_woken(rq, p);
2434
2435 if (unlikely(rq->idle_stamp)) {
2436 u64 delta = rq->clock - rq->idle_stamp;
2437 u64 max = 2*sysctl_sched_migration_cost;
2438
2439 if (delta > max)
2440 rq->avg_idle = max;
2441 else
2442 update_avg(&rq->avg_idle, delta);
2443 rq->idle_stamp = 0;
2444 }
2445 #endif
2446 out:
2447 task_rq_unlock(rq, &flags);
2448 put_cpu();
2449
2450 return success;
2451 }
2452
2453 /**
2454 * wake_up_process - Wake up a specific process
2455 * @p: The process to be woken up.
2456 *
2457 * Attempt to wake up the nominated process and move it to the set of runnable
2458 * processes. Returns 1 if the process was woken up, 0 if it was already
2459 * running.
2460 *
2461 * It may be assumed that this function implies a write memory barrier before
2462 * changing the task state if and only if any tasks are woken up.
2463 */
2464 int wake_up_process(struct task_struct *p)
2465 {
2466 return try_to_wake_up(p, TASK_ALL, 0);
2467 }
2468 EXPORT_SYMBOL(wake_up_process);
2469
2470 int wake_up_state(struct task_struct *p, unsigned int state)
2471 {
2472 return try_to_wake_up(p, state, 0);
2473 }
2474
2475 /*
2476 * Perform scheduler related setup for a newly forked process p.
2477 * p is forked by current.
2478 *
2479 * __sched_fork() is basic setup used by init_idle() too:
2480 */
2481 static void __sched_fork(struct task_struct *p)
2482 {
2483 p->se.exec_start = 0;
2484 p->se.sum_exec_runtime = 0;
2485 p->se.prev_sum_exec_runtime = 0;
2486 p->se.nr_migrations = 0;
2487 p->se.last_wakeup = 0;
2488 p->se.avg_overlap = 0;
2489 p->se.start_runtime = 0;
2490 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
2491
2492 #ifdef CONFIG_SCHEDSTATS
2493 p->se.wait_start = 0;
2494 p->se.wait_max = 0;
2495 p->se.wait_count = 0;
2496 p->se.wait_sum = 0;
2497
2498 p->se.sleep_start = 0;
2499 p->se.sleep_max = 0;
2500 p->se.sum_sleep_runtime = 0;
2501
2502 p->se.block_start = 0;
2503 p->se.block_max = 0;
2504 p->se.exec_max = 0;
2505 p->se.slice_max = 0;
2506
2507 p->se.nr_migrations_cold = 0;
2508 p->se.nr_failed_migrations_affine = 0;
2509 p->se.nr_failed_migrations_running = 0;
2510 p->se.nr_failed_migrations_hot = 0;
2511 p->se.nr_forced_migrations = 0;
2512
2513 p->se.nr_wakeups = 0;
2514 p->se.nr_wakeups_sync = 0;
2515 p->se.nr_wakeups_migrate = 0;
2516 p->se.nr_wakeups_local = 0;
2517 p->se.nr_wakeups_remote = 0;
2518 p->se.nr_wakeups_affine = 0;
2519 p->se.nr_wakeups_affine_attempts = 0;
2520 p->se.nr_wakeups_passive = 0;
2521 p->se.nr_wakeups_idle = 0;
2522
2523 #endif
2524
2525 INIT_LIST_HEAD(&p->rt.run_list);
2526 p->se.on_rq = 0;
2527 INIT_LIST_HEAD(&p->se.group_node);
2528
2529 #ifdef CONFIG_PREEMPT_NOTIFIERS
2530 INIT_HLIST_HEAD(&p->preempt_notifiers);
2531 #endif
2532 }
2533
2534 /*
2535 * fork()/clone()-time setup:
2536 */
2537 void sched_fork(struct task_struct *p, int clone_flags)
2538 {
2539 int cpu = get_cpu();
2540
2541 __sched_fork(p);
2542 /*
2543 * We mark the process as waking here. This guarantees that
2544 * nobody will actually run it, and a signal or other external
2545 * event cannot wake it up and insert it on the runqueue either.
2546 */
2547 p->state = TASK_WAKING;
2548
2549 /*
2550 * Revert to default priority/policy on fork if requested.
2551 */
2552 if (unlikely(p->sched_reset_on_fork)) {
2553 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2554 p->policy = SCHED_NORMAL;
2555 p->normal_prio = p->static_prio;
2556 }
2557
2558 if (PRIO_TO_NICE(p->static_prio) < 0) {
2559 p->static_prio = NICE_TO_PRIO(0);
2560 p->normal_prio = p->static_prio;
2561 set_load_weight(p);
2562 }
2563
2564 /*
2565 * We don't need the reset flag anymore after the fork. It has
2566 * fulfilled its duty:
2567 */
2568 p->sched_reset_on_fork = 0;
2569 }
2570
2571 /*
2572 * Make sure we do not leak PI boosting priority to the child.
2573 */
2574 p->prio = current->normal_prio;
2575
2576 if (!rt_prio(p->prio))
2577 p->sched_class = &fair_sched_class;
2578
2579 if (p->sched_class->task_fork)
2580 p->sched_class->task_fork(p);
2581
2582 set_task_cpu(p, cpu);
2583
2584 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2585 if (likely(sched_info_on()))
2586 memset(&p->sched_info, 0, sizeof(p->sched_info));
2587 #endif
2588 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2589 p->oncpu = 0;
2590 #endif
2591 #ifdef CONFIG_PREEMPT
2592 /* Want to start with kernel preemption disabled. */
2593 task_thread_info(p)->preempt_count = 1;
2594 #endif
2595 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2596
2597 put_cpu();
2598 }
2599
2600 /*
2601 * wake_up_new_task - wake up a newly created task for the first time.
2602 *
2603 * This function will do some initial scheduler statistics housekeeping
2604 * that must be done for every newly created context, then puts the task
2605 * on the runqueue and wakes it.
2606 */
2607 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2608 {
2609 unsigned long flags;
2610 struct rq *rq;
2611 int cpu __maybe_unused = get_cpu();
2612
2613 #ifdef CONFIG_SMP
2614 /*
2615 * Fork balancing, do it here and not earlier because:
2616 * - cpus_allowed can change in the fork path
2617 * - any previously selected cpu might disappear through hotplug
2618 *
2619 * We still have TASK_WAKING but PF_STARTING is gone now, meaning
2620 * ->cpus_allowed is stable, we have preemption disabled, meaning
2621 * cpu_online_mask is stable.
2622 */
2623 cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
2624 set_task_cpu(p, cpu);
2625 #endif
2626
2627 /*
2628 * Since the task is not on the rq and we still have TASK_WAKING set
2629 * nobody else will migrate this task.
2630 */
2631 rq = cpu_rq(cpu);
2632 raw_spin_lock_irqsave(&rq->lock, flags);
2633
2634 BUG_ON(p->state != TASK_WAKING);
2635 p->state = TASK_RUNNING;
2636 update_rq_clock(rq);
2637 activate_task(rq, p, 0);
2638 trace_sched_wakeup_new(rq, p, 1);
2639 check_preempt_curr(rq, p, WF_FORK);
2640 #ifdef CONFIG_SMP
2641 if (p->sched_class->task_woken)
2642 p->sched_class->task_woken(rq, p);
2643 #endif
2644 task_rq_unlock(rq, &flags);
2645 put_cpu();
2646 }
2647
2648 #ifdef CONFIG_PREEMPT_NOTIFIERS
2649
2650 /**
2651 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2652 * @notifier: notifier struct to register
2653 */
2654 void preempt_notifier_register(struct preempt_notifier *notifier)
2655 {
2656 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2657 }
2658 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2659
2660 /**
2661 * preempt_notifier_unregister - no longer interested in preemption notifications
2662 * @notifier: notifier struct to unregister
2663 *
2664 * This is safe to call from within a preemption notifier.
2665 */
2666 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2667 {
2668 hlist_del(&notifier->link);
2669 }
2670 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2671
2672 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2673 {
2674 struct preempt_notifier *notifier;
2675 struct hlist_node *node;
2676
2677 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2678 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2679 }
2680
2681 static void
2682 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2683 struct task_struct *next)
2684 {
2685 struct preempt_notifier *notifier;
2686 struct hlist_node *node;
2687
2688 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2689 notifier->ops->sched_out(notifier, next);
2690 }
2691
2692 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2693
2694 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2695 {
2696 }
2697
2698 static void
2699 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2700 struct task_struct *next)
2701 {
2702 }
2703
2704 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2705
2706 /**
2707 * prepare_task_switch - prepare to switch tasks
2708 * @rq: the runqueue preparing to switch
2709 * @prev: the current task that is being switched out
2710 * @next: the task we are going to switch to.
2711 *
2712 * This is called with the rq lock held and interrupts off. It must
2713 * be paired with a subsequent finish_task_switch after the context
2714 * switch.
2715 *
2716 * prepare_task_switch sets up locking and calls architecture specific
2717 * hooks.
2718 */
2719 static inline void
2720 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2721 struct task_struct *next)
2722 {
2723 fire_sched_out_preempt_notifiers(prev, next);
2724 prepare_lock_switch(rq, next);
2725 prepare_arch_switch(next);
2726 }
2727
2728 /**
2729 * finish_task_switch - clean up after a task-switch
2730 * @rq: runqueue associated with task-switch
2731 * @prev: the thread we just switched away from.
2732 *
2733 * finish_task_switch must be called after the context switch, paired
2734 * with a prepare_task_switch call before the context switch.
2735 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2736 * and do any other architecture-specific cleanup actions.
2737 *
2738 * Note that we may have delayed dropping an mm in context_switch(). If
2739 * so, we finish that here outside of the runqueue lock. (Doing it
2740 * with the lock held can cause deadlocks; see schedule() for
2741 * details.)
2742 */
2743 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2744 __releases(rq->lock)
2745 {
2746 struct mm_struct *mm = rq->prev_mm;
2747 long prev_state;
2748
2749 rq->prev_mm = NULL;
2750
2751 /*
2752 * A task struct has one reference for the use as "current".
2753 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2754 * schedule one last time. The schedule call will never return, and
2755 * the scheduled task must drop that reference.
2756 * The test for TASK_DEAD must occur while the runqueue locks are
2757 * still held, otherwise prev could be scheduled on another cpu, die
2758 * there before we look at prev->state, and then the reference would
2759 * be dropped twice.
2760 * Manfred Spraul <manfred@colorfullife.com>
2761 */
2762 prev_state = prev->state;
2763 finish_arch_switch(prev);
2764 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2765 local_irq_disable();
2766 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2767 perf_event_task_sched_in(current);
2768 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2769 local_irq_enable();
2770 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2771 finish_lock_switch(rq, prev);
2772
2773 fire_sched_in_preempt_notifiers(current);
2774 if (mm)
2775 mmdrop(mm);
2776 if (unlikely(prev_state == TASK_DEAD)) {
2777 /*
2778 * Remove function-return probe instances associated with this
2779 * task and put them back on the free list.
2780 */
2781 kprobe_flush_task(prev);
2782 put_task_struct(prev);
2783 }
2784 }
2785
2786 #ifdef CONFIG_SMP
2787
2788 /* assumes rq->lock is held */
2789 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2790 {
2791 if (prev->sched_class->pre_schedule)
2792 prev->sched_class->pre_schedule(rq, prev);
2793 }
2794
2795 /* rq->lock is NOT held, but preemption is disabled */
2796 static inline void post_schedule(struct rq *rq)
2797 {
2798 if (rq->post_schedule) {
2799 unsigned long flags;
2800
2801 raw_spin_lock_irqsave(&rq->lock, flags);
2802 if (rq->curr->sched_class->post_schedule)
2803 rq->curr->sched_class->post_schedule(rq);
2804 raw_spin_unlock_irqrestore(&rq->lock, flags);
2805
2806 rq->post_schedule = 0;
2807 }
2808 }
2809
2810 #else
2811
2812 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2813 {
2814 }
2815
2816 static inline void post_schedule(struct rq *rq)
2817 {
2818 }
2819
2820 #endif
2821
2822 /**
2823 * schedule_tail - first thing a freshly forked thread must call.
2824 * @prev: the thread we just switched away from.
2825 */
2826 asmlinkage void schedule_tail(struct task_struct *prev)
2827 __releases(rq->lock)
2828 {
2829 struct rq *rq = this_rq();
2830
2831 finish_task_switch(rq, prev);
2832
2833 /*
2834 * FIXME: do we need to worry about rq being invalidated by the
2835 * task_switch?
2836 */
2837 post_schedule(rq);
2838
2839 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2840 /* In this case, finish_task_switch does not reenable preemption */
2841 preempt_enable();
2842 #endif
2843 if (current->set_child_tid)
2844 put_user(task_pid_vnr(current), current->set_child_tid);
2845 }
2846
2847 /*
2848 * context_switch - switch to the new MM and the new
2849 * thread's register state.
2850 */
2851 static inline void
2852 context_switch(struct rq *rq, struct task_struct *prev,
2853 struct task_struct *next)
2854 {
2855 struct mm_struct *mm, *oldmm;
2856
2857 prepare_task_switch(rq, prev, next);
2858 trace_sched_switch(rq, prev, next);
2859 mm = next->mm;
2860 oldmm = prev->active_mm;
2861 /*
2862 * For paravirt, this is coupled with an exit in switch_to to
2863 * combine the page table reload and the switch backend into
2864 * one hypercall.
2865 */
2866 arch_start_context_switch(prev);
2867
2868 if (likely(!mm)) {
2869 next->active_mm = oldmm;
2870 atomic_inc(&oldmm->mm_count);
2871 enter_lazy_tlb(oldmm, next);
2872 } else
2873 switch_mm(oldmm, mm, next);
2874
2875 if (likely(!prev->mm)) {
2876 prev->active_mm = NULL;
2877 rq->prev_mm = oldmm;
2878 }
2879 /*
2880 * Since the runqueue lock will be released by the next
2881 * task (which is an invalid locking op but in the case
2882 * of the scheduler it's an obvious special-case), so we
2883 * do an early lockdep release here:
2884 */
2885 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2886 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2887 #endif
2888
2889 /* Here we just switch the register state and the stack. */
2890 switch_to(prev, next, prev);
2891
2892 barrier();
2893 /*
2894 * this_rq must be evaluated again because prev may have moved
2895 * CPUs since it called schedule(), thus the 'rq' on its stack
2896 * frame will be invalid.
2897 */
2898 finish_task_switch(this_rq(), prev);
2899 }
2900
2901 /*
2902 * nr_running, nr_uninterruptible and nr_context_switches:
2903 *
2904 * externally visible scheduler statistics: current number of runnable
2905 * threads, current number of uninterruptible-sleeping threads, total
2906 * number of context switches performed since bootup.
2907 */
2908 unsigned long nr_running(void)
2909 {
2910 unsigned long i, sum = 0;
2911
2912 for_each_online_cpu(i)
2913 sum += cpu_rq(i)->nr_running;
2914
2915 return sum;
2916 }
2917
2918 unsigned long nr_uninterruptible(void)
2919 {
2920 unsigned long i, sum = 0;
2921
2922 for_each_possible_cpu(i)
2923 sum += cpu_rq(i)->nr_uninterruptible;
2924
2925 /*
2926 * Since we read the counters lockless, it might be slightly
2927 * inaccurate. Do not allow it to go below zero though:
2928 */
2929 if (unlikely((long)sum < 0))
2930 sum = 0;
2931
2932 return sum;
2933 }
2934
2935 unsigned long long nr_context_switches(void)
2936 {
2937 int i;
2938 unsigned long long sum = 0;
2939
2940 for_each_possible_cpu(i)
2941 sum += cpu_rq(i)->nr_switches;
2942
2943 return sum;
2944 }
2945
2946 unsigned long nr_iowait(void)
2947 {
2948 unsigned long i, sum = 0;
2949
2950 for_each_possible_cpu(i)
2951 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2952
2953 return sum;
2954 }
2955
2956 unsigned long nr_iowait_cpu(void)
2957 {
2958 struct rq *this = this_rq();
2959 return atomic_read(&this->nr_iowait);
2960 }
2961
2962 unsigned long this_cpu_load(void)
2963 {
2964 struct rq *this = this_rq();
2965 return this->cpu_load[0];
2966 }
2967
2968
2969 /* Variables and functions for calc_load */
2970 static atomic_long_t calc_load_tasks;
2971 static unsigned long calc_load_update;
2972 unsigned long avenrun[3];
2973 EXPORT_SYMBOL(avenrun);
2974
2975 /**
2976 * get_avenrun - get the load average array
2977 * @loads: pointer to dest load array
2978 * @offset: offset to add
2979 * @shift: shift count to shift the result left
2980 *
2981 * These values are estimates at best, so no need for locking.
2982 */
2983 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2984 {
2985 loads[0] = (avenrun[0] + offset) << shift;
2986 loads[1] = (avenrun[1] + offset) << shift;
2987 loads[2] = (avenrun[2] + offset) << shift;
2988 }
2989
2990 static unsigned long
2991 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2992 {
2993 load *= exp;
2994 load += active * (FIXED_1 - exp);
2995 return load >> FSHIFT;
2996 }
2997
2998 /*
2999 * calc_load - update the avenrun load estimates 10 ticks after the
3000 * CPUs have updated calc_load_tasks.
3001 */
3002 void calc_global_load(void)
3003 {
3004 unsigned long upd = calc_load_update + 10;
3005 long active;
3006
3007 if (time_before(jiffies, upd))
3008 return;
3009
3010 active = atomic_long_read(&calc_load_tasks);
3011 active = active > 0 ? active * FIXED_1 : 0;
3012
3013 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3014 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3015 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3016
3017 calc_load_update += LOAD_FREQ;
3018 }
3019
3020 /*
3021 * Either called from update_cpu_load() or from a cpu going idle
3022 */
3023 static void calc_load_account_active(struct rq *this_rq)
3024 {
3025 long nr_active, delta;
3026
3027 nr_active = this_rq->nr_running;
3028 nr_active += (long) this_rq->nr_uninterruptible;
3029
3030 if (nr_active != this_rq->calc_load_active) {
3031 delta = nr_active - this_rq->calc_load_active;
3032 this_rq->calc_load_active = nr_active;
3033 atomic_long_add(delta, &calc_load_tasks);
3034 }
3035 }
3036
3037 /*
3038 * Update rq->cpu_load[] statistics. This function is usually called every
3039 * scheduler tick (TICK_NSEC).
3040 */
3041 static void update_cpu_load(struct rq *this_rq)
3042 {
3043 unsigned long this_load = this_rq->load.weight;
3044 int i, scale;
3045
3046 this_rq->nr_load_updates++;
3047
3048 /* Update our load: */
3049 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3050 unsigned long old_load, new_load;
3051
3052 /* scale is effectively 1 << i now, and >> i divides by scale */
3053
3054 old_load = this_rq->cpu_load[i];
3055 new_load = this_load;
3056 /*
3057 * Round up the averaging division if load is increasing. This
3058 * prevents us from getting stuck on 9 if the load is 10, for
3059 * example.
3060 */
3061 if (new_load > old_load)
3062 new_load += scale-1;
3063 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3064 }
3065
3066 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3067 this_rq->calc_load_update += LOAD_FREQ;
3068 calc_load_account_active(this_rq);
3069 }
3070 }
3071
3072 #ifdef CONFIG_SMP
3073
3074 /*
3075 * sched_exec - execve() is a valuable balancing opportunity, because at
3076 * this point the task has the smallest effective memory and cache footprint.
3077 */
3078 void sched_exec(void)
3079 {
3080 struct task_struct *p = current;
3081 struct migration_req req;
3082 int dest_cpu, this_cpu;
3083 unsigned long flags;
3084 struct rq *rq;
3085
3086 again:
3087 this_cpu = get_cpu();
3088 dest_cpu = select_task_rq(p, SD_BALANCE_EXEC, 0);
3089 if (dest_cpu == this_cpu) {
3090 put_cpu();
3091 return;
3092 }
3093
3094 rq = task_rq_lock(p, &flags);
3095 put_cpu();
3096
3097 /*
3098 * select_task_rq() can race against ->cpus_allowed
3099 */
3100 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3101 || unlikely(!cpu_active(dest_cpu))) {
3102 task_rq_unlock(rq, &flags);
3103 goto again;
3104 }
3105
3106 /* force the process onto the specified CPU */
3107 if (migrate_task(p, dest_cpu, &req)) {
3108 /* Need to wait for migration thread (might exit: take ref). */
3109 struct task_struct *mt = rq->migration_thread;
3110
3111 get_task_struct(mt);
3112 task_rq_unlock(rq, &flags);
3113 wake_up_process(mt);
3114 put_task_struct(mt);
3115 wait_for_completion(&req.done);
3116
3117 return;
3118 }
3119 task_rq_unlock(rq, &flags);
3120 }
3121
3122 #endif
3123
3124 DEFINE_PER_CPU(struct kernel_stat, kstat);
3125
3126 EXPORT_PER_CPU_SYMBOL(kstat);
3127
3128 /*
3129 * Return any ns on the sched_clock that have not yet been accounted in
3130 * @p in case that task is currently running.
3131 *
3132 * Called with task_rq_lock() held on @rq.
3133 */
3134 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3135 {
3136 u64 ns = 0;
3137
3138 if (task_current(rq, p)) {
3139 update_rq_clock(rq);
3140 ns = rq->clock - p->se.exec_start;
3141 if ((s64)ns < 0)
3142 ns = 0;
3143 }
3144
3145 return ns;
3146 }
3147
3148 unsigned long long task_delta_exec(struct task_struct *p)
3149 {
3150 unsigned long flags;
3151 struct rq *rq;
3152 u64 ns = 0;
3153
3154 rq = task_rq_lock(p, &flags);
3155 ns = do_task_delta_exec(p, rq);
3156 task_rq_unlock(rq, &flags);
3157
3158 return ns;
3159 }
3160
3161 /*
3162 * Return accounted runtime for the task.
3163 * In case the task is currently running, return the runtime plus current's
3164 * pending runtime that have not been accounted yet.
3165 */
3166 unsigned long long task_sched_runtime(struct task_struct *p)
3167 {
3168 unsigned long flags;
3169 struct rq *rq;
3170 u64 ns = 0;
3171
3172 rq = task_rq_lock(p, &flags);
3173 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3174 task_rq_unlock(rq, &flags);
3175
3176 return ns;
3177 }
3178
3179 /*
3180 * Return sum_exec_runtime for the thread group.
3181 * In case the task is currently running, return the sum plus current's
3182 * pending runtime that have not been accounted yet.
3183 *
3184 * Note that the thread group might have other running tasks as well,
3185 * so the return value not includes other pending runtime that other
3186 * running tasks might have.
3187 */
3188 unsigned long long thread_group_sched_runtime(struct task_struct *p)
3189 {
3190 struct task_cputime totals;
3191 unsigned long flags;
3192 struct rq *rq;
3193 u64 ns;
3194
3195 rq = task_rq_lock(p, &flags);
3196 thread_group_cputime(p, &totals);
3197 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3198 task_rq_unlock(rq, &flags);
3199
3200 return ns;
3201 }
3202
3203 /*
3204 * Account user cpu time to a process.
3205 * @p: the process that the cpu time gets accounted to
3206 * @cputime: the cpu time spent in user space since the last update
3207 * @cputime_scaled: cputime scaled by cpu frequency
3208 */
3209 void account_user_time(struct task_struct *p, cputime_t cputime,
3210 cputime_t cputime_scaled)
3211 {
3212 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3213 cputime64_t tmp;
3214
3215 /* Add user time to process. */
3216 p->utime = cputime_add(p->utime, cputime);
3217 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3218 account_group_user_time(p, cputime);
3219
3220 /* Add user time to cpustat. */
3221 tmp = cputime_to_cputime64(cputime);
3222 if (TASK_NICE(p) > 0)
3223 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3224 else
3225 cpustat->user = cputime64_add(cpustat->user, tmp);
3226
3227 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3228 /* Account for user time used */
3229 acct_update_integrals(p);
3230 }
3231
3232 /*
3233 * Account guest cpu time to a process.
3234 * @p: the process that the cpu time gets accounted to
3235 * @cputime: the cpu time spent in virtual machine since the last update
3236 * @cputime_scaled: cputime scaled by cpu frequency
3237 */
3238 static void account_guest_time(struct task_struct *p, cputime_t cputime,
3239 cputime_t cputime_scaled)
3240 {
3241 cputime64_t tmp;
3242 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3243
3244 tmp = cputime_to_cputime64(cputime);
3245
3246 /* Add guest time to process. */
3247 p->utime = cputime_add(p->utime, cputime);
3248 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3249 account_group_user_time(p, cputime);
3250 p->gtime = cputime_add(p->gtime, cputime);
3251
3252 /* Add guest time to cpustat. */
3253 if (TASK_NICE(p) > 0) {
3254 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3255 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3256 } else {
3257 cpustat->user = cputime64_add(cpustat->user, tmp);
3258 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3259 }
3260 }
3261
3262 /*
3263 * Account system cpu time to a process.
3264 * @p: the process that the cpu time gets accounted to
3265 * @hardirq_offset: the offset to subtract from hardirq_count()
3266 * @cputime: the cpu time spent in kernel space since the last update
3267 * @cputime_scaled: cputime scaled by cpu frequency
3268 */
3269 void account_system_time(struct task_struct *p, int hardirq_offset,
3270 cputime_t cputime, cputime_t cputime_scaled)
3271 {
3272 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3273 cputime64_t tmp;
3274
3275 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3276 account_guest_time(p, cputime, cputime_scaled);
3277 return;
3278 }
3279
3280 /* Add system time to process. */
3281 p->stime = cputime_add(p->stime, cputime);
3282 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3283 account_group_system_time(p, cputime);
3284
3285 /* Add system time to cpustat. */
3286 tmp = cputime_to_cputime64(cputime);
3287 if (hardirq_count() - hardirq_offset)
3288 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3289 else if (softirq_count())
3290 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3291 else
3292 cpustat->system = cputime64_add(cpustat->system, tmp);
3293
3294 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3295
3296 /* Account for system time used */
3297 acct_update_integrals(p);
3298 }
3299
3300 /*
3301 * Account for involuntary wait time.
3302 * @steal: the cpu time spent in involuntary wait
3303 */
3304 void account_steal_time(cputime_t cputime)
3305 {
3306 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3307 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3308
3309 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3310 }
3311
3312 /*
3313 * Account for idle time.
3314 * @cputime: the cpu time spent in idle wait
3315 */
3316 void account_idle_time(cputime_t cputime)
3317 {
3318 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3319 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3320 struct rq *rq = this_rq();
3321
3322 if (atomic_read(&rq->nr_iowait) > 0)
3323 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3324 else
3325 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
3326 }
3327
3328 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
3329
3330 /*
3331 * Account a single tick of cpu time.
3332 * @p: the process that the cpu time gets accounted to
3333 * @user_tick: indicates if the tick is a user or a system tick
3334 */
3335 void account_process_tick(struct task_struct *p, int user_tick)
3336 {
3337 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3338 struct rq *rq = this_rq();
3339
3340 if (user_tick)
3341 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3342 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3343 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3344 one_jiffy_scaled);
3345 else
3346 account_idle_time(cputime_one_jiffy);
3347 }
3348
3349 /*
3350 * Account multiple ticks of steal time.
3351 * @p: the process from which the cpu time has been stolen
3352 * @ticks: number of stolen ticks
3353 */
3354 void account_steal_ticks(unsigned long ticks)
3355 {
3356 account_steal_time(jiffies_to_cputime(ticks));
3357 }
3358
3359 /*
3360 * Account multiple ticks of idle time.
3361 * @ticks: number of stolen ticks
3362 */
3363 void account_idle_ticks(unsigned long ticks)
3364 {
3365 account_idle_time(jiffies_to_cputime(ticks));
3366 }
3367
3368 #endif
3369
3370 /*
3371 * Use precise platform statistics if available:
3372 */
3373 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
3374 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3375 {
3376 *ut = p->utime;
3377 *st = p->stime;
3378 }
3379
3380 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3381 {
3382 struct task_cputime cputime;
3383
3384 thread_group_cputime(p, &cputime);
3385
3386 *ut = cputime.utime;
3387 *st = cputime.stime;
3388 }
3389 #else
3390
3391 #ifndef nsecs_to_cputime
3392 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
3393 #endif
3394
3395 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3396 {
3397 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
3398
3399 /*
3400 * Use CFS's precise accounting:
3401 */
3402 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3403
3404 if (total) {
3405 u64 temp;
3406
3407 temp = (u64)(rtime * utime);
3408 do_div(temp, total);
3409 utime = (cputime_t)temp;
3410 } else
3411 utime = rtime;
3412
3413 /*
3414 * Compare with previous values, to keep monotonicity:
3415 */
3416 p->prev_utime = max(p->prev_utime, utime);
3417 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
3418
3419 *ut = p->prev_utime;
3420 *st = p->prev_stime;
3421 }
3422
3423 /*
3424 * Must be called with siglock held.
3425 */
3426 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3427 {
3428 struct signal_struct *sig = p->signal;
3429 struct task_cputime cputime;
3430 cputime_t rtime, utime, total;
3431
3432 thread_group_cputime(p, &cputime);
3433
3434 total = cputime_add(cputime.utime, cputime.stime);
3435 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3436
3437 if (total) {
3438 u64 temp;
3439
3440 temp = (u64)(rtime * cputime.utime);
3441 do_div(temp, total);
3442 utime = (cputime_t)temp;
3443 } else
3444 utime = rtime;
3445
3446 sig->prev_utime = max(sig->prev_utime, utime);
3447 sig->prev_stime = max(sig->prev_stime,
3448 cputime_sub(rtime, sig->prev_utime));
3449
3450 *ut = sig->prev_utime;
3451 *st = sig->prev_stime;
3452 }
3453 #endif
3454
3455 /*
3456 * This function gets called by the timer code, with HZ frequency.
3457 * We call it with interrupts disabled.
3458 *
3459 * It also gets called by the fork code, when changing the parent's
3460 * timeslices.
3461 */
3462 void scheduler_tick(void)
3463 {
3464 int cpu = smp_processor_id();
3465 struct rq *rq = cpu_rq(cpu);
3466 struct task_struct *curr = rq->curr;
3467
3468 sched_clock_tick();
3469
3470 raw_spin_lock(&rq->lock);
3471 update_rq_clock(rq);
3472 update_cpu_load(rq);
3473 curr->sched_class->task_tick(rq, curr, 0);
3474 raw_spin_unlock(&rq->lock);
3475
3476 perf_event_task_tick(curr);
3477
3478 #ifdef CONFIG_SMP
3479 rq->idle_at_tick = idle_cpu(cpu);
3480 trigger_load_balance(rq, cpu);
3481 #endif
3482 }
3483
3484 notrace unsigned long get_parent_ip(unsigned long addr)
3485 {
3486 if (in_lock_functions(addr)) {
3487 addr = CALLER_ADDR2;
3488 if (in_lock_functions(addr))
3489 addr = CALLER_ADDR3;
3490 }
3491 return addr;
3492 }
3493
3494 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3495 defined(CONFIG_PREEMPT_TRACER))
3496
3497 void __kprobes add_preempt_count(int val)
3498 {
3499 #ifdef CONFIG_DEBUG_PREEMPT
3500 /*
3501 * Underflow?
3502 */
3503 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3504 return;
3505 #endif
3506 preempt_count() += val;
3507 #ifdef CONFIG_DEBUG_PREEMPT
3508 /*
3509 * Spinlock count overflowing soon?
3510 */
3511 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3512 PREEMPT_MASK - 10);
3513 #endif
3514 if (preempt_count() == val)
3515 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3516 }
3517 EXPORT_SYMBOL(add_preempt_count);
3518
3519 void __kprobes sub_preempt_count(int val)
3520 {
3521 #ifdef CONFIG_DEBUG_PREEMPT
3522 /*
3523 * Underflow?
3524 */
3525 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3526 return;
3527 /*
3528 * Is the spinlock portion underflowing?
3529 */
3530 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3531 !(preempt_count() & PREEMPT_MASK)))
3532 return;
3533 #endif
3534
3535 if (preempt_count() == val)
3536 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3537 preempt_count() -= val;
3538 }
3539 EXPORT_SYMBOL(sub_preempt_count);
3540
3541 #endif
3542
3543 /*
3544 * Print scheduling while atomic bug:
3545 */
3546 static noinline void __schedule_bug(struct task_struct *prev)
3547 {
3548 struct pt_regs *regs = get_irq_regs();
3549
3550 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3551 prev->comm, prev->pid, preempt_count());
3552
3553 debug_show_held_locks(prev);
3554 print_modules();
3555 if (irqs_disabled())
3556 print_irqtrace_events(prev);
3557
3558 if (regs)
3559 show_regs(regs);
3560 else
3561 dump_stack();
3562 }
3563
3564 /*
3565 * Various schedule()-time debugging checks and statistics:
3566 */
3567 static inline void schedule_debug(struct task_struct *prev)
3568 {
3569 /*
3570 * Test if we are atomic. Since do_exit() needs to call into
3571 * schedule() atomically, we ignore that path for now.
3572 * Otherwise, whine if we are scheduling when we should not be.
3573 */
3574 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
3575 __schedule_bug(prev);
3576
3577 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3578
3579 schedstat_inc(this_rq(), sched_count);
3580 #ifdef CONFIG_SCHEDSTATS
3581 if (unlikely(prev->lock_depth >= 0)) {
3582 schedstat_inc(this_rq(), bkl_count);
3583 schedstat_inc(prev, sched_info.bkl_count);
3584 }
3585 #endif
3586 }
3587
3588 static void put_prev_task(struct rq *rq, struct task_struct *prev)
3589 {
3590 if (prev->state == TASK_RUNNING) {
3591 u64 runtime = prev->se.sum_exec_runtime;
3592
3593 runtime -= prev->se.prev_sum_exec_runtime;
3594 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
3595
3596 /*
3597 * In order to avoid avg_overlap growing stale when we are
3598 * indeed overlapping and hence not getting put to sleep, grow
3599 * the avg_overlap on preemption.
3600 *
3601 * We use the average preemption runtime because that
3602 * correlates to the amount of cache footprint a task can
3603 * build up.
3604 */
3605 update_avg(&prev->se.avg_overlap, runtime);
3606 }
3607 prev->sched_class->put_prev_task(rq, prev);
3608 }
3609
3610 /*
3611 * Pick up the highest-prio task:
3612 */
3613 static inline struct task_struct *
3614 pick_next_task(struct rq *rq)
3615 {
3616 const struct sched_class *class;
3617 struct task_struct *p;
3618
3619 /*
3620 * Optimization: we know that if all tasks are in
3621 * the fair class we can call that function directly:
3622 */
3623 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3624 p = fair_sched_class.pick_next_task(rq);
3625 if (likely(p))
3626 return p;
3627 }
3628
3629 class = sched_class_highest;
3630 for ( ; ; ) {
3631 p = class->pick_next_task(rq);
3632 if (p)
3633 return p;
3634 /*
3635 * Will never be NULL as the idle class always
3636 * returns a non-NULL p:
3637 */
3638 class = class->next;
3639 }
3640 }
3641
3642 /*
3643 * schedule() is the main scheduler function.
3644 */
3645 asmlinkage void __sched schedule(void)
3646 {
3647 struct task_struct *prev, *next;
3648 unsigned long *switch_count;
3649 struct rq *rq;
3650 int cpu;
3651
3652 need_resched:
3653 preempt_disable();
3654 cpu = smp_processor_id();
3655 rq = cpu_rq(cpu);
3656 rcu_sched_qs(cpu);
3657 prev = rq->curr;
3658 switch_count = &prev->nivcsw;
3659
3660 release_kernel_lock(prev);
3661 need_resched_nonpreemptible:
3662
3663 schedule_debug(prev);
3664
3665 if (sched_feat(HRTICK))
3666 hrtick_clear(rq);
3667
3668 raw_spin_lock_irq(&rq->lock);
3669 update_rq_clock(rq);
3670 clear_tsk_need_resched(prev);
3671
3672 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3673 if (unlikely(signal_pending_state(prev->state, prev)))
3674 prev->state = TASK_RUNNING;
3675 else
3676 deactivate_task(rq, prev, 1);
3677 switch_count = &prev->nvcsw;
3678 }
3679
3680 pre_schedule(rq, prev);
3681
3682 if (unlikely(!rq->nr_running))
3683 idle_balance(cpu, rq);
3684
3685 put_prev_task(rq, prev);
3686 next = pick_next_task(rq);
3687
3688 if (likely(prev != next)) {
3689 sched_info_switch(prev, next);
3690 perf_event_task_sched_out(prev, next);
3691
3692 rq->nr_switches++;
3693 rq->curr = next;
3694 ++*switch_count;
3695
3696 context_switch(rq, prev, next); /* unlocks the rq */
3697 /*
3698 * the context switch might have flipped the stack from under
3699 * us, hence refresh the local variables.
3700 */
3701 cpu = smp_processor_id();
3702 rq = cpu_rq(cpu);
3703 } else
3704 raw_spin_unlock_irq(&rq->lock);
3705
3706 post_schedule(rq);
3707
3708 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3709 prev = rq->curr;
3710 switch_count = &prev->nivcsw;
3711 goto need_resched_nonpreemptible;
3712 }
3713
3714 preempt_enable_no_resched();
3715 if (need_resched())
3716 goto need_resched;
3717 }
3718 EXPORT_SYMBOL(schedule);
3719
3720 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3721 /*
3722 * Look out! "owner" is an entirely speculative pointer
3723 * access and not reliable.
3724 */
3725 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
3726 {
3727 unsigned int cpu;
3728 struct rq *rq;
3729
3730 if (!sched_feat(OWNER_SPIN))
3731 return 0;
3732
3733 #ifdef CONFIG_DEBUG_PAGEALLOC
3734 /*
3735 * Need to access the cpu field knowing that
3736 * DEBUG_PAGEALLOC could have unmapped it if
3737 * the mutex owner just released it and exited.
3738 */
3739 if (probe_kernel_address(&owner->cpu, cpu))
3740 goto out;
3741 #else
3742 cpu = owner->cpu;
3743 #endif
3744
3745 /*
3746 * Even if the access succeeded (likely case),
3747 * the cpu field may no longer be valid.
3748 */
3749 if (cpu >= nr_cpumask_bits)
3750 goto out;
3751
3752 /*
3753 * We need to validate that we can do a
3754 * get_cpu() and that we have the percpu area.
3755 */
3756 if (!cpu_online(cpu))
3757 goto out;
3758
3759 rq = cpu_rq(cpu);
3760
3761 for (;;) {
3762 /*
3763 * Owner changed, break to re-assess state.
3764 */
3765 if (lock->owner != owner)
3766 break;
3767
3768 /*
3769 * Is that owner really running on that cpu?
3770 */
3771 if (task_thread_info(rq->curr) != owner || need_resched())
3772 return 0;
3773
3774 cpu_relax();
3775 }
3776 out:
3777 return 1;
3778 }
3779 #endif
3780
3781 #ifdef CONFIG_PREEMPT
3782 /*
3783 * this is the entry point to schedule() from in-kernel preemption
3784 * off of preempt_enable. Kernel preemptions off return from interrupt
3785 * occur there and call schedule directly.
3786 */
3787 asmlinkage void __sched preempt_schedule(void)
3788 {
3789 struct thread_info *ti = current_thread_info();
3790
3791 /*
3792 * If there is a non-zero preempt_count or interrupts are disabled,
3793 * we do not want to preempt the current task. Just return..
3794 */
3795 if (likely(ti->preempt_count || irqs_disabled()))
3796 return;
3797
3798 do {
3799 add_preempt_count(PREEMPT_ACTIVE);
3800 schedule();
3801 sub_preempt_count(PREEMPT_ACTIVE);
3802
3803 /*
3804 * Check again in case we missed a preemption opportunity
3805 * between schedule and now.
3806 */
3807 barrier();
3808 } while (need_resched());
3809 }
3810 EXPORT_SYMBOL(preempt_schedule);
3811
3812 /*
3813 * this is the entry point to schedule() from kernel preemption
3814 * off of irq context.
3815 * Note, that this is called and return with irqs disabled. This will
3816 * protect us against recursive calling from irq.
3817 */
3818 asmlinkage void __sched preempt_schedule_irq(void)
3819 {
3820 struct thread_info *ti = current_thread_info();
3821
3822 /* Catch callers which need to be fixed */
3823 BUG_ON(ti->preempt_count || !irqs_disabled());
3824
3825 do {
3826 add_preempt_count(PREEMPT_ACTIVE);
3827 local_irq_enable();
3828 schedule();
3829 local_irq_disable();
3830 sub_preempt_count(PREEMPT_ACTIVE);
3831
3832 /*
3833 * Check again in case we missed a preemption opportunity
3834 * between schedule and now.
3835 */
3836 barrier();
3837 } while (need_resched());
3838 }
3839
3840 #endif /* CONFIG_PREEMPT */
3841
3842 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3843 void *key)
3844 {
3845 return try_to_wake_up(curr->private, mode, wake_flags);
3846 }
3847 EXPORT_SYMBOL(default_wake_function);
3848
3849 /*
3850 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3851 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3852 * number) then we wake all the non-exclusive tasks and one exclusive task.
3853 *
3854 * There are circumstances in which we can try to wake a task which has already
3855 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3856 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3857 */
3858 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3859 int nr_exclusive, int wake_flags, void *key)
3860 {
3861 wait_queue_t *curr, *next;
3862
3863 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3864 unsigned flags = curr->flags;
3865
3866 if (curr->func(curr, mode, wake_flags, key) &&
3867 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3868 break;
3869 }
3870 }
3871
3872 /**
3873 * __wake_up - wake up threads blocked on a waitqueue.
3874 * @q: the waitqueue
3875 * @mode: which threads
3876 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3877 * @key: is directly passed to the wakeup function
3878 *
3879 * It may be assumed that this function implies a write memory barrier before
3880 * changing the task state if and only if any tasks are woken up.
3881 */
3882 void __wake_up(wait_queue_head_t *q, unsigned int mode,
3883 int nr_exclusive, void *key)
3884 {
3885 unsigned long flags;
3886
3887 spin_lock_irqsave(&q->lock, flags);
3888 __wake_up_common(q, mode, nr_exclusive, 0, key);
3889 spin_unlock_irqrestore(&q->lock, flags);
3890 }
3891 EXPORT_SYMBOL(__wake_up);
3892
3893 /*
3894 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3895 */
3896 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3897 {
3898 __wake_up_common(q, mode, 1, 0, NULL);
3899 }
3900
3901 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3902 {
3903 __wake_up_common(q, mode, 1, 0, key);
3904 }
3905
3906 /**
3907 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3908 * @q: the waitqueue
3909 * @mode: which threads
3910 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3911 * @key: opaque value to be passed to wakeup targets
3912 *
3913 * The sync wakeup differs that the waker knows that it will schedule
3914 * away soon, so while the target thread will be woken up, it will not
3915 * be migrated to another CPU - ie. the two threads are 'synchronized'
3916 * with each other. This can prevent needless bouncing between CPUs.
3917 *
3918 * On UP it can prevent extra preemption.
3919 *
3920 * It may be assumed that this function implies a write memory barrier before
3921 * changing the task state if and only if any tasks are woken up.
3922 */
3923 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3924 int nr_exclusive, void *key)
3925 {
3926 unsigned long flags;
3927 int wake_flags = WF_SYNC;
3928
3929 if (unlikely(!q))
3930 return;
3931
3932 if (unlikely(!nr_exclusive))
3933 wake_flags = 0;
3934
3935 spin_lock_irqsave(&q->lock, flags);
3936 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3937 spin_unlock_irqrestore(&q->lock, flags);
3938 }
3939 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3940
3941 /*
3942 * __wake_up_sync - see __wake_up_sync_key()
3943 */
3944 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3945 {
3946 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3947 }
3948 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3949
3950 /**
3951 * complete: - signals a single thread waiting on this completion
3952 * @x: holds the state of this particular completion
3953 *
3954 * This will wake up a single thread waiting on this completion. Threads will be
3955 * awakened in the same order in which they were queued.
3956 *
3957 * See also complete_all(), wait_for_completion() and related routines.
3958 *
3959 * It may be assumed that this function implies a write memory barrier before
3960 * changing the task state if and only if any tasks are woken up.
3961 */
3962 void complete(struct completion *x)
3963 {
3964 unsigned long flags;
3965
3966 spin_lock_irqsave(&x->wait.lock, flags);
3967 x->done++;
3968 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3969 spin_unlock_irqrestore(&x->wait.lock, flags);
3970 }
3971 EXPORT_SYMBOL(complete);
3972
3973 /**
3974 * complete_all: - signals all threads waiting on this completion
3975 * @x: holds the state of this particular completion
3976 *
3977 * This will wake up all threads waiting on this particular completion event.
3978 *
3979 * It may be assumed that this function implies a write memory barrier before
3980 * changing the task state if and only if any tasks are woken up.
3981 */
3982 void complete_all(struct completion *x)
3983 {
3984 unsigned long flags;
3985
3986 spin_lock_irqsave(&x->wait.lock, flags);
3987 x->done += UINT_MAX/2;
3988 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
3989 spin_unlock_irqrestore(&x->wait.lock, flags);
3990 }
3991 EXPORT_SYMBOL(complete_all);
3992
3993 static inline long __sched
3994 do_wait_for_common(struct completion *x, long timeout, int state)
3995 {
3996 if (!x->done) {
3997 DECLARE_WAITQUEUE(wait, current);
3998
3999 wait.flags |= WQ_FLAG_EXCLUSIVE;
4000 __add_wait_queue_tail(&x->wait, &wait);
4001 do {
4002 if (signal_pending_state(state, current)) {
4003 timeout = -ERESTARTSYS;
4004 break;
4005 }
4006 __set_current_state(state);
4007 spin_unlock_irq(&x->wait.lock);
4008 timeout = schedule_timeout(timeout);
4009 spin_lock_irq(&x->wait.lock);
4010 } while (!x->done && timeout);
4011 __remove_wait_queue(&x->wait, &wait);
4012 if (!x->done)
4013 return timeout;
4014 }
4015 x->done--;
4016 return timeout ?: 1;
4017 }
4018
4019 static long __sched
4020 wait_for_common(struct completion *x, long timeout, int state)
4021 {
4022 might_sleep();
4023
4024 spin_lock_irq(&x->wait.lock);
4025 timeout = do_wait_for_common(x, timeout, state);
4026 spin_unlock_irq(&x->wait.lock);
4027 return timeout;
4028 }
4029
4030 /**
4031 * wait_for_completion: - waits for completion of a task
4032 * @x: holds the state of this particular completion
4033 *
4034 * This waits to be signaled for completion of a specific task. It is NOT
4035 * interruptible and there is no timeout.
4036 *
4037 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4038 * and interrupt capability. Also see complete().
4039 */
4040 void __sched wait_for_completion(struct completion *x)
4041 {
4042 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4043 }
4044 EXPORT_SYMBOL(wait_for_completion);
4045
4046 /**
4047 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4048 * @x: holds the state of this particular completion
4049 * @timeout: timeout value in jiffies
4050 *
4051 * This waits for either a completion of a specific task to be signaled or for a
4052 * specified timeout to expire. The timeout is in jiffies. It is not
4053 * interruptible.
4054 */
4055 unsigned long __sched
4056 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4057 {
4058 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4059 }
4060 EXPORT_SYMBOL(wait_for_completion_timeout);
4061
4062 /**
4063 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4064 * @x: holds the state of this particular completion
4065 *
4066 * This waits for completion of a specific task to be signaled. It is
4067 * interruptible.
4068 */
4069 int __sched wait_for_completion_interruptible(struct completion *x)
4070 {
4071 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4072 if (t == -ERESTARTSYS)
4073 return t;
4074 return 0;
4075 }
4076 EXPORT_SYMBOL(wait_for_completion_interruptible);
4077
4078 /**
4079 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4080 * @x: holds the state of this particular completion
4081 * @timeout: timeout value in jiffies
4082 *
4083 * This waits for either a completion of a specific task to be signaled or for a
4084 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4085 */
4086 unsigned long __sched
4087 wait_for_completion_interruptible_timeout(struct completion *x,
4088 unsigned long timeout)
4089 {
4090 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4091 }
4092 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4093
4094 /**
4095 * wait_for_completion_killable: - waits for completion of a task (killable)
4096 * @x: holds the state of this particular completion
4097 *
4098 * This waits to be signaled for completion of a specific task. It can be
4099 * interrupted by a kill signal.
4100 */
4101 int __sched wait_for_completion_killable(struct completion *x)
4102 {
4103 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4104 if (t == -ERESTARTSYS)
4105 return t;
4106 return 0;
4107 }
4108 EXPORT_SYMBOL(wait_for_completion_killable);
4109
4110 /**
4111 * try_wait_for_completion - try to decrement a completion without blocking
4112 * @x: completion structure
4113 *
4114 * Returns: 0 if a decrement cannot be done without blocking
4115 * 1 if a decrement succeeded.
4116 *
4117 * If a completion is being used as a counting completion,
4118 * attempt to decrement the counter without blocking. This
4119 * enables us to avoid waiting if the resource the completion
4120 * is protecting is not available.
4121 */
4122 bool try_wait_for_completion(struct completion *x)
4123 {
4124 unsigned long flags;
4125 int ret = 1;
4126
4127 spin_lock_irqsave(&x->wait.lock, flags);
4128 if (!x->done)
4129 ret = 0;
4130 else
4131 x->done--;
4132 spin_unlock_irqrestore(&x->wait.lock, flags);
4133 return ret;
4134 }
4135 EXPORT_SYMBOL(try_wait_for_completion);
4136
4137 /**
4138 * completion_done - Test to see if a completion has any waiters
4139 * @x: completion structure
4140 *
4141 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4142 * 1 if there are no waiters.
4143 *
4144 */
4145 bool completion_done(struct completion *x)
4146 {
4147 unsigned long flags;
4148 int ret = 1;
4149
4150 spin_lock_irqsave(&x->wait.lock, flags);
4151 if (!x->done)
4152 ret = 0;
4153 spin_unlock_irqrestore(&x->wait.lock, flags);
4154 return ret;
4155 }
4156 EXPORT_SYMBOL(completion_done);
4157
4158 static long __sched
4159 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4160 {
4161 unsigned long flags;
4162 wait_queue_t wait;
4163
4164 init_waitqueue_entry(&wait, current);
4165
4166 __set_current_state(state);
4167
4168 spin_lock_irqsave(&q->lock, flags);
4169 __add_wait_queue(q, &wait);
4170 spin_unlock(&q->lock);
4171 timeout = schedule_timeout(timeout);
4172 spin_lock_irq(&q->lock);
4173 __remove_wait_queue(q, &wait);
4174 spin_unlock_irqrestore(&q->lock, flags);
4175
4176 return timeout;
4177 }
4178
4179 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4180 {
4181 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4182 }
4183 EXPORT_SYMBOL(interruptible_sleep_on);
4184
4185 long __sched
4186 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4187 {
4188 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4189 }
4190 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4191
4192 void __sched sleep_on(wait_queue_head_t *q)
4193 {
4194 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4195 }
4196 EXPORT_SYMBOL(sleep_on);
4197
4198 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4199 {
4200 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4201 }
4202 EXPORT_SYMBOL(sleep_on_timeout);
4203
4204 #ifdef CONFIG_RT_MUTEXES
4205
4206 /*
4207 * rt_mutex_setprio - set the current priority of a task
4208 * @p: task
4209 * @prio: prio value (kernel-internal form)
4210 *
4211 * This function changes the 'effective' priority of a task. It does
4212 * not touch ->normal_prio like __setscheduler().
4213 *
4214 * Used by the rt_mutex code to implement priority inheritance logic.
4215 */
4216 void rt_mutex_setprio(struct task_struct *p, int prio)
4217 {
4218 unsigned long flags;
4219 int oldprio, on_rq, running;
4220 struct rq *rq;
4221 const struct sched_class *prev_class;
4222
4223 BUG_ON(prio < 0 || prio > MAX_PRIO);
4224
4225 rq = task_rq_lock(p, &flags);
4226 update_rq_clock(rq);
4227
4228 oldprio = p->prio;
4229 prev_class = p->sched_class;
4230 on_rq = p->se.on_rq;
4231 running = task_current(rq, p);
4232 if (on_rq)
4233 dequeue_task(rq, p, 0);
4234 if (running)
4235 p->sched_class->put_prev_task(rq, p);
4236
4237 if (rt_prio(prio))
4238 p->sched_class = &rt_sched_class;
4239 else
4240 p->sched_class = &fair_sched_class;
4241
4242 p->prio = prio;
4243
4244 if (running)
4245 p->sched_class->set_curr_task(rq);
4246 if (on_rq) {
4247 enqueue_task(rq, p, 0, oldprio < prio);
4248
4249 check_class_changed(rq, p, prev_class, oldprio, running);
4250 }
4251 task_rq_unlock(rq, &flags);
4252 }
4253
4254 #endif
4255
4256 void set_user_nice(struct task_struct *p, long nice)
4257 {
4258 int old_prio, delta, on_rq;
4259 unsigned long flags;
4260 struct rq *rq;
4261
4262 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4263 return;
4264 /*
4265 * We have to be careful, if called from sys_setpriority(),
4266 * the task might be in the middle of scheduling on another CPU.
4267 */
4268 rq = task_rq_lock(p, &flags);
4269 update_rq_clock(rq);
4270 /*
4271 * The RT priorities are set via sched_setscheduler(), but we still
4272 * allow the 'normal' nice value to be set - but as expected
4273 * it wont have any effect on scheduling until the task is
4274 * SCHED_FIFO/SCHED_RR:
4275 */
4276 if (task_has_rt_policy(p)) {
4277 p->static_prio = NICE_TO_PRIO(nice);
4278 goto out_unlock;
4279 }
4280 on_rq = p->se.on_rq;
4281 if (on_rq)
4282 dequeue_task(rq, p, 0);
4283
4284 p->static_prio = NICE_TO_PRIO(nice);
4285 set_load_weight(p);
4286 old_prio = p->prio;
4287 p->prio = effective_prio(p);
4288 delta = p->prio - old_prio;
4289
4290 if (on_rq) {
4291 enqueue_task(rq, p, 0, false);
4292 /*
4293 * If the task increased its priority or is running and
4294 * lowered its priority, then reschedule its CPU:
4295 */
4296 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4297 resched_task(rq->curr);
4298 }
4299 out_unlock:
4300 task_rq_unlock(rq, &flags);
4301 }
4302 EXPORT_SYMBOL(set_user_nice);
4303
4304 /*
4305 * can_nice - check if a task can reduce its nice value
4306 * @p: task
4307 * @nice: nice value
4308 */
4309 int can_nice(const struct task_struct *p, const int nice)
4310 {
4311 /* convert nice value [19,-20] to rlimit style value [1,40] */
4312 int nice_rlim = 20 - nice;
4313
4314 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4315 capable(CAP_SYS_NICE));
4316 }
4317
4318 #ifdef __ARCH_WANT_SYS_NICE
4319
4320 /*
4321 * sys_nice - change the priority of the current process.
4322 * @increment: priority increment
4323 *
4324 * sys_setpriority is a more generic, but much slower function that
4325 * does similar things.
4326 */
4327 SYSCALL_DEFINE1(nice, int, increment)
4328 {
4329 long nice, retval;
4330
4331 /*
4332 * Setpriority might change our priority at the same moment.
4333 * We don't have to worry. Conceptually one call occurs first
4334 * and we have a single winner.
4335 */
4336 if (increment < -40)
4337 increment = -40;
4338 if (increment > 40)
4339 increment = 40;
4340
4341 nice = TASK_NICE(current) + increment;
4342 if (nice < -20)
4343 nice = -20;
4344 if (nice > 19)
4345 nice = 19;
4346
4347 if (increment < 0 && !can_nice(current, nice))
4348 return -EPERM;
4349
4350 retval = security_task_setnice(current, nice);
4351 if (retval)
4352 return retval;
4353
4354 set_user_nice(current, nice);
4355 return 0;
4356 }
4357
4358 #endif
4359
4360 /**
4361 * task_prio - return the priority value of a given task.
4362 * @p: the task in question.
4363 *
4364 * This is the priority value as seen by users in /proc.
4365 * RT tasks are offset by -200. Normal tasks are centered
4366 * around 0, value goes from -16 to +15.
4367 */
4368 int task_prio(const struct task_struct *p)
4369 {
4370 return p->prio - MAX_RT_PRIO;
4371 }
4372
4373 /**
4374 * task_nice - return the nice value of a given task.
4375 * @p: the task in question.
4376 */
4377 int task_nice(const struct task_struct *p)
4378 {
4379 return TASK_NICE(p);
4380 }
4381 EXPORT_SYMBOL(task_nice);
4382
4383 /**
4384 * idle_cpu - is a given cpu idle currently?
4385 * @cpu: the processor in question.
4386 */
4387 int idle_cpu(int cpu)
4388 {
4389 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4390 }
4391
4392 /**
4393 * idle_task - return the idle task for a given cpu.
4394 * @cpu: the processor in question.
4395 */
4396 struct task_struct *idle_task(int cpu)
4397 {
4398 return cpu_rq(cpu)->idle;
4399 }
4400
4401 /**
4402 * find_process_by_pid - find a process with a matching PID value.
4403 * @pid: the pid in question.
4404 */
4405 static struct task_struct *find_process_by_pid(pid_t pid)
4406 {
4407 return pid ? find_task_by_vpid(pid) : current;
4408 }
4409
4410 /* Actually do priority change: must hold rq lock. */
4411 static void
4412 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4413 {
4414 BUG_ON(p->se.on_rq);
4415
4416 p->policy = policy;
4417 p->rt_priority = prio;
4418 p->normal_prio = normal_prio(p);
4419 /* we are holding p->pi_lock already */
4420 p->prio = rt_mutex_getprio(p);
4421 if (rt_prio(p->prio))
4422 p->sched_class = &rt_sched_class;
4423 else
4424 p->sched_class = &fair_sched_class;
4425 set_load_weight(p);
4426 }
4427
4428 /*
4429 * check the target process has a UID that matches the current process's
4430 */
4431 static bool check_same_owner(struct task_struct *p)
4432 {
4433 const struct cred *cred = current_cred(), *pcred;
4434 bool match;
4435
4436 rcu_read_lock();
4437 pcred = __task_cred(p);
4438 match = (cred->euid == pcred->euid ||
4439 cred->euid == pcred->uid);
4440 rcu_read_unlock();
4441 return match;
4442 }
4443
4444 static int __sched_setscheduler(struct task_struct *p, int policy,
4445 struct sched_param *param, bool user)
4446 {
4447 int retval, oldprio, oldpolicy = -1, on_rq, running;
4448 unsigned long flags;
4449 const struct sched_class *prev_class;
4450 struct rq *rq;
4451 int reset_on_fork;
4452
4453 /* may grab non-irq protected spin_locks */
4454 BUG_ON(in_interrupt());
4455 recheck:
4456 /* double check policy once rq lock held */
4457 if (policy < 0) {
4458 reset_on_fork = p->sched_reset_on_fork;
4459 policy = oldpolicy = p->policy;
4460 } else {
4461 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4462 policy &= ~SCHED_RESET_ON_FORK;
4463
4464 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4465 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4466 policy != SCHED_IDLE)
4467 return -EINVAL;
4468 }
4469
4470 /*
4471 * Valid priorities for SCHED_FIFO and SCHED_RR are
4472 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4473 * SCHED_BATCH and SCHED_IDLE is 0.
4474 */
4475 if (param->sched_priority < 0 ||
4476 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4477 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4478 return -EINVAL;
4479 if (rt_policy(policy) != (param->sched_priority != 0))
4480 return -EINVAL;
4481
4482 /*
4483 * Allow unprivileged RT tasks to decrease priority:
4484 */
4485 if (user && !capable(CAP_SYS_NICE)) {
4486 if (rt_policy(policy)) {
4487 unsigned long rlim_rtprio;
4488
4489 if (!lock_task_sighand(p, &flags))
4490 return -ESRCH;
4491 rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
4492 unlock_task_sighand(p, &flags);
4493
4494 /* can't set/change the rt policy */
4495 if (policy != p->policy && !rlim_rtprio)
4496 return -EPERM;
4497
4498 /* can't increase priority */
4499 if (param->sched_priority > p->rt_priority &&
4500 param->sched_priority > rlim_rtprio)
4501 return -EPERM;
4502 }
4503 /*
4504 * Like positive nice levels, dont allow tasks to
4505 * move out of SCHED_IDLE either:
4506 */
4507 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4508 return -EPERM;
4509
4510 /* can't change other user's priorities */
4511 if (!check_same_owner(p))
4512 return -EPERM;
4513
4514 /* Normal users shall not reset the sched_reset_on_fork flag */
4515 if (p->sched_reset_on_fork && !reset_on_fork)
4516 return -EPERM;
4517 }
4518
4519 if (user) {
4520 #ifdef CONFIG_RT_GROUP_SCHED
4521 /*
4522 * Do not allow realtime tasks into groups that have no runtime
4523 * assigned.
4524 */
4525 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4526 task_group(p)->rt_bandwidth.rt_runtime == 0)
4527 return -EPERM;
4528 #endif
4529
4530 retval = security_task_setscheduler(p, policy, param);
4531 if (retval)
4532 return retval;
4533 }
4534
4535 /*
4536 * make sure no PI-waiters arrive (or leave) while we are
4537 * changing the priority of the task:
4538 */
4539 raw_spin_lock_irqsave(&p->pi_lock, flags);
4540 /*
4541 * To be able to change p->policy safely, the apropriate
4542 * runqueue lock must be held.
4543 */
4544 rq = __task_rq_lock(p);
4545 /* recheck policy now with rq lock held */
4546 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4547 policy = oldpolicy = -1;
4548 __task_rq_unlock(rq);
4549 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4550 goto recheck;
4551 }
4552 update_rq_clock(rq);
4553 on_rq = p->se.on_rq;
4554 running = task_current(rq, p);
4555 if (on_rq)
4556 deactivate_task(rq, p, 0);
4557 if (running)
4558 p->sched_class->put_prev_task(rq, p);
4559
4560 p->sched_reset_on_fork = reset_on_fork;
4561
4562 oldprio = p->prio;
4563 prev_class = p->sched_class;
4564 __setscheduler(rq, p, policy, param->sched_priority);
4565
4566 if (running)
4567 p->sched_class->set_curr_task(rq);
4568 if (on_rq) {
4569 activate_task(rq, p, 0);
4570
4571 check_class_changed(rq, p, prev_class, oldprio, running);
4572 }
4573 __task_rq_unlock(rq);
4574 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4575
4576 rt_mutex_adjust_pi(p);
4577
4578 return 0;
4579 }
4580
4581 /**
4582 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4583 * @p: the task in question.
4584 * @policy: new policy.
4585 * @param: structure containing the new RT priority.
4586 *
4587 * NOTE that the task may be already dead.
4588 */
4589 int sched_setscheduler(struct task_struct *p, int policy,
4590 struct sched_param *param)
4591 {
4592 return __sched_setscheduler(p, policy, param, true);
4593 }
4594 EXPORT_SYMBOL_GPL(sched_setscheduler);
4595
4596 /**
4597 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4598 * @p: the task in question.
4599 * @policy: new policy.
4600 * @param: structure containing the new RT priority.
4601 *
4602 * Just like sched_setscheduler, only don't bother checking if the
4603 * current context has permission. For example, this is needed in
4604 * stop_machine(): we create temporary high priority worker threads,
4605 * but our caller might not have that capability.
4606 */
4607 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4608 struct sched_param *param)
4609 {
4610 return __sched_setscheduler(p, policy, param, false);
4611 }
4612
4613 static int
4614 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4615 {
4616 struct sched_param lparam;
4617 struct task_struct *p;
4618 int retval;
4619
4620 if (!param || pid < 0)
4621 return -EINVAL;
4622 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4623 return -EFAULT;
4624
4625 rcu_read_lock();
4626 retval = -ESRCH;
4627 p = find_process_by_pid(pid);
4628 if (p != NULL)
4629 retval = sched_setscheduler(p, policy, &lparam);
4630 rcu_read_unlock();
4631
4632 return retval;
4633 }
4634
4635 /**
4636 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4637 * @pid: the pid in question.
4638 * @policy: new policy.
4639 * @param: structure containing the new RT priority.
4640 */
4641 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4642 struct sched_param __user *, param)
4643 {
4644 /* negative values for policy are not valid */
4645 if (policy < 0)
4646 return -EINVAL;
4647
4648 return do_sched_setscheduler(pid, policy, param);
4649 }
4650
4651 /**
4652 * sys_sched_setparam - set/change the RT priority of a thread
4653 * @pid: the pid in question.
4654 * @param: structure containing the new RT priority.
4655 */
4656 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4657 {
4658 return do_sched_setscheduler(pid, -1, param);
4659 }
4660
4661 /**
4662 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4663 * @pid: the pid in question.
4664 */
4665 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4666 {
4667 struct task_struct *p;
4668 int retval;
4669
4670 if (pid < 0)
4671 return -EINVAL;
4672
4673 retval = -ESRCH;
4674 rcu_read_lock();
4675 p = find_process_by_pid(pid);
4676 if (p) {
4677 retval = security_task_getscheduler(p);
4678 if (!retval)
4679 retval = p->policy
4680 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4681 }
4682 rcu_read_unlock();
4683 return retval;
4684 }
4685
4686 /**
4687 * sys_sched_getparam - get the RT priority of a thread
4688 * @pid: the pid in question.
4689 * @param: structure containing the RT priority.
4690 */
4691 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4692 {
4693 struct sched_param lp;
4694 struct task_struct *p;
4695 int retval;
4696
4697 if (!param || pid < 0)
4698 return -EINVAL;
4699
4700 rcu_read_lock();
4701 p = find_process_by_pid(pid);
4702 retval = -ESRCH;
4703 if (!p)
4704 goto out_unlock;
4705
4706 retval = security_task_getscheduler(p);
4707 if (retval)
4708 goto out_unlock;
4709
4710 lp.sched_priority = p->rt_priority;
4711 rcu_read_unlock();
4712
4713 /*
4714 * This one might sleep, we cannot do it with a spinlock held ...
4715 */
4716 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4717
4718 return retval;
4719
4720 out_unlock:
4721 rcu_read_unlock();
4722 return retval;
4723 }
4724
4725 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4726 {
4727 cpumask_var_t cpus_allowed, new_mask;
4728 struct task_struct *p;
4729 int retval;
4730
4731 get_online_cpus();
4732 rcu_read_lock();
4733
4734 p = find_process_by_pid(pid);
4735 if (!p) {
4736 rcu_read_unlock();
4737 put_online_cpus();
4738 return -ESRCH;
4739 }
4740
4741 /* Prevent p going away */
4742 get_task_struct(p);
4743 rcu_read_unlock();
4744
4745 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4746 retval = -ENOMEM;
4747 goto out_put_task;
4748 }
4749 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4750 retval = -ENOMEM;
4751 goto out_free_cpus_allowed;
4752 }
4753 retval = -EPERM;
4754 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
4755 goto out_unlock;
4756
4757 retval = security_task_setscheduler(p, 0, NULL);
4758 if (retval)
4759 goto out_unlock;
4760
4761 cpuset_cpus_allowed(p, cpus_allowed);
4762 cpumask_and(new_mask, in_mask, cpus_allowed);
4763 again:
4764 retval = set_cpus_allowed_ptr(p, new_mask);
4765
4766 if (!retval) {
4767 cpuset_cpus_allowed(p, cpus_allowed);
4768 if (!cpumask_subset(new_mask, cpus_allowed)) {
4769 /*
4770 * We must have raced with a concurrent cpuset
4771 * update. Just reset the cpus_allowed to the
4772 * cpuset's cpus_allowed
4773 */
4774 cpumask_copy(new_mask, cpus_allowed);
4775 goto again;
4776 }
4777 }
4778 out_unlock:
4779 free_cpumask_var(new_mask);
4780 out_free_cpus_allowed:
4781 free_cpumask_var(cpus_allowed);
4782 out_put_task:
4783 put_task_struct(p);
4784 put_online_cpus();
4785 return retval;
4786 }
4787
4788 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4789 struct cpumask *new_mask)
4790 {
4791 if (len < cpumask_size())
4792 cpumask_clear(new_mask);
4793 else if (len > cpumask_size())
4794 len = cpumask_size();
4795
4796 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4797 }
4798
4799 /**
4800 * sys_sched_setaffinity - set the cpu affinity of a process
4801 * @pid: pid of the process
4802 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4803 * @user_mask_ptr: user-space pointer to the new cpu mask
4804 */
4805 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4806 unsigned long __user *, user_mask_ptr)
4807 {
4808 cpumask_var_t new_mask;
4809 int retval;
4810
4811 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4812 return -ENOMEM;
4813
4814 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4815 if (retval == 0)
4816 retval = sched_setaffinity(pid, new_mask);
4817 free_cpumask_var(new_mask);
4818 return retval;
4819 }
4820
4821 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4822 {
4823 struct task_struct *p;
4824 unsigned long flags;
4825 struct rq *rq;
4826 int retval;
4827
4828 get_online_cpus();
4829 rcu_read_lock();
4830
4831 retval = -ESRCH;
4832 p = find_process_by_pid(pid);
4833 if (!p)
4834 goto out_unlock;
4835
4836 retval = security_task_getscheduler(p);
4837 if (retval)
4838 goto out_unlock;
4839
4840 rq = task_rq_lock(p, &flags);
4841 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4842 task_rq_unlock(rq, &flags);
4843
4844 out_unlock:
4845 rcu_read_unlock();
4846 put_online_cpus();
4847
4848 return retval;
4849 }
4850
4851 /**
4852 * sys_sched_getaffinity - get the cpu affinity of a process
4853 * @pid: pid of the process
4854 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4855 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4856 */
4857 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4858 unsigned long __user *, user_mask_ptr)
4859 {
4860 int ret;
4861 cpumask_var_t mask;
4862
4863 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4864 return -EINVAL;
4865 if (len & (sizeof(unsigned long)-1))
4866 return -EINVAL;
4867
4868 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4869 return -ENOMEM;
4870
4871 ret = sched_getaffinity(pid, mask);
4872 if (ret == 0) {
4873 size_t retlen = min_t(size_t, len, cpumask_size());
4874
4875 if (copy_to_user(user_mask_ptr, mask, retlen))
4876 ret = -EFAULT;
4877 else
4878 ret = retlen;
4879 }
4880 free_cpumask_var(mask);
4881
4882 return ret;
4883 }
4884
4885 /**
4886 * sys_sched_yield - yield the current processor to other threads.
4887 *
4888 * This function yields the current CPU to other tasks. If there are no
4889 * other threads running on this CPU then this function will return.
4890 */
4891 SYSCALL_DEFINE0(sched_yield)
4892 {
4893 struct rq *rq = this_rq_lock();
4894
4895 schedstat_inc(rq, yld_count);
4896 current->sched_class->yield_task(rq);
4897
4898 /*
4899 * Since we are going to call schedule() anyway, there's
4900 * no need to preempt or enable interrupts:
4901 */
4902 __release(rq->lock);
4903 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4904 do_raw_spin_unlock(&rq->lock);
4905 preempt_enable_no_resched();
4906
4907 schedule();
4908
4909 return 0;
4910 }
4911
4912 static inline int should_resched(void)
4913 {
4914 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4915 }
4916
4917 static void __cond_resched(void)
4918 {
4919 add_preempt_count(PREEMPT_ACTIVE);
4920 schedule();
4921 sub_preempt_count(PREEMPT_ACTIVE);
4922 }
4923
4924 int __sched _cond_resched(void)
4925 {
4926 if (should_resched()) {
4927 __cond_resched();
4928 return 1;
4929 }
4930 return 0;
4931 }
4932 EXPORT_SYMBOL(_cond_resched);
4933
4934 /*
4935 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4936 * call schedule, and on return reacquire the lock.
4937 *
4938 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4939 * operations here to prevent schedule() from being called twice (once via
4940 * spin_unlock(), once by hand).
4941 */
4942 int __cond_resched_lock(spinlock_t *lock)
4943 {
4944 int resched = should_resched();
4945 int ret = 0;
4946
4947 lockdep_assert_held(lock);
4948
4949 if (spin_needbreak(lock) || resched) {
4950 spin_unlock(lock);
4951 if (resched)
4952 __cond_resched();
4953 else
4954 cpu_relax();
4955 ret = 1;
4956 spin_lock(lock);
4957 }
4958 return ret;
4959 }
4960 EXPORT_SYMBOL(__cond_resched_lock);
4961
4962 int __sched __cond_resched_softirq(void)
4963 {
4964 BUG_ON(!in_softirq());
4965
4966 if (should_resched()) {
4967 local_bh_enable();
4968 __cond_resched();
4969 local_bh_disable();
4970 return 1;
4971 }
4972 return 0;
4973 }
4974 EXPORT_SYMBOL(__cond_resched_softirq);
4975
4976 /**
4977 * yield - yield the current processor to other threads.
4978 *
4979 * This is a shortcut for kernel-space yielding - it marks the
4980 * thread runnable and calls sys_sched_yield().
4981 */
4982 void __sched yield(void)
4983 {
4984 set_current_state(TASK_RUNNING);
4985 sys_sched_yield();
4986 }
4987 EXPORT_SYMBOL(yield);
4988
4989 /*
4990 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4991 * that process accounting knows that this is a task in IO wait state.
4992 */
4993 void __sched io_schedule(void)
4994 {
4995 struct rq *rq = raw_rq();
4996
4997 delayacct_blkio_start();
4998 atomic_inc(&rq->nr_iowait);
4999 current->in_iowait = 1;
5000 schedule();
5001 current->in_iowait = 0;
5002 atomic_dec(&rq->nr_iowait);
5003 delayacct_blkio_end();
5004 }
5005 EXPORT_SYMBOL(io_schedule);
5006
5007 long __sched io_schedule_timeout(long timeout)
5008 {
5009 struct rq *rq = raw_rq();
5010 long ret;
5011
5012 delayacct_blkio_start();
5013 atomic_inc(&rq->nr_iowait);
5014 current->in_iowait = 1;
5015 ret = schedule_timeout(timeout);
5016 current->in_iowait = 0;
5017 atomic_dec(&rq->nr_iowait);
5018 delayacct_blkio_end();
5019 return ret;
5020 }
5021
5022 /**
5023 * sys_sched_get_priority_max - return maximum RT priority.
5024 * @policy: scheduling class.
5025 *
5026 * this syscall returns the maximum rt_priority that can be used
5027 * by a given scheduling class.
5028 */
5029 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5030 {
5031 int ret = -EINVAL;
5032
5033 switch (policy) {
5034 case SCHED_FIFO:
5035 case SCHED_RR:
5036 ret = MAX_USER_RT_PRIO-1;
5037 break;
5038 case SCHED_NORMAL:
5039 case SCHED_BATCH:
5040 case SCHED_IDLE:
5041 ret = 0;
5042 break;
5043 }
5044 return ret;
5045 }
5046
5047 /**
5048 * sys_sched_get_priority_min - return minimum RT priority.
5049 * @policy: scheduling class.
5050 *
5051 * this syscall returns the minimum rt_priority that can be used
5052 * by a given scheduling class.
5053 */
5054 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5055 {
5056 int ret = -EINVAL;
5057
5058 switch (policy) {
5059 case SCHED_FIFO:
5060 case SCHED_RR:
5061 ret = 1;
5062 break;
5063 case SCHED_NORMAL:
5064 case SCHED_BATCH:
5065 case SCHED_IDLE:
5066 ret = 0;
5067 }
5068 return ret;
5069 }
5070
5071 /**
5072 * sys_sched_rr_get_interval - return the default timeslice of a process.
5073 * @pid: pid of the process.
5074 * @interval: userspace pointer to the timeslice value.
5075 *
5076 * this syscall writes the default timeslice value of a given process
5077 * into the user-space timespec buffer. A value of '0' means infinity.
5078 */
5079 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5080 struct timespec __user *, interval)
5081 {
5082 struct task_struct *p;
5083 unsigned int time_slice;
5084 unsigned long flags;
5085 struct rq *rq;
5086 int retval;
5087 struct timespec t;
5088
5089 if (pid < 0)
5090 return -EINVAL;
5091
5092 retval = -ESRCH;
5093 rcu_read_lock();
5094 p = find_process_by_pid(pid);
5095 if (!p)
5096 goto out_unlock;
5097
5098 retval = security_task_getscheduler(p);
5099 if (retval)
5100 goto out_unlock;
5101
5102 rq = task_rq_lock(p, &flags);
5103 time_slice = p->sched_class->get_rr_interval(rq, p);
5104 task_rq_unlock(rq, &flags);
5105
5106 rcu_read_unlock();
5107 jiffies_to_timespec(time_slice, &t);
5108 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5109 return retval;
5110
5111 out_unlock:
5112 rcu_read_unlock();
5113 return retval;
5114 }
5115
5116 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5117
5118 void sched_show_task(struct task_struct *p)
5119 {
5120 unsigned long free = 0;
5121 unsigned state;
5122
5123 state = p->state ? __ffs(p->state) + 1 : 0;
5124 printk(KERN_INFO "%-13.13s %c", p->comm,
5125 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5126 #if BITS_PER_LONG == 32
5127 if (state == TASK_RUNNING)
5128 printk(KERN_CONT " running ");
5129 else
5130 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5131 #else
5132 if (state == TASK_RUNNING)
5133 printk(KERN_CONT " running task ");
5134 else
5135 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5136 #endif
5137 #ifdef CONFIG_DEBUG_STACK_USAGE
5138 free = stack_not_used(p);
5139 #endif
5140 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5141 task_pid_nr(p), task_pid_nr(p->real_parent),
5142 (unsigned long)task_thread_info(p)->flags);
5143
5144 show_stack(p, NULL);
5145 }
5146
5147 void show_state_filter(unsigned long state_filter)
5148 {
5149 struct task_struct *g, *p;
5150
5151 #if BITS_PER_LONG == 32
5152 printk(KERN_INFO
5153 " task PC stack pid father\n");
5154 #else
5155 printk(KERN_INFO
5156 " task PC stack pid father\n");
5157 #endif
5158 read_lock(&tasklist_lock);
5159 do_each_thread(g, p) {
5160 /*
5161 * reset the NMI-timeout, listing all files on a slow
5162 * console might take alot of time:
5163 */
5164 touch_nmi_watchdog();
5165 if (!state_filter || (p->state & state_filter))
5166 sched_show_task(p);
5167 } while_each_thread(g, p);
5168
5169 touch_all_softlockup_watchdogs();
5170
5171 #ifdef CONFIG_SCHED_DEBUG
5172 sysrq_sched_debug_show();
5173 #endif
5174 read_unlock(&tasklist_lock);
5175 /*
5176 * Only show locks if all tasks are dumped:
5177 */
5178 if (!state_filter)
5179 debug_show_all_locks();
5180 }
5181
5182 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5183 {
5184 idle->sched_class = &idle_sched_class;
5185 }
5186
5187 /**
5188 * init_idle - set up an idle thread for a given CPU
5189 * @idle: task in question
5190 * @cpu: cpu the idle task belongs to
5191 *
5192 * NOTE: this function does not set the idle thread's NEED_RESCHED
5193 * flag, to make booting more robust.
5194 */
5195 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5196 {
5197 struct rq *rq = cpu_rq(cpu);
5198 unsigned long flags;
5199
5200 raw_spin_lock_irqsave(&rq->lock, flags);
5201
5202 __sched_fork(idle);
5203 idle->state = TASK_RUNNING;
5204 idle->se.exec_start = sched_clock();
5205
5206 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
5207 __set_task_cpu(idle, cpu);
5208
5209 rq->curr = rq->idle = idle;
5210 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5211 idle->oncpu = 1;
5212 #endif
5213 raw_spin_unlock_irqrestore(&rq->lock, flags);
5214
5215 /* Set the preempt count _outside_ the spinlocks! */
5216 #if defined(CONFIG_PREEMPT)
5217 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5218 #else
5219 task_thread_info(idle)->preempt_count = 0;
5220 #endif
5221 /*
5222 * The idle tasks have their own, simple scheduling class:
5223 */
5224 idle->sched_class = &idle_sched_class;
5225 ftrace_graph_init_task(idle);
5226 }
5227
5228 /*
5229 * In a system that switches off the HZ timer nohz_cpu_mask
5230 * indicates which cpus entered this state. This is used
5231 * in the rcu update to wait only for active cpus. For system
5232 * which do not switch off the HZ timer nohz_cpu_mask should
5233 * always be CPU_BITS_NONE.
5234 */
5235 cpumask_var_t nohz_cpu_mask;
5236
5237 /*
5238 * Increase the granularity value when there are more CPUs,
5239 * because with more CPUs the 'effective latency' as visible
5240 * to users decreases. But the relationship is not linear,
5241 * so pick a second-best guess by going with the log2 of the
5242 * number of CPUs.
5243 *
5244 * This idea comes from the SD scheduler of Con Kolivas:
5245 */
5246 static int get_update_sysctl_factor(void)
5247 {
5248 unsigned int cpus = min_t(int, num_online_cpus(), 8);
5249 unsigned int factor;
5250
5251 switch (sysctl_sched_tunable_scaling) {
5252 case SCHED_TUNABLESCALING_NONE:
5253 factor = 1;
5254 break;
5255 case SCHED_TUNABLESCALING_LINEAR:
5256 factor = cpus;
5257 break;
5258 case SCHED_TUNABLESCALING_LOG:
5259 default:
5260 factor = 1 + ilog2(cpus);
5261 break;
5262 }
5263
5264 return factor;
5265 }
5266
5267 static void update_sysctl(void)
5268 {
5269 unsigned int factor = get_update_sysctl_factor();
5270
5271 #define SET_SYSCTL(name) \
5272 (sysctl_##name = (factor) * normalized_sysctl_##name)
5273 SET_SYSCTL(sched_min_granularity);
5274 SET_SYSCTL(sched_latency);
5275 SET_SYSCTL(sched_wakeup_granularity);
5276 SET_SYSCTL(sched_shares_ratelimit);
5277 #undef SET_SYSCTL
5278 }
5279
5280 static inline void sched_init_granularity(void)
5281 {
5282 update_sysctl();
5283 }
5284
5285 #ifdef CONFIG_SMP
5286 /*
5287 * This is how migration works:
5288 *
5289 * 1) we queue a struct migration_req structure in the source CPU's
5290 * runqueue and wake up that CPU's migration thread.
5291 * 2) we down() the locked semaphore => thread blocks.
5292 * 3) migration thread wakes up (implicitly it forces the migrated
5293 * thread off the CPU)
5294 * 4) it gets the migration request and checks whether the migrated
5295 * task is still in the wrong runqueue.
5296 * 5) if it's in the wrong runqueue then the migration thread removes
5297 * it and puts it into the right queue.
5298 * 6) migration thread up()s the semaphore.
5299 * 7) we wake up and the migration is done.
5300 */
5301
5302 /*
5303 * Change a given task's CPU affinity. Migrate the thread to a
5304 * proper CPU and schedule it away if the CPU it's executing on
5305 * is removed from the allowed bitmask.
5306 *
5307 * NOTE: the caller must have a valid reference to the task, the
5308 * task must not exit() & deallocate itself prematurely. The
5309 * call is not atomic; no spinlocks may be held.
5310 */
5311 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
5312 {
5313 struct migration_req req;
5314 unsigned long flags;
5315 struct rq *rq;
5316 int ret = 0;
5317
5318 rq = task_rq_lock(p, &flags);
5319
5320 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
5321 ret = -EINVAL;
5322 goto out;
5323 }
5324
5325 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5326 !cpumask_equal(&p->cpus_allowed, new_mask))) {
5327 ret = -EINVAL;
5328 goto out;
5329 }
5330
5331 if (p->sched_class->set_cpus_allowed)
5332 p->sched_class->set_cpus_allowed(p, new_mask);
5333 else {
5334 cpumask_copy(&p->cpus_allowed, new_mask);
5335 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5336 }
5337
5338 /* Can the task run on the task's current CPU? If so, we're done */
5339 if (cpumask_test_cpu(task_cpu(p), new_mask))
5340 goto out;
5341
5342 if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
5343 /* Need help from migration thread: drop lock and wait. */
5344 struct task_struct *mt = rq->migration_thread;
5345
5346 get_task_struct(mt);
5347 task_rq_unlock(rq, &flags);
5348 wake_up_process(mt);
5349 put_task_struct(mt);
5350 wait_for_completion(&req.done);
5351 tlb_migrate_finish(p->mm);
5352 return 0;
5353 }
5354 out:
5355 task_rq_unlock(rq, &flags);
5356
5357 return ret;
5358 }
5359 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5360
5361 /*
5362 * Move (not current) task off this cpu, onto dest cpu. We're doing
5363 * this because either it can't run here any more (set_cpus_allowed()
5364 * away from this CPU, or CPU going down), or because we're
5365 * attempting to rebalance this task on exec (sched_exec).
5366 *
5367 * So we race with normal scheduler movements, but that's OK, as long
5368 * as the task is no longer on this CPU.
5369 *
5370 * Returns non-zero if task was successfully migrated.
5371 */
5372 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5373 {
5374 struct rq *rq_dest, *rq_src;
5375 int ret = 0;
5376
5377 if (unlikely(!cpu_active(dest_cpu)))
5378 return ret;
5379
5380 rq_src = cpu_rq(src_cpu);
5381 rq_dest = cpu_rq(dest_cpu);
5382
5383 double_rq_lock(rq_src, rq_dest);
5384 /* Already moved. */
5385 if (task_cpu(p) != src_cpu)
5386 goto done;
5387 /* Affinity changed (again). */
5388 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
5389 goto fail;
5390
5391 /*
5392 * If we're not on a rq, the next wake-up will ensure we're
5393 * placed properly.
5394 */
5395 if (p->se.on_rq) {
5396 deactivate_task(rq_src, p, 0);
5397 set_task_cpu(p, dest_cpu);
5398 activate_task(rq_dest, p, 0);
5399 check_preempt_curr(rq_dest, p, 0);
5400 }
5401 done:
5402 ret = 1;
5403 fail:
5404 double_rq_unlock(rq_src, rq_dest);
5405 return ret;
5406 }
5407
5408 #define RCU_MIGRATION_IDLE 0
5409 #define RCU_MIGRATION_NEED_QS 1
5410 #define RCU_MIGRATION_GOT_QS 2
5411 #define RCU_MIGRATION_MUST_SYNC 3
5412
5413 /*
5414 * migration_thread - this is a highprio system thread that performs
5415 * thread migration by bumping thread off CPU then 'pushing' onto
5416 * another runqueue.
5417 */
5418 static int migration_thread(void *data)
5419 {
5420 int badcpu;
5421 int cpu = (long)data;
5422 struct rq *rq;
5423
5424 rq = cpu_rq(cpu);
5425 BUG_ON(rq->migration_thread != current);
5426
5427 set_current_state(TASK_INTERRUPTIBLE);
5428 while (!kthread_should_stop()) {
5429 struct migration_req *req;
5430 struct list_head *head;
5431
5432 raw_spin_lock_irq(&rq->lock);
5433
5434 if (cpu_is_offline(cpu)) {
5435 raw_spin_unlock_irq(&rq->lock);
5436 break;
5437 }
5438
5439 if (rq->active_balance) {
5440 active_load_balance(rq, cpu);
5441 rq->active_balance = 0;
5442 }
5443
5444 head = &rq->migration_queue;
5445
5446 if (list_empty(head)) {
5447 raw_spin_unlock_irq(&rq->lock);
5448 schedule();
5449 set_current_state(TASK_INTERRUPTIBLE);
5450 continue;
5451 }
5452 req = list_entry(head->next, struct migration_req, list);
5453 list_del_init(head->next);
5454
5455 if (req->task != NULL) {
5456 raw_spin_unlock(&rq->lock);
5457 __migrate_task(req->task, cpu, req->dest_cpu);
5458 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
5459 req->dest_cpu = RCU_MIGRATION_GOT_QS;
5460 raw_spin_unlock(&rq->lock);
5461 } else {
5462 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
5463 raw_spin_unlock(&rq->lock);
5464 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
5465 }
5466 local_irq_enable();
5467
5468 complete(&req->done);
5469 }
5470 __set_current_state(TASK_RUNNING);
5471
5472 return 0;
5473 }
5474
5475 #ifdef CONFIG_HOTPLUG_CPU
5476
5477 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5478 {
5479 int ret;
5480
5481 local_irq_disable();
5482 ret = __migrate_task(p, src_cpu, dest_cpu);
5483 local_irq_enable();
5484 return ret;
5485 }
5486
5487 /*
5488 * Figure out where task on dead CPU should go, use force if necessary.
5489 */
5490 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5491 {
5492 int dest_cpu;
5493
5494 again:
5495 dest_cpu = select_fallback_rq(dead_cpu, p);
5496
5497 /* It can have affinity changed while we were choosing. */
5498 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
5499 goto again;
5500 }
5501
5502 /*
5503 * While a dead CPU has no uninterruptible tasks queued at this point,
5504 * it might still have a nonzero ->nr_uninterruptible counter, because
5505 * for performance reasons the counter is not stricly tracking tasks to
5506 * their home CPUs. So we just add the counter to another CPU's counter,
5507 * to keep the global sum constant after CPU-down:
5508 */
5509 static void migrate_nr_uninterruptible(struct rq *rq_src)
5510 {
5511 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
5512 unsigned long flags;
5513
5514 local_irq_save(flags);
5515 double_rq_lock(rq_src, rq_dest);
5516 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5517 rq_src->nr_uninterruptible = 0;
5518 double_rq_unlock(rq_src, rq_dest);
5519 local_irq_restore(flags);
5520 }
5521
5522 /* Run through task list and migrate tasks from the dead cpu. */
5523 static void migrate_live_tasks(int src_cpu)
5524 {
5525 struct task_struct *p, *t;
5526
5527 read_lock(&tasklist_lock);
5528
5529 do_each_thread(t, p) {
5530 if (p == current)
5531 continue;
5532
5533 if (task_cpu(p) == src_cpu)
5534 move_task_off_dead_cpu(src_cpu, p);
5535 } while_each_thread(t, p);
5536
5537 read_unlock(&tasklist_lock);
5538 }
5539
5540 /*
5541 * Schedules idle task to be the next runnable task on current CPU.
5542 * It does so by boosting its priority to highest possible.
5543 * Used by CPU offline code.
5544 */
5545 void sched_idle_next(void)
5546 {
5547 int this_cpu = smp_processor_id();
5548 struct rq *rq = cpu_rq(this_cpu);
5549 struct task_struct *p = rq->idle;
5550 unsigned long flags;
5551
5552 /* cpu has to be offline */
5553 BUG_ON(cpu_online(this_cpu));
5554
5555 /*
5556 * Strictly not necessary since rest of the CPUs are stopped by now
5557 * and interrupts disabled on the current cpu.
5558 */
5559 raw_spin_lock_irqsave(&rq->lock, flags);
5560
5561 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5562
5563 update_rq_clock(rq);
5564 activate_task(rq, p, 0);
5565
5566 raw_spin_unlock_irqrestore(&rq->lock, flags);
5567 }
5568
5569 /*
5570 * Ensures that the idle task is using init_mm right before its cpu goes
5571 * offline.
5572 */
5573 void idle_task_exit(void)
5574 {
5575 struct mm_struct *mm = current->active_mm;
5576
5577 BUG_ON(cpu_online(smp_processor_id()));
5578
5579 if (mm != &init_mm)
5580 switch_mm(mm, &init_mm, current);
5581 mmdrop(mm);
5582 }
5583
5584 /* called under rq->lock with disabled interrupts */
5585 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5586 {
5587 struct rq *rq = cpu_rq(dead_cpu);
5588
5589 /* Must be exiting, otherwise would be on tasklist. */
5590 BUG_ON(!p->exit_state);
5591
5592 /* Cannot have done final schedule yet: would have vanished. */
5593 BUG_ON(p->state == TASK_DEAD);
5594
5595 get_task_struct(p);
5596
5597 /*
5598 * Drop lock around migration; if someone else moves it,
5599 * that's OK. No task can be added to this CPU, so iteration is
5600 * fine.
5601 */
5602 raw_spin_unlock_irq(&rq->lock);
5603 move_task_off_dead_cpu(dead_cpu, p);
5604 raw_spin_lock_irq(&rq->lock);
5605
5606 put_task_struct(p);
5607 }
5608
5609 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5610 static void migrate_dead_tasks(unsigned int dead_cpu)
5611 {
5612 struct rq *rq = cpu_rq(dead_cpu);
5613 struct task_struct *next;
5614
5615 for ( ; ; ) {
5616 if (!rq->nr_running)
5617 break;
5618 update_rq_clock(rq);
5619 next = pick_next_task(rq);
5620 if (!next)
5621 break;
5622 next->sched_class->put_prev_task(rq, next);
5623 migrate_dead(dead_cpu, next);
5624
5625 }
5626 }
5627
5628 /*
5629 * remove the tasks which were accounted by rq from calc_load_tasks.
5630 */
5631 static void calc_global_load_remove(struct rq *rq)
5632 {
5633 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5634 rq->calc_load_active = 0;
5635 }
5636 #endif /* CONFIG_HOTPLUG_CPU */
5637
5638 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5639
5640 static struct ctl_table sd_ctl_dir[] = {
5641 {
5642 .procname = "sched_domain",
5643 .mode = 0555,
5644 },
5645 {}
5646 };
5647
5648 static struct ctl_table sd_ctl_root[] = {
5649 {
5650 .procname = "kernel",
5651 .mode = 0555,
5652 .child = sd_ctl_dir,
5653 },
5654 {}
5655 };
5656
5657 static struct ctl_table *sd_alloc_ctl_entry(int n)
5658 {
5659 struct ctl_table *entry =
5660 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5661
5662 return entry;
5663 }
5664
5665 static void sd_free_ctl_entry(struct ctl_table **tablep)
5666 {
5667 struct ctl_table *entry;
5668
5669 /*
5670 * In the intermediate directories, both the child directory and
5671 * procname are dynamically allocated and could fail but the mode
5672 * will always be set. In the lowest directory the names are
5673 * static strings and all have proc handlers.
5674 */
5675 for (entry = *tablep; entry->mode; entry++) {
5676 if (entry->child)
5677 sd_free_ctl_entry(&entry->child);
5678 if (entry->proc_handler == NULL)
5679 kfree(entry->procname);
5680 }
5681
5682 kfree(*tablep);
5683 *tablep = NULL;
5684 }
5685
5686 static void
5687 set_table_entry(struct ctl_table *entry,
5688 const char *procname, void *data, int maxlen,
5689 mode_t mode, proc_handler *proc_handler)
5690 {
5691 entry->procname = procname;
5692 entry->data = data;
5693 entry->maxlen = maxlen;
5694 entry->mode = mode;
5695 entry->proc_handler = proc_handler;
5696 }
5697
5698 static struct ctl_table *
5699 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5700 {
5701 struct ctl_table *table = sd_alloc_ctl_entry(13);
5702
5703 if (table == NULL)
5704 return NULL;
5705
5706 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5707 sizeof(long), 0644, proc_doulongvec_minmax);
5708 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5709 sizeof(long), 0644, proc_doulongvec_minmax);
5710 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5711 sizeof(int), 0644, proc_dointvec_minmax);
5712 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5713 sizeof(int), 0644, proc_dointvec_minmax);
5714 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5715 sizeof(int), 0644, proc_dointvec_minmax);
5716 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5717 sizeof(int), 0644, proc_dointvec_minmax);
5718 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5719 sizeof(int), 0644, proc_dointvec_minmax);
5720 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5721 sizeof(int), 0644, proc_dointvec_minmax);
5722 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5723 sizeof(int), 0644, proc_dointvec_minmax);
5724 set_table_entry(&table[9], "cache_nice_tries",
5725 &sd->cache_nice_tries,
5726 sizeof(int), 0644, proc_dointvec_minmax);
5727 set_table_entry(&table[10], "flags", &sd->flags,
5728 sizeof(int), 0644, proc_dointvec_minmax);
5729 set_table_entry(&table[11], "name", sd->name,
5730 CORENAME_MAX_SIZE, 0444, proc_dostring);
5731 /* &table[12] is terminator */
5732
5733 return table;
5734 }
5735
5736 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5737 {
5738 struct ctl_table *entry, *table;
5739 struct sched_domain *sd;
5740 int domain_num = 0, i;
5741 char buf[32];
5742
5743 for_each_domain(cpu, sd)
5744 domain_num++;
5745 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5746 if (table == NULL)
5747 return NULL;
5748
5749 i = 0;
5750 for_each_domain(cpu, sd) {
5751 snprintf(buf, 32, "domain%d", i);
5752 entry->procname = kstrdup(buf, GFP_KERNEL);
5753 entry->mode = 0555;
5754 entry->child = sd_alloc_ctl_domain_table(sd);
5755 entry++;
5756 i++;
5757 }
5758 return table;
5759 }
5760
5761 static struct ctl_table_header *sd_sysctl_header;
5762 static void register_sched_domain_sysctl(void)
5763 {
5764 int i, cpu_num = num_possible_cpus();
5765 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5766 char buf[32];
5767
5768 WARN_ON(sd_ctl_dir[0].child);
5769 sd_ctl_dir[0].child = entry;
5770
5771 if (entry == NULL)
5772 return;
5773
5774 for_each_possible_cpu(i) {
5775 snprintf(buf, 32, "cpu%d", i);
5776 entry->procname = kstrdup(buf, GFP_KERNEL);
5777 entry->mode = 0555;
5778 entry->child = sd_alloc_ctl_cpu_table(i);
5779 entry++;
5780 }
5781
5782 WARN_ON(sd_sysctl_header);
5783 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5784 }
5785
5786 /* may be called multiple times per register */
5787 static void unregister_sched_domain_sysctl(void)
5788 {
5789 if (sd_sysctl_header)
5790 unregister_sysctl_table(sd_sysctl_header);
5791 sd_sysctl_header = NULL;
5792 if (sd_ctl_dir[0].child)
5793 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5794 }
5795 #else
5796 static void register_sched_domain_sysctl(void)
5797 {
5798 }
5799 static void unregister_sched_domain_sysctl(void)
5800 {
5801 }
5802 #endif
5803
5804 static void set_rq_online(struct rq *rq)
5805 {
5806 if (!rq->online) {
5807 const struct sched_class *class;
5808
5809 cpumask_set_cpu(rq->cpu, rq->rd->online);
5810 rq->online = 1;
5811
5812 for_each_class(class) {
5813 if (class->rq_online)
5814 class->rq_online(rq);
5815 }
5816 }
5817 }
5818
5819 static void set_rq_offline(struct rq *rq)
5820 {
5821 if (rq->online) {
5822 const struct sched_class *class;
5823
5824 for_each_class(class) {
5825 if (class->rq_offline)
5826 class->rq_offline(rq);
5827 }
5828
5829 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5830 rq->online = 0;
5831 }
5832 }
5833
5834 /*
5835 * migration_call - callback that gets triggered when a CPU is added.
5836 * Here we can start up the necessary migration thread for the new CPU.
5837 */
5838 static int __cpuinit
5839 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5840 {
5841 struct task_struct *p;
5842 int cpu = (long)hcpu;
5843 unsigned long flags;
5844 struct rq *rq;
5845
5846 switch (action) {
5847
5848 case CPU_UP_PREPARE:
5849 case CPU_UP_PREPARE_FROZEN:
5850 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
5851 if (IS_ERR(p))
5852 return NOTIFY_BAD;
5853 kthread_bind(p, cpu);
5854 /* Must be high prio: stop_machine expects to yield to it. */
5855 rq = task_rq_lock(p, &flags);
5856 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5857 task_rq_unlock(rq, &flags);
5858 get_task_struct(p);
5859 cpu_rq(cpu)->migration_thread = p;
5860 rq->calc_load_update = calc_load_update;
5861 break;
5862
5863 case CPU_ONLINE:
5864 case CPU_ONLINE_FROZEN:
5865 /* Strictly unnecessary, as first user will wake it. */
5866 wake_up_process(cpu_rq(cpu)->migration_thread);
5867
5868 /* Update our root-domain */
5869 rq = cpu_rq(cpu);
5870 raw_spin_lock_irqsave(&rq->lock, flags);
5871 if (rq->rd) {
5872 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5873
5874 set_rq_online(rq);
5875 }
5876 raw_spin_unlock_irqrestore(&rq->lock, flags);
5877 break;
5878
5879 #ifdef CONFIG_HOTPLUG_CPU
5880 case CPU_UP_CANCELED:
5881 case CPU_UP_CANCELED_FROZEN:
5882 if (!cpu_rq(cpu)->migration_thread)
5883 break;
5884 /* Unbind it from offline cpu so it can run. Fall thru. */
5885 kthread_bind(cpu_rq(cpu)->migration_thread,
5886 cpumask_any(cpu_online_mask));
5887 kthread_stop(cpu_rq(cpu)->migration_thread);
5888 put_task_struct(cpu_rq(cpu)->migration_thread);
5889 cpu_rq(cpu)->migration_thread = NULL;
5890 break;
5891
5892 case CPU_DEAD:
5893 case CPU_DEAD_FROZEN:
5894 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
5895 migrate_live_tasks(cpu);
5896 rq = cpu_rq(cpu);
5897 kthread_stop(rq->migration_thread);
5898 put_task_struct(rq->migration_thread);
5899 rq->migration_thread = NULL;
5900 /* Idle task back to normal (off runqueue, low prio) */
5901 raw_spin_lock_irq(&rq->lock);
5902 update_rq_clock(rq);
5903 deactivate_task(rq, rq->idle, 0);
5904 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5905 rq->idle->sched_class = &idle_sched_class;
5906 migrate_dead_tasks(cpu);
5907 raw_spin_unlock_irq(&rq->lock);
5908 cpuset_unlock();
5909 migrate_nr_uninterruptible(rq);
5910 BUG_ON(rq->nr_running != 0);
5911 calc_global_load_remove(rq);
5912 /*
5913 * No need to migrate the tasks: it was best-effort if
5914 * they didn't take sched_hotcpu_mutex. Just wake up
5915 * the requestors.
5916 */
5917 raw_spin_lock_irq(&rq->lock);
5918 while (!list_empty(&rq->migration_queue)) {
5919 struct migration_req *req;
5920
5921 req = list_entry(rq->migration_queue.next,
5922 struct migration_req, list);
5923 list_del_init(&req->list);
5924 raw_spin_unlock_irq(&rq->lock);
5925 complete(&req->done);
5926 raw_spin_lock_irq(&rq->lock);
5927 }
5928 raw_spin_unlock_irq(&rq->lock);
5929 break;
5930
5931 case CPU_DYING:
5932 case CPU_DYING_FROZEN:
5933 /* Update our root-domain */
5934 rq = cpu_rq(cpu);
5935 raw_spin_lock_irqsave(&rq->lock, flags);
5936 if (rq->rd) {
5937 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5938 set_rq_offline(rq);
5939 }
5940 raw_spin_unlock_irqrestore(&rq->lock, flags);
5941 break;
5942 #endif
5943 }
5944 return NOTIFY_OK;
5945 }
5946
5947 /*
5948 * Register at high priority so that task migration (migrate_all_tasks)
5949 * happens before everything else. This has to be lower priority than
5950 * the notifier in the perf_event subsystem, though.
5951 */
5952 static struct notifier_block __cpuinitdata migration_notifier = {
5953 .notifier_call = migration_call,
5954 .priority = 10
5955 };
5956
5957 static int __init migration_init(void)
5958 {
5959 void *cpu = (void *)(long)smp_processor_id();
5960 int err;
5961
5962 /* Start one for the boot CPU: */
5963 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5964 BUG_ON(err == NOTIFY_BAD);
5965 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5966 register_cpu_notifier(&migration_notifier);
5967
5968 return 0;
5969 }
5970 early_initcall(migration_init);
5971 #endif
5972
5973 #ifdef CONFIG_SMP
5974
5975 #ifdef CONFIG_SCHED_DEBUG
5976
5977 static __read_mostly int sched_domain_debug_enabled;
5978
5979 static int __init sched_domain_debug_setup(char *str)
5980 {
5981 sched_domain_debug_enabled = 1;
5982
5983 return 0;
5984 }
5985 early_param("sched_debug", sched_domain_debug_setup);
5986
5987 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5988 struct cpumask *groupmask)
5989 {
5990 struct sched_group *group = sd->groups;
5991 char str[256];
5992
5993 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5994 cpumask_clear(groupmask);
5995
5996 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5997
5998 if (!(sd->flags & SD_LOAD_BALANCE)) {
5999 printk("does not load-balance\n");
6000 if (sd->parent)
6001 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6002 " has parent");
6003 return -1;
6004 }
6005
6006 printk(KERN_CONT "span %s level %s\n", str, sd->name);
6007
6008 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
6009 printk(KERN_ERR "ERROR: domain->span does not contain "
6010 "CPU%d\n", cpu);
6011 }
6012 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
6013 printk(KERN_ERR "ERROR: domain->groups does not contain"
6014 " CPU%d\n", cpu);
6015 }
6016
6017 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6018 do {
6019 if (!group) {
6020 printk("\n");
6021 printk(KERN_ERR "ERROR: group is NULL\n");
6022 break;
6023 }
6024
6025 if (!group->cpu_power) {
6026 printk(KERN_CONT "\n");
6027 printk(KERN_ERR "ERROR: domain->cpu_power not "
6028 "set\n");
6029 break;
6030 }
6031
6032 if (!cpumask_weight(sched_group_cpus(group))) {
6033 printk(KERN_CONT "\n");
6034 printk(KERN_ERR "ERROR: empty group\n");
6035 break;
6036 }
6037
6038 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
6039 printk(KERN_CONT "\n");
6040 printk(KERN_ERR "ERROR: repeated CPUs\n");
6041 break;
6042 }
6043
6044 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
6045
6046 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6047
6048 printk(KERN_CONT " %s", str);
6049 if (group->cpu_power != SCHED_LOAD_SCALE) {
6050 printk(KERN_CONT " (cpu_power = %d)",
6051 group->cpu_power);
6052 }
6053
6054 group = group->next;
6055 } while (group != sd->groups);
6056 printk(KERN_CONT "\n");
6057
6058 if (!cpumask_equal(sched_domain_span(sd), groupmask))
6059 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6060
6061 if (sd->parent &&
6062 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
6063 printk(KERN_ERR "ERROR: parent span is not a superset "
6064 "of domain->span\n");
6065 return 0;
6066 }
6067
6068 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6069 {
6070 cpumask_var_t groupmask;
6071 int level = 0;
6072
6073 if (!sched_domain_debug_enabled)
6074 return;
6075
6076 if (!sd) {
6077 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6078 return;
6079 }
6080
6081 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6082
6083 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6084 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6085 return;
6086 }
6087
6088 for (;;) {
6089 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6090 break;
6091 level++;
6092 sd = sd->parent;
6093 if (!sd)
6094 break;
6095 }
6096 free_cpumask_var(groupmask);
6097 }
6098 #else /* !CONFIG_SCHED_DEBUG */
6099 # define sched_domain_debug(sd, cpu) do { } while (0)
6100 #endif /* CONFIG_SCHED_DEBUG */
6101
6102 static int sd_degenerate(struct sched_domain *sd)
6103 {
6104 if (cpumask_weight(sched_domain_span(sd)) == 1)
6105 return 1;
6106
6107 /* Following flags need at least 2 groups */
6108 if (sd->flags & (SD_LOAD_BALANCE |
6109 SD_BALANCE_NEWIDLE |
6110 SD_BALANCE_FORK |
6111 SD_BALANCE_EXEC |
6112 SD_SHARE_CPUPOWER |
6113 SD_SHARE_PKG_RESOURCES)) {
6114 if (sd->groups != sd->groups->next)
6115 return 0;
6116 }
6117
6118 /* Following flags don't use groups */
6119 if (sd->flags & (SD_WAKE_AFFINE))
6120 return 0;
6121
6122 return 1;
6123 }
6124
6125 static int
6126 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6127 {
6128 unsigned long cflags = sd->flags, pflags = parent->flags;
6129
6130 if (sd_degenerate(parent))
6131 return 1;
6132
6133 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6134 return 0;
6135
6136 /* Flags needing groups don't count if only 1 group in parent */
6137 if (parent->groups == parent->groups->next) {
6138 pflags &= ~(SD_LOAD_BALANCE |
6139 SD_BALANCE_NEWIDLE |
6140 SD_BALANCE_FORK |
6141 SD_BALANCE_EXEC |
6142 SD_SHARE_CPUPOWER |
6143 SD_SHARE_PKG_RESOURCES);
6144 if (nr_node_ids == 1)
6145 pflags &= ~SD_SERIALIZE;
6146 }
6147 if (~cflags & pflags)
6148 return 0;
6149
6150 return 1;
6151 }
6152
6153 static void free_rootdomain(struct root_domain *rd)
6154 {
6155 synchronize_sched();
6156
6157 cpupri_cleanup(&rd->cpupri);
6158
6159 free_cpumask_var(rd->rto_mask);
6160 free_cpumask_var(rd->online);
6161 free_cpumask_var(rd->span);
6162 kfree(rd);
6163 }
6164
6165 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6166 {
6167 struct root_domain *old_rd = NULL;
6168 unsigned long flags;
6169
6170 raw_spin_lock_irqsave(&rq->lock, flags);
6171
6172 if (rq->rd) {
6173 old_rd = rq->rd;
6174
6175 if (cpumask_test_cpu(rq->cpu, old_rd->online))
6176 set_rq_offline(rq);
6177
6178 cpumask_clear_cpu(rq->cpu, old_rd->span);
6179
6180 /*
6181 * If we dont want to free the old_rt yet then
6182 * set old_rd to NULL to skip the freeing later
6183 * in this function:
6184 */
6185 if (!atomic_dec_and_test(&old_rd->refcount))
6186 old_rd = NULL;
6187 }
6188
6189 atomic_inc(&rd->refcount);
6190 rq->rd = rd;
6191
6192 cpumask_set_cpu(rq->cpu, rd->span);
6193 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6194 set_rq_online(rq);
6195
6196 raw_spin_unlock_irqrestore(&rq->lock, flags);
6197
6198 if (old_rd)
6199 free_rootdomain(old_rd);
6200 }
6201
6202 static int init_rootdomain(struct root_domain *rd, bool bootmem)
6203 {
6204 gfp_t gfp = GFP_KERNEL;
6205
6206 memset(rd, 0, sizeof(*rd));
6207
6208 if (bootmem)
6209 gfp = GFP_NOWAIT;
6210
6211 if (!alloc_cpumask_var(&rd->span, gfp))
6212 goto out;
6213 if (!alloc_cpumask_var(&rd->online, gfp))
6214 goto free_span;
6215 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
6216 goto free_online;
6217
6218 if (cpupri_init(&rd->cpupri, bootmem) != 0)
6219 goto free_rto_mask;
6220 return 0;
6221
6222 free_rto_mask:
6223 free_cpumask_var(rd->rto_mask);
6224 free_online:
6225 free_cpumask_var(rd->online);
6226 free_span:
6227 free_cpumask_var(rd->span);
6228 out:
6229 return -ENOMEM;
6230 }
6231
6232 static void init_defrootdomain(void)
6233 {
6234 init_rootdomain(&def_root_domain, true);
6235
6236 atomic_set(&def_root_domain.refcount, 1);
6237 }
6238
6239 static struct root_domain *alloc_rootdomain(void)
6240 {
6241 struct root_domain *rd;
6242
6243 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6244 if (!rd)
6245 return NULL;
6246
6247 if (init_rootdomain(rd, false) != 0) {
6248 kfree(rd);
6249 return NULL;
6250 }
6251
6252 return rd;
6253 }
6254
6255 /*
6256 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6257 * hold the hotplug lock.
6258 */
6259 static void
6260 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6261 {
6262 struct rq *rq = cpu_rq(cpu);
6263 struct sched_domain *tmp;
6264
6265 /* Remove the sched domains which do not contribute to scheduling. */
6266 for (tmp = sd; tmp; ) {
6267 struct sched_domain *parent = tmp->parent;
6268 if (!parent)
6269 break;
6270
6271 if (sd_parent_degenerate(tmp, parent)) {
6272 tmp->parent = parent->parent;
6273 if (parent->parent)
6274 parent->parent->child = tmp;
6275 } else
6276 tmp = tmp->parent;
6277 }
6278
6279 if (sd && sd_degenerate(sd)) {
6280 sd = sd->parent;
6281 if (sd)
6282 sd->child = NULL;
6283 }
6284
6285 sched_domain_debug(sd, cpu);
6286
6287 rq_attach_root(rq, rd);
6288 rcu_assign_pointer(rq->sd, sd);
6289 }
6290
6291 /* cpus with isolated domains */
6292 static cpumask_var_t cpu_isolated_map;
6293
6294 /* Setup the mask of cpus configured for isolated domains */
6295 static int __init isolated_cpu_setup(char *str)
6296 {
6297 alloc_bootmem_cpumask_var(&cpu_isolated_map);
6298 cpulist_parse(str, cpu_isolated_map);
6299 return 1;
6300 }
6301
6302 __setup("isolcpus=", isolated_cpu_setup);
6303
6304 /*
6305 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6306 * to a function which identifies what group(along with sched group) a CPU
6307 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6308 * (due to the fact that we keep track of groups covered with a struct cpumask).
6309 *
6310 * init_sched_build_groups will build a circular linked list of the groups
6311 * covered by the given span, and will set each group's ->cpumask correctly,
6312 * and ->cpu_power to 0.
6313 */
6314 static void
6315 init_sched_build_groups(const struct cpumask *span,
6316 const struct cpumask *cpu_map,
6317 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
6318 struct sched_group **sg,
6319 struct cpumask *tmpmask),
6320 struct cpumask *covered, struct cpumask *tmpmask)
6321 {
6322 struct sched_group *first = NULL, *last = NULL;
6323 int i;
6324
6325 cpumask_clear(covered);
6326
6327 for_each_cpu(i, span) {
6328 struct sched_group *sg;
6329 int group = group_fn(i, cpu_map, &sg, tmpmask);
6330 int j;
6331
6332 if (cpumask_test_cpu(i, covered))
6333 continue;
6334
6335 cpumask_clear(sched_group_cpus(sg));
6336 sg->cpu_power = 0;
6337
6338 for_each_cpu(j, span) {
6339 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6340 continue;
6341
6342 cpumask_set_cpu(j, covered);
6343 cpumask_set_cpu(j, sched_group_cpus(sg));
6344 }
6345 if (!first)
6346 first = sg;
6347 if (last)
6348 last->next = sg;
6349 last = sg;
6350 }
6351 last->next = first;
6352 }
6353
6354 #define SD_NODES_PER_DOMAIN 16
6355
6356 #ifdef CONFIG_NUMA
6357
6358 /**
6359 * find_next_best_node - find the next node to include in a sched_domain
6360 * @node: node whose sched_domain we're building
6361 * @used_nodes: nodes already in the sched_domain
6362 *
6363 * Find the next node to include in a given scheduling domain. Simply
6364 * finds the closest node not already in the @used_nodes map.
6365 *
6366 * Should use nodemask_t.
6367 */
6368 static int find_next_best_node(int node, nodemask_t *used_nodes)
6369 {
6370 int i, n, val, min_val, best_node = 0;
6371
6372 min_val = INT_MAX;
6373
6374 for (i = 0; i < nr_node_ids; i++) {
6375 /* Start at @node */
6376 n = (node + i) % nr_node_ids;
6377
6378 if (!nr_cpus_node(n))
6379 continue;
6380
6381 /* Skip already used nodes */
6382 if (node_isset(n, *used_nodes))
6383 continue;
6384
6385 /* Simple min distance search */
6386 val = node_distance(node, n);
6387
6388 if (val < min_val) {
6389 min_val = val;
6390 best_node = n;
6391 }
6392 }
6393
6394 node_set(best_node, *used_nodes);
6395 return best_node;
6396 }
6397
6398 /**
6399 * sched_domain_node_span - get a cpumask for a node's sched_domain
6400 * @node: node whose cpumask we're constructing
6401 * @span: resulting cpumask
6402 *
6403 * Given a node, construct a good cpumask for its sched_domain to span. It
6404 * should be one that prevents unnecessary balancing, but also spreads tasks
6405 * out optimally.
6406 */
6407 static void sched_domain_node_span(int node, struct cpumask *span)
6408 {
6409 nodemask_t used_nodes;
6410 int i;
6411
6412 cpumask_clear(span);
6413 nodes_clear(used_nodes);
6414
6415 cpumask_or(span, span, cpumask_of_node(node));
6416 node_set(node, used_nodes);
6417
6418 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6419 int next_node = find_next_best_node(node, &used_nodes);
6420
6421 cpumask_or(span, span, cpumask_of_node(next_node));
6422 }
6423 }
6424 #endif /* CONFIG_NUMA */
6425
6426 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6427
6428 /*
6429 * The cpus mask in sched_group and sched_domain hangs off the end.
6430 *
6431 * ( See the the comments in include/linux/sched.h:struct sched_group
6432 * and struct sched_domain. )
6433 */
6434 struct static_sched_group {
6435 struct sched_group sg;
6436 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6437 };
6438
6439 struct static_sched_domain {
6440 struct sched_domain sd;
6441 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6442 };
6443
6444 struct s_data {
6445 #ifdef CONFIG_NUMA
6446 int sd_allnodes;
6447 cpumask_var_t domainspan;
6448 cpumask_var_t covered;
6449 cpumask_var_t notcovered;
6450 #endif
6451 cpumask_var_t nodemask;
6452 cpumask_var_t this_sibling_map;
6453 cpumask_var_t this_core_map;
6454 cpumask_var_t send_covered;
6455 cpumask_var_t tmpmask;
6456 struct sched_group **sched_group_nodes;
6457 struct root_domain *rd;
6458 };
6459
6460 enum s_alloc {
6461 sa_sched_groups = 0,
6462 sa_rootdomain,
6463 sa_tmpmask,
6464 sa_send_covered,
6465 sa_this_core_map,
6466 sa_this_sibling_map,
6467 sa_nodemask,
6468 sa_sched_group_nodes,
6469 #ifdef CONFIG_NUMA
6470 sa_notcovered,
6471 sa_covered,
6472 sa_domainspan,
6473 #endif
6474 sa_none,
6475 };
6476
6477 /*
6478 * SMT sched-domains:
6479 */
6480 #ifdef CONFIG_SCHED_SMT
6481 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
6482 static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
6483
6484 static int
6485 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6486 struct sched_group **sg, struct cpumask *unused)
6487 {
6488 if (sg)
6489 *sg = &per_cpu(sched_groups, cpu).sg;
6490 return cpu;
6491 }
6492 #endif /* CONFIG_SCHED_SMT */
6493
6494 /*
6495 * multi-core sched-domains:
6496 */
6497 #ifdef CONFIG_SCHED_MC
6498 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6499 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6500 #endif /* CONFIG_SCHED_MC */
6501
6502 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6503 static int
6504 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6505 struct sched_group **sg, struct cpumask *mask)
6506 {
6507 int group;
6508
6509 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6510 group = cpumask_first(mask);
6511 if (sg)
6512 *sg = &per_cpu(sched_group_core, group).sg;
6513 return group;
6514 }
6515 #elif defined(CONFIG_SCHED_MC)
6516 static int
6517 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6518 struct sched_group **sg, struct cpumask *unused)
6519 {
6520 if (sg)
6521 *sg = &per_cpu(sched_group_core, cpu).sg;
6522 return cpu;
6523 }
6524 #endif
6525
6526 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6527 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
6528
6529 static int
6530 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6531 struct sched_group **sg, struct cpumask *mask)
6532 {
6533 int group;
6534 #ifdef CONFIG_SCHED_MC
6535 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6536 group = cpumask_first(mask);
6537 #elif defined(CONFIG_SCHED_SMT)
6538 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6539 group = cpumask_first(mask);
6540 #else
6541 group = cpu;
6542 #endif
6543 if (sg)
6544 *sg = &per_cpu(sched_group_phys, group).sg;
6545 return group;
6546 }
6547
6548 #ifdef CONFIG_NUMA
6549 /*
6550 * The init_sched_build_groups can't handle what we want to do with node
6551 * groups, so roll our own. Now each node has its own list of groups which
6552 * gets dynamically allocated.
6553 */
6554 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
6555 static struct sched_group ***sched_group_nodes_bycpu;
6556
6557 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6558 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
6559
6560 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6561 struct sched_group **sg,
6562 struct cpumask *nodemask)
6563 {
6564 int group;
6565
6566 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
6567 group = cpumask_first(nodemask);
6568
6569 if (sg)
6570 *sg = &per_cpu(sched_group_allnodes, group).sg;
6571 return group;
6572 }
6573
6574 static void init_numa_sched_groups_power(struct sched_group *group_head)
6575 {
6576 struct sched_group *sg = group_head;
6577 int j;
6578
6579 if (!sg)
6580 return;
6581 do {
6582 for_each_cpu(j, sched_group_cpus(sg)) {
6583 struct sched_domain *sd;
6584
6585 sd = &per_cpu(phys_domains, j).sd;
6586 if (j != group_first_cpu(sd->groups)) {
6587 /*
6588 * Only add "power" once for each
6589 * physical package.
6590 */
6591 continue;
6592 }
6593
6594 sg->cpu_power += sd->groups->cpu_power;
6595 }
6596 sg = sg->next;
6597 } while (sg != group_head);
6598 }
6599
6600 static int build_numa_sched_groups(struct s_data *d,
6601 const struct cpumask *cpu_map, int num)
6602 {
6603 struct sched_domain *sd;
6604 struct sched_group *sg, *prev;
6605 int n, j;
6606
6607 cpumask_clear(d->covered);
6608 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
6609 if (cpumask_empty(d->nodemask)) {
6610 d->sched_group_nodes[num] = NULL;
6611 goto out;
6612 }
6613
6614 sched_domain_node_span(num, d->domainspan);
6615 cpumask_and(d->domainspan, d->domainspan, cpu_map);
6616
6617 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6618 GFP_KERNEL, num);
6619 if (!sg) {
6620 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
6621 num);
6622 return -ENOMEM;
6623 }
6624 d->sched_group_nodes[num] = sg;
6625
6626 for_each_cpu(j, d->nodemask) {
6627 sd = &per_cpu(node_domains, j).sd;
6628 sd->groups = sg;
6629 }
6630
6631 sg->cpu_power = 0;
6632 cpumask_copy(sched_group_cpus(sg), d->nodemask);
6633 sg->next = sg;
6634 cpumask_or(d->covered, d->covered, d->nodemask);
6635
6636 prev = sg;
6637 for (j = 0; j < nr_node_ids; j++) {
6638 n = (num + j) % nr_node_ids;
6639 cpumask_complement(d->notcovered, d->covered);
6640 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
6641 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
6642 if (cpumask_empty(d->tmpmask))
6643 break;
6644 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
6645 if (cpumask_empty(d->tmpmask))
6646 continue;
6647 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6648 GFP_KERNEL, num);
6649 if (!sg) {
6650 printk(KERN_WARNING
6651 "Can not alloc domain group for node %d\n", j);
6652 return -ENOMEM;
6653 }
6654 sg->cpu_power = 0;
6655 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
6656 sg->next = prev->next;
6657 cpumask_or(d->covered, d->covered, d->tmpmask);
6658 prev->next = sg;
6659 prev = sg;
6660 }
6661 out:
6662 return 0;
6663 }
6664 #endif /* CONFIG_NUMA */
6665
6666 #ifdef CONFIG_NUMA
6667 /* Free memory allocated for various sched_group structures */
6668 static void free_sched_groups(const struct cpumask *cpu_map,
6669 struct cpumask *nodemask)
6670 {
6671 int cpu, i;
6672
6673 for_each_cpu(cpu, cpu_map) {
6674 struct sched_group **sched_group_nodes
6675 = sched_group_nodes_bycpu[cpu];
6676
6677 if (!sched_group_nodes)
6678 continue;
6679
6680 for (i = 0; i < nr_node_ids; i++) {
6681 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6682
6683 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
6684 if (cpumask_empty(nodemask))
6685 continue;
6686
6687 if (sg == NULL)
6688 continue;
6689 sg = sg->next;
6690 next_sg:
6691 oldsg = sg;
6692 sg = sg->next;
6693 kfree(oldsg);
6694 if (oldsg != sched_group_nodes[i])
6695 goto next_sg;
6696 }
6697 kfree(sched_group_nodes);
6698 sched_group_nodes_bycpu[cpu] = NULL;
6699 }
6700 }
6701 #else /* !CONFIG_NUMA */
6702 static void free_sched_groups(const struct cpumask *cpu_map,
6703 struct cpumask *nodemask)
6704 {
6705 }
6706 #endif /* CONFIG_NUMA */
6707
6708 /*
6709 * Initialize sched groups cpu_power.
6710 *
6711 * cpu_power indicates the capacity of sched group, which is used while
6712 * distributing the load between different sched groups in a sched domain.
6713 * Typically cpu_power for all the groups in a sched domain will be same unless
6714 * there are asymmetries in the topology. If there are asymmetries, group
6715 * having more cpu_power will pickup more load compared to the group having
6716 * less cpu_power.
6717 */
6718 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6719 {
6720 struct sched_domain *child;
6721 struct sched_group *group;
6722 long power;
6723 int weight;
6724
6725 WARN_ON(!sd || !sd->groups);
6726
6727 if (cpu != group_first_cpu(sd->groups))
6728 return;
6729
6730 child = sd->child;
6731
6732 sd->groups->cpu_power = 0;
6733
6734 if (!child) {
6735 power = SCHED_LOAD_SCALE;
6736 weight = cpumask_weight(sched_domain_span(sd));
6737 /*
6738 * SMT siblings share the power of a single core.
6739 * Usually multiple threads get a better yield out of
6740 * that one core than a single thread would have,
6741 * reflect that in sd->smt_gain.
6742 */
6743 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
6744 power *= sd->smt_gain;
6745 power /= weight;
6746 power >>= SCHED_LOAD_SHIFT;
6747 }
6748 sd->groups->cpu_power += power;
6749 return;
6750 }
6751
6752 /*
6753 * Add cpu_power of each child group to this groups cpu_power.
6754 */
6755 group = child->groups;
6756 do {
6757 sd->groups->cpu_power += group->cpu_power;
6758 group = group->next;
6759 } while (group != child->groups);
6760 }
6761
6762 /*
6763 * Initializers for schedule domains
6764 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6765 */
6766
6767 #ifdef CONFIG_SCHED_DEBUG
6768 # define SD_INIT_NAME(sd, type) sd->name = #type
6769 #else
6770 # define SD_INIT_NAME(sd, type) do { } while (0)
6771 #endif
6772
6773 #define SD_INIT(sd, type) sd_init_##type(sd)
6774
6775 #define SD_INIT_FUNC(type) \
6776 static noinline void sd_init_##type(struct sched_domain *sd) \
6777 { \
6778 memset(sd, 0, sizeof(*sd)); \
6779 *sd = SD_##type##_INIT; \
6780 sd->level = SD_LV_##type; \
6781 SD_INIT_NAME(sd, type); \
6782 }
6783
6784 SD_INIT_FUNC(CPU)
6785 #ifdef CONFIG_NUMA
6786 SD_INIT_FUNC(ALLNODES)
6787 SD_INIT_FUNC(NODE)
6788 #endif
6789 #ifdef CONFIG_SCHED_SMT
6790 SD_INIT_FUNC(SIBLING)
6791 #endif
6792 #ifdef CONFIG_SCHED_MC
6793 SD_INIT_FUNC(MC)
6794 #endif
6795
6796 static int default_relax_domain_level = -1;
6797
6798 static int __init setup_relax_domain_level(char *str)
6799 {
6800 unsigned long val;
6801
6802 val = simple_strtoul(str, NULL, 0);
6803 if (val < SD_LV_MAX)
6804 default_relax_domain_level = val;
6805
6806 return 1;
6807 }
6808 __setup("relax_domain_level=", setup_relax_domain_level);
6809
6810 static void set_domain_attribute(struct sched_domain *sd,
6811 struct sched_domain_attr *attr)
6812 {
6813 int request;
6814
6815 if (!attr || attr->relax_domain_level < 0) {
6816 if (default_relax_domain_level < 0)
6817 return;
6818 else
6819 request = default_relax_domain_level;
6820 } else
6821 request = attr->relax_domain_level;
6822 if (request < sd->level) {
6823 /* turn off idle balance on this domain */
6824 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6825 } else {
6826 /* turn on idle balance on this domain */
6827 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6828 }
6829 }
6830
6831 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6832 const struct cpumask *cpu_map)
6833 {
6834 switch (what) {
6835 case sa_sched_groups:
6836 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
6837 d->sched_group_nodes = NULL;
6838 case sa_rootdomain:
6839 free_rootdomain(d->rd); /* fall through */
6840 case sa_tmpmask:
6841 free_cpumask_var(d->tmpmask); /* fall through */
6842 case sa_send_covered:
6843 free_cpumask_var(d->send_covered); /* fall through */
6844 case sa_this_core_map:
6845 free_cpumask_var(d->this_core_map); /* fall through */
6846 case sa_this_sibling_map:
6847 free_cpumask_var(d->this_sibling_map); /* fall through */
6848 case sa_nodemask:
6849 free_cpumask_var(d->nodemask); /* fall through */
6850 case sa_sched_group_nodes:
6851 #ifdef CONFIG_NUMA
6852 kfree(d->sched_group_nodes); /* fall through */
6853 case sa_notcovered:
6854 free_cpumask_var(d->notcovered); /* fall through */
6855 case sa_covered:
6856 free_cpumask_var(d->covered); /* fall through */
6857 case sa_domainspan:
6858 free_cpumask_var(d->domainspan); /* fall through */
6859 #endif
6860 case sa_none:
6861 break;
6862 }
6863 }
6864
6865 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6866 const struct cpumask *cpu_map)
6867 {
6868 #ifdef CONFIG_NUMA
6869 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
6870 return sa_none;
6871 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
6872 return sa_domainspan;
6873 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
6874 return sa_covered;
6875 /* Allocate the per-node list of sched groups */
6876 d->sched_group_nodes = kcalloc(nr_node_ids,
6877 sizeof(struct sched_group *), GFP_KERNEL);
6878 if (!d->sched_group_nodes) {
6879 printk(KERN_WARNING "Can not alloc sched group node list\n");
6880 return sa_notcovered;
6881 }
6882 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
6883 #endif
6884 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
6885 return sa_sched_group_nodes;
6886 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
6887 return sa_nodemask;
6888 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
6889 return sa_this_sibling_map;
6890 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
6891 return sa_this_core_map;
6892 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
6893 return sa_send_covered;
6894 d->rd = alloc_rootdomain();
6895 if (!d->rd) {
6896 printk(KERN_WARNING "Cannot alloc root domain\n");
6897 return sa_tmpmask;
6898 }
6899 return sa_rootdomain;
6900 }
6901
6902 static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
6903 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
6904 {
6905 struct sched_domain *sd = NULL;
6906 #ifdef CONFIG_NUMA
6907 struct sched_domain *parent;
6908
6909 d->sd_allnodes = 0;
6910 if (cpumask_weight(cpu_map) >
6911 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
6912 sd = &per_cpu(allnodes_domains, i).sd;
6913 SD_INIT(sd, ALLNODES);
6914 set_domain_attribute(sd, attr);
6915 cpumask_copy(sched_domain_span(sd), cpu_map);
6916 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
6917 d->sd_allnodes = 1;
6918 }
6919 parent = sd;
6920
6921 sd = &per_cpu(node_domains, i).sd;
6922 SD_INIT(sd, NODE);
6923 set_domain_attribute(sd, attr);
6924 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
6925 sd->parent = parent;
6926 if (parent)
6927 parent->child = sd;
6928 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
6929 #endif
6930 return sd;
6931 }
6932
6933 static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
6934 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6935 struct sched_domain *parent, int i)
6936 {
6937 struct sched_domain *sd;
6938 sd = &per_cpu(phys_domains, i).sd;
6939 SD_INIT(sd, CPU);
6940 set_domain_attribute(sd, attr);
6941 cpumask_copy(sched_domain_span(sd), d->nodemask);
6942 sd->parent = parent;
6943 if (parent)
6944 parent->child = sd;
6945 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
6946 return sd;
6947 }
6948
6949 static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
6950 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6951 struct sched_domain *parent, int i)
6952 {
6953 struct sched_domain *sd = parent;
6954 #ifdef CONFIG_SCHED_MC
6955 sd = &per_cpu(core_domains, i).sd;
6956 SD_INIT(sd, MC);
6957 set_domain_attribute(sd, attr);
6958 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
6959 sd->parent = parent;
6960 parent->child = sd;
6961 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
6962 #endif
6963 return sd;
6964 }
6965
6966 static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
6967 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6968 struct sched_domain *parent, int i)
6969 {
6970 struct sched_domain *sd = parent;
6971 #ifdef CONFIG_SCHED_SMT
6972 sd = &per_cpu(cpu_domains, i).sd;
6973 SD_INIT(sd, SIBLING);
6974 set_domain_attribute(sd, attr);
6975 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
6976 sd->parent = parent;
6977 parent->child = sd;
6978 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
6979 #endif
6980 return sd;
6981 }
6982
6983 static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
6984 const struct cpumask *cpu_map, int cpu)
6985 {
6986 switch (l) {
6987 #ifdef CONFIG_SCHED_SMT
6988 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
6989 cpumask_and(d->this_sibling_map, cpu_map,
6990 topology_thread_cpumask(cpu));
6991 if (cpu == cpumask_first(d->this_sibling_map))
6992 init_sched_build_groups(d->this_sibling_map, cpu_map,
6993 &cpu_to_cpu_group,
6994 d->send_covered, d->tmpmask);
6995 break;
6996 #endif
6997 #ifdef CONFIG_SCHED_MC
6998 case SD_LV_MC: /* set up multi-core groups */
6999 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
7000 if (cpu == cpumask_first(d->this_core_map))
7001 init_sched_build_groups(d->this_core_map, cpu_map,
7002 &cpu_to_core_group,
7003 d->send_covered, d->tmpmask);
7004 break;
7005 #endif
7006 case SD_LV_CPU: /* set up physical groups */
7007 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
7008 if (!cpumask_empty(d->nodemask))
7009 init_sched_build_groups(d->nodemask, cpu_map,
7010 &cpu_to_phys_group,
7011 d->send_covered, d->tmpmask);
7012 break;
7013 #ifdef CONFIG_NUMA
7014 case SD_LV_ALLNODES:
7015 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
7016 d->send_covered, d->tmpmask);
7017 break;
7018 #endif
7019 default:
7020 break;
7021 }
7022 }
7023
7024 /*
7025 * Build sched domains for a given set of cpus and attach the sched domains
7026 * to the individual cpus
7027 */
7028 static int __build_sched_domains(const struct cpumask *cpu_map,
7029 struct sched_domain_attr *attr)
7030 {
7031 enum s_alloc alloc_state = sa_none;
7032 struct s_data d;
7033 struct sched_domain *sd;
7034 int i;
7035 #ifdef CONFIG_NUMA
7036 d.sd_allnodes = 0;
7037 #endif
7038
7039 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7040 if (alloc_state != sa_rootdomain)
7041 goto error;
7042 alloc_state = sa_sched_groups;
7043
7044 /*
7045 * Set up domains for cpus specified by the cpu_map.
7046 */
7047 for_each_cpu(i, cpu_map) {
7048 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
7049 cpu_map);
7050
7051 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
7052 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
7053 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
7054 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
7055 }
7056
7057 for_each_cpu(i, cpu_map) {
7058 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
7059 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
7060 }
7061
7062 /* Set up physical groups */
7063 for (i = 0; i < nr_node_ids; i++)
7064 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
7065
7066 #ifdef CONFIG_NUMA
7067 /* Set up node groups */
7068 if (d.sd_allnodes)
7069 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
7070
7071 for (i = 0; i < nr_node_ids; i++)
7072 if (build_numa_sched_groups(&d, cpu_map, i))
7073 goto error;
7074 #endif
7075
7076 /* Calculate CPU power for physical packages and nodes */
7077 #ifdef CONFIG_SCHED_SMT
7078 for_each_cpu(i, cpu_map) {
7079 sd = &per_cpu(cpu_domains, i).sd;
7080 init_sched_groups_power(i, sd);
7081 }
7082 #endif
7083 #ifdef CONFIG_SCHED_MC
7084 for_each_cpu(i, cpu_map) {
7085 sd = &per_cpu(core_domains, i).sd;
7086 init_sched_groups_power(i, sd);
7087 }
7088 #endif
7089
7090 for_each_cpu(i, cpu_map) {
7091 sd = &per_cpu(phys_domains, i).sd;
7092 init_sched_groups_power(i, sd);
7093 }
7094
7095 #ifdef CONFIG_NUMA
7096 for (i = 0; i < nr_node_ids; i++)
7097 init_numa_sched_groups_power(d.sched_group_nodes[i]);
7098
7099 if (d.sd_allnodes) {
7100 struct sched_group *sg;
7101
7102 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7103 d.tmpmask);
7104 init_numa_sched_groups_power(sg);
7105 }
7106 #endif
7107
7108 /* Attach the domains */
7109 for_each_cpu(i, cpu_map) {
7110 #ifdef CONFIG_SCHED_SMT
7111 sd = &per_cpu(cpu_domains, i).sd;
7112 #elif defined(CONFIG_SCHED_MC)
7113 sd = &per_cpu(core_domains, i).sd;
7114 #else
7115 sd = &per_cpu(phys_domains, i).sd;
7116 #endif
7117 cpu_attach_domain(sd, d.rd, i);
7118 }
7119
7120 d.sched_group_nodes = NULL; /* don't free this we still need it */
7121 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7122 return 0;
7123
7124 error:
7125 __free_domain_allocs(&d, alloc_state, cpu_map);
7126 return -ENOMEM;
7127 }
7128
7129 static int build_sched_domains(const struct cpumask *cpu_map)
7130 {
7131 return __build_sched_domains(cpu_map, NULL);
7132 }
7133
7134 static cpumask_var_t *doms_cur; /* current sched domains */
7135 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7136 static struct sched_domain_attr *dattr_cur;
7137 /* attribues of custom domains in 'doms_cur' */
7138
7139 /*
7140 * Special case: If a kmalloc of a doms_cur partition (array of
7141 * cpumask) fails, then fallback to a single sched domain,
7142 * as determined by the single cpumask fallback_doms.
7143 */
7144 static cpumask_var_t fallback_doms;
7145
7146 /*
7147 * arch_update_cpu_topology lets virtualized architectures update the
7148 * cpu core maps. It is supposed to return 1 if the topology changed
7149 * or 0 if it stayed the same.
7150 */
7151 int __attribute__((weak)) arch_update_cpu_topology(void)
7152 {
7153 return 0;
7154 }
7155
7156 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7157 {
7158 int i;
7159 cpumask_var_t *doms;
7160
7161 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7162 if (!doms)
7163 return NULL;
7164 for (i = 0; i < ndoms; i++) {
7165 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7166 free_sched_domains(doms, i);
7167 return NULL;
7168 }
7169 }
7170 return doms;
7171 }
7172
7173 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7174 {
7175 unsigned int i;
7176 for (i = 0; i < ndoms; i++)
7177 free_cpumask_var(doms[i]);
7178 kfree(doms);
7179 }
7180
7181 /*
7182 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7183 * For now this just excludes isolated cpus, but could be used to
7184 * exclude other special cases in the future.
7185 */
7186 static int arch_init_sched_domains(const struct cpumask *cpu_map)
7187 {
7188 int err;
7189
7190 arch_update_cpu_topology();
7191 ndoms_cur = 1;
7192 doms_cur = alloc_sched_domains(ndoms_cur);
7193 if (!doms_cur)
7194 doms_cur = &fallback_doms;
7195 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7196 dattr_cur = NULL;
7197 err = build_sched_domains(doms_cur[0]);
7198 register_sched_domain_sysctl();
7199
7200 return err;
7201 }
7202
7203 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7204 struct cpumask *tmpmask)
7205 {
7206 free_sched_groups(cpu_map, tmpmask);
7207 }
7208
7209 /*
7210 * Detach sched domains from a group of cpus specified in cpu_map
7211 * These cpus will now be attached to the NULL domain
7212 */
7213 static void detach_destroy_domains(const struct cpumask *cpu_map)
7214 {
7215 /* Save because hotplug lock held. */
7216 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7217 int i;
7218
7219 for_each_cpu(i, cpu_map)
7220 cpu_attach_domain(NULL, &def_root_domain, i);
7221 synchronize_sched();
7222 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7223 }
7224
7225 /* handle null as "default" */
7226 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7227 struct sched_domain_attr *new, int idx_new)
7228 {
7229 struct sched_domain_attr tmp;
7230
7231 /* fast path */
7232 if (!new && !cur)
7233 return 1;
7234
7235 tmp = SD_ATTR_INIT;
7236 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7237 new ? (new + idx_new) : &tmp,
7238 sizeof(struct sched_domain_attr));
7239 }
7240
7241 /*
7242 * Partition sched domains as specified by the 'ndoms_new'
7243 * cpumasks in the array doms_new[] of cpumasks. This compares
7244 * doms_new[] to the current sched domain partitioning, doms_cur[].
7245 * It destroys each deleted domain and builds each new domain.
7246 *
7247 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7248 * The masks don't intersect (don't overlap.) We should setup one
7249 * sched domain for each mask. CPUs not in any of the cpumasks will
7250 * not be load balanced. If the same cpumask appears both in the
7251 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7252 * it as it is.
7253 *
7254 * The passed in 'doms_new' should be allocated using
7255 * alloc_sched_domains. This routine takes ownership of it and will
7256 * free_sched_domains it when done with it. If the caller failed the
7257 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7258 * and partition_sched_domains() will fallback to the single partition
7259 * 'fallback_doms', it also forces the domains to be rebuilt.
7260 *
7261 * If doms_new == NULL it will be replaced with cpu_online_mask.
7262 * ndoms_new == 0 is a special case for destroying existing domains,
7263 * and it will not create the default domain.
7264 *
7265 * Call with hotplug lock held
7266 */
7267 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7268 struct sched_domain_attr *dattr_new)
7269 {
7270 int i, j, n;
7271 int new_topology;
7272
7273 mutex_lock(&sched_domains_mutex);
7274
7275 /* always unregister in case we don't destroy any domains */
7276 unregister_sched_domain_sysctl();
7277
7278 /* Let architecture update cpu core mappings. */
7279 new_topology = arch_update_cpu_topology();
7280
7281 n = doms_new ? ndoms_new : 0;
7282
7283 /* Destroy deleted domains */
7284 for (i = 0; i < ndoms_cur; i++) {
7285 for (j = 0; j < n && !new_topology; j++) {
7286 if (cpumask_equal(doms_cur[i], doms_new[j])
7287 && dattrs_equal(dattr_cur, i, dattr_new, j))
7288 goto match1;
7289 }
7290 /* no match - a current sched domain not in new doms_new[] */
7291 detach_destroy_domains(doms_cur[i]);
7292 match1:
7293 ;
7294 }
7295
7296 if (doms_new == NULL) {
7297 ndoms_cur = 0;
7298 doms_new = &fallback_doms;
7299 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7300 WARN_ON_ONCE(dattr_new);
7301 }
7302
7303 /* Build new domains */
7304 for (i = 0; i < ndoms_new; i++) {
7305 for (j = 0; j < ndoms_cur && !new_topology; j++) {
7306 if (cpumask_equal(doms_new[i], doms_cur[j])
7307 && dattrs_equal(dattr_new, i, dattr_cur, j))
7308 goto match2;
7309 }
7310 /* no match - add a new doms_new */
7311 __build_sched_domains(doms_new[i],
7312 dattr_new ? dattr_new + i : NULL);
7313 match2:
7314 ;
7315 }
7316
7317 /* Remember the new sched domains */
7318 if (doms_cur != &fallback_doms)
7319 free_sched_domains(doms_cur, ndoms_cur);
7320 kfree(dattr_cur); /* kfree(NULL) is safe */
7321 doms_cur = doms_new;
7322 dattr_cur = dattr_new;
7323 ndoms_cur = ndoms_new;
7324
7325 register_sched_domain_sysctl();
7326
7327 mutex_unlock(&sched_domains_mutex);
7328 }
7329
7330 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7331 static void arch_reinit_sched_domains(void)
7332 {
7333 get_online_cpus();
7334
7335 /* Destroy domains first to force the rebuild */
7336 partition_sched_domains(0, NULL, NULL);
7337
7338 rebuild_sched_domains();
7339 put_online_cpus();
7340 }
7341
7342 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7343 {
7344 unsigned int level = 0;
7345
7346 if (sscanf(buf, "%u", &level) != 1)
7347 return -EINVAL;
7348
7349 /*
7350 * level is always be positive so don't check for
7351 * level < POWERSAVINGS_BALANCE_NONE which is 0
7352 * What happens on 0 or 1 byte write,
7353 * need to check for count as well?
7354 */
7355
7356 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7357 return -EINVAL;
7358
7359 if (smt)
7360 sched_smt_power_savings = level;
7361 else
7362 sched_mc_power_savings = level;
7363
7364 arch_reinit_sched_domains();
7365
7366 return count;
7367 }
7368
7369 #ifdef CONFIG_SCHED_MC
7370 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7371 struct sysdev_class_attribute *attr,
7372 char *page)
7373 {
7374 return sprintf(page, "%u\n", sched_mc_power_savings);
7375 }
7376 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7377 struct sysdev_class_attribute *attr,
7378 const char *buf, size_t count)
7379 {
7380 return sched_power_savings_store(buf, count, 0);
7381 }
7382 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7383 sched_mc_power_savings_show,
7384 sched_mc_power_savings_store);
7385 #endif
7386
7387 #ifdef CONFIG_SCHED_SMT
7388 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7389 struct sysdev_class_attribute *attr,
7390 char *page)
7391 {
7392 return sprintf(page, "%u\n", sched_smt_power_savings);
7393 }
7394 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7395 struct sysdev_class_attribute *attr,
7396 const char *buf, size_t count)
7397 {
7398 return sched_power_savings_store(buf, count, 1);
7399 }
7400 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7401 sched_smt_power_savings_show,
7402 sched_smt_power_savings_store);
7403 #endif
7404
7405 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7406 {
7407 int err = 0;
7408
7409 #ifdef CONFIG_SCHED_SMT
7410 if (smt_capable())
7411 err = sysfs_create_file(&cls->kset.kobj,
7412 &attr_sched_smt_power_savings.attr);
7413 #endif
7414 #ifdef CONFIG_SCHED_MC
7415 if (!err && mc_capable())
7416 err = sysfs_create_file(&cls->kset.kobj,
7417 &attr_sched_mc_power_savings.attr);
7418 #endif
7419 return err;
7420 }
7421 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7422
7423 #ifndef CONFIG_CPUSETS
7424 /*
7425 * Add online and remove offline CPUs from the scheduler domains.
7426 * When cpusets are enabled they take over this function.
7427 */
7428 static int update_sched_domains(struct notifier_block *nfb,
7429 unsigned long action, void *hcpu)
7430 {
7431 switch (action) {
7432 case CPU_ONLINE:
7433 case CPU_ONLINE_FROZEN:
7434 case CPU_DOWN_PREPARE:
7435 case CPU_DOWN_PREPARE_FROZEN:
7436 case CPU_DOWN_FAILED:
7437 case CPU_DOWN_FAILED_FROZEN:
7438 partition_sched_domains(1, NULL, NULL);
7439 return NOTIFY_OK;
7440
7441 default:
7442 return NOTIFY_DONE;
7443 }
7444 }
7445 #endif
7446
7447 static int update_runtime(struct notifier_block *nfb,
7448 unsigned long action, void *hcpu)
7449 {
7450 int cpu = (int)(long)hcpu;
7451
7452 switch (action) {
7453 case CPU_DOWN_PREPARE:
7454 case CPU_DOWN_PREPARE_FROZEN:
7455 disable_runtime(cpu_rq(cpu));
7456 return NOTIFY_OK;
7457
7458 case CPU_DOWN_FAILED:
7459 case CPU_DOWN_FAILED_FROZEN:
7460 case CPU_ONLINE:
7461 case CPU_ONLINE_FROZEN:
7462 enable_runtime(cpu_rq(cpu));
7463 return NOTIFY_OK;
7464
7465 default:
7466 return NOTIFY_DONE;
7467 }
7468 }
7469
7470 void __init sched_init_smp(void)
7471 {
7472 cpumask_var_t non_isolated_cpus;
7473
7474 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7475 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7476
7477 #if defined(CONFIG_NUMA)
7478 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7479 GFP_KERNEL);
7480 BUG_ON(sched_group_nodes_bycpu == NULL);
7481 #endif
7482 get_online_cpus();
7483 mutex_lock(&sched_domains_mutex);
7484 arch_init_sched_domains(cpu_active_mask);
7485 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7486 if (cpumask_empty(non_isolated_cpus))
7487 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7488 mutex_unlock(&sched_domains_mutex);
7489 put_online_cpus();
7490
7491 #ifndef CONFIG_CPUSETS
7492 /* XXX: Theoretical race here - CPU may be hotplugged now */
7493 hotcpu_notifier(update_sched_domains, 0);
7494 #endif
7495
7496 /* RT runtime code needs to handle some hotplug events */
7497 hotcpu_notifier(update_runtime, 0);
7498
7499 init_hrtick();
7500
7501 /* Move init over to a non-isolated CPU */
7502 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7503 BUG();
7504 sched_init_granularity();
7505 free_cpumask_var(non_isolated_cpus);
7506
7507 init_sched_rt_class();
7508 }
7509 #else
7510 void __init sched_init_smp(void)
7511 {
7512 sched_init_granularity();
7513 }
7514 #endif /* CONFIG_SMP */
7515
7516 const_debug unsigned int sysctl_timer_migration = 1;
7517
7518 int in_sched_functions(unsigned long addr)
7519 {
7520 return in_lock_functions(addr) ||
7521 (addr >= (unsigned long)__sched_text_start
7522 && addr < (unsigned long)__sched_text_end);
7523 }
7524
7525 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
7526 {
7527 cfs_rq->tasks_timeline = RB_ROOT;
7528 INIT_LIST_HEAD(&cfs_rq->tasks);
7529 #ifdef CONFIG_FAIR_GROUP_SCHED
7530 cfs_rq->rq = rq;
7531 #endif
7532 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7533 }
7534
7535 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7536 {
7537 struct rt_prio_array *array;
7538 int i;
7539
7540 array = &rt_rq->active;
7541 for (i = 0; i < MAX_RT_PRIO; i++) {
7542 INIT_LIST_HEAD(array->queue + i);
7543 __clear_bit(i, array->bitmap);
7544 }
7545 /* delimiter for bitsearch: */
7546 __set_bit(MAX_RT_PRIO, array->bitmap);
7547
7548 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7549 rt_rq->highest_prio.curr = MAX_RT_PRIO;
7550 #ifdef CONFIG_SMP
7551 rt_rq->highest_prio.next = MAX_RT_PRIO;
7552 #endif
7553 #endif
7554 #ifdef CONFIG_SMP
7555 rt_rq->rt_nr_migratory = 0;
7556 rt_rq->overloaded = 0;
7557 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
7558 #endif
7559
7560 rt_rq->rt_time = 0;
7561 rt_rq->rt_throttled = 0;
7562 rt_rq->rt_runtime = 0;
7563 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
7564
7565 #ifdef CONFIG_RT_GROUP_SCHED
7566 rt_rq->rt_nr_boosted = 0;
7567 rt_rq->rq = rq;
7568 #endif
7569 }
7570
7571 #ifdef CONFIG_FAIR_GROUP_SCHED
7572 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7573 struct sched_entity *se, int cpu, int add,
7574 struct sched_entity *parent)
7575 {
7576 struct rq *rq = cpu_rq(cpu);
7577 tg->cfs_rq[cpu] = cfs_rq;
7578 init_cfs_rq(cfs_rq, rq);
7579 cfs_rq->tg = tg;
7580 if (add)
7581 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7582
7583 tg->se[cpu] = se;
7584 /* se could be NULL for init_task_group */
7585 if (!se)
7586 return;
7587
7588 if (!parent)
7589 se->cfs_rq = &rq->cfs;
7590 else
7591 se->cfs_rq = parent->my_q;
7592
7593 se->my_q = cfs_rq;
7594 se->load.weight = tg->shares;
7595 se->load.inv_weight = 0;
7596 se->parent = parent;
7597 }
7598 #endif
7599
7600 #ifdef CONFIG_RT_GROUP_SCHED
7601 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7602 struct sched_rt_entity *rt_se, int cpu, int add,
7603 struct sched_rt_entity *parent)
7604 {
7605 struct rq *rq = cpu_rq(cpu);
7606
7607 tg->rt_rq[cpu] = rt_rq;
7608 init_rt_rq(rt_rq, rq);
7609 rt_rq->tg = tg;
7610 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
7611 if (add)
7612 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7613
7614 tg->rt_se[cpu] = rt_se;
7615 if (!rt_se)
7616 return;
7617
7618 if (!parent)
7619 rt_se->rt_rq = &rq->rt;
7620 else
7621 rt_se->rt_rq = parent->my_q;
7622
7623 rt_se->my_q = rt_rq;
7624 rt_se->parent = parent;
7625 INIT_LIST_HEAD(&rt_se->run_list);
7626 }
7627 #endif
7628
7629 void __init sched_init(void)
7630 {
7631 int i, j;
7632 unsigned long alloc_size = 0, ptr;
7633
7634 #ifdef CONFIG_FAIR_GROUP_SCHED
7635 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7636 #endif
7637 #ifdef CONFIG_RT_GROUP_SCHED
7638 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7639 #endif
7640 #ifdef CONFIG_CPUMASK_OFFSTACK
7641 alloc_size += num_possible_cpus() * cpumask_size();
7642 #endif
7643 if (alloc_size) {
7644 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7645
7646 #ifdef CONFIG_FAIR_GROUP_SCHED
7647 init_task_group.se = (struct sched_entity **)ptr;
7648 ptr += nr_cpu_ids * sizeof(void **);
7649
7650 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7651 ptr += nr_cpu_ids * sizeof(void **);
7652
7653 #endif /* CONFIG_FAIR_GROUP_SCHED */
7654 #ifdef CONFIG_RT_GROUP_SCHED
7655 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7656 ptr += nr_cpu_ids * sizeof(void **);
7657
7658 init_task_group.rt_rq = (struct rt_rq **)ptr;
7659 ptr += nr_cpu_ids * sizeof(void **);
7660
7661 #endif /* CONFIG_RT_GROUP_SCHED */
7662 #ifdef CONFIG_CPUMASK_OFFSTACK
7663 for_each_possible_cpu(i) {
7664 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7665 ptr += cpumask_size();
7666 }
7667 #endif /* CONFIG_CPUMASK_OFFSTACK */
7668 }
7669
7670 #ifdef CONFIG_SMP
7671 init_defrootdomain();
7672 #endif
7673
7674 init_rt_bandwidth(&def_rt_bandwidth,
7675 global_rt_period(), global_rt_runtime());
7676
7677 #ifdef CONFIG_RT_GROUP_SCHED
7678 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7679 global_rt_period(), global_rt_runtime());
7680 #endif /* CONFIG_RT_GROUP_SCHED */
7681
7682 #ifdef CONFIG_CGROUP_SCHED
7683 list_add(&init_task_group.list, &task_groups);
7684 INIT_LIST_HEAD(&init_task_group.children);
7685
7686 #endif /* CONFIG_CGROUP_SCHED */
7687
7688 #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
7689 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
7690 __alignof__(unsigned long));
7691 #endif
7692 for_each_possible_cpu(i) {
7693 struct rq *rq;
7694
7695 rq = cpu_rq(i);
7696 raw_spin_lock_init(&rq->lock);
7697 rq->nr_running = 0;
7698 rq->calc_load_active = 0;
7699 rq->calc_load_update = jiffies + LOAD_FREQ;
7700 init_cfs_rq(&rq->cfs, rq);
7701 init_rt_rq(&rq->rt, rq);
7702 #ifdef CONFIG_FAIR_GROUP_SCHED
7703 init_task_group.shares = init_task_group_load;
7704 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7705 #ifdef CONFIG_CGROUP_SCHED
7706 /*
7707 * How much cpu bandwidth does init_task_group get?
7708 *
7709 * In case of task-groups formed thr' the cgroup filesystem, it
7710 * gets 100% of the cpu resources in the system. This overall
7711 * system cpu resource is divided among the tasks of
7712 * init_task_group and its child task-groups in a fair manner,
7713 * based on each entity's (task or task-group's) weight
7714 * (se->load.weight).
7715 *
7716 * In other words, if init_task_group has 10 tasks of weight
7717 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7718 * then A0's share of the cpu resource is:
7719 *
7720 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7721 *
7722 * We achieve this by letting init_task_group's tasks sit
7723 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7724 */
7725 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
7726 #endif
7727 #endif /* CONFIG_FAIR_GROUP_SCHED */
7728
7729 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7730 #ifdef CONFIG_RT_GROUP_SCHED
7731 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7732 #ifdef CONFIG_CGROUP_SCHED
7733 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
7734 #endif
7735 #endif
7736
7737 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7738 rq->cpu_load[j] = 0;
7739 #ifdef CONFIG_SMP
7740 rq->sd = NULL;
7741 rq->rd = NULL;
7742 rq->post_schedule = 0;
7743 rq->active_balance = 0;
7744 rq->next_balance = jiffies;
7745 rq->push_cpu = 0;
7746 rq->cpu = i;
7747 rq->online = 0;
7748 rq->migration_thread = NULL;
7749 rq->idle_stamp = 0;
7750 rq->avg_idle = 2*sysctl_sched_migration_cost;
7751 INIT_LIST_HEAD(&rq->migration_queue);
7752 rq_attach_root(rq, &def_root_domain);
7753 #endif
7754 init_rq_hrtick(rq);
7755 atomic_set(&rq->nr_iowait, 0);
7756 }
7757
7758 set_load_weight(&init_task);
7759
7760 #ifdef CONFIG_PREEMPT_NOTIFIERS
7761 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7762 #endif
7763
7764 #ifdef CONFIG_SMP
7765 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7766 #endif
7767
7768 #ifdef CONFIG_RT_MUTEXES
7769 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
7770 #endif
7771
7772 /*
7773 * The boot idle thread does lazy MMU switching as well:
7774 */
7775 atomic_inc(&init_mm.mm_count);
7776 enter_lazy_tlb(&init_mm, current);
7777
7778 /*
7779 * Make us the idle thread. Technically, schedule() should not be
7780 * called from this thread, however somewhere below it might be,
7781 * but because we are the idle thread, we just pick up running again
7782 * when this runqueue becomes "idle".
7783 */
7784 init_idle(current, smp_processor_id());
7785
7786 calc_load_update = jiffies + LOAD_FREQ;
7787
7788 /*
7789 * During early bootup we pretend to be a normal task:
7790 */
7791 current->sched_class = &fair_sched_class;
7792
7793 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
7794 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
7795 #ifdef CONFIG_SMP
7796 #ifdef CONFIG_NO_HZ
7797 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
7798 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7799 #endif
7800 /* May be allocated at isolcpus cmdline parse time */
7801 if (cpu_isolated_map == NULL)
7802 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7803 #endif /* SMP */
7804
7805 perf_event_init();
7806
7807 scheduler_running = 1;
7808 }
7809
7810 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7811 static inline int preempt_count_equals(int preempt_offset)
7812 {
7813 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7814
7815 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
7816 }
7817
7818 void __might_sleep(const char *file, int line, int preempt_offset)
7819 {
7820 #ifdef in_atomic
7821 static unsigned long prev_jiffy; /* ratelimiting */
7822
7823 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7824 system_state != SYSTEM_RUNNING || oops_in_progress)
7825 return;
7826 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7827 return;
7828 prev_jiffy = jiffies;
7829
7830 printk(KERN_ERR
7831 "BUG: sleeping function called from invalid context at %s:%d\n",
7832 file, line);
7833 printk(KERN_ERR
7834 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7835 in_atomic(), irqs_disabled(),
7836 current->pid, current->comm);
7837
7838 debug_show_held_locks(current);
7839 if (irqs_disabled())
7840 print_irqtrace_events(current);
7841 dump_stack();
7842 #endif
7843 }
7844 EXPORT_SYMBOL(__might_sleep);
7845 #endif
7846
7847 #ifdef CONFIG_MAGIC_SYSRQ
7848 static void normalize_task(struct rq *rq, struct task_struct *p)
7849 {
7850 int on_rq;
7851
7852 update_rq_clock(rq);
7853 on_rq = p->se.on_rq;
7854 if (on_rq)
7855 deactivate_task(rq, p, 0);
7856 __setscheduler(rq, p, SCHED_NORMAL, 0);
7857 if (on_rq) {
7858 activate_task(rq, p, 0);
7859 resched_task(rq->curr);
7860 }
7861 }
7862
7863 void normalize_rt_tasks(void)
7864 {
7865 struct task_struct *g, *p;
7866 unsigned long flags;
7867 struct rq *rq;
7868
7869 read_lock_irqsave(&tasklist_lock, flags);
7870 do_each_thread(g, p) {
7871 /*
7872 * Only normalize user tasks:
7873 */
7874 if (!p->mm)
7875 continue;
7876
7877 p->se.exec_start = 0;
7878 #ifdef CONFIG_SCHEDSTATS
7879 p->se.wait_start = 0;
7880 p->se.sleep_start = 0;
7881 p->se.block_start = 0;
7882 #endif
7883
7884 if (!rt_task(p)) {
7885 /*
7886 * Renice negative nice level userspace
7887 * tasks back to 0:
7888 */
7889 if (TASK_NICE(p) < 0 && p->mm)
7890 set_user_nice(p, 0);
7891 continue;
7892 }
7893
7894 raw_spin_lock(&p->pi_lock);
7895 rq = __task_rq_lock(p);
7896
7897 normalize_task(rq, p);
7898
7899 __task_rq_unlock(rq);
7900 raw_spin_unlock(&p->pi_lock);
7901 } while_each_thread(g, p);
7902
7903 read_unlock_irqrestore(&tasklist_lock, flags);
7904 }
7905
7906 #endif /* CONFIG_MAGIC_SYSRQ */
7907
7908 #ifdef CONFIG_IA64
7909 /*
7910 * These functions are only useful for the IA64 MCA handling.
7911 *
7912 * They can only be called when the whole system has been
7913 * stopped - every CPU needs to be quiescent, and no scheduling
7914 * activity can take place. Using them for anything else would
7915 * be a serious bug, and as a result, they aren't even visible
7916 * under any other configuration.
7917 */
7918
7919 /**
7920 * curr_task - return the current task for a given cpu.
7921 * @cpu: the processor in question.
7922 *
7923 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7924 */
7925 struct task_struct *curr_task(int cpu)
7926 {
7927 return cpu_curr(cpu);
7928 }
7929
7930 /**
7931 * set_curr_task - set the current task for a given cpu.
7932 * @cpu: the processor in question.
7933 * @p: the task pointer to set.
7934 *
7935 * Description: This function must only be used when non-maskable interrupts
7936 * are serviced on a separate stack. It allows the architecture to switch the
7937 * notion of the current task on a cpu in a non-blocking manner. This function
7938 * must be called with all CPU's synchronized, and interrupts disabled, the
7939 * and caller must save the original value of the current task (see
7940 * curr_task() above) and restore that value before reenabling interrupts and
7941 * re-starting the system.
7942 *
7943 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7944 */
7945 void set_curr_task(int cpu, struct task_struct *p)
7946 {
7947 cpu_curr(cpu) = p;
7948 }
7949
7950 #endif
7951
7952 #ifdef CONFIG_FAIR_GROUP_SCHED
7953 static void free_fair_sched_group(struct task_group *tg)
7954 {
7955 int i;
7956
7957 for_each_possible_cpu(i) {
7958 if (tg->cfs_rq)
7959 kfree(tg->cfs_rq[i]);
7960 if (tg->se)
7961 kfree(tg->se[i]);
7962 }
7963
7964 kfree(tg->cfs_rq);
7965 kfree(tg->se);
7966 }
7967
7968 static
7969 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7970 {
7971 struct cfs_rq *cfs_rq;
7972 struct sched_entity *se;
7973 struct rq *rq;
7974 int i;
7975
7976 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7977 if (!tg->cfs_rq)
7978 goto err;
7979 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7980 if (!tg->se)
7981 goto err;
7982
7983 tg->shares = NICE_0_LOAD;
7984
7985 for_each_possible_cpu(i) {
7986 rq = cpu_rq(i);
7987
7988 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7989 GFP_KERNEL, cpu_to_node(i));
7990 if (!cfs_rq)
7991 goto err;
7992
7993 se = kzalloc_node(sizeof(struct sched_entity),
7994 GFP_KERNEL, cpu_to_node(i));
7995 if (!se)
7996 goto err_free_rq;
7997
7998 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
7999 }
8000
8001 return 1;
8002
8003 err_free_rq:
8004 kfree(cfs_rq);
8005 err:
8006 return 0;
8007 }
8008
8009 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8010 {
8011 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8012 &cpu_rq(cpu)->leaf_cfs_rq_list);
8013 }
8014
8015 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8016 {
8017 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8018 }
8019 #else /* !CONFG_FAIR_GROUP_SCHED */
8020 static inline void free_fair_sched_group(struct task_group *tg)
8021 {
8022 }
8023
8024 static inline
8025 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8026 {
8027 return 1;
8028 }
8029
8030 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8031 {
8032 }
8033
8034 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8035 {
8036 }
8037 #endif /* CONFIG_FAIR_GROUP_SCHED */
8038
8039 #ifdef CONFIG_RT_GROUP_SCHED
8040 static void free_rt_sched_group(struct task_group *tg)
8041 {
8042 int i;
8043
8044 destroy_rt_bandwidth(&tg->rt_bandwidth);
8045
8046 for_each_possible_cpu(i) {
8047 if (tg->rt_rq)
8048 kfree(tg->rt_rq[i]);
8049 if (tg->rt_se)
8050 kfree(tg->rt_se[i]);
8051 }
8052
8053 kfree(tg->rt_rq);
8054 kfree(tg->rt_se);
8055 }
8056
8057 static
8058 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8059 {
8060 struct rt_rq *rt_rq;
8061 struct sched_rt_entity *rt_se;
8062 struct rq *rq;
8063 int i;
8064
8065 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8066 if (!tg->rt_rq)
8067 goto err;
8068 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8069 if (!tg->rt_se)
8070 goto err;
8071
8072 init_rt_bandwidth(&tg->rt_bandwidth,
8073 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8074
8075 for_each_possible_cpu(i) {
8076 rq = cpu_rq(i);
8077
8078 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8079 GFP_KERNEL, cpu_to_node(i));
8080 if (!rt_rq)
8081 goto err;
8082
8083 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8084 GFP_KERNEL, cpu_to_node(i));
8085 if (!rt_se)
8086 goto err_free_rq;
8087
8088 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
8089 }
8090
8091 return 1;
8092
8093 err_free_rq:
8094 kfree(rt_rq);
8095 err:
8096 return 0;
8097 }
8098
8099 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8100 {
8101 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8102 &cpu_rq(cpu)->leaf_rt_rq_list);
8103 }
8104
8105 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8106 {
8107 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8108 }
8109 #else /* !CONFIG_RT_GROUP_SCHED */
8110 static inline void free_rt_sched_group(struct task_group *tg)
8111 {
8112 }
8113
8114 static inline
8115 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8116 {
8117 return 1;
8118 }
8119
8120 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8121 {
8122 }
8123
8124 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8125 {
8126 }
8127 #endif /* CONFIG_RT_GROUP_SCHED */
8128
8129 #ifdef CONFIG_CGROUP_SCHED
8130 static void free_sched_group(struct task_group *tg)
8131 {
8132 free_fair_sched_group(tg);
8133 free_rt_sched_group(tg);
8134 kfree(tg);
8135 }
8136
8137 /* allocate runqueue etc for a new task group */
8138 struct task_group *sched_create_group(struct task_group *parent)
8139 {
8140 struct task_group *tg;
8141 unsigned long flags;
8142 int i;
8143
8144 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8145 if (!tg)
8146 return ERR_PTR(-ENOMEM);
8147
8148 if (!alloc_fair_sched_group(tg, parent))
8149 goto err;
8150
8151 if (!alloc_rt_sched_group(tg, parent))
8152 goto err;
8153
8154 spin_lock_irqsave(&task_group_lock, flags);
8155 for_each_possible_cpu(i) {
8156 register_fair_sched_group(tg, i);
8157 register_rt_sched_group(tg, i);
8158 }
8159 list_add_rcu(&tg->list, &task_groups);
8160
8161 WARN_ON(!parent); /* root should already exist */
8162
8163 tg->parent = parent;
8164 INIT_LIST_HEAD(&tg->children);
8165 list_add_rcu(&tg->siblings, &parent->children);
8166 spin_unlock_irqrestore(&task_group_lock, flags);
8167
8168 return tg;
8169
8170 err:
8171 free_sched_group(tg);
8172 return ERR_PTR(-ENOMEM);
8173 }
8174
8175 /* rcu callback to free various structures associated with a task group */
8176 static void free_sched_group_rcu(struct rcu_head *rhp)
8177 {
8178 /* now it should be safe to free those cfs_rqs */
8179 free_sched_group(container_of(rhp, struct task_group, rcu));
8180 }
8181
8182 /* Destroy runqueue etc associated with a task group */
8183 void sched_destroy_group(struct task_group *tg)
8184 {
8185 unsigned long flags;
8186 int i;
8187
8188 spin_lock_irqsave(&task_group_lock, flags);
8189 for_each_possible_cpu(i) {
8190 unregister_fair_sched_group(tg, i);
8191 unregister_rt_sched_group(tg, i);
8192 }
8193 list_del_rcu(&tg->list);
8194 list_del_rcu(&tg->siblings);
8195 spin_unlock_irqrestore(&task_group_lock, flags);
8196
8197 /* wait for possible concurrent references to cfs_rqs complete */
8198 call_rcu(&tg->rcu, free_sched_group_rcu);
8199 }
8200
8201 /* change task's runqueue when it moves between groups.
8202 * The caller of this function should have put the task in its new group
8203 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8204 * reflect its new group.
8205 */
8206 void sched_move_task(struct task_struct *tsk)
8207 {
8208 int on_rq, running;
8209 unsigned long flags;
8210 struct rq *rq;
8211
8212 rq = task_rq_lock(tsk, &flags);
8213
8214 update_rq_clock(rq);
8215
8216 running = task_current(rq, tsk);
8217 on_rq = tsk->se.on_rq;
8218
8219 if (on_rq)
8220 dequeue_task(rq, tsk, 0);
8221 if (unlikely(running))
8222 tsk->sched_class->put_prev_task(rq, tsk);
8223
8224 set_task_rq(tsk, task_cpu(tsk));
8225
8226 #ifdef CONFIG_FAIR_GROUP_SCHED
8227 if (tsk->sched_class->moved_group)
8228 tsk->sched_class->moved_group(tsk, on_rq);
8229 #endif
8230
8231 if (unlikely(running))
8232 tsk->sched_class->set_curr_task(rq);
8233 if (on_rq)
8234 enqueue_task(rq, tsk, 0, false);
8235
8236 task_rq_unlock(rq, &flags);
8237 }
8238 #endif /* CONFIG_CGROUP_SCHED */
8239
8240 #ifdef CONFIG_FAIR_GROUP_SCHED
8241 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
8242 {
8243 struct cfs_rq *cfs_rq = se->cfs_rq;
8244 int on_rq;
8245
8246 on_rq = se->on_rq;
8247 if (on_rq)
8248 dequeue_entity(cfs_rq, se, 0);
8249
8250 se->load.weight = shares;
8251 se->load.inv_weight = 0;
8252
8253 if (on_rq)
8254 enqueue_entity(cfs_rq, se, 0);
8255 }
8256
8257 static void set_se_shares(struct sched_entity *se, unsigned long shares)
8258 {
8259 struct cfs_rq *cfs_rq = se->cfs_rq;
8260 struct rq *rq = cfs_rq->rq;
8261 unsigned long flags;
8262
8263 raw_spin_lock_irqsave(&rq->lock, flags);
8264 __set_se_shares(se, shares);
8265 raw_spin_unlock_irqrestore(&rq->lock, flags);
8266 }
8267
8268 static DEFINE_MUTEX(shares_mutex);
8269
8270 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8271 {
8272 int i;
8273 unsigned long flags;
8274
8275 /*
8276 * We can't change the weight of the root cgroup.
8277 */
8278 if (!tg->se[0])
8279 return -EINVAL;
8280
8281 if (shares < MIN_SHARES)
8282 shares = MIN_SHARES;
8283 else if (shares > MAX_SHARES)
8284 shares = MAX_SHARES;
8285
8286 mutex_lock(&shares_mutex);
8287 if (tg->shares == shares)
8288 goto done;
8289
8290 spin_lock_irqsave(&task_group_lock, flags);
8291 for_each_possible_cpu(i)
8292 unregister_fair_sched_group(tg, i);
8293 list_del_rcu(&tg->siblings);
8294 spin_unlock_irqrestore(&task_group_lock, flags);
8295
8296 /* wait for any ongoing reference to this group to finish */
8297 synchronize_sched();
8298
8299 /*
8300 * Now we are free to modify the group's share on each cpu
8301 * w/o tripping rebalance_share or load_balance_fair.
8302 */
8303 tg->shares = shares;
8304 for_each_possible_cpu(i) {
8305 /*
8306 * force a rebalance
8307 */
8308 cfs_rq_set_shares(tg->cfs_rq[i], 0);
8309 set_se_shares(tg->se[i], shares);
8310 }
8311
8312 /*
8313 * Enable load balance activity on this group, by inserting it back on
8314 * each cpu's rq->leaf_cfs_rq_list.
8315 */
8316 spin_lock_irqsave(&task_group_lock, flags);
8317 for_each_possible_cpu(i)
8318 register_fair_sched_group(tg, i);
8319 list_add_rcu(&tg->siblings, &tg->parent->children);
8320 spin_unlock_irqrestore(&task_group_lock, flags);
8321 done:
8322 mutex_unlock(&shares_mutex);
8323 return 0;
8324 }
8325
8326 unsigned long sched_group_shares(struct task_group *tg)
8327 {
8328 return tg->shares;
8329 }
8330 #endif
8331
8332 #ifdef CONFIG_RT_GROUP_SCHED
8333 /*
8334 * Ensure that the real time constraints are schedulable.
8335 */
8336 static DEFINE_MUTEX(rt_constraints_mutex);
8337
8338 static unsigned long to_ratio(u64 period, u64 runtime)
8339 {
8340 if (runtime == RUNTIME_INF)
8341 return 1ULL << 20;
8342
8343 return div64_u64(runtime << 20, period);
8344 }
8345
8346 /* Must be called with tasklist_lock held */
8347 static inline int tg_has_rt_tasks(struct task_group *tg)
8348 {
8349 struct task_struct *g, *p;
8350
8351 do_each_thread(g, p) {
8352 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8353 return 1;
8354 } while_each_thread(g, p);
8355
8356 return 0;
8357 }
8358
8359 struct rt_schedulable_data {
8360 struct task_group *tg;
8361 u64 rt_period;
8362 u64 rt_runtime;
8363 };
8364
8365 static int tg_schedulable(struct task_group *tg, void *data)
8366 {
8367 struct rt_schedulable_data *d = data;
8368 struct task_group *child;
8369 unsigned long total, sum = 0;
8370 u64 period, runtime;
8371
8372 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8373 runtime = tg->rt_bandwidth.rt_runtime;
8374
8375 if (tg == d->tg) {
8376 period = d->rt_period;
8377 runtime = d->rt_runtime;
8378 }
8379
8380 /*
8381 * Cannot have more runtime than the period.
8382 */
8383 if (runtime > period && runtime != RUNTIME_INF)
8384 return -EINVAL;
8385
8386 /*
8387 * Ensure we don't starve existing RT tasks.
8388 */
8389 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8390 return -EBUSY;
8391
8392 total = to_ratio(period, runtime);
8393
8394 /*
8395 * Nobody can have more than the global setting allows.
8396 */
8397 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8398 return -EINVAL;
8399
8400 /*
8401 * The sum of our children's runtime should not exceed our own.
8402 */
8403 list_for_each_entry_rcu(child, &tg->children, siblings) {
8404 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8405 runtime = child->rt_bandwidth.rt_runtime;
8406
8407 if (child == d->tg) {
8408 period = d->rt_period;
8409 runtime = d->rt_runtime;
8410 }
8411
8412 sum += to_ratio(period, runtime);
8413 }
8414
8415 if (sum > total)
8416 return -EINVAL;
8417
8418 return 0;
8419 }
8420
8421 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8422 {
8423 struct rt_schedulable_data data = {
8424 .tg = tg,
8425 .rt_period = period,
8426 .rt_runtime = runtime,
8427 };
8428
8429 return walk_tg_tree(tg_schedulable, tg_nop, &data);
8430 }
8431
8432 static int tg_set_bandwidth(struct task_group *tg,
8433 u64 rt_period, u64 rt_runtime)
8434 {
8435 int i, err = 0;
8436
8437 mutex_lock(&rt_constraints_mutex);
8438 read_lock(&tasklist_lock);
8439 err = __rt_schedulable(tg, rt_period, rt_runtime);
8440 if (err)
8441 goto unlock;
8442
8443 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8444 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8445 tg->rt_bandwidth.rt_runtime = rt_runtime;
8446
8447 for_each_possible_cpu(i) {
8448 struct rt_rq *rt_rq = tg->rt_rq[i];
8449
8450 raw_spin_lock(&rt_rq->rt_runtime_lock);
8451 rt_rq->rt_runtime = rt_runtime;
8452 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8453 }
8454 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8455 unlock:
8456 read_unlock(&tasklist_lock);
8457 mutex_unlock(&rt_constraints_mutex);
8458
8459 return err;
8460 }
8461
8462 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8463 {
8464 u64 rt_runtime, rt_period;
8465
8466 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8467 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8468 if (rt_runtime_us < 0)
8469 rt_runtime = RUNTIME_INF;
8470
8471 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8472 }
8473
8474 long sched_group_rt_runtime(struct task_group *tg)
8475 {
8476 u64 rt_runtime_us;
8477
8478 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8479 return -1;
8480
8481 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8482 do_div(rt_runtime_us, NSEC_PER_USEC);
8483 return rt_runtime_us;
8484 }
8485
8486 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8487 {
8488 u64 rt_runtime, rt_period;
8489
8490 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8491 rt_runtime = tg->rt_bandwidth.rt_runtime;
8492
8493 if (rt_period == 0)
8494 return -EINVAL;
8495
8496 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8497 }
8498
8499 long sched_group_rt_period(struct task_group *tg)
8500 {
8501 u64 rt_period_us;
8502
8503 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8504 do_div(rt_period_us, NSEC_PER_USEC);
8505 return rt_period_us;
8506 }
8507
8508 static int sched_rt_global_constraints(void)
8509 {
8510 u64 runtime, period;
8511 int ret = 0;
8512
8513 if (sysctl_sched_rt_period <= 0)
8514 return -EINVAL;
8515
8516 runtime = global_rt_runtime();
8517 period = global_rt_period();
8518
8519 /*
8520 * Sanity check on the sysctl variables.
8521 */
8522 if (runtime > period && runtime != RUNTIME_INF)
8523 return -EINVAL;
8524
8525 mutex_lock(&rt_constraints_mutex);
8526 read_lock(&tasklist_lock);
8527 ret = __rt_schedulable(NULL, 0, 0);
8528 read_unlock(&tasklist_lock);
8529 mutex_unlock(&rt_constraints_mutex);
8530
8531 return ret;
8532 }
8533
8534 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8535 {
8536 /* Don't accept realtime tasks when there is no way for them to run */
8537 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8538 return 0;
8539
8540 return 1;
8541 }
8542
8543 #else /* !CONFIG_RT_GROUP_SCHED */
8544 static int sched_rt_global_constraints(void)
8545 {
8546 unsigned long flags;
8547 int i;
8548
8549 if (sysctl_sched_rt_period <= 0)
8550 return -EINVAL;
8551
8552 /*
8553 * There's always some RT tasks in the root group
8554 * -- migration, kstopmachine etc..
8555 */
8556 if (sysctl_sched_rt_runtime == 0)
8557 return -EBUSY;
8558
8559 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8560 for_each_possible_cpu(i) {
8561 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8562
8563 raw_spin_lock(&rt_rq->rt_runtime_lock);
8564 rt_rq->rt_runtime = global_rt_runtime();
8565 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8566 }
8567 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8568
8569 return 0;
8570 }
8571 #endif /* CONFIG_RT_GROUP_SCHED */
8572
8573 int sched_rt_handler(struct ctl_table *table, int write,
8574 void __user *buffer, size_t *lenp,
8575 loff_t *ppos)
8576 {
8577 int ret;
8578 int old_period, old_runtime;
8579 static DEFINE_MUTEX(mutex);
8580
8581 mutex_lock(&mutex);
8582 old_period = sysctl_sched_rt_period;
8583 old_runtime = sysctl_sched_rt_runtime;
8584
8585 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8586
8587 if (!ret && write) {
8588 ret = sched_rt_global_constraints();
8589 if (ret) {
8590 sysctl_sched_rt_period = old_period;
8591 sysctl_sched_rt_runtime = old_runtime;
8592 } else {
8593 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8594 def_rt_bandwidth.rt_period =
8595 ns_to_ktime(global_rt_period());
8596 }
8597 }
8598 mutex_unlock(&mutex);
8599
8600 return ret;
8601 }
8602
8603 #ifdef CONFIG_CGROUP_SCHED
8604
8605 /* return corresponding task_group object of a cgroup */
8606 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8607 {
8608 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8609 struct task_group, css);
8610 }
8611
8612 static struct cgroup_subsys_state *
8613 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8614 {
8615 struct task_group *tg, *parent;
8616
8617 if (!cgrp->parent) {
8618 /* This is early initialization for the top cgroup */
8619 return &init_task_group.css;
8620 }
8621
8622 parent = cgroup_tg(cgrp->parent);
8623 tg = sched_create_group(parent);
8624 if (IS_ERR(tg))
8625 return ERR_PTR(-ENOMEM);
8626
8627 return &tg->css;
8628 }
8629
8630 static void
8631 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8632 {
8633 struct task_group *tg = cgroup_tg(cgrp);
8634
8635 sched_destroy_group(tg);
8636 }
8637
8638 static int
8639 cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
8640 {
8641 #ifdef CONFIG_RT_GROUP_SCHED
8642 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
8643 return -EINVAL;
8644 #else
8645 /* We don't support RT-tasks being in separate groups */
8646 if (tsk->sched_class != &fair_sched_class)
8647 return -EINVAL;
8648 #endif
8649 return 0;
8650 }
8651
8652 static int
8653 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8654 struct task_struct *tsk, bool threadgroup)
8655 {
8656 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
8657 if (retval)
8658 return retval;
8659 if (threadgroup) {
8660 struct task_struct *c;
8661 rcu_read_lock();
8662 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8663 retval = cpu_cgroup_can_attach_task(cgrp, c);
8664 if (retval) {
8665 rcu_read_unlock();
8666 return retval;
8667 }
8668 }
8669 rcu_read_unlock();
8670 }
8671 return 0;
8672 }
8673
8674 static void
8675 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8676 struct cgroup *old_cont, struct task_struct *tsk,
8677 bool threadgroup)
8678 {
8679 sched_move_task(tsk);
8680 if (threadgroup) {
8681 struct task_struct *c;
8682 rcu_read_lock();
8683 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8684 sched_move_task(c);
8685 }
8686 rcu_read_unlock();
8687 }
8688 }
8689
8690 #ifdef CONFIG_FAIR_GROUP_SCHED
8691 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8692 u64 shareval)
8693 {
8694 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8695 }
8696
8697 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8698 {
8699 struct task_group *tg = cgroup_tg(cgrp);
8700
8701 return (u64) tg->shares;
8702 }
8703 #endif /* CONFIG_FAIR_GROUP_SCHED */
8704
8705 #ifdef CONFIG_RT_GROUP_SCHED
8706 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8707 s64 val)
8708 {
8709 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
8710 }
8711
8712 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
8713 {
8714 return sched_group_rt_runtime(cgroup_tg(cgrp));
8715 }
8716
8717 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8718 u64 rt_period_us)
8719 {
8720 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8721 }
8722
8723 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8724 {
8725 return sched_group_rt_period(cgroup_tg(cgrp));
8726 }
8727 #endif /* CONFIG_RT_GROUP_SCHED */
8728
8729 static struct cftype cpu_files[] = {
8730 #ifdef CONFIG_FAIR_GROUP_SCHED
8731 {
8732 .name = "shares",
8733 .read_u64 = cpu_shares_read_u64,
8734 .write_u64 = cpu_shares_write_u64,
8735 },
8736 #endif
8737 #ifdef CONFIG_RT_GROUP_SCHED
8738 {
8739 .name = "rt_runtime_us",
8740 .read_s64 = cpu_rt_runtime_read,
8741 .write_s64 = cpu_rt_runtime_write,
8742 },
8743 {
8744 .name = "rt_period_us",
8745 .read_u64 = cpu_rt_period_read_uint,
8746 .write_u64 = cpu_rt_period_write_uint,
8747 },
8748 #endif
8749 };
8750
8751 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8752 {
8753 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8754 }
8755
8756 struct cgroup_subsys cpu_cgroup_subsys = {
8757 .name = "cpu",
8758 .create = cpu_cgroup_create,
8759 .destroy = cpu_cgroup_destroy,
8760 .can_attach = cpu_cgroup_can_attach,
8761 .attach = cpu_cgroup_attach,
8762 .populate = cpu_cgroup_populate,
8763 .subsys_id = cpu_cgroup_subsys_id,
8764 .early_init = 1,
8765 };
8766
8767 #endif /* CONFIG_CGROUP_SCHED */
8768
8769 #ifdef CONFIG_CGROUP_CPUACCT
8770
8771 /*
8772 * CPU accounting code for task groups.
8773 *
8774 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8775 * (balbir@in.ibm.com).
8776 */
8777
8778 /* track cpu usage of a group of tasks and its child groups */
8779 struct cpuacct {
8780 struct cgroup_subsys_state css;
8781 /* cpuusage holds pointer to a u64-type object on every cpu */
8782 u64 __percpu *cpuusage;
8783 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
8784 struct cpuacct *parent;
8785 };
8786
8787 struct cgroup_subsys cpuacct_subsys;
8788
8789 /* return cpu accounting group corresponding to this container */
8790 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8791 {
8792 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8793 struct cpuacct, css);
8794 }
8795
8796 /* return cpu accounting group to which this task belongs */
8797 static inline struct cpuacct *task_ca(struct task_struct *tsk)
8798 {
8799 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8800 struct cpuacct, css);
8801 }
8802
8803 /* create a new cpu accounting group */
8804 static struct cgroup_subsys_state *cpuacct_create(
8805 struct cgroup_subsys *ss, struct cgroup *cgrp)
8806 {
8807 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8808 int i;
8809
8810 if (!ca)
8811 goto out;
8812
8813 ca->cpuusage = alloc_percpu(u64);
8814 if (!ca->cpuusage)
8815 goto out_free_ca;
8816
8817 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8818 if (percpu_counter_init(&ca->cpustat[i], 0))
8819 goto out_free_counters;
8820
8821 if (cgrp->parent)
8822 ca->parent = cgroup_ca(cgrp->parent);
8823
8824 return &ca->css;
8825
8826 out_free_counters:
8827 while (--i >= 0)
8828 percpu_counter_destroy(&ca->cpustat[i]);
8829 free_percpu(ca->cpuusage);
8830 out_free_ca:
8831 kfree(ca);
8832 out:
8833 return ERR_PTR(-ENOMEM);
8834 }
8835
8836 /* destroy an existing cpu accounting group */
8837 static void
8838 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8839 {
8840 struct cpuacct *ca = cgroup_ca(cgrp);
8841 int i;
8842
8843 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8844 percpu_counter_destroy(&ca->cpustat[i]);
8845 free_percpu(ca->cpuusage);
8846 kfree(ca);
8847 }
8848
8849 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8850 {
8851 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8852 u64 data;
8853
8854 #ifndef CONFIG_64BIT
8855 /*
8856 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8857 */
8858 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8859 data = *cpuusage;
8860 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8861 #else
8862 data = *cpuusage;
8863 #endif
8864
8865 return data;
8866 }
8867
8868 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8869 {
8870 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8871
8872 #ifndef CONFIG_64BIT
8873 /*
8874 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8875 */
8876 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8877 *cpuusage = val;
8878 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8879 #else
8880 *cpuusage = val;
8881 #endif
8882 }
8883
8884 /* return total cpu usage (in nanoseconds) of a group */
8885 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8886 {
8887 struct cpuacct *ca = cgroup_ca(cgrp);
8888 u64 totalcpuusage = 0;
8889 int i;
8890
8891 for_each_present_cpu(i)
8892 totalcpuusage += cpuacct_cpuusage_read(ca, i);
8893
8894 return totalcpuusage;
8895 }
8896
8897 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8898 u64 reset)
8899 {
8900 struct cpuacct *ca = cgroup_ca(cgrp);
8901 int err = 0;
8902 int i;
8903
8904 if (reset) {
8905 err = -EINVAL;
8906 goto out;
8907 }
8908
8909 for_each_present_cpu(i)
8910 cpuacct_cpuusage_write(ca, i, 0);
8911
8912 out:
8913 return err;
8914 }
8915
8916 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8917 struct seq_file *m)
8918 {
8919 struct cpuacct *ca = cgroup_ca(cgroup);
8920 u64 percpu;
8921 int i;
8922
8923 for_each_present_cpu(i) {
8924 percpu = cpuacct_cpuusage_read(ca, i);
8925 seq_printf(m, "%llu ", (unsigned long long) percpu);
8926 }
8927 seq_printf(m, "\n");
8928 return 0;
8929 }
8930
8931 static const char *cpuacct_stat_desc[] = {
8932 [CPUACCT_STAT_USER] = "user",
8933 [CPUACCT_STAT_SYSTEM] = "system",
8934 };
8935
8936 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8937 struct cgroup_map_cb *cb)
8938 {
8939 struct cpuacct *ca = cgroup_ca(cgrp);
8940 int i;
8941
8942 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
8943 s64 val = percpu_counter_read(&ca->cpustat[i]);
8944 val = cputime64_to_clock_t(val);
8945 cb->fill(cb, cpuacct_stat_desc[i], val);
8946 }
8947 return 0;
8948 }
8949
8950 static struct cftype files[] = {
8951 {
8952 .name = "usage",
8953 .read_u64 = cpuusage_read,
8954 .write_u64 = cpuusage_write,
8955 },
8956 {
8957 .name = "usage_percpu",
8958 .read_seq_string = cpuacct_percpu_seq_read,
8959 },
8960 {
8961 .name = "stat",
8962 .read_map = cpuacct_stats_show,
8963 },
8964 };
8965
8966 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
8967 {
8968 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
8969 }
8970
8971 /*
8972 * charge this task's execution time to its accounting group.
8973 *
8974 * called with rq->lock held.
8975 */
8976 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8977 {
8978 struct cpuacct *ca;
8979 int cpu;
8980
8981 if (unlikely(!cpuacct_subsys.active))
8982 return;
8983
8984 cpu = task_cpu(tsk);
8985
8986 rcu_read_lock();
8987
8988 ca = task_ca(tsk);
8989
8990 for (; ca; ca = ca->parent) {
8991 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8992 *cpuusage += cputime;
8993 }
8994
8995 rcu_read_unlock();
8996 }
8997
8998 /*
8999 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9000 * in cputime_t units. As a result, cpuacct_update_stats calls
9001 * percpu_counter_add with values large enough to always overflow the
9002 * per cpu batch limit causing bad SMP scalability.
9003 *
9004 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9005 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9006 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9007 */
9008 #ifdef CONFIG_SMP
9009 #define CPUACCT_BATCH \
9010 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9011 #else
9012 #define CPUACCT_BATCH 0
9013 #endif
9014
9015 /*
9016 * Charge the system/user time to the task's accounting group.
9017 */
9018 static void cpuacct_update_stats(struct task_struct *tsk,
9019 enum cpuacct_stat_index idx, cputime_t val)
9020 {
9021 struct cpuacct *ca;
9022 int batch = CPUACCT_BATCH;
9023
9024 if (unlikely(!cpuacct_subsys.active))
9025 return;
9026
9027 rcu_read_lock();
9028 ca = task_ca(tsk);
9029
9030 do {
9031 __percpu_counter_add(&ca->cpustat[idx], val, batch);
9032 ca = ca->parent;
9033 } while (ca);
9034 rcu_read_unlock();
9035 }
9036
9037 struct cgroup_subsys cpuacct_subsys = {
9038 .name = "cpuacct",
9039 .create = cpuacct_create,
9040 .destroy = cpuacct_destroy,
9041 .populate = cpuacct_populate,
9042 .subsys_id = cpuacct_subsys_id,
9043 };
9044 #endif /* CONFIG_CGROUP_CPUACCT */
9045
9046 #ifndef CONFIG_SMP
9047
9048 int rcu_expedited_torture_stats(char *page)
9049 {
9050 return 0;
9051 }
9052 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
9053
9054 void synchronize_sched_expedited(void)
9055 {
9056 }
9057 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9058
9059 #else /* #ifndef CONFIG_SMP */
9060
9061 static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
9062 static DEFINE_MUTEX(rcu_sched_expedited_mutex);
9063
9064 #define RCU_EXPEDITED_STATE_POST -2
9065 #define RCU_EXPEDITED_STATE_IDLE -1
9066
9067 static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
9068
9069 int rcu_expedited_torture_stats(char *page)
9070 {
9071 int cnt = 0;
9072 int cpu;
9073
9074 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
9075 for_each_online_cpu(cpu) {
9076 cnt += sprintf(&page[cnt], " %d:%d",
9077 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
9078 }
9079 cnt += sprintf(&page[cnt], "\n");
9080 return cnt;
9081 }
9082 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
9083
9084 static long synchronize_sched_expedited_count;
9085
9086 /*
9087 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
9088 * approach to force grace period to end quickly. This consumes
9089 * significant time on all CPUs, and is thus not recommended for
9090 * any sort of common-case code.
9091 *
9092 * Note that it is illegal to call this function while holding any
9093 * lock that is acquired by a CPU-hotplug notifier. Failing to
9094 * observe this restriction will result in deadlock.
9095 */
9096 void synchronize_sched_expedited(void)
9097 {
9098 int cpu;
9099 unsigned long flags;
9100 bool need_full_sync = 0;
9101 struct rq *rq;
9102 struct migration_req *req;
9103 long snap;
9104 int trycount = 0;
9105
9106 smp_mb(); /* ensure prior mod happens before capturing snap. */
9107 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
9108 get_online_cpus();
9109 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
9110 put_online_cpus();
9111 if (trycount++ < 10)
9112 udelay(trycount * num_online_cpus());
9113 else {
9114 synchronize_sched();
9115 return;
9116 }
9117 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
9118 smp_mb(); /* ensure test happens before caller kfree */
9119 return;
9120 }
9121 get_online_cpus();
9122 }
9123 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
9124 for_each_online_cpu(cpu) {
9125 rq = cpu_rq(cpu);
9126 req = &per_cpu(rcu_migration_req, cpu);
9127 init_completion(&req->done);
9128 req->task = NULL;
9129 req->dest_cpu = RCU_MIGRATION_NEED_QS;
9130 raw_spin_lock_irqsave(&rq->lock, flags);
9131 list_add(&req->list, &rq->migration_queue);
9132 raw_spin_unlock_irqrestore(&rq->lock, flags);
9133 wake_up_process(rq->migration_thread);
9134 }
9135 for_each_online_cpu(cpu) {
9136 rcu_expedited_state = cpu;
9137 req = &per_cpu(rcu_migration_req, cpu);
9138 rq = cpu_rq(cpu);
9139 wait_for_completion(&req->done);
9140 raw_spin_lock_irqsave(&rq->lock, flags);
9141 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
9142 need_full_sync = 1;
9143 req->dest_cpu = RCU_MIGRATION_IDLE;
9144 raw_spin_unlock_irqrestore(&rq->lock, flags);
9145 }
9146 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
9147 synchronize_sched_expedited_count++;
9148 mutex_unlock(&rcu_sched_expedited_mutex);
9149 put_online_cpus();
9150 if (need_full_sync)
9151 synchronize_sched();
9152 }
9153 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9154
9155 #endif /* #else #ifndef CONFIG_SMP */
This page took 0.305537 seconds and 5 git commands to generate.