sched: rt time limit
[deliverable/linux.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/reciprocal_div.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69
70 #include <asm/tlb.h>
71 #include <asm/irq_regs.h>
72
73 /*
74 * Scheduler clock - returns current time in nanosec units.
75 * This is default implementation.
76 * Architectures and sub-architectures can override this.
77 */
78 unsigned long long __attribute__((weak)) sched_clock(void)
79 {
80 return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
81 }
82
83 /*
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
87 */
88 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
91
92 /*
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
96 */
97 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
100
101 /*
102 * Helpers for converting nanosecond timing to jiffy resolution
103 */
104 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
105
106 #define NICE_0_LOAD SCHED_LOAD_SCALE
107 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
108
109 /*
110 * These are the 'tuning knobs' of the scheduler:
111 *
112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
113 * Timeslices get refilled after they expire.
114 */
115 #define DEF_TIMESLICE (100 * HZ / 1000)
116
117 #ifdef CONFIG_SMP
118 /*
119 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
120 * Since cpu_power is a 'constant', we can use a reciprocal divide.
121 */
122 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
123 {
124 return reciprocal_divide(load, sg->reciprocal_cpu_power);
125 }
126
127 /*
128 * Each time a sched group cpu_power is changed,
129 * we must compute its reciprocal value
130 */
131 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
132 {
133 sg->__cpu_power += val;
134 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
135 }
136 #endif
137
138 static inline int rt_policy(int policy)
139 {
140 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
141 return 1;
142 return 0;
143 }
144
145 static inline int task_has_rt_policy(struct task_struct *p)
146 {
147 return rt_policy(p->policy);
148 }
149
150 /*
151 * This is the priority-queue data structure of the RT scheduling class:
152 */
153 struct rt_prio_array {
154 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
155 struct list_head queue[MAX_RT_PRIO];
156 };
157
158 #ifdef CONFIG_FAIR_GROUP_SCHED
159
160 #include <linux/cgroup.h>
161
162 struct cfs_rq;
163
164 /* task group related information */
165 struct task_group {
166 #ifdef CONFIG_FAIR_CGROUP_SCHED
167 struct cgroup_subsys_state css;
168 #endif
169 /* schedulable entities of this group on each cpu */
170 struct sched_entity **se;
171 /* runqueue "owned" by this group on each cpu */
172 struct cfs_rq **cfs_rq;
173
174 /*
175 * shares assigned to a task group governs how much of cpu bandwidth
176 * is allocated to the group. The more shares a group has, the more is
177 * the cpu bandwidth allocated to it.
178 *
179 * For ex, lets say that there are three task groups, A, B and C which
180 * have been assigned shares 1000, 2000 and 3000 respectively. Then,
181 * cpu bandwidth allocated by the scheduler to task groups A, B and C
182 * should be:
183 *
184 * Bw(A) = 1000/(1000+2000+3000) * 100 = 16.66%
185 * Bw(B) = 2000/(1000+2000+3000) * 100 = 33.33%
186 * Bw(C) = 3000/(1000+2000+3000) * 100 = 50%
187 *
188 * The weight assigned to a task group's schedulable entities on every
189 * cpu (task_group.se[a_cpu]->load.weight) is derived from the task
190 * group's shares. For ex: lets say that task group A has been
191 * assigned shares of 1000 and there are two CPUs in a system. Then,
192 *
193 * tg_A->se[0]->load.weight = tg_A->se[1]->load.weight = 1000;
194 *
195 * Note: It's not necessary that each of a task's group schedulable
196 * entity have the same weight on all CPUs. If the group
197 * has 2 of its tasks on CPU0 and 1 task on CPU1, then a
198 * better distribution of weight could be:
199 *
200 * tg_A->se[0]->load.weight = 2/3 * 2000 = 1333
201 * tg_A->se[1]->load.weight = 1/2 * 2000 = 667
202 *
203 * rebalance_shares() is responsible for distributing the shares of a
204 * task groups like this among the group's schedulable entities across
205 * cpus.
206 *
207 */
208 unsigned long shares;
209
210 struct rcu_head rcu;
211 };
212
213 /* Default task group's sched entity on each cpu */
214 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
215 /* Default task group's cfs_rq on each cpu */
216 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
217
218 static struct sched_entity *init_sched_entity_p[NR_CPUS];
219 static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
220
221 /* task_group_mutex serializes add/remove of task groups and also changes to
222 * a task group's cpu shares.
223 */
224 static DEFINE_MUTEX(task_group_mutex);
225
226 /* doms_cur_mutex serializes access to doms_cur[] array */
227 static DEFINE_MUTEX(doms_cur_mutex);
228
229 #ifdef CONFIG_SMP
230 /* kernel thread that runs rebalance_shares() periodically */
231 static struct task_struct *lb_monitor_task;
232 static int load_balance_monitor(void *unused);
233 #endif
234
235 static void set_se_shares(struct sched_entity *se, unsigned long shares);
236
237 /* Default task group.
238 * Every task in system belong to this group at bootup.
239 */
240 struct task_group init_task_group = {
241 .se = init_sched_entity_p,
242 .cfs_rq = init_cfs_rq_p,
243 };
244
245 #ifdef CONFIG_FAIR_USER_SCHED
246 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
247 #else
248 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
249 #endif
250
251 #define MIN_GROUP_SHARES 2
252
253 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
254
255 /* return group to which a task belongs */
256 static inline struct task_group *task_group(struct task_struct *p)
257 {
258 struct task_group *tg;
259
260 #ifdef CONFIG_FAIR_USER_SCHED
261 tg = p->user->tg;
262 #elif defined(CONFIG_FAIR_CGROUP_SCHED)
263 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
264 struct task_group, css);
265 #else
266 tg = &init_task_group;
267 #endif
268 return tg;
269 }
270
271 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
272 static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu)
273 {
274 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
275 p->se.parent = task_group(p)->se[cpu];
276 }
277
278 static inline void lock_task_group_list(void)
279 {
280 mutex_lock(&task_group_mutex);
281 }
282
283 static inline void unlock_task_group_list(void)
284 {
285 mutex_unlock(&task_group_mutex);
286 }
287
288 static inline void lock_doms_cur(void)
289 {
290 mutex_lock(&doms_cur_mutex);
291 }
292
293 static inline void unlock_doms_cur(void)
294 {
295 mutex_unlock(&doms_cur_mutex);
296 }
297
298 #else
299
300 static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu) { }
301 static inline void lock_task_group_list(void) { }
302 static inline void unlock_task_group_list(void) { }
303 static inline void lock_doms_cur(void) { }
304 static inline void unlock_doms_cur(void) { }
305
306 #endif /* CONFIG_FAIR_GROUP_SCHED */
307
308 /* CFS-related fields in a runqueue */
309 struct cfs_rq {
310 struct load_weight load;
311 unsigned long nr_running;
312
313 u64 exec_clock;
314 u64 min_vruntime;
315
316 struct rb_root tasks_timeline;
317 struct rb_node *rb_leftmost;
318 struct rb_node *rb_load_balance_curr;
319 /* 'curr' points to currently running entity on this cfs_rq.
320 * It is set to NULL otherwise (i.e when none are currently running).
321 */
322 struct sched_entity *curr;
323
324 unsigned long nr_spread_over;
325
326 #ifdef CONFIG_FAIR_GROUP_SCHED
327 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
328
329 /*
330 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
331 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
332 * (like users, containers etc.)
333 *
334 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
335 * list is used during load balance.
336 */
337 struct list_head leaf_cfs_rq_list;
338 struct task_group *tg; /* group that "owns" this runqueue */
339 #endif
340 };
341
342 /* Real-Time classes' related field in a runqueue: */
343 struct rt_rq {
344 struct rt_prio_array active;
345 unsigned long rt_nr_running;
346 #ifdef CONFIG_SMP
347 unsigned long rt_nr_migratory;
348 int highest_prio; /* highest queued rt task prio */
349 int overloaded;
350 #endif
351 u64 rt_time;
352 u64 rt_throttled;
353 };
354
355 #ifdef CONFIG_SMP
356
357 /*
358 * We add the notion of a root-domain which will be used to define per-domain
359 * variables. Each exclusive cpuset essentially defines an island domain by
360 * fully partitioning the member cpus from any other cpuset. Whenever a new
361 * exclusive cpuset is created, we also create and attach a new root-domain
362 * object.
363 *
364 */
365 struct root_domain {
366 atomic_t refcount;
367 cpumask_t span;
368 cpumask_t online;
369
370 /*
371 * The "RT overload" flag: it gets set if a CPU has more than
372 * one runnable RT task.
373 */
374 cpumask_t rto_mask;
375 atomic_t rto_count;
376 };
377
378 /*
379 * By default the system creates a single root-domain with all cpus as
380 * members (mimicking the global state we have today).
381 */
382 static struct root_domain def_root_domain;
383
384 #endif
385
386 /*
387 * This is the main, per-CPU runqueue data structure.
388 *
389 * Locking rule: those places that want to lock multiple runqueues
390 * (such as the load balancing or the thread migration code), lock
391 * acquire operations must be ordered by ascending &runqueue.
392 */
393 struct rq {
394 /* runqueue lock: */
395 spinlock_t lock;
396
397 /*
398 * nr_running and cpu_load should be in the same cacheline because
399 * remote CPUs use both these fields when doing load calculation.
400 */
401 unsigned long nr_running;
402 #define CPU_LOAD_IDX_MAX 5
403 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
404 unsigned char idle_at_tick;
405 #ifdef CONFIG_NO_HZ
406 unsigned char in_nohz_recently;
407 #endif
408 /* capture load from *all* tasks on this cpu: */
409 struct load_weight load;
410 unsigned long nr_load_updates;
411 u64 nr_switches;
412
413 struct cfs_rq cfs;
414 #ifdef CONFIG_FAIR_GROUP_SCHED
415 /* list of leaf cfs_rq on this cpu: */
416 struct list_head leaf_cfs_rq_list;
417 #endif
418 struct rt_rq rt;
419 u64 rt_period_expire;
420
421 /*
422 * This is part of a global counter where only the total sum
423 * over all CPUs matters. A task can increase this counter on
424 * one CPU and if it got migrated afterwards it may decrease
425 * it on another CPU. Always updated under the runqueue lock:
426 */
427 unsigned long nr_uninterruptible;
428
429 struct task_struct *curr, *idle;
430 unsigned long next_balance;
431 struct mm_struct *prev_mm;
432
433 u64 clock, prev_clock_raw;
434 s64 clock_max_delta;
435
436 unsigned int clock_warps, clock_overflows;
437 u64 idle_clock;
438 unsigned int clock_deep_idle_events;
439 u64 tick_timestamp;
440
441 atomic_t nr_iowait;
442
443 #ifdef CONFIG_SMP
444 struct root_domain *rd;
445 struct sched_domain *sd;
446
447 /* For active balancing */
448 int active_balance;
449 int push_cpu;
450 /* cpu of this runqueue: */
451 int cpu;
452
453 struct task_struct *migration_thread;
454 struct list_head migration_queue;
455 #endif
456
457 #ifdef CONFIG_SCHED_HRTICK
458 unsigned long hrtick_flags;
459 ktime_t hrtick_expire;
460 struct hrtimer hrtick_timer;
461 #endif
462
463 #ifdef CONFIG_SCHEDSTATS
464 /* latency stats */
465 struct sched_info rq_sched_info;
466
467 /* sys_sched_yield() stats */
468 unsigned int yld_exp_empty;
469 unsigned int yld_act_empty;
470 unsigned int yld_both_empty;
471 unsigned int yld_count;
472
473 /* schedule() stats */
474 unsigned int sched_switch;
475 unsigned int sched_count;
476 unsigned int sched_goidle;
477
478 /* try_to_wake_up() stats */
479 unsigned int ttwu_count;
480 unsigned int ttwu_local;
481
482 /* BKL stats */
483 unsigned int bkl_count;
484 #endif
485 struct lock_class_key rq_lock_key;
486 };
487
488 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
489
490 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
491 {
492 rq->curr->sched_class->check_preempt_curr(rq, p);
493 }
494
495 static inline int cpu_of(struct rq *rq)
496 {
497 #ifdef CONFIG_SMP
498 return rq->cpu;
499 #else
500 return 0;
501 #endif
502 }
503
504 /*
505 * Update the per-runqueue clock, as finegrained as the platform can give
506 * us, but without assuming monotonicity, etc.:
507 */
508 static void __update_rq_clock(struct rq *rq)
509 {
510 u64 prev_raw = rq->prev_clock_raw;
511 u64 now = sched_clock();
512 s64 delta = now - prev_raw;
513 u64 clock = rq->clock;
514
515 #ifdef CONFIG_SCHED_DEBUG
516 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
517 #endif
518 /*
519 * Protect against sched_clock() occasionally going backwards:
520 */
521 if (unlikely(delta < 0)) {
522 clock++;
523 rq->clock_warps++;
524 } else {
525 /*
526 * Catch too large forward jumps too:
527 */
528 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
529 if (clock < rq->tick_timestamp + TICK_NSEC)
530 clock = rq->tick_timestamp + TICK_NSEC;
531 else
532 clock++;
533 rq->clock_overflows++;
534 } else {
535 if (unlikely(delta > rq->clock_max_delta))
536 rq->clock_max_delta = delta;
537 clock += delta;
538 }
539 }
540
541 rq->prev_clock_raw = now;
542 rq->clock = clock;
543 }
544
545 static void update_rq_clock(struct rq *rq)
546 {
547 if (likely(smp_processor_id() == cpu_of(rq)))
548 __update_rq_clock(rq);
549 }
550
551 /*
552 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
553 * See detach_destroy_domains: synchronize_sched for details.
554 *
555 * The domain tree of any CPU may only be accessed from within
556 * preempt-disabled sections.
557 */
558 #define for_each_domain(cpu, __sd) \
559 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
560
561 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
562 #define this_rq() (&__get_cpu_var(runqueues))
563 #define task_rq(p) cpu_rq(task_cpu(p))
564 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
565
566 /*
567 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
568 */
569 #ifdef CONFIG_SCHED_DEBUG
570 # define const_debug __read_mostly
571 #else
572 # define const_debug static const
573 #endif
574
575 /*
576 * Debugging: various feature bits
577 */
578 enum {
579 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
580 SCHED_FEAT_WAKEUP_PREEMPT = 2,
581 SCHED_FEAT_START_DEBIT = 4,
582 SCHED_FEAT_TREE_AVG = 8,
583 SCHED_FEAT_APPROX_AVG = 16,
584 SCHED_FEAT_HRTICK = 32,
585 SCHED_FEAT_DOUBLE_TICK = 64,
586 };
587
588 const_debug unsigned int sysctl_sched_features =
589 SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
590 SCHED_FEAT_WAKEUP_PREEMPT * 1 |
591 SCHED_FEAT_START_DEBIT * 1 |
592 SCHED_FEAT_TREE_AVG * 0 |
593 SCHED_FEAT_APPROX_AVG * 0 |
594 SCHED_FEAT_HRTICK * 1 |
595 SCHED_FEAT_DOUBLE_TICK * 0;
596
597 #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
598
599 /*
600 * Number of tasks to iterate in a single balance run.
601 * Limited because this is done with IRQs disabled.
602 */
603 const_debug unsigned int sysctl_sched_nr_migrate = 32;
604
605 /*
606 * period over which we measure -rt task cpu usage in ms.
607 * default: 1s
608 */
609 const_debug unsigned int sysctl_sched_rt_period = 1000;
610
611 #define SCHED_RT_FRAC_SHIFT 16
612 #define SCHED_RT_FRAC (1UL << SCHED_RT_FRAC_SHIFT)
613
614 /*
615 * ratio of time -rt tasks may consume.
616 * default: 100%
617 */
618 const_debug unsigned int sysctl_sched_rt_ratio = SCHED_RT_FRAC;
619
620 /*
621 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
622 * clock constructed from sched_clock():
623 */
624 unsigned long long cpu_clock(int cpu)
625 {
626 unsigned long long now;
627 unsigned long flags;
628 struct rq *rq;
629
630 local_irq_save(flags);
631 rq = cpu_rq(cpu);
632 /*
633 * Only call sched_clock() if the scheduler has already been
634 * initialized (some code might call cpu_clock() very early):
635 */
636 if (rq->idle)
637 update_rq_clock(rq);
638 now = rq->clock;
639 local_irq_restore(flags);
640
641 return now;
642 }
643 EXPORT_SYMBOL_GPL(cpu_clock);
644
645 #ifndef prepare_arch_switch
646 # define prepare_arch_switch(next) do { } while (0)
647 #endif
648 #ifndef finish_arch_switch
649 # define finish_arch_switch(prev) do { } while (0)
650 #endif
651
652 static inline int task_current(struct rq *rq, struct task_struct *p)
653 {
654 return rq->curr == p;
655 }
656
657 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
658 static inline int task_running(struct rq *rq, struct task_struct *p)
659 {
660 return task_current(rq, p);
661 }
662
663 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
664 {
665 }
666
667 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
668 {
669 #ifdef CONFIG_DEBUG_SPINLOCK
670 /* this is a valid case when another task releases the spinlock */
671 rq->lock.owner = current;
672 #endif
673 /*
674 * If we are tracking spinlock dependencies then we have to
675 * fix up the runqueue lock - which gets 'carried over' from
676 * prev into current:
677 */
678 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
679
680 spin_unlock_irq(&rq->lock);
681 }
682
683 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
684 static inline int task_running(struct rq *rq, struct task_struct *p)
685 {
686 #ifdef CONFIG_SMP
687 return p->oncpu;
688 #else
689 return task_current(rq, p);
690 #endif
691 }
692
693 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
694 {
695 #ifdef CONFIG_SMP
696 /*
697 * We can optimise this out completely for !SMP, because the
698 * SMP rebalancing from interrupt is the only thing that cares
699 * here.
700 */
701 next->oncpu = 1;
702 #endif
703 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
704 spin_unlock_irq(&rq->lock);
705 #else
706 spin_unlock(&rq->lock);
707 #endif
708 }
709
710 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
711 {
712 #ifdef CONFIG_SMP
713 /*
714 * After ->oncpu is cleared, the task can be moved to a different CPU.
715 * We must ensure this doesn't happen until the switch is completely
716 * finished.
717 */
718 smp_wmb();
719 prev->oncpu = 0;
720 #endif
721 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
722 local_irq_enable();
723 #endif
724 }
725 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
726
727 /*
728 * __task_rq_lock - lock the runqueue a given task resides on.
729 * Must be called interrupts disabled.
730 */
731 static inline struct rq *__task_rq_lock(struct task_struct *p)
732 __acquires(rq->lock)
733 {
734 for (;;) {
735 struct rq *rq = task_rq(p);
736 spin_lock(&rq->lock);
737 if (likely(rq == task_rq(p)))
738 return rq;
739 spin_unlock(&rq->lock);
740 }
741 }
742
743 /*
744 * task_rq_lock - lock the runqueue a given task resides on and disable
745 * interrupts. Note the ordering: we can safely lookup the task_rq without
746 * explicitly disabling preemption.
747 */
748 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
749 __acquires(rq->lock)
750 {
751 struct rq *rq;
752
753 for (;;) {
754 local_irq_save(*flags);
755 rq = task_rq(p);
756 spin_lock(&rq->lock);
757 if (likely(rq == task_rq(p)))
758 return rq;
759 spin_unlock_irqrestore(&rq->lock, *flags);
760 }
761 }
762
763 static void __task_rq_unlock(struct rq *rq)
764 __releases(rq->lock)
765 {
766 spin_unlock(&rq->lock);
767 }
768
769 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
770 __releases(rq->lock)
771 {
772 spin_unlock_irqrestore(&rq->lock, *flags);
773 }
774
775 /*
776 * this_rq_lock - lock this runqueue and disable interrupts.
777 */
778 static struct rq *this_rq_lock(void)
779 __acquires(rq->lock)
780 {
781 struct rq *rq;
782
783 local_irq_disable();
784 rq = this_rq();
785 spin_lock(&rq->lock);
786
787 return rq;
788 }
789
790 /*
791 * We are going deep-idle (irqs are disabled):
792 */
793 void sched_clock_idle_sleep_event(void)
794 {
795 struct rq *rq = cpu_rq(smp_processor_id());
796
797 spin_lock(&rq->lock);
798 __update_rq_clock(rq);
799 spin_unlock(&rq->lock);
800 rq->clock_deep_idle_events++;
801 }
802 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
803
804 /*
805 * We just idled delta nanoseconds (called with irqs disabled):
806 */
807 void sched_clock_idle_wakeup_event(u64 delta_ns)
808 {
809 struct rq *rq = cpu_rq(smp_processor_id());
810 u64 now = sched_clock();
811
812 touch_softlockup_watchdog();
813 rq->idle_clock += delta_ns;
814 /*
815 * Override the previous timestamp and ignore all
816 * sched_clock() deltas that occured while we idled,
817 * and use the PM-provided delta_ns to advance the
818 * rq clock:
819 */
820 spin_lock(&rq->lock);
821 rq->prev_clock_raw = now;
822 rq->clock += delta_ns;
823 spin_unlock(&rq->lock);
824 }
825 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
826
827 static void __resched_task(struct task_struct *p, int tif_bit);
828
829 static inline void resched_task(struct task_struct *p)
830 {
831 __resched_task(p, TIF_NEED_RESCHED);
832 }
833
834 #ifdef CONFIG_SCHED_HRTICK
835 /*
836 * Use HR-timers to deliver accurate preemption points.
837 *
838 * Its all a bit involved since we cannot program an hrt while holding the
839 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
840 * reschedule event.
841 *
842 * When we get rescheduled we reprogram the hrtick_timer outside of the
843 * rq->lock.
844 */
845 static inline void resched_hrt(struct task_struct *p)
846 {
847 __resched_task(p, TIF_HRTICK_RESCHED);
848 }
849
850 static inline void resched_rq(struct rq *rq)
851 {
852 unsigned long flags;
853
854 spin_lock_irqsave(&rq->lock, flags);
855 resched_task(rq->curr);
856 spin_unlock_irqrestore(&rq->lock, flags);
857 }
858
859 enum {
860 HRTICK_SET, /* re-programm hrtick_timer */
861 HRTICK_RESET, /* not a new slice */
862 };
863
864 /*
865 * Use hrtick when:
866 * - enabled by features
867 * - hrtimer is actually high res
868 */
869 static inline int hrtick_enabled(struct rq *rq)
870 {
871 if (!sched_feat(HRTICK))
872 return 0;
873 return hrtimer_is_hres_active(&rq->hrtick_timer);
874 }
875
876 /*
877 * Called to set the hrtick timer state.
878 *
879 * called with rq->lock held and irqs disabled
880 */
881 static void hrtick_start(struct rq *rq, u64 delay, int reset)
882 {
883 assert_spin_locked(&rq->lock);
884
885 /*
886 * preempt at: now + delay
887 */
888 rq->hrtick_expire =
889 ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
890 /*
891 * indicate we need to program the timer
892 */
893 __set_bit(HRTICK_SET, &rq->hrtick_flags);
894 if (reset)
895 __set_bit(HRTICK_RESET, &rq->hrtick_flags);
896
897 /*
898 * New slices are called from the schedule path and don't need a
899 * forced reschedule.
900 */
901 if (reset)
902 resched_hrt(rq->curr);
903 }
904
905 static void hrtick_clear(struct rq *rq)
906 {
907 if (hrtimer_active(&rq->hrtick_timer))
908 hrtimer_cancel(&rq->hrtick_timer);
909 }
910
911 /*
912 * Update the timer from the possible pending state.
913 */
914 static void hrtick_set(struct rq *rq)
915 {
916 ktime_t time;
917 int set, reset;
918 unsigned long flags;
919
920 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
921
922 spin_lock_irqsave(&rq->lock, flags);
923 set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
924 reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
925 time = rq->hrtick_expire;
926 clear_thread_flag(TIF_HRTICK_RESCHED);
927 spin_unlock_irqrestore(&rq->lock, flags);
928
929 if (set) {
930 hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
931 if (reset && !hrtimer_active(&rq->hrtick_timer))
932 resched_rq(rq);
933 } else
934 hrtick_clear(rq);
935 }
936
937 /*
938 * High-resolution timer tick.
939 * Runs from hardirq context with interrupts disabled.
940 */
941 static enum hrtimer_restart hrtick(struct hrtimer *timer)
942 {
943 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
944
945 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
946
947 spin_lock(&rq->lock);
948 __update_rq_clock(rq);
949 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
950 spin_unlock(&rq->lock);
951
952 return HRTIMER_NORESTART;
953 }
954
955 static inline void init_rq_hrtick(struct rq *rq)
956 {
957 rq->hrtick_flags = 0;
958 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
959 rq->hrtick_timer.function = hrtick;
960 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
961 }
962
963 void hrtick_resched(void)
964 {
965 struct rq *rq;
966 unsigned long flags;
967
968 if (!test_thread_flag(TIF_HRTICK_RESCHED))
969 return;
970
971 local_irq_save(flags);
972 rq = cpu_rq(smp_processor_id());
973 hrtick_set(rq);
974 local_irq_restore(flags);
975 }
976 #else
977 static inline void hrtick_clear(struct rq *rq)
978 {
979 }
980
981 static inline void hrtick_set(struct rq *rq)
982 {
983 }
984
985 static inline void init_rq_hrtick(struct rq *rq)
986 {
987 }
988
989 void hrtick_resched(void)
990 {
991 }
992 #endif
993
994 /*
995 * resched_task - mark a task 'to be rescheduled now'.
996 *
997 * On UP this means the setting of the need_resched flag, on SMP it
998 * might also involve a cross-CPU call to trigger the scheduler on
999 * the target CPU.
1000 */
1001 #ifdef CONFIG_SMP
1002
1003 #ifndef tsk_is_polling
1004 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1005 #endif
1006
1007 static void __resched_task(struct task_struct *p, int tif_bit)
1008 {
1009 int cpu;
1010
1011 assert_spin_locked(&task_rq(p)->lock);
1012
1013 if (unlikely(test_tsk_thread_flag(p, tif_bit)))
1014 return;
1015
1016 set_tsk_thread_flag(p, tif_bit);
1017
1018 cpu = task_cpu(p);
1019 if (cpu == smp_processor_id())
1020 return;
1021
1022 /* NEED_RESCHED must be visible before we test polling */
1023 smp_mb();
1024 if (!tsk_is_polling(p))
1025 smp_send_reschedule(cpu);
1026 }
1027
1028 static void resched_cpu(int cpu)
1029 {
1030 struct rq *rq = cpu_rq(cpu);
1031 unsigned long flags;
1032
1033 if (!spin_trylock_irqsave(&rq->lock, flags))
1034 return;
1035 resched_task(cpu_curr(cpu));
1036 spin_unlock_irqrestore(&rq->lock, flags);
1037 }
1038 #else
1039 static void __resched_task(struct task_struct *p, int tif_bit)
1040 {
1041 assert_spin_locked(&task_rq(p)->lock);
1042 set_tsk_thread_flag(p, tif_bit);
1043 }
1044 #endif
1045
1046 #if BITS_PER_LONG == 32
1047 # define WMULT_CONST (~0UL)
1048 #else
1049 # define WMULT_CONST (1UL << 32)
1050 #endif
1051
1052 #define WMULT_SHIFT 32
1053
1054 /*
1055 * Shift right and round:
1056 */
1057 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1058
1059 static unsigned long
1060 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1061 struct load_weight *lw)
1062 {
1063 u64 tmp;
1064
1065 if (unlikely(!lw->inv_weight))
1066 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
1067
1068 tmp = (u64)delta_exec * weight;
1069 /*
1070 * Check whether we'd overflow the 64-bit multiplication:
1071 */
1072 if (unlikely(tmp > WMULT_CONST))
1073 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1074 WMULT_SHIFT/2);
1075 else
1076 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1077
1078 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1079 }
1080
1081 static inline unsigned long
1082 calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
1083 {
1084 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
1085 }
1086
1087 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1088 {
1089 lw->weight += inc;
1090 }
1091
1092 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1093 {
1094 lw->weight -= dec;
1095 }
1096
1097 /*
1098 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1099 * of tasks with abnormal "nice" values across CPUs the contribution that
1100 * each task makes to its run queue's load is weighted according to its
1101 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1102 * scaled version of the new time slice allocation that they receive on time
1103 * slice expiry etc.
1104 */
1105
1106 #define WEIGHT_IDLEPRIO 2
1107 #define WMULT_IDLEPRIO (1 << 31)
1108
1109 /*
1110 * Nice levels are multiplicative, with a gentle 10% change for every
1111 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1112 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1113 * that remained on nice 0.
1114 *
1115 * The "10% effect" is relative and cumulative: from _any_ nice level,
1116 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1117 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1118 * If a task goes up by ~10% and another task goes down by ~10% then
1119 * the relative distance between them is ~25%.)
1120 */
1121 static const int prio_to_weight[40] = {
1122 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1123 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1124 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1125 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1126 /* 0 */ 1024, 820, 655, 526, 423,
1127 /* 5 */ 335, 272, 215, 172, 137,
1128 /* 10 */ 110, 87, 70, 56, 45,
1129 /* 15 */ 36, 29, 23, 18, 15,
1130 };
1131
1132 /*
1133 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1134 *
1135 * In cases where the weight does not change often, we can use the
1136 * precalculated inverse to speed up arithmetics by turning divisions
1137 * into multiplications:
1138 */
1139 static const u32 prio_to_wmult[40] = {
1140 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1141 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1142 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1143 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1144 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1145 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1146 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1147 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1148 };
1149
1150 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1151
1152 /*
1153 * runqueue iterator, to support SMP load-balancing between different
1154 * scheduling classes, without having to expose their internal data
1155 * structures to the load-balancing proper:
1156 */
1157 struct rq_iterator {
1158 void *arg;
1159 struct task_struct *(*start)(void *);
1160 struct task_struct *(*next)(void *);
1161 };
1162
1163 #ifdef CONFIG_SMP
1164 static unsigned long
1165 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1166 unsigned long max_load_move, struct sched_domain *sd,
1167 enum cpu_idle_type idle, int *all_pinned,
1168 int *this_best_prio, struct rq_iterator *iterator);
1169
1170 static int
1171 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1172 struct sched_domain *sd, enum cpu_idle_type idle,
1173 struct rq_iterator *iterator);
1174 #endif
1175
1176 #ifdef CONFIG_CGROUP_CPUACCT
1177 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1178 #else
1179 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1180 #endif
1181
1182 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1183 {
1184 update_load_add(&rq->load, load);
1185 }
1186
1187 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1188 {
1189 update_load_sub(&rq->load, load);
1190 }
1191
1192 #ifdef CONFIG_SMP
1193 static unsigned long source_load(int cpu, int type);
1194 static unsigned long target_load(int cpu, int type);
1195 static unsigned long cpu_avg_load_per_task(int cpu);
1196 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1197 #endif /* CONFIG_SMP */
1198
1199 #include "sched_stats.h"
1200 #include "sched_idletask.c"
1201 #include "sched_fair.c"
1202 #include "sched_rt.c"
1203 #ifdef CONFIG_SCHED_DEBUG
1204 # include "sched_debug.c"
1205 #endif
1206
1207 #define sched_class_highest (&rt_sched_class)
1208
1209 static void inc_nr_running(struct task_struct *p, struct rq *rq)
1210 {
1211 rq->nr_running++;
1212 }
1213
1214 static void dec_nr_running(struct task_struct *p, struct rq *rq)
1215 {
1216 rq->nr_running--;
1217 }
1218
1219 static void set_load_weight(struct task_struct *p)
1220 {
1221 if (task_has_rt_policy(p)) {
1222 p->se.load.weight = prio_to_weight[0] * 2;
1223 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1224 return;
1225 }
1226
1227 /*
1228 * SCHED_IDLE tasks get minimal weight:
1229 */
1230 if (p->policy == SCHED_IDLE) {
1231 p->se.load.weight = WEIGHT_IDLEPRIO;
1232 p->se.load.inv_weight = WMULT_IDLEPRIO;
1233 return;
1234 }
1235
1236 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1237 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1238 }
1239
1240 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1241 {
1242 sched_info_queued(p);
1243 p->sched_class->enqueue_task(rq, p, wakeup);
1244 p->se.on_rq = 1;
1245 }
1246
1247 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1248 {
1249 p->sched_class->dequeue_task(rq, p, sleep);
1250 p->se.on_rq = 0;
1251 }
1252
1253 /*
1254 * __normal_prio - return the priority that is based on the static prio
1255 */
1256 static inline int __normal_prio(struct task_struct *p)
1257 {
1258 return p->static_prio;
1259 }
1260
1261 /*
1262 * Calculate the expected normal priority: i.e. priority
1263 * without taking RT-inheritance into account. Might be
1264 * boosted by interactivity modifiers. Changes upon fork,
1265 * setprio syscalls, and whenever the interactivity
1266 * estimator recalculates.
1267 */
1268 static inline int normal_prio(struct task_struct *p)
1269 {
1270 int prio;
1271
1272 if (task_has_rt_policy(p))
1273 prio = MAX_RT_PRIO-1 - p->rt_priority;
1274 else
1275 prio = __normal_prio(p);
1276 return prio;
1277 }
1278
1279 /*
1280 * Calculate the current priority, i.e. the priority
1281 * taken into account by the scheduler. This value might
1282 * be boosted by RT tasks, or might be boosted by
1283 * interactivity modifiers. Will be RT if the task got
1284 * RT-boosted. If not then it returns p->normal_prio.
1285 */
1286 static int effective_prio(struct task_struct *p)
1287 {
1288 p->normal_prio = normal_prio(p);
1289 /*
1290 * If we are RT tasks or we were boosted to RT priority,
1291 * keep the priority unchanged. Otherwise, update priority
1292 * to the normal priority:
1293 */
1294 if (!rt_prio(p->prio))
1295 return p->normal_prio;
1296 return p->prio;
1297 }
1298
1299 /*
1300 * activate_task - move a task to the runqueue.
1301 */
1302 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1303 {
1304 if (p->state == TASK_UNINTERRUPTIBLE)
1305 rq->nr_uninterruptible--;
1306
1307 enqueue_task(rq, p, wakeup);
1308 inc_nr_running(p, rq);
1309 }
1310
1311 /*
1312 * deactivate_task - remove a task from the runqueue.
1313 */
1314 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1315 {
1316 if (p->state == TASK_UNINTERRUPTIBLE)
1317 rq->nr_uninterruptible++;
1318
1319 dequeue_task(rq, p, sleep);
1320 dec_nr_running(p, rq);
1321 }
1322
1323 /**
1324 * task_curr - is this task currently executing on a CPU?
1325 * @p: the task in question.
1326 */
1327 inline int task_curr(const struct task_struct *p)
1328 {
1329 return cpu_curr(task_cpu(p)) == p;
1330 }
1331
1332 /* Used instead of source_load when we know the type == 0 */
1333 unsigned long weighted_cpuload(const int cpu)
1334 {
1335 return cpu_rq(cpu)->load.weight;
1336 }
1337
1338 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1339 {
1340 set_task_cfs_rq(p, cpu);
1341 #ifdef CONFIG_SMP
1342 /*
1343 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1344 * successfuly executed on another CPU. We must ensure that updates of
1345 * per-task data have been completed by this moment.
1346 */
1347 smp_wmb();
1348 task_thread_info(p)->cpu = cpu;
1349 #endif
1350 }
1351
1352 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1353 const struct sched_class *prev_class,
1354 int oldprio, int running)
1355 {
1356 if (prev_class != p->sched_class) {
1357 if (prev_class->switched_from)
1358 prev_class->switched_from(rq, p, running);
1359 p->sched_class->switched_to(rq, p, running);
1360 } else
1361 p->sched_class->prio_changed(rq, p, oldprio, running);
1362 }
1363
1364 #ifdef CONFIG_SMP
1365
1366 /*
1367 * Is this task likely cache-hot:
1368 */
1369 static int
1370 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1371 {
1372 s64 delta;
1373
1374 if (p->sched_class != &fair_sched_class)
1375 return 0;
1376
1377 if (sysctl_sched_migration_cost == -1)
1378 return 1;
1379 if (sysctl_sched_migration_cost == 0)
1380 return 0;
1381
1382 delta = now - p->se.exec_start;
1383
1384 return delta < (s64)sysctl_sched_migration_cost;
1385 }
1386
1387
1388 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1389 {
1390 int old_cpu = task_cpu(p);
1391 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1392 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1393 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1394 u64 clock_offset;
1395
1396 clock_offset = old_rq->clock - new_rq->clock;
1397
1398 #ifdef CONFIG_SCHEDSTATS
1399 if (p->se.wait_start)
1400 p->se.wait_start -= clock_offset;
1401 if (p->se.sleep_start)
1402 p->se.sleep_start -= clock_offset;
1403 if (p->se.block_start)
1404 p->se.block_start -= clock_offset;
1405 if (old_cpu != new_cpu) {
1406 schedstat_inc(p, se.nr_migrations);
1407 if (task_hot(p, old_rq->clock, NULL))
1408 schedstat_inc(p, se.nr_forced2_migrations);
1409 }
1410 #endif
1411 p->se.vruntime -= old_cfsrq->min_vruntime -
1412 new_cfsrq->min_vruntime;
1413
1414 __set_task_cpu(p, new_cpu);
1415 }
1416
1417 struct migration_req {
1418 struct list_head list;
1419
1420 struct task_struct *task;
1421 int dest_cpu;
1422
1423 struct completion done;
1424 };
1425
1426 /*
1427 * The task's runqueue lock must be held.
1428 * Returns true if you have to wait for migration thread.
1429 */
1430 static int
1431 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1432 {
1433 struct rq *rq = task_rq(p);
1434
1435 /*
1436 * If the task is not on a runqueue (and not running), then
1437 * it is sufficient to simply update the task's cpu field.
1438 */
1439 if (!p->se.on_rq && !task_running(rq, p)) {
1440 set_task_cpu(p, dest_cpu);
1441 return 0;
1442 }
1443
1444 init_completion(&req->done);
1445 req->task = p;
1446 req->dest_cpu = dest_cpu;
1447 list_add(&req->list, &rq->migration_queue);
1448
1449 return 1;
1450 }
1451
1452 /*
1453 * wait_task_inactive - wait for a thread to unschedule.
1454 *
1455 * The caller must ensure that the task *will* unschedule sometime soon,
1456 * else this function might spin for a *long* time. This function can't
1457 * be called with interrupts off, or it may introduce deadlock with
1458 * smp_call_function() if an IPI is sent by the same process we are
1459 * waiting to become inactive.
1460 */
1461 void wait_task_inactive(struct task_struct *p)
1462 {
1463 unsigned long flags;
1464 int running, on_rq;
1465 struct rq *rq;
1466
1467 for (;;) {
1468 /*
1469 * We do the initial early heuristics without holding
1470 * any task-queue locks at all. We'll only try to get
1471 * the runqueue lock when things look like they will
1472 * work out!
1473 */
1474 rq = task_rq(p);
1475
1476 /*
1477 * If the task is actively running on another CPU
1478 * still, just relax and busy-wait without holding
1479 * any locks.
1480 *
1481 * NOTE! Since we don't hold any locks, it's not
1482 * even sure that "rq" stays as the right runqueue!
1483 * But we don't care, since "task_running()" will
1484 * return false if the runqueue has changed and p
1485 * is actually now running somewhere else!
1486 */
1487 while (task_running(rq, p))
1488 cpu_relax();
1489
1490 /*
1491 * Ok, time to look more closely! We need the rq
1492 * lock now, to be *sure*. If we're wrong, we'll
1493 * just go back and repeat.
1494 */
1495 rq = task_rq_lock(p, &flags);
1496 running = task_running(rq, p);
1497 on_rq = p->se.on_rq;
1498 task_rq_unlock(rq, &flags);
1499
1500 /*
1501 * Was it really running after all now that we
1502 * checked with the proper locks actually held?
1503 *
1504 * Oops. Go back and try again..
1505 */
1506 if (unlikely(running)) {
1507 cpu_relax();
1508 continue;
1509 }
1510
1511 /*
1512 * It's not enough that it's not actively running,
1513 * it must be off the runqueue _entirely_, and not
1514 * preempted!
1515 *
1516 * So if it wa still runnable (but just not actively
1517 * running right now), it's preempted, and we should
1518 * yield - it could be a while.
1519 */
1520 if (unlikely(on_rq)) {
1521 schedule_timeout_uninterruptible(1);
1522 continue;
1523 }
1524
1525 /*
1526 * Ahh, all good. It wasn't running, and it wasn't
1527 * runnable, which means that it will never become
1528 * running in the future either. We're all done!
1529 */
1530 break;
1531 }
1532 }
1533
1534 /***
1535 * kick_process - kick a running thread to enter/exit the kernel
1536 * @p: the to-be-kicked thread
1537 *
1538 * Cause a process which is running on another CPU to enter
1539 * kernel-mode, without any delay. (to get signals handled.)
1540 *
1541 * NOTE: this function doesnt have to take the runqueue lock,
1542 * because all it wants to ensure is that the remote task enters
1543 * the kernel. If the IPI races and the task has been migrated
1544 * to another CPU then no harm is done and the purpose has been
1545 * achieved as well.
1546 */
1547 void kick_process(struct task_struct *p)
1548 {
1549 int cpu;
1550
1551 preempt_disable();
1552 cpu = task_cpu(p);
1553 if ((cpu != smp_processor_id()) && task_curr(p))
1554 smp_send_reschedule(cpu);
1555 preempt_enable();
1556 }
1557
1558 /*
1559 * Return a low guess at the load of a migration-source cpu weighted
1560 * according to the scheduling class and "nice" value.
1561 *
1562 * We want to under-estimate the load of migration sources, to
1563 * balance conservatively.
1564 */
1565 static unsigned long source_load(int cpu, int type)
1566 {
1567 struct rq *rq = cpu_rq(cpu);
1568 unsigned long total = weighted_cpuload(cpu);
1569
1570 if (type == 0)
1571 return total;
1572
1573 return min(rq->cpu_load[type-1], total);
1574 }
1575
1576 /*
1577 * Return a high guess at the load of a migration-target cpu weighted
1578 * according to the scheduling class and "nice" value.
1579 */
1580 static unsigned long target_load(int cpu, int type)
1581 {
1582 struct rq *rq = cpu_rq(cpu);
1583 unsigned long total = weighted_cpuload(cpu);
1584
1585 if (type == 0)
1586 return total;
1587
1588 return max(rq->cpu_load[type-1], total);
1589 }
1590
1591 /*
1592 * Return the average load per task on the cpu's run queue
1593 */
1594 static unsigned long cpu_avg_load_per_task(int cpu)
1595 {
1596 struct rq *rq = cpu_rq(cpu);
1597 unsigned long total = weighted_cpuload(cpu);
1598 unsigned long n = rq->nr_running;
1599
1600 return n ? total / n : SCHED_LOAD_SCALE;
1601 }
1602
1603 /*
1604 * find_idlest_group finds and returns the least busy CPU group within the
1605 * domain.
1606 */
1607 static struct sched_group *
1608 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1609 {
1610 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1611 unsigned long min_load = ULONG_MAX, this_load = 0;
1612 int load_idx = sd->forkexec_idx;
1613 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1614
1615 do {
1616 unsigned long load, avg_load;
1617 int local_group;
1618 int i;
1619
1620 /* Skip over this group if it has no CPUs allowed */
1621 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1622 continue;
1623
1624 local_group = cpu_isset(this_cpu, group->cpumask);
1625
1626 /* Tally up the load of all CPUs in the group */
1627 avg_load = 0;
1628
1629 for_each_cpu_mask(i, group->cpumask) {
1630 /* Bias balancing toward cpus of our domain */
1631 if (local_group)
1632 load = source_load(i, load_idx);
1633 else
1634 load = target_load(i, load_idx);
1635
1636 avg_load += load;
1637 }
1638
1639 /* Adjust by relative CPU power of the group */
1640 avg_load = sg_div_cpu_power(group,
1641 avg_load * SCHED_LOAD_SCALE);
1642
1643 if (local_group) {
1644 this_load = avg_load;
1645 this = group;
1646 } else if (avg_load < min_load) {
1647 min_load = avg_load;
1648 idlest = group;
1649 }
1650 } while (group = group->next, group != sd->groups);
1651
1652 if (!idlest || 100*this_load < imbalance*min_load)
1653 return NULL;
1654 return idlest;
1655 }
1656
1657 /*
1658 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1659 */
1660 static int
1661 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1662 {
1663 cpumask_t tmp;
1664 unsigned long load, min_load = ULONG_MAX;
1665 int idlest = -1;
1666 int i;
1667
1668 /* Traverse only the allowed CPUs */
1669 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1670
1671 for_each_cpu_mask(i, tmp) {
1672 load = weighted_cpuload(i);
1673
1674 if (load < min_load || (load == min_load && i == this_cpu)) {
1675 min_load = load;
1676 idlest = i;
1677 }
1678 }
1679
1680 return idlest;
1681 }
1682
1683 /*
1684 * sched_balance_self: balance the current task (running on cpu) in domains
1685 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1686 * SD_BALANCE_EXEC.
1687 *
1688 * Balance, ie. select the least loaded group.
1689 *
1690 * Returns the target CPU number, or the same CPU if no balancing is needed.
1691 *
1692 * preempt must be disabled.
1693 */
1694 static int sched_balance_self(int cpu, int flag)
1695 {
1696 struct task_struct *t = current;
1697 struct sched_domain *tmp, *sd = NULL;
1698
1699 for_each_domain(cpu, tmp) {
1700 /*
1701 * If power savings logic is enabled for a domain, stop there.
1702 */
1703 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1704 break;
1705 if (tmp->flags & flag)
1706 sd = tmp;
1707 }
1708
1709 while (sd) {
1710 cpumask_t span;
1711 struct sched_group *group;
1712 int new_cpu, weight;
1713
1714 if (!(sd->flags & flag)) {
1715 sd = sd->child;
1716 continue;
1717 }
1718
1719 span = sd->span;
1720 group = find_idlest_group(sd, t, cpu);
1721 if (!group) {
1722 sd = sd->child;
1723 continue;
1724 }
1725
1726 new_cpu = find_idlest_cpu(group, t, cpu);
1727 if (new_cpu == -1 || new_cpu == cpu) {
1728 /* Now try balancing at a lower domain level of cpu */
1729 sd = sd->child;
1730 continue;
1731 }
1732
1733 /* Now try balancing at a lower domain level of new_cpu */
1734 cpu = new_cpu;
1735 sd = NULL;
1736 weight = cpus_weight(span);
1737 for_each_domain(cpu, tmp) {
1738 if (weight <= cpus_weight(tmp->span))
1739 break;
1740 if (tmp->flags & flag)
1741 sd = tmp;
1742 }
1743 /* while loop will break here if sd == NULL */
1744 }
1745
1746 return cpu;
1747 }
1748
1749 #endif /* CONFIG_SMP */
1750
1751 /***
1752 * try_to_wake_up - wake up a thread
1753 * @p: the to-be-woken-up thread
1754 * @state: the mask of task states that can be woken
1755 * @sync: do a synchronous wakeup?
1756 *
1757 * Put it on the run-queue if it's not already there. The "current"
1758 * thread is always on the run-queue (except when the actual
1759 * re-schedule is in progress), and as such you're allowed to do
1760 * the simpler "current->state = TASK_RUNNING" to mark yourself
1761 * runnable without the overhead of this.
1762 *
1763 * returns failure only if the task is already active.
1764 */
1765 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1766 {
1767 int cpu, orig_cpu, this_cpu, success = 0;
1768 unsigned long flags;
1769 long old_state;
1770 struct rq *rq;
1771
1772 rq = task_rq_lock(p, &flags);
1773 old_state = p->state;
1774 if (!(old_state & state))
1775 goto out;
1776
1777 if (p->se.on_rq)
1778 goto out_running;
1779
1780 cpu = task_cpu(p);
1781 orig_cpu = cpu;
1782 this_cpu = smp_processor_id();
1783
1784 #ifdef CONFIG_SMP
1785 if (unlikely(task_running(rq, p)))
1786 goto out_activate;
1787
1788 cpu = p->sched_class->select_task_rq(p, sync);
1789 if (cpu != orig_cpu) {
1790 set_task_cpu(p, cpu);
1791 task_rq_unlock(rq, &flags);
1792 /* might preempt at this point */
1793 rq = task_rq_lock(p, &flags);
1794 old_state = p->state;
1795 if (!(old_state & state))
1796 goto out;
1797 if (p->se.on_rq)
1798 goto out_running;
1799
1800 this_cpu = smp_processor_id();
1801 cpu = task_cpu(p);
1802 }
1803
1804 #ifdef CONFIG_SCHEDSTATS
1805 schedstat_inc(rq, ttwu_count);
1806 if (cpu == this_cpu)
1807 schedstat_inc(rq, ttwu_local);
1808 else {
1809 struct sched_domain *sd;
1810 for_each_domain(this_cpu, sd) {
1811 if (cpu_isset(cpu, sd->span)) {
1812 schedstat_inc(sd, ttwu_wake_remote);
1813 break;
1814 }
1815 }
1816 }
1817 #endif
1818
1819 out_activate:
1820 #endif /* CONFIG_SMP */
1821 schedstat_inc(p, se.nr_wakeups);
1822 if (sync)
1823 schedstat_inc(p, se.nr_wakeups_sync);
1824 if (orig_cpu != cpu)
1825 schedstat_inc(p, se.nr_wakeups_migrate);
1826 if (cpu == this_cpu)
1827 schedstat_inc(p, se.nr_wakeups_local);
1828 else
1829 schedstat_inc(p, se.nr_wakeups_remote);
1830 update_rq_clock(rq);
1831 activate_task(rq, p, 1);
1832 check_preempt_curr(rq, p);
1833 success = 1;
1834
1835 out_running:
1836 p->state = TASK_RUNNING;
1837 #ifdef CONFIG_SMP
1838 if (p->sched_class->task_wake_up)
1839 p->sched_class->task_wake_up(rq, p);
1840 #endif
1841 out:
1842 task_rq_unlock(rq, &flags);
1843
1844 return success;
1845 }
1846
1847 int fastcall wake_up_process(struct task_struct *p)
1848 {
1849 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1850 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1851 }
1852 EXPORT_SYMBOL(wake_up_process);
1853
1854 int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1855 {
1856 return try_to_wake_up(p, state, 0);
1857 }
1858
1859 /*
1860 * Perform scheduler related setup for a newly forked process p.
1861 * p is forked by current.
1862 *
1863 * __sched_fork() is basic setup used by init_idle() too:
1864 */
1865 static void __sched_fork(struct task_struct *p)
1866 {
1867 p->se.exec_start = 0;
1868 p->se.sum_exec_runtime = 0;
1869 p->se.prev_sum_exec_runtime = 0;
1870
1871 #ifdef CONFIG_SCHEDSTATS
1872 p->se.wait_start = 0;
1873 p->se.sum_sleep_runtime = 0;
1874 p->se.sleep_start = 0;
1875 p->se.block_start = 0;
1876 p->se.sleep_max = 0;
1877 p->se.block_max = 0;
1878 p->se.exec_max = 0;
1879 p->se.slice_max = 0;
1880 p->se.wait_max = 0;
1881 #endif
1882
1883 INIT_LIST_HEAD(&p->rt.run_list);
1884 p->se.on_rq = 0;
1885
1886 #ifdef CONFIG_PREEMPT_NOTIFIERS
1887 INIT_HLIST_HEAD(&p->preempt_notifiers);
1888 #endif
1889
1890 /*
1891 * We mark the process as running here, but have not actually
1892 * inserted it onto the runqueue yet. This guarantees that
1893 * nobody will actually run it, and a signal or other external
1894 * event cannot wake it up and insert it on the runqueue either.
1895 */
1896 p->state = TASK_RUNNING;
1897 }
1898
1899 /*
1900 * fork()/clone()-time setup:
1901 */
1902 void sched_fork(struct task_struct *p, int clone_flags)
1903 {
1904 int cpu = get_cpu();
1905
1906 __sched_fork(p);
1907
1908 #ifdef CONFIG_SMP
1909 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1910 #endif
1911 set_task_cpu(p, cpu);
1912
1913 /*
1914 * Make sure we do not leak PI boosting priority to the child:
1915 */
1916 p->prio = current->normal_prio;
1917 if (!rt_prio(p->prio))
1918 p->sched_class = &fair_sched_class;
1919
1920 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1921 if (likely(sched_info_on()))
1922 memset(&p->sched_info, 0, sizeof(p->sched_info));
1923 #endif
1924 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1925 p->oncpu = 0;
1926 #endif
1927 #ifdef CONFIG_PREEMPT
1928 /* Want to start with kernel preemption disabled. */
1929 task_thread_info(p)->preempt_count = 1;
1930 #endif
1931 put_cpu();
1932 }
1933
1934 /*
1935 * wake_up_new_task - wake up a newly created task for the first time.
1936 *
1937 * This function will do some initial scheduler statistics housekeeping
1938 * that must be done for every newly created context, then puts the task
1939 * on the runqueue and wakes it.
1940 */
1941 void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1942 {
1943 unsigned long flags;
1944 struct rq *rq;
1945
1946 rq = task_rq_lock(p, &flags);
1947 BUG_ON(p->state != TASK_RUNNING);
1948 update_rq_clock(rq);
1949
1950 p->prio = effective_prio(p);
1951
1952 if (!p->sched_class->task_new || !current->se.on_rq) {
1953 activate_task(rq, p, 0);
1954 } else {
1955 /*
1956 * Let the scheduling class do new task startup
1957 * management (if any):
1958 */
1959 p->sched_class->task_new(rq, p);
1960 inc_nr_running(p, rq);
1961 }
1962 check_preempt_curr(rq, p);
1963 #ifdef CONFIG_SMP
1964 if (p->sched_class->task_wake_up)
1965 p->sched_class->task_wake_up(rq, p);
1966 #endif
1967 task_rq_unlock(rq, &flags);
1968 }
1969
1970 #ifdef CONFIG_PREEMPT_NOTIFIERS
1971
1972 /**
1973 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1974 * @notifier: notifier struct to register
1975 */
1976 void preempt_notifier_register(struct preempt_notifier *notifier)
1977 {
1978 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1979 }
1980 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1981
1982 /**
1983 * preempt_notifier_unregister - no longer interested in preemption notifications
1984 * @notifier: notifier struct to unregister
1985 *
1986 * This is safe to call from within a preemption notifier.
1987 */
1988 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1989 {
1990 hlist_del(&notifier->link);
1991 }
1992 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1993
1994 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1995 {
1996 struct preempt_notifier *notifier;
1997 struct hlist_node *node;
1998
1999 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2000 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2001 }
2002
2003 static void
2004 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2005 struct task_struct *next)
2006 {
2007 struct preempt_notifier *notifier;
2008 struct hlist_node *node;
2009
2010 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2011 notifier->ops->sched_out(notifier, next);
2012 }
2013
2014 #else
2015
2016 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2017 {
2018 }
2019
2020 static void
2021 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2022 struct task_struct *next)
2023 {
2024 }
2025
2026 #endif
2027
2028 /**
2029 * prepare_task_switch - prepare to switch tasks
2030 * @rq: the runqueue preparing to switch
2031 * @prev: the current task that is being switched out
2032 * @next: the task we are going to switch to.
2033 *
2034 * This is called with the rq lock held and interrupts off. It must
2035 * be paired with a subsequent finish_task_switch after the context
2036 * switch.
2037 *
2038 * prepare_task_switch sets up locking and calls architecture specific
2039 * hooks.
2040 */
2041 static inline void
2042 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2043 struct task_struct *next)
2044 {
2045 fire_sched_out_preempt_notifiers(prev, next);
2046 prepare_lock_switch(rq, next);
2047 prepare_arch_switch(next);
2048 }
2049
2050 /**
2051 * finish_task_switch - clean up after a task-switch
2052 * @rq: runqueue associated with task-switch
2053 * @prev: the thread we just switched away from.
2054 *
2055 * finish_task_switch must be called after the context switch, paired
2056 * with a prepare_task_switch call before the context switch.
2057 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2058 * and do any other architecture-specific cleanup actions.
2059 *
2060 * Note that we may have delayed dropping an mm in context_switch(). If
2061 * so, we finish that here outside of the runqueue lock. (Doing it
2062 * with the lock held can cause deadlocks; see schedule() for
2063 * details.)
2064 */
2065 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2066 __releases(rq->lock)
2067 {
2068 struct mm_struct *mm = rq->prev_mm;
2069 long prev_state;
2070
2071 rq->prev_mm = NULL;
2072
2073 /*
2074 * A task struct has one reference for the use as "current".
2075 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2076 * schedule one last time. The schedule call will never return, and
2077 * the scheduled task must drop that reference.
2078 * The test for TASK_DEAD must occur while the runqueue locks are
2079 * still held, otherwise prev could be scheduled on another cpu, die
2080 * there before we look at prev->state, and then the reference would
2081 * be dropped twice.
2082 * Manfred Spraul <manfred@colorfullife.com>
2083 */
2084 prev_state = prev->state;
2085 finish_arch_switch(prev);
2086 finish_lock_switch(rq, prev);
2087 #ifdef CONFIG_SMP
2088 if (current->sched_class->post_schedule)
2089 current->sched_class->post_schedule(rq);
2090 #endif
2091
2092 fire_sched_in_preempt_notifiers(current);
2093 if (mm)
2094 mmdrop(mm);
2095 if (unlikely(prev_state == TASK_DEAD)) {
2096 /*
2097 * Remove function-return probe instances associated with this
2098 * task and put them back on the free list.
2099 */
2100 kprobe_flush_task(prev);
2101 put_task_struct(prev);
2102 }
2103 }
2104
2105 /**
2106 * schedule_tail - first thing a freshly forked thread must call.
2107 * @prev: the thread we just switched away from.
2108 */
2109 asmlinkage void schedule_tail(struct task_struct *prev)
2110 __releases(rq->lock)
2111 {
2112 struct rq *rq = this_rq();
2113
2114 finish_task_switch(rq, prev);
2115 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2116 /* In this case, finish_task_switch does not reenable preemption */
2117 preempt_enable();
2118 #endif
2119 if (current->set_child_tid)
2120 put_user(task_pid_vnr(current), current->set_child_tid);
2121 }
2122
2123 /*
2124 * context_switch - switch to the new MM and the new
2125 * thread's register state.
2126 */
2127 static inline void
2128 context_switch(struct rq *rq, struct task_struct *prev,
2129 struct task_struct *next)
2130 {
2131 struct mm_struct *mm, *oldmm;
2132
2133 prepare_task_switch(rq, prev, next);
2134 mm = next->mm;
2135 oldmm = prev->active_mm;
2136 /*
2137 * For paravirt, this is coupled with an exit in switch_to to
2138 * combine the page table reload and the switch backend into
2139 * one hypercall.
2140 */
2141 arch_enter_lazy_cpu_mode();
2142
2143 if (unlikely(!mm)) {
2144 next->active_mm = oldmm;
2145 atomic_inc(&oldmm->mm_count);
2146 enter_lazy_tlb(oldmm, next);
2147 } else
2148 switch_mm(oldmm, mm, next);
2149
2150 if (unlikely(!prev->mm)) {
2151 prev->active_mm = NULL;
2152 rq->prev_mm = oldmm;
2153 }
2154 /*
2155 * Since the runqueue lock will be released by the next
2156 * task (which is an invalid locking op but in the case
2157 * of the scheduler it's an obvious special-case), so we
2158 * do an early lockdep release here:
2159 */
2160 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2161 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2162 #endif
2163
2164 /* Here we just switch the register state and the stack. */
2165 switch_to(prev, next, prev);
2166
2167 barrier();
2168 /*
2169 * this_rq must be evaluated again because prev may have moved
2170 * CPUs since it called schedule(), thus the 'rq' on its stack
2171 * frame will be invalid.
2172 */
2173 finish_task_switch(this_rq(), prev);
2174 }
2175
2176 /*
2177 * nr_running, nr_uninterruptible and nr_context_switches:
2178 *
2179 * externally visible scheduler statistics: current number of runnable
2180 * threads, current number of uninterruptible-sleeping threads, total
2181 * number of context switches performed since bootup.
2182 */
2183 unsigned long nr_running(void)
2184 {
2185 unsigned long i, sum = 0;
2186
2187 for_each_online_cpu(i)
2188 sum += cpu_rq(i)->nr_running;
2189
2190 return sum;
2191 }
2192
2193 unsigned long nr_uninterruptible(void)
2194 {
2195 unsigned long i, sum = 0;
2196
2197 for_each_possible_cpu(i)
2198 sum += cpu_rq(i)->nr_uninterruptible;
2199
2200 /*
2201 * Since we read the counters lockless, it might be slightly
2202 * inaccurate. Do not allow it to go below zero though:
2203 */
2204 if (unlikely((long)sum < 0))
2205 sum = 0;
2206
2207 return sum;
2208 }
2209
2210 unsigned long long nr_context_switches(void)
2211 {
2212 int i;
2213 unsigned long long sum = 0;
2214
2215 for_each_possible_cpu(i)
2216 sum += cpu_rq(i)->nr_switches;
2217
2218 return sum;
2219 }
2220
2221 unsigned long nr_iowait(void)
2222 {
2223 unsigned long i, sum = 0;
2224
2225 for_each_possible_cpu(i)
2226 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2227
2228 return sum;
2229 }
2230
2231 unsigned long nr_active(void)
2232 {
2233 unsigned long i, running = 0, uninterruptible = 0;
2234
2235 for_each_online_cpu(i) {
2236 running += cpu_rq(i)->nr_running;
2237 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2238 }
2239
2240 if (unlikely((long)uninterruptible < 0))
2241 uninterruptible = 0;
2242
2243 return running + uninterruptible;
2244 }
2245
2246 /*
2247 * Update rq->cpu_load[] statistics. This function is usually called every
2248 * scheduler tick (TICK_NSEC).
2249 */
2250 static void update_cpu_load(struct rq *this_rq)
2251 {
2252 unsigned long this_load = this_rq->load.weight;
2253 int i, scale;
2254
2255 this_rq->nr_load_updates++;
2256
2257 /* Update our load: */
2258 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2259 unsigned long old_load, new_load;
2260
2261 /* scale is effectively 1 << i now, and >> i divides by scale */
2262
2263 old_load = this_rq->cpu_load[i];
2264 new_load = this_load;
2265 /*
2266 * Round up the averaging division if load is increasing. This
2267 * prevents us from getting stuck on 9 if the load is 10, for
2268 * example.
2269 */
2270 if (new_load > old_load)
2271 new_load += scale-1;
2272 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2273 }
2274 }
2275
2276 #ifdef CONFIG_SMP
2277
2278 /*
2279 * double_rq_lock - safely lock two runqueues
2280 *
2281 * Note this does not disable interrupts like task_rq_lock,
2282 * you need to do so manually before calling.
2283 */
2284 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2285 __acquires(rq1->lock)
2286 __acquires(rq2->lock)
2287 {
2288 BUG_ON(!irqs_disabled());
2289 if (rq1 == rq2) {
2290 spin_lock(&rq1->lock);
2291 __acquire(rq2->lock); /* Fake it out ;) */
2292 } else {
2293 if (rq1 < rq2) {
2294 spin_lock(&rq1->lock);
2295 spin_lock(&rq2->lock);
2296 } else {
2297 spin_lock(&rq2->lock);
2298 spin_lock(&rq1->lock);
2299 }
2300 }
2301 update_rq_clock(rq1);
2302 update_rq_clock(rq2);
2303 }
2304
2305 /*
2306 * double_rq_unlock - safely unlock two runqueues
2307 *
2308 * Note this does not restore interrupts like task_rq_unlock,
2309 * you need to do so manually after calling.
2310 */
2311 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2312 __releases(rq1->lock)
2313 __releases(rq2->lock)
2314 {
2315 spin_unlock(&rq1->lock);
2316 if (rq1 != rq2)
2317 spin_unlock(&rq2->lock);
2318 else
2319 __release(rq2->lock);
2320 }
2321
2322 /*
2323 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2324 */
2325 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2326 __releases(this_rq->lock)
2327 __acquires(busiest->lock)
2328 __acquires(this_rq->lock)
2329 {
2330 int ret = 0;
2331
2332 if (unlikely(!irqs_disabled())) {
2333 /* printk() doesn't work good under rq->lock */
2334 spin_unlock(&this_rq->lock);
2335 BUG_ON(1);
2336 }
2337 if (unlikely(!spin_trylock(&busiest->lock))) {
2338 if (busiest < this_rq) {
2339 spin_unlock(&this_rq->lock);
2340 spin_lock(&busiest->lock);
2341 spin_lock(&this_rq->lock);
2342 ret = 1;
2343 } else
2344 spin_lock(&busiest->lock);
2345 }
2346 return ret;
2347 }
2348
2349 /*
2350 * If dest_cpu is allowed for this process, migrate the task to it.
2351 * This is accomplished by forcing the cpu_allowed mask to only
2352 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2353 * the cpu_allowed mask is restored.
2354 */
2355 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2356 {
2357 struct migration_req req;
2358 unsigned long flags;
2359 struct rq *rq;
2360
2361 rq = task_rq_lock(p, &flags);
2362 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2363 || unlikely(cpu_is_offline(dest_cpu)))
2364 goto out;
2365
2366 /* force the process onto the specified CPU */
2367 if (migrate_task(p, dest_cpu, &req)) {
2368 /* Need to wait for migration thread (might exit: take ref). */
2369 struct task_struct *mt = rq->migration_thread;
2370
2371 get_task_struct(mt);
2372 task_rq_unlock(rq, &flags);
2373 wake_up_process(mt);
2374 put_task_struct(mt);
2375 wait_for_completion(&req.done);
2376
2377 return;
2378 }
2379 out:
2380 task_rq_unlock(rq, &flags);
2381 }
2382
2383 /*
2384 * sched_exec - execve() is a valuable balancing opportunity, because at
2385 * this point the task has the smallest effective memory and cache footprint.
2386 */
2387 void sched_exec(void)
2388 {
2389 int new_cpu, this_cpu = get_cpu();
2390 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2391 put_cpu();
2392 if (new_cpu != this_cpu)
2393 sched_migrate_task(current, new_cpu);
2394 }
2395
2396 /*
2397 * pull_task - move a task from a remote runqueue to the local runqueue.
2398 * Both runqueues must be locked.
2399 */
2400 static void pull_task(struct rq *src_rq, struct task_struct *p,
2401 struct rq *this_rq, int this_cpu)
2402 {
2403 deactivate_task(src_rq, p, 0);
2404 set_task_cpu(p, this_cpu);
2405 activate_task(this_rq, p, 0);
2406 /*
2407 * Note that idle threads have a prio of MAX_PRIO, for this test
2408 * to be always true for them.
2409 */
2410 check_preempt_curr(this_rq, p);
2411 }
2412
2413 /*
2414 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2415 */
2416 static
2417 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2418 struct sched_domain *sd, enum cpu_idle_type idle,
2419 int *all_pinned)
2420 {
2421 /*
2422 * We do not migrate tasks that are:
2423 * 1) running (obviously), or
2424 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2425 * 3) are cache-hot on their current CPU.
2426 */
2427 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2428 schedstat_inc(p, se.nr_failed_migrations_affine);
2429 return 0;
2430 }
2431 *all_pinned = 0;
2432
2433 if (task_running(rq, p)) {
2434 schedstat_inc(p, se.nr_failed_migrations_running);
2435 return 0;
2436 }
2437
2438 /*
2439 * Aggressive migration if:
2440 * 1) task is cache cold, or
2441 * 2) too many balance attempts have failed.
2442 */
2443
2444 if (!task_hot(p, rq->clock, sd) ||
2445 sd->nr_balance_failed > sd->cache_nice_tries) {
2446 #ifdef CONFIG_SCHEDSTATS
2447 if (task_hot(p, rq->clock, sd)) {
2448 schedstat_inc(sd, lb_hot_gained[idle]);
2449 schedstat_inc(p, se.nr_forced_migrations);
2450 }
2451 #endif
2452 return 1;
2453 }
2454
2455 if (task_hot(p, rq->clock, sd)) {
2456 schedstat_inc(p, se.nr_failed_migrations_hot);
2457 return 0;
2458 }
2459 return 1;
2460 }
2461
2462 static unsigned long
2463 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2464 unsigned long max_load_move, struct sched_domain *sd,
2465 enum cpu_idle_type idle, int *all_pinned,
2466 int *this_best_prio, struct rq_iterator *iterator)
2467 {
2468 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
2469 struct task_struct *p;
2470 long rem_load_move = max_load_move;
2471
2472 if (max_load_move == 0)
2473 goto out;
2474
2475 pinned = 1;
2476
2477 /*
2478 * Start the load-balancing iterator:
2479 */
2480 p = iterator->start(iterator->arg);
2481 next:
2482 if (!p || loops++ > sysctl_sched_nr_migrate)
2483 goto out;
2484 /*
2485 * To help distribute high priority tasks across CPUs we don't
2486 * skip a task if it will be the highest priority task (i.e. smallest
2487 * prio value) on its new queue regardless of its load weight
2488 */
2489 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2490 SCHED_LOAD_SCALE_FUZZ;
2491 if ((skip_for_load && p->prio >= *this_best_prio) ||
2492 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2493 p = iterator->next(iterator->arg);
2494 goto next;
2495 }
2496
2497 pull_task(busiest, p, this_rq, this_cpu);
2498 pulled++;
2499 rem_load_move -= p->se.load.weight;
2500
2501 /*
2502 * We only want to steal up to the prescribed amount of weighted load.
2503 */
2504 if (rem_load_move > 0) {
2505 if (p->prio < *this_best_prio)
2506 *this_best_prio = p->prio;
2507 p = iterator->next(iterator->arg);
2508 goto next;
2509 }
2510 out:
2511 /*
2512 * Right now, this is one of only two places pull_task() is called,
2513 * so we can safely collect pull_task() stats here rather than
2514 * inside pull_task().
2515 */
2516 schedstat_add(sd, lb_gained[idle], pulled);
2517
2518 if (all_pinned)
2519 *all_pinned = pinned;
2520
2521 return max_load_move - rem_load_move;
2522 }
2523
2524 /*
2525 * move_tasks tries to move up to max_load_move weighted load from busiest to
2526 * this_rq, as part of a balancing operation within domain "sd".
2527 * Returns 1 if successful and 0 otherwise.
2528 *
2529 * Called with both runqueues locked.
2530 */
2531 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2532 unsigned long max_load_move,
2533 struct sched_domain *sd, enum cpu_idle_type idle,
2534 int *all_pinned)
2535 {
2536 const struct sched_class *class = sched_class_highest;
2537 unsigned long total_load_moved = 0;
2538 int this_best_prio = this_rq->curr->prio;
2539
2540 do {
2541 total_load_moved +=
2542 class->load_balance(this_rq, this_cpu, busiest,
2543 max_load_move - total_load_moved,
2544 sd, idle, all_pinned, &this_best_prio);
2545 class = class->next;
2546 } while (class && max_load_move > total_load_moved);
2547
2548 return total_load_moved > 0;
2549 }
2550
2551 static int
2552 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2553 struct sched_domain *sd, enum cpu_idle_type idle,
2554 struct rq_iterator *iterator)
2555 {
2556 struct task_struct *p = iterator->start(iterator->arg);
2557 int pinned = 0;
2558
2559 while (p) {
2560 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2561 pull_task(busiest, p, this_rq, this_cpu);
2562 /*
2563 * Right now, this is only the second place pull_task()
2564 * is called, so we can safely collect pull_task()
2565 * stats here rather than inside pull_task().
2566 */
2567 schedstat_inc(sd, lb_gained[idle]);
2568
2569 return 1;
2570 }
2571 p = iterator->next(iterator->arg);
2572 }
2573
2574 return 0;
2575 }
2576
2577 /*
2578 * move_one_task tries to move exactly one task from busiest to this_rq, as
2579 * part of active balancing operations within "domain".
2580 * Returns 1 if successful and 0 otherwise.
2581 *
2582 * Called with both runqueues locked.
2583 */
2584 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2585 struct sched_domain *sd, enum cpu_idle_type idle)
2586 {
2587 const struct sched_class *class;
2588
2589 for (class = sched_class_highest; class; class = class->next)
2590 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
2591 return 1;
2592
2593 return 0;
2594 }
2595
2596 /*
2597 * find_busiest_group finds and returns the busiest CPU group within the
2598 * domain. It calculates and returns the amount of weighted load which
2599 * should be moved to restore balance via the imbalance parameter.
2600 */
2601 static struct sched_group *
2602 find_busiest_group(struct sched_domain *sd, int this_cpu,
2603 unsigned long *imbalance, enum cpu_idle_type idle,
2604 int *sd_idle, cpumask_t *cpus, int *balance)
2605 {
2606 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2607 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2608 unsigned long max_pull;
2609 unsigned long busiest_load_per_task, busiest_nr_running;
2610 unsigned long this_load_per_task, this_nr_running;
2611 int load_idx, group_imb = 0;
2612 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2613 int power_savings_balance = 1;
2614 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2615 unsigned long min_nr_running = ULONG_MAX;
2616 struct sched_group *group_min = NULL, *group_leader = NULL;
2617 #endif
2618
2619 max_load = this_load = total_load = total_pwr = 0;
2620 busiest_load_per_task = busiest_nr_running = 0;
2621 this_load_per_task = this_nr_running = 0;
2622 if (idle == CPU_NOT_IDLE)
2623 load_idx = sd->busy_idx;
2624 else if (idle == CPU_NEWLY_IDLE)
2625 load_idx = sd->newidle_idx;
2626 else
2627 load_idx = sd->idle_idx;
2628
2629 do {
2630 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
2631 int local_group;
2632 int i;
2633 int __group_imb = 0;
2634 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2635 unsigned long sum_nr_running, sum_weighted_load;
2636
2637 local_group = cpu_isset(this_cpu, group->cpumask);
2638
2639 if (local_group)
2640 balance_cpu = first_cpu(group->cpumask);
2641
2642 /* Tally up the load of all CPUs in the group */
2643 sum_weighted_load = sum_nr_running = avg_load = 0;
2644 max_cpu_load = 0;
2645 min_cpu_load = ~0UL;
2646
2647 for_each_cpu_mask(i, group->cpumask) {
2648 struct rq *rq;
2649
2650 if (!cpu_isset(i, *cpus))
2651 continue;
2652
2653 rq = cpu_rq(i);
2654
2655 if (*sd_idle && rq->nr_running)
2656 *sd_idle = 0;
2657
2658 /* Bias balancing toward cpus of our domain */
2659 if (local_group) {
2660 if (idle_cpu(i) && !first_idle_cpu) {
2661 first_idle_cpu = 1;
2662 balance_cpu = i;
2663 }
2664
2665 load = target_load(i, load_idx);
2666 } else {
2667 load = source_load(i, load_idx);
2668 if (load > max_cpu_load)
2669 max_cpu_load = load;
2670 if (min_cpu_load > load)
2671 min_cpu_load = load;
2672 }
2673
2674 avg_load += load;
2675 sum_nr_running += rq->nr_running;
2676 sum_weighted_load += weighted_cpuload(i);
2677 }
2678
2679 /*
2680 * First idle cpu or the first cpu(busiest) in this sched group
2681 * is eligible for doing load balancing at this and above
2682 * domains. In the newly idle case, we will allow all the cpu's
2683 * to do the newly idle load balance.
2684 */
2685 if (idle != CPU_NEWLY_IDLE && local_group &&
2686 balance_cpu != this_cpu && balance) {
2687 *balance = 0;
2688 goto ret;
2689 }
2690
2691 total_load += avg_load;
2692 total_pwr += group->__cpu_power;
2693
2694 /* Adjust by relative CPU power of the group */
2695 avg_load = sg_div_cpu_power(group,
2696 avg_load * SCHED_LOAD_SCALE);
2697
2698 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
2699 __group_imb = 1;
2700
2701 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2702
2703 if (local_group) {
2704 this_load = avg_load;
2705 this = group;
2706 this_nr_running = sum_nr_running;
2707 this_load_per_task = sum_weighted_load;
2708 } else if (avg_load > max_load &&
2709 (sum_nr_running > group_capacity || __group_imb)) {
2710 max_load = avg_load;
2711 busiest = group;
2712 busiest_nr_running = sum_nr_running;
2713 busiest_load_per_task = sum_weighted_load;
2714 group_imb = __group_imb;
2715 }
2716
2717 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2718 /*
2719 * Busy processors will not participate in power savings
2720 * balance.
2721 */
2722 if (idle == CPU_NOT_IDLE ||
2723 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2724 goto group_next;
2725
2726 /*
2727 * If the local group is idle or completely loaded
2728 * no need to do power savings balance at this domain
2729 */
2730 if (local_group && (this_nr_running >= group_capacity ||
2731 !this_nr_running))
2732 power_savings_balance = 0;
2733
2734 /*
2735 * If a group is already running at full capacity or idle,
2736 * don't include that group in power savings calculations
2737 */
2738 if (!power_savings_balance || sum_nr_running >= group_capacity
2739 || !sum_nr_running)
2740 goto group_next;
2741
2742 /*
2743 * Calculate the group which has the least non-idle load.
2744 * This is the group from where we need to pick up the load
2745 * for saving power
2746 */
2747 if ((sum_nr_running < min_nr_running) ||
2748 (sum_nr_running == min_nr_running &&
2749 first_cpu(group->cpumask) <
2750 first_cpu(group_min->cpumask))) {
2751 group_min = group;
2752 min_nr_running = sum_nr_running;
2753 min_load_per_task = sum_weighted_load /
2754 sum_nr_running;
2755 }
2756
2757 /*
2758 * Calculate the group which is almost near its
2759 * capacity but still has some space to pick up some load
2760 * from other group and save more power
2761 */
2762 if (sum_nr_running <= group_capacity - 1) {
2763 if (sum_nr_running > leader_nr_running ||
2764 (sum_nr_running == leader_nr_running &&
2765 first_cpu(group->cpumask) >
2766 first_cpu(group_leader->cpumask))) {
2767 group_leader = group;
2768 leader_nr_running = sum_nr_running;
2769 }
2770 }
2771 group_next:
2772 #endif
2773 group = group->next;
2774 } while (group != sd->groups);
2775
2776 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2777 goto out_balanced;
2778
2779 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2780
2781 if (this_load >= avg_load ||
2782 100*max_load <= sd->imbalance_pct*this_load)
2783 goto out_balanced;
2784
2785 busiest_load_per_task /= busiest_nr_running;
2786 if (group_imb)
2787 busiest_load_per_task = min(busiest_load_per_task, avg_load);
2788
2789 /*
2790 * We're trying to get all the cpus to the average_load, so we don't
2791 * want to push ourselves above the average load, nor do we wish to
2792 * reduce the max loaded cpu below the average load, as either of these
2793 * actions would just result in more rebalancing later, and ping-pong
2794 * tasks around. Thus we look for the minimum possible imbalance.
2795 * Negative imbalances (*we* are more loaded than anyone else) will
2796 * be counted as no imbalance for these purposes -- we can't fix that
2797 * by pulling tasks to us. Be careful of negative numbers as they'll
2798 * appear as very large values with unsigned longs.
2799 */
2800 if (max_load <= busiest_load_per_task)
2801 goto out_balanced;
2802
2803 /*
2804 * In the presence of smp nice balancing, certain scenarios can have
2805 * max load less than avg load(as we skip the groups at or below
2806 * its cpu_power, while calculating max_load..)
2807 */
2808 if (max_load < avg_load) {
2809 *imbalance = 0;
2810 goto small_imbalance;
2811 }
2812
2813 /* Don't want to pull so many tasks that a group would go idle */
2814 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2815
2816 /* How much load to actually move to equalise the imbalance */
2817 *imbalance = min(max_pull * busiest->__cpu_power,
2818 (avg_load - this_load) * this->__cpu_power)
2819 / SCHED_LOAD_SCALE;
2820
2821 /*
2822 * if *imbalance is less than the average load per runnable task
2823 * there is no gaurantee that any tasks will be moved so we'll have
2824 * a think about bumping its value to force at least one task to be
2825 * moved
2826 */
2827 if (*imbalance < busiest_load_per_task) {
2828 unsigned long tmp, pwr_now, pwr_move;
2829 unsigned int imbn;
2830
2831 small_imbalance:
2832 pwr_move = pwr_now = 0;
2833 imbn = 2;
2834 if (this_nr_running) {
2835 this_load_per_task /= this_nr_running;
2836 if (busiest_load_per_task > this_load_per_task)
2837 imbn = 1;
2838 } else
2839 this_load_per_task = SCHED_LOAD_SCALE;
2840
2841 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2842 busiest_load_per_task * imbn) {
2843 *imbalance = busiest_load_per_task;
2844 return busiest;
2845 }
2846
2847 /*
2848 * OK, we don't have enough imbalance to justify moving tasks,
2849 * however we may be able to increase total CPU power used by
2850 * moving them.
2851 */
2852
2853 pwr_now += busiest->__cpu_power *
2854 min(busiest_load_per_task, max_load);
2855 pwr_now += this->__cpu_power *
2856 min(this_load_per_task, this_load);
2857 pwr_now /= SCHED_LOAD_SCALE;
2858
2859 /* Amount of load we'd subtract */
2860 tmp = sg_div_cpu_power(busiest,
2861 busiest_load_per_task * SCHED_LOAD_SCALE);
2862 if (max_load > tmp)
2863 pwr_move += busiest->__cpu_power *
2864 min(busiest_load_per_task, max_load - tmp);
2865
2866 /* Amount of load we'd add */
2867 if (max_load * busiest->__cpu_power <
2868 busiest_load_per_task * SCHED_LOAD_SCALE)
2869 tmp = sg_div_cpu_power(this,
2870 max_load * busiest->__cpu_power);
2871 else
2872 tmp = sg_div_cpu_power(this,
2873 busiest_load_per_task * SCHED_LOAD_SCALE);
2874 pwr_move += this->__cpu_power *
2875 min(this_load_per_task, this_load + tmp);
2876 pwr_move /= SCHED_LOAD_SCALE;
2877
2878 /* Move if we gain throughput */
2879 if (pwr_move > pwr_now)
2880 *imbalance = busiest_load_per_task;
2881 }
2882
2883 return busiest;
2884
2885 out_balanced:
2886 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2887 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2888 goto ret;
2889
2890 if (this == group_leader && group_leader != group_min) {
2891 *imbalance = min_load_per_task;
2892 return group_min;
2893 }
2894 #endif
2895 ret:
2896 *imbalance = 0;
2897 return NULL;
2898 }
2899
2900 /*
2901 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2902 */
2903 static struct rq *
2904 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2905 unsigned long imbalance, cpumask_t *cpus)
2906 {
2907 struct rq *busiest = NULL, *rq;
2908 unsigned long max_load = 0;
2909 int i;
2910
2911 for_each_cpu_mask(i, group->cpumask) {
2912 unsigned long wl;
2913
2914 if (!cpu_isset(i, *cpus))
2915 continue;
2916
2917 rq = cpu_rq(i);
2918 wl = weighted_cpuload(i);
2919
2920 if (rq->nr_running == 1 && wl > imbalance)
2921 continue;
2922
2923 if (wl > max_load) {
2924 max_load = wl;
2925 busiest = rq;
2926 }
2927 }
2928
2929 return busiest;
2930 }
2931
2932 /*
2933 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2934 * so long as it is large enough.
2935 */
2936 #define MAX_PINNED_INTERVAL 512
2937
2938 /*
2939 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2940 * tasks if there is an imbalance.
2941 */
2942 static int load_balance(int this_cpu, struct rq *this_rq,
2943 struct sched_domain *sd, enum cpu_idle_type idle,
2944 int *balance)
2945 {
2946 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2947 struct sched_group *group;
2948 unsigned long imbalance;
2949 struct rq *busiest;
2950 cpumask_t cpus = CPU_MASK_ALL;
2951 unsigned long flags;
2952
2953 /*
2954 * When power savings policy is enabled for the parent domain, idle
2955 * sibling can pick up load irrespective of busy siblings. In this case,
2956 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2957 * portraying it as CPU_NOT_IDLE.
2958 */
2959 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2960 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2961 sd_idle = 1;
2962
2963 schedstat_inc(sd, lb_count[idle]);
2964
2965 redo:
2966 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2967 &cpus, balance);
2968
2969 if (*balance == 0)
2970 goto out_balanced;
2971
2972 if (!group) {
2973 schedstat_inc(sd, lb_nobusyg[idle]);
2974 goto out_balanced;
2975 }
2976
2977 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
2978 if (!busiest) {
2979 schedstat_inc(sd, lb_nobusyq[idle]);
2980 goto out_balanced;
2981 }
2982
2983 BUG_ON(busiest == this_rq);
2984
2985 schedstat_add(sd, lb_imbalance[idle], imbalance);
2986
2987 ld_moved = 0;
2988 if (busiest->nr_running > 1) {
2989 /*
2990 * Attempt to move tasks. If find_busiest_group has found
2991 * an imbalance but busiest->nr_running <= 1, the group is
2992 * still unbalanced. ld_moved simply stays zero, so it is
2993 * correctly treated as an imbalance.
2994 */
2995 local_irq_save(flags);
2996 double_rq_lock(this_rq, busiest);
2997 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2998 imbalance, sd, idle, &all_pinned);
2999 double_rq_unlock(this_rq, busiest);
3000 local_irq_restore(flags);
3001
3002 /*
3003 * some other cpu did the load balance for us.
3004 */
3005 if (ld_moved && this_cpu != smp_processor_id())
3006 resched_cpu(this_cpu);
3007
3008 /* All tasks on this runqueue were pinned by CPU affinity */
3009 if (unlikely(all_pinned)) {
3010 cpu_clear(cpu_of(busiest), cpus);
3011 if (!cpus_empty(cpus))
3012 goto redo;
3013 goto out_balanced;
3014 }
3015 }
3016
3017 if (!ld_moved) {
3018 schedstat_inc(sd, lb_failed[idle]);
3019 sd->nr_balance_failed++;
3020
3021 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
3022
3023 spin_lock_irqsave(&busiest->lock, flags);
3024
3025 /* don't kick the migration_thread, if the curr
3026 * task on busiest cpu can't be moved to this_cpu
3027 */
3028 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3029 spin_unlock_irqrestore(&busiest->lock, flags);
3030 all_pinned = 1;
3031 goto out_one_pinned;
3032 }
3033
3034 if (!busiest->active_balance) {
3035 busiest->active_balance = 1;
3036 busiest->push_cpu = this_cpu;
3037 active_balance = 1;
3038 }
3039 spin_unlock_irqrestore(&busiest->lock, flags);
3040 if (active_balance)
3041 wake_up_process(busiest->migration_thread);
3042
3043 /*
3044 * We've kicked active balancing, reset the failure
3045 * counter.
3046 */
3047 sd->nr_balance_failed = sd->cache_nice_tries+1;
3048 }
3049 } else
3050 sd->nr_balance_failed = 0;
3051
3052 if (likely(!active_balance)) {
3053 /* We were unbalanced, so reset the balancing interval */
3054 sd->balance_interval = sd->min_interval;
3055 } else {
3056 /*
3057 * If we've begun active balancing, start to back off. This
3058 * case may not be covered by the all_pinned logic if there
3059 * is only 1 task on the busy runqueue (because we don't call
3060 * move_tasks).
3061 */
3062 if (sd->balance_interval < sd->max_interval)
3063 sd->balance_interval *= 2;
3064 }
3065
3066 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3067 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3068 return -1;
3069 return ld_moved;
3070
3071 out_balanced:
3072 schedstat_inc(sd, lb_balanced[idle]);
3073
3074 sd->nr_balance_failed = 0;
3075
3076 out_one_pinned:
3077 /* tune up the balancing interval */
3078 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3079 (sd->balance_interval < sd->max_interval))
3080 sd->balance_interval *= 2;
3081
3082 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3083 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3084 return -1;
3085 return 0;
3086 }
3087
3088 /*
3089 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3090 * tasks if there is an imbalance.
3091 *
3092 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3093 * this_rq is locked.
3094 */
3095 static int
3096 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
3097 {
3098 struct sched_group *group;
3099 struct rq *busiest = NULL;
3100 unsigned long imbalance;
3101 int ld_moved = 0;
3102 int sd_idle = 0;
3103 int all_pinned = 0;
3104 cpumask_t cpus = CPU_MASK_ALL;
3105
3106 /*
3107 * When power savings policy is enabled for the parent domain, idle
3108 * sibling can pick up load irrespective of busy siblings. In this case,
3109 * let the state of idle sibling percolate up as IDLE, instead of
3110 * portraying it as CPU_NOT_IDLE.
3111 */
3112 if (sd->flags & SD_SHARE_CPUPOWER &&
3113 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3114 sd_idle = 1;
3115
3116 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3117 redo:
3118 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3119 &sd_idle, &cpus, NULL);
3120 if (!group) {
3121 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3122 goto out_balanced;
3123 }
3124
3125 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
3126 &cpus);
3127 if (!busiest) {
3128 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3129 goto out_balanced;
3130 }
3131
3132 BUG_ON(busiest == this_rq);
3133
3134 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3135
3136 ld_moved = 0;
3137 if (busiest->nr_running > 1) {
3138 /* Attempt to move tasks */
3139 double_lock_balance(this_rq, busiest);
3140 /* this_rq->clock is already updated */
3141 update_rq_clock(busiest);
3142 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3143 imbalance, sd, CPU_NEWLY_IDLE,
3144 &all_pinned);
3145 spin_unlock(&busiest->lock);
3146
3147 if (unlikely(all_pinned)) {
3148 cpu_clear(cpu_of(busiest), cpus);
3149 if (!cpus_empty(cpus))
3150 goto redo;
3151 }
3152 }
3153
3154 if (!ld_moved) {
3155 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3156 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3157 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3158 return -1;
3159 } else
3160 sd->nr_balance_failed = 0;
3161
3162 return ld_moved;
3163
3164 out_balanced:
3165 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3166 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3167 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3168 return -1;
3169 sd->nr_balance_failed = 0;
3170
3171 return 0;
3172 }
3173
3174 /*
3175 * idle_balance is called by schedule() if this_cpu is about to become
3176 * idle. Attempts to pull tasks from other CPUs.
3177 */
3178 static void idle_balance(int this_cpu, struct rq *this_rq)
3179 {
3180 struct sched_domain *sd;
3181 int pulled_task = -1;
3182 unsigned long next_balance = jiffies + HZ;
3183
3184 for_each_domain(this_cpu, sd) {
3185 unsigned long interval;
3186
3187 if (!(sd->flags & SD_LOAD_BALANCE))
3188 continue;
3189
3190 if (sd->flags & SD_BALANCE_NEWIDLE)
3191 /* If we've pulled tasks over stop searching: */
3192 pulled_task = load_balance_newidle(this_cpu,
3193 this_rq, sd);
3194
3195 interval = msecs_to_jiffies(sd->balance_interval);
3196 if (time_after(next_balance, sd->last_balance + interval))
3197 next_balance = sd->last_balance + interval;
3198 if (pulled_task)
3199 break;
3200 }
3201 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3202 /*
3203 * We are going idle. next_balance may be set based on
3204 * a busy processor. So reset next_balance.
3205 */
3206 this_rq->next_balance = next_balance;
3207 }
3208 }
3209
3210 /*
3211 * active_load_balance is run by migration threads. It pushes running tasks
3212 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3213 * running on each physical CPU where possible, and avoids physical /
3214 * logical imbalances.
3215 *
3216 * Called with busiest_rq locked.
3217 */
3218 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3219 {
3220 int target_cpu = busiest_rq->push_cpu;
3221 struct sched_domain *sd;
3222 struct rq *target_rq;
3223
3224 /* Is there any task to move? */
3225 if (busiest_rq->nr_running <= 1)
3226 return;
3227
3228 target_rq = cpu_rq(target_cpu);
3229
3230 /*
3231 * This condition is "impossible", if it occurs
3232 * we need to fix it. Originally reported by
3233 * Bjorn Helgaas on a 128-cpu setup.
3234 */
3235 BUG_ON(busiest_rq == target_rq);
3236
3237 /* move a task from busiest_rq to target_rq */
3238 double_lock_balance(busiest_rq, target_rq);
3239 update_rq_clock(busiest_rq);
3240 update_rq_clock(target_rq);
3241
3242 /* Search for an sd spanning us and the target CPU. */
3243 for_each_domain(target_cpu, sd) {
3244 if ((sd->flags & SD_LOAD_BALANCE) &&
3245 cpu_isset(busiest_cpu, sd->span))
3246 break;
3247 }
3248
3249 if (likely(sd)) {
3250 schedstat_inc(sd, alb_count);
3251
3252 if (move_one_task(target_rq, target_cpu, busiest_rq,
3253 sd, CPU_IDLE))
3254 schedstat_inc(sd, alb_pushed);
3255 else
3256 schedstat_inc(sd, alb_failed);
3257 }
3258 spin_unlock(&target_rq->lock);
3259 }
3260
3261 #ifdef CONFIG_NO_HZ
3262 static struct {
3263 atomic_t load_balancer;
3264 cpumask_t cpu_mask;
3265 } nohz ____cacheline_aligned = {
3266 .load_balancer = ATOMIC_INIT(-1),
3267 .cpu_mask = CPU_MASK_NONE,
3268 };
3269
3270 /*
3271 * This routine will try to nominate the ilb (idle load balancing)
3272 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3273 * load balancing on behalf of all those cpus. If all the cpus in the system
3274 * go into this tickless mode, then there will be no ilb owner (as there is
3275 * no need for one) and all the cpus will sleep till the next wakeup event
3276 * arrives...
3277 *
3278 * For the ilb owner, tick is not stopped. And this tick will be used
3279 * for idle load balancing. ilb owner will still be part of
3280 * nohz.cpu_mask..
3281 *
3282 * While stopping the tick, this cpu will become the ilb owner if there
3283 * is no other owner. And will be the owner till that cpu becomes busy
3284 * or if all cpus in the system stop their ticks at which point
3285 * there is no need for ilb owner.
3286 *
3287 * When the ilb owner becomes busy, it nominates another owner, during the
3288 * next busy scheduler_tick()
3289 */
3290 int select_nohz_load_balancer(int stop_tick)
3291 {
3292 int cpu = smp_processor_id();
3293
3294 if (stop_tick) {
3295 cpu_set(cpu, nohz.cpu_mask);
3296 cpu_rq(cpu)->in_nohz_recently = 1;
3297
3298 /*
3299 * If we are going offline and still the leader, give up!
3300 */
3301 if (cpu_is_offline(cpu) &&
3302 atomic_read(&nohz.load_balancer) == cpu) {
3303 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3304 BUG();
3305 return 0;
3306 }
3307
3308 /* time for ilb owner also to sleep */
3309 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3310 if (atomic_read(&nohz.load_balancer) == cpu)
3311 atomic_set(&nohz.load_balancer, -1);
3312 return 0;
3313 }
3314
3315 if (atomic_read(&nohz.load_balancer) == -1) {
3316 /* make me the ilb owner */
3317 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3318 return 1;
3319 } else if (atomic_read(&nohz.load_balancer) == cpu)
3320 return 1;
3321 } else {
3322 if (!cpu_isset(cpu, nohz.cpu_mask))
3323 return 0;
3324
3325 cpu_clear(cpu, nohz.cpu_mask);
3326
3327 if (atomic_read(&nohz.load_balancer) == cpu)
3328 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3329 BUG();
3330 }
3331 return 0;
3332 }
3333 #endif
3334
3335 static DEFINE_SPINLOCK(balancing);
3336
3337 /*
3338 * It checks each scheduling domain to see if it is due to be balanced,
3339 * and initiates a balancing operation if so.
3340 *
3341 * Balancing parameters are set up in arch_init_sched_domains.
3342 */
3343 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3344 {
3345 int balance = 1;
3346 struct rq *rq = cpu_rq(cpu);
3347 unsigned long interval;
3348 struct sched_domain *sd;
3349 /* Earliest time when we have to do rebalance again */
3350 unsigned long next_balance = jiffies + 60*HZ;
3351 int update_next_balance = 0;
3352
3353 for_each_domain(cpu, sd) {
3354 if (!(sd->flags & SD_LOAD_BALANCE))
3355 continue;
3356
3357 interval = sd->balance_interval;
3358 if (idle != CPU_IDLE)
3359 interval *= sd->busy_factor;
3360
3361 /* scale ms to jiffies */
3362 interval = msecs_to_jiffies(interval);
3363 if (unlikely(!interval))
3364 interval = 1;
3365 if (interval > HZ*NR_CPUS/10)
3366 interval = HZ*NR_CPUS/10;
3367
3368
3369 if (sd->flags & SD_SERIALIZE) {
3370 if (!spin_trylock(&balancing))
3371 goto out;
3372 }
3373
3374 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3375 if (load_balance(cpu, rq, sd, idle, &balance)) {
3376 /*
3377 * We've pulled tasks over so either we're no
3378 * longer idle, or one of our SMT siblings is
3379 * not idle.
3380 */
3381 idle = CPU_NOT_IDLE;
3382 }
3383 sd->last_balance = jiffies;
3384 }
3385 if (sd->flags & SD_SERIALIZE)
3386 spin_unlock(&balancing);
3387 out:
3388 if (time_after(next_balance, sd->last_balance + interval)) {
3389 next_balance = sd->last_balance + interval;
3390 update_next_balance = 1;
3391 }
3392
3393 /*
3394 * Stop the load balance at this level. There is another
3395 * CPU in our sched group which is doing load balancing more
3396 * actively.
3397 */
3398 if (!balance)
3399 break;
3400 }
3401
3402 /*
3403 * next_balance will be updated only when there is a need.
3404 * When the cpu is attached to null domain for ex, it will not be
3405 * updated.
3406 */
3407 if (likely(update_next_balance))
3408 rq->next_balance = next_balance;
3409 }
3410
3411 /*
3412 * run_rebalance_domains is triggered when needed from the scheduler tick.
3413 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3414 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3415 */
3416 static void run_rebalance_domains(struct softirq_action *h)
3417 {
3418 int this_cpu = smp_processor_id();
3419 struct rq *this_rq = cpu_rq(this_cpu);
3420 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3421 CPU_IDLE : CPU_NOT_IDLE;
3422
3423 rebalance_domains(this_cpu, idle);
3424
3425 #ifdef CONFIG_NO_HZ
3426 /*
3427 * If this cpu is the owner for idle load balancing, then do the
3428 * balancing on behalf of the other idle cpus whose ticks are
3429 * stopped.
3430 */
3431 if (this_rq->idle_at_tick &&
3432 atomic_read(&nohz.load_balancer) == this_cpu) {
3433 cpumask_t cpus = nohz.cpu_mask;
3434 struct rq *rq;
3435 int balance_cpu;
3436
3437 cpu_clear(this_cpu, cpus);
3438 for_each_cpu_mask(balance_cpu, cpus) {
3439 /*
3440 * If this cpu gets work to do, stop the load balancing
3441 * work being done for other cpus. Next load
3442 * balancing owner will pick it up.
3443 */
3444 if (need_resched())
3445 break;
3446
3447 rebalance_domains(balance_cpu, CPU_IDLE);
3448
3449 rq = cpu_rq(balance_cpu);
3450 if (time_after(this_rq->next_balance, rq->next_balance))
3451 this_rq->next_balance = rq->next_balance;
3452 }
3453 }
3454 #endif
3455 }
3456
3457 /*
3458 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3459 *
3460 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3461 * idle load balancing owner or decide to stop the periodic load balancing,
3462 * if the whole system is idle.
3463 */
3464 static inline void trigger_load_balance(struct rq *rq, int cpu)
3465 {
3466 #ifdef CONFIG_NO_HZ
3467 /*
3468 * If we were in the nohz mode recently and busy at the current
3469 * scheduler tick, then check if we need to nominate new idle
3470 * load balancer.
3471 */
3472 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3473 rq->in_nohz_recently = 0;
3474
3475 if (atomic_read(&nohz.load_balancer) == cpu) {
3476 cpu_clear(cpu, nohz.cpu_mask);
3477 atomic_set(&nohz.load_balancer, -1);
3478 }
3479
3480 if (atomic_read(&nohz.load_balancer) == -1) {
3481 /*
3482 * simple selection for now: Nominate the
3483 * first cpu in the nohz list to be the next
3484 * ilb owner.
3485 *
3486 * TBD: Traverse the sched domains and nominate
3487 * the nearest cpu in the nohz.cpu_mask.
3488 */
3489 int ilb = first_cpu(nohz.cpu_mask);
3490
3491 if (ilb != NR_CPUS)
3492 resched_cpu(ilb);
3493 }
3494 }
3495
3496 /*
3497 * If this cpu is idle and doing idle load balancing for all the
3498 * cpus with ticks stopped, is it time for that to stop?
3499 */
3500 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3501 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3502 resched_cpu(cpu);
3503 return;
3504 }
3505
3506 /*
3507 * If this cpu is idle and the idle load balancing is done by
3508 * someone else, then no need raise the SCHED_SOFTIRQ
3509 */
3510 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3511 cpu_isset(cpu, nohz.cpu_mask))
3512 return;
3513 #endif
3514 if (time_after_eq(jiffies, rq->next_balance))
3515 raise_softirq(SCHED_SOFTIRQ);
3516 }
3517
3518 #else /* CONFIG_SMP */
3519
3520 /*
3521 * on UP we do not need to balance between CPUs:
3522 */
3523 static inline void idle_balance(int cpu, struct rq *rq)
3524 {
3525 }
3526
3527 #endif
3528
3529 DEFINE_PER_CPU(struct kernel_stat, kstat);
3530
3531 EXPORT_PER_CPU_SYMBOL(kstat);
3532
3533 /*
3534 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3535 * that have not yet been banked in case the task is currently running.
3536 */
3537 unsigned long long task_sched_runtime(struct task_struct *p)
3538 {
3539 unsigned long flags;
3540 u64 ns, delta_exec;
3541 struct rq *rq;
3542
3543 rq = task_rq_lock(p, &flags);
3544 ns = p->se.sum_exec_runtime;
3545 if (task_current(rq, p)) {
3546 update_rq_clock(rq);
3547 delta_exec = rq->clock - p->se.exec_start;
3548 if ((s64)delta_exec > 0)
3549 ns += delta_exec;
3550 }
3551 task_rq_unlock(rq, &flags);
3552
3553 return ns;
3554 }
3555
3556 /*
3557 * Account user cpu time to a process.
3558 * @p: the process that the cpu time gets accounted to
3559 * @cputime: the cpu time spent in user space since the last update
3560 */
3561 void account_user_time(struct task_struct *p, cputime_t cputime)
3562 {
3563 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3564 cputime64_t tmp;
3565
3566 p->utime = cputime_add(p->utime, cputime);
3567
3568 /* Add user time to cpustat. */
3569 tmp = cputime_to_cputime64(cputime);
3570 if (TASK_NICE(p) > 0)
3571 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3572 else
3573 cpustat->user = cputime64_add(cpustat->user, tmp);
3574 }
3575
3576 /*
3577 * Account guest cpu time to a process.
3578 * @p: the process that the cpu time gets accounted to
3579 * @cputime: the cpu time spent in virtual machine since the last update
3580 */
3581 static void account_guest_time(struct task_struct *p, cputime_t cputime)
3582 {
3583 cputime64_t tmp;
3584 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3585
3586 tmp = cputime_to_cputime64(cputime);
3587
3588 p->utime = cputime_add(p->utime, cputime);
3589 p->gtime = cputime_add(p->gtime, cputime);
3590
3591 cpustat->user = cputime64_add(cpustat->user, tmp);
3592 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3593 }
3594
3595 /*
3596 * Account scaled user cpu time to a process.
3597 * @p: the process that the cpu time gets accounted to
3598 * @cputime: the cpu time spent in user space since the last update
3599 */
3600 void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
3601 {
3602 p->utimescaled = cputime_add(p->utimescaled, cputime);
3603 }
3604
3605 /*
3606 * Account system cpu time to a process.
3607 * @p: the process that the cpu time gets accounted to
3608 * @hardirq_offset: the offset to subtract from hardirq_count()
3609 * @cputime: the cpu time spent in kernel space since the last update
3610 */
3611 void account_system_time(struct task_struct *p, int hardirq_offset,
3612 cputime_t cputime)
3613 {
3614 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3615 struct rq *rq = this_rq();
3616 cputime64_t tmp;
3617
3618 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
3619 return account_guest_time(p, cputime);
3620
3621 p->stime = cputime_add(p->stime, cputime);
3622
3623 /* Add system time to cpustat. */
3624 tmp = cputime_to_cputime64(cputime);
3625 if (hardirq_count() - hardirq_offset)
3626 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3627 else if (softirq_count())
3628 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3629 else if (p != rq->idle)
3630 cpustat->system = cputime64_add(cpustat->system, tmp);
3631 else if (atomic_read(&rq->nr_iowait) > 0)
3632 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3633 else
3634 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3635 /* Account for system time used */
3636 acct_update_integrals(p);
3637 }
3638
3639 /*
3640 * Account scaled system cpu time to a process.
3641 * @p: the process that the cpu time gets accounted to
3642 * @hardirq_offset: the offset to subtract from hardirq_count()
3643 * @cputime: the cpu time spent in kernel space since the last update
3644 */
3645 void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
3646 {
3647 p->stimescaled = cputime_add(p->stimescaled, cputime);
3648 }
3649
3650 /*
3651 * Account for involuntary wait time.
3652 * @p: the process from which the cpu time has been stolen
3653 * @steal: the cpu time spent in involuntary wait
3654 */
3655 void account_steal_time(struct task_struct *p, cputime_t steal)
3656 {
3657 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3658 cputime64_t tmp = cputime_to_cputime64(steal);
3659 struct rq *rq = this_rq();
3660
3661 if (p == rq->idle) {
3662 p->stime = cputime_add(p->stime, steal);
3663 if (atomic_read(&rq->nr_iowait) > 0)
3664 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3665 else
3666 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3667 } else
3668 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3669 }
3670
3671 /*
3672 * This function gets called by the timer code, with HZ frequency.
3673 * We call it with interrupts disabled.
3674 *
3675 * It also gets called by the fork code, when changing the parent's
3676 * timeslices.
3677 */
3678 void scheduler_tick(void)
3679 {
3680 int cpu = smp_processor_id();
3681 struct rq *rq = cpu_rq(cpu);
3682 struct task_struct *curr = rq->curr;
3683 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
3684
3685 spin_lock(&rq->lock);
3686 __update_rq_clock(rq);
3687 /*
3688 * Let rq->clock advance by at least TICK_NSEC:
3689 */
3690 if (unlikely(rq->clock < next_tick))
3691 rq->clock = next_tick;
3692 rq->tick_timestamp = rq->clock;
3693 update_cpu_load(rq);
3694 curr->sched_class->task_tick(rq, curr, 0);
3695 update_sched_rt_period(rq);
3696 spin_unlock(&rq->lock);
3697
3698 #ifdef CONFIG_SMP
3699 rq->idle_at_tick = idle_cpu(cpu);
3700 trigger_load_balance(rq, cpu);
3701 #endif
3702 }
3703
3704 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3705
3706 void fastcall add_preempt_count(int val)
3707 {
3708 /*
3709 * Underflow?
3710 */
3711 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3712 return;
3713 preempt_count() += val;
3714 /*
3715 * Spinlock count overflowing soon?
3716 */
3717 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3718 PREEMPT_MASK - 10);
3719 }
3720 EXPORT_SYMBOL(add_preempt_count);
3721
3722 void fastcall sub_preempt_count(int val)
3723 {
3724 /*
3725 * Underflow?
3726 */
3727 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3728 return;
3729 /*
3730 * Is the spinlock portion underflowing?
3731 */
3732 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3733 !(preempt_count() & PREEMPT_MASK)))
3734 return;
3735
3736 preempt_count() -= val;
3737 }
3738 EXPORT_SYMBOL(sub_preempt_count);
3739
3740 #endif
3741
3742 /*
3743 * Print scheduling while atomic bug:
3744 */
3745 static noinline void __schedule_bug(struct task_struct *prev)
3746 {
3747 struct pt_regs *regs = get_irq_regs();
3748
3749 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3750 prev->comm, prev->pid, preempt_count());
3751
3752 debug_show_held_locks(prev);
3753 if (irqs_disabled())
3754 print_irqtrace_events(prev);
3755
3756 if (regs)
3757 show_regs(regs);
3758 else
3759 dump_stack();
3760 }
3761
3762 /*
3763 * Various schedule()-time debugging checks and statistics:
3764 */
3765 static inline void schedule_debug(struct task_struct *prev)
3766 {
3767 /*
3768 * Test if we are atomic. Since do_exit() needs to call into
3769 * schedule() atomically, we ignore that path for now.
3770 * Otherwise, whine if we are scheduling when we should not be.
3771 */
3772 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3773 __schedule_bug(prev);
3774
3775 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3776
3777 schedstat_inc(this_rq(), sched_count);
3778 #ifdef CONFIG_SCHEDSTATS
3779 if (unlikely(prev->lock_depth >= 0)) {
3780 schedstat_inc(this_rq(), bkl_count);
3781 schedstat_inc(prev, sched_info.bkl_count);
3782 }
3783 #endif
3784 }
3785
3786 /*
3787 * Pick up the highest-prio task:
3788 */
3789 static inline struct task_struct *
3790 pick_next_task(struct rq *rq, struct task_struct *prev)
3791 {
3792 const struct sched_class *class;
3793 struct task_struct *p;
3794
3795 /*
3796 * Optimization: we know that if all tasks are in
3797 * the fair class we can call that function directly:
3798 */
3799 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3800 p = fair_sched_class.pick_next_task(rq);
3801 if (likely(p))
3802 return p;
3803 }
3804
3805 class = sched_class_highest;
3806 for ( ; ; ) {
3807 p = class->pick_next_task(rq);
3808 if (p)
3809 return p;
3810 /*
3811 * Will never be NULL as the idle class always
3812 * returns a non-NULL p:
3813 */
3814 class = class->next;
3815 }
3816 }
3817
3818 /*
3819 * schedule() is the main scheduler function.
3820 */
3821 asmlinkage void __sched schedule(void)
3822 {
3823 struct task_struct *prev, *next;
3824 long *switch_count;
3825 struct rq *rq;
3826 int cpu;
3827
3828 need_resched:
3829 preempt_disable();
3830 cpu = smp_processor_id();
3831 rq = cpu_rq(cpu);
3832 rcu_qsctr_inc(cpu);
3833 prev = rq->curr;
3834 switch_count = &prev->nivcsw;
3835
3836 release_kernel_lock(prev);
3837 need_resched_nonpreemptible:
3838
3839 schedule_debug(prev);
3840
3841 hrtick_clear(rq);
3842
3843 /*
3844 * Do the rq-clock update outside the rq lock:
3845 */
3846 local_irq_disable();
3847 __update_rq_clock(rq);
3848 spin_lock(&rq->lock);
3849 clear_tsk_need_resched(prev);
3850
3851 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3852 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3853 unlikely(signal_pending(prev)))) {
3854 prev->state = TASK_RUNNING;
3855 } else {
3856 deactivate_task(rq, prev, 1);
3857 }
3858 switch_count = &prev->nvcsw;
3859 }
3860
3861 #ifdef CONFIG_SMP
3862 if (prev->sched_class->pre_schedule)
3863 prev->sched_class->pre_schedule(rq, prev);
3864 #endif
3865
3866 if (unlikely(!rq->nr_running))
3867 idle_balance(cpu, rq);
3868
3869 prev->sched_class->put_prev_task(rq, prev);
3870 next = pick_next_task(rq, prev);
3871
3872 sched_info_switch(prev, next);
3873
3874 if (likely(prev != next)) {
3875 rq->nr_switches++;
3876 rq->curr = next;
3877 ++*switch_count;
3878
3879 context_switch(rq, prev, next); /* unlocks the rq */
3880 /*
3881 * the context switch might have flipped the stack from under
3882 * us, hence refresh the local variables.
3883 */
3884 cpu = smp_processor_id();
3885 rq = cpu_rq(cpu);
3886 } else
3887 spin_unlock_irq(&rq->lock);
3888
3889 hrtick_set(rq);
3890
3891 if (unlikely(reacquire_kernel_lock(current) < 0))
3892 goto need_resched_nonpreemptible;
3893
3894 preempt_enable_no_resched();
3895 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3896 goto need_resched;
3897 }
3898 EXPORT_SYMBOL(schedule);
3899
3900 #ifdef CONFIG_PREEMPT
3901 /*
3902 * this is the entry point to schedule() from in-kernel preemption
3903 * off of preempt_enable. Kernel preemptions off return from interrupt
3904 * occur there and call schedule directly.
3905 */
3906 asmlinkage void __sched preempt_schedule(void)
3907 {
3908 struct thread_info *ti = current_thread_info();
3909 #ifdef CONFIG_PREEMPT_BKL
3910 struct task_struct *task = current;
3911 int saved_lock_depth;
3912 #endif
3913 /*
3914 * If there is a non-zero preempt_count or interrupts are disabled,
3915 * we do not want to preempt the current task. Just return..
3916 */
3917 if (likely(ti->preempt_count || irqs_disabled()))
3918 return;
3919
3920 do {
3921 add_preempt_count(PREEMPT_ACTIVE);
3922
3923 /*
3924 * We keep the big kernel semaphore locked, but we
3925 * clear ->lock_depth so that schedule() doesnt
3926 * auto-release the semaphore:
3927 */
3928 #ifdef CONFIG_PREEMPT_BKL
3929 saved_lock_depth = task->lock_depth;
3930 task->lock_depth = -1;
3931 #endif
3932 schedule();
3933 #ifdef CONFIG_PREEMPT_BKL
3934 task->lock_depth = saved_lock_depth;
3935 #endif
3936 sub_preempt_count(PREEMPT_ACTIVE);
3937
3938 /*
3939 * Check again in case we missed a preemption opportunity
3940 * between schedule and now.
3941 */
3942 barrier();
3943 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
3944 }
3945 EXPORT_SYMBOL(preempt_schedule);
3946
3947 /*
3948 * this is the entry point to schedule() from kernel preemption
3949 * off of irq context.
3950 * Note, that this is called and return with irqs disabled. This will
3951 * protect us against recursive calling from irq.
3952 */
3953 asmlinkage void __sched preempt_schedule_irq(void)
3954 {
3955 struct thread_info *ti = current_thread_info();
3956 #ifdef CONFIG_PREEMPT_BKL
3957 struct task_struct *task = current;
3958 int saved_lock_depth;
3959 #endif
3960 /* Catch callers which need to be fixed */
3961 BUG_ON(ti->preempt_count || !irqs_disabled());
3962
3963 do {
3964 add_preempt_count(PREEMPT_ACTIVE);
3965
3966 /*
3967 * We keep the big kernel semaphore locked, but we
3968 * clear ->lock_depth so that schedule() doesnt
3969 * auto-release the semaphore:
3970 */
3971 #ifdef CONFIG_PREEMPT_BKL
3972 saved_lock_depth = task->lock_depth;
3973 task->lock_depth = -1;
3974 #endif
3975 local_irq_enable();
3976 schedule();
3977 local_irq_disable();
3978 #ifdef CONFIG_PREEMPT_BKL
3979 task->lock_depth = saved_lock_depth;
3980 #endif
3981 sub_preempt_count(PREEMPT_ACTIVE);
3982
3983 /*
3984 * Check again in case we missed a preemption opportunity
3985 * between schedule and now.
3986 */
3987 barrier();
3988 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
3989 }
3990
3991 #endif /* CONFIG_PREEMPT */
3992
3993 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3994 void *key)
3995 {
3996 return try_to_wake_up(curr->private, mode, sync);
3997 }
3998 EXPORT_SYMBOL(default_wake_function);
3999
4000 /*
4001 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4002 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4003 * number) then we wake all the non-exclusive tasks and one exclusive task.
4004 *
4005 * There are circumstances in which we can try to wake a task which has already
4006 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4007 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4008 */
4009 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4010 int nr_exclusive, int sync, void *key)
4011 {
4012 wait_queue_t *curr, *next;
4013
4014 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4015 unsigned flags = curr->flags;
4016
4017 if (curr->func(curr, mode, sync, key) &&
4018 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4019 break;
4020 }
4021 }
4022
4023 /**
4024 * __wake_up - wake up threads blocked on a waitqueue.
4025 * @q: the waitqueue
4026 * @mode: which threads
4027 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4028 * @key: is directly passed to the wakeup function
4029 */
4030 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
4031 int nr_exclusive, void *key)
4032 {
4033 unsigned long flags;
4034
4035 spin_lock_irqsave(&q->lock, flags);
4036 __wake_up_common(q, mode, nr_exclusive, 0, key);
4037 spin_unlock_irqrestore(&q->lock, flags);
4038 }
4039 EXPORT_SYMBOL(__wake_up);
4040
4041 /*
4042 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4043 */
4044 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4045 {
4046 __wake_up_common(q, mode, 1, 0, NULL);
4047 }
4048
4049 /**
4050 * __wake_up_sync - wake up threads blocked on a waitqueue.
4051 * @q: the waitqueue
4052 * @mode: which threads
4053 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4054 *
4055 * The sync wakeup differs that the waker knows that it will schedule
4056 * away soon, so while the target thread will be woken up, it will not
4057 * be migrated to another CPU - ie. the two threads are 'synchronized'
4058 * with each other. This can prevent needless bouncing between CPUs.
4059 *
4060 * On UP it can prevent extra preemption.
4061 */
4062 void fastcall
4063 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4064 {
4065 unsigned long flags;
4066 int sync = 1;
4067
4068 if (unlikely(!q))
4069 return;
4070
4071 if (unlikely(!nr_exclusive))
4072 sync = 0;
4073
4074 spin_lock_irqsave(&q->lock, flags);
4075 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4076 spin_unlock_irqrestore(&q->lock, flags);
4077 }
4078 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4079
4080 void complete(struct completion *x)
4081 {
4082 unsigned long flags;
4083
4084 spin_lock_irqsave(&x->wait.lock, flags);
4085 x->done++;
4086 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
4087 1, 0, NULL);
4088 spin_unlock_irqrestore(&x->wait.lock, flags);
4089 }
4090 EXPORT_SYMBOL(complete);
4091
4092 void complete_all(struct completion *x)
4093 {
4094 unsigned long flags;
4095
4096 spin_lock_irqsave(&x->wait.lock, flags);
4097 x->done += UINT_MAX/2;
4098 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
4099 0, 0, NULL);
4100 spin_unlock_irqrestore(&x->wait.lock, flags);
4101 }
4102 EXPORT_SYMBOL(complete_all);
4103
4104 static inline long __sched
4105 do_wait_for_common(struct completion *x, long timeout, int state)
4106 {
4107 if (!x->done) {
4108 DECLARE_WAITQUEUE(wait, current);
4109
4110 wait.flags |= WQ_FLAG_EXCLUSIVE;
4111 __add_wait_queue_tail(&x->wait, &wait);
4112 do {
4113 if (state == TASK_INTERRUPTIBLE &&
4114 signal_pending(current)) {
4115 __remove_wait_queue(&x->wait, &wait);
4116 return -ERESTARTSYS;
4117 }
4118 __set_current_state(state);
4119 spin_unlock_irq(&x->wait.lock);
4120 timeout = schedule_timeout(timeout);
4121 spin_lock_irq(&x->wait.lock);
4122 if (!timeout) {
4123 __remove_wait_queue(&x->wait, &wait);
4124 return timeout;
4125 }
4126 } while (!x->done);
4127 __remove_wait_queue(&x->wait, &wait);
4128 }
4129 x->done--;
4130 return timeout;
4131 }
4132
4133 static long __sched
4134 wait_for_common(struct completion *x, long timeout, int state)
4135 {
4136 might_sleep();
4137
4138 spin_lock_irq(&x->wait.lock);
4139 timeout = do_wait_for_common(x, timeout, state);
4140 spin_unlock_irq(&x->wait.lock);
4141 return timeout;
4142 }
4143
4144 void __sched wait_for_completion(struct completion *x)
4145 {
4146 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4147 }
4148 EXPORT_SYMBOL(wait_for_completion);
4149
4150 unsigned long __sched
4151 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4152 {
4153 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4154 }
4155 EXPORT_SYMBOL(wait_for_completion_timeout);
4156
4157 int __sched wait_for_completion_interruptible(struct completion *x)
4158 {
4159 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4160 if (t == -ERESTARTSYS)
4161 return t;
4162 return 0;
4163 }
4164 EXPORT_SYMBOL(wait_for_completion_interruptible);
4165
4166 unsigned long __sched
4167 wait_for_completion_interruptible_timeout(struct completion *x,
4168 unsigned long timeout)
4169 {
4170 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4171 }
4172 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4173
4174 static long __sched
4175 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4176 {
4177 unsigned long flags;
4178 wait_queue_t wait;
4179
4180 init_waitqueue_entry(&wait, current);
4181
4182 __set_current_state(state);
4183
4184 spin_lock_irqsave(&q->lock, flags);
4185 __add_wait_queue(q, &wait);
4186 spin_unlock(&q->lock);
4187 timeout = schedule_timeout(timeout);
4188 spin_lock_irq(&q->lock);
4189 __remove_wait_queue(q, &wait);
4190 spin_unlock_irqrestore(&q->lock, flags);
4191
4192 return timeout;
4193 }
4194
4195 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4196 {
4197 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4198 }
4199 EXPORT_SYMBOL(interruptible_sleep_on);
4200
4201 long __sched
4202 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4203 {
4204 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4205 }
4206 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4207
4208 void __sched sleep_on(wait_queue_head_t *q)
4209 {
4210 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4211 }
4212 EXPORT_SYMBOL(sleep_on);
4213
4214 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4215 {
4216 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4217 }
4218 EXPORT_SYMBOL(sleep_on_timeout);
4219
4220 #ifdef CONFIG_RT_MUTEXES
4221
4222 /*
4223 * rt_mutex_setprio - set the current priority of a task
4224 * @p: task
4225 * @prio: prio value (kernel-internal form)
4226 *
4227 * This function changes the 'effective' priority of a task. It does
4228 * not touch ->normal_prio like __setscheduler().
4229 *
4230 * Used by the rt_mutex code to implement priority inheritance logic.
4231 */
4232 void rt_mutex_setprio(struct task_struct *p, int prio)
4233 {
4234 unsigned long flags;
4235 int oldprio, on_rq, running;
4236 struct rq *rq;
4237 const struct sched_class *prev_class = p->sched_class;
4238
4239 BUG_ON(prio < 0 || prio > MAX_PRIO);
4240
4241 rq = task_rq_lock(p, &flags);
4242 update_rq_clock(rq);
4243
4244 oldprio = p->prio;
4245 on_rq = p->se.on_rq;
4246 running = task_current(rq, p);
4247 if (on_rq) {
4248 dequeue_task(rq, p, 0);
4249 if (running)
4250 p->sched_class->put_prev_task(rq, p);
4251 }
4252
4253 if (rt_prio(prio))
4254 p->sched_class = &rt_sched_class;
4255 else
4256 p->sched_class = &fair_sched_class;
4257
4258 p->prio = prio;
4259
4260 if (on_rq) {
4261 if (running)
4262 p->sched_class->set_curr_task(rq);
4263
4264 enqueue_task(rq, p, 0);
4265
4266 check_class_changed(rq, p, prev_class, oldprio, running);
4267 }
4268 task_rq_unlock(rq, &flags);
4269 }
4270
4271 #endif
4272
4273 void set_user_nice(struct task_struct *p, long nice)
4274 {
4275 int old_prio, delta, on_rq;
4276 unsigned long flags;
4277 struct rq *rq;
4278
4279 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4280 return;
4281 /*
4282 * We have to be careful, if called from sys_setpriority(),
4283 * the task might be in the middle of scheduling on another CPU.
4284 */
4285 rq = task_rq_lock(p, &flags);
4286 update_rq_clock(rq);
4287 /*
4288 * The RT priorities are set via sched_setscheduler(), but we still
4289 * allow the 'normal' nice value to be set - but as expected
4290 * it wont have any effect on scheduling until the task is
4291 * SCHED_FIFO/SCHED_RR:
4292 */
4293 if (task_has_rt_policy(p)) {
4294 p->static_prio = NICE_TO_PRIO(nice);
4295 goto out_unlock;
4296 }
4297 on_rq = p->se.on_rq;
4298 if (on_rq)
4299 dequeue_task(rq, p, 0);
4300
4301 p->static_prio = NICE_TO_PRIO(nice);
4302 set_load_weight(p);
4303 old_prio = p->prio;
4304 p->prio = effective_prio(p);
4305 delta = p->prio - old_prio;
4306
4307 if (on_rq) {
4308 enqueue_task(rq, p, 0);
4309 /*
4310 * If the task increased its priority or is running and
4311 * lowered its priority, then reschedule its CPU:
4312 */
4313 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4314 resched_task(rq->curr);
4315 }
4316 out_unlock:
4317 task_rq_unlock(rq, &flags);
4318 }
4319 EXPORT_SYMBOL(set_user_nice);
4320
4321 /*
4322 * can_nice - check if a task can reduce its nice value
4323 * @p: task
4324 * @nice: nice value
4325 */
4326 int can_nice(const struct task_struct *p, const int nice)
4327 {
4328 /* convert nice value [19,-20] to rlimit style value [1,40] */
4329 int nice_rlim = 20 - nice;
4330
4331 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4332 capable(CAP_SYS_NICE));
4333 }
4334
4335 #ifdef __ARCH_WANT_SYS_NICE
4336
4337 /*
4338 * sys_nice - change the priority of the current process.
4339 * @increment: priority increment
4340 *
4341 * sys_setpriority is a more generic, but much slower function that
4342 * does similar things.
4343 */
4344 asmlinkage long sys_nice(int increment)
4345 {
4346 long nice, retval;
4347
4348 /*
4349 * Setpriority might change our priority at the same moment.
4350 * We don't have to worry. Conceptually one call occurs first
4351 * and we have a single winner.
4352 */
4353 if (increment < -40)
4354 increment = -40;
4355 if (increment > 40)
4356 increment = 40;
4357
4358 nice = PRIO_TO_NICE(current->static_prio) + increment;
4359 if (nice < -20)
4360 nice = -20;
4361 if (nice > 19)
4362 nice = 19;
4363
4364 if (increment < 0 && !can_nice(current, nice))
4365 return -EPERM;
4366
4367 retval = security_task_setnice(current, nice);
4368 if (retval)
4369 return retval;
4370
4371 set_user_nice(current, nice);
4372 return 0;
4373 }
4374
4375 #endif
4376
4377 /**
4378 * task_prio - return the priority value of a given task.
4379 * @p: the task in question.
4380 *
4381 * This is the priority value as seen by users in /proc.
4382 * RT tasks are offset by -200. Normal tasks are centered
4383 * around 0, value goes from -16 to +15.
4384 */
4385 int task_prio(const struct task_struct *p)
4386 {
4387 return p->prio - MAX_RT_PRIO;
4388 }
4389
4390 /**
4391 * task_nice - return the nice value of a given task.
4392 * @p: the task in question.
4393 */
4394 int task_nice(const struct task_struct *p)
4395 {
4396 return TASK_NICE(p);
4397 }
4398 EXPORT_SYMBOL_GPL(task_nice);
4399
4400 /**
4401 * idle_cpu - is a given cpu idle currently?
4402 * @cpu: the processor in question.
4403 */
4404 int idle_cpu(int cpu)
4405 {
4406 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4407 }
4408
4409 /**
4410 * idle_task - return the idle task for a given cpu.
4411 * @cpu: the processor in question.
4412 */
4413 struct task_struct *idle_task(int cpu)
4414 {
4415 return cpu_rq(cpu)->idle;
4416 }
4417
4418 /**
4419 * find_process_by_pid - find a process with a matching PID value.
4420 * @pid: the pid in question.
4421 */
4422 static struct task_struct *find_process_by_pid(pid_t pid)
4423 {
4424 return pid ? find_task_by_vpid(pid) : current;
4425 }
4426
4427 /* Actually do priority change: must hold rq lock. */
4428 static void
4429 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4430 {
4431 BUG_ON(p->se.on_rq);
4432
4433 p->policy = policy;
4434 switch (p->policy) {
4435 case SCHED_NORMAL:
4436 case SCHED_BATCH:
4437 case SCHED_IDLE:
4438 p->sched_class = &fair_sched_class;
4439 break;
4440 case SCHED_FIFO:
4441 case SCHED_RR:
4442 p->sched_class = &rt_sched_class;
4443 break;
4444 }
4445
4446 p->rt_priority = prio;
4447 p->normal_prio = normal_prio(p);
4448 /* we are holding p->pi_lock already */
4449 p->prio = rt_mutex_getprio(p);
4450 set_load_weight(p);
4451 }
4452
4453 /**
4454 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4455 * @p: the task in question.
4456 * @policy: new policy.
4457 * @param: structure containing the new RT priority.
4458 *
4459 * NOTE that the task may be already dead.
4460 */
4461 int sched_setscheduler(struct task_struct *p, int policy,
4462 struct sched_param *param)
4463 {
4464 int retval, oldprio, oldpolicy = -1, on_rq, running;
4465 unsigned long flags;
4466 const struct sched_class *prev_class = p->sched_class;
4467 struct rq *rq;
4468
4469 /* may grab non-irq protected spin_locks */
4470 BUG_ON(in_interrupt());
4471 recheck:
4472 /* double check policy once rq lock held */
4473 if (policy < 0)
4474 policy = oldpolicy = p->policy;
4475 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4476 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4477 policy != SCHED_IDLE)
4478 return -EINVAL;
4479 /*
4480 * Valid priorities for SCHED_FIFO and SCHED_RR are
4481 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4482 * SCHED_BATCH and SCHED_IDLE is 0.
4483 */
4484 if (param->sched_priority < 0 ||
4485 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4486 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4487 return -EINVAL;
4488 if (rt_policy(policy) != (param->sched_priority != 0))
4489 return -EINVAL;
4490
4491 /*
4492 * Allow unprivileged RT tasks to decrease priority:
4493 */
4494 if (!capable(CAP_SYS_NICE)) {
4495 if (rt_policy(policy)) {
4496 unsigned long rlim_rtprio;
4497
4498 if (!lock_task_sighand(p, &flags))
4499 return -ESRCH;
4500 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4501 unlock_task_sighand(p, &flags);
4502
4503 /* can't set/change the rt policy */
4504 if (policy != p->policy && !rlim_rtprio)
4505 return -EPERM;
4506
4507 /* can't increase priority */
4508 if (param->sched_priority > p->rt_priority &&
4509 param->sched_priority > rlim_rtprio)
4510 return -EPERM;
4511 }
4512 /*
4513 * Like positive nice levels, dont allow tasks to
4514 * move out of SCHED_IDLE either:
4515 */
4516 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4517 return -EPERM;
4518
4519 /* can't change other user's priorities */
4520 if ((current->euid != p->euid) &&
4521 (current->euid != p->uid))
4522 return -EPERM;
4523 }
4524
4525 retval = security_task_setscheduler(p, policy, param);
4526 if (retval)
4527 return retval;
4528 /*
4529 * make sure no PI-waiters arrive (or leave) while we are
4530 * changing the priority of the task:
4531 */
4532 spin_lock_irqsave(&p->pi_lock, flags);
4533 /*
4534 * To be able to change p->policy safely, the apropriate
4535 * runqueue lock must be held.
4536 */
4537 rq = __task_rq_lock(p);
4538 /* recheck policy now with rq lock held */
4539 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4540 policy = oldpolicy = -1;
4541 __task_rq_unlock(rq);
4542 spin_unlock_irqrestore(&p->pi_lock, flags);
4543 goto recheck;
4544 }
4545 update_rq_clock(rq);
4546 on_rq = p->se.on_rq;
4547 running = task_current(rq, p);
4548 if (on_rq) {
4549 deactivate_task(rq, p, 0);
4550 if (running)
4551 p->sched_class->put_prev_task(rq, p);
4552 }
4553
4554 oldprio = p->prio;
4555 __setscheduler(rq, p, policy, param->sched_priority);
4556
4557 if (on_rq) {
4558 if (running)
4559 p->sched_class->set_curr_task(rq);
4560
4561 activate_task(rq, p, 0);
4562
4563 check_class_changed(rq, p, prev_class, oldprio, running);
4564 }
4565 __task_rq_unlock(rq);
4566 spin_unlock_irqrestore(&p->pi_lock, flags);
4567
4568 rt_mutex_adjust_pi(p);
4569
4570 return 0;
4571 }
4572 EXPORT_SYMBOL_GPL(sched_setscheduler);
4573
4574 static int
4575 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4576 {
4577 struct sched_param lparam;
4578 struct task_struct *p;
4579 int retval;
4580
4581 if (!param || pid < 0)
4582 return -EINVAL;
4583 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4584 return -EFAULT;
4585
4586 rcu_read_lock();
4587 retval = -ESRCH;
4588 p = find_process_by_pid(pid);
4589 if (p != NULL)
4590 retval = sched_setscheduler(p, policy, &lparam);
4591 rcu_read_unlock();
4592
4593 return retval;
4594 }
4595
4596 /**
4597 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4598 * @pid: the pid in question.
4599 * @policy: new policy.
4600 * @param: structure containing the new RT priority.
4601 */
4602 asmlinkage long
4603 sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4604 {
4605 /* negative values for policy are not valid */
4606 if (policy < 0)
4607 return -EINVAL;
4608
4609 return do_sched_setscheduler(pid, policy, param);
4610 }
4611
4612 /**
4613 * sys_sched_setparam - set/change the RT priority of a thread
4614 * @pid: the pid in question.
4615 * @param: structure containing the new RT priority.
4616 */
4617 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4618 {
4619 return do_sched_setscheduler(pid, -1, param);
4620 }
4621
4622 /**
4623 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4624 * @pid: the pid in question.
4625 */
4626 asmlinkage long sys_sched_getscheduler(pid_t pid)
4627 {
4628 struct task_struct *p;
4629 int retval;
4630
4631 if (pid < 0)
4632 return -EINVAL;
4633
4634 retval = -ESRCH;
4635 read_lock(&tasklist_lock);
4636 p = find_process_by_pid(pid);
4637 if (p) {
4638 retval = security_task_getscheduler(p);
4639 if (!retval)
4640 retval = p->policy;
4641 }
4642 read_unlock(&tasklist_lock);
4643 return retval;
4644 }
4645
4646 /**
4647 * sys_sched_getscheduler - get the RT priority of a thread
4648 * @pid: the pid in question.
4649 * @param: structure containing the RT priority.
4650 */
4651 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4652 {
4653 struct sched_param lp;
4654 struct task_struct *p;
4655 int retval;
4656
4657 if (!param || pid < 0)
4658 return -EINVAL;
4659
4660 read_lock(&tasklist_lock);
4661 p = find_process_by_pid(pid);
4662 retval = -ESRCH;
4663 if (!p)
4664 goto out_unlock;
4665
4666 retval = security_task_getscheduler(p);
4667 if (retval)
4668 goto out_unlock;
4669
4670 lp.sched_priority = p->rt_priority;
4671 read_unlock(&tasklist_lock);
4672
4673 /*
4674 * This one might sleep, we cannot do it with a spinlock held ...
4675 */
4676 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4677
4678 return retval;
4679
4680 out_unlock:
4681 read_unlock(&tasklist_lock);
4682 return retval;
4683 }
4684
4685 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4686 {
4687 cpumask_t cpus_allowed;
4688 struct task_struct *p;
4689 int retval;
4690
4691 get_online_cpus();
4692 read_lock(&tasklist_lock);
4693
4694 p = find_process_by_pid(pid);
4695 if (!p) {
4696 read_unlock(&tasklist_lock);
4697 put_online_cpus();
4698 return -ESRCH;
4699 }
4700
4701 /*
4702 * It is not safe to call set_cpus_allowed with the
4703 * tasklist_lock held. We will bump the task_struct's
4704 * usage count and then drop tasklist_lock.
4705 */
4706 get_task_struct(p);
4707 read_unlock(&tasklist_lock);
4708
4709 retval = -EPERM;
4710 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4711 !capable(CAP_SYS_NICE))
4712 goto out_unlock;
4713
4714 retval = security_task_setscheduler(p, 0, NULL);
4715 if (retval)
4716 goto out_unlock;
4717
4718 cpus_allowed = cpuset_cpus_allowed(p);
4719 cpus_and(new_mask, new_mask, cpus_allowed);
4720 again:
4721 retval = set_cpus_allowed(p, new_mask);
4722
4723 if (!retval) {
4724 cpus_allowed = cpuset_cpus_allowed(p);
4725 if (!cpus_subset(new_mask, cpus_allowed)) {
4726 /*
4727 * We must have raced with a concurrent cpuset
4728 * update. Just reset the cpus_allowed to the
4729 * cpuset's cpus_allowed
4730 */
4731 new_mask = cpus_allowed;
4732 goto again;
4733 }
4734 }
4735 out_unlock:
4736 put_task_struct(p);
4737 put_online_cpus();
4738 return retval;
4739 }
4740
4741 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4742 cpumask_t *new_mask)
4743 {
4744 if (len < sizeof(cpumask_t)) {
4745 memset(new_mask, 0, sizeof(cpumask_t));
4746 } else if (len > sizeof(cpumask_t)) {
4747 len = sizeof(cpumask_t);
4748 }
4749 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4750 }
4751
4752 /**
4753 * sys_sched_setaffinity - set the cpu affinity of a process
4754 * @pid: pid of the process
4755 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4756 * @user_mask_ptr: user-space pointer to the new cpu mask
4757 */
4758 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4759 unsigned long __user *user_mask_ptr)
4760 {
4761 cpumask_t new_mask;
4762 int retval;
4763
4764 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4765 if (retval)
4766 return retval;
4767
4768 return sched_setaffinity(pid, new_mask);
4769 }
4770
4771 /*
4772 * Represents all cpu's present in the system
4773 * In systems capable of hotplug, this map could dynamically grow
4774 * as new cpu's are detected in the system via any platform specific
4775 * method, such as ACPI for e.g.
4776 */
4777
4778 cpumask_t cpu_present_map __read_mostly;
4779 EXPORT_SYMBOL(cpu_present_map);
4780
4781 #ifndef CONFIG_SMP
4782 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4783 EXPORT_SYMBOL(cpu_online_map);
4784
4785 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4786 EXPORT_SYMBOL(cpu_possible_map);
4787 #endif
4788
4789 long sched_getaffinity(pid_t pid, cpumask_t *mask)
4790 {
4791 struct task_struct *p;
4792 int retval;
4793
4794 get_online_cpus();
4795 read_lock(&tasklist_lock);
4796
4797 retval = -ESRCH;
4798 p = find_process_by_pid(pid);
4799 if (!p)
4800 goto out_unlock;
4801
4802 retval = security_task_getscheduler(p);
4803 if (retval)
4804 goto out_unlock;
4805
4806 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
4807
4808 out_unlock:
4809 read_unlock(&tasklist_lock);
4810 put_online_cpus();
4811
4812 return retval;
4813 }
4814
4815 /**
4816 * sys_sched_getaffinity - get the cpu affinity of a process
4817 * @pid: pid of the process
4818 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4819 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4820 */
4821 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4822 unsigned long __user *user_mask_ptr)
4823 {
4824 int ret;
4825 cpumask_t mask;
4826
4827 if (len < sizeof(cpumask_t))
4828 return -EINVAL;
4829
4830 ret = sched_getaffinity(pid, &mask);
4831 if (ret < 0)
4832 return ret;
4833
4834 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4835 return -EFAULT;
4836
4837 return sizeof(cpumask_t);
4838 }
4839
4840 /**
4841 * sys_sched_yield - yield the current processor to other threads.
4842 *
4843 * This function yields the current CPU to other tasks. If there are no
4844 * other threads running on this CPU then this function will return.
4845 */
4846 asmlinkage long sys_sched_yield(void)
4847 {
4848 struct rq *rq = this_rq_lock();
4849
4850 schedstat_inc(rq, yld_count);
4851 current->sched_class->yield_task(rq);
4852
4853 /*
4854 * Since we are going to call schedule() anyway, there's
4855 * no need to preempt or enable interrupts:
4856 */
4857 __release(rq->lock);
4858 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4859 _raw_spin_unlock(&rq->lock);
4860 preempt_enable_no_resched();
4861
4862 schedule();
4863
4864 return 0;
4865 }
4866
4867 static void __cond_resched(void)
4868 {
4869 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4870 __might_sleep(__FILE__, __LINE__);
4871 #endif
4872 /*
4873 * The BKS might be reacquired before we have dropped
4874 * PREEMPT_ACTIVE, which could trigger a second
4875 * cond_resched() call.
4876 */
4877 do {
4878 add_preempt_count(PREEMPT_ACTIVE);
4879 schedule();
4880 sub_preempt_count(PREEMPT_ACTIVE);
4881 } while (need_resched());
4882 }
4883
4884 #if !defined(CONFIG_PREEMPT) || defined(CONFIG_PREEMPT_VOLUNTARY)
4885 int __sched _cond_resched(void)
4886 {
4887 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4888 system_state == SYSTEM_RUNNING) {
4889 __cond_resched();
4890 return 1;
4891 }
4892 return 0;
4893 }
4894 EXPORT_SYMBOL(_cond_resched);
4895 #endif
4896
4897 /*
4898 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4899 * call schedule, and on return reacquire the lock.
4900 *
4901 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4902 * operations here to prevent schedule() from being called twice (once via
4903 * spin_unlock(), once by hand).
4904 */
4905 int cond_resched_lock(spinlock_t *lock)
4906 {
4907 int ret = 0;
4908
4909 if (need_lockbreak(lock)) {
4910 spin_unlock(lock);
4911 cpu_relax();
4912 ret = 1;
4913 spin_lock(lock);
4914 }
4915 if (need_resched() && system_state == SYSTEM_RUNNING) {
4916 spin_release(&lock->dep_map, 1, _THIS_IP_);
4917 _raw_spin_unlock(lock);
4918 preempt_enable_no_resched();
4919 __cond_resched();
4920 ret = 1;
4921 spin_lock(lock);
4922 }
4923 return ret;
4924 }
4925 EXPORT_SYMBOL(cond_resched_lock);
4926
4927 int __sched cond_resched_softirq(void)
4928 {
4929 BUG_ON(!in_softirq());
4930
4931 if (need_resched() && system_state == SYSTEM_RUNNING) {
4932 local_bh_enable();
4933 __cond_resched();
4934 local_bh_disable();
4935 return 1;
4936 }
4937 return 0;
4938 }
4939 EXPORT_SYMBOL(cond_resched_softirq);
4940
4941 /**
4942 * yield - yield the current processor to other threads.
4943 *
4944 * This is a shortcut for kernel-space yielding - it marks the
4945 * thread runnable and calls sys_sched_yield().
4946 */
4947 void __sched yield(void)
4948 {
4949 set_current_state(TASK_RUNNING);
4950 sys_sched_yield();
4951 }
4952 EXPORT_SYMBOL(yield);
4953
4954 /*
4955 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4956 * that process accounting knows that this is a task in IO wait state.
4957 *
4958 * But don't do that if it is a deliberate, throttling IO wait (this task
4959 * has set its backing_dev_info: the queue against which it should throttle)
4960 */
4961 void __sched io_schedule(void)
4962 {
4963 struct rq *rq = &__raw_get_cpu_var(runqueues);
4964
4965 delayacct_blkio_start();
4966 atomic_inc(&rq->nr_iowait);
4967 schedule();
4968 atomic_dec(&rq->nr_iowait);
4969 delayacct_blkio_end();
4970 }
4971 EXPORT_SYMBOL(io_schedule);
4972
4973 long __sched io_schedule_timeout(long timeout)
4974 {
4975 struct rq *rq = &__raw_get_cpu_var(runqueues);
4976 long ret;
4977
4978 delayacct_blkio_start();
4979 atomic_inc(&rq->nr_iowait);
4980 ret = schedule_timeout(timeout);
4981 atomic_dec(&rq->nr_iowait);
4982 delayacct_blkio_end();
4983 return ret;
4984 }
4985
4986 /**
4987 * sys_sched_get_priority_max - return maximum RT priority.
4988 * @policy: scheduling class.
4989 *
4990 * this syscall returns the maximum rt_priority that can be used
4991 * by a given scheduling class.
4992 */
4993 asmlinkage long sys_sched_get_priority_max(int policy)
4994 {
4995 int ret = -EINVAL;
4996
4997 switch (policy) {
4998 case SCHED_FIFO:
4999 case SCHED_RR:
5000 ret = MAX_USER_RT_PRIO-1;
5001 break;
5002 case SCHED_NORMAL:
5003 case SCHED_BATCH:
5004 case SCHED_IDLE:
5005 ret = 0;
5006 break;
5007 }
5008 return ret;
5009 }
5010
5011 /**
5012 * sys_sched_get_priority_min - return minimum RT priority.
5013 * @policy: scheduling class.
5014 *
5015 * this syscall returns the minimum rt_priority that can be used
5016 * by a given scheduling class.
5017 */
5018 asmlinkage long sys_sched_get_priority_min(int policy)
5019 {
5020 int ret = -EINVAL;
5021
5022 switch (policy) {
5023 case SCHED_FIFO:
5024 case SCHED_RR:
5025 ret = 1;
5026 break;
5027 case SCHED_NORMAL:
5028 case SCHED_BATCH:
5029 case SCHED_IDLE:
5030 ret = 0;
5031 }
5032 return ret;
5033 }
5034
5035 /**
5036 * sys_sched_rr_get_interval - return the default timeslice of a process.
5037 * @pid: pid of the process.
5038 * @interval: userspace pointer to the timeslice value.
5039 *
5040 * this syscall writes the default timeslice value of a given process
5041 * into the user-space timespec buffer. A value of '0' means infinity.
5042 */
5043 asmlinkage
5044 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5045 {
5046 struct task_struct *p;
5047 unsigned int time_slice;
5048 int retval;
5049 struct timespec t;
5050
5051 if (pid < 0)
5052 return -EINVAL;
5053
5054 retval = -ESRCH;
5055 read_lock(&tasklist_lock);
5056 p = find_process_by_pid(pid);
5057 if (!p)
5058 goto out_unlock;
5059
5060 retval = security_task_getscheduler(p);
5061 if (retval)
5062 goto out_unlock;
5063
5064 /*
5065 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5066 * tasks that are on an otherwise idle runqueue:
5067 */
5068 time_slice = 0;
5069 if (p->policy == SCHED_RR) {
5070 time_slice = DEF_TIMESLICE;
5071 } else {
5072 struct sched_entity *se = &p->se;
5073 unsigned long flags;
5074 struct rq *rq;
5075
5076 rq = task_rq_lock(p, &flags);
5077 if (rq->cfs.load.weight)
5078 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
5079 task_rq_unlock(rq, &flags);
5080 }
5081 read_unlock(&tasklist_lock);
5082 jiffies_to_timespec(time_slice, &t);
5083 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5084 return retval;
5085
5086 out_unlock:
5087 read_unlock(&tasklist_lock);
5088 return retval;
5089 }
5090
5091 static const char stat_nam[] = "RSDTtZX";
5092
5093 void sched_show_task(struct task_struct *p)
5094 {
5095 unsigned long free = 0;
5096 unsigned state;
5097
5098 state = p->state ? __ffs(p->state) + 1 : 0;
5099 printk(KERN_INFO "%-13.13s %c", p->comm,
5100 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5101 #if BITS_PER_LONG == 32
5102 if (state == TASK_RUNNING)
5103 printk(KERN_CONT " running ");
5104 else
5105 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5106 #else
5107 if (state == TASK_RUNNING)
5108 printk(KERN_CONT " running task ");
5109 else
5110 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5111 #endif
5112 #ifdef CONFIG_DEBUG_STACK_USAGE
5113 {
5114 unsigned long *n = end_of_stack(p);
5115 while (!*n)
5116 n++;
5117 free = (unsigned long)n - (unsigned long)end_of_stack(p);
5118 }
5119 #endif
5120 printk(KERN_CONT "%5lu %5d %6d\n", free,
5121 task_pid_nr(p), task_pid_nr(p->real_parent));
5122
5123 if (state != TASK_RUNNING)
5124 show_stack(p, NULL);
5125 }
5126
5127 void show_state_filter(unsigned long state_filter)
5128 {
5129 struct task_struct *g, *p;
5130
5131 #if BITS_PER_LONG == 32
5132 printk(KERN_INFO
5133 " task PC stack pid father\n");
5134 #else
5135 printk(KERN_INFO
5136 " task PC stack pid father\n");
5137 #endif
5138 read_lock(&tasklist_lock);
5139 do_each_thread(g, p) {
5140 /*
5141 * reset the NMI-timeout, listing all files on a slow
5142 * console might take alot of time:
5143 */
5144 touch_nmi_watchdog();
5145 if (!state_filter || (p->state & state_filter))
5146 sched_show_task(p);
5147 } while_each_thread(g, p);
5148
5149 touch_all_softlockup_watchdogs();
5150
5151 #ifdef CONFIG_SCHED_DEBUG
5152 sysrq_sched_debug_show();
5153 #endif
5154 read_unlock(&tasklist_lock);
5155 /*
5156 * Only show locks if all tasks are dumped:
5157 */
5158 if (state_filter == -1)
5159 debug_show_all_locks();
5160 }
5161
5162 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5163 {
5164 idle->sched_class = &idle_sched_class;
5165 }
5166
5167 /**
5168 * init_idle - set up an idle thread for a given CPU
5169 * @idle: task in question
5170 * @cpu: cpu the idle task belongs to
5171 *
5172 * NOTE: this function does not set the idle thread's NEED_RESCHED
5173 * flag, to make booting more robust.
5174 */
5175 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5176 {
5177 struct rq *rq = cpu_rq(cpu);
5178 unsigned long flags;
5179
5180 __sched_fork(idle);
5181 idle->se.exec_start = sched_clock();
5182
5183 idle->prio = idle->normal_prio = MAX_PRIO;
5184 idle->cpus_allowed = cpumask_of_cpu(cpu);
5185 __set_task_cpu(idle, cpu);
5186
5187 spin_lock_irqsave(&rq->lock, flags);
5188 rq->curr = rq->idle = idle;
5189 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5190 idle->oncpu = 1;
5191 #endif
5192 spin_unlock_irqrestore(&rq->lock, flags);
5193
5194 /* Set the preempt count _outside_ the spinlocks! */
5195 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
5196 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5197 #else
5198 task_thread_info(idle)->preempt_count = 0;
5199 #endif
5200 /*
5201 * The idle tasks have their own, simple scheduling class:
5202 */
5203 idle->sched_class = &idle_sched_class;
5204 }
5205
5206 /*
5207 * In a system that switches off the HZ timer nohz_cpu_mask
5208 * indicates which cpus entered this state. This is used
5209 * in the rcu update to wait only for active cpus. For system
5210 * which do not switch off the HZ timer nohz_cpu_mask should
5211 * always be CPU_MASK_NONE.
5212 */
5213 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5214
5215 /*
5216 * Increase the granularity value when there are more CPUs,
5217 * because with more CPUs the 'effective latency' as visible
5218 * to users decreases. But the relationship is not linear,
5219 * so pick a second-best guess by going with the log2 of the
5220 * number of CPUs.
5221 *
5222 * This idea comes from the SD scheduler of Con Kolivas:
5223 */
5224 static inline void sched_init_granularity(void)
5225 {
5226 unsigned int factor = 1 + ilog2(num_online_cpus());
5227 const unsigned long limit = 200000000;
5228
5229 sysctl_sched_min_granularity *= factor;
5230 if (sysctl_sched_min_granularity > limit)
5231 sysctl_sched_min_granularity = limit;
5232
5233 sysctl_sched_latency *= factor;
5234 if (sysctl_sched_latency > limit)
5235 sysctl_sched_latency = limit;
5236
5237 sysctl_sched_wakeup_granularity *= factor;
5238 sysctl_sched_batch_wakeup_granularity *= factor;
5239 }
5240
5241 #ifdef CONFIG_SMP
5242 /*
5243 * This is how migration works:
5244 *
5245 * 1) we queue a struct migration_req structure in the source CPU's
5246 * runqueue and wake up that CPU's migration thread.
5247 * 2) we down() the locked semaphore => thread blocks.
5248 * 3) migration thread wakes up (implicitly it forces the migrated
5249 * thread off the CPU)
5250 * 4) it gets the migration request and checks whether the migrated
5251 * task is still in the wrong runqueue.
5252 * 5) if it's in the wrong runqueue then the migration thread removes
5253 * it and puts it into the right queue.
5254 * 6) migration thread up()s the semaphore.
5255 * 7) we wake up and the migration is done.
5256 */
5257
5258 /*
5259 * Change a given task's CPU affinity. Migrate the thread to a
5260 * proper CPU and schedule it away if the CPU it's executing on
5261 * is removed from the allowed bitmask.
5262 *
5263 * NOTE: the caller must have a valid reference to the task, the
5264 * task must not exit() & deallocate itself prematurely. The
5265 * call is not atomic; no spinlocks may be held.
5266 */
5267 int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
5268 {
5269 struct migration_req req;
5270 unsigned long flags;
5271 struct rq *rq;
5272 int ret = 0;
5273
5274 rq = task_rq_lock(p, &flags);
5275 if (!cpus_intersects(new_mask, cpu_online_map)) {
5276 ret = -EINVAL;
5277 goto out;
5278 }
5279
5280 if (p->sched_class->set_cpus_allowed)
5281 p->sched_class->set_cpus_allowed(p, &new_mask);
5282 else {
5283 p->cpus_allowed = new_mask;
5284 p->nr_cpus_allowed = cpus_weight(new_mask);
5285 }
5286
5287 /* Can the task run on the task's current CPU? If so, we're done */
5288 if (cpu_isset(task_cpu(p), new_mask))
5289 goto out;
5290
5291 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
5292 /* Need help from migration thread: drop lock and wait. */
5293 task_rq_unlock(rq, &flags);
5294 wake_up_process(rq->migration_thread);
5295 wait_for_completion(&req.done);
5296 tlb_migrate_finish(p->mm);
5297 return 0;
5298 }
5299 out:
5300 task_rq_unlock(rq, &flags);
5301
5302 return ret;
5303 }
5304 EXPORT_SYMBOL_GPL(set_cpus_allowed);
5305
5306 /*
5307 * Move (not current) task off this cpu, onto dest cpu. We're doing
5308 * this because either it can't run here any more (set_cpus_allowed()
5309 * away from this CPU, or CPU going down), or because we're
5310 * attempting to rebalance this task on exec (sched_exec).
5311 *
5312 * So we race with normal scheduler movements, but that's OK, as long
5313 * as the task is no longer on this CPU.
5314 *
5315 * Returns non-zero if task was successfully migrated.
5316 */
5317 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5318 {
5319 struct rq *rq_dest, *rq_src;
5320 int ret = 0, on_rq;
5321
5322 if (unlikely(cpu_is_offline(dest_cpu)))
5323 return ret;
5324
5325 rq_src = cpu_rq(src_cpu);
5326 rq_dest = cpu_rq(dest_cpu);
5327
5328 double_rq_lock(rq_src, rq_dest);
5329 /* Already moved. */
5330 if (task_cpu(p) != src_cpu)
5331 goto out;
5332 /* Affinity changed (again). */
5333 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5334 goto out;
5335
5336 on_rq = p->se.on_rq;
5337 if (on_rq)
5338 deactivate_task(rq_src, p, 0);
5339
5340 set_task_cpu(p, dest_cpu);
5341 if (on_rq) {
5342 activate_task(rq_dest, p, 0);
5343 check_preempt_curr(rq_dest, p);
5344 }
5345 ret = 1;
5346 out:
5347 double_rq_unlock(rq_src, rq_dest);
5348 return ret;
5349 }
5350
5351 /*
5352 * migration_thread - this is a highprio system thread that performs
5353 * thread migration by bumping thread off CPU then 'pushing' onto
5354 * another runqueue.
5355 */
5356 static int migration_thread(void *data)
5357 {
5358 int cpu = (long)data;
5359 struct rq *rq;
5360
5361 rq = cpu_rq(cpu);
5362 BUG_ON(rq->migration_thread != current);
5363
5364 set_current_state(TASK_INTERRUPTIBLE);
5365 while (!kthread_should_stop()) {
5366 struct migration_req *req;
5367 struct list_head *head;
5368
5369 spin_lock_irq(&rq->lock);
5370
5371 if (cpu_is_offline(cpu)) {
5372 spin_unlock_irq(&rq->lock);
5373 goto wait_to_die;
5374 }
5375
5376 if (rq->active_balance) {
5377 active_load_balance(rq, cpu);
5378 rq->active_balance = 0;
5379 }
5380
5381 head = &rq->migration_queue;
5382
5383 if (list_empty(head)) {
5384 spin_unlock_irq(&rq->lock);
5385 schedule();
5386 set_current_state(TASK_INTERRUPTIBLE);
5387 continue;
5388 }
5389 req = list_entry(head->next, struct migration_req, list);
5390 list_del_init(head->next);
5391
5392 spin_unlock(&rq->lock);
5393 __migrate_task(req->task, cpu, req->dest_cpu);
5394 local_irq_enable();
5395
5396 complete(&req->done);
5397 }
5398 __set_current_state(TASK_RUNNING);
5399 return 0;
5400
5401 wait_to_die:
5402 /* Wait for kthread_stop */
5403 set_current_state(TASK_INTERRUPTIBLE);
5404 while (!kthread_should_stop()) {
5405 schedule();
5406 set_current_state(TASK_INTERRUPTIBLE);
5407 }
5408 __set_current_state(TASK_RUNNING);
5409 return 0;
5410 }
5411
5412 #ifdef CONFIG_HOTPLUG_CPU
5413
5414 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5415 {
5416 int ret;
5417
5418 local_irq_disable();
5419 ret = __migrate_task(p, src_cpu, dest_cpu);
5420 local_irq_enable();
5421 return ret;
5422 }
5423
5424 /*
5425 * Figure out where task on dead CPU should go, use force if necessary.
5426 * NOTE: interrupts should be disabled by the caller
5427 */
5428 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5429 {
5430 unsigned long flags;
5431 cpumask_t mask;
5432 struct rq *rq;
5433 int dest_cpu;
5434
5435 do {
5436 /* On same node? */
5437 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5438 cpus_and(mask, mask, p->cpus_allowed);
5439 dest_cpu = any_online_cpu(mask);
5440
5441 /* On any allowed CPU? */
5442 if (dest_cpu == NR_CPUS)
5443 dest_cpu = any_online_cpu(p->cpus_allowed);
5444
5445 /* No more Mr. Nice Guy. */
5446 if (dest_cpu == NR_CPUS) {
5447 cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
5448 /*
5449 * Try to stay on the same cpuset, where the
5450 * current cpuset may be a subset of all cpus.
5451 * The cpuset_cpus_allowed_locked() variant of
5452 * cpuset_cpus_allowed() will not block. It must be
5453 * called within calls to cpuset_lock/cpuset_unlock.
5454 */
5455 rq = task_rq_lock(p, &flags);
5456 p->cpus_allowed = cpus_allowed;
5457 dest_cpu = any_online_cpu(p->cpus_allowed);
5458 task_rq_unlock(rq, &flags);
5459
5460 /*
5461 * Don't tell them about moving exiting tasks or
5462 * kernel threads (both mm NULL), since they never
5463 * leave kernel.
5464 */
5465 if (p->mm && printk_ratelimit()) {
5466 printk(KERN_INFO "process %d (%s) no "
5467 "longer affine to cpu%d\n",
5468 task_pid_nr(p), p->comm, dead_cpu);
5469 }
5470 }
5471 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
5472 }
5473
5474 /*
5475 * While a dead CPU has no uninterruptible tasks queued at this point,
5476 * it might still have a nonzero ->nr_uninterruptible counter, because
5477 * for performance reasons the counter is not stricly tracking tasks to
5478 * their home CPUs. So we just add the counter to another CPU's counter,
5479 * to keep the global sum constant after CPU-down:
5480 */
5481 static void migrate_nr_uninterruptible(struct rq *rq_src)
5482 {
5483 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
5484 unsigned long flags;
5485
5486 local_irq_save(flags);
5487 double_rq_lock(rq_src, rq_dest);
5488 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5489 rq_src->nr_uninterruptible = 0;
5490 double_rq_unlock(rq_src, rq_dest);
5491 local_irq_restore(flags);
5492 }
5493
5494 /* Run through task list and migrate tasks from the dead cpu. */
5495 static void migrate_live_tasks(int src_cpu)
5496 {
5497 struct task_struct *p, *t;
5498
5499 read_lock(&tasklist_lock);
5500
5501 do_each_thread(t, p) {
5502 if (p == current)
5503 continue;
5504
5505 if (task_cpu(p) == src_cpu)
5506 move_task_off_dead_cpu(src_cpu, p);
5507 } while_each_thread(t, p);
5508
5509 read_unlock(&tasklist_lock);
5510 }
5511
5512 /*
5513 * Schedules idle task to be the next runnable task on current CPU.
5514 * It does so by boosting its priority to highest possible.
5515 * Used by CPU offline code.
5516 */
5517 void sched_idle_next(void)
5518 {
5519 int this_cpu = smp_processor_id();
5520 struct rq *rq = cpu_rq(this_cpu);
5521 struct task_struct *p = rq->idle;
5522 unsigned long flags;
5523
5524 /* cpu has to be offline */
5525 BUG_ON(cpu_online(this_cpu));
5526
5527 /*
5528 * Strictly not necessary since rest of the CPUs are stopped by now
5529 * and interrupts disabled on the current cpu.
5530 */
5531 spin_lock_irqsave(&rq->lock, flags);
5532
5533 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5534
5535 update_rq_clock(rq);
5536 activate_task(rq, p, 0);
5537
5538 spin_unlock_irqrestore(&rq->lock, flags);
5539 }
5540
5541 /*
5542 * Ensures that the idle task is using init_mm right before its cpu goes
5543 * offline.
5544 */
5545 void idle_task_exit(void)
5546 {
5547 struct mm_struct *mm = current->active_mm;
5548
5549 BUG_ON(cpu_online(smp_processor_id()));
5550
5551 if (mm != &init_mm)
5552 switch_mm(mm, &init_mm, current);
5553 mmdrop(mm);
5554 }
5555
5556 /* called under rq->lock with disabled interrupts */
5557 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5558 {
5559 struct rq *rq = cpu_rq(dead_cpu);
5560
5561 /* Must be exiting, otherwise would be on tasklist. */
5562 BUG_ON(!p->exit_state);
5563
5564 /* Cannot have done final schedule yet: would have vanished. */
5565 BUG_ON(p->state == TASK_DEAD);
5566
5567 get_task_struct(p);
5568
5569 /*
5570 * Drop lock around migration; if someone else moves it,
5571 * that's OK. No task can be added to this CPU, so iteration is
5572 * fine.
5573 */
5574 spin_unlock_irq(&rq->lock);
5575 move_task_off_dead_cpu(dead_cpu, p);
5576 spin_lock_irq(&rq->lock);
5577
5578 put_task_struct(p);
5579 }
5580
5581 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5582 static void migrate_dead_tasks(unsigned int dead_cpu)
5583 {
5584 struct rq *rq = cpu_rq(dead_cpu);
5585 struct task_struct *next;
5586
5587 for ( ; ; ) {
5588 if (!rq->nr_running)
5589 break;
5590 update_rq_clock(rq);
5591 next = pick_next_task(rq, rq->curr);
5592 if (!next)
5593 break;
5594 migrate_dead(dead_cpu, next);
5595
5596 }
5597 }
5598 #endif /* CONFIG_HOTPLUG_CPU */
5599
5600 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5601
5602 static struct ctl_table sd_ctl_dir[] = {
5603 {
5604 .procname = "sched_domain",
5605 .mode = 0555,
5606 },
5607 {0, },
5608 };
5609
5610 static struct ctl_table sd_ctl_root[] = {
5611 {
5612 .ctl_name = CTL_KERN,
5613 .procname = "kernel",
5614 .mode = 0555,
5615 .child = sd_ctl_dir,
5616 },
5617 {0, },
5618 };
5619
5620 static struct ctl_table *sd_alloc_ctl_entry(int n)
5621 {
5622 struct ctl_table *entry =
5623 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5624
5625 return entry;
5626 }
5627
5628 static void sd_free_ctl_entry(struct ctl_table **tablep)
5629 {
5630 struct ctl_table *entry;
5631
5632 /*
5633 * In the intermediate directories, both the child directory and
5634 * procname are dynamically allocated and could fail but the mode
5635 * will always be set. In the lowest directory the names are
5636 * static strings and all have proc handlers.
5637 */
5638 for (entry = *tablep; entry->mode; entry++) {
5639 if (entry->child)
5640 sd_free_ctl_entry(&entry->child);
5641 if (entry->proc_handler == NULL)
5642 kfree(entry->procname);
5643 }
5644
5645 kfree(*tablep);
5646 *tablep = NULL;
5647 }
5648
5649 static void
5650 set_table_entry(struct ctl_table *entry,
5651 const char *procname, void *data, int maxlen,
5652 mode_t mode, proc_handler *proc_handler)
5653 {
5654 entry->procname = procname;
5655 entry->data = data;
5656 entry->maxlen = maxlen;
5657 entry->mode = mode;
5658 entry->proc_handler = proc_handler;
5659 }
5660
5661 static struct ctl_table *
5662 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5663 {
5664 struct ctl_table *table = sd_alloc_ctl_entry(12);
5665
5666 if (table == NULL)
5667 return NULL;
5668
5669 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5670 sizeof(long), 0644, proc_doulongvec_minmax);
5671 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5672 sizeof(long), 0644, proc_doulongvec_minmax);
5673 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5674 sizeof(int), 0644, proc_dointvec_minmax);
5675 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5676 sizeof(int), 0644, proc_dointvec_minmax);
5677 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5678 sizeof(int), 0644, proc_dointvec_minmax);
5679 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5680 sizeof(int), 0644, proc_dointvec_minmax);
5681 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5682 sizeof(int), 0644, proc_dointvec_minmax);
5683 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5684 sizeof(int), 0644, proc_dointvec_minmax);
5685 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5686 sizeof(int), 0644, proc_dointvec_minmax);
5687 set_table_entry(&table[9], "cache_nice_tries",
5688 &sd->cache_nice_tries,
5689 sizeof(int), 0644, proc_dointvec_minmax);
5690 set_table_entry(&table[10], "flags", &sd->flags,
5691 sizeof(int), 0644, proc_dointvec_minmax);
5692 /* &table[11] is terminator */
5693
5694 return table;
5695 }
5696
5697 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5698 {
5699 struct ctl_table *entry, *table;
5700 struct sched_domain *sd;
5701 int domain_num = 0, i;
5702 char buf[32];
5703
5704 for_each_domain(cpu, sd)
5705 domain_num++;
5706 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5707 if (table == NULL)
5708 return NULL;
5709
5710 i = 0;
5711 for_each_domain(cpu, sd) {
5712 snprintf(buf, 32, "domain%d", i);
5713 entry->procname = kstrdup(buf, GFP_KERNEL);
5714 entry->mode = 0555;
5715 entry->child = sd_alloc_ctl_domain_table(sd);
5716 entry++;
5717 i++;
5718 }
5719 return table;
5720 }
5721
5722 static struct ctl_table_header *sd_sysctl_header;
5723 static void register_sched_domain_sysctl(void)
5724 {
5725 int i, cpu_num = num_online_cpus();
5726 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5727 char buf[32];
5728
5729 WARN_ON(sd_ctl_dir[0].child);
5730 sd_ctl_dir[0].child = entry;
5731
5732 if (entry == NULL)
5733 return;
5734
5735 for_each_online_cpu(i) {
5736 snprintf(buf, 32, "cpu%d", i);
5737 entry->procname = kstrdup(buf, GFP_KERNEL);
5738 entry->mode = 0555;
5739 entry->child = sd_alloc_ctl_cpu_table(i);
5740 entry++;
5741 }
5742
5743 WARN_ON(sd_sysctl_header);
5744 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5745 }
5746
5747 /* may be called multiple times per register */
5748 static void unregister_sched_domain_sysctl(void)
5749 {
5750 if (sd_sysctl_header)
5751 unregister_sysctl_table(sd_sysctl_header);
5752 sd_sysctl_header = NULL;
5753 if (sd_ctl_dir[0].child)
5754 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5755 }
5756 #else
5757 static void register_sched_domain_sysctl(void)
5758 {
5759 }
5760 static void unregister_sched_domain_sysctl(void)
5761 {
5762 }
5763 #endif
5764
5765 /*
5766 * migration_call - callback that gets triggered when a CPU is added.
5767 * Here we can start up the necessary migration thread for the new CPU.
5768 */
5769 static int __cpuinit
5770 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5771 {
5772 struct task_struct *p;
5773 int cpu = (long)hcpu;
5774 unsigned long flags;
5775 struct rq *rq;
5776
5777 switch (action) {
5778
5779 case CPU_UP_PREPARE:
5780 case CPU_UP_PREPARE_FROZEN:
5781 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
5782 if (IS_ERR(p))
5783 return NOTIFY_BAD;
5784 kthread_bind(p, cpu);
5785 /* Must be high prio: stop_machine expects to yield to it. */
5786 rq = task_rq_lock(p, &flags);
5787 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5788 task_rq_unlock(rq, &flags);
5789 cpu_rq(cpu)->migration_thread = p;
5790 break;
5791
5792 case CPU_ONLINE:
5793 case CPU_ONLINE_FROZEN:
5794 /* Strictly unnecessary, as first user will wake it. */
5795 wake_up_process(cpu_rq(cpu)->migration_thread);
5796
5797 /* Update our root-domain */
5798 rq = cpu_rq(cpu);
5799 spin_lock_irqsave(&rq->lock, flags);
5800 if (rq->rd) {
5801 BUG_ON(!cpu_isset(cpu, rq->rd->span));
5802 cpu_set(cpu, rq->rd->online);
5803 }
5804 spin_unlock_irqrestore(&rq->lock, flags);
5805 break;
5806
5807 #ifdef CONFIG_HOTPLUG_CPU
5808 case CPU_UP_CANCELED:
5809 case CPU_UP_CANCELED_FROZEN:
5810 if (!cpu_rq(cpu)->migration_thread)
5811 break;
5812 /* Unbind it from offline cpu so it can run. Fall thru. */
5813 kthread_bind(cpu_rq(cpu)->migration_thread,
5814 any_online_cpu(cpu_online_map));
5815 kthread_stop(cpu_rq(cpu)->migration_thread);
5816 cpu_rq(cpu)->migration_thread = NULL;
5817 break;
5818
5819 case CPU_DEAD:
5820 case CPU_DEAD_FROZEN:
5821 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
5822 migrate_live_tasks(cpu);
5823 rq = cpu_rq(cpu);
5824 kthread_stop(rq->migration_thread);
5825 rq->migration_thread = NULL;
5826 /* Idle task back to normal (off runqueue, low prio) */
5827 spin_lock_irq(&rq->lock);
5828 update_rq_clock(rq);
5829 deactivate_task(rq, rq->idle, 0);
5830 rq->idle->static_prio = MAX_PRIO;
5831 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5832 rq->idle->sched_class = &idle_sched_class;
5833 migrate_dead_tasks(cpu);
5834 spin_unlock_irq(&rq->lock);
5835 cpuset_unlock();
5836 migrate_nr_uninterruptible(rq);
5837 BUG_ON(rq->nr_running != 0);
5838
5839 /*
5840 * No need to migrate the tasks: it was best-effort if
5841 * they didn't take sched_hotcpu_mutex. Just wake up
5842 * the requestors.
5843 */
5844 spin_lock_irq(&rq->lock);
5845 while (!list_empty(&rq->migration_queue)) {
5846 struct migration_req *req;
5847
5848 req = list_entry(rq->migration_queue.next,
5849 struct migration_req, list);
5850 list_del_init(&req->list);
5851 complete(&req->done);
5852 }
5853 spin_unlock_irq(&rq->lock);
5854 break;
5855
5856 case CPU_DOWN_PREPARE:
5857 /* Update our root-domain */
5858 rq = cpu_rq(cpu);
5859 spin_lock_irqsave(&rq->lock, flags);
5860 if (rq->rd) {
5861 BUG_ON(!cpu_isset(cpu, rq->rd->span));
5862 cpu_clear(cpu, rq->rd->online);
5863 }
5864 spin_unlock_irqrestore(&rq->lock, flags);
5865 break;
5866 #endif
5867 }
5868 return NOTIFY_OK;
5869 }
5870
5871 /* Register at highest priority so that task migration (migrate_all_tasks)
5872 * happens before everything else.
5873 */
5874 static struct notifier_block __cpuinitdata migration_notifier = {
5875 .notifier_call = migration_call,
5876 .priority = 10
5877 };
5878
5879 void __init migration_init(void)
5880 {
5881 void *cpu = (void *)(long)smp_processor_id();
5882 int err;
5883
5884 /* Start one for the boot CPU: */
5885 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5886 BUG_ON(err == NOTIFY_BAD);
5887 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5888 register_cpu_notifier(&migration_notifier);
5889 }
5890 #endif
5891
5892 #ifdef CONFIG_SMP
5893
5894 /* Number of possible processor ids */
5895 int nr_cpu_ids __read_mostly = NR_CPUS;
5896 EXPORT_SYMBOL(nr_cpu_ids);
5897
5898 #ifdef CONFIG_SCHED_DEBUG
5899
5900 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
5901 {
5902 struct sched_group *group = sd->groups;
5903 cpumask_t groupmask;
5904 char str[NR_CPUS];
5905
5906 cpumask_scnprintf(str, NR_CPUS, sd->span);
5907 cpus_clear(groupmask);
5908
5909 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5910
5911 if (!(sd->flags & SD_LOAD_BALANCE)) {
5912 printk("does not load-balance\n");
5913 if (sd->parent)
5914 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5915 " has parent");
5916 return -1;
5917 }
5918
5919 printk(KERN_CONT "span %s\n", str);
5920
5921 if (!cpu_isset(cpu, sd->span)) {
5922 printk(KERN_ERR "ERROR: domain->span does not contain "
5923 "CPU%d\n", cpu);
5924 }
5925 if (!cpu_isset(cpu, group->cpumask)) {
5926 printk(KERN_ERR "ERROR: domain->groups does not contain"
5927 " CPU%d\n", cpu);
5928 }
5929
5930 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5931 do {
5932 if (!group) {
5933 printk("\n");
5934 printk(KERN_ERR "ERROR: group is NULL\n");
5935 break;
5936 }
5937
5938 if (!group->__cpu_power) {
5939 printk(KERN_CONT "\n");
5940 printk(KERN_ERR "ERROR: domain->cpu_power not "
5941 "set\n");
5942 break;
5943 }
5944
5945 if (!cpus_weight(group->cpumask)) {
5946 printk(KERN_CONT "\n");
5947 printk(KERN_ERR "ERROR: empty group\n");
5948 break;
5949 }
5950
5951 if (cpus_intersects(groupmask, group->cpumask)) {
5952 printk(KERN_CONT "\n");
5953 printk(KERN_ERR "ERROR: repeated CPUs\n");
5954 break;
5955 }
5956
5957 cpus_or(groupmask, groupmask, group->cpumask);
5958
5959 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5960 printk(KERN_CONT " %s", str);
5961
5962 group = group->next;
5963 } while (group != sd->groups);
5964 printk(KERN_CONT "\n");
5965
5966 if (!cpus_equal(sd->span, groupmask))
5967 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5968
5969 if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
5970 printk(KERN_ERR "ERROR: parent span is not a superset "
5971 "of domain->span\n");
5972 return 0;
5973 }
5974
5975 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5976 {
5977 int level = 0;
5978
5979 if (!sd) {
5980 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5981 return;
5982 }
5983
5984 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5985
5986 for (;;) {
5987 if (sched_domain_debug_one(sd, cpu, level))
5988 break;
5989 level++;
5990 sd = sd->parent;
5991 if (!sd)
5992 break;
5993 }
5994 }
5995 #else
5996 # define sched_domain_debug(sd, cpu) do { } while (0)
5997 #endif
5998
5999 static int sd_degenerate(struct sched_domain *sd)
6000 {
6001 if (cpus_weight(sd->span) == 1)
6002 return 1;
6003
6004 /* Following flags need at least 2 groups */
6005 if (sd->flags & (SD_LOAD_BALANCE |
6006 SD_BALANCE_NEWIDLE |
6007 SD_BALANCE_FORK |
6008 SD_BALANCE_EXEC |
6009 SD_SHARE_CPUPOWER |
6010 SD_SHARE_PKG_RESOURCES)) {
6011 if (sd->groups != sd->groups->next)
6012 return 0;
6013 }
6014
6015 /* Following flags don't use groups */
6016 if (sd->flags & (SD_WAKE_IDLE |
6017 SD_WAKE_AFFINE |
6018 SD_WAKE_BALANCE))
6019 return 0;
6020
6021 return 1;
6022 }
6023
6024 static int
6025 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6026 {
6027 unsigned long cflags = sd->flags, pflags = parent->flags;
6028
6029 if (sd_degenerate(parent))
6030 return 1;
6031
6032 if (!cpus_equal(sd->span, parent->span))
6033 return 0;
6034
6035 /* Does parent contain flags not in child? */
6036 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6037 if (cflags & SD_WAKE_AFFINE)
6038 pflags &= ~SD_WAKE_BALANCE;
6039 /* Flags needing groups don't count if only 1 group in parent */
6040 if (parent->groups == parent->groups->next) {
6041 pflags &= ~(SD_LOAD_BALANCE |
6042 SD_BALANCE_NEWIDLE |
6043 SD_BALANCE_FORK |
6044 SD_BALANCE_EXEC |
6045 SD_SHARE_CPUPOWER |
6046 SD_SHARE_PKG_RESOURCES);
6047 }
6048 if (~cflags & pflags)
6049 return 0;
6050
6051 return 1;
6052 }
6053
6054 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6055 {
6056 unsigned long flags;
6057 const struct sched_class *class;
6058
6059 spin_lock_irqsave(&rq->lock, flags);
6060
6061 if (rq->rd) {
6062 struct root_domain *old_rd = rq->rd;
6063
6064 for (class = sched_class_highest; class; class = class->next) {
6065 if (class->leave_domain)
6066 class->leave_domain(rq);
6067 }
6068
6069 cpu_clear(rq->cpu, old_rd->span);
6070 cpu_clear(rq->cpu, old_rd->online);
6071
6072 if (atomic_dec_and_test(&old_rd->refcount))
6073 kfree(old_rd);
6074 }
6075
6076 atomic_inc(&rd->refcount);
6077 rq->rd = rd;
6078
6079 cpu_set(rq->cpu, rd->span);
6080 if (cpu_isset(rq->cpu, cpu_online_map))
6081 cpu_set(rq->cpu, rd->online);
6082
6083 for (class = sched_class_highest; class; class = class->next) {
6084 if (class->join_domain)
6085 class->join_domain(rq);
6086 }
6087
6088 spin_unlock_irqrestore(&rq->lock, flags);
6089 }
6090
6091 static void init_rootdomain(struct root_domain *rd)
6092 {
6093 memset(rd, 0, sizeof(*rd));
6094
6095 cpus_clear(rd->span);
6096 cpus_clear(rd->online);
6097 }
6098
6099 static void init_defrootdomain(void)
6100 {
6101 init_rootdomain(&def_root_domain);
6102 atomic_set(&def_root_domain.refcount, 1);
6103 }
6104
6105 static struct root_domain *alloc_rootdomain(void)
6106 {
6107 struct root_domain *rd;
6108
6109 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6110 if (!rd)
6111 return NULL;
6112
6113 init_rootdomain(rd);
6114
6115 return rd;
6116 }
6117
6118 /*
6119 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6120 * hold the hotplug lock.
6121 */
6122 static void
6123 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6124 {
6125 struct rq *rq = cpu_rq(cpu);
6126 struct sched_domain *tmp;
6127
6128 /* Remove the sched domains which do not contribute to scheduling. */
6129 for (tmp = sd; tmp; tmp = tmp->parent) {
6130 struct sched_domain *parent = tmp->parent;
6131 if (!parent)
6132 break;
6133 if (sd_parent_degenerate(tmp, parent)) {
6134 tmp->parent = parent->parent;
6135 if (parent->parent)
6136 parent->parent->child = tmp;
6137 }
6138 }
6139
6140 if (sd && sd_degenerate(sd)) {
6141 sd = sd->parent;
6142 if (sd)
6143 sd->child = NULL;
6144 }
6145
6146 sched_domain_debug(sd, cpu);
6147
6148 rq_attach_root(rq, rd);
6149 rcu_assign_pointer(rq->sd, sd);
6150 }
6151
6152 /* cpus with isolated domains */
6153 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
6154
6155 /* Setup the mask of cpus configured for isolated domains */
6156 static int __init isolated_cpu_setup(char *str)
6157 {
6158 int ints[NR_CPUS], i;
6159
6160 str = get_options(str, ARRAY_SIZE(ints), ints);
6161 cpus_clear(cpu_isolated_map);
6162 for (i = 1; i <= ints[0]; i++)
6163 if (ints[i] < NR_CPUS)
6164 cpu_set(ints[i], cpu_isolated_map);
6165 return 1;
6166 }
6167
6168 __setup("isolcpus=", isolated_cpu_setup);
6169
6170 /*
6171 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6172 * to a function which identifies what group(along with sched group) a CPU
6173 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6174 * (due to the fact that we keep track of groups covered with a cpumask_t).
6175 *
6176 * init_sched_build_groups will build a circular linked list of the groups
6177 * covered by the given span, and will set each group's ->cpumask correctly,
6178 * and ->cpu_power to 0.
6179 */
6180 static void
6181 init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
6182 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6183 struct sched_group **sg))
6184 {
6185 struct sched_group *first = NULL, *last = NULL;
6186 cpumask_t covered = CPU_MASK_NONE;
6187 int i;
6188
6189 for_each_cpu_mask(i, span) {
6190 struct sched_group *sg;
6191 int group = group_fn(i, cpu_map, &sg);
6192 int j;
6193
6194 if (cpu_isset(i, covered))
6195 continue;
6196
6197 sg->cpumask = CPU_MASK_NONE;
6198 sg->__cpu_power = 0;
6199
6200 for_each_cpu_mask(j, span) {
6201 if (group_fn(j, cpu_map, NULL) != group)
6202 continue;
6203
6204 cpu_set(j, covered);
6205 cpu_set(j, sg->cpumask);
6206 }
6207 if (!first)
6208 first = sg;
6209 if (last)
6210 last->next = sg;
6211 last = sg;
6212 }
6213 last->next = first;
6214 }
6215
6216 #define SD_NODES_PER_DOMAIN 16
6217
6218 #ifdef CONFIG_NUMA
6219
6220 /**
6221 * find_next_best_node - find the next node to include in a sched_domain
6222 * @node: node whose sched_domain we're building
6223 * @used_nodes: nodes already in the sched_domain
6224 *
6225 * Find the next node to include in a given scheduling domain. Simply
6226 * finds the closest node not already in the @used_nodes map.
6227 *
6228 * Should use nodemask_t.
6229 */
6230 static int find_next_best_node(int node, unsigned long *used_nodes)
6231 {
6232 int i, n, val, min_val, best_node = 0;
6233
6234 min_val = INT_MAX;
6235
6236 for (i = 0; i < MAX_NUMNODES; i++) {
6237 /* Start at @node */
6238 n = (node + i) % MAX_NUMNODES;
6239
6240 if (!nr_cpus_node(n))
6241 continue;
6242
6243 /* Skip already used nodes */
6244 if (test_bit(n, used_nodes))
6245 continue;
6246
6247 /* Simple min distance search */
6248 val = node_distance(node, n);
6249
6250 if (val < min_val) {
6251 min_val = val;
6252 best_node = n;
6253 }
6254 }
6255
6256 set_bit(best_node, used_nodes);
6257 return best_node;
6258 }
6259
6260 /**
6261 * sched_domain_node_span - get a cpumask for a node's sched_domain
6262 * @node: node whose cpumask we're constructing
6263 * @size: number of nodes to include in this span
6264 *
6265 * Given a node, construct a good cpumask for its sched_domain to span. It
6266 * should be one that prevents unnecessary balancing, but also spreads tasks
6267 * out optimally.
6268 */
6269 static cpumask_t sched_domain_node_span(int node)
6270 {
6271 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
6272 cpumask_t span, nodemask;
6273 int i;
6274
6275 cpus_clear(span);
6276 bitmap_zero(used_nodes, MAX_NUMNODES);
6277
6278 nodemask = node_to_cpumask(node);
6279 cpus_or(span, span, nodemask);
6280 set_bit(node, used_nodes);
6281
6282 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6283 int next_node = find_next_best_node(node, used_nodes);
6284
6285 nodemask = node_to_cpumask(next_node);
6286 cpus_or(span, span, nodemask);
6287 }
6288
6289 return span;
6290 }
6291 #endif
6292
6293 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6294
6295 /*
6296 * SMT sched-domains:
6297 */
6298 #ifdef CONFIG_SCHED_SMT
6299 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6300 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6301
6302 static int
6303 cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6304 {
6305 if (sg)
6306 *sg = &per_cpu(sched_group_cpus, cpu);
6307 return cpu;
6308 }
6309 #endif
6310
6311 /*
6312 * multi-core sched-domains:
6313 */
6314 #ifdef CONFIG_SCHED_MC
6315 static DEFINE_PER_CPU(struct sched_domain, core_domains);
6316 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6317 #endif
6318
6319 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6320 static int
6321 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6322 {
6323 int group;
6324 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6325 cpus_and(mask, mask, *cpu_map);
6326 group = first_cpu(mask);
6327 if (sg)
6328 *sg = &per_cpu(sched_group_core, group);
6329 return group;
6330 }
6331 #elif defined(CONFIG_SCHED_MC)
6332 static int
6333 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6334 {
6335 if (sg)
6336 *sg = &per_cpu(sched_group_core, cpu);
6337 return cpu;
6338 }
6339 #endif
6340
6341 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6342 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6343
6344 static int
6345 cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6346 {
6347 int group;
6348 #ifdef CONFIG_SCHED_MC
6349 cpumask_t mask = cpu_coregroup_map(cpu);
6350 cpus_and(mask, mask, *cpu_map);
6351 group = first_cpu(mask);
6352 #elif defined(CONFIG_SCHED_SMT)
6353 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6354 cpus_and(mask, mask, *cpu_map);
6355 group = first_cpu(mask);
6356 #else
6357 group = cpu;
6358 #endif
6359 if (sg)
6360 *sg = &per_cpu(sched_group_phys, group);
6361 return group;
6362 }
6363
6364 #ifdef CONFIG_NUMA
6365 /*
6366 * The init_sched_build_groups can't handle what we want to do with node
6367 * groups, so roll our own. Now each node has its own list of groups which
6368 * gets dynamically allocated.
6369 */
6370 static DEFINE_PER_CPU(struct sched_domain, node_domains);
6371 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
6372
6373 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6374 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6375
6376 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6377 struct sched_group **sg)
6378 {
6379 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
6380 int group;
6381
6382 cpus_and(nodemask, nodemask, *cpu_map);
6383 group = first_cpu(nodemask);
6384
6385 if (sg)
6386 *sg = &per_cpu(sched_group_allnodes, group);
6387 return group;
6388 }
6389
6390 static void init_numa_sched_groups_power(struct sched_group *group_head)
6391 {
6392 struct sched_group *sg = group_head;
6393 int j;
6394
6395 if (!sg)
6396 return;
6397 do {
6398 for_each_cpu_mask(j, sg->cpumask) {
6399 struct sched_domain *sd;
6400
6401 sd = &per_cpu(phys_domains, j);
6402 if (j != first_cpu(sd->groups->cpumask)) {
6403 /*
6404 * Only add "power" once for each
6405 * physical package.
6406 */
6407 continue;
6408 }
6409
6410 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6411 }
6412 sg = sg->next;
6413 } while (sg != group_head);
6414 }
6415 #endif
6416
6417 #ifdef CONFIG_NUMA
6418 /* Free memory allocated for various sched_group structures */
6419 static void free_sched_groups(const cpumask_t *cpu_map)
6420 {
6421 int cpu, i;
6422
6423 for_each_cpu_mask(cpu, *cpu_map) {
6424 struct sched_group **sched_group_nodes
6425 = sched_group_nodes_bycpu[cpu];
6426
6427 if (!sched_group_nodes)
6428 continue;
6429
6430 for (i = 0; i < MAX_NUMNODES; i++) {
6431 cpumask_t nodemask = node_to_cpumask(i);
6432 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6433
6434 cpus_and(nodemask, nodemask, *cpu_map);
6435 if (cpus_empty(nodemask))
6436 continue;
6437
6438 if (sg == NULL)
6439 continue;
6440 sg = sg->next;
6441 next_sg:
6442 oldsg = sg;
6443 sg = sg->next;
6444 kfree(oldsg);
6445 if (oldsg != sched_group_nodes[i])
6446 goto next_sg;
6447 }
6448 kfree(sched_group_nodes);
6449 sched_group_nodes_bycpu[cpu] = NULL;
6450 }
6451 }
6452 #else
6453 static void free_sched_groups(const cpumask_t *cpu_map)
6454 {
6455 }
6456 #endif
6457
6458 /*
6459 * Initialize sched groups cpu_power.
6460 *
6461 * cpu_power indicates the capacity of sched group, which is used while
6462 * distributing the load between different sched groups in a sched domain.
6463 * Typically cpu_power for all the groups in a sched domain will be same unless
6464 * there are asymmetries in the topology. If there are asymmetries, group
6465 * having more cpu_power will pickup more load compared to the group having
6466 * less cpu_power.
6467 *
6468 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6469 * the maximum number of tasks a group can handle in the presence of other idle
6470 * or lightly loaded groups in the same sched domain.
6471 */
6472 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6473 {
6474 struct sched_domain *child;
6475 struct sched_group *group;
6476
6477 WARN_ON(!sd || !sd->groups);
6478
6479 if (cpu != first_cpu(sd->groups->cpumask))
6480 return;
6481
6482 child = sd->child;
6483
6484 sd->groups->__cpu_power = 0;
6485
6486 /*
6487 * For perf policy, if the groups in child domain share resources
6488 * (for example cores sharing some portions of the cache hierarchy
6489 * or SMT), then set this domain groups cpu_power such that each group
6490 * can handle only one task, when there are other idle groups in the
6491 * same sched domain.
6492 */
6493 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6494 (child->flags &
6495 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6496 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6497 return;
6498 }
6499
6500 /*
6501 * add cpu_power of each child group to this groups cpu_power
6502 */
6503 group = child->groups;
6504 do {
6505 sg_inc_cpu_power(sd->groups, group->__cpu_power);
6506 group = group->next;
6507 } while (group != child->groups);
6508 }
6509
6510 /*
6511 * Build sched domains for a given set of cpus and attach the sched domains
6512 * to the individual cpus
6513 */
6514 static int build_sched_domains(const cpumask_t *cpu_map)
6515 {
6516 int i;
6517 struct root_domain *rd;
6518 #ifdef CONFIG_NUMA
6519 struct sched_group **sched_group_nodes = NULL;
6520 int sd_allnodes = 0;
6521
6522 /*
6523 * Allocate the per-node list of sched groups
6524 */
6525 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
6526 GFP_KERNEL);
6527 if (!sched_group_nodes) {
6528 printk(KERN_WARNING "Can not alloc sched group node list\n");
6529 return -ENOMEM;
6530 }
6531 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6532 #endif
6533
6534 rd = alloc_rootdomain();
6535 if (!rd) {
6536 printk(KERN_WARNING "Cannot alloc root domain\n");
6537 return -ENOMEM;
6538 }
6539
6540 /*
6541 * Set up domains for cpus specified by the cpu_map.
6542 */
6543 for_each_cpu_mask(i, *cpu_map) {
6544 struct sched_domain *sd = NULL, *p;
6545 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6546
6547 cpus_and(nodemask, nodemask, *cpu_map);
6548
6549 #ifdef CONFIG_NUMA
6550 if (cpus_weight(*cpu_map) >
6551 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6552 sd = &per_cpu(allnodes_domains, i);
6553 *sd = SD_ALLNODES_INIT;
6554 sd->span = *cpu_map;
6555 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6556 p = sd;
6557 sd_allnodes = 1;
6558 } else
6559 p = NULL;
6560
6561 sd = &per_cpu(node_domains, i);
6562 *sd = SD_NODE_INIT;
6563 sd->span = sched_domain_node_span(cpu_to_node(i));
6564 sd->parent = p;
6565 if (p)
6566 p->child = sd;
6567 cpus_and(sd->span, sd->span, *cpu_map);
6568 #endif
6569
6570 p = sd;
6571 sd = &per_cpu(phys_domains, i);
6572 *sd = SD_CPU_INIT;
6573 sd->span = nodemask;
6574 sd->parent = p;
6575 if (p)
6576 p->child = sd;
6577 cpu_to_phys_group(i, cpu_map, &sd->groups);
6578
6579 #ifdef CONFIG_SCHED_MC
6580 p = sd;
6581 sd = &per_cpu(core_domains, i);
6582 *sd = SD_MC_INIT;
6583 sd->span = cpu_coregroup_map(i);
6584 cpus_and(sd->span, sd->span, *cpu_map);
6585 sd->parent = p;
6586 p->child = sd;
6587 cpu_to_core_group(i, cpu_map, &sd->groups);
6588 #endif
6589
6590 #ifdef CONFIG_SCHED_SMT
6591 p = sd;
6592 sd = &per_cpu(cpu_domains, i);
6593 *sd = SD_SIBLING_INIT;
6594 sd->span = per_cpu(cpu_sibling_map, i);
6595 cpus_and(sd->span, sd->span, *cpu_map);
6596 sd->parent = p;
6597 p->child = sd;
6598 cpu_to_cpu_group(i, cpu_map, &sd->groups);
6599 #endif
6600 }
6601
6602 #ifdef CONFIG_SCHED_SMT
6603 /* Set up CPU (sibling) groups */
6604 for_each_cpu_mask(i, *cpu_map) {
6605 cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
6606 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
6607 if (i != first_cpu(this_sibling_map))
6608 continue;
6609
6610 init_sched_build_groups(this_sibling_map, cpu_map,
6611 &cpu_to_cpu_group);
6612 }
6613 #endif
6614
6615 #ifdef CONFIG_SCHED_MC
6616 /* Set up multi-core groups */
6617 for_each_cpu_mask(i, *cpu_map) {
6618 cpumask_t this_core_map = cpu_coregroup_map(i);
6619 cpus_and(this_core_map, this_core_map, *cpu_map);
6620 if (i != first_cpu(this_core_map))
6621 continue;
6622 init_sched_build_groups(this_core_map, cpu_map,
6623 &cpu_to_core_group);
6624 }
6625 #endif
6626
6627 /* Set up physical groups */
6628 for (i = 0; i < MAX_NUMNODES; i++) {
6629 cpumask_t nodemask = node_to_cpumask(i);
6630
6631 cpus_and(nodemask, nodemask, *cpu_map);
6632 if (cpus_empty(nodemask))
6633 continue;
6634
6635 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
6636 }
6637
6638 #ifdef CONFIG_NUMA
6639 /* Set up node groups */
6640 if (sd_allnodes)
6641 init_sched_build_groups(*cpu_map, cpu_map,
6642 &cpu_to_allnodes_group);
6643
6644 for (i = 0; i < MAX_NUMNODES; i++) {
6645 /* Set up node groups */
6646 struct sched_group *sg, *prev;
6647 cpumask_t nodemask = node_to_cpumask(i);
6648 cpumask_t domainspan;
6649 cpumask_t covered = CPU_MASK_NONE;
6650 int j;
6651
6652 cpus_and(nodemask, nodemask, *cpu_map);
6653 if (cpus_empty(nodemask)) {
6654 sched_group_nodes[i] = NULL;
6655 continue;
6656 }
6657
6658 domainspan = sched_domain_node_span(i);
6659 cpus_and(domainspan, domainspan, *cpu_map);
6660
6661 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6662 if (!sg) {
6663 printk(KERN_WARNING "Can not alloc domain group for "
6664 "node %d\n", i);
6665 goto error;
6666 }
6667 sched_group_nodes[i] = sg;
6668 for_each_cpu_mask(j, nodemask) {
6669 struct sched_domain *sd;
6670
6671 sd = &per_cpu(node_domains, j);
6672 sd->groups = sg;
6673 }
6674 sg->__cpu_power = 0;
6675 sg->cpumask = nodemask;
6676 sg->next = sg;
6677 cpus_or(covered, covered, nodemask);
6678 prev = sg;
6679
6680 for (j = 0; j < MAX_NUMNODES; j++) {
6681 cpumask_t tmp, notcovered;
6682 int n = (i + j) % MAX_NUMNODES;
6683
6684 cpus_complement(notcovered, covered);
6685 cpus_and(tmp, notcovered, *cpu_map);
6686 cpus_and(tmp, tmp, domainspan);
6687 if (cpus_empty(tmp))
6688 break;
6689
6690 nodemask = node_to_cpumask(n);
6691 cpus_and(tmp, tmp, nodemask);
6692 if (cpus_empty(tmp))
6693 continue;
6694
6695 sg = kmalloc_node(sizeof(struct sched_group),
6696 GFP_KERNEL, i);
6697 if (!sg) {
6698 printk(KERN_WARNING
6699 "Can not alloc domain group for node %d\n", j);
6700 goto error;
6701 }
6702 sg->__cpu_power = 0;
6703 sg->cpumask = tmp;
6704 sg->next = prev->next;
6705 cpus_or(covered, covered, tmp);
6706 prev->next = sg;
6707 prev = sg;
6708 }
6709 }
6710 #endif
6711
6712 /* Calculate CPU power for physical packages and nodes */
6713 #ifdef CONFIG_SCHED_SMT
6714 for_each_cpu_mask(i, *cpu_map) {
6715 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6716
6717 init_sched_groups_power(i, sd);
6718 }
6719 #endif
6720 #ifdef CONFIG_SCHED_MC
6721 for_each_cpu_mask(i, *cpu_map) {
6722 struct sched_domain *sd = &per_cpu(core_domains, i);
6723
6724 init_sched_groups_power(i, sd);
6725 }
6726 #endif
6727
6728 for_each_cpu_mask(i, *cpu_map) {
6729 struct sched_domain *sd = &per_cpu(phys_domains, i);
6730
6731 init_sched_groups_power(i, sd);
6732 }
6733
6734 #ifdef CONFIG_NUMA
6735 for (i = 0; i < MAX_NUMNODES; i++)
6736 init_numa_sched_groups_power(sched_group_nodes[i]);
6737
6738 if (sd_allnodes) {
6739 struct sched_group *sg;
6740
6741 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6742 init_numa_sched_groups_power(sg);
6743 }
6744 #endif
6745
6746 /* Attach the domains */
6747 for_each_cpu_mask(i, *cpu_map) {
6748 struct sched_domain *sd;
6749 #ifdef CONFIG_SCHED_SMT
6750 sd = &per_cpu(cpu_domains, i);
6751 #elif defined(CONFIG_SCHED_MC)
6752 sd = &per_cpu(core_domains, i);
6753 #else
6754 sd = &per_cpu(phys_domains, i);
6755 #endif
6756 cpu_attach_domain(sd, rd, i);
6757 }
6758
6759 return 0;
6760
6761 #ifdef CONFIG_NUMA
6762 error:
6763 free_sched_groups(cpu_map);
6764 return -ENOMEM;
6765 #endif
6766 }
6767
6768 static cpumask_t *doms_cur; /* current sched domains */
6769 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6770
6771 /*
6772 * Special case: If a kmalloc of a doms_cur partition (array of
6773 * cpumask_t) fails, then fallback to a single sched domain,
6774 * as determined by the single cpumask_t fallback_doms.
6775 */
6776 static cpumask_t fallback_doms;
6777
6778 /*
6779 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6780 * For now this just excludes isolated cpus, but could be used to
6781 * exclude other special cases in the future.
6782 */
6783 static int arch_init_sched_domains(const cpumask_t *cpu_map)
6784 {
6785 int err;
6786
6787 ndoms_cur = 1;
6788 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6789 if (!doms_cur)
6790 doms_cur = &fallback_doms;
6791 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
6792 err = build_sched_domains(doms_cur);
6793 register_sched_domain_sysctl();
6794
6795 return err;
6796 }
6797
6798 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
6799 {
6800 free_sched_groups(cpu_map);
6801 }
6802
6803 /*
6804 * Detach sched domains from a group of cpus specified in cpu_map
6805 * These cpus will now be attached to the NULL domain
6806 */
6807 static void detach_destroy_domains(const cpumask_t *cpu_map)
6808 {
6809 int i;
6810
6811 unregister_sched_domain_sysctl();
6812
6813 for_each_cpu_mask(i, *cpu_map)
6814 cpu_attach_domain(NULL, &def_root_domain, i);
6815 synchronize_sched();
6816 arch_destroy_sched_domains(cpu_map);
6817 }
6818
6819 /*
6820 * Partition sched domains as specified by the 'ndoms_new'
6821 * cpumasks in the array doms_new[] of cpumasks. This compares
6822 * doms_new[] to the current sched domain partitioning, doms_cur[].
6823 * It destroys each deleted domain and builds each new domain.
6824 *
6825 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
6826 * The masks don't intersect (don't overlap.) We should setup one
6827 * sched domain for each mask. CPUs not in any of the cpumasks will
6828 * not be load balanced. If the same cpumask appears both in the
6829 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6830 * it as it is.
6831 *
6832 * The passed in 'doms_new' should be kmalloc'd. This routine takes
6833 * ownership of it and will kfree it when done with it. If the caller
6834 * failed the kmalloc call, then it can pass in doms_new == NULL,
6835 * and partition_sched_domains() will fallback to the single partition
6836 * 'fallback_doms'.
6837 *
6838 * Call with hotplug lock held
6839 */
6840 void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
6841 {
6842 int i, j;
6843
6844 lock_doms_cur();
6845
6846 /* always unregister in case we don't destroy any domains */
6847 unregister_sched_domain_sysctl();
6848
6849 if (doms_new == NULL) {
6850 ndoms_new = 1;
6851 doms_new = &fallback_doms;
6852 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
6853 }
6854
6855 /* Destroy deleted domains */
6856 for (i = 0; i < ndoms_cur; i++) {
6857 for (j = 0; j < ndoms_new; j++) {
6858 if (cpus_equal(doms_cur[i], doms_new[j]))
6859 goto match1;
6860 }
6861 /* no match - a current sched domain not in new doms_new[] */
6862 detach_destroy_domains(doms_cur + i);
6863 match1:
6864 ;
6865 }
6866
6867 /* Build new domains */
6868 for (i = 0; i < ndoms_new; i++) {
6869 for (j = 0; j < ndoms_cur; j++) {
6870 if (cpus_equal(doms_new[i], doms_cur[j]))
6871 goto match2;
6872 }
6873 /* no match - add a new doms_new */
6874 build_sched_domains(doms_new + i);
6875 match2:
6876 ;
6877 }
6878
6879 /* Remember the new sched domains */
6880 if (doms_cur != &fallback_doms)
6881 kfree(doms_cur);
6882 doms_cur = doms_new;
6883 ndoms_cur = ndoms_new;
6884
6885 register_sched_domain_sysctl();
6886
6887 unlock_doms_cur();
6888 }
6889
6890 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6891 static int arch_reinit_sched_domains(void)
6892 {
6893 int err;
6894
6895 get_online_cpus();
6896 detach_destroy_domains(&cpu_online_map);
6897 err = arch_init_sched_domains(&cpu_online_map);
6898 put_online_cpus();
6899
6900 return err;
6901 }
6902
6903 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6904 {
6905 int ret;
6906
6907 if (buf[0] != '0' && buf[0] != '1')
6908 return -EINVAL;
6909
6910 if (smt)
6911 sched_smt_power_savings = (buf[0] == '1');
6912 else
6913 sched_mc_power_savings = (buf[0] == '1');
6914
6915 ret = arch_reinit_sched_domains();
6916
6917 return ret ? ret : count;
6918 }
6919
6920 #ifdef CONFIG_SCHED_MC
6921 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6922 {
6923 return sprintf(page, "%u\n", sched_mc_power_savings);
6924 }
6925 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6926 const char *buf, size_t count)
6927 {
6928 return sched_power_savings_store(buf, count, 0);
6929 }
6930 static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6931 sched_mc_power_savings_store);
6932 #endif
6933
6934 #ifdef CONFIG_SCHED_SMT
6935 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6936 {
6937 return sprintf(page, "%u\n", sched_smt_power_savings);
6938 }
6939 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6940 const char *buf, size_t count)
6941 {
6942 return sched_power_savings_store(buf, count, 1);
6943 }
6944 static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6945 sched_smt_power_savings_store);
6946 #endif
6947
6948 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6949 {
6950 int err = 0;
6951
6952 #ifdef CONFIG_SCHED_SMT
6953 if (smt_capable())
6954 err = sysfs_create_file(&cls->kset.kobj,
6955 &attr_sched_smt_power_savings.attr);
6956 #endif
6957 #ifdef CONFIG_SCHED_MC
6958 if (!err && mc_capable())
6959 err = sysfs_create_file(&cls->kset.kobj,
6960 &attr_sched_mc_power_savings.attr);
6961 #endif
6962 return err;
6963 }
6964 #endif
6965
6966 /*
6967 * Force a reinitialization of the sched domains hierarchy. The domains
6968 * and groups cannot be updated in place without racing with the balancing
6969 * code, so we temporarily attach all running cpus to the NULL domain
6970 * which will prevent rebalancing while the sched domains are recalculated.
6971 */
6972 static int update_sched_domains(struct notifier_block *nfb,
6973 unsigned long action, void *hcpu)
6974 {
6975 switch (action) {
6976 case CPU_UP_PREPARE:
6977 case CPU_UP_PREPARE_FROZEN:
6978 case CPU_DOWN_PREPARE:
6979 case CPU_DOWN_PREPARE_FROZEN:
6980 detach_destroy_domains(&cpu_online_map);
6981 return NOTIFY_OK;
6982
6983 case CPU_UP_CANCELED:
6984 case CPU_UP_CANCELED_FROZEN:
6985 case CPU_DOWN_FAILED:
6986 case CPU_DOWN_FAILED_FROZEN:
6987 case CPU_ONLINE:
6988 case CPU_ONLINE_FROZEN:
6989 case CPU_DEAD:
6990 case CPU_DEAD_FROZEN:
6991 /*
6992 * Fall through and re-initialise the domains.
6993 */
6994 break;
6995 default:
6996 return NOTIFY_DONE;
6997 }
6998
6999 /* The hotplug lock is already held by cpu_up/cpu_down */
7000 arch_init_sched_domains(&cpu_online_map);
7001
7002 return NOTIFY_OK;
7003 }
7004
7005 void __init sched_init_smp(void)
7006 {
7007 cpumask_t non_isolated_cpus;
7008
7009 get_online_cpus();
7010 arch_init_sched_domains(&cpu_online_map);
7011 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7012 if (cpus_empty(non_isolated_cpus))
7013 cpu_set(smp_processor_id(), non_isolated_cpus);
7014 put_online_cpus();
7015 /* XXX: Theoretical race here - CPU may be hotplugged now */
7016 hotcpu_notifier(update_sched_domains, 0);
7017
7018 /* Move init over to a non-isolated CPU */
7019 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
7020 BUG();
7021 sched_init_granularity();
7022
7023 #ifdef CONFIG_FAIR_GROUP_SCHED
7024 if (nr_cpu_ids == 1)
7025 return;
7026
7027 lb_monitor_task = kthread_create(load_balance_monitor, NULL,
7028 "group_balance");
7029 if (!IS_ERR(lb_monitor_task)) {
7030 lb_monitor_task->flags |= PF_NOFREEZE;
7031 wake_up_process(lb_monitor_task);
7032 } else {
7033 printk(KERN_ERR "Could not create load balance monitor thread"
7034 "(error = %ld) \n", PTR_ERR(lb_monitor_task));
7035 }
7036 #endif
7037 }
7038 #else
7039 void __init sched_init_smp(void)
7040 {
7041 sched_init_granularity();
7042 }
7043 #endif /* CONFIG_SMP */
7044
7045 int in_sched_functions(unsigned long addr)
7046 {
7047 return in_lock_functions(addr) ||
7048 (addr >= (unsigned long)__sched_text_start
7049 && addr < (unsigned long)__sched_text_end);
7050 }
7051
7052 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
7053 {
7054 cfs_rq->tasks_timeline = RB_ROOT;
7055 #ifdef CONFIG_FAIR_GROUP_SCHED
7056 cfs_rq->rq = rq;
7057 #endif
7058 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7059 }
7060
7061 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7062 {
7063 struct rt_prio_array *array;
7064 int i;
7065
7066 array = &rt_rq->active;
7067 for (i = 0; i < MAX_RT_PRIO; i++) {
7068 INIT_LIST_HEAD(array->queue + i);
7069 __clear_bit(i, array->bitmap);
7070 }
7071 /* delimiter for bitsearch: */
7072 __set_bit(MAX_RT_PRIO, array->bitmap);
7073
7074 #ifdef CONFIG_SMP
7075 rt_rq->rt_nr_migratory = 0;
7076 rt_rq->highest_prio = MAX_RT_PRIO;
7077 rt_rq->overloaded = 0;
7078 #endif
7079
7080 rt_rq->rt_time = 0;
7081 rt_rq->rt_throttled = 0;
7082 }
7083
7084 void __init sched_init(void)
7085 {
7086 int highest_cpu = 0;
7087 int i, j;
7088
7089 #ifdef CONFIG_SMP
7090 init_defrootdomain();
7091 #endif
7092
7093 for_each_possible_cpu(i) {
7094 struct rq *rq;
7095
7096 rq = cpu_rq(i);
7097 spin_lock_init(&rq->lock);
7098 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7099 rq->nr_running = 0;
7100 rq->clock = 1;
7101 init_cfs_rq(&rq->cfs, rq);
7102 #ifdef CONFIG_FAIR_GROUP_SCHED
7103 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7104 {
7105 struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
7106 struct sched_entity *se =
7107 &per_cpu(init_sched_entity, i);
7108
7109 init_cfs_rq_p[i] = cfs_rq;
7110 init_cfs_rq(cfs_rq, rq);
7111 cfs_rq->tg = &init_task_group;
7112 list_add(&cfs_rq->leaf_cfs_rq_list,
7113 &rq->leaf_cfs_rq_list);
7114
7115 init_sched_entity_p[i] = se;
7116 se->cfs_rq = &rq->cfs;
7117 se->my_q = cfs_rq;
7118 se->load.weight = init_task_group_load;
7119 se->load.inv_weight =
7120 div64_64(1ULL<<32, init_task_group_load);
7121 se->parent = NULL;
7122 }
7123 init_task_group.shares = init_task_group_load;
7124 #endif
7125 init_rt_rq(&rq->rt, rq);
7126 rq->rt_period_expire = 0;
7127
7128 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7129 rq->cpu_load[j] = 0;
7130 #ifdef CONFIG_SMP
7131 rq->sd = NULL;
7132 rq->rd = NULL;
7133 rq->active_balance = 0;
7134 rq->next_balance = jiffies;
7135 rq->push_cpu = 0;
7136 rq->cpu = i;
7137 rq->migration_thread = NULL;
7138 INIT_LIST_HEAD(&rq->migration_queue);
7139 rq_attach_root(rq, &def_root_domain);
7140 #endif
7141 init_rq_hrtick(rq);
7142 atomic_set(&rq->nr_iowait, 0);
7143 highest_cpu = i;
7144 }
7145
7146 set_load_weight(&init_task);
7147
7148 #ifdef CONFIG_PREEMPT_NOTIFIERS
7149 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7150 #endif
7151
7152 #ifdef CONFIG_SMP
7153 nr_cpu_ids = highest_cpu + 1;
7154 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
7155 #endif
7156
7157 #ifdef CONFIG_RT_MUTEXES
7158 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
7159 #endif
7160
7161 /*
7162 * The boot idle thread does lazy MMU switching as well:
7163 */
7164 atomic_inc(&init_mm.mm_count);
7165 enter_lazy_tlb(&init_mm, current);
7166
7167 /*
7168 * Make us the idle thread. Technically, schedule() should not be
7169 * called from this thread, however somewhere below it might be,
7170 * but because we are the idle thread, we just pick up running again
7171 * when this runqueue becomes "idle".
7172 */
7173 init_idle(current, smp_processor_id());
7174 /*
7175 * During early bootup we pretend to be a normal task:
7176 */
7177 current->sched_class = &fair_sched_class;
7178 }
7179
7180 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7181 void __might_sleep(char *file, int line)
7182 {
7183 #ifdef in_atomic
7184 static unsigned long prev_jiffy; /* ratelimiting */
7185
7186 if ((in_atomic() || irqs_disabled()) &&
7187 system_state == SYSTEM_RUNNING && !oops_in_progress) {
7188 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7189 return;
7190 prev_jiffy = jiffies;
7191 printk(KERN_ERR "BUG: sleeping function called from invalid"
7192 " context at %s:%d\n", file, line);
7193 printk("in_atomic():%d, irqs_disabled():%d\n",
7194 in_atomic(), irqs_disabled());
7195 debug_show_held_locks(current);
7196 if (irqs_disabled())
7197 print_irqtrace_events(current);
7198 dump_stack();
7199 }
7200 #endif
7201 }
7202 EXPORT_SYMBOL(__might_sleep);
7203 #endif
7204
7205 #ifdef CONFIG_MAGIC_SYSRQ
7206 static void normalize_task(struct rq *rq, struct task_struct *p)
7207 {
7208 int on_rq;
7209 update_rq_clock(rq);
7210 on_rq = p->se.on_rq;
7211 if (on_rq)
7212 deactivate_task(rq, p, 0);
7213 __setscheduler(rq, p, SCHED_NORMAL, 0);
7214 if (on_rq) {
7215 activate_task(rq, p, 0);
7216 resched_task(rq->curr);
7217 }
7218 }
7219
7220 void normalize_rt_tasks(void)
7221 {
7222 struct task_struct *g, *p;
7223 unsigned long flags;
7224 struct rq *rq;
7225
7226 read_lock_irq(&tasklist_lock);
7227 do_each_thread(g, p) {
7228 /*
7229 * Only normalize user tasks:
7230 */
7231 if (!p->mm)
7232 continue;
7233
7234 p->se.exec_start = 0;
7235 #ifdef CONFIG_SCHEDSTATS
7236 p->se.wait_start = 0;
7237 p->se.sleep_start = 0;
7238 p->se.block_start = 0;
7239 #endif
7240 task_rq(p)->clock = 0;
7241
7242 if (!rt_task(p)) {
7243 /*
7244 * Renice negative nice level userspace
7245 * tasks back to 0:
7246 */
7247 if (TASK_NICE(p) < 0 && p->mm)
7248 set_user_nice(p, 0);
7249 continue;
7250 }
7251
7252 spin_lock_irqsave(&p->pi_lock, flags);
7253 rq = __task_rq_lock(p);
7254
7255 normalize_task(rq, p);
7256
7257 __task_rq_unlock(rq);
7258 spin_unlock_irqrestore(&p->pi_lock, flags);
7259 } while_each_thread(g, p);
7260
7261 read_unlock_irq(&tasklist_lock);
7262 }
7263
7264 #endif /* CONFIG_MAGIC_SYSRQ */
7265
7266 #ifdef CONFIG_IA64
7267 /*
7268 * These functions are only useful for the IA64 MCA handling.
7269 *
7270 * They can only be called when the whole system has been
7271 * stopped - every CPU needs to be quiescent, and no scheduling
7272 * activity can take place. Using them for anything else would
7273 * be a serious bug, and as a result, they aren't even visible
7274 * under any other configuration.
7275 */
7276
7277 /**
7278 * curr_task - return the current task for a given cpu.
7279 * @cpu: the processor in question.
7280 *
7281 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7282 */
7283 struct task_struct *curr_task(int cpu)
7284 {
7285 return cpu_curr(cpu);
7286 }
7287
7288 /**
7289 * set_curr_task - set the current task for a given cpu.
7290 * @cpu: the processor in question.
7291 * @p: the task pointer to set.
7292 *
7293 * Description: This function must only be used when non-maskable interrupts
7294 * are serviced on a separate stack. It allows the architecture to switch the
7295 * notion of the current task on a cpu in a non-blocking manner. This function
7296 * must be called with all CPU's synchronized, and interrupts disabled, the
7297 * and caller must save the original value of the current task (see
7298 * curr_task() above) and restore that value before reenabling interrupts and
7299 * re-starting the system.
7300 *
7301 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7302 */
7303 void set_curr_task(int cpu, struct task_struct *p)
7304 {
7305 cpu_curr(cpu) = p;
7306 }
7307
7308 #endif
7309
7310 #ifdef CONFIG_FAIR_GROUP_SCHED
7311
7312 #ifdef CONFIG_SMP
7313 /*
7314 * distribute shares of all task groups among their schedulable entities,
7315 * to reflect load distribution across cpus.
7316 */
7317 static int rebalance_shares(struct sched_domain *sd, int this_cpu)
7318 {
7319 struct cfs_rq *cfs_rq;
7320 struct rq *rq = cpu_rq(this_cpu);
7321 cpumask_t sdspan = sd->span;
7322 int balanced = 1;
7323
7324 /* Walk thr' all the task groups that we have */
7325 for_each_leaf_cfs_rq(rq, cfs_rq) {
7326 int i;
7327 unsigned long total_load = 0, total_shares;
7328 struct task_group *tg = cfs_rq->tg;
7329
7330 /* Gather total task load of this group across cpus */
7331 for_each_cpu_mask(i, sdspan)
7332 total_load += tg->cfs_rq[i]->load.weight;
7333
7334 /* Nothing to do if this group has no load */
7335 if (!total_load)
7336 continue;
7337
7338 /*
7339 * tg->shares represents the number of cpu shares the task group
7340 * is eligible to hold on a single cpu. On N cpus, it is
7341 * eligible to hold (N * tg->shares) number of cpu shares.
7342 */
7343 total_shares = tg->shares * cpus_weight(sdspan);
7344
7345 /*
7346 * redistribute total_shares across cpus as per the task load
7347 * distribution.
7348 */
7349 for_each_cpu_mask(i, sdspan) {
7350 unsigned long local_load, local_shares;
7351
7352 local_load = tg->cfs_rq[i]->load.weight;
7353 local_shares = (local_load * total_shares) / total_load;
7354 if (!local_shares)
7355 local_shares = MIN_GROUP_SHARES;
7356 if (local_shares == tg->se[i]->load.weight)
7357 continue;
7358
7359 spin_lock_irq(&cpu_rq(i)->lock);
7360 set_se_shares(tg->se[i], local_shares);
7361 spin_unlock_irq(&cpu_rq(i)->lock);
7362 balanced = 0;
7363 }
7364 }
7365
7366 return balanced;
7367 }
7368
7369 /*
7370 * How frequently should we rebalance_shares() across cpus?
7371 *
7372 * The more frequently we rebalance shares, the more accurate is the fairness
7373 * of cpu bandwidth distribution between task groups. However higher frequency
7374 * also implies increased scheduling overhead.
7375 *
7376 * sysctl_sched_min_bal_int_shares represents the minimum interval between
7377 * consecutive calls to rebalance_shares() in the same sched domain.
7378 *
7379 * sysctl_sched_max_bal_int_shares represents the maximum interval between
7380 * consecutive calls to rebalance_shares() in the same sched domain.
7381 *
7382 * These settings allows for the appropriate trade-off between accuracy of
7383 * fairness and the associated overhead.
7384 *
7385 */
7386
7387 /* default: 8ms, units: milliseconds */
7388 const_debug unsigned int sysctl_sched_min_bal_int_shares = 8;
7389
7390 /* default: 128ms, units: milliseconds */
7391 const_debug unsigned int sysctl_sched_max_bal_int_shares = 128;
7392
7393 /* kernel thread that runs rebalance_shares() periodically */
7394 static int load_balance_monitor(void *unused)
7395 {
7396 unsigned int timeout = sysctl_sched_min_bal_int_shares;
7397 struct sched_param schedparm;
7398 int ret;
7399
7400 /*
7401 * We don't want this thread's execution to be limited by the shares
7402 * assigned to default group (init_task_group). Hence make it run
7403 * as a SCHED_RR RT task at the lowest priority.
7404 */
7405 schedparm.sched_priority = 1;
7406 ret = sched_setscheduler(current, SCHED_RR, &schedparm);
7407 if (ret)
7408 printk(KERN_ERR "Couldn't set SCHED_RR policy for load balance"
7409 " monitor thread (error = %d) \n", ret);
7410
7411 while (!kthread_should_stop()) {
7412 int i, cpu, balanced = 1;
7413
7414 /* Prevent cpus going down or coming up */
7415 get_online_cpus();
7416 /* lockout changes to doms_cur[] array */
7417 lock_doms_cur();
7418 /*
7419 * Enter a rcu read-side critical section to safely walk rq->sd
7420 * chain on various cpus and to walk task group list
7421 * (rq->leaf_cfs_rq_list) in rebalance_shares().
7422 */
7423 rcu_read_lock();
7424
7425 for (i = 0; i < ndoms_cur; i++) {
7426 cpumask_t cpumap = doms_cur[i];
7427 struct sched_domain *sd = NULL, *sd_prev = NULL;
7428
7429 cpu = first_cpu(cpumap);
7430
7431 /* Find the highest domain at which to balance shares */
7432 for_each_domain(cpu, sd) {
7433 if (!(sd->flags & SD_LOAD_BALANCE))
7434 continue;
7435 sd_prev = sd;
7436 }
7437
7438 sd = sd_prev;
7439 /* sd == NULL? No load balance reqd in this domain */
7440 if (!sd)
7441 continue;
7442
7443 balanced &= rebalance_shares(sd, cpu);
7444 }
7445
7446 rcu_read_unlock();
7447
7448 unlock_doms_cur();
7449 put_online_cpus();
7450
7451 if (!balanced)
7452 timeout = sysctl_sched_min_bal_int_shares;
7453 else if (timeout < sysctl_sched_max_bal_int_shares)
7454 timeout *= 2;
7455
7456 msleep_interruptible(timeout);
7457 }
7458
7459 return 0;
7460 }
7461 #endif /* CONFIG_SMP */
7462
7463 /* allocate runqueue etc for a new task group */
7464 struct task_group *sched_create_group(void)
7465 {
7466 struct task_group *tg;
7467 struct cfs_rq *cfs_rq;
7468 struct sched_entity *se;
7469 struct rq *rq;
7470 int i;
7471
7472 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7473 if (!tg)
7474 return ERR_PTR(-ENOMEM);
7475
7476 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
7477 if (!tg->cfs_rq)
7478 goto err;
7479 tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
7480 if (!tg->se)
7481 goto err;
7482
7483 for_each_possible_cpu(i) {
7484 rq = cpu_rq(i);
7485
7486 cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
7487 cpu_to_node(i));
7488 if (!cfs_rq)
7489 goto err;
7490
7491 se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
7492 cpu_to_node(i));
7493 if (!se)
7494 goto err;
7495
7496 memset(cfs_rq, 0, sizeof(struct cfs_rq));
7497 memset(se, 0, sizeof(struct sched_entity));
7498
7499 tg->cfs_rq[i] = cfs_rq;
7500 init_cfs_rq(cfs_rq, rq);
7501 cfs_rq->tg = tg;
7502
7503 tg->se[i] = se;
7504 se->cfs_rq = &rq->cfs;
7505 se->my_q = cfs_rq;
7506 se->load.weight = NICE_0_LOAD;
7507 se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
7508 se->parent = NULL;
7509 }
7510
7511 tg->shares = NICE_0_LOAD;
7512
7513 lock_task_group_list();
7514 for_each_possible_cpu(i) {
7515 rq = cpu_rq(i);
7516 cfs_rq = tg->cfs_rq[i];
7517 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7518 }
7519 unlock_task_group_list();
7520
7521 return tg;
7522
7523 err:
7524 for_each_possible_cpu(i) {
7525 if (tg->cfs_rq)
7526 kfree(tg->cfs_rq[i]);
7527 if (tg->se)
7528 kfree(tg->se[i]);
7529 }
7530 kfree(tg->cfs_rq);
7531 kfree(tg->se);
7532 kfree(tg);
7533
7534 return ERR_PTR(-ENOMEM);
7535 }
7536
7537 /* rcu callback to free various structures associated with a task group */
7538 static void free_sched_group(struct rcu_head *rhp)
7539 {
7540 struct task_group *tg = container_of(rhp, struct task_group, rcu);
7541 struct cfs_rq *cfs_rq;
7542 struct sched_entity *se;
7543 int i;
7544
7545 /* now it should be safe to free those cfs_rqs */
7546 for_each_possible_cpu(i) {
7547 cfs_rq = tg->cfs_rq[i];
7548 kfree(cfs_rq);
7549
7550 se = tg->se[i];
7551 kfree(se);
7552 }
7553
7554 kfree(tg->cfs_rq);
7555 kfree(tg->se);
7556 kfree(tg);
7557 }
7558
7559 /* Destroy runqueue etc associated with a task group */
7560 void sched_destroy_group(struct task_group *tg)
7561 {
7562 struct cfs_rq *cfs_rq = NULL;
7563 int i;
7564
7565 lock_task_group_list();
7566 for_each_possible_cpu(i) {
7567 cfs_rq = tg->cfs_rq[i];
7568 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
7569 }
7570 unlock_task_group_list();
7571
7572 BUG_ON(!cfs_rq);
7573
7574 /* wait for possible concurrent references to cfs_rqs complete */
7575 call_rcu(&tg->rcu, free_sched_group);
7576 }
7577
7578 /* change task's runqueue when it moves between groups.
7579 * The caller of this function should have put the task in its new group
7580 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7581 * reflect its new group.
7582 */
7583 void sched_move_task(struct task_struct *tsk)
7584 {
7585 int on_rq, running;
7586 unsigned long flags;
7587 struct rq *rq;
7588
7589 rq = task_rq_lock(tsk, &flags);
7590
7591 if (tsk->sched_class != &fair_sched_class) {
7592 set_task_cfs_rq(tsk, task_cpu(tsk));
7593 goto done;
7594 }
7595
7596 update_rq_clock(rq);
7597
7598 running = task_current(rq, tsk);
7599 on_rq = tsk->se.on_rq;
7600
7601 if (on_rq) {
7602 dequeue_task(rq, tsk, 0);
7603 if (unlikely(running))
7604 tsk->sched_class->put_prev_task(rq, tsk);
7605 }
7606
7607 set_task_cfs_rq(tsk, task_cpu(tsk));
7608
7609 if (on_rq) {
7610 if (unlikely(running))
7611 tsk->sched_class->set_curr_task(rq);
7612 enqueue_task(rq, tsk, 0);
7613 }
7614
7615 done:
7616 task_rq_unlock(rq, &flags);
7617 }
7618
7619 /* rq->lock to be locked by caller */
7620 static void set_se_shares(struct sched_entity *se, unsigned long shares)
7621 {
7622 struct cfs_rq *cfs_rq = se->cfs_rq;
7623 struct rq *rq = cfs_rq->rq;
7624 int on_rq;
7625
7626 if (!shares)
7627 shares = MIN_GROUP_SHARES;
7628
7629 on_rq = se->on_rq;
7630 if (on_rq) {
7631 dequeue_entity(cfs_rq, se, 0);
7632 dec_cpu_load(rq, se->load.weight);
7633 }
7634
7635 se->load.weight = shares;
7636 se->load.inv_weight = div64_64((1ULL<<32), shares);
7637
7638 if (on_rq) {
7639 enqueue_entity(cfs_rq, se, 0);
7640 inc_cpu_load(rq, se->load.weight);
7641 }
7642 }
7643
7644 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7645 {
7646 int i;
7647 struct cfs_rq *cfs_rq;
7648 struct rq *rq;
7649
7650 lock_task_group_list();
7651 if (tg->shares == shares)
7652 goto done;
7653
7654 if (shares < MIN_GROUP_SHARES)
7655 shares = MIN_GROUP_SHARES;
7656
7657 /*
7658 * Prevent any load balance activity (rebalance_shares,
7659 * load_balance_fair) from referring to this group first,
7660 * by taking it off the rq->leaf_cfs_rq_list on each cpu.
7661 */
7662 for_each_possible_cpu(i) {
7663 cfs_rq = tg->cfs_rq[i];
7664 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
7665 }
7666
7667 /* wait for any ongoing reference to this group to finish */
7668 synchronize_sched();
7669
7670 /*
7671 * Now we are free to modify the group's share on each cpu
7672 * w/o tripping rebalance_share or load_balance_fair.
7673 */
7674 tg->shares = shares;
7675 for_each_possible_cpu(i) {
7676 spin_lock_irq(&cpu_rq(i)->lock);
7677 set_se_shares(tg->se[i], shares);
7678 spin_unlock_irq(&cpu_rq(i)->lock);
7679 }
7680
7681 /*
7682 * Enable load balance activity on this group, by inserting it back on
7683 * each cpu's rq->leaf_cfs_rq_list.
7684 */
7685 for_each_possible_cpu(i) {
7686 rq = cpu_rq(i);
7687 cfs_rq = tg->cfs_rq[i];
7688 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7689 }
7690 done:
7691 unlock_task_group_list();
7692 return 0;
7693 }
7694
7695 unsigned long sched_group_shares(struct task_group *tg)
7696 {
7697 return tg->shares;
7698 }
7699
7700 #endif /* CONFIG_FAIR_GROUP_SCHED */
7701
7702 #ifdef CONFIG_FAIR_CGROUP_SCHED
7703
7704 /* return corresponding task_group object of a cgroup */
7705 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7706 {
7707 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7708 struct task_group, css);
7709 }
7710
7711 static struct cgroup_subsys_state *
7712 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
7713 {
7714 struct task_group *tg;
7715
7716 if (!cgrp->parent) {
7717 /* This is early initialization for the top cgroup */
7718 init_task_group.css.cgroup = cgrp;
7719 return &init_task_group.css;
7720 }
7721
7722 /* we support only 1-level deep hierarchical scheduler atm */
7723 if (cgrp->parent->parent)
7724 return ERR_PTR(-EINVAL);
7725
7726 tg = sched_create_group();
7727 if (IS_ERR(tg))
7728 return ERR_PTR(-ENOMEM);
7729
7730 /* Bind the cgroup to task_group object we just created */
7731 tg->css.cgroup = cgrp;
7732
7733 return &tg->css;
7734 }
7735
7736 static void
7737 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
7738 {
7739 struct task_group *tg = cgroup_tg(cgrp);
7740
7741 sched_destroy_group(tg);
7742 }
7743
7744 static int
7745 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7746 struct task_struct *tsk)
7747 {
7748 /* We don't support RT-tasks being in separate groups */
7749 if (tsk->sched_class != &fair_sched_class)
7750 return -EINVAL;
7751
7752 return 0;
7753 }
7754
7755 static void
7756 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7757 struct cgroup *old_cont, struct task_struct *tsk)
7758 {
7759 sched_move_task(tsk);
7760 }
7761
7762 static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7763 u64 shareval)
7764 {
7765 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
7766 }
7767
7768 static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
7769 {
7770 struct task_group *tg = cgroup_tg(cgrp);
7771
7772 return (u64) tg->shares;
7773 }
7774
7775 static struct cftype cpu_files[] = {
7776 {
7777 .name = "shares",
7778 .read_uint = cpu_shares_read_uint,
7779 .write_uint = cpu_shares_write_uint,
7780 },
7781 };
7782
7783 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7784 {
7785 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
7786 }
7787
7788 struct cgroup_subsys cpu_cgroup_subsys = {
7789 .name = "cpu",
7790 .create = cpu_cgroup_create,
7791 .destroy = cpu_cgroup_destroy,
7792 .can_attach = cpu_cgroup_can_attach,
7793 .attach = cpu_cgroup_attach,
7794 .populate = cpu_cgroup_populate,
7795 .subsys_id = cpu_cgroup_subsys_id,
7796 .early_init = 1,
7797 };
7798
7799 #endif /* CONFIG_FAIR_CGROUP_SCHED */
7800
7801 #ifdef CONFIG_CGROUP_CPUACCT
7802
7803 /*
7804 * CPU accounting code for task groups.
7805 *
7806 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7807 * (balbir@in.ibm.com).
7808 */
7809
7810 /* track cpu usage of a group of tasks */
7811 struct cpuacct {
7812 struct cgroup_subsys_state css;
7813 /* cpuusage holds pointer to a u64-type object on every cpu */
7814 u64 *cpuusage;
7815 };
7816
7817 struct cgroup_subsys cpuacct_subsys;
7818
7819 /* return cpu accounting group corresponding to this container */
7820 static inline struct cpuacct *cgroup_ca(struct cgroup *cont)
7821 {
7822 return container_of(cgroup_subsys_state(cont, cpuacct_subsys_id),
7823 struct cpuacct, css);
7824 }
7825
7826 /* return cpu accounting group to which this task belongs */
7827 static inline struct cpuacct *task_ca(struct task_struct *tsk)
7828 {
7829 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
7830 struct cpuacct, css);
7831 }
7832
7833 /* create a new cpu accounting group */
7834 static struct cgroup_subsys_state *cpuacct_create(
7835 struct cgroup_subsys *ss, struct cgroup *cont)
7836 {
7837 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
7838
7839 if (!ca)
7840 return ERR_PTR(-ENOMEM);
7841
7842 ca->cpuusage = alloc_percpu(u64);
7843 if (!ca->cpuusage) {
7844 kfree(ca);
7845 return ERR_PTR(-ENOMEM);
7846 }
7847
7848 return &ca->css;
7849 }
7850
7851 /* destroy an existing cpu accounting group */
7852 static void
7853 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
7854 {
7855 struct cpuacct *ca = cgroup_ca(cont);
7856
7857 free_percpu(ca->cpuusage);
7858 kfree(ca);
7859 }
7860
7861 /* return total cpu usage (in nanoseconds) of a group */
7862 static u64 cpuusage_read(struct cgroup *cont, struct cftype *cft)
7863 {
7864 struct cpuacct *ca = cgroup_ca(cont);
7865 u64 totalcpuusage = 0;
7866 int i;
7867
7868 for_each_possible_cpu(i) {
7869 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
7870
7871 /*
7872 * Take rq->lock to make 64-bit addition safe on 32-bit
7873 * platforms.
7874 */
7875 spin_lock_irq(&cpu_rq(i)->lock);
7876 totalcpuusage += *cpuusage;
7877 spin_unlock_irq(&cpu_rq(i)->lock);
7878 }
7879
7880 return totalcpuusage;
7881 }
7882
7883 static struct cftype files[] = {
7884 {
7885 .name = "usage",
7886 .read_uint = cpuusage_read,
7887 },
7888 };
7889
7890 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7891 {
7892 return cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
7893 }
7894
7895 /*
7896 * charge this task's execution time to its accounting group.
7897 *
7898 * called with rq->lock held.
7899 */
7900 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
7901 {
7902 struct cpuacct *ca;
7903
7904 if (!cpuacct_subsys.active)
7905 return;
7906
7907 ca = task_ca(tsk);
7908 if (ca) {
7909 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
7910
7911 *cpuusage += cputime;
7912 }
7913 }
7914
7915 struct cgroup_subsys cpuacct_subsys = {
7916 .name = "cpuacct",
7917 .create = cpuacct_create,
7918 .destroy = cpuacct_destroy,
7919 .populate = cpuacct_populate,
7920 .subsys_id = cpuacct_subsys_id,
7921 };
7922 #endif /* CONFIG_CGROUP_CPUACCT */
This page took 0.311861 seconds and 5 git commands to generate.