sched: /debug/sched_features
[deliverable/linux.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/reciprocal_div.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/bootmem.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73
74 #include <asm/tlb.h>
75 #include <asm/irq_regs.h>
76
77 /*
78 * Scheduler clock - returns current time in nanosec units.
79 * This is default implementation.
80 * Architectures and sub-architectures can override this.
81 */
82 unsigned long long __attribute__((weak)) sched_clock(void)
83 {
84 return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
85 }
86
87 /*
88 * Convert user-nice values [ -20 ... 0 ... 19 ]
89 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
90 * and back.
91 */
92 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
93 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
94 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
95
96 /*
97 * 'User priority' is the nice value converted to something we
98 * can work with better when scaling various scheduler parameters,
99 * it's a [ 0 ... 39 ] range.
100 */
101 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
102 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
103 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
104
105 /*
106 * Helpers for converting nanosecond timing to jiffy resolution
107 */
108 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
109
110 #define NICE_0_LOAD SCHED_LOAD_SCALE
111 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
112
113 /*
114 * These are the 'tuning knobs' of the scheduler:
115 *
116 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
117 * Timeslices get refilled after they expire.
118 */
119 #define DEF_TIMESLICE (100 * HZ / 1000)
120
121 /*
122 * single value that denotes runtime == period, ie unlimited time.
123 */
124 #define RUNTIME_INF ((u64)~0ULL)
125
126 #ifdef CONFIG_SMP
127 /*
128 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
129 * Since cpu_power is a 'constant', we can use a reciprocal divide.
130 */
131 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
132 {
133 return reciprocal_divide(load, sg->reciprocal_cpu_power);
134 }
135
136 /*
137 * Each time a sched group cpu_power is changed,
138 * we must compute its reciprocal value
139 */
140 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
141 {
142 sg->__cpu_power += val;
143 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
144 }
145 #endif
146
147 static inline int rt_policy(int policy)
148 {
149 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
150 return 1;
151 return 0;
152 }
153
154 static inline int task_has_rt_policy(struct task_struct *p)
155 {
156 return rt_policy(p->policy);
157 }
158
159 /*
160 * This is the priority-queue data structure of the RT scheduling class:
161 */
162 struct rt_prio_array {
163 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
164 struct list_head queue[MAX_RT_PRIO];
165 };
166
167 struct rt_bandwidth {
168 /* nests inside the rq lock: */
169 spinlock_t rt_runtime_lock;
170 ktime_t rt_period;
171 u64 rt_runtime;
172 struct hrtimer rt_period_timer;
173 };
174
175 static struct rt_bandwidth def_rt_bandwidth;
176
177 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
178
179 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
180 {
181 struct rt_bandwidth *rt_b =
182 container_of(timer, struct rt_bandwidth, rt_period_timer);
183 ktime_t now;
184 int overrun;
185 int idle = 0;
186
187 for (;;) {
188 now = hrtimer_cb_get_time(timer);
189 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
190
191 if (!overrun)
192 break;
193
194 idle = do_sched_rt_period_timer(rt_b, overrun);
195 }
196
197 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
198 }
199
200 static
201 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
202 {
203 rt_b->rt_period = ns_to_ktime(period);
204 rt_b->rt_runtime = runtime;
205
206 spin_lock_init(&rt_b->rt_runtime_lock);
207
208 hrtimer_init(&rt_b->rt_period_timer,
209 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
210 rt_b->rt_period_timer.function = sched_rt_period_timer;
211 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
212 }
213
214 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
215 {
216 ktime_t now;
217
218 if (rt_b->rt_runtime == RUNTIME_INF)
219 return;
220
221 if (hrtimer_active(&rt_b->rt_period_timer))
222 return;
223
224 spin_lock(&rt_b->rt_runtime_lock);
225 for (;;) {
226 if (hrtimer_active(&rt_b->rt_period_timer))
227 break;
228
229 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
230 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
231 hrtimer_start(&rt_b->rt_period_timer,
232 rt_b->rt_period_timer.expires,
233 HRTIMER_MODE_ABS);
234 }
235 spin_unlock(&rt_b->rt_runtime_lock);
236 }
237
238 #ifdef CONFIG_RT_GROUP_SCHED
239 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
240 {
241 hrtimer_cancel(&rt_b->rt_period_timer);
242 }
243 #endif
244
245 #ifdef CONFIG_GROUP_SCHED
246
247 #include <linux/cgroup.h>
248
249 struct cfs_rq;
250
251 static LIST_HEAD(task_groups);
252
253 /* task group related information */
254 struct task_group {
255 #ifdef CONFIG_CGROUP_SCHED
256 struct cgroup_subsys_state css;
257 #endif
258
259 #ifdef CONFIG_FAIR_GROUP_SCHED
260 /* schedulable entities of this group on each cpu */
261 struct sched_entity **se;
262 /* runqueue "owned" by this group on each cpu */
263 struct cfs_rq **cfs_rq;
264 unsigned long shares;
265 #endif
266
267 #ifdef CONFIG_RT_GROUP_SCHED
268 struct sched_rt_entity **rt_se;
269 struct rt_rq **rt_rq;
270
271 struct rt_bandwidth rt_bandwidth;
272 #endif
273
274 struct rcu_head rcu;
275 struct list_head list;
276
277 struct task_group *parent;
278 struct list_head siblings;
279 struct list_head children;
280 };
281
282 #ifdef CONFIG_USER_SCHED
283
284 /*
285 * Root task group.
286 * Every UID task group (including init_task_group aka UID-0) will
287 * be a child to this group.
288 */
289 struct task_group root_task_group;
290
291 #ifdef CONFIG_FAIR_GROUP_SCHED
292 /* Default task group's sched entity on each cpu */
293 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
294 /* Default task group's cfs_rq on each cpu */
295 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
296 #endif
297
298 #ifdef CONFIG_RT_GROUP_SCHED
299 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
300 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
301 #endif
302 #else
303 #define root_task_group init_task_group
304 #endif
305
306 /* task_group_lock serializes add/remove of task groups and also changes to
307 * a task group's cpu shares.
308 */
309 static DEFINE_SPINLOCK(task_group_lock);
310
311 /* doms_cur_mutex serializes access to doms_cur[] array */
312 static DEFINE_MUTEX(doms_cur_mutex);
313
314 #ifdef CONFIG_FAIR_GROUP_SCHED
315 #ifdef CONFIG_USER_SCHED
316 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
317 #else
318 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
319 #endif
320
321 #define MIN_SHARES 2
322
323 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
324 #endif
325
326 /* Default task group.
327 * Every task in system belong to this group at bootup.
328 */
329 struct task_group init_task_group;
330
331 /* return group to which a task belongs */
332 static inline struct task_group *task_group(struct task_struct *p)
333 {
334 struct task_group *tg;
335
336 #ifdef CONFIG_USER_SCHED
337 tg = p->user->tg;
338 #elif defined(CONFIG_CGROUP_SCHED)
339 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
340 struct task_group, css);
341 #else
342 tg = &init_task_group;
343 #endif
344 return tg;
345 }
346
347 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
348 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
349 {
350 #ifdef CONFIG_FAIR_GROUP_SCHED
351 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
352 p->se.parent = task_group(p)->se[cpu];
353 #endif
354
355 #ifdef CONFIG_RT_GROUP_SCHED
356 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
357 p->rt.parent = task_group(p)->rt_se[cpu];
358 #endif
359 }
360
361 static inline void lock_doms_cur(void)
362 {
363 mutex_lock(&doms_cur_mutex);
364 }
365
366 static inline void unlock_doms_cur(void)
367 {
368 mutex_unlock(&doms_cur_mutex);
369 }
370
371 #else
372
373 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
374 static inline void lock_doms_cur(void) { }
375 static inline void unlock_doms_cur(void) { }
376
377 #endif /* CONFIG_GROUP_SCHED */
378
379 /* CFS-related fields in a runqueue */
380 struct cfs_rq {
381 struct load_weight load;
382 unsigned long nr_running;
383
384 u64 exec_clock;
385 u64 min_vruntime;
386
387 struct rb_root tasks_timeline;
388 struct rb_node *rb_leftmost;
389
390 struct list_head tasks;
391 struct list_head *balance_iterator;
392
393 /*
394 * 'curr' points to currently running entity on this cfs_rq.
395 * It is set to NULL otherwise (i.e when none are currently running).
396 */
397 struct sched_entity *curr, *next;
398
399 unsigned long nr_spread_over;
400
401 #ifdef CONFIG_FAIR_GROUP_SCHED
402 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
403
404 /*
405 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
406 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
407 * (like users, containers etc.)
408 *
409 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
410 * list is used during load balance.
411 */
412 struct list_head leaf_cfs_rq_list;
413 struct task_group *tg; /* group that "owns" this runqueue */
414
415 #ifdef CONFIG_SMP
416 unsigned long task_weight;
417 unsigned long shares;
418 /*
419 * We need space to build a sched_domain wide view of the full task
420 * group tree, in order to avoid depending on dynamic memory allocation
421 * during the load balancing we place this in the per cpu task group
422 * hierarchy. This limits the load balancing to one instance per cpu,
423 * but more should not be needed anyway.
424 */
425 struct aggregate_struct {
426 /*
427 * load = weight(cpus) * f(tg)
428 *
429 * Where f(tg) is the recursive weight fraction assigned to
430 * this group.
431 */
432 unsigned long load;
433
434 /*
435 * part of the group weight distributed to this span.
436 */
437 unsigned long shares;
438
439 /*
440 * The sum of all runqueue weights within this span.
441 */
442 unsigned long rq_weight;
443
444 /*
445 * Weight contributed by tasks; this is the part we can
446 * influence by moving tasks around.
447 */
448 unsigned long task_weight;
449 } aggregate;
450 #endif
451 #endif
452 };
453
454 /* Real-Time classes' related field in a runqueue: */
455 struct rt_rq {
456 struct rt_prio_array active;
457 unsigned long rt_nr_running;
458 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
459 int highest_prio; /* highest queued rt task prio */
460 #endif
461 #ifdef CONFIG_SMP
462 unsigned long rt_nr_migratory;
463 int overloaded;
464 #endif
465 int rt_throttled;
466 u64 rt_time;
467 u64 rt_runtime;
468 /* Nests inside the rq lock: */
469 spinlock_t rt_runtime_lock;
470
471 #ifdef CONFIG_RT_GROUP_SCHED
472 unsigned long rt_nr_boosted;
473
474 struct rq *rq;
475 struct list_head leaf_rt_rq_list;
476 struct task_group *tg;
477 struct sched_rt_entity *rt_se;
478 #endif
479 };
480
481 #ifdef CONFIG_SMP
482
483 /*
484 * We add the notion of a root-domain which will be used to define per-domain
485 * variables. Each exclusive cpuset essentially defines an island domain by
486 * fully partitioning the member cpus from any other cpuset. Whenever a new
487 * exclusive cpuset is created, we also create and attach a new root-domain
488 * object.
489 *
490 */
491 struct root_domain {
492 atomic_t refcount;
493 cpumask_t span;
494 cpumask_t online;
495
496 /*
497 * The "RT overload" flag: it gets set if a CPU has more than
498 * one runnable RT task.
499 */
500 cpumask_t rto_mask;
501 atomic_t rto_count;
502 };
503
504 /*
505 * By default the system creates a single root-domain with all cpus as
506 * members (mimicking the global state we have today).
507 */
508 static struct root_domain def_root_domain;
509
510 #endif
511
512 /*
513 * This is the main, per-CPU runqueue data structure.
514 *
515 * Locking rule: those places that want to lock multiple runqueues
516 * (such as the load balancing or the thread migration code), lock
517 * acquire operations must be ordered by ascending &runqueue.
518 */
519 struct rq {
520 /* runqueue lock: */
521 spinlock_t lock;
522
523 /*
524 * nr_running and cpu_load should be in the same cacheline because
525 * remote CPUs use both these fields when doing load calculation.
526 */
527 unsigned long nr_running;
528 #define CPU_LOAD_IDX_MAX 5
529 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
530 unsigned char idle_at_tick;
531 #ifdef CONFIG_NO_HZ
532 unsigned long last_tick_seen;
533 unsigned char in_nohz_recently;
534 #endif
535 /* capture load from *all* tasks on this cpu: */
536 struct load_weight load;
537 unsigned long nr_load_updates;
538 u64 nr_switches;
539
540 struct cfs_rq cfs;
541 struct rt_rq rt;
542
543 #ifdef CONFIG_FAIR_GROUP_SCHED
544 /* list of leaf cfs_rq on this cpu: */
545 struct list_head leaf_cfs_rq_list;
546 #endif
547 #ifdef CONFIG_RT_GROUP_SCHED
548 struct list_head leaf_rt_rq_list;
549 #endif
550
551 /*
552 * This is part of a global counter where only the total sum
553 * over all CPUs matters. A task can increase this counter on
554 * one CPU and if it got migrated afterwards it may decrease
555 * it on another CPU. Always updated under the runqueue lock:
556 */
557 unsigned long nr_uninterruptible;
558
559 struct task_struct *curr, *idle;
560 unsigned long next_balance;
561 struct mm_struct *prev_mm;
562
563 u64 clock, prev_clock_raw;
564 s64 clock_max_delta;
565
566 unsigned int clock_warps, clock_overflows, clock_underflows;
567 u64 idle_clock;
568 unsigned int clock_deep_idle_events;
569 u64 tick_timestamp;
570
571 atomic_t nr_iowait;
572
573 #ifdef CONFIG_SMP
574 struct root_domain *rd;
575 struct sched_domain *sd;
576
577 /* For active balancing */
578 int active_balance;
579 int push_cpu;
580 /* cpu of this runqueue: */
581 int cpu;
582
583 struct task_struct *migration_thread;
584 struct list_head migration_queue;
585 #endif
586
587 #ifdef CONFIG_SCHED_HRTICK
588 unsigned long hrtick_flags;
589 ktime_t hrtick_expire;
590 struct hrtimer hrtick_timer;
591 #endif
592
593 #ifdef CONFIG_SCHEDSTATS
594 /* latency stats */
595 struct sched_info rq_sched_info;
596
597 /* sys_sched_yield() stats */
598 unsigned int yld_exp_empty;
599 unsigned int yld_act_empty;
600 unsigned int yld_both_empty;
601 unsigned int yld_count;
602
603 /* schedule() stats */
604 unsigned int sched_switch;
605 unsigned int sched_count;
606 unsigned int sched_goidle;
607
608 /* try_to_wake_up() stats */
609 unsigned int ttwu_count;
610 unsigned int ttwu_local;
611
612 /* BKL stats */
613 unsigned int bkl_count;
614 #endif
615 struct lock_class_key rq_lock_key;
616 };
617
618 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
619
620 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
621 {
622 rq->curr->sched_class->check_preempt_curr(rq, p);
623 }
624
625 static inline int cpu_of(struct rq *rq)
626 {
627 #ifdef CONFIG_SMP
628 return rq->cpu;
629 #else
630 return 0;
631 #endif
632 }
633
634 #ifdef CONFIG_NO_HZ
635 static inline bool nohz_on(int cpu)
636 {
637 return tick_get_tick_sched(cpu)->nohz_mode != NOHZ_MODE_INACTIVE;
638 }
639
640 static inline u64 max_skipped_ticks(struct rq *rq)
641 {
642 return nohz_on(cpu_of(rq)) ? jiffies - rq->last_tick_seen + 2 : 1;
643 }
644
645 static inline void update_last_tick_seen(struct rq *rq)
646 {
647 rq->last_tick_seen = jiffies;
648 }
649 #else
650 static inline u64 max_skipped_ticks(struct rq *rq)
651 {
652 return 1;
653 }
654
655 static inline void update_last_tick_seen(struct rq *rq)
656 {
657 }
658 #endif
659
660 /*
661 * Update the per-runqueue clock, as finegrained as the platform can give
662 * us, but without assuming monotonicity, etc.:
663 */
664 static void __update_rq_clock(struct rq *rq)
665 {
666 u64 prev_raw = rq->prev_clock_raw;
667 u64 now = sched_clock();
668 s64 delta = now - prev_raw;
669 u64 clock = rq->clock;
670
671 #ifdef CONFIG_SCHED_DEBUG
672 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
673 #endif
674 /*
675 * Protect against sched_clock() occasionally going backwards:
676 */
677 if (unlikely(delta < 0)) {
678 clock++;
679 rq->clock_warps++;
680 } else {
681 /*
682 * Catch too large forward jumps too:
683 */
684 u64 max_jump = max_skipped_ticks(rq) * TICK_NSEC;
685 u64 max_time = rq->tick_timestamp + max_jump;
686
687 if (unlikely(clock + delta > max_time)) {
688 if (clock < max_time)
689 clock = max_time;
690 else
691 clock++;
692 rq->clock_overflows++;
693 } else {
694 if (unlikely(delta > rq->clock_max_delta))
695 rq->clock_max_delta = delta;
696 clock += delta;
697 }
698 }
699
700 rq->prev_clock_raw = now;
701 rq->clock = clock;
702 }
703
704 static void update_rq_clock(struct rq *rq)
705 {
706 if (likely(smp_processor_id() == cpu_of(rq)))
707 __update_rq_clock(rq);
708 }
709
710 /*
711 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
712 * See detach_destroy_domains: synchronize_sched for details.
713 *
714 * The domain tree of any CPU may only be accessed from within
715 * preempt-disabled sections.
716 */
717 #define for_each_domain(cpu, __sd) \
718 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
719
720 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
721 #define this_rq() (&__get_cpu_var(runqueues))
722 #define task_rq(p) cpu_rq(task_cpu(p))
723 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
724
725 /*
726 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
727 */
728 #ifdef CONFIG_SCHED_DEBUG
729 # define const_debug __read_mostly
730 #else
731 # define const_debug static const
732 #endif
733
734 /*
735 * Debugging: various feature bits
736 */
737
738 #define SCHED_FEAT(name, enabled) \
739 __SCHED_FEAT_##name ,
740
741 enum {
742 #include "sched_features.h"
743 };
744
745 #undef SCHED_FEAT
746
747 #define SCHED_FEAT(name, enabled) \
748 (1UL << __SCHED_FEAT_##name) * enabled |
749
750 const_debug unsigned int sysctl_sched_features =
751 #include "sched_features.h"
752 0;
753
754 #undef SCHED_FEAT
755
756 #ifdef CONFIG_SCHED_DEBUG
757 #define SCHED_FEAT(name, enabled) \
758 #name ,
759
760 __read_mostly char *sched_feat_names[] = {
761 #include "sched_features.h"
762 NULL
763 };
764
765 #undef SCHED_FEAT
766
767 int sched_feat_open(struct inode *inode, struct file *filp)
768 {
769 filp->private_data = inode->i_private;
770 return 0;
771 }
772
773 static ssize_t
774 sched_feat_read(struct file *filp, char __user *ubuf,
775 size_t cnt, loff_t *ppos)
776 {
777 char *buf;
778 int r = 0;
779 int len = 0;
780 int i;
781
782 for (i = 0; sched_feat_names[i]; i++) {
783 len += strlen(sched_feat_names[i]);
784 len += 4;
785 }
786
787 buf = kmalloc(len + 2, GFP_KERNEL);
788 if (!buf)
789 return -ENOMEM;
790
791 for (i = 0; sched_feat_names[i]; i++) {
792 if (sysctl_sched_features & (1UL << i))
793 r += sprintf(buf + r, "%s ", sched_feat_names[i]);
794 else
795 r += sprintf(buf + r, "no_%s ", sched_feat_names[i]);
796 }
797
798 r += sprintf(buf + r, "\n");
799 WARN_ON(r >= len + 2);
800
801 r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
802
803 kfree(buf);
804
805 return r;
806 }
807
808 static ssize_t
809 sched_feat_write(struct file *filp, const char __user *ubuf,
810 size_t cnt, loff_t *ppos)
811 {
812 char buf[64];
813 char *cmp = buf;
814 int neg = 0;
815 int i;
816
817 if (cnt > 63)
818 cnt = 63;
819
820 if (copy_from_user(&buf, ubuf, cnt))
821 return -EFAULT;
822
823 buf[cnt] = 0;
824
825 if (strncmp(buf, "no_", 3) == 0) {
826 neg = 1;
827 cmp += 3;
828 }
829
830 for (i = 0; sched_feat_names[i]; i++) {
831 int len = strlen(sched_feat_names[i]);
832
833 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
834 if (neg)
835 sysctl_sched_features &= ~(1UL << i);
836 else
837 sysctl_sched_features |= (1UL << i);
838 break;
839 }
840 }
841
842 if (!sched_feat_names[i])
843 return -EINVAL;
844
845 filp->f_pos += cnt;
846
847 return cnt;
848 }
849
850 static struct file_operations sched_feat_fops = {
851 .open = sched_feat_open,
852 .read = sched_feat_read,
853 .write = sched_feat_write,
854 };
855
856 static __init int sched_init_debug(void)
857 {
858 int i, j, len;
859
860 for (i = 0; sched_feat_names[i]; i++) {
861 len = strlen(sched_feat_names[i]);
862
863 for (j = 0; j < len; j++) {
864 sched_feat_names[i][j] =
865 tolower(sched_feat_names[i][j]);
866 }
867 }
868
869 debugfs_create_file("sched_features", 0644, NULL, NULL,
870 &sched_feat_fops);
871
872 return 0;
873 }
874 late_initcall(sched_init_debug);
875
876 #endif
877
878 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
879
880 /*
881 * Number of tasks to iterate in a single balance run.
882 * Limited because this is done with IRQs disabled.
883 */
884 const_debug unsigned int sysctl_sched_nr_migrate = 32;
885
886 /*
887 * period over which we measure -rt task cpu usage in us.
888 * default: 1s
889 */
890 unsigned int sysctl_sched_rt_period = 1000000;
891
892 static __read_mostly int scheduler_running;
893
894 /*
895 * part of the period that we allow rt tasks to run in us.
896 * default: 0.95s
897 */
898 int sysctl_sched_rt_runtime = 950000;
899
900 static inline u64 global_rt_period(void)
901 {
902 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
903 }
904
905 static inline u64 global_rt_runtime(void)
906 {
907 if (sysctl_sched_rt_period < 0)
908 return RUNTIME_INF;
909
910 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
911 }
912
913 static const unsigned long long time_sync_thresh = 100000;
914
915 static DEFINE_PER_CPU(unsigned long long, time_offset);
916 static DEFINE_PER_CPU(unsigned long long, prev_cpu_time);
917
918 /*
919 * Global lock which we take every now and then to synchronize
920 * the CPUs time. This method is not warp-safe, but it's good
921 * enough to synchronize slowly diverging time sources and thus
922 * it's good enough for tracing:
923 */
924 static DEFINE_SPINLOCK(time_sync_lock);
925 static unsigned long long prev_global_time;
926
927 static unsigned long long __sync_cpu_clock(cycles_t time, int cpu)
928 {
929 unsigned long flags;
930
931 spin_lock_irqsave(&time_sync_lock, flags);
932
933 if (time < prev_global_time) {
934 per_cpu(time_offset, cpu) += prev_global_time - time;
935 time = prev_global_time;
936 } else {
937 prev_global_time = time;
938 }
939
940 spin_unlock_irqrestore(&time_sync_lock, flags);
941
942 return time;
943 }
944
945 static unsigned long long __cpu_clock(int cpu)
946 {
947 unsigned long long now;
948 unsigned long flags;
949 struct rq *rq;
950
951 /*
952 * Only call sched_clock() if the scheduler has already been
953 * initialized (some code might call cpu_clock() very early):
954 */
955 if (unlikely(!scheduler_running))
956 return 0;
957
958 local_irq_save(flags);
959 rq = cpu_rq(cpu);
960 update_rq_clock(rq);
961 now = rq->clock;
962 local_irq_restore(flags);
963
964 return now;
965 }
966
967 /*
968 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
969 * clock constructed from sched_clock():
970 */
971 unsigned long long cpu_clock(int cpu)
972 {
973 unsigned long long prev_cpu_time, time, delta_time;
974
975 prev_cpu_time = per_cpu(prev_cpu_time, cpu);
976 time = __cpu_clock(cpu) + per_cpu(time_offset, cpu);
977 delta_time = time-prev_cpu_time;
978
979 if (unlikely(delta_time > time_sync_thresh))
980 time = __sync_cpu_clock(time, cpu);
981
982 return time;
983 }
984 EXPORT_SYMBOL_GPL(cpu_clock);
985
986 #ifndef prepare_arch_switch
987 # define prepare_arch_switch(next) do { } while (0)
988 #endif
989 #ifndef finish_arch_switch
990 # define finish_arch_switch(prev) do { } while (0)
991 #endif
992
993 static inline int task_current(struct rq *rq, struct task_struct *p)
994 {
995 return rq->curr == p;
996 }
997
998 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
999 static inline int task_running(struct rq *rq, struct task_struct *p)
1000 {
1001 return task_current(rq, p);
1002 }
1003
1004 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1005 {
1006 }
1007
1008 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1009 {
1010 #ifdef CONFIG_DEBUG_SPINLOCK
1011 /* this is a valid case when another task releases the spinlock */
1012 rq->lock.owner = current;
1013 #endif
1014 /*
1015 * If we are tracking spinlock dependencies then we have to
1016 * fix up the runqueue lock - which gets 'carried over' from
1017 * prev into current:
1018 */
1019 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
1020
1021 spin_unlock_irq(&rq->lock);
1022 }
1023
1024 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
1025 static inline int task_running(struct rq *rq, struct task_struct *p)
1026 {
1027 #ifdef CONFIG_SMP
1028 return p->oncpu;
1029 #else
1030 return task_current(rq, p);
1031 #endif
1032 }
1033
1034 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1035 {
1036 #ifdef CONFIG_SMP
1037 /*
1038 * We can optimise this out completely for !SMP, because the
1039 * SMP rebalancing from interrupt is the only thing that cares
1040 * here.
1041 */
1042 next->oncpu = 1;
1043 #endif
1044 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1045 spin_unlock_irq(&rq->lock);
1046 #else
1047 spin_unlock(&rq->lock);
1048 #endif
1049 }
1050
1051 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1052 {
1053 #ifdef CONFIG_SMP
1054 /*
1055 * After ->oncpu is cleared, the task can be moved to a different CPU.
1056 * We must ensure this doesn't happen until the switch is completely
1057 * finished.
1058 */
1059 smp_wmb();
1060 prev->oncpu = 0;
1061 #endif
1062 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1063 local_irq_enable();
1064 #endif
1065 }
1066 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1067
1068 /*
1069 * __task_rq_lock - lock the runqueue a given task resides on.
1070 * Must be called interrupts disabled.
1071 */
1072 static inline struct rq *__task_rq_lock(struct task_struct *p)
1073 __acquires(rq->lock)
1074 {
1075 for (;;) {
1076 struct rq *rq = task_rq(p);
1077 spin_lock(&rq->lock);
1078 if (likely(rq == task_rq(p)))
1079 return rq;
1080 spin_unlock(&rq->lock);
1081 }
1082 }
1083
1084 /*
1085 * task_rq_lock - lock the runqueue a given task resides on and disable
1086 * interrupts. Note the ordering: we can safely lookup the task_rq without
1087 * explicitly disabling preemption.
1088 */
1089 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1090 __acquires(rq->lock)
1091 {
1092 struct rq *rq;
1093
1094 for (;;) {
1095 local_irq_save(*flags);
1096 rq = task_rq(p);
1097 spin_lock(&rq->lock);
1098 if (likely(rq == task_rq(p)))
1099 return rq;
1100 spin_unlock_irqrestore(&rq->lock, *flags);
1101 }
1102 }
1103
1104 static void __task_rq_unlock(struct rq *rq)
1105 __releases(rq->lock)
1106 {
1107 spin_unlock(&rq->lock);
1108 }
1109
1110 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1111 __releases(rq->lock)
1112 {
1113 spin_unlock_irqrestore(&rq->lock, *flags);
1114 }
1115
1116 /*
1117 * this_rq_lock - lock this runqueue and disable interrupts.
1118 */
1119 static struct rq *this_rq_lock(void)
1120 __acquires(rq->lock)
1121 {
1122 struct rq *rq;
1123
1124 local_irq_disable();
1125 rq = this_rq();
1126 spin_lock(&rq->lock);
1127
1128 return rq;
1129 }
1130
1131 /*
1132 * We are going deep-idle (irqs are disabled):
1133 */
1134 void sched_clock_idle_sleep_event(void)
1135 {
1136 struct rq *rq = cpu_rq(smp_processor_id());
1137
1138 spin_lock(&rq->lock);
1139 __update_rq_clock(rq);
1140 spin_unlock(&rq->lock);
1141 rq->clock_deep_idle_events++;
1142 }
1143 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
1144
1145 /*
1146 * We just idled delta nanoseconds (called with irqs disabled):
1147 */
1148 void sched_clock_idle_wakeup_event(u64 delta_ns)
1149 {
1150 struct rq *rq = cpu_rq(smp_processor_id());
1151 u64 now = sched_clock();
1152
1153 rq->idle_clock += delta_ns;
1154 /*
1155 * Override the previous timestamp and ignore all
1156 * sched_clock() deltas that occured while we idled,
1157 * and use the PM-provided delta_ns to advance the
1158 * rq clock:
1159 */
1160 spin_lock(&rq->lock);
1161 rq->prev_clock_raw = now;
1162 rq->clock += delta_ns;
1163 spin_unlock(&rq->lock);
1164 touch_softlockup_watchdog();
1165 }
1166 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
1167
1168 static void __resched_task(struct task_struct *p, int tif_bit);
1169
1170 static inline void resched_task(struct task_struct *p)
1171 {
1172 __resched_task(p, TIF_NEED_RESCHED);
1173 }
1174
1175 #ifdef CONFIG_SCHED_HRTICK
1176 /*
1177 * Use HR-timers to deliver accurate preemption points.
1178 *
1179 * Its all a bit involved since we cannot program an hrt while holding the
1180 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1181 * reschedule event.
1182 *
1183 * When we get rescheduled we reprogram the hrtick_timer outside of the
1184 * rq->lock.
1185 */
1186 static inline void resched_hrt(struct task_struct *p)
1187 {
1188 __resched_task(p, TIF_HRTICK_RESCHED);
1189 }
1190
1191 static inline void resched_rq(struct rq *rq)
1192 {
1193 unsigned long flags;
1194
1195 spin_lock_irqsave(&rq->lock, flags);
1196 resched_task(rq->curr);
1197 spin_unlock_irqrestore(&rq->lock, flags);
1198 }
1199
1200 enum {
1201 HRTICK_SET, /* re-programm hrtick_timer */
1202 HRTICK_RESET, /* not a new slice */
1203 };
1204
1205 /*
1206 * Use hrtick when:
1207 * - enabled by features
1208 * - hrtimer is actually high res
1209 */
1210 static inline int hrtick_enabled(struct rq *rq)
1211 {
1212 if (!sched_feat(HRTICK))
1213 return 0;
1214 return hrtimer_is_hres_active(&rq->hrtick_timer);
1215 }
1216
1217 /*
1218 * Called to set the hrtick timer state.
1219 *
1220 * called with rq->lock held and irqs disabled
1221 */
1222 static void hrtick_start(struct rq *rq, u64 delay, int reset)
1223 {
1224 assert_spin_locked(&rq->lock);
1225
1226 /*
1227 * preempt at: now + delay
1228 */
1229 rq->hrtick_expire =
1230 ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
1231 /*
1232 * indicate we need to program the timer
1233 */
1234 __set_bit(HRTICK_SET, &rq->hrtick_flags);
1235 if (reset)
1236 __set_bit(HRTICK_RESET, &rq->hrtick_flags);
1237
1238 /*
1239 * New slices are called from the schedule path and don't need a
1240 * forced reschedule.
1241 */
1242 if (reset)
1243 resched_hrt(rq->curr);
1244 }
1245
1246 static void hrtick_clear(struct rq *rq)
1247 {
1248 if (hrtimer_active(&rq->hrtick_timer))
1249 hrtimer_cancel(&rq->hrtick_timer);
1250 }
1251
1252 /*
1253 * Update the timer from the possible pending state.
1254 */
1255 static void hrtick_set(struct rq *rq)
1256 {
1257 ktime_t time;
1258 int set, reset;
1259 unsigned long flags;
1260
1261 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1262
1263 spin_lock_irqsave(&rq->lock, flags);
1264 set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
1265 reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
1266 time = rq->hrtick_expire;
1267 clear_thread_flag(TIF_HRTICK_RESCHED);
1268 spin_unlock_irqrestore(&rq->lock, flags);
1269
1270 if (set) {
1271 hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
1272 if (reset && !hrtimer_active(&rq->hrtick_timer))
1273 resched_rq(rq);
1274 } else
1275 hrtick_clear(rq);
1276 }
1277
1278 /*
1279 * High-resolution timer tick.
1280 * Runs from hardirq context with interrupts disabled.
1281 */
1282 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1283 {
1284 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1285
1286 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1287
1288 spin_lock(&rq->lock);
1289 __update_rq_clock(rq);
1290 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1291 spin_unlock(&rq->lock);
1292
1293 return HRTIMER_NORESTART;
1294 }
1295
1296 static inline void init_rq_hrtick(struct rq *rq)
1297 {
1298 rq->hrtick_flags = 0;
1299 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1300 rq->hrtick_timer.function = hrtick;
1301 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
1302 }
1303
1304 void hrtick_resched(void)
1305 {
1306 struct rq *rq;
1307 unsigned long flags;
1308
1309 if (!test_thread_flag(TIF_HRTICK_RESCHED))
1310 return;
1311
1312 local_irq_save(flags);
1313 rq = cpu_rq(smp_processor_id());
1314 hrtick_set(rq);
1315 local_irq_restore(flags);
1316 }
1317 #else
1318 static inline void hrtick_clear(struct rq *rq)
1319 {
1320 }
1321
1322 static inline void hrtick_set(struct rq *rq)
1323 {
1324 }
1325
1326 static inline void init_rq_hrtick(struct rq *rq)
1327 {
1328 }
1329
1330 void hrtick_resched(void)
1331 {
1332 }
1333 #endif
1334
1335 /*
1336 * resched_task - mark a task 'to be rescheduled now'.
1337 *
1338 * On UP this means the setting of the need_resched flag, on SMP it
1339 * might also involve a cross-CPU call to trigger the scheduler on
1340 * the target CPU.
1341 */
1342 #ifdef CONFIG_SMP
1343
1344 #ifndef tsk_is_polling
1345 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1346 #endif
1347
1348 static void __resched_task(struct task_struct *p, int tif_bit)
1349 {
1350 int cpu;
1351
1352 assert_spin_locked(&task_rq(p)->lock);
1353
1354 if (unlikely(test_tsk_thread_flag(p, tif_bit)))
1355 return;
1356
1357 set_tsk_thread_flag(p, tif_bit);
1358
1359 cpu = task_cpu(p);
1360 if (cpu == smp_processor_id())
1361 return;
1362
1363 /* NEED_RESCHED must be visible before we test polling */
1364 smp_mb();
1365 if (!tsk_is_polling(p))
1366 smp_send_reschedule(cpu);
1367 }
1368
1369 static void resched_cpu(int cpu)
1370 {
1371 struct rq *rq = cpu_rq(cpu);
1372 unsigned long flags;
1373
1374 if (!spin_trylock_irqsave(&rq->lock, flags))
1375 return;
1376 resched_task(cpu_curr(cpu));
1377 spin_unlock_irqrestore(&rq->lock, flags);
1378 }
1379
1380 #ifdef CONFIG_NO_HZ
1381 /*
1382 * When add_timer_on() enqueues a timer into the timer wheel of an
1383 * idle CPU then this timer might expire before the next timer event
1384 * which is scheduled to wake up that CPU. In case of a completely
1385 * idle system the next event might even be infinite time into the
1386 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1387 * leaves the inner idle loop so the newly added timer is taken into
1388 * account when the CPU goes back to idle and evaluates the timer
1389 * wheel for the next timer event.
1390 */
1391 void wake_up_idle_cpu(int cpu)
1392 {
1393 struct rq *rq = cpu_rq(cpu);
1394
1395 if (cpu == smp_processor_id())
1396 return;
1397
1398 /*
1399 * This is safe, as this function is called with the timer
1400 * wheel base lock of (cpu) held. When the CPU is on the way
1401 * to idle and has not yet set rq->curr to idle then it will
1402 * be serialized on the timer wheel base lock and take the new
1403 * timer into account automatically.
1404 */
1405 if (rq->curr != rq->idle)
1406 return;
1407
1408 /*
1409 * We can set TIF_RESCHED on the idle task of the other CPU
1410 * lockless. The worst case is that the other CPU runs the
1411 * idle task through an additional NOOP schedule()
1412 */
1413 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1414
1415 /* NEED_RESCHED must be visible before we test polling */
1416 smp_mb();
1417 if (!tsk_is_polling(rq->idle))
1418 smp_send_reschedule(cpu);
1419 }
1420 #endif
1421
1422 #else
1423 static void __resched_task(struct task_struct *p, int tif_bit)
1424 {
1425 assert_spin_locked(&task_rq(p)->lock);
1426 set_tsk_thread_flag(p, tif_bit);
1427 }
1428 #endif
1429
1430 #if BITS_PER_LONG == 32
1431 # define WMULT_CONST (~0UL)
1432 #else
1433 # define WMULT_CONST (1UL << 32)
1434 #endif
1435
1436 #define WMULT_SHIFT 32
1437
1438 /*
1439 * Shift right and round:
1440 */
1441 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1442
1443 /*
1444 * delta *= weight / lw
1445 */
1446 static unsigned long
1447 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1448 struct load_weight *lw)
1449 {
1450 u64 tmp;
1451
1452 if (unlikely(!lw->inv_weight))
1453 lw->inv_weight = (WMULT_CONST-lw->weight/2) / (lw->weight+1);
1454
1455 tmp = (u64)delta_exec * weight;
1456 /*
1457 * Check whether we'd overflow the 64-bit multiplication:
1458 */
1459 if (unlikely(tmp > WMULT_CONST))
1460 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1461 WMULT_SHIFT/2);
1462 else
1463 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1464
1465 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1466 }
1467
1468 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1469 {
1470 lw->weight += inc;
1471 lw->inv_weight = 0;
1472 }
1473
1474 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1475 {
1476 lw->weight -= dec;
1477 lw->inv_weight = 0;
1478 }
1479
1480 /*
1481 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1482 * of tasks with abnormal "nice" values across CPUs the contribution that
1483 * each task makes to its run queue's load is weighted according to its
1484 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1485 * scaled version of the new time slice allocation that they receive on time
1486 * slice expiry etc.
1487 */
1488
1489 #define WEIGHT_IDLEPRIO 2
1490 #define WMULT_IDLEPRIO (1 << 31)
1491
1492 /*
1493 * Nice levels are multiplicative, with a gentle 10% change for every
1494 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1495 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1496 * that remained on nice 0.
1497 *
1498 * The "10% effect" is relative and cumulative: from _any_ nice level,
1499 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1500 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1501 * If a task goes up by ~10% and another task goes down by ~10% then
1502 * the relative distance between them is ~25%.)
1503 */
1504 static const int prio_to_weight[40] = {
1505 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1506 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1507 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1508 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1509 /* 0 */ 1024, 820, 655, 526, 423,
1510 /* 5 */ 335, 272, 215, 172, 137,
1511 /* 10 */ 110, 87, 70, 56, 45,
1512 /* 15 */ 36, 29, 23, 18, 15,
1513 };
1514
1515 /*
1516 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1517 *
1518 * In cases where the weight does not change often, we can use the
1519 * precalculated inverse to speed up arithmetics by turning divisions
1520 * into multiplications:
1521 */
1522 static const u32 prio_to_wmult[40] = {
1523 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1524 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1525 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1526 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1527 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1528 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1529 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1530 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1531 };
1532
1533 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1534
1535 /*
1536 * runqueue iterator, to support SMP load-balancing between different
1537 * scheduling classes, without having to expose their internal data
1538 * structures to the load-balancing proper:
1539 */
1540 struct rq_iterator {
1541 void *arg;
1542 struct task_struct *(*start)(void *);
1543 struct task_struct *(*next)(void *);
1544 };
1545
1546 #ifdef CONFIG_SMP
1547 static unsigned long
1548 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1549 unsigned long max_load_move, struct sched_domain *sd,
1550 enum cpu_idle_type idle, int *all_pinned,
1551 int *this_best_prio, struct rq_iterator *iterator);
1552
1553 static int
1554 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1555 struct sched_domain *sd, enum cpu_idle_type idle,
1556 struct rq_iterator *iterator);
1557 #endif
1558
1559 #ifdef CONFIG_CGROUP_CPUACCT
1560 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1561 #else
1562 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1563 #endif
1564
1565 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1566 {
1567 update_load_add(&rq->load, load);
1568 }
1569
1570 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1571 {
1572 update_load_sub(&rq->load, load);
1573 }
1574
1575 #ifdef CONFIG_SMP
1576 static unsigned long source_load(int cpu, int type);
1577 static unsigned long target_load(int cpu, int type);
1578 static unsigned long cpu_avg_load_per_task(int cpu);
1579 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1580
1581 #ifdef CONFIG_FAIR_GROUP_SCHED
1582
1583 /*
1584 * Group load balancing.
1585 *
1586 * We calculate a few balance domain wide aggregate numbers; load and weight.
1587 * Given the pictures below, and assuming each item has equal weight:
1588 *
1589 * root 1 - thread
1590 * / | \ A - group
1591 * A 1 B
1592 * /|\ / \
1593 * C 2 D 3 4
1594 * | |
1595 * 5 6
1596 *
1597 * load:
1598 * A and B get 1/3-rd of the total load. C and D get 1/3-rd of A's 1/3-rd,
1599 * which equals 1/9-th of the total load.
1600 *
1601 * shares:
1602 * The weight of this group on the selected cpus.
1603 *
1604 * rq_weight:
1605 * Direct sum of all the cpu's their rq weight, e.g. A would get 3 while
1606 * B would get 2.
1607 *
1608 * task_weight:
1609 * Part of the rq_weight contributed by tasks; all groups except B would
1610 * get 1, B gets 2.
1611 */
1612
1613 static inline struct aggregate_struct *
1614 aggregate(struct task_group *tg, struct sched_domain *sd)
1615 {
1616 return &tg->cfs_rq[sd->first_cpu]->aggregate;
1617 }
1618
1619 typedef void (*aggregate_func)(struct task_group *, struct sched_domain *);
1620
1621 /*
1622 * Iterate the full tree, calling @down when first entering a node and @up when
1623 * leaving it for the final time.
1624 */
1625 static
1626 void aggregate_walk_tree(aggregate_func down, aggregate_func up,
1627 struct sched_domain *sd)
1628 {
1629 struct task_group *parent, *child;
1630
1631 rcu_read_lock();
1632 parent = &root_task_group;
1633 down:
1634 (*down)(parent, sd);
1635 list_for_each_entry_rcu(child, &parent->children, siblings) {
1636 parent = child;
1637 goto down;
1638
1639 up:
1640 continue;
1641 }
1642 (*up)(parent, sd);
1643
1644 child = parent;
1645 parent = parent->parent;
1646 if (parent)
1647 goto up;
1648 rcu_read_unlock();
1649 }
1650
1651 /*
1652 * Calculate the aggregate runqueue weight.
1653 */
1654 static
1655 void aggregate_group_weight(struct task_group *tg, struct sched_domain *sd)
1656 {
1657 unsigned long rq_weight = 0;
1658 unsigned long task_weight = 0;
1659 int i;
1660
1661 for_each_cpu_mask(i, sd->span) {
1662 rq_weight += tg->cfs_rq[i]->load.weight;
1663 task_weight += tg->cfs_rq[i]->task_weight;
1664 }
1665
1666 aggregate(tg, sd)->rq_weight = rq_weight;
1667 aggregate(tg, sd)->task_weight = task_weight;
1668 }
1669
1670 /*
1671 * Redistribute tg->shares amongst all tg->cfs_rq[]s.
1672 */
1673 static void __aggregate_redistribute_shares(struct task_group *tg)
1674 {
1675 int i, max_cpu = smp_processor_id();
1676 unsigned long rq_weight = 0;
1677 unsigned long shares, max_shares = 0, shares_rem = tg->shares;
1678
1679 for_each_possible_cpu(i)
1680 rq_weight += tg->cfs_rq[i]->load.weight;
1681
1682 for_each_possible_cpu(i) {
1683 /*
1684 * divide shares proportional to the rq_weights.
1685 */
1686 shares = tg->shares * tg->cfs_rq[i]->load.weight;
1687 shares /= rq_weight + 1;
1688
1689 tg->cfs_rq[i]->shares = shares;
1690
1691 if (shares > max_shares) {
1692 max_shares = shares;
1693 max_cpu = i;
1694 }
1695 shares_rem -= shares;
1696 }
1697
1698 /*
1699 * Ensure it all adds up to tg->shares; we can loose a few
1700 * due to rounding down when computing the per-cpu shares.
1701 */
1702 if (shares_rem)
1703 tg->cfs_rq[max_cpu]->shares += shares_rem;
1704 }
1705
1706 /*
1707 * Compute the weight of this group on the given cpus.
1708 */
1709 static
1710 void aggregate_group_shares(struct task_group *tg, struct sched_domain *sd)
1711 {
1712 unsigned long shares = 0;
1713 int i;
1714
1715 again:
1716 for_each_cpu_mask(i, sd->span)
1717 shares += tg->cfs_rq[i]->shares;
1718
1719 /*
1720 * When the span doesn't have any shares assigned, but does have
1721 * tasks to run do a machine wide rebalance (should be rare).
1722 */
1723 if (unlikely(!shares && aggregate(tg, sd)->rq_weight)) {
1724 __aggregate_redistribute_shares(tg);
1725 goto again;
1726 }
1727
1728 aggregate(tg, sd)->shares = shares;
1729 }
1730
1731 /*
1732 * Compute the load fraction assigned to this group, relies on the aggregate
1733 * weight and this group's parent's load, i.e. top-down.
1734 */
1735 static
1736 void aggregate_group_load(struct task_group *tg, struct sched_domain *sd)
1737 {
1738 unsigned long load;
1739
1740 if (!tg->parent) {
1741 int i;
1742
1743 load = 0;
1744 for_each_cpu_mask(i, sd->span)
1745 load += cpu_rq(i)->load.weight;
1746
1747 } else {
1748 load = aggregate(tg->parent, sd)->load;
1749
1750 /*
1751 * shares is our weight in the parent's rq so
1752 * shares/parent->rq_weight gives our fraction of the load
1753 */
1754 load *= aggregate(tg, sd)->shares;
1755 load /= aggregate(tg->parent, sd)->rq_weight + 1;
1756 }
1757
1758 aggregate(tg, sd)->load = load;
1759 }
1760
1761 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1762
1763 /*
1764 * Calculate and set the cpu's group shares.
1765 */
1766 static void
1767 __update_group_shares_cpu(struct task_group *tg, struct sched_domain *sd,
1768 int tcpu)
1769 {
1770 int boost = 0;
1771 unsigned long shares;
1772 unsigned long rq_weight;
1773
1774 if (!tg->se[tcpu])
1775 return;
1776
1777 rq_weight = tg->cfs_rq[tcpu]->load.weight;
1778
1779 /*
1780 * If there are currently no tasks on the cpu pretend there is one of
1781 * average load so that when a new task gets to run here it will not
1782 * get delayed by group starvation.
1783 */
1784 if (!rq_weight) {
1785 boost = 1;
1786 rq_weight = NICE_0_LOAD;
1787 }
1788
1789 /*
1790 * \Sum shares * rq_weight
1791 * shares = -----------------------
1792 * \Sum rq_weight
1793 *
1794 */
1795 shares = aggregate(tg, sd)->shares * rq_weight;
1796 shares /= aggregate(tg, sd)->rq_weight + 1;
1797
1798 /*
1799 * record the actual number of shares, not the boosted amount.
1800 */
1801 tg->cfs_rq[tcpu]->shares = boost ? 0 : shares;
1802
1803 if (shares < MIN_SHARES)
1804 shares = MIN_SHARES;
1805
1806 __set_se_shares(tg->se[tcpu], shares);
1807 }
1808
1809 /*
1810 * Re-adjust the weights on the cpu the task came from and on the cpu the
1811 * task went to.
1812 */
1813 static void
1814 __move_group_shares(struct task_group *tg, struct sched_domain *sd,
1815 int scpu, int dcpu)
1816 {
1817 unsigned long shares;
1818
1819 shares = tg->cfs_rq[scpu]->shares + tg->cfs_rq[dcpu]->shares;
1820
1821 __update_group_shares_cpu(tg, sd, scpu);
1822 __update_group_shares_cpu(tg, sd, dcpu);
1823
1824 /*
1825 * ensure we never loose shares due to rounding errors in the
1826 * above redistribution.
1827 */
1828 shares -= tg->cfs_rq[scpu]->shares + tg->cfs_rq[dcpu]->shares;
1829 if (shares)
1830 tg->cfs_rq[dcpu]->shares += shares;
1831 }
1832
1833 /*
1834 * Because changing a group's shares changes the weight of the super-group
1835 * we need to walk up the tree and change all shares until we hit the root.
1836 */
1837 static void
1838 move_group_shares(struct task_group *tg, struct sched_domain *sd,
1839 int scpu, int dcpu)
1840 {
1841 while (tg) {
1842 __move_group_shares(tg, sd, scpu, dcpu);
1843 tg = tg->parent;
1844 }
1845 }
1846
1847 static
1848 void aggregate_group_set_shares(struct task_group *tg, struct sched_domain *sd)
1849 {
1850 unsigned long shares = aggregate(tg, sd)->shares;
1851 int i;
1852
1853 for_each_cpu_mask(i, sd->span) {
1854 struct rq *rq = cpu_rq(i);
1855 unsigned long flags;
1856
1857 spin_lock_irqsave(&rq->lock, flags);
1858 __update_group_shares_cpu(tg, sd, i);
1859 spin_unlock_irqrestore(&rq->lock, flags);
1860 }
1861
1862 aggregate_group_shares(tg, sd);
1863
1864 /*
1865 * ensure we never loose shares due to rounding errors in the
1866 * above redistribution.
1867 */
1868 shares -= aggregate(tg, sd)->shares;
1869 if (shares) {
1870 tg->cfs_rq[sd->first_cpu]->shares += shares;
1871 aggregate(tg, sd)->shares += shares;
1872 }
1873 }
1874
1875 /*
1876 * Calculate the accumulative weight and recursive load of each task group
1877 * while walking down the tree.
1878 */
1879 static
1880 void aggregate_get_down(struct task_group *tg, struct sched_domain *sd)
1881 {
1882 aggregate_group_weight(tg, sd);
1883 aggregate_group_shares(tg, sd);
1884 aggregate_group_load(tg, sd);
1885 }
1886
1887 /*
1888 * Rebalance the cpu shares while walking back up the tree.
1889 */
1890 static
1891 void aggregate_get_up(struct task_group *tg, struct sched_domain *sd)
1892 {
1893 aggregate_group_set_shares(tg, sd);
1894 }
1895
1896 static DEFINE_PER_CPU(spinlock_t, aggregate_lock);
1897
1898 static void __init init_aggregate(void)
1899 {
1900 int i;
1901
1902 for_each_possible_cpu(i)
1903 spin_lock_init(&per_cpu(aggregate_lock, i));
1904 }
1905
1906 static int get_aggregate(struct sched_domain *sd)
1907 {
1908 if (!spin_trylock(&per_cpu(aggregate_lock, sd->first_cpu)))
1909 return 0;
1910
1911 aggregate_walk_tree(aggregate_get_down, aggregate_get_up, sd);
1912 return 1;
1913 }
1914
1915 static void put_aggregate(struct sched_domain *sd)
1916 {
1917 spin_unlock(&per_cpu(aggregate_lock, sd->first_cpu));
1918 }
1919
1920 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1921 {
1922 cfs_rq->shares = shares;
1923 }
1924
1925 #else
1926
1927 static inline void init_aggregate(void)
1928 {
1929 }
1930
1931 static inline int get_aggregate(struct sched_domain *sd)
1932 {
1933 return 0;
1934 }
1935
1936 static inline void put_aggregate(struct sched_domain *sd)
1937 {
1938 }
1939 #endif
1940
1941 #else /* CONFIG_SMP */
1942
1943 #ifdef CONFIG_FAIR_GROUP_SCHED
1944 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1945 {
1946 }
1947 #endif
1948
1949 #endif /* CONFIG_SMP */
1950
1951 #include "sched_stats.h"
1952 #include "sched_idletask.c"
1953 #include "sched_fair.c"
1954 #include "sched_rt.c"
1955 #ifdef CONFIG_SCHED_DEBUG
1956 # include "sched_debug.c"
1957 #endif
1958
1959 #define sched_class_highest (&rt_sched_class)
1960
1961 static void inc_nr_running(struct rq *rq)
1962 {
1963 rq->nr_running++;
1964 }
1965
1966 static void dec_nr_running(struct rq *rq)
1967 {
1968 rq->nr_running--;
1969 }
1970
1971 static void set_load_weight(struct task_struct *p)
1972 {
1973 if (task_has_rt_policy(p)) {
1974 p->se.load.weight = prio_to_weight[0] * 2;
1975 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1976 return;
1977 }
1978
1979 /*
1980 * SCHED_IDLE tasks get minimal weight:
1981 */
1982 if (p->policy == SCHED_IDLE) {
1983 p->se.load.weight = WEIGHT_IDLEPRIO;
1984 p->se.load.inv_weight = WMULT_IDLEPRIO;
1985 return;
1986 }
1987
1988 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1989 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1990 }
1991
1992 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1993 {
1994 sched_info_queued(p);
1995 p->sched_class->enqueue_task(rq, p, wakeup);
1996 p->se.on_rq = 1;
1997 }
1998
1999 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
2000 {
2001 p->sched_class->dequeue_task(rq, p, sleep);
2002 p->se.on_rq = 0;
2003 }
2004
2005 /*
2006 * __normal_prio - return the priority that is based on the static prio
2007 */
2008 static inline int __normal_prio(struct task_struct *p)
2009 {
2010 return p->static_prio;
2011 }
2012
2013 /*
2014 * Calculate the expected normal priority: i.e. priority
2015 * without taking RT-inheritance into account. Might be
2016 * boosted by interactivity modifiers. Changes upon fork,
2017 * setprio syscalls, and whenever the interactivity
2018 * estimator recalculates.
2019 */
2020 static inline int normal_prio(struct task_struct *p)
2021 {
2022 int prio;
2023
2024 if (task_has_rt_policy(p))
2025 prio = MAX_RT_PRIO-1 - p->rt_priority;
2026 else
2027 prio = __normal_prio(p);
2028 return prio;
2029 }
2030
2031 /*
2032 * Calculate the current priority, i.e. the priority
2033 * taken into account by the scheduler. This value might
2034 * be boosted by RT tasks, or might be boosted by
2035 * interactivity modifiers. Will be RT if the task got
2036 * RT-boosted. If not then it returns p->normal_prio.
2037 */
2038 static int effective_prio(struct task_struct *p)
2039 {
2040 p->normal_prio = normal_prio(p);
2041 /*
2042 * If we are RT tasks or we were boosted to RT priority,
2043 * keep the priority unchanged. Otherwise, update priority
2044 * to the normal priority:
2045 */
2046 if (!rt_prio(p->prio))
2047 return p->normal_prio;
2048 return p->prio;
2049 }
2050
2051 /*
2052 * activate_task - move a task to the runqueue.
2053 */
2054 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
2055 {
2056 if (task_contributes_to_load(p))
2057 rq->nr_uninterruptible--;
2058
2059 enqueue_task(rq, p, wakeup);
2060 inc_nr_running(rq);
2061 }
2062
2063 /*
2064 * deactivate_task - remove a task from the runqueue.
2065 */
2066 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
2067 {
2068 if (task_contributes_to_load(p))
2069 rq->nr_uninterruptible++;
2070
2071 dequeue_task(rq, p, sleep);
2072 dec_nr_running(rq);
2073 }
2074
2075 /**
2076 * task_curr - is this task currently executing on a CPU?
2077 * @p: the task in question.
2078 */
2079 inline int task_curr(const struct task_struct *p)
2080 {
2081 return cpu_curr(task_cpu(p)) == p;
2082 }
2083
2084 /* Used instead of source_load when we know the type == 0 */
2085 unsigned long weighted_cpuload(const int cpu)
2086 {
2087 return cpu_rq(cpu)->load.weight;
2088 }
2089
2090 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
2091 {
2092 set_task_rq(p, cpu);
2093 #ifdef CONFIG_SMP
2094 /*
2095 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
2096 * successfuly executed on another CPU. We must ensure that updates of
2097 * per-task data have been completed by this moment.
2098 */
2099 smp_wmb();
2100 task_thread_info(p)->cpu = cpu;
2101 #endif
2102 }
2103
2104 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2105 const struct sched_class *prev_class,
2106 int oldprio, int running)
2107 {
2108 if (prev_class != p->sched_class) {
2109 if (prev_class->switched_from)
2110 prev_class->switched_from(rq, p, running);
2111 p->sched_class->switched_to(rq, p, running);
2112 } else
2113 p->sched_class->prio_changed(rq, p, oldprio, running);
2114 }
2115
2116 #ifdef CONFIG_SMP
2117
2118 /*
2119 * Is this task likely cache-hot:
2120 */
2121 static int
2122 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2123 {
2124 s64 delta;
2125
2126 /*
2127 * Buddy candidates are cache hot:
2128 */
2129 if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
2130 return 1;
2131
2132 if (p->sched_class != &fair_sched_class)
2133 return 0;
2134
2135 if (sysctl_sched_migration_cost == -1)
2136 return 1;
2137 if (sysctl_sched_migration_cost == 0)
2138 return 0;
2139
2140 delta = now - p->se.exec_start;
2141
2142 return delta < (s64)sysctl_sched_migration_cost;
2143 }
2144
2145
2146 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2147 {
2148 int old_cpu = task_cpu(p);
2149 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2150 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
2151 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
2152 u64 clock_offset;
2153
2154 clock_offset = old_rq->clock - new_rq->clock;
2155
2156 #ifdef CONFIG_SCHEDSTATS
2157 if (p->se.wait_start)
2158 p->se.wait_start -= clock_offset;
2159 if (p->se.sleep_start)
2160 p->se.sleep_start -= clock_offset;
2161 if (p->se.block_start)
2162 p->se.block_start -= clock_offset;
2163 if (old_cpu != new_cpu) {
2164 schedstat_inc(p, se.nr_migrations);
2165 if (task_hot(p, old_rq->clock, NULL))
2166 schedstat_inc(p, se.nr_forced2_migrations);
2167 }
2168 #endif
2169 p->se.vruntime -= old_cfsrq->min_vruntime -
2170 new_cfsrq->min_vruntime;
2171
2172 __set_task_cpu(p, new_cpu);
2173 }
2174
2175 struct migration_req {
2176 struct list_head list;
2177
2178 struct task_struct *task;
2179 int dest_cpu;
2180
2181 struct completion done;
2182 };
2183
2184 /*
2185 * The task's runqueue lock must be held.
2186 * Returns true if you have to wait for migration thread.
2187 */
2188 static int
2189 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
2190 {
2191 struct rq *rq = task_rq(p);
2192
2193 /*
2194 * If the task is not on a runqueue (and not running), then
2195 * it is sufficient to simply update the task's cpu field.
2196 */
2197 if (!p->se.on_rq && !task_running(rq, p)) {
2198 set_task_cpu(p, dest_cpu);
2199 return 0;
2200 }
2201
2202 init_completion(&req->done);
2203 req->task = p;
2204 req->dest_cpu = dest_cpu;
2205 list_add(&req->list, &rq->migration_queue);
2206
2207 return 1;
2208 }
2209
2210 /*
2211 * wait_task_inactive - wait for a thread to unschedule.
2212 *
2213 * The caller must ensure that the task *will* unschedule sometime soon,
2214 * else this function might spin for a *long* time. This function can't
2215 * be called with interrupts off, or it may introduce deadlock with
2216 * smp_call_function() if an IPI is sent by the same process we are
2217 * waiting to become inactive.
2218 */
2219 void wait_task_inactive(struct task_struct *p)
2220 {
2221 unsigned long flags;
2222 int running, on_rq;
2223 struct rq *rq;
2224
2225 for (;;) {
2226 /*
2227 * We do the initial early heuristics without holding
2228 * any task-queue locks at all. We'll only try to get
2229 * the runqueue lock when things look like they will
2230 * work out!
2231 */
2232 rq = task_rq(p);
2233
2234 /*
2235 * If the task is actively running on another CPU
2236 * still, just relax and busy-wait without holding
2237 * any locks.
2238 *
2239 * NOTE! Since we don't hold any locks, it's not
2240 * even sure that "rq" stays as the right runqueue!
2241 * But we don't care, since "task_running()" will
2242 * return false if the runqueue has changed and p
2243 * is actually now running somewhere else!
2244 */
2245 while (task_running(rq, p))
2246 cpu_relax();
2247
2248 /*
2249 * Ok, time to look more closely! We need the rq
2250 * lock now, to be *sure*. If we're wrong, we'll
2251 * just go back and repeat.
2252 */
2253 rq = task_rq_lock(p, &flags);
2254 running = task_running(rq, p);
2255 on_rq = p->se.on_rq;
2256 task_rq_unlock(rq, &flags);
2257
2258 /*
2259 * Was it really running after all now that we
2260 * checked with the proper locks actually held?
2261 *
2262 * Oops. Go back and try again..
2263 */
2264 if (unlikely(running)) {
2265 cpu_relax();
2266 continue;
2267 }
2268
2269 /*
2270 * It's not enough that it's not actively running,
2271 * it must be off the runqueue _entirely_, and not
2272 * preempted!
2273 *
2274 * So if it wa still runnable (but just not actively
2275 * running right now), it's preempted, and we should
2276 * yield - it could be a while.
2277 */
2278 if (unlikely(on_rq)) {
2279 schedule_timeout_uninterruptible(1);
2280 continue;
2281 }
2282
2283 /*
2284 * Ahh, all good. It wasn't running, and it wasn't
2285 * runnable, which means that it will never become
2286 * running in the future either. We're all done!
2287 */
2288 break;
2289 }
2290 }
2291
2292 /***
2293 * kick_process - kick a running thread to enter/exit the kernel
2294 * @p: the to-be-kicked thread
2295 *
2296 * Cause a process which is running on another CPU to enter
2297 * kernel-mode, without any delay. (to get signals handled.)
2298 *
2299 * NOTE: this function doesnt have to take the runqueue lock,
2300 * because all it wants to ensure is that the remote task enters
2301 * the kernel. If the IPI races and the task has been migrated
2302 * to another CPU then no harm is done and the purpose has been
2303 * achieved as well.
2304 */
2305 void kick_process(struct task_struct *p)
2306 {
2307 int cpu;
2308
2309 preempt_disable();
2310 cpu = task_cpu(p);
2311 if ((cpu != smp_processor_id()) && task_curr(p))
2312 smp_send_reschedule(cpu);
2313 preempt_enable();
2314 }
2315
2316 /*
2317 * Return a low guess at the load of a migration-source cpu weighted
2318 * according to the scheduling class and "nice" value.
2319 *
2320 * We want to under-estimate the load of migration sources, to
2321 * balance conservatively.
2322 */
2323 static unsigned long source_load(int cpu, int type)
2324 {
2325 struct rq *rq = cpu_rq(cpu);
2326 unsigned long total = weighted_cpuload(cpu);
2327
2328 if (type == 0)
2329 return total;
2330
2331 return min(rq->cpu_load[type-1], total);
2332 }
2333
2334 /*
2335 * Return a high guess at the load of a migration-target cpu weighted
2336 * according to the scheduling class and "nice" value.
2337 */
2338 static unsigned long target_load(int cpu, int type)
2339 {
2340 struct rq *rq = cpu_rq(cpu);
2341 unsigned long total = weighted_cpuload(cpu);
2342
2343 if (type == 0)
2344 return total;
2345
2346 return max(rq->cpu_load[type-1], total);
2347 }
2348
2349 /*
2350 * Return the average load per task on the cpu's run queue
2351 */
2352 static unsigned long cpu_avg_load_per_task(int cpu)
2353 {
2354 struct rq *rq = cpu_rq(cpu);
2355 unsigned long total = weighted_cpuload(cpu);
2356 unsigned long n = rq->nr_running;
2357
2358 return n ? total / n : SCHED_LOAD_SCALE;
2359 }
2360
2361 /*
2362 * find_idlest_group finds and returns the least busy CPU group within the
2363 * domain.
2364 */
2365 static struct sched_group *
2366 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2367 {
2368 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2369 unsigned long min_load = ULONG_MAX, this_load = 0;
2370 int load_idx = sd->forkexec_idx;
2371 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2372
2373 do {
2374 unsigned long load, avg_load;
2375 int local_group;
2376 int i;
2377
2378 /* Skip over this group if it has no CPUs allowed */
2379 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
2380 continue;
2381
2382 local_group = cpu_isset(this_cpu, group->cpumask);
2383
2384 /* Tally up the load of all CPUs in the group */
2385 avg_load = 0;
2386
2387 for_each_cpu_mask(i, group->cpumask) {
2388 /* Bias balancing toward cpus of our domain */
2389 if (local_group)
2390 load = source_load(i, load_idx);
2391 else
2392 load = target_load(i, load_idx);
2393
2394 avg_load += load;
2395 }
2396
2397 /* Adjust by relative CPU power of the group */
2398 avg_load = sg_div_cpu_power(group,
2399 avg_load * SCHED_LOAD_SCALE);
2400
2401 if (local_group) {
2402 this_load = avg_load;
2403 this = group;
2404 } else if (avg_load < min_load) {
2405 min_load = avg_load;
2406 idlest = group;
2407 }
2408 } while (group = group->next, group != sd->groups);
2409
2410 if (!idlest || 100*this_load < imbalance*min_load)
2411 return NULL;
2412 return idlest;
2413 }
2414
2415 /*
2416 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2417 */
2418 static int
2419 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
2420 cpumask_t *tmp)
2421 {
2422 unsigned long load, min_load = ULONG_MAX;
2423 int idlest = -1;
2424 int i;
2425
2426 /* Traverse only the allowed CPUs */
2427 cpus_and(*tmp, group->cpumask, p->cpus_allowed);
2428
2429 for_each_cpu_mask(i, *tmp) {
2430 load = weighted_cpuload(i);
2431
2432 if (load < min_load || (load == min_load && i == this_cpu)) {
2433 min_load = load;
2434 idlest = i;
2435 }
2436 }
2437
2438 return idlest;
2439 }
2440
2441 /*
2442 * sched_balance_self: balance the current task (running on cpu) in domains
2443 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2444 * SD_BALANCE_EXEC.
2445 *
2446 * Balance, ie. select the least loaded group.
2447 *
2448 * Returns the target CPU number, or the same CPU if no balancing is needed.
2449 *
2450 * preempt must be disabled.
2451 */
2452 static int sched_balance_self(int cpu, int flag)
2453 {
2454 struct task_struct *t = current;
2455 struct sched_domain *tmp, *sd = NULL;
2456
2457 for_each_domain(cpu, tmp) {
2458 /*
2459 * If power savings logic is enabled for a domain, stop there.
2460 */
2461 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2462 break;
2463 if (tmp->flags & flag)
2464 sd = tmp;
2465 }
2466
2467 while (sd) {
2468 cpumask_t span, tmpmask;
2469 struct sched_group *group;
2470 int new_cpu, weight;
2471
2472 if (!(sd->flags & flag)) {
2473 sd = sd->child;
2474 continue;
2475 }
2476
2477 span = sd->span;
2478 group = find_idlest_group(sd, t, cpu);
2479 if (!group) {
2480 sd = sd->child;
2481 continue;
2482 }
2483
2484 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
2485 if (new_cpu == -1 || new_cpu == cpu) {
2486 /* Now try balancing at a lower domain level of cpu */
2487 sd = sd->child;
2488 continue;
2489 }
2490
2491 /* Now try balancing at a lower domain level of new_cpu */
2492 cpu = new_cpu;
2493 sd = NULL;
2494 weight = cpus_weight(span);
2495 for_each_domain(cpu, tmp) {
2496 if (weight <= cpus_weight(tmp->span))
2497 break;
2498 if (tmp->flags & flag)
2499 sd = tmp;
2500 }
2501 /* while loop will break here if sd == NULL */
2502 }
2503
2504 return cpu;
2505 }
2506
2507 #endif /* CONFIG_SMP */
2508
2509 /***
2510 * try_to_wake_up - wake up a thread
2511 * @p: the to-be-woken-up thread
2512 * @state: the mask of task states that can be woken
2513 * @sync: do a synchronous wakeup?
2514 *
2515 * Put it on the run-queue if it's not already there. The "current"
2516 * thread is always on the run-queue (except when the actual
2517 * re-schedule is in progress), and as such you're allowed to do
2518 * the simpler "current->state = TASK_RUNNING" to mark yourself
2519 * runnable without the overhead of this.
2520 *
2521 * returns failure only if the task is already active.
2522 */
2523 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2524 {
2525 int cpu, orig_cpu, this_cpu, success = 0;
2526 unsigned long flags;
2527 long old_state;
2528 struct rq *rq;
2529
2530 if (!sched_feat(SYNC_WAKEUPS))
2531 sync = 0;
2532
2533 smp_wmb();
2534 rq = task_rq_lock(p, &flags);
2535 old_state = p->state;
2536 if (!(old_state & state))
2537 goto out;
2538
2539 if (p->se.on_rq)
2540 goto out_running;
2541
2542 cpu = task_cpu(p);
2543 orig_cpu = cpu;
2544 this_cpu = smp_processor_id();
2545
2546 #ifdef CONFIG_SMP
2547 if (unlikely(task_running(rq, p)))
2548 goto out_activate;
2549
2550 cpu = p->sched_class->select_task_rq(p, sync);
2551 if (cpu != orig_cpu) {
2552 set_task_cpu(p, cpu);
2553 task_rq_unlock(rq, &flags);
2554 /* might preempt at this point */
2555 rq = task_rq_lock(p, &flags);
2556 old_state = p->state;
2557 if (!(old_state & state))
2558 goto out;
2559 if (p->se.on_rq)
2560 goto out_running;
2561
2562 this_cpu = smp_processor_id();
2563 cpu = task_cpu(p);
2564 }
2565
2566 #ifdef CONFIG_SCHEDSTATS
2567 schedstat_inc(rq, ttwu_count);
2568 if (cpu == this_cpu)
2569 schedstat_inc(rq, ttwu_local);
2570 else {
2571 struct sched_domain *sd;
2572 for_each_domain(this_cpu, sd) {
2573 if (cpu_isset(cpu, sd->span)) {
2574 schedstat_inc(sd, ttwu_wake_remote);
2575 break;
2576 }
2577 }
2578 }
2579 #endif
2580
2581 out_activate:
2582 #endif /* CONFIG_SMP */
2583 schedstat_inc(p, se.nr_wakeups);
2584 if (sync)
2585 schedstat_inc(p, se.nr_wakeups_sync);
2586 if (orig_cpu != cpu)
2587 schedstat_inc(p, se.nr_wakeups_migrate);
2588 if (cpu == this_cpu)
2589 schedstat_inc(p, se.nr_wakeups_local);
2590 else
2591 schedstat_inc(p, se.nr_wakeups_remote);
2592 update_rq_clock(rq);
2593 activate_task(rq, p, 1);
2594 success = 1;
2595
2596 out_running:
2597 check_preempt_curr(rq, p);
2598
2599 p->state = TASK_RUNNING;
2600 #ifdef CONFIG_SMP
2601 if (p->sched_class->task_wake_up)
2602 p->sched_class->task_wake_up(rq, p);
2603 #endif
2604 out:
2605 task_rq_unlock(rq, &flags);
2606
2607 return success;
2608 }
2609
2610 int wake_up_process(struct task_struct *p)
2611 {
2612 return try_to_wake_up(p, TASK_ALL, 0);
2613 }
2614 EXPORT_SYMBOL(wake_up_process);
2615
2616 int wake_up_state(struct task_struct *p, unsigned int state)
2617 {
2618 return try_to_wake_up(p, state, 0);
2619 }
2620
2621 /*
2622 * Perform scheduler related setup for a newly forked process p.
2623 * p is forked by current.
2624 *
2625 * __sched_fork() is basic setup used by init_idle() too:
2626 */
2627 static void __sched_fork(struct task_struct *p)
2628 {
2629 p->se.exec_start = 0;
2630 p->se.sum_exec_runtime = 0;
2631 p->se.prev_sum_exec_runtime = 0;
2632 p->se.last_wakeup = 0;
2633 p->se.avg_overlap = 0;
2634
2635 #ifdef CONFIG_SCHEDSTATS
2636 p->se.wait_start = 0;
2637 p->se.sum_sleep_runtime = 0;
2638 p->se.sleep_start = 0;
2639 p->se.block_start = 0;
2640 p->se.sleep_max = 0;
2641 p->se.block_max = 0;
2642 p->se.exec_max = 0;
2643 p->se.slice_max = 0;
2644 p->se.wait_max = 0;
2645 #endif
2646
2647 INIT_LIST_HEAD(&p->rt.run_list);
2648 p->se.on_rq = 0;
2649 INIT_LIST_HEAD(&p->se.group_node);
2650
2651 #ifdef CONFIG_PREEMPT_NOTIFIERS
2652 INIT_HLIST_HEAD(&p->preempt_notifiers);
2653 #endif
2654
2655 /*
2656 * We mark the process as running here, but have not actually
2657 * inserted it onto the runqueue yet. This guarantees that
2658 * nobody will actually run it, and a signal or other external
2659 * event cannot wake it up and insert it on the runqueue either.
2660 */
2661 p->state = TASK_RUNNING;
2662 }
2663
2664 /*
2665 * fork()/clone()-time setup:
2666 */
2667 void sched_fork(struct task_struct *p, int clone_flags)
2668 {
2669 int cpu = get_cpu();
2670
2671 __sched_fork(p);
2672
2673 #ifdef CONFIG_SMP
2674 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2675 #endif
2676 set_task_cpu(p, cpu);
2677
2678 /*
2679 * Make sure we do not leak PI boosting priority to the child:
2680 */
2681 p->prio = current->normal_prio;
2682 if (!rt_prio(p->prio))
2683 p->sched_class = &fair_sched_class;
2684
2685 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2686 if (likely(sched_info_on()))
2687 memset(&p->sched_info, 0, sizeof(p->sched_info));
2688 #endif
2689 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2690 p->oncpu = 0;
2691 #endif
2692 #ifdef CONFIG_PREEMPT
2693 /* Want to start with kernel preemption disabled. */
2694 task_thread_info(p)->preempt_count = 1;
2695 #endif
2696 put_cpu();
2697 }
2698
2699 /*
2700 * wake_up_new_task - wake up a newly created task for the first time.
2701 *
2702 * This function will do some initial scheduler statistics housekeeping
2703 * that must be done for every newly created context, then puts the task
2704 * on the runqueue and wakes it.
2705 */
2706 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2707 {
2708 unsigned long flags;
2709 struct rq *rq;
2710
2711 rq = task_rq_lock(p, &flags);
2712 BUG_ON(p->state != TASK_RUNNING);
2713 update_rq_clock(rq);
2714
2715 p->prio = effective_prio(p);
2716
2717 if (!p->sched_class->task_new || !current->se.on_rq) {
2718 activate_task(rq, p, 0);
2719 } else {
2720 /*
2721 * Let the scheduling class do new task startup
2722 * management (if any):
2723 */
2724 p->sched_class->task_new(rq, p);
2725 inc_nr_running(rq);
2726 }
2727 check_preempt_curr(rq, p);
2728 #ifdef CONFIG_SMP
2729 if (p->sched_class->task_wake_up)
2730 p->sched_class->task_wake_up(rq, p);
2731 #endif
2732 task_rq_unlock(rq, &flags);
2733 }
2734
2735 #ifdef CONFIG_PREEMPT_NOTIFIERS
2736
2737 /**
2738 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2739 * @notifier: notifier struct to register
2740 */
2741 void preempt_notifier_register(struct preempt_notifier *notifier)
2742 {
2743 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2744 }
2745 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2746
2747 /**
2748 * preempt_notifier_unregister - no longer interested in preemption notifications
2749 * @notifier: notifier struct to unregister
2750 *
2751 * This is safe to call from within a preemption notifier.
2752 */
2753 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2754 {
2755 hlist_del(&notifier->link);
2756 }
2757 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2758
2759 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2760 {
2761 struct preempt_notifier *notifier;
2762 struct hlist_node *node;
2763
2764 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2765 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2766 }
2767
2768 static void
2769 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2770 struct task_struct *next)
2771 {
2772 struct preempt_notifier *notifier;
2773 struct hlist_node *node;
2774
2775 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2776 notifier->ops->sched_out(notifier, next);
2777 }
2778
2779 #else
2780
2781 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2782 {
2783 }
2784
2785 static void
2786 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2787 struct task_struct *next)
2788 {
2789 }
2790
2791 #endif
2792
2793 /**
2794 * prepare_task_switch - prepare to switch tasks
2795 * @rq: the runqueue preparing to switch
2796 * @prev: the current task that is being switched out
2797 * @next: the task we are going to switch to.
2798 *
2799 * This is called with the rq lock held and interrupts off. It must
2800 * be paired with a subsequent finish_task_switch after the context
2801 * switch.
2802 *
2803 * prepare_task_switch sets up locking and calls architecture specific
2804 * hooks.
2805 */
2806 static inline void
2807 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2808 struct task_struct *next)
2809 {
2810 fire_sched_out_preempt_notifiers(prev, next);
2811 prepare_lock_switch(rq, next);
2812 prepare_arch_switch(next);
2813 }
2814
2815 /**
2816 * finish_task_switch - clean up after a task-switch
2817 * @rq: runqueue associated with task-switch
2818 * @prev: the thread we just switched away from.
2819 *
2820 * finish_task_switch must be called after the context switch, paired
2821 * with a prepare_task_switch call before the context switch.
2822 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2823 * and do any other architecture-specific cleanup actions.
2824 *
2825 * Note that we may have delayed dropping an mm in context_switch(). If
2826 * so, we finish that here outside of the runqueue lock. (Doing it
2827 * with the lock held can cause deadlocks; see schedule() for
2828 * details.)
2829 */
2830 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2831 __releases(rq->lock)
2832 {
2833 struct mm_struct *mm = rq->prev_mm;
2834 long prev_state;
2835
2836 rq->prev_mm = NULL;
2837
2838 /*
2839 * A task struct has one reference for the use as "current".
2840 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2841 * schedule one last time. The schedule call will never return, and
2842 * the scheduled task must drop that reference.
2843 * The test for TASK_DEAD must occur while the runqueue locks are
2844 * still held, otherwise prev could be scheduled on another cpu, die
2845 * there before we look at prev->state, and then the reference would
2846 * be dropped twice.
2847 * Manfred Spraul <manfred@colorfullife.com>
2848 */
2849 prev_state = prev->state;
2850 finish_arch_switch(prev);
2851 finish_lock_switch(rq, prev);
2852 #ifdef CONFIG_SMP
2853 if (current->sched_class->post_schedule)
2854 current->sched_class->post_schedule(rq);
2855 #endif
2856
2857 fire_sched_in_preempt_notifiers(current);
2858 if (mm)
2859 mmdrop(mm);
2860 if (unlikely(prev_state == TASK_DEAD)) {
2861 /*
2862 * Remove function-return probe instances associated with this
2863 * task and put them back on the free list.
2864 */
2865 kprobe_flush_task(prev);
2866 put_task_struct(prev);
2867 }
2868 }
2869
2870 /**
2871 * schedule_tail - first thing a freshly forked thread must call.
2872 * @prev: the thread we just switched away from.
2873 */
2874 asmlinkage void schedule_tail(struct task_struct *prev)
2875 __releases(rq->lock)
2876 {
2877 struct rq *rq = this_rq();
2878
2879 finish_task_switch(rq, prev);
2880 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2881 /* In this case, finish_task_switch does not reenable preemption */
2882 preempt_enable();
2883 #endif
2884 if (current->set_child_tid)
2885 put_user(task_pid_vnr(current), current->set_child_tid);
2886 }
2887
2888 /*
2889 * context_switch - switch to the new MM and the new
2890 * thread's register state.
2891 */
2892 static inline void
2893 context_switch(struct rq *rq, struct task_struct *prev,
2894 struct task_struct *next)
2895 {
2896 struct mm_struct *mm, *oldmm;
2897
2898 prepare_task_switch(rq, prev, next);
2899 mm = next->mm;
2900 oldmm = prev->active_mm;
2901 /*
2902 * For paravirt, this is coupled with an exit in switch_to to
2903 * combine the page table reload and the switch backend into
2904 * one hypercall.
2905 */
2906 arch_enter_lazy_cpu_mode();
2907
2908 if (unlikely(!mm)) {
2909 next->active_mm = oldmm;
2910 atomic_inc(&oldmm->mm_count);
2911 enter_lazy_tlb(oldmm, next);
2912 } else
2913 switch_mm(oldmm, mm, next);
2914
2915 if (unlikely(!prev->mm)) {
2916 prev->active_mm = NULL;
2917 rq->prev_mm = oldmm;
2918 }
2919 /*
2920 * Since the runqueue lock will be released by the next
2921 * task (which is an invalid locking op but in the case
2922 * of the scheduler it's an obvious special-case), so we
2923 * do an early lockdep release here:
2924 */
2925 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2926 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2927 #endif
2928
2929 /* Here we just switch the register state and the stack. */
2930 switch_to(prev, next, prev);
2931
2932 barrier();
2933 /*
2934 * this_rq must be evaluated again because prev may have moved
2935 * CPUs since it called schedule(), thus the 'rq' on its stack
2936 * frame will be invalid.
2937 */
2938 finish_task_switch(this_rq(), prev);
2939 }
2940
2941 /*
2942 * nr_running, nr_uninterruptible and nr_context_switches:
2943 *
2944 * externally visible scheduler statistics: current number of runnable
2945 * threads, current number of uninterruptible-sleeping threads, total
2946 * number of context switches performed since bootup.
2947 */
2948 unsigned long nr_running(void)
2949 {
2950 unsigned long i, sum = 0;
2951
2952 for_each_online_cpu(i)
2953 sum += cpu_rq(i)->nr_running;
2954
2955 return sum;
2956 }
2957
2958 unsigned long nr_uninterruptible(void)
2959 {
2960 unsigned long i, sum = 0;
2961
2962 for_each_possible_cpu(i)
2963 sum += cpu_rq(i)->nr_uninterruptible;
2964
2965 /*
2966 * Since we read the counters lockless, it might be slightly
2967 * inaccurate. Do not allow it to go below zero though:
2968 */
2969 if (unlikely((long)sum < 0))
2970 sum = 0;
2971
2972 return sum;
2973 }
2974
2975 unsigned long long nr_context_switches(void)
2976 {
2977 int i;
2978 unsigned long long sum = 0;
2979
2980 for_each_possible_cpu(i)
2981 sum += cpu_rq(i)->nr_switches;
2982
2983 return sum;
2984 }
2985
2986 unsigned long nr_iowait(void)
2987 {
2988 unsigned long i, sum = 0;
2989
2990 for_each_possible_cpu(i)
2991 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2992
2993 return sum;
2994 }
2995
2996 unsigned long nr_active(void)
2997 {
2998 unsigned long i, running = 0, uninterruptible = 0;
2999
3000 for_each_online_cpu(i) {
3001 running += cpu_rq(i)->nr_running;
3002 uninterruptible += cpu_rq(i)->nr_uninterruptible;
3003 }
3004
3005 if (unlikely((long)uninterruptible < 0))
3006 uninterruptible = 0;
3007
3008 return running + uninterruptible;
3009 }
3010
3011 /*
3012 * Update rq->cpu_load[] statistics. This function is usually called every
3013 * scheduler tick (TICK_NSEC).
3014 */
3015 static void update_cpu_load(struct rq *this_rq)
3016 {
3017 unsigned long this_load = this_rq->load.weight;
3018 int i, scale;
3019
3020 this_rq->nr_load_updates++;
3021
3022 /* Update our load: */
3023 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3024 unsigned long old_load, new_load;
3025
3026 /* scale is effectively 1 << i now, and >> i divides by scale */
3027
3028 old_load = this_rq->cpu_load[i];
3029 new_load = this_load;
3030 /*
3031 * Round up the averaging division if load is increasing. This
3032 * prevents us from getting stuck on 9 if the load is 10, for
3033 * example.
3034 */
3035 if (new_load > old_load)
3036 new_load += scale-1;
3037 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3038 }
3039 }
3040
3041 #ifdef CONFIG_SMP
3042
3043 /*
3044 * double_rq_lock - safely lock two runqueues
3045 *
3046 * Note this does not disable interrupts like task_rq_lock,
3047 * you need to do so manually before calling.
3048 */
3049 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
3050 __acquires(rq1->lock)
3051 __acquires(rq2->lock)
3052 {
3053 BUG_ON(!irqs_disabled());
3054 if (rq1 == rq2) {
3055 spin_lock(&rq1->lock);
3056 __acquire(rq2->lock); /* Fake it out ;) */
3057 } else {
3058 if (rq1 < rq2) {
3059 spin_lock(&rq1->lock);
3060 spin_lock(&rq2->lock);
3061 } else {
3062 spin_lock(&rq2->lock);
3063 spin_lock(&rq1->lock);
3064 }
3065 }
3066 update_rq_clock(rq1);
3067 update_rq_clock(rq2);
3068 }
3069
3070 /*
3071 * double_rq_unlock - safely unlock two runqueues
3072 *
3073 * Note this does not restore interrupts like task_rq_unlock,
3074 * you need to do so manually after calling.
3075 */
3076 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
3077 __releases(rq1->lock)
3078 __releases(rq2->lock)
3079 {
3080 spin_unlock(&rq1->lock);
3081 if (rq1 != rq2)
3082 spin_unlock(&rq2->lock);
3083 else
3084 __release(rq2->lock);
3085 }
3086
3087 /*
3088 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
3089 */
3090 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
3091 __releases(this_rq->lock)
3092 __acquires(busiest->lock)
3093 __acquires(this_rq->lock)
3094 {
3095 int ret = 0;
3096
3097 if (unlikely(!irqs_disabled())) {
3098 /* printk() doesn't work good under rq->lock */
3099 spin_unlock(&this_rq->lock);
3100 BUG_ON(1);
3101 }
3102 if (unlikely(!spin_trylock(&busiest->lock))) {
3103 if (busiest < this_rq) {
3104 spin_unlock(&this_rq->lock);
3105 spin_lock(&busiest->lock);
3106 spin_lock(&this_rq->lock);
3107 ret = 1;
3108 } else
3109 spin_lock(&busiest->lock);
3110 }
3111 return ret;
3112 }
3113
3114 /*
3115 * If dest_cpu is allowed for this process, migrate the task to it.
3116 * This is accomplished by forcing the cpu_allowed mask to only
3117 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
3118 * the cpu_allowed mask is restored.
3119 */
3120 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
3121 {
3122 struct migration_req req;
3123 unsigned long flags;
3124 struct rq *rq;
3125
3126 rq = task_rq_lock(p, &flags);
3127 if (!cpu_isset(dest_cpu, p->cpus_allowed)
3128 || unlikely(cpu_is_offline(dest_cpu)))
3129 goto out;
3130
3131 /* force the process onto the specified CPU */
3132 if (migrate_task(p, dest_cpu, &req)) {
3133 /* Need to wait for migration thread (might exit: take ref). */
3134 struct task_struct *mt = rq->migration_thread;
3135
3136 get_task_struct(mt);
3137 task_rq_unlock(rq, &flags);
3138 wake_up_process(mt);
3139 put_task_struct(mt);
3140 wait_for_completion(&req.done);
3141
3142 return;
3143 }
3144 out:
3145 task_rq_unlock(rq, &flags);
3146 }
3147
3148 /*
3149 * sched_exec - execve() is a valuable balancing opportunity, because at
3150 * this point the task has the smallest effective memory and cache footprint.
3151 */
3152 void sched_exec(void)
3153 {
3154 int new_cpu, this_cpu = get_cpu();
3155 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
3156 put_cpu();
3157 if (new_cpu != this_cpu)
3158 sched_migrate_task(current, new_cpu);
3159 }
3160
3161 /*
3162 * pull_task - move a task from a remote runqueue to the local runqueue.
3163 * Both runqueues must be locked.
3164 */
3165 static void pull_task(struct rq *src_rq, struct task_struct *p,
3166 struct rq *this_rq, int this_cpu)
3167 {
3168 deactivate_task(src_rq, p, 0);
3169 set_task_cpu(p, this_cpu);
3170 activate_task(this_rq, p, 0);
3171 /*
3172 * Note that idle threads have a prio of MAX_PRIO, for this test
3173 * to be always true for them.
3174 */
3175 check_preempt_curr(this_rq, p);
3176 }
3177
3178 /*
3179 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3180 */
3181 static
3182 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
3183 struct sched_domain *sd, enum cpu_idle_type idle,
3184 int *all_pinned)
3185 {
3186 /*
3187 * We do not migrate tasks that are:
3188 * 1) running (obviously), or
3189 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3190 * 3) are cache-hot on their current CPU.
3191 */
3192 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
3193 schedstat_inc(p, se.nr_failed_migrations_affine);
3194 return 0;
3195 }
3196 *all_pinned = 0;
3197
3198 if (task_running(rq, p)) {
3199 schedstat_inc(p, se.nr_failed_migrations_running);
3200 return 0;
3201 }
3202
3203 /*
3204 * Aggressive migration if:
3205 * 1) task is cache cold, or
3206 * 2) too many balance attempts have failed.
3207 */
3208
3209 if (!task_hot(p, rq->clock, sd) ||
3210 sd->nr_balance_failed > sd->cache_nice_tries) {
3211 #ifdef CONFIG_SCHEDSTATS
3212 if (task_hot(p, rq->clock, sd)) {
3213 schedstat_inc(sd, lb_hot_gained[idle]);
3214 schedstat_inc(p, se.nr_forced_migrations);
3215 }
3216 #endif
3217 return 1;
3218 }
3219
3220 if (task_hot(p, rq->clock, sd)) {
3221 schedstat_inc(p, se.nr_failed_migrations_hot);
3222 return 0;
3223 }
3224 return 1;
3225 }
3226
3227 static unsigned long
3228 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3229 unsigned long max_load_move, struct sched_domain *sd,
3230 enum cpu_idle_type idle, int *all_pinned,
3231 int *this_best_prio, struct rq_iterator *iterator)
3232 {
3233 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
3234 struct task_struct *p;
3235 long rem_load_move = max_load_move;
3236
3237 if (max_load_move == 0)
3238 goto out;
3239
3240 pinned = 1;
3241
3242 /*
3243 * Start the load-balancing iterator:
3244 */
3245 p = iterator->start(iterator->arg);
3246 next:
3247 if (!p || loops++ > sysctl_sched_nr_migrate)
3248 goto out;
3249 /*
3250 * To help distribute high priority tasks across CPUs we don't
3251 * skip a task if it will be the highest priority task (i.e. smallest
3252 * prio value) on its new queue regardless of its load weight
3253 */
3254 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
3255 SCHED_LOAD_SCALE_FUZZ;
3256 if ((skip_for_load && p->prio >= *this_best_prio) ||
3257 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3258 p = iterator->next(iterator->arg);
3259 goto next;
3260 }
3261
3262 pull_task(busiest, p, this_rq, this_cpu);
3263 pulled++;
3264 rem_load_move -= p->se.load.weight;
3265
3266 /*
3267 * We only want to steal up to the prescribed amount of weighted load.
3268 */
3269 if (rem_load_move > 0) {
3270 if (p->prio < *this_best_prio)
3271 *this_best_prio = p->prio;
3272 p = iterator->next(iterator->arg);
3273 goto next;
3274 }
3275 out:
3276 /*
3277 * Right now, this is one of only two places pull_task() is called,
3278 * so we can safely collect pull_task() stats here rather than
3279 * inside pull_task().
3280 */
3281 schedstat_add(sd, lb_gained[idle], pulled);
3282
3283 if (all_pinned)
3284 *all_pinned = pinned;
3285
3286 return max_load_move - rem_load_move;
3287 }
3288
3289 /*
3290 * move_tasks tries to move up to max_load_move weighted load from busiest to
3291 * this_rq, as part of a balancing operation within domain "sd".
3292 * Returns 1 if successful and 0 otherwise.
3293 *
3294 * Called with both runqueues locked.
3295 */
3296 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3297 unsigned long max_load_move,
3298 struct sched_domain *sd, enum cpu_idle_type idle,
3299 int *all_pinned)
3300 {
3301 const struct sched_class *class = sched_class_highest;
3302 unsigned long total_load_moved = 0;
3303 int this_best_prio = this_rq->curr->prio;
3304
3305 do {
3306 total_load_moved +=
3307 class->load_balance(this_rq, this_cpu, busiest,
3308 max_load_move - total_load_moved,
3309 sd, idle, all_pinned, &this_best_prio);
3310 class = class->next;
3311 } while (class && max_load_move > total_load_moved);
3312
3313 return total_load_moved > 0;
3314 }
3315
3316 static int
3317 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3318 struct sched_domain *sd, enum cpu_idle_type idle,
3319 struct rq_iterator *iterator)
3320 {
3321 struct task_struct *p = iterator->start(iterator->arg);
3322 int pinned = 0;
3323
3324 while (p) {
3325 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3326 pull_task(busiest, p, this_rq, this_cpu);
3327 /*
3328 * Right now, this is only the second place pull_task()
3329 * is called, so we can safely collect pull_task()
3330 * stats here rather than inside pull_task().
3331 */
3332 schedstat_inc(sd, lb_gained[idle]);
3333
3334 return 1;
3335 }
3336 p = iterator->next(iterator->arg);
3337 }
3338
3339 return 0;
3340 }
3341
3342 /*
3343 * move_one_task tries to move exactly one task from busiest to this_rq, as
3344 * part of active balancing operations within "domain".
3345 * Returns 1 if successful and 0 otherwise.
3346 *
3347 * Called with both runqueues locked.
3348 */
3349 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3350 struct sched_domain *sd, enum cpu_idle_type idle)
3351 {
3352 const struct sched_class *class;
3353
3354 for (class = sched_class_highest; class; class = class->next)
3355 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3356 return 1;
3357
3358 return 0;
3359 }
3360
3361 /*
3362 * find_busiest_group finds and returns the busiest CPU group within the
3363 * domain. It calculates and returns the amount of weighted load which
3364 * should be moved to restore balance via the imbalance parameter.
3365 */
3366 static struct sched_group *
3367 find_busiest_group(struct sched_domain *sd, int this_cpu,
3368 unsigned long *imbalance, enum cpu_idle_type idle,
3369 int *sd_idle, const cpumask_t *cpus, int *balance)
3370 {
3371 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3372 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3373 unsigned long max_pull;
3374 unsigned long busiest_load_per_task, busiest_nr_running;
3375 unsigned long this_load_per_task, this_nr_running;
3376 int load_idx, group_imb = 0;
3377 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3378 int power_savings_balance = 1;
3379 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3380 unsigned long min_nr_running = ULONG_MAX;
3381 struct sched_group *group_min = NULL, *group_leader = NULL;
3382 #endif
3383
3384 max_load = this_load = total_load = total_pwr = 0;
3385 busiest_load_per_task = busiest_nr_running = 0;
3386 this_load_per_task = this_nr_running = 0;
3387 if (idle == CPU_NOT_IDLE)
3388 load_idx = sd->busy_idx;
3389 else if (idle == CPU_NEWLY_IDLE)
3390 load_idx = sd->newidle_idx;
3391 else
3392 load_idx = sd->idle_idx;
3393
3394 do {
3395 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
3396 int local_group;
3397 int i;
3398 int __group_imb = 0;
3399 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3400 unsigned long sum_nr_running, sum_weighted_load;
3401
3402 local_group = cpu_isset(this_cpu, group->cpumask);
3403
3404 if (local_group)
3405 balance_cpu = first_cpu(group->cpumask);
3406
3407 /* Tally up the load of all CPUs in the group */
3408 sum_weighted_load = sum_nr_running = avg_load = 0;
3409 max_cpu_load = 0;
3410 min_cpu_load = ~0UL;
3411
3412 for_each_cpu_mask(i, group->cpumask) {
3413 struct rq *rq;
3414
3415 if (!cpu_isset(i, *cpus))
3416 continue;
3417
3418 rq = cpu_rq(i);
3419
3420 if (*sd_idle && rq->nr_running)
3421 *sd_idle = 0;
3422
3423 /* Bias balancing toward cpus of our domain */
3424 if (local_group) {
3425 if (idle_cpu(i) && !first_idle_cpu) {
3426 first_idle_cpu = 1;
3427 balance_cpu = i;
3428 }
3429
3430 load = target_load(i, load_idx);
3431 } else {
3432 load = source_load(i, load_idx);
3433 if (load > max_cpu_load)
3434 max_cpu_load = load;
3435 if (min_cpu_load > load)
3436 min_cpu_load = load;
3437 }
3438
3439 avg_load += load;
3440 sum_nr_running += rq->nr_running;
3441 sum_weighted_load += weighted_cpuload(i);
3442 }
3443
3444 /*
3445 * First idle cpu or the first cpu(busiest) in this sched group
3446 * is eligible for doing load balancing at this and above
3447 * domains. In the newly idle case, we will allow all the cpu's
3448 * to do the newly idle load balance.
3449 */
3450 if (idle != CPU_NEWLY_IDLE && local_group &&
3451 balance_cpu != this_cpu && balance) {
3452 *balance = 0;
3453 goto ret;
3454 }
3455
3456 total_load += avg_load;
3457 total_pwr += group->__cpu_power;
3458
3459 /* Adjust by relative CPU power of the group */
3460 avg_load = sg_div_cpu_power(group,
3461 avg_load * SCHED_LOAD_SCALE);
3462
3463 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
3464 __group_imb = 1;
3465
3466 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3467
3468 if (local_group) {
3469 this_load = avg_load;
3470 this = group;
3471 this_nr_running = sum_nr_running;
3472 this_load_per_task = sum_weighted_load;
3473 } else if (avg_load > max_load &&
3474 (sum_nr_running > group_capacity || __group_imb)) {
3475 max_load = avg_load;
3476 busiest = group;
3477 busiest_nr_running = sum_nr_running;
3478 busiest_load_per_task = sum_weighted_load;
3479 group_imb = __group_imb;
3480 }
3481
3482 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3483 /*
3484 * Busy processors will not participate in power savings
3485 * balance.
3486 */
3487 if (idle == CPU_NOT_IDLE ||
3488 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3489 goto group_next;
3490
3491 /*
3492 * If the local group is idle or completely loaded
3493 * no need to do power savings balance at this domain
3494 */
3495 if (local_group && (this_nr_running >= group_capacity ||
3496 !this_nr_running))
3497 power_savings_balance = 0;
3498
3499 /*
3500 * If a group is already running at full capacity or idle,
3501 * don't include that group in power savings calculations
3502 */
3503 if (!power_savings_balance || sum_nr_running >= group_capacity
3504 || !sum_nr_running)
3505 goto group_next;
3506
3507 /*
3508 * Calculate the group which has the least non-idle load.
3509 * This is the group from where we need to pick up the load
3510 * for saving power
3511 */
3512 if ((sum_nr_running < min_nr_running) ||
3513 (sum_nr_running == min_nr_running &&
3514 first_cpu(group->cpumask) <
3515 first_cpu(group_min->cpumask))) {
3516 group_min = group;
3517 min_nr_running = sum_nr_running;
3518 min_load_per_task = sum_weighted_load /
3519 sum_nr_running;
3520 }
3521
3522 /*
3523 * Calculate the group which is almost near its
3524 * capacity but still has some space to pick up some load
3525 * from other group and save more power
3526 */
3527 if (sum_nr_running <= group_capacity - 1) {
3528 if (sum_nr_running > leader_nr_running ||
3529 (sum_nr_running == leader_nr_running &&
3530 first_cpu(group->cpumask) >
3531 first_cpu(group_leader->cpumask))) {
3532 group_leader = group;
3533 leader_nr_running = sum_nr_running;
3534 }
3535 }
3536 group_next:
3537 #endif
3538 group = group->next;
3539 } while (group != sd->groups);
3540
3541 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
3542 goto out_balanced;
3543
3544 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3545
3546 if (this_load >= avg_load ||
3547 100*max_load <= sd->imbalance_pct*this_load)
3548 goto out_balanced;
3549
3550 busiest_load_per_task /= busiest_nr_running;
3551 if (group_imb)
3552 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3553
3554 /*
3555 * We're trying to get all the cpus to the average_load, so we don't
3556 * want to push ourselves above the average load, nor do we wish to
3557 * reduce the max loaded cpu below the average load, as either of these
3558 * actions would just result in more rebalancing later, and ping-pong
3559 * tasks around. Thus we look for the minimum possible imbalance.
3560 * Negative imbalances (*we* are more loaded than anyone else) will
3561 * be counted as no imbalance for these purposes -- we can't fix that
3562 * by pulling tasks to us. Be careful of negative numbers as they'll
3563 * appear as very large values with unsigned longs.
3564 */
3565 if (max_load <= busiest_load_per_task)
3566 goto out_balanced;
3567
3568 /*
3569 * In the presence of smp nice balancing, certain scenarios can have
3570 * max load less than avg load(as we skip the groups at or below
3571 * its cpu_power, while calculating max_load..)
3572 */
3573 if (max_load < avg_load) {
3574 *imbalance = 0;
3575 goto small_imbalance;
3576 }
3577
3578 /* Don't want to pull so many tasks that a group would go idle */
3579 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3580
3581 /* How much load to actually move to equalise the imbalance */
3582 *imbalance = min(max_pull * busiest->__cpu_power,
3583 (avg_load - this_load) * this->__cpu_power)
3584 / SCHED_LOAD_SCALE;
3585
3586 /*
3587 * if *imbalance is less than the average load per runnable task
3588 * there is no gaurantee that any tasks will be moved so we'll have
3589 * a think about bumping its value to force at least one task to be
3590 * moved
3591 */
3592 if (*imbalance < busiest_load_per_task) {
3593 unsigned long tmp, pwr_now, pwr_move;
3594 unsigned int imbn;
3595
3596 small_imbalance:
3597 pwr_move = pwr_now = 0;
3598 imbn = 2;
3599 if (this_nr_running) {
3600 this_load_per_task /= this_nr_running;
3601 if (busiest_load_per_task > this_load_per_task)
3602 imbn = 1;
3603 } else
3604 this_load_per_task = SCHED_LOAD_SCALE;
3605
3606 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
3607 busiest_load_per_task * imbn) {
3608 *imbalance = busiest_load_per_task;
3609 return busiest;
3610 }
3611
3612 /*
3613 * OK, we don't have enough imbalance to justify moving tasks,
3614 * however we may be able to increase total CPU power used by
3615 * moving them.
3616 */
3617
3618 pwr_now += busiest->__cpu_power *
3619 min(busiest_load_per_task, max_load);
3620 pwr_now += this->__cpu_power *
3621 min(this_load_per_task, this_load);
3622 pwr_now /= SCHED_LOAD_SCALE;
3623
3624 /* Amount of load we'd subtract */
3625 tmp = sg_div_cpu_power(busiest,
3626 busiest_load_per_task * SCHED_LOAD_SCALE);
3627 if (max_load > tmp)
3628 pwr_move += busiest->__cpu_power *
3629 min(busiest_load_per_task, max_load - tmp);
3630
3631 /* Amount of load we'd add */
3632 if (max_load * busiest->__cpu_power <
3633 busiest_load_per_task * SCHED_LOAD_SCALE)
3634 tmp = sg_div_cpu_power(this,
3635 max_load * busiest->__cpu_power);
3636 else
3637 tmp = sg_div_cpu_power(this,
3638 busiest_load_per_task * SCHED_LOAD_SCALE);
3639 pwr_move += this->__cpu_power *
3640 min(this_load_per_task, this_load + tmp);
3641 pwr_move /= SCHED_LOAD_SCALE;
3642
3643 /* Move if we gain throughput */
3644 if (pwr_move > pwr_now)
3645 *imbalance = busiest_load_per_task;
3646 }
3647
3648 return busiest;
3649
3650 out_balanced:
3651 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3652 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3653 goto ret;
3654
3655 if (this == group_leader && group_leader != group_min) {
3656 *imbalance = min_load_per_task;
3657 return group_min;
3658 }
3659 #endif
3660 ret:
3661 *imbalance = 0;
3662 return NULL;
3663 }
3664
3665 /*
3666 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3667 */
3668 static struct rq *
3669 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3670 unsigned long imbalance, const cpumask_t *cpus)
3671 {
3672 struct rq *busiest = NULL, *rq;
3673 unsigned long max_load = 0;
3674 int i;
3675
3676 for_each_cpu_mask(i, group->cpumask) {
3677 unsigned long wl;
3678
3679 if (!cpu_isset(i, *cpus))
3680 continue;
3681
3682 rq = cpu_rq(i);
3683 wl = weighted_cpuload(i);
3684
3685 if (rq->nr_running == 1 && wl > imbalance)
3686 continue;
3687
3688 if (wl > max_load) {
3689 max_load = wl;
3690 busiest = rq;
3691 }
3692 }
3693
3694 return busiest;
3695 }
3696
3697 /*
3698 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3699 * so long as it is large enough.
3700 */
3701 #define MAX_PINNED_INTERVAL 512
3702
3703 /*
3704 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3705 * tasks if there is an imbalance.
3706 */
3707 static int load_balance(int this_cpu, struct rq *this_rq,
3708 struct sched_domain *sd, enum cpu_idle_type idle,
3709 int *balance, cpumask_t *cpus)
3710 {
3711 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3712 struct sched_group *group;
3713 unsigned long imbalance;
3714 struct rq *busiest;
3715 unsigned long flags;
3716 int unlock_aggregate;
3717
3718 cpus_setall(*cpus);
3719
3720 unlock_aggregate = get_aggregate(sd);
3721
3722 /*
3723 * When power savings policy is enabled for the parent domain, idle
3724 * sibling can pick up load irrespective of busy siblings. In this case,
3725 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3726 * portraying it as CPU_NOT_IDLE.
3727 */
3728 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3729 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3730 sd_idle = 1;
3731
3732 schedstat_inc(sd, lb_count[idle]);
3733
3734 redo:
3735 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3736 cpus, balance);
3737
3738 if (*balance == 0)
3739 goto out_balanced;
3740
3741 if (!group) {
3742 schedstat_inc(sd, lb_nobusyg[idle]);
3743 goto out_balanced;
3744 }
3745
3746 busiest = find_busiest_queue(group, idle, imbalance, cpus);
3747 if (!busiest) {
3748 schedstat_inc(sd, lb_nobusyq[idle]);
3749 goto out_balanced;
3750 }
3751
3752 BUG_ON(busiest == this_rq);
3753
3754 schedstat_add(sd, lb_imbalance[idle], imbalance);
3755
3756 ld_moved = 0;
3757 if (busiest->nr_running > 1) {
3758 /*
3759 * Attempt to move tasks. If find_busiest_group has found
3760 * an imbalance but busiest->nr_running <= 1, the group is
3761 * still unbalanced. ld_moved simply stays zero, so it is
3762 * correctly treated as an imbalance.
3763 */
3764 local_irq_save(flags);
3765 double_rq_lock(this_rq, busiest);
3766 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3767 imbalance, sd, idle, &all_pinned);
3768 double_rq_unlock(this_rq, busiest);
3769 local_irq_restore(flags);
3770
3771 /*
3772 * some other cpu did the load balance for us.
3773 */
3774 if (ld_moved && this_cpu != smp_processor_id())
3775 resched_cpu(this_cpu);
3776
3777 /* All tasks on this runqueue were pinned by CPU affinity */
3778 if (unlikely(all_pinned)) {
3779 cpu_clear(cpu_of(busiest), *cpus);
3780 if (!cpus_empty(*cpus))
3781 goto redo;
3782 goto out_balanced;
3783 }
3784 }
3785
3786 if (!ld_moved) {
3787 schedstat_inc(sd, lb_failed[idle]);
3788 sd->nr_balance_failed++;
3789
3790 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
3791
3792 spin_lock_irqsave(&busiest->lock, flags);
3793
3794 /* don't kick the migration_thread, if the curr
3795 * task on busiest cpu can't be moved to this_cpu
3796 */
3797 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3798 spin_unlock_irqrestore(&busiest->lock, flags);
3799 all_pinned = 1;
3800 goto out_one_pinned;
3801 }
3802
3803 if (!busiest->active_balance) {
3804 busiest->active_balance = 1;
3805 busiest->push_cpu = this_cpu;
3806 active_balance = 1;
3807 }
3808 spin_unlock_irqrestore(&busiest->lock, flags);
3809 if (active_balance)
3810 wake_up_process(busiest->migration_thread);
3811
3812 /*
3813 * We've kicked active balancing, reset the failure
3814 * counter.
3815 */
3816 sd->nr_balance_failed = sd->cache_nice_tries+1;
3817 }
3818 } else
3819 sd->nr_balance_failed = 0;
3820
3821 if (likely(!active_balance)) {
3822 /* We were unbalanced, so reset the balancing interval */
3823 sd->balance_interval = sd->min_interval;
3824 } else {
3825 /*
3826 * If we've begun active balancing, start to back off. This
3827 * case may not be covered by the all_pinned logic if there
3828 * is only 1 task on the busy runqueue (because we don't call
3829 * move_tasks).
3830 */
3831 if (sd->balance_interval < sd->max_interval)
3832 sd->balance_interval *= 2;
3833 }
3834
3835 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3836 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3837 ld_moved = -1;
3838
3839 goto out;
3840
3841 out_balanced:
3842 schedstat_inc(sd, lb_balanced[idle]);
3843
3844 sd->nr_balance_failed = 0;
3845
3846 out_one_pinned:
3847 /* tune up the balancing interval */
3848 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3849 (sd->balance_interval < sd->max_interval))
3850 sd->balance_interval *= 2;
3851
3852 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3853 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3854 ld_moved = -1;
3855 else
3856 ld_moved = 0;
3857 out:
3858 if (unlock_aggregate)
3859 put_aggregate(sd);
3860 return ld_moved;
3861 }
3862
3863 /*
3864 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3865 * tasks if there is an imbalance.
3866 *
3867 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3868 * this_rq is locked.
3869 */
3870 static int
3871 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3872 cpumask_t *cpus)
3873 {
3874 struct sched_group *group;
3875 struct rq *busiest = NULL;
3876 unsigned long imbalance;
3877 int ld_moved = 0;
3878 int sd_idle = 0;
3879 int all_pinned = 0;
3880
3881 cpus_setall(*cpus);
3882
3883 /*
3884 * When power savings policy is enabled for the parent domain, idle
3885 * sibling can pick up load irrespective of busy siblings. In this case,
3886 * let the state of idle sibling percolate up as IDLE, instead of
3887 * portraying it as CPU_NOT_IDLE.
3888 */
3889 if (sd->flags & SD_SHARE_CPUPOWER &&
3890 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3891 sd_idle = 1;
3892
3893 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3894 redo:
3895 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3896 &sd_idle, cpus, NULL);
3897 if (!group) {
3898 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3899 goto out_balanced;
3900 }
3901
3902 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
3903 if (!busiest) {
3904 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3905 goto out_balanced;
3906 }
3907
3908 BUG_ON(busiest == this_rq);
3909
3910 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3911
3912 ld_moved = 0;
3913 if (busiest->nr_running > 1) {
3914 /* Attempt to move tasks */
3915 double_lock_balance(this_rq, busiest);
3916 /* this_rq->clock is already updated */
3917 update_rq_clock(busiest);
3918 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3919 imbalance, sd, CPU_NEWLY_IDLE,
3920 &all_pinned);
3921 spin_unlock(&busiest->lock);
3922
3923 if (unlikely(all_pinned)) {
3924 cpu_clear(cpu_of(busiest), *cpus);
3925 if (!cpus_empty(*cpus))
3926 goto redo;
3927 }
3928 }
3929
3930 if (!ld_moved) {
3931 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3932 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3933 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3934 return -1;
3935 } else
3936 sd->nr_balance_failed = 0;
3937
3938 return ld_moved;
3939
3940 out_balanced:
3941 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3942 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3943 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3944 return -1;
3945 sd->nr_balance_failed = 0;
3946
3947 return 0;
3948 }
3949
3950 /*
3951 * idle_balance is called by schedule() if this_cpu is about to become
3952 * idle. Attempts to pull tasks from other CPUs.
3953 */
3954 static void idle_balance(int this_cpu, struct rq *this_rq)
3955 {
3956 struct sched_domain *sd;
3957 int pulled_task = -1;
3958 unsigned long next_balance = jiffies + HZ;
3959 cpumask_t tmpmask;
3960
3961 for_each_domain(this_cpu, sd) {
3962 unsigned long interval;
3963
3964 if (!(sd->flags & SD_LOAD_BALANCE))
3965 continue;
3966
3967 if (sd->flags & SD_BALANCE_NEWIDLE)
3968 /* If we've pulled tasks over stop searching: */
3969 pulled_task = load_balance_newidle(this_cpu, this_rq,
3970 sd, &tmpmask);
3971
3972 interval = msecs_to_jiffies(sd->balance_interval);
3973 if (time_after(next_balance, sd->last_balance + interval))
3974 next_balance = sd->last_balance + interval;
3975 if (pulled_task)
3976 break;
3977 }
3978 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3979 /*
3980 * We are going idle. next_balance may be set based on
3981 * a busy processor. So reset next_balance.
3982 */
3983 this_rq->next_balance = next_balance;
3984 }
3985 }
3986
3987 /*
3988 * active_load_balance is run by migration threads. It pushes running tasks
3989 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3990 * running on each physical CPU where possible, and avoids physical /
3991 * logical imbalances.
3992 *
3993 * Called with busiest_rq locked.
3994 */
3995 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3996 {
3997 int target_cpu = busiest_rq->push_cpu;
3998 struct sched_domain *sd;
3999 struct rq *target_rq;
4000
4001 /* Is there any task to move? */
4002 if (busiest_rq->nr_running <= 1)
4003 return;
4004
4005 target_rq = cpu_rq(target_cpu);
4006
4007 /*
4008 * This condition is "impossible", if it occurs
4009 * we need to fix it. Originally reported by
4010 * Bjorn Helgaas on a 128-cpu setup.
4011 */
4012 BUG_ON(busiest_rq == target_rq);
4013
4014 /* move a task from busiest_rq to target_rq */
4015 double_lock_balance(busiest_rq, target_rq);
4016 update_rq_clock(busiest_rq);
4017 update_rq_clock(target_rq);
4018
4019 /* Search for an sd spanning us and the target CPU. */
4020 for_each_domain(target_cpu, sd) {
4021 if ((sd->flags & SD_LOAD_BALANCE) &&
4022 cpu_isset(busiest_cpu, sd->span))
4023 break;
4024 }
4025
4026 if (likely(sd)) {
4027 schedstat_inc(sd, alb_count);
4028
4029 if (move_one_task(target_rq, target_cpu, busiest_rq,
4030 sd, CPU_IDLE))
4031 schedstat_inc(sd, alb_pushed);
4032 else
4033 schedstat_inc(sd, alb_failed);
4034 }
4035 spin_unlock(&target_rq->lock);
4036 }
4037
4038 #ifdef CONFIG_NO_HZ
4039 static struct {
4040 atomic_t load_balancer;
4041 cpumask_t cpu_mask;
4042 } nohz ____cacheline_aligned = {
4043 .load_balancer = ATOMIC_INIT(-1),
4044 .cpu_mask = CPU_MASK_NONE,
4045 };
4046
4047 /*
4048 * This routine will try to nominate the ilb (idle load balancing)
4049 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4050 * load balancing on behalf of all those cpus. If all the cpus in the system
4051 * go into this tickless mode, then there will be no ilb owner (as there is
4052 * no need for one) and all the cpus will sleep till the next wakeup event
4053 * arrives...
4054 *
4055 * For the ilb owner, tick is not stopped. And this tick will be used
4056 * for idle load balancing. ilb owner will still be part of
4057 * nohz.cpu_mask..
4058 *
4059 * While stopping the tick, this cpu will become the ilb owner if there
4060 * is no other owner. And will be the owner till that cpu becomes busy
4061 * or if all cpus in the system stop their ticks at which point
4062 * there is no need for ilb owner.
4063 *
4064 * When the ilb owner becomes busy, it nominates another owner, during the
4065 * next busy scheduler_tick()
4066 */
4067 int select_nohz_load_balancer(int stop_tick)
4068 {
4069 int cpu = smp_processor_id();
4070
4071 if (stop_tick) {
4072 cpu_set(cpu, nohz.cpu_mask);
4073 cpu_rq(cpu)->in_nohz_recently = 1;
4074
4075 /*
4076 * If we are going offline and still the leader, give up!
4077 */
4078 if (cpu_is_offline(cpu) &&
4079 atomic_read(&nohz.load_balancer) == cpu) {
4080 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4081 BUG();
4082 return 0;
4083 }
4084
4085 /* time for ilb owner also to sleep */
4086 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
4087 if (atomic_read(&nohz.load_balancer) == cpu)
4088 atomic_set(&nohz.load_balancer, -1);
4089 return 0;
4090 }
4091
4092 if (atomic_read(&nohz.load_balancer) == -1) {
4093 /* make me the ilb owner */
4094 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4095 return 1;
4096 } else if (atomic_read(&nohz.load_balancer) == cpu)
4097 return 1;
4098 } else {
4099 if (!cpu_isset(cpu, nohz.cpu_mask))
4100 return 0;
4101
4102 cpu_clear(cpu, nohz.cpu_mask);
4103
4104 if (atomic_read(&nohz.load_balancer) == cpu)
4105 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4106 BUG();
4107 }
4108 return 0;
4109 }
4110 #endif
4111
4112 static DEFINE_SPINLOCK(balancing);
4113
4114 /*
4115 * It checks each scheduling domain to see if it is due to be balanced,
4116 * and initiates a balancing operation if so.
4117 *
4118 * Balancing parameters are set up in arch_init_sched_domains.
4119 */
4120 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4121 {
4122 int balance = 1;
4123 struct rq *rq = cpu_rq(cpu);
4124 unsigned long interval;
4125 struct sched_domain *sd;
4126 /* Earliest time when we have to do rebalance again */
4127 unsigned long next_balance = jiffies + 60*HZ;
4128 int update_next_balance = 0;
4129 cpumask_t tmp;
4130
4131 for_each_domain(cpu, sd) {
4132 if (!(sd->flags & SD_LOAD_BALANCE))
4133 continue;
4134
4135 interval = sd->balance_interval;
4136 if (idle != CPU_IDLE)
4137 interval *= sd->busy_factor;
4138
4139 /* scale ms to jiffies */
4140 interval = msecs_to_jiffies(interval);
4141 if (unlikely(!interval))
4142 interval = 1;
4143 if (interval > HZ*NR_CPUS/10)
4144 interval = HZ*NR_CPUS/10;
4145
4146
4147 if (sd->flags & SD_SERIALIZE) {
4148 if (!spin_trylock(&balancing))
4149 goto out;
4150 }
4151
4152 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4153 if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
4154 /*
4155 * We've pulled tasks over so either we're no
4156 * longer idle, or one of our SMT siblings is
4157 * not idle.
4158 */
4159 idle = CPU_NOT_IDLE;
4160 }
4161 sd->last_balance = jiffies;
4162 }
4163 if (sd->flags & SD_SERIALIZE)
4164 spin_unlock(&balancing);
4165 out:
4166 if (time_after(next_balance, sd->last_balance + interval)) {
4167 next_balance = sd->last_balance + interval;
4168 update_next_balance = 1;
4169 }
4170
4171 /*
4172 * Stop the load balance at this level. There is another
4173 * CPU in our sched group which is doing load balancing more
4174 * actively.
4175 */
4176 if (!balance)
4177 break;
4178 }
4179
4180 /*
4181 * next_balance will be updated only when there is a need.
4182 * When the cpu is attached to null domain for ex, it will not be
4183 * updated.
4184 */
4185 if (likely(update_next_balance))
4186 rq->next_balance = next_balance;
4187 }
4188
4189 /*
4190 * run_rebalance_domains is triggered when needed from the scheduler tick.
4191 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4192 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4193 */
4194 static void run_rebalance_domains(struct softirq_action *h)
4195 {
4196 int this_cpu = smp_processor_id();
4197 struct rq *this_rq = cpu_rq(this_cpu);
4198 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4199 CPU_IDLE : CPU_NOT_IDLE;
4200
4201 rebalance_domains(this_cpu, idle);
4202
4203 #ifdef CONFIG_NO_HZ
4204 /*
4205 * If this cpu is the owner for idle load balancing, then do the
4206 * balancing on behalf of the other idle cpus whose ticks are
4207 * stopped.
4208 */
4209 if (this_rq->idle_at_tick &&
4210 atomic_read(&nohz.load_balancer) == this_cpu) {
4211 cpumask_t cpus = nohz.cpu_mask;
4212 struct rq *rq;
4213 int balance_cpu;
4214
4215 cpu_clear(this_cpu, cpus);
4216 for_each_cpu_mask(balance_cpu, cpus) {
4217 /*
4218 * If this cpu gets work to do, stop the load balancing
4219 * work being done for other cpus. Next load
4220 * balancing owner will pick it up.
4221 */
4222 if (need_resched())
4223 break;
4224
4225 rebalance_domains(balance_cpu, CPU_IDLE);
4226
4227 rq = cpu_rq(balance_cpu);
4228 if (time_after(this_rq->next_balance, rq->next_balance))
4229 this_rq->next_balance = rq->next_balance;
4230 }
4231 }
4232 #endif
4233 }
4234
4235 /*
4236 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4237 *
4238 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4239 * idle load balancing owner or decide to stop the periodic load balancing,
4240 * if the whole system is idle.
4241 */
4242 static inline void trigger_load_balance(struct rq *rq, int cpu)
4243 {
4244 #ifdef CONFIG_NO_HZ
4245 /*
4246 * If we were in the nohz mode recently and busy at the current
4247 * scheduler tick, then check if we need to nominate new idle
4248 * load balancer.
4249 */
4250 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4251 rq->in_nohz_recently = 0;
4252
4253 if (atomic_read(&nohz.load_balancer) == cpu) {
4254 cpu_clear(cpu, nohz.cpu_mask);
4255 atomic_set(&nohz.load_balancer, -1);
4256 }
4257
4258 if (atomic_read(&nohz.load_balancer) == -1) {
4259 /*
4260 * simple selection for now: Nominate the
4261 * first cpu in the nohz list to be the next
4262 * ilb owner.
4263 *
4264 * TBD: Traverse the sched domains and nominate
4265 * the nearest cpu in the nohz.cpu_mask.
4266 */
4267 int ilb = first_cpu(nohz.cpu_mask);
4268
4269 if (ilb < nr_cpu_ids)
4270 resched_cpu(ilb);
4271 }
4272 }
4273
4274 /*
4275 * If this cpu is idle and doing idle load balancing for all the
4276 * cpus with ticks stopped, is it time for that to stop?
4277 */
4278 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4279 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
4280 resched_cpu(cpu);
4281 return;
4282 }
4283
4284 /*
4285 * If this cpu is idle and the idle load balancing is done by
4286 * someone else, then no need raise the SCHED_SOFTIRQ
4287 */
4288 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4289 cpu_isset(cpu, nohz.cpu_mask))
4290 return;
4291 #endif
4292 if (time_after_eq(jiffies, rq->next_balance))
4293 raise_softirq(SCHED_SOFTIRQ);
4294 }
4295
4296 #else /* CONFIG_SMP */
4297
4298 /*
4299 * on UP we do not need to balance between CPUs:
4300 */
4301 static inline void idle_balance(int cpu, struct rq *rq)
4302 {
4303 }
4304
4305 #endif
4306
4307 DEFINE_PER_CPU(struct kernel_stat, kstat);
4308
4309 EXPORT_PER_CPU_SYMBOL(kstat);
4310
4311 /*
4312 * Return p->sum_exec_runtime plus any more ns on the sched_clock
4313 * that have not yet been banked in case the task is currently running.
4314 */
4315 unsigned long long task_sched_runtime(struct task_struct *p)
4316 {
4317 unsigned long flags;
4318 u64 ns, delta_exec;
4319 struct rq *rq;
4320
4321 rq = task_rq_lock(p, &flags);
4322 ns = p->se.sum_exec_runtime;
4323 if (task_current(rq, p)) {
4324 update_rq_clock(rq);
4325 delta_exec = rq->clock - p->se.exec_start;
4326 if ((s64)delta_exec > 0)
4327 ns += delta_exec;
4328 }
4329 task_rq_unlock(rq, &flags);
4330
4331 return ns;
4332 }
4333
4334 /*
4335 * Account user cpu time to a process.
4336 * @p: the process that the cpu time gets accounted to
4337 * @cputime: the cpu time spent in user space since the last update
4338 */
4339 void account_user_time(struct task_struct *p, cputime_t cputime)
4340 {
4341 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4342 cputime64_t tmp;
4343
4344 p->utime = cputime_add(p->utime, cputime);
4345
4346 /* Add user time to cpustat. */
4347 tmp = cputime_to_cputime64(cputime);
4348 if (TASK_NICE(p) > 0)
4349 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4350 else
4351 cpustat->user = cputime64_add(cpustat->user, tmp);
4352 }
4353
4354 /*
4355 * Account guest cpu time to a process.
4356 * @p: the process that the cpu time gets accounted to
4357 * @cputime: the cpu time spent in virtual machine since the last update
4358 */
4359 static void account_guest_time(struct task_struct *p, cputime_t cputime)
4360 {
4361 cputime64_t tmp;
4362 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4363
4364 tmp = cputime_to_cputime64(cputime);
4365
4366 p->utime = cputime_add(p->utime, cputime);
4367 p->gtime = cputime_add(p->gtime, cputime);
4368
4369 cpustat->user = cputime64_add(cpustat->user, tmp);
4370 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4371 }
4372
4373 /*
4374 * Account scaled user cpu time to a process.
4375 * @p: the process that the cpu time gets accounted to
4376 * @cputime: the cpu time spent in user space since the last update
4377 */
4378 void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
4379 {
4380 p->utimescaled = cputime_add(p->utimescaled, cputime);
4381 }
4382
4383 /*
4384 * Account system cpu time to a process.
4385 * @p: the process that the cpu time gets accounted to
4386 * @hardirq_offset: the offset to subtract from hardirq_count()
4387 * @cputime: the cpu time spent in kernel space since the last update
4388 */
4389 void account_system_time(struct task_struct *p, int hardirq_offset,
4390 cputime_t cputime)
4391 {
4392 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4393 struct rq *rq = this_rq();
4394 cputime64_t tmp;
4395
4396 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
4397 return account_guest_time(p, cputime);
4398
4399 p->stime = cputime_add(p->stime, cputime);
4400
4401 /* Add system time to cpustat. */
4402 tmp = cputime_to_cputime64(cputime);
4403 if (hardirq_count() - hardirq_offset)
4404 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4405 else if (softirq_count())
4406 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4407 else if (p != rq->idle)
4408 cpustat->system = cputime64_add(cpustat->system, tmp);
4409 else if (atomic_read(&rq->nr_iowait) > 0)
4410 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4411 else
4412 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4413 /* Account for system time used */
4414 acct_update_integrals(p);
4415 }
4416
4417 /*
4418 * Account scaled system cpu time to a process.
4419 * @p: the process that the cpu time gets accounted to
4420 * @hardirq_offset: the offset to subtract from hardirq_count()
4421 * @cputime: the cpu time spent in kernel space since the last update
4422 */
4423 void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
4424 {
4425 p->stimescaled = cputime_add(p->stimescaled, cputime);
4426 }
4427
4428 /*
4429 * Account for involuntary wait time.
4430 * @p: the process from which the cpu time has been stolen
4431 * @steal: the cpu time spent in involuntary wait
4432 */
4433 void account_steal_time(struct task_struct *p, cputime_t steal)
4434 {
4435 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4436 cputime64_t tmp = cputime_to_cputime64(steal);
4437 struct rq *rq = this_rq();
4438
4439 if (p == rq->idle) {
4440 p->stime = cputime_add(p->stime, steal);
4441 if (atomic_read(&rq->nr_iowait) > 0)
4442 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4443 else
4444 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4445 } else
4446 cpustat->steal = cputime64_add(cpustat->steal, tmp);
4447 }
4448
4449 /*
4450 * This function gets called by the timer code, with HZ frequency.
4451 * We call it with interrupts disabled.
4452 *
4453 * It also gets called by the fork code, when changing the parent's
4454 * timeslices.
4455 */
4456 void scheduler_tick(void)
4457 {
4458 int cpu = smp_processor_id();
4459 struct rq *rq = cpu_rq(cpu);
4460 struct task_struct *curr = rq->curr;
4461 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
4462
4463 spin_lock(&rq->lock);
4464 __update_rq_clock(rq);
4465 /*
4466 * Let rq->clock advance by at least TICK_NSEC:
4467 */
4468 if (unlikely(rq->clock < next_tick)) {
4469 rq->clock = next_tick;
4470 rq->clock_underflows++;
4471 }
4472 rq->tick_timestamp = rq->clock;
4473 update_last_tick_seen(rq);
4474 update_cpu_load(rq);
4475 curr->sched_class->task_tick(rq, curr, 0);
4476 spin_unlock(&rq->lock);
4477
4478 #ifdef CONFIG_SMP
4479 rq->idle_at_tick = idle_cpu(cpu);
4480 trigger_load_balance(rq, cpu);
4481 #endif
4482 }
4483
4484 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
4485
4486 void __kprobes add_preempt_count(int val)
4487 {
4488 /*
4489 * Underflow?
4490 */
4491 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4492 return;
4493 preempt_count() += val;
4494 /*
4495 * Spinlock count overflowing soon?
4496 */
4497 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4498 PREEMPT_MASK - 10);
4499 }
4500 EXPORT_SYMBOL(add_preempt_count);
4501
4502 void __kprobes sub_preempt_count(int val)
4503 {
4504 /*
4505 * Underflow?
4506 */
4507 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4508 return;
4509 /*
4510 * Is the spinlock portion underflowing?
4511 */
4512 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4513 !(preempt_count() & PREEMPT_MASK)))
4514 return;
4515
4516 preempt_count() -= val;
4517 }
4518 EXPORT_SYMBOL(sub_preempt_count);
4519
4520 #endif
4521
4522 /*
4523 * Print scheduling while atomic bug:
4524 */
4525 static noinline void __schedule_bug(struct task_struct *prev)
4526 {
4527 struct pt_regs *regs = get_irq_regs();
4528
4529 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4530 prev->comm, prev->pid, preempt_count());
4531
4532 debug_show_held_locks(prev);
4533 if (irqs_disabled())
4534 print_irqtrace_events(prev);
4535
4536 if (regs)
4537 show_regs(regs);
4538 else
4539 dump_stack();
4540 }
4541
4542 /*
4543 * Various schedule()-time debugging checks and statistics:
4544 */
4545 static inline void schedule_debug(struct task_struct *prev)
4546 {
4547 /*
4548 * Test if we are atomic. Since do_exit() needs to call into
4549 * schedule() atomically, we ignore that path for now.
4550 * Otherwise, whine if we are scheduling when we should not be.
4551 */
4552 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
4553 __schedule_bug(prev);
4554
4555 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4556
4557 schedstat_inc(this_rq(), sched_count);
4558 #ifdef CONFIG_SCHEDSTATS
4559 if (unlikely(prev->lock_depth >= 0)) {
4560 schedstat_inc(this_rq(), bkl_count);
4561 schedstat_inc(prev, sched_info.bkl_count);
4562 }
4563 #endif
4564 }
4565
4566 /*
4567 * Pick up the highest-prio task:
4568 */
4569 static inline struct task_struct *
4570 pick_next_task(struct rq *rq, struct task_struct *prev)
4571 {
4572 const struct sched_class *class;
4573 struct task_struct *p;
4574
4575 /*
4576 * Optimization: we know that if all tasks are in
4577 * the fair class we can call that function directly:
4578 */
4579 if (likely(rq->nr_running == rq->cfs.nr_running)) {
4580 p = fair_sched_class.pick_next_task(rq);
4581 if (likely(p))
4582 return p;
4583 }
4584
4585 class = sched_class_highest;
4586 for ( ; ; ) {
4587 p = class->pick_next_task(rq);
4588 if (p)
4589 return p;
4590 /*
4591 * Will never be NULL as the idle class always
4592 * returns a non-NULL p:
4593 */
4594 class = class->next;
4595 }
4596 }
4597
4598 /*
4599 * schedule() is the main scheduler function.
4600 */
4601 asmlinkage void __sched schedule(void)
4602 {
4603 struct task_struct *prev, *next;
4604 unsigned long *switch_count;
4605 struct rq *rq;
4606 int cpu;
4607
4608 need_resched:
4609 preempt_disable();
4610 cpu = smp_processor_id();
4611 rq = cpu_rq(cpu);
4612 rcu_qsctr_inc(cpu);
4613 prev = rq->curr;
4614 switch_count = &prev->nivcsw;
4615
4616 release_kernel_lock(prev);
4617 need_resched_nonpreemptible:
4618
4619 schedule_debug(prev);
4620
4621 hrtick_clear(rq);
4622
4623 /*
4624 * Do the rq-clock update outside the rq lock:
4625 */
4626 local_irq_disable();
4627 __update_rq_clock(rq);
4628 spin_lock(&rq->lock);
4629 clear_tsk_need_resched(prev);
4630
4631 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4632 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
4633 signal_pending(prev))) {
4634 prev->state = TASK_RUNNING;
4635 } else {
4636 deactivate_task(rq, prev, 1);
4637 }
4638 switch_count = &prev->nvcsw;
4639 }
4640
4641 #ifdef CONFIG_SMP
4642 if (prev->sched_class->pre_schedule)
4643 prev->sched_class->pre_schedule(rq, prev);
4644 #endif
4645
4646 if (unlikely(!rq->nr_running))
4647 idle_balance(cpu, rq);
4648
4649 prev->sched_class->put_prev_task(rq, prev);
4650 next = pick_next_task(rq, prev);
4651
4652 sched_info_switch(prev, next);
4653
4654 if (likely(prev != next)) {
4655 rq->nr_switches++;
4656 rq->curr = next;
4657 ++*switch_count;
4658
4659 context_switch(rq, prev, next); /* unlocks the rq */
4660 /*
4661 * the context switch might have flipped the stack from under
4662 * us, hence refresh the local variables.
4663 */
4664 cpu = smp_processor_id();
4665 rq = cpu_rq(cpu);
4666 } else
4667 spin_unlock_irq(&rq->lock);
4668
4669 hrtick_set(rq);
4670
4671 if (unlikely(reacquire_kernel_lock(current) < 0))
4672 goto need_resched_nonpreemptible;
4673
4674 preempt_enable_no_resched();
4675 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4676 goto need_resched;
4677 }
4678 EXPORT_SYMBOL(schedule);
4679
4680 #ifdef CONFIG_PREEMPT
4681 /*
4682 * this is the entry point to schedule() from in-kernel preemption
4683 * off of preempt_enable. Kernel preemptions off return from interrupt
4684 * occur there and call schedule directly.
4685 */
4686 asmlinkage void __sched preempt_schedule(void)
4687 {
4688 struct thread_info *ti = current_thread_info();
4689 struct task_struct *task = current;
4690 int saved_lock_depth;
4691
4692 /*
4693 * If there is a non-zero preempt_count or interrupts are disabled,
4694 * we do not want to preempt the current task. Just return..
4695 */
4696 if (likely(ti->preempt_count || irqs_disabled()))
4697 return;
4698
4699 do {
4700 add_preempt_count(PREEMPT_ACTIVE);
4701
4702 /*
4703 * We keep the big kernel semaphore locked, but we
4704 * clear ->lock_depth so that schedule() doesnt
4705 * auto-release the semaphore:
4706 */
4707 saved_lock_depth = task->lock_depth;
4708 task->lock_depth = -1;
4709 schedule();
4710 task->lock_depth = saved_lock_depth;
4711 sub_preempt_count(PREEMPT_ACTIVE);
4712
4713 /*
4714 * Check again in case we missed a preemption opportunity
4715 * between schedule and now.
4716 */
4717 barrier();
4718 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4719 }
4720 EXPORT_SYMBOL(preempt_schedule);
4721
4722 /*
4723 * this is the entry point to schedule() from kernel preemption
4724 * off of irq context.
4725 * Note, that this is called and return with irqs disabled. This will
4726 * protect us against recursive calling from irq.
4727 */
4728 asmlinkage void __sched preempt_schedule_irq(void)
4729 {
4730 struct thread_info *ti = current_thread_info();
4731 struct task_struct *task = current;
4732 int saved_lock_depth;
4733
4734 /* Catch callers which need to be fixed */
4735 BUG_ON(ti->preempt_count || !irqs_disabled());
4736
4737 do {
4738 add_preempt_count(PREEMPT_ACTIVE);
4739
4740 /*
4741 * We keep the big kernel semaphore locked, but we
4742 * clear ->lock_depth so that schedule() doesnt
4743 * auto-release the semaphore:
4744 */
4745 saved_lock_depth = task->lock_depth;
4746 task->lock_depth = -1;
4747 local_irq_enable();
4748 schedule();
4749 local_irq_disable();
4750 task->lock_depth = saved_lock_depth;
4751 sub_preempt_count(PREEMPT_ACTIVE);
4752
4753 /*
4754 * Check again in case we missed a preemption opportunity
4755 * between schedule and now.
4756 */
4757 barrier();
4758 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4759 }
4760
4761 #endif /* CONFIG_PREEMPT */
4762
4763 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4764 void *key)
4765 {
4766 return try_to_wake_up(curr->private, mode, sync);
4767 }
4768 EXPORT_SYMBOL(default_wake_function);
4769
4770 /*
4771 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4772 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4773 * number) then we wake all the non-exclusive tasks and one exclusive task.
4774 *
4775 * There are circumstances in which we can try to wake a task which has already
4776 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4777 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4778 */
4779 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4780 int nr_exclusive, int sync, void *key)
4781 {
4782 wait_queue_t *curr, *next;
4783
4784 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4785 unsigned flags = curr->flags;
4786
4787 if (curr->func(curr, mode, sync, key) &&
4788 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4789 break;
4790 }
4791 }
4792
4793 /**
4794 * __wake_up - wake up threads blocked on a waitqueue.
4795 * @q: the waitqueue
4796 * @mode: which threads
4797 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4798 * @key: is directly passed to the wakeup function
4799 */
4800 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4801 int nr_exclusive, void *key)
4802 {
4803 unsigned long flags;
4804
4805 spin_lock_irqsave(&q->lock, flags);
4806 __wake_up_common(q, mode, nr_exclusive, 0, key);
4807 spin_unlock_irqrestore(&q->lock, flags);
4808 }
4809 EXPORT_SYMBOL(__wake_up);
4810
4811 /*
4812 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4813 */
4814 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4815 {
4816 __wake_up_common(q, mode, 1, 0, NULL);
4817 }
4818
4819 /**
4820 * __wake_up_sync - wake up threads blocked on a waitqueue.
4821 * @q: the waitqueue
4822 * @mode: which threads
4823 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4824 *
4825 * The sync wakeup differs that the waker knows that it will schedule
4826 * away soon, so while the target thread will be woken up, it will not
4827 * be migrated to another CPU - ie. the two threads are 'synchronized'
4828 * with each other. This can prevent needless bouncing between CPUs.
4829 *
4830 * On UP it can prevent extra preemption.
4831 */
4832 void
4833 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4834 {
4835 unsigned long flags;
4836 int sync = 1;
4837
4838 if (unlikely(!q))
4839 return;
4840
4841 if (unlikely(!nr_exclusive))
4842 sync = 0;
4843
4844 spin_lock_irqsave(&q->lock, flags);
4845 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4846 spin_unlock_irqrestore(&q->lock, flags);
4847 }
4848 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4849
4850 void complete(struct completion *x)
4851 {
4852 unsigned long flags;
4853
4854 spin_lock_irqsave(&x->wait.lock, flags);
4855 x->done++;
4856 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4857 spin_unlock_irqrestore(&x->wait.lock, flags);
4858 }
4859 EXPORT_SYMBOL(complete);
4860
4861 void complete_all(struct completion *x)
4862 {
4863 unsigned long flags;
4864
4865 spin_lock_irqsave(&x->wait.lock, flags);
4866 x->done += UINT_MAX/2;
4867 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4868 spin_unlock_irqrestore(&x->wait.lock, flags);
4869 }
4870 EXPORT_SYMBOL(complete_all);
4871
4872 static inline long __sched
4873 do_wait_for_common(struct completion *x, long timeout, int state)
4874 {
4875 if (!x->done) {
4876 DECLARE_WAITQUEUE(wait, current);
4877
4878 wait.flags |= WQ_FLAG_EXCLUSIVE;
4879 __add_wait_queue_tail(&x->wait, &wait);
4880 do {
4881 if ((state == TASK_INTERRUPTIBLE &&
4882 signal_pending(current)) ||
4883 (state == TASK_KILLABLE &&
4884 fatal_signal_pending(current))) {
4885 __remove_wait_queue(&x->wait, &wait);
4886 return -ERESTARTSYS;
4887 }
4888 __set_current_state(state);
4889 spin_unlock_irq(&x->wait.lock);
4890 timeout = schedule_timeout(timeout);
4891 spin_lock_irq(&x->wait.lock);
4892 if (!timeout) {
4893 __remove_wait_queue(&x->wait, &wait);
4894 return timeout;
4895 }
4896 } while (!x->done);
4897 __remove_wait_queue(&x->wait, &wait);
4898 }
4899 x->done--;
4900 return timeout;
4901 }
4902
4903 static long __sched
4904 wait_for_common(struct completion *x, long timeout, int state)
4905 {
4906 might_sleep();
4907
4908 spin_lock_irq(&x->wait.lock);
4909 timeout = do_wait_for_common(x, timeout, state);
4910 spin_unlock_irq(&x->wait.lock);
4911 return timeout;
4912 }
4913
4914 void __sched wait_for_completion(struct completion *x)
4915 {
4916 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4917 }
4918 EXPORT_SYMBOL(wait_for_completion);
4919
4920 unsigned long __sched
4921 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4922 {
4923 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4924 }
4925 EXPORT_SYMBOL(wait_for_completion_timeout);
4926
4927 int __sched wait_for_completion_interruptible(struct completion *x)
4928 {
4929 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4930 if (t == -ERESTARTSYS)
4931 return t;
4932 return 0;
4933 }
4934 EXPORT_SYMBOL(wait_for_completion_interruptible);
4935
4936 unsigned long __sched
4937 wait_for_completion_interruptible_timeout(struct completion *x,
4938 unsigned long timeout)
4939 {
4940 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4941 }
4942 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4943
4944 int __sched wait_for_completion_killable(struct completion *x)
4945 {
4946 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4947 if (t == -ERESTARTSYS)
4948 return t;
4949 return 0;
4950 }
4951 EXPORT_SYMBOL(wait_for_completion_killable);
4952
4953 static long __sched
4954 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4955 {
4956 unsigned long flags;
4957 wait_queue_t wait;
4958
4959 init_waitqueue_entry(&wait, current);
4960
4961 __set_current_state(state);
4962
4963 spin_lock_irqsave(&q->lock, flags);
4964 __add_wait_queue(q, &wait);
4965 spin_unlock(&q->lock);
4966 timeout = schedule_timeout(timeout);
4967 spin_lock_irq(&q->lock);
4968 __remove_wait_queue(q, &wait);
4969 spin_unlock_irqrestore(&q->lock, flags);
4970
4971 return timeout;
4972 }
4973
4974 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4975 {
4976 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4977 }
4978 EXPORT_SYMBOL(interruptible_sleep_on);
4979
4980 long __sched
4981 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4982 {
4983 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4984 }
4985 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4986
4987 void __sched sleep_on(wait_queue_head_t *q)
4988 {
4989 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4990 }
4991 EXPORT_SYMBOL(sleep_on);
4992
4993 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4994 {
4995 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4996 }
4997 EXPORT_SYMBOL(sleep_on_timeout);
4998
4999 #ifdef CONFIG_RT_MUTEXES
5000
5001 /*
5002 * rt_mutex_setprio - set the current priority of a task
5003 * @p: task
5004 * @prio: prio value (kernel-internal form)
5005 *
5006 * This function changes the 'effective' priority of a task. It does
5007 * not touch ->normal_prio like __setscheduler().
5008 *
5009 * Used by the rt_mutex code to implement priority inheritance logic.
5010 */
5011 void rt_mutex_setprio(struct task_struct *p, int prio)
5012 {
5013 unsigned long flags;
5014 int oldprio, on_rq, running;
5015 struct rq *rq;
5016 const struct sched_class *prev_class = p->sched_class;
5017
5018 BUG_ON(prio < 0 || prio > MAX_PRIO);
5019
5020 rq = task_rq_lock(p, &flags);
5021 update_rq_clock(rq);
5022
5023 oldprio = p->prio;
5024 on_rq = p->se.on_rq;
5025 running = task_current(rq, p);
5026 if (on_rq)
5027 dequeue_task(rq, p, 0);
5028 if (running)
5029 p->sched_class->put_prev_task(rq, p);
5030
5031 if (rt_prio(prio))
5032 p->sched_class = &rt_sched_class;
5033 else
5034 p->sched_class = &fair_sched_class;
5035
5036 p->prio = prio;
5037
5038 if (running)
5039 p->sched_class->set_curr_task(rq);
5040 if (on_rq) {
5041 enqueue_task(rq, p, 0);
5042
5043 check_class_changed(rq, p, prev_class, oldprio, running);
5044 }
5045 task_rq_unlock(rq, &flags);
5046 }
5047
5048 #endif
5049
5050 void set_user_nice(struct task_struct *p, long nice)
5051 {
5052 int old_prio, delta, on_rq;
5053 unsigned long flags;
5054 struct rq *rq;
5055
5056 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5057 return;
5058 /*
5059 * We have to be careful, if called from sys_setpriority(),
5060 * the task might be in the middle of scheduling on another CPU.
5061 */
5062 rq = task_rq_lock(p, &flags);
5063 update_rq_clock(rq);
5064 /*
5065 * The RT priorities are set via sched_setscheduler(), but we still
5066 * allow the 'normal' nice value to be set - but as expected
5067 * it wont have any effect on scheduling until the task is
5068 * SCHED_FIFO/SCHED_RR:
5069 */
5070 if (task_has_rt_policy(p)) {
5071 p->static_prio = NICE_TO_PRIO(nice);
5072 goto out_unlock;
5073 }
5074 on_rq = p->se.on_rq;
5075 if (on_rq)
5076 dequeue_task(rq, p, 0);
5077
5078 p->static_prio = NICE_TO_PRIO(nice);
5079 set_load_weight(p);
5080 old_prio = p->prio;
5081 p->prio = effective_prio(p);
5082 delta = p->prio - old_prio;
5083
5084 if (on_rq) {
5085 enqueue_task(rq, p, 0);
5086 /*
5087 * If the task increased its priority or is running and
5088 * lowered its priority, then reschedule its CPU:
5089 */
5090 if (delta < 0 || (delta > 0 && task_running(rq, p)))
5091 resched_task(rq->curr);
5092 }
5093 out_unlock:
5094 task_rq_unlock(rq, &flags);
5095 }
5096 EXPORT_SYMBOL(set_user_nice);
5097
5098 /*
5099 * can_nice - check if a task can reduce its nice value
5100 * @p: task
5101 * @nice: nice value
5102 */
5103 int can_nice(const struct task_struct *p, const int nice)
5104 {
5105 /* convert nice value [19,-20] to rlimit style value [1,40] */
5106 int nice_rlim = 20 - nice;
5107
5108 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5109 capable(CAP_SYS_NICE));
5110 }
5111
5112 #ifdef __ARCH_WANT_SYS_NICE
5113
5114 /*
5115 * sys_nice - change the priority of the current process.
5116 * @increment: priority increment
5117 *
5118 * sys_setpriority is a more generic, but much slower function that
5119 * does similar things.
5120 */
5121 asmlinkage long sys_nice(int increment)
5122 {
5123 long nice, retval;
5124
5125 /*
5126 * Setpriority might change our priority at the same moment.
5127 * We don't have to worry. Conceptually one call occurs first
5128 * and we have a single winner.
5129 */
5130 if (increment < -40)
5131 increment = -40;
5132 if (increment > 40)
5133 increment = 40;
5134
5135 nice = PRIO_TO_NICE(current->static_prio) + increment;
5136 if (nice < -20)
5137 nice = -20;
5138 if (nice > 19)
5139 nice = 19;
5140
5141 if (increment < 0 && !can_nice(current, nice))
5142 return -EPERM;
5143
5144 retval = security_task_setnice(current, nice);
5145 if (retval)
5146 return retval;
5147
5148 set_user_nice(current, nice);
5149 return 0;
5150 }
5151
5152 #endif
5153
5154 /**
5155 * task_prio - return the priority value of a given task.
5156 * @p: the task in question.
5157 *
5158 * This is the priority value as seen by users in /proc.
5159 * RT tasks are offset by -200. Normal tasks are centered
5160 * around 0, value goes from -16 to +15.
5161 */
5162 int task_prio(const struct task_struct *p)
5163 {
5164 return p->prio - MAX_RT_PRIO;
5165 }
5166
5167 /**
5168 * task_nice - return the nice value of a given task.
5169 * @p: the task in question.
5170 */
5171 int task_nice(const struct task_struct *p)
5172 {
5173 return TASK_NICE(p);
5174 }
5175 EXPORT_SYMBOL(task_nice);
5176
5177 /**
5178 * idle_cpu - is a given cpu idle currently?
5179 * @cpu: the processor in question.
5180 */
5181 int idle_cpu(int cpu)
5182 {
5183 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5184 }
5185
5186 /**
5187 * idle_task - return the idle task for a given cpu.
5188 * @cpu: the processor in question.
5189 */
5190 struct task_struct *idle_task(int cpu)
5191 {
5192 return cpu_rq(cpu)->idle;
5193 }
5194
5195 /**
5196 * find_process_by_pid - find a process with a matching PID value.
5197 * @pid: the pid in question.
5198 */
5199 static struct task_struct *find_process_by_pid(pid_t pid)
5200 {
5201 return pid ? find_task_by_vpid(pid) : current;
5202 }
5203
5204 /* Actually do priority change: must hold rq lock. */
5205 static void
5206 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
5207 {
5208 BUG_ON(p->se.on_rq);
5209
5210 p->policy = policy;
5211 switch (p->policy) {
5212 case SCHED_NORMAL:
5213 case SCHED_BATCH:
5214 case SCHED_IDLE:
5215 p->sched_class = &fair_sched_class;
5216 break;
5217 case SCHED_FIFO:
5218 case SCHED_RR:
5219 p->sched_class = &rt_sched_class;
5220 break;
5221 }
5222
5223 p->rt_priority = prio;
5224 p->normal_prio = normal_prio(p);
5225 /* we are holding p->pi_lock already */
5226 p->prio = rt_mutex_getprio(p);
5227 set_load_weight(p);
5228 }
5229
5230 /**
5231 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5232 * @p: the task in question.
5233 * @policy: new policy.
5234 * @param: structure containing the new RT priority.
5235 *
5236 * NOTE that the task may be already dead.
5237 */
5238 int sched_setscheduler(struct task_struct *p, int policy,
5239 struct sched_param *param)
5240 {
5241 int retval, oldprio, oldpolicy = -1, on_rq, running;
5242 unsigned long flags;
5243 const struct sched_class *prev_class = p->sched_class;
5244 struct rq *rq;
5245
5246 /* may grab non-irq protected spin_locks */
5247 BUG_ON(in_interrupt());
5248 recheck:
5249 /* double check policy once rq lock held */
5250 if (policy < 0)
5251 policy = oldpolicy = p->policy;
5252 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
5253 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5254 policy != SCHED_IDLE)
5255 return -EINVAL;
5256 /*
5257 * Valid priorities for SCHED_FIFO and SCHED_RR are
5258 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5259 * SCHED_BATCH and SCHED_IDLE is 0.
5260 */
5261 if (param->sched_priority < 0 ||
5262 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5263 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
5264 return -EINVAL;
5265 if (rt_policy(policy) != (param->sched_priority != 0))
5266 return -EINVAL;
5267
5268 /*
5269 * Allow unprivileged RT tasks to decrease priority:
5270 */
5271 if (!capable(CAP_SYS_NICE)) {
5272 if (rt_policy(policy)) {
5273 unsigned long rlim_rtprio;
5274
5275 if (!lock_task_sighand(p, &flags))
5276 return -ESRCH;
5277 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5278 unlock_task_sighand(p, &flags);
5279
5280 /* can't set/change the rt policy */
5281 if (policy != p->policy && !rlim_rtprio)
5282 return -EPERM;
5283
5284 /* can't increase priority */
5285 if (param->sched_priority > p->rt_priority &&
5286 param->sched_priority > rlim_rtprio)
5287 return -EPERM;
5288 }
5289 /*
5290 * Like positive nice levels, dont allow tasks to
5291 * move out of SCHED_IDLE either:
5292 */
5293 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5294 return -EPERM;
5295
5296 /* can't change other user's priorities */
5297 if ((current->euid != p->euid) &&
5298 (current->euid != p->uid))
5299 return -EPERM;
5300 }
5301
5302 #ifdef CONFIG_RT_GROUP_SCHED
5303 /*
5304 * Do not allow realtime tasks into groups that have no runtime
5305 * assigned.
5306 */
5307 if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
5308 return -EPERM;
5309 #endif
5310
5311 retval = security_task_setscheduler(p, policy, param);
5312 if (retval)
5313 return retval;
5314 /*
5315 * make sure no PI-waiters arrive (or leave) while we are
5316 * changing the priority of the task:
5317 */
5318 spin_lock_irqsave(&p->pi_lock, flags);
5319 /*
5320 * To be able to change p->policy safely, the apropriate
5321 * runqueue lock must be held.
5322 */
5323 rq = __task_rq_lock(p);
5324 /* recheck policy now with rq lock held */
5325 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5326 policy = oldpolicy = -1;
5327 __task_rq_unlock(rq);
5328 spin_unlock_irqrestore(&p->pi_lock, flags);
5329 goto recheck;
5330 }
5331 update_rq_clock(rq);
5332 on_rq = p->se.on_rq;
5333 running = task_current(rq, p);
5334 if (on_rq)
5335 deactivate_task(rq, p, 0);
5336 if (running)
5337 p->sched_class->put_prev_task(rq, p);
5338
5339 oldprio = p->prio;
5340 __setscheduler(rq, p, policy, param->sched_priority);
5341
5342 if (running)
5343 p->sched_class->set_curr_task(rq);
5344 if (on_rq) {
5345 activate_task(rq, p, 0);
5346
5347 check_class_changed(rq, p, prev_class, oldprio, running);
5348 }
5349 __task_rq_unlock(rq);
5350 spin_unlock_irqrestore(&p->pi_lock, flags);
5351
5352 rt_mutex_adjust_pi(p);
5353
5354 return 0;
5355 }
5356 EXPORT_SYMBOL_GPL(sched_setscheduler);
5357
5358 static int
5359 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5360 {
5361 struct sched_param lparam;
5362 struct task_struct *p;
5363 int retval;
5364
5365 if (!param || pid < 0)
5366 return -EINVAL;
5367 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5368 return -EFAULT;
5369
5370 rcu_read_lock();
5371 retval = -ESRCH;
5372 p = find_process_by_pid(pid);
5373 if (p != NULL)
5374 retval = sched_setscheduler(p, policy, &lparam);
5375 rcu_read_unlock();
5376
5377 return retval;
5378 }
5379
5380 /**
5381 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5382 * @pid: the pid in question.
5383 * @policy: new policy.
5384 * @param: structure containing the new RT priority.
5385 */
5386 asmlinkage long
5387 sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5388 {
5389 /* negative values for policy are not valid */
5390 if (policy < 0)
5391 return -EINVAL;
5392
5393 return do_sched_setscheduler(pid, policy, param);
5394 }
5395
5396 /**
5397 * sys_sched_setparam - set/change the RT priority of a thread
5398 * @pid: the pid in question.
5399 * @param: structure containing the new RT priority.
5400 */
5401 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
5402 {
5403 return do_sched_setscheduler(pid, -1, param);
5404 }
5405
5406 /**
5407 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5408 * @pid: the pid in question.
5409 */
5410 asmlinkage long sys_sched_getscheduler(pid_t pid)
5411 {
5412 struct task_struct *p;
5413 int retval;
5414
5415 if (pid < 0)
5416 return -EINVAL;
5417
5418 retval = -ESRCH;
5419 read_lock(&tasklist_lock);
5420 p = find_process_by_pid(pid);
5421 if (p) {
5422 retval = security_task_getscheduler(p);
5423 if (!retval)
5424 retval = p->policy;
5425 }
5426 read_unlock(&tasklist_lock);
5427 return retval;
5428 }
5429
5430 /**
5431 * sys_sched_getscheduler - get the RT priority of a thread
5432 * @pid: the pid in question.
5433 * @param: structure containing the RT priority.
5434 */
5435 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
5436 {
5437 struct sched_param lp;
5438 struct task_struct *p;
5439 int retval;
5440
5441 if (!param || pid < 0)
5442 return -EINVAL;
5443
5444 read_lock(&tasklist_lock);
5445 p = find_process_by_pid(pid);
5446 retval = -ESRCH;
5447 if (!p)
5448 goto out_unlock;
5449
5450 retval = security_task_getscheduler(p);
5451 if (retval)
5452 goto out_unlock;
5453
5454 lp.sched_priority = p->rt_priority;
5455 read_unlock(&tasklist_lock);
5456
5457 /*
5458 * This one might sleep, we cannot do it with a spinlock held ...
5459 */
5460 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5461
5462 return retval;
5463
5464 out_unlock:
5465 read_unlock(&tasklist_lock);
5466 return retval;
5467 }
5468
5469 long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
5470 {
5471 cpumask_t cpus_allowed;
5472 cpumask_t new_mask = *in_mask;
5473 struct task_struct *p;
5474 int retval;
5475
5476 get_online_cpus();
5477 read_lock(&tasklist_lock);
5478
5479 p = find_process_by_pid(pid);
5480 if (!p) {
5481 read_unlock(&tasklist_lock);
5482 put_online_cpus();
5483 return -ESRCH;
5484 }
5485
5486 /*
5487 * It is not safe to call set_cpus_allowed with the
5488 * tasklist_lock held. We will bump the task_struct's
5489 * usage count and then drop tasklist_lock.
5490 */
5491 get_task_struct(p);
5492 read_unlock(&tasklist_lock);
5493
5494 retval = -EPERM;
5495 if ((current->euid != p->euid) && (current->euid != p->uid) &&
5496 !capable(CAP_SYS_NICE))
5497 goto out_unlock;
5498
5499 retval = security_task_setscheduler(p, 0, NULL);
5500 if (retval)
5501 goto out_unlock;
5502
5503 cpuset_cpus_allowed(p, &cpus_allowed);
5504 cpus_and(new_mask, new_mask, cpus_allowed);
5505 again:
5506 retval = set_cpus_allowed_ptr(p, &new_mask);
5507
5508 if (!retval) {
5509 cpuset_cpus_allowed(p, &cpus_allowed);
5510 if (!cpus_subset(new_mask, cpus_allowed)) {
5511 /*
5512 * We must have raced with a concurrent cpuset
5513 * update. Just reset the cpus_allowed to the
5514 * cpuset's cpus_allowed
5515 */
5516 new_mask = cpus_allowed;
5517 goto again;
5518 }
5519 }
5520 out_unlock:
5521 put_task_struct(p);
5522 put_online_cpus();
5523 return retval;
5524 }
5525
5526 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5527 cpumask_t *new_mask)
5528 {
5529 if (len < sizeof(cpumask_t)) {
5530 memset(new_mask, 0, sizeof(cpumask_t));
5531 } else if (len > sizeof(cpumask_t)) {
5532 len = sizeof(cpumask_t);
5533 }
5534 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5535 }
5536
5537 /**
5538 * sys_sched_setaffinity - set the cpu affinity of a process
5539 * @pid: pid of the process
5540 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5541 * @user_mask_ptr: user-space pointer to the new cpu mask
5542 */
5543 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5544 unsigned long __user *user_mask_ptr)
5545 {
5546 cpumask_t new_mask;
5547 int retval;
5548
5549 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
5550 if (retval)
5551 return retval;
5552
5553 return sched_setaffinity(pid, &new_mask);
5554 }
5555
5556 /*
5557 * Represents all cpu's present in the system
5558 * In systems capable of hotplug, this map could dynamically grow
5559 * as new cpu's are detected in the system via any platform specific
5560 * method, such as ACPI for e.g.
5561 */
5562
5563 cpumask_t cpu_present_map __read_mostly;
5564 EXPORT_SYMBOL(cpu_present_map);
5565
5566 #ifndef CONFIG_SMP
5567 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
5568 EXPORT_SYMBOL(cpu_online_map);
5569
5570 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
5571 EXPORT_SYMBOL(cpu_possible_map);
5572 #endif
5573
5574 long sched_getaffinity(pid_t pid, cpumask_t *mask)
5575 {
5576 struct task_struct *p;
5577 int retval;
5578
5579 get_online_cpus();
5580 read_lock(&tasklist_lock);
5581
5582 retval = -ESRCH;
5583 p = find_process_by_pid(pid);
5584 if (!p)
5585 goto out_unlock;
5586
5587 retval = security_task_getscheduler(p);
5588 if (retval)
5589 goto out_unlock;
5590
5591 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
5592
5593 out_unlock:
5594 read_unlock(&tasklist_lock);
5595 put_online_cpus();
5596
5597 return retval;
5598 }
5599
5600 /**
5601 * sys_sched_getaffinity - get the cpu affinity of a process
5602 * @pid: pid of the process
5603 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5604 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5605 */
5606 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5607 unsigned long __user *user_mask_ptr)
5608 {
5609 int ret;
5610 cpumask_t mask;
5611
5612 if (len < sizeof(cpumask_t))
5613 return -EINVAL;
5614
5615 ret = sched_getaffinity(pid, &mask);
5616 if (ret < 0)
5617 return ret;
5618
5619 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
5620 return -EFAULT;
5621
5622 return sizeof(cpumask_t);
5623 }
5624
5625 /**
5626 * sys_sched_yield - yield the current processor to other threads.
5627 *
5628 * This function yields the current CPU to other tasks. If there are no
5629 * other threads running on this CPU then this function will return.
5630 */
5631 asmlinkage long sys_sched_yield(void)
5632 {
5633 struct rq *rq = this_rq_lock();
5634
5635 schedstat_inc(rq, yld_count);
5636 current->sched_class->yield_task(rq);
5637
5638 /*
5639 * Since we are going to call schedule() anyway, there's
5640 * no need to preempt or enable interrupts:
5641 */
5642 __release(rq->lock);
5643 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5644 _raw_spin_unlock(&rq->lock);
5645 preempt_enable_no_resched();
5646
5647 schedule();
5648
5649 return 0;
5650 }
5651
5652 static void __cond_resched(void)
5653 {
5654 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5655 __might_sleep(__FILE__, __LINE__);
5656 #endif
5657 /*
5658 * The BKS might be reacquired before we have dropped
5659 * PREEMPT_ACTIVE, which could trigger a second
5660 * cond_resched() call.
5661 */
5662 do {
5663 add_preempt_count(PREEMPT_ACTIVE);
5664 schedule();
5665 sub_preempt_count(PREEMPT_ACTIVE);
5666 } while (need_resched());
5667 }
5668
5669 #if !defined(CONFIG_PREEMPT) || defined(CONFIG_PREEMPT_VOLUNTARY)
5670 int __sched _cond_resched(void)
5671 {
5672 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5673 system_state == SYSTEM_RUNNING) {
5674 __cond_resched();
5675 return 1;
5676 }
5677 return 0;
5678 }
5679 EXPORT_SYMBOL(_cond_resched);
5680 #endif
5681
5682 /*
5683 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5684 * call schedule, and on return reacquire the lock.
5685 *
5686 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5687 * operations here to prevent schedule() from being called twice (once via
5688 * spin_unlock(), once by hand).
5689 */
5690 int cond_resched_lock(spinlock_t *lock)
5691 {
5692 int resched = need_resched() && system_state == SYSTEM_RUNNING;
5693 int ret = 0;
5694
5695 if (spin_needbreak(lock) || resched) {
5696 spin_unlock(lock);
5697 if (resched && need_resched())
5698 __cond_resched();
5699 else
5700 cpu_relax();
5701 ret = 1;
5702 spin_lock(lock);
5703 }
5704 return ret;
5705 }
5706 EXPORT_SYMBOL(cond_resched_lock);
5707
5708 int __sched cond_resched_softirq(void)
5709 {
5710 BUG_ON(!in_softirq());
5711
5712 if (need_resched() && system_state == SYSTEM_RUNNING) {
5713 local_bh_enable();
5714 __cond_resched();
5715 local_bh_disable();
5716 return 1;
5717 }
5718 return 0;
5719 }
5720 EXPORT_SYMBOL(cond_resched_softirq);
5721
5722 /**
5723 * yield - yield the current processor to other threads.
5724 *
5725 * This is a shortcut for kernel-space yielding - it marks the
5726 * thread runnable and calls sys_sched_yield().
5727 */
5728 void __sched yield(void)
5729 {
5730 set_current_state(TASK_RUNNING);
5731 sys_sched_yield();
5732 }
5733 EXPORT_SYMBOL(yield);
5734
5735 /*
5736 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5737 * that process accounting knows that this is a task in IO wait state.
5738 *
5739 * But don't do that if it is a deliberate, throttling IO wait (this task
5740 * has set its backing_dev_info: the queue against which it should throttle)
5741 */
5742 void __sched io_schedule(void)
5743 {
5744 struct rq *rq = &__raw_get_cpu_var(runqueues);
5745
5746 delayacct_blkio_start();
5747 atomic_inc(&rq->nr_iowait);
5748 schedule();
5749 atomic_dec(&rq->nr_iowait);
5750 delayacct_blkio_end();
5751 }
5752 EXPORT_SYMBOL(io_schedule);
5753
5754 long __sched io_schedule_timeout(long timeout)
5755 {
5756 struct rq *rq = &__raw_get_cpu_var(runqueues);
5757 long ret;
5758
5759 delayacct_blkio_start();
5760 atomic_inc(&rq->nr_iowait);
5761 ret = schedule_timeout(timeout);
5762 atomic_dec(&rq->nr_iowait);
5763 delayacct_blkio_end();
5764 return ret;
5765 }
5766
5767 /**
5768 * sys_sched_get_priority_max - return maximum RT priority.
5769 * @policy: scheduling class.
5770 *
5771 * this syscall returns the maximum rt_priority that can be used
5772 * by a given scheduling class.
5773 */
5774 asmlinkage long sys_sched_get_priority_max(int policy)
5775 {
5776 int ret = -EINVAL;
5777
5778 switch (policy) {
5779 case SCHED_FIFO:
5780 case SCHED_RR:
5781 ret = MAX_USER_RT_PRIO-1;
5782 break;
5783 case SCHED_NORMAL:
5784 case SCHED_BATCH:
5785 case SCHED_IDLE:
5786 ret = 0;
5787 break;
5788 }
5789 return ret;
5790 }
5791
5792 /**
5793 * sys_sched_get_priority_min - return minimum RT priority.
5794 * @policy: scheduling class.
5795 *
5796 * this syscall returns the minimum rt_priority that can be used
5797 * by a given scheduling class.
5798 */
5799 asmlinkage long sys_sched_get_priority_min(int policy)
5800 {
5801 int ret = -EINVAL;
5802
5803 switch (policy) {
5804 case SCHED_FIFO:
5805 case SCHED_RR:
5806 ret = 1;
5807 break;
5808 case SCHED_NORMAL:
5809 case SCHED_BATCH:
5810 case SCHED_IDLE:
5811 ret = 0;
5812 }
5813 return ret;
5814 }
5815
5816 /**
5817 * sys_sched_rr_get_interval - return the default timeslice of a process.
5818 * @pid: pid of the process.
5819 * @interval: userspace pointer to the timeslice value.
5820 *
5821 * this syscall writes the default timeslice value of a given process
5822 * into the user-space timespec buffer. A value of '0' means infinity.
5823 */
5824 asmlinkage
5825 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5826 {
5827 struct task_struct *p;
5828 unsigned int time_slice;
5829 int retval;
5830 struct timespec t;
5831
5832 if (pid < 0)
5833 return -EINVAL;
5834
5835 retval = -ESRCH;
5836 read_lock(&tasklist_lock);
5837 p = find_process_by_pid(pid);
5838 if (!p)
5839 goto out_unlock;
5840
5841 retval = security_task_getscheduler(p);
5842 if (retval)
5843 goto out_unlock;
5844
5845 /*
5846 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5847 * tasks that are on an otherwise idle runqueue:
5848 */
5849 time_slice = 0;
5850 if (p->policy == SCHED_RR) {
5851 time_slice = DEF_TIMESLICE;
5852 } else if (p->policy != SCHED_FIFO) {
5853 struct sched_entity *se = &p->se;
5854 unsigned long flags;
5855 struct rq *rq;
5856
5857 rq = task_rq_lock(p, &flags);
5858 if (rq->cfs.load.weight)
5859 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
5860 task_rq_unlock(rq, &flags);
5861 }
5862 read_unlock(&tasklist_lock);
5863 jiffies_to_timespec(time_slice, &t);
5864 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5865 return retval;
5866
5867 out_unlock:
5868 read_unlock(&tasklist_lock);
5869 return retval;
5870 }
5871
5872 static const char stat_nam[] = "RSDTtZX";
5873
5874 void sched_show_task(struct task_struct *p)
5875 {
5876 unsigned long free = 0;
5877 unsigned state;
5878
5879 state = p->state ? __ffs(p->state) + 1 : 0;
5880 printk(KERN_INFO "%-13.13s %c", p->comm,
5881 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5882 #if BITS_PER_LONG == 32
5883 if (state == TASK_RUNNING)
5884 printk(KERN_CONT " running ");
5885 else
5886 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5887 #else
5888 if (state == TASK_RUNNING)
5889 printk(KERN_CONT " running task ");
5890 else
5891 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5892 #endif
5893 #ifdef CONFIG_DEBUG_STACK_USAGE
5894 {
5895 unsigned long *n = end_of_stack(p);
5896 while (!*n)
5897 n++;
5898 free = (unsigned long)n - (unsigned long)end_of_stack(p);
5899 }
5900 #endif
5901 printk(KERN_CONT "%5lu %5d %6d\n", free,
5902 task_pid_nr(p), task_pid_nr(p->real_parent));
5903
5904 show_stack(p, NULL);
5905 }
5906
5907 void show_state_filter(unsigned long state_filter)
5908 {
5909 struct task_struct *g, *p;
5910
5911 #if BITS_PER_LONG == 32
5912 printk(KERN_INFO
5913 " task PC stack pid father\n");
5914 #else
5915 printk(KERN_INFO
5916 " task PC stack pid father\n");
5917 #endif
5918 read_lock(&tasklist_lock);
5919 do_each_thread(g, p) {
5920 /*
5921 * reset the NMI-timeout, listing all files on a slow
5922 * console might take alot of time:
5923 */
5924 touch_nmi_watchdog();
5925 if (!state_filter || (p->state & state_filter))
5926 sched_show_task(p);
5927 } while_each_thread(g, p);
5928
5929 touch_all_softlockup_watchdogs();
5930
5931 #ifdef CONFIG_SCHED_DEBUG
5932 sysrq_sched_debug_show();
5933 #endif
5934 read_unlock(&tasklist_lock);
5935 /*
5936 * Only show locks if all tasks are dumped:
5937 */
5938 if (state_filter == -1)
5939 debug_show_all_locks();
5940 }
5941
5942 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5943 {
5944 idle->sched_class = &idle_sched_class;
5945 }
5946
5947 /**
5948 * init_idle - set up an idle thread for a given CPU
5949 * @idle: task in question
5950 * @cpu: cpu the idle task belongs to
5951 *
5952 * NOTE: this function does not set the idle thread's NEED_RESCHED
5953 * flag, to make booting more robust.
5954 */
5955 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5956 {
5957 struct rq *rq = cpu_rq(cpu);
5958 unsigned long flags;
5959
5960 __sched_fork(idle);
5961 idle->se.exec_start = sched_clock();
5962
5963 idle->prio = idle->normal_prio = MAX_PRIO;
5964 idle->cpus_allowed = cpumask_of_cpu(cpu);
5965 __set_task_cpu(idle, cpu);
5966
5967 spin_lock_irqsave(&rq->lock, flags);
5968 rq->curr = rq->idle = idle;
5969 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5970 idle->oncpu = 1;
5971 #endif
5972 spin_unlock_irqrestore(&rq->lock, flags);
5973
5974 /* Set the preempt count _outside_ the spinlocks! */
5975 task_thread_info(idle)->preempt_count = 0;
5976
5977 /*
5978 * The idle tasks have their own, simple scheduling class:
5979 */
5980 idle->sched_class = &idle_sched_class;
5981 }
5982
5983 /*
5984 * In a system that switches off the HZ timer nohz_cpu_mask
5985 * indicates which cpus entered this state. This is used
5986 * in the rcu update to wait only for active cpus. For system
5987 * which do not switch off the HZ timer nohz_cpu_mask should
5988 * always be CPU_MASK_NONE.
5989 */
5990 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5991
5992 /*
5993 * Increase the granularity value when there are more CPUs,
5994 * because with more CPUs the 'effective latency' as visible
5995 * to users decreases. But the relationship is not linear,
5996 * so pick a second-best guess by going with the log2 of the
5997 * number of CPUs.
5998 *
5999 * This idea comes from the SD scheduler of Con Kolivas:
6000 */
6001 static inline void sched_init_granularity(void)
6002 {
6003 unsigned int factor = 1 + ilog2(num_online_cpus());
6004 const unsigned long limit = 200000000;
6005
6006 sysctl_sched_min_granularity *= factor;
6007 if (sysctl_sched_min_granularity > limit)
6008 sysctl_sched_min_granularity = limit;
6009
6010 sysctl_sched_latency *= factor;
6011 if (sysctl_sched_latency > limit)
6012 sysctl_sched_latency = limit;
6013
6014 sysctl_sched_wakeup_granularity *= factor;
6015 }
6016
6017 #ifdef CONFIG_SMP
6018 /*
6019 * This is how migration works:
6020 *
6021 * 1) we queue a struct migration_req structure in the source CPU's
6022 * runqueue and wake up that CPU's migration thread.
6023 * 2) we down() the locked semaphore => thread blocks.
6024 * 3) migration thread wakes up (implicitly it forces the migrated
6025 * thread off the CPU)
6026 * 4) it gets the migration request and checks whether the migrated
6027 * task is still in the wrong runqueue.
6028 * 5) if it's in the wrong runqueue then the migration thread removes
6029 * it and puts it into the right queue.
6030 * 6) migration thread up()s the semaphore.
6031 * 7) we wake up and the migration is done.
6032 */
6033
6034 /*
6035 * Change a given task's CPU affinity. Migrate the thread to a
6036 * proper CPU and schedule it away if the CPU it's executing on
6037 * is removed from the allowed bitmask.
6038 *
6039 * NOTE: the caller must have a valid reference to the task, the
6040 * task must not exit() & deallocate itself prematurely. The
6041 * call is not atomic; no spinlocks may be held.
6042 */
6043 int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
6044 {
6045 struct migration_req req;
6046 unsigned long flags;
6047 struct rq *rq;
6048 int ret = 0;
6049
6050 rq = task_rq_lock(p, &flags);
6051 if (!cpus_intersects(*new_mask, cpu_online_map)) {
6052 ret = -EINVAL;
6053 goto out;
6054 }
6055
6056 if (p->sched_class->set_cpus_allowed)
6057 p->sched_class->set_cpus_allowed(p, new_mask);
6058 else {
6059 p->cpus_allowed = *new_mask;
6060 p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
6061 }
6062
6063 /* Can the task run on the task's current CPU? If so, we're done */
6064 if (cpu_isset(task_cpu(p), *new_mask))
6065 goto out;
6066
6067 if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
6068 /* Need help from migration thread: drop lock and wait. */
6069 task_rq_unlock(rq, &flags);
6070 wake_up_process(rq->migration_thread);
6071 wait_for_completion(&req.done);
6072 tlb_migrate_finish(p->mm);
6073 return 0;
6074 }
6075 out:
6076 task_rq_unlock(rq, &flags);
6077
6078 return ret;
6079 }
6080 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
6081
6082 /*
6083 * Move (not current) task off this cpu, onto dest cpu. We're doing
6084 * this because either it can't run here any more (set_cpus_allowed()
6085 * away from this CPU, or CPU going down), or because we're
6086 * attempting to rebalance this task on exec (sched_exec).
6087 *
6088 * So we race with normal scheduler movements, but that's OK, as long
6089 * as the task is no longer on this CPU.
6090 *
6091 * Returns non-zero if task was successfully migrated.
6092 */
6093 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
6094 {
6095 struct rq *rq_dest, *rq_src;
6096 int ret = 0, on_rq;
6097
6098 if (unlikely(cpu_is_offline(dest_cpu)))
6099 return ret;
6100
6101 rq_src = cpu_rq(src_cpu);
6102 rq_dest = cpu_rq(dest_cpu);
6103
6104 double_rq_lock(rq_src, rq_dest);
6105 /* Already moved. */
6106 if (task_cpu(p) != src_cpu)
6107 goto out;
6108 /* Affinity changed (again). */
6109 if (!cpu_isset(dest_cpu, p->cpus_allowed))
6110 goto out;
6111
6112 on_rq = p->se.on_rq;
6113 if (on_rq)
6114 deactivate_task(rq_src, p, 0);
6115
6116 set_task_cpu(p, dest_cpu);
6117 if (on_rq) {
6118 activate_task(rq_dest, p, 0);
6119 check_preempt_curr(rq_dest, p);
6120 }
6121 ret = 1;
6122 out:
6123 double_rq_unlock(rq_src, rq_dest);
6124 return ret;
6125 }
6126
6127 /*
6128 * migration_thread - this is a highprio system thread that performs
6129 * thread migration by bumping thread off CPU then 'pushing' onto
6130 * another runqueue.
6131 */
6132 static int migration_thread(void *data)
6133 {
6134 int cpu = (long)data;
6135 struct rq *rq;
6136
6137 rq = cpu_rq(cpu);
6138 BUG_ON(rq->migration_thread != current);
6139
6140 set_current_state(TASK_INTERRUPTIBLE);
6141 while (!kthread_should_stop()) {
6142 struct migration_req *req;
6143 struct list_head *head;
6144
6145 spin_lock_irq(&rq->lock);
6146
6147 if (cpu_is_offline(cpu)) {
6148 spin_unlock_irq(&rq->lock);
6149 goto wait_to_die;
6150 }
6151
6152 if (rq->active_balance) {
6153 active_load_balance(rq, cpu);
6154 rq->active_balance = 0;
6155 }
6156
6157 head = &rq->migration_queue;
6158
6159 if (list_empty(head)) {
6160 spin_unlock_irq(&rq->lock);
6161 schedule();
6162 set_current_state(TASK_INTERRUPTIBLE);
6163 continue;
6164 }
6165 req = list_entry(head->next, struct migration_req, list);
6166 list_del_init(head->next);
6167
6168 spin_unlock(&rq->lock);
6169 __migrate_task(req->task, cpu, req->dest_cpu);
6170 local_irq_enable();
6171
6172 complete(&req->done);
6173 }
6174 __set_current_state(TASK_RUNNING);
6175 return 0;
6176
6177 wait_to_die:
6178 /* Wait for kthread_stop */
6179 set_current_state(TASK_INTERRUPTIBLE);
6180 while (!kthread_should_stop()) {
6181 schedule();
6182 set_current_state(TASK_INTERRUPTIBLE);
6183 }
6184 __set_current_state(TASK_RUNNING);
6185 return 0;
6186 }
6187
6188 #ifdef CONFIG_HOTPLUG_CPU
6189
6190 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6191 {
6192 int ret;
6193
6194 local_irq_disable();
6195 ret = __migrate_task(p, src_cpu, dest_cpu);
6196 local_irq_enable();
6197 return ret;
6198 }
6199
6200 /*
6201 * Figure out where task on dead CPU should go, use force if necessary.
6202 * NOTE: interrupts should be disabled by the caller
6203 */
6204 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
6205 {
6206 unsigned long flags;
6207 cpumask_t mask;
6208 struct rq *rq;
6209 int dest_cpu;
6210
6211 do {
6212 /* On same node? */
6213 mask = node_to_cpumask(cpu_to_node(dead_cpu));
6214 cpus_and(mask, mask, p->cpus_allowed);
6215 dest_cpu = any_online_cpu(mask);
6216
6217 /* On any allowed CPU? */
6218 if (dest_cpu >= nr_cpu_ids)
6219 dest_cpu = any_online_cpu(p->cpus_allowed);
6220
6221 /* No more Mr. Nice Guy. */
6222 if (dest_cpu >= nr_cpu_ids) {
6223 cpumask_t cpus_allowed;
6224
6225 cpuset_cpus_allowed_locked(p, &cpus_allowed);
6226 /*
6227 * Try to stay on the same cpuset, where the
6228 * current cpuset may be a subset of all cpus.
6229 * The cpuset_cpus_allowed_locked() variant of
6230 * cpuset_cpus_allowed() will not block. It must be
6231 * called within calls to cpuset_lock/cpuset_unlock.
6232 */
6233 rq = task_rq_lock(p, &flags);
6234 p->cpus_allowed = cpus_allowed;
6235 dest_cpu = any_online_cpu(p->cpus_allowed);
6236 task_rq_unlock(rq, &flags);
6237
6238 /*
6239 * Don't tell them about moving exiting tasks or
6240 * kernel threads (both mm NULL), since they never
6241 * leave kernel.
6242 */
6243 if (p->mm && printk_ratelimit()) {
6244 printk(KERN_INFO "process %d (%s) no "
6245 "longer affine to cpu%d\n",
6246 task_pid_nr(p), p->comm, dead_cpu);
6247 }
6248 }
6249 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
6250 }
6251
6252 /*
6253 * While a dead CPU has no uninterruptible tasks queued at this point,
6254 * it might still have a nonzero ->nr_uninterruptible counter, because
6255 * for performance reasons the counter is not stricly tracking tasks to
6256 * their home CPUs. So we just add the counter to another CPU's counter,
6257 * to keep the global sum constant after CPU-down:
6258 */
6259 static void migrate_nr_uninterruptible(struct rq *rq_src)
6260 {
6261 struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
6262 unsigned long flags;
6263
6264 local_irq_save(flags);
6265 double_rq_lock(rq_src, rq_dest);
6266 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6267 rq_src->nr_uninterruptible = 0;
6268 double_rq_unlock(rq_src, rq_dest);
6269 local_irq_restore(flags);
6270 }
6271
6272 /* Run through task list and migrate tasks from the dead cpu. */
6273 static void migrate_live_tasks(int src_cpu)
6274 {
6275 struct task_struct *p, *t;
6276
6277 read_lock(&tasklist_lock);
6278
6279 do_each_thread(t, p) {
6280 if (p == current)
6281 continue;
6282
6283 if (task_cpu(p) == src_cpu)
6284 move_task_off_dead_cpu(src_cpu, p);
6285 } while_each_thread(t, p);
6286
6287 read_unlock(&tasklist_lock);
6288 }
6289
6290 /*
6291 * Schedules idle task to be the next runnable task on current CPU.
6292 * It does so by boosting its priority to highest possible.
6293 * Used by CPU offline code.
6294 */
6295 void sched_idle_next(void)
6296 {
6297 int this_cpu = smp_processor_id();
6298 struct rq *rq = cpu_rq(this_cpu);
6299 struct task_struct *p = rq->idle;
6300 unsigned long flags;
6301
6302 /* cpu has to be offline */
6303 BUG_ON(cpu_online(this_cpu));
6304
6305 /*
6306 * Strictly not necessary since rest of the CPUs are stopped by now
6307 * and interrupts disabled on the current cpu.
6308 */
6309 spin_lock_irqsave(&rq->lock, flags);
6310
6311 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6312
6313 update_rq_clock(rq);
6314 activate_task(rq, p, 0);
6315
6316 spin_unlock_irqrestore(&rq->lock, flags);
6317 }
6318
6319 /*
6320 * Ensures that the idle task is using init_mm right before its cpu goes
6321 * offline.
6322 */
6323 void idle_task_exit(void)
6324 {
6325 struct mm_struct *mm = current->active_mm;
6326
6327 BUG_ON(cpu_online(smp_processor_id()));
6328
6329 if (mm != &init_mm)
6330 switch_mm(mm, &init_mm, current);
6331 mmdrop(mm);
6332 }
6333
6334 /* called under rq->lock with disabled interrupts */
6335 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
6336 {
6337 struct rq *rq = cpu_rq(dead_cpu);
6338
6339 /* Must be exiting, otherwise would be on tasklist. */
6340 BUG_ON(!p->exit_state);
6341
6342 /* Cannot have done final schedule yet: would have vanished. */
6343 BUG_ON(p->state == TASK_DEAD);
6344
6345 get_task_struct(p);
6346
6347 /*
6348 * Drop lock around migration; if someone else moves it,
6349 * that's OK. No task can be added to this CPU, so iteration is
6350 * fine.
6351 */
6352 spin_unlock_irq(&rq->lock);
6353 move_task_off_dead_cpu(dead_cpu, p);
6354 spin_lock_irq(&rq->lock);
6355
6356 put_task_struct(p);
6357 }
6358
6359 /* release_task() removes task from tasklist, so we won't find dead tasks. */
6360 static void migrate_dead_tasks(unsigned int dead_cpu)
6361 {
6362 struct rq *rq = cpu_rq(dead_cpu);
6363 struct task_struct *next;
6364
6365 for ( ; ; ) {
6366 if (!rq->nr_running)
6367 break;
6368 update_rq_clock(rq);
6369 next = pick_next_task(rq, rq->curr);
6370 if (!next)
6371 break;
6372 migrate_dead(dead_cpu, next);
6373
6374 }
6375 }
6376 #endif /* CONFIG_HOTPLUG_CPU */
6377
6378 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6379
6380 static struct ctl_table sd_ctl_dir[] = {
6381 {
6382 .procname = "sched_domain",
6383 .mode = 0555,
6384 },
6385 {0, },
6386 };
6387
6388 static struct ctl_table sd_ctl_root[] = {
6389 {
6390 .ctl_name = CTL_KERN,
6391 .procname = "kernel",
6392 .mode = 0555,
6393 .child = sd_ctl_dir,
6394 },
6395 {0, },
6396 };
6397
6398 static struct ctl_table *sd_alloc_ctl_entry(int n)
6399 {
6400 struct ctl_table *entry =
6401 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6402
6403 return entry;
6404 }
6405
6406 static void sd_free_ctl_entry(struct ctl_table **tablep)
6407 {
6408 struct ctl_table *entry;
6409
6410 /*
6411 * In the intermediate directories, both the child directory and
6412 * procname are dynamically allocated and could fail but the mode
6413 * will always be set. In the lowest directory the names are
6414 * static strings and all have proc handlers.
6415 */
6416 for (entry = *tablep; entry->mode; entry++) {
6417 if (entry->child)
6418 sd_free_ctl_entry(&entry->child);
6419 if (entry->proc_handler == NULL)
6420 kfree(entry->procname);
6421 }
6422
6423 kfree(*tablep);
6424 *tablep = NULL;
6425 }
6426
6427 static void
6428 set_table_entry(struct ctl_table *entry,
6429 const char *procname, void *data, int maxlen,
6430 mode_t mode, proc_handler *proc_handler)
6431 {
6432 entry->procname = procname;
6433 entry->data = data;
6434 entry->maxlen = maxlen;
6435 entry->mode = mode;
6436 entry->proc_handler = proc_handler;
6437 }
6438
6439 static struct ctl_table *
6440 sd_alloc_ctl_domain_table(struct sched_domain *sd)
6441 {
6442 struct ctl_table *table = sd_alloc_ctl_entry(12);
6443
6444 if (table == NULL)
6445 return NULL;
6446
6447 set_table_entry(&table[0], "min_interval", &sd->min_interval,
6448 sizeof(long), 0644, proc_doulongvec_minmax);
6449 set_table_entry(&table[1], "max_interval", &sd->max_interval,
6450 sizeof(long), 0644, proc_doulongvec_minmax);
6451 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6452 sizeof(int), 0644, proc_dointvec_minmax);
6453 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6454 sizeof(int), 0644, proc_dointvec_minmax);
6455 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6456 sizeof(int), 0644, proc_dointvec_minmax);
6457 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6458 sizeof(int), 0644, proc_dointvec_minmax);
6459 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6460 sizeof(int), 0644, proc_dointvec_minmax);
6461 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6462 sizeof(int), 0644, proc_dointvec_minmax);
6463 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6464 sizeof(int), 0644, proc_dointvec_minmax);
6465 set_table_entry(&table[9], "cache_nice_tries",
6466 &sd->cache_nice_tries,
6467 sizeof(int), 0644, proc_dointvec_minmax);
6468 set_table_entry(&table[10], "flags", &sd->flags,
6469 sizeof(int), 0644, proc_dointvec_minmax);
6470 /* &table[11] is terminator */
6471
6472 return table;
6473 }
6474
6475 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6476 {
6477 struct ctl_table *entry, *table;
6478 struct sched_domain *sd;
6479 int domain_num = 0, i;
6480 char buf[32];
6481
6482 for_each_domain(cpu, sd)
6483 domain_num++;
6484 entry = table = sd_alloc_ctl_entry(domain_num + 1);
6485 if (table == NULL)
6486 return NULL;
6487
6488 i = 0;
6489 for_each_domain(cpu, sd) {
6490 snprintf(buf, 32, "domain%d", i);
6491 entry->procname = kstrdup(buf, GFP_KERNEL);
6492 entry->mode = 0555;
6493 entry->child = sd_alloc_ctl_domain_table(sd);
6494 entry++;
6495 i++;
6496 }
6497 return table;
6498 }
6499
6500 static struct ctl_table_header *sd_sysctl_header;
6501 static void register_sched_domain_sysctl(void)
6502 {
6503 int i, cpu_num = num_online_cpus();
6504 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6505 char buf[32];
6506
6507 WARN_ON(sd_ctl_dir[0].child);
6508 sd_ctl_dir[0].child = entry;
6509
6510 if (entry == NULL)
6511 return;
6512
6513 for_each_online_cpu(i) {
6514 snprintf(buf, 32, "cpu%d", i);
6515 entry->procname = kstrdup(buf, GFP_KERNEL);
6516 entry->mode = 0555;
6517 entry->child = sd_alloc_ctl_cpu_table(i);
6518 entry++;
6519 }
6520
6521 WARN_ON(sd_sysctl_header);
6522 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6523 }
6524
6525 /* may be called multiple times per register */
6526 static void unregister_sched_domain_sysctl(void)
6527 {
6528 if (sd_sysctl_header)
6529 unregister_sysctl_table(sd_sysctl_header);
6530 sd_sysctl_header = NULL;
6531 if (sd_ctl_dir[0].child)
6532 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6533 }
6534 #else
6535 static void register_sched_domain_sysctl(void)
6536 {
6537 }
6538 static void unregister_sched_domain_sysctl(void)
6539 {
6540 }
6541 #endif
6542
6543 /*
6544 * migration_call - callback that gets triggered when a CPU is added.
6545 * Here we can start up the necessary migration thread for the new CPU.
6546 */
6547 static int __cpuinit
6548 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6549 {
6550 struct task_struct *p;
6551 int cpu = (long)hcpu;
6552 unsigned long flags;
6553 struct rq *rq;
6554
6555 switch (action) {
6556
6557 case CPU_UP_PREPARE:
6558 case CPU_UP_PREPARE_FROZEN:
6559 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
6560 if (IS_ERR(p))
6561 return NOTIFY_BAD;
6562 kthread_bind(p, cpu);
6563 /* Must be high prio: stop_machine expects to yield to it. */
6564 rq = task_rq_lock(p, &flags);
6565 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6566 task_rq_unlock(rq, &flags);
6567 cpu_rq(cpu)->migration_thread = p;
6568 break;
6569
6570 case CPU_ONLINE:
6571 case CPU_ONLINE_FROZEN:
6572 /* Strictly unnecessary, as first user will wake it. */
6573 wake_up_process(cpu_rq(cpu)->migration_thread);
6574
6575 /* Update our root-domain */
6576 rq = cpu_rq(cpu);
6577 spin_lock_irqsave(&rq->lock, flags);
6578 if (rq->rd) {
6579 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6580 cpu_set(cpu, rq->rd->online);
6581 }
6582 spin_unlock_irqrestore(&rq->lock, flags);
6583 break;
6584
6585 #ifdef CONFIG_HOTPLUG_CPU
6586 case CPU_UP_CANCELED:
6587 case CPU_UP_CANCELED_FROZEN:
6588 if (!cpu_rq(cpu)->migration_thread)
6589 break;
6590 /* Unbind it from offline cpu so it can run. Fall thru. */
6591 kthread_bind(cpu_rq(cpu)->migration_thread,
6592 any_online_cpu(cpu_online_map));
6593 kthread_stop(cpu_rq(cpu)->migration_thread);
6594 cpu_rq(cpu)->migration_thread = NULL;
6595 break;
6596
6597 case CPU_DEAD:
6598 case CPU_DEAD_FROZEN:
6599 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
6600 migrate_live_tasks(cpu);
6601 rq = cpu_rq(cpu);
6602 kthread_stop(rq->migration_thread);
6603 rq->migration_thread = NULL;
6604 /* Idle task back to normal (off runqueue, low prio) */
6605 spin_lock_irq(&rq->lock);
6606 update_rq_clock(rq);
6607 deactivate_task(rq, rq->idle, 0);
6608 rq->idle->static_prio = MAX_PRIO;
6609 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6610 rq->idle->sched_class = &idle_sched_class;
6611 migrate_dead_tasks(cpu);
6612 spin_unlock_irq(&rq->lock);
6613 cpuset_unlock();
6614 migrate_nr_uninterruptible(rq);
6615 BUG_ON(rq->nr_running != 0);
6616
6617 /*
6618 * No need to migrate the tasks: it was best-effort if
6619 * they didn't take sched_hotcpu_mutex. Just wake up
6620 * the requestors.
6621 */
6622 spin_lock_irq(&rq->lock);
6623 while (!list_empty(&rq->migration_queue)) {
6624 struct migration_req *req;
6625
6626 req = list_entry(rq->migration_queue.next,
6627 struct migration_req, list);
6628 list_del_init(&req->list);
6629 complete(&req->done);
6630 }
6631 spin_unlock_irq(&rq->lock);
6632 break;
6633
6634 case CPU_DYING:
6635 case CPU_DYING_FROZEN:
6636 /* Update our root-domain */
6637 rq = cpu_rq(cpu);
6638 spin_lock_irqsave(&rq->lock, flags);
6639 if (rq->rd) {
6640 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6641 cpu_clear(cpu, rq->rd->online);
6642 }
6643 spin_unlock_irqrestore(&rq->lock, flags);
6644 break;
6645 #endif
6646 }
6647 return NOTIFY_OK;
6648 }
6649
6650 /* Register at highest priority so that task migration (migrate_all_tasks)
6651 * happens before everything else.
6652 */
6653 static struct notifier_block __cpuinitdata migration_notifier = {
6654 .notifier_call = migration_call,
6655 .priority = 10
6656 };
6657
6658 void __init migration_init(void)
6659 {
6660 void *cpu = (void *)(long)smp_processor_id();
6661 int err;
6662
6663 /* Start one for the boot CPU: */
6664 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6665 BUG_ON(err == NOTIFY_BAD);
6666 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6667 register_cpu_notifier(&migration_notifier);
6668 }
6669 #endif
6670
6671 #ifdef CONFIG_SMP
6672
6673 #ifdef CONFIG_SCHED_DEBUG
6674
6675 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6676 cpumask_t *groupmask)
6677 {
6678 struct sched_group *group = sd->groups;
6679 char str[256];
6680
6681 cpulist_scnprintf(str, sizeof(str), sd->span);
6682 cpus_clear(*groupmask);
6683
6684 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6685
6686 if (!(sd->flags & SD_LOAD_BALANCE)) {
6687 printk("does not load-balance\n");
6688 if (sd->parent)
6689 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6690 " has parent");
6691 return -1;
6692 }
6693
6694 printk(KERN_CONT "span %s\n", str);
6695
6696 if (!cpu_isset(cpu, sd->span)) {
6697 printk(KERN_ERR "ERROR: domain->span does not contain "
6698 "CPU%d\n", cpu);
6699 }
6700 if (!cpu_isset(cpu, group->cpumask)) {
6701 printk(KERN_ERR "ERROR: domain->groups does not contain"
6702 " CPU%d\n", cpu);
6703 }
6704
6705 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6706 do {
6707 if (!group) {
6708 printk("\n");
6709 printk(KERN_ERR "ERROR: group is NULL\n");
6710 break;
6711 }
6712
6713 if (!group->__cpu_power) {
6714 printk(KERN_CONT "\n");
6715 printk(KERN_ERR "ERROR: domain->cpu_power not "
6716 "set\n");
6717 break;
6718 }
6719
6720 if (!cpus_weight(group->cpumask)) {
6721 printk(KERN_CONT "\n");
6722 printk(KERN_ERR "ERROR: empty group\n");
6723 break;
6724 }
6725
6726 if (cpus_intersects(*groupmask, group->cpumask)) {
6727 printk(KERN_CONT "\n");
6728 printk(KERN_ERR "ERROR: repeated CPUs\n");
6729 break;
6730 }
6731
6732 cpus_or(*groupmask, *groupmask, group->cpumask);
6733
6734 cpulist_scnprintf(str, sizeof(str), group->cpumask);
6735 printk(KERN_CONT " %s", str);
6736
6737 group = group->next;
6738 } while (group != sd->groups);
6739 printk(KERN_CONT "\n");
6740
6741 if (!cpus_equal(sd->span, *groupmask))
6742 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6743
6744 if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
6745 printk(KERN_ERR "ERROR: parent span is not a superset "
6746 "of domain->span\n");
6747 return 0;
6748 }
6749
6750 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6751 {
6752 cpumask_t *groupmask;
6753 int level = 0;
6754
6755 if (!sd) {
6756 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6757 return;
6758 }
6759
6760 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6761
6762 groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6763 if (!groupmask) {
6764 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6765 return;
6766 }
6767
6768 for (;;) {
6769 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6770 break;
6771 level++;
6772 sd = sd->parent;
6773 if (!sd)
6774 break;
6775 }
6776 kfree(groupmask);
6777 }
6778 #else
6779 # define sched_domain_debug(sd, cpu) do { } while (0)
6780 #endif
6781
6782 static int sd_degenerate(struct sched_domain *sd)
6783 {
6784 if (cpus_weight(sd->span) == 1)
6785 return 1;
6786
6787 /* Following flags need at least 2 groups */
6788 if (sd->flags & (SD_LOAD_BALANCE |
6789 SD_BALANCE_NEWIDLE |
6790 SD_BALANCE_FORK |
6791 SD_BALANCE_EXEC |
6792 SD_SHARE_CPUPOWER |
6793 SD_SHARE_PKG_RESOURCES)) {
6794 if (sd->groups != sd->groups->next)
6795 return 0;
6796 }
6797
6798 /* Following flags don't use groups */
6799 if (sd->flags & (SD_WAKE_IDLE |
6800 SD_WAKE_AFFINE |
6801 SD_WAKE_BALANCE))
6802 return 0;
6803
6804 return 1;
6805 }
6806
6807 static int
6808 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6809 {
6810 unsigned long cflags = sd->flags, pflags = parent->flags;
6811
6812 if (sd_degenerate(parent))
6813 return 1;
6814
6815 if (!cpus_equal(sd->span, parent->span))
6816 return 0;
6817
6818 /* Does parent contain flags not in child? */
6819 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6820 if (cflags & SD_WAKE_AFFINE)
6821 pflags &= ~SD_WAKE_BALANCE;
6822 /* Flags needing groups don't count if only 1 group in parent */
6823 if (parent->groups == parent->groups->next) {
6824 pflags &= ~(SD_LOAD_BALANCE |
6825 SD_BALANCE_NEWIDLE |
6826 SD_BALANCE_FORK |
6827 SD_BALANCE_EXEC |
6828 SD_SHARE_CPUPOWER |
6829 SD_SHARE_PKG_RESOURCES);
6830 }
6831 if (~cflags & pflags)
6832 return 0;
6833
6834 return 1;
6835 }
6836
6837 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6838 {
6839 unsigned long flags;
6840 const struct sched_class *class;
6841
6842 spin_lock_irqsave(&rq->lock, flags);
6843
6844 if (rq->rd) {
6845 struct root_domain *old_rd = rq->rd;
6846
6847 for (class = sched_class_highest; class; class = class->next) {
6848 if (class->leave_domain)
6849 class->leave_domain(rq);
6850 }
6851
6852 cpu_clear(rq->cpu, old_rd->span);
6853 cpu_clear(rq->cpu, old_rd->online);
6854
6855 if (atomic_dec_and_test(&old_rd->refcount))
6856 kfree(old_rd);
6857 }
6858
6859 atomic_inc(&rd->refcount);
6860 rq->rd = rd;
6861
6862 cpu_set(rq->cpu, rd->span);
6863 if (cpu_isset(rq->cpu, cpu_online_map))
6864 cpu_set(rq->cpu, rd->online);
6865
6866 for (class = sched_class_highest; class; class = class->next) {
6867 if (class->join_domain)
6868 class->join_domain(rq);
6869 }
6870
6871 spin_unlock_irqrestore(&rq->lock, flags);
6872 }
6873
6874 static void init_rootdomain(struct root_domain *rd)
6875 {
6876 memset(rd, 0, sizeof(*rd));
6877
6878 cpus_clear(rd->span);
6879 cpus_clear(rd->online);
6880 }
6881
6882 static void init_defrootdomain(void)
6883 {
6884 init_rootdomain(&def_root_domain);
6885 atomic_set(&def_root_domain.refcount, 1);
6886 }
6887
6888 static struct root_domain *alloc_rootdomain(void)
6889 {
6890 struct root_domain *rd;
6891
6892 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6893 if (!rd)
6894 return NULL;
6895
6896 init_rootdomain(rd);
6897
6898 return rd;
6899 }
6900
6901 /*
6902 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6903 * hold the hotplug lock.
6904 */
6905 static void
6906 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6907 {
6908 struct rq *rq = cpu_rq(cpu);
6909 struct sched_domain *tmp;
6910
6911 /* Remove the sched domains which do not contribute to scheduling. */
6912 for (tmp = sd; tmp; tmp = tmp->parent) {
6913 struct sched_domain *parent = tmp->parent;
6914 if (!parent)
6915 break;
6916 if (sd_parent_degenerate(tmp, parent)) {
6917 tmp->parent = parent->parent;
6918 if (parent->parent)
6919 parent->parent->child = tmp;
6920 }
6921 }
6922
6923 if (sd && sd_degenerate(sd)) {
6924 sd = sd->parent;
6925 if (sd)
6926 sd->child = NULL;
6927 }
6928
6929 sched_domain_debug(sd, cpu);
6930
6931 rq_attach_root(rq, rd);
6932 rcu_assign_pointer(rq->sd, sd);
6933 }
6934
6935 /* cpus with isolated domains */
6936 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
6937
6938 /* Setup the mask of cpus configured for isolated domains */
6939 static int __init isolated_cpu_setup(char *str)
6940 {
6941 int ints[NR_CPUS], i;
6942
6943 str = get_options(str, ARRAY_SIZE(ints), ints);
6944 cpus_clear(cpu_isolated_map);
6945 for (i = 1; i <= ints[0]; i++)
6946 if (ints[i] < NR_CPUS)
6947 cpu_set(ints[i], cpu_isolated_map);
6948 return 1;
6949 }
6950
6951 __setup("isolcpus=", isolated_cpu_setup);
6952
6953 /*
6954 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6955 * to a function which identifies what group(along with sched group) a CPU
6956 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6957 * (due to the fact that we keep track of groups covered with a cpumask_t).
6958 *
6959 * init_sched_build_groups will build a circular linked list of the groups
6960 * covered by the given span, and will set each group's ->cpumask correctly,
6961 * and ->cpu_power to 0.
6962 */
6963 static void
6964 init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6965 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6966 struct sched_group **sg,
6967 cpumask_t *tmpmask),
6968 cpumask_t *covered, cpumask_t *tmpmask)
6969 {
6970 struct sched_group *first = NULL, *last = NULL;
6971 int i;
6972
6973 cpus_clear(*covered);
6974
6975 for_each_cpu_mask(i, *span) {
6976 struct sched_group *sg;
6977 int group = group_fn(i, cpu_map, &sg, tmpmask);
6978 int j;
6979
6980 if (cpu_isset(i, *covered))
6981 continue;
6982
6983 cpus_clear(sg->cpumask);
6984 sg->__cpu_power = 0;
6985
6986 for_each_cpu_mask(j, *span) {
6987 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6988 continue;
6989
6990 cpu_set(j, *covered);
6991 cpu_set(j, sg->cpumask);
6992 }
6993 if (!first)
6994 first = sg;
6995 if (last)
6996 last->next = sg;
6997 last = sg;
6998 }
6999 last->next = first;
7000 }
7001
7002 #define SD_NODES_PER_DOMAIN 16
7003
7004 #ifdef CONFIG_NUMA
7005
7006 /**
7007 * find_next_best_node - find the next node to include in a sched_domain
7008 * @node: node whose sched_domain we're building
7009 * @used_nodes: nodes already in the sched_domain
7010 *
7011 * Find the next node to include in a given scheduling domain. Simply
7012 * finds the closest node not already in the @used_nodes map.
7013 *
7014 * Should use nodemask_t.
7015 */
7016 static int find_next_best_node(int node, nodemask_t *used_nodes)
7017 {
7018 int i, n, val, min_val, best_node = 0;
7019
7020 min_val = INT_MAX;
7021
7022 for (i = 0; i < MAX_NUMNODES; i++) {
7023 /* Start at @node */
7024 n = (node + i) % MAX_NUMNODES;
7025
7026 if (!nr_cpus_node(n))
7027 continue;
7028
7029 /* Skip already used nodes */
7030 if (node_isset(n, *used_nodes))
7031 continue;
7032
7033 /* Simple min distance search */
7034 val = node_distance(node, n);
7035
7036 if (val < min_val) {
7037 min_val = val;
7038 best_node = n;
7039 }
7040 }
7041
7042 node_set(best_node, *used_nodes);
7043 return best_node;
7044 }
7045
7046 /**
7047 * sched_domain_node_span - get a cpumask for a node's sched_domain
7048 * @node: node whose cpumask we're constructing
7049 *
7050 * Given a node, construct a good cpumask for its sched_domain to span. It
7051 * should be one that prevents unnecessary balancing, but also spreads tasks
7052 * out optimally.
7053 */
7054 static void sched_domain_node_span(int node, cpumask_t *span)
7055 {
7056 nodemask_t used_nodes;
7057 node_to_cpumask_ptr(nodemask, node);
7058 int i;
7059
7060 cpus_clear(*span);
7061 nodes_clear(used_nodes);
7062
7063 cpus_or(*span, *span, *nodemask);
7064 node_set(node, used_nodes);
7065
7066 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7067 int next_node = find_next_best_node(node, &used_nodes);
7068
7069 node_to_cpumask_ptr_next(nodemask, next_node);
7070 cpus_or(*span, *span, *nodemask);
7071 }
7072 }
7073 #endif
7074
7075 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7076
7077 /*
7078 * SMT sched-domains:
7079 */
7080 #ifdef CONFIG_SCHED_SMT
7081 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
7082 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
7083
7084 static int
7085 cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7086 cpumask_t *unused)
7087 {
7088 if (sg)
7089 *sg = &per_cpu(sched_group_cpus, cpu);
7090 return cpu;
7091 }
7092 #endif
7093
7094 /*
7095 * multi-core sched-domains:
7096 */
7097 #ifdef CONFIG_SCHED_MC
7098 static DEFINE_PER_CPU(struct sched_domain, core_domains);
7099 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
7100 #endif
7101
7102 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
7103 static int
7104 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7105 cpumask_t *mask)
7106 {
7107 int group;
7108
7109 *mask = per_cpu(cpu_sibling_map, cpu);
7110 cpus_and(*mask, *mask, *cpu_map);
7111 group = first_cpu(*mask);
7112 if (sg)
7113 *sg = &per_cpu(sched_group_core, group);
7114 return group;
7115 }
7116 #elif defined(CONFIG_SCHED_MC)
7117 static int
7118 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7119 cpumask_t *unused)
7120 {
7121 if (sg)
7122 *sg = &per_cpu(sched_group_core, cpu);
7123 return cpu;
7124 }
7125 #endif
7126
7127 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
7128 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
7129
7130 static int
7131 cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7132 cpumask_t *mask)
7133 {
7134 int group;
7135 #ifdef CONFIG_SCHED_MC
7136 *mask = cpu_coregroup_map(cpu);
7137 cpus_and(*mask, *mask, *cpu_map);
7138 group = first_cpu(*mask);
7139 #elif defined(CONFIG_SCHED_SMT)
7140 *mask = per_cpu(cpu_sibling_map, cpu);
7141 cpus_and(*mask, *mask, *cpu_map);
7142 group = first_cpu(*mask);
7143 #else
7144 group = cpu;
7145 #endif
7146 if (sg)
7147 *sg = &per_cpu(sched_group_phys, group);
7148 return group;
7149 }
7150
7151 #ifdef CONFIG_NUMA
7152 /*
7153 * The init_sched_build_groups can't handle what we want to do with node
7154 * groups, so roll our own. Now each node has its own list of groups which
7155 * gets dynamically allocated.
7156 */
7157 static DEFINE_PER_CPU(struct sched_domain, node_domains);
7158 static struct sched_group ***sched_group_nodes_bycpu;
7159
7160 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
7161 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
7162
7163 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7164 struct sched_group **sg, cpumask_t *nodemask)
7165 {
7166 int group;
7167
7168 *nodemask = node_to_cpumask(cpu_to_node(cpu));
7169 cpus_and(*nodemask, *nodemask, *cpu_map);
7170 group = first_cpu(*nodemask);
7171
7172 if (sg)
7173 *sg = &per_cpu(sched_group_allnodes, group);
7174 return group;
7175 }
7176
7177 static void init_numa_sched_groups_power(struct sched_group *group_head)
7178 {
7179 struct sched_group *sg = group_head;
7180 int j;
7181
7182 if (!sg)
7183 return;
7184 do {
7185 for_each_cpu_mask(j, sg->cpumask) {
7186 struct sched_domain *sd;
7187
7188 sd = &per_cpu(phys_domains, j);
7189 if (j != first_cpu(sd->groups->cpumask)) {
7190 /*
7191 * Only add "power" once for each
7192 * physical package.
7193 */
7194 continue;
7195 }
7196
7197 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7198 }
7199 sg = sg->next;
7200 } while (sg != group_head);
7201 }
7202 #endif
7203
7204 #ifdef CONFIG_NUMA
7205 /* Free memory allocated for various sched_group structures */
7206 static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7207 {
7208 int cpu, i;
7209
7210 for_each_cpu_mask(cpu, *cpu_map) {
7211 struct sched_group **sched_group_nodes
7212 = sched_group_nodes_bycpu[cpu];
7213
7214 if (!sched_group_nodes)
7215 continue;
7216
7217 for (i = 0; i < MAX_NUMNODES; i++) {
7218 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7219
7220 *nodemask = node_to_cpumask(i);
7221 cpus_and(*nodemask, *nodemask, *cpu_map);
7222 if (cpus_empty(*nodemask))
7223 continue;
7224
7225 if (sg == NULL)
7226 continue;
7227 sg = sg->next;
7228 next_sg:
7229 oldsg = sg;
7230 sg = sg->next;
7231 kfree(oldsg);
7232 if (oldsg != sched_group_nodes[i])
7233 goto next_sg;
7234 }
7235 kfree(sched_group_nodes);
7236 sched_group_nodes_bycpu[cpu] = NULL;
7237 }
7238 }
7239 #else
7240 static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7241 {
7242 }
7243 #endif
7244
7245 /*
7246 * Initialize sched groups cpu_power.
7247 *
7248 * cpu_power indicates the capacity of sched group, which is used while
7249 * distributing the load between different sched groups in a sched domain.
7250 * Typically cpu_power for all the groups in a sched domain will be same unless
7251 * there are asymmetries in the topology. If there are asymmetries, group
7252 * having more cpu_power will pickup more load compared to the group having
7253 * less cpu_power.
7254 *
7255 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7256 * the maximum number of tasks a group can handle in the presence of other idle
7257 * or lightly loaded groups in the same sched domain.
7258 */
7259 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7260 {
7261 struct sched_domain *child;
7262 struct sched_group *group;
7263
7264 WARN_ON(!sd || !sd->groups);
7265
7266 if (cpu != first_cpu(sd->groups->cpumask))
7267 return;
7268
7269 child = sd->child;
7270
7271 sd->groups->__cpu_power = 0;
7272
7273 /*
7274 * For perf policy, if the groups in child domain share resources
7275 * (for example cores sharing some portions of the cache hierarchy
7276 * or SMT), then set this domain groups cpu_power such that each group
7277 * can handle only one task, when there are other idle groups in the
7278 * same sched domain.
7279 */
7280 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7281 (child->flags &
7282 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7283 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7284 return;
7285 }
7286
7287 /*
7288 * add cpu_power of each child group to this groups cpu_power
7289 */
7290 group = child->groups;
7291 do {
7292 sg_inc_cpu_power(sd->groups, group->__cpu_power);
7293 group = group->next;
7294 } while (group != child->groups);
7295 }
7296
7297 /*
7298 * Initializers for schedule domains
7299 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7300 */
7301
7302 #define SD_INIT(sd, type) sd_init_##type(sd)
7303 #define SD_INIT_FUNC(type) \
7304 static noinline void sd_init_##type(struct sched_domain *sd) \
7305 { \
7306 memset(sd, 0, sizeof(*sd)); \
7307 *sd = SD_##type##_INIT; \
7308 sd->level = SD_LV_##type; \
7309 }
7310
7311 SD_INIT_FUNC(CPU)
7312 #ifdef CONFIG_NUMA
7313 SD_INIT_FUNC(ALLNODES)
7314 SD_INIT_FUNC(NODE)
7315 #endif
7316 #ifdef CONFIG_SCHED_SMT
7317 SD_INIT_FUNC(SIBLING)
7318 #endif
7319 #ifdef CONFIG_SCHED_MC
7320 SD_INIT_FUNC(MC)
7321 #endif
7322
7323 /*
7324 * To minimize stack usage kmalloc room for cpumasks and share the
7325 * space as the usage in build_sched_domains() dictates. Used only
7326 * if the amount of space is significant.
7327 */
7328 struct allmasks {
7329 cpumask_t tmpmask; /* make this one first */
7330 union {
7331 cpumask_t nodemask;
7332 cpumask_t this_sibling_map;
7333 cpumask_t this_core_map;
7334 };
7335 cpumask_t send_covered;
7336
7337 #ifdef CONFIG_NUMA
7338 cpumask_t domainspan;
7339 cpumask_t covered;
7340 cpumask_t notcovered;
7341 #endif
7342 };
7343
7344 #if NR_CPUS > 128
7345 #define SCHED_CPUMASK_ALLOC 1
7346 #define SCHED_CPUMASK_FREE(v) kfree(v)
7347 #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
7348 #else
7349 #define SCHED_CPUMASK_ALLOC 0
7350 #define SCHED_CPUMASK_FREE(v)
7351 #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
7352 #endif
7353
7354 #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
7355 ((unsigned long)(a) + offsetof(struct allmasks, v))
7356
7357 static int default_relax_domain_level = -1;
7358
7359 static int __init setup_relax_domain_level(char *str)
7360 {
7361 default_relax_domain_level = simple_strtoul(str, NULL, 0);
7362 return 1;
7363 }
7364 __setup("relax_domain_level=", setup_relax_domain_level);
7365
7366 static void set_domain_attribute(struct sched_domain *sd,
7367 struct sched_domain_attr *attr)
7368 {
7369 int request;
7370
7371 if (!attr || attr->relax_domain_level < 0) {
7372 if (default_relax_domain_level < 0)
7373 return;
7374 else
7375 request = default_relax_domain_level;
7376 } else
7377 request = attr->relax_domain_level;
7378 if (request < sd->level) {
7379 /* turn off idle balance on this domain */
7380 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7381 } else {
7382 /* turn on idle balance on this domain */
7383 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7384 }
7385 }
7386
7387 /*
7388 * Build sched domains for a given set of cpus and attach the sched domains
7389 * to the individual cpus
7390 */
7391 static int __build_sched_domains(const cpumask_t *cpu_map,
7392 struct sched_domain_attr *attr)
7393 {
7394 int i;
7395 struct root_domain *rd;
7396 SCHED_CPUMASK_DECLARE(allmasks);
7397 cpumask_t *tmpmask;
7398 #ifdef CONFIG_NUMA
7399 struct sched_group **sched_group_nodes = NULL;
7400 int sd_allnodes = 0;
7401
7402 /*
7403 * Allocate the per-node list of sched groups
7404 */
7405 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
7406 GFP_KERNEL);
7407 if (!sched_group_nodes) {
7408 printk(KERN_WARNING "Can not alloc sched group node list\n");
7409 return -ENOMEM;
7410 }
7411 #endif
7412
7413 rd = alloc_rootdomain();
7414 if (!rd) {
7415 printk(KERN_WARNING "Cannot alloc root domain\n");
7416 #ifdef CONFIG_NUMA
7417 kfree(sched_group_nodes);
7418 #endif
7419 return -ENOMEM;
7420 }
7421
7422 #if SCHED_CPUMASK_ALLOC
7423 /* get space for all scratch cpumask variables */
7424 allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
7425 if (!allmasks) {
7426 printk(KERN_WARNING "Cannot alloc cpumask array\n");
7427 kfree(rd);
7428 #ifdef CONFIG_NUMA
7429 kfree(sched_group_nodes);
7430 #endif
7431 return -ENOMEM;
7432 }
7433 #endif
7434 tmpmask = (cpumask_t *)allmasks;
7435
7436
7437 #ifdef CONFIG_NUMA
7438 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
7439 #endif
7440
7441 /*
7442 * Set up domains for cpus specified by the cpu_map.
7443 */
7444 for_each_cpu_mask(i, *cpu_map) {
7445 struct sched_domain *sd = NULL, *p;
7446 SCHED_CPUMASK_VAR(nodemask, allmasks);
7447
7448 *nodemask = node_to_cpumask(cpu_to_node(i));
7449 cpus_and(*nodemask, *nodemask, *cpu_map);
7450
7451 #ifdef CONFIG_NUMA
7452 if (cpus_weight(*cpu_map) >
7453 SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
7454 sd = &per_cpu(allnodes_domains, i);
7455 SD_INIT(sd, ALLNODES);
7456 set_domain_attribute(sd, attr);
7457 sd->span = *cpu_map;
7458 sd->first_cpu = first_cpu(sd->span);
7459 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7460 p = sd;
7461 sd_allnodes = 1;
7462 } else
7463 p = NULL;
7464
7465 sd = &per_cpu(node_domains, i);
7466 SD_INIT(sd, NODE);
7467 set_domain_attribute(sd, attr);
7468 sched_domain_node_span(cpu_to_node(i), &sd->span);
7469 sd->first_cpu = first_cpu(sd->span);
7470 sd->parent = p;
7471 if (p)
7472 p->child = sd;
7473 cpus_and(sd->span, sd->span, *cpu_map);
7474 #endif
7475
7476 p = sd;
7477 sd = &per_cpu(phys_domains, i);
7478 SD_INIT(sd, CPU);
7479 set_domain_attribute(sd, attr);
7480 sd->span = *nodemask;
7481 sd->first_cpu = first_cpu(sd->span);
7482 sd->parent = p;
7483 if (p)
7484 p->child = sd;
7485 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
7486
7487 #ifdef CONFIG_SCHED_MC
7488 p = sd;
7489 sd = &per_cpu(core_domains, i);
7490 SD_INIT(sd, MC);
7491 set_domain_attribute(sd, attr);
7492 sd->span = cpu_coregroup_map(i);
7493 sd->first_cpu = first_cpu(sd->span);
7494 cpus_and(sd->span, sd->span, *cpu_map);
7495 sd->parent = p;
7496 p->child = sd;
7497 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7498 #endif
7499
7500 #ifdef CONFIG_SCHED_SMT
7501 p = sd;
7502 sd = &per_cpu(cpu_domains, i);
7503 SD_INIT(sd, SIBLING);
7504 set_domain_attribute(sd, attr);
7505 sd->span = per_cpu(cpu_sibling_map, i);
7506 sd->first_cpu = first_cpu(sd->span);
7507 cpus_and(sd->span, sd->span, *cpu_map);
7508 sd->parent = p;
7509 p->child = sd;
7510 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
7511 #endif
7512 }
7513
7514 #ifdef CONFIG_SCHED_SMT
7515 /* Set up CPU (sibling) groups */
7516 for_each_cpu_mask(i, *cpu_map) {
7517 SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
7518 SCHED_CPUMASK_VAR(send_covered, allmasks);
7519
7520 *this_sibling_map = per_cpu(cpu_sibling_map, i);
7521 cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
7522 if (i != first_cpu(*this_sibling_map))
7523 continue;
7524
7525 init_sched_build_groups(this_sibling_map, cpu_map,
7526 &cpu_to_cpu_group,
7527 send_covered, tmpmask);
7528 }
7529 #endif
7530
7531 #ifdef CONFIG_SCHED_MC
7532 /* Set up multi-core groups */
7533 for_each_cpu_mask(i, *cpu_map) {
7534 SCHED_CPUMASK_VAR(this_core_map, allmasks);
7535 SCHED_CPUMASK_VAR(send_covered, allmasks);
7536
7537 *this_core_map = cpu_coregroup_map(i);
7538 cpus_and(*this_core_map, *this_core_map, *cpu_map);
7539 if (i != first_cpu(*this_core_map))
7540 continue;
7541
7542 init_sched_build_groups(this_core_map, cpu_map,
7543 &cpu_to_core_group,
7544 send_covered, tmpmask);
7545 }
7546 #endif
7547
7548 /* Set up physical groups */
7549 for (i = 0; i < MAX_NUMNODES; i++) {
7550 SCHED_CPUMASK_VAR(nodemask, allmasks);
7551 SCHED_CPUMASK_VAR(send_covered, allmasks);
7552
7553 *nodemask = node_to_cpumask(i);
7554 cpus_and(*nodemask, *nodemask, *cpu_map);
7555 if (cpus_empty(*nodemask))
7556 continue;
7557
7558 init_sched_build_groups(nodemask, cpu_map,
7559 &cpu_to_phys_group,
7560 send_covered, tmpmask);
7561 }
7562
7563 #ifdef CONFIG_NUMA
7564 /* Set up node groups */
7565 if (sd_allnodes) {
7566 SCHED_CPUMASK_VAR(send_covered, allmasks);
7567
7568 init_sched_build_groups(cpu_map, cpu_map,
7569 &cpu_to_allnodes_group,
7570 send_covered, tmpmask);
7571 }
7572
7573 for (i = 0; i < MAX_NUMNODES; i++) {
7574 /* Set up node groups */
7575 struct sched_group *sg, *prev;
7576 SCHED_CPUMASK_VAR(nodemask, allmasks);
7577 SCHED_CPUMASK_VAR(domainspan, allmasks);
7578 SCHED_CPUMASK_VAR(covered, allmasks);
7579 int j;
7580
7581 *nodemask = node_to_cpumask(i);
7582 cpus_clear(*covered);
7583
7584 cpus_and(*nodemask, *nodemask, *cpu_map);
7585 if (cpus_empty(*nodemask)) {
7586 sched_group_nodes[i] = NULL;
7587 continue;
7588 }
7589
7590 sched_domain_node_span(i, domainspan);
7591 cpus_and(*domainspan, *domainspan, *cpu_map);
7592
7593 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
7594 if (!sg) {
7595 printk(KERN_WARNING "Can not alloc domain group for "
7596 "node %d\n", i);
7597 goto error;
7598 }
7599 sched_group_nodes[i] = sg;
7600 for_each_cpu_mask(j, *nodemask) {
7601 struct sched_domain *sd;
7602
7603 sd = &per_cpu(node_domains, j);
7604 sd->groups = sg;
7605 }
7606 sg->__cpu_power = 0;
7607 sg->cpumask = *nodemask;
7608 sg->next = sg;
7609 cpus_or(*covered, *covered, *nodemask);
7610 prev = sg;
7611
7612 for (j = 0; j < MAX_NUMNODES; j++) {
7613 SCHED_CPUMASK_VAR(notcovered, allmasks);
7614 int n = (i + j) % MAX_NUMNODES;
7615 node_to_cpumask_ptr(pnodemask, n);
7616
7617 cpus_complement(*notcovered, *covered);
7618 cpus_and(*tmpmask, *notcovered, *cpu_map);
7619 cpus_and(*tmpmask, *tmpmask, *domainspan);
7620 if (cpus_empty(*tmpmask))
7621 break;
7622
7623 cpus_and(*tmpmask, *tmpmask, *pnodemask);
7624 if (cpus_empty(*tmpmask))
7625 continue;
7626
7627 sg = kmalloc_node(sizeof(struct sched_group),
7628 GFP_KERNEL, i);
7629 if (!sg) {
7630 printk(KERN_WARNING
7631 "Can not alloc domain group for node %d\n", j);
7632 goto error;
7633 }
7634 sg->__cpu_power = 0;
7635 sg->cpumask = *tmpmask;
7636 sg->next = prev->next;
7637 cpus_or(*covered, *covered, *tmpmask);
7638 prev->next = sg;
7639 prev = sg;
7640 }
7641 }
7642 #endif
7643
7644 /* Calculate CPU power for physical packages and nodes */
7645 #ifdef CONFIG_SCHED_SMT
7646 for_each_cpu_mask(i, *cpu_map) {
7647 struct sched_domain *sd = &per_cpu(cpu_domains, i);
7648
7649 init_sched_groups_power(i, sd);
7650 }
7651 #endif
7652 #ifdef CONFIG_SCHED_MC
7653 for_each_cpu_mask(i, *cpu_map) {
7654 struct sched_domain *sd = &per_cpu(core_domains, i);
7655
7656 init_sched_groups_power(i, sd);
7657 }
7658 #endif
7659
7660 for_each_cpu_mask(i, *cpu_map) {
7661 struct sched_domain *sd = &per_cpu(phys_domains, i);
7662
7663 init_sched_groups_power(i, sd);
7664 }
7665
7666 #ifdef CONFIG_NUMA
7667 for (i = 0; i < MAX_NUMNODES; i++)
7668 init_numa_sched_groups_power(sched_group_nodes[i]);
7669
7670 if (sd_allnodes) {
7671 struct sched_group *sg;
7672
7673 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
7674 tmpmask);
7675 init_numa_sched_groups_power(sg);
7676 }
7677 #endif
7678
7679 /* Attach the domains */
7680 for_each_cpu_mask(i, *cpu_map) {
7681 struct sched_domain *sd;
7682 #ifdef CONFIG_SCHED_SMT
7683 sd = &per_cpu(cpu_domains, i);
7684 #elif defined(CONFIG_SCHED_MC)
7685 sd = &per_cpu(core_domains, i);
7686 #else
7687 sd = &per_cpu(phys_domains, i);
7688 #endif
7689 cpu_attach_domain(sd, rd, i);
7690 }
7691
7692 SCHED_CPUMASK_FREE((void *)allmasks);
7693 return 0;
7694
7695 #ifdef CONFIG_NUMA
7696 error:
7697 free_sched_groups(cpu_map, tmpmask);
7698 SCHED_CPUMASK_FREE((void *)allmasks);
7699 return -ENOMEM;
7700 #endif
7701 }
7702
7703 static int build_sched_domains(const cpumask_t *cpu_map)
7704 {
7705 return __build_sched_domains(cpu_map, NULL);
7706 }
7707
7708 static cpumask_t *doms_cur; /* current sched domains */
7709 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7710 static struct sched_domain_attr *dattr_cur; /* attribues of custom domains
7711 in 'doms_cur' */
7712
7713 /*
7714 * Special case: If a kmalloc of a doms_cur partition (array of
7715 * cpumask_t) fails, then fallback to a single sched domain,
7716 * as determined by the single cpumask_t fallback_doms.
7717 */
7718 static cpumask_t fallback_doms;
7719
7720 void __attribute__((weak)) arch_update_cpu_topology(void)
7721 {
7722 }
7723
7724 /*
7725 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7726 * For now this just excludes isolated cpus, but could be used to
7727 * exclude other special cases in the future.
7728 */
7729 static int arch_init_sched_domains(const cpumask_t *cpu_map)
7730 {
7731 int err;
7732
7733 arch_update_cpu_topology();
7734 ndoms_cur = 1;
7735 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
7736 if (!doms_cur)
7737 doms_cur = &fallback_doms;
7738 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7739 dattr_cur = NULL;
7740 err = build_sched_domains(doms_cur);
7741 register_sched_domain_sysctl();
7742
7743 return err;
7744 }
7745
7746 static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
7747 cpumask_t *tmpmask)
7748 {
7749 free_sched_groups(cpu_map, tmpmask);
7750 }
7751
7752 /*
7753 * Detach sched domains from a group of cpus specified in cpu_map
7754 * These cpus will now be attached to the NULL domain
7755 */
7756 static void detach_destroy_domains(const cpumask_t *cpu_map)
7757 {
7758 cpumask_t tmpmask;
7759 int i;
7760
7761 unregister_sched_domain_sysctl();
7762
7763 for_each_cpu_mask(i, *cpu_map)
7764 cpu_attach_domain(NULL, &def_root_domain, i);
7765 synchronize_sched();
7766 arch_destroy_sched_domains(cpu_map, &tmpmask);
7767 }
7768
7769 /* handle null as "default" */
7770 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7771 struct sched_domain_attr *new, int idx_new)
7772 {
7773 struct sched_domain_attr tmp;
7774
7775 /* fast path */
7776 if (!new && !cur)
7777 return 1;
7778
7779 tmp = SD_ATTR_INIT;
7780 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7781 new ? (new + idx_new) : &tmp,
7782 sizeof(struct sched_domain_attr));
7783 }
7784
7785 /*
7786 * Partition sched domains as specified by the 'ndoms_new'
7787 * cpumasks in the array doms_new[] of cpumasks. This compares
7788 * doms_new[] to the current sched domain partitioning, doms_cur[].
7789 * It destroys each deleted domain and builds each new domain.
7790 *
7791 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
7792 * The masks don't intersect (don't overlap.) We should setup one
7793 * sched domain for each mask. CPUs not in any of the cpumasks will
7794 * not be load balanced. If the same cpumask appears both in the
7795 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7796 * it as it is.
7797 *
7798 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7799 * ownership of it and will kfree it when done with it. If the caller
7800 * failed the kmalloc call, then it can pass in doms_new == NULL,
7801 * and partition_sched_domains() will fallback to the single partition
7802 * 'fallback_doms'.
7803 *
7804 * Call with hotplug lock held
7805 */
7806 void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
7807 struct sched_domain_attr *dattr_new)
7808 {
7809 int i, j;
7810
7811 lock_doms_cur();
7812
7813 /* always unregister in case we don't destroy any domains */
7814 unregister_sched_domain_sysctl();
7815
7816 if (doms_new == NULL) {
7817 ndoms_new = 1;
7818 doms_new = &fallback_doms;
7819 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
7820 dattr_new = NULL;
7821 }
7822
7823 /* Destroy deleted domains */
7824 for (i = 0; i < ndoms_cur; i++) {
7825 for (j = 0; j < ndoms_new; j++) {
7826 if (cpus_equal(doms_cur[i], doms_new[j])
7827 && dattrs_equal(dattr_cur, i, dattr_new, j))
7828 goto match1;
7829 }
7830 /* no match - a current sched domain not in new doms_new[] */
7831 detach_destroy_domains(doms_cur + i);
7832 match1:
7833 ;
7834 }
7835
7836 /* Build new domains */
7837 for (i = 0; i < ndoms_new; i++) {
7838 for (j = 0; j < ndoms_cur; j++) {
7839 if (cpus_equal(doms_new[i], doms_cur[j])
7840 && dattrs_equal(dattr_new, i, dattr_cur, j))
7841 goto match2;
7842 }
7843 /* no match - add a new doms_new */
7844 __build_sched_domains(doms_new + i,
7845 dattr_new ? dattr_new + i : NULL);
7846 match2:
7847 ;
7848 }
7849
7850 /* Remember the new sched domains */
7851 if (doms_cur != &fallback_doms)
7852 kfree(doms_cur);
7853 kfree(dattr_cur); /* kfree(NULL) is safe */
7854 doms_cur = doms_new;
7855 dattr_cur = dattr_new;
7856 ndoms_cur = ndoms_new;
7857
7858 register_sched_domain_sysctl();
7859
7860 unlock_doms_cur();
7861 }
7862
7863 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7864 int arch_reinit_sched_domains(void)
7865 {
7866 int err;
7867
7868 get_online_cpus();
7869 detach_destroy_domains(&cpu_online_map);
7870 err = arch_init_sched_domains(&cpu_online_map);
7871 put_online_cpus();
7872
7873 return err;
7874 }
7875
7876 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7877 {
7878 int ret;
7879
7880 if (buf[0] != '0' && buf[0] != '1')
7881 return -EINVAL;
7882
7883 if (smt)
7884 sched_smt_power_savings = (buf[0] == '1');
7885 else
7886 sched_mc_power_savings = (buf[0] == '1');
7887
7888 ret = arch_reinit_sched_domains();
7889
7890 return ret ? ret : count;
7891 }
7892
7893 #ifdef CONFIG_SCHED_MC
7894 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
7895 {
7896 return sprintf(page, "%u\n", sched_mc_power_savings);
7897 }
7898 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
7899 const char *buf, size_t count)
7900 {
7901 return sched_power_savings_store(buf, count, 0);
7902 }
7903 static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
7904 sched_mc_power_savings_store);
7905 #endif
7906
7907 #ifdef CONFIG_SCHED_SMT
7908 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
7909 {
7910 return sprintf(page, "%u\n", sched_smt_power_savings);
7911 }
7912 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
7913 const char *buf, size_t count)
7914 {
7915 return sched_power_savings_store(buf, count, 1);
7916 }
7917 static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
7918 sched_smt_power_savings_store);
7919 #endif
7920
7921 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7922 {
7923 int err = 0;
7924
7925 #ifdef CONFIG_SCHED_SMT
7926 if (smt_capable())
7927 err = sysfs_create_file(&cls->kset.kobj,
7928 &attr_sched_smt_power_savings.attr);
7929 #endif
7930 #ifdef CONFIG_SCHED_MC
7931 if (!err && mc_capable())
7932 err = sysfs_create_file(&cls->kset.kobj,
7933 &attr_sched_mc_power_savings.attr);
7934 #endif
7935 return err;
7936 }
7937 #endif
7938
7939 /*
7940 * Force a reinitialization of the sched domains hierarchy. The domains
7941 * and groups cannot be updated in place without racing with the balancing
7942 * code, so we temporarily attach all running cpus to the NULL domain
7943 * which will prevent rebalancing while the sched domains are recalculated.
7944 */
7945 static int update_sched_domains(struct notifier_block *nfb,
7946 unsigned long action, void *hcpu)
7947 {
7948 switch (action) {
7949 case CPU_UP_PREPARE:
7950 case CPU_UP_PREPARE_FROZEN:
7951 case CPU_DOWN_PREPARE:
7952 case CPU_DOWN_PREPARE_FROZEN:
7953 detach_destroy_domains(&cpu_online_map);
7954 return NOTIFY_OK;
7955
7956 case CPU_UP_CANCELED:
7957 case CPU_UP_CANCELED_FROZEN:
7958 case CPU_DOWN_FAILED:
7959 case CPU_DOWN_FAILED_FROZEN:
7960 case CPU_ONLINE:
7961 case CPU_ONLINE_FROZEN:
7962 case CPU_DEAD:
7963 case CPU_DEAD_FROZEN:
7964 /*
7965 * Fall through and re-initialise the domains.
7966 */
7967 break;
7968 default:
7969 return NOTIFY_DONE;
7970 }
7971
7972 /* The hotplug lock is already held by cpu_up/cpu_down */
7973 arch_init_sched_domains(&cpu_online_map);
7974
7975 return NOTIFY_OK;
7976 }
7977
7978 void __init sched_init_smp(void)
7979 {
7980 cpumask_t non_isolated_cpus;
7981
7982 #if defined(CONFIG_NUMA)
7983 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7984 GFP_KERNEL);
7985 BUG_ON(sched_group_nodes_bycpu == NULL);
7986 #endif
7987 get_online_cpus();
7988 arch_init_sched_domains(&cpu_online_map);
7989 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7990 if (cpus_empty(non_isolated_cpus))
7991 cpu_set(smp_processor_id(), non_isolated_cpus);
7992 put_online_cpus();
7993 /* XXX: Theoretical race here - CPU may be hotplugged now */
7994 hotcpu_notifier(update_sched_domains, 0);
7995
7996 /* Move init over to a non-isolated CPU */
7997 if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
7998 BUG();
7999 sched_init_granularity();
8000 }
8001 #else
8002 void __init sched_init_smp(void)
8003 {
8004 #if defined(CONFIG_NUMA)
8005 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
8006 GFP_KERNEL);
8007 BUG_ON(sched_group_nodes_bycpu == NULL);
8008 #endif
8009 sched_init_granularity();
8010 }
8011 #endif /* CONFIG_SMP */
8012
8013 int in_sched_functions(unsigned long addr)
8014 {
8015 return in_lock_functions(addr) ||
8016 (addr >= (unsigned long)__sched_text_start
8017 && addr < (unsigned long)__sched_text_end);
8018 }
8019
8020 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
8021 {
8022 cfs_rq->tasks_timeline = RB_ROOT;
8023 INIT_LIST_HEAD(&cfs_rq->tasks);
8024 #ifdef CONFIG_FAIR_GROUP_SCHED
8025 cfs_rq->rq = rq;
8026 #endif
8027 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8028 }
8029
8030 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8031 {
8032 struct rt_prio_array *array;
8033 int i;
8034
8035 array = &rt_rq->active;
8036 for (i = 0; i < MAX_RT_PRIO; i++) {
8037 INIT_LIST_HEAD(array->queue + i);
8038 __clear_bit(i, array->bitmap);
8039 }
8040 /* delimiter for bitsearch: */
8041 __set_bit(MAX_RT_PRIO, array->bitmap);
8042
8043 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
8044 rt_rq->highest_prio = MAX_RT_PRIO;
8045 #endif
8046 #ifdef CONFIG_SMP
8047 rt_rq->rt_nr_migratory = 0;
8048 rt_rq->overloaded = 0;
8049 #endif
8050
8051 rt_rq->rt_time = 0;
8052 rt_rq->rt_throttled = 0;
8053 rt_rq->rt_runtime = 0;
8054 spin_lock_init(&rt_rq->rt_runtime_lock);
8055
8056 #ifdef CONFIG_RT_GROUP_SCHED
8057 rt_rq->rt_nr_boosted = 0;
8058 rt_rq->rq = rq;
8059 #endif
8060 }
8061
8062 #ifdef CONFIG_FAIR_GROUP_SCHED
8063 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8064 struct sched_entity *se, int cpu, int add,
8065 struct sched_entity *parent)
8066 {
8067 struct rq *rq = cpu_rq(cpu);
8068 tg->cfs_rq[cpu] = cfs_rq;
8069 init_cfs_rq(cfs_rq, rq);
8070 cfs_rq->tg = tg;
8071 if (add)
8072 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8073
8074 tg->se[cpu] = se;
8075 /* se could be NULL for init_task_group */
8076 if (!se)
8077 return;
8078
8079 if (!parent)
8080 se->cfs_rq = &rq->cfs;
8081 else
8082 se->cfs_rq = parent->my_q;
8083
8084 se->my_q = cfs_rq;
8085 se->load.weight = tg->shares;
8086 se->load.inv_weight = div64_64(1ULL<<32, se->load.weight);
8087 se->parent = parent;
8088 }
8089 #endif
8090
8091 #ifdef CONFIG_RT_GROUP_SCHED
8092 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8093 struct sched_rt_entity *rt_se, int cpu, int add,
8094 struct sched_rt_entity *parent)
8095 {
8096 struct rq *rq = cpu_rq(cpu);
8097
8098 tg->rt_rq[cpu] = rt_rq;
8099 init_rt_rq(rt_rq, rq);
8100 rt_rq->tg = tg;
8101 rt_rq->rt_se = rt_se;
8102 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
8103 if (add)
8104 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8105
8106 tg->rt_se[cpu] = rt_se;
8107 if (!rt_se)
8108 return;
8109
8110 if (!parent)
8111 rt_se->rt_rq = &rq->rt;
8112 else
8113 rt_se->rt_rq = parent->my_q;
8114
8115 rt_se->rt_rq = &rq->rt;
8116 rt_se->my_q = rt_rq;
8117 rt_se->parent = parent;
8118 INIT_LIST_HEAD(&rt_se->run_list);
8119 }
8120 #endif
8121
8122 void __init sched_init(void)
8123 {
8124 int i, j;
8125 unsigned long alloc_size = 0, ptr;
8126
8127 #ifdef CONFIG_FAIR_GROUP_SCHED
8128 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8129 #endif
8130 #ifdef CONFIG_RT_GROUP_SCHED
8131 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8132 #endif
8133 #ifdef CONFIG_USER_SCHED
8134 alloc_size *= 2;
8135 #endif
8136 /*
8137 * As sched_init() is called before page_alloc is setup,
8138 * we use alloc_bootmem().
8139 */
8140 if (alloc_size) {
8141 ptr = (unsigned long)alloc_bootmem_low(alloc_size);
8142
8143 #ifdef CONFIG_FAIR_GROUP_SCHED
8144 init_task_group.se = (struct sched_entity **)ptr;
8145 ptr += nr_cpu_ids * sizeof(void **);
8146
8147 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8148 ptr += nr_cpu_ids * sizeof(void **);
8149
8150 #ifdef CONFIG_USER_SCHED
8151 root_task_group.se = (struct sched_entity **)ptr;
8152 ptr += nr_cpu_ids * sizeof(void **);
8153
8154 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8155 ptr += nr_cpu_ids * sizeof(void **);
8156 #endif
8157 #endif
8158 #ifdef CONFIG_RT_GROUP_SCHED
8159 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8160 ptr += nr_cpu_ids * sizeof(void **);
8161
8162 init_task_group.rt_rq = (struct rt_rq **)ptr;
8163 ptr += nr_cpu_ids * sizeof(void **);
8164
8165 #ifdef CONFIG_USER_SCHED
8166 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8167 ptr += nr_cpu_ids * sizeof(void **);
8168
8169 root_task_group.rt_rq = (struct rt_rq **)ptr;
8170 ptr += nr_cpu_ids * sizeof(void **);
8171 #endif
8172 #endif
8173 }
8174
8175 #ifdef CONFIG_SMP
8176 init_aggregate();
8177 init_defrootdomain();
8178 #endif
8179
8180 init_rt_bandwidth(&def_rt_bandwidth,
8181 global_rt_period(), global_rt_runtime());
8182
8183 #ifdef CONFIG_RT_GROUP_SCHED
8184 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8185 global_rt_period(), global_rt_runtime());
8186 #ifdef CONFIG_USER_SCHED
8187 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8188 global_rt_period(), RUNTIME_INF);
8189 #endif
8190 #endif
8191
8192 #ifdef CONFIG_GROUP_SCHED
8193 list_add(&init_task_group.list, &task_groups);
8194 INIT_LIST_HEAD(&init_task_group.children);
8195
8196 #ifdef CONFIG_USER_SCHED
8197 INIT_LIST_HEAD(&root_task_group.children);
8198 init_task_group.parent = &root_task_group;
8199 list_add(&init_task_group.siblings, &root_task_group.children);
8200 #endif
8201 #endif
8202
8203 for_each_possible_cpu(i) {
8204 struct rq *rq;
8205
8206 rq = cpu_rq(i);
8207 spin_lock_init(&rq->lock);
8208 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
8209 rq->nr_running = 0;
8210 rq->clock = 1;
8211 update_last_tick_seen(rq);
8212 init_cfs_rq(&rq->cfs, rq);
8213 init_rt_rq(&rq->rt, rq);
8214 #ifdef CONFIG_FAIR_GROUP_SCHED
8215 init_task_group.shares = init_task_group_load;
8216 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8217 #ifdef CONFIG_CGROUP_SCHED
8218 /*
8219 * How much cpu bandwidth does init_task_group get?
8220 *
8221 * In case of task-groups formed thr' the cgroup filesystem, it
8222 * gets 100% of the cpu resources in the system. This overall
8223 * system cpu resource is divided among the tasks of
8224 * init_task_group and its child task-groups in a fair manner,
8225 * based on each entity's (task or task-group's) weight
8226 * (se->load.weight).
8227 *
8228 * In other words, if init_task_group has 10 tasks of weight
8229 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8230 * then A0's share of the cpu resource is:
8231 *
8232 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8233 *
8234 * We achieve this by letting init_task_group's tasks sit
8235 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8236 */
8237 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
8238 #elif defined CONFIG_USER_SCHED
8239 root_task_group.shares = NICE_0_LOAD;
8240 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
8241 /*
8242 * In case of task-groups formed thr' the user id of tasks,
8243 * init_task_group represents tasks belonging to root user.
8244 * Hence it forms a sibling of all subsequent groups formed.
8245 * In this case, init_task_group gets only a fraction of overall
8246 * system cpu resource, based on the weight assigned to root
8247 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8248 * by letting tasks of init_task_group sit in a separate cfs_rq
8249 * (init_cfs_rq) and having one entity represent this group of
8250 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8251 */
8252 init_tg_cfs_entry(&init_task_group,
8253 &per_cpu(init_cfs_rq, i),
8254 &per_cpu(init_sched_entity, i), i, 1,
8255 root_task_group.se[i]);
8256
8257 #endif
8258 #endif /* CONFIG_FAIR_GROUP_SCHED */
8259
8260 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8261 #ifdef CONFIG_RT_GROUP_SCHED
8262 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
8263 #ifdef CONFIG_CGROUP_SCHED
8264 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
8265 #elif defined CONFIG_USER_SCHED
8266 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8267 init_tg_rt_entry(&init_task_group,
8268 &per_cpu(init_rt_rq, i),
8269 &per_cpu(init_sched_rt_entity, i), i, 1,
8270 root_task_group.rt_se[i]);
8271 #endif
8272 #endif
8273
8274 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8275 rq->cpu_load[j] = 0;
8276 #ifdef CONFIG_SMP
8277 rq->sd = NULL;
8278 rq->rd = NULL;
8279 rq->active_balance = 0;
8280 rq->next_balance = jiffies;
8281 rq->push_cpu = 0;
8282 rq->cpu = i;
8283 rq->migration_thread = NULL;
8284 INIT_LIST_HEAD(&rq->migration_queue);
8285 rq_attach_root(rq, &def_root_domain);
8286 #endif
8287 init_rq_hrtick(rq);
8288 atomic_set(&rq->nr_iowait, 0);
8289 }
8290
8291 set_load_weight(&init_task);
8292
8293 #ifdef CONFIG_PREEMPT_NOTIFIERS
8294 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8295 #endif
8296
8297 #ifdef CONFIG_SMP
8298 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
8299 #endif
8300
8301 #ifdef CONFIG_RT_MUTEXES
8302 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8303 #endif
8304
8305 /*
8306 * The boot idle thread does lazy MMU switching as well:
8307 */
8308 atomic_inc(&init_mm.mm_count);
8309 enter_lazy_tlb(&init_mm, current);
8310
8311 /*
8312 * Make us the idle thread. Technically, schedule() should not be
8313 * called from this thread, however somewhere below it might be,
8314 * but because we are the idle thread, we just pick up running again
8315 * when this runqueue becomes "idle".
8316 */
8317 init_idle(current, smp_processor_id());
8318 /*
8319 * During early bootup we pretend to be a normal task:
8320 */
8321 current->sched_class = &fair_sched_class;
8322
8323 scheduler_running = 1;
8324 }
8325
8326 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8327 void __might_sleep(char *file, int line)
8328 {
8329 #ifdef in_atomic
8330 static unsigned long prev_jiffy; /* ratelimiting */
8331
8332 if ((in_atomic() || irqs_disabled()) &&
8333 system_state == SYSTEM_RUNNING && !oops_in_progress) {
8334 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8335 return;
8336 prev_jiffy = jiffies;
8337 printk(KERN_ERR "BUG: sleeping function called from invalid"
8338 " context at %s:%d\n", file, line);
8339 printk("in_atomic():%d, irqs_disabled():%d\n",
8340 in_atomic(), irqs_disabled());
8341 debug_show_held_locks(current);
8342 if (irqs_disabled())
8343 print_irqtrace_events(current);
8344 dump_stack();
8345 }
8346 #endif
8347 }
8348 EXPORT_SYMBOL(__might_sleep);
8349 #endif
8350
8351 #ifdef CONFIG_MAGIC_SYSRQ
8352 static void normalize_task(struct rq *rq, struct task_struct *p)
8353 {
8354 int on_rq;
8355 update_rq_clock(rq);
8356 on_rq = p->se.on_rq;
8357 if (on_rq)
8358 deactivate_task(rq, p, 0);
8359 __setscheduler(rq, p, SCHED_NORMAL, 0);
8360 if (on_rq) {
8361 activate_task(rq, p, 0);
8362 resched_task(rq->curr);
8363 }
8364 }
8365
8366 void normalize_rt_tasks(void)
8367 {
8368 struct task_struct *g, *p;
8369 unsigned long flags;
8370 struct rq *rq;
8371
8372 read_lock_irqsave(&tasklist_lock, flags);
8373 do_each_thread(g, p) {
8374 /*
8375 * Only normalize user tasks:
8376 */
8377 if (!p->mm)
8378 continue;
8379
8380 p->se.exec_start = 0;
8381 #ifdef CONFIG_SCHEDSTATS
8382 p->se.wait_start = 0;
8383 p->se.sleep_start = 0;
8384 p->se.block_start = 0;
8385 #endif
8386 task_rq(p)->clock = 0;
8387
8388 if (!rt_task(p)) {
8389 /*
8390 * Renice negative nice level userspace
8391 * tasks back to 0:
8392 */
8393 if (TASK_NICE(p) < 0 && p->mm)
8394 set_user_nice(p, 0);
8395 continue;
8396 }
8397
8398 spin_lock(&p->pi_lock);
8399 rq = __task_rq_lock(p);
8400
8401 normalize_task(rq, p);
8402
8403 __task_rq_unlock(rq);
8404 spin_unlock(&p->pi_lock);
8405 } while_each_thread(g, p);
8406
8407 read_unlock_irqrestore(&tasklist_lock, flags);
8408 }
8409
8410 #endif /* CONFIG_MAGIC_SYSRQ */
8411
8412 #ifdef CONFIG_IA64
8413 /*
8414 * These functions are only useful for the IA64 MCA handling.
8415 *
8416 * They can only be called when the whole system has been
8417 * stopped - every CPU needs to be quiescent, and no scheduling
8418 * activity can take place. Using them for anything else would
8419 * be a serious bug, and as a result, they aren't even visible
8420 * under any other configuration.
8421 */
8422
8423 /**
8424 * curr_task - return the current task for a given cpu.
8425 * @cpu: the processor in question.
8426 *
8427 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8428 */
8429 struct task_struct *curr_task(int cpu)
8430 {
8431 return cpu_curr(cpu);
8432 }
8433
8434 /**
8435 * set_curr_task - set the current task for a given cpu.
8436 * @cpu: the processor in question.
8437 * @p: the task pointer to set.
8438 *
8439 * Description: This function must only be used when non-maskable interrupts
8440 * are serviced on a separate stack. It allows the architecture to switch the
8441 * notion of the current task on a cpu in a non-blocking manner. This function
8442 * must be called with all CPU's synchronized, and interrupts disabled, the
8443 * and caller must save the original value of the current task (see
8444 * curr_task() above) and restore that value before reenabling interrupts and
8445 * re-starting the system.
8446 *
8447 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8448 */
8449 void set_curr_task(int cpu, struct task_struct *p)
8450 {
8451 cpu_curr(cpu) = p;
8452 }
8453
8454 #endif
8455
8456 #ifdef CONFIG_FAIR_GROUP_SCHED
8457 static void free_fair_sched_group(struct task_group *tg)
8458 {
8459 int i;
8460
8461 for_each_possible_cpu(i) {
8462 if (tg->cfs_rq)
8463 kfree(tg->cfs_rq[i]);
8464 if (tg->se)
8465 kfree(tg->se[i]);
8466 }
8467
8468 kfree(tg->cfs_rq);
8469 kfree(tg->se);
8470 }
8471
8472 static
8473 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8474 {
8475 struct cfs_rq *cfs_rq;
8476 struct sched_entity *se, *parent_se;
8477 struct rq *rq;
8478 int i;
8479
8480 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8481 if (!tg->cfs_rq)
8482 goto err;
8483 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8484 if (!tg->se)
8485 goto err;
8486
8487 tg->shares = NICE_0_LOAD;
8488
8489 for_each_possible_cpu(i) {
8490 rq = cpu_rq(i);
8491
8492 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
8493 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8494 if (!cfs_rq)
8495 goto err;
8496
8497 se = kmalloc_node(sizeof(struct sched_entity),
8498 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8499 if (!se)
8500 goto err;
8501
8502 parent_se = parent ? parent->se[i] : NULL;
8503 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
8504 }
8505
8506 return 1;
8507
8508 err:
8509 return 0;
8510 }
8511
8512 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8513 {
8514 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8515 &cpu_rq(cpu)->leaf_cfs_rq_list);
8516 }
8517
8518 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8519 {
8520 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8521 }
8522 #else
8523 static inline void free_fair_sched_group(struct task_group *tg)
8524 {
8525 }
8526
8527 static inline
8528 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8529 {
8530 return 1;
8531 }
8532
8533 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8534 {
8535 }
8536
8537 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8538 {
8539 }
8540 #endif
8541
8542 #ifdef CONFIG_RT_GROUP_SCHED
8543 static void free_rt_sched_group(struct task_group *tg)
8544 {
8545 int i;
8546
8547 destroy_rt_bandwidth(&tg->rt_bandwidth);
8548
8549 for_each_possible_cpu(i) {
8550 if (tg->rt_rq)
8551 kfree(tg->rt_rq[i]);
8552 if (tg->rt_se)
8553 kfree(tg->rt_se[i]);
8554 }
8555
8556 kfree(tg->rt_rq);
8557 kfree(tg->rt_se);
8558 }
8559
8560 static
8561 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8562 {
8563 struct rt_rq *rt_rq;
8564 struct sched_rt_entity *rt_se, *parent_se;
8565 struct rq *rq;
8566 int i;
8567
8568 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8569 if (!tg->rt_rq)
8570 goto err;
8571 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8572 if (!tg->rt_se)
8573 goto err;
8574
8575 init_rt_bandwidth(&tg->rt_bandwidth,
8576 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8577
8578 for_each_possible_cpu(i) {
8579 rq = cpu_rq(i);
8580
8581 rt_rq = kmalloc_node(sizeof(struct rt_rq),
8582 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8583 if (!rt_rq)
8584 goto err;
8585
8586 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
8587 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8588 if (!rt_se)
8589 goto err;
8590
8591 parent_se = parent ? parent->rt_se[i] : NULL;
8592 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
8593 }
8594
8595 return 1;
8596
8597 err:
8598 return 0;
8599 }
8600
8601 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8602 {
8603 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8604 &cpu_rq(cpu)->leaf_rt_rq_list);
8605 }
8606
8607 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8608 {
8609 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8610 }
8611 #else
8612 static inline void free_rt_sched_group(struct task_group *tg)
8613 {
8614 }
8615
8616 static inline
8617 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8618 {
8619 return 1;
8620 }
8621
8622 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8623 {
8624 }
8625
8626 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8627 {
8628 }
8629 #endif
8630
8631 #ifdef CONFIG_GROUP_SCHED
8632 static void free_sched_group(struct task_group *tg)
8633 {
8634 free_fair_sched_group(tg);
8635 free_rt_sched_group(tg);
8636 kfree(tg);
8637 }
8638
8639 /* allocate runqueue etc for a new task group */
8640 struct task_group *sched_create_group(struct task_group *parent)
8641 {
8642 struct task_group *tg;
8643 unsigned long flags;
8644 int i;
8645
8646 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8647 if (!tg)
8648 return ERR_PTR(-ENOMEM);
8649
8650 if (!alloc_fair_sched_group(tg, parent))
8651 goto err;
8652
8653 if (!alloc_rt_sched_group(tg, parent))
8654 goto err;
8655
8656 spin_lock_irqsave(&task_group_lock, flags);
8657 for_each_possible_cpu(i) {
8658 register_fair_sched_group(tg, i);
8659 register_rt_sched_group(tg, i);
8660 }
8661 list_add_rcu(&tg->list, &task_groups);
8662
8663 WARN_ON(!parent); /* root should already exist */
8664
8665 tg->parent = parent;
8666 list_add_rcu(&tg->siblings, &parent->children);
8667 INIT_LIST_HEAD(&tg->children);
8668 spin_unlock_irqrestore(&task_group_lock, flags);
8669
8670 return tg;
8671
8672 err:
8673 free_sched_group(tg);
8674 return ERR_PTR(-ENOMEM);
8675 }
8676
8677 /* rcu callback to free various structures associated with a task group */
8678 static void free_sched_group_rcu(struct rcu_head *rhp)
8679 {
8680 /* now it should be safe to free those cfs_rqs */
8681 free_sched_group(container_of(rhp, struct task_group, rcu));
8682 }
8683
8684 /* Destroy runqueue etc associated with a task group */
8685 void sched_destroy_group(struct task_group *tg)
8686 {
8687 unsigned long flags;
8688 int i;
8689
8690 spin_lock_irqsave(&task_group_lock, flags);
8691 for_each_possible_cpu(i) {
8692 unregister_fair_sched_group(tg, i);
8693 unregister_rt_sched_group(tg, i);
8694 }
8695 list_del_rcu(&tg->list);
8696 list_del_rcu(&tg->siblings);
8697 spin_unlock_irqrestore(&task_group_lock, flags);
8698
8699 /* wait for possible concurrent references to cfs_rqs complete */
8700 call_rcu(&tg->rcu, free_sched_group_rcu);
8701 }
8702
8703 /* change task's runqueue when it moves between groups.
8704 * The caller of this function should have put the task in its new group
8705 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8706 * reflect its new group.
8707 */
8708 void sched_move_task(struct task_struct *tsk)
8709 {
8710 int on_rq, running;
8711 unsigned long flags;
8712 struct rq *rq;
8713
8714 rq = task_rq_lock(tsk, &flags);
8715
8716 update_rq_clock(rq);
8717
8718 running = task_current(rq, tsk);
8719 on_rq = tsk->se.on_rq;
8720
8721 if (on_rq)
8722 dequeue_task(rq, tsk, 0);
8723 if (unlikely(running))
8724 tsk->sched_class->put_prev_task(rq, tsk);
8725
8726 set_task_rq(tsk, task_cpu(tsk));
8727
8728 #ifdef CONFIG_FAIR_GROUP_SCHED
8729 if (tsk->sched_class->moved_group)
8730 tsk->sched_class->moved_group(tsk);
8731 #endif
8732
8733 if (unlikely(running))
8734 tsk->sched_class->set_curr_task(rq);
8735 if (on_rq)
8736 enqueue_task(rq, tsk, 0);
8737
8738 task_rq_unlock(rq, &flags);
8739 }
8740 #endif
8741
8742 #ifdef CONFIG_FAIR_GROUP_SCHED
8743 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
8744 {
8745 struct cfs_rq *cfs_rq = se->cfs_rq;
8746 int on_rq;
8747
8748 on_rq = se->on_rq;
8749 if (on_rq)
8750 dequeue_entity(cfs_rq, se, 0);
8751
8752 se->load.weight = shares;
8753 se->load.inv_weight = div64_64((1ULL<<32), shares);
8754
8755 if (on_rq)
8756 enqueue_entity(cfs_rq, se, 0);
8757 }
8758
8759 static void set_se_shares(struct sched_entity *se, unsigned long shares)
8760 {
8761 struct cfs_rq *cfs_rq = se->cfs_rq;
8762 struct rq *rq = cfs_rq->rq;
8763 unsigned long flags;
8764
8765 spin_lock_irqsave(&rq->lock, flags);
8766 __set_se_shares(se, shares);
8767 spin_unlock_irqrestore(&rq->lock, flags);
8768 }
8769
8770 static DEFINE_MUTEX(shares_mutex);
8771
8772 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8773 {
8774 int i;
8775 unsigned long flags;
8776
8777 /*
8778 * We can't change the weight of the root cgroup.
8779 */
8780 if (!tg->se[0])
8781 return -EINVAL;
8782
8783 /*
8784 * A weight of 0 or 1 can cause arithmetics problems.
8785 * (The default weight is 1024 - so there's no practical
8786 * limitation from this.)
8787 */
8788 if (shares < MIN_SHARES)
8789 shares = MIN_SHARES;
8790
8791 mutex_lock(&shares_mutex);
8792 if (tg->shares == shares)
8793 goto done;
8794
8795 spin_lock_irqsave(&task_group_lock, flags);
8796 for_each_possible_cpu(i)
8797 unregister_fair_sched_group(tg, i);
8798 list_del_rcu(&tg->siblings);
8799 spin_unlock_irqrestore(&task_group_lock, flags);
8800
8801 /* wait for any ongoing reference to this group to finish */
8802 synchronize_sched();
8803
8804 /*
8805 * Now we are free to modify the group's share on each cpu
8806 * w/o tripping rebalance_share or load_balance_fair.
8807 */
8808 tg->shares = shares;
8809 for_each_possible_cpu(i) {
8810 /*
8811 * force a rebalance
8812 */
8813 cfs_rq_set_shares(tg->cfs_rq[i], 0);
8814 set_se_shares(tg->se[i], shares/nr_cpu_ids);
8815 }
8816
8817 /*
8818 * Enable load balance activity on this group, by inserting it back on
8819 * each cpu's rq->leaf_cfs_rq_list.
8820 */
8821 spin_lock_irqsave(&task_group_lock, flags);
8822 for_each_possible_cpu(i)
8823 register_fair_sched_group(tg, i);
8824 list_add_rcu(&tg->siblings, &tg->parent->children);
8825 spin_unlock_irqrestore(&task_group_lock, flags);
8826 done:
8827 mutex_unlock(&shares_mutex);
8828 return 0;
8829 }
8830
8831 unsigned long sched_group_shares(struct task_group *tg)
8832 {
8833 return tg->shares;
8834 }
8835 #endif
8836
8837 #ifdef CONFIG_RT_GROUP_SCHED
8838 /*
8839 * Ensure that the real time constraints are schedulable.
8840 */
8841 static DEFINE_MUTEX(rt_constraints_mutex);
8842
8843 static unsigned long to_ratio(u64 period, u64 runtime)
8844 {
8845 if (runtime == RUNTIME_INF)
8846 return 1ULL << 16;
8847
8848 return div64_64(runtime << 16, period);
8849 }
8850
8851 #ifdef CONFIG_CGROUP_SCHED
8852 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8853 {
8854 struct task_group *tgi, *parent = tg->parent;
8855 unsigned long total = 0;
8856
8857 if (!parent) {
8858 if (global_rt_period() < period)
8859 return 0;
8860
8861 return to_ratio(period, runtime) <
8862 to_ratio(global_rt_period(), global_rt_runtime());
8863 }
8864
8865 if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
8866 return 0;
8867
8868 rcu_read_lock();
8869 list_for_each_entry_rcu(tgi, &parent->children, siblings) {
8870 if (tgi == tg)
8871 continue;
8872
8873 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8874 tgi->rt_bandwidth.rt_runtime);
8875 }
8876 rcu_read_unlock();
8877
8878 return total + to_ratio(period, runtime) <
8879 to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
8880 parent->rt_bandwidth.rt_runtime);
8881 }
8882 #elif defined CONFIG_USER_SCHED
8883 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8884 {
8885 struct task_group *tgi;
8886 unsigned long total = 0;
8887 unsigned long global_ratio =
8888 to_ratio(global_rt_period(), global_rt_runtime());
8889
8890 rcu_read_lock();
8891 list_for_each_entry_rcu(tgi, &task_groups, list) {
8892 if (tgi == tg)
8893 continue;
8894
8895 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8896 tgi->rt_bandwidth.rt_runtime);
8897 }
8898 rcu_read_unlock();
8899
8900 return total + to_ratio(period, runtime) < global_ratio;
8901 }
8902 #endif
8903
8904 /* Must be called with tasklist_lock held */
8905 static inline int tg_has_rt_tasks(struct task_group *tg)
8906 {
8907 struct task_struct *g, *p;
8908 do_each_thread(g, p) {
8909 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8910 return 1;
8911 } while_each_thread(g, p);
8912 return 0;
8913 }
8914
8915 static int tg_set_bandwidth(struct task_group *tg,
8916 u64 rt_period, u64 rt_runtime)
8917 {
8918 int i, err = 0;
8919
8920 mutex_lock(&rt_constraints_mutex);
8921 read_lock(&tasklist_lock);
8922 if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
8923 err = -EBUSY;
8924 goto unlock;
8925 }
8926 if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
8927 err = -EINVAL;
8928 goto unlock;
8929 }
8930
8931 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8932 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8933 tg->rt_bandwidth.rt_runtime = rt_runtime;
8934
8935 for_each_possible_cpu(i) {
8936 struct rt_rq *rt_rq = tg->rt_rq[i];
8937
8938 spin_lock(&rt_rq->rt_runtime_lock);
8939 rt_rq->rt_runtime = rt_runtime;
8940 spin_unlock(&rt_rq->rt_runtime_lock);
8941 }
8942 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8943 unlock:
8944 read_unlock(&tasklist_lock);
8945 mutex_unlock(&rt_constraints_mutex);
8946
8947 return err;
8948 }
8949
8950 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8951 {
8952 u64 rt_runtime, rt_period;
8953
8954 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8955 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8956 if (rt_runtime_us < 0)
8957 rt_runtime = RUNTIME_INF;
8958
8959 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8960 }
8961
8962 long sched_group_rt_runtime(struct task_group *tg)
8963 {
8964 u64 rt_runtime_us;
8965
8966 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8967 return -1;
8968
8969 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8970 do_div(rt_runtime_us, NSEC_PER_USEC);
8971 return rt_runtime_us;
8972 }
8973
8974 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8975 {
8976 u64 rt_runtime, rt_period;
8977
8978 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8979 rt_runtime = tg->rt_bandwidth.rt_runtime;
8980
8981 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8982 }
8983
8984 long sched_group_rt_period(struct task_group *tg)
8985 {
8986 u64 rt_period_us;
8987
8988 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8989 do_div(rt_period_us, NSEC_PER_USEC);
8990 return rt_period_us;
8991 }
8992
8993 static int sched_rt_global_constraints(void)
8994 {
8995 int ret = 0;
8996
8997 mutex_lock(&rt_constraints_mutex);
8998 if (!__rt_schedulable(NULL, 1, 0))
8999 ret = -EINVAL;
9000 mutex_unlock(&rt_constraints_mutex);
9001
9002 return ret;
9003 }
9004 #else
9005 static int sched_rt_global_constraints(void)
9006 {
9007 unsigned long flags;
9008 int i;
9009
9010 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9011 for_each_possible_cpu(i) {
9012 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9013
9014 spin_lock(&rt_rq->rt_runtime_lock);
9015 rt_rq->rt_runtime = global_rt_runtime();
9016 spin_unlock(&rt_rq->rt_runtime_lock);
9017 }
9018 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9019
9020 return 0;
9021 }
9022 #endif
9023
9024 int sched_rt_handler(struct ctl_table *table, int write,
9025 struct file *filp, void __user *buffer, size_t *lenp,
9026 loff_t *ppos)
9027 {
9028 int ret;
9029 int old_period, old_runtime;
9030 static DEFINE_MUTEX(mutex);
9031
9032 mutex_lock(&mutex);
9033 old_period = sysctl_sched_rt_period;
9034 old_runtime = sysctl_sched_rt_runtime;
9035
9036 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
9037
9038 if (!ret && write) {
9039 ret = sched_rt_global_constraints();
9040 if (ret) {
9041 sysctl_sched_rt_period = old_period;
9042 sysctl_sched_rt_runtime = old_runtime;
9043 } else {
9044 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9045 def_rt_bandwidth.rt_period =
9046 ns_to_ktime(global_rt_period());
9047 }
9048 }
9049 mutex_unlock(&mutex);
9050
9051 return ret;
9052 }
9053
9054 #ifdef CONFIG_CGROUP_SCHED
9055
9056 /* return corresponding task_group object of a cgroup */
9057 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9058 {
9059 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9060 struct task_group, css);
9061 }
9062
9063 static struct cgroup_subsys_state *
9064 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9065 {
9066 struct task_group *tg, *parent;
9067
9068 if (!cgrp->parent) {
9069 /* This is early initialization for the top cgroup */
9070 init_task_group.css.cgroup = cgrp;
9071 return &init_task_group.css;
9072 }
9073
9074 parent = cgroup_tg(cgrp->parent);
9075 tg = sched_create_group(parent);
9076 if (IS_ERR(tg))
9077 return ERR_PTR(-ENOMEM);
9078
9079 /* Bind the cgroup to task_group object we just created */
9080 tg->css.cgroup = cgrp;
9081
9082 return &tg->css;
9083 }
9084
9085 static void
9086 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9087 {
9088 struct task_group *tg = cgroup_tg(cgrp);
9089
9090 sched_destroy_group(tg);
9091 }
9092
9093 static int
9094 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9095 struct task_struct *tsk)
9096 {
9097 #ifdef CONFIG_RT_GROUP_SCHED
9098 /* Don't accept realtime tasks when there is no way for them to run */
9099 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
9100 return -EINVAL;
9101 #else
9102 /* We don't support RT-tasks being in separate groups */
9103 if (tsk->sched_class != &fair_sched_class)
9104 return -EINVAL;
9105 #endif
9106
9107 return 0;
9108 }
9109
9110 static void
9111 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9112 struct cgroup *old_cont, struct task_struct *tsk)
9113 {
9114 sched_move_task(tsk);
9115 }
9116
9117 #ifdef CONFIG_FAIR_GROUP_SCHED
9118 static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9119 u64 shareval)
9120 {
9121 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9122 }
9123
9124 static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
9125 {
9126 struct task_group *tg = cgroup_tg(cgrp);
9127
9128 return (u64) tg->shares;
9129 }
9130 #endif
9131
9132 #ifdef CONFIG_RT_GROUP_SCHED
9133 static ssize_t cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9134 struct file *file,
9135 const char __user *userbuf,
9136 size_t nbytes, loff_t *unused_ppos)
9137 {
9138 char buffer[64];
9139 int retval = 0;
9140 s64 val;
9141 char *end;
9142
9143 if (!nbytes)
9144 return -EINVAL;
9145 if (nbytes >= sizeof(buffer))
9146 return -E2BIG;
9147 if (copy_from_user(buffer, userbuf, nbytes))
9148 return -EFAULT;
9149
9150 buffer[nbytes] = 0; /* nul-terminate */
9151
9152 /* strip newline if necessary */
9153 if (nbytes && (buffer[nbytes-1] == '\n'))
9154 buffer[nbytes-1] = 0;
9155 val = simple_strtoll(buffer, &end, 0);
9156 if (*end)
9157 return -EINVAL;
9158
9159 /* Pass to subsystem */
9160 retval = sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
9161 if (!retval)
9162 retval = nbytes;
9163 return retval;
9164 }
9165
9166 static ssize_t cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft,
9167 struct file *file,
9168 char __user *buf, size_t nbytes,
9169 loff_t *ppos)
9170 {
9171 char tmp[64];
9172 long val = sched_group_rt_runtime(cgroup_tg(cgrp));
9173 int len = sprintf(tmp, "%ld\n", val);
9174
9175 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
9176 }
9177
9178 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9179 u64 rt_period_us)
9180 {
9181 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9182 }
9183
9184 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9185 {
9186 return sched_group_rt_period(cgroup_tg(cgrp));
9187 }
9188 #endif
9189
9190 static struct cftype cpu_files[] = {
9191 #ifdef CONFIG_FAIR_GROUP_SCHED
9192 {
9193 .name = "shares",
9194 .read_uint = cpu_shares_read_uint,
9195 .write_uint = cpu_shares_write_uint,
9196 },
9197 #endif
9198 #ifdef CONFIG_RT_GROUP_SCHED
9199 {
9200 .name = "rt_runtime_us",
9201 .read = cpu_rt_runtime_read,
9202 .write = cpu_rt_runtime_write,
9203 },
9204 {
9205 .name = "rt_period_us",
9206 .read_uint = cpu_rt_period_read_uint,
9207 .write_uint = cpu_rt_period_write_uint,
9208 },
9209 #endif
9210 };
9211
9212 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9213 {
9214 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9215 }
9216
9217 struct cgroup_subsys cpu_cgroup_subsys = {
9218 .name = "cpu",
9219 .create = cpu_cgroup_create,
9220 .destroy = cpu_cgroup_destroy,
9221 .can_attach = cpu_cgroup_can_attach,
9222 .attach = cpu_cgroup_attach,
9223 .populate = cpu_cgroup_populate,
9224 .subsys_id = cpu_cgroup_subsys_id,
9225 .early_init = 1,
9226 };
9227
9228 #endif /* CONFIG_CGROUP_SCHED */
9229
9230 #ifdef CONFIG_CGROUP_CPUACCT
9231
9232 /*
9233 * CPU accounting code for task groups.
9234 *
9235 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9236 * (balbir@in.ibm.com).
9237 */
9238
9239 /* track cpu usage of a group of tasks */
9240 struct cpuacct {
9241 struct cgroup_subsys_state css;
9242 /* cpuusage holds pointer to a u64-type object on every cpu */
9243 u64 *cpuusage;
9244 };
9245
9246 struct cgroup_subsys cpuacct_subsys;
9247
9248 /* return cpu accounting group corresponding to this container */
9249 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9250 {
9251 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9252 struct cpuacct, css);
9253 }
9254
9255 /* return cpu accounting group to which this task belongs */
9256 static inline struct cpuacct *task_ca(struct task_struct *tsk)
9257 {
9258 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9259 struct cpuacct, css);
9260 }
9261
9262 /* create a new cpu accounting group */
9263 static struct cgroup_subsys_state *cpuacct_create(
9264 struct cgroup_subsys *ss, struct cgroup *cgrp)
9265 {
9266 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9267
9268 if (!ca)
9269 return ERR_PTR(-ENOMEM);
9270
9271 ca->cpuusage = alloc_percpu(u64);
9272 if (!ca->cpuusage) {
9273 kfree(ca);
9274 return ERR_PTR(-ENOMEM);
9275 }
9276
9277 return &ca->css;
9278 }
9279
9280 /* destroy an existing cpu accounting group */
9281 static void
9282 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9283 {
9284 struct cpuacct *ca = cgroup_ca(cgrp);
9285
9286 free_percpu(ca->cpuusage);
9287 kfree(ca);
9288 }
9289
9290 /* return total cpu usage (in nanoseconds) of a group */
9291 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9292 {
9293 struct cpuacct *ca = cgroup_ca(cgrp);
9294 u64 totalcpuusage = 0;
9295 int i;
9296
9297 for_each_possible_cpu(i) {
9298 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9299
9300 /*
9301 * Take rq->lock to make 64-bit addition safe on 32-bit
9302 * platforms.
9303 */
9304 spin_lock_irq(&cpu_rq(i)->lock);
9305 totalcpuusage += *cpuusage;
9306 spin_unlock_irq(&cpu_rq(i)->lock);
9307 }
9308
9309 return totalcpuusage;
9310 }
9311
9312 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9313 u64 reset)
9314 {
9315 struct cpuacct *ca = cgroup_ca(cgrp);
9316 int err = 0;
9317 int i;
9318
9319 if (reset) {
9320 err = -EINVAL;
9321 goto out;
9322 }
9323
9324 for_each_possible_cpu(i) {
9325 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9326
9327 spin_lock_irq(&cpu_rq(i)->lock);
9328 *cpuusage = 0;
9329 spin_unlock_irq(&cpu_rq(i)->lock);
9330 }
9331 out:
9332 return err;
9333 }
9334
9335 static struct cftype files[] = {
9336 {
9337 .name = "usage",
9338 .read_uint = cpuusage_read,
9339 .write_uint = cpuusage_write,
9340 },
9341 };
9342
9343 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9344 {
9345 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9346 }
9347
9348 /*
9349 * charge this task's execution time to its accounting group.
9350 *
9351 * called with rq->lock held.
9352 */
9353 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9354 {
9355 struct cpuacct *ca;
9356
9357 if (!cpuacct_subsys.active)
9358 return;
9359
9360 ca = task_ca(tsk);
9361 if (ca) {
9362 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
9363
9364 *cpuusage += cputime;
9365 }
9366 }
9367
9368 struct cgroup_subsys cpuacct_subsys = {
9369 .name = "cpuacct",
9370 .create = cpuacct_create,
9371 .destroy = cpuacct_destroy,
9372 .populate = cpuacct_populate,
9373 .subsys_id = cpuacct_subsys_id,
9374 };
9375 #endif /* CONFIG_CGROUP_CPUACCT */
This page took 0.447937 seconds and 5 git commands to generate.