sched: clean up sched_fork()
[deliverable/linux.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 */
26
27 #include <linux/mm.h>
28 #include <linux/module.h>
29 #include <linux/nmi.h>
30 #include <linux/init.h>
31 #include <linux/uaccess.h>
32 #include <linux/highmem.h>
33 #include <linux/smp_lock.h>
34 #include <asm/mmu_context.h>
35 #include <linux/interrupt.h>
36 #include <linux/capability.h>
37 #include <linux/completion.h>
38 #include <linux/kernel_stat.h>
39 #include <linux/debug_locks.h>
40 #include <linux/security.h>
41 #include <linux/notifier.h>
42 #include <linux/profile.h>
43 #include <linux/freezer.h>
44 #include <linux/vmalloc.h>
45 #include <linux/blkdev.h>
46 #include <linux/delay.h>
47 #include <linux/smp.h>
48 #include <linux/threads.h>
49 #include <linux/timer.h>
50 #include <linux/rcupdate.h>
51 #include <linux/cpu.h>
52 #include <linux/cpuset.h>
53 #include <linux/percpu.h>
54 #include <linux/kthread.h>
55 #include <linux/seq_file.h>
56 #include <linux/sysctl.h>
57 #include <linux/syscalls.h>
58 #include <linux/times.h>
59 #include <linux/tsacct_kern.h>
60 #include <linux/kprobes.h>
61 #include <linux/delayacct.h>
62 #include <linux/reciprocal_div.h>
63 #include <linux/unistd.h>
64 #include <linux/pagemap.h>
65
66 #include <asm/tlb.h>
67
68 /*
69 * Scheduler clock - returns current time in nanosec units.
70 * This is default implementation.
71 * Architectures and sub-architectures can override this.
72 */
73 unsigned long long __attribute__((weak)) sched_clock(void)
74 {
75 return (unsigned long long)jiffies * (1000000000 / HZ);
76 }
77
78 /*
79 * Convert user-nice values [ -20 ... 0 ... 19 ]
80 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
81 * and back.
82 */
83 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
84 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
85 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
86
87 /*
88 * 'User priority' is the nice value converted to something we
89 * can work with better when scaling various scheduler parameters,
90 * it's a [ 0 ... 39 ] range.
91 */
92 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
93 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
94 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
95
96 /*
97 * Some helpers for converting nanosecond timing to jiffy resolution
98 */
99 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
100 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
101
102 #define NICE_0_LOAD SCHED_LOAD_SCALE
103 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
104
105 /*
106 * These are the 'tuning knobs' of the scheduler:
107 *
108 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
109 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
110 * Timeslices get refilled after they expire.
111 */
112 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
113 #define DEF_TIMESLICE (100 * HZ / 1000)
114
115 #ifdef CONFIG_SMP
116 /*
117 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
118 * Since cpu_power is a 'constant', we can use a reciprocal divide.
119 */
120 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
121 {
122 return reciprocal_divide(load, sg->reciprocal_cpu_power);
123 }
124
125 /*
126 * Each time a sched group cpu_power is changed,
127 * we must compute its reciprocal value
128 */
129 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
130 {
131 sg->__cpu_power += val;
132 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
133 }
134 #endif
135
136 #define SCALE_PRIO(x, prio) \
137 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
138
139 /*
140 * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
141 * to time slice values: [800ms ... 100ms ... 5ms]
142 */
143 static unsigned int static_prio_timeslice(int static_prio)
144 {
145 if (static_prio == NICE_TO_PRIO(19))
146 return 1;
147
148 if (static_prio < NICE_TO_PRIO(0))
149 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
150 else
151 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
152 }
153
154 static inline int rt_policy(int policy)
155 {
156 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
157 return 1;
158 return 0;
159 }
160
161 static inline int task_has_rt_policy(struct task_struct *p)
162 {
163 return rt_policy(p->policy);
164 }
165
166 /*
167 * This is the priority-queue data structure of the RT scheduling class:
168 */
169 struct rt_prio_array {
170 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
171 struct list_head queue[MAX_RT_PRIO];
172 };
173
174 #ifdef CONFIG_FAIR_GROUP_SCHED
175
176 struct cfs_rq;
177
178 /* task group related information */
179 struct task_grp {
180 /* schedulable entities of this group on each cpu */
181 struct sched_entity **se;
182 /* runqueue "owned" by this group on each cpu */
183 struct cfs_rq **cfs_rq;
184 unsigned long shares;
185 };
186
187 /* Default task group's sched entity on each cpu */
188 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
189 /* Default task group's cfs_rq on each cpu */
190 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
191
192 static struct sched_entity *init_sched_entity_p[NR_CPUS];
193 static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
194
195 /* Default task group.
196 * Every task in system belong to this group at bootup.
197 */
198 struct task_grp init_task_grp = {
199 .se = init_sched_entity_p,
200 .cfs_rq = init_cfs_rq_p,
201 };
202
203 #ifdef CONFIG_FAIR_USER_SCHED
204 #define INIT_TASK_GRP_LOAD 2*NICE_0_LOAD
205 #else
206 #define INIT_TASK_GRP_LOAD NICE_0_LOAD
207 #endif
208
209 static int init_task_grp_load = INIT_TASK_GRP_LOAD;
210
211 /* return group to which a task belongs */
212 static inline struct task_grp *task_grp(struct task_struct *p)
213 {
214 struct task_grp *tg;
215
216 #ifdef CONFIG_FAIR_USER_SCHED
217 tg = p->user->tg;
218 #else
219 tg = &init_task_grp;
220 #endif
221
222 return tg;
223 }
224
225 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
226 static inline void set_task_cfs_rq(struct task_struct *p)
227 {
228 p->se.cfs_rq = task_grp(p)->cfs_rq[task_cpu(p)];
229 p->se.parent = task_grp(p)->se[task_cpu(p)];
230 }
231
232 #else
233
234 static inline void set_task_cfs_rq(struct task_struct *p) { }
235
236 #endif /* CONFIG_FAIR_GROUP_SCHED */
237
238 /* CFS-related fields in a runqueue */
239 struct cfs_rq {
240 struct load_weight load;
241 unsigned long nr_running;
242
243 u64 exec_clock;
244 u64 min_vruntime;
245
246 struct rb_root tasks_timeline;
247 struct rb_node *rb_leftmost;
248 struct rb_node *rb_load_balance_curr;
249 /* 'curr' points to currently running entity on this cfs_rq.
250 * It is set to NULL otherwise (i.e when none are currently running).
251 */
252 struct sched_entity *curr;
253
254 unsigned long nr_spread_over;
255
256 #ifdef CONFIG_FAIR_GROUP_SCHED
257 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
258
259 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
260 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
261 * (like users, containers etc.)
262 *
263 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
264 * list is used during load balance.
265 */
266 struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
267 struct task_grp *tg; /* group that "owns" this runqueue */
268 struct rcu_head rcu;
269 #endif
270 };
271
272 /* Real-Time classes' related field in a runqueue: */
273 struct rt_rq {
274 struct rt_prio_array active;
275 int rt_load_balance_idx;
276 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
277 };
278
279 /*
280 * This is the main, per-CPU runqueue data structure.
281 *
282 * Locking rule: those places that want to lock multiple runqueues
283 * (such as the load balancing or the thread migration code), lock
284 * acquire operations must be ordered by ascending &runqueue.
285 */
286 struct rq {
287 spinlock_t lock; /* runqueue lock */
288
289 /*
290 * nr_running and cpu_load should be in the same cacheline because
291 * remote CPUs use both these fields when doing load calculation.
292 */
293 unsigned long nr_running;
294 #define CPU_LOAD_IDX_MAX 5
295 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
296 unsigned char idle_at_tick;
297 #ifdef CONFIG_NO_HZ
298 unsigned char in_nohz_recently;
299 #endif
300 struct load_weight load; /* capture load from *all* tasks on this cpu */
301 unsigned long nr_load_updates;
302 u64 nr_switches;
303
304 struct cfs_rq cfs;
305 #ifdef CONFIG_FAIR_GROUP_SCHED
306 struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
307 #endif
308 struct rt_rq rt;
309
310 /*
311 * This is part of a global counter where only the total sum
312 * over all CPUs matters. A task can increase this counter on
313 * one CPU and if it got migrated afterwards it may decrease
314 * it on another CPU. Always updated under the runqueue lock:
315 */
316 unsigned long nr_uninterruptible;
317
318 struct task_struct *curr, *idle;
319 unsigned long next_balance;
320 struct mm_struct *prev_mm;
321
322 u64 clock, prev_clock_raw;
323 s64 clock_max_delta;
324
325 unsigned int clock_warps, clock_overflows;
326 u64 idle_clock;
327 unsigned int clock_deep_idle_events;
328 u64 tick_timestamp;
329
330 atomic_t nr_iowait;
331
332 #ifdef CONFIG_SMP
333 struct sched_domain *sd;
334
335 /* For active balancing */
336 int active_balance;
337 int push_cpu;
338 int cpu; /* cpu of this runqueue */
339
340 struct task_struct *migration_thread;
341 struct list_head migration_queue;
342 #endif
343
344 #ifdef CONFIG_SCHEDSTATS
345 /* latency stats */
346 struct sched_info rq_sched_info;
347
348 /* sys_sched_yield() stats */
349 unsigned long yld_exp_empty;
350 unsigned long yld_act_empty;
351 unsigned long yld_both_empty;
352 unsigned long yld_cnt;
353
354 /* schedule() stats */
355 unsigned long sched_switch;
356 unsigned long sched_cnt;
357 unsigned long sched_goidle;
358
359 /* try_to_wake_up() stats */
360 unsigned long ttwu_cnt;
361 unsigned long ttwu_local;
362
363 /* BKL stats */
364 unsigned long bkl_cnt;
365 #endif
366 struct lock_class_key rq_lock_key;
367 };
368
369 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
370 static DEFINE_MUTEX(sched_hotcpu_mutex);
371
372 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
373 {
374 rq->curr->sched_class->check_preempt_curr(rq, p);
375 }
376
377 static inline int cpu_of(struct rq *rq)
378 {
379 #ifdef CONFIG_SMP
380 return rq->cpu;
381 #else
382 return 0;
383 #endif
384 }
385
386 /*
387 * Update the per-runqueue clock, as finegrained as the platform can give
388 * us, but without assuming monotonicity, etc.:
389 */
390 static void __update_rq_clock(struct rq *rq)
391 {
392 u64 prev_raw = rq->prev_clock_raw;
393 u64 now = sched_clock();
394 s64 delta = now - prev_raw;
395 u64 clock = rq->clock;
396
397 #ifdef CONFIG_SCHED_DEBUG
398 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
399 #endif
400 /*
401 * Protect against sched_clock() occasionally going backwards:
402 */
403 if (unlikely(delta < 0)) {
404 clock++;
405 rq->clock_warps++;
406 } else {
407 /*
408 * Catch too large forward jumps too:
409 */
410 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
411 if (clock < rq->tick_timestamp + TICK_NSEC)
412 clock = rq->tick_timestamp + TICK_NSEC;
413 else
414 clock++;
415 rq->clock_overflows++;
416 } else {
417 if (unlikely(delta > rq->clock_max_delta))
418 rq->clock_max_delta = delta;
419 clock += delta;
420 }
421 }
422
423 rq->prev_clock_raw = now;
424 rq->clock = clock;
425 }
426
427 static void update_rq_clock(struct rq *rq)
428 {
429 if (likely(smp_processor_id() == cpu_of(rq)))
430 __update_rq_clock(rq);
431 }
432
433 /*
434 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
435 * See detach_destroy_domains: synchronize_sched for details.
436 *
437 * The domain tree of any CPU may only be accessed from within
438 * preempt-disabled sections.
439 */
440 #define for_each_domain(cpu, __sd) \
441 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
442
443 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
444 #define this_rq() (&__get_cpu_var(runqueues))
445 #define task_rq(p) cpu_rq(task_cpu(p))
446 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
447
448 /*
449 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
450 */
451 #ifdef CONFIG_SCHED_DEBUG
452 # define const_debug __read_mostly
453 #else
454 # define const_debug static const
455 #endif
456
457 /*
458 * Debugging: various feature bits
459 */
460 enum {
461 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
462 SCHED_FEAT_START_DEBIT = 2,
463 SCHED_FEAT_USE_TREE_AVG = 4,
464 SCHED_FEAT_APPROX_AVG = 8,
465 };
466
467 const_debug unsigned int sysctl_sched_features =
468 SCHED_FEAT_NEW_FAIR_SLEEPERS *1 |
469 SCHED_FEAT_START_DEBIT *1 |
470 SCHED_FEAT_USE_TREE_AVG *0 |
471 SCHED_FEAT_APPROX_AVG *0;
472
473 #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
474
475 /*
476 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
477 * clock constructed from sched_clock():
478 */
479 unsigned long long cpu_clock(int cpu)
480 {
481 unsigned long long now;
482 unsigned long flags;
483 struct rq *rq;
484
485 local_irq_save(flags);
486 rq = cpu_rq(cpu);
487 update_rq_clock(rq);
488 now = rq->clock;
489 local_irq_restore(flags);
490
491 return now;
492 }
493
494 #ifndef prepare_arch_switch
495 # define prepare_arch_switch(next) do { } while (0)
496 #endif
497 #ifndef finish_arch_switch
498 # define finish_arch_switch(prev) do { } while (0)
499 #endif
500
501 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
502 static inline int task_running(struct rq *rq, struct task_struct *p)
503 {
504 return rq->curr == p;
505 }
506
507 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
508 {
509 }
510
511 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
512 {
513 #ifdef CONFIG_DEBUG_SPINLOCK
514 /* this is a valid case when another task releases the spinlock */
515 rq->lock.owner = current;
516 #endif
517 /*
518 * If we are tracking spinlock dependencies then we have to
519 * fix up the runqueue lock - which gets 'carried over' from
520 * prev into current:
521 */
522 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
523
524 spin_unlock_irq(&rq->lock);
525 }
526
527 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
528 static inline int task_running(struct rq *rq, struct task_struct *p)
529 {
530 #ifdef CONFIG_SMP
531 return p->oncpu;
532 #else
533 return rq->curr == p;
534 #endif
535 }
536
537 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
538 {
539 #ifdef CONFIG_SMP
540 /*
541 * We can optimise this out completely for !SMP, because the
542 * SMP rebalancing from interrupt is the only thing that cares
543 * here.
544 */
545 next->oncpu = 1;
546 #endif
547 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
548 spin_unlock_irq(&rq->lock);
549 #else
550 spin_unlock(&rq->lock);
551 #endif
552 }
553
554 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
555 {
556 #ifdef CONFIG_SMP
557 /*
558 * After ->oncpu is cleared, the task can be moved to a different CPU.
559 * We must ensure this doesn't happen until the switch is completely
560 * finished.
561 */
562 smp_wmb();
563 prev->oncpu = 0;
564 #endif
565 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
566 local_irq_enable();
567 #endif
568 }
569 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
570
571 /*
572 * __task_rq_lock - lock the runqueue a given task resides on.
573 * Must be called interrupts disabled.
574 */
575 static inline struct rq *__task_rq_lock(struct task_struct *p)
576 __acquires(rq->lock)
577 {
578 struct rq *rq;
579
580 repeat_lock_task:
581 rq = task_rq(p);
582 spin_lock(&rq->lock);
583 if (unlikely(rq != task_rq(p))) {
584 spin_unlock(&rq->lock);
585 goto repeat_lock_task;
586 }
587 return rq;
588 }
589
590 /*
591 * task_rq_lock - lock the runqueue a given task resides on and disable
592 * interrupts. Note the ordering: we can safely lookup the task_rq without
593 * explicitly disabling preemption.
594 */
595 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
596 __acquires(rq->lock)
597 {
598 struct rq *rq;
599
600 repeat_lock_task:
601 local_irq_save(*flags);
602 rq = task_rq(p);
603 spin_lock(&rq->lock);
604 if (unlikely(rq != task_rq(p))) {
605 spin_unlock_irqrestore(&rq->lock, *flags);
606 goto repeat_lock_task;
607 }
608 return rq;
609 }
610
611 static inline void __task_rq_unlock(struct rq *rq)
612 __releases(rq->lock)
613 {
614 spin_unlock(&rq->lock);
615 }
616
617 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
618 __releases(rq->lock)
619 {
620 spin_unlock_irqrestore(&rq->lock, *flags);
621 }
622
623 /*
624 * this_rq_lock - lock this runqueue and disable interrupts.
625 */
626 static inline struct rq *this_rq_lock(void)
627 __acquires(rq->lock)
628 {
629 struct rq *rq;
630
631 local_irq_disable();
632 rq = this_rq();
633 spin_lock(&rq->lock);
634
635 return rq;
636 }
637
638 /*
639 * We are going deep-idle (irqs are disabled):
640 */
641 void sched_clock_idle_sleep_event(void)
642 {
643 struct rq *rq = cpu_rq(smp_processor_id());
644
645 spin_lock(&rq->lock);
646 __update_rq_clock(rq);
647 spin_unlock(&rq->lock);
648 rq->clock_deep_idle_events++;
649 }
650 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
651
652 /*
653 * We just idled delta nanoseconds (called with irqs disabled):
654 */
655 void sched_clock_idle_wakeup_event(u64 delta_ns)
656 {
657 struct rq *rq = cpu_rq(smp_processor_id());
658 u64 now = sched_clock();
659
660 rq->idle_clock += delta_ns;
661 /*
662 * Override the previous timestamp and ignore all
663 * sched_clock() deltas that occured while we idled,
664 * and use the PM-provided delta_ns to advance the
665 * rq clock:
666 */
667 spin_lock(&rq->lock);
668 rq->prev_clock_raw = now;
669 rq->clock += delta_ns;
670 spin_unlock(&rq->lock);
671 }
672 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
673
674 /*
675 * resched_task - mark a task 'to be rescheduled now'.
676 *
677 * On UP this means the setting of the need_resched flag, on SMP it
678 * might also involve a cross-CPU call to trigger the scheduler on
679 * the target CPU.
680 */
681 #ifdef CONFIG_SMP
682
683 #ifndef tsk_is_polling
684 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
685 #endif
686
687 static void resched_task(struct task_struct *p)
688 {
689 int cpu;
690
691 assert_spin_locked(&task_rq(p)->lock);
692
693 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
694 return;
695
696 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
697
698 cpu = task_cpu(p);
699 if (cpu == smp_processor_id())
700 return;
701
702 /* NEED_RESCHED must be visible before we test polling */
703 smp_mb();
704 if (!tsk_is_polling(p))
705 smp_send_reschedule(cpu);
706 }
707
708 static void resched_cpu(int cpu)
709 {
710 struct rq *rq = cpu_rq(cpu);
711 unsigned long flags;
712
713 if (!spin_trylock_irqsave(&rq->lock, flags))
714 return;
715 resched_task(cpu_curr(cpu));
716 spin_unlock_irqrestore(&rq->lock, flags);
717 }
718 #else
719 static inline void resched_task(struct task_struct *p)
720 {
721 assert_spin_locked(&task_rq(p)->lock);
722 set_tsk_need_resched(p);
723 }
724 #endif
725
726 #if BITS_PER_LONG == 32
727 # define WMULT_CONST (~0UL)
728 #else
729 # define WMULT_CONST (1UL << 32)
730 #endif
731
732 #define WMULT_SHIFT 32
733
734 /*
735 * Shift right and round:
736 */
737 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
738
739 static unsigned long
740 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
741 struct load_weight *lw)
742 {
743 u64 tmp;
744
745 if (unlikely(!lw->inv_weight))
746 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
747
748 tmp = (u64)delta_exec * weight;
749 /*
750 * Check whether we'd overflow the 64-bit multiplication:
751 */
752 if (unlikely(tmp > WMULT_CONST))
753 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
754 WMULT_SHIFT/2);
755 else
756 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
757
758 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
759 }
760
761 static inline unsigned long
762 calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
763 {
764 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
765 }
766
767 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
768 {
769 lw->weight += inc;
770 }
771
772 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
773 {
774 lw->weight -= dec;
775 }
776
777 /*
778 * To aid in avoiding the subversion of "niceness" due to uneven distribution
779 * of tasks with abnormal "nice" values across CPUs the contribution that
780 * each task makes to its run queue's load is weighted according to its
781 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
782 * scaled version of the new time slice allocation that they receive on time
783 * slice expiry etc.
784 */
785
786 #define WEIGHT_IDLEPRIO 2
787 #define WMULT_IDLEPRIO (1 << 31)
788
789 /*
790 * Nice levels are multiplicative, with a gentle 10% change for every
791 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
792 * nice 1, it will get ~10% less CPU time than another CPU-bound task
793 * that remained on nice 0.
794 *
795 * The "10% effect" is relative and cumulative: from _any_ nice level,
796 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
797 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
798 * If a task goes up by ~10% and another task goes down by ~10% then
799 * the relative distance between them is ~25%.)
800 */
801 static const int prio_to_weight[40] = {
802 /* -20 */ 88761, 71755, 56483, 46273, 36291,
803 /* -15 */ 29154, 23254, 18705, 14949, 11916,
804 /* -10 */ 9548, 7620, 6100, 4904, 3906,
805 /* -5 */ 3121, 2501, 1991, 1586, 1277,
806 /* 0 */ 1024, 820, 655, 526, 423,
807 /* 5 */ 335, 272, 215, 172, 137,
808 /* 10 */ 110, 87, 70, 56, 45,
809 /* 15 */ 36, 29, 23, 18, 15,
810 };
811
812 /*
813 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
814 *
815 * In cases where the weight does not change often, we can use the
816 * precalculated inverse to speed up arithmetics by turning divisions
817 * into multiplications:
818 */
819 static const u32 prio_to_wmult[40] = {
820 /* -20 */ 48388, 59856, 76040, 92818, 118348,
821 /* -15 */ 147320, 184698, 229616, 287308, 360437,
822 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
823 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
824 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
825 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
826 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
827 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
828 };
829
830 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
831
832 /*
833 * runqueue iterator, to support SMP load-balancing between different
834 * scheduling classes, without having to expose their internal data
835 * structures to the load-balancing proper:
836 */
837 struct rq_iterator {
838 void *arg;
839 struct task_struct *(*start)(void *);
840 struct task_struct *(*next)(void *);
841 };
842
843 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
844 unsigned long max_nr_move, unsigned long max_load_move,
845 struct sched_domain *sd, enum cpu_idle_type idle,
846 int *all_pinned, unsigned long *load_moved,
847 int *this_best_prio, struct rq_iterator *iterator);
848
849 #include "sched_stats.h"
850 #include "sched_rt.c"
851 #include "sched_fair.c"
852 #include "sched_idletask.c"
853 #ifdef CONFIG_SCHED_DEBUG
854 # include "sched_debug.c"
855 #endif
856
857 #define sched_class_highest (&rt_sched_class)
858
859 /*
860 * Update delta_exec, delta_fair fields for rq.
861 *
862 * delta_fair clock advances at a rate inversely proportional to
863 * total load (rq->load.weight) on the runqueue, while
864 * delta_exec advances at the same rate as wall-clock (provided
865 * cpu is not idle).
866 *
867 * delta_exec / delta_fair is a measure of the (smoothened) load on this
868 * runqueue over any given interval. This (smoothened) load is used
869 * during load balance.
870 *
871 * This function is called /before/ updating rq->load
872 * and when switching tasks.
873 */
874 static inline void inc_load(struct rq *rq, const struct task_struct *p)
875 {
876 update_load_add(&rq->load, p->se.load.weight);
877 }
878
879 static inline void dec_load(struct rq *rq, const struct task_struct *p)
880 {
881 update_load_sub(&rq->load, p->se.load.weight);
882 }
883
884 static void inc_nr_running(struct task_struct *p, struct rq *rq)
885 {
886 rq->nr_running++;
887 inc_load(rq, p);
888 }
889
890 static void dec_nr_running(struct task_struct *p, struct rq *rq)
891 {
892 rq->nr_running--;
893 dec_load(rq, p);
894 }
895
896 static void set_load_weight(struct task_struct *p)
897 {
898 if (task_has_rt_policy(p)) {
899 p->se.load.weight = prio_to_weight[0] * 2;
900 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
901 return;
902 }
903
904 /*
905 * SCHED_IDLE tasks get minimal weight:
906 */
907 if (p->policy == SCHED_IDLE) {
908 p->se.load.weight = WEIGHT_IDLEPRIO;
909 p->se.load.inv_weight = WMULT_IDLEPRIO;
910 return;
911 }
912
913 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
914 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
915 }
916
917 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
918 {
919 sched_info_queued(p);
920 p->sched_class->enqueue_task(rq, p, wakeup);
921 p->se.on_rq = 1;
922 }
923
924 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
925 {
926 p->sched_class->dequeue_task(rq, p, sleep);
927 p->se.on_rq = 0;
928 }
929
930 /*
931 * __normal_prio - return the priority that is based on the static prio
932 */
933 static inline int __normal_prio(struct task_struct *p)
934 {
935 return p->static_prio;
936 }
937
938 /*
939 * Calculate the expected normal priority: i.e. priority
940 * without taking RT-inheritance into account. Might be
941 * boosted by interactivity modifiers. Changes upon fork,
942 * setprio syscalls, and whenever the interactivity
943 * estimator recalculates.
944 */
945 static inline int normal_prio(struct task_struct *p)
946 {
947 int prio;
948
949 if (task_has_rt_policy(p))
950 prio = MAX_RT_PRIO-1 - p->rt_priority;
951 else
952 prio = __normal_prio(p);
953 return prio;
954 }
955
956 /*
957 * Calculate the current priority, i.e. the priority
958 * taken into account by the scheduler. This value might
959 * be boosted by RT tasks, or might be boosted by
960 * interactivity modifiers. Will be RT if the task got
961 * RT-boosted. If not then it returns p->normal_prio.
962 */
963 static int effective_prio(struct task_struct *p)
964 {
965 p->normal_prio = normal_prio(p);
966 /*
967 * If we are RT tasks or we were boosted to RT priority,
968 * keep the priority unchanged. Otherwise, update priority
969 * to the normal priority:
970 */
971 if (!rt_prio(p->prio))
972 return p->normal_prio;
973 return p->prio;
974 }
975
976 /*
977 * activate_task - move a task to the runqueue.
978 */
979 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
980 {
981 if (p->state == TASK_UNINTERRUPTIBLE)
982 rq->nr_uninterruptible--;
983
984 enqueue_task(rq, p, wakeup);
985 inc_nr_running(p, rq);
986 }
987
988 /*
989 * activate_idle_task - move idle task to the _front_ of runqueue.
990 */
991 static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
992 {
993 update_rq_clock(rq);
994
995 if (p->state == TASK_UNINTERRUPTIBLE)
996 rq->nr_uninterruptible--;
997
998 enqueue_task(rq, p, 0);
999 inc_nr_running(p, rq);
1000 }
1001
1002 /*
1003 * deactivate_task - remove a task from the runqueue.
1004 */
1005 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1006 {
1007 if (p->state == TASK_UNINTERRUPTIBLE)
1008 rq->nr_uninterruptible++;
1009
1010 dequeue_task(rq, p, sleep);
1011 dec_nr_running(p, rq);
1012 }
1013
1014 /**
1015 * task_curr - is this task currently executing on a CPU?
1016 * @p: the task in question.
1017 */
1018 inline int task_curr(const struct task_struct *p)
1019 {
1020 return cpu_curr(task_cpu(p)) == p;
1021 }
1022
1023 /* Used instead of source_load when we know the type == 0 */
1024 unsigned long weighted_cpuload(const int cpu)
1025 {
1026 return cpu_rq(cpu)->load.weight;
1027 }
1028
1029 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1030 {
1031 #ifdef CONFIG_SMP
1032 task_thread_info(p)->cpu = cpu;
1033 #endif
1034 set_task_cfs_rq(p);
1035 }
1036
1037 #ifdef CONFIG_SMP
1038
1039 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1040 {
1041 int old_cpu = task_cpu(p);
1042 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1043 u64 clock_offset;
1044
1045 clock_offset = old_rq->clock - new_rq->clock;
1046
1047 #ifdef CONFIG_SCHEDSTATS
1048 if (p->se.wait_start)
1049 p->se.wait_start -= clock_offset;
1050 if (p->se.sleep_start)
1051 p->se.sleep_start -= clock_offset;
1052 if (p->se.block_start)
1053 p->se.block_start -= clock_offset;
1054 #endif
1055 p->se.vruntime -= old_rq->cfs.min_vruntime - new_rq->cfs.min_vruntime;
1056
1057 __set_task_cpu(p, new_cpu);
1058 }
1059
1060 struct migration_req {
1061 struct list_head list;
1062
1063 struct task_struct *task;
1064 int dest_cpu;
1065
1066 struct completion done;
1067 };
1068
1069 /*
1070 * The task's runqueue lock must be held.
1071 * Returns true if you have to wait for migration thread.
1072 */
1073 static int
1074 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1075 {
1076 struct rq *rq = task_rq(p);
1077
1078 /*
1079 * If the task is not on a runqueue (and not running), then
1080 * it is sufficient to simply update the task's cpu field.
1081 */
1082 if (!p->se.on_rq && !task_running(rq, p)) {
1083 set_task_cpu(p, dest_cpu);
1084 return 0;
1085 }
1086
1087 init_completion(&req->done);
1088 req->task = p;
1089 req->dest_cpu = dest_cpu;
1090 list_add(&req->list, &rq->migration_queue);
1091
1092 return 1;
1093 }
1094
1095 /*
1096 * wait_task_inactive - wait for a thread to unschedule.
1097 *
1098 * The caller must ensure that the task *will* unschedule sometime soon,
1099 * else this function might spin for a *long* time. This function can't
1100 * be called with interrupts off, or it may introduce deadlock with
1101 * smp_call_function() if an IPI is sent by the same process we are
1102 * waiting to become inactive.
1103 */
1104 void wait_task_inactive(struct task_struct *p)
1105 {
1106 unsigned long flags;
1107 int running, on_rq;
1108 struct rq *rq;
1109
1110 repeat:
1111 /*
1112 * We do the initial early heuristics without holding
1113 * any task-queue locks at all. We'll only try to get
1114 * the runqueue lock when things look like they will
1115 * work out!
1116 */
1117 rq = task_rq(p);
1118
1119 /*
1120 * If the task is actively running on another CPU
1121 * still, just relax and busy-wait without holding
1122 * any locks.
1123 *
1124 * NOTE! Since we don't hold any locks, it's not
1125 * even sure that "rq" stays as the right runqueue!
1126 * But we don't care, since "task_running()" will
1127 * return false if the runqueue has changed and p
1128 * is actually now running somewhere else!
1129 */
1130 while (task_running(rq, p))
1131 cpu_relax();
1132
1133 /*
1134 * Ok, time to look more closely! We need the rq
1135 * lock now, to be *sure*. If we're wrong, we'll
1136 * just go back and repeat.
1137 */
1138 rq = task_rq_lock(p, &flags);
1139 running = task_running(rq, p);
1140 on_rq = p->se.on_rq;
1141 task_rq_unlock(rq, &flags);
1142
1143 /*
1144 * Was it really running after all now that we
1145 * checked with the proper locks actually held?
1146 *
1147 * Oops. Go back and try again..
1148 */
1149 if (unlikely(running)) {
1150 cpu_relax();
1151 goto repeat;
1152 }
1153
1154 /*
1155 * It's not enough that it's not actively running,
1156 * it must be off the runqueue _entirely_, and not
1157 * preempted!
1158 *
1159 * So if it wa still runnable (but just not actively
1160 * running right now), it's preempted, and we should
1161 * yield - it could be a while.
1162 */
1163 if (unlikely(on_rq)) {
1164 yield();
1165 goto repeat;
1166 }
1167
1168 /*
1169 * Ahh, all good. It wasn't running, and it wasn't
1170 * runnable, which means that it will never become
1171 * running in the future either. We're all done!
1172 */
1173 }
1174
1175 /***
1176 * kick_process - kick a running thread to enter/exit the kernel
1177 * @p: the to-be-kicked thread
1178 *
1179 * Cause a process which is running on another CPU to enter
1180 * kernel-mode, without any delay. (to get signals handled.)
1181 *
1182 * NOTE: this function doesnt have to take the runqueue lock,
1183 * because all it wants to ensure is that the remote task enters
1184 * the kernel. If the IPI races and the task has been migrated
1185 * to another CPU then no harm is done and the purpose has been
1186 * achieved as well.
1187 */
1188 void kick_process(struct task_struct *p)
1189 {
1190 int cpu;
1191
1192 preempt_disable();
1193 cpu = task_cpu(p);
1194 if ((cpu != smp_processor_id()) && task_curr(p))
1195 smp_send_reschedule(cpu);
1196 preempt_enable();
1197 }
1198
1199 /*
1200 * Return a low guess at the load of a migration-source cpu weighted
1201 * according to the scheduling class and "nice" value.
1202 *
1203 * We want to under-estimate the load of migration sources, to
1204 * balance conservatively.
1205 */
1206 static inline unsigned long source_load(int cpu, int type)
1207 {
1208 struct rq *rq = cpu_rq(cpu);
1209 unsigned long total = weighted_cpuload(cpu);
1210
1211 if (type == 0)
1212 return total;
1213
1214 return min(rq->cpu_load[type-1], total);
1215 }
1216
1217 /*
1218 * Return a high guess at the load of a migration-target cpu weighted
1219 * according to the scheduling class and "nice" value.
1220 */
1221 static inline unsigned long target_load(int cpu, int type)
1222 {
1223 struct rq *rq = cpu_rq(cpu);
1224 unsigned long total = weighted_cpuload(cpu);
1225
1226 if (type == 0)
1227 return total;
1228
1229 return max(rq->cpu_load[type-1], total);
1230 }
1231
1232 /*
1233 * Return the average load per task on the cpu's run queue
1234 */
1235 static inline unsigned long cpu_avg_load_per_task(int cpu)
1236 {
1237 struct rq *rq = cpu_rq(cpu);
1238 unsigned long total = weighted_cpuload(cpu);
1239 unsigned long n = rq->nr_running;
1240
1241 return n ? total / n : SCHED_LOAD_SCALE;
1242 }
1243
1244 /*
1245 * find_idlest_group finds and returns the least busy CPU group within the
1246 * domain.
1247 */
1248 static struct sched_group *
1249 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1250 {
1251 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1252 unsigned long min_load = ULONG_MAX, this_load = 0;
1253 int load_idx = sd->forkexec_idx;
1254 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1255
1256 do {
1257 unsigned long load, avg_load;
1258 int local_group;
1259 int i;
1260
1261 /* Skip over this group if it has no CPUs allowed */
1262 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1263 goto nextgroup;
1264
1265 local_group = cpu_isset(this_cpu, group->cpumask);
1266
1267 /* Tally up the load of all CPUs in the group */
1268 avg_load = 0;
1269
1270 for_each_cpu_mask(i, group->cpumask) {
1271 /* Bias balancing toward cpus of our domain */
1272 if (local_group)
1273 load = source_load(i, load_idx);
1274 else
1275 load = target_load(i, load_idx);
1276
1277 avg_load += load;
1278 }
1279
1280 /* Adjust by relative CPU power of the group */
1281 avg_load = sg_div_cpu_power(group,
1282 avg_load * SCHED_LOAD_SCALE);
1283
1284 if (local_group) {
1285 this_load = avg_load;
1286 this = group;
1287 } else if (avg_load < min_load) {
1288 min_load = avg_load;
1289 idlest = group;
1290 }
1291 nextgroup:
1292 group = group->next;
1293 } while (group != sd->groups);
1294
1295 if (!idlest || 100*this_load < imbalance*min_load)
1296 return NULL;
1297 return idlest;
1298 }
1299
1300 /*
1301 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1302 */
1303 static int
1304 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1305 {
1306 cpumask_t tmp;
1307 unsigned long load, min_load = ULONG_MAX;
1308 int idlest = -1;
1309 int i;
1310
1311 /* Traverse only the allowed CPUs */
1312 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1313
1314 for_each_cpu_mask(i, tmp) {
1315 load = weighted_cpuload(i);
1316
1317 if (load < min_load || (load == min_load && i == this_cpu)) {
1318 min_load = load;
1319 idlest = i;
1320 }
1321 }
1322
1323 return idlest;
1324 }
1325
1326 /*
1327 * sched_balance_self: balance the current task (running on cpu) in domains
1328 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1329 * SD_BALANCE_EXEC.
1330 *
1331 * Balance, ie. select the least loaded group.
1332 *
1333 * Returns the target CPU number, or the same CPU if no balancing is needed.
1334 *
1335 * preempt must be disabled.
1336 */
1337 static int sched_balance_self(int cpu, int flag)
1338 {
1339 struct task_struct *t = current;
1340 struct sched_domain *tmp, *sd = NULL;
1341
1342 for_each_domain(cpu, tmp) {
1343 /*
1344 * If power savings logic is enabled for a domain, stop there.
1345 */
1346 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1347 break;
1348 if (tmp->flags & flag)
1349 sd = tmp;
1350 }
1351
1352 while (sd) {
1353 cpumask_t span;
1354 struct sched_group *group;
1355 int new_cpu, weight;
1356
1357 if (!(sd->flags & flag)) {
1358 sd = sd->child;
1359 continue;
1360 }
1361
1362 span = sd->span;
1363 group = find_idlest_group(sd, t, cpu);
1364 if (!group) {
1365 sd = sd->child;
1366 continue;
1367 }
1368
1369 new_cpu = find_idlest_cpu(group, t, cpu);
1370 if (new_cpu == -1 || new_cpu == cpu) {
1371 /* Now try balancing at a lower domain level of cpu */
1372 sd = sd->child;
1373 continue;
1374 }
1375
1376 /* Now try balancing at a lower domain level of new_cpu */
1377 cpu = new_cpu;
1378 sd = NULL;
1379 weight = cpus_weight(span);
1380 for_each_domain(cpu, tmp) {
1381 if (weight <= cpus_weight(tmp->span))
1382 break;
1383 if (tmp->flags & flag)
1384 sd = tmp;
1385 }
1386 /* while loop will break here if sd == NULL */
1387 }
1388
1389 return cpu;
1390 }
1391
1392 #endif /* CONFIG_SMP */
1393
1394 /*
1395 * wake_idle() will wake a task on an idle cpu if task->cpu is
1396 * not idle and an idle cpu is available. The span of cpus to
1397 * search starts with cpus closest then further out as needed,
1398 * so we always favor a closer, idle cpu.
1399 *
1400 * Returns the CPU we should wake onto.
1401 */
1402 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1403 static int wake_idle(int cpu, struct task_struct *p)
1404 {
1405 cpumask_t tmp;
1406 struct sched_domain *sd;
1407 int i;
1408
1409 /*
1410 * If it is idle, then it is the best cpu to run this task.
1411 *
1412 * This cpu is also the best, if it has more than one task already.
1413 * Siblings must be also busy(in most cases) as they didn't already
1414 * pickup the extra load from this cpu and hence we need not check
1415 * sibling runqueue info. This will avoid the checks and cache miss
1416 * penalities associated with that.
1417 */
1418 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1419 return cpu;
1420
1421 for_each_domain(cpu, sd) {
1422 if (sd->flags & SD_WAKE_IDLE) {
1423 cpus_and(tmp, sd->span, p->cpus_allowed);
1424 for_each_cpu_mask(i, tmp) {
1425 if (idle_cpu(i))
1426 return i;
1427 }
1428 } else {
1429 break;
1430 }
1431 }
1432 return cpu;
1433 }
1434 #else
1435 static inline int wake_idle(int cpu, struct task_struct *p)
1436 {
1437 return cpu;
1438 }
1439 #endif
1440
1441 /***
1442 * try_to_wake_up - wake up a thread
1443 * @p: the to-be-woken-up thread
1444 * @state: the mask of task states that can be woken
1445 * @sync: do a synchronous wakeup?
1446 *
1447 * Put it on the run-queue if it's not already there. The "current"
1448 * thread is always on the run-queue (except when the actual
1449 * re-schedule is in progress), and as such you're allowed to do
1450 * the simpler "current->state = TASK_RUNNING" to mark yourself
1451 * runnable without the overhead of this.
1452 *
1453 * returns failure only if the task is already active.
1454 */
1455 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1456 {
1457 int cpu, this_cpu, success = 0;
1458 unsigned long flags;
1459 long old_state;
1460 struct rq *rq;
1461 #ifdef CONFIG_SMP
1462 struct sched_domain *sd, *this_sd = NULL;
1463 unsigned long load, this_load;
1464 int new_cpu;
1465 #endif
1466
1467 rq = task_rq_lock(p, &flags);
1468 old_state = p->state;
1469 if (!(old_state & state))
1470 goto out;
1471
1472 if (p->se.on_rq)
1473 goto out_running;
1474
1475 cpu = task_cpu(p);
1476 this_cpu = smp_processor_id();
1477
1478 #ifdef CONFIG_SMP
1479 if (unlikely(task_running(rq, p)))
1480 goto out_activate;
1481
1482 new_cpu = cpu;
1483
1484 schedstat_inc(rq, ttwu_cnt);
1485 if (cpu == this_cpu) {
1486 schedstat_inc(rq, ttwu_local);
1487 goto out_set_cpu;
1488 }
1489
1490 for_each_domain(this_cpu, sd) {
1491 if (cpu_isset(cpu, sd->span)) {
1492 schedstat_inc(sd, ttwu_wake_remote);
1493 this_sd = sd;
1494 break;
1495 }
1496 }
1497
1498 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1499 goto out_set_cpu;
1500
1501 /*
1502 * Check for affine wakeup and passive balancing possibilities.
1503 */
1504 if (this_sd) {
1505 int idx = this_sd->wake_idx;
1506 unsigned int imbalance;
1507
1508 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1509
1510 load = source_load(cpu, idx);
1511 this_load = target_load(this_cpu, idx);
1512
1513 new_cpu = this_cpu; /* Wake to this CPU if we can */
1514
1515 if (this_sd->flags & SD_WAKE_AFFINE) {
1516 unsigned long tl = this_load;
1517 unsigned long tl_per_task;
1518
1519 tl_per_task = cpu_avg_load_per_task(this_cpu);
1520
1521 /*
1522 * If sync wakeup then subtract the (maximum possible)
1523 * effect of the currently running task from the load
1524 * of the current CPU:
1525 */
1526 if (sync)
1527 tl -= current->se.load.weight;
1528
1529 if ((tl <= load &&
1530 tl + target_load(cpu, idx) <= tl_per_task) ||
1531 100*(tl + p->se.load.weight) <= imbalance*load) {
1532 /*
1533 * This domain has SD_WAKE_AFFINE and
1534 * p is cache cold in this domain, and
1535 * there is no bad imbalance.
1536 */
1537 schedstat_inc(this_sd, ttwu_move_affine);
1538 goto out_set_cpu;
1539 }
1540 }
1541
1542 /*
1543 * Start passive balancing when half the imbalance_pct
1544 * limit is reached.
1545 */
1546 if (this_sd->flags & SD_WAKE_BALANCE) {
1547 if (imbalance*this_load <= 100*load) {
1548 schedstat_inc(this_sd, ttwu_move_balance);
1549 goto out_set_cpu;
1550 }
1551 }
1552 }
1553
1554 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1555 out_set_cpu:
1556 new_cpu = wake_idle(new_cpu, p);
1557 if (new_cpu != cpu) {
1558 set_task_cpu(p, new_cpu);
1559 task_rq_unlock(rq, &flags);
1560 /* might preempt at this point */
1561 rq = task_rq_lock(p, &flags);
1562 old_state = p->state;
1563 if (!(old_state & state))
1564 goto out;
1565 if (p->se.on_rq)
1566 goto out_running;
1567
1568 this_cpu = smp_processor_id();
1569 cpu = task_cpu(p);
1570 }
1571
1572 out_activate:
1573 #endif /* CONFIG_SMP */
1574 update_rq_clock(rq);
1575 activate_task(rq, p, 1);
1576 /*
1577 * Sync wakeups (i.e. those types of wakeups where the waker
1578 * has indicated that it will leave the CPU in short order)
1579 * don't trigger a preemption, if the woken up task will run on
1580 * this cpu. (in this case the 'I will reschedule' promise of
1581 * the waker guarantees that the freshly woken up task is going
1582 * to be considered on this CPU.)
1583 */
1584 if (!sync || cpu != this_cpu)
1585 check_preempt_curr(rq, p);
1586 success = 1;
1587
1588 out_running:
1589 p->state = TASK_RUNNING;
1590 out:
1591 task_rq_unlock(rq, &flags);
1592
1593 return success;
1594 }
1595
1596 int fastcall wake_up_process(struct task_struct *p)
1597 {
1598 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1599 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1600 }
1601 EXPORT_SYMBOL(wake_up_process);
1602
1603 int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1604 {
1605 return try_to_wake_up(p, state, 0);
1606 }
1607
1608 /*
1609 * Perform scheduler related setup for a newly forked process p.
1610 * p is forked by current.
1611 *
1612 * __sched_fork() is basic setup used by init_idle() too:
1613 */
1614 static void __sched_fork(struct task_struct *p)
1615 {
1616 p->se.exec_start = 0;
1617 p->se.sum_exec_runtime = 0;
1618 p->se.prev_sum_exec_runtime = 0;
1619
1620 #ifdef CONFIG_SCHEDSTATS
1621 p->se.wait_start = 0;
1622 p->se.sum_sleep_runtime = 0;
1623 p->se.sleep_start = 0;
1624 p->se.block_start = 0;
1625 p->se.sleep_max = 0;
1626 p->se.block_max = 0;
1627 p->se.exec_max = 0;
1628 p->se.slice_max = 0;
1629 p->se.wait_max = 0;
1630 #endif
1631
1632 INIT_LIST_HEAD(&p->run_list);
1633 p->se.on_rq = 0;
1634
1635 #ifdef CONFIG_PREEMPT_NOTIFIERS
1636 INIT_HLIST_HEAD(&p->preempt_notifiers);
1637 #endif
1638
1639 /*
1640 * We mark the process as running here, but have not actually
1641 * inserted it onto the runqueue yet. This guarantees that
1642 * nobody will actually run it, and a signal or other external
1643 * event cannot wake it up and insert it on the runqueue either.
1644 */
1645 p->state = TASK_RUNNING;
1646 }
1647
1648 /*
1649 * fork()/clone()-time setup:
1650 */
1651 void sched_fork(struct task_struct *p, int clone_flags)
1652 {
1653 int cpu = get_cpu();
1654
1655 __sched_fork(p);
1656
1657 #ifdef CONFIG_SMP
1658 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1659 #endif
1660 set_task_cpu(p, cpu);
1661
1662 /*
1663 * Make sure we do not leak PI boosting priority to the child:
1664 */
1665 p->prio = current->normal_prio;
1666 if (!rt_prio(p->prio))
1667 p->sched_class = &fair_sched_class;
1668
1669 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1670 if (likely(sched_info_on()))
1671 memset(&p->sched_info, 0, sizeof(p->sched_info));
1672 #endif
1673 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1674 p->oncpu = 0;
1675 #endif
1676 #ifdef CONFIG_PREEMPT
1677 /* Want to start with kernel preemption disabled. */
1678 task_thread_info(p)->preempt_count = 1;
1679 #endif
1680 put_cpu();
1681 }
1682
1683 /*
1684 * wake_up_new_task - wake up a newly created task for the first time.
1685 *
1686 * This function will do some initial scheduler statistics housekeeping
1687 * that must be done for every newly created context, then puts the task
1688 * on the runqueue and wakes it.
1689 */
1690 void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1691 {
1692 unsigned long flags;
1693 struct rq *rq;
1694 int this_cpu;
1695
1696 rq = task_rq_lock(p, &flags);
1697 BUG_ON(p->state != TASK_RUNNING);
1698 this_cpu = smp_processor_id(); /* parent's CPU */
1699 update_rq_clock(rq);
1700
1701 p->prio = effective_prio(p);
1702
1703 if (task_cpu(p) != this_cpu || !p->sched_class->task_new ||
1704 !current->se.on_rq) {
1705 activate_task(rq, p, 0);
1706 } else {
1707 /*
1708 * Let the scheduling class do new task startup
1709 * management (if any):
1710 */
1711 p->sched_class->task_new(rq, p);
1712 inc_nr_running(p, rq);
1713 }
1714 check_preempt_curr(rq, p);
1715 task_rq_unlock(rq, &flags);
1716 }
1717
1718 #ifdef CONFIG_PREEMPT_NOTIFIERS
1719
1720 /**
1721 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1722 * @notifier: notifier struct to register
1723 */
1724 void preempt_notifier_register(struct preempt_notifier *notifier)
1725 {
1726 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1727 }
1728 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1729
1730 /**
1731 * preempt_notifier_unregister - no longer interested in preemption notifications
1732 * @notifier: notifier struct to unregister
1733 *
1734 * This is safe to call from within a preemption notifier.
1735 */
1736 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1737 {
1738 hlist_del(&notifier->link);
1739 }
1740 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1741
1742 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1743 {
1744 struct preempt_notifier *notifier;
1745 struct hlist_node *node;
1746
1747 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1748 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1749 }
1750
1751 static void
1752 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1753 struct task_struct *next)
1754 {
1755 struct preempt_notifier *notifier;
1756 struct hlist_node *node;
1757
1758 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1759 notifier->ops->sched_out(notifier, next);
1760 }
1761
1762 #else
1763
1764 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1765 {
1766 }
1767
1768 static void
1769 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1770 struct task_struct *next)
1771 {
1772 }
1773
1774 #endif
1775
1776 /**
1777 * prepare_task_switch - prepare to switch tasks
1778 * @rq: the runqueue preparing to switch
1779 * @prev: the current task that is being switched out
1780 * @next: the task we are going to switch to.
1781 *
1782 * This is called with the rq lock held and interrupts off. It must
1783 * be paired with a subsequent finish_task_switch after the context
1784 * switch.
1785 *
1786 * prepare_task_switch sets up locking and calls architecture specific
1787 * hooks.
1788 */
1789 static inline void
1790 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1791 struct task_struct *next)
1792 {
1793 fire_sched_out_preempt_notifiers(prev, next);
1794 prepare_lock_switch(rq, next);
1795 prepare_arch_switch(next);
1796 }
1797
1798 /**
1799 * finish_task_switch - clean up after a task-switch
1800 * @rq: runqueue associated with task-switch
1801 * @prev: the thread we just switched away from.
1802 *
1803 * finish_task_switch must be called after the context switch, paired
1804 * with a prepare_task_switch call before the context switch.
1805 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1806 * and do any other architecture-specific cleanup actions.
1807 *
1808 * Note that we may have delayed dropping an mm in context_switch(). If
1809 * so, we finish that here outside of the runqueue lock. (Doing it
1810 * with the lock held can cause deadlocks; see schedule() for
1811 * details.)
1812 */
1813 static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
1814 __releases(rq->lock)
1815 {
1816 struct mm_struct *mm = rq->prev_mm;
1817 long prev_state;
1818
1819 rq->prev_mm = NULL;
1820
1821 /*
1822 * A task struct has one reference for the use as "current".
1823 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1824 * schedule one last time. The schedule call will never return, and
1825 * the scheduled task must drop that reference.
1826 * The test for TASK_DEAD must occur while the runqueue locks are
1827 * still held, otherwise prev could be scheduled on another cpu, die
1828 * there before we look at prev->state, and then the reference would
1829 * be dropped twice.
1830 * Manfred Spraul <manfred@colorfullife.com>
1831 */
1832 prev_state = prev->state;
1833 finish_arch_switch(prev);
1834 finish_lock_switch(rq, prev);
1835 fire_sched_in_preempt_notifiers(current);
1836 if (mm)
1837 mmdrop(mm);
1838 if (unlikely(prev_state == TASK_DEAD)) {
1839 /*
1840 * Remove function-return probe instances associated with this
1841 * task and put them back on the free list.
1842 */
1843 kprobe_flush_task(prev);
1844 put_task_struct(prev);
1845 }
1846 }
1847
1848 /**
1849 * schedule_tail - first thing a freshly forked thread must call.
1850 * @prev: the thread we just switched away from.
1851 */
1852 asmlinkage void schedule_tail(struct task_struct *prev)
1853 __releases(rq->lock)
1854 {
1855 struct rq *rq = this_rq();
1856
1857 finish_task_switch(rq, prev);
1858 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1859 /* In this case, finish_task_switch does not reenable preemption */
1860 preempt_enable();
1861 #endif
1862 if (current->set_child_tid)
1863 put_user(current->pid, current->set_child_tid);
1864 }
1865
1866 /*
1867 * context_switch - switch to the new MM and the new
1868 * thread's register state.
1869 */
1870 static inline void
1871 context_switch(struct rq *rq, struct task_struct *prev,
1872 struct task_struct *next)
1873 {
1874 struct mm_struct *mm, *oldmm;
1875
1876 prepare_task_switch(rq, prev, next);
1877 mm = next->mm;
1878 oldmm = prev->active_mm;
1879 /*
1880 * For paravirt, this is coupled with an exit in switch_to to
1881 * combine the page table reload and the switch backend into
1882 * one hypercall.
1883 */
1884 arch_enter_lazy_cpu_mode();
1885
1886 if (unlikely(!mm)) {
1887 next->active_mm = oldmm;
1888 atomic_inc(&oldmm->mm_count);
1889 enter_lazy_tlb(oldmm, next);
1890 } else
1891 switch_mm(oldmm, mm, next);
1892
1893 if (unlikely(!prev->mm)) {
1894 prev->active_mm = NULL;
1895 rq->prev_mm = oldmm;
1896 }
1897 /*
1898 * Since the runqueue lock will be released by the next
1899 * task (which is an invalid locking op but in the case
1900 * of the scheduler it's an obvious special-case), so we
1901 * do an early lockdep release here:
1902 */
1903 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1904 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1905 #endif
1906
1907 /* Here we just switch the register state and the stack. */
1908 switch_to(prev, next, prev);
1909
1910 barrier();
1911 /*
1912 * this_rq must be evaluated again because prev may have moved
1913 * CPUs since it called schedule(), thus the 'rq' on its stack
1914 * frame will be invalid.
1915 */
1916 finish_task_switch(this_rq(), prev);
1917 }
1918
1919 /*
1920 * nr_running, nr_uninterruptible and nr_context_switches:
1921 *
1922 * externally visible scheduler statistics: current number of runnable
1923 * threads, current number of uninterruptible-sleeping threads, total
1924 * number of context switches performed since bootup.
1925 */
1926 unsigned long nr_running(void)
1927 {
1928 unsigned long i, sum = 0;
1929
1930 for_each_online_cpu(i)
1931 sum += cpu_rq(i)->nr_running;
1932
1933 return sum;
1934 }
1935
1936 unsigned long nr_uninterruptible(void)
1937 {
1938 unsigned long i, sum = 0;
1939
1940 for_each_possible_cpu(i)
1941 sum += cpu_rq(i)->nr_uninterruptible;
1942
1943 /*
1944 * Since we read the counters lockless, it might be slightly
1945 * inaccurate. Do not allow it to go below zero though:
1946 */
1947 if (unlikely((long)sum < 0))
1948 sum = 0;
1949
1950 return sum;
1951 }
1952
1953 unsigned long long nr_context_switches(void)
1954 {
1955 int i;
1956 unsigned long long sum = 0;
1957
1958 for_each_possible_cpu(i)
1959 sum += cpu_rq(i)->nr_switches;
1960
1961 return sum;
1962 }
1963
1964 unsigned long nr_iowait(void)
1965 {
1966 unsigned long i, sum = 0;
1967
1968 for_each_possible_cpu(i)
1969 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1970
1971 return sum;
1972 }
1973
1974 unsigned long nr_active(void)
1975 {
1976 unsigned long i, running = 0, uninterruptible = 0;
1977
1978 for_each_online_cpu(i) {
1979 running += cpu_rq(i)->nr_running;
1980 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1981 }
1982
1983 if (unlikely((long)uninterruptible < 0))
1984 uninterruptible = 0;
1985
1986 return running + uninterruptible;
1987 }
1988
1989 /*
1990 * Update rq->cpu_load[] statistics. This function is usually called every
1991 * scheduler tick (TICK_NSEC).
1992 */
1993 static void update_cpu_load(struct rq *this_rq)
1994 {
1995 unsigned long this_load = this_rq->load.weight;
1996 int i, scale;
1997
1998 this_rq->nr_load_updates++;
1999
2000 /* Update our load: */
2001 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2002 unsigned long old_load, new_load;
2003
2004 /* scale is effectively 1 << i now, and >> i divides by scale */
2005
2006 old_load = this_rq->cpu_load[i];
2007 new_load = this_load;
2008 /*
2009 * Round up the averaging division if load is increasing. This
2010 * prevents us from getting stuck on 9 if the load is 10, for
2011 * example.
2012 */
2013 if (new_load > old_load)
2014 new_load += scale-1;
2015 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2016 }
2017 }
2018
2019 #ifdef CONFIG_SMP
2020
2021 /*
2022 * double_rq_lock - safely lock two runqueues
2023 *
2024 * Note this does not disable interrupts like task_rq_lock,
2025 * you need to do so manually before calling.
2026 */
2027 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2028 __acquires(rq1->lock)
2029 __acquires(rq2->lock)
2030 {
2031 BUG_ON(!irqs_disabled());
2032 if (rq1 == rq2) {
2033 spin_lock(&rq1->lock);
2034 __acquire(rq2->lock); /* Fake it out ;) */
2035 } else {
2036 if (rq1 < rq2) {
2037 spin_lock(&rq1->lock);
2038 spin_lock(&rq2->lock);
2039 } else {
2040 spin_lock(&rq2->lock);
2041 spin_lock(&rq1->lock);
2042 }
2043 }
2044 update_rq_clock(rq1);
2045 update_rq_clock(rq2);
2046 }
2047
2048 /*
2049 * double_rq_unlock - safely unlock two runqueues
2050 *
2051 * Note this does not restore interrupts like task_rq_unlock,
2052 * you need to do so manually after calling.
2053 */
2054 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2055 __releases(rq1->lock)
2056 __releases(rq2->lock)
2057 {
2058 spin_unlock(&rq1->lock);
2059 if (rq1 != rq2)
2060 spin_unlock(&rq2->lock);
2061 else
2062 __release(rq2->lock);
2063 }
2064
2065 /*
2066 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2067 */
2068 static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
2069 __releases(this_rq->lock)
2070 __acquires(busiest->lock)
2071 __acquires(this_rq->lock)
2072 {
2073 if (unlikely(!irqs_disabled())) {
2074 /* printk() doesn't work good under rq->lock */
2075 spin_unlock(&this_rq->lock);
2076 BUG_ON(1);
2077 }
2078 if (unlikely(!spin_trylock(&busiest->lock))) {
2079 if (busiest < this_rq) {
2080 spin_unlock(&this_rq->lock);
2081 spin_lock(&busiest->lock);
2082 spin_lock(&this_rq->lock);
2083 } else
2084 spin_lock(&busiest->lock);
2085 }
2086 }
2087
2088 /*
2089 * If dest_cpu is allowed for this process, migrate the task to it.
2090 * This is accomplished by forcing the cpu_allowed mask to only
2091 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2092 * the cpu_allowed mask is restored.
2093 */
2094 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2095 {
2096 struct migration_req req;
2097 unsigned long flags;
2098 struct rq *rq;
2099
2100 rq = task_rq_lock(p, &flags);
2101 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2102 || unlikely(cpu_is_offline(dest_cpu)))
2103 goto out;
2104
2105 /* force the process onto the specified CPU */
2106 if (migrate_task(p, dest_cpu, &req)) {
2107 /* Need to wait for migration thread (might exit: take ref). */
2108 struct task_struct *mt = rq->migration_thread;
2109
2110 get_task_struct(mt);
2111 task_rq_unlock(rq, &flags);
2112 wake_up_process(mt);
2113 put_task_struct(mt);
2114 wait_for_completion(&req.done);
2115
2116 return;
2117 }
2118 out:
2119 task_rq_unlock(rq, &flags);
2120 }
2121
2122 /*
2123 * sched_exec - execve() is a valuable balancing opportunity, because at
2124 * this point the task has the smallest effective memory and cache footprint.
2125 */
2126 void sched_exec(void)
2127 {
2128 int new_cpu, this_cpu = get_cpu();
2129 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2130 put_cpu();
2131 if (new_cpu != this_cpu)
2132 sched_migrate_task(current, new_cpu);
2133 }
2134
2135 /*
2136 * pull_task - move a task from a remote runqueue to the local runqueue.
2137 * Both runqueues must be locked.
2138 */
2139 static void pull_task(struct rq *src_rq, struct task_struct *p,
2140 struct rq *this_rq, int this_cpu)
2141 {
2142 deactivate_task(src_rq, p, 0);
2143 set_task_cpu(p, this_cpu);
2144 activate_task(this_rq, p, 0);
2145 /*
2146 * Note that idle threads have a prio of MAX_PRIO, for this test
2147 * to be always true for them.
2148 */
2149 check_preempt_curr(this_rq, p);
2150 }
2151
2152 /*
2153 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2154 */
2155 static
2156 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2157 struct sched_domain *sd, enum cpu_idle_type idle,
2158 int *all_pinned)
2159 {
2160 /*
2161 * We do not migrate tasks that are:
2162 * 1) running (obviously), or
2163 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2164 * 3) are cache-hot on their current CPU.
2165 */
2166 if (!cpu_isset(this_cpu, p->cpus_allowed))
2167 return 0;
2168 *all_pinned = 0;
2169
2170 if (task_running(rq, p))
2171 return 0;
2172
2173 return 1;
2174 }
2175
2176 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2177 unsigned long max_nr_move, unsigned long max_load_move,
2178 struct sched_domain *sd, enum cpu_idle_type idle,
2179 int *all_pinned, unsigned long *load_moved,
2180 int *this_best_prio, struct rq_iterator *iterator)
2181 {
2182 int pulled = 0, pinned = 0, skip_for_load;
2183 struct task_struct *p;
2184 long rem_load_move = max_load_move;
2185
2186 if (max_nr_move == 0 || max_load_move == 0)
2187 goto out;
2188
2189 pinned = 1;
2190
2191 /*
2192 * Start the load-balancing iterator:
2193 */
2194 p = iterator->start(iterator->arg);
2195 next:
2196 if (!p)
2197 goto out;
2198 /*
2199 * To help distribute high priority tasks accross CPUs we don't
2200 * skip a task if it will be the highest priority task (i.e. smallest
2201 * prio value) on its new queue regardless of its load weight
2202 */
2203 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2204 SCHED_LOAD_SCALE_FUZZ;
2205 if ((skip_for_load && p->prio >= *this_best_prio) ||
2206 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2207 p = iterator->next(iterator->arg);
2208 goto next;
2209 }
2210
2211 pull_task(busiest, p, this_rq, this_cpu);
2212 pulled++;
2213 rem_load_move -= p->se.load.weight;
2214
2215 /*
2216 * We only want to steal up to the prescribed number of tasks
2217 * and the prescribed amount of weighted load.
2218 */
2219 if (pulled < max_nr_move && rem_load_move > 0) {
2220 if (p->prio < *this_best_prio)
2221 *this_best_prio = p->prio;
2222 p = iterator->next(iterator->arg);
2223 goto next;
2224 }
2225 out:
2226 /*
2227 * Right now, this is the only place pull_task() is called,
2228 * so we can safely collect pull_task() stats here rather than
2229 * inside pull_task().
2230 */
2231 schedstat_add(sd, lb_gained[idle], pulled);
2232
2233 if (all_pinned)
2234 *all_pinned = pinned;
2235 *load_moved = max_load_move - rem_load_move;
2236 return pulled;
2237 }
2238
2239 /*
2240 * move_tasks tries to move up to max_load_move weighted load from busiest to
2241 * this_rq, as part of a balancing operation within domain "sd".
2242 * Returns 1 if successful and 0 otherwise.
2243 *
2244 * Called with both runqueues locked.
2245 */
2246 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2247 unsigned long max_load_move,
2248 struct sched_domain *sd, enum cpu_idle_type idle,
2249 int *all_pinned)
2250 {
2251 struct sched_class *class = sched_class_highest;
2252 unsigned long total_load_moved = 0;
2253 int this_best_prio = this_rq->curr->prio;
2254
2255 do {
2256 total_load_moved +=
2257 class->load_balance(this_rq, this_cpu, busiest,
2258 ULONG_MAX, max_load_move - total_load_moved,
2259 sd, idle, all_pinned, &this_best_prio);
2260 class = class->next;
2261 } while (class && max_load_move > total_load_moved);
2262
2263 return total_load_moved > 0;
2264 }
2265
2266 /*
2267 * move_one_task tries to move exactly one task from busiest to this_rq, as
2268 * part of active balancing operations within "domain".
2269 * Returns 1 if successful and 0 otherwise.
2270 *
2271 * Called with both runqueues locked.
2272 */
2273 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2274 struct sched_domain *sd, enum cpu_idle_type idle)
2275 {
2276 struct sched_class *class;
2277 int this_best_prio = MAX_PRIO;
2278
2279 for (class = sched_class_highest; class; class = class->next)
2280 if (class->load_balance(this_rq, this_cpu, busiest,
2281 1, ULONG_MAX, sd, idle, NULL,
2282 &this_best_prio))
2283 return 1;
2284
2285 return 0;
2286 }
2287
2288 /*
2289 * find_busiest_group finds and returns the busiest CPU group within the
2290 * domain. It calculates and returns the amount of weighted load which
2291 * should be moved to restore balance via the imbalance parameter.
2292 */
2293 static struct sched_group *
2294 find_busiest_group(struct sched_domain *sd, int this_cpu,
2295 unsigned long *imbalance, enum cpu_idle_type idle,
2296 int *sd_idle, cpumask_t *cpus, int *balance)
2297 {
2298 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2299 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2300 unsigned long max_pull;
2301 unsigned long busiest_load_per_task, busiest_nr_running;
2302 unsigned long this_load_per_task, this_nr_running;
2303 int load_idx;
2304 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2305 int power_savings_balance = 1;
2306 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2307 unsigned long min_nr_running = ULONG_MAX;
2308 struct sched_group *group_min = NULL, *group_leader = NULL;
2309 #endif
2310
2311 max_load = this_load = total_load = total_pwr = 0;
2312 busiest_load_per_task = busiest_nr_running = 0;
2313 this_load_per_task = this_nr_running = 0;
2314 if (idle == CPU_NOT_IDLE)
2315 load_idx = sd->busy_idx;
2316 else if (idle == CPU_NEWLY_IDLE)
2317 load_idx = sd->newidle_idx;
2318 else
2319 load_idx = sd->idle_idx;
2320
2321 do {
2322 unsigned long load, group_capacity;
2323 int local_group;
2324 int i;
2325 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2326 unsigned long sum_nr_running, sum_weighted_load;
2327
2328 local_group = cpu_isset(this_cpu, group->cpumask);
2329
2330 if (local_group)
2331 balance_cpu = first_cpu(group->cpumask);
2332
2333 /* Tally up the load of all CPUs in the group */
2334 sum_weighted_load = sum_nr_running = avg_load = 0;
2335
2336 for_each_cpu_mask(i, group->cpumask) {
2337 struct rq *rq;
2338
2339 if (!cpu_isset(i, *cpus))
2340 continue;
2341
2342 rq = cpu_rq(i);
2343
2344 if (*sd_idle && rq->nr_running)
2345 *sd_idle = 0;
2346
2347 /* Bias balancing toward cpus of our domain */
2348 if (local_group) {
2349 if (idle_cpu(i) && !first_idle_cpu) {
2350 first_idle_cpu = 1;
2351 balance_cpu = i;
2352 }
2353
2354 load = target_load(i, load_idx);
2355 } else
2356 load = source_load(i, load_idx);
2357
2358 avg_load += load;
2359 sum_nr_running += rq->nr_running;
2360 sum_weighted_load += weighted_cpuload(i);
2361 }
2362
2363 /*
2364 * First idle cpu or the first cpu(busiest) in this sched group
2365 * is eligible for doing load balancing at this and above
2366 * domains. In the newly idle case, we will allow all the cpu's
2367 * to do the newly idle load balance.
2368 */
2369 if (idle != CPU_NEWLY_IDLE && local_group &&
2370 balance_cpu != this_cpu && balance) {
2371 *balance = 0;
2372 goto ret;
2373 }
2374
2375 total_load += avg_load;
2376 total_pwr += group->__cpu_power;
2377
2378 /* Adjust by relative CPU power of the group */
2379 avg_load = sg_div_cpu_power(group,
2380 avg_load * SCHED_LOAD_SCALE);
2381
2382 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2383
2384 if (local_group) {
2385 this_load = avg_load;
2386 this = group;
2387 this_nr_running = sum_nr_running;
2388 this_load_per_task = sum_weighted_load;
2389 } else if (avg_load > max_load &&
2390 sum_nr_running > group_capacity) {
2391 max_load = avg_load;
2392 busiest = group;
2393 busiest_nr_running = sum_nr_running;
2394 busiest_load_per_task = sum_weighted_load;
2395 }
2396
2397 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2398 /*
2399 * Busy processors will not participate in power savings
2400 * balance.
2401 */
2402 if (idle == CPU_NOT_IDLE ||
2403 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2404 goto group_next;
2405
2406 /*
2407 * If the local group is idle or completely loaded
2408 * no need to do power savings balance at this domain
2409 */
2410 if (local_group && (this_nr_running >= group_capacity ||
2411 !this_nr_running))
2412 power_savings_balance = 0;
2413
2414 /*
2415 * If a group is already running at full capacity or idle,
2416 * don't include that group in power savings calculations
2417 */
2418 if (!power_savings_balance || sum_nr_running >= group_capacity
2419 || !sum_nr_running)
2420 goto group_next;
2421
2422 /*
2423 * Calculate the group which has the least non-idle load.
2424 * This is the group from where we need to pick up the load
2425 * for saving power
2426 */
2427 if ((sum_nr_running < min_nr_running) ||
2428 (sum_nr_running == min_nr_running &&
2429 first_cpu(group->cpumask) <
2430 first_cpu(group_min->cpumask))) {
2431 group_min = group;
2432 min_nr_running = sum_nr_running;
2433 min_load_per_task = sum_weighted_load /
2434 sum_nr_running;
2435 }
2436
2437 /*
2438 * Calculate the group which is almost near its
2439 * capacity but still has some space to pick up some load
2440 * from other group and save more power
2441 */
2442 if (sum_nr_running <= group_capacity - 1) {
2443 if (sum_nr_running > leader_nr_running ||
2444 (sum_nr_running == leader_nr_running &&
2445 first_cpu(group->cpumask) >
2446 first_cpu(group_leader->cpumask))) {
2447 group_leader = group;
2448 leader_nr_running = sum_nr_running;
2449 }
2450 }
2451 group_next:
2452 #endif
2453 group = group->next;
2454 } while (group != sd->groups);
2455
2456 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2457 goto out_balanced;
2458
2459 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2460
2461 if (this_load >= avg_load ||
2462 100*max_load <= sd->imbalance_pct*this_load)
2463 goto out_balanced;
2464
2465 busiest_load_per_task /= busiest_nr_running;
2466 /*
2467 * We're trying to get all the cpus to the average_load, so we don't
2468 * want to push ourselves above the average load, nor do we wish to
2469 * reduce the max loaded cpu below the average load, as either of these
2470 * actions would just result in more rebalancing later, and ping-pong
2471 * tasks around. Thus we look for the minimum possible imbalance.
2472 * Negative imbalances (*we* are more loaded than anyone else) will
2473 * be counted as no imbalance for these purposes -- we can't fix that
2474 * by pulling tasks to us. Be careful of negative numbers as they'll
2475 * appear as very large values with unsigned longs.
2476 */
2477 if (max_load <= busiest_load_per_task)
2478 goto out_balanced;
2479
2480 /*
2481 * In the presence of smp nice balancing, certain scenarios can have
2482 * max load less than avg load(as we skip the groups at or below
2483 * its cpu_power, while calculating max_load..)
2484 */
2485 if (max_load < avg_load) {
2486 *imbalance = 0;
2487 goto small_imbalance;
2488 }
2489
2490 /* Don't want to pull so many tasks that a group would go idle */
2491 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2492
2493 /* How much load to actually move to equalise the imbalance */
2494 *imbalance = min(max_pull * busiest->__cpu_power,
2495 (avg_load - this_load) * this->__cpu_power)
2496 / SCHED_LOAD_SCALE;
2497
2498 /*
2499 * if *imbalance is less than the average load per runnable task
2500 * there is no gaurantee that any tasks will be moved so we'll have
2501 * a think about bumping its value to force at least one task to be
2502 * moved
2503 */
2504 if (*imbalance < busiest_load_per_task) {
2505 unsigned long tmp, pwr_now, pwr_move;
2506 unsigned int imbn;
2507
2508 small_imbalance:
2509 pwr_move = pwr_now = 0;
2510 imbn = 2;
2511 if (this_nr_running) {
2512 this_load_per_task /= this_nr_running;
2513 if (busiest_load_per_task > this_load_per_task)
2514 imbn = 1;
2515 } else
2516 this_load_per_task = SCHED_LOAD_SCALE;
2517
2518 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2519 busiest_load_per_task * imbn) {
2520 *imbalance = busiest_load_per_task;
2521 return busiest;
2522 }
2523
2524 /*
2525 * OK, we don't have enough imbalance to justify moving tasks,
2526 * however we may be able to increase total CPU power used by
2527 * moving them.
2528 */
2529
2530 pwr_now += busiest->__cpu_power *
2531 min(busiest_load_per_task, max_load);
2532 pwr_now += this->__cpu_power *
2533 min(this_load_per_task, this_load);
2534 pwr_now /= SCHED_LOAD_SCALE;
2535
2536 /* Amount of load we'd subtract */
2537 tmp = sg_div_cpu_power(busiest,
2538 busiest_load_per_task * SCHED_LOAD_SCALE);
2539 if (max_load > tmp)
2540 pwr_move += busiest->__cpu_power *
2541 min(busiest_load_per_task, max_load - tmp);
2542
2543 /* Amount of load we'd add */
2544 if (max_load * busiest->__cpu_power <
2545 busiest_load_per_task * SCHED_LOAD_SCALE)
2546 tmp = sg_div_cpu_power(this,
2547 max_load * busiest->__cpu_power);
2548 else
2549 tmp = sg_div_cpu_power(this,
2550 busiest_load_per_task * SCHED_LOAD_SCALE);
2551 pwr_move += this->__cpu_power *
2552 min(this_load_per_task, this_load + tmp);
2553 pwr_move /= SCHED_LOAD_SCALE;
2554
2555 /* Move if we gain throughput */
2556 if (pwr_move > pwr_now)
2557 *imbalance = busiest_load_per_task;
2558 }
2559
2560 return busiest;
2561
2562 out_balanced:
2563 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2564 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2565 goto ret;
2566
2567 if (this == group_leader && group_leader != group_min) {
2568 *imbalance = min_load_per_task;
2569 return group_min;
2570 }
2571 #endif
2572 ret:
2573 *imbalance = 0;
2574 return NULL;
2575 }
2576
2577 /*
2578 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2579 */
2580 static struct rq *
2581 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2582 unsigned long imbalance, cpumask_t *cpus)
2583 {
2584 struct rq *busiest = NULL, *rq;
2585 unsigned long max_load = 0;
2586 int i;
2587
2588 for_each_cpu_mask(i, group->cpumask) {
2589 unsigned long wl;
2590
2591 if (!cpu_isset(i, *cpus))
2592 continue;
2593
2594 rq = cpu_rq(i);
2595 wl = weighted_cpuload(i);
2596
2597 if (rq->nr_running == 1 && wl > imbalance)
2598 continue;
2599
2600 if (wl > max_load) {
2601 max_load = wl;
2602 busiest = rq;
2603 }
2604 }
2605
2606 return busiest;
2607 }
2608
2609 /*
2610 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2611 * so long as it is large enough.
2612 */
2613 #define MAX_PINNED_INTERVAL 512
2614
2615 /*
2616 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2617 * tasks if there is an imbalance.
2618 */
2619 static int load_balance(int this_cpu, struct rq *this_rq,
2620 struct sched_domain *sd, enum cpu_idle_type idle,
2621 int *balance)
2622 {
2623 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2624 struct sched_group *group;
2625 unsigned long imbalance;
2626 struct rq *busiest;
2627 cpumask_t cpus = CPU_MASK_ALL;
2628 unsigned long flags;
2629
2630 /*
2631 * When power savings policy is enabled for the parent domain, idle
2632 * sibling can pick up load irrespective of busy siblings. In this case,
2633 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2634 * portraying it as CPU_NOT_IDLE.
2635 */
2636 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2637 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2638 sd_idle = 1;
2639
2640 schedstat_inc(sd, lb_cnt[idle]);
2641
2642 redo:
2643 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2644 &cpus, balance);
2645
2646 if (*balance == 0)
2647 goto out_balanced;
2648
2649 if (!group) {
2650 schedstat_inc(sd, lb_nobusyg[idle]);
2651 goto out_balanced;
2652 }
2653
2654 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
2655 if (!busiest) {
2656 schedstat_inc(sd, lb_nobusyq[idle]);
2657 goto out_balanced;
2658 }
2659
2660 BUG_ON(busiest == this_rq);
2661
2662 schedstat_add(sd, lb_imbalance[idle], imbalance);
2663
2664 ld_moved = 0;
2665 if (busiest->nr_running > 1) {
2666 /*
2667 * Attempt to move tasks. If find_busiest_group has found
2668 * an imbalance but busiest->nr_running <= 1, the group is
2669 * still unbalanced. ld_moved simply stays zero, so it is
2670 * correctly treated as an imbalance.
2671 */
2672 local_irq_save(flags);
2673 double_rq_lock(this_rq, busiest);
2674 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2675 imbalance, sd, idle, &all_pinned);
2676 double_rq_unlock(this_rq, busiest);
2677 local_irq_restore(flags);
2678
2679 /*
2680 * some other cpu did the load balance for us.
2681 */
2682 if (ld_moved && this_cpu != smp_processor_id())
2683 resched_cpu(this_cpu);
2684
2685 /* All tasks on this runqueue were pinned by CPU affinity */
2686 if (unlikely(all_pinned)) {
2687 cpu_clear(cpu_of(busiest), cpus);
2688 if (!cpus_empty(cpus))
2689 goto redo;
2690 goto out_balanced;
2691 }
2692 }
2693
2694 if (!ld_moved) {
2695 schedstat_inc(sd, lb_failed[idle]);
2696 sd->nr_balance_failed++;
2697
2698 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2699
2700 spin_lock_irqsave(&busiest->lock, flags);
2701
2702 /* don't kick the migration_thread, if the curr
2703 * task on busiest cpu can't be moved to this_cpu
2704 */
2705 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2706 spin_unlock_irqrestore(&busiest->lock, flags);
2707 all_pinned = 1;
2708 goto out_one_pinned;
2709 }
2710
2711 if (!busiest->active_balance) {
2712 busiest->active_balance = 1;
2713 busiest->push_cpu = this_cpu;
2714 active_balance = 1;
2715 }
2716 spin_unlock_irqrestore(&busiest->lock, flags);
2717 if (active_balance)
2718 wake_up_process(busiest->migration_thread);
2719
2720 /*
2721 * We've kicked active balancing, reset the failure
2722 * counter.
2723 */
2724 sd->nr_balance_failed = sd->cache_nice_tries+1;
2725 }
2726 } else
2727 sd->nr_balance_failed = 0;
2728
2729 if (likely(!active_balance)) {
2730 /* We were unbalanced, so reset the balancing interval */
2731 sd->balance_interval = sd->min_interval;
2732 } else {
2733 /*
2734 * If we've begun active balancing, start to back off. This
2735 * case may not be covered by the all_pinned logic if there
2736 * is only 1 task on the busy runqueue (because we don't call
2737 * move_tasks).
2738 */
2739 if (sd->balance_interval < sd->max_interval)
2740 sd->balance_interval *= 2;
2741 }
2742
2743 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2744 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2745 return -1;
2746 return ld_moved;
2747
2748 out_balanced:
2749 schedstat_inc(sd, lb_balanced[idle]);
2750
2751 sd->nr_balance_failed = 0;
2752
2753 out_one_pinned:
2754 /* tune up the balancing interval */
2755 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2756 (sd->balance_interval < sd->max_interval))
2757 sd->balance_interval *= 2;
2758
2759 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2760 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2761 return -1;
2762 return 0;
2763 }
2764
2765 /*
2766 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2767 * tasks if there is an imbalance.
2768 *
2769 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
2770 * this_rq is locked.
2771 */
2772 static int
2773 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
2774 {
2775 struct sched_group *group;
2776 struct rq *busiest = NULL;
2777 unsigned long imbalance;
2778 int ld_moved = 0;
2779 int sd_idle = 0;
2780 int all_pinned = 0;
2781 cpumask_t cpus = CPU_MASK_ALL;
2782
2783 /*
2784 * When power savings policy is enabled for the parent domain, idle
2785 * sibling can pick up load irrespective of busy siblings. In this case,
2786 * let the state of idle sibling percolate up as IDLE, instead of
2787 * portraying it as CPU_NOT_IDLE.
2788 */
2789 if (sd->flags & SD_SHARE_CPUPOWER &&
2790 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2791 sd_idle = 1;
2792
2793 schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
2794 redo:
2795 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2796 &sd_idle, &cpus, NULL);
2797 if (!group) {
2798 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2799 goto out_balanced;
2800 }
2801
2802 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2803 &cpus);
2804 if (!busiest) {
2805 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2806 goto out_balanced;
2807 }
2808
2809 BUG_ON(busiest == this_rq);
2810
2811 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2812
2813 ld_moved = 0;
2814 if (busiest->nr_running > 1) {
2815 /* Attempt to move tasks */
2816 double_lock_balance(this_rq, busiest);
2817 /* this_rq->clock is already updated */
2818 update_rq_clock(busiest);
2819 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2820 imbalance, sd, CPU_NEWLY_IDLE,
2821 &all_pinned);
2822 spin_unlock(&busiest->lock);
2823
2824 if (unlikely(all_pinned)) {
2825 cpu_clear(cpu_of(busiest), cpus);
2826 if (!cpus_empty(cpus))
2827 goto redo;
2828 }
2829 }
2830
2831 if (!ld_moved) {
2832 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2833 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2834 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2835 return -1;
2836 } else
2837 sd->nr_balance_failed = 0;
2838
2839 return ld_moved;
2840
2841 out_balanced:
2842 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2843 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2844 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2845 return -1;
2846 sd->nr_balance_failed = 0;
2847
2848 return 0;
2849 }
2850
2851 /*
2852 * idle_balance is called by schedule() if this_cpu is about to become
2853 * idle. Attempts to pull tasks from other CPUs.
2854 */
2855 static void idle_balance(int this_cpu, struct rq *this_rq)
2856 {
2857 struct sched_domain *sd;
2858 int pulled_task = -1;
2859 unsigned long next_balance = jiffies + HZ;
2860
2861 for_each_domain(this_cpu, sd) {
2862 unsigned long interval;
2863
2864 if (!(sd->flags & SD_LOAD_BALANCE))
2865 continue;
2866
2867 if (sd->flags & SD_BALANCE_NEWIDLE)
2868 /* If we've pulled tasks over stop searching: */
2869 pulled_task = load_balance_newidle(this_cpu,
2870 this_rq, sd);
2871
2872 interval = msecs_to_jiffies(sd->balance_interval);
2873 if (time_after(next_balance, sd->last_balance + interval))
2874 next_balance = sd->last_balance + interval;
2875 if (pulled_task)
2876 break;
2877 }
2878 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
2879 /*
2880 * We are going idle. next_balance may be set based on
2881 * a busy processor. So reset next_balance.
2882 */
2883 this_rq->next_balance = next_balance;
2884 }
2885 }
2886
2887 /*
2888 * active_load_balance is run by migration threads. It pushes running tasks
2889 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2890 * running on each physical CPU where possible, and avoids physical /
2891 * logical imbalances.
2892 *
2893 * Called with busiest_rq locked.
2894 */
2895 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
2896 {
2897 int target_cpu = busiest_rq->push_cpu;
2898 struct sched_domain *sd;
2899 struct rq *target_rq;
2900
2901 /* Is there any task to move? */
2902 if (busiest_rq->nr_running <= 1)
2903 return;
2904
2905 target_rq = cpu_rq(target_cpu);
2906
2907 /*
2908 * This condition is "impossible", if it occurs
2909 * we need to fix it. Originally reported by
2910 * Bjorn Helgaas on a 128-cpu setup.
2911 */
2912 BUG_ON(busiest_rq == target_rq);
2913
2914 /* move a task from busiest_rq to target_rq */
2915 double_lock_balance(busiest_rq, target_rq);
2916 update_rq_clock(busiest_rq);
2917 update_rq_clock(target_rq);
2918
2919 /* Search for an sd spanning us and the target CPU. */
2920 for_each_domain(target_cpu, sd) {
2921 if ((sd->flags & SD_LOAD_BALANCE) &&
2922 cpu_isset(busiest_cpu, sd->span))
2923 break;
2924 }
2925
2926 if (likely(sd)) {
2927 schedstat_inc(sd, alb_cnt);
2928
2929 if (move_one_task(target_rq, target_cpu, busiest_rq,
2930 sd, CPU_IDLE))
2931 schedstat_inc(sd, alb_pushed);
2932 else
2933 schedstat_inc(sd, alb_failed);
2934 }
2935 spin_unlock(&target_rq->lock);
2936 }
2937
2938 #ifdef CONFIG_NO_HZ
2939 static struct {
2940 atomic_t load_balancer;
2941 cpumask_t cpu_mask;
2942 } nohz ____cacheline_aligned = {
2943 .load_balancer = ATOMIC_INIT(-1),
2944 .cpu_mask = CPU_MASK_NONE,
2945 };
2946
2947 /*
2948 * This routine will try to nominate the ilb (idle load balancing)
2949 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
2950 * load balancing on behalf of all those cpus. If all the cpus in the system
2951 * go into this tickless mode, then there will be no ilb owner (as there is
2952 * no need for one) and all the cpus will sleep till the next wakeup event
2953 * arrives...
2954 *
2955 * For the ilb owner, tick is not stopped. And this tick will be used
2956 * for idle load balancing. ilb owner will still be part of
2957 * nohz.cpu_mask..
2958 *
2959 * While stopping the tick, this cpu will become the ilb owner if there
2960 * is no other owner. And will be the owner till that cpu becomes busy
2961 * or if all cpus in the system stop their ticks at which point
2962 * there is no need for ilb owner.
2963 *
2964 * When the ilb owner becomes busy, it nominates another owner, during the
2965 * next busy scheduler_tick()
2966 */
2967 int select_nohz_load_balancer(int stop_tick)
2968 {
2969 int cpu = smp_processor_id();
2970
2971 if (stop_tick) {
2972 cpu_set(cpu, nohz.cpu_mask);
2973 cpu_rq(cpu)->in_nohz_recently = 1;
2974
2975 /*
2976 * If we are going offline and still the leader, give up!
2977 */
2978 if (cpu_is_offline(cpu) &&
2979 atomic_read(&nohz.load_balancer) == cpu) {
2980 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2981 BUG();
2982 return 0;
2983 }
2984
2985 /* time for ilb owner also to sleep */
2986 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
2987 if (atomic_read(&nohz.load_balancer) == cpu)
2988 atomic_set(&nohz.load_balancer, -1);
2989 return 0;
2990 }
2991
2992 if (atomic_read(&nohz.load_balancer) == -1) {
2993 /* make me the ilb owner */
2994 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
2995 return 1;
2996 } else if (atomic_read(&nohz.load_balancer) == cpu)
2997 return 1;
2998 } else {
2999 if (!cpu_isset(cpu, nohz.cpu_mask))
3000 return 0;
3001
3002 cpu_clear(cpu, nohz.cpu_mask);
3003
3004 if (atomic_read(&nohz.load_balancer) == cpu)
3005 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3006 BUG();
3007 }
3008 return 0;
3009 }
3010 #endif
3011
3012 static DEFINE_SPINLOCK(balancing);
3013
3014 /*
3015 * It checks each scheduling domain to see if it is due to be balanced,
3016 * and initiates a balancing operation if so.
3017 *
3018 * Balancing parameters are set up in arch_init_sched_domains.
3019 */
3020 static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
3021 {
3022 int balance = 1;
3023 struct rq *rq = cpu_rq(cpu);
3024 unsigned long interval;
3025 struct sched_domain *sd;
3026 /* Earliest time when we have to do rebalance again */
3027 unsigned long next_balance = jiffies + 60*HZ;
3028 int update_next_balance = 0;
3029
3030 for_each_domain(cpu, sd) {
3031 if (!(sd->flags & SD_LOAD_BALANCE))
3032 continue;
3033
3034 interval = sd->balance_interval;
3035 if (idle != CPU_IDLE)
3036 interval *= sd->busy_factor;
3037
3038 /* scale ms to jiffies */
3039 interval = msecs_to_jiffies(interval);
3040 if (unlikely(!interval))
3041 interval = 1;
3042 if (interval > HZ*NR_CPUS/10)
3043 interval = HZ*NR_CPUS/10;
3044
3045
3046 if (sd->flags & SD_SERIALIZE) {
3047 if (!spin_trylock(&balancing))
3048 goto out;
3049 }
3050
3051 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3052 if (load_balance(cpu, rq, sd, idle, &balance)) {
3053 /*
3054 * We've pulled tasks over so either we're no
3055 * longer idle, or one of our SMT siblings is
3056 * not idle.
3057 */
3058 idle = CPU_NOT_IDLE;
3059 }
3060 sd->last_balance = jiffies;
3061 }
3062 if (sd->flags & SD_SERIALIZE)
3063 spin_unlock(&balancing);
3064 out:
3065 if (time_after(next_balance, sd->last_balance + interval)) {
3066 next_balance = sd->last_balance + interval;
3067 update_next_balance = 1;
3068 }
3069
3070 /*
3071 * Stop the load balance at this level. There is another
3072 * CPU in our sched group which is doing load balancing more
3073 * actively.
3074 */
3075 if (!balance)
3076 break;
3077 }
3078
3079 /*
3080 * next_balance will be updated only when there is a need.
3081 * When the cpu is attached to null domain for ex, it will not be
3082 * updated.
3083 */
3084 if (likely(update_next_balance))
3085 rq->next_balance = next_balance;
3086 }
3087
3088 /*
3089 * run_rebalance_domains is triggered when needed from the scheduler tick.
3090 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3091 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3092 */
3093 static void run_rebalance_domains(struct softirq_action *h)
3094 {
3095 int this_cpu = smp_processor_id();
3096 struct rq *this_rq = cpu_rq(this_cpu);
3097 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3098 CPU_IDLE : CPU_NOT_IDLE;
3099
3100 rebalance_domains(this_cpu, idle);
3101
3102 #ifdef CONFIG_NO_HZ
3103 /*
3104 * If this cpu is the owner for idle load balancing, then do the
3105 * balancing on behalf of the other idle cpus whose ticks are
3106 * stopped.
3107 */
3108 if (this_rq->idle_at_tick &&
3109 atomic_read(&nohz.load_balancer) == this_cpu) {
3110 cpumask_t cpus = nohz.cpu_mask;
3111 struct rq *rq;
3112 int balance_cpu;
3113
3114 cpu_clear(this_cpu, cpus);
3115 for_each_cpu_mask(balance_cpu, cpus) {
3116 /*
3117 * If this cpu gets work to do, stop the load balancing
3118 * work being done for other cpus. Next load
3119 * balancing owner will pick it up.
3120 */
3121 if (need_resched())
3122 break;
3123
3124 rebalance_domains(balance_cpu, CPU_IDLE);
3125
3126 rq = cpu_rq(balance_cpu);
3127 if (time_after(this_rq->next_balance, rq->next_balance))
3128 this_rq->next_balance = rq->next_balance;
3129 }
3130 }
3131 #endif
3132 }
3133
3134 /*
3135 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3136 *
3137 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3138 * idle load balancing owner or decide to stop the periodic load balancing,
3139 * if the whole system is idle.
3140 */
3141 static inline void trigger_load_balance(struct rq *rq, int cpu)
3142 {
3143 #ifdef CONFIG_NO_HZ
3144 /*
3145 * If we were in the nohz mode recently and busy at the current
3146 * scheduler tick, then check if we need to nominate new idle
3147 * load balancer.
3148 */
3149 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3150 rq->in_nohz_recently = 0;
3151
3152 if (atomic_read(&nohz.load_balancer) == cpu) {
3153 cpu_clear(cpu, nohz.cpu_mask);
3154 atomic_set(&nohz.load_balancer, -1);
3155 }
3156
3157 if (atomic_read(&nohz.load_balancer) == -1) {
3158 /*
3159 * simple selection for now: Nominate the
3160 * first cpu in the nohz list to be the next
3161 * ilb owner.
3162 *
3163 * TBD: Traverse the sched domains and nominate
3164 * the nearest cpu in the nohz.cpu_mask.
3165 */
3166 int ilb = first_cpu(nohz.cpu_mask);
3167
3168 if (ilb != NR_CPUS)
3169 resched_cpu(ilb);
3170 }
3171 }
3172
3173 /*
3174 * If this cpu is idle and doing idle load balancing for all the
3175 * cpus with ticks stopped, is it time for that to stop?
3176 */
3177 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3178 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3179 resched_cpu(cpu);
3180 return;
3181 }
3182
3183 /*
3184 * If this cpu is idle and the idle load balancing is done by
3185 * someone else, then no need raise the SCHED_SOFTIRQ
3186 */
3187 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3188 cpu_isset(cpu, nohz.cpu_mask))
3189 return;
3190 #endif
3191 if (time_after_eq(jiffies, rq->next_balance))
3192 raise_softirq(SCHED_SOFTIRQ);
3193 }
3194
3195 #else /* CONFIG_SMP */
3196
3197 /*
3198 * on UP we do not need to balance between CPUs:
3199 */
3200 static inline void idle_balance(int cpu, struct rq *rq)
3201 {
3202 }
3203
3204 /* Avoid "used but not defined" warning on UP */
3205 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3206 unsigned long max_nr_move, unsigned long max_load_move,
3207 struct sched_domain *sd, enum cpu_idle_type idle,
3208 int *all_pinned, unsigned long *load_moved,
3209 int *this_best_prio, struct rq_iterator *iterator)
3210 {
3211 *load_moved = 0;
3212
3213 return 0;
3214 }
3215
3216 #endif
3217
3218 DEFINE_PER_CPU(struct kernel_stat, kstat);
3219
3220 EXPORT_PER_CPU_SYMBOL(kstat);
3221
3222 /*
3223 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3224 * that have not yet been banked in case the task is currently running.
3225 */
3226 unsigned long long task_sched_runtime(struct task_struct *p)
3227 {
3228 unsigned long flags;
3229 u64 ns, delta_exec;
3230 struct rq *rq;
3231
3232 rq = task_rq_lock(p, &flags);
3233 ns = p->se.sum_exec_runtime;
3234 if (rq->curr == p) {
3235 update_rq_clock(rq);
3236 delta_exec = rq->clock - p->se.exec_start;
3237 if ((s64)delta_exec > 0)
3238 ns += delta_exec;
3239 }
3240 task_rq_unlock(rq, &flags);
3241
3242 return ns;
3243 }
3244
3245 /*
3246 * Account user cpu time to a process.
3247 * @p: the process that the cpu time gets accounted to
3248 * @hardirq_offset: the offset to subtract from hardirq_count()
3249 * @cputime: the cpu time spent in user space since the last update
3250 */
3251 void account_user_time(struct task_struct *p, cputime_t cputime)
3252 {
3253 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3254 cputime64_t tmp;
3255
3256 p->utime = cputime_add(p->utime, cputime);
3257
3258 /* Add user time to cpustat. */
3259 tmp = cputime_to_cputime64(cputime);
3260 if (TASK_NICE(p) > 0)
3261 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3262 else
3263 cpustat->user = cputime64_add(cpustat->user, tmp);
3264 }
3265
3266 /*
3267 * Account system cpu time to a process.
3268 * @p: the process that the cpu time gets accounted to
3269 * @hardirq_offset: the offset to subtract from hardirq_count()
3270 * @cputime: the cpu time spent in kernel space since the last update
3271 */
3272 void account_system_time(struct task_struct *p, int hardirq_offset,
3273 cputime_t cputime)
3274 {
3275 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3276 struct rq *rq = this_rq();
3277 cputime64_t tmp;
3278
3279 p->stime = cputime_add(p->stime, cputime);
3280
3281 /* Add system time to cpustat. */
3282 tmp = cputime_to_cputime64(cputime);
3283 if (hardirq_count() - hardirq_offset)
3284 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3285 else if (softirq_count())
3286 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3287 else if (p != rq->idle)
3288 cpustat->system = cputime64_add(cpustat->system, tmp);
3289 else if (atomic_read(&rq->nr_iowait) > 0)
3290 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3291 else
3292 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3293 /* Account for system time used */
3294 acct_update_integrals(p);
3295 }
3296
3297 /*
3298 * Account for involuntary wait time.
3299 * @p: the process from which the cpu time has been stolen
3300 * @steal: the cpu time spent in involuntary wait
3301 */
3302 void account_steal_time(struct task_struct *p, cputime_t steal)
3303 {
3304 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3305 cputime64_t tmp = cputime_to_cputime64(steal);
3306 struct rq *rq = this_rq();
3307
3308 if (p == rq->idle) {
3309 p->stime = cputime_add(p->stime, steal);
3310 if (atomic_read(&rq->nr_iowait) > 0)
3311 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3312 else
3313 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3314 } else
3315 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3316 }
3317
3318 /*
3319 * This function gets called by the timer code, with HZ frequency.
3320 * We call it with interrupts disabled.
3321 *
3322 * It also gets called by the fork code, when changing the parent's
3323 * timeslices.
3324 */
3325 void scheduler_tick(void)
3326 {
3327 int cpu = smp_processor_id();
3328 struct rq *rq = cpu_rq(cpu);
3329 struct task_struct *curr = rq->curr;
3330 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
3331
3332 spin_lock(&rq->lock);
3333 __update_rq_clock(rq);
3334 /*
3335 * Let rq->clock advance by at least TICK_NSEC:
3336 */
3337 if (unlikely(rq->clock < next_tick))
3338 rq->clock = next_tick;
3339 rq->tick_timestamp = rq->clock;
3340 update_cpu_load(rq);
3341 if (curr != rq->idle) /* FIXME: needed? */
3342 curr->sched_class->task_tick(rq, curr);
3343 spin_unlock(&rq->lock);
3344
3345 #ifdef CONFIG_SMP
3346 rq->idle_at_tick = idle_cpu(cpu);
3347 trigger_load_balance(rq, cpu);
3348 #endif
3349 }
3350
3351 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3352
3353 void fastcall add_preempt_count(int val)
3354 {
3355 /*
3356 * Underflow?
3357 */
3358 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3359 return;
3360 preempt_count() += val;
3361 /*
3362 * Spinlock count overflowing soon?
3363 */
3364 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3365 PREEMPT_MASK - 10);
3366 }
3367 EXPORT_SYMBOL(add_preempt_count);
3368
3369 void fastcall sub_preempt_count(int val)
3370 {
3371 /*
3372 * Underflow?
3373 */
3374 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3375 return;
3376 /*
3377 * Is the spinlock portion underflowing?
3378 */
3379 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3380 !(preempt_count() & PREEMPT_MASK)))
3381 return;
3382
3383 preempt_count() -= val;
3384 }
3385 EXPORT_SYMBOL(sub_preempt_count);
3386
3387 #endif
3388
3389 /*
3390 * Print scheduling while atomic bug:
3391 */
3392 static noinline void __schedule_bug(struct task_struct *prev)
3393 {
3394 printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
3395 prev->comm, preempt_count(), prev->pid);
3396 debug_show_held_locks(prev);
3397 if (irqs_disabled())
3398 print_irqtrace_events(prev);
3399 dump_stack();
3400 }
3401
3402 /*
3403 * Various schedule()-time debugging checks and statistics:
3404 */
3405 static inline void schedule_debug(struct task_struct *prev)
3406 {
3407 /*
3408 * Test if we are atomic. Since do_exit() needs to call into
3409 * schedule() atomically, we ignore that path for now.
3410 * Otherwise, whine if we are scheduling when we should not be.
3411 */
3412 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3413 __schedule_bug(prev);
3414
3415 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3416
3417 schedstat_inc(this_rq(), sched_cnt);
3418 #ifdef CONFIG_SCHEDSTATS
3419 if (unlikely(prev->lock_depth >= 0)) {
3420 schedstat_inc(this_rq(), bkl_cnt);
3421 schedstat_inc(prev, sched_info.bkl_cnt);
3422 }
3423 #endif
3424 }
3425
3426 /*
3427 * Pick up the highest-prio task:
3428 */
3429 static inline struct task_struct *
3430 pick_next_task(struct rq *rq, struct task_struct *prev)
3431 {
3432 struct sched_class *class;
3433 struct task_struct *p;
3434
3435 /*
3436 * Optimization: we know that if all tasks are in
3437 * the fair class we can call that function directly:
3438 */
3439 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3440 p = fair_sched_class.pick_next_task(rq);
3441 if (likely(p))
3442 return p;
3443 }
3444
3445 class = sched_class_highest;
3446 for ( ; ; ) {
3447 p = class->pick_next_task(rq);
3448 if (p)
3449 return p;
3450 /*
3451 * Will never be NULL as the idle class always
3452 * returns a non-NULL p:
3453 */
3454 class = class->next;
3455 }
3456 }
3457
3458 /*
3459 * schedule() is the main scheduler function.
3460 */
3461 asmlinkage void __sched schedule(void)
3462 {
3463 struct task_struct *prev, *next;
3464 long *switch_count;
3465 struct rq *rq;
3466 int cpu;
3467
3468 need_resched:
3469 preempt_disable();
3470 cpu = smp_processor_id();
3471 rq = cpu_rq(cpu);
3472 rcu_qsctr_inc(cpu);
3473 prev = rq->curr;
3474 switch_count = &prev->nivcsw;
3475
3476 release_kernel_lock(prev);
3477 need_resched_nonpreemptible:
3478
3479 schedule_debug(prev);
3480
3481 spin_lock_irq(&rq->lock);
3482 clear_tsk_need_resched(prev);
3483 __update_rq_clock(rq);
3484
3485 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3486 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3487 unlikely(signal_pending(prev)))) {
3488 prev->state = TASK_RUNNING;
3489 } else {
3490 deactivate_task(rq, prev, 1);
3491 }
3492 switch_count = &prev->nvcsw;
3493 }
3494
3495 if (unlikely(!rq->nr_running))
3496 idle_balance(cpu, rq);
3497
3498 prev->sched_class->put_prev_task(rq, prev);
3499 next = pick_next_task(rq, prev);
3500
3501 sched_info_switch(prev, next);
3502
3503 if (likely(prev != next)) {
3504 rq->nr_switches++;
3505 rq->curr = next;
3506 ++*switch_count;
3507
3508 context_switch(rq, prev, next); /* unlocks the rq */
3509 } else
3510 spin_unlock_irq(&rq->lock);
3511
3512 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3513 cpu = smp_processor_id();
3514 rq = cpu_rq(cpu);
3515 goto need_resched_nonpreemptible;
3516 }
3517 preempt_enable_no_resched();
3518 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3519 goto need_resched;
3520 }
3521 EXPORT_SYMBOL(schedule);
3522
3523 #ifdef CONFIG_PREEMPT
3524 /*
3525 * this is the entry point to schedule() from in-kernel preemption
3526 * off of preempt_enable. Kernel preemptions off return from interrupt
3527 * occur there and call schedule directly.
3528 */
3529 asmlinkage void __sched preempt_schedule(void)
3530 {
3531 struct thread_info *ti = current_thread_info();
3532 #ifdef CONFIG_PREEMPT_BKL
3533 struct task_struct *task = current;
3534 int saved_lock_depth;
3535 #endif
3536 /*
3537 * If there is a non-zero preempt_count or interrupts are disabled,
3538 * we do not want to preempt the current task. Just return..
3539 */
3540 if (likely(ti->preempt_count || irqs_disabled()))
3541 return;
3542
3543 need_resched:
3544 add_preempt_count(PREEMPT_ACTIVE);
3545 /*
3546 * We keep the big kernel semaphore locked, but we
3547 * clear ->lock_depth so that schedule() doesnt
3548 * auto-release the semaphore:
3549 */
3550 #ifdef CONFIG_PREEMPT_BKL
3551 saved_lock_depth = task->lock_depth;
3552 task->lock_depth = -1;
3553 #endif
3554 schedule();
3555 #ifdef CONFIG_PREEMPT_BKL
3556 task->lock_depth = saved_lock_depth;
3557 #endif
3558 sub_preempt_count(PREEMPT_ACTIVE);
3559
3560 /* we could miss a preemption opportunity between schedule and now */
3561 barrier();
3562 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3563 goto need_resched;
3564 }
3565 EXPORT_SYMBOL(preempt_schedule);
3566
3567 /*
3568 * this is the entry point to schedule() from kernel preemption
3569 * off of irq context.
3570 * Note, that this is called and return with irqs disabled. This will
3571 * protect us against recursive calling from irq.
3572 */
3573 asmlinkage void __sched preempt_schedule_irq(void)
3574 {
3575 struct thread_info *ti = current_thread_info();
3576 #ifdef CONFIG_PREEMPT_BKL
3577 struct task_struct *task = current;
3578 int saved_lock_depth;
3579 #endif
3580 /* Catch callers which need to be fixed */
3581 BUG_ON(ti->preempt_count || !irqs_disabled());
3582
3583 need_resched:
3584 add_preempt_count(PREEMPT_ACTIVE);
3585 /*
3586 * We keep the big kernel semaphore locked, but we
3587 * clear ->lock_depth so that schedule() doesnt
3588 * auto-release the semaphore:
3589 */
3590 #ifdef CONFIG_PREEMPT_BKL
3591 saved_lock_depth = task->lock_depth;
3592 task->lock_depth = -1;
3593 #endif
3594 local_irq_enable();
3595 schedule();
3596 local_irq_disable();
3597 #ifdef CONFIG_PREEMPT_BKL
3598 task->lock_depth = saved_lock_depth;
3599 #endif
3600 sub_preempt_count(PREEMPT_ACTIVE);
3601
3602 /* we could miss a preemption opportunity between schedule and now */
3603 barrier();
3604 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3605 goto need_resched;
3606 }
3607
3608 #endif /* CONFIG_PREEMPT */
3609
3610 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3611 void *key)
3612 {
3613 return try_to_wake_up(curr->private, mode, sync);
3614 }
3615 EXPORT_SYMBOL(default_wake_function);
3616
3617 /*
3618 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3619 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3620 * number) then we wake all the non-exclusive tasks and one exclusive task.
3621 *
3622 * There are circumstances in which we can try to wake a task which has already
3623 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3624 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3625 */
3626 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3627 int nr_exclusive, int sync, void *key)
3628 {
3629 wait_queue_t *curr, *next;
3630
3631 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3632 unsigned flags = curr->flags;
3633
3634 if (curr->func(curr, mode, sync, key) &&
3635 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3636 break;
3637 }
3638 }
3639
3640 /**
3641 * __wake_up - wake up threads blocked on a waitqueue.
3642 * @q: the waitqueue
3643 * @mode: which threads
3644 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3645 * @key: is directly passed to the wakeup function
3646 */
3647 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3648 int nr_exclusive, void *key)
3649 {
3650 unsigned long flags;
3651
3652 spin_lock_irqsave(&q->lock, flags);
3653 __wake_up_common(q, mode, nr_exclusive, 0, key);
3654 spin_unlock_irqrestore(&q->lock, flags);
3655 }
3656 EXPORT_SYMBOL(__wake_up);
3657
3658 /*
3659 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3660 */
3661 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3662 {
3663 __wake_up_common(q, mode, 1, 0, NULL);
3664 }
3665
3666 /**
3667 * __wake_up_sync - wake up threads blocked on a waitqueue.
3668 * @q: the waitqueue
3669 * @mode: which threads
3670 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3671 *
3672 * The sync wakeup differs that the waker knows that it will schedule
3673 * away soon, so while the target thread will be woken up, it will not
3674 * be migrated to another CPU - ie. the two threads are 'synchronized'
3675 * with each other. This can prevent needless bouncing between CPUs.
3676 *
3677 * On UP it can prevent extra preemption.
3678 */
3679 void fastcall
3680 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3681 {
3682 unsigned long flags;
3683 int sync = 1;
3684
3685 if (unlikely(!q))
3686 return;
3687
3688 if (unlikely(!nr_exclusive))
3689 sync = 0;
3690
3691 spin_lock_irqsave(&q->lock, flags);
3692 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3693 spin_unlock_irqrestore(&q->lock, flags);
3694 }
3695 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3696
3697 void fastcall complete(struct completion *x)
3698 {
3699 unsigned long flags;
3700
3701 spin_lock_irqsave(&x->wait.lock, flags);
3702 x->done++;
3703 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3704 1, 0, NULL);
3705 spin_unlock_irqrestore(&x->wait.lock, flags);
3706 }
3707 EXPORT_SYMBOL(complete);
3708
3709 void fastcall complete_all(struct completion *x)
3710 {
3711 unsigned long flags;
3712
3713 spin_lock_irqsave(&x->wait.lock, flags);
3714 x->done += UINT_MAX/2;
3715 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3716 0, 0, NULL);
3717 spin_unlock_irqrestore(&x->wait.lock, flags);
3718 }
3719 EXPORT_SYMBOL(complete_all);
3720
3721 void fastcall __sched wait_for_completion(struct completion *x)
3722 {
3723 might_sleep();
3724
3725 spin_lock_irq(&x->wait.lock);
3726 if (!x->done) {
3727 DECLARE_WAITQUEUE(wait, current);
3728
3729 wait.flags |= WQ_FLAG_EXCLUSIVE;
3730 __add_wait_queue_tail(&x->wait, &wait);
3731 do {
3732 __set_current_state(TASK_UNINTERRUPTIBLE);
3733 spin_unlock_irq(&x->wait.lock);
3734 schedule();
3735 spin_lock_irq(&x->wait.lock);
3736 } while (!x->done);
3737 __remove_wait_queue(&x->wait, &wait);
3738 }
3739 x->done--;
3740 spin_unlock_irq(&x->wait.lock);
3741 }
3742 EXPORT_SYMBOL(wait_for_completion);
3743
3744 unsigned long fastcall __sched
3745 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3746 {
3747 might_sleep();
3748
3749 spin_lock_irq(&x->wait.lock);
3750 if (!x->done) {
3751 DECLARE_WAITQUEUE(wait, current);
3752
3753 wait.flags |= WQ_FLAG_EXCLUSIVE;
3754 __add_wait_queue_tail(&x->wait, &wait);
3755 do {
3756 __set_current_state(TASK_UNINTERRUPTIBLE);
3757 spin_unlock_irq(&x->wait.lock);
3758 timeout = schedule_timeout(timeout);
3759 spin_lock_irq(&x->wait.lock);
3760 if (!timeout) {
3761 __remove_wait_queue(&x->wait, &wait);
3762 goto out;
3763 }
3764 } while (!x->done);
3765 __remove_wait_queue(&x->wait, &wait);
3766 }
3767 x->done--;
3768 out:
3769 spin_unlock_irq(&x->wait.lock);
3770 return timeout;
3771 }
3772 EXPORT_SYMBOL(wait_for_completion_timeout);
3773
3774 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3775 {
3776 int ret = 0;
3777
3778 might_sleep();
3779
3780 spin_lock_irq(&x->wait.lock);
3781 if (!x->done) {
3782 DECLARE_WAITQUEUE(wait, current);
3783
3784 wait.flags |= WQ_FLAG_EXCLUSIVE;
3785 __add_wait_queue_tail(&x->wait, &wait);
3786 do {
3787 if (signal_pending(current)) {
3788 ret = -ERESTARTSYS;
3789 __remove_wait_queue(&x->wait, &wait);
3790 goto out;
3791 }
3792 __set_current_state(TASK_INTERRUPTIBLE);
3793 spin_unlock_irq(&x->wait.lock);
3794 schedule();
3795 spin_lock_irq(&x->wait.lock);
3796 } while (!x->done);
3797 __remove_wait_queue(&x->wait, &wait);
3798 }
3799 x->done--;
3800 out:
3801 spin_unlock_irq(&x->wait.lock);
3802
3803 return ret;
3804 }
3805 EXPORT_SYMBOL(wait_for_completion_interruptible);
3806
3807 unsigned long fastcall __sched
3808 wait_for_completion_interruptible_timeout(struct completion *x,
3809 unsigned long timeout)
3810 {
3811 might_sleep();
3812
3813 spin_lock_irq(&x->wait.lock);
3814 if (!x->done) {
3815 DECLARE_WAITQUEUE(wait, current);
3816
3817 wait.flags |= WQ_FLAG_EXCLUSIVE;
3818 __add_wait_queue_tail(&x->wait, &wait);
3819 do {
3820 if (signal_pending(current)) {
3821 timeout = -ERESTARTSYS;
3822 __remove_wait_queue(&x->wait, &wait);
3823 goto out;
3824 }
3825 __set_current_state(TASK_INTERRUPTIBLE);
3826 spin_unlock_irq(&x->wait.lock);
3827 timeout = schedule_timeout(timeout);
3828 spin_lock_irq(&x->wait.lock);
3829 if (!timeout) {
3830 __remove_wait_queue(&x->wait, &wait);
3831 goto out;
3832 }
3833 } while (!x->done);
3834 __remove_wait_queue(&x->wait, &wait);
3835 }
3836 x->done--;
3837 out:
3838 spin_unlock_irq(&x->wait.lock);
3839 return timeout;
3840 }
3841 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3842
3843 static inline void
3844 sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3845 {
3846 spin_lock_irqsave(&q->lock, *flags);
3847 __add_wait_queue(q, wait);
3848 spin_unlock(&q->lock);
3849 }
3850
3851 static inline void
3852 sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3853 {
3854 spin_lock_irq(&q->lock);
3855 __remove_wait_queue(q, wait);
3856 spin_unlock_irqrestore(&q->lock, *flags);
3857 }
3858
3859 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3860 {
3861 unsigned long flags;
3862 wait_queue_t wait;
3863
3864 init_waitqueue_entry(&wait, current);
3865
3866 current->state = TASK_INTERRUPTIBLE;
3867
3868 sleep_on_head(q, &wait, &flags);
3869 schedule();
3870 sleep_on_tail(q, &wait, &flags);
3871 }
3872 EXPORT_SYMBOL(interruptible_sleep_on);
3873
3874 long __sched
3875 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3876 {
3877 unsigned long flags;
3878 wait_queue_t wait;
3879
3880 init_waitqueue_entry(&wait, current);
3881
3882 current->state = TASK_INTERRUPTIBLE;
3883
3884 sleep_on_head(q, &wait, &flags);
3885 timeout = schedule_timeout(timeout);
3886 sleep_on_tail(q, &wait, &flags);
3887
3888 return timeout;
3889 }
3890 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3891
3892 void __sched sleep_on(wait_queue_head_t *q)
3893 {
3894 unsigned long flags;
3895 wait_queue_t wait;
3896
3897 init_waitqueue_entry(&wait, current);
3898
3899 current->state = TASK_UNINTERRUPTIBLE;
3900
3901 sleep_on_head(q, &wait, &flags);
3902 schedule();
3903 sleep_on_tail(q, &wait, &flags);
3904 }
3905 EXPORT_SYMBOL(sleep_on);
3906
3907 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3908 {
3909 unsigned long flags;
3910 wait_queue_t wait;
3911
3912 init_waitqueue_entry(&wait, current);
3913
3914 current->state = TASK_UNINTERRUPTIBLE;
3915
3916 sleep_on_head(q, &wait, &flags);
3917 timeout = schedule_timeout(timeout);
3918 sleep_on_tail(q, &wait, &flags);
3919
3920 return timeout;
3921 }
3922 EXPORT_SYMBOL(sleep_on_timeout);
3923
3924 #ifdef CONFIG_RT_MUTEXES
3925
3926 /*
3927 * rt_mutex_setprio - set the current priority of a task
3928 * @p: task
3929 * @prio: prio value (kernel-internal form)
3930 *
3931 * This function changes the 'effective' priority of a task. It does
3932 * not touch ->normal_prio like __setscheduler().
3933 *
3934 * Used by the rt_mutex code to implement priority inheritance logic.
3935 */
3936 void rt_mutex_setprio(struct task_struct *p, int prio)
3937 {
3938 unsigned long flags;
3939 int oldprio, on_rq, running;
3940 struct rq *rq;
3941
3942 BUG_ON(prio < 0 || prio > MAX_PRIO);
3943
3944 rq = task_rq_lock(p, &flags);
3945 update_rq_clock(rq);
3946
3947 oldprio = p->prio;
3948 on_rq = p->se.on_rq;
3949 running = task_running(rq, p);
3950 if (on_rq) {
3951 dequeue_task(rq, p, 0);
3952 if (running)
3953 p->sched_class->put_prev_task(rq, p);
3954 }
3955
3956 if (rt_prio(prio))
3957 p->sched_class = &rt_sched_class;
3958 else
3959 p->sched_class = &fair_sched_class;
3960
3961 p->prio = prio;
3962
3963 if (on_rq) {
3964 if (running)
3965 p->sched_class->set_curr_task(rq);
3966 enqueue_task(rq, p, 0);
3967 /*
3968 * Reschedule if we are currently running on this runqueue and
3969 * our priority decreased, or if we are not currently running on
3970 * this runqueue and our priority is higher than the current's
3971 */
3972 if (running) {
3973 if (p->prio > oldprio)
3974 resched_task(rq->curr);
3975 } else {
3976 check_preempt_curr(rq, p);
3977 }
3978 }
3979 task_rq_unlock(rq, &flags);
3980 }
3981
3982 #endif
3983
3984 void set_user_nice(struct task_struct *p, long nice)
3985 {
3986 int old_prio, delta, on_rq;
3987 unsigned long flags;
3988 struct rq *rq;
3989
3990 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3991 return;
3992 /*
3993 * We have to be careful, if called from sys_setpriority(),
3994 * the task might be in the middle of scheduling on another CPU.
3995 */
3996 rq = task_rq_lock(p, &flags);
3997 update_rq_clock(rq);
3998 /*
3999 * The RT priorities are set via sched_setscheduler(), but we still
4000 * allow the 'normal' nice value to be set - but as expected
4001 * it wont have any effect on scheduling until the task is
4002 * SCHED_FIFO/SCHED_RR:
4003 */
4004 if (task_has_rt_policy(p)) {
4005 p->static_prio = NICE_TO_PRIO(nice);
4006 goto out_unlock;
4007 }
4008 on_rq = p->se.on_rq;
4009 if (on_rq) {
4010 dequeue_task(rq, p, 0);
4011 dec_load(rq, p);
4012 }
4013
4014 p->static_prio = NICE_TO_PRIO(nice);
4015 set_load_weight(p);
4016 old_prio = p->prio;
4017 p->prio = effective_prio(p);
4018 delta = p->prio - old_prio;
4019
4020 if (on_rq) {
4021 enqueue_task(rq, p, 0);
4022 inc_load(rq, p);
4023 /*
4024 * If the task increased its priority or is running and
4025 * lowered its priority, then reschedule its CPU:
4026 */
4027 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4028 resched_task(rq->curr);
4029 }
4030 out_unlock:
4031 task_rq_unlock(rq, &flags);
4032 }
4033 EXPORT_SYMBOL(set_user_nice);
4034
4035 /*
4036 * can_nice - check if a task can reduce its nice value
4037 * @p: task
4038 * @nice: nice value
4039 */
4040 int can_nice(const struct task_struct *p, const int nice)
4041 {
4042 /* convert nice value [19,-20] to rlimit style value [1,40] */
4043 int nice_rlim = 20 - nice;
4044
4045 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4046 capable(CAP_SYS_NICE));
4047 }
4048
4049 #ifdef __ARCH_WANT_SYS_NICE
4050
4051 /*
4052 * sys_nice - change the priority of the current process.
4053 * @increment: priority increment
4054 *
4055 * sys_setpriority is a more generic, but much slower function that
4056 * does similar things.
4057 */
4058 asmlinkage long sys_nice(int increment)
4059 {
4060 long nice, retval;
4061
4062 /*
4063 * Setpriority might change our priority at the same moment.
4064 * We don't have to worry. Conceptually one call occurs first
4065 * and we have a single winner.
4066 */
4067 if (increment < -40)
4068 increment = -40;
4069 if (increment > 40)
4070 increment = 40;
4071
4072 nice = PRIO_TO_NICE(current->static_prio) + increment;
4073 if (nice < -20)
4074 nice = -20;
4075 if (nice > 19)
4076 nice = 19;
4077
4078 if (increment < 0 && !can_nice(current, nice))
4079 return -EPERM;
4080
4081 retval = security_task_setnice(current, nice);
4082 if (retval)
4083 return retval;
4084
4085 set_user_nice(current, nice);
4086 return 0;
4087 }
4088
4089 #endif
4090
4091 /**
4092 * task_prio - return the priority value of a given task.
4093 * @p: the task in question.
4094 *
4095 * This is the priority value as seen by users in /proc.
4096 * RT tasks are offset by -200. Normal tasks are centered
4097 * around 0, value goes from -16 to +15.
4098 */
4099 int task_prio(const struct task_struct *p)
4100 {
4101 return p->prio - MAX_RT_PRIO;
4102 }
4103
4104 /**
4105 * task_nice - return the nice value of a given task.
4106 * @p: the task in question.
4107 */
4108 int task_nice(const struct task_struct *p)
4109 {
4110 return TASK_NICE(p);
4111 }
4112 EXPORT_SYMBOL_GPL(task_nice);
4113
4114 /**
4115 * idle_cpu - is a given cpu idle currently?
4116 * @cpu: the processor in question.
4117 */
4118 int idle_cpu(int cpu)
4119 {
4120 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4121 }
4122
4123 /**
4124 * idle_task - return the idle task for a given cpu.
4125 * @cpu: the processor in question.
4126 */
4127 struct task_struct *idle_task(int cpu)
4128 {
4129 return cpu_rq(cpu)->idle;
4130 }
4131
4132 /**
4133 * find_process_by_pid - find a process with a matching PID value.
4134 * @pid: the pid in question.
4135 */
4136 static inline struct task_struct *find_process_by_pid(pid_t pid)
4137 {
4138 return pid ? find_task_by_pid(pid) : current;
4139 }
4140
4141 /* Actually do priority change: must hold rq lock. */
4142 static void
4143 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4144 {
4145 BUG_ON(p->se.on_rq);
4146
4147 p->policy = policy;
4148 switch (p->policy) {
4149 case SCHED_NORMAL:
4150 case SCHED_BATCH:
4151 case SCHED_IDLE:
4152 p->sched_class = &fair_sched_class;
4153 break;
4154 case SCHED_FIFO:
4155 case SCHED_RR:
4156 p->sched_class = &rt_sched_class;
4157 break;
4158 }
4159
4160 p->rt_priority = prio;
4161 p->normal_prio = normal_prio(p);
4162 /* we are holding p->pi_lock already */
4163 p->prio = rt_mutex_getprio(p);
4164 set_load_weight(p);
4165 }
4166
4167 /**
4168 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4169 * @p: the task in question.
4170 * @policy: new policy.
4171 * @param: structure containing the new RT priority.
4172 *
4173 * NOTE that the task may be already dead.
4174 */
4175 int sched_setscheduler(struct task_struct *p, int policy,
4176 struct sched_param *param)
4177 {
4178 int retval, oldprio, oldpolicy = -1, on_rq, running;
4179 unsigned long flags;
4180 struct rq *rq;
4181
4182 /* may grab non-irq protected spin_locks */
4183 BUG_ON(in_interrupt());
4184 recheck:
4185 /* double check policy once rq lock held */
4186 if (policy < 0)
4187 policy = oldpolicy = p->policy;
4188 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4189 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4190 policy != SCHED_IDLE)
4191 return -EINVAL;
4192 /*
4193 * Valid priorities for SCHED_FIFO and SCHED_RR are
4194 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4195 * SCHED_BATCH and SCHED_IDLE is 0.
4196 */
4197 if (param->sched_priority < 0 ||
4198 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4199 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4200 return -EINVAL;
4201 if (rt_policy(policy) != (param->sched_priority != 0))
4202 return -EINVAL;
4203
4204 /*
4205 * Allow unprivileged RT tasks to decrease priority:
4206 */
4207 if (!capable(CAP_SYS_NICE)) {
4208 if (rt_policy(policy)) {
4209 unsigned long rlim_rtprio;
4210
4211 if (!lock_task_sighand(p, &flags))
4212 return -ESRCH;
4213 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4214 unlock_task_sighand(p, &flags);
4215
4216 /* can't set/change the rt policy */
4217 if (policy != p->policy && !rlim_rtprio)
4218 return -EPERM;
4219
4220 /* can't increase priority */
4221 if (param->sched_priority > p->rt_priority &&
4222 param->sched_priority > rlim_rtprio)
4223 return -EPERM;
4224 }
4225 /*
4226 * Like positive nice levels, dont allow tasks to
4227 * move out of SCHED_IDLE either:
4228 */
4229 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4230 return -EPERM;
4231
4232 /* can't change other user's priorities */
4233 if ((current->euid != p->euid) &&
4234 (current->euid != p->uid))
4235 return -EPERM;
4236 }
4237
4238 retval = security_task_setscheduler(p, policy, param);
4239 if (retval)
4240 return retval;
4241 /*
4242 * make sure no PI-waiters arrive (or leave) while we are
4243 * changing the priority of the task:
4244 */
4245 spin_lock_irqsave(&p->pi_lock, flags);
4246 /*
4247 * To be able to change p->policy safely, the apropriate
4248 * runqueue lock must be held.
4249 */
4250 rq = __task_rq_lock(p);
4251 /* recheck policy now with rq lock held */
4252 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4253 policy = oldpolicy = -1;
4254 __task_rq_unlock(rq);
4255 spin_unlock_irqrestore(&p->pi_lock, flags);
4256 goto recheck;
4257 }
4258 update_rq_clock(rq);
4259 on_rq = p->se.on_rq;
4260 running = task_running(rq, p);
4261 if (on_rq) {
4262 deactivate_task(rq, p, 0);
4263 if (running)
4264 p->sched_class->put_prev_task(rq, p);
4265 }
4266
4267 oldprio = p->prio;
4268 __setscheduler(rq, p, policy, param->sched_priority);
4269
4270 if (on_rq) {
4271 if (running)
4272 p->sched_class->set_curr_task(rq);
4273 activate_task(rq, p, 0);
4274 /*
4275 * Reschedule if we are currently running on this runqueue and
4276 * our priority decreased, or if we are not currently running on
4277 * this runqueue and our priority is higher than the current's
4278 */
4279 if (running) {
4280 if (p->prio > oldprio)
4281 resched_task(rq->curr);
4282 } else {
4283 check_preempt_curr(rq, p);
4284 }
4285 }
4286 __task_rq_unlock(rq);
4287 spin_unlock_irqrestore(&p->pi_lock, flags);
4288
4289 rt_mutex_adjust_pi(p);
4290
4291 return 0;
4292 }
4293 EXPORT_SYMBOL_GPL(sched_setscheduler);
4294
4295 static int
4296 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4297 {
4298 struct sched_param lparam;
4299 struct task_struct *p;
4300 int retval;
4301
4302 if (!param || pid < 0)
4303 return -EINVAL;
4304 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4305 return -EFAULT;
4306
4307 rcu_read_lock();
4308 retval = -ESRCH;
4309 p = find_process_by_pid(pid);
4310 if (p != NULL)
4311 retval = sched_setscheduler(p, policy, &lparam);
4312 rcu_read_unlock();
4313
4314 return retval;
4315 }
4316
4317 /**
4318 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4319 * @pid: the pid in question.
4320 * @policy: new policy.
4321 * @param: structure containing the new RT priority.
4322 */
4323 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4324 struct sched_param __user *param)
4325 {
4326 /* negative values for policy are not valid */
4327 if (policy < 0)
4328 return -EINVAL;
4329
4330 return do_sched_setscheduler(pid, policy, param);
4331 }
4332
4333 /**
4334 * sys_sched_setparam - set/change the RT priority of a thread
4335 * @pid: the pid in question.
4336 * @param: structure containing the new RT priority.
4337 */
4338 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4339 {
4340 return do_sched_setscheduler(pid, -1, param);
4341 }
4342
4343 /**
4344 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4345 * @pid: the pid in question.
4346 */
4347 asmlinkage long sys_sched_getscheduler(pid_t pid)
4348 {
4349 struct task_struct *p;
4350 int retval = -EINVAL;
4351
4352 if (pid < 0)
4353 goto out_nounlock;
4354
4355 retval = -ESRCH;
4356 read_lock(&tasklist_lock);
4357 p = find_process_by_pid(pid);
4358 if (p) {
4359 retval = security_task_getscheduler(p);
4360 if (!retval)
4361 retval = p->policy;
4362 }
4363 read_unlock(&tasklist_lock);
4364
4365 out_nounlock:
4366 return retval;
4367 }
4368
4369 /**
4370 * sys_sched_getscheduler - get the RT priority of a thread
4371 * @pid: the pid in question.
4372 * @param: structure containing the RT priority.
4373 */
4374 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4375 {
4376 struct sched_param lp;
4377 struct task_struct *p;
4378 int retval = -EINVAL;
4379
4380 if (!param || pid < 0)
4381 goto out_nounlock;
4382
4383 read_lock(&tasklist_lock);
4384 p = find_process_by_pid(pid);
4385 retval = -ESRCH;
4386 if (!p)
4387 goto out_unlock;
4388
4389 retval = security_task_getscheduler(p);
4390 if (retval)
4391 goto out_unlock;
4392
4393 lp.sched_priority = p->rt_priority;
4394 read_unlock(&tasklist_lock);
4395
4396 /*
4397 * This one might sleep, we cannot do it with a spinlock held ...
4398 */
4399 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4400
4401 out_nounlock:
4402 return retval;
4403
4404 out_unlock:
4405 read_unlock(&tasklist_lock);
4406 return retval;
4407 }
4408
4409 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4410 {
4411 cpumask_t cpus_allowed;
4412 struct task_struct *p;
4413 int retval;
4414
4415 mutex_lock(&sched_hotcpu_mutex);
4416 read_lock(&tasklist_lock);
4417
4418 p = find_process_by_pid(pid);
4419 if (!p) {
4420 read_unlock(&tasklist_lock);
4421 mutex_unlock(&sched_hotcpu_mutex);
4422 return -ESRCH;
4423 }
4424
4425 /*
4426 * It is not safe to call set_cpus_allowed with the
4427 * tasklist_lock held. We will bump the task_struct's
4428 * usage count and then drop tasklist_lock.
4429 */
4430 get_task_struct(p);
4431 read_unlock(&tasklist_lock);
4432
4433 retval = -EPERM;
4434 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4435 !capable(CAP_SYS_NICE))
4436 goto out_unlock;
4437
4438 retval = security_task_setscheduler(p, 0, NULL);
4439 if (retval)
4440 goto out_unlock;
4441
4442 cpus_allowed = cpuset_cpus_allowed(p);
4443 cpus_and(new_mask, new_mask, cpus_allowed);
4444 retval = set_cpus_allowed(p, new_mask);
4445
4446 out_unlock:
4447 put_task_struct(p);
4448 mutex_unlock(&sched_hotcpu_mutex);
4449 return retval;
4450 }
4451
4452 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4453 cpumask_t *new_mask)
4454 {
4455 if (len < sizeof(cpumask_t)) {
4456 memset(new_mask, 0, sizeof(cpumask_t));
4457 } else if (len > sizeof(cpumask_t)) {
4458 len = sizeof(cpumask_t);
4459 }
4460 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4461 }
4462
4463 /**
4464 * sys_sched_setaffinity - set the cpu affinity of a process
4465 * @pid: pid of the process
4466 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4467 * @user_mask_ptr: user-space pointer to the new cpu mask
4468 */
4469 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4470 unsigned long __user *user_mask_ptr)
4471 {
4472 cpumask_t new_mask;
4473 int retval;
4474
4475 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4476 if (retval)
4477 return retval;
4478
4479 return sched_setaffinity(pid, new_mask);
4480 }
4481
4482 /*
4483 * Represents all cpu's present in the system
4484 * In systems capable of hotplug, this map could dynamically grow
4485 * as new cpu's are detected in the system via any platform specific
4486 * method, such as ACPI for e.g.
4487 */
4488
4489 cpumask_t cpu_present_map __read_mostly;
4490 EXPORT_SYMBOL(cpu_present_map);
4491
4492 #ifndef CONFIG_SMP
4493 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4494 EXPORT_SYMBOL(cpu_online_map);
4495
4496 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4497 EXPORT_SYMBOL(cpu_possible_map);
4498 #endif
4499
4500 long sched_getaffinity(pid_t pid, cpumask_t *mask)
4501 {
4502 struct task_struct *p;
4503 int retval;
4504
4505 mutex_lock(&sched_hotcpu_mutex);
4506 read_lock(&tasklist_lock);
4507
4508 retval = -ESRCH;
4509 p = find_process_by_pid(pid);
4510 if (!p)
4511 goto out_unlock;
4512
4513 retval = security_task_getscheduler(p);
4514 if (retval)
4515 goto out_unlock;
4516
4517 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
4518
4519 out_unlock:
4520 read_unlock(&tasklist_lock);
4521 mutex_unlock(&sched_hotcpu_mutex);
4522
4523 return retval;
4524 }
4525
4526 /**
4527 * sys_sched_getaffinity - get the cpu affinity of a process
4528 * @pid: pid of the process
4529 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4530 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4531 */
4532 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4533 unsigned long __user *user_mask_ptr)
4534 {
4535 int ret;
4536 cpumask_t mask;
4537
4538 if (len < sizeof(cpumask_t))
4539 return -EINVAL;
4540
4541 ret = sched_getaffinity(pid, &mask);
4542 if (ret < 0)
4543 return ret;
4544
4545 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4546 return -EFAULT;
4547
4548 return sizeof(cpumask_t);
4549 }
4550
4551 /**
4552 * sys_sched_yield - yield the current processor to other threads.
4553 *
4554 * This function yields the current CPU to other tasks. If there are no
4555 * other threads running on this CPU then this function will return.
4556 */
4557 asmlinkage long sys_sched_yield(void)
4558 {
4559 struct rq *rq = this_rq_lock();
4560
4561 schedstat_inc(rq, yld_cnt);
4562 current->sched_class->yield_task(rq);
4563
4564 /*
4565 * Since we are going to call schedule() anyway, there's
4566 * no need to preempt or enable interrupts:
4567 */
4568 __release(rq->lock);
4569 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4570 _raw_spin_unlock(&rq->lock);
4571 preempt_enable_no_resched();
4572
4573 schedule();
4574
4575 return 0;
4576 }
4577
4578 static void __cond_resched(void)
4579 {
4580 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4581 __might_sleep(__FILE__, __LINE__);
4582 #endif
4583 /*
4584 * The BKS might be reacquired before we have dropped
4585 * PREEMPT_ACTIVE, which could trigger a second
4586 * cond_resched() call.
4587 */
4588 do {
4589 add_preempt_count(PREEMPT_ACTIVE);
4590 schedule();
4591 sub_preempt_count(PREEMPT_ACTIVE);
4592 } while (need_resched());
4593 }
4594
4595 int __sched cond_resched(void)
4596 {
4597 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4598 system_state == SYSTEM_RUNNING) {
4599 __cond_resched();
4600 return 1;
4601 }
4602 return 0;
4603 }
4604 EXPORT_SYMBOL(cond_resched);
4605
4606 /*
4607 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4608 * call schedule, and on return reacquire the lock.
4609 *
4610 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4611 * operations here to prevent schedule() from being called twice (once via
4612 * spin_unlock(), once by hand).
4613 */
4614 int cond_resched_lock(spinlock_t *lock)
4615 {
4616 int ret = 0;
4617
4618 if (need_lockbreak(lock)) {
4619 spin_unlock(lock);
4620 cpu_relax();
4621 ret = 1;
4622 spin_lock(lock);
4623 }
4624 if (need_resched() && system_state == SYSTEM_RUNNING) {
4625 spin_release(&lock->dep_map, 1, _THIS_IP_);
4626 _raw_spin_unlock(lock);
4627 preempt_enable_no_resched();
4628 __cond_resched();
4629 ret = 1;
4630 spin_lock(lock);
4631 }
4632 return ret;
4633 }
4634 EXPORT_SYMBOL(cond_resched_lock);
4635
4636 int __sched cond_resched_softirq(void)
4637 {
4638 BUG_ON(!in_softirq());
4639
4640 if (need_resched() && system_state == SYSTEM_RUNNING) {
4641 local_bh_enable();
4642 __cond_resched();
4643 local_bh_disable();
4644 return 1;
4645 }
4646 return 0;
4647 }
4648 EXPORT_SYMBOL(cond_resched_softirq);
4649
4650 /**
4651 * yield - yield the current processor to other threads.
4652 *
4653 * This is a shortcut for kernel-space yielding - it marks the
4654 * thread runnable and calls sys_sched_yield().
4655 */
4656 void __sched yield(void)
4657 {
4658 set_current_state(TASK_RUNNING);
4659 sys_sched_yield();
4660 }
4661 EXPORT_SYMBOL(yield);
4662
4663 /*
4664 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4665 * that process accounting knows that this is a task in IO wait state.
4666 *
4667 * But don't do that if it is a deliberate, throttling IO wait (this task
4668 * has set its backing_dev_info: the queue against which it should throttle)
4669 */
4670 void __sched io_schedule(void)
4671 {
4672 struct rq *rq = &__raw_get_cpu_var(runqueues);
4673
4674 delayacct_blkio_start();
4675 atomic_inc(&rq->nr_iowait);
4676 schedule();
4677 atomic_dec(&rq->nr_iowait);
4678 delayacct_blkio_end();
4679 }
4680 EXPORT_SYMBOL(io_schedule);
4681
4682 long __sched io_schedule_timeout(long timeout)
4683 {
4684 struct rq *rq = &__raw_get_cpu_var(runqueues);
4685 long ret;
4686
4687 delayacct_blkio_start();
4688 atomic_inc(&rq->nr_iowait);
4689 ret = schedule_timeout(timeout);
4690 atomic_dec(&rq->nr_iowait);
4691 delayacct_blkio_end();
4692 return ret;
4693 }
4694
4695 /**
4696 * sys_sched_get_priority_max - return maximum RT priority.
4697 * @policy: scheduling class.
4698 *
4699 * this syscall returns the maximum rt_priority that can be used
4700 * by a given scheduling class.
4701 */
4702 asmlinkage long sys_sched_get_priority_max(int policy)
4703 {
4704 int ret = -EINVAL;
4705
4706 switch (policy) {
4707 case SCHED_FIFO:
4708 case SCHED_RR:
4709 ret = MAX_USER_RT_PRIO-1;
4710 break;
4711 case SCHED_NORMAL:
4712 case SCHED_BATCH:
4713 case SCHED_IDLE:
4714 ret = 0;
4715 break;
4716 }
4717 return ret;
4718 }
4719
4720 /**
4721 * sys_sched_get_priority_min - return minimum RT priority.
4722 * @policy: scheduling class.
4723 *
4724 * this syscall returns the minimum rt_priority that can be used
4725 * by a given scheduling class.
4726 */
4727 asmlinkage long sys_sched_get_priority_min(int policy)
4728 {
4729 int ret = -EINVAL;
4730
4731 switch (policy) {
4732 case SCHED_FIFO:
4733 case SCHED_RR:
4734 ret = 1;
4735 break;
4736 case SCHED_NORMAL:
4737 case SCHED_BATCH:
4738 case SCHED_IDLE:
4739 ret = 0;
4740 }
4741 return ret;
4742 }
4743
4744 /**
4745 * sys_sched_rr_get_interval - return the default timeslice of a process.
4746 * @pid: pid of the process.
4747 * @interval: userspace pointer to the timeslice value.
4748 *
4749 * this syscall writes the default timeslice value of a given process
4750 * into the user-space timespec buffer. A value of '0' means infinity.
4751 */
4752 asmlinkage
4753 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4754 {
4755 struct task_struct *p;
4756 int retval = -EINVAL;
4757 struct timespec t;
4758
4759 if (pid < 0)
4760 goto out_nounlock;
4761
4762 retval = -ESRCH;
4763 read_lock(&tasklist_lock);
4764 p = find_process_by_pid(pid);
4765 if (!p)
4766 goto out_unlock;
4767
4768 retval = security_task_getscheduler(p);
4769 if (retval)
4770 goto out_unlock;
4771
4772 jiffies_to_timespec(p->policy == SCHED_FIFO ?
4773 0 : static_prio_timeslice(p->static_prio), &t);
4774 read_unlock(&tasklist_lock);
4775 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4776 out_nounlock:
4777 return retval;
4778 out_unlock:
4779 read_unlock(&tasklist_lock);
4780 return retval;
4781 }
4782
4783 static const char stat_nam[] = "RSDTtZX";
4784
4785 static void show_task(struct task_struct *p)
4786 {
4787 unsigned long free = 0;
4788 unsigned state;
4789
4790 state = p->state ? __ffs(p->state) + 1 : 0;
4791 printk("%-13.13s %c", p->comm,
4792 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4793 #if BITS_PER_LONG == 32
4794 if (state == TASK_RUNNING)
4795 printk(" running ");
4796 else
4797 printk(" %08lx ", thread_saved_pc(p));
4798 #else
4799 if (state == TASK_RUNNING)
4800 printk(" running task ");
4801 else
4802 printk(" %016lx ", thread_saved_pc(p));
4803 #endif
4804 #ifdef CONFIG_DEBUG_STACK_USAGE
4805 {
4806 unsigned long *n = end_of_stack(p);
4807 while (!*n)
4808 n++;
4809 free = (unsigned long)n - (unsigned long)end_of_stack(p);
4810 }
4811 #endif
4812 printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
4813
4814 if (state != TASK_RUNNING)
4815 show_stack(p, NULL);
4816 }
4817
4818 void show_state_filter(unsigned long state_filter)
4819 {
4820 struct task_struct *g, *p;
4821
4822 #if BITS_PER_LONG == 32
4823 printk(KERN_INFO
4824 " task PC stack pid father\n");
4825 #else
4826 printk(KERN_INFO
4827 " task PC stack pid father\n");
4828 #endif
4829 read_lock(&tasklist_lock);
4830 do_each_thread(g, p) {
4831 /*
4832 * reset the NMI-timeout, listing all files on a slow
4833 * console might take alot of time:
4834 */
4835 touch_nmi_watchdog();
4836 if (!state_filter || (p->state & state_filter))
4837 show_task(p);
4838 } while_each_thread(g, p);
4839
4840 touch_all_softlockup_watchdogs();
4841
4842 #ifdef CONFIG_SCHED_DEBUG
4843 sysrq_sched_debug_show();
4844 #endif
4845 read_unlock(&tasklist_lock);
4846 /*
4847 * Only show locks if all tasks are dumped:
4848 */
4849 if (state_filter == -1)
4850 debug_show_all_locks();
4851 }
4852
4853 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4854 {
4855 idle->sched_class = &idle_sched_class;
4856 }
4857
4858 /**
4859 * init_idle - set up an idle thread for a given CPU
4860 * @idle: task in question
4861 * @cpu: cpu the idle task belongs to
4862 *
4863 * NOTE: this function does not set the idle thread's NEED_RESCHED
4864 * flag, to make booting more robust.
4865 */
4866 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4867 {
4868 struct rq *rq = cpu_rq(cpu);
4869 unsigned long flags;
4870
4871 __sched_fork(idle);
4872 idle->se.exec_start = sched_clock();
4873
4874 idle->prio = idle->normal_prio = MAX_PRIO;
4875 idle->cpus_allowed = cpumask_of_cpu(cpu);
4876 __set_task_cpu(idle, cpu);
4877
4878 spin_lock_irqsave(&rq->lock, flags);
4879 rq->curr = rq->idle = idle;
4880 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4881 idle->oncpu = 1;
4882 #endif
4883 spin_unlock_irqrestore(&rq->lock, flags);
4884
4885 /* Set the preempt count _outside_ the spinlocks! */
4886 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4887 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
4888 #else
4889 task_thread_info(idle)->preempt_count = 0;
4890 #endif
4891 /*
4892 * The idle tasks have their own, simple scheduling class:
4893 */
4894 idle->sched_class = &idle_sched_class;
4895 }
4896
4897 /*
4898 * In a system that switches off the HZ timer nohz_cpu_mask
4899 * indicates which cpus entered this state. This is used
4900 * in the rcu update to wait only for active cpus. For system
4901 * which do not switch off the HZ timer nohz_cpu_mask should
4902 * always be CPU_MASK_NONE.
4903 */
4904 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4905
4906 #ifdef CONFIG_SMP
4907 /*
4908 * This is how migration works:
4909 *
4910 * 1) we queue a struct migration_req structure in the source CPU's
4911 * runqueue and wake up that CPU's migration thread.
4912 * 2) we down() the locked semaphore => thread blocks.
4913 * 3) migration thread wakes up (implicitly it forces the migrated
4914 * thread off the CPU)
4915 * 4) it gets the migration request and checks whether the migrated
4916 * task is still in the wrong runqueue.
4917 * 5) if it's in the wrong runqueue then the migration thread removes
4918 * it and puts it into the right queue.
4919 * 6) migration thread up()s the semaphore.
4920 * 7) we wake up and the migration is done.
4921 */
4922
4923 /*
4924 * Change a given task's CPU affinity. Migrate the thread to a
4925 * proper CPU and schedule it away if the CPU it's executing on
4926 * is removed from the allowed bitmask.
4927 *
4928 * NOTE: the caller must have a valid reference to the task, the
4929 * task must not exit() & deallocate itself prematurely. The
4930 * call is not atomic; no spinlocks may be held.
4931 */
4932 int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
4933 {
4934 struct migration_req req;
4935 unsigned long flags;
4936 struct rq *rq;
4937 int ret = 0;
4938
4939 rq = task_rq_lock(p, &flags);
4940 if (!cpus_intersects(new_mask, cpu_online_map)) {
4941 ret = -EINVAL;
4942 goto out;
4943 }
4944
4945 p->cpus_allowed = new_mask;
4946 /* Can the task run on the task's current CPU? If so, we're done */
4947 if (cpu_isset(task_cpu(p), new_mask))
4948 goto out;
4949
4950 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4951 /* Need help from migration thread: drop lock and wait. */
4952 task_rq_unlock(rq, &flags);
4953 wake_up_process(rq->migration_thread);
4954 wait_for_completion(&req.done);
4955 tlb_migrate_finish(p->mm);
4956 return 0;
4957 }
4958 out:
4959 task_rq_unlock(rq, &flags);
4960
4961 return ret;
4962 }
4963 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4964
4965 /*
4966 * Move (not current) task off this cpu, onto dest cpu. We're doing
4967 * this because either it can't run here any more (set_cpus_allowed()
4968 * away from this CPU, or CPU going down), or because we're
4969 * attempting to rebalance this task on exec (sched_exec).
4970 *
4971 * So we race with normal scheduler movements, but that's OK, as long
4972 * as the task is no longer on this CPU.
4973 *
4974 * Returns non-zero if task was successfully migrated.
4975 */
4976 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4977 {
4978 struct rq *rq_dest, *rq_src;
4979 int ret = 0, on_rq;
4980
4981 if (unlikely(cpu_is_offline(dest_cpu)))
4982 return ret;
4983
4984 rq_src = cpu_rq(src_cpu);
4985 rq_dest = cpu_rq(dest_cpu);
4986
4987 double_rq_lock(rq_src, rq_dest);
4988 /* Already moved. */
4989 if (task_cpu(p) != src_cpu)
4990 goto out;
4991 /* Affinity changed (again). */
4992 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4993 goto out;
4994
4995 on_rq = p->se.on_rq;
4996 if (on_rq)
4997 deactivate_task(rq_src, p, 0);
4998
4999 set_task_cpu(p, dest_cpu);
5000 if (on_rq) {
5001 activate_task(rq_dest, p, 0);
5002 check_preempt_curr(rq_dest, p);
5003 }
5004 ret = 1;
5005 out:
5006 double_rq_unlock(rq_src, rq_dest);
5007 return ret;
5008 }
5009
5010 /*
5011 * migration_thread - this is a highprio system thread that performs
5012 * thread migration by bumping thread off CPU then 'pushing' onto
5013 * another runqueue.
5014 */
5015 static int migration_thread(void *data)
5016 {
5017 int cpu = (long)data;
5018 struct rq *rq;
5019
5020 rq = cpu_rq(cpu);
5021 BUG_ON(rq->migration_thread != current);
5022
5023 set_current_state(TASK_INTERRUPTIBLE);
5024 while (!kthread_should_stop()) {
5025 struct migration_req *req;
5026 struct list_head *head;
5027
5028 spin_lock_irq(&rq->lock);
5029
5030 if (cpu_is_offline(cpu)) {
5031 spin_unlock_irq(&rq->lock);
5032 goto wait_to_die;
5033 }
5034
5035 if (rq->active_balance) {
5036 active_load_balance(rq, cpu);
5037 rq->active_balance = 0;
5038 }
5039
5040 head = &rq->migration_queue;
5041
5042 if (list_empty(head)) {
5043 spin_unlock_irq(&rq->lock);
5044 schedule();
5045 set_current_state(TASK_INTERRUPTIBLE);
5046 continue;
5047 }
5048 req = list_entry(head->next, struct migration_req, list);
5049 list_del_init(head->next);
5050
5051 spin_unlock(&rq->lock);
5052 __migrate_task(req->task, cpu, req->dest_cpu);
5053 local_irq_enable();
5054
5055 complete(&req->done);
5056 }
5057 __set_current_state(TASK_RUNNING);
5058 return 0;
5059
5060 wait_to_die:
5061 /* Wait for kthread_stop */
5062 set_current_state(TASK_INTERRUPTIBLE);
5063 while (!kthread_should_stop()) {
5064 schedule();
5065 set_current_state(TASK_INTERRUPTIBLE);
5066 }
5067 __set_current_state(TASK_RUNNING);
5068 return 0;
5069 }
5070
5071 #ifdef CONFIG_HOTPLUG_CPU
5072 /*
5073 * Figure out where task on dead CPU should go, use force if neccessary.
5074 * NOTE: interrupts should be disabled by the caller
5075 */
5076 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5077 {
5078 unsigned long flags;
5079 cpumask_t mask;
5080 struct rq *rq;
5081 int dest_cpu;
5082
5083 restart:
5084 /* On same node? */
5085 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5086 cpus_and(mask, mask, p->cpus_allowed);
5087 dest_cpu = any_online_cpu(mask);
5088
5089 /* On any allowed CPU? */
5090 if (dest_cpu == NR_CPUS)
5091 dest_cpu = any_online_cpu(p->cpus_allowed);
5092
5093 /* No more Mr. Nice Guy. */
5094 if (dest_cpu == NR_CPUS) {
5095 rq = task_rq_lock(p, &flags);
5096 cpus_setall(p->cpus_allowed);
5097 dest_cpu = any_online_cpu(p->cpus_allowed);
5098 task_rq_unlock(rq, &flags);
5099
5100 /*
5101 * Don't tell them about moving exiting tasks or
5102 * kernel threads (both mm NULL), since they never
5103 * leave kernel.
5104 */
5105 if (p->mm && printk_ratelimit())
5106 printk(KERN_INFO "process %d (%s) no "
5107 "longer affine to cpu%d\n",
5108 p->pid, p->comm, dead_cpu);
5109 }
5110 if (!__migrate_task(p, dead_cpu, dest_cpu))
5111 goto restart;
5112 }
5113
5114 /*
5115 * While a dead CPU has no uninterruptible tasks queued at this point,
5116 * it might still have a nonzero ->nr_uninterruptible counter, because
5117 * for performance reasons the counter is not stricly tracking tasks to
5118 * their home CPUs. So we just add the counter to another CPU's counter,
5119 * to keep the global sum constant after CPU-down:
5120 */
5121 static void migrate_nr_uninterruptible(struct rq *rq_src)
5122 {
5123 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
5124 unsigned long flags;
5125
5126 local_irq_save(flags);
5127 double_rq_lock(rq_src, rq_dest);
5128 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5129 rq_src->nr_uninterruptible = 0;
5130 double_rq_unlock(rq_src, rq_dest);
5131 local_irq_restore(flags);
5132 }
5133
5134 /* Run through task list and migrate tasks from the dead cpu. */
5135 static void migrate_live_tasks(int src_cpu)
5136 {
5137 struct task_struct *p, *t;
5138
5139 write_lock_irq(&tasklist_lock);
5140
5141 do_each_thread(t, p) {
5142 if (p == current)
5143 continue;
5144
5145 if (task_cpu(p) == src_cpu)
5146 move_task_off_dead_cpu(src_cpu, p);
5147 } while_each_thread(t, p);
5148
5149 write_unlock_irq(&tasklist_lock);
5150 }
5151
5152 /*
5153 * Schedules idle task to be the next runnable task on current CPU.
5154 * It does so by boosting its priority to highest possible and adding it to
5155 * the _front_ of the runqueue. Used by CPU offline code.
5156 */
5157 void sched_idle_next(void)
5158 {
5159 int this_cpu = smp_processor_id();
5160 struct rq *rq = cpu_rq(this_cpu);
5161 struct task_struct *p = rq->idle;
5162 unsigned long flags;
5163
5164 /* cpu has to be offline */
5165 BUG_ON(cpu_online(this_cpu));
5166
5167 /*
5168 * Strictly not necessary since rest of the CPUs are stopped by now
5169 * and interrupts disabled on the current cpu.
5170 */
5171 spin_lock_irqsave(&rq->lock, flags);
5172
5173 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5174
5175 /* Add idle task to the _front_ of its priority queue: */
5176 activate_idle_task(p, rq);
5177
5178 spin_unlock_irqrestore(&rq->lock, flags);
5179 }
5180
5181 /*
5182 * Ensures that the idle task is using init_mm right before its cpu goes
5183 * offline.
5184 */
5185 void idle_task_exit(void)
5186 {
5187 struct mm_struct *mm = current->active_mm;
5188
5189 BUG_ON(cpu_online(smp_processor_id()));
5190
5191 if (mm != &init_mm)
5192 switch_mm(mm, &init_mm, current);
5193 mmdrop(mm);
5194 }
5195
5196 /* called under rq->lock with disabled interrupts */
5197 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5198 {
5199 struct rq *rq = cpu_rq(dead_cpu);
5200
5201 /* Must be exiting, otherwise would be on tasklist. */
5202 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
5203
5204 /* Cannot have done final schedule yet: would have vanished. */
5205 BUG_ON(p->state == TASK_DEAD);
5206
5207 get_task_struct(p);
5208
5209 /*
5210 * Drop lock around migration; if someone else moves it,
5211 * that's OK. No task can be added to this CPU, so iteration is
5212 * fine.
5213 * NOTE: interrupts should be left disabled --dev@
5214 */
5215 spin_unlock(&rq->lock);
5216 move_task_off_dead_cpu(dead_cpu, p);
5217 spin_lock(&rq->lock);
5218
5219 put_task_struct(p);
5220 }
5221
5222 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5223 static void migrate_dead_tasks(unsigned int dead_cpu)
5224 {
5225 struct rq *rq = cpu_rq(dead_cpu);
5226 struct task_struct *next;
5227
5228 for ( ; ; ) {
5229 if (!rq->nr_running)
5230 break;
5231 update_rq_clock(rq);
5232 next = pick_next_task(rq, rq->curr);
5233 if (!next)
5234 break;
5235 migrate_dead(dead_cpu, next);
5236
5237 }
5238 }
5239 #endif /* CONFIG_HOTPLUG_CPU */
5240
5241 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5242
5243 static struct ctl_table sd_ctl_dir[] = {
5244 {
5245 .procname = "sched_domain",
5246 .mode = 0555,
5247 },
5248 {0,},
5249 };
5250
5251 static struct ctl_table sd_ctl_root[] = {
5252 {
5253 .ctl_name = CTL_KERN,
5254 .procname = "kernel",
5255 .mode = 0555,
5256 .child = sd_ctl_dir,
5257 },
5258 {0,},
5259 };
5260
5261 static struct ctl_table *sd_alloc_ctl_entry(int n)
5262 {
5263 struct ctl_table *entry =
5264 kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);
5265
5266 BUG_ON(!entry);
5267 memset(entry, 0, n * sizeof(struct ctl_table));
5268
5269 return entry;
5270 }
5271
5272 static void
5273 set_table_entry(struct ctl_table *entry,
5274 const char *procname, void *data, int maxlen,
5275 mode_t mode, proc_handler *proc_handler)
5276 {
5277 entry->procname = procname;
5278 entry->data = data;
5279 entry->maxlen = maxlen;
5280 entry->mode = mode;
5281 entry->proc_handler = proc_handler;
5282 }
5283
5284 static struct ctl_table *
5285 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5286 {
5287 struct ctl_table *table = sd_alloc_ctl_entry(14);
5288
5289 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5290 sizeof(long), 0644, proc_doulongvec_minmax);
5291 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5292 sizeof(long), 0644, proc_doulongvec_minmax);
5293 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5294 sizeof(int), 0644, proc_dointvec_minmax);
5295 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5296 sizeof(int), 0644, proc_dointvec_minmax);
5297 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5298 sizeof(int), 0644, proc_dointvec_minmax);
5299 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5300 sizeof(int), 0644, proc_dointvec_minmax);
5301 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5302 sizeof(int), 0644, proc_dointvec_minmax);
5303 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5304 sizeof(int), 0644, proc_dointvec_minmax);
5305 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5306 sizeof(int), 0644, proc_dointvec_minmax);
5307 set_table_entry(&table[10], "cache_nice_tries",
5308 &sd->cache_nice_tries,
5309 sizeof(int), 0644, proc_dointvec_minmax);
5310 set_table_entry(&table[12], "flags", &sd->flags,
5311 sizeof(int), 0644, proc_dointvec_minmax);
5312
5313 return table;
5314 }
5315
5316 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5317 {
5318 struct ctl_table *entry, *table;
5319 struct sched_domain *sd;
5320 int domain_num = 0, i;
5321 char buf[32];
5322
5323 for_each_domain(cpu, sd)
5324 domain_num++;
5325 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5326
5327 i = 0;
5328 for_each_domain(cpu, sd) {
5329 snprintf(buf, 32, "domain%d", i);
5330 entry->procname = kstrdup(buf, GFP_KERNEL);
5331 entry->mode = 0555;
5332 entry->child = sd_alloc_ctl_domain_table(sd);
5333 entry++;
5334 i++;
5335 }
5336 return table;
5337 }
5338
5339 static struct ctl_table_header *sd_sysctl_header;
5340 static void init_sched_domain_sysctl(void)
5341 {
5342 int i, cpu_num = num_online_cpus();
5343 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5344 char buf[32];
5345
5346 sd_ctl_dir[0].child = entry;
5347
5348 for (i = 0; i < cpu_num; i++, entry++) {
5349 snprintf(buf, 32, "cpu%d", i);
5350 entry->procname = kstrdup(buf, GFP_KERNEL);
5351 entry->mode = 0555;
5352 entry->child = sd_alloc_ctl_cpu_table(i);
5353 }
5354 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5355 }
5356 #else
5357 static void init_sched_domain_sysctl(void)
5358 {
5359 }
5360 #endif
5361
5362 /*
5363 * migration_call - callback that gets triggered when a CPU is added.
5364 * Here we can start up the necessary migration thread for the new CPU.
5365 */
5366 static int __cpuinit
5367 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5368 {
5369 struct task_struct *p;
5370 int cpu = (long)hcpu;
5371 unsigned long flags;
5372 struct rq *rq;
5373
5374 switch (action) {
5375 case CPU_LOCK_ACQUIRE:
5376 mutex_lock(&sched_hotcpu_mutex);
5377 break;
5378
5379 case CPU_UP_PREPARE:
5380 case CPU_UP_PREPARE_FROZEN:
5381 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
5382 if (IS_ERR(p))
5383 return NOTIFY_BAD;
5384 kthread_bind(p, cpu);
5385 /* Must be high prio: stop_machine expects to yield to it. */
5386 rq = task_rq_lock(p, &flags);
5387 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5388 task_rq_unlock(rq, &flags);
5389 cpu_rq(cpu)->migration_thread = p;
5390 break;
5391
5392 case CPU_ONLINE:
5393 case CPU_ONLINE_FROZEN:
5394 /* Strictly unneccessary, as first user will wake it. */
5395 wake_up_process(cpu_rq(cpu)->migration_thread);
5396 break;
5397
5398 #ifdef CONFIG_HOTPLUG_CPU
5399 case CPU_UP_CANCELED:
5400 case CPU_UP_CANCELED_FROZEN:
5401 if (!cpu_rq(cpu)->migration_thread)
5402 break;
5403 /* Unbind it from offline cpu so it can run. Fall thru. */
5404 kthread_bind(cpu_rq(cpu)->migration_thread,
5405 any_online_cpu(cpu_online_map));
5406 kthread_stop(cpu_rq(cpu)->migration_thread);
5407 cpu_rq(cpu)->migration_thread = NULL;
5408 break;
5409
5410 case CPU_DEAD:
5411 case CPU_DEAD_FROZEN:
5412 migrate_live_tasks(cpu);
5413 rq = cpu_rq(cpu);
5414 kthread_stop(rq->migration_thread);
5415 rq->migration_thread = NULL;
5416 /* Idle task back to normal (off runqueue, low prio) */
5417 rq = task_rq_lock(rq->idle, &flags);
5418 update_rq_clock(rq);
5419 deactivate_task(rq, rq->idle, 0);
5420 rq->idle->static_prio = MAX_PRIO;
5421 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5422 rq->idle->sched_class = &idle_sched_class;
5423 migrate_dead_tasks(cpu);
5424 task_rq_unlock(rq, &flags);
5425 migrate_nr_uninterruptible(rq);
5426 BUG_ON(rq->nr_running != 0);
5427
5428 /* No need to migrate the tasks: it was best-effort if
5429 * they didn't take sched_hotcpu_mutex. Just wake up
5430 * the requestors. */
5431 spin_lock_irq(&rq->lock);
5432 while (!list_empty(&rq->migration_queue)) {
5433 struct migration_req *req;
5434
5435 req = list_entry(rq->migration_queue.next,
5436 struct migration_req, list);
5437 list_del_init(&req->list);
5438 complete(&req->done);
5439 }
5440 spin_unlock_irq(&rq->lock);
5441 break;
5442 #endif
5443 case CPU_LOCK_RELEASE:
5444 mutex_unlock(&sched_hotcpu_mutex);
5445 break;
5446 }
5447 return NOTIFY_OK;
5448 }
5449
5450 /* Register at highest priority so that task migration (migrate_all_tasks)
5451 * happens before everything else.
5452 */
5453 static struct notifier_block __cpuinitdata migration_notifier = {
5454 .notifier_call = migration_call,
5455 .priority = 10
5456 };
5457
5458 int __init migration_init(void)
5459 {
5460 void *cpu = (void *)(long)smp_processor_id();
5461 int err;
5462
5463 /* Start one for the boot CPU: */
5464 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5465 BUG_ON(err == NOTIFY_BAD);
5466 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5467 register_cpu_notifier(&migration_notifier);
5468
5469 return 0;
5470 }
5471 #endif
5472
5473 #ifdef CONFIG_SMP
5474
5475 /* Number of possible processor ids */
5476 int nr_cpu_ids __read_mostly = NR_CPUS;
5477 EXPORT_SYMBOL(nr_cpu_ids);
5478
5479 #undef SCHED_DOMAIN_DEBUG
5480 #ifdef SCHED_DOMAIN_DEBUG
5481 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5482 {
5483 int level = 0;
5484
5485 if (!sd) {
5486 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5487 return;
5488 }
5489
5490 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5491
5492 do {
5493 int i;
5494 char str[NR_CPUS];
5495 struct sched_group *group = sd->groups;
5496 cpumask_t groupmask;
5497
5498 cpumask_scnprintf(str, NR_CPUS, sd->span);
5499 cpus_clear(groupmask);
5500
5501 printk(KERN_DEBUG);
5502 for (i = 0; i < level + 1; i++)
5503 printk(" ");
5504 printk("domain %d: ", level);
5505
5506 if (!(sd->flags & SD_LOAD_BALANCE)) {
5507 printk("does not load-balance\n");
5508 if (sd->parent)
5509 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5510 " has parent");
5511 break;
5512 }
5513
5514 printk("span %s\n", str);
5515
5516 if (!cpu_isset(cpu, sd->span))
5517 printk(KERN_ERR "ERROR: domain->span does not contain "
5518 "CPU%d\n", cpu);
5519 if (!cpu_isset(cpu, group->cpumask))
5520 printk(KERN_ERR "ERROR: domain->groups does not contain"
5521 " CPU%d\n", cpu);
5522
5523 printk(KERN_DEBUG);
5524 for (i = 0; i < level + 2; i++)
5525 printk(" ");
5526 printk("groups:");
5527 do {
5528 if (!group) {
5529 printk("\n");
5530 printk(KERN_ERR "ERROR: group is NULL\n");
5531 break;
5532 }
5533
5534 if (!group->__cpu_power) {
5535 printk("\n");
5536 printk(KERN_ERR "ERROR: domain->cpu_power not "
5537 "set\n");
5538 }
5539
5540 if (!cpus_weight(group->cpumask)) {
5541 printk("\n");
5542 printk(KERN_ERR "ERROR: empty group\n");
5543 }
5544
5545 if (cpus_intersects(groupmask, group->cpumask)) {
5546 printk("\n");
5547 printk(KERN_ERR "ERROR: repeated CPUs\n");
5548 }
5549
5550 cpus_or(groupmask, groupmask, group->cpumask);
5551
5552 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5553 printk(" %s", str);
5554
5555 group = group->next;
5556 } while (group != sd->groups);
5557 printk("\n");
5558
5559 if (!cpus_equal(sd->span, groupmask))
5560 printk(KERN_ERR "ERROR: groups don't span "
5561 "domain->span\n");
5562
5563 level++;
5564 sd = sd->parent;
5565 if (!sd)
5566 continue;
5567
5568 if (!cpus_subset(groupmask, sd->span))
5569 printk(KERN_ERR "ERROR: parent span is not a superset "
5570 "of domain->span\n");
5571
5572 } while (sd);
5573 }
5574 #else
5575 # define sched_domain_debug(sd, cpu) do { } while (0)
5576 #endif
5577
5578 static int sd_degenerate(struct sched_domain *sd)
5579 {
5580 if (cpus_weight(sd->span) == 1)
5581 return 1;
5582
5583 /* Following flags need at least 2 groups */
5584 if (sd->flags & (SD_LOAD_BALANCE |
5585 SD_BALANCE_NEWIDLE |
5586 SD_BALANCE_FORK |
5587 SD_BALANCE_EXEC |
5588 SD_SHARE_CPUPOWER |
5589 SD_SHARE_PKG_RESOURCES)) {
5590 if (sd->groups != sd->groups->next)
5591 return 0;
5592 }
5593
5594 /* Following flags don't use groups */
5595 if (sd->flags & (SD_WAKE_IDLE |
5596 SD_WAKE_AFFINE |
5597 SD_WAKE_BALANCE))
5598 return 0;
5599
5600 return 1;
5601 }
5602
5603 static int
5604 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5605 {
5606 unsigned long cflags = sd->flags, pflags = parent->flags;
5607
5608 if (sd_degenerate(parent))
5609 return 1;
5610
5611 if (!cpus_equal(sd->span, parent->span))
5612 return 0;
5613
5614 /* Does parent contain flags not in child? */
5615 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5616 if (cflags & SD_WAKE_AFFINE)
5617 pflags &= ~SD_WAKE_BALANCE;
5618 /* Flags needing groups don't count if only 1 group in parent */
5619 if (parent->groups == parent->groups->next) {
5620 pflags &= ~(SD_LOAD_BALANCE |
5621 SD_BALANCE_NEWIDLE |
5622 SD_BALANCE_FORK |
5623 SD_BALANCE_EXEC |
5624 SD_SHARE_CPUPOWER |
5625 SD_SHARE_PKG_RESOURCES);
5626 }
5627 if (~cflags & pflags)
5628 return 0;
5629
5630 return 1;
5631 }
5632
5633 /*
5634 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5635 * hold the hotplug lock.
5636 */
5637 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
5638 {
5639 struct rq *rq = cpu_rq(cpu);
5640 struct sched_domain *tmp;
5641
5642 /* Remove the sched domains which do not contribute to scheduling. */
5643 for (tmp = sd; tmp; tmp = tmp->parent) {
5644 struct sched_domain *parent = tmp->parent;
5645 if (!parent)
5646 break;
5647 if (sd_parent_degenerate(tmp, parent)) {
5648 tmp->parent = parent->parent;
5649 if (parent->parent)
5650 parent->parent->child = tmp;
5651 }
5652 }
5653
5654 if (sd && sd_degenerate(sd)) {
5655 sd = sd->parent;
5656 if (sd)
5657 sd->child = NULL;
5658 }
5659
5660 sched_domain_debug(sd, cpu);
5661
5662 rcu_assign_pointer(rq->sd, sd);
5663 }
5664
5665 /* cpus with isolated domains */
5666 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
5667
5668 /* Setup the mask of cpus configured for isolated domains */
5669 static int __init isolated_cpu_setup(char *str)
5670 {
5671 int ints[NR_CPUS], i;
5672
5673 str = get_options(str, ARRAY_SIZE(ints), ints);
5674 cpus_clear(cpu_isolated_map);
5675 for (i = 1; i <= ints[0]; i++)
5676 if (ints[i] < NR_CPUS)
5677 cpu_set(ints[i], cpu_isolated_map);
5678 return 1;
5679 }
5680
5681 __setup ("isolcpus=", isolated_cpu_setup);
5682
5683 /*
5684 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5685 * to a function which identifies what group(along with sched group) a CPU
5686 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5687 * (due to the fact that we keep track of groups covered with a cpumask_t).
5688 *
5689 * init_sched_build_groups will build a circular linked list of the groups
5690 * covered by the given span, and will set each group's ->cpumask correctly,
5691 * and ->cpu_power to 0.
5692 */
5693 static void
5694 init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5695 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5696 struct sched_group **sg))
5697 {
5698 struct sched_group *first = NULL, *last = NULL;
5699 cpumask_t covered = CPU_MASK_NONE;
5700 int i;
5701
5702 for_each_cpu_mask(i, span) {
5703 struct sched_group *sg;
5704 int group = group_fn(i, cpu_map, &sg);
5705 int j;
5706
5707 if (cpu_isset(i, covered))
5708 continue;
5709
5710 sg->cpumask = CPU_MASK_NONE;
5711 sg->__cpu_power = 0;
5712
5713 for_each_cpu_mask(j, span) {
5714 if (group_fn(j, cpu_map, NULL) != group)
5715 continue;
5716
5717 cpu_set(j, covered);
5718 cpu_set(j, sg->cpumask);
5719 }
5720 if (!first)
5721 first = sg;
5722 if (last)
5723 last->next = sg;
5724 last = sg;
5725 }
5726 last->next = first;
5727 }
5728
5729 #define SD_NODES_PER_DOMAIN 16
5730
5731 #ifdef CONFIG_NUMA
5732
5733 /**
5734 * find_next_best_node - find the next node to include in a sched_domain
5735 * @node: node whose sched_domain we're building
5736 * @used_nodes: nodes already in the sched_domain
5737 *
5738 * Find the next node to include in a given scheduling domain. Simply
5739 * finds the closest node not already in the @used_nodes map.
5740 *
5741 * Should use nodemask_t.
5742 */
5743 static int find_next_best_node(int node, unsigned long *used_nodes)
5744 {
5745 int i, n, val, min_val, best_node = 0;
5746
5747 min_val = INT_MAX;
5748
5749 for (i = 0; i < MAX_NUMNODES; i++) {
5750 /* Start at @node */
5751 n = (node + i) % MAX_NUMNODES;
5752
5753 if (!nr_cpus_node(n))
5754 continue;
5755
5756 /* Skip already used nodes */
5757 if (test_bit(n, used_nodes))
5758 continue;
5759
5760 /* Simple min distance search */
5761 val = node_distance(node, n);
5762
5763 if (val < min_val) {
5764 min_val = val;
5765 best_node = n;
5766 }
5767 }
5768
5769 set_bit(best_node, used_nodes);
5770 return best_node;
5771 }
5772
5773 /**
5774 * sched_domain_node_span - get a cpumask for a node's sched_domain
5775 * @node: node whose cpumask we're constructing
5776 * @size: number of nodes to include in this span
5777 *
5778 * Given a node, construct a good cpumask for its sched_domain to span. It
5779 * should be one that prevents unnecessary balancing, but also spreads tasks
5780 * out optimally.
5781 */
5782 static cpumask_t sched_domain_node_span(int node)
5783 {
5784 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5785 cpumask_t span, nodemask;
5786 int i;
5787
5788 cpus_clear(span);
5789 bitmap_zero(used_nodes, MAX_NUMNODES);
5790
5791 nodemask = node_to_cpumask(node);
5792 cpus_or(span, span, nodemask);
5793 set_bit(node, used_nodes);
5794
5795 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5796 int next_node = find_next_best_node(node, used_nodes);
5797
5798 nodemask = node_to_cpumask(next_node);
5799 cpus_or(span, span, nodemask);
5800 }
5801
5802 return span;
5803 }
5804 #endif
5805
5806 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5807
5808 /*
5809 * SMT sched-domains:
5810 */
5811 #ifdef CONFIG_SCHED_SMT
5812 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5813 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
5814
5815 static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
5816 struct sched_group **sg)
5817 {
5818 if (sg)
5819 *sg = &per_cpu(sched_group_cpus, cpu);
5820 return cpu;
5821 }
5822 #endif
5823
5824 /*
5825 * multi-core sched-domains:
5826 */
5827 #ifdef CONFIG_SCHED_MC
5828 static DEFINE_PER_CPU(struct sched_domain, core_domains);
5829 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
5830 #endif
5831
5832 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5833 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5834 struct sched_group **sg)
5835 {
5836 int group;
5837 cpumask_t mask = cpu_sibling_map[cpu];
5838 cpus_and(mask, mask, *cpu_map);
5839 group = first_cpu(mask);
5840 if (sg)
5841 *sg = &per_cpu(sched_group_core, group);
5842 return group;
5843 }
5844 #elif defined(CONFIG_SCHED_MC)
5845 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5846 struct sched_group **sg)
5847 {
5848 if (sg)
5849 *sg = &per_cpu(sched_group_core, cpu);
5850 return cpu;
5851 }
5852 #endif
5853
5854 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5855 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
5856
5857 static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
5858 struct sched_group **sg)
5859 {
5860 int group;
5861 #ifdef CONFIG_SCHED_MC
5862 cpumask_t mask = cpu_coregroup_map(cpu);
5863 cpus_and(mask, mask, *cpu_map);
5864 group = first_cpu(mask);
5865 #elif defined(CONFIG_SCHED_SMT)
5866 cpumask_t mask = cpu_sibling_map[cpu];
5867 cpus_and(mask, mask, *cpu_map);
5868 group = first_cpu(mask);
5869 #else
5870 group = cpu;
5871 #endif
5872 if (sg)
5873 *sg = &per_cpu(sched_group_phys, group);
5874 return group;
5875 }
5876
5877 #ifdef CONFIG_NUMA
5878 /*
5879 * The init_sched_build_groups can't handle what we want to do with node
5880 * groups, so roll our own. Now each node has its own list of groups which
5881 * gets dynamically allocated.
5882 */
5883 static DEFINE_PER_CPU(struct sched_domain, node_domains);
5884 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
5885
5886 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5887 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
5888
5889 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
5890 struct sched_group **sg)
5891 {
5892 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
5893 int group;
5894
5895 cpus_and(nodemask, nodemask, *cpu_map);
5896 group = first_cpu(nodemask);
5897
5898 if (sg)
5899 *sg = &per_cpu(sched_group_allnodes, group);
5900 return group;
5901 }
5902
5903 static void init_numa_sched_groups_power(struct sched_group *group_head)
5904 {
5905 struct sched_group *sg = group_head;
5906 int j;
5907
5908 if (!sg)
5909 return;
5910 next_sg:
5911 for_each_cpu_mask(j, sg->cpumask) {
5912 struct sched_domain *sd;
5913
5914 sd = &per_cpu(phys_domains, j);
5915 if (j != first_cpu(sd->groups->cpumask)) {
5916 /*
5917 * Only add "power" once for each
5918 * physical package.
5919 */
5920 continue;
5921 }
5922
5923 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
5924 }
5925 sg = sg->next;
5926 if (sg != group_head)
5927 goto next_sg;
5928 }
5929 #endif
5930
5931 #ifdef CONFIG_NUMA
5932 /* Free memory allocated for various sched_group structures */
5933 static void free_sched_groups(const cpumask_t *cpu_map)
5934 {
5935 int cpu, i;
5936
5937 for_each_cpu_mask(cpu, *cpu_map) {
5938 struct sched_group **sched_group_nodes
5939 = sched_group_nodes_bycpu[cpu];
5940
5941 if (!sched_group_nodes)
5942 continue;
5943
5944 for (i = 0; i < MAX_NUMNODES; i++) {
5945 cpumask_t nodemask = node_to_cpumask(i);
5946 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5947
5948 cpus_and(nodemask, nodemask, *cpu_map);
5949 if (cpus_empty(nodemask))
5950 continue;
5951
5952 if (sg == NULL)
5953 continue;
5954 sg = sg->next;
5955 next_sg:
5956 oldsg = sg;
5957 sg = sg->next;
5958 kfree(oldsg);
5959 if (oldsg != sched_group_nodes[i])
5960 goto next_sg;
5961 }
5962 kfree(sched_group_nodes);
5963 sched_group_nodes_bycpu[cpu] = NULL;
5964 }
5965 }
5966 #else
5967 static void free_sched_groups(const cpumask_t *cpu_map)
5968 {
5969 }
5970 #endif
5971
5972 /*
5973 * Initialize sched groups cpu_power.
5974 *
5975 * cpu_power indicates the capacity of sched group, which is used while
5976 * distributing the load between different sched groups in a sched domain.
5977 * Typically cpu_power for all the groups in a sched domain will be same unless
5978 * there are asymmetries in the topology. If there are asymmetries, group
5979 * having more cpu_power will pickup more load compared to the group having
5980 * less cpu_power.
5981 *
5982 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
5983 * the maximum number of tasks a group can handle in the presence of other idle
5984 * or lightly loaded groups in the same sched domain.
5985 */
5986 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5987 {
5988 struct sched_domain *child;
5989 struct sched_group *group;
5990
5991 WARN_ON(!sd || !sd->groups);
5992
5993 if (cpu != first_cpu(sd->groups->cpumask))
5994 return;
5995
5996 child = sd->child;
5997
5998 sd->groups->__cpu_power = 0;
5999
6000 /*
6001 * For perf policy, if the groups in child domain share resources
6002 * (for example cores sharing some portions of the cache hierarchy
6003 * or SMT), then set this domain groups cpu_power such that each group
6004 * can handle only one task, when there are other idle groups in the
6005 * same sched domain.
6006 */
6007 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6008 (child->flags &
6009 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6010 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6011 return;
6012 }
6013
6014 /*
6015 * add cpu_power of each child group to this groups cpu_power
6016 */
6017 group = child->groups;
6018 do {
6019 sg_inc_cpu_power(sd->groups, group->__cpu_power);
6020 group = group->next;
6021 } while (group != child->groups);
6022 }
6023
6024 /*
6025 * Build sched domains for a given set of cpus and attach the sched domains
6026 * to the individual cpus
6027 */
6028 static int build_sched_domains(const cpumask_t *cpu_map)
6029 {
6030 int i;
6031 #ifdef CONFIG_NUMA
6032 struct sched_group **sched_group_nodes = NULL;
6033 int sd_allnodes = 0;
6034
6035 /*
6036 * Allocate the per-node list of sched groups
6037 */
6038 sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
6039 GFP_KERNEL);
6040 if (!sched_group_nodes) {
6041 printk(KERN_WARNING "Can not alloc sched group node list\n");
6042 return -ENOMEM;
6043 }
6044 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6045 #endif
6046
6047 /*
6048 * Set up domains for cpus specified by the cpu_map.
6049 */
6050 for_each_cpu_mask(i, *cpu_map) {
6051 struct sched_domain *sd = NULL, *p;
6052 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6053
6054 cpus_and(nodemask, nodemask, *cpu_map);
6055
6056 #ifdef CONFIG_NUMA
6057 if (cpus_weight(*cpu_map) >
6058 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6059 sd = &per_cpu(allnodes_domains, i);
6060 *sd = SD_ALLNODES_INIT;
6061 sd->span = *cpu_map;
6062 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6063 p = sd;
6064 sd_allnodes = 1;
6065 } else
6066 p = NULL;
6067
6068 sd = &per_cpu(node_domains, i);
6069 *sd = SD_NODE_INIT;
6070 sd->span = sched_domain_node_span(cpu_to_node(i));
6071 sd->parent = p;
6072 if (p)
6073 p->child = sd;
6074 cpus_and(sd->span, sd->span, *cpu_map);
6075 #endif
6076
6077 p = sd;
6078 sd = &per_cpu(phys_domains, i);
6079 *sd = SD_CPU_INIT;
6080 sd->span = nodemask;
6081 sd->parent = p;
6082 if (p)
6083 p->child = sd;
6084 cpu_to_phys_group(i, cpu_map, &sd->groups);
6085
6086 #ifdef CONFIG_SCHED_MC
6087 p = sd;
6088 sd = &per_cpu(core_domains, i);
6089 *sd = SD_MC_INIT;
6090 sd->span = cpu_coregroup_map(i);
6091 cpus_and(sd->span, sd->span, *cpu_map);
6092 sd->parent = p;
6093 p->child = sd;
6094 cpu_to_core_group(i, cpu_map, &sd->groups);
6095 #endif
6096
6097 #ifdef CONFIG_SCHED_SMT
6098 p = sd;
6099 sd = &per_cpu(cpu_domains, i);
6100 *sd = SD_SIBLING_INIT;
6101 sd->span = cpu_sibling_map[i];
6102 cpus_and(sd->span, sd->span, *cpu_map);
6103 sd->parent = p;
6104 p->child = sd;
6105 cpu_to_cpu_group(i, cpu_map, &sd->groups);
6106 #endif
6107 }
6108
6109 #ifdef CONFIG_SCHED_SMT
6110 /* Set up CPU (sibling) groups */
6111 for_each_cpu_mask(i, *cpu_map) {
6112 cpumask_t this_sibling_map = cpu_sibling_map[i];
6113 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
6114 if (i != first_cpu(this_sibling_map))
6115 continue;
6116
6117 init_sched_build_groups(this_sibling_map, cpu_map,
6118 &cpu_to_cpu_group);
6119 }
6120 #endif
6121
6122 #ifdef CONFIG_SCHED_MC
6123 /* Set up multi-core groups */
6124 for_each_cpu_mask(i, *cpu_map) {
6125 cpumask_t this_core_map = cpu_coregroup_map(i);
6126 cpus_and(this_core_map, this_core_map, *cpu_map);
6127 if (i != first_cpu(this_core_map))
6128 continue;
6129 init_sched_build_groups(this_core_map, cpu_map,
6130 &cpu_to_core_group);
6131 }
6132 #endif
6133
6134 /* Set up physical groups */
6135 for (i = 0; i < MAX_NUMNODES; i++) {
6136 cpumask_t nodemask = node_to_cpumask(i);
6137
6138 cpus_and(nodemask, nodemask, *cpu_map);
6139 if (cpus_empty(nodemask))
6140 continue;
6141
6142 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
6143 }
6144
6145 #ifdef CONFIG_NUMA
6146 /* Set up node groups */
6147 if (sd_allnodes)
6148 init_sched_build_groups(*cpu_map, cpu_map,
6149 &cpu_to_allnodes_group);
6150
6151 for (i = 0; i < MAX_NUMNODES; i++) {
6152 /* Set up node groups */
6153 struct sched_group *sg, *prev;
6154 cpumask_t nodemask = node_to_cpumask(i);
6155 cpumask_t domainspan;
6156 cpumask_t covered = CPU_MASK_NONE;
6157 int j;
6158
6159 cpus_and(nodemask, nodemask, *cpu_map);
6160 if (cpus_empty(nodemask)) {
6161 sched_group_nodes[i] = NULL;
6162 continue;
6163 }
6164
6165 domainspan = sched_domain_node_span(i);
6166 cpus_and(domainspan, domainspan, *cpu_map);
6167
6168 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6169 if (!sg) {
6170 printk(KERN_WARNING "Can not alloc domain group for "
6171 "node %d\n", i);
6172 goto error;
6173 }
6174 sched_group_nodes[i] = sg;
6175 for_each_cpu_mask(j, nodemask) {
6176 struct sched_domain *sd;
6177
6178 sd = &per_cpu(node_domains, j);
6179 sd->groups = sg;
6180 }
6181 sg->__cpu_power = 0;
6182 sg->cpumask = nodemask;
6183 sg->next = sg;
6184 cpus_or(covered, covered, nodemask);
6185 prev = sg;
6186
6187 for (j = 0; j < MAX_NUMNODES; j++) {
6188 cpumask_t tmp, notcovered;
6189 int n = (i + j) % MAX_NUMNODES;
6190
6191 cpus_complement(notcovered, covered);
6192 cpus_and(tmp, notcovered, *cpu_map);
6193 cpus_and(tmp, tmp, domainspan);
6194 if (cpus_empty(tmp))
6195 break;
6196
6197 nodemask = node_to_cpumask(n);
6198 cpus_and(tmp, tmp, nodemask);
6199 if (cpus_empty(tmp))
6200 continue;
6201
6202 sg = kmalloc_node(sizeof(struct sched_group),
6203 GFP_KERNEL, i);
6204 if (!sg) {
6205 printk(KERN_WARNING
6206 "Can not alloc domain group for node %d\n", j);
6207 goto error;
6208 }
6209 sg->__cpu_power = 0;
6210 sg->cpumask = tmp;
6211 sg->next = prev->next;
6212 cpus_or(covered, covered, tmp);
6213 prev->next = sg;
6214 prev = sg;
6215 }
6216 }
6217 #endif
6218
6219 /* Calculate CPU power for physical packages and nodes */
6220 #ifdef CONFIG_SCHED_SMT
6221 for_each_cpu_mask(i, *cpu_map) {
6222 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6223
6224 init_sched_groups_power(i, sd);
6225 }
6226 #endif
6227 #ifdef CONFIG_SCHED_MC
6228 for_each_cpu_mask(i, *cpu_map) {
6229 struct sched_domain *sd = &per_cpu(core_domains, i);
6230
6231 init_sched_groups_power(i, sd);
6232 }
6233 #endif
6234
6235 for_each_cpu_mask(i, *cpu_map) {
6236 struct sched_domain *sd = &per_cpu(phys_domains, i);
6237
6238 init_sched_groups_power(i, sd);
6239 }
6240
6241 #ifdef CONFIG_NUMA
6242 for (i = 0; i < MAX_NUMNODES; i++)
6243 init_numa_sched_groups_power(sched_group_nodes[i]);
6244
6245 if (sd_allnodes) {
6246 struct sched_group *sg;
6247
6248 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6249 init_numa_sched_groups_power(sg);
6250 }
6251 #endif
6252
6253 /* Attach the domains */
6254 for_each_cpu_mask(i, *cpu_map) {
6255 struct sched_domain *sd;
6256 #ifdef CONFIG_SCHED_SMT
6257 sd = &per_cpu(cpu_domains, i);
6258 #elif defined(CONFIG_SCHED_MC)
6259 sd = &per_cpu(core_domains, i);
6260 #else
6261 sd = &per_cpu(phys_domains, i);
6262 #endif
6263 cpu_attach_domain(sd, i);
6264 }
6265
6266 return 0;
6267
6268 #ifdef CONFIG_NUMA
6269 error:
6270 free_sched_groups(cpu_map);
6271 return -ENOMEM;
6272 #endif
6273 }
6274 /*
6275 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6276 */
6277 static int arch_init_sched_domains(const cpumask_t *cpu_map)
6278 {
6279 cpumask_t cpu_default_map;
6280 int err;
6281
6282 /*
6283 * Setup mask for cpus without special case scheduling requirements.
6284 * For now this just excludes isolated cpus, but could be used to
6285 * exclude other special cases in the future.
6286 */
6287 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6288
6289 err = build_sched_domains(&cpu_default_map);
6290
6291 return err;
6292 }
6293
6294 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
6295 {
6296 free_sched_groups(cpu_map);
6297 }
6298
6299 /*
6300 * Detach sched domains from a group of cpus specified in cpu_map
6301 * These cpus will now be attached to the NULL domain
6302 */
6303 static void detach_destroy_domains(const cpumask_t *cpu_map)
6304 {
6305 int i;
6306
6307 for_each_cpu_mask(i, *cpu_map)
6308 cpu_attach_domain(NULL, i);
6309 synchronize_sched();
6310 arch_destroy_sched_domains(cpu_map);
6311 }
6312
6313 /*
6314 * Partition sched domains as specified by the cpumasks below.
6315 * This attaches all cpus from the cpumasks to the NULL domain,
6316 * waits for a RCU quiescent period, recalculates sched
6317 * domain information and then attaches them back to the
6318 * correct sched domains
6319 * Call with hotplug lock held
6320 */
6321 int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6322 {
6323 cpumask_t change_map;
6324 int err = 0;
6325
6326 cpus_and(*partition1, *partition1, cpu_online_map);
6327 cpus_and(*partition2, *partition2, cpu_online_map);
6328 cpus_or(change_map, *partition1, *partition2);
6329
6330 /* Detach sched domains from all of the affected cpus */
6331 detach_destroy_domains(&change_map);
6332 if (!cpus_empty(*partition1))
6333 err = build_sched_domains(partition1);
6334 if (!err && !cpus_empty(*partition2))
6335 err = build_sched_domains(partition2);
6336
6337 return err;
6338 }
6339
6340 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6341 static int arch_reinit_sched_domains(void)
6342 {
6343 int err;
6344
6345 mutex_lock(&sched_hotcpu_mutex);
6346 detach_destroy_domains(&cpu_online_map);
6347 err = arch_init_sched_domains(&cpu_online_map);
6348 mutex_unlock(&sched_hotcpu_mutex);
6349
6350 return err;
6351 }
6352
6353 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6354 {
6355 int ret;
6356
6357 if (buf[0] != '0' && buf[0] != '1')
6358 return -EINVAL;
6359
6360 if (smt)
6361 sched_smt_power_savings = (buf[0] == '1');
6362 else
6363 sched_mc_power_savings = (buf[0] == '1');
6364
6365 ret = arch_reinit_sched_domains();
6366
6367 return ret ? ret : count;
6368 }
6369
6370 #ifdef CONFIG_SCHED_MC
6371 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6372 {
6373 return sprintf(page, "%u\n", sched_mc_power_savings);
6374 }
6375 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6376 const char *buf, size_t count)
6377 {
6378 return sched_power_savings_store(buf, count, 0);
6379 }
6380 static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6381 sched_mc_power_savings_store);
6382 #endif
6383
6384 #ifdef CONFIG_SCHED_SMT
6385 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6386 {
6387 return sprintf(page, "%u\n", sched_smt_power_savings);
6388 }
6389 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6390 const char *buf, size_t count)
6391 {
6392 return sched_power_savings_store(buf, count, 1);
6393 }
6394 static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6395 sched_smt_power_savings_store);
6396 #endif
6397
6398 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6399 {
6400 int err = 0;
6401
6402 #ifdef CONFIG_SCHED_SMT
6403 if (smt_capable())
6404 err = sysfs_create_file(&cls->kset.kobj,
6405 &attr_sched_smt_power_savings.attr);
6406 #endif
6407 #ifdef CONFIG_SCHED_MC
6408 if (!err && mc_capable())
6409 err = sysfs_create_file(&cls->kset.kobj,
6410 &attr_sched_mc_power_savings.attr);
6411 #endif
6412 return err;
6413 }
6414 #endif
6415
6416 /*
6417 * Force a reinitialization of the sched domains hierarchy. The domains
6418 * and groups cannot be updated in place without racing with the balancing
6419 * code, so we temporarily attach all running cpus to the NULL domain
6420 * which will prevent rebalancing while the sched domains are recalculated.
6421 */
6422 static int update_sched_domains(struct notifier_block *nfb,
6423 unsigned long action, void *hcpu)
6424 {
6425 switch (action) {
6426 case CPU_UP_PREPARE:
6427 case CPU_UP_PREPARE_FROZEN:
6428 case CPU_DOWN_PREPARE:
6429 case CPU_DOWN_PREPARE_FROZEN:
6430 detach_destroy_domains(&cpu_online_map);
6431 return NOTIFY_OK;
6432
6433 case CPU_UP_CANCELED:
6434 case CPU_UP_CANCELED_FROZEN:
6435 case CPU_DOWN_FAILED:
6436 case CPU_DOWN_FAILED_FROZEN:
6437 case CPU_ONLINE:
6438 case CPU_ONLINE_FROZEN:
6439 case CPU_DEAD:
6440 case CPU_DEAD_FROZEN:
6441 /*
6442 * Fall through and re-initialise the domains.
6443 */
6444 break;
6445 default:
6446 return NOTIFY_DONE;
6447 }
6448
6449 /* The hotplug lock is already held by cpu_up/cpu_down */
6450 arch_init_sched_domains(&cpu_online_map);
6451
6452 return NOTIFY_OK;
6453 }
6454
6455 void __init sched_init_smp(void)
6456 {
6457 cpumask_t non_isolated_cpus;
6458
6459 mutex_lock(&sched_hotcpu_mutex);
6460 arch_init_sched_domains(&cpu_online_map);
6461 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6462 if (cpus_empty(non_isolated_cpus))
6463 cpu_set(smp_processor_id(), non_isolated_cpus);
6464 mutex_unlock(&sched_hotcpu_mutex);
6465 /* XXX: Theoretical race here - CPU may be hotplugged now */
6466 hotcpu_notifier(update_sched_domains, 0);
6467
6468 init_sched_domain_sysctl();
6469
6470 /* Move init over to a non-isolated CPU */
6471 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6472 BUG();
6473 }
6474 #else
6475 void __init sched_init_smp(void)
6476 {
6477 }
6478 #endif /* CONFIG_SMP */
6479
6480 int in_sched_functions(unsigned long addr)
6481 {
6482 /* Linker adds these: start and end of __sched functions */
6483 extern char __sched_text_start[], __sched_text_end[];
6484
6485 return in_lock_functions(addr) ||
6486 (addr >= (unsigned long)__sched_text_start
6487 && addr < (unsigned long)__sched_text_end);
6488 }
6489
6490 static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
6491 {
6492 cfs_rq->tasks_timeline = RB_ROOT;
6493 #ifdef CONFIG_FAIR_GROUP_SCHED
6494 cfs_rq->rq = rq;
6495 #endif
6496 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
6497 }
6498
6499 void __init sched_init(void)
6500 {
6501 int highest_cpu = 0;
6502 int i, j;
6503
6504 /*
6505 * Link up the scheduling class hierarchy:
6506 */
6507 rt_sched_class.next = &fair_sched_class;
6508 fair_sched_class.next = &idle_sched_class;
6509 idle_sched_class.next = NULL;
6510
6511 for_each_possible_cpu(i) {
6512 struct rt_prio_array *array;
6513 struct rq *rq;
6514
6515 rq = cpu_rq(i);
6516 spin_lock_init(&rq->lock);
6517 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
6518 rq->nr_running = 0;
6519 rq->clock = 1;
6520 init_cfs_rq(&rq->cfs, rq);
6521 #ifdef CONFIG_FAIR_GROUP_SCHED
6522 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6523 {
6524 struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
6525 struct sched_entity *se =
6526 &per_cpu(init_sched_entity, i);
6527
6528 init_cfs_rq_p[i] = cfs_rq;
6529 init_cfs_rq(cfs_rq, rq);
6530 cfs_rq->tg = &init_task_grp;
6531 list_add(&cfs_rq->leaf_cfs_rq_list,
6532 &rq->leaf_cfs_rq_list);
6533
6534 init_sched_entity_p[i] = se;
6535 se->cfs_rq = &rq->cfs;
6536 se->my_q = cfs_rq;
6537 se->load.weight = init_task_grp_load;
6538 se->load.inv_weight =
6539 div64_64(1ULL<<32, init_task_grp_load);
6540 se->parent = NULL;
6541 }
6542 init_task_grp.shares = init_task_grp_load;
6543 #endif
6544
6545 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6546 rq->cpu_load[j] = 0;
6547 #ifdef CONFIG_SMP
6548 rq->sd = NULL;
6549 rq->active_balance = 0;
6550 rq->next_balance = jiffies;
6551 rq->push_cpu = 0;
6552 rq->cpu = i;
6553 rq->migration_thread = NULL;
6554 INIT_LIST_HEAD(&rq->migration_queue);
6555 #endif
6556 atomic_set(&rq->nr_iowait, 0);
6557
6558 array = &rq->rt.active;
6559 for (j = 0; j < MAX_RT_PRIO; j++) {
6560 INIT_LIST_HEAD(array->queue + j);
6561 __clear_bit(j, array->bitmap);
6562 }
6563 highest_cpu = i;
6564 /* delimiter for bitsearch: */
6565 __set_bit(MAX_RT_PRIO, array->bitmap);
6566 }
6567
6568 set_load_weight(&init_task);
6569
6570 #ifdef CONFIG_PREEMPT_NOTIFIERS
6571 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6572 #endif
6573
6574 #ifdef CONFIG_SMP
6575 nr_cpu_ids = highest_cpu + 1;
6576 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6577 #endif
6578
6579 #ifdef CONFIG_RT_MUTEXES
6580 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6581 #endif
6582
6583 /*
6584 * The boot idle thread does lazy MMU switching as well:
6585 */
6586 atomic_inc(&init_mm.mm_count);
6587 enter_lazy_tlb(&init_mm, current);
6588
6589 /*
6590 * Make us the idle thread. Technically, schedule() should not be
6591 * called from this thread, however somewhere below it might be,
6592 * but because we are the idle thread, we just pick up running again
6593 * when this runqueue becomes "idle".
6594 */
6595 init_idle(current, smp_processor_id());
6596 /*
6597 * During early bootup we pretend to be a normal task:
6598 */
6599 current->sched_class = &fair_sched_class;
6600 }
6601
6602 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6603 void __might_sleep(char *file, int line)
6604 {
6605 #ifdef in_atomic
6606 static unsigned long prev_jiffy; /* ratelimiting */
6607
6608 if ((in_atomic() || irqs_disabled()) &&
6609 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6610 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6611 return;
6612 prev_jiffy = jiffies;
6613 printk(KERN_ERR "BUG: sleeping function called from invalid"
6614 " context at %s:%d\n", file, line);
6615 printk("in_atomic():%d, irqs_disabled():%d\n",
6616 in_atomic(), irqs_disabled());
6617 debug_show_held_locks(current);
6618 if (irqs_disabled())
6619 print_irqtrace_events(current);
6620 dump_stack();
6621 }
6622 #endif
6623 }
6624 EXPORT_SYMBOL(__might_sleep);
6625 #endif
6626
6627 #ifdef CONFIG_MAGIC_SYSRQ
6628 void normalize_rt_tasks(void)
6629 {
6630 struct task_struct *g, *p;
6631 unsigned long flags;
6632 struct rq *rq;
6633 int on_rq;
6634
6635 read_lock_irq(&tasklist_lock);
6636 do_each_thread(g, p) {
6637 p->se.exec_start = 0;
6638 #ifdef CONFIG_SCHEDSTATS
6639 p->se.wait_start = 0;
6640 p->se.sleep_start = 0;
6641 p->se.block_start = 0;
6642 #endif
6643 task_rq(p)->clock = 0;
6644
6645 if (!rt_task(p)) {
6646 /*
6647 * Renice negative nice level userspace
6648 * tasks back to 0:
6649 */
6650 if (TASK_NICE(p) < 0 && p->mm)
6651 set_user_nice(p, 0);
6652 continue;
6653 }
6654
6655 spin_lock_irqsave(&p->pi_lock, flags);
6656 rq = __task_rq_lock(p);
6657 #ifdef CONFIG_SMP
6658 /*
6659 * Do not touch the migration thread:
6660 */
6661 if (p == rq->migration_thread)
6662 goto out_unlock;
6663 #endif
6664
6665 update_rq_clock(rq);
6666 on_rq = p->se.on_rq;
6667 if (on_rq)
6668 deactivate_task(rq, p, 0);
6669 __setscheduler(rq, p, SCHED_NORMAL, 0);
6670 if (on_rq) {
6671 activate_task(rq, p, 0);
6672 resched_task(rq->curr);
6673 }
6674 #ifdef CONFIG_SMP
6675 out_unlock:
6676 #endif
6677 __task_rq_unlock(rq);
6678 spin_unlock_irqrestore(&p->pi_lock, flags);
6679 } while_each_thread(g, p);
6680
6681 read_unlock_irq(&tasklist_lock);
6682 }
6683
6684 #endif /* CONFIG_MAGIC_SYSRQ */
6685
6686 #ifdef CONFIG_IA64
6687 /*
6688 * These functions are only useful for the IA64 MCA handling.
6689 *
6690 * They can only be called when the whole system has been
6691 * stopped - every CPU needs to be quiescent, and no scheduling
6692 * activity can take place. Using them for anything else would
6693 * be a serious bug, and as a result, they aren't even visible
6694 * under any other configuration.
6695 */
6696
6697 /**
6698 * curr_task - return the current task for a given cpu.
6699 * @cpu: the processor in question.
6700 *
6701 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6702 */
6703 struct task_struct *curr_task(int cpu)
6704 {
6705 return cpu_curr(cpu);
6706 }
6707
6708 /**
6709 * set_curr_task - set the current task for a given cpu.
6710 * @cpu: the processor in question.
6711 * @p: the task pointer to set.
6712 *
6713 * Description: This function must only be used when non-maskable interrupts
6714 * are serviced on a separate stack. It allows the architecture to switch the
6715 * notion of the current task on a cpu in a non-blocking manner. This function
6716 * must be called with all CPU's synchronized, and interrupts disabled, the
6717 * and caller must save the original value of the current task (see
6718 * curr_task() above) and restore that value before reenabling interrupts and
6719 * re-starting the system.
6720 *
6721 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6722 */
6723 void set_curr_task(int cpu, struct task_struct *p)
6724 {
6725 cpu_curr(cpu) = p;
6726 }
6727
6728 #endif
6729
6730 #ifdef CONFIG_FAIR_GROUP_SCHED
6731
6732 /* allocate runqueue etc for a new task group */
6733 struct task_grp *sched_create_group(void)
6734 {
6735 struct task_grp *tg;
6736 struct cfs_rq *cfs_rq;
6737 struct sched_entity *se;
6738 struct rq *rq;
6739 int i;
6740
6741 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6742 if (!tg)
6743 return ERR_PTR(-ENOMEM);
6744
6745 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
6746 if (!tg->cfs_rq)
6747 goto err;
6748 tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
6749 if (!tg->se)
6750 goto err;
6751
6752 for_each_possible_cpu(i) {
6753 rq = cpu_rq(i);
6754
6755 cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
6756 cpu_to_node(i));
6757 if (!cfs_rq)
6758 goto err;
6759
6760 se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
6761 cpu_to_node(i));
6762 if (!se)
6763 goto err;
6764
6765 memset(cfs_rq, 0, sizeof(struct cfs_rq));
6766 memset(se, 0, sizeof(struct sched_entity));
6767
6768 tg->cfs_rq[i] = cfs_rq;
6769 init_cfs_rq(cfs_rq, rq);
6770 cfs_rq->tg = tg;
6771
6772 tg->se[i] = se;
6773 se->cfs_rq = &rq->cfs;
6774 se->my_q = cfs_rq;
6775 se->load.weight = NICE_0_LOAD;
6776 se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
6777 se->parent = NULL;
6778 }
6779
6780 for_each_possible_cpu(i) {
6781 rq = cpu_rq(i);
6782 cfs_rq = tg->cfs_rq[i];
6783 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
6784 }
6785
6786 tg->shares = NICE_0_LOAD;
6787
6788 return tg;
6789
6790 err:
6791 for_each_possible_cpu(i) {
6792 if (tg->cfs_rq && tg->cfs_rq[i])
6793 kfree(tg->cfs_rq[i]);
6794 if (tg->se && tg->se[i])
6795 kfree(tg->se[i]);
6796 }
6797 if (tg->cfs_rq)
6798 kfree(tg->cfs_rq);
6799 if (tg->se)
6800 kfree(tg->se);
6801 if (tg)
6802 kfree(tg);
6803
6804 return ERR_PTR(-ENOMEM);
6805 }
6806
6807 /* rcu callback to free various structures associated with a task group */
6808 static void free_sched_group(struct rcu_head *rhp)
6809 {
6810 struct cfs_rq *cfs_rq = container_of(rhp, struct cfs_rq, rcu);
6811 struct task_grp *tg = cfs_rq->tg;
6812 struct sched_entity *se;
6813 int i;
6814
6815 /* now it should be safe to free those cfs_rqs */
6816 for_each_possible_cpu(i) {
6817 cfs_rq = tg->cfs_rq[i];
6818 kfree(cfs_rq);
6819
6820 se = tg->se[i];
6821 kfree(se);
6822 }
6823
6824 kfree(tg->cfs_rq);
6825 kfree(tg->se);
6826 kfree(tg);
6827 }
6828
6829 /* Destroy runqueue etc associated with a task group */
6830 void sched_destroy_group(struct task_grp *tg)
6831 {
6832 struct cfs_rq *cfs_rq;
6833 int i;
6834
6835 for_each_possible_cpu(i) {
6836 cfs_rq = tg->cfs_rq[i];
6837 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
6838 }
6839
6840 cfs_rq = tg->cfs_rq[0];
6841
6842 /* wait for possible concurrent references to cfs_rqs complete */
6843 call_rcu(&cfs_rq->rcu, free_sched_group);
6844 }
6845
6846 /* change task's runqueue when it moves between groups.
6847 * The caller of this function should have put the task in its new group
6848 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
6849 * reflect its new group.
6850 */
6851 void sched_move_task(struct task_struct *tsk)
6852 {
6853 int on_rq, running;
6854 unsigned long flags;
6855 struct rq *rq;
6856
6857 rq = task_rq_lock(tsk, &flags);
6858
6859 if (tsk->sched_class != &fair_sched_class)
6860 goto done;
6861
6862 update_rq_clock(rq);
6863
6864 running = task_running(rq, tsk);
6865 on_rq = tsk->se.on_rq;
6866
6867 if (on_rq) {
6868 dequeue_task(rq, tsk, 0);
6869 if (unlikely(running))
6870 tsk->sched_class->put_prev_task(rq, tsk);
6871 }
6872
6873 set_task_cfs_rq(tsk);
6874
6875 if (on_rq) {
6876 if (unlikely(running))
6877 tsk->sched_class->set_curr_task(rq);
6878 enqueue_task(rq, tsk, 0);
6879 }
6880
6881 done:
6882 task_rq_unlock(rq, &flags);
6883 }
6884
6885 static void set_se_shares(struct sched_entity *se, unsigned long shares)
6886 {
6887 struct cfs_rq *cfs_rq = se->cfs_rq;
6888 struct rq *rq = cfs_rq->rq;
6889 int on_rq;
6890
6891 spin_lock_irq(&rq->lock);
6892
6893 on_rq = se->on_rq;
6894 if (on_rq)
6895 dequeue_entity(cfs_rq, se, 0);
6896
6897 se->load.weight = shares;
6898 se->load.inv_weight = div64_64((1ULL<<32), shares);
6899
6900 if (on_rq)
6901 enqueue_entity(cfs_rq, se, 0);
6902
6903 spin_unlock_irq(&rq->lock);
6904 }
6905
6906 int sched_group_set_shares(struct task_grp *tg, unsigned long shares)
6907 {
6908 int i;
6909
6910 if (tg->shares == shares)
6911 return 0;
6912
6913 /* return -EINVAL if the new value is not sane */
6914
6915 tg->shares = shares;
6916 for_each_possible_cpu(i)
6917 set_se_shares(tg->se[i], shares);
6918
6919 return 0;
6920 }
6921
6922 #endif /* CONFIG_FAIR_GROUP_SCHED */
This page took 0.17941 seconds and 5 git commands to generate.