Merge branch 'perf/urgent' into perf/core
[deliverable/linux.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/kthread.h>
59 #include <linux/proc_fs.h>
60 #include <linux/seq_file.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
74 #include <linux/slab.h>
75
76 #include <asm/tlb.h>
77 #include <asm/irq_regs.h>
78
79 #include "sched_cpupri.h"
80
81 #define CREATE_TRACE_POINTS
82 #include <trace/events/sched.h>
83
84 /*
85 * Convert user-nice values [ -20 ... 0 ... 19 ]
86 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
87 * and back.
88 */
89 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
90 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
91 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
92
93 /*
94 * 'User priority' is the nice value converted to something we
95 * can work with better when scaling various scheduler parameters,
96 * it's a [ 0 ... 39 ] range.
97 */
98 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
99 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
100 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
101
102 /*
103 * Helpers for converting nanosecond timing to jiffy resolution
104 */
105 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
106
107 #define NICE_0_LOAD SCHED_LOAD_SCALE
108 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
109
110 /*
111 * These are the 'tuning knobs' of the scheduler:
112 *
113 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
114 * Timeslices get refilled after they expire.
115 */
116 #define DEF_TIMESLICE (100 * HZ / 1000)
117
118 /*
119 * single value that denotes runtime == period, ie unlimited time.
120 */
121 #define RUNTIME_INF ((u64)~0ULL)
122
123 static inline int rt_policy(int policy)
124 {
125 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
126 return 1;
127 return 0;
128 }
129
130 static inline int task_has_rt_policy(struct task_struct *p)
131 {
132 return rt_policy(p->policy);
133 }
134
135 /*
136 * This is the priority-queue data structure of the RT scheduling class:
137 */
138 struct rt_prio_array {
139 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
140 struct list_head queue[MAX_RT_PRIO];
141 };
142
143 struct rt_bandwidth {
144 /* nests inside the rq lock: */
145 raw_spinlock_t rt_runtime_lock;
146 ktime_t rt_period;
147 u64 rt_runtime;
148 struct hrtimer rt_period_timer;
149 };
150
151 static struct rt_bandwidth def_rt_bandwidth;
152
153 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
154
155 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
156 {
157 struct rt_bandwidth *rt_b =
158 container_of(timer, struct rt_bandwidth, rt_period_timer);
159 ktime_t now;
160 int overrun;
161 int idle = 0;
162
163 for (;;) {
164 now = hrtimer_cb_get_time(timer);
165 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
166
167 if (!overrun)
168 break;
169
170 idle = do_sched_rt_period_timer(rt_b, overrun);
171 }
172
173 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
174 }
175
176 static
177 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
178 {
179 rt_b->rt_period = ns_to_ktime(period);
180 rt_b->rt_runtime = runtime;
181
182 raw_spin_lock_init(&rt_b->rt_runtime_lock);
183
184 hrtimer_init(&rt_b->rt_period_timer,
185 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
186 rt_b->rt_period_timer.function = sched_rt_period_timer;
187 }
188
189 static inline int rt_bandwidth_enabled(void)
190 {
191 return sysctl_sched_rt_runtime >= 0;
192 }
193
194 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
195 {
196 ktime_t now;
197
198 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
199 return;
200
201 if (hrtimer_active(&rt_b->rt_period_timer))
202 return;
203
204 raw_spin_lock(&rt_b->rt_runtime_lock);
205 for (;;) {
206 unsigned long delta;
207 ktime_t soft, hard;
208
209 if (hrtimer_active(&rt_b->rt_period_timer))
210 break;
211
212 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
213 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
214
215 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
216 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
217 delta = ktime_to_ns(ktime_sub(hard, soft));
218 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
219 HRTIMER_MODE_ABS_PINNED, 0);
220 }
221 raw_spin_unlock(&rt_b->rt_runtime_lock);
222 }
223
224 #ifdef CONFIG_RT_GROUP_SCHED
225 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
226 {
227 hrtimer_cancel(&rt_b->rt_period_timer);
228 }
229 #endif
230
231 /*
232 * sched_domains_mutex serializes calls to arch_init_sched_domains,
233 * detach_destroy_domains and partition_sched_domains.
234 */
235 static DEFINE_MUTEX(sched_domains_mutex);
236
237 #ifdef CONFIG_CGROUP_SCHED
238
239 #include <linux/cgroup.h>
240
241 struct cfs_rq;
242
243 static LIST_HEAD(task_groups);
244
245 /* task group related information */
246 struct task_group {
247 struct cgroup_subsys_state css;
248
249 #ifdef CONFIG_FAIR_GROUP_SCHED
250 /* schedulable entities of this group on each cpu */
251 struct sched_entity **se;
252 /* runqueue "owned" by this group on each cpu */
253 struct cfs_rq **cfs_rq;
254 unsigned long shares;
255 #endif
256
257 #ifdef CONFIG_RT_GROUP_SCHED
258 struct sched_rt_entity **rt_se;
259 struct rt_rq **rt_rq;
260
261 struct rt_bandwidth rt_bandwidth;
262 #endif
263
264 struct rcu_head rcu;
265 struct list_head list;
266
267 struct task_group *parent;
268 struct list_head siblings;
269 struct list_head children;
270 };
271
272 #define root_task_group init_task_group
273
274 /* task_group_lock serializes add/remove of task groups and also changes to
275 * a task group's cpu shares.
276 */
277 static DEFINE_SPINLOCK(task_group_lock);
278
279 #ifdef CONFIG_FAIR_GROUP_SCHED
280
281 #ifdef CONFIG_SMP
282 static int root_task_group_empty(void)
283 {
284 return list_empty(&root_task_group.children);
285 }
286 #endif
287
288 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
289
290 /*
291 * A weight of 0 or 1 can cause arithmetics problems.
292 * A weight of a cfs_rq is the sum of weights of which entities
293 * are queued on this cfs_rq, so a weight of a entity should not be
294 * too large, so as the shares value of a task group.
295 * (The default weight is 1024 - so there's no practical
296 * limitation from this.)
297 */
298 #define MIN_SHARES 2
299 #define MAX_SHARES (1UL << 18)
300
301 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
302 #endif
303
304 /* Default task group.
305 * Every task in system belong to this group at bootup.
306 */
307 struct task_group init_task_group;
308
309 /* return group to which a task belongs */
310 static inline struct task_group *task_group(struct task_struct *p)
311 {
312 struct task_group *tg;
313
314 #ifdef CONFIG_CGROUP_SCHED
315 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
316 struct task_group, css);
317 #else
318 tg = &init_task_group;
319 #endif
320 return tg;
321 }
322
323 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
324 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
325 {
326 /*
327 * Strictly speaking this rcu_read_lock() is not needed since the
328 * task_group is tied to the cgroup, which in turn can never go away
329 * as long as there are tasks attached to it.
330 *
331 * However since task_group() uses task_subsys_state() which is an
332 * rcu_dereference() user, this quiets CONFIG_PROVE_RCU.
333 */
334 rcu_read_lock();
335 #ifdef CONFIG_FAIR_GROUP_SCHED
336 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
337 p->se.parent = task_group(p)->se[cpu];
338 #endif
339
340 #ifdef CONFIG_RT_GROUP_SCHED
341 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
342 p->rt.parent = task_group(p)->rt_se[cpu];
343 #endif
344 rcu_read_unlock();
345 }
346
347 #else
348
349 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
350 static inline struct task_group *task_group(struct task_struct *p)
351 {
352 return NULL;
353 }
354
355 #endif /* CONFIG_CGROUP_SCHED */
356
357 /* CFS-related fields in a runqueue */
358 struct cfs_rq {
359 struct load_weight load;
360 unsigned long nr_running;
361
362 u64 exec_clock;
363 u64 min_vruntime;
364
365 struct rb_root tasks_timeline;
366 struct rb_node *rb_leftmost;
367
368 struct list_head tasks;
369 struct list_head *balance_iterator;
370
371 /*
372 * 'curr' points to currently running entity on this cfs_rq.
373 * It is set to NULL otherwise (i.e when none are currently running).
374 */
375 struct sched_entity *curr, *next, *last;
376
377 unsigned int nr_spread_over;
378
379 #ifdef CONFIG_FAIR_GROUP_SCHED
380 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
381
382 /*
383 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
384 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
385 * (like users, containers etc.)
386 *
387 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
388 * list is used during load balance.
389 */
390 struct list_head leaf_cfs_rq_list;
391 struct task_group *tg; /* group that "owns" this runqueue */
392
393 #ifdef CONFIG_SMP
394 /*
395 * the part of load.weight contributed by tasks
396 */
397 unsigned long task_weight;
398
399 /*
400 * h_load = weight * f(tg)
401 *
402 * Where f(tg) is the recursive weight fraction assigned to
403 * this group.
404 */
405 unsigned long h_load;
406
407 /*
408 * this cpu's part of tg->shares
409 */
410 unsigned long shares;
411
412 /*
413 * load.weight at the time we set shares
414 */
415 unsigned long rq_weight;
416 #endif
417 #endif
418 };
419
420 /* Real-Time classes' related field in a runqueue: */
421 struct rt_rq {
422 struct rt_prio_array active;
423 unsigned long rt_nr_running;
424 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
425 struct {
426 int curr; /* highest queued rt task prio */
427 #ifdef CONFIG_SMP
428 int next; /* next highest */
429 #endif
430 } highest_prio;
431 #endif
432 #ifdef CONFIG_SMP
433 unsigned long rt_nr_migratory;
434 unsigned long rt_nr_total;
435 int overloaded;
436 struct plist_head pushable_tasks;
437 #endif
438 int rt_throttled;
439 u64 rt_time;
440 u64 rt_runtime;
441 /* Nests inside the rq lock: */
442 raw_spinlock_t rt_runtime_lock;
443
444 #ifdef CONFIG_RT_GROUP_SCHED
445 unsigned long rt_nr_boosted;
446
447 struct rq *rq;
448 struct list_head leaf_rt_rq_list;
449 struct task_group *tg;
450 #endif
451 };
452
453 #ifdef CONFIG_SMP
454
455 /*
456 * We add the notion of a root-domain which will be used to define per-domain
457 * variables. Each exclusive cpuset essentially defines an island domain by
458 * fully partitioning the member cpus from any other cpuset. Whenever a new
459 * exclusive cpuset is created, we also create and attach a new root-domain
460 * object.
461 *
462 */
463 struct root_domain {
464 atomic_t refcount;
465 cpumask_var_t span;
466 cpumask_var_t online;
467
468 /*
469 * The "RT overload" flag: it gets set if a CPU has more than
470 * one runnable RT task.
471 */
472 cpumask_var_t rto_mask;
473 atomic_t rto_count;
474 #ifdef CONFIG_SMP
475 struct cpupri cpupri;
476 #endif
477 };
478
479 /*
480 * By default the system creates a single root-domain with all cpus as
481 * members (mimicking the global state we have today).
482 */
483 static struct root_domain def_root_domain;
484
485 #endif
486
487 /*
488 * This is the main, per-CPU runqueue data structure.
489 *
490 * Locking rule: those places that want to lock multiple runqueues
491 * (such as the load balancing or the thread migration code), lock
492 * acquire operations must be ordered by ascending &runqueue.
493 */
494 struct rq {
495 /* runqueue lock: */
496 raw_spinlock_t lock;
497
498 /*
499 * nr_running and cpu_load should be in the same cacheline because
500 * remote CPUs use both these fields when doing load calculation.
501 */
502 unsigned long nr_running;
503 #define CPU_LOAD_IDX_MAX 5
504 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
505 #ifdef CONFIG_NO_HZ
506 unsigned char in_nohz_recently;
507 #endif
508 /* capture load from *all* tasks on this cpu: */
509 struct load_weight load;
510 unsigned long nr_load_updates;
511 u64 nr_switches;
512
513 struct cfs_rq cfs;
514 struct rt_rq rt;
515
516 #ifdef CONFIG_FAIR_GROUP_SCHED
517 /* list of leaf cfs_rq on this cpu: */
518 struct list_head leaf_cfs_rq_list;
519 #endif
520 #ifdef CONFIG_RT_GROUP_SCHED
521 struct list_head leaf_rt_rq_list;
522 #endif
523
524 /*
525 * This is part of a global counter where only the total sum
526 * over all CPUs matters. A task can increase this counter on
527 * one CPU and if it got migrated afterwards it may decrease
528 * it on another CPU. Always updated under the runqueue lock:
529 */
530 unsigned long nr_uninterruptible;
531
532 struct task_struct *curr, *idle;
533 unsigned long next_balance;
534 struct mm_struct *prev_mm;
535
536 u64 clock;
537
538 atomic_t nr_iowait;
539
540 #ifdef CONFIG_SMP
541 struct root_domain *rd;
542 struct sched_domain *sd;
543
544 unsigned char idle_at_tick;
545 /* For active balancing */
546 int post_schedule;
547 int active_balance;
548 int push_cpu;
549 /* cpu of this runqueue: */
550 int cpu;
551 int online;
552
553 unsigned long avg_load_per_task;
554
555 struct task_struct *migration_thread;
556 struct list_head migration_queue;
557
558 u64 rt_avg;
559 u64 age_stamp;
560 u64 idle_stamp;
561 u64 avg_idle;
562 #endif
563
564 /* calc_load related fields */
565 unsigned long calc_load_update;
566 long calc_load_active;
567
568 #ifdef CONFIG_SCHED_HRTICK
569 #ifdef CONFIG_SMP
570 int hrtick_csd_pending;
571 struct call_single_data hrtick_csd;
572 #endif
573 struct hrtimer hrtick_timer;
574 #endif
575
576 #ifdef CONFIG_SCHEDSTATS
577 /* latency stats */
578 struct sched_info rq_sched_info;
579 unsigned long long rq_cpu_time;
580 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
581
582 /* sys_sched_yield() stats */
583 unsigned int yld_count;
584
585 /* schedule() stats */
586 unsigned int sched_switch;
587 unsigned int sched_count;
588 unsigned int sched_goidle;
589
590 /* try_to_wake_up() stats */
591 unsigned int ttwu_count;
592 unsigned int ttwu_local;
593
594 /* BKL stats */
595 unsigned int bkl_count;
596 #endif
597 };
598
599 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
600
601 static inline
602 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
603 {
604 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
605 }
606
607 static inline int cpu_of(struct rq *rq)
608 {
609 #ifdef CONFIG_SMP
610 return rq->cpu;
611 #else
612 return 0;
613 #endif
614 }
615
616 #define rcu_dereference_check_sched_domain(p) \
617 rcu_dereference_check((p), \
618 rcu_read_lock_sched_held() || \
619 lockdep_is_held(&sched_domains_mutex))
620
621 /*
622 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
623 * See detach_destroy_domains: synchronize_sched for details.
624 *
625 * The domain tree of any CPU may only be accessed from within
626 * preempt-disabled sections.
627 */
628 #define for_each_domain(cpu, __sd) \
629 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
630
631 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
632 #define this_rq() (&__get_cpu_var(runqueues))
633 #define task_rq(p) cpu_rq(task_cpu(p))
634 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
635 #define raw_rq() (&__raw_get_cpu_var(runqueues))
636
637 inline void update_rq_clock(struct rq *rq)
638 {
639 rq->clock = sched_clock_cpu(cpu_of(rq));
640 }
641
642 /*
643 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
644 */
645 #ifdef CONFIG_SCHED_DEBUG
646 # define const_debug __read_mostly
647 #else
648 # define const_debug static const
649 #endif
650
651 /**
652 * runqueue_is_locked
653 * @cpu: the processor in question.
654 *
655 * Returns true if the current cpu runqueue is locked.
656 * This interface allows printk to be called with the runqueue lock
657 * held and know whether or not it is OK to wake up the klogd.
658 */
659 int runqueue_is_locked(int cpu)
660 {
661 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
662 }
663
664 /*
665 * Debugging: various feature bits
666 */
667
668 #define SCHED_FEAT(name, enabled) \
669 __SCHED_FEAT_##name ,
670
671 enum {
672 #include "sched_features.h"
673 };
674
675 #undef SCHED_FEAT
676
677 #define SCHED_FEAT(name, enabled) \
678 (1UL << __SCHED_FEAT_##name) * enabled |
679
680 const_debug unsigned int sysctl_sched_features =
681 #include "sched_features.h"
682 0;
683
684 #undef SCHED_FEAT
685
686 #ifdef CONFIG_SCHED_DEBUG
687 #define SCHED_FEAT(name, enabled) \
688 #name ,
689
690 static __read_mostly char *sched_feat_names[] = {
691 #include "sched_features.h"
692 NULL
693 };
694
695 #undef SCHED_FEAT
696
697 static int sched_feat_show(struct seq_file *m, void *v)
698 {
699 int i;
700
701 for (i = 0; sched_feat_names[i]; i++) {
702 if (!(sysctl_sched_features & (1UL << i)))
703 seq_puts(m, "NO_");
704 seq_printf(m, "%s ", sched_feat_names[i]);
705 }
706 seq_puts(m, "\n");
707
708 return 0;
709 }
710
711 static ssize_t
712 sched_feat_write(struct file *filp, const char __user *ubuf,
713 size_t cnt, loff_t *ppos)
714 {
715 char buf[64];
716 char *cmp = buf;
717 int neg = 0;
718 int i;
719
720 if (cnt > 63)
721 cnt = 63;
722
723 if (copy_from_user(&buf, ubuf, cnt))
724 return -EFAULT;
725
726 buf[cnt] = 0;
727
728 if (strncmp(buf, "NO_", 3) == 0) {
729 neg = 1;
730 cmp += 3;
731 }
732
733 for (i = 0; sched_feat_names[i]; i++) {
734 int len = strlen(sched_feat_names[i]);
735
736 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
737 if (neg)
738 sysctl_sched_features &= ~(1UL << i);
739 else
740 sysctl_sched_features |= (1UL << i);
741 break;
742 }
743 }
744
745 if (!sched_feat_names[i])
746 return -EINVAL;
747
748 *ppos += cnt;
749
750 return cnt;
751 }
752
753 static int sched_feat_open(struct inode *inode, struct file *filp)
754 {
755 return single_open(filp, sched_feat_show, NULL);
756 }
757
758 static const struct file_operations sched_feat_fops = {
759 .open = sched_feat_open,
760 .write = sched_feat_write,
761 .read = seq_read,
762 .llseek = seq_lseek,
763 .release = single_release,
764 };
765
766 static __init int sched_init_debug(void)
767 {
768 debugfs_create_file("sched_features", 0644, NULL, NULL,
769 &sched_feat_fops);
770
771 return 0;
772 }
773 late_initcall(sched_init_debug);
774
775 #endif
776
777 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
778
779 /*
780 * Number of tasks to iterate in a single balance run.
781 * Limited because this is done with IRQs disabled.
782 */
783 const_debug unsigned int sysctl_sched_nr_migrate = 32;
784
785 /*
786 * ratelimit for updating the group shares.
787 * default: 0.25ms
788 */
789 unsigned int sysctl_sched_shares_ratelimit = 250000;
790 unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
791
792 /*
793 * Inject some fuzzyness into changing the per-cpu group shares
794 * this avoids remote rq-locks at the expense of fairness.
795 * default: 4
796 */
797 unsigned int sysctl_sched_shares_thresh = 4;
798
799 /*
800 * period over which we average the RT time consumption, measured
801 * in ms.
802 *
803 * default: 1s
804 */
805 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
806
807 /*
808 * period over which we measure -rt task cpu usage in us.
809 * default: 1s
810 */
811 unsigned int sysctl_sched_rt_period = 1000000;
812
813 static __read_mostly int scheduler_running;
814
815 /*
816 * part of the period that we allow rt tasks to run in us.
817 * default: 0.95s
818 */
819 int sysctl_sched_rt_runtime = 950000;
820
821 static inline u64 global_rt_period(void)
822 {
823 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
824 }
825
826 static inline u64 global_rt_runtime(void)
827 {
828 if (sysctl_sched_rt_runtime < 0)
829 return RUNTIME_INF;
830
831 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
832 }
833
834 #ifndef prepare_arch_switch
835 # define prepare_arch_switch(next) do { } while (0)
836 #endif
837 #ifndef finish_arch_switch
838 # define finish_arch_switch(prev) do { } while (0)
839 #endif
840
841 static inline int task_current(struct rq *rq, struct task_struct *p)
842 {
843 return rq->curr == p;
844 }
845
846 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
847 static inline int task_running(struct rq *rq, struct task_struct *p)
848 {
849 return task_current(rq, p);
850 }
851
852 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
853 {
854 }
855
856 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
857 {
858 #ifdef CONFIG_DEBUG_SPINLOCK
859 /* this is a valid case when another task releases the spinlock */
860 rq->lock.owner = current;
861 #endif
862 /*
863 * If we are tracking spinlock dependencies then we have to
864 * fix up the runqueue lock - which gets 'carried over' from
865 * prev into current:
866 */
867 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
868
869 raw_spin_unlock_irq(&rq->lock);
870 }
871
872 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
873 static inline int task_running(struct rq *rq, struct task_struct *p)
874 {
875 #ifdef CONFIG_SMP
876 return p->oncpu;
877 #else
878 return task_current(rq, p);
879 #endif
880 }
881
882 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
883 {
884 #ifdef CONFIG_SMP
885 /*
886 * We can optimise this out completely for !SMP, because the
887 * SMP rebalancing from interrupt is the only thing that cares
888 * here.
889 */
890 next->oncpu = 1;
891 #endif
892 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
893 raw_spin_unlock_irq(&rq->lock);
894 #else
895 raw_spin_unlock(&rq->lock);
896 #endif
897 }
898
899 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
900 {
901 #ifdef CONFIG_SMP
902 /*
903 * After ->oncpu is cleared, the task can be moved to a different CPU.
904 * We must ensure this doesn't happen until the switch is completely
905 * finished.
906 */
907 smp_wmb();
908 prev->oncpu = 0;
909 #endif
910 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
911 local_irq_enable();
912 #endif
913 }
914 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
915
916 /*
917 * Check whether the task is waking, we use this to synchronize against
918 * ttwu() so that task_cpu() reports a stable number.
919 *
920 * We need to make an exception for PF_STARTING tasks because the fork
921 * path might require task_rq_lock() to work, eg. it can call
922 * set_cpus_allowed_ptr() from the cpuset clone_ns code.
923 */
924 static inline int task_is_waking(struct task_struct *p)
925 {
926 return unlikely((p->state == TASK_WAKING) && !(p->flags & PF_STARTING));
927 }
928
929 /*
930 * __task_rq_lock - lock the runqueue a given task resides on.
931 * Must be called interrupts disabled.
932 */
933 static inline struct rq *__task_rq_lock(struct task_struct *p)
934 __acquires(rq->lock)
935 {
936 struct rq *rq;
937
938 for (;;) {
939 while (task_is_waking(p))
940 cpu_relax();
941 rq = task_rq(p);
942 raw_spin_lock(&rq->lock);
943 if (likely(rq == task_rq(p) && !task_is_waking(p)))
944 return rq;
945 raw_spin_unlock(&rq->lock);
946 }
947 }
948
949 /*
950 * task_rq_lock - lock the runqueue a given task resides on and disable
951 * interrupts. Note the ordering: we can safely lookup the task_rq without
952 * explicitly disabling preemption.
953 */
954 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
955 __acquires(rq->lock)
956 {
957 struct rq *rq;
958
959 for (;;) {
960 while (task_is_waking(p))
961 cpu_relax();
962 local_irq_save(*flags);
963 rq = task_rq(p);
964 raw_spin_lock(&rq->lock);
965 if (likely(rq == task_rq(p) && !task_is_waking(p)))
966 return rq;
967 raw_spin_unlock_irqrestore(&rq->lock, *flags);
968 }
969 }
970
971 void task_rq_unlock_wait(struct task_struct *p)
972 {
973 struct rq *rq = task_rq(p);
974
975 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
976 raw_spin_unlock_wait(&rq->lock);
977 }
978
979 static void __task_rq_unlock(struct rq *rq)
980 __releases(rq->lock)
981 {
982 raw_spin_unlock(&rq->lock);
983 }
984
985 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
986 __releases(rq->lock)
987 {
988 raw_spin_unlock_irqrestore(&rq->lock, *flags);
989 }
990
991 /*
992 * this_rq_lock - lock this runqueue and disable interrupts.
993 */
994 static struct rq *this_rq_lock(void)
995 __acquires(rq->lock)
996 {
997 struct rq *rq;
998
999 local_irq_disable();
1000 rq = this_rq();
1001 raw_spin_lock(&rq->lock);
1002
1003 return rq;
1004 }
1005
1006 #ifdef CONFIG_SCHED_HRTICK
1007 /*
1008 * Use HR-timers to deliver accurate preemption points.
1009 *
1010 * Its all a bit involved since we cannot program an hrt while holding the
1011 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1012 * reschedule event.
1013 *
1014 * When we get rescheduled we reprogram the hrtick_timer outside of the
1015 * rq->lock.
1016 */
1017
1018 /*
1019 * Use hrtick when:
1020 * - enabled by features
1021 * - hrtimer is actually high res
1022 */
1023 static inline int hrtick_enabled(struct rq *rq)
1024 {
1025 if (!sched_feat(HRTICK))
1026 return 0;
1027 if (!cpu_active(cpu_of(rq)))
1028 return 0;
1029 return hrtimer_is_hres_active(&rq->hrtick_timer);
1030 }
1031
1032 static void hrtick_clear(struct rq *rq)
1033 {
1034 if (hrtimer_active(&rq->hrtick_timer))
1035 hrtimer_cancel(&rq->hrtick_timer);
1036 }
1037
1038 /*
1039 * High-resolution timer tick.
1040 * Runs from hardirq context with interrupts disabled.
1041 */
1042 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1043 {
1044 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1045
1046 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1047
1048 raw_spin_lock(&rq->lock);
1049 update_rq_clock(rq);
1050 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1051 raw_spin_unlock(&rq->lock);
1052
1053 return HRTIMER_NORESTART;
1054 }
1055
1056 #ifdef CONFIG_SMP
1057 /*
1058 * called from hardirq (IPI) context
1059 */
1060 static void __hrtick_start(void *arg)
1061 {
1062 struct rq *rq = arg;
1063
1064 raw_spin_lock(&rq->lock);
1065 hrtimer_restart(&rq->hrtick_timer);
1066 rq->hrtick_csd_pending = 0;
1067 raw_spin_unlock(&rq->lock);
1068 }
1069
1070 /*
1071 * Called to set the hrtick timer state.
1072 *
1073 * called with rq->lock held and irqs disabled
1074 */
1075 static void hrtick_start(struct rq *rq, u64 delay)
1076 {
1077 struct hrtimer *timer = &rq->hrtick_timer;
1078 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1079
1080 hrtimer_set_expires(timer, time);
1081
1082 if (rq == this_rq()) {
1083 hrtimer_restart(timer);
1084 } else if (!rq->hrtick_csd_pending) {
1085 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1086 rq->hrtick_csd_pending = 1;
1087 }
1088 }
1089
1090 static int
1091 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1092 {
1093 int cpu = (int)(long)hcpu;
1094
1095 switch (action) {
1096 case CPU_UP_CANCELED:
1097 case CPU_UP_CANCELED_FROZEN:
1098 case CPU_DOWN_PREPARE:
1099 case CPU_DOWN_PREPARE_FROZEN:
1100 case CPU_DEAD:
1101 case CPU_DEAD_FROZEN:
1102 hrtick_clear(cpu_rq(cpu));
1103 return NOTIFY_OK;
1104 }
1105
1106 return NOTIFY_DONE;
1107 }
1108
1109 static __init void init_hrtick(void)
1110 {
1111 hotcpu_notifier(hotplug_hrtick, 0);
1112 }
1113 #else
1114 /*
1115 * Called to set the hrtick timer state.
1116 *
1117 * called with rq->lock held and irqs disabled
1118 */
1119 static void hrtick_start(struct rq *rq, u64 delay)
1120 {
1121 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1122 HRTIMER_MODE_REL_PINNED, 0);
1123 }
1124
1125 static inline void init_hrtick(void)
1126 {
1127 }
1128 #endif /* CONFIG_SMP */
1129
1130 static void init_rq_hrtick(struct rq *rq)
1131 {
1132 #ifdef CONFIG_SMP
1133 rq->hrtick_csd_pending = 0;
1134
1135 rq->hrtick_csd.flags = 0;
1136 rq->hrtick_csd.func = __hrtick_start;
1137 rq->hrtick_csd.info = rq;
1138 #endif
1139
1140 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1141 rq->hrtick_timer.function = hrtick;
1142 }
1143 #else /* CONFIG_SCHED_HRTICK */
1144 static inline void hrtick_clear(struct rq *rq)
1145 {
1146 }
1147
1148 static inline void init_rq_hrtick(struct rq *rq)
1149 {
1150 }
1151
1152 static inline void init_hrtick(void)
1153 {
1154 }
1155 #endif /* CONFIG_SCHED_HRTICK */
1156
1157 /*
1158 * resched_task - mark a task 'to be rescheduled now'.
1159 *
1160 * On UP this means the setting of the need_resched flag, on SMP it
1161 * might also involve a cross-CPU call to trigger the scheduler on
1162 * the target CPU.
1163 */
1164 #ifdef CONFIG_SMP
1165
1166 #ifndef tsk_is_polling
1167 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1168 #endif
1169
1170 static void resched_task(struct task_struct *p)
1171 {
1172 int cpu;
1173
1174 assert_raw_spin_locked(&task_rq(p)->lock);
1175
1176 if (test_tsk_need_resched(p))
1177 return;
1178
1179 set_tsk_need_resched(p);
1180
1181 cpu = task_cpu(p);
1182 if (cpu == smp_processor_id())
1183 return;
1184
1185 /* NEED_RESCHED must be visible before we test polling */
1186 smp_mb();
1187 if (!tsk_is_polling(p))
1188 smp_send_reschedule(cpu);
1189 }
1190
1191 static void resched_cpu(int cpu)
1192 {
1193 struct rq *rq = cpu_rq(cpu);
1194 unsigned long flags;
1195
1196 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
1197 return;
1198 resched_task(cpu_curr(cpu));
1199 raw_spin_unlock_irqrestore(&rq->lock, flags);
1200 }
1201
1202 #ifdef CONFIG_NO_HZ
1203 /*
1204 * When add_timer_on() enqueues a timer into the timer wheel of an
1205 * idle CPU then this timer might expire before the next timer event
1206 * which is scheduled to wake up that CPU. In case of a completely
1207 * idle system the next event might even be infinite time into the
1208 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1209 * leaves the inner idle loop so the newly added timer is taken into
1210 * account when the CPU goes back to idle and evaluates the timer
1211 * wheel for the next timer event.
1212 */
1213 void wake_up_idle_cpu(int cpu)
1214 {
1215 struct rq *rq = cpu_rq(cpu);
1216
1217 if (cpu == smp_processor_id())
1218 return;
1219
1220 /*
1221 * This is safe, as this function is called with the timer
1222 * wheel base lock of (cpu) held. When the CPU is on the way
1223 * to idle and has not yet set rq->curr to idle then it will
1224 * be serialized on the timer wheel base lock and take the new
1225 * timer into account automatically.
1226 */
1227 if (rq->curr != rq->idle)
1228 return;
1229
1230 /*
1231 * We can set TIF_RESCHED on the idle task of the other CPU
1232 * lockless. The worst case is that the other CPU runs the
1233 * idle task through an additional NOOP schedule()
1234 */
1235 set_tsk_need_resched(rq->idle);
1236
1237 /* NEED_RESCHED must be visible before we test polling */
1238 smp_mb();
1239 if (!tsk_is_polling(rq->idle))
1240 smp_send_reschedule(cpu);
1241 }
1242 #endif /* CONFIG_NO_HZ */
1243
1244 static u64 sched_avg_period(void)
1245 {
1246 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1247 }
1248
1249 static void sched_avg_update(struct rq *rq)
1250 {
1251 s64 period = sched_avg_period();
1252
1253 while ((s64)(rq->clock - rq->age_stamp) > period) {
1254 rq->age_stamp += period;
1255 rq->rt_avg /= 2;
1256 }
1257 }
1258
1259 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1260 {
1261 rq->rt_avg += rt_delta;
1262 sched_avg_update(rq);
1263 }
1264
1265 #else /* !CONFIG_SMP */
1266 static void resched_task(struct task_struct *p)
1267 {
1268 assert_raw_spin_locked(&task_rq(p)->lock);
1269 set_tsk_need_resched(p);
1270 }
1271
1272 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1273 {
1274 }
1275 #endif /* CONFIG_SMP */
1276
1277 #if BITS_PER_LONG == 32
1278 # define WMULT_CONST (~0UL)
1279 #else
1280 # define WMULT_CONST (1UL << 32)
1281 #endif
1282
1283 #define WMULT_SHIFT 32
1284
1285 /*
1286 * Shift right and round:
1287 */
1288 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1289
1290 /*
1291 * delta *= weight / lw
1292 */
1293 static unsigned long
1294 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1295 struct load_weight *lw)
1296 {
1297 u64 tmp;
1298
1299 if (!lw->inv_weight) {
1300 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1301 lw->inv_weight = 1;
1302 else
1303 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1304 / (lw->weight+1);
1305 }
1306
1307 tmp = (u64)delta_exec * weight;
1308 /*
1309 * Check whether we'd overflow the 64-bit multiplication:
1310 */
1311 if (unlikely(tmp > WMULT_CONST))
1312 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1313 WMULT_SHIFT/2);
1314 else
1315 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1316
1317 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1318 }
1319
1320 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1321 {
1322 lw->weight += inc;
1323 lw->inv_weight = 0;
1324 }
1325
1326 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1327 {
1328 lw->weight -= dec;
1329 lw->inv_weight = 0;
1330 }
1331
1332 /*
1333 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1334 * of tasks with abnormal "nice" values across CPUs the contribution that
1335 * each task makes to its run queue's load is weighted according to its
1336 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1337 * scaled version of the new time slice allocation that they receive on time
1338 * slice expiry etc.
1339 */
1340
1341 #define WEIGHT_IDLEPRIO 3
1342 #define WMULT_IDLEPRIO 1431655765
1343
1344 /*
1345 * Nice levels are multiplicative, with a gentle 10% change for every
1346 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1347 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1348 * that remained on nice 0.
1349 *
1350 * The "10% effect" is relative and cumulative: from _any_ nice level,
1351 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1352 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1353 * If a task goes up by ~10% and another task goes down by ~10% then
1354 * the relative distance between them is ~25%.)
1355 */
1356 static const int prio_to_weight[40] = {
1357 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1358 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1359 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1360 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1361 /* 0 */ 1024, 820, 655, 526, 423,
1362 /* 5 */ 335, 272, 215, 172, 137,
1363 /* 10 */ 110, 87, 70, 56, 45,
1364 /* 15 */ 36, 29, 23, 18, 15,
1365 };
1366
1367 /*
1368 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1369 *
1370 * In cases where the weight does not change often, we can use the
1371 * precalculated inverse to speed up arithmetics by turning divisions
1372 * into multiplications:
1373 */
1374 static const u32 prio_to_wmult[40] = {
1375 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1376 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1377 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1378 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1379 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1380 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1381 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1382 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1383 };
1384
1385 /* Time spent by the tasks of the cpu accounting group executing in ... */
1386 enum cpuacct_stat_index {
1387 CPUACCT_STAT_USER, /* ... user mode */
1388 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1389
1390 CPUACCT_STAT_NSTATS,
1391 };
1392
1393 #ifdef CONFIG_CGROUP_CPUACCT
1394 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1395 static void cpuacct_update_stats(struct task_struct *tsk,
1396 enum cpuacct_stat_index idx, cputime_t val);
1397 #else
1398 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1399 static inline void cpuacct_update_stats(struct task_struct *tsk,
1400 enum cpuacct_stat_index idx, cputime_t val) {}
1401 #endif
1402
1403 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1404 {
1405 update_load_add(&rq->load, load);
1406 }
1407
1408 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1409 {
1410 update_load_sub(&rq->load, load);
1411 }
1412
1413 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1414 typedef int (*tg_visitor)(struct task_group *, void *);
1415
1416 /*
1417 * Iterate the full tree, calling @down when first entering a node and @up when
1418 * leaving it for the final time.
1419 */
1420 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1421 {
1422 struct task_group *parent, *child;
1423 int ret;
1424
1425 rcu_read_lock();
1426 parent = &root_task_group;
1427 down:
1428 ret = (*down)(parent, data);
1429 if (ret)
1430 goto out_unlock;
1431 list_for_each_entry_rcu(child, &parent->children, siblings) {
1432 parent = child;
1433 goto down;
1434
1435 up:
1436 continue;
1437 }
1438 ret = (*up)(parent, data);
1439 if (ret)
1440 goto out_unlock;
1441
1442 child = parent;
1443 parent = parent->parent;
1444 if (parent)
1445 goto up;
1446 out_unlock:
1447 rcu_read_unlock();
1448
1449 return ret;
1450 }
1451
1452 static int tg_nop(struct task_group *tg, void *data)
1453 {
1454 return 0;
1455 }
1456 #endif
1457
1458 #ifdef CONFIG_SMP
1459 /* Used instead of source_load when we know the type == 0 */
1460 static unsigned long weighted_cpuload(const int cpu)
1461 {
1462 return cpu_rq(cpu)->load.weight;
1463 }
1464
1465 /*
1466 * Return a low guess at the load of a migration-source cpu weighted
1467 * according to the scheduling class and "nice" value.
1468 *
1469 * We want to under-estimate the load of migration sources, to
1470 * balance conservatively.
1471 */
1472 static unsigned long source_load(int cpu, int type)
1473 {
1474 struct rq *rq = cpu_rq(cpu);
1475 unsigned long total = weighted_cpuload(cpu);
1476
1477 if (type == 0 || !sched_feat(LB_BIAS))
1478 return total;
1479
1480 return min(rq->cpu_load[type-1], total);
1481 }
1482
1483 /*
1484 * Return a high guess at the load of a migration-target cpu weighted
1485 * according to the scheduling class and "nice" value.
1486 */
1487 static unsigned long target_load(int cpu, int type)
1488 {
1489 struct rq *rq = cpu_rq(cpu);
1490 unsigned long total = weighted_cpuload(cpu);
1491
1492 if (type == 0 || !sched_feat(LB_BIAS))
1493 return total;
1494
1495 return max(rq->cpu_load[type-1], total);
1496 }
1497
1498 static struct sched_group *group_of(int cpu)
1499 {
1500 struct sched_domain *sd = rcu_dereference_sched(cpu_rq(cpu)->sd);
1501
1502 if (!sd)
1503 return NULL;
1504
1505 return sd->groups;
1506 }
1507
1508 static unsigned long power_of(int cpu)
1509 {
1510 struct sched_group *group = group_of(cpu);
1511
1512 if (!group)
1513 return SCHED_LOAD_SCALE;
1514
1515 return group->cpu_power;
1516 }
1517
1518 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1519
1520 static unsigned long cpu_avg_load_per_task(int cpu)
1521 {
1522 struct rq *rq = cpu_rq(cpu);
1523 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1524
1525 if (nr_running)
1526 rq->avg_load_per_task = rq->load.weight / nr_running;
1527 else
1528 rq->avg_load_per_task = 0;
1529
1530 return rq->avg_load_per_task;
1531 }
1532
1533 #ifdef CONFIG_FAIR_GROUP_SCHED
1534
1535 static __read_mostly unsigned long __percpu *update_shares_data;
1536
1537 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1538
1539 /*
1540 * Calculate and set the cpu's group shares.
1541 */
1542 static void update_group_shares_cpu(struct task_group *tg, int cpu,
1543 unsigned long sd_shares,
1544 unsigned long sd_rq_weight,
1545 unsigned long *usd_rq_weight)
1546 {
1547 unsigned long shares, rq_weight;
1548 int boost = 0;
1549
1550 rq_weight = usd_rq_weight[cpu];
1551 if (!rq_weight) {
1552 boost = 1;
1553 rq_weight = NICE_0_LOAD;
1554 }
1555
1556 /*
1557 * \Sum_j shares_j * rq_weight_i
1558 * shares_i = -----------------------------
1559 * \Sum_j rq_weight_j
1560 */
1561 shares = (sd_shares * rq_weight) / sd_rq_weight;
1562 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1563
1564 if (abs(shares - tg->se[cpu]->load.weight) >
1565 sysctl_sched_shares_thresh) {
1566 struct rq *rq = cpu_rq(cpu);
1567 unsigned long flags;
1568
1569 raw_spin_lock_irqsave(&rq->lock, flags);
1570 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
1571 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1572 __set_se_shares(tg->se[cpu], shares);
1573 raw_spin_unlock_irqrestore(&rq->lock, flags);
1574 }
1575 }
1576
1577 /*
1578 * Re-compute the task group their per cpu shares over the given domain.
1579 * This needs to be done in a bottom-up fashion because the rq weight of a
1580 * parent group depends on the shares of its child groups.
1581 */
1582 static int tg_shares_up(struct task_group *tg, void *data)
1583 {
1584 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
1585 unsigned long *usd_rq_weight;
1586 struct sched_domain *sd = data;
1587 unsigned long flags;
1588 int i;
1589
1590 if (!tg->se[0])
1591 return 0;
1592
1593 local_irq_save(flags);
1594 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1595
1596 for_each_cpu(i, sched_domain_span(sd)) {
1597 weight = tg->cfs_rq[i]->load.weight;
1598 usd_rq_weight[i] = weight;
1599
1600 rq_weight += weight;
1601 /*
1602 * If there are currently no tasks on the cpu pretend there
1603 * is one of average load so that when a new task gets to
1604 * run here it will not get delayed by group starvation.
1605 */
1606 if (!weight)
1607 weight = NICE_0_LOAD;
1608
1609 sum_weight += weight;
1610 shares += tg->cfs_rq[i]->shares;
1611 }
1612
1613 if (!rq_weight)
1614 rq_weight = sum_weight;
1615
1616 if ((!shares && rq_weight) || shares > tg->shares)
1617 shares = tg->shares;
1618
1619 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1620 shares = tg->shares;
1621
1622 for_each_cpu(i, sched_domain_span(sd))
1623 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1624
1625 local_irq_restore(flags);
1626
1627 return 0;
1628 }
1629
1630 /*
1631 * Compute the cpu's hierarchical load factor for each task group.
1632 * This needs to be done in a top-down fashion because the load of a child
1633 * group is a fraction of its parents load.
1634 */
1635 static int tg_load_down(struct task_group *tg, void *data)
1636 {
1637 unsigned long load;
1638 long cpu = (long)data;
1639
1640 if (!tg->parent) {
1641 load = cpu_rq(cpu)->load.weight;
1642 } else {
1643 load = tg->parent->cfs_rq[cpu]->h_load;
1644 load *= tg->cfs_rq[cpu]->shares;
1645 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1646 }
1647
1648 tg->cfs_rq[cpu]->h_load = load;
1649
1650 return 0;
1651 }
1652
1653 static void update_shares(struct sched_domain *sd)
1654 {
1655 s64 elapsed;
1656 u64 now;
1657
1658 if (root_task_group_empty())
1659 return;
1660
1661 now = cpu_clock(raw_smp_processor_id());
1662 elapsed = now - sd->last_update;
1663
1664 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1665 sd->last_update = now;
1666 walk_tg_tree(tg_nop, tg_shares_up, sd);
1667 }
1668 }
1669
1670 static void update_h_load(long cpu)
1671 {
1672 if (root_task_group_empty())
1673 return;
1674
1675 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1676 }
1677
1678 #else
1679
1680 static inline void update_shares(struct sched_domain *sd)
1681 {
1682 }
1683
1684 #endif
1685
1686 #ifdef CONFIG_PREEMPT
1687
1688 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1689
1690 /*
1691 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1692 * way at the expense of forcing extra atomic operations in all
1693 * invocations. This assures that the double_lock is acquired using the
1694 * same underlying policy as the spinlock_t on this architecture, which
1695 * reduces latency compared to the unfair variant below. However, it
1696 * also adds more overhead and therefore may reduce throughput.
1697 */
1698 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1699 __releases(this_rq->lock)
1700 __acquires(busiest->lock)
1701 __acquires(this_rq->lock)
1702 {
1703 raw_spin_unlock(&this_rq->lock);
1704 double_rq_lock(this_rq, busiest);
1705
1706 return 1;
1707 }
1708
1709 #else
1710 /*
1711 * Unfair double_lock_balance: Optimizes throughput at the expense of
1712 * latency by eliminating extra atomic operations when the locks are
1713 * already in proper order on entry. This favors lower cpu-ids and will
1714 * grant the double lock to lower cpus over higher ids under contention,
1715 * regardless of entry order into the function.
1716 */
1717 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1718 __releases(this_rq->lock)
1719 __acquires(busiest->lock)
1720 __acquires(this_rq->lock)
1721 {
1722 int ret = 0;
1723
1724 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1725 if (busiest < this_rq) {
1726 raw_spin_unlock(&this_rq->lock);
1727 raw_spin_lock(&busiest->lock);
1728 raw_spin_lock_nested(&this_rq->lock,
1729 SINGLE_DEPTH_NESTING);
1730 ret = 1;
1731 } else
1732 raw_spin_lock_nested(&busiest->lock,
1733 SINGLE_DEPTH_NESTING);
1734 }
1735 return ret;
1736 }
1737
1738 #endif /* CONFIG_PREEMPT */
1739
1740 /*
1741 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1742 */
1743 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1744 {
1745 if (unlikely(!irqs_disabled())) {
1746 /* printk() doesn't work good under rq->lock */
1747 raw_spin_unlock(&this_rq->lock);
1748 BUG_ON(1);
1749 }
1750
1751 return _double_lock_balance(this_rq, busiest);
1752 }
1753
1754 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1755 __releases(busiest->lock)
1756 {
1757 raw_spin_unlock(&busiest->lock);
1758 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1759 }
1760
1761 /*
1762 * double_rq_lock - safely lock two runqueues
1763 *
1764 * Note this does not disable interrupts like task_rq_lock,
1765 * you need to do so manually before calling.
1766 */
1767 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1768 __acquires(rq1->lock)
1769 __acquires(rq2->lock)
1770 {
1771 BUG_ON(!irqs_disabled());
1772 if (rq1 == rq2) {
1773 raw_spin_lock(&rq1->lock);
1774 __acquire(rq2->lock); /* Fake it out ;) */
1775 } else {
1776 if (rq1 < rq2) {
1777 raw_spin_lock(&rq1->lock);
1778 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1779 } else {
1780 raw_spin_lock(&rq2->lock);
1781 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1782 }
1783 }
1784 update_rq_clock(rq1);
1785 update_rq_clock(rq2);
1786 }
1787
1788 /*
1789 * double_rq_unlock - safely unlock two runqueues
1790 *
1791 * Note this does not restore interrupts like task_rq_unlock,
1792 * you need to do so manually after calling.
1793 */
1794 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1795 __releases(rq1->lock)
1796 __releases(rq2->lock)
1797 {
1798 raw_spin_unlock(&rq1->lock);
1799 if (rq1 != rq2)
1800 raw_spin_unlock(&rq2->lock);
1801 else
1802 __release(rq2->lock);
1803 }
1804
1805 #endif
1806
1807 #ifdef CONFIG_FAIR_GROUP_SCHED
1808 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1809 {
1810 #ifdef CONFIG_SMP
1811 cfs_rq->shares = shares;
1812 #endif
1813 }
1814 #endif
1815
1816 static void calc_load_account_active(struct rq *this_rq);
1817 static void update_sysctl(void);
1818 static int get_update_sysctl_factor(void);
1819
1820 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1821 {
1822 set_task_rq(p, cpu);
1823 #ifdef CONFIG_SMP
1824 /*
1825 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1826 * successfuly executed on another CPU. We must ensure that updates of
1827 * per-task data have been completed by this moment.
1828 */
1829 smp_wmb();
1830 task_thread_info(p)->cpu = cpu;
1831 #endif
1832 }
1833
1834 static const struct sched_class rt_sched_class;
1835
1836 #define sched_class_highest (&rt_sched_class)
1837 #define for_each_class(class) \
1838 for (class = sched_class_highest; class; class = class->next)
1839
1840 #include "sched_stats.h"
1841
1842 static void inc_nr_running(struct rq *rq)
1843 {
1844 rq->nr_running++;
1845 }
1846
1847 static void dec_nr_running(struct rq *rq)
1848 {
1849 rq->nr_running--;
1850 }
1851
1852 static void set_load_weight(struct task_struct *p)
1853 {
1854 if (task_has_rt_policy(p)) {
1855 p->se.load.weight = prio_to_weight[0] * 2;
1856 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1857 return;
1858 }
1859
1860 /*
1861 * SCHED_IDLE tasks get minimal weight:
1862 */
1863 if (p->policy == SCHED_IDLE) {
1864 p->se.load.weight = WEIGHT_IDLEPRIO;
1865 p->se.load.inv_weight = WMULT_IDLEPRIO;
1866 return;
1867 }
1868
1869 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1870 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1871 }
1872
1873 static void update_avg(u64 *avg, u64 sample)
1874 {
1875 s64 diff = sample - *avg;
1876 *avg += diff >> 3;
1877 }
1878
1879 static void
1880 enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, bool head)
1881 {
1882 if (wakeup)
1883 p->se.start_runtime = p->se.sum_exec_runtime;
1884
1885 sched_info_queued(p);
1886 p->sched_class->enqueue_task(rq, p, wakeup, head);
1887 p->se.on_rq = 1;
1888 }
1889
1890 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1891 {
1892 if (sleep) {
1893 if (p->se.last_wakeup) {
1894 update_avg(&p->se.avg_overlap,
1895 p->se.sum_exec_runtime - p->se.last_wakeup);
1896 p->se.last_wakeup = 0;
1897 } else {
1898 update_avg(&p->se.avg_wakeup,
1899 sysctl_sched_wakeup_granularity);
1900 }
1901 }
1902
1903 sched_info_dequeued(p);
1904 p->sched_class->dequeue_task(rq, p, sleep);
1905 p->se.on_rq = 0;
1906 }
1907
1908 /*
1909 * activate_task - move a task to the runqueue.
1910 */
1911 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1912 {
1913 if (task_contributes_to_load(p))
1914 rq->nr_uninterruptible--;
1915
1916 enqueue_task(rq, p, wakeup, false);
1917 inc_nr_running(rq);
1918 }
1919
1920 /*
1921 * deactivate_task - remove a task from the runqueue.
1922 */
1923 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1924 {
1925 if (task_contributes_to_load(p))
1926 rq->nr_uninterruptible++;
1927
1928 dequeue_task(rq, p, sleep);
1929 dec_nr_running(rq);
1930 }
1931
1932 #include "sched_idletask.c"
1933 #include "sched_fair.c"
1934 #include "sched_rt.c"
1935 #ifdef CONFIG_SCHED_DEBUG
1936 # include "sched_debug.c"
1937 #endif
1938
1939 /*
1940 * __normal_prio - return the priority that is based on the static prio
1941 */
1942 static inline int __normal_prio(struct task_struct *p)
1943 {
1944 return p->static_prio;
1945 }
1946
1947 /*
1948 * Calculate the expected normal priority: i.e. priority
1949 * without taking RT-inheritance into account. Might be
1950 * boosted by interactivity modifiers. Changes upon fork,
1951 * setprio syscalls, and whenever the interactivity
1952 * estimator recalculates.
1953 */
1954 static inline int normal_prio(struct task_struct *p)
1955 {
1956 int prio;
1957
1958 if (task_has_rt_policy(p))
1959 prio = MAX_RT_PRIO-1 - p->rt_priority;
1960 else
1961 prio = __normal_prio(p);
1962 return prio;
1963 }
1964
1965 /*
1966 * Calculate the current priority, i.e. the priority
1967 * taken into account by the scheduler. This value might
1968 * be boosted by RT tasks, or might be boosted by
1969 * interactivity modifiers. Will be RT if the task got
1970 * RT-boosted. If not then it returns p->normal_prio.
1971 */
1972 static int effective_prio(struct task_struct *p)
1973 {
1974 p->normal_prio = normal_prio(p);
1975 /*
1976 * If we are RT tasks or we were boosted to RT priority,
1977 * keep the priority unchanged. Otherwise, update priority
1978 * to the normal priority:
1979 */
1980 if (!rt_prio(p->prio))
1981 return p->normal_prio;
1982 return p->prio;
1983 }
1984
1985 /**
1986 * task_curr - is this task currently executing on a CPU?
1987 * @p: the task in question.
1988 */
1989 inline int task_curr(const struct task_struct *p)
1990 {
1991 return cpu_curr(task_cpu(p)) == p;
1992 }
1993
1994 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1995 const struct sched_class *prev_class,
1996 int oldprio, int running)
1997 {
1998 if (prev_class != p->sched_class) {
1999 if (prev_class->switched_from)
2000 prev_class->switched_from(rq, p, running);
2001 p->sched_class->switched_to(rq, p, running);
2002 } else
2003 p->sched_class->prio_changed(rq, p, oldprio, running);
2004 }
2005
2006 #ifdef CONFIG_SMP
2007 /*
2008 * Is this task likely cache-hot:
2009 */
2010 static int
2011 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2012 {
2013 s64 delta;
2014
2015 if (p->sched_class != &fair_sched_class)
2016 return 0;
2017
2018 /*
2019 * Buddy candidates are cache hot:
2020 */
2021 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
2022 (&p->se == cfs_rq_of(&p->se)->next ||
2023 &p->se == cfs_rq_of(&p->se)->last))
2024 return 1;
2025
2026 if (sysctl_sched_migration_cost == -1)
2027 return 1;
2028 if (sysctl_sched_migration_cost == 0)
2029 return 0;
2030
2031 delta = now - p->se.exec_start;
2032
2033 return delta < (s64)sysctl_sched_migration_cost;
2034 }
2035
2036 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2037 {
2038 #ifdef CONFIG_SCHED_DEBUG
2039 /*
2040 * We should never call set_task_cpu() on a blocked task,
2041 * ttwu() will sort out the placement.
2042 */
2043 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2044 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2045 #endif
2046
2047 trace_sched_migrate_task(p, new_cpu);
2048
2049 if (task_cpu(p) != new_cpu) {
2050 p->se.nr_migrations++;
2051 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2052 }
2053
2054 __set_task_cpu(p, new_cpu);
2055 }
2056
2057 struct migration_req {
2058 struct list_head list;
2059
2060 struct task_struct *task;
2061 int dest_cpu;
2062
2063 struct completion done;
2064 };
2065
2066 /*
2067 * The task's runqueue lock must be held.
2068 * Returns true if you have to wait for migration thread.
2069 */
2070 static int
2071 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
2072 {
2073 struct rq *rq = task_rq(p);
2074
2075 /*
2076 * If the task is not on a runqueue (and not running), then
2077 * the next wake-up will properly place the task.
2078 */
2079 if (!p->se.on_rq && !task_running(rq, p))
2080 return 0;
2081
2082 init_completion(&req->done);
2083 req->task = p;
2084 req->dest_cpu = dest_cpu;
2085 list_add(&req->list, &rq->migration_queue);
2086
2087 return 1;
2088 }
2089
2090 /*
2091 * wait_task_inactive - wait for a thread to unschedule.
2092 *
2093 * If @match_state is nonzero, it's the @p->state value just checked and
2094 * not expected to change. If it changes, i.e. @p might have woken up,
2095 * then return zero. When we succeed in waiting for @p to be off its CPU,
2096 * we return a positive number (its total switch count). If a second call
2097 * a short while later returns the same number, the caller can be sure that
2098 * @p has remained unscheduled the whole time.
2099 *
2100 * The caller must ensure that the task *will* unschedule sometime soon,
2101 * else this function might spin for a *long* time. This function can't
2102 * be called with interrupts off, or it may introduce deadlock with
2103 * smp_call_function() if an IPI is sent by the same process we are
2104 * waiting to become inactive.
2105 */
2106 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2107 {
2108 unsigned long flags;
2109 int running, on_rq;
2110 unsigned long ncsw;
2111 struct rq *rq;
2112
2113 for (;;) {
2114 /*
2115 * We do the initial early heuristics without holding
2116 * any task-queue locks at all. We'll only try to get
2117 * the runqueue lock when things look like they will
2118 * work out!
2119 */
2120 rq = task_rq(p);
2121
2122 /*
2123 * If the task is actively running on another CPU
2124 * still, just relax and busy-wait without holding
2125 * any locks.
2126 *
2127 * NOTE! Since we don't hold any locks, it's not
2128 * even sure that "rq" stays as the right runqueue!
2129 * But we don't care, since "task_running()" will
2130 * return false if the runqueue has changed and p
2131 * is actually now running somewhere else!
2132 */
2133 while (task_running(rq, p)) {
2134 if (match_state && unlikely(p->state != match_state))
2135 return 0;
2136 cpu_relax();
2137 }
2138
2139 /*
2140 * Ok, time to look more closely! We need the rq
2141 * lock now, to be *sure*. If we're wrong, we'll
2142 * just go back and repeat.
2143 */
2144 rq = task_rq_lock(p, &flags);
2145 trace_sched_wait_task(rq, p);
2146 running = task_running(rq, p);
2147 on_rq = p->se.on_rq;
2148 ncsw = 0;
2149 if (!match_state || p->state == match_state)
2150 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2151 task_rq_unlock(rq, &flags);
2152
2153 /*
2154 * If it changed from the expected state, bail out now.
2155 */
2156 if (unlikely(!ncsw))
2157 break;
2158
2159 /*
2160 * Was it really running after all now that we
2161 * checked with the proper locks actually held?
2162 *
2163 * Oops. Go back and try again..
2164 */
2165 if (unlikely(running)) {
2166 cpu_relax();
2167 continue;
2168 }
2169
2170 /*
2171 * It's not enough that it's not actively running,
2172 * it must be off the runqueue _entirely_, and not
2173 * preempted!
2174 *
2175 * So if it was still runnable (but just not actively
2176 * running right now), it's preempted, and we should
2177 * yield - it could be a while.
2178 */
2179 if (unlikely(on_rq)) {
2180 schedule_timeout_uninterruptible(1);
2181 continue;
2182 }
2183
2184 /*
2185 * Ahh, all good. It wasn't running, and it wasn't
2186 * runnable, which means that it will never become
2187 * running in the future either. We're all done!
2188 */
2189 break;
2190 }
2191
2192 return ncsw;
2193 }
2194
2195 /***
2196 * kick_process - kick a running thread to enter/exit the kernel
2197 * @p: the to-be-kicked thread
2198 *
2199 * Cause a process which is running on another CPU to enter
2200 * kernel-mode, without any delay. (to get signals handled.)
2201 *
2202 * NOTE: this function doesnt have to take the runqueue lock,
2203 * because all it wants to ensure is that the remote task enters
2204 * the kernel. If the IPI races and the task has been migrated
2205 * to another CPU then no harm is done and the purpose has been
2206 * achieved as well.
2207 */
2208 void kick_process(struct task_struct *p)
2209 {
2210 int cpu;
2211
2212 preempt_disable();
2213 cpu = task_cpu(p);
2214 if ((cpu != smp_processor_id()) && task_curr(p))
2215 smp_send_reschedule(cpu);
2216 preempt_enable();
2217 }
2218 EXPORT_SYMBOL_GPL(kick_process);
2219 #endif /* CONFIG_SMP */
2220
2221 /**
2222 * task_oncpu_function_call - call a function on the cpu on which a task runs
2223 * @p: the task to evaluate
2224 * @func: the function to be called
2225 * @info: the function call argument
2226 *
2227 * Calls the function @func when the task is currently running. This might
2228 * be on the current CPU, which just calls the function directly
2229 */
2230 void task_oncpu_function_call(struct task_struct *p,
2231 void (*func) (void *info), void *info)
2232 {
2233 int cpu;
2234
2235 preempt_disable();
2236 cpu = task_cpu(p);
2237 if (task_curr(p))
2238 smp_call_function_single(cpu, func, info, 1);
2239 preempt_enable();
2240 }
2241
2242 #ifdef CONFIG_SMP
2243 static int select_fallback_rq(int cpu, struct task_struct *p)
2244 {
2245 int dest_cpu;
2246 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2247
2248 /* Look for allowed, online CPU in same node. */
2249 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2250 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2251 return dest_cpu;
2252
2253 /* Any allowed, online CPU? */
2254 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2255 if (dest_cpu < nr_cpu_ids)
2256 return dest_cpu;
2257
2258 /* No more Mr. Nice Guy. */
2259 if (dest_cpu >= nr_cpu_ids) {
2260 rcu_read_lock();
2261 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
2262 rcu_read_unlock();
2263 dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
2264
2265 /*
2266 * Don't tell them about moving exiting tasks or
2267 * kernel threads (both mm NULL), since they never
2268 * leave kernel.
2269 */
2270 if (p->mm && printk_ratelimit()) {
2271 printk(KERN_INFO "process %d (%s) no "
2272 "longer affine to cpu%d\n",
2273 task_pid_nr(p), p->comm, cpu);
2274 }
2275 }
2276
2277 return dest_cpu;
2278 }
2279
2280 /*
2281 * Gets called from 3 sites (exec, fork, wakeup), since it is called without
2282 * holding rq->lock we need to ensure ->cpus_allowed is stable, this is done
2283 * by:
2284 *
2285 * exec: is unstable, retry loop
2286 * fork & wake-up: serialize ->cpus_allowed against TASK_WAKING
2287 */
2288 static inline
2289 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
2290 {
2291 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
2292
2293 /*
2294 * In order not to call set_task_cpu() on a blocking task we need
2295 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2296 * cpu.
2297 *
2298 * Since this is common to all placement strategies, this lives here.
2299 *
2300 * [ this allows ->select_task() to simply return task_cpu(p) and
2301 * not worry about this generic constraint ]
2302 */
2303 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
2304 !cpu_online(cpu)))
2305 cpu = select_fallback_rq(task_cpu(p), p);
2306
2307 return cpu;
2308 }
2309 #endif
2310
2311 /***
2312 * try_to_wake_up - wake up a thread
2313 * @p: the to-be-woken-up thread
2314 * @state: the mask of task states that can be woken
2315 * @sync: do a synchronous wakeup?
2316 *
2317 * Put it on the run-queue if it's not already there. The "current"
2318 * thread is always on the run-queue (except when the actual
2319 * re-schedule is in progress), and as such you're allowed to do
2320 * the simpler "current->state = TASK_RUNNING" to mark yourself
2321 * runnable without the overhead of this.
2322 *
2323 * returns failure only if the task is already active.
2324 */
2325 static int try_to_wake_up(struct task_struct *p, unsigned int state,
2326 int wake_flags)
2327 {
2328 int cpu, orig_cpu, this_cpu, success = 0;
2329 unsigned long flags;
2330 struct rq *rq;
2331
2332 if (!sched_feat(SYNC_WAKEUPS))
2333 wake_flags &= ~WF_SYNC;
2334
2335 this_cpu = get_cpu();
2336
2337 smp_wmb();
2338 rq = task_rq_lock(p, &flags);
2339 update_rq_clock(rq);
2340 if (!(p->state & state))
2341 goto out;
2342
2343 if (p->se.on_rq)
2344 goto out_running;
2345
2346 cpu = task_cpu(p);
2347 orig_cpu = cpu;
2348
2349 #ifdef CONFIG_SMP
2350 if (unlikely(task_running(rq, p)))
2351 goto out_activate;
2352
2353 /*
2354 * In order to handle concurrent wakeups and release the rq->lock
2355 * we put the task in TASK_WAKING state.
2356 *
2357 * First fix up the nr_uninterruptible count:
2358 */
2359 if (task_contributes_to_load(p))
2360 rq->nr_uninterruptible--;
2361 p->state = TASK_WAKING;
2362
2363 if (p->sched_class->task_waking)
2364 p->sched_class->task_waking(rq, p);
2365
2366 __task_rq_unlock(rq);
2367
2368 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
2369 if (cpu != orig_cpu) {
2370 /*
2371 * Since we migrate the task without holding any rq->lock,
2372 * we need to be careful with task_rq_lock(), since that
2373 * might end up locking an invalid rq.
2374 */
2375 set_task_cpu(p, cpu);
2376 }
2377
2378 rq = cpu_rq(cpu);
2379 raw_spin_lock(&rq->lock);
2380 update_rq_clock(rq);
2381
2382 /*
2383 * We migrated the task without holding either rq->lock, however
2384 * since the task is not on the task list itself, nobody else
2385 * will try and migrate the task, hence the rq should match the
2386 * cpu we just moved it to.
2387 */
2388 WARN_ON(task_cpu(p) != cpu);
2389 WARN_ON(p->state != TASK_WAKING);
2390
2391 #ifdef CONFIG_SCHEDSTATS
2392 schedstat_inc(rq, ttwu_count);
2393 if (cpu == this_cpu)
2394 schedstat_inc(rq, ttwu_local);
2395 else {
2396 struct sched_domain *sd;
2397 for_each_domain(this_cpu, sd) {
2398 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2399 schedstat_inc(sd, ttwu_wake_remote);
2400 break;
2401 }
2402 }
2403 }
2404 #endif /* CONFIG_SCHEDSTATS */
2405
2406 out_activate:
2407 #endif /* CONFIG_SMP */
2408 schedstat_inc(p, se.nr_wakeups);
2409 if (wake_flags & WF_SYNC)
2410 schedstat_inc(p, se.nr_wakeups_sync);
2411 if (orig_cpu != cpu)
2412 schedstat_inc(p, se.nr_wakeups_migrate);
2413 if (cpu == this_cpu)
2414 schedstat_inc(p, se.nr_wakeups_local);
2415 else
2416 schedstat_inc(p, se.nr_wakeups_remote);
2417 activate_task(rq, p, 1);
2418 success = 1;
2419
2420 /*
2421 * Only attribute actual wakeups done by this task.
2422 */
2423 if (!in_interrupt()) {
2424 struct sched_entity *se = &current->se;
2425 u64 sample = se->sum_exec_runtime;
2426
2427 if (se->last_wakeup)
2428 sample -= se->last_wakeup;
2429 else
2430 sample -= se->start_runtime;
2431 update_avg(&se->avg_wakeup, sample);
2432
2433 se->last_wakeup = se->sum_exec_runtime;
2434 }
2435
2436 out_running:
2437 trace_sched_wakeup(rq, p, success);
2438 check_preempt_curr(rq, p, wake_flags);
2439
2440 p->state = TASK_RUNNING;
2441 #ifdef CONFIG_SMP
2442 if (p->sched_class->task_woken)
2443 p->sched_class->task_woken(rq, p);
2444
2445 if (unlikely(rq->idle_stamp)) {
2446 u64 delta = rq->clock - rq->idle_stamp;
2447 u64 max = 2*sysctl_sched_migration_cost;
2448
2449 if (delta > max)
2450 rq->avg_idle = max;
2451 else
2452 update_avg(&rq->avg_idle, delta);
2453 rq->idle_stamp = 0;
2454 }
2455 #endif
2456 out:
2457 task_rq_unlock(rq, &flags);
2458 put_cpu();
2459
2460 return success;
2461 }
2462
2463 /**
2464 * wake_up_process - Wake up a specific process
2465 * @p: The process to be woken up.
2466 *
2467 * Attempt to wake up the nominated process and move it to the set of runnable
2468 * processes. Returns 1 if the process was woken up, 0 if it was already
2469 * running.
2470 *
2471 * It may be assumed that this function implies a write memory barrier before
2472 * changing the task state if and only if any tasks are woken up.
2473 */
2474 int wake_up_process(struct task_struct *p)
2475 {
2476 return try_to_wake_up(p, TASK_ALL, 0);
2477 }
2478 EXPORT_SYMBOL(wake_up_process);
2479
2480 int wake_up_state(struct task_struct *p, unsigned int state)
2481 {
2482 return try_to_wake_up(p, state, 0);
2483 }
2484
2485 /*
2486 * Perform scheduler related setup for a newly forked process p.
2487 * p is forked by current.
2488 *
2489 * __sched_fork() is basic setup used by init_idle() too:
2490 */
2491 static void __sched_fork(struct task_struct *p)
2492 {
2493 p->se.exec_start = 0;
2494 p->se.sum_exec_runtime = 0;
2495 p->se.prev_sum_exec_runtime = 0;
2496 p->se.nr_migrations = 0;
2497 p->se.last_wakeup = 0;
2498 p->se.avg_overlap = 0;
2499 p->se.start_runtime = 0;
2500 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
2501
2502 #ifdef CONFIG_SCHEDSTATS
2503 p->se.wait_start = 0;
2504 p->se.wait_max = 0;
2505 p->se.wait_count = 0;
2506 p->se.wait_sum = 0;
2507
2508 p->se.sleep_start = 0;
2509 p->se.sleep_max = 0;
2510 p->se.sum_sleep_runtime = 0;
2511
2512 p->se.block_start = 0;
2513 p->se.block_max = 0;
2514 p->se.exec_max = 0;
2515 p->se.slice_max = 0;
2516
2517 p->se.nr_migrations_cold = 0;
2518 p->se.nr_failed_migrations_affine = 0;
2519 p->se.nr_failed_migrations_running = 0;
2520 p->se.nr_failed_migrations_hot = 0;
2521 p->se.nr_forced_migrations = 0;
2522
2523 p->se.nr_wakeups = 0;
2524 p->se.nr_wakeups_sync = 0;
2525 p->se.nr_wakeups_migrate = 0;
2526 p->se.nr_wakeups_local = 0;
2527 p->se.nr_wakeups_remote = 0;
2528 p->se.nr_wakeups_affine = 0;
2529 p->se.nr_wakeups_affine_attempts = 0;
2530 p->se.nr_wakeups_passive = 0;
2531 p->se.nr_wakeups_idle = 0;
2532
2533 #endif
2534
2535 INIT_LIST_HEAD(&p->rt.run_list);
2536 p->se.on_rq = 0;
2537 INIT_LIST_HEAD(&p->se.group_node);
2538
2539 #ifdef CONFIG_PREEMPT_NOTIFIERS
2540 INIT_HLIST_HEAD(&p->preempt_notifiers);
2541 #endif
2542 }
2543
2544 /*
2545 * fork()/clone()-time setup:
2546 */
2547 void sched_fork(struct task_struct *p, int clone_flags)
2548 {
2549 int cpu = get_cpu();
2550
2551 __sched_fork(p);
2552 /*
2553 * We mark the process as waking here. This guarantees that
2554 * nobody will actually run it, and a signal or other external
2555 * event cannot wake it up and insert it on the runqueue either.
2556 */
2557 p->state = TASK_WAKING;
2558
2559 /*
2560 * Revert to default priority/policy on fork if requested.
2561 */
2562 if (unlikely(p->sched_reset_on_fork)) {
2563 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2564 p->policy = SCHED_NORMAL;
2565 p->normal_prio = p->static_prio;
2566 }
2567
2568 if (PRIO_TO_NICE(p->static_prio) < 0) {
2569 p->static_prio = NICE_TO_PRIO(0);
2570 p->normal_prio = p->static_prio;
2571 set_load_weight(p);
2572 }
2573
2574 /*
2575 * We don't need the reset flag anymore after the fork. It has
2576 * fulfilled its duty:
2577 */
2578 p->sched_reset_on_fork = 0;
2579 }
2580
2581 /*
2582 * Make sure we do not leak PI boosting priority to the child.
2583 */
2584 p->prio = current->normal_prio;
2585
2586 if (!rt_prio(p->prio))
2587 p->sched_class = &fair_sched_class;
2588
2589 if (p->sched_class->task_fork)
2590 p->sched_class->task_fork(p);
2591
2592 set_task_cpu(p, cpu);
2593
2594 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2595 if (likely(sched_info_on()))
2596 memset(&p->sched_info, 0, sizeof(p->sched_info));
2597 #endif
2598 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2599 p->oncpu = 0;
2600 #endif
2601 #ifdef CONFIG_PREEMPT
2602 /* Want to start with kernel preemption disabled. */
2603 task_thread_info(p)->preempt_count = 1;
2604 #endif
2605 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2606
2607 put_cpu();
2608 }
2609
2610 /*
2611 * wake_up_new_task - wake up a newly created task for the first time.
2612 *
2613 * This function will do some initial scheduler statistics housekeeping
2614 * that must be done for every newly created context, then puts the task
2615 * on the runqueue and wakes it.
2616 */
2617 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2618 {
2619 unsigned long flags;
2620 struct rq *rq;
2621 int cpu __maybe_unused = get_cpu();
2622
2623 #ifdef CONFIG_SMP
2624 /*
2625 * Fork balancing, do it here and not earlier because:
2626 * - cpus_allowed can change in the fork path
2627 * - any previously selected cpu might disappear through hotplug
2628 *
2629 * We still have TASK_WAKING but PF_STARTING is gone now, meaning
2630 * ->cpus_allowed is stable, we have preemption disabled, meaning
2631 * cpu_online_mask is stable.
2632 */
2633 cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
2634 set_task_cpu(p, cpu);
2635 #endif
2636
2637 /*
2638 * Since the task is not on the rq and we still have TASK_WAKING set
2639 * nobody else will migrate this task.
2640 */
2641 rq = cpu_rq(cpu);
2642 raw_spin_lock_irqsave(&rq->lock, flags);
2643
2644 BUG_ON(p->state != TASK_WAKING);
2645 p->state = TASK_RUNNING;
2646 update_rq_clock(rq);
2647 activate_task(rq, p, 0);
2648 trace_sched_wakeup_new(rq, p, 1);
2649 check_preempt_curr(rq, p, WF_FORK);
2650 #ifdef CONFIG_SMP
2651 if (p->sched_class->task_woken)
2652 p->sched_class->task_woken(rq, p);
2653 #endif
2654 task_rq_unlock(rq, &flags);
2655 put_cpu();
2656 }
2657
2658 #ifdef CONFIG_PREEMPT_NOTIFIERS
2659
2660 /**
2661 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2662 * @notifier: notifier struct to register
2663 */
2664 void preempt_notifier_register(struct preempt_notifier *notifier)
2665 {
2666 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2667 }
2668 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2669
2670 /**
2671 * preempt_notifier_unregister - no longer interested in preemption notifications
2672 * @notifier: notifier struct to unregister
2673 *
2674 * This is safe to call from within a preemption notifier.
2675 */
2676 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2677 {
2678 hlist_del(&notifier->link);
2679 }
2680 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2681
2682 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2683 {
2684 struct preempt_notifier *notifier;
2685 struct hlist_node *node;
2686
2687 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2688 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2689 }
2690
2691 static void
2692 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2693 struct task_struct *next)
2694 {
2695 struct preempt_notifier *notifier;
2696 struct hlist_node *node;
2697
2698 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2699 notifier->ops->sched_out(notifier, next);
2700 }
2701
2702 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2703
2704 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2705 {
2706 }
2707
2708 static void
2709 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2710 struct task_struct *next)
2711 {
2712 }
2713
2714 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2715
2716 /**
2717 * prepare_task_switch - prepare to switch tasks
2718 * @rq: the runqueue preparing to switch
2719 * @prev: the current task that is being switched out
2720 * @next: the task we are going to switch to.
2721 *
2722 * This is called with the rq lock held and interrupts off. It must
2723 * be paired with a subsequent finish_task_switch after the context
2724 * switch.
2725 *
2726 * prepare_task_switch sets up locking and calls architecture specific
2727 * hooks.
2728 */
2729 static inline void
2730 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2731 struct task_struct *next)
2732 {
2733 fire_sched_out_preempt_notifiers(prev, next);
2734 prepare_lock_switch(rq, next);
2735 prepare_arch_switch(next);
2736 }
2737
2738 /**
2739 * finish_task_switch - clean up after a task-switch
2740 * @rq: runqueue associated with task-switch
2741 * @prev: the thread we just switched away from.
2742 *
2743 * finish_task_switch must be called after the context switch, paired
2744 * with a prepare_task_switch call before the context switch.
2745 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2746 * and do any other architecture-specific cleanup actions.
2747 *
2748 * Note that we may have delayed dropping an mm in context_switch(). If
2749 * so, we finish that here outside of the runqueue lock. (Doing it
2750 * with the lock held can cause deadlocks; see schedule() for
2751 * details.)
2752 */
2753 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2754 __releases(rq->lock)
2755 {
2756 struct mm_struct *mm = rq->prev_mm;
2757 long prev_state;
2758
2759 rq->prev_mm = NULL;
2760
2761 /*
2762 * A task struct has one reference for the use as "current".
2763 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2764 * schedule one last time. The schedule call will never return, and
2765 * the scheduled task must drop that reference.
2766 * The test for TASK_DEAD must occur while the runqueue locks are
2767 * still held, otherwise prev could be scheduled on another cpu, die
2768 * there before we look at prev->state, and then the reference would
2769 * be dropped twice.
2770 * Manfred Spraul <manfred@colorfullife.com>
2771 */
2772 prev_state = prev->state;
2773 finish_arch_switch(prev);
2774 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2775 local_irq_disable();
2776 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2777 perf_event_task_sched_in(current);
2778 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2779 local_irq_enable();
2780 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2781 finish_lock_switch(rq, prev);
2782
2783 fire_sched_in_preempt_notifiers(current);
2784 if (mm)
2785 mmdrop(mm);
2786 if (unlikely(prev_state == TASK_DEAD)) {
2787 /*
2788 * Remove function-return probe instances associated with this
2789 * task and put them back on the free list.
2790 */
2791 kprobe_flush_task(prev);
2792 put_task_struct(prev);
2793 }
2794 }
2795
2796 #ifdef CONFIG_SMP
2797
2798 /* assumes rq->lock is held */
2799 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2800 {
2801 if (prev->sched_class->pre_schedule)
2802 prev->sched_class->pre_schedule(rq, prev);
2803 }
2804
2805 /* rq->lock is NOT held, but preemption is disabled */
2806 static inline void post_schedule(struct rq *rq)
2807 {
2808 if (rq->post_schedule) {
2809 unsigned long flags;
2810
2811 raw_spin_lock_irqsave(&rq->lock, flags);
2812 if (rq->curr->sched_class->post_schedule)
2813 rq->curr->sched_class->post_schedule(rq);
2814 raw_spin_unlock_irqrestore(&rq->lock, flags);
2815
2816 rq->post_schedule = 0;
2817 }
2818 }
2819
2820 #else
2821
2822 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2823 {
2824 }
2825
2826 static inline void post_schedule(struct rq *rq)
2827 {
2828 }
2829
2830 #endif
2831
2832 /**
2833 * schedule_tail - first thing a freshly forked thread must call.
2834 * @prev: the thread we just switched away from.
2835 */
2836 asmlinkage void schedule_tail(struct task_struct *prev)
2837 __releases(rq->lock)
2838 {
2839 struct rq *rq = this_rq();
2840
2841 finish_task_switch(rq, prev);
2842
2843 /*
2844 * FIXME: do we need to worry about rq being invalidated by the
2845 * task_switch?
2846 */
2847 post_schedule(rq);
2848
2849 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2850 /* In this case, finish_task_switch does not reenable preemption */
2851 preempt_enable();
2852 #endif
2853 if (current->set_child_tid)
2854 put_user(task_pid_vnr(current), current->set_child_tid);
2855 }
2856
2857 /*
2858 * context_switch - switch to the new MM and the new
2859 * thread's register state.
2860 */
2861 static inline void
2862 context_switch(struct rq *rq, struct task_struct *prev,
2863 struct task_struct *next)
2864 {
2865 struct mm_struct *mm, *oldmm;
2866
2867 prepare_task_switch(rq, prev, next);
2868 trace_sched_switch(rq, prev, next);
2869 mm = next->mm;
2870 oldmm = prev->active_mm;
2871 /*
2872 * For paravirt, this is coupled with an exit in switch_to to
2873 * combine the page table reload and the switch backend into
2874 * one hypercall.
2875 */
2876 arch_start_context_switch(prev);
2877
2878 if (likely(!mm)) {
2879 next->active_mm = oldmm;
2880 atomic_inc(&oldmm->mm_count);
2881 enter_lazy_tlb(oldmm, next);
2882 } else
2883 switch_mm(oldmm, mm, next);
2884
2885 if (likely(!prev->mm)) {
2886 prev->active_mm = NULL;
2887 rq->prev_mm = oldmm;
2888 }
2889 /*
2890 * Since the runqueue lock will be released by the next
2891 * task (which is an invalid locking op but in the case
2892 * of the scheduler it's an obvious special-case), so we
2893 * do an early lockdep release here:
2894 */
2895 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2896 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2897 #endif
2898
2899 /* Here we just switch the register state and the stack. */
2900 switch_to(prev, next, prev);
2901
2902 barrier();
2903 /*
2904 * this_rq must be evaluated again because prev may have moved
2905 * CPUs since it called schedule(), thus the 'rq' on its stack
2906 * frame will be invalid.
2907 */
2908 finish_task_switch(this_rq(), prev);
2909 }
2910
2911 /*
2912 * nr_running, nr_uninterruptible and nr_context_switches:
2913 *
2914 * externally visible scheduler statistics: current number of runnable
2915 * threads, current number of uninterruptible-sleeping threads, total
2916 * number of context switches performed since bootup.
2917 */
2918 unsigned long nr_running(void)
2919 {
2920 unsigned long i, sum = 0;
2921
2922 for_each_online_cpu(i)
2923 sum += cpu_rq(i)->nr_running;
2924
2925 return sum;
2926 }
2927
2928 unsigned long nr_uninterruptible(void)
2929 {
2930 unsigned long i, sum = 0;
2931
2932 for_each_possible_cpu(i)
2933 sum += cpu_rq(i)->nr_uninterruptible;
2934
2935 /*
2936 * Since we read the counters lockless, it might be slightly
2937 * inaccurate. Do not allow it to go below zero though:
2938 */
2939 if (unlikely((long)sum < 0))
2940 sum = 0;
2941
2942 return sum;
2943 }
2944
2945 unsigned long long nr_context_switches(void)
2946 {
2947 int i;
2948 unsigned long long sum = 0;
2949
2950 for_each_possible_cpu(i)
2951 sum += cpu_rq(i)->nr_switches;
2952
2953 return sum;
2954 }
2955
2956 unsigned long nr_iowait(void)
2957 {
2958 unsigned long i, sum = 0;
2959
2960 for_each_possible_cpu(i)
2961 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2962
2963 return sum;
2964 }
2965
2966 unsigned long nr_iowait_cpu(void)
2967 {
2968 struct rq *this = this_rq();
2969 return atomic_read(&this->nr_iowait);
2970 }
2971
2972 unsigned long this_cpu_load(void)
2973 {
2974 struct rq *this = this_rq();
2975 return this->cpu_load[0];
2976 }
2977
2978
2979 /* Variables and functions for calc_load */
2980 static atomic_long_t calc_load_tasks;
2981 static unsigned long calc_load_update;
2982 unsigned long avenrun[3];
2983 EXPORT_SYMBOL(avenrun);
2984
2985 /**
2986 * get_avenrun - get the load average array
2987 * @loads: pointer to dest load array
2988 * @offset: offset to add
2989 * @shift: shift count to shift the result left
2990 *
2991 * These values are estimates at best, so no need for locking.
2992 */
2993 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2994 {
2995 loads[0] = (avenrun[0] + offset) << shift;
2996 loads[1] = (avenrun[1] + offset) << shift;
2997 loads[2] = (avenrun[2] + offset) << shift;
2998 }
2999
3000 static unsigned long
3001 calc_load(unsigned long load, unsigned long exp, unsigned long active)
3002 {
3003 load *= exp;
3004 load += active * (FIXED_1 - exp);
3005 return load >> FSHIFT;
3006 }
3007
3008 /*
3009 * calc_load - update the avenrun load estimates 10 ticks after the
3010 * CPUs have updated calc_load_tasks.
3011 */
3012 void calc_global_load(void)
3013 {
3014 unsigned long upd = calc_load_update + 10;
3015 long active;
3016
3017 if (time_before(jiffies, upd))
3018 return;
3019
3020 active = atomic_long_read(&calc_load_tasks);
3021 active = active > 0 ? active * FIXED_1 : 0;
3022
3023 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3024 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3025 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3026
3027 calc_load_update += LOAD_FREQ;
3028 }
3029
3030 /*
3031 * Either called from update_cpu_load() or from a cpu going idle
3032 */
3033 static void calc_load_account_active(struct rq *this_rq)
3034 {
3035 long nr_active, delta;
3036
3037 nr_active = this_rq->nr_running;
3038 nr_active += (long) this_rq->nr_uninterruptible;
3039
3040 if (nr_active != this_rq->calc_load_active) {
3041 delta = nr_active - this_rq->calc_load_active;
3042 this_rq->calc_load_active = nr_active;
3043 atomic_long_add(delta, &calc_load_tasks);
3044 }
3045 }
3046
3047 /*
3048 * Update rq->cpu_load[] statistics. This function is usually called every
3049 * scheduler tick (TICK_NSEC).
3050 */
3051 static void update_cpu_load(struct rq *this_rq)
3052 {
3053 unsigned long this_load = this_rq->load.weight;
3054 int i, scale;
3055
3056 this_rq->nr_load_updates++;
3057
3058 /* Update our load: */
3059 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3060 unsigned long old_load, new_load;
3061
3062 /* scale is effectively 1 << i now, and >> i divides by scale */
3063
3064 old_load = this_rq->cpu_load[i];
3065 new_load = this_load;
3066 /*
3067 * Round up the averaging division if load is increasing. This
3068 * prevents us from getting stuck on 9 if the load is 10, for
3069 * example.
3070 */
3071 if (new_load > old_load)
3072 new_load += scale-1;
3073 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3074 }
3075
3076 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3077 this_rq->calc_load_update += LOAD_FREQ;
3078 calc_load_account_active(this_rq);
3079 }
3080 }
3081
3082 #ifdef CONFIG_SMP
3083
3084 /*
3085 * sched_exec - execve() is a valuable balancing opportunity, because at
3086 * this point the task has the smallest effective memory and cache footprint.
3087 */
3088 void sched_exec(void)
3089 {
3090 struct task_struct *p = current;
3091 struct migration_req req;
3092 int dest_cpu, this_cpu;
3093 unsigned long flags;
3094 struct rq *rq;
3095
3096 again:
3097 this_cpu = get_cpu();
3098 dest_cpu = select_task_rq(p, SD_BALANCE_EXEC, 0);
3099 if (dest_cpu == this_cpu) {
3100 put_cpu();
3101 return;
3102 }
3103
3104 rq = task_rq_lock(p, &flags);
3105 put_cpu();
3106
3107 /*
3108 * select_task_rq() can race against ->cpus_allowed
3109 */
3110 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3111 || unlikely(!cpu_active(dest_cpu))) {
3112 task_rq_unlock(rq, &flags);
3113 goto again;
3114 }
3115
3116 /* force the process onto the specified CPU */
3117 if (migrate_task(p, dest_cpu, &req)) {
3118 /* Need to wait for migration thread (might exit: take ref). */
3119 struct task_struct *mt = rq->migration_thread;
3120
3121 get_task_struct(mt);
3122 task_rq_unlock(rq, &flags);
3123 wake_up_process(mt);
3124 put_task_struct(mt);
3125 wait_for_completion(&req.done);
3126
3127 return;
3128 }
3129 task_rq_unlock(rq, &flags);
3130 }
3131
3132 #endif
3133
3134 DEFINE_PER_CPU(struct kernel_stat, kstat);
3135
3136 EXPORT_PER_CPU_SYMBOL(kstat);
3137
3138 /*
3139 * Return any ns on the sched_clock that have not yet been accounted in
3140 * @p in case that task is currently running.
3141 *
3142 * Called with task_rq_lock() held on @rq.
3143 */
3144 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3145 {
3146 u64 ns = 0;
3147
3148 if (task_current(rq, p)) {
3149 update_rq_clock(rq);
3150 ns = rq->clock - p->se.exec_start;
3151 if ((s64)ns < 0)
3152 ns = 0;
3153 }
3154
3155 return ns;
3156 }
3157
3158 unsigned long long task_delta_exec(struct task_struct *p)
3159 {
3160 unsigned long flags;
3161 struct rq *rq;
3162 u64 ns = 0;
3163
3164 rq = task_rq_lock(p, &flags);
3165 ns = do_task_delta_exec(p, rq);
3166 task_rq_unlock(rq, &flags);
3167
3168 return ns;
3169 }
3170
3171 /*
3172 * Return accounted runtime for the task.
3173 * In case the task is currently running, return the runtime plus current's
3174 * pending runtime that have not been accounted yet.
3175 */
3176 unsigned long long task_sched_runtime(struct task_struct *p)
3177 {
3178 unsigned long flags;
3179 struct rq *rq;
3180 u64 ns = 0;
3181
3182 rq = task_rq_lock(p, &flags);
3183 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3184 task_rq_unlock(rq, &flags);
3185
3186 return ns;
3187 }
3188
3189 /*
3190 * Return sum_exec_runtime for the thread group.
3191 * In case the task is currently running, return the sum plus current's
3192 * pending runtime that have not been accounted yet.
3193 *
3194 * Note that the thread group might have other running tasks as well,
3195 * so the return value not includes other pending runtime that other
3196 * running tasks might have.
3197 */
3198 unsigned long long thread_group_sched_runtime(struct task_struct *p)
3199 {
3200 struct task_cputime totals;
3201 unsigned long flags;
3202 struct rq *rq;
3203 u64 ns;
3204
3205 rq = task_rq_lock(p, &flags);
3206 thread_group_cputime(p, &totals);
3207 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3208 task_rq_unlock(rq, &flags);
3209
3210 return ns;
3211 }
3212
3213 /*
3214 * Account user cpu time to a process.
3215 * @p: the process that the cpu time gets accounted to
3216 * @cputime: the cpu time spent in user space since the last update
3217 * @cputime_scaled: cputime scaled by cpu frequency
3218 */
3219 void account_user_time(struct task_struct *p, cputime_t cputime,
3220 cputime_t cputime_scaled)
3221 {
3222 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3223 cputime64_t tmp;
3224
3225 /* Add user time to process. */
3226 p->utime = cputime_add(p->utime, cputime);
3227 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3228 account_group_user_time(p, cputime);
3229
3230 /* Add user time to cpustat. */
3231 tmp = cputime_to_cputime64(cputime);
3232 if (TASK_NICE(p) > 0)
3233 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3234 else
3235 cpustat->user = cputime64_add(cpustat->user, tmp);
3236
3237 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3238 /* Account for user time used */
3239 acct_update_integrals(p);
3240 }
3241
3242 /*
3243 * Account guest cpu time to a process.
3244 * @p: the process that the cpu time gets accounted to
3245 * @cputime: the cpu time spent in virtual machine since the last update
3246 * @cputime_scaled: cputime scaled by cpu frequency
3247 */
3248 static void account_guest_time(struct task_struct *p, cputime_t cputime,
3249 cputime_t cputime_scaled)
3250 {
3251 cputime64_t tmp;
3252 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3253
3254 tmp = cputime_to_cputime64(cputime);
3255
3256 /* Add guest time to process. */
3257 p->utime = cputime_add(p->utime, cputime);
3258 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3259 account_group_user_time(p, cputime);
3260 p->gtime = cputime_add(p->gtime, cputime);
3261
3262 /* Add guest time to cpustat. */
3263 if (TASK_NICE(p) > 0) {
3264 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3265 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3266 } else {
3267 cpustat->user = cputime64_add(cpustat->user, tmp);
3268 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3269 }
3270 }
3271
3272 /*
3273 * Account system cpu time to a process.
3274 * @p: the process that the cpu time gets accounted to
3275 * @hardirq_offset: the offset to subtract from hardirq_count()
3276 * @cputime: the cpu time spent in kernel space since the last update
3277 * @cputime_scaled: cputime scaled by cpu frequency
3278 */
3279 void account_system_time(struct task_struct *p, int hardirq_offset,
3280 cputime_t cputime, cputime_t cputime_scaled)
3281 {
3282 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3283 cputime64_t tmp;
3284
3285 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3286 account_guest_time(p, cputime, cputime_scaled);
3287 return;
3288 }
3289
3290 /* Add system time to process. */
3291 p->stime = cputime_add(p->stime, cputime);
3292 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3293 account_group_system_time(p, cputime);
3294
3295 /* Add system time to cpustat. */
3296 tmp = cputime_to_cputime64(cputime);
3297 if (hardirq_count() - hardirq_offset)
3298 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3299 else if (softirq_count())
3300 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3301 else
3302 cpustat->system = cputime64_add(cpustat->system, tmp);
3303
3304 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3305
3306 /* Account for system time used */
3307 acct_update_integrals(p);
3308 }
3309
3310 /*
3311 * Account for involuntary wait time.
3312 * @steal: the cpu time spent in involuntary wait
3313 */
3314 void account_steal_time(cputime_t cputime)
3315 {
3316 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3317 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3318
3319 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3320 }
3321
3322 /*
3323 * Account for idle time.
3324 * @cputime: the cpu time spent in idle wait
3325 */
3326 void account_idle_time(cputime_t cputime)
3327 {
3328 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3329 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3330 struct rq *rq = this_rq();
3331
3332 if (atomic_read(&rq->nr_iowait) > 0)
3333 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3334 else
3335 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
3336 }
3337
3338 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
3339
3340 /*
3341 * Account a single tick of cpu time.
3342 * @p: the process that the cpu time gets accounted to
3343 * @user_tick: indicates if the tick is a user or a system tick
3344 */
3345 void account_process_tick(struct task_struct *p, int user_tick)
3346 {
3347 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3348 struct rq *rq = this_rq();
3349
3350 if (user_tick)
3351 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3352 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3353 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3354 one_jiffy_scaled);
3355 else
3356 account_idle_time(cputime_one_jiffy);
3357 }
3358
3359 /*
3360 * Account multiple ticks of steal time.
3361 * @p: the process from which the cpu time has been stolen
3362 * @ticks: number of stolen ticks
3363 */
3364 void account_steal_ticks(unsigned long ticks)
3365 {
3366 account_steal_time(jiffies_to_cputime(ticks));
3367 }
3368
3369 /*
3370 * Account multiple ticks of idle time.
3371 * @ticks: number of stolen ticks
3372 */
3373 void account_idle_ticks(unsigned long ticks)
3374 {
3375 account_idle_time(jiffies_to_cputime(ticks));
3376 }
3377
3378 #endif
3379
3380 /*
3381 * Use precise platform statistics if available:
3382 */
3383 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
3384 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3385 {
3386 *ut = p->utime;
3387 *st = p->stime;
3388 }
3389
3390 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3391 {
3392 struct task_cputime cputime;
3393
3394 thread_group_cputime(p, &cputime);
3395
3396 *ut = cputime.utime;
3397 *st = cputime.stime;
3398 }
3399 #else
3400
3401 #ifndef nsecs_to_cputime
3402 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
3403 #endif
3404
3405 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3406 {
3407 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
3408
3409 /*
3410 * Use CFS's precise accounting:
3411 */
3412 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3413
3414 if (total) {
3415 u64 temp;
3416
3417 temp = (u64)(rtime * utime);
3418 do_div(temp, total);
3419 utime = (cputime_t)temp;
3420 } else
3421 utime = rtime;
3422
3423 /*
3424 * Compare with previous values, to keep monotonicity:
3425 */
3426 p->prev_utime = max(p->prev_utime, utime);
3427 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
3428
3429 *ut = p->prev_utime;
3430 *st = p->prev_stime;
3431 }
3432
3433 /*
3434 * Must be called with siglock held.
3435 */
3436 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3437 {
3438 struct signal_struct *sig = p->signal;
3439 struct task_cputime cputime;
3440 cputime_t rtime, utime, total;
3441
3442 thread_group_cputime(p, &cputime);
3443
3444 total = cputime_add(cputime.utime, cputime.stime);
3445 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3446
3447 if (total) {
3448 u64 temp;
3449
3450 temp = (u64)(rtime * cputime.utime);
3451 do_div(temp, total);
3452 utime = (cputime_t)temp;
3453 } else
3454 utime = rtime;
3455
3456 sig->prev_utime = max(sig->prev_utime, utime);
3457 sig->prev_stime = max(sig->prev_stime,
3458 cputime_sub(rtime, sig->prev_utime));
3459
3460 *ut = sig->prev_utime;
3461 *st = sig->prev_stime;
3462 }
3463 #endif
3464
3465 /*
3466 * This function gets called by the timer code, with HZ frequency.
3467 * We call it with interrupts disabled.
3468 *
3469 * It also gets called by the fork code, when changing the parent's
3470 * timeslices.
3471 */
3472 void scheduler_tick(void)
3473 {
3474 int cpu = smp_processor_id();
3475 struct rq *rq = cpu_rq(cpu);
3476 struct task_struct *curr = rq->curr;
3477
3478 sched_clock_tick();
3479
3480 raw_spin_lock(&rq->lock);
3481 update_rq_clock(rq);
3482 update_cpu_load(rq);
3483 curr->sched_class->task_tick(rq, curr, 0);
3484 raw_spin_unlock(&rq->lock);
3485
3486 perf_event_task_tick(curr);
3487
3488 #ifdef CONFIG_SMP
3489 rq->idle_at_tick = idle_cpu(cpu);
3490 trigger_load_balance(rq, cpu);
3491 #endif
3492 }
3493
3494 notrace unsigned long get_parent_ip(unsigned long addr)
3495 {
3496 if (in_lock_functions(addr)) {
3497 addr = CALLER_ADDR2;
3498 if (in_lock_functions(addr))
3499 addr = CALLER_ADDR3;
3500 }
3501 return addr;
3502 }
3503
3504 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3505 defined(CONFIG_PREEMPT_TRACER))
3506
3507 void __kprobes add_preempt_count(int val)
3508 {
3509 #ifdef CONFIG_DEBUG_PREEMPT
3510 /*
3511 * Underflow?
3512 */
3513 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3514 return;
3515 #endif
3516 preempt_count() += val;
3517 #ifdef CONFIG_DEBUG_PREEMPT
3518 /*
3519 * Spinlock count overflowing soon?
3520 */
3521 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3522 PREEMPT_MASK - 10);
3523 #endif
3524 if (preempt_count() == val)
3525 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3526 }
3527 EXPORT_SYMBOL(add_preempt_count);
3528
3529 void __kprobes sub_preempt_count(int val)
3530 {
3531 #ifdef CONFIG_DEBUG_PREEMPT
3532 /*
3533 * Underflow?
3534 */
3535 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3536 return;
3537 /*
3538 * Is the spinlock portion underflowing?
3539 */
3540 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3541 !(preempt_count() & PREEMPT_MASK)))
3542 return;
3543 #endif
3544
3545 if (preempt_count() == val)
3546 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3547 preempt_count() -= val;
3548 }
3549 EXPORT_SYMBOL(sub_preempt_count);
3550
3551 #endif
3552
3553 /*
3554 * Print scheduling while atomic bug:
3555 */
3556 static noinline void __schedule_bug(struct task_struct *prev)
3557 {
3558 struct pt_regs *regs = get_irq_regs();
3559
3560 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3561 prev->comm, prev->pid, preempt_count());
3562
3563 debug_show_held_locks(prev);
3564 print_modules();
3565 if (irqs_disabled())
3566 print_irqtrace_events(prev);
3567
3568 if (regs)
3569 show_regs(regs);
3570 else
3571 dump_stack();
3572 }
3573
3574 /*
3575 * Various schedule()-time debugging checks and statistics:
3576 */
3577 static inline void schedule_debug(struct task_struct *prev)
3578 {
3579 /*
3580 * Test if we are atomic. Since do_exit() needs to call into
3581 * schedule() atomically, we ignore that path for now.
3582 * Otherwise, whine if we are scheduling when we should not be.
3583 */
3584 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
3585 __schedule_bug(prev);
3586
3587 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3588
3589 schedstat_inc(this_rq(), sched_count);
3590 #ifdef CONFIG_SCHEDSTATS
3591 if (unlikely(prev->lock_depth >= 0)) {
3592 schedstat_inc(this_rq(), bkl_count);
3593 schedstat_inc(prev, sched_info.bkl_count);
3594 }
3595 #endif
3596 }
3597
3598 static void put_prev_task(struct rq *rq, struct task_struct *prev)
3599 {
3600 if (prev->state == TASK_RUNNING) {
3601 u64 runtime = prev->se.sum_exec_runtime;
3602
3603 runtime -= prev->se.prev_sum_exec_runtime;
3604 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
3605
3606 /*
3607 * In order to avoid avg_overlap growing stale when we are
3608 * indeed overlapping and hence not getting put to sleep, grow
3609 * the avg_overlap on preemption.
3610 *
3611 * We use the average preemption runtime because that
3612 * correlates to the amount of cache footprint a task can
3613 * build up.
3614 */
3615 update_avg(&prev->se.avg_overlap, runtime);
3616 }
3617 prev->sched_class->put_prev_task(rq, prev);
3618 }
3619
3620 /*
3621 * Pick up the highest-prio task:
3622 */
3623 static inline struct task_struct *
3624 pick_next_task(struct rq *rq)
3625 {
3626 const struct sched_class *class;
3627 struct task_struct *p;
3628
3629 /*
3630 * Optimization: we know that if all tasks are in
3631 * the fair class we can call that function directly:
3632 */
3633 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3634 p = fair_sched_class.pick_next_task(rq);
3635 if (likely(p))
3636 return p;
3637 }
3638
3639 class = sched_class_highest;
3640 for ( ; ; ) {
3641 p = class->pick_next_task(rq);
3642 if (p)
3643 return p;
3644 /*
3645 * Will never be NULL as the idle class always
3646 * returns a non-NULL p:
3647 */
3648 class = class->next;
3649 }
3650 }
3651
3652 /*
3653 * schedule() is the main scheduler function.
3654 */
3655 asmlinkage void __sched schedule(void)
3656 {
3657 struct task_struct *prev, *next;
3658 unsigned long *switch_count;
3659 struct rq *rq;
3660 int cpu;
3661
3662 need_resched:
3663 preempt_disable();
3664 cpu = smp_processor_id();
3665 rq = cpu_rq(cpu);
3666 rcu_sched_qs(cpu);
3667 prev = rq->curr;
3668 switch_count = &prev->nivcsw;
3669
3670 release_kernel_lock(prev);
3671 need_resched_nonpreemptible:
3672
3673 schedule_debug(prev);
3674
3675 if (sched_feat(HRTICK))
3676 hrtick_clear(rq);
3677
3678 raw_spin_lock_irq(&rq->lock);
3679 update_rq_clock(rq);
3680 clear_tsk_need_resched(prev);
3681
3682 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3683 if (unlikely(signal_pending_state(prev->state, prev)))
3684 prev->state = TASK_RUNNING;
3685 else
3686 deactivate_task(rq, prev, 1);
3687 switch_count = &prev->nvcsw;
3688 }
3689
3690 pre_schedule(rq, prev);
3691
3692 if (unlikely(!rq->nr_running))
3693 idle_balance(cpu, rq);
3694
3695 put_prev_task(rq, prev);
3696 next = pick_next_task(rq);
3697
3698 if (likely(prev != next)) {
3699 sched_info_switch(prev, next);
3700 perf_event_task_sched_out(prev, next);
3701
3702 rq->nr_switches++;
3703 rq->curr = next;
3704 ++*switch_count;
3705
3706 context_switch(rq, prev, next); /* unlocks the rq */
3707 /*
3708 * the context switch might have flipped the stack from under
3709 * us, hence refresh the local variables.
3710 */
3711 cpu = smp_processor_id();
3712 rq = cpu_rq(cpu);
3713 } else
3714 raw_spin_unlock_irq(&rq->lock);
3715
3716 post_schedule(rq);
3717
3718 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3719 prev = rq->curr;
3720 switch_count = &prev->nivcsw;
3721 goto need_resched_nonpreemptible;
3722 }
3723
3724 preempt_enable_no_resched();
3725 if (need_resched())
3726 goto need_resched;
3727 }
3728 EXPORT_SYMBOL(schedule);
3729
3730 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3731 /*
3732 * Look out! "owner" is an entirely speculative pointer
3733 * access and not reliable.
3734 */
3735 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
3736 {
3737 unsigned int cpu;
3738 struct rq *rq;
3739
3740 if (!sched_feat(OWNER_SPIN))
3741 return 0;
3742
3743 #ifdef CONFIG_DEBUG_PAGEALLOC
3744 /*
3745 * Need to access the cpu field knowing that
3746 * DEBUG_PAGEALLOC could have unmapped it if
3747 * the mutex owner just released it and exited.
3748 */
3749 if (probe_kernel_address(&owner->cpu, cpu))
3750 return 0;
3751 #else
3752 cpu = owner->cpu;
3753 #endif
3754
3755 /*
3756 * Even if the access succeeded (likely case),
3757 * the cpu field may no longer be valid.
3758 */
3759 if (cpu >= nr_cpumask_bits)
3760 return 0;
3761
3762 /*
3763 * We need to validate that we can do a
3764 * get_cpu() and that we have the percpu area.
3765 */
3766 if (!cpu_online(cpu))
3767 return 0;
3768
3769 rq = cpu_rq(cpu);
3770
3771 for (;;) {
3772 /*
3773 * Owner changed, break to re-assess state.
3774 */
3775 if (lock->owner != owner)
3776 break;
3777
3778 /*
3779 * Is that owner really running on that cpu?
3780 */
3781 if (task_thread_info(rq->curr) != owner || need_resched())
3782 return 0;
3783
3784 cpu_relax();
3785 }
3786
3787 return 1;
3788 }
3789 #endif
3790
3791 #ifdef CONFIG_PREEMPT
3792 /*
3793 * this is the entry point to schedule() from in-kernel preemption
3794 * off of preempt_enable. Kernel preemptions off return from interrupt
3795 * occur there and call schedule directly.
3796 */
3797 asmlinkage void __sched preempt_schedule(void)
3798 {
3799 struct thread_info *ti = current_thread_info();
3800
3801 /*
3802 * If there is a non-zero preempt_count or interrupts are disabled,
3803 * we do not want to preempt the current task. Just return..
3804 */
3805 if (likely(ti->preempt_count || irqs_disabled()))
3806 return;
3807
3808 do {
3809 add_preempt_count(PREEMPT_ACTIVE);
3810 schedule();
3811 sub_preempt_count(PREEMPT_ACTIVE);
3812
3813 /*
3814 * Check again in case we missed a preemption opportunity
3815 * between schedule and now.
3816 */
3817 barrier();
3818 } while (need_resched());
3819 }
3820 EXPORT_SYMBOL(preempt_schedule);
3821
3822 /*
3823 * this is the entry point to schedule() from kernel preemption
3824 * off of irq context.
3825 * Note, that this is called and return with irqs disabled. This will
3826 * protect us against recursive calling from irq.
3827 */
3828 asmlinkage void __sched preempt_schedule_irq(void)
3829 {
3830 struct thread_info *ti = current_thread_info();
3831
3832 /* Catch callers which need to be fixed */
3833 BUG_ON(ti->preempt_count || !irqs_disabled());
3834
3835 do {
3836 add_preempt_count(PREEMPT_ACTIVE);
3837 local_irq_enable();
3838 schedule();
3839 local_irq_disable();
3840 sub_preempt_count(PREEMPT_ACTIVE);
3841
3842 /*
3843 * Check again in case we missed a preemption opportunity
3844 * between schedule and now.
3845 */
3846 barrier();
3847 } while (need_resched());
3848 }
3849
3850 #endif /* CONFIG_PREEMPT */
3851
3852 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3853 void *key)
3854 {
3855 return try_to_wake_up(curr->private, mode, wake_flags);
3856 }
3857 EXPORT_SYMBOL(default_wake_function);
3858
3859 /*
3860 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3861 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3862 * number) then we wake all the non-exclusive tasks and one exclusive task.
3863 *
3864 * There are circumstances in which we can try to wake a task which has already
3865 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3866 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3867 */
3868 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3869 int nr_exclusive, int wake_flags, void *key)
3870 {
3871 wait_queue_t *curr, *next;
3872
3873 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3874 unsigned flags = curr->flags;
3875
3876 if (curr->func(curr, mode, wake_flags, key) &&
3877 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3878 break;
3879 }
3880 }
3881
3882 /**
3883 * __wake_up - wake up threads blocked on a waitqueue.
3884 * @q: the waitqueue
3885 * @mode: which threads
3886 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3887 * @key: is directly passed to the wakeup function
3888 *
3889 * It may be assumed that this function implies a write memory barrier before
3890 * changing the task state if and only if any tasks are woken up.
3891 */
3892 void __wake_up(wait_queue_head_t *q, unsigned int mode,
3893 int nr_exclusive, void *key)
3894 {
3895 unsigned long flags;
3896
3897 spin_lock_irqsave(&q->lock, flags);
3898 __wake_up_common(q, mode, nr_exclusive, 0, key);
3899 spin_unlock_irqrestore(&q->lock, flags);
3900 }
3901 EXPORT_SYMBOL(__wake_up);
3902
3903 /*
3904 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3905 */
3906 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3907 {
3908 __wake_up_common(q, mode, 1, 0, NULL);
3909 }
3910
3911 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3912 {
3913 __wake_up_common(q, mode, 1, 0, key);
3914 }
3915
3916 /**
3917 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3918 * @q: the waitqueue
3919 * @mode: which threads
3920 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3921 * @key: opaque value to be passed to wakeup targets
3922 *
3923 * The sync wakeup differs that the waker knows that it will schedule
3924 * away soon, so while the target thread will be woken up, it will not
3925 * be migrated to another CPU - ie. the two threads are 'synchronized'
3926 * with each other. This can prevent needless bouncing between CPUs.
3927 *
3928 * On UP it can prevent extra preemption.
3929 *
3930 * It may be assumed that this function implies a write memory barrier before
3931 * changing the task state if and only if any tasks are woken up.
3932 */
3933 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3934 int nr_exclusive, void *key)
3935 {
3936 unsigned long flags;
3937 int wake_flags = WF_SYNC;
3938
3939 if (unlikely(!q))
3940 return;
3941
3942 if (unlikely(!nr_exclusive))
3943 wake_flags = 0;
3944
3945 spin_lock_irqsave(&q->lock, flags);
3946 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3947 spin_unlock_irqrestore(&q->lock, flags);
3948 }
3949 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3950
3951 /*
3952 * __wake_up_sync - see __wake_up_sync_key()
3953 */
3954 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3955 {
3956 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3957 }
3958 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3959
3960 /**
3961 * complete: - signals a single thread waiting on this completion
3962 * @x: holds the state of this particular completion
3963 *
3964 * This will wake up a single thread waiting on this completion. Threads will be
3965 * awakened in the same order in which they were queued.
3966 *
3967 * See also complete_all(), wait_for_completion() and related routines.
3968 *
3969 * It may be assumed that this function implies a write memory barrier before
3970 * changing the task state if and only if any tasks are woken up.
3971 */
3972 void complete(struct completion *x)
3973 {
3974 unsigned long flags;
3975
3976 spin_lock_irqsave(&x->wait.lock, flags);
3977 x->done++;
3978 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3979 spin_unlock_irqrestore(&x->wait.lock, flags);
3980 }
3981 EXPORT_SYMBOL(complete);
3982
3983 /**
3984 * complete_all: - signals all threads waiting on this completion
3985 * @x: holds the state of this particular completion
3986 *
3987 * This will wake up all threads waiting on this particular completion event.
3988 *
3989 * It may be assumed that this function implies a write memory barrier before
3990 * changing the task state if and only if any tasks are woken up.
3991 */
3992 void complete_all(struct completion *x)
3993 {
3994 unsigned long flags;
3995
3996 spin_lock_irqsave(&x->wait.lock, flags);
3997 x->done += UINT_MAX/2;
3998 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
3999 spin_unlock_irqrestore(&x->wait.lock, flags);
4000 }
4001 EXPORT_SYMBOL(complete_all);
4002
4003 static inline long __sched
4004 do_wait_for_common(struct completion *x, long timeout, int state)
4005 {
4006 if (!x->done) {
4007 DECLARE_WAITQUEUE(wait, current);
4008
4009 wait.flags |= WQ_FLAG_EXCLUSIVE;
4010 __add_wait_queue_tail(&x->wait, &wait);
4011 do {
4012 if (signal_pending_state(state, current)) {
4013 timeout = -ERESTARTSYS;
4014 break;
4015 }
4016 __set_current_state(state);
4017 spin_unlock_irq(&x->wait.lock);
4018 timeout = schedule_timeout(timeout);
4019 spin_lock_irq(&x->wait.lock);
4020 } while (!x->done && timeout);
4021 __remove_wait_queue(&x->wait, &wait);
4022 if (!x->done)
4023 return timeout;
4024 }
4025 x->done--;
4026 return timeout ?: 1;
4027 }
4028
4029 static long __sched
4030 wait_for_common(struct completion *x, long timeout, int state)
4031 {
4032 might_sleep();
4033
4034 spin_lock_irq(&x->wait.lock);
4035 timeout = do_wait_for_common(x, timeout, state);
4036 spin_unlock_irq(&x->wait.lock);
4037 return timeout;
4038 }
4039
4040 /**
4041 * wait_for_completion: - waits for completion of a task
4042 * @x: holds the state of this particular completion
4043 *
4044 * This waits to be signaled for completion of a specific task. It is NOT
4045 * interruptible and there is no timeout.
4046 *
4047 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4048 * and interrupt capability. Also see complete().
4049 */
4050 void __sched wait_for_completion(struct completion *x)
4051 {
4052 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4053 }
4054 EXPORT_SYMBOL(wait_for_completion);
4055
4056 /**
4057 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4058 * @x: holds the state of this particular completion
4059 * @timeout: timeout value in jiffies
4060 *
4061 * This waits for either a completion of a specific task to be signaled or for a
4062 * specified timeout to expire. The timeout is in jiffies. It is not
4063 * interruptible.
4064 */
4065 unsigned long __sched
4066 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4067 {
4068 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4069 }
4070 EXPORT_SYMBOL(wait_for_completion_timeout);
4071
4072 /**
4073 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4074 * @x: holds the state of this particular completion
4075 *
4076 * This waits for completion of a specific task to be signaled. It is
4077 * interruptible.
4078 */
4079 int __sched wait_for_completion_interruptible(struct completion *x)
4080 {
4081 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4082 if (t == -ERESTARTSYS)
4083 return t;
4084 return 0;
4085 }
4086 EXPORT_SYMBOL(wait_for_completion_interruptible);
4087
4088 /**
4089 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4090 * @x: holds the state of this particular completion
4091 * @timeout: timeout value in jiffies
4092 *
4093 * This waits for either a completion of a specific task to be signaled or for a
4094 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4095 */
4096 unsigned long __sched
4097 wait_for_completion_interruptible_timeout(struct completion *x,
4098 unsigned long timeout)
4099 {
4100 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4101 }
4102 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4103
4104 /**
4105 * wait_for_completion_killable: - waits for completion of a task (killable)
4106 * @x: holds the state of this particular completion
4107 *
4108 * This waits to be signaled for completion of a specific task. It can be
4109 * interrupted by a kill signal.
4110 */
4111 int __sched wait_for_completion_killable(struct completion *x)
4112 {
4113 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4114 if (t == -ERESTARTSYS)
4115 return t;
4116 return 0;
4117 }
4118 EXPORT_SYMBOL(wait_for_completion_killable);
4119
4120 /**
4121 * try_wait_for_completion - try to decrement a completion without blocking
4122 * @x: completion structure
4123 *
4124 * Returns: 0 if a decrement cannot be done without blocking
4125 * 1 if a decrement succeeded.
4126 *
4127 * If a completion is being used as a counting completion,
4128 * attempt to decrement the counter without blocking. This
4129 * enables us to avoid waiting if the resource the completion
4130 * is protecting is not available.
4131 */
4132 bool try_wait_for_completion(struct completion *x)
4133 {
4134 unsigned long flags;
4135 int ret = 1;
4136
4137 spin_lock_irqsave(&x->wait.lock, flags);
4138 if (!x->done)
4139 ret = 0;
4140 else
4141 x->done--;
4142 spin_unlock_irqrestore(&x->wait.lock, flags);
4143 return ret;
4144 }
4145 EXPORT_SYMBOL(try_wait_for_completion);
4146
4147 /**
4148 * completion_done - Test to see if a completion has any waiters
4149 * @x: completion structure
4150 *
4151 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4152 * 1 if there are no waiters.
4153 *
4154 */
4155 bool completion_done(struct completion *x)
4156 {
4157 unsigned long flags;
4158 int ret = 1;
4159
4160 spin_lock_irqsave(&x->wait.lock, flags);
4161 if (!x->done)
4162 ret = 0;
4163 spin_unlock_irqrestore(&x->wait.lock, flags);
4164 return ret;
4165 }
4166 EXPORT_SYMBOL(completion_done);
4167
4168 static long __sched
4169 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4170 {
4171 unsigned long flags;
4172 wait_queue_t wait;
4173
4174 init_waitqueue_entry(&wait, current);
4175
4176 __set_current_state(state);
4177
4178 spin_lock_irqsave(&q->lock, flags);
4179 __add_wait_queue(q, &wait);
4180 spin_unlock(&q->lock);
4181 timeout = schedule_timeout(timeout);
4182 spin_lock_irq(&q->lock);
4183 __remove_wait_queue(q, &wait);
4184 spin_unlock_irqrestore(&q->lock, flags);
4185
4186 return timeout;
4187 }
4188
4189 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4190 {
4191 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4192 }
4193 EXPORT_SYMBOL(interruptible_sleep_on);
4194
4195 long __sched
4196 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4197 {
4198 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4199 }
4200 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4201
4202 void __sched sleep_on(wait_queue_head_t *q)
4203 {
4204 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4205 }
4206 EXPORT_SYMBOL(sleep_on);
4207
4208 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4209 {
4210 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4211 }
4212 EXPORT_SYMBOL(sleep_on_timeout);
4213
4214 #ifdef CONFIG_RT_MUTEXES
4215
4216 /*
4217 * rt_mutex_setprio - set the current priority of a task
4218 * @p: task
4219 * @prio: prio value (kernel-internal form)
4220 *
4221 * This function changes the 'effective' priority of a task. It does
4222 * not touch ->normal_prio like __setscheduler().
4223 *
4224 * Used by the rt_mutex code to implement priority inheritance logic.
4225 */
4226 void rt_mutex_setprio(struct task_struct *p, int prio)
4227 {
4228 unsigned long flags;
4229 int oldprio, on_rq, running;
4230 struct rq *rq;
4231 const struct sched_class *prev_class;
4232
4233 BUG_ON(prio < 0 || prio > MAX_PRIO);
4234
4235 rq = task_rq_lock(p, &flags);
4236 update_rq_clock(rq);
4237
4238 oldprio = p->prio;
4239 prev_class = p->sched_class;
4240 on_rq = p->se.on_rq;
4241 running = task_current(rq, p);
4242 if (on_rq)
4243 dequeue_task(rq, p, 0);
4244 if (running)
4245 p->sched_class->put_prev_task(rq, p);
4246
4247 if (rt_prio(prio))
4248 p->sched_class = &rt_sched_class;
4249 else
4250 p->sched_class = &fair_sched_class;
4251
4252 p->prio = prio;
4253
4254 if (running)
4255 p->sched_class->set_curr_task(rq);
4256 if (on_rq) {
4257 enqueue_task(rq, p, 0, oldprio < prio);
4258
4259 check_class_changed(rq, p, prev_class, oldprio, running);
4260 }
4261 task_rq_unlock(rq, &flags);
4262 }
4263
4264 #endif
4265
4266 void set_user_nice(struct task_struct *p, long nice)
4267 {
4268 int old_prio, delta, on_rq;
4269 unsigned long flags;
4270 struct rq *rq;
4271
4272 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4273 return;
4274 /*
4275 * We have to be careful, if called from sys_setpriority(),
4276 * the task might be in the middle of scheduling on another CPU.
4277 */
4278 rq = task_rq_lock(p, &flags);
4279 update_rq_clock(rq);
4280 /*
4281 * The RT priorities are set via sched_setscheduler(), but we still
4282 * allow the 'normal' nice value to be set - but as expected
4283 * it wont have any effect on scheduling until the task is
4284 * SCHED_FIFO/SCHED_RR:
4285 */
4286 if (task_has_rt_policy(p)) {
4287 p->static_prio = NICE_TO_PRIO(nice);
4288 goto out_unlock;
4289 }
4290 on_rq = p->se.on_rq;
4291 if (on_rq)
4292 dequeue_task(rq, p, 0);
4293
4294 p->static_prio = NICE_TO_PRIO(nice);
4295 set_load_weight(p);
4296 old_prio = p->prio;
4297 p->prio = effective_prio(p);
4298 delta = p->prio - old_prio;
4299
4300 if (on_rq) {
4301 enqueue_task(rq, p, 0, false);
4302 /*
4303 * If the task increased its priority or is running and
4304 * lowered its priority, then reschedule its CPU:
4305 */
4306 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4307 resched_task(rq->curr);
4308 }
4309 out_unlock:
4310 task_rq_unlock(rq, &flags);
4311 }
4312 EXPORT_SYMBOL(set_user_nice);
4313
4314 /*
4315 * can_nice - check if a task can reduce its nice value
4316 * @p: task
4317 * @nice: nice value
4318 */
4319 int can_nice(const struct task_struct *p, const int nice)
4320 {
4321 /* convert nice value [19,-20] to rlimit style value [1,40] */
4322 int nice_rlim = 20 - nice;
4323
4324 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4325 capable(CAP_SYS_NICE));
4326 }
4327
4328 #ifdef __ARCH_WANT_SYS_NICE
4329
4330 /*
4331 * sys_nice - change the priority of the current process.
4332 * @increment: priority increment
4333 *
4334 * sys_setpriority is a more generic, but much slower function that
4335 * does similar things.
4336 */
4337 SYSCALL_DEFINE1(nice, int, increment)
4338 {
4339 long nice, retval;
4340
4341 /*
4342 * Setpriority might change our priority at the same moment.
4343 * We don't have to worry. Conceptually one call occurs first
4344 * and we have a single winner.
4345 */
4346 if (increment < -40)
4347 increment = -40;
4348 if (increment > 40)
4349 increment = 40;
4350
4351 nice = TASK_NICE(current) + increment;
4352 if (nice < -20)
4353 nice = -20;
4354 if (nice > 19)
4355 nice = 19;
4356
4357 if (increment < 0 && !can_nice(current, nice))
4358 return -EPERM;
4359
4360 retval = security_task_setnice(current, nice);
4361 if (retval)
4362 return retval;
4363
4364 set_user_nice(current, nice);
4365 return 0;
4366 }
4367
4368 #endif
4369
4370 /**
4371 * task_prio - return the priority value of a given task.
4372 * @p: the task in question.
4373 *
4374 * This is the priority value as seen by users in /proc.
4375 * RT tasks are offset by -200. Normal tasks are centered
4376 * around 0, value goes from -16 to +15.
4377 */
4378 int task_prio(const struct task_struct *p)
4379 {
4380 return p->prio - MAX_RT_PRIO;
4381 }
4382
4383 /**
4384 * task_nice - return the nice value of a given task.
4385 * @p: the task in question.
4386 */
4387 int task_nice(const struct task_struct *p)
4388 {
4389 return TASK_NICE(p);
4390 }
4391 EXPORT_SYMBOL(task_nice);
4392
4393 /**
4394 * idle_cpu - is a given cpu idle currently?
4395 * @cpu: the processor in question.
4396 */
4397 int idle_cpu(int cpu)
4398 {
4399 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4400 }
4401
4402 /**
4403 * idle_task - return the idle task for a given cpu.
4404 * @cpu: the processor in question.
4405 */
4406 struct task_struct *idle_task(int cpu)
4407 {
4408 return cpu_rq(cpu)->idle;
4409 }
4410
4411 /**
4412 * find_process_by_pid - find a process with a matching PID value.
4413 * @pid: the pid in question.
4414 */
4415 static struct task_struct *find_process_by_pid(pid_t pid)
4416 {
4417 return pid ? find_task_by_vpid(pid) : current;
4418 }
4419
4420 /* Actually do priority change: must hold rq lock. */
4421 static void
4422 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4423 {
4424 BUG_ON(p->se.on_rq);
4425
4426 p->policy = policy;
4427 p->rt_priority = prio;
4428 p->normal_prio = normal_prio(p);
4429 /* we are holding p->pi_lock already */
4430 p->prio = rt_mutex_getprio(p);
4431 if (rt_prio(p->prio))
4432 p->sched_class = &rt_sched_class;
4433 else
4434 p->sched_class = &fair_sched_class;
4435 set_load_weight(p);
4436 }
4437
4438 /*
4439 * check the target process has a UID that matches the current process's
4440 */
4441 static bool check_same_owner(struct task_struct *p)
4442 {
4443 const struct cred *cred = current_cred(), *pcred;
4444 bool match;
4445
4446 rcu_read_lock();
4447 pcred = __task_cred(p);
4448 match = (cred->euid == pcred->euid ||
4449 cred->euid == pcred->uid);
4450 rcu_read_unlock();
4451 return match;
4452 }
4453
4454 static int __sched_setscheduler(struct task_struct *p, int policy,
4455 struct sched_param *param, bool user)
4456 {
4457 int retval, oldprio, oldpolicy = -1, on_rq, running;
4458 unsigned long flags;
4459 const struct sched_class *prev_class;
4460 struct rq *rq;
4461 int reset_on_fork;
4462
4463 /* may grab non-irq protected spin_locks */
4464 BUG_ON(in_interrupt());
4465 recheck:
4466 /* double check policy once rq lock held */
4467 if (policy < 0) {
4468 reset_on_fork = p->sched_reset_on_fork;
4469 policy = oldpolicy = p->policy;
4470 } else {
4471 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4472 policy &= ~SCHED_RESET_ON_FORK;
4473
4474 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4475 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4476 policy != SCHED_IDLE)
4477 return -EINVAL;
4478 }
4479
4480 /*
4481 * Valid priorities for SCHED_FIFO and SCHED_RR are
4482 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4483 * SCHED_BATCH and SCHED_IDLE is 0.
4484 */
4485 if (param->sched_priority < 0 ||
4486 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4487 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4488 return -EINVAL;
4489 if (rt_policy(policy) != (param->sched_priority != 0))
4490 return -EINVAL;
4491
4492 /*
4493 * Allow unprivileged RT tasks to decrease priority:
4494 */
4495 if (user && !capable(CAP_SYS_NICE)) {
4496 if (rt_policy(policy)) {
4497 unsigned long rlim_rtprio;
4498
4499 if (!lock_task_sighand(p, &flags))
4500 return -ESRCH;
4501 rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
4502 unlock_task_sighand(p, &flags);
4503
4504 /* can't set/change the rt policy */
4505 if (policy != p->policy && !rlim_rtprio)
4506 return -EPERM;
4507
4508 /* can't increase priority */
4509 if (param->sched_priority > p->rt_priority &&
4510 param->sched_priority > rlim_rtprio)
4511 return -EPERM;
4512 }
4513 /*
4514 * Like positive nice levels, dont allow tasks to
4515 * move out of SCHED_IDLE either:
4516 */
4517 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4518 return -EPERM;
4519
4520 /* can't change other user's priorities */
4521 if (!check_same_owner(p))
4522 return -EPERM;
4523
4524 /* Normal users shall not reset the sched_reset_on_fork flag */
4525 if (p->sched_reset_on_fork && !reset_on_fork)
4526 return -EPERM;
4527 }
4528
4529 if (user) {
4530 #ifdef CONFIG_RT_GROUP_SCHED
4531 /*
4532 * Do not allow realtime tasks into groups that have no runtime
4533 * assigned.
4534 */
4535 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4536 task_group(p)->rt_bandwidth.rt_runtime == 0)
4537 return -EPERM;
4538 #endif
4539
4540 retval = security_task_setscheduler(p, policy, param);
4541 if (retval)
4542 return retval;
4543 }
4544
4545 /*
4546 * make sure no PI-waiters arrive (or leave) while we are
4547 * changing the priority of the task:
4548 */
4549 raw_spin_lock_irqsave(&p->pi_lock, flags);
4550 /*
4551 * To be able to change p->policy safely, the apropriate
4552 * runqueue lock must be held.
4553 */
4554 rq = __task_rq_lock(p);
4555 /* recheck policy now with rq lock held */
4556 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4557 policy = oldpolicy = -1;
4558 __task_rq_unlock(rq);
4559 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4560 goto recheck;
4561 }
4562 update_rq_clock(rq);
4563 on_rq = p->se.on_rq;
4564 running = task_current(rq, p);
4565 if (on_rq)
4566 deactivate_task(rq, p, 0);
4567 if (running)
4568 p->sched_class->put_prev_task(rq, p);
4569
4570 p->sched_reset_on_fork = reset_on_fork;
4571
4572 oldprio = p->prio;
4573 prev_class = p->sched_class;
4574 __setscheduler(rq, p, policy, param->sched_priority);
4575
4576 if (running)
4577 p->sched_class->set_curr_task(rq);
4578 if (on_rq) {
4579 activate_task(rq, p, 0);
4580
4581 check_class_changed(rq, p, prev_class, oldprio, running);
4582 }
4583 __task_rq_unlock(rq);
4584 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4585
4586 rt_mutex_adjust_pi(p);
4587
4588 return 0;
4589 }
4590
4591 /**
4592 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4593 * @p: the task in question.
4594 * @policy: new policy.
4595 * @param: structure containing the new RT priority.
4596 *
4597 * NOTE that the task may be already dead.
4598 */
4599 int sched_setscheduler(struct task_struct *p, int policy,
4600 struct sched_param *param)
4601 {
4602 return __sched_setscheduler(p, policy, param, true);
4603 }
4604 EXPORT_SYMBOL_GPL(sched_setscheduler);
4605
4606 /**
4607 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4608 * @p: the task in question.
4609 * @policy: new policy.
4610 * @param: structure containing the new RT priority.
4611 *
4612 * Just like sched_setscheduler, only don't bother checking if the
4613 * current context has permission. For example, this is needed in
4614 * stop_machine(): we create temporary high priority worker threads,
4615 * but our caller might not have that capability.
4616 */
4617 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4618 struct sched_param *param)
4619 {
4620 return __sched_setscheduler(p, policy, param, false);
4621 }
4622
4623 static int
4624 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4625 {
4626 struct sched_param lparam;
4627 struct task_struct *p;
4628 int retval;
4629
4630 if (!param || pid < 0)
4631 return -EINVAL;
4632 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4633 return -EFAULT;
4634
4635 rcu_read_lock();
4636 retval = -ESRCH;
4637 p = find_process_by_pid(pid);
4638 if (p != NULL)
4639 retval = sched_setscheduler(p, policy, &lparam);
4640 rcu_read_unlock();
4641
4642 return retval;
4643 }
4644
4645 /**
4646 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4647 * @pid: the pid in question.
4648 * @policy: new policy.
4649 * @param: structure containing the new RT priority.
4650 */
4651 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4652 struct sched_param __user *, param)
4653 {
4654 /* negative values for policy are not valid */
4655 if (policy < 0)
4656 return -EINVAL;
4657
4658 return do_sched_setscheduler(pid, policy, param);
4659 }
4660
4661 /**
4662 * sys_sched_setparam - set/change the RT priority of a thread
4663 * @pid: the pid in question.
4664 * @param: structure containing the new RT priority.
4665 */
4666 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4667 {
4668 return do_sched_setscheduler(pid, -1, param);
4669 }
4670
4671 /**
4672 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4673 * @pid: the pid in question.
4674 */
4675 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4676 {
4677 struct task_struct *p;
4678 int retval;
4679
4680 if (pid < 0)
4681 return -EINVAL;
4682
4683 retval = -ESRCH;
4684 rcu_read_lock();
4685 p = find_process_by_pid(pid);
4686 if (p) {
4687 retval = security_task_getscheduler(p);
4688 if (!retval)
4689 retval = p->policy
4690 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4691 }
4692 rcu_read_unlock();
4693 return retval;
4694 }
4695
4696 /**
4697 * sys_sched_getparam - get the RT priority of a thread
4698 * @pid: the pid in question.
4699 * @param: structure containing the RT priority.
4700 */
4701 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4702 {
4703 struct sched_param lp;
4704 struct task_struct *p;
4705 int retval;
4706
4707 if (!param || pid < 0)
4708 return -EINVAL;
4709
4710 rcu_read_lock();
4711 p = find_process_by_pid(pid);
4712 retval = -ESRCH;
4713 if (!p)
4714 goto out_unlock;
4715
4716 retval = security_task_getscheduler(p);
4717 if (retval)
4718 goto out_unlock;
4719
4720 lp.sched_priority = p->rt_priority;
4721 rcu_read_unlock();
4722
4723 /*
4724 * This one might sleep, we cannot do it with a spinlock held ...
4725 */
4726 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4727
4728 return retval;
4729
4730 out_unlock:
4731 rcu_read_unlock();
4732 return retval;
4733 }
4734
4735 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4736 {
4737 cpumask_var_t cpus_allowed, new_mask;
4738 struct task_struct *p;
4739 int retval;
4740
4741 get_online_cpus();
4742 rcu_read_lock();
4743
4744 p = find_process_by_pid(pid);
4745 if (!p) {
4746 rcu_read_unlock();
4747 put_online_cpus();
4748 return -ESRCH;
4749 }
4750
4751 /* Prevent p going away */
4752 get_task_struct(p);
4753 rcu_read_unlock();
4754
4755 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4756 retval = -ENOMEM;
4757 goto out_put_task;
4758 }
4759 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4760 retval = -ENOMEM;
4761 goto out_free_cpus_allowed;
4762 }
4763 retval = -EPERM;
4764 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
4765 goto out_unlock;
4766
4767 retval = security_task_setscheduler(p, 0, NULL);
4768 if (retval)
4769 goto out_unlock;
4770
4771 cpuset_cpus_allowed(p, cpus_allowed);
4772 cpumask_and(new_mask, in_mask, cpus_allowed);
4773 again:
4774 retval = set_cpus_allowed_ptr(p, new_mask);
4775
4776 if (!retval) {
4777 cpuset_cpus_allowed(p, cpus_allowed);
4778 if (!cpumask_subset(new_mask, cpus_allowed)) {
4779 /*
4780 * We must have raced with a concurrent cpuset
4781 * update. Just reset the cpus_allowed to the
4782 * cpuset's cpus_allowed
4783 */
4784 cpumask_copy(new_mask, cpus_allowed);
4785 goto again;
4786 }
4787 }
4788 out_unlock:
4789 free_cpumask_var(new_mask);
4790 out_free_cpus_allowed:
4791 free_cpumask_var(cpus_allowed);
4792 out_put_task:
4793 put_task_struct(p);
4794 put_online_cpus();
4795 return retval;
4796 }
4797
4798 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4799 struct cpumask *new_mask)
4800 {
4801 if (len < cpumask_size())
4802 cpumask_clear(new_mask);
4803 else if (len > cpumask_size())
4804 len = cpumask_size();
4805
4806 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4807 }
4808
4809 /**
4810 * sys_sched_setaffinity - set the cpu affinity of a process
4811 * @pid: pid of the process
4812 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4813 * @user_mask_ptr: user-space pointer to the new cpu mask
4814 */
4815 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4816 unsigned long __user *, user_mask_ptr)
4817 {
4818 cpumask_var_t new_mask;
4819 int retval;
4820
4821 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4822 return -ENOMEM;
4823
4824 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4825 if (retval == 0)
4826 retval = sched_setaffinity(pid, new_mask);
4827 free_cpumask_var(new_mask);
4828 return retval;
4829 }
4830
4831 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4832 {
4833 struct task_struct *p;
4834 unsigned long flags;
4835 struct rq *rq;
4836 int retval;
4837
4838 get_online_cpus();
4839 rcu_read_lock();
4840
4841 retval = -ESRCH;
4842 p = find_process_by_pid(pid);
4843 if (!p)
4844 goto out_unlock;
4845
4846 retval = security_task_getscheduler(p);
4847 if (retval)
4848 goto out_unlock;
4849
4850 rq = task_rq_lock(p, &flags);
4851 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4852 task_rq_unlock(rq, &flags);
4853
4854 out_unlock:
4855 rcu_read_unlock();
4856 put_online_cpus();
4857
4858 return retval;
4859 }
4860
4861 /**
4862 * sys_sched_getaffinity - get the cpu affinity of a process
4863 * @pid: pid of the process
4864 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4865 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4866 */
4867 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4868 unsigned long __user *, user_mask_ptr)
4869 {
4870 int ret;
4871 cpumask_var_t mask;
4872
4873 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4874 return -EINVAL;
4875 if (len & (sizeof(unsigned long)-1))
4876 return -EINVAL;
4877
4878 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4879 return -ENOMEM;
4880
4881 ret = sched_getaffinity(pid, mask);
4882 if (ret == 0) {
4883 size_t retlen = min_t(size_t, len, cpumask_size());
4884
4885 if (copy_to_user(user_mask_ptr, mask, retlen))
4886 ret = -EFAULT;
4887 else
4888 ret = retlen;
4889 }
4890 free_cpumask_var(mask);
4891
4892 return ret;
4893 }
4894
4895 /**
4896 * sys_sched_yield - yield the current processor to other threads.
4897 *
4898 * This function yields the current CPU to other tasks. If there are no
4899 * other threads running on this CPU then this function will return.
4900 */
4901 SYSCALL_DEFINE0(sched_yield)
4902 {
4903 struct rq *rq = this_rq_lock();
4904
4905 schedstat_inc(rq, yld_count);
4906 current->sched_class->yield_task(rq);
4907
4908 /*
4909 * Since we are going to call schedule() anyway, there's
4910 * no need to preempt or enable interrupts:
4911 */
4912 __release(rq->lock);
4913 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4914 do_raw_spin_unlock(&rq->lock);
4915 preempt_enable_no_resched();
4916
4917 schedule();
4918
4919 return 0;
4920 }
4921
4922 static inline int should_resched(void)
4923 {
4924 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4925 }
4926
4927 static void __cond_resched(void)
4928 {
4929 add_preempt_count(PREEMPT_ACTIVE);
4930 schedule();
4931 sub_preempt_count(PREEMPT_ACTIVE);
4932 }
4933
4934 int __sched _cond_resched(void)
4935 {
4936 if (should_resched()) {
4937 __cond_resched();
4938 return 1;
4939 }
4940 return 0;
4941 }
4942 EXPORT_SYMBOL(_cond_resched);
4943
4944 /*
4945 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4946 * call schedule, and on return reacquire the lock.
4947 *
4948 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4949 * operations here to prevent schedule() from being called twice (once via
4950 * spin_unlock(), once by hand).
4951 */
4952 int __cond_resched_lock(spinlock_t *lock)
4953 {
4954 int resched = should_resched();
4955 int ret = 0;
4956
4957 lockdep_assert_held(lock);
4958
4959 if (spin_needbreak(lock) || resched) {
4960 spin_unlock(lock);
4961 if (resched)
4962 __cond_resched();
4963 else
4964 cpu_relax();
4965 ret = 1;
4966 spin_lock(lock);
4967 }
4968 return ret;
4969 }
4970 EXPORT_SYMBOL(__cond_resched_lock);
4971
4972 int __sched __cond_resched_softirq(void)
4973 {
4974 BUG_ON(!in_softirq());
4975
4976 if (should_resched()) {
4977 local_bh_enable();
4978 __cond_resched();
4979 local_bh_disable();
4980 return 1;
4981 }
4982 return 0;
4983 }
4984 EXPORT_SYMBOL(__cond_resched_softirq);
4985
4986 /**
4987 * yield - yield the current processor to other threads.
4988 *
4989 * This is a shortcut for kernel-space yielding - it marks the
4990 * thread runnable and calls sys_sched_yield().
4991 */
4992 void __sched yield(void)
4993 {
4994 set_current_state(TASK_RUNNING);
4995 sys_sched_yield();
4996 }
4997 EXPORT_SYMBOL(yield);
4998
4999 /*
5000 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5001 * that process accounting knows that this is a task in IO wait state.
5002 */
5003 void __sched io_schedule(void)
5004 {
5005 struct rq *rq = raw_rq();
5006
5007 delayacct_blkio_start();
5008 atomic_inc(&rq->nr_iowait);
5009 current->in_iowait = 1;
5010 schedule();
5011 current->in_iowait = 0;
5012 atomic_dec(&rq->nr_iowait);
5013 delayacct_blkio_end();
5014 }
5015 EXPORT_SYMBOL(io_schedule);
5016
5017 long __sched io_schedule_timeout(long timeout)
5018 {
5019 struct rq *rq = raw_rq();
5020 long ret;
5021
5022 delayacct_blkio_start();
5023 atomic_inc(&rq->nr_iowait);
5024 current->in_iowait = 1;
5025 ret = schedule_timeout(timeout);
5026 current->in_iowait = 0;
5027 atomic_dec(&rq->nr_iowait);
5028 delayacct_blkio_end();
5029 return ret;
5030 }
5031
5032 /**
5033 * sys_sched_get_priority_max - return maximum RT priority.
5034 * @policy: scheduling class.
5035 *
5036 * this syscall returns the maximum rt_priority that can be used
5037 * by a given scheduling class.
5038 */
5039 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5040 {
5041 int ret = -EINVAL;
5042
5043 switch (policy) {
5044 case SCHED_FIFO:
5045 case SCHED_RR:
5046 ret = MAX_USER_RT_PRIO-1;
5047 break;
5048 case SCHED_NORMAL:
5049 case SCHED_BATCH:
5050 case SCHED_IDLE:
5051 ret = 0;
5052 break;
5053 }
5054 return ret;
5055 }
5056
5057 /**
5058 * sys_sched_get_priority_min - return minimum RT priority.
5059 * @policy: scheduling class.
5060 *
5061 * this syscall returns the minimum rt_priority that can be used
5062 * by a given scheduling class.
5063 */
5064 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5065 {
5066 int ret = -EINVAL;
5067
5068 switch (policy) {
5069 case SCHED_FIFO:
5070 case SCHED_RR:
5071 ret = 1;
5072 break;
5073 case SCHED_NORMAL:
5074 case SCHED_BATCH:
5075 case SCHED_IDLE:
5076 ret = 0;
5077 }
5078 return ret;
5079 }
5080
5081 /**
5082 * sys_sched_rr_get_interval - return the default timeslice of a process.
5083 * @pid: pid of the process.
5084 * @interval: userspace pointer to the timeslice value.
5085 *
5086 * this syscall writes the default timeslice value of a given process
5087 * into the user-space timespec buffer. A value of '0' means infinity.
5088 */
5089 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5090 struct timespec __user *, interval)
5091 {
5092 struct task_struct *p;
5093 unsigned int time_slice;
5094 unsigned long flags;
5095 struct rq *rq;
5096 int retval;
5097 struct timespec t;
5098
5099 if (pid < 0)
5100 return -EINVAL;
5101
5102 retval = -ESRCH;
5103 rcu_read_lock();
5104 p = find_process_by_pid(pid);
5105 if (!p)
5106 goto out_unlock;
5107
5108 retval = security_task_getscheduler(p);
5109 if (retval)
5110 goto out_unlock;
5111
5112 rq = task_rq_lock(p, &flags);
5113 time_slice = p->sched_class->get_rr_interval(rq, p);
5114 task_rq_unlock(rq, &flags);
5115
5116 rcu_read_unlock();
5117 jiffies_to_timespec(time_slice, &t);
5118 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5119 return retval;
5120
5121 out_unlock:
5122 rcu_read_unlock();
5123 return retval;
5124 }
5125
5126 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5127
5128 void sched_show_task(struct task_struct *p)
5129 {
5130 unsigned long free = 0;
5131 unsigned state;
5132
5133 state = p->state ? __ffs(p->state) + 1 : 0;
5134 printk(KERN_INFO "%-13.13s %c", p->comm,
5135 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5136 #if BITS_PER_LONG == 32
5137 if (state == TASK_RUNNING)
5138 printk(KERN_CONT " running ");
5139 else
5140 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5141 #else
5142 if (state == TASK_RUNNING)
5143 printk(KERN_CONT " running task ");
5144 else
5145 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5146 #endif
5147 #ifdef CONFIG_DEBUG_STACK_USAGE
5148 free = stack_not_used(p);
5149 #endif
5150 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5151 task_pid_nr(p), task_pid_nr(p->real_parent),
5152 (unsigned long)task_thread_info(p)->flags);
5153
5154 show_stack(p, NULL);
5155 }
5156
5157 void show_state_filter(unsigned long state_filter)
5158 {
5159 struct task_struct *g, *p;
5160
5161 #if BITS_PER_LONG == 32
5162 printk(KERN_INFO
5163 " task PC stack pid father\n");
5164 #else
5165 printk(KERN_INFO
5166 " task PC stack pid father\n");
5167 #endif
5168 read_lock(&tasklist_lock);
5169 do_each_thread(g, p) {
5170 /*
5171 * reset the NMI-timeout, listing all files on a slow
5172 * console might take alot of time:
5173 */
5174 touch_nmi_watchdog();
5175 if (!state_filter || (p->state & state_filter))
5176 sched_show_task(p);
5177 } while_each_thread(g, p);
5178
5179 touch_all_softlockup_watchdogs();
5180
5181 #ifdef CONFIG_SCHED_DEBUG
5182 sysrq_sched_debug_show();
5183 #endif
5184 read_unlock(&tasklist_lock);
5185 /*
5186 * Only show locks if all tasks are dumped:
5187 */
5188 if (!state_filter)
5189 debug_show_all_locks();
5190 }
5191
5192 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5193 {
5194 idle->sched_class = &idle_sched_class;
5195 }
5196
5197 /**
5198 * init_idle - set up an idle thread for a given CPU
5199 * @idle: task in question
5200 * @cpu: cpu the idle task belongs to
5201 *
5202 * NOTE: this function does not set the idle thread's NEED_RESCHED
5203 * flag, to make booting more robust.
5204 */
5205 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5206 {
5207 struct rq *rq = cpu_rq(cpu);
5208 unsigned long flags;
5209
5210 raw_spin_lock_irqsave(&rq->lock, flags);
5211
5212 __sched_fork(idle);
5213 idle->state = TASK_RUNNING;
5214 idle->se.exec_start = sched_clock();
5215
5216 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
5217 __set_task_cpu(idle, cpu);
5218
5219 rq->curr = rq->idle = idle;
5220 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5221 idle->oncpu = 1;
5222 #endif
5223 raw_spin_unlock_irqrestore(&rq->lock, flags);
5224
5225 /* Set the preempt count _outside_ the spinlocks! */
5226 #if defined(CONFIG_PREEMPT)
5227 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5228 #else
5229 task_thread_info(idle)->preempt_count = 0;
5230 #endif
5231 /*
5232 * The idle tasks have their own, simple scheduling class:
5233 */
5234 idle->sched_class = &idle_sched_class;
5235 ftrace_graph_init_task(idle);
5236 }
5237
5238 /*
5239 * In a system that switches off the HZ timer nohz_cpu_mask
5240 * indicates which cpus entered this state. This is used
5241 * in the rcu update to wait only for active cpus. For system
5242 * which do not switch off the HZ timer nohz_cpu_mask should
5243 * always be CPU_BITS_NONE.
5244 */
5245 cpumask_var_t nohz_cpu_mask;
5246
5247 /*
5248 * Increase the granularity value when there are more CPUs,
5249 * because with more CPUs the 'effective latency' as visible
5250 * to users decreases. But the relationship is not linear,
5251 * so pick a second-best guess by going with the log2 of the
5252 * number of CPUs.
5253 *
5254 * This idea comes from the SD scheduler of Con Kolivas:
5255 */
5256 static int get_update_sysctl_factor(void)
5257 {
5258 unsigned int cpus = min_t(int, num_online_cpus(), 8);
5259 unsigned int factor;
5260
5261 switch (sysctl_sched_tunable_scaling) {
5262 case SCHED_TUNABLESCALING_NONE:
5263 factor = 1;
5264 break;
5265 case SCHED_TUNABLESCALING_LINEAR:
5266 factor = cpus;
5267 break;
5268 case SCHED_TUNABLESCALING_LOG:
5269 default:
5270 factor = 1 + ilog2(cpus);
5271 break;
5272 }
5273
5274 return factor;
5275 }
5276
5277 static void update_sysctl(void)
5278 {
5279 unsigned int factor = get_update_sysctl_factor();
5280
5281 #define SET_SYSCTL(name) \
5282 (sysctl_##name = (factor) * normalized_sysctl_##name)
5283 SET_SYSCTL(sched_min_granularity);
5284 SET_SYSCTL(sched_latency);
5285 SET_SYSCTL(sched_wakeup_granularity);
5286 SET_SYSCTL(sched_shares_ratelimit);
5287 #undef SET_SYSCTL
5288 }
5289
5290 static inline void sched_init_granularity(void)
5291 {
5292 update_sysctl();
5293 }
5294
5295 #ifdef CONFIG_SMP
5296 /*
5297 * This is how migration works:
5298 *
5299 * 1) we queue a struct migration_req structure in the source CPU's
5300 * runqueue and wake up that CPU's migration thread.
5301 * 2) we down() the locked semaphore => thread blocks.
5302 * 3) migration thread wakes up (implicitly it forces the migrated
5303 * thread off the CPU)
5304 * 4) it gets the migration request and checks whether the migrated
5305 * task is still in the wrong runqueue.
5306 * 5) if it's in the wrong runqueue then the migration thread removes
5307 * it and puts it into the right queue.
5308 * 6) migration thread up()s the semaphore.
5309 * 7) we wake up and the migration is done.
5310 */
5311
5312 /*
5313 * Change a given task's CPU affinity. Migrate the thread to a
5314 * proper CPU and schedule it away if the CPU it's executing on
5315 * is removed from the allowed bitmask.
5316 *
5317 * NOTE: the caller must have a valid reference to the task, the
5318 * task must not exit() & deallocate itself prematurely. The
5319 * call is not atomic; no spinlocks may be held.
5320 */
5321 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
5322 {
5323 struct migration_req req;
5324 unsigned long flags;
5325 struct rq *rq;
5326 int ret = 0;
5327
5328 rq = task_rq_lock(p, &flags);
5329
5330 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
5331 ret = -EINVAL;
5332 goto out;
5333 }
5334
5335 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5336 !cpumask_equal(&p->cpus_allowed, new_mask))) {
5337 ret = -EINVAL;
5338 goto out;
5339 }
5340
5341 if (p->sched_class->set_cpus_allowed)
5342 p->sched_class->set_cpus_allowed(p, new_mask);
5343 else {
5344 cpumask_copy(&p->cpus_allowed, new_mask);
5345 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5346 }
5347
5348 /* Can the task run on the task's current CPU? If so, we're done */
5349 if (cpumask_test_cpu(task_cpu(p), new_mask))
5350 goto out;
5351
5352 if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
5353 /* Need help from migration thread: drop lock and wait. */
5354 struct task_struct *mt = rq->migration_thread;
5355
5356 get_task_struct(mt);
5357 task_rq_unlock(rq, &flags);
5358 wake_up_process(mt);
5359 put_task_struct(mt);
5360 wait_for_completion(&req.done);
5361 tlb_migrate_finish(p->mm);
5362 return 0;
5363 }
5364 out:
5365 task_rq_unlock(rq, &flags);
5366
5367 return ret;
5368 }
5369 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5370
5371 /*
5372 * Move (not current) task off this cpu, onto dest cpu. We're doing
5373 * this because either it can't run here any more (set_cpus_allowed()
5374 * away from this CPU, or CPU going down), or because we're
5375 * attempting to rebalance this task on exec (sched_exec).
5376 *
5377 * So we race with normal scheduler movements, but that's OK, as long
5378 * as the task is no longer on this CPU.
5379 *
5380 * Returns non-zero if task was successfully migrated.
5381 */
5382 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5383 {
5384 struct rq *rq_dest, *rq_src;
5385 int ret = 0;
5386
5387 if (unlikely(!cpu_active(dest_cpu)))
5388 return ret;
5389
5390 rq_src = cpu_rq(src_cpu);
5391 rq_dest = cpu_rq(dest_cpu);
5392
5393 double_rq_lock(rq_src, rq_dest);
5394 /* Already moved. */
5395 if (task_cpu(p) != src_cpu)
5396 goto done;
5397 /* Affinity changed (again). */
5398 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
5399 goto fail;
5400
5401 /*
5402 * If we're not on a rq, the next wake-up will ensure we're
5403 * placed properly.
5404 */
5405 if (p->se.on_rq) {
5406 deactivate_task(rq_src, p, 0);
5407 set_task_cpu(p, dest_cpu);
5408 activate_task(rq_dest, p, 0);
5409 check_preempt_curr(rq_dest, p, 0);
5410 }
5411 done:
5412 ret = 1;
5413 fail:
5414 double_rq_unlock(rq_src, rq_dest);
5415 return ret;
5416 }
5417
5418 #define RCU_MIGRATION_IDLE 0
5419 #define RCU_MIGRATION_NEED_QS 1
5420 #define RCU_MIGRATION_GOT_QS 2
5421 #define RCU_MIGRATION_MUST_SYNC 3
5422
5423 /*
5424 * migration_thread - this is a highprio system thread that performs
5425 * thread migration by bumping thread off CPU then 'pushing' onto
5426 * another runqueue.
5427 */
5428 static int migration_thread(void *data)
5429 {
5430 int badcpu;
5431 int cpu = (long)data;
5432 struct rq *rq;
5433
5434 rq = cpu_rq(cpu);
5435 BUG_ON(rq->migration_thread != current);
5436
5437 set_current_state(TASK_INTERRUPTIBLE);
5438 while (!kthread_should_stop()) {
5439 struct migration_req *req;
5440 struct list_head *head;
5441
5442 raw_spin_lock_irq(&rq->lock);
5443
5444 if (cpu_is_offline(cpu)) {
5445 raw_spin_unlock_irq(&rq->lock);
5446 break;
5447 }
5448
5449 if (rq->active_balance) {
5450 active_load_balance(rq, cpu);
5451 rq->active_balance = 0;
5452 }
5453
5454 head = &rq->migration_queue;
5455
5456 if (list_empty(head)) {
5457 raw_spin_unlock_irq(&rq->lock);
5458 schedule();
5459 set_current_state(TASK_INTERRUPTIBLE);
5460 continue;
5461 }
5462 req = list_entry(head->next, struct migration_req, list);
5463 list_del_init(head->next);
5464
5465 if (req->task != NULL) {
5466 raw_spin_unlock(&rq->lock);
5467 __migrate_task(req->task, cpu, req->dest_cpu);
5468 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
5469 req->dest_cpu = RCU_MIGRATION_GOT_QS;
5470 raw_spin_unlock(&rq->lock);
5471 } else {
5472 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
5473 raw_spin_unlock(&rq->lock);
5474 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
5475 }
5476 local_irq_enable();
5477
5478 complete(&req->done);
5479 }
5480 __set_current_state(TASK_RUNNING);
5481
5482 return 0;
5483 }
5484
5485 #ifdef CONFIG_HOTPLUG_CPU
5486
5487 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5488 {
5489 int ret;
5490
5491 local_irq_disable();
5492 ret = __migrate_task(p, src_cpu, dest_cpu);
5493 local_irq_enable();
5494 return ret;
5495 }
5496
5497 /*
5498 * Figure out where task on dead CPU should go, use force if necessary.
5499 */
5500 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5501 {
5502 int dest_cpu;
5503
5504 again:
5505 dest_cpu = select_fallback_rq(dead_cpu, p);
5506
5507 /* It can have affinity changed while we were choosing. */
5508 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
5509 goto again;
5510 }
5511
5512 /*
5513 * While a dead CPU has no uninterruptible tasks queued at this point,
5514 * it might still have a nonzero ->nr_uninterruptible counter, because
5515 * for performance reasons the counter is not stricly tracking tasks to
5516 * their home CPUs. So we just add the counter to another CPU's counter,
5517 * to keep the global sum constant after CPU-down:
5518 */
5519 static void migrate_nr_uninterruptible(struct rq *rq_src)
5520 {
5521 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
5522 unsigned long flags;
5523
5524 local_irq_save(flags);
5525 double_rq_lock(rq_src, rq_dest);
5526 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5527 rq_src->nr_uninterruptible = 0;
5528 double_rq_unlock(rq_src, rq_dest);
5529 local_irq_restore(flags);
5530 }
5531
5532 /* Run through task list and migrate tasks from the dead cpu. */
5533 static void migrate_live_tasks(int src_cpu)
5534 {
5535 struct task_struct *p, *t;
5536
5537 read_lock(&tasklist_lock);
5538
5539 do_each_thread(t, p) {
5540 if (p == current)
5541 continue;
5542
5543 if (task_cpu(p) == src_cpu)
5544 move_task_off_dead_cpu(src_cpu, p);
5545 } while_each_thread(t, p);
5546
5547 read_unlock(&tasklist_lock);
5548 }
5549
5550 /*
5551 * Schedules idle task to be the next runnable task on current CPU.
5552 * It does so by boosting its priority to highest possible.
5553 * Used by CPU offline code.
5554 */
5555 void sched_idle_next(void)
5556 {
5557 int this_cpu = smp_processor_id();
5558 struct rq *rq = cpu_rq(this_cpu);
5559 struct task_struct *p = rq->idle;
5560 unsigned long flags;
5561
5562 /* cpu has to be offline */
5563 BUG_ON(cpu_online(this_cpu));
5564
5565 /*
5566 * Strictly not necessary since rest of the CPUs are stopped by now
5567 * and interrupts disabled on the current cpu.
5568 */
5569 raw_spin_lock_irqsave(&rq->lock, flags);
5570
5571 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5572
5573 update_rq_clock(rq);
5574 activate_task(rq, p, 0);
5575
5576 raw_spin_unlock_irqrestore(&rq->lock, flags);
5577 }
5578
5579 /*
5580 * Ensures that the idle task is using init_mm right before its cpu goes
5581 * offline.
5582 */
5583 void idle_task_exit(void)
5584 {
5585 struct mm_struct *mm = current->active_mm;
5586
5587 BUG_ON(cpu_online(smp_processor_id()));
5588
5589 if (mm != &init_mm)
5590 switch_mm(mm, &init_mm, current);
5591 mmdrop(mm);
5592 }
5593
5594 /* called under rq->lock with disabled interrupts */
5595 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5596 {
5597 struct rq *rq = cpu_rq(dead_cpu);
5598
5599 /* Must be exiting, otherwise would be on tasklist. */
5600 BUG_ON(!p->exit_state);
5601
5602 /* Cannot have done final schedule yet: would have vanished. */
5603 BUG_ON(p->state == TASK_DEAD);
5604
5605 get_task_struct(p);
5606
5607 /*
5608 * Drop lock around migration; if someone else moves it,
5609 * that's OK. No task can be added to this CPU, so iteration is
5610 * fine.
5611 */
5612 raw_spin_unlock_irq(&rq->lock);
5613 move_task_off_dead_cpu(dead_cpu, p);
5614 raw_spin_lock_irq(&rq->lock);
5615
5616 put_task_struct(p);
5617 }
5618
5619 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5620 static void migrate_dead_tasks(unsigned int dead_cpu)
5621 {
5622 struct rq *rq = cpu_rq(dead_cpu);
5623 struct task_struct *next;
5624
5625 for ( ; ; ) {
5626 if (!rq->nr_running)
5627 break;
5628 update_rq_clock(rq);
5629 next = pick_next_task(rq);
5630 if (!next)
5631 break;
5632 next->sched_class->put_prev_task(rq, next);
5633 migrate_dead(dead_cpu, next);
5634
5635 }
5636 }
5637
5638 /*
5639 * remove the tasks which were accounted by rq from calc_load_tasks.
5640 */
5641 static void calc_global_load_remove(struct rq *rq)
5642 {
5643 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5644 rq->calc_load_active = 0;
5645 }
5646 #endif /* CONFIG_HOTPLUG_CPU */
5647
5648 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5649
5650 static struct ctl_table sd_ctl_dir[] = {
5651 {
5652 .procname = "sched_domain",
5653 .mode = 0555,
5654 },
5655 {}
5656 };
5657
5658 static struct ctl_table sd_ctl_root[] = {
5659 {
5660 .procname = "kernel",
5661 .mode = 0555,
5662 .child = sd_ctl_dir,
5663 },
5664 {}
5665 };
5666
5667 static struct ctl_table *sd_alloc_ctl_entry(int n)
5668 {
5669 struct ctl_table *entry =
5670 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5671
5672 return entry;
5673 }
5674
5675 static void sd_free_ctl_entry(struct ctl_table **tablep)
5676 {
5677 struct ctl_table *entry;
5678
5679 /*
5680 * In the intermediate directories, both the child directory and
5681 * procname are dynamically allocated and could fail but the mode
5682 * will always be set. In the lowest directory the names are
5683 * static strings and all have proc handlers.
5684 */
5685 for (entry = *tablep; entry->mode; entry++) {
5686 if (entry->child)
5687 sd_free_ctl_entry(&entry->child);
5688 if (entry->proc_handler == NULL)
5689 kfree(entry->procname);
5690 }
5691
5692 kfree(*tablep);
5693 *tablep = NULL;
5694 }
5695
5696 static void
5697 set_table_entry(struct ctl_table *entry,
5698 const char *procname, void *data, int maxlen,
5699 mode_t mode, proc_handler *proc_handler)
5700 {
5701 entry->procname = procname;
5702 entry->data = data;
5703 entry->maxlen = maxlen;
5704 entry->mode = mode;
5705 entry->proc_handler = proc_handler;
5706 }
5707
5708 static struct ctl_table *
5709 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5710 {
5711 struct ctl_table *table = sd_alloc_ctl_entry(13);
5712
5713 if (table == NULL)
5714 return NULL;
5715
5716 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5717 sizeof(long), 0644, proc_doulongvec_minmax);
5718 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5719 sizeof(long), 0644, proc_doulongvec_minmax);
5720 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5721 sizeof(int), 0644, proc_dointvec_minmax);
5722 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5723 sizeof(int), 0644, proc_dointvec_minmax);
5724 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5725 sizeof(int), 0644, proc_dointvec_minmax);
5726 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5727 sizeof(int), 0644, proc_dointvec_minmax);
5728 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5729 sizeof(int), 0644, proc_dointvec_minmax);
5730 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5731 sizeof(int), 0644, proc_dointvec_minmax);
5732 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5733 sizeof(int), 0644, proc_dointvec_minmax);
5734 set_table_entry(&table[9], "cache_nice_tries",
5735 &sd->cache_nice_tries,
5736 sizeof(int), 0644, proc_dointvec_minmax);
5737 set_table_entry(&table[10], "flags", &sd->flags,
5738 sizeof(int), 0644, proc_dointvec_minmax);
5739 set_table_entry(&table[11], "name", sd->name,
5740 CORENAME_MAX_SIZE, 0444, proc_dostring);
5741 /* &table[12] is terminator */
5742
5743 return table;
5744 }
5745
5746 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5747 {
5748 struct ctl_table *entry, *table;
5749 struct sched_domain *sd;
5750 int domain_num = 0, i;
5751 char buf[32];
5752
5753 for_each_domain(cpu, sd)
5754 domain_num++;
5755 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5756 if (table == NULL)
5757 return NULL;
5758
5759 i = 0;
5760 for_each_domain(cpu, sd) {
5761 snprintf(buf, 32, "domain%d", i);
5762 entry->procname = kstrdup(buf, GFP_KERNEL);
5763 entry->mode = 0555;
5764 entry->child = sd_alloc_ctl_domain_table(sd);
5765 entry++;
5766 i++;
5767 }
5768 return table;
5769 }
5770
5771 static struct ctl_table_header *sd_sysctl_header;
5772 static void register_sched_domain_sysctl(void)
5773 {
5774 int i, cpu_num = num_possible_cpus();
5775 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5776 char buf[32];
5777
5778 WARN_ON(sd_ctl_dir[0].child);
5779 sd_ctl_dir[0].child = entry;
5780
5781 if (entry == NULL)
5782 return;
5783
5784 for_each_possible_cpu(i) {
5785 snprintf(buf, 32, "cpu%d", i);
5786 entry->procname = kstrdup(buf, GFP_KERNEL);
5787 entry->mode = 0555;
5788 entry->child = sd_alloc_ctl_cpu_table(i);
5789 entry++;
5790 }
5791
5792 WARN_ON(sd_sysctl_header);
5793 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5794 }
5795
5796 /* may be called multiple times per register */
5797 static void unregister_sched_domain_sysctl(void)
5798 {
5799 if (sd_sysctl_header)
5800 unregister_sysctl_table(sd_sysctl_header);
5801 sd_sysctl_header = NULL;
5802 if (sd_ctl_dir[0].child)
5803 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5804 }
5805 #else
5806 static void register_sched_domain_sysctl(void)
5807 {
5808 }
5809 static void unregister_sched_domain_sysctl(void)
5810 {
5811 }
5812 #endif
5813
5814 static void set_rq_online(struct rq *rq)
5815 {
5816 if (!rq->online) {
5817 const struct sched_class *class;
5818
5819 cpumask_set_cpu(rq->cpu, rq->rd->online);
5820 rq->online = 1;
5821
5822 for_each_class(class) {
5823 if (class->rq_online)
5824 class->rq_online(rq);
5825 }
5826 }
5827 }
5828
5829 static void set_rq_offline(struct rq *rq)
5830 {
5831 if (rq->online) {
5832 const struct sched_class *class;
5833
5834 for_each_class(class) {
5835 if (class->rq_offline)
5836 class->rq_offline(rq);
5837 }
5838
5839 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5840 rq->online = 0;
5841 }
5842 }
5843
5844 /*
5845 * migration_call - callback that gets triggered when a CPU is added.
5846 * Here we can start up the necessary migration thread for the new CPU.
5847 */
5848 static int __cpuinit
5849 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5850 {
5851 struct task_struct *p;
5852 int cpu = (long)hcpu;
5853 unsigned long flags;
5854 struct rq *rq;
5855
5856 switch (action) {
5857
5858 case CPU_UP_PREPARE:
5859 case CPU_UP_PREPARE_FROZEN:
5860 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
5861 if (IS_ERR(p))
5862 return NOTIFY_BAD;
5863 kthread_bind(p, cpu);
5864 /* Must be high prio: stop_machine expects to yield to it. */
5865 rq = task_rq_lock(p, &flags);
5866 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5867 task_rq_unlock(rq, &flags);
5868 get_task_struct(p);
5869 cpu_rq(cpu)->migration_thread = p;
5870 rq->calc_load_update = calc_load_update;
5871 break;
5872
5873 case CPU_ONLINE:
5874 case CPU_ONLINE_FROZEN:
5875 /* Strictly unnecessary, as first user will wake it. */
5876 wake_up_process(cpu_rq(cpu)->migration_thread);
5877
5878 /* Update our root-domain */
5879 rq = cpu_rq(cpu);
5880 raw_spin_lock_irqsave(&rq->lock, flags);
5881 if (rq->rd) {
5882 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5883
5884 set_rq_online(rq);
5885 }
5886 raw_spin_unlock_irqrestore(&rq->lock, flags);
5887 break;
5888
5889 #ifdef CONFIG_HOTPLUG_CPU
5890 case CPU_UP_CANCELED:
5891 case CPU_UP_CANCELED_FROZEN:
5892 if (!cpu_rq(cpu)->migration_thread)
5893 break;
5894 /* Unbind it from offline cpu so it can run. Fall thru. */
5895 kthread_bind(cpu_rq(cpu)->migration_thread,
5896 cpumask_any(cpu_online_mask));
5897 kthread_stop(cpu_rq(cpu)->migration_thread);
5898 put_task_struct(cpu_rq(cpu)->migration_thread);
5899 cpu_rq(cpu)->migration_thread = NULL;
5900 break;
5901
5902 case CPU_DEAD:
5903 case CPU_DEAD_FROZEN:
5904 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
5905 migrate_live_tasks(cpu);
5906 rq = cpu_rq(cpu);
5907 kthread_stop(rq->migration_thread);
5908 put_task_struct(rq->migration_thread);
5909 rq->migration_thread = NULL;
5910 /* Idle task back to normal (off runqueue, low prio) */
5911 raw_spin_lock_irq(&rq->lock);
5912 update_rq_clock(rq);
5913 deactivate_task(rq, rq->idle, 0);
5914 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5915 rq->idle->sched_class = &idle_sched_class;
5916 migrate_dead_tasks(cpu);
5917 raw_spin_unlock_irq(&rq->lock);
5918 cpuset_unlock();
5919 migrate_nr_uninterruptible(rq);
5920 BUG_ON(rq->nr_running != 0);
5921 calc_global_load_remove(rq);
5922 /*
5923 * No need to migrate the tasks: it was best-effort if
5924 * they didn't take sched_hotcpu_mutex. Just wake up
5925 * the requestors.
5926 */
5927 raw_spin_lock_irq(&rq->lock);
5928 while (!list_empty(&rq->migration_queue)) {
5929 struct migration_req *req;
5930
5931 req = list_entry(rq->migration_queue.next,
5932 struct migration_req, list);
5933 list_del_init(&req->list);
5934 raw_spin_unlock_irq(&rq->lock);
5935 complete(&req->done);
5936 raw_spin_lock_irq(&rq->lock);
5937 }
5938 raw_spin_unlock_irq(&rq->lock);
5939 break;
5940
5941 case CPU_DYING:
5942 case CPU_DYING_FROZEN:
5943 /* Update our root-domain */
5944 rq = cpu_rq(cpu);
5945 raw_spin_lock_irqsave(&rq->lock, flags);
5946 if (rq->rd) {
5947 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5948 set_rq_offline(rq);
5949 }
5950 raw_spin_unlock_irqrestore(&rq->lock, flags);
5951 break;
5952 #endif
5953 }
5954 return NOTIFY_OK;
5955 }
5956
5957 /*
5958 * Register at high priority so that task migration (migrate_all_tasks)
5959 * happens before everything else. This has to be lower priority than
5960 * the notifier in the perf_event subsystem, though.
5961 */
5962 static struct notifier_block __cpuinitdata migration_notifier = {
5963 .notifier_call = migration_call,
5964 .priority = 10
5965 };
5966
5967 static int __init migration_init(void)
5968 {
5969 void *cpu = (void *)(long)smp_processor_id();
5970 int err;
5971
5972 /* Start one for the boot CPU: */
5973 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5974 BUG_ON(err == NOTIFY_BAD);
5975 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5976 register_cpu_notifier(&migration_notifier);
5977
5978 return 0;
5979 }
5980 early_initcall(migration_init);
5981 #endif
5982
5983 #ifdef CONFIG_SMP
5984
5985 #ifdef CONFIG_SCHED_DEBUG
5986
5987 static __read_mostly int sched_domain_debug_enabled;
5988
5989 static int __init sched_domain_debug_setup(char *str)
5990 {
5991 sched_domain_debug_enabled = 1;
5992
5993 return 0;
5994 }
5995 early_param("sched_debug", sched_domain_debug_setup);
5996
5997 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5998 struct cpumask *groupmask)
5999 {
6000 struct sched_group *group = sd->groups;
6001 char str[256];
6002
6003 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6004 cpumask_clear(groupmask);
6005
6006 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6007
6008 if (!(sd->flags & SD_LOAD_BALANCE)) {
6009 printk("does not load-balance\n");
6010 if (sd->parent)
6011 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6012 " has parent");
6013 return -1;
6014 }
6015
6016 printk(KERN_CONT "span %s level %s\n", str, sd->name);
6017
6018 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
6019 printk(KERN_ERR "ERROR: domain->span does not contain "
6020 "CPU%d\n", cpu);
6021 }
6022 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
6023 printk(KERN_ERR "ERROR: domain->groups does not contain"
6024 " CPU%d\n", cpu);
6025 }
6026
6027 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6028 do {
6029 if (!group) {
6030 printk("\n");
6031 printk(KERN_ERR "ERROR: group is NULL\n");
6032 break;
6033 }
6034
6035 if (!group->cpu_power) {
6036 printk(KERN_CONT "\n");
6037 printk(KERN_ERR "ERROR: domain->cpu_power not "
6038 "set\n");
6039 break;
6040 }
6041
6042 if (!cpumask_weight(sched_group_cpus(group))) {
6043 printk(KERN_CONT "\n");
6044 printk(KERN_ERR "ERROR: empty group\n");
6045 break;
6046 }
6047
6048 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
6049 printk(KERN_CONT "\n");
6050 printk(KERN_ERR "ERROR: repeated CPUs\n");
6051 break;
6052 }
6053
6054 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
6055
6056 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6057
6058 printk(KERN_CONT " %s", str);
6059 if (group->cpu_power != SCHED_LOAD_SCALE) {
6060 printk(KERN_CONT " (cpu_power = %d)",
6061 group->cpu_power);
6062 }
6063
6064 group = group->next;
6065 } while (group != sd->groups);
6066 printk(KERN_CONT "\n");
6067
6068 if (!cpumask_equal(sched_domain_span(sd), groupmask))
6069 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6070
6071 if (sd->parent &&
6072 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
6073 printk(KERN_ERR "ERROR: parent span is not a superset "
6074 "of domain->span\n");
6075 return 0;
6076 }
6077
6078 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6079 {
6080 cpumask_var_t groupmask;
6081 int level = 0;
6082
6083 if (!sched_domain_debug_enabled)
6084 return;
6085
6086 if (!sd) {
6087 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6088 return;
6089 }
6090
6091 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6092
6093 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6094 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6095 return;
6096 }
6097
6098 for (;;) {
6099 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6100 break;
6101 level++;
6102 sd = sd->parent;
6103 if (!sd)
6104 break;
6105 }
6106 free_cpumask_var(groupmask);
6107 }
6108 #else /* !CONFIG_SCHED_DEBUG */
6109 # define sched_domain_debug(sd, cpu) do { } while (0)
6110 #endif /* CONFIG_SCHED_DEBUG */
6111
6112 static int sd_degenerate(struct sched_domain *sd)
6113 {
6114 if (cpumask_weight(sched_domain_span(sd)) == 1)
6115 return 1;
6116
6117 /* Following flags need at least 2 groups */
6118 if (sd->flags & (SD_LOAD_BALANCE |
6119 SD_BALANCE_NEWIDLE |
6120 SD_BALANCE_FORK |
6121 SD_BALANCE_EXEC |
6122 SD_SHARE_CPUPOWER |
6123 SD_SHARE_PKG_RESOURCES)) {
6124 if (sd->groups != sd->groups->next)
6125 return 0;
6126 }
6127
6128 /* Following flags don't use groups */
6129 if (sd->flags & (SD_WAKE_AFFINE))
6130 return 0;
6131
6132 return 1;
6133 }
6134
6135 static int
6136 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6137 {
6138 unsigned long cflags = sd->flags, pflags = parent->flags;
6139
6140 if (sd_degenerate(parent))
6141 return 1;
6142
6143 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6144 return 0;
6145
6146 /* Flags needing groups don't count if only 1 group in parent */
6147 if (parent->groups == parent->groups->next) {
6148 pflags &= ~(SD_LOAD_BALANCE |
6149 SD_BALANCE_NEWIDLE |
6150 SD_BALANCE_FORK |
6151 SD_BALANCE_EXEC |
6152 SD_SHARE_CPUPOWER |
6153 SD_SHARE_PKG_RESOURCES);
6154 if (nr_node_ids == 1)
6155 pflags &= ~SD_SERIALIZE;
6156 }
6157 if (~cflags & pflags)
6158 return 0;
6159
6160 return 1;
6161 }
6162
6163 static void free_rootdomain(struct root_domain *rd)
6164 {
6165 synchronize_sched();
6166
6167 cpupri_cleanup(&rd->cpupri);
6168
6169 free_cpumask_var(rd->rto_mask);
6170 free_cpumask_var(rd->online);
6171 free_cpumask_var(rd->span);
6172 kfree(rd);
6173 }
6174
6175 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6176 {
6177 struct root_domain *old_rd = NULL;
6178 unsigned long flags;
6179
6180 raw_spin_lock_irqsave(&rq->lock, flags);
6181
6182 if (rq->rd) {
6183 old_rd = rq->rd;
6184
6185 if (cpumask_test_cpu(rq->cpu, old_rd->online))
6186 set_rq_offline(rq);
6187
6188 cpumask_clear_cpu(rq->cpu, old_rd->span);
6189
6190 /*
6191 * If we dont want to free the old_rt yet then
6192 * set old_rd to NULL to skip the freeing later
6193 * in this function:
6194 */
6195 if (!atomic_dec_and_test(&old_rd->refcount))
6196 old_rd = NULL;
6197 }
6198
6199 atomic_inc(&rd->refcount);
6200 rq->rd = rd;
6201
6202 cpumask_set_cpu(rq->cpu, rd->span);
6203 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6204 set_rq_online(rq);
6205
6206 raw_spin_unlock_irqrestore(&rq->lock, flags);
6207
6208 if (old_rd)
6209 free_rootdomain(old_rd);
6210 }
6211
6212 static int init_rootdomain(struct root_domain *rd, bool bootmem)
6213 {
6214 gfp_t gfp = GFP_KERNEL;
6215
6216 memset(rd, 0, sizeof(*rd));
6217
6218 if (bootmem)
6219 gfp = GFP_NOWAIT;
6220
6221 if (!alloc_cpumask_var(&rd->span, gfp))
6222 goto out;
6223 if (!alloc_cpumask_var(&rd->online, gfp))
6224 goto free_span;
6225 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
6226 goto free_online;
6227
6228 if (cpupri_init(&rd->cpupri, bootmem) != 0)
6229 goto free_rto_mask;
6230 return 0;
6231
6232 free_rto_mask:
6233 free_cpumask_var(rd->rto_mask);
6234 free_online:
6235 free_cpumask_var(rd->online);
6236 free_span:
6237 free_cpumask_var(rd->span);
6238 out:
6239 return -ENOMEM;
6240 }
6241
6242 static void init_defrootdomain(void)
6243 {
6244 init_rootdomain(&def_root_domain, true);
6245
6246 atomic_set(&def_root_domain.refcount, 1);
6247 }
6248
6249 static struct root_domain *alloc_rootdomain(void)
6250 {
6251 struct root_domain *rd;
6252
6253 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6254 if (!rd)
6255 return NULL;
6256
6257 if (init_rootdomain(rd, false) != 0) {
6258 kfree(rd);
6259 return NULL;
6260 }
6261
6262 return rd;
6263 }
6264
6265 /*
6266 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6267 * hold the hotplug lock.
6268 */
6269 static void
6270 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6271 {
6272 struct rq *rq = cpu_rq(cpu);
6273 struct sched_domain *tmp;
6274
6275 /* Remove the sched domains which do not contribute to scheduling. */
6276 for (tmp = sd; tmp; ) {
6277 struct sched_domain *parent = tmp->parent;
6278 if (!parent)
6279 break;
6280
6281 if (sd_parent_degenerate(tmp, parent)) {
6282 tmp->parent = parent->parent;
6283 if (parent->parent)
6284 parent->parent->child = tmp;
6285 } else
6286 tmp = tmp->parent;
6287 }
6288
6289 if (sd && sd_degenerate(sd)) {
6290 sd = sd->parent;
6291 if (sd)
6292 sd->child = NULL;
6293 }
6294
6295 sched_domain_debug(sd, cpu);
6296
6297 rq_attach_root(rq, rd);
6298 rcu_assign_pointer(rq->sd, sd);
6299 }
6300
6301 /* cpus with isolated domains */
6302 static cpumask_var_t cpu_isolated_map;
6303
6304 /* Setup the mask of cpus configured for isolated domains */
6305 static int __init isolated_cpu_setup(char *str)
6306 {
6307 alloc_bootmem_cpumask_var(&cpu_isolated_map);
6308 cpulist_parse(str, cpu_isolated_map);
6309 return 1;
6310 }
6311
6312 __setup("isolcpus=", isolated_cpu_setup);
6313
6314 /*
6315 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6316 * to a function which identifies what group(along with sched group) a CPU
6317 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6318 * (due to the fact that we keep track of groups covered with a struct cpumask).
6319 *
6320 * init_sched_build_groups will build a circular linked list of the groups
6321 * covered by the given span, and will set each group's ->cpumask correctly,
6322 * and ->cpu_power to 0.
6323 */
6324 static void
6325 init_sched_build_groups(const struct cpumask *span,
6326 const struct cpumask *cpu_map,
6327 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
6328 struct sched_group **sg,
6329 struct cpumask *tmpmask),
6330 struct cpumask *covered, struct cpumask *tmpmask)
6331 {
6332 struct sched_group *first = NULL, *last = NULL;
6333 int i;
6334
6335 cpumask_clear(covered);
6336
6337 for_each_cpu(i, span) {
6338 struct sched_group *sg;
6339 int group = group_fn(i, cpu_map, &sg, tmpmask);
6340 int j;
6341
6342 if (cpumask_test_cpu(i, covered))
6343 continue;
6344
6345 cpumask_clear(sched_group_cpus(sg));
6346 sg->cpu_power = 0;
6347
6348 for_each_cpu(j, span) {
6349 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6350 continue;
6351
6352 cpumask_set_cpu(j, covered);
6353 cpumask_set_cpu(j, sched_group_cpus(sg));
6354 }
6355 if (!first)
6356 first = sg;
6357 if (last)
6358 last->next = sg;
6359 last = sg;
6360 }
6361 last->next = first;
6362 }
6363
6364 #define SD_NODES_PER_DOMAIN 16
6365
6366 #ifdef CONFIG_NUMA
6367
6368 /**
6369 * find_next_best_node - find the next node to include in a sched_domain
6370 * @node: node whose sched_domain we're building
6371 * @used_nodes: nodes already in the sched_domain
6372 *
6373 * Find the next node to include in a given scheduling domain. Simply
6374 * finds the closest node not already in the @used_nodes map.
6375 *
6376 * Should use nodemask_t.
6377 */
6378 static int find_next_best_node(int node, nodemask_t *used_nodes)
6379 {
6380 int i, n, val, min_val, best_node = 0;
6381
6382 min_val = INT_MAX;
6383
6384 for (i = 0; i < nr_node_ids; i++) {
6385 /* Start at @node */
6386 n = (node + i) % nr_node_ids;
6387
6388 if (!nr_cpus_node(n))
6389 continue;
6390
6391 /* Skip already used nodes */
6392 if (node_isset(n, *used_nodes))
6393 continue;
6394
6395 /* Simple min distance search */
6396 val = node_distance(node, n);
6397
6398 if (val < min_val) {
6399 min_val = val;
6400 best_node = n;
6401 }
6402 }
6403
6404 node_set(best_node, *used_nodes);
6405 return best_node;
6406 }
6407
6408 /**
6409 * sched_domain_node_span - get a cpumask for a node's sched_domain
6410 * @node: node whose cpumask we're constructing
6411 * @span: resulting cpumask
6412 *
6413 * Given a node, construct a good cpumask for its sched_domain to span. It
6414 * should be one that prevents unnecessary balancing, but also spreads tasks
6415 * out optimally.
6416 */
6417 static void sched_domain_node_span(int node, struct cpumask *span)
6418 {
6419 nodemask_t used_nodes;
6420 int i;
6421
6422 cpumask_clear(span);
6423 nodes_clear(used_nodes);
6424
6425 cpumask_or(span, span, cpumask_of_node(node));
6426 node_set(node, used_nodes);
6427
6428 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6429 int next_node = find_next_best_node(node, &used_nodes);
6430
6431 cpumask_or(span, span, cpumask_of_node(next_node));
6432 }
6433 }
6434 #endif /* CONFIG_NUMA */
6435
6436 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6437
6438 /*
6439 * The cpus mask in sched_group and sched_domain hangs off the end.
6440 *
6441 * ( See the the comments in include/linux/sched.h:struct sched_group
6442 * and struct sched_domain. )
6443 */
6444 struct static_sched_group {
6445 struct sched_group sg;
6446 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6447 };
6448
6449 struct static_sched_domain {
6450 struct sched_domain sd;
6451 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6452 };
6453
6454 struct s_data {
6455 #ifdef CONFIG_NUMA
6456 int sd_allnodes;
6457 cpumask_var_t domainspan;
6458 cpumask_var_t covered;
6459 cpumask_var_t notcovered;
6460 #endif
6461 cpumask_var_t nodemask;
6462 cpumask_var_t this_sibling_map;
6463 cpumask_var_t this_core_map;
6464 cpumask_var_t send_covered;
6465 cpumask_var_t tmpmask;
6466 struct sched_group **sched_group_nodes;
6467 struct root_domain *rd;
6468 };
6469
6470 enum s_alloc {
6471 sa_sched_groups = 0,
6472 sa_rootdomain,
6473 sa_tmpmask,
6474 sa_send_covered,
6475 sa_this_core_map,
6476 sa_this_sibling_map,
6477 sa_nodemask,
6478 sa_sched_group_nodes,
6479 #ifdef CONFIG_NUMA
6480 sa_notcovered,
6481 sa_covered,
6482 sa_domainspan,
6483 #endif
6484 sa_none,
6485 };
6486
6487 /*
6488 * SMT sched-domains:
6489 */
6490 #ifdef CONFIG_SCHED_SMT
6491 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
6492 static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
6493
6494 static int
6495 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6496 struct sched_group **sg, struct cpumask *unused)
6497 {
6498 if (sg)
6499 *sg = &per_cpu(sched_groups, cpu).sg;
6500 return cpu;
6501 }
6502 #endif /* CONFIG_SCHED_SMT */
6503
6504 /*
6505 * multi-core sched-domains:
6506 */
6507 #ifdef CONFIG_SCHED_MC
6508 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6509 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6510 #endif /* CONFIG_SCHED_MC */
6511
6512 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6513 static int
6514 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6515 struct sched_group **sg, struct cpumask *mask)
6516 {
6517 int group;
6518
6519 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6520 group = cpumask_first(mask);
6521 if (sg)
6522 *sg = &per_cpu(sched_group_core, group).sg;
6523 return group;
6524 }
6525 #elif defined(CONFIG_SCHED_MC)
6526 static int
6527 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6528 struct sched_group **sg, struct cpumask *unused)
6529 {
6530 if (sg)
6531 *sg = &per_cpu(sched_group_core, cpu).sg;
6532 return cpu;
6533 }
6534 #endif
6535
6536 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6537 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
6538
6539 static int
6540 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6541 struct sched_group **sg, struct cpumask *mask)
6542 {
6543 int group;
6544 #ifdef CONFIG_SCHED_MC
6545 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6546 group = cpumask_first(mask);
6547 #elif defined(CONFIG_SCHED_SMT)
6548 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6549 group = cpumask_first(mask);
6550 #else
6551 group = cpu;
6552 #endif
6553 if (sg)
6554 *sg = &per_cpu(sched_group_phys, group).sg;
6555 return group;
6556 }
6557
6558 #ifdef CONFIG_NUMA
6559 /*
6560 * The init_sched_build_groups can't handle what we want to do with node
6561 * groups, so roll our own. Now each node has its own list of groups which
6562 * gets dynamically allocated.
6563 */
6564 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
6565 static struct sched_group ***sched_group_nodes_bycpu;
6566
6567 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6568 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
6569
6570 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6571 struct sched_group **sg,
6572 struct cpumask *nodemask)
6573 {
6574 int group;
6575
6576 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
6577 group = cpumask_first(nodemask);
6578
6579 if (sg)
6580 *sg = &per_cpu(sched_group_allnodes, group).sg;
6581 return group;
6582 }
6583
6584 static void init_numa_sched_groups_power(struct sched_group *group_head)
6585 {
6586 struct sched_group *sg = group_head;
6587 int j;
6588
6589 if (!sg)
6590 return;
6591 do {
6592 for_each_cpu(j, sched_group_cpus(sg)) {
6593 struct sched_domain *sd;
6594
6595 sd = &per_cpu(phys_domains, j).sd;
6596 if (j != group_first_cpu(sd->groups)) {
6597 /*
6598 * Only add "power" once for each
6599 * physical package.
6600 */
6601 continue;
6602 }
6603
6604 sg->cpu_power += sd->groups->cpu_power;
6605 }
6606 sg = sg->next;
6607 } while (sg != group_head);
6608 }
6609
6610 static int build_numa_sched_groups(struct s_data *d,
6611 const struct cpumask *cpu_map, int num)
6612 {
6613 struct sched_domain *sd;
6614 struct sched_group *sg, *prev;
6615 int n, j;
6616
6617 cpumask_clear(d->covered);
6618 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
6619 if (cpumask_empty(d->nodemask)) {
6620 d->sched_group_nodes[num] = NULL;
6621 goto out;
6622 }
6623
6624 sched_domain_node_span(num, d->domainspan);
6625 cpumask_and(d->domainspan, d->domainspan, cpu_map);
6626
6627 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6628 GFP_KERNEL, num);
6629 if (!sg) {
6630 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
6631 num);
6632 return -ENOMEM;
6633 }
6634 d->sched_group_nodes[num] = sg;
6635
6636 for_each_cpu(j, d->nodemask) {
6637 sd = &per_cpu(node_domains, j).sd;
6638 sd->groups = sg;
6639 }
6640
6641 sg->cpu_power = 0;
6642 cpumask_copy(sched_group_cpus(sg), d->nodemask);
6643 sg->next = sg;
6644 cpumask_or(d->covered, d->covered, d->nodemask);
6645
6646 prev = sg;
6647 for (j = 0; j < nr_node_ids; j++) {
6648 n = (num + j) % nr_node_ids;
6649 cpumask_complement(d->notcovered, d->covered);
6650 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
6651 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
6652 if (cpumask_empty(d->tmpmask))
6653 break;
6654 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
6655 if (cpumask_empty(d->tmpmask))
6656 continue;
6657 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6658 GFP_KERNEL, num);
6659 if (!sg) {
6660 printk(KERN_WARNING
6661 "Can not alloc domain group for node %d\n", j);
6662 return -ENOMEM;
6663 }
6664 sg->cpu_power = 0;
6665 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
6666 sg->next = prev->next;
6667 cpumask_or(d->covered, d->covered, d->tmpmask);
6668 prev->next = sg;
6669 prev = sg;
6670 }
6671 out:
6672 return 0;
6673 }
6674 #endif /* CONFIG_NUMA */
6675
6676 #ifdef CONFIG_NUMA
6677 /* Free memory allocated for various sched_group structures */
6678 static void free_sched_groups(const struct cpumask *cpu_map,
6679 struct cpumask *nodemask)
6680 {
6681 int cpu, i;
6682
6683 for_each_cpu(cpu, cpu_map) {
6684 struct sched_group **sched_group_nodes
6685 = sched_group_nodes_bycpu[cpu];
6686
6687 if (!sched_group_nodes)
6688 continue;
6689
6690 for (i = 0; i < nr_node_ids; i++) {
6691 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6692
6693 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
6694 if (cpumask_empty(nodemask))
6695 continue;
6696
6697 if (sg == NULL)
6698 continue;
6699 sg = sg->next;
6700 next_sg:
6701 oldsg = sg;
6702 sg = sg->next;
6703 kfree(oldsg);
6704 if (oldsg != sched_group_nodes[i])
6705 goto next_sg;
6706 }
6707 kfree(sched_group_nodes);
6708 sched_group_nodes_bycpu[cpu] = NULL;
6709 }
6710 }
6711 #else /* !CONFIG_NUMA */
6712 static void free_sched_groups(const struct cpumask *cpu_map,
6713 struct cpumask *nodemask)
6714 {
6715 }
6716 #endif /* CONFIG_NUMA */
6717
6718 /*
6719 * Initialize sched groups cpu_power.
6720 *
6721 * cpu_power indicates the capacity of sched group, which is used while
6722 * distributing the load between different sched groups in a sched domain.
6723 * Typically cpu_power for all the groups in a sched domain will be same unless
6724 * there are asymmetries in the topology. If there are asymmetries, group
6725 * having more cpu_power will pickup more load compared to the group having
6726 * less cpu_power.
6727 */
6728 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6729 {
6730 struct sched_domain *child;
6731 struct sched_group *group;
6732 long power;
6733 int weight;
6734
6735 WARN_ON(!sd || !sd->groups);
6736
6737 if (cpu != group_first_cpu(sd->groups))
6738 return;
6739
6740 child = sd->child;
6741
6742 sd->groups->cpu_power = 0;
6743
6744 if (!child) {
6745 power = SCHED_LOAD_SCALE;
6746 weight = cpumask_weight(sched_domain_span(sd));
6747 /*
6748 * SMT siblings share the power of a single core.
6749 * Usually multiple threads get a better yield out of
6750 * that one core than a single thread would have,
6751 * reflect that in sd->smt_gain.
6752 */
6753 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
6754 power *= sd->smt_gain;
6755 power /= weight;
6756 power >>= SCHED_LOAD_SHIFT;
6757 }
6758 sd->groups->cpu_power += power;
6759 return;
6760 }
6761
6762 /*
6763 * Add cpu_power of each child group to this groups cpu_power.
6764 */
6765 group = child->groups;
6766 do {
6767 sd->groups->cpu_power += group->cpu_power;
6768 group = group->next;
6769 } while (group != child->groups);
6770 }
6771
6772 /*
6773 * Initializers for schedule domains
6774 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6775 */
6776
6777 #ifdef CONFIG_SCHED_DEBUG
6778 # define SD_INIT_NAME(sd, type) sd->name = #type
6779 #else
6780 # define SD_INIT_NAME(sd, type) do { } while (0)
6781 #endif
6782
6783 #define SD_INIT(sd, type) sd_init_##type(sd)
6784
6785 #define SD_INIT_FUNC(type) \
6786 static noinline void sd_init_##type(struct sched_domain *sd) \
6787 { \
6788 memset(sd, 0, sizeof(*sd)); \
6789 *sd = SD_##type##_INIT; \
6790 sd->level = SD_LV_##type; \
6791 SD_INIT_NAME(sd, type); \
6792 }
6793
6794 SD_INIT_FUNC(CPU)
6795 #ifdef CONFIG_NUMA
6796 SD_INIT_FUNC(ALLNODES)
6797 SD_INIT_FUNC(NODE)
6798 #endif
6799 #ifdef CONFIG_SCHED_SMT
6800 SD_INIT_FUNC(SIBLING)
6801 #endif
6802 #ifdef CONFIG_SCHED_MC
6803 SD_INIT_FUNC(MC)
6804 #endif
6805
6806 static int default_relax_domain_level = -1;
6807
6808 static int __init setup_relax_domain_level(char *str)
6809 {
6810 unsigned long val;
6811
6812 val = simple_strtoul(str, NULL, 0);
6813 if (val < SD_LV_MAX)
6814 default_relax_domain_level = val;
6815
6816 return 1;
6817 }
6818 __setup("relax_domain_level=", setup_relax_domain_level);
6819
6820 static void set_domain_attribute(struct sched_domain *sd,
6821 struct sched_domain_attr *attr)
6822 {
6823 int request;
6824
6825 if (!attr || attr->relax_domain_level < 0) {
6826 if (default_relax_domain_level < 0)
6827 return;
6828 else
6829 request = default_relax_domain_level;
6830 } else
6831 request = attr->relax_domain_level;
6832 if (request < sd->level) {
6833 /* turn off idle balance on this domain */
6834 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6835 } else {
6836 /* turn on idle balance on this domain */
6837 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6838 }
6839 }
6840
6841 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6842 const struct cpumask *cpu_map)
6843 {
6844 switch (what) {
6845 case sa_sched_groups:
6846 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
6847 d->sched_group_nodes = NULL;
6848 case sa_rootdomain:
6849 free_rootdomain(d->rd); /* fall through */
6850 case sa_tmpmask:
6851 free_cpumask_var(d->tmpmask); /* fall through */
6852 case sa_send_covered:
6853 free_cpumask_var(d->send_covered); /* fall through */
6854 case sa_this_core_map:
6855 free_cpumask_var(d->this_core_map); /* fall through */
6856 case sa_this_sibling_map:
6857 free_cpumask_var(d->this_sibling_map); /* fall through */
6858 case sa_nodemask:
6859 free_cpumask_var(d->nodemask); /* fall through */
6860 case sa_sched_group_nodes:
6861 #ifdef CONFIG_NUMA
6862 kfree(d->sched_group_nodes); /* fall through */
6863 case sa_notcovered:
6864 free_cpumask_var(d->notcovered); /* fall through */
6865 case sa_covered:
6866 free_cpumask_var(d->covered); /* fall through */
6867 case sa_domainspan:
6868 free_cpumask_var(d->domainspan); /* fall through */
6869 #endif
6870 case sa_none:
6871 break;
6872 }
6873 }
6874
6875 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6876 const struct cpumask *cpu_map)
6877 {
6878 #ifdef CONFIG_NUMA
6879 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
6880 return sa_none;
6881 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
6882 return sa_domainspan;
6883 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
6884 return sa_covered;
6885 /* Allocate the per-node list of sched groups */
6886 d->sched_group_nodes = kcalloc(nr_node_ids,
6887 sizeof(struct sched_group *), GFP_KERNEL);
6888 if (!d->sched_group_nodes) {
6889 printk(KERN_WARNING "Can not alloc sched group node list\n");
6890 return sa_notcovered;
6891 }
6892 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
6893 #endif
6894 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
6895 return sa_sched_group_nodes;
6896 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
6897 return sa_nodemask;
6898 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
6899 return sa_this_sibling_map;
6900 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
6901 return sa_this_core_map;
6902 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
6903 return sa_send_covered;
6904 d->rd = alloc_rootdomain();
6905 if (!d->rd) {
6906 printk(KERN_WARNING "Cannot alloc root domain\n");
6907 return sa_tmpmask;
6908 }
6909 return sa_rootdomain;
6910 }
6911
6912 static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
6913 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
6914 {
6915 struct sched_domain *sd = NULL;
6916 #ifdef CONFIG_NUMA
6917 struct sched_domain *parent;
6918
6919 d->sd_allnodes = 0;
6920 if (cpumask_weight(cpu_map) >
6921 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
6922 sd = &per_cpu(allnodes_domains, i).sd;
6923 SD_INIT(sd, ALLNODES);
6924 set_domain_attribute(sd, attr);
6925 cpumask_copy(sched_domain_span(sd), cpu_map);
6926 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
6927 d->sd_allnodes = 1;
6928 }
6929 parent = sd;
6930
6931 sd = &per_cpu(node_domains, i).sd;
6932 SD_INIT(sd, NODE);
6933 set_domain_attribute(sd, attr);
6934 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
6935 sd->parent = parent;
6936 if (parent)
6937 parent->child = sd;
6938 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
6939 #endif
6940 return sd;
6941 }
6942
6943 static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
6944 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6945 struct sched_domain *parent, int i)
6946 {
6947 struct sched_domain *sd;
6948 sd = &per_cpu(phys_domains, i).sd;
6949 SD_INIT(sd, CPU);
6950 set_domain_attribute(sd, attr);
6951 cpumask_copy(sched_domain_span(sd), d->nodemask);
6952 sd->parent = parent;
6953 if (parent)
6954 parent->child = sd;
6955 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
6956 return sd;
6957 }
6958
6959 static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
6960 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6961 struct sched_domain *parent, int i)
6962 {
6963 struct sched_domain *sd = parent;
6964 #ifdef CONFIG_SCHED_MC
6965 sd = &per_cpu(core_domains, i).sd;
6966 SD_INIT(sd, MC);
6967 set_domain_attribute(sd, attr);
6968 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
6969 sd->parent = parent;
6970 parent->child = sd;
6971 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
6972 #endif
6973 return sd;
6974 }
6975
6976 static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
6977 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6978 struct sched_domain *parent, int i)
6979 {
6980 struct sched_domain *sd = parent;
6981 #ifdef CONFIG_SCHED_SMT
6982 sd = &per_cpu(cpu_domains, i).sd;
6983 SD_INIT(sd, SIBLING);
6984 set_domain_attribute(sd, attr);
6985 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
6986 sd->parent = parent;
6987 parent->child = sd;
6988 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
6989 #endif
6990 return sd;
6991 }
6992
6993 static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
6994 const struct cpumask *cpu_map, int cpu)
6995 {
6996 switch (l) {
6997 #ifdef CONFIG_SCHED_SMT
6998 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
6999 cpumask_and(d->this_sibling_map, cpu_map,
7000 topology_thread_cpumask(cpu));
7001 if (cpu == cpumask_first(d->this_sibling_map))
7002 init_sched_build_groups(d->this_sibling_map, cpu_map,
7003 &cpu_to_cpu_group,
7004 d->send_covered, d->tmpmask);
7005 break;
7006 #endif
7007 #ifdef CONFIG_SCHED_MC
7008 case SD_LV_MC: /* set up multi-core groups */
7009 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
7010 if (cpu == cpumask_first(d->this_core_map))
7011 init_sched_build_groups(d->this_core_map, cpu_map,
7012 &cpu_to_core_group,
7013 d->send_covered, d->tmpmask);
7014 break;
7015 #endif
7016 case SD_LV_CPU: /* set up physical groups */
7017 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
7018 if (!cpumask_empty(d->nodemask))
7019 init_sched_build_groups(d->nodemask, cpu_map,
7020 &cpu_to_phys_group,
7021 d->send_covered, d->tmpmask);
7022 break;
7023 #ifdef CONFIG_NUMA
7024 case SD_LV_ALLNODES:
7025 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
7026 d->send_covered, d->tmpmask);
7027 break;
7028 #endif
7029 default:
7030 break;
7031 }
7032 }
7033
7034 /*
7035 * Build sched domains for a given set of cpus and attach the sched domains
7036 * to the individual cpus
7037 */
7038 static int __build_sched_domains(const struct cpumask *cpu_map,
7039 struct sched_domain_attr *attr)
7040 {
7041 enum s_alloc alloc_state = sa_none;
7042 struct s_data d;
7043 struct sched_domain *sd;
7044 int i;
7045 #ifdef CONFIG_NUMA
7046 d.sd_allnodes = 0;
7047 #endif
7048
7049 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7050 if (alloc_state != sa_rootdomain)
7051 goto error;
7052 alloc_state = sa_sched_groups;
7053
7054 /*
7055 * Set up domains for cpus specified by the cpu_map.
7056 */
7057 for_each_cpu(i, cpu_map) {
7058 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
7059 cpu_map);
7060
7061 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
7062 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
7063 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
7064 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
7065 }
7066
7067 for_each_cpu(i, cpu_map) {
7068 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
7069 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
7070 }
7071
7072 /* Set up physical groups */
7073 for (i = 0; i < nr_node_ids; i++)
7074 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
7075
7076 #ifdef CONFIG_NUMA
7077 /* Set up node groups */
7078 if (d.sd_allnodes)
7079 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
7080
7081 for (i = 0; i < nr_node_ids; i++)
7082 if (build_numa_sched_groups(&d, cpu_map, i))
7083 goto error;
7084 #endif
7085
7086 /* Calculate CPU power for physical packages and nodes */
7087 #ifdef CONFIG_SCHED_SMT
7088 for_each_cpu(i, cpu_map) {
7089 sd = &per_cpu(cpu_domains, i).sd;
7090 init_sched_groups_power(i, sd);
7091 }
7092 #endif
7093 #ifdef CONFIG_SCHED_MC
7094 for_each_cpu(i, cpu_map) {
7095 sd = &per_cpu(core_domains, i).sd;
7096 init_sched_groups_power(i, sd);
7097 }
7098 #endif
7099
7100 for_each_cpu(i, cpu_map) {
7101 sd = &per_cpu(phys_domains, i).sd;
7102 init_sched_groups_power(i, sd);
7103 }
7104
7105 #ifdef CONFIG_NUMA
7106 for (i = 0; i < nr_node_ids; i++)
7107 init_numa_sched_groups_power(d.sched_group_nodes[i]);
7108
7109 if (d.sd_allnodes) {
7110 struct sched_group *sg;
7111
7112 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7113 d.tmpmask);
7114 init_numa_sched_groups_power(sg);
7115 }
7116 #endif
7117
7118 /* Attach the domains */
7119 for_each_cpu(i, cpu_map) {
7120 #ifdef CONFIG_SCHED_SMT
7121 sd = &per_cpu(cpu_domains, i).sd;
7122 #elif defined(CONFIG_SCHED_MC)
7123 sd = &per_cpu(core_domains, i).sd;
7124 #else
7125 sd = &per_cpu(phys_domains, i).sd;
7126 #endif
7127 cpu_attach_domain(sd, d.rd, i);
7128 }
7129
7130 d.sched_group_nodes = NULL; /* don't free this we still need it */
7131 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7132 return 0;
7133
7134 error:
7135 __free_domain_allocs(&d, alloc_state, cpu_map);
7136 return -ENOMEM;
7137 }
7138
7139 static int build_sched_domains(const struct cpumask *cpu_map)
7140 {
7141 return __build_sched_domains(cpu_map, NULL);
7142 }
7143
7144 static cpumask_var_t *doms_cur; /* current sched domains */
7145 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7146 static struct sched_domain_attr *dattr_cur;
7147 /* attribues of custom domains in 'doms_cur' */
7148
7149 /*
7150 * Special case: If a kmalloc of a doms_cur partition (array of
7151 * cpumask) fails, then fallback to a single sched domain,
7152 * as determined by the single cpumask fallback_doms.
7153 */
7154 static cpumask_var_t fallback_doms;
7155
7156 /*
7157 * arch_update_cpu_topology lets virtualized architectures update the
7158 * cpu core maps. It is supposed to return 1 if the topology changed
7159 * or 0 if it stayed the same.
7160 */
7161 int __attribute__((weak)) arch_update_cpu_topology(void)
7162 {
7163 return 0;
7164 }
7165
7166 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7167 {
7168 int i;
7169 cpumask_var_t *doms;
7170
7171 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7172 if (!doms)
7173 return NULL;
7174 for (i = 0; i < ndoms; i++) {
7175 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7176 free_sched_domains(doms, i);
7177 return NULL;
7178 }
7179 }
7180 return doms;
7181 }
7182
7183 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7184 {
7185 unsigned int i;
7186 for (i = 0; i < ndoms; i++)
7187 free_cpumask_var(doms[i]);
7188 kfree(doms);
7189 }
7190
7191 /*
7192 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7193 * For now this just excludes isolated cpus, but could be used to
7194 * exclude other special cases in the future.
7195 */
7196 static int arch_init_sched_domains(const struct cpumask *cpu_map)
7197 {
7198 int err;
7199
7200 arch_update_cpu_topology();
7201 ndoms_cur = 1;
7202 doms_cur = alloc_sched_domains(ndoms_cur);
7203 if (!doms_cur)
7204 doms_cur = &fallback_doms;
7205 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7206 dattr_cur = NULL;
7207 err = build_sched_domains(doms_cur[0]);
7208 register_sched_domain_sysctl();
7209
7210 return err;
7211 }
7212
7213 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7214 struct cpumask *tmpmask)
7215 {
7216 free_sched_groups(cpu_map, tmpmask);
7217 }
7218
7219 /*
7220 * Detach sched domains from a group of cpus specified in cpu_map
7221 * These cpus will now be attached to the NULL domain
7222 */
7223 static void detach_destroy_domains(const struct cpumask *cpu_map)
7224 {
7225 /* Save because hotplug lock held. */
7226 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7227 int i;
7228
7229 for_each_cpu(i, cpu_map)
7230 cpu_attach_domain(NULL, &def_root_domain, i);
7231 synchronize_sched();
7232 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7233 }
7234
7235 /* handle null as "default" */
7236 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7237 struct sched_domain_attr *new, int idx_new)
7238 {
7239 struct sched_domain_attr tmp;
7240
7241 /* fast path */
7242 if (!new && !cur)
7243 return 1;
7244
7245 tmp = SD_ATTR_INIT;
7246 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7247 new ? (new + idx_new) : &tmp,
7248 sizeof(struct sched_domain_attr));
7249 }
7250
7251 /*
7252 * Partition sched domains as specified by the 'ndoms_new'
7253 * cpumasks in the array doms_new[] of cpumasks. This compares
7254 * doms_new[] to the current sched domain partitioning, doms_cur[].
7255 * It destroys each deleted domain and builds each new domain.
7256 *
7257 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7258 * The masks don't intersect (don't overlap.) We should setup one
7259 * sched domain for each mask. CPUs not in any of the cpumasks will
7260 * not be load balanced. If the same cpumask appears both in the
7261 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7262 * it as it is.
7263 *
7264 * The passed in 'doms_new' should be allocated using
7265 * alloc_sched_domains. This routine takes ownership of it and will
7266 * free_sched_domains it when done with it. If the caller failed the
7267 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7268 * and partition_sched_domains() will fallback to the single partition
7269 * 'fallback_doms', it also forces the domains to be rebuilt.
7270 *
7271 * If doms_new == NULL it will be replaced with cpu_online_mask.
7272 * ndoms_new == 0 is a special case for destroying existing domains,
7273 * and it will not create the default domain.
7274 *
7275 * Call with hotplug lock held
7276 */
7277 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7278 struct sched_domain_attr *dattr_new)
7279 {
7280 int i, j, n;
7281 int new_topology;
7282
7283 mutex_lock(&sched_domains_mutex);
7284
7285 /* always unregister in case we don't destroy any domains */
7286 unregister_sched_domain_sysctl();
7287
7288 /* Let architecture update cpu core mappings. */
7289 new_topology = arch_update_cpu_topology();
7290
7291 n = doms_new ? ndoms_new : 0;
7292
7293 /* Destroy deleted domains */
7294 for (i = 0; i < ndoms_cur; i++) {
7295 for (j = 0; j < n && !new_topology; j++) {
7296 if (cpumask_equal(doms_cur[i], doms_new[j])
7297 && dattrs_equal(dattr_cur, i, dattr_new, j))
7298 goto match1;
7299 }
7300 /* no match - a current sched domain not in new doms_new[] */
7301 detach_destroy_domains(doms_cur[i]);
7302 match1:
7303 ;
7304 }
7305
7306 if (doms_new == NULL) {
7307 ndoms_cur = 0;
7308 doms_new = &fallback_doms;
7309 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7310 WARN_ON_ONCE(dattr_new);
7311 }
7312
7313 /* Build new domains */
7314 for (i = 0; i < ndoms_new; i++) {
7315 for (j = 0; j < ndoms_cur && !new_topology; j++) {
7316 if (cpumask_equal(doms_new[i], doms_cur[j])
7317 && dattrs_equal(dattr_new, i, dattr_cur, j))
7318 goto match2;
7319 }
7320 /* no match - add a new doms_new */
7321 __build_sched_domains(doms_new[i],
7322 dattr_new ? dattr_new + i : NULL);
7323 match2:
7324 ;
7325 }
7326
7327 /* Remember the new sched domains */
7328 if (doms_cur != &fallback_doms)
7329 free_sched_domains(doms_cur, ndoms_cur);
7330 kfree(dattr_cur); /* kfree(NULL) is safe */
7331 doms_cur = doms_new;
7332 dattr_cur = dattr_new;
7333 ndoms_cur = ndoms_new;
7334
7335 register_sched_domain_sysctl();
7336
7337 mutex_unlock(&sched_domains_mutex);
7338 }
7339
7340 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7341 static void arch_reinit_sched_domains(void)
7342 {
7343 get_online_cpus();
7344
7345 /* Destroy domains first to force the rebuild */
7346 partition_sched_domains(0, NULL, NULL);
7347
7348 rebuild_sched_domains();
7349 put_online_cpus();
7350 }
7351
7352 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7353 {
7354 unsigned int level = 0;
7355
7356 if (sscanf(buf, "%u", &level) != 1)
7357 return -EINVAL;
7358
7359 /*
7360 * level is always be positive so don't check for
7361 * level < POWERSAVINGS_BALANCE_NONE which is 0
7362 * What happens on 0 or 1 byte write,
7363 * need to check for count as well?
7364 */
7365
7366 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7367 return -EINVAL;
7368
7369 if (smt)
7370 sched_smt_power_savings = level;
7371 else
7372 sched_mc_power_savings = level;
7373
7374 arch_reinit_sched_domains();
7375
7376 return count;
7377 }
7378
7379 #ifdef CONFIG_SCHED_MC
7380 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7381 struct sysdev_class_attribute *attr,
7382 char *page)
7383 {
7384 return sprintf(page, "%u\n", sched_mc_power_savings);
7385 }
7386 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7387 struct sysdev_class_attribute *attr,
7388 const char *buf, size_t count)
7389 {
7390 return sched_power_savings_store(buf, count, 0);
7391 }
7392 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7393 sched_mc_power_savings_show,
7394 sched_mc_power_savings_store);
7395 #endif
7396
7397 #ifdef CONFIG_SCHED_SMT
7398 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7399 struct sysdev_class_attribute *attr,
7400 char *page)
7401 {
7402 return sprintf(page, "%u\n", sched_smt_power_savings);
7403 }
7404 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7405 struct sysdev_class_attribute *attr,
7406 const char *buf, size_t count)
7407 {
7408 return sched_power_savings_store(buf, count, 1);
7409 }
7410 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7411 sched_smt_power_savings_show,
7412 sched_smt_power_savings_store);
7413 #endif
7414
7415 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7416 {
7417 int err = 0;
7418
7419 #ifdef CONFIG_SCHED_SMT
7420 if (smt_capable())
7421 err = sysfs_create_file(&cls->kset.kobj,
7422 &attr_sched_smt_power_savings.attr);
7423 #endif
7424 #ifdef CONFIG_SCHED_MC
7425 if (!err && mc_capable())
7426 err = sysfs_create_file(&cls->kset.kobj,
7427 &attr_sched_mc_power_savings.attr);
7428 #endif
7429 return err;
7430 }
7431 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7432
7433 #ifndef CONFIG_CPUSETS
7434 /*
7435 * Add online and remove offline CPUs from the scheduler domains.
7436 * When cpusets are enabled they take over this function.
7437 */
7438 static int update_sched_domains(struct notifier_block *nfb,
7439 unsigned long action, void *hcpu)
7440 {
7441 switch (action) {
7442 case CPU_ONLINE:
7443 case CPU_ONLINE_FROZEN:
7444 case CPU_DOWN_PREPARE:
7445 case CPU_DOWN_PREPARE_FROZEN:
7446 case CPU_DOWN_FAILED:
7447 case CPU_DOWN_FAILED_FROZEN:
7448 partition_sched_domains(1, NULL, NULL);
7449 return NOTIFY_OK;
7450
7451 default:
7452 return NOTIFY_DONE;
7453 }
7454 }
7455 #endif
7456
7457 static int update_runtime(struct notifier_block *nfb,
7458 unsigned long action, void *hcpu)
7459 {
7460 int cpu = (int)(long)hcpu;
7461
7462 switch (action) {
7463 case CPU_DOWN_PREPARE:
7464 case CPU_DOWN_PREPARE_FROZEN:
7465 disable_runtime(cpu_rq(cpu));
7466 return NOTIFY_OK;
7467
7468 case CPU_DOWN_FAILED:
7469 case CPU_DOWN_FAILED_FROZEN:
7470 case CPU_ONLINE:
7471 case CPU_ONLINE_FROZEN:
7472 enable_runtime(cpu_rq(cpu));
7473 return NOTIFY_OK;
7474
7475 default:
7476 return NOTIFY_DONE;
7477 }
7478 }
7479
7480 void __init sched_init_smp(void)
7481 {
7482 cpumask_var_t non_isolated_cpus;
7483
7484 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7485 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7486
7487 #if defined(CONFIG_NUMA)
7488 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7489 GFP_KERNEL);
7490 BUG_ON(sched_group_nodes_bycpu == NULL);
7491 #endif
7492 get_online_cpus();
7493 mutex_lock(&sched_domains_mutex);
7494 arch_init_sched_domains(cpu_active_mask);
7495 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7496 if (cpumask_empty(non_isolated_cpus))
7497 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7498 mutex_unlock(&sched_domains_mutex);
7499 put_online_cpus();
7500
7501 #ifndef CONFIG_CPUSETS
7502 /* XXX: Theoretical race here - CPU may be hotplugged now */
7503 hotcpu_notifier(update_sched_domains, 0);
7504 #endif
7505
7506 /* RT runtime code needs to handle some hotplug events */
7507 hotcpu_notifier(update_runtime, 0);
7508
7509 init_hrtick();
7510
7511 /* Move init over to a non-isolated CPU */
7512 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7513 BUG();
7514 sched_init_granularity();
7515 free_cpumask_var(non_isolated_cpus);
7516
7517 init_sched_rt_class();
7518 }
7519 #else
7520 void __init sched_init_smp(void)
7521 {
7522 sched_init_granularity();
7523 }
7524 #endif /* CONFIG_SMP */
7525
7526 const_debug unsigned int sysctl_timer_migration = 1;
7527
7528 int in_sched_functions(unsigned long addr)
7529 {
7530 return in_lock_functions(addr) ||
7531 (addr >= (unsigned long)__sched_text_start
7532 && addr < (unsigned long)__sched_text_end);
7533 }
7534
7535 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
7536 {
7537 cfs_rq->tasks_timeline = RB_ROOT;
7538 INIT_LIST_HEAD(&cfs_rq->tasks);
7539 #ifdef CONFIG_FAIR_GROUP_SCHED
7540 cfs_rq->rq = rq;
7541 #endif
7542 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7543 }
7544
7545 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7546 {
7547 struct rt_prio_array *array;
7548 int i;
7549
7550 array = &rt_rq->active;
7551 for (i = 0; i < MAX_RT_PRIO; i++) {
7552 INIT_LIST_HEAD(array->queue + i);
7553 __clear_bit(i, array->bitmap);
7554 }
7555 /* delimiter for bitsearch: */
7556 __set_bit(MAX_RT_PRIO, array->bitmap);
7557
7558 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7559 rt_rq->highest_prio.curr = MAX_RT_PRIO;
7560 #ifdef CONFIG_SMP
7561 rt_rq->highest_prio.next = MAX_RT_PRIO;
7562 #endif
7563 #endif
7564 #ifdef CONFIG_SMP
7565 rt_rq->rt_nr_migratory = 0;
7566 rt_rq->overloaded = 0;
7567 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
7568 #endif
7569
7570 rt_rq->rt_time = 0;
7571 rt_rq->rt_throttled = 0;
7572 rt_rq->rt_runtime = 0;
7573 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
7574
7575 #ifdef CONFIG_RT_GROUP_SCHED
7576 rt_rq->rt_nr_boosted = 0;
7577 rt_rq->rq = rq;
7578 #endif
7579 }
7580
7581 #ifdef CONFIG_FAIR_GROUP_SCHED
7582 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7583 struct sched_entity *se, int cpu, int add,
7584 struct sched_entity *parent)
7585 {
7586 struct rq *rq = cpu_rq(cpu);
7587 tg->cfs_rq[cpu] = cfs_rq;
7588 init_cfs_rq(cfs_rq, rq);
7589 cfs_rq->tg = tg;
7590 if (add)
7591 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7592
7593 tg->se[cpu] = se;
7594 /* se could be NULL for init_task_group */
7595 if (!se)
7596 return;
7597
7598 if (!parent)
7599 se->cfs_rq = &rq->cfs;
7600 else
7601 se->cfs_rq = parent->my_q;
7602
7603 se->my_q = cfs_rq;
7604 se->load.weight = tg->shares;
7605 se->load.inv_weight = 0;
7606 se->parent = parent;
7607 }
7608 #endif
7609
7610 #ifdef CONFIG_RT_GROUP_SCHED
7611 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7612 struct sched_rt_entity *rt_se, int cpu, int add,
7613 struct sched_rt_entity *parent)
7614 {
7615 struct rq *rq = cpu_rq(cpu);
7616
7617 tg->rt_rq[cpu] = rt_rq;
7618 init_rt_rq(rt_rq, rq);
7619 rt_rq->tg = tg;
7620 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
7621 if (add)
7622 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7623
7624 tg->rt_se[cpu] = rt_se;
7625 if (!rt_se)
7626 return;
7627
7628 if (!parent)
7629 rt_se->rt_rq = &rq->rt;
7630 else
7631 rt_se->rt_rq = parent->my_q;
7632
7633 rt_se->my_q = rt_rq;
7634 rt_se->parent = parent;
7635 INIT_LIST_HEAD(&rt_se->run_list);
7636 }
7637 #endif
7638
7639 void __init sched_init(void)
7640 {
7641 int i, j;
7642 unsigned long alloc_size = 0, ptr;
7643
7644 #ifdef CONFIG_FAIR_GROUP_SCHED
7645 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7646 #endif
7647 #ifdef CONFIG_RT_GROUP_SCHED
7648 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7649 #endif
7650 #ifdef CONFIG_CPUMASK_OFFSTACK
7651 alloc_size += num_possible_cpus() * cpumask_size();
7652 #endif
7653 if (alloc_size) {
7654 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7655
7656 #ifdef CONFIG_FAIR_GROUP_SCHED
7657 init_task_group.se = (struct sched_entity **)ptr;
7658 ptr += nr_cpu_ids * sizeof(void **);
7659
7660 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7661 ptr += nr_cpu_ids * sizeof(void **);
7662
7663 #endif /* CONFIG_FAIR_GROUP_SCHED */
7664 #ifdef CONFIG_RT_GROUP_SCHED
7665 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7666 ptr += nr_cpu_ids * sizeof(void **);
7667
7668 init_task_group.rt_rq = (struct rt_rq **)ptr;
7669 ptr += nr_cpu_ids * sizeof(void **);
7670
7671 #endif /* CONFIG_RT_GROUP_SCHED */
7672 #ifdef CONFIG_CPUMASK_OFFSTACK
7673 for_each_possible_cpu(i) {
7674 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7675 ptr += cpumask_size();
7676 }
7677 #endif /* CONFIG_CPUMASK_OFFSTACK */
7678 }
7679
7680 #ifdef CONFIG_SMP
7681 init_defrootdomain();
7682 #endif
7683
7684 init_rt_bandwidth(&def_rt_bandwidth,
7685 global_rt_period(), global_rt_runtime());
7686
7687 #ifdef CONFIG_RT_GROUP_SCHED
7688 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7689 global_rt_period(), global_rt_runtime());
7690 #endif /* CONFIG_RT_GROUP_SCHED */
7691
7692 #ifdef CONFIG_CGROUP_SCHED
7693 list_add(&init_task_group.list, &task_groups);
7694 INIT_LIST_HEAD(&init_task_group.children);
7695
7696 #endif /* CONFIG_CGROUP_SCHED */
7697
7698 #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
7699 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
7700 __alignof__(unsigned long));
7701 #endif
7702 for_each_possible_cpu(i) {
7703 struct rq *rq;
7704
7705 rq = cpu_rq(i);
7706 raw_spin_lock_init(&rq->lock);
7707 rq->nr_running = 0;
7708 rq->calc_load_active = 0;
7709 rq->calc_load_update = jiffies + LOAD_FREQ;
7710 init_cfs_rq(&rq->cfs, rq);
7711 init_rt_rq(&rq->rt, rq);
7712 #ifdef CONFIG_FAIR_GROUP_SCHED
7713 init_task_group.shares = init_task_group_load;
7714 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7715 #ifdef CONFIG_CGROUP_SCHED
7716 /*
7717 * How much cpu bandwidth does init_task_group get?
7718 *
7719 * In case of task-groups formed thr' the cgroup filesystem, it
7720 * gets 100% of the cpu resources in the system. This overall
7721 * system cpu resource is divided among the tasks of
7722 * init_task_group and its child task-groups in a fair manner,
7723 * based on each entity's (task or task-group's) weight
7724 * (se->load.weight).
7725 *
7726 * In other words, if init_task_group has 10 tasks of weight
7727 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7728 * then A0's share of the cpu resource is:
7729 *
7730 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7731 *
7732 * We achieve this by letting init_task_group's tasks sit
7733 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7734 */
7735 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
7736 #endif
7737 #endif /* CONFIG_FAIR_GROUP_SCHED */
7738
7739 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7740 #ifdef CONFIG_RT_GROUP_SCHED
7741 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7742 #ifdef CONFIG_CGROUP_SCHED
7743 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
7744 #endif
7745 #endif
7746
7747 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7748 rq->cpu_load[j] = 0;
7749 #ifdef CONFIG_SMP
7750 rq->sd = NULL;
7751 rq->rd = NULL;
7752 rq->post_schedule = 0;
7753 rq->active_balance = 0;
7754 rq->next_balance = jiffies;
7755 rq->push_cpu = 0;
7756 rq->cpu = i;
7757 rq->online = 0;
7758 rq->migration_thread = NULL;
7759 rq->idle_stamp = 0;
7760 rq->avg_idle = 2*sysctl_sched_migration_cost;
7761 INIT_LIST_HEAD(&rq->migration_queue);
7762 rq_attach_root(rq, &def_root_domain);
7763 #endif
7764 init_rq_hrtick(rq);
7765 atomic_set(&rq->nr_iowait, 0);
7766 }
7767
7768 set_load_weight(&init_task);
7769
7770 #ifdef CONFIG_PREEMPT_NOTIFIERS
7771 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7772 #endif
7773
7774 #ifdef CONFIG_SMP
7775 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7776 #endif
7777
7778 #ifdef CONFIG_RT_MUTEXES
7779 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
7780 #endif
7781
7782 /*
7783 * The boot idle thread does lazy MMU switching as well:
7784 */
7785 atomic_inc(&init_mm.mm_count);
7786 enter_lazy_tlb(&init_mm, current);
7787
7788 /*
7789 * Make us the idle thread. Technically, schedule() should not be
7790 * called from this thread, however somewhere below it might be,
7791 * but because we are the idle thread, we just pick up running again
7792 * when this runqueue becomes "idle".
7793 */
7794 init_idle(current, smp_processor_id());
7795
7796 calc_load_update = jiffies + LOAD_FREQ;
7797
7798 /*
7799 * During early bootup we pretend to be a normal task:
7800 */
7801 current->sched_class = &fair_sched_class;
7802
7803 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
7804 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
7805 #ifdef CONFIG_SMP
7806 #ifdef CONFIG_NO_HZ
7807 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
7808 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7809 #endif
7810 /* May be allocated at isolcpus cmdline parse time */
7811 if (cpu_isolated_map == NULL)
7812 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7813 #endif /* SMP */
7814
7815 perf_event_init();
7816
7817 scheduler_running = 1;
7818 }
7819
7820 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7821 static inline int preempt_count_equals(int preempt_offset)
7822 {
7823 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7824
7825 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
7826 }
7827
7828 void __might_sleep(const char *file, int line, int preempt_offset)
7829 {
7830 #ifdef in_atomic
7831 static unsigned long prev_jiffy; /* ratelimiting */
7832
7833 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7834 system_state != SYSTEM_RUNNING || oops_in_progress)
7835 return;
7836 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7837 return;
7838 prev_jiffy = jiffies;
7839
7840 printk(KERN_ERR
7841 "BUG: sleeping function called from invalid context at %s:%d\n",
7842 file, line);
7843 printk(KERN_ERR
7844 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7845 in_atomic(), irqs_disabled(),
7846 current->pid, current->comm);
7847
7848 debug_show_held_locks(current);
7849 if (irqs_disabled())
7850 print_irqtrace_events(current);
7851 dump_stack();
7852 #endif
7853 }
7854 EXPORT_SYMBOL(__might_sleep);
7855 #endif
7856
7857 #ifdef CONFIG_MAGIC_SYSRQ
7858 static void normalize_task(struct rq *rq, struct task_struct *p)
7859 {
7860 int on_rq;
7861
7862 update_rq_clock(rq);
7863 on_rq = p->se.on_rq;
7864 if (on_rq)
7865 deactivate_task(rq, p, 0);
7866 __setscheduler(rq, p, SCHED_NORMAL, 0);
7867 if (on_rq) {
7868 activate_task(rq, p, 0);
7869 resched_task(rq->curr);
7870 }
7871 }
7872
7873 void normalize_rt_tasks(void)
7874 {
7875 struct task_struct *g, *p;
7876 unsigned long flags;
7877 struct rq *rq;
7878
7879 read_lock_irqsave(&tasklist_lock, flags);
7880 do_each_thread(g, p) {
7881 /*
7882 * Only normalize user tasks:
7883 */
7884 if (!p->mm)
7885 continue;
7886
7887 p->se.exec_start = 0;
7888 #ifdef CONFIG_SCHEDSTATS
7889 p->se.wait_start = 0;
7890 p->se.sleep_start = 0;
7891 p->se.block_start = 0;
7892 #endif
7893
7894 if (!rt_task(p)) {
7895 /*
7896 * Renice negative nice level userspace
7897 * tasks back to 0:
7898 */
7899 if (TASK_NICE(p) < 0 && p->mm)
7900 set_user_nice(p, 0);
7901 continue;
7902 }
7903
7904 raw_spin_lock(&p->pi_lock);
7905 rq = __task_rq_lock(p);
7906
7907 normalize_task(rq, p);
7908
7909 __task_rq_unlock(rq);
7910 raw_spin_unlock(&p->pi_lock);
7911 } while_each_thread(g, p);
7912
7913 read_unlock_irqrestore(&tasklist_lock, flags);
7914 }
7915
7916 #endif /* CONFIG_MAGIC_SYSRQ */
7917
7918 #ifdef CONFIG_IA64
7919 /*
7920 * These functions are only useful for the IA64 MCA handling.
7921 *
7922 * They can only be called when the whole system has been
7923 * stopped - every CPU needs to be quiescent, and no scheduling
7924 * activity can take place. Using them for anything else would
7925 * be a serious bug, and as a result, they aren't even visible
7926 * under any other configuration.
7927 */
7928
7929 /**
7930 * curr_task - return the current task for a given cpu.
7931 * @cpu: the processor in question.
7932 *
7933 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7934 */
7935 struct task_struct *curr_task(int cpu)
7936 {
7937 return cpu_curr(cpu);
7938 }
7939
7940 /**
7941 * set_curr_task - set the current task for a given cpu.
7942 * @cpu: the processor in question.
7943 * @p: the task pointer to set.
7944 *
7945 * Description: This function must only be used when non-maskable interrupts
7946 * are serviced on a separate stack. It allows the architecture to switch the
7947 * notion of the current task on a cpu in a non-blocking manner. This function
7948 * must be called with all CPU's synchronized, and interrupts disabled, the
7949 * and caller must save the original value of the current task (see
7950 * curr_task() above) and restore that value before reenabling interrupts and
7951 * re-starting the system.
7952 *
7953 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7954 */
7955 void set_curr_task(int cpu, struct task_struct *p)
7956 {
7957 cpu_curr(cpu) = p;
7958 }
7959
7960 #endif
7961
7962 #ifdef CONFIG_FAIR_GROUP_SCHED
7963 static void free_fair_sched_group(struct task_group *tg)
7964 {
7965 int i;
7966
7967 for_each_possible_cpu(i) {
7968 if (tg->cfs_rq)
7969 kfree(tg->cfs_rq[i]);
7970 if (tg->se)
7971 kfree(tg->se[i]);
7972 }
7973
7974 kfree(tg->cfs_rq);
7975 kfree(tg->se);
7976 }
7977
7978 static
7979 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7980 {
7981 struct cfs_rq *cfs_rq;
7982 struct sched_entity *se;
7983 struct rq *rq;
7984 int i;
7985
7986 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7987 if (!tg->cfs_rq)
7988 goto err;
7989 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7990 if (!tg->se)
7991 goto err;
7992
7993 tg->shares = NICE_0_LOAD;
7994
7995 for_each_possible_cpu(i) {
7996 rq = cpu_rq(i);
7997
7998 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7999 GFP_KERNEL, cpu_to_node(i));
8000 if (!cfs_rq)
8001 goto err;
8002
8003 se = kzalloc_node(sizeof(struct sched_entity),
8004 GFP_KERNEL, cpu_to_node(i));
8005 if (!se)
8006 goto err_free_rq;
8007
8008 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
8009 }
8010
8011 return 1;
8012
8013 err_free_rq:
8014 kfree(cfs_rq);
8015 err:
8016 return 0;
8017 }
8018
8019 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8020 {
8021 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8022 &cpu_rq(cpu)->leaf_cfs_rq_list);
8023 }
8024
8025 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8026 {
8027 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8028 }
8029 #else /* !CONFG_FAIR_GROUP_SCHED */
8030 static inline void free_fair_sched_group(struct task_group *tg)
8031 {
8032 }
8033
8034 static inline
8035 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8036 {
8037 return 1;
8038 }
8039
8040 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8041 {
8042 }
8043
8044 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8045 {
8046 }
8047 #endif /* CONFIG_FAIR_GROUP_SCHED */
8048
8049 #ifdef CONFIG_RT_GROUP_SCHED
8050 static void free_rt_sched_group(struct task_group *tg)
8051 {
8052 int i;
8053
8054 destroy_rt_bandwidth(&tg->rt_bandwidth);
8055
8056 for_each_possible_cpu(i) {
8057 if (tg->rt_rq)
8058 kfree(tg->rt_rq[i]);
8059 if (tg->rt_se)
8060 kfree(tg->rt_se[i]);
8061 }
8062
8063 kfree(tg->rt_rq);
8064 kfree(tg->rt_se);
8065 }
8066
8067 static
8068 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8069 {
8070 struct rt_rq *rt_rq;
8071 struct sched_rt_entity *rt_se;
8072 struct rq *rq;
8073 int i;
8074
8075 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8076 if (!tg->rt_rq)
8077 goto err;
8078 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8079 if (!tg->rt_se)
8080 goto err;
8081
8082 init_rt_bandwidth(&tg->rt_bandwidth,
8083 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8084
8085 for_each_possible_cpu(i) {
8086 rq = cpu_rq(i);
8087
8088 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8089 GFP_KERNEL, cpu_to_node(i));
8090 if (!rt_rq)
8091 goto err;
8092
8093 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8094 GFP_KERNEL, cpu_to_node(i));
8095 if (!rt_se)
8096 goto err_free_rq;
8097
8098 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
8099 }
8100
8101 return 1;
8102
8103 err_free_rq:
8104 kfree(rt_rq);
8105 err:
8106 return 0;
8107 }
8108
8109 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8110 {
8111 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8112 &cpu_rq(cpu)->leaf_rt_rq_list);
8113 }
8114
8115 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8116 {
8117 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8118 }
8119 #else /* !CONFIG_RT_GROUP_SCHED */
8120 static inline void free_rt_sched_group(struct task_group *tg)
8121 {
8122 }
8123
8124 static inline
8125 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8126 {
8127 return 1;
8128 }
8129
8130 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8131 {
8132 }
8133
8134 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8135 {
8136 }
8137 #endif /* CONFIG_RT_GROUP_SCHED */
8138
8139 #ifdef CONFIG_CGROUP_SCHED
8140 static void free_sched_group(struct task_group *tg)
8141 {
8142 free_fair_sched_group(tg);
8143 free_rt_sched_group(tg);
8144 kfree(tg);
8145 }
8146
8147 /* allocate runqueue etc for a new task group */
8148 struct task_group *sched_create_group(struct task_group *parent)
8149 {
8150 struct task_group *tg;
8151 unsigned long flags;
8152 int i;
8153
8154 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8155 if (!tg)
8156 return ERR_PTR(-ENOMEM);
8157
8158 if (!alloc_fair_sched_group(tg, parent))
8159 goto err;
8160
8161 if (!alloc_rt_sched_group(tg, parent))
8162 goto err;
8163
8164 spin_lock_irqsave(&task_group_lock, flags);
8165 for_each_possible_cpu(i) {
8166 register_fair_sched_group(tg, i);
8167 register_rt_sched_group(tg, i);
8168 }
8169 list_add_rcu(&tg->list, &task_groups);
8170
8171 WARN_ON(!parent); /* root should already exist */
8172
8173 tg->parent = parent;
8174 INIT_LIST_HEAD(&tg->children);
8175 list_add_rcu(&tg->siblings, &parent->children);
8176 spin_unlock_irqrestore(&task_group_lock, flags);
8177
8178 return tg;
8179
8180 err:
8181 free_sched_group(tg);
8182 return ERR_PTR(-ENOMEM);
8183 }
8184
8185 /* rcu callback to free various structures associated with a task group */
8186 static void free_sched_group_rcu(struct rcu_head *rhp)
8187 {
8188 /* now it should be safe to free those cfs_rqs */
8189 free_sched_group(container_of(rhp, struct task_group, rcu));
8190 }
8191
8192 /* Destroy runqueue etc associated with a task group */
8193 void sched_destroy_group(struct task_group *tg)
8194 {
8195 unsigned long flags;
8196 int i;
8197
8198 spin_lock_irqsave(&task_group_lock, flags);
8199 for_each_possible_cpu(i) {
8200 unregister_fair_sched_group(tg, i);
8201 unregister_rt_sched_group(tg, i);
8202 }
8203 list_del_rcu(&tg->list);
8204 list_del_rcu(&tg->siblings);
8205 spin_unlock_irqrestore(&task_group_lock, flags);
8206
8207 /* wait for possible concurrent references to cfs_rqs complete */
8208 call_rcu(&tg->rcu, free_sched_group_rcu);
8209 }
8210
8211 /* change task's runqueue when it moves between groups.
8212 * The caller of this function should have put the task in its new group
8213 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8214 * reflect its new group.
8215 */
8216 void sched_move_task(struct task_struct *tsk)
8217 {
8218 int on_rq, running;
8219 unsigned long flags;
8220 struct rq *rq;
8221
8222 rq = task_rq_lock(tsk, &flags);
8223
8224 update_rq_clock(rq);
8225
8226 running = task_current(rq, tsk);
8227 on_rq = tsk->se.on_rq;
8228
8229 if (on_rq)
8230 dequeue_task(rq, tsk, 0);
8231 if (unlikely(running))
8232 tsk->sched_class->put_prev_task(rq, tsk);
8233
8234 set_task_rq(tsk, task_cpu(tsk));
8235
8236 #ifdef CONFIG_FAIR_GROUP_SCHED
8237 if (tsk->sched_class->moved_group)
8238 tsk->sched_class->moved_group(tsk, on_rq);
8239 #endif
8240
8241 if (unlikely(running))
8242 tsk->sched_class->set_curr_task(rq);
8243 if (on_rq)
8244 enqueue_task(rq, tsk, 0, false);
8245
8246 task_rq_unlock(rq, &flags);
8247 }
8248 #endif /* CONFIG_CGROUP_SCHED */
8249
8250 #ifdef CONFIG_FAIR_GROUP_SCHED
8251 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
8252 {
8253 struct cfs_rq *cfs_rq = se->cfs_rq;
8254 int on_rq;
8255
8256 on_rq = se->on_rq;
8257 if (on_rq)
8258 dequeue_entity(cfs_rq, se, 0);
8259
8260 se->load.weight = shares;
8261 se->load.inv_weight = 0;
8262
8263 if (on_rq)
8264 enqueue_entity(cfs_rq, se, 0);
8265 }
8266
8267 static void set_se_shares(struct sched_entity *se, unsigned long shares)
8268 {
8269 struct cfs_rq *cfs_rq = se->cfs_rq;
8270 struct rq *rq = cfs_rq->rq;
8271 unsigned long flags;
8272
8273 raw_spin_lock_irqsave(&rq->lock, flags);
8274 __set_se_shares(se, shares);
8275 raw_spin_unlock_irqrestore(&rq->lock, flags);
8276 }
8277
8278 static DEFINE_MUTEX(shares_mutex);
8279
8280 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8281 {
8282 int i;
8283 unsigned long flags;
8284
8285 /*
8286 * We can't change the weight of the root cgroup.
8287 */
8288 if (!tg->se[0])
8289 return -EINVAL;
8290
8291 if (shares < MIN_SHARES)
8292 shares = MIN_SHARES;
8293 else if (shares > MAX_SHARES)
8294 shares = MAX_SHARES;
8295
8296 mutex_lock(&shares_mutex);
8297 if (tg->shares == shares)
8298 goto done;
8299
8300 spin_lock_irqsave(&task_group_lock, flags);
8301 for_each_possible_cpu(i)
8302 unregister_fair_sched_group(tg, i);
8303 list_del_rcu(&tg->siblings);
8304 spin_unlock_irqrestore(&task_group_lock, flags);
8305
8306 /* wait for any ongoing reference to this group to finish */
8307 synchronize_sched();
8308
8309 /*
8310 * Now we are free to modify the group's share on each cpu
8311 * w/o tripping rebalance_share or load_balance_fair.
8312 */
8313 tg->shares = shares;
8314 for_each_possible_cpu(i) {
8315 /*
8316 * force a rebalance
8317 */
8318 cfs_rq_set_shares(tg->cfs_rq[i], 0);
8319 set_se_shares(tg->se[i], shares);
8320 }
8321
8322 /*
8323 * Enable load balance activity on this group, by inserting it back on
8324 * each cpu's rq->leaf_cfs_rq_list.
8325 */
8326 spin_lock_irqsave(&task_group_lock, flags);
8327 for_each_possible_cpu(i)
8328 register_fair_sched_group(tg, i);
8329 list_add_rcu(&tg->siblings, &tg->parent->children);
8330 spin_unlock_irqrestore(&task_group_lock, flags);
8331 done:
8332 mutex_unlock(&shares_mutex);
8333 return 0;
8334 }
8335
8336 unsigned long sched_group_shares(struct task_group *tg)
8337 {
8338 return tg->shares;
8339 }
8340 #endif
8341
8342 #ifdef CONFIG_RT_GROUP_SCHED
8343 /*
8344 * Ensure that the real time constraints are schedulable.
8345 */
8346 static DEFINE_MUTEX(rt_constraints_mutex);
8347
8348 static unsigned long to_ratio(u64 period, u64 runtime)
8349 {
8350 if (runtime == RUNTIME_INF)
8351 return 1ULL << 20;
8352
8353 return div64_u64(runtime << 20, period);
8354 }
8355
8356 /* Must be called with tasklist_lock held */
8357 static inline int tg_has_rt_tasks(struct task_group *tg)
8358 {
8359 struct task_struct *g, *p;
8360
8361 do_each_thread(g, p) {
8362 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8363 return 1;
8364 } while_each_thread(g, p);
8365
8366 return 0;
8367 }
8368
8369 struct rt_schedulable_data {
8370 struct task_group *tg;
8371 u64 rt_period;
8372 u64 rt_runtime;
8373 };
8374
8375 static int tg_schedulable(struct task_group *tg, void *data)
8376 {
8377 struct rt_schedulable_data *d = data;
8378 struct task_group *child;
8379 unsigned long total, sum = 0;
8380 u64 period, runtime;
8381
8382 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8383 runtime = tg->rt_bandwidth.rt_runtime;
8384
8385 if (tg == d->tg) {
8386 period = d->rt_period;
8387 runtime = d->rt_runtime;
8388 }
8389
8390 /*
8391 * Cannot have more runtime than the period.
8392 */
8393 if (runtime > period && runtime != RUNTIME_INF)
8394 return -EINVAL;
8395
8396 /*
8397 * Ensure we don't starve existing RT tasks.
8398 */
8399 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8400 return -EBUSY;
8401
8402 total = to_ratio(period, runtime);
8403
8404 /*
8405 * Nobody can have more than the global setting allows.
8406 */
8407 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8408 return -EINVAL;
8409
8410 /*
8411 * The sum of our children's runtime should not exceed our own.
8412 */
8413 list_for_each_entry_rcu(child, &tg->children, siblings) {
8414 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8415 runtime = child->rt_bandwidth.rt_runtime;
8416
8417 if (child == d->tg) {
8418 period = d->rt_period;
8419 runtime = d->rt_runtime;
8420 }
8421
8422 sum += to_ratio(period, runtime);
8423 }
8424
8425 if (sum > total)
8426 return -EINVAL;
8427
8428 return 0;
8429 }
8430
8431 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8432 {
8433 struct rt_schedulable_data data = {
8434 .tg = tg,
8435 .rt_period = period,
8436 .rt_runtime = runtime,
8437 };
8438
8439 return walk_tg_tree(tg_schedulable, tg_nop, &data);
8440 }
8441
8442 static int tg_set_bandwidth(struct task_group *tg,
8443 u64 rt_period, u64 rt_runtime)
8444 {
8445 int i, err = 0;
8446
8447 mutex_lock(&rt_constraints_mutex);
8448 read_lock(&tasklist_lock);
8449 err = __rt_schedulable(tg, rt_period, rt_runtime);
8450 if (err)
8451 goto unlock;
8452
8453 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8454 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8455 tg->rt_bandwidth.rt_runtime = rt_runtime;
8456
8457 for_each_possible_cpu(i) {
8458 struct rt_rq *rt_rq = tg->rt_rq[i];
8459
8460 raw_spin_lock(&rt_rq->rt_runtime_lock);
8461 rt_rq->rt_runtime = rt_runtime;
8462 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8463 }
8464 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8465 unlock:
8466 read_unlock(&tasklist_lock);
8467 mutex_unlock(&rt_constraints_mutex);
8468
8469 return err;
8470 }
8471
8472 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8473 {
8474 u64 rt_runtime, rt_period;
8475
8476 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8477 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8478 if (rt_runtime_us < 0)
8479 rt_runtime = RUNTIME_INF;
8480
8481 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8482 }
8483
8484 long sched_group_rt_runtime(struct task_group *tg)
8485 {
8486 u64 rt_runtime_us;
8487
8488 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8489 return -1;
8490
8491 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8492 do_div(rt_runtime_us, NSEC_PER_USEC);
8493 return rt_runtime_us;
8494 }
8495
8496 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8497 {
8498 u64 rt_runtime, rt_period;
8499
8500 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8501 rt_runtime = tg->rt_bandwidth.rt_runtime;
8502
8503 if (rt_period == 0)
8504 return -EINVAL;
8505
8506 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8507 }
8508
8509 long sched_group_rt_period(struct task_group *tg)
8510 {
8511 u64 rt_period_us;
8512
8513 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8514 do_div(rt_period_us, NSEC_PER_USEC);
8515 return rt_period_us;
8516 }
8517
8518 static int sched_rt_global_constraints(void)
8519 {
8520 u64 runtime, period;
8521 int ret = 0;
8522
8523 if (sysctl_sched_rt_period <= 0)
8524 return -EINVAL;
8525
8526 runtime = global_rt_runtime();
8527 period = global_rt_period();
8528
8529 /*
8530 * Sanity check on the sysctl variables.
8531 */
8532 if (runtime > period && runtime != RUNTIME_INF)
8533 return -EINVAL;
8534
8535 mutex_lock(&rt_constraints_mutex);
8536 read_lock(&tasklist_lock);
8537 ret = __rt_schedulable(NULL, 0, 0);
8538 read_unlock(&tasklist_lock);
8539 mutex_unlock(&rt_constraints_mutex);
8540
8541 return ret;
8542 }
8543
8544 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8545 {
8546 /* Don't accept realtime tasks when there is no way for them to run */
8547 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8548 return 0;
8549
8550 return 1;
8551 }
8552
8553 #else /* !CONFIG_RT_GROUP_SCHED */
8554 static int sched_rt_global_constraints(void)
8555 {
8556 unsigned long flags;
8557 int i;
8558
8559 if (sysctl_sched_rt_period <= 0)
8560 return -EINVAL;
8561
8562 /*
8563 * There's always some RT tasks in the root group
8564 * -- migration, kstopmachine etc..
8565 */
8566 if (sysctl_sched_rt_runtime == 0)
8567 return -EBUSY;
8568
8569 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8570 for_each_possible_cpu(i) {
8571 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8572
8573 raw_spin_lock(&rt_rq->rt_runtime_lock);
8574 rt_rq->rt_runtime = global_rt_runtime();
8575 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8576 }
8577 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8578
8579 return 0;
8580 }
8581 #endif /* CONFIG_RT_GROUP_SCHED */
8582
8583 int sched_rt_handler(struct ctl_table *table, int write,
8584 void __user *buffer, size_t *lenp,
8585 loff_t *ppos)
8586 {
8587 int ret;
8588 int old_period, old_runtime;
8589 static DEFINE_MUTEX(mutex);
8590
8591 mutex_lock(&mutex);
8592 old_period = sysctl_sched_rt_period;
8593 old_runtime = sysctl_sched_rt_runtime;
8594
8595 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8596
8597 if (!ret && write) {
8598 ret = sched_rt_global_constraints();
8599 if (ret) {
8600 sysctl_sched_rt_period = old_period;
8601 sysctl_sched_rt_runtime = old_runtime;
8602 } else {
8603 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8604 def_rt_bandwidth.rt_period =
8605 ns_to_ktime(global_rt_period());
8606 }
8607 }
8608 mutex_unlock(&mutex);
8609
8610 return ret;
8611 }
8612
8613 #ifdef CONFIG_CGROUP_SCHED
8614
8615 /* return corresponding task_group object of a cgroup */
8616 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8617 {
8618 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8619 struct task_group, css);
8620 }
8621
8622 static struct cgroup_subsys_state *
8623 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8624 {
8625 struct task_group *tg, *parent;
8626
8627 if (!cgrp->parent) {
8628 /* This is early initialization for the top cgroup */
8629 return &init_task_group.css;
8630 }
8631
8632 parent = cgroup_tg(cgrp->parent);
8633 tg = sched_create_group(parent);
8634 if (IS_ERR(tg))
8635 return ERR_PTR(-ENOMEM);
8636
8637 return &tg->css;
8638 }
8639
8640 static void
8641 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8642 {
8643 struct task_group *tg = cgroup_tg(cgrp);
8644
8645 sched_destroy_group(tg);
8646 }
8647
8648 static int
8649 cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
8650 {
8651 #ifdef CONFIG_RT_GROUP_SCHED
8652 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
8653 return -EINVAL;
8654 #else
8655 /* We don't support RT-tasks being in separate groups */
8656 if (tsk->sched_class != &fair_sched_class)
8657 return -EINVAL;
8658 #endif
8659 return 0;
8660 }
8661
8662 static int
8663 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8664 struct task_struct *tsk, bool threadgroup)
8665 {
8666 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
8667 if (retval)
8668 return retval;
8669 if (threadgroup) {
8670 struct task_struct *c;
8671 rcu_read_lock();
8672 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8673 retval = cpu_cgroup_can_attach_task(cgrp, c);
8674 if (retval) {
8675 rcu_read_unlock();
8676 return retval;
8677 }
8678 }
8679 rcu_read_unlock();
8680 }
8681 return 0;
8682 }
8683
8684 static void
8685 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8686 struct cgroup *old_cont, struct task_struct *tsk,
8687 bool threadgroup)
8688 {
8689 sched_move_task(tsk);
8690 if (threadgroup) {
8691 struct task_struct *c;
8692 rcu_read_lock();
8693 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8694 sched_move_task(c);
8695 }
8696 rcu_read_unlock();
8697 }
8698 }
8699
8700 #ifdef CONFIG_FAIR_GROUP_SCHED
8701 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8702 u64 shareval)
8703 {
8704 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8705 }
8706
8707 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8708 {
8709 struct task_group *tg = cgroup_tg(cgrp);
8710
8711 return (u64) tg->shares;
8712 }
8713 #endif /* CONFIG_FAIR_GROUP_SCHED */
8714
8715 #ifdef CONFIG_RT_GROUP_SCHED
8716 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8717 s64 val)
8718 {
8719 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
8720 }
8721
8722 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
8723 {
8724 return sched_group_rt_runtime(cgroup_tg(cgrp));
8725 }
8726
8727 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8728 u64 rt_period_us)
8729 {
8730 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8731 }
8732
8733 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8734 {
8735 return sched_group_rt_period(cgroup_tg(cgrp));
8736 }
8737 #endif /* CONFIG_RT_GROUP_SCHED */
8738
8739 static struct cftype cpu_files[] = {
8740 #ifdef CONFIG_FAIR_GROUP_SCHED
8741 {
8742 .name = "shares",
8743 .read_u64 = cpu_shares_read_u64,
8744 .write_u64 = cpu_shares_write_u64,
8745 },
8746 #endif
8747 #ifdef CONFIG_RT_GROUP_SCHED
8748 {
8749 .name = "rt_runtime_us",
8750 .read_s64 = cpu_rt_runtime_read,
8751 .write_s64 = cpu_rt_runtime_write,
8752 },
8753 {
8754 .name = "rt_period_us",
8755 .read_u64 = cpu_rt_period_read_uint,
8756 .write_u64 = cpu_rt_period_write_uint,
8757 },
8758 #endif
8759 };
8760
8761 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8762 {
8763 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8764 }
8765
8766 struct cgroup_subsys cpu_cgroup_subsys = {
8767 .name = "cpu",
8768 .create = cpu_cgroup_create,
8769 .destroy = cpu_cgroup_destroy,
8770 .can_attach = cpu_cgroup_can_attach,
8771 .attach = cpu_cgroup_attach,
8772 .populate = cpu_cgroup_populate,
8773 .subsys_id = cpu_cgroup_subsys_id,
8774 .early_init = 1,
8775 };
8776
8777 #endif /* CONFIG_CGROUP_SCHED */
8778
8779 #ifdef CONFIG_CGROUP_CPUACCT
8780
8781 /*
8782 * CPU accounting code for task groups.
8783 *
8784 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8785 * (balbir@in.ibm.com).
8786 */
8787
8788 /* track cpu usage of a group of tasks and its child groups */
8789 struct cpuacct {
8790 struct cgroup_subsys_state css;
8791 /* cpuusage holds pointer to a u64-type object on every cpu */
8792 u64 __percpu *cpuusage;
8793 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
8794 struct cpuacct *parent;
8795 };
8796
8797 struct cgroup_subsys cpuacct_subsys;
8798
8799 /* return cpu accounting group corresponding to this container */
8800 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8801 {
8802 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8803 struct cpuacct, css);
8804 }
8805
8806 /* return cpu accounting group to which this task belongs */
8807 static inline struct cpuacct *task_ca(struct task_struct *tsk)
8808 {
8809 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8810 struct cpuacct, css);
8811 }
8812
8813 /* create a new cpu accounting group */
8814 static struct cgroup_subsys_state *cpuacct_create(
8815 struct cgroup_subsys *ss, struct cgroup *cgrp)
8816 {
8817 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8818 int i;
8819
8820 if (!ca)
8821 goto out;
8822
8823 ca->cpuusage = alloc_percpu(u64);
8824 if (!ca->cpuusage)
8825 goto out_free_ca;
8826
8827 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8828 if (percpu_counter_init(&ca->cpustat[i], 0))
8829 goto out_free_counters;
8830
8831 if (cgrp->parent)
8832 ca->parent = cgroup_ca(cgrp->parent);
8833
8834 return &ca->css;
8835
8836 out_free_counters:
8837 while (--i >= 0)
8838 percpu_counter_destroy(&ca->cpustat[i]);
8839 free_percpu(ca->cpuusage);
8840 out_free_ca:
8841 kfree(ca);
8842 out:
8843 return ERR_PTR(-ENOMEM);
8844 }
8845
8846 /* destroy an existing cpu accounting group */
8847 static void
8848 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8849 {
8850 struct cpuacct *ca = cgroup_ca(cgrp);
8851 int i;
8852
8853 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8854 percpu_counter_destroy(&ca->cpustat[i]);
8855 free_percpu(ca->cpuusage);
8856 kfree(ca);
8857 }
8858
8859 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8860 {
8861 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8862 u64 data;
8863
8864 #ifndef CONFIG_64BIT
8865 /*
8866 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8867 */
8868 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8869 data = *cpuusage;
8870 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8871 #else
8872 data = *cpuusage;
8873 #endif
8874
8875 return data;
8876 }
8877
8878 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8879 {
8880 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8881
8882 #ifndef CONFIG_64BIT
8883 /*
8884 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8885 */
8886 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8887 *cpuusage = val;
8888 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8889 #else
8890 *cpuusage = val;
8891 #endif
8892 }
8893
8894 /* return total cpu usage (in nanoseconds) of a group */
8895 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8896 {
8897 struct cpuacct *ca = cgroup_ca(cgrp);
8898 u64 totalcpuusage = 0;
8899 int i;
8900
8901 for_each_present_cpu(i)
8902 totalcpuusage += cpuacct_cpuusage_read(ca, i);
8903
8904 return totalcpuusage;
8905 }
8906
8907 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8908 u64 reset)
8909 {
8910 struct cpuacct *ca = cgroup_ca(cgrp);
8911 int err = 0;
8912 int i;
8913
8914 if (reset) {
8915 err = -EINVAL;
8916 goto out;
8917 }
8918
8919 for_each_present_cpu(i)
8920 cpuacct_cpuusage_write(ca, i, 0);
8921
8922 out:
8923 return err;
8924 }
8925
8926 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8927 struct seq_file *m)
8928 {
8929 struct cpuacct *ca = cgroup_ca(cgroup);
8930 u64 percpu;
8931 int i;
8932
8933 for_each_present_cpu(i) {
8934 percpu = cpuacct_cpuusage_read(ca, i);
8935 seq_printf(m, "%llu ", (unsigned long long) percpu);
8936 }
8937 seq_printf(m, "\n");
8938 return 0;
8939 }
8940
8941 static const char *cpuacct_stat_desc[] = {
8942 [CPUACCT_STAT_USER] = "user",
8943 [CPUACCT_STAT_SYSTEM] = "system",
8944 };
8945
8946 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8947 struct cgroup_map_cb *cb)
8948 {
8949 struct cpuacct *ca = cgroup_ca(cgrp);
8950 int i;
8951
8952 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
8953 s64 val = percpu_counter_read(&ca->cpustat[i]);
8954 val = cputime64_to_clock_t(val);
8955 cb->fill(cb, cpuacct_stat_desc[i], val);
8956 }
8957 return 0;
8958 }
8959
8960 static struct cftype files[] = {
8961 {
8962 .name = "usage",
8963 .read_u64 = cpuusage_read,
8964 .write_u64 = cpuusage_write,
8965 },
8966 {
8967 .name = "usage_percpu",
8968 .read_seq_string = cpuacct_percpu_seq_read,
8969 },
8970 {
8971 .name = "stat",
8972 .read_map = cpuacct_stats_show,
8973 },
8974 };
8975
8976 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
8977 {
8978 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
8979 }
8980
8981 /*
8982 * charge this task's execution time to its accounting group.
8983 *
8984 * called with rq->lock held.
8985 */
8986 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8987 {
8988 struct cpuacct *ca;
8989 int cpu;
8990
8991 if (unlikely(!cpuacct_subsys.active))
8992 return;
8993
8994 cpu = task_cpu(tsk);
8995
8996 rcu_read_lock();
8997
8998 ca = task_ca(tsk);
8999
9000 for (; ca; ca = ca->parent) {
9001 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9002 *cpuusage += cputime;
9003 }
9004
9005 rcu_read_unlock();
9006 }
9007
9008 /*
9009 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9010 * in cputime_t units. As a result, cpuacct_update_stats calls
9011 * percpu_counter_add with values large enough to always overflow the
9012 * per cpu batch limit causing bad SMP scalability.
9013 *
9014 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9015 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9016 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9017 */
9018 #ifdef CONFIG_SMP
9019 #define CPUACCT_BATCH \
9020 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9021 #else
9022 #define CPUACCT_BATCH 0
9023 #endif
9024
9025 /*
9026 * Charge the system/user time to the task's accounting group.
9027 */
9028 static void cpuacct_update_stats(struct task_struct *tsk,
9029 enum cpuacct_stat_index idx, cputime_t val)
9030 {
9031 struct cpuacct *ca;
9032 int batch = CPUACCT_BATCH;
9033
9034 if (unlikely(!cpuacct_subsys.active))
9035 return;
9036
9037 rcu_read_lock();
9038 ca = task_ca(tsk);
9039
9040 do {
9041 __percpu_counter_add(&ca->cpustat[idx], val, batch);
9042 ca = ca->parent;
9043 } while (ca);
9044 rcu_read_unlock();
9045 }
9046
9047 struct cgroup_subsys cpuacct_subsys = {
9048 .name = "cpuacct",
9049 .create = cpuacct_create,
9050 .destroy = cpuacct_destroy,
9051 .populate = cpuacct_populate,
9052 .subsys_id = cpuacct_subsys_id,
9053 };
9054 #endif /* CONFIG_CGROUP_CPUACCT */
9055
9056 #ifndef CONFIG_SMP
9057
9058 int rcu_expedited_torture_stats(char *page)
9059 {
9060 return 0;
9061 }
9062 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
9063
9064 void synchronize_sched_expedited(void)
9065 {
9066 }
9067 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9068
9069 #else /* #ifndef CONFIG_SMP */
9070
9071 static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
9072 static DEFINE_MUTEX(rcu_sched_expedited_mutex);
9073
9074 #define RCU_EXPEDITED_STATE_POST -2
9075 #define RCU_EXPEDITED_STATE_IDLE -1
9076
9077 static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
9078
9079 int rcu_expedited_torture_stats(char *page)
9080 {
9081 int cnt = 0;
9082 int cpu;
9083
9084 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
9085 for_each_online_cpu(cpu) {
9086 cnt += sprintf(&page[cnt], " %d:%d",
9087 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
9088 }
9089 cnt += sprintf(&page[cnt], "\n");
9090 return cnt;
9091 }
9092 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
9093
9094 static long synchronize_sched_expedited_count;
9095
9096 /*
9097 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
9098 * approach to force grace period to end quickly. This consumes
9099 * significant time on all CPUs, and is thus not recommended for
9100 * any sort of common-case code.
9101 *
9102 * Note that it is illegal to call this function while holding any
9103 * lock that is acquired by a CPU-hotplug notifier. Failing to
9104 * observe this restriction will result in deadlock.
9105 */
9106 void synchronize_sched_expedited(void)
9107 {
9108 int cpu;
9109 unsigned long flags;
9110 bool need_full_sync = 0;
9111 struct rq *rq;
9112 struct migration_req *req;
9113 long snap;
9114 int trycount = 0;
9115
9116 smp_mb(); /* ensure prior mod happens before capturing snap. */
9117 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
9118 get_online_cpus();
9119 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
9120 put_online_cpus();
9121 if (trycount++ < 10)
9122 udelay(trycount * num_online_cpus());
9123 else {
9124 synchronize_sched();
9125 return;
9126 }
9127 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
9128 smp_mb(); /* ensure test happens before caller kfree */
9129 return;
9130 }
9131 get_online_cpus();
9132 }
9133 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
9134 for_each_online_cpu(cpu) {
9135 rq = cpu_rq(cpu);
9136 req = &per_cpu(rcu_migration_req, cpu);
9137 init_completion(&req->done);
9138 req->task = NULL;
9139 req->dest_cpu = RCU_MIGRATION_NEED_QS;
9140 raw_spin_lock_irqsave(&rq->lock, flags);
9141 list_add(&req->list, &rq->migration_queue);
9142 raw_spin_unlock_irqrestore(&rq->lock, flags);
9143 wake_up_process(rq->migration_thread);
9144 }
9145 for_each_online_cpu(cpu) {
9146 rcu_expedited_state = cpu;
9147 req = &per_cpu(rcu_migration_req, cpu);
9148 rq = cpu_rq(cpu);
9149 wait_for_completion(&req->done);
9150 raw_spin_lock_irqsave(&rq->lock, flags);
9151 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
9152 need_full_sync = 1;
9153 req->dest_cpu = RCU_MIGRATION_IDLE;
9154 raw_spin_unlock_irqrestore(&rq->lock, flags);
9155 }
9156 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
9157 synchronize_sched_expedited_count++;
9158 mutex_unlock(&rcu_sched_expedited_mutex);
9159 put_online_cpus();
9160 if (need_full_sync)
9161 synchronize_sched();
9162 }
9163 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9164
9165 #endif /* #else #ifndef CONFIG_SMP */
This page took 0.273312 seconds and 5 git commands to generate.