Add wait_for_completion_killable
[deliverable/linux.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 */
26
27 #include <linux/mm.h>
28 #include <linux/module.h>
29 #include <linux/nmi.h>
30 #include <linux/init.h>
31 #include <linux/uaccess.h>
32 #include <linux/highmem.h>
33 #include <linux/smp_lock.h>
34 #include <asm/mmu_context.h>
35 #include <linux/interrupt.h>
36 #include <linux/capability.h>
37 #include <linux/completion.h>
38 #include <linux/kernel_stat.h>
39 #include <linux/debug_locks.h>
40 #include <linux/security.h>
41 #include <linux/notifier.h>
42 #include <linux/profile.h>
43 #include <linux/freezer.h>
44 #include <linux/vmalloc.h>
45 #include <linux/blkdev.h>
46 #include <linux/delay.h>
47 #include <linux/pid_namespace.h>
48 #include <linux/smp.h>
49 #include <linux/threads.h>
50 #include <linux/timer.h>
51 #include <linux/rcupdate.h>
52 #include <linux/cpu.h>
53 #include <linux/cpuset.h>
54 #include <linux/percpu.h>
55 #include <linux/kthread.h>
56 #include <linux/seq_file.h>
57 #include <linux/sysctl.h>
58 #include <linux/syscalls.h>
59 #include <linux/times.h>
60 #include <linux/tsacct_kern.h>
61 #include <linux/kprobes.h>
62 #include <linux/delayacct.h>
63 #include <linux/reciprocal_div.h>
64 #include <linux/unistd.h>
65 #include <linux/pagemap.h>
66
67 #include <asm/tlb.h>
68 #include <asm/irq_regs.h>
69
70 /*
71 * Scheduler clock - returns current time in nanosec units.
72 * This is default implementation.
73 * Architectures and sub-architectures can override this.
74 */
75 unsigned long long __attribute__((weak)) sched_clock(void)
76 {
77 return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
78 }
79
80 /*
81 * Convert user-nice values [ -20 ... 0 ... 19 ]
82 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
83 * and back.
84 */
85 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
86 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
87 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
88
89 /*
90 * 'User priority' is the nice value converted to something we
91 * can work with better when scaling various scheduler parameters,
92 * it's a [ 0 ... 39 ] range.
93 */
94 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
95 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
96 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
97
98 /*
99 * Some helpers for converting nanosecond timing to jiffy resolution
100 */
101 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
102 #define JIFFIES_TO_NS(TIME) ((TIME) * (NSEC_PER_SEC / HZ))
103
104 #define NICE_0_LOAD SCHED_LOAD_SCALE
105 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
106
107 /*
108 * These are the 'tuning knobs' of the scheduler:
109 *
110 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
111 * Timeslices get refilled after they expire.
112 */
113 #define DEF_TIMESLICE (100 * HZ / 1000)
114
115 #ifdef CONFIG_SMP
116 /*
117 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
118 * Since cpu_power is a 'constant', we can use a reciprocal divide.
119 */
120 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
121 {
122 return reciprocal_divide(load, sg->reciprocal_cpu_power);
123 }
124
125 /*
126 * Each time a sched group cpu_power is changed,
127 * we must compute its reciprocal value
128 */
129 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
130 {
131 sg->__cpu_power += val;
132 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
133 }
134 #endif
135
136 static inline int rt_policy(int policy)
137 {
138 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
139 return 1;
140 return 0;
141 }
142
143 static inline int task_has_rt_policy(struct task_struct *p)
144 {
145 return rt_policy(p->policy);
146 }
147
148 /*
149 * This is the priority-queue data structure of the RT scheduling class:
150 */
151 struct rt_prio_array {
152 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
153 struct list_head queue[MAX_RT_PRIO];
154 };
155
156 #ifdef CONFIG_FAIR_GROUP_SCHED
157
158 #include <linux/cgroup.h>
159
160 struct cfs_rq;
161
162 /* task group related information */
163 struct task_group {
164 #ifdef CONFIG_FAIR_CGROUP_SCHED
165 struct cgroup_subsys_state css;
166 #endif
167 /* schedulable entities of this group on each cpu */
168 struct sched_entity **se;
169 /* runqueue "owned" by this group on each cpu */
170 struct cfs_rq **cfs_rq;
171 unsigned long shares;
172 /* spinlock to serialize modification to shares */
173 spinlock_t lock;
174 struct rcu_head rcu;
175 };
176
177 /* Default task group's sched entity on each cpu */
178 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
179 /* Default task group's cfs_rq on each cpu */
180 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
181
182 static struct sched_entity *init_sched_entity_p[NR_CPUS];
183 static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
184
185 /* Default task group.
186 * Every task in system belong to this group at bootup.
187 */
188 struct task_group init_task_group = {
189 .se = init_sched_entity_p,
190 .cfs_rq = init_cfs_rq_p,
191 };
192
193 #ifdef CONFIG_FAIR_USER_SCHED
194 # define INIT_TASK_GRP_LOAD 2*NICE_0_LOAD
195 #else
196 # define INIT_TASK_GRP_LOAD NICE_0_LOAD
197 #endif
198
199 static int init_task_group_load = INIT_TASK_GRP_LOAD;
200
201 /* return group to which a task belongs */
202 static inline struct task_group *task_group(struct task_struct *p)
203 {
204 struct task_group *tg;
205
206 #ifdef CONFIG_FAIR_USER_SCHED
207 tg = p->user->tg;
208 #elif defined(CONFIG_FAIR_CGROUP_SCHED)
209 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
210 struct task_group, css);
211 #else
212 tg = &init_task_group;
213 #endif
214 return tg;
215 }
216
217 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
218 static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu)
219 {
220 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
221 p->se.parent = task_group(p)->se[cpu];
222 }
223
224 #else
225
226 static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu) { }
227
228 #endif /* CONFIG_FAIR_GROUP_SCHED */
229
230 /* CFS-related fields in a runqueue */
231 struct cfs_rq {
232 struct load_weight load;
233 unsigned long nr_running;
234
235 u64 exec_clock;
236 u64 min_vruntime;
237
238 struct rb_root tasks_timeline;
239 struct rb_node *rb_leftmost;
240 struct rb_node *rb_load_balance_curr;
241 /* 'curr' points to currently running entity on this cfs_rq.
242 * It is set to NULL otherwise (i.e when none are currently running).
243 */
244 struct sched_entity *curr;
245
246 unsigned long nr_spread_over;
247
248 #ifdef CONFIG_FAIR_GROUP_SCHED
249 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
250
251 /*
252 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
253 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
254 * (like users, containers etc.)
255 *
256 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
257 * list is used during load balance.
258 */
259 struct list_head leaf_cfs_rq_list;
260 struct task_group *tg; /* group that "owns" this runqueue */
261 #endif
262 };
263
264 /* Real-Time classes' related field in a runqueue: */
265 struct rt_rq {
266 struct rt_prio_array active;
267 int rt_load_balance_idx;
268 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
269 };
270
271 /*
272 * This is the main, per-CPU runqueue data structure.
273 *
274 * Locking rule: those places that want to lock multiple runqueues
275 * (such as the load balancing or the thread migration code), lock
276 * acquire operations must be ordered by ascending &runqueue.
277 */
278 struct rq {
279 /* runqueue lock: */
280 spinlock_t lock;
281
282 /*
283 * nr_running and cpu_load should be in the same cacheline because
284 * remote CPUs use both these fields when doing load calculation.
285 */
286 unsigned long nr_running;
287 #define CPU_LOAD_IDX_MAX 5
288 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
289 unsigned char idle_at_tick;
290 #ifdef CONFIG_NO_HZ
291 unsigned char in_nohz_recently;
292 #endif
293 /* capture load from *all* tasks on this cpu: */
294 struct load_weight load;
295 unsigned long nr_load_updates;
296 u64 nr_switches;
297
298 struct cfs_rq cfs;
299 #ifdef CONFIG_FAIR_GROUP_SCHED
300 /* list of leaf cfs_rq on this cpu: */
301 struct list_head leaf_cfs_rq_list;
302 #endif
303 struct rt_rq rt;
304
305 /*
306 * This is part of a global counter where only the total sum
307 * over all CPUs matters. A task can increase this counter on
308 * one CPU and if it got migrated afterwards it may decrease
309 * it on another CPU. Always updated under the runqueue lock:
310 */
311 unsigned long nr_uninterruptible;
312
313 struct task_struct *curr, *idle;
314 unsigned long next_balance;
315 struct mm_struct *prev_mm;
316
317 u64 clock, prev_clock_raw;
318 s64 clock_max_delta;
319
320 unsigned int clock_warps, clock_overflows;
321 u64 idle_clock;
322 unsigned int clock_deep_idle_events;
323 u64 tick_timestamp;
324
325 atomic_t nr_iowait;
326
327 #ifdef CONFIG_SMP
328 struct sched_domain *sd;
329
330 /* For active balancing */
331 int active_balance;
332 int push_cpu;
333 /* cpu of this runqueue: */
334 int cpu;
335
336 struct task_struct *migration_thread;
337 struct list_head migration_queue;
338 #endif
339
340 #ifdef CONFIG_SCHEDSTATS
341 /* latency stats */
342 struct sched_info rq_sched_info;
343
344 /* sys_sched_yield() stats */
345 unsigned int yld_exp_empty;
346 unsigned int yld_act_empty;
347 unsigned int yld_both_empty;
348 unsigned int yld_count;
349
350 /* schedule() stats */
351 unsigned int sched_switch;
352 unsigned int sched_count;
353 unsigned int sched_goidle;
354
355 /* try_to_wake_up() stats */
356 unsigned int ttwu_count;
357 unsigned int ttwu_local;
358
359 /* BKL stats */
360 unsigned int bkl_count;
361 #endif
362 struct lock_class_key rq_lock_key;
363 };
364
365 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
366 static DEFINE_MUTEX(sched_hotcpu_mutex);
367
368 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
369 {
370 rq->curr->sched_class->check_preempt_curr(rq, p);
371 }
372
373 static inline int cpu_of(struct rq *rq)
374 {
375 #ifdef CONFIG_SMP
376 return rq->cpu;
377 #else
378 return 0;
379 #endif
380 }
381
382 /*
383 * Update the per-runqueue clock, as finegrained as the platform can give
384 * us, but without assuming monotonicity, etc.:
385 */
386 static void __update_rq_clock(struct rq *rq)
387 {
388 u64 prev_raw = rq->prev_clock_raw;
389 u64 now = sched_clock();
390 s64 delta = now - prev_raw;
391 u64 clock = rq->clock;
392
393 #ifdef CONFIG_SCHED_DEBUG
394 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
395 #endif
396 /*
397 * Protect against sched_clock() occasionally going backwards:
398 */
399 if (unlikely(delta < 0)) {
400 clock++;
401 rq->clock_warps++;
402 } else {
403 /*
404 * Catch too large forward jumps too:
405 */
406 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
407 if (clock < rq->tick_timestamp + TICK_NSEC)
408 clock = rq->tick_timestamp + TICK_NSEC;
409 else
410 clock++;
411 rq->clock_overflows++;
412 } else {
413 if (unlikely(delta > rq->clock_max_delta))
414 rq->clock_max_delta = delta;
415 clock += delta;
416 }
417 }
418
419 rq->prev_clock_raw = now;
420 rq->clock = clock;
421 }
422
423 static void update_rq_clock(struct rq *rq)
424 {
425 if (likely(smp_processor_id() == cpu_of(rq)))
426 __update_rq_clock(rq);
427 }
428
429 /*
430 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
431 * See detach_destroy_domains: synchronize_sched for details.
432 *
433 * The domain tree of any CPU may only be accessed from within
434 * preempt-disabled sections.
435 */
436 #define for_each_domain(cpu, __sd) \
437 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
438
439 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
440 #define this_rq() (&__get_cpu_var(runqueues))
441 #define task_rq(p) cpu_rq(task_cpu(p))
442 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
443
444 /*
445 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
446 */
447 #ifdef CONFIG_SCHED_DEBUG
448 # define const_debug __read_mostly
449 #else
450 # define const_debug static const
451 #endif
452
453 /*
454 * Debugging: various feature bits
455 */
456 enum {
457 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
458 SCHED_FEAT_WAKEUP_PREEMPT = 2,
459 SCHED_FEAT_START_DEBIT = 4,
460 SCHED_FEAT_TREE_AVG = 8,
461 SCHED_FEAT_APPROX_AVG = 16,
462 };
463
464 const_debug unsigned int sysctl_sched_features =
465 SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
466 SCHED_FEAT_WAKEUP_PREEMPT * 1 |
467 SCHED_FEAT_START_DEBIT * 1 |
468 SCHED_FEAT_TREE_AVG * 0 |
469 SCHED_FEAT_APPROX_AVG * 0;
470
471 #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
472
473 /*
474 * Number of tasks to iterate in a single balance run.
475 * Limited because this is done with IRQs disabled.
476 */
477 const_debug unsigned int sysctl_sched_nr_migrate = 32;
478
479 /*
480 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
481 * clock constructed from sched_clock():
482 */
483 unsigned long long cpu_clock(int cpu)
484 {
485 unsigned long long now;
486 unsigned long flags;
487 struct rq *rq;
488
489 local_irq_save(flags);
490 rq = cpu_rq(cpu);
491 update_rq_clock(rq);
492 now = rq->clock;
493 local_irq_restore(flags);
494
495 return now;
496 }
497 EXPORT_SYMBOL_GPL(cpu_clock);
498
499 #ifndef prepare_arch_switch
500 # define prepare_arch_switch(next) do { } while (0)
501 #endif
502 #ifndef finish_arch_switch
503 # define finish_arch_switch(prev) do { } while (0)
504 #endif
505
506 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
507 static inline int task_running(struct rq *rq, struct task_struct *p)
508 {
509 return rq->curr == p;
510 }
511
512 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
513 {
514 }
515
516 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
517 {
518 #ifdef CONFIG_DEBUG_SPINLOCK
519 /* this is a valid case when another task releases the spinlock */
520 rq->lock.owner = current;
521 #endif
522 /*
523 * If we are tracking spinlock dependencies then we have to
524 * fix up the runqueue lock - which gets 'carried over' from
525 * prev into current:
526 */
527 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
528
529 spin_unlock_irq(&rq->lock);
530 }
531
532 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
533 static inline int task_running(struct rq *rq, struct task_struct *p)
534 {
535 #ifdef CONFIG_SMP
536 return p->oncpu;
537 #else
538 return rq->curr == p;
539 #endif
540 }
541
542 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
543 {
544 #ifdef CONFIG_SMP
545 /*
546 * We can optimise this out completely for !SMP, because the
547 * SMP rebalancing from interrupt is the only thing that cares
548 * here.
549 */
550 next->oncpu = 1;
551 #endif
552 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
553 spin_unlock_irq(&rq->lock);
554 #else
555 spin_unlock(&rq->lock);
556 #endif
557 }
558
559 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
560 {
561 #ifdef CONFIG_SMP
562 /*
563 * After ->oncpu is cleared, the task can be moved to a different CPU.
564 * We must ensure this doesn't happen until the switch is completely
565 * finished.
566 */
567 smp_wmb();
568 prev->oncpu = 0;
569 #endif
570 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
571 local_irq_enable();
572 #endif
573 }
574 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
575
576 /*
577 * __task_rq_lock - lock the runqueue a given task resides on.
578 * Must be called interrupts disabled.
579 */
580 static inline struct rq *__task_rq_lock(struct task_struct *p)
581 __acquires(rq->lock)
582 {
583 for (;;) {
584 struct rq *rq = task_rq(p);
585 spin_lock(&rq->lock);
586 if (likely(rq == task_rq(p)))
587 return rq;
588 spin_unlock(&rq->lock);
589 }
590 }
591
592 /*
593 * task_rq_lock - lock the runqueue a given task resides on and disable
594 * interrupts. Note the ordering: we can safely lookup the task_rq without
595 * explicitly disabling preemption.
596 */
597 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
598 __acquires(rq->lock)
599 {
600 struct rq *rq;
601
602 for (;;) {
603 local_irq_save(*flags);
604 rq = task_rq(p);
605 spin_lock(&rq->lock);
606 if (likely(rq == task_rq(p)))
607 return rq;
608 spin_unlock_irqrestore(&rq->lock, *flags);
609 }
610 }
611
612 static void __task_rq_unlock(struct rq *rq)
613 __releases(rq->lock)
614 {
615 spin_unlock(&rq->lock);
616 }
617
618 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
619 __releases(rq->lock)
620 {
621 spin_unlock_irqrestore(&rq->lock, *flags);
622 }
623
624 /*
625 * this_rq_lock - lock this runqueue and disable interrupts.
626 */
627 static struct rq *this_rq_lock(void)
628 __acquires(rq->lock)
629 {
630 struct rq *rq;
631
632 local_irq_disable();
633 rq = this_rq();
634 spin_lock(&rq->lock);
635
636 return rq;
637 }
638
639 /*
640 * We are going deep-idle (irqs are disabled):
641 */
642 void sched_clock_idle_sleep_event(void)
643 {
644 struct rq *rq = cpu_rq(smp_processor_id());
645
646 spin_lock(&rq->lock);
647 __update_rq_clock(rq);
648 spin_unlock(&rq->lock);
649 rq->clock_deep_idle_events++;
650 }
651 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
652
653 /*
654 * We just idled delta nanoseconds (called with irqs disabled):
655 */
656 void sched_clock_idle_wakeup_event(u64 delta_ns)
657 {
658 struct rq *rq = cpu_rq(smp_processor_id());
659 u64 now = sched_clock();
660
661 rq->idle_clock += delta_ns;
662 /*
663 * Override the previous timestamp and ignore all
664 * sched_clock() deltas that occured while we idled,
665 * and use the PM-provided delta_ns to advance the
666 * rq clock:
667 */
668 spin_lock(&rq->lock);
669 rq->prev_clock_raw = now;
670 rq->clock += delta_ns;
671 spin_unlock(&rq->lock);
672 }
673 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
674
675 /*
676 * resched_task - mark a task 'to be rescheduled now'.
677 *
678 * On UP this means the setting of the need_resched flag, on SMP it
679 * might also involve a cross-CPU call to trigger the scheduler on
680 * the target CPU.
681 */
682 #ifdef CONFIG_SMP
683
684 #ifndef tsk_is_polling
685 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
686 #endif
687
688 static void resched_task(struct task_struct *p)
689 {
690 int cpu;
691
692 assert_spin_locked(&task_rq(p)->lock);
693
694 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
695 return;
696
697 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
698
699 cpu = task_cpu(p);
700 if (cpu == smp_processor_id())
701 return;
702
703 /* NEED_RESCHED must be visible before we test polling */
704 smp_mb();
705 if (!tsk_is_polling(p))
706 smp_send_reschedule(cpu);
707 }
708
709 static void resched_cpu(int cpu)
710 {
711 struct rq *rq = cpu_rq(cpu);
712 unsigned long flags;
713
714 if (!spin_trylock_irqsave(&rq->lock, flags))
715 return;
716 resched_task(cpu_curr(cpu));
717 spin_unlock_irqrestore(&rq->lock, flags);
718 }
719 #else
720 static inline void resched_task(struct task_struct *p)
721 {
722 assert_spin_locked(&task_rq(p)->lock);
723 set_tsk_need_resched(p);
724 }
725 #endif
726
727 #if BITS_PER_LONG == 32
728 # define WMULT_CONST (~0UL)
729 #else
730 # define WMULT_CONST (1UL << 32)
731 #endif
732
733 #define WMULT_SHIFT 32
734
735 /*
736 * Shift right and round:
737 */
738 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
739
740 static unsigned long
741 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
742 struct load_weight *lw)
743 {
744 u64 tmp;
745
746 if (unlikely(!lw->inv_weight))
747 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
748
749 tmp = (u64)delta_exec * weight;
750 /*
751 * Check whether we'd overflow the 64-bit multiplication:
752 */
753 if (unlikely(tmp > WMULT_CONST))
754 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
755 WMULT_SHIFT/2);
756 else
757 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
758
759 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
760 }
761
762 static inline unsigned long
763 calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
764 {
765 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
766 }
767
768 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
769 {
770 lw->weight += inc;
771 }
772
773 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
774 {
775 lw->weight -= dec;
776 }
777
778 /*
779 * To aid in avoiding the subversion of "niceness" due to uneven distribution
780 * of tasks with abnormal "nice" values across CPUs the contribution that
781 * each task makes to its run queue's load is weighted according to its
782 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
783 * scaled version of the new time slice allocation that they receive on time
784 * slice expiry etc.
785 */
786
787 #define WEIGHT_IDLEPRIO 2
788 #define WMULT_IDLEPRIO (1 << 31)
789
790 /*
791 * Nice levels are multiplicative, with a gentle 10% change for every
792 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
793 * nice 1, it will get ~10% less CPU time than another CPU-bound task
794 * that remained on nice 0.
795 *
796 * The "10% effect" is relative and cumulative: from _any_ nice level,
797 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
798 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
799 * If a task goes up by ~10% and another task goes down by ~10% then
800 * the relative distance between them is ~25%.)
801 */
802 static const int prio_to_weight[40] = {
803 /* -20 */ 88761, 71755, 56483, 46273, 36291,
804 /* -15 */ 29154, 23254, 18705, 14949, 11916,
805 /* -10 */ 9548, 7620, 6100, 4904, 3906,
806 /* -5 */ 3121, 2501, 1991, 1586, 1277,
807 /* 0 */ 1024, 820, 655, 526, 423,
808 /* 5 */ 335, 272, 215, 172, 137,
809 /* 10 */ 110, 87, 70, 56, 45,
810 /* 15 */ 36, 29, 23, 18, 15,
811 };
812
813 /*
814 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
815 *
816 * In cases where the weight does not change often, we can use the
817 * precalculated inverse to speed up arithmetics by turning divisions
818 * into multiplications:
819 */
820 static const u32 prio_to_wmult[40] = {
821 /* -20 */ 48388, 59856, 76040, 92818, 118348,
822 /* -15 */ 147320, 184698, 229616, 287308, 360437,
823 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
824 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
825 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
826 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
827 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
828 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
829 };
830
831 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
832
833 /*
834 * runqueue iterator, to support SMP load-balancing between different
835 * scheduling classes, without having to expose their internal data
836 * structures to the load-balancing proper:
837 */
838 struct rq_iterator {
839 void *arg;
840 struct task_struct *(*start)(void *);
841 struct task_struct *(*next)(void *);
842 };
843
844 #ifdef CONFIG_SMP
845 static unsigned long
846 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
847 unsigned long max_load_move, struct sched_domain *sd,
848 enum cpu_idle_type idle, int *all_pinned,
849 int *this_best_prio, struct rq_iterator *iterator);
850
851 static int
852 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
853 struct sched_domain *sd, enum cpu_idle_type idle,
854 struct rq_iterator *iterator);
855 #endif
856
857 #ifdef CONFIG_CGROUP_CPUACCT
858 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
859 #else
860 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
861 #endif
862
863 #include "sched_stats.h"
864 #include "sched_idletask.c"
865 #include "sched_fair.c"
866 #include "sched_rt.c"
867 #ifdef CONFIG_SCHED_DEBUG
868 # include "sched_debug.c"
869 #endif
870
871 #define sched_class_highest (&rt_sched_class)
872
873 /*
874 * Update delta_exec, delta_fair fields for rq.
875 *
876 * delta_fair clock advances at a rate inversely proportional to
877 * total load (rq->load.weight) on the runqueue, while
878 * delta_exec advances at the same rate as wall-clock (provided
879 * cpu is not idle).
880 *
881 * delta_exec / delta_fair is a measure of the (smoothened) load on this
882 * runqueue over any given interval. This (smoothened) load is used
883 * during load balance.
884 *
885 * This function is called /before/ updating rq->load
886 * and when switching tasks.
887 */
888 static inline void inc_load(struct rq *rq, const struct task_struct *p)
889 {
890 update_load_add(&rq->load, p->se.load.weight);
891 }
892
893 static inline void dec_load(struct rq *rq, const struct task_struct *p)
894 {
895 update_load_sub(&rq->load, p->se.load.weight);
896 }
897
898 static void inc_nr_running(struct task_struct *p, struct rq *rq)
899 {
900 rq->nr_running++;
901 inc_load(rq, p);
902 }
903
904 static void dec_nr_running(struct task_struct *p, struct rq *rq)
905 {
906 rq->nr_running--;
907 dec_load(rq, p);
908 }
909
910 static void set_load_weight(struct task_struct *p)
911 {
912 if (task_has_rt_policy(p)) {
913 p->se.load.weight = prio_to_weight[0] * 2;
914 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
915 return;
916 }
917
918 /*
919 * SCHED_IDLE tasks get minimal weight:
920 */
921 if (p->policy == SCHED_IDLE) {
922 p->se.load.weight = WEIGHT_IDLEPRIO;
923 p->se.load.inv_weight = WMULT_IDLEPRIO;
924 return;
925 }
926
927 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
928 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
929 }
930
931 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
932 {
933 sched_info_queued(p);
934 p->sched_class->enqueue_task(rq, p, wakeup);
935 p->se.on_rq = 1;
936 }
937
938 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
939 {
940 p->sched_class->dequeue_task(rq, p, sleep);
941 p->se.on_rq = 0;
942 }
943
944 /*
945 * __normal_prio - return the priority that is based on the static prio
946 */
947 static inline int __normal_prio(struct task_struct *p)
948 {
949 return p->static_prio;
950 }
951
952 /*
953 * Calculate the expected normal priority: i.e. priority
954 * without taking RT-inheritance into account. Might be
955 * boosted by interactivity modifiers. Changes upon fork,
956 * setprio syscalls, and whenever the interactivity
957 * estimator recalculates.
958 */
959 static inline int normal_prio(struct task_struct *p)
960 {
961 int prio;
962
963 if (task_has_rt_policy(p))
964 prio = MAX_RT_PRIO-1 - p->rt_priority;
965 else
966 prio = __normal_prio(p);
967 return prio;
968 }
969
970 /*
971 * Calculate the current priority, i.e. the priority
972 * taken into account by the scheduler. This value might
973 * be boosted by RT tasks, or might be boosted by
974 * interactivity modifiers. Will be RT if the task got
975 * RT-boosted. If not then it returns p->normal_prio.
976 */
977 static int effective_prio(struct task_struct *p)
978 {
979 p->normal_prio = normal_prio(p);
980 /*
981 * If we are RT tasks or we were boosted to RT priority,
982 * keep the priority unchanged. Otherwise, update priority
983 * to the normal priority:
984 */
985 if (!rt_prio(p->prio))
986 return p->normal_prio;
987 return p->prio;
988 }
989
990 /*
991 * activate_task - move a task to the runqueue.
992 */
993 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
994 {
995 if (task_contributes_to_load(p))
996 rq->nr_uninterruptible--;
997
998 enqueue_task(rq, p, wakeup);
999 inc_nr_running(p, rq);
1000 }
1001
1002 /*
1003 * deactivate_task - remove a task from the runqueue.
1004 */
1005 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1006 {
1007 if (task_contributes_to_load(p))
1008 rq->nr_uninterruptible++;
1009
1010 dequeue_task(rq, p, sleep);
1011 dec_nr_running(p, rq);
1012 }
1013
1014 /**
1015 * task_curr - is this task currently executing on a CPU?
1016 * @p: the task in question.
1017 */
1018 inline int task_curr(const struct task_struct *p)
1019 {
1020 return cpu_curr(task_cpu(p)) == p;
1021 }
1022
1023 /* Used instead of source_load when we know the type == 0 */
1024 unsigned long weighted_cpuload(const int cpu)
1025 {
1026 return cpu_rq(cpu)->load.weight;
1027 }
1028
1029 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1030 {
1031 set_task_cfs_rq(p, cpu);
1032 #ifdef CONFIG_SMP
1033 /*
1034 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1035 * successfuly executed on another CPU. We must ensure that updates of
1036 * per-task data have been completed by this moment.
1037 */
1038 smp_wmb();
1039 task_thread_info(p)->cpu = cpu;
1040 #endif
1041 }
1042
1043 #ifdef CONFIG_SMP
1044
1045 /*
1046 * Is this task likely cache-hot:
1047 */
1048 static inline int
1049 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1050 {
1051 s64 delta;
1052
1053 if (p->sched_class != &fair_sched_class)
1054 return 0;
1055
1056 if (sysctl_sched_migration_cost == -1)
1057 return 1;
1058 if (sysctl_sched_migration_cost == 0)
1059 return 0;
1060
1061 delta = now - p->se.exec_start;
1062
1063 return delta < (s64)sysctl_sched_migration_cost;
1064 }
1065
1066
1067 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1068 {
1069 int old_cpu = task_cpu(p);
1070 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1071 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1072 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1073 u64 clock_offset;
1074
1075 clock_offset = old_rq->clock - new_rq->clock;
1076
1077 #ifdef CONFIG_SCHEDSTATS
1078 if (p->se.wait_start)
1079 p->se.wait_start -= clock_offset;
1080 if (p->se.sleep_start)
1081 p->se.sleep_start -= clock_offset;
1082 if (p->se.block_start)
1083 p->se.block_start -= clock_offset;
1084 if (old_cpu != new_cpu) {
1085 schedstat_inc(p, se.nr_migrations);
1086 if (task_hot(p, old_rq->clock, NULL))
1087 schedstat_inc(p, se.nr_forced2_migrations);
1088 }
1089 #endif
1090 p->se.vruntime -= old_cfsrq->min_vruntime -
1091 new_cfsrq->min_vruntime;
1092
1093 __set_task_cpu(p, new_cpu);
1094 }
1095
1096 struct migration_req {
1097 struct list_head list;
1098
1099 struct task_struct *task;
1100 int dest_cpu;
1101
1102 struct completion done;
1103 };
1104
1105 /*
1106 * The task's runqueue lock must be held.
1107 * Returns true if you have to wait for migration thread.
1108 */
1109 static int
1110 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1111 {
1112 struct rq *rq = task_rq(p);
1113
1114 /*
1115 * If the task is not on a runqueue (and not running), then
1116 * it is sufficient to simply update the task's cpu field.
1117 */
1118 if (!p->se.on_rq && !task_running(rq, p)) {
1119 set_task_cpu(p, dest_cpu);
1120 return 0;
1121 }
1122
1123 init_completion(&req->done);
1124 req->task = p;
1125 req->dest_cpu = dest_cpu;
1126 list_add(&req->list, &rq->migration_queue);
1127
1128 return 1;
1129 }
1130
1131 /*
1132 * wait_task_inactive - wait for a thread to unschedule.
1133 *
1134 * The caller must ensure that the task *will* unschedule sometime soon,
1135 * else this function might spin for a *long* time. This function can't
1136 * be called with interrupts off, or it may introduce deadlock with
1137 * smp_call_function() if an IPI is sent by the same process we are
1138 * waiting to become inactive.
1139 */
1140 void wait_task_inactive(struct task_struct *p)
1141 {
1142 unsigned long flags;
1143 int running, on_rq;
1144 struct rq *rq;
1145
1146 for (;;) {
1147 /*
1148 * We do the initial early heuristics without holding
1149 * any task-queue locks at all. We'll only try to get
1150 * the runqueue lock when things look like they will
1151 * work out!
1152 */
1153 rq = task_rq(p);
1154
1155 /*
1156 * If the task is actively running on another CPU
1157 * still, just relax and busy-wait without holding
1158 * any locks.
1159 *
1160 * NOTE! Since we don't hold any locks, it's not
1161 * even sure that "rq" stays as the right runqueue!
1162 * But we don't care, since "task_running()" will
1163 * return false if the runqueue has changed and p
1164 * is actually now running somewhere else!
1165 */
1166 while (task_running(rq, p))
1167 cpu_relax();
1168
1169 /*
1170 * Ok, time to look more closely! We need the rq
1171 * lock now, to be *sure*. If we're wrong, we'll
1172 * just go back and repeat.
1173 */
1174 rq = task_rq_lock(p, &flags);
1175 running = task_running(rq, p);
1176 on_rq = p->se.on_rq;
1177 task_rq_unlock(rq, &flags);
1178
1179 /*
1180 * Was it really running after all now that we
1181 * checked with the proper locks actually held?
1182 *
1183 * Oops. Go back and try again..
1184 */
1185 if (unlikely(running)) {
1186 cpu_relax();
1187 continue;
1188 }
1189
1190 /*
1191 * It's not enough that it's not actively running,
1192 * it must be off the runqueue _entirely_, and not
1193 * preempted!
1194 *
1195 * So if it wa still runnable (but just not actively
1196 * running right now), it's preempted, and we should
1197 * yield - it could be a while.
1198 */
1199 if (unlikely(on_rq)) {
1200 schedule_timeout_uninterruptible(1);
1201 continue;
1202 }
1203
1204 /*
1205 * Ahh, all good. It wasn't running, and it wasn't
1206 * runnable, which means that it will never become
1207 * running in the future either. We're all done!
1208 */
1209 break;
1210 }
1211 }
1212
1213 /***
1214 * kick_process - kick a running thread to enter/exit the kernel
1215 * @p: the to-be-kicked thread
1216 *
1217 * Cause a process which is running on another CPU to enter
1218 * kernel-mode, without any delay. (to get signals handled.)
1219 *
1220 * NOTE: this function doesnt have to take the runqueue lock,
1221 * because all it wants to ensure is that the remote task enters
1222 * the kernel. If the IPI races and the task has been migrated
1223 * to another CPU then no harm is done and the purpose has been
1224 * achieved as well.
1225 */
1226 void kick_process(struct task_struct *p)
1227 {
1228 int cpu;
1229
1230 preempt_disable();
1231 cpu = task_cpu(p);
1232 if ((cpu != smp_processor_id()) && task_curr(p))
1233 smp_send_reschedule(cpu);
1234 preempt_enable();
1235 }
1236
1237 /*
1238 * Return a low guess at the load of a migration-source cpu weighted
1239 * according to the scheduling class and "nice" value.
1240 *
1241 * We want to under-estimate the load of migration sources, to
1242 * balance conservatively.
1243 */
1244 static unsigned long source_load(int cpu, int type)
1245 {
1246 struct rq *rq = cpu_rq(cpu);
1247 unsigned long total = weighted_cpuload(cpu);
1248
1249 if (type == 0)
1250 return total;
1251
1252 return min(rq->cpu_load[type-1], total);
1253 }
1254
1255 /*
1256 * Return a high guess at the load of a migration-target cpu weighted
1257 * according to the scheduling class and "nice" value.
1258 */
1259 static unsigned long target_load(int cpu, int type)
1260 {
1261 struct rq *rq = cpu_rq(cpu);
1262 unsigned long total = weighted_cpuload(cpu);
1263
1264 if (type == 0)
1265 return total;
1266
1267 return max(rq->cpu_load[type-1], total);
1268 }
1269
1270 /*
1271 * Return the average load per task on the cpu's run queue
1272 */
1273 static inline unsigned long cpu_avg_load_per_task(int cpu)
1274 {
1275 struct rq *rq = cpu_rq(cpu);
1276 unsigned long total = weighted_cpuload(cpu);
1277 unsigned long n = rq->nr_running;
1278
1279 return n ? total / n : SCHED_LOAD_SCALE;
1280 }
1281
1282 /*
1283 * find_idlest_group finds and returns the least busy CPU group within the
1284 * domain.
1285 */
1286 static struct sched_group *
1287 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1288 {
1289 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1290 unsigned long min_load = ULONG_MAX, this_load = 0;
1291 int load_idx = sd->forkexec_idx;
1292 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1293
1294 do {
1295 unsigned long load, avg_load;
1296 int local_group;
1297 int i;
1298
1299 /* Skip over this group if it has no CPUs allowed */
1300 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1301 continue;
1302
1303 local_group = cpu_isset(this_cpu, group->cpumask);
1304
1305 /* Tally up the load of all CPUs in the group */
1306 avg_load = 0;
1307
1308 for_each_cpu_mask(i, group->cpumask) {
1309 /* Bias balancing toward cpus of our domain */
1310 if (local_group)
1311 load = source_load(i, load_idx);
1312 else
1313 load = target_load(i, load_idx);
1314
1315 avg_load += load;
1316 }
1317
1318 /* Adjust by relative CPU power of the group */
1319 avg_load = sg_div_cpu_power(group,
1320 avg_load * SCHED_LOAD_SCALE);
1321
1322 if (local_group) {
1323 this_load = avg_load;
1324 this = group;
1325 } else if (avg_load < min_load) {
1326 min_load = avg_load;
1327 idlest = group;
1328 }
1329 } while (group = group->next, group != sd->groups);
1330
1331 if (!idlest || 100*this_load < imbalance*min_load)
1332 return NULL;
1333 return idlest;
1334 }
1335
1336 /*
1337 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1338 */
1339 static int
1340 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1341 {
1342 cpumask_t tmp;
1343 unsigned long load, min_load = ULONG_MAX;
1344 int idlest = -1;
1345 int i;
1346
1347 /* Traverse only the allowed CPUs */
1348 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1349
1350 for_each_cpu_mask(i, tmp) {
1351 load = weighted_cpuload(i);
1352
1353 if (load < min_load || (load == min_load && i == this_cpu)) {
1354 min_load = load;
1355 idlest = i;
1356 }
1357 }
1358
1359 return idlest;
1360 }
1361
1362 /*
1363 * sched_balance_self: balance the current task (running on cpu) in domains
1364 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1365 * SD_BALANCE_EXEC.
1366 *
1367 * Balance, ie. select the least loaded group.
1368 *
1369 * Returns the target CPU number, or the same CPU if no balancing is needed.
1370 *
1371 * preempt must be disabled.
1372 */
1373 static int sched_balance_self(int cpu, int flag)
1374 {
1375 struct task_struct *t = current;
1376 struct sched_domain *tmp, *sd = NULL;
1377
1378 for_each_domain(cpu, tmp) {
1379 /*
1380 * If power savings logic is enabled for a domain, stop there.
1381 */
1382 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1383 break;
1384 if (tmp->flags & flag)
1385 sd = tmp;
1386 }
1387
1388 while (sd) {
1389 cpumask_t span;
1390 struct sched_group *group;
1391 int new_cpu, weight;
1392
1393 if (!(sd->flags & flag)) {
1394 sd = sd->child;
1395 continue;
1396 }
1397
1398 span = sd->span;
1399 group = find_idlest_group(sd, t, cpu);
1400 if (!group) {
1401 sd = sd->child;
1402 continue;
1403 }
1404
1405 new_cpu = find_idlest_cpu(group, t, cpu);
1406 if (new_cpu == -1 || new_cpu == cpu) {
1407 /* Now try balancing at a lower domain level of cpu */
1408 sd = sd->child;
1409 continue;
1410 }
1411
1412 /* Now try balancing at a lower domain level of new_cpu */
1413 cpu = new_cpu;
1414 sd = NULL;
1415 weight = cpus_weight(span);
1416 for_each_domain(cpu, tmp) {
1417 if (weight <= cpus_weight(tmp->span))
1418 break;
1419 if (tmp->flags & flag)
1420 sd = tmp;
1421 }
1422 /* while loop will break here if sd == NULL */
1423 }
1424
1425 return cpu;
1426 }
1427
1428 #endif /* CONFIG_SMP */
1429
1430 /*
1431 * wake_idle() will wake a task on an idle cpu if task->cpu is
1432 * not idle and an idle cpu is available. The span of cpus to
1433 * search starts with cpus closest then further out as needed,
1434 * so we always favor a closer, idle cpu.
1435 *
1436 * Returns the CPU we should wake onto.
1437 */
1438 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1439 static int wake_idle(int cpu, struct task_struct *p)
1440 {
1441 cpumask_t tmp;
1442 struct sched_domain *sd;
1443 int i;
1444
1445 /*
1446 * If it is idle, then it is the best cpu to run this task.
1447 *
1448 * This cpu is also the best, if it has more than one task already.
1449 * Siblings must be also busy(in most cases) as they didn't already
1450 * pickup the extra load from this cpu and hence we need not check
1451 * sibling runqueue info. This will avoid the checks and cache miss
1452 * penalities associated with that.
1453 */
1454 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1455 return cpu;
1456
1457 for_each_domain(cpu, sd) {
1458 if (sd->flags & SD_WAKE_IDLE) {
1459 cpus_and(tmp, sd->span, p->cpus_allowed);
1460 for_each_cpu_mask(i, tmp) {
1461 if (idle_cpu(i)) {
1462 if (i != task_cpu(p)) {
1463 schedstat_inc(p,
1464 se.nr_wakeups_idle);
1465 }
1466 return i;
1467 }
1468 }
1469 } else {
1470 break;
1471 }
1472 }
1473 return cpu;
1474 }
1475 #else
1476 static inline int wake_idle(int cpu, struct task_struct *p)
1477 {
1478 return cpu;
1479 }
1480 #endif
1481
1482 /***
1483 * try_to_wake_up - wake up a thread
1484 * @p: the to-be-woken-up thread
1485 * @state: the mask of task states that can be woken
1486 * @sync: do a synchronous wakeup?
1487 *
1488 * Put it on the run-queue if it's not already there. The "current"
1489 * thread is always on the run-queue (except when the actual
1490 * re-schedule is in progress), and as such you're allowed to do
1491 * the simpler "current->state = TASK_RUNNING" to mark yourself
1492 * runnable without the overhead of this.
1493 *
1494 * returns failure only if the task is already active.
1495 */
1496 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1497 {
1498 int cpu, orig_cpu, this_cpu, success = 0;
1499 unsigned long flags;
1500 long old_state;
1501 struct rq *rq;
1502 #ifdef CONFIG_SMP
1503 struct sched_domain *sd, *this_sd = NULL;
1504 unsigned long load, this_load;
1505 int new_cpu;
1506 #endif
1507
1508 rq = task_rq_lock(p, &flags);
1509 old_state = p->state;
1510 if (!(old_state & state))
1511 goto out;
1512
1513 if (p->se.on_rq)
1514 goto out_running;
1515
1516 cpu = task_cpu(p);
1517 orig_cpu = cpu;
1518 this_cpu = smp_processor_id();
1519
1520 #ifdef CONFIG_SMP
1521 if (unlikely(task_running(rq, p)))
1522 goto out_activate;
1523
1524 new_cpu = cpu;
1525
1526 schedstat_inc(rq, ttwu_count);
1527 if (cpu == this_cpu) {
1528 schedstat_inc(rq, ttwu_local);
1529 goto out_set_cpu;
1530 }
1531
1532 for_each_domain(this_cpu, sd) {
1533 if (cpu_isset(cpu, sd->span)) {
1534 schedstat_inc(sd, ttwu_wake_remote);
1535 this_sd = sd;
1536 break;
1537 }
1538 }
1539
1540 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1541 goto out_set_cpu;
1542
1543 /*
1544 * Check for affine wakeup and passive balancing possibilities.
1545 */
1546 if (this_sd) {
1547 int idx = this_sd->wake_idx;
1548 unsigned int imbalance;
1549
1550 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1551
1552 load = source_load(cpu, idx);
1553 this_load = target_load(this_cpu, idx);
1554
1555 new_cpu = this_cpu; /* Wake to this CPU if we can */
1556
1557 if (this_sd->flags & SD_WAKE_AFFINE) {
1558 unsigned long tl = this_load;
1559 unsigned long tl_per_task;
1560
1561 /*
1562 * Attract cache-cold tasks on sync wakeups:
1563 */
1564 if (sync && !task_hot(p, rq->clock, this_sd))
1565 goto out_set_cpu;
1566
1567 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1568 tl_per_task = cpu_avg_load_per_task(this_cpu);
1569
1570 /*
1571 * If sync wakeup then subtract the (maximum possible)
1572 * effect of the currently running task from the load
1573 * of the current CPU:
1574 */
1575 if (sync)
1576 tl -= current->se.load.weight;
1577
1578 if ((tl <= load &&
1579 tl + target_load(cpu, idx) <= tl_per_task) ||
1580 100*(tl + p->se.load.weight) <= imbalance*load) {
1581 /*
1582 * This domain has SD_WAKE_AFFINE and
1583 * p is cache cold in this domain, and
1584 * there is no bad imbalance.
1585 */
1586 schedstat_inc(this_sd, ttwu_move_affine);
1587 schedstat_inc(p, se.nr_wakeups_affine);
1588 goto out_set_cpu;
1589 }
1590 }
1591
1592 /*
1593 * Start passive balancing when half the imbalance_pct
1594 * limit is reached.
1595 */
1596 if (this_sd->flags & SD_WAKE_BALANCE) {
1597 if (imbalance*this_load <= 100*load) {
1598 schedstat_inc(this_sd, ttwu_move_balance);
1599 schedstat_inc(p, se.nr_wakeups_passive);
1600 goto out_set_cpu;
1601 }
1602 }
1603 }
1604
1605 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1606 out_set_cpu:
1607 new_cpu = wake_idle(new_cpu, p);
1608 if (new_cpu != cpu) {
1609 set_task_cpu(p, new_cpu);
1610 task_rq_unlock(rq, &flags);
1611 /* might preempt at this point */
1612 rq = task_rq_lock(p, &flags);
1613 old_state = p->state;
1614 if (!(old_state & state))
1615 goto out;
1616 if (p->se.on_rq)
1617 goto out_running;
1618
1619 this_cpu = smp_processor_id();
1620 cpu = task_cpu(p);
1621 }
1622
1623 out_activate:
1624 #endif /* CONFIG_SMP */
1625 schedstat_inc(p, se.nr_wakeups);
1626 if (sync)
1627 schedstat_inc(p, se.nr_wakeups_sync);
1628 if (orig_cpu != cpu)
1629 schedstat_inc(p, se.nr_wakeups_migrate);
1630 if (cpu == this_cpu)
1631 schedstat_inc(p, se.nr_wakeups_local);
1632 else
1633 schedstat_inc(p, se.nr_wakeups_remote);
1634 update_rq_clock(rq);
1635 activate_task(rq, p, 1);
1636 check_preempt_curr(rq, p);
1637 success = 1;
1638
1639 out_running:
1640 p->state = TASK_RUNNING;
1641 out:
1642 task_rq_unlock(rq, &flags);
1643
1644 return success;
1645 }
1646
1647 int fastcall wake_up_process(struct task_struct *p)
1648 {
1649 return try_to_wake_up(p, TASK_ALL, 0);
1650 }
1651 EXPORT_SYMBOL(wake_up_process);
1652
1653 int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1654 {
1655 return try_to_wake_up(p, state, 0);
1656 }
1657
1658 /*
1659 * Perform scheduler related setup for a newly forked process p.
1660 * p is forked by current.
1661 *
1662 * __sched_fork() is basic setup used by init_idle() too:
1663 */
1664 static void __sched_fork(struct task_struct *p)
1665 {
1666 p->se.exec_start = 0;
1667 p->se.sum_exec_runtime = 0;
1668 p->se.prev_sum_exec_runtime = 0;
1669
1670 #ifdef CONFIG_SCHEDSTATS
1671 p->se.wait_start = 0;
1672 p->se.sum_sleep_runtime = 0;
1673 p->se.sleep_start = 0;
1674 p->se.block_start = 0;
1675 p->se.sleep_max = 0;
1676 p->se.block_max = 0;
1677 p->se.exec_max = 0;
1678 p->se.slice_max = 0;
1679 p->se.wait_max = 0;
1680 #endif
1681
1682 INIT_LIST_HEAD(&p->run_list);
1683 p->se.on_rq = 0;
1684
1685 #ifdef CONFIG_PREEMPT_NOTIFIERS
1686 INIT_HLIST_HEAD(&p->preempt_notifiers);
1687 #endif
1688
1689 /*
1690 * We mark the process as running here, but have not actually
1691 * inserted it onto the runqueue yet. This guarantees that
1692 * nobody will actually run it, and a signal or other external
1693 * event cannot wake it up and insert it on the runqueue either.
1694 */
1695 p->state = TASK_RUNNING;
1696 }
1697
1698 /*
1699 * fork()/clone()-time setup:
1700 */
1701 void sched_fork(struct task_struct *p, int clone_flags)
1702 {
1703 int cpu = get_cpu();
1704
1705 __sched_fork(p);
1706
1707 #ifdef CONFIG_SMP
1708 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1709 #endif
1710 set_task_cpu(p, cpu);
1711
1712 /*
1713 * Make sure we do not leak PI boosting priority to the child:
1714 */
1715 p->prio = current->normal_prio;
1716 if (!rt_prio(p->prio))
1717 p->sched_class = &fair_sched_class;
1718
1719 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1720 if (likely(sched_info_on()))
1721 memset(&p->sched_info, 0, sizeof(p->sched_info));
1722 #endif
1723 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1724 p->oncpu = 0;
1725 #endif
1726 #ifdef CONFIG_PREEMPT
1727 /* Want to start with kernel preemption disabled. */
1728 task_thread_info(p)->preempt_count = 1;
1729 #endif
1730 put_cpu();
1731 }
1732
1733 /*
1734 * wake_up_new_task - wake up a newly created task for the first time.
1735 *
1736 * This function will do some initial scheduler statistics housekeeping
1737 * that must be done for every newly created context, then puts the task
1738 * on the runqueue and wakes it.
1739 */
1740 void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1741 {
1742 unsigned long flags;
1743 struct rq *rq;
1744
1745 rq = task_rq_lock(p, &flags);
1746 BUG_ON(p->state != TASK_RUNNING);
1747 update_rq_clock(rq);
1748
1749 p->prio = effective_prio(p);
1750
1751 if (!p->sched_class->task_new || !current->se.on_rq) {
1752 activate_task(rq, p, 0);
1753 } else {
1754 /*
1755 * Let the scheduling class do new task startup
1756 * management (if any):
1757 */
1758 p->sched_class->task_new(rq, p);
1759 inc_nr_running(p, rq);
1760 }
1761 check_preempt_curr(rq, p);
1762 task_rq_unlock(rq, &flags);
1763 }
1764
1765 #ifdef CONFIG_PREEMPT_NOTIFIERS
1766
1767 /**
1768 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1769 * @notifier: notifier struct to register
1770 */
1771 void preempt_notifier_register(struct preempt_notifier *notifier)
1772 {
1773 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1774 }
1775 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1776
1777 /**
1778 * preempt_notifier_unregister - no longer interested in preemption notifications
1779 * @notifier: notifier struct to unregister
1780 *
1781 * This is safe to call from within a preemption notifier.
1782 */
1783 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1784 {
1785 hlist_del(&notifier->link);
1786 }
1787 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1788
1789 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1790 {
1791 struct preempt_notifier *notifier;
1792 struct hlist_node *node;
1793
1794 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1795 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1796 }
1797
1798 static void
1799 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1800 struct task_struct *next)
1801 {
1802 struct preempt_notifier *notifier;
1803 struct hlist_node *node;
1804
1805 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1806 notifier->ops->sched_out(notifier, next);
1807 }
1808
1809 #else
1810
1811 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1812 {
1813 }
1814
1815 static void
1816 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1817 struct task_struct *next)
1818 {
1819 }
1820
1821 #endif
1822
1823 /**
1824 * prepare_task_switch - prepare to switch tasks
1825 * @rq: the runqueue preparing to switch
1826 * @prev: the current task that is being switched out
1827 * @next: the task we are going to switch to.
1828 *
1829 * This is called with the rq lock held and interrupts off. It must
1830 * be paired with a subsequent finish_task_switch after the context
1831 * switch.
1832 *
1833 * prepare_task_switch sets up locking and calls architecture specific
1834 * hooks.
1835 */
1836 static inline void
1837 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1838 struct task_struct *next)
1839 {
1840 fire_sched_out_preempt_notifiers(prev, next);
1841 prepare_lock_switch(rq, next);
1842 prepare_arch_switch(next);
1843 }
1844
1845 /**
1846 * finish_task_switch - clean up after a task-switch
1847 * @rq: runqueue associated with task-switch
1848 * @prev: the thread we just switched away from.
1849 *
1850 * finish_task_switch must be called after the context switch, paired
1851 * with a prepare_task_switch call before the context switch.
1852 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1853 * and do any other architecture-specific cleanup actions.
1854 *
1855 * Note that we may have delayed dropping an mm in context_switch(). If
1856 * so, we finish that here outside of the runqueue lock. (Doing it
1857 * with the lock held can cause deadlocks; see schedule() for
1858 * details.)
1859 */
1860 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1861 __releases(rq->lock)
1862 {
1863 struct mm_struct *mm = rq->prev_mm;
1864 long prev_state;
1865
1866 rq->prev_mm = NULL;
1867
1868 /*
1869 * A task struct has one reference for the use as "current".
1870 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1871 * schedule one last time. The schedule call will never return, and
1872 * the scheduled task must drop that reference.
1873 * The test for TASK_DEAD must occur while the runqueue locks are
1874 * still held, otherwise prev could be scheduled on another cpu, die
1875 * there before we look at prev->state, and then the reference would
1876 * be dropped twice.
1877 * Manfred Spraul <manfred@colorfullife.com>
1878 */
1879 prev_state = prev->state;
1880 finish_arch_switch(prev);
1881 finish_lock_switch(rq, prev);
1882 fire_sched_in_preempt_notifiers(current);
1883 if (mm)
1884 mmdrop(mm);
1885 if (unlikely(prev_state == TASK_DEAD)) {
1886 /*
1887 * Remove function-return probe instances associated with this
1888 * task and put them back on the free list.
1889 */
1890 kprobe_flush_task(prev);
1891 put_task_struct(prev);
1892 }
1893 }
1894
1895 /**
1896 * schedule_tail - first thing a freshly forked thread must call.
1897 * @prev: the thread we just switched away from.
1898 */
1899 asmlinkage void schedule_tail(struct task_struct *prev)
1900 __releases(rq->lock)
1901 {
1902 struct rq *rq = this_rq();
1903
1904 finish_task_switch(rq, prev);
1905 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1906 /* In this case, finish_task_switch does not reenable preemption */
1907 preempt_enable();
1908 #endif
1909 if (current->set_child_tid)
1910 put_user(task_pid_vnr(current), current->set_child_tid);
1911 }
1912
1913 /*
1914 * context_switch - switch to the new MM and the new
1915 * thread's register state.
1916 */
1917 static inline void
1918 context_switch(struct rq *rq, struct task_struct *prev,
1919 struct task_struct *next)
1920 {
1921 struct mm_struct *mm, *oldmm;
1922
1923 prepare_task_switch(rq, prev, next);
1924 mm = next->mm;
1925 oldmm = prev->active_mm;
1926 /*
1927 * For paravirt, this is coupled with an exit in switch_to to
1928 * combine the page table reload and the switch backend into
1929 * one hypercall.
1930 */
1931 arch_enter_lazy_cpu_mode();
1932
1933 if (unlikely(!mm)) {
1934 next->active_mm = oldmm;
1935 atomic_inc(&oldmm->mm_count);
1936 enter_lazy_tlb(oldmm, next);
1937 } else
1938 switch_mm(oldmm, mm, next);
1939
1940 if (unlikely(!prev->mm)) {
1941 prev->active_mm = NULL;
1942 rq->prev_mm = oldmm;
1943 }
1944 /*
1945 * Since the runqueue lock will be released by the next
1946 * task (which is an invalid locking op but in the case
1947 * of the scheduler it's an obvious special-case), so we
1948 * do an early lockdep release here:
1949 */
1950 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1951 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1952 #endif
1953
1954 /* Here we just switch the register state and the stack. */
1955 switch_to(prev, next, prev);
1956
1957 barrier();
1958 /*
1959 * this_rq must be evaluated again because prev may have moved
1960 * CPUs since it called schedule(), thus the 'rq' on its stack
1961 * frame will be invalid.
1962 */
1963 finish_task_switch(this_rq(), prev);
1964 }
1965
1966 /*
1967 * nr_running, nr_uninterruptible and nr_context_switches:
1968 *
1969 * externally visible scheduler statistics: current number of runnable
1970 * threads, current number of uninterruptible-sleeping threads, total
1971 * number of context switches performed since bootup.
1972 */
1973 unsigned long nr_running(void)
1974 {
1975 unsigned long i, sum = 0;
1976
1977 for_each_online_cpu(i)
1978 sum += cpu_rq(i)->nr_running;
1979
1980 return sum;
1981 }
1982
1983 unsigned long nr_uninterruptible(void)
1984 {
1985 unsigned long i, sum = 0;
1986
1987 for_each_possible_cpu(i)
1988 sum += cpu_rq(i)->nr_uninterruptible;
1989
1990 /*
1991 * Since we read the counters lockless, it might be slightly
1992 * inaccurate. Do not allow it to go below zero though:
1993 */
1994 if (unlikely((long)sum < 0))
1995 sum = 0;
1996
1997 return sum;
1998 }
1999
2000 unsigned long long nr_context_switches(void)
2001 {
2002 int i;
2003 unsigned long long sum = 0;
2004
2005 for_each_possible_cpu(i)
2006 sum += cpu_rq(i)->nr_switches;
2007
2008 return sum;
2009 }
2010
2011 unsigned long nr_iowait(void)
2012 {
2013 unsigned long i, sum = 0;
2014
2015 for_each_possible_cpu(i)
2016 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2017
2018 return sum;
2019 }
2020
2021 unsigned long nr_active(void)
2022 {
2023 unsigned long i, running = 0, uninterruptible = 0;
2024
2025 for_each_online_cpu(i) {
2026 running += cpu_rq(i)->nr_running;
2027 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2028 }
2029
2030 if (unlikely((long)uninterruptible < 0))
2031 uninterruptible = 0;
2032
2033 return running + uninterruptible;
2034 }
2035
2036 /*
2037 * Update rq->cpu_load[] statistics. This function is usually called every
2038 * scheduler tick (TICK_NSEC).
2039 */
2040 static void update_cpu_load(struct rq *this_rq)
2041 {
2042 unsigned long this_load = this_rq->load.weight;
2043 int i, scale;
2044
2045 this_rq->nr_load_updates++;
2046
2047 /* Update our load: */
2048 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2049 unsigned long old_load, new_load;
2050
2051 /* scale is effectively 1 << i now, and >> i divides by scale */
2052
2053 old_load = this_rq->cpu_load[i];
2054 new_load = this_load;
2055 /*
2056 * Round up the averaging division if load is increasing. This
2057 * prevents us from getting stuck on 9 if the load is 10, for
2058 * example.
2059 */
2060 if (new_load > old_load)
2061 new_load += scale-1;
2062 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2063 }
2064 }
2065
2066 #ifdef CONFIG_SMP
2067
2068 /*
2069 * double_rq_lock - safely lock two runqueues
2070 *
2071 * Note this does not disable interrupts like task_rq_lock,
2072 * you need to do so manually before calling.
2073 */
2074 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2075 __acquires(rq1->lock)
2076 __acquires(rq2->lock)
2077 {
2078 BUG_ON(!irqs_disabled());
2079 if (rq1 == rq2) {
2080 spin_lock(&rq1->lock);
2081 __acquire(rq2->lock); /* Fake it out ;) */
2082 } else {
2083 if (rq1 < rq2) {
2084 spin_lock(&rq1->lock);
2085 spin_lock(&rq2->lock);
2086 } else {
2087 spin_lock(&rq2->lock);
2088 spin_lock(&rq1->lock);
2089 }
2090 }
2091 update_rq_clock(rq1);
2092 update_rq_clock(rq2);
2093 }
2094
2095 /*
2096 * double_rq_unlock - safely unlock two runqueues
2097 *
2098 * Note this does not restore interrupts like task_rq_unlock,
2099 * you need to do so manually after calling.
2100 */
2101 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2102 __releases(rq1->lock)
2103 __releases(rq2->lock)
2104 {
2105 spin_unlock(&rq1->lock);
2106 if (rq1 != rq2)
2107 spin_unlock(&rq2->lock);
2108 else
2109 __release(rq2->lock);
2110 }
2111
2112 /*
2113 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2114 */
2115 static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
2116 __releases(this_rq->lock)
2117 __acquires(busiest->lock)
2118 __acquires(this_rq->lock)
2119 {
2120 if (unlikely(!irqs_disabled())) {
2121 /* printk() doesn't work good under rq->lock */
2122 spin_unlock(&this_rq->lock);
2123 BUG_ON(1);
2124 }
2125 if (unlikely(!spin_trylock(&busiest->lock))) {
2126 if (busiest < this_rq) {
2127 spin_unlock(&this_rq->lock);
2128 spin_lock(&busiest->lock);
2129 spin_lock(&this_rq->lock);
2130 } else
2131 spin_lock(&busiest->lock);
2132 }
2133 }
2134
2135 /*
2136 * If dest_cpu is allowed for this process, migrate the task to it.
2137 * This is accomplished by forcing the cpu_allowed mask to only
2138 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2139 * the cpu_allowed mask is restored.
2140 */
2141 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2142 {
2143 struct migration_req req;
2144 unsigned long flags;
2145 struct rq *rq;
2146
2147 rq = task_rq_lock(p, &flags);
2148 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2149 || unlikely(cpu_is_offline(dest_cpu)))
2150 goto out;
2151
2152 /* force the process onto the specified CPU */
2153 if (migrate_task(p, dest_cpu, &req)) {
2154 /* Need to wait for migration thread (might exit: take ref). */
2155 struct task_struct *mt = rq->migration_thread;
2156
2157 get_task_struct(mt);
2158 task_rq_unlock(rq, &flags);
2159 wake_up_process(mt);
2160 put_task_struct(mt);
2161 wait_for_completion(&req.done);
2162
2163 return;
2164 }
2165 out:
2166 task_rq_unlock(rq, &flags);
2167 }
2168
2169 /*
2170 * sched_exec - execve() is a valuable balancing opportunity, because at
2171 * this point the task has the smallest effective memory and cache footprint.
2172 */
2173 void sched_exec(void)
2174 {
2175 int new_cpu, this_cpu = get_cpu();
2176 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2177 put_cpu();
2178 if (new_cpu != this_cpu)
2179 sched_migrate_task(current, new_cpu);
2180 }
2181
2182 /*
2183 * pull_task - move a task from a remote runqueue to the local runqueue.
2184 * Both runqueues must be locked.
2185 */
2186 static void pull_task(struct rq *src_rq, struct task_struct *p,
2187 struct rq *this_rq, int this_cpu)
2188 {
2189 deactivate_task(src_rq, p, 0);
2190 set_task_cpu(p, this_cpu);
2191 activate_task(this_rq, p, 0);
2192 /*
2193 * Note that idle threads have a prio of MAX_PRIO, for this test
2194 * to be always true for them.
2195 */
2196 check_preempt_curr(this_rq, p);
2197 }
2198
2199 /*
2200 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2201 */
2202 static
2203 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2204 struct sched_domain *sd, enum cpu_idle_type idle,
2205 int *all_pinned)
2206 {
2207 /*
2208 * We do not migrate tasks that are:
2209 * 1) running (obviously), or
2210 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2211 * 3) are cache-hot on their current CPU.
2212 */
2213 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2214 schedstat_inc(p, se.nr_failed_migrations_affine);
2215 return 0;
2216 }
2217 *all_pinned = 0;
2218
2219 if (task_running(rq, p)) {
2220 schedstat_inc(p, se.nr_failed_migrations_running);
2221 return 0;
2222 }
2223
2224 /*
2225 * Aggressive migration if:
2226 * 1) task is cache cold, or
2227 * 2) too many balance attempts have failed.
2228 */
2229
2230 if (!task_hot(p, rq->clock, sd) ||
2231 sd->nr_balance_failed > sd->cache_nice_tries) {
2232 #ifdef CONFIG_SCHEDSTATS
2233 if (task_hot(p, rq->clock, sd)) {
2234 schedstat_inc(sd, lb_hot_gained[idle]);
2235 schedstat_inc(p, se.nr_forced_migrations);
2236 }
2237 #endif
2238 return 1;
2239 }
2240
2241 if (task_hot(p, rq->clock, sd)) {
2242 schedstat_inc(p, se.nr_failed_migrations_hot);
2243 return 0;
2244 }
2245 return 1;
2246 }
2247
2248 static unsigned long
2249 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2250 unsigned long max_load_move, struct sched_domain *sd,
2251 enum cpu_idle_type idle, int *all_pinned,
2252 int *this_best_prio, struct rq_iterator *iterator)
2253 {
2254 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
2255 struct task_struct *p;
2256 long rem_load_move = max_load_move;
2257
2258 if (max_load_move == 0)
2259 goto out;
2260
2261 pinned = 1;
2262
2263 /*
2264 * Start the load-balancing iterator:
2265 */
2266 p = iterator->start(iterator->arg);
2267 next:
2268 if (!p || loops++ > sysctl_sched_nr_migrate)
2269 goto out;
2270 /*
2271 * To help distribute high priority tasks across CPUs we don't
2272 * skip a task if it will be the highest priority task (i.e. smallest
2273 * prio value) on its new queue regardless of its load weight
2274 */
2275 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2276 SCHED_LOAD_SCALE_FUZZ;
2277 if ((skip_for_load && p->prio >= *this_best_prio) ||
2278 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2279 p = iterator->next(iterator->arg);
2280 goto next;
2281 }
2282
2283 pull_task(busiest, p, this_rq, this_cpu);
2284 pulled++;
2285 rem_load_move -= p->se.load.weight;
2286
2287 /*
2288 * We only want to steal up to the prescribed amount of weighted load.
2289 */
2290 if (rem_load_move > 0) {
2291 if (p->prio < *this_best_prio)
2292 *this_best_prio = p->prio;
2293 p = iterator->next(iterator->arg);
2294 goto next;
2295 }
2296 out:
2297 /*
2298 * Right now, this is one of only two places pull_task() is called,
2299 * so we can safely collect pull_task() stats here rather than
2300 * inside pull_task().
2301 */
2302 schedstat_add(sd, lb_gained[idle], pulled);
2303
2304 if (all_pinned)
2305 *all_pinned = pinned;
2306
2307 return max_load_move - rem_load_move;
2308 }
2309
2310 /*
2311 * move_tasks tries to move up to max_load_move weighted load from busiest to
2312 * this_rq, as part of a balancing operation within domain "sd".
2313 * Returns 1 if successful and 0 otherwise.
2314 *
2315 * Called with both runqueues locked.
2316 */
2317 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2318 unsigned long max_load_move,
2319 struct sched_domain *sd, enum cpu_idle_type idle,
2320 int *all_pinned)
2321 {
2322 const struct sched_class *class = sched_class_highest;
2323 unsigned long total_load_moved = 0;
2324 int this_best_prio = this_rq->curr->prio;
2325
2326 do {
2327 total_load_moved +=
2328 class->load_balance(this_rq, this_cpu, busiest,
2329 max_load_move - total_load_moved,
2330 sd, idle, all_pinned, &this_best_prio);
2331 class = class->next;
2332 } while (class && max_load_move > total_load_moved);
2333
2334 return total_load_moved > 0;
2335 }
2336
2337 static int
2338 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2339 struct sched_domain *sd, enum cpu_idle_type idle,
2340 struct rq_iterator *iterator)
2341 {
2342 struct task_struct *p = iterator->start(iterator->arg);
2343 int pinned = 0;
2344
2345 while (p) {
2346 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2347 pull_task(busiest, p, this_rq, this_cpu);
2348 /*
2349 * Right now, this is only the second place pull_task()
2350 * is called, so we can safely collect pull_task()
2351 * stats here rather than inside pull_task().
2352 */
2353 schedstat_inc(sd, lb_gained[idle]);
2354
2355 return 1;
2356 }
2357 p = iterator->next(iterator->arg);
2358 }
2359
2360 return 0;
2361 }
2362
2363 /*
2364 * move_one_task tries to move exactly one task from busiest to this_rq, as
2365 * part of active balancing operations within "domain".
2366 * Returns 1 if successful and 0 otherwise.
2367 *
2368 * Called with both runqueues locked.
2369 */
2370 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2371 struct sched_domain *sd, enum cpu_idle_type idle)
2372 {
2373 const struct sched_class *class;
2374
2375 for (class = sched_class_highest; class; class = class->next)
2376 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
2377 return 1;
2378
2379 return 0;
2380 }
2381
2382 /*
2383 * find_busiest_group finds and returns the busiest CPU group within the
2384 * domain. It calculates and returns the amount of weighted load which
2385 * should be moved to restore balance via the imbalance parameter.
2386 */
2387 static struct sched_group *
2388 find_busiest_group(struct sched_domain *sd, int this_cpu,
2389 unsigned long *imbalance, enum cpu_idle_type idle,
2390 int *sd_idle, cpumask_t *cpus, int *balance)
2391 {
2392 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2393 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2394 unsigned long max_pull;
2395 unsigned long busiest_load_per_task, busiest_nr_running;
2396 unsigned long this_load_per_task, this_nr_running;
2397 int load_idx, group_imb = 0;
2398 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2399 int power_savings_balance = 1;
2400 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2401 unsigned long min_nr_running = ULONG_MAX;
2402 struct sched_group *group_min = NULL, *group_leader = NULL;
2403 #endif
2404
2405 max_load = this_load = total_load = total_pwr = 0;
2406 busiest_load_per_task = busiest_nr_running = 0;
2407 this_load_per_task = this_nr_running = 0;
2408 if (idle == CPU_NOT_IDLE)
2409 load_idx = sd->busy_idx;
2410 else if (idle == CPU_NEWLY_IDLE)
2411 load_idx = sd->newidle_idx;
2412 else
2413 load_idx = sd->idle_idx;
2414
2415 do {
2416 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
2417 int local_group;
2418 int i;
2419 int __group_imb = 0;
2420 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2421 unsigned long sum_nr_running, sum_weighted_load;
2422
2423 local_group = cpu_isset(this_cpu, group->cpumask);
2424
2425 if (local_group)
2426 balance_cpu = first_cpu(group->cpumask);
2427
2428 /* Tally up the load of all CPUs in the group */
2429 sum_weighted_load = sum_nr_running = avg_load = 0;
2430 max_cpu_load = 0;
2431 min_cpu_load = ~0UL;
2432
2433 for_each_cpu_mask(i, group->cpumask) {
2434 struct rq *rq;
2435
2436 if (!cpu_isset(i, *cpus))
2437 continue;
2438
2439 rq = cpu_rq(i);
2440
2441 if (*sd_idle && rq->nr_running)
2442 *sd_idle = 0;
2443
2444 /* Bias balancing toward cpus of our domain */
2445 if (local_group) {
2446 if (idle_cpu(i) && !first_idle_cpu) {
2447 first_idle_cpu = 1;
2448 balance_cpu = i;
2449 }
2450
2451 load = target_load(i, load_idx);
2452 } else {
2453 load = source_load(i, load_idx);
2454 if (load > max_cpu_load)
2455 max_cpu_load = load;
2456 if (min_cpu_load > load)
2457 min_cpu_load = load;
2458 }
2459
2460 avg_load += load;
2461 sum_nr_running += rq->nr_running;
2462 sum_weighted_load += weighted_cpuload(i);
2463 }
2464
2465 /*
2466 * First idle cpu or the first cpu(busiest) in this sched group
2467 * is eligible for doing load balancing at this and above
2468 * domains. In the newly idle case, we will allow all the cpu's
2469 * to do the newly idle load balance.
2470 */
2471 if (idle != CPU_NEWLY_IDLE && local_group &&
2472 balance_cpu != this_cpu && balance) {
2473 *balance = 0;
2474 goto ret;
2475 }
2476
2477 total_load += avg_load;
2478 total_pwr += group->__cpu_power;
2479
2480 /* Adjust by relative CPU power of the group */
2481 avg_load = sg_div_cpu_power(group,
2482 avg_load * SCHED_LOAD_SCALE);
2483
2484 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
2485 __group_imb = 1;
2486
2487 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2488
2489 if (local_group) {
2490 this_load = avg_load;
2491 this = group;
2492 this_nr_running = sum_nr_running;
2493 this_load_per_task = sum_weighted_load;
2494 } else if (avg_load > max_load &&
2495 (sum_nr_running > group_capacity || __group_imb)) {
2496 max_load = avg_load;
2497 busiest = group;
2498 busiest_nr_running = sum_nr_running;
2499 busiest_load_per_task = sum_weighted_load;
2500 group_imb = __group_imb;
2501 }
2502
2503 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2504 /*
2505 * Busy processors will not participate in power savings
2506 * balance.
2507 */
2508 if (idle == CPU_NOT_IDLE ||
2509 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2510 goto group_next;
2511
2512 /*
2513 * If the local group is idle or completely loaded
2514 * no need to do power savings balance at this domain
2515 */
2516 if (local_group && (this_nr_running >= group_capacity ||
2517 !this_nr_running))
2518 power_savings_balance = 0;
2519
2520 /*
2521 * If a group is already running at full capacity or idle,
2522 * don't include that group in power savings calculations
2523 */
2524 if (!power_savings_balance || sum_nr_running >= group_capacity
2525 || !sum_nr_running)
2526 goto group_next;
2527
2528 /*
2529 * Calculate the group which has the least non-idle load.
2530 * This is the group from where we need to pick up the load
2531 * for saving power
2532 */
2533 if ((sum_nr_running < min_nr_running) ||
2534 (sum_nr_running == min_nr_running &&
2535 first_cpu(group->cpumask) <
2536 first_cpu(group_min->cpumask))) {
2537 group_min = group;
2538 min_nr_running = sum_nr_running;
2539 min_load_per_task = sum_weighted_load /
2540 sum_nr_running;
2541 }
2542
2543 /*
2544 * Calculate the group which is almost near its
2545 * capacity but still has some space to pick up some load
2546 * from other group and save more power
2547 */
2548 if (sum_nr_running <= group_capacity - 1) {
2549 if (sum_nr_running > leader_nr_running ||
2550 (sum_nr_running == leader_nr_running &&
2551 first_cpu(group->cpumask) >
2552 first_cpu(group_leader->cpumask))) {
2553 group_leader = group;
2554 leader_nr_running = sum_nr_running;
2555 }
2556 }
2557 group_next:
2558 #endif
2559 group = group->next;
2560 } while (group != sd->groups);
2561
2562 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2563 goto out_balanced;
2564
2565 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2566
2567 if (this_load >= avg_load ||
2568 100*max_load <= sd->imbalance_pct*this_load)
2569 goto out_balanced;
2570
2571 busiest_load_per_task /= busiest_nr_running;
2572 if (group_imb)
2573 busiest_load_per_task = min(busiest_load_per_task, avg_load);
2574
2575 /*
2576 * We're trying to get all the cpus to the average_load, so we don't
2577 * want to push ourselves above the average load, nor do we wish to
2578 * reduce the max loaded cpu below the average load, as either of these
2579 * actions would just result in more rebalancing later, and ping-pong
2580 * tasks around. Thus we look for the minimum possible imbalance.
2581 * Negative imbalances (*we* are more loaded than anyone else) will
2582 * be counted as no imbalance for these purposes -- we can't fix that
2583 * by pulling tasks to us. Be careful of negative numbers as they'll
2584 * appear as very large values with unsigned longs.
2585 */
2586 if (max_load <= busiest_load_per_task)
2587 goto out_balanced;
2588
2589 /*
2590 * In the presence of smp nice balancing, certain scenarios can have
2591 * max load less than avg load(as we skip the groups at or below
2592 * its cpu_power, while calculating max_load..)
2593 */
2594 if (max_load < avg_load) {
2595 *imbalance = 0;
2596 goto small_imbalance;
2597 }
2598
2599 /* Don't want to pull so many tasks that a group would go idle */
2600 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2601
2602 /* How much load to actually move to equalise the imbalance */
2603 *imbalance = min(max_pull * busiest->__cpu_power,
2604 (avg_load - this_load) * this->__cpu_power)
2605 / SCHED_LOAD_SCALE;
2606
2607 /*
2608 * if *imbalance is less than the average load per runnable task
2609 * there is no gaurantee that any tasks will be moved so we'll have
2610 * a think about bumping its value to force at least one task to be
2611 * moved
2612 */
2613 if (*imbalance < busiest_load_per_task) {
2614 unsigned long tmp, pwr_now, pwr_move;
2615 unsigned int imbn;
2616
2617 small_imbalance:
2618 pwr_move = pwr_now = 0;
2619 imbn = 2;
2620 if (this_nr_running) {
2621 this_load_per_task /= this_nr_running;
2622 if (busiest_load_per_task > this_load_per_task)
2623 imbn = 1;
2624 } else
2625 this_load_per_task = SCHED_LOAD_SCALE;
2626
2627 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2628 busiest_load_per_task * imbn) {
2629 *imbalance = busiest_load_per_task;
2630 return busiest;
2631 }
2632
2633 /*
2634 * OK, we don't have enough imbalance to justify moving tasks,
2635 * however we may be able to increase total CPU power used by
2636 * moving them.
2637 */
2638
2639 pwr_now += busiest->__cpu_power *
2640 min(busiest_load_per_task, max_load);
2641 pwr_now += this->__cpu_power *
2642 min(this_load_per_task, this_load);
2643 pwr_now /= SCHED_LOAD_SCALE;
2644
2645 /* Amount of load we'd subtract */
2646 tmp = sg_div_cpu_power(busiest,
2647 busiest_load_per_task * SCHED_LOAD_SCALE);
2648 if (max_load > tmp)
2649 pwr_move += busiest->__cpu_power *
2650 min(busiest_load_per_task, max_load - tmp);
2651
2652 /* Amount of load we'd add */
2653 if (max_load * busiest->__cpu_power <
2654 busiest_load_per_task * SCHED_LOAD_SCALE)
2655 tmp = sg_div_cpu_power(this,
2656 max_load * busiest->__cpu_power);
2657 else
2658 tmp = sg_div_cpu_power(this,
2659 busiest_load_per_task * SCHED_LOAD_SCALE);
2660 pwr_move += this->__cpu_power *
2661 min(this_load_per_task, this_load + tmp);
2662 pwr_move /= SCHED_LOAD_SCALE;
2663
2664 /* Move if we gain throughput */
2665 if (pwr_move > pwr_now)
2666 *imbalance = busiest_load_per_task;
2667 }
2668
2669 return busiest;
2670
2671 out_balanced:
2672 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2673 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2674 goto ret;
2675
2676 if (this == group_leader && group_leader != group_min) {
2677 *imbalance = min_load_per_task;
2678 return group_min;
2679 }
2680 #endif
2681 ret:
2682 *imbalance = 0;
2683 return NULL;
2684 }
2685
2686 /*
2687 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2688 */
2689 static struct rq *
2690 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2691 unsigned long imbalance, cpumask_t *cpus)
2692 {
2693 struct rq *busiest = NULL, *rq;
2694 unsigned long max_load = 0;
2695 int i;
2696
2697 for_each_cpu_mask(i, group->cpumask) {
2698 unsigned long wl;
2699
2700 if (!cpu_isset(i, *cpus))
2701 continue;
2702
2703 rq = cpu_rq(i);
2704 wl = weighted_cpuload(i);
2705
2706 if (rq->nr_running == 1 && wl > imbalance)
2707 continue;
2708
2709 if (wl > max_load) {
2710 max_load = wl;
2711 busiest = rq;
2712 }
2713 }
2714
2715 return busiest;
2716 }
2717
2718 /*
2719 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2720 * so long as it is large enough.
2721 */
2722 #define MAX_PINNED_INTERVAL 512
2723
2724 /*
2725 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2726 * tasks if there is an imbalance.
2727 */
2728 static int load_balance(int this_cpu, struct rq *this_rq,
2729 struct sched_domain *sd, enum cpu_idle_type idle,
2730 int *balance)
2731 {
2732 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2733 struct sched_group *group;
2734 unsigned long imbalance;
2735 struct rq *busiest;
2736 cpumask_t cpus = CPU_MASK_ALL;
2737 unsigned long flags;
2738
2739 /*
2740 * When power savings policy is enabled for the parent domain, idle
2741 * sibling can pick up load irrespective of busy siblings. In this case,
2742 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2743 * portraying it as CPU_NOT_IDLE.
2744 */
2745 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2746 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2747 sd_idle = 1;
2748
2749 schedstat_inc(sd, lb_count[idle]);
2750
2751 redo:
2752 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2753 &cpus, balance);
2754
2755 if (*balance == 0)
2756 goto out_balanced;
2757
2758 if (!group) {
2759 schedstat_inc(sd, lb_nobusyg[idle]);
2760 goto out_balanced;
2761 }
2762
2763 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
2764 if (!busiest) {
2765 schedstat_inc(sd, lb_nobusyq[idle]);
2766 goto out_balanced;
2767 }
2768
2769 BUG_ON(busiest == this_rq);
2770
2771 schedstat_add(sd, lb_imbalance[idle], imbalance);
2772
2773 ld_moved = 0;
2774 if (busiest->nr_running > 1) {
2775 /*
2776 * Attempt to move tasks. If find_busiest_group has found
2777 * an imbalance but busiest->nr_running <= 1, the group is
2778 * still unbalanced. ld_moved simply stays zero, so it is
2779 * correctly treated as an imbalance.
2780 */
2781 local_irq_save(flags);
2782 double_rq_lock(this_rq, busiest);
2783 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2784 imbalance, sd, idle, &all_pinned);
2785 double_rq_unlock(this_rq, busiest);
2786 local_irq_restore(flags);
2787
2788 /*
2789 * some other cpu did the load balance for us.
2790 */
2791 if (ld_moved && this_cpu != smp_processor_id())
2792 resched_cpu(this_cpu);
2793
2794 /* All tasks on this runqueue were pinned by CPU affinity */
2795 if (unlikely(all_pinned)) {
2796 cpu_clear(cpu_of(busiest), cpus);
2797 if (!cpus_empty(cpus))
2798 goto redo;
2799 goto out_balanced;
2800 }
2801 }
2802
2803 if (!ld_moved) {
2804 schedstat_inc(sd, lb_failed[idle]);
2805 sd->nr_balance_failed++;
2806
2807 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2808
2809 spin_lock_irqsave(&busiest->lock, flags);
2810
2811 /* don't kick the migration_thread, if the curr
2812 * task on busiest cpu can't be moved to this_cpu
2813 */
2814 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2815 spin_unlock_irqrestore(&busiest->lock, flags);
2816 all_pinned = 1;
2817 goto out_one_pinned;
2818 }
2819
2820 if (!busiest->active_balance) {
2821 busiest->active_balance = 1;
2822 busiest->push_cpu = this_cpu;
2823 active_balance = 1;
2824 }
2825 spin_unlock_irqrestore(&busiest->lock, flags);
2826 if (active_balance)
2827 wake_up_process(busiest->migration_thread);
2828
2829 /*
2830 * We've kicked active balancing, reset the failure
2831 * counter.
2832 */
2833 sd->nr_balance_failed = sd->cache_nice_tries+1;
2834 }
2835 } else
2836 sd->nr_balance_failed = 0;
2837
2838 if (likely(!active_balance)) {
2839 /* We were unbalanced, so reset the balancing interval */
2840 sd->balance_interval = sd->min_interval;
2841 } else {
2842 /*
2843 * If we've begun active balancing, start to back off. This
2844 * case may not be covered by the all_pinned logic if there
2845 * is only 1 task on the busy runqueue (because we don't call
2846 * move_tasks).
2847 */
2848 if (sd->balance_interval < sd->max_interval)
2849 sd->balance_interval *= 2;
2850 }
2851
2852 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2853 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2854 return -1;
2855 return ld_moved;
2856
2857 out_balanced:
2858 schedstat_inc(sd, lb_balanced[idle]);
2859
2860 sd->nr_balance_failed = 0;
2861
2862 out_one_pinned:
2863 /* tune up the balancing interval */
2864 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2865 (sd->balance_interval < sd->max_interval))
2866 sd->balance_interval *= 2;
2867
2868 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2869 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2870 return -1;
2871 return 0;
2872 }
2873
2874 /*
2875 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2876 * tasks if there is an imbalance.
2877 *
2878 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
2879 * this_rq is locked.
2880 */
2881 static int
2882 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
2883 {
2884 struct sched_group *group;
2885 struct rq *busiest = NULL;
2886 unsigned long imbalance;
2887 int ld_moved = 0;
2888 int sd_idle = 0;
2889 int all_pinned = 0;
2890 cpumask_t cpus = CPU_MASK_ALL;
2891
2892 /*
2893 * When power savings policy is enabled for the parent domain, idle
2894 * sibling can pick up load irrespective of busy siblings. In this case,
2895 * let the state of idle sibling percolate up as IDLE, instead of
2896 * portraying it as CPU_NOT_IDLE.
2897 */
2898 if (sd->flags & SD_SHARE_CPUPOWER &&
2899 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2900 sd_idle = 1;
2901
2902 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
2903 redo:
2904 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2905 &sd_idle, &cpus, NULL);
2906 if (!group) {
2907 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2908 goto out_balanced;
2909 }
2910
2911 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2912 &cpus);
2913 if (!busiest) {
2914 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2915 goto out_balanced;
2916 }
2917
2918 BUG_ON(busiest == this_rq);
2919
2920 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2921
2922 ld_moved = 0;
2923 if (busiest->nr_running > 1) {
2924 /* Attempt to move tasks */
2925 double_lock_balance(this_rq, busiest);
2926 /* this_rq->clock is already updated */
2927 update_rq_clock(busiest);
2928 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2929 imbalance, sd, CPU_NEWLY_IDLE,
2930 &all_pinned);
2931 spin_unlock(&busiest->lock);
2932
2933 if (unlikely(all_pinned)) {
2934 cpu_clear(cpu_of(busiest), cpus);
2935 if (!cpus_empty(cpus))
2936 goto redo;
2937 }
2938 }
2939
2940 if (!ld_moved) {
2941 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2942 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2943 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2944 return -1;
2945 } else
2946 sd->nr_balance_failed = 0;
2947
2948 return ld_moved;
2949
2950 out_balanced:
2951 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2952 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2953 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2954 return -1;
2955 sd->nr_balance_failed = 0;
2956
2957 return 0;
2958 }
2959
2960 /*
2961 * idle_balance is called by schedule() if this_cpu is about to become
2962 * idle. Attempts to pull tasks from other CPUs.
2963 */
2964 static void idle_balance(int this_cpu, struct rq *this_rq)
2965 {
2966 struct sched_domain *sd;
2967 int pulled_task = -1;
2968 unsigned long next_balance = jiffies + HZ;
2969
2970 for_each_domain(this_cpu, sd) {
2971 unsigned long interval;
2972
2973 if (!(sd->flags & SD_LOAD_BALANCE))
2974 continue;
2975
2976 if (sd->flags & SD_BALANCE_NEWIDLE)
2977 /* If we've pulled tasks over stop searching: */
2978 pulled_task = load_balance_newidle(this_cpu,
2979 this_rq, sd);
2980
2981 interval = msecs_to_jiffies(sd->balance_interval);
2982 if (time_after(next_balance, sd->last_balance + interval))
2983 next_balance = sd->last_balance + interval;
2984 if (pulled_task)
2985 break;
2986 }
2987 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
2988 /*
2989 * We are going idle. next_balance may be set based on
2990 * a busy processor. So reset next_balance.
2991 */
2992 this_rq->next_balance = next_balance;
2993 }
2994 }
2995
2996 /*
2997 * active_load_balance is run by migration threads. It pushes running tasks
2998 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2999 * running on each physical CPU where possible, and avoids physical /
3000 * logical imbalances.
3001 *
3002 * Called with busiest_rq locked.
3003 */
3004 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3005 {
3006 int target_cpu = busiest_rq->push_cpu;
3007 struct sched_domain *sd;
3008 struct rq *target_rq;
3009
3010 /* Is there any task to move? */
3011 if (busiest_rq->nr_running <= 1)
3012 return;
3013
3014 target_rq = cpu_rq(target_cpu);
3015
3016 /*
3017 * This condition is "impossible", if it occurs
3018 * we need to fix it. Originally reported by
3019 * Bjorn Helgaas on a 128-cpu setup.
3020 */
3021 BUG_ON(busiest_rq == target_rq);
3022
3023 /* move a task from busiest_rq to target_rq */
3024 double_lock_balance(busiest_rq, target_rq);
3025 update_rq_clock(busiest_rq);
3026 update_rq_clock(target_rq);
3027
3028 /* Search for an sd spanning us and the target CPU. */
3029 for_each_domain(target_cpu, sd) {
3030 if ((sd->flags & SD_LOAD_BALANCE) &&
3031 cpu_isset(busiest_cpu, sd->span))
3032 break;
3033 }
3034
3035 if (likely(sd)) {
3036 schedstat_inc(sd, alb_count);
3037
3038 if (move_one_task(target_rq, target_cpu, busiest_rq,
3039 sd, CPU_IDLE))
3040 schedstat_inc(sd, alb_pushed);
3041 else
3042 schedstat_inc(sd, alb_failed);
3043 }
3044 spin_unlock(&target_rq->lock);
3045 }
3046
3047 #ifdef CONFIG_NO_HZ
3048 static struct {
3049 atomic_t load_balancer;
3050 cpumask_t cpu_mask;
3051 } nohz ____cacheline_aligned = {
3052 .load_balancer = ATOMIC_INIT(-1),
3053 .cpu_mask = CPU_MASK_NONE,
3054 };
3055
3056 /*
3057 * This routine will try to nominate the ilb (idle load balancing)
3058 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3059 * load balancing on behalf of all those cpus. If all the cpus in the system
3060 * go into this tickless mode, then there will be no ilb owner (as there is
3061 * no need for one) and all the cpus will sleep till the next wakeup event
3062 * arrives...
3063 *
3064 * For the ilb owner, tick is not stopped. And this tick will be used
3065 * for idle load balancing. ilb owner will still be part of
3066 * nohz.cpu_mask..
3067 *
3068 * While stopping the tick, this cpu will become the ilb owner if there
3069 * is no other owner. And will be the owner till that cpu becomes busy
3070 * or if all cpus in the system stop their ticks at which point
3071 * there is no need for ilb owner.
3072 *
3073 * When the ilb owner becomes busy, it nominates another owner, during the
3074 * next busy scheduler_tick()
3075 */
3076 int select_nohz_load_balancer(int stop_tick)
3077 {
3078 int cpu = smp_processor_id();
3079
3080 if (stop_tick) {
3081 cpu_set(cpu, nohz.cpu_mask);
3082 cpu_rq(cpu)->in_nohz_recently = 1;
3083
3084 /*
3085 * If we are going offline and still the leader, give up!
3086 */
3087 if (cpu_is_offline(cpu) &&
3088 atomic_read(&nohz.load_balancer) == cpu) {
3089 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3090 BUG();
3091 return 0;
3092 }
3093
3094 /* time for ilb owner also to sleep */
3095 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3096 if (atomic_read(&nohz.load_balancer) == cpu)
3097 atomic_set(&nohz.load_balancer, -1);
3098 return 0;
3099 }
3100
3101 if (atomic_read(&nohz.load_balancer) == -1) {
3102 /* make me the ilb owner */
3103 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3104 return 1;
3105 } else if (atomic_read(&nohz.load_balancer) == cpu)
3106 return 1;
3107 } else {
3108 if (!cpu_isset(cpu, nohz.cpu_mask))
3109 return 0;
3110
3111 cpu_clear(cpu, nohz.cpu_mask);
3112
3113 if (atomic_read(&nohz.load_balancer) == cpu)
3114 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3115 BUG();
3116 }
3117 return 0;
3118 }
3119 #endif
3120
3121 static DEFINE_SPINLOCK(balancing);
3122
3123 /*
3124 * It checks each scheduling domain to see if it is due to be balanced,
3125 * and initiates a balancing operation if so.
3126 *
3127 * Balancing parameters are set up in arch_init_sched_domains.
3128 */
3129 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3130 {
3131 int balance = 1;
3132 struct rq *rq = cpu_rq(cpu);
3133 unsigned long interval;
3134 struct sched_domain *sd;
3135 /* Earliest time when we have to do rebalance again */
3136 unsigned long next_balance = jiffies + 60*HZ;
3137 int update_next_balance = 0;
3138
3139 for_each_domain(cpu, sd) {
3140 if (!(sd->flags & SD_LOAD_BALANCE))
3141 continue;
3142
3143 interval = sd->balance_interval;
3144 if (idle != CPU_IDLE)
3145 interval *= sd->busy_factor;
3146
3147 /* scale ms to jiffies */
3148 interval = msecs_to_jiffies(interval);
3149 if (unlikely(!interval))
3150 interval = 1;
3151 if (interval > HZ*NR_CPUS/10)
3152 interval = HZ*NR_CPUS/10;
3153
3154
3155 if (sd->flags & SD_SERIALIZE) {
3156 if (!spin_trylock(&balancing))
3157 goto out;
3158 }
3159
3160 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3161 if (load_balance(cpu, rq, sd, idle, &balance)) {
3162 /*
3163 * We've pulled tasks over so either we're no
3164 * longer idle, or one of our SMT siblings is
3165 * not idle.
3166 */
3167 idle = CPU_NOT_IDLE;
3168 }
3169 sd->last_balance = jiffies;
3170 }
3171 if (sd->flags & SD_SERIALIZE)
3172 spin_unlock(&balancing);
3173 out:
3174 if (time_after(next_balance, sd->last_balance + interval)) {
3175 next_balance = sd->last_balance + interval;
3176 update_next_balance = 1;
3177 }
3178
3179 /*
3180 * Stop the load balance at this level. There is another
3181 * CPU in our sched group which is doing load balancing more
3182 * actively.
3183 */
3184 if (!balance)
3185 break;
3186 }
3187
3188 /*
3189 * next_balance will be updated only when there is a need.
3190 * When the cpu is attached to null domain for ex, it will not be
3191 * updated.
3192 */
3193 if (likely(update_next_balance))
3194 rq->next_balance = next_balance;
3195 }
3196
3197 /*
3198 * run_rebalance_domains is triggered when needed from the scheduler tick.
3199 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3200 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3201 */
3202 static void run_rebalance_domains(struct softirq_action *h)
3203 {
3204 int this_cpu = smp_processor_id();
3205 struct rq *this_rq = cpu_rq(this_cpu);
3206 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3207 CPU_IDLE : CPU_NOT_IDLE;
3208
3209 rebalance_domains(this_cpu, idle);
3210
3211 #ifdef CONFIG_NO_HZ
3212 /*
3213 * If this cpu is the owner for idle load balancing, then do the
3214 * balancing on behalf of the other idle cpus whose ticks are
3215 * stopped.
3216 */
3217 if (this_rq->idle_at_tick &&
3218 atomic_read(&nohz.load_balancer) == this_cpu) {
3219 cpumask_t cpus = nohz.cpu_mask;
3220 struct rq *rq;
3221 int balance_cpu;
3222
3223 cpu_clear(this_cpu, cpus);
3224 for_each_cpu_mask(balance_cpu, cpus) {
3225 /*
3226 * If this cpu gets work to do, stop the load balancing
3227 * work being done for other cpus. Next load
3228 * balancing owner will pick it up.
3229 */
3230 if (need_resched())
3231 break;
3232
3233 rebalance_domains(balance_cpu, CPU_IDLE);
3234
3235 rq = cpu_rq(balance_cpu);
3236 if (time_after(this_rq->next_balance, rq->next_balance))
3237 this_rq->next_balance = rq->next_balance;
3238 }
3239 }
3240 #endif
3241 }
3242
3243 /*
3244 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3245 *
3246 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3247 * idle load balancing owner or decide to stop the periodic load balancing,
3248 * if the whole system is idle.
3249 */
3250 static inline void trigger_load_balance(struct rq *rq, int cpu)
3251 {
3252 #ifdef CONFIG_NO_HZ
3253 /*
3254 * If we were in the nohz mode recently and busy at the current
3255 * scheduler tick, then check if we need to nominate new idle
3256 * load balancer.
3257 */
3258 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3259 rq->in_nohz_recently = 0;
3260
3261 if (atomic_read(&nohz.load_balancer) == cpu) {
3262 cpu_clear(cpu, nohz.cpu_mask);
3263 atomic_set(&nohz.load_balancer, -1);
3264 }
3265
3266 if (atomic_read(&nohz.load_balancer) == -1) {
3267 /*
3268 * simple selection for now: Nominate the
3269 * first cpu in the nohz list to be the next
3270 * ilb owner.
3271 *
3272 * TBD: Traverse the sched domains and nominate
3273 * the nearest cpu in the nohz.cpu_mask.
3274 */
3275 int ilb = first_cpu(nohz.cpu_mask);
3276
3277 if (ilb != NR_CPUS)
3278 resched_cpu(ilb);
3279 }
3280 }
3281
3282 /*
3283 * If this cpu is idle and doing idle load balancing for all the
3284 * cpus with ticks stopped, is it time for that to stop?
3285 */
3286 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3287 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3288 resched_cpu(cpu);
3289 return;
3290 }
3291
3292 /*
3293 * If this cpu is idle and the idle load balancing is done by
3294 * someone else, then no need raise the SCHED_SOFTIRQ
3295 */
3296 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3297 cpu_isset(cpu, nohz.cpu_mask))
3298 return;
3299 #endif
3300 if (time_after_eq(jiffies, rq->next_balance))
3301 raise_softirq(SCHED_SOFTIRQ);
3302 }
3303
3304 #else /* CONFIG_SMP */
3305
3306 /*
3307 * on UP we do not need to balance between CPUs:
3308 */
3309 static inline void idle_balance(int cpu, struct rq *rq)
3310 {
3311 }
3312
3313 #endif
3314
3315 DEFINE_PER_CPU(struct kernel_stat, kstat);
3316
3317 EXPORT_PER_CPU_SYMBOL(kstat);
3318
3319 /*
3320 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3321 * that have not yet been banked in case the task is currently running.
3322 */
3323 unsigned long long task_sched_runtime(struct task_struct *p)
3324 {
3325 unsigned long flags;
3326 u64 ns, delta_exec;
3327 struct rq *rq;
3328
3329 rq = task_rq_lock(p, &flags);
3330 ns = p->se.sum_exec_runtime;
3331 if (rq->curr == p) {
3332 update_rq_clock(rq);
3333 delta_exec = rq->clock - p->se.exec_start;
3334 if ((s64)delta_exec > 0)
3335 ns += delta_exec;
3336 }
3337 task_rq_unlock(rq, &flags);
3338
3339 return ns;
3340 }
3341
3342 /*
3343 * Account user cpu time to a process.
3344 * @p: the process that the cpu time gets accounted to
3345 * @cputime: the cpu time spent in user space since the last update
3346 */
3347 void account_user_time(struct task_struct *p, cputime_t cputime)
3348 {
3349 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3350 cputime64_t tmp;
3351
3352 p->utime = cputime_add(p->utime, cputime);
3353
3354 /* Add user time to cpustat. */
3355 tmp = cputime_to_cputime64(cputime);
3356 if (TASK_NICE(p) > 0)
3357 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3358 else
3359 cpustat->user = cputime64_add(cpustat->user, tmp);
3360 }
3361
3362 /*
3363 * Account guest cpu time to a process.
3364 * @p: the process that the cpu time gets accounted to
3365 * @cputime: the cpu time spent in virtual machine since the last update
3366 */
3367 static void account_guest_time(struct task_struct *p, cputime_t cputime)
3368 {
3369 cputime64_t tmp;
3370 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3371
3372 tmp = cputime_to_cputime64(cputime);
3373
3374 p->utime = cputime_add(p->utime, cputime);
3375 p->gtime = cputime_add(p->gtime, cputime);
3376
3377 cpustat->user = cputime64_add(cpustat->user, tmp);
3378 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3379 }
3380
3381 /*
3382 * Account scaled user cpu time to a process.
3383 * @p: the process that the cpu time gets accounted to
3384 * @cputime: the cpu time spent in user space since the last update
3385 */
3386 void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
3387 {
3388 p->utimescaled = cputime_add(p->utimescaled, cputime);
3389 }
3390
3391 /*
3392 * Account system cpu time to a process.
3393 * @p: the process that the cpu time gets accounted to
3394 * @hardirq_offset: the offset to subtract from hardirq_count()
3395 * @cputime: the cpu time spent in kernel space since the last update
3396 */
3397 void account_system_time(struct task_struct *p, int hardirq_offset,
3398 cputime_t cputime)
3399 {
3400 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3401 struct rq *rq = this_rq();
3402 cputime64_t tmp;
3403
3404 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
3405 return account_guest_time(p, cputime);
3406
3407 p->stime = cputime_add(p->stime, cputime);
3408
3409 /* Add system time to cpustat. */
3410 tmp = cputime_to_cputime64(cputime);
3411 if (hardirq_count() - hardirq_offset)
3412 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3413 else if (softirq_count())
3414 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3415 else if (p != rq->idle)
3416 cpustat->system = cputime64_add(cpustat->system, tmp);
3417 else if (atomic_read(&rq->nr_iowait) > 0)
3418 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3419 else
3420 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3421 /* Account for system time used */
3422 acct_update_integrals(p);
3423 }
3424
3425 /*
3426 * Account scaled system cpu time to a process.
3427 * @p: the process that the cpu time gets accounted to
3428 * @hardirq_offset: the offset to subtract from hardirq_count()
3429 * @cputime: the cpu time spent in kernel space since the last update
3430 */
3431 void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
3432 {
3433 p->stimescaled = cputime_add(p->stimescaled, cputime);
3434 }
3435
3436 /*
3437 * Account for involuntary wait time.
3438 * @p: the process from which the cpu time has been stolen
3439 * @steal: the cpu time spent in involuntary wait
3440 */
3441 void account_steal_time(struct task_struct *p, cputime_t steal)
3442 {
3443 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3444 cputime64_t tmp = cputime_to_cputime64(steal);
3445 struct rq *rq = this_rq();
3446
3447 if (p == rq->idle) {
3448 p->stime = cputime_add(p->stime, steal);
3449 if (atomic_read(&rq->nr_iowait) > 0)
3450 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3451 else
3452 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3453 } else
3454 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3455 }
3456
3457 /*
3458 * This function gets called by the timer code, with HZ frequency.
3459 * We call it with interrupts disabled.
3460 *
3461 * It also gets called by the fork code, when changing the parent's
3462 * timeslices.
3463 */
3464 void scheduler_tick(void)
3465 {
3466 int cpu = smp_processor_id();
3467 struct rq *rq = cpu_rq(cpu);
3468 struct task_struct *curr = rq->curr;
3469 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
3470
3471 spin_lock(&rq->lock);
3472 __update_rq_clock(rq);
3473 /*
3474 * Let rq->clock advance by at least TICK_NSEC:
3475 */
3476 if (unlikely(rq->clock < next_tick))
3477 rq->clock = next_tick;
3478 rq->tick_timestamp = rq->clock;
3479 update_cpu_load(rq);
3480 if (curr != rq->idle) /* FIXME: needed? */
3481 curr->sched_class->task_tick(rq, curr);
3482 spin_unlock(&rq->lock);
3483
3484 #ifdef CONFIG_SMP
3485 rq->idle_at_tick = idle_cpu(cpu);
3486 trigger_load_balance(rq, cpu);
3487 #endif
3488 }
3489
3490 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3491
3492 void fastcall add_preempt_count(int val)
3493 {
3494 /*
3495 * Underflow?
3496 */
3497 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3498 return;
3499 preempt_count() += val;
3500 /*
3501 * Spinlock count overflowing soon?
3502 */
3503 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3504 PREEMPT_MASK - 10);
3505 }
3506 EXPORT_SYMBOL(add_preempt_count);
3507
3508 void fastcall sub_preempt_count(int val)
3509 {
3510 /*
3511 * Underflow?
3512 */
3513 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3514 return;
3515 /*
3516 * Is the spinlock portion underflowing?
3517 */
3518 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3519 !(preempt_count() & PREEMPT_MASK)))
3520 return;
3521
3522 preempt_count() -= val;
3523 }
3524 EXPORT_SYMBOL(sub_preempt_count);
3525
3526 #endif
3527
3528 /*
3529 * Print scheduling while atomic bug:
3530 */
3531 static noinline void __schedule_bug(struct task_struct *prev)
3532 {
3533 struct pt_regs *regs = get_irq_regs();
3534
3535 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3536 prev->comm, prev->pid, preempt_count());
3537
3538 debug_show_held_locks(prev);
3539 if (irqs_disabled())
3540 print_irqtrace_events(prev);
3541
3542 if (regs)
3543 show_regs(regs);
3544 else
3545 dump_stack();
3546 }
3547
3548 /*
3549 * Various schedule()-time debugging checks and statistics:
3550 */
3551 static inline void schedule_debug(struct task_struct *prev)
3552 {
3553 /*
3554 * Test if we are atomic. Since do_exit() needs to call into
3555 * schedule() atomically, we ignore that path for now.
3556 * Otherwise, whine if we are scheduling when we should not be.
3557 */
3558 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3559 __schedule_bug(prev);
3560
3561 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3562
3563 schedstat_inc(this_rq(), sched_count);
3564 #ifdef CONFIG_SCHEDSTATS
3565 if (unlikely(prev->lock_depth >= 0)) {
3566 schedstat_inc(this_rq(), bkl_count);
3567 schedstat_inc(prev, sched_info.bkl_count);
3568 }
3569 #endif
3570 }
3571
3572 /*
3573 * Pick up the highest-prio task:
3574 */
3575 static inline struct task_struct *
3576 pick_next_task(struct rq *rq, struct task_struct *prev)
3577 {
3578 const struct sched_class *class;
3579 struct task_struct *p;
3580
3581 /*
3582 * Optimization: we know that if all tasks are in
3583 * the fair class we can call that function directly:
3584 */
3585 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3586 p = fair_sched_class.pick_next_task(rq);
3587 if (likely(p))
3588 return p;
3589 }
3590
3591 class = sched_class_highest;
3592 for ( ; ; ) {
3593 p = class->pick_next_task(rq);
3594 if (p)
3595 return p;
3596 /*
3597 * Will never be NULL as the idle class always
3598 * returns a non-NULL p:
3599 */
3600 class = class->next;
3601 }
3602 }
3603
3604 /*
3605 * schedule() is the main scheduler function.
3606 */
3607 asmlinkage void __sched schedule(void)
3608 {
3609 struct task_struct *prev, *next;
3610 long *switch_count;
3611 struct rq *rq;
3612 int cpu;
3613
3614 need_resched:
3615 preempt_disable();
3616 cpu = smp_processor_id();
3617 rq = cpu_rq(cpu);
3618 rcu_qsctr_inc(cpu);
3619 prev = rq->curr;
3620 switch_count = &prev->nivcsw;
3621
3622 release_kernel_lock(prev);
3623 need_resched_nonpreemptible:
3624
3625 schedule_debug(prev);
3626
3627 /*
3628 * Do the rq-clock update outside the rq lock:
3629 */
3630 local_irq_disable();
3631 __update_rq_clock(rq);
3632 spin_lock(&rq->lock);
3633 clear_tsk_need_resched(prev);
3634
3635 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3636 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3637 unlikely(signal_pending(prev)))) {
3638 prev->state = TASK_RUNNING;
3639 } else {
3640 deactivate_task(rq, prev, 1);
3641 }
3642 switch_count = &prev->nvcsw;
3643 }
3644
3645 if (unlikely(!rq->nr_running))
3646 idle_balance(cpu, rq);
3647
3648 prev->sched_class->put_prev_task(rq, prev);
3649 next = pick_next_task(rq, prev);
3650
3651 sched_info_switch(prev, next);
3652
3653 if (likely(prev != next)) {
3654 rq->nr_switches++;
3655 rq->curr = next;
3656 ++*switch_count;
3657
3658 context_switch(rq, prev, next); /* unlocks the rq */
3659 } else
3660 spin_unlock_irq(&rq->lock);
3661
3662 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3663 cpu = smp_processor_id();
3664 rq = cpu_rq(cpu);
3665 goto need_resched_nonpreemptible;
3666 }
3667 preempt_enable_no_resched();
3668 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3669 goto need_resched;
3670 }
3671 EXPORT_SYMBOL(schedule);
3672
3673 #ifdef CONFIG_PREEMPT
3674 /*
3675 * this is the entry point to schedule() from in-kernel preemption
3676 * off of preempt_enable. Kernel preemptions off return from interrupt
3677 * occur there and call schedule directly.
3678 */
3679 asmlinkage void __sched preempt_schedule(void)
3680 {
3681 struct thread_info *ti = current_thread_info();
3682 #ifdef CONFIG_PREEMPT_BKL
3683 struct task_struct *task = current;
3684 int saved_lock_depth;
3685 #endif
3686 /*
3687 * If there is a non-zero preempt_count or interrupts are disabled,
3688 * we do not want to preempt the current task. Just return..
3689 */
3690 if (likely(ti->preempt_count || irqs_disabled()))
3691 return;
3692
3693 do {
3694 add_preempt_count(PREEMPT_ACTIVE);
3695
3696 /*
3697 * We keep the big kernel semaphore locked, but we
3698 * clear ->lock_depth so that schedule() doesnt
3699 * auto-release the semaphore:
3700 */
3701 #ifdef CONFIG_PREEMPT_BKL
3702 saved_lock_depth = task->lock_depth;
3703 task->lock_depth = -1;
3704 #endif
3705 schedule();
3706 #ifdef CONFIG_PREEMPT_BKL
3707 task->lock_depth = saved_lock_depth;
3708 #endif
3709 sub_preempt_count(PREEMPT_ACTIVE);
3710
3711 /*
3712 * Check again in case we missed a preemption opportunity
3713 * between schedule and now.
3714 */
3715 barrier();
3716 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
3717 }
3718 EXPORT_SYMBOL(preempt_schedule);
3719
3720 /*
3721 * this is the entry point to schedule() from kernel preemption
3722 * off of irq context.
3723 * Note, that this is called and return with irqs disabled. This will
3724 * protect us against recursive calling from irq.
3725 */
3726 asmlinkage void __sched preempt_schedule_irq(void)
3727 {
3728 struct thread_info *ti = current_thread_info();
3729 #ifdef CONFIG_PREEMPT_BKL
3730 struct task_struct *task = current;
3731 int saved_lock_depth;
3732 #endif
3733 /* Catch callers which need to be fixed */
3734 BUG_ON(ti->preempt_count || !irqs_disabled());
3735
3736 do {
3737 add_preempt_count(PREEMPT_ACTIVE);
3738
3739 /*
3740 * We keep the big kernel semaphore locked, but we
3741 * clear ->lock_depth so that schedule() doesnt
3742 * auto-release the semaphore:
3743 */
3744 #ifdef CONFIG_PREEMPT_BKL
3745 saved_lock_depth = task->lock_depth;
3746 task->lock_depth = -1;
3747 #endif
3748 local_irq_enable();
3749 schedule();
3750 local_irq_disable();
3751 #ifdef CONFIG_PREEMPT_BKL
3752 task->lock_depth = saved_lock_depth;
3753 #endif
3754 sub_preempt_count(PREEMPT_ACTIVE);
3755
3756 /*
3757 * Check again in case we missed a preemption opportunity
3758 * between schedule and now.
3759 */
3760 barrier();
3761 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
3762 }
3763
3764 #endif /* CONFIG_PREEMPT */
3765
3766 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3767 void *key)
3768 {
3769 return try_to_wake_up(curr->private, mode, sync);
3770 }
3771 EXPORT_SYMBOL(default_wake_function);
3772
3773 /*
3774 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3775 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3776 * number) then we wake all the non-exclusive tasks and one exclusive task.
3777 *
3778 * There are circumstances in which we can try to wake a task which has already
3779 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3780 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3781 */
3782 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3783 int nr_exclusive, int sync, void *key)
3784 {
3785 wait_queue_t *curr, *next;
3786
3787 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3788 unsigned flags = curr->flags;
3789
3790 if (curr->func(curr, mode, sync, key) &&
3791 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3792 break;
3793 }
3794 }
3795
3796 /**
3797 * __wake_up - wake up threads blocked on a waitqueue.
3798 * @q: the waitqueue
3799 * @mode: which threads
3800 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3801 * @key: is directly passed to the wakeup function
3802 */
3803 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3804 int nr_exclusive, void *key)
3805 {
3806 unsigned long flags;
3807
3808 spin_lock_irqsave(&q->lock, flags);
3809 __wake_up_common(q, mode, nr_exclusive, 0, key);
3810 spin_unlock_irqrestore(&q->lock, flags);
3811 }
3812 EXPORT_SYMBOL(__wake_up);
3813
3814 /*
3815 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3816 */
3817 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3818 {
3819 __wake_up_common(q, mode, 1, 0, NULL);
3820 }
3821
3822 /**
3823 * __wake_up_sync - wake up threads blocked on a waitqueue.
3824 * @q: the waitqueue
3825 * @mode: which threads
3826 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3827 *
3828 * The sync wakeup differs that the waker knows that it will schedule
3829 * away soon, so while the target thread will be woken up, it will not
3830 * be migrated to another CPU - ie. the two threads are 'synchronized'
3831 * with each other. This can prevent needless bouncing between CPUs.
3832 *
3833 * On UP it can prevent extra preemption.
3834 */
3835 void fastcall
3836 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3837 {
3838 unsigned long flags;
3839 int sync = 1;
3840
3841 if (unlikely(!q))
3842 return;
3843
3844 if (unlikely(!nr_exclusive))
3845 sync = 0;
3846
3847 spin_lock_irqsave(&q->lock, flags);
3848 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3849 spin_unlock_irqrestore(&q->lock, flags);
3850 }
3851 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3852
3853 void complete(struct completion *x)
3854 {
3855 unsigned long flags;
3856
3857 spin_lock_irqsave(&x->wait.lock, flags);
3858 x->done++;
3859 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3860 spin_unlock_irqrestore(&x->wait.lock, flags);
3861 }
3862 EXPORT_SYMBOL(complete);
3863
3864 void complete_all(struct completion *x)
3865 {
3866 unsigned long flags;
3867
3868 spin_lock_irqsave(&x->wait.lock, flags);
3869 x->done += UINT_MAX/2;
3870 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
3871 spin_unlock_irqrestore(&x->wait.lock, flags);
3872 }
3873 EXPORT_SYMBOL(complete_all);
3874
3875 static inline long __sched
3876 do_wait_for_common(struct completion *x, long timeout, int state)
3877 {
3878 if (!x->done) {
3879 DECLARE_WAITQUEUE(wait, current);
3880
3881 wait.flags |= WQ_FLAG_EXCLUSIVE;
3882 __add_wait_queue_tail(&x->wait, &wait);
3883 do {
3884 if ((state == TASK_INTERRUPTIBLE &&
3885 signal_pending(current)) ||
3886 (state == TASK_KILLABLE &&
3887 fatal_signal_pending(current))) {
3888 __remove_wait_queue(&x->wait, &wait);
3889 return -ERESTARTSYS;
3890 }
3891 __set_current_state(state);
3892 spin_unlock_irq(&x->wait.lock);
3893 timeout = schedule_timeout(timeout);
3894 spin_lock_irq(&x->wait.lock);
3895 if (!timeout) {
3896 __remove_wait_queue(&x->wait, &wait);
3897 return timeout;
3898 }
3899 } while (!x->done);
3900 __remove_wait_queue(&x->wait, &wait);
3901 }
3902 x->done--;
3903 return timeout;
3904 }
3905
3906 static long __sched
3907 wait_for_common(struct completion *x, long timeout, int state)
3908 {
3909 might_sleep();
3910
3911 spin_lock_irq(&x->wait.lock);
3912 timeout = do_wait_for_common(x, timeout, state);
3913 spin_unlock_irq(&x->wait.lock);
3914 return timeout;
3915 }
3916
3917 void __sched wait_for_completion(struct completion *x)
3918 {
3919 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3920 }
3921 EXPORT_SYMBOL(wait_for_completion);
3922
3923 unsigned long __sched
3924 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3925 {
3926 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3927 }
3928 EXPORT_SYMBOL(wait_for_completion_timeout);
3929
3930 int __sched wait_for_completion_interruptible(struct completion *x)
3931 {
3932 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3933 if (t == -ERESTARTSYS)
3934 return t;
3935 return 0;
3936 }
3937 EXPORT_SYMBOL(wait_for_completion_interruptible);
3938
3939 unsigned long __sched
3940 wait_for_completion_interruptible_timeout(struct completion *x,
3941 unsigned long timeout)
3942 {
3943 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3944 }
3945 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3946
3947 int __sched wait_for_completion_killable(struct completion *x)
3948 {
3949 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3950 if (t == -ERESTARTSYS)
3951 return t;
3952 return 0;
3953 }
3954 EXPORT_SYMBOL(wait_for_completion_killable);
3955
3956 static long __sched
3957 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3958 {
3959 unsigned long flags;
3960 wait_queue_t wait;
3961
3962 init_waitqueue_entry(&wait, current);
3963
3964 __set_current_state(state);
3965
3966 spin_lock_irqsave(&q->lock, flags);
3967 __add_wait_queue(q, &wait);
3968 spin_unlock(&q->lock);
3969 timeout = schedule_timeout(timeout);
3970 spin_lock_irq(&q->lock);
3971 __remove_wait_queue(q, &wait);
3972 spin_unlock_irqrestore(&q->lock, flags);
3973
3974 return timeout;
3975 }
3976
3977 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3978 {
3979 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3980 }
3981 EXPORT_SYMBOL(interruptible_sleep_on);
3982
3983 long __sched
3984 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3985 {
3986 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3987 }
3988 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3989
3990 void __sched sleep_on(wait_queue_head_t *q)
3991 {
3992 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3993 }
3994 EXPORT_SYMBOL(sleep_on);
3995
3996 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3997 {
3998 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3999 }
4000 EXPORT_SYMBOL(sleep_on_timeout);
4001
4002 #ifdef CONFIG_RT_MUTEXES
4003
4004 /*
4005 * rt_mutex_setprio - set the current priority of a task
4006 * @p: task
4007 * @prio: prio value (kernel-internal form)
4008 *
4009 * This function changes the 'effective' priority of a task. It does
4010 * not touch ->normal_prio like __setscheduler().
4011 *
4012 * Used by the rt_mutex code to implement priority inheritance logic.
4013 */
4014 void rt_mutex_setprio(struct task_struct *p, int prio)
4015 {
4016 unsigned long flags;
4017 int oldprio, on_rq, running;
4018 struct rq *rq;
4019
4020 BUG_ON(prio < 0 || prio > MAX_PRIO);
4021
4022 rq = task_rq_lock(p, &flags);
4023 update_rq_clock(rq);
4024
4025 oldprio = p->prio;
4026 on_rq = p->se.on_rq;
4027 running = task_running(rq, p);
4028 if (on_rq) {
4029 dequeue_task(rq, p, 0);
4030 if (running)
4031 p->sched_class->put_prev_task(rq, p);
4032 }
4033
4034 if (rt_prio(prio))
4035 p->sched_class = &rt_sched_class;
4036 else
4037 p->sched_class = &fair_sched_class;
4038
4039 p->prio = prio;
4040
4041 if (on_rq) {
4042 if (running)
4043 p->sched_class->set_curr_task(rq);
4044 enqueue_task(rq, p, 0);
4045 /*
4046 * Reschedule if we are currently running on this runqueue and
4047 * our priority decreased, or if we are not currently running on
4048 * this runqueue and our priority is higher than the current's
4049 */
4050 if (running) {
4051 if (p->prio > oldprio)
4052 resched_task(rq->curr);
4053 } else {
4054 check_preempt_curr(rq, p);
4055 }
4056 }
4057 task_rq_unlock(rq, &flags);
4058 }
4059
4060 #endif
4061
4062 void set_user_nice(struct task_struct *p, long nice)
4063 {
4064 int old_prio, delta, on_rq;
4065 unsigned long flags;
4066 struct rq *rq;
4067
4068 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4069 return;
4070 /*
4071 * We have to be careful, if called from sys_setpriority(),
4072 * the task might be in the middle of scheduling on another CPU.
4073 */
4074 rq = task_rq_lock(p, &flags);
4075 update_rq_clock(rq);
4076 /*
4077 * The RT priorities are set via sched_setscheduler(), but we still
4078 * allow the 'normal' nice value to be set - but as expected
4079 * it wont have any effect on scheduling until the task is
4080 * SCHED_FIFO/SCHED_RR:
4081 */
4082 if (task_has_rt_policy(p)) {
4083 p->static_prio = NICE_TO_PRIO(nice);
4084 goto out_unlock;
4085 }
4086 on_rq = p->se.on_rq;
4087 if (on_rq) {
4088 dequeue_task(rq, p, 0);
4089 dec_load(rq, p);
4090 }
4091
4092 p->static_prio = NICE_TO_PRIO(nice);
4093 set_load_weight(p);
4094 old_prio = p->prio;
4095 p->prio = effective_prio(p);
4096 delta = p->prio - old_prio;
4097
4098 if (on_rq) {
4099 enqueue_task(rq, p, 0);
4100 inc_load(rq, p);
4101 /*
4102 * If the task increased its priority or is running and
4103 * lowered its priority, then reschedule its CPU:
4104 */
4105 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4106 resched_task(rq->curr);
4107 }
4108 out_unlock:
4109 task_rq_unlock(rq, &flags);
4110 }
4111 EXPORT_SYMBOL(set_user_nice);
4112
4113 /*
4114 * can_nice - check if a task can reduce its nice value
4115 * @p: task
4116 * @nice: nice value
4117 */
4118 int can_nice(const struct task_struct *p, const int nice)
4119 {
4120 /* convert nice value [19,-20] to rlimit style value [1,40] */
4121 int nice_rlim = 20 - nice;
4122
4123 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4124 capable(CAP_SYS_NICE));
4125 }
4126
4127 #ifdef __ARCH_WANT_SYS_NICE
4128
4129 /*
4130 * sys_nice - change the priority of the current process.
4131 * @increment: priority increment
4132 *
4133 * sys_setpriority is a more generic, but much slower function that
4134 * does similar things.
4135 */
4136 asmlinkage long sys_nice(int increment)
4137 {
4138 long nice, retval;
4139
4140 /*
4141 * Setpriority might change our priority at the same moment.
4142 * We don't have to worry. Conceptually one call occurs first
4143 * and we have a single winner.
4144 */
4145 if (increment < -40)
4146 increment = -40;
4147 if (increment > 40)
4148 increment = 40;
4149
4150 nice = PRIO_TO_NICE(current->static_prio) + increment;
4151 if (nice < -20)
4152 nice = -20;
4153 if (nice > 19)
4154 nice = 19;
4155
4156 if (increment < 0 && !can_nice(current, nice))
4157 return -EPERM;
4158
4159 retval = security_task_setnice(current, nice);
4160 if (retval)
4161 return retval;
4162
4163 set_user_nice(current, nice);
4164 return 0;
4165 }
4166
4167 #endif
4168
4169 /**
4170 * task_prio - return the priority value of a given task.
4171 * @p: the task in question.
4172 *
4173 * This is the priority value as seen by users in /proc.
4174 * RT tasks are offset by -200. Normal tasks are centered
4175 * around 0, value goes from -16 to +15.
4176 */
4177 int task_prio(const struct task_struct *p)
4178 {
4179 return p->prio - MAX_RT_PRIO;
4180 }
4181
4182 /**
4183 * task_nice - return the nice value of a given task.
4184 * @p: the task in question.
4185 */
4186 int task_nice(const struct task_struct *p)
4187 {
4188 return TASK_NICE(p);
4189 }
4190 EXPORT_SYMBOL_GPL(task_nice);
4191
4192 /**
4193 * idle_cpu - is a given cpu idle currently?
4194 * @cpu: the processor in question.
4195 */
4196 int idle_cpu(int cpu)
4197 {
4198 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4199 }
4200
4201 /**
4202 * idle_task - return the idle task for a given cpu.
4203 * @cpu: the processor in question.
4204 */
4205 struct task_struct *idle_task(int cpu)
4206 {
4207 return cpu_rq(cpu)->idle;
4208 }
4209
4210 /**
4211 * find_process_by_pid - find a process with a matching PID value.
4212 * @pid: the pid in question.
4213 */
4214 static struct task_struct *find_process_by_pid(pid_t pid)
4215 {
4216 return pid ? find_task_by_vpid(pid) : current;
4217 }
4218
4219 /* Actually do priority change: must hold rq lock. */
4220 static void
4221 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4222 {
4223 BUG_ON(p->se.on_rq);
4224
4225 p->policy = policy;
4226 switch (p->policy) {
4227 case SCHED_NORMAL:
4228 case SCHED_BATCH:
4229 case SCHED_IDLE:
4230 p->sched_class = &fair_sched_class;
4231 break;
4232 case SCHED_FIFO:
4233 case SCHED_RR:
4234 p->sched_class = &rt_sched_class;
4235 break;
4236 }
4237
4238 p->rt_priority = prio;
4239 p->normal_prio = normal_prio(p);
4240 /* we are holding p->pi_lock already */
4241 p->prio = rt_mutex_getprio(p);
4242 set_load_weight(p);
4243 }
4244
4245 /**
4246 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4247 * @p: the task in question.
4248 * @policy: new policy.
4249 * @param: structure containing the new RT priority.
4250 *
4251 * NOTE that the task may be already dead.
4252 */
4253 int sched_setscheduler(struct task_struct *p, int policy,
4254 struct sched_param *param)
4255 {
4256 int retval, oldprio, oldpolicy = -1, on_rq, running;
4257 unsigned long flags;
4258 struct rq *rq;
4259
4260 /* may grab non-irq protected spin_locks */
4261 BUG_ON(in_interrupt());
4262 recheck:
4263 /* double check policy once rq lock held */
4264 if (policy < 0)
4265 policy = oldpolicy = p->policy;
4266 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4267 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4268 policy != SCHED_IDLE)
4269 return -EINVAL;
4270 /*
4271 * Valid priorities for SCHED_FIFO and SCHED_RR are
4272 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4273 * SCHED_BATCH and SCHED_IDLE is 0.
4274 */
4275 if (param->sched_priority < 0 ||
4276 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4277 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4278 return -EINVAL;
4279 if (rt_policy(policy) != (param->sched_priority != 0))
4280 return -EINVAL;
4281
4282 /*
4283 * Allow unprivileged RT tasks to decrease priority:
4284 */
4285 if (!capable(CAP_SYS_NICE)) {
4286 if (rt_policy(policy)) {
4287 unsigned long rlim_rtprio;
4288
4289 if (!lock_task_sighand(p, &flags))
4290 return -ESRCH;
4291 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4292 unlock_task_sighand(p, &flags);
4293
4294 /* can't set/change the rt policy */
4295 if (policy != p->policy && !rlim_rtprio)
4296 return -EPERM;
4297
4298 /* can't increase priority */
4299 if (param->sched_priority > p->rt_priority &&
4300 param->sched_priority > rlim_rtprio)
4301 return -EPERM;
4302 }
4303 /*
4304 * Like positive nice levels, dont allow tasks to
4305 * move out of SCHED_IDLE either:
4306 */
4307 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4308 return -EPERM;
4309
4310 /* can't change other user's priorities */
4311 if ((current->euid != p->euid) &&
4312 (current->euid != p->uid))
4313 return -EPERM;
4314 }
4315
4316 retval = security_task_setscheduler(p, policy, param);
4317 if (retval)
4318 return retval;
4319 /*
4320 * make sure no PI-waiters arrive (or leave) while we are
4321 * changing the priority of the task:
4322 */
4323 spin_lock_irqsave(&p->pi_lock, flags);
4324 /*
4325 * To be able to change p->policy safely, the apropriate
4326 * runqueue lock must be held.
4327 */
4328 rq = __task_rq_lock(p);
4329 /* recheck policy now with rq lock held */
4330 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4331 policy = oldpolicy = -1;
4332 __task_rq_unlock(rq);
4333 spin_unlock_irqrestore(&p->pi_lock, flags);
4334 goto recheck;
4335 }
4336 update_rq_clock(rq);
4337 on_rq = p->se.on_rq;
4338 running = task_running(rq, p);
4339 if (on_rq) {
4340 deactivate_task(rq, p, 0);
4341 if (running)
4342 p->sched_class->put_prev_task(rq, p);
4343 }
4344
4345 oldprio = p->prio;
4346 __setscheduler(rq, p, policy, param->sched_priority);
4347
4348 if (on_rq) {
4349 if (running)
4350 p->sched_class->set_curr_task(rq);
4351 activate_task(rq, p, 0);
4352 /*
4353 * Reschedule if we are currently running on this runqueue and
4354 * our priority decreased, or if we are not currently running on
4355 * this runqueue and our priority is higher than the current's
4356 */
4357 if (running) {
4358 if (p->prio > oldprio)
4359 resched_task(rq->curr);
4360 } else {
4361 check_preempt_curr(rq, p);
4362 }
4363 }
4364 __task_rq_unlock(rq);
4365 spin_unlock_irqrestore(&p->pi_lock, flags);
4366
4367 rt_mutex_adjust_pi(p);
4368
4369 return 0;
4370 }
4371 EXPORT_SYMBOL_GPL(sched_setscheduler);
4372
4373 static int
4374 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4375 {
4376 struct sched_param lparam;
4377 struct task_struct *p;
4378 int retval;
4379
4380 if (!param || pid < 0)
4381 return -EINVAL;
4382 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4383 return -EFAULT;
4384
4385 rcu_read_lock();
4386 retval = -ESRCH;
4387 p = find_process_by_pid(pid);
4388 if (p != NULL)
4389 retval = sched_setscheduler(p, policy, &lparam);
4390 rcu_read_unlock();
4391
4392 return retval;
4393 }
4394
4395 /**
4396 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4397 * @pid: the pid in question.
4398 * @policy: new policy.
4399 * @param: structure containing the new RT priority.
4400 */
4401 asmlinkage long
4402 sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4403 {
4404 /* negative values for policy are not valid */
4405 if (policy < 0)
4406 return -EINVAL;
4407
4408 return do_sched_setscheduler(pid, policy, param);
4409 }
4410
4411 /**
4412 * sys_sched_setparam - set/change the RT priority of a thread
4413 * @pid: the pid in question.
4414 * @param: structure containing the new RT priority.
4415 */
4416 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4417 {
4418 return do_sched_setscheduler(pid, -1, param);
4419 }
4420
4421 /**
4422 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4423 * @pid: the pid in question.
4424 */
4425 asmlinkage long sys_sched_getscheduler(pid_t pid)
4426 {
4427 struct task_struct *p;
4428 int retval;
4429
4430 if (pid < 0)
4431 return -EINVAL;
4432
4433 retval = -ESRCH;
4434 read_lock(&tasklist_lock);
4435 p = find_process_by_pid(pid);
4436 if (p) {
4437 retval = security_task_getscheduler(p);
4438 if (!retval)
4439 retval = p->policy;
4440 }
4441 read_unlock(&tasklist_lock);
4442 return retval;
4443 }
4444
4445 /**
4446 * sys_sched_getscheduler - get the RT priority of a thread
4447 * @pid: the pid in question.
4448 * @param: structure containing the RT priority.
4449 */
4450 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4451 {
4452 struct sched_param lp;
4453 struct task_struct *p;
4454 int retval;
4455
4456 if (!param || pid < 0)
4457 return -EINVAL;
4458
4459 read_lock(&tasklist_lock);
4460 p = find_process_by_pid(pid);
4461 retval = -ESRCH;
4462 if (!p)
4463 goto out_unlock;
4464
4465 retval = security_task_getscheduler(p);
4466 if (retval)
4467 goto out_unlock;
4468
4469 lp.sched_priority = p->rt_priority;
4470 read_unlock(&tasklist_lock);
4471
4472 /*
4473 * This one might sleep, we cannot do it with a spinlock held ...
4474 */
4475 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4476
4477 return retval;
4478
4479 out_unlock:
4480 read_unlock(&tasklist_lock);
4481 return retval;
4482 }
4483
4484 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4485 {
4486 cpumask_t cpus_allowed;
4487 struct task_struct *p;
4488 int retval;
4489
4490 mutex_lock(&sched_hotcpu_mutex);
4491 read_lock(&tasklist_lock);
4492
4493 p = find_process_by_pid(pid);
4494 if (!p) {
4495 read_unlock(&tasklist_lock);
4496 mutex_unlock(&sched_hotcpu_mutex);
4497 return -ESRCH;
4498 }
4499
4500 /*
4501 * It is not safe to call set_cpus_allowed with the
4502 * tasklist_lock held. We will bump the task_struct's
4503 * usage count and then drop tasklist_lock.
4504 */
4505 get_task_struct(p);
4506 read_unlock(&tasklist_lock);
4507
4508 retval = -EPERM;
4509 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4510 !capable(CAP_SYS_NICE))
4511 goto out_unlock;
4512
4513 retval = security_task_setscheduler(p, 0, NULL);
4514 if (retval)
4515 goto out_unlock;
4516
4517 cpus_allowed = cpuset_cpus_allowed(p);
4518 cpus_and(new_mask, new_mask, cpus_allowed);
4519 again:
4520 retval = set_cpus_allowed(p, new_mask);
4521
4522 if (!retval) {
4523 cpus_allowed = cpuset_cpus_allowed(p);
4524 if (!cpus_subset(new_mask, cpus_allowed)) {
4525 /*
4526 * We must have raced with a concurrent cpuset
4527 * update. Just reset the cpus_allowed to the
4528 * cpuset's cpus_allowed
4529 */
4530 new_mask = cpus_allowed;
4531 goto again;
4532 }
4533 }
4534 out_unlock:
4535 put_task_struct(p);
4536 mutex_unlock(&sched_hotcpu_mutex);
4537 return retval;
4538 }
4539
4540 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4541 cpumask_t *new_mask)
4542 {
4543 if (len < sizeof(cpumask_t)) {
4544 memset(new_mask, 0, sizeof(cpumask_t));
4545 } else if (len > sizeof(cpumask_t)) {
4546 len = sizeof(cpumask_t);
4547 }
4548 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4549 }
4550
4551 /**
4552 * sys_sched_setaffinity - set the cpu affinity of a process
4553 * @pid: pid of the process
4554 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4555 * @user_mask_ptr: user-space pointer to the new cpu mask
4556 */
4557 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4558 unsigned long __user *user_mask_ptr)
4559 {
4560 cpumask_t new_mask;
4561 int retval;
4562
4563 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4564 if (retval)
4565 return retval;
4566
4567 return sched_setaffinity(pid, new_mask);
4568 }
4569
4570 /*
4571 * Represents all cpu's present in the system
4572 * In systems capable of hotplug, this map could dynamically grow
4573 * as new cpu's are detected in the system via any platform specific
4574 * method, such as ACPI for e.g.
4575 */
4576
4577 cpumask_t cpu_present_map __read_mostly;
4578 EXPORT_SYMBOL(cpu_present_map);
4579
4580 #ifndef CONFIG_SMP
4581 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4582 EXPORT_SYMBOL(cpu_online_map);
4583
4584 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4585 EXPORT_SYMBOL(cpu_possible_map);
4586 #endif
4587
4588 long sched_getaffinity(pid_t pid, cpumask_t *mask)
4589 {
4590 struct task_struct *p;
4591 int retval;
4592
4593 mutex_lock(&sched_hotcpu_mutex);
4594 read_lock(&tasklist_lock);
4595
4596 retval = -ESRCH;
4597 p = find_process_by_pid(pid);
4598 if (!p)
4599 goto out_unlock;
4600
4601 retval = security_task_getscheduler(p);
4602 if (retval)
4603 goto out_unlock;
4604
4605 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
4606
4607 out_unlock:
4608 read_unlock(&tasklist_lock);
4609 mutex_unlock(&sched_hotcpu_mutex);
4610
4611 return retval;
4612 }
4613
4614 /**
4615 * sys_sched_getaffinity - get the cpu affinity of a process
4616 * @pid: pid of the process
4617 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4618 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4619 */
4620 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4621 unsigned long __user *user_mask_ptr)
4622 {
4623 int ret;
4624 cpumask_t mask;
4625
4626 if (len < sizeof(cpumask_t))
4627 return -EINVAL;
4628
4629 ret = sched_getaffinity(pid, &mask);
4630 if (ret < 0)
4631 return ret;
4632
4633 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4634 return -EFAULT;
4635
4636 return sizeof(cpumask_t);
4637 }
4638
4639 /**
4640 * sys_sched_yield - yield the current processor to other threads.
4641 *
4642 * This function yields the current CPU to other tasks. If there are no
4643 * other threads running on this CPU then this function will return.
4644 */
4645 asmlinkage long sys_sched_yield(void)
4646 {
4647 struct rq *rq = this_rq_lock();
4648
4649 schedstat_inc(rq, yld_count);
4650 current->sched_class->yield_task(rq);
4651
4652 /*
4653 * Since we are going to call schedule() anyway, there's
4654 * no need to preempt or enable interrupts:
4655 */
4656 __release(rq->lock);
4657 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4658 _raw_spin_unlock(&rq->lock);
4659 preempt_enable_no_resched();
4660
4661 schedule();
4662
4663 return 0;
4664 }
4665
4666 static void __cond_resched(void)
4667 {
4668 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4669 __might_sleep(__FILE__, __LINE__);
4670 #endif
4671 /*
4672 * The BKS might be reacquired before we have dropped
4673 * PREEMPT_ACTIVE, which could trigger a second
4674 * cond_resched() call.
4675 */
4676 do {
4677 add_preempt_count(PREEMPT_ACTIVE);
4678 schedule();
4679 sub_preempt_count(PREEMPT_ACTIVE);
4680 } while (need_resched());
4681 }
4682
4683 int __sched cond_resched(void)
4684 {
4685 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4686 system_state == SYSTEM_RUNNING) {
4687 __cond_resched();
4688 return 1;
4689 }
4690 return 0;
4691 }
4692 EXPORT_SYMBOL(cond_resched);
4693
4694 /*
4695 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4696 * call schedule, and on return reacquire the lock.
4697 *
4698 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4699 * operations here to prevent schedule() from being called twice (once via
4700 * spin_unlock(), once by hand).
4701 */
4702 int cond_resched_lock(spinlock_t *lock)
4703 {
4704 int ret = 0;
4705
4706 if (need_lockbreak(lock)) {
4707 spin_unlock(lock);
4708 cpu_relax();
4709 ret = 1;
4710 spin_lock(lock);
4711 }
4712 if (need_resched() && system_state == SYSTEM_RUNNING) {
4713 spin_release(&lock->dep_map, 1, _THIS_IP_);
4714 _raw_spin_unlock(lock);
4715 preempt_enable_no_resched();
4716 __cond_resched();
4717 ret = 1;
4718 spin_lock(lock);
4719 }
4720 return ret;
4721 }
4722 EXPORT_SYMBOL(cond_resched_lock);
4723
4724 int __sched cond_resched_softirq(void)
4725 {
4726 BUG_ON(!in_softirq());
4727
4728 if (need_resched() && system_state == SYSTEM_RUNNING) {
4729 local_bh_enable();
4730 __cond_resched();
4731 local_bh_disable();
4732 return 1;
4733 }
4734 return 0;
4735 }
4736 EXPORT_SYMBOL(cond_resched_softirq);
4737
4738 /**
4739 * yield - yield the current processor to other threads.
4740 *
4741 * This is a shortcut for kernel-space yielding - it marks the
4742 * thread runnable and calls sys_sched_yield().
4743 */
4744 void __sched yield(void)
4745 {
4746 set_current_state(TASK_RUNNING);
4747 sys_sched_yield();
4748 }
4749 EXPORT_SYMBOL(yield);
4750
4751 /*
4752 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4753 * that process accounting knows that this is a task in IO wait state.
4754 *
4755 * But don't do that if it is a deliberate, throttling IO wait (this task
4756 * has set its backing_dev_info: the queue against which it should throttle)
4757 */
4758 void __sched io_schedule(void)
4759 {
4760 struct rq *rq = &__raw_get_cpu_var(runqueues);
4761
4762 delayacct_blkio_start();
4763 atomic_inc(&rq->nr_iowait);
4764 schedule();
4765 atomic_dec(&rq->nr_iowait);
4766 delayacct_blkio_end();
4767 }
4768 EXPORT_SYMBOL(io_schedule);
4769
4770 long __sched io_schedule_timeout(long timeout)
4771 {
4772 struct rq *rq = &__raw_get_cpu_var(runqueues);
4773 long ret;
4774
4775 delayacct_blkio_start();
4776 atomic_inc(&rq->nr_iowait);
4777 ret = schedule_timeout(timeout);
4778 atomic_dec(&rq->nr_iowait);
4779 delayacct_blkio_end();
4780 return ret;
4781 }
4782
4783 /**
4784 * sys_sched_get_priority_max - return maximum RT priority.
4785 * @policy: scheduling class.
4786 *
4787 * this syscall returns the maximum rt_priority that can be used
4788 * by a given scheduling class.
4789 */
4790 asmlinkage long sys_sched_get_priority_max(int policy)
4791 {
4792 int ret = -EINVAL;
4793
4794 switch (policy) {
4795 case SCHED_FIFO:
4796 case SCHED_RR:
4797 ret = MAX_USER_RT_PRIO-1;
4798 break;
4799 case SCHED_NORMAL:
4800 case SCHED_BATCH:
4801 case SCHED_IDLE:
4802 ret = 0;
4803 break;
4804 }
4805 return ret;
4806 }
4807
4808 /**
4809 * sys_sched_get_priority_min - return minimum RT priority.
4810 * @policy: scheduling class.
4811 *
4812 * this syscall returns the minimum rt_priority that can be used
4813 * by a given scheduling class.
4814 */
4815 asmlinkage long sys_sched_get_priority_min(int policy)
4816 {
4817 int ret = -EINVAL;
4818
4819 switch (policy) {
4820 case SCHED_FIFO:
4821 case SCHED_RR:
4822 ret = 1;
4823 break;
4824 case SCHED_NORMAL:
4825 case SCHED_BATCH:
4826 case SCHED_IDLE:
4827 ret = 0;
4828 }
4829 return ret;
4830 }
4831
4832 /**
4833 * sys_sched_rr_get_interval - return the default timeslice of a process.
4834 * @pid: pid of the process.
4835 * @interval: userspace pointer to the timeslice value.
4836 *
4837 * this syscall writes the default timeslice value of a given process
4838 * into the user-space timespec buffer. A value of '0' means infinity.
4839 */
4840 asmlinkage
4841 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4842 {
4843 struct task_struct *p;
4844 unsigned int time_slice;
4845 int retval;
4846 struct timespec t;
4847
4848 if (pid < 0)
4849 return -EINVAL;
4850
4851 retval = -ESRCH;
4852 read_lock(&tasklist_lock);
4853 p = find_process_by_pid(pid);
4854 if (!p)
4855 goto out_unlock;
4856
4857 retval = security_task_getscheduler(p);
4858 if (retval)
4859 goto out_unlock;
4860
4861 /*
4862 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
4863 * tasks that are on an otherwise idle runqueue:
4864 */
4865 time_slice = 0;
4866 if (p->policy == SCHED_RR) {
4867 time_slice = DEF_TIMESLICE;
4868 } else {
4869 struct sched_entity *se = &p->se;
4870 unsigned long flags;
4871 struct rq *rq;
4872
4873 rq = task_rq_lock(p, &flags);
4874 if (rq->cfs.load.weight)
4875 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
4876 task_rq_unlock(rq, &flags);
4877 }
4878 read_unlock(&tasklist_lock);
4879 jiffies_to_timespec(time_slice, &t);
4880 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4881 return retval;
4882
4883 out_unlock:
4884 read_unlock(&tasklist_lock);
4885 return retval;
4886 }
4887
4888 static const char stat_nam[] = "RSDTtZX";
4889
4890 static void show_task(struct task_struct *p)
4891 {
4892 unsigned long free = 0;
4893 unsigned state;
4894
4895 state = p->state ? __ffs(p->state) + 1 : 0;
4896 printk(KERN_INFO "%-13.13s %c", p->comm,
4897 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4898 #if BITS_PER_LONG == 32
4899 if (state == TASK_RUNNING)
4900 printk(KERN_CONT " running ");
4901 else
4902 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4903 #else
4904 if (state == TASK_RUNNING)
4905 printk(KERN_CONT " running task ");
4906 else
4907 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4908 #endif
4909 #ifdef CONFIG_DEBUG_STACK_USAGE
4910 {
4911 unsigned long *n = end_of_stack(p);
4912 while (!*n)
4913 n++;
4914 free = (unsigned long)n - (unsigned long)end_of_stack(p);
4915 }
4916 #endif
4917 printk(KERN_CONT "%5lu %5d %6d\n", free,
4918 task_pid_nr(p), task_pid_nr(p->parent));
4919
4920 if (state != TASK_RUNNING)
4921 show_stack(p, NULL);
4922 }
4923
4924 void show_state_filter(unsigned long state_filter)
4925 {
4926 struct task_struct *g, *p;
4927
4928 #if BITS_PER_LONG == 32
4929 printk(KERN_INFO
4930 " task PC stack pid father\n");
4931 #else
4932 printk(KERN_INFO
4933 " task PC stack pid father\n");
4934 #endif
4935 read_lock(&tasklist_lock);
4936 do_each_thread(g, p) {
4937 /*
4938 * reset the NMI-timeout, listing all files on a slow
4939 * console might take alot of time:
4940 */
4941 touch_nmi_watchdog();
4942 if (!state_filter || (p->state & state_filter))
4943 show_task(p);
4944 } while_each_thread(g, p);
4945
4946 touch_all_softlockup_watchdogs();
4947
4948 #ifdef CONFIG_SCHED_DEBUG
4949 sysrq_sched_debug_show();
4950 #endif
4951 read_unlock(&tasklist_lock);
4952 /*
4953 * Only show locks if all tasks are dumped:
4954 */
4955 if (state_filter == -1)
4956 debug_show_all_locks();
4957 }
4958
4959 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4960 {
4961 idle->sched_class = &idle_sched_class;
4962 }
4963
4964 /**
4965 * init_idle - set up an idle thread for a given CPU
4966 * @idle: task in question
4967 * @cpu: cpu the idle task belongs to
4968 *
4969 * NOTE: this function does not set the idle thread's NEED_RESCHED
4970 * flag, to make booting more robust.
4971 */
4972 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4973 {
4974 struct rq *rq = cpu_rq(cpu);
4975 unsigned long flags;
4976
4977 __sched_fork(idle);
4978 idle->se.exec_start = sched_clock();
4979
4980 idle->prio = idle->normal_prio = MAX_PRIO;
4981 idle->cpus_allowed = cpumask_of_cpu(cpu);
4982 __set_task_cpu(idle, cpu);
4983
4984 spin_lock_irqsave(&rq->lock, flags);
4985 rq->curr = rq->idle = idle;
4986 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4987 idle->oncpu = 1;
4988 #endif
4989 spin_unlock_irqrestore(&rq->lock, flags);
4990
4991 /* Set the preempt count _outside_ the spinlocks! */
4992 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4993 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
4994 #else
4995 task_thread_info(idle)->preempt_count = 0;
4996 #endif
4997 /*
4998 * The idle tasks have their own, simple scheduling class:
4999 */
5000 idle->sched_class = &idle_sched_class;
5001 }
5002
5003 /*
5004 * In a system that switches off the HZ timer nohz_cpu_mask
5005 * indicates which cpus entered this state. This is used
5006 * in the rcu update to wait only for active cpus. For system
5007 * which do not switch off the HZ timer nohz_cpu_mask should
5008 * always be CPU_MASK_NONE.
5009 */
5010 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5011
5012 /*
5013 * Increase the granularity value when there are more CPUs,
5014 * because with more CPUs the 'effective latency' as visible
5015 * to users decreases. But the relationship is not linear,
5016 * so pick a second-best guess by going with the log2 of the
5017 * number of CPUs.
5018 *
5019 * This idea comes from the SD scheduler of Con Kolivas:
5020 */
5021 static inline void sched_init_granularity(void)
5022 {
5023 unsigned int factor = 1 + ilog2(num_online_cpus());
5024 const unsigned long limit = 200000000;
5025
5026 sysctl_sched_min_granularity *= factor;
5027 if (sysctl_sched_min_granularity > limit)
5028 sysctl_sched_min_granularity = limit;
5029
5030 sysctl_sched_latency *= factor;
5031 if (sysctl_sched_latency > limit)
5032 sysctl_sched_latency = limit;
5033
5034 sysctl_sched_wakeup_granularity *= factor;
5035 sysctl_sched_batch_wakeup_granularity *= factor;
5036 }
5037
5038 #ifdef CONFIG_SMP
5039 /*
5040 * This is how migration works:
5041 *
5042 * 1) we queue a struct migration_req structure in the source CPU's
5043 * runqueue and wake up that CPU's migration thread.
5044 * 2) we down() the locked semaphore => thread blocks.
5045 * 3) migration thread wakes up (implicitly it forces the migrated
5046 * thread off the CPU)
5047 * 4) it gets the migration request and checks whether the migrated
5048 * task is still in the wrong runqueue.
5049 * 5) if it's in the wrong runqueue then the migration thread removes
5050 * it and puts it into the right queue.
5051 * 6) migration thread up()s the semaphore.
5052 * 7) we wake up and the migration is done.
5053 */
5054
5055 /*
5056 * Change a given task's CPU affinity. Migrate the thread to a
5057 * proper CPU and schedule it away if the CPU it's executing on
5058 * is removed from the allowed bitmask.
5059 *
5060 * NOTE: the caller must have a valid reference to the task, the
5061 * task must not exit() & deallocate itself prematurely. The
5062 * call is not atomic; no spinlocks may be held.
5063 */
5064 int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
5065 {
5066 struct migration_req req;
5067 unsigned long flags;
5068 struct rq *rq;
5069 int ret = 0;
5070
5071 rq = task_rq_lock(p, &flags);
5072 if (!cpus_intersects(new_mask, cpu_online_map)) {
5073 ret = -EINVAL;
5074 goto out;
5075 }
5076
5077 p->cpus_allowed = new_mask;
5078 /* Can the task run on the task's current CPU? If so, we're done */
5079 if (cpu_isset(task_cpu(p), new_mask))
5080 goto out;
5081
5082 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
5083 /* Need help from migration thread: drop lock and wait. */
5084 task_rq_unlock(rq, &flags);
5085 wake_up_process(rq->migration_thread);
5086 wait_for_completion(&req.done);
5087 tlb_migrate_finish(p->mm);
5088 return 0;
5089 }
5090 out:
5091 task_rq_unlock(rq, &flags);
5092
5093 return ret;
5094 }
5095 EXPORT_SYMBOL_GPL(set_cpus_allowed);
5096
5097 /*
5098 * Move (not current) task off this cpu, onto dest cpu. We're doing
5099 * this because either it can't run here any more (set_cpus_allowed()
5100 * away from this CPU, or CPU going down), or because we're
5101 * attempting to rebalance this task on exec (sched_exec).
5102 *
5103 * So we race with normal scheduler movements, but that's OK, as long
5104 * as the task is no longer on this CPU.
5105 *
5106 * Returns non-zero if task was successfully migrated.
5107 */
5108 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5109 {
5110 struct rq *rq_dest, *rq_src;
5111 int ret = 0, on_rq;
5112
5113 if (unlikely(cpu_is_offline(dest_cpu)))
5114 return ret;
5115
5116 rq_src = cpu_rq(src_cpu);
5117 rq_dest = cpu_rq(dest_cpu);
5118
5119 double_rq_lock(rq_src, rq_dest);
5120 /* Already moved. */
5121 if (task_cpu(p) != src_cpu)
5122 goto out;
5123 /* Affinity changed (again). */
5124 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5125 goto out;
5126
5127 on_rq = p->se.on_rq;
5128 if (on_rq)
5129 deactivate_task(rq_src, p, 0);
5130
5131 set_task_cpu(p, dest_cpu);
5132 if (on_rq) {
5133 activate_task(rq_dest, p, 0);
5134 check_preempt_curr(rq_dest, p);
5135 }
5136 ret = 1;
5137 out:
5138 double_rq_unlock(rq_src, rq_dest);
5139 return ret;
5140 }
5141
5142 /*
5143 * migration_thread - this is a highprio system thread that performs
5144 * thread migration by bumping thread off CPU then 'pushing' onto
5145 * another runqueue.
5146 */
5147 static int migration_thread(void *data)
5148 {
5149 int cpu = (long)data;
5150 struct rq *rq;
5151
5152 rq = cpu_rq(cpu);
5153 BUG_ON(rq->migration_thread != current);
5154
5155 set_current_state(TASK_INTERRUPTIBLE);
5156 while (!kthread_should_stop()) {
5157 struct migration_req *req;
5158 struct list_head *head;
5159
5160 spin_lock_irq(&rq->lock);
5161
5162 if (cpu_is_offline(cpu)) {
5163 spin_unlock_irq(&rq->lock);
5164 goto wait_to_die;
5165 }
5166
5167 if (rq->active_balance) {
5168 active_load_balance(rq, cpu);
5169 rq->active_balance = 0;
5170 }
5171
5172 head = &rq->migration_queue;
5173
5174 if (list_empty(head)) {
5175 spin_unlock_irq(&rq->lock);
5176 schedule();
5177 set_current_state(TASK_INTERRUPTIBLE);
5178 continue;
5179 }
5180 req = list_entry(head->next, struct migration_req, list);
5181 list_del_init(head->next);
5182
5183 spin_unlock(&rq->lock);
5184 __migrate_task(req->task, cpu, req->dest_cpu);
5185 local_irq_enable();
5186
5187 complete(&req->done);
5188 }
5189 __set_current_state(TASK_RUNNING);
5190 return 0;
5191
5192 wait_to_die:
5193 /* Wait for kthread_stop */
5194 set_current_state(TASK_INTERRUPTIBLE);
5195 while (!kthread_should_stop()) {
5196 schedule();
5197 set_current_state(TASK_INTERRUPTIBLE);
5198 }
5199 __set_current_state(TASK_RUNNING);
5200 return 0;
5201 }
5202
5203 #ifdef CONFIG_HOTPLUG_CPU
5204
5205 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5206 {
5207 int ret;
5208
5209 local_irq_disable();
5210 ret = __migrate_task(p, src_cpu, dest_cpu);
5211 local_irq_enable();
5212 return ret;
5213 }
5214
5215 /*
5216 * Figure out where task on dead CPU should go, use force if necessary.
5217 * NOTE: interrupts should be disabled by the caller
5218 */
5219 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5220 {
5221 unsigned long flags;
5222 cpumask_t mask;
5223 struct rq *rq;
5224 int dest_cpu;
5225
5226 do {
5227 /* On same node? */
5228 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5229 cpus_and(mask, mask, p->cpus_allowed);
5230 dest_cpu = any_online_cpu(mask);
5231
5232 /* On any allowed CPU? */
5233 if (dest_cpu == NR_CPUS)
5234 dest_cpu = any_online_cpu(p->cpus_allowed);
5235
5236 /* No more Mr. Nice Guy. */
5237 if (dest_cpu == NR_CPUS) {
5238 cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
5239 /*
5240 * Try to stay on the same cpuset, where the
5241 * current cpuset may be a subset of all cpus.
5242 * The cpuset_cpus_allowed_locked() variant of
5243 * cpuset_cpus_allowed() will not block. It must be
5244 * called within calls to cpuset_lock/cpuset_unlock.
5245 */
5246 rq = task_rq_lock(p, &flags);
5247 p->cpus_allowed = cpus_allowed;
5248 dest_cpu = any_online_cpu(p->cpus_allowed);
5249 task_rq_unlock(rq, &flags);
5250
5251 /*
5252 * Don't tell them about moving exiting tasks or
5253 * kernel threads (both mm NULL), since they never
5254 * leave kernel.
5255 */
5256 if (p->mm && printk_ratelimit()) {
5257 printk(KERN_INFO "process %d (%s) no "
5258 "longer affine to cpu%d\n",
5259 task_pid_nr(p), p->comm, dead_cpu);
5260 }
5261 }
5262 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
5263 }
5264
5265 /*
5266 * While a dead CPU has no uninterruptible tasks queued at this point,
5267 * it might still have a nonzero ->nr_uninterruptible counter, because
5268 * for performance reasons the counter is not stricly tracking tasks to
5269 * their home CPUs. So we just add the counter to another CPU's counter,
5270 * to keep the global sum constant after CPU-down:
5271 */
5272 static void migrate_nr_uninterruptible(struct rq *rq_src)
5273 {
5274 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
5275 unsigned long flags;
5276
5277 local_irq_save(flags);
5278 double_rq_lock(rq_src, rq_dest);
5279 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5280 rq_src->nr_uninterruptible = 0;
5281 double_rq_unlock(rq_src, rq_dest);
5282 local_irq_restore(flags);
5283 }
5284
5285 /* Run through task list and migrate tasks from the dead cpu. */
5286 static void migrate_live_tasks(int src_cpu)
5287 {
5288 struct task_struct *p, *t;
5289
5290 read_lock(&tasklist_lock);
5291
5292 do_each_thread(t, p) {
5293 if (p == current)
5294 continue;
5295
5296 if (task_cpu(p) == src_cpu)
5297 move_task_off_dead_cpu(src_cpu, p);
5298 } while_each_thread(t, p);
5299
5300 read_unlock(&tasklist_lock);
5301 }
5302
5303 /*
5304 * Schedules idle task to be the next runnable task on current CPU.
5305 * It does so by boosting its priority to highest possible.
5306 * Used by CPU offline code.
5307 */
5308 void sched_idle_next(void)
5309 {
5310 int this_cpu = smp_processor_id();
5311 struct rq *rq = cpu_rq(this_cpu);
5312 struct task_struct *p = rq->idle;
5313 unsigned long flags;
5314
5315 /* cpu has to be offline */
5316 BUG_ON(cpu_online(this_cpu));
5317
5318 /*
5319 * Strictly not necessary since rest of the CPUs are stopped by now
5320 * and interrupts disabled on the current cpu.
5321 */
5322 spin_lock_irqsave(&rq->lock, flags);
5323
5324 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5325
5326 update_rq_clock(rq);
5327 activate_task(rq, p, 0);
5328
5329 spin_unlock_irqrestore(&rq->lock, flags);
5330 }
5331
5332 /*
5333 * Ensures that the idle task is using init_mm right before its cpu goes
5334 * offline.
5335 */
5336 void idle_task_exit(void)
5337 {
5338 struct mm_struct *mm = current->active_mm;
5339
5340 BUG_ON(cpu_online(smp_processor_id()));
5341
5342 if (mm != &init_mm)
5343 switch_mm(mm, &init_mm, current);
5344 mmdrop(mm);
5345 }
5346
5347 /* called under rq->lock with disabled interrupts */
5348 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5349 {
5350 struct rq *rq = cpu_rq(dead_cpu);
5351
5352 /* Must be exiting, otherwise would be on tasklist. */
5353 BUG_ON(!p->exit_state);
5354
5355 /* Cannot have done final schedule yet: would have vanished. */
5356 BUG_ON(p->state == TASK_DEAD);
5357
5358 get_task_struct(p);
5359
5360 /*
5361 * Drop lock around migration; if someone else moves it,
5362 * that's OK. No task can be added to this CPU, so iteration is
5363 * fine.
5364 */
5365 spin_unlock_irq(&rq->lock);
5366 move_task_off_dead_cpu(dead_cpu, p);
5367 spin_lock_irq(&rq->lock);
5368
5369 put_task_struct(p);
5370 }
5371
5372 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5373 static void migrate_dead_tasks(unsigned int dead_cpu)
5374 {
5375 struct rq *rq = cpu_rq(dead_cpu);
5376 struct task_struct *next;
5377
5378 for ( ; ; ) {
5379 if (!rq->nr_running)
5380 break;
5381 update_rq_clock(rq);
5382 next = pick_next_task(rq, rq->curr);
5383 if (!next)
5384 break;
5385 migrate_dead(dead_cpu, next);
5386
5387 }
5388 }
5389 #endif /* CONFIG_HOTPLUG_CPU */
5390
5391 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5392
5393 static struct ctl_table sd_ctl_dir[] = {
5394 {
5395 .procname = "sched_domain",
5396 .mode = 0555,
5397 },
5398 {0, },
5399 };
5400
5401 static struct ctl_table sd_ctl_root[] = {
5402 {
5403 .ctl_name = CTL_KERN,
5404 .procname = "kernel",
5405 .mode = 0555,
5406 .child = sd_ctl_dir,
5407 },
5408 {0, },
5409 };
5410
5411 static struct ctl_table *sd_alloc_ctl_entry(int n)
5412 {
5413 struct ctl_table *entry =
5414 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5415
5416 return entry;
5417 }
5418
5419 static void sd_free_ctl_entry(struct ctl_table **tablep)
5420 {
5421 struct ctl_table *entry;
5422
5423 /*
5424 * In the intermediate directories, both the child directory and
5425 * procname are dynamically allocated and could fail but the mode
5426 * will always be set. In the lowest directory the names are
5427 * static strings and all have proc handlers.
5428 */
5429 for (entry = *tablep; entry->mode; entry++) {
5430 if (entry->child)
5431 sd_free_ctl_entry(&entry->child);
5432 if (entry->proc_handler == NULL)
5433 kfree(entry->procname);
5434 }
5435
5436 kfree(*tablep);
5437 *tablep = NULL;
5438 }
5439
5440 static void
5441 set_table_entry(struct ctl_table *entry,
5442 const char *procname, void *data, int maxlen,
5443 mode_t mode, proc_handler *proc_handler)
5444 {
5445 entry->procname = procname;
5446 entry->data = data;
5447 entry->maxlen = maxlen;
5448 entry->mode = mode;
5449 entry->proc_handler = proc_handler;
5450 }
5451
5452 static struct ctl_table *
5453 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5454 {
5455 struct ctl_table *table = sd_alloc_ctl_entry(12);
5456
5457 if (table == NULL)
5458 return NULL;
5459
5460 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5461 sizeof(long), 0644, proc_doulongvec_minmax);
5462 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5463 sizeof(long), 0644, proc_doulongvec_minmax);
5464 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5465 sizeof(int), 0644, proc_dointvec_minmax);
5466 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5467 sizeof(int), 0644, proc_dointvec_minmax);
5468 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5469 sizeof(int), 0644, proc_dointvec_minmax);
5470 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5471 sizeof(int), 0644, proc_dointvec_minmax);
5472 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5473 sizeof(int), 0644, proc_dointvec_minmax);
5474 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5475 sizeof(int), 0644, proc_dointvec_minmax);
5476 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5477 sizeof(int), 0644, proc_dointvec_minmax);
5478 set_table_entry(&table[9], "cache_nice_tries",
5479 &sd->cache_nice_tries,
5480 sizeof(int), 0644, proc_dointvec_minmax);
5481 set_table_entry(&table[10], "flags", &sd->flags,
5482 sizeof(int), 0644, proc_dointvec_minmax);
5483 /* &table[11] is terminator */
5484
5485 return table;
5486 }
5487
5488 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5489 {
5490 struct ctl_table *entry, *table;
5491 struct sched_domain *sd;
5492 int domain_num = 0, i;
5493 char buf[32];
5494
5495 for_each_domain(cpu, sd)
5496 domain_num++;
5497 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5498 if (table == NULL)
5499 return NULL;
5500
5501 i = 0;
5502 for_each_domain(cpu, sd) {
5503 snprintf(buf, 32, "domain%d", i);
5504 entry->procname = kstrdup(buf, GFP_KERNEL);
5505 entry->mode = 0555;
5506 entry->child = sd_alloc_ctl_domain_table(sd);
5507 entry++;
5508 i++;
5509 }
5510 return table;
5511 }
5512
5513 static struct ctl_table_header *sd_sysctl_header;
5514 static void register_sched_domain_sysctl(void)
5515 {
5516 int i, cpu_num = num_online_cpus();
5517 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5518 char buf[32];
5519
5520 WARN_ON(sd_ctl_dir[0].child);
5521 sd_ctl_dir[0].child = entry;
5522
5523 if (entry == NULL)
5524 return;
5525
5526 for_each_online_cpu(i) {
5527 snprintf(buf, 32, "cpu%d", i);
5528 entry->procname = kstrdup(buf, GFP_KERNEL);
5529 entry->mode = 0555;
5530 entry->child = sd_alloc_ctl_cpu_table(i);
5531 entry++;
5532 }
5533
5534 WARN_ON(sd_sysctl_header);
5535 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5536 }
5537
5538 /* may be called multiple times per register */
5539 static void unregister_sched_domain_sysctl(void)
5540 {
5541 if (sd_sysctl_header)
5542 unregister_sysctl_table(sd_sysctl_header);
5543 sd_sysctl_header = NULL;
5544 if (sd_ctl_dir[0].child)
5545 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5546 }
5547 #else
5548 static void register_sched_domain_sysctl(void)
5549 {
5550 }
5551 static void unregister_sched_domain_sysctl(void)
5552 {
5553 }
5554 #endif
5555
5556 /*
5557 * migration_call - callback that gets triggered when a CPU is added.
5558 * Here we can start up the necessary migration thread for the new CPU.
5559 */
5560 static int __cpuinit
5561 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5562 {
5563 struct task_struct *p;
5564 int cpu = (long)hcpu;
5565 unsigned long flags;
5566 struct rq *rq;
5567
5568 switch (action) {
5569 case CPU_LOCK_ACQUIRE:
5570 mutex_lock(&sched_hotcpu_mutex);
5571 break;
5572
5573 case CPU_UP_PREPARE:
5574 case CPU_UP_PREPARE_FROZEN:
5575 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
5576 if (IS_ERR(p))
5577 return NOTIFY_BAD;
5578 kthread_bind(p, cpu);
5579 /* Must be high prio: stop_machine expects to yield to it. */
5580 rq = task_rq_lock(p, &flags);
5581 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5582 task_rq_unlock(rq, &flags);
5583 cpu_rq(cpu)->migration_thread = p;
5584 break;
5585
5586 case CPU_ONLINE:
5587 case CPU_ONLINE_FROZEN:
5588 /* Strictly unnecessary, as first user will wake it. */
5589 wake_up_process(cpu_rq(cpu)->migration_thread);
5590 break;
5591
5592 #ifdef CONFIG_HOTPLUG_CPU
5593 case CPU_UP_CANCELED:
5594 case CPU_UP_CANCELED_FROZEN:
5595 if (!cpu_rq(cpu)->migration_thread)
5596 break;
5597 /* Unbind it from offline cpu so it can run. Fall thru. */
5598 kthread_bind(cpu_rq(cpu)->migration_thread,
5599 any_online_cpu(cpu_online_map));
5600 kthread_stop(cpu_rq(cpu)->migration_thread);
5601 cpu_rq(cpu)->migration_thread = NULL;
5602 break;
5603
5604 case CPU_DEAD:
5605 case CPU_DEAD_FROZEN:
5606 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
5607 migrate_live_tasks(cpu);
5608 rq = cpu_rq(cpu);
5609 kthread_stop(rq->migration_thread);
5610 rq->migration_thread = NULL;
5611 /* Idle task back to normal (off runqueue, low prio) */
5612 spin_lock_irq(&rq->lock);
5613 update_rq_clock(rq);
5614 deactivate_task(rq, rq->idle, 0);
5615 rq->idle->static_prio = MAX_PRIO;
5616 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5617 rq->idle->sched_class = &idle_sched_class;
5618 migrate_dead_tasks(cpu);
5619 spin_unlock_irq(&rq->lock);
5620 cpuset_unlock();
5621 migrate_nr_uninterruptible(rq);
5622 BUG_ON(rq->nr_running != 0);
5623
5624 /*
5625 * No need to migrate the tasks: it was best-effort if
5626 * they didn't take sched_hotcpu_mutex. Just wake up
5627 * the requestors.
5628 */
5629 spin_lock_irq(&rq->lock);
5630 while (!list_empty(&rq->migration_queue)) {
5631 struct migration_req *req;
5632
5633 req = list_entry(rq->migration_queue.next,
5634 struct migration_req, list);
5635 list_del_init(&req->list);
5636 complete(&req->done);
5637 }
5638 spin_unlock_irq(&rq->lock);
5639 break;
5640 #endif
5641 case CPU_LOCK_RELEASE:
5642 mutex_unlock(&sched_hotcpu_mutex);
5643 break;
5644 }
5645 return NOTIFY_OK;
5646 }
5647
5648 /* Register at highest priority so that task migration (migrate_all_tasks)
5649 * happens before everything else.
5650 */
5651 static struct notifier_block __cpuinitdata migration_notifier = {
5652 .notifier_call = migration_call,
5653 .priority = 10
5654 };
5655
5656 void __init migration_init(void)
5657 {
5658 void *cpu = (void *)(long)smp_processor_id();
5659 int err;
5660
5661 /* Start one for the boot CPU: */
5662 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5663 BUG_ON(err == NOTIFY_BAD);
5664 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5665 register_cpu_notifier(&migration_notifier);
5666 }
5667 #endif
5668
5669 #ifdef CONFIG_SMP
5670
5671 /* Number of possible processor ids */
5672 int nr_cpu_ids __read_mostly = NR_CPUS;
5673 EXPORT_SYMBOL(nr_cpu_ids);
5674
5675 #ifdef CONFIG_SCHED_DEBUG
5676
5677 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
5678 {
5679 struct sched_group *group = sd->groups;
5680 cpumask_t groupmask;
5681 char str[NR_CPUS];
5682
5683 cpumask_scnprintf(str, NR_CPUS, sd->span);
5684 cpus_clear(groupmask);
5685
5686 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5687
5688 if (!(sd->flags & SD_LOAD_BALANCE)) {
5689 printk("does not load-balance\n");
5690 if (sd->parent)
5691 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5692 " has parent");
5693 return -1;
5694 }
5695
5696 printk(KERN_CONT "span %s\n", str);
5697
5698 if (!cpu_isset(cpu, sd->span)) {
5699 printk(KERN_ERR "ERROR: domain->span does not contain "
5700 "CPU%d\n", cpu);
5701 }
5702 if (!cpu_isset(cpu, group->cpumask)) {
5703 printk(KERN_ERR "ERROR: domain->groups does not contain"
5704 " CPU%d\n", cpu);
5705 }
5706
5707 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5708 do {
5709 if (!group) {
5710 printk("\n");
5711 printk(KERN_ERR "ERROR: group is NULL\n");
5712 break;
5713 }
5714
5715 if (!group->__cpu_power) {
5716 printk(KERN_CONT "\n");
5717 printk(KERN_ERR "ERROR: domain->cpu_power not "
5718 "set\n");
5719 break;
5720 }
5721
5722 if (!cpus_weight(group->cpumask)) {
5723 printk(KERN_CONT "\n");
5724 printk(KERN_ERR "ERROR: empty group\n");
5725 break;
5726 }
5727
5728 if (cpus_intersects(groupmask, group->cpumask)) {
5729 printk(KERN_CONT "\n");
5730 printk(KERN_ERR "ERROR: repeated CPUs\n");
5731 break;
5732 }
5733
5734 cpus_or(groupmask, groupmask, group->cpumask);
5735
5736 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5737 printk(KERN_CONT " %s", str);
5738
5739 group = group->next;
5740 } while (group != sd->groups);
5741 printk(KERN_CONT "\n");
5742
5743 if (!cpus_equal(sd->span, groupmask))
5744 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5745
5746 if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
5747 printk(KERN_ERR "ERROR: parent span is not a superset "
5748 "of domain->span\n");
5749 return 0;
5750 }
5751
5752 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5753 {
5754 int level = 0;
5755
5756 if (!sd) {
5757 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5758 return;
5759 }
5760
5761 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5762
5763 for (;;) {
5764 if (sched_domain_debug_one(sd, cpu, level))
5765 break;
5766 level++;
5767 sd = sd->parent;
5768 if (!sd)
5769 break;
5770 }
5771 }
5772 #else
5773 # define sched_domain_debug(sd, cpu) do { } while (0)
5774 #endif
5775
5776 static int sd_degenerate(struct sched_domain *sd)
5777 {
5778 if (cpus_weight(sd->span) == 1)
5779 return 1;
5780
5781 /* Following flags need at least 2 groups */
5782 if (sd->flags & (SD_LOAD_BALANCE |
5783 SD_BALANCE_NEWIDLE |
5784 SD_BALANCE_FORK |
5785 SD_BALANCE_EXEC |
5786 SD_SHARE_CPUPOWER |
5787 SD_SHARE_PKG_RESOURCES)) {
5788 if (sd->groups != sd->groups->next)
5789 return 0;
5790 }
5791
5792 /* Following flags don't use groups */
5793 if (sd->flags & (SD_WAKE_IDLE |
5794 SD_WAKE_AFFINE |
5795 SD_WAKE_BALANCE))
5796 return 0;
5797
5798 return 1;
5799 }
5800
5801 static int
5802 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5803 {
5804 unsigned long cflags = sd->flags, pflags = parent->flags;
5805
5806 if (sd_degenerate(parent))
5807 return 1;
5808
5809 if (!cpus_equal(sd->span, parent->span))
5810 return 0;
5811
5812 /* Does parent contain flags not in child? */
5813 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5814 if (cflags & SD_WAKE_AFFINE)
5815 pflags &= ~SD_WAKE_BALANCE;
5816 /* Flags needing groups don't count if only 1 group in parent */
5817 if (parent->groups == parent->groups->next) {
5818 pflags &= ~(SD_LOAD_BALANCE |
5819 SD_BALANCE_NEWIDLE |
5820 SD_BALANCE_FORK |
5821 SD_BALANCE_EXEC |
5822 SD_SHARE_CPUPOWER |
5823 SD_SHARE_PKG_RESOURCES);
5824 }
5825 if (~cflags & pflags)
5826 return 0;
5827
5828 return 1;
5829 }
5830
5831 /*
5832 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5833 * hold the hotplug lock.
5834 */
5835 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
5836 {
5837 struct rq *rq = cpu_rq(cpu);
5838 struct sched_domain *tmp;
5839
5840 /* Remove the sched domains which do not contribute to scheduling. */
5841 for (tmp = sd; tmp; tmp = tmp->parent) {
5842 struct sched_domain *parent = tmp->parent;
5843 if (!parent)
5844 break;
5845 if (sd_parent_degenerate(tmp, parent)) {
5846 tmp->parent = parent->parent;
5847 if (parent->parent)
5848 parent->parent->child = tmp;
5849 }
5850 }
5851
5852 if (sd && sd_degenerate(sd)) {
5853 sd = sd->parent;
5854 if (sd)
5855 sd->child = NULL;
5856 }
5857
5858 sched_domain_debug(sd, cpu);
5859
5860 rcu_assign_pointer(rq->sd, sd);
5861 }
5862
5863 /* cpus with isolated domains */
5864 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
5865
5866 /* Setup the mask of cpus configured for isolated domains */
5867 static int __init isolated_cpu_setup(char *str)
5868 {
5869 int ints[NR_CPUS], i;
5870
5871 str = get_options(str, ARRAY_SIZE(ints), ints);
5872 cpus_clear(cpu_isolated_map);
5873 for (i = 1; i <= ints[0]; i++)
5874 if (ints[i] < NR_CPUS)
5875 cpu_set(ints[i], cpu_isolated_map);
5876 return 1;
5877 }
5878
5879 __setup("isolcpus=", isolated_cpu_setup);
5880
5881 /*
5882 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5883 * to a function which identifies what group(along with sched group) a CPU
5884 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5885 * (due to the fact that we keep track of groups covered with a cpumask_t).
5886 *
5887 * init_sched_build_groups will build a circular linked list of the groups
5888 * covered by the given span, and will set each group's ->cpumask correctly,
5889 * and ->cpu_power to 0.
5890 */
5891 static void
5892 init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5893 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5894 struct sched_group **sg))
5895 {
5896 struct sched_group *first = NULL, *last = NULL;
5897 cpumask_t covered = CPU_MASK_NONE;
5898 int i;
5899
5900 for_each_cpu_mask(i, span) {
5901 struct sched_group *sg;
5902 int group = group_fn(i, cpu_map, &sg);
5903 int j;
5904
5905 if (cpu_isset(i, covered))
5906 continue;
5907
5908 sg->cpumask = CPU_MASK_NONE;
5909 sg->__cpu_power = 0;
5910
5911 for_each_cpu_mask(j, span) {
5912 if (group_fn(j, cpu_map, NULL) != group)
5913 continue;
5914
5915 cpu_set(j, covered);
5916 cpu_set(j, sg->cpumask);
5917 }
5918 if (!first)
5919 first = sg;
5920 if (last)
5921 last->next = sg;
5922 last = sg;
5923 }
5924 last->next = first;
5925 }
5926
5927 #define SD_NODES_PER_DOMAIN 16
5928
5929 #ifdef CONFIG_NUMA
5930
5931 /**
5932 * find_next_best_node - find the next node to include in a sched_domain
5933 * @node: node whose sched_domain we're building
5934 * @used_nodes: nodes already in the sched_domain
5935 *
5936 * Find the next node to include in a given scheduling domain. Simply
5937 * finds the closest node not already in the @used_nodes map.
5938 *
5939 * Should use nodemask_t.
5940 */
5941 static int find_next_best_node(int node, unsigned long *used_nodes)
5942 {
5943 int i, n, val, min_val, best_node = 0;
5944
5945 min_val = INT_MAX;
5946
5947 for (i = 0; i < MAX_NUMNODES; i++) {
5948 /* Start at @node */
5949 n = (node + i) % MAX_NUMNODES;
5950
5951 if (!nr_cpus_node(n))
5952 continue;
5953
5954 /* Skip already used nodes */
5955 if (test_bit(n, used_nodes))
5956 continue;
5957
5958 /* Simple min distance search */
5959 val = node_distance(node, n);
5960
5961 if (val < min_val) {
5962 min_val = val;
5963 best_node = n;
5964 }
5965 }
5966
5967 set_bit(best_node, used_nodes);
5968 return best_node;
5969 }
5970
5971 /**
5972 * sched_domain_node_span - get a cpumask for a node's sched_domain
5973 * @node: node whose cpumask we're constructing
5974 * @size: number of nodes to include in this span
5975 *
5976 * Given a node, construct a good cpumask for its sched_domain to span. It
5977 * should be one that prevents unnecessary balancing, but also spreads tasks
5978 * out optimally.
5979 */
5980 static cpumask_t sched_domain_node_span(int node)
5981 {
5982 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5983 cpumask_t span, nodemask;
5984 int i;
5985
5986 cpus_clear(span);
5987 bitmap_zero(used_nodes, MAX_NUMNODES);
5988
5989 nodemask = node_to_cpumask(node);
5990 cpus_or(span, span, nodemask);
5991 set_bit(node, used_nodes);
5992
5993 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5994 int next_node = find_next_best_node(node, used_nodes);
5995
5996 nodemask = node_to_cpumask(next_node);
5997 cpus_or(span, span, nodemask);
5998 }
5999
6000 return span;
6001 }
6002 #endif
6003
6004 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6005
6006 /*
6007 * SMT sched-domains:
6008 */
6009 #ifdef CONFIG_SCHED_SMT
6010 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6011 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6012
6013 static int
6014 cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6015 {
6016 if (sg)
6017 *sg = &per_cpu(sched_group_cpus, cpu);
6018 return cpu;
6019 }
6020 #endif
6021
6022 /*
6023 * multi-core sched-domains:
6024 */
6025 #ifdef CONFIG_SCHED_MC
6026 static DEFINE_PER_CPU(struct sched_domain, core_domains);
6027 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6028 #endif
6029
6030 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6031 static int
6032 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6033 {
6034 int group;
6035 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6036 cpus_and(mask, mask, *cpu_map);
6037 group = first_cpu(mask);
6038 if (sg)
6039 *sg = &per_cpu(sched_group_core, group);
6040 return group;
6041 }
6042 #elif defined(CONFIG_SCHED_MC)
6043 static int
6044 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6045 {
6046 if (sg)
6047 *sg = &per_cpu(sched_group_core, cpu);
6048 return cpu;
6049 }
6050 #endif
6051
6052 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6053 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6054
6055 static int
6056 cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6057 {
6058 int group;
6059 #ifdef CONFIG_SCHED_MC
6060 cpumask_t mask = cpu_coregroup_map(cpu);
6061 cpus_and(mask, mask, *cpu_map);
6062 group = first_cpu(mask);
6063 #elif defined(CONFIG_SCHED_SMT)
6064 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6065 cpus_and(mask, mask, *cpu_map);
6066 group = first_cpu(mask);
6067 #else
6068 group = cpu;
6069 #endif
6070 if (sg)
6071 *sg = &per_cpu(sched_group_phys, group);
6072 return group;
6073 }
6074
6075 #ifdef CONFIG_NUMA
6076 /*
6077 * The init_sched_build_groups can't handle what we want to do with node
6078 * groups, so roll our own. Now each node has its own list of groups which
6079 * gets dynamically allocated.
6080 */
6081 static DEFINE_PER_CPU(struct sched_domain, node_domains);
6082 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
6083
6084 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6085 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6086
6087 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6088 struct sched_group **sg)
6089 {
6090 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
6091 int group;
6092
6093 cpus_and(nodemask, nodemask, *cpu_map);
6094 group = first_cpu(nodemask);
6095
6096 if (sg)
6097 *sg = &per_cpu(sched_group_allnodes, group);
6098 return group;
6099 }
6100
6101 static void init_numa_sched_groups_power(struct sched_group *group_head)
6102 {
6103 struct sched_group *sg = group_head;
6104 int j;
6105
6106 if (!sg)
6107 return;
6108 do {
6109 for_each_cpu_mask(j, sg->cpumask) {
6110 struct sched_domain *sd;
6111
6112 sd = &per_cpu(phys_domains, j);
6113 if (j != first_cpu(sd->groups->cpumask)) {
6114 /*
6115 * Only add "power" once for each
6116 * physical package.
6117 */
6118 continue;
6119 }
6120
6121 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6122 }
6123 sg = sg->next;
6124 } while (sg != group_head);
6125 }
6126 #endif
6127
6128 #ifdef CONFIG_NUMA
6129 /* Free memory allocated for various sched_group structures */
6130 static void free_sched_groups(const cpumask_t *cpu_map)
6131 {
6132 int cpu, i;
6133
6134 for_each_cpu_mask(cpu, *cpu_map) {
6135 struct sched_group **sched_group_nodes
6136 = sched_group_nodes_bycpu[cpu];
6137
6138 if (!sched_group_nodes)
6139 continue;
6140
6141 for (i = 0; i < MAX_NUMNODES; i++) {
6142 cpumask_t nodemask = node_to_cpumask(i);
6143 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6144
6145 cpus_and(nodemask, nodemask, *cpu_map);
6146 if (cpus_empty(nodemask))
6147 continue;
6148
6149 if (sg == NULL)
6150 continue;
6151 sg = sg->next;
6152 next_sg:
6153 oldsg = sg;
6154 sg = sg->next;
6155 kfree(oldsg);
6156 if (oldsg != sched_group_nodes[i])
6157 goto next_sg;
6158 }
6159 kfree(sched_group_nodes);
6160 sched_group_nodes_bycpu[cpu] = NULL;
6161 }
6162 }
6163 #else
6164 static void free_sched_groups(const cpumask_t *cpu_map)
6165 {
6166 }
6167 #endif
6168
6169 /*
6170 * Initialize sched groups cpu_power.
6171 *
6172 * cpu_power indicates the capacity of sched group, which is used while
6173 * distributing the load between different sched groups in a sched domain.
6174 * Typically cpu_power for all the groups in a sched domain will be same unless
6175 * there are asymmetries in the topology. If there are asymmetries, group
6176 * having more cpu_power will pickup more load compared to the group having
6177 * less cpu_power.
6178 *
6179 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6180 * the maximum number of tasks a group can handle in the presence of other idle
6181 * or lightly loaded groups in the same sched domain.
6182 */
6183 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6184 {
6185 struct sched_domain *child;
6186 struct sched_group *group;
6187
6188 WARN_ON(!sd || !sd->groups);
6189
6190 if (cpu != first_cpu(sd->groups->cpumask))
6191 return;
6192
6193 child = sd->child;
6194
6195 sd->groups->__cpu_power = 0;
6196
6197 /*
6198 * For perf policy, if the groups in child domain share resources
6199 * (for example cores sharing some portions of the cache hierarchy
6200 * or SMT), then set this domain groups cpu_power such that each group
6201 * can handle only one task, when there are other idle groups in the
6202 * same sched domain.
6203 */
6204 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6205 (child->flags &
6206 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6207 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6208 return;
6209 }
6210
6211 /*
6212 * add cpu_power of each child group to this groups cpu_power
6213 */
6214 group = child->groups;
6215 do {
6216 sg_inc_cpu_power(sd->groups, group->__cpu_power);
6217 group = group->next;
6218 } while (group != child->groups);
6219 }
6220
6221 /*
6222 * Build sched domains for a given set of cpus and attach the sched domains
6223 * to the individual cpus
6224 */
6225 static int build_sched_domains(const cpumask_t *cpu_map)
6226 {
6227 int i;
6228 #ifdef CONFIG_NUMA
6229 struct sched_group **sched_group_nodes = NULL;
6230 int sd_allnodes = 0;
6231
6232 /*
6233 * Allocate the per-node list of sched groups
6234 */
6235 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
6236 GFP_KERNEL);
6237 if (!sched_group_nodes) {
6238 printk(KERN_WARNING "Can not alloc sched group node list\n");
6239 return -ENOMEM;
6240 }
6241 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6242 #endif
6243
6244 /*
6245 * Set up domains for cpus specified by the cpu_map.
6246 */
6247 for_each_cpu_mask(i, *cpu_map) {
6248 struct sched_domain *sd = NULL, *p;
6249 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6250
6251 cpus_and(nodemask, nodemask, *cpu_map);
6252
6253 #ifdef CONFIG_NUMA
6254 if (cpus_weight(*cpu_map) >
6255 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6256 sd = &per_cpu(allnodes_domains, i);
6257 *sd = SD_ALLNODES_INIT;
6258 sd->span = *cpu_map;
6259 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6260 p = sd;
6261 sd_allnodes = 1;
6262 } else
6263 p = NULL;
6264
6265 sd = &per_cpu(node_domains, i);
6266 *sd = SD_NODE_INIT;
6267 sd->span = sched_domain_node_span(cpu_to_node(i));
6268 sd->parent = p;
6269 if (p)
6270 p->child = sd;
6271 cpus_and(sd->span, sd->span, *cpu_map);
6272 #endif
6273
6274 p = sd;
6275 sd = &per_cpu(phys_domains, i);
6276 *sd = SD_CPU_INIT;
6277 sd->span = nodemask;
6278 sd->parent = p;
6279 if (p)
6280 p->child = sd;
6281 cpu_to_phys_group(i, cpu_map, &sd->groups);
6282
6283 #ifdef CONFIG_SCHED_MC
6284 p = sd;
6285 sd = &per_cpu(core_domains, i);
6286 *sd = SD_MC_INIT;
6287 sd->span = cpu_coregroup_map(i);
6288 cpus_and(sd->span, sd->span, *cpu_map);
6289 sd->parent = p;
6290 p->child = sd;
6291 cpu_to_core_group(i, cpu_map, &sd->groups);
6292 #endif
6293
6294 #ifdef CONFIG_SCHED_SMT
6295 p = sd;
6296 sd = &per_cpu(cpu_domains, i);
6297 *sd = SD_SIBLING_INIT;
6298 sd->span = per_cpu(cpu_sibling_map, i);
6299 cpus_and(sd->span, sd->span, *cpu_map);
6300 sd->parent = p;
6301 p->child = sd;
6302 cpu_to_cpu_group(i, cpu_map, &sd->groups);
6303 #endif
6304 }
6305
6306 #ifdef CONFIG_SCHED_SMT
6307 /* Set up CPU (sibling) groups */
6308 for_each_cpu_mask(i, *cpu_map) {
6309 cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
6310 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
6311 if (i != first_cpu(this_sibling_map))
6312 continue;
6313
6314 init_sched_build_groups(this_sibling_map, cpu_map,
6315 &cpu_to_cpu_group);
6316 }
6317 #endif
6318
6319 #ifdef CONFIG_SCHED_MC
6320 /* Set up multi-core groups */
6321 for_each_cpu_mask(i, *cpu_map) {
6322 cpumask_t this_core_map = cpu_coregroup_map(i);
6323 cpus_and(this_core_map, this_core_map, *cpu_map);
6324 if (i != first_cpu(this_core_map))
6325 continue;
6326 init_sched_build_groups(this_core_map, cpu_map,
6327 &cpu_to_core_group);
6328 }
6329 #endif
6330
6331 /* Set up physical groups */
6332 for (i = 0; i < MAX_NUMNODES; i++) {
6333 cpumask_t nodemask = node_to_cpumask(i);
6334
6335 cpus_and(nodemask, nodemask, *cpu_map);
6336 if (cpus_empty(nodemask))
6337 continue;
6338
6339 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
6340 }
6341
6342 #ifdef CONFIG_NUMA
6343 /* Set up node groups */
6344 if (sd_allnodes)
6345 init_sched_build_groups(*cpu_map, cpu_map,
6346 &cpu_to_allnodes_group);
6347
6348 for (i = 0; i < MAX_NUMNODES; i++) {
6349 /* Set up node groups */
6350 struct sched_group *sg, *prev;
6351 cpumask_t nodemask = node_to_cpumask(i);
6352 cpumask_t domainspan;
6353 cpumask_t covered = CPU_MASK_NONE;
6354 int j;
6355
6356 cpus_and(nodemask, nodemask, *cpu_map);
6357 if (cpus_empty(nodemask)) {
6358 sched_group_nodes[i] = NULL;
6359 continue;
6360 }
6361
6362 domainspan = sched_domain_node_span(i);
6363 cpus_and(domainspan, domainspan, *cpu_map);
6364
6365 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6366 if (!sg) {
6367 printk(KERN_WARNING "Can not alloc domain group for "
6368 "node %d\n", i);
6369 goto error;
6370 }
6371 sched_group_nodes[i] = sg;
6372 for_each_cpu_mask(j, nodemask) {
6373 struct sched_domain *sd;
6374
6375 sd = &per_cpu(node_domains, j);
6376 sd->groups = sg;
6377 }
6378 sg->__cpu_power = 0;
6379 sg->cpumask = nodemask;
6380 sg->next = sg;
6381 cpus_or(covered, covered, nodemask);
6382 prev = sg;
6383
6384 for (j = 0; j < MAX_NUMNODES; j++) {
6385 cpumask_t tmp, notcovered;
6386 int n = (i + j) % MAX_NUMNODES;
6387
6388 cpus_complement(notcovered, covered);
6389 cpus_and(tmp, notcovered, *cpu_map);
6390 cpus_and(tmp, tmp, domainspan);
6391 if (cpus_empty(tmp))
6392 break;
6393
6394 nodemask = node_to_cpumask(n);
6395 cpus_and(tmp, tmp, nodemask);
6396 if (cpus_empty(tmp))
6397 continue;
6398
6399 sg = kmalloc_node(sizeof(struct sched_group),
6400 GFP_KERNEL, i);
6401 if (!sg) {
6402 printk(KERN_WARNING
6403 "Can not alloc domain group for node %d\n", j);
6404 goto error;
6405 }
6406 sg->__cpu_power = 0;
6407 sg->cpumask = tmp;
6408 sg->next = prev->next;
6409 cpus_or(covered, covered, tmp);
6410 prev->next = sg;
6411 prev = sg;
6412 }
6413 }
6414 #endif
6415
6416 /* Calculate CPU power for physical packages and nodes */
6417 #ifdef CONFIG_SCHED_SMT
6418 for_each_cpu_mask(i, *cpu_map) {
6419 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6420
6421 init_sched_groups_power(i, sd);
6422 }
6423 #endif
6424 #ifdef CONFIG_SCHED_MC
6425 for_each_cpu_mask(i, *cpu_map) {
6426 struct sched_domain *sd = &per_cpu(core_domains, i);
6427
6428 init_sched_groups_power(i, sd);
6429 }
6430 #endif
6431
6432 for_each_cpu_mask(i, *cpu_map) {
6433 struct sched_domain *sd = &per_cpu(phys_domains, i);
6434
6435 init_sched_groups_power(i, sd);
6436 }
6437
6438 #ifdef CONFIG_NUMA
6439 for (i = 0; i < MAX_NUMNODES; i++)
6440 init_numa_sched_groups_power(sched_group_nodes[i]);
6441
6442 if (sd_allnodes) {
6443 struct sched_group *sg;
6444
6445 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6446 init_numa_sched_groups_power(sg);
6447 }
6448 #endif
6449
6450 /* Attach the domains */
6451 for_each_cpu_mask(i, *cpu_map) {
6452 struct sched_domain *sd;
6453 #ifdef CONFIG_SCHED_SMT
6454 sd = &per_cpu(cpu_domains, i);
6455 #elif defined(CONFIG_SCHED_MC)
6456 sd = &per_cpu(core_domains, i);
6457 #else
6458 sd = &per_cpu(phys_domains, i);
6459 #endif
6460 cpu_attach_domain(sd, i);
6461 }
6462
6463 return 0;
6464
6465 #ifdef CONFIG_NUMA
6466 error:
6467 free_sched_groups(cpu_map);
6468 return -ENOMEM;
6469 #endif
6470 }
6471
6472 static cpumask_t *doms_cur; /* current sched domains */
6473 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6474
6475 /*
6476 * Special case: If a kmalloc of a doms_cur partition (array of
6477 * cpumask_t) fails, then fallback to a single sched domain,
6478 * as determined by the single cpumask_t fallback_doms.
6479 */
6480 static cpumask_t fallback_doms;
6481
6482 /*
6483 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6484 * For now this just excludes isolated cpus, but could be used to
6485 * exclude other special cases in the future.
6486 */
6487 static int arch_init_sched_domains(const cpumask_t *cpu_map)
6488 {
6489 int err;
6490
6491 ndoms_cur = 1;
6492 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6493 if (!doms_cur)
6494 doms_cur = &fallback_doms;
6495 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
6496 err = build_sched_domains(doms_cur);
6497 register_sched_domain_sysctl();
6498
6499 return err;
6500 }
6501
6502 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
6503 {
6504 free_sched_groups(cpu_map);
6505 }
6506
6507 /*
6508 * Detach sched domains from a group of cpus specified in cpu_map
6509 * These cpus will now be attached to the NULL domain
6510 */
6511 static void detach_destroy_domains(const cpumask_t *cpu_map)
6512 {
6513 int i;
6514
6515 unregister_sched_domain_sysctl();
6516
6517 for_each_cpu_mask(i, *cpu_map)
6518 cpu_attach_domain(NULL, i);
6519 synchronize_sched();
6520 arch_destroy_sched_domains(cpu_map);
6521 }
6522
6523 /*
6524 * Partition sched domains as specified by the 'ndoms_new'
6525 * cpumasks in the array doms_new[] of cpumasks. This compares
6526 * doms_new[] to the current sched domain partitioning, doms_cur[].
6527 * It destroys each deleted domain and builds each new domain.
6528 *
6529 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
6530 * The masks don't intersect (don't overlap.) We should setup one
6531 * sched domain for each mask. CPUs not in any of the cpumasks will
6532 * not be load balanced. If the same cpumask appears both in the
6533 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6534 * it as it is.
6535 *
6536 * The passed in 'doms_new' should be kmalloc'd. This routine takes
6537 * ownership of it and will kfree it when done with it. If the caller
6538 * failed the kmalloc call, then it can pass in doms_new == NULL,
6539 * and partition_sched_domains() will fallback to the single partition
6540 * 'fallback_doms'.
6541 *
6542 * Call with hotplug lock held
6543 */
6544 void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
6545 {
6546 int i, j;
6547
6548 /* always unregister in case we don't destroy any domains */
6549 unregister_sched_domain_sysctl();
6550
6551 if (doms_new == NULL) {
6552 ndoms_new = 1;
6553 doms_new = &fallback_doms;
6554 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
6555 }
6556
6557 /* Destroy deleted domains */
6558 for (i = 0; i < ndoms_cur; i++) {
6559 for (j = 0; j < ndoms_new; j++) {
6560 if (cpus_equal(doms_cur[i], doms_new[j]))
6561 goto match1;
6562 }
6563 /* no match - a current sched domain not in new doms_new[] */
6564 detach_destroy_domains(doms_cur + i);
6565 match1:
6566 ;
6567 }
6568
6569 /* Build new domains */
6570 for (i = 0; i < ndoms_new; i++) {
6571 for (j = 0; j < ndoms_cur; j++) {
6572 if (cpus_equal(doms_new[i], doms_cur[j]))
6573 goto match2;
6574 }
6575 /* no match - add a new doms_new */
6576 build_sched_domains(doms_new + i);
6577 match2:
6578 ;
6579 }
6580
6581 /* Remember the new sched domains */
6582 if (doms_cur != &fallback_doms)
6583 kfree(doms_cur);
6584 doms_cur = doms_new;
6585 ndoms_cur = ndoms_new;
6586
6587 register_sched_domain_sysctl();
6588 }
6589
6590 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6591 static int arch_reinit_sched_domains(void)
6592 {
6593 int err;
6594
6595 mutex_lock(&sched_hotcpu_mutex);
6596 detach_destroy_domains(&cpu_online_map);
6597 err = arch_init_sched_domains(&cpu_online_map);
6598 mutex_unlock(&sched_hotcpu_mutex);
6599
6600 return err;
6601 }
6602
6603 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6604 {
6605 int ret;
6606
6607 if (buf[0] != '0' && buf[0] != '1')
6608 return -EINVAL;
6609
6610 if (smt)
6611 sched_smt_power_savings = (buf[0] == '1');
6612 else
6613 sched_mc_power_savings = (buf[0] == '1');
6614
6615 ret = arch_reinit_sched_domains();
6616
6617 return ret ? ret : count;
6618 }
6619
6620 #ifdef CONFIG_SCHED_MC
6621 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6622 {
6623 return sprintf(page, "%u\n", sched_mc_power_savings);
6624 }
6625 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6626 const char *buf, size_t count)
6627 {
6628 return sched_power_savings_store(buf, count, 0);
6629 }
6630 static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6631 sched_mc_power_savings_store);
6632 #endif
6633
6634 #ifdef CONFIG_SCHED_SMT
6635 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6636 {
6637 return sprintf(page, "%u\n", sched_smt_power_savings);
6638 }
6639 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6640 const char *buf, size_t count)
6641 {
6642 return sched_power_savings_store(buf, count, 1);
6643 }
6644 static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6645 sched_smt_power_savings_store);
6646 #endif
6647
6648 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6649 {
6650 int err = 0;
6651
6652 #ifdef CONFIG_SCHED_SMT
6653 if (smt_capable())
6654 err = sysfs_create_file(&cls->kset.kobj,
6655 &attr_sched_smt_power_savings.attr);
6656 #endif
6657 #ifdef CONFIG_SCHED_MC
6658 if (!err && mc_capable())
6659 err = sysfs_create_file(&cls->kset.kobj,
6660 &attr_sched_mc_power_savings.attr);
6661 #endif
6662 return err;
6663 }
6664 #endif
6665
6666 /*
6667 * Force a reinitialization of the sched domains hierarchy. The domains
6668 * and groups cannot be updated in place without racing with the balancing
6669 * code, so we temporarily attach all running cpus to the NULL domain
6670 * which will prevent rebalancing while the sched domains are recalculated.
6671 */
6672 static int update_sched_domains(struct notifier_block *nfb,
6673 unsigned long action, void *hcpu)
6674 {
6675 switch (action) {
6676 case CPU_UP_PREPARE:
6677 case CPU_UP_PREPARE_FROZEN:
6678 case CPU_DOWN_PREPARE:
6679 case CPU_DOWN_PREPARE_FROZEN:
6680 detach_destroy_domains(&cpu_online_map);
6681 return NOTIFY_OK;
6682
6683 case CPU_UP_CANCELED:
6684 case CPU_UP_CANCELED_FROZEN:
6685 case CPU_DOWN_FAILED:
6686 case CPU_DOWN_FAILED_FROZEN:
6687 case CPU_ONLINE:
6688 case CPU_ONLINE_FROZEN:
6689 case CPU_DEAD:
6690 case CPU_DEAD_FROZEN:
6691 /*
6692 * Fall through and re-initialise the domains.
6693 */
6694 break;
6695 default:
6696 return NOTIFY_DONE;
6697 }
6698
6699 /* The hotplug lock is already held by cpu_up/cpu_down */
6700 arch_init_sched_domains(&cpu_online_map);
6701
6702 return NOTIFY_OK;
6703 }
6704
6705 void __init sched_init_smp(void)
6706 {
6707 cpumask_t non_isolated_cpus;
6708
6709 mutex_lock(&sched_hotcpu_mutex);
6710 arch_init_sched_domains(&cpu_online_map);
6711 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6712 if (cpus_empty(non_isolated_cpus))
6713 cpu_set(smp_processor_id(), non_isolated_cpus);
6714 mutex_unlock(&sched_hotcpu_mutex);
6715 /* XXX: Theoretical race here - CPU may be hotplugged now */
6716 hotcpu_notifier(update_sched_domains, 0);
6717
6718 /* Move init over to a non-isolated CPU */
6719 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6720 BUG();
6721 sched_init_granularity();
6722 }
6723 #else
6724 void __init sched_init_smp(void)
6725 {
6726 sched_init_granularity();
6727 }
6728 #endif /* CONFIG_SMP */
6729
6730 int in_sched_functions(unsigned long addr)
6731 {
6732 return in_lock_functions(addr) ||
6733 (addr >= (unsigned long)__sched_text_start
6734 && addr < (unsigned long)__sched_text_end);
6735 }
6736
6737 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
6738 {
6739 cfs_rq->tasks_timeline = RB_ROOT;
6740 #ifdef CONFIG_FAIR_GROUP_SCHED
6741 cfs_rq->rq = rq;
6742 #endif
6743 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
6744 }
6745
6746 void __init sched_init(void)
6747 {
6748 int highest_cpu = 0;
6749 int i, j;
6750
6751 for_each_possible_cpu(i) {
6752 struct rt_prio_array *array;
6753 struct rq *rq;
6754
6755 rq = cpu_rq(i);
6756 spin_lock_init(&rq->lock);
6757 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
6758 rq->nr_running = 0;
6759 rq->clock = 1;
6760 init_cfs_rq(&rq->cfs, rq);
6761 #ifdef CONFIG_FAIR_GROUP_SCHED
6762 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6763 {
6764 struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
6765 struct sched_entity *se =
6766 &per_cpu(init_sched_entity, i);
6767
6768 init_cfs_rq_p[i] = cfs_rq;
6769 init_cfs_rq(cfs_rq, rq);
6770 cfs_rq->tg = &init_task_group;
6771 list_add(&cfs_rq->leaf_cfs_rq_list,
6772 &rq->leaf_cfs_rq_list);
6773
6774 init_sched_entity_p[i] = se;
6775 se->cfs_rq = &rq->cfs;
6776 se->my_q = cfs_rq;
6777 se->load.weight = init_task_group_load;
6778 se->load.inv_weight =
6779 div64_64(1ULL<<32, init_task_group_load);
6780 se->parent = NULL;
6781 }
6782 init_task_group.shares = init_task_group_load;
6783 spin_lock_init(&init_task_group.lock);
6784 #endif
6785
6786 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6787 rq->cpu_load[j] = 0;
6788 #ifdef CONFIG_SMP
6789 rq->sd = NULL;
6790 rq->active_balance = 0;
6791 rq->next_balance = jiffies;
6792 rq->push_cpu = 0;
6793 rq->cpu = i;
6794 rq->migration_thread = NULL;
6795 INIT_LIST_HEAD(&rq->migration_queue);
6796 #endif
6797 atomic_set(&rq->nr_iowait, 0);
6798
6799 array = &rq->rt.active;
6800 for (j = 0; j < MAX_RT_PRIO; j++) {
6801 INIT_LIST_HEAD(array->queue + j);
6802 __clear_bit(j, array->bitmap);
6803 }
6804 highest_cpu = i;
6805 /* delimiter for bitsearch: */
6806 __set_bit(MAX_RT_PRIO, array->bitmap);
6807 }
6808
6809 set_load_weight(&init_task);
6810
6811 #ifdef CONFIG_PREEMPT_NOTIFIERS
6812 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6813 #endif
6814
6815 #ifdef CONFIG_SMP
6816 nr_cpu_ids = highest_cpu + 1;
6817 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6818 #endif
6819
6820 #ifdef CONFIG_RT_MUTEXES
6821 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6822 #endif
6823
6824 /*
6825 * The boot idle thread does lazy MMU switching as well:
6826 */
6827 atomic_inc(&init_mm.mm_count);
6828 enter_lazy_tlb(&init_mm, current);
6829
6830 /*
6831 * Make us the idle thread. Technically, schedule() should not be
6832 * called from this thread, however somewhere below it might be,
6833 * but because we are the idle thread, we just pick up running again
6834 * when this runqueue becomes "idle".
6835 */
6836 init_idle(current, smp_processor_id());
6837 /*
6838 * During early bootup we pretend to be a normal task:
6839 */
6840 current->sched_class = &fair_sched_class;
6841 }
6842
6843 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6844 void __might_sleep(char *file, int line)
6845 {
6846 #ifdef in_atomic
6847 static unsigned long prev_jiffy; /* ratelimiting */
6848
6849 if ((in_atomic() || irqs_disabled()) &&
6850 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6851 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6852 return;
6853 prev_jiffy = jiffies;
6854 printk(KERN_ERR "BUG: sleeping function called from invalid"
6855 " context at %s:%d\n", file, line);
6856 printk("in_atomic():%d, irqs_disabled():%d\n",
6857 in_atomic(), irqs_disabled());
6858 debug_show_held_locks(current);
6859 if (irqs_disabled())
6860 print_irqtrace_events(current);
6861 dump_stack();
6862 }
6863 #endif
6864 }
6865 EXPORT_SYMBOL(__might_sleep);
6866 #endif
6867
6868 #ifdef CONFIG_MAGIC_SYSRQ
6869 static void normalize_task(struct rq *rq, struct task_struct *p)
6870 {
6871 int on_rq;
6872 update_rq_clock(rq);
6873 on_rq = p->se.on_rq;
6874 if (on_rq)
6875 deactivate_task(rq, p, 0);
6876 __setscheduler(rq, p, SCHED_NORMAL, 0);
6877 if (on_rq) {
6878 activate_task(rq, p, 0);
6879 resched_task(rq->curr);
6880 }
6881 }
6882
6883 void normalize_rt_tasks(void)
6884 {
6885 struct task_struct *g, *p;
6886 unsigned long flags;
6887 struct rq *rq;
6888
6889 read_lock_irq(&tasklist_lock);
6890 do_each_thread(g, p) {
6891 /*
6892 * Only normalize user tasks:
6893 */
6894 if (!p->mm)
6895 continue;
6896
6897 p->se.exec_start = 0;
6898 #ifdef CONFIG_SCHEDSTATS
6899 p->se.wait_start = 0;
6900 p->se.sleep_start = 0;
6901 p->se.block_start = 0;
6902 #endif
6903 task_rq(p)->clock = 0;
6904
6905 if (!rt_task(p)) {
6906 /*
6907 * Renice negative nice level userspace
6908 * tasks back to 0:
6909 */
6910 if (TASK_NICE(p) < 0 && p->mm)
6911 set_user_nice(p, 0);
6912 continue;
6913 }
6914
6915 spin_lock_irqsave(&p->pi_lock, flags);
6916 rq = __task_rq_lock(p);
6917
6918 normalize_task(rq, p);
6919
6920 __task_rq_unlock(rq);
6921 spin_unlock_irqrestore(&p->pi_lock, flags);
6922 } while_each_thread(g, p);
6923
6924 read_unlock_irq(&tasklist_lock);
6925 }
6926
6927 #endif /* CONFIG_MAGIC_SYSRQ */
6928
6929 #ifdef CONFIG_IA64
6930 /*
6931 * These functions are only useful for the IA64 MCA handling.
6932 *
6933 * They can only be called when the whole system has been
6934 * stopped - every CPU needs to be quiescent, and no scheduling
6935 * activity can take place. Using them for anything else would
6936 * be a serious bug, and as a result, they aren't even visible
6937 * under any other configuration.
6938 */
6939
6940 /**
6941 * curr_task - return the current task for a given cpu.
6942 * @cpu: the processor in question.
6943 *
6944 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6945 */
6946 struct task_struct *curr_task(int cpu)
6947 {
6948 return cpu_curr(cpu);
6949 }
6950
6951 /**
6952 * set_curr_task - set the current task for a given cpu.
6953 * @cpu: the processor in question.
6954 * @p: the task pointer to set.
6955 *
6956 * Description: This function must only be used when non-maskable interrupts
6957 * are serviced on a separate stack. It allows the architecture to switch the
6958 * notion of the current task on a cpu in a non-blocking manner. This function
6959 * must be called with all CPU's synchronized, and interrupts disabled, the
6960 * and caller must save the original value of the current task (see
6961 * curr_task() above) and restore that value before reenabling interrupts and
6962 * re-starting the system.
6963 *
6964 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6965 */
6966 void set_curr_task(int cpu, struct task_struct *p)
6967 {
6968 cpu_curr(cpu) = p;
6969 }
6970
6971 #endif
6972
6973 #ifdef CONFIG_FAIR_GROUP_SCHED
6974
6975 /* allocate runqueue etc for a new task group */
6976 struct task_group *sched_create_group(void)
6977 {
6978 struct task_group *tg;
6979 struct cfs_rq *cfs_rq;
6980 struct sched_entity *se;
6981 struct rq *rq;
6982 int i;
6983
6984 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6985 if (!tg)
6986 return ERR_PTR(-ENOMEM);
6987
6988 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
6989 if (!tg->cfs_rq)
6990 goto err;
6991 tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
6992 if (!tg->se)
6993 goto err;
6994
6995 for_each_possible_cpu(i) {
6996 rq = cpu_rq(i);
6997
6998 cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
6999 cpu_to_node(i));
7000 if (!cfs_rq)
7001 goto err;
7002
7003 se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
7004 cpu_to_node(i));
7005 if (!se)
7006 goto err;
7007
7008 memset(cfs_rq, 0, sizeof(struct cfs_rq));
7009 memset(se, 0, sizeof(struct sched_entity));
7010
7011 tg->cfs_rq[i] = cfs_rq;
7012 init_cfs_rq(cfs_rq, rq);
7013 cfs_rq->tg = tg;
7014
7015 tg->se[i] = se;
7016 se->cfs_rq = &rq->cfs;
7017 se->my_q = cfs_rq;
7018 se->load.weight = NICE_0_LOAD;
7019 se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
7020 se->parent = NULL;
7021 }
7022
7023 for_each_possible_cpu(i) {
7024 rq = cpu_rq(i);
7025 cfs_rq = tg->cfs_rq[i];
7026 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7027 }
7028
7029 tg->shares = NICE_0_LOAD;
7030 spin_lock_init(&tg->lock);
7031
7032 return tg;
7033
7034 err:
7035 for_each_possible_cpu(i) {
7036 if (tg->cfs_rq)
7037 kfree(tg->cfs_rq[i]);
7038 if (tg->se)
7039 kfree(tg->se[i]);
7040 }
7041 kfree(tg->cfs_rq);
7042 kfree(tg->se);
7043 kfree(tg);
7044
7045 return ERR_PTR(-ENOMEM);
7046 }
7047
7048 /* rcu callback to free various structures associated with a task group */
7049 static void free_sched_group(struct rcu_head *rhp)
7050 {
7051 struct task_group *tg = container_of(rhp, struct task_group, rcu);
7052 struct cfs_rq *cfs_rq;
7053 struct sched_entity *se;
7054 int i;
7055
7056 /* now it should be safe to free those cfs_rqs */
7057 for_each_possible_cpu(i) {
7058 cfs_rq = tg->cfs_rq[i];
7059 kfree(cfs_rq);
7060
7061 se = tg->se[i];
7062 kfree(se);
7063 }
7064
7065 kfree(tg->cfs_rq);
7066 kfree(tg->se);
7067 kfree(tg);
7068 }
7069
7070 /* Destroy runqueue etc associated with a task group */
7071 void sched_destroy_group(struct task_group *tg)
7072 {
7073 struct cfs_rq *cfs_rq = NULL;
7074 int i;
7075
7076 for_each_possible_cpu(i) {
7077 cfs_rq = tg->cfs_rq[i];
7078 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
7079 }
7080
7081 BUG_ON(!cfs_rq);
7082
7083 /* wait for possible concurrent references to cfs_rqs complete */
7084 call_rcu(&tg->rcu, free_sched_group);
7085 }
7086
7087 /* change task's runqueue when it moves between groups.
7088 * The caller of this function should have put the task in its new group
7089 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7090 * reflect its new group.
7091 */
7092 void sched_move_task(struct task_struct *tsk)
7093 {
7094 int on_rq, running;
7095 unsigned long flags;
7096 struct rq *rq;
7097
7098 rq = task_rq_lock(tsk, &flags);
7099
7100 if (tsk->sched_class != &fair_sched_class) {
7101 set_task_cfs_rq(tsk, task_cpu(tsk));
7102 goto done;
7103 }
7104
7105 update_rq_clock(rq);
7106
7107 running = task_running(rq, tsk);
7108 on_rq = tsk->se.on_rq;
7109
7110 if (on_rq) {
7111 dequeue_task(rq, tsk, 0);
7112 if (unlikely(running))
7113 tsk->sched_class->put_prev_task(rq, tsk);
7114 }
7115
7116 set_task_cfs_rq(tsk, task_cpu(tsk));
7117
7118 if (on_rq) {
7119 if (unlikely(running))
7120 tsk->sched_class->set_curr_task(rq);
7121 enqueue_task(rq, tsk, 0);
7122 }
7123
7124 done:
7125 task_rq_unlock(rq, &flags);
7126 }
7127
7128 static void set_se_shares(struct sched_entity *se, unsigned long shares)
7129 {
7130 struct cfs_rq *cfs_rq = se->cfs_rq;
7131 struct rq *rq = cfs_rq->rq;
7132 int on_rq;
7133
7134 spin_lock_irq(&rq->lock);
7135
7136 on_rq = se->on_rq;
7137 if (on_rq)
7138 dequeue_entity(cfs_rq, se, 0);
7139
7140 se->load.weight = shares;
7141 se->load.inv_weight = div64_64((1ULL<<32), shares);
7142
7143 if (on_rq)
7144 enqueue_entity(cfs_rq, se, 0);
7145
7146 spin_unlock_irq(&rq->lock);
7147 }
7148
7149 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7150 {
7151 int i;
7152
7153 spin_lock(&tg->lock);
7154 if (tg->shares == shares)
7155 goto done;
7156
7157 tg->shares = shares;
7158 for_each_possible_cpu(i)
7159 set_se_shares(tg->se[i], shares);
7160
7161 done:
7162 spin_unlock(&tg->lock);
7163 return 0;
7164 }
7165
7166 unsigned long sched_group_shares(struct task_group *tg)
7167 {
7168 return tg->shares;
7169 }
7170
7171 #endif /* CONFIG_FAIR_GROUP_SCHED */
7172
7173 #ifdef CONFIG_FAIR_CGROUP_SCHED
7174
7175 /* return corresponding task_group object of a cgroup */
7176 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7177 {
7178 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7179 struct task_group, css);
7180 }
7181
7182 static struct cgroup_subsys_state *
7183 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
7184 {
7185 struct task_group *tg;
7186
7187 if (!cgrp->parent) {
7188 /* This is early initialization for the top cgroup */
7189 init_task_group.css.cgroup = cgrp;
7190 return &init_task_group.css;
7191 }
7192
7193 /* we support only 1-level deep hierarchical scheduler atm */
7194 if (cgrp->parent->parent)
7195 return ERR_PTR(-EINVAL);
7196
7197 tg = sched_create_group();
7198 if (IS_ERR(tg))
7199 return ERR_PTR(-ENOMEM);
7200
7201 /* Bind the cgroup to task_group object we just created */
7202 tg->css.cgroup = cgrp;
7203
7204 return &tg->css;
7205 }
7206
7207 static void
7208 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
7209 {
7210 struct task_group *tg = cgroup_tg(cgrp);
7211
7212 sched_destroy_group(tg);
7213 }
7214
7215 static int
7216 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7217 struct task_struct *tsk)
7218 {
7219 /* We don't support RT-tasks being in separate groups */
7220 if (tsk->sched_class != &fair_sched_class)
7221 return -EINVAL;
7222
7223 return 0;
7224 }
7225
7226 static void
7227 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7228 struct cgroup *old_cont, struct task_struct *tsk)
7229 {
7230 sched_move_task(tsk);
7231 }
7232
7233 static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7234 u64 shareval)
7235 {
7236 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
7237 }
7238
7239 static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
7240 {
7241 struct task_group *tg = cgroup_tg(cgrp);
7242
7243 return (u64) tg->shares;
7244 }
7245
7246 static struct cftype cpu_files[] = {
7247 {
7248 .name = "shares",
7249 .read_uint = cpu_shares_read_uint,
7250 .write_uint = cpu_shares_write_uint,
7251 },
7252 };
7253
7254 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7255 {
7256 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
7257 }
7258
7259 struct cgroup_subsys cpu_cgroup_subsys = {
7260 .name = "cpu",
7261 .create = cpu_cgroup_create,
7262 .destroy = cpu_cgroup_destroy,
7263 .can_attach = cpu_cgroup_can_attach,
7264 .attach = cpu_cgroup_attach,
7265 .populate = cpu_cgroup_populate,
7266 .subsys_id = cpu_cgroup_subsys_id,
7267 .early_init = 1,
7268 };
7269
7270 #endif /* CONFIG_FAIR_CGROUP_SCHED */
7271
7272 #ifdef CONFIG_CGROUP_CPUACCT
7273
7274 /*
7275 * CPU accounting code for task groups.
7276 *
7277 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7278 * (balbir@in.ibm.com).
7279 */
7280
7281 /* track cpu usage of a group of tasks */
7282 struct cpuacct {
7283 struct cgroup_subsys_state css;
7284 /* cpuusage holds pointer to a u64-type object on every cpu */
7285 u64 *cpuusage;
7286 };
7287
7288 struct cgroup_subsys cpuacct_subsys;
7289
7290 /* return cpu accounting group corresponding to this container */
7291 static inline struct cpuacct *cgroup_ca(struct cgroup *cont)
7292 {
7293 return container_of(cgroup_subsys_state(cont, cpuacct_subsys_id),
7294 struct cpuacct, css);
7295 }
7296
7297 /* return cpu accounting group to which this task belongs */
7298 static inline struct cpuacct *task_ca(struct task_struct *tsk)
7299 {
7300 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
7301 struct cpuacct, css);
7302 }
7303
7304 /* create a new cpu accounting group */
7305 static struct cgroup_subsys_state *cpuacct_create(
7306 struct cgroup_subsys *ss, struct cgroup *cont)
7307 {
7308 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
7309
7310 if (!ca)
7311 return ERR_PTR(-ENOMEM);
7312
7313 ca->cpuusage = alloc_percpu(u64);
7314 if (!ca->cpuusage) {
7315 kfree(ca);
7316 return ERR_PTR(-ENOMEM);
7317 }
7318
7319 return &ca->css;
7320 }
7321
7322 /* destroy an existing cpu accounting group */
7323 static void
7324 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
7325 {
7326 struct cpuacct *ca = cgroup_ca(cont);
7327
7328 free_percpu(ca->cpuusage);
7329 kfree(ca);
7330 }
7331
7332 /* return total cpu usage (in nanoseconds) of a group */
7333 static u64 cpuusage_read(struct cgroup *cont, struct cftype *cft)
7334 {
7335 struct cpuacct *ca = cgroup_ca(cont);
7336 u64 totalcpuusage = 0;
7337 int i;
7338
7339 for_each_possible_cpu(i) {
7340 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
7341
7342 /*
7343 * Take rq->lock to make 64-bit addition safe on 32-bit
7344 * platforms.
7345 */
7346 spin_lock_irq(&cpu_rq(i)->lock);
7347 totalcpuusage += *cpuusage;
7348 spin_unlock_irq(&cpu_rq(i)->lock);
7349 }
7350
7351 return totalcpuusage;
7352 }
7353
7354 static struct cftype files[] = {
7355 {
7356 .name = "usage",
7357 .read_uint = cpuusage_read,
7358 },
7359 };
7360
7361 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7362 {
7363 return cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
7364 }
7365
7366 /*
7367 * charge this task's execution time to its accounting group.
7368 *
7369 * called with rq->lock held.
7370 */
7371 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
7372 {
7373 struct cpuacct *ca;
7374
7375 if (!cpuacct_subsys.active)
7376 return;
7377
7378 ca = task_ca(tsk);
7379 if (ca) {
7380 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
7381
7382 *cpuusage += cputime;
7383 }
7384 }
7385
7386 struct cgroup_subsys cpuacct_subsys = {
7387 .name = "cpuacct",
7388 .create = cpuacct_create,
7389 .destroy = cpuacct_destroy,
7390 .populate = cpuacct_populate,
7391 .subsys_id = cpuacct_subsys_id,
7392 };
7393 #endif /* CONFIG_CGROUP_CPUACCT */
This page took 0.189301 seconds and 5 git commands to generate.