Merge branch 'x86-vdso-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/reciprocal_div.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/bootmem.h>
72 #include <linux/debugfs.h>
73 #include <linux/ctype.h>
74 #include <linux/ftrace.h>
75 #include <trace/sched.h>
76
77 #include <asm/tlb.h>
78 #include <asm/irq_regs.h>
79
80 #include "sched_cpupri.h"
81
82 /*
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85 * and back.
86 */
87 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
90
91 /*
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
95 */
96 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
99
100 /*
101 * Helpers for converting nanosecond timing to jiffy resolution
102 */
103 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
104
105 #define NICE_0_LOAD SCHED_LOAD_SCALE
106 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
107
108 /*
109 * These are the 'tuning knobs' of the scheduler:
110 *
111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
112 * Timeslices get refilled after they expire.
113 */
114 #define DEF_TIMESLICE (100 * HZ / 1000)
115
116 /*
117 * single value that denotes runtime == period, ie unlimited time.
118 */
119 #define RUNTIME_INF ((u64)~0ULL)
120
121 DEFINE_TRACE(sched_wait_task);
122 DEFINE_TRACE(sched_wakeup);
123 DEFINE_TRACE(sched_wakeup_new);
124 DEFINE_TRACE(sched_switch);
125 DEFINE_TRACE(sched_migrate_task);
126
127 #ifdef CONFIG_SMP
128
129 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
130
131 /*
132 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
133 * Since cpu_power is a 'constant', we can use a reciprocal divide.
134 */
135 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
136 {
137 return reciprocal_divide(load, sg->reciprocal_cpu_power);
138 }
139
140 /*
141 * Each time a sched group cpu_power is changed,
142 * we must compute its reciprocal value
143 */
144 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
145 {
146 sg->__cpu_power += val;
147 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
148 }
149 #endif
150
151 static inline int rt_policy(int policy)
152 {
153 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
154 return 1;
155 return 0;
156 }
157
158 static inline int task_has_rt_policy(struct task_struct *p)
159 {
160 return rt_policy(p->policy);
161 }
162
163 /*
164 * This is the priority-queue data structure of the RT scheduling class:
165 */
166 struct rt_prio_array {
167 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
168 struct list_head queue[MAX_RT_PRIO];
169 };
170
171 struct rt_bandwidth {
172 /* nests inside the rq lock: */
173 spinlock_t rt_runtime_lock;
174 ktime_t rt_period;
175 u64 rt_runtime;
176 struct hrtimer rt_period_timer;
177 };
178
179 static struct rt_bandwidth def_rt_bandwidth;
180
181 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
182
183 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
184 {
185 struct rt_bandwidth *rt_b =
186 container_of(timer, struct rt_bandwidth, rt_period_timer);
187 ktime_t now;
188 int overrun;
189 int idle = 0;
190
191 for (;;) {
192 now = hrtimer_cb_get_time(timer);
193 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
194
195 if (!overrun)
196 break;
197
198 idle = do_sched_rt_period_timer(rt_b, overrun);
199 }
200
201 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
202 }
203
204 static
205 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
206 {
207 rt_b->rt_period = ns_to_ktime(period);
208 rt_b->rt_runtime = runtime;
209
210 spin_lock_init(&rt_b->rt_runtime_lock);
211
212 hrtimer_init(&rt_b->rt_period_timer,
213 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
214 rt_b->rt_period_timer.function = sched_rt_period_timer;
215 }
216
217 static inline int rt_bandwidth_enabled(void)
218 {
219 return sysctl_sched_rt_runtime >= 0;
220 }
221
222 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
223 {
224 ktime_t now;
225
226 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
227 return;
228
229 if (hrtimer_active(&rt_b->rt_period_timer))
230 return;
231
232 spin_lock(&rt_b->rt_runtime_lock);
233 for (;;) {
234 unsigned long delta;
235 ktime_t soft, hard;
236
237 if (hrtimer_active(&rt_b->rt_period_timer))
238 break;
239
240 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
241 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
242
243 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
244 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
245 delta = ktime_to_ns(ktime_sub(hard, soft));
246 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
247 HRTIMER_MODE_ABS, 0);
248 }
249 spin_unlock(&rt_b->rt_runtime_lock);
250 }
251
252 #ifdef CONFIG_RT_GROUP_SCHED
253 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
254 {
255 hrtimer_cancel(&rt_b->rt_period_timer);
256 }
257 #endif
258
259 /*
260 * sched_domains_mutex serializes calls to arch_init_sched_domains,
261 * detach_destroy_domains and partition_sched_domains.
262 */
263 static DEFINE_MUTEX(sched_domains_mutex);
264
265 #ifdef CONFIG_GROUP_SCHED
266
267 #include <linux/cgroup.h>
268
269 struct cfs_rq;
270
271 static LIST_HEAD(task_groups);
272
273 /* task group related information */
274 struct task_group {
275 #ifdef CONFIG_CGROUP_SCHED
276 struct cgroup_subsys_state css;
277 #endif
278
279 #ifdef CONFIG_USER_SCHED
280 uid_t uid;
281 #endif
282
283 #ifdef CONFIG_FAIR_GROUP_SCHED
284 /* schedulable entities of this group on each cpu */
285 struct sched_entity **se;
286 /* runqueue "owned" by this group on each cpu */
287 struct cfs_rq **cfs_rq;
288 unsigned long shares;
289 #endif
290
291 #ifdef CONFIG_RT_GROUP_SCHED
292 struct sched_rt_entity **rt_se;
293 struct rt_rq **rt_rq;
294
295 struct rt_bandwidth rt_bandwidth;
296 #endif
297
298 struct rcu_head rcu;
299 struct list_head list;
300
301 struct task_group *parent;
302 struct list_head siblings;
303 struct list_head children;
304 };
305
306 #ifdef CONFIG_USER_SCHED
307
308 /* Helper function to pass uid information to create_sched_user() */
309 void set_tg_uid(struct user_struct *user)
310 {
311 user->tg->uid = user->uid;
312 }
313
314 /*
315 * Root task group.
316 * Every UID task group (including init_task_group aka UID-0) will
317 * be a child to this group.
318 */
319 struct task_group root_task_group;
320
321 #ifdef CONFIG_FAIR_GROUP_SCHED
322 /* Default task group's sched entity on each cpu */
323 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
324 /* Default task group's cfs_rq on each cpu */
325 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
326 #endif /* CONFIG_FAIR_GROUP_SCHED */
327
328 #ifdef CONFIG_RT_GROUP_SCHED
329 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
330 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
331 #endif /* CONFIG_RT_GROUP_SCHED */
332 #else /* !CONFIG_USER_SCHED */
333 #define root_task_group init_task_group
334 #endif /* CONFIG_USER_SCHED */
335
336 /* task_group_lock serializes add/remove of task groups and also changes to
337 * a task group's cpu shares.
338 */
339 static DEFINE_SPINLOCK(task_group_lock);
340
341 #ifdef CONFIG_SMP
342 static int root_task_group_empty(void)
343 {
344 return list_empty(&root_task_group.children);
345 }
346 #endif
347
348 #ifdef CONFIG_FAIR_GROUP_SCHED
349 #ifdef CONFIG_USER_SCHED
350 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
351 #else /* !CONFIG_USER_SCHED */
352 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
353 #endif /* CONFIG_USER_SCHED */
354
355 /*
356 * A weight of 0 or 1 can cause arithmetics problems.
357 * A weight of a cfs_rq is the sum of weights of which entities
358 * are queued on this cfs_rq, so a weight of a entity should not be
359 * too large, so as the shares value of a task group.
360 * (The default weight is 1024 - so there's no practical
361 * limitation from this.)
362 */
363 #define MIN_SHARES 2
364 #define MAX_SHARES (1UL << 18)
365
366 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
367 #endif
368
369 /* Default task group.
370 * Every task in system belong to this group at bootup.
371 */
372 struct task_group init_task_group;
373
374 /* return group to which a task belongs */
375 static inline struct task_group *task_group(struct task_struct *p)
376 {
377 struct task_group *tg;
378
379 #ifdef CONFIG_USER_SCHED
380 rcu_read_lock();
381 tg = __task_cred(p)->user->tg;
382 rcu_read_unlock();
383 #elif defined(CONFIG_CGROUP_SCHED)
384 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
385 struct task_group, css);
386 #else
387 tg = &init_task_group;
388 #endif
389 return tg;
390 }
391
392 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
393 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
394 {
395 #ifdef CONFIG_FAIR_GROUP_SCHED
396 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
397 p->se.parent = task_group(p)->se[cpu];
398 #endif
399
400 #ifdef CONFIG_RT_GROUP_SCHED
401 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
402 p->rt.parent = task_group(p)->rt_se[cpu];
403 #endif
404 }
405
406 #else
407
408 #ifdef CONFIG_SMP
409 static int root_task_group_empty(void)
410 {
411 return 1;
412 }
413 #endif
414
415 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
416 static inline struct task_group *task_group(struct task_struct *p)
417 {
418 return NULL;
419 }
420
421 #endif /* CONFIG_GROUP_SCHED */
422
423 /* CFS-related fields in a runqueue */
424 struct cfs_rq {
425 struct load_weight load;
426 unsigned long nr_running;
427
428 u64 exec_clock;
429 u64 min_vruntime;
430
431 struct rb_root tasks_timeline;
432 struct rb_node *rb_leftmost;
433
434 struct list_head tasks;
435 struct list_head *balance_iterator;
436
437 /*
438 * 'curr' points to currently running entity on this cfs_rq.
439 * It is set to NULL otherwise (i.e when none are currently running).
440 */
441 struct sched_entity *curr, *next, *last;
442
443 unsigned int nr_spread_over;
444
445 #ifdef CONFIG_FAIR_GROUP_SCHED
446 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
447
448 /*
449 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
450 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
451 * (like users, containers etc.)
452 *
453 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
454 * list is used during load balance.
455 */
456 struct list_head leaf_cfs_rq_list;
457 struct task_group *tg; /* group that "owns" this runqueue */
458
459 #ifdef CONFIG_SMP
460 /*
461 * the part of load.weight contributed by tasks
462 */
463 unsigned long task_weight;
464
465 /*
466 * h_load = weight * f(tg)
467 *
468 * Where f(tg) is the recursive weight fraction assigned to
469 * this group.
470 */
471 unsigned long h_load;
472
473 /*
474 * this cpu's part of tg->shares
475 */
476 unsigned long shares;
477
478 /*
479 * load.weight at the time we set shares
480 */
481 unsigned long rq_weight;
482 #endif
483 #endif
484 };
485
486 /* Real-Time classes' related field in a runqueue: */
487 struct rt_rq {
488 struct rt_prio_array active;
489 unsigned long rt_nr_running;
490 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
491 struct {
492 int curr; /* highest queued rt task prio */
493 #ifdef CONFIG_SMP
494 int next; /* next highest */
495 #endif
496 } highest_prio;
497 #endif
498 #ifdef CONFIG_SMP
499 unsigned long rt_nr_migratory;
500 int overloaded;
501 struct plist_head pushable_tasks;
502 #endif
503 int rt_throttled;
504 u64 rt_time;
505 u64 rt_runtime;
506 /* Nests inside the rq lock: */
507 spinlock_t rt_runtime_lock;
508
509 #ifdef CONFIG_RT_GROUP_SCHED
510 unsigned long rt_nr_boosted;
511
512 struct rq *rq;
513 struct list_head leaf_rt_rq_list;
514 struct task_group *tg;
515 struct sched_rt_entity *rt_se;
516 #endif
517 };
518
519 #ifdef CONFIG_SMP
520
521 /*
522 * We add the notion of a root-domain which will be used to define per-domain
523 * variables. Each exclusive cpuset essentially defines an island domain by
524 * fully partitioning the member cpus from any other cpuset. Whenever a new
525 * exclusive cpuset is created, we also create and attach a new root-domain
526 * object.
527 *
528 */
529 struct root_domain {
530 atomic_t refcount;
531 cpumask_var_t span;
532 cpumask_var_t online;
533
534 /*
535 * The "RT overload" flag: it gets set if a CPU has more than
536 * one runnable RT task.
537 */
538 cpumask_var_t rto_mask;
539 atomic_t rto_count;
540 #ifdef CONFIG_SMP
541 struct cpupri cpupri;
542 #endif
543 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
544 /*
545 * Preferred wake up cpu nominated by sched_mc balance that will be
546 * used when most cpus are idle in the system indicating overall very
547 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
548 */
549 unsigned int sched_mc_preferred_wakeup_cpu;
550 #endif
551 };
552
553 /*
554 * By default the system creates a single root-domain with all cpus as
555 * members (mimicking the global state we have today).
556 */
557 static struct root_domain def_root_domain;
558
559 #endif
560
561 /*
562 * This is the main, per-CPU runqueue data structure.
563 *
564 * Locking rule: those places that want to lock multiple runqueues
565 * (such as the load balancing or the thread migration code), lock
566 * acquire operations must be ordered by ascending &runqueue.
567 */
568 struct rq {
569 /* runqueue lock: */
570 spinlock_t lock;
571
572 /*
573 * nr_running and cpu_load should be in the same cacheline because
574 * remote CPUs use both these fields when doing load calculation.
575 */
576 unsigned long nr_running;
577 #define CPU_LOAD_IDX_MAX 5
578 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
579 #ifdef CONFIG_NO_HZ
580 unsigned long last_tick_seen;
581 unsigned char in_nohz_recently;
582 #endif
583 /* capture load from *all* tasks on this cpu: */
584 struct load_weight load;
585 unsigned long nr_load_updates;
586 u64 nr_switches;
587
588 struct cfs_rq cfs;
589 struct rt_rq rt;
590
591 #ifdef CONFIG_FAIR_GROUP_SCHED
592 /* list of leaf cfs_rq on this cpu: */
593 struct list_head leaf_cfs_rq_list;
594 #endif
595 #ifdef CONFIG_RT_GROUP_SCHED
596 struct list_head leaf_rt_rq_list;
597 #endif
598
599 /*
600 * This is part of a global counter where only the total sum
601 * over all CPUs matters. A task can increase this counter on
602 * one CPU and if it got migrated afterwards it may decrease
603 * it on another CPU. Always updated under the runqueue lock:
604 */
605 unsigned long nr_uninterruptible;
606
607 struct task_struct *curr, *idle;
608 unsigned long next_balance;
609 struct mm_struct *prev_mm;
610
611 u64 clock;
612
613 atomic_t nr_iowait;
614
615 #ifdef CONFIG_SMP
616 struct root_domain *rd;
617 struct sched_domain *sd;
618
619 unsigned char idle_at_tick;
620 /* For active balancing */
621 int active_balance;
622 int push_cpu;
623 /* cpu of this runqueue: */
624 int cpu;
625 int online;
626
627 unsigned long avg_load_per_task;
628
629 struct task_struct *migration_thread;
630 struct list_head migration_queue;
631 #endif
632
633 /* calc_load related fields */
634 unsigned long calc_load_update;
635 long calc_load_active;
636
637 #ifdef CONFIG_SCHED_HRTICK
638 #ifdef CONFIG_SMP
639 int hrtick_csd_pending;
640 struct call_single_data hrtick_csd;
641 #endif
642 struct hrtimer hrtick_timer;
643 #endif
644
645 #ifdef CONFIG_SCHEDSTATS
646 /* latency stats */
647 struct sched_info rq_sched_info;
648 unsigned long long rq_cpu_time;
649 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
650
651 /* sys_sched_yield() stats */
652 unsigned int yld_count;
653
654 /* schedule() stats */
655 unsigned int sched_switch;
656 unsigned int sched_count;
657 unsigned int sched_goidle;
658
659 /* try_to_wake_up() stats */
660 unsigned int ttwu_count;
661 unsigned int ttwu_local;
662
663 /* BKL stats */
664 unsigned int bkl_count;
665 #endif
666 };
667
668 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
669
670 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
671 {
672 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
673 }
674
675 static inline int cpu_of(struct rq *rq)
676 {
677 #ifdef CONFIG_SMP
678 return rq->cpu;
679 #else
680 return 0;
681 #endif
682 }
683
684 /*
685 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
686 * See detach_destroy_domains: synchronize_sched for details.
687 *
688 * The domain tree of any CPU may only be accessed from within
689 * preempt-disabled sections.
690 */
691 #define for_each_domain(cpu, __sd) \
692 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
693
694 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
695 #define this_rq() (&__get_cpu_var(runqueues))
696 #define task_rq(p) cpu_rq(task_cpu(p))
697 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
698
699 static inline void update_rq_clock(struct rq *rq)
700 {
701 rq->clock = sched_clock_cpu(cpu_of(rq));
702 }
703
704 /*
705 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
706 */
707 #ifdef CONFIG_SCHED_DEBUG
708 # define const_debug __read_mostly
709 #else
710 # define const_debug static const
711 #endif
712
713 /**
714 * runqueue_is_locked
715 *
716 * Returns true if the current cpu runqueue is locked.
717 * This interface allows printk to be called with the runqueue lock
718 * held and know whether or not it is OK to wake up the klogd.
719 */
720 int runqueue_is_locked(void)
721 {
722 int cpu = get_cpu();
723 struct rq *rq = cpu_rq(cpu);
724 int ret;
725
726 ret = spin_is_locked(&rq->lock);
727 put_cpu();
728 return ret;
729 }
730
731 /*
732 * Debugging: various feature bits
733 */
734
735 #define SCHED_FEAT(name, enabled) \
736 __SCHED_FEAT_##name ,
737
738 enum {
739 #include "sched_features.h"
740 };
741
742 #undef SCHED_FEAT
743
744 #define SCHED_FEAT(name, enabled) \
745 (1UL << __SCHED_FEAT_##name) * enabled |
746
747 const_debug unsigned int sysctl_sched_features =
748 #include "sched_features.h"
749 0;
750
751 #undef SCHED_FEAT
752
753 #ifdef CONFIG_SCHED_DEBUG
754 #define SCHED_FEAT(name, enabled) \
755 #name ,
756
757 static __read_mostly char *sched_feat_names[] = {
758 #include "sched_features.h"
759 NULL
760 };
761
762 #undef SCHED_FEAT
763
764 static int sched_feat_show(struct seq_file *m, void *v)
765 {
766 int i;
767
768 for (i = 0; sched_feat_names[i]; i++) {
769 if (!(sysctl_sched_features & (1UL << i)))
770 seq_puts(m, "NO_");
771 seq_printf(m, "%s ", sched_feat_names[i]);
772 }
773 seq_puts(m, "\n");
774
775 return 0;
776 }
777
778 static ssize_t
779 sched_feat_write(struct file *filp, const char __user *ubuf,
780 size_t cnt, loff_t *ppos)
781 {
782 char buf[64];
783 char *cmp = buf;
784 int neg = 0;
785 int i;
786
787 if (cnt > 63)
788 cnt = 63;
789
790 if (copy_from_user(&buf, ubuf, cnt))
791 return -EFAULT;
792
793 buf[cnt] = 0;
794
795 if (strncmp(buf, "NO_", 3) == 0) {
796 neg = 1;
797 cmp += 3;
798 }
799
800 for (i = 0; sched_feat_names[i]; i++) {
801 int len = strlen(sched_feat_names[i]);
802
803 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
804 if (neg)
805 sysctl_sched_features &= ~(1UL << i);
806 else
807 sysctl_sched_features |= (1UL << i);
808 break;
809 }
810 }
811
812 if (!sched_feat_names[i])
813 return -EINVAL;
814
815 filp->f_pos += cnt;
816
817 return cnt;
818 }
819
820 static int sched_feat_open(struct inode *inode, struct file *filp)
821 {
822 return single_open(filp, sched_feat_show, NULL);
823 }
824
825 static struct file_operations sched_feat_fops = {
826 .open = sched_feat_open,
827 .write = sched_feat_write,
828 .read = seq_read,
829 .llseek = seq_lseek,
830 .release = single_release,
831 };
832
833 static __init int sched_init_debug(void)
834 {
835 debugfs_create_file("sched_features", 0644, NULL, NULL,
836 &sched_feat_fops);
837
838 return 0;
839 }
840 late_initcall(sched_init_debug);
841
842 #endif
843
844 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
845
846 /*
847 * Number of tasks to iterate in a single balance run.
848 * Limited because this is done with IRQs disabled.
849 */
850 const_debug unsigned int sysctl_sched_nr_migrate = 32;
851
852 /*
853 * ratelimit for updating the group shares.
854 * default: 0.25ms
855 */
856 unsigned int sysctl_sched_shares_ratelimit = 250000;
857
858 /*
859 * Inject some fuzzyness into changing the per-cpu group shares
860 * this avoids remote rq-locks at the expense of fairness.
861 * default: 4
862 */
863 unsigned int sysctl_sched_shares_thresh = 4;
864
865 /*
866 * period over which we measure -rt task cpu usage in us.
867 * default: 1s
868 */
869 unsigned int sysctl_sched_rt_period = 1000000;
870
871 static __read_mostly int scheduler_running;
872
873 /*
874 * part of the period that we allow rt tasks to run in us.
875 * default: 0.95s
876 */
877 int sysctl_sched_rt_runtime = 950000;
878
879 static inline u64 global_rt_period(void)
880 {
881 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
882 }
883
884 static inline u64 global_rt_runtime(void)
885 {
886 if (sysctl_sched_rt_runtime < 0)
887 return RUNTIME_INF;
888
889 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
890 }
891
892 #ifndef prepare_arch_switch
893 # define prepare_arch_switch(next) do { } while (0)
894 #endif
895 #ifndef finish_arch_switch
896 # define finish_arch_switch(prev) do { } while (0)
897 #endif
898
899 static inline int task_current(struct rq *rq, struct task_struct *p)
900 {
901 return rq->curr == p;
902 }
903
904 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
905 static inline int task_running(struct rq *rq, struct task_struct *p)
906 {
907 return task_current(rq, p);
908 }
909
910 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
911 {
912 }
913
914 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
915 {
916 #ifdef CONFIG_DEBUG_SPINLOCK
917 /* this is a valid case when another task releases the spinlock */
918 rq->lock.owner = current;
919 #endif
920 /*
921 * If we are tracking spinlock dependencies then we have to
922 * fix up the runqueue lock - which gets 'carried over' from
923 * prev into current:
924 */
925 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
926
927 spin_unlock_irq(&rq->lock);
928 }
929
930 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
931 static inline int task_running(struct rq *rq, struct task_struct *p)
932 {
933 #ifdef CONFIG_SMP
934 return p->oncpu;
935 #else
936 return task_current(rq, p);
937 #endif
938 }
939
940 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
941 {
942 #ifdef CONFIG_SMP
943 /*
944 * We can optimise this out completely for !SMP, because the
945 * SMP rebalancing from interrupt is the only thing that cares
946 * here.
947 */
948 next->oncpu = 1;
949 #endif
950 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
951 spin_unlock_irq(&rq->lock);
952 #else
953 spin_unlock(&rq->lock);
954 #endif
955 }
956
957 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
958 {
959 #ifdef CONFIG_SMP
960 /*
961 * After ->oncpu is cleared, the task can be moved to a different CPU.
962 * We must ensure this doesn't happen until the switch is completely
963 * finished.
964 */
965 smp_wmb();
966 prev->oncpu = 0;
967 #endif
968 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
969 local_irq_enable();
970 #endif
971 }
972 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
973
974 /*
975 * __task_rq_lock - lock the runqueue a given task resides on.
976 * Must be called interrupts disabled.
977 */
978 static inline struct rq *__task_rq_lock(struct task_struct *p)
979 __acquires(rq->lock)
980 {
981 for (;;) {
982 struct rq *rq = task_rq(p);
983 spin_lock(&rq->lock);
984 if (likely(rq == task_rq(p)))
985 return rq;
986 spin_unlock(&rq->lock);
987 }
988 }
989
990 /*
991 * task_rq_lock - lock the runqueue a given task resides on and disable
992 * interrupts. Note the ordering: we can safely lookup the task_rq without
993 * explicitly disabling preemption.
994 */
995 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
996 __acquires(rq->lock)
997 {
998 struct rq *rq;
999
1000 for (;;) {
1001 local_irq_save(*flags);
1002 rq = task_rq(p);
1003 spin_lock(&rq->lock);
1004 if (likely(rq == task_rq(p)))
1005 return rq;
1006 spin_unlock_irqrestore(&rq->lock, *flags);
1007 }
1008 }
1009
1010 void task_rq_unlock_wait(struct task_struct *p)
1011 {
1012 struct rq *rq = task_rq(p);
1013
1014 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
1015 spin_unlock_wait(&rq->lock);
1016 }
1017
1018 static void __task_rq_unlock(struct rq *rq)
1019 __releases(rq->lock)
1020 {
1021 spin_unlock(&rq->lock);
1022 }
1023
1024 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1025 __releases(rq->lock)
1026 {
1027 spin_unlock_irqrestore(&rq->lock, *flags);
1028 }
1029
1030 /*
1031 * this_rq_lock - lock this runqueue and disable interrupts.
1032 */
1033 static struct rq *this_rq_lock(void)
1034 __acquires(rq->lock)
1035 {
1036 struct rq *rq;
1037
1038 local_irq_disable();
1039 rq = this_rq();
1040 spin_lock(&rq->lock);
1041
1042 return rq;
1043 }
1044
1045 #ifdef CONFIG_SCHED_HRTICK
1046 /*
1047 * Use HR-timers to deliver accurate preemption points.
1048 *
1049 * Its all a bit involved since we cannot program an hrt while holding the
1050 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1051 * reschedule event.
1052 *
1053 * When we get rescheduled we reprogram the hrtick_timer outside of the
1054 * rq->lock.
1055 */
1056
1057 /*
1058 * Use hrtick when:
1059 * - enabled by features
1060 * - hrtimer is actually high res
1061 */
1062 static inline int hrtick_enabled(struct rq *rq)
1063 {
1064 if (!sched_feat(HRTICK))
1065 return 0;
1066 if (!cpu_active(cpu_of(rq)))
1067 return 0;
1068 return hrtimer_is_hres_active(&rq->hrtick_timer);
1069 }
1070
1071 static void hrtick_clear(struct rq *rq)
1072 {
1073 if (hrtimer_active(&rq->hrtick_timer))
1074 hrtimer_cancel(&rq->hrtick_timer);
1075 }
1076
1077 /*
1078 * High-resolution timer tick.
1079 * Runs from hardirq context with interrupts disabled.
1080 */
1081 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1082 {
1083 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1084
1085 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1086
1087 spin_lock(&rq->lock);
1088 update_rq_clock(rq);
1089 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1090 spin_unlock(&rq->lock);
1091
1092 return HRTIMER_NORESTART;
1093 }
1094
1095 #ifdef CONFIG_SMP
1096 /*
1097 * called from hardirq (IPI) context
1098 */
1099 static void __hrtick_start(void *arg)
1100 {
1101 struct rq *rq = arg;
1102
1103 spin_lock(&rq->lock);
1104 hrtimer_restart(&rq->hrtick_timer);
1105 rq->hrtick_csd_pending = 0;
1106 spin_unlock(&rq->lock);
1107 }
1108
1109 /*
1110 * Called to set the hrtick timer state.
1111 *
1112 * called with rq->lock held and irqs disabled
1113 */
1114 static void hrtick_start(struct rq *rq, u64 delay)
1115 {
1116 struct hrtimer *timer = &rq->hrtick_timer;
1117 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1118
1119 hrtimer_set_expires(timer, time);
1120
1121 if (rq == this_rq()) {
1122 hrtimer_restart(timer);
1123 } else if (!rq->hrtick_csd_pending) {
1124 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1125 rq->hrtick_csd_pending = 1;
1126 }
1127 }
1128
1129 static int
1130 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1131 {
1132 int cpu = (int)(long)hcpu;
1133
1134 switch (action) {
1135 case CPU_UP_CANCELED:
1136 case CPU_UP_CANCELED_FROZEN:
1137 case CPU_DOWN_PREPARE:
1138 case CPU_DOWN_PREPARE_FROZEN:
1139 case CPU_DEAD:
1140 case CPU_DEAD_FROZEN:
1141 hrtick_clear(cpu_rq(cpu));
1142 return NOTIFY_OK;
1143 }
1144
1145 return NOTIFY_DONE;
1146 }
1147
1148 static __init void init_hrtick(void)
1149 {
1150 hotcpu_notifier(hotplug_hrtick, 0);
1151 }
1152 #else
1153 /*
1154 * Called to set the hrtick timer state.
1155 *
1156 * called with rq->lock held and irqs disabled
1157 */
1158 static void hrtick_start(struct rq *rq, u64 delay)
1159 {
1160 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1161 HRTIMER_MODE_REL, 0);
1162 }
1163
1164 static inline void init_hrtick(void)
1165 {
1166 }
1167 #endif /* CONFIG_SMP */
1168
1169 static void init_rq_hrtick(struct rq *rq)
1170 {
1171 #ifdef CONFIG_SMP
1172 rq->hrtick_csd_pending = 0;
1173
1174 rq->hrtick_csd.flags = 0;
1175 rq->hrtick_csd.func = __hrtick_start;
1176 rq->hrtick_csd.info = rq;
1177 #endif
1178
1179 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1180 rq->hrtick_timer.function = hrtick;
1181 }
1182 #else /* CONFIG_SCHED_HRTICK */
1183 static inline void hrtick_clear(struct rq *rq)
1184 {
1185 }
1186
1187 static inline void init_rq_hrtick(struct rq *rq)
1188 {
1189 }
1190
1191 static inline void init_hrtick(void)
1192 {
1193 }
1194 #endif /* CONFIG_SCHED_HRTICK */
1195
1196 /*
1197 * resched_task - mark a task 'to be rescheduled now'.
1198 *
1199 * On UP this means the setting of the need_resched flag, on SMP it
1200 * might also involve a cross-CPU call to trigger the scheduler on
1201 * the target CPU.
1202 */
1203 #ifdef CONFIG_SMP
1204
1205 #ifndef tsk_is_polling
1206 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1207 #endif
1208
1209 static void resched_task(struct task_struct *p)
1210 {
1211 int cpu;
1212
1213 assert_spin_locked(&task_rq(p)->lock);
1214
1215 if (test_tsk_need_resched(p))
1216 return;
1217
1218 set_tsk_need_resched(p);
1219
1220 cpu = task_cpu(p);
1221 if (cpu == smp_processor_id())
1222 return;
1223
1224 /* NEED_RESCHED must be visible before we test polling */
1225 smp_mb();
1226 if (!tsk_is_polling(p))
1227 smp_send_reschedule(cpu);
1228 }
1229
1230 static void resched_cpu(int cpu)
1231 {
1232 struct rq *rq = cpu_rq(cpu);
1233 unsigned long flags;
1234
1235 if (!spin_trylock_irqsave(&rq->lock, flags))
1236 return;
1237 resched_task(cpu_curr(cpu));
1238 spin_unlock_irqrestore(&rq->lock, flags);
1239 }
1240
1241 #ifdef CONFIG_NO_HZ
1242 /*
1243 * When add_timer_on() enqueues a timer into the timer wheel of an
1244 * idle CPU then this timer might expire before the next timer event
1245 * which is scheduled to wake up that CPU. In case of a completely
1246 * idle system the next event might even be infinite time into the
1247 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1248 * leaves the inner idle loop so the newly added timer is taken into
1249 * account when the CPU goes back to idle and evaluates the timer
1250 * wheel for the next timer event.
1251 */
1252 void wake_up_idle_cpu(int cpu)
1253 {
1254 struct rq *rq = cpu_rq(cpu);
1255
1256 if (cpu == smp_processor_id())
1257 return;
1258
1259 /*
1260 * This is safe, as this function is called with the timer
1261 * wheel base lock of (cpu) held. When the CPU is on the way
1262 * to idle and has not yet set rq->curr to idle then it will
1263 * be serialized on the timer wheel base lock and take the new
1264 * timer into account automatically.
1265 */
1266 if (rq->curr != rq->idle)
1267 return;
1268
1269 /*
1270 * We can set TIF_RESCHED on the idle task of the other CPU
1271 * lockless. The worst case is that the other CPU runs the
1272 * idle task through an additional NOOP schedule()
1273 */
1274 set_tsk_need_resched(rq->idle);
1275
1276 /* NEED_RESCHED must be visible before we test polling */
1277 smp_mb();
1278 if (!tsk_is_polling(rq->idle))
1279 smp_send_reschedule(cpu);
1280 }
1281 #endif /* CONFIG_NO_HZ */
1282
1283 #else /* !CONFIG_SMP */
1284 static void resched_task(struct task_struct *p)
1285 {
1286 assert_spin_locked(&task_rq(p)->lock);
1287 set_tsk_need_resched(p);
1288 }
1289 #endif /* CONFIG_SMP */
1290
1291 #if BITS_PER_LONG == 32
1292 # define WMULT_CONST (~0UL)
1293 #else
1294 # define WMULT_CONST (1UL << 32)
1295 #endif
1296
1297 #define WMULT_SHIFT 32
1298
1299 /*
1300 * Shift right and round:
1301 */
1302 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1303
1304 /*
1305 * delta *= weight / lw
1306 */
1307 static unsigned long
1308 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1309 struct load_weight *lw)
1310 {
1311 u64 tmp;
1312
1313 if (!lw->inv_weight) {
1314 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1315 lw->inv_weight = 1;
1316 else
1317 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1318 / (lw->weight+1);
1319 }
1320
1321 tmp = (u64)delta_exec * weight;
1322 /*
1323 * Check whether we'd overflow the 64-bit multiplication:
1324 */
1325 if (unlikely(tmp > WMULT_CONST))
1326 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1327 WMULT_SHIFT/2);
1328 else
1329 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1330
1331 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1332 }
1333
1334 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1335 {
1336 lw->weight += inc;
1337 lw->inv_weight = 0;
1338 }
1339
1340 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1341 {
1342 lw->weight -= dec;
1343 lw->inv_weight = 0;
1344 }
1345
1346 /*
1347 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1348 * of tasks with abnormal "nice" values across CPUs the contribution that
1349 * each task makes to its run queue's load is weighted according to its
1350 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1351 * scaled version of the new time slice allocation that they receive on time
1352 * slice expiry etc.
1353 */
1354
1355 #define WEIGHT_IDLEPRIO 3
1356 #define WMULT_IDLEPRIO 1431655765
1357
1358 /*
1359 * Nice levels are multiplicative, with a gentle 10% change for every
1360 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1361 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1362 * that remained on nice 0.
1363 *
1364 * The "10% effect" is relative and cumulative: from _any_ nice level,
1365 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1366 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1367 * If a task goes up by ~10% and another task goes down by ~10% then
1368 * the relative distance between them is ~25%.)
1369 */
1370 static const int prio_to_weight[40] = {
1371 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1372 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1373 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1374 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1375 /* 0 */ 1024, 820, 655, 526, 423,
1376 /* 5 */ 335, 272, 215, 172, 137,
1377 /* 10 */ 110, 87, 70, 56, 45,
1378 /* 15 */ 36, 29, 23, 18, 15,
1379 };
1380
1381 /*
1382 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1383 *
1384 * In cases where the weight does not change often, we can use the
1385 * precalculated inverse to speed up arithmetics by turning divisions
1386 * into multiplications:
1387 */
1388 static const u32 prio_to_wmult[40] = {
1389 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1390 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1391 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1392 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1393 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1394 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1395 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1396 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1397 };
1398
1399 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1400
1401 /*
1402 * runqueue iterator, to support SMP load-balancing between different
1403 * scheduling classes, without having to expose their internal data
1404 * structures to the load-balancing proper:
1405 */
1406 struct rq_iterator {
1407 void *arg;
1408 struct task_struct *(*start)(void *);
1409 struct task_struct *(*next)(void *);
1410 };
1411
1412 #ifdef CONFIG_SMP
1413 static unsigned long
1414 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1415 unsigned long max_load_move, struct sched_domain *sd,
1416 enum cpu_idle_type idle, int *all_pinned,
1417 int *this_best_prio, struct rq_iterator *iterator);
1418
1419 static int
1420 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1421 struct sched_domain *sd, enum cpu_idle_type idle,
1422 struct rq_iterator *iterator);
1423 #endif
1424
1425 /* Time spent by the tasks of the cpu accounting group executing in ... */
1426 enum cpuacct_stat_index {
1427 CPUACCT_STAT_USER, /* ... user mode */
1428 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1429
1430 CPUACCT_STAT_NSTATS,
1431 };
1432
1433 #ifdef CONFIG_CGROUP_CPUACCT
1434 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1435 static void cpuacct_update_stats(struct task_struct *tsk,
1436 enum cpuacct_stat_index idx, cputime_t val);
1437 #else
1438 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1439 static inline void cpuacct_update_stats(struct task_struct *tsk,
1440 enum cpuacct_stat_index idx, cputime_t val) {}
1441 #endif
1442
1443 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1444 {
1445 update_load_add(&rq->load, load);
1446 }
1447
1448 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1449 {
1450 update_load_sub(&rq->load, load);
1451 }
1452
1453 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1454 typedef int (*tg_visitor)(struct task_group *, void *);
1455
1456 /*
1457 * Iterate the full tree, calling @down when first entering a node and @up when
1458 * leaving it for the final time.
1459 */
1460 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1461 {
1462 struct task_group *parent, *child;
1463 int ret;
1464
1465 rcu_read_lock();
1466 parent = &root_task_group;
1467 down:
1468 ret = (*down)(parent, data);
1469 if (ret)
1470 goto out_unlock;
1471 list_for_each_entry_rcu(child, &parent->children, siblings) {
1472 parent = child;
1473 goto down;
1474
1475 up:
1476 continue;
1477 }
1478 ret = (*up)(parent, data);
1479 if (ret)
1480 goto out_unlock;
1481
1482 child = parent;
1483 parent = parent->parent;
1484 if (parent)
1485 goto up;
1486 out_unlock:
1487 rcu_read_unlock();
1488
1489 return ret;
1490 }
1491
1492 static int tg_nop(struct task_group *tg, void *data)
1493 {
1494 return 0;
1495 }
1496 #endif
1497
1498 #ifdef CONFIG_SMP
1499 static unsigned long source_load(int cpu, int type);
1500 static unsigned long target_load(int cpu, int type);
1501 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1502
1503 static unsigned long cpu_avg_load_per_task(int cpu)
1504 {
1505 struct rq *rq = cpu_rq(cpu);
1506 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1507
1508 if (nr_running)
1509 rq->avg_load_per_task = rq->load.weight / nr_running;
1510 else
1511 rq->avg_load_per_task = 0;
1512
1513 return rq->avg_load_per_task;
1514 }
1515
1516 #ifdef CONFIG_FAIR_GROUP_SCHED
1517
1518 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1519
1520 /*
1521 * Calculate and set the cpu's group shares.
1522 */
1523 static void
1524 update_group_shares_cpu(struct task_group *tg, int cpu,
1525 unsigned long sd_shares, unsigned long sd_rq_weight)
1526 {
1527 unsigned long shares;
1528 unsigned long rq_weight;
1529
1530 if (!tg->se[cpu])
1531 return;
1532
1533 rq_weight = tg->cfs_rq[cpu]->rq_weight;
1534
1535 /*
1536 * \Sum shares * rq_weight
1537 * shares = -----------------------
1538 * \Sum rq_weight
1539 *
1540 */
1541 shares = (sd_shares * rq_weight) / sd_rq_weight;
1542 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1543
1544 if (abs(shares - tg->se[cpu]->load.weight) >
1545 sysctl_sched_shares_thresh) {
1546 struct rq *rq = cpu_rq(cpu);
1547 unsigned long flags;
1548
1549 spin_lock_irqsave(&rq->lock, flags);
1550 tg->cfs_rq[cpu]->shares = shares;
1551
1552 __set_se_shares(tg->se[cpu], shares);
1553 spin_unlock_irqrestore(&rq->lock, flags);
1554 }
1555 }
1556
1557 /*
1558 * Re-compute the task group their per cpu shares over the given domain.
1559 * This needs to be done in a bottom-up fashion because the rq weight of a
1560 * parent group depends on the shares of its child groups.
1561 */
1562 static int tg_shares_up(struct task_group *tg, void *data)
1563 {
1564 unsigned long weight, rq_weight = 0;
1565 unsigned long shares = 0;
1566 struct sched_domain *sd = data;
1567 int i;
1568
1569 for_each_cpu(i, sched_domain_span(sd)) {
1570 /*
1571 * If there are currently no tasks on the cpu pretend there
1572 * is one of average load so that when a new task gets to
1573 * run here it will not get delayed by group starvation.
1574 */
1575 weight = tg->cfs_rq[i]->load.weight;
1576 if (!weight)
1577 weight = NICE_0_LOAD;
1578
1579 tg->cfs_rq[i]->rq_weight = weight;
1580 rq_weight += weight;
1581 shares += tg->cfs_rq[i]->shares;
1582 }
1583
1584 if ((!shares && rq_weight) || shares > tg->shares)
1585 shares = tg->shares;
1586
1587 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1588 shares = tg->shares;
1589
1590 for_each_cpu(i, sched_domain_span(sd))
1591 update_group_shares_cpu(tg, i, shares, rq_weight);
1592
1593 return 0;
1594 }
1595
1596 /*
1597 * Compute the cpu's hierarchical load factor for each task group.
1598 * This needs to be done in a top-down fashion because the load of a child
1599 * group is a fraction of its parents load.
1600 */
1601 static int tg_load_down(struct task_group *tg, void *data)
1602 {
1603 unsigned long load;
1604 long cpu = (long)data;
1605
1606 if (!tg->parent) {
1607 load = cpu_rq(cpu)->load.weight;
1608 } else {
1609 load = tg->parent->cfs_rq[cpu]->h_load;
1610 load *= tg->cfs_rq[cpu]->shares;
1611 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1612 }
1613
1614 tg->cfs_rq[cpu]->h_load = load;
1615
1616 return 0;
1617 }
1618
1619 static void update_shares(struct sched_domain *sd)
1620 {
1621 u64 now = cpu_clock(raw_smp_processor_id());
1622 s64 elapsed = now - sd->last_update;
1623
1624 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1625 sd->last_update = now;
1626 walk_tg_tree(tg_nop, tg_shares_up, sd);
1627 }
1628 }
1629
1630 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1631 {
1632 spin_unlock(&rq->lock);
1633 update_shares(sd);
1634 spin_lock(&rq->lock);
1635 }
1636
1637 static void update_h_load(long cpu)
1638 {
1639 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1640 }
1641
1642 #else
1643
1644 static inline void update_shares(struct sched_domain *sd)
1645 {
1646 }
1647
1648 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1649 {
1650 }
1651
1652 #endif
1653
1654 #ifdef CONFIG_PREEMPT
1655
1656 /*
1657 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1658 * way at the expense of forcing extra atomic operations in all
1659 * invocations. This assures that the double_lock is acquired using the
1660 * same underlying policy as the spinlock_t on this architecture, which
1661 * reduces latency compared to the unfair variant below. However, it
1662 * also adds more overhead and therefore may reduce throughput.
1663 */
1664 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1665 __releases(this_rq->lock)
1666 __acquires(busiest->lock)
1667 __acquires(this_rq->lock)
1668 {
1669 spin_unlock(&this_rq->lock);
1670 double_rq_lock(this_rq, busiest);
1671
1672 return 1;
1673 }
1674
1675 #else
1676 /*
1677 * Unfair double_lock_balance: Optimizes throughput at the expense of
1678 * latency by eliminating extra atomic operations when the locks are
1679 * already in proper order on entry. This favors lower cpu-ids and will
1680 * grant the double lock to lower cpus over higher ids under contention,
1681 * regardless of entry order into the function.
1682 */
1683 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1684 __releases(this_rq->lock)
1685 __acquires(busiest->lock)
1686 __acquires(this_rq->lock)
1687 {
1688 int ret = 0;
1689
1690 if (unlikely(!spin_trylock(&busiest->lock))) {
1691 if (busiest < this_rq) {
1692 spin_unlock(&this_rq->lock);
1693 spin_lock(&busiest->lock);
1694 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1695 ret = 1;
1696 } else
1697 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1698 }
1699 return ret;
1700 }
1701
1702 #endif /* CONFIG_PREEMPT */
1703
1704 /*
1705 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1706 */
1707 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1708 {
1709 if (unlikely(!irqs_disabled())) {
1710 /* printk() doesn't work good under rq->lock */
1711 spin_unlock(&this_rq->lock);
1712 BUG_ON(1);
1713 }
1714
1715 return _double_lock_balance(this_rq, busiest);
1716 }
1717
1718 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1719 __releases(busiest->lock)
1720 {
1721 spin_unlock(&busiest->lock);
1722 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1723 }
1724 #endif
1725
1726 #ifdef CONFIG_FAIR_GROUP_SCHED
1727 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1728 {
1729 #ifdef CONFIG_SMP
1730 cfs_rq->shares = shares;
1731 #endif
1732 }
1733 #endif
1734
1735 static void calc_load_account_active(struct rq *this_rq);
1736
1737 #include "sched_stats.h"
1738 #include "sched_idletask.c"
1739 #include "sched_fair.c"
1740 #include "sched_rt.c"
1741 #ifdef CONFIG_SCHED_DEBUG
1742 # include "sched_debug.c"
1743 #endif
1744
1745 #define sched_class_highest (&rt_sched_class)
1746 #define for_each_class(class) \
1747 for (class = sched_class_highest; class; class = class->next)
1748
1749 static void inc_nr_running(struct rq *rq)
1750 {
1751 rq->nr_running++;
1752 }
1753
1754 static void dec_nr_running(struct rq *rq)
1755 {
1756 rq->nr_running--;
1757 }
1758
1759 static void set_load_weight(struct task_struct *p)
1760 {
1761 if (task_has_rt_policy(p)) {
1762 p->se.load.weight = prio_to_weight[0] * 2;
1763 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1764 return;
1765 }
1766
1767 /*
1768 * SCHED_IDLE tasks get minimal weight:
1769 */
1770 if (p->policy == SCHED_IDLE) {
1771 p->se.load.weight = WEIGHT_IDLEPRIO;
1772 p->se.load.inv_weight = WMULT_IDLEPRIO;
1773 return;
1774 }
1775
1776 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1777 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1778 }
1779
1780 static void update_avg(u64 *avg, u64 sample)
1781 {
1782 s64 diff = sample - *avg;
1783 *avg += diff >> 3;
1784 }
1785
1786 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1787 {
1788 if (wakeup)
1789 p->se.start_runtime = p->se.sum_exec_runtime;
1790
1791 sched_info_queued(p);
1792 p->sched_class->enqueue_task(rq, p, wakeup);
1793 p->se.on_rq = 1;
1794 }
1795
1796 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1797 {
1798 if (sleep) {
1799 if (p->se.last_wakeup) {
1800 update_avg(&p->se.avg_overlap,
1801 p->se.sum_exec_runtime - p->se.last_wakeup);
1802 p->se.last_wakeup = 0;
1803 } else {
1804 update_avg(&p->se.avg_wakeup,
1805 sysctl_sched_wakeup_granularity);
1806 }
1807 }
1808
1809 sched_info_dequeued(p);
1810 p->sched_class->dequeue_task(rq, p, sleep);
1811 p->se.on_rq = 0;
1812 }
1813
1814 /*
1815 * __normal_prio - return the priority that is based on the static prio
1816 */
1817 static inline int __normal_prio(struct task_struct *p)
1818 {
1819 return p->static_prio;
1820 }
1821
1822 /*
1823 * Calculate the expected normal priority: i.e. priority
1824 * without taking RT-inheritance into account. Might be
1825 * boosted by interactivity modifiers. Changes upon fork,
1826 * setprio syscalls, and whenever the interactivity
1827 * estimator recalculates.
1828 */
1829 static inline int normal_prio(struct task_struct *p)
1830 {
1831 int prio;
1832
1833 if (task_has_rt_policy(p))
1834 prio = MAX_RT_PRIO-1 - p->rt_priority;
1835 else
1836 prio = __normal_prio(p);
1837 return prio;
1838 }
1839
1840 /*
1841 * Calculate the current priority, i.e. the priority
1842 * taken into account by the scheduler. This value might
1843 * be boosted by RT tasks, or might be boosted by
1844 * interactivity modifiers. Will be RT if the task got
1845 * RT-boosted. If not then it returns p->normal_prio.
1846 */
1847 static int effective_prio(struct task_struct *p)
1848 {
1849 p->normal_prio = normal_prio(p);
1850 /*
1851 * If we are RT tasks or we were boosted to RT priority,
1852 * keep the priority unchanged. Otherwise, update priority
1853 * to the normal priority:
1854 */
1855 if (!rt_prio(p->prio))
1856 return p->normal_prio;
1857 return p->prio;
1858 }
1859
1860 /*
1861 * activate_task - move a task to the runqueue.
1862 */
1863 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1864 {
1865 if (task_contributes_to_load(p))
1866 rq->nr_uninterruptible--;
1867
1868 enqueue_task(rq, p, wakeup);
1869 inc_nr_running(rq);
1870 }
1871
1872 /*
1873 * deactivate_task - remove a task from the runqueue.
1874 */
1875 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1876 {
1877 if (task_contributes_to_load(p))
1878 rq->nr_uninterruptible++;
1879
1880 dequeue_task(rq, p, sleep);
1881 dec_nr_running(rq);
1882 }
1883
1884 /**
1885 * task_curr - is this task currently executing on a CPU?
1886 * @p: the task in question.
1887 */
1888 inline int task_curr(const struct task_struct *p)
1889 {
1890 return cpu_curr(task_cpu(p)) == p;
1891 }
1892
1893 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1894 {
1895 set_task_rq(p, cpu);
1896 #ifdef CONFIG_SMP
1897 /*
1898 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1899 * successfuly executed on another CPU. We must ensure that updates of
1900 * per-task data have been completed by this moment.
1901 */
1902 smp_wmb();
1903 task_thread_info(p)->cpu = cpu;
1904 #endif
1905 }
1906
1907 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1908 const struct sched_class *prev_class,
1909 int oldprio, int running)
1910 {
1911 if (prev_class != p->sched_class) {
1912 if (prev_class->switched_from)
1913 prev_class->switched_from(rq, p, running);
1914 p->sched_class->switched_to(rq, p, running);
1915 } else
1916 p->sched_class->prio_changed(rq, p, oldprio, running);
1917 }
1918
1919 #ifdef CONFIG_SMP
1920
1921 /* Used instead of source_load when we know the type == 0 */
1922 static unsigned long weighted_cpuload(const int cpu)
1923 {
1924 return cpu_rq(cpu)->load.weight;
1925 }
1926
1927 /*
1928 * Is this task likely cache-hot:
1929 */
1930 static int
1931 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1932 {
1933 s64 delta;
1934
1935 /*
1936 * Buddy candidates are cache hot:
1937 */
1938 if (sched_feat(CACHE_HOT_BUDDY) &&
1939 (&p->se == cfs_rq_of(&p->se)->next ||
1940 &p->se == cfs_rq_of(&p->se)->last))
1941 return 1;
1942
1943 if (p->sched_class != &fair_sched_class)
1944 return 0;
1945
1946 if (sysctl_sched_migration_cost == -1)
1947 return 1;
1948 if (sysctl_sched_migration_cost == 0)
1949 return 0;
1950
1951 delta = now - p->se.exec_start;
1952
1953 return delta < (s64)sysctl_sched_migration_cost;
1954 }
1955
1956
1957 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1958 {
1959 int old_cpu = task_cpu(p);
1960 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1961 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1962 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1963 u64 clock_offset;
1964
1965 clock_offset = old_rq->clock - new_rq->clock;
1966
1967 trace_sched_migrate_task(p, task_cpu(p), new_cpu);
1968
1969 #ifdef CONFIG_SCHEDSTATS
1970 if (p->se.wait_start)
1971 p->se.wait_start -= clock_offset;
1972 if (p->se.sleep_start)
1973 p->se.sleep_start -= clock_offset;
1974 if (p->se.block_start)
1975 p->se.block_start -= clock_offset;
1976 if (old_cpu != new_cpu) {
1977 schedstat_inc(p, se.nr_migrations);
1978 if (task_hot(p, old_rq->clock, NULL))
1979 schedstat_inc(p, se.nr_forced2_migrations);
1980 }
1981 #endif
1982 p->se.vruntime -= old_cfsrq->min_vruntime -
1983 new_cfsrq->min_vruntime;
1984
1985 __set_task_cpu(p, new_cpu);
1986 }
1987
1988 struct migration_req {
1989 struct list_head list;
1990
1991 struct task_struct *task;
1992 int dest_cpu;
1993
1994 struct completion done;
1995 };
1996
1997 /*
1998 * The task's runqueue lock must be held.
1999 * Returns true if you have to wait for migration thread.
2000 */
2001 static int
2002 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
2003 {
2004 struct rq *rq = task_rq(p);
2005
2006 /*
2007 * If the task is not on a runqueue (and not running), then
2008 * it is sufficient to simply update the task's cpu field.
2009 */
2010 if (!p->se.on_rq && !task_running(rq, p)) {
2011 set_task_cpu(p, dest_cpu);
2012 return 0;
2013 }
2014
2015 init_completion(&req->done);
2016 req->task = p;
2017 req->dest_cpu = dest_cpu;
2018 list_add(&req->list, &rq->migration_queue);
2019
2020 return 1;
2021 }
2022
2023 /*
2024 * wait_task_inactive - wait for a thread to unschedule.
2025 *
2026 * If @match_state is nonzero, it's the @p->state value just checked and
2027 * not expected to change. If it changes, i.e. @p might have woken up,
2028 * then return zero. When we succeed in waiting for @p to be off its CPU,
2029 * we return a positive number (its total switch count). If a second call
2030 * a short while later returns the same number, the caller can be sure that
2031 * @p has remained unscheduled the whole time.
2032 *
2033 * The caller must ensure that the task *will* unschedule sometime soon,
2034 * else this function might spin for a *long* time. This function can't
2035 * be called with interrupts off, or it may introduce deadlock with
2036 * smp_call_function() if an IPI is sent by the same process we are
2037 * waiting to become inactive.
2038 */
2039 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2040 {
2041 unsigned long flags;
2042 int running, on_rq;
2043 unsigned long ncsw;
2044 struct rq *rq;
2045
2046 for (;;) {
2047 /*
2048 * We do the initial early heuristics without holding
2049 * any task-queue locks at all. We'll only try to get
2050 * the runqueue lock when things look like they will
2051 * work out!
2052 */
2053 rq = task_rq(p);
2054
2055 /*
2056 * If the task is actively running on another CPU
2057 * still, just relax and busy-wait without holding
2058 * any locks.
2059 *
2060 * NOTE! Since we don't hold any locks, it's not
2061 * even sure that "rq" stays as the right runqueue!
2062 * But we don't care, since "task_running()" will
2063 * return false if the runqueue has changed and p
2064 * is actually now running somewhere else!
2065 */
2066 while (task_running(rq, p)) {
2067 if (match_state && unlikely(p->state != match_state))
2068 return 0;
2069 cpu_relax();
2070 }
2071
2072 /*
2073 * Ok, time to look more closely! We need the rq
2074 * lock now, to be *sure*. If we're wrong, we'll
2075 * just go back and repeat.
2076 */
2077 rq = task_rq_lock(p, &flags);
2078 trace_sched_wait_task(rq, p);
2079 running = task_running(rq, p);
2080 on_rq = p->se.on_rq;
2081 ncsw = 0;
2082 if (!match_state || p->state == match_state)
2083 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2084 task_rq_unlock(rq, &flags);
2085
2086 /*
2087 * If it changed from the expected state, bail out now.
2088 */
2089 if (unlikely(!ncsw))
2090 break;
2091
2092 /*
2093 * Was it really running after all now that we
2094 * checked with the proper locks actually held?
2095 *
2096 * Oops. Go back and try again..
2097 */
2098 if (unlikely(running)) {
2099 cpu_relax();
2100 continue;
2101 }
2102
2103 /*
2104 * It's not enough that it's not actively running,
2105 * it must be off the runqueue _entirely_, and not
2106 * preempted!
2107 *
2108 * So if it was still runnable (but just not actively
2109 * running right now), it's preempted, and we should
2110 * yield - it could be a while.
2111 */
2112 if (unlikely(on_rq)) {
2113 schedule_timeout_uninterruptible(1);
2114 continue;
2115 }
2116
2117 /*
2118 * Ahh, all good. It wasn't running, and it wasn't
2119 * runnable, which means that it will never become
2120 * running in the future either. We're all done!
2121 */
2122 break;
2123 }
2124
2125 return ncsw;
2126 }
2127
2128 /***
2129 * kick_process - kick a running thread to enter/exit the kernel
2130 * @p: the to-be-kicked thread
2131 *
2132 * Cause a process which is running on another CPU to enter
2133 * kernel-mode, without any delay. (to get signals handled.)
2134 *
2135 * NOTE: this function doesnt have to take the runqueue lock,
2136 * because all it wants to ensure is that the remote task enters
2137 * the kernel. If the IPI races and the task has been migrated
2138 * to another CPU then no harm is done and the purpose has been
2139 * achieved as well.
2140 */
2141 void kick_process(struct task_struct *p)
2142 {
2143 int cpu;
2144
2145 preempt_disable();
2146 cpu = task_cpu(p);
2147 if ((cpu != smp_processor_id()) && task_curr(p))
2148 smp_send_reschedule(cpu);
2149 preempt_enable();
2150 }
2151
2152 /*
2153 * Return a low guess at the load of a migration-source cpu weighted
2154 * according to the scheduling class and "nice" value.
2155 *
2156 * We want to under-estimate the load of migration sources, to
2157 * balance conservatively.
2158 */
2159 static unsigned long source_load(int cpu, int type)
2160 {
2161 struct rq *rq = cpu_rq(cpu);
2162 unsigned long total = weighted_cpuload(cpu);
2163
2164 if (type == 0 || !sched_feat(LB_BIAS))
2165 return total;
2166
2167 return min(rq->cpu_load[type-1], total);
2168 }
2169
2170 /*
2171 * Return a high guess at the load of a migration-target cpu weighted
2172 * according to the scheduling class and "nice" value.
2173 */
2174 static unsigned long target_load(int cpu, int type)
2175 {
2176 struct rq *rq = cpu_rq(cpu);
2177 unsigned long total = weighted_cpuload(cpu);
2178
2179 if (type == 0 || !sched_feat(LB_BIAS))
2180 return total;
2181
2182 return max(rq->cpu_load[type-1], total);
2183 }
2184
2185 /*
2186 * find_idlest_group finds and returns the least busy CPU group within the
2187 * domain.
2188 */
2189 static struct sched_group *
2190 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2191 {
2192 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2193 unsigned long min_load = ULONG_MAX, this_load = 0;
2194 int load_idx = sd->forkexec_idx;
2195 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2196
2197 do {
2198 unsigned long load, avg_load;
2199 int local_group;
2200 int i;
2201
2202 /* Skip over this group if it has no CPUs allowed */
2203 if (!cpumask_intersects(sched_group_cpus(group),
2204 &p->cpus_allowed))
2205 continue;
2206
2207 local_group = cpumask_test_cpu(this_cpu,
2208 sched_group_cpus(group));
2209
2210 /* Tally up the load of all CPUs in the group */
2211 avg_load = 0;
2212
2213 for_each_cpu(i, sched_group_cpus(group)) {
2214 /* Bias balancing toward cpus of our domain */
2215 if (local_group)
2216 load = source_load(i, load_idx);
2217 else
2218 load = target_load(i, load_idx);
2219
2220 avg_load += load;
2221 }
2222
2223 /* Adjust by relative CPU power of the group */
2224 avg_load = sg_div_cpu_power(group,
2225 avg_load * SCHED_LOAD_SCALE);
2226
2227 if (local_group) {
2228 this_load = avg_load;
2229 this = group;
2230 } else if (avg_load < min_load) {
2231 min_load = avg_load;
2232 idlest = group;
2233 }
2234 } while (group = group->next, group != sd->groups);
2235
2236 if (!idlest || 100*this_load < imbalance*min_load)
2237 return NULL;
2238 return idlest;
2239 }
2240
2241 /*
2242 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2243 */
2244 static int
2245 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
2246 {
2247 unsigned long load, min_load = ULONG_MAX;
2248 int idlest = -1;
2249 int i;
2250
2251 /* Traverse only the allowed CPUs */
2252 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2253 load = weighted_cpuload(i);
2254
2255 if (load < min_load || (load == min_load && i == this_cpu)) {
2256 min_load = load;
2257 idlest = i;
2258 }
2259 }
2260
2261 return idlest;
2262 }
2263
2264 /*
2265 * sched_balance_self: balance the current task (running on cpu) in domains
2266 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2267 * SD_BALANCE_EXEC.
2268 *
2269 * Balance, ie. select the least loaded group.
2270 *
2271 * Returns the target CPU number, or the same CPU if no balancing is needed.
2272 *
2273 * preempt must be disabled.
2274 */
2275 static int sched_balance_self(int cpu, int flag)
2276 {
2277 struct task_struct *t = current;
2278 struct sched_domain *tmp, *sd = NULL;
2279
2280 for_each_domain(cpu, tmp) {
2281 /*
2282 * If power savings logic is enabled for a domain, stop there.
2283 */
2284 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2285 break;
2286 if (tmp->flags & flag)
2287 sd = tmp;
2288 }
2289
2290 if (sd)
2291 update_shares(sd);
2292
2293 while (sd) {
2294 struct sched_group *group;
2295 int new_cpu, weight;
2296
2297 if (!(sd->flags & flag)) {
2298 sd = sd->child;
2299 continue;
2300 }
2301
2302 group = find_idlest_group(sd, t, cpu);
2303 if (!group) {
2304 sd = sd->child;
2305 continue;
2306 }
2307
2308 new_cpu = find_idlest_cpu(group, t, cpu);
2309 if (new_cpu == -1 || new_cpu == cpu) {
2310 /* Now try balancing at a lower domain level of cpu */
2311 sd = sd->child;
2312 continue;
2313 }
2314
2315 /* Now try balancing at a lower domain level of new_cpu */
2316 cpu = new_cpu;
2317 weight = cpumask_weight(sched_domain_span(sd));
2318 sd = NULL;
2319 for_each_domain(cpu, tmp) {
2320 if (weight <= cpumask_weight(sched_domain_span(tmp)))
2321 break;
2322 if (tmp->flags & flag)
2323 sd = tmp;
2324 }
2325 /* while loop will break here if sd == NULL */
2326 }
2327
2328 return cpu;
2329 }
2330
2331 #endif /* CONFIG_SMP */
2332
2333 /***
2334 * try_to_wake_up - wake up a thread
2335 * @p: the to-be-woken-up thread
2336 * @state: the mask of task states that can be woken
2337 * @sync: do a synchronous wakeup?
2338 *
2339 * Put it on the run-queue if it's not already there. The "current"
2340 * thread is always on the run-queue (except when the actual
2341 * re-schedule is in progress), and as such you're allowed to do
2342 * the simpler "current->state = TASK_RUNNING" to mark yourself
2343 * runnable without the overhead of this.
2344 *
2345 * returns failure only if the task is already active.
2346 */
2347 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2348 {
2349 int cpu, orig_cpu, this_cpu, success = 0;
2350 unsigned long flags;
2351 long old_state;
2352 struct rq *rq;
2353
2354 if (!sched_feat(SYNC_WAKEUPS))
2355 sync = 0;
2356
2357 #ifdef CONFIG_SMP
2358 if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
2359 struct sched_domain *sd;
2360
2361 this_cpu = raw_smp_processor_id();
2362 cpu = task_cpu(p);
2363
2364 for_each_domain(this_cpu, sd) {
2365 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2366 update_shares(sd);
2367 break;
2368 }
2369 }
2370 }
2371 #endif
2372
2373 smp_wmb();
2374 rq = task_rq_lock(p, &flags);
2375 update_rq_clock(rq);
2376 old_state = p->state;
2377 if (!(old_state & state))
2378 goto out;
2379
2380 if (p->se.on_rq)
2381 goto out_running;
2382
2383 cpu = task_cpu(p);
2384 orig_cpu = cpu;
2385 this_cpu = smp_processor_id();
2386
2387 #ifdef CONFIG_SMP
2388 if (unlikely(task_running(rq, p)))
2389 goto out_activate;
2390
2391 cpu = p->sched_class->select_task_rq(p, sync);
2392 if (cpu != orig_cpu) {
2393 set_task_cpu(p, cpu);
2394 task_rq_unlock(rq, &flags);
2395 /* might preempt at this point */
2396 rq = task_rq_lock(p, &flags);
2397 old_state = p->state;
2398 if (!(old_state & state))
2399 goto out;
2400 if (p->se.on_rq)
2401 goto out_running;
2402
2403 this_cpu = smp_processor_id();
2404 cpu = task_cpu(p);
2405 }
2406
2407 #ifdef CONFIG_SCHEDSTATS
2408 schedstat_inc(rq, ttwu_count);
2409 if (cpu == this_cpu)
2410 schedstat_inc(rq, ttwu_local);
2411 else {
2412 struct sched_domain *sd;
2413 for_each_domain(this_cpu, sd) {
2414 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2415 schedstat_inc(sd, ttwu_wake_remote);
2416 break;
2417 }
2418 }
2419 }
2420 #endif /* CONFIG_SCHEDSTATS */
2421
2422 out_activate:
2423 #endif /* CONFIG_SMP */
2424 schedstat_inc(p, se.nr_wakeups);
2425 if (sync)
2426 schedstat_inc(p, se.nr_wakeups_sync);
2427 if (orig_cpu != cpu)
2428 schedstat_inc(p, se.nr_wakeups_migrate);
2429 if (cpu == this_cpu)
2430 schedstat_inc(p, se.nr_wakeups_local);
2431 else
2432 schedstat_inc(p, se.nr_wakeups_remote);
2433 activate_task(rq, p, 1);
2434 success = 1;
2435
2436 /*
2437 * Only attribute actual wakeups done by this task.
2438 */
2439 if (!in_interrupt()) {
2440 struct sched_entity *se = &current->se;
2441 u64 sample = se->sum_exec_runtime;
2442
2443 if (se->last_wakeup)
2444 sample -= se->last_wakeup;
2445 else
2446 sample -= se->start_runtime;
2447 update_avg(&se->avg_wakeup, sample);
2448
2449 se->last_wakeup = se->sum_exec_runtime;
2450 }
2451
2452 out_running:
2453 trace_sched_wakeup(rq, p, success);
2454 check_preempt_curr(rq, p, sync);
2455
2456 p->state = TASK_RUNNING;
2457 #ifdef CONFIG_SMP
2458 if (p->sched_class->task_wake_up)
2459 p->sched_class->task_wake_up(rq, p);
2460 #endif
2461 out:
2462 task_rq_unlock(rq, &flags);
2463
2464 return success;
2465 }
2466
2467 /**
2468 * wake_up_process - Wake up a specific process
2469 * @p: The process to be woken up.
2470 *
2471 * Attempt to wake up the nominated process and move it to the set of runnable
2472 * processes. Returns 1 if the process was woken up, 0 if it was already
2473 * running.
2474 *
2475 * It may be assumed that this function implies a write memory barrier before
2476 * changing the task state if and only if any tasks are woken up.
2477 */
2478 int wake_up_process(struct task_struct *p)
2479 {
2480 return try_to_wake_up(p, TASK_ALL, 0);
2481 }
2482 EXPORT_SYMBOL(wake_up_process);
2483
2484 int wake_up_state(struct task_struct *p, unsigned int state)
2485 {
2486 return try_to_wake_up(p, state, 0);
2487 }
2488
2489 /*
2490 * Perform scheduler related setup for a newly forked process p.
2491 * p is forked by current.
2492 *
2493 * __sched_fork() is basic setup used by init_idle() too:
2494 */
2495 static void __sched_fork(struct task_struct *p)
2496 {
2497 p->se.exec_start = 0;
2498 p->se.sum_exec_runtime = 0;
2499 p->se.prev_sum_exec_runtime = 0;
2500 p->se.last_wakeup = 0;
2501 p->se.avg_overlap = 0;
2502 p->se.start_runtime = 0;
2503 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
2504
2505 #ifdef CONFIG_SCHEDSTATS
2506 p->se.wait_start = 0;
2507 p->se.sum_sleep_runtime = 0;
2508 p->se.sleep_start = 0;
2509 p->se.block_start = 0;
2510 p->se.sleep_max = 0;
2511 p->se.block_max = 0;
2512 p->se.exec_max = 0;
2513 p->se.slice_max = 0;
2514 p->se.wait_max = 0;
2515 #endif
2516
2517 INIT_LIST_HEAD(&p->rt.run_list);
2518 p->se.on_rq = 0;
2519 INIT_LIST_HEAD(&p->se.group_node);
2520
2521 #ifdef CONFIG_PREEMPT_NOTIFIERS
2522 INIT_HLIST_HEAD(&p->preempt_notifiers);
2523 #endif
2524
2525 /*
2526 * We mark the process as running here, but have not actually
2527 * inserted it onto the runqueue yet. This guarantees that
2528 * nobody will actually run it, and a signal or other external
2529 * event cannot wake it up and insert it on the runqueue either.
2530 */
2531 p->state = TASK_RUNNING;
2532 }
2533
2534 /*
2535 * fork()/clone()-time setup:
2536 */
2537 void sched_fork(struct task_struct *p, int clone_flags)
2538 {
2539 int cpu = get_cpu();
2540
2541 __sched_fork(p);
2542
2543 #ifdef CONFIG_SMP
2544 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2545 #endif
2546 set_task_cpu(p, cpu);
2547
2548 /*
2549 * Make sure we do not leak PI boosting priority to the child:
2550 */
2551 p->prio = current->normal_prio;
2552 if (!rt_prio(p->prio))
2553 p->sched_class = &fair_sched_class;
2554
2555 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2556 if (likely(sched_info_on()))
2557 memset(&p->sched_info, 0, sizeof(p->sched_info));
2558 #endif
2559 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2560 p->oncpu = 0;
2561 #endif
2562 #ifdef CONFIG_PREEMPT
2563 /* Want to start with kernel preemption disabled. */
2564 task_thread_info(p)->preempt_count = 1;
2565 #endif
2566 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2567
2568 put_cpu();
2569 }
2570
2571 /*
2572 * wake_up_new_task - wake up a newly created task for the first time.
2573 *
2574 * This function will do some initial scheduler statistics housekeeping
2575 * that must be done for every newly created context, then puts the task
2576 * on the runqueue and wakes it.
2577 */
2578 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2579 {
2580 unsigned long flags;
2581 struct rq *rq;
2582
2583 rq = task_rq_lock(p, &flags);
2584 BUG_ON(p->state != TASK_RUNNING);
2585 update_rq_clock(rq);
2586
2587 p->prio = effective_prio(p);
2588
2589 if (!p->sched_class->task_new || !current->se.on_rq) {
2590 activate_task(rq, p, 0);
2591 } else {
2592 /*
2593 * Let the scheduling class do new task startup
2594 * management (if any):
2595 */
2596 p->sched_class->task_new(rq, p);
2597 inc_nr_running(rq);
2598 }
2599 trace_sched_wakeup_new(rq, p, 1);
2600 check_preempt_curr(rq, p, 0);
2601 #ifdef CONFIG_SMP
2602 if (p->sched_class->task_wake_up)
2603 p->sched_class->task_wake_up(rq, p);
2604 #endif
2605 task_rq_unlock(rq, &flags);
2606 }
2607
2608 #ifdef CONFIG_PREEMPT_NOTIFIERS
2609
2610 /**
2611 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2612 * @notifier: notifier struct to register
2613 */
2614 void preempt_notifier_register(struct preempt_notifier *notifier)
2615 {
2616 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2617 }
2618 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2619
2620 /**
2621 * preempt_notifier_unregister - no longer interested in preemption notifications
2622 * @notifier: notifier struct to unregister
2623 *
2624 * This is safe to call from within a preemption notifier.
2625 */
2626 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2627 {
2628 hlist_del(&notifier->link);
2629 }
2630 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2631
2632 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2633 {
2634 struct preempt_notifier *notifier;
2635 struct hlist_node *node;
2636
2637 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2638 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2639 }
2640
2641 static void
2642 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2643 struct task_struct *next)
2644 {
2645 struct preempt_notifier *notifier;
2646 struct hlist_node *node;
2647
2648 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2649 notifier->ops->sched_out(notifier, next);
2650 }
2651
2652 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2653
2654 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2655 {
2656 }
2657
2658 static void
2659 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2660 struct task_struct *next)
2661 {
2662 }
2663
2664 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2665
2666 /**
2667 * prepare_task_switch - prepare to switch tasks
2668 * @rq: the runqueue preparing to switch
2669 * @prev: the current task that is being switched out
2670 * @next: the task we are going to switch to.
2671 *
2672 * This is called with the rq lock held and interrupts off. It must
2673 * be paired with a subsequent finish_task_switch after the context
2674 * switch.
2675 *
2676 * prepare_task_switch sets up locking and calls architecture specific
2677 * hooks.
2678 */
2679 static inline void
2680 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2681 struct task_struct *next)
2682 {
2683 fire_sched_out_preempt_notifiers(prev, next);
2684 prepare_lock_switch(rq, next);
2685 prepare_arch_switch(next);
2686 }
2687
2688 /**
2689 * finish_task_switch - clean up after a task-switch
2690 * @rq: runqueue associated with task-switch
2691 * @prev: the thread we just switched away from.
2692 *
2693 * finish_task_switch must be called after the context switch, paired
2694 * with a prepare_task_switch call before the context switch.
2695 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2696 * and do any other architecture-specific cleanup actions.
2697 *
2698 * Note that we may have delayed dropping an mm in context_switch(). If
2699 * so, we finish that here outside of the runqueue lock. (Doing it
2700 * with the lock held can cause deadlocks; see schedule() for
2701 * details.)
2702 */
2703 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2704 __releases(rq->lock)
2705 {
2706 struct mm_struct *mm = rq->prev_mm;
2707 long prev_state;
2708 #ifdef CONFIG_SMP
2709 int post_schedule = 0;
2710
2711 if (current->sched_class->needs_post_schedule)
2712 post_schedule = current->sched_class->needs_post_schedule(rq);
2713 #endif
2714
2715 rq->prev_mm = NULL;
2716
2717 /*
2718 * A task struct has one reference for the use as "current".
2719 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2720 * schedule one last time. The schedule call will never return, and
2721 * the scheduled task must drop that reference.
2722 * The test for TASK_DEAD must occur while the runqueue locks are
2723 * still held, otherwise prev could be scheduled on another cpu, die
2724 * there before we look at prev->state, and then the reference would
2725 * be dropped twice.
2726 * Manfred Spraul <manfred@colorfullife.com>
2727 */
2728 prev_state = prev->state;
2729 finish_arch_switch(prev);
2730 finish_lock_switch(rq, prev);
2731 #ifdef CONFIG_SMP
2732 if (post_schedule)
2733 current->sched_class->post_schedule(rq);
2734 #endif
2735
2736 fire_sched_in_preempt_notifiers(current);
2737 if (mm)
2738 mmdrop(mm);
2739 if (unlikely(prev_state == TASK_DEAD)) {
2740 /*
2741 * Remove function-return probe instances associated with this
2742 * task and put them back on the free list.
2743 */
2744 kprobe_flush_task(prev);
2745 put_task_struct(prev);
2746 }
2747 }
2748
2749 /**
2750 * schedule_tail - first thing a freshly forked thread must call.
2751 * @prev: the thread we just switched away from.
2752 */
2753 asmlinkage void schedule_tail(struct task_struct *prev)
2754 __releases(rq->lock)
2755 {
2756 struct rq *rq = this_rq();
2757
2758 finish_task_switch(rq, prev);
2759 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2760 /* In this case, finish_task_switch does not reenable preemption */
2761 preempt_enable();
2762 #endif
2763 if (current->set_child_tid)
2764 put_user(task_pid_vnr(current), current->set_child_tid);
2765 }
2766
2767 /*
2768 * context_switch - switch to the new MM and the new
2769 * thread's register state.
2770 */
2771 static inline void
2772 context_switch(struct rq *rq, struct task_struct *prev,
2773 struct task_struct *next)
2774 {
2775 struct mm_struct *mm, *oldmm;
2776
2777 prepare_task_switch(rq, prev, next);
2778 trace_sched_switch(rq, prev, next);
2779 mm = next->mm;
2780 oldmm = prev->active_mm;
2781 /*
2782 * For paravirt, this is coupled with an exit in switch_to to
2783 * combine the page table reload and the switch backend into
2784 * one hypercall.
2785 */
2786 arch_enter_lazy_cpu_mode();
2787
2788 if (unlikely(!mm)) {
2789 next->active_mm = oldmm;
2790 atomic_inc(&oldmm->mm_count);
2791 enter_lazy_tlb(oldmm, next);
2792 } else
2793 switch_mm(oldmm, mm, next);
2794
2795 if (unlikely(!prev->mm)) {
2796 prev->active_mm = NULL;
2797 rq->prev_mm = oldmm;
2798 }
2799 /*
2800 * Since the runqueue lock will be released by the next
2801 * task (which is an invalid locking op but in the case
2802 * of the scheduler it's an obvious special-case), so we
2803 * do an early lockdep release here:
2804 */
2805 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2806 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2807 #endif
2808
2809 /* Here we just switch the register state and the stack. */
2810 switch_to(prev, next, prev);
2811
2812 barrier();
2813 /*
2814 * this_rq must be evaluated again because prev may have moved
2815 * CPUs since it called schedule(), thus the 'rq' on its stack
2816 * frame will be invalid.
2817 */
2818 finish_task_switch(this_rq(), prev);
2819 }
2820
2821 /*
2822 * nr_running, nr_uninterruptible and nr_context_switches:
2823 *
2824 * externally visible scheduler statistics: current number of runnable
2825 * threads, current number of uninterruptible-sleeping threads, total
2826 * number of context switches performed since bootup.
2827 */
2828 unsigned long nr_running(void)
2829 {
2830 unsigned long i, sum = 0;
2831
2832 for_each_online_cpu(i)
2833 sum += cpu_rq(i)->nr_running;
2834
2835 return sum;
2836 }
2837
2838 unsigned long nr_uninterruptible(void)
2839 {
2840 unsigned long i, sum = 0;
2841
2842 for_each_possible_cpu(i)
2843 sum += cpu_rq(i)->nr_uninterruptible;
2844
2845 /*
2846 * Since we read the counters lockless, it might be slightly
2847 * inaccurate. Do not allow it to go below zero though:
2848 */
2849 if (unlikely((long)sum < 0))
2850 sum = 0;
2851
2852 return sum;
2853 }
2854
2855 unsigned long long nr_context_switches(void)
2856 {
2857 int i;
2858 unsigned long long sum = 0;
2859
2860 for_each_possible_cpu(i)
2861 sum += cpu_rq(i)->nr_switches;
2862
2863 return sum;
2864 }
2865
2866 unsigned long nr_iowait(void)
2867 {
2868 unsigned long i, sum = 0;
2869
2870 for_each_possible_cpu(i)
2871 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2872
2873 return sum;
2874 }
2875
2876 /* Variables and functions for calc_load */
2877 static atomic_long_t calc_load_tasks;
2878 static unsigned long calc_load_update;
2879 unsigned long avenrun[3];
2880 EXPORT_SYMBOL(avenrun);
2881
2882 /**
2883 * get_avenrun - get the load average array
2884 * @loads: pointer to dest load array
2885 * @offset: offset to add
2886 * @shift: shift count to shift the result left
2887 *
2888 * These values are estimates at best, so no need for locking.
2889 */
2890 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2891 {
2892 loads[0] = (avenrun[0] + offset) << shift;
2893 loads[1] = (avenrun[1] + offset) << shift;
2894 loads[2] = (avenrun[2] + offset) << shift;
2895 }
2896
2897 static unsigned long
2898 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2899 {
2900 load *= exp;
2901 load += active * (FIXED_1 - exp);
2902 return load >> FSHIFT;
2903 }
2904
2905 /*
2906 * calc_load - update the avenrun load estimates 10 ticks after the
2907 * CPUs have updated calc_load_tasks.
2908 */
2909 void calc_global_load(void)
2910 {
2911 unsigned long upd = calc_load_update + 10;
2912 long active;
2913
2914 if (time_before(jiffies, upd))
2915 return;
2916
2917 active = atomic_long_read(&calc_load_tasks);
2918 active = active > 0 ? active * FIXED_1 : 0;
2919
2920 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2921 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2922 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2923
2924 calc_load_update += LOAD_FREQ;
2925 }
2926
2927 /*
2928 * Either called from update_cpu_load() or from a cpu going idle
2929 */
2930 static void calc_load_account_active(struct rq *this_rq)
2931 {
2932 long nr_active, delta;
2933
2934 nr_active = this_rq->nr_running;
2935 nr_active += (long) this_rq->nr_uninterruptible;
2936
2937 if (nr_active != this_rq->calc_load_active) {
2938 delta = nr_active - this_rq->calc_load_active;
2939 this_rq->calc_load_active = nr_active;
2940 atomic_long_add(delta, &calc_load_tasks);
2941 }
2942 }
2943
2944 /*
2945 * Update rq->cpu_load[] statistics. This function is usually called every
2946 * scheduler tick (TICK_NSEC).
2947 */
2948 static void update_cpu_load(struct rq *this_rq)
2949 {
2950 unsigned long this_load = this_rq->load.weight;
2951 int i, scale;
2952
2953 this_rq->nr_load_updates++;
2954
2955 /* Update our load: */
2956 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2957 unsigned long old_load, new_load;
2958
2959 /* scale is effectively 1 << i now, and >> i divides by scale */
2960
2961 old_load = this_rq->cpu_load[i];
2962 new_load = this_load;
2963 /*
2964 * Round up the averaging division if load is increasing. This
2965 * prevents us from getting stuck on 9 if the load is 10, for
2966 * example.
2967 */
2968 if (new_load > old_load)
2969 new_load += scale-1;
2970 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2971 }
2972
2973 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
2974 this_rq->calc_load_update += LOAD_FREQ;
2975 calc_load_account_active(this_rq);
2976 }
2977 }
2978
2979 #ifdef CONFIG_SMP
2980
2981 /*
2982 * double_rq_lock - safely lock two runqueues
2983 *
2984 * Note this does not disable interrupts like task_rq_lock,
2985 * you need to do so manually before calling.
2986 */
2987 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2988 __acquires(rq1->lock)
2989 __acquires(rq2->lock)
2990 {
2991 BUG_ON(!irqs_disabled());
2992 if (rq1 == rq2) {
2993 spin_lock(&rq1->lock);
2994 __acquire(rq2->lock); /* Fake it out ;) */
2995 } else {
2996 if (rq1 < rq2) {
2997 spin_lock(&rq1->lock);
2998 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
2999 } else {
3000 spin_lock(&rq2->lock);
3001 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
3002 }
3003 }
3004 update_rq_clock(rq1);
3005 update_rq_clock(rq2);
3006 }
3007
3008 /*
3009 * double_rq_unlock - safely unlock two runqueues
3010 *
3011 * Note this does not restore interrupts like task_rq_unlock,
3012 * you need to do so manually after calling.
3013 */
3014 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
3015 __releases(rq1->lock)
3016 __releases(rq2->lock)
3017 {
3018 spin_unlock(&rq1->lock);
3019 if (rq1 != rq2)
3020 spin_unlock(&rq2->lock);
3021 else
3022 __release(rq2->lock);
3023 }
3024
3025 /*
3026 * If dest_cpu is allowed for this process, migrate the task to it.
3027 * This is accomplished by forcing the cpu_allowed mask to only
3028 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
3029 * the cpu_allowed mask is restored.
3030 */
3031 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
3032 {
3033 struct migration_req req;
3034 unsigned long flags;
3035 struct rq *rq;
3036
3037 rq = task_rq_lock(p, &flags);
3038 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3039 || unlikely(!cpu_active(dest_cpu)))
3040 goto out;
3041
3042 /* force the process onto the specified CPU */
3043 if (migrate_task(p, dest_cpu, &req)) {
3044 /* Need to wait for migration thread (might exit: take ref). */
3045 struct task_struct *mt = rq->migration_thread;
3046
3047 get_task_struct(mt);
3048 task_rq_unlock(rq, &flags);
3049 wake_up_process(mt);
3050 put_task_struct(mt);
3051 wait_for_completion(&req.done);
3052
3053 return;
3054 }
3055 out:
3056 task_rq_unlock(rq, &flags);
3057 }
3058
3059 /*
3060 * sched_exec - execve() is a valuable balancing opportunity, because at
3061 * this point the task has the smallest effective memory and cache footprint.
3062 */
3063 void sched_exec(void)
3064 {
3065 int new_cpu, this_cpu = get_cpu();
3066 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
3067 put_cpu();
3068 if (new_cpu != this_cpu)
3069 sched_migrate_task(current, new_cpu);
3070 }
3071
3072 /*
3073 * pull_task - move a task from a remote runqueue to the local runqueue.
3074 * Both runqueues must be locked.
3075 */
3076 static void pull_task(struct rq *src_rq, struct task_struct *p,
3077 struct rq *this_rq, int this_cpu)
3078 {
3079 deactivate_task(src_rq, p, 0);
3080 set_task_cpu(p, this_cpu);
3081 activate_task(this_rq, p, 0);
3082 /*
3083 * Note that idle threads have a prio of MAX_PRIO, for this test
3084 * to be always true for them.
3085 */
3086 check_preempt_curr(this_rq, p, 0);
3087 }
3088
3089 /*
3090 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3091 */
3092 static
3093 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
3094 struct sched_domain *sd, enum cpu_idle_type idle,
3095 int *all_pinned)
3096 {
3097 int tsk_cache_hot = 0;
3098 /*
3099 * We do not migrate tasks that are:
3100 * 1) running (obviously), or
3101 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3102 * 3) are cache-hot on their current CPU.
3103 */
3104 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3105 schedstat_inc(p, se.nr_failed_migrations_affine);
3106 return 0;
3107 }
3108 *all_pinned = 0;
3109
3110 if (task_running(rq, p)) {
3111 schedstat_inc(p, se.nr_failed_migrations_running);
3112 return 0;
3113 }
3114
3115 /*
3116 * Aggressive migration if:
3117 * 1) task is cache cold, or
3118 * 2) too many balance attempts have failed.
3119 */
3120
3121 tsk_cache_hot = task_hot(p, rq->clock, sd);
3122 if (!tsk_cache_hot ||
3123 sd->nr_balance_failed > sd->cache_nice_tries) {
3124 #ifdef CONFIG_SCHEDSTATS
3125 if (tsk_cache_hot) {
3126 schedstat_inc(sd, lb_hot_gained[idle]);
3127 schedstat_inc(p, se.nr_forced_migrations);
3128 }
3129 #endif
3130 return 1;
3131 }
3132
3133 if (tsk_cache_hot) {
3134 schedstat_inc(p, se.nr_failed_migrations_hot);
3135 return 0;
3136 }
3137 return 1;
3138 }
3139
3140 static unsigned long
3141 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3142 unsigned long max_load_move, struct sched_domain *sd,
3143 enum cpu_idle_type idle, int *all_pinned,
3144 int *this_best_prio, struct rq_iterator *iterator)
3145 {
3146 int loops = 0, pulled = 0, pinned = 0;
3147 struct task_struct *p;
3148 long rem_load_move = max_load_move;
3149
3150 if (max_load_move == 0)
3151 goto out;
3152
3153 pinned = 1;
3154
3155 /*
3156 * Start the load-balancing iterator:
3157 */
3158 p = iterator->start(iterator->arg);
3159 next:
3160 if (!p || loops++ > sysctl_sched_nr_migrate)
3161 goto out;
3162
3163 if ((p->se.load.weight >> 1) > rem_load_move ||
3164 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3165 p = iterator->next(iterator->arg);
3166 goto next;
3167 }
3168
3169 pull_task(busiest, p, this_rq, this_cpu);
3170 pulled++;
3171 rem_load_move -= p->se.load.weight;
3172
3173 #ifdef CONFIG_PREEMPT
3174 /*
3175 * NEWIDLE balancing is a source of latency, so preemptible kernels
3176 * will stop after the first task is pulled to minimize the critical
3177 * section.
3178 */
3179 if (idle == CPU_NEWLY_IDLE)
3180 goto out;
3181 #endif
3182
3183 /*
3184 * We only want to steal up to the prescribed amount of weighted load.
3185 */
3186 if (rem_load_move > 0) {
3187 if (p->prio < *this_best_prio)
3188 *this_best_prio = p->prio;
3189 p = iterator->next(iterator->arg);
3190 goto next;
3191 }
3192 out:
3193 /*
3194 * Right now, this is one of only two places pull_task() is called,
3195 * so we can safely collect pull_task() stats here rather than
3196 * inside pull_task().
3197 */
3198 schedstat_add(sd, lb_gained[idle], pulled);
3199
3200 if (all_pinned)
3201 *all_pinned = pinned;
3202
3203 return max_load_move - rem_load_move;
3204 }
3205
3206 /*
3207 * move_tasks tries to move up to max_load_move weighted load from busiest to
3208 * this_rq, as part of a balancing operation within domain "sd".
3209 * Returns 1 if successful and 0 otherwise.
3210 *
3211 * Called with both runqueues locked.
3212 */
3213 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3214 unsigned long max_load_move,
3215 struct sched_domain *sd, enum cpu_idle_type idle,
3216 int *all_pinned)
3217 {
3218 const struct sched_class *class = sched_class_highest;
3219 unsigned long total_load_moved = 0;
3220 int this_best_prio = this_rq->curr->prio;
3221
3222 do {
3223 total_load_moved +=
3224 class->load_balance(this_rq, this_cpu, busiest,
3225 max_load_move - total_load_moved,
3226 sd, idle, all_pinned, &this_best_prio);
3227 class = class->next;
3228
3229 #ifdef CONFIG_PREEMPT
3230 /*
3231 * NEWIDLE balancing is a source of latency, so preemptible
3232 * kernels will stop after the first task is pulled to minimize
3233 * the critical section.
3234 */
3235 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3236 break;
3237 #endif
3238 } while (class && max_load_move > total_load_moved);
3239
3240 return total_load_moved > 0;
3241 }
3242
3243 static int
3244 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3245 struct sched_domain *sd, enum cpu_idle_type idle,
3246 struct rq_iterator *iterator)
3247 {
3248 struct task_struct *p = iterator->start(iterator->arg);
3249 int pinned = 0;
3250
3251 while (p) {
3252 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3253 pull_task(busiest, p, this_rq, this_cpu);
3254 /*
3255 * Right now, this is only the second place pull_task()
3256 * is called, so we can safely collect pull_task()
3257 * stats here rather than inside pull_task().
3258 */
3259 schedstat_inc(sd, lb_gained[idle]);
3260
3261 return 1;
3262 }
3263 p = iterator->next(iterator->arg);
3264 }
3265
3266 return 0;
3267 }
3268
3269 /*
3270 * move_one_task tries to move exactly one task from busiest to this_rq, as
3271 * part of active balancing operations within "domain".
3272 * Returns 1 if successful and 0 otherwise.
3273 *
3274 * Called with both runqueues locked.
3275 */
3276 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3277 struct sched_domain *sd, enum cpu_idle_type idle)
3278 {
3279 const struct sched_class *class;
3280
3281 for (class = sched_class_highest; class; class = class->next)
3282 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3283 return 1;
3284
3285 return 0;
3286 }
3287 /********** Helpers for find_busiest_group ************************/
3288 /*
3289 * sd_lb_stats - Structure to store the statistics of a sched_domain
3290 * during load balancing.
3291 */
3292 struct sd_lb_stats {
3293 struct sched_group *busiest; /* Busiest group in this sd */
3294 struct sched_group *this; /* Local group in this sd */
3295 unsigned long total_load; /* Total load of all groups in sd */
3296 unsigned long total_pwr; /* Total power of all groups in sd */
3297 unsigned long avg_load; /* Average load across all groups in sd */
3298
3299 /** Statistics of this group */
3300 unsigned long this_load;
3301 unsigned long this_load_per_task;
3302 unsigned long this_nr_running;
3303
3304 /* Statistics of the busiest group */
3305 unsigned long max_load;
3306 unsigned long busiest_load_per_task;
3307 unsigned long busiest_nr_running;
3308
3309 int group_imb; /* Is there imbalance in this sd */
3310 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3311 int power_savings_balance; /* Is powersave balance needed for this sd */
3312 struct sched_group *group_min; /* Least loaded group in sd */
3313 struct sched_group *group_leader; /* Group which relieves group_min */
3314 unsigned long min_load_per_task; /* load_per_task in group_min */
3315 unsigned long leader_nr_running; /* Nr running of group_leader */
3316 unsigned long min_nr_running; /* Nr running of group_min */
3317 #endif
3318 };
3319
3320 /*
3321 * sg_lb_stats - stats of a sched_group required for load_balancing
3322 */
3323 struct sg_lb_stats {
3324 unsigned long avg_load; /*Avg load across the CPUs of the group */
3325 unsigned long group_load; /* Total load over the CPUs of the group */
3326 unsigned long sum_nr_running; /* Nr tasks running in the group */
3327 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3328 unsigned long group_capacity;
3329 int group_imb; /* Is there an imbalance in the group ? */
3330 };
3331
3332 /**
3333 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3334 * @group: The group whose first cpu is to be returned.
3335 */
3336 static inline unsigned int group_first_cpu(struct sched_group *group)
3337 {
3338 return cpumask_first(sched_group_cpus(group));
3339 }
3340
3341 /**
3342 * get_sd_load_idx - Obtain the load index for a given sched domain.
3343 * @sd: The sched_domain whose load_idx is to be obtained.
3344 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3345 */
3346 static inline int get_sd_load_idx(struct sched_domain *sd,
3347 enum cpu_idle_type idle)
3348 {
3349 int load_idx;
3350
3351 switch (idle) {
3352 case CPU_NOT_IDLE:
3353 load_idx = sd->busy_idx;
3354 break;
3355
3356 case CPU_NEWLY_IDLE:
3357 load_idx = sd->newidle_idx;
3358 break;
3359 default:
3360 load_idx = sd->idle_idx;
3361 break;
3362 }
3363
3364 return load_idx;
3365 }
3366
3367
3368 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3369 /**
3370 * init_sd_power_savings_stats - Initialize power savings statistics for
3371 * the given sched_domain, during load balancing.
3372 *
3373 * @sd: Sched domain whose power-savings statistics are to be initialized.
3374 * @sds: Variable containing the statistics for sd.
3375 * @idle: Idle status of the CPU at which we're performing load-balancing.
3376 */
3377 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3378 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3379 {
3380 /*
3381 * Busy processors will not participate in power savings
3382 * balance.
3383 */
3384 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3385 sds->power_savings_balance = 0;
3386 else {
3387 sds->power_savings_balance = 1;
3388 sds->min_nr_running = ULONG_MAX;
3389 sds->leader_nr_running = 0;
3390 }
3391 }
3392
3393 /**
3394 * update_sd_power_savings_stats - Update the power saving stats for a
3395 * sched_domain while performing load balancing.
3396 *
3397 * @group: sched_group belonging to the sched_domain under consideration.
3398 * @sds: Variable containing the statistics of the sched_domain
3399 * @local_group: Does group contain the CPU for which we're performing
3400 * load balancing ?
3401 * @sgs: Variable containing the statistics of the group.
3402 */
3403 static inline void update_sd_power_savings_stats(struct sched_group *group,
3404 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3405 {
3406
3407 if (!sds->power_savings_balance)
3408 return;
3409
3410 /*
3411 * If the local group is idle or completely loaded
3412 * no need to do power savings balance at this domain
3413 */
3414 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3415 !sds->this_nr_running))
3416 sds->power_savings_balance = 0;
3417
3418 /*
3419 * If a group is already running at full capacity or idle,
3420 * don't include that group in power savings calculations
3421 */
3422 if (!sds->power_savings_balance ||
3423 sgs->sum_nr_running >= sgs->group_capacity ||
3424 !sgs->sum_nr_running)
3425 return;
3426
3427 /*
3428 * Calculate the group which has the least non-idle load.
3429 * This is the group from where we need to pick up the load
3430 * for saving power
3431 */
3432 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3433 (sgs->sum_nr_running == sds->min_nr_running &&
3434 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3435 sds->group_min = group;
3436 sds->min_nr_running = sgs->sum_nr_running;
3437 sds->min_load_per_task = sgs->sum_weighted_load /
3438 sgs->sum_nr_running;
3439 }
3440
3441 /*
3442 * Calculate the group which is almost near its
3443 * capacity but still has some space to pick up some load
3444 * from other group and save more power
3445 */
3446 if (sgs->sum_nr_running > sgs->group_capacity - 1)
3447 return;
3448
3449 if (sgs->sum_nr_running > sds->leader_nr_running ||
3450 (sgs->sum_nr_running == sds->leader_nr_running &&
3451 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3452 sds->group_leader = group;
3453 sds->leader_nr_running = sgs->sum_nr_running;
3454 }
3455 }
3456
3457 /**
3458 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3459 * @sds: Variable containing the statistics of the sched_domain
3460 * under consideration.
3461 * @this_cpu: Cpu at which we're currently performing load-balancing.
3462 * @imbalance: Variable to store the imbalance.
3463 *
3464 * Description:
3465 * Check if we have potential to perform some power-savings balance.
3466 * If yes, set the busiest group to be the least loaded group in the
3467 * sched_domain, so that it's CPUs can be put to idle.
3468 *
3469 * Returns 1 if there is potential to perform power-savings balance.
3470 * Else returns 0.
3471 */
3472 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3473 int this_cpu, unsigned long *imbalance)
3474 {
3475 if (!sds->power_savings_balance)
3476 return 0;
3477
3478 if (sds->this != sds->group_leader ||
3479 sds->group_leader == sds->group_min)
3480 return 0;
3481
3482 *imbalance = sds->min_load_per_task;
3483 sds->busiest = sds->group_min;
3484
3485 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3486 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
3487 group_first_cpu(sds->group_leader);
3488 }
3489
3490 return 1;
3491
3492 }
3493 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3494 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3495 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3496 {
3497 return;
3498 }
3499
3500 static inline void update_sd_power_savings_stats(struct sched_group *group,
3501 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3502 {
3503 return;
3504 }
3505
3506 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3507 int this_cpu, unsigned long *imbalance)
3508 {
3509 return 0;
3510 }
3511 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3512
3513
3514 /**
3515 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3516 * @group: sched_group whose statistics are to be updated.
3517 * @this_cpu: Cpu for which load balance is currently performed.
3518 * @idle: Idle status of this_cpu
3519 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3520 * @sd_idle: Idle status of the sched_domain containing group.
3521 * @local_group: Does group contain this_cpu.
3522 * @cpus: Set of cpus considered for load balancing.
3523 * @balance: Should we balance.
3524 * @sgs: variable to hold the statistics for this group.
3525 */
3526 static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
3527 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3528 int local_group, const struct cpumask *cpus,
3529 int *balance, struct sg_lb_stats *sgs)
3530 {
3531 unsigned long load, max_cpu_load, min_cpu_load;
3532 int i;
3533 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3534 unsigned long sum_avg_load_per_task;
3535 unsigned long avg_load_per_task;
3536
3537 if (local_group)
3538 balance_cpu = group_first_cpu(group);
3539
3540 /* Tally up the load of all CPUs in the group */
3541 sum_avg_load_per_task = avg_load_per_task = 0;
3542 max_cpu_load = 0;
3543 min_cpu_load = ~0UL;
3544
3545 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3546 struct rq *rq = cpu_rq(i);
3547
3548 if (*sd_idle && rq->nr_running)
3549 *sd_idle = 0;
3550
3551 /* Bias balancing toward cpus of our domain */
3552 if (local_group) {
3553 if (idle_cpu(i) && !first_idle_cpu) {
3554 first_idle_cpu = 1;
3555 balance_cpu = i;
3556 }
3557
3558 load = target_load(i, load_idx);
3559 } else {
3560 load = source_load(i, load_idx);
3561 if (load > max_cpu_load)
3562 max_cpu_load = load;
3563 if (min_cpu_load > load)
3564 min_cpu_load = load;
3565 }
3566
3567 sgs->group_load += load;
3568 sgs->sum_nr_running += rq->nr_running;
3569 sgs->sum_weighted_load += weighted_cpuload(i);
3570
3571 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3572 }
3573
3574 /*
3575 * First idle cpu or the first cpu(busiest) in this sched group
3576 * is eligible for doing load balancing at this and above
3577 * domains. In the newly idle case, we will allow all the cpu's
3578 * to do the newly idle load balance.
3579 */
3580 if (idle != CPU_NEWLY_IDLE && local_group &&
3581 balance_cpu != this_cpu && balance) {
3582 *balance = 0;
3583 return;
3584 }
3585
3586 /* Adjust by relative CPU power of the group */
3587 sgs->avg_load = sg_div_cpu_power(group,
3588 sgs->group_load * SCHED_LOAD_SCALE);
3589
3590
3591 /*
3592 * Consider the group unbalanced when the imbalance is larger
3593 * than the average weight of two tasks.
3594 *
3595 * APZ: with cgroup the avg task weight can vary wildly and
3596 * might not be a suitable number - should we keep a
3597 * normalized nr_running number somewhere that negates
3598 * the hierarchy?
3599 */
3600 avg_load_per_task = sg_div_cpu_power(group,
3601 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3602
3603 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3604 sgs->group_imb = 1;
3605
3606 sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3607
3608 }
3609
3610 /**
3611 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3612 * @sd: sched_domain whose statistics are to be updated.
3613 * @this_cpu: Cpu for which load balance is currently performed.
3614 * @idle: Idle status of this_cpu
3615 * @sd_idle: Idle status of the sched_domain containing group.
3616 * @cpus: Set of cpus considered for load balancing.
3617 * @balance: Should we balance.
3618 * @sds: variable to hold the statistics for this sched_domain.
3619 */
3620 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3621 enum cpu_idle_type idle, int *sd_idle,
3622 const struct cpumask *cpus, int *balance,
3623 struct sd_lb_stats *sds)
3624 {
3625 struct sched_group *group = sd->groups;
3626 struct sg_lb_stats sgs;
3627 int load_idx;
3628
3629 init_sd_power_savings_stats(sd, sds, idle);
3630 load_idx = get_sd_load_idx(sd, idle);
3631
3632 do {
3633 int local_group;
3634
3635 local_group = cpumask_test_cpu(this_cpu,
3636 sched_group_cpus(group));
3637 memset(&sgs, 0, sizeof(sgs));
3638 update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle,
3639 local_group, cpus, balance, &sgs);
3640
3641 if (local_group && balance && !(*balance))
3642 return;
3643
3644 sds->total_load += sgs.group_load;
3645 sds->total_pwr += group->__cpu_power;
3646
3647 if (local_group) {
3648 sds->this_load = sgs.avg_load;
3649 sds->this = group;
3650 sds->this_nr_running = sgs.sum_nr_running;
3651 sds->this_load_per_task = sgs.sum_weighted_load;
3652 } else if (sgs.avg_load > sds->max_load &&
3653 (sgs.sum_nr_running > sgs.group_capacity ||
3654 sgs.group_imb)) {
3655 sds->max_load = sgs.avg_load;
3656 sds->busiest = group;
3657 sds->busiest_nr_running = sgs.sum_nr_running;
3658 sds->busiest_load_per_task = sgs.sum_weighted_load;
3659 sds->group_imb = sgs.group_imb;
3660 }
3661
3662 update_sd_power_savings_stats(group, sds, local_group, &sgs);
3663 group = group->next;
3664 } while (group != sd->groups);
3665
3666 }
3667
3668 /**
3669 * fix_small_imbalance - Calculate the minor imbalance that exists
3670 * amongst the groups of a sched_domain, during
3671 * load balancing.
3672 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3673 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3674 * @imbalance: Variable to store the imbalance.
3675 */
3676 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3677 int this_cpu, unsigned long *imbalance)
3678 {
3679 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3680 unsigned int imbn = 2;
3681
3682 if (sds->this_nr_running) {
3683 sds->this_load_per_task /= sds->this_nr_running;
3684 if (sds->busiest_load_per_task >
3685 sds->this_load_per_task)
3686 imbn = 1;
3687 } else
3688 sds->this_load_per_task =
3689 cpu_avg_load_per_task(this_cpu);
3690
3691 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3692 sds->busiest_load_per_task * imbn) {
3693 *imbalance = sds->busiest_load_per_task;
3694 return;
3695 }
3696
3697 /*
3698 * OK, we don't have enough imbalance to justify moving tasks,
3699 * however we may be able to increase total CPU power used by
3700 * moving them.
3701 */
3702
3703 pwr_now += sds->busiest->__cpu_power *
3704 min(sds->busiest_load_per_task, sds->max_load);
3705 pwr_now += sds->this->__cpu_power *
3706 min(sds->this_load_per_task, sds->this_load);
3707 pwr_now /= SCHED_LOAD_SCALE;
3708
3709 /* Amount of load we'd subtract */
3710 tmp = sg_div_cpu_power(sds->busiest,
3711 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3712 if (sds->max_load > tmp)
3713 pwr_move += sds->busiest->__cpu_power *
3714 min(sds->busiest_load_per_task, sds->max_load - tmp);
3715
3716 /* Amount of load we'd add */
3717 if (sds->max_load * sds->busiest->__cpu_power <
3718 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3719 tmp = sg_div_cpu_power(sds->this,
3720 sds->max_load * sds->busiest->__cpu_power);
3721 else
3722 tmp = sg_div_cpu_power(sds->this,
3723 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3724 pwr_move += sds->this->__cpu_power *
3725 min(sds->this_load_per_task, sds->this_load + tmp);
3726 pwr_move /= SCHED_LOAD_SCALE;
3727
3728 /* Move if we gain throughput */
3729 if (pwr_move > pwr_now)
3730 *imbalance = sds->busiest_load_per_task;
3731 }
3732
3733 /**
3734 * calculate_imbalance - Calculate the amount of imbalance present within the
3735 * groups of a given sched_domain during load balance.
3736 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3737 * @this_cpu: Cpu for which currently load balance is being performed.
3738 * @imbalance: The variable to store the imbalance.
3739 */
3740 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3741 unsigned long *imbalance)
3742 {
3743 unsigned long max_pull;
3744 /*
3745 * In the presence of smp nice balancing, certain scenarios can have
3746 * max load less than avg load(as we skip the groups at or below
3747 * its cpu_power, while calculating max_load..)
3748 */
3749 if (sds->max_load < sds->avg_load) {
3750 *imbalance = 0;
3751 return fix_small_imbalance(sds, this_cpu, imbalance);
3752 }
3753
3754 /* Don't want to pull so many tasks that a group would go idle */
3755 max_pull = min(sds->max_load - sds->avg_load,
3756 sds->max_load - sds->busiest_load_per_task);
3757
3758 /* How much load to actually move to equalise the imbalance */
3759 *imbalance = min(max_pull * sds->busiest->__cpu_power,
3760 (sds->avg_load - sds->this_load) * sds->this->__cpu_power)
3761 / SCHED_LOAD_SCALE;
3762
3763 /*
3764 * if *imbalance is less than the average load per runnable task
3765 * there is no gaurantee that any tasks will be moved so we'll have
3766 * a think about bumping its value to force at least one task to be
3767 * moved
3768 */
3769 if (*imbalance < sds->busiest_load_per_task)
3770 return fix_small_imbalance(sds, this_cpu, imbalance);
3771
3772 }
3773 /******* find_busiest_group() helpers end here *********************/
3774
3775 /**
3776 * find_busiest_group - Returns the busiest group within the sched_domain
3777 * if there is an imbalance. If there isn't an imbalance, and
3778 * the user has opted for power-savings, it returns a group whose
3779 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3780 * such a group exists.
3781 *
3782 * Also calculates the amount of weighted load which should be moved
3783 * to restore balance.
3784 *
3785 * @sd: The sched_domain whose busiest group is to be returned.
3786 * @this_cpu: The cpu for which load balancing is currently being performed.
3787 * @imbalance: Variable which stores amount of weighted load which should
3788 * be moved to restore balance/put a group to idle.
3789 * @idle: The idle status of this_cpu.
3790 * @sd_idle: The idleness of sd
3791 * @cpus: The set of CPUs under consideration for load-balancing.
3792 * @balance: Pointer to a variable indicating if this_cpu
3793 * is the appropriate cpu to perform load balancing at this_level.
3794 *
3795 * Returns: - the busiest group if imbalance exists.
3796 * - If no imbalance and user has opted for power-savings balance,
3797 * return the least loaded group whose CPUs can be
3798 * put to idle by rebalancing its tasks onto our group.
3799 */
3800 static struct sched_group *
3801 find_busiest_group(struct sched_domain *sd, int this_cpu,
3802 unsigned long *imbalance, enum cpu_idle_type idle,
3803 int *sd_idle, const struct cpumask *cpus, int *balance)
3804 {
3805 struct sd_lb_stats sds;
3806
3807 memset(&sds, 0, sizeof(sds));
3808
3809 /*
3810 * Compute the various statistics relavent for load balancing at
3811 * this level.
3812 */
3813 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3814 balance, &sds);
3815
3816 /* Cases where imbalance does not exist from POV of this_cpu */
3817 /* 1) this_cpu is not the appropriate cpu to perform load balancing
3818 * at this level.
3819 * 2) There is no busy sibling group to pull from.
3820 * 3) This group is the busiest group.
3821 * 4) This group is more busy than the avg busieness at this
3822 * sched_domain.
3823 * 5) The imbalance is within the specified limit.
3824 * 6) Any rebalance would lead to ping-pong
3825 */
3826 if (balance && !(*balance))
3827 goto ret;
3828
3829 if (!sds.busiest || sds.busiest_nr_running == 0)
3830 goto out_balanced;
3831
3832 if (sds.this_load >= sds.max_load)
3833 goto out_balanced;
3834
3835 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
3836
3837 if (sds.this_load >= sds.avg_load)
3838 goto out_balanced;
3839
3840 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
3841 goto out_balanced;
3842
3843 sds.busiest_load_per_task /= sds.busiest_nr_running;
3844 if (sds.group_imb)
3845 sds.busiest_load_per_task =
3846 min(sds.busiest_load_per_task, sds.avg_load);
3847
3848 /*
3849 * We're trying to get all the cpus to the average_load, so we don't
3850 * want to push ourselves above the average load, nor do we wish to
3851 * reduce the max loaded cpu below the average load, as either of these
3852 * actions would just result in more rebalancing later, and ping-pong
3853 * tasks around. Thus we look for the minimum possible imbalance.
3854 * Negative imbalances (*we* are more loaded than anyone else) will
3855 * be counted as no imbalance for these purposes -- we can't fix that
3856 * by pulling tasks to us. Be careful of negative numbers as they'll
3857 * appear as very large values with unsigned longs.
3858 */
3859 if (sds.max_load <= sds.busiest_load_per_task)
3860 goto out_balanced;
3861
3862 /* Looks like there is an imbalance. Compute it */
3863 calculate_imbalance(&sds, this_cpu, imbalance);
3864 return sds.busiest;
3865
3866 out_balanced:
3867 /*
3868 * There is no obvious imbalance. But check if we can do some balancing
3869 * to save power.
3870 */
3871 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
3872 return sds.busiest;
3873 ret:
3874 *imbalance = 0;
3875 return NULL;
3876 }
3877
3878 /*
3879 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3880 */
3881 static struct rq *
3882 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3883 unsigned long imbalance, const struct cpumask *cpus)
3884 {
3885 struct rq *busiest = NULL, *rq;
3886 unsigned long max_load = 0;
3887 int i;
3888
3889 for_each_cpu(i, sched_group_cpus(group)) {
3890 unsigned long wl;
3891
3892 if (!cpumask_test_cpu(i, cpus))
3893 continue;
3894
3895 rq = cpu_rq(i);
3896 wl = weighted_cpuload(i);
3897
3898 if (rq->nr_running == 1 && wl > imbalance)
3899 continue;
3900
3901 if (wl > max_load) {
3902 max_load = wl;
3903 busiest = rq;
3904 }
3905 }
3906
3907 return busiest;
3908 }
3909
3910 /*
3911 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3912 * so long as it is large enough.
3913 */
3914 #define MAX_PINNED_INTERVAL 512
3915
3916 /* Working cpumask for load_balance and load_balance_newidle. */
3917 static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
3918
3919 /*
3920 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3921 * tasks if there is an imbalance.
3922 */
3923 static int load_balance(int this_cpu, struct rq *this_rq,
3924 struct sched_domain *sd, enum cpu_idle_type idle,
3925 int *balance)
3926 {
3927 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3928 struct sched_group *group;
3929 unsigned long imbalance;
3930 struct rq *busiest;
3931 unsigned long flags;
3932 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
3933
3934 cpumask_setall(cpus);
3935
3936 /*
3937 * When power savings policy is enabled for the parent domain, idle
3938 * sibling can pick up load irrespective of busy siblings. In this case,
3939 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3940 * portraying it as CPU_NOT_IDLE.
3941 */
3942 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3943 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3944 sd_idle = 1;
3945
3946 schedstat_inc(sd, lb_count[idle]);
3947
3948 redo:
3949 update_shares(sd);
3950 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3951 cpus, balance);
3952
3953 if (*balance == 0)
3954 goto out_balanced;
3955
3956 if (!group) {
3957 schedstat_inc(sd, lb_nobusyg[idle]);
3958 goto out_balanced;
3959 }
3960
3961 busiest = find_busiest_queue(group, idle, imbalance, cpus);
3962 if (!busiest) {
3963 schedstat_inc(sd, lb_nobusyq[idle]);
3964 goto out_balanced;
3965 }
3966
3967 BUG_ON(busiest == this_rq);
3968
3969 schedstat_add(sd, lb_imbalance[idle], imbalance);
3970
3971 ld_moved = 0;
3972 if (busiest->nr_running > 1) {
3973 /*
3974 * Attempt to move tasks. If find_busiest_group has found
3975 * an imbalance but busiest->nr_running <= 1, the group is
3976 * still unbalanced. ld_moved simply stays zero, so it is
3977 * correctly treated as an imbalance.
3978 */
3979 local_irq_save(flags);
3980 double_rq_lock(this_rq, busiest);
3981 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3982 imbalance, sd, idle, &all_pinned);
3983 double_rq_unlock(this_rq, busiest);
3984 local_irq_restore(flags);
3985
3986 /*
3987 * some other cpu did the load balance for us.
3988 */
3989 if (ld_moved && this_cpu != smp_processor_id())
3990 resched_cpu(this_cpu);
3991
3992 /* All tasks on this runqueue were pinned by CPU affinity */
3993 if (unlikely(all_pinned)) {
3994 cpumask_clear_cpu(cpu_of(busiest), cpus);
3995 if (!cpumask_empty(cpus))
3996 goto redo;
3997 goto out_balanced;
3998 }
3999 }
4000
4001 if (!ld_moved) {
4002 schedstat_inc(sd, lb_failed[idle]);
4003 sd->nr_balance_failed++;
4004
4005 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
4006
4007 spin_lock_irqsave(&busiest->lock, flags);
4008
4009 /* don't kick the migration_thread, if the curr
4010 * task on busiest cpu can't be moved to this_cpu
4011 */
4012 if (!cpumask_test_cpu(this_cpu,
4013 &busiest->curr->cpus_allowed)) {
4014 spin_unlock_irqrestore(&busiest->lock, flags);
4015 all_pinned = 1;
4016 goto out_one_pinned;
4017 }
4018
4019 if (!busiest->active_balance) {
4020 busiest->active_balance = 1;
4021 busiest->push_cpu = this_cpu;
4022 active_balance = 1;
4023 }
4024 spin_unlock_irqrestore(&busiest->lock, flags);
4025 if (active_balance)
4026 wake_up_process(busiest->migration_thread);
4027
4028 /*
4029 * We've kicked active balancing, reset the failure
4030 * counter.
4031 */
4032 sd->nr_balance_failed = sd->cache_nice_tries+1;
4033 }
4034 } else
4035 sd->nr_balance_failed = 0;
4036
4037 if (likely(!active_balance)) {
4038 /* We were unbalanced, so reset the balancing interval */
4039 sd->balance_interval = sd->min_interval;
4040 } else {
4041 /*
4042 * If we've begun active balancing, start to back off. This
4043 * case may not be covered by the all_pinned logic if there
4044 * is only 1 task on the busy runqueue (because we don't call
4045 * move_tasks).
4046 */
4047 if (sd->balance_interval < sd->max_interval)
4048 sd->balance_interval *= 2;
4049 }
4050
4051 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4052 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4053 ld_moved = -1;
4054
4055 goto out;
4056
4057 out_balanced:
4058 schedstat_inc(sd, lb_balanced[idle]);
4059
4060 sd->nr_balance_failed = 0;
4061
4062 out_one_pinned:
4063 /* tune up the balancing interval */
4064 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4065 (sd->balance_interval < sd->max_interval))
4066 sd->balance_interval *= 2;
4067
4068 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4069 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4070 ld_moved = -1;
4071 else
4072 ld_moved = 0;
4073 out:
4074 if (ld_moved)
4075 update_shares(sd);
4076 return ld_moved;
4077 }
4078
4079 /*
4080 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4081 * tasks if there is an imbalance.
4082 *
4083 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
4084 * this_rq is locked.
4085 */
4086 static int
4087 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
4088 {
4089 struct sched_group *group;
4090 struct rq *busiest = NULL;
4091 unsigned long imbalance;
4092 int ld_moved = 0;
4093 int sd_idle = 0;
4094 int all_pinned = 0;
4095 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4096
4097 cpumask_setall(cpus);
4098
4099 /*
4100 * When power savings policy is enabled for the parent domain, idle
4101 * sibling can pick up load irrespective of busy siblings. In this case,
4102 * let the state of idle sibling percolate up as IDLE, instead of
4103 * portraying it as CPU_NOT_IDLE.
4104 */
4105 if (sd->flags & SD_SHARE_CPUPOWER &&
4106 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4107 sd_idle = 1;
4108
4109 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4110 redo:
4111 update_shares_locked(this_rq, sd);
4112 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4113 &sd_idle, cpus, NULL);
4114 if (!group) {
4115 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4116 goto out_balanced;
4117 }
4118
4119 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
4120 if (!busiest) {
4121 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4122 goto out_balanced;
4123 }
4124
4125 BUG_ON(busiest == this_rq);
4126
4127 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4128
4129 ld_moved = 0;
4130 if (busiest->nr_running > 1) {
4131 /* Attempt to move tasks */
4132 double_lock_balance(this_rq, busiest);
4133 /* this_rq->clock is already updated */
4134 update_rq_clock(busiest);
4135 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4136 imbalance, sd, CPU_NEWLY_IDLE,
4137 &all_pinned);
4138 double_unlock_balance(this_rq, busiest);
4139
4140 if (unlikely(all_pinned)) {
4141 cpumask_clear_cpu(cpu_of(busiest), cpus);
4142 if (!cpumask_empty(cpus))
4143 goto redo;
4144 }
4145 }
4146
4147 if (!ld_moved) {
4148 int active_balance = 0;
4149
4150 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4151 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4152 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4153 return -1;
4154
4155 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4156 return -1;
4157
4158 if (sd->nr_balance_failed++ < 2)
4159 return -1;
4160
4161 /*
4162 * The only task running in a non-idle cpu can be moved to this
4163 * cpu in an attempt to completely freeup the other CPU
4164 * package. The same method used to move task in load_balance()
4165 * have been extended for load_balance_newidle() to speedup
4166 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4167 *
4168 * The package power saving logic comes from
4169 * find_busiest_group(). If there are no imbalance, then
4170 * f_b_g() will return NULL. However when sched_mc={1,2} then
4171 * f_b_g() will select a group from which a running task may be
4172 * pulled to this cpu in order to make the other package idle.
4173 * If there is no opportunity to make a package idle and if
4174 * there are no imbalance, then f_b_g() will return NULL and no
4175 * action will be taken in load_balance_newidle().
4176 *
4177 * Under normal task pull operation due to imbalance, there
4178 * will be more than one task in the source run queue and
4179 * move_tasks() will succeed. ld_moved will be true and this
4180 * active balance code will not be triggered.
4181 */
4182
4183 /* Lock busiest in correct order while this_rq is held */
4184 double_lock_balance(this_rq, busiest);
4185
4186 /*
4187 * don't kick the migration_thread, if the curr
4188 * task on busiest cpu can't be moved to this_cpu
4189 */
4190 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4191 double_unlock_balance(this_rq, busiest);
4192 all_pinned = 1;
4193 return ld_moved;
4194 }
4195
4196 if (!busiest->active_balance) {
4197 busiest->active_balance = 1;
4198 busiest->push_cpu = this_cpu;
4199 active_balance = 1;
4200 }
4201
4202 double_unlock_balance(this_rq, busiest);
4203 /*
4204 * Should not call ttwu while holding a rq->lock
4205 */
4206 spin_unlock(&this_rq->lock);
4207 if (active_balance)
4208 wake_up_process(busiest->migration_thread);
4209 spin_lock(&this_rq->lock);
4210
4211 } else
4212 sd->nr_balance_failed = 0;
4213
4214 update_shares_locked(this_rq, sd);
4215 return ld_moved;
4216
4217 out_balanced:
4218 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4219 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4220 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4221 return -1;
4222 sd->nr_balance_failed = 0;
4223
4224 return 0;
4225 }
4226
4227 /*
4228 * idle_balance is called by schedule() if this_cpu is about to become
4229 * idle. Attempts to pull tasks from other CPUs.
4230 */
4231 static void idle_balance(int this_cpu, struct rq *this_rq)
4232 {
4233 struct sched_domain *sd;
4234 int pulled_task = 0;
4235 unsigned long next_balance = jiffies + HZ;
4236
4237 for_each_domain(this_cpu, sd) {
4238 unsigned long interval;
4239
4240 if (!(sd->flags & SD_LOAD_BALANCE))
4241 continue;
4242
4243 if (sd->flags & SD_BALANCE_NEWIDLE)
4244 /* If we've pulled tasks over stop searching: */
4245 pulled_task = load_balance_newidle(this_cpu, this_rq,
4246 sd);
4247
4248 interval = msecs_to_jiffies(sd->balance_interval);
4249 if (time_after(next_balance, sd->last_balance + interval))
4250 next_balance = sd->last_balance + interval;
4251 if (pulled_task)
4252 break;
4253 }
4254 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4255 /*
4256 * We are going idle. next_balance may be set based on
4257 * a busy processor. So reset next_balance.
4258 */
4259 this_rq->next_balance = next_balance;
4260 }
4261 }
4262
4263 /*
4264 * active_load_balance is run by migration threads. It pushes running tasks
4265 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4266 * running on each physical CPU where possible, and avoids physical /
4267 * logical imbalances.
4268 *
4269 * Called with busiest_rq locked.
4270 */
4271 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
4272 {
4273 int target_cpu = busiest_rq->push_cpu;
4274 struct sched_domain *sd;
4275 struct rq *target_rq;
4276
4277 /* Is there any task to move? */
4278 if (busiest_rq->nr_running <= 1)
4279 return;
4280
4281 target_rq = cpu_rq(target_cpu);
4282
4283 /*
4284 * This condition is "impossible", if it occurs
4285 * we need to fix it. Originally reported by
4286 * Bjorn Helgaas on a 128-cpu setup.
4287 */
4288 BUG_ON(busiest_rq == target_rq);
4289
4290 /* move a task from busiest_rq to target_rq */
4291 double_lock_balance(busiest_rq, target_rq);
4292 update_rq_clock(busiest_rq);
4293 update_rq_clock(target_rq);
4294
4295 /* Search for an sd spanning us and the target CPU. */
4296 for_each_domain(target_cpu, sd) {
4297 if ((sd->flags & SD_LOAD_BALANCE) &&
4298 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4299 break;
4300 }
4301
4302 if (likely(sd)) {
4303 schedstat_inc(sd, alb_count);
4304
4305 if (move_one_task(target_rq, target_cpu, busiest_rq,
4306 sd, CPU_IDLE))
4307 schedstat_inc(sd, alb_pushed);
4308 else
4309 schedstat_inc(sd, alb_failed);
4310 }
4311 double_unlock_balance(busiest_rq, target_rq);
4312 }
4313
4314 #ifdef CONFIG_NO_HZ
4315 static struct {
4316 atomic_t load_balancer;
4317 cpumask_var_t cpu_mask;
4318 cpumask_var_t ilb_grp_nohz_mask;
4319 } nohz ____cacheline_aligned = {
4320 .load_balancer = ATOMIC_INIT(-1),
4321 };
4322
4323 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4324 /**
4325 * lowest_flag_domain - Return lowest sched_domain containing flag.
4326 * @cpu: The cpu whose lowest level of sched domain is to
4327 * be returned.
4328 * @flag: The flag to check for the lowest sched_domain
4329 * for the given cpu.
4330 *
4331 * Returns the lowest sched_domain of a cpu which contains the given flag.
4332 */
4333 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4334 {
4335 struct sched_domain *sd;
4336
4337 for_each_domain(cpu, sd)
4338 if (sd && (sd->flags & flag))
4339 break;
4340
4341 return sd;
4342 }
4343
4344 /**
4345 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4346 * @cpu: The cpu whose domains we're iterating over.
4347 * @sd: variable holding the value of the power_savings_sd
4348 * for cpu.
4349 * @flag: The flag to filter the sched_domains to be iterated.
4350 *
4351 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4352 * set, starting from the lowest sched_domain to the highest.
4353 */
4354 #define for_each_flag_domain(cpu, sd, flag) \
4355 for (sd = lowest_flag_domain(cpu, flag); \
4356 (sd && (sd->flags & flag)); sd = sd->parent)
4357
4358 /**
4359 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4360 * @ilb_group: group to be checked for semi-idleness
4361 *
4362 * Returns: 1 if the group is semi-idle. 0 otherwise.
4363 *
4364 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4365 * and atleast one non-idle CPU. This helper function checks if the given
4366 * sched_group is semi-idle or not.
4367 */
4368 static inline int is_semi_idle_group(struct sched_group *ilb_group)
4369 {
4370 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4371 sched_group_cpus(ilb_group));
4372
4373 /*
4374 * A sched_group is semi-idle when it has atleast one busy cpu
4375 * and atleast one idle cpu.
4376 */
4377 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4378 return 0;
4379
4380 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4381 return 0;
4382
4383 return 1;
4384 }
4385 /**
4386 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4387 * @cpu: The cpu which is nominating a new idle_load_balancer.
4388 *
4389 * Returns: Returns the id of the idle load balancer if it exists,
4390 * Else, returns >= nr_cpu_ids.
4391 *
4392 * This algorithm picks the idle load balancer such that it belongs to a
4393 * semi-idle powersavings sched_domain. The idea is to try and avoid
4394 * completely idle packages/cores just for the purpose of idle load balancing
4395 * when there are other idle cpu's which are better suited for that job.
4396 */
4397 static int find_new_ilb(int cpu)
4398 {
4399 struct sched_domain *sd;
4400 struct sched_group *ilb_group;
4401
4402 /*
4403 * Have idle load balancer selection from semi-idle packages only
4404 * when power-aware load balancing is enabled
4405 */
4406 if (!(sched_smt_power_savings || sched_mc_power_savings))
4407 goto out_done;
4408
4409 /*
4410 * Optimize for the case when we have no idle CPUs or only one
4411 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4412 */
4413 if (cpumask_weight(nohz.cpu_mask) < 2)
4414 goto out_done;
4415
4416 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4417 ilb_group = sd->groups;
4418
4419 do {
4420 if (is_semi_idle_group(ilb_group))
4421 return cpumask_first(nohz.ilb_grp_nohz_mask);
4422
4423 ilb_group = ilb_group->next;
4424
4425 } while (ilb_group != sd->groups);
4426 }
4427
4428 out_done:
4429 return cpumask_first(nohz.cpu_mask);
4430 }
4431 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4432 static inline int find_new_ilb(int call_cpu)
4433 {
4434 return cpumask_first(nohz.cpu_mask);
4435 }
4436 #endif
4437
4438 /*
4439 * This routine will try to nominate the ilb (idle load balancing)
4440 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4441 * load balancing on behalf of all those cpus. If all the cpus in the system
4442 * go into this tickless mode, then there will be no ilb owner (as there is
4443 * no need for one) and all the cpus will sleep till the next wakeup event
4444 * arrives...
4445 *
4446 * For the ilb owner, tick is not stopped. And this tick will be used
4447 * for idle load balancing. ilb owner will still be part of
4448 * nohz.cpu_mask..
4449 *
4450 * While stopping the tick, this cpu will become the ilb owner if there
4451 * is no other owner. And will be the owner till that cpu becomes busy
4452 * or if all cpus in the system stop their ticks at which point
4453 * there is no need for ilb owner.
4454 *
4455 * When the ilb owner becomes busy, it nominates another owner, during the
4456 * next busy scheduler_tick()
4457 */
4458 int select_nohz_load_balancer(int stop_tick)
4459 {
4460 int cpu = smp_processor_id();
4461
4462 if (stop_tick) {
4463 cpu_rq(cpu)->in_nohz_recently = 1;
4464
4465 if (!cpu_active(cpu)) {
4466 if (atomic_read(&nohz.load_balancer) != cpu)
4467 return 0;
4468
4469 /*
4470 * If we are going offline and still the leader,
4471 * give up!
4472 */
4473 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4474 BUG();
4475
4476 return 0;
4477 }
4478
4479 cpumask_set_cpu(cpu, nohz.cpu_mask);
4480
4481 /* time for ilb owner also to sleep */
4482 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4483 if (atomic_read(&nohz.load_balancer) == cpu)
4484 atomic_set(&nohz.load_balancer, -1);
4485 return 0;
4486 }
4487
4488 if (atomic_read(&nohz.load_balancer) == -1) {
4489 /* make me the ilb owner */
4490 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4491 return 1;
4492 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4493 int new_ilb;
4494
4495 if (!(sched_smt_power_savings ||
4496 sched_mc_power_savings))
4497 return 1;
4498 /*
4499 * Check to see if there is a more power-efficient
4500 * ilb.
4501 */
4502 new_ilb = find_new_ilb(cpu);
4503 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4504 atomic_set(&nohz.load_balancer, -1);
4505 resched_cpu(new_ilb);
4506 return 0;
4507 }
4508 return 1;
4509 }
4510 } else {
4511 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4512 return 0;
4513
4514 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4515
4516 if (atomic_read(&nohz.load_balancer) == cpu)
4517 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4518 BUG();
4519 }
4520 return 0;
4521 }
4522 #endif
4523
4524 static DEFINE_SPINLOCK(balancing);
4525
4526 /*
4527 * It checks each scheduling domain to see if it is due to be balanced,
4528 * and initiates a balancing operation if so.
4529 *
4530 * Balancing parameters are set up in arch_init_sched_domains.
4531 */
4532 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4533 {
4534 int balance = 1;
4535 struct rq *rq = cpu_rq(cpu);
4536 unsigned long interval;
4537 struct sched_domain *sd;
4538 /* Earliest time when we have to do rebalance again */
4539 unsigned long next_balance = jiffies + 60*HZ;
4540 int update_next_balance = 0;
4541 int need_serialize;
4542
4543 for_each_domain(cpu, sd) {
4544 if (!(sd->flags & SD_LOAD_BALANCE))
4545 continue;
4546
4547 interval = sd->balance_interval;
4548 if (idle != CPU_IDLE)
4549 interval *= sd->busy_factor;
4550
4551 /* scale ms to jiffies */
4552 interval = msecs_to_jiffies(interval);
4553 if (unlikely(!interval))
4554 interval = 1;
4555 if (interval > HZ*NR_CPUS/10)
4556 interval = HZ*NR_CPUS/10;
4557
4558 need_serialize = sd->flags & SD_SERIALIZE;
4559
4560 if (need_serialize) {
4561 if (!spin_trylock(&balancing))
4562 goto out;
4563 }
4564
4565 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4566 if (load_balance(cpu, rq, sd, idle, &balance)) {
4567 /*
4568 * We've pulled tasks over so either we're no
4569 * longer idle, or one of our SMT siblings is
4570 * not idle.
4571 */
4572 idle = CPU_NOT_IDLE;
4573 }
4574 sd->last_balance = jiffies;
4575 }
4576 if (need_serialize)
4577 spin_unlock(&balancing);
4578 out:
4579 if (time_after(next_balance, sd->last_balance + interval)) {
4580 next_balance = sd->last_balance + interval;
4581 update_next_balance = 1;
4582 }
4583
4584 /*
4585 * Stop the load balance at this level. There is another
4586 * CPU in our sched group which is doing load balancing more
4587 * actively.
4588 */
4589 if (!balance)
4590 break;
4591 }
4592
4593 /*
4594 * next_balance will be updated only when there is a need.
4595 * When the cpu is attached to null domain for ex, it will not be
4596 * updated.
4597 */
4598 if (likely(update_next_balance))
4599 rq->next_balance = next_balance;
4600 }
4601
4602 /*
4603 * run_rebalance_domains is triggered when needed from the scheduler tick.
4604 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4605 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4606 */
4607 static void run_rebalance_domains(struct softirq_action *h)
4608 {
4609 int this_cpu = smp_processor_id();
4610 struct rq *this_rq = cpu_rq(this_cpu);
4611 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4612 CPU_IDLE : CPU_NOT_IDLE;
4613
4614 rebalance_domains(this_cpu, idle);
4615
4616 #ifdef CONFIG_NO_HZ
4617 /*
4618 * If this cpu is the owner for idle load balancing, then do the
4619 * balancing on behalf of the other idle cpus whose ticks are
4620 * stopped.
4621 */
4622 if (this_rq->idle_at_tick &&
4623 atomic_read(&nohz.load_balancer) == this_cpu) {
4624 struct rq *rq;
4625 int balance_cpu;
4626
4627 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4628 if (balance_cpu == this_cpu)
4629 continue;
4630
4631 /*
4632 * If this cpu gets work to do, stop the load balancing
4633 * work being done for other cpus. Next load
4634 * balancing owner will pick it up.
4635 */
4636 if (need_resched())
4637 break;
4638
4639 rebalance_domains(balance_cpu, CPU_IDLE);
4640
4641 rq = cpu_rq(balance_cpu);
4642 if (time_after(this_rq->next_balance, rq->next_balance))
4643 this_rq->next_balance = rq->next_balance;
4644 }
4645 }
4646 #endif
4647 }
4648
4649 static inline int on_null_domain(int cpu)
4650 {
4651 return !rcu_dereference(cpu_rq(cpu)->sd);
4652 }
4653
4654 /*
4655 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4656 *
4657 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4658 * idle load balancing owner or decide to stop the periodic load balancing,
4659 * if the whole system is idle.
4660 */
4661 static inline void trigger_load_balance(struct rq *rq, int cpu)
4662 {
4663 #ifdef CONFIG_NO_HZ
4664 /*
4665 * If we were in the nohz mode recently and busy at the current
4666 * scheduler tick, then check if we need to nominate new idle
4667 * load balancer.
4668 */
4669 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4670 rq->in_nohz_recently = 0;
4671
4672 if (atomic_read(&nohz.load_balancer) == cpu) {
4673 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4674 atomic_set(&nohz.load_balancer, -1);
4675 }
4676
4677 if (atomic_read(&nohz.load_balancer) == -1) {
4678 int ilb = find_new_ilb(cpu);
4679
4680 if (ilb < nr_cpu_ids)
4681 resched_cpu(ilb);
4682 }
4683 }
4684
4685 /*
4686 * If this cpu is idle and doing idle load balancing for all the
4687 * cpus with ticks stopped, is it time for that to stop?
4688 */
4689 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4690 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4691 resched_cpu(cpu);
4692 return;
4693 }
4694
4695 /*
4696 * If this cpu is idle and the idle load balancing is done by
4697 * someone else, then no need raise the SCHED_SOFTIRQ
4698 */
4699 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4700 cpumask_test_cpu(cpu, nohz.cpu_mask))
4701 return;
4702 #endif
4703 /* Don't need to rebalance while attached to NULL domain */
4704 if (time_after_eq(jiffies, rq->next_balance) &&
4705 likely(!on_null_domain(cpu)))
4706 raise_softirq(SCHED_SOFTIRQ);
4707 }
4708
4709 #else /* CONFIG_SMP */
4710
4711 /*
4712 * on UP we do not need to balance between CPUs:
4713 */
4714 static inline void idle_balance(int cpu, struct rq *rq)
4715 {
4716 }
4717
4718 #endif
4719
4720 DEFINE_PER_CPU(struct kernel_stat, kstat);
4721
4722 EXPORT_PER_CPU_SYMBOL(kstat);
4723
4724 /*
4725 * Return any ns on the sched_clock that have not yet been accounted in
4726 * @p in case that task is currently running.
4727 *
4728 * Called with task_rq_lock() held on @rq.
4729 */
4730 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4731 {
4732 u64 ns = 0;
4733
4734 if (task_current(rq, p)) {
4735 update_rq_clock(rq);
4736 ns = rq->clock - p->se.exec_start;
4737 if ((s64)ns < 0)
4738 ns = 0;
4739 }
4740
4741 return ns;
4742 }
4743
4744 unsigned long long task_delta_exec(struct task_struct *p)
4745 {
4746 unsigned long flags;
4747 struct rq *rq;
4748 u64 ns = 0;
4749
4750 rq = task_rq_lock(p, &flags);
4751 ns = do_task_delta_exec(p, rq);
4752 task_rq_unlock(rq, &flags);
4753
4754 return ns;
4755 }
4756
4757 /*
4758 * Return accounted runtime for the task.
4759 * In case the task is currently running, return the runtime plus current's
4760 * pending runtime that have not been accounted yet.
4761 */
4762 unsigned long long task_sched_runtime(struct task_struct *p)
4763 {
4764 unsigned long flags;
4765 struct rq *rq;
4766 u64 ns = 0;
4767
4768 rq = task_rq_lock(p, &flags);
4769 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4770 task_rq_unlock(rq, &flags);
4771
4772 return ns;
4773 }
4774
4775 /*
4776 * Return sum_exec_runtime for the thread group.
4777 * In case the task is currently running, return the sum plus current's
4778 * pending runtime that have not been accounted yet.
4779 *
4780 * Note that the thread group might have other running tasks as well,
4781 * so the return value not includes other pending runtime that other
4782 * running tasks might have.
4783 */
4784 unsigned long long thread_group_sched_runtime(struct task_struct *p)
4785 {
4786 struct task_cputime totals;
4787 unsigned long flags;
4788 struct rq *rq;
4789 u64 ns;
4790
4791 rq = task_rq_lock(p, &flags);
4792 thread_group_cputime(p, &totals);
4793 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
4794 task_rq_unlock(rq, &flags);
4795
4796 return ns;
4797 }
4798
4799 /*
4800 * Account user cpu time to a process.
4801 * @p: the process that the cpu time gets accounted to
4802 * @cputime: the cpu time spent in user space since the last update
4803 * @cputime_scaled: cputime scaled by cpu frequency
4804 */
4805 void account_user_time(struct task_struct *p, cputime_t cputime,
4806 cputime_t cputime_scaled)
4807 {
4808 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4809 cputime64_t tmp;
4810
4811 /* Add user time to process. */
4812 p->utime = cputime_add(p->utime, cputime);
4813 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4814 account_group_user_time(p, cputime);
4815
4816 /* Add user time to cpustat. */
4817 tmp = cputime_to_cputime64(cputime);
4818 if (TASK_NICE(p) > 0)
4819 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4820 else
4821 cpustat->user = cputime64_add(cpustat->user, tmp);
4822
4823 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
4824 /* Account for user time used */
4825 acct_update_integrals(p);
4826 }
4827
4828 /*
4829 * Account guest cpu time to a process.
4830 * @p: the process that the cpu time gets accounted to
4831 * @cputime: the cpu time spent in virtual machine since the last update
4832 * @cputime_scaled: cputime scaled by cpu frequency
4833 */
4834 static void account_guest_time(struct task_struct *p, cputime_t cputime,
4835 cputime_t cputime_scaled)
4836 {
4837 cputime64_t tmp;
4838 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4839
4840 tmp = cputime_to_cputime64(cputime);
4841
4842 /* Add guest time to process. */
4843 p->utime = cputime_add(p->utime, cputime);
4844 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4845 account_group_user_time(p, cputime);
4846 p->gtime = cputime_add(p->gtime, cputime);
4847
4848 /* Add guest time to cpustat. */
4849 cpustat->user = cputime64_add(cpustat->user, tmp);
4850 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4851 }
4852
4853 /*
4854 * Account system cpu time to a process.
4855 * @p: the process that the cpu time gets accounted to
4856 * @hardirq_offset: the offset to subtract from hardirq_count()
4857 * @cputime: the cpu time spent in kernel space since the last update
4858 * @cputime_scaled: cputime scaled by cpu frequency
4859 */
4860 void account_system_time(struct task_struct *p, int hardirq_offset,
4861 cputime_t cputime, cputime_t cputime_scaled)
4862 {
4863 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4864 cputime64_t tmp;
4865
4866 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4867 account_guest_time(p, cputime, cputime_scaled);
4868 return;
4869 }
4870
4871 /* Add system time to process. */
4872 p->stime = cputime_add(p->stime, cputime);
4873 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
4874 account_group_system_time(p, cputime);
4875
4876 /* Add system time to cpustat. */
4877 tmp = cputime_to_cputime64(cputime);
4878 if (hardirq_count() - hardirq_offset)
4879 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4880 else if (softirq_count())
4881 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4882 else
4883 cpustat->system = cputime64_add(cpustat->system, tmp);
4884
4885 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
4886
4887 /* Account for system time used */
4888 acct_update_integrals(p);
4889 }
4890
4891 /*
4892 * Account for involuntary wait time.
4893 * @steal: the cpu time spent in involuntary wait
4894 */
4895 void account_steal_time(cputime_t cputime)
4896 {
4897 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4898 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4899
4900 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
4901 }
4902
4903 /*
4904 * Account for idle time.
4905 * @cputime: the cpu time spent in idle wait
4906 */
4907 void account_idle_time(cputime_t cputime)
4908 {
4909 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4910 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4911 struct rq *rq = this_rq();
4912
4913 if (atomic_read(&rq->nr_iowait) > 0)
4914 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
4915 else
4916 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
4917 }
4918
4919 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
4920
4921 /*
4922 * Account a single tick of cpu time.
4923 * @p: the process that the cpu time gets accounted to
4924 * @user_tick: indicates if the tick is a user or a system tick
4925 */
4926 void account_process_tick(struct task_struct *p, int user_tick)
4927 {
4928 cputime_t one_jiffy = jiffies_to_cputime(1);
4929 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
4930 struct rq *rq = this_rq();
4931
4932 if (user_tick)
4933 account_user_time(p, one_jiffy, one_jiffy_scaled);
4934 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
4935 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
4936 one_jiffy_scaled);
4937 else
4938 account_idle_time(one_jiffy);
4939 }
4940
4941 /*
4942 * Account multiple ticks of steal time.
4943 * @p: the process from which the cpu time has been stolen
4944 * @ticks: number of stolen ticks
4945 */
4946 void account_steal_ticks(unsigned long ticks)
4947 {
4948 account_steal_time(jiffies_to_cputime(ticks));
4949 }
4950
4951 /*
4952 * Account multiple ticks of idle time.
4953 * @ticks: number of stolen ticks
4954 */
4955 void account_idle_ticks(unsigned long ticks)
4956 {
4957 account_idle_time(jiffies_to_cputime(ticks));
4958 }
4959
4960 #endif
4961
4962 /*
4963 * Use precise platform statistics if available:
4964 */
4965 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
4966 cputime_t task_utime(struct task_struct *p)
4967 {
4968 return p->utime;
4969 }
4970
4971 cputime_t task_stime(struct task_struct *p)
4972 {
4973 return p->stime;
4974 }
4975 #else
4976 cputime_t task_utime(struct task_struct *p)
4977 {
4978 clock_t utime = cputime_to_clock_t(p->utime),
4979 total = utime + cputime_to_clock_t(p->stime);
4980 u64 temp;
4981
4982 /*
4983 * Use CFS's precise accounting:
4984 */
4985 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
4986
4987 if (total) {
4988 temp *= utime;
4989 do_div(temp, total);
4990 }
4991 utime = (clock_t)temp;
4992
4993 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
4994 return p->prev_utime;
4995 }
4996
4997 cputime_t task_stime(struct task_struct *p)
4998 {
4999 clock_t stime;
5000
5001 /*
5002 * Use CFS's precise accounting. (we subtract utime from
5003 * the total, to make sure the total observed by userspace
5004 * grows monotonically - apps rely on that):
5005 */
5006 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
5007 cputime_to_clock_t(task_utime(p));
5008
5009 if (stime >= 0)
5010 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
5011
5012 return p->prev_stime;
5013 }
5014 #endif
5015
5016 inline cputime_t task_gtime(struct task_struct *p)
5017 {
5018 return p->gtime;
5019 }
5020
5021 /*
5022 * This function gets called by the timer code, with HZ frequency.
5023 * We call it with interrupts disabled.
5024 *
5025 * It also gets called by the fork code, when changing the parent's
5026 * timeslices.
5027 */
5028 void scheduler_tick(void)
5029 {
5030 int cpu = smp_processor_id();
5031 struct rq *rq = cpu_rq(cpu);
5032 struct task_struct *curr = rq->curr;
5033
5034 sched_clock_tick();
5035
5036 spin_lock(&rq->lock);
5037 update_rq_clock(rq);
5038 update_cpu_load(rq);
5039 curr->sched_class->task_tick(rq, curr, 0);
5040 spin_unlock(&rq->lock);
5041
5042 #ifdef CONFIG_SMP
5043 rq->idle_at_tick = idle_cpu(cpu);
5044 trigger_load_balance(rq, cpu);
5045 #endif
5046 }
5047
5048 notrace unsigned long get_parent_ip(unsigned long addr)
5049 {
5050 if (in_lock_functions(addr)) {
5051 addr = CALLER_ADDR2;
5052 if (in_lock_functions(addr))
5053 addr = CALLER_ADDR3;
5054 }
5055 return addr;
5056 }
5057
5058 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5059 defined(CONFIG_PREEMPT_TRACER))
5060
5061 void __kprobes add_preempt_count(int val)
5062 {
5063 #ifdef CONFIG_DEBUG_PREEMPT
5064 /*
5065 * Underflow?
5066 */
5067 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5068 return;
5069 #endif
5070 preempt_count() += val;
5071 #ifdef CONFIG_DEBUG_PREEMPT
5072 /*
5073 * Spinlock count overflowing soon?
5074 */
5075 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5076 PREEMPT_MASK - 10);
5077 #endif
5078 if (preempt_count() == val)
5079 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5080 }
5081 EXPORT_SYMBOL(add_preempt_count);
5082
5083 void __kprobes sub_preempt_count(int val)
5084 {
5085 #ifdef CONFIG_DEBUG_PREEMPT
5086 /*
5087 * Underflow?
5088 */
5089 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5090 return;
5091 /*
5092 * Is the spinlock portion underflowing?
5093 */
5094 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5095 !(preempt_count() & PREEMPT_MASK)))
5096 return;
5097 #endif
5098
5099 if (preempt_count() == val)
5100 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5101 preempt_count() -= val;
5102 }
5103 EXPORT_SYMBOL(sub_preempt_count);
5104
5105 #endif
5106
5107 /*
5108 * Print scheduling while atomic bug:
5109 */
5110 static noinline void __schedule_bug(struct task_struct *prev)
5111 {
5112 struct pt_regs *regs = get_irq_regs();
5113
5114 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5115 prev->comm, prev->pid, preempt_count());
5116
5117 debug_show_held_locks(prev);
5118 print_modules();
5119 if (irqs_disabled())
5120 print_irqtrace_events(prev);
5121
5122 if (regs)
5123 show_regs(regs);
5124 else
5125 dump_stack();
5126 }
5127
5128 /*
5129 * Various schedule()-time debugging checks and statistics:
5130 */
5131 static inline void schedule_debug(struct task_struct *prev)
5132 {
5133 /*
5134 * Test if we are atomic. Since do_exit() needs to call into
5135 * schedule() atomically, we ignore that path for now.
5136 * Otherwise, whine if we are scheduling when we should not be.
5137 */
5138 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
5139 __schedule_bug(prev);
5140
5141 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5142
5143 schedstat_inc(this_rq(), sched_count);
5144 #ifdef CONFIG_SCHEDSTATS
5145 if (unlikely(prev->lock_depth >= 0)) {
5146 schedstat_inc(this_rq(), bkl_count);
5147 schedstat_inc(prev, sched_info.bkl_count);
5148 }
5149 #endif
5150 }
5151
5152 static void put_prev_task(struct rq *rq, struct task_struct *prev)
5153 {
5154 if (prev->state == TASK_RUNNING) {
5155 u64 runtime = prev->se.sum_exec_runtime;
5156
5157 runtime -= prev->se.prev_sum_exec_runtime;
5158 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5159
5160 /*
5161 * In order to avoid avg_overlap growing stale when we are
5162 * indeed overlapping and hence not getting put to sleep, grow
5163 * the avg_overlap on preemption.
5164 *
5165 * We use the average preemption runtime because that
5166 * correlates to the amount of cache footprint a task can
5167 * build up.
5168 */
5169 update_avg(&prev->se.avg_overlap, runtime);
5170 }
5171 prev->sched_class->put_prev_task(rq, prev);
5172 }
5173
5174 /*
5175 * Pick up the highest-prio task:
5176 */
5177 static inline struct task_struct *
5178 pick_next_task(struct rq *rq)
5179 {
5180 const struct sched_class *class;
5181 struct task_struct *p;
5182
5183 /*
5184 * Optimization: we know that if all tasks are in
5185 * the fair class we can call that function directly:
5186 */
5187 if (likely(rq->nr_running == rq->cfs.nr_running)) {
5188 p = fair_sched_class.pick_next_task(rq);
5189 if (likely(p))
5190 return p;
5191 }
5192
5193 class = sched_class_highest;
5194 for ( ; ; ) {
5195 p = class->pick_next_task(rq);
5196 if (p)
5197 return p;
5198 /*
5199 * Will never be NULL as the idle class always
5200 * returns a non-NULL p:
5201 */
5202 class = class->next;
5203 }
5204 }
5205
5206 /*
5207 * schedule() is the main scheduler function.
5208 */
5209 asmlinkage void __sched schedule(void)
5210 {
5211 struct task_struct *prev, *next;
5212 unsigned long *switch_count;
5213 struct rq *rq;
5214 int cpu;
5215
5216 need_resched:
5217 preempt_disable();
5218 cpu = smp_processor_id();
5219 rq = cpu_rq(cpu);
5220 rcu_qsctr_inc(cpu);
5221 prev = rq->curr;
5222 switch_count = &prev->nivcsw;
5223
5224 release_kernel_lock(prev);
5225 need_resched_nonpreemptible:
5226
5227 schedule_debug(prev);
5228
5229 if (sched_feat(HRTICK))
5230 hrtick_clear(rq);
5231
5232 spin_lock_irq(&rq->lock);
5233 update_rq_clock(rq);
5234 clear_tsk_need_resched(prev);
5235
5236 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5237 if (unlikely(signal_pending_state(prev->state, prev)))
5238 prev->state = TASK_RUNNING;
5239 else
5240 deactivate_task(rq, prev, 1);
5241 switch_count = &prev->nvcsw;
5242 }
5243
5244 #ifdef CONFIG_SMP
5245 if (prev->sched_class->pre_schedule)
5246 prev->sched_class->pre_schedule(rq, prev);
5247 #endif
5248
5249 if (unlikely(!rq->nr_running))
5250 idle_balance(cpu, rq);
5251
5252 put_prev_task(rq, prev);
5253 next = pick_next_task(rq);
5254
5255 if (likely(prev != next)) {
5256 sched_info_switch(prev, next);
5257
5258 rq->nr_switches++;
5259 rq->curr = next;
5260 ++*switch_count;
5261
5262 context_switch(rq, prev, next); /* unlocks the rq */
5263 /*
5264 * the context switch might have flipped the stack from under
5265 * us, hence refresh the local variables.
5266 */
5267 cpu = smp_processor_id();
5268 rq = cpu_rq(cpu);
5269 } else
5270 spin_unlock_irq(&rq->lock);
5271
5272 if (unlikely(reacquire_kernel_lock(current) < 0))
5273 goto need_resched_nonpreemptible;
5274
5275 preempt_enable_no_resched();
5276 if (need_resched())
5277 goto need_resched;
5278 }
5279 EXPORT_SYMBOL(schedule);
5280
5281 #ifdef CONFIG_SMP
5282 /*
5283 * Look out! "owner" is an entirely speculative pointer
5284 * access and not reliable.
5285 */
5286 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5287 {
5288 unsigned int cpu;
5289 struct rq *rq;
5290
5291 if (!sched_feat(OWNER_SPIN))
5292 return 0;
5293
5294 #ifdef CONFIG_DEBUG_PAGEALLOC
5295 /*
5296 * Need to access the cpu field knowing that
5297 * DEBUG_PAGEALLOC could have unmapped it if
5298 * the mutex owner just released it and exited.
5299 */
5300 if (probe_kernel_address(&owner->cpu, cpu))
5301 goto out;
5302 #else
5303 cpu = owner->cpu;
5304 #endif
5305
5306 /*
5307 * Even if the access succeeded (likely case),
5308 * the cpu field may no longer be valid.
5309 */
5310 if (cpu >= nr_cpumask_bits)
5311 goto out;
5312
5313 /*
5314 * We need to validate that we can do a
5315 * get_cpu() and that we have the percpu area.
5316 */
5317 if (!cpu_online(cpu))
5318 goto out;
5319
5320 rq = cpu_rq(cpu);
5321
5322 for (;;) {
5323 /*
5324 * Owner changed, break to re-assess state.
5325 */
5326 if (lock->owner != owner)
5327 break;
5328
5329 /*
5330 * Is that owner really running on that cpu?
5331 */
5332 if (task_thread_info(rq->curr) != owner || need_resched())
5333 return 0;
5334
5335 cpu_relax();
5336 }
5337 out:
5338 return 1;
5339 }
5340 #endif
5341
5342 #ifdef CONFIG_PREEMPT
5343 /*
5344 * this is the entry point to schedule() from in-kernel preemption
5345 * off of preempt_enable. Kernel preemptions off return from interrupt
5346 * occur there and call schedule directly.
5347 */
5348 asmlinkage void __sched preempt_schedule(void)
5349 {
5350 struct thread_info *ti = current_thread_info();
5351
5352 /*
5353 * If there is a non-zero preempt_count or interrupts are disabled,
5354 * we do not want to preempt the current task. Just return..
5355 */
5356 if (likely(ti->preempt_count || irqs_disabled()))
5357 return;
5358
5359 do {
5360 add_preempt_count(PREEMPT_ACTIVE);
5361 schedule();
5362 sub_preempt_count(PREEMPT_ACTIVE);
5363
5364 /*
5365 * Check again in case we missed a preemption opportunity
5366 * between schedule and now.
5367 */
5368 barrier();
5369 } while (need_resched());
5370 }
5371 EXPORT_SYMBOL(preempt_schedule);
5372
5373 /*
5374 * this is the entry point to schedule() from kernel preemption
5375 * off of irq context.
5376 * Note, that this is called and return with irqs disabled. This will
5377 * protect us against recursive calling from irq.
5378 */
5379 asmlinkage void __sched preempt_schedule_irq(void)
5380 {
5381 struct thread_info *ti = current_thread_info();
5382
5383 /* Catch callers which need to be fixed */
5384 BUG_ON(ti->preempt_count || !irqs_disabled());
5385
5386 do {
5387 add_preempt_count(PREEMPT_ACTIVE);
5388 local_irq_enable();
5389 schedule();
5390 local_irq_disable();
5391 sub_preempt_count(PREEMPT_ACTIVE);
5392
5393 /*
5394 * Check again in case we missed a preemption opportunity
5395 * between schedule and now.
5396 */
5397 barrier();
5398 } while (need_resched());
5399 }
5400
5401 #endif /* CONFIG_PREEMPT */
5402
5403 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
5404 void *key)
5405 {
5406 return try_to_wake_up(curr->private, mode, sync);
5407 }
5408 EXPORT_SYMBOL(default_wake_function);
5409
5410 /*
5411 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5412 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
5413 * number) then we wake all the non-exclusive tasks and one exclusive task.
5414 *
5415 * There are circumstances in which we can try to wake a task which has already
5416 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
5417 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5418 */
5419 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
5420 int nr_exclusive, int sync, void *key)
5421 {
5422 wait_queue_t *curr, *next;
5423
5424 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5425 unsigned flags = curr->flags;
5426
5427 if (curr->func(curr, mode, sync, key) &&
5428 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
5429 break;
5430 }
5431 }
5432
5433 /**
5434 * __wake_up - wake up threads blocked on a waitqueue.
5435 * @q: the waitqueue
5436 * @mode: which threads
5437 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5438 * @key: is directly passed to the wakeup function
5439 *
5440 * It may be assumed that this function implies a write memory barrier before
5441 * changing the task state if and only if any tasks are woken up.
5442 */
5443 void __wake_up(wait_queue_head_t *q, unsigned int mode,
5444 int nr_exclusive, void *key)
5445 {
5446 unsigned long flags;
5447
5448 spin_lock_irqsave(&q->lock, flags);
5449 __wake_up_common(q, mode, nr_exclusive, 0, key);
5450 spin_unlock_irqrestore(&q->lock, flags);
5451 }
5452 EXPORT_SYMBOL(__wake_up);
5453
5454 /*
5455 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5456 */
5457 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
5458 {
5459 __wake_up_common(q, mode, 1, 0, NULL);
5460 }
5461
5462 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5463 {
5464 __wake_up_common(q, mode, 1, 0, key);
5465 }
5466
5467 /**
5468 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
5469 * @q: the waitqueue
5470 * @mode: which threads
5471 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5472 * @key: opaque value to be passed to wakeup targets
5473 *
5474 * The sync wakeup differs that the waker knows that it will schedule
5475 * away soon, so while the target thread will be woken up, it will not
5476 * be migrated to another CPU - ie. the two threads are 'synchronized'
5477 * with each other. This can prevent needless bouncing between CPUs.
5478 *
5479 * On UP it can prevent extra preemption.
5480 *
5481 * It may be assumed that this function implies a write memory barrier before
5482 * changing the task state if and only if any tasks are woken up.
5483 */
5484 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5485 int nr_exclusive, void *key)
5486 {
5487 unsigned long flags;
5488 int sync = 1;
5489
5490 if (unlikely(!q))
5491 return;
5492
5493 if (unlikely(!nr_exclusive))
5494 sync = 0;
5495
5496 spin_lock_irqsave(&q->lock, flags);
5497 __wake_up_common(q, mode, nr_exclusive, sync, key);
5498 spin_unlock_irqrestore(&q->lock, flags);
5499 }
5500 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5501
5502 /*
5503 * __wake_up_sync - see __wake_up_sync_key()
5504 */
5505 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5506 {
5507 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5508 }
5509 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5510
5511 /**
5512 * complete: - signals a single thread waiting on this completion
5513 * @x: holds the state of this particular completion
5514 *
5515 * This will wake up a single thread waiting on this completion. Threads will be
5516 * awakened in the same order in which they were queued.
5517 *
5518 * See also complete_all(), wait_for_completion() and related routines.
5519 *
5520 * It may be assumed that this function implies a write memory barrier before
5521 * changing the task state if and only if any tasks are woken up.
5522 */
5523 void complete(struct completion *x)
5524 {
5525 unsigned long flags;
5526
5527 spin_lock_irqsave(&x->wait.lock, flags);
5528 x->done++;
5529 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
5530 spin_unlock_irqrestore(&x->wait.lock, flags);
5531 }
5532 EXPORT_SYMBOL(complete);
5533
5534 /**
5535 * complete_all: - signals all threads waiting on this completion
5536 * @x: holds the state of this particular completion
5537 *
5538 * This will wake up all threads waiting on this particular completion event.
5539 *
5540 * It may be assumed that this function implies a write memory barrier before
5541 * changing the task state if and only if any tasks are woken up.
5542 */
5543 void complete_all(struct completion *x)
5544 {
5545 unsigned long flags;
5546
5547 spin_lock_irqsave(&x->wait.lock, flags);
5548 x->done += UINT_MAX/2;
5549 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
5550 spin_unlock_irqrestore(&x->wait.lock, flags);
5551 }
5552 EXPORT_SYMBOL(complete_all);
5553
5554 static inline long __sched
5555 do_wait_for_common(struct completion *x, long timeout, int state)
5556 {
5557 if (!x->done) {
5558 DECLARE_WAITQUEUE(wait, current);
5559
5560 wait.flags |= WQ_FLAG_EXCLUSIVE;
5561 __add_wait_queue_tail(&x->wait, &wait);
5562 do {
5563 if (signal_pending_state(state, current)) {
5564 timeout = -ERESTARTSYS;
5565 break;
5566 }
5567 __set_current_state(state);
5568 spin_unlock_irq(&x->wait.lock);
5569 timeout = schedule_timeout(timeout);
5570 spin_lock_irq(&x->wait.lock);
5571 } while (!x->done && timeout);
5572 __remove_wait_queue(&x->wait, &wait);
5573 if (!x->done)
5574 return timeout;
5575 }
5576 x->done--;
5577 return timeout ?: 1;
5578 }
5579
5580 static long __sched
5581 wait_for_common(struct completion *x, long timeout, int state)
5582 {
5583 might_sleep();
5584
5585 spin_lock_irq(&x->wait.lock);
5586 timeout = do_wait_for_common(x, timeout, state);
5587 spin_unlock_irq(&x->wait.lock);
5588 return timeout;
5589 }
5590
5591 /**
5592 * wait_for_completion: - waits for completion of a task
5593 * @x: holds the state of this particular completion
5594 *
5595 * This waits to be signaled for completion of a specific task. It is NOT
5596 * interruptible and there is no timeout.
5597 *
5598 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5599 * and interrupt capability. Also see complete().
5600 */
5601 void __sched wait_for_completion(struct completion *x)
5602 {
5603 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
5604 }
5605 EXPORT_SYMBOL(wait_for_completion);
5606
5607 /**
5608 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5609 * @x: holds the state of this particular completion
5610 * @timeout: timeout value in jiffies
5611 *
5612 * This waits for either a completion of a specific task to be signaled or for a
5613 * specified timeout to expire. The timeout is in jiffies. It is not
5614 * interruptible.
5615 */
5616 unsigned long __sched
5617 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
5618 {
5619 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
5620 }
5621 EXPORT_SYMBOL(wait_for_completion_timeout);
5622
5623 /**
5624 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5625 * @x: holds the state of this particular completion
5626 *
5627 * This waits for completion of a specific task to be signaled. It is
5628 * interruptible.
5629 */
5630 int __sched wait_for_completion_interruptible(struct completion *x)
5631 {
5632 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5633 if (t == -ERESTARTSYS)
5634 return t;
5635 return 0;
5636 }
5637 EXPORT_SYMBOL(wait_for_completion_interruptible);
5638
5639 /**
5640 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5641 * @x: holds the state of this particular completion
5642 * @timeout: timeout value in jiffies
5643 *
5644 * This waits for either a completion of a specific task to be signaled or for a
5645 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5646 */
5647 unsigned long __sched
5648 wait_for_completion_interruptible_timeout(struct completion *x,
5649 unsigned long timeout)
5650 {
5651 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
5652 }
5653 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
5654
5655 /**
5656 * wait_for_completion_killable: - waits for completion of a task (killable)
5657 * @x: holds the state of this particular completion
5658 *
5659 * This waits to be signaled for completion of a specific task. It can be
5660 * interrupted by a kill signal.
5661 */
5662 int __sched wait_for_completion_killable(struct completion *x)
5663 {
5664 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5665 if (t == -ERESTARTSYS)
5666 return t;
5667 return 0;
5668 }
5669 EXPORT_SYMBOL(wait_for_completion_killable);
5670
5671 /**
5672 * try_wait_for_completion - try to decrement a completion without blocking
5673 * @x: completion structure
5674 *
5675 * Returns: 0 if a decrement cannot be done without blocking
5676 * 1 if a decrement succeeded.
5677 *
5678 * If a completion is being used as a counting completion,
5679 * attempt to decrement the counter without blocking. This
5680 * enables us to avoid waiting if the resource the completion
5681 * is protecting is not available.
5682 */
5683 bool try_wait_for_completion(struct completion *x)
5684 {
5685 int ret = 1;
5686
5687 spin_lock_irq(&x->wait.lock);
5688 if (!x->done)
5689 ret = 0;
5690 else
5691 x->done--;
5692 spin_unlock_irq(&x->wait.lock);
5693 return ret;
5694 }
5695 EXPORT_SYMBOL(try_wait_for_completion);
5696
5697 /**
5698 * completion_done - Test to see if a completion has any waiters
5699 * @x: completion structure
5700 *
5701 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5702 * 1 if there are no waiters.
5703 *
5704 */
5705 bool completion_done(struct completion *x)
5706 {
5707 int ret = 1;
5708
5709 spin_lock_irq(&x->wait.lock);
5710 if (!x->done)
5711 ret = 0;
5712 spin_unlock_irq(&x->wait.lock);
5713 return ret;
5714 }
5715 EXPORT_SYMBOL(completion_done);
5716
5717 static long __sched
5718 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
5719 {
5720 unsigned long flags;
5721 wait_queue_t wait;
5722
5723 init_waitqueue_entry(&wait, current);
5724
5725 __set_current_state(state);
5726
5727 spin_lock_irqsave(&q->lock, flags);
5728 __add_wait_queue(q, &wait);
5729 spin_unlock(&q->lock);
5730 timeout = schedule_timeout(timeout);
5731 spin_lock_irq(&q->lock);
5732 __remove_wait_queue(q, &wait);
5733 spin_unlock_irqrestore(&q->lock, flags);
5734
5735 return timeout;
5736 }
5737
5738 void __sched interruptible_sleep_on(wait_queue_head_t *q)
5739 {
5740 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5741 }
5742 EXPORT_SYMBOL(interruptible_sleep_on);
5743
5744 long __sched
5745 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
5746 {
5747 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
5748 }
5749 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5750
5751 void __sched sleep_on(wait_queue_head_t *q)
5752 {
5753 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5754 }
5755 EXPORT_SYMBOL(sleep_on);
5756
5757 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
5758 {
5759 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
5760 }
5761 EXPORT_SYMBOL(sleep_on_timeout);
5762
5763 #ifdef CONFIG_RT_MUTEXES
5764
5765 /*
5766 * rt_mutex_setprio - set the current priority of a task
5767 * @p: task
5768 * @prio: prio value (kernel-internal form)
5769 *
5770 * This function changes the 'effective' priority of a task. It does
5771 * not touch ->normal_prio like __setscheduler().
5772 *
5773 * Used by the rt_mutex code to implement priority inheritance logic.
5774 */
5775 void rt_mutex_setprio(struct task_struct *p, int prio)
5776 {
5777 unsigned long flags;
5778 int oldprio, on_rq, running;
5779 struct rq *rq;
5780 const struct sched_class *prev_class = p->sched_class;
5781
5782 BUG_ON(prio < 0 || prio > MAX_PRIO);
5783
5784 rq = task_rq_lock(p, &flags);
5785 update_rq_clock(rq);
5786
5787 oldprio = p->prio;
5788 on_rq = p->se.on_rq;
5789 running = task_current(rq, p);
5790 if (on_rq)
5791 dequeue_task(rq, p, 0);
5792 if (running)
5793 p->sched_class->put_prev_task(rq, p);
5794
5795 if (rt_prio(prio))
5796 p->sched_class = &rt_sched_class;
5797 else
5798 p->sched_class = &fair_sched_class;
5799
5800 p->prio = prio;
5801
5802 if (running)
5803 p->sched_class->set_curr_task(rq);
5804 if (on_rq) {
5805 enqueue_task(rq, p, 0);
5806
5807 check_class_changed(rq, p, prev_class, oldprio, running);
5808 }
5809 task_rq_unlock(rq, &flags);
5810 }
5811
5812 #endif
5813
5814 void set_user_nice(struct task_struct *p, long nice)
5815 {
5816 int old_prio, delta, on_rq;
5817 unsigned long flags;
5818 struct rq *rq;
5819
5820 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5821 return;
5822 /*
5823 * We have to be careful, if called from sys_setpriority(),
5824 * the task might be in the middle of scheduling on another CPU.
5825 */
5826 rq = task_rq_lock(p, &flags);
5827 update_rq_clock(rq);
5828 /*
5829 * The RT priorities are set via sched_setscheduler(), but we still
5830 * allow the 'normal' nice value to be set - but as expected
5831 * it wont have any effect on scheduling until the task is
5832 * SCHED_FIFO/SCHED_RR:
5833 */
5834 if (task_has_rt_policy(p)) {
5835 p->static_prio = NICE_TO_PRIO(nice);
5836 goto out_unlock;
5837 }
5838 on_rq = p->se.on_rq;
5839 if (on_rq)
5840 dequeue_task(rq, p, 0);
5841
5842 p->static_prio = NICE_TO_PRIO(nice);
5843 set_load_weight(p);
5844 old_prio = p->prio;
5845 p->prio = effective_prio(p);
5846 delta = p->prio - old_prio;
5847
5848 if (on_rq) {
5849 enqueue_task(rq, p, 0);
5850 /*
5851 * If the task increased its priority or is running and
5852 * lowered its priority, then reschedule its CPU:
5853 */
5854 if (delta < 0 || (delta > 0 && task_running(rq, p)))
5855 resched_task(rq->curr);
5856 }
5857 out_unlock:
5858 task_rq_unlock(rq, &flags);
5859 }
5860 EXPORT_SYMBOL(set_user_nice);
5861
5862 /*
5863 * can_nice - check if a task can reduce its nice value
5864 * @p: task
5865 * @nice: nice value
5866 */
5867 int can_nice(const struct task_struct *p, const int nice)
5868 {
5869 /* convert nice value [19,-20] to rlimit style value [1,40] */
5870 int nice_rlim = 20 - nice;
5871
5872 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5873 capable(CAP_SYS_NICE));
5874 }
5875
5876 #ifdef __ARCH_WANT_SYS_NICE
5877
5878 /*
5879 * sys_nice - change the priority of the current process.
5880 * @increment: priority increment
5881 *
5882 * sys_setpriority is a more generic, but much slower function that
5883 * does similar things.
5884 */
5885 SYSCALL_DEFINE1(nice, int, increment)
5886 {
5887 long nice, retval;
5888
5889 /*
5890 * Setpriority might change our priority at the same moment.
5891 * We don't have to worry. Conceptually one call occurs first
5892 * and we have a single winner.
5893 */
5894 if (increment < -40)
5895 increment = -40;
5896 if (increment > 40)
5897 increment = 40;
5898
5899 nice = TASK_NICE(current) + increment;
5900 if (nice < -20)
5901 nice = -20;
5902 if (nice > 19)
5903 nice = 19;
5904
5905 if (increment < 0 && !can_nice(current, nice))
5906 return -EPERM;
5907
5908 retval = security_task_setnice(current, nice);
5909 if (retval)
5910 return retval;
5911
5912 set_user_nice(current, nice);
5913 return 0;
5914 }
5915
5916 #endif
5917
5918 /**
5919 * task_prio - return the priority value of a given task.
5920 * @p: the task in question.
5921 *
5922 * This is the priority value as seen by users in /proc.
5923 * RT tasks are offset by -200. Normal tasks are centered
5924 * around 0, value goes from -16 to +15.
5925 */
5926 int task_prio(const struct task_struct *p)
5927 {
5928 return p->prio - MAX_RT_PRIO;
5929 }
5930
5931 /**
5932 * task_nice - return the nice value of a given task.
5933 * @p: the task in question.
5934 */
5935 int task_nice(const struct task_struct *p)
5936 {
5937 return TASK_NICE(p);
5938 }
5939 EXPORT_SYMBOL(task_nice);
5940
5941 /**
5942 * idle_cpu - is a given cpu idle currently?
5943 * @cpu: the processor in question.
5944 */
5945 int idle_cpu(int cpu)
5946 {
5947 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5948 }
5949
5950 /**
5951 * idle_task - return the idle task for a given cpu.
5952 * @cpu: the processor in question.
5953 */
5954 struct task_struct *idle_task(int cpu)
5955 {
5956 return cpu_rq(cpu)->idle;
5957 }
5958
5959 /**
5960 * find_process_by_pid - find a process with a matching PID value.
5961 * @pid: the pid in question.
5962 */
5963 static struct task_struct *find_process_by_pid(pid_t pid)
5964 {
5965 return pid ? find_task_by_vpid(pid) : current;
5966 }
5967
5968 /* Actually do priority change: must hold rq lock. */
5969 static void
5970 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
5971 {
5972 BUG_ON(p->se.on_rq);
5973
5974 p->policy = policy;
5975 switch (p->policy) {
5976 case SCHED_NORMAL:
5977 case SCHED_BATCH:
5978 case SCHED_IDLE:
5979 p->sched_class = &fair_sched_class;
5980 break;
5981 case SCHED_FIFO:
5982 case SCHED_RR:
5983 p->sched_class = &rt_sched_class;
5984 break;
5985 }
5986
5987 p->rt_priority = prio;
5988 p->normal_prio = normal_prio(p);
5989 /* we are holding p->pi_lock already */
5990 p->prio = rt_mutex_getprio(p);
5991 set_load_weight(p);
5992 }
5993
5994 /*
5995 * check the target process has a UID that matches the current process's
5996 */
5997 static bool check_same_owner(struct task_struct *p)
5998 {
5999 const struct cred *cred = current_cred(), *pcred;
6000 bool match;
6001
6002 rcu_read_lock();
6003 pcred = __task_cred(p);
6004 match = (cred->euid == pcred->euid ||
6005 cred->euid == pcred->uid);
6006 rcu_read_unlock();
6007 return match;
6008 }
6009
6010 static int __sched_setscheduler(struct task_struct *p, int policy,
6011 struct sched_param *param, bool user)
6012 {
6013 int retval, oldprio, oldpolicy = -1, on_rq, running;
6014 unsigned long flags;
6015 const struct sched_class *prev_class = p->sched_class;
6016 struct rq *rq;
6017
6018 /* may grab non-irq protected spin_locks */
6019 BUG_ON(in_interrupt());
6020 recheck:
6021 /* double check policy once rq lock held */
6022 if (policy < 0)
6023 policy = oldpolicy = p->policy;
6024 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
6025 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6026 policy != SCHED_IDLE)
6027 return -EINVAL;
6028 /*
6029 * Valid priorities for SCHED_FIFO and SCHED_RR are
6030 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6031 * SCHED_BATCH and SCHED_IDLE is 0.
6032 */
6033 if (param->sched_priority < 0 ||
6034 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
6035 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
6036 return -EINVAL;
6037 if (rt_policy(policy) != (param->sched_priority != 0))
6038 return -EINVAL;
6039
6040 /*
6041 * Allow unprivileged RT tasks to decrease priority:
6042 */
6043 if (user && !capable(CAP_SYS_NICE)) {
6044 if (rt_policy(policy)) {
6045 unsigned long rlim_rtprio;
6046
6047 if (!lock_task_sighand(p, &flags))
6048 return -ESRCH;
6049 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6050 unlock_task_sighand(p, &flags);
6051
6052 /* can't set/change the rt policy */
6053 if (policy != p->policy && !rlim_rtprio)
6054 return -EPERM;
6055
6056 /* can't increase priority */
6057 if (param->sched_priority > p->rt_priority &&
6058 param->sched_priority > rlim_rtprio)
6059 return -EPERM;
6060 }
6061 /*
6062 * Like positive nice levels, dont allow tasks to
6063 * move out of SCHED_IDLE either:
6064 */
6065 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6066 return -EPERM;
6067
6068 /* can't change other user's priorities */
6069 if (!check_same_owner(p))
6070 return -EPERM;
6071 }
6072
6073 if (user) {
6074 #ifdef CONFIG_RT_GROUP_SCHED
6075 /*
6076 * Do not allow realtime tasks into groups that have no runtime
6077 * assigned.
6078 */
6079 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6080 task_group(p)->rt_bandwidth.rt_runtime == 0)
6081 return -EPERM;
6082 #endif
6083
6084 retval = security_task_setscheduler(p, policy, param);
6085 if (retval)
6086 return retval;
6087 }
6088
6089 /*
6090 * make sure no PI-waiters arrive (or leave) while we are
6091 * changing the priority of the task:
6092 */
6093 spin_lock_irqsave(&p->pi_lock, flags);
6094 /*
6095 * To be able to change p->policy safely, the apropriate
6096 * runqueue lock must be held.
6097 */
6098 rq = __task_rq_lock(p);
6099 /* recheck policy now with rq lock held */
6100 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6101 policy = oldpolicy = -1;
6102 __task_rq_unlock(rq);
6103 spin_unlock_irqrestore(&p->pi_lock, flags);
6104 goto recheck;
6105 }
6106 update_rq_clock(rq);
6107 on_rq = p->se.on_rq;
6108 running = task_current(rq, p);
6109 if (on_rq)
6110 deactivate_task(rq, p, 0);
6111 if (running)
6112 p->sched_class->put_prev_task(rq, p);
6113
6114 oldprio = p->prio;
6115 __setscheduler(rq, p, policy, param->sched_priority);
6116
6117 if (running)
6118 p->sched_class->set_curr_task(rq);
6119 if (on_rq) {
6120 activate_task(rq, p, 0);
6121
6122 check_class_changed(rq, p, prev_class, oldprio, running);
6123 }
6124 __task_rq_unlock(rq);
6125 spin_unlock_irqrestore(&p->pi_lock, flags);
6126
6127 rt_mutex_adjust_pi(p);
6128
6129 return 0;
6130 }
6131
6132 /**
6133 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6134 * @p: the task in question.
6135 * @policy: new policy.
6136 * @param: structure containing the new RT priority.
6137 *
6138 * NOTE that the task may be already dead.
6139 */
6140 int sched_setscheduler(struct task_struct *p, int policy,
6141 struct sched_param *param)
6142 {
6143 return __sched_setscheduler(p, policy, param, true);
6144 }
6145 EXPORT_SYMBOL_GPL(sched_setscheduler);
6146
6147 /**
6148 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6149 * @p: the task in question.
6150 * @policy: new policy.
6151 * @param: structure containing the new RT priority.
6152 *
6153 * Just like sched_setscheduler, only don't bother checking if the
6154 * current context has permission. For example, this is needed in
6155 * stop_machine(): we create temporary high priority worker threads,
6156 * but our caller might not have that capability.
6157 */
6158 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6159 struct sched_param *param)
6160 {
6161 return __sched_setscheduler(p, policy, param, false);
6162 }
6163
6164 static int
6165 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
6166 {
6167 struct sched_param lparam;
6168 struct task_struct *p;
6169 int retval;
6170
6171 if (!param || pid < 0)
6172 return -EINVAL;
6173 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6174 return -EFAULT;
6175
6176 rcu_read_lock();
6177 retval = -ESRCH;
6178 p = find_process_by_pid(pid);
6179 if (p != NULL)
6180 retval = sched_setscheduler(p, policy, &lparam);
6181 rcu_read_unlock();
6182
6183 return retval;
6184 }
6185
6186 /**
6187 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6188 * @pid: the pid in question.
6189 * @policy: new policy.
6190 * @param: structure containing the new RT priority.
6191 */
6192 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6193 struct sched_param __user *, param)
6194 {
6195 /* negative values for policy are not valid */
6196 if (policy < 0)
6197 return -EINVAL;
6198
6199 return do_sched_setscheduler(pid, policy, param);
6200 }
6201
6202 /**
6203 * sys_sched_setparam - set/change the RT priority of a thread
6204 * @pid: the pid in question.
6205 * @param: structure containing the new RT priority.
6206 */
6207 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
6208 {
6209 return do_sched_setscheduler(pid, -1, param);
6210 }
6211
6212 /**
6213 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6214 * @pid: the pid in question.
6215 */
6216 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
6217 {
6218 struct task_struct *p;
6219 int retval;
6220
6221 if (pid < 0)
6222 return -EINVAL;
6223
6224 retval = -ESRCH;
6225 read_lock(&tasklist_lock);
6226 p = find_process_by_pid(pid);
6227 if (p) {
6228 retval = security_task_getscheduler(p);
6229 if (!retval)
6230 retval = p->policy;
6231 }
6232 read_unlock(&tasklist_lock);
6233 return retval;
6234 }
6235
6236 /**
6237 * sys_sched_getscheduler - get the RT priority of a thread
6238 * @pid: the pid in question.
6239 * @param: structure containing the RT priority.
6240 */
6241 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
6242 {
6243 struct sched_param lp;
6244 struct task_struct *p;
6245 int retval;
6246
6247 if (!param || pid < 0)
6248 return -EINVAL;
6249
6250 read_lock(&tasklist_lock);
6251 p = find_process_by_pid(pid);
6252 retval = -ESRCH;
6253 if (!p)
6254 goto out_unlock;
6255
6256 retval = security_task_getscheduler(p);
6257 if (retval)
6258 goto out_unlock;
6259
6260 lp.sched_priority = p->rt_priority;
6261 read_unlock(&tasklist_lock);
6262
6263 /*
6264 * This one might sleep, we cannot do it with a spinlock held ...
6265 */
6266 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6267
6268 return retval;
6269
6270 out_unlock:
6271 read_unlock(&tasklist_lock);
6272 return retval;
6273 }
6274
6275 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
6276 {
6277 cpumask_var_t cpus_allowed, new_mask;
6278 struct task_struct *p;
6279 int retval;
6280
6281 get_online_cpus();
6282 read_lock(&tasklist_lock);
6283
6284 p = find_process_by_pid(pid);
6285 if (!p) {
6286 read_unlock(&tasklist_lock);
6287 put_online_cpus();
6288 return -ESRCH;
6289 }
6290
6291 /*
6292 * It is not safe to call set_cpus_allowed with the
6293 * tasklist_lock held. We will bump the task_struct's
6294 * usage count and then drop tasklist_lock.
6295 */
6296 get_task_struct(p);
6297 read_unlock(&tasklist_lock);
6298
6299 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6300 retval = -ENOMEM;
6301 goto out_put_task;
6302 }
6303 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6304 retval = -ENOMEM;
6305 goto out_free_cpus_allowed;
6306 }
6307 retval = -EPERM;
6308 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
6309 goto out_unlock;
6310
6311 retval = security_task_setscheduler(p, 0, NULL);
6312 if (retval)
6313 goto out_unlock;
6314
6315 cpuset_cpus_allowed(p, cpus_allowed);
6316 cpumask_and(new_mask, in_mask, cpus_allowed);
6317 again:
6318 retval = set_cpus_allowed_ptr(p, new_mask);
6319
6320 if (!retval) {
6321 cpuset_cpus_allowed(p, cpus_allowed);
6322 if (!cpumask_subset(new_mask, cpus_allowed)) {
6323 /*
6324 * We must have raced with a concurrent cpuset
6325 * update. Just reset the cpus_allowed to the
6326 * cpuset's cpus_allowed
6327 */
6328 cpumask_copy(new_mask, cpus_allowed);
6329 goto again;
6330 }
6331 }
6332 out_unlock:
6333 free_cpumask_var(new_mask);
6334 out_free_cpus_allowed:
6335 free_cpumask_var(cpus_allowed);
6336 out_put_task:
6337 put_task_struct(p);
6338 put_online_cpus();
6339 return retval;
6340 }
6341
6342 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6343 struct cpumask *new_mask)
6344 {
6345 if (len < cpumask_size())
6346 cpumask_clear(new_mask);
6347 else if (len > cpumask_size())
6348 len = cpumask_size();
6349
6350 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6351 }
6352
6353 /**
6354 * sys_sched_setaffinity - set the cpu affinity of a process
6355 * @pid: pid of the process
6356 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6357 * @user_mask_ptr: user-space pointer to the new cpu mask
6358 */
6359 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6360 unsigned long __user *, user_mask_ptr)
6361 {
6362 cpumask_var_t new_mask;
6363 int retval;
6364
6365 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6366 return -ENOMEM;
6367
6368 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6369 if (retval == 0)
6370 retval = sched_setaffinity(pid, new_mask);
6371 free_cpumask_var(new_mask);
6372 return retval;
6373 }
6374
6375 long sched_getaffinity(pid_t pid, struct cpumask *mask)
6376 {
6377 struct task_struct *p;
6378 int retval;
6379
6380 get_online_cpus();
6381 read_lock(&tasklist_lock);
6382
6383 retval = -ESRCH;
6384 p = find_process_by_pid(pid);
6385 if (!p)
6386 goto out_unlock;
6387
6388 retval = security_task_getscheduler(p);
6389 if (retval)
6390 goto out_unlock;
6391
6392 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
6393
6394 out_unlock:
6395 read_unlock(&tasklist_lock);
6396 put_online_cpus();
6397
6398 return retval;
6399 }
6400
6401 /**
6402 * sys_sched_getaffinity - get the cpu affinity of a process
6403 * @pid: pid of the process
6404 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6405 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6406 */
6407 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6408 unsigned long __user *, user_mask_ptr)
6409 {
6410 int ret;
6411 cpumask_var_t mask;
6412
6413 if (len < cpumask_size())
6414 return -EINVAL;
6415
6416 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6417 return -ENOMEM;
6418
6419 ret = sched_getaffinity(pid, mask);
6420 if (ret == 0) {
6421 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6422 ret = -EFAULT;
6423 else
6424 ret = cpumask_size();
6425 }
6426 free_cpumask_var(mask);
6427
6428 return ret;
6429 }
6430
6431 /**
6432 * sys_sched_yield - yield the current processor to other threads.
6433 *
6434 * This function yields the current CPU to other tasks. If there are no
6435 * other threads running on this CPU then this function will return.
6436 */
6437 SYSCALL_DEFINE0(sched_yield)
6438 {
6439 struct rq *rq = this_rq_lock();
6440
6441 schedstat_inc(rq, yld_count);
6442 current->sched_class->yield_task(rq);
6443
6444 /*
6445 * Since we are going to call schedule() anyway, there's
6446 * no need to preempt or enable interrupts:
6447 */
6448 __release(rq->lock);
6449 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
6450 _raw_spin_unlock(&rq->lock);
6451 preempt_enable_no_resched();
6452
6453 schedule();
6454
6455 return 0;
6456 }
6457
6458 static void __cond_resched(void)
6459 {
6460 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6461 __might_sleep(__FILE__, __LINE__);
6462 #endif
6463 /*
6464 * The BKS might be reacquired before we have dropped
6465 * PREEMPT_ACTIVE, which could trigger a second
6466 * cond_resched() call.
6467 */
6468 do {
6469 add_preempt_count(PREEMPT_ACTIVE);
6470 schedule();
6471 sub_preempt_count(PREEMPT_ACTIVE);
6472 } while (need_resched());
6473 }
6474
6475 int __sched _cond_resched(void)
6476 {
6477 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
6478 system_state == SYSTEM_RUNNING) {
6479 __cond_resched();
6480 return 1;
6481 }
6482 return 0;
6483 }
6484 EXPORT_SYMBOL(_cond_resched);
6485
6486 /*
6487 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
6488 * call schedule, and on return reacquire the lock.
6489 *
6490 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
6491 * operations here to prevent schedule() from being called twice (once via
6492 * spin_unlock(), once by hand).
6493 */
6494 int cond_resched_lock(spinlock_t *lock)
6495 {
6496 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6497 int ret = 0;
6498
6499 if (spin_needbreak(lock) || resched) {
6500 spin_unlock(lock);
6501 if (resched && need_resched())
6502 __cond_resched();
6503 else
6504 cpu_relax();
6505 ret = 1;
6506 spin_lock(lock);
6507 }
6508 return ret;
6509 }
6510 EXPORT_SYMBOL(cond_resched_lock);
6511
6512 int __sched cond_resched_softirq(void)
6513 {
6514 BUG_ON(!in_softirq());
6515
6516 if (need_resched() && system_state == SYSTEM_RUNNING) {
6517 local_bh_enable();
6518 __cond_resched();
6519 local_bh_disable();
6520 return 1;
6521 }
6522 return 0;
6523 }
6524 EXPORT_SYMBOL(cond_resched_softirq);
6525
6526 /**
6527 * yield - yield the current processor to other threads.
6528 *
6529 * This is a shortcut for kernel-space yielding - it marks the
6530 * thread runnable and calls sys_sched_yield().
6531 */
6532 void __sched yield(void)
6533 {
6534 set_current_state(TASK_RUNNING);
6535 sys_sched_yield();
6536 }
6537 EXPORT_SYMBOL(yield);
6538
6539 /*
6540 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6541 * that process accounting knows that this is a task in IO wait state.
6542 *
6543 * But don't do that if it is a deliberate, throttling IO wait (this task
6544 * has set its backing_dev_info: the queue against which it should throttle)
6545 */
6546 void __sched io_schedule(void)
6547 {
6548 struct rq *rq = &__raw_get_cpu_var(runqueues);
6549
6550 delayacct_blkio_start();
6551 atomic_inc(&rq->nr_iowait);
6552 schedule();
6553 atomic_dec(&rq->nr_iowait);
6554 delayacct_blkio_end();
6555 }
6556 EXPORT_SYMBOL(io_schedule);
6557
6558 long __sched io_schedule_timeout(long timeout)
6559 {
6560 struct rq *rq = &__raw_get_cpu_var(runqueues);
6561 long ret;
6562
6563 delayacct_blkio_start();
6564 atomic_inc(&rq->nr_iowait);
6565 ret = schedule_timeout(timeout);
6566 atomic_dec(&rq->nr_iowait);
6567 delayacct_blkio_end();
6568 return ret;
6569 }
6570
6571 /**
6572 * sys_sched_get_priority_max - return maximum RT priority.
6573 * @policy: scheduling class.
6574 *
6575 * this syscall returns the maximum rt_priority that can be used
6576 * by a given scheduling class.
6577 */
6578 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
6579 {
6580 int ret = -EINVAL;
6581
6582 switch (policy) {
6583 case SCHED_FIFO:
6584 case SCHED_RR:
6585 ret = MAX_USER_RT_PRIO-1;
6586 break;
6587 case SCHED_NORMAL:
6588 case SCHED_BATCH:
6589 case SCHED_IDLE:
6590 ret = 0;
6591 break;
6592 }
6593 return ret;
6594 }
6595
6596 /**
6597 * sys_sched_get_priority_min - return minimum RT priority.
6598 * @policy: scheduling class.
6599 *
6600 * this syscall returns the minimum rt_priority that can be used
6601 * by a given scheduling class.
6602 */
6603 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
6604 {
6605 int ret = -EINVAL;
6606
6607 switch (policy) {
6608 case SCHED_FIFO:
6609 case SCHED_RR:
6610 ret = 1;
6611 break;
6612 case SCHED_NORMAL:
6613 case SCHED_BATCH:
6614 case SCHED_IDLE:
6615 ret = 0;
6616 }
6617 return ret;
6618 }
6619
6620 /**
6621 * sys_sched_rr_get_interval - return the default timeslice of a process.
6622 * @pid: pid of the process.
6623 * @interval: userspace pointer to the timeslice value.
6624 *
6625 * this syscall writes the default timeslice value of a given process
6626 * into the user-space timespec buffer. A value of '0' means infinity.
6627 */
6628 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6629 struct timespec __user *, interval)
6630 {
6631 struct task_struct *p;
6632 unsigned int time_slice;
6633 int retval;
6634 struct timespec t;
6635
6636 if (pid < 0)
6637 return -EINVAL;
6638
6639 retval = -ESRCH;
6640 read_lock(&tasklist_lock);
6641 p = find_process_by_pid(pid);
6642 if (!p)
6643 goto out_unlock;
6644
6645 retval = security_task_getscheduler(p);
6646 if (retval)
6647 goto out_unlock;
6648
6649 /*
6650 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
6651 * tasks that are on an otherwise idle runqueue:
6652 */
6653 time_slice = 0;
6654 if (p->policy == SCHED_RR) {
6655 time_slice = DEF_TIMESLICE;
6656 } else if (p->policy != SCHED_FIFO) {
6657 struct sched_entity *se = &p->se;
6658 unsigned long flags;
6659 struct rq *rq;
6660
6661 rq = task_rq_lock(p, &flags);
6662 if (rq->cfs.load.weight)
6663 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
6664 task_rq_unlock(rq, &flags);
6665 }
6666 read_unlock(&tasklist_lock);
6667 jiffies_to_timespec(time_slice, &t);
6668 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
6669 return retval;
6670
6671 out_unlock:
6672 read_unlock(&tasklist_lock);
6673 return retval;
6674 }
6675
6676 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6677
6678 void sched_show_task(struct task_struct *p)
6679 {
6680 unsigned long free = 0;
6681 unsigned state;
6682
6683 state = p->state ? __ffs(p->state) + 1 : 0;
6684 printk(KERN_INFO "%-13.13s %c", p->comm,
6685 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6686 #if BITS_PER_LONG == 32
6687 if (state == TASK_RUNNING)
6688 printk(KERN_CONT " running ");
6689 else
6690 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
6691 #else
6692 if (state == TASK_RUNNING)
6693 printk(KERN_CONT " running task ");
6694 else
6695 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
6696 #endif
6697 #ifdef CONFIG_DEBUG_STACK_USAGE
6698 free = stack_not_used(p);
6699 #endif
6700 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6701 task_pid_nr(p), task_pid_nr(p->real_parent),
6702 (unsigned long)task_thread_info(p)->flags);
6703
6704 show_stack(p, NULL);
6705 }
6706
6707 void show_state_filter(unsigned long state_filter)
6708 {
6709 struct task_struct *g, *p;
6710
6711 #if BITS_PER_LONG == 32
6712 printk(KERN_INFO
6713 " task PC stack pid father\n");
6714 #else
6715 printk(KERN_INFO
6716 " task PC stack pid father\n");
6717 #endif
6718 read_lock(&tasklist_lock);
6719 do_each_thread(g, p) {
6720 /*
6721 * reset the NMI-timeout, listing all files on a slow
6722 * console might take alot of time:
6723 */
6724 touch_nmi_watchdog();
6725 if (!state_filter || (p->state & state_filter))
6726 sched_show_task(p);
6727 } while_each_thread(g, p);
6728
6729 touch_all_softlockup_watchdogs();
6730
6731 #ifdef CONFIG_SCHED_DEBUG
6732 sysrq_sched_debug_show();
6733 #endif
6734 read_unlock(&tasklist_lock);
6735 /*
6736 * Only show locks if all tasks are dumped:
6737 */
6738 if (state_filter == -1)
6739 debug_show_all_locks();
6740 }
6741
6742 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6743 {
6744 idle->sched_class = &idle_sched_class;
6745 }
6746
6747 /**
6748 * init_idle - set up an idle thread for a given CPU
6749 * @idle: task in question
6750 * @cpu: cpu the idle task belongs to
6751 *
6752 * NOTE: this function does not set the idle thread's NEED_RESCHED
6753 * flag, to make booting more robust.
6754 */
6755 void __cpuinit init_idle(struct task_struct *idle, int cpu)
6756 {
6757 struct rq *rq = cpu_rq(cpu);
6758 unsigned long flags;
6759
6760 spin_lock_irqsave(&rq->lock, flags);
6761
6762 __sched_fork(idle);
6763 idle->se.exec_start = sched_clock();
6764
6765 idle->prio = idle->normal_prio = MAX_PRIO;
6766 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6767 __set_task_cpu(idle, cpu);
6768
6769 rq->curr = rq->idle = idle;
6770 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6771 idle->oncpu = 1;
6772 #endif
6773 spin_unlock_irqrestore(&rq->lock, flags);
6774
6775 /* Set the preempt count _outside_ the spinlocks! */
6776 #if defined(CONFIG_PREEMPT)
6777 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6778 #else
6779 task_thread_info(idle)->preempt_count = 0;
6780 #endif
6781 /*
6782 * The idle tasks have their own, simple scheduling class:
6783 */
6784 idle->sched_class = &idle_sched_class;
6785 ftrace_graph_init_task(idle);
6786 }
6787
6788 /*
6789 * In a system that switches off the HZ timer nohz_cpu_mask
6790 * indicates which cpus entered this state. This is used
6791 * in the rcu update to wait only for active cpus. For system
6792 * which do not switch off the HZ timer nohz_cpu_mask should
6793 * always be CPU_BITS_NONE.
6794 */
6795 cpumask_var_t nohz_cpu_mask;
6796
6797 /*
6798 * Increase the granularity value when there are more CPUs,
6799 * because with more CPUs the 'effective latency' as visible
6800 * to users decreases. But the relationship is not linear,
6801 * so pick a second-best guess by going with the log2 of the
6802 * number of CPUs.
6803 *
6804 * This idea comes from the SD scheduler of Con Kolivas:
6805 */
6806 static inline void sched_init_granularity(void)
6807 {
6808 unsigned int factor = 1 + ilog2(num_online_cpus());
6809 const unsigned long limit = 200000000;
6810
6811 sysctl_sched_min_granularity *= factor;
6812 if (sysctl_sched_min_granularity > limit)
6813 sysctl_sched_min_granularity = limit;
6814
6815 sysctl_sched_latency *= factor;
6816 if (sysctl_sched_latency > limit)
6817 sysctl_sched_latency = limit;
6818
6819 sysctl_sched_wakeup_granularity *= factor;
6820
6821 sysctl_sched_shares_ratelimit *= factor;
6822 }
6823
6824 #ifdef CONFIG_SMP
6825 /*
6826 * This is how migration works:
6827 *
6828 * 1) we queue a struct migration_req structure in the source CPU's
6829 * runqueue and wake up that CPU's migration thread.
6830 * 2) we down() the locked semaphore => thread blocks.
6831 * 3) migration thread wakes up (implicitly it forces the migrated
6832 * thread off the CPU)
6833 * 4) it gets the migration request and checks whether the migrated
6834 * task is still in the wrong runqueue.
6835 * 5) if it's in the wrong runqueue then the migration thread removes
6836 * it and puts it into the right queue.
6837 * 6) migration thread up()s the semaphore.
6838 * 7) we wake up and the migration is done.
6839 */
6840
6841 /*
6842 * Change a given task's CPU affinity. Migrate the thread to a
6843 * proper CPU and schedule it away if the CPU it's executing on
6844 * is removed from the allowed bitmask.
6845 *
6846 * NOTE: the caller must have a valid reference to the task, the
6847 * task must not exit() & deallocate itself prematurely. The
6848 * call is not atomic; no spinlocks may be held.
6849 */
6850 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
6851 {
6852 struct migration_req req;
6853 unsigned long flags;
6854 struct rq *rq;
6855 int ret = 0;
6856
6857 rq = task_rq_lock(p, &flags);
6858 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
6859 ret = -EINVAL;
6860 goto out;
6861 }
6862
6863 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
6864 !cpumask_equal(&p->cpus_allowed, new_mask))) {
6865 ret = -EINVAL;
6866 goto out;
6867 }
6868
6869 if (p->sched_class->set_cpus_allowed)
6870 p->sched_class->set_cpus_allowed(p, new_mask);
6871 else {
6872 cpumask_copy(&p->cpus_allowed, new_mask);
6873 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
6874 }
6875
6876 /* Can the task run on the task's current CPU? If so, we're done */
6877 if (cpumask_test_cpu(task_cpu(p), new_mask))
6878 goto out;
6879
6880 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
6881 /* Need help from migration thread: drop lock and wait. */
6882 task_rq_unlock(rq, &flags);
6883 wake_up_process(rq->migration_thread);
6884 wait_for_completion(&req.done);
6885 tlb_migrate_finish(p->mm);
6886 return 0;
6887 }
6888 out:
6889 task_rq_unlock(rq, &flags);
6890
6891 return ret;
6892 }
6893 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
6894
6895 /*
6896 * Move (not current) task off this cpu, onto dest cpu. We're doing
6897 * this because either it can't run here any more (set_cpus_allowed()
6898 * away from this CPU, or CPU going down), or because we're
6899 * attempting to rebalance this task on exec (sched_exec).
6900 *
6901 * So we race with normal scheduler movements, but that's OK, as long
6902 * as the task is no longer on this CPU.
6903 *
6904 * Returns non-zero if task was successfully migrated.
6905 */
6906 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
6907 {
6908 struct rq *rq_dest, *rq_src;
6909 int ret = 0, on_rq;
6910
6911 if (unlikely(!cpu_active(dest_cpu)))
6912 return ret;
6913
6914 rq_src = cpu_rq(src_cpu);
6915 rq_dest = cpu_rq(dest_cpu);
6916
6917 double_rq_lock(rq_src, rq_dest);
6918 /* Already moved. */
6919 if (task_cpu(p) != src_cpu)
6920 goto done;
6921 /* Affinity changed (again). */
6922 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6923 goto fail;
6924
6925 on_rq = p->se.on_rq;
6926 if (on_rq)
6927 deactivate_task(rq_src, p, 0);
6928
6929 set_task_cpu(p, dest_cpu);
6930 if (on_rq) {
6931 activate_task(rq_dest, p, 0);
6932 check_preempt_curr(rq_dest, p, 0);
6933 }
6934 done:
6935 ret = 1;
6936 fail:
6937 double_rq_unlock(rq_src, rq_dest);
6938 return ret;
6939 }
6940
6941 /*
6942 * migration_thread - this is a highprio system thread that performs
6943 * thread migration by bumping thread off CPU then 'pushing' onto
6944 * another runqueue.
6945 */
6946 static int migration_thread(void *data)
6947 {
6948 int cpu = (long)data;
6949 struct rq *rq;
6950
6951 rq = cpu_rq(cpu);
6952 BUG_ON(rq->migration_thread != current);
6953
6954 set_current_state(TASK_INTERRUPTIBLE);
6955 while (!kthread_should_stop()) {
6956 struct migration_req *req;
6957 struct list_head *head;
6958
6959 spin_lock_irq(&rq->lock);
6960
6961 if (cpu_is_offline(cpu)) {
6962 spin_unlock_irq(&rq->lock);
6963 goto wait_to_die;
6964 }
6965
6966 if (rq->active_balance) {
6967 active_load_balance(rq, cpu);
6968 rq->active_balance = 0;
6969 }
6970
6971 head = &rq->migration_queue;
6972
6973 if (list_empty(head)) {
6974 spin_unlock_irq(&rq->lock);
6975 schedule();
6976 set_current_state(TASK_INTERRUPTIBLE);
6977 continue;
6978 }
6979 req = list_entry(head->next, struct migration_req, list);
6980 list_del_init(head->next);
6981
6982 spin_unlock(&rq->lock);
6983 __migrate_task(req->task, cpu, req->dest_cpu);
6984 local_irq_enable();
6985
6986 complete(&req->done);
6987 }
6988 __set_current_state(TASK_RUNNING);
6989 return 0;
6990
6991 wait_to_die:
6992 /* Wait for kthread_stop */
6993 set_current_state(TASK_INTERRUPTIBLE);
6994 while (!kthread_should_stop()) {
6995 schedule();
6996 set_current_state(TASK_INTERRUPTIBLE);
6997 }
6998 __set_current_state(TASK_RUNNING);
6999 return 0;
7000 }
7001
7002 #ifdef CONFIG_HOTPLUG_CPU
7003
7004 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7005 {
7006 int ret;
7007
7008 local_irq_disable();
7009 ret = __migrate_task(p, src_cpu, dest_cpu);
7010 local_irq_enable();
7011 return ret;
7012 }
7013
7014 /*
7015 * Figure out where task on dead CPU should go, use force if necessary.
7016 */
7017 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
7018 {
7019 int dest_cpu;
7020 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
7021
7022 again:
7023 /* Look for allowed, online CPU in same node. */
7024 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
7025 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7026 goto move;
7027
7028 /* Any allowed, online CPU? */
7029 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
7030 if (dest_cpu < nr_cpu_ids)
7031 goto move;
7032
7033 /* No more Mr. Nice Guy. */
7034 if (dest_cpu >= nr_cpu_ids) {
7035 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
7036 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
7037
7038 /*
7039 * Don't tell them about moving exiting tasks or
7040 * kernel threads (both mm NULL), since they never
7041 * leave kernel.
7042 */
7043 if (p->mm && printk_ratelimit()) {
7044 printk(KERN_INFO "process %d (%s) no "
7045 "longer affine to cpu%d\n",
7046 task_pid_nr(p), p->comm, dead_cpu);
7047 }
7048 }
7049
7050 move:
7051 /* It can have affinity changed while we were choosing. */
7052 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7053 goto again;
7054 }
7055
7056 /*
7057 * While a dead CPU has no uninterruptible tasks queued at this point,
7058 * it might still have a nonzero ->nr_uninterruptible counter, because
7059 * for performance reasons the counter is not stricly tracking tasks to
7060 * their home CPUs. So we just add the counter to another CPU's counter,
7061 * to keep the global sum constant after CPU-down:
7062 */
7063 static void migrate_nr_uninterruptible(struct rq *rq_src)
7064 {
7065 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
7066 unsigned long flags;
7067
7068 local_irq_save(flags);
7069 double_rq_lock(rq_src, rq_dest);
7070 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7071 rq_src->nr_uninterruptible = 0;
7072 double_rq_unlock(rq_src, rq_dest);
7073 local_irq_restore(flags);
7074 }
7075
7076 /* Run through task list and migrate tasks from the dead cpu. */
7077 static void migrate_live_tasks(int src_cpu)
7078 {
7079 struct task_struct *p, *t;
7080
7081 read_lock(&tasklist_lock);
7082
7083 do_each_thread(t, p) {
7084 if (p == current)
7085 continue;
7086
7087 if (task_cpu(p) == src_cpu)
7088 move_task_off_dead_cpu(src_cpu, p);
7089 } while_each_thread(t, p);
7090
7091 read_unlock(&tasklist_lock);
7092 }
7093
7094 /*
7095 * Schedules idle task to be the next runnable task on current CPU.
7096 * It does so by boosting its priority to highest possible.
7097 * Used by CPU offline code.
7098 */
7099 void sched_idle_next(void)
7100 {
7101 int this_cpu = smp_processor_id();
7102 struct rq *rq = cpu_rq(this_cpu);
7103 struct task_struct *p = rq->idle;
7104 unsigned long flags;
7105
7106 /* cpu has to be offline */
7107 BUG_ON(cpu_online(this_cpu));
7108
7109 /*
7110 * Strictly not necessary since rest of the CPUs are stopped by now
7111 * and interrupts disabled on the current cpu.
7112 */
7113 spin_lock_irqsave(&rq->lock, flags);
7114
7115 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7116
7117 update_rq_clock(rq);
7118 activate_task(rq, p, 0);
7119
7120 spin_unlock_irqrestore(&rq->lock, flags);
7121 }
7122
7123 /*
7124 * Ensures that the idle task is using init_mm right before its cpu goes
7125 * offline.
7126 */
7127 void idle_task_exit(void)
7128 {
7129 struct mm_struct *mm = current->active_mm;
7130
7131 BUG_ON(cpu_online(smp_processor_id()));
7132
7133 if (mm != &init_mm)
7134 switch_mm(mm, &init_mm, current);
7135 mmdrop(mm);
7136 }
7137
7138 /* called under rq->lock with disabled interrupts */
7139 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
7140 {
7141 struct rq *rq = cpu_rq(dead_cpu);
7142
7143 /* Must be exiting, otherwise would be on tasklist. */
7144 BUG_ON(!p->exit_state);
7145
7146 /* Cannot have done final schedule yet: would have vanished. */
7147 BUG_ON(p->state == TASK_DEAD);
7148
7149 get_task_struct(p);
7150
7151 /*
7152 * Drop lock around migration; if someone else moves it,
7153 * that's OK. No task can be added to this CPU, so iteration is
7154 * fine.
7155 */
7156 spin_unlock_irq(&rq->lock);
7157 move_task_off_dead_cpu(dead_cpu, p);
7158 spin_lock_irq(&rq->lock);
7159
7160 put_task_struct(p);
7161 }
7162
7163 /* release_task() removes task from tasklist, so we won't find dead tasks. */
7164 static void migrate_dead_tasks(unsigned int dead_cpu)
7165 {
7166 struct rq *rq = cpu_rq(dead_cpu);
7167 struct task_struct *next;
7168
7169 for ( ; ; ) {
7170 if (!rq->nr_running)
7171 break;
7172 update_rq_clock(rq);
7173 next = pick_next_task(rq);
7174 if (!next)
7175 break;
7176 next->sched_class->put_prev_task(rq, next);
7177 migrate_dead(dead_cpu, next);
7178
7179 }
7180 }
7181
7182 /*
7183 * remove the tasks which were accounted by rq from calc_load_tasks.
7184 */
7185 static void calc_global_load_remove(struct rq *rq)
7186 {
7187 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
7188 }
7189 #endif /* CONFIG_HOTPLUG_CPU */
7190
7191 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7192
7193 static struct ctl_table sd_ctl_dir[] = {
7194 {
7195 .procname = "sched_domain",
7196 .mode = 0555,
7197 },
7198 {0, },
7199 };
7200
7201 static struct ctl_table sd_ctl_root[] = {
7202 {
7203 .ctl_name = CTL_KERN,
7204 .procname = "kernel",
7205 .mode = 0555,
7206 .child = sd_ctl_dir,
7207 },
7208 {0, },
7209 };
7210
7211 static struct ctl_table *sd_alloc_ctl_entry(int n)
7212 {
7213 struct ctl_table *entry =
7214 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
7215
7216 return entry;
7217 }
7218
7219 static void sd_free_ctl_entry(struct ctl_table **tablep)
7220 {
7221 struct ctl_table *entry;
7222
7223 /*
7224 * In the intermediate directories, both the child directory and
7225 * procname are dynamically allocated and could fail but the mode
7226 * will always be set. In the lowest directory the names are
7227 * static strings and all have proc handlers.
7228 */
7229 for (entry = *tablep; entry->mode; entry++) {
7230 if (entry->child)
7231 sd_free_ctl_entry(&entry->child);
7232 if (entry->proc_handler == NULL)
7233 kfree(entry->procname);
7234 }
7235
7236 kfree(*tablep);
7237 *tablep = NULL;
7238 }
7239
7240 static void
7241 set_table_entry(struct ctl_table *entry,
7242 const char *procname, void *data, int maxlen,
7243 mode_t mode, proc_handler *proc_handler)
7244 {
7245 entry->procname = procname;
7246 entry->data = data;
7247 entry->maxlen = maxlen;
7248 entry->mode = mode;
7249 entry->proc_handler = proc_handler;
7250 }
7251
7252 static struct ctl_table *
7253 sd_alloc_ctl_domain_table(struct sched_domain *sd)
7254 {
7255 struct ctl_table *table = sd_alloc_ctl_entry(13);
7256
7257 if (table == NULL)
7258 return NULL;
7259
7260 set_table_entry(&table[0], "min_interval", &sd->min_interval,
7261 sizeof(long), 0644, proc_doulongvec_minmax);
7262 set_table_entry(&table[1], "max_interval", &sd->max_interval,
7263 sizeof(long), 0644, proc_doulongvec_minmax);
7264 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
7265 sizeof(int), 0644, proc_dointvec_minmax);
7266 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
7267 sizeof(int), 0644, proc_dointvec_minmax);
7268 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
7269 sizeof(int), 0644, proc_dointvec_minmax);
7270 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
7271 sizeof(int), 0644, proc_dointvec_minmax);
7272 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
7273 sizeof(int), 0644, proc_dointvec_minmax);
7274 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
7275 sizeof(int), 0644, proc_dointvec_minmax);
7276 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
7277 sizeof(int), 0644, proc_dointvec_minmax);
7278 set_table_entry(&table[9], "cache_nice_tries",
7279 &sd->cache_nice_tries,
7280 sizeof(int), 0644, proc_dointvec_minmax);
7281 set_table_entry(&table[10], "flags", &sd->flags,
7282 sizeof(int), 0644, proc_dointvec_minmax);
7283 set_table_entry(&table[11], "name", sd->name,
7284 CORENAME_MAX_SIZE, 0444, proc_dostring);
7285 /* &table[12] is terminator */
7286
7287 return table;
7288 }
7289
7290 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7291 {
7292 struct ctl_table *entry, *table;
7293 struct sched_domain *sd;
7294 int domain_num = 0, i;
7295 char buf[32];
7296
7297 for_each_domain(cpu, sd)
7298 domain_num++;
7299 entry = table = sd_alloc_ctl_entry(domain_num + 1);
7300 if (table == NULL)
7301 return NULL;
7302
7303 i = 0;
7304 for_each_domain(cpu, sd) {
7305 snprintf(buf, 32, "domain%d", i);
7306 entry->procname = kstrdup(buf, GFP_KERNEL);
7307 entry->mode = 0555;
7308 entry->child = sd_alloc_ctl_domain_table(sd);
7309 entry++;
7310 i++;
7311 }
7312 return table;
7313 }
7314
7315 static struct ctl_table_header *sd_sysctl_header;
7316 static void register_sched_domain_sysctl(void)
7317 {
7318 int i, cpu_num = num_online_cpus();
7319 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7320 char buf[32];
7321
7322 WARN_ON(sd_ctl_dir[0].child);
7323 sd_ctl_dir[0].child = entry;
7324
7325 if (entry == NULL)
7326 return;
7327
7328 for_each_online_cpu(i) {
7329 snprintf(buf, 32, "cpu%d", i);
7330 entry->procname = kstrdup(buf, GFP_KERNEL);
7331 entry->mode = 0555;
7332 entry->child = sd_alloc_ctl_cpu_table(i);
7333 entry++;
7334 }
7335
7336 WARN_ON(sd_sysctl_header);
7337 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7338 }
7339
7340 /* may be called multiple times per register */
7341 static void unregister_sched_domain_sysctl(void)
7342 {
7343 if (sd_sysctl_header)
7344 unregister_sysctl_table(sd_sysctl_header);
7345 sd_sysctl_header = NULL;
7346 if (sd_ctl_dir[0].child)
7347 sd_free_ctl_entry(&sd_ctl_dir[0].child);
7348 }
7349 #else
7350 static void register_sched_domain_sysctl(void)
7351 {
7352 }
7353 static void unregister_sched_domain_sysctl(void)
7354 {
7355 }
7356 #endif
7357
7358 static void set_rq_online(struct rq *rq)
7359 {
7360 if (!rq->online) {
7361 const struct sched_class *class;
7362
7363 cpumask_set_cpu(rq->cpu, rq->rd->online);
7364 rq->online = 1;
7365
7366 for_each_class(class) {
7367 if (class->rq_online)
7368 class->rq_online(rq);
7369 }
7370 }
7371 }
7372
7373 static void set_rq_offline(struct rq *rq)
7374 {
7375 if (rq->online) {
7376 const struct sched_class *class;
7377
7378 for_each_class(class) {
7379 if (class->rq_offline)
7380 class->rq_offline(rq);
7381 }
7382
7383 cpumask_clear_cpu(rq->cpu, rq->rd->online);
7384 rq->online = 0;
7385 }
7386 }
7387
7388 /*
7389 * migration_call - callback that gets triggered when a CPU is added.
7390 * Here we can start up the necessary migration thread for the new CPU.
7391 */
7392 static int __cpuinit
7393 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
7394 {
7395 struct task_struct *p;
7396 int cpu = (long)hcpu;
7397 unsigned long flags;
7398 struct rq *rq;
7399
7400 switch (action) {
7401
7402 case CPU_UP_PREPARE:
7403 case CPU_UP_PREPARE_FROZEN:
7404 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
7405 if (IS_ERR(p))
7406 return NOTIFY_BAD;
7407 kthread_bind(p, cpu);
7408 /* Must be high prio: stop_machine expects to yield to it. */
7409 rq = task_rq_lock(p, &flags);
7410 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7411 task_rq_unlock(rq, &flags);
7412 cpu_rq(cpu)->migration_thread = p;
7413 break;
7414
7415 case CPU_ONLINE:
7416 case CPU_ONLINE_FROZEN:
7417 /* Strictly unnecessary, as first user will wake it. */
7418 wake_up_process(cpu_rq(cpu)->migration_thread);
7419
7420 /* Update our root-domain */
7421 rq = cpu_rq(cpu);
7422 spin_lock_irqsave(&rq->lock, flags);
7423 rq->calc_load_update = calc_load_update;
7424 rq->calc_load_active = 0;
7425 if (rq->rd) {
7426 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7427
7428 set_rq_online(rq);
7429 }
7430 spin_unlock_irqrestore(&rq->lock, flags);
7431 break;
7432
7433 #ifdef CONFIG_HOTPLUG_CPU
7434 case CPU_UP_CANCELED:
7435 case CPU_UP_CANCELED_FROZEN:
7436 if (!cpu_rq(cpu)->migration_thread)
7437 break;
7438 /* Unbind it from offline cpu so it can run. Fall thru. */
7439 kthread_bind(cpu_rq(cpu)->migration_thread,
7440 cpumask_any(cpu_online_mask));
7441 kthread_stop(cpu_rq(cpu)->migration_thread);
7442 cpu_rq(cpu)->migration_thread = NULL;
7443 break;
7444
7445 case CPU_DEAD:
7446 case CPU_DEAD_FROZEN:
7447 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
7448 migrate_live_tasks(cpu);
7449 rq = cpu_rq(cpu);
7450 kthread_stop(rq->migration_thread);
7451 rq->migration_thread = NULL;
7452 /* Idle task back to normal (off runqueue, low prio) */
7453 spin_lock_irq(&rq->lock);
7454 update_rq_clock(rq);
7455 deactivate_task(rq, rq->idle, 0);
7456 rq->idle->static_prio = MAX_PRIO;
7457 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7458 rq->idle->sched_class = &idle_sched_class;
7459 migrate_dead_tasks(cpu);
7460 spin_unlock_irq(&rq->lock);
7461 cpuset_unlock();
7462 migrate_nr_uninterruptible(rq);
7463 BUG_ON(rq->nr_running != 0);
7464 calc_global_load_remove(rq);
7465 /*
7466 * No need to migrate the tasks: it was best-effort if
7467 * they didn't take sched_hotcpu_mutex. Just wake up
7468 * the requestors.
7469 */
7470 spin_lock_irq(&rq->lock);
7471 while (!list_empty(&rq->migration_queue)) {
7472 struct migration_req *req;
7473
7474 req = list_entry(rq->migration_queue.next,
7475 struct migration_req, list);
7476 list_del_init(&req->list);
7477 spin_unlock_irq(&rq->lock);
7478 complete(&req->done);
7479 spin_lock_irq(&rq->lock);
7480 }
7481 spin_unlock_irq(&rq->lock);
7482 break;
7483
7484 case CPU_DYING:
7485 case CPU_DYING_FROZEN:
7486 /* Update our root-domain */
7487 rq = cpu_rq(cpu);
7488 spin_lock_irqsave(&rq->lock, flags);
7489 if (rq->rd) {
7490 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7491 set_rq_offline(rq);
7492 }
7493 spin_unlock_irqrestore(&rq->lock, flags);
7494 break;
7495 #endif
7496 }
7497 return NOTIFY_OK;
7498 }
7499
7500 /* Register at highest priority so that task migration (migrate_all_tasks)
7501 * happens before everything else.
7502 */
7503 static struct notifier_block __cpuinitdata migration_notifier = {
7504 .notifier_call = migration_call,
7505 .priority = 10
7506 };
7507
7508 static int __init migration_init(void)
7509 {
7510 void *cpu = (void *)(long)smp_processor_id();
7511 int err;
7512
7513 /* Start one for the boot CPU: */
7514 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7515 BUG_ON(err == NOTIFY_BAD);
7516 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7517 register_cpu_notifier(&migration_notifier);
7518
7519 return err;
7520 }
7521 early_initcall(migration_init);
7522 #endif
7523
7524 #ifdef CONFIG_SMP
7525
7526 #ifdef CONFIG_SCHED_DEBUG
7527
7528 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7529 struct cpumask *groupmask)
7530 {
7531 struct sched_group *group = sd->groups;
7532 char str[256];
7533
7534 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7535 cpumask_clear(groupmask);
7536
7537 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7538
7539 if (!(sd->flags & SD_LOAD_BALANCE)) {
7540 printk("does not load-balance\n");
7541 if (sd->parent)
7542 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7543 " has parent");
7544 return -1;
7545 }
7546
7547 printk(KERN_CONT "span %s level %s\n", str, sd->name);
7548
7549 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
7550 printk(KERN_ERR "ERROR: domain->span does not contain "
7551 "CPU%d\n", cpu);
7552 }
7553 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
7554 printk(KERN_ERR "ERROR: domain->groups does not contain"
7555 " CPU%d\n", cpu);
7556 }
7557
7558 printk(KERN_DEBUG "%*s groups:", level + 1, "");
7559 do {
7560 if (!group) {
7561 printk("\n");
7562 printk(KERN_ERR "ERROR: group is NULL\n");
7563 break;
7564 }
7565
7566 if (!group->__cpu_power) {
7567 printk(KERN_CONT "\n");
7568 printk(KERN_ERR "ERROR: domain->cpu_power not "
7569 "set\n");
7570 break;
7571 }
7572
7573 if (!cpumask_weight(sched_group_cpus(group))) {
7574 printk(KERN_CONT "\n");
7575 printk(KERN_ERR "ERROR: empty group\n");
7576 break;
7577 }
7578
7579 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
7580 printk(KERN_CONT "\n");
7581 printk(KERN_ERR "ERROR: repeated CPUs\n");
7582 break;
7583 }
7584
7585 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
7586
7587 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7588
7589 printk(KERN_CONT " %s", str);
7590 if (group->__cpu_power != SCHED_LOAD_SCALE) {
7591 printk(KERN_CONT " (__cpu_power = %d)",
7592 group->__cpu_power);
7593 }
7594
7595 group = group->next;
7596 } while (group != sd->groups);
7597 printk(KERN_CONT "\n");
7598
7599 if (!cpumask_equal(sched_domain_span(sd), groupmask))
7600 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
7601
7602 if (sd->parent &&
7603 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
7604 printk(KERN_ERR "ERROR: parent span is not a superset "
7605 "of domain->span\n");
7606 return 0;
7607 }
7608
7609 static void sched_domain_debug(struct sched_domain *sd, int cpu)
7610 {
7611 cpumask_var_t groupmask;
7612 int level = 0;
7613
7614 if (!sd) {
7615 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7616 return;
7617 }
7618
7619 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7620
7621 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7622 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7623 return;
7624 }
7625
7626 for (;;) {
7627 if (sched_domain_debug_one(sd, cpu, level, groupmask))
7628 break;
7629 level++;
7630 sd = sd->parent;
7631 if (!sd)
7632 break;
7633 }
7634 free_cpumask_var(groupmask);
7635 }
7636 #else /* !CONFIG_SCHED_DEBUG */
7637 # define sched_domain_debug(sd, cpu) do { } while (0)
7638 #endif /* CONFIG_SCHED_DEBUG */
7639
7640 static int sd_degenerate(struct sched_domain *sd)
7641 {
7642 if (cpumask_weight(sched_domain_span(sd)) == 1)
7643 return 1;
7644
7645 /* Following flags need at least 2 groups */
7646 if (sd->flags & (SD_LOAD_BALANCE |
7647 SD_BALANCE_NEWIDLE |
7648 SD_BALANCE_FORK |
7649 SD_BALANCE_EXEC |
7650 SD_SHARE_CPUPOWER |
7651 SD_SHARE_PKG_RESOURCES)) {
7652 if (sd->groups != sd->groups->next)
7653 return 0;
7654 }
7655
7656 /* Following flags don't use groups */
7657 if (sd->flags & (SD_WAKE_IDLE |
7658 SD_WAKE_AFFINE |
7659 SD_WAKE_BALANCE))
7660 return 0;
7661
7662 return 1;
7663 }
7664
7665 static int
7666 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7667 {
7668 unsigned long cflags = sd->flags, pflags = parent->flags;
7669
7670 if (sd_degenerate(parent))
7671 return 1;
7672
7673 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7674 return 0;
7675
7676 /* Does parent contain flags not in child? */
7677 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
7678 if (cflags & SD_WAKE_AFFINE)
7679 pflags &= ~SD_WAKE_BALANCE;
7680 /* Flags needing groups don't count if only 1 group in parent */
7681 if (parent->groups == parent->groups->next) {
7682 pflags &= ~(SD_LOAD_BALANCE |
7683 SD_BALANCE_NEWIDLE |
7684 SD_BALANCE_FORK |
7685 SD_BALANCE_EXEC |
7686 SD_SHARE_CPUPOWER |
7687 SD_SHARE_PKG_RESOURCES);
7688 if (nr_node_ids == 1)
7689 pflags &= ~SD_SERIALIZE;
7690 }
7691 if (~cflags & pflags)
7692 return 0;
7693
7694 return 1;
7695 }
7696
7697 static void free_rootdomain(struct root_domain *rd)
7698 {
7699 cpupri_cleanup(&rd->cpupri);
7700
7701 free_cpumask_var(rd->rto_mask);
7702 free_cpumask_var(rd->online);
7703 free_cpumask_var(rd->span);
7704 kfree(rd);
7705 }
7706
7707 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7708 {
7709 struct root_domain *old_rd = NULL;
7710 unsigned long flags;
7711
7712 spin_lock_irqsave(&rq->lock, flags);
7713
7714 if (rq->rd) {
7715 old_rd = rq->rd;
7716
7717 if (cpumask_test_cpu(rq->cpu, old_rd->online))
7718 set_rq_offline(rq);
7719
7720 cpumask_clear_cpu(rq->cpu, old_rd->span);
7721
7722 /*
7723 * If we dont want to free the old_rt yet then
7724 * set old_rd to NULL to skip the freeing later
7725 * in this function:
7726 */
7727 if (!atomic_dec_and_test(&old_rd->refcount))
7728 old_rd = NULL;
7729 }
7730
7731 atomic_inc(&rd->refcount);
7732 rq->rd = rd;
7733
7734 cpumask_set_cpu(rq->cpu, rd->span);
7735 if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
7736 set_rq_online(rq);
7737
7738 spin_unlock_irqrestore(&rq->lock, flags);
7739
7740 if (old_rd)
7741 free_rootdomain(old_rd);
7742 }
7743
7744 static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
7745 {
7746 memset(rd, 0, sizeof(*rd));
7747
7748 if (bootmem) {
7749 alloc_bootmem_cpumask_var(&def_root_domain.span);
7750 alloc_bootmem_cpumask_var(&def_root_domain.online);
7751 alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
7752 cpupri_init(&rd->cpupri, true);
7753 return 0;
7754 }
7755
7756 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
7757 goto out;
7758 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
7759 goto free_span;
7760 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
7761 goto free_online;
7762
7763 if (cpupri_init(&rd->cpupri, false) != 0)
7764 goto free_rto_mask;
7765 return 0;
7766
7767 free_rto_mask:
7768 free_cpumask_var(rd->rto_mask);
7769 free_online:
7770 free_cpumask_var(rd->online);
7771 free_span:
7772 free_cpumask_var(rd->span);
7773 out:
7774 return -ENOMEM;
7775 }
7776
7777 static void init_defrootdomain(void)
7778 {
7779 init_rootdomain(&def_root_domain, true);
7780
7781 atomic_set(&def_root_domain.refcount, 1);
7782 }
7783
7784 static struct root_domain *alloc_rootdomain(void)
7785 {
7786 struct root_domain *rd;
7787
7788 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7789 if (!rd)
7790 return NULL;
7791
7792 if (init_rootdomain(rd, false) != 0) {
7793 kfree(rd);
7794 return NULL;
7795 }
7796
7797 return rd;
7798 }
7799
7800 /*
7801 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
7802 * hold the hotplug lock.
7803 */
7804 static void
7805 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
7806 {
7807 struct rq *rq = cpu_rq(cpu);
7808 struct sched_domain *tmp;
7809
7810 /* Remove the sched domains which do not contribute to scheduling. */
7811 for (tmp = sd; tmp; ) {
7812 struct sched_domain *parent = tmp->parent;
7813 if (!parent)
7814 break;
7815
7816 if (sd_parent_degenerate(tmp, parent)) {
7817 tmp->parent = parent->parent;
7818 if (parent->parent)
7819 parent->parent->child = tmp;
7820 } else
7821 tmp = tmp->parent;
7822 }
7823
7824 if (sd && sd_degenerate(sd)) {
7825 sd = sd->parent;
7826 if (sd)
7827 sd->child = NULL;
7828 }
7829
7830 sched_domain_debug(sd, cpu);
7831
7832 rq_attach_root(rq, rd);
7833 rcu_assign_pointer(rq->sd, sd);
7834 }
7835
7836 /* cpus with isolated domains */
7837 static cpumask_var_t cpu_isolated_map;
7838
7839 /* Setup the mask of cpus configured for isolated domains */
7840 static int __init isolated_cpu_setup(char *str)
7841 {
7842 cpulist_parse(str, cpu_isolated_map);
7843 return 1;
7844 }
7845
7846 __setup("isolcpus=", isolated_cpu_setup);
7847
7848 /*
7849 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
7850 * to a function which identifies what group(along with sched group) a CPU
7851 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
7852 * (due to the fact that we keep track of groups covered with a struct cpumask).
7853 *
7854 * init_sched_build_groups will build a circular linked list of the groups
7855 * covered by the given span, and will set each group's ->cpumask correctly,
7856 * and ->cpu_power to 0.
7857 */
7858 static void
7859 init_sched_build_groups(const struct cpumask *span,
7860 const struct cpumask *cpu_map,
7861 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7862 struct sched_group **sg,
7863 struct cpumask *tmpmask),
7864 struct cpumask *covered, struct cpumask *tmpmask)
7865 {
7866 struct sched_group *first = NULL, *last = NULL;
7867 int i;
7868
7869 cpumask_clear(covered);
7870
7871 for_each_cpu(i, span) {
7872 struct sched_group *sg;
7873 int group = group_fn(i, cpu_map, &sg, tmpmask);
7874 int j;
7875
7876 if (cpumask_test_cpu(i, covered))
7877 continue;
7878
7879 cpumask_clear(sched_group_cpus(sg));
7880 sg->__cpu_power = 0;
7881
7882 for_each_cpu(j, span) {
7883 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
7884 continue;
7885
7886 cpumask_set_cpu(j, covered);
7887 cpumask_set_cpu(j, sched_group_cpus(sg));
7888 }
7889 if (!first)
7890 first = sg;
7891 if (last)
7892 last->next = sg;
7893 last = sg;
7894 }
7895 last->next = first;
7896 }
7897
7898 #define SD_NODES_PER_DOMAIN 16
7899
7900 #ifdef CONFIG_NUMA
7901
7902 /**
7903 * find_next_best_node - find the next node to include in a sched_domain
7904 * @node: node whose sched_domain we're building
7905 * @used_nodes: nodes already in the sched_domain
7906 *
7907 * Find the next node to include in a given scheduling domain. Simply
7908 * finds the closest node not already in the @used_nodes map.
7909 *
7910 * Should use nodemask_t.
7911 */
7912 static int find_next_best_node(int node, nodemask_t *used_nodes)
7913 {
7914 int i, n, val, min_val, best_node = 0;
7915
7916 min_val = INT_MAX;
7917
7918 for (i = 0; i < nr_node_ids; i++) {
7919 /* Start at @node */
7920 n = (node + i) % nr_node_ids;
7921
7922 if (!nr_cpus_node(n))
7923 continue;
7924
7925 /* Skip already used nodes */
7926 if (node_isset(n, *used_nodes))
7927 continue;
7928
7929 /* Simple min distance search */
7930 val = node_distance(node, n);
7931
7932 if (val < min_val) {
7933 min_val = val;
7934 best_node = n;
7935 }
7936 }
7937
7938 node_set(best_node, *used_nodes);
7939 return best_node;
7940 }
7941
7942 /**
7943 * sched_domain_node_span - get a cpumask for a node's sched_domain
7944 * @node: node whose cpumask we're constructing
7945 * @span: resulting cpumask
7946 *
7947 * Given a node, construct a good cpumask for its sched_domain to span. It
7948 * should be one that prevents unnecessary balancing, but also spreads tasks
7949 * out optimally.
7950 */
7951 static void sched_domain_node_span(int node, struct cpumask *span)
7952 {
7953 nodemask_t used_nodes;
7954 int i;
7955
7956 cpumask_clear(span);
7957 nodes_clear(used_nodes);
7958
7959 cpumask_or(span, span, cpumask_of_node(node));
7960 node_set(node, used_nodes);
7961
7962 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7963 int next_node = find_next_best_node(node, &used_nodes);
7964
7965 cpumask_or(span, span, cpumask_of_node(next_node));
7966 }
7967 }
7968 #endif /* CONFIG_NUMA */
7969
7970 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7971
7972 /*
7973 * The cpus mask in sched_group and sched_domain hangs off the end.
7974 *
7975 * ( See the the comments in include/linux/sched.h:struct sched_group
7976 * and struct sched_domain. )
7977 */
7978 struct static_sched_group {
7979 struct sched_group sg;
7980 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
7981 };
7982
7983 struct static_sched_domain {
7984 struct sched_domain sd;
7985 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
7986 };
7987
7988 /*
7989 * SMT sched-domains:
7990 */
7991 #ifdef CONFIG_SCHED_SMT
7992 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
7993 static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
7994
7995 static int
7996 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
7997 struct sched_group **sg, struct cpumask *unused)
7998 {
7999 if (sg)
8000 *sg = &per_cpu(sched_group_cpus, cpu).sg;
8001 return cpu;
8002 }
8003 #endif /* CONFIG_SCHED_SMT */
8004
8005 /*
8006 * multi-core sched-domains:
8007 */
8008 #ifdef CONFIG_SCHED_MC
8009 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8010 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
8011 #endif /* CONFIG_SCHED_MC */
8012
8013 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
8014 static int
8015 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8016 struct sched_group **sg, struct cpumask *mask)
8017 {
8018 int group;
8019
8020 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8021 group = cpumask_first(mask);
8022 if (sg)
8023 *sg = &per_cpu(sched_group_core, group).sg;
8024 return group;
8025 }
8026 #elif defined(CONFIG_SCHED_MC)
8027 static int
8028 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8029 struct sched_group **sg, struct cpumask *unused)
8030 {
8031 if (sg)
8032 *sg = &per_cpu(sched_group_core, cpu).sg;
8033 return cpu;
8034 }
8035 #endif
8036
8037 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8038 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
8039
8040 static int
8041 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8042 struct sched_group **sg, struct cpumask *mask)
8043 {
8044 int group;
8045 #ifdef CONFIG_SCHED_MC
8046 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
8047 group = cpumask_first(mask);
8048 #elif defined(CONFIG_SCHED_SMT)
8049 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8050 group = cpumask_first(mask);
8051 #else
8052 group = cpu;
8053 #endif
8054 if (sg)
8055 *sg = &per_cpu(sched_group_phys, group).sg;
8056 return group;
8057 }
8058
8059 #ifdef CONFIG_NUMA
8060 /*
8061 * The init_sched_build_groups can't handle what we want to do with node
8062 * groups, so roll our own. Now each node has its own list of groups which
8063 * gets dynamically allocated.
8064 */
8065 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
8066 static struct sched_group ***sched_group_nodes_bycpu;
8067
8068 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
8069 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
8070
8071 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8072 struct sched_group **sg,
8073 struct cpumask *nodemask)
8074 {
8075 int group;
8076
8077 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
8078 group = cpumask_first(nodemask);
8079
8080 if (sg)
8081 *sg = &per_cpu(sched_group_allnodes, group).sg;
8082 return group;
8083 }
8084
8085 static void init_numa_sched_groups_power(struct sched_group *group_head)
8086 {
8087 struct sched_group *sg = group_head;
8088 int j;
8089
8090 if (!sg)
8091 return;
8092 do {
8093 for_each_cpu(j, sched_group_cpus(sg)) {
8094 struct sched_domain *sd;
8095
8096 sd = &per_cpu(phys_domains, j).sd;
8097 if (j != group_first_cpu(sd->groups)) {
8098 /*
8099 * Only add "power" once for each
8100 * physical package.
8101 */
8102 continue;
8103 }
8104
8105 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
8106 }
8107 sg = sg->next;
8108 } while (sg != group_head);
8109 }
8110 #endif /* CONFIG_NUMA */
8111
8112 #ifdef CONFIG_NUMA
8113 /* Free memory allocated for various sched_group structures */
8114 static void free_sched_groups(const struct cpumask *cpu_map,
8115 struct cpumask *nodemask)
8116 {
8117 int cpu, i;
8118
8119 for_each_cpu(cpu, cpu_map) {
8120 struct sched_group **sched_group_nodes
8121 = sched_group_nodes_bycpu[cpu];
8122
8123 if (!sched_group_nodes)
8124 continue;
8125
8126 for (i = 0; i < nr_node_ids; i++) {
8127 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8128
8129 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8130 if (cpumask_empty(nodemask))
8131 continue;
8132
8133 if (sg == NULL)
8134 continue;
8135 sg = sg->next;
8136 next_sg:
8137 oldsg = sg;
8138 sg = sg->next;
8139 kfree(oldsg);
8140 if (oldsg != sched_group_nodes[i])
8141 goto next_sg;
8142 }
8143 kfree(sched_group_nodes);
8144 sched_group_nodes_bycpu[cpu] = NULL;
8145 }
8146 }
8147 #else /* !CONFIG_NUMA */
8148 static void free_sched_groups(const struct cpumask *cpu_map,
8149 struct cpumask *nodemask)
8150 {
8151 }
8152 #endif /* CONFIG_NUMA */
8153
8154 /*
8155 * Initialize sched groups cpu_power.
8156 *
8157 * cpu_power indicates the capacity of sched group, which is used while
8158 * distributing the load between different sched groups in a sched domain.
8159 * Typically cpu_power for all the groups in a sched domain will be same unless
8160 * there are asymmetries in the topology. If there are asymmetries, group
8161 * having more cpu_power will pickup more load compared to the group having
8162 * less cpu_power.
8163 *
8164 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
8165 * the maximum number of tasks a group can handle in the presence of other idle
8166 * or lightly loaded groups in the same sched domain.
8167 */
8168 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8169 {
8170 struct sched_domain *child;
8171 struct sched_group *group;
8172
8173 WARN_ON(!sd || !sd->groups);
8174
8175 if (cpu != group_first_cpu(sd->groups))
8176 return;
8177
8178 child = sd->child;
8179
8180 sd->groups->__cpu_power = 0;
8181
8182 /*
8183 * For perf policy, if the groups in child domain share resources
8184 * (for example cores sharing some portions of the cache hierarchy
8185 * or SMT), then set this domain groups cpu_power such that each group
8186 * can handle only one task, when there are other idle groups in the
8187 * same sched domain.
8188 */
8189 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
8190 (child->flags &
8191 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
8192 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
8193 return;
8194 }
8195
8196 /*
8197 * add cpu_power of each child group to this groups cpu_power
8198 */
8199 group = child->groups;
8200 do {
8201 sg_inc_cpu_power(sd->groups, group->__cpu_power);
8202 group = group->next;
8203 } while (group != child->groups);
8204 }
8205
8206 /*
8207 * Initializers for schedule domains
8208 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8209 */
8210
8211 #ifdef CONFIG_SCHED_DEBUG
8212 # define SD_INIT_NAME(sd, type) sd->name = #type
8213 #else
8214 # define SD_INIT_NAME(sd, type) do { } while (0)
8215 #endif
8216
8217 #define SD_INIT(sd, type) sd_init_##type(sd)
8218
8219 #define SD_INIT_FUNC(type) \
8220 static noinline void sd_init_##type(struct sched_domain *sd) \
8221 { \
8222 memset(sd, 0, sizeof(*sd)); \
8223 *sd = SD_##type##_INIT; \
8224 sd->level = SD_LV_##type; \
8225 SD_INIT_NAME(sd, type); \
8226 }
8227
8228 SD_INIT_FUNC(CPU)
8229 #ifdef CONFIG_NUMA
8230 SD_INIT_FUNC(ALLNODES)
8231 SD_INIT_FUNC(NODE)
8232 #endif
8233 #ifdef CONFIG_SCHED_SMT
8234 SD_INIT_FUNC(SIBLING)
8235 #endif
8236 #ifdef CONFIG_SCHED_MC
8237 SD_INIT_FUNC(MC)
8238 #endif
8239
8240 static int default_relax_domain_level = -1;
8241
8242 static int __init setup_relax_domain_level(char *str)
8243 {
8244 unsigned long val;
8245
8246 val = simple_strtoul(str, NULL, 0);
8247 if (val < SD_LV_MAX)
8248 default_relax_domain_level = val;
8249
8250 return 1;
8251 }
8252 __setup("relax_domain_level=", setup_relax_domain_level);
8253
8254 static void set_domain_attribute(struct sched_domain *sd,
8255 struct sched_domain_attr *attr)
8256 {
8257 int request;
8258
8259 if (!attr || attr->relax_domain_level < 0) {
8260 if (default_relax_domain_level < 0)
8261 return;
8262 else
8263 request = default_relax_domain_level;
8264 } else
8265 request = attr->relax_domain_level;
8266 if (request < sd->level) {
8267 /* turn off idle balance on this domain */
8268 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
8269 } else {
8270 /* turn on idle balance on this domain */
8271 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
8272 }
8273 }
8274
8275 /*
8276 * Build sched domains for a given set of cpus and attach the sched domains
8277 * to the individual cpus
8278 */
8279 static int __build_sched_domains(const struct cpumask *cpu_map,
8280 struct sched_domain_attr *attr)
8281 {
8282 int i, err = -ENOMEM;
8283 struct root_domain *rd;
8284 cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
8285 tmpmask;
8286 #ifdef CONFIG_NUMA
8287 cpumask_var_t domainspan, covered, notcovered;
8288 struct sched_group **sched_group_nodes = NULL;
8289 int sd_allnodes = 0;
8290
8291 if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
8292 goto out;
8293 if (!alloc_cpumask_var(&covered, GFP_KERNEL))
8294 goto free_domainspan;
8295 if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
8296 goto free_covered;
8297 #endif
8298
8299 if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
8300 goto free_notcovered;
8301 if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
8302 goto free_nodemask;
8303 if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
8304 goto free_this_sibling_map;
8305 if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
8306 goto free_this_core_map;
8307 if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
8308 goto free_send_covered;
8309
8310 #ifdef CONFIG_NUMA
8311 /*
8312 * Allocate the per-node list of sched groups
8313 */
8314 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
8315 GFP_KERNEL);
8316 if (!sched_group_nodes) {
8317 printk(KERN_WARNING "Can not alloc sched group node list\n");
8318 goto free_tmpmask;
8319 }
8320 #endif
8321
8322 rd = alloc_rootdomain();
8323 if (!rd) {
8324 printk(KERN_WARNING "Cannot alloc root domain\n");
8325 goto free_sched_groups;
8326 }
8327
8328 #ifdef CONFIG_NUMA
8329 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
8330 #endif
8331
8332 /*
8333 * Set up domains for cpus specified by the cpu_map.
8334 */
8335 for_each_cpu(i, cpu_map) {
8336 struct sched_domain *sd = NULL, *p;
8337
8338 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
8339
8340 #ifdef CONFIG_NUMA
8341 if (cpumask_weight(cpu_map) >
8342 SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
8343 sd = &per_cpu(allnodes_domains, i).sd;
8344 SD_INIT(sd, ALLNODES);
8345 set_domain_attribute(sd, attr);
8346 cpumask_copy(sched_domain_span(sd), cpu_map);
8347 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
8348 p = sd;
8349 sd_allnodes = 1;
8350 } else
8351 p = NULL;
8352
8353 sd = &per_cpu(node_domains, i).sd;
8354 SD_INIT(sd, NODE);
8355 set_domain_attribute(sd, attr);
8356 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8357 sd->parent = p;
8358 if (p)
8359 p->child = sd;
8360 cpumask_and(sched_domain_span(sd),
8361 sched_domain_span(sd), cpu_map);
8362 #endif
8363
8364 p = sd;
8365 sd = &per_cpu(phys_domains, i).sd;
8366 SD_INIT(sd, CPU);
8367 set_domain_attribute(sd, attr);
8368 cpumask_copy(sched_domain_span(sd), nodemask);
8369 sd->parent = p;
8370 if (p)
8371 p->child = sd;
8372 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
8373
8374 #ifdef CONFIG_SCHED_MC
8375 p = sd;
8376 sd = &per_cpu(core_domains, i).sd;
8377 SD_INIT(sd, MC);
8378 set_domain_attribute(sd, attr);
8379 cpumask_and(sched_domain_span(sd), cpu_map,
8380 cpu_coregroup_mask(i));
8381 sd->parent = p;
8382 p->child = sd;
8383 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
8384 #endif
8385
8386 #ifdef CONFIG_SCHED_SMT
8387 p = sd;
8388 sd = &per_cpu(cpu_domains, i).sd;
8389 SD_INIT(sd, SIBLING);
8390 set_domain_attribute(sd, attr);
8391 cpumask_and(sched_domain_span(sd),
8392 topology_thread_cpumask(i), cpu_map);
8393 sd->parent = p;
8394 p->child = sd;
8395 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
8396 #endif
8397 }
8398
8399 #ifdef CONFIG_SCHED_SMT
8400 /* Set up CPU (sibling) groups */
8401 for_each_cpu(i, cpu_map) {
8402 cpumask_and(this_sibling_map,
8403 topology_thread_cpumask(i), cpu_map);
8404 if (i != cpumask_first(this_sibling_map))
8405 continue;
8406
8407 init_sched_build_groups(this_sibling_map, cpu_map,
8408 &cpu_to_cpu_group,
8409 send_covered, tmpmask);
8410 }
8411 #endif
8412
8413 #ifdef CONFIG_SCHED_MC
8414 /* Set up multi-core groups */
8415 for_each_cpu(i, cpu_map) {
8416 cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
8417 if (i != cpumask_first(this_core_map))
8418 continue;
8419
8420 init_sched_build_groups(this_core_map, cpu_map,
8421 &cpu_to_core_group,
8422 send_covered, tmpmask);
8423 }
8424 #endif
8425
8426 /* Set up physical groups */
8427 for (i = 0; i < nr_node_ids; i++) {
8428 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8429 if (cpumask_empty(nodemask))
8430 continue;
8431
8432 init_sched_build_groups(nodemask, cpu_map,
8433 &cpu_to_phys_group,
8434 send_covered, tmpmask);
8435 }
8436
8437 #ifdef CONFIG_NUMA
8438 /* Set up node groups */
8439 if (sd_allnodes) {
8440 init_sched_build_groups(cpu_map, cpu_map,
8441 &cpu_to_allnodes_group,
8442 send_covered, tmpmask);
8443 }
8444
8445 for (i = 0; i < nr_node_ids; i++) {
8446 /* Set up node groups */
8447 struct sched_group *sg, *prev;
8448 int j;
8449
8450 cpumask_clear(covered);
8451 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8452 if (cpumask_empty(nodemask)) {
8453 sched_group_nodes[i] = NULL;
8454 continue;
8455 }
8456
8457 sched_domain_node_span(i, domainspan);
8458 cpumask_and(domainspan, domainspan, cpu_map);
8459
8460 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8461 GFP_KERNEL, i);
8462 if (!sg) {
8463 printk(KERN_WARNING "Can not alloc domain group for "
8464 "node %d\n", i);
8465 goto error;
8466 }
8467 sched_group_nodes[i] = sg;
8468 for_each_cpu(j, nodemask) {
8469 struct sched_domain *sd;
8470
8471 sd = &per_cpu(node_domains, j).sd;
8472 sd->groups = sg;
8473 }
8474 sg->__cpu_power = 0;
8475 cpumask_copy(sched_group_cpus(sg), nodemask);
8476 sg->next = sg;
8477 cpumask_or(covered, covered, nodemask);
8478 prev = sg;
8479
8480 for (j = 0; j < nr_node_ids; j++) {
8481 int n = (i + j) % nr_node_ids;
8482
8483 cpumask_complement(notcovered, covered);
8484 cpumask_and(tmpmask, notcovered, cpu_map);
8485 cpumask_and(tmpmask, tmpmask, domainspan);
8486 if (cpumask_empty(tmpmask))
8487 break;
8488
8489 cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
8490 if (cpumask_empty(tmpmask))
8491 continue;
8492
8493 sg = kmalloc_node(sizeof(struct sched_group) +
8494 cpumask_size(),
8495 GFP_KERNEL, i);
8496 if (!sg) {
8497 printk(KERN_WARNING
8498 "Can not alloc domain group for node %d\n", j);
8499 goto error;
8500 }
8501 sg->__cpu_power = 0;
8502 cpumask_copy(sched_group_cpus(sg), tmpmask);
8503 sg->next = prev->next;
8504 cpumask_or(covered, covered, tmpmask);
8505 prev->next = sg;
8506 prev = sg;
8507 }
8508 }
8509 #endif
8510
8511 /* Calculate CPU power for physical packages and nodes */
8512 #ifdef CONFIG_SCHED_SMT
8513 for_each_cpu(i, cpu_map) {
8514 struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
8515
8516 init_sched_groups_power(i, sd);
8517 }
8518 #endif
8519 #ifdef CONFIG_SCHED_MC
8520 for_each_cpu(i, cpu_map) {
8521 struct sched_domain *sd = &per_cpu(core_domains, i).sd;
8522
8523 init_sched_groups_power(i, sd);
8524 }
8525 #endif
8526
8527 for_each_cpu(i, cpu_map) {
8528 struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
8529
8530 init_sched_groups_power(i, sd);
8531 }
8532
8533 #ifdef CONFIG_NUMA
8534 for (i = 0; i < nr_node_ids; i++)
8535 init_numa_sched_groups_power(sched_group_nodes[i]);
8536
8537 if (sd_allnodes) {
8538 struct sched_group *sg;
8539
8540 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8541 tmpmask);
8542 init_numa_sched_groups_power(sg);
8543 }
8544 #endif
8545
8546 /* Attach the domains */
8547 for_each_cpu(i, cpu_map) {
8548 struct sched_domain *sd;
8549 #ifdef CONFIG_SCHED_SMT
8550 sd = &per_cpu(cpu_domains, i).sd;
8551 #elif defined(CONFIG_SCHED_MC)
8552 sd = &per_cpu(core_domains, i).sd;
8553 #else
8554 sd = &per_cpu(phys_domains, i).sd;
8555 #endif
8556 cpu_attach_domain(sd, rd, i);
8557 }
8558
8559 err = 0;
8560
8561 free_tmpmask:
8562 free_cpumask_var(tmpmask);
8563 free_send_covered:
8564 free_cpumask_var(send_covered);
8565 free_this_core_map:
8566 free_cpumask_var(this_core_map);
8567 free_this_sibling_map:
8568 free_cpumask_var(this_sibling_map);
8569 free_nodemask:
8570 free_cpumask_var(nodemask);
8571 free_notcovered:
8572 #ifdef CONFIG_NUMA
8573 free_cpumask_var(notcovered);
8574 free_covered:
8575 free_cpumask_var(covered);
8576 free_domainspan:
8577 free_cpumask_var(domainspan);
8578 out:
8579 #endif
8580 return err;
8581
8582 free_sched_groups:
8583 #ifdef CONFIG_NUMA
8584 kfree(sched_group_nodes);
8585 #endif
8586 goto free_tmpmask;
8587
8588 #ifdef CONFIG_NUMA
8589 error:
8590 free_sched_groups(cpu_map, tmpmask);
8591 free_rootdomain(rd);
8592 goto free_tmpmask;
8593 #endif
8594 }
8595
8596 static int build_sched_domains(const struct cpumask *cpu_map)
8597 {
8598 return __build_sched_domains(cpu_map, NULL);
8599 }
8600
8601 static struct cpumask *doms_cur; /* current sched domains */
8602 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
8603 static struct sched_domain_attr *dattr_cur;
8604 /* attribues of custom domains in 'doms_cur' */
8605
8606 /*
8607 * Special case: If a kmalloc of a doms_cur partition (array of
8608 * cpumask) fails, then fallback to a single sched domain,
8609 * as determined by the single cpumask fallback_doms.
8610 */
8611 static cpumask_var_t fallback_doms;
8612
8613 /*
8614 * arch_update_cpu_topology lets virtualized architectures update the
8615 * cpu core maps. It is supposed to return 1 if the topology changed
8616 * or 0 if it stayed the same.
8617 */
8618 int __attribute__((weak)) arch_update_cpu_topology(void)
8619 {
8620 return 0;
8621 }
8622
8623 /*
8624 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
8625 * For now this just excludes isolated cpus, but could be used to
8626 * exclude other special cases in the future.
8627 */
8628 static int arch_init_sched_domains(const struct cpumask *cpu_map)
8629 {
8630 int err;
8631
8632 arch_update_cpu_topology();
8633 ndoms_cur = 1;
8634 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
8635 if (!doms_cur)
8636 doms_cur = fallback_doms;
8637 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
8638 dattr_cur = NULL;
8639 err = build_sched_domains(doms_cur);
8640 register_sched_domain_sysctl();
8641
8642 return err;
8643 }
8644
8645 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
8646 struct cpumask *tmpmask)
8647 {
8648 free_sched_groups(cpu_map, tmpmask);
8649 }
8650
8651 /*
8652 * Detach sched domains from a group of cpus specified in cpu_map
8653 * These cpus will now be attached to the NULL domain
8654 */
8655 static void detach_destroy_domains(const struct cpumask *cpu_map)
8656 {
8657 /* Save because hotplug lock held. */
8658 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
8659 int i;
8660
8661 for_each_cpu(i, cpu_map)
8662 cpu_attach_domain(NULL, &def_root_domain, i);
8663 synchronize_sched();
8664 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
8665 }
8666
8667 /* handle null as "default" */
8668 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8669 struct sched_domain_attr *new, int idx_new)
8670 {
8671 struct sched_domain_attr tmp;
8672
8673 /* fast path */
8674 if (!new && !cur)
8675 return 1;
8676
8677 tmp = SD_ATTR_INIT;
8678 return !memcmp(cur ? (cur + idx_cur) : &tmp,
8679 new ? (new + idx_new) : &tmp,
8680 sizeof(struct sched_domain_attr));
8681 }
8682
8683 /*
8684 * Partition sched domains as specified by the 'ndoms_new'
8685 * cpumasks in the array doms_new[] of cpumasks. This compares
8686 * doms_new[] to the current sched domain partitioning, doms_cur[].
8687 * It destroys each deleted domain and builds each new domain.
8688 *
8689 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
8690 * The masks don't intersect (don't overlap.) We should setup one
8691 * sched domain for each mask. CPUs not in any of the cpumasks will
8692 * not be load balanced. If the same cpumask appears both in the
8693 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8694 * it as it is.
8695 *
8696 * The passed in 'doms_new' should be kmalloc'd. This routine takes
8697 * ownership of it and will kfree it when done with it. If the caller
8698 * failed the kmalloc call, then it can pass in doms_new == NULL &&
8699 * ndoms_new == 1, and partition_sched_domains() will fallback to
8700 * the single partition 'fallback_doms', it also forces the domains
8701 * to be rebuilt.
8702 *
8703 * If doms_new == NULL it will be replaced with cpu_online_mask.
8704 * ndoms_new == 0 is a special case for destroying existing domains,
8705 * and it will not create the default domain.
8706 *
8707 * Call with hotplug lock held
8708 */
8709 /* FIXME: Change to struct cpumask *doms_new[] */
8710 void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
8711 struct sched_domain_attr *dattr_new)
8712 {
8713 int i, j, n;
8714 int new_topology;
8715
8716 mutex_lock(&sched_domains_mutex);
8717
8718 /* always unregister in case we don't destroy any domains */
8719 unregister_sched_domain_sysctl();
8720
8721 /* Let architecture update cpu core mappings. */
8722 new_topology = arch_update_cpu_topology();
8723
8724 n = doms_new ? ndoms_new : 0;
8725
8726 /* Destroy deleted domains */
8727 for (i = 0; i < ndoms_cur; i++) {
8728 for (j = 0; j < n && !new_topology; j++) {
8729 if (cpumask_equal(&doms_cur[i], &doms_new[j])
8730 && dattrs_equal(dattr_cur, i, dattr_new, j))
8731 goto match1;
8732 }
8733 /* no match - a current sched domain not in new doms_new[] */
8734 detach_destroy_domains(doms_cur + i);
8735 match1:
8736 ;
8737 }
8738
8739 if (doms_new == NULL) {
8740 ndoms_cur = 0;
8741 doms_new = fallback_doms;
8742 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
8743 WARN_ON_ONCE(dattr_new);
8744 }
8745
8746 /* Build new domains */
8747 for (i = 0; i < ndoms_new; i++) {
8748 for (j = 0; j < ndoms_cur && !new_topology; j++) {
8749 if (cpumask_equal(&doms_new[i], &doms_cur[j])
8750 && dattrs_equal(dattr_new, i, dattr_cur, j))
8751 goto match2;
8752 }
8753 /* no match - add a new doms_new */
8754 __build_sched_domains(doms_new + i,
8755 dattr_new ? dattr_new + i : NULL);
8756 match2:
8757 ;
8758 }
8759
8760 /* Remember the new sched domains */
8761 if (doms_cur != fallback_doms)
8762 kfree(doms_cur);
8763 kfree(dattr_cur); /* kfree(NULL) is safe */
8764 doms_cur = doms_new;
8765 dattr_cur = dattr_new;
8766 ndoms_cur = ndoms_new;
8767
8768 register_sched_domain_sysctl();
8769
8770 mutex_unlock(&sched_domains_mutex);
8771 }
8772
8773 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
8774 static void arch_reinit_sched_domains(void)
8775 {
8776 get_online_cpus();
8777
8778 /* Destroy domains first to force the rebuild */
8779 partition_sched_domains(0, NULL, NULL);
8780
8781 rebuild_sched_domains();
8782 put_online_cpus();
8783 }
8784
8785 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
8786 {
8787 unsigned int level = 0;
8788
8789 if (sscanf(buf, "%u", &level) != 1)
8790 return -EINVAL;
8791
8792 /*
8793 * level is always be positive so don't check for
8794 * level < POWERSAVINGS_BALANCE_NONE which is 0
8795 * What happens on 0 or 1 byte write,
8796 * need to check for count as well?
8797 */
8798
8799 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
8800 return -EINVAL;
8801
8802 if (smt)
8803 sched_smt_power_savings = level;
8804 else
8805 sched_mc_power_savings = level;
8806
8807 arch_reinit_sched_domains();
8808
8809 return count;
8810 }
8811
8812 #ifdef CONFIG_SCHED_MC
8813 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
8814 char *page)
8815 {
8816 return sprintf(page, "%u\n", sched_mc_power_savings);
8817 }
8818 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
8819 const char *buf, size_t count)
8820 {
8821 return sched_power_savings_store(buf, count, 0);
8822 }
8823 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
8824 sched_mc_power_savings_show,
8825 sched_mc_power_savings_store);
8826 #endif
8827
8828 #ifdef CONFIG_SCHED_SMT
8829 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
8830 char *page)
8831 {
8832 return sprintf(page, "%u\n", sched_smt_power_savings);
8833 }
8834 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
8835 const char *buf, size_t count)
8836 {
8837 return sched_power_savings_store(buf, count, 1);
8838 }
8839 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
8840 sched_smt_power_savings_show,
8841 sched_smt_power_savings_store);
8842 #endif
8843
8844 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
8845 {
8846 int err = 0;
8847
8848 #ifdef CONFIG_SCHED_SMT
8849 if (smt_capable())
8850 err = sysfs_create_file(&cls->kset.kobj,
8851 &attr_sched_smt_power_savings.attr);
8852 #endif
8853 #ifdef CONFIG_SCHED_MC
8854 if (!err && mc_capable())
8855 err = sysfs_create_file(&cls->kset.kobj,
8856 &attr_sched_mc_power_savings.attr);
8857 #endif
8858 return err;
8859 }
8860 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
8861
8862 #ifndef CONFIG_CPUSETS
8863 /*
8864 * Add online and remove offline CPUs from the scheduler domains.
8865 * When cpusets are enabled they take over this function.
8866 */
8867 static int update_sched_domains(struct notifier_block *nfb,
8868 unsigned long action, void *hcpu)
8869 {
8870 switch (action) {
8871 case CPU_ONLINE:
8872 case CPU_ONLINE_FROZEN:
8873 case CPU_DEAD:
8874 case CPU_DEAD_FROZEN:
8875 partition_sched_domains(1, NULL, NULL);
8876 return NOTIFY_OK;
8877
8878 default:
8879 return NOTIFY_DONE;
8880 }
8881 }
8882 #endif
8883
8884 static int update_runtime(struct notifier_block *nfb,
8885 unsigned long action, void *hcpu)
8886 {
8887 int cpu = (int)(long)hcpu;
8888
8889 switch (action) {
8890 case CPU_DOWN_PREPARE:
8891 case CPU_DOWN_PREPARE_FROZEN:
8892 disable_runtime(cpu_rq(cpu));
8893 return NOTIFY_OK;
8894
8895 case CPU_DOWN_FAILED:
8896 case CPU_DOWN_FAILED_FROZEN:
8897 case CPU_ONLINE:
8898 case CPU_ONLINE_FROZEN:
8899 enable_runtime(cpu_rq(cpu));
8900 return NOTIFY_OK;
8901
8902 default:
8903 return NOTIFY_DONE;
8904 }
8905 }
8906
8907 void __init sched_init_smp(void)
8908 {
8909 cpumask_var_t non_isolated_cpus;
8910
8911 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
8912
8913 #if defined(CONFIG_NUMA)
8914 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
8915 GFP_KERNEL);
8916 BUG_ON(sched_group_nodes_bycpu == NULL);
8917 #endif
8918 get_online_cpus();
8919 mutex_lock(&sched_domains_mutex);
8920 arch_init_sched_domains(cpu_online_mask);
8921 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
8922 if (cpumask_empty(non_isolated_cpus))
8923 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
8924 mutex_unlock(&sched_domains_mutex);
8925 put_online_cpus();
8926
8927 #ifndef CONFIG_CPUSETS
8928 /* XXX: Theoretical race here - CPU may be hotplugged now */
8929 hotcpu_notifier(update_sched_domains, 0);
8930 #endif
8931
8932 /* RT runtime code needs to handle some hotplug events */
8933 hotcpu_notifier(update_runtime, 0);
8934
8935 init_hrtick();
8936
8937 /* Move init over to a non-isolated CPU */
8938 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
8939 BUG();
8940 sched_init_granularity();
8941 free_cpumask_var(non_isolated_cpus);
8942
8943 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
8944 init_sched_rt_class();
8945 }
8946 #else
8947 void __init sched_init_smp(void)
8948 {
8949 sched_init_granularity();
8950 }
8951 #endif /* CONFIG_SMP */
8952
8953 int in_sched_functions(unsigned long addr)
8954 {
8955 return in_lock_functions(addr) ||
8956 (addr >= (unsigned long)__sched_text_start
8957 && addr < (unsigned long)__sched_text_end);
8958 }
8959
8960 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
8961 {
8962 cfs_rq->tasks_timeline = RB_ROOT;
8963 INIT_LIST_HEAD(&cfs_rq->tasks);
8964 #ifdef CONFIG_FAIR_GROUP_SCHED
8965 cfs_rq->rq = rq;
8966 #endif
8967 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8968 }
8969
8970 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8971 {
8972 struct rt_prio_array *array;
8973 int i;
8974
8975 array = &rt_rq->active;
8976 for (i = 0; i < MAX_RT_PRIO; i++) {
8977 INIT_LIST_HEAD(array->queue + i);
8978 __clear_bit(i, array->bitmap);
8979 }
8980 /* delimiter for bitsearch: */
8981 __set_bit(MAX_RT_PRIO, array->bitmap);
8982
8983 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
8984 rt_rq->highest_prio.curr = MAX_RT_PRIO;
8985 #ifdef CONFIG_SMP
8986 rt_rq->highest_prio.next = MAX_RT_PRIO;
8987 #endif
8988 #endif
8989 #ifdef CONFIG_SMP
8990 rt_rq->rt_nr_migratory = 0;
8991 rt_rq->overloaded = 0;
8992 plist_head_init(&rq->rt.pushable_tasks, &rq->lock);
8993 #endif
8994
8995 rt_rq->rt_time = 0;
8996 rt_rq->rt_throttled = 0;
8997 rt_rq->rt_runtime = 0;
8998 spin_lock_init(&rt_rq->rt_runtime_lock);
8999
9000 #ifdef CONFIG_RT_GROUP_SCHED
9001 rt_rq->rt_nr_boosted = 0;
9002 rt_rq->rq = rq;
9003 #endif
9004 }
9005
9006 #ifdef CONFIG_FAIR_GROUP_SCHED
9007 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9008 struct sched_entity *se, int cpu, int add,
9009 struct sched_entity *parent)
9010 {
9011 struct rq *rq = cpu_rq(cpu);
9012 tg->cfs_rq[cpu] = cfs_rq;
9013 init_cfs_rq(cfs_rq, rq);
9014 cfs_rq->tg = tg;
9015 if (add)
9016 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9017
9018 tg->se[cpu] = se;
9019 /* se could be NULL for init_task_group */
9020 if (!se)
9021 return;
9022
9023 if (!parent)
9024 se->cfs_rq = &rq->cfs;
9025 else
9026 se->cfs_rq = parent->my_q;
9027
9028 se->my_q = cfs_rq;
9029 se->load.weight = tg->shares;
9030 se->load.inv_weight = 0;
9031 se->parent = parent;
9032 }
9033 #endif
9034
9035 #ifdef CONFIG_RT_GROUP_SCHED
9036 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9037 struct sched_rt_entity *rt_se, int cpu, int add,
9038 struct sched_rt_entity *parent)
9039 {
9040 struct rq *rq = cpu_rq(cpu);
9041
9042 tg->rt_rq[cpu] = rt_rq;
9043 init_rt_rq(rt_rq, rq);
9044 rt_rq->tg = tg;
9045 rt_rq->rt_se = rt_se;
9046 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
9047 if (add)
9048 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9049
9050 tg->rt_se[cpu] = rt_se;
9051 if (!rt_se)
9052 return;
9053
9054 if (!parent)
9055 rt_se->rt_rq = &rq->rt;
9056 else
9057 rt_se->rt_rq = parent->my_q;
9058
9059 rt_se->my_q = rt_rq;
9060 rt_se->parent = parent;
9061 INIT_LIST_HEAD(&rt_se->run_list);
9062 }
9063 #endif
9064
9065 void __init sched_init(void)
9066 {
9067 int i, j;
9068 unsigned long alloc_size = 0, ptr;
9069
9070 #ifdef CONFIG_FAIR_GROUP_SCHED
9071 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9072 #endif
9073 #ifdef CONFIG_RT_GROUP_SCHED
9074 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9075 #endif
9076 #ifdef CONFIG_USER_SCHED
9077 alloc_size *= 2;
9078 #endif
9079 #ifdef CONFIG_CPUMASK_OFFSTACK
9080 alloc_size += num_possible_cpus() * cpumask_size();
9081 #endif
9082 /*
9083 * As sched_init() is called before page_alloc is setup,
9084 * we use alloc_bootmem().
9085 */
9086 if (alloc_size) {
9087 ptr = (unsigned long)alloc_bootmem(alloc_size);
9088
9089 #ifdef CONFIG_FAIR_GROUP_SCHED
9090 init_task_group.se = (struct sched_entity **)ptr;
9091 ptr += nr_cpu_ids * sizeof(void **);
9092
9093 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9094 ptr += nr_cpu_ids * sizeof(void **);
9095
9096 #ifdef CONFIG_USER_SCHED
9097 root_task_group.se = (struct sched_entity **)ptr;
9098 ptr += nr_cpu_ids * sizeof(void **);
9099
9100 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9101 ptr += nr_cpu_ids * sizeof(void **);
9102 #endif /* CONFIG_USER_SCHED */
9103 #endif /* CONFIG_FAIR_GROUP_SCHED */
9104 #ifdef CONFIG_RT_GROUP_SCHED
9105 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9106 ptr += nr_cpu_ids * sizeof(void **);
9107
9108 init_task_group.rt_rq = (struct rt_rq **)ptr;
9109 ptr += nr_cpu_ids * sizeof(void **);
9110
9111 #ifdef CONFIG_USER_SCHED
9112 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9113 ptr += nr_cpu_ids * sizeof(void **);
9114
9115 root_task_group.rt_rq = (struct rt_rq **)ptr;
9116 ptr += nr_cpu_ids * sizeof(void **);
9117 #endif /* CONFIG_USER_SCHED */
9118 #endif /* CONFIG_RT_GROUP_SCHED */
9119 #ifdef CONFIG_CPUMASK_OFFSTACK
9120 for_each_possible_cpu(i) {
9121 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9122 ptr += cpumask_size();
9123 }
9124 #endif /* CONFIG_CPUMASK_OFFSTACK */
9125 }
9126
9127 #ifdef CONFIG_SMP
9128 init_defrootdomain();
9129 #endif
9130
9131 init_rt_bandwidth(&def_rt_bandwidth,
9132 global_rt_period(), global_rt_runtime());
9133
9134 #ifdef CONFIG_RT_GROUP_SCHED
9135 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9136 global_rt_period(), global_rt_runtime());
9137 #ifdef CONFIG_USER_SCHED
9138 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9139 global_rt_period(), RUNTIME_INF);
9140 #endif /* CONFIG_USER_SCHED */
9141 #endif /* CONFIG_RT_GROUP_SCHED */
9142
9143 #ifdef CONFIG_GROUP_SCHED
9144 list_add(&init_task_group.list, &task_groups);
9145 INIT_LIST_HEAD(&init_task_group.children);
9146
9147 #ifdef CONFIG_USER_SCHED
9148 INIT_LIST_HEAD(&root_task_group.children);
9149 init_task_group.parent = &root_task_group;
9150 list_add(&init_task_group.siblings, &root_task_group.children);
9151 #endif /* CONFIG_USER_SCHED */
9152 #endif /* CONFIG_GROUP_SCHED */
9153
9154 for_each_possible_cpu(i) {
9155 struct rq *rq;
9156
9157 rq = cpu_rq(i);
9158 spin_lock_init(&rq->lock);
9159 rq->nr_running = 0;
9160 rq->calc_load_active = 0;
9161 rq->calc_load_update = jiffies + LOAD_FREQ;
9162 init_cfs_rq(&rq->cfs, rq);
9163 init_rt_rq(&rq->rt, rq);
9164 #ifdef CONFIG_FAIR_GROUP_SCHED
9165 init_task_group.shares = init_task_group_load;
9166 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9167 #ifdef CONFIG_CGROUP_SCHED
9168 /*
9169 * How much cpu bandwidth does init_task_group get?
9170 *
9171 * In case of task-groups formed thr' the cgroup filesystem, it
9172 * gets 100% of the cpu resources in the system. This overall
9173 * system cpu resource is divided among the tasks of
9174 * init_task_group and its child task-groups in a fair manner,
9175 * based on each entity's (task or task-group's) weight
9176 * (se->load.weight).
9177 *
9178 * In other words, if init_task_group has 10 tasks of weight
9179 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9180 * then A0's share of the cpu resource is:
9181 *
9182 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9183 *
9184 * We achieve this by letting init_task_group's tasks sit
9185 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9186 */
9187 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
9188 #elif defined CONFIG_USER_SCHED
9189 root_task_group.shares = NICE_0_LOAD;
9190 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
9191 /*
9192 * In case of task-groups formed thr' the user id of tasks,
9193 * init_task_group represents tasks belonging to root user.
9194 * Hence it forms a sibling of all subsequent groups formed.
9195 * In this case, init_task_group gets only a fraction of overall
9196 * system cpu resource, based on the weight assigned to root
9197 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9198 * by letting tasks of init_task_group sit in a separate cfs_rq
9199 * (init_cfs_rq) and having one entity represent this group of
9200 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9201 */
9202 init_tg_cfs_entry(&init_task_group,
9203 &per_cpu(init_cfs_rq, i),
9204 &per_cpu(init_sched_entity, i), i, 1,
9205 root_task_group.se[i]);
9206
9207 #endif
9208 #endif /* CONFIG_FAIR_GROUP_SCHED */
9209
9210 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9211 #ifdef CONFIG_RT_GROUP_SCHED
9212 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
9213 #ifdef CONFIG_CGROUP_SCHED
9214 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
9215 #elif defined CONFIG_USER_SCHED
9216 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
9217 init_tg_rt_entry(&init_task_group,
9218 &per_cpu(init_rt_rq, i),
9219 &per_cpu(init_sched_rt_entity, i), i, 1,
9220 root_task_group.rt_se[i]);
9221 #endif
9222 #endif
9223
9224 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9225 rq->cpu_load[j] = 0;
9226 #ifdef CONFIG_SMP
9227 rq->sd = NULL;
9228 rq->rd = NULL;
9229 rq->active_balance = 0;
9230 rq->next_balance = jiffies;
9231 rq->push_cpu = 0;
9232 rq->cpu = i;
9233 rq->online = 0;
9234 rq->migration_thread = NULL;
9235 INIT_LIST_HEAD(&rq->migration_queue);
9236 rq_attach_root(rq, &def_root_domain);
9237 #endif
9238 init_rq_hrtick(rq);
9239 atomic_set(&rq->nr_iowait, 0);
9240 }
9241
9242 set_load_weight(&init_task);
9243
9244 #ifdef CONFIG_PREEMPT_NOTIFIERS
9245 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9246 #endif
9247
9248 #ifdef CONFIG_SMP
9249 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9250 #endif
9251
9252 #ifdef CONFIG_RT_MUTEXES
9253 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9254 #endif
9255
9256 /*
9257 * The boot idle thread does lazy MMU switching as well:
9258 */
9259 atomic_inc(&init_mm.mm_count);
9260 enter_lazy_tlb(&init_mm, current);
9261
9262 /*
9263 * Make us the idle thread. Technically, schedule() should not be
9264 * called from this thread, however somewhere below it might be,
9265 * but because we are the idle thread, we just pick up running again
9266 * when this runqueue becomes "idle".
9267 */
9268 init_idle(current, smp_processor_id());
9269
9270 calc_load_update = jiffies + LOAD_FREQ;
9271
9272 /*
9273 * During early bootup we pretend to be a normal task:
9274 */
9275 current->sched_class = &fair_sched_class;
9276
9277 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9278 alloc_bootmem_cpumask_var(&nohz_cpu_mask);
9279 #ifdef CONFIG_SMP
9280 #ifdef CONFIG_NO_HZ
9281 alloc_bootmem_cpumask_var(&nohz.cpu_mask);
9282 alloc_bootmem_cpumask_var(&nohz.ilb_grp_nohz_mask);
9283 #endif
9284 alloc_bootmem_cpumask_var(&cpu_isolated_map);
9285 #endif /* SMP */
9286
9287 scheduler_running = 1;
9288 }
9289
9290 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9291 void __might_sleep(char *file, int line)
9292 {
9293 #ifdef in_atomic
9294 static unsigned long prev_jiffy; /* ratelimiting */
9295
9296 if ((!in_atomic() && !irqs_disabled()) ||
9297 system_state != SYSTEM_RUNNING || oops_in_progress)
9298 return;
9299 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9300 return;
9301 prev_jiffy = jiffies;
9302
9303 printk(KERN_ERR
9304 "BUG: sleeping function called from invalid context at %s:%d\n",
9305 file, line);
9306 printk(KERN_ERR
9307 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9308 in_atomic(), irqs_disabled(),
9309 current->pid, current->comm);
9310
9311 debug_show_held_locks(current);
9312 if (irqs_disabled())
9313 print_irqtrace_events(current);
9314 dump_stack();
9315 #endif
9316 }
9317 EXPORT_SYMBOL(__might_sleep);
9318 #endif
9319
9320 #ifdef CONFIG_MAGIC_SYSRQ
9321 static void normalize_task(struct rq *rq, struct task_struct *p)
9322 {
9323 int on_rq;
9324
9325 update_rq_clock(rq);
9326 on_rq = p->se.on_rq;
9327 if (on_rq)
9328 deactivate_task(rq, p, 0);
9329 __setscheduler(rq, p, SCHED_NORMAL, 0);
9330 if (on_rq) {
9331 activate_task(rq, p, 0);
9332 resched_task(rq->curr);
9333 }
9334 }
9335
9336 void normalize_rt_tasks(void)
9337 {
9338 struct task_struct *g, *p;
9339 unsigned long flags;
9340 struct rq *rq;
9341
9342 read_lock_irqsave(&tasklist_lock, flags);
9343 do_each_thread(g, p) {
9344 /*
9345 * Only normalize user tasks:
9346 */
9347 if (!p->mm)
9348 continue;
9349
9350 p->se.exec_start = 0;
9351 #ifdef CONFIG_SCHEDSTATS
9352 p->se.wait_start = 0;
9353 p->se.sleep_start = 0;
9354 p->se.block_start = 0;
9355 #endif
9356
9357 if (!rt_task(p)) {
9358 /*
9359 * Renice negative nice level userspace
9360 * tasks back to 0:
9361 */
9362 if (TASK_NICE(p) < 0 && p->mm)
9363 set_user_nice(p, 0);
9364 continue;
9365 }
9366
9367 spin_lock(&p->pi_lock);
9368 rq = __task_rq_lock(p);
9369
9370 normalize_task(rq, p);
9371
9372 __task_rq_unlock(rq);
9373 spin_unlock(&p->pi_lock);
9374 } while_each_thread(g, p);
9375
9376 read_unlock_irqrestore(&tasklist_lock, flags);
9377 }
9378
9379 #endif /* CONFIG_MAGIC_SYSRQ */
9380
9381 #ifdef CONFIG_IA64
9382 /*
9383 * These functions are only useful for the IA64 MCA handling.
9384 *
9385 * They can only be called when the whole system has been
9386 * stopped - every CPU needs to be quiescent, and no scheduling
9387 * activity can take place. Using them for anything else would
9388 * be a serious bug, and as a result, they aren't even visible
9389 * under any other configuration.
9390 */
9391
9392 /**
9393 * curr_task - return the current task for a given cpu.
9394 * @cpu: the processor in question.
9395 *
9396 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9397 */
9398 struct task_struct *curr_task(int cpu)
9399 {
9400 return cpu_curr(cpu);
9401 }
9402
9403 /**
9404 * set_curr_task - set the current task for a given cpu.
9405 * @cpu: the processor in question.
9406 * @p: the task pointer to set.
9407 *
9408 * Description: This function must only be used when non-maskable interrupts
9409 * are serviced on a separate stack. It allows the architecture to switch the
9410 * notion of the current task on a cpu in a non-blocking manner. This function
9411 * must be called with all CPU's synchronized, and interrupts disabled, the
9412 * and caller must save the original value of the current task (see
9413 * curr_task() above) and restore that value before reenabling interrupts and
9414 * re-starting the system.
9415 *
9416 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9417 */
9418 void set_curr_task(int cpu, struct task_struct *p)
9419 {
9420 cpu_curr(cpu) = p;
9421 }
9422
9423 #endif
9424
9425 #ifdef CONFIG_FAIR_GROUP_SCHED
9426 static void free_fair_sched_group(struct task_group *tg)
9427 {
9428 int i;
9429
9430 for_each_possible_cpu(i) {
9431 if (tg->cfs_rq)
9432 kfree(tg->cfs_rq[i]);
9433 if (tg->se)
9434 kfree(tg->se[i]);
9435 }
9436
9437 kfree(tg->cfs_rq);
9438 kfree(tg->se);
9439 }
9440
9441 static
9442 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9443 {
9444 struct cfs_rq *cfs_rq;
9445 struct sched_entity *se;
9446 struct rq *rq;
9447 int i;
9448
9449 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9450 if (!tg->cfs_rq)
9451 goto err;
9452 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9453 if (!tg->se)
9454 goto err;
9455
9456 tg->shares = NICE_0_LOAD;
9457
9458 for_each_possible_cpu(i) {
9459 rq = cpu_rq(i);
9460
9461 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9462 GFP_KERNEL, cpu_to_node(i));
9463 if (!cfs_rq)
9464 goto err;
9465
9466 se = kzalloc_node(sizeof(struct sched_entity),
9467 GFP_KERNEL, cpu_to_node(i));
9468 if (!se)
9469 goto err;
9470
9471 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9472 }
9473
9474 return 1;
9475
9476 err:
9477 return 0;
9478 }
9479
9480 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9481 {
9482 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9483 &cpu_rq(cpu)->leaf_cfs_rq_list);
9484 }
9485
9486 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9487 {
9488 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9489 }
9490 #else /* !CONFG_FAIR_GROUP_SCHED */
9491 static inline void free_fair_sched_group(struct task_group *tg)
9492 {
9493 }
9494
9495 static inline
9496 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9497 {
9498 return 1;
9499 }
9500
9501 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9502 {
9503 }
9504
9505 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9506 {
9507 }
9508 #endif /* CONFIG_FAIR_GROUP_SCHED */
9509
9510 #ifdef CONFIG_RT_GROUP_SCHED
9511 static void free_rt_sched_group(struct task_group *tg)
9512 {
9513 int i;
9514
9515 destroy_rt_bandwidth(&tg->rt_bandwidth);
9516
9517 for_each_possible_cpu(i) {
9518 if (tg->rt_rq)
9519 kfree(tg->rt_rq[i]);
9520 if (tg->rt_se)
9521 kfree(tg->rt_se[i]);
9522 }
9523
9524 kfree(tg->rt_rq);
9525 kfree(tg->rt_se);
9526 }
9527
9528 static
9529 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9530 {
9531 struct rt_rq *rt_rq;
9532 struct sched_rt_entity *rt_se;
9533 struct rq *rq;
9534 int i;
9535
9536 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9537 if (!tg->rt_rq)
9538 goto err;
9539 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9540 if (!tg->rt_se)
9541 goto err;
9542
9543 init_rt_bandwidth(&tg->rt_bandwidth,
9544 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9545
9546 for_each_possible_cpu(i) {
9547 rq = cpu_rq(i);
9548
9549 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9550 GFP_KERNEL, cpu_to_node(i));
9551 if (!rt_rq)
9552 goto err;
9553
9554 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9555 GFP_KERNEL, cpu_to_node(i));
9556 if (!rt_se)
9557 goto err;
9558
9559 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
9560 }
9561
9562 return 1;
9563
9564 err:
9565 return 0;
9566 }
9567
9568 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9569 {
9570 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9571 &cpu_rq(cpu)->leaf_rt_rq_list);
9572 }
9573
9574 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9575 {
9576 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9577 }
9578 #else /* !CONFIG_RT_GROUP_SCHED */
9579 static inline void free_rt_sched_group(struct task_group *tg)
9580 {
9581 }
9582
9583 static inline
9584 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9585 {
9586 return 1;
9587 }
9588
9589 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9590 {
9591 }
9592
9593 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9594 {
9595 }
9596 #endif /* CONFIG_RT_GROUP_SCHED */
9597
9598 #ifdef CONFIG_GROUP_SCHED
9599 static void free_sched_group(struct task_group *tg)
9600 {
9601 free_fair_sched_group(tg);
9602 free_rt_sched_group(tg);
9603 kfree(tg);
9604 }
9605
9606 /* allocate runqueue etc for a new task group */
9607 struct task_group *sched_create_group(struct task_group *parent)
9608 {
9609 struct task_group *tg;
9610 unsigned long flags;
9611 int i;
9612
9613 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9614 if (!tg)
9615 return ERR_PTR(-ENOMEM);
9616
9617 if (!alloc_fair_sched_group(tg, parent))
9618 goto err;
9619
9620 if (!alloc_rt_sched_group(tg, parent))
9621 goto err;
9622
9623 spin_lock_irqsave(&task_group_lock, flags);
9624 for_each_possible_cpu(i) {
9625 register_fair_sched_group(tg, i);
9626 register_rt_sched_group(tg, i);
9627 }
9628 list_add_rcu(&tg->list, &task_groups);
9629
9630 WARN_ON(!parent); /* root should already exist */
9631
9632 tg->parent = parent;
9633 INIT_LIST_HEAD(&tg->children);
9634 list_add_rcu(&tg->siblings, &parent->children);
9635 spin_unlock_irqrestore(&task_group_lock, flags);
9636
9637 return tg;
9638
9639 err:
9640 free_sched_group(tg);
9641 return ERR_PTR(-ENOMEM);
9642 }
9643
9644 /* rcu callback to free various structures associated with a task group */
9645 static void free_sched_group_rcu(struct rcu_head *rhp)
9646 {
9647 /* now it should be safe to free those cfs_rqs */
9648 free_sched_group(container_of(rhp, struct task_group, rcu));
9649 }
9650
9651 /* Destroy runqueue etc associated with a task group */
9652 void sched_destroy_group(struct task_group *tg)
9653 {
9654 unsigned long flags;
9655 int i;
9656
9657 spin_lock_irqsave(&task_group_lock, flags);
9658 for_each_possible_cpu(i) {
9659 unregister_fair_sched_group(tg, i);
9660 unregister_rt_sched_group(tg, i);
9661 }
9662 list_del_rcu(&tg->list);
9663 list_del_rcu(&tg->siblings);
9664 spin_unlock_irqrestore(&task_group_lock, flags);
9665
9666 /* wait for possible concurrent references to cfs_rqs complete */
9667 call_rcu(&tg->rcu, free_sched_group_rcu);
9668 }
9669
9670 /* change task's runqueue when it moves between groups.
9671 * The caller of this function should have put the task in its new group
9672 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
9673 * reflect its new group.
9674 */
9675 void sched_move_task(struct task_struct *tsk)
9676 {
9677 int on_rq, running;
9678 unsigned long flags;
9679 struct rq *rq;
9680
9681 rq = task_rq_lock(tsk, &flags);
9682
9683 update_rq_clock(rq);
9684
9685 running = task_current(rq, tsk);
9686 on_rq = tsk->se.on_rq;
9687
9688 if (on_rq)
9689 dequeue_task(rq, tsk, 0);
9690 if (unlikely(running))
9691 tsk->sched_class->put_prev_task(rq, tsk);
9692
9693 set_task_rq(tsk, task_cpu(tsk));
9694
9695 #ifdef CONFIG_FAIR_GROUP_SCHED
9696 if (tsk->sched_class->moved_group)
9697 tsk->sched_class->moved_group(tsk);
9698 #endif
9699
9700 if (unlikely(running))
9701 tsk->sched_class->set_curr_task(rq);
9702 if (on_rq)
9703 enqueue_task(rq, tsk, 0);
9704
9705 task_rq_unlock(rq, &flags);
9706 }
9707 #endif /* CONFIG_GROUP_SCHED */
9708
9709 #ifdef CONFIG_FAIR_GROUP_SCHED
9710 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
9711 {
9712 struct cfs_rq *cfs_rq = se->cfs_rq;
9713 int on_rq;
9714
9715 on_rq = se->on_rq;
9716 if (on_rq)
9717 dequeue_entity(cfs_rq, se, 0);
9718
9719 se->load.weight = shares;
9720 se->load.inv_weight = 0;
9721
9722 if (on_rq)
9723 enqueue_entity(cfs_rq, se, 0);
9724 }
9725
9726 static void set_se_shares(struct sched_entity *se, unsigned long shares)
9727 {
9728 struct cfs_rq *cfs_rq = se->cfs_rq;
9729 struct rq *rq = cfs_rq->rq;
9730 unsigned long flags;
9731
9732 spin_lock_irqsave(&rq->lock, flags);
9733 __set_se_shares(se, shares);
9734 spin_unlock_irqrestore(&rq->lock, flags);
9735 }
9736
9737 static DEFINE_MUTEX(shares_mutex);
9738
9739 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
9740 {
9741 int i;
9742 unsigned long flags;
9743
9744 /*
9745 * We can't change the weight of the root cgroup.
9746 */
9747 if (!tg->se[0])
9748 return -EINVAL;
9749
9750 if (shares < MIN_SHARES)
9751 shares = MIN_SHARES;
9752 else if (shares > MAX_SHARES)
9753 shares = MAX_SHARES;
9754
9755 mutex_lock(&shares_mutex);
9756 if (tg->shares == shares)
9757 goto done;
9758
9759 spin_lock_irqsave(&task_group_lock, flags);
9760 for_each_possible_cpu(i)
9761 unregister_fair_sched_group(tg, i);
9762 list_del_rcu(&tg->siblings);
9763 spin_unlock_irqrestore(&task_group_lock, flags);
9764
9765 /* wait for any ongoing reference to this group to finish */
9766 synchronize_sched();
9767
9768 /*
9769 * Now we are free to modify the group's share on each cpu
9770 * w/o tripping rebalance_share or load_balance_fair.
9771 */
9772 tg->shares = shares;
9773 for_each_possible_cpu(i) {
9774 /*
9775 * force a rebalance
9776 */
9777 cfs_rq_set_shares(tg->cfs_rq[i], 0);
9778 set_se_shares(tg->se[i], shares);
9779 }
9780
9781 /*
9782 * Enable load balance activity on this group, by inserting it back on
9783 * each cpu's rq->leaf_cfs_rq_list.
9784 */
9785 spin_lock_irqsave(&task_group_lock, flags);
9786 for_each_possible_cpu(i)
9787 register_fair_sched_group(tg, i);
9788 list_add_rcu(&tg->siblings, &tg->parent->children);
9789 spin_unlock_irqrestore(&task_group_lock, flags);
9790 done:
9791 mutex_unlock(&shares_mutex);
9792 return 0;
9793 }
9794
9795 unsigned long sched_group_shares(struct task_group *tg)
9796 {
9797 return tg->shares;
9798 }
9799 #endif
9800
9801 #ifdef CONFIG_RT_GROUP_SCHED
9802 /*
9803 * Ensure that the real time constraints are schedulable.
9804 */
9805 static DEFINE_MUTEX(rt_constraints_mutex);
9806
9807 static unsigned long to_ratio(u64 period, u64 runtime)
9808 {
9809 if (runtime == RUNTIME_INF)
9810 return 1ULL << 20;
9811
9812 return div64_u64(runtime << 20, period);
9813 }
9814
9815 /* Must be called with tasklist_lock held */
9816 static inline int tg_has_rt_tasks(struct task_group *tg)
9817 {
9818 struct task_struct *g, *p;
9819
9820 do_each_thread(g, p) {
9821 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
9822 return 1;
9823 } while_each_thread(g, p);
9824
9825 return 0;
9826 }
9827
9828 struct rt_schedulable_data {
9829 struct task_group *tg;
9830 u64 rt_period;
9831 u64 rt_runtime;
9832 };
9833
9834 static int tg_schedulable(struct task_group *tg, void *data)
9835 {
9836 struct rt_schedulable_data *d = data;
9837 struct task_group *child;
9838 unsigned long total, sum = 0;
9839 u64 period, runtime;
9840
9841 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9842 runtime = tg->rt_bandwidth.rt_runtime;
9843
9844 if (tg == d->tg) {
9845 period = d->rt_period;
9846 runtime = d->rt_runtime;
9847 }
9848
9849 #ifdef CONFIG_USER_SCHED
9850 if (tg == &root_task_group) {
9851 period = global_rt_period();
9852 runtime = global_rt_runtime();
9853 }
9854 #endif
9855
9856 /*
9857 * Cannot have more runtime than the period.
9858 */
9859 if (runtime > period && runtime != RUNTIME_INF)
9860 return -EINVAL;
9861
9862 /*
9863 * Ensure we don't starve existing RT tasks.
9864 */
9865 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
9866 return -EBUSY;
9867
9868 total = to_ratio(period, runtime);
9869
9870 /*
9871 * Nobody can have more than the global setting allows.
9872 */
9873 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
9874 return -EINVAL;
9875
9876 /*
9877 * The sum of our children's runtime should not exceed our own.
9878 */
9879 list_for_each_entry_rcu(child, &tg->children, siblings) {
9880 period = ktime_to_ns(child->rt_bandwidth.rt_period);
9881 runtime = child->rt_bandwidth.rt_runtime;
9882
9883 if (child == d->tg) {
9884 period = d->rt_period;
9885 runtime = d->rt_runtime;
9886 }
9887
9888 sum += to_ratio(period, runtime);
9889 }
9890
9891 if (sum > total)
9892 return -EINVAL;
9893
9894 return 0;
9895 }
9896
9897 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
9898 {
9899 struct rt_schedulable_data data = {
9900 .tg = tg,
9901 .rt_period = period,
9902 .rt_runtime = runtime,
9903 };
9904
9905 return walk_tg_tree(tg_schedulable, tg_nop, &data);
9906 }
9907
9908 static int tg_set_bandwidth(struct task_group *tg,
9909 u64 rt_period, u64 rt_runtime)
9910 {
9911 int i, err = 0;
9912
9913 mutex_lock(&rt_constraints_mutex);
9914 read_lock(&tasklist_lock);
9915 err = __rt_schedulable(tg, rt_period, rt_runtime);
9916 if (err)
9917 goto unlock;
9918
9919 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9920 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
9921 tg->rt_bandwidth.rt_runtime = rt_runtime;
9922
9923 for_each_possible_cpu(i) {
9924 struct rt_rq *rt_rq = tg->rt_rq[i];
9925
9926 spin_lock(&rt_rq->rt_runtime_lock);
9927 rt_rq->rt_runtime = rt_runtime;
9928 spin_unlock(&rt_rq->rt_runtime_lock);
9929 }
9930 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9931 unlock:
9932 read_unlock(&tasklist_lock);
9933 mutex_unlock(&rt_constraints_mutex);
9934
9935 return err;
9936 }
9937
9938 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
9939 {
9940 u64 rt_runtime, rt_period;
9941
9942 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9943 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
9944 if (rt_runtime_us < 0)
9945 rt_runtime = RUNTIME_INF;
9946
9947 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9948 }
9949
9950 long sched_group_rt_runtime(struct task_group *tg)
9951 {
9952 u64 rt_runtime_us;
9953
9954 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9955 return -1;
9956
9957 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9958 do_div(rt_runtime_us, NSEC_PER_USEC);
9959 return rt_runtime_us;
9960 }
9961
9962 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
9963 {
9964 u64 rt_runtime, rt_period;
9965
9966 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
9967 rt_runtime = tg->rt_bandwidth.rt_runtime;
9968
9969 if (rt_period == 0)
9970 return -EINVAL;
9971
9972 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9973 }
9974
9975 long sched_group_rt_period(struct task_group *tg)
9976 {
9977 u64 rt_period_us;
9978
9979 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
9980 do_div(rt_period_us, NSEC_PER_USEC);
9981 return rt_period_us;
9982 }
9983
9984 static int sched_rt_global_constraints(void)
9985 {
9986 u64 runtime, period;
9987 int ret = 0;
9988
9989 if (sysctl_sched_rt_period <= 0)
9990 return -EINVAL;
9991
9992 runtime = global_rt_runtime();
9993 period = global_rt_period();
9994
9995 /*
9996 * Sanity check on the sysctl variables.
9997 */
9998 if (runtime > period && runtime != RUNTIME_INF)
9999 return -EINVAL;
10000
10001 mutex_lock(&rt_constraints_mutex);
10002 read_lock(&tasklist_lock);
10003 ret = __rt_schedulable(NULL, 0, 0);
10004 read_unlock(&tasklist_lock);
10005 mutex_unlock(&rt_constraints_mutex);
10006
10007 return ret;
10008 }
10009
10010 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10011 {
10012 /* Don't accept realtime tasks when there is no way for them to run */
10013 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10014 return 0;
10015
10016 return 1;
10017 }
10018
10019 #else /* !CONFIG_RT_GROUP_SCHED */
10020 static int sched_rt_global_constraints(void)
10021 {
10022 unsigned long flags;
10023 int i;
10024
10025 if (sysctl_sched_rt_period <= 0)
10026 return -EINVAL;
10027
10028 /*
10029 * There's always some RT tasks in the root group
10030 * -- migration, kstopmachine etc..
10031 */
10032 if (sysctl_sched_rt_runtime == 0)
10033 return -EBUSY;
10034
10035 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10036 for_each_possible_cpu(i) {
10037 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10038
10039 spin_lock(&rt_rq->rt_runtime_lock);
10040 rt_rq->rt_runtime = global_rt_runtime();
10041 spin_unlock(&rt_rq->rt_runtime_lock);
10042 }
10043 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10044
10045 return 0;
10046 }
10047 #endif /* CONFIG_RT_GROUP_SCHED */
10048
10049 int sched_rt_handler(struct ctl_table *table, int write,
10050 struct file *filp, void __user *buffer, size_t *lenp,
10051 loff_t *ppos)
10052 {
10053 int ret;
10054 int old_period, old_runtime;
10055 static DEFINE_MUTEX(mutex);
10056
10057 mutex_lock(&mutex);
10058 old_period = sysctl_sched_rt_period;
10059 old_runtime = sysctl_sched_rt_runtime;
10060
10061 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
10062
10063 if (!ret && write) {
10064 ret = sched_rt_global_constraints();
10065 if (ret) {
10066 sysctl_sched_rt_period = old_period;
10067 sysctl_sched_rt_runtime = old_runtime;
10068 } else {
10069 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10070 def_rt_bandwidth.rt_period =
10071 ns_to_ktime(global_rt_period());
10072 }
10073 }
10074 mutex_unlock(&mutex);
10075
10076 return ret;
10077 }
10078
10079 #ifdef CONFIG_CGROUP_SCHED
10080
10081 /* return corresponding task_group object of a cgroup */
10082 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
10083 {
10084 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10085 struct task_group, css);
10086 }
10087
10088 static struct cgroup_subsys_state *
10089 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
10090 {
10091 struct task_group *tg, *parent;
10092
10093 if (!cgrp->parent) {
10094 /* This is early initialization for the top cgroup */
10095 return &init_task_group.css;
10096 }
10097
10098 parent = cgroup_tg(cgrp->parent);
10099 tg = sched_create_group(parent);
10100 if (IS_ERR(tg))
10101 return ERR_PTR(-ENOMEM);
10102
10103 return &tg->css;
10104 }
10105
10106 static void
10107 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10108 {
10109 struct task_group *tg = cgroup_tg(cgrp);
10110
10111 sched_destroy_group(tg);
10112 }
10113
10114 static int
10115 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10116 struct task_struct *tsk)
10117 {
10118 #ifdef CONFIG_RT_GROUP_SCHED
10119 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
10120 return -EINVAL;
10121 #else
10122 /* We don't support RT-tasks being in separate groups */
10123 if (tsk->sched_class != &fair_sched_class)
10124 return -EINVAL;
10125 #endif
10126
10127 return 0;
10128 }
10129
10130 static void
10131 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10132 struct cgroup *old_cont, struct task_struct *tsk)
10133 {
10134 sched_move_task(tsk);
10135 }
10136
10137 #ifdef CONFIG_FAIR_GROUP_SCHED
10138 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
10139 u64 shareval)
10140 {
10141 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
10142 }
10143
10144 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
10145 {
10146 struct task_group *tg = cgroup_tg(cgrp);
10147
10148 return (u64) tg->shares;
10149 }
10150 #endif /* CONFIG_FAIR_GROUP_SCHED */
10151
10152 #ifdef CONFIG_RT_GROUP_SCHED
10153 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
10154 s64 val)
10155 {
10156 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
10157 }
10158
10159 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
10160 {
10161 return sched_group_rt_runtime(cgroup_tg(cgrp));
10162 }
10163
10164 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10165 u64 rt_period_us)
10166 {
10167 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10168 }
10169
10170 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10171 {
10172 return sched_group_rt_period(cgroup_tg(cgrp));
10173 }
10174 #endif /* CONFIG_RT_GROUP_SCHED */
10175
10176 static struct cftype cpu_files[] = {
10177 #ifdef CONFIG_FAIR_GROUP_SCHED
10178 {
10179 .name = "shares",
10180 .read_u64 = cpu_shares_read_u64,
10181 .write_u64 = cpu_shares_write_u64,
10182 },
10183 #endif
10184 #ifdef CONFIG_RT_GROUP_SCHED
10185 {
10186 .name = "rt_runtime_us",
10187 .read_s64 = cpu_rt_runtime_read,
10188 .write_s64 = cpu_rt_runtime_write,
10189 },
10190 {
10191 .name = "rt_period_us",
10192 .read_u64 = cpu_rt_period_read_uint,
10193 .write_u64 = cpu_rt_period_write_uint,
10194 },
10195 #endif
10196 };
10197
10198 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10199 {
10200 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
10201 }
10202
10203 struct cgroup_subsys cpu_cgroup_subsys = {
10204 .name = "cpu",
10205 .create = cpu_cgroup_create,
10206 .destroy = cpu_cgroup_destroy,
10207 .can_attach = cpu_cgroup_can_attach,
10208 .attach = cpu_cgroup_attach,
10209 .populate = cpu_cgroup_populate,
10210 .subsys_id = cpu_cgroup_subsys_id,
10211 .early_init = 1,
10212 };
10213
10214 #endif /* CONFIG_CGROUP_SCHED */
10215
10216 #ifdef CONFIG_CGROUP_CPUACCT
10217
10218 /*
10219 * CPU accounting code for task groups.
10220 *
10221 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10222 * (balbir@in.ibm.com).
10223 */
10224
10225 /* track cpu usage of a group of tasks and its child groups */
10226 struct cpuacct {
10227 struct cgroup_subsys_state css;
10228 /* cpuusage holds pointer to a u64-type object on every cpu */
10229 u64 *cpuusage;
10230 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
10231 struct cpuacct *parent;
10232 };
10233
10234 struct cgroup_subsys cpuacct_subsys;
10235
10236 /* return cpu accounting group corresponding to this container */
10237 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
10238 {
10239 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
10240 struct cpuacct, css);
10241 }
10242
10243 /* return cpu accounting group to which this task belongs */
10244 static inline struct cpuacct *task_ca(struct task_struct *tsk)
10245 {
10246 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10247 struct cpuacct, css);
10248 }
10249
10250 /* create a new cpu accounting group */
10251 static struct cgroup_subsys_state *cpuacct_create(
10252 struct cgroup_subsys *ss, struct cgroup *cgrp)
10253 {
10254 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
10255 int i;
10256
10257 if (!ca)
10258 goto out;
10259
10260 ca->cpuusage = alloc_percpu(u64);
10261 if (!ca->cpuusage)
10262 goto out_free_ca;
10263
10264 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10265 if (percpu_counter_init(&ca->cpustat[i], 0))
10266 goto out_free_counters;
10267
10268 if (cgrp->parent)
10269 ca->parent = cgroup_ca(cgrp->parent);
10270
10271 return &ca->css;
10272
10273 out_free_counters:
10274 while (--i >= 0)
10275 percpu_counter_destroy(&ca->cpustat[i]);
10276 free_percpu(ca->cpuusage);
10277 out_free_ca:
10278 kfree(ca);
10279 out:
10280 return ERR_PTR(-ENOMEM);
10281 }
10282
10283 /* destroy an existing cpu accounting group */
10284 static void
10285 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10286 {
10287 struct cpuacct *ca = cgroup_ca(cgrp);
10288 int i;
10289
10290 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10291 percpu_counter_destroy(&ca->cpustat[i]);
10292 free_percpu(ca->cpuusage);
10293 kfree(ca);
10294 }
10295
10296 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10297 {
10298 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10299 u64 data;
10300
10301 #ifndef CONFIG_64BIT
10302 /*
10303 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10304 */
10305 spin_lock_irq(&cpu_rq(cpu)->lock);
10306 data = *cpuusage;
10307 spin_unlock_irq(&cpu_rq(cpu)->lock);
10308 #else
10309 data = *cpuusage;
10310 #endif
10311
10312 return data;
10313 }
10314
10315 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10316 {
10317 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10318
10319 #ifndef CONFIG_64BIT
10320 /*
10321 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10322 */
10323 spin_lock_irq(&cpu_rq(cpu)->lock);
10324 *cpuusage = val;
10325 spin_unlock_irq(&cpu_rq(cpu)->lock);
10326 #else
10327 *cpuusage = val;
10328 #endif
10329 }
10330
10331 /* return total cpu usage (in nanoseconds) of a group */
10332 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10333 {
10334 struct cpuacct *ca = cgroup_ca(cgrp);
10335 u64 totalcpuusage = 0;
10336 int i;
10337
10338 for_each_present_cpu(i)
10339 totalcpuusage += cpuacct_cpuusage_read(ca, i);
10340
10341 return totalcpuusage;
10342 }
10343
10344 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10345 u64 reset)
10346 {
10347 struct cpuacct *ca = cgroup_ca(cgrp);
10348 int err = 0;
10349 int i;
10350
10351 if (reset) {
10352 err = -EINVAL;
10353 goto out;
10354 }
10355
10356 for_each_present_cpu(i)
10357 cpuacct_cpuusage_write(ca, i, 0);
10358
10359 out:
10360 return err;
10361 }
10362
10363 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10364 struct seq_file *m)
10365 {
10366 struct cpuacct *ca = cgroup_ca(cgroup);
10367 u64 percpu;
10368 int i;
10369
10370 for_each_present_cpu(i) {
10371 percpu = cpuacct_cpuusage_read(ca, i);
10372 seq_printf(m, "%llu ", (unsigned long long) percpu);
10373 }
10374 seq_printf(m, "\n");
10375 return 0;
10376 }
10377
10378 static const char *cpuacct_stat_desc[] = {
10379 [CPUACCT_STAT_USER] = "user",
10380 [CPUACCT_STAT_SYSTEM] = "system",
10381 };
10382
10383 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10384 struct cgroup_map_cb *cb)
10385 {
10386 struct cpuacct *ca = cgroup_ca(cgrp);
10387 int i;
10388
10389 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10390 s64 val = percpu_counter_read(&ca->cpustat[i]);
10391 val = cputime64_to_clock_t(val);
10392 cb->fill(cb, cpuacct_stat_desc[i], val);
10393 }
10394 return 0;
10395 }
10396
10397 static struct cftype files[] = {
10398 {
10399 .name = "usage",
10400 .read_u64 = cpuusage_read,
10401 .write_u64 = cpuusage_write,
10402 },
10403 {
10404 .name = "usage_percpu",
10405 .read_seq_string = cpuacct_percpu_seq_read,
10406 },
10407 {
10408 .name = "stat",
10409 .read_map = cpuacct_stats_show,
10410 },
10411 };
10412
10413 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10414 {
10415 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10416 }
10417
10418 /*
10419 * charge this task's execution time to its accounting group.
10420 *
10421 * called with rq->lock held.
10422 */
10423 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10424 {
10425 struct cpuacct *ca;
10426 int cpu;
10427
10428 if (unlikely(!cpuacct_subsys.active))
10429 return;
10430
10431 cpu = task_cpu(tsk);
10432
10433 rcu_read_lock();
10434
10435 ca = task_ca(tsk);
10436
10437 for (; ca; ca = ca->parent) {
10438 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10439 *cpuusage += cputime;
10440 }
10441
10442 rcu_read_unlock();
10443 }
10444
10445 /*
10446 * Charge the system/user time to the task's accounting group.
10447 */
10448 static void cpuacct_update_stats(struct task_struct *tsk,
10449 enum cpuacct_stat_index idx, cputime_t val)
10450 {
10451 struct cpuacct *ca;
10452
10453 if (unlikely(!cpuacct_subsys.active))
10454 return;
10455
10456 rcu_read_lock();
10457 ca = task_ca(tsk);
10458
10459 do {
10460 percpu_counter_add(&ca->cpustat[idx], val);
10461 ca = ca->parent;
10462 } while (ca);
10463 rcu_read_unlock();
10464 }
10465
10466 struct cgroup_subsys cpuacct_subsys = {
10467 .name = "cpuacct",
10468 .create = cpuacct_create,
10469 .destroy = cpuacct_destroy,
10470 .populate = cpuacct_populate,
10471 .subsys_id = cpuacct_subsys_id,
10472 };
10473 #endif /* CONFIG_CGROUP_CPUACCT */
This page took 0.301707 seconds and 5 git commands to generate.