d4b815d345b331117c951d9e4910ce3b835a759f
[deliverable/linux.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/stop_machine.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/debugfs.h>
71 #include <linux/ctype.h>
72 #include <linux/ftrace.h>
73 #include <linux/slab.h>
74
75 #include <asm/tlb.h>
76 #include <asm/irq_regs.h>
77 #include <asm/mutex.h>
78
79 #include "sched_cpupri.h"
80 #include "workqueue_sched.h"
81 #include "sched_autogroup.h"
82
83 #define CREATE_TRACE_POINTS
84 #include <trace/events/sched.h>
85
86 /*
87 * Convert user-nice values [ -20 ... 0 ... 19 ]
88 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
89 * and back.
90 */
91 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
92 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
93 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
94
95 /*
96 * 'User priority' is the nice value converted to something we
97 * can work with better when scaling various scheduler parameters,
98 * it's a [ 0 ... 39 ] range.
99 */
100 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
101 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
102 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
103
104 /*
105 * Helpers for converting nanosecond timing to jiffy resolution
106 */
107 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
108
109 #define NICE_0_LOAD SCHED_LOAD_SCALE
110 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
111
112 /*
113 * These are the 'tuning knobs' of the scheduler:
114 *
115 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
116 * Timeslices get refilled after they expire.
117 */
118 #define DEF_TIMESLICE (100 * HZ / 1000)
119
120 /*
121 * single value that denotes runtime == period, ie unlimited time.
122 */
123 #define RUNTIME_INF ((u64)~0ULL)
124
125 static inline int rt_policy(int policy)
126 {
127 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
128 return 1;
129 return 0;
130 }
131
132 static inline int task_has_rt_policy(struct task_struct *p)
133 {
134 return rt_policy(p->policy);
135 }
136
137 /*
138 * This is the priority-queue data structure of the RT scheduling class:
139 */
140 struct rt_prio_array {
141 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
142 struct list_head queue[MAX_RT_PRIO];
143 };
144
145 struct rt_bandwidth {
146 /* nests inside the rq lock: */
147 raw_spinlock_t rt_runtime_lock;
148 ktime_t rt_period;
149 u64 rt_runtime;
150 struct hrtimer rt_period_timer;
151 };
152
153 static struct rt_bandwidth def_rt_bandwidth;
154
155 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
156
157 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
158 {
159 struct rt_bandwidth *rt_b =
160 container_of(timer, struct rt_bandwidth, rt_period_timer);
161 ktime_t now;
162 int overrun;
163 int idle = 0;
164
165 for (;;) {
166 now = hrtimer_cb_get_time(timer);
167 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
168
169 if (!overrun)
170 break;
171
172 idle = do_sched_rt_period_timer(rt_b, overrun);
173 }
174
175 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
176 }
177
178 static
179 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
180 {
181 rt_b->rt_period = ns_to_ktime(period);
182 rt_b->rt_runtime = runtime;
183
184 raw_spin_lock_init(&rt_b->rt_runtime_lock);
185
186 hrtimer_init(&rt_b->rt_period_timer,
187 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
188 rt_b->rt_period_timer.function = sched_rt_period_timer;
189 }
190
191 static inline int rt_bandwidth_enabled(void)
192 {
193 return sysctl_sched_rt_runtime >= 0;
194 }
195
196 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
197 {
198 ktime_t now;
199
200 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
201 return;
202
203 if (hrtimer_active(&rt_b->rt_period_timer))
204 return;
205
206 raw_spin_lock(&rt_b->rt_runtime_lock);
207 for (;;) {
208 unsigned long delta;
209 ktime_t soft, hard;
210
211 if (hrtimer_active(&rt_b->rt_period_timer))
212 break;
213
214 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
215 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
216
217 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
218 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
219 delta = ktime_to_ns(ktime_sub(hard, soft));
220 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
221 HRTIMER_MODE_ABS_PINNED, 0);
222 }
223 raw_spin_unlock(&rt_b->rt_runtime_lock);
224 }
225
226 #ifdef CONFIG_RT_GROUP_SCHED
227 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
228 {
229 hrtimer_cancel(&rt_b->rt_period_timer);
230 }
231 #endif
232
233 /*
234 * sched_domains_mutex serializes calls to arch_init_sched_domains,
235 * detach_destroy_domains and partition_sched_domains.
236 */
237 static DEFINE_MUTEX(sched_domains_mutex);
238
239 #ifdef CONFIG_CGROUP_SCHED
240
241 #include <linux/cgroup.h>
242
243 struct cfs_rq;
244
245 static LIST_HEAD(task_groups);
246
247 /* task group related information */
248 struct task_group {
249 struct cgroup_subsys_state css;
250
251 #ifdef CONFIG_FAIR_GROUP_SCHED
252 /* schedulable entities of this group on each cpu */
253 struct sched_entity **se;
254 /* runqueue "owned" by this group on each cpu */
255 struct cfs_rq **cfs_rq;
256 unsigned long shares;
257
258 atomic_t load_weight;
259 #endif
260
261 #ifdef CONFIG_RT_GROUP_SCHED
262 struct sched_rt_entity **rt_se;
263 struct rt_rq **rt_rq;
264
265 struct rt_bandwidth rt_bandwidth;
266 #endif
267
268 struct rcu_head rcu;
269 struct list_head list;
270
271 struct task_group *parent;
272 struct list_head siblings;
273 struct list_head children;
274
275 #ifdef CONFIG_SCHED_AUTOGROUP
276 struct autogroup *autogroup;
277 #endif
278 };
279
280 /* task_group_lock serializes the addition/removal of task groups */
281 static DEFINE_SPINLOCK(task_group_lock);
282
283 #ifdef CONFIG_FAIR_GROUP_SCHED
284
285 # define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
286
287 /*
288 * A weight of 0 or 1 can cause arithmetics problems.
289 * A weight of a cfs_rq is the sum of weights of which entities
290 * are queued on this cfs_rq, so a weight of a entity should not be
291 * too large, so as the shares value of a task group.
292 * (The default weight is 1024 - so there's no practical
293 * limitation from this.)
294 */
295 #define MIN_SHARES 2
296 #define MAX_SHARES (1UL << 18)
297
298 static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
299 #endif
300
301 /* Default task group.
302 * Every task in system belong to this group at bootup.
303 */
304 struct task_group root_task_group;
305
306 #endif /* CONFIG_CGROUP_SCHED */
307
308 /* CFS-related fields in a runqueue */
309 struct cfs_rq {
310 struct load_weight load;
311 unsigned long nr_running;
312
313 u64 exec_clock;
314 u64 min_vruntime;
315
316 struct rb_root tasks_timeline;
317 struct rb_node *rb_leftmost;
318
319 struct list_head tasks;
320 struct list_head *balance_iterator;
321
322 /*
323 * 'curr' points to currently running entity on this cfs_rq.
324 * It is set to NULL otherwise (i.e when none are currently running).
325 */
326 struct sched_entity *curr, *next, *last, *skip;
327
328 unsigned int nr_spread_over;
329
330 #ifdef CONFIG_FAIR_GROUP_SCHED
331 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
332
333 /*
334 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
335 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
336 * (like users, containers etc.)
337 *
338 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
339 * list is used during load balance.
340 */
341 int on_list;
342 struct list_head leaf_cfs_rq_list;
343 struct task_group *tg; /* group that "owns" this runqueue */
344
345 #ifdef CONFIG_SMP
346 /*
347 * the part of load.weight contributed by tasks
348 */
349 unsigned long task_weight;
350
351 /*
352 * h_load = weight * f(tg)
353 *
354 * Where f(tg) is the recursive weight fraction assigned to
355 * this group.
356 */
357 unsigned long h_load;
358
359 /*
360 * Maintaining per-cpu shares distribution for group scheduling
361 *
362 * load_stamp is the last time we updated the load average
363 * load_last is the last time we updated the load average and saw load
364 * load_unacc_exec_time is currently unaccounted execution time
365 */
366 u64 load_avg;
367 u64 load_period;
368 u64 load_stamp, load_last, load_unacc_exec_time;
369
370 unsigned long load_contribution;
371 #endif
372 #endif
373 };
374
375 /* Real-Time classes' related field in a runqueue: */
376 struct rt_rq {
377 struct rt_prio_array active;
378 unsigned long rt_nr_running;
379 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
380 struct {
381 int curr; /* highest queued rt task prio */
382 #ifdef CONFIG_SMP
383 int next; /* next highest */
384 #endif
385 } highest_prio;
386 #endif
387 #ifdef CONFIG_SMP
388 unsigned long rt_nr_migratory;
389 unsigned long rt_nr_total;
390 int overloaded;
391 struct plist_head pushable_tasks;
392 #endif
393 int rt_throttled;
394 u64 rt_time;
395 u64 rt_runtime;
396 /* Nests inside the rq lock: */
397 raw_spinlock_t rt_runtime_lock;
398
399 #ifdef CONFIG_RT_GROUP_SCHED
400 unsigned long rt_nr_boosted;
401
402 struct rq *rq;
403 struct list_head leaf_rt_rq_list;
404 struct task_group *tg;
405 #endif
406 };
407
408 #ifdef CONFIG_SMP
409
410 /*
411 * We add the notion of a root-domain which will be used to define per-domain
412 * variables. Each exclusive cpuset essentially defines an island domain by
413 * fully partitioning the member cpus from any other cpuset. Whenever a new
414 * exclusive cpuset is created, we also create and attach a new root-domain
415 * object.
416 *
417 */
418 struct root_domain {
419 atomic_t refcount;
420 cpumask_var_t span;
421 cpumask_var_t online;
422
423 /*
424 * The "RT overload" flag: it gets set if a CPU has more than
425 * one runnable RT task.
426 */
427 cpumask_var_t rto_mask;
428 atomic_t rto_count;
429 struct cpupri cpupri;
430 };
431
432 /*
433 * By default the system creates a single root-domain with all cpus as
434 * members (mimicking the global state we have today).
435 */
436 static struct root_domain def_root_domain;
437
438 #endif /* CONFIG_SMP */
439
440 /*
441 * This is the main, per-CPU runqueue data structure.
442 *
443 * Locking rule: those places that want to lock multiple runqueues
444 * (such as the load balancing or the thread migration code), lock
445 * acquire operations must be ordered by ascending &runqueue.
446 */
447 struct rq {
448 /* runqueue lock: */
449 raw_spinlock_t lock;
450
451 /*
452 * nr_running and cpu_load should be in the same cacheline because
453 * remote CPUs use both these fields when doing load calculation.
454 */
455 unsigned long nr_running;
456 #define CPU_LOAD_IDX_MAX 5
457 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
458 unsigned long last_load_update_tick;
459 #ifdef CONFIG_NO_HZ
460 u64 nohz_stamp;
461 unsigned char nohz_balance_kick;
462 #endif
463 unsigned int skip_clock_update;
464
465 /* capture load from *all* tasks on this cpu: */
466 struct load_weight load;
467 unsigned long nr_load_updates;
468 u64 nr_switches;
469
470 struct cfs_rq cfs;
471 struct rt_rq rt;
472
473 #ifdef CONFIG_FAIR_GROUP_SCHED
474 /* list of leaf cfs_rq on this cpu: */
475 struct list_head leaf_cfs_rq_list;
476 #endif
477 #ifdef CONFIG_RT_GROUP_SCHED
478 struct list_head leaf_rt_rq_list;
479 #endif
480
481 /*
482 * This is part of a global counter where only the total sum
483 * over all CPUs matters. A task can increase this counter on
484 * one CPU and if it got migrated afterwards it may decrease
485 * it on another CPU. Always updated under the runqueue lock:
486 */
487 unsigned long nr_uninterruptible;
488
489 struct task_struct *curr, *idle, *stop;
490 unsigned long next_balance;
491 struct mm_struct *prev_mm;
492
493 u64 clock;
494 u64 clock_task;
495
496 atomic_t nr_iowait;
497
498 #ifdef CONFIG_SMP
499 struct root_domain *rd;
500 struct sched_domain *sd;
501
502 unsigned long cpu_power;
503
504 unsigned char idle_at_tick;
505 /* For active balancing */
506 int post_schedule;
507 int active_balance;
508 int push_cpu;
509 struct cpu_stop_work active_balance_work;
510 /* cpu of this runqueue: */
511 int cpu;
512 int online;
513
514 unsigned long avg_load_per_task;
515
516 u64 rt_avg;
517 u64 age_stamp;
518 u64 idle_stamp;
519 u64 avg_idle;
520 #endif
521
522 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
523 u64 prev_irq_time;
524 #endif
525
526 /* calc_load related fields */
527 unsigned long calc_load_update;
528 long calc_load_active;
529
530 #ifdef CONFIG_SCHED_HRTICK
531 #ifdef CONFIG_SMP
532 int hrtick_csd_pending;
533 struct call_single_data hrtick_csd;
534 #endif
535 struct hrtimer hrtick_timer;
536 #endif
537
538 #ifdef CONFIG_SCHEDSTATS
539 /* latency stats */
540 struct sched_info rq_sched_info;
541 unsigned long long rq_cpu_time;
542 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
543
544 /* sys_sched_yield() stats */
545 unsigned int yld_count;
546
547 /* schedule() stats */
548 unsigned int sched_switch;
549 unsigned int sched_count;
550 unsigned int sched_goidle;
551
552 /* try_to_wake_up() stats */
553 unsigned int ttwu_count;
554 unsigned int ttwu_local;
555 #endif
556 };
557
558 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
559
560
561 static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
562
563 static inline int cpu_of(struct rq *rq)
564 {
565 #ifdef CONFIG_SMP
566 return rq->cpu;
567 #else
568 return 0;
569 #endif
570 }
571
572 #define rcu_dereference_check_sched_domain(p) \
573 rcu_dereference_check((p), \
574 rcu_read_lock_sched_held() || \
575 lockdep_is_held(&sched_domains_mutex))
576
577 /*
578 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
579 * See detach_destroy_domains: synchronize_sched for details.
580 *
581 * The domain tree of any CPU may only be accessed from within
582 * preempt-disabled sections.
583 */
584 #define for_each_domain(cpu, __sd) \
585 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
586
587 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
588 #define this_rq() (&__get_cpu_var(runqueues))
589 #define task_rq(p) cpu_rq(task_cpu(p))
590 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
591 #define raw_rq() (&__raw_get_cpu_var(runqueues))
592
593 #ifdef CONFIG_CGROUP_SCHED
594
595 /*
596 * Return the group to which this tasks belongs.
597 *
598 * We use task_subsys_state_check() and extend the RCU verification
599 * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
600 * holds that lock for each task it moves into the cgroup. Therefore
601 * by holding that lock, we pin the task to the current cgroup.
602 */
603 static inline struct task_group *task_group(struct task_struct *p)
604 {
605 struct task_group *tg;
606 struct cgroup_subsys_state *css;
607
608 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
609 lockdep_is_held(&task_rq(p)->lock));
610 tg = container_of(css, struct task_group, css);
611
612 return autogroup_task_group(p, tg);
613 }
614
615 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
616 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
617 {
618 #ifdef CONFIG_FAIR_GROUP_SCHED
619 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
620 p->se.parent = task_group(p)->se[cpu];
621 #endif
622
623 #ifdef CONFIG_RT_GROUP_SCHED
624 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
625 p->rt.parent = task_group(p)->rt_se[cpu];
626 #endif
627 }
628
629 #else /* CONFIG_CGROUP_SCHED */
630
631 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
632 static inline struct task_group *task_group(struct task_struct *p)
633 {
634 return NULL;
635 }
636
637 #endif /* CONFIG_CGROUP_SCHED */
638
639 static void update_rq_clock_task(struct rq *rq, s64 delta);
640
641 static void update_rq_clock(struct rq *rq)
642 {
643 s64 delta;
644
645 if (rq->skip_clock_update)
646 return;
647
648 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
649 rq->clock += delta;
650 update_rq_clock_task(rq, delta);
651 }
652
653 /*
654 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
655 */
656 #ifdef CONFIG_SCHED_DEBUG
657 # define const_debug __read_mostly
658 #else
659 # define const_debug static const
660 #endif
661
662 /**
663 * runqueue_is_locked - Returns true if the current cpu runqueue is locked
664 * @cpu: the processor in question.
665 *
666 * This interface allows printk to be called with the runqueue lock
667 * held and know whether or not it is OK to wake up the klogd.
668 */
669 int runqueue_is_locked(int cpu)
670 {
671 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
672 }
673
674 /*
675 * Debugging: various feature bits
676 */
677
678 #define SCHED_FEAT(name, enabled) \
679 __SCHED_FEAT_##name ,
680
681 enum {
682 #include "sched_features.h"
683 };
684
685 #undef SCHED_FEAT
686
687 #define SCHED_FEAT(name, enabled) \
688 (1UL << __SCHED_FEAT_##name) * enabled |
689
690 const_debug unsigned int sysctl_sched_features =
691 #include "sched_features.h"
692 0;
693
694 #undef SCHED_FEAT
695
696 #ifdef CONFIG_SCHED_DEBUG
697 #define SCHED_FEAT(name, enabled) \
698 #name ,
699
700 static __read_mostly char *sched_feat_names[] = {
701 #include "sched_features.h"
702 NULL
703 };
704
705 #undef SCHED_FEAT
706
707 static int sched_feat_show(struct seq_file *m, void *v)
708 {
709 int i;
710
711 for (i = 0; sched_feat_names[i]; i++) {
712 if (!(sysctl_sched_features & (1UL << i)))
713 seq_puts(m, "NO_");
714 seq_printf(m, "%s ", sched_feat_names[i]);
715 }
716 seq_puts(m, "\n");
717
718 return 0;
719 }
720
721 static ssize_t
722 sched_feat_write(struct file *filp, const char __user *ubuf,
723 size_t cnt, loff_t *ppos)
724 {
725 char buf[64];
726 char *cmp;
727 int neg = 0;
728 int i;
729
730 if (cnt > 63)
731 cnt = 63;
732
733 if (copy_from_user(&buf, ubuf, cnt))
734 return -EFAULT;
735
736 buf[cnt] = 0;
737 cmp = strstrip(buf);
738
739 if (strncmp(cmp, "NO_", 3) == 0) {
740 neg = 1;
741 cmp += 3;
742 }
743
744 for (i = 0; sched_feat_names[i]; i++) {
745 if (strcmp(cmp, sched_feat_names[i]) == 0) {
746 if (neg)
747 sysctl_sched_features &= ~(1UL << i);
748 else
749 sysctl_sched_features |= (1UL << i);
750 break;
751 }
752 }
753
754 if (!sched_feat_names[i])
755 return -EINVAL;
756
757 *ppos += cnt;
758
759 return cnt;
760 }
761
762 static int sched_feat_open(struct inode *inode, struct file *filp)
763 {
764 return single_open(filp, sched_feat_show, NULL);
765 }
766
767 static const struct file_operations sched_feat_fops = {
768 .open = sched_feat_open,
769 .write = sched_feat_write,
770 .read = seq_read,
771 .llseek = seq_lseek,
772 .release = single_release,
773 };
774
775 static __init int sched_init_debug(void)
776 {
777 debugfs_create_file("sched_features", 0644, NULL, NULL,
778 &sched_feat_fops);
779
780 return 0;
781 }
782 late_initcall(sched_init_debug);
783
784 #endif
785
786 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
787
788 /*
789 * Number of tasks to iterate in a single balance run.
790 * Limited because this is done with IRQs disabled.
791 */
792 const_debug unsigned int sysctl_sched_nr_migrate = 32;
793
794 /*
795 * period over which we average the RT time consumption, measured
796 * in ms.
797 *
798 * default: 1s
799 */
800 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
801
802 /*
803 * period over which we measure -rt task cpu usage in us.
804 * default: 1s
805 */
806 unsigned int sysctl_sched_rt_period = 1000000;
807
808 static __read_mostly int scheduler_running;
809
810 /*
811 * part of the period that we allow rt tasks to run in us.
812 * default: 0.95s
813 */
814 int sysctl_sched_rt_runtime = 950000;
815
816 static inline u64 global_rt_period(void)
817 {
818 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
819 }
820
821 static inline u64 global_rt_runtime(void)
822 {
823 if (sysctl_sched_rt_runtime < 0)
824 return RUNTIME_INF;
825
826 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
827 }
828
829 #ifndef prepare_arch_switch
830 # define prepare_arch_switch(next) do { } while (0)
831 #endif
832 #ifndef finish_arch_switch
833 # define finish_arch_switch(prev) do { } while (0)
834 #endif
835
836 static inline int task_current(struct rq *rq, struct task_struct *p)
837 {
838 return rq->curr == p;
839 }
840
841 static inline int task_running(struct rq *rq, struct task_struct *p)
842 {
843 #ifdef CONFIG_SMP
844 return p->on_cpu;
845 #else
846 return task_current(rq, p);
847 #endif
848 }
849
850 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
851 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
852 {
853 #ifdef CONFIG_SMP
854 /*
855 * We can optimise this out completely for !SMP, because the
856 * SMP rebalancing from interrupt is the only thing that cares
857 * here.
858 */
859 next->on_cpu = 1;
860 #endif
861 }
862
863 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
864 {
865 #ifdef CONFIG_SMP
866 /*
867 * After ->on_cpu is cleared, the task can be moved to a different CPU.
868 * We must ensure this doesn't happen until the switch is completely
869 * finished.
870 */
871 smp_wmb();
872 prev->on_cpu = 0;
873 #endif
874 #ifdef CONFIG_DEBUG_SPINLOCK
875 /* this is a valid case when another task releases the spinlock */
876 rq->lock.owner = current;
877 #endif
878 /*
879 * If we are tracking spinlock dependencies then we have to
880 * fix up the runqueue lock - which gets 'carried over' from
881 * prev into current:
882 */
883 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
884
885 raw_spin_unlock_irq(&rq->lock);
886 }
887
888 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
889 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
890 {
891 #ifdef CONFIG_SMP
892 /*
893 * We can optimise this out completely for !SMP, because the
894 * SMP rebalancing from interrupt is the only thing that cares
895 * here.
896 */
897 next->on_cpu = 1;
898 #endif
899 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
900 raw_spin_unlock_irq(&rq->lock);
901 #else
902 raw_spin_unlock(&rq->lock);
903 #endif
904 }
905
906 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
907 {
908 #ifdef CONFIG_SMP
909 /*
910 * After ->on_cpu is cleared, the task can be moved to a different CPU.
911 * We must ensure this doesn't happen until the switch is completely
912 * finished.
913 */
914 smp_wmb();
915 prev->on_cpu = 0;
916 #endif
917 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
918 local_irq_enable();
919 #endif
920 }
921 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
922
923 /*
924 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
925 * against ttwu().
926 */
927 static inline int task_is_waking(struct task_struct *p)
928 {
929 return unlikely(p->state == TASK_WAKING);
930 }
931
932 /*
933 * __task_rq_lock - lock the runqueue a given task resides on.
934 * Must be called interrupts disabled.
935 */
936 static inline struct rq *__task_rq_lock(struct task_struct *p)
937 __acquires(rq->lock)
938 {
939 struct rq *rq;
940
941 for (;;) {
942 rq = task_rq(p);
943 raw_spin_lock(&rq->lock);
944 if (likely(rq == task_rq(p)))
945 return rq;
946 raw_spin_unlock(&rq->lock);
947 }
948 }
949
950 /*
951 * task_rq_lock - lock the runqueue a given task resides on and disable
952 * interrupts. Note the ordering: we can safely lookup the task_rq without
953 * explicitly disabling preemption.
954 */
955 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
956 __acquires(rq->lock)
957 {
958 struct rq *rq;
959
960 for (;;) {
961 local_irq_save(*flags);
962 rq = task_rq(p);
963 raw_spin_lock(&rq->lock);
964 if (likely(rq == task_rq(p)))
965 return rq;
966 raw_spin_unlock_irqrestore(&rq->lock, *flags);
967 }
968 }
969
970 static void __task_rq_unlock(struct rq *rq)
971 __releases(rq->lock)
972 {
973 raw_spin_unlock(&rq->lock);
974 }
975
976 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
977 __releases(rq->lock)
978 {
979 raw_spin_unlock_irqrestore(&rq->lock, *flags);
980 }
981
982 /*
983 * this_rq_lock - lock this runqueue and disable interrupts.
984 */
985 static struct rq *this_rq_lock(void)
986 __acquires(rq->lock)
987 {
988 struct rq *rq;
989
990 local_irq_disable();
991 rq = this_rq();
992 raw_spin_lock(&rq->lock);
993
994 return rq;
995 }
996
997 #ifdef CONFIG_SCHED_HRTICK
998 /*
999 * Use HR-timers to deliver accurate preemption points.
1000 *
1001 * Its all a bit involved since we cannot program an hrt while holding the
1002 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1003 * reschedule event.
1004 *
1005 * When we get rescheduled we reprogram the hrtick_timer outside of the
1006 * rq->lock.
1007 */
1008
1009 /*
1010 * Use hrtick when:
1011 * - enabled by features
1012 * - hrtimer is actually high res
1013 */
1014 static inline int hrtick_enabled(struct rq *rq)
1015 {
1016 if (!sched_feat(HRTICK))
1017 return 0;
1018 if (!cpu_active(cpu_of(rq)))
1019 return 0;
1020 return hrtimer_is_hres_active(&rq->hrtick_timer);
1021 }
1022
1023 static void hrtick_clear(struct rq *rq)
1024 {
1025 if (hrtimer_active(&rq->hrtick_timer))
1026 hrtimer_cancel(&rq->hrtick_timer);
1027 }
1028
1029 /*
1030 * High-resolution timer tick.
1031 * Runs from hardirq context with interrupts disabled.
1032 */
1033 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1034 {
1035 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1036
1037 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1038
1039 raw_spin_lock(&rq->lock);
1040 update_rq_clock(rq);
1041 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1042 raw_spin_unlock(&rq->lock);
1043
1044 return HRTIMER_NORESTART;
1045 }
1046
1047 #ifdef CONFIG_SMP
1048 /*
1049 * called from hardirq (IPI) context
1050 */
1051 static void __hrtick_start(void *arg)
1052 {
1053 struct rq *rq = arg;
1054
1055 raw_spin_lock(&rq->lock);
1056 hrtimer_restart(&rq->hrtick_timer);
1057 rq->hrtick_csd_pending = 0;
1058 raw_spin_unlock(&rq->lock);
1059 }
1060
1061 /*
1062 * Called to set the hrtick timer state.
1063 *
1064 * called with rq->lock held and irqs disabled
1065 */
1066 static void hrtick_start(struct rq *rq, u64 delay)
1067 {
1068 struct hrtimer *timer = &rq->hrtick_timer;
1069 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1070
1071 hrtimer_set_expires(timer, time);
1072
1073 if (rq == this_rq()) {
1074 hrtimer_restart(timer);
1075 } else if (!rq->hrtick_csd_pending) {
1076 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1077 rq->hrtick_csd_pending = 1;
1078 }
1079 }
1080
1081 static int
1082 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1083 {
1084 int cpu = (int)(long)hcpu;
1085
1086 switch (action) {
1087 case CPU_UP_CANCELED:
1088 case CPU_UP_CANCELED_FROZEN:
1089 case CPU_DOWN_PREPARE:
1090 case CPU_DOWN_PREPARE_FROZEN:
1091 case CPU_DEAD:
1092 case CPU_DEAD_FROZEN:
1093 hrtick_clear(cpu_rq(cpu));
1094 return NOTIFY_OK;
1095 }
1096
1097 return NOTIFY_DONE;
1098 }
1099
1100 static __init void init_hrtick(void)
1101 {
1102 hotcpu_notifier(hotplug_hrtick, 0);
1103 }
1104 #else
1105 /*
1106 * Called to set the hrtick timer state.
1107 *
1108 * called with rq->lock held and irqs disabled
1109 */
1110 static void hrtick_start(struct rq *rq, u64 delay)
1111 {
1112 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1113 HRTIMER_MODE_REL_PINNED, 0);
1114 }
1115
1116 static inline void init_hrtick(void)
1117 {
1118 }
1119 #endif /* CONFIG_SMP */
1120
1121 static void init_rq_hrtick(struct rq *rq)
1122 {
1123 #ifdef CONFIG_SMP
1124 rq->hrtick_csd_pending = 0;
1125
1126 rq->hrtick_csd.flags = 0;
1127 rq->hrtick_csd.func = __hrtick_start;
1128 rq->hrtick_csd.info = rq;
1129 #endif
1130
1131 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1132 rq->hrtick_timer.function = hrtick;
1133 }
1134 #else /* CONFIG_SCHED_HRTICK */
1135 static inline void hrtick_clear(struct rq *rq)
1136 {
1137 }
1138
1139 static inline void init_rq_hrtick(struct rq *rq)
1140 {
1141 }
1142
1143 static inline void init_hrtick(void)
1144 {
1145 }
1146 #endif /* CONFIG_SCHED_HRTICK */
1147
1148 /*
1149 * resched_task - mark a task 'to be rescheduled now'.
1150 *
1151 * On UP this means the setting of the need_resched flag, on SMP it
1152 * might also involve a cross-CPU call to trigger the scheduler on
1153 * the target CPU.
1154 */
1155 #ifdef CONFIG_SMP
1156
1157 #ifndef tsk_is_polling
1158 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1159 #endif
1160
1161 static void resched_task(struct task_struct *p)
1162 {
1163 int cpu;
1164
1165 assert_raw_spin_locked(&task_rq(p)->lock);
1166
1167 if (test_tsk_need_resched(p))
1168 return;
1169
1170 set_tsk_need_resched(p);
1171
1172 cpu = task_cpu(p);
1173 if (cpu == smp_processor_id())
1174 return;
1175
1176 /* NEED_RESCHED must be visible before we test polling */
1177 smp_mb();
1178 if (!tsk_is_polling(p))
1179 smp_send_reschedule(cpu);
1180 }
1181
1182 static void resched_cpu(int cpu)
1183 {
1184 struct rq *rq = cpu_rq(cpu);
1185 unsigned long flags;
1186
1187 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
1188 return;
1189 resched_task(cpu_curr(cpu));
1190 raw_spin_unlock_irqrestore(&rq->lock, flags);
1191 }
1192
1193 #ifdef CONFIG_NO_HZ
1194 /*
1195 * In the semi idle case, use the nearest busy cpu for migrating timers
1196 * from an idle cpu. This is good for power-savings.
1197 *
1198 * We don't do similar optimization for completely idle system, as
1199 * selecting an idle cpu will add more delays to the timers than intended
1200 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1201 */
1202 int get_nohz_timer_target(void)
1203 {
1204 int cpu = smp_processor_id();
1205 int i;
1206 struct sched_domain *sd;
1207
1208 for_each_domain(cpu, sd) {
1209 for_each_cpu(i, sched_domain_span(sd))
1210 if (!idle_cpu(i))
1211 return i;
1212 }
1213 return cpu;
1214 }
1215 /*
1216 * When add_timer_on() enqueues a timer into the timer wheel of an
1217 * idle CPU then this timer might expire before the next timer event
1218 * which is scheduled to wake up that CPU. In case of a completely
1219 * idle system the next event might even be infinite time into the
1220 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1221 * leaves the inner idle loop so the newly added timer is taken into
1222 * account when the CPU goes back to idle and evaluates the timer
1223 * wheel for the next timer event.
1224 */
1225 void wake_up_idle_cpu(int cpu)
1226 {
1227 struct rq *rq = cpu_rq(cpu);
1228
1229 if (cpu == smp_processor_id())
1230 return;
1231
1232 /*
1233 * This is safe, as this function is called with the timer
1234 * wheel base lock of (cpu) held. When the CPU is on the way
1235 * to idle and has not yet set rq->curr to idle then it will
1236 * be serialized on the timer wheel base lock and take the new
1237 * timer into account automatically.
1238 */
1239 if (rq->curr != rq->idle)
1240 return;
1241
1242 /*
1243 * We can set TIF_RESCHED on the idle task of the other CPU
1244 * lockless. The worst case is that the other CPU runs the
1245 * idle task through an additional NOOP schedule()
1246 */
1247 set_tsk_need_resched(rq->idle);
1248
1249 /* NEED_RESCHED must be visible before we test polling */
1250 smp_mb();
1251 if (!tsk_is_polling(rq->idle))
1252 smp_send_reschedule(cpu);
1253 }
1254
1255 #endif /* CONFIG_NO_HZ */
1256
1257 static u64 sched_avg_period(void)
1258 {
1259 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1260 }
1261
1262 static void sched_avg_update(struct rq *rq)
1263 {
1264 s64 period = sched_avg_period();
1265
1266 while ((s64)(rq->clock - rq->age_stamp) > period) {
1267 /*
1268 * Inline assembly required to prevent the compiler
1269 * optimising this loop into a divmod call.
1270 * See __iter_div_u64_rem() for another example of this.
1271 */
1272 asm("" : "+rm" (rq->age_stamp));
1273 rq->age_stamp += period;
1274 rq->rt_avg /= 2;
1275 }
1276 }
1277
1278 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1279 {
1280 rq->rt_avg += rt_delta;
1281 sched_avg_update(rq);
1282 }
1283
1284 #else /* !CONFIG_SMP */
1285 static void resched_task(struct task_struct *p)
1286 {
1287 assert_raw_spin_locked(&task_rq(p)->lock);
1288 set_tsk_need_resched(p);
1289 }
1290
1291 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1292 {
1293 }
1294
1295 static void sched_avg_update(struct rq *rq)
1296 {
1297 }
1298 #endif /* CONFIG_SMP */
1299
1300 #if BITS_PER_LONG == 32
1301 # define WMULT_CONST (~0UL)
1302 #else
1303 # define WMULT_CONST (1UL << 32)
1304 #endif
1305
1306 #define WMULT_SHIFT 32
1307
1308 /*
1309 * Shift right and round:
1310 */
1311 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1312
1313 /*
1314 * delta *= weight / lw
1315 */
1316 static unsigned long
1317 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1318 struct load_weight *lw)
1319 {
1320 u64 tmp;
1321
1322 if (!lw->inv_weight) {
1323 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1324 lw->inv_weight = 1;
1325 else
1326 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1327 / (lw->weight+1);
1328 }
1329
1330 tmp = (u64)delta_exec * weight;
1331 /*
1332 * Check whether we'd overflow the 64-bit multiplication:
1333 */
1334 if (unlikely(tmp > WMULT_CONST))
1335 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1336 WMULT_SHIFT/2);
1337 else
1338 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1339
1340 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1341 }
1342
1343 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1344 {
1345 lw->weight += inc;
1346 lw->inv_weight = 0;
1347 }
1348
1349 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1350 {
1351 lw->weight -= dec;
1352 lw->inv_weight = 0;
1353 }
1354
1355 static inline void update_load_set(struct load_weight *lw, unsigned long w)
1356 {
1357 lw->weight = w;
1358 lw->inv_weight = 0;
1359 }
1360
1361 /*
1362 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1363 * of tasks with abnormal "nice" values across CPUs the contribution that
1364 * each task makes to its run queue's load is weighted according to its
1365 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1366 * scaled version of the new time slice allocation that they receive on time
1367 * slice expiry etc.
1368 */
1369
1370 #define WEIGHT_IDLEPRIO 3
1371 #define WMULT_IDLEPRIO 1431655765
1372
1373 /*
1374 * Nice levels are multiplicative, with a gentle 10% change for every
1375 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1376 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1377 * that remained on nice 0.
1378 *
1379 * The "10% effect" is relative and cumulative: from _any_ nice level,
1380 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1381 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1382 * If a task goes up by ~10% and another task goes down by ~10% then
1383 * the relative distance between them is ~25%.)
1384 */
1385 static const int prio_to_weight[40] = {
1386 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1387 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1388 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1389 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1390 /* 0 */ 1024, 820, 655, 526, 423,
1391 /* 5 */ 335, 272, 215, 172, 137,
1392 /* 10 */ 110, 87, 70, 56, 45,
1393 /* 15 */ 36, 29, 23, 18, 15,
1394 };
1395
1396 /*
1397 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1398 *
1399 * In cases where the weight does not change often, we can use the
1400 * precalculated inverse to speed up arithmetics by turning divisions
1401 * into multiplications:
1402 */
1403 static const u32 prio_to_wmult[40] = {
1404 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1405 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1406 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1407 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1408 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1409 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1410 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1411 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1412 };
1413
1414 /* Time spent by the tasks of the cpu accounting group executing in ... */
1415 enum cpuacct_stat_index {
1416 CPUACCT_STAT_USER, /* ... user mode */
1417 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1418
1419 CPUACCT_STAT_NSTATS,
1420 };
1421
1422 #ifdef CONFIG_CGROUP_CPUACCT
1423 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1424 static void cpuacct_update_stats(struct task_struct *tsk,
1425 enum cpuacct_stat_index idx, cputime_t val);
1426 #else
1427 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1428 static inline void cpuacct_update_stats(struct task_struct *tsk,
1429 enum cpuacct_stat_index idx, cputime_t val) {}
1430 #endif
1431
1432 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1433 {
1434 update_load_add(&rq->load, load);
1435 }
1436
1437 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1438 {
1439 update_load_sub(&rq->load, load);
1440 }
1441
1442 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1443 typedef int (*tg_visitor)(struct task_group *, void *);
1444
1445 /*
1446 * Iterate the full tree, calling @down when first entering a node and @up when
1447 * leaving it for the final time.
1448 */
1449 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1450 {
1451 struct task_group *parent, *child;
1452 int ret;
1453
1454 rcu_read_lock();
1455 parent = &root_task_group;
1456 down:
1457 ret = (*down)(parent, data);
1458 if (ret)
1459 goto out_unlock;
1460 list_for_each_entry_rcu(child, &parent->children, siblings) {
1461 parent = child;
1462 goto down;
1463
1464 up:
1465 continue;
1466 }
1467 ret = (*up)(parent, data);
1468 if (ret)
1469 goto out_unlock;
1470
1471 child = parent;
1472 parent = parent->parent;
1473 if (parent)
1474 goto up;
1475 out_unlock:
1476 rcu_read_unlock();
1477
1478 return ret;
1479 }
1480
1481 static int tg_nop(struct task_group *tg, void *data)
1482 {
1483 return 0;
1484 }
1485 #endif
1486
1487 #ifdef CONFIG_SMP
1488 /* Used instead of source_load when we know the type == 0 */
1489 static unsigned long weighted_cpuload(const int cpu)
1490 {
1491 return cpu_rq(cpu)->load.weight;
1492 }
1493
1494 /*
1495 * Return a low guess at the load of a migration-source cpu weighted
1496 * according to the scheduling class and "nice" value.
1497 *
1498 * We want to under-estimate the load of migration sources, to
1499 * balance conservatively.
1500 */
1501 static unsigned long source_load(int cpu, int type)
1502 {
1503 struct rq *rq = cpu_rq(cpu);
1504 unsigned long total = weighted_cpuload(cpu);
1505
1506 if (type == 0 || !sched_feat(LB_BIAS))
1507 return total;
1508
1509 return min(rq->cpu_load[type-1], total);
1510 }
1511
1512 /*
1513 * Return a high guess at the load of a migration-target cpu weighted
1514 * according to the scheduling class and "nice" value.
1515 */
1516 static unsigned long target_load(int cpu, int type)
1517 {
1518 struct rq *rq = cpu_rq(cpu);
1519 unsigned long total = weighted_cpuload(cpu);
1520
1521 if (type == 0 || !sched_feat(LB_BIAS))
1522 return total;
1523
1524 return max(rq->cpu_load[type-1], total);
1525 }
1526
1527 static unsigned long power_of(int cpu)
1528 {
1529 return cpu_rq(cpu)->cpu_power;
1530 }
1531
1532 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1533
1534 static unsigned long cpu_avg_load_per_task(int cpu)
1535 {
1536 struct rq *rq = cpu_rq(cpu);
1537 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1538
1539 if (nr_running)
1540 rq->avg_load_per_task = rq->load.weight / nr_running;
1541 else
1542 rq->avg_load_per_task = 0;
1543
1544 return rq->avg_load_per_task;
1545 }
1546
1547 #ifdef CONFIG_FAIR_GROUP_SCHED
1548
1549 /*
1550 * Compute the cpu's hierarchical load factor for each task group.
1551 * This needs to be done in a top-down fashion because the load of a child
1552 * group is a fraction of its parents load.
1553 */
1554 static int tg_load_down(struct task_group *tg, void *data)
1555 {
1556 unsigned long load;
1557 long cpu = (long)data;
1558
1559 if (!tg->parent) {
1560 load = cpu_rq(cpu)->load.weight;
1561 } else {
1562 load = tg->parent->cfs_rq[cpu]->h_load;
1563 load *= tg->se[cpu]->load.weight;
1564 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1565 }
1566
1567 tg->cfs_rq[cpu]->h_load = load;
1568
1569 return 0;
1570 }
1571
1572 static void update_h_load(long cpu)
1573 {
1574 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1575 }
1576
1577 #endif
1578
1579 #ifdef CONFIG_PREEMPT
1580
1581 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1582
1583 /*
1584 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1585 * way at the expense of forcing extra atomic operations in all
1586 * invocations. This assures that the double_lock is acquired using the
1587 * same underlying policy as the spinlock_t on this architecture, which
1588 * reduces latency compared to the unfair variant below. However, it
1589 * also adds more overhead and therefore may reduce throughput.
1590 */
1591 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1592 __releases(this_rq->lock)
1593 __acquires(busiest->lock)
1594 __acquires(this_rq->lock)
1595 {
1596 raw_spin_unlock(&this_rq->lock);
1597 double_rq_lock(this_rq, busiest);
1598
1599 return 1;
1600 }
1601
1602 #else
1603 /*
1604 * Unfair double_lock_balance: Optimizes throughput at the expense of
1605 * latency by eliminating extra atomic operations when the locks are
1606 * already in proper order on entry. This favors lower cpu-ids and will
1607 * grant the double lock to lower cpus over higher ids under contention,
1608 * regardless of entry order into the function.
1609 */
1610 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1611 __releases(this_rq->lock)
1612 __acquires(busiest->lock)
1613 __acquires(this_rq->lock)
1614 {
1615 int ret = 0;
1616
1617 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1618 if (busiest < this_rq) {
1619 raw_spin_unlock(&this_rq->lock);
1620 raw_spin_lock(&busiest->lock);
1621 raw_spin_lock_nested(&this_rq->lock,
1622 SINGLE_DEPTH_NESTING);
1623 ret = 1;
1624 } else
1625 raw_spin_lock_nested(&busiest->lock,
1626 SINGLE_DEPTH_NESTING);
1627 }
1628 return ret;
1629 }
1630
1631 #endif /* CONFIG_PREEMPT */
1632
1633 /*
1634 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1635 */
1636 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1637 {
1638 if (unlikely(!irqs_disabled())) {
1639 /* printk() doesn't work good under rq->lock */
1640 raw_spin_unlock(&this_rq->lock);
1641 BUG_ON(1);
1642 }
1643
1644 return _double_lock_balance(this_rq, busiest);
1645 }
1646
1647 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1648 __releases(busiest->lock)
1649 {
1650 raw_spin_unlock(&busiest->lock);
1651 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1652 }
1653
1654 /*
1655 * double_rq_lock - safely lock two runqueues
1656 *
1657 * Note this does not disable interrupts like task_rq_lock,
1658 * you need to do so manually before calling.
1659 */
1660 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1661 __acquires(rq1->lock)
1662 __acquires(rq2->lock)
1663 {
1664 BUG_ON(!irqs_disabled());
1665 if (rq1 == rq2) {
1666 raw_spin_lock(&rq1->lock);
1667 __acquire(rq2->lock); /* Fake it out ;) */
1668 } else {
1669 if (rq1 < rq2) {
1670 raw_spin_lock(&rq1->lock);
1671 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1672 } else {
1673 raw_spin_lock(&rq2->lock);
1674 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1675 }
1676 }
1677 }
1678
1679 /*
1680 * double_rq_unlock - safely unlock two runqueues
1681 *
1682 * Note this does not restore interrupts like task_rq_unlock,
1683 * you need to do so manually after calling.
1684 */
1685 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1686 __releases(rq1->lock)
1687 __releases(rq2->lock)
1688 {
1689 raw_spin_unlock(&rq1->lock);
1690 if (rq1 != rq2)
1691 raw_spin_unlock(&rq2->lock);
1692 else
1693 __release(rq2->lock);
1694 }
1695
1696 #else /* CONFIG_SMP */
1697
1698 /*
1699 * double_rq_lock - safely lock two runqueues
1700 *
1701 * Note this does not disable interrupts like task_rq_lock,
1702 * you need to do so manually before calling.
1703 */
1704 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1705 __acquires(rq1->lock)
1706 __acquires(rq2->lock)
1707 {
1708 BUG_ON(!irqs_disabled());
1709 BUG_ON(rq1 != rq2);
1710 raw_spin_lock(&rq1->lock);
1711 __acquire(rq2->lock); /* Fake it out ;) */
1712 }
1713
1714 /*
1715 * double_rq_unlock - safely unlock two runqueues
1716 *
1717 * Note this does not restore interrupts like task_rq_unlock,
1718 * you need to do so manually after calling.
1719 */
1720 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1721 __releases(rq1->lock)
1722 __releases(rq2->lock)
1723 {
1724 BUG_ON(rq1 != rq2);
1725 raw_spin_unlock(&rq1->lock);
1726 __release(rq2->lock);
1727 }
1728
1729 #endif
1730
1731 static void calc_load_account_idle(struct rq *this_rq);
1732 static void update_sysctl(void);
1733 static int get_update_sysctl_factor(void);
1734 static void update_cpu_load(struct rq *this_rq);
1735
1736 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1737 {
1738 set_task_rq(p, cpu);
1739 #ifdef CONFIG_SMP
1740 /*
1741 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1742 * successfuly executed on another CPU. We must ensure that updates of
1743 * per-task data have been completed by this moment.
1744 */
1745 smp_wmb();
1746 task_thread_info(p)->cpu = cpu;
1747 #endif
1748 }
1749
1750 static const struct sched_class rt_sched_class;
1751
1752 #define sched_class_highest (&stop_sched_class)
1753 #define for_each_class(class) \
1754 for (class = sched_class_highest; class; class = class->next)
1755
1756 #include "sched_stats.h"
1757
1758 static void inc_nr_running(struct rq *rq)
1759 {
1760 rq->nr_running++;
1761 }
1762
1763 static void dec_nr_running(struct rq *rq)
1764 {
1765 rq->nr_running--;
1766 }
1767
1768 static void set_load_weight(struct task_struct *p)
1769 {
1770 /*
1771 * SCHED_IDLE tasks get minimal weight:
1772 */
1773 if (p->policy == SCHED_IDLE) {
1774 p->se.load.weight = WEIGHT_IDLEPRIO;
1775 p->se.load.inv_weight = WMULT_IDLEPRIO;
1776 return;
1777 }
1778
1779 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1780 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1781 }
1782
1783 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1784 {
1785 update_rq_clock(rq);
1786 sched_info_queued(p);
1787 p->sched_class->enqueue_task(rq, p, flags);
1788 }
1789
1790 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1791 {
1792 update_rq_clock(rq);
1793 sched_info_dequeued(p);
1794 p->sched_class->dequeue_task(rq, p, flags);
1795 }
1796
1797 /*
1798 * activate_task - move a task to the runqueue.
1799 */
1800 static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1801 {
1802 if (task_contributes_to_load(p))
1803 rq->nr_uninterruptible--;
1804
1805 enqueue_task(rq, p, flags);
1806 inc_nr_running(rq);
1807 }
1808
1809 /*
1810 * deactivate_task - remove a task from the runqueue.
1811 */
1812 static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1813 {
1814 if (task_contributes_to_load(p))
1815 rq->nr_uninterruptible++;
1816
1817 dequeue_task(rq, p, flags);
1818 dec_nr_running(rq);
1819 }
1820
1821 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1822
1823 /*
1824 * There are no locks covering percpu hardirq/softirq time.
1825 * They are only modified in account_system_vtime, on corresponding CPU
1826 * with interrupts disabled. So, writes are safe.
1827 * They are read and saved off onto struct rq in update_rq_clock().
1828 * This may result in other CPU reading this CPU's irq time and can
1829 * race with irq/account_system_vtime on this CPU. We would either get old
1830 * or new value with a side effect of accounting a slice of irq time to wrong
1831 * task when irq is in progress while we read rq->clock. That is a worthy
1832 * compromise in place of having locks on each irq in account_system_time.
1833 */
1834 static DEFINE_PER_CPU(u64, cpu_hardirq_time);
1835 static DEFINE_PER_CPU(u64, cpu_softirq_time);
1836
1837 static DEFINE_PER_CPU(u64, irq_start_time);
1838 static int sched_clock_irqtime;
1839
1840 void enable_sched_clock_irqtime(void)
1841 {
1842 sched_clock_irqtime = 1;
1843 }
1844
1845 void disable_sched_clock_irqtime(void)
1846 {
1847 sched_clock_irqtime = 0;
1848 }
1849
1850 #ifndef CONFIG_64BIT
1851 static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
1852
1853 static inline void irq_time_write_begin(void)
1854 {
1855 __this_cpu_inc(irq_time_seq.sequence);
1856 smp_wmb();
1857 }
1858
1859 static inline void irq_time_write_end(void)
1860 {
1861 smp_wmb();
1862 __this_cpu_inc(irq_time_seq.sequence);
1863 }
1864
1865 static inline u64 irq_time_read(int cpu)
1866 {
1867 u64 irq_time;
1868 unsigned seq;
1869
1870 do {
1871 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1872 irq_time = per_cpu(cpu_softirq_time, cpu) +
1873 per_cpu(cpu_hardirq_time, cpu);
1874 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1875
1876 return irq_time;
1877 }
1878 #else /* CONFIG_64BIT */
1879 static inline void irq_time_write_begin(void)
1880 {
1881 }
1882
1883 static inline void irq_time_write_end(void)
1884 {
1885 }
1886
1887 static inline u64 irq_time_read(int cpu)
1888 {
1889 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1890 }
1891 #endif /* CONFIG_64BIT */
1892
1893 /*
1894 * Called before incrementing preempt_count on {soft,}irq_enter
1895 * and before decrementing preempt_count on {soft,}irq_exit.
1896 */
1897 void account_system_vtime(struct task_struct *curr)
1898 {
1899 unsigned long flags;
1900 s64 delta;
1901 int cpu;
1902
1903 if (!sched_clock_irqtime)
1904 return;
1905
1906 local_irq_save(flags);
1907
1908 cpu = smp_processor_id();
1909 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
1910 __this_cpu_add(irq_start_time, delta);
1911
1912 irq_time_write_begin();
1913 /*
1914 * We do not account for softirq time from ksoftirqd here.
1915 * We want to continue accounting softirq time to ksoftirqd thread
1916 * in that case, so as not to confuse scheduler with a special task
1917 * that do not consume any time, but still wants to run.
1918 */
1919 if (hardirq_count())
1920 __this_cpu_add(cpu_hardirq_time, delta);
1921 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
1922 __this_cpu_add(cpu_softirq_time, delta);
1923
1924 irq_time_write_end();
1925 local_irq_restore(flags);
1926 }
1927 EXPORT_SYMBOL_GPL(account_system_vtime);
1928
1929 static void update_rq_clock_task(struct rq *rq, s64 delta)
1930 {
1931 s64 irq_delta;
1932
1933 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
1934
1935 /*
1936 * Since irq_time is only updated on {soft,}irq_exit, we might run into
1937 * this case when a previous update_rq_clock() happened inside a
1938 * {soft,}irq region.
1939 *
1940 * When this happens, we stop ->clock_task and only update the
1941 * prev_irq_time stamp to account for the part that fit, so that a next
1942 * update will consume the rest. This ensures ->clock_task is
1943 * monotonic.
1944 *
1945 * It does however cause some slight miss-attribution of {soft,}irq
1946 * time, a more accurate solution would be to update the irq_time using
1947 * the current rq->clock timestamp, except that would require using
1948 * atomic ops.
1949 */
1950 if (irq_delta > delta)
1951 irq_delta = delta;
1952
1953 rq->prev_irq_time += irq_delta;
1954 delta -= irq_delta;
1955 rq->clock_task += delta;
1956
1957 if (irq_delta && sched_feat(NONIRQ_POWER))
1958 sched_rt_avg_update(rq, irq_delta);
1959 }
1960
1961 static int irqtime_account_hi_update(void)
1962 {
1963 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1964 unsigned long flags;
1965 u64 latest_ns;
1966 int ret = 0;
1967
1968 local_irq_save(flags);
1969 latest_ns = this_cpu_read(cpu_hardirq_time);
1970 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
1971 ret = 1;
1972 local_irq_restore(flags);
1973 return ret;
1974 }
1975
1976 static int irqtime_account_si_update(void)
1977 {
1978 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1979 unsigned long flags;
1980 u64 latest_ns;
1981 int ret = 0;
1982
1983 local_irq_save(flags);
1984 latest_ns = this_cpu_read(cpu_softirq_time);
1985 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
1986 ret = 1;
1987 local_irq_restore(flags);
1988 return ret;
1989 }
1990
1991 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
1992
1993 #define sched_clock_irqtime (0)
1994
1995 static void update_rq_clock_task(struct rq *rq, s64 delta)
1996 {
1997 rq->clock_task += delta;
1998 }
1999
2000 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2001
2002 #include "sched_idletask.c"
2003 #include "sched_fair.c"
2004 #include "sched_rt.c"
2005 #include "sched_autogroup.c"
2006 #include "sched_stoptask.c"
2007 #ifdef CONFIG_SCHED_DEBUG
2008 # include "sched_debug.c"
2009 #endif
2010
2011 void sched_set_stop_task(int cpu, struct task_struct *stop)
2012 {
2013 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2014 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2015
2016 if (stop) {
2017 /*
2018 * Make it appear like a SCHED_FIFO task, its something
2019 * userspace knows about and won't get confused about.
2020 *
2021 * Also, it will make PI more or less work without too
2022 * much confusion -- but then, stop work should not
2023 * rely on PI working anyway.
2024 */
2025 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2026
2027 stop->sched_class = &stop_sched_class;
2028 }
2029
2030 cpu_rq(cpu)->stop = stop;
2031
2032 if (old_stop) {
2033 /*
2034 * Reset it back to a normal scheduling class so that
2035 * it can die in pieces.
2036 */
2037 old_stop->sched_class = &rt_sched_class;
2038 }
2039 }
2040
2041 /*
2042 * __normal_prio - return the priority that is based on the static prio
2043 */
2044 static inline int __normal_prio(struct task_struct *p)
2045 {
2046 return p->static_prio;
2047 }
2048
2049 /*
2050 * Calculate the expected normal priority: i.e. priority
2051 * without taking RT-inheritance into account. Might be
2052 * boosted by interactivity modifiers. Changes upon fork,
2053 * setprio syscalls, and whenever the interactivity
2054 * estimator recalculates.
2055 */
2056 static inline int normal_prio(struct task_struct *p)
2057 {
2058 int prio;
2059
2060 if (task_has_rt_policy(p))
2061 prio = MAX_RT_PRIO-1 - p->rt_priority;
2062 else
2063 prio = __normal_prio(p);
2064 return prio;
2065 }
2066
2067 /*
2068 * Calculate the current priority, i.e. the priority
2069 * taken into account by the scheduler. This value might
2070 * be boosted by RT tasks, or might be boosted by
2071 * interactivity modifiers. Will be RT if the task got
2072 * RT-boosted. If not then it returns p->normal_prio.
2073 */
2074 static int effective_prio(struct task_struct *p)
2075 {
2076 p->normal_prio = normal_prio(p);
2077 /*
2078 * If we are RT tasks or we were boosted to RT priority,
2079 * keep the priority unchanged. Otherwise, update priority
2080 * to the normal priority:
2081 */
2082 if (!rt_prio(p->prio))
2083 return p->normal_prio;
2084 return p->prio;
2085 }
2086
2087 /**
2088 * task_curr - is this task currently executing on a CPU?
2089 * @p: the task in question.
2090 */
2091 inline int task_curr(const struct task_struct *p)
2092 {
2093 return cpu_curr(task_cpu(p)) == p;
2094 }
2095
2096 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2097 const struct sched_class *prev_class,
2098 int oldprio)
2099 {
2100 if (prev_class != p->sched_class) {
2101 if (prev_class->switched_from)
2102 prev_class->switched_from(rq, p);
2103 p->sched_class->switched_to(rq, p);
2104 } else if (oldprio != p->prio)
2105 p->sched_class->prio_changed(rq, p, oldprio);
2106 }
2107
2108 static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2109 {
2110 const struct sched_class *class;
2111
2112 if (p->sched_class == rq->curr->sched_class) {
2113 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2114 } else {
2115 for_each_class(class) {
2116 if (class == rq->curr->sched_class)
2117 break;
2118 if (class == p->sched_class) {
2119 resched_task(rq->curr);
2120 break;
2121 }
2122 }
2123 }
2124
2125 /*
2126 * A queue event has occurred, and we're going to schedule. In
2127 * this case, we can save a useless back to back clock update.
2128 */
2129 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
2130 rq->skip_clock_update = 1;
2131 }
2132
2133 #ifdef CONFIG_SMP
2134 /*
2135 * Is this task likely cache-hot:
2136 */
2137 static int
2138 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2139 {
2140 s64 delta;
2141
2142 if (p->sched_class != &fair_sched_class)
2143 return 0;
2144
2145 if (unlikely(p->policy == SCHED_IDLE))
2146 return 0;
2147
2148 /*
2149 * Buddy candidates are cache hot:
2150 */
2151 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
2152 (&p->se == cfs_rq_of(&p->se)->next ||
2153 &p->se == cfs_rq_of(&p->se)->last))
2154 return 1;
2155
2156 if (sysctl_sched_migration_cost == -1)
2157 return 1;
2158 if (sysctl_sched_migration_cost == 0)
2159 return 0;
2160
2161 delta = now - p->se.exec_start;
2162
2163 return delta < (s64)sysctl_sched_migration_cost;
2164 }
2165
2166 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2167 {
2168 #ifdef CONFIG_SCHED_DEBUG
2169 /*
2170 * We should never call set_task_cpu() on a blocked task,
2171 * ttwu() will sort out the placement.
2172 */
2173 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2174 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2175 #endif
2176
2177 trace_sched_migrate_task(p, new_cpu);
2178
2179 if (task_cpu(p) != new_cpu) {
2180 p->se.nr_migrations++;
2181 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2182 }
2183
2184 __set_task_cpu(p, new_cpu);
2185 }
2186
2187 struct migration_arg {
2188 struct task_struct *task;
2189 int dest_cpu;
2190 };
2191
2192 static int migration_cpu_stop(void *data);
2193
2194 /*
2195 * The task's runqueue lock must be held.
2196 * Returns true if you have to wait for migration thread.
2197 */
2198 static bool need_migrate_task(struct task_struct *p)
2199 {
2200 /*
2201 * If the task is not on a runqueue (and not running), then
2202 * the next wake-up will properly place the task.
2203 */
2204 bool running = p->on_rq || p->on_cpu;
2205 smp_rmb(); /* finish_lock_switch() */
2206 return running;
2207 }
2208
2209 /*
2210 * wait_task_inactive - wait for a thread to unschedule.
2211 *
2212 * If @match_state is nonzero, it's the @p->state value just checked and
2213 * not expected to change. If it changes, i.e. @p might have woken up,
2214 * then return zero. When we succeed in waiting for @p to be off its CPU,
2215 * we return a positive number (its total switch count). If a second call
2216 * a short while later returns the same number, the caller can be sure that
2217 * @p has remained unscheduled the whole time.
2218 *
2219 * The caller must ensure that the task *will* unschedule sometime soon,
2220 * else this function might spin for a *long* time. This function can't
2221 * be called with interrupts off, or it may introduce deadlock with
2222 * smp_call_function() if an IPI is sent by the same process we are
2223 * waiting to become inactive.
2224 */
2225 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2226 {
2227 unsigned long flags;
2228 int running, on_rq;
2229 unsigned long ncsw;
2230 struct rq *rq;
2231
2232 for (;;) {
2233 /*
2234 * We do the initial early heuristics without holding
2235 * any task-queue locks at all. We'll only try to get
2236 * the runqueue lock when things look like they will
2237 * work out!
2238 */
2239 rq = task_rq(p);
2240
2241 /*
2242 * If the task is actively running on another CPU
2243 * still, just relax and busy-wait without holding
2244 * any locks.
2245 *
2246 * NOTE! Since we don't hold any locks, it's not
2247 * even sure that "rq" stays as the right runqueue!
2248 * But we don't care, since "task_running()" will
2249 * return false if the runqueue has changed and p
2250 * is actually now running somewhere else!
2251 */
2252 while (task_running(rq, p)) {
2253 if (match_state && unlikely(p->state != match_state))
2254 return 0;
2255 cpu_relax();
2256 }
2257
2258 /*
2259 * Ok, time to look more closely! We need the rq
2260 * lock now, to be *sure*. If we're wrong, we'll
2261 * just go back and repeat.
2262 */
2263 rq = task_rq_lock(p, &flags);
2264 trace_sched_wait_task(p);
2265 running = task_running(rq, p);
2266 on_rq = p->on_rq;
2267 ncsw = 0;
2268 if (!match_state || p->state == match_state)
2269 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2270 task_rq_unlock(rq, &flags);
2271
2272 /*
2273 * If it changed from the expected state, bail out now.
2274 */
2275 if (unlikely(!ncsw))
2276 break;
2277
2278 /*
2279 * Was it really running after all now that we
2280 * checked with the proper locks actually held?
2281 *
2282 * Oops. Go back and try again..
2283 */
2284 if (unlikely(running)) {
2285 cpu_relax();
2286 continue;
2287 }
2288
2289 /*
2290 * It's not enough that it's not actively running,
2291 * it must be off the runqueue _entirely_, and not
2292 * preempted!
2293 *
2294 * So if it was still runnable (but just not actively
2295 * running right now), it's preempted, and we should
2296 * yield - it could be a while.
2297 */
2298 if (unlikely(on_rq)) {
2299 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
2300
2301 set_current_state(TASK_UNINTERRUPTIBLE);
2302 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
2303 continue;
2304 }
2305
2306 /*
2307 * Ahh, all good. It wasn't running, and it wasn't
2308 * runnable, which means that it will never become
2309 * running in the future either. We're all done!
2310 */
2311 break;
2312 }
2313
2314 return ncsw;
2315 }
2316
2317 /***
2318 * kick_process - kick a running thread to enter/exit the kernel
2319 * @p: the to-be-kicked thread
2320 *
2321 * Cause a process which is running on another CPU to enter
2322 * kernel-mode, without any delay. (to get signals handled.)
2323 *
2324 * NOTE: this function doesn't have to take the runqueue lock,
2325 * because all it wants to ensure is that the remote task enters
2326 * the kernel. If the IPI races and the task has been migrated
2327 * to another CPU then no harm is done and the purpose has been
2328 * achieved as well.
2329 */
2330 void kick_process(struct task_struct *p)
2331 {
2332 int cpu;
2333
2334 preempt_disable();
2335 cpu = task_cpu(p);
2336 if ((cpu != smp_processor_id()) && task_curr(p))
2337 smp_send_reschedule(cpu);
2338 preempt_enable();
2339 }
2340 EXPORT_SYMBOL_GPL(kick_process);
2341 #endif /* CONFIG_SMP */
2342
2343 #ifdef CONFIG_SMP
2344 /*
2345 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
2346 */
2347 static int select_fallback_rq(int cpu, struct task_struct *p)
2348 {
2349 int dest_cpu;
2350 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2351
2352 /* Look for allowed, online CPU in same node. */
2353 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2354 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2355 return dest_cpu;
2356
2357 /* Any allowed, online CPU? */
2358 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2359 if (dest_cpu < nr_cpu_ids)
2360 return dest_cpu;
2361
2362 /* No more Mr. Nice Guy. */
2363 dest_cpu = cpuset_cpus_allowed_fallback(p);
2364 /*
2365 * Don't tell them about moving exiting tasks or
2366 * kernel threads (both mm NULL), since they never
2367 * leave kernel.
2368 */
2369 if (p->mm && printk_ratelimit()) {
2370 printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
2371 task_pid_nr(p), p->comm, cpu);
2372 }
2373
2374 return dest_cpu;
2375 }
2376
2377 /*
2378 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
2379 */
2380 static inline
2381 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
2382 {
2383 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
2384
2385 /*
2386 * In order not to call set_task_cpu() on a blocking task we need
2387 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2388 * cpu.
2389 *
2390 * Since this is common to all placement strategies, this lives here.
2391 *
2392 * [ this allows ->select_task() to simply return task_cpu(p) and
2393 * not worry about this generic constraint ]
2394 */
2395 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
2396 !cpu_online(cpu)))
2397 cpu = select_fallback_rq(task_cpu(p), p);
2398
2399 return cpu;
2400 }
2401
2402 static void update_avg(u64 *avg, u64 sample)
2403 {
2404 s64 diff = sample - *avg;
2405 *avg += diff >> 3;
2406 }
2407 #endif
2408
2409 static void
2410 ttwu_stat(struct rq *rq, struct task_struct *p, int cpu, int wake_flags)
2411 {
2412 #ifdef CONFIG_SCHEDSTATS
2413 #ifdef CONFIG_SMP
2414 int this_cpu = smp_processor_id();
2415
2416 if (cpu == this_cpu) {
2417 schedstat_inc(rq, ttwu_local);
2418 schedstat_inc(p, se.statistics.nr_wakeups_local);
2419 } else {
2420 struct sched_domain *sd;
2421
2422 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2423 for_each_domain(this_cpu, sd) {
2424 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2425 schedstat_inc(sd, ttwu_wake_remote);
2426 break;
2427 }
2428 }
2429 }
2430 #endif /* CONFIG_SMP */
2431
2432 schedstat_inc(rq, ttwu_count);
2433 schedstat_inc(p, se.statistics.nr_wakeups);
2434
2435 if (wake_flags & WF_SYNC)
2436 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2437
2438 if (cpu != task_cpu(p))
2439 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2440
2441 #endif /* CONFIG_SCHEDSTATS */
2442 }
2443
2444 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
2445 {
2446 activate_task(rq, p, en_flags);
2447 p->on_rq = 1;
2448
2449 /* if a worker is waking up, notify workqueue */
2450 if (p->flags & PF_WQ_WORKER)
2451 wq_worker_waking_up(p, cpu_of(rq));
2452 }
2453
2454 static void
2455 ttwu_post_activation(struct task_struct *p, struct rq *rq, int wake_flags)
2456 {
2457 trace_sched_wakeup(p, true);
2458 check_preempt_curr(rq, p, wake_flags);
2459
2460 p->state = TASK_RUNNING;
2461 #ifdef CONFIG_SMP
2462 if (p->sched_class->task_woken)
2463 p->sched_class->task_woken(rq, p);
2464
2465 if (unlikely(rq->idle_stamp)) {
2466 u64 delta = rq->clock - rq->idle_stamp;
2467 u64 max = 2*sysctl_sched_migration_cost;
2468
2469 if (delta > max)
2470 rq->avg_idle = max;
2471 else
2472 update_avg(&rq->avg_idle, delta);
2473 rq->idle_stamp = 0;
2474 }
2475 #endif
2476 }
2477
2478 /**
2479 * try_to_wake_up - wake up a thread
2480 * @p: the thread to be awakened
2481 * @state: the mask of task states that can be woken
2482 * @wake_flags: wake modifier flags (WF_*)
2483 *
2484 * Put it on the run-queue if it's not already there. The "current"
2485 * thread is always on the run-queue (except when the actual
2486 * re-schedule is in progress), and as such you're allowed to do
2487 * the simpler "current->state = TASK_RUNNING" to mark yourself
2488 * runnable without the overhead of this.
2489 *
2490 * Returns %true if @p was woken up, %false if it was already running
2491 * or @state didn't match @p's state.
2492 */
2493 static int try_to_wake_up(struct task_struct *p, unsigned int state,
2494 int wake_flags)
2495 {
2496 int cpu, orig_cpu, this_cpu, success = 0;
2497 unsigned long flags;
2498 unsigned long en_flags = ENQUEUE_WAKEUP;
2499 struct rq *rq;
2500
2501 this_cpu = get_cpu();
2502
2503 smp_wmb();
2504 raw_spin_lock_irqsave(&p->pi_lock, flags);
2505 rq = __task_rq_lock(p);
2506 if (!(p->state & state))
2507 goto out;
2508
2509 cpu = task_cpu(p);
2510
2511 if (p->on_rq)
2512 goto out_running;
2513
2514 orig_cpu = cpu;
2515 #ifdef CONFIG_SMP
2516 if (unlikely(task_running(rq, p)))
2517 goto out_activate;
2518
2519 /*
2520 * In order to handle concurrent wakeups and release the rq->lock
2521 * we put the task in TASK_WAKING state.
2522 *
2523 * First fix up the nr_uninterruptible count:
2524 */
2525 if (task_contributes_to_load(p)) {
2526 if (likely(cpu_online(orig_cpu)))
2527 rq->nr_uninterruptible--;
2528 else
2529 this_rq()->nr_uninterruptible--;
2530 }
2531 p->state = TASK_WAKING;
2532
2533 if (p->sched_class->task_waking) {
2534 p->sched_class->task_waking(rq, p);
2535 en_flags |= ENQUEUE_WAKING;
2536 }
2537
2538 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
2539 if (cpu != orig_cpu)
2540 set_task_cpu(p, cpu);
2541 __task_rq_unlock(rq);
2542
2543 rq = cpu_rq(cpu);
2544 raw_spin_lock(&rq->lock);
2545
2546 /*
2547 * We migrated the task without holding either rq->lock, however
2548 * since the task is not on the task list itself, nobody else
2549 * will try and migrate the task, hence the rq should match the
2550 * cpu we just moved it to.
2551 */
2552 WARN_ON(task_cpu(p) != cpu);
2553 WARN_ON(p->state != TASK_WAKING);
2554
2555 out_activate:
2556 #endif /* CONFIG_SMP */
2557 ttwu_activate(rq, p, en_flags);
2558 out_running:
2559 ttwu_post_activation(p, rq, wake_flags);
2560 ttwu_stat(rq, p, cpu, wake_flags);
2561 success = 1;
2562 out:
2563 __task_rq_unlock(rq);
2564 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2565 put_cpu();
2566
2567 return success;
2568 }
2569
2570 /**
2571 * try_to_wake_up_local - try to wake up a local task with rq lock held
2572 * @p: the thread to be awakened
2573 *
2574 * Put @p on the run-queue if it's not already there. The caller must
2575 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2576 * the current task. this_rq() stays locked over invocation.
2577 */
2578 static void try_to_wake_up_local(struct task_struct *p)
2579 {
2580 struct rq *rq = task_rq(p);
2581
2582 BUG_ON(rq != this_rq());
2583 BUG_ON(p == current);
2584 lockdep_assert_held(&rq->lock);
2585
2586 if (!(p->state & TASK_NORMAL))
2587 return;
2588
2589 if (!p->on_rq)
2590 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2591
2592 ttwu_post_activation(p, rq, 0);
2593 ttwu_stat(rq, p, smp_processor_id(), 0);
2594 }
2595
2596 /**
2597 * wake_up_process - Wake up a specific process
2598 * @p: The process to be woken up.
2599 *
2600 * Attempt to wake up the nominated process and move it to the set of runnable
2601 * processes. Returns 1 if the process was woken up, 0 if it was already
2602 * running.
2603 *
2604 * It may be assumed that this function implies a write memory barrier before
2605 * changing the task state if and only if any tasks are woken up.
2606 */
2607 int wake_up_process(struct task_struct *p)
2608 {
2609 return try_to_wake_up(p, TASK_ALL, 0);
2610 }
2611 EXPORT_SYMBOL(wake_up_process);
2612
2613 int wake_up_state(struct task_struct *p, unsigned int state)
2614 {
2615 return try_to_wake_up(p, state, 0);
2616 }
2617
2618 /*
2619 * Perform scheduler related setup for a newly forked process p.
2620 * p is forked by current.
2621 *
2622 * __sched_fork() is basic setup used by init_idle() too:
2623 */
2624 static void __sched_fork(struct task_struct *p)
2625 {
2626 p->on_rq = 0;
2627
2628 p->se.on_rq = 0;
2629 p->se.exec_start = 0;
2630 p->se.sum_exec_runtime = 0;
2631 p->se.prev_sum_exec_runtime = 0;
2632 p->se.nr_migrations = 0;
2633 p->se.vruntime = 0;
2634 INIT_LIST_HEAD(&p->se.group_node);
2635
2636 #ifdef CONFIG_SCHEDSTATS
2637 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2638 #endif
2639
2640 INIT_LIST_HEAD(&p->rt.run_list);
2641
2642 #ifdef CONFIG_PREEMPT_NOTIFIERS
2643 INIT_HLIST_HEAD(&p->preempt_notifiers);
2644 #endif
2645 }
2646
2647 /*
2648 * fork()/clone()-time setup:
2649 */
2650 void sched_fork(struct task_struct *p, int clone_flags)
2651 {
2652 int cpu = get_cpu();
2653
2654 __sched_fork(p);
2655 /*
2656 * We mark the process as running here. This guarantees that
2657 * nobody will actually run it, and a signal or other external
2658 * event cannot wake it up and insert it on the runqueue either.
2659 */
2660 p->state = TASK_RUNNING;
2661
2662 /*
2663 * Revert to default priority/policy on fork if requested.
2664 */
2665 if (unlikely(p->sched_reset_on_fork)) {
2666 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2667 p->policy = SCHED_NORMAL;
2668 p->normal_prio = p->static_prio;
2669 }
2670
2671 if (PRIO_TO_NICE(p->static_prio) < 0) {
2672 p->static_prio = NICE_TO_PRIO(0);
2673 p->normal_prio = p->static_prio;
2674 set_load_weight(p);
2675 }
2676
2677 /*
2678 * We don't need the reset flag anymore after the fork. It has
2679 * fulfilled its duty:
2680 */
2681 p->sched_reset_on_fork = 0;
2682 }
2683
2684 /*
2685 * Make sure we do not leak PI boosting priority to the child.
2686 */
2687 p->prio = current->normal_prio;
2688
2689 if (!rt_prio(p->prio))
2690 p->sched_class = &fair_sched_class;
2691
2692 if (p->sched_class->task_fork)
2693 p->sched_class->task_fork(p);
2694
2695 /*
2696 * The child is not yet in the pid-hash so no cgroup attach races,
2697 * and the cgroup is pinned to this child due to cgroup_fork()
2698 * is ran before sched_fork().
2699 *
2700 * Silence PROVE_RCU.
2701 */
2702 rcu_read_lock();
2703 set_task_cpu(p, cpu);
2704 rcu_read_unlock();
2705
2706 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2707 if (likely(sched_info_on()))
2708 memset(&p->sched_info, 0, sizeof(p->sched_info));
2709 #endif
2710 #if defined(CONFIG_SMP)
2711 p->on_cpu = 0;
2712 #endif
2713 #ifdef CONFIG_PREEMPT
2714 /* Want to start with kernel preemption disabled. */
2715 task_thread_info(p)->preempt_count = 1;
2716 #endif
2717 #ifdef CONFIG_SMP
2718 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2719 #endif
2720
2721 put_cpu();
2722 }
2723
2724 /*
2725 * wake_up_new_task - wake up a newly created task for the first time.
2726 *
2727 * This function will do some initial scheduler statistics housekeeping
2728 * that must be done for every newly created context, then puts the task
2729 * on the runqueue and wakes it.
2730 */
2731 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2732 {
2733 unsigned long flags;
2734 struct rq *rq;
2735 int cpu __maybe_unused = get_cpu();
2736
2737 #ifdef CONFIG_SMP
2738 rq = task_rq_lock(p, &flags);
2739 p->state = TASK_WAKING;
2740
2741 /*
2742 * Fork balancing, do it here and not earlier because:
2743 * - cpus_allowed can change in the fork path
2744 * - any previously selected cpu might disappear through hotplug
2745 *
2746 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2747 * without people poking at ->cpus_allowed.
2748 */
2749 cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
2750 set_task_cpu(p, cpu);
2751
2752 p->state = TASK_RUNNING;
2753 task_rq_unlock(rq, &flags);
2754 #endif
2755
2756 rq = task_rq_lock(p, &flags);
2757 activate_task(rq, p, 0);
2758 p->on_rq = 1;
2759 trace_sched_wakeup_new(p, true);
2760 check_preempt_curr(rq, p, WF_FORK);
2761 #ifdef CONFIG_SMP
2762 if (p->sched_class->task_woken)
2763 p->sched_class->task_woken(rq, p);
2764 #endif
2765 task_rq_unlock(rq, &flags);
2766 put_cpu();
2767 }
2768
2769 #ifdef CONFIG_PREEMPT_NOTIFIERS
2770
2771 /**
2772 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2773 * @notifier: notifier struct to register
2774 */
2775 void preempt_notifier_register(struct preempt_notifier *notifier)
2776 {
2777 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2778 }
2779 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2780
2781 /**
2782 * preempt_notifier_unregister - no longer interested in preemption notifications
2783 * @notifier: notifier struct to unregister
2784 *
2785 * This is safe to call from within a preemption notifier.
2786 */
2787 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2788 {
2789 hlist_del(&notifier->link);
2790 }
2791 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2792
2793 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2794 {
2795 struct preempt_notifier *notifier;
2796 struct hlist_node *node;
2797
2798 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2799 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2800 }
2801
2802 static void
2803 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2804 struct task_struct *next)
2805 {
2806 struct preempt_notifier *notifier;
2807 struct hlist_node *node;
2808
2809 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2810 notifier->ops->sched_out(notifier, next);
2811 }
2812
2813 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2814
2815 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2816 {
2817 }
2818
2819 static void
2820 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2821 struct task_struct *next)
2822 {
2823 }
2824
2825 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2826
2827 /**
2828 * prepare_task_switch - prepare to switch tasks
2829 * @rq: the runqueue preparing to switch
2830 * @prev: the current task that is being switched out
2831 * @next: the task we are going to switch to.
2832 *
2833 * This is called with the rq lock held and interrupts off. It must
2834 * be paired with a subsequent finish_task_switch after the context
2835 * switch.
2836 *
2837 * prepare_task_switch sets up locking and calls architecture specific
2838 * hooks.
2839 */
2840 static inline void
2841 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2842 struct task_struct *next)
2843 {
2844 sched_info_switch(prev, next);
2845 perf_event_task_sched_out(prev, next);
2846 fire_sched_out_preempt_notifiers(prev, next);
2847 prepare_lock_switch(rq, next);
2848 prepare_arch_switch(next);
2849 trace_sched_switch(prev, next);
2850 }
2851
2852 /**
2853 * finish_task_switch - clean up after a task-switch
2854 * @rq: runqueue associated with task-switch
2855 * @prev: the thread we just switched away from.
2856 *
2857 * finish_task_switch must be called after the context switch, paired
2858 * with a prepare_task_switch call before the context switch.
2859 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2860 * and do any other architecture-specific cleanup actions.
2861 *
2862 * Note that we may have delayed dropping an mm in context_switch(). If
2863 * so, we finish that here outside of the runqueue lock. (Doing it
2864 * with the lock held can cause deadlocks; see schedule() for
2865 * details.)
2866 */
2867 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2868 __releases(rq->lock)
2869 {
2870 struct mm_struct *mm = rq->prev_mm;
2871 long prev_state;
2872
2873 rq->prev_mm = NULL;
2874
2875 /*
2876 * A task struct has one reference for the use as "current".
2877 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2878 * schedule one last time. The schedule call will never return, and
2879 * the scheduled task must drop that reference.
2880 * The test for TASK_DEAD must occur while the runqueue locks are
2881 * still held, otherwise prev could be scheduled on another cpu, die
2882 * there before we look at prev->state, and then the reference would
2883 * be dropped twice.
2884 * Manfred Spraul <manfred@colorfullife.com>
2885 */
2886 prev_state = prev->state;
2887 finish_arch_switch(prev);
2888 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2889 local_irq_disable();
2890 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2891 perf_event_task_sched_in(current);
2892 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2893 local_irq_enable();
2894 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2895 finish_lock_switch(rq, prev);
2896
2897 fire_sched_in_preempt_notifiers(current);
2898 if (mm)
2899 mmdrop(mm);
2900 if (unlikely(prev_state == TASK_DEAD)) {
2901 /*
2902 * Remove function-return probe instances associated with this
2903 * task and put them back on the free list.
2904 */
2905 kprobe_flush_task(prev);
2906 put_task_struct(prev);
2907 }
2908 }
2909
2910 #ifdef CONFIG_SMP
2911
2912 /* assumes rq->lock is held */
2913 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2914 {
2915 if (prev->sched_class->pre_schedule)
2916 prev->sched_class->pre_schedule(rq, prev);
2917 }
2918
2919 /* rq->lock is NOT held, but preemption is disabled */
2920 static inline void post_schedule(struct rq *rq)
2921 {
2922 if (rq->post_schedule) {
2923 unsigned long flags;
2924
2925 raw_spin_lock_irqsave(&rq->lock, flags);
2926 if (rq->curr->sched_class->post_schedule)
2927 rq->curr->sched_class->post_schedule(rq);
2928 raw_spin_unlock_irqrestore(&rq->lock, flags);
2929
2930 rq->post_schedule = 0;
2931 }
2932 }
2933
2934 #else
2935
2936 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2937 {
2938 }
2939
2940 static inline void post_schedule(struct rq *rq)
2941 {
2942 }
2943
2944 #endif
2945
2946 /**
2947 * schedule_tail - first thing a freshly forked thread must call.
2948 * @prev: the thread we just switched away from.
2949 */
2950 asmlinkage void schedule_tail(struct task_struct *prev)
2951 __releases(rq->lock)
2952 {
2953 struct rq *rq = this_rq();
2954
2955 finish_task_switch(rq, prev);
2956
2957 /*
2958 * FIXME: do we need to worry about rq being invalidated by the
2959 * task_switch?
2960 */
2961 post_schedule(rq);
2962
2963 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2964 /* In this case, finish_task_switch does not reenable preemption */
2965 preempt_enable();
2966 #endif
2967 if (current->set_child_tid)
2968 put_user(task_pid_vnr(current), current->set_child_tid);
2969 }
2970
2971 /*
2972 * context_switch - switch to the new MM and the new
2973 * thread's register state.
2974 */
2975 static inline void
2976 context_switch(struct rq *rq, struct task_struct *prev,
2977 struct task_struct *next)
2978 {
2979 struct mm_struct *mm, *oldmm;
2980
2981 prepare_task_switch(rq, prev, next);
2982
2983 mm = next->mm;
2984 oldmm = prev->active_mm;
2985 /*
2986 * For paravirt, this is coupled with an exit in switch_to to
2987 * combine the page table reload and the switch backend into
2988 * one hypercall.
2989 */
2990 arch_start_context_switch(prev);
2991
2992 if (!mm) {
2993 next->active_mm = oldmm;
2994 atomic_inc(&oldmm->mm_count);
2995 enter_lazy_tlb(oldmm, next);
2996 } else
2997 switch_mm(oldmm, mm, next);
2998
2999 if (!prev->mm) {
3000 prev->active_mm = NULL;
3001 rq->prev_mm = oldmm;
3002 }
3003 /*
3004 * Since the runqueue lock will be released by the next
3005 * task (which is an invalid locking op but in the case
3006 * of the scheduler it's an obvious special-case), so we
3007 * do an early lockdep release here:
3008 */
3009 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
3010 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3011 #endif
3012
3013 /* Here we just switch the register state and the stack. */
3014 switch_to(prev, next, prev);
3015
3016 barrier();
3017 /*
3018 * this_rq must be evaluated again because prev may have moved
3019 * CPUs since it called schedule(), thus the 'rq' on its stack
3020 * frame will be invalid.
3021 */
3022 finish_task_switch(this_rq(), prev);
3023 }
3024
3025 /*
3026 * nr_running, nr_uninterruptible and nr_context_switches:
3027 *
3028 * externally visible scheduler statistics: current number of runnable
3029 * threads, current number of uninterruptible-sleeping threads, total
3030 * number of context switches performed since bootup.
3031 */
3032 unsigned long nr_running(void)
3033 {
3034 unsigned long i, sum = 0;
3035
3036 for_each_online_cpu(i)
3037 sum += cpu_rq(i)->nr_running;
3038
3039 return sum;
3040 }
3041
3042 unsigned long nr_uninterruptible(void)
3043 {
3044 unsigned long i, sum = 0;
3045
3046 for_each_possible_cpu(i)
3047 sum += cpu_rq(i)->nr_uninterruptible;
3048
3049 /*
3050 * Since we read the counters lockless, it might be slightly
3051 * inaccurate. Do not allow it to go below zero though:
3052 */
3053 if (unlikely((long)sum < 0))
3054 sum = 0;
3055
3056 return sum;
3057 }
3058
3059 unsigned long long nr_context_switches(void)
3060 {
3061 int i;
3062 unsigned long long sum = 0;
3063
3064 for_each_possible_cpu(i)
3065 sum += cpu_rq(i)->nr_switches;
3066
3067 return sum;
3068 }
3069
3070 unsigned long nr_iowait(void)
3071 {
3072 unsigned long i, sum = 0;
3073
3074 for_each_possible_cpu(i)
3075 sum += atomic_read(&cpu_rq(i)->nr_iowait);
3076
3077 return sum;
3078 }
3079
3080 unsigned long nr_iowait_cpu(int cpu)
3081 {
3082 struct rq *this = cpu_rq(cpu);
3083 return atomic_read(&this->nr_iowait);
3084 }
3085
3086 unsigned long this_cpu_load(void)
3087 {
3088 struct rq *this = this_rq();
3089 return this->cpu_load[0];
3090 }
3091
3092
3093 /* Variables and functions for calc_load */
3094 static atomic_long_t calc_load_tasks;
3095 static unsigned long calc_load_update;
3096 unsigned long avenrun[3];
3097 EXPORT_SYMBOL(avenrun);
3098
3099 static long calc_load_fold_active(struct rq *this_rq)
3100 {
3101 long nr_active, delta = 0;
3102
3103 nr_active = this_rq->nr_running;
3104 nr_active += (long) this_rq->nr_uninterruptible;
3105
3106 if (nr_active != this_rq->calc_load_active) {
3107 delta = nr_active - this_rq->calc_load_active;
3108 this_rq->calc_load_active = nr_active;
3109 }
3110
3111 return delta;
3112 }
3113
3114 static unsigned long
3115 calc_load(unsigned long load, unsigned long exp, unsigned long active)
3116 {
3117 load *= exp;
3118 load += active * (FIXED_1 - exp);
3119 load += 1UL << (FSHIFT - 1);
3120 return load >> FSHIFT;
3121 }
3122
3123 #ifdef CONFIG_NO_HZ
3124 /*
3125 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3126 *
3127 * When making the ILB scale, we should try to pull this in as well.
3128 */
3129 static atomic_long_t calc_load_tasks_idle;
3130
3131 static void calc_load_account_idle(struct rq *this_rq)
3132 {
3133 long delta;
3134
3135 delta = calc_load_fold_active(this_rq);
3136 if (delta)
3137 atomic_long_add(delta, &calc_load_tasks_idle);
3138 }
3139
3140 static long calc_load_fold_idle(void)
3141 {
3142 long delta = 0;
3143
3144 /*
3145 * Its got a race, we don't care...
3146 */
3147 if (atomic_long_read(&calc_load_tasks_idle))
3148 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
3149
3150 return delta;
3151 }
3152
3153 /**
3154 * fixed_power_int - compute: x^n, in O(log n) time
3155 *
3156 * @x: base of the power
3157 * @frac_bits: fractional bits of @x
3158 * @n: power to raise @x to.
3159 *
3160 * By exploiting the relation between the definition of the natural power
3161 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3162 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3163 * (where: n_i \elem {0, 1}, the binary vector representing n),
3164 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3165 * of course trivially computable in O(log_2 n), the length of our binary
3166 * vector.
3167 */
3168 static unsigned long
3169 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
3170 {
3171 unsigned long result = 1UL << frac_bits;
3172
3173 if (n) for (;;) {
3174 if (n & 1) {
3175 result *= x;
3176 result += 1UL << (frac_bits - 1);
3177 result >>= frac_bits;
3178 }
3179 n >>= 1;
3180 if (!n)
3181 break;
3182 x *= x;
3183 x += 1UL << (frac_bits - 1);
3184 x >>= frac_bits;
3185 }
3186
3187 return result;
3188 }
3189
3190 /*
3191 * a1 = a0 * e + a * (1 - e)
3192 *
3193 * a2 = a1 * e + a * (1 - e)
3194 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3195 * = a0 * e^2 + a * (1 - e) * (1 + e)
3196 *
3197 * a3 = a2 * e + a * (1 - e)
3198 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3199 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3200 *
3201 * ...
3202 *
3203 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3204 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3205 * = a0 * e^n + a * (1 - e^n)
3206 *
3207 * [1] application of the geometric series:
3208 *
3209 * n 1 - x^(n+1)
3210 * S_n := \Sum x^i = -------------
3211 * i=0 1 - x
3212 */
3213 static unsigned long
3214 calc_load_n(unsigned long load, unsigned long exp,
3215 unsigned long active, unsigned int n)
3216 {
3217
3218 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
3219 }
3220
3221 /*
3222 * NO_HZ can leave us missing all per-cpu ticks calling
3223 * calc_load_account_active(), but since an idle CPU folds its delta into
3224 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3225 * in the pending idle delta if our idle period crossed a load cycle boundary.
3226 *
3227 * Once we've updated the global active value, we need to apply the exponential
3228 * weights adjusted to the number of cycles missed.
3229 */
3230 static void calc_global_nohz(unsigned long ticks)
3231 {
3232 long delta, active, n;
3233
3234 if (time_before(jiffies, calc_load_update))
3235 return;
3236
3237 /*
3238 * If we crossed a calc_load_update boundary, make sure to fold
3239 * any pending idle changes, the respective CPUs might have
3240 * missed the tick driven calc_load_account_active() update
3241 * due to NO_HZ.
3242 */
3243 delta = calc_load_fold_idle();
3244 if (delta)
3245 atomic_long_add(delta, &calc_load_tasks);
3246
3247 /*
3248 * If we were idle for multiple load cycles, apply them.
3249 */
3250 if (ticks >= LOAD_FREQ) {
3251 n = ticks / LOAD_FREQ;
3252
3253 active = atomic_long_read(&calc_load_tasks);
3254 active = active > 0 ? active * FIXED_1 : 0;
3255
3256 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
3257 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
3258 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
3259
3260 calc_load_update += n * LOAD_FREQ;
3261 }
3262
3263 /*
3264 * Its possible the remainder of the above division also crosses
3265 * a LOAD_FREQ period, the regular check in calc_global_load()
3266 * which comes after this will take care of that.
3267 *
3268 * Consider us being 11 ticks before a cycle completion, and us
3269 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
3270 * age us 4 cycles, and the test in calc_global_load() will
3271 * pick up the final one.
3272 */
3273 }
3274 #else
3275 static void calc_load_account_idle(struct rq *this_rq)
3276 {
3277 }
3278
3279 static inline long calc_load_fold_idle(void)
3280 {
3281 return 0;
3282 }
3283
3284 static void calc_global_nohz(unsigned long ticks)
3285 {
3286 }
3287 #endif
3288
3289 /**
3290 * get_avenrun - get the load average array
3291 * @loads: pointer to dest load array
3292 * @offset: offset to add
3293 * @shift: shift count to shift the result left
3294 *
3295 * These values are estimates at best, so no need for locking.
3296 */
3297 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3298 {
3299 loads[0] = (avenrun[0] + offset) << shift;
3300 loads[1] = (avenrun[1] + offset) << shift;
3301 loads[2] = (avenrun[2] + offset) << shift;
3302 }
3303
3304 /*
3305 * calc_load - update the avenrun load estimates 10 ticks after the
3306 * CPUs have updated calc_load_tasks.
3307 */
3308 void calc_global_load(unsigned long ticks)
3309 {
3310 long active;
3311
3312 calc_global_nohz(ticks);
3313
3314 if (time_before(jiffies, calc_load_update + 10))
3315 return;
3316
3317 active = atomic_long_read(&calc_load_tasks);
3318 active = active > 0 ? active * FIXED_1 : 0;
3319
3320 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3321 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3322 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3323
3324 calc_load_update += LOAD_FREQ;
3325 }
3326
3327 /*
3328 * Called from update_cpu_load() to periodically update this CPU's
3329 * active count.
3330 */
3331 static void calc_load_account_active(struct rq *this_rq)
3332 {
3333 long delta;
3334
3335 if (time_before(jiffies, this_rq->calc_load_update))
3336 return;
3337
3338 delta = calc_load_fold_active(this_rq);
3339 delta += calc_load_fold_idle();
3340 if (delta)
3341 atomic_long_add(delta, &calc_load_tasks);
3342
3343 this_rq->calc_load_update += LOAD_FREQ;
3344 }
3345
3346 /*
3347 * The exact cpuload at various idx values, calculated at every tick would be
3348 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3349 *
3350 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3351 * on nth tick when cpu may be busy, then we have:
3352 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3353 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3354 *
3355 * decay_load_missed() below does efficient calculation of
3356 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3357 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3358 *
3359 * The calculation is approximated on a 128 point scale.
3360 * degrade_zero_ticks is the number of ticks after which load at any
3361 * particular idx is approximated to be zero.
3362 * degrade_factor is a precomputed table, a row for each load idx.
3363 * Each column corresponds to degradation factor for a power of two ticks,
3364 * based on 128 point scale.
3365 * Example:
3366 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3367 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3368 *
3369 * With this power of 2 load factors, we can degrade the load n times
3370 * by looking at 1 bits in n and doing as many mult/shift instead of
3371 * n mult/shifts needed by the exact degradation.
3372 */
3373 #define DEGRADE_SHIFT 7
3374 static const unsigned char
3375 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3376 static const unsigned char
3377 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3378 {0, 0, 0, 0, 0, 0, 0, 0},
3379 {64, 32, 8, 0, 0, 0, 0, 0},
3380 {96, 72, 40, 12, 1, 0, 0},
3381 {112, 98, 75, 43, 15, 1, 0},
3382 {120, 112, 98, 76, 45, 16, 2} };
3383
3384 /*
3385 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3386 * would be when CPU is idle and so we just decay the old load without
3387 * adding any new load.
3388 */
3389 static unsigned long
3390 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3391 {
3392 int j = 0;
3393
3394 if (!missed_updates)
3395 return load;
3396
3397 if (missed_updates >= degrade_zero_ticks[idx])
3398 return 0;
3399
3400 if (idx == 1)
3401 return load >> missed_updates;
3402
3403 while (missed_updates) {
3404 if (missed_updates % 2)
3405 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3406
3407 missed_updates >>= 1;
3408 j++;
3409 }
3410 return load;
3411 }
3412
3413 /*
3414 * Update rq->cpu_load[] statistics. This function is usually called every
3415 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3416 * every tick. We fix it up based on jiffies.
3417 */
3418 static void update_cpu_load(struct rq *this_rq)
3419 {
3420 unsigned long this_load = this_rq->load.weight;
3421 unsigned long curr_jiffies = jiffies;
3422 unsigned long pending_updates;
3423 int i, scale;
3424
3425 this_rq->nr_load_updates++;
3426
3427 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3428 if (curr_jiffies == this_rq->last_load_update_tick)
3429 return;
3430
3431 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3432 this_rq->last_load_update_tick = curr_jiffies;
3433
3434 /* Update our load: */
3435 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3436 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3437 unsigned long old_load, new_load;
3438
3439 /* scale is effectively 1 << i now, and >> i divides by scale */
3440
3441 old_load = this_rq->cpu_load[i];
3442 old_load = decay_load_missed(old_load, pending_updates - 1, i);
3443 new_load = this_load;
3444 /*
3445 * Round up the averaging division if load is increasing. This
3446 * prevents us from getting stuck on 9 if the load is 10, for
3447 * example.
3448 */
3449 if (new_load > old_load)
3450 new_load += scale - 1;
3451
3452 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
3453 }
3454
3455 sched_avg_update(this_rq);
3456 }
3457
3458 static void update_cpu_load_active(struct rq *this_rq)
3459 {
3460 update_cpu_load(this_rq);
3461
3462 calc_load_account_active(this_rq);
3463 }
3464
3465 #ifdef CONFIG_SMP
3466
3467 /*
3468 * sched_exec - execve() is a valuable balancing opportunity, because at
3469 * this point the task has the smallest effective memory and cache footprint.
3470 */
3471 void sched_exec(void)
3472 {
3473 struct task_struct *p = current;
3474 unsigned long flags;
3475 struct rq *rq;
3476 int dest_cpu;
3477
3478 rq = task_rq_lock(p, &flags);
3479 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
3480 if (dest_cpu == smp_processor_id())
3481 goto unlock;
3482
3483 /*
3484 * select_task_rq() can race against ->cpus_allowed
3485 */
3486 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
3487 likely(cpu_active(dest_cpu)) && need_migrate_task(p)) {
3488 struct migration_arg arg = { p, dest_cpu };
3489
3490 task_rq_unlock(rq, &flags);
3491 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
3492 return;
3493 }
3494 unlock:
3495 task_rq_unlock(rq, &flags);
3496 }
3497
3498 #endif
3499
3500 DEFINE_PER_CPU(struct kernel_stat, kstat);
3501
3502 EXPORT_PER_CPU_SYMBOL(kstat);
3503
3504 /*
3505 * Return any ns on the sched_clock that have not yet been accounted in
3506 * @p in case that task is currently running.
3507 *
3508 * Called with task_rq_lock() held on @rq.
3509 */
3510 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3511 {
3512 u64 ns = 0;
3513
3514 if (task_current(rq, p)) {
3515 update_rq_clock(rq);
3516 ns = rq->clock_task - p->se.exec_start;
3517 if ((s64)ns < 0)
3518 ns = 0;
3519 }
3520
3521 return ns;
3522 }
3523
3524 unsigned long long task_delta_exec(struct task_struct *p)
3525 {
3526 unsigned long flags;
3527 struct rq *rq;
3528 u64 ns = 0;
3529
3530 rq = task_rq_lock(p, &flags);
3531 ns = do_task_delta_exec(p, rq);
3532 task_rq_unlock(rq, &flags);
3533
3534 return ns;
3535 }
3536
3537 /*
3538 * Return accounted runtime for the task.
3539 * In case the task is currently running, return the runtime plus current's
3540 * pending runtime that have not been accounted yet.
3541 */
3542 unsigned long long task_sched_runtime(struct task_struct *p)
3543 {
3544 unsigned long flags;
3545 struct rq *rq;
3546 u64 ns = 0;
3547
3548 rq = task_rq_lock(p, &flags);
3549 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3550 task_rq_unlock(rq, &flags);
3551
3552 return ns;
3553 }
3554
3555 /*
3556 * Return sum_exec_runtime for the thread group.
3557 * In case the task is currently running, return the sum plus current's
3558 * pending runtime that have not been accounted yet.
3559 *
3560 * Note that the thread group might have other running tasks as well,
3561 * so the return value not includes other pending runtime that other
3562 * running tasks might have.
3563 */
3564 unsigned long long thread_group_sched_runtime(struct task_struct *p)
3565 {
3566 struct task_cputime totals;
3567 unsigned long flags;
3568 struct rq *rq;
3569 u64 ns;
3570
3571 rq = task_rq_lock(p, &flags);
3572 thread_group_cputime(p, &totals);
3573 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3574 task_rq_unlock(rq, &flags);
3575
3576 return ns;
3577 }
3578
3579 /*
3580 * Account user cpu time to a process.
3581 * @p: the process that the cpu time gets accounted to
3582 * @cputime: the cpu time spent in user space since the last update
3583 * @cputime_scaled: cputime scaled by cpu frequency
3584 */
3585 void account_user_time(struct task_struct *p, cputime_t cputime,
3586 cputime_t cputime_scaled)
3587 {
3588 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3589 cputime64_t tmp;
3590
3591 /* Add user time to process. */
3592 p->utime = cputime_add(p->utime, cputime);
3593 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3594 account_group_user_time(p, cputime);
3595
3596 /* Add user time to cpustat. */
3597 tmp = cputime_to_cputime64(cputime);
3598 if (TASK_NICE(p) > 0)
3599 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3600 else
3601 cpustat->user = cputime64_add(cpustat->user, tmp);
3602
3603 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3604 /* Account for user time used */
3605 acct_update_integrals(p);
3606 }
3607
3608 /*
3609 * Account guest cpu time to a process.
3610 * @p: the process that the cpu time gets accounted to
3611 * @cputime: the cpu time spent in virtual machine since the last update
3612 * @cputime_scaled: cputime scaled by cpu frequency
3613 */
3614 static void account_guest_time(struct task_struct *p, cputime_t cputime,
3615 cputime_t cputime_scaled)
3616 {
3617 cputime64_t tmp;
3618 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3619
3620 tmp = cputime_to_cputime64(cputime);
3621
3622 /* Add guest time to process. */
3623 p->utime = cputime_add(p->utime, cputime);
3624 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3625 account_group_user_time(p, cputime);
3626 p->gtime = cputime_add(p->gtime, cputime);
3627
3628 /* Add guest time to cpustat. */
3629 if (TASK_NICE(p) > 0) {
3630 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3631 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3632 } else {
3633 cpustat->user = cputime64_add(cpustat->user, tmp);
3634 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3635 }
3636 }
3637
3638 /*
3639 * Account system cpu time to a process and desired cpustat field
3640 * @p: the process that the cpu time gets accounted to
3641 * @cputime: the cpu time spent in kernel space since the last update
3642 * @cputime_scaled: cputime scaled by cpu frequency
3643 * @target_cputime64: pointer to cpustat field that has to be updated
3644 */
3645 static inline
3646 void __account_system_time(struct task_struct *p, cputime_t cputime,
3647 cputime_t cputime_scaled, cputime64_t *target_cputime64)
3648 {
3649 cputime64_t tmp = cputime_to_cputime64(cputime);
3650
3651 /* Add system time to process. */
3652 p->stime = cputime_add(p->stime, cputime);
3653 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3654 account_group_system_time(p, cputime);
3655
3656 /* Add system time to cpustat. */
3657 *target_cputime64 = cputime64_add(*target_cputime64, tmp);
3658 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3659
3660 /* Account for system time used */
3661 acct_update_integrals(p);
3662 }
3663
3664 /*
3665 * Account system cpu time to a process.
3666 * @p: the process that the cpu time gets accounted to
3667 * @hardirq_offset: the offset to subtract from hardirq_count()
3668 * @cputime: the cpu time spent in kernel space since the last update
3669 * @cputime_scaled: cputime scaled by cpu frequency
3670 */
3671 void account_system_time(struct task_struct *p, int hardirq_offset,
3672 cputime_t cputime, cputime_t cputime_scaled)
3673 {
3674 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3675 cputime64_t *target_cputime64;
3676
3677 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3678 account_guest_time(p, cputime, cputime_scaled);
3679 return;
3680 }
3681
3682 if (hardirq_count() - hardirq_offset)
3683 target_cputime64 = &cpustat->irq;
3684 else if (in_serving_softirq())
3685 target_cputime64 = &cpustat->softirq;
3686 else
3687 target_cputime64 = &cpustat->system;
3688
3689 __account_system_time(p, cputime, cputime_scaled, target_cputime64);
3690 }
3691
3692 /*
3693 * Account for involuntary wait time.
3694 * @cputime: the cpu time spent in involuntary wait
3695 */
3696 void account_steal_time(cputime_t cputime)
3697 {
3698 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3699 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3700
3701 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3702 }
3703
3704 /*
3705 * Account for idle time.
3706 * @cputime: the cpu time spent in idle wait
3707 */
3708 void account_idle_time(cputime_t cputime)
3709 {
3710 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3711 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3712 struct rq *rq = this_rq();
3713
3714 if (atomic_read(&rq->nr_iowait) > 0)
3715 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3716 else
3717 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
3718 }
3719
3720 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
3721
3722 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
3723 /*
3724 * Account a tick to a process and cpustat
3725 * @p: the process that the cpu time gets accounted to
3726 * @user_tick: is the tick from userspace
3727 * @rq: the pointer to rq
3728 *
3729 * Tick demultiplexing follows the order
3730 * - pending hardirq update
3731 * - pending softirq update
3732 * - user_time
3733 * - idle_time
3734 * - system time
3735 * - check for guest_time
3736 * - else account as system_time
3737 *
3738 * Check for hardirq is done both for system and user time as there is
3739 * no timer going off while we are on hardirq and hence we may never get an
3740 * opportunity to update it solely in system time.
3741 * p->stime and friends are only updated on system time and not on irq
3742 * softirq as those do not count in task exec_runtime any more.
3743 */
3744 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3745 struct rq *rq)
3746 {
3747 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3748 cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
3749 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3750
3751 if (irqtime_account_hi_update()) {
3752 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3753 } else if (irqtime_account_si_update()) {
3754 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3755 } else if (this_cpu_ksoftirqd() == p) {
3756 /*
3757 * ksoftirqd time do not get accounted in cpu_softirq_time.
3758 * So, we have to handle it separately here.
3759 * Also, p->stime needs to be updated for ksoftirqd.
3760 */
3761 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3762 &cpustat->softirq);
3763 } else if (user_tick) {
3764 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3765 } else if (p == rq->idle) {
3766 account_idle_time(cputime_one_jiffy);
3767 } else if (p->flags & PF_VCPU) { /* System time or guest time */
3768 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
3769 } else {
3770 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3771 &cpustat->system);
3772 }
3773 }
3774
3775 static void irqtime_account_idle_ticks(int ticks)
3776 {
3777 int i;
3778 struct rq *rq = this_rq();
3779
3780 for (i = 0; i < ticks; i++)
3781 irqtime_account_process_tick(current, 0, rq);
3782 }
3783 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
3784 static void irqtime_account_idle_ticks(int ticks) {}
3785 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3786 struct rq *rq) {}
3787 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
3788
3789 /*
3790 * Account a single tick of cpu time.
3791 * @p: the process that the cpu time gets accounted to
3792 * @user_tick: indicates if the tick is a user or a system tick
3793 */
3794 void account_process_tick(struct task_struct *p, int user_tick)
3795 {
3796 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3797 struct rq *rq = this_rq();
3798
3799 if (sched_clock_irqtime) {
3800 irqtime_account_process_tick(p, user_tick, rq);
3801 return;
3802 }
3803
3804 if (user_tick)
3805 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3806 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3807 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3808 one_jiffy_scaled);
3809 else
3810 account_idle_time(cputime_one_jiffy);
3811 }
3812
3813 /*
3814 * Account multiple ticks of steal time.
3815 * @p: the process from which the cpu time has been stolen
3816 * @ticks: number of stolen ticks
3817 */
3818 void account_steal_ticks(unsigned long ticks)
3819 {
3820 account_steal_time(jiffies_to_cputime(ticks));
3821 }
3822
3823 /*
3824 * Account multiple ticks of idle time.
3825 * @ticks: number of stolen ticks
3826 */
3827 void account_idle_ticks(unsigned long ticks)
3828 {
3829
3830 if (sched_clock_irqtime) {
3831 irqtime_account_idle_ticks(ticks);
3832 return;
3833 }
3834
3835 account_idle_time(jiffies_to_cputime(ticks));
3836 }
3837
3838 #endif
3839
3840 /*
3841 * Use precise platform statistics if available:
3842 */
3843 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
3844 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3845 {
3846 *ut = p->utime;
3847 *st = p->stime;
3848 }
3849
3850 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3851 {
3852 struct task_cputime cputime;
3853
3854 thread_group_cputime(p, &cputime);
3855
3856 *ut = cputime.utime;
3857 *st = cputime.stime;
3858 }
3859 #else
3860
3861 #ifndef nsecs_to_cputime
3862 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
3863 #endif
3864
3865 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3866 {
3867 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
3868
3869 /*
3870 * Use CFS's precise accounting:
3871 */
3872 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3873
3874 if (total) {
3875 u64 temp = rtime;
3876
3877 temp *= utime;
3878 do_div(temp, total);
3879 utime = (cputime_t)temp;
3880 } else
3881 utime = rtime;
3882
3883 /*
3884 * Compare with previous values, to keep monotonicity:
3885 */
3886 p->prev_utime = max(p->prev_utime, utime);
3887 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
3888
3889 *ut = p->prev_utime;
3890 *st = p->prev_stime;
3891 }
3892
3893 /*
3894 * Must be called with siglock held.
3895 */
3896 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3897 {
3898 struct signal_struct *sig = p->signal;
3899 struct task_cputime cputime;
3900 cputime_t rtime, utime, total;
3901
3902 thread_group_cputime(p, &cputime);
3903
3904 total = cputime_add(cputime.utime, cputime.stime);
3905 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3906
3907 if (total) {
3908 u64 temp = rtime;
3909
3910 temp *= cputime.utime;
3911 do_div(temp, total);
3912 utime = (cputime_t)temp;
3913 } else
3914 utime = rtime;
3915
3916 sig->prev_utime = max(sig->prev_utime, utime);
3917 sig->prev_stime = max(sig->prev_stime,
3918 cputime_sub(rtime, sig->prev_utime));
3919
3920 *ut = sig->prev_utime;
3921 *st = sig->prev_stime;
3922 }
3923 #endif
3924
3925 /*
3926 * This function gets called by the timer code, with HZ frequency.
3927 * We call it with interrupts disabled.
3928 *
3929 * It also gets called by the fork code, when changing the parent's
3930 * timeslices.
3931 */
3932 void scheduler_tick(void)
3933 {
3934 int cpu = smp_processor_id();
3935 struct rq *rq = cpu_rq(cpu);
3936 struct task_struct *curr = rq->curr;
3937
3938 sched_clock_tick();
3939
3940 raw_spin_lock(&rq->lock);
3941 update_rq_clock(rq);
3942 update_cpu_load_active(rq);
3943 curr->sched_class->task_tick(rq, curr, 0);
3944 raw_spin_unlock(&rq->lock);
3945
3946 perf_event_task_tick();
3947
3948 #ifdef CONFIG_SMP
3949 rq->idle_at_tick = idle_cpu(cpu);
3950 trigger_load_balance(rq, cpu);
3951 #endif
3952 }
3953
3954 notrace unsigned long get_parent_ip(unsigned long addr)
3955 {
3956 if (in_lock_functions(addr)) {
3957 addr = CALLER_ADDR2;
3958 if (in_lock_functions(addr))
3959 addr = CALLER_ADDR3;
3960 }
3961 return addr;
3962 }
3963
3964 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3965 defined(CONFIG_PREEMPT_TRACER))
3966
3967 void __kprobes add_preempt_count(int val)
3968 {
3969 #ifdef CONFIG_DEBUG_PREEMPT
3970 /*
3971 * Underflow?
3972 */
3973 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3974 return;
3975 #endif
3976 preempt_count() += val;
3977 #ifdef CONFIG_DEBUG_PREEMPT
3978 /*
3979 * Spinlock count overflowing soon?
3980 */
3981 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3982 PREEMPT_MASK - 10);
3983 #endif
3984 if (preempt_count() == val)
3985 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3986 }
3987 EXPORT_SYMBOL(add_preempt_count);
3988
3989 void __kprobes sub_preempt_count(int val)
3990 {
3991 #ifdef CONFIG_DEBUG_PREEMPT
3992 /*
3993 * Underflow?
3994 */
3995 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3996 return;
3997 /*
3998 * Is the spinlock portion underflowing?
3999 */
4000 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4001 !(preempt_count() & PREEMPT_MASK)))
4002 return;
4003 #endif
4004
4005 if (preempt_count() == val)
4006 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4007 preempt_count() -= val;
4008 }
4009 EXPORT_SYMBOL(sub_preempt_count);
4010
4011 #endif
4012
4013 /*
4014 * Print scheduling while atomic bug:
4015 */
4016 static noinline void __schedule_bug(struct task_struct *prev)
4017 {
4018 struct pt_regs *regs = get_irq_regs();
4019
4020 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4021 prev->comm, prev->pid, preempt_count());
4022
4023 debug_show_held_locks(prev);
4024 print_modules();
4025 if (irqs_disabled())
4026 print_irqtrace_events(prev);
4027
4028 if (regs)
4029 show_regs(regs);
4030 else
4031 dump_stack();
4032 }
4033
4034 /*
4035 * Various schedule()-time debugging checks and statistics:
4036 */
4037 static inline void schedule_debug(struct task_struct *prev)
4038 {
4039 /*
4040 * Test if we are atomic. Since do_exit() needs to call into
4041 * schedule() atomically, we ignore that path for now.
4042 * Otherwise, whine if we are scheduling when we should not be.
4043 */
4044 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
4045 __schedule_bug(prev);
4046
4047 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4048
4049 schedstat_inc(this_rq(), sched_count);
4050 #ifdef CONFIG_SCHEDSTATS
4051 if (unlikely(prev->lock_depth >= 0)) {
4052 schedstat_inc(this_rq(), rq_sched_info.bkl_count);
4053 schedstat_inc(prev, sched_info.bkl_count);
4054 }
4055 #endif
4056 }
4057
4058 static void put_prev_task(struct rq *rq, struct task_struct *prev)
4059 {
4060 if (prev->on_rq)
4061 update_rq_clock(rq);
4062 prev->sched_class->put_prev_task(rq, prev);
4063 }
4064
4065 /*
4066 * Pick up the highest-prio task:
4067 */
4068 static inline struct task_struct *
4069 pick_next_task(struct rq *rq)
4070 {
4071 const struct sched_class *class;
4072 struct task_struct *p;
4073
4074 /*
4075 * Optimization: we know that if all tasks are in
4076 * the fair class we can call that function directly:
4077 */
4078 if (likely(rq->nr_running == rq->cfs.nr_running)) {
4079 p = fair_sched_class.pick_next_task(rq);
4080 if (likely(p))
4081 return p;
4082 }
4083
4084 for_each_class(class) {
4085 p = class->pick_next_task(rq);
4086 if (p)
4087 return p;
4088 }
4089
4090 BUG(); /* the idle class will always have a runnable task */
4091 }
4092
4093 /*
4094 * schedule() is the main scheduler function.
4095 */
4096 asmlinkage void __sched schedule(void)
4097 {
4098 struct task_struct *prev, *next;
4099 unsigned long *switch_count;
4100 struct rq *rq;
4101 int cpu;
4102
4103 need_resched:
4104 preempt_disable();
4105 cpu = smp_processor_id();
4106 rq = cpu_rq(cpu);
4107 rcu_note_context_switch(cpu);
4108 prev = rq->curr;
4109
4110 schedule_debug(prev);
4111
4112 if (sched_feat(HRTICK))
4113 hrtick_clear(rq);
4114
4115 raw_spin_lock_irq(&rq->lock);
4116
4117 switch_count = &prev->nivcsw;
4118 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4119 if (unlikely(signal_pending_state(prev->state, prev))) {
4120 prev->state = TASK_RUNNING;
4121 } else {
4122 /*
4123 * If a worker is going to sleep, notify and
4124 * ask workqueue whether it wants to wake up a
4125 * task to maintain concurrency. If so, wake
4126 * up the task.
4127 */
4128 if (prev->flags & PF_WQ_WORKER) {
4129 struct task_struct *to_wakeup;
4130
4131 to_wakeup = wq_worker_sleeping(prev, cpu);
4132 if (to_wakeup)
4133 try_to_wake_up_local(to_wakeup);
4134 }
4135
4136 deactivate_task(rq, prev, DEQUEUE_SLEEP);
4137 prev->on_rq = 0;
4138
4139 /*
4140 * If we are going to sleep and we have plugged IO queued, make
4141 * sure to submit it to avoid deadlocks.
4142 */
4143 if (blk_needs_flush_plug(prev)) {
4144 raw_spin_unlock(&rq->lock);
4145 blk_flush_plug(prev);
4146 raw_spin_lock(&rq->lock);
4147 }
4148 }
4149 switch_count = &prev->nvcsw;
4150 }
4151
4152 pre_schedule(rq, prev);
4153
4154 if (unlikely(!rq->nr_running))
4155 idle_balance(cpu, rq);
4156
4157 put_prev_task(rq, prev);
4158 next = pick_next_task(rq);
4159 clear_tsk_need_resched(prev);
4160 rq->skip_clock_update = 0;
4161
4162 if (likely(prev != next)) {
4163 rq->nr_switches++;
4164 rq->curr = next;
4165 ++*switch_count;
4166
4167 context_switch(rq, prev, next); /* unlocks the rq */
4168 /*
4169 * The context switch have flipped the stack from under us
4170 * and restored the local variables which were saved when
4171 * this task called schedule() in the past. prev == current
4172 * is still correct, but it can be moved to another cpu/rq.
4173 */
4174 cpu = smp_processor_id();
4175 rq = cpu_rq(cpu);
4176 } else
4177 raw_spin_unlock_irq(&rq->lock);
4178
4179 post_schedule(rq);
4180
4181 preempt_enable_no_resched();
4182 if (need_resched())
4183 goto need_resched;
4184 }
4185 EXPORT_SYMBOL(schedule);
4186
4187 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
4188
4189 static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
4190 {
4191 bool ret = false;
4192
4193 rcu_read_lock();
4194 if (lock->owner != owner)
4195 goto fail;
4196
4197 /*
4198 * Ensure we emit the owner->on_cpu, dereference _after_ checking
4199 * lock->owner still matches owner, if that fails, owner might
4200 * point to free()d memory, if it still matches, the rcu_read_lock()
4201 * ensures the memory stays valid.
4202 */
4203 barrier();
4204
4205 ret = owner->on_cpu;
4206 fail:
4207 rcu_read_unlock();
4208
4209 return ret;
4210 }
4211
4212 /*
4213 * Look out! "owner" is an entirely speculative pointer
4214 * access and not reliable.
4215 */
4216 int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
4217 {
4218 if (!sched_feat(OWNER_SPIN))
4219 return 0;
4220
4221 while (owner_running(lock, owner)) {
4222 if (need_resched())
4223 return 0;
4224
4225 arch_mutex_cpu_relax();
4226 }
4227
4228 /*
4229 * If the owner changed to another task there is likely
4230 * heavy contention, stop spinning.
4231 */
4232 if (lock->owner)
4233 return 0;
4234
4235 return 1;
4236 }
4237 #endif
4238
4239 #ifdef CONFIG_PREEMPT
4240 /*
4241 * this is the entry point to schedule() from in-kernel preemption
4242 * off of preempt_enable. Kernel preemptions off return from interrupt
4243 * occur there and call schedule directly.
4244 */
4245 asmlinkage void __sched notrace preempt_schedule(void)
4246 {
4247 struct thread_info *ti = current_thread_info();
4248
4249 /*
4250 * If there is a non-zero preempt_count or interrupts are disabled,
4251 * we do not want to preempt the current task. Just return..
4252 */
4253 if (likely(ti->preempt_count || irqs_disabled()))
4254 return;
4255
4256 do {
4257 add_preempt_count_notrace(PREEMPT_ACTIVE);
4258 schedule();
4259 sub_preempt_count_notrace(PREEMPT_ACTIVE);
4260
4261 /*
4262 * Check again in case we missed a preemption opportunity
4263 * between schedule and now.
4264 */
4265 barrier();
4266 } while (need_resched());
4267 }
4268 EXPORT_SYMBOL(preempt_schedule);
4269
4270 /*
4271 * this is the entry point to schedule() from kernel preemption
4272 * off of irq context.
4273 * Note, that this is called and return with irqs disabled. This will
4274 * protect us against recursive calling from irq.
4275 */
4276 asmlinkage void __sched preempt_schedule_irq(void)
4277 {
4278 struct thread_info *ti = current_thread_info();
4279
4280 /* Catch callers which need to be fixed */
4281 BUG_ON(ti->preempt_count || !irqs_disabled());
4282
4283 do {
4284 add_preempt_count(PREEMPT_ACTIVE);
4285 local_irq_enable();
4286 schedule();
4287 local_irq_disable();
4288 sub_preempt_count(PREEMPT_ACTIVE);
4289
4290 /*
4291 * Check again in case we missed a preemption opportunity
4292 * between schedule and now.
4293 */
4294 barrier();
4295 } while (need_resched());
4296 }
4297
4298 #endif /* CONFIG_PREEMPT */
4299
4300 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
4301 void *key)
4302 {
4303 return try_to_wake_up(curr->private, mode, wake_flags);
4304 }
4305 EXPORT_SYMBOL(default_wake_function);
4306
4307 /*
4308 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4309 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4310 * number) then we wake all the non-exclusive tasks and one exclusive task.
4311 *
4312 * There are circumstances in which we can try to wake a task which has already
4313 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4314 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4315 */
4316 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4317 int nr_exclusive, int wake_flags, void *key)
4318 {
4319 wait_queue_t *curr, *next;
4320
4321 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4322 unsigned flags = curr->flags;
4323
4324 if (curr->func(curr, mode, wake_flags, key) &&
4325 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4326 break;
4327 }
4328 }
4329
4330 /**
4331 * __wake_up - wake up threads blocked on a waitqueue.
4332 * @q: the waitqueue
4333 * @mode: which threads
4334 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4335 * @key: is directly passed to the wakeup function
4336 *
4337 * It may be assumed that this function implies a write memory barrier before
4338 * changing the task state if and only if any tasks are woken up.
4339 */
4340 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4341 int nr_exclusive, void *key)
4342 {
4343 unsigned long flags;
4344
4345 spin_lock_irqsave(&q->lock, flags);
4346 __wake_up_common(q, mode, nr_exclusive, 0, key);
4347 spin_unlock_irqrestore(&q->lock, flags);
4348 }
4349 EXPORT_SYMBOL(__wake_up);
4350
4351 /*
4352 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4353 */
4354 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4355 {
4356 __wake_up_common(q, mode, 1, 0, NULL);
4357 }
4358 EXPORT_SYMBOL_GPL(__wake_up_locked);
4359
4360 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4361 {
4362 __wake_up_common(q, mode, 1, 0, key);
4363 }
4364 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4365
4366 /**
4367 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
4368 * @q: the waitqueue
4369 * @mode: which threads
4370 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4371 * @key: opaque value to be passed to wakeup targets
4372 *
4373 * The sync wakeup differs that the waker knows that it will schedule
4374 * away soon, so while the target thread will be woken up, it will not
4375 * be migrated to another CPU - ie. the two threads are 'synchronized'
4376 * with each other. This can prevent needless bouncing between CPUs.
4377 *
4378 * On UP it can prevent extra preemption.
4379 *
4380 * It may be assumed that this function implies a write memory barrier before
4381 * changing the task state if and only if any tasks are woken up.
4382 */
4383 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4384 int nr_exclusive, void *key)
4385 {
4386 unsigned long flags;
4387 int wake_flags = WF_SYNC;
4388
4389 if (unlikely(!q))
4390 return;
4391
4392 if (unlikely(!nr_exclusive))
4393 wake_flags = 0;
4394
4395 spin_lock_irqsave(&q->lock, flags);
4396 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
4397 spin_unlock_irqrestore(&q->lock, flags);
4398 }
4399 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4400
4401 /*
4402 * __wake_up_sync - see __wake_up_sync_key()
4403 */
4404 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4405 {
4406 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4407 }
4408 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4409
4410 /**
4411 * complete: - signals a single thread waiting on this completion
4412 * @x: holds the state of this particular completion
4413 *
4414 * This will wake up a single thread waiting on this completion. Threads will be
4415 * awakened in the same order in which they were queued.
4416 *
4417 * See also complete_all(), wait_for_completion() and related routines.
4418 *
4419 * It may be assumed that this function implies a write memory barrier before
4420 * changing the task state if and only if any tasks are woken up.
4421 */
4422 void complete(struct completion *x)
4423 {
4424 unsigned long flags;
4425
4426 spin_lock_irqsave(&x->wait.lock, flags);
4427 x->done++;
4428 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4429 spin_unlock_irqrestore(&x->wait.lock, flags);
4430 }
4431 EXPORT_SYMBOL(complete);
4432
4433 /**
4434 * complete_all: - signals all threads waiting on this completion
4435 * @x: holds the state of this particular completion
4436 *
4437 * This will wake up all threads waiting on this particular completion event.
4438 *
4439 * It may be assumed that this function implies a write memory barrier before
4440 * changing the task state if and only if any tasks are woken up.
4441 */
4442 void complete_all(struct completion *x)
4443 {
4444 unsigned long flags;
4445
4446 spin_lock_irqsave(&x->wait.lock, flags);
4447 x->done += UINT_MAX/2;
4448 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4449 spin_unlock_irqrestore(&x->wait.lock, flags);
4450 }
4451 EXPORT_SYMBOL(complete_all);
4452
4453 static inline long __sched
4454 do_wait_for_common(struct completion *x, long timeout, int state)
4455 {
4456 if (!x->done) {
4457 DECLARE_WAITQUEUE(wait, current);
4458
4459 __add_wait_queue_tail_exclusive(&x->wait, &wait);
4460 do {
4461 if (signal_pending_state(state, current)) {
4462 timeout = -ERESTARTSYS;
4463 break;
4464 }
4465 __set_current_state(state);
4466 spin_unlock_irq(&x->wait.lock);
4467 timeout = schedule_timeout(timeout);
4468 spin_lock_irq(&x->wait.lock);
4469 } while (!x->done && timeout);
4470 __remove_wait_queue(&x->wait, &wait);
4471 if (!x->done)
4472 return timeout;
4473 }
4474 x->done--;
4475 return timeout ?: 1;
4476 }
4477
4478 static long __sched
4479 wait_for_common(struct completion *x, long timeout, int state)
4480 {
4481 might_sleep();
4482
4483 spin_lock_irq(&x->wait.lock);
4484 timeout = do_wait_for_common(x, timeout, state);
4485 spin_unlock_irq(&x->wait.lock);
4486 return timeout;
4487 }
4488
4489 /**
4490 * wait_for_completion: - waits for completion of a task
4491 * @x: holds the state of this particular completion
4492 *
4493 * This waits to be signaled for completion of a specific task. It is NOT
4494 * interruptible and there is no timeout.
4495 *
4496 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4497 * and interrupt capability. Also see complete().
4498 */
4499 void __sched wait_for_completion(struct completion *x)
4500 {
4501 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4502 }
4503 EXPORT_SYMBOL(wait_for_completion);
4504
4505 /**
4506 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4507 * @x: holds the state of this particular completion
4508 * @timeout: timeout value in jiffies
4509 *
4510 * This waits for either a completion of a specific task to be signaled or for a
4511 * specified timeout to expire. The timeout is in jiffies. It is not
4512 * interruptible.
4513 */
4514 unsigned long __sched
4515 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4516 {
4517 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4518 }
4519 EXPORT_SYMBOL(wait_for_completion_timeout);
4520
4521 /**
4522 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4523 * @x: holds the state of this particular completion
4524 *
4525 * This waits for completion of a specific task to be signaled. It is
4526 * interruptible.
4527 */
4528 int __sched wait_for_completion_interruptible(struct completion *x)
4529 {
4530 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4531 if (t == -ERESTARTSYS)
4532 return t;
4533 return 0;
4534 }
4535 EXPORT_SYMBOL(wait_for_completion_interruptible);
4536
4537 /**
4538 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4539 * @x: holds the state of this particular completion
4540 * @timeout: timeout value in jiffies
4541 *
4542 * This waits for either a completion of a specific task to be signaled or for a
4543 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4544 */
4545 long __sched
4546 wait_for_completion_interruptible_timeout(struct completion *x,
4547 unsigned long timeout)
4548 {
4549 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4550 }
4551 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4552
4553 /**
4554 * wait_for_completion_killable: - waits for completion of a task (killable)
4555 * @x: holds the state of this particular completion
4556 *
4557 * This waits to be signaled for completion of a specific task. It can be
4558 * interrupted by a kill signal.
4559 */
4560 int __sched wait_for_completion_killable(struct completion *x)
4561 {
4562 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4563 if (t == -ERESTARTSYS)
4564 return t;
4565 return 0;
4566 }
4567 EXPORT_SYMBOL(wait_for_completion_killable);
4568
4569 /**
4570 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4571 * @x: holds the state of this particular completion
4572 * @timeout: timeout value in jiffies
4573 *
4574 * This waits for either a completion of a specific task to be
4575 * signaled or for a specified timeout to expire. It can be
4576 * interrupted by a kill signal. The timeout is in jiffies.
4577 */
4578 long __sched
4579 wait_for_completion_killable_timeout(struct completion *x,
4580 unsigned long timeout)
4581 {
4582 return wait_for_common(x, timeout, TASK_KILLABLE);
4583 }
4584 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4585
4586 /**
4587 * try_wait_for_completion - try to decrement a completion without blocking
4588 * @x: completion structure
4589 *
4590 * Returns: 0 if a decrement cannot be done without blocking
4591 * 1 if a decrement succeeded.
4592 *
4593 * If a completion is being used as a counting completion,
4594 * attempt to decrement the counter without blocking. This
4595 * enables us to avoid waiting if the resource the completion
4596 * is protecting is not available.
4597 */
4598 bool try_wait_for_completion(struct completion *x)
4599 {
4600 unsigned long flags;
4601 int ret = 1;
4602
4603 spin_lock_irqsave(&x->wait.lock, flags);
4604 if (!x->done)
4605 ret = 0;
4606 else
4607 x->done--;
4608 spin_unlock_irqrestore(&x->wait.lock, flags);
4609 return ret;
4610 }
4611 EXPORT_SYMBOL(try_wait_for_completion);
4612
4613 /**
4614 * completion_done - Test to see if a completion has any waiters
4615 * @x: completion structure
4616 *
4617 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4618 * 1 if there are no waiters.
4619 *
4620 */
4621 bool completion_done(struct completion *x)
4622 {
4623 unsigned long flags;
4624 int ret = 1;
4625
4626 spin_lock_irqsave(&x->wait.lock, flags);
4627 if (!x->done)
4628 ret = 0;
4629 spin_unlock_irqrestore(&x->wait.lock, flags);
4630 return ret;
4631 }
4632 EXPORT_SYMBOL(completion_done);
4633
4634 static long __sched
4635 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4636 {
4637 unsigned long flags;
4638 wait_queue_t wait;
4639
4640 init_waitqueue_entry(&wait, current);
4641
4642 __set_current_state(state);
4643
4644 spin_lock_irqsave(&q->lock, flags);
4645 __add_wait_queue(q, &wait);
4646 spin_unlock(&q->lock);
4647 timeout = schedule_timeout(timeout);
4648 spin_lock_irq(&q->lock);
4649 __remove_wait_queue(q, &wait);
4650 spin_unlock_irqrestore(&q->lock, flags);
4651
4652 return timeout;
4653 }
4654
4655 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4656 {
4657 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4658 }
4659 EXPORT_SYMBOL(interruptible_sleep_on);
4660
4661 long __sched
4662 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4663 {
4664 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4665 }
4666 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4667
4668 void __sched sleep_on(wait_queue_head_t *q)
4669 {
4670 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4671 }
4672 EXPORT_SYMBOL(sleep_on);
4673
4674 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4675 {
4676 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4677 }
4678 EXPORT_SYMBOL(sleep_on_timeout);
4679
4680 #ifdef CONFIG_RT_MUTEXES
4681
4682 /*
4683 * rt_mutex_setprio - set the current priority of a task
4684 * @p: task
4685 * @prio: prio value (kernel-internal form)
4686 *
4687 * This function changes the 'effective' priority of a task. It does
4688 * not touch ->normal_prio like __setscheduler().
4689 *
4690 * Used by the rt_mutex code to implement priority inheritance logic.
4691 */
4692 void rt_mutex_setprio(struct task_struct *p, int prio)
4693 {
4694 unsigned long flags;
4695 int oldprio, on_rq, running;
4696 struct rq *rq;
4697 const struct sched_class *prev_class;
4698
4699 BUG_ON(prio < 0 || prio > MAX_PRIO);
4700
4701 lockdep_assert_held(&p->pi_lock);
4702
4703 rq = task_rq_lock(p, &flags);
4704
4705 trace_sched_pi_setprio(p, prio);
4706 oldprio = p->prio;
4707 prev_class = p->sched_class;
4708 on_rq = p->on_rq;
4709 running = task_current(rq, p);
4710 if (on_rq)
4711 dequeue_task(rq, p, 0);
4712 if (running)
4713 p->sched_class->put_prev_task(rq, p);
4714
4715 if (rt_prio(prio))
4716 p->sched_class = &rt_sched_class;
4717 else
4718 p->sched_class = &fair_sched_class;
4719
4720 p->prio = prio;
4721
4722 if (running)
4723 p->sched_class->set_curr_task(rq);
4724 if (on_rq)
4725 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
4726
4727 check_class_changed(rq, p, prev_class, oldprio);
4728 task_rq_unlock(rq, &flags);
4729 }
4730
4731 #endif
4732
4733 void set_user_nice(struct task_struct *p, long nice)
4734 {
4735 int old_prio, delta, on_rq;
4736 unsigned long flags;
4737 struct rq *rq;
4738
4739 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4740 return;
4741 /*
4742 * We have to be careful, if called from sys_setpriority(),
4743 * the task might be in the middle of scheduling on another CPU.
4744 */
4745 rq = task_rq_lock(p, &flags);
4746 /*
4747 * The RT priorities are set via sched_setscheduler(), but we still
4748 * allow the 'normal' nice value to be set - but as expected
4749 * it wont have any effect on scheduling until the task is
4750 * SCHED_FIFO/SCHED_RR:
4751 */
4752 if (task_has_rt_policy(p)) {
4753 p->static_prio = NICE_TO_PRIO(nice);
4754 goto out_unlock;
4755 }
4756 on_rq = p->on_rq;
4757 if (on_rq)
4758 dequeue_task(rq, p, 0);
4759
4760 p->static_prio = NICE_TO_PRIO(nice);
4761 set_load_weight(p);
4762 old_prio = p->prio;
4763 p->prio = effective_prio(p);
4764 delta = p->prio - old_prio;
4765
4766 if (on_rq) {
4767 enqueue_task(rq, p, 0);
4768 /*
4769 * If the task increased its priority or is running and
4770 * lowered its priority, then reschedule its CPU:
4771 */
4772 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4773 resched_task(rq->curr);
4774 }
4775 out_unlock:
4776 task_rq_unlock(rq, &flags);
4777 }
4778 EXPORT_SYMBOL(set_user_nice);
4779
4780 /*
4781 * can_nice - check if a task can reduce its nice value
4782 * @p: task
4783 * @nice: nice value
4784 */
4785 int can_nice(const struct task_struct *p, const int nice)
4786 {
4787 /* convert nice value [19,-20] to rlimit style value [1,40] */
4788 int nice_rlim = 20 - nice;
4789
4790 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4791 capable(CAP_SYS_NICE));
4792 }
4793
4794 #ifdef __ARCH_WANT_SYS_NICE
4795
4796 /*
4797 * sys_nice - change the priority of the current process.
4798 * @increment: priority increment
4799 *
4800 * sys_setpriority is a more generic, but much slower function that
4801 * does similar things.
4802 */
4803 SYSCALL_DEFINE1(nice, int, increment)
4804 {
4805 long nice, retval;
4806
4807 /*
4808 * Setpriority might change our priority at the same moment.
4809 * We don't have to worry. Conceptually one call occurs first
4810 * and we have a single winner.
4811 */
4812 if (increment < -40)
4813 increment = -40;
4814 if (increment > 40)
4815 increment = 40;
4816
4817 nice = TASK_NICE(current) + increment;
4818 if (nice < -20)
4819 nice = -20;
4820 if (nice > 19)
4821 nice = 19;
4822
4823 if (increment < 0 && !can_nice(current, nice))
4824 return -EPERM;
4825
4826 retval = security_task_setnice(current, nice);
4827 if (retval)
4828 return retval;
4829
4830 set_user_nice(current, nice);
4831 return 0;
4832 }
4833
4834 #endif
4835
4836 /**
4837 * task_prio - return the priority value of a given task.
4838 * @p: the task in question.
4839 *
4840 * This is the priority value as seen by users in /proc.
4841 * RT tasks are offset by -200. Normal tasks are centered
4842 * around 0, value goes from -16 to +15.
4843 */
4844 int task_prio(const struct task_struct *p)
4845 {
4846 return p->prio - MAX_RT_PRIO;
4847 }
4848
4849 /**
4850 * task_nice - return the nice value of a given task.
4851 * @p: the task in question.
4852 */
4853 int task_nice(const struct task_struct *p)
4854 {
4855 return TASK_NICE(p);
4856 }
4857 EXPORT_SYMBOL(task_nice);
4858
4859 /**
4860 * idle_cpu - is a given cpu idle currently?
4861 * @cpu: the processor in question.
4862 */
4863 int idle_cpu(int cpu)
4864 {
4865 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4866 }
4867
4868 /**
4869 * idle_task - return the idle task for a given cpu.
4870 * @cpu: the processor in question.
4871 */
4872 struct task_struct *idle_task(int cpu)
4873 {
4874 return cpu_rq(cpu)->idle;
4875 }
4876
4877 /**
4878 * find_process_by_pid - find a process with a matching PID value.
4879 * @pid: the pid in question.
4880 */
4881 static struct task_struct *find_process_by_pid(pid_t pid)
4882 {
4883 return pid ? find_task_by_vpid(pid) : current;
4884 }
4885
4886 /* Actually do priority change: must hold rq lock. */
4887 static void
4888 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4889 {
4890 p->policy = policy;
4891 p->rt_priority = prio;
4892 p->normal_prio = normal_prio(p);
4893 /* we are holding p->pi_lock already */
4894 p->prio = rt_mutex_getprio(p);
4895 if (rt_prio(p->prio))
4896 p->sched_class = &rt_sched_class;
4897 else
4898 p->sched_class = &fair_sched_class;
4899 set_load_weight(p);
4900 }
4901
4902 /*
4903 * check the target process has a UID that matches the current process's
4904 */
4905 static bool check_same_owner(struct task_struct *p)
4906 {
4907 const struct cred *cred = current_cred(), *pcred;
4908 bool match;
4909
4910 rcu_read_lock();
4911 pcred = __task_cred(p);
4912 if (cred->user->user_ns == pcred->user->user_ns)
4913 match = (cred->euid == pcred->euid ||
4914 cred->euid == pcred->uid);
4915 else
4916 match = false;
4917 rcu_read_unlock();
4918 return match;
4919 }
4920
4921 static int __sched_setscheduler(struct task_struct *p, int policy,
4922 const struct sched_param *param, bool user)
4923 {
4924 int retval, oldprio, oldpolicy = -1, on_rq, running;
4925 unsigned long flags;
4926 const struct sched_class *prev_class;
4927 struct rq *rq;
4928 int reset_on_fork;
4929
4930 /* may grab non-irq protected spin_locks */
4931 BUG_ON(in_interrupt());
4932 recheck:
4933 /* double check policy once rq lock held */
4934 if (policy < 0) {
4935 reset_on_fork = p->sched_reset_on_fork;
4936 policy = oldpolicy = p->policy;
4937 } else {
4938 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4939 policy &= ~SCHED_RESET_ON_FORK;
4940
4941 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4942 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4943 policy != SCHED_IDLE)
4944 return -EINVAL;
4945 }
4946
4947 /*
4948 * Valid priorities for SCHED_FIFO and SCHED_RR are
4949 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4950 * SCHED_BATCH and SCHED_IDLE is 0.
4951 */
4952 if (param->sched_priority < 0 ||
4953 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4954 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4955 return -EINVAL;
4956 if (rt_policy(policy) != (param->sched_priority != 0))
4957 return -EINVAL;
4958
4959 /*
4960 * Allow unprivileged RT tasks to decrease priority:
4961 */
4962 if (user && !capable(CAP_SYS_NICE)) {
4963 if (rt_policy(policy)) {
4964 unsigned long rlim_rtprio =
4965 task_rlimit(p, RLIMIT_RTPRIO);
4966
4967 /* can't set/change the rt policy */
4968 if (policy != p->policy && !rlim_rtprio)
4969 return -EPERM;
4970
4971 /* can't increase priority */
4972 if (param->sched_priority > p->rt_priority &&
4973 param->sched_priority > rlim_rtprio)
4974 return -EPERM;
4975 }
4976
4977 /*
4978 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4979 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4980 */
4981 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
4982 if (!can_nice(p, TASK_NICE(p)))
4983 return -EPERM;
4984 }
4985
4986 /* can't change other user's priorities */
4987 if (!check_same_owner(p))
4988 return -EPERM;
4989
4990 /* Normal users shall not reset the sched_reset_on_fork flag */
4991 if (p->sched_reset_on_fork && !reset_on_fork)
4992 return -EPERM;
4993 }
4994
4995 if (user) {
4996 retval = security_task_setscheduler(p);
4997 if (retval)
4998 return retval;
4999 }
5000
5001 /*
5002 * make sure no PI-waiters arrive (or leave) while we are
5003 * changing the priority of the task:
5004 */
5005 raw_spin_lock_irqsave(&p->pi_lock, flags);
5006 /*
5007 * To be able to change p->policy safely, the appropriate
5008 * runqueue lock must be held.
5009 */
5010 rq = __task_rq_lock(p);
5011
5012 /*
5013 * Changing the policy of the stop threads its a very bad idea
5014 */
5015 if (p == rq->stop) {
5016 __task_rq_unlock(rq);
5017 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5018 return -EINVAL;
5019 }
5020
5021 /*
5022 * If not changing anything there's no need to proceed further:
5023 */
5024 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
5025 param->sched_priority == p->rt_priority))) {
5026
5027 __task_rq_unlock(rq);
5028 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5029 return 0;
5030 }
5031
5032 #ifdef CONFIG_RT_GROUP_SCHED
5033 if (user) {
5034 /*
5035 * Do not allow realtime tasks into groups that have no runtime
5036 * assigned.
5037 */
5038 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5039 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5040 !task_group_is_autogroup(task_group(p))) {
5041 __task_rq_unlock(rq);
5042 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5043 return -EPERM;
5044 }
5045 }
5046 #endif
5047
5048 /* recheck policy now with rq lock held */
5049 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5050 policy = oldpolicy = -1;
5051 __task_rq_unlock(rq);
5052 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5053 goto recheck;
5054 }
5055 on_rq = p->on_rq;
5056 running = task_current(rq, p);
5057 if (on_rq)
5058 deactivate_task(rq, p, 0);
5059 if (running)
5060 p->sched_class->put_prev_task(rq, p);
5061
5062 p->sched_reset_on_fork = reset_on_fork;
5063
5064 oldprio = p->prio;
5065 prev_class = p->sched_class;
5066 __setscheduler(rq, p, policy, param->sched_priority);
5067
5068 if (running)
5069 p->sched_class->set_curr_task(rq);
5070 if (on_rq)
5071 activate_task(rq, p, 0);
5072
5073 check_class_changed(rq, p, prev_class, oldprio);
5074 __task_rq_unlock(rq);
5075 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5076
5077 rt_mutex_adjust_pi(p);
5078
5079 return 0;
5080 }
5081
5082 /**
5083 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5084 * @p: the task in question.
5085 * @policy: new policy.
5086 * @param: structure containing the new RT priority.
5087 *
5088 * NOTE that the task may be already dead.
5089 */
5090 int sched_setscheduler(struct task_struct *p, int policy,
5091 const struct sched_param *param)
5092 {
5093 return __sched_setscheduler(p, policy, param, true);
5094 }
5095 EXPORT_SYMBOL_GPL(sched_setscheduler);
5096
5097 /**
5098 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5099 * @p: the task in question.
5100 * @policy: new policy.
5101 * @param: structure containing the new RT priority.
5102 *
5103 * Just like sched_setscheduler, only don't bother checking if the
5104 * current context has permission. For example, this is needed in
5105 * stop_machine(): we create temporary high priority worker threads,
5106 * but our caller might not have that capability.
5107 */
5108 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5109 const struct sched_param *param)
5110 {
5111 return __sched_setscheduler(p, policy, param, false);
5112 }
5113
5114 static int
5115 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5116 {
5117 struct sched_param lparam;
5118 struct task_struct *p;
5119 int retval;
5120
5121 if (!param || pid < 0)
5122 return -EINVAL;
5123 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5124 return -EFAULT;
5125
5126 rcu_read_lock();
5127 retval = -ESRCH;
5128 p = find_process_by_pid(pid);
5129 if (p != NULL)
5130 retval = sched_setscheduler(p, policy, &lparam);
5131 rcu_read_unlock();
5132
5133 return retval;
5134 }
5135
5136 /**
5137 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5138 * @pid: the pid in question.
5139 * @policy: new policy.
5140 * @param: structure containing the new RT priority.
5141 */
5142 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5143 struct sched_param __user *, param)
5144 {
5145 /* negative values for policy are not valid */
5146 if (policy < 0)
5147 return -EINVAL;
5148
5149 return do_sched_setscheduler(pid, policy, param);
5150 }
5151
5152 /**
5153 * sys_sched_setparam - set/change the RT priority of a thread
5154 * @pid: the pid in question.
5155 * @param: structure containing the new RT priority.
5156 */
5157 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
5158 {
5159 return do_sched_setscheduler(pid, -1, param);
5160 }
5161
5162 /**
5163 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5164 * @pid: the pid in question.
5165 */
5166 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5167 {
5168 struct task_struct *p;
5169 int retval;
5170
5171 if (pid < 0)
5172 return -EINVAL;
5173
5174 retval = -ESRCH;
5175 rcu_read_lock();
5176 p = find_process_by_pid(pid);
5177 if (p) {
5178 retval = security_task_getscheduler(p);
5179 if (!retval)
5180 retval = p->policy
5181 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
5182 }
5183 rcu_read_unlock();
5184 return retval;
5185 }
5186
5187 /**
5188 * sys_sched_getparam - get the RT priority of a thread
5189 * @pid: the pid in question.
5190 * @param: structure containing the RT priority.
5191 */
5192 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5193 {
5194 struct sched_param lp;
5195 struct task_struct *p;
5196 int retval;
5197
5198 if (!param || pid < 0)
5199 return -EINVAL;
5200
5201 rcu_read_lock();
5202 p = find_process_by_pid(pid);
5203 retval = -ESRCH;
5204 if (!p)
5205 goto out_unlock;
5206
5207 retval = security_task_getscheduler(p);
5208 if (retval)
5209 goto out_unlock;
5210
5211 lp.sched_priority = p->rt_priority;
5212 rcu_read_unlock();
5213
5214 /*
5215 * This one might sleep, we cannot do it with a spinlock held ...
5216 */
5217 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5218
5219 return retval;
5220
5221 out_unlock:
5222 rcu_read_unlock();
5223 return retval;
5224 }
5225
5226 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5227 {
5228 cpumask_var_t cpus_allowed, new_mask;
5229 struct task_struct *p;
5230 int retval;
5231
5232 get_online_cpus();
5233 rcu_read_lock();
5234
5235 p = find_process_by_pid(pid);
5236 if (!p) {
5237 rcu_read_unlock();
5238 put_online_cpus();
5239 return -ESRCH;
5240 }
5241
5242 /* Prevent p going away */
5243 get_task_struct(p);
5244 rcu_read_unlock();
5245
5246 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5247 retval = -ENOMEM;
5248 goto out_put_task;
5249 }
5250 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5251 retval = -ENOMEM;
5252 goto out_free_cpus_allowed;
5253 }
5254 retval = -EPERM;
5255 if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
5256 goto out_unlock;
5257
5258 retval = security_task_setscheduler(p);
5259 if (retval)
5260 goto out_unlock;
5261
5262 cpuset_cpus_allowed(p, cpus_allowed);
5263 cpumask_and(new_mask, in_mask, cpus_allowed);
5264 again:
5265 retval = set_cpus_allowed_ptr(p, new_mask);
5266
5267 if (!retval) {
5268 cpuset_cpus_allowed(p, cpus_allowed);
5269 if (!cpumask_subset(new_mask, cpus_allowed)) {
5270 /*
5271 * We must have raced with a concurrent cpuset
5272 * update. Just reset the cpus_allowed to the
5273 * cpuset's cpus_allowed
5274 */
5275 cpumask_copy(new_mask, cpus_allowed);
5276 goto again;
5277 }
5278 }
5279 out_unlock:
5280 free_cpumask_var(new_mask);
5281 out_free_cpus_allowed:
5282 free_cpumask_var(cpus_allowed);
5283 out_put_task:
5284 put_task_struct(p);
5285 put_online_cpus();
5286 return retval;
5287 }
5288
5289 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5290 struct cpumask *new_mask)
5291 {
5292 if (len < cpumask_size())
5293 cpumask_clear(new_mask);
5294 else if (len > cpumask_size())
5295 len = cpumask_size();
5296
5297 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5298 }
5299
5300 /**
5301 * sys_sched_setaffinity - set the cpu affinity of a process
5302 * @pid: pid of the process
5303 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5304 * @user_mask_ptr: user-space pointer to the new cpu mask
5305 */
5306 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5307 unsigned long __user *, user_mask_ptr)
5308 {
5309 cpumask_var_t new_mask;
5310 int retval;
5311
5312 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5313 return -ENOMEM;
5314
5315 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5316 if (retval == 0)
5317 retval = sched_setaffinity(pid, new_mask);
5318 free_cpumask_var(new_mask);
5319 return retval;
5320 }
5321
5322 long sched_getaffinity(pid_t pid, struct cpumask *mask)
5323 {
5324 struct task_struct *p;
5325 unsigned long flags;
5326 int retval;
5327
5328 get_online_cpus();
5329 rcu_read_lock();
5330
5331 retval = -ESRCH;
5332 p = find_process_by_pid(pid);
5333 if (!p)
5334 goto out_unlock;
5335
5336 retval = security_task_getscheduler(p);
5337 if (retval)
5338 goto out_unlock;
5339
5340 raw_spin_lock_irqsave(&p->pi_lock, flags);
5341 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
5342 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5343
5344 out_unlock:
5345 rcu_read_unlock();
5346 put_online_cpus();
5347
5348 return retval;
5349 }
5350
5351 /**
5352 * sys_sched_getaffinity - get the cpu affinity of a process
5353 * @pid: pid of the process
5354 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5355 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5356 */
5357 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5358 unsigned long __user *, user_mask_ptr)
5359 {
5360 int ret;
5361 cpumask_var_t mask;
5362
5363 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
5364 return -EINVAL;
5365 if (len & (sizeof(unsigned long)-1))
5366 return -EINVAL;
5367
5368 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5369 return -ENOMEM;
5370
5371 ret = sched_getaffinity(pid, mask);
5372 if (ret == 0) {
5373 size_t retlen = min_t(size_t, len, cpumask_size());
5374
5375 if (copy_to_user(user_mask_ptr, mask, retlen))
5376 ret = -EFAULT;
5377 else
5378 ret = retlen;
5379 }
5380 free_cpumask_var(mask);
5381
5382 return ret;
5383 }
5384
5385 /**
5386 * sys_sched_yield - yield the current processor to other threads.
5387 *
5388 * This function yields the current CPU to other tasks. If there are no
5389 * other threads running on this CPU then this function will return.
5390 */
5391 SYSCALL_DEFINE0(sched_yield)
5392 {
5393 struct rq *rq = this_rq_lock();
5394
5395 schedstat_inc(rq, yld_count);
5396 current->sched_class->yield_task(rq);
5397
5398 /*
5399 * Since we are going to call schedule() anyway, there's
5400 * no need to preempt or enable interrupts:
5401 */
5402 __release(rq->lock);
5403 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5404 do_raw_spin_unlock(&rq->lock);
5405 preempt_enable_no_resched();
5406
5407 schedule();
5408
5409 return 0;
5410 }
5411
5412 static inline int should_resched(void)
5413 {
5414 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5415 }
5416
5417 static void __cond_resched(void)
5418 {
5419 add_preempt_count(PREEMPT_ACTIVE);
5420 schedule();
5421 sub_preempt_count(PREEMPT_ACTIVE);
5422 }
5423
5424 int __sched _cond_resched(void)
5425 {
5426 if (should_resched()) {
5427 __cond_resched();
5428 return 1;
5429 }
5430 return 0;
5431 }
5432 EXPORT_SYMBOL(_cond_resched);
5433
5434 /*
5435 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5436 * call schedule, and on return reacquire the lock.
5437 *
5438 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5439 * operations here to prevent schedule() from being called twice (once via
5440 * spin_unlock(), once by hand).
5441 */
5442 int __cond_resched_lock(spinlock_t *lock)
5443 {
5444 int resched = should_resched();
5445 int ret = 0;
5446
5447 lockdep_assert_held(lock);
5448
5449 if (spin_needbreak(lock) || resched) {
5450 spin_unlock(lock);
5451 if (resched)
5452 __cond_resched();
5453 else
5454 cpu_relax();
5455 ret = 1;
5456 spin_lock(lock);
5457 }
5458 return ret;
5459 }
5460 EXPORT_SYMBOL(__cond_resched_lock);
5461
5462 int __sched __cond_resched_softirq(void)
5463 {
5464 BUG_ON(!in_softirq());
5465
5466 if (should_resched()) {
5467 local_bh_enable();
5468 __cond_resched();
5469 local_bh_disable();
5470 return 1;
5471 }
5472 return 0;
5473 }
5474 EXPORT_SYMBOL(__cond_resched_softirq);
5475
5476 /**
5477 * yield - yield the current processor to other threads.
5478 *
5479 * This is a shortcut for kernel-space yielding - it marks the
5480 * thread runnable and calls sys_sched_yield().
5481 */
5482 void __sched yield(void)
5483 {
5484 set_current_state(TASK_RUNNING);
5485 sys_sched_yield();
5486 }
5487 EXPORT_SYMBOL(yield);
5488
5489 /**
5490 * yield_to - yield the current processor to another thread in
5491 * your thread group, or accelerate that thread toward the
5492 * processor it's on.
5493 * @p: target task
5494 * @preempt: whether task preemption is allowed or not
5495 *
5496 * It's the caller's job to ensure that the target task struct
5497 * can't go away on us before we can do any checks.
5498 *
5499 * Returns true if we indeed boosted the target task.
5500 */
5501 bool __sched yield_to(struct task_struct *p, bool preempt)
5502 {
5503 struct task_struct *curr = current;
5504 struct rq *rq, *p_rq;
5505 unsigned long flags;
5506 bool yielded = 0;
5507
5508 local_irq_save(flags);
5509 rq = this_rq();
5510
5511 again:
5512 p_rq = task_rq(p);
5513 double_rq_lock(rq, p_rq);
5514 while (task_rq(p) != p_rq) {
5515 double_rq_unlock(rq, p_rq);
5516 goto again;
5517 }
5518
5519 if (!curr->sched_class->yield_to_task)
5520 goto out;
5521
5522 if (curr->sched_class != p->sched_class)
5523 goto out;
5524
5525 if (task_running(p_rq, p) || p->state)
5526 goto out;
5527
5528 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5529 if (yielded) {
5530 schedstat_inc(rq, yld_count);
5531 /*
5532 * Make p's CPU reschedule; pick_next_entity takes care of
5533 * fairness.
5534 */
5535 if (preempt && rq != p_rq)
5536 resched_task(p_rq->curr);
5537 }
5538
5539 out:
5540 double_rq_unlock(rq, p_rq);
5541 local_irq_restore(flags);
5542
5543 if (yielded)
5544 schedule();
5545
5546 return yielded;
5547 }
5548 EXPORT_SYMBOL_GPL(yield_to);
5549
5550 /*
5551 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5552 * that process accounting knows that this is a task in IO wait state.
5553 */
5554 void __sched io_schedule(void)
5555 {
5556 struct rq *rq = raw_rq();
5557
5558 delayacct_blkio_start();
5559 atomic_inc(&rq->nr_iowait);
5560 blk_flush_plug(current);
5561 current->in_iowait = 1;
5562 schedule();
5563 current->in_iowait = 0;
5564 atomic_dec(&rq->nr_iowait);
5565 delayacct_blkio_end();
5566 }
5567 EXPORT_SYMBOL(io_schedule);
5568
5569 long __sched io_schedule_timeout(long timeout)
5570 {
5571 struct rq *rq = raw_rq();
5572 long ret;
5573
5574 delayacct_blkio_start();
5575 atomic_inc(&rq->nr_iowait);
5576 blk_flush_plug(current);
5577 current->in_iowait = 1;
5578 ret = schedule_timeout(timeout);
5579 current->in_iowait = 0;
5580 atomic_dec(&rq->nr_iowait);
5581 delayacct_blkio_end();
5582 return ret;
5583 }
5584
5585 /**
5586 * sys_sched_get_priority_max - return maximum RT priority.
5587 * @policy: scheduling class.
5588 *
5589 * this syscall returns the maximum rt_priority that can be used
5590 * by a given scheduling class.
5591 */
5592 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5593 {
5594 int ret = -EINVAL;
5595
5596 switch (policy) {
5597 case SCHED_FIFO:
5598 case SCHED_RR:
5599 ret = MAX_USER_RT_PRIO-1;
5600 break;
5601 case SCHED_NORMAL:
5602 case SCHED_BATCH:
5603 case SCHED_IDLE:
5604 ret = 0;
5605 break;
5606 }
5607 return ret;
5608 }
5609
5610 /**
5611 * sys_sched_get_priority_min - return minimum RT priority.
5612 * @policy: scheduling class.
5613 *
5614 * this syscall returns the minimum rt_priority that can be used
5615 * by a given scheduling class.
5616 */
5617 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5618 {
5619 int ret = -EINVAL;
5620
5621 switch (policy) {
5622 case SCHED_FIFO:
5623 case SCHED_RR:
5624 ret = 1;
5625 break;
5626 case SCHED_NORMAL:
5627 case SCHED_BATCH:
5628 case SCHED_IDLE:
5629 ret = 0;
5630 }
5631 return ret;
5632 }
5633
5634 /**
5635 * sys_sched_rr_get_interval - return the default timeslice of a process.
5636 * @pid: pid of the process.
5637 * @interval: userspace pointer to the timeslice value.
5638 *
5639 * this syscall writes the default timeslice value of a given process
5640 * into the user-space timespec buffer. A value of '0' means infinity.
5641 */
5642 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5643 struct timespec __user *, interval)
5644 {
5645 struct task_struct *p;
5646 unsigned int time_slice;
5647 unsigned long flags;
5648 struct rq *rq;
5649 int retval;
5650 struct timespec t;
5651
5652 if (pid < 0)
5653 return -EINVAL;
5654
5655 retval = -ESRCH;
5656 rcu_read_lock();
5657 p = find_process_by_pid(pid);
5658 if (!p)
5659 goto out_unlock;
5660
5661 retval = security_task_getscheduler(p);
5662 if (retval)
5663 goto out_unlock;
5664
5665 rq = task_rq_lock(p, &flags);
5666 time_slice = p->sched_class->get_rr_interval(rq, p);
5667 task_rq_unlock(rq, &flags);
5668
5669 rcu_read_unlock();
5670 jiffies_to_timespec(time_slice, &t);
5671 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5672 return retval;
5673
5674 out_unlock:
5675 rcu_read_unlock();
5676 return retval;
5677 }
5678
5679 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5680
5681 void sched_show_task(struct task_struct *p)
5682 {
5683 unsigned long free = 0;
5684 unsigned state;
5685
5686 state = p->state ? __ffs(p->state) + 1 : 0;
5687 printk(KERN_INFO "%-15.15s %c", p->comm,
5688 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5689 #if BITS_PER_LONG == 32
5690 if (state == TASK_RUNNING)
5691 printk(KERN_CONT " running ");
5692 else
5693 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5694 #else
5695 if (state == TASK_RUNNING)
5696 printk(KERN_CONT " running task ");
5697 else
5698 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5699 #endif
5700 #ifdef CONFIG_DEBUG_STACK_USAGE
5701 free = stack_not_used(p);
5702 #endif
5703 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5704 task_pid_nr(p), task_pid_nr(p->real_parent),
5705 (unsigned long)task_thread_info(p)->flags);
5706
5707 show_stack(p, NULL);
5708 }
5709
5710 void show_state_filter(unsigned long state_filter)
5711 {
5712 struct task_struct *g, *p;
5713
5714 #if BITS_PER_LONG == 32
5715 printk(KERN_INFO
5716 " task PC stack pid father\n");
5717 #else
5718 printk(KERN_INFO
5719 " task PC stack pid father\n");
5720 #endif
5721 read_lock(&tasklist_lock);
5722 do_each_thread(g, p) {
5723 /*
5724 * reset the NMI-timeout, listing all files on a slow
5725 * console might take a lot of time:
5726 */
5727 touch_nmi_watchdog();
5728 if (!state_filter || (p->state & state_filter))
5729 sched_show_task(p);
5730 } while_each_thread(g, p);
5731
5732 touch_all_softlockup_watchdogs();
5733
5734 #ifdef CONFIG_SCHED_DEBUG
5735 sysrq_sched_debug_show();
5736 #endif
5737 read_unlock(&tasklist_lock);
5738 /*
5739 * Only show locks if all tasks are dumped:
5740 */
5741 if (!state_filter)
5742 debug_show_all_locks();
5743 }
5744
5745 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5746 {
5747 idle->sched_class = &idle_sched_class;
5748 }
5749
5750 /**
5751 * init_idle - set up an idle thread for a given CPU
5752 * @idle: task in question
5753 * @cpu: cpu the idle task belongs to
5754 *
5755 * NOTE: this function does not set the idle thread's NEED_RESCHED
5756 * flag, to make booting more robust.
5757 */
5758 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5759 {
5760 struct rq *rq = cpu_rq(cpu);
5761 unsigned long flags;
5762
5763 raw_spin_lock_irqsave(&rq->lock, flags);
5764
5765 __sched_fork(idle);
5766 idle->state = TASK_RUNNING;
5767 idle->se.exec_start = sched_clock();
5768
5769 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
5770 /*
5771 * We're having a chicken and egg problem, even though we are
5772 * holding rq->lock, the cpu isn't yet set to this cpu so the
5773 * lockdep check in task_group() will fail.
5774 *
5775 * Similar case to sched_fork(). / Alternatively we could
5776 * use task_rq_lock() here and obtain the other rq->lock.
5777 *
5778 * Silence PROVE_RCU
5779 */
5780 rcu_read_lock();
5781 __set_task_cpu(idle, cpu);
5782 rcu_read_unlock();
5783
5784 rq->curr = rq->idle = idle;
5785 #if defined(CONFIG_SMP)
5786 idle->on_cpu = 1;
5787 #endif
5788 raw_spin_unlock_irqrestore(&rq->lock, flags);
5789
5790 /* Set the preempt count _outside_ the spinlocks! */
5791 #if defined(CONFIG_PREEMPT)
5792 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5793 #else
5794 task_thread_info(idle)->preempt_count = 0;
5795 #endif
5796 /*
5797 * The idle tasks have their own, simple scheduling class:
5798 */
5799 idle->sched_class = &idle_sched_class;
5800 ftrace_graph_init_idle_task(idle, cpu);
5801 }
5802
5803 /*
5804 * In a system that switches off the HZ timer nohz_cpu_mask
5805 * indicates which cpus entered this state. This is used
5806 * in the rcu update to wait only for active cpus. For system
5807 * which do not switch off the HZ timer nohz_cpu_mask should
5808 * always be CPU_BITS_NONE.
5809 */
5810 cpumask_var_t nohz_cpu_mask;
5811
5812 /*
5813 * Increase the granularity value when there are more CPUs,
5814 * because with more CPUs the 'effective latency' as visible
5815 * to users decreases. But the relationship is not linear,
5816 * so pick a second-best guess by going with the log2 of the
5817 * number of CPUs.
5818 *
5819 * This idea comes from the SD scheduler of Con Kolivas:
5820 */
5821 static int get_update_sysctl_factor(void)
5822 {
5823 unsigned int cpus = min_t(int, num_online_cpus(), 8);
5824 unsigned int factor;
5825
5826 switch (sysctl_sched_tunable_scaling) {
5827 case SCHED_TUNABLESCALING_NONE:
5828 factor = 1;
5829 break;
5830 case SCHED_TUNABLESCALING_LINEAR:
5831 factor = cpus;
5832 break;
5833 case SCHED_TUNABLESCALING_LOG:
5834 default:
5835 factor = 1 + ilog2(cpus);
5836 break;
5837 }
5838
5839 return factor;
5840 }
5841
5842 static void update_sysctl(void)
5843 {
5844 unsigned int factor = get_update_sysctl_factor();
5845
5846 #define SET_SYSCTL(name) \
5847 (sysctl_##name = (factor) * normalized_sysctl_##name)
5848 SET_SYSCTL(sched_min_granularity);
5849 SET_SYSCTL(sched_latency);
5850 SET_SYSCTL(sched_wakeup_granularity);
5851 #undef SET_SYSCTL
5852 }
5853
5854 static inline void sched_init_granularity(void)
5855 {
5856 update_sysctl();
5857 }
5858
5859 #ifdef CONFIG_SMP
5860 /*
5861 * This is how migration works:
5862 *
5863 * 1) we invoke migration_cpu_stop() on the target CPU using
5864 * stop_one_cpu().
5865 * 2) stopper starts to run (implicitly forcing the migrated thread
5866 * off the CPU)
5867 * 3) it checks whether the migrated task is still in the wrong runqueue.
5868 * 4) if it's in the wrong runqueue then the migration thread removes
5869 * it and puts it into the right queue.
5870 * 5) stopper completes and stop_one_cpu() returns and the migration
5871 * is done.
5872 */
5873
5874 /*
5875 * Change a given task's CPU affinity. Migrate the thread to a
5876 * proper CPU and schedule it away if the CPU it's executing on
5877 * is removed from the allowed bitmask.
5878 *
5879 * NOTE: the caller must have a valid reference to the task, the
5880 * task must not exit() & deallocate itself prematurely. The
5881 * call is not atomic; no spinlocks may be held.
5882 */
5883 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
5884 {
5885 unsigned long flags;
5886 struct rq *rq;
5887 unsigned int dest_cpu;
5888 int ret = 0;
5889
5890 raw_spin_lock_irqsave(&p->pi_lock, flags);
5891 rq = __task_rq_lock(p);
5892
5893 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
5894 ret = -EINVAL;
5895 goto out;
5896 }
5897
5898 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5899 !cpumask_equal(&p->cpus_allowed, new_mask))) {
5900 ret = -EINVAL;
5901 goto out;
5902 }
5903
5904 if (p->sched_class->set_cpus_allowed)
5905 p->sched_class->set_cpus_allowed(p, new_mask);
5906 else {
5907 cpumask_copy(&p->cpus_allowed, new_mask);
5908 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5909 }
5910
5911 /* Can the task run on the task's current CPU? If so, we're done */
5912 if (cpumask_test_cpu(task_cpu(p), new_mask))
5913 goto out;
5914
5915 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5916 if (need_migrate_task(p)) {
5917 struct migration_arg arg = { p, dest_cpu };
5918 /* Need help from migration thread: drop lock and wait. */
5919 __task_rq_unlock(rq);
5920 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5921 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
5922 tlb_migrate_finish(p->mm);
5923 return 0;
5924 }
5925 out:
5926 __task_rq_unlock(rq);
5927 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5928
5929 return ret;
5930 }
5931 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5932
5933 /*
5934 * Move (not current) task off this cpu, onto dest cpu. We're doing
5935 * this because either it can't run here any more (set_cpus_allowed()
5936 * away from this CPU, or CPU going down), or because we're
5937 * attempting to rebalance this task on exec (sched_exec).
5938 *
5939 * So we race with normal scheduler movements, but that's OK, as long
5940 * as the task is no longer on this CPU.
5941 *
5942 * Returns non-zero if task was successfully migrated.
5943 */
5944 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5945 {
5946 struct rq *rq_dest, *rq_src;
5947 int ret = 0;
5948
5949 if (unlikely(!cpu_active(dest_cpu)))
5950 return ret;
5951
5952 rq_src = cpu_rq(src_cpu);
5953 rq_dest = cpu_rq(dest_cpu);
5954
5955 double_rq_lock(rq_src, rq_dest);
5956 /* Already moved. */
5957 if (task_cpu(p) != src_cpu)
5958 goto done;
5959 /* Affinity changed (again). */
5960 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
5961 goto fail;
5962
5963 /*
5964 * If we're not on a rq, the next wake-up will ensure we're
5965 * placed properly.
5966 */
5967 if (p->on_rq) {
5968 deactivate_task(rq_src, p, 0);
5969 set_task_cpu(p, dest_cpu);
5970 activate_task(rq_dest, p, 0);
5971 check_preempt_curr(rq_dest, p, 0);
5972 }
5973 done:
5974 ret = 1;
5975 fail:
5976 double_rq_unlock(rq_src, rq_dest);
5977 return ret;
5978 }
5979
5980 /*
5981 * migration_cpu_stop - this will be executed by a highprio stopper thread
5982 * and performs thread migration by bumping thread off CPU then
5983 * 'pushing' onto another runqueue.
5984 */
5985 static int migration_cpu_stop(void *data)
5986 {
5987 struct migration_arg *arg = data;
5988
5989 /*
5990 * The original target cpu might have gone down and we might
5991 * be on another cpu but it doesn't matter.
5992 */
5993 local_irq_disable();
5994 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5995 local_irq_enable();
5996 return 0;
5997 }
5998
5999 #ifdef CONFIG_HOTPLUG_CPU
6000
6001 /*
6002 * Ensures that the idle task is using init_mm right before its cpu goes
6003 * offline.
6004 */
6005 void idle_task_exit(void)
6006 {
6007 struct mm_struct *mm = current->active_mm;
6008
6009 BUG_ON(cpu_online(smp_processor_id()));
6010
6011 if (mm != &init_mm)
6012 switch_mm(mm, &init_mm, current);
6013 mmdrop(mm);
6014 }
6015
6016 /*
6017 * While a dead CPU has no uninterruptible tasks queued at this point,
6018 * it might still have a nonzero ->nr_uninterruptible counter, because
6019 * for performance reasons the counter is not stricly tracking tasks to
6020 * their home CPUs. So we just add the counter to another CPU's counter,
6021 * to keep the global sum constant after CPU-down:
6022 */
6023 static void migrate_nr_uninterruptible(struct rq *rq_src)
6024 {
6025 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
6026
6027 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6028 rq_src->nr_uninterruptible = 0;
6029 }
6030
6031 /*
6032 * remove the tasks which were accounted by rq from calc_load_tasks.
6033 */
6034 static void calc_global_load_remove(struct rq *rq)
6035 {
6036 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
6037 rq->calc_load_active = 0;
6038 }
6039
6040 /*
6041 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6042 * try_to_wake_up()->select_task_rq().
6043 *
6044 * Called with rq->lock held even though we'er in stop_machine() and
6045 * there's no concurrency possible, we hold the required locks anyway
6046 * because of lock validation efforts.
6047 */
6048 static void migrate_tasks(unsigned int dead_cpu)
6049 {
6050 struct rq *rq = cpu_rq(dead_cpu);
6051 struct task_struct *next, *stop = rq->stop;
6052 int dest_cpu;
6053
6054 /*
6055 * Fudge the rq selection such that the below task selection loop
6056 * doesn't get stuck on the currently eligible stop task.
6057 *
6058 * We're currently inside stop_machine() and the rq is either stuck
6059 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6060 * either way we should never end up calling schedule() until we're
6061 * done here.
6062 */
6063 rq->stop = NULL;
6064
6065 for ( ; ; ) {
6066 /*
6067 * There's this thread running, bail when that's the only
6068 * remaining thread.
6069 */
6070 if (rq->nr_running == 1)
6071 break;
6072
6073 next = pick_next_task(rq);
6074 BUG_ON(!next);
6075 next->sched_class->put_prev_task(rq, next);
6076
6077 /* Find suitable destination for @next, with force if needed. */
6078 dest_cpu = select_fallback_rq(dead_cpu, next);
6079 raw_spin_unlock(&rq->lock);
6080
6081 __migrate_task(next, dead_cpu, dest_cpu);
6082
6083 raw_spin_lock(&rq->lock);
6084 }
6085
6086 rq->stop = stop;
6087 }
6088
6089 #endif /* CONFIG_HOTPLUG_CPU */
6090
6091 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6092
6093 static struct ctl_table sd_ctl_dir[] = {
6094 {
6095 .procname = "sched_domain",
6096 .mode = 0555,
6097 },
6098 {}
6099 };
6100
6101 static struct ctl_table sd_ctl_root[] = {
6102 {
6103 .procname = "kernel",
6104 .mode = 0555,
6105 .child = sd_ctl_dir,
6106 },
6107 {}
6108 };
6109
6110 static struct ctl_table *sd_alloc_ctl_entry(int n)
6111 {
6112 struct ctl_table *entry =
6113 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6114
6115 return entry;
6116 }
6117
6118 static void sd_free_ctl_entry(struct ctl_table **tablep)
6119 {
6120 struct ctl_table *entry;
6121
6122 /*
6123 * In the intermediate directories, both the child directory and
6124 * procname are dynamically allocated and could fail but the mode
6125 * will always be set. In the lowest directory the names are
6126 * static strings and all have proc handlers.
6127 */
6128 for (entry = *tablep; entry->mode; entry++) {
6129 if (entry->child)
6130 sd_free_ctl_entry(&entry->child);
6131 if (entry->proc_handler == NULL)
6132 kfree(entry->procname);
6133 }
6134
6135 kfree(*tablep);
6136 *tablep = NULL;
6137 }
6138
6139 static void
6140 set_table_entry(struct ctl_table *entry,
6141 const char *procname, void *data, int maxlen,
6142 mode_t mode, proc_handler *proc_handler)
6143 {
6144 entry->procname = procname;
6145 entry->data = data;
6146 entry->maxlen = maxlen;
6147 entry->mode = mode;
6148 entry->proc_handler = proc_handler;
6149 }
6150
6151 static struct ctl_table *
6152 sd_alloc_ctl_domain_table(struct sched_domain *sd)
6153 {
6154 struct ctl_table *table = sd_alloc_ctl_entry(13);
6155
6156 if (table == NULL)
6157 return NULL;
6158
6159 set_table_entry(&table[0], "min_interval", &sd->min_interval,
6160 sizeof(long), 0644, proc_doulongvec_minmax);
6161 set_table_entry(&table[1], "max_interval", &sd->max_interval,
6162 sizeof(long), 0644, proc_doulongvec_minmax);
6163 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6164 sizeof(int), 0644, proc_dointvec_minmax);
6165 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6166 sizeof(int), 0644, proc_dointvec_minmax);
6167 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6168 sizeof(int), 0644, proc_dointvec_minmax);
6169 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6170 sizeof(int), 0644, proc_dointvec_minmax);
6171 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6172 sizeof(int), 0644, proc_dointvec_minmax);
6173 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6174 sizeof(int), 0644, proc_dointvec_minmax);
6175 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6176 sizeof(int), 0644, proc_dointvec_minmax);
6177 set_table_entry(&table[9], "cache_nice_tries",
6178 &sd->cache_nice_tries,
6179 sizeof(int), 0644, proc_dointvec_minmax);
6180 set_table_entry(&table[10], "flags", &sd->flags,
6181 sizeof(int), 0644, proc_dointvec_minmax);
6182 set_table_entry(&table[11], "name", sd->name,
6183 CORENAME_MAX_SIZE, 0444, proc_dostring);
6184 /* &table[12] is terminator */
6185
6186 return table;
6187 }
6188
6189 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6190 {
6191 struct ctl_table *entry, *table;
6192 struct sched_domain *sd;
6193 int domain_num = 0, i;
6194 char buf[32];
6195
6196 for_each_domain(cpu, sd)
6197 domain_num++;
6198 entry = table = sd_alloc_ctl_entry(domain_num + 1);
6199 if (table == NULL)
6200 return NULL;
6201
6202 i = 0;
6203 for_each_domain(cpu, sd) {
6204 snprintf(buf, 32, "domain%d", i);
6205 entry->procname = kstrdup(buf, GFP_KERNEL);
6206 entry->mode = 0555;
6207 entry->child = sd_alloc_ctl_domain_table(sd);
6208 entry++;
6209 i++;
6210 }
6211 return table;
6212 }
6213
6214 static struct ctl_table_header *sd_sysctl_header;
6215 static void register_sched_domain_sysctl(void)
6216 {
6217 int i, cpu_num = num_possible_cpus();
6218 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6219 char buf[32];
6220
6221 WARN_ON(sd_ctl_dir[0].child);
6222 sd_ctl_dir[0].child = entry;
6223
6224 if (entry == NULL)
6225 return;
6226
6227 for_each_possible_cpu(i) {
6228 snprintf(buf, 32, "cpu%d", i);
6229 entry->procname = kstrdup(buf, GFP_KERNEL);
6230 entry->mode = 0555;
6231 entry->child = sd_alloc_ctl_cpu_table(i);
6232 entry++;
6233 }
6234
6235 WARN_ON(sd_sysctl_header);
6236 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6237 }
6238
6239 /* may be called multiple times per register */
6240 static void unregister_sched_domain_sysctl(void)
6241 {
6242 if (sd_sysctl_header)
6243 unregister_sysctl_table(sd_sysctl_header);
6244 sd_sysctl_header = NULL;
6245 if (sd_ctl_dir[0].child)
6246 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6247 }
6248 #else
6249 static void register_sched_domain_sysctl(void)
6250 {
6251 }
6252 static void unregister_sched_domain_sysctl(void)
6253 {
6254 }
6255 #endif
6256
6257 static void set_rq_online(struct rq *rq)
6258 {
6259 if (!rq->online) {
6260 const struct sched_class *class;
6261
6262 cpumask_set_cpu(rq->cpu, rq->rd->online);
6263 rq->online = 1;
6264
6265 for_each_class(class) {
6266 if (class->rq_online)
6267 class->rq_online(rq);
6268 }
6269 }
6270 }
6271
6272 static void set_rq_offline(struct rq *rq)
6273 {
6274 if (rq->online) {
6275 const struct sched_class *class;
6276
6277 for_each_class(class) {
6278 if (class->rq_offline)
6279 class->rq_offline(rq);
6280 }
6281
6282 cpumask_clear_cpu(rq->cpu, rq->rd->online);
6283 rq->online = 0;
6284 }
6285 }
6286
6287 /*
6288 * migration_call - callback that gets triggered when a CPU is added.
6289 * Here we can start up the necessary migration thread for the new CPU.
6290 */
6291 static int __cpuinit
6292 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6293 {
6294 int cpu = (long)hcpu;
6295 unsigned long flags;
6296 struct rq *rq = cpu_rq(cpu);
6297
6298 switch (action & ~CPU_TASKS_FROZEN) {
6299
6300 case CPU_UP_PREPARE:
6301 rq->calc_load_update = calc_load_update;
6302 break;
6303
6304 case CPU_ONLINE:
6305 /* Update our root-domain */
6306 raw_spin_lock_irqsave(&rq->lock, flags);
6307 if (rq->rd) {
6308 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6309
6310 set_rq_online(rq);
6311 }
6312 raw_spin_unlock_irqrestore(&rq->lock, flags);
6313 break;
6314
6315 #ifdef CONFIG_HOTPLUG_CPU
6316 case CPU_DYING:
6317 /* Update our root-domain */
6318 raw_spin_lock_irqsave(&rq->lock, flags);
6319 if (rq->rd) {
6320 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6321 set_rq_offline(rq);
6322 }
6323 migrate_tasks(cpu);
6324 BUG_ON(rq->nr_running != 1); /* the migration thread */
6325 raw_spin_unlock_irqrestore(&rq->lock, flags);
6326
6327 migrate_nr_uninterruptible(rq);
6328 calc_global_load_remove(rq);
6329 break;
6330 #endif
6331 }
6332
6333 update_max_interval();
6334
6335 return NOTIFY_OK;
6336 }
6337
6338 /*
6339 * Register at high priority so that task migration (migrate_all_tasks)
6340 * happens before everything else. This has to be lower priority than
6341 * the notifier in the perf_event subsystem, though.
6342 */
6343 static struct notifier_block __cpuinitdata migration_notifier = {
6344 .notifier_call = migration_call,
6345 .priority = CPU_PRI_MIGRATION,
6346 };
6347
6348 static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
6349 unsigned long action, void *hcpu)
6350 {
6351 switch (action & ~CPU_TASKS_FROZEN) {
6352 case CPU_ONLINE:
6353 case CPU_DOWN_FAILED:
6354 set_cpu_active((long)hcpu, true);
6355 return NOTIFY_OK;
6356 default:
6357 return NOTIFY_DONE;
6358 }
6359 }
6360
6361 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
6362 unsigned long action, void *hcpu)
6363 {
6364 switch (action & ~CPU_TASKS_FROZEN) {
6365 case CPU_DOWN_PREPARE:
6366 set_cpu_active((long)hcpu, false);
6367 return NOTIFY_OK;
6368 default:
6369 return NOTIFY_DONE;
6370 }
6371 }
6372
6373 static int __init migration_init(void)
6374 {
6375 void *cpu = (void *)(long)smp_processor_id();
6376 int err;
6377
6378 /* Initialize migration for the boot CPU */
6379 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6380 BUG_ON(err == NOTIFY_BAD);
6381 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6382 register_cpu_notifier(&migration_notifier);
6383
6384 /* Register cpu active notifiers */
6385 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6386 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6387
6388 return 0;
6389 }
6390 early_initcall(migration_init);
6391 #endif
6392
6393 #ifdef CONFIG_SMP
6394
6395 #ifdef CONFIG_SCHED_DEBUG
6396
6397 static __read_mostly int sched_domain_debug_enabled;
6398
6399 static int __init sched_domain_debug_setup(char *str)
6400 {
6401 sched_domain_debug_enabled = 1;
6402
6403 return 0;
6404 }
6405 early_param("sched_debug", sched_domain_debug_setup);
6406
6407 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6408 struct cpumask *groupmask)
6409 {
6410 struct sched_group *group = sd->groups;
6411 char str[256];
6412
6413 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6414 cpumask_clear(groupmask);
6415
6416 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6417
6418 if (!(sd->flags & SD_LOAD_BALANCE)) {
6419 printk("does not load-balance\n");
6420 if (sd->parent)
6421 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6422 " has parent");
6423 return -1;
6424 }
6425
6426 printk(KERN_CONT "span %s level %s\n", str, sd->name);
6427
6428 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
6429 printk(KERN_ERR "ERROR: domain->span does not contain "
6430 "CPU%d\n", cpu);
6431 }
6432 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
6433 printk(KERN_ERR "ERROR: domain->groups does not contain"
6434 " CPU%d\n", cpu);
6435 }
6436
6437 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6438 do {
6439 if (!group) {
6440 printk("\n");
6441 printk(KERN_ERR "ERROR: group is NULL\n");
6442 break;
6443 }
6444
6445 if (!group->cpu_power) {
6446 printk(KERN_CONT "\n");
6447 printk(KERN_ERR "ERROR: domain->cpu_power not "
6448 "set\n");
6449 break;
6450 }
6451
6452 if (!cpumask_weight(sched_group_cpus(group))) {
6453 printk(KERN_CONT "\n");
6454 printk(KERN_ERR "ERROR: empty group\n");
6455 break;
6456 }
6457
6458 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
6459 printk(KERN_CONT "\n");
6460 printk(KERN_ERR "ERROR: repeated CPUs\n");
6461 break;
6462 }
6463
6464 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
6465
6466 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6467
6468 printk(KERN_CONT " %s", str);
6469 if (group->cpu_power != SCHED_LOAD_SCALE) {
6470 printk(KERN_CONT " (cpu_power = %d)",
6471 group->cpu_power);
6472 }
6473
6474 group = group->next;
6475 } while (group != sd->groups);
6476 printk(KERN_CONT "\n");
6477
6478 if (!cpumask_equal(sched_domain_span(sd), groupmask))
6479 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6480
6481 if (sd->parent &&
6482 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
6483 printk(KERN_ERR "ERROR: parent span is not a superset "
6484 "of domain->span\n");
6485 return 0;
6486 }
6487
6488 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6489 {
6490 cpumask_var_t groupmask;
6491 int level = 0;
6492
6493 if (!sched_domain_debug_enabled)
6494 return;
6495
6496 if (!sd) {
6497 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6498 return;
6499 }
6500
6501 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6502
6503 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6504 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6505 return;
6506 }
6507
6508 for (;;) {
6509 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6510 break;
6511 level++;
6512 sd = sd->parent;
6513 if (!sd)
6514 break;
6515 }
6516 free_cpumask_var(groupmask);
6517 }
6518 #else /* !CONFIG_SCHED_DEBUG */
6519 # define sched_domain_debug(sd, cpu) do { } while (0)
6520 #endif /* CONFIG_SCHED_DEBUG */
6521
6522 static int sd_degenerate(struct sched_domain *sd)
6523 {
6524 if (cpumask_weight(sched_domain_span(sd)) == 1)
6525 return 1;
6526
6527 /* Following flags need at least 2 groups */
6528 if (sd->flags & (SD_LOAD_BALANCE |
6529 SD_BALANCE_NEWIDLE |
6530 SD_BALANCE_FORK |
6531 SD_BALANCE_EXEC |
6532 SD_SHARE_CPUPOWER |
6533 SD_SHARE_PKG_RESOURCES)) {
6534 if (sd->groups != sd->groups->next)
6535 return 0;
6536 }
6537
6538 /* Following flags don't use groups */
6539 if (sd->flags & (SD_WAKE_AFFINE))
6540 return 0;
6541
6542 return 1;
6543 }
6544
6545 static int
6546 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6547 {
6548 unsigned long cflags = sd->flags, pflags = parent->flags;
6549
6550 if (sd_degenerate(parent))
6551 return 1;
6552
6553 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6554 return 0;
6555
6556 /* Flags needing groups don't count if only 1 group in parent */
6557 if (parent->groups == parent->groups->next) {
6558 pflags &= ~(SD_LOAD_BALANCE |
6559 SD_BALANCE_NEWIDLE |
6560 SD_BALANCE_FORK |
6561 SD_BALANCE_EXEC |
6562 SD_SHARE_CPUPOWER |
6563 SD_SHARE_PKG_RESOURCES);
6564 if (nr_node_ids == 1)
6565 pflags &= ~SD_SERIALIZE;
6566 }
6567 if (~cflags & pflags)
6568 return 0;
6569
6570 return 1;
6571 }
6572
6573 static void free_rootdomain(struct root_domain *rd)
6574 {
6575 synchronize_sched();
6576
6577 cpupri_cleanup(&rd->cpupri);
6578
6579 free_cpumask_var(rd->rto_mask);
6580 free_cpumask_var(rd->online);
6581 free_cpumask_var(rd->span);
6582 kfree(rd);
6583 }
6584
6585 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6586 {
6587 struct root_domain *old_rd = NULL;
6588 unsigned long flags;
6589
6590 raw_spin_lock_irqsave(&rq->lock, flags);
6591
6592 if (rq->rd) {
6593 old_rd = rq->rd;
6594
6595 if (cpumask_test_cpu(rq->cpu, old_rd->online))
6596 set_rq_offline(rq);
6597
6598 cpumask_clear_cpu(rq->cpu, old_rd->span);
6599
6600 /*
6601 * If we dont want to free the old_rt yet then
6602 * set old_rd to NULL to skip the freeing later
6603 * in this function:
6604 */
6605 if (!atomic_dec_and_test(&old_rd->refcount))
6606 old_rd = NULL;
6607 }
6608
6609 atomic_inc(&rd->refcount);
6610 rq->rd = rd;
6611
6612 cpumask_set_cpu(rq->cpu, rd->span);
6613 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6614 set_rq_online(rq);
6615
6616 raw_spin_unlock_irqrestore(&rq->lock, flags);
6617
6618 if (old_rd)
6619 free_rootdomain(old_rd);
6620 }
6621
6622 static int init_rootdomain(struct root_domain *rd)
6623 {
6624 memset(rd, 0, sizeof(*rd));
6625
6626 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
6627 goto out;
6628 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
6629 goto free_span;
6630 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
6631 goto free_online;
6632
6633 if (cpupri_init(&rd->cpupri) != 0)
6634 goto free_rto_mask;
6635 return 0;
6636
6637 free_rto_mask:
6638 free_cpumask_var(rd->rto_mask);
6639 free_online:
6640 free_cpumask_var(rd->online);
6641 free_span:
6642 free_cpumask_var(rd->span);
6643 out:
6644 return -ENOMEM;
6645 }
6646
6647 static void init_defrootdomain(void)
6648 {
6649 init_rootdomain(&def_root_domain);
6650
6651 atomic_set(&def_root_domain.refcount, 1);
6652 }
6653
6654 static struct root_domain *alloc_rootdomain(void)
6655 {
6656 struct root_domain *rd;
6657
6658 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6659 if (!rd)
6660 return NULL;
6661
6662 if (init_rootdomain(rd) != 0) {
6663 kfree(rd);
6664 return NULL;
6665 }
6666
6667 return rd;
6668 }
6669
6670 /*
6671 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6672 * hold the hotplug lock.
6673 */
6674 static void
6675 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6676 {
6677 struct rq *rq = cpu_rq(cpu);
6678 struct sched_domain *tmp;
6679
6680 for (tmp = sd; tmp; tmp = tmp->parent)
6681 tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
6682
6683 /* Remove the sched domains which do not contribute to scheduling. */
6684 for (tmp = sd; tmp; ) {
6685 struct sched_domain *parent = tmp->parent;
6686 if (!parent)
6687 break;
6688
6689 if (sd_parent_degenerate(tmp, parent)) {
6690 tmp->parent = parent->parent;
6691 if (parent->parent)
6692 parent->parent->child = tmp;
6693 } else
6694 tmp = tmp->parent;
6695 }
6696
6697 if (sd && sd_degenerate(sd)) {
6698 sd = sd->parent;
6699 if (sd)
6700 sd->child = NULL;
6701 }
6702
6703 sched_domain_debug(sd, cpu);
6704
6705 rq_attach_root(rq, rd);
6706 rcu_assign_pointer(rq->sd, sd);
6707 }
6708
6709 /* cpus with isolated domains */
6710 static cpumask_var_t cpu_isolated_map;
6711
6712 /* Setup the mask of cpus configured for isolated domains */
6713 static int __init isolated_cpu_setup(char *str)
6714 {
6715 alloc_bootmem_cpumask_var(&cpu_isolated_map);
6716 cpulist_parse(str, cpu_isolated_map);
6717 return 1;
6718 }
6719
6720 __setup("isolcpus=", isolated_cpu_setup);
6721
6722 /*
6723 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6724 * to a function which identifies what group(along with sched group) a CPU
6725 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6726 * (due to the fact that we keep track of groups covered with a struct cpumask).
6727 *
6728 * init_sched_build_groups will build a circular linked list of the groups
6729 * covered by the given span, and will set each group's ->cpumask correctly,
6730 * and ->cpu_power to 0.
6731 */
6732 static void
6733 init_sched_build_groups(const struct cpumask *span,
6734 const struct cpumask *cpu_map,
6735 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
6736 struct sched_group **sg,
6737 struct cpumask *tmpmask),
6738 struct cpumask *covered, struct cpumask *tmpmask)
6739 {
6740 struct sched_group *first = NULL, *last = NULL;
6741 int i;
6742
6743 cpumask_clear(covered);
6744
6745 for_each_cpu(i, span) {
6746 struct sched_group *sg;
6747 int group = group_fn(i, cpu_map, &sg, tmpmask);
6748 int j;
6749
6750 if (cpumask_test_cpu(i, covered))
6751 continue;
6752
6753 cpumask_clear(sched_group_cpus(sg));
6754 sg->cpu_power = 0;
6755
6756 for_each_cpu(j, span) {
6757 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6758 continue;
6759
6760 cpumask_set_cpu(j, covered);
6761 cpumask_set_cpu(j, sched_group_cpus(sg));
6762 }
6763 if (!first)
6764 first = sg;
6765 if (last)
6766 last->next = sg;
6767 last = sg;
6768 }
6769 last->next = first;
6770 }
6771
6772 #define SD_NODES_PER_DOMAIN 16
6773
6774 #ifdef CONFIG_NUMA
6775
6776 /**
6777 * find_next_best_node - find the next node to include in a sched_domain
6778 * @node: node whose sched_domain we're building
6779 * @used_nodes: nodes already in the sched_domain
6780 *
6781 * Find the next node to include in a given scheduling domain. Simply
6782 * finds the closest node not already in the @used_nodes map.
6783 *
6784 * Should use nodemask_t.
6785 */
6786 static int find_next_best_node(int node, nodemask_t *used_nodes)
6787 {
6788 int i, n, val, min_val, best_node = 0;
6789
6790 min_val = INT_MAX;
6791
6792 for (i = 0; i < nr_node_ids; i++) {
6793 /* Start at @node */
6794 n = (node + i) % nr_node_ids;
6795
6796 if (!nr_cpus_node(n))
6797 continue;
6798
6799 /* Skip already used nodes */
6800 if (node_isset(n, *used_nodes))
6801 continue;
6802
6803 /* Simple min distance search */
6804 val = node_distance(node, n);
6805
6806 if (val < min_val) {
6807 min_val = val;
6808 best_node = n;
6809 }
6810 }
6811
6812 node_set(best_node, *used_nodes);
6813 return best_node;
6814 }
6815
6816 /**
6817 * sched_domain_node_span - get a cpumask for a node's sched_domain
6818 * @node: node whose cpumask we're constructing
6819 * @span: resulting cpumask
6820 *
6821 * Given a node, construct a good cpumask for its sched_domain to span. It
6822 * should be one that prevents unnecessary balancing, but also spreads tasks
6823 * out optimally.
6824 */
6825 static void sched_domain_node_span(int node, struct cpumask *span)
6826 {
6827 nodemask_t used_nodes;
6828 int i;
6829
6830 cpumask_clear(span);
6831 nodes_clear(used_nodes);
6832
6833 cpumask_or(span, span, cpumask_of_node(node));
6834 node_set(node, used_nodes);
6835
6836 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6837 int next_node = find_next_best_node(node, &used_nodes);
6838
6839 cpumask_or(span, span, cpumask_of_node(next_node));
6840 }
6841 }
6842 #endif /* CONFIG_NUMA */
6843
6844 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6845
6846 /*
6847 * The cpus mask in sched_group and sched_domain hangs off the end.
6848 *
6849 * ( See the the comments in include/linux/sched.h:struct sched_group
6850 * and struct sched_domain. )
6851 */
6852 struct static_sched_group {
6853 struct sched_group sg;
6854 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6855 };
6856
6857 struct static_sched_domain {
6858 struct sched_domain sd;
6859 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6860 };
6861
6862 struct s_data {
6863 #ifdef CONFIG_NUMA
6864 int sd_allnodes;
6865 cpumask_var_t domainspan;
6866 cpumask_var_t covered;
6867 cpumask_var_t notcovered;
6868 #endif
6869 cpumask_var_t nodemask;
6870 cpumask_var_t this_sibling_map;
6871 cpumask_var_t this_core_map;
6872 cpumask_var_t this_book_map;
6873 cpumask_var_t send_covered;
6874 cpumask_var_t tmpmask;
6875 struct sched_group **sched_group_nodes;
6876 struct root_domain *rd;
6877 };
6878
6879 enum s_alloc {
6880 sa_sched_groups = 0,
6881 sa_rootdomain,
6882 sa_tmpmask,
6883 sa_send_covered,
6884 sa_this_book_map,
6885 sa_this_core_map,
6886 sa_this_sibling_map,
6887 sa_nodemask,
6888 sa_sched_group_nodes,
6889 #ifdef CONFIG_NUMA
6890 sa_notcovered,
6891 sa_covered,
6892 sa_domainspan,
6893 #endif
6894 sa_none,
6895 };
6896
6897 /*
6898 * SMT sched-domains:
6899 */
6900 #ifdef CONFIG_SCHED_SMT
6901 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
6902 static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
6903
6904 static int
6905 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6906 struct sched_group **sg, struct cpumask *unused)
6907 {
6908 if (sg)
6909 *sg = &per_cpu(sched_groups, cpu).sg;
6910 return cpu;
6911 }
6912 #endif /* CONFIG_SCHED_SMT */
6913
6914 /*
6915 * multi-core sched-domains:
6916 */
6917 #ifdef CONFIG_SCHED_MC
6918 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6919 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6920
6921 static int
6922 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6923 struct sched_group **sg, struct cpumask *mask)
6924 {
6925 int group;
6926 #ifdef CONFIG_SCHED_SMT
6927 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6928 group = cpumask_first(mask);
6929 #else
6930 group = cpu;
6931 #endif
6932 if (sg)
6933 *sg = &per_cpu(sched_group_core, group).sg;
6934 return group;
6935 }
6936 #endif /* CONFIG_SCHED_MC */
6937
6938 /*
6939 * book sched-domains:
6940 */
6941 #ifdef CONFIG_SCHED_BOOK
6942 static DEFINE_PER_CPU(struct static_sched_domain, book_domains);
6943 static DEFINE_PER_CPU(struct static_sched_group, sched_group_book);
6944
6945 static int
6946 cpu_to_book_group(int cpu, const struct cpumask *cpu_map,
6947 struct sched_group **sg, struct cpumask *mask)
6948 {
6949 int group = cpu;
6950 #ifdef CONFIG_SCHED_MC
6951 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6952 group = cpumask_first(mask);
6953 #elif defined(CONFIG_SCHED_SMT)
6954 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6955 group = cpumask_first(mask);
6956 #endif
6957 if (sg)
6958 *sg = &per_cpu(sched_group_book, group).sg;
6959 return group;
6960 }
6961 #endif /* CONFIG_SCHED_BOOK */
6962
6963 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6964 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
6965
6966 static int
6967 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6968 struct sched_group **sg, struct cpumask *mask)
6969 {
6970 int group;
6971 #ifdef CONFIG_SCHED_BOOK
6972 cpumask_and(mask, cpu_book_mask(cpu), cpu_map);
6973 group = cpumask_first(mask);
6974 #elif defined(CONFIG_SCHED_MC)
6975 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6976 group = cpumask_first(mask);
6977 #elif defined(CONFIG_SCHED_SMT)
6978 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6979 group = cpumask_first(mask);
6980 #else
6981 group = cpu;
6982 #endif
6983 if (sg)
6984 *sg = &per_cpu(sched_group_phys, group).sg;
6985 return group;
6986 }
6987
6988 #ifdef CONFIG_NUMA
6989 /*
6990 * The init_sched_build_groups can't handle what we want to do with node
6991 * groups, so roll our own. Now each node has its own list of groups which
6992 * gets dynamically allocated.
6993 */
6994 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
6995 static struct sched_group ***sched_group_nodes_bycpu;
6996
6997 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6998 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
6999
7000 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
7001 struct sched_group **sg,
7002 struct cpumask *nodemask)
7003 {
7004 int group;
7005
7006 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
7007 group = cpumask_first(nodemask);
7008
7009 if (sg)
7010 *sg = &per_cpu(sched_group_allnodes, group).sg;
7011 return group;
7012 }
7013
7014 static void init_numa_sched_groups_power(struct sched_group *group_head)
7015 {
7016 struct sched_group *sg = group_head;
7017 int j;
7018
7019 if (!sg)
7020 return;
7021 do {
7022 for_each_cpu(j, sched_group_cpus(sg)) {
7023 struct sched_domain *sd;
7024
7025 sd = &per_cpu(phys_domains, j).sd;
7026 if (j != group_first_cpu(sd->groups)) {
7027 /*
7028 * Only add "power" once for each
7029 * physical package.
7030 */
7031 continue;
7032 }
7033
7034 sg->cpu_power += sd->groups->cpu_power;
7035 }
7036 sg = sg->next;
7037 } while (sg != group_head);
7038 }
7039
7040 static int build_numa_sched_groups(struct s_data *d,
7041 const struct cpumask *cpu_map, int num)
7042 {
7043 struct sched_domain *sd;
7044 struct sched_group *sg, *prev;
7045 int n, j;
7046
7047 cpumask_clear(d->covered);
7048 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
7049 if (cpumask_empty(d->nodemask)) {
7050 d->sched_group_nodes[num] = NULL;
7051 goto out;
7052 }
7053
7054 sched_domain_node_span(num, d->domainspan);
7055 cpumask_and(d->domainspan, d->domainspan, cpu_map);
7056
7057 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
7058 GFP_KERNEL, num);
7059 if (!sg) {
7060 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
7061 num);
7062 return -ENOMEM;
7063 }
7064 d->sched_group_nodes[num] = sg;
7065
7066 for_each_cpu(j, d->nodemask) {
7067 sd = &per_cpu(node_domains, j).sd;
7068 sd->groups = sg;
7069 }
7070
7071 sg->cpu_power = 0;
7072 cpumask_copy(sched_group_cpus(sg), d->nodemask);
7073 sg->next = sg;
7074 cpumask_or(d->covered, d->covered, d->nodemask);
7075
7076 prev = sg;
7077 for (j = 0; j < nr_node_ids; j++) {
7078 n = (num + j) % nr_node_ids;
7079 cpumask_complement(d->notcovered, d->covered);
7080 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
7081 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
7082 if (cpumask_empty(d->tmpmask))
7083 break;
7084 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
7085 if (cpumask_empty(d->tmpmask))
7086 continue;
7087 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
7088 GFP_KERNEL, num);
7089 if (!sg) {
7090 printk(KERN_WARNING
7091 "Can not alloc domain group for node %d\n", j);
7092 return -ENOMEM;
7093 }
7094 sg->cpu_power = 0;
7095 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
7096 sg->next = prev->next;
7097 cpumask_or(d->covered, d->covered, d->tmpmask);
7098 prev->next = sg;
7099 prev = sg;
7100 }
7101 out:
7102 return 0;
7103 }
7104 #endif /* CONFIG_NUMA */
7105
7106 #ifdef CONFIG_NUMA
7107 /* Free memory allocated for various sched_group structures */
7108 static void free_sched_groups(const struct cpumask *cpu_map,
7109 struct cpumask *nodemask)
7110 {
7111 int cpu, i;
7112
7113 for_each_cpu(cpu, cpu_map) {
7114 struct sched_group **sched_group_nodes
7115 = sched_group_nodes_bycpu[cpu];
7116
7117 if (!sched_group_nodes)
7118 continue;
7119
7120 for (i = 0; i < nr_node_ids; i++) {
7121 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7122
7123 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7124 if (cpumask_empty(nodemask))
7125 continue;
7126
7127 if (sg == NULL)
7128 continue;
7129 sg = sg->next;
7130 next_sg:
7131 oldsg = sg;
7132 sg = sg->next;
7133 kfree(oldsg);
7134 if (oldsg != sched_group_nodes[i])
7135 goto next_sg;
7136 }
7137 kfree(sched_group_nodes);
7138 sched_group_nodes_bycpu[cpu] = NULL;
7139 }
7140 }
7141 #else /* !CONFIG_NUMA */
7142 static void free_sched_groups(const struct cpumask *cpu_map,
7143 struct cpumask *nodemask)
7144 {
7145 }
7146 #endif /* CONFIG_NUMA */
7147
7148 /*
7149 * Initialize sched groups cpu_power.
7150 *
7151 * cpu_power indicates the capacity of sched group, which is used while
7152 * distributing the load between different sched groups in a sched domain.
7153 * Typically cpu_power for all the groups in a sched domain will be same unless
7154 * there are asymmetries in the topology. If there are asymmetries, group
7155 * having more cpu_power will pickup more load compared to the group having
7156 * less cpu_power.
7157 */
7158 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7159 {
7160 struct sched_domain *child;
7161 struct sched_group *group;
7162 long power;
7163 int weight;
7164
7165 WARN_ON(!sd || !sd->groups);
7166
7167 if (cpu != group_first_cpu(sd->groups))
7168 return;
7169
7170 sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups));
7171
7172 child = sd->child;
7173
7174 sd->groups->cpu_power = 0;
7175
7176 if (!child) {
7177 power = SCHED_LOAD_SCALE;
7178 weight = cpumask_weight(sched_domain_span(sd));
7179 /*
7180 * SMT siblings share the power of a single core.
7181 * Usually multiple threads get a better yield out of
7182 * that one core than a single thread would have,
7183 * reflect that in sd->smt_gain.
7184 */
7185 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
7186 power *= sd->smt_gain;
7187 power /= weight;
7188 power >>= SCHED_LOAD_SHIFT;
7189 }
7190 sd->groups->cpu_power += power;
7191 return;
7192 }
7193
7194 /*
7195 * Add cpu_power of each child group to this groups cpu_power.
7196 */
7197 group = child->groups;
7198 do {
7199 sd->groups->cpu_power += group->cpu_power;
7200 group = group->next;
7201 } while (group != child->groups);
7202 }
7203
7204 /*
7205 * Initializers for schedule domains
7206 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7207 */
7208
7209 #ifdef CONFIG_SCHED_DEBUG
7210 # define SD_INIT_NAME(sd, type) sd->name = #type
7211 #else
7212 # define SD_INIT_NAME(sd, type) do { } while (0)
7213 #endif
7214
7215 #define SD_INIT(sd, type) sd_init_##type(sd)
7216
7217 #define SD_INIT_FUNC(type) \
7218 static noinline void sd_init_##type(struct sched_domain *sd) \
7219 { \
7220 memset(sd, 0, sizeof(*sd)); \
7221 *sd = SD_##type##_INIT; \
7222 sd->level = SD_LV_##type; \
7223 SD_INIT_NAME(sd, type); \
7224 }
7225
7226 SD_INIT_FUNC(CPU)
7227 #ifdef CONFIG_NUMA
7228 SD_INIT_FUNC(ALLNODES)
7229 SD_INIT_FUNC(NODE)
7230 #endif
7231 #ifdef CONFIG_SCHED_SMT
7232 SD_INIT_FUNC(SIBLING)
7233 #endif
7234 #ifdef CONFIG_SCHED_MC
7235 SD_INIT_FUNC(MC)
7236 #endif
7237 #ifdef CONFIG_SCHED_BOOK
7238 SD_INIT_FUNC(BOOK)
7239 #endif
7240
7241 static int default_relax_domain_level = -1;
7242
7243 static int __init setup_relax_domain_level(char *str)
7244 {
7245 unsigned long val;
7246
7247 val = simple_strtoul(str, NULL, 0);
7248 if (val < SD_LV_MAX)
7249 default_relax_domain_level = val;
7250
7251 return 1;
7252 }
7253 __setup("relax_domain_level=", setup_relax_domain_level);
7254
7255 static void set_domain_attribute(struct sched_domain *sd,
7256 struct sched_domain_attr *attr)
7257 {
7258 int request;
7259
7260 if (!attr || attr->relax_domain_level < 0) {
7261 if (default_relax_domain_level < 0)
7262 return;
7263 else
7264 request = default_relax_domain_level;
7265 } else
7266 request = attr->relax_domain_level;
7267 if (request < sd->level) {
7268 /* turn off idle balance on this domain */
7269 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7270 } else {
7271 /* turn on idle balance on this domain */
7272 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7273 }
7274 }
7275
7276 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
7277 const struct cpumask *cpu_map)
7278 {
7279 switch (what) {
7280 case sa_sched_groups:
7281 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
7282 d->sched_group_nodes = NULL;
7283 case sa_rootdomain:
7284 free_rootdomain(d->rd); /* fall through */
7285 case sa_tmpmask:
7286 free_cpumask_var(d->tmpmask); /* fall through */
7287 case sa_send_covered:
7288 free_cpumask_var(d->send_covered); /* fall through */
7289 case sa_this_book_map:
7290 free_cpumask_var(d->this_book_map); /* fall through */
7291 case sa_this_core_map:
7292 free_cpumask_var(d->this_core_map); /* fall through */
7293 case sa_this_sibling_map:
7294 free_cpumask_var(d->this_sibling_map); /* fall through */
7295 case sa_nodemask:
7296 free_cpumask_var(d->nodemask); /* fall through */
7297 case sa_sched_group_nodes:
7298 #ifdef CONFIG_NUMA
7299 kfree(d->sched_group_nodes); /* fall through */
7300 case sa_notcovered:
7301 free_cpumask_var(d->notcovered); /* fall through */
7302 case sa_covered:
7303 free_cpumask_var(d->covered); /* fall through */
7304 case sa_domainspan:
7305 free_cpumask_var(d->domainspan); /* fall through */
7306 #endif
7307 case sa_none:
7308 break;
7309 }
7310 }
7311
7312 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
7313 const struct cpumask *cpu_map)
7314 {
7315 #ifdef CONFIG_NUMA
7316 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
7317 return sa_none;
7318 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
7319 return sa_domainspan;
7320 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
7321 return sa_covered;
7322 /* Allocate the per-node list of sched groups */
7323 d->sched_group_nodes = kcalloc(nr_node_ids,
7324 sizeof(struct sched_group *), GFP_KERNEL);
7325 if (!d->sched_group_nodes) {
7326 printk(KERN_WARNING "Can not alloc sched group node list\n");
7327 return sa_notcovered;
7328 }
7329 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
7330 #endif
7331 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
7332 return sa_sched_group_nodes;
7333 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
7334 return sa_nodemask;
7335 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
7336 return sa_this_sibling_map;
7337 if (!alloc_cpumask_var(&d->this_book_map, GFP_KERNEL))
7338 return sa_this_core_map;
7339 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
7340 return sa_this_book_map;
7341 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
7342 return sa_send_covered;
7343 d->rd = alloc_rootdomain();
7344 if (!d->rd) {
7345 printk(KERN_WARNING "Cannot alloc root domain\n");
7346 return sa_tmpmask;
7347 }
7348 return sa_rootdomain;
7349 }
7350
7351 static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
7352 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
7353 {
7354 struct sched_domain *sd = NULL;
7355 #ifdef CONFIG_NUMA
7356 struct sched_domain *parent;
7357
7358 d->sd_allnodes = 0;
7359 if (cpumask_weight(cpu_map) >
7360 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
7361 sd = &per_cpu(allnodes_domains, i).sd;
7362 SD_INIT(sd, ALLNODES);
7363 set_domain_attribute(sd, attr);
7364 cpumask_copy(sched_domain_span(sd), cpu_map);
7365 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
7366 d->sd_allnodes = 1;
7367 }
7368 parent = sd;
7369
7370 sd = &per_cpu(node_domains, i).sd;
7371 SD_INIT(sd, NODE);
7372 set_domain_attribute(sd, attr);
7373 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
7374 sd->parent = parent;
7375 if (parent)
7376 parent->child = sd;
7377 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
7378 #endif
7379 return sd;
7380 }
7381
7382 static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
7383 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7384 struct sched_domain *parent, int i)
7385 {
7386 struct sched_domain *sd;
7387 sd = &per_cpu(phys_domains, i).sd;
7388 SD_INIT(sd, CPU);
7389 set_domain_attribute(sd, attr);
7390 cpumask_copy(sched_domain_span(sd), d->nodemask);
7391 sd->parent = parent;
7392 if (parent)
7393 parent->child = sd;
7394 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
7395 return sd;
7396 }
7397
7398 static struct sched_domain *__build_book_sched_domain(struct s_data *d,
7399 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7400 struct sched_domain *parent, int i)
7401 {
7402 struct sched_domain *sd = parent;
7403 #ifdef CONFIG_SCHED_BOOK
7404 sd = &per_cpu(book_domains, i).sd;
7405 SD_INIT(sd, BOOK);
7406 set_domain_attribute(sd, attr);
7407 cpumask_and(sched_domain_span(sd), cpu_map, cpu_book_mask(i));
7408 sd->parent = parent;
7409 parent->child = sd;
7410 cpu_to_book_group(i, cpu_map, &sd->groups, d->tmpmask);
7411 #endif
7412 return sd;
7413 }
7414
7415 static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
7416 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7417 struct sched_domain *parent, int i)
7418 {
7419 struct sched_domain *sd = parent;
7420 #ifdef CONFIG_SCHED_MC
7421 sd = &per_cpu(core_domains, i).sd;
7422 SD_INIT(sd, MC);
7423 set_domain_attribute(sd, attr);
7424 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
7425 sd->parent = parent;
7426 parent->child = sd;
7427 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
7428 #endif
7429 return sd;
7430 }
7431
7432 static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
7433 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7434 struct sched_domain *parent, int i)
7435 {
7436 struct sched_domain *sd = parent;
7437 #ifdef CONFIG_SCHED_SMT
7438 sd = &per_cpu(cpu_domains, i).sd;
7439 SD_INIT(sd, SIBLING);
7440 set_domain_attribute(sd, attr);
7441 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
7442 sd->parent = parent;
7443 parent->child = sd;
7444 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
7445 #endif
7446 return sd;
7447 }
7448
7449 static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
7450 const struct cpumask *cpu_map, int cpu)
7451 {
7452 switch (l) {
7453 #ifdef CONFIG_SCHED_SMT
7454 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
7455 cpumask_and(d->this_sibling_map, cpu_map,
7456 topology_thread_cpumask(cpu));
7457 if (cpu == cpumask_first(d->this_sibling_map))
7458 init_sched_build_groups(d->this_sibling_map, cpu_map,
7459 &cpu_to_cpu_group,
7460 d->send_covered, d->tmpmask);
7461 break;
7462 #endif
7463 #ifdef CONFIG_SCHED_MC
7464 case SD_LV_MC: /* set up multi-core groups */
7465 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
7466 if (cpu == cpumask_first(d->this_core_map))
7467 init_sched_build_groups(d->this_core_map, cpu_map,
7468 &cpu_to_core_group,
7469 d->send_covered, d->tmpmask);
7470 break;
7471 #endif
7472 #ifdef CONFIG_SCHED_BOOK
7473 case SD_LV_BOOK: /* set up book groups */
7474 cpumask_and(d->this_book_map, cpu_map, cpu_book_mask(cpu));
7475 if (cpu == cpumask_first(d->this_book_map))
7476 init_sched_build_groups(d->this_book_map, cpu_map,
7477 &cpu_to_book_group,
7478 d->send_covered, d->tmpmask);
7479 break;
7480 #endif
7481 case SD_LV_CPU: /* set up physical groups */
7482 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
7483 if (!cpumask_empty(d->nodemask))
7484 init_sched_build_groups(d->nodemask, cpu_map,
7485 &cpu_to_phys_group,
7486 d->send_covered, d->tmpmask);
7487 break;
7488 #ifdef CONFIG_NUMA
7489 case SD_LV_ALLNODES:
7490 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
7491 d->send_covered, d->tmpmask);
7492 break;
7493 #endif
7494 default:
7495 break;
7496 }
7497 }
7498
7499 /*
7500 * Build sched domains for a given set of cpus and attach the sched domains
7501 * to the individual cpus
7502 */
7503 static int __build_sched_domains(const struct cpumask *cpu_map,
7504 struct sched_domain_attr *attr)
7505 {
7506 enum s_alloc alloc_state = sa_none;
7507 struct s_data d;
7508 struct sched_domain *sd;
7509 int i;
7510 #ifdef CONFIG_NUMA
7511 d.sd_allnodes = 0;
7512 #endif
7513
7514 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7515 if (alloc_state != sa_rootdomain)
7516 goto error;
7517 alloc_state = sa_sched_groups;
7518
7519 /*
7520 * Set up domains for cpus specified by the cpu_map.
7521 */
7522 for_each_cpu(i, cpu_map) {
7523 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
7524 cpu_map);
7525
7526 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
7527 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
7528 sd = __build_book_sched_domain(&d, cpu_map, attr, sd, i);
7529 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
7530 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
7531 }
7532
7533 for_each_cpu(i, cpu_map) {
7534 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
7535 build_sched_groups(&d, SD_LV_BOOK, cpu_map, i);
7536 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
7537 }
7538
7539 /* Set up physical groups */
7540 for (i = 0; i < nr_node_ids; i++)
7541 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
7542
7543 #ifdef CONFIG_NUMA
7544 /* Set up node groups */
7545 if (d.sd_allnodes)
7546 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
7547
7548 for (i = 0; i < nr_node_ids; i++)
7549 if (build_numa_sched_groups(&d, cpu_map, i))
7550 goto error;
7551 #endif
7552
7553 /* Calculate CPU power for physical packages and nodes */
7554 #ifdef CONFIG_SCHED_SMT
7555 for_each_cpu(i, cpu_map) {
7556 sd = &per_cpu(cpu_domains, i).sd;
7557 init_sched_groups_power(i, sd);
7558 }
7559 #endif
7560 #ifdef CONFIG_SCHED_MC
7561 for_each_cpu(i, cpu_map) {
7562 sd = &per_cpu(core_domains, i).sd;
7563 init_sched_groups_power(i, sd);
7564 }
7565 #endif
7566 #ifdef CONFIG_SCHED_BOOK
7567 for_each_cpu(i, cpu_map) {
7568 sd = &per_cpu(book_domains, i).sd;
7569 init_sched_groups_power(i, sd);
7570 }
7571 #endif
7572
7573 for_each_cpu(i, cpu_map) {
7574 sd = &per_cpu(phys_domains, i).sd;
7575 init_sched_groups_power(i, sd);
7576 }
7577
7578 #ifdef CONFIG_NUMA
7579 for (i = 0; i < nr_node_ids; i++)
7580 init_numa_sched_groups_power(d.sched_group_nodes[i]);
7581
7582 if (d.sd_allnodes) {
7583 struct sched_group *sg;
7584
7585 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7586 d.tmpmask);
7587 init_numa_sched_groups_power(sg);
7588 }
7589 #endif
7590
7591 /* Attach the domains */
7592 for_each_cpu(i, cpu_map) {
7593 #ifdef CONFIG_SCHED_SMT
7594 sd = &per_cpu(cpu_domains, i).sd;
7595 #elif defined(CONFIG_SCHED_MC)
7596 sd = &per_cpu(core_domains, i).sd;
7597 #elif defined(CONFIG_SCHED_BOOK)
7598 sd = &per_cpu(book_domains, i).sd;
7599 #else
7600 sd = &per_cpu(phys_domains, i).sd;
7601 #endif
7602 cpu_attach_domain(sd, d.rd, i);
7603 }
7604
7605 d.sched_group_nodes = NULL; /* don't free this we still need it */
7606 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7607 return 0;
7608
7609 error:
7610 __free_domain_allocs(&d, alloc_state, cpu_map);
7611 return -ENOMEM;
7612 }
7613
7614 static int build_sched_domains(const struct cpumask *cpu_map)
7615 {
7616 return __build_sched_domains(cpu_map, NULL);
7617 }
7618
7619 static cpumask_var_t *doms_cur; /* current sched domains */
7620 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7621 static struct sched_domain_attr *dattr_cur;
7622 /* attribues of custom domains in 'doms_cur' */
7623
7624 /*
7625 * Special case: If a kmalloc of a doms_cur partition (array of
7626 * cpumask) fails, then fallback to a single sched domain,
7627 * as determined by the single cpumask fallback_doms.
7628 */
7629 static cpumask_var_t fallback_doms;
7630
7631 /*
7632 * arch_update_cpu_topology lets virtualized architectures update the
7633 * cpu core maps. It is supposed to return 1 if the topology changed
7634 * or 0 if it stayed the same.
7635 */
7636 int __attribute__((weak)) arch_update_cpu_topology(void)
7637 {
7638 return 0;
7639 }
7640
7641 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7642 {
7643 int i;
7644 cpumask_var_t *doms;
7645
7646 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7647 if (!doms)
7648 return NULL;
7649 for (i = 0; i < ndoms; i++) {
7650 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7651 free_sched_domains(doms, i);
7652 return NULL;
7653 }
7654 }
7655 return doms;
7656 }
7657
7658 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7659 {
7660 unsigned int i;
7661 for (i = 0; i < ndoms; i++)
7662 free_cpumask_var(doms[i]);
7663 kfree(doms);
7664 }
7665
7666 /*
7667 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7668 * For now this just excludes isolated cpus, but could be used to
7669 * exclude other special cases in the future.
7670 */
7671 static int arch_init_sched_domains(const struct cpumask *cpu_map)
7672 {
7673 int err;
7674
7675 arch_update_cpu_topology();
7676 ndoms_cur = 1;
7677 doms_cur = alloc_sched_domains(ndoms_cur);
7678 if (!doms_cur)
7679 doms_cur = &fallback_doms;
7680 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7681 dattr_cur = NULL;
7682 err = build_sched_domains(doms_cur[0]);
7683 register_sched_domain_sysctl();
7684
7685 return err;
7686 }
7687
7688 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7689 struct cpumask *tmpmask)
7690 {
7691 free_sched_groups(cpu_map, tmpmask);
7692 }
7693
7694 /*
7695 * Detach sched domains from a group of cpus specified in cpu_map
7696 * These cpus will now be attached to the NULL domain
7697 */
7698 static void detach_destroy_domains(const struct cpumask *cpu_map)
7699 {
7700 /* Save because hotplug lock held. */
7701 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7702 int i;
7703
7704 for_each_cpu(i, cpu_map)
7705 cpu_attach_domain(NULL, &def_root_domain, i);
7706 synchronize_sched();
7707 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7708 }
7709
7710 /* handle null as "default" */
7711 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7712 struct sched_domain_attr *new, int idx_new)
7713 {
7714 struct sched_domain_attr tmp;
7715
7716 /* fast path */
7717 if (!new && !cur)
7718 return 1;
7719
7720 tmp = SD_ATTR_INIT;
7721 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7722 new ? (new + idx_new) : &tmp,
7723 sizeof(struct sched_domain_attr));
7724 }
7725
7726 /*
7727 * Partition sched domains as specified by the 'ndoms_new'
7728 * cpumasks in the array doms_new[] of cpumasks. This compares
7729 * doms_new[] to the current sched domain partitioning, doms_cur[].
7730 * It destroys each deleted domain and builds each new domain.
7731 *
7732 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7733 * The masks don't intersect (don't overlap.) We should setup one
7734 * sched domain for each mask. CPUs not in any of the cpumasks will
7735 * not be load balanced. If the same cpumask appears both in the
7736 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7737 * it as it is.
7738 *
7739 * The passed in 'doms_new' should be allocated using
7740 * alloc_sched_domains. This routine takes ownership of it and will
7741 * free_sched_domains it when done with it. If the caller failed the
7742 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7743 * and partition_sched_domains() will fallback to the single partition
7744 * 'fallback_doms', it also forces the domains to be rebuilt.
7745 *
7746 * If doms_new == NULL it will be replaced with cpu_online_mask.
7747 * ndoms_new == 0 is a special case for destroying existing domains,
7748 * and it will not create the default domain.
7749 *
7750 * Call with hotplug lock held
7751 */
7752 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7753 struct sched_domain_attr *dattr_new)
7754 {
7755 int i, j, n;
7756 int new_topology;
7757
7758 mutex_lock(&sched_domains_mutex);
7759
7760 /* always unregister in case we don't destroy any domains */
7761 unregister_sched_domain_sysctl();
7762
7763 /* Let architecture update cpu core mappings. */
7764 new_topology = arch_update_cpu_topology();
7765
7766 n = doms_new ? ndoms_new : 0;
7767
7768 /* Destroy deleted domains */
7769 for (i = 0; i < ndoms_cur; i++) {
7770 for (j = 0; j < n && !new_topology; j++) {
7771 if (cpumask_equal(doms_cur[i], doms_new[j])
7772 && dattrs_equal(dattr_cur, i, dattr_new, j))
7773 goto match1;
7774 }
7775 /* no match - a current sched domain not in new doms_new[] */
7776 detach_destroy_domains(doms_cur[i]);
7777 match1:
7778 ;
7779 }
7780
7781 if (doms_new == NULL) {
7782 ndoms_cur = 0;
7783 doms_new = &fallback_doms;
7784 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7785 WARN_ON_ONCE(dattr_new);
7786 }
7787
7788 /* Build new domains */
7789 for (i = 0; i < ndoms_new; i++) {
7790 for (j = 0; j < ndoms_cur && !new_topology; j++) {
7791 if (cpumask_equal(doms_new[i], doms_cur[j])
7792 && dattrs_equal(dattr_new, i, dattr_cur, j))
7793 goto match2;
7794 }
7795 /* no match - add a new doms_new */
7796 __build_sched_domains(doms_new[i],
7797 dattr_new ? dattr_new + i : NULL);
7798 match2:
7799 ;
7800 }
7801
7802 /* Remember the new sched domains */
7803 if (doms_cur != &fallback_doms)
7804 free_sched_domains(doms_cur, ndoms_cur);
7805 kfree(dattr_cur); /* kfree(NULL) is safe */
7806 doms_cur = doms_new;
7807 dattr_cur = dattr_new;
7808 ndoms_cur = ndoms_new;
7809
7810 register_sched_domain_sysctl();
7811
7812 mutex_unlock(&sched_domains_mutex);
7813 }
7814
7815 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7816 static void arch_reinit_sched_domains(void)
7817 {
7818 get_online_cpus();
7819
7820 /* Destroy domains first to force the rebuild */
7821 partition_sched_domains(0, NULL, NULL);
7822
7823 rebuild_sched_domains();
7824 put_online_cpus();
7825 }
7826
7827 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7828 {
7829 unsigned int level = 0;
7830
7831 if (sscanf(buf, "%u", &level) != 1)
7832 return -EINVAL;
7833
7834 /*
7835 * level is always be positive so don't check for
7836 * level < POWERSAVINGS_BALANCE_NONE which is 0
7837 * What happens on 0 or 1 byte write,
7838 * need to check for count as well?
7839 */
7840
7841 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7842 return -EINVAL;
7843
7844 if (smt)
7845 sched_smt_power_savings = level;
7846 else
7847 sched_mc_power_savings = level;
7848
7849 arch_reinit_sched_domains();
7850
7851 return count;
7852 }
7853
7854 #ifdef CONFIG_SCHED_MC
7855 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7856 struct sysdev_class_attribute *attr,
7857 char *page)
7858 {
7859 return sprintf(page, "%u\n", sched_mc_power_savings);
7860 }
7861 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7862 struct sysdev_class_attribute *attr,
7863 const char *buf, size_t count)
7864 {
7865 return sched_power_savings_store(buf, count, 0);
7866 }
7867 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7868 sched_mc_power_savings_show,
7869 sched_mc_power_savings_store);
7870 #endif
7871
7872 #ifdef CONFIG_SCHED_SMT
7873 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7874 struct sysdev_class_attribute *attr,
7875 char *page)
7876 {
7877 return sprintf(page, "%u\n", sched_smt_power_savings);
7878 }
7879 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7880 struct sysdev_class_attribute *attr,
7881 const char *buf, size_t count)
7882 {
7883 return sched_power_savings_store(buf, count, 1);
7884 }
7885 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7886 sched_smt_power_savings_show,
7887 sched_smt_power_savings_store);
7888 #endif
7889
7890 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7891 {
7892 int err = 0;
7893
7894 #ifdef CONFIG_SCHED_SMT
7895 if (smt_capable())
7896 err = sysfs_create_file(&cls->kset.kobj,
7897 &attr_sched_smt_power_savings.attr);
7898 #endif
7899 #ifdef CONFIG_SCHED_MC
7900 if (!err && mc_capable())
7901 err = sysfs_create_file(&cls->kset.kobj,
7902 &attr_sched_mc_power_savings.attr);
7903 #endif
7904 return err;
7905 }
7906 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7907
7908 /*
7909 * Update cpusets according to cpu_active mask. If cpusets are
7910 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7911 * around partition_sched_domains().
7912 */
7913 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7914 void *hcpu)
7915 {
7916 switch (action & ~CPU_TASKS_FROZEN) {
7917 case CPU_ONLINE:
7918 case CPU_DOWN_FAILED:
7919 cpuset_update_active_cpus();
7920 return NOTIFY_OK;
7921 default:
7922 return NOTIFY_DONE;
7923 }
7924 }
7925
7926 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7927 void *hcpu)
7928 {
7929 switch (action & ~CPU_TASKS_FROZEN) {
7930 case CPU_DOWN_PREPARE:
7931 cpuset_update_active_cpus();
7932 return NOTIFY_OK;
7933 default:
7934 return NOTIFY_DONE;
7935 }
7936 }
7937
7938 static int update_runtime(struct notifier_block *nfb,
7939 unsigned long action, void *hcpu)
7940 {
7941 int cpu = (int)(long)hcpu;
7942
7943 switch (action) {
7944 case CPU_DOWN_PREPARE:
7945 case CPU_DOWN_PREPARE_FROZEN:
7946 disable_runtime(cpu_rq(cpu));
7947 return NOTIFY_OK;
7948
7949 case CPU_DOWN_FAILED:
7950 case CPU_DOWN_FAILED_FROZEN:
7951 case CPU_ONLINE:
7952 case CPU_ONLINE_FROZEN:
7953 enable_runtime(cpu_rq(cpu));
7954 return NOTIFY_OK;
7955
7956 default:
7957 return NOTIFY_DONE;
7958 }
7959 }
7960
7961 void __init sched_init_smp(void)
7962 {
7963 cpumask_var_t non_isolated_cpus;
7964
7965 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7966 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7967
7968 #if defined(CONFIG_NUMA)
7969 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7970 GFP_KERNEL);
7971 BUG_ON(sched_group_nodes_bycpu == NULL);
7972 #endif
7973 get_online_cpus();
7974 mutex_lock(&sched_domains_mutex);
7975 arch_init_sched_domains(cpu_active_mask);
7976 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7977 if (cpumask_empty(non_isolated_cpus))
7978 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7979 mutex_unlock(&sched_domains_mutex);
7980 put_online_cpus();
7981
7982 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7983 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7984
7985 /* RT runtime code needs to handle some hotplug events */
7986 hotcpu_notifier(update_runtime, 0);
7987
7988 init_hrtick();
7989
7990 /* Move init over to a non-isolated CPU */
7991 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7992 BUG();
7993 sched_init_granularity();
7994 free_cpumask_var(non_isolated_cpus);
7995
7996 init_sched_rt_class();
7997 }
7998 #else
7999 void __init sched_init_smp(void)
8000 {
8001 sched_init_granularity();
8002 }
8003 #endif /* CONFIG_SMP */
8004
8005 const_debug unsigned int sysctl_timer_migration = 1;
8006
8007 int in_sched_functions(unsigned long addr)
8008 {
8009 return in_lock_functions(addr) ||
8010 (addr >= (unsigned long)__sched_text_start
8011 && addr < (unsigned long)__sched_text_end);
8012 }
8013
8014 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
8015 {
8016 cfs_rq->tasks_timeline = RB_ROOT;
8017 INIT_LIST_HEAD(&cfs_rq->tasks);
8018 #ifdef CONFIG_FAIR_GROUP_SCHED
8019 cfs_rq->rq = rq;
8020 /* allow initial update_cfs_load() to truncate */
8021 #ifdef CONFIG_SMP
8022 cfs_rq->load_stamp = 1;
8023 #endif
8024 #endif
8025 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8026 }
8027
8028 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8029 {
8030 struct rt_prio_array *array;
8031 int i;
8032
8033 array = &rt_rq->active;
8034 for (i = 0; i < MAX_RT_PRIO; i++) {
8035 INIT_LIST_HEAD(array->queue + i);
8036 __clear_bit(i, array->bitmap);
8037 }
8038 /* delimiter for bitsearch: */
8039 __set_bit(MAX_RT_PRIO, array->bitmap);
8040
8041 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
8042 rt_rq->highest_prio.curr = MAX_RT_PRIO;
8043 #ifdef CONFIG_SMP
8044 rt_rq->highest_prio.next = MAX_RT_PRIO;
8045 #endif
8046 #endif
8047 #ifdef CONFIG_SMP
8048 rt_rq->rt_nr_migratory = 0;
8049 rt_rq->overloaded = 0;
8050 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
8051 #endif
8052
8053 rt_rq->rt_time = 0;
8054 rt_rq->rt_throttled = 0;
8055 rt_rq->rt_runtime = 0;
8056 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
8057
8058 #ifdef CONFIG_RT_GROUP_SCHED
8059 rt_rq->rt_nr_boosted = 0;
8060 rt_rq->rq = rq;
8061 #endif
8062 }
8063
8064 #ifdef CONFIG_FAIR_GROUP_SCHED
8065 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8066 struct sched_entity *se, int cpu,
8067 struct sched_entity *parent)
8068 {
8069 struct rq *rq = cpu_rq(cpu);
8070 tg->cfs_rq[cpu] = cfs_rq;
8071 init_cfs_rq(cfs_rq, rq);
8072 cfs_rq->tg = tg;
8073
8074 tg->se[cpu] = se;
8075 /* se could be NULL for root_task_group */
8076 if (!se)
8077 return;
8078
8079 if (!parent)
8080 se->cfs_rq = &rq->cfs;
8081 else
8082 se->cfs_rq = parent->my_q;
8083
8084 se->my_q = cfs_rq;
8085 update_load_set(&se->load, 0);
8086 se->parent = parent;
8087 }
8088 #endif
8089
8090 #ifdef CONFIG_RT_GROUP_SCHED
8091 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8092 struct sched_rt_entity *rt_se, int cpu,
8093 struct sched_rt_entity *parent)
8094 {
8095 struct rq *rq = cpu_rq(cpu);
8096
8097 tg->rt_rq[cpu] = rt_rq;
8098 init_rt_rq(rt_rq, rq);
8099 rt_rq->tg = tg;
8100 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
8101
8102 tg->rt_se[cpu] = rt_se;
8103 if (!rt_se)
8104 return;
8105
8106 if (!parent)
8107 rt_se->rt_rq = &rq->rt;
8108 else
8109 rt_se->rt_rq = parent->my_q;
8110
8111 rt_se->my_q = rt_rq;
8112 rt_se->parent = parent;
8113 INIT_LIST_HEAD(&rt_se->run_list);
8114 }
8115 #endif
8116
8117 void __init sched_init(void)
8118 {
8119 int i, j;
8120 unsigned long alloc_size = 0, ptr;
8121
8122 #ifdef CONFIG_FAIR_GROUP_SCHED
8123 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8124 #endif
8125 #ifdef CONFIG_RT_GROUP_SCHED
8126 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8127 #endif
8128 #ifdef CONFIG_CPUMASK_OFFSTACK
8129 alloc_size += num_possible_cpus() * cpumask_size();
8130 #endif
8131 if (alloc_size) {
8132 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
8133
8134 #ifdef CONFIG_FAIR_GROUP_SCHED
8135 root_task_group.se = (struct sched_entity **)ptr;
8136 ptr += nr_cpu_ids * sizeof(void **);
8137
8138 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8139 ptr += nr_cpu_ids * sizeof(void **);
8140
8141 #endif /* CONFIG_FAIR_GROUP_SCHED */
8142 #ifdef CONFIG_RT_GROUP_SCHED
8143 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8144 ptr += nr_cpu_ids * sizeof(void **);
8145
8146 root_task_group.rt_rq = (struct rt_rq **)ptr;
8147 ptr += nr_cpu_ids * sizeof(void **);
8148
8149 #endif /* CONFIG_RT_GROUP_SCHED */
8150 #ifdef CONFIG_CPUMASK_OFFSTACK
8151 for_each_possible_cpu(i) {
8152 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
8153 ptr += cpumask_size();
8154 }
8155 #endif /* CONFIG_CPUMASK_OFFSTACK */
8156 }
8157
8158 #ifdef CONFIG_SMP
8159 init_defrootdomain();
8160 #endif
8161
8162 init_rt_bandwidth(&def_rt_bandwidth,
8163 global_rt_period(), global_rt_runtime());
8164
8165 #ifdef CONFIG_RT_GROUP_SCHED
8166 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8167 global_rt_period(), global_rt_runtime());
8168 #endif /* CONFIG_RT_GROUP_SCHED */
8169
8170 #ifdef CONFIG_CGROUP_SCHED
8171 list_add(&root_task_group.list, &task_groups);
8172 INIT_LIST_HEAD(&root_task_group.children);
8173 autogroup_init(&init_task);
8174 #endif /* CONFIG_CGROUP_SCHED */
8175
8176 for_each_possible_cpu(i) {
8177 struct rq *rq;
8178
8179 rq = cpu_rq(i);
8180 raw_spin_lock_init(&rq->lock);
8181 rq->nr_running = 0;
8182 rq->calc_load_active = 0;
8183 rq->calc_load_update = jiffies + LOAD_FREQ;
8184 init_cfs_rq(&rq->cfs, rq);
8185 init_rt_rq(&rq->rt, rq);
8186 #ifdef CONFIG_FAIR_GROUP_SCHED
8187 root_task_group.shares = root_task_group_load;
8188 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8189 /*
8190 * How much cpu bandwidth does root_task_group get?
8191 *
8192 * In case of task-groups formed thr' the cgroup filesystem, it
8193 * gets 100% of the cpu resources in the system. This overall
8194 * system cpu resource is divided among the tasks of
8195 * root_task_group and its child task-groups in a fair manner,
8196 * based on each entity's (task or task-group's) weight
8197 * (se->load.weight).
8198 *
8199 * In other words, if root_task_group has 10 tasks of weight
8200 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8201 * then A0's share of the cpu resource is:
8202 *
8203 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8204 *
8205 * We achieve this by letting root_task_group's tasks sit
8206 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
8207 */
8208 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
8209 #endif /* CONFIG_FAIR_GROUP_SCHED */
8210
8211 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8212 #ifdef CONFIG_RT_GROUP_SCHED
8213 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
8214 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
8215 #endif
8216
8217 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8218 rq->cpu_load[j] = 0;
8219
8220 rq->last_load_update_tick = jiffies;
8221
8222 #ifdef CONFIG_SMP
8223 rq->sd = NULL;
8224 rq->rd = NULL;
8225 rq->cpu_power = SCHED_LOAD_SCALE;
8226 rq->post_schedule = 0;
8227 rq->active_balance = 0;
8228 rq->next_balance = jiffies;
8229 rq->push_cpu = 0;
8230 rq->cpu = i;
8231 rq->online = 0;
8232 rq->idle_stamp = 0;
8233 rq->avg_idle = 2*sysctl_sched_migration_cost;
8234 rq_attach_root(rq, &def_root_domain);
8235 #ifdef CONFIG_NO_HZ
8236 rq->nohz_balance_kick = 0;
8237 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
8238 #endif
8239 #endif
8240 init_rq_hrtick(rq);
8241 atomic_set(&rq->nr_iowait, 0);
8242 }
8243
8244 set_load_weight(&init_task);
8245
8246 #ifdef CONFIG_PREEMPT_NOTIFIERS
8247 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8248 #endif
8249
8250 #ifdef CONFIG_SMP
8251 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8252 #endif
8253
8254 #ifdef CONFIG_RT_MUTEXES
8255 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
8256 #endif
8257
8258 /*
8259 * The boot idle thread does lazy MMU switching as well:
8260 */
8261 atomic_inc(&init_mm.mm_count);
8262 enter_lazy_tlb(&init_mm, current);
8263
8264 /*
8265 * Make us the idle thread. Technically, schedule() should not be
8266 * called from this thread, however somewhere below it might be,
8267 * but because we are the idle thread, we just pick up running again
8268 * when this runqueue becomes "idle".
8269 */
8270 init_idle(current, smp_processor_id());
8271
8272 calc_load_update = jiffies + LOAD_FREQ;
8273
8274 /*
8275 * During early bootup we pretend to be a normal task:
8276 */
8277 current->sched_class = &fair_sched_class;
8278
8279 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8280 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
8281 #ifdef CONFIG_SMP
8282 #ifdef CONFIG_NO_HZ
8283 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8284 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
8285 atomic_set(&nohz.load_balancer, nr_cpu_ids);
8286 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
8287 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
8288 #endif
8289 /* May be allocated at isolcpus cmdline parse time */
8290 if (cpu_isolated_map == NULL)
8291 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
8292 #endif /* SMP */
8293
8294 scheduler_running = 1;
8295 }
8296
8297 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8298 static inline int preempt_count_equals(int preempt_offset)
8299 {
8300 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
8301
8302 return (nested == preempt_offset);
8303 }
8304
8305 void __might_sleep(const char *file, int line, int preempt_offset)
8306 {
8307 #ifdef in_atomic
8308 static unsigned long prev_jiffy; /* ratelimiting */
8309
8310 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
8311 system_state != SYSTEM_RUNNING || oops_in_progress)
8312 return;
8313 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8314 return;
8315 prev_jiffy = jiffies;
8316
8317 printk(KERN_ERR
8318 "BUG: sleeping function called from invalid context at %s:%d\n",
8319 file, line);
8320 printk(KERN_ERR
8321 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8322 in_atomic(), irqs_disabled(),
8323 current->pid, current->comm);
8324
8325 debug_show_held_locks(current);
8326 if (irqs_disabled())
8327 print_irqtrace_events(current);
8328 dump_stack();
8329 #endif
8330 }
8331 EXPORT_SYMBOL(__might_sleep);
8332 #endif
8333
8334 #ifdef CONFIG_MAGIC_SYSRQ
8335 static void normalize_task(struct rq *rq, struct task_struct *p)
8336 {
8337 const struct sched_class *prev_class = p->sched_class;
8338 int old_prio = p->prio;
8339 int on_rq;
8340
8341 on_rq = p->on_rq;
8342 if (on_rq)
8343 deactivate_task(rq, p, 0);
8344 __setscheduler(rq, p, SCHED_NORMAL, 0);
8345 if (on_rq) {
8346 activate_task(rq, p, 0);
8347 resched_task(rq->curr);
8348 }
8349
8350 check_class_changed(rq, p, prev_class, old_prio);
8351 }
8352
8353 void normalize_rt_tasks(void)
8354 {
8355 struct task_struct *g, *p;
8356 unsigned long flags;
8357 struct rq *rq;
8358
8359 read_lock_irqsave(&tasklist_lock, flags);
8360 do_each_thread(g, p) {
8361 /*
8362 * Only normalize user tasks:
8363 */
8364 if (!p->mm)
8365 continue;
8366
8367 p->se.exec_start = 0;
8368 #ifdef CONFIG_SCHEDSTATS
8369 p->se.statistics.wait_start = 0;
8370 p->se.statistics.sleep_start = 0;
8371 p->se.statistics.block_start = 0;
8372 #endif
8373
8374 if (!rt_task(p)) {
8375 /*
8376 * Renice negative nice level userspace
8377 * tasks back to 0:
8378 */
8379 if (TASK_NICE(p) < 0 && p->mm)
8380 set_user_nice(p, 0);
8381 continue;
8382 }
8383
8384 raw_spin_lock(&p->pi_lock);
8385 rq = __task_rq_lock(p);
8386
8387 normalize_task(rq, p);
8388
8389 __task_rq_unlock(rq);
8390 raw_spin_unlock(&p->pi_lock);
8391 } while_each_thread(g, p);
8392
8393 read_unlock_irqrestore(&tasklist_lock, flags);
8394 }
8395
8396 #endif /* CONFIG_MAGIC_SYSRQ */
8397
8398 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
8399 /*
8400 * These functions are only useful for the IA64 MCA handling, or kdb.
8401 *
8402 * They can only be called when the whole system has been
8403 * stopped - every CPU needs to be quiescent, and no scheduling
8404 * activity can take place. Using them for anything else would
8405 * be a serious bug, and as a result, they aren't even visible
8406 * under any other configuration.
8407 */
8408
8409 /**
8410 * curr_task - return the current task for a given cpu.
8411 * @cpu: the processor in question.
8412 *
8413 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8414 */
8415 struct task_struct *curr_task(int cpu)
8416 {
8417 return cpu_curr(cpu);
8418 }
8419
8420 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8421
8422 #ifdef CONFIG_IA64
8423 /**
8424 * set_curr_task - set the current task for a given cpu.
8425 * @cpu: the processor in question.
8426 * @p: the task pointer to set.
8427 *
8428 * Description: This function must only be used when non-maskable interrupts
8429 * are serviced on a separate stack. It allows the architecture to switch the
8430 * notion of the current task on a cpu in a non-blocking manner. This function
8431 * must be called with all CPU's synchronized, and interrupts disabled, the
8432 * and caller must save the original value of the current task (see
8433 * curr_task() above) and restore that value before reenabling interrupts and
8434 * re-starting the system.
8435 *
8436 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8437 */
8438 void set_curr_task(int cpu, struct task_struct *p)
8439 {
8440 cpu_curr(cpu) = p;
8441 }
8442
8443 #endif
8444
8445 #ifdef CONFIG_FAIR_GROUP_SCHED
8446 static void free_fair_sched_group(struct task_group *tg)
8447 {
8448 int i;
8449
8450 for_each_possible_cpu(i) {
8451 if (tg->cfs_rq)
8452 kfree(tg->cfs_rq[i]);
8453 if (tg->se)
8454 kfree(tg->se[i]);
8455 }
8456
8457 kfree(tg->cfs_rq);
8458 kfree(tg->se);
8459 }
8460
8461 static
8462 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8463 {
8464 struct cfs_rq *cfs_rq;
8465 struct sched_entity *se;
8466 int i;
8467
8468 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8469 if (!tg->cfs_rq)
8470 goto err;
8471 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8472 if (!tg->se)
8473 goto err;
8474
8475 tg->shares = NICE_0_LOAD;
8476
8477 for_each_possible_cpu(i) {
8478 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8479 GFP_KERNEL, cpu_to_node(i));
8480 if (!cfs_rq)
8481 goto err;
8482
8483 se = kzalloc_node(sizeof(struct sched_entity),
8484 GFP_KERNEL, cpu_to_node(i));
8485 if (!se)
8486 goto err_free_rq;
8487
8488 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8489 }
8490
8491 return 1;
8492
8493 err_free_rq:
8494 kfree(cfs_rq);
8495 err:
8496 return 0;
8497 }
8498
8499 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8500 {
8501 struct rq *rq = cpu_rq(cpu);
8502 unsigned long flags;
8503
8504 /*
8505 * Only empty task groups can be destroyed; so we can speculatively
8506 * check on_list without danger of it being re-added.
8507 */
8508 if (!tg->cfs_rq[cpu]->on_list)
8509 return;
8510
8511 raw_spin_lock_irqsave(&rq->lock, flags);
8512 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8513 raw_spin_unlock_irqrestore(&rq->lock, flags);
8514 }
8515 #else /* !CONFG_FAIR_GROUP_SCHED */
8516 static inline void free_fair_sched_group(struct task_group *tg)
8517 {
8518 }
8519
8520 static inline
8521 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8522 {
8523 return 1;
8524 }
8525
8526 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8527 {
8528 }
8529 #endif /* CONFIG_FAIR_GROUP_SCHED */
8530
8531 #ifdef CONFIG_RT_GROUP_SCHED
8532 static void free_rt_sched_group(struct task_group *tg)
8533 {
8534 int i;
8535
8536 destroy_rt_bandwidth(&tg->rt_bandwidth);
8537
8538 for_each_possible_cpu(i) {
8539 if (tg->rt_rq)
8540 kfree(tg->rt_rq[i]);
8541 if (tg->rt_se)
8542 kfree(tg->rt_se[i]);
8543 }
8544
8545 kfree(tg->rt_rq);
8546 kfree(tg->rt_se);
8547 }
8548
8549 static
8550 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8551 {
8552 struct rt_rq *rt_rq;
8553 struct sched_rt_entity *rt_se;
8554 struct rq *rq;
8555 int i;
8556
8557 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8558 if (!tg->rt_rq)
8559 goto err;
8560 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8561 if (!tg->rt_se)
8562 goto err;
8563
8564 init_rt_bandwidth(&tg->rt_bandwidth,
8565 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8566
8567 for_each_possible_cpu(i) {
8568 rq = cpu_rq(i);
8569
8570 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8571 GFP_KERNEL, cpu_to_node(i));
8572 if (!rt_rq)
8573 goto err;
8574
8575 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8576 GFP_KERNEL, cpu_to_node(i));
8577 if (!rt_se)
8578 goto err_free_rq;
8579
8580 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
8581 }
8582
8583 return 1;
8584
8585 err_free_rq:
8586 kfree(rt_rq);
8587 err:
8588 return 0;
8589 }
8590 #else /* !CONFIG_RT_GROUP_SCHED */
8591 static inline void free_rt_sched_group(struct task_group *tg)
8592 {
8593 }
8594
8595 static inline
8596 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8597 {
8598 return 1;
8599 }
8600 #endif /* CONFIG_RT_GROUP_SCHED */
8601
8602 #ifdef CONFIG_CGROUP_SCHED
8603 static void free_sched_group(struct task_group *tg)
8604 {
8605 free_fair_sched_group(tg);
8606 free_rt_sched_group(tg);
8607 autogroup_free(tg);
8608 kfree(tg);
8609 }
8610
8611 /* allocate runqueue etc for a new task group */
8612 struct task_group *sched_create_group(struct task_group *parent)
8613 {
8614 struct task_group *tg;
8615 unsigned long flags;
8616
8617 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8618 if (!tg)
8619 return ERR_PTR(-ENOMEM);
8620
8621 if (!alloc_fair_sched_group(tg, parent))
8622 goto err;
8623
8624 if (!alloc_rt_sched_group(tg, parent))
8625 goto err;
8626
8627 spin_lock_irqsave(&task_group_lock, flags);
8628 list_add_rcu(&tg->list, &task_groups);
8629
8630 WARN_ON(!parent); /* root should already exist */
8631
8632 tg->parent = parent;
8633 INIT_LIST_HEAD(&tg->children);
8634 list_add_rcu(&tg->siblings, &parent->children);
8635 spin_unlock_irqrestore(&task_group_lock, flags);
8636
8637 return tg;
8638
8639 err:
8640 free_sched_group(tg);
8641 return ERR_PTR(-ENOMEM);
8642 }
8643
8644 /* rcu callback to free various structures associated with a task group */
8645 static void free_sched_group_rcu(struct rcu_head *rhp)
8646 {
8647 /* now it should be safe to free those cfs_rqs */
8648 free_sched_group(container_of(rhp, struct task_group, rcu));
8649 }
8650
8651 /* Destroy runqueue etc associated with a task group */
8652 void sched_destroy_group(struct task_group *tg)
8653 {
8654 unsigned long flags;
8655 int i;
8656
8657 /* end participation in shares distribution */
8658 for_each_possible_cpu(i)
8659 unregister_fair_sched_group(tg, i);
8660
8661 spin_lock_irqsave(&task_group_lock, flags);
8662 list_del_rcu(&tg->list);
8663 list_del_rcu(&tg->siblings);
8664 spin_unlock_irqrestore(&task_group_lock, flags);
8665
8666 /* wait for possible concurrent references to cfs_rqs complete */
8667 call_rcu(&tg->rcu, free_sched_group_rcu);
8668 }
8669
8670 /* change task's runqueue when it moves between groups.
8671 * The caller of this function should have put the task in its new group
8672 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8673 * reflect its new group.
8674 */
8675 void sched_move_task(struct task_struct *tsk)
8676 {
8677 int on_rq, running;
8678 unsigned long flags;
8679 struct rq *rq;
8680
8681 rq = task_rq_lock(tsk, &flags);
8682
8683 running = task_current(rq, tsk);
8684 on_rq = tsk->on_rq;
8685
8686 if (on_rq)
8687 dequeue_task(rq, tsk, 0);
8688 if (unlikely(running))
8689 tsk->sched_class->put_prev_task(rq, tsk);
8690
8691 #ifdef CONFIG_FAIR_GROUP_SCHED
8692 if (tsk->sched_class->task_move_group)
8693 tsk->sched_class->task_move_group(tsk, on_rq);
8694 else
8695 #endif
8696 set_task_rq(tsk, task_cpu(tsk));
8697
8698 if (unlikely(running))
8699 tsk->sched_class->set_curr_task(rq);
8700 if (on_rq)
8701 enqueue_task(rq, tsk, 0);
8702
8703 task_rq_unlock(rq, &flags);
8704 }
8705 #endif /* CONFIG_CGROUP_SCHED */
8706
8707 #ifdef CONFIG_FAIR_GROUP_SCHED
8708 static DEFINE_MUTEX(shares_mutex);
8709
8710 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8711 {
8712 int i;
8713 unsigned long flags;
8714
8715 /*
8716 * We can't change the weight of the root cgroup.
8717 */
8718 if (!tg->se[0])
8719 return -EINVAL;
8720
8721 if (shares < MIN_SHARES)
8722 shares = MIN_SHARES;
8723 else if (shares > MAX_SHARES)
8724 shares = MAX_SHARES;
8725
8726 mutex_lock(&shares_mutex);
8727 if (tg->shares == shares)
8728 goto done;
8729
8730 tg->shares = shares;
8731 for_each_possible_cpu(i) {
8732 struct rq *rq = cpu_rq(i);
8733 struct sched_entity *se;
8734
8735 se = tg->se[i];
8736 /* Propagate contribution to hierarchy */
8737 raw_spin_lock_irqsave(&rq->lock, flags);
8738 for_each_sched_entity(se)
8739 update_cfs_shares(group_cfs_rq(se));
8740 raw_spin_unlock_irqrestore(&rq->lock, flags);
8741 }
8742
8743 done:
8744 mutex_unlock(&shares_mutex);
8745 return 0;
8746 }
8747
8748 unsigned long sched_group_shares(struct task_group *tg)
8749 {
8750 return tg->shares;
8751 }
8752 #endif
8753
8754 #ifdef CONFIG_RT_GROUP_SCHED
8755 /*
8756 * Ensure that the real time constraints are schedulable.
8757 */
8758 static DEFINE_MUTEX(rt_constraints_mutex);
8759
8760 static unsigned long to_ratio(u64 period, u64 runtime)
8761 {
8762 if (runtime == RUNTIME_INF)
8763 return 1ULL << 20;
8764
8765 return div64_u64(runtime << 20, period);
8766 }
8767
8768 /* Must be called with tasklist_lock held */
8769 static inline int tg_has_rt_tasks(struct task_group *tg)
8770 {
8771 struct task_struct *g, *p;
8772
8773 do_each_thread(g, p) {
8774 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8775 return 1;
8776 } while_each_thread(g, p);
8777
8778 return 0;
8779 }
8780
8781 struct rt_schedulable_data {
8782 struct task_group *tg;
8783 u64 rt_period;
8784 u64 rt_runtime;
8785 };
8786
8787 static int tg_schedulable(struct task_group *tg, void *data)
8788 {
8789 struct rt_schedulable_data *d = data;
8790 struct task_group *child;
8791 unsigned long total, sum = 0;
8792 u64 period, runtime;
8793
8794 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8795 runtime = tg->rt_bandwidth.rt_runtime;
8796
8797 if (tg == d->tg) {
8798 period = d->rt_period;
8799 runtime = d->rt_runtime;
8800 }
8801
8802 /*
8803 * Cannot have more runtime than the period.
8804 */
8805 if (runtime > period && runtime != RUNTIME_INF)
8806 return -EINVAL;
8807
8808 /*
8809 * Ensure we don't starve existing RT tasks.
8810 */
8811 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8812 return -EBUSY;
8813
8814 total = to_ratio(period, runtime);
8815
8816 /*
8817 * Nobody can have more than the global setting allows.
8818 */
8819 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8820 return -EINVAL;
8821
8822 /*
8823 * The sum of our children's runtime should not exceed our own.
8824 */
8825 list_for_each_entry_rcu(child, &tg->children, siblings) {
8826 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8827 runtime = child->rt_bandwidth.rt_runtime;
8828
8829 if (child == d->tg) {
8830 period = d->rt_period;
8831 runtime = d->rt_runtime;
8832 }
8833
8834 sum += to_ratio(period, runtime);
8835 }
8836
8837 if (sum > total)
8838 return -EINVAL;
8839
8840 return 0;
8841 }
8842
8843 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8844 {
8845 struct rt_schedulable_data data = {
8846 .tg = tg,
8847 .rt_period = period,
8848 .rt_runtime = runtime,
8849 };
8850
8851 return walk_tg_tree(tg_schedulable, tg_nop, &data);
8852 }
8853
8854 static int tg_set_bandwidth(struct task_group *tg,
8855 u64 rt_period, u64 rt_runtime)
8856 {
8857 int i, err = 0;
8858
8859 mutex_lock(&rt_constraints_mutex);
8860 read_lock(&tasklist_lock);
8861 err = __rt_schedulable(tg, rt_period, rt_runtime);
8862 if (err)
8863 goto unlock;
8864
8865 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8866 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8867 tg->rt_bandwidth.rt_runtime = rt_runtime;
8868
8869 for_each_possible_cpu(i) {
8870 struct rt_rq *rt_rq = tg->rt_rq[i];
8871
8872 raw_spin_lock(&rt_rq->rt_runtime_lock);
8873 rt_rq->rt_runtime = rt_runtime;
8874 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8875 }
8876 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8877 unlock:
8878 read_unlock(&tasklist_lock);
8879 mutex_unlock(&rt_constraints_mutex);
8880
8881 return err;
8882 }
8883
8884 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8885 {
8886 u64 rt_runtime, rt_period;
8887
8888 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8889 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8890 if (rt_runtime_us < 0)
8891 rt_runtime = RUNTIME_INF;
8892
8893 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8894 }
8895
8896 long sched_group_rt_runtime(struct task_group *tg)
8897 {
8898 u64 rt_runtime_us;
8899
8900 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8901 return -1;
8902
8903 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8904 do_div(rt_runtime_us, NSEC_PER_USEC);
8905 return rt_runtime_us;
8906 }
8907
8908 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8909 {
8910 u64 rt_runtime, rt_period;
8911
8912 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8913 rt_runtime = tg->rt_bandwidth.rt_runtime;
8914
8915 if (rt_period == 0)
8916 return -EINVAL;
8917
8918 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8919 }
8920
8921 long sched_group_rt_period(struct task_group *tg)
8922 {
8923 u64 rt_period_us;
8924
8925 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8926 do_div(rt_period_us, NSEC_PER_USEC);
8927 return rt_period_us;
8928 }
8929
8930 static int sched_rt_global_constraints(void)
8931 {
8932 u64 runtime, period;
8933 int ret = 0;
8934
8935 if (sysctl_sched_rt_period <= 0)
8936 return -EINVAL;
8937
8938 runtime = global_rt_runtime();
8939 period = global_rt_period();
8940
8941 /*
8942 * Sanity check on the sysctl variables.
8943 */
8944 if (runtime > period && runtime != RUNTIME_INF)
8945 return -EINVAL;
8946
8947 mutex_lock(&rt_constraints_mutex);
8948 read_lock(&tasklist_lock);
8949 ret = __rt_schedulable(NULL, 0, 0);
8950 read_unlock(&tasklist_lock);
8951 mutex_unlock(&rt_constraints_mutex);
8952
8953 return ret;
8954 }
8955
8956 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8957 {
8958 /* Don't accept realtime tasks when there is no way for them to run */
8959 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8960 return 0;
8961
8962 return 1;
8963 }
8964
8965 #else /* !CONFIG_RT_GROUP_SCHED */
8966 static int sched_rt_global_constraints(void)
8967 {
8968 unsigned long flags;
8969 int i;
8970
8971 if (sysctl_sched_rt_period <= 0)
8972 return -EINVAL;
8973
8974 /*
8975 * There's always some RT tasks in the root group
8976 * -- migration, kstopmachine etc..
8977 */
8978 if (sysctl_sched_rt_runtime == 0)
8979 return -EBUSY;
8980
8981 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8982 for_each_possible_cpu(i) {
8983 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8984
8985 raw_spin_lock(&rt_rq->rt_runtime_lock);
8986 rt_rq->rt_runtime = global_rt_runtime();
8987 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8988 }
8989 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8990
8991 return 0;
8992 }
8993 #endif /* CONFIG_RT_GROUP_SCHED */
8994
8995 int sched_rt_handler(struct ctl_table *table, int write,
8996 void __user *buffer, size_t *lenp,
8997 loff_t *ppos)
8998 {
8999 int ret;
9000 int old_period, old_runtime;
9001 static DEFINE_MUTEX(mutex);
9002
9003 mutex_lock(&mutex);
9004 old_period = sysctl_sched_rt_period;
9005 old_runtime = sysctl_sched_rt_runtime;
9006
9007 ret = proc_dointvec(table, write, buffer, lenp, ppos);
9008
9009 if (!ret && write) {
9010 ret = sched_rt_global_constraints();
9011 if (ret) {
9012 sysctl_sched_rt_period = old_period;
9013 sysctl_sched_rt_runtime = old_runtime;
9014 } else {
9015 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9016 def_rt_bandwidth.rt_period =
9017 ns_to_ktime(global_rt_period());
9018 }
9019 }
9020 mutex_unlock(&mutex);
9021
9022 return ret;
9023 }
9024
9025 #ifdef CONFIG_CGROUP_SCHED
9026
9027 /* return corresponding task_group object of a cgroup */
9028 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9029 {
9030 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9031 struct task_group, css);
9032 }
9033
9034 static struct cgroup_subsys_state *
9035 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9036 {
9037 struct task_group *tg, *parent;
9038
9039 if (!cgrp->parent) {
9040 /* This is early initialization for the top cgroup */
9041 return &root_task_group.css;
9042 }
9043
9044 parent = cgroup_tg(cgrp->parent);
9045 tg = sched_create_group(parent);
9046 if (IS_ERR(tg))
9047 return ERR_PTR(-ENOMEM);
9048
9049 return &tg->css;
9050 }
9051
9052 static void
9053 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9054 {
9055 struct task_group *tg = cgroup_tg(cgrp);
9056
9057 sched_destroy_group(tg);
9058 }
9059
9060 static int
9061 cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
9062 {
9063 #ifdef CONFIG_RT_GROUP_SCHED
9064 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
9065 return -EINVAL;
9066 #else
9067 /* We don't support RT-tasks being in separate groups */
9068 if (tsk->sched_class != &fair_sched_class)
9069 return -EINVAL;
9070 #endif
9071 return 0;
9072 }
9073
9074 static int
9075 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9076 struct task_struct *tsk, bool threadgroup)
9077 {
9078 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
9079 if (retval)
9080 return retval;
9081 if (threadgroup) {
9082 struct task_struct *c;
9083 rcu_read_lock();
9084 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
9085 retval = cpu_cgroup_can_attach_task(cgrp, c);
9086 if (retval) {
9087 rcu_read_unlock();
9088 return retval;
9089 }
9090 }
9091 rcu_read_unlock();
9092 }
9093 return 0;
9094 }
9095
9096 static void
9097 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9098 struct cgroup *old_cont, struct task_struct *tsk,
9099 bool threadgroup)
9100 {
9101 sched_move_task(tsk);
9102 if (threadgroup) {
9103 struct task_struct *c;
9104 rcu_read_lock();
9105 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
9106 sched_move_task(c);
9107 }
9108 rcu_read_unlock();
9109 }
9110 }
9111
9112 static void
9113 cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
9114 struct cgroup *old_cgrp, struct task_struct *task)
9115 {
9116 /*
9117 * cgroup_exit() is called in the copy_process() failure path.
9118 * Ignore this case since the task hasn't ran yet, this avoids
9119 * trying to poke a half freed task state from generic code.
9120 */
9121 if (!(task->flags & PF_EXITING))
9122 return;
9123
9124 sched_move_task(task);
9125 }
9126
9127 #ifdef CONFIG_FAIR_GROUP_SCHED
9128 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9129 u64 shareval)
9130 {
9131 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9132 }
9133
9134 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9135 {
9136 struct task_group *tg = cgroup_tg(cgrp);
9137
9138 return (u64) tg->shares;
9139 }
9140 #endif /* CONFIG_FAIR_GROUP_SCHED */
9141
9142 #ifdef CONFIG_RT_GROUP_SCHED
9143 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9144 s64 val)
9145 {
9146 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
9147 }
9148
9149 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
9150 {
9151 return sched_group_rt_runtime(cgroup_tg(cgrp));
9152 }
9153
9154 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9155 u64 rt_period_us)
9156 {
9157 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9158 }
9159
9160 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9161 {
9162 return sched_group_rt_period(cgroup_tg(cgrp));
9163 }
9164 #endif /* CONFIG_RT_GROUP_SCHED */
9165
9166 static struct cftype cpu_files[] = {
9167 #ifdef CONFIG_FAIR_GROUP_SCHED
9168 {
9169 .name = "shares",
9170 .read_u64 = cpu_shares_read_u64,
9171 .write_u64 = cpu_shares_write_u64,
9172 },
9173 #endif
9174 #ifdef CONFIG_RT_GROUP_SCHED
9175 {
9176 .name = "rt_runtime_us",
9177 .read_s64 = cpu_rt_runtime_read,
9178 .write_s64 = cpu_rt_runtime_write,
9179 },
9180 {
9181 .name = "rt_period_us",
9182 .read_u64 = cpu_rt_period_read_uint,
9183 .write_u64 = cpu_rt_period_write_uint,
9184 },
9185 #endif
9186 };
9187
9188 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9189 {
9190 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9191 }
9192
9193 struct cgroup_subsys cpu_cgroup_subsys = {
9194 .name = "cpu",
9195 .create = cpu_cgroup_create,
9196 .destroy = cpu_cgroup_destroy,
9197 .can_attach = cpu_cgroup_can_attach,
9198 .attach = cpu_cgroup_attach,
9199 .exit = cpu_cgroup_exit,
9200 .populate = cpu_cgroup_populate,
9201 .subsys_id = cpu_cgroup_subsys_id,
9202 .early_init = 1,
9203 };
9204
9205 #endif /* CONFIG_CGROUP_SCHED */
9206
9207 #ifdef CONFIG_CGROUP_CPUACCT
9208
9209 /*
9210 * CPU accounting code for task groups.
9211 *
9212 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9213 * (balbir@in.ibm.com).
9214 */
9215
9216 /* track cpu usage of a group of tasks and its child groups */
9217 struct cpuacct {
9218 struct cgroup_subsys_state css;
9219 /* cpuusage holds pointer to a u64-type object on every cpu */
9220 u64 __percpu *cpuusage;
9221 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
9222 struct cpuacct *parent;
9223 };
9224
9225 struct cgroup_subsys cpuacct_subsys;
9226
9227 /* return cpu accounting group corresponding to this container */
9228 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9229 {
9230 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9231 struct cpuacct, css);
9232 }
9233
9234 /* return cpu accounting group to which this task belongs */
9235 static inline struct cpuacct *task_ca(struct task_struct *tsk)
9236 {
9237 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9238 struct cpuacct, css);
9239 }
9240
9241 /* create a new cpu accounting group */
9242 static struct cgroup_subsys_state *cpuacct_create(
9243 struct cgroup_subsys *ss, struct cgroup *cgrp)
9244 {
9245 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9246 int i;
9247
9248 if (!ca)
9249 goto out;
9250
9251 ca->cpuusage = alloc_percpu(u64);
9252 if (!ca->cpuusage)
9253 goto out_free_ca;
9254
9255 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9256 if (percpu_counter_init(&ca->cpustat[i], 0))
9257 goto out_free_counters;
9258
9259 if (cgrp->parent)
9260 ca->parent = cgroup_ca(cgrp->parent);
9261
9262 return &ca->css;
9263
9264 out_free_counters:
9265 while (--i >= 0)
9266 percpu_counter_destroy(&ca->cpustat[i]);
9267 free_percpu(ca->cpuusage);
9268 out_free_ca:
9269 kfree(ca);
9270 out:
9271 return ERR_PTR(-ENOMEM);
9272 }
9273
9274 /* destroy an existing cpu accounting group */
9275 static void
9276 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9277 {
9278 struct cpuacct *ca = cgroup_ca(cgrp);
9279 int i;
9280
9281 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9282 percpu_counter_destroy(&ca->cpustat[i]);
9283 free_percpu(ca->cpuusage);
9284 kfree(ca);
9285 }
9286
9287 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9288 {
9289 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9290 u64 data;
9291
9292 #ifndef CONFIG_64BIT
9293 /*
9294 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9295 */
9296 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9297 data = *cpuusage;
9298 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9299 #else
9300 data = *cpuusage;
9301 #endif
9302
9303 return data;
9304 }
9305
9306 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9307 {
9308 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9309
9310 #ifndef CONFIG_64BIT
9311 /*
9312 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9313 */
9314 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9315 *cpuusage = val;
9316 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9317 #else
9318 *cpuusage = val;
9319 #endif
9320 }
9321
9322 /* return total cpu usage (in nanoseconds) of a group */
9323 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9324 {
9325 struct cpuacct *ca = cgroup_ca(cgrp);
9326 u64 totalcpuusage = 0;
9327 int i;
9328
9329 for_each_present_cpu(i)
9330 totalcpuusage += cpuacct_cpuusage_read(ca, i);
9331
9332 return totalcpuusage;
9333 }
9334
9335 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9336 u64 reset)
9337 {
9338 struct cpuacct *ca = cgroup_ca(cgrp);
9339 int err = 0;
9340 int i;
9341
9342 if (reset) {
9343 err = -EINVAL;
9344 goto out;
9345 }
9346
9347 for_each_present_cpu(i)
9348 cpuacct_cpuusage_write(ca, i, 0);
9349
9350 out:
9351 return err;
9352 }
9353
9354 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9355 struct seq_file *m)
9356 {
9357 struct cpuacct *ca = cgroup_ca(cgroup);
9358 u64 percpu;
9359 int i;
9360
9361 for_each_present_cpu(i) {
9362 percpu = cpuacct_cpuusage_read(ca, i);
9363 seq_printf(m, "%llu ", (unsigned long long) percpu);
9364 }
9365 seq_printf(m, "\n");
9366 return 0;
9367 }
9368
9369 static const char *cpuacct_stat_desc[] = {
9370 [CPUACCT_STAT_USER] = "user",
9371 [CPUACCT_STAT_SYSTEM] = "system",
9372 };
9373
9374 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9375 struct cgroup_map_cb *cb)
9376 {
9377 struct cpuacct *ca = cgroup_ca(cgrp);
9378 int i;
9379
9380 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9381 s64 val = percpu_counter_read(&ca->cpustat[i]);
9382 val = cputime64_to_clock_t(val);
9383 cb->fill(cb, cpuacct_stat_desc[i], val);
9384 }
9385 return 0;
9386 }
9387
9388 static struct cftype files[] = {
9389 {
9390 .name = "usage",
9391 .read_u64 = cpuusage_read,
9392 .write_u64 = cpuusage_write,
9393 },
9394 {
9395 .name = "usage_percpu",
9396 .read_seq_string = cpuacct_percpu_seq_read,
9397 },
9398 {
9399 .name = "stat",
9400 .read_map = cpuacct_stats_show,
9401 },
9402 };
9403
9404 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9405 {
9406 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9407 }
9408
9409 /*
9410 * charge this task's execution time to its accounting group.
9411 *
9412 * called with rq->lock held.
9413 */
9414 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9415 {
9416 struct cpuacct *ca;
9417 int cpu;
9418
9419 if (unlikely(!cpuacct_subsys.active))
9420 return;
9421
9422 cpu = task_cpu(tsk);
9423
9424 rcu_read_lock();
9425
9426 ca = task_ca(tsk);
9427
9428 for (; ca; ca = ca->parent) {
9429 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9430 *cpuusage += cputime;
9431 }
9432
9433 rcu_read_unlock();
9434 }
9435
9436 /*
9437 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9438 * in cputime_t units. As a result, cpuacct_update_stats calls
9439 * percpu_counter_add with values large enough to always overflow the
9440 * per cpu batch limit causing bad SMP scalability.
9441 *
9442 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9443 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9444 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9445 */
9446 #ifdef CONFIG_SMP
9447 #define CPUACCT_BATCH \
9448 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9449 #else
9450 #define CPUACCT_BATCH 0
9451 #endif
9452
9453 /*
9454 * Charge the system/user time to the task's accounting group.
9455 */
9456 static void cpuacct_update_stats(struct task_struct *tsk,
9457 enum cpuacct_stat_index idx, cputime_t val)
9458 {
9459 struct cpuacct *ca;
9460 int batch = CPUACCT_BATCH;
9461
9462 if (unlikely(!cpuacct_subsys.active))
9463 return;
9464
9465 rcu_read_lock();
9466 ca = task_ca(tsk);
9467
9468 do {
9469 __percpu_counter_add(&ca->cpustat[idx], val, batch);
9470 ca = ca->parent;
9471 } while (ca);
9472 rcu_read_unlock();
9473 }
9474
9475 struct cgroup_subsys cpuacct_subsys = {
9476 .name = "cpuacct",
9477 .create = cpuacct_create,
9478 .destroy = cpuacct_destroy,
9479 .populate = cpuacct_populate,
9480 .subsys_id = cpuacct_subsys_id,
9481 };
9482 #endif /* CONFIG_CGROUP_CPUACCT */
9483
This page took 0.245605 seconds and 5 git commands to generate.