sched: group-scheduler core
[deliverable/linux.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 */
26
27 #include <linux/mm.h>
28 #include <linux/module.h>
29 #include <linux/nmi.h>
30 #include <linux/init.h>
31 #include <linux/uaccess.h>
32 #include <linux/highmem.h>
33 #include <linux/smp_lock.h>
34 #include <asm/mmu_context.h>
35 #include <linux/interrupt.h>
36 #include <linux/capability.h>
37 #include <linux/completion.h>
38 #include <linux/kernel_stat.h>
39 #include <linux/debug_locks.h>
40 #include <linux/security.h>
41 #include <linux/notifier.h>
42 #include <linux/profile.h>
43 #include <linux/freezer.h>
44 #include <linux/vmalloc.h>
45 #include <linux/blkdev.h>
46 #include <linux/delay.h>
47 #include <linux/smp.h>
48 #include <linux/threads.h>
49 #include <linux/timer.h>
50 #include <linux/rcupdate.h>
51 #include <linux/cpu.h>
52 #include <linux/cpuset.h>
53 #include <linux/percpu.h>
54 #include <linux/kthread.h>
55 #include <linux/seq_file.h>
56 #include <linux/sysctl.h>
57 #include <linux/syscalls.h>
58 #include <linux/times.h>
59 #include <linux/tsacct_kern.h>
60 #include <linux/kprobes.h>
61 #include <linux/delayacct.h>
62 #include <linux/reciprocal_div.h>
63 #include <linux/unistd.h>
64 #include <linux/pagemap.h>
65
66 #include <asm/tlb.h>
67
68 /*
69 * Scheduler clock - returns current time in nanosec units.
70 * This is default implementation.
71 * Architectures and sub-architectures can override this.
72 */
73 unsigned long long __attribute__((weak)) sched_clock(void)
74 {
75 return (unsigned long long)jiffies * (1000000000 / HZ);
76 }
77
78 /*
79 * Convert user-nice values [ -20 ... 0 ... 19 ]
80 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
81 * and back.
82 */
83 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
84 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
85 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
86
87 /*
88 * 'User priority' is the nice value converted to something we
89 * can work with better when scaling various scheduler parameters,
90 * it's a [ 0 ... 39 ] range.
91 */
92 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
93 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
94 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
95
96 /*
97 * Some helpers for converting nanosecond timing to jiffy resolution
98 */
99 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
100 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
101
102 #define NICE_0_LOAD SCHED_LOAD_SCALE
103 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
104
105 /*
106 * These are the 'tuning knobs' of the scheduler:
107 *
108 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
109 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
110 * Timeslices get refilled after they expire.
111 */
112 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
113 #define DEF_TIMESLICE (100 * HZ / 1000)
114
115 #ifdef CONFIG_SMP
116 /*
117 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
118 * Since cpu_power is a 'constant', we can use a reciprocal divide.
119 */
120 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
121 {
122 return reciprocal_divide(load, sg->reciprocal_cpu_power);
123 }
124
125 /*
126 * Each time a sched group cpu_power is changed,
127 * we must compute its reciprocal value
128 */
129 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
130 {
131 sg->__cpu_power += val;
132 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
133 }
134 #endif
135
136 #define SCALE_PRIO(x, prio) \
137 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
138
139 /*
140 * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
141 * to time slice values: [800ms ... 100ms ... 5ms]
142 */
143 static unsigned int static_prio_timeslice(int static_prio)
144 {
145 if (static_prio == NICE_TO_PRIO(19))
146 return 1;
147
148 if (static_prio < NICE_TO_PRIO(0))
149 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
150 else
151 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
152 }
153
154 static inline int rt_policy(int policy)
155 {
156 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
157 return 1;
158 return 0;
159 }
160
161 static inline int task_has_rt_policy(struct task_struct *p)
162 {
163 return rt_policy(p->policy);
164 }
165
166 /*
167 * This is the priority-queue data structure of the RT scheduling class:
168 */
169 struct rt_prio_array {
170 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
171 struct list_head queue[MAX_RT_PRIO];
172 };
173
174 #ifdef CONFIG_FAIR_GROUP_SCHED
175
176 #include <linux/container.h>
177
178 struct cfs_rq;
179
180 /* task group related information */
181 struct task_grp {
182 struct container_subsys_state css;
183 /* schedulable entities of this group on each cpu */
184 struct sched_entity **se;
185 /* runqueue "owned" by this group on each cpu */
186 struct cfs_rq **cfs_rq;
187 unsigned long shares;
188 };
189
190 /* Default task group's sched entity on each cpu */
191 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
192 /* Default task group's cfs_rq on each cpu */
193 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
194
195 static struct sched_entity *init_sched_entity_p[CONFIG_NR_CPUS];
196 static struct cfs_rq *init_cfs_rq_p[CONFIG_NR_CPUS];
197
198 /* Default task group.
199 * Every task in system belong to this group at bootup.
200 */
201 static struct task_grp init_task_grp = {
202 .se = init_sched_entity_p,
203 .cfs_rq = init_cfs_rq_p,
204 };
205
206 /* return group to which a task belongs */
207 static inline struct task_grp *task_grp(struct task_struct *p)
208 {
209 return container_of(task_subsys_state(p, cpu_subsys_id),
210 struct task_grp, css);
211 }
212
213 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
214 static inline void set_task_cfs_rq(struct task_struct *p)
215 {
216 p->se.cfs_rq = task_grp(p)->cfs_rq[task_cpu(p)];
217 p->se.parent = task_grp(p)->se[task_cpu(p)];
218 }
219
220 #else
221
222 static inline void set_task_cfs_rq(struct task_struct *p) { }
223
224 #endif /* CONFIG_FAIR_GROUP_SCHED */
225
226 /* CFS-related fields in a runqueue */
227 struct cfs_rq {
228 struct load_weight load;
229 unsigned long nr_running;
230
231 u64 exec_clock;
232 u64 min_vruntime;
233
234 struct rb_root tasks_timeline;
235 struct rb_node *rb_leftmost;
236 struct rb_node *rb_load_balance_curr;
237 /* 'curr' points to currently running entity on this cfs_rq.
238 * It is set to NULL otherwise (i.e when none are currently running).
239 */
240 struct sched_entity *curr;
241 #ifdef CONFIG_FAIR_GROUP_SCHED
242 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
243
244 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
245 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
246 * (like users, containers etc.)
247 *
248 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
249 * list is used during load balance.
250 */
251 struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
252 struct task_grp *tg; /* group that "owns" this runqueue */
253 #endif
254 };
255
256 /* Real-Time classes' related field in a runqueue: */
257 struct rt_rq {
258 struct rt_prio_array active;
259 int rt_load_balance_idx;
260 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
261 };
262
263 /*
264 * This is the main, per-CPU runqueue data structure.
265 *
266 * Locking rule: those places that want to lock multiple runqueues
267 * (such as the load balancing or the thread migration code), lock
268 * acquire operations must be ordered by ascending &runqueue.
269 */
270 struct rq {
271 spinlock_t lock; /* runqueue lock */
272
273 /*
274 * nr_running and cpu_load should be in the same cacheline because
275 * remote CPUs use both these fields when doing load calculation.
276 */
277 unsigned long nr_running;
278 #define CPU_LOAD_IDX_MAX 5
279 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
280 unsigned char idle_at_tick;
281 #ifdef CONFIG_NO_HZ
282 unsigned char in_nohz_recently;
283 #endif
284 struct load_weight load; /* capture load from *all* tasks on this cpu */
285 unsigned long nr_load_updates;
286 u64 nr_switches;
287
288 struct cfs_rq cfs;
289 #ifdef CONFIG_FAIR_GROUP_SCHED
290 struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
291 #endif
292 struct rt_rq rt;
293
294 /*
295 * This is part of a global counter where only the total sum
296 * over all CPUs matters. A task can increase this counter on
297 * one CPU and if it got migrated afterwards it may decrease
298 * it on another CPU. Always updated under the runqueue lock:
299 */
300 unsigned long nr_uninterruptible;
301
302 struct task_struct *curr, *idle;
303 unsigned long next_balance;
304 struct mm_struct *prev_mm;
305
306 u64 clock, prev_clock_raw;
307 s64 clock_max_delta;
308
309 unsigned int clock_warps, clock_overflows;
310 u64 idle_clock;
311 unsigned int clock_deep_idle_events;
312 u64 tick_timestamp;
313
314 atomic_t nr_iowait;
315
316 #ifdef CONFIG_SMP
317 struct sched_domain *sd;
318
319 /* For active balancing */
320 int active_balance;
321 int push_cpu;
322 int cpu; /* cpu of this runqueue */
323
324 struct task_struct *migration_thread;
325 struct list_head migration_queue;
326 #endif
327
328 #ifdef CONFIG_SCHEDSTATS
329 /* latency stats */
330 struct sched_info rq_sched_info;
331
332 /* sys_sched_yield() stats */
333 unsigned long yld_exp_empty;
334 unsigned long yld_act_empty;
335 unsigned long yld_both_empty;
336 unsigned long yld_cnt;
337
338 /* schedule() stats */
339 unsigned long sched_switch;
340 unsigned long sched_cnt;
341 unsigned long sched_goidle;
342
343 /* try_to_wake_up() stats */
344 unsigned long ttwu_cnt;
345 unsigned long ttwu_local;
346 #endif
347 struct lock_class_key rq_lock_key;
348 };
349
350 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
351 static DEFINE_MUTEX(sched_hotcpu_mutex);
352
353 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
354 {
355 rq->curr->sched_class->check_preempt_curr(rq, p);
356 }
357
358 static inline int cpu_of(struct rq *rq)
359 {
360 #ifdef CONFIG_SMP
361 return rq->cpu;
362 #else
363 return 0;
364 #endif
365 }
366
367 /*
368 * Update the per-runqueue clock, as finegrained as the platform can give
369 * us, but without assuming monotonicity, etc.:
370 */
371 static void __update_rq_clock(struct rq *rq)
372 {
373 u64 prev_raw = rq->prev_clock_raw;
374 u64 now = sched_clock();
375 s64 delta = now - prev_raw;
376 u64 clock = rq->clock;
377
378 #ifdef CONFIG_SCHED_DEBUG
379 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
380 #endif
381 /*
382 * Protect against sched_clock() occasionally going backwards:
383 */
384 if (unlikely(delta < 0)) {
385 clock++;
386 rq->clock_warps++;
387 } else {
388 /*
389 * Catch too large forward jumps too:
390 */
391 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
392 if (clock < rq->tick_timestamp + TICK_NSEC)
393 clock = rq->tick_timestamp + TICK_NSEC;
394 else
395 clock++;
396 rq->clock_overflows++;
397 } else {
398 if (unlikely(delta > rq->clock_max_delta))
399 rq->clock_max_delta = delta;
400 clock += delta;
401 }
402 }
403
404 rq->prev_clock_raw = now;
405 rq->clock = clock;
406 }
407
408 static void update_rq_clock(struct rq *rq)
409 {
410 if (likely(smp_processor_id() == cpu_of(rq)))
411 __update_rq_clock(rq);
412 }
413
414 /*
415 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
416 * See detach_destroy_domains: synchronize_sched for details.
417 *
418 * The domain tree of any CPU may only be accessed from within
419 * preempt-disabled sections.
420 */
421 #define for_each_domain(cpu, __sd) \
422 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
423
424 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
425 #define this_rq() (&__get_cpu_var(runqueues))
426 #define task_rq(p) cpu_rq(task_cpu(p))
427 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
428
429 /*
430 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
431 */
432 #ifdef CONFIG_SCHED_DEBUG
433 # define const_debug __read_mostly
434 #else
435 # define const_debug static const
436 #endif
437
438 /*
439 * Debugging: various feature bits
440 */
441 enum {
442 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
443 SCHED_FEAT_START_DEBIT = 2,
444 SCHED_FEAT_USE_TREE_AVG = 4,
445 SCHED_FEAT_APPROX_AVG = 8,
446 };
447
448 const_debug unsigned int sysctl_sched_features =
449 SCHED_FEAT_NEW_FAIR_SLEEPERS *1 |
450 SCHED_FEAT_START_DEBIT *1 |
451 SCHED_FEAT_USE_TREE_AVG *0 |
452 SCHED_FEAT_APPROX_AVG *0;
453
454 #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
455
456 /*
457 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
458 * clock constructed from sched_clock():
459 */
460 unsigned long long cpu_clock(int cpu)
461 {
462 unsigned long long now;
463 unsigned long flags;
464 struct rq *rq;
465
466 local_irq_save(flags);
467 rq = cpu_rq(cpu);
468 update_rq_clock(rq);
469 now = rq->clock;
470 local_irq_restore(flags);
471
472 return now;
473 }
474
475 #ifndef prepare_arch_switch
476 # define prepare_arch_switch(next) do { } while (0)
477 #endif
478 #ifndef finish_arch_switch
479 # define finish_arch_switch(prev) do { } while (0)
480 #endif
481
482 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
483 static inline int task_running(struct rq *rq, struct task_struct *p)
484 {
485 return rq->curr == p;
486 }
487
488 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
489 {
490 }
491
492 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
493 {
494 #ifdef CONFIG_DEBUG_SPINLOCK
495 /* this is a valid case when another task releases the spinlock */
496 rq->lock.owner = current;
497 #endif
498 /*
499 * If we are tracking spinlock dependencies then we have to
500 * fix up the runqueue lock - which gets 'carried over' from
501 * prev into current:
502 */
503 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
504
505 spin_unlock_irq(&rq->lock);
506 }
507
508 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
509 static inline int task_running(struct rq *rq, struct task_struct *p)
510 {
511 #ifdef CONFIG_SMP
512 return p->oncpu;
513 #else
514 return rq->curr == p;
515 #endif
516 }
517
518 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
519 {
520 #ifdef CONFIG_SMP
521 /*
522 * We can optimise this out completely for !SMP, because the
523 * SMP rebalancing from interrupt is the only thing that cares
524 * here.
525 */
526 next->oncpu = 1;
527 #endif
528 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
529 spin_unlock_irq(&rq->lock);
530 #else
531 spin_unlock(&rq->lock);
532 #endif
533 }
534
535 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
536 {
537 #ifdef CONFIG_SMP
538 /*
539 * After ->oncpu is cleared, the task can be moved to a different CPU.
540 * We must ensure this doesn't happen until the switch is completely
541 * finished.
542 */
543 smp_wmb();
544 prev->oncpu = 0;
545 #endif
546 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
547 local_irq_enable();
548 #endif
549 }
550 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
551
552 /*
553 * __task_rq_lock - lock the runqueue a given task resides on.
554 * Must be called interrupts disabled.
555 */
556 static inline struct rq *__task_rq_lock(struct task_struct *p)
557 __acquires(rq->lock)
558 {
559 struct rq *rq;
560
561 repeat_lock_task:
562 rq = task_rq(p);
563 spin_lock(&rq->lock);
564 if (unlikely(rq != task_rq(p))) {
565 spin_unlock(&rq->lock);
566 goto repeat_lock_task;
567 }
568 return rq;
569 }
570
571 /*
572 * task_rq_lock - lock the runqueue a given task resides on and disable
573 * interrupts. Note the ordering: we can safely lookup the task_rq without
574 * explicitly disabling preemption.
575 */
576 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
577 __acquires(rq->lock)
578 {
579 struct rq *rq;
580
581 repeat_lock_task:
582 local_irq_save(*flags);
583 rq = task_rq(p);
584 spin_lock(&rq->lock);
585 if (unlikely(rq != task_rq(p))) {
586 spin_unlock_irqrestore(&rq->lock, *flags);
587 goto repeat_lock_task;
588 }
589 return rq;
590 }
591
592 static inline void __task_rq_unlock(struct rq *rq)
593 __releases(rq->lock)
594 {
595 spin_unlock(&rq->lock);
596 }
597
598 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
599 __releases(rq->lock)
600 {
601 spin_unlock_irqrestore(&rq->lock, *flags);
602 }
603
604 /*
605 * this_rq_lock - lock this runqueue and disable interrupts.
606 */
607 static inline struct rq *this_rq_lock(void)
608 __acquires(rq->lock)
609 {
610 struct rq *rq;
611
612 local_irq_disable();
613 rq = this_rq();
614 spin_lock(&rq->lock);
615
616 return rq;
617 }
618
619 /*
620 * We are going deep-idle (irqs are disabled):
621 */
622 void sched_clock_idle_sleep_event(void)
623 {
624 struct rq *rq = cpu_rq(smp_processor_id());
625
626 spin_lock(&rq->lock);
627 __update_rq_clock(rq);
628 spin_unlock(&rq->lock);
629 rq->clock_deep_idle_events++;
630 }
631 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
632
633 /*
634 * We just idled delta nanoseconds (called with irqs disabled):
635 */
636 void sched_clock_idle_wakeup_event(u64 delta_ns)
637 {
638 struct rq *rq = cpu_rq(smp_processor_id());
639 u64 now = sched_clock();
640
641 rq->idle_clock += delta_ns;
642 /*
643 * Override the previous timestamp and ignore all
644 * sched_clock() deltas that occured while we idled,
645 * and use the PM-provided delta_ns to advance the
646 * rq clock:
647 */
648 spin_lock(&rq->lock);
649 rq->prev_clock_raw = now;
650 rq->clock += delta_ns;
651 spin_unlock(&rq->lock);
652 }
653 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
654
655 /*
656 * resched_task - mark a task 'to be rescheduled now'.
657 *
658 * On UP this means the setting of the need_resched flag, on SMP it
659 * might also involve a cross-CPU call to trigger the scheduler on
660 * the target CPU.
661 */
662 #ifdef CONFIG_SMP
663
664 #ifndef tsk_is_polling
665 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
666 #endif
667
668 static void resched_task(struct task_struct *p)
669 {
670 int cpu;
671
672 assert_spin_locked(&task_rq(p)->lock);
673
674 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
675 return;
676
677 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
678
679 cpu = task_cpu(p);
680 if (cpu == smp_processor_id())
681 return;
682
683 /* NEED_RESCHED must be visible before we test polling */
684 smp_mb();
685 if (!tsk_is_polling(p))
686 smp_send_reschedule(cpu);
687 }
688
689 static void resched_cpu(int cpu)
690 {
691 struct rq *rq = cpu_rq(cpu);
692 unsigned long flags;
693
694 if (!spin_trylock_irqsave(&rq->lock, flags))
695 return;
696 resched_task(cpu_curr(cpu));
697 spin_unlock_irqrestore(&rq->lock, flags);
698 }
699 #else
700 static inline void resched_task(struct task_struct *p)
701 {
702 assert_spin_locked(&task_rq(p)->lock);
703 set_tsk_need_resched(p);
704 }
705 #endif
706
707 #if BITS_PER_LONG == 32
708 # define WMULT_CONST (~0UL)
709 #else
710 # define WMULT_CONST (1UL << 32)
711 #endif
712
713 #define WMULT_SHIFT 32
714
715 /*
716 * Shift right and round:
717 */
718 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
719
720 static unsigned long
721 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
722 struct load_weight *lw)
723 {
724 u64 tmp;
725
726 if (unlikely(!lw->inv_weight))
727 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
728
729 tmp = (u64)delta_exec * weight;
730 /*
731 * Check whether we'd overflow the 64-bit multiplication:
732 */
733 if (unlikely(tmp > WMULT_CONST))
734 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
735 WMULT_SHIFT/2);
736 else
737 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
738
739 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
740 }
741
742 static inline unsigned long
743 calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
744 {
745 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
746 }
747
748 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
749 {
750 lw->weight += inc;
751 }
752
753 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
754 {
755 lw->weight -= dec;
756 }
757
758 /*
759 * To aid in avoiding the subversion of "niceness" due to uneven distribution
760 * of tasks with abnormal "nice" values across CPUs the contribution that
761 * each task makes to its run queue's load is weighted according to its
762 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
763 * scaled version of the new time slice allocation that they receive on time
764 * slice expiry etc.
765 */
766
767 #define WEIGHT_IDLEPRIO 2
768 #define WMULT_IDLEPRIO (1 << 31)
769
770 /*
771 * Nice levels are multiplicative, with a gentle 10% change for every
772 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
773 * nice 1, it will get ~10% less CPU time than another CPU-bound task
774 * that remained on nice 0.
775 *
776 * The "10% effect" is relative and cumulative: from _any_ nice level,
777 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
778 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
779 * If a task goes up by ~10% and another task goes down by ~10% then
780 * the relative distance between them is ~25%.)
781 */
782 static const int prio_to_weight[40] = {
783 /* -20 */ 88761, 71755, 56483, 46273, 36291,
784 /* -15 */ 29154, 23254, 18705, 14949, 11916,
785 /* -10 */ 9548, 7620, 6100, 4904, 3906,
786 /* -5 */ 3121, 2501, 1991, 1586, 1277,
787 /* 0 */ 1024, 820, 655, 526, 423,
788 /* 5 */ 335, 272, 215, 172, 137,
789 /* 10 */ 110, 87, 70, 56, 45,
790 /* 15 */ 36, 29, 23, 18, 15,
791 };
792
793 /*
794 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
795 *
796 * In cases where the weight does not change often, we can use the
797 * precalculated inverse to speed up arithmetics by turning divisions
798 * into multiplications:
799 */
800 static const u32 prio_to_wmult[40] = {
801 /* -20 */ 48388, 59856, 76040, 92818, 118348,
802 /* -15 */ 147320, 184698, 229616, 287308, 360437,
803 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
804 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
805 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
806 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
807 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
808 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
809 };
810
811 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
812
813 /*
814 * runqueue iterator, to support SMP load-balancing between different
815 * scheduling classes, without having to expose their internal data
816 * structures to the load-balancing proper:
817 */
818 struct rq_iterator {
819 void *arg;
820 struct task_struct *(*start)(void *);
821 struct task_struct *(*next)(void *);
822 };
823
824 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
825 unsigned long max_nr_move, unsigned long max_load_move,
826 struct sched_domain *sd, enum cpu_idle_type idle,
827 int *all_pinned, unsigned long *load_moved,
828 int *this_best_prio, struct rq_iterator *iterator);
829
830 #include "sched_stats.h"
831 #include "sched_rt.c"
832 #include "sched_fair.c"
833 #include "sched_idletask.c"
834 #ifdef CONFIG_SCHED_DEBUG
835 # include "sched_debug.c"
836 #endif
837
838 #define sched_class_highest (&rt_sched_class)
839
840 /*
841 * Update delta_exec, delta_fair fields for rq.
842 *
843 * delta_fair clock advances at a rate inversely proportional to
844 * total load (rq->load.weight) on the runqueue, while
845 * delta_exec advances at the same rate as wall-clock (provided
846 * cpu is not idle).
847 *
848 * delta_exec / delta_fair is a measure of the (smoothened) load on this
849 * runqueue over any given interval. This (smoothened) load is used
850 * during load balance.
851 *
852 * This function is called /before/ updating rq->load
853 * and when switching tasks.
854 */
855 static inline void inc_load(struct rq *rq, const struct task_struct *p)
856 {
857 update_load_add(&rq->load, p->se.load.weight);
858 }
859
860 static inline void dec_load(struct rq *rq, const struct task_struct *p)
861 {
862 update_load_sub(&rq->load, p->se.load.weight);
863 }
864
865 static void inc_nr_running(struct task_struct *p, struct rq *rq)
866 {
867 rq->nr_running++;
868 inc_load(rq, p);
869 }
870
871 static void dec_nr_running(struct task_struct *p, struct rq *rq)
872 {
873 rq->nr_running--;
874 dec_load(rq, p);
875 }
876
877 static void set_load_weight(struct task_struct *p)
878 {
879 if (task_has_rt_policy(p)) {
880 p->se.load.weight = prio_to_weight[0] * 2;
881 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
882 return;
883 }
884
885 /*
886 * SCHED_IDLE tasks get minimal weight:
887 */
888 if (p->policy == SCHED_IDLE) {
889 p->se.load.weight = WEIGHT_IDLEPRIO;
890 p->se.load.inv_weight = WMULT_IDLEPRIO;
891 return;
892 }
893
894 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
895 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
896 }
897
898 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
899 {
900 sched_info_queued(p);
901 p->sched_class->enqueue_task(rq, p, wakeup);
902 p->se.on_rq = 1;
903 }
904
905 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
906 {
907 p->sched_class->dequeue_task(rq, p, sleep);
908 p->se.on_rq = 0;
909 }
910
911 /*
912 * __normal_prio - return the priority that is based on the static prio
913 */
914 static inline int __normal_prio(struct task_struct *p)
915 {
916 return p->static_prio;
917 }
918
919 /*
920 * Calculate the expected normal priority: i.e. priority
921 * without taking RT-inheritance into account. Might be
922 * boosted by interactivity modifiers. Changes upon fork,
923 * setprio syscalls, and whenever the interactivity
924 * estimator recalculates.
925 */
926 static inline int normal_prio(struct task_struct *p)
927 {
928 int prio;
929
930 if (task_has_rt_policy(p))
931 prio = MAX_RT_PRIO-1 - p->rt_priority;
932 else
933 prio = __normal_prio(p);
934 return prio;
935 }
936
937 /*
938 * Calculate the current priority, i.e. the priority
939 * taken into account by the scheduler. This value might
940 * be boosted by RT tasks, or might be boosted by
941 * interactivity modifiers. Will be RT if the task got
942 * RT-boosted. If not then it returns p->normal_prio.
943 */
944 static int effective_prio(struct task_struct *p)
945 {
946 p->normal_prio = normal_prio(p);
947 /*
948 * If we are RT tasks or we were boosted to RT priority,
949 * keep the priority unchanged. Otherwise, update priority
950 * to the normal priority:
951 */
952 if (!rt_prio(p->prio))
953 return p->normal_prio;
954 return p->prio;
955 }
956
957 /*
958 * activate_task - move a task to the runqueue.
959 */
960 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
961 {
962 if (p->state == TASK_UNINTERRUPTIBLE)
963 rq->nr_uninterruptible--;
964
965 enqueue_task(rq, p, wakeup);
966 inc_nr_running(p, rq);
967 }
968
969 /*
970 * activate_idle_task - move idle task to the _front_ of runqueue.
971 */
972 static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
973 {
974 update_rq_clock(rq);
975
976 if (p->state == TASK_UNINTERRUPTIBLE)
977 rq->nr_uninterruptible--;
978
979 enqueue_task(rq, p, 0);
980 inc_nr_running(p, rq);
981 }
982
983 /*
984 * deactivate_task - remove a task from the runqueue.
985 */
986 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
987 {
988 if (p->state == TASK_UNINTERRUPTIBLE)
989 rq->nr_uninterruptible++;
990
991 dequeue_task(rq, p, sleep);
992 dec_nr_running(p, rq);
993 }
994
995 /**
996 * task_curr - is this task currently executing on a CPU?
997 * @p: the task in question.
998 */
999 inline int task_curr(const struct task_struct *p)
1000 {
1001 return cpu_curr(task_cpu(p)) == p;
1002 }
1003
1004 /* Used instead of source_load when we know the type == 0 */
1005 unsigned long weighted_cpuload(const int cpu)
1006 {
1007 return cpu_rq(cpu)->load.weight;
1008 }
1009
1010 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1011 {
1012 #ifdef CONFIG_SMP
1013 task_thread_info(p)->cpu = cpu;
1014 #endif
1015 set_task_cfs_rq(p);
1016 }
1017
1018 #ifdef CONFIG_SMP
1019
1020 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1021 {
1022 int old_cpu = task_cpu(p);
1023 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1024 u64 clock_offset;
1025
1026 clock_offset = old_rq->clock - new_rq->clock;
1027
1028 #ifdef CONFIG_SCHEDSTATS
1029 if (p->se.wait_start)
1030 p->se.wait_start -= clock_offset;
1031 if (p->se.sleep_start)
1032 p->se.sleep_start -= clock_offset;
1033 if (p->se.block_start)
1034 p->se.block_start -= clock_offset;
1035 #endif
1036 if (likely(new_rq->cfs.min_vruntime))
1037 p->se.vruntime -= old_rq->cfs.min_vruntime -
1038 new_rq->cfs.min_vruntime;
1039
1040 __set_task_cpu(p, new_cpu);
1041 }
1042
1043 struct migration_req {
1044 struct list_head list;
1045
1046 struct task_struct *task;
1047 int dest_cpu;
1048
1049 struct completion done;
1050 };
1051
1052 /*
1053 * The task's runqueue lock must be held.
1054 * Returns true if you have to wait for migration thread.
1055 */
1056 static int
1057 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1058 {
1059 struct rq *rq = task_rq(p);
1060
1061 /*
1062 * If the task is not on a runqueue (and not running), then
1063 * it is sufficient to simply update the task's cpu field.
1064 */
1065 if (!p->se.on_rq && !task_running(rq, p)) {
1066 set_task_cpu(p, dest_cpu);
1067 return 0;
1068 }
1069
1070 init_completion(&req->done);
1071 req->task = p;
1072 req->dest_cpu = dest_cpu;
1073 list_add(&req->list, &rq->migration_queue);
1074
1075 return 1;
1076 }
1077
1078 /*
1079 * wait_task_inactive - wait for a thread to unschedule.
1080 *
1081 * The caller must ensure that the task *will* unschedule sometime soon,
1082 * else this function might spin for a *long* time. This function can't
1083 * be called with interrupts off, or it may introduce deadlock with
1084 * smp_call_function() if an IPI is sent by the same process we are
1085 * waiting to become inactive.
1086 */
1087 void wait_task_inactive(struct task_struct *p)
1088 {
1089 unsigned long flags;
1090 int running, on_rq;
1091 struct rq *rq;
1092
1093 repeat:
1094 /*
1095 * We do the initial early heuristics without holding
1096 * any task-queue locks at all. We'll only try to get
1097 * the runqueue lock when things look like they will
1098 * work out!
1099 */
1100 rq = task_rq(p);
1101
1102 /*
1103 * If the task is actively running on another CPU
1104 * still, just relax and busy-wait without holding
1105 * any locks.
1106 *
1107 * NOTE! Since we don't hold any locks, it's not
1108 * even sure that "rq" stays as the right runqueue!
1109 * But we don't care, since "task_running()" will
1110 * return false if the runqueue has changed and p
1111 * is actually now running somewhere else!
1112 */
1113 while (task_running(rq, p))
1114 cpu_relax();
1115
1116 /*
1117 * Ok, time to look more closely! We need the rq
1118 * lock now, to be *sure*. If we're wrong, we'll
1119 * just go back and repeat.
1120 */
1121 rq = task_rq_lock(p, &flags);
1122 running = task_running(rq, p);
1123 on_rq = p->se.on_rq;
1124 task_rq_unlock(rq, &flags);
1125
1126 /*
1127 * Was it really running after all now that we
1128 * checked with the proper locks actually held?
1129 *
1130 * Oops. Go back and try again..
1131 */
1132 if (unlikely(running)) {
1133 cpu_relax();
1134 goto repeat;
1135 }
1136
1137 /*
1138 * It's not enough that it's not actively running,
1139 * it must be off the runqueue _entirely_, and not
1140 * preempted!
1141 *
1142 * So if it wa still runnable (but just not actively
1143 * running right now), it's preempted, and we should
1144 * yield - it could be a while.
1145 */
1146 if (unlikely(on_rq)) {
1147 yield();
1148 goto repeat;
1149 }
1150
1151 /*
1152 * Ahh, all good. It wasn't running, and it wasn't
1153 * runnable, which means that it will never become
1154 * running in the future either. We're all done!
1155 */
1156 }
1157
1158 /***
1159 * kick_process - kick a running thread to enter/exit the kernel
1160 * @p: the to-be-kicked thread
1161 *
1162 * Cause a process which is running on another CPU to enter
1163 * kernel-mode, without any delay. (to get signals handled.)
1164 *
1165 * NOTE: this function doesnt have to take the runqueue lock,
1166 * because all it wants to ensure is that the remote task enters
1167 * the kernel. If the IPI races and the task has been migrated
1168 * to another CPU then no harm is done and the purpose has been
1169 * achieved as well.
1170 */
1171 void kick_process(struct task_struct *p)
1172 {
1173 int cpu;
1174
1175 preempt_disable();
1176 cpu = task_cpu(p);
1177 if ((cpu != smp_processor_id()) && task_curr(p))
1178 smp_send_reschedule(cpu);
1179 preempt_enable();
1180 }
1181
1182 /*
1183 * Return a low guess at the load of a migration-source cpu weighted
1184 * according to the scheduling class and "nice" value.
1185 *
1186 * We want to under-estimate the load of migration sources, to
1187 * balance conservatively.
1188 */
1189 static inline unsigned long source_load(int cpu, int type)
1190 {
1191 struct rq *rq = cpu_rq(cpu);
1192 unsigned long total = weighted_cpuload(cpu);
1193
1194 if (type == 0)
1195 return total;
1196
1197 return min(rq->cpu_load[type-1], total);
1198 }
1199
1200 /*
1201 * Return a high guess at the load of a migration-target cpu weighted
1202 * according to the scheduling class and "nice" value.
1203 */
1204 static inline unsigned long target_load(int cpu, int type)
1205 {
1206 struct rq *rq = cpu_rq(cpu);
1207 unsigned long total = weighted_cpuload(cpu);
1208
1209 if (type == 0)
1210 return total;
1211
1212 return max(rq->cpu_load[type-1], total);
1213 }
1214
1215 /*
1216 * Return the average load per task on the cpu's run queue
1217 */
1218 static inline unsigned long cpu_avg_load_per_task(int cpu)
1219 {
1220 struct rq *rq = cpu_rq(cpu);
1221 unsigned long total = weighted_cpuload(cpu);
1222 unsigned long n = rq->nr_running;
1223
1224 return n ? total / n : SCHED_LOAD_SCALE;
1225 }
1226
1227 /*
1228 * find_idlest_group finds and returns the least busy CPU group within the
1229 * domain.
1230 */
1231 static struct sched_group *
1232 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1233 {
1234 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1235 unsigned long min_load = ULONG_MAX, this_load = 0;
1236 int load_idx = sd->forkexec_idx;
1237 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1238
1239 do {
1240 unsigned long load, avg_load;
1241 int local_group;
1242 int i;
1243
1244 /* Skip over this group if it has no CPUs allowed */
1245 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1246 goto nextgroup;
1247
1248 local_group = cpu_isset(this_cpu, group->cpumask);
1249
1250 /* Tally up the load of all CPUs in the group */
1251 avg_load = 0;
1252
1253 for_each_cpu_mask(i, group->cpumask) {
1254 /* Bias balancing toward cpus of our domain */
1255 if (local_group)
1256 load = source_load(i, load_idx);
1257 else
1258 load = target_load(i, load_idx);
1259
1260 avg_load += load;
1261 }
1262
1263 /* Adjust by relative CPU power of the group */
1264 avg_load = sg_div_cpu_power(group,
1265 avg_load * SCHED_LOAD_SCALE);
1266
1267 if (local_group) {
1268 this_load = avg_load;
1269 this = group;
1270 } else if (avg_load < min_load) {
1271 min_load = avg_load;
1272 idlest = group;
1273 }
1274 nextgroup:
1275 group = group->next;
1276 } while (group != sd->groups);
1277
1278 if (!idlest || 100*this_load < imbalance*min_load)
1279 return NULL;
1280 return idlest;
1281 }
1282
1283 /*
1284 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1285 */
1286 static int
1287 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1288 {
1289 cpumask_t tmp;
1290 unsigned long load, min_load = ULONG_MAX;
1291 int idlest = -1;
1292 int i;
1293
1294 /* Traverse only the allowed CPUs */
1295 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1296
1297 for_each_cpu_mask(i, tmp) {
1298 load = weighted_cpuload(i);
1299
1300 if (load < min_load || (load == min_load && i == this_cpu)) {
1301 min_load = load;
1302 idlest = i;
1303 }
1304 }
1305
1306 return idlest;
1307 }
1308
1309 /*
1310 * sched_balance_self: balance the current task (running on cpu) in domains
1311 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1312 * SD_BALANCE_EXEC.
1313 *
1314 * Balance, ie. select the least loaded group.
1315 *
1316 * Returns the target CPU number, or the same CPU if no balancing is needed.
1317 *
1318 * preempt must be disabled.
1319 */
1320 static int sched_balance_self(int cpu, int flag)
1321 {
1322 struct task_struct *t = current;
1323 struct sched_domain *tmp, *sd = NULL;
1324
1325 for_each_domain(cpu, tmp) {
1326 /*
1327 * If power savings logic is enabled for a domain, stop there.
1328 */
1329 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1330 break;
1331 if (tmp->flags & flag)
1332 sd = tmp;
1333 }
1334
1335 while (sd) {
1336 cpumask_t span;
1337 struct sched_group *group;
1338 int new_cpu, weight;
1339
1340 if (!(sd->flags & flag)) {
1341 sd = sd->child;
1342 continue;
1343 }
1344
1345 span = sd->span;
1346 group = find_idlest_group(sd, t, cpu);
1347 if (!group) {
1348 sd = sd->child;
1349 continue;
1350 }
1351
1352 new_cpu = find_idlest_cpu(group, t, cpu);
1353 if (new_cpu == -1 || new_cpu == cpu) {
1354 /* Now try balancing at a lower domain level of cpu */
1355 sd = sd->child;
1356 continue;
1357 }
1358
1359 /* Now try balancing at a lower domain level of new_cpu */
1360 cpu = new_cpu;
1361 sd = NULL;
1362 weight = cpus_weight(span);
1363 for_each_domain(cpu, tmp) {
1364 if (weight <= cpus_weight(tmp->span))
1365 break;
1366 if (tmp->flags & flag)
1367 sd = tmp;
1368 }
1369 /* while loop will break here if sd == NULL */
1370 }
1371
1372 return cpu;
1373 }
1374
1375 #endif /* CONFIG_SMP */
1376
1377 /*
1378 * wake_idle() will wake a task on an idle cpu if task->cpu is
1379 * not idle and an idle cpu is available. The span of cpus to
1380 * search starts with cpus closest then further out as needed,
1381 * so we always favor a closer, idle cpu.
1382 *
1383 * Returns the CPU we should wake onto.
1384 */
1385 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1386 static int wake_idle(int cpu, struct task_struct *p)
1387 {
1388 cpumask_t tmp;
1389 struct sched_domain *sd;
1390 int i;
1391
1392 /*
1393 * If it is idle, then it is the best cpu to run this task.
1394 *
1395 * This cpu is also the best, if it has more than one task already.
1396 * Siblings must be also busy(in most cases) as they didn't already
1397 * pickup the extra load from this cpu and hence we need not check
1398 * sibling runqueue info. This will avoid the checks and cache miss
1399 * penalities associated with that.
1400 */
1401 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1402 return cpu;
1403
1404 for_each_domain(cpu, sd) {
1405 if (sd->flags & SD_WAKE_IDLE) {
1406 cpus_and(tmp, sd->span, p->cpus_allowed);
1407 for_each_cpu_mask(i, tmp) {
1408 if (idle_cpu(i))
1409 return i;
1410 }
1411 } else {
1412 break;
1413 }
1414 }
1415 return cpu;
1416 }
1417 #else
1418 static inline int wake_idle(int cpu, struct task_struct *p)
1419 {
1420 return cpu;
1421 }
1422 #endif
1423
1424 /***
1425 * try_to_wake_up - wake up a thread
1426 * @p: the to-be-woken-up thread
1427 * @state: the mask of task states that can be woken
1428 * @sync: do a synchronous wakeup?
1429 *
1430 * Put it on the run-queue if it's not already there. The "current"
1431 * thread is always on the run-queue (except when the actual
1432 * re-schedule is in progress), and as such you're allowed to do
1433 * the simpler "current->state = TASK_RUNNING" to mark yourself
1434 * runnable without the overhead of this.
1435 *
1436 * returns failure only if the task is already active.
1437 */
1438 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1439 {
1440 int cpu, this_cpu, success = 0;
1441 unsigned long flags;
1442 long old_state;
1443 struct rq *rq;
1444 #ifdef CONFIG_SMP
1445 struct sched_domain *sd, *this_sd = NULL;
1446 unsigned long load, this_load;
1447 int new_cpu;
1448 #endif
1449
1450 rq = task_rq_lock(p, &flags);
1451 old_state = p->state;
1452 if (!(old_state & state))
1453 goto out;
1454
1455 if (p->se.on_rq)
1456 goto out_running;
1457
1458 cpu = task_cpu(p);
1459 this_cpu = smp_processor_id();
1460
1461 #ifdef CONFIG_SMP
1462 if (unlikely(task_running(rq, p)))
1463 goto out_activate;
1464
1465 new_cpu = cpu;
1466
1467 schedstat_inc(rq, ttwu_cnt);
1468 if (cpu == this_cpu) {
1469 schedstat_inc(rq, ttwu_local);
1470 goto out_set_cpu;
1471 }
1472
1473 for_each_domain(this_cpu, sd) {
1474 if (cpu_isset(cpu, sd->span)) {
1475 schedstat_inc(sd, ttwu_wake_remote);
1476 this_sd = sd;
1477 break;
1478 }
1479 }
1480
1481 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1482 goto out_set_cpu;
1483
1484 /*
1485 * Check for affine wakeup and passive balancing possibilities.
1486 */
1487 if (this_sd) {
1488 int idx = this_sd->wake_idx;
1489 unsigned int imbalance;
1490
1491 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1492
1493 load = source_load(cpu, idx);
1494 this_load = target_load(this_cpu, idx);
1495
1496 new_cpu = this_cpu; /* Wake to this CPU if we can */
1497
1498 if (this_sd->flags & SD_WAKE_AFFINE) {
1499 unsigned long tl = this_load;
1500 unsigned long tl_per_task;
1501
1502 tl_per_task = cpu_avg_load_per_task(this_cpu);
1503
1504 /*
1505 * If sync wakeup then subtract the (maximum possible)
1506 * effect of the currently running task from the load
1507 * of the current CPU:
1508 */
1509 if (sync)
1510 tl -= current->se.load.weight;
1511
1512 if ((tl <= load &&
1513 tl + target_load(cpu, idx) <= tl_per_task) ||
1514 100*(tl + p->se.load.weight) <= imbalance*load) {
1515 /*
1516 * This domain has SD_WAKE_AFFINE and
1517 * p is cache cold in this domain, and
1518 * there is no bad imbalance.
1519 */
1520 schedstat_inc(this_sd, ttwu_move_affine);
1521 goto out_set_cpu;
1522 }
1523 }
1524
1525 /*
1526 * Start passive balancing when half the imbalance_pct
1527 * limit is reached.
1528 */
1529 if (this_sd->flags & SD_WAKE_BALANCE) {
1530 if (imbalance*this_load <= 100*load) {
1531 schedstat_inc(this_sd, ttwu_move_balance);
1532 goto out_set_cpu;
1533 }
1534 }
1535 }
1536
1537 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1538 out_set_cpu:
1539 new_cpu = wake_idle(new_cpu, p);
1540 if (new_cpu != cpu) {
1541 set_task_cpu(p, new_cpu);
1542 task_rq_unlock(rq, &flags);
1543 /* might preempt at this point */
1544 rq = task_rq_lock(p, &flags);
1545 old_state = p->state;
1546 if (!(old_state & state))
1547 goto out;
1548 if (p->se.on_rq)
1549 goto out_running;
1550
1551 this_cpu = smp_processor_id();
1552 cpu = task_cpu(p);
1553 }
1554
1555 out_activate:
1556 #endif /* CONFIG_SMP */
1557 update_rq_clock(rq);
1558 activate_task(rq, p, 1);
1559 /*
1560 * Sync wakeups (i.e. those types of wakeups where the waker
1561 * has indicated that it will leave the CPU in short order)
1562 * don't trigger a preemption, if the woken up task will run on
1563 * this cpu. (in this case the 'I will reschedule' promise of
1564 * the waker guarantees that the freshly woken up task is going
1565 * to be considered on this CPU.)
1566 */
1567 if (!sync || cpu != this_cpu)
1568 check_preempt_curr(rq, p);
1569 success = 1;
1570
1571 out_running:
1572 p->state = TASK_RUNNING;
1573 out:
1574 task_rq_unlock(rq, &flags);
1575
1576 return success;
1577 }
1578
1579 int fastcall wake_up_process(struct task_struct *p)
1580 {
1581 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1582 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1583 }
1584 EXPORT_SYMBOL(wake_up_process);
1585
1586 int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1587 {
1588 return try_to_wake_up(p, state, 0);
1589 }
1590
1591 /*
1592 * Perform scheduler related setup for a newly forked process p.
1593 * p is forked by current.
1594 *
1595 * __sched_fork() is basic setup used by init_idle() too:
1596 */
1597 static void __sched_fork(struct task_struct *p)
1598 {
1599 p->se.exec_start = 0;
1600 p->se.sum_exec_runtime = 0;
1601 p->se.prev_sum_exec_runtime = 0;
1602
1603 #ifdef CONFIG_SCHEDSTATS
1604 p->se.wait_start = 0;
1605 p->se.sum_sleep_runtime = 0;
1606 p->se.sleep_start = 0;
1607 p->se.block_start = 0;
1608 p->se.sleep_max = 0;
1609 p->se.block_max = 0;
1610 p->se.exec_max = 0;
1611 p->se.slice_max = 0;
1612 p->se.wait_max = 0;
1613 #endif
1614
1615 INIT_LIST_HEAD(&p->run_list);
1616 p->se.on_rq = 0;
1617
1618 #ifdef CONFIG_PREEMPT_NOTIFIERS
1619 INIT_HLIST_HEAD(&p->preempt_notifiers);
1620 #endif
1621
1622 /*
1623 * We mark the process as running here, but have not actually
1624 * inserted it onto the runqueue yet. This guarantees that
1625 * nobody will actually run it, and a signal or other external
1626 * event cannot wake it up and insert it on the runqueue either.
1627 */
1628 p->state = TASK_RUNNING;
1629 }
1630
1631 /*
1632 * fork()/clone()-time setup:
1633 */
1634 void sched_fork(struct task_struct *p, int clone_flags)
1635 {
1636 int cpu = get_cpu();
1637
1638 __sched_fork(p);
1639
1640 #ifdef CONFIG_SMP
1641 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1642 #endif
1643 __set_task_cpu(p, cpu);
1644
1645 /*
1646 * Make sure we do not leak PI boosting priority to the child:
1647 */
1648 p->prio = current->normal_prio;
1649
1650 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1651 if (likely(sched_info_on()))
1652 memset(&p->sched_info, 0, sizeof(p->sched_info));
1653 #endif
1654 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1655 p->oncpu = 0;
1656 #endif
1657 #ifdef CONFIG_PREEMPT
1658 /* Want to start with kernel preemption disabled. */
1659 task_thread_info(p)->preempt_count = 1;
1660 #endif
1661 put_cpu();
1662 }
1663
1664 /*
1665 * wake_up_new_task - wake up a newly created task for the first time.
1666 *
1667 * This function will do some initial scheduler statistics housekeeping
1668 * that must be done for every newly created context, then puts the task
1669 * on the runqueue and wakes it.
1670 */
1671 void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1672 {
1673 unsigned long flags;
1674 struct rq *rq;
1675 int this_cpu;
1676
1677 rq = task_rq_lock(p, &flags);
1678 BUG_ON(p->state != TASK_RUNNING);
1679 this_cpu = smp_processor_id(); /* parent's CPU */
1680 update_rq_clock(rq);
1681
1682 p->prio = effective_prio(p);
1683
1684 if (rt_prio(p->prio))
1685 p->sched_class = &rt_sched_class;
1686 else
1687 p->sched_class = &fair_sched_class;
1688
1689 if (task_cpu(p) != this_cpu || !p->sched_class->task_new ||
1690 !current->se.on_rq) {
1691 activate_task(rq, p, 0);
1692 } else {
1693 /*
1694 * Let the scheduling class do new task startup
1695 * management (if any):
1696 */
1697 p->sched_class->task_new(rq, p);
1698 inc_nr_running(p, rq);
1699 }
1700 check_preempt_curr(rq, p);
1701 task_rq_unlock(rq, &flags);
1702 }
1703
1704 #ifdef CONFIG_PREEMPT_NOTIFIERS
1705
1706 /**
1707 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1708 * @notifier: notifier struct to register
1709 */
1710 void preempt_notifier_register(struct preempt_notifier *notifier)
1711 {
1712 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1713 }
1714 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1715
1716 /**
1717 * preempt_notifier_unregister - no longer interested in preemption notifications
1718 * @notifier: notifier struct to unregister
1719 *
1720 * This is safe to call from within a preemption notifier.
1721 */
1722 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1723 {
1724 hlist_del(&notifier->link);
1725 }
1726 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1727
1728 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1729 {
1730 struct preempt_notifier *notifier;
1731 struct hlist_node *node;
1732
1733 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1734 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1735 }
1736
1737 static void
1738 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1739 struct task_struct *next)
1740 {
1741 struct preempt_notifier *notifier;
1742 struct hlist_node *node;
1743
1744 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1745 notifier->ops->sched_out(notifier, next);
1746 }
1747
1748 #else
1749
1750 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1751 {
1752 }
1753
1754 static void
1755 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1756 struct task_struct *next)
1757 {
1758 }
1759
1760 #endif
1761
1762 /**
1763 * prepare_task_switch - prepare to switch tasks
1764 * @rq: the runqueue preparing to switch
1765 * @prev: the current task that is being switched out
1766 * @next: the task we are going to switch to.
1767 *
1768 * This is called with the rq lock held and interrupts off. It must
1769 * be paired with a subsequent finish_task_switch after the context
1770 * switch.
1771 *
1772 * prepare_task_switch sets up locking and calls architecture specific
1773 * hooks.
1774 */
1775 static inline void
1776 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1777 struct task_struct *next)
1778 {
1779 fire_sched_out_preempt_notifiers(prev, next);
1780 prepare_lock_switch(rq, next);
1781 prepare_arch_switch(next);
1782 }
1783
1784 /**
1785 * finish_task_switch - clean up after a task-switch
1786 * @rq: runqueue associated with task-switch
1787 * @prev: the thread we just switched away from.
1788 *
1789 * finish_task_switch must be called after the context switch, paired
1790 * with a prepare_task_switch call before the context switch.
1791 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1792 * and do any other architecture-specific cleanup actions.
1793 *
1794 * Note that we may have delayed dropping an mm in context_switch(). If
1795 * so, we finish that here outside of the runqueue lock. (Doing it
1796 * with the lock held can cause deadlocks; see schedule() for
1797 * details.)
1798 */
1799 static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
1800 __releases(rq->lock)
1801 {
1802 struct mm_struct *mm = rq->prev_mm;
1803 long prev_state;
1804
1805 rq->prev_mm = NULL;
1806
1807 /*
1808 * A task struct has one reference for the use as "current".
1809 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1810 * schedule one last time. The schedule call will never return, and
1811 * the scheduled task must drop that reference.
1812 * The test for TASK_DEAD must occur while the runqueue locks are
1813 * still held, otherwise prev could be scheduled on another cpu, die
1814 * there before we look at prev->state, and then the reference would
1815 * be dropped twice.
1816 * Manfred Spraul <manfred@colorfullife.com>
1817 */
1818 prev_state = prev->state;
1819 finish_arch_switch(prev);
1820 finish_lock_switch(rq, prev);
1821 fire_sched_in_preempt_notifiers(current);
1822 if (mm)
1823 mmdrop(mm);
1824 if (unlikely(prev_state == TASK_DEAD)) {
1825 /*
1826 * Remove function-return probe instances associated with this
1827 * task and put them back on the free list.
1828 */
1829 kprobe_flush_task(prev);
1830 put_task_struct(prev);
1831 }
1832 }
1833
1834 /**
1835 * schedule_tail - first thing a freshly forked thread must call.
1836 * @prev: the thread we just switched away from.
1837 */
1838 asmlinkage void schedule_tail(struct task_struct *prev)
1839 __releases(rq->lock)
1840 {
1841 struct rq *rq = this_rq();
1842
1843 finish_task_switch(rq, prev);
1844 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1845 /* In this case, finish_task_switch does not reenable preemption */
1846 preempt_enable();
1847 #endif
1848 if (current->set_child_tid)
1849 put_user(current->pid, current->set_child_tid);
1850 }
1851
1852 /*
1853 * context_switch - switch to the new MM and the new
1854 * thread's register state.
1855 */
1856 static inline void
1857 context_switch(struct rq *rq, struct task_struct *prev,
1858 struct task_struct *next)
1859 {
1860 struct mm_struct *mm, *oldmm;
1861
1862 prepare_task_switch(rq, prev, next);
1863 mm = next->mm;
1864 oldmm = prev->active_mm;
1865 /*
1866 * For paravirt, this is coupled with an exit in switch_to to
1867 * combine the page table reload and the switch backend into
1868 * one hypercall.
1869 */
1870 arch_enter_lazy_cpu_mode();
1871
1872 if (unlikely(!mm)) {
1873 next->active_mm = oldmm;
1874 atomic_inc(&oldmm->mm_count);
1875 enter_lazy_tlb(oldmm, next);
1876 } else
1877 switch_mm(oldmm, mm, next);
1878
1879 if (unlikely(!prev->mm)) {
1880 prev->active_mm = NULL;
1881 rq->prev_mm = oldmm;
1882 }
1883 /*
1884 * Since the runqueue lock will be released by the next
1885 * task (which is an invalid locking op but in the case
1886 * of the scheduler it's an obvious special-case), so we
1887 * do an early lockdep release here:
1888 */
1889 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1890 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1891 #endif
1892
1893 /* Here we just switch the register state and the stack. */
1894 switch_to(prev, next, prev);
1895
1896 barrier();
1897 /*
1898 * this_rq must be evaluated again because prev may have moved
1899 * CPUs since it called schedule(), thus the 'rq' on its stack
1900 * frame will be invalid.
1901 */
1902 finish_task_switch(this_rq(), prev);
1903 }
1904
1905 /*
1906 * nr_running, nr_uninterruptible and nr_context_switches:
1907 *
1908 * externally visible scheduler statistics: current number of runnable
1909 * threads, current number of uninterruptible-sleeping threads, total
1910 * number of context switches performed since bootup.
1911 */
1912 unsigned long nr_running(void)
1913 {
1914 unsigned long i, sum = 0;
1915
1916 for_each_online_cpu(i)
1917 sum += cpu_rq(i)->nr_running;
1918
1919 return sum;
1920 }
1921
1922 unsigned long nr_uninterruptible(void)
1923 {
1924 unsigned long i, sum = 0;
1925
1926 for_each_possible_cpu(i)
1927 sum += cpu_rq(i)->nr_uninterruptible;
1928
1929 /*
1930 * Since we read the counters lockless, it might be slightly
1931 * inaccurate. Do not allow it to go below zero though:
1932 */
1933 if (unlikely((long)sum < 0))
1934 sum = 0;
1935
1936 return sum;
1937 }
1938
1939 unsigned long long nr_context_switches(void)
1940 {
1941 int i;
1942 unsigned long long sum = 0;
1943
1944 for_each_possible_cpu(i)
1945 sum += cpu_rq(i)->nr_switches;
1946
1947 return sum;
1948 }
1949
1950 unsigned long nr_iowait(void)
1951 {
1952 unsigned long i, sum = 0;
1953
1954 for_each_possible_cpu(i)
1955 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1956
1957 return sum;
1958 }
1959
1960 unsigned long nr_active(void)
1961 {
1962 unsigned long i, running = 0, uninterruptible = 0;
1963
1964 for_each_online_cpu(i) {
1965 running += cpu_rq(i)->nr_running;
1966 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1967 }
1968
1969 if (unlikely((long)uninterruptible < 0))
1970 uninterruptible = 0;
1971
1972 return running + uninterruptible;
1973 }
1974
1975 /*
1976 * Update rq->cpu_load[] statistics. This function is usually called every
1977 * scheduler tick (TICK_NSEC).
1978 */
1979 static void update_cpu_load(struct rq *this_rq)
1980 {
1981 unsigned long this_load = this_rq->load.weight;
1982 int i, scale;
1983
1984 this_rq->nr_load_updates++;
1985
1986 /* Update our load: */
1987 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
1988 unsigned long old_load, new_load;
1989
1990 /* scale is effectively 1 << i now, and >> i divides by scale */
1991
1992 old_load = this_rq->cpu_load[i];
1993 new_load = this_load;
1994 /*
1995 * Round up the averaging division if load is increasing. This
1996 * prevents us from getting stuck on 9 if the load is 10, for
1997 * example.
1998 */
1999 if (new_load > old_load)
2000 new_load += scale-1;
2001 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2002 }
2003 }
2004
2005 #ifdef CONFIG_SMP
2006
2007 /*
2008 * double_rq_lock - safely lock two runqueues
2009 *
2010 * Note this does not disable interrupts like task_rq_lock,
2011 * you need to do so manually before calling.
2012 */
2013 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2014 __acquires(rq1->lock)
2015 __acquires(rq2->lock)
2016 {
2017 BUG_ON(!irqs_disabled());
2018 if (rq1 == rq2) {
2019 spin_lock(&rq1->lock);
2020 __acquire(rq2->lock); /* Fake it out ;) */
2021 } else {
2022 if (rq1 < rq2) {
2023 spin_lock(&rq1->lock);
2024 spin_lock(&rq2->lock);
2025 } else {
2026 spin_lock(&rq2->lock);
2027 spin_lock(&rq1->lock);
2028 }
2029 }
2030 update_rq_clock(rq1);
2031 update_rq_clock(rq2);
2032 }
2033
2034 /*
2035 * double_rq_unlock - safely unlock two runqueues
2036 *
2037 * Note this does not restore interrupts like task_rq_unlock,
2038 * you need to do so manually after calling.
2039 */
2040 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2041 __releases(rq1->lock)
2042 __releases(rq2->lock)
2043 {
2044 spin_unlock(&rq1->lock);
2045 if (rq1 != rq2)
2046 spin_unlock(&rq2->lock);
2047 else
2048 __release(rq2->lock);
2049 }
2050
2051 /*
2052 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2053 */
2054 static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
2055 __releases(this_rq->lock)
2056 __acquires(busiest->lock)
2057 __acquires(this_rq->lock)
2058 {
2059 if (unlikely(!irqs_disabled())) {
2060 /* printk() doesn't work good under rq->lock */
2061 spin_unlock(&this_rq->lock);
2062 BUG_ON(1);
2063 }
2064 if (unlikely(!spin_trylock(&busiest->lock))) {
2065 if (busiest < this_rq) {
2066 spin_unlock(&this_rq->lock);
2067 spin_lock(&busiest->lock);
2068 spin_lock(&this_rq->lock);
2069 } else
2070 spin_lock(&busiest->lock);
2071 }
2072 }
2073
2074 /*
2075 * If dest_cpu is allowed for this process, migrate the task to it.
2076 * This is accomplished by forcing the cpu_allowed mask to only
2077 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2078 * the cpu_allowed mask is restored.
2079 */
2080 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2081 {
2082 struct migration_req req;
2083 unsigned long flags;
2084 struct rq *rq;
2085
2086 rq = task_rq_lock(p, &flags);
2087 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2088 || unlikely(cpu_is_offline(dest_cpu)))
2089 goto out;
2090
2091 /* force the process onto the specified CPU */
2092 if (migrate_task(p, dest_cpu, &req)) {
2093 /* Need to wait for migration thread (might exit: take ref). */
2094 struct task_struct *mt = rq->migration_thread;
2095
2096 get_task_struct(mt);
2097 task_rq_unlock(rq, &flags);
2098 wake_up_process(mt);
2099 put_task_struct(mt);
2100 wait_for_completion(&req.done);
2101
2102 return;
2103 }
2104 out:
2105 task_rq_unlock(rq, &flags);
2106 }
2107
2108 /*
2109 * sched_exec - execve() is a valuable balancing opportunity, because at
2110 * this point the task has the smallest effective memory and cache footprint.
2111 */
2112 void sched_exec(void)
2113 {
2114 int new_cpu, this_cpu = get_cpu();
2115 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2116 put_cpu();
2117 if (new_cpu != this_cpu)
2118 sched_migrate_task(current, new_cpu);
2119 }
2120
2121 /*
2122 * pull_task - move a task from a remote runqueue to the local runqueue.
2123 * Both runqueues must be locked.
2124 */
2125 static void pull_task(struct rq *src_rq, struct task_struct *p,
2126 struct rq *this_rq, int this_cpu)
2127 {
2128 deactivate_task(src_rq, p, 0);
2129 set_task_cpu(p, this_cpu);
2130 activate_task(this_rq, p, 0);
2131 /*
2132 * Note that idle threads have a prio of MAX_PRIO, for this test
2133 * to be always true for them.
2134 */
2135 check_preempt_curr(this_rq, p);
2136 }
2137
2138 /*
2139 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2140 */
2141 static
2142 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2143 struct sched_domain *sd, enum cpu_idle_type idle,
2144 int *all_pinned)
2145 {
2146 /*
2147 * We do not migrate tasks that are:
2148 * 1) running (obviously), or
2149 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2150 * 3) are cache-hot on their current CPU.
2151 */
2152 if (!cpu_isset(this_cpu, p->cpus_allowed))
2153 return 0;
2154 *all_pinned = 0;
2155
2156 if (task_running(rq, p))
2157 return 0;
2158
2159 return 1;
2160 }
2161
2162 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2163 unsigned long max_nr_move, unsigned long max_load_move,
2164 struct sched_domain *sd, enum cpu_idle_type idle,
2165 int *all_pinned, unsigned long *load_moved,
2166 int *this_best_prio, struct rq_iterator *iterator)
2167 {
2168 int pulled = 0, pinned = 0, skip_for_load;
2169 struct task_struct *p;
2170 long rem_load_move = max_load_move;
2171
2172 if (max_nr_move == 0 || max_load_move == 0)
2173 goto out;
2174
2175 pinned = 1;
2176
2177 /*
2178 * Start the load-balancing iterator:
2179 */
2180 p = iterator->start(iterator->arg);
2181 next:
2182 if (!p)
2183 goto out;
2184 /*
2185 * To help distribute high priority tasks accross CPUs we don't
2186 * skip a task if it will be the highest priority task (i.e. smallest
2187 * prio value) on its new queue regardless of its load weight
2188 */
2189 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2190 SCHED_LOAD_SCALE_FUZZ;
2191 if ((skip_for_load && p->prio >= *this_best_prio) ||
2192 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2193 p = iterator->next(iterator->arg);
2194 goto next;
2195 }
2196
2197 pull_task(busiest, p, this_rq, this_cpu);
2198 pulled++;
2199 rem_load_move -= p->se.load.weight;
2200
2201 /*
2202 * We only want to steal up to the prescribed number of tasks
2203 * and the prescribed amount of weighted load.
2204 */
2205 if (pulled < max_nr_move && rem_load_move > 0) {
2206 if (p->prio < *this_best_prio)
2207 *this_best_prio = p->prio;
2208 p = iterator->next(iterator->arg);
2209 goto next;
2210 }
2211 out:
2212 /*
2213 * Right now, this is the only place pull_task() is called,
2214 * so we can safely collect pull_task() stats here rather than
2215 * inside pull_task().
2216 */
2217 schedstat_add(sd, lb_gained[idle], pulled);
2218
2219 if (all_pinned)
2220 *all_pinned = pinned;
2221 *load_moved = max_load_move - rem_load_move;
2222 return pulled;
2223 }
2224
2225 /*
2226 * move_tasks tries to move up to max_load_move weighted load from busiest to
2227 * this_rq, as part of a balancing operation within domain "sd".
2228 * Returns 1 if successful and 0 otherwise.
2229 *
2230 * Called with both runqueues locked.
2231 */
2232 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2233 unsigned long max_load_move,
2234 struct sched_domain *sd, enum cpu_idle_type idle,
2235 int *all_pinned)
2236 {
2237 struct sched_class *class = sched_class_highest;
2238 unsigned long total_load_moved = 0;
2239 int this_best_prio = this_rq->curr->prio;
2240
2241 do {
2242 total_load_moved +=
2243 class->load_balance(this_rq, this_cpu, busiest,
2244 ULONG_MAX, max_load_move - total_load_moved,
2245 sd, idle, all_pinned, &this_best_prio);
2246 class = class->next;
2247 } while (class && max_load_move > total_load_moved);
2248
2249 return total_load_moved > 0;
2250 }
2251
2252 /*
2253 * move_one_task tries to move exactly one task from busiest to this_rq, as
2254 * part of active balancing operations within "domain".
2255 * Returns 1 if successful and 0 otherwise.
2256 *
2257 * Called with both runqueues locked.
2258 */
2259 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2260 struct sched_domain *sd, enum cpu_idle_type idle)
2261 {
2262 struct sched_class *class;
2263 int this_best_prio = MAX_PRIO;
2264
2265 for (class = sched_class_highest; class; class = class->next)
2266 if (class->load_balance(this_rq, this_cpu, busiest,
2267 1, ULONG_MAX, sd, idle, NULL,
2268 &this_best_prio))
2269 return 1;
2270
2271 return 0;
2272 }
2273
2274 /*
2275 * find_busiest_group finds and returns the busiest CPU group within the
2276 * domain. It calculates and returns the amount of weighted load which
2277 * should be moved to restore balance via the imbalance parameter.
2278 */
2279 static struct sched_group *
2280 find_busiest_group(struct sched_domain *sd, int this_cpu,
2281 unsigned long *imbalance, enum cpu_idle_type idle,
2282 int *sd_idle, cpumask_t *cpus, int *balance)
2283 {
2284 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2285 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2286 unsigned long max_pull;
2287 unsigned long busiest_load_per_task, busiest_nr_running;
2288 unsigned long this_load_per_task, this_nr_running;
2289 int load_idx;
2290 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2291 int power_savings_balance = 1;
2292 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2293 unsigned long min_nr_running = ULONG_MAX;
2294 struct sched_group *group_min = NULL, *group_leader = NULL;
2295 #endif
2296
2297 max_load = this_load = total_load = total_pwr = 0;
2298 busiest_load_per_task = busiest_nr_running = 0;
2299 this_load_per_task = this_nr_running = 0;
2300 if (idle == CPU_NOT_IDLE)
2301 load_idx = sd->busy_idx;
2302 else if (idle == CPU_NEWLY_IDLE)
2303 load_idx = sd->newidle_idx;
2304 else
2305 load_idx = sd->idle_idx;
2306
2307 do {
2308 unsigned long load, group_capacity;
2309 int local_group;
2310 int i;
2311 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2312 unsigned long sum_nr_running, sum_weighted_load;
2313
2314 local_group = cpu_isset(this_cpu, group->cpumask);
2315
2316 if (local_group)
2317 balance_cpu = first_cpu(group->cpumask);
2318
2319 /* Tally up the load of all CPUs in the group */
2320 sum_weighted_load = sum_nr_running = avg_load = 0;
2321
2322 for_each_cpu_mask(i, group->cpumask) {
2323 struct rq *rq;
2324
2325 if (!cpu_isset(i, *cpus))
2326 continue;
2327
2328 rq = cpu_rq(i);
2329
2330 if (*sd_idle && rq->nr_running)
2331 *sd_idle = 0;
2332
2333 /* Bias balancing toward cpus of our domain */
2334 if (local_group) {
2335 if (idle_cpu(i) && !first_idle_cpu) {
2336 first_idle_cpu = 1;
2337 balance_cpu = i;
2338 }
2339
2340 load = target_load(i, load_idx);
2341 } else
2342 load = source_load(i, load_idx);
2343
2344 avg_load += load;
2345 sum_nr_running += rq->nr_running;
2346 sum_weighted_load += weighted_cpuload(i);
2347 }
2348
2349 /*
2350 * First idle cpu or the first cpu(busiest) in this sched group
2351 * is eligible for doing load balancing at this and above
2352 * domains. In the newly idle case, we will allow all the cpu's
2353 * to do the newly idle load balance.
2354 */
2355 if (idle != CPU_NEWLY_IDLE && local_group &&
2356 balance_cpu != this_cpu && balance) {
2357 *balance = 0;
2358 goto ret;
2359 }
2360
2361 total_load += avg_load;
2362 total_pwr += group->__cpu_power;
2363
2364 /* Adjust by relative CPU power of the group */
2365 avg_load = sg_div_cpu_power(group,
2366 avg_load * SCHED_LOAD_SCALE);
2367
2368 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2369
2370 if (local_group) {
2371 this_load = avg_load;
2372 this = group;
2373 this_nr_running = sum_nr_running;
2374 this_load_per_task = sum_weighted_load;
2375 } else if (avg_load > max_load &&
2376 sum_nr_running > group_capacity) {
2377 max_load = avg_load;
2378 busiest = group;
2379 busiest_nr_running = sum_nr_running;
2380 busiest_load_per_task = sum_weighted_load;
2381 }
2382
2383 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2384 /*
2385 * Busy processors will not participate in power savings
2386 * balance.
2387 */
2388 if (idle == CPU_NOT_IDLE ||
2389 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2390 goto group_next;
2391
2392 /*
2393 * If the local group is idle or completely loaded
2394 * no need to do power savings balance at this domain
2395 */
2396 if (local_group && (this_nr_running >= group_capacity ||
2397 !this_nr_running))
2398 power_savings_balance = 0;
2399
2400 /*
2401 * If a group is already running at full capacity or idle,
2402 * don't include that group in power savings calculations
2403 */
2404 if (!power_savings_balance || sum_nr_running >= group_capacity
2405 || !sum_nr_running)
2406 goto group_next;
2407
2408 /*
2409 * Calculate the group which has the least non-idle load.
2410 * This is the group from where we need to pick up the load
2411 * for saving power
2412 */
2413 if ((sum_nr_running < min_nr_running) ||
2414 (sum_nr_running == min_nr_running &&
2415 first_cpu(group->cpumask) <
2416 first_cpu(group_min->cpumask))) {
2417 group_min = group;
2418 min_nr_running = sum_nr_running;
2419 min_load_per_task = sum_weighted_load /
2420 sum_nr_running;
2421 }
2422
2423 /*
2424 * Calculate the group which is almost near its
2425 * capacity but still has some space to pick up some load
2426 * from other group and save more power
2427 */
2428 if (sum_nr_running <= group_capacity - 1) {
2429 if (sum_nr_running > leader_nr_running ||
2430 (sum_nr_running == leader_nr_running &&
2431 first_cpu(group->cpumask) >
2432 first_cpu(group_leader->cpumask))) {
2433 group_leader = group;
2434 leader_nr_running = sum_nr_running;
2435 }
2436 }
2437 group_next:
2438 #endif
2439 group = group->next;
2440 } while (group != sd->groups);
2441
2442 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2443 goto out_balanced;
2444
2445 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2446
2447 if (this_load >= avg_load ||
2448 100*max_load <= sd->imbalance_pct*this_load)
2449 goto out_balanced;
2450
2451 busiest_load_per_task /= busiest_nr_running;
2452 /*
2453 * We're trying to get all the cpus to the average_load, so we don't
2454 * want to push ourselves above the average load, nor do we wish to
2455 * reduce the max loaded cpu below the average load, as either of these
2456 * actions would just result in more rebalancing later, and ping-pong
2457 * tasks around. Thus we look for the minimum possible imbalance.
2458 * Negative imbalances (*we* are more loaded than anyone else) will
2459 * be counted as no imbalance for these purposes -- we can't fix that
2460 * by pulling tasks to us. Be careful of negative numbers as they'll
2461 * appear as very large values with unsigned longs.
2462 */
2463 if (max_load <= busiest_load_per_task)
2464 goto out_balanced;
2465
2466 /*
2467 * In the presence of smp nice balancing, certain scenarios can have
2468 * max load less than avg load(as we skip the groups at or below
2469 * its cpu_power, while calculating max_load..)
2470 */
2471 if (max_load < avg_load) {
2472 *imbalance = 0;
2473 goto small_imbalance;
2474 }
2475
2476 /* Don't want to pull so many tasks that a group would go idle */
2477 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2478
2479 /* How much load to actually move to equalise the imbalance */
2480 *imbalance = min(max_pull * busiest->__cpu_power,
2481 (avg_load - this_load) * this->__cpu_power)
2482 / SCHED_LOAD_SCALE;
2483
2484 /*
2485 * if *imbalance is less than the average load per runnable task
2486 * there is no gaurantee that any tasks will be moved so we'll have
2487 * a think about bumping its value to force at least one task to be
2488 * moved
2489 */
2490 if (*imbalance < busiest_load_per_task) {
2491 unsigned long tmp, pwr_now, pwr_move;
2492 unsigned int imbn;
2493
2494 small_imbalance:
2495 pwr_move = pwr_now = 0;
2496 imbn = 2;
2497 if (this_nr_running) {
2498 this_load_per_task /= this_nr_running;
2499 if (busiest_load_per_task > this_load_per_task)
2500 imbn = 1;
2501 } else
2502 this_load_per_task = SCHED_LOAD_SCALE;
2503
2504 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2505 busiest_load_per_task * imbn) {
2506 *imbalance = busiest_load_per_task;
2507 return busiest;
2508 }
2509
2510 /*
2511 * OK, we don't have enough imbalance to justify moving tasks,
2512 * however we may be able to increase total CPU power used by
2513 * moving them.
2514 */
2515
2516 pwr_now += busiest->__cpu_power *
2517 min(busiest_load_per_task, max_load);
2518 pwr_now += this->__cpu_power *
2519 min(this_load_per_task, this_load);
2520 pwr_now /= SCHED_LOAD_SCALE;
2521
2522 /* Amount of load we'd subtract */
2523 tmp = sg_div_cpu_power(busiest,
2524 busiest_load_per_task * SCHED_LOAD_SCALE);
2525 if (max_load > tmp)
2526 pwr_move += busiest->__cpu_power *
2527 min(busiest_load_per_task, max_load - tmp);
2528
2529 /* Amount of load we'd add */
2530 if (max_load * busiest->__cpu_power <
2531 busiest_load_per_task * SCHED_LOAD_SCALE)
2532 tmp = sg_div_cpu_power(this,
2533 max_load * busiest->__cpu_power);
2534 else
2535 tmp = sg_div_cpu_power(this,
2536 busiest_load_per_task * SCHED_LOAD_SCALE);
2537 pwr_move += this->__cpu_power *
2538 min(this_load_per_task, this_load + tmp);
2539 pwr_move /= SCHED_LOAD_SCALE;
2540
2541 /* Move if we gain throughput */
2542 if (pwr_move > pwr_now)
2543 *imbalance = busiest_load_per_task;
2544 }
2545
2546 return busiest;
2547
2548 out_balanced:
2549 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2550 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2551 goto ret;
2552
2553 if (this == group_leader && group_leader != group_min) {
2554 *imbalance = min_load_per_task;
2555 return group_min;
2556 }
2557 #endif
2558 ret:
2559 *imbalance = 0;
2560 return NULL;
2561 }
2562
2563 /*
2564 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2565 */
2566 static struct rq *
2567 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2568 unsigned long imbalance, cpumask_t *cpus)
2569 {
2570 struct rq *busiest = NULL, *rq;
2571 unsigned long max_load = 0;
2572 int i;
2573
2574 for_each_cpu_mask(i, group->cpumask) {
2575 unsigned long wl;
2576
2577 if (!cpu_isset(i, *cpus))
2578 continue;
2579
2580 rq = cpu_rq(i);
2581 wl = weighted_cpuload(i);
2582
2583 if (rq->nr_running == 1 && wl > imbalance)
2584 continue;
2585
2586 if (wl > max_load) {
2587 max_load = wl;
2588 busiest = rq;
2589 }
2590 }
2591
2592 return busiest;
2593 }
2594
2595 /*
2596 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2597 * so long as it is large enough.
2598 */
2599 #define MAX_PINNED_INTERVAL 512
2600
2601 /*
2602 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2603 * tasks if there is an imbalance.
2604 */
2605 static int load_balance(int this_cpu, struct rq *this_rq,
2606 struct sched_domain *sd, enum cpu_idle_type idle,
2607 int *balance)
2608 {
2609 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2610 struct sched_group *group;
2611 unsigned long imbalance;
2612 struct rq *busiest;
2613 cpumask_t cpus = CPU_MASK_ALL;
2614 unsigned long flags;
2615
2616 /*
2617 * When power savings policy is enabled for the parent domain, idle
2618 * sibling can pick up load irrespective of busy siblings. In this case,
2619 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2620 * portraying it as CPU_NOT_IDLE.
2621 */
2622 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2623 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2624 sd_idle = 1;
2625
2626 schedstat_inc(sd, lb_cnt[idle]);
2627
2628 redo:
2629 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2630 &cpus, balance);
2631
2632 if (*balance == 0)
2633 goto out_balanced;
2634
2635 if (!group) {
2636 schedstat_inc(sd, lb_nobusyg[idle]);
2637 goto out_balanced;
2638 }
2639
2640 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
2641 if (!busiest) {
2642 schedstat_inc(sd, lb_nobusyq[idle]);
2643 goto out_balanced;
2644 }
2645
2646 BUG_ON(busiest == this_rq);
2647
2648 schedstat_add(sd, lb_imbalance[idle], imbalance);
2649
2650 ld_moved = 0;
2651 if (busiest->nr_running > 1) {
2652 /*
2653 * Attempt to move tasks. If find_busiest_group has found
2654 * an imbalance but busiest->nr_running <= 1, the group is
2655 * still unbalanced. ld_moved simply stays zero, so it is
2656 * correctly treated as an imbalance.
2657 */
2658 local_irq_save(flags);
2659 double_rq_lock(this_rq, busiest);
2660 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2661 imbalance, sd, idle, &all_pinned);
2662 double_rq_unlock(this_rq, busiest);
2663 local_irq_restore(flags);
2664
2665 /*
2666 * some other cpu did the load balance for us.
2667 */
2668 if (ld_moved && this_cpu != smp_processor_id())
2669 resched_cpu(this_cpu);
2670
2671 /* All tasks on this runqueue were pinned by CPU affinity */
2672 if (unlikely(all_pinned)) {
2673 cpu_clear(cpu_of(busiest), cpus);
2674 if (!cpus_empty(cpus))
2675 goto redo;
2676 goto out_balanced;
2677 }
2678 }
2679
2680 if (!ld_moved) {
2681 schedstat_inc(sd, lb_failed[idle]);
2682 sd->nr_balance_failed++;
2683
2684 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2685
2686 spin_lock_irqsave(&busiest->lock, flags);
2687
2688 /* don't kick the migration_thread, if the curr
2689 * task on busiest cpu can't be moved to this_cpu
2690 */
2691 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2692 spin_unlock_irqrestore(&busiest->lock, flags);
2693 all_pinned = 1;
2694 goto out_one_pinned;
2695 }
2696
2697 if (!busiest->active_balance) {
2698 busiest->active_balance = 1;
2699 busiest->push_cpu = this_cpu;
2700 active_balance = 1;
2701 }
2702 spin_unlock_irqrestore(&busiest->lock, flags);
2703 if (active_balance)
2704 wake_up_process(busiest->migration_thread);
2705
2706 /*
2707 * We've kicked active balancing, reset the failure
2708 * counter.
2709 */
2710 sd->nr_balance_failed = sd->cache_nice_tries+1;
2711 }
2712 } else
2713 sd->nr_balance_failed = 0;
2714
2715 if (likely(!active_balance)) {
2716 /* We were unbalanced, so reset the balancing interval */
2717 sd->balance_interval = sd->min_interval;
2718 } else {
2719 /*
2720 * If we've begun active balancing, start to back off. This
2721 * case may not be covered by the all_pinned logic if there
2722 * is only 1 task on the busy runqueue (because we don't call
2723 * move_tasks).
2724 */
2725 if (sd->balance_interval < sd->max_interval)
2726 sd->balance_interval *= 2;
2727 }
2728
2729 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2730 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2731 return -1;
2732 return ld_moved;
2733
2734 out_balanced:
2735 schedstat_inc(sd, lb_balanced[idle]);
2736
2737 sd->nr_balance_failed = 0;
2738
2739 out_one_pinned:
2740 /* tune up the balancing interval */
2741 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2742 (sd->balance_interval < sd->max_interval))
2743 sd->balance_interval *= 2;
2744
2745 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2746 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2747 return -1;
2748 return 0;
2749 }
2750
2751 /*
2752 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2753 * tasks if there is an imbalance.
2754 *
2755 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
2756 * this_rq is locked.
2757 */
2758 static int
2759 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
2760 {
2761 struct sched_group *group;
2762 struct rq *busiest = NULL;
2763 unsigned long imbalance;
2764 int ld_moved = 0;
2765 int sd_idle = 0;
2766 int all_pinned = 0;
2767 cpumask_t cpus = CPU_MASK_ALL;
2768
2769 /*
2770 * When power savings policy is enabled for the parent domain, idle
2771 * sibling can pick up load irrespective of busy siblings. In this case,
2772 * let the state of idle sibling percolate up as IDLE, instead of
2773 * portraying it as CPU_NOT_IDLE.
2774 */
2775 if (sd->flags & SD_SHARE_CPUPOWER &&
2776 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2777 sd_idle = 1;
2778
2779 schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
2780 redo:
2781 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2782 &sd_idle, &cpus, NULL);
2783 if (!group) {
2784 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2785 goto out_balanced;
2786 }
2787
2788 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2789 &cpus);
2790 if (!busiest) {
2791 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2792 goto out_balanced;
2793 }
2794
2795 BUG_ON(busiest == this_rq);
2796
2797 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2798
2799 ld_moved = 0;
2800 if (busiest->nr_running > 1) {
2801 /* Attempt to move tasks */
2802 double_lock_balance(this_rq, busiest);
2803 /* this_rq->clock is already updated */
2804 update_rq_clock(busiest);
2805 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2806 imbalance, sd, CPU_NEWLY_IDLE,
2807 &all_pinned);
2808 spin_unlock(&busiest->lock);
2809
2810 if (unlikely(all_pinned)) {
2811 cpu_clear(cpu_of(busiest), cpus);
2812 if (!cpus_empty(cpus))
2813 goto redo;
2814 }
2815 }
2816
2817 if (!ld_moved) {
2818 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2819 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2820 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2821 return -1;
2822 } else
2823 sd->nr_balance_failed = 0;
2824
2825 return ld_moved;
2826
2827 out_balanced:
2828 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2829 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2830 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2831 return -1;
2832 sd->nr_balance_failed = 0;
2833
2834 return 0;
2835 }
2836
2837 /*
2838 * idle_balance is called by schedule() if this_cpu is about to become
2839 * idle. Attempts to pull tasks from other CPUs.
2840 */
2841 static void idle_balance(int this_cpu, struct rq *this_rq)
2842 {
2843 struct sched_domain *sd;
2844 int pulled_task = -1;
2845 unsigned long next_balance = jiffies + HZ;
2846
2847 for_each_domain(this_cpu, sd) {
2848 unsigned long interval;
2849
2850 if (!(sd->flags & SD_LOAD_BALANCE))
2851 continue;
2852
2853 if (sd->flags & SD_BALANCE_NEWIDLE)
2854 /* If we've pulled tasks over stop searching: */
2855 pulled_task = load_balance_newidle(this_cpu,
2856 this_rq, sd);
2857
2858 interval = msecs_to_jiffies(sd->balance_interval);
2859 if (time_after(next_balance, sd->last_balance + interval))
2860 next_balance = sd->last_balance + interval;
2861 if (pulled_task)
2862 break;
2863 }
2864 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
2865 /*
2866 * We are going idle. next_balance may be set based on
2867 * a busy processor. So reset next_balance.
2868 */
2869 this_rq->next_balance = next_balance;
2870 }
2871 }
2872
2873 /*
2874 * active_load_balance is run by migration threads. It pushes running tasks
2875 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2876 * running on each physical CPU where possible, and avoids physical /
2877 * logical imbalances.
2878 *
2879 * Called with busiest_rq locked.
2880 */
2881 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
2882 {
2883 int target_cpu = busiest_rq->push_cpu;
2884 struct sched_domain *sd;
2885 struct rq *target_rq;
2886
2887 /* Is there any task to move? */
2888 if (busiest_rq->nr_running <= 1)
2889 return;
2890
2891 target_rq = cpu_rq(target_cpu);
2892
2893 /*
2894 * This condition is "impossible", if it occurs
2895 * we need to fix it. Originally reported by
2896 * Bjorn Helgaas on a 128-cpu setup.
2897 */
2898 BUG_ON(busiest_rq == target_rq);
2899
2900 /* move a task from busiest_rq to target_rq */
2901 double_lock_balance(busiest_rq, target_rq);
2902 update_rq_clock(busiest_rq);
2903 update_rq_clock(target_rq);
2904
2905 /* Search for an sd spanning us and the target CPU. */
2906 for_each_domain(target_cpu, sd) {
2907 if ((sd->flags & SD_LOAD_BALANCE) &&
2908 cpu_isset(busiest_cpu, sd->span))
2909 break;
2910 }
2911
2912 if (likely(sd)) {
2913 schedstat_inc(sd, alb_cnt);
2914
2915 if (move_one_task(target_rq, target_cpu, busiest_rq,
2916 sd, CPU_IDLE))
2917 schedstat_inc(sd, alb_pushed);
2918 else
2919 schedstat_inc(sd, alb_failed);
2920 }
2921 spin_unlock(&target_rq->lock);
2922 }
2923
2924 #ifdef CONFIG_NO_HZ
2925 static struct {
2926 atomic_t load_balancer;
2927 cpumask_t cpu_mask;
2928 } nohz ____cacheline_aligned = {
2929 .load_balancer = ATOMIC_INIT(-1),
2930 .cpu_mask = CPU_MASK_NONE,
2931 };
2932
2933 /*
2934 * This routine will try to nominate the ilb (idle load balancing)
2935 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
2936 * load balancing on behalf of all those cpus. If all the cpus in the system
2937 * go into this tickless mode, then there will be no ilb owner (as there is
2938 * no need for one) and all the cpus will sleep till the next wakeup event
2939 * arrives...
2940 *
2941 * For the ilb owner, tick is not stopped. And this tick will be used
2942 * for idle load balancing. ilb owner will still be part of
2943 * nohz.cpu_mask..
2944 *
2945 * While stopping the tick, this cpu will become the ilb owner if there
2946 * is no other owner. And will be the owner till that cpu becomes busy
2947 * or if all cpus in the system stop their ticks at which point
2948 * there is no need for ilb owner.
2949 *
2950 * When the ilb owner becomes busy, it nominates another owner, during the
2951 * next busy scheduler_tick()
2952 */
2953 int select_nohz_load_balancer(int stop_tick)
2954 {
2955 int cpu = smp_processor_id();
2956
2957 if (stop_tick) {
2958 cpu_set(cpu, nohz.cpu_mask);
2959 cpu_rq(cpu)->in_nohz_recently = 1;
2960
2961 /*
2962 * If we are going offline and still the leader, give up!
2963 */
2964 if (cpu_is_offline(cpu) &&
2965 atomic_read(&nohz.load_balancer) == cpu) {
2966 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2967 BUG();
2968 return 0;
2969 }
2970
2971 /* time for ilb owner also to sleep */
2972 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
2973 if (atomic_read(&nohz.load_balancer) == cpu)
2974 atomic_set(&nohz.load_balancer, -1);
2975 return 0;
2976 }
2977
2978 if (atomic_read(&nohz.load_balancer) == -1) {
2979 /* make me the ilb owner */
2980 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
2981 return 1;
2982 } else if (atomic_read(&nohz.load_balancer) == cpu)
2983 return 1;
2984 } else {
2985 if (!cpu_isset(cpu, nohz.cpu_mask))
2986 return 0;
2987
2988 cpu_clear(cpu, nohz.cpu_mask);
2989
2990 if (atomic_read(&nohz.load_balancer) == cpu)
2991 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2992 BUG();
2993 }
2994 return 0;
2995 }
2996 #endif
2997
2998 static DEFINE_SPINLOCK(balancing);
2999
3000 /*
3001 * It checks each scheduling domain to see if it is due to be balanced,
3002 * and initiates a balancing operation if so.
3003 *
3004 * Balancing parameters are set up in arch_init_sched_domains.
3005 */
3006 static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
3007 {
3008 int balance = 1;
3009 struct rq *rq = cpu_rq(cpu);
3010 unsigned long interval;
3011 struct sched_domain *sd;
3012 /* Earliest time when we have to do rebalance again */
3013 unsigned long next_balance = jiffies + 60*HZ;
3014 int update_next_balance = 0;
3015
3016 for_each_domain(cpu, sd) {
3017 if (!(sd->flags & SD_LOAD_BALANCE))
3018 continue;
3019
3020 interval = sd->balance_interval;
3021 if (idle != CPU_IDLE)
3022 interval *= sd->busy_factor;
3023
3024 /* scale ms to jiffies */
3025 interval = msecs_to_jiffies(interval);
3026 if (unlikely(!interval))
3027 interval = 1;
3028 if (interval > HZ*NR_CPUS/10)
3029 interval = HZ*NR_CPUS/10;
3030
3031
3032 if (sd->flags & SD_SERIALIZE) {
3033 if (!spin_trylock(&balancing))
3034 goto out;
3035 }
3036
3037 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3038 if (load_balance(cpu, rq, sd, idle, &balance)) {
3039 /*
3040 * We've pulled tasks over so either we're no
3041 * longer idle, or one of our SMT siblings is
3042 * not idle.
3043 */
3044 idle = CPU_NOT_IDLE;
3045 }
3046 sd->last_balance = jiffies;
3047 }
3048 if (sd->flags & SD_SERIALIZE)
3049 spin_unlock(&balancing);
3050 out:
3051 if (time_after(next_balance, sd->last_balance + interval)) {
3052 next_balance = sd->last_balance + interval;
3053 update_next_balance = 1;
3054 }
3055
3056 /*
3057 * Stop the load balance at this level. There is another
3058 * CPU in our sched group which is doing load balancing more
3059 * actively.
3060 */
3061 if (!balance)
3062 break;
3063 }
3064
3065 /*
3066 * next_balance will be updated only when there is a need.
3067 * When the cpu is attached to null domain for ex, it will not be
3068 * updated.
3069 */
3070 if (likely(update_next_balance))
3071 rq->next_balance = next_balance;
3072 }
3073
3074 /*
3075 * run_rebalance_domains is triggered when needed from the scheduler tick.
3076 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3077 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3078 */
3079 static void run_rebalance_domains(struct softirq_action *h)
3080 {
3081 int this_cpu = smp_processor_id();
3082 struct rq *this_rq = cpu_rq(this_cpu);
3083 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3084 CPU_IDLE : CPU_NOT_IDLE;
3085
3086 rebalance_domains(this_cpu, idle);
3087
3088 #ifdef CONFIG_NO_HZ
3089 /*
3090 * If this cpu is the owner for idle load balancing, then do the
3091 * balancing on behalf of the other idle cpus whose ticks are
3092 * stopped.
3093 */
3094 if (this_rq->idle_at_tick &&
3095 atomic_read(&nohz.load_balancer) == this_cpu) {
3096 cpumask_t cpus = nohz.cpu_mask;
3097 struct rq *rq;
3098 int balance_cpu;
3099
3100 cpu_clear(this_cpu, cpus);
3101 for_each_cpu_mask(balance_cpu, cpus) {
3102 /*
3103 * If this cpu gets work to do, stop the load balancing
3104 * work being done for other cpus. Next load
3105 * balancing owner will pick it up.
3106 */
3107 if (need_resched())
3108 break;
3109
3110 rebalance_domains(balance_cpu, CPU_IDLE);
3111
3112 rq = cpu_rq(balance_cpu);
3113 if (time_after(this_rq->next_balance, rq->next_balance))
3114 this_rq->next_balance = rq->next_balance;
3115 }
3116 }
3117 #endif
3118 }
3119
3120 /*
3121 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3122 *
3123 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3124 * idle load balancing owner or decide to stop the periodic load balancing,
3125 * if the whole system is idle.
3126 */
3127 static inline void trigger_load_balance(struct rq *rq, int cpu)
3128 {
3129 #ifdef CONFIG_NO_HZ
3130 /*
3131 * If we were in the nohz mode recently and busy at the current
3132 * scheduler tick, then check if we need to nominate new idle
3133 * load balancer.
3134 */
3135 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3136 rq->in_nohz_recently = 0;
3137
3138 if (atomic_read(&nohz.load_balancer) == cpu) {
3139 cpu_clear(cpu, nohz.cpu_mask);
3140 atomic_set(&nohz.load_balancer, -1);
3141 }
3142
3143 if (atomic_read(&nohz.load_balancer) == -1) {
3144 /*
3145 * simple selection for now: Nominate the
3146 * first cpu in the nohz list to be the next
3147 * ilb owner.
3148 *
3149 * TBD: Traverse the sched domains and nominate
3150 * the nearest cpu in the nohz.cpu_mask.
3151 */
3152 int ilb = first_cpu(nohz.cpu_mask);
3153
3154 if (ilb != NR_CPUS)
3155 resched_cpu(ilb);
3156 }
3157 }
3158
3159 /*
3160 * If this cpu is idle and doing idle load balancing for all the
3161 * cpus with ticks stopped, is it time for that to stop?
3162 */
3163 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3164 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3165 resched_cpu(cpu);
3166 return;
3167 }
3168
3169 /*
3170 * If this cpu is idle and the idle load balancing is done by
3171 * someone else, then no need raise the SCHED_SOFTIRQ
3172 */
3173 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3174 cpu_isset(cpu, nohz.cpu_mask))
3175 return;
3176 #endif
3177 if (time_after_eq(jiffies, rq->next_balance))
3178 raise_softirq(SCHED_SOFTIRQ);
3179 }
3180
3181 #else /* CONFIG_SMP */
3182
3183 /*
3184 * on UP we do not need to balance between CPUs:
3185 */
3186 static inline void idle_balance(int cpu, struct rq *rq)
3187 {
3188 }
3189
3190 /* Avoid "used but not defined" warning on UP */
3191 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3192 unsigned long max_nr_move, unsigned long max_load_move,
3193 struct sched_domain *sd, enum cpu_idle_type idle,
3194 int *all_pinned, unsigned long *load_moved,
3195 int *this_best_prio, struct rq_iterator *iterator)
3196 {
3197 *load_moved = 0;
3198
3199 return 0;
3200 }
3201
3202 #endif
3203
3204 DEFINE_PER_CPU(struct kernel_stat, kstat);
3205
3206 EXPORT_PER_CPU_SYMBOL(kstat);
3207
3208 /*
3209 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3210 * that have not yet been banked in case the task is currently running.
3211 */
3212 unsigned long long task_sched_runtime(struct task_struct *p)
3213 {
3214 unsigned long flags;
3215 u64 ns, delta_exec;
3216 struct rq *rq;
3217
3218 rq = task_rq_lock(p, &flags);
3219 ns = p->se.sum_exec_runtime;
3220 if (rq->curr == p) {
3221 update_rq_clock(rq);
3222 delta_exec = rq->clock - p->se.exec_start;
3223 if ((s64)delta_exec > 0)
3224 ns += delta_exec;
3225 }
3226 task_rq_unlock(rq, &flags);
3227
3228 return ns;
3229 }
3230
3231 /*
3232 * Account user cpu time to a process.
3233 * @p: the process that the cpu time gets accounted to
3234 * @hardirq_offset: the offset to subtract from hardirq_count()
3235 * @cputime: the cpu time spent in user space since the last update
3236 */
3237 void account_user_time(struct task_struct *p, cputime_t cputime)
3238 {
3239 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3240 cputime64_t tmp;
3241
3242 p->utime = cputime_add(p->utime, cputime);
3243
3244 /* Add user time to cpustat. */
3245 tmp = cputime_to_cputime64(cputime);
3246 if (TASK_NICE(p) > 0)
3247 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3248 else
3249 cpustat->user = cputime64_add(cpustat->user, tmp);
3250 }
3251
3252 /*
3253 * Account system cpu time to a process.
3254 * @p: the process that the cpu time gets accounted to
3255 * @hardirq_offset: the offset to subtract from hardirq_count()
3256 * @cputime: the cpu time spent in kernel space since the last update
3257 */
3258 void account_system_time(struct task_struct *p, int hardirq_offset,
3259 cputime_t cputime)
3260 {
3261 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3262 struct rq *rq = this_rq();
3263 cputime64_t tmp;
3264
3265 p->stime = cputime_add(p->stime, cputime);
3266
3267 /* Add system time to cpustat. */
3268 tmp = cputime_to_cputime64(cputime);
3269 if (hardirq_count() - hardirq_offset)
3270 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3271 else if (softirq_count())
3272 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3273 else if (p != rq->idle)
3274 cpustat->system = cputime64_add(cpustat->system, tmp);
3275 else if (atomic_read(&rq->nr_iowait) > 0)
3276 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3277 else
3278 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3279 /* Account for system time used */
3280 acct_update_integrals(p);
3281 }
3282
3283 /*
3284 * Account for involuntary wait time.
3285 * @p: the process from which the cpu time has been stolen
3286 * @steal: the cpu time spent in involuntary wait
3287 */
3288 void account_steal_time(struct task_struct *p, cputime_t steal)
3289 {
3290 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3291 cputime64_t tmp = cputime_to_cputime64(steal);
3292 struct rq *rq = this_rq();
3293
3294 if (p == rq->idle) {
3295 p->stime = cputime_add(p->stime, steal);
3296 if (atomic_read(&rq->nr_iowait) > 0)
3297 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3298 else
3299 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3300 } else
3301 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3302 }
3303
3304 /*
3305 * This function gets called by the timer code, with HZ frequency.
3306 * We call it with interrupts disabled.
3307 *
3308 * It also gets called by the fork code, when changing the parent's
3309 * timeslices.
3310 */
3311 void scheduler_tick(void)
3312 {
3313 int cpu = smp_processor_id();
3314 struct rq *rq = cpu_rq(cpu);
3315 struct task_struct *curr = rq->curr;
3316 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
3317
3318 spin_lock(&rq->lock);
3319 __update_rq_clock(rq);
3320 /*
3321 * Let rq->clock advance by at least TICK_NSEC:
3322 */
3323 if (unlikely(rq->clock < next_tick))
3324 rq->clock = next_tick;
3325 rq->tick_timestamp = rq->clock;
3326 update_cpu_load(rq);
3327 if (curr != rq->idle) /* FIXME: needed? */
3328 curr->sched_class->task_tick(rq, curr);
3329 spin_unlock(&rq->lock);
3330
3331 #ifdef CONFIG_SMP
3332 rq->idle_at_tick = idle_cpu(cpu);
3333 trigger_load_balance(rq, cpu);
3334 #endif
3335 }
3336
3337 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3338
3339 void fastcall add_preempt_count(int val)
3340 {
3341 /*
3342 * Underflow?
3343 */
3344 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3345 return;
3346 preempt_count() += val;
3347 /*
3348 * Spinlock count overflowing soon?
3349 */
3350 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3351 PREEMPT_MASK - 10);
3352 }
3353 EXPORT_SYMBOL(add_preempt_count);
3354
3355 void fastcall sub_preempt_count(int val)
3356 {
3357 /*
3358 * Underflow?
3359 */
3360 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3361 return;
3362 /*
3363 * Is the spinlock portion underflowing?
3364 */
3365 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3366 !(preempt_count() & PREEMPT_MASK)))
3367 return;
3368
3369 preempt_count() -= val;
3370 }
3371 EXPORT_SYMBOL(sub_preempt_count);
3372
3373 #endif
3374
3375 /*
3376 * Print scheduling while atomic bug:
3377 */
3378 static noinline void __schedule_bug(struct task_struct *prev)
3379 {
3380 printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
3381 prev->comm, preempt_count(), prev->pid);
3382 debug_show_held_locks(prev);
3383 if (irqs_disabled())
3384 print_irqtrace_events(prev);
3385 dump_stack();
3386 }
3387
3388 /*
3389 * Various schedule()-time debugging checks and statistics:
3390 */
3391 static inline void schedule_debug(struct task_struct *prev)
3392 {
3393 /*
3394 * Test if we are atomic. Since do_exit() needs to call into
3395 * schedule() atomically, we ignore that path for now.
3396 * Otherwise, whine if we are scheduling when we should not be.
3397 */
3398 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3399 __schedule_bug(prev);
3400
3401 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3402
3403 schedstat_inc(this_rq(), sched_cnt);
3404 }
3405
3406 /*
3407 * Pick up the highest-prio task:
3408 */
3409 static inline struct task_struct *
3410 pick_next_task(struct rq *rq, struct task_struct *prev)
3411 {
3412 struct sched_class *class;
3413 struct task_struct *p;
3414
3415 /*
3416 * Optimization: we know that if all tasks are in
3417 * the fair class we can call that function directly:
3418 */
3419 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3420 p = fair_sched_class.pick_next_task(rq);
3421 if (likely(p))
3422 return p;
3423 }
3424
3425 class = sched_class_highest;
3426 for ( ; ; ) {
3427 p = class->pick_next_task(rq);
3428 if (p)
3429 return p;
3430 /*
3431 * Will never be NULL as the idle class always
3432 * returns a non-NULL p:
3433 */
3434 class = class->next;
3435 }
3436 }
3437
3438 /*
3439 * schedule() is the main scheduler function.
3440 */
3441 asmlinkage void __sched schedule(void)
3442 {
3443 struct task_struct *prev, *next;
3444 long *switch_count;
3445 struct rq *rq;
3446 int cpu;
3447
3448 need_resched:
3449 preempt_disable();
3450 cpu = smp_processor_id();
3451 rq = cpu_rq(cpu);
3452 rcu_qsctr_inc(cpu);
3453 prev = rq->curr;
3454 switch_count = &prev->nivcsw;
3455
3456 release_kernel_lock(prev);
3457 need_resched_nonpreemptible:
3458
3459 schedule_debug(prev);
3460
3461 spin_lock_irq(&rq->lock);
3462 clear_tsk_need_resched(prev);
3463 __update_rq_clock(rq);
3464
3465 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3466 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3467 unlikely(signal_pending(prev)))) {
3468 prev->state = TASK_RUNNING;
3469 } else {
3470 deactivate_task(rq, prev, 1);
3471 }
3472 switch_count = &prev->nvcsw;
3473 }
3474
3475 if (unlikely(!rq->nr_running))
3476 idle_balance(cpu, rq);
3477
3478 prev->sched_class->put_prev_task(rq, prev);
3479 next = pick_next_task(rq, prev);
3480
3481 sched_info_switch(prev, next);
3482
3483 if (likely(prev != next)) {
3484 rq->nr_switches++;
3485 rq->curr = next;
3486 ++*switch_count;
3487
3488 context_switch(rq, prev, next); /* unlocks the rq */
3489 } else
3490 spin_unlock_irq(&rq->lock);
3491
3492 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3493 cpu = smp_processor_id();
3494 rq = cpu_rq(cpu);
3495 goto need_resched_nonpreemptible;
3496 }
3497 preempt_enable_no_resched();
3498 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3499 goto need_resched;
3500 }
3501 EXPORT_SYMBOL(schedule);
3502
3503 #ifdef CONFIG_PREEMPT
3504 /*
3505 * this is the entry point to schedule() from in-kernel preemption
3506 * off of preempt_enable. Kernel preemptions off return from interrupt
3507 * occur there and call schedule directly.
3508 */
3509 asmlinkage void __sched preempt_schedule(void)
3510 {
3511 struct thread_info *ti = current_thread_info();
3512 #ifdef CONFIG_PREEMPT_BKL
3513 struct task_struct *task = current;
3514 int saved_lock_depth;
3515 #endif
3516 /*
3517 * If there is a non-zero preempt_count or interrupts are disabled,
3518 * we do not want to preempt the current task. Just return..
3519 */
3520 if (likely(ti->preempt_count || irqs_disabled()))
3521 return;
3522
3523 need_resched:
3524 add_preempt_count(PREEMPT_ACTIVE);
3525 /*
3526 * We keep the big kernel semaphore locked, but we
3527 * clear ->lock_depth so that schedule() doesnt
3528 * auto-release the semaphore:
3529 */
3530 #ifdef CONFIG_PREEMPT_BKL
3531 saved_lock_depth = task->lock_depth;
3532 task->lock_depth = -1;
3533 #endif
3534 schedule();
3535 #ifdef CONFIG_PREEMPT_BKL
3536 task->lock_depth = saved_lock_depth;
3537 #endif
3538 sub_preempt_count(PREEMPT_ACTIVE);
3539
3540 /* we could miss a preemption opportunity between schedule and now */
3541 barrier();
3542 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3543 goto need_resched;
3544 }
3545 EXPORT_SYMBOL(preempt_schedule);
3546
3547 /*
3548 * this is the entry point to schedule() from kernel preemption
3549 * off of irq context.
3550 * Note, that this is called and return with irqs disabled. This will
3551 * protect us against recursive calling from irq.
3552 */
3553 asmlinkage void __sched preempt_schedule_irq(void)
3554 {
3555 struct thread_info *ti = current_thread_info();
3556 #ifdef CONFIG_PREEMPT_BKL
3557 struct task_struct *task = current;
3558 int saved_lock_depth;
3559 #endif
3560 /* Catch callers which need to be fixed */
3561 BUG_ON(ti->preempt_count || !irqs_disabled());
3562
3563 need_resched:
3564 add_preempt_count(PREEMPT_ACTIVE);
3565 /*
3566 * We keep the big kernel semaphore locked, but we
3567 * clear ->lock_depth so that schedule() doesnt
3568 * auto-release the semaphore:
3569 */
3570 #ifdef CONFIG_PREEMPT_BKL
3571 saved_lock_depth = task->lock_depth;
3572 task->lock_depth = -1;
3573 #endif
3574 local_irq_enable();
3575 schedule();
3576 local_irq_disable();
3577 #ifdef CONFIG_PREEMPT_BKL
3578 task->lock_depth = saved_lock_depth;
3579 #endif
3580 sub_preempt_count(PREEMPT_ACTIVE);
3581
3582 /* we could miss a preemption opportunity between schedule and now */
3583 barrier();
3584 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3585 goto need_resched;
3586 }
3587
3588 #endif /* CONFIG_PREEMPT */
3589
3590 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3591 void *key)
3592 {
3593 return try_to_wake_up(curr->private, mode, sync);
3594 }
3595 EXPORT_SYMBOL(default_wake_function);
3596
3597 /*
3598 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3599 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3600 * number) then we wake all the non-exclusive tasks and one exclusive task.
3601 *
3602 * There are circumstances in which we can try to wake a task which has already
3603 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3604 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3605 */
3606 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3607 int nr_exclusive, int sync, void *key)
3608 {
3609 wait_queue_t *curr, *next;
3610
3611 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3612 unsigned flags = curr->flags;
3613
3614 if (curr->func(curr, mode, sync, key) &&
3615 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3616 break;
3617 }
3618 }
3619
3620 /**
3621 * __wake_up - wake up threads blocked on a waitqueue.
3622 * @q: the waitqueue
3623 * @mode: which threads
3624 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3625 * @key: is directly passed to the wakeup function
3626 */
3627 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3628 int nr_exclusive, void *key)
3629 {
3630 unsigned long flags;
3631
3632 spin_lock_irqsave(&q->lock, flags);
3633 __wake_up_common(q, mode, nr_exclusive, 0, key);
3634 spin_unlock_irqrestore(&q->lock, flags);
3635 }
3636 EXPORT_SYMBOL(__wake_up);
3637
3638 /*
3639 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3640 */
3641 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3642 {
3643 __wake_up_common(q, mode, 1, 0, NULL);
3644 }
3645
3646 /**
3647 * __wake_up_sync - wake up threads blocked on a waitqueue.
3648 * @q: the waitqueue
3649 * @mode: which threads
3650 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3651 *
3652 * The sync wakeup differs that the waker knows that it will schedule
3653 * away soon, so while the target thread will be woken up, it will not
3654 * be migrated to another CPU - ie. the two threads are 'synchronized'
3655 * with each other. This can prevent needless bouncing between CPUs.
3656 *
3657 * On UP it can prevent extra preemption.
3658 */
3659 void fastcall
3660 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3661 {
3662 unsigned long flags;
3663 int sync = 1;
3664
3665 if (unlikely(!q))
3666 return;
3667
3668 if (unlikely(!nr_exclusive))
3669 sync = 0;
3670
3671 spin_lock_irqsave(&q->lock, flags);
3672 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3673 spin_unlock_irqrestore(&q->lock, flags);
3674 }
3675 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3676
3677 void fastcall complete(struct completion *x)
3678 {
3679 unsigned long flags;
3680
3681 spin_lock_irqsave(&x->wait.lock, flags);
3682 x->done++;
3683 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3684 1, 0, NULL);
3685 spin_unlock_irqrestore(&x->wait.lock, flags);
3686 }
3687 EXPORT_SYMBOL(complete);
3688
3689 void fastcall complete_all(struct completion *x)
3690 {
3691 unsigned long flags;
3692
3693 spin_lock_irqsave(&x->wait.lock, flags);
3694 x->done += UINT_MAX/2;
3695 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3696 0, 0, NULL);
3697 spin_unlock_irqrestore(&x->wait.lock, flags);
3698 }
3699 EXPORT_SYMBOL(complete_all);
3700
3701 void fastcall __sched wait_for_completion(struct completion *x)
3702 {
3703 might_sleep();
3704
3705 spin_lock_irq(&x->wait.lock);
3706 if (!x->done) {
3707 DECLARE_WAITQUEUE(wait, current);
3708
3709 wait.flags |= WQ_FLAG_EXCLUSIVE;
3710 __add_wait_queue_tail(&x->wait, &wait);
3711 do {
3712 __set_current_state(TASK_UNINTERRUPTIBLE);
3713 spin_unlock_irq(&x->wait.lock);
3714 schedule();
3715 spin_lock_irq(&x->wait.lock);
3716 } while (!x->done);
3717 __remove_wait_queue(&x->wait, &wait);
3718 }
3719 x->done--;
3720 spin_unlock_irq(&x->wait.lock);
3721 }
3722 EXPORT_SYMBOL(wait_for_completion);
3723
3724 unsigned long fastcall __sched
3725 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3726 {
3727 might_sleep();
3728
3729 spin_lock_irq(&x->wait.lock);
3730 if (!x->done) {
3731 DECLARE_WAITQUEUE(wait, current);
3732
3733 wait.flags |= WQ_FLAG_EXCLUSIVE;
3734 __add_wait_queue_tail(&x->wait, &wait);
3735 do {
3736 __set_current_state(TASK_UNINTERRUPTIBLE);
3737 spin_unlock_irq(&x->wait.lock);
3738 timeout = schedule_timeout(timeout);
3739 spin_lock_irq(&x->wait.lock);
3740 if (!timeout) {
3741 __remove_wait_queue(&x->wait, &wait);
3742 goto out;
3743 }
3744 } while (!x->done);
3745 __remove_wait_queue(&x->wait, &wait);
3746 }
3747 x->done--;
3748 out:
3749 spin_unlock_irq(&x->wait.lock);
3750 return timeout;
3751 }
3752 EXPORT_SYMBOL(wait_for_completion_timeout);
3753
3754 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3755 {
3756 int ret = 0;
3757
3758 might_sleep();
3759
3760 spin_lock_irq(&x->wait.lock);
3761 if (!x->done) {
3762 DECLARE_WAITQUEUE(wait, current);
3763
3764 wait.flags |= WQ_FLAG_EXCLUSIVE;
3765 __add_wait_queue_tail(&x->wait, &wait);
3766 do {
3767 if (signal_pending(current)) {
3768 ret = -ERESTARTSYS;
3769 __remove_wait_queue(&x->wait, &wait);
3770 goto out;
3771 }
3772 __set_current_state(TASK_INTERRUPTIBLE);
3773 spin_unlock_irq(&x->wait.lock);
3774 schedule();
3775 spin_lock_irq(&x->wait.lock);
3776 } while (!x->done);
3777 __remove_wait_queue(&x->wait, &wait);
3778 }
3779 x->done--;
3780 out:
3781 spin_unlock_irq(&x->wait.lock);
3782
3783 return ret;
3784 }
3785 EXPORT_SYMBOL(wait_for_completion_interruptible);
3786
3787 unsigned long fastcall __sched
3788 wait_for_completion_interruptible_timeout(struct completion *x,
3789 unsigned long timeout)
3790 {
3791 might_sleep();
3792
3793 spin_lock_irq(&x->wait.lock);
3794 if (!x->done) {
3795 DECLARE_WAITQUEUE(wait, current);
3796
3797 wait.flags |= WQ_FLAG_EXCLUSIVE;
3798 __add_wait_queue_tail(&x->wait, &wait);
3799 do {
3800 if (signal_pending(current)) {
3801 timeout = -ERESTARTSYS;
3802 __remove_wait_queue(&x->wait, &wait);
3803 goto out;
3804 }
3805 __set_current_state(TASK_INTERRUPTIBLE);
3806 spin_unlock_irq(&x->wait.lock);
3807 timeout = schedule_timeout(timeout);
3808 spin_lock_irq(&x->wait.lock);
3809 if (!timeout) {
3810 __remove_wait_queue(&x->wait, &wait);
3811 goto out;
3812 }
3813 } while (!x->done);
3814 __remove_wait_queue(&x->wait, &wait);
3815 }
3816 x->done--;
3817 out:
3818 spin_unlock_irq(&x->wait.lock);
3819 return timeout;
3820 }
3821 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3822
3823 static inline void
3824 sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3825 {
3826 spin_lock_irqsave(&q->lock, *flags);
3827 __add_wait_queue(q, wait);
3828 spin_unlock(&q->lock);
3829 }
3830
3831 static inline void
3832 sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3833 {
3834 spin_lock_irq(&q->lock);
3835 __remove_wait_queue(q, wait);
3836 spin_unlock_irqrestore(&q->lock, *flags);
3837 }
3838
3839 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3840 {
3841 unsigned long flags;
3842 wait_queue_t wait;
3843
3844 init_waitqueue_entry(&wait, current);
3845
3846 current->state = TASK_INTERRUPTIBLE;
3847
3848 sleep_on_head(q, &wait, &flags);
3849 schedule();
3850 sleep_on_tail(q, &wait, &flags);
3851 }
3852 EXPORT_SYMBOL(interruptible_sleep_on);
3853
3854 long __sched
3855 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3856 {
3857 unsigned long flags;
3858 wait_queue_t wait;
3859
3860 init_waitqueue_entry(&wait, current);
3861
3862 current->state = TASK_INTERRUPTIBLE;
3863
3864 sleep_on_head(q, &wait, &flags);
3865 timeout = schedule_timeout(timeout);
3866 sleep_on_tail(q, &wait, &flags);
3867
3868 return timeout;
3869 }
3870 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3871
3872 void __sched sleep_on(wait_queue_head_t *q)
3873 {
3874 unsigned long flags;
3875 wait_queue_t wait;
3876
3877 init_waitqueue_entry(&wait, current);
3878
3879 current->state = TASK_UNINTERRUPTIBLE;
3880
3881 sleep_on_head(q, &wait, &flags);
3882 schedule();
3883 sleep_on_tail(q, &wait, &flags);
3884 }
3885 EXPORT_SYMBOL(sleep_on);
3886
3887 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3888 {
3889 unsigned long flags;
3890 wait_queue_t wait;
3891
3892 init_waitqueue_entry(&wait, current);
3893
3894 current->state = TASK_UNINTERRUPTIBLE;
3895
3896 sleep_on_head(q, &wait, &flags);
3897 timeout = schedule_timeout(timeout);
3898 sleep_on_tail(q, &wait, &flags);
3899
3900 return timeout;
3901 }
3902 EXPORT_SYMBOL(sleep_on_timeout);
3903
3904 #ifdef CONFIG_RT_MUTEXES
3905
3906 /*
3907 * rt_mutex_setprio - set the current priority of a task
3908 * @p: task
3909 * @prio: prio value (kernel-internal form)
3910 *
3911 * This function changes the 'effective' priority of a task. It does
3912 * not touch ->normal_prio like __setscheduler().
3913 *
3914 * Used by the rt_mutex code to implement priority inheritance logic.
3915 */
3916 void rt_mutex_setprio(struct task_struct *p, int prio)
3917 {
3918 unsigned long flags;
3919 int oldprio, on_rq;
3920 struct rq *rq;
3921
3922 BUG_ON(prio < 0 || prio > MAX_PRIO);
3923
3924 rq = task_rq_lock(p, &flags);
3925 update_rq_clock(rq);
3926
3927 oldprio = p->prio;
3928 on_rq = p->se.on_rq;
3929 if (on_rq) {
3930 dequeue_task(rq, p, 0);
3931 if (task_running(rq, p))
3932 p->sched_class->put_prev_task(rq, p);
3933 }
3934
3935 if (rt_prio(prio))
3936 p->sched_class = &rt_sched_class;
3937 else
3938 p->sched_class = &fair_sched_class;
3939
3940 p->prio = prio;
3941
3942 if (on_rq) {
3943 enqueue_task(rq, p, 0);
3944 /*
3945 * Reschedule if we are currently running on this runqueue and
3946 * our priority decreased, or if we are not currently running on
3947 * this runqueue and our priority is higher than the current's
3948 */
3949 if (task_running(rq, p)) {
3950 if (p->prio > oldprio)
3951 resched_task(rq->curr);
3952 p->sched_class->set_curr_task(rq);
3953 } else {
3954 check_preempt_curr(rq, p);
3955 }
3956 }
3957 task_rq_unlock(rq, &flags);
3958 }
3959
3960 #endif
3961
3962 void set_user_nice(struct task_struct *p, long nice)
3963 {
3964 int old_prio, delta, on_rq;
3965 unsigned long flags;
3966 struct rq *rq;
3967
3968 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3969 return;
3970 /*
3971 * We have to be careful, if called from sys_setpriority(),
3972 * the task might be in the middle of scheduling on another CPU.
3973 */
3974 rq = task_rq_lock(p, &flags);
3975 update_rq_clock(rq);
3976 /*
3977 * The RT priorities are set via sched_setscheduler(), but we still
3978 * allow the 'normal' nice value to be set - but as expected
3979 * it wont have any effect on scheduling until the task is
3980 * SCHED_FIFO/SCHED_RR:
3981 */
3982 if (task_has_rt_policy(p)) {
3983 p->static_prio = NICE_TO_PRIO(nice);
3984 goto out_unlock;
3985 }
3986 on_rq = p->se.on_rq;
3987 if (on_rq) {
3988 dequeue_task(rq, p, 0);
3989 dec_load(rq, p);
3990 }
3991
3992 p->static_prio = NICE_TO_PRIO(nice);
3993 set_load_weight(p);
3994 old_prio = p->prio;
3995 p->prio = effective_prio(p);
3996 delta = p->prio - old_prio;
3997
3998 if (on_rq) {
3999 enqueue_task(rq, p, 0);
4000 inc_load(rq, p);
4001 /*
4002 * If the task increased its priority or is running and
4003 * lowered its priority, then reschedule its CPU:
4004 */
4005 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4006 resched_task(rq->curr);
4007 }
4008 out_unlock:
4009 task_rq_unlock(rq, &flags);
4010 }
4011 EXPORT_SYMBOL(set_user_nice);
4012
4013 /*
4014 * can_nice - check if a task can reduce its nice value
4015 * @p: task
4016 * @nice: nice value
4017 */
4018 int can_nice(const struct task_struct *p, const int nice)
4019 {
4020 /* convert nice value [19,-20] to rlimit style value [1,40] */
4021 int nice_rlim = 20 - nice;
4022
4023 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4024 capable(CAP_SYS_NICE));
4025 }
4026
4027 #ifdef __ARCH_WANT_SYS_NICE
4028
4029 /*
4030 * sys_nice - change the priority of the current process.
4031 * @increment: priority increment
4032 *
4033 * sys_setpriority is a more generic, but much slower function that
4034 * does similar things.
4035 */
4036 asmlinkage long sys_nice(int increment)
4037 {
4038 long nice, retval;
4039
4040 /*
4041 * Setpriority might change our priority at the same moment.
4042 * We don't have to worry. Conceptually one call occurs first
4043 * and we have a single winner.
4044 */
4045 if (increment < -40)
4046 increment = -40;
4047 if (increment > 40)
4048 increment = 40;
4049
4050 nice = PRIO_TO_NICE(current->static_prio) + increment;
4051 if (nice < -20)
4052 nice = -20;
4053 if (nice > 19)
4054 nice = 19;
4055
4056 if (increment < 0 && !can_nice(current, nice))
4057 return -EPERM;
4058
4059 retval = security_task_setnice(current, nice);
4060 if (retval)
4061 return retval;
4062
4063 set_user_nice(current, nice);
4064 return 0;
4065 }
4066
4067 #endif
4068
4069 /**
4070 * task_prio - return the priority value of a given task.
4071 * @p: the task in question.
4072 *
4073 * This is the priority value as seen by users in /proc.
4074 * RT tasks are offset by -200. Normal tasks are centered
4075 * around 0, value goes from -16 to +15.
4076 */
4077 int task_prio(const struct task_struct *p)
4078 {
4079 return p->prio - MAX_RT_PRIO;
4080 }
4081
4082 /**
4083 * task_nice - return the nice value of a given task.
4084 * @p: the task in question.
4085 */
4086 int task_nice(const struct task_struct *p)
4087 {
4088 return TASK_NICE(p);
4089 }
4090 EXPORT_SYMBOL_GPL(task_nice);
4091
4092 /**
4093 * idle_cpu - is a given cpu idle currently?
4094 * @cpu: the processor in question.
4095 */
4096 int idle_cpu(int cpu)
4097 {
4098 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4099 }
4100
4101 /**
4102 * idle_task - return the idle task for a given cpu.
4103 * @cpu: the processor in question.
4104 */
4105 struct task_struct *idle_task(int cpu)
4106 {
4107 return cpu_rq(cpu)->idle;
4108 }
4109
4110 /**
4111 * find_process_by_pid - find a process with a matching PID value.
4112 * @pid: the pid in question.
4113 */
4114 static inline struct task_struct *find_process_by_pid(pid_t pid)
4115 {
4116 return pid ? find_task_by_pid(pid) : current;
4117 }
4118
4119 /* Actually do priority change: must hold rq lock. */
4120 static void
4121 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4122 {
4123 BUG_ON(p->se.on_rq);
4124
4125 p->policy = policy;
4126 switch (p->policy) {
4127 case SCHED_NORMAL:
4128 case SCHED_BATCH:
4129 case SCHED_IDLE:
4130 p->sched_class = &fair_sched_class;
4131 break;
4132 case SCHED_FIFO:
4133 case SCHED_RR:
4134 p->sched_class = &rt_sched_class;
4135 break;
4136 }
4137
4138 p->rt_priority = prio;
4139 p->normal_prio = normal_prio(p);
4140 /* we are holding p->pi_lock already */
4141 p->prio = rt_mutex_getprio(p);
4142 set_load_weight(p);
4143 }
4144
4145 /**
4146 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4147 * @p: the task in question.
4148 * @policy: new policy.
4149 * @param: structure containing the new RT priority.
4150 *
4151 * NOTE that the task may be already dead.
4152 */
4153 int sched_setscheduler(struct task_struct *p, int policy,
4154 struct sched_param *param)
4155 {
4156 int retval, oldprio, oldpolicy = -1, on_rq;
4157 unsigned long flags;
4158 struct rq *rq;
4159
4160 /* may grab non-irq protected spin_locks */
4161 BUG_ON(in_interrupt());
4162 recheck:
4163 /* double check policy once rq lock held */
4164 if (policy < 0)
4165 policy = oldpolicy = p->policy;
4166 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4167 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4168 policy != SCHED_IDLE)
4169 return -EINVAL;
4170 /*
4171 * Valid priorities for SCHED_FIFO and SCHED_RR are
4172 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4173 * SCHED_BATCH and SCHED_IDLE is 0.
4174 */
4175 if (param->sched_priority < 0 ||
4176 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4177 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4178 return -EINVAL;
4179 if (rt_policy(policy) != (param->sched_priority != 0))
4180 return -EINVAL;
4181
4182 /*
4183 * Allow unprivileged RT tasks to decrease priority:
4184 */
4185 if (!capable(CAP_SYS_NICE)) {
4186 if (rt_policy(policy)) {
4187 unsigned long rlim_rtprio;
4188
4189 if (!lock_task_sighand(p, &flags))
4190 return -ESRCH;
4191 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4192 unlock_task_sighand(p, &flags);
4193
4194 /* can't set/change the rt policy */
4195 if (policy != p->policy && !rlim_rtprio)
4196 return -EPERM;
4197
4198 /* can't increase priority */
4199 if (param->sched_priority > p->rt_priority &&
4200 param->sched_priority > rlim_rtprio)
4201 return -EPERM;
4202 }
4203 /*
4204 * Like positive nice levels, dont allow tasks to
4205 * move out of SCHED_IDLE either:
4206 */
4207 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4208 return -EPERM;
4209
4210 /* can't change other user's priorities */
4211 if ((current->euid != p->euid) &&
4212 (current->euid != p->uid))
4213 return -EPERM;
4214 }
4215
4216 retval = security_task_setscheduler(p, policy, param);
4217 if (retval)
4218 return retval;
4219 /*
4220 * make sure no PI-waiters arrive (or leave) while we are
4221 * changing the priority of the task:
4222 */
4223 spin_lock_irqsave(&p->pi_lock, flags);
4224 /*
4225 * To be able to change p->policy safely, the apropriate
4226 * runqueue lock must be held.
4227 */
4228 rq = __task_rq_lock(p);
4229 /* recheck policy now with rq lock held */
4230 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4231 policy = oldpolicy = -1;
4232 __task_rq_unlock(rq);
4233 spin_unlock_irqrestore(&p->pi_lock, flags);
4234 goto recheck;
4235 }
4236 update_rq_clock(rq);
4237 on_rq = p->se.on_rq;
4238 if (on_rq) {
4239 deactivate_task(rq, p, 0);
4240 if (task_running(rq, p))
4241 p->sched_class->put_prev_task(rq, p);
4242 }
4243 oldprio = p->prio;
4244 __setscheduler(rq, p, policy, param->sched_priority);
4245 if (on_rq) {
4246 activate_task(rq, p, 0);
4247 /*
4248 * Reschedule if we are currently running on this runqueue and
4249 * our priority decreased, or if we are not currently running on
4250 * this runqueue and our priority is higher than the current's
4251 */
4252 if (task_running(rq, p)) {
4253 if (p->prio > oldprio)
4254 resched_task(rq->curr);
4255 p->sched_class->set_curr_task(rq);
4256 } else {
4257 check_preempt_curr(rq, p);
4258 }
4259 }
4260 __task_rq_unlock(rq);
4261 spin_unlock_irqrestore(&p->pi_lock, flags);
4262
4263 rt_mutex_adjust_pi(p);
4264
4265 return 0;
4266 }
4267 EXPORT_SYMBOL_GPL(sched_setscheduler);
4268
4269 static int
4270 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4271 {
4272 struct sched_param lparam;
4273 struct task_struct *p;
4274 int retval;
4275
4276 if (!param || pid < 0)
4277 return -EINVAL;
4278 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4279 return -EFAULT;
4280
4281 rcu_read_lock();
4282 retval = -ESRCH;
4283 p = find_process_by_pid(pid);
4284 if (p != NULL)
4285 retval = sched_setscheduler(p, policy, &lparam);
4286 rcu_read_unlock();
4287
4288 return retval;
4289 }
4290
4291 /**
4292 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4293 * @pid: the pid in question.
4294 * @policy: new policy.
4295 * @param: structure containing the new RT priority.
4296 */
4297 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4298 struct sched_param __user *param)
4299 {
4300 /* negative values for policy are not valid */
4301 if (policy < 0)
4302 return -EINVAL;
4303
4304 return do_sched_setscheduler(pid, policy, param);
4305 }
4306
4307 /**
4308 * sys_sched_setparam - set/change the RT priority of a thread
4309 * @pid: the pid in question.
4310 * @param: structure containing the new RT priority.
4311 */
4312 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4313 {
4314 return do_sched_setscheduler(pid, -1, param);
4315 }
4316
4317 /**
4318 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4319 * @pid: the pid in question.
4320 */
4321 asmlinkage long sys_sched_getscheduler(pid_t pid)
4322 {
4323 struct task_struct *p;
4324 int retval = -EINVAL;
4325
4326 if (pid < 0)
4327 goto out_nounlock;
4328
4329 retval = -ESRCH;
4330 read_lock(&tasklist_lock);
4331 p = find_process_by_pid(pid);
4332 if (p) {
4333 retval = security_task_getscheduler(p);
4334 if (!retval)
4335 retval = p->policy;
4336 }
4337 read_unlock(&tasklist_lock);
4338
4339 out_nounlock:
4340 return retval;
4341 }
4342
4343 /**
4344 * sys_sched_getscheduler - get the RT priority of a thread
4345 * @pid: the pid in question.
4346 * @param: structure containing the RT priority.
4347 */
4348 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4349 {
4350 struct sched_param lp;
4351 struct task_struct *p;
4352 int retval = -EINVAL;
4353
4354 if (!param || pid < 0)
4355 goto out_nounlock;
4356
4357 read_lock(&tasklist_lock);
4358 p = find_process_by_pid(pid);
4359 retval = -ESRCH;
4360 if (!p)
4361 goto out_unlock;
4362
4363 retval = security_task_getscheduler(p);
4364 if (retval)
4365 goto out_unlock;
4366
4367 lp.sched_priority = p->rt_priority;
4368 read_unlock(&tasklist_lock);
4369
4370 /*
4371 * This one might sleep, we cannot do it with a spinlock held ...
4372 */
4373 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4374
4375 out_nounlock:
4376 return retval;
4377
4378 out_unlock:
4379 read_unlock(&tasklist_lock);
4380 return retval;
4381 }
4382
4383 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4384 {
4385 cpumask_t cpus_allowed;
4386 struct task_struct *p;
4387 int retval;
4388
4389 mutex_lock(&sched_hotcpu_mutex);
4390 read_lock(&tasklist_lock);
4391
4392 p = find_process_by_pid(pid);
4393 if (!p) {
4394 read_unlock(&tasklist_lock);
4395 mutex_unlock(&sched_hotcpu_mutex);
4396 return -ESRCH;
4397 }
4398
4399 /*
4400 * It is not safe to call set_cpus_allowed with the
4401 * tasklist_lock held. We will bump the task_struct's
4402 * usage count and then drop tasklist_lock.
4403 */
4404 get_task_struct(p);
4405 read_unlock(&tasklist_lock);
4406
4407 retval = -EPERM;
4408 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4409 !capable(CAP_SYS_NICE))
4410 goto out_unlock;
4411
4412 retval = security_task_setscheduler(p, 0, NULL);
4413 if (retval)
4414 goto out_unlock;
4415
4416 cpus_allowed = cpuset_cpus_allowed(p);
4417 cpus_and(new_mask, new_mask, cpus_allowed);
4418 retval = set_cpus_allowed(p, new_mask);
4419
4420 out_unlock:
4421 put_task_struct(p);
4422 mutex_unlock(&sched_hotcpu_mutex);
4423 return retval;
4424 }
4425
4426 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4427 cpumask_t *new_mask)
4428 {
4429 if (len < sizeof(cpumask_t)) {
4430 memset(new_mask, 0, sizeof(cpumask_t));
4431 } else if (len > sizeof(cpumask_t)) {
4432 len = sizeof(cpumask_t);
4433 }
4434 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4435 }
4436
4437 /**
4438 * sys_sched_setaffinity - set the cpu affinity of a process
4439 * @pid: pid of the process
4440 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4441 * @user_mask_ptr: user-space pointer to the new cpu mask
4442 */
4443 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4444 unsigned long __user *user_mask_ptr)
4445 {
4446 cpumask_t new_mask;
4447 int retval;
4448
4449 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4450 if (retval)
4451 return retval;
4452
4453 return sched_setaffinity(pid, new_mask);
4454 }
4455
4456 /*
4457 * Represents all cpu's present in the system
4458 * In systems capable of hotplug, this map could dynamically grow
4459 * as new cpu's are detected in the system via any platform specific
4460 * method, such as ACPI for e.g.
4461 */
4462
4463 cpumask_t cpu_present_map __read_mostly;
4464 EXPORT_SYMBOL(cpu_present_map);
4465
4466 #ifndef CONFIG_SMP
4467 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4468 EXPORT_SYMBOL(cpu_online_map);
4469
4470 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4471 EXPORT_SYMBOL(cpu_possible_map);
4472 #endif
4473
4474 long sched_getaffinity(pid_t pid, cpumask_t *mask)
4475 {
4476 struct task_struct *p;
4477 int retval;
4478
4479 mutex_lock(&sched_hotcpu_mutex);
4480 read_lock(&tasklist_lock);
4481
4482 retval = -ESRCH;
4483 p = find_process_by_pid(pid);
4484 if (!p)
4485 goto out_unlock;
4486
4487 retval = security_task_getscheduler(p);
4488 if (retval)
4489 goto out_unlock;
4490
4491 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
4492
4493 out_unlock:
4494 read_unlock(&tasklist_lock);
4495 mutex_unlock(&sched_hotcpu_mutex);
4496
4497 return retval;
4498 }
4499
4500 /**
4501 * sys_sched_getaffinity - get the cpu affinity of a process
4502 * @pid: pid of the process
4503 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4504 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4505 */
4506 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4507 unsigned long __user *user_mask_ptr)
4508 {
4509 int ret;
4510 cpumask_t mask;
4511
4512 if (len < sizeof(cpumask_t))
4513 return -EINVAL;
4514
4515 ret = sched_getaffinity(pid, &mask);
4516 if (ret < 0)
4517 return ret;
4518
4519 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4520 return -EFAULT;
4521
4522 return sizeof(cpumask_t);
4523 }
4524
4525 /**
4526 * sys_sched_yield - yield the current processor to other threads.
4527 *
4528 * This function yields the current CPU to other tasks. If there are no
4529 * other threads running on this CPU then this function will return.
4530 */
4531 asmlinkage long sys_sched_yield(void)
4532 {
4533 struct rq *rq = this_rq_lock();
4534
4535 schedstat_inc(rq, yld_cnt);
4536 current->sched_class->yield_task(rq, current);
4537
4538 /*
4539 * Since we are going to call schedule() anyway, there's
4540 * no need to preempt or enable interrupts:
4541 */
4542 __release(rq->lock);
4543 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4544 _raw_spin_unlock(&rq->lock);
4545 preempt_enable_no_resched();
4546
4547 schedule();
4548
4549 return 0;
4550 }
4551
4552 static void __cond_resched(void)
4553 {
4554 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4555 __might_sleep(__FILE__, __LINE__);
4556 #endif
4557 /*
4558 * The BKS might be reacquired before we have dropped
4559 * PREEMPT_ACTIVE, which could trigger a second
4560 * cond_resched() call.
4561 */
4562 do {
4563 add_preempt_count(PREEMPT_ACTIVE);
4564 schedule();
4565 sub_preempt_count(PREEMPT_ACTIVE);
4566 } while (need_resched());
4567 }
4568
4569 int __sched cond_resched(void)
4570 {
4571 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4572 system_state == SYSTEM_RUNNING) {
4573 __cond_resched();
4574 return 1;
4575 }
4576 return 0;
4577 }
4578 EXPORT_SYMBOL(cond_resched);
4579
4580 /*
4581 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4582 * call schedule, and on return reacquire the lock.
4583 *
4584 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4585 * operations here to prevent schedule() from being called twice (once via
4586 * spin_unlock(), once by hand).
4587 */
4588 int cond_resched_lock(spinlock_t *lock)
4589 {
4590 int ret = 0;
4591
4592 if (need_lockbreak(lock)) {
4593 spin_unlock(lock);
4594 cpu_relax();
4595 ret = 1;
4596 spin_lock(lock);
4597 }
4598 if (need_resched() && system_state == SYSTEM_RUNNING) {
4599 spin_release(&lock->dep_map, 1, _THIS_IP_);
4600 _raw_spin_unlock(lock);
4601 preempt_enable_no_resched();
4602 __cond_resched();
4603 ret = 1;
4604 spin_lock(lock);
4605 }
4606 return ret;
4607 }
4608 EXPORT_SYMBOL(cond_resched_lock);
4609
4610 int __sched cond_resched_softirq(void)
4611 {
4612 BUG_ON(!in_softirq());
4613
4614 if (need_resched() && system_state == SYSTEM_RUNNING) {
4615 local_bh_enable();
4616 __cond_resched();
4617 local_bh_disable();
4618 return 1;
4619 }
4620 return 0;
4621 }
4622 EXPORT_SYMBOL(cond_resched_softirq);
4623
4624 /**
4625 * yield - yield the current processor to other threads.
4626 *
4627 * This is a shortcut for kernel-space yielding - it marks the
4628 * thread runnable and calls sys_sched_yield().
4629 */
4630 void __sched yield(void)
4631 {
4632 set_current_state(TASK_RUNNING);
4633 sys_sched_yield();
4634 }
4635 EXPORT_SYMBOL(yield);
4636
4637 /*
4638 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4639 * that process accounting knows that this is a task in IO wait state.
4640 *
4641 * But don't do that if it is a deliberate, throttling IO wait (this task
4642 * has set its backing_dev_info: the queue against which it should throttle)
4643 */
4644 void __sched io_schedule(void)
4645 {
4646 struct rq *rq = &__raw_get_cpu_var(runqueues);
4647
4648 delayacct_blkio_start();
4649 atomic_inc(&rq->nr_iowait);
4650 schedule();
4651 atomic_dec(&rq->nr_iowait);
4652 delayacct_blkio_end();
4653 }
4654 EXPORT_SYMBOL(io_schedule);
4655
4656 long __sched io_schedule_timeout(long timeout)
4657 {
4658 struct rq *rq = &__raw_get_cpu_var(runqueues);
4659 long ret;
4660
4661 delayacct_blkio_start();
4662 atomic_inc(&rq->nr_iowait);
4663 ret = schedule_timeout(timeout);
4664 atomic_dec(&rq->nr_iowait);
4665 delayacct_blkio_end();
4666 return ret;
4667 }
4668
4669 /**
4670 * sys_sched_get_priority_max - return maximum RT priority.
4671 * @policy: scheduling class.
4672 *
4673 * this syscall returns the maximum rt_priority that can be used
4674 * by a given scheduling class.
4675 */
4676 asmlinkage long sys_sched_get_priority_max(int policy)
4677 {
4678 int ret = -EINVAL;
4679
4680 switch (policy) {
4681 case SCHED_FIFO:
4682 case SCHED_RR:
4683 ret = MAX_USER_RT_PRIO-1;
4684 break;
4685 case SCHED_NORMAL:
4686 case SCHED_BATCH:
4687 case SCHED_IDLE:
4688 ret = 0;
4689 break;
4690 }
4691 return ret;
4692 }
4693
4694 /**
4695 * sys_sched_get_priority_min - return minimum RT priority.
4696 * @policy: scheduling class.
4697 *
4698 * this syscall returns the minimum rt_priority that can be used
4699 * by a given scheduling class.
4700 */
4701 asmlinkage long sys_sched_get_priority_min(int policy)
4702 {
4703 int ret = -EINVAL;
4704
4705 switch (policy) {
4706 case SCHED_FIFO:
4707 case SCHED_RR:
4708 ret = 1;
4709 break;
4710 case SCHED_NORMAL:
4711 case SCHED_BATCH:
4712 case SCHED_IDLE:
4713 ret = 0;
4714 }
4715 return ret;
4716 }
4717
4718 /**
4719 * sys_sched_rr_get_interval - return the default timeslice of a process.
4720 * @pid: pid of the process.
4721 * @interval: userspace pointer to the timeslice value.
4722 *
4723 * this syscall writes the default timeslice value of a given process
4724 * into the user-space timespec buffer. A value of '0' means infinity.
4725 */
4726 asmlinkage
4727 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4728 {
4729 struct task_struct *p;
4730 int retval = -EINVAL;
4731 struct timespec t;
4732
4733 if (pid < 0)
4734 goto out_nounlock;
4735
4736 retval = -ESRCH;
4737 read_lock(&tasklist_lock);
4738 p = find_process_by_pid(pid);
4739 if (!p)
4740 goto out_unlock;
4741
4742 retval = security_task_getscheduler(p);
4743 if (retval)
4744 goto out_unlock;
4745
4746 jiffies_to_timespec(p->policy == SCHED_FIFO ?
4747 0 : static_prio_timeslice(p->static_prio), &t);
4748 read_unlock(&tasklist_lock);
4749 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4750 out_nounlock:
4751 return retval;
4752 out_unlock:
4753 read_unlock(&tasklist_lock);
4754 return retval;
4755 }
4756
4757 static const char stat_nam[] = "RSDTtZX";
4758
4759 static void show_task(struct task_struct *p)
4760 {
4761 unsigned long free = 0;
4762 unsigned state;
4763
4764 state = p->state ? __ffs(p->state) + 1 : 0;
4765 printk("%-13.13s %c", p->comm,
4766 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4767 #if BITS_PER_LONG == 32
4768 if (state == TASK_RUNNING)
4769 printk(" running ");
4770 else
4771 printk(" %08lx ", thread_saved_pc(p));
4772 #else
4773 if (state == TASK_RUNNING)
4774 printk(" running task ");
4775 else
4776 printk(" %016lx ", thread_saved_pc(p));
4777 #endif
4778 #ifdef CONFIG_DEBUG_STACK_USAGE
4779 {
4780 unsigned long *n = end_of_stack(p);
4781 while (!*n)
4782 n++;
4783 free = (unsigned long)n - (unsigned long)end_of_stack(p);
4784 }
4785 #endif
4786 printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
4787
4788 if (state != TASK_RUNNING)
4789 show_stack(p, NULL);
4790 }
4791
4792 void show_state_filter(unsigned long state_filter)
4793 {
4794 struct task_struct *g, *p;
4795
4796 #if BITS_PER_LONG == 32
4797 printk(KERN_INFO
4798 " task PC stack pid father\n");
4799 #else
4800 printk(KERN_INFO
4801 " task PC stack pid father\n");
4802 #endif
4803 read_lock(&tasklist_lock);
4804 do_each_thread(g, p) {
4805 /*
4806 * reset the NMI-timeout, listing all files on a slow
4807 * console might take alot of time:
4808 */
4809 touch_nmi_watchdog();
4810 if (!state_filter || (p->state & state_filter))
4811 show_task(p);
4812 } while_each_thread(g, p);
4813
4814 touch_all_softlockup_watchdogs();
4815
4816 #ifdef CONFIG_SCHED_DEBUG
4817 sysrq_sched_debug_show();
4818 #endif
4819 read_unlock(&tasklist_lock);
4820 /*
4821 * Only show locks if all tasks are dumped:
4822 */
4823 if (state_filter == -1)
4824 debug_show_all_locks();
4825 }
4826
4827 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4828 {
4829 idle->sched_class = &idle_sched_class;
4830 }
4831
4832 /**
4833 * init_idle - set up an idle thread for a given CPU
4834 * @idle: task in question
4835 * @cpu: cpu the idle task belongs to
4836 *
4837 * NOTE: this function does not set the idle thread's NEED_RESCHED
4838 * flag, to make booting more robust.
4839 */
4840 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4841 {
4842 struct rq *rq = cpu_rq(cpu);
4843 unsigned long flags;
4844
4845 __sched_fork(idle);
4846 idle->se.exec_start = sched_clock();
4847
4848 idle->prio = idle->normal_prio = MAX_PRIO;
4849 idle->cpus_allowed = cpumask_of_cpu(cpu);
4850 __set_task_cpu(idle, cpu);
4851
4852 spin_lock_irqsave(&rq->lock, flags);
4853 rq->curr = rq->idle = idle;
4854 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4855 idle->oncpu = 1;
4856 #endif
4857 spin_unlock_irqrestore(&rq->lock, flags);
4858
4859 /* Set the preempt count _outside_ the spinlocks! */
4860 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4861 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
4862 #else
4863 task_thread_info(idle)->preempt_count = 0;
4864 #endif
4865 /*
4866 * The idle tasks have their own, simple scheduling class:
4867 */
4868 idle->sched_class = &idle_sched_class;
4869 }
4870
4871 /*
4872 * In a system that switches off the HZ timer nohz_cpu_mask
4873 * indicates which cpus entered this state. This is used
4874 * in the rcu update to wait only for active cpus. For system
4875 * which do not switch off the HZ timer nohz_cpu_mask should
4876 * always be CPU_MASK_NONE.
4877 */
4878 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4879
4880 #ifdef CONFIG_SMP
4881 /*
4882 * This is how migration works:
4883 *
4884 * 1) we queue a struct migration_req structure in the source CPU's
4885 * runqueue and wake up that CPU's migration thread.
4886 * 2) we down() the locked semaphore => thread blocks.
4887 * 3) migration thread wakes up (implicitly it forces the migrated
4888 * thread off the CPU)
4889 * 4) it gets the migration request and checks whether the migrated
4890 * task is still in the wrong runqueue.
4891 * 5) if it's in the wrong runqueue then the migration thread removes
4892 * it and puts it into the right queue.
4893 * 6) migration thread up()s the semaphore.
4894 * 7) we wake up and the migration is done.
4895 */
4896
4897 /*
4898 * Change a given task's CPU affinity. Migrate the thread to a
4899 * proper CPU and schedule it away if the CPU it's executing on
4900 * is removed from the allowed bitmask.
4901 *
4902 * NOTE: the caller must have a valid reference to the task, the
4903 * task must not exit() & deallocate itself prematurely. The
4904 * call is not atomic; no spinlocks may be held.
4905 */
4906 int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
4907 {
4908 struct migration_req req;
4909 unsigned long flags;
4910 struct rq *rq;
4911 int ret = 0;
4912
4913 rq = task_rq_lock(p, &flags);
4914 if (!cpus_intersects(new_mask, cpu_online_map)) {
4915 ret = -EINVAL;
4916 goto out;
4917 }
4918
4919 p->cpus_allowed = new_mask;
4920 /* Can the task run on the task's current CPU? If so, we're done */
4921 if (cpu_isset(task_cpu(p), new_mask))
4922 goto out;
4923
4924 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4925 /* Need help from migration thread: drop lock and wait. */
4926 task_rq_unlock(rq, &flags);
4927 wake_up_process(rq->migration_thread);
4928 wait_for_completion(&req.done);
4929 tlb_migrate_finish(p->mm);
4930 return 0;
4931 }
4932 out:
4933 task_rq_unlock(rq, &flags);
4934
4935 return ret;
4936 }
4937 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4938
4939 /*
4940 * Move (not current) task off this cpu, onto dest cpu. We're doing
4941 * this because either it can't run here any more (set_cpus_allowed()
4942 * away from this CPU, or CPU going down), or because we're
4943 * attempting to rebalance this task on exec (sched_exec).
4944 *
4945 * So we race with normal scheduler movements, but that's OK, as long
4946 * as the task is no longer on this CPU.
4947 *
4948 * Returns non-zero if task was successfully migrated.
4949 */
4950 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4951 {
4952 struct rq *rq_dest, *rq_src;
4953 int ret = 0, on_rq;
4954
4955 if (unlikely(cpu_is_offline(dest_cpu)))
4956 return ret;
4957
4958 rq_src = cpu_rq(src_cpu);
4959 rq_dest = cpu_rq(dest_cpu);
4960
4961 double_rq_lock(rq_src, rq_dest);
4962 /* Already moved. */
4963 if (task_cpu(p) != src_cpu)
4964 goto out;
4965 /* Affinity changed (again). */
4966 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4967 goto out;
4968
4969 on_rq = p->se.on_rq;
4970 if (on_rq)
4971 deactivate_task(rq_src, p, 0);
4972
4973 set_task_cpu(p, dest_cpu);
4974 if (on_rq) {
4975 activate_task(rq_dest, p, 0);
4976 check_preempt_curr(rq_dest, p);
4977 }
4978 ret = 1;
4979 out:
4980 double_rq_unlock(rq_src, rq_dest);
4981 return ret;
4982 }
4983
4984 /*
4985 * migration_thread - this is a highprio system thread that performs
4986 * thread migration by bumping thread off CPU then 'pushing' onto
4987 * another runqueue.
4988 */
4989 static int migration_thread(void *data)
4990 {
4991 int cpu = (long)data;
4992 struct rq *rq;
4993
4994 rq = cpu_rq(cpu);
4995 BUG_ON(rq->migration_thread != current);
4996
4997 set_current_state(TASK_INTERRUPTIBLE);
4998 while (!kthread_should_stop()) {
4999 struct migration_req *req;
5000 struct list_head *head;
5001
5002 spin_lock_irq(&rq->lock);
5003
5004 if (cpu_is_offline(cpu)) {
5005 spin_unlock_irq(&rq->lock);
5006 goto wait_to_die;
5007 }
5008
5009 if (rq->active_balance) {
5010 active_load_balance(rq, cpu);
5011 rq->active_balance = 0;
5012 }
5013
5014 head = &rq->migration_queue;
5015
5016 if (list_empty(head)) {
5017 spin_unlock_irq(&rq->lock);
5018 schedule();
5019 set_current_state(TASK_INTERRUPTIBLE);
5020 continue;
5021 }
5022 req = list_entry(head->next, struct migration_req, list);
5023 list_del_init(head->next);
5024
5025 spin_unlock(&rq->lock);
5026 __migrate_task(req->task, cpu, req->dest_cpu);
5027 local_irq_enable();
5028
5029 complete(&req->done);
5030 }
5031 __set_current_state(TASK_RUNNING);
5032 return 0;
5033
5034 wait_to_die:
5035 /* Wait for kthread_stop */
5036 set_current_state(TASK_INTERRUPTIBLE);
5037 while (!kthread_should_stop()) {
5038 schedule();
5039 set_current_state(TASK_INTERRUPTIBLE);
5040 }
5041 __set_current_state(TASK_RUNNING);
5042 return 0;
5043 }
5044
5045 #ifdef CONFIG_HOTPLUG_CPU
5046 /*
5047 * Figure out where task on dead CPU should go, use force if neccessary.
5048 * NOTE: interrupts should be disabled by the caller
5049 */
5050 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5051 {
5052 unsigned long flags;
5053 cpumask_t mask;
5054 struct rq *rq;
5055 int dest_cpu;
5056
5057 restart:
5058 /* On same node? */
5059 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5060 cpus_and(mask, mask, p->cpus_allowed);
5061 dest_cpu = any_online_cpu(mask);
5062
5063 /* On any allowed CPU? */
5064 if (dest_cpu == NR_CPUS)
5065 dest_cpu = any_online_cpu(p->cpus_allowed);
5066
5067 /* No more Mr. Nice Guy. */
5068 if (dest_cpu == NR_CPUS) {
5069 rq = task_rq_lock(p, &flags);
5070 cpus_setall(p->cpus_allowed);
5071 dest_cpu = any_online_cpu(p->cpus_allowed);
5072 task_rq_unlock(rq, &flags);
5073
5074 /*
5075 * Don't tell them about moving exiting tasks or
5076 * kernel threads (both mm NULL), since they never
5077 * leave kernel.
5078 */
5079 if (p->mm && printk_ratelimit())
5080 printk(KERN_INFO "process %d (%s) no "
5081 "longer affine to cpu%d\n",
5082 p->pid, p->comm, dead_cpu);
5083 }
5084 if (!__migrate_task(p, dead_cpu, dest_cpu))
5085 goto restart;
5086 }
5087
5088 /*
5089 * While a dead CPU has no uninterruptible tasks queued at this point,
5090 * it might still have a nonzero ->nr_uninterruptible counter, because
5091 * for performance reasons the counter is not stricly tracking tasks to
5092 * their home CPUs. So we just add the counter to another CPU's counter,
5093 * to keep the global sum constant after CPU-down:
5094 */
5095 static void migrate_nr_uninterruptible(struct rq *rq_src)
5096 {
5097 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
5098 unsigned long flags;
5099
5100 local_irq_save(flags);
5101 double_rq_lock(rq_src, rq_dest);
5102 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5103 rq_src->nr_uninterruptible = 0;
5104 double_rq_unlock(rq_src, rq_dest);
5105 local_irq_restore(flags);
5106 }
5107
5108 /* Run through task list and migrate tasks from the dead cpu. */
5109 static void migrate_live_tasks(int src_cpu)
5110 {
5111 struct task_struct *p, *t;
5112
5113 write_lock_irq(&tasklist_lock);
5114
5115 do_each_thread(t, p) {
5116 if (p == current)
5117 continue;
5118
5119 if (task_cpu(p) == src_cpu)
5120 move_task_off_dead_cpu(src_cpu, p);
5121 } while_each_thread(t, p);
5122
5123 write_unlock_irq(&tasklist_lock);
5124 }
5125
5126 /*
5127 * Schedules idle task to be the next runnable task on current CPU.
5128 * It does so by boosting its priority to highest possible and adding it to
5129 * the _front_ of the runqueue. Used by CPU offline code.
5130 */
5131 void sched_idle_next(void)
5132 {
5133 int this_cpu = smp_processor_id();
5134 struct rq *rq = cpu_rq(this_cpu);
5135 struct task_struct *p = rq->idle;
5136 unsigned long flags;
5137
5138 /* cpu has to be offline */
5139 BUG_ON(cpu_online(this_cpu));
5140
5141 /*
5142 * Strictly not necessary since rest of the CPUs are stopped by now
5143 * and interrupts disabled on the current cpu.
5144 */
5145 spin_lock_irqsave(&rq->lock, flags);
5146
5147 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5148
5149 /* Add idle task to the _front_ of its priority queue: */
5150 activate_idle_task(p, rq);
5151
5152 spin_unlock_irqrestore(&rq->lock, flags);
5153 }
5154
5155 /*
5156 * Ensures that the idle task is using init_mm right before its cpu goes
5157 * offline.
5158 */
5159 void idle_task_exit(void)
5160 {
5161 struct mm_struct *mm = current->active_mm;
5162
5163 BUG_ON(cpu_online(smp_processor_id()));
5164
5165 if (mm != &init_mm)
5166 switch_mm(mm, &init_mm, current);
5167 mmdrop(mm);
5168 }
5169
5170 /* called under rq->lock with disabled interrupts */
5171 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5172 {
5173 struct rq *rq = cpu_rq(dead_cpu);
5174
5175 /* Must be exiting, otherwise would be on tasklist. */
5176 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
5177
5178 /* Cannot have done final schedule yet: would have vanished. */
5179 BUG_ON(p->state == TASK_DEAD);
5180
5181 get_task_struct(p);
5182
5183 /*
5184 * Drop lock around migration; if someone else moves it,
5185 * that's OK. No task can be added to this CPU, so iteration is
5186 * fine.
5187 * NOTE: interrupts should be left disabled --dev@
5188 */
5189 spin_unlock(&rq->lock);
5190 move_task_off_dead_cpu(dead_cpu, p);
5191 spin_lock(&rq->lock);
5192
5193 put_task_struct(p);
5194 }
5195
5196 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5197 static void migrate_dead_tasks(unsigned int dead_cpu)
5198 {
5199 struct rq *rq = cpu_rq(dead_cpu);
5200 struct task_struct *next;
5201
5202 for ( ; ; ) {
5203 if (!rq->nr_running)
5204 break;
5205 update_rq_clock(rq);
5206 next = pick_next_task(rq, rq->curr);
5207 if (!next)
5208 break;
5209 migrate_dead(dead_cpu, next);
5210
5211 }
5212 }
5213 #endif /* CONFIG_HOTPLUG_CPU */
5214
5215 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5216
5217 static struct ctl_table sd_ctl_dir[] = {
5218 {
5219 .procname = "sched_domain",
5220 .mode = 0555,
5221 },
5222 {0,},
5223 };
5224
5225 static struct ctl_table sd_ctl_root[] = {
5226 {
5227 .ctl_name = CTL_KERN,
5228 .procname = "kernel",
5229 .mode = 0555,
5230 .child = sd_ctl_dir,
5231 },
5232 {0,},
5233 };
5234
5235 static struct ctl_table *sd_alloc_ctl_entry(int n)
5236 {
5237 struct ctl_table *entry =
5238 kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);
5239
5240 BUG_ON(!entry);
5241 memset(entry, 0, n * sizeof(struct ctl_table));
5242
5243 return entry;
5244 }
5245
5246 static void
5247 set_table_entry(struct ctl_table *entry,
5248 const char *procname, void *data, int maxlen,
5249 mode_t mode, proc_handler *proc_handler)
5250 {
5251 entry->procname = procname;
5252 entry->data = data;
5253 entry->maxlen = maxlen;
5254 entry->mode = mode;
5255 entry->proc_handler = proc_handler;
5256 }
5257
5258 static struct ctl_table *
5259 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5260 {
5261 struct ctl_table *table = sd_alloc_ctl_entry(14);
5262
5263 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5264 sizeof(long), 0644, proc_doulongvec_minmax);
5265 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5266 sizeof(long), 0644, proc_doulongvec_minmax);
5267 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5268 sizeof(int), 0644, proc_dointvec_minmax);
5269 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5270 sizeof(int), 0644, proc_dointvec_minmax);
5271 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5272 sizeof(int), 0644, proc_dointvec_minmax);
5273 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5274 sizeof(int), 0644, proc_dointvec_minmax);
5275 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5276 sizeof(int), 0644, proc_dointvec_minmax);
5277 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5278 sizeof(int), 0644, proc_dointvec_minmax);
5279 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5280 sizeof(int), 0644, proc_dointvec_minmax);
5281 set_table_entry(&table[10], "cache_nice_tries",
5282 &sd->cache_nice_tries,
5283 sizeof(int), 0644, proc_dointvec_minmax);
5284 set_table_entry(&table[12], "flags", &sd->flags,
5285 sizeof(int), 0644, proc_dointvec_minmax);
5286
5287 return table;
5288 }
5289
5290 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5291 {
5292 struct ctl_table *entry, *table;
5293 struct sched_domain *sd;
5294 int domain_num = 0, i;
5295 char buf[32];
5296
5297 for_each_domain(cpu, sd)
5298 domain_num++;
5299 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5300
5301 i = 0;
5302 for_each_domain(cpu, sd) {
5303 snprintf(buf, 32, "domain%d", i);
5304 entry->procname = kstrdup(buf, GFP_KERNEL);
5305 entry->mode = 0555;
5306 entry->child = sd_alloc_ctl_domain_table(sd);
5307 entry++;
5308 i++;
5309 }
5310 return table;
5311 }
5312
5313 static struct ctl_table_header *sd_sysctl_header;
5314 static void init_sched_domain_sysctl(void)
5315 {
5316 int i, cpu_num = num_online_cpus();
5317 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5318 char buf[32];
5319
5320 sd_ctl_dir[0].child = entry;
5321
5322 for (i = 0; i < cpu_num; i++, entry++) {
5323 snprintf(buf, 32, "cpu%d", i);
5324 entry->procname = kstrdup(buf, GFP_KERNEL);
5325 entry->mode = 0555;
5326 entry->child = sd_alloc_ctl_cpu_table(i);
5327 }
5328 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5329 }
5330 #else
5331 static void init_sched_domain_sysctl(void)
5332 {
5333 }
5334 #endif
5335
5336 /*
5337 * migration_call - callback that gets triggered when a CPU is added.
5338 * Here we can start up the necessary migration thread for the new CPU.
5339 */
5340 static int __cpuinit
5341 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5342 {
5343 struct task_struct *p;
5344 int cpu = (long)hcpu;
5345 unsigned long flags;
5346 struct rq *rq;
5347
5348 switch (action) {
5349 case CPU_LOCK_ACQUIRE:
5350 mutex_lock(&sched_hotcpu_mutex);
5351 break;
5352
5353 case CPU_UP_PREPARE:
5354 case CPU_UP_PREPARE_FROZEN:
5355 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
5356 if (IS_ERR(p))
5357 return NOTIFY_BAD;
5358 kthread_bind(p, cpu);
5359 /* Must be high prio: stop_machine expects to yield to it. */
5360 rq = task_rq_lock(p, &flags);
5361 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5362 task_rq_unlock(rq, &flags);
5363 cpu_rq(cpu)->migration_thread = p;
5364 break;
5365
5366 case CPU_ONLINE:
5367 case CPU_ONLINE_FROZEN:
5368 /* Strictly unneccessary, as first user will wake it. */
5369 wake_up_process(cpu_rq(cpu)->migration_thread);
5370 break;
5371
5372 #ifdef CONFIG_HOTPLUG_CPU
5373 case CPU_UP_CANCELED:
5374 case CPU_UP_CANCELED_FROZEN:
5375 if (!cpu_rq(cpu)->migration_thread)
5376 break;
5377 /* Unbind it from offline cpu so it can run. Fall thru. */
5378 kthread_bind(cpu_rq(cpu)->migration_thread,
5379 any_online_cpu(cpu_online_map));
5380 kthread_stop(cpu_rq(cpu)->migration_thread);
5381 cpu_rq(cpu)->migration_thread = NULL;
5382 break;
5383
5384 case CPU_DEAD:
5385 case CPU_DEAD_FROZEN:
5386 migrate_live_tasks(cpu);
5387 rq = cpu_rq(cpu);
5388 kthread_stop(rq->migration_thread);
5389 rq->migration_thread = NULL;
5390 /* Idle task back to normal (off runqueue, low prio) */
5391 rq = task_rq_lock(rq->idle, &flags);
5392 update_rq_clock(rq);
5393 deactivate_task(rq, rq->idle, 0);
5394 rq->idle->static_prio = MAX_PRIO;
5395 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5396 rq->idle->sched_class = &idle_sched_class;
5397 migrate_dead_tasks(cpu);
5398 task_rq_unlock(rq, &flags);
5399 migrate_nr_uninterruptible(rq);
5400 BUG_ON(rq->nr_running != 0);
5401
5402 /* No need to migrate the tasks: it was best-effort if
5403 * they didn't take sched_hotcpu_mutex. Just wake up
5404 * the requestors. */
5405 spin_lock_irq(&rq->lock);
5406 while (!list_empty(&rq->migration_queue)) {
5407 struct migration_req *req;
5408
5409 req = list_entry(rq->migration_queue.next,
5410 struct migration_req, list);
5411 list_del_init(&req->list);
5412 complete(&req->done);
5413 }
5414 spin_unlock_irq(&rq->lock);
5415 break;
5416 #endif
5417 case CPU_LOCK_RELEASE:
5418 mutex_unlock(&sched_hotcpu_mutex);
5419 break;
5420 }
5421 return NOTIFY_OK;
5422 }
5423
5424 /* Register at highest priority so that task migration (migrate_all_tasks)
5425 * happens before everything else.
5426 */
5427 static struct notifier_block __cpuinitdata migration_notifier = {
5428 .notifier_call = migration_call,
5429 .priority = 10
5430 };
5431
5432 int __init migration_init(void)
5433 {
5434 void *cpu = (void *)(long)smp_processor_id();
5435 int err;
5436
5437 /* Start one for the boot CPU: */
5438 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5439 BUG_ON(err == NOTIFY_BAD);
5440 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5441 register_cpu_notifier(&migration_notifier);
5442
5443 return 0;
5444 }
5445 #endif
5446
5447 #ifdef CONFIG_SMP
5448
5449 /* Number of possible processor ids */
5450 int nr_cpu_ids __read_mostly = NR_CPUS;
5451 EXPORT_SYMBOL(nr_cpu_ids);
5452
5453 #undef SCHED_DOMAIN_DEBUG
5454 #ifdef SCHED_DOMAIN_DEBUG
5455 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5456 {
5457 int level = 0;
5458
5459 if (!sd) {
5460 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5461 return;
5462 }
5463
5464 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5465
5466 do {
5467 int i;
5468 char str[NR_CPUS];
5469 struct sched_group *group = sd->groups;
5470 cpumask_t groupmask;
5471
5472 cpumask_scnprintf(str, NR_CPUS, sd->span);
5473 cpus_clear(groupmask);
5474
5475 printk(KERN_DEBUG);
5476 for (i = 0; i < level + 1; i++)
5477 printk(" ");
5478 printk("domain %d: ", level);
5479
5480 if (!(sd->flags & SD_LOAD_BALANCE)) {
5481 printk("does not load-balance\n");
5482 if (sd->parent)
5483 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5484 " has parent");
5485 break;
5486 }
5487
5488 printk("span %s\n", str);
5489
5490 if (!cpu_isset(cpu, sd->span))
5491 printk(KERN_ERR "ERROR: domain->span does not contain "
5492 "CPU%d\n", cpu);
5493 if (!cpu_isset(cpu, group->cpumask))
5494 printk(KERN_ERR "ERROR: domain->groups does not contain"
5495 " CPU%d\n", cpu);
5496
5497 printk(KERN_DEBUG);
5498 for (i = 0; i < level + 2; i++)
5499 printk(" ");
5500 printk("groups:");
5501 do {
5502 if (!group) {
5503 printk("\n");
5504 printk(KERN_ERR "ERROR: group is NULL\n");
5505 break;
5506 }
5507
5508 if (!group->__cpu_power) {
5509 printk("\n");
5510 printk(KERN_ERR "ERROR: domain->cpu_power not "
5511 "set\n");
5512 }
5513
5514 if (!cpus_weight(group->cpumask)) {
5515 printk("\n");
5516 printk(KERN_ERR "ERROR: empty group\n");
5517 }
5518
5519 if (cpus_intersects(groupmask, group->cpumask)) {
5520 printk("\n");
5521 printk(KERN_ERR "ERROR: repeated CPUs\n");
5522 }
5523
5524 cpus_or(groupmask, groupmask, group->cpumask);
5525
5526 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5527 printk(" %s", str);
5528
5529 group = group->next;
5530 } while (group != sd->groups);
5531 printk("\n");
5532
5533 if (!cpus_equal(sd->span, groupmask))
5534 printk(KERN_ERR "ERROR: groups don't span "
5535 "domain->span\n");
5536
5537 level++;
5538 sd = sd->parent;
5539 if (!sd)
5540 continue;
5541
5542 if (!cpus_subset(groupmask, sd->span))
5543 printk(KERN_ERR "ERROR: parent span is not a superset "
5544 "of domain->span\n");
5545
5546 } while (sd);
5547 }
5548 #else
5549 # define sched_domain_debug(sd, cpu) do { } while (0)
5550 #endif
5551
5552 static int sd_degenerate(struct sched_domain *sd)
5553 {
5554 if (cpus_weight(sd->span) == 1)
5555 return 1;
5556
5557 /* Following flags need at least 2 groups */
5558 if (sd->flags & (SD_LOAD_BALANCE |
5559 SD_BALANCE_NEWIDLE |
5560 SD_BALANCE_FORK |
5561 SD_BALANCE_EXEC |
5562 SD_SHARE_CPUPOWER |
5563 SD_SHARE_PKG_RESOURCES)) {
5564 if (sd->groups != sd->groups->next)
5565 return 0;
5566 }
5567
5568 /* Following flags don't use groups */
5569 if (sd->flags & (SD_WAKE_IDLE |
5570 SD_WAKE_AFFINE |
5571 SD_WAKE_BALANCE))
5572 return 0;
5573
5574 return 1;
5575 }
5576
5577 static int
5578 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5579 {
5580 unsigned long cflags = sd->flags, pflags = parent->flags;
5581
5582 if (sd_degenerate(parent))
5583 return 1;
5584
5585 if (!cpus_equal(sd->span, parent->span))
5586 return 0;
5587
5588 /* Does parent contain flags not in child? */
5589 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5590 if (cflags & SD_WAKE_AFFINE)
5591 pflags &= ~SD_WAKE_BALANCE;
5592 /* Flags needing groups don't count if only 1 group in parent */
5593 if (parent->groups == parent->groups->next) {
5594 pflags &= ~(SD_LOAD_BALANCE |
5595 SD_BALANCE_NEWIDLE |
5596 SD_BALANCE_FORK |
5597 SD_BALANCE_EXEC |
5598 SD_SHARE_CPUPOWER |
5599 SD_SHARE_PKG_RESOURCES);
5600 }
5601 if (~cflags & pflags)
5602 return 0;
5603
5604 return 1;
5605 }
5606
5607 /*
5608 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5609 * hold the hotplug lock.
5610 */
5611 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
5612 {
5613 struct rq *rq = cpu_rq(cpu);
5614 struct sched_domain *tmp;
5615
5616 /* Remove the sched domains which do not contribute to scheduling. */
5617 for (tmp = sd; tmp; tmp = tmp->parent) {
5618 struct sched_domain *parent = tmp->parent;
5619 if (!parent)
5620 break;
5621 if (sd_parent_degenerate(tmp, parent)) {
5622 tmp->parent = parent->parent;
5623 if (parent->parent)
5624 parent->parent->child = tmp;
5625 }
5626 }
5627
5628 if (sd && sd_degenerate(sd)) {
5629 sd = sd->parent;
5630 if (sd)
5631 sd->child = NULL;
5632 }
5633
5634 sched_domain_debug(sd, cpu);
5635
5636 rcu_assign_pointer(rq->sd, sd);
5637 }
5638
5639 /* cpus with isolated domains */
5640 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
5641
5642 /* Setup the mask of cpus configured for isolated domains */
5643 static int __init isolated_cpu_setup(char *str)
5644 {
5645 int ints[NR_CPUS], i;
5646
5647 str = get_options(str, ARRAY_SIZE(ints), ints);
5648 cpus_clear(cpu_isolated_map);
5649 for (i = 1; i <= ints[0]; i++)
5650 if (ints[i] < NR_CPUS)
5651 cpu_set(ints[i], cpu_isolated_map);
5652 return 1;
5653 }
5654
5655 __setup ("isolcpus=", isolated_cpu_setup);
5656
5657 /*
5658 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5659 * to a function which identifies what group(along with sched group) a CPU
5660 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5661 * (due to the fact that we keep track of groups covered with a cpumask_t).
5662 *
5663 * init_sched_build_groups will build a circular linked list of the groups
5664 * covered by the given span, and will set each group's ->cpumask correctly,
5665 * and ->cpu_power to 0.
5666 */
5667 static void
5668 init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5669 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5670 struct sched_group **sg))
5671 {
5672 struct sched_group *first = NULL, *last = NULL;
5673 cpumask_t covered = CPU_MASK_NONE;
5674 int i;
5675
5676 for_each_cpu_mask(i, span) {
5677 struct sched_group *sg;
5678 int group = group_fn(i, cpu_map, &sg);
5679 int j;
5680
5681 if (cpu_isset(i, covered))
5682 continue;
5683
5684 sg->cpumask = CPU_MASK_NONE;
5685 sg->__cpu_power = 0;
5686
5687 for_each_cpu_mask(j, span) {
5688 if (group_fn(j, cpu_map, NULL) != group)
5689 continue;
5690
5691 cpu_set(j, covered);
5692 cpu_set(j, sg->cpumask);
5693 }
5694 if (!first)
5695 first = sg;
5696 if (last)
5697 last->next = sg;
5698 last = sg;
5699 }
5700 last->next = first;
5701 }
5702
5703 #define SD_NODES_PER_DOMAIN 16
5704
5705 #ifdef CONFIG_NUMA
5706
5707 /**
5708 * find_next_best_node - find the next node to include in a sched_domain
5709 * @node: node whose sched_domain we're building
5710 * @used_nodes: nodes already in the sched_domain
5711 *
5712 * Find the next node to include in a given scheduling domain. Simply
5713 * finds the closest node not already in the @used_nodes map.
5714 *
5715 * Should use nodemask_t.
5716 */
5717 static int find_next_best_node(int node, unsigned long *used_nodes)
5718 {
5719 int i, n, val, min_val, best_node = 0;
5720
5721 min_val = INT_MAX;
5722
5723 for (i = 0; i < MAX_NUMNODES; i++) {
5724 /* Start at @node */
5725 n = (node + i) % MAX_NUMNODES;
5726
5727 if (!nr_cpus_node(n))
5728 continue;
5729
5730 /* Skip already used nodes */
5731 if (test_bit(n, used_nodes))
5732 continue;
5733
5734 /* Simple min distance search */
5735 val = node_distance(node, n);
5736
5737 if (val < min_val) {
5738 min_val = val;
5739 best_node = n;
5740 }
5741 }
5742
5743 set_bit(best_node, used_nodes);
5744 return best_node;
5745 }
5746
5747 /**
5748 * sched_domain_node_span - get a cpumask for a node's sched_domain
5749 * @node: node whose cpumask we're constructing
5750 * @size: number of nodes to include in this span
5751 *
5752 * Given a node, construct a good cpumask for its sched_domain to span. It
5753 * should be one that prevents unnecessary balancing, but also spreads tasks
5754 * out optimally.
5755 */
5756 static cpumask_t sched_domain_node_span(int node)
5757 {
5758 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5759 cpumask_t span, nodemask;
5760 int i;
5761
5762 cpus_clear(span);
5763 bitmap_zero(used_nodes, MAX_NUMNODES);
5764
5765 nodemask = node_to_cpumask(node);
5766 cpus_or(span, span, nodemask);
5767 set_bit(node, used_nodes);
5768
5769 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5770 int next_node = find_next_best_node(node, used_nodes);
5771
5772 nodemask = node_to_cpumask(next_node);
5773 cpus_or(span, span, nodemask);
5774 }
5775
5776 return span;
5777 }
5778 #endif
5779
5780 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5781
5782 /*
5783 * SMT sched-domains:
5784 */
5785 #ifdef CONFIG_SCHED_SMT
5786 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5787 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
5788
5789 static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
5790 struct sched_group **sg)
5791 {
5792 if (sg)
5793 *sg = &per_cpu(sched_group_cpus, cpu);
5794 return cpu;
5795 }
5796 #endif
5797
5798 /*
5799 * multi-core sched-domains:
5800 */
5801 #ifdef CONFIG_SCHED_MC
5802 static DEFINE_PER_CPU(struct sched_domain, core_domains);
5803 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
5804 #endif
5805
5806 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5807 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5808 struct sched_group **sg)
5809 {
5810 int group;
5811 cpumask_t mask = cpu_sibling_map[cpu];
5812 cpus_and(mask, mask, *cpu_map);
5813 group = first_cpu(mask);
5814 if (sg)
5815 *sg = &per_cpu(sched_group_core, group);
5816 return group;
5817 }
5818 #elif defined(CONFIG_SCHED_MC)
5819 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5820 struct sched_group **sg)
5821 {
5822 if (sg)
5823 *sg = &per_cpu(sched_group_core, cpu);
5824 return cpu;
5825 }
5826 #endif
5827
5828 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5829 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
5830
5831 static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
5832 struct sched_group **sg)
5833 {
5834 int group;
5835 #ifdef CONFIG_SCHED_MC
5836 cpumask_t mask = cpu_coregroup_map(cpu);
5837 cpus_and(mask, mask, *cpu_map);
5838 group = first_cpu(mask);
5839 #elif defined(CONFIG_SCHED_SMT)
5840 cpumask_t mask = cpu_sibling_map[cpu];
5841 cpus_and(mask, mask, *cpu_map);
5842 group = first_cpu(mask);
5843 #else
5844 group = cpu;
5845 #endif
5846 if (sg)
5847 *sg = &per_cpu(sched_group_phys, group);
5848 return group;
5849 }
5850
5851 #ifdef CONFIG_NUMA
5852 /*
5853 * The init_sched_build_groups can't handle what we want to do with node
5854 * groups, so roll our own. Now each node has its own list of groups which
5855 * gets dynamically allocated.
5856 */
5857 static DEFINE_PER_CPU(struct sched_domain, node_domains);
5858 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
5859
5860 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5861 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
5862
5863 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
5864 struct sched_group **sg)
5865 {
5866 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
5867 int group;
5868
5869 cpus_and(nodemask, nodemask, *cpu_map);
5870 group = first_cpu(nodemask);
5871
5872 if (sg)
5873 *sg = &per_cpu(sched_group_allnodes, group);
5874 return group;
5875 }
5876
5877 static void init_numa_sched_groups_power(struct sched_group *group_head)
5878 {
5879 struct sched_group *sg = group_head;
5880 int j;
5881
5882 if (!sg)
5883 return;
5884 next_sg:
5885 for_each_cpu_mask(j, sg->cpumask) {
5886 struct sched_domain *sd;
5887
5888 sd = &per_cpu(phys_domains, j);
5889 if (j != first_cpu(sd->groups->cpumask)) {
5890 /*
5891 * Only add "power" once for each
5892 * physical package.
5893 */
5894 continue;
5895 }
5896
5897 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
5898 }
5899 sg = sg->next;
5900 if (sg != group_head)
5901 goto next_sg;
5902 }
5903 #endif
5904
5905 #ifdef CONFIG_NUMA
5906 /* Free memory allocated for various sched_group structures */
5907 static void free_sched_groups(const cpumask_t *cpu_map)
5908 {
5909 int cpu, i;
5910
5911 for_each_cpu_mask(cpu, *cpu_map) {
5912 struct sched_group **sched_group_nodes
5913 = sched_group_nodes_bycpu[cpu];
5914
5915 if (!sched_group_nodes)
5916 continue;
5917
5918 for (i = 0; i < MAX_NUMNODES; i++) {
5919 cpumask_t nodemask = node_to_cpumask(i);
5920 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5921
5922 cpus_and(nodemask, nodemask, *cpu_map);
5923 if (cpus_empty(nodemask))
5924 continue;
5925
5926 if (sg == NULL)
5927 continue;
5928 sg = sg->next;
5929 next_sg:
5930 oldsg = sg;
5931 sg = sg->next;
5932 kfree(oldsg);
5933 if (oldsg != sched_group_nodes[i])
5934 goto next_sg;
5935 }
5936 kfree(sched_group_nodes);
5937 sched_group_nodes_bycpu[cpu] = NULL;
5938 }
5939 }
5940 #else
5941 static void free_sched_groups(const cpumask_t *cpu_map)
5942 {
5943 }
5944 #endif
5945
5946 /*
5947 * Initialize sched groups cpu_power.
5948 *
5949 * cpu_power indicates the capacity of sched group, which is used while
5950 * distributing the load between different sched groups in a sched domain.
5951 * Typically cpu_power for all the groups in a sched domain will be same unless
5952 * there are asymmetries in the topology. If there are asymmetries, group
5953 * having more cpu_power will pickup more load compared to the group having
5954 * less cpu_power.
5955 *
5956 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
5957 * the maximum number of tasks a group can handle in the presence of other idle
5958 * or lightly loaded groups in the same sched domain.
5959 */
5960 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5961 {
5962 struct sched_domain *child;
5963 struct sched_group *group;
5964
5965 WARN_ON(!sd || !sd->groups);
5966
5967 if (cpu != first_cpu(sd->groups->cpumask))
5968 return;
5969
5970 child = sd->child;
5971
5972 sd->groups->__cpu_power = 0;
5973
5974 /*
5975 * For perf policy, if the groups in child domain share resources
5976 * (for example cores sharing some portions of the cache hierarchy
5977 * or SMT), then set this domain groups cpu_power such that each group
5978 * can handle only one task, when there are other idle groups in the
5979 * same sched domain.
5980 */
5981 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
5982 (child->flags &
5983 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5984 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
5985 return;
5986 }
5987
5988 /*
5989 * add cpu_power of each child group to this groups cpu_power
5990 */
5991 group = child->groups;
5992 do {
5993 sg_inc_cpu_power(sd->groups, group->__cpu_power);
5994 group = group->next;
5995 } while (group != child->groups);
5996 }
5997
5998 /*
5999 * Build sched domains for a given set of cpus and attach the sched domains
6000 * to the individual cpus
6001 */
6002 static int build_sched_domains(const cpumask_t *cpu_map)
6003 {
6004 int i;
6005 #ifdef CONFIG_NUMA
6006 struct sched_group **sched_group_nodes = NULL;
6007 int sd_allnodes = 0;
6008
6009 /*
6010 * Allocate the per-node list of sched groups
6011 */
6012 sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
6013 GFP_KERNEL);
6014 if (!sched_group_nodes) {
6015 printk(KERN_WARNING "Can not alloc sched group node list\n");
6016 return -ENOMEM;
6017 }
6018 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6019 #endif
6020
6021 /*
6022 * Set up domains for cpus specified by the cpu_map.
6023 */
6024 for_each_cpu_mask(i, *cpu_map) {
6025 struct sched_domain *sd = NULL, *p;
6026 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6027
6028 cpus_and(nodemask, nodemask, *cpu_map);
6029
6030 #ifdef CONFIG_NUMA
6031 if (cpus_weight(*cpu_map) >
6032 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6033 sd = &per_cpu(allnodes_domains, i);
6034 *sd = SD_ALLNODES_INIT;
6035 sd->span = *cpu_map;
6036 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6037 p = sd;
6038 sd_allnodes = 1;
6039 } else
6040 p = NULL;
6041
6042 sd = &per_cpu(node_domains, i);
6043 *sd = SD_NODE_INIT;
6044 sd->span = sched_domain_node_span(cpu_to_node(i));
6045 sd->parent = p;
6046 if (p)
6047 p->child = sd;
6048 cpus_and(sd->span, sd->span, *cpu_map);
6049 #endif
6050
6051 p = sd;
6052 sd = &per_cpu(phys_domains, i);
6053 *sd = SD_CPU_INIT;
6054 sd->span = nodemask;
6055 sd->parent = p;
6056 if (p)
6057 p->child = sd;
6058 cpu_to_phys_group(i, cpu_map, &sd->groups);
6059
6060 #ifdef CONFIG_SCHED_MC
6061 p = sd;
6062 sd = &per_cpu(core_domains, i);
6063 *sd = SD_MC_INIT;
6064 sd->span = cpu_coregroup_map(i);
6065 cpus_and(sd->span, sd->span, *cpu_map);
6066 sd->parent = p;
6067 p->child = sd;
6068 cpu_to_core_group(i, cpu_map, &sd->groups);
6069 #endif
6070
6071 #ifdef CONFIG_SCHED_SMT
6072 p = sd;
6073 sd = &per_cpu(cpu_domains, i);
6074 *sd = SD_SIBLING_INIT;
6075 sd->span = cpu_sibling_map[i];
6076 cpus_and(sd->span, sd->span, *cpu_map);
6077 sd->parent = p;
6078 p->child = sd;
6079 cpu_to_cpu_group(i, cpu_map, &sd->groups);
6080 #endif
6081 }
6082
6083 #ifdef CONFIG_SCHED_SMT
6084 /* Set up CPU (sibling) groups */
6085 for_each_cpu_mask(i, *cpu_map) {
6086 cpumask_t this_sibling_map = cpu_sibling_map[i];
6087 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
6088 if (i != first_cpu(this_sibling_map))
6089 continue;
6090
6091 init_sched_build_groups(this_sibling_map, cpu_map,
6092 &cpu_to_cpu_group);
6093 }
6094 #endif
6095
6096 #ifdef CONFIG_SCHED_MC
6097 /* Set up multi-core groups */
6098 for_each_cpu_mask(i, *cpu_map) {
6099 cpumask_t this_core_map = cpu_coregroup_map(i);
6100 cpus_and(this_core_map, this_core_map, *cpu_map);
6101 if (i != first_cpu(this_core_map))
6102 continue;
6103 init_sched_build_groups(this_core_map, cpu_map,
6104 &cpu_to_core_group);
6105 }
6106 #endif
6107
6108 /* Set up physical groups */
6109 for (i = 0; i < MAX_NUMNODES; i++) {
6110 cpumask_t nodemask = node_to_cpumask(i);
6111
6112 cpus_and(nodemask, nodemask, *cpu_map);
6113 if (cpus_empty(nodemask))
6114 continue;
6115
6116 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
6117 }
6118
6119 #ifdef CONFIG_NUMA
6120 /* Set up node groups */
6121 if (sd_allnodes)
6122 init_sched_build_groups(*cpu_map, cpu_map,
6123 &cpu_to_allnodes_group);
6124
6125 for (i = 0; i < MAX_NUMNODES; i++) {
6126 /* Set up node groups */
6127 struct sched_group *sg, *prev;
6128 cpumask_t nodemask = node_to_cpumask(i);
6129 cpumask_t domainspan;
6130 cpumask_t covered = CPU_MASK_NONE;
6131 int j;
6132
6133 cpus_and(nodemask, nodemask, *cpu_map);
6134 if (cpus_empty(nodemask)) {
6135 sched_group_nodes[i] = NULL;
6136 continue;
6137 }
6138
6139 domainspan = sched_domain_node_span(i);
6140 cpus_and(domainspan, domainspan, *cpu_map);
6141
6142 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6143 if (!sg) {
6144 printk(KERN_WARNING "Can not alloc domain group for "
6145 "node %d\n", i);
6146 goto error;
6147 }
6148 sched_group_nodes[i] = sg;
6149 for_each_cpu_mask(j, nodemask) {
6150 struct sched_domain *sd;
6151
6152 sd = &per_cpu(node_domains, j);
6153 sd->groups = sg;
6154 }
6155 sg->__cpu_power = 0;
6156 sg->cpumask = nodemask;
6157 sg->next = sg;
6158 cpus_or(covered, covered, nodemask);
6159 prev = sg;
6160
6161 for (j = 0; j < MAX_NUMNODES; j++) {
6162 cpumask_t tmp, notcovered;
6163 int n = (i + j) % MAX_NUMNODES;
6164
6165 cpus_complement(notcovered, covered);
6166 cpus_and(tmp, notcovered, *cpu_map);
6167 cpus_and(tmp, tmp, domainspan);
6168 if (cpus_empty(tmp))
6169 break;
6170
6171 nodemask = node_to_cpumask(n);
6172 cpus_and(tmp, tmp, nodemask);
6173 if (cpus_empty(tmp))
6174 continue;
6175
6176 sg = kmalloc_node(sizeof(struct sched_group),
6177 GFP_KERNEL, i);
6178 if (!sg) {
6179 printk(KERN_WARNING
6180 "Can not alloc domain group for node %d\n", j);
6181 goto error;
6182 }
6183 sg->__cpu_power = 0;
6184 sg->cpumask = tmp;
6185 sg->next = prev->next;
6186 cpus_or(covered, covered, tmp);
6187 prev->next = sg;
6188 prev = sg;
6189 }
6190 }
6191 #endif
6192
6193 /* Calculate CPU power for physical packages and nodes */
6194 #ifdef CONFIG_SCHED_SMT
6195 for_each_cpu_mask(i, *cpu_map) {
6196 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6197
6198 init_sched_groups_power(i, sd);
6199 }
6200 #endif
6201 #ifdef CONFIG_SCHED_MC
6202 for_each_cpu_mask(i, *cpu_map) {
6203 struct sched_domain *sd = &per_cpu(core_domains, i);
6204
6205 init_sched_groups_power(i, sd);
6206 }
6207 #endif
6208
6209 for_each_cpu_mask(i, *cpu_map) {
6210 struct sched_domain *sd = &per_cpu(phys_domains, i);
6211
6212 init_sched_groups_power(i, sd);
6213 }
6214
6215 #ifdef CONFIG_NUMA
6216 for (i = 0; i < MAX_NUMNODES; i++)
6217 init_numa_sched_groups_power(sched_group_nodes[i]);
6218
6219 if (sd_allnodes) {
6220 struct sched_group *sg;
6221
6222 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6223 init_numa_sched_groups_power(sg);
6224 }
6225 #endif
6226
6227 /* Attach the domains */
6228 for_each_cpu_mask(i, *cpu_map) {
6229 struct sched_domain *sd;
6230 #ifdef CONFIG_SCHED_SMT
6231 sd = &per_cpu(cpu_domains, i);
6232 #elif defined(CONFIG_SCHED_MC)
6233 sd = &per_cpu(core_domains, i);
6234 #else
6235 sd = &per_cpu(phys_domains, i);
6236 #endif
6237 cpu_attach_domain(sd, i);
6238 }
6239
6240 return 0;
6241
6242 #ifdef CONFIG_NUMA
6243 error:
6244 free_sched_groups(cpu_map);
6245 return -ENOMEM;
6246 #endif
6247 }
6248 /*
6249 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6250 */
6251 static int arch_init_sched_domains(const cpumask_t *cpu_map)
6252 {
6253 cpumask_t cpu_default_map;
6254 int err;
6255
6256 /*
6257 * Setup mask for cpus without special case scheduling requirements.
6258 * For now this just excludes isolated cpus, but could be used to
6259 * exclude other special cases in the future.
6260 */
6261 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6262
6263 err = build_sched_domains(&cpu_default_map);
6264
6265 return err;
6266 }
6267
6268 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
6269 {
6270 free_sched_groups(cpu_map);
6271 }
6272
6273 /*
6274 * Detach sched domains from a group of cpus specified in cpu_map
6275 * These cpus will now be attached to the NULL domain
6276 */
6277 static void detach_destroy_domains(const cpumask_t *cpu_map)
6278 {
6279 int i;
6280
6281 for_each_cpu_mask(i, *cpu_map)
6282 cpu_attach_domain(NULL, i);
6283 synchronize_sched();
6284 arch_destroy_sched_domains(cpu_map);
6285 }
6286
6287 /*
6288 * Partition sched domains as specified by the cpumasks below.
6289 * This attaches all cpus from the cpumasks to the NULL domain,
6290 * waits for a RCU quiescent period, recalculates sched
6291 * domain information and then attaches them back to the
6292 * correct sched domains
6293 * Call with hotplug lock held
6294 */
6295 int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6296 {
6297 cpumask_t change_map;
6298 int err = 0;
6299
6300 cpus_and(*partition1, *partition1, cpu_online_map);
6301 cpus_and(*partition2, *partition2, cpu_online_map);
6302 cpus_or(change_map, *partition1, *partition2);
6303
6304 /* Detach sched domains from all of the affected cpus */
6305 detach_destroy_domains(&change_map);
6306 if (!cpus_empty(*partition1))
6307 err = build_sched_domains(partition1);
6308 if (!err && !cpus_empty(*partition2))
6309 err = build_sched_domains(partition2);
6310
6311 return err;
6312 }
6313
6314 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6315 static int arch_reinit_sched_domains(void)
6316 {
6317 int err;
6318
6319 mutex_lock(&sched_hotcpu_mutex);
6320 detach_destroy_domains(&cpu_online_map);
6321 err = arch_init_sched_domains(&cpu_online_map);
6322 mutex_unlock(&sched_hotcpu_mutex);
6323
6324 return err;
6325 }
6326
6327 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6328 {
6329 int ret;
6330
6331 if (buf[0] != '0' && buf[0] != '1')
6332 return -EINVAL;
6333
6334 if (smt)
6335 sched_smt_power_savings = (buf[0] == '1');
6336 else
6337 sched_mc_power_savings = (buf[0] == '1');
6338
6339 ret = arch_reinit_sched_domains();
6340
6341 return ret ? ret : count;
6342 }
6343
6344 #ifdef CONFIG_SCHED_MC
6345 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6346 {
6347 return sprintf(page, "%u\n", sched_mc_power_savings);
6348 }
6349 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6350 const char *buf, size_t count)
6351 {
6352 return sched_power_savings_store(buf, count, 0);
6353 }
6354 static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6355 sched_mc_power_savings_store);
6356 #endif
6357
6358 #ifdef CONFIG_SCHED_SMT
6359 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6360 {
6361 return sprintf(page, "%u\n", sched_smt_power_savings);
6362 }
6363 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6364 const char *buf, size_t count)
6365 {
6366 return sched_power_savings_store(buf, count, 1);
6367 }
6368 static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6369 sched_smt_power_savings_store);
6370 #endif
6371
6372 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6373 {
6374 int err = 0;
6375
6376 #ifdef CONFIG_SCHED_SMT
6377 if (smt_capable())
6378 err = sysfs_create_file(&cls->kset.kobj,
6379 &attr_sched_smt_power_savings.attr);
6380 #endif
6381 #ifdef CONFIG_SCHED_MC
6382 if (!err && mc_capable())
6383 err = sysfs_create_file(&cls->kset.kobj,
6384 &attr_sched_mc_power_savings.attr);
6385 #endif
6386 return err;
6387 }
6388 #endif
6389
6390 /*
6391 * Force a reinitialization of the sched domains hierarchy. The domains
6392 * and groups cannot be updated in place without racing with the balancing
6393 * code, so we temporarily attach all running cpus to the NULL domain
6394 * which will prevent rebalancing while the sched domains are recalculated.
6395 */
6396 static int update_sched_domains(struct notifier_block *nfb,
6397 unsigned long action, void *hcpu)
6398 {
6399 switch (action) {
6400 case CPU_UP_PREPARE:
6401 case CPU_UP_PREPARE_FROZEN:
6402 case CPU_DOWN_PREPARE:
6403 case CPU_DOWN_PREPARE_FROZEN:
6404 detach_destroy_domains(&cpu_online_map);
6405 return NOTIFY_OK;
6406
6407 case CPU_UP_CANCELED:
6408 case CPU_UP_CANCELED_FROZEN:
6409 case CPU_DOWN_FAILED:
6410 case CPU_DOWN_FAILED_FROZEN:
6411 case CPU_ONLINE:
6412 case CPU_ONLINE_FROZEN:
6413 case CPU_DEAD:
6414 case CPU_DEAD_FROZEN:
6415 /*
6416 * Fall through and re-initialise the domains.
6417 */
6418 break;
6419 default:
6420 return NOTIFY_DONE;
6421 }
6422
6423 /* The hotplug lock is already held by cpu_up/cpu_down */
6424 arch_init_sched_domains(&cpu_online_map);
6425
6426 return NOTIFY_OK;
6427 }
6428
6429 void __init sched_init_smp(void)
6430 {
6431 cpumask_t non_isolated_cpus;
6432
6433 mutex_lock(&sched_hotcpu_mutex);
6434 arch_init_sched_domains(&cpu_online_map);
6435 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6436 if (cpus_empty(non_isolated_cpus))
6437 cpu_set(smp_processor_id(), non_isolated_cpus);
6438 mutex_unlock(&sched_hotcpu_mutex);
6439 /* XXX: Theoretical race here - CPU may be hotplugged now */
6440 hotcpu_notifier(update_sched_domains, 0);
6441
6442 init_sched_domain_sysctl();
6443
6444 /* Move init over to a non-isolated CPU */
6445 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6446 BUG();
6447 }
6448 #else
6449 void __init sched_init_smp(void)
6450 {
6451 }
6452 #endif /* CONFIG_SMP */
6453
6454 int in_sched_functions(unsigned long addr)
6455 {
6456 /* Linker adds these: start and end of __sched functions */
6457 extern char __sched_text_start[], __sched_text_end[];
6458
6459 return in_lock_functions(addr) ||
6460 (addr >= (unsigned long)__sched_text_start
6461 && addr < (unsigned long)__sched_text_end);
6462 }
6463
6464 static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
6465 {
6466 cfs_rq->tasks_timeline = RB_ROOT;
6467 #ifdef CONFIG_FAIR_GROUP_SCHED
6468 cfs_rq->rq = rq;
6469 #endif
6470 }
6471
6472 void __init sched_init(void)
6473 {
6474 int highest_cpu = 0;
6475 int i, j;
6476
6477 /*
6478 * Link up the scheduling class hierarchy:
6479 */
6480 rt_sched_class.next = &fair_sched_class;
6481 fair_sched_class.next = &idle_sched_class;
6482 idle_sched_class.next = NULL;
6483
6484 for_each_possible_cpu(i) {
6485 struct rt_prio_array *array;
6486 struct rq *rq;
6487
6488 rq = cpu_rq(i);
6489 spin_lock_init(&rq->lock);
6490 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
6491 rq->nr_running = 0;
6492 rq->clock = 1;
6493 init_cfs_rq(&rq->cfs, rq);
6494 #ifdef CONFIG_FAIR_GROUP_SCHED
6495 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6496 {
6497 struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
6498 struct sched_entity *se =
6499 &per_cpu(init_sched_entity, i);
6500
6501 init_cfs_rq_p[i] = cfs_rq;
6502 init_cfs_rq(cfs_rq, rq);
6503 cfs_rq->tg = &init_task_grp;
6504 list_add(&cfs_rq->leaf_cfs_rq_list,
6505 &rq->leaf_cfs_rq_list);
6506
6507 init_sched_entity_p[i] = se;
6508 se->cfs_rq = &rq->cfs;
6509 se->my_q = cfs_rq;
6510 se->load.weight = NICE_0_LOAD;
6511 se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
6512 se->parent = NULL;
6513 }
6514 init_task_grp.shares = NICE_0_LOAD;
6515 #endif
6516
6517 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6518 rq->cpu_load[j] = 0;
6519 #ifdef CONFIG_SMP
6520 rq->sd = NULL;
6521 rq->active_balance = 0;
6522 rq->next_balance = jiffies;
6523 rq->push_cpu = 0;
6524 rq->cpu = i;
6525 rq->migration_thread = NULL;
6526 INIT_LIST_HEAD(&rq->migration_queue);
6527 #endif
6528 atomic_set(&rq->nr_iowait, 0);
6529
6530 array = &rq->rt.active;
6531 for (j = 0; j < MAX_RT_PRIO; j++) {
6532 INIT_LIST_HEAD(array->queue + j);
6533 __clear_bit(j, array->bitmap);
6534 }
6535 highest_cpu = i;
6536 /* delimiter for bitsearch: */
6537 __set_bit(MAX_RT_PRIO, array->bitmap);
6538 }
6539
6540 set_load_weight(&init_task);
6541
6542 #ifdef CONFIG_PREEMPT_NOTIFIERS
6543 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6544 #endif
6545
6546 #ifdef CONFIG_SMP
6547 nr_cpu_ids = highest_cpu + 1;
6548 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6549 #endif
6550
6551 #ifdef CONFIG_RT_MUTEXES
6552 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6553 #endif
6554
6555 /*
6556 * The boot idle thread does lazy MMU switching as well:
6557 */
6558 atomic_inc(&init_mm.mm_count);
6559 enter_lazy_tlb(&init_mm, current);
6560
6561 /*
6562 * Make us the idle thread. Technically, schedule() should not be
6563 * called from this thread, however somewhere below it might be,
6564 * but because we are the idle thread, we just pick up running again
6565 * when this runqueue becomes "idle".
6566 */
6567 init_idle(current, smp_processor_id());
6568 /*
6569 * During early bootup we pretend to be a normal task:
6570 */
6571 current->sched_class = &fair_sched_class;
6572 }
6573
6574 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6575 void __might_sleep(char *file, int line)
6576 {
6577 #ifdef in_atomic
6578 static unsigned long prev_jiffy; /* ratelimiting */
6579
6580 if ((in_atomic() || irqs_disabled()) &&
6581 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6582 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6583 return;
6584 prev_jiffy = jiffies;
6585 printk(KERN_ERR "BUG: sleeping function called from invalid"
6586 " context at %s:%d\n", file, line);
6587 printk("in_atomic():%d, irqs_disabled():%d\n",
6588 in_atomic(), irqs_disabled());
6589 debug_show_held_locks(current);
6590 if (irqs_disabled())
6591 print_irqtrace_events(current);
6592 dump_stack();
6593 }
6594 #endif
6595 }
6596 EXPORT_SYMBOL(__might_sleep);
6597 #endif
6598
6599 #ifdef CONFIG_MAGIC_SYSRQ
6600 void normalize_rt_tasks(void)
6601 {
6602 struct task_struct *g, *p;
6603 unsigned long flags;
6604 struct rq *rq;
6605 int on_rq;
6606
6607 read_lock_irq(&tasklist_lock);
6608 do_each_thread(g, p) {
6609 p->se.fair_key = 0;
6610 p->se.exec_start = 0;
6611 #ifdef CONFIG_SCHEDSTATS
6612 p->se.wait_start = 0;
6613 p->se.sleep_start = 0;
6614 p->se.block_start = 0;
6615 #endif
6616 task_rq(p)->clock = 0;
6617
6618 if (!rt_task(p)) {
6619 /*
6620 * Renice negative nice level userspace
6621 * tasks back to 0:
6622 */
6623 if (TASK_NICE(p) < 0 && p->mm)
6624 set_user_nice(p, 0);
6625 continue;
6626 }
6627
6628 spin_lock_irqsave(&p->pi_lock, flags);
6629 rq = __task_rq_lock(p);
6630 #ifdef CONFIG_SMP
6631 /*
6632 * Do not touch the migration thread:
6633 */
6634 if (p == rq->migration_thread)
6635 goto out_unlock;
6636 #endif
6637
6638 update_rq_clock(rq);
6639 on_rq = p->se.on_rq;
6640 if (on_rq)
6641 deactivate_task(rq, p, 0);
6642 __setscheduler(rq, p, SCHED_NORMAL, 0);
6643 if (on_rq) {
6644 activate_task(rq, p, 0);
6645 resched_task(rq->curr);
6646 }
6647 #ifdef CONFIG_SMP
6648 out_unlock:
6649 #endif
6650 __task_rq_unlock(rq);
6651 spin_unlock_irqrestore(&p->pi_lock, flags);
6652 } while_each_thread(g, p);
6653
6654 read_unlock_irq(&tasklist_lock);
6655 }
6656
6657 #endif /* CONFIG_MAGIC_SYSRQ */
6658
6659 #ifdef CONFIG_IA64
6660 /*
6661 * These functions are only useful for the IA64 MCA handling.
6662 *
6663 * They can only be called when the whole system has been
6664 * stopped - every CPU needs to be quiescent, and no scheduling
6665 * activity can take place. Using them for anything else would
6666 * be a serious bug, and as a result, they aren't even visible
6667 * under any other configuration.
6668 */
6669
6670 /**
6671 * curr_task - return the current task for a given cpu.
6672 * @cpu: the processor in question.
6673 *
6674 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6675 */
6676 struct task_struct *curr_task(int cpu)
6677 {
6678 return cpu_curr(cpu);
6679 }
6680
6681 /**
6682 * set_curr_task - set the current task for a given cpu.
6683 * @cpu: the processor in question.
6684 * @p: the task pointer to set.
6685 *
6686 * Description: This function must only be used when non-maskable interrupts
6687 * are serviced on a separate stack. It allows the architecture to switch the
6688 * notion of the current task on a cpu in a non-blocking manner. This function
6689 * must be called with all CPU's synchronized, and interrupts disabled, the
6690 * and caller must save the original value of the current task (see
6691 * curr_task() above) and restore that value before reenabling interrupts and
6692 * re-starting the system.
6693 *
6694 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6695 */
6696 void set_curr_task(int cpu, struct task_struct *p)
6697 {
6698 cpu_curr(cpu) = p;
6699 }
6700
6701 #endif
6702
6703 #ifdef CONFIG_FAIR_GROUP_SCHED
6704
6705 /* return corresponding task_grp object of a container */
6706 static inline struct task_grp *container_tg(struct container *cont)
6707 {
6708 return container_of(container_subsys_state(cont, cpu_subsys_id),
6709 struct task_grp, css);
6710 }
6711
6712 /* allocate runqueue etc for a new task group */
6713 static struct container_subsys_state *
6714 sched_create_group(struct container_subsys *ss, struct container *cont)
6715 {
6716 struct task_grp *tg;
6717 struct cfs_rq *cfs_rq;
6718 struct sched_entity *se;
6719 int i;
6720
6721 if (!cont->parent) {
6722 /* This is early initialization for the top container */
6723 init_task_grp.css.container = cont;
6724 return &init_task_grp.css;
6725 }
6726
6727 /* we support only 1-level deep hierarchical scheduler atm */
6728 if (cont->parent->parent)
6729 return ERR_PTR(-EINVAL);
6730
6731 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6732 if (!tg)
6733 return ERR_PTR(-ENOMEM);
6734
6735 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * num_possible_cpus(), GFP_KERNEL);
6736 if (!tg->cfs_rq)
6737 goto err;
6738 tg->se = kzalloc(sizeof(se) * num_possible_cpus(), GFP_KERNEL);
6739 if (!tg->se)
6740 goto err;
6741
6742 for_each_possible_cpu(i) {
6743 struct rq *rq = cpu_rq(i);
6744
6745 cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
6746 cpu_to_node(i));
6747 if (!cfs_rq)
6748 goto err;
6749
6750 se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
6751 cpu_to_node(i));
6752 if (!se)
6753 goto err;
6754
6755 memset(cfs_rq, 0, sizeof(struct cfs_rq));
6756 memset(se, 0, sizeof(struct sched_entity));
6757
6758 tg->cfs_rq[i] = cfs_rq;
6759 init_cfs_rq(cfs_rq, rq);
6760 cfs_rq->tg = tg;
6761 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
6762
6763 tg->se[i] = se;
6764 se->cfs_rq = &rq->cfs;
6765 se->my_q = cfs_rq;
6766 se->load.weight = NICE_0_LOAD;
6767 se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
6768 se->parent = NULL;
6769 }
6770
6771 tg->shares = NICE_0_LOAD;
6772
6773 /* Bind the container to task_grp object we just created */
6774 tg->css.container = cont;
6775
6776 return &tg->css;
6777
6778 err:
6779 for_each_possible_cpu(i) {
6780 if (tg->cfs_rq && tg->cfs_rq[i])
6781 kfree(tg->cfs_rq[i]);
6782 if (tg->se && tg->se[i])
6783 kfree(tg->se[i]);
6784 }
6785 if (tg->cfs_rq)
6786 kfree(tg->cfs_rq);
6787 if (tg->se)
6788 kfree(tg->se);
6789 if (tg)
6790 kfree(tg);
6791
6792 return ERR_PTR(-ENOMEM);
6793 }
6794
6795
6796 /* destroy runqueue etc associated with a task group */
6797 static void sched_destroy_group(struct container_subsys *ss,
6798 struct container *cont)
6799 {
6800 struct task_grp *tg = container_tg(cont);
6801 struct cfs_rq *cfs_rq;
6802 struct sched_entity *se;
6803 int i;
6804
6805 for_each_possible_cpu(i) {
6806 cfs_rq = tg->cfs_rq[i];
6807 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
6808 }
6809
6810 /* wait for possible concurrent references to cfs_rqs complete */
6811 synchronize_sched();
6812
6813 /* now it should be safe to free those cfs_rqs */
6814 for_each_possible_cpu(i) {
6815 cfs_rq = tg->cfs_rq[i];
6816 kfree(cfs_rq);
6817
6818 se = tg->se[i];
6819 kfree(se);
6820 }
6821
6822 kfree(tg->cfs_rq);
6823 kfree(tg->se);
6824 kfree(tg);
6825 }
6826
6827 static int sched_can_attach(struct container_subsys *ss,
6828 struct container *cont, struct task_struct *tsk)
6829 {
6830 /* We don't support RT-tasks being in separate groups */
6831 if (tsk->sched_class != &fair_sched_class)
6832 return -EINVAL;
6833
6834 return 0;
6835 }
6836
6837 /* change task's runqueue when it moves between groups */
6838 static void sched_move_task(struct container_subsys *ss, struct container *cont,
6839 struct container *old_cont, struct task_struct *tsk)
6840 {
6841 int on_rq, running;
6842 unsigned long flags;
6843 struct rq *rq;
6844
6845 rq = task_rq_lock(tsk, &flags);
6846
6847 if (tsk->sched_class != &fair_sched_class)
6848 goto done;
6849
6850 update_rq_clock(rq);
6851
6852 running = task_running(rq, tsk);
6853 on_rq = tsk->se.on_rq;
6854
6855 if (on_rq) {
6856 dequeue_task(rq, tsk, 0);
6857 if (unlikely(running))
6858 tsk->sched_class->put_prev_task(rq, tsk);
6859 }
6860
6861 set_task_cfs_rq(tsk);
6862
6863 if (on_rq) {
6864 enqueue_task(rq, tsk, 0);
6865 if (unlikely(running))
6866 tsk->sched_class->set_curr_task(rq);
6867 }
6868
6869 done:
6870 task_rq_unlock(rq, &flags);
6871 }
6872
6873 static void set_se_shares(struct sched_entity *se, unsigned long shares)
6874 {
6875 struct cfs_rq *cfs_rq = se->cfs_rq;
6876 struct rq *rq = cfs_rq->rq;
6877 int on_rq;
6878
6879 spin_lock_irq(&rq->lock);
6880
6881 on_rq = se->on_rq;
6882 if (on_rq)
6883 dequeue_entity(cfs_rq, se, 0);
6884
6885 se->load.weight = shares;
6886 se->load.inv_weight = div64_64((1ULL<<32), shares);
6887
6888 if (on_rq)
6889 enqueue_entity(cfs_rq, se, 0);
6890
6891 spin_unlock_irq(&rq->lock);
6892 }
6893
6894 static ssize_t cpu_shares_write(struct container *cont, struct cftype *cftype,
6895 struct file *file, const char __user *userbuf,
6896 size_t nbytes, loff_t *ppos)
6897 {
6898 int i;
6899 unsigned long shareval;
6900 struct task_grp *tg = container_tg(cont);
6901 char buffer[2*sizeof(unsigned long) + 1];
6902
6903 if (nbytes > 2*sizeof(unsigned long)) /* safety check */
6904 return -E2BIG;
6905
6906 if (copy_from_user(buffer, userbuf, nbytes))
6907 return -EFAULT;
6908
6909 buffer[nbytes] = 0; /* nul-terminate */
6910 shareval = simple_strtoul(buffer, NULL, 10);
6911
6912 tg->shares = shareval;
6913 for_each_possible_cpu(i)
6914 set_se_shares(tg->se[i], shareval);
6915
6916 return nbytes;
6917 }
6918
6919 static u64 cpu_shares_read_uint(struct container *cont, struct cftype *cft)
6920 {
6921 struct task_grp *tg = container_tg(cont);
6922
6923 return (u64) tg->shares;
6924 }
6925
6926 struct cftype cpuctl_share = {
6927 .name = "shares",
6928 .read_uint = cpu_shares_read_uint,
6929 .write = cpu_shares_write,
6930 };
6931
6932 static int sched_populate(struct container_subsys *ss, struct container *cont)
6933 {
6934 return container_add_file(cont, ss, &cpuctl_share);
6935 }
6936
6937 struct container_subsys cpu_subsys = {
6938 .name = "cpu",
6939 .create = sched_create_group,
6940 .destroy = sched_destroy_group,
6941 .can_attach = sched_can_attach,
6942 .attach = sched_move_task,
6943 .populate = sched_populate,
6944 .subsys_id = cpu_subsys_id,
6945 .early_init = 1,
6946 };
6947
6948 #endif /* CONFIG_FAIR_GROUP_SCHED */
This page took 0.174395 seconds and 5 git commands to generate.