CRED: Wrap task credential accesses in the core kernel
[deliverable/linux.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/reciprocal_div.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/bootmem.h>
72 #include <linux/debugfs.h>
73 #include <linux/ctype.h>
74 #include <linux/ftrace.h>
75 #include <trace/sched.h>
76
77 #include <asm/tlb.h>
78 #include <asm/irq_regs.h>
79
80 #include "sched_cpupri.h"
81
82 /*
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85 * and back.
86 */
87 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
90
91 /*
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
95 */
96 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
99
100 /*
101 * Helpers for converting nanosecond timing to jiffy resolution
102 */
103 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
104
105 #define NICE_0_LOAD SCHED_LOAD_SCALE
106 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
107
108 /*
109 * These are the 'tuning knobs' of the scheduler:
110 *
111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
112 * Timeslices get refilled after they expire.
113 */
114 #define DEF_TIMESLICE (100 * HZ / 1000)
115
116 /*
117 * single value that denotes runtime == period, ie unlimited time.
118 */
119 #define RUNTIME_INF ((u64)~0ULL)
120
121 #ifdef CONFIG_SMP
122 /*
123 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
124 * Since cpu_power is a 'constant', we can use a reciprocal divide.
125 */
126 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
127 {
128 return reciprocal_divide(load, sg->reciprocal_cpu_power);
129 }
130
131 /*
132 * Each time a sched group cpu_power is changed,
133 * we must compute its reciprocal value
134 */
135 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
136 {
137 sg->__cpu_power += val;
138 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
139 }
140 #endif
141
142 static inline int rt_policy(int policy)
143 {
144 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
145 return 1;
146 return 0;
147 }
148
149 static inline int task_has_rt_policy(struct task_struct *p)
150 {
151 return rt_policy(p->policy);
152 }
153
154 /*
155 * This is the priority-queue data structure of the RT scheduling class:
156 */
157 struct rt_prio_array {
158 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
159 struct list_head queue[MAX_RT_PRIO];
160 };
161
162 struct rt_bandwidth {
163 /* nests inside the rq lock: */
164 spinlock_t rt_runtime_lock;
165 ktime_t rt_period;
166 u64 rt_runtime;
167 struct hrtimer rt_period_timer;
168 };
169
170 static struct rt_bandwidth def_rt_bandwidth;
171
172 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
173
174 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
175 {
176 struct rt_bandwidth *rt_b =
177 container_of(timer, struct rt_bandwidth, rt_period_timer);
178 ktime_t now;
179 int overrun;
180 int idle = 0;
181
182 for (;;) {
183 now = hrtimer_cb_get_time(timer);
184 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
185
186 if (!overrun)
187 break;
188
189 idle = do_sched_rt_period_timer(rt_b, overrun);
190 }
191
192 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
193 }
194
195 static
196 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
197 {
198 rt_b->rt_period = ns_to_ktime(period);
199 rt_b->rt_runtime = runtime;
200
201 spin_lock_init(&rt_b->rt_runtime_lock);
202
203 hrtimer_init(&rt_b->rt_period_timer,
204 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
205 rt_b->rt_period_timer.function = sched_rt_period_timer;
206 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
207 }
208
209 static inline int rt_bandwidth_enabled(void)
210 {
211 return sysctl_sched_rt_runtime >= 0;
212 }
213
214 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
215 {
216 ktime_t now;
217
218 if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
219 return;
220
221 if (hrtimer_active(&rt_b->rt_period_timer))
222 return;
223
224 spin_lock(&rt_b->rt_runtime_lock);
225 for (;;) {
226 if (hrtimer_active(&rt_b->rt_period_timer))
227 break;
228
229 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
230 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
231 hrtimer_start_expires(&rt_b->rt_period_timer,
232 HRTIMER_MODE_ABS);
233 }
234 spin_unlock(&rt_b->rt_runtime_lock);
235 }
236
237 #ifdef CONFIG_RT_GROUP_SCHED
238 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
239 {
240 hrtimer_cancel(&rt_b->rt_period_timer);
241 }
242 #endif
243
244 /*
245 * sched_domains_mutex serializes calls to arch_init_sched_domains,
246 * detach_destroy_domains and partition_sched_domains.
247 */
248 static DEFINE_MUTEX(sched_domains_mutex);
249
250 #ifdef CONFIG_GROUP_SCHED
251
252 #include <linux/cgroup.h>
253
254 struct cfs_rq;
255
256 static LIST_HEAD(task_groups);
257
258 /* task group related information */
259 struct task_group {
260 #ifdef CONFIG_CGROUP_SCHED
261 struct cgroup_subsys_state css;
262 #endif
263
264 #ifdef CONFIG_FAIR_GROUP_SCHED
265 /* schedulable entities of this group on each cpu */
266 struct sched_entity **se;
267 /* runqueue "owned" by this group on each cpu */
268 struct cfs_rq **cfs_rq;
269 unsigned long shares;
270 #endif
271
272 #ifdef CONFIG_RT_GROUP_SCHED
273 struct sched_rt_entity **rt_se;
274 struct rt_rq **rt_rq;
275
276 struct rt_bandwidth rt_bandwidth;
277 #endif
278
279 struct rcu_head rcu;
280 struct list_head list;
281
282 struct task_group *parent;
283 struct list_head siblings;
284 struct list_head children;
285 };
286
287 #ifdef CONFIG_USER_SCHED
288
289 /*
290 * Root task group.
291 * Every UID task group (including init_task_group aka UID-0) will
292 * be a child to this group.
293 */
294 struct task_group root_task_group;
295
296 #ifdef CONFIG_FAIR_GROUP_SCHED
297 /* Default task group's sched entity on each cpu */
298 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
299 /* Default task group's cfs_rq on each cpu */
300 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
301 #endif /* CONFIG_FAIR_GROUP_SCHED */
302
303 #ifdef CONFIG_RT_GROUP_SCHED
304 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
305 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
306 #endif /* CONFIG_RT_GROUP_SCHED */
307 #else /* !CONFIG_USER_SCHED */
308 #define root_task_group init_task_group
309 #endif /* CONFIG_USER_SCHED */
310
311 /* task_group_lock serializes add/remove of task groups and also changes to
312 * a task group's cpu shares.
313 */
314 static DEFINE_SPINLOCK(task_group_lock);
315
316 #ifdef CONFIG_FAIR_GROUP_SCHED
317 #ifdef CONFIG_USER_SCHED
318 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
319 #else /* !CONFIG_USER_SCHED */
320 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
321 #endif /* CONFIG_USER_SCHED */
322
323 /*
324 * A weight of 0 or 1 can cause arithmetics problems.
325 * A weight of a cfs_rq is the sum of weights of which entities
326 * are queued on this cfs_rq, so a weight of a entity should not be
327 * too large, so as the shares value of a task group.
328 * (The default weight is 1024 - so there's no practical
329 * limitation from this.)
330 */
331 #define MIN_SHARES 2
332 #define MAX_SHARES (1UL << 18)
333
334 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
335 #endif
336
337 /* Default task group.
338 * Every task in system belong to this group at bootup.
339 */
340 struct task_group init_task_group;
341
342 /* return group to which a task belongs */
343 static inline struct task_group *task_group(struct task_struct *p)
344 {
345 struct task_group *tg;
346
347 #ifdef CONFIG_USER_SCHED
348 tg = p->user->tg;
349 #elif defined(CONFIG_CGROUP_SCHED)
350 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
351 struct task_group, css);
352 #else
353 tg = &init_task_group;
354 #endif
355 return tg;
356 }
357
358 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
359 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
360 {
361 #ifdef CONFIG_FAIR_GROUP_SCHED
362 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
363 p->se.parent = task_group(p)->se[cpu];
364 #endif
365
366 #ifdef CONFIG_RT_GROUP_SCHED
367 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
368 p->rt.parent = task_group(p)->rt_se[cpu];
369 #endif
370 }
371
372 #else
373
374 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
375 static inline struct task_group *task_group(struct task_struct *p)
376 {
377 return NULL;
378 }
379
380 #endif /* CONFIG_GROUP_SCHED */
381
382 /* CFS-related fields in a runqueue */
383 struct cfs_rq {
384 struct load_weight load;
385 unsigned long nr_running;
386
387 u64 exec_clock;
388 u64 min_vruntime;
389
390 struct rb_root tasks_timeline;
391 struct rb_node *rb_leftmost;
392
393 struct list_head tasks;
394 struct list_head *balance_iterator;
395
396 /*
397 * 'curr' points to currently running entity on this cfs_rq.
398 * It is set to NULL otherwise (i.e when none are currently running).
399 */
400 struct sched_entity *curr, *next;
401
402 unsigned long nr_spread_over;
403
404 #ifdef CONFIG_FAIR_GROUP_SCHED
405 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
406
407 /*
408 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
409 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
410 * (like users, containers etc.)
411 *
412 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
413 * list is used during load balance.
414 */
415 struct list_head leaf_cfs_rq_list;
416 struct task_group *tg; /* group that "owns" this runqueue */
417
418 #ifdef CONFIG_SMP
419 /*
420 * the part of load.weight contributed by tasks
421 */
422 unsigned long task_weight;
423
424 /*
425 * h_load = weight * f(tg)
426 *
427 * Where f(tg) is the recursive weight fraction assigned to
428 * this group.
429 */
430 unsigned long h_load;
431
432 /*
433 * this cpu's part of tg->shares
434 */
435 unsigned long shares;
436
437 /*
438 * load.weight at the time we set shares
439 */
440 unsigned long rq_weight;
441 #endif
442 #endif
443 };
444
445 /* Real-Time classes' related field in a runqueue: */
446 struct rt_rq {
447 struct rt_prio_array active;
448 unsigned long rt_nr_running;
449 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
450 int highest_prio; /* highest queued rt task prio */
451 #endif
452 #ifdef CONFIG_SMP
453 unsigned long rt_nr_migratory;
454 int overloaded;
455 #endif
456 int rt_throttled;
457 u64 rt_time;
458 u64 rt_runtime;
459 /* Nests inside the rq lock: */
460 spinlock_t rt_runtime_lock;
461
462 #ifdef CONFIG_RT_GROUP_SCHED
463 unsigned long rt_nr_boosted;
464
465 struct rq *rq;
466 struct list_head leaf_rt_rq_list;
467 struct task_group *tg;
468 struct sched_rt_entity *rt_se;
469 #endif
470 };
471
472 #ifdef CONFIG_SMP
473
474 /*
475 * We add the notion of a root-domain which will be used to define per-domain
476 * variables. Each exclusive cpuset essentially defines an island domain by
477 * fully partitioning the member cpus from any other cpuset. Whenever a new
478 * exclusive cpuset is created, we also create and attach a new root-domain
479 * object.
480 *
481 */
482 struct root_domain {
483 atomic_t refcount;
484 cpumask_t span;
485 cpumask_t online;
486
487 /*
488 * The "RT overload" flag: it gets set if a CPU has more than
489 * one runnable RT task.
490 */
491 cpumask_t rto_mask;
492 atomic_t rto_count;
493 #ifdef CONFIG_SMP
494 struct cpupri cpupri;
495 #endif
496 };
497
498 /*
499 * By default the system creates a single root-domain with all cpus as
500 * members (mimicking the global state we have today).
501 */
502 static struct root_domain def_root_domain;
503
504 #endif
505
506 /*
507 * This is the main, per-CPU runqueue data structure.
508 *
509 * Locking rule: those places that want to lock multiple runqueues
510 * (such as the load balancing or the thread migration code), lock
511 * acquire operations must be ordered by ascending &runqueue.
512 */
513 struct rq {
514 /* runqueue lock: */
515 spinlock_t lock;
516
517 /*
518 * nr_running and cpu_load should be in the same cacheline because
519 * remote CPUs use both these fields when doing load calculation.
520 */
521 unsigned long nr_running;
522 #define CPU_LOAD_IDX_MAX 5
523 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
524 unsigned char idle_at_tick;
525 #ifdef CONFIG_NO_HZ
526 unsigned long last_tick_seen;
527 unsigned char in_nohz_recently;
528 #endif
529 /* capture load from *all* tasks on this cpu: */
530 struct load_weight load;
531 unsigned long nr_load_updates;
532 u64 nr_switches;
533
534 struct cfs_rq cfs;
535 struct rt_rq rt;
536
537 #ifdef CONFIG_FAIR_GROUP_SCHED
538 /* list of leaf cfs_rq on this cpu: */
539 struct list_head leaf_cfs_rq_list;
540 #endif
541 #ifdef CONFIG_RT_GROUP_SCHED
542 struct list_head leaf_rt_rq_list;
543 #endif
544
545 /*
546 * This is part of a global counter where only the total sum
547 * over all CPUs matters. A task can increase this counter on
548 * one CPU and if it got migrated afterwards it may decrease
549 * it on another CPU. Always updated under the runqueue lock:
550 */
551 unsigned long nr_uninterruptible;
552
553 struct task_struct *curr, *idle;
554 unsigned long next_balance;
555 struct mm_struct *prev_mm;
556
557 u64 clock;
558
559 atomic_t nr_iowait;
560
561 #ifdef CONFIG_SMP
562 struct root_domain *rd;
563 struct sched_domain *sd;
564
565 /* For active balancing */
566 int active_balance;
567 int push_cpu;
568 /* cpu of this runqueue: */
569 int cpu;
570 int online;
571
572 unsigned long avg_load_per_task;
573
574 struct task_struct *migration_thread;
575 struct list_head migration_queue;
576 #endif
577
578 #ifdef CONFIG_SCHED_HRTICK
579 #ifdef CONFIG_SMP
580 int hrtick_csd_pending;
581 struct call_single_data hrtick_csd;
582 #endif
583 struct hrtimer hrtick_timer;
584 #endif
585
586 #ifdef CONFIG_SCHEDSTATS
587 /* latency stats */
588 struct sched_info rq_sched_info;
589
590 /* sys_sched_yield() stats */
591 unsigned int yld_exp_empty;
592 unsigned int yld_act_empty;
593 unsigned int yld_both_empty;
594 unsigned int yld_count;
595
596 /* schedule() stats */
597 unsigned int sched_switch;
598 unsigned int sched_count;
599 unsigned int sched_goidle;
600
601 /* try_to_wake_up() stats */
602 unsigned int ttwu_count;
603 unsigned int ttwu_local;
604
605 /* BKL stats */
606 unsigned int bkl_count;
607 #endif
608 };
609
610 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
611
612 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
613 {
614 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
615 }
616
617 static inline int cpu_of(struct rq *rq)
618 {
619 #ifdef CONFIG_SMP
620 return rq->cpu;
621 #else
622 return 0;
623 #endif
624 }
625
626 /*
627 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
628 * See detach_destroy_domains: synchronize_sched for details.
629 *
630 * The domain tree of any CPU may only be accessed from within
631 * preempt-disabled sections.
632 */
633 #define for_each_domain(cpu, __sd) \
634 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
635
636 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
637 #define this_rq() (&__get_cpu_var(runqueues))
638 #define task_rq(p) cpu_rq(task_cpu(p))
639 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
640
641 static inline void update_rq_clock(struct rq *rq)
642 {
643 rq->clock = sched_clock_cpu(cpu_of(rq));
644 }
645
646 /*
647 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
648 */
649 #ifdef CONFIG_SCHED_DEBUG
650 # define const_debug __read_mostly
651 #else
652 # define const_debug static const
653 #endif
654
655 /**
656 * runqueue_is_locked
657 *
658 * Returns true if the current cpu runqueue is locked.
659 * This interface allows printk to be called with the runqueue lock
660 * held and know whether or not it is OK to wake up the klogd.
661 */
662 int runqueue_is_locked(void)
663 {
664 int cpu = get_cpu();
665 struct rq *rq = cpu_rq(cpu);
666 int ret;
667
668 ret = spin_is_locked(&rq->lock);
669 put_cpu();
670 return ret;
671 }
672
673 /*
674 * Debugging: various feature bits
675 */
676
677 #define SCHED_FEAT(name, enabled) \
678 __SCHED_FEAT_##name ,
679
680 enum {
681 #include "sched_features.h"
682 };
683
684 #undef SCHED_FEAT
685
686 #define SCHED_FEAT(name, enabled) \
687 (1UL << __SCHED_FEAT_##name) * enabled |
688
689 const_debug unsigned int sysctl_sched_features =
690 #include "sched_features.h"
691 0;
692
693 #undef SCHED_FEAT
694
695 #ifdef CONFIG_SCHED_DEBUG
696 #define SCHED_FEAT(name, enabled) \
697 #name ,
698
699 static __read_mostly char *sched_feat_names[] = {
700 #include "sched_features.h"
701 NULL
702 };
703
704 #undef SCHED_FEAT
705
706 static int sched_feat_open(struct inode *inode, struct file *filp)
707 {
708 filp->private_data = inode->i_private;
709 return 0;
710 }
711
712 static ssize_t
713 sched_feat_read(struct file *filp, char __user *ubuf,
714 size_t cnt, loff_t *ppos)
715 {
716 char *buf;
717 int r = 0;
718 int len = 0;
719 int i;
720
721 for (i = 0; sched_feat_names[i]; i++) {
722 len += strlen(sched_feat_names[i]);
723 len += 4;
724 }
725
726 buf = kmalloc(len + 2, GFP_KERNEL);
727 if (!buf)
728 return -ENOMEM;
729
730 for (i = 0; sched_feat_names[i]; i++) {
731 if (sysctl_sched_features & (1UL << i))
732 r += sprintf(buf + r, "%s ", sched_feat_names[i]);
733 else
734 r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
735 }
736
737 r += sprintf(buf + r, "\n");
738 WARN_ON(r >= len + 2);
739
740 r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
741
742 kfree(buf);
743
744 return r;
745 }
746
747 static ssize_t
748 sched_feat_write(struct file *filp, const char __user *ubuf,
749 size_t cnt, loff_t *ppos)
750 {
751 char buf[64];
752 char *cmp = buf;
753 int neg = 0;
754 int i;
755
756 if (cnt > 63)
757 cnt = 63;
758
759 if (copy_from_user(&buf, ubuf, cnt))
760 return -EFAULT;
761
762 buf[cnt] = 0;
763
764 if (strncmp(buf, "NO_", 3) == 0) {
765 neg = 1;
766 cmp += 3;
767 }
768
769 for (i = 0; sched_feat_names[i]; i++) {
770 int len = strlen(sched_feat_names[i]);
771
772 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
773 if (neg)
774 sysctl_sched_features &= ~(1UL << i);
775 else
776 sysctl_sched_features |= (1UL << i);
777 break;
778 }
779 }
780
781 if (!sched_feat_names[i])
782 return -EINVAL;
783
784 filp->f_pos += cnt;
785
786 return cnt;
787 }
788
789 static struct file_operations sched_feat_fops = {
790 .open = sched_feat_open,
791 .read = sched_feat_read,
792 .write = sched_feat_write,
793 };
794
795 static __init int sched_init_debug(void)
796 {
797 debugfs_create_file("sched_features", 0644, NULL, NULL,
798 &sched_feat_fops);
799
800 return 0;
801 }
802 late_initcall(sched_init_debug);
803
804 #endif
805
806 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
807
808 /*
809 * Number of tasks to iterate in a single balance run.
810 * Limited because this is done with IRQs disabled.
811 */
812 const_debug unsigned int sysctl_sched_nr_migrate = 32;
813
814 /*
815 * ratelimit for updating the group shares.
816 * default: 0.25ms
817 */
818 unsigned int sysctl_sched_shares_ratelimit = 250000;
819
820 /*
821 * Inject some fuzzyness into changing the per-cpu group shares
822 * this avoids remote rq-locks at the expense of fairness.
823 * default: 4
824 */
825 unsigned int sysctl_sched_shares_thresh = 4;
826
827 /*
828 * period over which we measure -rt task cpu usage in us.
829 * default: 1s
830 */
831 unsigned int sysctl_sched_rt_period = 1000000;
832
833 static __read_mostly int scheduler_running;
834
835 /*
836 * part of the period that we allow rt tasks to run in us.
837 * default: 0.95s
838 */
839 int sysctl_sched_rt_runtime = 950000;
840
841 static inline u64 global_rt_period(void)
842 {
843 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
844 }
845
846 static inline u64 global_rt_runtime(void)
847 {
848 if (sysctl_sched_rt_runtime < 0)
849 return RUNTIME_INF;
850
851 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
852 }
853
854 #ifndef prepare_arch_switch
855 # define prepare_arch_switch(next) do { } while (0)
856 #endif
857 #ifndef finish_arch_switch
858 # define finish_arch_switch(prev) do { } while (0)
859 #endif
860
861 static inline int task_current(struct rq *rq, struct task_struct *p)
862 {
863 return rq->curr == p;
864 }
865
866 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
867 static inline int task_running(struct rq *rq, struct task_struct *p)
868 {
869 return task_current(rq, p);
870 }
871
872 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
873 {
874 }
875
876 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
877 {
878 #ifdef CONFIG_DEBUG_SPINLOCK
879 /* this is a valid case when another task releases the spinlock */
880 rq->lock.owner = current;
881 #endif
882 /*
883 * If we are tracking spinlock dependencies then we have to
884 * fix up the runqueue lock - which gets 'carried over' from
885 * prev into current:
886 */
887 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
888
889 spin_unlock_irq(&rq->lock);
890 }
891
892 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
893 static inline int task_running(struct rq *rq, struct task_struct *p)
894 {
895 #ifdef CONFIG_SMP
896 return p->oncpu;
897 #else
898 return task_current(rq, p);
899 #endif
900 }
901
902 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
903 {
904 #ifdef CONFIG_SMP
905 /*
906 * We can optimise this out completely for !SMP, because the
907 * SMP rebalancing from interrupt is the only thing that cares
908 * here.
909 */
910 next->oncpu = 1;
911 #endif
912 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
913 spin_unlock_irq(&rq->lock);
914 #else
915 spin_unlock(&rq->lock);
916 #endif
917 }
918
919 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
920 {
921 #ifdef CONFIG_SMP
922 /*
923 * After ->oncpu is cleared, the task can be moved to a different CPU.
924 * We must ensure this doesn't happen until the switch is completely
925 * finished.
926 */
927 smp_wmb();
928 prev->oncpu = 0;
929 #endif
930 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
931 local_irq_enable();
932 #endif
933 }
934 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
935
936 /*
937 * __task_rq_lock - lock the runqueue a given task resides on.
938 * Must be called interrupts disabled.
939 */
940 static inline struct rq *__task_rq_lock(struct task_struct *p)
941 __acquires(rq->lock)
942 {
943 for (;;) {
944 struct rq *rq = task_rq(p);
945 spin_lock(&rq->lock);
946 if (likely(rq == task_rq(p)))
947 return rq;
948 spin_unlock(&rq->lock);
949 }
950 }
951
952 /*
953 * task_rq_lock - lock the runqueue a given task resides on and disable
954 * interrupts. Note the ordering: we can safely lookup the task_rq without
955 * explicitly disabling preemption.
956 */
957 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
958 __acquires(rq->lock)
959 {
960 struct rq *rq;
961
962 for (;;) {
963 local_irq_save(*flags);
964 rq = task_rq(p);
965 spin_lock(&rq->lock);
966 if (likely(rq == task_rq(p)))
967 return rq;
968 spin_unlock_irqrestore(&rq->lock, *flags);
969 }
970 }
971
972 static void __task_rq_unlock(struct rq *rq)
973 __releases(rq->lock)
974 {
975 spin_unlock(&rq->lock);
976 }
977
978 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
979 __releases(rq->lock)
980 {
981 spin_unlock_irqrestore(&rq->lock, *flags);
982 }
983
984 /*
985 * this_rq_lock - lock this runqueue and disable interrupts.
986 */
987 static struct rq *this_rq_lock(void)
988 __acquires(rq->lock)
989 {
990 struct rq *rq;
991
992 local_irq_disable();
993 rq = this_rq();
994 spin_lock(&rq->lock);
995
996 return rq;
997 }
998
999 #ifdef CONFIG_SCHED_HRTICK
1000 /*
1001 * Use HR-timers to deliver accurate preemption points.
1002 *
1003 * Its all a bit involved since we cannot program an hrt while holding the
1004 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1005 * reschedule event.
1006 *
1007 * When we get rescheduled we reprogram the hrtick_timer outside of the
1008 * rq->lock.
1009 */
1010
1011 /*
1012 * Use hrtick when:
1013 * - enabled by features
1014 * - hrtimer is actually high res
1015 */
1016 static inline int hrtick_enabled(struct rq *rq)
1017 {
1018 if (!sched_feat(HRTICK))
1019 return 0;
1020 if (!cpu_active(cpu_of(rq)))
1021 return 0;
1022 return hrtimer_is_hres_active(&rq->hrtick_timer);
1023 }
1024
1025 static void hrtick_clear(struct rq *rq)
1026 {
1027 if (hrtimer_active(&rq->hrtick_timer))
1028 hrtimer_cancel(&rq->hrtick_timer);
1029 }
1030
1031 /*
1032 * High-resolution timer tick.
1033 * Runs from hardirq context with interrupts disabled.
1034 */
1035 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1036 {
1037 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1038
1039 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1040
1041 spin_lock(&rq->lock);
1042 update_rq_clock(rq);
1043 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1044 spin_unlock(&rq->lock);
1045
1046 return HRTIMER_NORESTART;
1047 }
1048
1049 #ifdef CONFIG_SMP
1050 /*
1051 * called from hardirq (IPI) context
1052 */
1053 static void __hrtick_start(void *arg)
1054 {
1055 struct rq *rq = arg;
1056
1057 spin_lock(&rq->lock);
1058 hrtimer_restart(&rq->hrtick_timer);
1059 rq->hrtick_csd_pending = 0;
1060 spin_unlock(&rq->lock);
1061 }
1062
1063 /*
1064 * Called to set the hrtick timer state.
1065 *
1066 * called with rq->lock held and irqs disabled
1067 */
1068 static void hrtick_start(struct rq *rq, u64 delay)
1069 {
1070 struct hrtimer *timer = &rq->hrtick_timer;
1071 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1072
1073 hrtimer_set_expires(timer, time);
1074
1075 if (rq == this_rq()) {
1076 hrtimer_restart(timer);
1077 } else if (!rq->hrtick_csd_pending) {
1078 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
1079 rq->hrtick_csd_pending = 1;
1080 }
1081 }
1082
1083 static int
1084 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1085 {
1086 int cpu = (int)(long)hcpu;
1087
1088 switch (action) {
1089 case CPU_UP_CANCELED:
1090 case CPU_UP_CANCELED_FROZEN:
1091 case CPU_DOWN_PREPARE:
1092 case CPU_DOWN_PREPARE_FROZEN:
1093 case CPU_DEAD:
1094 case CPU_DEAD_FROZEN:
1095 hrtick_clear(cpu_rq(cpu));
1096 return NOTIFY_OK;
1097 }
1098
1099 return NOTIFY_DONE;
1100 }
1101
1102 static __init void init_hrtick(void)
1103 {
1104 hotcpu_notifier(hotplug_hrtick, 0);
1105 }
1106 #else
1107 /*
1108 * Called to set the hrtick timer state.
1109 *
1110 * called with rq->lock held and irqs disabled
1111 */
1112 static void hrtick_start(struct rq *rq, u64 delay)
1113 {
1114 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
1115 }
1116
1117 static inline void init_hrtick(void)
1118 {
1119 }
1120 #endif /* CONFIG_SMP */
1121
1122 static void init_rq_hrtick(struct rq *rq)
1123 {
1124 #ifdef CONFIG_SMP
1125 rq->hrtick_csd_pending = 0;
1126
1127 rq->hrtick_csd.flags = 0;
1128 rq->hrtick_csd.func = __hrtick_start;
1129 rq->hrtick_csd.info = rq;
1130 #endif
1131
1132 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1133 rq->hrtick_timer.function = hrtick;
1134 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU;
1135 }
1136 #else /* CONFIG_SCHED_HRTICK */
1137 static inline void hrtick_clear(struct rq *rq)
1138 {
1139 }
1140
1141 static inline void init_rq_hrtick(struct rq *rq)
1142 {
1143 }
1144
1145 static inline void init_hrtick(void)
1146 {
1147 }
1148 #endif /* CONFIG_SCHED_HRTICK */
1149
1150 /*
1151 * resched_task - mark a task 'to be rescheduled now'.
1152 *
1153 * On UP this means the setting of the need_resched flag, on SMP it
1154 * might also involve a cross-CPU call to trigger the scheduler on
1155 * the target CPU.
1156 */
1157 #ifdef CONFIG_SMP
1158
1159 #ifndef tsk_is_polling
1160 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1161 #endif
1162
1163 static void resched_task(struct task_struct *p)
1164 {
1165 int cpu;
1166
1167 assert_spin_locked(&task_rq(p)->lock);
1168
1169 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
1170 return;
1171
1172 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
1173
1174 cpu = task_cpu(p);
1175 if (cpu == smp_processor_id())
1176 return;
1177
1178 /* NEED_RESCHED must be visible before we test polling */
1179 smp_mb();
1180 if (!tsk_is_polling(p))
1181 smp_send_reschedule(cpu);
1182 }
1183
1184 static void resched_cpu(int cpu)
1185 {
1186 struct rq *rq = cpu_rq(cpu);
1187 unsigned long flags;
1188
1189 if (!spin_trylock_irqsave(&rq->lock, flags))
1190 return;
1191 resched_task(cpu_curr(cpu));
1192 spin_unlock_irqrestore(&rq->lock, flags);
1193 }
1194
1195 #ifdef CONFIG_NO_HZ
1196 /*
1197 * When add_timer_on() enqueues a timer into the timer wheel of an
1198 * idle CPU then this timer might expire before the next timer event
1199 * which is scheduled to wake up that CPU. In case of a completely
1200 * idle system the next event might even be infinite time into the
1201 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1202 * leaves the inner idle loop so the newly added timer is taken into
1203 * account when the CPU goes back to idle and evaluates the timer
1204 * wheel for the next timer event.
1205 */
1206 void wake_up_idle_cpu(int cpu)
1207 {
1208 struct rq *rq = cpu_rq(cpu);
1209
1210 if (cpu == smp_processor_id())
1211 return;
1212
1213 /*
1214 * This is safe, as this function is called with the timer
1215 * wheel base lock of (cpu) held. When the CPU is on the way
1216 * to idle and has not yet set rq->curr to idle then it will
1217 * be serialized on the timer wheel base lock and take the new
1218 * timer into account automatically.
1219 */
1220 if (rq->curr != rq->idle)
1221 return;
1222
1223 /*
1224 * We can set TIF_RESCHED on the idle task of the other CPU
1225 * lockless. The worst case is that the other CPU runs the
1226 * idle task through an additional NOOP schedule()
1227 */
1228 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1229
1230 /* NEED_RESCHED must be visible before we test polling */
1231 smp_mb();
1232 if (!tsk_is_polling(rq->idle))
1233 smp_send_reschedule(cpu);
1234 }
1235 #endif /* CONFIG_NO_HZ */
1236
1237 #else /* !CONFIG_SMP */
1238 static void resched_task(struct task_struct *p)
1239 {
1240 assert_spin_locked(&task_rq(p)->lock);
1241 set_tsk_need_resched(p);
1242 }
1243 #endif /* CONFIG_SMP */
1244
1245 #if BITS_PER_LONG == 32
1246 # define WMULT_CONST (~0UL)
1247 #else
1248 # define WMULT_CONST (1UL << 32)
1249 #endif
1250
1251 #define WMULT_SHIFT 32
1252
1253 /*
1254 * Shift right and round:
1255 */
1256 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1257
1258 /*
1259 * delta *= weight / lw
1260 */
1261 static unsigned long
1262 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1263 struct load_weight *lw)
1264 {
1265 u64 tmp;
1266
1267 if (!lw->inv_weight) {
1268 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1269 lw->inv_weight = 1;
1270 else
1271 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1272 / (lw->weight+1);
1273 }
1274
1275 tmp = (u64)delta_exec * weight;
1276 /*
1277 * Check whether we'd overflow the 64-bit multiplication:
1278 */
1279 if (unlikely(tmp > WMULT_CONST))
1280 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1281 WMULT_SHIFT/2);
1282 else
1283 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1284
1285 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1286 }
1287
1288 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1289 {
1290 lw->weight += inc;
1291 lw->inv_weight = 0;
1292 }
1293
1294 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1295 {
1296 lw->weight -= dec;
1297 lw->inv_weight = 0;
1298 }
1299
1300 /*
1301 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1302 * of tasks with abnormal "nice" values across CPUs the contribution that
1303 * each task makes to its run queue's load is weighted according to its
1304 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1305 * scaled version of the new time slice allocation that they receive on time
1306 * slice expiry etc.
1307 */
1308
1309 #define WEIGHT_IDLEPRIO 2
1310 #define WMULT_IDLEPRIO (1 << 31)
1311
1312 /*
1313 * Nice levels are multiplicative, with a gentle 10% change for every
1314 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1315 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1316 * that remained on nice 0.
1317 *
1318 * The "10% effect" is relative and cumulative: from _any_ nice level,
1319 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1320 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1321 * If a task goes up by ~10% and another task goes down by ~10% then
1322 * the relative distance between them is ~25%.)
1323 */
1324 static const int prio_to_weight[40] = {
1325 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1326 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1327 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1328 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1329 /* 0 */ 1024, 820, 655, 526, 423,
1330 /* 5 */ 335, 272, 215, 172, 137,
1331 /* 10 */ 110, 87, 70, 56, 45,
1332 /* 15 */ 36, 29, 23, 18, 15,
1333 };
1334
1335 /*
1336 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1337 *
1338 * In cases where the weight does not change often, we can use the
1339 * precalculated inverse to speed up arithmetics by turning divisions
1340 * into multiplications:
1341 */
1342 static const u32 prio_to_wmult[40] = {
1343 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1344 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1345 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1346 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1347 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1348 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1349 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1350 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1351 };
1352
1353 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1354
1355 /*
1356 * runqueue iterator, to support SMP load-balancing between different
1357 * scheduling classes, without having to expose their internal data
1358 * structures to the load-balancing proper:
1359 */
1360 struct rq_iterator {
1361 void *arg;
1362 struct task_struct *(*start)(void *);
1363 struct task_struct *(*next)(void *);
1364 };
1365
1366 #ifdef CONFIG_SMP
1367 static unsigned long
1368 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1369 unsigned long max_load_move, struct sched_domain *sd,
1370 enum cpu_idle_type idle, int *all_pinned,
1371 int *this_best_prio, struct rq_iterator *iterator);
1372
1373 static int
1374 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1375 struct sched_domain *sd, enum cpu_idle_type idle,
1376 struct rq_iterator *iterator);
1377 #endif
1378
1379 #ifdef CONFIG_CGROUP_CPUACCT
1380 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1381 #else
1382 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1383 #endif
1384
1385 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1386 {
1387 update_load_add(&rq->load, load);
1388 }
1389
1390 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1391 {
1392 update_load_sub(&rq->load, load);
1393 }
1394
1395 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1396 typedef int (*tg_visitor)(struct task_group *, void *);
1397
1398 /*
1399 * Iterate the full tree, calling @down when first entering a node and @up when
1400 * leaving it for the final time.
1401 */
1402 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1403 {
1404 struct task_group *parent, *child;
1405 int ret;
1406
1407 rcu_read_lock();
1408 parent = &root_task_group;
1409 down:
1410 ret = (*down)(parent, data);
1411 if (ret)
1412 goto out_unlock;
1413 list_for_each_entry_rcu(child, &parent->children, siblings) {
1414 parent = child;
1415 goto down;
1416
1417 up:
1418 continue;
1419 }
1420 ret = (*up)(parent, data);
1421 if (ret)
1422 goto out_unlock;
1423
1424 child = parent;
1425 parent = parent->parent;
1426 if (parent)
1427 goto up;
1428 out_unlock:
1429 rcu_read_unlock();
1430
1431 return ret;
1432 }
1433
1434 static int tg_nop(struct task_group *tg, void *data)
1435 {
1436 return 0;
1437 }
1438 #endif
1439
1440 #ifdef CONFIG_SMP
1441 static unsigned long source_load(int cpu, int type);
1442 static unsigned long target_load(int cpu, int type);
1443 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1444
1445 static unsigned long cpu_avg_load_per_task(int cpu)
1446 {
1447 struct rq *rq = cpu_rq(cpu);
1448
1449 if (rq->nr_running)
1450 rq->avg_load_per_task = rq->load.weight / rq->nr_running;
1451
1452 return rq->avg_load_per_task;
1453 }
1454
1455 #ifdef CONFIG_FAIR_GROUP_SCHED
1456
1457 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1458
1459 /*
1460 * Calculate and set the cpu's group shares.
1461 */
1462 static void
1463 update_group_shares_cpu(struct task_group *tg, int cpu,
1464 unsigned long sd_shares, unsigned long sd_rq_weight)
1465 {
1466 int boost = 0;
1467 unsigned long shares;
1468 unsigned long rq_weight;
1469
1470 if (!tg->se[cpu])
1471 return;
1472
1473 rq_weight = tg->cfs_rq[cpu]->load.weight;
1474
1475 /*
1476 * If there are currently no tasks on the cpu pretend there is one of
1477 * average load so that when a new task gets to run here it will not
1478 * get delayed by group starvation.
1479 */
1480 if (!rq_weight) {
1481 boost = 1;
1482 rq_weight = NICE_0_LOAD;
1483 }
1484
1485 if (unlikely(rq_weight > sd_rq_weight))
1486 rq_weight = sd_rq_weight;
1487
1488 /*
1489 * \Sum shares * rq_weight
1490 * shares = -----------------------
1491 * \Sum rq_weight
1492 *
1493 */
1494 shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
1495 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1496
1497 if (abs(shares - tg->se[cpu]->load.weight) >
1498 sysctl_sched_shares_thresh) {
1499 struct rq *rq = cpu_rq(cpu);
1500 unsigned long flags;
1501
1502 spin_lock_irqsave(&rq->lock, flags);
1503 /*
1504 * record the actual number of shares, not the boosted amount.
1505 */
1506 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1507 tg->cfs_rq[cpu]->rq_weight = rq_weight;
1508
1509 __set_se_shares(tg->se[cpu], shares);
1510 spin_unlock_irqrestore(&rq->lock, flags);
1511 }
1512 }
1513
1514 /*
1515 * Re-compute the task group their per cpu shares over the given domain.
1516 * This needs to be done in a bottom-up fashion because the rq weight of a
1517 * parent group depends on the shares of its child groups.
1518 */
1519 static int tg_shares_up(struct task_group *tg, void *data)
1520 {
1521 unsigned long rq_weight = 0;
1522 unsigned long shares = 0;
1523 struct sched_domain *sd = data;
1524 int i;
1525
1526 for_each_cpu_mask(i, sd->span) {
1527 rq_weight += tg->cfs_rq[i]->load.weight;
1528 shares += tg->cfs_rq[i]->shares;
1529 }
1530
1531 if ((!shares && rq_weight) || shares > tg->shares)
1532 shares = tg->shares;
1533
1534 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1535 shares = tg->shares;
1536
1537 if (!rq_weight)
1538 rq_weight = cpus_weight(sd->span) * NICE_0_LOAD;
1539
1540 for_each_cpu_mask(i, sd->span)
1541 update_group_shares_cpu(tg, i, shares, rq_weight);
1542
1543 return 0;
1544 }
1545
1546 /*
1547 * Compute the cpu's hierarchical load factor for each task group.
1548 * This needs to be done in a top-down fashion because the load of a child
1549 * group is a fraction of its parents load.
1550 */
1551 static int tg_load_down(struct task_group *tg, void *data)
1552 {
1553 unsigned long load;
1554 long cpu = (long)data;
1555
1556 if (!tg->parent) {
1557 load = cpu_rq(cpu)->load.weight;
1558 } else {
1559 load = tg->parent->cfs_rq[cpu]->h_load;
1560 load *= tg->cfs_rq[cpu]->shares;
1561 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1562 }
1563
1564 tg->cfs_rq[cpu]->h_load = load;
1565
1566 return 0;
1567 }
1568
1569 static void update_shares(struct sched_domain *sd)
1570 {
1571 u64 now = cpu_clock(raw_smp_processor_id());
1572 s64 elapsed = now - sd->last_update;
1573
1574 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1575 sd->last_update = now;
1576 walk_tg_tree(tg_nop, tg_shares_up, sd);
1577 }
1578 }
1579
1580 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1581 {
1582 spin_unlock(&rq->lock);
1583 update_shares(sd);
1584 spin_lock(&rq->lock);
1585 }
1586
1587 static void update_h_load(long cpu)
1588 {
1589 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1590 }
1591
1592 #else
1593
1594 static inline void update_shares(struct sched_domain *sd)
1595 {
1596 }
1597
1598 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1599 {
1600 }
1601
1602 #endif
1603
1604 #endif
1605
1606 #ifdef CONFIG_FAIR_GROUP_SCHED
1607 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1608 {
1609 #ifdef CONFIG_SMP
1610 cfs_rq->shares = shares;
1611 #endif
1612 }
1613 #endif
1614
1615 #include "sched_stats.h"
1616 #include "sched_idletask.c"
1617 #include "sched_fair.c"
1618 #include "sched_rt.c"
1619 #ifdef CONFIG_SCHED_DEBUG
1620 # include "sched_debug.c"
1621 #endif
1622
1623 #define sched_class_highest (&rt_sched_class)
1624 #define for_each_class(class) \
1625 for (class = sched_class_highest; class; class = class->next)
1626
1627 static void inc_nr_running(struct rq *rq)
1628 {
1629 rq->nr_running++;
1630 }
1631
1632 static void dec_nr_running(struct rq *rq)
1633 {
1634 rq->nr_running--;
1635 }
1636
1637 static void set_load_weight(struct task_struct *p)
1638 {
1639 if (task_has_rt_policy(p)) {
1640 p->se.load.weight = prio_to_weight[0] * 2;
1641 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1642 return;
1643 }
1644
1645 /*
1646 * SCHED_IDLE tasks get minimal weight:
1647 */
1648 if (p->policy == SCHED_IDLE) {
1649 p->se.load.weight = WEIGHT_IDLEPRIO;
1650 p->se.load.inv_weight = WMULT_IDLEPRIO;
1651 return;
1652 }
1653
1654 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1655 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1656 }
1657
1658 static void update_avg(u64 *avg, u64 sample)
1659 {
1660 s64 diff = sample - *avg;
1661 *avg += diff >> 3;
1662 }
1663
1664 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1665 {
1666 sched_info_queued(p);
1667 p->sched_class->enqueue_task(rq, p, wakeup);
1668 p->se.on_rq = 1;
1669 }
1670
1671 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1672 {
1673 if (sleep && p->se.last_wakeup) {
1674 update_avg(&p->se.avg_overlap,
1675 p->se.sum_exec_runtime - p->se.last_wakeup);
1676 p->se.last_wakeup = 0;
1677 }
1678
1679 sched_info_dequeued(p);
1680 p->sched_class->dequeue_task(rq, p, sleep);
1681 p->se.on_rq = 0;
1682 }
1683
1684 /*
1685 * __normal_prio - return the priority that is based on the static prio
1686 */
1687 static inline int __normal_prio(struct task_struct *p)
1688 {
1689 return p->static_prio;
1690 }
1691
1692 /*
1693 * Calculate the expected normal priority: i.e. priority
1694 * without taking RT-inheritance into account. Might be
1695 * boosted by interactivity modifiers. Changes upon fork,
1696 * setprio syscalls, and whenever the interactivity
1697 * estimator recalculates.
1698 */
1699 static inline int normal_prio(struct task_struct *p)
1700 {
1701 int prio;
1702
1703 if (task_has_rt_policy(p))
1704 prio = MAX_RT_PRIO-1 - p->rt_priority;
1705 else
1706 prio = __normal_prio(p);
1707 return prio;
1708 }
1709
1710 /*
1711 * Calculate the current priority, i.e. the priority
1712 * taken into account by the scheduler. This value might
1713 * be boosted by RT tasks, or might be boosted by
1714 * interactivity modifiers. Will be RT if the task got
1715 * RT-boosted. If not then it returns p->normal_prio.
1716 */
1717 static int effective_prio(struct task_struct *p)
1718 {
1719 p->normal_prio = normal_prio(p);
1720 /*
1721 * If we are RT tasks or we were boosted to RT priority,
1722 * keep the priority unchanged. Otherwise, update priority
1723 * to the normal priority:
1724 */
1725 if (!rt_prio(p->prio))
1726 return p->normal_prio;
1727 return p->prio;
1728 }
1729
1730 /*
1731 * activate_task - move a task to the runqueue.
1732 */
1733 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1734 {
1735 if (task_contributes_to_load(p))
1736 rq->nr_uninterruptible--;
1737
1738 enqueue_task(rq, p, wakeup);
1739 inc_nr_running(rq);
1740 }
1741
1742 /*
1743 * deactivate_task - remove a task from the runqueue.
1744 */
1745 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1746 {
1747 if (task_contributes_to_load(p))
1748 rq->nr_uninterruptible++;
1749
1750 dequeue_task(rq, p, sleep);
1751 dec_nr_running(rq);
1752 }
1753
1754 /**
1755 * task_curr - is this task currently executing on a CPU?
1756 * @p: the task in question.
1757 */
1758 inline int task_curr(const struct task_struct *p)
1759 {
1760 return cpu_curr(task_cpu(p)) == p;
1761 }
1762
1763 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1764 {
1765 set_task_rq(p, cpu);
1766 #ifdef CONFIG_SMP
1767 /*
1768 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1769 * successfuly executed on another CPU. We must ensure that updates of
1770 * per-task data have been completed by this moment.
1771 */
1772 smp_wmb();
1773 task_thread_info(p)->cpu = cpu;
1774 #endif
1775 }
1776
1777 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1778 const struct sched_class *prev_class,
1779 int oldprio, int running)
1780 {
1781 if (prev_class != p->sched_class) {
1782 if (prev_class->switched_from)
1783 prev_class->switched_from(rq, p, running);
1784 p->sched_class->switched_to(rq, p, running);
1785 } else
1786 p->sched_class->prio_changed(rq, p, oldprio, running);
1787 }
1788
1789 #ifdef CONFIG_SMP
1790
1791 /* Used instead of source_load when we know the type == 0 */
1792 static unsigned long weighted_cpuload(const int cpu)
1793 {
1794 return cpu_rq(cpu)->load.weight;
1795 }
1796
1797 /*
1798 * Is this task likely cache-hot:
1799 */
1800 static int
1801 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1802 {
1803 s64 delta;
1804
1805 /*
1806 * Buddy candidates are cache hot:
1807 */
1808 if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
1809 return 1;
1810
1811 if (p->sched_class != &fair_sched_class)
1812 return 0;
1813
1814 if (sysctl_sched_migration_cost == -1)
1815 return 1;
1816 if (sysctl_sched_migration_cost == 0)
1817 return 0;
1818
1819 delta = now - p->se.exec_start;
1820
1821 return delta < (s64)sysctl_sched_migration_cost;
1822 }
1823
1824
1825 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1826 {
1827 int old_cpu = task_cpu(p);
1828 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1829 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1830 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1831 u64 clock_offset;
1832
1833 clock_offset = old_rq->clock - new_rq->clock;
1834
1835 #ifdef CONFIG_SCHEDSTATS
1836 if (p->se.wait_start)
1837 p->se.wait_start -= clock_offset;
1838 if (p->se.sleep_start)
1839 p->se.sleep_start -= clock_offset;
1840 if (p->se.block_start)
1841 p->se.block_start -= clock_offset;
1842 if (old_cpu != new_cpu) {
1843 schedstat_inc(p, se.nr_migrations);
1844 if (task_hot(p, old_rq->clock, NULL))
1845 schedstat_inc(p, se.nr_forced2_migrations);
1846 }
1847 #endif
1848 p->se.vruntime -= old_cfsrq->min_vruntime -
1849 new_cfsrq->min_vruntime;
1850
1851 __set_task_cpu(p, new_cpu);
1852 }
1853
1854 struct migration_req {
1855 struct list_head list;
1856
1857 struct task_struct *task;
1858 int dest_cpu;
1859
1860 struct completion done;
1861 };
1862
1863 /*
1864 * The task's runqueue lock must be held.
1865 * Returns true if you have to wait for migration thread.
1866 */
1867 static int
1868 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1869 {
1870 struct rq *rq = task_rq(p);
1871
1872 /*
1873 * If the task is not on a runqueue (and not running), then
1874 * it is sufficient to simply update the task's cpu field.
1875 */
1876 if (!p->se.on_rq && !task_running(rq, p)) {
1877 set_task_cpu(p, dest_cpu);
1878 return 0;
1879 }
1880
1881 init_completion(&req->done);
1882 req->task = p;
1883 req->dest_cpu = dest_cpu;
1884 list_add(&req->list, &rq->migration_queue);
1885
1886 return 1;
1887 }
1888
1889 /*
1890 * wait_task_inactive - wait for a thread to unschedule.
1891 *
1892 * If @match_state is nonzero, it's the @p->state value just checked and
1893 * not expected to change. If it changes, i.e. @p might have woken up,
1894 * then return zero. When we succeed in waiting for @p to be off its CPU,
1895 * we return a positive number (its total switch count). If a second call
1896 * a short while later returns the same number, the caller can be sure that
1897 * @p has remained unscheduled the whole time.
1898 *
1899 * The caller must ensure that the task *will* unschedule sometime soon,
1900 * else this function might spin for a *long* time. This function can't
1901 * be called with interrupts off, or it may introduce deadlock with
1902 * smp_call_function() if an IPI is sent by the same process we are
1903 * waiting to become inactive.
1904 */
1905 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1906 {
1907 unsigned long flags;
1908 int running, on_rq;
1909 unsigned long ncsw;
1910 struct rq *rq;
1911
1912 for (;;) {
1913 /*
1914 * We do the initial early heuristics without holding
1915 * any task-queue locks at all. We'll only try to get
1916 * the runqueue lock when things look like they will
1917 * work out!
1918 */
1919 rq = task_rq(p);
1920
1921 /*
1922 * If the task is actively running on another CPU
1923 * still, just relax and busy-wait without holding
1924 * any locks.
1925 *
1926 * NOTE! Since we don't hold any locks, it's not
1927 * even sure that "rq" stays as the right runqueue!
1928 * But we don't care, since "task_running()" will
1929 * return false if the runqueue has changed and p
1930 * is actually now running somewhere else!
1931 */
1932 while (task_running(rq, p)) {
1933 if (match_state && unlikely(p->state != match_state))
1934 return 0;
1935 cpu_relax();
1936 }
1937
1938 /*
1939 * Ok, time to look more closely! We need the rq
1940 * lock now, to be *sure*. If we're wrong, we'll
1941 * just go back and repeat.
1942 */
1943 rq = task_rq_lock(p, &flags);
1944 trace_sched_wait_task(rq, p);
1945 running = task_running(rq, p);
1946 on_rq = p->se.on_rq;
1947 ncsw = 0;
1948 if (!match_state || p->state == match_state)
1949 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1950 task_rq_unlock(rq, &flags);
1951
1952 /*
1953 * If it changed from the expected state, bail out now.
1954 */
1955 if (unlikely(!ncsw))
1956 break;
1957
1958 /*
1959 * Was it really running after all now that we
1960 * checked with the proper locks actually held?
1961 *
1962 * Oops. Go back and try again..
1963 */
1964 if (unlikely(running)) {
1965 cpu_relax();
1966 continue;
1967 }
1968
1969 /*
1970 * It's not enough that it's not actively running,
1971 * it must be off the runqueue _entirely_, and not
1972 * preempted!
1973 *
1974 * So if it wa still runnable (but just not actively
1975 * running right now), it's preempted, and we should
1976 * yield - it could be a while.
1977 */
1978 if (unlikely(on_rq)) {
1979 schedule_timeout_uninterruptible(1);
1980 continue;
1981 }
1982
1983 /*
1984 * Ahh, all good. It wasn't running, and it wasn't
1985 * runnable, which means that it will never become
1986 * running in the future either. We're all done!
1987 */
1988 break;
1989 }
1990
1991 return ncsw;
1992 }
1993
1994 /***
1995 * kick_process - kick a running thread to enter/exit the kernel
1996 * @p: the to-be-kicked thread
1997 *
1998 * Cause a process which is running on another CPU to enter
1999 * kernel-mode, without any delay. (to get signals handled.)
2000 *
2001 * NOTE: this function doesnt have to take the runqueue lock,
2002 * because all it wants to ensure is that the remote task enters
2003 * the kernel. If the IPI races and the task has been migrated
2004 * to another CPU then no harm is done and the purpose has been
2005 * achieved as well.
2006 */
2007 void kick_process(struct task_struct *p)
2008 {
2009 int cpu;
2010
2011 preempt_disable();
2012 cpu = task_cpu(p);
2013 if ((cpu != smp_processor_id()) && task_curr(p))
2014 smp_send_reschedule(cpu);
2015 preempt_enable();
2016 }
2017
2018 /*
2019 * Return a low guess at the load of a migration-source cpu weighted
2020 * according to the scheduling class and "nice" value.
2021 *
2022 * We want to under-estimate the load of migration sources, to
2023 * balance conservatively.
2024 */
2025 static unsigned long source_load(int cpu, int type)
2026 {
2027 struct rq *rq = cpu_rq(cpu);
2028 unsigned long total = weighted_cpuload(cpu);
2029
2030 if (type == 0 || !sched_feat(LB_BIAS))
2031 return total;
2032
2033 return min(rq->cpu_load[type-1], total);
2034 }
2035
2036 /*
2037 * Return a high guess at the load of a migration-target cpu weighted
2038 * according to the scheduling class and "nice" value.
2039 */
2040 static unsigned long target_load(int cpu, int type)
2041 {
2042 struct rq *rq = cpu_rq(cpu);
2043 unsigned long total = weighted_cpuload(cpu);
2044
2045 if (type == 0 || !sched_feat(LB_BIAS))
2046 return total;
2047
2048 return max(rq->cpu_load[type-1], total);
2049 }
2050
2051 /*
2052 * find_idlest_group finds and returns the least busy CPU group within the
2053 * domain.
2054 */
2055 static struct sched_group *
2056 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2057 {
2058 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2059 unsigned long min_load = ULONG_MAX, this_load = 0;
2060 int load_idx = sd->forkexec_idx;
2061 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2062
2063 do {
2064 unsigned long load, avg_load;
2065 int local_group;
2066 int i;
2067
2068 /* Skip over this group if it has no CPUs allowed */
2069 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
2070 continue;
2071
2072 local_group = cpu_isset(this_cpu, group->cpumask);
2073
2074 /* Tally up the load of all CPUs in the group */
2075 avg_load = 0;
2076
2077 for_each_cpu_mask_nr(i, group->cpumask) {
2078 /* Bias balancing toward cpus of our domain */
2079 if (local_group)
2080 load = source_load(i, load_idx);
2081 else
2082 load = target_load(i, load_idx);
2083
2084 avg_load += load;
2085 }
2086
2087 /* Adjust by relative CPU power of the group */
2088 avg_load = sg_div_cpu_power(group,
2089 avg_load * SCHED_LOAD_SCALE);
2090
2091 if (local_group) {
2092 this_load = avg_load;
2093 this = group;
2094 } else if (avg_load < min_load) {
2095 min_load = avg_load;
2096 idlest = group;
2097 }
2098 } while (group = group->next, group != sd->groups);
2099
2100 if (!idlest || 100*this_load < imbalance*min_load)
2101 return NULL;
2102 return idlest;
2103 }
2104
2105 /*
2106 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2107 */
2108 static int
2109 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
2110 cpumask_t *tmp)
2111 {
2112 unsigned long load, min_load = ULONG_MAX;
2113 int idlest = -1;
2114 int i;
2115
2116 /* Traverse only the allowed CPUs */
2117 cpus_and(*tmp, group->cpumask, p->cpus_allowed);
2118
2119 for_each_cpu_mask_nr(i, *tmp) {
2120 load = weighted_cpuload(i);
2121
2122 if (load < min_load || (load == min_load && i == this_cpu)) {
2123 min_load = load;
2124 idlest = i;
2125 }
2126 }
2127
2128 return idlest;
2129 }
2130
2131 /*
2132 * sched_balance_self: balance the current task (running on cpu) in domains
2133 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2134 * SD_BALANCE_EXEC.
2135 *
2136 * Balance, ie. select the least loaded group.
2137 *
2138 * Returns the target CPU number, or the same CPU if no balancing is needed.
2139 *
2140 * preempt must be disabled.
2141 */
2142 static int sched_balance_self(int cpu, int flag)
2143 {
2144 struct task_struct *t = current;
2145 struct sched_domain *tmp, *sd = NULL;
2146
2147 for_each_domain(cpu, tmp) {
2148 /*
2149 * If power savings logic is enabled for a domain, stop there.
2150 */
2151 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2152 break;
2153 if (tmp->flags & flag)
2154 sd = tmp;
2155 }
2156
2157 if (sd)
2158 update_shares(sd);
2159
2160 while (sd) {
2161 cpumask_t span, tmpmask;
2162 struct sched_group *group;
2163 int new_cpu, weight;
2164
2165 if (!(sd->flags & flag)) {
2166 sd = sd->child;
2167 continue;
2168 }
2169
2170 span = sd->span;
2171 group = find_idlest_group(sd, t, cpu);
2172 if (!group) {
2173 sd = sd->child;
2174 continue;
2175 }
2176
2177 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
2178 if (new_cpu == -1 || new_cpu == cpu) {
2179 /* Now try balancing at a lower domain level of cpu */
2180 sd = sd->child;
2181 continue;
2182 }
2183
2184 /* Now try balancing at a lower domain level of new_cpu */
2185 cpu = new_cpu;
2186 sd = NULL;
2187 weight = cpus_weight(span);
2188 for_each_domain(cpu, tmp) {
2189 if (weight <= cpus_weight(tmp->span))
2190 break;
2191 if (tmp->flags & flag)
2192 sd = tmp;
2193 }
2194 /* while loop will break here if sd == NULL */
2195 }
2196
2197 return cpu;
2198 }
2199
2200 #endif /* CONFIG_SMP */
2201
2202 /***
2203 * try_to_wake_up - wake up a thread
2204 * @p: the to-be-woken-up thread
2205 * @state: the mask of task states that can be woken
2206 * @sync: do a synchronous wakeup?
2207 *
2208 * Put it on the run-queue if it's not already there. The "current"
2209 * thread is always on the run-queue (except when the actual
2210 * re-schedule is in progress), and as such you're allowed to do
2211 * the simpler "current->state = TASK_RUNNING" to mark yourself
2212 * runnable without the overhead of this.
2213 *
2214 * returns failure only if the task is already active.
2215 */
2216 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2217 {
2218 int cpu, orig_cpu, this_cpu, success = 0;
2219 unsigned long flags;
2220 long old_state;
2221 struct rq *rq;
2222
2223 if (!sched_feat(SYNC_WAKEUPS))
2224 sync = 0;
2225
2226 #ifdef CONFIG_SMP
2227 if (sched_feat(LB_WAKEUP_UPDATE)) {
2228 struct sched_domain *sd;
2229
2230 this_cpu = raw_smp_processor_id();
2231 cpu = task_cpu(p);
2232
2233 for_each_domain(this_cpu, sd) {
2234 if (cpu_isset(cpu, sd->span)) {
2235 update_shares(sd);
2236 break;
2237 }
2238 }
2239 }
2240 #endif
2241
2242 smp_wmb();
2243 rq = task_rq_lock(p, &flags);
2244 old_state = p->state;
2245 if (!(old_state & state))
2246 goto out;
2247
2248 if (p->se.on_rq)
2249 goto out_running;
2250
2251 cpu = task_cpu(p);
2252 orig_cpu = cpu;
2253 this_cpu = smp_processor_id();
2254
2255 #ifdef CONFIG_SMP
2256 if (unlikely(task_running(rq, p)))
2257 goto out_activate;
2258
2259 cpu = p->sched_class->select_task_rq(p, sync);
2260 if (cpu != orig_cpu) {
2261 set_task_cpu(p, cpu);
2262 task_rq_unlock(rq, &flags);
2263 /* might preempt at this point */
2264 rq = task_rq_lock(p, &flags);
2265 old_state = p->state;
2266 if (!(old_state & state))
2267 goto out;
2268 if (p->se.on_rq)
2269 goto out_running;
2270
2271 this_cpu = smp_processor_id();
2272 cpu = task_cpu(p);
2273 }
2274
2275 #ifdef CONFIG_SCHEDSTATS
2276 schedstat_inc(rq, ttwu_count);
2277 if (cpu == this_cpu)
2278 schedstat_inc(rq, ttwu_local);
2279 else {
2280 struct sched_domain *sd;
2281 for_each_domain(this_cpu, sd) {
2282 if (cpu_isset(cpu, sd->span)) {
2283 schedstat_inc(sd, ttwu_wake_remote);
2284 break;
2285 }
2286 }
2287 }
2288 #endif /* CONFIG_SCHEDSTATS */
2289
2290 out_activate:
2291 #endif /* CONFIG_SMP */
2292 schedstat_inc(p, se.nr_wakeups);
2293 if (sync)
2294 schedstat_inc(p, se.nr_wakeups_sync);
2295 if (orig_cpu != cpu)
2296 schedstat_inc(p, se.nr_wakeups_migrate);
2297 if (cpu == this_cpu)
2298 schedstat_inc(p, se.nr_wakeups_local);
2299 else
2300 schedstat_inc(p, se.nr_wakeups_remote);
2301 update_rq_clock(rq);
2302 activate_task(rq, p, 1);
2303 success = 1;
2304
2305 out_running:
2306 trace_sched_wakeup(rq, p);
2307 check_preempt_curr(rq, p, sync);
2308
2309 p->state = TASK_RUNNING;
2310 #ifdef CONFIG_SMP
2311 if (p->sched_class->task_wake_up)
2312 p->sched_class->task_wake_up(rq, p);
2313 #endif
2314 out:
2315 current->se.last_wakeup = current->se.sum_exec_runtime;
2316
2317 task_rq_unlock(rq, &flags);
2318
2319 return success;
2320 }
2321
2322 int wake_up_process(struct task_struct *p)
2323 {
2324 return try_to_wake_up(p, TASK_ALL, 0);
2325 }
2326 EXPORT_SYMBOL(wake_up_process);
2327
2328 int wake_up_state(struct task_struct *p, unsigned int state)
2329 {
2330 return try_to_wake_up(p, state, 0);
2331 }
2332
2333 /*
2334 * Perform scheduler related setup for a newly forked process p.
2335 * p is forked by current.
2336 *
2337 * __sched_fork() is basic setup used by init_idle() too:
2338 */
2339 static void __sched_fork(struct task_struct *p)
2340 {
2341 p->se.exec_start = 0;
2342 p->se.sum_exec_runtime = 0;
2343 p->se.prev_sum_exec_runtime = 0;
2344 p->se.last_wakeup = 0;
2345 p->se.avg_overlap = 0;
2346
2347 #ifdef CONFIG_SCHEDSTATS
2348 p->se.wait_start = 0;
2349 p->se.sum_sleep_runtime = 0;
2350 p->se.sleep_start = 0;
2351 p->se.block_start = 0;
2352 p->se.sleep_max = 0;
2353 p->se.block_max = 0;
2354 p->se.exec_max = 0;
2355 p->se.slice_max = 0;
2356 p->se.wait_max = 0;
2357 #endif
2358
2359 INIT_LIST_HEAD(&p->rt.run_list);
2360 p->se.on_rq = 0;
2361 INIT_LIST_HEAD(&p->se.group_node);
2362
2363 #ifdef CONFIG_PREEMPT_NOTIFIERS
2364 INIT_HLIST_HEAD(&p->preempt_notifiers);
2365 #endif
2366
2367 /*
2368 * We mark the process as running here, but have not actually
2369 * inserted it onto the runqueue yet. This guarantees that
2370 * nobody will actually run it, and a signal or other external
2371 * event cannot wake it up and insert it on the runqueue either.
2372 */
2373 p->state = TASK_RUNNING;
2374 }
2375
2376 /*
2377 * fork()/clone()-time setup:
2378 */
2379 void sched_fork(struct task_struct *p, int clone_flags)
2380 {
2381 int cpu = get_cpu();
2382
2383 __sched_fork(p);
2384
2385 #ifdef CONFIG_SMP
2386 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2387 #endif
2388 set_task_cpu(p, cpu);
2389
2390 /*
2391 * Make sure we do not leak PI boosting priority to the child:
2392 */
2393 p->prio = current->normal_prio;
2394 if (!rt_prio(p->prio))
2395 p->sched_class = &fair_sched_class;
2396
2397 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2398 if (likely(sched_info_on()))
2399 memset(&p->sched_info, 0, sizeof(p->sched_info));
2400 #endif
2401 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2402 p->oncpu = 0;
2403 #endif
2404 #ifdef CONFIG_PREEMPT
2405 /* Want to start with kernel preemption disabled. */
2406 task_thread_info(p)->preempt_count = 1;
2407 #endif
2408 put_cpu();
2409 }
2410
2411 /*
2412 * wake_up_new_task - wake up a newly created task for the first time.
2413 *
2414 * This function will do some initial scheduler statistics housekeeping
2415 * that must be done for every newly created context, then puts the task
2416 * on the runqueue and wakes it.
2417 */
2418 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2419 {
2420 unsigned long flags;
2421 struct rq *rq;
2422
2423 rq = task_rq_lock(p, &flags);
2424 BUG_ON(p->state != TASK_RUNNING);
2425 update_rq_clock(rq);
2426
2427 p->prio = effective_prio(p);
2428
2429 if (!p->sched_class->task_new || !current->se.on_rq) {
2430 activate_task(rq, p, 0);
2431 } else {
2432 /*
2433 * Let the scheduling class do new task startup
2434 * management (if any):
2435 */
2436 p->sched_class->task_new(rq, p);
2437 inc_nr_running(rq);
2438 }
2439 trace_sched_wakeup_new(rq, p);
2440 check_preempt_curr(rq, p, 0);
2441 #ifdef CONFIG_SMP
2442 if (p->sched_class->task_wake_up)
2443 p->sched_class->task_wake_up(rq, p);
2444 #endif
2445 task_rq_unlock(rq, &flags);
2446 }
2447
2448 #ifdef CONFIG_PREEMPT_NOTIFIERS
2449
2450 /**
2451 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2452 * @notifier: notifier struct to register
2453 */
2454 void preempt_notifier_register(struct preempt_notifier *notifier)
2455 {
2456 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2457 }
2458 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2459
2460 /**
2461 * preempt_notifier_unregister - no longer interested in preemption notifications
2462 * @notifier: notifier struct to unregister
2463 *
2464 * This is safe to call from within a preemption notifier.
2465 */
2466 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2467 {
2468 hlist_del(&notifier->link);
2469 }
2470 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2471
2472 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2473 {
2474 struct preempt_notifier *notifier;
2475 struct hlist_node *node;
2476
2477 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2478 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2479 }
2480
2481 static void
2482 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2483 struct task_struct *next)
2484 {
2485 struct preempt_notifier *notifier;
2486 struct hlist_node *node;
2487
2488 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2489 notifier->ops->sched_out(notifier, next);
2490 }
2491
2492 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2493
2494 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2495 {
2496 }
2497
2498 static void
2499 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2500 struct task_struct *next)
2501 {
2502 }
2503
2504 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2505
2506 /**
2507 * prepare_task_switch - prepare to switch tasks
2508 * @rq: the runqueue preparing to switch
2509 * @prev: the current task that is being switched out
2510 * @next: the task we are going to switch to.
2511 *
2512 * This is called with the rq lock held and interrupts off. It must
2513 * be paired with a subsequent finish_task_switch after the context
2514 * switch.
2515 *
2516 * prepare_task_switch sets up locking and calls architecture specific
2517 * hooks.
2518 */
2519 static inline void
2520 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2521 struct task_struct *next)
2522 {
2523 fire_sched_out_preempt_notifiers(prev, next);
2524 prepare_lock_switch(rq, next);
2525 prepare_arch_switch(next);
2526 }
2527
2528 /**
2529 * finish_task_switch - clean up after a task-switch
2530 * @rq: runqueue associated with task-switch
2531 * @prev: the thread we just switched away from.
2532 *
2533 * finish_task_switch must be called after the context switch, paired
2534 * with a prepare_task_switch call before the context switch.
2535 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2536 * and do any other architecture-specific cleanup actions.
2537 *
2538 * Note that we may have delayed dropping an mm in context_switch(). If
2539 * so, we finish that here outside of the runqueue lock. (Doing it
2540 * with the lock held can cause deadlocks; see schedule() for
2541 * details.)
2542 */
2543 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2544 __releases(rq->lock)
2545 {
2546 struct mm_struct *mm = rq->prev_mm;
2547 long prev_state;
2548
2549 rq->prev_mm = NULL;
2550
2551 /*
2552 * A task struct has one reference for the use as "current".
2553 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2554 * schedule one last time. The schedule call will never return, and
2555 * the scheduled task must drop that reference.
2556 * The test for TASK_DEAD must occur while the runqueue locks are
2557 * still held, otherwise prev could be scheduled on another cpu, die
2558 * there before we look at prev->state, and then the reference would
2559 * be dropped twice.
2560 * Manfred Spraul <manfred@colorfullife.com>
2561 */
2562 prev_state = prev->state;
2563 finish_arch_switch(prev);
2564 finish_lock_switch(rq, prev);
2565 #ifdef CONFIG_SMP
2566 if (current->sched_class->post_schedule)
2567 current->sched_class->post_schedule(rq);
2568 #endif
2569
2570 fire_sched_in_preempt_notifiers(current);
2571 if (mm)
2572 mmdrop(mm);
2573 if (unlikely(prev_state == TASK_DEAD)) {
2574 /*
2575 * Remove function-return probe instances associated with this
2576 * task and put them back on the free list.
2577 */
2578 kprobe_flush_task(prev);
2579 put_task_struct(prev);
2580 }
2581 }
2582
2583 /**
2584 * schedule_tail - first thing a freshly forked thread must call.
2585 * @prev: the thread we just switched away from.
2586 */
2587 asmlinkage void schedule_tail(struct task_struct *prev)
2588 __releases(rq->lock)
2589 {
2590 struct rq *rq = this_rq();
2591
2592 finish_task_switch(rq, prev);
2593 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2594 /* In this case, finish_task_switch does not reenable preemption */
2595 preempt_enable();
2596 #endif
2597 if (current->set_child_tid)
2598 put_user(task_pid_vnr(current), current->set_child_tid);
2599 }
2600
2601 /*
2602 * context_switch - switch to the new MM and the new
2603 * thread's register state.
2604 */
2605 static inline void
2606 context_switch(struct rq *rq, struct task_struct *prev,
2607 struct task_struct *next)
2608 {
2609 struct mm_struct *mm, *oldmm;
2610
2611 prepare_task_switch(rq, prev, next);
2612 trace_sched_switch(rq, prev, next);
2613 mm = next->mm;
2614 oldmm = prev->active_mm;
2615 /*
2616 * For paravirt, this is coupled with an exit in switch_to to
2617 * combine the page table reload and the switch backend into
2618 * one hypercall.
2619 */
2620 arch_enter_lazy_cpu_mode();
2621
2622 if (unlikely(!mm)) {
2623 next->active_mm = oldmm;
2624 atomic_inc(&oldmm->mm_count);
2625 enter_lazy_tlb(oldmm, next);
2626 } else
2627 switch_mm(oldmm, mm, next);
2628
2629 if (unlikely(!prev->mm)) {
2630 prev->active_mm = NULL;
2631 rq->prev_mm = oldmm;
2632 }
2633 /*
2634 * Since the runqueue lock will be released by the next
2635 * task (which is an invalid locking op but in the case
2636 * of the scheduler it's an obvious special-case), so we
2637 * do an early lockdep release here:
2638 */
2639 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2640 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2641 #endif
2642
2643 /* Here we just switch the register state and the stack. */
2644 switch_to(prev, next, prev);
2645
2646 barrier();
2647 /*
2648 * this_rq must be evaluated again because prev may have moved
2649 * CPUs since it called schedule(), thus the 'rq' on its stack
2650 * frame will be invalid.
2651 */
2652 finish_task_switch(this_rq(), prev);
2653 }
2654
2655 /*
2656 * nr_running, nr_uninterruptible and nr_context_switches:
2657 *
2658 * externally visible scheduler statistics: current number of runnable
2659 * threads, current number of uninterruptible-sleeping threads, total
2660 * number of context switches performed since bootup.
2661 */
2662 unsigned long nr_running(void)
2663 {
2664 unsigned long i, sum = 0;
2665
2666 for_each_online_cpu(i)
2667 sum += cpu_rq(i)->nr_running;
2668
2669 return sum;
2670 }
2671
2672 unsigned long nr_uninterruptible(void)
2673 {
2674 unsigned long i, sum = 0;
2675
2676 for_each_possible_cpu(i)
2677 sum += cpu_rq(i)->nr_uninterruptible;
2678
2679 /*
2680 * Since we read the counters lockless, it might be slightly
2681 * inaccurate. Do not allow it to go below zero though:
2682 */
2683 if (unlikely((long)sum < 0))
2684 sum = 0;
2685
2686 return sum;
2687 }
2688
2689 unsigned long long nr_context_switches(void)
2690 {
2691 int i;
2692 unsigned long long sum = 0;
2693
2694 for_each_possible_cpu(i)
2695 sum += cpu_rq(i)->nr_switches;
2696
2697 return sum;
2698 }
2699
2700 unsigned long nr_iowait(void)
2701 {
2702 unsigned long i, sum = 0;
2703
2704 for_each_possible_cpu(i)
2705 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2706
2707 return sum;
2708 }
2709
2710 unsigned long nr_active(void)
2711 {
2712 unsigned long i, running = 0, uninterruptible = 0;
2713
2714 for_each_online_cpu(i) {
2715 running += cpu_rq(i)->nr_running;
2716 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2717 }
2718
2719 if (unlikely((long)uninterruptible < 0))
2720 uninterruptible = 0;
2721
2722 return running + uninterruptible;
2723 }
2724
2725 /*
2726 * Update rq->cpu_load[] statistics. This function is usually called every
2727 * scheduler tick (TICK_NSEC).
2728 */
2729 static void update_cpu_load(struct rq *this_rq)
2730 {
2731 unsigned long this_load = this_rq->load.weight;
2732 int i, scale;
2733
2734 this_rq->nr_load_updates++;
2735
2736 /* Update our load: */
2737 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2738 unsigned long old_load, new_load;
2739
2740 /* scale is effectively 1 << i now, and >> i divides by scale */
2741
2742 old_load = this_rq->cpu_load[i];
2743 new_load = this_load;
2744 /*
2745 * Round up the averaging division if load is increasing. This
2746 * prevents us from getting stuck on 9 if the load is 10, for
2747 * example.
2748 */
2749 if (new_load > old_load)
2750 new_load += scale-1;
2751 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2752 }
2753 }
2754
2755 #ifdef CONFIG_SMP
2756
2757 /*
2758 * double_rq_lock - safely lock two runqueues
2759 *
2760 * Note this does not disable interrupts like task_rq_lock,
2761 * you need to do so manually before calling.
2762 */
2763 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2764 __acquires(rq1->lock)
2765 __acquires(rq2->lock)
2766 {
2767 BUG_ON(!irqs_disabled());
2768 if (rq1 == rq2) {
2769 spin_lock(&rq1->lock);
2770 __acquire(rq2->lock); /* Fake it out ;) */
2771 } else {
2772 if (rq1 < rq2) {
2773 spin_lock(&rq1->lock);
2774 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
2775 } else {
2776 spin_lock(&rq2->lock);
2777 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
2778 }
2779 }
2780 update_rq_clock(rq1);
2781 update_rq_clock(rq2);
2782 }
2783
2784 /*
2785 * double_rq_unlock - safely unlock two runqueues
2786 *
2787 * Note this does not restore interrupts like task_rq_unlock,
2788 * you need to do so manually after calling.
2789 */
2790 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2791 __releases(rq1->lock)
2792 __releases(rq2->lock)
2793 {
2794 spin_unlock(&rq1->lock);
2795 if (rq1 != rq2)
2796 spin_unlock(&rq2->lock);
2797 else
2798 __release(rq2->lock);
2799 }
2800
2801 /*
2802 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2803 */
2804 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2805 __releases(this_rq->lock)
2806 __acquires(busiest->lock)
2807 __acquires(this_rq->lock)
2808 {
2809 int ret = 0;
2810
2811 if (unlikely(!irqs_disabled())) {
2812 /* printk() doesn't work good under rq->lock */
2813 spin_unlock(&this_rq->lock);
2814 BUG_ON(1);
2815 }
2816 if (unlikely(!spin_trylock(&busiest->lock))) {
2817 if (busiest < this_rq) {
2818 spin_unlock(&this_rq->lock);
2819 spin_lock(&busiest->lock);
2820 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
2821 ret = 1;
2822 } else
2823 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
2824 }
2825 return ret;
2826 }
2827
2828 static void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2829 __releases(busiest->lock)
2830 {
2831 spin_unlock(&busiest->lock);
2832 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
2833 }
2834
2835 /*
2836 * If dest_cpu is allowed for this process, migrate the task to it.
2837 * This is accomplished by forcing the cpu_allowed mask to only
2838 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2839 * the cpu_allowed mask is restored.
2840 */
2841 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2842 {
2843 struct migration_req req;
2844 unsigned long flags;
2845 struct rq *rq;
2846
2847 rq = task_rq_lock(p, &flags);
2848 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2849 || unlikely(!cpu_active(dest_cpu)))
2850 goto out;
2851
2852 trace_sched_migrate_task(rq, p, dest_cpu);
2853 /* force the process onto the specified CPU */
2854 if (migrate_task(p, dest_cpu, &req)) {
2855 /* Need to wait for migration thread (might exit: take ref). */
2856 struct task_struct *mt = rq->migration_thread;
2857
2858 get_task_struct(mt);
2859 task_rq_unlock(rq, &flags);
2860 wake_up_process(mt);
2861 put_task_struct(mt);
2862 wait_for_completion(&req.done);
2863
2864 return;
2865 }
2866 out:
2867 task_rq_unlock(rq, &flags);
2868 }
2869
2870 /*
2871 * sched_exec - execve() is a valuable balancing opportunity, because at
2872 * this point the task has the smallest effective memory and cache footprint.
2873 */
2874 void sched_exec(void)
2875 {
2876 int new_cpu, this_cpu = get_cpu();
2877 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2878 put_cpu();
2879 if (new_cpu != this_cpu)
2880 sched_migrate_task(current, new_cpu);
2881 }
2882
2883 /*
2884 * pull_task - move a task from a remote runqueue to the local runqueue.
2885 * Both runqueues must be locked.
2886 */
2887 static void pull_task(struct rq *src_rq, struct task_struct *p,
2888 struct rq *this_rq, int this_cpu)
2889 {
2890 deactivate_task(src_rq, p, 0);
2891 set_task_cpu(p, this_cpu);
2892 activate_task(this_rq, p, 0);
2893 /*
2894 * Note that idle threads have a prio of MAX_PRIO, for this test
2895 * to be always true for them.
2896 */
2897 check_preempt_curr(this_rq, p, 0);
2898 }
2899
2900 /*
2901 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2902 */
2903 static
2904 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2905 struct sched_domain *sd, enum cpu_idle_type idle,
2906 int *all_pinned)
2907 {
2908 /*
2909 * We do not migrate tasks that are:
2910 * 1) running (obviously), or
2911 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2912 * 3) are cache-hot on their current CPU.
2913 */
2914 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2915 schedstat_inc(p, se.nr_failed_migrations_affine);
2916 return 0;
2917 }
2918 *all_pinned = 0;
2919
2920 if (task_running(rq, p)) {
2921 schedstat_inc(p, se.nr_failed_migrations_running);
2922 return 0;
2923 }
2924
2925 /*
2926 * Aggressive migration if:
2927 * 1) task is cache cold, or
2928 * 2) too many balance attempts have failed.
2929 */
2930
2931 if (!task_hot(p, rq->clock, sd) ||
2932 sd->nr_balance_failed > sd->cache_nice_tries) {
2933 #ifdef CONFIG_SCHEDSTATS
2934 if (task_hot(p, rq->clock, sd)) {
2935 schedstat_inc(sd, lb_hot_gained[idle]);
2936 schedstat_inc(p, se.nr_forced_migrations);
2937 }
2938 #endif
2939 return 1;
2940 }
2941
2942 if (task_hot(p, rq->clock, sd)) {
2943 schedstat_inc(p, se.nr_failed_migrations_hot);
2944 return 0;
2945 }
2946 return 1;
2947 }
2948
2949 static unsigned long
2950 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2951 unsigned long max_load_move, struct sched_domain *sd,
2952 enum cpu_idle_type idle, int *all_pinned,
2953 int *this_best_prio, struct rq_iterator *iterator)
2954 {
2955 int loops = 0, pulled = 0, pinned = 0;
2956 struct task_struct *p;
2957 long rem_load_move = max_load_move;
2958
2959 if (max_load_move == 0)
2960 goto out;
2961
2962 pinned = 1;
2963
2964 /*
2965 * Start the load-balancing iterator:
2966 */
2967 p = iterator->start(iterator->arg);
2968 next:
2969 if (!p || loops++ > sysctl_sched_nr_migrate)
2970 goto out;
2971
2972 if ((p->se.load.weight >> 1) > rem_load_move ||
2973 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2974 p = iterator->next(iterator->arg);
2975 goto next;
2976 }
2977
2978 pull_task(busiest, p, this_rq, this_cpu);
2979 pulled++;
2980 rem_load_move -= p->se.load.weight;
2981
2982 /*
2983 * We only want to steal up to the prescribed amount of weighted load.
2984 */
2985 if (rem_load_move > 0) {
2986 if (p->prio < *this_best_prio)
2987 *this_best_prio = p->prio;
2988 p = iterator->next(iterator->arg);
2989 goto next;
2990 }
2991 out:
2992 /*
2993 * Right now, this is one of only two places pull_task() is called,
2994 * so we can safely collect pull_task() stats here rather than
2995 * inside pull_task().
2996 */
2997 schedstat_add(sd, lb_gained[idle], pulled);
2998
2999 if (all_pinned)
3000 *all_pinned = pinned;
3001
3002 return max_load_move - rem_load_move;
3003 }
3004
3005 /*
3006 * move_tasks tries to move up to max_load_move weighted load from busiest to
3007 * this_rq, as part of a balancing operation within domain "sd".
3008 * Returns 1 if successful and 0 otherwise.
3009 *
3010 * Called with both runqueues locked.
3011 */
3012 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3013 unsigned long max_load_move,
3014 struct sched_domain *sd, enum cpu_idle_type idle,
3015 int *all_pinned)
3016 {
3017 const struct sched_class *class = sched_class_highest;
3018 unsigned long total_load_moved = 0;
3019 int this_best_prio = this_rq->curr->prio;
3020
3021 do {
3022 total_load_moved +=
3023 class->load_balance(this_rq, this_cpu, busiest,
3024 max_load_move - total_load_moved,
3025 sd, idle, all_pinned, &this_best_prio);
3026 class = class->next;
3027
3028 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3029 break;
3030
3031 } while (class && max_load_move > total_load_moved);
3032
3033 return total_load_moved > 0;
3034 }
3035
3036 static int
3037 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3038 struct sched_domain *sd, enum cpu_idle_type idle,
3039 struct rq_iterator *iterator)
3040 {
3041 struct task_struct *p = iterator->start(iterator->arg);
3042 int pinned = 0;
3043
3044 while (p) {
3045 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3046 pull_task(busiest, p, this_rq, this_cpu);
3047 /*
3048 * Right now, this is only the second place pull_task()
3049 * is called, so we can safely collect pull_task()
3050 * stats here rather than inside pull_task().
3051 */
3052 schedstat_inc(sd, lb_gained[idle]);
3053
3054 return 1;
3055 }
3056 p = iterator->next(iterator->arg);
3057 }
3058
3059 return 0;
3060 }
3061
3062 /*
3063 * move_one_task tries to move exactly one task from busiest to this_rq, as
3064 * part of active balancing operations within "domain".
3065 * Returns 1 if successful and 0 otherwise.
3066 *
3067 * Called with both runqueues locked.
3068 */
3069 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3070 struct sched_domain *sd, enum cpu_idle_type idle)
3071 {
3072 const struct sched_class *class;
3073
3074 for (class = sched_class_highest; class; class = class->next)
3075 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3076 return 1;
3077
3078 return 0;
3079 }
3080
3081 /*
3082 * find_busiest_group finds and returns the busiest CPU group within the
3083 * domain. It calculates and returns the amount of weighted load which
3084 * should be moved to restore balance via the imbalance parameter.
3085 */
3086 static struct sched_group *
3087 find_busiest_group(struct sched_domain *sd, int this_cpu,
3088 unsigned long *imbalance, enum cpu_idle_type idle,
3089 int *sd_idle, const cpumask_t *cpus, int *balance)
3090 {
3091 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3092 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3093 unsigned long max_pull;
3094 unsigned long busiest_load_per_task, busiest_nr_running;
3095 unsigned long this_load_per_task, this_nr_running;
3096 int load_idx, group_imb = 0;
3097 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3098 int power_savings_balance = 1;
3099 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3100 unsigned long min_nr_running = ULONG_MAX;
3101 struct sched_group *group_min = NULL, *group_leader = NULL;
3102 #endif
3103
3104 max_load = this_load = total_load = total_pwr = 0;
3105 busiest_load_per_task = busiest_nr_running = 0;
3106 this_load_per_task = this_nr_running = 0;
3107
3108 if (idle == CPU_NOT_IDLE)
3109 load_idx = sd->busy_idx;
3110 else if (idle == CPU_NEWLY_IDLE)
3111 load_idx = sd->newidle_idx;
3112 else
3113 load_idx = sd->idle_idx;
3114
3115 do {
3116 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
3117 int local_group;
3118 int i;
3119 int __group_imb = 0;
3120 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3121 unsigned long sum_nr_running, sum_weighted_load;
3122 unsigned long sum_avg_load_per_task;
3123 unsigned long avg_load_per_task;
3124
3125 local_group = cpu_isset(this_cpu, group->cpumask);
3126
3127 if (local_group)
3128 balance_cpu = first_cpu(group->cpumask);
3129
3130 /* Tally up the load of all CPUs in the group */
3131 sum_weighted_load = sum_nr_running = avg_load = 0;
3132 sum_avg_load_per_task = avg_load_per_task = 0;
3133
3134 max_cpu_load = 0;
3135 min_cpu_load = ~0UL;
3136
3137 for_each_cpu_mask_nr(i, group->cpumask) {
3138 struct rq *rq;
3139
3140 if (!cpu_isset(i, *cpus))
3141 continue;
3142
3143 rq = cpu_rq(i);
3144
3145 if (*sd_idle && rq->nr_running)
3146 *sd_idle = 0;
3147
3148 /* Bias balancing toward cpus of our domain */
3149 if (local_group) {
3150 if (idle_cpu(i) && !first_idle_cpu) {
3151 first_idle_cpu = 1;
3152 balance_cpu = i;
3153 }
3154
3155 load = target_load(i, load_idx);
3156 } else {
3157 load = source_load(i, load_idx);
3158 if (load > max_cpu_load)
3159 max_cpu_load = load;
3160 if (min_cpu_load > load)
3161 min_cpu_load = load;
3162 }
3163
3164 avg_load += load;
3165 sum_nr_running += rq->nr_running;
3166 sum_weighted_load += weighted_cpuload(i);
3167
3168 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3169 }
3170
3171 /*
3172 * First idle cpu or the first cpu(busiest) in this sched group
3173 * is eligible for doing load balancing at this and above
3174 * domains. In the newly idle case, we will allow all the cpu's
3175 * to do the newly idle load balance.
3176 */
3177 if (idle != CPU_NEWLY_IDLE && local_group &&
3178 balance_cpu != this_cpu && balance) {
3179 *balance = 0;
3180 goto ret;
3181 }
3182
3183 total_load += avg_load;
3184 total_pwr += group->__cpu_power;
3185
3186 /* Adjust by relative CPU power of the group */
3187 avg_load = sg_div_cpu_power(group,
3188 avg_load * SCHED_LOAD_SCALE);
3189
3190
3191 /*
3192 * Consider the group unbalanced when the imbalance is larger
3193 * than the average weight of two tasks.
3194 *
3195 * APZ: with cgroup the avg task weight can vary wildly and
3196 * might not be a suitable number - should we keep a
3197 * normalized nr_running number somewhere that negates
3198 * the hierarchy?
3199 */
3200 avg_load_per_task = sg_div_cpu_power(group,
3201 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3202
3203 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3204 __group_imb = 1;
3205
3206 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3207
3208 if (local_group) {
3209 this_load = avg_load;
3210 this = group;
3211 this_nr_running = sum_nr_running;
3212 this_load_per_task = sum_weighted_load;
3213 } else if (avg_load > max_load &&
3214 (sum_nr_running > group_capacity || __group_imb)) {
3215 max_load = avg_load;
3216 busiest = group;
3217 busiest_nr_running = sum_nr_running;
3218 busiest_load_per_task = sum_weighted_load;
3219 group_imb = __group_imb;
3220 }
3221
3222 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3223 /*
3224 * Busy processors will not participate in power savings
3225 * balance.
3226 */
3227 if (idle == CPU_NOT_IDLE ||
3228 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3229 goto group_next;
3230
3231 /*
3232 * If the local group is idle or completely loaded
3233 * no need to do power savings balance at this domain
3234 */
3235 if (local_group && (this_nr_running >= group_capacity ||
3236 !this_nr_running))
3237 power_savings_balance = 0;
3238
3239 /*
3240 * If a group is already running at full capacity or idle,
3241 * don't include that group in power savings calculations
3242 */
3243 if (!power_savings_balance || sum_nr_running >= group_capacity
3244 || !sum_nr_running)
3245 goto group_next;
3246
3247 /*
3248 * Calculate the group which has the least non-idle load.
3249 * This is the group from where we need to pick up the load
3250 * for saving power
3251 */
3252 if ((sum_nr_running < min_nr_running) ||
3253 (sum_nr_running == min_nr_running &&
3254 first_cpu(group->cpumask) <
3255 first_cpu(group_min->cpumask))) {
3256 group_min = group;
3257 min_nr_running = sum_nr_running;
3258 min_load_per_task = sum_weighted_load /
3259 sum_nr_running;
3260 }
3261
3262 /*
3263 * Calculate the group which is almost near its
3264 * capacity but still has some space to pick up some load
3265 * from other group and save more power
3266 */
3267 if (sum_nr_running <= group_capacity - 1) {
3268 if (sum_nr_running > leader_nr_running ||
3269 (sum_nr_running == leader_nr_running &&
3270 first_cpu(group->cpumask) >
3271 first_cpu(group_leader->cpumask))) {
3272 group_leader = group;
3273 leader_nr_running = sum_nr_running;
3274 }
3275 }
3276 group_next:
3277 #endif
3278 group = group->next;
3279 } while (group != sd->groups);
3280
3281 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
3282 goto out_balanced;
3283
3284 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3285
3286 if (this_load >= avg_load ||
3287 100*max_load <= sd->imbalance_pct*this_load)
3288 goto out_balanced;
3289
3290 busiest_load_per_task /= busiest_nr_running;
3291 if (group_imb)
3292 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3293
3294 /*
3295 * We're trying to get all the cpus to the average_load, so we don't
3296 * want to push ourselves above the average load, nor do we wish to
3297 * reduce the max loaded cpu below the average load, as either of these
3298 * actions would just result in more rebalancing later, and ping-pong
3299 * tasks around. Thus we look for the minimum possible imbalance.
3300 * Negative imbalances (*we* are more loaded than anyone else) will
3301 * be counted as no imbalance for these purposes -- we can't fix that
3302 * by pulling tasks to us. Be careful of negative numbers as they'll
3303 * appear as very large values with unsigned longs.
3304 */
3305 if (max_load <= busiest_load_per_task)
3306 goto out_balanced;
3307
3308 /*
3309 * In the presence of smp nice balancing, certain scenarios can have
3310 * max load less than avg load(as we skip the groups at or below
3311 * its cpu_power, while calculating max_load..)
3312 */
3313 if (max_load < avg_load) {
3314 *imbalance = 0;
3315 goto small_imbalance;
3316 }
3317
3318 /* Don't want to pull so many tasks that a group would go idle */
3319 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3320
3321 /* How much load to actually move to equalise the imbalance */
3322 *imbalance = min(max_pull * busiest->__cpu_power,
3323 (avg_load - this_load) * this->__cpu_power)
3324 / SCHED_LOAD_SCALE;
3325
3326 /*
3327 * if *imbalance is less than the average load per runnable task
3328 * there is no gaurantee that any tasks will be moved so we'll have
3329 * a think about bumping its value to force at least one task to be
3330 * moved
3331 */
3332 if (*imbalance < busiest_load_per_task) {
3333 unsigned long tmp, pwr_now, pwr_move;
3334 unsigned int imbn;
3335
3336 small_imbalance:
3337 pwr_move = pwr_now = 0;
3338 imbn = 2;
3339 if (this_nr_running) {
3340 this_load_per_task /= this_nr_running;
3341 if (busiest_load_per_task > this_load_per_task)
3342 imbn = 1;
3343 } else
3344 this_load_per_task = cpu_avg_load_per_task(this_cpu);
3345
3346 if (max_load - this_load + busiest_load_per_task >=
3347 busiest_load_per_task * imbn) {
3348 *imbalance = busiest_load_per_task;
3349 return busiest;
3350 }
3351
3352 /*
3353 * OK, we don't have enough imbalance to justify moving tasks,
3354 * however we may be able to increase total CPU power used by
3355 * moving them.
3356 */
3357
3358 pwr_now += busiest->__cpu_power *
3359 min(busiest_load_per_task, max_load);
3360 pwr_now += this->__cpu_power *
3361 min(this_load_per_task, this_load);
3362 pwr_now /= SCHED_LOAD_SCALE;
3363
3364 /* Amount of load we'd subtract */
3365 tmp = sg_div_cpu_power(busiest,
3366 busiest_load_per_task * SCHED_LOAD_SCALE);
3367 if (max_load > tmp)
3368 pwr_move += busiest->__cpu_power *
3369 min(busiest_load_per_task, max_load - tmp);
3370
3371 /* Amount of load we'd add */
3372 if (max_load * busiest->__cpu_power <
3373 busiest_load_per_task * SCHED_LOAD_SCALE)
3374 tmp = sg_div_cpu_power(this,
3375 max_load * busiest->__cpu_power);
3376 else
3377 tmp = sg_div_cpu_power(this,
3378 busiest_load_per_task * SCHED_LOAD_SCALE);
3379 pwr_move += this->__cpu_power *
3380 min(this_load_per_task, this_load + tmp);
3381 pwr_move /= SCHED_LOAD_SCALE;
3382
3383 /* Move if we gain throughput */
3384 if (pwr_move > pwr_now)
3385 *imbalance = busiest_load_per_task;
3386 }
3387
3388 return busiest;
3389
3390 out_balanced:
3391 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3392 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3393 goto ret;
3394
3395 if (this == group_leader && group_leader != group_min) {
3396 *imbalance = min_load_per_task;
3397 return group_min;
3398 }
3399 #endif
3400 ret:
3401 *imbalance = 0;
3402 return NULL;
3403 }
3404
3405 /*
3406 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3407 */
3408 static struct rq *
3409 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3410 unsigned long imbalance, const cpumask_t *cpus)
3411 {
3412 struct rq *busiest = NULL, *rq;
3413 unsigned long max_load = 0;
3414 int i;
3415
3416 for_each_cpu_mask_nr(i, group->cpumask) {
3417 unsigned long wl;
3418
3419 if (!cpu_isset(i, *cpus))
3420 continue;
3421
3422 rq = cpu_rq(i);
3423 wl = weighted_cpuload(i);
3424
3425 if (rq->nr_running == 1 && wl > imbalance)
3426 continue;
3427
3428 if (wl > max_load) {
3429 max_load = wl;
3430 busiest = rq;
3431 }
3432 }
3433
3434 return busiest;
3435 }
3436
3437 /*
3438 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3439 * so long as it is large enough.
3440 */
3441 #define MAX_PINNED_INTERVAL 512
3442
3443 /*
3444 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3445 * tasks if there is an imbalance.
3446 */
3447 static int load_balance(int this_cpu, struct rq *this_rq,
3448 struct sched_domain *sd, enum cpu_idle_type idle,
3449 int *balance, cpumask_t *cpus)
3450 {
3451 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3452 struct sched_group *group;
3453 unsigned long imbalance;
3454 struct rq *busiest;
3455 unsigned long flags;
3456
3457 cpus_setall(*cpus);
3458
3459 /*
3460 * When power savings policy is enabled for the parent domain, idle
3461 * sibling can pick up load irrespective of busy siblings. In this case,
3462 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3463 * portraying it as CPU_NOT_IDLE.
3464 */
3465 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3466 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3467 sd_idle = 1;
3468
3469 schedstat_inc(sd, lb_count[idle]);
3470
3471 redo:
3472 update_shares(sd);
3473 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3474 cpus, balance);
3475
3476 if (*balance == 0)
3477 goto out_balanced;
3478
3479 if (!group) {
3480 schedstat_inc(sd, lb_nobusyg[idle]);
3481 goto out_balanced;
3482 }
3483
3484 busiest = find_busiest_queue(group, idle, imbalance, cpus);
3485 if (!busiest) {
3486 schedstat_inc(sd, lb_nobusyq[idle]);
3487 goto out_balanced;
3488 }
3489
3490 BUG_ON(busiest == this_rq);
3491
3492 schedstat_add(sd, lb_imbalance[idle], imbalance);
3493
3494 ld_moved = 0;
3495 if (busiest->nr_running > 1) {
3496 /*
3497 * Attempt to move tasks. If find_busiest_group has found
3498 * an imbalance but busiest->nr_running <= 1, the group is
3499 * still unbalanced. ld_moved simply stays zero, so it is
3500 * correctly treated as an imbalance.
3501 */
3502 local_irq_save(flags);
3503 double_rq_lock(this_rq, busiest);
3504 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3505 imbalance, sd, idle, &all_pinned);
3506 double_rq_unlock(this_rq, busiest);
3507 local_irq_restore(flags);
3508
3509 /*
3510 * some other cpu did the load balance for us.
3511 */
3512 if (ld_moved && this_cpu != smp_processor_id())
3513 resched_cpu(this_cpu);
3514
3515 /* All tasks on this runqueue were pinned by CPU affinity */
3516 if (unlikely(all_pinned)) {
3517 cpu_clear(cpu_of(busiest), *cpus);
3518 if (!cpus_empty(*cpus))
3519 goto redo;
3520 goto out_balanced;
3521 }
3522 }
3523
3524 if (!ld_moved) {
3525 schedstat_inc(sd, lb_failed[idle]);
3526 sd->nr_balance_failed++;
3527
3528 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
3529
3530 spin_lock_irqsave(&busiest->lock, flags);
3531
3532 /* don't kick the migration_thread, if the curr
3533 * task on busiest cpu can't be moved to this_cpu
3534 */
3535 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3536 spin_unlock_irqrestore(&busiest->lock, flags);
3537 all_pinned = 1;
3538 goto out_one_pinned;
3539 }
3540
3541 if (!busiest->active_balance) {
3542 busiest->active_balance = 1;
3543 busiest->push_cpu = this_cpu;
3544 active_balance = 1;
3545 }
3546 spin_unlock_irqrestore(&busiest->lock, flags);
3547 if (active_balance)
3548 wake_up_process(busiest->migration_thread);
3549
3550 /*
3551 * We've kicked active balancing, reset the failure
3552 * counter.
3553 */
3554 sd->nr_balance_failed = sd->cache_nice_tries+1;
3555 }
3556 } else
3557 sd->nr_balance_failed = 0;
3558
3559 if (likely(!active_balance)) {
3560 /* We were unbalanced, so reset the balancing interval */
3561 sd->balance_interval = sd->min_interval;
3562 } else {
3563 /*
3564 * If we've begun active balancing, start to back off. This
3565 * case may not be covered by the all_pinned logic if there
3566 * is only 1 task on the busy runqueue (because we don't call
3567 * move_tasks).
3568 */
3569 if (sd->balance_interval < sd->max_interval)
3570 sd->balance_interval *= 2;
3571 }
3572
3573 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3574 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3575 ld_moved = -1;
3576
3577 goto out;
3578
3579 out_balanced:
3580 schedstat_inc(sd, lb_balanced[idle]);
3581
3582 sd->nr_balance_failed = 0;
3583
3584 out_one_pinned:
3585 /* tune up the balancing interval */
3586 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3587 (sd->balance_interval < sd->max_interval))
3588 sd->balance_interval *= 2;
3589
3590 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3591 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3592 ld_moved = -1;
3593 else
3594 ld_moved = 0;
3595 out:
3596 if (ld_moved)
3597 update_shares(sd);
3598 return ld_moved;
3599 }
3600
3601 /*
3602 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3603 * tasks if there is an imbalance.
3604 *
3605 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3606 * this_rq is locked.
3607 */
3608 static int
3609 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3610 cpumask_t *cpus)
3611 {
3612 struct sched_group *group;
3613 struct rq *busiest = NULL;
3614 unsigned long imbalance;
3615 int ld_moved = 0;
3616 int sd_idle = 0;
3617 int all_pinned = 0;
3618
3619 cpus_setall(*cpus);
3620
3621 /*
3622 * When power savings policy is enabled for the parent domain, idle
3623 * sibling can pick up load irrespective of busy siblings. In this case,
3624 * let the state of idle sibling percolate up as IDLE, instead of
3625 * portraying it as CPU_NOT_IDLE.
3626 */
3627 if (sd->flags & SD_SHARE_CPUPOWER &&
3628 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3629 sd_idle = 1;
3630
3631 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3632 redo:
3633 update_shares_locked(this_rq, sd);
3634 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3635 &sd_idle, cpus, NULL);
3636 if (!group) {
3637 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3638 goto out_balanced;
3639 }
3640
3641 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
3642 if (!busiest) {
3643 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3644 goto out_balanced;
3645 }
3646
3647 BUG_ON(busiest == this_rq);
3648
3649 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3650
3651 ld_moved = 0;
3652 if (busiest->nr_running > 1) {
3653 /* Attempt to move tasks */
3654 double_lock_balance(this_rq, busiest);
3655 /* this_rq->clock is already updated */
3656 update_rq_clock(busiest);
3657 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3658 imbalance, sd, CPU_NEWLY_IDLE,
3659 &all_pinned);
3660 double_unlock_balance(this_rq, busiest);
3661
3662 if (unlikely(all_pinned)) {
3663 cpu_clear(cpu_of(busiest), *cpus);
3664 if (!cpus_empty(*cpus))
3665 goto redo;
3666 }
3667 }
3668
3669 if (!ld_moved) {
3670 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3671 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3672 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3673 return -1;
3674 } else
3675 sd->nr_balance_failed = 0;
3676
3677 update_shares_locked(this_rq, sd);
3678 return ld_moved;
3679
3680 out_balanced:
3681 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3682 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3683 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3684 return -1;
3685 sd->nr_balance_failed = 0;
3686
3687 return 0;
3688 }
3689
3690 /*
3691 * idle_balance is called by schedule() if this_cpu is about to become
3692 * idle. Attempts to pull tasks from other CPUs.
3693 */
3694 static void idle_balance(int this_cpu, struct rq *this_rq)
3695 {
3696 struct sched_domain *sd;
3697 int pulled_task = -1;
3698 unsigned long next_balance = jiffies + HZ;
3699 cpumask_t tmpmask;
3700
3701 for_each_domain(this_cpu, sd) {
3702 unsigned long interval;
3703
3704 if (!(sd->flags & SD_LOAD_BALANCE))
3705 continue;
3706
3707 if (sd->flags & SD_BALANCE_NEWIDLE)
3708 /* If we've pulled tasks over stop searching: */
3709 pulled_task = load_balance_newidle(this_cpu, this_rq,
3710 sd, &tmpmask);
3711
3712 interval = msecs_to_jiffies(sd->balance_interval);
3713 if (time_after(next_balance, sd->last_balance + interval))
3714 next_balance = sd->last_balance + interval;
3715 if (pulled_task)
3716 break;
3717 }
3718 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3719 /*
3720 * We are going idle. next_balance may be set based on
3721 * a busy processor. So reset next_balance.
3722 */
3723 this_rq->next_balance = next_balance;
3724 }
3725 }
3726
3727 /*
3728 * active_load_balance is run by migration threads. It pushes running tasks
3729 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3730 * running on each physical CPU where possible, and avoids physical /
3731 * logical imbalances.
3732 *
3733 * Called with busiest_rq locked.
3734 */
3735 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3736 {
3737 int target_cpu = busiest_rq->push_cpu;
3738 struct sched_domain *sd;
3739 struct rq *target_rq;
3740
3741 /* Is there any task to move? */
3742 if (busiest_rq->nr_running <= 1)
3743 return;
3744
3745 target_rq = cpu_rq(target_cpu);
3746
3747 /*
3748 * This condition is "impossible", if it occurs
3749 * we need to fix it. Originally reported by
3750 * Bjorn Helgaas on a 128-cpu setup.
3751 */
3752 BUG_ON(busiest_rq == target_rq);
3753
3754 /* move a task from busiest_rq to target_rq */
3755 double_lock_balance(busiest_rq, target_rq);
3756 update_rq_clock(busiest_rq);
3757 update_rq_clock(target_rq);
3758
3759 /* Search for an sd spanning us and the target CPU. */
3760 for_each_domain(target_cpu, sd) {
3761 if ((sd->flags & SD_LOAD_BALANCE) &&
3762 cpu_isset(busiest_cpu, sd->span))
3763 break;
3764 }
3765
3766 if (likely(sd)) {
3767 schedstat_inc(sd, alb_count);
3768
3769 if (move_one_task(target_rq, target_cpu, busiest_rq,
3770 sd, CPU_IDLE))
3771 schedstat_inc(sd, alb_pushed);
3772 else
3773 schedstat_inc(sd, alb_failed);
3774 }
3775 double_unlock_balance(busiest_rq, target_rq);
3776 }
3777
3778 #ifdef CONFIG_NO_HZ
3779 static struct {
3780 atomic_t load_balancer;
3781 cpumask_t cpu_mask;
3782 } nohz ____cacheline_aligned = {
3783 .load_balancer = ATOMIC_INIT(-1),
3784 .cpu_mask = CPU_MASK_NONE,
3785 };
3786
3787 /*
3788 * This routine will try to nominate the ilb (idle load balancing)
3789 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3790 * load balancing on behalf of all those cpus. If all the cpus in the system
3791 * go into this tickless mode, then there will be no ilb owner (as there is
3792 * no need for one) and all the cpus will sleep till the next wakeup event
3793 * arrives...
3794 *
3795 * For the ilb owner, tick is not stopped. And this tick will be used
3796 * for idle load balancing. ilb owner will still be part of
3797 * nohz.cpu_mask..
3798 *
3799 * While stopping the tick, this cpu will become the ilb owner if there
3800 * is no other owner. And will be the owner till that cpu becomes busy
3801 * or if all cpus in the system stop their ticks at which point
3802 * there is no need for ilb owner.
3803 *
3804 * When the ilb owner becomes busy, it nominates another owner, during the
3805 * next busy scheduler_tick()
3806 */
3807 int select_nohz_load_balancer(int stop_tick)
3808 {
3809 int cpu = smp_processor_id();
3810
3811 if (stop_tick) {
3812 cpu_set(cpu, nohz.cpu_mask);
3813 cpu_rq(cpu)->in_nohz_recently = 1;
3814
3815 /*
3816 * If we are going offline and still the leader, give up!
3817 */
3818 if (!cpu_active(cpu) &&
3819 atomic_read(&nohz.load_balancer) == cpu) {
3820 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3821 BUG();
3822 return 0;
3823 }
3824
3825 /* time for ilb owner also to sleep */
3826 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3827 if (atomic_read(&nohz.load_balancer) == cpu)
3828 atomic_set(&nohz.load_balancer, -1);
3829 return 0;
3830 }
3831
3832 if (atomic_read(&nohz.load_balancer) == -1) {
3833 /* make me the ilb owner */
3834 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3835 return 1;
3836 } else if (atomic_read(&nohz.load_balancer) == cpu)
3837 return 1;
3838 } else {
3839 if (!cpu_isset(cpu, nohz.cpu_mask))
3840 return 0;
3841
3842 cpu_clear(cpu, nohz.cpu_mask);
3843
3844 if (atomic_read(&nohz.load_balancer) == cpu)
3845 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3846 BUG();
3847 }
3848 return 0;
3849 }
3850 #endif
3851
3852 static DEFINE_SPINLOCK(balancing);
3853
3854 /*
3855 * It checks each scheduling domain to see if it is due to be balanced,
3856 * and initiates a balancing operation if so.
3857 *
3858 * Balancing parameters are set up in arch_init_sched_domains.
3859 */
3860 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3861 {
3862 int balance = 1;
3863 struct rq *rq = cpu_rq(cpu);
3864 unsigned long interval;
3865 struct sched_domain *sd;
3866 /* Earliest time when we have to do rebalance again */
3867 unsigned long next_balance = jiffies + 60*HZ;
3868 int update_next_balance = 0;
3869 int need_serialize;
3870 cpumask_t tmp;
3871
3872 for_each_domain(cpu, sd) {
3873 if (!(sd->flags & SD_LOAD_BALANCE))
3874 continue;
3875
3876 interval = sd->balance_interval;
3877 if (idle != CPU_IDLE)
3878 interval *= sd->busy_factor;
3879
3880 /* scale ms to jiffies */
3881 interval = msecs_to_jiffies(interval);
3882 if (unlikely(!interval))
3883 interval = 1;
3884 if (interval > HZ*NR_CPUS/10)
3885 interval = HZ*NR_CPUS/10;
3886
3887 need_serialize = sd->flags & SD_SERIALIZE;
3888
3889 if (need_serialize) {
3890 if (!spin_trylock(&balancing))
3891 goto out;
3892 }
3893
3894 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3895 if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
3896 /*
3897 * We've pulled tasks over so either we're no
3898 * longer idle, or one of our SMT siblings is
3899 * not idle.
3900 */
3901 idle = CPU_NOT_IDLE;
3902 }
3903 sd->last_balance = jiffies;
3904 }
3905 if (need_serialize)
3906 spin_unlock(&balancing);
3907 out:
3908 if (time_after(next_balance, sd->last_balance + interval)) {
3909 next_balance = sd->last_balance + interval;
3910 update_next_balance = 1;
3911 }
3912
3913 /*
3914 * Stop the load balance at this level. There is another
3915 * CPU in our sched group which is doing load balancing more
3916 * actively.
3917 */
3918 if (!balance)
3919 break;
3920 }
3921
3922 /*
3923 * next_balance will be updated only when there is a need.
3924 * When the cpu is attached to null domain for ex, it will not be
3925 * updated.
3926 */
3927 if (likely(update_next_balance))
3928 rq->next_balance = next_balance;
3929 }
3930
3931 /*
3932 * run_rebalance_domains is triggered when needed from the scheduler tick.
3933 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3934 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3935 */
3936 static void run_rebalance_domains(struct softirq_action *h)
3937 {
3938 int this_cpu = smp_processor_id();
3939 struct rq *this_rq = cpu_rq(this_cpu);
3940 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3941 CPU_IDLE : CPU_NOT_IDLE;
3942
3943 rebalance_domains(this_cpu, idle);
3944
3945 #ifdef CONFIG_NO_HZ
3946 /*
3947 * If this cpu is the owner for idle load balancing, then do the
3948 * balancing on behalf of the other idle cpus whose ticks are
3949 * stopped.
3950 */
3951 if (this_rq->idle_at_tick &&
3952 atomic_read(&nohz.load_balancer) == this_cpu) {
3953 cpumask_t cpus = nohz.cpu_mask;
3954 struct rq *rq;
3955 int balance_cpu;
3956
3957 cpu_clear(this_cpu, cpus);
3958 for_each_cpu_mask_nr(balance_cpu, cpus) {
3959 /*
3960 * If this cpu gets work to do, stop the load balancing
3961 * work being done for other cpus. Next load
3962 * balancing owner will pick it up.
3963 */
3964 if (need_resched())
3965 break;
3966
3967 rebalance_domains(balance_cpu, CPU_IDLE);
3968
3969 rq = cpu_rq(balance_cpu);
3970 if (time_after(this_rq->next_balance, rq->next_balance))
3971 this_rq->next_balance = rq->next_balance;
3972 }
3973 }
3974 #endif
3975 }
3976
3977 /*
3978 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3979 *
3980 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3981 * idle load balancing owner or decide to stop the periodic load balancing,
3982 * if the whole system is idle.
3983 */
3984 static inline void trigger_load_balance(struct rq *rq, int cpu)
3985 {
3986 #ifdef CONFIG_NO_HZ
3987 /*
3988 * If we were in the nohz mode recently and busy at the current
3989 * scheduler tick, then check if we need to nominate new idle
3990 * load balancer.
3991 */
3992 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3993 rq->in_nohz_recently = 0;
3994
3995 if (atomic_read(&nohz.load_balancer) == cpu) {
3996 cpu_clear(cpu, nohz.cpu_mask);
3997 atomic_set(&nohz.load_balancer, -1);
3998 }
3999
4000 if (atomic_read(&nohz.load_balancer) == -1) {
4001 /*
4002 * simple selection for now: Nominate the
4003 * first cpu in the nohz list to be the next
4004 * ilb owner.
4005 *
4006 * TBD: Traverse the sched domains and nominate
4007 * the nearest cpu in the nohz.cpu_mask.
4008 */
4009 int ilb = first_cpu(nohz.cpu_mask);
4010
4011 if (ilb < nr_cpu_ids)
4012 resched_cpu(ilb);
4013 }
4014 }
4015
4016 /*
4017 * If this cpu is idle and doing idle load balancing for all the
4018 * cpus with ticks stopped, is it time for that to stop?
4019 */
4020 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4021 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
4022 resched_cpu(cpu);
4023 return;
4024 }
4025
4026 /*
4027 * If this cpu is idle and the idle load balancing is done by
4028 * someone else, then no need raise the SCHED_SOFTIRQ
4029 */
4030 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4031 cpu_isset(cpu, nohz.cpu_mask))
4032 return;
4033 #endif
4034 if (time_after_eq(jiffies, rq->next_balance))
4035 raise_softirq(SCHED_SOFTIRQ);
4036 }
4037
4038 #else /* CONFIG_SMP */
4039
4040 /*
4041 * on UP we do not need to balance between CPUs:
4042 */
4043 static inline void idle_balance(int cpu, struct rq *rq)
4044 {
4045 }
4046
4047 #endif
4048
4049 DEFINE_PER_CPU(struct kernel_stat, kstat);
4050
4051 EXPORT_PER_CPU_SYMBOL(kstat);
4052
4053 /*
4054 * Return any ns on the sched_clock that have not yet been banked in
4055 * @p in case that task is currently running.
4056 */
4057 unsigned long long task_delta_exec(struct task_struct *p)
4058 {
4059 unsigned long flags;
4060 struct rq *rq;
4061 u64 ns = 0;
4062
4063 rq = task_rq_lock(p, &flags);
4064
4065 if (task_current(rq, p)) {
4066 u64 delta_exec;
4067
4068 update_rq_clock(rq);
4069 delta_exec = rq->clock - p->se.exec_start;
4070 if ((s64)delta_exec > 0)
4071 ns = delta_exec;
4072 }
4073
4074 task_rq_unlock(rq, &flags);
4075
4076 return ns;
4077 }
4078
4079 /*
4080 * Account user cpu time to a process.
4081 * @p: the process that the cpu time gets accounted to
4082 * @cputime: the cpu time spent in user space since the last update
4083 */
4084 void account_user_time(struct task_struct *p, cputime_t cputime)
4085 {
4086 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4087 cputime64_t tmp;
4088
4089 p->utime = cputime_add(p->utime, cputime);
4090 account_group_user_time(p, cputime);
4091
4092 /* Add user time to cpustat. */
4093 tmp = cputime_to_cputime64(cputime);
4094 if (TASK_NICE(p) > 0)
4095 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4096 else
4097 cpustat->user = cputime64_add(cpustat->user, tmp);
4098 /* Account for user time used */
4099 acct_update_integrals(p);
4100 }
4101
4102 /*
4103 * Account guest cpu time to a process.
4104 * @p: the process that the cpu time gets accounted to
4105 * @cputime: the cpu time spent in virtual machine since the last update
4106 */
4107 static void account_guest_time(struct task_struct *p, cputime_t cputime)
4108 {
4109 cputime64_t tmp;
4110 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4111
4112 tmp = cputime_to_cputime64(cputime);
4113
4114 p->utime = cputime_add(p->utime, cputime);
4115 account_group_user_time(p, cputime);
4116 p->gtime = cputime_add(p->gtime, cputime);
4117
4118 cpustat->user = cputime64_add(cpustat->user, tmp);
4119 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4120 }
4121
4122 /*
4123 * Account scaled user cpu time to a process.
4124 * @p: the process that the cpu time gets accounted to
4125 * @cputime: the cpu time spent in user space since the last update
4126 */
4127 void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
4128 {
4129 p->utimescaled = cputime_add(p->utimescaled, cputime);
4130 }
4131
4132 /*
4133 * Account system cpu time to a process.
4134 * @p: the process that the cpu time gets accounted to
4135 * @hardirq_offset: the offset to subtract from hardirq_count()
4136 * @cputime: the cpu time spent in kernel space since the last update
4137 */
4138 void account_system_time(struct task_struct *p, int hardirq_offset,
4139 cputime_t cputime)
4140 {
4141 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4142 struct rq *rq = this_rq();
4143 cputime64_t tmp;
4144
4145 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4146 account_guest_time(p, cputime);
4147 return;
4148 }
4149
4150 p->stime = cputime_add(p->stime, cputime);
4151 account_group_system_time(p, cputime);
4152
4153 /* Add system time to cpustat. */
4154 tmp = cputime_to_cputime64(cputime);
4155 if (hardirq_count() - hardirq_offset)
4156 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4157 else if (softirq_count())
4158 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4159 else if (p != rq->idle)
4160 cpustat->system = cputime64_add(cpustat->system, tmp);
4161 else if (atomic_read(&rq->nr_iowait) > 0)
4162 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4163 else
4164 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4165 /* Account for system time used */
4166 acct_update_integrals(p);
4167 }
4168
4169 /*
4170 * Account scaled system cpu time to a process.
4171 * @p: the process that the cpu time gets accounted to
4172 * @hardirq_offset: the offset to subtract from hardirq_count()
4173 * @cputime: the cpu time spent in kernel space since the last update
4174 */
4175 void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
4176 {
4177 p->stimescaled = cputime_add(p->stimescaled, cputime);
4178 }
4179
4180 /*
4181 * Account for involuntary wait time.
4182 * @p: the process from which the cpu time has been stolen
4183 * @steal: the cpu time spent in involuntary wait
4184 */
4185 void account_steal_time(struct task_struct *p, cputime_t steal)
4186 {
4187 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4188 cputime64_t tmp = cputime_to_cputime64(steal);
4189 struct rq *rq = this_rq();
4190
4191 if (p == rq->idle) {
4192 p->stime = cputime_add(p->stime, steal);
4193 account_group_system_time(p, steal);
4194 if (atomic_read(&rq->nr_iowait) > 0)
4195 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4196 else
4197 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4198 } else
4199 cpustat->steal = cputime64_add(cpustat->steal, tmp);
4200 }
4201
4202 /*
4203 * Use precise platform statistics if available:
4204 */
4205 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
4206 cputime_t task_utime(struct task_struct *p)
4207 {
4208 return p->utime;
4209 }
4210
4211 cputime_t task_stime(struct task_struct *p)
4212 {
4213 return p->stime;
4214 }
4215 #else
4216 cputime_t task_utime(struct task_struct *p)
4217 {
4218 clock_t utime = cputime_to_clock_t(p->utime),
4219 total = utime + cputime_to_clock_t(p->stime);
4220 u64 temp;
4221
4222 /*
4223 * Use CFS's precise accounting:
4224 */
4225 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
4226
4227 if (total) {
4228 temp *= utime;
4229 do_div(temp, total);
4230 }
4231 utime = (clock_t)temp;
4232
4233 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
4234 return p->prev_utime;
4235 }
4236
4237 cputime_t task_stime(struct task_struct *p)
4238 {
4239 clock_t stime;
4240
4241 /*
4242 * Use CFS's precise accounting. (we subtract utime from
4243 * the total, to make sure the total observed by userspace
4244 * grows monotonically - apps rely on that):
4245 */
4246 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
4247 cputime_to_clock_t(task_utime(p));
4248
4249 if (stime >= 0)
4250 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
4251
4252 return p->prev_stime;
4253 }
4254 #endif
4255
4256 inline cputime_t task_gtime(struct task_struct *p)
4257 {
4258 return p->gtime;
4259 }
4260
4261 /*
4262 * This function gets called by the timer code, with HZ frequency.
4263 * We call it with interrupts disabled.
4264 *
4265 * It also gets called by the fork code, when changing the parent's
4266 * timeslices.
4267 */
4268 void scheduler_tick(void)
4269 {
4270 int cpu = smp_processor_id();
4271 struct rq *rq = cpu_rq(cpu);
4272 struct task_struct *curr = rq->curr;
4273
4274 sched_clock_tick();
4275
4276 spin_lock(&rq->lock);
4277 update_rq_clock(rq);
4278 update_cpu_load(rq);
4279 curr->sched_class->task_tick(rq, curr, 0);
4280 spin_unlock(&rq->lock);
4281
4282 #ifdef CONFIG_SMP
4283 rq->idle_at_tick = idle_cpu(cpu);
4284 trigger_load_balance(rq, cpu);
4285 #endif
4286 }
4287
4288 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4289 defined(CONFIG_PREEMPT_TRACER))
4290
4291 static inline unsigned long get_parent_ip(unsigned long addr)
4292 {
4293 if (in_lock_functions(addr)) {
4294 addr = CALLER_ADDR2;
4295 if (in_lock_functions(addr))
4296 addr = CALLER_ADDR3;
4297 }
4298 return addr;
4299 }
4300
4301 void __kprobes add_preempt_count(int val)
4302 {
4303 #ifdef CONFIG_DEBUG_PREEMPT
4304 /*
4305 * Underflow?
4306 */
4307 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4308 return;
4309 #endif
4310 preempt_count() += val;
4311 #ifdef CONFIG_DEBUG_PREEMPT
4312 /*
4313 * Spinlock count overflowing soon?
4314 */
4315 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4316 PREEMPT_MASK - 10);
4317 #endif
4318 if (preempt_count() == val)
4319 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4320 }
4321 EXPORT_SYMBOL(add_preempt_count);
4322
4323 void __kprobes sub_preempt_count(int val)
4324 {
4325 #ifdef CONFIG_DEBUG_PREEMPT
4326 /*
4327 * Underflow?
4328 */
4329 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4330 return;
4331 /*
4332 * Is the spinlock portion underflowing?
4333 */
4334 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4335 !(preempt_count() & PREEMPT_MASK)))
4336 return;
4337 #endif
4338
4339 if (preempt_count() == val)
4340 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4341 preempt_count() -= val;
4342 }
4343 EXPORT_SYMBOL(sub_preempt_count);
4344
4345 #endif
4346
4347 /*
4348 * Print scheduling while atomic bug:
4349 */
4350 static noinline void __schedule_bug(struct task_struct *prev)
4351 {
4352 struct pt_regs *regs = get_irq_regs();
4353
4354 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4355 prev->comm, prev->pid, preempt_count());
4356
4357 debug_show_held_locks(prev);
4358 print_modules();
4359 if (irqs_disabled())
4360 print_irqtrace_events(prev);
4361
4362 if (regs)
4363 show_regs(regs);
4364 else
4365 dump_stack();
4366 }
4367
4368 /*
4369 * Various schedule()-time debugging checks and statistics:
4370 */
4371 static inline void schedule_debug(struct task_struct *prev)
4372 {
4373 /*
4374 * Test if we are atomic. Since do_exit() needs to call into
4375 * schedule() atomically, we ignore that path for now.
4376 * Otherwise, whine if we are scheduling when we should not be.
4377 */
4378 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
4379 __schedule_bug(prev);
4380
4381 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4382
4383 schedstat_inc(this_rq(), sched_count);
4384 #ifdef CONFIG_SCHEDSTATS
4385 if (unlikely(prev->lock_depth >= 0)) {
4386 schedstat_inc(this_rq(), bkl_count);
4387 schedstat_inc(prev, sched_info.bkl_count);
4388 }
4389 #endif
4390 }
4391
4392 /*
4393 * Pick up the highest-prio task:
4394 */
4395 static inline struct task_struct *
4396 pick_next_task(struct rq *rq, struct task_struct *prev)
4397 {
4398 const struct sched_class *class;
4399 struct task_struct *p;
4400
4401 /*
4402 * Optimization: we know that if all tasks are in
4403 * the fair class we can call that function directly:
4404 */
4405 if (likely(rq->nr_running == rq->cfs.nr_running)) {
4406 p = fair_sched_class.pick_next_task(rq);
4407 if (likely(p))
4408 return p;
4409 }
4410
4411 class = sched_class_highest;
4412 for ( ; ; ) {
4413 p = class->pick_next_task(rq);
4414 if (p)
4415 return p;
4416 /*
4417 * Will never be NULL as the idle class always
4418 * returns a non-NULL p:
4419 */
4420 class = class->next;
4421 }
4422 }
4423
4424 /*
4425 * schedule() is the main scheduler function.
4426 */
4427 asmlinkage void __sched schedule(void)
4428 {
4429 struct task_struct *prev, *next;
4430 unsigned long *switch_count;
4431 struct rq *rq;
4432 int cpu;
4433
4434 need_resched:
4435 preempt_disable();
4436 cpu = smp_processor_id();
4437 rq = cpu_rq(cpu);
4438 rcu_qsctr_inc(cpu);
4439 prev = rq->curr;
4440 switch_count = &prev->nivcsw;
4441
4442 release_kernel_lock(prev);
4443 need_resched_nonpreemptible:
4444
4445 schedule_debug(prev);
4446
4447 if (sched_feat(HRTICK))
4448 hrtick_clear(rq);
4449
4450 spin_lock_irq(&rq->lock);
4451 update_rq_clock(rq);
4452 clear_tsk_need_resched(prev);
4453
4454 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4455 if (unlikely(signal_pending_state(prev->state, prev)))
4456 prev->state = TASK_RUNNING;
4457 else
4458 deactivate_task(rq, prev, 1);
4459 switch_count = &prev->nvcsw;
4460 }
4461
4462 #ifdef CONFIG_SMP
4463 if (prev->sched_class->pre_schedule)
4464 prev->sched_class->pre_schedule(rq, prev);
4465 #endif
4466
4467 if (unlikely(!rq->nr_running))
4468 idle_balance(cpu, rq);
4469
4470 prev->sched_class->put_prev_task(rq, prev);
4471 next = pick_next_task(rq, prev);
4472
4473 if (likely(prev != next)) {
4474 sched_info_switch(prev, next);
4475
4476 rq->nr_switches++;
4477 rq->curr = next;
4478 ++*switch_count;
4479
4480 context_switch(rq, prev, next); /* unlocks the rq */
4481 /*
4482 * the context switch might have flipped the stack from under
4483 * us, hence refresh the local variables.
4484 */
4485 cpu = smp_processor_id();
4486 rq = cpu_rq(cpu);
4487 } else
4488 spin_unlock_irq(&rq->lock);
4489
4490 if (unlikely(reacquire_kernel_lock(current) < 0))
4491 goto need_resched_nonpreemptible;
4492
4493 preempt_enable_no_resched();
4494 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4495 goto need_resched;
4496 }
4497 EXPORT_SYMBOL(schedule);
4498
4499 #ifdef CONFIG_PREEMPT
4500 /*
4501 * this is the entry point to schedule() from in-kernel preemption
4502 * off of preempt_enable. Kernel preemptions off return from interrupt
4503 * occur there and call schedule directly.
4504 */
4505 asmlinkage void __sched preempt_schedule(void)
4506 {
4507 struct thread_info *ti = current_thread_info();
4508
4509 /*
4510 * If there is a non-zero preempt_count or interrupts are disabled,
4511 * we do not want to preempt the current task. Just return..
4512 */
4513 if (likely(ti->preempt_count || irqs_disabled()))
4514 return;
4515
4516 do {
4517 add_preempt_count(PREEMPT_ACTIVE);
4518 schedule();
4519 sub_preempt_count(PREEMPT_ACTIVE);
4520
4521 /*
4522 * Check again in case we missed a preemption opportunity
4523 * between schedule and now.
4524 */
4525 barrier();
4526 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4527 }
4528 EXPORT_SYMBOL(preempt_schedule);
4529
4530 /*
4531 * this is the entry point to schedule() from kernel preemption
4532 * off of irq context.
4533 * Note, that this is called and return with irqs disabled. This will
4534 * protect us against recursive calling from irq.
4535 */
4536 asmlinkage void __sched preempt_schedule_irq(void)
4537 {
4538 struct thread_info *ti = current_thread_info();
4539
4540 /* Catch callers which need to be fixed */
4541 BUG_ON(ti->preempt_count || !irqs_disabled());
4542
4543 do {
4544 add_preempt_count(PREEMPT_ACTIVE);
4545 local_irq_enable();
4546 schedule();
4547 local_irq_disable();
4548 sub_preempt_count(PREEMPT_ACTIVE);
4549
4550 /*
4551 * Check again in case we missed a preemption opportunity
4552 * between schedule and now.
4553 */
4554 barrier();
4555 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4556 }
4557
4558 #endif /* CONFIG_PREEMPT */
4559
4560 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4561 void *key)
4562 {
4563 return try_to_wake_up(curr->private, mode, sync);
4564 }
4565 EXPORT_SYMBOL(default_wake_function);
4566
4567 /*
4568 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4569 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4570 * number) then we wake all the non-exclusive tasks and one exclusive task.
4571 *
4572 * There are circumstances in which we can try to wake a task which has already
4573 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4574 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4575 */
4576 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4577 int nr_exclusive, int sync, void *key)
4578 {
4579 wait_queue_t *curr, *next;
4580
4581 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4582 unsigned flags = curr->flags;
4583
4584 if (curr->func(curr, mode, sync, key) &&
4585 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4586 break;
4587 }
4588 }
4589
4590 /**
4591 * __wake_up - wake up threads blocked on a waitqueue.
4592 * @q: the waitqueue
4593 * @mode: which threads
4594 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4595 * @key: is directly passed to the wakeup function
4596 */
4597 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4598 int nr_exclusive, void *key)
4599 {
4600 unsigned long flags;
4601
4602 spin_lock_irqsave(&q->lock, flags);
4603 __wake_up_common(q, mode, nr_exclusive, 0, key);
4604 spin_unlock_irqrestore(&q->lock, flags);
4605 }
4606 EXPORT_SYMBOL(__wake_up);
4607
4608 /*
4609 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4610 */
4611 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4612 {
4613 __wake_up_common(q, mode, 1, 0, NULL);
4614 }
4615
4616 /**
4617 * __wake_up_sync - wake up threads blocked on a waitqueue.
4618 * @q: the waitqueue
4619 * @mode: which threads
4620 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4621 *
4622 * The sync wakeup differs that the waker knows that it will schedule
4623 * away soon, so while the target thread will be woken up, it will not
4624 * be migrated to another CPU - ie. the two threads are 'synchronized'
4625 * with each other. This can prevent needless bouncing between CPUs.
4626 *
4627 * On UP it can prevent extra preemption.
4628 */
4629 void
4630 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4631 {
4632 unsigned long flags;
4633 int sync = 1;
4634
4635 if (unlikely(!q))
4636 return;
4637
4638 if (unlikely(!nr_exclusive))
4639 sync = 0;
4640
4641 spin_lock_irqsave(&q->lock, flags);
4642 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4643 spin_unlock_irqrestore(&q->lock, flags);
4644 }
4645 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4646
4647 /**
4648 * complete: - signals a single thread waiting on this completion
4649 * @x: holds the state of this particular completion
4650 *
4651 * This will wake up a single thread waiting on this completion. Threads will be
4652 * awakened in the same order in which they were queued.
4653 *
4654 * See also complete_all(), wait_for_completion() and related routines.
4655 */
4656 void complete(struct completion *x)
4657 {
4658 unsigned long flags;
4659
4660 spin_lock_irqsave(&x->wait.lock, flags);
4661 x->done++;
4662 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4663 spin_unlock_irqrestore(&x->wait.lock, flags);
4664 }
4665 EXPORT_SYMBOL(complete);
4666
4667 /**
4668 * complete_all: - signals all threads waiting on this completion
4669 * @x: holds the state of this particular completion
4670 *
4671 * This will wake up all threads waiting on this particular completion event.
4672 */
4673 void complete_all(struct completion *x)
4674 {
4675 unsigned long flags;
4676
4677 spin_lock_irqsave(&x->wait.lock, flags);
4678 x->done += UINT_MAX/2;
4679 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4680 spin_unlock_irqrestore(&x->wait.lock, flags);
4681 }
4682 EXPORT_SYMBOL(complete_all);
4683
4684 static inline long __sched
4685 do_wait_for_common(struct completion *x, long timeout, int state)
4686 {
4687 if (!x->done) {
4688 DECLARE_WAITQUEUE(wait, current);
4689
4690 wait.flags |= WQ_FLAG_EXCLUSIVE;
4691 __add_wait_queue_tail(&x->wait, &wait);
4692 do {
4693 if (signal_pending_state(state, current)) {
4694 timeout = -ERESTARTSYS;
4695 break;
4696 }
4697 __set_current_state(state);
4698 spin_unlock_irq(&x->wait.lock);
4699 timeout = schedule_timeout(timeout);
4700 spin_lock_irq(&x->wait.lock);
4701 } while (!x->done && timeout);
4702 __remove_wait_queue(&x->wait, &wait);
4703 if (!x->done)
4704 return timeout;
4705 }
4706 x->done--;
4707 return timeout ?: 1;
4708 }
4709
4710 static long __sched
4711 wait_for_common(struct completion *x, long timeout, int state)
4712 {
4713 might_sleep();
4714
4715 spin_lock_irq(&x->wait.lock);
4716 timeout = do_wait_for_common(x, timeout, state);
4717 spin_unlock_irq(&x->wait.lock);
4718 return timeout;
4719 }
4720
4721 /**
4722 * wait_for_completion: - waits for completion of a task
4723 * @x: holds the state of this particular completion
4724 *
4725 * This waits to be signaled for completion of a specific task. It is NOT
4726 * interruptible and there is no timeout.
4727 *
4728 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4729 * and interrupt capability. Also see complete().
4730 */
4731 void __sched wait_for_completion(struct completion *x)
4732 {
4733 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4734 }
4735 EXPORT_SYMBOL(wait_for_completion);
4736
4737 /**
4738 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4739 * @x: holds the state of this particular completion
4740 * @timeout: timeout value in jiffies
4741 *
4742 * This waits for either a completion of a specific task to be signaled or for a
4743 * specified timeout to expire. The timeout is in jiffies. It is not
4744 * interruptible.
4745 */
4746 unsigned long __sched
4747 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4748 {
4749 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4750 }
4751 EXPORT_SYMBOL(wait_for_completion_timeout);
4752
4753 /**
4754 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4755 * @x: holds the state of this particular completion
4756 *
4757 * This waits for completion of a specific task to be signaled. It is
4758 * interruptible.
4759 */
4760 int __sched wait_for_completion_interruptible(struct completion *x)
4761 {
4762 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4763 if (t == -ERESTARTSYS)
4764 return t;
4765 return 0;
4766 }
4767 EXPORT_SYMBOL(wait_for_completion_interruptible);
4768
4769 /**
4770 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4771 * @x: holds the state of this particular completion
4772 * @timeout: timeout value in jiffies
4773 *
4774 * This waits for either a completion of a specific task to be signaled or for a
4775 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4776 */
4777 unsigned long __sched
4778 wait_for_completion_interruptible_timeout(struct completion *x,
4779 unsigned long timeout)
4780 {
4781 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4782 }
4783 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4784
4785 /**
4786 * wait_for_completion_killable: - waits for completion of a task (killable)
4787 * @x: holds the state of this particular completion
4788 *
4789 * This waits to be signaled for completion of a specific task. It can be
4790 * interrupted by a kill signal.
4791 */
4792 int __sched wait_for_completion_killable(struct completion *x)
4793 {
4794 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4795 if (t == -ERESTARTSYS)
4796 return t;
4797 return 0;
4798 }
4799 EXPORT_SYMBOL(wait_for_completion_killable);
4800
4801 /**
4802 * try_wait_for_completion - try to decrement a completion without blocking
4803 * @x: completion structure
4804 *
4805 * Returns: 0 if a decrement cannot be done without blocking
4806 * 1 if a decrement succeeded.
4807 *
4808 * If a completion is being used as a counting completion,
4809 * attempt to decrement the counter without blocking. This
4810 * enables us to avoid waiting if the resource the completion
4811 * is protecting is not available.
4812 */
4813 bool try_wait_for_completion(struct completion *x)
4814 {
4815 int ret = 1;
4816
4817 spin_lock_irq(&x->wait.lock);
4818 if (!x->done)
4819 ret = 0;
4820 else
4821 x->done--;
4822 spin_unlock_irq(&x->wait.lock);
4823 return ret;
4824 }
4825 EXPORT_SYMBOL(try_wait_for_completion);
4826
4827 /**
4828 * completion_done - Test to see if a completion has any waiters
4829 * @x: completion structure
4830 *
4831 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4832 * 1 if there are no waiters.
4833 *
4834 */
4835 bool completion_done(struct completion *x)
4836 {
4837 int ret = 1;
4838
4839 spin_lock_irq(&x->wait.lock);
4840 if (!x->done)
4841 ret = 0;
4842 spin_unlock_irq(&x->wait.lock);
4843 return ret;
4844 }
4845 EXPORT_SYMBOL(completion_done);
4846
4847 static long __sched
4848 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4849 {
4850 unsigned long flags;
4851 wait_queue_t wait;
4852
4853 init_waitqueue_entry(&wait, current);
4854
4855 __set_current_state(state);
4856
4857 spin_lock_irqsave(&q->lock, flags);
4858 __add_wait_queue(q, &wait);
4859 spin_unlock(&q->lock);
4860 timeout = schedule_timeout(timeout);
4861 spin_lock_irq(&q->lock);
4862 __remove_wait_queue(q, &wait);
4863 spin_unlock_irqrestore(&q->lock, flags);
4864
4865 return timeout;
4866 }
4867
4868 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4869 {
4870 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4871 }
4872 EXPORT_SYMBOL(interruptible_sleep_on);
4873
4874 long __sched
4875 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4876 {
4877 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4878 }
4879 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4880
4881 void __sched sleep_on(wait_queue_head_t *q)
4882 {
4883 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4884 }
4885 EXPORT_SYMBOL(sleep_on);
4886
4887 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4888 {
4889 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4890 }
4891 EXPORT_SYMBOL(sleep_on_timeout);
4892
4893 #ifdef CONFIG_RT_MUTEXES
4894
4895 /*
4896 * rt_mutex_setprio - set the current priority of a task
4897 * @p: task
4898 * @prio: prio value (kernel-internal form)
4899 *
4900 * This function changes the 'effective' priority of a task. It does
4901 * not touch ->normal_prio like __setscheduler().
4902 *
4903 * Used by the rt_mutex code to implement priority inheritance logic.
4904 */
4905 void rt_mutex_setprio(struct task_struct *p, int prio)
4906 {
4907 unsigned long flags;
4908 int oldprio, on_rq, running;
4909 struct rq *rq;
4910 const struct sched_class *prev_class = p->sched_class;
4911
4912 BUG_ON(prio < 0 || prio > MAX_PRIO);
4913
4914 rq = task_rq_lock(p, &flags);
4915 update_rq_clock(rq);
4916
4917 oldprio = p->prio;
4918 on_rq = p->se.on_rq;
4919 running = task_current(rq, p);
4920 if (on_rq)
4921 dequeue_task(rq, p, 0);
4922 if (running)
4923 p->sched_class->put_prev_task(rq, p);
4924
4925 if (rt_prio(prio))
4926 p->sched_class = &rt_sched_class;
4927 else
4928 p->sched_class = &fair_sched_class;
4929
4930 p->prio = prio;
4931
4932 if (running)
4933 p->sched_class->set_curr_task(rq);
4934 if (on_rq) {
4935 enqueue_task(rq, p, 0);
4936
4937 check_class_changed(rq, p, prev_class, oldprio, running);
4938 }
4939 task_rq_unlock(rq, &flags);
4940 }
4941
4942 #endif
4943
4944 void set_user_nice(struct task_struct *p, long nice)
4945 {
4946 int old_prio, delta, on_rq;
4947 unsigned long flags;
4948 struct rq *rq;
4949
4950 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4951 return;
4952 /*
4953 * We have to be careful, if called from sys_setpriority(),
4954 * the task might be in the middle of scheduling on another CPU.
4955 */
4956 rq = task_rq_lock(p, &flags);
4957 update_rq_clock(rq);
4958 /*
4959 * The RT priorities are set via sched_setscheduler(), but we still
4960 * allow the 'normal' nice value to be set - but as expected
4961 * it wont have any effect on scheduling until the task is
4962 * SCHED_FIFO/SCHED_RR:
4963 */
4964 if (task_has_rt_policy(p)) {
4965 p->static_prio = NICE_TO_PRIO(nice);
4966 goto out_unlock;
4967 }
4968 on_rq = p->se.on_rq;
4969 if (on_rq)
4970 dequeue_task(rq, p, 0);
4971
4972 p->static_prio = NICE_TO_PRIO(nice);
4973 set_load_weight(p);
4974 old_prio = p->prio;
4975 p->prio = effective_prio(p);
4976 delta = p->prio - old_prio;
4977
4978 if (on_rq) {
4979 enqueue_task(rq, p, 0);
4980 /*
4981 * If the task increased its priority or is running and
4982 * lowered its priority, then reschedule its CPU:
4983 */
4984 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4985 resched_task(rq->curr);
4986 }
4987 out_unlock:
4988 task_rq_unlock(rq, &flags);
4989 }
4990 EXPORT_SYMBOL(set_user_nice);
4991
4992 /*
4993 * can_nice - check if a task can reduce its nice value
4994 * @p: task
4995 * @nice: nice value
4996 */
4997 int can_nice(const struct task_struct *p, const int nice)
4998 {
4999 /* convert nice value [19,-20] to rlimit style value [1,40] */
5000 int nice_rlim = 20 - nice;
5001
5002 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5003 capable(CAP_SYS_NICE));
5004 }
5005
5006 #ifdef __ARCH_WANT_SYS_NICE
5007
5008 /*
5009 * sys_nice - change the priority of the current process.
5010 * @increment: priority increment
5011 *
5012 * sys_setpriority is a more generic, but much slower function that
5013 * does similar things.
5014 */
5015 asmlinkage long sys_nice(int increment)
5016 {
5017 long nice, retval;
5018
5019 /*
5020 * Setpriority might change our priority at the same moment.
5021 * We don't have to worry. Conceptually one call occurs first
5022 * and we have a single winner.
5023 */
5024 if (increment < -40)
5025 increment = -40;
5026 if (increment > 40)
5027 increment = 40;
5028
5029 nice = PRIO_TO_NICE(current->static_prio) + increment;
5030 if (nice < -20)
5031 nice = -20;
5032 if (nice > 19)
5033 nice = 19;
5034
5035 if (increment < 0 && !can_nice(current, nice))
5036 return -EPERM;
5037
5038 retval = security_task_setnice(current, nice);
5039 if (retval)
5040 return retval;
5041
5042 set_user_nice(current, nice);
5043 return 0;
5044 }
5045
5046 #endif
5047
5048 /**
5049 * task_prio - return the priority value of a given task.
5050 * @p: the task in question.
5051 *
5052 * This is the priority value as seen by users in /proc.
5053 * RT tasks are offset by -200. Normal tasks are centered
5054 * around 0, value goes from -16 to +15.
5055 */
5056 int task_prio(const struct task_struct *p)
5057 {
5058 return p->prio - MAX_RT_PRIO;
5059 }
5060
5061 /**
5062 * task_nice - return the nice value of a given task.
5063 * @p: the task in question.
5064 */
5065 int task_nice(const struct task_struct *p)
5066 {
5067 return TASK_NICE(p);
5068 }
5069 EXPORT_SYMBOL(task_nice);
5070
5071 /**
5072 * idle_cpu - is a given cpu idle currently?
5073 * @cpu: the processor in question.
5074 */
5075 int idle_cpu(int cpu)
5076 {
5077 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5078 }
5079
5080 /**
5081 * idle_task - return the idle task for a given cpu.
5082 * @cpu: the processor in question.
5083 */
5084 struct task_struct *idle_task(int cpu)
5085 {
5086 return cpu_rq(cpu)->idle;
5087 }
5088
5089 /**
5090 * find_process_by_pid - find a process with a matching PID value.
5091 * @pid: the pid in question.
5092 */
5093 static struct task_struct *find_process_by_pid(pid_t pid)
5094 {
5095 return pid ? find_task_by_vpid(pid) : current;
5096 }
5097
5098 /* Actually do priority change: must hold rq lock. */
5099 static void
5100 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
5101 {
5102 BUG_ON(p->se.on_rq);
5103
5104 p->policy = policy;
5105 switch (p->policy) {
5106 case SCHED_NORMAL:
5107 case SCHED_BATCH:
5108 case SCHED_IDLE:
5109 p->sched_class = &fair_sched_class;
5110 break;
5111 case SCHED_FIFO:
5112 case SCHED_RR:
5113 p->sched_class = &rt_sched_class;
5114 break;
5115 }
5116
5117 p->rt_priority = prio;
5118 p->normal_prio = normal_prio(p);
5119 /* we are holding p->pi_lock already */
5120 p->prio = rt_mutex_getprio(p);
5121 set_load_weight(p);
5122 }
5123
5124 static int __sched_setscheduler(struct task_struct *p, int policy,
5125 struct sched_param *param, bool user)
5126 {
5127 int retval, oldprio, oldpolicy = -1, on_rq, running;
5128 unsigned long flags;
5129 const struct sched_class *prev_class = p->sched_class;
5130 struct rq *rq;
5131 uid_t euid;
5132
5133 /* may grab non-irq protected spin_locks */
5134 BUG_ON(in_interrupt());
5135 recheck:
5136 /* double check policy once rq lock held */
5137 if (policy < 0)
5138 policy = oldpolicy = p->policy;
5139 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
5140 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5141 policy != SCHED_IDLE)
5142 return -EINVAL;
5143 /*
5144 * Valid priorities for SCHED_FIFO and SCHED_RR are
5145 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5146 * SCHED_BATCH and SCHED_IDLE is 0.
5147 */
5148 if (param->sched_priority < 0 ||
5149 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5150 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
5151 return -EINVAL;
5152 if (rt_policy(policy) != (param->sched_priority != 0))
5153 return -EINVAL;
5154
5155 /*
5156 * Allow unprivileged RT tasks to decrease priority:
5157 */
5158 if (user && !capable(CAP_SYS_NICE)) {
5159 if (rt_policy(policy)) {
5160 unsigned long rlim_rtprio;
5161
5162 if (!lock_task_sighand(p, &flags))
5163 return -ESRCH;
5164 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5165 unlock_task_sighand(p, &flags);
5166
5167 /* can't set/change the rt policy */
5168 if (policy != p->policy && !rlim_rtprio)
5169 return -EPERM;
5170
5171 /* can't increase priority */
5172 if (param->sched_priority > p->rt_priority &&
5173 param->sched_priority > rlim_rtprio)
5174 return -EPERM;
5175 }
5176 /*
5177 * Like positive nice levels, dont allow tasks to
5178 * move out of SCHED_IDLE either:
5179 */
5180 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5181 return -EPERM;
5182
5183 /* can't change other user's priorities */
5184 euid = current_euid();
5185 if (euid != p->euid &&
5186 euid != p->uid)
5187 return -EPERM;
5188 }
5189
5190 if (user) {
5191 #ifdef CONFIG_RT_GROUP_SCHED
5192 /*
5193 * Do not allow realtime tasks into groups that have no runtime
5194 * assigned.
5195 */
5196 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5197 task_group(p)->rt_bandwidth.rt_runtime == 0)
5198 return -EPERM;
5199 #endif
5200
5201 retval = security_task_setscheduler(p, policy, param);
5202 if (retval)
5203 return retval;
5204 }
5205
5206 /*
5207 * make sure no PI-waiters arrive (or leave) while we are
5208 * changing the priority of the task:
5209 */
5210 spin_lock_irqsave(&p->pi_lock, flags);
5211 /*
5212 * To be able to change p->policy safely, the apropriate
5213 * runqueue lock must be held.
5214 */
5215 rq = __task_rq_lock(p);
5216 /* recheck policy now with rq lock held */
5217 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5218 policy = oldpolicy = -1;
5219 __task_rq_unlock(rq);
5220 spin_unlock_irqrestore(&p->pi_lock, flags);
5221 goto recheck;
5222 }
5223 update_rq_clock(rq);
5224 on_rq = p->se.on_rq;
5225 running = task_current(rq, p);
5226 if (on_rq)
5227 deactivate_task(rq, p, 0);
5228 if (running)
5229 p->sched_class->put_prev_task(rq, p);
5230
5231 oldprio = p->prio;
5232 __setscheduler(rq, p, policy, param->sched_priority);
5233
5234 if (running)
5235 p->sched_class->set_curr_task(rq);
5236 if (on_rq) {
5237 activate_task(rq, p, 0);
5238
5239 check_class_changed(rq, p, prev_class, oldprio, running);
5240 }
5241 __task_rq_unlock(rq);
5242 spin_unlock_irqrestore(&p->pi_lock, flags);
5243
5244 rt_mutex_adjust_pi(p);
5245
5246 return 0;
5247 }
5248
5249 /**
5250 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5251 * @p: the task in question.
5252 * @policy: new policy.
5253 * @param: structure containing the new RT priority.
5254 *
5255 * NOTE that the task may be already dead.
5256 */
5257 int sched_setscheduler(struct task_struct *p, int policy,
5258 struct sched_param *param)
5259 {
5260 return __sched_setscheduler(p, policy, param, true);
5261 }
5262 EXPORT_SYMBOL_GPL(sched_setscheduler);
5263
5264 /**
5265 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5266 * @p: the task in question.
5267 * @policy: new policy.
5268 * @param: structure containing the new RT priority.
5269 *
5270 * Just like sched_setscheduler, only don't bother checking if the
5271 * current context has permission. For example, this is needed in
5272 * stop_machine(): we create temporary high priority worker threads,
5273 * but our caller might not have that capability.
5274 */
5275 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5276 struct sched_param *param)
5277 {
5278 return __sched_setscheduler(p, policy, param, false);
5279 }
5280
5281 static int
5282 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5283 {
5284 struct sched_param lparam;
5285 struct task_struct *p;
5286 int retval;
5287
5288 if (!param || pid < 0)
5289 return -EINVAL;
5290 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5291 return -EFAULT;
5292
5293 rcu_read_lock();
5294 retval = -ESRCH;
5295 p = find_process_by_pid(pid);
5296 if (p != NULL)
5297 retval = sched_setscheduler(p, policy, &lparam);
5298 rcu_read_unlock();
5299
5300 return retval;
5301 }
5302
5303 /**
5304 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5305 * @pid: the pid in question.
5306 * @policy: new policy.
5307 * @param: structure containing the new RT priority.
5308 */
5309 asmlinkage long
5310 sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5311 {
5312 /* negative values for policy are not valid */
5313 if (policy < 0)
5314 return -EINVAL;
5315
5316 return do_sched_setscheduler(pid, policy, param);
5317 }
5318
5319 /**
5320 * sys_sched_setparam - set/change the RT priority of a thread
5321 * @pid: the pid in question.
5322 * @param: structure containing the new RT priority.
5323 */
5324 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
5325 {
5326 return do_sched_setscheduler(pid, -1, param);
5327 }
5328
5329 /**
5330 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5331 * @pid: the pid in question.
5332 */
5333 asmlinkage long sys_sched_getscheduler(pid_t pid)
5334 {
5335 struct task_struct *p;
5336 int retval;
5337
5338 if (pid < 0)
5339 return -EINVAL;
5340
5341 retval = -ESRCH;
5342 read_lock(&tasklist_lock);
5343 p = find_process_by_pid(pid);
5344 if (p) {
5345 retval = security_task_getscheduler(p);
5346 if (!retval)
5347 retval = p->policy;
5348 }
5349 read_unlock(&tasklist_lock);
5350 return retval;
5351 }
5352
5353 /**
5354 * sys_sched_getscheduler - get the RT priority of a thread
5355 * @pid: the pid in question.
5356 * @param: structure containing the RT priority.
5357 */
5358 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
5359 {
5360 struct sched_param lp;
5361 struct task_struct *p;
5362 int retval;
5363
5364 if (!param || pid < 0)
5365 return -EINVAL;
5366
5367 read_lock(&tasklist_lock);
5368 p = find_process_by_pid(pid);
5369 retval = -ESRCH;
5370 if (!p)
5371 goto out_unlock;
5372
5373 retval = security_task_getscheduler(p);
5374 if (retval)
5375 goto out_unlock;
5376
5377 lp.sched_priority = p->rt_priority;
5378 read_unlock(&tasklist_lock);
5379
5380 /*
5381 * This one might sleep, we cannot do it with a spinlock held ...
5382 */
5383 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5384
5385 return retval;
5386
5387 out_unlock:
5388 read_unlock(&tasklist_lock);
5389 return retval;
5390 }
5391
5392 long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
5393 {
5394 cpumask_t cpus_allowed;
5395 cpumask_t new_mask = *in_mask;
5396 struct task_struct *p;
5397 uid_t euid;
5398 int retval;
5399
5400 get_online_cpus();
5401 read_lock(&tasklist_lock);
5402
5403 p = find_process_by_pid(pid);
5404 if (!p) {
5405 read_unlock(&tasklist_lock);
5406 put_online_cpus();
5407 return -ESRCH;
5408 }
5409
5410 /*
5411 * It is not safe to call set_cpus_allowed with the
5412 * tasklist_lock held. We will bump the task_struct's
5413 * usage count and then drop tasklist_lock.
5414 */
5415 get_task_struct(p);
5416 read_unlock(&tasklist_lock);
5417
5418 euid = current_euid();
5419 retval = -EPERM;
5420 if (euid != p->euid && euid != p->uid && !capable(CAP_SYS_NICE))
5421 goto out_unlock;
5422
5423 retval = security_task_setscheduler(p, 0, NULL);
5424 if (retval)
5425 goto out_unlock;
5426
5427 cpuset_cpus_allowed(p, &cpus_allowed);
5428 cpus_and(new_mask, new_mask, cpus_allowed);
5429 again:
5430 retval = set_cpus_allowed_ptr(p, &new_mask);
5431
5432 if (!retval) {
5433 cpuset_cpus_allowed(p, &cpus_allowed);
5434 if (!cpus_subset(new_mask, cpus_allowed)) {
5435 /*
5436 * We must have raced with a concurrent cpuset
5437 * update. Just reset the cpus_allowed to the
5438 * cpuset's cpus_allowed
5439 */
5440 new_mask = cpus_allowed;
5441 goto again;
5442 }
5443 }
5444 out_unlock:
5445 put_task_struct(p);
5446 put_online_cpus();
5447 return retval;
5448 }
5449
5450 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5451 cpumask_t *new_mask)
5452 {
5453 if (len < sizeof(cpumask_t)) {
5454 memset(new_mask, 0, sizeof(cpumask_t));
5455 } else if (len > sizeof(cpumask_t)) {
5456 len = sizeof(cpumask_t);
5457 }
5458 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5459 }
5460
5461 /**
5462 * sys_sched_setaffinity - set the cpu affinity of a process
5463 * @pid: pid of the process
5464 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5465 * @user_mask_ptr: user-space pointer to the new cpu mask
5466 */
5467 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5468 unsigned long __user *user_mask_ptr)
5469 {
5470 cpumask_t new_mask;
5471 int retval;
5472
5473 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
5474 if (retval)
5475 return retval;
5476
5477 return sched_setaffinity(pid, &new_mask);
5478 }
5479
5480 long sched_getaffinity(pid_t pid, cpumask_t *mask)
5481 {
5482 struct task_struct *p;
5483 int retval;
5484
5485 get_online_cpus();
5486 read_lock(&tasklist_lock);
5487
5488 retval = -ESRCH;
5489 p = find_process_by_pid(pid);
5490 if (!p)
5491 goto out_unlock;
5492
5493 retval = security_task_getscheduler(p);
5494 if (retval)
5495 goto out_unlock;
5496
5497 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
5498
5499 out_unlock:
5500 read_unlock(&tasklist_lock);
5501 put_online_cpus();
5502
5503 return retval;
5504 }
5505
5506 /**
5507 * sys_sched_getaffinity - get the cpu affinity of a process
5508 * @pid: pid of the process
5509 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5510 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5511 */
5512 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5513 unsigned long __user *user_mask_ptr)
5514 {
5515 int ret;
5516 cpumask_t mask;
5517
5518 if (len < sizeof(cpumask_t))
5519 return -EINVAL;
5520
5521 ret = sched_getaffinity(pid, &mask);
5522 if (ret < 0)
5523 return ret;
5524
5525 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
5526 return -EFAULT;
5527
5528 return sizeof(cpumask_t);
5529 }
5530
5531 /**
5532 * sys_sched_yield - yield the current processor to other threads.
5533 *
5534 * This function yields the current CPU to other tasks. If there are no
5535 * other threads running on this CPU then this function will return.
5536 */
5537 asmlinkage long sys_sched_yield(void)
5538 {
5539 struct rq *rq = this_rq_lock();
5540
5541 schedstat_inc(rq, yld_count);
5542 current->sched_class->yield_task(rq);
5543
5544 /*
5545 * Since we are going to call schedule() anyway, there's
5546 * no need to preempt or enable interrupts:
5547 */
5548 __release(rq->lock);
5549 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5550 _raw_spin_unlock(&rq->lock);
5551 preempt_enable_no_resched();
5552
5553 schedule();
5554
5555 return 0;
5556 }
5557
5558 static void __cond_resched(void)
5559 {
5560 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5561 __might_sleep(__FILE__, __LINE__);
5562 #endif
5563 /*
5564 * The BKS might be reacquired before we have dropped
5565 * PREEMPT_ACTIVE, which could trigger a second
5566 * cond_resched() call.
5567 */
5568 do {
5569 add_preempt_count(PREEMPT_ACTIVE);
5570 schedule();
5571 sub_preempt_count(PREEMPT_ACTIVE);
5572 } while (need_resched());
5573 }
5574
5575 int __sched _cond_resched(void)
5576 {
5577 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5578 system_state == SYSTEM_RUNNING) {
5579 __cond_resched();
5580 return 1;
5581 }
5582 return 0;
5583 }
5584 EXPORT_SYMBOL(_cond_resched);
5585
5586 /*
5587 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5588 * call schedule, and on return reacquire the lock.
5589 *
5590 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5591 * operations here to prevent schedule() from being called twice (once via
5592 * spin_unlock(), once by hand).
5593 */
5594 int cond_resched_lock(spinlock_t *lock)
5595 {
5596 int resched = need_resched() && system_state == SYSTEM_RUNNING;
5597 int ret = 0;
5598
5599 if (spin_needbreak(lock) || resched) {
5600 spin_unlock(lock);
5601 if (resched && need_resched())
5602 __cond_resched();
5603 else
5604 cpu_relax();
5605 ret = 1;
5606 spin_lock(lock);
5607 }
5608 return ret;
5609 }
5610 EXPORT_SYMBOL(cond_resched_lock);
5611
5612 int __sched cond_resched_softirq(void)
5613 {
5614 BUG_ON(!in_softirq());
5615
5616 if (need_resched() && system_state == SYSTEM_RUNNING) {
5617 local_bh_enable();
5618 __cond_resched();
5619 local_bh_disable();
5620 return 1;
5621 }
5622 return 0;
5623 }
5624 EXPORT_SYMBOL(cond_resched_softirq);
5625
5626 /**
5627 * yield - yield the current processor to other threads.
5628 *
5629 * This is a shortcut for kernel-space yielding - it marks the
5630 * thread runnable and calls sys_sched_yield().
5631 */
5632 void __sched yield(void)
5633 {
5634 set_current_state(TASK_RUNNING);
5635 sys_sched_yield();
5636 }
5637 EXPORT_SYMBOL(yield);
5638
5639 /*
5640 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5641 * that process accounting knows that this is a task in IO wait state.
5642 *
5643 * But don't do that if it is a deliberate, throttling IO wait (this task
5644 * has set its backing_dev_info: the queue against which it should throttle)
5645 */
5646 void __sched io_schedule(void)
5647 {
5648 struct rq *rq = &__raw_get_cpu_var(runqueues);
5649
5650 delayacct_blkio_start();
5651 atomic_inc(&rq->nr_iowait);
5652 schedule();
5653 atomic_dec(&rq->nr_iowait);
5654 delayacct_blkio_end();
5655 }
5656 EXPORT_SYMBOL(io_schedule);
5657
5658 long __sched io_schedule_timeout(long timeout)
5659 {
5660 struct rq *rq = &__raw_get_cpu_var(runqueues);
5661 long ret;
5662
5663 delayacct_blkio_start();
5664 atomic_inc(&rq->nr_iowait);
5665 ret = schedule_timeout(timeout);
5666 atomic_dec(&rq->nr_iowait);
5667 delayacct_blkio_end();
5668 return ret;
5669 }
5670
5671 /**
5672 * sys_sched_get_priority_max - return maximum RT priority.
5673 * @policy: scheduling class.
5674 *
5675 * this syscall returns the maximum rt_priority that can be used
5676 * by a given scheduling class.
5677 */
5678 asmlinkage long sys_sched_get_priority_max(int policy)
5679 {
5680 int ret = -EINVAL;
5681
5682 switch (policy) {
5683 case SCHED_FIFO:
5684 case SCHED_RR:
5685 ret = MAX_USER_RT_PRIO-1;
5686 break;
5687 case SCHED_NORMAL:
5688 case SCHED_BATCH:
5689 case SCHED_IDLE:
5690 ret = 0;
5691 break;
5692 }
5693 return ret;
5694 }
5695
5696 /**
5697 * sys_sched_get_priority_min - return minimum RT priority.
5698 * @policy: scheduling class.
5699 *
5700 * this syscall returns the minimum rt_priority that can be used
5701 * by a given scheduling class.
5702 */
5703 asmlinkage long sys_sched_get_priority_min(int policy)
5704 {
5705 int ret = -EINVAL;
5706
5707 switch (policy) {
5708 case SCHED_FIFO:
5709 case SCHED_RR:
5710 ret = 1;
5711 break;
5712 case SCHED_NORMAL:
5713 case SCHED_BATCH:
5714 case SCHED_IDLE:
5715 ret = 0;
5716 }
5717 return ret;
5718 }
5719
5720 /**
5721 * sys_sched_rr_get_interval - return the default timeslice of a process.
5722 * @pid: pid of the process.
5723 * @interval: userspace pointer to the timeslice value.
5724 *
5725 * this syscall writes the default timeslice value of a given process
5726 * into the user-space timespec buffer. A value of '0' means infinity.
5727 */
5728 asmlinkage
5729 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5730 {
5731 struct task_struct *p;
5732 unsigned int time_slice;
5733 int retval;
5734 struct timespec t;
5735
5736 if (pid < 0)
5737 return -EINVAL;
5738
5739 retval = -ESRCH;
5740 read_lock(&tasklist_lock);
5741 p = find_process_by_pid(pid);
5742 if (!p)
5743 goto out_unlock;
5744
5745 retval = security_task_getscheduler(p);
5746 if (retval)
5747 goto out_unlock;
5748
5749 /*
5750 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5751 * tasks that are on an otherwise idle runqueue:
5752 */
5753 time_slice = 0;
5754 if (p->policy == SCHED_RR) {
5755 time_slice = DEF_TIMESLICE;
5756 } else if (p->policy != SCHED_FIFO) {
5757 struct sched_entity *se = &p->se;
5758 unsigned long flags;
5759 struct rq *rq;
5760
5761 rq = task_rq_lock(p, &flags);
5762 if (rq->cfs.load.weight)
5763 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
5764 task_rq_unlock(rq, &flags);
5765 }
5766 read_unlock(&tasklist_lock);
5767 jiffies_to_timespec(time_slice, &t);
5768 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5769 return retval;
5770
5771 out_unlock:
5772 read_unlock(&tasklist_lock);
5773 return retval;
5774 }
5775
5776 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5777
5778 void sched_show_task(struct task_struct *p)
5779 {
5780 unsigned long free = 0;
5781 unsigned state;
5782
5783 state = p->state ? __ffs(p->state) + 1 : 0;
5784 printk(KERN_INFO "%-13.13s %c", p->comm,
5785 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5786 #if BITS_PER_LONG == 32
5787 if (state == TASK_RUNNING)
5788 printk(KERN_CONT " running ");
5789 else
5790 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5791 #else
5792 if (state == TASK_RUNNING)
5793 printk(KERN_CONT " running task ");
5794 else
5795 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5796 #endif
5797 #ifdef CONFIG_DEBUG_STACK_USAGE
5798 {
5799 unsigned long *n = end_of_stack(p);
5800 while (!*n)
5801 n++;
5802 free = (unsigned long)n - (unsigned long)end_of_stack(p);
5803 }
5804 #endif
5805 printk(KERN_CONT "%5lu %5d %6d\n", free,
5806 task_pid_nr(p), task_pid_nr(p->real_parent));
5807
5808 show_stack(p, NULL);
5809 }
5810
5811 void show_state_filter(unsigned long state_filter)
5812 {
5813 struct task_struct *g, *p;
5814
5815 #if BITS_PER_LONG == 32
5816 printk(KERN_INFO
5817 " task PC stack pid father\n");
5818 #else
5819 printk(KERN_INFO
5820 " task PC stack pid father\n");
5821 #endif
5822 read_lock(&tasklist_lock);
5823 do_each_thread(g, p) {
5824 /*
5825 * reset the NMI-timeout, listing all files on a slow
5826 * console might take alot of time:
5827 */
5828 touch_nmi_watchdog();
5829 if (!state_filter || (p->state & state_filter))
5830 sched_show_task(p);
5831 } while_each_thread(g, p);
5832
5833 touch_all_softlockup_watchdogs();
5834
5835 #ifdef CONFIG_SCHED_DEBUG
5836 sysrq_sched_debug_show();
5837 #endif
5838 read_unlock(&tasklist_lock);
5839 /*
5840 * Only show locks if all tasks are dumped:
5841 */
5842 if (state_filter == -1)
5843 debug_show_all_locks();
5844 }
5845
5846 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5847 {
5848 idle->sched_class = &idle_sched_class;
5849 }
5850
5851 /**
5852 * init_idle - set up an idle thread for a given CPU
5853 * @idle: task in question
5854 * @cpu: cpu the idle task belongs to
5855 *
5856 * NOTE: this function does not set the idle thread's NEED_RESCHED
5857 * flag, to make booting more robust.
5858 */
5859 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5860 {
5861 struct rq *rq = cpu_rq(cpu);
5862 unsigned long flags;
5863
5864 __sched_fork(idle);
5865 idle->se.exec_start = sched_clock();
5866
5867 idle->prio = idle->normal_prio = MAX_PRIO;
5868 idle->cpus_allowed = cpumask_of_cpu(cpu);
5869 __set_task_cpu(idle, cpu);
5870
5871 spin_lock_irqsave(&rq->lock, flags);
5872 rq->curr = rq->idle = idle;
5873 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5874 idle->oncpu = 1;
5875 #endif
5876 spin_unlock_irqrestore(&rq->lock, flags);
5877
5878 /* Set the preempt count _outside_ the spinlocks! */
5879 #if defined(CONFIG_PREEMPT)
5880 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5881 #else
5882 task_thread_info(idle)->preempt_count = 0;
5883 #endif
5884 /*
5885 * The idle tasks have their own, simple scheduling class:
5886 */
5887 idle->sched_class = &idle_sched_class;
5888 }
5889
5890 /*
5891 * In a system that switches off the HZ timer nohz_cpu_mask
5892 * indicates which cpus entered this state. This is used
5893 * in the rcu update to wait only for active cpus. For system
5894 * which do not switch off the HZ timer nohz_cpu_mask should
5895 * always be CPU_MASK_NONE.
5896 */
5897 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5898
5899 /*
5900 * Increase the granularity value when there are more CPUs,
5901 * because with more CPUs the 'effective latency' as visible
5902 * to users decreases. But the relationship is not linear,
5903 * so pick a second-best guess by going with the log2 of the
5904 * number of CPUs.
5905 *
5906 * This idea comes from the SD scheduler of Con Kolivas:
5907 */
5908 static inline void sched_init_granularity(void)
5909 {
5910 unsigned int factor = 1 + ilog2(num_online_cpus());
5911 const unsigned long limit = 200000000;
5912
5913 sysctl_sched_min_granularity *= factor;
5914 if (sysctl_sched_min_granularity > limit)
5915 sysctl_sched_min_granularity = limit;
5916
5917 sysctl_sched_latency *= factor;
5918 if (sysctl_sched_latency > limit)
5919 sysctl_sched_latency = limit;
5920
5921 sysctl_sched_wakeup_granularity *= factor;
5922
5923 sysctl_sched_shares_ratelimit *= factor;
5924 }
5925
5926 #ifdef CONFIG_SMP
5927 /*
5928 * This is how migration works:
5929 *
5930 * 1) we queue a struct migration_req structure in the source CPU's
5931 * runqueue and wake up that CPU's migration thread.
5932 * 2) we down() the locked semaphore => thread blocks.
5933 * 3) migration thread wakes up (implicitly it forces the migrated
5934 * thread off the CPU)
5935 * 4) it gets the migration request and checks whether the migrated
5936 * task is still in the wrong runqueue.
5937 * 5) if it's in the wrong runqueue then the migration thread removes
5938 * it and puts it into the right queue.
5939 * 6) migration thread up()s the semaphore.
5940 * 7) we wake up and the migration is done.
5941 */
5942
5943 /*
5944 * Change a given task's CPU affinity. Migrate the thread to a
5945 * proper CPU and schedule it away if the CPU it's executing on
5946 * is removed from the allowed bitmask.
5947 *
5948 * NOTE: the caller must have a valid reference to the task, the
5949 * task must not exit() & deallocate itself prematurely. The
5950 * call is not atomic; no spinlocks may be held.
5951 */
5952 int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
5953 {
5954 struct migration_req req;
5955 unsigned long flags;
5956 struct rq *rq;
5957 int ret = 0;
5958
5959 rq = task_rq_lock(p, &flags);
5960 if (!cpus_intersects(*new_mask, cpu_online_map)) {
5961 ret = -EINVAL;
5962 goto out;
5963 }
5964
5965 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5966 !cpus_equal(p->cpus_allowed, *new_mask))) {
5967 ret = -EINVAL;
5968 goto out;
5969 }
5970
5971 if (p->sched_class->set_cpus_allowed)
5972 p->sched_class->set_cpus_allowed(p, new_mask);
5973 else {
5974 p->cpus_allowed = *new_mask;
5975 p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
5976 }
5977
5978 /* Can the task run on the task's current CPU? If so, we're done */
5979 if (cpu_isset(task_cpu(p), *new_mask))
5980 goto out;
5981
5982 if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
5983 /* Need help from migration thread: drop lock and wait. */
5984 task_rq_unlock(rq, &flags);
5985 wake_up_process(rq->migration_thread);
5986 wait_for_completion(&req.done);
5987 tlb_migrate_finish(p->mm);
5988 return 0;
5989 }
5990 out:
5991 task_rq_unlock(rq, &flags);
5992
5993 return ret;
5994 }
5995 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5996
5997 /*
5998 * Move (not current) task off this cpu, onto dest cpu. We're doing
5999 * this because either it can't run here any more (set_cpus_allowed()
6000 * away from this CPU, or CPU going down), or because we're
6001 * attempting to rebalance this task on exec (sched_exec).
6002 *
6003 * So we race with normal scheduler movements, but that's OK, as long
6004 * as the task is no longer on this CPU.
6005 *
6006 * Returns non-zero if task was successfully migrated.
6007 */
6008 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
6009 {
6010 struct rq *rq_dest, *rq_src;
6011 int ret = 0, on_rq;
6012
6013 if (unlikely(!cpu_active(dest_cpu)))
6014 return ret;
6015
6016 rq_src = cpu_rq(src_cpu);
6017 rq_dest = cpu_rq(dest_cpu);
6018
6019 double_rq_lock(rq_src, rq_dest);
6020 /* Already moved. */
6021 if (task_cpu(p) != src_cpu)
6022 goto done;
6023 /* Affinity changed (again). */
6024 if (!cpu_isset(dest_cpu, p->cpus_allowed))
6025 goto fail;
6026
6027 on_rq = p->se.on_rq;
6028 if (on_rq)
6029 deactivate_task(rq_src, p, 0);
6030
6031 set_task_cpu(p, dest_cpu);
6032 if (on_rq) {
6033 activate_task(rq_dest, p, 0);
6034 check_preempt_curr(rq_dest, p, 0);
6035 }
6036 done:
6037 ret = 1;
6038 fail:
6039 double_rq_unlock(rq_src, rq_dest);
6040 return ret;
6041 }
6042
6043 /*
6044 * migration_thread - this is a highprio system thread that performs
6045 * thread migration by bumping thread off CPU then 'pushing' onto
6046 * another runqueue.
6047 */
6048 static int migration_thread(void *data)
6049 {
6050 int cpu = (long)data;
6051 struct rq *rq;
6052
6053 rq = cpu_rq(cpu);
6054 BUG_ON(rq->migration_thread != current);
6055
6056 set_current_state(TASK_INTERRUPTIBLE);
6057 while (!kthread_should_stop()) {
6058 struct migration_req *req;
6059 struct list_head *head;
6060
6061 spin_lock_irq(&rq->lock);
6062
6063 if (cpu_is_offline(cpu)) {
6064 spin_unlock_irq(&rq->lock);
6065 goto wait_to_die;
6066 }
6067
6068 if (rq->active_balance) {
6069 active_load_balance(rq, cpu);
6070 rq->active_balance = 0;
6071 }
6072
6073 head = &rq->migration_queue;
6074
6075 if (list_empty(head)) {
6076 spin_unlock_irq(&rq->lock);
6077 schedule();
6078 set_current_state(TASK_INTERRUPTIBLE);
6079 continue;
6080 }
6081 req = list_entry(head->next, struct migration_req, list);
6082 list_del_init(head->next);
6083
6084 spin_unlock(&rq->lock);
6085 __migrate_task(req->task, cpu, req->dest_cpu);
6086 local_irq_enable();
6087
6088 complete(&req->done);
6089 }
6090 __set_current_state(TASK_RUNNING);
6091 return 0;
6092
6093 wait_to_die:
6094 /* Wait for kthread_stop */
6095 set_current_state(TASK_INTERRUPTIBLE);
6096 while (!kthread_should_stop()) {
6097 schedule();
6098 set_current_state(TASK_INTERRUPTIBLE);
6099 }
6100 __set_current_state(TASK_RUNNING);
6101 return 0;
6102 }
6103
6104 #ifdef CONFIG_HOTPLUG_CPU
6105
6106 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6107 {
6108 int ret;
6109
6110 local_irq_disable();
6111 ret = __migrate_task(p, src_cpu, dest_cpu);
6112 local_irq_enable();
6113 return ret;
6114 }
6115
6116 /*
6117 * Figure out where task on dead CPU should go, use force if necessary.
6118 * NOTE: interrupts should be disabled by the caller
6119 */
6120 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
6121 {
6122 unsigned long flags;
6123 cpumask_t mask;
6124 struct rq *rq;
6125 int dest_cpu;
6126
6127 do {
6128 /* On same node? */
6129 mask = node_to_cpumask(cpu_to_node(dead_cpu));
6130 cpus_and(mask, mask, p->cpus_allowed);
6131 dest_cpu = any_online_cpu(mask);
6132
6133 /* On any allowed CPU? */
6134 if (dest_cpu >= nr_cpu_ids)
6135 dest_cpu = any_online_cpu(p->cpus_allowed);
6136
6137 /* No more Mr. Nice Guy. */
6138 if (dest_cpu >= nr_cpu_ids) {
6139 cpumask_t cpus_allowed;
6140
6141 cpuset_cpus_allowed_locked(p, &cpus_allowed);
6142 /*
6143 * Try to stay on the same cpuset, where the
6144 * current cpuset may be a subset of all cpus.
6145 * The cpuset_cpus_allowed_locked() variant of
6146 * cpuset_cpus_allowed() will not block. It must be
6147 * called within calls to cpuset_lock/cpuset_unlock.
6148 */
6149 rq = task_rq_lock(p, &flags);
6150 p->cpus_allowed = cpus_allowed;
6151 dest_cpu = any_online_cpu(p->cpus_allowed);
6152 task_rq_unlock(rq, &flags);
6153
6154 /*
6155 * Don't tell them about moving exiting tasks or
6156 * kernel threads (both mm NULL), since they never
6157 * leave kernel.
6158 */
6159 if (p->mm && printk_ratelimit()) {
6160 printk(KERN_INFO "process %d (%s) no "
6161 "longer affine to cpu%d\n",
6162 task_pid_nr(p), p->comm, dead_cpu);
6163 }
6164 }
6165 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
6166 }
6167
6168 /*
6169 * While a dead CPU has no uninterruptible tasks queued at this point,
6170 * it might still have a nonzero ->nr_uninterruptible counter, because
6171 * for performance reasons the counter is not stricly tracking tasks to
6172 * their home CPUs. So we just add the counter to another CPU's counter,
6173 * to keep the global sum constant after CPU-down:
6174 */
6175 static void migrate_nr_uninterruptible(struct rq *rq_src)
6176 {
6177 struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
6178 unsigned long flags;
6179
6180 local_irq_save(flags);
6181 double_rq_lock(rq_src, rq_dest);
6182 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6183 rq_src->nr_uninterruptible = 0;
6184 double_rq_unlock(rq_src, rq_dest);
6185 local_irq_restore(flags);
6186 }
6187
6188 /* Run through task list and migrate tasks from the dead cpu. */
6189 static void migrate_live_tasks(int src_cpu)
6190 {
6191 struct task_struct *p, *t;
6192
6193 read_lock(&tasklist_lock);
6194
6195 do_each_thread(t, p) {
6196 if (p == current)
6197 continue;
6198
6199 if (task_cpu(p) == src_cpu)
6200 move_task_off_dead_cpu(src_cpu, p);
6201 } while_each_thread(t, p);
6202
6203 read_unlock(&tasklist_lock);
6204 }
6205
6206 /*
6207 * Schedules idle task to be the next runnable task on current CPU.
6208 * It does so by boosting its priority to highest possible.
6209 * Used by CPU offline code.
6210 */
6211 void sched_idle_next(void)
6212 {
6213 int this_cpu = smp_processor_id();
6214 struct rq *rq = cpu_rq(this_cpu);
6215 struct task_struct *p = rq->idle;
6216 unsigned long flags;
6217
6218 /* cpu has to be offline */
6219 BUG_ON(cpu_online(this_cpu));
6220
6221 /*
6222 * Strictly not necessary since rest of the CPUs are stopped by now
6223 * and interrupts disabled on the current cpu.
6224 */
6225 spin_lock_irqsave(&rq->lock, flags);
6226
6227 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6228
6229 update_rq_clock(rq);
6230 activate_task(rq, p, 0);
6231
6232 spin_unlock_irqrestore(&rq->lock, flags);
6233 }
6234
6235 /*
6236 * Ensures that the idle task is using init_mm right before its cpu goes
6237 * offline.
6238 */
6239 void idle_task_exit(void)
6240 {
6241 struct mm_struct *mm = current->active_mm;
6242
6243 BUG_ON(cpu_online(smp_processor_id()));
6244
6245 if (mm != &init_mm)
6246 switch_mm(mm, &init_mm, current);
6247 mmdrop(mm);
6248 }
6249
6250 /* called under rq->lock with disabled interrupts */
6251 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
6252 {
6253 struct rq *rq = cpu_rq(dead_cpu);
6254
6255 /* Must be exiting, otherwise would be on tasklist. */
6256 BUG_ON(!p->exit_state);
6257
6258 /* Cannot have done final schedule yet: would have vanished. */
6259 BUG_ON(p->state == TASK_DEAD);
6260
6261 get_task_struct(p);
6262
6263 /*
6264 * Drop lock around migration; if someone else moves it,
6265 * that's OK. No task can be added to this CPU, so iteration is
6266 * fine.
6267 */
6268 spin_unlock_irq(&rq->lock);
6269 move_task_off_dead_cpu(dead_cpu, p);
6270 spin_lock_irq(&rq->lock);
6271
6272 put_task_struct(p);
6273 }
6274
6275 /* release_task() removes task from tasklist, so we won't find dead tasks. */
6276 static void migrate_dead_tasks(unsigned int dead_cpu)
6277 {
6278 struct rq *rq = cpu_rq(dead_cpu);
6279 struct task_struct *next;
6280
6281 for ( ; ; ) {
6282 if (!rq->nr_running)
6283 break;
6284 update_rq_clock(rq);
6285 next = pick_next_task(rq, rq->curr);
6286 if (!next)
6287 break;
6288 next->sched_class->put_prev_task(rq, next);
6289 migrate_dead(dead_cpu, next);
6290
6291 }
6292 }
6293 #endif /* CONFIG_HOTPLUG_CPU */
6294
6295 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6296
6297 static struct ctl_table sd_ctl_dir[] = {
6298 {
6299 .procname = "sched_domain",
6300 .mode = 0555,
6301 },
6302 {0, },
6303 };
6304
6305 static struct ctl_table sd_ctl_root[] = {
6306 {
6307 .ctl_name = CTL_KERN,
6308 .procname = "kernel",
6309 .mode = 0555,
6310 .child = sd_ctl_dir,
6311 },
6312 {0, },
6313 };
6314
6315 static struct ctl_table *sd_alloc_ctl_entry(int n)
6316 {
6317 struct ctl_table *entry =
6318 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6319
6320 return entry;
6321 }
6322
6323 static void sd_free_ctl_entry(struct ctl_table **tablep)
6324 {
6325 struct ctl_table *entry;
6326
6327 /*
6328 * In the intermediate directories, both the child directory and
6329 * procname are dynamically allocated and could fail but the mode
6330 * will always be set. In the lowest directory the names are
6331 * static strings and all have proc handlers.
6332 */
6333 for (entry = *tablep; entry->mode; entry++) {
6334 if (entry->child)
6335 sd_free_ctl_entry(&entry->child);
6336 if (entry->proc_handler == NULL)
6337 kfree(entry->procname);
6338 }
6339
6340 kfree(*tablep);
6341 *tablep = NULL;
6342 }
6343
6344 static void
6345 set_table_entry(struct ctl_table *entry,
6346 const char *procname, void *data, int maxlen,
6347 mode_t mode, proc_handler *proc_handler)
6348 {
6349 entry->procname = procname;
6350 entry->data = data;
6351 entry->maxlen = maxlen;
6352 entry->mode = mode;
6353 entry->proc_handler = proc_handler;
6354 }
6355
6356 static struct ctl_table *
6357 sd_alloc_ctl_domain_table(struct sched_domain *sd)
6358 {
6359 struct ctl_table *table = sd_alloc_ctl_entry(13);
6360
6361 if (table == NULL)
6362 return NULL;
6363
6364 set_table_entry(&table[0], "min_interval", &sd->min_interval,
6365 sizeof(long), 0644, proc_doulongvec_minmax);
6366 set_table_entry(&table[1], "max_interval", &sd->max_interval,
6367 sizeof(long), 0644, proc_doulongvec_minmax);
6368 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6369 sizeof(int), 0644, proc_dointvec_minmax);
6370 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6371 sizeof(int), 0644, proc_dointvec_minmax);
6372 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6373 sizeof(int), 0644, proc_dointvec_minmax);
6374 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6375 sizeof(int), 0644, proc_dointvec_minmax);
6376 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6377 sizeof(int), 0644, proc_dointvec_minmax);
6378 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6379 sizeof(int), 0644, proc_dointvec_minmax);
6380 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6381 sizeof(int), 0644, proc_dointvec_minmax);
6382 set_table_entry(&table[9], "cache_nice_tries",
6383 &sd->cache_nice_tries,
6384 sizeof(int), 0644, proc_dointvec_minmax);
6385 set_table_entry(&table[10], "flags", &sd->flags,
6386 sizeof(int), 0644, proc_dointvec_minmax);
6387 set_table_entry(&table[11], "name", sd->name,
6388 CORENAME_MAX_SIZE, 0444, proc_dostring);
6389 /* &table[12] is terminator */
6390
6391 return table;
6392 }
6393
6394 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6395 {
6396 struct ctl_table *entry, *table;
6397 struct sched_domain *sd;
6398 int domain_num = 0, i;
6399 char buf[32];
6400
6401 for_each_domain(cpu, sd)
6402 domain_num++;
6403 entry = table = sd_alloc_ctl_entry(domain_num + 1);
6404 if (table == NULL)
6405 return NULL;
6406
6407 i = 0;
6408 for_each_domain(cpu, sd) {
6409 snprintf(buf, 32, "domain%d", i);
6410 entry->procname = kstrdup(buf, GFP_KERNEL);
6411 entry->mode = 0555;
6412 entry->child = sd_alloc_ctl_domain_table(sd);
6413 entry++;
6414 i++;
6415 }
6416 return table;
6417 }
6418
6419 static struct ctl_table_header *sd_sysctl_header;
6420 static void register_sched_domain_sysctl(void)
6421 {
6422 int i, cpu_num = num_online_cpus();
6423 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6424 char buf[32];
6425
6426 WARN_ON(sd_ctl_dir[0].child);
6427 sd_ctl_dir[0].child = entry;
6428
6429 if (entry == NULL)
6430 return;
6431
6432 for_each_online_cpu(i) {
6433 snprintf(buf, 32, "cpu%d", i);
6434 entry->procname = kstrdup(buf, GFP_KERNEL);
6435 entry->mode = 0555;
6436 entry->child = sd_alloc_ctl_cpu_table(i);
6437 entry++;
6438 }
6439
6440 WARN_ON(sd_sysctl_header);
6441 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6442 }
6443
6444 /* may be called multiple times per register */
6445 static void unregister_sched_domain_sysctl(void)
6446 {
6447 if (sd_sysctl_header)
6448 unregister_sysctl_table(sd_sysctl_header);
6449 sd_sysctl_header = NULL;
6450 if (sd_ctl_dir[0].child)
6451 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6452 }
6453 #else
6454 static void register_sched_domain_sysctl(void)
6455 {
6456 }
6457 static void unregister_sched_domain_sysctl(void)
6458 {
6459 }
6460 #endif
6461
6462 static void set_rq_online(struct rq *rq)
6463 {
6464 if (!rq->online) {
6465 const struct sched_class *class;
6466
6467 cpu_set(rq->cpu, rq->rd->online);
6468 rq->online = 1;
6469
6470 for_each_class(class) {
6471 if (class->rq_online)
6472 class->rq_online(rq);
6473 }
6474 }
6475 }
6476
6477 static void set_rq_offline(struct rq *rq)
6478 {
6479 if (rq->online) {
6480 const struct sched_class *class;
6481
6482 for_each_class(class) {
6483 if (class->rq_offline)
6484 class->rq_offline(rq);
6485 }
6486
6487 cpu_clear(rq->cpu, rq->rd->online);
6488 rq->online = 0;
6489 }
6490 }
6491
6492 /*
6493 * migration_call - callback that gets triggered when a CPU is added.
6494 * Here we can start up the necessary migration thread for the new CPU.
6495 */
6496 static int __cpuinit
6497 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6498 {
6499 struct task_struct *p;
6500 int cpu = (long)hcpu;
6501 unsigned long flags;
6502 struct rq *rq;
6503
6504 switch (action) {
6505
6506 case CPU_UP_PREPARE:
6507 case CPU_UP_PREPARE_FROZEN:
6508 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
6509 if (IS_ERR(p))
6510 return NOTIFY_BAD;
6511 kthread_bind(p, cpu);
6512 /* Must be high prio: stop_machine expects to yield to it. */
6513 rq = task_rq_lock(p, &flags);
6514 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6515 task_rq_unlock(rq, &flags);
6516 cpu_rq(cpu)->migration_thread = p;
6517 break;
6518
6519 case CPU_ONLINE:
6520 case CPU_ONLINE_FROZEN:
6521 /* Strictly unnecessary, as first user will wake it. */
6522 wake_up_process(cpu_rq(cpu)->migration_thread);
6523
6524 /* Update our root-domain */
6525 rq = cpu_rq(cpu);
6526 spin_lock_irqsave(&rq->lock, flags);
6527 if (rq->rd) {
6528 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6529
6530 set_rq_online(rq);
6531 }
6532 spin_unlock_irqrestore(&rq->lock, flags);
6533 break;
6534
6535 #ifdef CONFIG_HOTPLUG_CPU
6536 case CPU_UP_CANCELED:
6537 case CPU_UP_CANCELED_FROZEN:
6538 if (!cpu_rq(cpu)->migration_thread)
6539 break;
6540 /* Unbind it from offline cpu so it can run. Fall thru. */
6541 kthread_bind(cpu_rq(cpu)->migration_thread,
6542 any_online_cpu(cpu_online_map));
6543 kthread_stop(cpu_rq(cpu)->migration_thread);
6544 cpu_rq(cpu)->migration_thread = NULL;
6545 break;
6546
6547 case CPU_DEAD:
6548 case CPU_DEAD_FROZEN:
6549 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
6550 migrate_live_tasks(cpu);
6551 rq = cpu_rq(cpu);
6552 kthread_stop(rq->migration_thread);
6553 rq->migration_thread = NULL;
6554 /* Idle task back to normal (off runqueue, low prio) */
6555 spin_lock_irq(&rq->lock);
6556 update_rq_clock(rq);
6557 deactivate_task(rq, rq->idle, 0);
6558 rq->idle->static_prio = MAX_PRIO;
6559 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6560 rq->idle->sched_class = &idle_sched_class;
6561 migrate_dead_tasks(cpu);
6562 spin_unlock_irq(&rq->lock);
6563 cpuset_unlock();
6564 migrate_nr_uninterruptible(rq);
6565 BUG_ON(rq->nr_running != 0);
6566
6567 /*
6568 * No need to migrate the tasks: it was best-effort if
6569 * they didn't take sched_hotcpu_mutex. Just wake up
6570 * the requestors.
6571 */
6572 spin_lock_irq(&rq->lock);
6573 while (!list_empty(&rq->migration_queue)) {
6574 struct migration_req *req;
6575
6576 req = list_entry(rq->migration_queue.next,
6577 struct migration_req, list);
6578 list_del_init(&req->list);
6579 complete(&req->done);
6580 }
6581 spin_unlock_irq(&rq->lock);
6582 break;
6583
6584 case CPU_DYING:
6585 case CPU_DYING_FROZEN:
6586 /* Update our root-domain */
6587 rq = cpu_rq(cpu);
6588 spin_lock_irqsave(&rq->lock, flags);
6589 if (rq->rd) {
6590 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6591 set_rq_offline(rq);
6592 }
6593 spin_unlock_irqrestore(&rq->lock, flags);
6594 break;
6595 #endif
6596 }
6597 return NOTIFY_OK;
6598 }
6599
6600 /* Register at highest priority so that task migration (migrate_all_tasks)
6601 * happens before everything else.
6602 */
6603 static struct notifier_block __cpuinitdata migration_notifier = {
6604 .notifier_call = migration_call,
6605 .priority = 10
6606 };
6607
6608 static int __init migration_init(void)
6609 {
6610 void *cpu = (void *)(long)smp_processor_id();
6611 int err;
6612
6613 /* Start one for the boot CPU: */
6614 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6615 BUG_ON(err == NOTIFY_BAD);
6616 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6617 register_cpu_notifier(&migration_notifier);
6618
6619 return err;
6620 }
6621 early_initcall(migration_init);
6622 #endif
6623
6624 #ifdef CONFIG_SMP
6625
6626 #ifdef CONFIG_SCHED_DEBUG
6627
6628 static inline const char *sd_level_to_string(enum sched_domain_level lvl)
6629 {
6630 switch (lvl) {
6631 case SD_LV_NONE:
6632 return "NONE";
6633 case SD_LV_SIBLING:
6634 return "SIBLING";
6635 case SD_LV_MC:
6636 return "MC";
6637 case SD_LV_CPU:
6638 return "CPU";
6639 case SD_LV_NODE:
6640 return "NODE";
6641 case SD_LV_ALLNODES:
6642 return "ALLNODES";
6643 case SD_LV_MAX:
6644 return "MAX";
6645
6646 }
6647 return "MAX";
6648 }
6649
6650 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6651 cpumask_t *groupmask)
6652 {
6653 struct sched_group *group = sd->groups;
6654 char str[256];
6655
6656 cpulist_scnprintf(str, sizeof(str), sd->span);
6657 cpus_clear(*groupmask);
6658
6659 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6660
6661 if (!(sd->flags & SD_LOAD_BALANCE)) {
6662 printk("does not load-balance\n");
6663 if (sd->parent)
6664 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6665 " has parent");
6666 return -1;
6667 }
6668
6669 printk(KERN_CONT "span %s level %s\n",
6670 str, sd_level_to_string(sd->level));
6671
6672 if (!cpu_isset(cpu, sd->span)) {
6673 printk(KERN_ERR "ERROR: domain->span does not contain "
6674 "CPU%d\n", cpu);
6675 }
6676 if (!cpu_isset(cpu, group->cpumask)) {
6677 printk(KERN_ERR "ERROR: domain->groups does not contain"
6678 " CPU%d\n", cpu);
6679 }
6680
6681 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6682 do {
6683 if (!group) {
6684 printk("\n");
6685 printk(KERN_ERR "ERROR: group is NULL\n");
6686 break;
6687 }
6688
6689 if (!group->__cpu_power) {
6690 printk(KERN_CONT "\n");
6691 printk(KERN_ERR "ERROR: domain->cpu_power not "
6692 "set\n");
6693 break;
6694 }
6695
6696 if (!cpus_weight(group->cpumask)) {
6697 printk(KERN_CONT "\n");
6698 printk(KERN_ERR "ERROR: empty group\n");
6699 break;
6700 }
6701
6702 if (cpus_intersects(*groupmask, group->cpumask)) {
6703 printk(KERN_CONT "\n");
6704 printk(KERN_ERR "ERROR: repeated CPUs\n");
6705 break;
6706 }
6707
6708 cpus_or(*groupmask, *groupmask, group->cpumask);
6709
6710 cpulist_scnprintf(str, sizeof(str), group->cpumask);
6711 printk(KERN_CONT " %s", str);
6712
6713 group = group->next;
6714 } while (group != sd->groups);
6715 printk(KERN_CONT "\n");
6716
6717 if (!cpus_equal(sd->span, *groupmask))
6718 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6719
6720 if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
6721 printk(KERN_ERR "ERROR: parent span is not a superset "
6722 "of domain->span\n");
6723 return 0;
6724 }
6725
6726 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6727 {
6728 cpumask_t *groupmask;
6729 int level = 0;
6730
6731 if (!sd) {
6732 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6733 return;
6734 }
6735
6736 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6737
6738 groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6739 if (!groupmask) {
6740 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6741 return;
6742 }
6743
6744 for (;;) {
6745 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6746 break;
6747 level++;
6748 sd = sd->parent;
6749 if (!sd)
6750 break;
6751 }
6752 kfree(groupmask);
6753 }
6754 #else /* !CONFIG_SCHED_DEBUG */
6755 # define sched_domain_debug(sd, cpu) do { } while (0)
6756 #endif /* CONFIG_SCHED_DEBUG */
6757
6758 static int sd_degenerate(struct sched_domain *sd)
6759 {
6760 if (cpus_weight(sd->span) == 1)
6761 return 1;
6762
6763 /* Following flags need at least 2 groups */
6764 if (sd->flags & (SD_LOAD_BALANCE |
6765 SD_BALANCE_NEWIDLE |
6766 SD_BALANCE_FORK |
6767 SD_BALANCE_EXEC |
6768 SD_SHARE_CPUPOWER |
6769 SD_SHARE_PKG_RESOURCES)) {
6770 if (sd->groups != sd->groups->next)
6771 return 0;
6772 }
6773
6774 /* Following flags don't use groups */
6775 if (sd->flags & (SD_WAKE_IDLE |
6776 SD_WAKE_AFFINE |
6777 SD_WAKE_BALANCE))
6778 return 0;
6779
6780 return 1;
6781 }
6782
6783 static int
6784 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6785 {
6786 unsigned long cflags = sd->flags, pflags = parent->flags;
6787
6788 if (sd_degenerate(parent))
6789 return 1;
6790
6791 if (!cpus_equal(sd->span, parent->span))
6792 return 0;
6793
6794 /* Does parent contain flags not in child? */
6795 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6796 if (cflags & SD_WAKE_AFFINE)
6797 pflags &= ~SD_WAKE_BALANCE;
6798 /* Flags needing groups don't count if only 1 group in parent */
6799 if (parent->groups == parent->groups->next) {
6800 pflags &= ~(SD_LOAD_BALANCE |
6801 SD_BALANCE_NEWIDLE |
6802 SD_BALANCE_FORK |
6803 SD_BALANCE_EXEC |
6804 SD_SHARE_CPUPOWER |
6805 SD_SHARE_PKG_RESOURCES);
6806 }
6807 if (~cflags & pflags)
6808 return 0;
6809
6810 return 1;
6811 }
6812
6813 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6814 {
6815 unsigned long flags;
6816
6817 spin_lock_irqsave(&rq->lock, flags);
6818
6819 if (rq->rd) {
6820 struct root_domain *old_rd = rq->rd;
6821
6822 if (cpu_isset(rq->cpu, old_rd->online))
6823 set_rq_offline(rq);
6824
6825 cpu_clear(rq->cpu, old_rd->span);
6826
6827 if (atomic_dec_and_test(&old_rd->refcount))
6828 kfree(old_rd);
6829 }
6830
6831 atomic_inc(&rd->refcount);
6832 rq->rd = rd;
6833
6834 cpu_set(rq->cpu, rd->span);
6835 if (cpu_isset(rq->cpu, cpu_online_map))
6836 set_rq_online(rq);
6837
6838 spin_unlock_irqrestore(&rq->lock, flags);
6839 }
6840
6841 static void init_rootdomain(struct root_domain *rd)
6842 {
6843 memset(rd, 0, sizeof(*rd));
6844
6845 cpus_clear(rd->span);
6846 cpus_clear(rd->online);
6847
6848 cpupri_init(&rd->cpupri);
6849 }
6850
6851 static void init_defrootdomain(void)
6852 {
6853 init_rootdomain(&def_root_domain);
6854 atomic_set(&def_root_domain.refcount, 1);
6855 }
6856
6857 static struct root_domain *alloc_rootdomain(void)
6858 {
6859 struct root_domain *rd;
6860
6861 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6862 if (!rd)
6863 return NULL;
6864
6865 init_rootdomain(rd);
6866
6867 return rd;
6868 }
6869
6870 /*
6871 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6872 * hold the hotplug lock.
6873 */
6874 static void
6875 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6876 {
6877 struct rq *rq = cpu_rq(cpu);
6878 struct sched_domain *tmp;
6879
6880 /* Remove the sched domains which do not contribute to scheduling. */
6881 for (tmp = sd; tmp; tmp = tmp->parent) {
6882 struct sched_domain *parent = tmp->parent;
6883 if (!parent)
6884 break;
6885 if (sd_parent_degenerate(tmp, parent)) {
6886 tmp->parent = parent->parent;
6887 if (parent->parent)
6888 parent->parent->child = tmp;
6889 }
6890 }
6891
6892 if (sd && sd_degenerate(sd)) {
6893 sd = sd->parent;
6894 if (sd)
6895 sd->child = NULL;
6896 }
6897
6898 sched_domain_debug(sd, cpu);
6899
6900 rq_attach_root(rq, rd);
6901 rcu_assign_pointer(rq->sd, sd);
6902 }
6903
6904 /* cpus with isolated domains */
6905 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
6906
6907 /* Setup the mask of cpus configured for isolated domains */
6908 static int __init isolated_cpu_setup(char *str)
6909 {
6910 static int __initdata ints[NR_CPUS];
6911 int i;
6912
6913 str = get_options(str, ARRAY_SIZE(ints), ints);
6914 cpus_clear(cpu_isolated_map);
6915 for (i = 1; i <= ints[0]; i++)
6916 if (ints[i] < NR_CPUS)
6917 cpu_set(ints[i], cpu_isolated_map);
6918 return 1;
6919 }
6920
6921 __setup("isolcpus=", isolated_cpu_setup);
6922
6923 /*
6924 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6925 * to a function which identifies what group(along with sched group) a CPU
6926 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6927 * (due to the fact that we keep track of groups covered with a cpumask_t).
6928 *
6929 * init_sched_build_groups will build a circular linked list of the groups
6930 * covered by the given span, and will set each group's ->cpumask correctly,
6931 * and ->cpu_power to 0.
6932 */
6933 static void
6934 init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6935 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6936 struct sched_group **sg,
6937 cpumask_t *tmpmask),
6938 cpumask_t *covered, cpumask_t *tmpmask)
6939 {
6940 struct sched_group *first = NULL, *last = NULL;
6941 int i;
6942
6943 cpus_clear(*covered);
6944
6945 for_each_cpu_mask_nr(i, *span) {
6946 struct sched_group *sg;
6947 int group = group_fn(i, cpu_map, &sg, tmpmask);
6948 int j;
6949
6950 if (cpu_isset(i, *covered))
6951 continue;
6952
6953 cpus_clear(sg->cpumask);
6954 sg->__cpu_power = 0;
6955
6956 for_each_cpu_mask_nr(j, *span) {
6957 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6958 continue;
6959
6960 cpu_set(j, *covered);
6961 cpu_set(j, sg->cpumask);
6962 }
6963 if (!first)
6964 first = sg;
6965 if (last)
6966 last->next = sg;
6967 last = sg;
6968 }
6969 last->next = first;
6970 }
6971
6972 #define SD_NODES_PER_DOMAIN 16
6973
6974 #ifdef CONFIG_NUMA
6975
6976 /**
6977 * find_next_best_node - find the next node to include in a sched_domain
6978 * @node: node whose sched_domain we're building
6979 * @used_nodes: nodes already in the sched_domain
6980 *
6981 * Find the next node to include in a given scheduling domain. Simply
6982 * finds the closest node not already in the @used_nodes map.
6983 *
6984 * Should use nodemask_t.
6985 */
6986 static int find_next_best_node(int node, nodemask_t *used_nodes)
6987 {
6988 int i, n, val, min_val, best_node = 0;
6989
6990 min_val = INT_MAX;
6991
6992 for (i = 0; i < nr_node_ids; i++) {
6993 /* Start at @node */
6994 n = (node + i) % nr_node_ids;
6995
6996 if (!nr_cpus_node(n))
6997 continue;
6998
6999 /* Skip already used nodes */
7000 if (node_isset(n, *used_nodes))
7001 continue;
7002
7003 /* Simple min distance search */
7004 val = node_distance(node, n);
7005
7006 if (val < min_val) {
7007 min_val = val;
7008 best_node = n;
7009 }
7010 }
7011
7012 node_set(best_node, *used_nodes);
7013 return best_node;
7014 }
7015
7016 /**
7017 * sched_domain_node_span - get a cpumask for a node's sched_domain
7018 * @node: node whose cpumask we're constructing
7019 * @span: resulting cpumask
7020 *
7021 * Given a node, construct a good cpumask for its sched_domain to span. It
7022 * should be one that prevents unnecessary balancing, but also spreads tasks
7023 * out optimally.
7024 */
7025 static void sched_domain_node_span(int node, cpumask_t *span)
7026 {
7027 nodemask_t used_nodes;
7028 node_to_cpumask_ptr(nodemask, node);
7029 int i;
7030
7031 cpus_clear(*span);
7032 nodes_clear(used_nodes);
7033
7034 cpus_or(*span, *span, *nodemask);
7035 node_set(node, used_nodes);
7036
7037 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7038 int next_node = find_next_best_node(node, &used_nodes);
7039
7040 node_to_cpumask_ptr_next(nodemask, next_node);
7041 cpus_or(*span, *span, *nodemask);
7042 }
7043 }
7044 #endif /* CONFIG_NUMA */
7045
7046 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7047
7048 /*
7049 * SMT sched-domains:
7050 */
7051 #ifdef CONFIG_SCHED_SMT
7052 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
7053 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
7054
7055 static int
7056 cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7057 cpumask_t *unused)
7058 {
7059 if (sg)
7060 *sg = &per_cpu(sched_group_cpus, cpu);
7061 return cpu;
7062 }
7063 #endif /* CONFIG_SCHED_SMT */
7064
7065 /*
7066 * multi-core sched-domains:
7067 */
7068 #ifdef CONFIG_SCHED_MC
7069 static DEFINE_PER_CPU(struct sched_domain, core_domains);
7070 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
7071 #endif /* CONFIG_SCHED_MC */
7072
7073 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
7074 static int
7075 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7076 cpumask_t *mask)
7077 {
7078 int group;
7079
7080 *mask = per_cpu(cpu_sibling_map, cpu);
7081 cpus_and(*mask, *mask, *cpu_map);
7082 group = first_cpu(*mask);
7083 if (sg)
7084 *sg = &per_cpu(sched_group_core, group);
7085 return group;
7086 }
7087 #elif defined(CONFIG_SCHED_MC)
7088 static int
7089 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7090 cpumask_t *unused)
7091 {
7092 if (sg)
7093 *sg = &per_cpu(sched_group_core, cpu);
7094 return cpu;
7095 }
7096 #endif
7097
7098 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
7099 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
7100
7101 static int
7102 cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7103 cpumask_t *mask)
7104 {
7105 int group;
7106 #ifdef CONFIG_SCHED_MC
7107 *mask = cpu_coregroup_map(cpu);
7108 cpus_and(*mask, *mask, *cpu_map);
7109 group = first_cpu(*mask);
7110 #elif defined(CONFIG_SCHED_SMT)
7111 *mask = per_cpu(cpu_sibling_map, cpu);
7112 cpus_and(*mask, *mask, *cpu_map);
7113 group = first_cpu(*mask);
7114 #else
7115 group = cpu;
7116 #endif
7117 if (sg)
7118 *sg = &per_cpu(sched_group_phys, group);
7119 return group;
7120 }
7121
7122 #ifdef CONFIG_NUMA
7123 /*
7124 * The init_sched_build_groups can't handle what we want to do with node
7125 * groups, so roll our own. Now each node has its own list of groups which
7126 * gets dynamically allocated.
7127 */
7128 static DEFINE_PER_CPU(struct sched_domain, node_domains);
7129 static struct sched_group ***sched_group_nodes_bycpu;
7130
7131 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
7132 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
7133
7134 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7135 struct sched_group **sg, cpumask_t *nodemask)
7136 {
7137 int group;
7138
7139 *nodemask = node_to_cpumask(cpu_to_node(cpu));
7140 cpus_and(*nodemask, *nodemask, *cpu_map);
7141 group = first_cpu(*nodemask);
7142
7143 if (sg)
7144 *sg = &per_cpu(sched_group_allnodes, group);
7145 return group;
7146 }
7147
7148 static void init_numa_sched_groups_power(struct sched_group *group_head)
7149 {
7150 struct sched_group *sg = group_head;
7151 int j;
7152
7153 if (!sg)
7154 return;
7155 do {
7156 for_each_cpu_mask_nr(j, sg->cpumask) {
7157 struct sched_domain *sd;
7158
7159 sd = &per_cpu(phys_domains, j);
7160 if (j != first_cpu(sd->groups->cpumask)) {
7161 /*
7162 * Only add "power" once for each
7163 * physical package.
7164 */
7165 continue;
7166 }
7167
7168 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7169 }
7170 sg = sg->next;
7171 } while (sg != group_head);
7172 }
7173 #endif /* CONFIG_NUMA */
7174
7175 #ifdef CONFIG_NUMA
7176 /* Free memory allocated for various sched_group structures */
7177 static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7178 {
7179 int cpu, i;
7180
7181 for_each_cpu_mask_nr(cpu, *cpu_map) {
7182 struct sched_group **sched_group_nodes
7183 = sched_group_nodes_bycpu[cpu];
7184
7185 if (!sched_group_nodes)
7186 continue;
7187
7188 for (i = 0; i < nr_node_ids; i++) {
7189 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7190
7191 *nodemask = node_to_cpumask(i);
7192 cpus_and(*nodemask, *nodemask, *cpu_map);
7193 if (cpus_empty(*nodemask))
7194 continue;
7195
7196 if (sg == NULL)
7197 continue;
7198 sg = sg->next;
7199 next_sg:
7200 oldsg = sg;
7201 sg = sg->next;
7202 kfree(oldsg);
7203 if (oldsg != sched_group_nodes[i])
7204 goto next_sg;
7205 }
7206 kfree(sched_group_nodes);
7207 sched_group_nodes_bycpu[cpu] = NULL;
7208 }
7209 }
7210 #else /* !CONFIG_NUMA */
7211 static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7212 {
7213 }
7214 #endif /* CONFIG_NUMA */
7215
7216 /*
7217 * Initialize sched groups cpu_power.
7218 *
7219 * cpu_power indicates the capacity of sched group, which is used while
7220 * distributing the load between different sched groups in a sched domain.
7221 * Typically cpu_power for all the groups in a sched domain will be same unless
7222 * there are asymmetries in the topology. If there are asymmetries, group
7223 * having more cpu_power will pickup more load compared to the group having
7224 * less cpu_power.
7225 *
7226 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7227 * the maximum number of tasks a group can handle in the presence of other idle
7228 * or lightly loaded groups in the same sched domain.
7229 */
7230 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7231 {
7232 struct sched_domain *child;
7233 struct sched_group *group;
7234
7235 WARN_ON(!sd || !sd->groups);
7236
7237 if (cpu != first_cpu(sd->groups->cpumask))
7238 return;
7239
7240 child = sd->child;
7241
7242 sd->groups->__cpu_power = 0;
7243
7244 /*
7245 * For perf policy, if the groups in child domain share resources
7246 * (for example cores sharing some portions of the cache hierarchy
7247 * or SMT), then set this domain groups cpu_power such that each group
7248 * can handle only one task, when there are other idle groups in the
7249 * same sched domain.
7250 */
7251 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7252 (child->flags &
7253 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7254 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7255 return;
7256 }
7257
7258 /*
7259 * add cpu_power of each child group to this groups cpu_power
7260 */
7261 group = child->groups;
7262 do {
7263 sg_inc_cpu_power(sd->groups, group->__cpu_power);
7264 group = group->next;
7265 } while (group != child->groups);
7266 }
7267
7268 /*
7269 * Initializers for schedule domains
7270 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7271 */
7272
7273 #ifdef CONFIG_SCHED_DEBUG
7274 # define SD_INIT_NAME(sd, type) sd->name = #type
7275 #else
7276 # define SD_INIT_NAME(sd, type) do { } while (0)
7277 #endif
7278
7279 #define SD_INIT(sd, type) sd_init_##type(sd)
7280
7281 #define SD_INIT_FUNC(type) \
7282 static noinline void sd_init_##type(struct sched_domain *sd) \
7283 { \
7284 memset(sd, 0, sizeof(*sd)); \
7285 *sd = SD_##type##_INIT; \
7286 sd->level = SD_LV_##type; \
7287 SD_INIT_NAME(sd, type); \
7288 }
7289
7290 SD_INIT_FUNC(CPU)
7291 #ifdef CONFIG_NUMA
7292 SD_INIT_FUNC(ALLNODES)
7293 SD_INIT_FUNC(NODE)
7294 #endif
7295 #ifdef CONFIG_SCHED_SMT
7296 SD_INIT_FUNC(SIBLING)
7297 #endif
7298 #ifdef CONFIG_SCHED_MC
7299 SD_INIT_FUNC(MC)
7300 #endif
7301
7302 /*
7303 * To minimize stack usage kmalloc room for cpumasks and share the
7304 * space as the usage in build_sched_domains() dictates. Used only
7305 * if the amount of space is significant.
7306 */
7307 struct allmasks {
7308 cpumask_t tmpmask; /* make this one first */
7309 union {
7310 cpumask_t nodemask;
7311 cpumask_t this_sibling_map;
7312 cpumask_t this_core_map;
7313 };
7314 cpumask_t send_covered;
7315
7316 #ifdef CONFIG_NUMA
7317 cpumask_t domainspan;
7318 cpumask_t covered;
7319 cpumask_t notcovered;
7320 #endif
7321 };
7322
7323 #if NR_CPUS > 128
7324 #define SCHED_CPUMASK_ALLOC 1
7325 #define SCHED_CPUMASK_FREE(v) kfree(v)
7326 #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
7327 #else
7328 #define SCHED_CPUMASK_ALLOC 0
7329 #define SCHED_CPUMASK_FREE(v)
7330 #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
7331 #endif
7332
7333 #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
7334 ((unsigned long)(a) + offsetof(struct allmasks, v))
7335
7336 static int default_relax_domain_level = -1;
7337
7338 static int __init setup_relax_domain_level(char *str)
7339 {
7340 unsigned long val;
7341
7342 val = simple_strtoul(str, NULL, 0);
7343 if (val < SD_LV_MAX)
7344 default_relax_domain_level = val;
7345
7346 return 1;
7347 }
7348 __setup("relax_domain_level=", setup_relax_domain_level);
7349
7350 static void set_domain_attribute(struct sched_domain *sd,
7351 struct sched_domain_attr *attr)
7352 {
7353 int request;
7354
7355 if (!attr || attr->relax_domain_level < 0) {
7356 if (default_relax_domain_level < 0)
7357 return;
7358 else
7359 request = default_relax_domain_level;
7360 } else
7361 request = attr->relax_domain_level;
7362 if (request < sd->level) {
7363 /* turn off idle balance on this domain */
7364 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7365 } else {
7366 /* turn on idle balance on this domain */
7367 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7368 }
7369 }
7370
7371 /*
7372 * Build sched domains for a given set of cpus and attach the sched domains
7373 * to the individual cpus
7374 */
7375 static int __build_sched_domains(const cpumask_t *cpu_map,
7376 struct sched_domain_attr *attr)
7377 {
7378 int i;
7379 struct root_domain *rd;
7380 SCHED_CPUMASK_DECLARE(allmasks);
7381 cpumask_t *tmpmask;
7382 #ifdef CONFIG_NUMA
7383 struct sched_group **sched_group_nodes = NULL;
7384 int sd_allnodes = 0;
7385
7386 /*
7387 * Allocate the per-node list of sched groups
7388 */
7389 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
7390 GFP_KERNEL);
7391 if (!sched_group_nodes) {
7392 printk(KERN_WARNING "Can not alloc sched group node list\n");
7393 return -ENOMEM;
7394 }
7395 #endif
7396
7397 rd = alloc_rootdomain();
7398 if (!rd) {
7399 printk(KERN_WARNING "Cannot alloc root domain\n");
7400 #ifdef CONFIG_NUMA
7401 kfree(sched_group_nodes);
7402 #endif
7403 return -ENOMEM;
7404 }
7405
7406 #if SCHED_CPUMASK_ALLOC
7407 /* get space for all scratch cpumask variables */
7408 allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
7409 if (!allmasks) {
7410 printk(KERN_WARNING "Cannot alloc cpumask array\n");
7411 kfree(rd);
7412 #ifdef CONFIG_NUMA
7413 kfree(sched_group_nodes);
7414 #endif
7415 return -ENOMEM;
7416 }
7417 #endif
7418 tmpmask = (cpumask_t *)allmasks;
7419
7420
7421 #ifdef CONFIG_NUMA
7422 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
7423 #endif
7424
7425 /*
7426 * Set up domains for cpus specified by the cpu_map.
7427 */
7428 for_each_cpu_mask_nr(i, *cpu_map) {
7429 struct sched_domain *sd = NULL, *p;
7430 SCHED_CPUMASK_VAR(nodemask, allmasks);
7431
7432 *nodemask = node_to_cpumask(cpu_to_node(i));
7433 cpus_and(*nodemask, *nodemask, *cpu_map);
7434
7435 #ifdef CONFIG_NUMA
7436 if (cpus_weight(*cpu_map) >
7437 SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
7438 sd = &per_cpu(allnodes_domains, i);
7439 SD_INIT(sd, ALLNODES);
7440 set_domain_attribute(sd, attr);
7441 sd->span = *cpu_map;
7442 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7443 p = sd;
7444 sd_allnodes = 1;
7445 } else
7446 p = NULL;
7447
7448 sd = &per_cpu(node_domains, i);
7449 SD_INIT(sd, NODE);
7450 set_domain_attribute(sd, attr);
7451 sched_domain_node_span(cpu_to_node(i), &sd->span);
7452 sd->parent = p;
7453 if (p)
7454 p->child = sd;
7455 cpus_and(sd->span, sd->span, *cpu_map);
7456 #endif
7457
7458 p = sd;
7459 sd = &per_cpu(phys_domains, i);
7460 SD_INIT(sd, CPU);
7461 set_domain_attribute(sd, attr);
7462 sd->span = *nodemask;
7463 sd->parent = p;
7464 if (p)
7465 p->child = sd;
7466 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
7467
7468 #ifdef CONFIG_SCHED_MC
7469 p = sd;
7470 sd = &per_cpu(core_domains, i);
7471 SD_INIT(sd, MC);
7472 set_domain_attribute(sd, attr);
7473 sd->span = cpu_coregroup_map(i);
7474 cpus_and(sd->span, sd->span, *cpu_map);
7475 sd->parent = p;
7476 p->child = sd;
7477 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7478 #endif
7479
7480 #ifdef CONFIG_SCHED_SMT
7481 p = sd;
7482 sd = &per_cpu(cpu_domains, i);
7483 SD_INIT(sd, SIBLING);
7484 set_domain_attribute(sd, attr);
7485 sd->span = per_cpu(cpu_sibling_map, i);
7486 cpus_and(sd->span, sd->span, *cpu_map);
7487 sd->parent = p;
7488 p->child = sd;
7489 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
7490 #endif
7491 }
7492
7493 #ifdef CONFIG_SCHED_SMT
7494 /* Set up CPU (sibling) groups */
7495 for_each_cpu_mask_nr(i, *cpu_map) {
7496 SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
7497 SCHED_CPUMASK_VAR(send_covered, allmasks);
7498
7499 *this_sibling_map = per_cpu(cpu_sibling_map, i);
7500 cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
7501 if (i != first_cpu(*this_sibling_map))
7502 continue;
7503
7504 init_sched_build_groups(this_sibling_map, cpu_map,
7505 &cpu_to_cpu_group,
7506 send_covered, tmpmask);
7507 }
7508 #endif
7509
7510 #ifdef CONFIG_SCHED_MC
7511 /* Set up multi-core groups */
7512 for_each_cpu_mask_nr(i, *cpu_map) {
7513 SCHED_CPUMASK_VAR(this_core_map, allmasks);
7514 SCHED_CPUMASK_VAR(send_covered, allmasks);
7515
7516 *this_core_map = cpu_coregroup_map(i);
7517 cpus_and(*this_core_map, *this_core_map, *cpu_map);
7518 if (i != first_cpu(*this_core_map))
7519 continue;
7520
7521 init_sched_build_groups(this_core_map, cpu_map,
7522 &cpu_to_core_group,
7523 send_covered, tmpmask);
7524 }
7525 #endif
7526
7527 /* Set up physical groups */
7528 for (i = 0; i < nr_node_ids; i++) {
7529 SCHED_CPUMASK_VAR(nodemask, allmasks);
7530 SCHED_CPUMASK_VAR(send_covered, allmasks);
7531
7532 *nodemask = node_to_cpumask(i);
7533 cpus_and(*nodemask, *nodemask, *cpu_map);
7534 if (cpus_empty(*nodemask))
7535 continue;
7536
7537 init_sched_build_groups(nodemask, cpu_map,
7538 &cpu_to_phys_group,
7539 send_covered, tmpmask);
7540 }
7541
7542 #ifdef CONFIG_NUMA
7543 /* Set up node groups */
7544 if (sd_allnodes) {
7545 SCHED_CPUMASK_VAR(send_covered, allmasks);
7546
7547 init_sched_build_groups(cpu_map, cpu_map,
7548 &cpu_to_allnodes_group,
7549 send_covered, tmpmask);
7550 }
7551
7552 for (i = 0; i < nr_node_ids; i++) {
7553 /* Set up node groups */
7554 struct sched_group *sg, *prev;
7555 SCHED_CPUMASK_VAR(nodemask, allmasks);
7556 SCHED_CPUMASK_VAR(domainspan, allmasks);
7557 SCHED_CPUMASK_VAR(covered, allmasks);
7558 int j;
7559
7560 *nodemask = node_to_cpumask(i);
7561 cpus_clear(*covered);
7562
7563 cpus_and(*nodemask, *nodemask, *cpu_map);
7564 if (cpus_empty(*nodemask)) {
7565 sched_group_nodes[i] = NULL;
7566 continue;
7567 }
7568
7569 sched_domain_node_span(i, domainspan);
7570 cpus_and(*domainspan, *domainspan, *cpu_map);
7571
7572 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
7573 if (!sg) {
7574 printk(KERN_WARNING "Can not alloc domain group for "
7575 "node %d\n", i);
7576 goto error;
7577 }
7578 sched_group_nodes[i] = sg;
7579 for_each_cpu_mask_nr(j, *nodemask) {
7580 struct sched_domain *sd;
7581
7582 sd = &per_cpu(node_domains, j);
7583 sd->groups = sg;
7584 }
7585 sg->__cpu_power = 0;
7586 sg->cpumask = *nodemask;
7587 sg->next = sg;
7588 cpus_or(*covered, *covered, *nodemask);
7589 prev = sg;
7590
7591 for (j = 0; j < nr_node_ids; j++) {
7592 SCHED_CPUMASK_VAR(notcovered, allmasks);
7593 int n = (i + j) % nr_node_ids;
7594 node_to_cpumask_ptr(pnodemask, n);
7595
7596 cpus_complement(*notcovered, *covered);
7597 cpus_and(*tmpmask, *notcovered, *cpu_map);
7598 cpus_and(*tmpmask, *tmpmask, *domainspan);
7599 if (cpus_empty(*tmpmask))
7600 break;
7601
7602 cpus_and(*tmpmask, *tmpmask, *pnodemask);
7603 if (cpus_empty(*tmpmask))
7604 continue;
7605
7606 sg = kmalloc_node(sizeof(struct sched_group),
7607 GFP_KERNEL, i);
7608 if (!sg) {
7609 printk(KERN_WARNING
7610 "Can not alloc domain group for node %d\n", j);
7611 goto error;
7612 }
7613 sg->__cpu_power = 0;
7614 sg->cpumask = *tmpmask;
7615 sg->next = prev->next;
7616 cpus_or(*covered, *covered, *tmpmask);
7617 prev->next = sg;
7618 prev = sg;
7619 }
7620 }
7621 #endif
7622
7623 /* Calculate CPU power for physical packages and nodes */
7624 #ifdef CONFIG_SCHED_SMT
7625 for_each_cpu_mask_nr(i, *cpu_map) {
7626 struct sched_domain *sd = &per_cpu(cpu_domains, i);
7627
7628 init_sched_groups_power(i, sd);
7629 }
7630 #endif
7631 #ifdef CONFIG_SCHED_MC
7632 for_each_cpu_mask_nr(i, *cpu_map) {
7633 struct sched_domain *sd = &per_cpu(core_domains, i);
7634
7635 init_sched_groups_power(i, sd);
7636 }
7637 #endif
7638
7639 for_each_cpu_mask_nr(i, *cpu_map) {
7640 struct sched_domain *sd = &per_cpu(phys_domains, i);
7641
7642 init_sched_groups_power(i, sd);
7643 }
7644
7645 #ifdef CONFIG_NUMA
7646 for (i = 0; i < nr_node_ids; i++)
7647 init_numa_sched_groups_power(sched_group_nodes[i]);
7648
7649 if (sd_allnodes) {
7650 struct sched_group *sg;
7651
7652 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
7653 tmpmask);
7654 init_numa_sched_groups_power(sg);
7655 }
7656 #endif
7657
7658 /* Attach the domains */
7659 for_each_cpu_mask_nr(i, *cpu_map) {
7660 struct sched_domain *sd;
7661 #ifdef CONFIG_SCHED_SMT
7662 sd = &per_cpu(cpu_domains, i);
7663 #elif defined(CONFIG_SCHED_MC)
7664 sd = &per_cpu(core_domains, i);
7665 #else
7666 sd = &per_cpu(phys_domains, i);
7667 #endif
7668 cpu_attach_domain(sd, rd, i);
7669 }
7670
7671 SCHED_CPUMASK_FREE((void *)allmasks);
7672 return 0;
7673
7674 #ifdef CONFIG_NUMA
7675 error:
7676 free_sched_groups(cpu_map, tmpmask);
7677 SCHED_CPUMASK_FREE((void *)allmasks);
7678 return -ENOMEM;
7679 #endif
7680 }
7681
7682 static int build_sched_domains(const cpumask_t *cpu_map)
7683 {
7684 return __build_sched_domains(cpu_map, NULL);
7685 }
7686
7687 static cpumask_t *doms_cur; /* current sched domains */
7688 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7689 static struct sched_domain_attr *dattr_cur;
7690 /* attribues of custom domains in 'doms_cur' */
7691
7692 /*
7693 * Special case: If a kmalloc of a doms_cur partition (array of
7694 * cpumask_t) fails, then fallback to a single sched domain,
7695 * as determined by the single cpumask_t fallback_doms.
7696 */
7697 static cpumask_t fallback_doms;
7698
7699 void __attribute__((weak)) arch_update_cpu_topology(void)
7700 {
7701 }
7702
7703 /*
7704 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7705 * For now this just excludes isolated cpus, but could be used to
7706 * exclude other special cases in the future.
7707 */
7708 static int arch_init_sched_domains(const cpumask_t *cpu_map)
7709 {
7710 int err;
7711
7712 arch_update_cpu_topology();
7713 ndoms_cur = 1;
7714 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
7715 if (!doms_cur)
7716 doms_cur = &fallback_doms;
7717 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7718 dattr_cur = NULL;
7719 err = build_sched_domains(doms_cur);
7720 register_sched_domain_sysctl();
7721
7722 return err;
7723 }
7724
7725 static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
7726 cpumask_t *tmpmask)
7727 {
7728 free_sched_groups(cpu_map, tmpmask);
7729 }
7730
7731 /*
7732 * Detach sched domains from a group of cpus specified in cpu_map
7733 * These cpus will now be attached to the NULL domain
7734 */
7735 static void detach_destroy_domains(const cpumask_t *cpu_map)
7736 {
7737 cpumask_t tmpmask;
7738 int i;
7739
7740 unregister_sched_domain_sysctl();
7741
7742 for_each_cpu_mask_nr(i, *cpu_map)
7743 cpu_attach_domain(NULL, &def_root_domain, i);
7744 synchronize_sched();
7745 arch_destroy_sched_domains(cpu_map, &tmpmask);
7746 }
7747
7748 /* handle null as "default" */
7749 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7750 struct sched_domain_attr *new, int idx_new)
7751 {
7752 struct sched_domain_attr tmp;
7753
7754 /* fast path */
7755 if (!new && !cur)
7756 return 1;
7757
7758 tmp = SD_ATTR_INIT;
7759 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7760 new ? (new + idx_new) : &tmp,
7761 sizeof(struct sched_domain_attr));
7762 }
7763
7764 /*
7765 * Partition sched domains as specified by the 'ndoms_new'
7766 * cpumasks in the array doms_new[] of cpumasks. This compares
7767 * doms_new[] to the current sched domain partitioning, doms_cur[].
7768 * It destroys each deleted domain and builds each new domain.
7769 *
7770 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
7771 * The masks don't intersect (don't overlap.) We should setup one
7772 * sched domain for each mask. CPUs not in any of the cpumasks will
7773 * not be load balanced. If the same cpumask appears both in the
7774 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7775 * it as it is.
7776 *
7777 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7778 * ownership of it and will kfree it when done with it. If the caller
7779 * failed the kmalloc call, then it can pass in doms_new == NULL,
7780 * and partition_sched_domains() will fallback to the single partition
7781 * 'fallback_doms', it also forces the domains to be rebuilt.
7782 *
7783 * If doms_new==NULL it will be replaced with cpu_online_map.
7784 * ndoms_new==0 is a special case for destroying existing domains.
7785 * It will not create the default domain.
7786 *
7787 * Call with hotplug lock held
7788 */
7789 void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
7790 struct sched_domain_attr *dattr_new)
7791 {
7792 int i, j, n;
7793
7794 mutex_lock(&sched_domains_mutex);
7795
7796 /* always unregister in case we don't destroy any domains */
7797 unregister_sched_domain_sysctl();
7798
7799 n = doms_new ? ndoms_new : 0;
7800
7801 /* Destroy deleted domains */
7802 for (i = 0; i < ndoms_cur; i++) {
7803 for (j = 0; j < n; j++) {
7804 if (cpus_equal(doms_cur[i], doms_new[j])
7805 && dattrs_equal(dattr_cur, i, dattr_new, j))
7806 goto match1;
7807 }
7808 /* no match - a current sched domain not in new doms_new[] */
7809 detach_destroy_domains(doms_cur + i);
7810 match1:
7811 ;
7812 }
7813
7814 if (doms_new == NULL) {
7815 ndoms_cur = 0;
7816 doms_new = &fallback_doms;
7817 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
7818 dattr_new = NULL;
7819 }
7820
7821 /* Build new domains */
7822 for (i = 0; i < ndoms_new; i++) {
7823 for (j = 0; j < ndoms_cur; j++) {
7824 if (cpus_equal(doms_new[i], doms_cur[j])
7825 && dattrs_equal(dattr_new, i, dattr_cur, j))
7826 goto match2;
7827 }
7828 /* no match - add a new doms_new */
7829 __build_sched_domains(doms_new + i,
7830 dattr_new ? dattr_new + i : NULL);
7831 match2:
7832 ;
7833 }
7834
7835 /* Remember the new sched domains */
7836 if (doms_cur != &fallback_doms)
7837 kfree(doms_cur);
7838 kfree(dattr_cur); /* kfree(NULL) is safe */
7839 doms_cur = doms_new;
7840 dattr_cur = dattr_new;
7841 ndoms_cur = ndoms_new;
7842
7843 register_sched_domain_sysctl();
7844
7845 mutex_unlock(&sched_domains_mutex);
7846 }
7847
7848 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7849 int arch_reinit_sched_domains(void)
7850 {
7851 get_online_cpus();
7852
7853 /* Destroy domains first to force the rebuild */
7854 partition_sched_domains(0, NULL, NULL);
7855
7856 rebuild_sched_domains();
7857 put_online_cpus();
7858
7859 return 0;
7860 }
7861
7862 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7863 {
7864 int ret;
7865
7866 if (buf[0] != '0' && buf[0] != '1')
7867 return -EINVAL;
7868
7869 if (smt)
7870 sched_smt_power_savings = (buf[0] == '1');
7871 else
7872 sched_mc_power_savings = (buf[0] == '1');
7873
7874 ret = arch_reinit_sched_domains();
7875
7876 return ret ? ret : count;
7877 }
7878
7879 #ifdef CONFIG_SCHED_MC
7880 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7881 char *page)
7882 {
7883 return sprintf(page, "%u\n", sched_mc_power_savings);
7884 }
7885 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7886 const char *buf, size_t count)
7887 {
7888 return sched_power_savings_store(buf, count, 0);
7889 }
7890 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7891 sched_mc_power_savings_show,
7892 sched_mc_power_savings_store);
7893 #endif
7894
7895 #ifdef CONFIG_SCHED_SMT
7896 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7897 char *page)
7898 {
7899 return sprintf(page, "%u\n", sched_smt_power_savings);
7900 }
7901 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7902 const char *buf, size_t count)
7903 {
7904 return sched_power_savings_store(buf, count, 1);
7905 }
7906 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7907 sched_smt_power_savings_show,
7908 sched_smt_power_savings_store);
7909 #endif
7910
7911 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7912 {
7913 int err = 0;
7914
7915 #ifdef CONFIG_SCHED_SMT
7916 if (smt_capable())
7917 err = sysfs_create_file(&cls->kset.kobj,
7918 &attr_sched_smt_power_savings.attr);
7919 #endif
7920 #ifdef CONFIG_SCHED_MC
7921 if (!err && mc_capable())
7922 err = sysfs_create_file(&cls->kset.kobj,
7923 &attr_sched_mc_power_savings.attr);
7924 #endif
7925 return err;
7926 }
7927 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7928
7929 #ifndef CONFIG_CPUSETS
7930 /*
7931 * Add online and remove offline CPUs from the scheduler domains.
7932 * When cpusets are enabled they take over this function.
7933 */
7934 static int update_sched_domains(struct notifier_block *nfb,
7935 unsigned long action, void *hcpu)
7936 {
7937 switch (action) {
7938 case CPU_ONLINE:
7939 case CPU_ONLINE_FROZEN:
7940 case CPU_DEAD:
7941 case CPU_DEAD_FROZEN:
7942 partition_sched_domains(1, NULL, NULL);
7943 return NOTIFY_OK;
7944
7945 default:
7946 return NOTIFY_DONE;
7947 }
7948 }
7949 #endif
7950
7951 static int update_runtime(struct notifier_block *nfb,
7952 unsigned long action, void *hcpu)
7953 {
7954 int cpu = (int)(long)hcpu;
7955
7956 switch (action) {
7957 case CPU_DOWN_PREPARE:
7958 case CPU_DOWN_PREPARE_FROZEN:
7959 disable_runtime(cpu_rq(cpu));
7960 return NOTIFY_OK;
7961
7962 case CPU_DOWN_FAILED:
7963 case CPU_DOWN_FAILED_FROZEN:
7964 case CPU_ONLINE:
7965 case CPU_ONLINE_FROZEN:
7966 enable_runtime(cpu_rq(cpu));
7967 return NOTIFY_OK;
7968
7969 default:
7970 return NOTIFY_DONE;
7971 }
7972 }
7973
7974 void __init sched_init_smp(void)
7975 {
7976 cpumask_t non_isolated_cpus;
7977
7978 #if defined(CONFIG_NUMA)
7979 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7980 GFP_KERNEL);
7981 BUG_ON(sched_group_nodes_bycpu == NULL);
7982 #endif
7983 get_online_cpus();
7984 mutex_lock(&sched_domains_mutex);
7985 arch_init_sched_domains(&cpu_online_map);
7986 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7987 if (cpus_empty(non_isolated_cpus))
7988 cpu_set(smp_processor_id(), non_isolated_cpus);
7989 mutex_unlock(&sched_domains_mutex);
7990 put_online_cpus();
7991
7992 #ifndef CONFIG_CPUSETS
7993 /* XXX: Theoretical race here - CPU may be hotplugged now */
7994 hotcpu_notifier(update_sched_domains, 0);
7995 #endif
7996
7997 /* RT runtime code needs to handle some hotplug events */
7998 hotcpu_notifier(update_runtime, 0);
7999
8000 init_hrtick();
8001
8002 /* Move init over to a non-isolated CPU */
8003 if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
8004 BUG();
8005 sched_init_granularity();
8006 }
8007 #else
8008 void __init sched_init_smp(void)
8009 {
8010 sched_init_granularity();
8011 }
8012 #endif /* CONFIG_SMP */
8013
8014 int in_sched_functions(unsigned long addr)
8015 {
8016 return in_lock_functions(addr) ||
8017 (addr >= (unsigned long)__sched_text_start
8018 && addr < (unsigned long)__sched_text_end);
8019 }
8020
8021 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
8022 {
8023 cfs_rq->tasks_timeline = RB_ROOT;
8024 INIT_LIST_HEAD(&cfs_rq->tasks);
8025 #ifdef CONFIG_FAIR_GROUP_SCHED
8026 cfs_rq->rq = rq;
8027 #endif
8028 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8029 }
8030
8031 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8032 {
8033 struct rt_prio_array *array;
8034 int i;
8035
8036 array = &rt_rq->active;
8037 for (i = 0; i < MAX_RT_PRIO; i++) {
8038 INIT_LIST_HEAD(array->queue + i);
8039 __clear_bit(i, array->bitmap);
8040 }
8041 /* delimiter for bitsearch: */
8042 __set_bit(MAX_RT_PRIO, array->bitmap);
8043
8044 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
8045 rt_rq->highest_prio = MAX_RT_PRIO;
8046 #endif
8047 #ifdef CONFIG_SMP
8048 rt_rq->rt_nr_migratory = 0;
8049 rt_rq->overloaded = 0;
8050 #endif
8051
8052 rt_rq->rt_time = 0;
8053 rt_rq->rt_throttled = 0;
8054 rt_rq->rt_runtime = 0;
8055 spin_lock_init(&rt_rq->rt_runtime_lock);
8056
8057 #ifdef CONFIG_RT_GROUP_SCHED
8058 rt_rq->rt_nr_boosted = 0;
8059 rt_rq->rq = rq;
8060 #endif
8061 }
8062
8063 #ifdef CONFIG_FAIR_GROUP_SCHED
8064 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8065 struct sched_entity *se, int cpu, int add,
8066 struct sched_entity *parent)
8067 {
8068 struct rq *rq = cpu_rq(cpu);
8069 tg->cfs_rq[cpu] = cfs_rq;
8070 init_cfs_rq(cfs_rq, rq);
8071 cfs_rq->tg = tg;
8072 if (add)
8073 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8074
8075 tg->se[cpu] = se;
8076 /* se could be NULL for init_task_group */
8077 if (!se)
8078 return;
8079
8080 if (!parent)
8081 se->cfs_rq = &rq->cfs;
8082 else
8083 se->cfs_rq = parent->my_q;
8084
8085 se->my_q = cfs_rq;
8086 se->load.weight = tg->shares;
8087 se->load.inv_weight = 0;
8088 se->parent = parent;
8089 }
8090 #endif
8091
8092 #ifdef CONFIG_RT_GROUP_SCHED
8093 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8094 struct sched_rt_entity *rt_se, int cpu, int add,
8095 struct sched_rt_entity *parent)
8096 {
8097 struct rq *rq = cpu_rq(cpu);
8098
8099 tg->rt_rq[cpu] = rt_rq;
8100 init_rt_rq(rt_rq, rq);
8101 rt_rq->tg = tg;
8102 rt_rq->rt_se = rt_se;
8103 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
8104 if (add)
8105 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8106
8107 tg->rt_se[cpu] = rt_se;
8108 if (!rt_se)
8109 return;
8110
8111 if (!parent)
8112 rt_se->rt_rq = &rq->rt;
8113 else
8114 rt_se->rt_rq = parent->my_q;
8115
8116 rt_se->my_q = rt_rq;
8117 rt_se->parent = parent;
8118 INIT_LIST_HEAD(&rt_se->run_list);
8119 }
8120 #endif
8121
8122 void __init sched_init(void)
8123 {
8124 int i, j;
8125 unsigned long alloc_size = 0, ptr;
8126
8127 #ifdef CONFIG_FAIR_GROUP_SCHED
8128 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8129 #endif
8130 #ifdef CONFIG_RT_GROUP_SCHED
8131 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8132 #endif
8133 #ifdef CONFIG_USER_SCHED
8134 alloc_size *= 2;
8135 #endif
8136 /*
8137 * As sched_init() is called before page_alloc is setup,
8138 * we use alloc_bootmem().
8139 */
8140 if (alloc_size) {
8141 ptr = (unsigned long)alloc_bootmem(alloc_size);
8142
8143 #ifdef CONFIG_FAIR_GROUP_SCHED
8144 init_task_group.se = (struct sched_entity **)ptr;
8145 ptr += nr_cpu_ids * sizeof(void **);
8146
8147 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8148 ptr += nr_cpu_ids * sizeof(void **);
8149
8150 #ifdef CONFIG_USER_SCHED
8151 root_task_group.se = (struct sched_entity **)ptr;
8152 ptr += nr_cpu_ids * sizeof(void **);
8153
8154 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8155 ptr += nr_cpu_ids * sizeof(void **);
8156 #endif /* CONFIG_USER_SCHED */
8157 #endif /* CONFIG_FAIR_GROUP_SCHED */
8158 #ifdef CONFIG_RT_GROUP_SCHED
8159 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8160 ptr += nr_cpu_ids * sizeof(void **);
8161
8162 init_task_group.rt_rq = (struct rt_rq **)ptr;
8163 ptr += nr_cpu_ids * sizeof(void **);
8164
8165 #ifdef CONFIG_USER_SCHED
8166 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8167 ptr += nr_cpu_ids * sizeof(void **);
8168
8169 root_task_group.rt_rq = (struct rt_rq **)ptr;
8170 ptr += nr_cpu_ids * sizeof(void **);
8171 #endif /* CONFIG_USER_SCHED */
8172 #endif /* CONFIG_RT_GROUP_SCHED */
8173 }
8174
8175 #ifdef CONFIG_SMP
8176 init_defrootdomain();
8177 #endif
8178
8179 init_rt_bandwidth(&def_rt_bandwidth,
8180 global_rt_period(), global_rt_runtime());
8181
8182 #ifdef CONFIG_RT_GROUP_SCHED
8183 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8184 global_rt_period(), global_rt_runtime());
8185 #ifdef CONFIG_USER_SCHED
8186 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8187 global_rt_period(), RUNTIME_INF);
8188 #endif /* CONFIG_USER_SCHED */
8189 #endif /* CONFIG_RT_GROUP_SCHED */
8190
8191 #ifdef CONFIG_GROUP_SCHED
8192 list_add(&init_task_group.list, &task_groups);
8193 INIT_LIST_HEAD(&init_task_group.children);
8194
8195 #ifdef CONFIG_USER_SCHED
8196 INIT_LIST_HEAD(&root_task_group.children);
8197 init_task_group.parent = &root_task_group;
8198 list_add(&init_task_group.siblings, &root_task_group.children);
8199 #endif /* CONFIG_USER_SCHED */
8200 #endif /* CONFIG_GROUP_SCHED */
8201
8202 for_each_possible_cpu(i) {
8203 struct rq *rq;
8204
8205 rq = cpu_rq(i);
8206 spin_lock_init(&rq->lock);
8207 rq->nr_running = 0;
8208 init_cfs_rq(&rq->cfs, rq);
8209 init_rt_rq(&rq->rt, rq);
8210 #ifdef CONFIG_FAIR_GROUP_SCHED
8211 init_task_group.shares = init_task_group_load;
8212 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8213 #ifdef CONFIG_CGROUP_SCHED
8214 /*
8215 * How much cpu bandwidth does init_task_group get?
8216 *
8217 * In case of task-groups formed thr' the cgroup filesystem, it
8218 * gets 100% of the cpu resources in the system. This overall
8219 * system cpu resource is divided among the tasks of
8220 * init_task_group and its child task-groups in a fair manner,
8221 * based on each entity's (task or task-group's) weight
8222 * (se->load.weight).
8223 *
8224 * In other words, if init_task_group has 10 tasks of weight
8225 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8226 * then A0's share of the cpu resource is:
8227 *
8228 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8229 *
8230 * We achieve this by letting init_task_group's tasks sit
8231 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8232 */
8233 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
8234 #elif defined CONFIG_USER_SCHED
8235 root_task_group.shares = NICE_0_LOAD;
8236 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
8237 /*
8238 * In case of task-groups formed thr' the user id of tasks,
8239 * init_task_group represents tasks belonging to root user.
8240 * Hence it forms a sibling of all subsequent groups formed.
8241 * In this case, init_task_group gets only a fraction of overall
8242 * system cpu resource, based on the weight assigned to root
8243 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8244 * by letting tasks of init_task_group sit in a separate cfs_rq
8245 * (init_cfs_rq) and having one entity represent this group of
8246 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8247 */
8248 init_tg_cfs_entry(&init_task_group,
8249 &per_cpu(init_cfs_rq, i),
8250 &per_cpu(init_sched_entity, i), i, 1,
8251 root_task_group.se[i]);
8252
8253 #endif
8254 #endif /* CONFIG_FAIR_GROUP_SCHED */
8255
8256 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8257 #ifdef CONFIG_RT_GROUP_SCHED
8258 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
8259 #ifdef CONFIG_CGROUP_SCHED
8260 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
8261 #elif defined CONFIG_USER_SCHED
8262 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8263 init_tg_rt_entry(&init_task_group,
8264 &per_cpu(init_rt_rq, i),
8265 &per_cpu(init_sched_rt_entity, i), i, 1,
8266 root_task_group.rt_se[i]);
8267 #endif
8268 #endif
8269
8270 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8271 rq->cpu_load[j] = 0;
8272 #ifdef CONFIG_SMP
8273 rq->sd = NULL;
8274 rq->rd = NULL;
8275 rq->active_balance = 0;
8276 rq->next_balance = jiffies;
8277 rq->push_cpu = 0;
8278 rq->cpu = i;
8279 rq->online = 0;
8280 rq->migration_thread = NULL;
8281 INIT_LIST_HEAD(&rq->migration_queue);
8282 rq_attach_root(rq, &def_root_domain);
8283 #endif
8284 init_rq_hrtick(rq);
8285 atomic_set(&rq->nr_iowait, 0);
8286 }
8287
8288 set_load_weight(&init_task);
8289
8290 #ifdef CONFIG_PREEMPT_NOTIFIERS
8291 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8292 #endif
8293
8294 #ifdef CONFIG_SMP
8295 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8296 #endif
8297
8298 #ifdef CONFIG_RT_MUTEXES
8299 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8300 #endif
8301
8302 /*
8303 * The boot idle thread does lazy MMU switching as well:
8304 */
8305 atomic_inc(&init_mm.mm_count);
8306 enter_lazy_tlb(&init_mm, current);
8307
8308 /*
8309 * Make us the idle thread. Technically, schedule() should not be
8310 * called from this thread, however somewhere below it might be,
8311 * but because we are the idle thread, we just pick up running again
8312 * when this runqueue becomes "idle".
8313 */
8314 init_idle(current, smp_processor_id());
8315 /*
8316 * During early bootup we pretend to be a normal task:
8317 */
8318 current->sched_class = &fair_sched_class;
8319
8320 scheduler_running = 1;
8321 }
8322
8323 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8324 void __might_sleep(char *file, int line)
8325 {
8326 #ifdef in_atomic
8327 static unsigned long prev_jiffy; /* ratelimiting */
8328
8329 if ((!in_atomic() && !irqs_disabled()) ||
8330 system_state != SYSTEM_RUNNING || oops_in_progress)
8331 return;
8332 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8333 return;
8334 prev_jiffy = jiffies;
8335
8336 printk(KERN_ERR
8337 "BUG: sleeping function called from invalid context at %s:%d\n",
8338 file, line);
8339 printk(KERN_ERR
8340 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8341 in_atomic(), irqs_disabled(),
8342 current->pid, current->comm);
8343
8344 debug_show_held_locks(current);
8345 if (irqs_disabled())
8346 print_irqtrace_events(current);
8347 dump_stack();
8348 #endif
8349 }
8350 EXPORT_SYMBOL(__might_sleep);
8351 #endif
8352
8353 #ifdef CONFIG_MAGIC_SYSRQ
8354 static void normalize_task(struct rq *rq, struct task_struct *p)
8355 {
8356 int on_rq;
8357
8358 update_rq_clock(rq);
8359 on_rq = p->se.on_rq;
8360 if (on_rq)
8361 deactivate_task(rq, p, 0);
8362 __setscheduler(rq, p, SCHED_NORMAL, 0);
8363 if (on_rq) {
8364 activate_task(rq, p, 0);
8365 resched_task(rq->curr);
8366 }
8367 }
8368
8369 void normalize_rt_tasks(void)
8370 {
8371 struct task_struct *g, *p;
8372 unsigned long flags;
8373 struct rq *rq;
8374
8375 read_lock_irqsave(&tasklist_lock, flags);
8376 do_each_thread(g, p) {
8377 /*
8378 * Only normalize user tasks:
8379 */
8380 if (!p->mm)
8381 continue;
8382
8383 p->se.exec_start = 0;
8384 #ifdef CONFIG_SCHEDSTATS
8385 p->se.wait_start = 0;
8386 p->se.sleep_start = 0;
8387 p->se.block_start = 0;
8388 #endif
8389
8390 if (!rt_task(p)) {
8391 /*
8392 * Renice negative nice level userspace
8393 * tasks back to 0:
8394 */
8395 if (TASK_NICE(p) < 0 && p->mm)
8396 set_user_nice(p, 0);
8397 continue;
8398 }
8399
8400 spin_lock(&p->pi_lock);
8401 rq = __task_rq_lock(p);
8402
8403 normalize_task(rq, p);
8404
8405 __task_rq_unlock(rq);
8406 spin_unlock(&p->pi_lock);
8407 } while_each_thread(g, p);
8408
8409 read_unlock_irqrestore(&tasklist_lock, flags);
8410 }
8411
8412 #endif /* CONFIG_MAGIC_SYSRQ */
8413
8414 #ifdef CONFIG_IA64
8415 /*
8416 * These functions are only useful for the IA64 MCA handling.
8417 *
8418 * They can only be called when the whole system has been
8419 * stopped - every CPU needs to be quiescent, and no scheduling
8420 * activity can take place. Using them for anything else would
8421 * be a serious bug, and as a result, they aren't even visible
8422 * under any other configuration.
8423 */
8424
8425 /**
8426 * curr_task - return the current task for a given cpu.
8427 * @cpu: the processor in question.
8428 *
8429 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8430 */
8431 struct task_struct *curr_task(int cpu)
8432 {
8433 return cpu_curr(cpu);
8434 }
8435
8436 /**
8437 * set_curr_task - set the current task for a given cpu.
8438 * @cpu: the processor in question.
8439 * @p: the task pointer to set.
8440 *
8441 * Description: This function must only be used when non-maskable interrupts
8442 * are serviced on a separate stack. It allows the architecture to switch the
8443 * notion of the current task on a cpu in a non-blocking manner. This function
8444 * must be called with all CPU's synchronized, and interrupts disabled, the
8445 * and caller must save the original value of the current task (see
8446 * curr_task() above) and restore that value before reenabling interrupts and
8447 * re-starting the system.
8448 *
8449 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8450 */
8451 void set_curr_task(int cpu, struct task_struct *p)
8452 {
8453 cpu_curr(cpu) = p;
8454 }
8455
8456 #endif
8457
8458 #ifdef CONFIG_FAIR_GROUP_SCHED
8459 static void free_fair_sched_group(struct task_group *tg)
8460 {
8461 int i;
8462
8463 for_each_possible_cpu(i) {
8464 if (tg->cfs_rq)
8465 kfree(tg->cfs_rq[i]);
8466 if (tg->se)
8467 kfree(tg->se[i]);
8468 }
8469
8470 kfree(tg->cfs_rq);
8471 kfree(tg->se);
8472 }
8473
8474 static
8475 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8476 {
8477 struct cfs_rq *cfs_rq;
8478 struct sched_entity *se, *parent_se;
8479 struct rq *rq;
8480 int i;
8481
8482 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8483 if (!tg->cfs_rq)
8484 goto err;
8485 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8486 if (!tg->se)
8487 goto err;
8488
8489 tg->shares = NICE_0_LOAD;
8490
8491 for_each_possible_cpu(i) {
8492 rq = cpu_rq(i);
8493
8494 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
8495 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8496 if (!cfs_rq)
8497 goto err;
8498
8499 se = kmalloc_node(sizeof(struct sched_entity),
8500 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8501 if (!se)
8502 goto err;
8503
8504 parent_se = parent ? parent->se[i] : NULL;
8505 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
8506 }
8507
8508 return 1;
8509
8510 err:
8511 return 0;
8512 }
8513
8514 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8515 {
8516 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8517 &cpu_rq(cpu)->leaf_cfs_rq_list);
8518 }
8519
8520 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8521 {
8522 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8523 }
8524 #else /* !CONFG_FAIR_GROUP_SCHED */
8525 static inline void free_fair_sched_group(struct task_group *tg)
8526 {
8527 }
8528
8529 static inline
8530 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8531 {
8532 return 1;
8533 }
8534
8535 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8536 {
8537 }
8538
8539 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8540 {
8541 }
8542 #endif /* CONFIG_FAIR_GROUP_SCHED */
8543
8544 #ifdef CONFIG_RT_GROUP_SCHED
8545 static void free_rt_sched_group(struct task_group *tg)
8546 {
8547 int i;
8548
8549 destroy_rt_bandwidth(&tg->rt_bandwidth);
8550
8551 for_each_possible_cpu(i) {
8552 if (tg->rt_rq)
8553 kfree(tg->rt_rq[i]);
8554 if (tg->rt_se)
8555 kfree(tg->rt_se[i]);
8556 }
8557
8558 kfree(tg->rt_rq);
8559 kfree(tg->rt_se);
8560 }
8561
8562 static
8563 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8564 {
8565 struct rt_rq *rt_rq;
8566 struct sched_rt_entity *rt_se, *parent_se;
8567 struct rq *rq;
8568 int i;
8569
8570 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8571 if (!tg->rt_rq)
8572 goto err;
8573 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8574 if (!tg->rt_se)
8575 goto err;
8576
8577 init_rt_bandwidth(&tg->rt_bandwidth,
8578 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8579
8580 for_each_possible_cpu(i) {
8581 rq = cpu_rq(i);
8582
8583 rt_rq = kmalloc_node(sizeof(struct rt_rq),
8584 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8585 if (!rt_rq)
8586 goto err;
8587
8588 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
8589 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8590 if (!rt_se)
8591 goto err;
8592
8593 parent_se = parent ? parent->rt_se[i] : NULL;
8594 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
8595 }
8596
8597 return 1;
8598
8599 err:
8600 return 0;
8601 }
8602
8603 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8604 {
8605 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8606 &cpu_rq(cpu)->leaf_rt_rq_list);
8607 }
8608
8609 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8610 {
8611 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8612 }
8613 #else /* !CONFIG_RT_GROUP_SCHED */
8614 static inline void free_rt_sched_group(struct task_group *tg)
8615 {
8616 }
8617
8618 static inline
8619 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8620 {
8621 return 1;
8622 }
8623
8624 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8625 {
8626 }
8627
8628 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8629 {
8630 }
8631 #endif /* CONFIG_RT_GROUP_SCHED */
8632
8633 #ifdef CONFIG_GROUP_SCHED
8634 static void free_sched_group(struct task_group *tg)
8635 {
8636 free_fair_sched_group(tg);
8637 free_rt_sched_group(tg);
8638 kfree(tg);
8639 }
8640
8641 /* allocate runqueue etc for a new task group */
8642 struct task_group *sched_create_group(struct task_group *parent)
8643 {
8644 struct task_group *tg;
8645 unsigned long flags;
8646 int i;
8647
8648 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8649 if (!tg)
8650 return ERR_PTR(-ENOMEM);
8651
8652 if (!alloc_fair_sched_group(tg, parent))
8653 goto err;
8654
8655 if (!alloc_rt_sched_group(tg, parent))
8656 goto err;
8657
8658 spin_lock_irqsave(&task_group_lock, flags);
8659 for_each_possible_cpu(i) {
8660 register_fair_sched_group(tg, i);
8661 register_rt_sched_group(tg, i);
8662 }
8663 list_add_rcu(&tg->list, &task_groups);
8664
8665 WARN_ON(!parent); /* root should already exist */
8666
8667 tg->parent = parent;
8668 INIT_LIST_HEAD(&tg->children);
8669 list_add_rcu(&tg->siblings, &parent->children);
8670 spin_unlock_irqrestore(&task_group_lock, flags);
8671
8672 return tg;
8673
8674 err:
8675 free_sched_group(tg);
8676 return ERR_PTR(-ENOMEM);
8677 }
8678
8679 /* rcu callback to free various structures associated with a task group */
8680 static void free_sched_group_rcu(struct rcu_head *rhp)
8681 {
8682 /* now it should be safe to free those cfs_rqs */
8683 free_sched_group(container_of(rhp, struct task_group, rcu));
8684 }
8685
8686 /* Destroy runqueue etc associated with a task group */
8687 void sched_destroy_group(struct task_group *tg)
8688 {
8689 unsigned long flags;
8690 int i;
8691
8692 spin_lock_irqsave(&task_group_lock, flags);
8693 for_each_possible_cpu(i) {
8694 unregister_fair_sched_group(tg, i);
8695 unregister_rt_sched_group(tg, i);
8696 }
8697 list_del_rcu(&tg->list);
8698 list_del_rcu(&tg->siblings);
8699 spin_unlock_irqrestore(&task_group_lock, flags);
8700
8701 /* wait for possible concurrent references to cfs_rqs complete */
8702 call_rcu(&tg->rcu, free_sched_group_rcu);
8703 }
8704
8705 /* change task's runqueue when it moves between groups.
8706 * The caller of this function should have put the task in its new group
8707 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8708 * reflect its new group.
8709 */
8710 void sched_move_task(struct task_struct *tsk)
8711 {
8712 int on_rq, running;
8713 unsigned long flags;
8714 struct rq *rq;
8715
8716 rq = task_rq_lock(tsk, &flags);
8717
8718 update_rq_clock(rq);
8719
8720 running = task_current(rq, tsk);
8721 on_rq = tsk->se.on_rq;
8722
8723 if (on_rq)
8724 dequeue_task(rq, tsk, 0);
8725 if (unlikely(running))
8726 tsk->sched_class->put_prev_task(rq, tsk);
8727
8728 set_task_rq(tsk, task_cpu(tsk));
8729
8730 #ifdef CONFIG_FAIR_GROUP_SCHED
8731 if (tsk->sched_class->moved_group)
8732 tsk->sched_class->moved_group(tsk);
8733 #endif
8734
8735 if (unlikely(running))
8736 tsk->sched_class->set_curr_task(rq);
8737 if (on_rq)
8738 enqueue_task(rq, tsk, 0);
8739
8740 task_rq_unlock(rq, &flags);
8741 }
8742 #endif /* CONFIG_GROUP_SCHED */
8743
8744 #ifdef CONFIG_FAIR_GROUP_SCHED
8745 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
8746 {
8747 struct cfs_rq *cfs_rq = se->cfs_rq;
8748 int on_rq;
8749
8750 on_rq = se->on_rq;
8751 if (on_rq)
8752 dequeue_entity(cfs_rq, se, 0);
8753
8754 se->load.weight = shares;
8755 se->load.inv_weight = 0;
8756
8757 if (on_rq)
8758 enqueue_entity(cfs_rq, se, 0);
8759 }
8760
8761 static void set_se_shares(struct sched_entity *se, unsigned long shares)
8762 {
8763 struct cfs_rq *cfs_rq = se->cfs_rq;
8764 struct rq *rq = cfs_rq->rq;
8765 unsigned long flags;
8766
8767 spin_lock_irqsave(&rq->lock, flags);
8768 __set_se_shares(se, shares);
8769 spin_unlock_irqrestore(&rq->lock, flags);
8770 }
8771
8772 static DEFINE_MUTEX(shares_mutex);
8773
8774 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8775 {
8776 int i;
8777 unsigned long flags;
8778
8779 /*
8780 * We can't change the weight of the root cgroup.
8781 */
8782 if (!tg->se[0])
8783 return -EINVAL;
8784
8785 if (shares < MIN_SHARES)
8786 shares = MIN_SHARES;
8787 else if (shares > MAX_SHARES)
8788 shares = MAX_SHARES;
8789
8790 mutex_lock(&shares_mutex);
8791 if (tg->shares == shares)
8792 goto done;
8793
8794 spin_lock_irqsave(&task_group_lock, flags);
8795 for_each_possible_cpu(i)
8796 unregister_fair_sched_group(tg, i);
8797 list_del_rcu(&tg->siblings);
8798 spin_unlock_irqrestore(&task_group_lock, flags);
8799
8800 /* wait for any ongoing reference to this group to finish */
8801 synchronize_sched();
8802
8803 /*
8804 * Now we are free to modify the group's share on each cpu
8805 * w/o tripping rebalance_share or load_balance_fair.
8806 */
8807 tg->shares = shares;
8808 for_each_possible_cpu(i) {
8809 /*
8810 * force a rebalance
8811 */
8812 cfs_rq_set_shares(tg->cfs_rq[i], 0);
8813 set_se_shares(tg->se[i], shares);
8814 }
8815
8816 /*
8817 * Enable load balance activity on this group, by inserting it back on
8818 * each cpu's rq->leaf_cfs_rq_list.
8819 */
8820 spin_lock_irqsave(&task_group_lock, flags);
8821 for_each_possible_cpu(i)
8822 register_fair_sched_group(tg, i);
8823 list_add_rcu(&tg->siblings, &tg->parent->children);
8824 spin_unlock_irqrestore(&task_group_lock, flags);
8825 done:
8826 mutex_unlock(&shares_mutex);
8827 return 0;
8828 }
8829
8830 unsigned long sched_group_shares(struct task_group *tg)
8831 {
8832 return tg->shares;
8833 }
8834 #endif
8835
8836 #ifdef CONFIG_RT_GROUP_SCHED
8837 /*
8838 * Ensure that the real time constraints are schedulable.
8839 */
8840 static DEFINE_MUTEX(rt_constraints_mutex);
8841
8842 static unsigned long to_ratio(u64 period, u64 runtime)
8843 {
8844 if (runtime == RUNTIME_INF)
8845 return 1ULL << 20;
8846
8847 return div64_u64(runtime << 20, period);
8848 }
8849
8850 /* Must be called with tasklist_lock held */
8851 static inline int tg_has_rt_tasks(struct task_group *tg)
8852 {
8853 struct task_struct *g, *p;
8854
8855 do_each_thread(g, p) {
8856 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8857 return 1;
8858 } while_each_thread(g, p);
8859
8860 return 0;
8861 }
8862
8863 struct rt_schedulable_data {
8864 struct task_group *tg;
8865 u64 rt_period;
8866 u64 rt_runtime;
8867 };
8868
8869 static int tg_schedulable(struct task_group *tg, void *data)
8870 {
8871 struct rt_schedulable_data *d = data;
8872 struct task_group *child;
8873 unsigned long total, sum = 0;
8874 u64 period, runtime;
8875
8876 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8877 runtime = tg->rt_bandwidth.rt_runtime;
8878
8879 if (tg == d->tg) {
8880 period = d->rt_period;
8881 runtime = d->rt_runtime;
8882 }
8883
8884 /*
8885 * Cannot have more runtime than the period.
8886 */
8887 if (runtime > period && runtime != RUNTIME_INF)
8888 return -EINVAL;
8889
8890 /*
8891 * Ensure we don't starve existing RT tasks.
8892 */
8893 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8894 return -EBUSY;
8895
8896 total = to_ratio(period, runtime);
8897
8898 /*
8899 * Nobody can have more than the global setting allows.
8900 */
8901 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8902 return -EINVAL;
8903
8904 /*
8905 * The sum of our children's runtime should not exceed our own.
8906 */
8907 list_for_each_entry_rcu(child, &tg->children, siblings) {
8908 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8909 runtime = child->rt_bandwidth.rt_runtime;
8910
8911 if (child == d->tg) {
8912 period = d->rt_period;
8913 runtime = d->rt_runtime;
8914 }
8915
8916 sum += to_ratio(period, runtime);
8917 }
8918
8919 if (sum > total)
8920 return -EINVAL;
8921
8922 return 0;
8923 }
8924
8925 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8926 {
8927 struct rt_schedulable_data data = {
8928 .tg = tg,
8929 .rt_period = period,
8930 .rt_runtime = runtime,
8931 };
8932
8933 return walk_tg_tree(tg_schedulable, tg_nop, &data);
8934 }
8935
8936 static int tg_set_bandwidth(struct task_group *tg,
8937 u64 rt_period, u64 rt_runtime)
8938 {
8939 int i, err = 0;
8940
8941 mutex_lock(&rt_constraints_mutex);
8942 read_lock(&tasklist_lock);
8943 err = __rt_schedulable(tg, rt_period, rt_runtime);
8944 if (err)
8945 goto unlock;
8946
8947 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8948 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8949 tg->rt_bandwidth.rt_runtime = rt_runtime;
8950
8951 for_each_possible_cpu(i) {
8952 struct rt_rq *rt_rq = tg->rt_rq[i];
8953
8954 spin_lock(&rt_rq->rt_runtime_lock);
8955 rt_rq->rt_runtime = rt_runtime;
8956 spin_unlock(&rt_rq->rt_runtime_lock);
8957 }
8958 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8959 unlock:
8960 read_unlock(&tasklist_lock);
8961 mutex_unlock(&rt_constraints_mutex);
8962
8963 return err;
8964 }
8965
8966 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8967 {
8968 u64 rt_runtime, rt_period;
8969
8970 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8971 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8972 if (rt_runtime_us < 0)
8973 rt_runtime = RUNTIME_INF;
8974
8975 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8976 }
8977
8978 long sched_group_rt_runtime(struct task_group *tg)
8979 {
8980 u64 rt_runtime_us;
8981
8982 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8983 return -1;
8984
8985 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8986 do_div(rt_runtime_us, NSEC_PER_USEC);
8987 return rt_runtime_us;
8988 }
8989
8990 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8991 {
8992 u64 rt_runtime, rt_period;
8993
8994 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8995 rt_runtime = tg->rt_bandwidth.rt_runtime;
8996
8997 if (rt_period == 0)
8998 return -EINVAL;
8999
9000 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9001 }
9002
9003 long sched_group_rt_period(struct task_group *tg)
9004 {
9005 u64 rt_period_us;
9006
9007 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
9008 do_div(rt_period_us, NSEC_PER_USEC);
9009 return rt_period_us;
9010 }
9011
9012 static int sched_rt_global_constraints(void)
9013 {
9014 u64 runtime, period;
9015 int ret = 0;
9016
9017 if (sysctl_sched_rt_period <= 0)
9018 return -EINVAL;
9019
9020 runtime = global_rt_runtime();
9021 period = global_rt_period();
9022
9023 /*
9024 * Sanity check on the sysctl variables.
9025 */
9026 if (runtime > period && runtime != RUNTIME_INF)
9027 return -EINVAL;
9028
9029 mutex_lock(&rt_constraints_mutex);
9030 read_lock(&tasklist_lock);
9031 ret = __rt_schedulable(NULL, 0, 0);
9032 read_unlock(&tasklist_lock);
9033 mutex_unlock(&rt_constraints_mutex);
9034
9035 return ret;
9036 }
9037 #else /* !CONFIG_RT_GROUP_SCHED */
9038 static int sched_rt_global_constraints(void)
9039 {
9040 unsigned long flags;
9041 int i;
9042
9043 if (sysctl_sched_rt_period <= 0)
9044 return -EINVAL;
9045
9046 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9047 for_each_possible_cpu(i) {
9048 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9049
9050 spin_lock(&rt_rq->rt_runtime_lock);
9051 rt_rq->rt_runtime = global_rt_runtime();
9052 spin_unlock(&rt_rq->rt_runtime_lock);
9053 }
9054 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9055
9056 return 0;
9057 }
9058 #endif /* CONFIG_RT_GROUP_SCHED */
9059
9060 int sched_rt_handler(struct ctl_table *table, int write,
9061 struct file *filp, void __user *buffer, size_t *lenp,
9062 loff_t *ppos)
9063 {
9064 int ret;
9065 int old_period, old_runtime;
9066 static DEFINE_MUTEX(mutex);
9067
9068 mutex_lock(&mutex);
9069 old_period = sysctl_sched_rt_period;
9070 old_runtime = sysctl_sched_rt_runtime;
9071
9072 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
9073
9074 if (!ret && write) {
9075 ret = sched_rt_global_constraints();
9076 if (ret) {
9077 sysctl_sched_rt_period = old_period;
9078 sysctl_sched_rt_runtime = old_runtime;
9079 } else {
9080 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9081 def_rt_bandwidth.rt_period =
9082 ns_to_ktime(global_rt_period());
9083 }
9084 }
9085 mutex_unlock(&mutex);
9086
9087 return ret;
9088 }
9089
9090 #ifdef CONFIG_CGROUP_SCHED
9091
9092 /* return corresponding task_group object of a cgroup */
9093 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9094 {
9095 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9096 struct task_group, css);
9097 }
9098
9099 static struct cgroup_subsys_state *
9100 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9101 {
9102 struct task_group *tg, *parent;
9103
9104 if (!cgrp->parent) {
9105 /* This is early initialization for the top cgroup */
9106 return &init_task_group.css;
9107 }
9108
9109 parent = cgroup_tg(cgrp->parent);
9110 tg = sched_create_group(parent);
9111 if (IS_ERR(tg))
9112 return ERR_PTR(-ENOMEM);
9113
9114 return &tg->css;
9115 }
9116
9117 static void
9118 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9119 {
9120 struct task_group *tg = cgroup_tg(cgrp);
9121
9122 sched_destroy_group(tg);
9123 }
9124
9125 static int
9126 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9127 struct task_struct *tsk)
9128 {
9129 #ifdef CONFIG_RT_GROUP_SCHED
9130 /* Don't accept realtime tasks when there is no way for them to run */
9131 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
9132 return -EINVAL;
9133 #else
9134 /* We don't support RT-tasks being in separate groups */
9135 if (tsk->sched_class != &fair_sched_class)
9136 return -EINVAL;
9137 #endif
9138
9139 return 0;
9140 }
9141
9142 static void
9143 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9144 struct cgroup *old_cont, struct task_struct *tsk)
9145 {
9146 sched_move_task(tsk);
9147 }
9148
9149 #ifdef CONFIG_FAIR_GROUP_SCHED
9150 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9151 u64 shareval)
9152 {
9153 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9154 }
9155
9156 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9157 {
9158 struct task_group *tg = cgroup_tg(cgrp);
9159
9160 return (u64) tg->shares;
9161 }
9162 #endif /* CONFIG_FAIR_GROUP_SCHED */
9163
9164 #ifdef CONFIG_RT_GROUP_SCHED
9165 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9166 s64 val)
9167 {
9168 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
9169 }
9170
9171 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
9172 {
9173 return sched_group_rt_runtime(cgroup_tg(cgrp));
9174 }
9175
9176 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9177 u64 rt_period_us)
9178 {
9179 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9180 }
9181
9182 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9183 {
9184 return sched_group_rt_period(cgroup_tg(cgrp));
9185 }
9186 #endif /* CONFIG_RT_GROUP_SCHED */
9187
9188 static struct cftype cpu_files[] = {
9189 #ifdef CONFIG_FAIR_GROUP_SCHED
9190 {
9191 .name = "shares",
9192 .read_u64 = cpu_shares_read_u64,
9193 .write_u64 = cpu_shares_write_u64,
9194 },
9195 #endif
9196 #ifdef CONFIG_RT_GROUP_SCHED
9197 {
9198 .name = "rt_runtime_us",
9199 .read_s64 = cpu_rt_runtime_read,
9200 .write_s64 = cpu_rt_runtime_write,
9201 },
9202 {
9203 .name = "rt_period_us",
9204 .read_u64 = cpu_rt_period_read_uint,
9205 .write_u64 = cpu_rt_period_write_uint,
9206 },
9207 #endif
9208 };
9209
9210 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9211 {
9212 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9213 }
9214
9215 struct cgroup_subsys cpu_cgroup_subsys = {
9216 .name = "cpu",
9217 .create = cpu_cgroup_create,
9218 .destroy = cpu_cgroup_destroy,
9219 .can_attach = cpu_cgroup_can_attach,
9220 .attach = cpu_cgroup_attach,
9221 .populate = cpu_cgroup_populate,
9222 .subsys_id = cpu_cgroup_subsys_id,
9223 .early_init = 1,
9224 };
9225
9226 #endif /* CONFIG_CGROUP_SCHED */
9227
9228 #ifdef CONFIG_CGROUP_CPUACCT
9229
9230 /*
9231 * CPU accounting code for task groups.
9232 *
9233 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9234 * (balbir@in.ibm.com).
9235 */
9236
9237 /* track cpu usage of a group of tasks */
9238 struct cpuacct {
9239 struct cgroup_subsys_state css;
9240 /* cpuusage holds pointer to a u64-type object on every cpu */
9241 u64 *cpuusage;
9242 };
9243
9244 struct cgroup_subsys cpuacct_subsys;
9245
9246 /* return cpu accounting group corresponding to this container */
9247 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9248 {
9249 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9250 struct cpuacct, css);
9251 }
9252
9253 /* return cpu accounting group to which this task belongs */
9254 static inline struct cpuacct *task_ca(struct task_struct *tsk)
9255 {
9256 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9257 struct cpuacct, css);
9258 }
9259
9260 /* create a new cpu accounting group */
9261 static struct cgroup_subsys_state *cpuacct_create(
9262 struct cgroup_subsys *ss, struct cgroup *cgrp)
9263 {
9264 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9265
9266 if (!ca)
9267 return ERR_PTR(-ENOMEM);
9268
9269 ca->cpuusage = alloc_percpu(u64);
9270 if (!ca->cpuusage) {
9271 kfree(ca);
9272 return ERR_PTR(-ENOMEM);
9273 }
9274
9275 return &ca->css;
9276 }
9277
9278 /* destroy an existing cpu accounting group */
9279 static void
9280 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9281 {
9282 struct cpuacct *ca = cgroup_ca(cgrp);
9283
9284 free_percpu(ca->cpuusage);
9285 kfree(ca);
9286 }
9287
9288 /* return total cpu usage (in nanoseconds) of a group */
9289 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9290 {
9291 struct cpuacct *ca = cgroup_ca(cgrp);
9292 u64 totalcpuusage = 0;
9293 int i;
9294
9295 for_each_possible_cpu(i) {
9296 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9297
9298 /*
9299 * Take rq->lock to make 64-bit addition safe on 32-bit
9300 * platforms.
9301 */
9302 spin_lock_irq(&cpu_rq(i)->lock);
9303 totalcpuusage += *cpuusage;
9304 spin_unlock_irq(&cpu_rq(i)->lock);
9305 }
9306
9307 return totalcpuusage;
9308 }
9309
9310 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9311 u64 reset)
9312 {
9313 struct cpuacct *ca = cgroup_ca(cgrp);
9314 int err = 0;
9315 int i;
9316
9317 if (reset) {
9318 err = -EINVAL;
9319 goto out;
9320 }
9321
9322 for_each_possible_cpu(i) {
9323 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9324
9325 spin_lock_irq(&cpu_rq(i)->lock);
9326 *cpuusage = 0;
9327 spin_unlock_irq(&cpu_rq(i)->lock);
9328 }
9329 out:
9330 return err;
9331 }
9332
9333 static struct cftype files[] = {
9334 {
9335 .name = "usage",
9336 .read_u64 = cpuusage_read,
9337 .write_u64 = cpuusage_write,
9338 },
9339 };
9340
9341 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9342 {
9343 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9344 }
9345
9346 /*
9347 * charge this task's execution time to its accounting group.
9348 *
9349 * called with rq->lock held.
9350 */
9351 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9352 {
9353 struct cpuacct *ca;
9354
9355 if (!cpuacct_subsys.active)
9356 return;
9357
9358 ca = task_ca(tsk);
9359 if (ca) {
9360 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
9361
9362 *cpuusage += cputime;
9363 }
9364 }
9365
9366 struct cgroup_subsys cpuacct_subsys = {
9367 .name = "cpuacct",
9368 .create = cpuacct_create,
9369 .destroy = cpuacct_destroy,
9370 .populate = cpuacct_populate,
9371 .subsys_id = cpuacct_subsys_id,
9372 };
9373 #endif /* CONFIG_CGROUP_CPUACCT */
This page took 0.330853 seconds and 5 git commands to generate.