sched: fix double kfree in failure path
[deliverable/linux.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/reciprocal_div.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/bootmem.h>
72 #include <linux/debugfs.h>
73 #include <linux/ctype.h>
74 #include <linux/ftrace.h>
75 #include <trace/sched.h>
76
77 #include <asm/tlb.h>
78 #include <asm/irq_regs.h>
79
80 #include "sched_cpupri.h"
81
82 /*
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85 * and back.
86 */
87 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
90
91 /*
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
95 */
96 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
99
100 /*
101 * Helpers for converting nanosecond timing to jiffy resolution
102 */
103 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
104
105 #define NICE_0_LOAD SCHED_LOAD_SCALE
106 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
107
108 /*
109 * These are the 'tuning knobs' of the scheduler:
110 *
111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
112 * Timeslices get refilled after they expire.
113 */
114 #define DEF_TIMESLICE (100 * HZ / 1000)
115
116 /*
117 * single value that denotes runtime == period, ie unlimited time.
118 */
119 #define RUNTIME_INF ((u64)~0ULL)
120
121 DEFINE_TRACE(sched_wait_task);
122 DEFINE_TRACE(sched_wakeup);
123 DEFINE_TRACE(sched_wakeup_new);
124 DEFINE_TRACE(sched_switch);
125 DEFINE_TRACE(sched_migrate_task);
126
127 #ifdef CONFIG_SMP
128 /*
129 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
130 * Since cpu_power is a 'constant', we can use a reciprocal divide.
131 */
132 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
133 {
134 return reciprocal_divide(load, sg->reciprocal_cpu_power);
135 }
136
137 /*
138 * Each time a sched group cpu_power is changed,
139 * we must compute its reciprocal value
140 */
141 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
142 {
143 sg->__cpu_power += val;
144 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
145 }
146 #endif
147
148 static inline int rt_policy(int policy)
149 {
150 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
151 return 1;
152 return 0;
153 }
154
155 static inline int task_has_rt_policy(struct task_struct *p)
156 {
157 return rt_policy(p->policy);
158 }
159
160 /*
161 * This is the priority-queue data structure of the RT scheduling class:
162 */
163 struct rt_prio_array {
164 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
165 struct list_head queue[MAX_RT_PRIO];
166 };
167
168 struct rt_bandwidth {
169 /* nests inside the rq lock: */
170 spinlock_t rt_runtime_lock;
171 ktime_t rt_period;
172 u64 rt_runtime;
173 struct hrtimer rt_period_timer;
174 };
175
176 static struct rt_bandwidth def_rt_bandwidth;
177
178 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
179
180 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
181 {
182 struct rt_bandwidth *rt_b =
183 container_of(timer, struct rt_bandwidth, rt_period_timer);
184 ktime_t now;
185 int overrun;
186 int idle = 0;
187
188 for (;;) {
189 now = hrtimer_cb_get_time(timer);
190 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
191
192 if (!overrun)
193 break;
194
195 idle = do_sched_rt_period_timer(rt_b, overrun);
196 }
197
198 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
199 }
200
201 static
202 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
203 {
204 rt_b->rt_period = ns_to_ktime(period);
205 rt_b->rt_runtime = runtime;
206
207 spin_lock_init(&rt_b->rt_runtime_lock);
208
209 hrtimer_init(&rt_b->rt_period_timer,
210 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
211 rt_b->rt_period_timer.function = sched_rt_period_timer;
212 }
213
214 static inline int rt_bandwidth_enabled(void)
215 {
216 return sysctl_sched_rt_runtime >= 0;
217 }
218
219 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
220 {
221 ktime_t now;
222
223 if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
224 return;
225
226 if (hrtimer_active(&rt_b->rt_period_timer))
227 return;
228
229 spin_lock(&rt_b->rt_runtime_lock);
230 for (;;) {
231 if (hrtimer_active(&rt_b->rt_period_timer))
232 break;
233
234 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
235 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
236 hrtimer_start_expires(&rt_b->rt_period_timer,
237 HRTIMER_MODE_ABS);
238 }
239 spin_unlock(&rt_b->rt_runtime_lock);
240 }
241
242 #ifdef CONFIG_RT_GROUP_SCHED
243 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
244 {
245 hrtimer_cancel(&rt_b->rt_period_timer);
246 }
247 #endif
248
249 /*
250 * sched_domains_mutex serializes calls to arch_init_sched_domains,
251 * detach_destroy_domains and partition_sched_domains.
252 */
253 static DEFINE_MUTEX(sched_domains_mutex);
254
255 #ifdef CONFIG_GROUP_SCHED
256
257 #include <linux/cgroup.h>
258
259 struct cfs_rq;
260
261 static LIST_HEAD(task_groups);
262
263 /* task group related information */
264 struct task_group {
265 #ifdef CONFIG_CGROUP_SCHED
266 struct cgroup_subsys_state css;
267 #endif
268
269 #ifdef CONFIG_USER_SCHED
270 uid_t uid;
271 #endif
272
273 #ifdef CONFIG_FAIR_GROUP_SCHED
274 /* schedulable entities of this group on each cpu */
275 struct sched_entity **se;
276 /* runqueue "owned" by this group on each cpu */
277 struct cfs_rq **cfs_rq;
278 unsigned long shares;
279 #endif
280
281 #ifdef CONFIG_RT_GROUP_SCHED
282 struct sched_rt_entity **rt_se;
283 struct rt_rq **rt_rq;
284
285 struct rt_bandwidth rt_bandwidth;
286 #endif
287
288 struct rcu_head rcu;
289 struct list_head list;
290
291 struct task_group *parent;
292 struct list_head siblings;
293 struct list_head children;
294 };
295
296 #ifdef CONFIG_USER_SCHED
297
298 /* Helper function to pass uid information to create_sched_user() */
299 void set_tg_uid(struct user_struct *user)
300 {
301 user->tg->uid = user->uid;
302 }
303
304 /*
305 * Root task group.
306 * Every UID task group (including init_task_group aka UID-0) will
307 * be a child to this group.
308 */
309 struct task_group root_task_group;
310
311 #ifdef CONFIG_FAIR_GROUP_SCHED
312 /* Default task group's sched entity on each cpu */
313 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
314 /* Default task group's cfs_rq on each cpu */
315 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
316 #endif /* CONFIG_FAIR_GROUP_SCHED */
317
318 #ifdef CONFIG_RT_GROUP_SCHED
319 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
320 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
321 #endif /* CONFIG_RT_GROUP_SCHED */
322 #else /* !CONFIG_USER_SCHED */
323 #define root_task_group init_task_group
324 #endif /* CONFIG_USER_SCHED */
325
326 /* task_group_lock serializes add/remove of task groups and also changes to
327 * a task group's cpu shares.
328 */
329 static DEFINE_SPINLOCK(task_group_lock);
330
331 #ifdef CONFIG_FAIR_GROUP_SCHED
332 #ifdef CONFIG_USER_SCHED
333 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
334 #else /* !CONFIG_USER_SCHED */
335 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
336 #endif /* CONFIG_USER_SCHED */
337
338 /*
339 * A weight of 0 or 1 can cause arithmetics problems.
340 * A weight of a cfs_rq is the sum of weights of which entities
341 * are queued on this cfs_rq, so a weight of a entity should not be
342 * too large, so as the shares value of a task group.
343 * (The default weight is 1024 - so there's no practical
344 * limitation from this.)
345 */
346 #define MIN_SHARES 2
347 #define MAX_SHARES (1UL << 18)
348
349 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
350 #endif
351
352 /* Default task group.
353 * Every task in system belong to this group at bootup.
354 */
355 struct task_group init_task_group;
356
357 /* return group to which a task belongs */
358 static inline struct task_group *task_group(struct task_struct *p)
359 {
360 struct task_group *tg;
361
362 #ifdef CONFIG_USER_SCHED
363 rcu_read_lock();
364 tg = __task_cred(p)->user->tg;
365 rcu_read_unlock();
366 #elif defined(CONFIG_CGROUP_SCHED)
367 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
368 struct task_group, css);
369 #else
370 tg = &init_task_group;
371 #endif
372 return tg;
373 }
374
375 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
376 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
377 {
378 #ifdef CONFIG_FAIR_GROUP_SCHED
379 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
380 p->se.parent = task_group(p)->se[cpu];
381 #endif
382
383 #ifdef CONFIG_RT_GROUP_SCHED
384 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
385 p->rt.parent = task_group(p)->rt_se[cpu];
386 #endif
387 }
388
389 #else
390
391 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
392 static inline struct task_group *task_group(struct task_struct *p)
393 {
394 return NULL;
395 }
396
397 #endif /* CONFIG_GROUP_SCHED */
398
399 /* CFS-related fields in a runqueue */
400 struct cfs_rq {
401 struct load_weight load;
402 unsigned long nr_running;
403
404 u64 exec_clock;
405 u64 min_vruntime;
406
407 struct rb_root tasks_timeline;
408 struct rb_node *rb_leftmost;
409
410 struct list_head tasks;
411 struct list_head *balance_iterator;
412
413 /*
414 * 'curr' points to currently running entity on this cfs_rq.
415 * It is set to NULL otherwise (i.e when none are currently running).
416 */
417 struct sched_entity *curr, *next, *last;
418
419 unsigned int nr_spread_over;
420
421 #ifdef CONFIG_FAIR_GROUP_SCHED
422 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
423
424 /*
425 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
426 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
427 * (like users, containers etc.)
428 *
429 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
430 * list is used during load balance.
431 */
432 struct list_head leaf_cfs_rq_list;
433 struct task_group *tg; /* group that "owns" this runqueue */
434
435 #ifdef CONFIG_SMP
436 /*
437 * the part of load.weight contributed by tasks
438 */
439 unsigned long task_weight;
440
441 /*
442 * h_load = weight * f(tg)
443 *
444 * Where f(tg) is the recursive weight fraction assigned to
445 * this group.
446 */
447 unsigned long h_load;
448
449 /*
450 * this cpu's part of tg->shares
451 */
452 unsigned long shares;
453
454 /*
455 * load.weight at the time we set shares
456 */
457 unsigned long rq_weight;
458 #endif
459 #endif
460 };
461
462 /* Real-Time classes' related field in a runqueue: */
463 struct rt_rq {
464 struct rt_prio_array active;
465 unsigned long rt_nr_running;
466 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
467 int highest_prio; /* highest queued rt task prio */
468 #endif
469 #ifdef CONFIG_SMP
470 unsigned long rt_nr_migratory;
471 int overloaded;
472 #endif
473 int rt_throttled;
474 u64 rt_time;
475 u64 rt_runtime;
476 /* Nests inside the rq lock: */
477 spinlock_t rt_runtime_lock;
478
479 #ifdef CONFIG_RT_GROUP_SCHED
480 unsigned long rt_nr_boosted;
481
482 struct rq *rq;
483 struct list_head leaf_rt_rq_list;
484 struct task_group *tg;
485 struct sched_rt_entity *rt_se;
486 #endif
487 };
488
489 #ifdef CONFIG_SMP
490
491 /*
492 * We add the notion of a root-domain which will be used to define per-domain
493 * variables. Each exclusive cpuset essentially defines an island domain by
494 * fully partitioning the member cpus from any other cpuset. Whenever a new
495 * exclusive cpuset is created, we also create and attach a new root-domain
496 * object.
497 *
498 */
499 struct root_domain {
500 atomic_t refcount;
501 cpumask_var_t span;
502 cpumask_var_t online;
503
504 /*
505 * The "RT overload" flag: it gets set if a CPU has more than
506 * one runnable RT task.
507 */
508 cpumask_var_t rto_mask;
509 atomic_t rto_count;
510 #ifdef CONFIG_SMP
511 struct cpupri cpupri;
512 #endif
513 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
514 /*
515 * Preferred wake up cpu nominated by sched_mc balance that will be
516 * used when most cpus are idle in the system indicating overall very
517 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
518 */
519 unsigned int sched_mc_preferred_wakeup_cpu;
520 #endif
521 };
522
523 /*
524 * By default the system creates a single root-domain with all cpus as
525 * members (mimicking the global state we have today).
526 */
527 static struct root_domain def_root_domain;
528
529 #endif
530
531 /*
532 * This is the main, per-CPU runqueue data structure.
533 *
534 * Locking rule: those places that want to lock multiple runqueues
535 * (such as the load balancing or the thread migration code), lock
536 * acquire operations must be ordered by ascending &runqueue.
537 */
538 struct rq {
539 /* runqueue lock: */
540 spinlock_t lock;
541
542 /*
543 * nr_running and cpu_load should be in the same cacheline because
544 * remote CPUs use both these fields when doing load calculation.
545 */
546 unsigned long nr_running;
547 #define CPU_LOAD_IDX_MAX 5
548 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
549 unsigned char idle_at_tick;
550 #ifdef CONFIG_NO_HZ
551 unsigned long last_tick_seen;
552 unsigned char in_nohz_recently;
553 #endif
554 /* capture load from *all* tasks on this cpu: */
555 struct load_weight load;
556 unsigned long nr_load_updates;
557 u64 nr_switches;
558
559 struct cfs_rq cfs;
560 struct rt_rq rt;
561
562 #ifdef CONFIG_FAIR_GROUP_SCHED
563 /* list of leaf cfs_rq on this cpu: */
564 struct list_head leaf_cfs_rq_list;
565 #endif
566 #ifdef CONFIG_RT_GROUP_SCHED
567 struct list_head leaf_rt_rq_list;
568 #endif
569
570 /*
571 * This is part of a global counter where only the total sum
572 * over all CPUs matters. A task can increase this counter on
573 * one CPU and if it got migrated afterwards it may decrease
574 * it on another CPU. Always updated under the runqueue lock:
575 */
576 unsigned long nr_uninterruptible;
577
578 struct task_struct *curr, *idle;
579 unsigned long next_balance;
580 struct mm_struct *prev_mm;
581
582 u64 clock;
583
584 atomic_t nr_iowait;
585
586 #ifdef CONFIG_SMP
587 struct root_domain *rd;
588 struct sched_domain *sd;
589
590 /* For active balancing */
591 int active_balance;
592 int push_cpu;
593 /* cpu of this runqueue: */
594 int cpu;
595 int online;
596
597 unsigned long avg_load_per_task;
598
599 struct task_struct *migration_thread;
600 struct list_head migration_queue;
601 #endif
602
603 #ifdef CONFIG_SCHED_HRTICK
604 #ifdef CONFIG_SMP
605 int hrtick_csd_pending;
606 struct call_single_data hrtick_csd;
607 #endif
608 struct hrtimer hrtick_timer;
609 #endif
610
611 #ifdef CONFIG_SCHEDSTATS
612 /* latency stats */
613 struct sched_info rq_sched_info;
614 unsigned long long rq_cpu_time;
615 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
616
617 /* sys_sched_yield() stats */
618 unsigned int yld_exp_empty;
619 unsigned int yld_act_empty;
620 unsigned int yld_both_empty;
621 unsigned int yld_count;
622
623 /* schedule() stats */
624 unsigned int sched_switch;
625 unsigned int sched_count;
626 unsigned int sched_goidle;
627
628 /* try_to_wake_up() stats */
629 unsigned int ttwu_count;
630 unsigned int ttwu_local;
631
632 /* BKL stats */
633 unsigned int bkl_count;
634 #endif
635 };
636
637 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
638
639 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
640 {
641 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
642 }
643
644 static inline int cpu_of(struct rq *rq)
645 {
646 #ifdef CONFIG_SMP
647 return rq->cpu;
648 #else
649 return 0;
650 #endif
651 }
652
653 /*
654 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
655 * See detach_destroy_domains: synchronize_sched for details.
656 *
657 * The domain tree of any CPU may only be accessed from within
658 * preempt-disabled sections.
659 */
660 #define for_each_domain(cpu, __sd) \
661 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
662
663 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
664 #define this_rq() (&__get_cpu_var(runqueues))
665 #define task_rq(p) cpu_rq(task_cpu(p))
666 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
667
668 static inline void update_rq_clock(struct rq *rq)
669 {
670 rq->clock = sched_clock_cpu(cpu_of(rq));
671 }
672
673 /*
674 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
675 */
676 #ifdef CONFIG_SCHED_DEBUG
677 # define const_debug __read_mostly
678 #else
679 # define const_debug static const
680 #endif
681
682 /**
683 * runqueue_is_locked
684 *
685 * Returns true if the current cpu runqueue is locked.
686 * This interface allows printk to be called with the runqueue lock
687 * held and know whether or not it is OK to wake up the klogd.
688 */
689 int runqueue_is_locked(void)
690 {
691 int cpu = get_cpu();
692 struct rq *rq = cpu_rq(cpu);
693 int ret;
694
695 ret = spin_is_locked(&rq->lock);
696 put_cpu();
697 return ret;
698 }
699
700 /*
701 * Debugging: various feature bits
702 */
703
704 #define SCHED_FEAT(name, enabled) \
705 __SCHED_FEAT_##name ,
706
707 enum {
708 #include "sched_features.h"
709 };
710
711 #undef SCHED_FEAT
712
713 #define SCHED_FEAT(name, enabled) \
714 (1UL << __SCHED_FEAT_##name) * enabled |
715
716 const_debug unsigned int sysctl_sched_features =
717 #include "sched_features.h"
718 0;
719
720 #undef SCHED_FEAT
721
722 #ifdef CONFIG_SCHED_DEBUG
723 #define SCHED_FEAT(name, enabled) \
724 #name ,
725
726 static __read_mostly char *sched_feat_names[] = {
727 #include "sched_features.h"
728 NULL
729 };
730
731 #undef SCHED_FEAT
732
733 static int sched_feat_show(struct seq_file *m, void *v)
734 {
735 int i;
736
737 for (i = 0; sched_feat_names[i]; i++) {
738 if (!(sysctl_sched_features & (1UL << i)))
739 seq_puts(m, "NO_");
740 seq_printf(m, "%s ", sched_feat_names[i]);
741 }
742 seq_puts(m, "\n");
743
744 return 0;
745 }
746
747 static ssize_t
748 sched_feat_write(struct file *filp, const char __user *ubuf,
749 size_t cnt, loff_t *ppos)
750 {
751 char buf[64];
752 char *cmp = buf;
753 int neg = 0;
754 int i;
755
756 if (cnt > 63)
757 cnt = 63;
758
759 if (copy_from_user(&buf, ubuf, cnt))
760 return -EFAULT;
761
762 buf[cnt] = 0;
763
764 if (strncmp(buf, "NO_", 3) == 0) {
765 neg = 1;
766 cmp += 3;
767 }
768
769 for (i = 0; sched_feat_names[i]; i++) {
770 int len = strlen(sched_feat_names[i]);
771
772 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
773 if (neg)
774 sysctl_sched_features &= ~(1UL << i);
775 else
776 sysctl_sched_features |= (1UL << i);
777 break;
778 }
779 }
780
781 if (!sched_feat_names[i])
782 return -EINVAL;
783
784 filp->f_pos += cnt;
785
786 return cnt;
787 }
788
789 static int sched_feat_open(struct inode *inode, struct file *filp)
790 {
791 return single_open(filp, sched_feat_show, NULL);
792 }
793
794 static struct file_operations sched_feat_fops = {
795 .open = sched_feat_open,
796 .write = sched_feat_write,
797 .read = seq_read,
798 .llseek = seq_lseek,
799 .release = single_release,
800 };
801
802 static __init int sched_init_debug(void)
803 {
804 debugfs_create_file("sched_features", 0644, NULL, NULL,
805 &sched_feat_fops);
806
807 return 0;
808 }
809 late_initcall(sched_init_debug);
810
811 #endif
812
813 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
814
815 /*
816 * Number of tasks to iterate in a single balance run.
817 * Limited because this is done with IRQs disabled.
818 */
819 const_debug unsigned int sysctl_sched_nr_migrate = 32;
820
821 /*
822 * ratelimit for updating the group shares.
823 * default: 0.25ms
824 */
825 unsigned int sysctl_sched_shares_ratelimit = 250000;
826
827 /*
828 * Inject some fuzzyness into changing the per-cpu group shares
829 * this avoids remote rq-locks at the expense of fairness.
830 * default: 4
831 */
832 unsigned int sysctl_sched_shares_thresh = 4;
833
834 /*
835 * period over which we measure -rt task cpu usage in us.
836 * default: 1s
837 */
838 unsigned int sysctl_sched_rt_period = 1000000;
839
840 static __read_mostly int scheduler_running;
841
842 /*
843 * part of the period that we allow rt tasks to run in us.
844 * default: 0.95s
845 */
846 int sysctl_sched_rt_runtime = 950000;
847
848 static inline u64 global_rt_period(void)
849 {
850 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
851 }
852
853 static inline u64 global_rt_runtime(void)
854 {
855 if (sysctl_sched_rt_runtime < 0)
856 return RUNTIME_INF;
857
858 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
859 }
860
861 #ifndef prepare_arch_switch
862 # define prepare_arch_switch(next) do { } while (0)
863 #endif
864 #ifndef finish_arch_switch
865 # define finish_arch_switch(prev) do { } while (0)
866 #endif
867
868 static inline int task_current(struct rq *rq, struct task_struct *p)
869 {
870 return rq->curr == p;
871 }
872
873 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
874 static inline int task_running(struct rq *rq, struct task_struct *p)
875 {
876 return task_current(rq, p);
877 }
878
879 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
880 {
881 }
882
883 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
884 {
885 #ifdef CONFIG_DEBUG_SPINLOCK
886 /* this is a valid case when another task releases the spinlock */
887 rq->lock.owner = current;
888 #endif
889 /*
890 * If we are tracking spinlock dependencies then we have to
891 * fix up the runqueue lock - which gets 'carried over' from
892 * prev into current:
893 */
894 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
895
896 spin_unlock_irq(&rq->lock);
897 }
898
899 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
900 static inline int task_running(struct rq *rq, struct task_struct *p)
901 {
902 #ifdef CONFIG_SMP
903 return p->oncpu;
904 #else
905 return task_current(rq, p);
906 #endif
907 }
908
909 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
910 {
911 #ifdef CONFIG_SMP
912 /*
913 * We can optimise this out completely for !SMP, because the
914 * SMP rebalancing from interrupt is the only thing that cares
915 * here.
916 */
917 next->oncpu = 1;
918 #endif
919 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
920 spin_unlock_irq(&rq->lock);
921 #else
922 spin_unlock(&rq->lock);
923 #endif
924 }
925
926 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
927 {
928 #ifdef CONFIG_SMP
929 /*
930 * After ->oncpu is cleared, the task can be moved to a different CPU.
931 * We must ensure this doesn't happen until the switch is completely
932 * finished.
933 */
934 smp_wmb();
935 prev->oncpu = 0;
936 #endif
937 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
938 local_irq_enable();
939 #endif
940 }
941 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
942
943 /*
944 * __task_rq_lock - lock the runqueue a given task resides on.
945 * Must be called interrupts disabled.
946 */
947 static inline struct rq *__task_rq_lock(struct task_struct *p)
948 __acquires(rq->lock)
949 {
950 for (;;) {
951 struct rq *rq = task_rq(p);
952 spin_lock(&rq->lock);
953 if (likely(rq == task_rq(p)))
954 return rq;
955 spin_unlock(&rq->lock);
956 }
957 }
958
959 /*
960 * task_rq_lock - lock the runqueue a given task resides on and disable
961 * interrupts. Note the ordering: we can safely lookup the task_rq without
962 * explicitly disabling preemption.
963 */
964 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
965 __acquires(rq->lock)
966 {
967 struct rq *rq;
968
969 for (;;) {
970 local_irq_save(*flags);
971 rq = task_rq(p);
972 spin_lock(&rq->lock);
973 if (likely(rq == task_rq(p)))
974 return rq;
975 spin_unlock_irqrestore(&rq->lock, *flags);
976 }
977 }
978
979 void task_rq_unlock_wait(struct task_struct *p)
980 {
981 struct rq *rq = task_rq(p);
982
983 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
984 spin_unlock_wait(&rq->lock);
985 }
986
987 static void __task_rq_unlock(struct rq *rq)
988 __releases(rq->lock)
989 {
990 spin_unlock(&rq->lock);
991 }
992
993 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
994 __releases(rq->lock)
995 {
996 spin_unlock_irqrestore(&rq->lock, *flags);
997 }
998
999 /*
1000 * this_rq_lock - lock this runqueue and disable interrupts.
1001 */
1002 static struct rq *this_rq_lock(void)
1003 __acquires(rq->lock)
1004 {
1005 struct rq *rq;
1006
1007 local_irq_disable();
1008 rq = this_rq();
1009 spin_lock(&rq->lock);
1010
1011 return rq;
1012 }
1013
1014 #ifdef CONFIG_SCHED_HRTICK
1015 /*
1016 * Use HR-timers to deliver accurate preemption points.
1017 *
1018 * Its all a bit involved since we cannot program an hrt while holding the
1019 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1020 * reschedule event.
1021 *
1022 * When we get rescheduled we reprogram the hrtick_timer outside of the
1023 * rq->lock.
1024 */
1025
1026 /*
1027 * Use hrtick when:
1028 * - enabled by features
1029 * - hrtimer is actually high res
1030 */
1031 static inline int hrtick_enabled(struct rq *rq)
1032 {
1033 if (!sched_feat(HRTICK))
1034 return 0;
1035 if (!cpu_active(cpu_of(rq)))
1036 return 0;
1037 return hrtimer_is_hres_active(&rq->hrtick_timer);
1038 }
1039
1040 static void hrtick_clear(struct rq *rq)
1041 {
1042 if (hrtimer_active(&rq->hrtick_timer))
1043 hrtimer_cancel(&rq->hrtick_timer);
1044 }
1045
1046 /*
1047 * High-resolution timer tick.
1048 * Runs from hardirq context with interrupts disabled.
1049 */
1050 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1051 {
1052 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1053
1054 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1055
1056 spin_lock(&rq->lock);
1057 update_rq_clock(rq);
1058 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1059 spin_unlock(&rq->lock);
1060
1061 return HRTIMER_NORESTART;
1062 }
1063
1064 #ifdef CONFIG_SMP
1065 /*
1066 * called from hardirq (IPI) context
1067 */
1068 static void __hrtick_start(void *arg)
1069 {
1070 struct rq *rq = arg;
1071
1072 spin_lock(&rq->lock);
1073 hrtimer_restart(&rq->hrtick_timer);
1074 rq->hrtick_csd_pending = 0;
1075 spin_unlock(&rq->lock);
1076 }
1077
1078 /*
1079 * Called to set the hrtick timer state.
1080 *
1081 * called with rq->lock held and irqs disabled
1082 */
1083 static void hrtick_start(struct rq *rq, u64 delay)
1084 {
1085 struct hrtimer *timer = &rq->hrtick_timer;
1086 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1087
1088 hrtimer_set_expires(timer, time);
1089
1090 if (rq == this_rq()) {
1091 hrtimer_restart(timer);
1092 } else if (!rq->hrtick_csd_pending) {
1093 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
1094 rq->hrtick_csd_pending = 1;
1095 }
1096 }
1097
1098 static int
1099 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1100 {
1101 int cpu = (int)(long)hcpu;
1102
1103 switch (action) {
1104 case CPU_UP_CANCELED:
1105 case CPU_UP_CANCELED_FROZEN:
1106 case CPU_DOWN_PREPARE:
1107 case CPU_DOWN_PREPARE_FROZEN:
1108 case CPU_DEAD:
1109 case CPU_DEAD_FROZEN:
1110 hrtick_clear(cpu_rq(cpu));
1111 return NOTIFY_OK;
1112 }
1113
1114 return NOTIFY_DONE;
1115 }
1116
1117 static __init void init_hrtick(void)
1118 {
1119 hotcpu_notifier(hotplug_hrtick, 0);
1120 }
1121 #else
1122 /*
1123 * Called to set the hrtick timer state.
1124 *
1125 * called with rq->lock held and irqs disabled
1126 */
1127 static void hrtick_start(struct rq *rq, u64 delay)
1128 {
1129 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
1130 }
1131
1132 static inline void init_hrtick(void)
1133 {
1134 }
1135 #endif /* CONFIG_SMP */
1136
1137 static void init_rq_hrtick(struct rq *rq)
1138 {
1139 #ifdef CONFIG_SMP
1140 rq->hrtick_csd_pending = 0;
1141
1142 rq->hrtick_csd.flags = 0;
1143 rq->hrtick_csd.func = __hrtick_start;
1144 rq->hrtick_csd.info = rq;
1145 #endif
1146
1147 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1148 rq->hrtick_timer.function = hrtick;
1149 }
1150 #else /* CONFIG_SCHED_HRTICK */
1151 static inline void hrtick_clear(struct rq *rq)
1152 {
1153 }
1154
1155 static inline void init_rq_hrtick(struct rq *rq)
1156 {
1157 }
1158
1159 static inline void init_hrtick(void)
1160 {
1161 }
1162 #endif /* CONFIG_SCHED_HRTICK */
1163
1164 /*
1165 * resched_task - mark a task 'to be rescheduled now'.
1166 *
1167 * On UP this means the setting of the need_resched flag, on SMP it
1168 * might also involve a cross-CPU call to trigger the scheduler on
1169 * the target CPU.
1170 */
1171 #ifdef CONFIG_SMP
1172
1173 #ifndef tsk_is_polling
1174 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1175 #endif
1176
1177 static void resched_task(struct task_struct *p)
1178 {
1179 int cpu;
1180
1181 assert_spin_locked(&task_rq(p)->lock);
1182
1183 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
1184 return;
1185
1186 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
1187
1188 cpu = task_cpu(p);
1189 if (cpu == smp_processor_id())
1190 return;
1191
1192 /* NEED_RESCHED must be visible before we test polling */
1193 smp_mb();
1194 if (!tsk_is_polling(p))
1195 smp_send_reschedule(cpu);
1196 }
1197
1198 static void resched_cpu(int cpu)
1199 {
1200 struct rq *rq = cpu_rq(cpu);
1201 unsigned long flags;
1202
1203 if (!spin_trylock_irqsave(&rq->lock, flags))
1204 return;
1205 resched_task(cpu_curr(cpu));
1206 spin_unlock_irqrestore(&rq->lock, flags);
1207 }
1208
1209 #ifdef CONFIG_NO_HZ
1210 /*
1211 * When add_timer_on() enqueues a timer into the timer wheel of an
1212 * idle CPU then this timer might expire before the next timer event
1213 * which is scheduled to wake up that CPU. In case of a completely
1214 * idle system the next event might even be infinite time into the
1215 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1216 * leaves the inner idle loop so the newly added timer is taken into
1217 * account when the CPU goes back to idle and evaluates the timer
1218 * wheel for the next timer event.
1219 */
1220 void wake_up_idle_cpu(int cpu)
1221 {
1222 struct rq *rq = cpu_rq(cpu);
1223
1224 if (cpu == smp_processor_id())
1225 return;
1226
1227 /*
1228 * This is safe, as this function is called with the timer
1229 * wheel base lock of (cpu) held. When the CPU is on the way
1230 * to idle and has not yet set rq->curr to idle then it will
1231 * be serialized on the timer wheel base lock and take the new
1232 * timer into account automatically.
1233 */
1234 if (rq->curr != rq->idle)
1235 return;
1236
1237 /*
1238 * We can set TIF_RESCHED on the idle task of the other CPU
1239 * lockless. The worst case is that the other CPU runs the
1240 * idle task through an additional NOOP schedule()
1241 */
1242 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1243
1244 /* NEED_RESCHED must be visible before we test polling */
1245 smp_mb();
1246 if (!tsk_is_polling(rq->idle))
1247 smp_send_reschedule(cpu);
1248 }
1249 #endif /* CONFIG_NO_HZ */
1250
1251 #else /* !CONFIG_SMP */
1252 static void resched_task(struct task_struct *p)
1253 {
1254 assert_spin_locked(&task_rq(p)->lock);
1255 set_tsk_need_resched(p);
1256 }
1257 #endif /* CONFIG_SMP */
1258
1259 #if BITS_PER_LONG == 32
1260 # define WMULT_CONST (~0UL)
1261 #else
1262 # define WMULT_CONST (1UL << 32)
1263 #endif
1264
1265 #define WMULT_SHIFT 32
1266
1267 /*
1268 * Shift right and round:
1269 */
1270 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1271
1272 /*
1273 * delta *= weight / lw
1274 */
1275 static unsigned long
1276 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1277 struct load_weight *lw)
1278 {
1279 u64 tmp;
1280
1281 if (!lw->inv_weight) {
1282 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1283 lw->inv_weight = 1;
1284 else
1285 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1286 / (lw->weight+1);
1287 }
1288
1289 tmp = (u64)delta_exec * weight;
1290 /*
1291 * Check whether we'd overflow the 64-bit multiplication:
1292 */
1293 if (unlikely(tmp > WMULT_CONST))
1294 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1295 WMULT_SHIFT/2);
1296 else
1297 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1298
1299 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1300 }
1301
1302 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1303 {
1304 lw->weight += inc;
1305 lw->inv_weight = 0;
1306 }
1307
1308 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1309 {
1310 lw->weight -= dec;
1311 lw->inv_weight = 0;
1312 }
1313
1314 /*
1315 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1316 * of tasks with abnormal "nice" values across CPUs the contribution that
1317 * each task makes to its run queue's load is weighted according to its
1318 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1319 * scaled version of the new time slice allocation that they receive on time
1320 * slice expiry etc.
1321 */
1322
1323 #define WEIGHT_IDLEPRIO 2
1324 #define WMULT_IDLEPRIO (1 << 31)
1325
1326 /*
1327 * Nice levels are multiplicative, with a gentle 10% change for every
1328 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1329 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1330 * that remained on nice 0.
1331 *
1332 * The "10% effect" is relative and cumulative: from _any_ nice level,
1333 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1334 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1335 * If a task goes up by ~10% and another task goes down by ~10% then
1336 * the relative distance between them is ~25%.)
1337 */
1338 static const int prio_to_weight[40] = {
1339 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1340 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1341 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1342 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1343 /* 0 */ 1024, 820, 655, 526, 423,
1344 /* 5 */ 335, 272, 215, 172, 137,
1345 /* 10 */ 110, 87, 70, 56, 45,
1346 /* 15 */ 36, 29, 23, 18, 15,
1347 };
1348
1349 /*
1350 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1351 *
1352 * In cases where the weight does not change often, we can use the
1353 * precalculated inverse to speed up arithmetics by turning divisions
1354 * into multiplications:
1355 */
1356 static const u32 prio_to_wmult[40] = {
1357 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1358 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1359 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1360 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1361 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1362 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1363 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1364 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1365 };
1366
1367 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1368
1369 /*
1370 * runqueue iterator, to support SMP load-balancing between different
1371 * scheduling classes, without having to expose their internal data
1372 * structures to the load-balancing proper:
1373 */
1374 struct rq_iterator {
1375 void *arg;
1376 struct task_struct *(*start)(void *);
1377 struct task_struct *(*next)(void *);
1378 };
1379
1380 #ifdef CONFIG_SMP
1381 static unsigned long
1382 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1383 unsigned long max_load_move, struct sched_domain *sd,
1384 enum cpu_idle_type idle, int *all_pinned,
1385 int *this_best_prio, struct rq_iterator *iterator);
1386
1387 static int
1388 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1389 struct sched_domain *sd, enum cpu_idle_type idle,
1390 struct rq_iterator *iterator);
1391 #endif
1392
1393 #ifdef CONFIG_CGROUP_CPUACCT
1394 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1395 #else
1396 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1397 #endif
1398
1399 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1400 {
1401 update_load_add(&rq->load, load);
1402 }
1403
1404 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1405 {
1406 update_load_sub(&rq->load, load);
1407 }
1408
1409 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1410 typedef int (*tg_visitor)(struct task_group *, void *);
1411
1412 /*
1413 * Iterate the full tree, calling @down when first entering a node and @up when
1414 * leaving it for the final time.
1415 */
1416 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1417 {
1418 struct task_group *parent, *child;
1419 int ret;
1420
1421 rcu_read_lock();
1422 parent = &root_task_group;
1423 down:
1424 ret = (*down)(parent, data);
1425 if (ret)
1426 goto out_unlock;
1427 list_for_each_entry_rcu(child, &parent->children, siblings) {
1428 parent = child;
1429 goto down;
1430
1431 up:
1432 continue;
1433 }
1434 ret = (*up)(parent, data);
1435 if (ret)
1436 goto out_unlock;
1437
1438 child = parent;
1439 parent = parent->parent;
1440 if (parent)
1441 goto up;
1442 out_unlock:
1443 rcu_read_unlock();
1444
1445 return ret;
1446 }
1447
1448 static int tg_nop(struct task_group *tg, void *data)
1449 {
1450 return 0;
1451 }
1452 #endif
1453
1454 #ifdef CONFIG_SMP
1455 static unsigned long source_load(int cpu, int type);
1456 static unsigned long target_load(int cpu, int type);
1457 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1458
1459 static unsigned long cpu_avg_load_per_task(int cpu)
1460 {
1461 struct rq *rq = cpu_rq(cpu);
1462 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1463
1464 if (nr_running)
1465 rq->avg_load_per_task = rq->load.weight / nr_running;
1466 else
1467 rq->avg_load_per_task = 0;
1468
1469 return rq->avg_load_per_task;
1470 }
1471
1472 #ifdef CONFIG_FAIR_GROUP_SCHED
1473
1474 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1475
1476 /*
1477 * Calculate and set the cpu's group shares.
1478 */
1479 static void
1480 update_group_shares_cpu(struct task_group *tg, int cpu,
1481 unsigned long sd_shares, unsigned long sd_rq_weight)
1482 {
1483 unsigned long shares;
1484 unsigned long rq_weight;
1485
1486 if (!tg->se[cpu])
1487 return;
1488
1489 rq_weight = tg->cfs_rq[cpu]->rq_weight;
1490
1491 /*
1492 * \Sum shares * rq_weight
1493 * shares = -----------------------
1494 * \Sum rq_weight
1495 *
1496 */
1497 shares = (sd_shares * rq_weight) / sd_rq_weight;
1498 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1499
1500 if (abs(shares - tg->se[cpu]->load.weight) >
1501 sysctl_sched_shares_thresh) {
1502 struct rq *rq = cpu_rq(cpu);
1503 unsigned long flags;
1504
1505 spin_lock_irqsave(&rq->lock, flags);
1506 tg->cfs_rq[cpu]->shares = shares;
1507
1508 __set_se_shares(tg->se[cpu], shares);
1509 spin_unlock_irqrestore(&rq->lock, flags);
1510 }
1511 }
1512
1513 /*
1514 * Re-compute the task group their per cpu shares over the given domain.
1515 * This needs to be done in a bottom-up fashion because the rq weight of a
1516 * parent group depends on the shares of its child groups.
1517 */
1518 static int tg_shares_up(struct task_group *tg, void *data)
1519 {
1520 unsigned long weight, rq_weight = 0;
1521 unsigned long shares = 0;
1522 struct sched_domain *sd = data;
1523 int i;
1524
1525 for_each_cpu(i, sched_domain_span(sd)) {
1526 /*
1527 * If there are currently no tasks on the cpu pretend there
1528 * is one of average load so that when a new task gets to
1529 * run here it will not get delayed by group starvation.
1530 */
1531 weight = tg->cfs_rq[i]->load.weight;
1532 if (!weight)
1533 weight = NICE_0_LOAD;
1534
1535 tg->cfs_rq[i]->rq_weight = weight;
1536 rq_weight += weight;
1537 shares += tg->cfs_rq[i]->shares;
1538 }
1539
1540 if ((!shares && rq_weight) || shares > tg->shares)
1541 shares = tg->shares;
1542
1543 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1544 shares = tg->shares;
1545
1546 for_each_cpu(i, sched_domain_span(sd))
1547 update_group_shares_cpu(tg, i, shares, rq_weight);
1548
1549 return 0;
1550 }
1551
1552 /*
1553 * Compute the cpu's hierarchical load factor for each task group.
1554 * This needs to be done in a top-down fashion because the load of a child
1555 * group is a fraction of its parents load.
1556 */
1557 static int tg_load_down(struct task_group *tg, void *data)
1558 {
1559 unsigned long load;
1560 long cpu = (long)data;
1561
1562 if (!tg->parent) {
1563 load = cpu_rq(cpu)->load.weight;
1564 } else {
1565 load = tg->parent->cfs_rq[cpu]->h_load;
1566 load *= tg->cfs_rq[cpu]->shares;
1567 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1568 }
1569
1570 tg->cfs_rq[cpu]->h_load = load;
1571
1572 return 0;
1573 }
1574
1575 static void update_shares(struct sched_domain *sd)
1576 {
1577 u64 now = cpu_clock(raw_smp_processor_id());
1578 s64 elapsed = now - sd->last_update;
1579
1580 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1581 sd->last_update = now;
1582 walk_tg_tree(tg_nop, tg_shares_up, sd);
1583 }
1584 }
1585
1586 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1587 {
1588 spin_unlock(&rq->lock);
1589 update_shares(sd);
1590 spin_lock(&rq->lock);
1591 }
1592
1593 static void update_h_load(long cpu)
1594 {
1595 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1596 }
1597
1598 #else
1599
1600 static inline void update_shares(struct sched_domain *sd)
1601 {
1602 }
1603
1604 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1605 {
1606 }
1607
1608 #endif
1609
1610 /*
1611 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1612 */
1613 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1614 __releases(this_rq->lock)
1615 __acquires(busiest->lock)
1616 __acquires(this_rq->lock)
1617 {
1618 int ret = 0;
1619
1620 if (unlikely(!irqs_disabled())) {
1621 /* printk() doesn't work good under rq->lock */
1622 spin_unlock(&this_rq->lock);
1623 BUG_ON(1);
1624 }
1625 if (unlikely(!spin_trylock(&busiest->lock))) {
1626 if (busiest < this_rq) {
1627 spin_unlock(&this_rq->lock);
1628 spin_lock(&busiest->lock);
1629 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1630 ret = 1;
1631 } else
1632 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1633 }
1634 return ret;
1635 }
1636
1637 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1638 __releases(busiest->lock)
1639 {
1640 spin_unlock(&busiest->lock);
1641 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1642 }
1643 #endif
1644
1645 #ifdef CONFIG_FAIR_GROUP_SCHED
1646 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1647 {
1648 #ifdef CONFIG_SMP
1649 cfs_rq->shares = shares;
1650 #endif
1651 }
1652 #endif
1653
1654 #include "sched_stats.h"
1655 #include "sched_idletask.c"
1656 #include "sched_fair.c"
1657 #include "sched_rt.c"
1658 #ifdef CONFIG_SCHED_DEBUG
1659 # include "sched_debug.c"
1660 #endif
1661
1662 #define sched_class_highest (&rt_sched_class)
1663 #define for_each_class(class) \
1664 for (class = sched_class_highest; class; class = class->next)
1665
1666 static void inc_nr_running(struct rq *rq)
1667 {
1668 rq->nr_running++;
1669 }
1670
1671 static void dec_nr_running(struct rq *rq)
1672 {
1673 rq->nr_running--;
1674 }
1675
1676 static void set_load_weight(struct task_struct *p)
1677 {
1678 if (task_has_rt_policy(p)) {
1679 p->se.load.weight = prio_to_weight[0] * 2;
1680 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1681 return;
1682 }
1683
1684 /*
1685 * SCHED_IDLE tasks get minimal weight:
1686 */
1687 if (p->policy == SCHED_IDLE) {
1688 p->se.load.weight = WEIGHT_IDLEPRIO;
1689 p->se.load.inv_weight = WMULT_IDLEPRIO;
1690 return;
1691 }
1692
1693 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1694 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1695 }
1696
1697 static void update_avg(u64 *avg, u64 sample)
1698 {
1699 s64 diff = sample - *avg;
1700 *avg += diff >> 3;
1701 }
1702
1703 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1704 {
1705 sched_info_queued(p);
1706 p->sched_class->enqueue_task(rq, p, wakeup);
1707 p->se.on_rq = 1;
1708 }
1709
1710 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1711 {
1712 if (sleep && p->se.last_wakeup) {
1713 update_avg(&p->se.avg_overlap,
1714 p->se.sum_exec_runtime - p->se.last_wakeup);
1715 p->se.last_wakeup = 0;
1716 }
1717
1718 sched_info_dequeued(p);
1719 p->sched_class->dequeue_task(rq, p, sleep);
1720 p->se.on_rq = 0;
1721 }
1722
1723 /*
1724 * __normal_prio - return the priority that is based on the static prio
1725 */
1726 static inline int __normal_prio(struct task_struct *p)
1727 {
1728 return p->static_prio;
1729 }
1730
1731 /*
1732 * Calculate the expected normal priority: i.e. priority
1733 * without taking RT-inheritance into account. Might be
1734 * boosted by interactivity modifiers. Changes upon fork,
1735 * setprio syscalls, and whenever the interactivity
1736 * estimator recalculates.
1737 */
1738 static inline int normal_prio(struct task_struct *p)
1739 {
1740 int prio;
1741
1742 if (task_has_rt_policy(p))
1743 prio = MAX_RT_PRIO-1 - p->rt_priority;
1744 else
1745 prio = __normal_prio(p);
1746 return prio;
1747 }
1748
1749 /*
1750 * Calculate the current priority, i.e. the priority
1751 * taken into account by the scheduler. This value might
1752 * be boosted by RT tasks, or might be boosted by
1753 * interactivity modifiers. Will be RT if the task got
1754 * RT-boosted. If not then it returns p->normal_prio.
1755 */
1756 static int effective_prio(struct task_struct *p)
1757 {
1758 p->normal_prio = normal_prio(p);
1759 /*
1760 * If we are RT tasks or we were boosted to RT priority,
1761 * keep the priority unchanged. Otherwise, update priority
1762 * to the normal priority:
1763 */
1764 if (!rt_prio(p->prio))
1765 return p->normal_prio;
1766 return p->prio;
1767 }
1768
1769 /*
1770 * activate_task - move a task to the runqueue.
1771 */
1772 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1773 {
1774 if (task_contributes_to_load(p))
1775 rq->nr_uninterruptible--;
1776
1777 enqueue_task(rq, p, wakeup);
1778 inc_nr_running(rq);
1779 }
1780
1781 /*
1782 * deactivate_task - remove a task from the runqueue.
1783 */
1784 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1785 {
1786 if (task_contributes_to_load(p))
1787 rq->nr_uninterruptible++;
1788
1789 dequeue_task(rq, p, sleep);
1790 dec_nr_running(rq);
1791 }
1792
1793 /**
1794 * task_curr - is this task currently executing on a CPU?
1795 * @p: the task in question.
1796 */
1797 inline int task_curr(const struct task_struct *p)
1798 {
1799 return cpu_curr(task_cpu(p)) == p;
1800 }
1801
1802 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1803 {
1804 set_task_rq(p, cpu);
1805 #ifdef CONFIG_SMP
1806 /*
1807 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1808 * successfuly executed on another CPU. We must ensure that updates of
1809 * per-task data have been completed by this moment.
1810 */
1811 smp_wmb();
1812 task_thread_info(p)->cpu = cpu;
1813 #endif
1814 }
1815
1816 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1817 const struct sched_class *prev_class,
1818 int oldprio, int running)
1819 {
1820 if (prev_class != p->sched_class) {
1821 if (prev_class->switched_from)
1822 prev_class->switched_from(rq, p, running);
1823 p->sched_class->switched_to(rq, p, running);
1824 } else
1825 p->sched_class->prio_changed(rq, p, oldprio, running);
1826 }
1827
1828 #ifdef CONFIG_SMP
1829
1830 /* Used instead of source_load when we know the type == 0 */
1831 static unsigned long weighted_cpuload(const int cpu)
1832 {
1833 return cpu_rq(cpu)->load.weight;
1834 }
1835
1836 /*
1837 * Is this task likely cache-hot:
1838 */
1839 static int
1840 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1841 {
1842 s64 delta;
1843
1844 /*
1845 * Buddy candidates are cache hot:
1846 */
1847 if (sched_feat(CACHE_HOT_BUDDY) &&
1848 (&p->se == cfs_rq_of(&p->se)->next ||
1849 &p->se == cfs_rq_of(&p->se)->last))
1850 return 1;
1851
1852 if (p->sched_class != &fair_sched_class)
1853 return 0;
1854
1855 if (sysctl_sched_migration_cost == -1)
1856 return 1;
1857 if (sysctl_sched_migration_cost == 0)
1858 return 0;
1859
1860 delta = now - p->se.exec_start;
1861
1862 return delta < (s64)sysctl_sched_migration_cost;
1863 }
1864
1865
1866 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1867 {
1868 int old_cpu = task_cpu(p);
1869 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1870 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1871 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1872 u64 clock_offset;
1873
1874 clock_offset = old_rq->clock - new_rq->clock;
1875
1876 trace_sched_migrate_task(p, task_cpu(p), new_cpu);
1877
1878 #ifdef CONFIG_SCHEDSTATS
1879 if (p->se.wait_start)
1880 p->se.wait_start -= clock_offset;
1881 if (p->se.sleep_start)
1882 p->se.sleep_start -= clock_offset;
1883 if (p->se.block_start)
1884 p->se.block_start -= clock_offset;
1885 if (old_cpu != new_cpu) {
1886 schedstat_inc(p, se.nr_migrations);
1887 if (task_hot(p, old_rq->clock, NULL))
1888 schedstat_inc(p, se.nr_forced2_migrations);
1889 }
1890 #endif
1891 p->se.vruntime -= old_cfsrq->min_vruntime -
1892 new_cfsrq->min_vruntime;
1893
1894 __set_task_cpu(p, new_cpu);
1895 }
1896
1897 struct migration_req {
1898 struct list_head list;
1899
1900 struct task_struct *task;
1901 int dest_cpu;
1902
1903 struct completion done;
1904 };
1905
1906 /*
1907 * The task's runqueue lock must be held.
1908 * Returns true if you have to wait for migration thread.
1909 */
1910 static int
1911 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1912 {
1913 struct rq *rq = task_rq(p);
1914
1915 /*
1916 * If the task is not on a runqueue (and not running), then
1917 * it is sufficient to simply update the task's cpu field.
1918 */
1919 if (!p->se.on_rq && !task_running(rq, p)) {
1920 set_task_cpu(p, dest_cpu);
1921 return 0;
1922 }
1923
1924 init_completion(&req->done);
1925 req->task = p;
1926 req->dest_cpu = dest_cpu;
1927 list_add(&req->list, &rq->migration_queue);
1928
1929 return 1;
1930 }
1931
1932 /*
1933 * wait_task_inactive - wait for a thread to unschedule.
1934 *
1935 * If @match_state is nonzero, it's the @p->state value just checked and
1936 * not expected to change. If it changes, i.e. @p might have woken up,
1937 * then return zero. When we succeed in waiting for @p to be off its CPU,
1938 * we return a positive number (its total switch count). If a second call
1939 * a short while later returns the same number, the caller can be sure that
1940 * @p has remained unscheduled the whole time.
1941 *
1942 * The caller must ensure that the task *will* unschedule sometime soon,
1943 * else this function might spin for a *long* time. This function can't
1944 * be called with interrupts off, or it may introduce deadlock with
1945 * smp_call_function() if an IPI is sent by the same process we are
1946 * waiting to become inactive.
1947 */
1948 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1949 {
1950 unsigned long flags;
1951 int running, on_rq;
1952 unsigned long ncsw;
1953 struct rq *rq;
1954
1955 for (;;) {
1956 /*
1957 * We do the initial early heuristics without holding
1958 * any task-queue locks at all. We'll only try to get
1959 * the runqueue lock when things look like they will
1960 * work out!
1961 */
1962 rq = task_rq(p);
1963
1964 /*
1965 * If the task is actively running on another CPU
1966 * still, just relax and busy-wait without holding
1967 * any locks.
1968 *
1969 * NOTE! Since we don't hold any locks, it's not
1970 * even sure that "rq" stays as the right runqueue!
1971 * But we don't care, since "task_running()" will
1972 * return false if the runqueue has changed and p
1973 * is actually now running somewhere else!
1974 */
1975 while (task_running(rq, p)) {
1976 if (match_state && unlikely(p->state != match_state))
1977 return 0;
1978 cpu_relax();
1979 }
1980
1981 /*
1982 * Ok, time to look more closely! We need the rq
1983 * lock now, to be *sure*. If we're wrong, we'll
1984 * just go back and repeat.
1985 */
1986 rq = task_rq_lock(p, &flags);
1987 trace_sched_wait_task(rq, p);
1988 running = task_running(rq, p);
1989 on_rq = p->se.on_rq;
1990 ncsw = 0;
1991 if (!match_state || p->state == match_state)
1992 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1993 task_rq_unlock(rq, &flags);
1994
1995 /*
1996 * If it changed from the expected state, bail out now.
1997 */
1998 if (unlikely(!ncsw))
1999 break;
2000
2001 /*
2002 * Was it really running after all now that we
2003 * checked with the proper locks actually held?
2004 *
2005 * Oops. Go back and try again..
2006 */
2007 if (unlikely(running)) {
2008 cpu_relax();
2009 continue;
2010 }
2011
2012 /*
2013 * It's not enough that it's not actively running,
2014 * it must be off the runqueue _entirely_, and not
2015 * preempted!
2016 *
2017 * So if it wa still runnable (but just not actively
2018 * running right now), it's preempted, and we should
2019 * yield - it could be a while.
2020 */
2021 if (unlikely(on_rq)) {
2022 schedule_timeout_uninterruptible(1);
2023 continue;
2024 }
2025
2026 /*
2027 * Ahh, all good. It wasn't running, and it wasn't
2028 * runnable, which means that it will never become
2029 * running in the future either. We're all done!
2030 */
2031 break;
2032 }
2033
2034 return ncsw;
2035 }
2036
2037 /***
2038 * kick_process - kick a running thread to enter/exit the kernel
2039 * @p: the to-be-kicked thread
2040 *
2041 * Cause a process which is running on another CPU to enter
2042 * kernel-mode, without any delay. (to get signals handled.)
2043 *
2044 * NOTE: this function doesnt have to take the runqueue lock,
2045 * because all it wants to ensure is that the remote task enters
2046 * the kernel. If the IPI races and the task has been migrated
2047 * to another CPU then no harm is done and the purpose has been
2048 * achieved as well.
2049 */
2050 void kick_process(struct task_struct *p)
2051 {
2052 int cpu;
2053
2054 preempt_disable();
2055 cpu = task_cpu(p);
2056 if ((cpu != smp_processor_id()) && task_curr(p))
2057 smp_send_reschedule(cpu);
2058 preempt_enable();
2059 }
2060
2061 /*
2062 * Return a low guess at the load of a migration-source cpu weighted
2063 * according to the scheduling class and "nice" value.
2064 *
2065 * We want to under-estimate the load of migration sources, to
2066 * balance conservatively.
2067 */
2068 static unsigned long source_load(int cpu, int type)
2069 {
2070 struct rq *rq = cpu_rq(cpu);
2071 unsigned long total = weighted_cpuload(cpu);
2072
2073 if (type == 0 || !sched_feat(LB_BIAS))
2074 return total;
2075
2076 return min(rq->cpu_load[type-1], total);
2077 }
2078
2079 /*
2080 * Return a high guess at the load of a migration-target cpu weighted
2081 * according to the scheduling class and "nice" value.
2082 */
2083 static unsigned long target_load(int cpu, int type)
2084 {
2085 struct rq *rq = cpu_rq(cpu);
2086 unsigned long total = weighted_cpuload(cpu);
2087
2088 if (type == 0 || !sched_feat(LB_BIAS))
2089 return total;
2090
2091 return max(rq->cpu_load[type-1], total);
2092 }
2093
2094 /*
2095 * find_idlest_group finds and returns the least busy CPU group within the
2096 * domain.
2097 */
2098 static struct sched_group *
2099 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2100 {
2101 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2102 unsigned long min_load = ULONG_MAX, this_load = 0;
2103 int load_idx = sd->forkexec_idx;
2104 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2105
2106 do {
2107 unsigned long load, avg_load;
2108 int local_group;
2109 int i;
2110
2111 /* Skip over this group if it has no CPUs allowed */
2112 if (!cpumask_intersects(sched_group_cpus(group),
2113 &p->cpus_allowed))
2114 continue;
2115
2116 local_group = cpumask_test_cpu(this_cpu,
2117 sched_group_cpus(group));
2118
2119 /* Tally up the load of all CPUs in the group */
2120 avg_load = 0;
2121
2122 for_each_cpu(i, sched_group_cpus(group)) {
2123 /* Bias balancing toward cpus of our domain */
2124 if (local_group)
2125 load = source_load(i, load_idx);
2126 else
2127 load = target_load(i, load_idx);
2128
2129 avg_load += load;
2130 }
2131
2132 /* Adjust by relative CPU power of the group */
2133 avg_load = sg_div_cpu_power(group,
2134 avg_load * SCHED_LOAD_SCALE);
2135
2136 if (local_group) {
2137 this_load = avg_load;
2138 this = group;
2139 } else if (avg_load < min_load) {
2140 min_load = avg_load;
2141 idlest = group;
2142 }
2143 } while (group = group->next, group != sd->groups);
2144
2145 if (!idlest || 100*this_load < imbalance*min_load)
2146 return NULL;
2147 return idlest;
2148 }
2149
2150 /*
2151 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2152 */
2153 static int
2154 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
2155 {
2156 unsigned long load, min_load = ULONG_MAX;
2157 int idlest = -1;
2158 int i;
2159
2160 /* Traverse only the allowed CPUs */
2161 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2162 load = weighted_cpuload(i);
2163
2164 if (load < min_load || (load == min_load && i == this_cpu)) {
2165 min_load = load;
2166 idlest = i;
2167 }
2168 }
2169
2170 return idlest;
2171 }
2172
2173 /*
2174 * sched_balance_self: balance the current task (running on cpu) in domains
2175 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2176 * SD_BALANCE_EXEC.
2177 *
2178 * Balance, ie. select the least loaded group.
2179 *
2180 * Returns the target CPU number, or the same CPU if no balancing is needed.
2181 *
2182 * preempt must be disabled.
2183 */
2184 static int sched_balance_self(int cpu, int flag)
2185 {
2186 struct task_struct *t = current;
2187 struct sched_domain *tmp, *sd = NULL;
2188
2189 for_each_domain(cpu, tmp) {
2190 /*
2191 * If power savings logic is enabled for a domain, stop there.
2192 */
2193 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2194 break;
2195 if (tmp->flags & flag)
2196 sd = tmp;
2197 }
2198
2199 if (sd)
2200 update_shares(sd);
2201
2202 while (sd) {
2203 struct sched_group *group;
2204 int new_cpu, weight;
2205
2206 if (!(sd->flags & flag)) {
2207 sd = sd->child;
2208 continue;
2209 }
2210
2211 group = find_idlest_group(sd, t, cpu);
2212 if (!group) {
2213 sd = sd->child;
2214 continue;
2215 }
2216
2217 new_cpu = find_idlest_cpu(group, t, cpu);
2218 if (new_cpu == -1 || new_cpu == cpu) {
2219 /* Now try balancing at a lower domain level of cpu */
2220 sd = sd->child;
2221 continue;
2222 }
2223
2224 /* Now try balancing at a lower domain level of new_cpu */
2225 cpu = new_cpu;
2226 weight = cpumask_weight(sched_domain_span(sd));
2227 sd = NULL;
2228 for_each_domain(cpu, tmp) {
2229 if (weight <= cpumask_weight(sched_domain_span(tmp)))
2230 break;
2231 if (tmp->flags & flag)
2232 sd = tmp;
2233 }
2234 /* while loop will break here if sd == NULL */
2235 }
2236
2237 return cpu;
2238 }
2239
2240 #endif /* CONFIG_SMP */
2241
2242 /***
2243 * try_to_wake_up - wake up a thread
2244 * @p: the to-be-woken-up thread
2245 * @state: the mask of task states that can be woken
2246 * @sync: do a synchronous wakeup?
2247 *
2248 * Put it on the run-queue if it's not already there. The "current"
2249 * thread is always on the run-queue (except when the actual
2250 * re-schedule is in progress), and as such you're allowed to do
2251 * the simpler "current->state = TASK_RUNNING" to mark yourself
2252 * runnable without the overhead of this.
2253 *
2254 * returns failure only if the task is already active.
2255 */
2256 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2257 {
2258 int cpu, orig_cpu, this_cpu, success = 0;
2259 unsigned long flags;
2260 long old_state;
2261 struct rq *rq;
2262
2263 if (!sched_feat(SYNC_WAKEUPS))
2264 sync = 0;
2265
2266 #ifdef CONFIG_SMP
2267 if (sched_feat(LB_WAKEUP_UPDATE)) {
2268 struct sched_domain *sd;
2269
2270 this_cpu = raw_smp_processor_id();
2271 cpu = task_cpu(p);
2272
2273 for_each_domain(this_cpu, sd) {
2274 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2275 update_shares(sd);
2276 break;
2277 }
2278 }
2279 }
2280 #endif
2281
2282 smp_wmb();
2283 rq = task_rq_lock(p, &flags);
2284 update_rq_clock(rq);
2285 old_state = p->state;
2286 if (!(old_state & state))
2287 goto out;
2288
2289 if (p->se.on_rq)
2290 goto out_running;
2291
2292 cpu = task_cpu(p);
2293 orig_cpu = cpu;
2294 this_cpu = smp_processor_id();
2295
2296 #ifdef CONFIG_SMP
2297 if (unlikely(task_running(rq, p)))
2298 goto out_activate;
2299
2300 cpu = p->sched_class->select_task_rq(p, sync);
2301 if (cpu != orig_cpu) {
2302 set_task_cpu(p, cpu);
2303 task_rq_unlock(rq, &flags);
2304 /* might preempt at this point */
2305 rq = task_rq_lock(p, &flags);
2306 old_state = p->state;
2307 if (!(old_state & state))
2308 goto out;
2309 if (p->se.on_rq)
2310 goto out_running;
2311
2312 this_cpu = smp_processor_id();
2313 cpu = task_cpu(p);
2314 }
2315
2316 #ifdef CONFIG_SCHEDSTATS
2317 schedstat_inc(rq, ttwu_count);
2318 if (cpu == this_cpu)
2319 schedstat_inc(rq, ttwu_local);
2320 else {
2321 struct sched_domain *sd;
2322 for_each_domain(this_cpu, sd) {
2323 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2324 schedstat_inc(sd, ttwu_wake_remote);
2325 break;
2326 }
2327 }
2328 }
2329 #endif /* CONFIG_SCHEDSTATS */
2330
2331 out_activate:
2332 #endif /* CONFIG_SMP */
2333 schedstat_inc(p, se.nr_wakeups);
2334 if (sync)
2335 schedstat_inc(p, se.nr_wakeups_sync);
2336 if (orig_cpu != cpu)
2337 schedstat_inc(p, se.nr_wakeups_migrate);
2338 if (cpu == this_cpu)
2339 schedstat_inc(p, se.nr_wakeups_local);
2340 else
2341 schedstat_inc(p, se.nr_wakeups_remote);
2342 activate_task(rq, p, 1);
2343 success = 1;
2344
2345 out_running:
2346 trace_sched_wakeup(rq, p, success);
2347 check_preempt_curr(rq, p, sync);
2348
2349 p->state = TASK_RUNNING;
2350 #ifdef CONFIG_SMP
2351 if (p->sched_class->task_wake_up)
2352 p->sched_class->task_wake_up(rq, p);
2353 #endif
2354 out:
2355 current->se.last_wakeup = current->se.sum_exec_runtime;
2356
2357 task_rq_unlock(rq, &flags);
2358
2359 return success;
2360 }
2361
2362 int wake_up_process(struct task_struct *p)
2363 {
2364 return try_to_wake_up(p, TASK_ALL, 0);
2365 }
2366 EXPORT_SYMBOL(wake_up_process);
2367
2368 int wake_up_state(struct task_struct *p, unsigned int state)
2369 {
2370 return try_to_wake_up(p, state, 0);
2371 }
2372
2373 /*
2374 * Perform scheduler related setup for a newly forked process p.
2375 * p is forked by current.
2376 *
2377 * __sched_fork() is basic setup used by init_idle() too:
2378 */
2379 static void __sched_fork(struct task_struct *p)
2380 {
2381 p->se.exec_start = 0;
2382 p->se.sum_exec_runtime = 0;
2383 p->se.prev_sum_exec_runtime = 0;
2384 p->se.last_wakeup = 0;
2385 p->se.avg_overlap = 0;
2386
2387 #ifdef CONFIG_SCHEDSTATS
2388 p->se.wait_start = 0;
2389 p->se.sum_sleep_runtime = 0;
2390 p->se.sleep_start = 0;
2391 p->se.block_start = 0;
2392 p->se.sleep_max = 0;
2393 p->se.block_max = 0;
2394 p->se.exec_max = 0;
2395 p->se.slice_max = 0;
2396 p->se.wait_max = 0;
2397 #endif
2398
2399 INIT_LIST_HEAD(&p->rt.run_list);
2400 p->se.on_rq = 0;
2401 INIT_LIST_HEAD(&p->se.group_node);
2402
2403 #ifdef CONFIG_PREEMPT_NOTIFIERS
2404 INIT_HLIST_HEAD(&p->preempt_notifiers);
2405 #endif
2406
2407 /*
2408 * We mark the process as running here, but have not actually
2409 * inserted it onto the runqueue yet. This guarantees that
2410 * nobody will actually run it, and a signal or other external
2411 * event cannot wake it up and insert it on the runqueue either.
2412 */
2413 p->state = TASK_RUNNING;
2414 }
2415
2416 /*
2417 * fork()/clone()-time setup:
2418 */
2419 void sched_fork(struct task_struct *p, int clone_flags)
2420 {
2421 int cpu = get_cpu();
2422
2423 __sched_fork(p);
2424
2425 #ifdef CONFIG_SMP
2426 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2427 #endif
2428 set_task_cpu(p, cpu);
2429
2430 /*
2431 * Make sure we do not leak PI boosting priority to the child:
2432 */
2433 p->prio = current->normal_prio;
2434 if (!rt_prio(p->prio))
2435 p->sched_class = &fair_sched_class;
2436
2437 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2438 if (likely(sched_info_on()))
2439 memset(&p->sched_info, 0, sizeof(p->sched_info));
2440 #endif
2441 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2442 p->oncpu = 0;
2443 #endif
2444 #ifdef CONFIG_PREEMPT
2445 /* Want to start with kernel preemption disabled. */
2446 task_thread_info(p)->preempt_count = 1;
2447 #endif
2448 put_cpu();
2449 }
2450
2451 /*
2452 * wake_up_new_task - wake up a newly created task for the first time.
2453 *
2454 * This function will do some initial scheduler statistics housekeeping
2455 * that must be done for every newly created context, then puts the task
2456 * on the runqueue and wakes it.
2457 */
2458 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2459 {
2460 unsigned long flags;
2461 struct rq *rq;
2462
2463 rq = task_rq_lock(p, &flags);
2464 BUG_ON(p->state != TASK_RUNNING);
2465 update_rq_clock(rq);
2466
2467 p->prio = effective_prio(p);
2468
2469 if (!p->sched_class->task_new || !current->se.on_rq) {
2470 activate_task(rq, p, 0);
2471 } else {
2472 /*
2473 * Let the scheduling class do new task startup
2474 * management (if any):
2475 */
2476 p->sched_class->task_new(rq, p);
2477 inc_nr_running(rq);
2478 }
2479 trace_sched_wakeup_new(rq, p, 1);
2480 check_preempt_curr(rq, p, 0);
2481 #ifdef CONFIG_SMP
2482 if (p->sched_class->task_wake_up)
2483 p->sched_class->task_wake_up(rq, p);
2484 #endif
2485 task_rq_unlock(rq, &flags);
2486 }
2487
2488 #ifdef CONFIG_PREEMPT_NOTIFIERS
2489
2490 /**
2491 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2492 * @notifier: notifier struct to register
2493 */
2494 void preempt_notifier_register(struct preempt_notifier *notifier)
2495 {
2496 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2497 }
2498 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2499
2500 /**
2501 * preempt_notifier_unregister - no longer interested in preemption notifications
2502 * @notifier: notifier struct to unregister
2503 *
2504 * This is safe to call from within a preemption notifier.
2505 */
2506 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2507 {
2508 hlist_del(&notifier->link);
2509 }
2510 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2511
2512 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2513 {
2514 struct preempt_notifier *notifier;
2515 struct hlist_node *node;
2516
2517 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2518 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2519 }
2520
2521 static void
2522 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2523 struct task_struct *next)
2524 {
2525 struct preempt_notifier *notifier;
2526 struct hlist_node *node;
2527
2528 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2529 notifier->ops->sched_out(notifier, next);
2530 }
2531
2532 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2533
2534 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2535 {
2536 }
2537
2538 static void
2539 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2540 struct task_struct *next)
2541 {
2542 }
2543
2544 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2545
2546 /**
2547 * prepare_task_switch - prepare to switch tasks
2548 * @rq: the runqueue preparing to switch
2549 * @prev: the current task that is being switched out
2550 * @next: the task we are going to switch to.
2551 *
2552 * This is called with the rq lock held and interrupts off. It must
2553 * be paired with a subsequent finish_task_switch after the context
2554 * switch.
2555 *
2556 * prepare_task_switch sets up locking and calls architecture specific
2557 * hooks.
2558 */
2559 static inline void
2560 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2561 struct task_struct *next)
2562 {
2563 fire_sched_out_preempt_notifiers(prev, next);
2564 prepare_lock_switch(rq, next);
2565 prepare_arch_switch(next);
2566 }
2567
2568 /**
2569 * finish_task_switch - clean up after a task-switch
2570 * @rq: runqueue associated with task-switch
2571 * @prev: the thread we just switched away from.
2572 *
2573 * finish_task_switch must be called after the context switch, paired
2574 * with a prepare_task_switch call before the context switch.
2575 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2576 * and do any other architecture-specific cleanup actions.
2577 *
2578 * Note that we may have delayed dropping an mm in context_switch(). If
2579 * so, we finish that here outside of the runqueue lock. (Doing it
2580 * with the lock held can cause deadlocks; see schedule() for
2581 * details.)
2582 */
2583 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2584 __releases(rq->lock)
2585 {
2586 struct mm_struct *mm = rq->prev_mm;
2587 long prev_state;
2588
2589 rq->prev_mm = NULL;
2590
2591 /*
2592 * A task struct has one reference for the use as "current".
2593 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2594 * schedule one last time. The schedule call will never return, and
2595 * the scheduled task must drop that reference.
2596 * The test for TASK_DEAD must occur while the runqueue locks are
2597 * still held, otherwise prev could be scheduled on another cpu, die
2598 * there before we look at prev->state, and then the reference would
2599 * be dropped twice.
2600 * Manfred Spraul <manfred@colorfullife.com>
2601 */
2602 prev_state = prev->state;
2603 finish_arch_switch(prev);
2604 finish_lock_switch(rq, prev);
2605 #ifdef CONFIG_SMP
2606 if (current->sched_class->post_schedule)
2607 current->sched_class->post_schedule(rq);
2608 #endif
2609
2610 fire_sched_in_preempt_notifiers(current);
2611 if (mm)
2612 mmdrop(mm);
2613 if (unlikely(prev_state == TASK_DEAD)) {
2614 /*
2615 * Remove function-return probe instances associated with this
2616 * task and put them back on the free list.
2617 */
2618 kprobe_flush_task(prev);
2619 put_task_struct(prev);
2620 }
2621 }
2622
2623 /**
2624 * schedule_tail - first thing a freshly forked thread must call.
2625 * @prev: the thread we just switched away from.
2626 */
2627 asmlinkage void schedule_tail(struct task_struct *prev)
2628 __releases(rq->lock)
2629 {
2630 struct rq *rq = this_rq();
2631
2632 finish_task_switch(rq, prev);
2633 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2634 /* In this case, finish_task_switch does not reenable preemption */
2635 preempt_enable();
2636 #endif
2637 if (current->set_child_tid)
2638 put_user(task_pid_vnr(current), current->set_child_tid);
2639 }
2640
2641 /*
2642 * context_switch - switch to the new MM and the new
2643 * thread's register state.
2644 */
2645 static inline void
2646 context_switch(struct rq *rq, struct task_struct *prev,
2647 struct task_struct *next)
2648 {
2649 struct mm_struct *mm, *oldmm;
2650
2651 prepare_task_switch(rq, prev, next);
2652 trace_sched_switch(rq, prev, next);
2653 mm = next->mm;
2654 oldmm = prev->active_mm;
2655 /*
2656 * For paravirt, this is coupled with an exit in switch_to to
2657 * combine the page table reload and the switch backend into
2658 * one hypercall.
2659 */
2660 arch_enter_lazy_cpu_mode();
2661
2662 if (unlikely(!mm)) {
2663 next->active_mm = oldmm;
2664 atomic_inc(&oldmm->mm_count);
2665 enter_lazy_tlb(oldmm, next);
2666 } else
2667 switch_mm(oldmm, mm, next);
2668
2669 if (unlikely(!prev->mm)) {
2670 prev->active_mm = NULL;
2671 rq->prev_mm = oldmm;
2672 }
2673 /*
2674 * Since the runqueue lock will be released by the next
2675 * task (which is an invalid locking op but in the case
2676 * of the scheduler it's an obvious special-case), so we
2677 * do an early lockdep release here:
2678 */
2679 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2680 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2681 #endif
2682
2683 /* Here we just switch the register state and the stack. */
2684 switch_to(prev, next, prev);
2685
2686 barrier();
2687 /*
2688 * this_rq must be evaluated again because prev may have moved
2689 * CPUs since it called schedule(), thus the 'rq' on its stack
2690 * frame will be invalid.
2691 */
2692 finish_task_switch(this_rq(), prev);
2693 }
2694
2695 /*
2696 * nr_running, nr_uninterruptible and nr_context_switches:
2697 *
2698 * externally visible scheduler statistics: current number of runnable
2699 * threads, current number of uninterruptible-sleeping threads, total
2700 * number of context switches performed since bootup.
2701 */
2702 unsigned long nr_running(void)
2703 {
2704 unsigned long i, sum = 0;
2705
2706 for_each_online_cpu(i)
2707 sum += cpu_rq(i)->nr_running;
2708
2709 return sum;
2710 }
2711
2712 unsigned long nr_uninterruptible(void)
2713 {
2714 unsigned long i, sum = 0;
2715
2716 for_each_possible_cpu(i)
2717 sum += cpu_rq(i)->nr_uninterruptible;
2718
2719 /*
2720 * Since we read the counters lockless, it might be slightly
2721 * inaccurate. Do not allow it to go below zero though:
2722 */
2723 if (unlikely((long)sum < 0))
2724 sum = 0;
2725
2726 return sum;
2727 }
2728
2729 unsigned long long nr_context_switches(void)
2730 {
2731 int i;
2732 unsigned long long sum = 0;
2733
2734 for_each_possible_cpu(i)
2735 sum += cpu_rq(i)->nr_switches;
2736
2737 return sum;
2738 }
2739
2740 unsigned long nr_iowait(void)
2741 {
2742 unsigned long i, sum = 0;
2743
2744 for_each_possible_cpu(i)
2745 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2746
2747 return sum;
2748 }
2749
2750 unsigned long nr_active(void)
2751 {
2752 unsigned long i, running = 0, uninterruptible = 0;
2753
2754 for_each_online_cpu(i) {
2755 running += cpu_rq(i)->nr_running;
2756 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2757 }
2758
2759 if (unlikely((long)uninterruptible < 0))
2760 uninterruptible = 0;
2761
2762 return running + uninterruptible;
2763 }
2764
2765 /*
2766 * Update rq->cpu_load[] statistics. This function is usually called every
2767 * scheduler tick (TICK_NSEC).
2768 */
2769 static void update_cpu_load(struct rq *this_rq)
2770 {
2771 unsigned long this_load = this_rq->load.weight;
2772 int i, scale;
2773
2774 this_rq->nr_load_updates++;
2775
2776 /* Update our load: */
2777 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2778 unsigned long old_load, new_load;
2779
2780 /* scale is effectively 1 << i now, and >> i divides by scale */
2781
2782 old_load = this_rq->cpu_load[i];
2783 new_load = this_load;
2784 /*
2785 * Round up the averaging division if load is increasing. This
2786 * prevents us from getting stuck on 9 if the load is 10, for
2787 * example.
2788 */
2789 if (new_load > old_load)
2790 new_load += scale-1;
2791 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2792 }
2793 }
2794
2795 #ifdef CONFIG_SMP
2796
2797 /*
2798 * double_rq_lock - safely lock two runqueues
2799 *
2800 * Note this does not disable interrupts like task_rq_lock,
2801 * you need to do so manually before calling.
2802 */
2803 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2804 __acquires(rq1->lock)
2805 __acquires(rq2->lock)
2806 {
2807 BUG_ON(!irqs_disabled());
2808 if (rq1 == rq2) {
2809 spin_lock(&rq1->lock);
2810 __acquire(rq2->lock); /* Fake it out ;) */
2811 } else {
2812 if (rq1 < rq2) {
2813 spin_lock(&rq1->lock);
2814 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
2815 } else {
2816 spin_lock(&rq2->lock);
2817 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
2818 }
2819 }
2820 update_rq_clock(rq1);
2821 update_rq_clock(rq2);
2822 }
2823
2824 /*
2825 * double_rq_unlock - safely unlock two runqueues
2826 *
2827 * Note this does not restore interrupts like task_rq_unlock,
2828 * you need to do so manually after calling.
2829 */
2830 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2831 __releases(rq1->lock)
2832 __releases(rq2->lock)
2833 {
2834 spin_unlock(&rq1->lock);
2835 if (rq1 != rq2)
2836 spin_unlock(&rq2->lock);
2837 else
2838 __release(rq2->lock);
2839 }
2840
2841 /*
2842 * If dest_cpu is allowed for this process, migrate the task to it.
2843 * This is accomplished by forcing the cpu_allowed mask to only
2844 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2845 * the cpu_allowed mask is restored.
2846 */
2847 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2848 {
2849 struct migration_req req;
2850 unsigned long flags;
2851 struct rq *rq;
2852
2853 rq = task_rq_lock(p, &flags);
2854 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
2855 || unlikely(!cpu_active(dest_cpu)))
2856 goto out;
2857
2858 /* force the process onto the specified CPU */
2859 if (migrate_task(p, dest_cpu, &req)) {
2860 /* Need to wait for migration thread (might exit: take ref). */
2861 struct task_struct *mt = rq->migration_thread;
2862
2863 get_task_struct(mt);
2864 task_rq_unlock(rq, &flags);
2865 wake_up_process(mt);
2866 put_task_struct(mt);
2867 wait_for_completion(&req.done);
2868
2869 return;
2870 }
2871 out:
2872 task_rq_unlock(rq, &flags);
2873 }
2874
2875 /*
2876 * sched_exec - execve() is a valuable balancing opportunity, because at
2877 * this point the task has the smallest effective memory and cache footprint.
2878 */
2879 void sched_exec(void)
2880 {
2881 int new_cpu, this_cpu = get_cpu();
2882 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2883 put_cpu();
2884 if (new_cpu != this_cpu)
2885 sched_migrate_task(current, new_cpu);
2886 }
2887
2888 /*
2889 * pull_task - move a task from a remote runqueue to the local runqueue.
2890 * Both runqueues must be locked.
2891 */
2892 static void pull_task(struct rq *src_rq, struct task_struct *p,
2893 struct rq *this_rq, int this_cpu)
2894 {
2895 deactivate_task(src_rq, p, 0);
2896 set_task_cpu(p, this_cpu);
2897 activate_task(this_rq, p, 0);
2898 /*
2899 * Note that idle threads have a prio of MAX_PRIO, for this test
2900 * to be always true for them.
2901 */
2902 check_preempt_curr(this_rq, p, 0);
2903 }
2904
2905 /*
2906 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2907 */
2908 static
2909 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2910 struct sched_domain *sd, enum cpu_idle_type idle,
2911 int *all_pinned)
2912 {
2913 /*
2914 * We do not migrate tasks that are:
2915 * 1) running (obviously), or
2916 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2917 * 3) are cache-hot on their current CPU.
2918 */
2919 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
2920 schedstat_inc(p, se.nr_failed_migrations_affine);
2921 return 0;
2922 }
2923 *all_pinned = 0;
2924
2925 if (task_running(rq, p)) {
2926 schedstat_inc(p, se.nr_failed_migrations_running);
2927 return 0;
2928 }
2929
2930 /*
2931 * Aggressive migration if:
2932 * 1) task is cache cold, or
2933 * 2) too many balance attempts have failed.
2934 */
2935
2936 if (!task_hot(p, rq->clock, sd) ||
2937 sd->nr_balance_failed > sd->cache_nice_tries) {
2938 #ifdef CONFIG_SCHEDSTATS
2939 if (task_hot(p, rq->clock, sd)) {
2940 schedstat_inc(sd, lb_hot_gained[idle]);
2941 schedstat_inc(p, se.nr_forced_migrations);
2942 }
2943 #endif
2944 return 1;
2945 }
2946
2947 if (task_hot(p, rq->clock, sd)) {
2948 schedstat_inc(p, se.nr_failed_migrations_hot);
2949 return 0;
2950 }
2951 return 1;
2952 }
2953
2954 static unsigned long
2955 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2956 unsigned long max_load_move, struct sched_domain *sd,
2957 enum cpu_idle_type idle, int *all_pinned,
2958 int *this_best_prio, struct rq_iterator *iterator)
2959 {
2960 int loops = 0, pulled = 0, pinned = 0;
2961 struct task_struct *p;
2962 long rem_load_move = max_load_move;
2963
2964 if (max_load_move == 0)
2965 goto out;
2966
2967 pinned = 1;
2968
2969 /*
2970 * Start the load-balancing iterator:
2971 */
2972 p = iterator->start(iterator->arg);
2973 next:
2974 if (!p || loops++ > sysctl_sched_nr_migrate)
2975 goto out;
2976
2977 if ((p->se.load.weight >> 1) > rem_load_move ||
2978 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2979 p = iterator->next(iterator->arg);
2980 goto next;
2981 }
2982
2983 pull_task(busiest, p, this_rq, this_cpu);
2984 pulled++;
2985 rem_load_move -= p->se.load.weight;
2986
2987 /*
2988 * We only want to steal up to the prescribed amount of weighted load.
2989 */
2990 if (rem_load_move > 0) {
2991 if (p->prio < *this_best_prio)
2992 *this_best_prio = p->prio;
2993 p = iterator->next(iterator->arg);
2994 goto next;
2995 }
2996 out:
2997 /*
2998 * Right now, this is one of only two places pull_task() is called,
2999 * so we can safely collect pull_task() stats here rather than
3000 * inside pull_task().
3001 */
3002 schedstat_add(sd, lb_gained[idle], pulled);
3003
3004 if (all_pinned)
3005 *all_pinned = pinned;
3006
3007 return max_load_move - rem_load_move;
3008 }
3009
3010 /*
3011 * move_tasks tries to move up to max_load_move weighted load from busiest to
3012 * this_rq, as part of a balancing operation within domain "sd".
3013 * Returns 1 if successful and 0 otherwise.
3014 *
3015 * Called with both runqueues locked.
3016 */
3017 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3018 unsigned long max_load_move,
3019 struct sched_domain *sd, enum cpu_idle_type idle,
3020 int *all_pinned)
3021 {
3022 const struct sched_class *class = sched_class_highest;
3023 unsigned long total_load_moved = 0;
3024 int this_best_prio = this_rq->curr->prio;
3025
3026 do {
3027 total_load_moved +=
3028 class->load_balance(this_rq, this_cpu, busiest,
3029 max_load_move - total_load_moved,
3030 sd, idle, all_pinned, &this_best_prio);
3031 class = class->next;
3032
3033 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3034 break;
3035
3036 } while (class && max_load_move > total_load_moved);
3037
3038 return total_load_moved > 0;
3039 }
3040
3041 static int
3042 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3043 struct sched_domain *sd, enum cpu_idle_type idle,
3044 struct rq_iterator *iterator)
3045 {
3046 struct task_struct *p = iterator->start(iterator->arg);
3047 int pinned = 0;
3048
3049 while (p) {
3050 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3051 pull_task(busiest, p, this_rq, this_cpu);
3052 /*
3053 * Right now, this is only the second place pull_task()
3054 * is called, so we can safely collect pull_task()
3055 * stats here rather than inside pull_task().
3056 */
3057 schedstat_inc(sd, lb_gained[idle]);
3058
3059 return 1;
3060 }
3061 p = iterator->next(iterator->arg);
3062 }
3063
3064 return 0;
3065 }
3066
3067 /*
3068 * move_one_task tries to move exactly one task from busiest to this_rq, as
3069 * part of active balancing operations within "domain".
3070 * Returns 1 if successful and 0 otherwise.
3071 *
3072 * Called with both runqueues locked.
3073 */
3074 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3075 struct sched_domain *sd, enum cpu_idle_type idle)
3076 {
3077 const struct sched_class *class;
3078
3079 for (class = sched_class_highest; class; class = class->next)
3080 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3081 return 1;
3082
3083 return 0;
3084 }
3085
3086 /*
3087 * find_busiest_group finds and returns the busiest CPU group within the
3088 * domain. It calculates and returns the amount of weighted load which
3089 * should be moved to restore balance via the imbalance parameter.
3090 */
3091 static struct sched_group *
3092 find_busiest_group(struct sched_domain *sd, int this_cpu,
3093 unsigned long *imbalance, enum cpu_idle_type idle,
3094 int *sd_idle, const struct cpumask *cpus, int *balance)
3095 {
3096 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3097 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3098 unsigned long max_pull;
3099 unsigned long busiest_load_per_task, busiest_nr_running;
3100 unsigned long this_load_per_task, this_nr_running;
3101 int load_idx, group_imb = 0;
3102 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3103 int power_savings_balance = 1;
3104 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3105 unsigned long min_nr_running = ULONG_MAX;
3106 struct sched_group *group_min = NULL, *group_leader = NULL;
3107 #endif
3108
3109 max_load = this_load = total_load = total_pwr = 0;
3110 busiest_load_per_task = busiest_nr_running = 0;
3111 this_load_per_task = this_nr_running = 0;
3112
3113 if (idle == CPU_NOT_IDLE)
3114 load_idx = sd->busy_idx;
3115 else if (idle == CPU_NEWLY_IDLE)
3116 load_idx = sd->newidle_idx;
3117 else
3118 load_idx = sd->idle_idx;
3119
3120 do {
3121 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
3122 int local_group;
3123 int i;
3124 int __group_imb = 0;
3125 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3126 unsigned long sum_nr_running, sum_weighted_load;
3127 unsigned long sum_avg_load_per_task;
3128 unsigned long avg_load_per_task;
3129
3130 local_group = cpumask_test_cpu(this_cpu,
3131 sched_group_cpus(group));
3132
3133 if (local_group)
3134 balance_cpu = cpumask_first(sched_group_cpus(group));
3135
3136 /* Tally up the load of all CPUs in the group */
3137 sum_weighted_load = sum_nr_running = avg_load = 0;
3138 sum_avg_load_per_task = avg_load_per_task = 0;
3139
3140 max_cpu_load = 0;
3141 min_cpu_load = ~0UL;
3142
3143 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3144 struct rq *rq = cpu_rq(i);
3145
3146 if (*sd_idle && rq->nr_running)
3147 *sd_idle = 0;
3148
3149 /* Bias balancing toward cpus of our domain */
3150 if (local_group) {
3151 if (idle_cpu(i) && !first_idle_cpu) {
3152 first_idle_cpu = 1;
3153 balance_cpu = i;
3154 }
3155
3156 load = target_load(i, load_idx);
3157 } else {
3158 load = source_load(i, load_idx);
3159 if (load > max_cpu_load)
3160 max_cpu_load = load;
3161 if (min_cpu_load > load)
3162 min_cpu_load = load;
3163 }
3164
3165 avg_load += load;
3166 sum_nr_running += rq->nr_running;
3167 sum_weighted_load += weighted_cpuload(i);
3168
3169 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3170 }
3171
3172 /*
3173 * First idle cpu or the first cpu(busiest) in this sched group
3174 * is eligible for doing load balancing at this and above
3175 * domains. In the newly idle case, we will allow all the cpu's
3176 * to do the newly idle load balance.
3177 */
3178 if (idle != CPU_NEWLY_IDLE && local_group &&
3179 balance_cpu != this_cpu && balance) {
3180 *balance = 0;
3181 goto ret;
3182 }
3183
3184 total_load += avg_load;
3185 total_pwr += group->__cpu_power;
3186
3187 /* Adjust by relative CPU power of the group */
3188 avg_load = sg_div_cpu_power(group,
3189 avg_load * SCHED_LOAD_SCALE);
3190
3191
3192 /*
3193 * Consider the group unbalanced when the imbalance is larger
3194 * than the average weight of two tasks.
3195 *
3196 * APZ: with cgroup the avg task weight can vary wildly and
3197 * might not be a suitable number - should we keep a
3198 * normalized nr_running number somewhere that negates
3199 * the hierarchy?
3200 */
3201 avg_load_per_task = sg_div_cpu_power(group,
3202 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3203
3204 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3205 __group_imb = 1;
3206
3207 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3208
3209 if (local_group) {
3210 this_load = avg_load;
3211 this = group;
3212 this_nr_running = sum_nr_running;
3213 this_load_per_task = sum_weighted_load;
3214 } else if (avg_load > max_load &&
3215 (sum_nr_running > group_capacity || __group_imb)) {
3216 max_load = avg_load;
3217 busiest = group;
3218 busiest_nr_running = sum_nr_running;
3219 busiest_load_per_task = sum_weighted_load;
3220 group_imb = __group_imb;
3221 }
3222
3223 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3224 /*
3225 * Busy processors will not participate in power savings
3226 * balance.
3227 */
3228 if (idle == CPU_NOT_IDLE ||
3229 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3230 goto group_next;
3231
3232 /*
3233 * If the local group is idle or completely loaded
3234 * no need to do power savings balance at this domain
3235 */
3236 if (local_group && (this_nr_running >= group_capacity ||
3237 !this_nr_running))
3238 power_savings_balance = 0;
3239
3240 /*
3241 * If a group is already running at full capacity or idle,
3242 * don't include that group in power savings calculations
3243 */
3244 if (!power_savings_balance || sum_nr_running >= group_capacity
3245 || !sum_nr_running)
3246 goto group_next;
3247
3248 /*
3249 * Calculate the group which has the least non-idle load.
3250 * This is the group from where we need to pick up the load
3251 * for saving power
3252 */
3253 if ((sum_nr_running < min_nr_running) ||
3254 (sum_nr_running == min_nr_running &&
3255 cpumask_first(sched_group_cpus(group)) >
3256 cpumask_first(sched_group_cpus(group_min)))) {
3257 group_min = group;
3258 min_nr_running = sum_nr_running;
3259 min_load_per_task = sum_weighted_load /
3260 sum_nr_running;
3261 }
3262
3263 /*
3264 * Calculate the group which is almost near its
3265 * capacity but still has some space to pick up some load
3266 * from other group and save more power
3267 */
3268 if (sum_nr_running <= group_capacity - 1) {
3269 if (sum_nr_running > leader_nr_running ||
3270 (sum_nr_running == leader_nr_running &&
3271 cpumask_first(sched_group_cpus(group)) <
3272 cpumask_first(sched_group_cpus(group_leader)))) {
3273 group_leader = group;
3274 leader_nr_running = sum_nr_running;
3275 }
3276 }
3277 group_next:
3278 #endif
3279 group = group->next;
3280 } while (group != sd->groups);
3281
3282 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
3283 goto out_balanced;
3284
3285 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3286
3287 if (this_load >= avg_load ||
3288 100*max_load <= sd->imbalance_pct*this_load)
3289 goto out_balanced;
3290
3291 busiest_load_per_task /= busiest_nr_running;
3292 if (group_imb)
3293 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3294
3295 /*
3296 * We're trying to get all the cpus to the average_load, so we don't
3297 * want to push ourselves above the average load, nor do we wish to
3298 * reduce the max loaded cpu below the average load, as either of these
3299 * actions would just result in more rebalancing later, and ping-pong
3300 * tasks around. Thus we look for the minimum possible imbalance.
3301 * Negative imbalances (*we* are more loaded than anyone else) will
3302 * be counted as no imbalance for these purposes -- we can't fix that
3303 * by pulling tasks to us. Be careful of negative numbers as they'll
3304 * appear as very large values with unsigned longs.
3305 */
3306 if (max_load <= busiest_load_per_task)
3307 goto out_balanced;
3308
3309 /*
3310 * In the presence of smp nice balancing, certain scenarios can have
3311 * max load less than avg load(as we skip the groups at or below
3312 * its cpu_power, while calculating max_load..)
3313 */
3314 if (max_load < avg_load) {
3315 *imbalance = 0;
3316 goto small_imbalance;
3317 }
3318
3319 /* Don't want to pull so many tasks that a group would go idle */
3320 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3321
3322 /* How much load to actually move to equalise the imbalance */
3323 *imbalance = min(max_pull * busiest->__cpu_power,
3324 (avg_load - this_load) * this->__cpu_power)
3325 / SCHED_LOAD_SCALE;
3326
3327 /*
3328 * if *imbalance is less than the average load per runnable task
3329 * there is no gaurantee that any tasks will be moved so we'll have
3330 * a think about bumping its value to force at least one task to be
3331 * moved
3332 */
3333 if (*imbalance < busiest_load_per_task) {
3334 unsigned long tmp, pwr_now, pwr_move;
3335 unsigned int imbn;
3336
3337 small_imbalance:
3338 pwr_move = pwr_now = 0;
3339 imbn = 2;
3340 if (this_nr_running) {
3341 this_load_per_task /= this_nr_running;
3342 if (busiest_load_per_task > this_load_per_task)
3343 imbn = 1;
3344 } else
3345 this_load_per_task = cpu_avg_load_per_task(this_cpu);
3346
3347 if (max_load - this_load + busiest_load_per_task >=
3348 busiest_load_per_task * imbn) {
3349 *imbalance = busiest_load_per_task;
3350 return busiest;
3351 }
3352
3353 /*
3354 * OK, we don't have enough imbalance to justify moving tasks,
3355 * however we may be able to increase total CPU power used by
3356 * moving them.
3357 */
3358
3359 pwr_now += busiest->__cpu_power *
3360 min(busiest_load_per_task, max_load);
3361 pwr_now += this->__cpu_power *
3362 min(this_load_per_task, this_load);
3363 pwr_now /= SCHED_LOAD_SCALE;
3364
3365 /* Amount of load we'd subtract */
3366 tmp = sg_div_cpu_power(busiest,
3367 busiest_load_per_task * SCHED_LOAD_SCALE);
3368 if (max_load > tmp)
3369 pwr_move += busiest->__cpu_power *
3370 min(busiest_load_per_task, max_load - tmp);
3371
3372 /* Amount of load we'd add */
3373 if (max_load * busiest->__cpu_power <
3374 busiest_load_per_task * SCHED_LOAD_SCALE)
3375 tmp = sg_div_cpu_power(this,
3376 max_load * busiest->__cpu_power);
3377 else
3378 tmp = sg_div_cpu_power(this,
3379 busiest_load_per_task * SCHED_LOAD_SCALE);
3380 pwr_move += this->__cpu_power *
3381 min(this_load_per_task, this_load + tmp);
3382 pwr_move /= SCHED_LOAD_SCALE;
3383
3384 /* Move if we gain throughput */
3385 if (pwr_move > pwr_now)
3386 *imbalance = busiest_load_per_task;
3387 }
3388
3389 return busiest;
3390
3391 out_balanced:
3392 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3393 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3394 goto ret;
3395
3396 if (this == group_leader && group_leader != group_min) {
3397 *imbalance = min_load_per_task;
3398 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3399 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
3400 cpumask_first(sched_group_cpus(group_leader));
3401 }
3402 return group_min;
3403 }
3404 #endif
3405 ret:
3406 *imbalance = 0;
3407 return NULL;
3408 }
3409
3410 /*
3411 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3412 */
3413 static struct rq *
3414 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3415 unsigned long imbalance, const struct cpumask *cpus)
3416 {
3417 struct rq *busiest = NULL, *rq;
3418 unsigned long max_load = 0;
3419 int i;
3420
3421 for_each_cpu(i, sched_group_cpus(group)) {
3422 unsigned long wl;
3423
3424 if (!cpumask_test_cpu(i, cpus))
3425 continue;
3426
3427 rq = cpu_rq(i);
3428 wl = weighted_cpuload(i);
3429
3430 if (rq->nr_running == 1 && wl > imbalance)
3431 continue;
3432
3433 if (wl > max_load) {
3434 max_load = wl;
3435 busiest = rq;
3436 }
3437 }
3438
3439 return busiest;
3440 }
3441
3442 /*
3443 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3444 * so long as it is large enough.
3445 */
3446 #define MAX_PINNED_INTERVAL 512
3447
3448 /*
3449 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3450 * tasks if there is an imbalance.
3451 */
3452 static int load_balance(int this_cpu, struct rq *this_rq,
3453 struct sched_domain *sd, enum cpu_idle_type idle,
3454 int *balance, struct cpumask *cpus)
3455 {
3456 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3457 struct sched_group *group;
3458 unsigned long imbalance;
3459 struct rq *busiest;
3460 unsigned long flags;
3461
3462 cpumask_setall(cpus);
3463
3464 /*
3465 * When power savings policy is enabled for the parent domain, idle
3466 * sibling can pick up load irrespective of busy siblings. In this case,
3467 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3468 * portraying it as CPU_NOT_IDLE.
3469 */
3470 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3471 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3472 sd_idle = 1;
3473
3474 schedstat_inc(sd, lb_count[idle]);
3475
3476 redo:
3477 update_shares(sd);
3478 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3479 cpus, balance);
3480
3481 if (*balance == 0)
3482 goto out_balanced;
3483
3484 if (!group) {
3485 schedstat_inc(sd, lb_nobusyg[idle]);
3486 goto out_balanced;
3487 }
3488
3489 busiest = find_busiest_queue(group, idle, imbalance, cpus);
3490 if (!busiest) {
3491 schedstat_inc(sd, lb_nobusyq[idle]);
3492 goto out_balanced;
3493 }
3494
3495 BUG_ON(busiest == this_rq);
3496
3497 schedstat_add(sd, lb_imbalance[idle], imbalance);
3498
3499 ld_moved = 0;
3500 if (busiest->nr_running > 1) {
3501 /*
3502 * Attempt to move tasks. If find_busiest_group has found
3503 * an imbalance but busiest->nr_running <= 1, the group is
3504 * still unbalanced. ld_moved simply stays zero, so it is
3505 * correctly treated as an imbalance.
3506 */
3507 local_irq_save(flags);
3508 double_rq_lock(this_rq, busiest);
3509 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3510 imbalance, sd, idle, &all_pinned);
3511 double_rq_unlock(this_rq, busiest);
3512 local_irq_restore(flags);
3513
3514 /*
3515 * some other cpu did the load balance for us.
3516 */
3517 if (ld_moved && this_cpu != smp_processor_id())
3518 resched_cpu(this_cpu);
3519
3520 /* All tasks on this runqueue were pinned by CPU affinity */
3521 if (unlikely(all_pinned)) {
3522 cpumask_clear_cpu(cpu_of(busiest), cpus);
3523 if (!cpumask_empty(cpus))
3524 goto redo;
3525 goto out_balanced;
3526 }
3527 }
3528
3529 if (!ld_moved) {
3530 schedstat_inc(sd, lb_failed[idle]);
3531 sd->nr_balance_failed++;
3532
3533 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
3534
3535 spin_lock_irqsave(&busiest->lock, flags);
3536
3537 /* don't kick the migration_thread, if the curr
3538 * task on busiest cpu can't be moved to this_cpu
3539 */
3540 if (!cpumask_test_cpu(this_cpu,
3541 &busiest->curr->cpus_allowed)) {
3542 spin_unlock_irqrestore(&busiest->lock, flags);
3543 all_pinned = 1;
3544 goto out_one_pinned;
3545 }
3546
3547 if (!busiest->active_balance) {
3548 busiest->active_balance = 1;
3549 busiest->push_cpu = this_cpu;
3550 active_balance = 1;
3551 }
3552 spin_unlock_irqrestore(&busiest->lock, flags);
3553 if (active_balance)
3554 wake_up_process(busiest->migration_thread);
3555
3556 /*
3557 * We've kicked active balancing, reset the failure
3558 * counter.
3559 */
3560 sd->nr_balance_failed = sd->cache_nice_tries+1;
3561 }
3562 } else
3563 sd->nr_balance_failed = 0;
3564
3565 if (likely(!active_balance)) {
3566 /* We were unbalanced, so reset the balancing interval */
3567 sd->balance_interval = sd->min_interval;
3568 } else {
3569 /*
3570 * If we've begun active balancing, start to back off. This
3571 * case may not be covered by the all_pinned logic if there
3572 * is only 1 task on the busy runqueue (because we don't call
3573 * move_tasks).
3574 */
3575 if (sd->balance_interval < sd->max_interval)
3576 sd->balance_interval *= 2;
3577 }
3578
3579 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3580 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3581 ld_moved = -1;
3582
3583 goto out;
3584
3585 out_balanced:
3586 schedstat_inc(sd, lb_balanced[idle]);
3587
3588 sd->nr_balance_failed = 0;
3589
3590 out_one_pinned:
3591 /* tune up the balancing interval */
3592 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3593 (sd->balance_interval < sd->max_interval))
3594 sd->balance_interval *= 2;
3595
3596 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3597 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3598 ld_moved = -1;
3599 else
3600 ld_moved = 0;
3601 out:
3602 if (ld_moved)
3603 update_shares(sd);
3604 return ld_moved;
3605 }
3606
3607 /*
3608 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3609 * tasks if there is an imbalance.
3610 *
3611 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3612 * this_rq is locked.
3613 */
3614 static int
3615 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3616 struct cpumask *cpus)
3617 {
3618 struct sched_group *group;
3619 struct rq *busiest = NULL;
3620 unsigned long imbalance;
3621 int ld_moved = 0;
3622 int sd_idle = 0;
3623 int all_pinned = 0;
3624
3625 cpumask_setall(cpus);
3626
3627 /*
3628 * When power savings policy is enabled for the parent domain, idle
3629 * sibling can pick up load irrespective of busy siblings. In this case,
3630 * let the state of idle sibling percolate up as IDLE, instead of
3631 * portraying it as CPU_NOT_IDLE.
3632 */
3633 if (sd->flags & SD_SHARE_CPUPOWER &&
3634 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3635 sd_idle = 1;
3636
3637 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3638 redo:
3639 update_shares_locked(this_rq, sd);
3640 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3641 &sd_idle, cpus, NULL);
3642 if (!group) {
3643 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3644 goto out_balanced;
3645 }
3646
3647 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
3648 if (!busiest) {
3649 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3650 goto out_balanced;
3651 }
3652
3653 BUG_ON(busiest == this_rq);
3654
3655 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3656
3657 ld_moved = 0;
3658 if (busiest->nr_running > 1) {
3659 /* Attempt to move tasks */
3660 double_lock_balance(this_rq, busiest);
3661 /* this_rq->clock is already updated */
3662 update_rq_clock(busiest);
3663 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3664 imbalance, sd, CPU_NEWLY_IDLE,
3665 &all_pinned);
3666 double_unlock_balance(this_rq, busiest);
3667
3668 if (unlikely(all_pinned)) {
3669 cpumask_clear_cpu(cpu_of(busiest), cpus);
3670 if (!cpumask_empty(cpus))
3671 goto redo;
3672 }
3673 }
3674
3675 if (!ld_moved) {
3676 int active_balance = 0;
3677
3678 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3679 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3680 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3681 return -1;
3682
3683 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
3684 return -1;
3685
3686 if (sd->nr_balance_failed++ < 2)
3687 return -1;
3688
3689 /*
3690 * The only task running in a non-idle cpu can be moved to this
3691 * cpu in an attempt to completely freeup the other CPU
3692 * package. The same method used to move task in load_balance()
3693 * have been extended for load_balance_newidle() to speedup
3694 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
3695 *
3696 * The package power saving logic comes from
3697 * find_busiest_group(). If there are no imbalance, then
3698 * f_b_g() will return NULL. However when sched_mc={1,2} then
3699 * f_b_g() will select a group from which a running task may be
3700 * pulled to this cpu in order to make the other package idle.
3701 * If there is no opportunity to make a package idle and if
3702 * there are no imbalance, then f_b_g() will return NULL and no
3703 * action will be taken in load_balance_newidle().
3704 *
3705 * Under normal task pull operation due to imbalance, there
3706 * will be more than one task in the source run queue and
3707 * move_tasks() will succeed. ld_moved will be true and this
3708 * active balance code will not be triggered.
3709 */
3710
3711 /* Lock busiest in correct order while this_rq is held */
3712 double_lock_balance(this_rq, busiest);
3713
3714 /*
3715 * don't kick the migration_thread, if the curr
3716 * task on busiest cpu can't be moved to this_cpu
3717 */
3718 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
3719 double_unlock_balance(this_rq, busiest);
3720 all_pinned = 1;
3721 return ld_moved;
3722 }
3723
3724 if (!busiest->active_balance) {
3725 busiest->active_balance = 1;
3726 busiest->push_cpu = this_cpu;
3727 active_balance = 1;
3728 }
3729
3730 double_unlock_balance(this_rq, busiest);
3731 if (active_balance)
3732 wake_up_process(busiest->migration_thread);
3733
3734 } else
3735 sd->nr_balance_failed = 0;
3736
3737 update_shares_locked(this_rq, sd);
3738 return ld_moved;
3739
3740 out_balanced:
3741 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3742 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3743 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3744 return -1;
3745 sd->nr_balance_failed = 0;
3746
3747 return 0;
3748 }
3749
3750 /*
3751 * idle_balance is called by schedule() if this_cpu is about to become
3752 * idle. Attempts to pull tasks from other CPUs.
3753 */
3754 static void idle_balance(int this_cpu, struct rq *this_rq)
3755 {
3756 struct sched_domain *sd;
3757 int pulled_task = 0;
3758 unsigned long next_balance = jiffies + HZ;
3759 cpumask_var_t tmpmask;
3760
3761 if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC))
3762 return;
3763
3764 for_each_domain(this_cpu, sd) {
3765 unsigned long interval;
3766
3767 if (!(sd->flags & SD_LOAD_BALANCE))
3768 continue;
3769
3770 if (sd->flags & SD_BALANCE_NEWIDLE)
3771 /* If we've pulled tasks over stop searching: */
3772 pulled_task = load_balance_newidle(this_cpu, this_rq,
3773 sd, tmpmask);
3774
3775 interval = msecs_to_jiffies(sd->balance_interval);
3776 if (time_after(next_balance, sd->last_balance + interval))
3777 next_balance = sd->last_balance + interval;
3778 if (pulled_task)
3779 break;
3780 }
3781 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3782 /*
3783 * We are going idle. next_balance may be set based on
3784 * a busy processor. So reset next_balance.
3785 */
3786 this_rq->next_balance = next_balance;
3787 }
3788 free_cpumask_var(tmpmask);
3789 }
3790
3791 /*
3792 * active_load_balance is run by migration threads. It pushes running tasks
3793 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3794 * running on each physical CPU where possible, and avoids physical /
3795 * logical imbalances.
3796 *
3797 * Called with busiest_rq locked.
3798 */
3799 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3800 {
3801 int target_cpu = busiest_rq->push_cpu;
3802 struct sched_domain *sd;
3803 struct rq *target_rq;
3804
3805 /* Is there any task to move? */
3806 if (busiest_rq->nr_running <= 1)
3807 return;
3808
3809 target_rq = cpu_rq(target_cpu);
3810
3811 /*
3812 * This condition is "impossible", if it occurs
3813 * we need to fix it. Originally reported by
3814 * Bjorn Helgaas on a 128-cpu setup.
3815 */
3816 BUG_ON(busiest_rq == target_rq);
3817
3818 /* move a task from busiest_rq to target_rq */
3819 double_lock_balance(busiest_rq, target_rq);
3820 update_rq_clock(busiest_rq);
3821 update_rq_clock(target_rq);
3822
3823 /* Search for an sd spanning us and the target CPU. */
3824 for_each_domain(target_cpu, sd) {
3825 if ((sd->flags & SD_LOAD_BALANCE) &&
3826 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
3827 break;
3828 }
3829
3830 if (likely(sd)) {
3831 schedstat_inc(sd, alb_count);
3832
3833 if (move_one_task(target_rq, target_cpu, busiest_rq,
3834 sd, CPU_IDLE))
3835 schedstat_inc(sd, alb_pushed);
3836 else
3837 schedstat_inc(sd, alb_failed);
3838 }
3839 double_unlock_balance(busiest_rq, target_rq);
3840 }
3841
3842 #ifdef CONFIG_NO_HZ
3843 static struct {
3844 atomic_t load_balancer;
3845 cpumask_var_t cpu_mask;
3846 } nohz ____cacheline_aligned = {
3847 .load_balancer = ATOMIC_INIT(-1),
3848 };
3849
3850 /*
3851 * This routine will try to nominate the ilb (idle load balancing)
3852 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3853 * load balancing on behalf of all those cpus. If all the cpus in the system
3854 * go into this tickless mode, then there will be no ilb owner (as there is
3855 * no need for one) and all the cpus will sleep till the next wakeup event
3856 * arrives...
3857 *
3858 * For the ilb owner, tick is not stopped. And this tick will be used
3859 * for idle load balancing. ilb owner will still be part of
3860 * nohz.cpu_mask..
3861 *
3862 * While stopping the tick, this cpu will become the ilb owner if there
3863 * is no other owner. And will be the owner till that cpu becomes busy
3864 * or if all cpus in the system stop their ticks at which point
3865 * there is no need for ilb owner.
3866 *
3867 * When the ilb owner becomes busy, it nominates another owner, during the
3868 * next busy scheduler_tick()
3869 */
3870 int select_nohz_load_balancer(int stop_tick)
3871 {
3872 int cpu = smp_processor_id();
3873
3874 if (stop_tick) {
3875 cpumask_set_cpu(cpu, nohz.cpu_mask);
3876 cpu_rq(cpu)->in_nohz_recently = 1;
3877
3878 /*
3879 * If we are going offline and still the leader, give up!
3880 */
3881 if (!cpu_active(cpu) &&
3882 atomic_read(&nohz.load_balancer) == cpu) {
3883 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3884 BUG();
3885 return 0;
3886 }
3887
3888 /* time for ilb owner also to sleep */
3889 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
3890 if (atomic_read(&nohz.load_balancer) == cpu)
3891 atomic_set(&nohz.load_balancer, -1);
3892 return 0;
3893 }
3894
3895 if (atomic_read(&nohz.load_balancer) == -1) {
3896 /* make me the ilb owner */
3897 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3898 return 1;
3899 } else if (atomic_read(&nohz.load_balancer) == cpu)
3900 return 1;
3901 } else {
3902 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
3903 return 0;
3904
3905 cpumask_clear_cpu(cpu, nohz.cpu_mask);
3906
3907 if (atomic_read(&nohz.load_balancer) == cpu)
3908 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3909 BUG();
3910 }
3911 return 0;
3912 }
3913 #endif
3914
3915 static DEFINE_SPINLOCK(balancing);
3916
3917 /*
3918 * It checks each scheduling domain to see if it is due to be balanced,
3919 * and initiates a balancing operation if so.
3920 *
3921 * Balancing parameters are set up in arch_init_sched_domains.
3922 */
3923 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3924 {
3925 int balance = 1;
3926 struct rq *rq = cpu_rq(cpu);
3927 unsigned long interval;
3928 struct sched_domain *sd;
3929 /* Earliest time when we have to do rebalance again */
3930 unsigned long next_balance = jiffies + 60*HZ;
3931 int update_next_balance = 0;
3932 int need_serialize;
3933 cpumask_var_t tmp;
3934
3935 /* Fails alloc? Rebalancing probably not a priority right now. */
3936 if (!alloc_cpumask_var(&tmp, GFP_ATOMIC))
3937 return;
3938
3939 for_each_domain(cpu, sd) {
3940 if (!(sd->flags & SD_LOAD_BALANCE))
3941 continue;
3942
3943 interval = sd->balance_interval;
3944 if (idle != CPU_IDLE)
3945 interval *= sd->busy_factor;
3946
3947 /* scale ms to jiffies */
3948 interval = msecs_to_jiffies(interval);
3949 if (unlikely(!interval))
3950 interval = 1;
3951 if (interval > HZ*NR_CPUS/10)
3952 interval = HZ*NR_CPUS/10;
3953
3954 need_serialize = sd->flags & SD_SERIALIZE;
3955
3956 if (need_serialize) {
3957 if (!spin_trylock(&balancing))
3958 goto out;
3959 }
3960
3961 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3962 if (load_balance(cpu, rq, sd, idle, &balance, tmp)) {
3963 /*
3964 * We've pulled tasks over so either we're no
3965 * longer idle, or one of our SMT siblings is
3966 * not idle.
3967 */
3968 idle = CPU_NOT_IDLE;
3969 }
3970 sd->last_balance = jiffies;
3971 }
3972 if (need_serialize)
3973 spin_unlock(&balancing);
3974 out:
3975 if (time_after(next_balance, sd->last_balance + interval)) {
3976 next_balance = sd->last_balance + interval;
3977 update_next_balance = 1;
3978 }
3979
3980 /*
3981 * Stop the load balance at this level. There is another
3982 * CPU in our sched group which is doing load balancing more
3983 * actively.
3984 */
3985 if (!balance)
3986 break;
3987 }
3988
3989 /*
3990 * next_balance will be updated only when there is a need.
3991 * When the cpu is attached to null domain for ex, it will not be
3992 * updated.
3993 */
3994 if (likely(update_next_balance))
3995 rq->next_balance = next_balance;
3996
3997 free_cpumask_var(tmp);
3998 }
3999
4000 /*
4001 * run_rebalance_domains is triggered when needed from the scheduler tick.
4002 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4003 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4004 */
4005 static void run_rebalance_domains(struct softirq_action *h)
4006 {
4007 int this_cpu = smp_processor_id();
4008 struct rq *this_rq = cpu_rq(this_cpu);
4009 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4010 CPU_IDLE : CPU_NOT_IDLE;
4011
4012 rebalance_domains(this_cpu, idle);
4013
4014 #ifdef CONFIG_NO_HZ
4015 /*
4016 * If this cpu is the owner for idle load balancing, then do the
4017 * balancing on behalf of the other idle cpus whose ticks are
4018 * stopped.
4019 */
4020 if (this_rq->idle_at_tick &&
4021 atomic_read(&nohz.load_balancer) == this_cpu) {
4022 struct rq *rq;
4023 int balance_cpu;
4024
4025 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4026 if (balance_cpu == this_cpu)
4027 continue;
4028
4029 /*
4030 * If this cpu gets work to do, stop the load balancing
4031 * work being done for other cpus. Next load
4032 * balancing owner will pick it up.
4033 */
4034 if (need_resched())
4035 break;
4036
4037 rebalance_domains(balance_cpu, CPU_IDLE);
4038
4039 rq = cpu_rq(balance_cpu);
4040 if (time_after(this_rq->next_balance, rq->next_balance))
4041 this_rq->next_balance = rq->next_balance;
4042 }
4043 }
4044 #endif
4045 }
4046
4047 /*
4048 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4049 *
4050 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4051 * idle load balancing owner or decide to stop the periodic load balancing,
4052 * if the whole system is idle.
4053 */
4054 static inline void trigger_load_balance(struct rq *rq, int cpu)
4055 {
4056 #ifdef CONFIG_NO_HZ
4057 /*
4058 * If we were in the nohz mode recently and busy at the current
4059 * scheduler tick, then check if we need to nominate new idle
4060 * load balancer.
4061 */
4062 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4063 rq->in_nohz_recently = 0;
4064
4065 if (atomic_read(&nohz.load_balancer) == cpu) {
4066 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4067 atomic_set(&nohz.load_balancer, -1);
4068 }
4069
4070 if (atomic_read(&nohz.load_balancer) == -1) {
4071 /*
4072 * simple selection for now: Nominate the
4073 * first cpu in the nohz list to be the next
4074 * ilb owner.
4075 *
4076 * TBD: Traverse the sched domains and nominate
4077 * the nearest cpu in the nohz.cpu_mask.
4078 */
4079 int ilb = cpumask_first(nohz.cpu_mask);
4080
4081 if (ilb < nr_cpu_ids)
4082 resched_cpu(ilb);
4083 }
4084 }
4085
4086 /*
4087 * If this cpu is idle and doing idle load balancing for all the
4088 * cpus with ticks stopped, is it time for that to stop?
4089 */
4090 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4091 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4092 resched_cpu(cpu);
4093 return;
4094 }
4095
4096 /*
4097 * If this cpu is idle and the idle load balancing is done by
4098 * someone else, then no need raise the SCHED_SOFTIRQ
4099 */
4100 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4101 cpumask_test_cpu(cpu, nohz.cpu_mask))
4102 return;
4103 #endif
4104 if (time_after_eq(jiffies, rq->next_balance))
4105 raise_softirq(SCHED_SOFTIRQ);
4106 }
4107
4108 #else /* CONFIG_SMP */
4109
4110 /*
4111 * on UP we do not need to balance between CPUs:
4112 */
4113 static inline void idle_balance(int cpu, struct rq *rq)
4114 {
4115 }
4116
4117 #endif
4118
4119 DEFINE_PER_CPU(struct kernel_stat, kstat);
4120
4121 EXPORT_PER_CPU_SYMBOL(kstat);
4122
4123 /*
4124 * Return any ns on the sched_clock that have not yet been banked in
4125 * @p in case that task is currently running.
4126 */
4127 unsigned long long task_delta_exec(struct task_struct *p)
4128 {
4129 unsigned long flags;
4130 struct rq *rq;
4131 u64 ns = 0;
4132
4133 rq = task_rq_lock(p, &flags);
4134
4135 if (task_current(rq, p)) {
4136 u64 delta_exec;
4137
4138 update_rq_clock(rq);
4139 delta_exec = rq->clock - p->se.exec_start;
4140 if ((s64)delta_exec > 0)
4141 ns = delta_exec;
4142 }
4143
4144 task_rq_unlock(rq, &flags);
4145
4146 return ns;
4147 }
4148
4149 /*
4150 * Account user cpu time to a process.
4151 * @p: the process that the cpu time gets accounted to
4152 * @cputime: the cpu time spent in user space since the last update
4153 * @cputime_scaled: cputime scaled by cpu frequency
4154 */
4155 void account_user_time(struct task_struct *p, cputime_t cputime,
4156 cputime_t cputime_scaled)
4157 {
4158 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4159 cputime64_t tmp;
4160
4161 /* Add user time to process. */
4162 p->utime = cputime_add(p->utime, cputime);
4163 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4164 account_group_user_time(p, cputime);
4165
4166 /* Add user time to cpustat. */
4167 tmp = cputime_to_cputime64(cputime);
4168 if (TASK_NICE(p) > 0)
4169 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4170 else
4171 cpustat->user = cputime64_add(cpustat->user, tmp);
4172 /* Account for user time used */
4173 acct_update_integrals(p);
4174 }
4175
4176 /*
4177 * Account guest cpu time to a process.
4178 * @p: the process that the cpu time gets accounted to
4179 * @cputime: the cpu time spent in virtual machine since the last update
4180 * @cputime_scaled: cputime scaled by cpu frequency
4181 */
4182 static void account_guest_time(struct task_struct *p, cputime_t cputime,
4183 cputime_t cputime_scaled)
4184 {
4185 cputime64_t tmp;
4186 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4187
4188 tmp = cputime_to_cputime64(cputime);
4189
4190 /* Add guest time to process. */
4191 p->utime = cputime_add(p->utime, cputime);
4192 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4193 account_group_user_time(p, cputime);
4194 p->gtime = cputime_add(p->gtime, cputime);
4195
4196 /* Add guest time to cpustat. */
4197 cpustat->user = cputime64_add(cpustat->user, tmp);
4198 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4199 }
4200
4201 /*
4202 * Account system cpu time to a process.
4203 * @p: the process that the cpu time gets accounted to
4204 * @hardirq_offset: the offset to subtract from hardirq_count()
4205 * @cputime: the cpu time spent in kernel space since the last update
4206 * @cputime_scaled: cputime scaled by cpu frequency
4207 */
4208 void account_system_time(struct task_struct *p, int hardirq_offset,
4209 cputime_t cputime, cputime_t cputime_scaled)
4210 {
4211 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4212 cputime64_t tmp;
4213
4214 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4215 account_guest_time(p, cputime, cputime_scaled);
4216 return;
4217 }
4218
4219 /* Add system time to process. */
4220 p->stime = cputime_add(p->stime, cputime);
4221 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
4222 account_group_system_time(p, cputime);
4223
4224 /* Add system time to cpustat. */
4225 tmp = cputime_to_cputime64(cputime);
4226 if (hardirq_count() - hardirq_offset)
4227 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4228 else if (softirq_count())
4229 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4230 else
4231 cpustat->system = cputime64_add(cpustat->system, tmp);
4232
4233 /* Account for system time used */
4234 acct_update_integrals(p);
4235 }
4236
4237 /*
4238 * Account for involuntary wait time.
4239 * @steal: the cpu time spent in involuntary wait
4240 */
4241 void account_steal_time(cputime_t cputime)
4242 {
4243 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4244 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4245
4246 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
4247 }
4248
4249 /*
4250 * Account for idle time.
4251 * @cputime: the cpu time spent in idle wait
4252 */
4253 void account_idle_time(cputime_t cputime)
4254 {
4255 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4256 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4257 struct rq *rq = this_rq();
4258
4259 if (atomic_read(&rq->nr_iowait) > 0)
4260 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
4261 else
4262 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
4263 }
4264
4265 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
4266
4267 /*
4268 * Account a single tick of cpu time.
4269 * @p: the process that the cpu time gets accounted to
4270 * @user_tick: indicates if the tick is a user or a system tick
4271 */
4272 void account_process_tick(struct task_struct *p, int user_tick)
4273 {
4274 cputime_t one_jiffy = jiffies_to_cputime(1);
4275 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
4276 struct rq *rq = this_rq();
4277
4278 if (user_tick)
4279 account_user_time(p, one_jiffy, one_jiffy_scaled);
4280 else if (p != rq->idle)
4281 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
4282 one_jiffy_scaled);
4283 else
4284 account_idle_time(one_jiffy);
4285 }
4286
4287 /*
4288 * Account multiple ticks of steal time.
4289 * @p: the process from which the cpu time has been stolen
4290 * @ticks: number of stolen ticks
4291 */
4292 void account_steal_ticks(unsigned long ticks)
4293 {
4294 account_steal_time(jiffies_to_cputime(ticks));
4295 }
4296
4297 /*
4298 * Account multiple ticks of idle time.
4299 * @ticks: number of stolen ticks
4300 */
4301 void account_idle_ticks(unsigned long ticks)
4302 {
4303 account_idle_time(jiffies_to_cputime(ticks));
4304 }
4305
4306 #endif
4307
4308 /*
4309 * Use precise platform statistics if available:
4310 */
4311 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
4312 cputime_t task_utime(struct task_struct *p)
4313 {
4314 return p->utime;
4315 }
4316
4317 cputime_t task_stime(struct task_struct *p)
4318 {
4319 return p->stime;
4320 }
4321 #else
4322 cputime_t task_utime(struct task_struct *p)
4323 {
4324 clock_t utime = cputime_to_clock_t(p->utime),
4325 total = utime + cputime_to_clock_t(p->stime);
4326 u64 temp;
4327
4328 /*
4329 * Use CFS's precise accounting:
4330 */
4331 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
4332
4333 if (total) {
4334 temp *= utime;
4335 do_div(temp, total);
4336 }
4337 utime = (clock_t)temp;
4338
4339 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
4340 return p->prev_utime;
4341 }
4342
4343 cputime_t task_stime(struct task_struct *p)
4344 {
4345 clock_t stime;
4346
4347 /*
4348 * Use CFS's precise accounting. (we subtract utime from
4349 * the total, to make sure the total observed by userspace
4350 * grows monotonically - apps rely on that):
4351 */
4352 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
4353 cputime_to_clock_t(task_utime(p));
4354
4355 if (stime >= 0)
4356 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
4357
4358 return p->prev_stime;
4359 }
4360 #endif
4361
4362 inline cputime_t task_gtime(struct task_struct *p)
4363 {
4364 return p->gtime;
4365 }
4366
4367 /*
4368 * This function gets called by the timer code, with HZ frequency.
4369 * We call it with interrupts disabled.
4370 *
4371 * It also gets called by the fork code, when changing the parent's
4372 * timeslices.
4373 */
4374 void scheduler_tick(void)
4375 {
4376 int cpu = smp_processor_id();
4377 struct rq *rq = cpu_rq(cpu);
4378 struct task_struct *curr = rq->curr;
4379
4380 sched_clock_tick();
4381
4382 spin_lock(&rq->lock);
4383 update_rq_clock(rq);
4384 update_cpu_load(rq);
4385 curr->sched_class->task_tick(rq, curr, 0);
4386 spin_unlock(&rq->lock);
4387
4388 #ifdef CONFIG_SMP
4389 rq->idle_at_tick = idle_cpu(cpu);
4390 trigger_load_balance(rq, cpu);
4391 #endif
4392 }
4393
4394 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4395 defined(CONFIG_PREEMPT_TRACER))
4396
4397 static inline unsigned long get_parent_ip(unsigned long addr)
4398 {
4399 if (in_lock_functions(addr)) {
4400 addr = CALLER_ADDR2;
4401 if (in_lock_functions(addr))
4402 addr = CALLER_ADDR3;
4403 }
4404 return addr;
4405 }
4406
4407 void __kprobes add_preempt_count(int val)
4408 {
4409 #ifdef CONFIG_DEBUG_PREEMPT
4410 /*
4411 * Underflow?
4412 */
4413 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4414 return;
4415 #endif
4416 preempt_count() += val;
4417 #ifdef CONFIG_DEBUG_PREEMPT
4418 /*
4419 * Spinlock count overflowing soon?
4420 */
4421 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4422 PREEMPT_MASK - 10);
4423 #endif
4424 if (preempt_count() == val)
4425 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4426 }
4427 EXPORT_SYMBOL(add_preempt_count);
4428
4429 void __kprobes sub_preempt_count(int val)
4430 {
4431 #ifdef CONFIG_DEBUG_PREEMPT
4432 /*
4433 * Underflow?
4434 */
4435 if (DEBUG_LOCKS_WARN_ON(val > preempt_count() - (!!kernel_locked())))
4436 return;
4437 /*
4438 * Is the spinlock portion underflowing?
4439 */
4440 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4441 !(preempt_count() & PREEMPT_MASK)))
4442 return;
4443 #endif
4444
4445 if (preempt_count() == val)
4446 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4447 preempt_count() -= val;
4448 }
4449 EXPORT_SYMBOL(sub_preempt_count);
4450
4451 #endif
4452
4453 /*
4454 * Print scheduling while atomic bug:
4455 */
4456 static noinline void __schedule_bug(struct task_struct *prev)
4457 {
4458 struct pt_regs *regs = get_irq_regs();
4459
4460 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4461 prev->comm, prev->pid, preempt_count());
4462
4463 debug_show_held_locks(prev);
4464 print_modules();
4465 if (irqs_disabled())
4466 print_irqtrace_events(prev);
4467
4468 if (regs)
4469 show_regs(regs);
4470 else
4471 dump_stack();
4472 }
4473
4474 /*
4475 * Various schedule()-time debugging checks and statistics:
4476 */
4477 static inline void schedule_debug(struct task_struct *prev)
4478 {
4479 /*
4480 * Test if we are atomic. Since do_exit() needs to call into
4481 * schedule() atomically, we ignore that path for now.
4482 * Otherwise, whine if we are scheduling when we should not be.
4483 */
4484 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
4485 __schedule_bug(prev);
4486
4487 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4488
4489 schedstat_inc(this_rq(), sched_count);
4490 #ifdef CONFIG_SCHEDSTATS
4491 if (unlikely(prev->lock_depth >= 0)) {
4492 schedstat_inc(this_rq(), bkl_count);
4493 schedstat_inc(prev, sched_info.bkl_count);
4494 }
4495 #endif
4496 }
4497
4498 /*
4499 * Pick up the highest-prio task:
4500 */
4501 static inline struct task_struct *
4502 pick_next_task(struct rq *rq, struct task_struct *prev)
4503 {
4504 const struct sched_class *class;
4505 struct task_struct *p;
4506
4507 /*
4508 * Optimization: we know that if all tasks are in
4509 * the fair class we can call that function directly:
4510 */
4511 if (likely(rq->nr_running == rq->cfs.nr_running)) {
4512 p = fair_sched_class.pick_next_task(rq);
4513 if (likely(p))
4514 return p;
4515 }
4516
4517 class = sched_class_highest;
4518 for ( ; ; ) {
4519 p = class->pick_next_task(rq);
4520 if (p)
4521 return p;
4522 /*
4523 * Will never be NULL as the idle class always
4524 * returns a non-NULL p:
4525 */
4526 class = class->next;
4527 }
4528 }
4529
4530 /*
4531 * schedule() is the main scheduler function.
4532 */
4533 asmlinkage void __sched schedule(void)
4534 {
4535 struct task_struct *prev, *next;
4536 unsigned long *switch_count;
4537 struct rq *rq;
4538 int cpu;
4539
4540 need_resched:
4541 preempt_disable();
4542 cpu = smp_processor_id();
4543 rq = cpu_rq(cpu);
4544 rcu_qsctr_inc(cpu);
4545 prev = rq->curr;
4546 switch_count = &prev->nivcsw;
4547
4548 release_kernel_lock(prev);
4549 need_resched_nonpreemptible:
4550
4551 schedule_debug(prev);
4552
4553 if (sched_feat(HRTICK))
4554 hrtick_clear(rq);
4555
4556 spin_lock_irq(&rq->lock);
4557 update_rq_clock(rq);
4558 clear_tsk_need_resched(prev);
4559
4560 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4561 if (unlikely(signal_pending_state(prev->state, prev)))
4562 prev->state = TASK_RUNNING;
4563 else
4564 deactivate_task(rq, prev, 1);
4565 switch_count = &prev->nvcsw;
4566 }
4567
4568 #ifdef CONFIG_SMP
4569 if (prev->sched_class->pre_schedule)
4570 prev->sched_class->pre_schedule(rq, prev);
4571 #endif
4572
4573 if (unlikely(!rq->nr_running))
4574 idle_balance(cpu, rq);
4575
4576 prev->sched_class->put_prev_task(rq, prev);
4577 next = pick_next_task(rq, prev);
4578
4579 if (likely(prev != next)) {
4580 sched_info_switch(prev, next);
4581
4582 rq->nr_switches++;
4583 rq->curr = next;
4584 ++*switch_count;
4585
4586 context_switch(rq, prev, next); /* unlocks the rq */
4587 /*
4588 * the context switch might have flipped the stack from under
4589 * us, hence refresh the local variables.
4590 */
4591 cpu = smp_processor_id();
4592 rq = cpu_rq(cpu);
4593 } else
4594 spin_unlock_irq(&rq->lock);
4595
4596 if (unlikely(reacquire_kernel_lock(current) < 0))
4597 goto need_resched_nonpreemptible;
4598
4599 preempt_enable_no_resched();
4600 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4601 goto need_resched;
4602 }
4603 EXPORT_SYMBOL(schedule);
4604
4605 #ifdef CONFIG_PREEMPT
4606 /*
4607 * this is the entry point to schedule() from in-kernel preemption
4608 * off of preempt_enable. Kernel preemptions off return from interrupt
4609 * occur there and call schedule directly.
4610 */
4611 asmlinkage void __sched preempt_schedule(void)
4612 {
4613 struct thread_info *ti = current_thread_info();
4614
4615 /*
4616 * If there is a non-zero preempt_count or interrupts are disabled,
4617 * we do not want to preempt the current task. Just return..
4618 */
4619 if (likely(ti->preempt_count || irqs_disabled()))
4620 return;
4621
4622 do {
4623 add_preempt_count(PREEMPT_ACTIVE);
4624 schedule();
4625 sub_preempt_count(PREEMPT_ACTIVE);
4626
4627 /*
4628 * Check again in case we missed a preemption opportunity
4629 * between schedule and now.
4630 */
4631 barrier();
4632 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4633 }
4634 EXPORT_SYMBOL(preempt_schedule);
4635
4636 /*
4637 * this is the entry point to schedule() from kernel preemption
4638 * off of irq context.
4639 * Note, that this is called and return with irqs disabled. This will
4640 * protect us against recursive calling from irq.
4641 */
4642 asmlinkage void __sched preempt_schedule_irq(void)
4643 {
4644 struct thread_info *ti = current_thread_info();
4645
4646 /* Catch callers which need to be fixed */
4647 BUG_ON(ti->preempt_count || !irqs_disabled());
4648
4649 do {
4650 add_preempt_count(PREEMPT_ACTIVE);
4651 local_irq_enable();
4652 schedule();
4653 local_irq_disable();
4654 sub_preempt_count(PREEMPT_ACTIVE);
4655
4656 /*
4657 * Check again in case we missed a preemption opportunity
4658 * between schedule and now.
4659 */
4660 barrier();
4661 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4662 }
4663
4664 #endif /* CONFIG_PREEMPT */
4665
4666 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4667 void *key)
4668 {
4669 return try_to_wake_up(curr->private, mode, sync);
4670 }
4671 EXPORT_SYMBOL(default_wake_function);
4672
4673 /*
4674 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4675 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4676 * number) then we wake all the non-exclusive tasks and one exclusive task.
4677 *
4678 * There are circumstances in which we can try to wake a task which has already
4679 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4680 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4681 */
4682 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4683 int nr_exclusive, int sync, void *key)
4684 {
4685 wait_queue_t *curr, *next;
4686
4687 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4688 unsigned flags = curr->flags;
4689
4690 if (curr->func(curr, mode, sync, key) &&
4691 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4692 break;
4693 }
4694 }
4695
4696 /**
4697 * __wake_up - wake up threads blocked on a waitqueue.
4698 * @q: the waitqueue
4699 * @mode: which threads
4700 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4701 * @key: is directly passed to the wakeup function
4702 */
4703 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4704 int nr_exclusive, void *key)
4705 {
4706 unsigned long flags;
4707
4708 spin_lock_irqsave(&q->lock, flags);
4709 __wake_up_common(q, mode, nr_exclusive, 0, key);
4710 spin_unlock_irqrestore(&q->lock, flags);
4711 }
4712 EXPORT_SYMBOL(__wake_up);
4713
4714 /*
4715 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4716 */
4717 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4718 {
4719 __wake_up_common(q, mode, 1, 0, NULL);
4720 }
4721
4722 /**
4723 * __wake_up_sync - wake up threads blocked on a waitqueue.
4724 * @q: the waitqueue
4725 * @mode: which threads
4726 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4727 *
4728 * The sync wakeup differs that the waker knows that it will schedule
4729 * away soon, so while the target thread will be woken up, it will not
4730 * be migrated to another CPU - ie. the two threads are 'synchronized'
4731 * with each other. This can prevent needless bouncing between CPUs.
4732 *
4733 * On UP it can prevent extra preemption.
4734 */
4735 void
4736 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4737 {
4738 unsigned long flags;
4739 int sync = 1;
4740
4741 if (unlikely(!q))
4742 return;
4743
4744 if (unlikely(!nr_exclusive))
4745 sync = 0;
4746
4747 spin_lock_irqsave(&q->lock, flags);
4748 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4749 spin_unlock_irqrestore(&q->lock, flags);
4750 }
4751 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4752
4753 /**
4754 * complete: - signals a single thread waiting on this completion
4755 * @x: holds the state of this particular completion
4756 *
4757 * This will wake up a single thread waiting on this completion. Threads will be
4758 * awakened in the same order in which they were queued.
4759 *
4760 * See also complete_all(), wait_for_completion() and related routines.
4761 */
4762 void complete(struct completion *x)
4763 {
4764 unsigned long flags;
4765
4766 spin_lock_irqsave(&x->wait.lock, flags);
4767 x->done++;
4768 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4769 spin_unlock_irqrestore(&x->wait.lock, flags);
4770 }
4771 EXPORT_SYMBOL(complete);
4772
4773 /**
4774 * complete_all: - signals all threads waiting on this completion
4775 * @x: holds the state of this particular completion
4776 *
4777 * This will wake up all threads waiting on this particular completion event.
4778 */
4779 void complete_all(struct completion *x)
4780 {
4781 unsigned long flags;
4782
4783 spin_lock_irqsave(&x->wait.lock, flags);
4784 x->done += UINT_MAX/2;
4785 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4786 spin_unlock_irqrestore(&x->wait.lock, flags);
4787 }
4788 EXPORT_SYMBOL(complete_all);
4789
4790 static inline long __sched
4791 do_wait_for_common(struct completion *x, long timeout, int state)
4792 {
4793 if (!x->done) {
4794 DECLARE_WAITQUEUE(wait, current);
4795
4796 wait.flags |= WQ_FLAG_EXCLUSIVE;
4797 __add_wait_queue_tail(&x->wait, &wait);
4798 do {
4799 if (signal_pending_state(state, current)) {
4800 timeout = -ERESTARTSYS;
4801 break;
4802 }
4803 __set_current_state(state);
4804 spin_unlock_irq(&x->wait.lock);
4805 timeout = schedule_timeout(timeout);
4806 spin_lock_irq(&x->wait.lock);
4807 } while (!x->done && timeout);
4808 __remove_wait_queue(&x->wait, &wait);
4809 if (!x->done)
4810 return timeout;
4811 }
4812 x->done--;
4813 return timeout ?: 1;
4814 }
4815
4816 static long __sched
4817 wait_for_common(struct completion *x, long timeout, int state)
4818 {
4819 might_sleep();
4820
4821 spin_lock_irq(&x->wait.lock);
4822 timeout = do_wait_for_common(x, timeout, state);
4823 spin_unlock_irq(&x->wait.lock);
4824 return timeout;
4825 }
4826
4827 /**
4828 * wait_for_completion: - waits for completion of a task
4829 * @x: holds the state of this particular completion
4830 *
4831 * This waits to be signaled for completion of a specific task. It is NOT
4832 * interruptible and there is no timeout.
4833 *
4834 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4835 * and interrupt capability. Also see complete().
4836 */
4837 void __sched wait_for_completion(struct completion *x)
4838 {
4839 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4840 }
4841 EXPORT_SYMBOL(wait_for_completion);
4842
4843 /**
4844 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4845 * @x: holds the state of this particular completion
4846 * @timeout: timeout value in jiffies
4847 *
4848 * This waits for either a completion of a specific task to be signaled or for a
4849 * specified timeout to expire. The timeout is in jiffies. It is not
4850 * interruptible.
4851 */
4852 unsigned long __sched
4853 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4854 {
4855 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4856 }
4857 EXPORT_SYMBOL(wait_for_completion_timeout);
4858
4859 /**
4860 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4861 * @x: holds the state of this particular completion
4862 *
4863 * This waits for completion of a specific task to be signaled. It is
4864 * interruptible.
4865 */
4866 int __sched wait_for_completion_interruptible(struct completion *x)
4867 {
4868 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4869 if (t == -ERESTARTSYS)
4870 return t;
4871 return 0;
4872 }
4873 EXPORT_SYMBOL(wait_for_completion_interruptible);
4874
4875 /**
4876 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4877 * @x: holds the state of this particular completion
4878 * @timeout: timeout value in jiffies
4879 *
4880 * This waits for either a completion of a specific task to be signaled or for a
4881 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4882 */
4883 unsigned long __sched
4884 wait_for_completion_interruptible_timeout(struct completion *x,
4885 unsigned long timeout)
4886 {
4887 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4888 }
4889 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4890
4891 /**
4892 * wait_for_completion_killable: - waits for completion of a task (killable)
4893 * @x: holds the state of this particular completion
4894 *
4895 * This waits to be signaled for completion of a specific task. It can be
4896 * interrupted by a kill signal.
4897 */
4898 int __sched wait_for_completion_killable(struct completion *x)
4899 {
4900 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4901 if (t == -ERESTARTSYS)
4902 return t;
4903 return 0;
4904 }
4905 EXPORT_SYMBOL(wait_for_completion_killable);
4906
4907 /**
4908 * try_wait_for_completion - try to decrement a completion without blocking
4909 * @x: completion structure
4910 *
4911 * Returns: 0 if a decrement cannot be done without blocking
4912 * 1 if a decrement succeeded.
4913 *
4914 * If a completion is being used as a counting completion,
4915 * attempt to decrement the counter without blocking. This
4916 * enables us to avoid waiting if the resource the completion
4917 * is protecting is not available.
4918 */
4919 bool try_wait_for_completion(struct completion *x)
4920 {
4921 int ret = 1;
4922
4923 spin_lock_irq(&x->wait.lock);
4924 if (!x->done)
4925 ret = 0;
4926 else
4927 x->done--;
4928 spin_unlock_irq(&x->wait.lock);
4929 return ret;
4930 }
4931 EXPORT_SYMBOL(try_wait_for_completion);
4932
4933 /**
4934 * completion_done - Test to see if a completion has any waiters
4935 * @x: completion structure
4936 *
4937 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4938 * 1 if there are no waiters.
4939 *
4940 */
4941 bool completion_done(struct completion *x)
4942 {
4943 int ret = 1;
4944
4945 spin_lock_irq(&x->wait.lock);
4946 if (!x->done)
4947 ret = 0;
4948 spin_unlock_irq(&x->wait.lock);
4949 return ret;
4950 }
4951 EXPORT_SYMBOL(completion_done);
4952
4953 static long __sched
4954 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4955 {
4956 unsigned long flags;
4957 wait_queue_t wait;
4958
4959 init_waitqueue_entry(&wait, current);
4960
4961 __set_current_state(state);
4962
4963 spin_lock_irqsave(&q->lock, flags);
4964 __add_wait_queue(q, &wait);
4965 spin_unlock(&q->lock);
4966 timeout = schedule_timeout(timeout);
4967 spin_lock_irq(&q->lock);
4968 __remove_wait_queue(q, &wait);
4969 spin_unlock_irqrestore(&q->lock, flags);
4970
4971 return timeout;
4972 }
4973
4974 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4975 {
4976 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4977 }
4978 EXPORT_SYMBOL(interruptible_sleep_on);
4979
4980 long __sched
4981 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4982 {
4983 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4984 }
4985 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4986
4987 void __sched sleep_on(wait_queue_head_t *q)
4988 {
4989 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4990 }
4991 EXPORT_SYMBOL(sleep_on);
4992
4993 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4994 {
4995 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4996 }
4997 EXPORT_SYMBOL(sleep_on_timeout);
4998
4999 #ifdef CONFIG_RT_MUTEXES
5000
5001 /*
5002 * rt_mutex_setprio - set the current priority of a task
5003 * @p: task
5004 * @prio: prio value (kernel-internal form)
5005 *
5006 * This function changes the 'effective' priority of a task. It does
5007 * not touch ->normal_prio like __setscheduler().
5008 *
5009 * Used by the rt_mutex code to implement priority inheritance logic.
5010 */
5011 void rt_mutex_setprio(struct task_struct *p, int prio)
5012 {
5013 unsigned long flags;
5014 int oldprio, on_rq, running;
5015 struct rq *rq;
5016 const struct sched_class *prev_class = p->sched_class;
5017
5018 BUG_ON(prio < 0 || prio > MAX_PRIO);
5019
5020 rq = task_rq_lock(p, &flags);
5021 update_rq_clock(rq);
5022
5023 oldprio = p->prio;
5024 on_rq = p->se.on_rq;
5025 running = task_current(rq, p);
5026 if (on_rq)
5027 dequeue_task(rq, p, 0);
5028 if (running)
5029 p->sched_class->put_prev_task(rq, p);
5030
5031 if (rt_prio(prio))
5032 p->sched_class = &rt_sched_class;
5033 else
5034 p->sched_class = &fair_sched_class;
5035
5036 p->prio = prio;
5037
5038 if (running)
5039 p->sched_class->set_curr_task(rq);
5040 if (on_rq) {
5041 enqueue_task(rq, p, 0);
5042
5043 check_class_changed(rq, p, prev_class, oldprio, running);
5044 }
5045 task_rq_unlock(rq, &flags);
5046 }
5047
5048 #endif
5049
5050 void set_user_nice(struct task_struct *p, long nice)
5051 {
5052 int old_prio, delta, on_rq;
5053 unsigned long flags;
5054 struct rq *rq;
5055
5056 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5057 return;
5058 /*
5059 * We have to be careful, if called from sys_setpriority(),
5060 * the task might be in the middle of scheduling on another CPU.
5061 */
5062 rq = task_rq_lock(p, &flags);
5063 update_rq_clock(rq);
5064 /*
5065 * The RT priorities are set via sched_setscheduler(), but we still
5066 * allow the 'normal' nice value to be set - but as expected
5067 * it wont have any effect on scheduling until the task is
5068 * SCHED_FIFO/SCHED_RR:
5069 */
5070 if (task_has_rt_policy(p)) {
5071 p->static_prio = NICE_TO_PRIO(nice);
5072 goto out_unlock;
5073 }
5074 on_rq = p->se.on_rq;
5075 if (on_rq)
5076 dequeue_task(rq, p, 0);
5077
5078 p->static_prio = NICE_TO_PRIO(nice);
5079 set_load_weight(p);
5080 old_prio = p->prio;
5081 p->prio = effective_prio(p);
5082 delta = p->prio - old_prio;
5083
5084 if (on_rq) {
5085 enqueue_task(rq, p, 0);
5086 /*
5087 * If the task increased its priority or is running and
5088 * lowered its priority, then reschedule its CPU:
5089 */
5090 if (delta < 0 || (delta > 0 && task_running(rq, p)))
5091 resched_task(rq->curr);
5092 }
5093 out_unlock:
5094 task_rq_unlock(rq, &flags);
5095 }
5096 EXPORT_SYMBOL(set_user_nice);
5097
5098 /*
5099 * can_nice - check if a task can reduce its nice value
5100 * @p: task
5101 * @nice: nice value
5102 */
5103 int can_nice(const struct task_struct *p, const int nice)
5104 {
5105 /* convert nice value [19,-20] to rlimit style value [1,40] */
5106 int nice_rlim = 20 - nice;
5107
5108 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5109 capable(CAP_SYS_NICE));
5110 }
5111
5112 #ifdef __ARCH_WANT_SYS_NICE
5113
5114 /*
5115 * sys_nice - change the priority of the current process.
5116 * @increment: priority increment
5117 *
5118 * sys_setpriority is a more generic, but much slower function that
5119 * does similar things.
5120 */
5121 asmlinkage long sys_nice(int increment)
5122 {
5123 long nice, retval;
5124
5125 /*
5126 * Setpriority might change our priority at the same moment.
5127 * We don't have to worry. Conceptually one call occurs first
5128 * and we have a single winner.
5129 */
5130 if (increment < -40)
5131 increment = -40;
5132 if (increment > 40)
5133 increment = 40;
5134
5135 nice = PRIO_TO_NICE(current->static_prio) + increment;
5136 if (nice < -20)
5137 nice = -20;
5138 if (nice > 19)
5139 nice = 19;
5140
5141 if (increment < 0 && !can_nice(current, nice))
5142 return -EPERM;
5143
5144 retval = security_task_setnice(current, nice);
5145 if (retval)
5146 return retval;
5147
5148 set_user_nice(current, nice);
5149 return 0;
5150 }
5151
5152 #endif
5153
5154 /**
5155 * task_prio - return the priority value of a given task.
5156 * @p: the task in question.
5157 *
5158 * This is the priority value as seen by users in /proc.
5159 * RT tasks are offset by -200. Normal tasks are centered
5160 * around 0, value goes from -16 to +15.
5161 */
5162 int task_prio(const struct task_struct *p)
5163 {
5164 return p->prio - MAX_RT_PRIO;
5165 }
5166
5167 /**
5168 * task_nice - return the nice value of a given task.
5169 * @p: the task in question.
5170 */
5171 int task_nice(const struct task_struct *p)
5172 {
5173 return TASK_NICE(p);
5174 }
5175 EXPORT_SYMBOL(task_nice);
5176
5177 /**
5178 * idle_cpu - is a given cpu idle currently?
5179 * @cpu: the processor in question.
5180 */
5181 int idle_cpu(int cpu)
5182 {
5183 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5184 }
5185
5186 /**
5187 * idle_task - return the idle task for a given cpu.
5188 * @cpu: the processor in question.
5189 */
5190 struct task_struct *idle_task(int cpu)
5191 {
5192 return cpu_rq(cpu)->idle;
5193 }
5194
5195 /**
5196 * find_process_by_pid - find a process with a matching PID value.
5197 * @pid: the pid in question.
5198 */
5199 static struct task_struct *find_process_by_pid(pid_t pid)
5200 {
5201 return pid ? find_task_by_vpid(pid) : current;
5202 }
5203
5204 /* Actually do priority change: must hold rq lock. */
5205 static void
5206 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
5207 {
5208 BUG_ON(p->se.on_rq);
5209
5210 p->policy = policy;
5211 switch (p->policy) {
5212 case SCHED_NORMAL:
5213 case SCHED_BATCH:
5214 case SCHED_IDLE:
5215 p->sched_class = &fair_sched_class;
5216 break;
5217 case SCHED_FIFO:
5218 case SCHED_RR:
5219 p->sched_class = &rt_sched_class;
5220 break;
5221 }
5222
5223 p->rt_priority = prio;
5224 p->normal_prio = normal_prio(p);
5225 /* we are holding p->pi_lock already */
5226 p->prio = rt_mutex_getprio(p);
5227 set_load_weight(p);
5228 }
5229
5230 /*
5231 * check the target process has a UID that matches the current process's
5232 */
5233 static bool check_same_owner(struct task_struct *p)
5234 {
5235 const struct cred *cred = current_cred(), *pcred;
5236 bool match;
5237
5238 rcu_read_lock();
5239 pcred = __task_cred(p);
5240 match = (cred->euid == pcred->euid ||
5241 cred->euid == pcred->uid);
5242 rcu_read_unlock();
5243 return match;
5244 }
5245
5246 static int __sched_setscheduler(struct task_struct *p, int policy,
5247 struct sched_param *param, bool user)
5248 {
5249 int retval, oldprio, oldpolicy = -1, on_rq, running;
5250 unsigned long flags;
5251 const struct sched_class *prev_class = p->sched_class;
5252 struct rq *rq;
5253
5254 /* may grab non-irq protected spin_locks */
5255 BUG_ON(in_interrupt());
5256 recheck:
5257 /* double check policy once rq lock held */
5258 if (policy < 0)
5259 policy = oldpolicy = p->policy;
5260 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
5261 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5262 policy != SCHED_IDLE)
5263 return -EINVAL;
5264 /*
5265 * Valid priorities for SCHED_FIFO and SCHED_RR are
5266 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5267 * SCHED_BATCH and SCHED_IDLE is 0.
5268 */
5269 if (param->sched_priority < 0 ||
5270 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5271 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
5272 return -EINVAL;
5273 if (rt_policy(policy) != (param->sched_priority != 0))
5274 return -EINVAL;
5275
5276 /*
5277 * Allow unprivileged RT tasks to decrease priority:
5278 */
5279 if (user && !capable(CAP_SYS_NICE)) {
5280 if (rt_policy(policy)) {
5281 unsigned long rlim_rtprio;
5282
5283 if (!lock_task_sighand(p, &flags))
5284 return -ESRCH;
5285 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5286 unlock_task_sighand(p, &flags);
5287
5288 /* can't set/change the rt policy */
5289 if (policy != p->policy && !rlim_rtprio)
5290 return -EPERM;
5291
5292 /* can't increase priority */
5293 if (param->sched_priority > p->rt_priority &&
5294 param->sched_priority > rlim_rtprio)
5295 return -EPERM;
5296 }
5297 /*
5298 * Like positive nice levels, dont allow tasks to
5299 * move out of SCHED_IDLE either:
5300 */
5301 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5302 return -EPERM;
5303
5304 /* can't change other user's priorities */
5305 if (!check_same_owner(p))
5306 return -EPERM;
5307 }
5308
5309 if (user) {
5310 #ifdef CONFIG_RT_GROUP_SCHED
5311 /*
5312 * Do not allow realtime tasks into groups that have no runtime
5313 * assigned.
5314 */
5315 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5316 task_group(p)->rt_bandwidth.rt_runtime == 0)
5317 return -EPERM;
5318 #endif
5319
5320 retval = security_task_setscheduler(p, policy, param);
5321 if (retval)
5322 return retval;
5323 }
5324
5325 /*
5326 * make sure no PI-waiters arrive (or leave) while we are
5327 * changing the priority of the task:
5328 */
5329 spin_lock_irqsave(&p->pi_lock, flags);
5330 /*
5331 * To be able to change p->policy safely, the apropriate
5332 * runqueue lock must be held.
5333 */
5334 rq = __task_rq_lock(p);
5335 /* recheck policy now with rq lock held */
5336 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5337 policy = oldpolicy = -1;
5338 __task_rq_unlock(rq);
5339 spin_unlock_irqrestore(&p->pi_lock, flags);
5340 goto recheck;
5341 }
5342 update_rq_clock(rq);
5343 on_rq = p->se.on_rq;
5344 running = task_current(rq, p);
5345 if (on_rq)
5346 deactivate_task(rq, p, 0);
5347 if (running)
5348 p->sched_class->put_prev_task(rq, p);
5349
5350 oldprio = p->prio;
5351 __setscheduler(rq, p, policy, param->sched_priority);
5352
5353 if (running)
5354 p->sched_class->set_curr_task(rq);
5355 if (on_rq) {
5356 activate_task(rq, p, 0);
5357
5358 check_class_changed(rq, p, prev_class, oldprio, running);
5359 }
5360 __task_rq_unlock(rq);
5361 spin_unlock_irqrestore(&p->pi_lock, flags);
5362
5363 rt_mutex_adjust_pi(p);
5364
5365 return 0;
5366 }
5367
5368 /**
5369 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5370 * @p: the task in question.
5371 * @policy: new policy.
5372 * @param: structure containing the new RT priority.
5373 *
5374 * NOTE that the task may be already dead.
5375 */
5376 int sched_setscheduler(struct task_struct *p, int policy,
5377 struct sched_param *param)
5378 {
5379 return __sched_setscheduler(p, policy, param, true);
5380 }
5381 EXPORT_SYMBOL_GPL(sched_setscheduler);
5382
5383 /**
5384 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5385 * @p: the task in question.
5386 * @policy: new policy.
5387 * @param: structure containing the new RT priority.
5388 *
5389 * Just like sched_setscheduler, only don't bother checking if the
5390 * current context has permission. For example, this is needed in
5391 * stop_machine(): we create temporary high priority worker threads,
5392 * but our caller might not have that capability.
5393 */
5394 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5395 struct sched_param *param)
5396 {
5397 return __sched_setscheduler(p, policy, param, false);
5398 }
5399
5400 static int
5401 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5402 {
5403 struct sched_param lparam;
5404 struct task_struct *p;
5405 int retval;
5406
5407 if (!param || pid < 0)
5408 return -EINVAL;
5409 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5410 return -EFAULT;
5411
5412 rcu_read_lock();
5413 retval = -ESRCH;
5414 p = find_process_by_pid(pid);
5415 if (p != NULL)
5416 retval = sched_setscheduler(p, policy, &lparam);
5417 rcu_read_unlock();
5418
5419 return retval;
5420 }
5421
5422 /**
5423 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5424 * @pid: the pid in question.
5425 * @policy: new policy.
5426 * @param: structure containing the new RT priority.
5427 */
5428 asmlinkage long
5429 sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5430 {
5431 /* negative values for policy are not valid */
5432 if (policy < 0)
5433 return -EINVAL;
5434
5435 return do_sched_setscheduler(pid, policy, param);
5436 }
5437
5438 /**
5439 * sys_sched_setparam - set/change the RT priority of a thread
5440 * @pid: the pid in question.
5441 * @param: structure containing the new RT priority.
5442 */
5443 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
5444 {
5445 return do_sched_setscheduler(pid, -1, param);
5446 }
5447
5448 /**
5449 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5450 * @pid: the pid in question.
5451 */
5452 asmlinkage long sys_sched_getscheduler(pid_t pid)
5453 {
5454 struct task_struct *p;
5455 int retval;
5456
5457 if (pid < 0)
5458 return -EINVAL;
5459
5460 retval = -ESRCH;
5461 read_lock(&tasklist_lock);
5462 p = find_process_by_pid(pid);
5463 if (p) {
5464 retval = security_task_getscheduler(p);
5465 if (!retval)
5466 retval = p->policy;
5467 }
5468 read_unlock(&tasklist_lock);
5469 return retval;
5470 }
5471
5472 /**
5473 * sys_sched_getscheduler - get the RT priority of a thread
5474 * @pid: the pid in question.
5475 * @param: structure containing the RT priority.
5476 */
5477 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
5478 {
5479 struct sched_param lp;
5480 struct task_struct *p;
5481 int retval;
5482
5483 if (!param || pid < 0)
5484 return -EINVAL;
5485
5486 read_lock(&tasklist_lock);
5487 p = find_process_by_pid(pid);
5488 retval = -ESRCH;
5489 if (!p)
5490 goto out_unlock;
5491
5492 retval = security_task_getscheduler(p);
5493 if (retval)
5494 goto out_unlock;
5495
5496 lp.sched_priority = p->rt_priority;
5497 read_unlock(&tasklist_lock);
5498
5499 /*
5500 * This one might sleep, we cannot do it with a spinlock held ...
5501 */
5502 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5503
5504 return retval;
5505
5506 out_unlock:
5507 read_unlock(&tasklist_lock);
5508 return retval;
5509 }
5510
5511 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5512 {
5513 cpumask_var_t cpus_allowed, new_mask;
5514 struct task_struct *p;
5515 int retval;
5516
5517 get_online_cpus();
5518 read_lock(&tasklist_lock);
5519
5520 p = find_process_by_pid(pid);
5521 if (!p) {
5522 read_unlock(&tasklist_lock);
5523 put_online_cpus();
5524 return -ESRCH;
5525 }
5526
5527 /*
5528 * It is not safe to call set_cpus_allowed with the
5529 * tasklist_lock held. We will bump the task_struct's
5530 * usage count and then drop tasklist_lock.
5531 */
5532 get_task_struct(p);
5533 read_unlock(&tasklist_lock);
5534
5535 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5536 retval = -ENOMEM;
5537 goto out_put_task;
5538 }
5539 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5540 retval = -ENOMEM;
5541 goto out_free_cpus_allowed;
5542 }
5543 retval = -EPERM;
5544 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
5545 goto out_unlock;
5546
5547 retval = security_task_setscheduler(p, 0, NULL);
5548 if (retval)
5549 goto out_unlock;
5550
5551 cpuset_cpus_allowed(p, cpus_allowed);
5552 cpumask_and(new_mask, in_mask, cpus_allowed);
5553 again:
5554 retval = set_cpus_allowed_ptr(p, new_mask);
5555
5556 if (!retval) {
5557 cpuset_cpus_allowed(p, cpus_allowed);
5558 if (!cpumask_subset(new_mask, cpus_allowed)) {
5559 /*
5560 * We must have raced with a concurrent cpuset
5561 * update. Just reset the cpus_allowed to the
5562 * cpuset's cpus_allowed
5563 */
5564 cpumask_copy(new_mask, cpus_allowed);
5565 goto again;
5566 }
5567 }
5568 out_unlock:
5569 free_cpumask_var(new_mask);
5570 out_free_cpus_allowed:
5571 free_cpumask_var(cpus_allowed);
5572 out_put_task:
5573 put_task_struct(p);
5574 put_online_cpus();
5575 return retval;
5576 }
5577
5578 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5579 struct cpumask *new_mask)
5580 {
5581 if (len < cpumask_size())
5582 cpumask_clear(new_mask);
5583 else if (len > cpumask_size())
5584 len = cpumask_size();
5585
5586 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5587 }
5588
5589 /**
5590 * sys_sched_setaffinity - set the cpu affinity of a process
5591 * @pid: pid of the process
5592 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5593 * @user_mask_ptr: user-space pointer to the new cpu mask
5594 */
5595 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5596 unsigned long __user *user_mask_ptr)
5597 {
5598 cpumask_var_t new_mask;
5599 int retval;
5600
5601 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5602 return -ENOMEM;
5603
5604 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5605 if (retval == 0)
5606 retval = sched_setaffinity(pid, new_mask);
5607 free_cpumask_var(new_mask);
5608 return retval;
5609 }
5610
5611 long sched_getaffinity(pid_t pid, struct cpumask *mask)
5612 {
5613 struct task_struct *p;
5614 int retval;
5615
5616 get_online_cpus();
5617 read_lock(&tasklist_lock);
5618
5619 retval = -ESRCH;
5620 p = find_process_by_pid(pid);
5621 if (!p)
5622 goto out_unlock;
5623
5624 retval = security_task_getscheduler(p);
5625 if (retval)
5626 goto out_unlock;
5627
5628 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
5629
5630 out_unlock:
5631 read_unlock(&tasklist_lock);
5632 put_online_cpus();
5633
5634 return retval;
5635 }
5636
5637 /**
5638 * sys_sched_getaffinity - get the cpu affinity of a process
5639 * @pid: pid of the process
5640 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5641 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5642 */
5643 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5644 unsigned long __user *user_mask_ptr)
5645 {
5646 int ret;
5647 cpumask_var_t mask;
5648
5649 if (len < cpumask_size())
5650 return -EINVAL;
5651
5652 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5653 return -ENOMEM;
5654
5655 ret = sched_getaffinity(pid, mask);
5656 if (ret == 0) {
5657 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
5658 ret = -EFAULT;
5659 else
5660 ret = cpumask_size();
5661 }
5662 free_cpumask_var(mask);
5663
5664 return ret;
5665 }
5666
5667 /**
5668 * sys_sched_yield - yield the current processor to other threads.
5669 *
5670 * This function yields the current CPU to other tasks. If there are no
5671 * other threads running on this CPU then this function will return.
5672 */
5673 asmlinkage long sys_sched_yield(void)
5674 {
5675 struct rq *rq = this_rq_lock();
5676
5677 schedstat_inc(rq, yld_count);
5678 current->sched_class->yield_task(rq);
5679
5680 /*
5681 * Since we are going to call schedule() anyway, there's
5682 * no need to preempt or enable interrupts:
5683 */
5684 __release(rq->lock);
5685 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5686 _raw_spin_unlock(&rq->lock);
5687 preempt_enable_no_resched();
5688
5689 schedule();
5690
5691 return 0;
5692 }
5693
5694 static void __cond_resched(void)
5695 {
5696 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5697 __might_sleep(__FILE__, __LINE__);
5698 #endif
5699 /*
5700 * The BKS might be reacquired before we have dropped
5701 * PREEMPT_ACTIVE, which could trigger a second
5702 * cond_resched() call.
5703 */
5704 do {
5705 add_preempt_count(PREEMPT_ACTIVE);
5706 schedule();
5707 sub_preempt_count(PREEMPT_ACTIVE);
5708 } while (need_resched());
5709 }
5710
5711 int __sched _cond_resched(void)
5712 {
5713 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5714 system_state == SYSTEM_RUNNING) {
5715 __cond_resched();
5716 return 1;
5717 }
5718 return 0;
5719 }
5720 EXPORT_SYMBOL(_cond_resched);
5721
5722 /*
5723 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5724 * call schedule, and on return reacquire the lock.
5725 *
5726 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5727 * operations here to prevent schedule() from being called twice (once via
5728 * spin_unlock(), once by hand).
5729 */
5730 int cond_resched_lock(spinlock_t *lock)
5731 {
5732 int resched = need_resched() && system_state == SYSTEM_RUNNING;
5733 int ret = 0;
5734
5735 if (spin_needbreak(lock) || resched) {
5736 spin_unlock(lock);
5737 if (resched && need_resched())
5738 __cond_resched();
5739 else
5740 cpu_relax();
5741 ret = 1;
5742 spin_lock(lock);
5743 }
5744 return ret;
5745 }
5746 EXPORT_SYMBOL(cond_resched_lock);
5747
5748 int __sched cond_resched_softirq(void)
5749 {
5750 BUG_ON(!in_softirq());
5751
5752 if (need_resched() && system_state == SYSTEM_RUNNING) {
5753 local_bh_enable();
5754 __cond_resched();
5755 local_bh_disable();
5756 return 1;
5757 }
5758 return 0;
5759 }
5760 EXPORT_SYMBOL(cond_resched_softirq);
5761
5762 /**
5763 * yield - yield the current processor to other threads.
5764 *
5765 * This is a shortcut for kernel-space yielding - it marks the
5766 * thread runnable and calls sys_sched_yield().
5767 */
5768 void __sched yield(void)
5769 {
5770 set_current_state(TASK_RUNNING);
5771 sys_sched_yield();
5772 }
5773 EXPORT_SYMBOL(yield);
5774
5775 /*
5776 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5777 * that process accounting knows that this is a task in IO wait state.
5778 *
5779 * But don't do that if it is a deliberate, throttling IO wait (this task
5780 * has set its backing_dev_info: the queue against which it should throttle)
5781 */
5782 void __sched io_schedule(void)
5783 {
5784 struct rq *rq = &__raw_get_cpu_var(runqueues);
5785
5786 delayacct_blkio_start();
5787 atomic_inc(&rq->nr_iowait);
5788 schedule();
5789 atomic_dec(&rq->nr_iowait);
5790 delayacct_blkio_end();
5791 }
5792 EXPORT_SYMBOL(io_schedule);
5793
5794 long __sched io_schedule_timeout(long timeout)
5795 {
5796 struct rq *rq = &__raw_get_cpu_var(runqueues);
5797 long ret;
5798
5799 delayacct_blkio_start();
5800 atomic_inc(&rq->nr_iowait);
5801 ret = schedule_timeout(timeout);
5802 atomic_dec(&rq->nr_iowait);
5803 delayacct_blkio_end();
5804 return ret;
5805 }
5806
5807 /**
5808 * sys_sched_get_priority_max - return maximum RT priority.
5809 * @policy: scheduling class.
5810 *
5811 * this syscall returns the maximum rt_priority that can be used
5812 * by a given scheduling class.
5813 */
5814 asmlinkage long sys_sched_get_priority_max(int policy)
5815 {
5816 int ret = -EINVAL;
5817
5818 switch (policy) {
5819 case SCHED_FIFO:
5820 case SCHED_RR:
5821 ret = MAX_USER_RT_PRIO-1;
5822 break;
5823 case SCHED_NORMAL:
5824 case SCHED_BATCH:
5825 case SCHED_IDLE:
5826 ret = 0;
5827 break;
5828 }
5829 return ret;
5830 }
5831
5832 /**
5833 * sys_sched_get_priority_min - return minimum RT priority.
5834 * @policy: scheduling class.
5835 *
5836 * this syscall returns the minimum rt_priority that can be used
5837 * by a given scheduling class.
5838 */
5839 asmlinkage long sys_sched_get_priority_min(int policy)
5840 {
5841 int ret = -EINVAL;
5842
5843 switch (policy) {
5844 case SCHED_FIFO:
5845 case SCHED_RR:
5846 ret = 1;
5847 break;
5848 case SCHED_NORMAL:
5849 case SCHED_BATCH:
5850 case SCHED_IDLE:
5851 ret = 0;
5852 }
5853 return ret;
5854 }
5855
5856 /**
5857 * sys_sched_rr_get_interval - return the default timeslice of a process.
5858 * @pid: pid of the process.
5859 * @interval: userspace pointer to the timeslice value.
5860 *
5861 * this syscall writes the default timeslice value of a given process
5862 * into the user-space timespec buffer. A value of '0' means infinity.
5863 */
5864 asmlinkage
5865 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5866 {
5867 struct task_struct *p;
5868 unsigned int time_slice;
5869 int retval;
5870 struct timespec t;
5871
5872 if (pid < 0)
5873 return -EINVAL;
5874
5875 retval = -ESRCH;
5876 read_lock(&tasklist_lock);
5877 p = find_process_by_pid(pid);
5878 if (!p)
5879 goto out_unlock;
5880
5881 retval = security_task_getscheduler(p);
5882 if (retval)
5883 goto out_unlock;
5884
5885 /*
5886 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5887 * tasks that are on an otherwise idle runqueue:
5888 */
5889 time_slice = 0;
5890 if (p->policy == SCHED_RR) {
5891 time_slice = DEF_TIMESLICE;
5892 } else if (p->policy != SCHED_FIFO) {
5893 struct sched_entity *se = &p->se;
5894 unsigned long flags;
5895 struct rq *rq;
5896
5897 rq = task_rq_lock(p, &flags);
5898 if (rq->cfs.load.weight)
5899 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
5900 task_rq_unlock(rq, &flags);
5901 }
5902 read_unlock(&tasklist_lock);
5903 jiffies_to_timespec(time_slice, &t);
5904 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5905 return retval;
5906
5907 out_unlock:
5908 read_unlock(&tasklist_lock);
5909 return retval;
5910 }
5911
5912 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5913
5914 void sched_show_task(struct task_struct *p)
5915 {
5916 unsigned long free = 0;
5917 unsigned state;
5918
5919 state = p->state ? __ffs(p->state) + 1 : 0;
5920 printk(KERN_INFO "%-13.13s %c", p->comm,
5921 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5922 #if BITS_PER_LONG == 32
5923 if (state == TASK_RUNNING)
5924 printk(KERN_CONT " running ");
5925 else
5926 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5927 #else
5928 if (state == TASK_RUNNING)
5929 printk(KERN_CONT " running task ");
5930 else
5931 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5932 #endif
5933 #ifdef CONFIG_DEBUG_STACK_USAGE
5934 {
5935 unsigned long *n = end_of_stack(p);
5936 while (!*n)
5937 n++;
5938 free = (unsigned long)n - (unsigned long)end_of_stack(p);
5939 }
5940 #endif
5941 printk(KERN_CONT "%5lu %5d %6d\n", free,
5942 task_pid_nr(p), task_pid_nr(p->real_parent));
5943
5944 show_stack(p, NULL);
5945 }
5946
5947 void show_state_filter(unsigned long state_filter)
5948 {
5949 struct task_struct *g, *p;
5950
5951 #if BITS_PER_LONG == 32
5952 printk(KERN_INFO
5953 " task PC stack pid father\n");
5954 #else
5955 printk(KERN_INFO
5956 " task PC stack pid father\n");
5957 #endif
5958 read_lock(&tasklist_lock);
5959 do_each_thread(g, p) {
5960 /*
5961 * reset the NMI-timeout, listing all files on a slow
5962 * console might take alot of time:
5963 */
5964 touch_nmi_watchdog();
5965 if (!state_filter || (p->state & state_filter))
5966 sched_show_task(p);
5967 } while_each_thread(g, p);
5968
5969 touch_all_softlockup_watchdogs();
5970
5971 #ifdef CONFIG_SCHED_DEBUG
5972 sysrq_sched_debug_show();
5973 #endif
5974 read_unlock(&tasklist_lock);
5975 /*
5976 * Only show locks if all tasks are dumped:
5977 */
5978 if (state_filter == -1)
5979 debug_show_all_locks();
5980 }
5981
5982 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5983 {
5984 idle->sched_class = &idle_sched_class;
5985 }
5986
5987 /**
5988 * init_idle - set up an idle thread for a given CPU
5989 * @idle: task in question
5990 * @cpu: cpu the idle task belongs to
5991 *
5992 * NOTE: this function does not set the idle thread's NEED_RESCHED
5993 * flag, to make booting more robust.
5994 */
5995 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5996 {
5997 struct rq *rq = cpu_rq(cpu);
5998 unsigned long flags;
5999
6000 spin_lock_irqsave(&rq->lock, flags);
6001
6002 __sched_fork(idle);
6003 idle->se.exec_start = sched_clock();
6004
6005 idle->prio = idle->normal_prio = MAX_PRIO;
6006 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6007 __set_task_cpu(idle, cpu);
6008
6009 rq->curr = rq->idle = idle;
6010 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6011 idle->oncpu = 1;
6012 #endif
6013 spin_unlock_irqrestore(&rq->lock, flags);
6014
6015 /* Set the preempt count _outside_ the spinlocks! */
6016 #if defined(CONFIG_PREEMPT)
6017 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6018 #else
6019 task_thread_info(idle)->preempt_count = 0;
6020 #endif
6021 /*
6022 * The idle tasks have their own, simple scheduling class:
6023 */
6024 idle->sched_class = &idle_sched_class;
6025 ftrace_graph_init_task(idle);
6026 }
6027
6028 /*
6029 * In a system that switches off the HZ timer nohz_cpu_mask
6030 * indicates which cpus entered this state. This is used
6031 * in the rcu update to wait only for active cpus. For system
6032 * which do not switch off the HZ timer nohz_cpu_mask should
6033 * always be CPU_BITS_NONE.
6034 */
6035 cpumask_var_t nohz_cpu_mask;
6036
6037 /*
6038 * Increase the granularity value when there are more CPUs,
6039 * because with more CPUs the 'effective latency' as visible
6040 * to users decreases. But the relationship is not linear,
6041 * so pick a second-best guess by going with the log2 of the
6042 * number of CPUs.
6043 *
6044 * This idea comes from the SD scheduler of Con Kolivas:
6045 */
6046 static inline void sched_init_granularity(void)
6047 {
6048 unsigned int factor = 1 + ilog2(num_online_cpus());
6049 const unsigned long limit = 200000000;
6050
6051 sysctl_sched_min_granularity *= factor;
6052 if (sysctl_sched_min_granularity > limit)
6053 sysctl_sched_min_granularity = limit;
6054
6055 sysctl_sched_latency *= factor;
6056 if (sysctl_sched_latency > limit)
6057 sysctl_sched_latency = limit;
6058
6059 sysctl_sched_wakeup_granularity *= factor;
6060
6061 sysctl_sched_shares_ratelimit *= factor;
6062 }
6063
6064 #ifdef CONFIG_SMP
6065 /*
6066 * This is how migration works:
6067 *
6068 * 1) we queue a struct migration_req structure in the source CPU's
6069 * runqueue and wake up that CPU's migration thread.
6070 * 2) we down() the locked semaphore => thread blocks.
6071 * 3) migration thread wakes up (implicitly it forces the migrated
6072 * thread off the CPU)
6073 * 4) it gets the migration request and checks whether the migrated
6074 * task is still in the wrong runqueue.
6075 * 5) if it's in the wrong runqueue then the migration thread removes
6076 * it and puts it into the right queue.
6077 * 6) migration thread up()s the semaphore.
6078 * 7) we wake up and the migration is done.
6079 */
6080
6081 /*
6082 * Change a given task's CPU affinity. Migrate the thread to a
6083 * proper CPU and schedule it away if the CPU it's executing on
6084 * is removed from the allowed bitmask.
6085 *
6086 * NOTE: the caller must have a valid reference to the task, the
6087 * task must not exit() & deallocate itself prematurely. The
6088 * call is not atomic; no spinlocks may be held.
6089 */
6090 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
6091 {
6092 struct migration_req req;
6093 unsigned long flags;
6094 struct rq *rq;
6095 int ret = 0;
6096
6097 rq = task_rq_lock(p, &flags);
6098 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
6099 ret = -EINVAL;
6100 goto out;
6101 }
6102
6103 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
6104 !cpumask_equal(&p->cpus_allowed, new_mask))) {
6105 ret = -EINVAL;
6106 goto out;
6107 }
6108
6109 if (p->sched_class->set_cpus_allowed)
6110 p->sched_class->set_cpus_allowed(p, new_mask);
6111 else {
6112 cpumask_copy(&p->cpus_allowed, new_mask);
6113 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
6114 }
6115
6116 /* Can the task run on the task's current CPU? If so, we're done */
6117 if (cpumask_test_cpu(task_cpu(p), new_mask))
6118 goto out;
6119
6120 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
6121 /* Need help from migration thread: drop lock and wait. */
6122 task_rq_unlock(rq, &flags);
6123 wake_up_process(rq->migration_thread);
6124 wait_for_completion(&req.done);
6125 tlb_migrate_finish(p->mm);
6126 return 0;
6127 }
6128 out:
6129 task_rq_unlock(rq, &flags);
6130
6131 return ret;
6132 }
6133 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
6134
6135 /*
6136 * Move (not current) task off this cpu, onto dest cpu. We're doing
6137 * this because either it can't run here any more (set_cpus_allowed()
6138 * away from this CPU, or CPU going down), or because we're
6139 * attempting to rebalance this task on exec (sched_exec).
6140 *
6141 * So we race with normal scheduler movements, but that's OK, as long
6142 * as the task is no longer on this CPU.
6143 *
6144 * Returns non-zero if task was successfully migrated.
6145 */
6146 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
6147 {
6148 struct rq *rq_dest, *rq_src;
6149 int ret = 0, on_rq;
6150
6151 if (unlikely(!cpu_active(dest_cpu)))
6152 return ret;
6153
6154 rq_src = cpu_rq(src_cpu);
6155 rq_dest = cpu_rq(dest_cpu);
6156
6157 double_rq_lock(rq_src, rq_dest);
6158 /* Already moved. */
6159 if (task_cpu(p) != src_cpu)
6160 goto done;
6161 /* Affinity changed (again). */
6162 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6163 goto fail;
6164
6165 on_rq = p->se.on_rq;
6166 if (on_rq)
6167 deactivate_task(rq_src, p, 0);
6168
6169 set_task_cpu(p, dest_cpu);
6170 if (on_rq) {
6171 activate_task(rq_dest, p, 0);
6172 check_preempt_curr(rq_dest, p, 0);
6173 }
6174 done:
6175 ret = 1;
6176 fail:
6177 double_rq_unlock(rq_src, rq_dest);
6178 return ret;
6179 }
6180
6181 /*
6182 * migration_thread - this is a highprio system thread that performs
6183 * thread migration by bumping thread off CPU then 'pushing' onto
6184 * another runqueue.
6185 */
6186 static int migration_thread(void *data)
6187 {
6188 int cpu = (long)data;
6189 struct rq *rq;
6190
6191 rq = cpu_rq(cpu);
6192 BUG_ON(rq->migration_thread != current);
6193
6194 set_current_state(TASK_INTERRUPTIBLE);
6195 while (!kthread_should_stop()) {
6196 struct migration_req *req;
6197 struct list_head *head;
6198
6199 spin_lock_irq(&rq->lock);
6200
6201 if (cpu_is_offline(cpu)) {
6202 spin_unlock_irq(&rq->lock);
6203 goto wait_to_die;
6204 }
6205
6206 if (rq->active_balance) {
6207 active_load_balance(rq, cpu);
6208 rq->active_balance = 0;
6209 }
6210
6211 head = &rq->migration_queue;
6212
6213 if (list_empty(head)) {
6214 spin_unlock_irq(&rq->lock);
6215 schedule();
6216 set_current_state(TASK_INTERRUPTIBLE);
6217 continue;
6218 }
6219 req = list_entry(head->next, struct migration_req, list);
6220 list_del_init(head->next);
6221
6222 spin_unlock(&rq->lock);
6223 __migrate_task(req->task, cpu, req->dest_cpu);
6224 local_irq_enable();
6225
6226 complete(&req->done);
6227 }
6228 __set_current_state(TASK_RUNNING);
6229 return 0;
6230
6231 wait_to_die:
6232 /* Wait for kthread_stop */
6233 set_current_state(TASK_INTERRUPTIBLE);
6234 while (!kthread_should_stop()) {
6235 schedule();
6236 set_current_state(TASK_INTERRUPTIBLE);
6237 }
6238 __set_current_state(TASK_RUNNING);
6239 return 0;
6240 }
6241
6242 #ifdef CONFIG_HOTPLUG_CPU
6243
6244 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6245 {
6246 int ret;
6247
6248 local_irq_disable();
6249 ret = __migrate_task(p, src_cpu, dest_cpu);
6250 local_irq_enable();
6251 return ret;
6252 }
6253
6254 /*
6255 * Figure out where task on dead CPU should go, use force if necessary.
6256 */
6257 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
6258 {
6259 int dest_cpu;
6260 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
6261
6262 again:
6263 /* Look for allowed, online CPU in same node. */
6264 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
6265 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6266 goto move;
6267
6268 /* Any allowed, online CPU? */
6269 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
6270 if (dest_cpu < nr_cpu_ids)
6271 goto move;
6272
6273 /* No more Mr. Nice Guy. */
6274 if (dest_cpu >= nr_cpu_ids) {
6275 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
6276 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
6277
6278 /*
6279 * Don't tell them about moving exiting tasks or
6280 * kernel threads (both mm NULL), since they never
6281 * leave kernel.
6282 */
6283 if (p->mm && printk_ratelimit()) {
6284 printk(KERN_INFO "process %d (%s) no "
6285 "longer affine to cpu%d\n",
6286 task_pid_nr(p), p->comm, dead_cpu);
6287 }
6288 }
6289
6290 move:
6291 /* It can have affinity changed while we were choosing. */
6292 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
6293 goto again;
6294 }
6295
6296 /*
6297 * While a dead CPU has no uninterruptible tasks queued at this point,
6298 * it might still have a nonzero ->nr_uninterruptible counter, because
6299 * for performance reasons the counter is not stricly tracking tasks to
6300 * their home CPUs. So we just add the counter to another CPU's counter,
6301 * to keep the global sum constant after CPU-down:
6302 */
6303 static void migrate_nr_uninterruptible(struct rq *rq_src)
6304 {
6305 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
6306 unsigned long flags;
6307
6308 local_irq_save(flags);
6309 double_rq_lock(rq_src, rq_dest);
6310 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6311 rq_src->nr_uninterruptible = 0;
6312 double_rq_unlock(rq_src, rq_dest);
6313 local_irq_restore(flags);
6314 }
6315
6316 /* Run through task list and migrate tasks from the dead cpu. */
6317 static void migrate_live_tasks(int src_cpu)
6318 {
6319 struct task_struct *p, *t;
6320
6321 read_lock(&tasklist_lock);
6322
6323 do_each_thread(t, p) {
6324 if (p == current)
6325 continue;
6326
6327 if (task_cpu(p) == src_cpu)
6328 move_task_off_dead_cpu(src_cpu, p);
6329 } while_each_thread(t, p);
6330
6331 read_unlock(&tasklist_lock);
6332 }
6333
6334 /*
6335 * Schedules idle task to be the next runnable task on current CPU.
6336 * It does so by boosting its priority to highest possible.
6337 * Used by CPU offline code.
6338 */
6339 void sched_idle_next(void)
6340 {
6341 int this_cpu = smp_processor_id();
6342 struct rq *rq = cpu_rq(this_cpu);
6343 struct task_struct *p = rq->idle;
6344 unsigned long flags;
6345
6346 /* cpu has to be offline */
6347 BUG_ON(cpu_online(this_cpu));
6348
6349 /*
6350 * Strictly not necessary since rest of the CPUs are stopped by now
6351 * and interrupts disabled on the current cpu.
6352 */
6353 spin_lock_irqsave(&rq->lock, flags);
6354
6355 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6356
6357 update_rq_clock(rq);
6358 activate_task(rq, p, 0);
6359
6360 spin_unlock_irqrestore(&rq->lock, flags);
6361 }
6362
6363 /*
6364 * Ensures that the idle task is using init_mm right before its cpu goes
6365 * offline.
6366 */
6367 void idle_task_exit(void)
6368 {
6369 struct mm_struct *mm = current->active_mm;
6370
6371 BUG_ON(cpu_online(smp_processor_id()));
6372
6373 if (mm != &init_mm)
6374 switch_mm(mm, &init_mm, current);
6375 mmdrop(mm);
6376 }
6377
6378 /* called under rq->lock with disabled interrupts */
6379 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
6380 {
6381 struct rq *rq = cpu_rq(dead_cpu);
6382
6383 /* Must be exiting, otherwise would be on tasklist. */
6384 BUG_ON(!p->exit_state);
6385
6386 /* Cannot have done final schedule yet: would have vanished. */
6387 BUG_ON(p->state == TASK_DEAD);
6388
6389 get_task_struct(p);
6390
6391 /*
6392 * Drop lock around migration; if someone else moves it,
6393 * that's OK. No task can be added to this CPU, so iteration is
6394 * fine.
6395 */
6396 spin_unlock_irq(&rq->lock);
6397 move_task_off_dead_cpu(dead_cpu, p);
6398 spin_lock_irq(&rq->lock);
6399
6400 put_task_struct(p);
6401 }
6402
6403 /* release_task() removes task from tasklist, so we won't find dead tasks. */
6404 static void migrate_dead_tasks(unsigned int dead_cpu)
6405 {
6406 struct rq *rq = cpu_rq(dead_cpu);
6407 struct task_struct *next;
6408
6409 for ( ; ; ) {
6410 if (!rq->nr_running)
6411 break;
6412 update_rq_clock(rq);
6413 next = pick_next_task(rq, rq->curr);
6414 if (!next)
6415 break;
6416 next->sched_class->put_prev_task(rq, next);
6417 migrate_dead(dead_cpu, next);
6418
6419 }
6420 }
6421 #endif /* CONFIG_HOTPLUG_CPU */
6422
6423 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6424
6425 static struct ctl_table sd_ctl_dir[] = {
6426 {
6427 .procname = "sched_domain",
6428 .mode = 0555,
6429 },
6430 {0, },
6431 };
6432
6433 static struct ctl_table sd_ctl_root[] = {
6434 {
6435 .ctl_name = CTL_KERN,
6436 .procname = "kernel",
6437 .mode = 0555,
6438 .child = sd_ctl_dir,
6439 },
6440 {0, },
6441 };
6442
6443 static struct ctl_table *sd_alloc_ctl_entry(int n)
6444 {
6445 struct ctl_table *entry =
6446 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6447
6448 return entry;
6449 }
6450
6451 static void sd_free_ctl_entry(struct ctl_table **tablep)
6452 {
6453 struct ctl_table *entry;
6454
6455 /*
6456 * In the intermediate directories, both the child directory and
6457 * procname are dynamically allocated and could fail but the mode
6458 * will always be set. In the lowest directory the names are
6459 * static strings and all have proc handlers.
6460 */
6461 for (entry = *tablep; entry->mode; entry++) {
6462 if (entry->child)
6463 sd_free_ctl_entry(&entry->child);
6464 if (entry->proc_handler == NULL)
6465 kfree(entry->procname);
6466 }
6467
6468 kfree(*tablep);
6469 *tablep = NULL;
6470 }
6471
6472 static void
6473 set_table_entry(struct ctl_table *entry,
6474 const char *procname, void *data, int maxlen,
6475 mode_t mode, proc_handler *proc_handler)
6476 {
6477 entry->procname = procname;
6478 entry->data = data;
6479 entry->maxlen = maxlen;
6480 entry->mode = mode;
6481 entry->proc_handler = proc_handler;
6482 }
6483
6484 static struct ctl_table *
6485 sd_alloc_ctl_domain_table(struct sched_domain *sd)
6486 {
6487 struct ctl_table *table = sd_alloc_ctl_entry(13);
6488
6489 if (table == NULL)
6490 return NULL;
6491
6492 set_table_entry(&table[0], "min_interval", &sd->min_interval,
6493 sizeof(long), 0644, proc_doulongvec_minmax);
6494 set_table_entry(&table[1], "max_interval", &sd->max_interval,
6495 sizeof(long), 0644, proc_doulongvec_minmax);
6496 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6497 sizeof(int), 0644, proc_dointvec_minmax);
6498 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6499 sizeof(int), 0644, proc_dointvec_minmax);
6500 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6501 sizeof(int), 0644, proc_dointvec_minmax);
6502 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6503 sizeof(int), 0644, proc_dointvec_minmax);
6504 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6505 sizeof(int), 0644, proc_dointvec_minmax);
6506 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6507 sizeof(int), 0644, proc_dointvec_minmax);
6508 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6509 sizeof(int), 0644, proc_dointvec_minmax);
6510 set_table_entry(&table[9], "cache_nice_tries",
6511 &sd->cache_nice_tries,
6512 sizeof(int), 0644, proc_dointvec_minmax);
6513 set_table_entry(&table[10], "flags", &sd->flags,
6514 sizeof(int), 0644, proc_dointvec_minmax);
6515 set_table_entry(&table[11], "name", sd->name,
6516 CORENAME_MAX_SIZE, 0444, proc_dostring);
6517 /* &table[12] is terminator */
6518
6519 return table;
6520 }
6521
6522 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6523 {
6524 struct ctl_table *entry, *table;
6525 struct sched_domain *sd;
6526 int domain_num = 0, i;
6527 char buf[32];
6528
6529 for_each_domain(cpu, sd)
6530 domain_num++;
6531 entry = table = sd_alloc_ctl_entry(domain_num + 1);
6532 if (table == NULL)
6533 return NULL;
6534
6535 i = 0;
6536 for_each_domain(cpu, sd) {
6537 snprintf(buf, 32, "domain%d", i);
6538 entry->procname = kstrdup(buf, GFP_KERNEL);
6539 entry->mode = 0555;
6540 entry->child = sd_alloc_ctl_domain_table(sd);
6541 entry++;
6542 i++;
6543 }
6544 return table;
6545 }
6546
6547 static struct ctl_table_header *sd_sysctl_header;
6548 static void register_sched_domain_sysctl(void)
6549 {
6550 int i, cpu_num = num_online_cpus();
6551 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6552 char buf[32];
6553
6554 WARN_ON(sd_ctl_dir[0].child);
6555 sd_ctl_dir[0].child = entry;
6556
6557 if (entry == NULL)
6558 return;
6559
6560 for_each_online_cpu(i) {
6561 snprintf(buf, 32, "cpu%d", i);
6562 entry->procname = kstrdup(buf, GFP_KERNEL);
6563 entry->mode = 0555;
6564 entry->child = sd_alloc_ctl_cpu_table(i);
6565 entry++;
6566 }
6567
6568 WARN_ON(sd_sysctl_header);
6569 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6570 }
6571
6572 /* may be called multiple times per register */
6573 static void unregister_sched_domain_sysctl(void)
6574 {
6575 if (sd_sysctl_header)
6576 unregister_sysctl_table(sd_sysctl_header);
6577 sd_sysctl_header = NULL;
6578 if (sd_ctl_dir[0].child)
6579 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6580 }
6581 #else
6582 static void register_sched_domain_sysctl(void)
6583 {
6584 }
6585 static void unregister_sched_domain_sysctl(void)
6586 {
6587 }
6588 #endif
6589
6590 static void set_rq_online(struct rq *rq)
6591 {
6592 if (!rq->online) {
6593 const struct sched_class *class;
6594
6595 cpumask_set_cpu(rq->cpu, rq->rd->online);
6596 rq->online = 1;
6597
6598 for_each_class(class) {
6599 if (class->rq_online)
6600 class->rq_online(rq);
6601 }
6602 }
6603 }
6604
6605 static void set_rq_offline(struct rq *rq)
6606 {
6607 if (rq->online) {
6608 const struct sched_class *class;
6609
6610 for_each_class(class) {
6611 if (class->rq_offline)
6612 class->rq_offline(rq);
6613 }
6614
6615 cpumask_clear_cpu(rq->cpu, rq->rd->online);
6616 rq->online = 0;
6617 }
6618 }
6619
6620 /*
6621 * migration_call - callback that gets triggered when a CPU is added.
6622 * Here we can start up the necessary migration thread for the new CPU.
6623 */
6624 static int __cpuinit
6625 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6626 {
6627 struct task_struct *p;
6628 int cpu = (long)hcpu;
6629 unsigned long flags;
6630 struct rq *rq;
6631
6632 switch (action) {
6633
6634 case CPU_UP_PREPARE:
6635 case CPU_UP_PREPARE_FROZEN:
6636 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
6637 if (IS_ERR(p))
6638 return NOTIFY_BAD;
6639 kthread_bind(p, cpu);
6640 /* Must be high prio: stop_machine expects to yield to it. */
6641 rq = task_rq_lock(p, &flags);
6642 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6643 task_rq_unlock(rq, &flags);
6644 cpu_rq(cpu)->migration_thread = p;
6645 break;
6646
6647 case CPU_ONLINE:
6648 case CPU_ONLINE_FROZEN:
6649 /* Strictly unnecessary, as first user will wake it. */
6650 wake_up_process(cpu_rq(cpu)->migration_thread);
6651
6652 /* Update our root-domain */
6653 rq = cpu_rq(cpu);
6654 spin_lock_irqsave(&rq->lock, flags);
6655 if (rq->rd) {
6656 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6657
6658 set_rq_online(rq);
6659 }
6660 spin_unlock_irqrestore(&rq->lock, flags);
6661 break;
6662
6663 #ifdef CONFIG_HOTPLUG_CPU
6664 case CPU_UP_CANCELED:
6665 case CPU_UP_CANCELED_FROZEN:
6666 if (!cpu_rq(cpu)->migration_thread)
6667 break;
6668 /* Unbind it from offline cpu so it can run. Fall thru. */
6669 kthread_bind(cpu_rq(cpu)->migration_thread,
6670 cpumask_any(cpu_online_mask));
6671 kthread_stop(cpu_rq(cpu)->migration_thread);
6672 cpu_rq(cpu)->migration_thread = NULL;
6673 break;
6674
6675 case CPU_DEAD:
6676 case CPU_DEAD_FROZEN:
6677 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
6678 migrate_live_tasks(cpu);
6679 rq = cpu_rq(cpu);
6680 kthread_stop(rq->migration_thread);
6681 rq->migration_thread = NULL;
6682 /* Idle task back to normal (off runqueue, low prio) */
6683 spin_lock_irq(&rq->lock);
6684 update_rq_clock(rq);
6685 deactivate_task(rq, rq->idle, 0);
6686 rq->idle->static_prio = MAX_PRIO;
6687 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6688 rq->idle->sched_class = &idle_sched_class;
6689 migrate_dead_tasks(cpu);
6690 spin_unlock_irq(&rq->lock);
6691 cpuset_unlock();
6692 migrate_nr_uninterruptible(rq);
6693 BUG_ON(rq->nr_running != 0);
6694
6695 /*
6696 * No need to migrate the tasks: it was best-effort if
6697 * they didn't take sched_hotcpu_mutex. Just wake up
6698 * the requestors.
6699 */
6700 spin_lock_irq(&rq->lock);
6701 while (!list_empty(&rq->migration_queue)) {
6702 struct migration_req *req;
6703
6704 req = list_entry(rq->migration_queue.next,
6705 struct migration_req, list);
6706 list_del_init(&req->list);
6707 spin_unlock_irq(&rq->lock);
6708 complete(&req->done);
6709 spin_lock_irq(&rq->lock);
6710 }
6711 spin_unlock_irq(&rq->lock);
6712 break;
6713
6714 case CPU_DYING:
6715 case CPU_DYING_FROZEN:
6716 /* Update our root-domain */
6717 rq = cpu_rq(cpu);
6718 spin_lock_irqsave(&rq->lock, flags);
6719 if (rq->rd) {
6720 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6721 set_rq_offline(rq);
6722 }
6723 spin_unlock_irqrestore(&rq->lock, flags);
6724 break;
6725 #endif
6726 }
6727 return NOTIFY_OK;
6728 }
6729
6730 /* Register at highest priority so that task migration (migrate_all_tasks)
6731 * happens before everything else.
6732 */
6733 static struct notifier_block __cpuinitdata migration_notifier = {
6734 .notifier_call = migration_call,
6735 .priority = 10
6736 };
6737
6738 static int __init migration_init(void)
6739 {
6740 void *cpu = (void *)(long)smp_processor_id();
6741 int err;
6742
6743 /* Start one for the boot CPU: */
6744 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6745 BUG_ON(err == NOTIFY_BAD);
6746 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6747 register_cpu_notifier(&migration_notifier);
6748
6749 return err;
6750 }
6751 early_initcall(migration_init);
6752 #endif
6753
6754 #ifdef CONFIG_SMP
6755
6756 #ifdef CONFIG_SCHED_DEBUG
6757
6758 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6759 struct cpumask *groupmask)
6760 {
6761 struct sched_group *group = sd->groups;
6762 char str[256];
6763
6764 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6765 cpumask_clear(groupmask);
6766
6767 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6768
6769 if (!(sd->flags & SD_LOAD_BALANCE)) {
6770 printk("does not load-balance\n");
6771 if (sd->parent)
6772 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6773 " has parent");
6774 return -1;
6775 }
6776
6777 printk(KERN_CONT "span %s level %s\n", str, sd->name);
6778
6779 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
6780 printk(KERN_ERR "ERROR: domain->span does not contain "
6781 "CPU%d\n", cpu);
6782 }
6783 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
6784 printk(KERN_ERR "ERROR: domain->groups does not contain"
6785 " CPU%d\n", cpu);
6786 }
6787
6788 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6789 do {
6790 if (!group) {
6791 printk("\n");
6792 printk(KERN_ERR "ERROR: group is NULL\n");
6793 break;
6794 }
6795
6796 if (!group->__cpu_power) {
6797 printk(KERN_CONT "\n");
6798 printk(KERN_ERR "ERROR: domain->cpu_power not "
6799 "set\n");
6800 break;
6801 }
6802
6803 if (!cpumask_weight(sched_group_cpus(group))) {
6804 printk(KERN_CONT "\n");
6805 printk(KERN_ERR "ERROR: empty group\n");
6806 break;
6807 }
6808
6809 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
6810 printk(KERN_CONT "\n");
6811 printk(KERN_ERR "ERROR: repeated CPUs\n");
6812 break;
6813 }
6814
6815 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
6816
6817 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6818 printk(KERN_CONT " %s", str);
6819
6820 group = group->next;
6821 } while (group != sd->groups);
6822 printk(KERN_CONT "\n");
6823
6824 if (!cpumask_equal(sched_domain_span(sd), groupmask))
6825 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6826
6827 if (sd->parent &&
6828 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
6829 printk(KERN_ERR "ERROR: parent span is not a superset "
6830 "of domain->span\n");
6831 return 0;
6832 }
6833
6834 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6835 {
6836 cpumask_var_t groupmask;
6837 int level = 0;
6838
6839 if (!sd) {
6840 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6841 return;
6842 }
6843
6844 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6845
6846 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6847 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6848 return;
6849 }
6850
6851 for (;;) {
6852 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6853 break;
6854 level++;
6855 sd = sd->parent;
6856 if (!sd)
6857 break;
6858 }
6859 free_cpumask_var(groupmask);
6860 }
6861 #else /* !CONFIG_SCHED_DEBUG */
6862 # define sched_domain_debug(sd, cpu) do { } while (0)
6863 #endif /* CONFIG_SCHED_DEBUG */
6864
6865 static int sd_degenerate(struct sched_domain *sd)
6866 {
6867 if (cpumask_weight(sched_domain_span(sd)) == 1)
6868 return 1;
6869
6870 /* Following flags need at least 2 groups */
6871 if (sd->flags & (SD_LOAD_BALANCE |
6872 SD_BALANCE_NEWIDLE |
6873 SD_BALANCE_FORK |
6874 SD_BALANCE_EXEC |
6875 SD_SHARE_CPUPOWER |
6876 SD_SHARE_PKG_RESOURCES)) {
6877 if (sd->groups != sd->groups->next)
6878 return 0;
6879 }
6880
6881 /* Following flags don't use groups */
6882 if (sd->flags & (SD_WAKE_IDLE |
6883 SD_WAKE_AFFINE |
6884 SD_WAKE_BALANCE))
6885 return 0;
6886
6887 return 1;
6888 }
6889
6890 static int
6891 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6892 {
6893 unsigned long cflags = sd->flags, pflags = parent->flags;
6894
6895 if (sd_degenerate(parent))
6896 return 1;
6897
6898 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6899 return 0;
6900
6901 /* Does parent contain flags not in child? */
6902 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6903 if (cflags & SD_WAKE_AFFINE)
6904 pflags &= ~SD_WAKE_BALANCE;
6905 /* Flags needing groups don't count if only 1 group in parent */
6906 if (parent->groups == parent->groups->next) {
6907 pflags &= ~(SD_LOAD_BALANCE |
6908 SD_BALANCE_NEWIDLE |
6909 SD_BALANCE_FORK |
6910 SD_BALANCE_EXEC |
6911 SD_SHARE_CPUPOWER |
6912 SD_SHARE_PKG_RESOURCES);
6913 if (nr_node_ids == 1)
6914 pflags &= ~SD_SERIALIZE;
6915 }
6916 if (~cflags & pflags)
6917 return 0;
6918
6919 return 1;
6920 }
6921
6922 static void free_rootdomain(struct root_domain *rd)
6923 {
6924 cpupri_cleanup(&rd->cpupri);
6925
6926 free_cpumask_var(rd->rto_mask);
6927 free_cpumask_var(rd->online);
6928 free_cpumask_var(rd->span);
6929 kfree(rd);
6930 }
6931
6932 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6933 {
6934 unsigned long flags;
6935
6936 spin_lock_irqsave(&rq->lock, flags);
6937
6938 if (rq->rd) {
6939 struct root_domain *old_rd = rq->rd;
6940
6941 if (cpumask_test_cpu(rq->cpu, old_rd->online))
6942 set_rq_offline(rq);
6943
6944 cpumask_clear_cpu(rq->cpu, old_rd->span);
6945
6946 if (atomic_dec_and_test(&old_rd->refcount))
6947 free_rootdomain(old_rd);
6948 }
6949
6950 atomic_inc(&rd->refcount);
6951 rq->rd = rd;
6952
6953 cpumask_set_cpu(rq->cpu, rd->span);
6954 if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
6955 set_rq_online(rq);
6956
6957 spin_unlock_irqrestore(&rq->lock, flags);
6958 }
6959
6960 static int init_rootdomain(struct root_domain *rd, bool bootmem)
6961 {
6962 memset(rd, 0, sizeof(*rd));
6963
6964 if (bootmem) {
6965 alloc_bootmem_cpumask_var(&def_root_domain.span);
6966 alloc_bootmem_cpumask_var(&def_root_domain.online);
6967 alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
6968 cpupri_init(&rd->cpupri, true);
6969 return 0;
6970 }
6971
6972 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
6973 goto out;
6974 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
6975 goto free_span;
6976 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
6977 goto free_online;
6978
6979 if (cpupri_init(&rd->cpupri, false) != 0)
6980 goto free_rto_mask;
6981 return 0;
6982
6983 free_rto_mask:
6984 free_cpumask_var(rd->rto_mask);
6985 free_online:
6986 free_cpumask_var(rd->online);
6987 free_span:
6988 free_cpumask_var(rd->span);
6989 out:
6990 return -ENOMEM;
6991 }
6992
6993 static void init_defrootdomain(void)
6994 {
6995 init_rootdomain(&def_root_domain, true);
6996
6997 atomic_set(&def_root_domain.refcount, 1);
6998 }
6999
7000 static struct root_domain *alloc_rootdomain(void)
7001 {
7002 struct root_domain *rd;
7003
7004 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7005 if (!rd)
7006 return NULL;
7007
7008 if (init_rootdomain(rd, false) != 0) {
7009 kfree(rd);
7010 return NULL;
7011 }
7012
7013 return rd;
7014 }
7015
7016 /*
7017 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
7018 * hold the hotplug lock.
7019 */
7020 static void
7021 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
7022 {
7023 struct rq *rq = cpu_rq(cpu);
7024 struct sched_domain *tmp;
7025
7026 /* Remove the sched domains which do not contribute to scheduling. */
7027 for (tmp = sd; tmp; ) {
7028 struct sched_domain *parent = tmp->parent;
7029 if (!parent)
7030 break;
7031
7032 if (sd_parent_degenerate(tmp, parent)) {
7033 tmp->parent = parent->parent;
7034 if (parent->parent)
7035 parent->parent->child = tmp;
7036 } else
7037 tmp = tmp->parent;
7038 }
7039
7040 if (sd && sd_degenerate(sd)) {
7041 sd = sd->parent;
7042 if (sd)
7043 sd->child = NULL;
7044 }
7045
7046 sched_domain_debug(sd, cpu);
7047
7048 rq_attach_root(rq, rd);
7049 rcu_assign_pointer(rq->sd, sd);
7050 }
7051
7052 /* cpus with isolated domains */
7053 static cpumask_var_t cpu_isolated_map;
7054
7055 /* Setup the mask of cpus configured for isolated domains */
7056 static int __init isolated_cpu_setup(char *str)
7057 {
7058 cpulist_parse(str, cpu_isolated_map);
7059 return 1;
7060 }
7061
7062 __setup("isolcpus=", isolated_cpu_setup);
7063
7064 /*
7065 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
7066 * to a function which identifies what group(along with sched group) a CPU
7067 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
7068 * (due to the fact that we keep track of groups covered with a struct cpumask).
7069 *
7070 * init_sched_build_groups will build a circular linked list of the groups
7071 * covered by the given span, and will set each group's ->cpumask correctly,
7072 * and ->cpu_power to 0.
7073 */
7074 static void
7075 init_sched_build_groups(const struct cpumask *span,
7076 const struct cpumask *cpu_map,
7077 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7078 struct sched_group **sg,
7079 struct cpumask *tmpmask),
7080 struct cpumask *covered, struct cpumask *tmpmask)
7081 {
7082 struct sched_group *first = NULL, *last = NULL;
7083 int i;
7084
7085 cpumask_clear(covered);
7086
7087 for_each_cpu(i, span) {
7088 struct sched_group *sg;
7089 int group = group_fn(i, cpu_map, &sg, tmpmask);
7090 int j;
7091
7092 if (cpumask_test_cpu(i, covered))
7093 continue;
7094
7095 cpumask_clear(sched_group_cpus(sg));
7096 sg->__cpu_power = 0;
7097
7098 for_each_cpu(j, span) {
7099 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
7100 continue;
7101
7102 cpumask_set_cpu(j, covered);
7103 cpumask_set_cpu(j, sched_group_cpus(sg));
7104 }
7105 if (!first)
7106 first = sg;
7107 if (last)
7108 last->next = sg;
7109 last = sg;
7110 }
7111 last->next = first;
7112 }
7113
7114 #define SD_NODES_PER_DOMAIN 16
7115
7116 #ifdef CONFIG_NUMA
7117
7118 /**
7119 * find_next_best_node - find the next node to include in a sched_domain
7120 * @node: node whose sched_domain we're building
7121 * @used_nodes: nodes already in the sched_domain
7122 *
7123 * Find the next node to include in a given scheduling domain. Simply
7124 * finds the closest node not already in the @used_nodes map.
7125 *
7126 * Should use nodemask_t.
7127 */
7128 static int find_next_best_node(int node, nodemask_t *used_nodes)
7129 {
7130 int i, n, val, min_val, best_node = 0;
7131
7132 min_val = INT_MAX;
7133
7134 for (i = 0; i < nr_node_ids; i++) {
7135 /* Start at @node */
7136 n = (node + i) % nr_node_ids;
7137
7138 if (!nr_cpus_node(n))
7139 continue;
7140
7141 /* Skip already used nodes */
7142 if (node_isset(n, *used_nodes))
7143 continue;
7144
7145 /* Simple min distance search */
7146 val = node_distance(node, n);
7147
7148 if (val < min_val) {
7149 min_val = val;
7150 best_node = n;
7151 }
7152 }
7153
7154 node_set(best_node, *used_nodes);
7155 return best_node;
7156 }
7157
7158 /**
7159 * sched_domain_node_span - get a cpumask for a node's sched_domain
7160 * @node: node whose cpumask we're constructing
7161 * @span: resulting cpumask
7162 *
7163 * Given a node, construct a good cpumask for its sched_domain to span. It
7164 * should be one that prevents unnecessary balancing, but also spreads tasks
7165 * out optimally.
7166 */
7167 static void sched_domain_node_span(int node, struct cpumask *span)
7168 {
7169 nodemask_t used_nodes;
7170 int i;
7171
7172 cpumask_clear(span);
7173 nodes_clear(used_nodes);
7174
7175 cpumask_or(span, span, cpumask_of_node(node));
7176 node_set(node, used_nodes);
7177
7178 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7179 int next_node = find_next_best_node(node, &used_nodes);
7180
7181 cpumask_or(span, span, cpumask_of_node(next_node));
7182 }
7183 }
7184 #endif /* CONFIG_NUMA */
7185
7186 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7187
7188 /*
7189 * The cpus mask in sched_group and sched_domain hangs off the end.
7190 * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
7191 * for nr_cpu_ids < CONFIG_NR_CPUS.
7192 */
7193 struct static_sched_group {
7194 struct sched_group sg;
7195 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
7196 };
7197
7198 struct static_sched_domain {
7199 struct sched_domain sd;
7200 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
7201 };
7202
7203 /*
7204 * SMT sched-domains:
7205 */
7206 #ifdef CONFIG_SCHED_SMT
7207 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
7208 static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
7209
7210 static int
7211 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
7212 struct sched_group **sg, struct cpumask *unused)
7213 {
7214 if (sg)
7215 *sg = &per_cpu(sched_group_cpus, cpu).sg;
7216 return cpu;
7217 }
7218 #endif /* CONFIG_SCHED_SMT */
7219
7220 /*
7221 * multi-core sched-domains:
7222 */
7223 #ifdef CONFIG_SCHED_MC
7224 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
7225 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
7226 #endif /* CONFIG_SCHED_MC */
7227
7228 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
7229 static int
7230 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7231 struct sched_group **sg, struct cpumask *mask)
7232 {
7233 int group;
7234
7235 cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
7236 group = cpumask_first(mask);
7237 if (sg)
7238 *sg = &per_cpu(sched_group_core, group).sg;
7239 return group;
7240 }
7241 #elif defined(CONFIG_SCHED_MC)
7242 static int
7243 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7244 struct sched_group **sg, struct cpumask *unused)
7245 {
7246 if (sg)
7247 *sg = &per_cpu(sched_group_core, cpu).sg;
7248 return cpu;
7249 }
7250 #endif
7251
7252 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
7253 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
7254
7255 static int
7256 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
7257 struct sched_group **sg, struct cpumask *mask)
7258 {
7259 int group;
7260 #ifdef CONFIG_SCHED_MC
7261 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
7262 group = cpumask_first(mask);
7263 #elif defined(CONFIG_SCHED_SMT)
7264 cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
7265 group = cpumask_first(mask);
7266 #else
7267 group = cpu;
7268 #endif
7269 if (sg)
7270 *sg = &per_cpu(sched_group_phys, group).sg;
7271 return group;
7272 }
7273
7274 #ifdef CONFIG_NUMA
7275 /*
7276 * The init_sched_build_groups can't handle what we want to do with node
7277 * groups, so roll our own. Now each node has its own list of groups which
7278 * gets dynamically allocated.
7279 */
7280 static DEFINE_PER_CPU(struct sched_domain, node_domains);
7281 static struct sched_group ***sched_group_nodes_bycpu;
7282
7283 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
7284 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
7285
7286 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
7287 struct sched_group **sg,
7288 struct cpumask *nodemask)
7289 {
7290 int group;
7291
7292 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
7293 group = cpumask_first(nodemask);
7294
7295 if (sg)
7296 *sg = &per_cpu(sched_group_allnodes, group).sg;
7297 return group;
7298 }
7299
7300 static void init_numa_sched_groups_power(struct sched_group *group_head)
7301 {
7302 struct sched_group *sg = group_head;
7303 int j;
7304
7305 if (!sg)
7306 return;
7307 do {
7308 for_each_cpu(j, sched_group_cpus(sg)) {
7309 struct sched_domain *sd;
7310
7311 sd = &per_cpu(phys_domains, j).sd;
7312 if (j != cpumask_first(sched_group_cpus(sd->groups))) {
7313 /*
7314 * Only add "power" once for each
7315 * physical package.
7316 */
7317 continue;
7318 }
7319
7320 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7321 }
7322 sg = sg->next;
7323 } while (sg != group_head);
7324 }
7325 #endif /* CONFIG_NUMA */
7326
7327 #ifdef CONFIG_NUMA
7328 /* Free memory allocated for various sched_group structures */
7329 static void free_sched_groups(const struct cpumask *cpu_map,
7330 struct cpumask *nodemask)
7331 {
7332 int cpu, i;
7333
7334 for_each_cpu(cpu, cpu_map) {
7335 struct sched_group **sched_group_nodes
7336 = sched_group_nodes_bycpu[cpu];
7337
7338 if (!sched_group_nodes)
7339 continue;
7340
7341 for (i = 0; i < nr_node_ids; i++) {
7342 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7343
7344 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7345 if (cpumask_empty(nodemask))
7346 continue;
7347
7348 if (sg == NULL)
7349 continue;
7350 sg = sg->next;
7351 next_sg:
7352 oldsg = sg;
7353 sg = sg->next;
7354 kfree(oldsg);
7355 if (oldsg != sched_group_nodes[i])
7356 goto next_sg;
7357 }
7358 kfree(sched_group_nodes);
7359 sched_group_nodes_bycpu[cpu] = NULL;
7360 }
7361 }
7362 #else /* !CONFIG_NUMA */
7363 static void free_sched_groups(const struct cpumask *cpu_map,
7364 struct cpumask *nodemask)
7365 {
7366 }
7367 #endif /* CONFIG_NUMA */
7368
7369 /*
7370 * Initialize sched groups cpu_power.
7371 *
7372 * cpu_power indicates the capacity of sched group, which is used while
7373 * distributing the load between different sched groups in a sched domain.
7374 * Typically cpu_power for all the groups in a sched domain will be same unless
7375 * there are asymmetries in the topology. If there are asymmetries, group
7376 * having more cpu_power will pickup more load compared to the group having
7377 * less cpu_power.
7378 *
7379 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7380 * the maximum number of tasks a group can handle in the presence of other idle
7381 * or lightly loaded groups in the same sched domain.
7382 */
7383 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7384 {
7385 struct sched_domain *child;
7386 struct sched_group *group;
7387
7388 WARN_ON(!sd || !sd->groups);
7389
7390 if (cpu != cpumask_first(sched_group_cpus(sd->groups)))
7391 return;
7392
7393 child = sd->child;
7394
7395 sd->groups->__cpu_power = 0;
7396
7397 /*
7398 * For perf policy, if the groups in child domain share resources
7399 * (for example cores sharing some portions of the cache hierarchy
7400 * or SMT), then set this domain groups cpu_power such that each group
7401 * can handle only one task, when there are other idle groups in the
7402 * same sched domain.
7403 */
7404 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7405 (child->flags &
7406 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7407 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7408 return;
7409 }
7410
7411 /*
7412 * add cpu_power of each child group to this groups cpu_power
7413 */
7414 group = child->groups;
7415 do {
7416 sg_inc_cpu_power(sd->groups, group->__cpu_power);
7417 group = group->next;
7418 } while (group != child->groups);
7419 }
7420
7421 /*
7422 * Initializers for schedule domains
7423 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7424 */
7425
7426 #ifdef CONFIG_SCHED_DEBUG
7427 # define SD_INIT_NAME(sd, type) sd->name = #type
7428 #else
7429 # define SD_INIT_NAME(sd, type) do { } while (0)
7430 #endif
7431
7432 #define SD_INIT(sd, type) sd_init_##type(sd)
7433
7434 #define SD_INIT_FUNC(type) \
7435 static noinline void sd_init_##type(struct sched_domain *sd) \
7436 { \
7437 memset(sd, 0, sizeof(*sd)); \
7438 *sd = SD_##type##_INIT; \
7439 sd->level = SD_LV_##type; \
7440 SD_INIT_NAME(sd, type); \
7441 }
7442
7443 SD_INIT_FUNC(CPU)
7444 #ifdef CONFIG_NUMA
7445 SD_INIT_FUNC(ALLNODES)
7446 SD_INIT_FUNC(NODE)
7447 #endif
7448 #ifdef CONFIG_SCHED_SMT
7449 SD_INIT_FUNC(SIBLING)
7450 #endif
7451 #ifdef CONFIG_SCHED_MC
7452 SD_INIT_FUNC(MC)
7453 #endif
7454
7455 static int default_relax_domain_level = -1;
7456
7457 static int __init setup_relax_domain_level(char *str)
7458 {
7459 unsigned long val;
7460
7461 val = simple_strtoul(str, NULL, 0);
7462 if (val < SD_LV_MAX)
7463 default_relax_domain_level = val;
7464
7465 return 1;
7466 }
7467 __setup("relax_domain_level=", setup_relax_domain_level);
7468
7469 static void set_domain_attribute(struct sched_domain *sd,
7470 struct sched_domain_attr *attr)
7471 {
7472 int request;
7473
7474 if (!attr || attr->relax_domain_level < 0) {
7475 if (default_relax_domain_level < 0)
7476 return;
7477 else
7478 request = default_relax_domain_level;
7479 } else
7480 request = attr->relax_domain_level;
7481 if (request < sd->level) {
7482 /* turn off idle balance on this domain */
7483 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7484 } else {
7485 /* turn on idle balance on this domain */
7486 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7487 }
7488 }
7489
7490 /*
7491 * Build sched domains for a given set of cpus and attach the sched domains
7492 * to the individual cpus
7493 */
7494 static int __build_sched_domains(const struct cpumask *cpu_map,
7495 struct sched_domain_attr *attr)
7496 {
7497 int i, err = -ENOMEM;
7498 struct root_domain *rd;
7499 cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
7500 tmpmask;
7501 #ifdef CONFIG_NUMA
7502 cpumask_var_t domainspan, covered, notcovered;
7503 struct sched_group **sched_group_nodes = NULL;
7504 int sd_allnodes = 0;
7505
7506 if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
7507 goto out;
7508 if (!alloc_cpumask_var(&covered, GFP_KERNEL))
7509 goto free_domainspan;
7510 if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
7511 goto free_covered;
7512 #endif
7513
7514 if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
7515 goto free_notcovered;
7516 if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
7517 goto free_nodemask;
7518 if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
7519 goto free_this_sibling_map;
7520 if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
7521 goto free_this_core_map;
7522 if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
7523 goto free_send_covered;
7524
7525 #ifdef CONFIG_NUMA
7526 /*
7527 * Allocate the per-node list of sched groups
7528 */
7529 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
7530 GFP_KERNEL);
7531 if (!sched_group_nodes) {
7532 printk(KERN_WARNING "Can not alloc sched group node list\n");
7533 goto free_tmpmask;
7534 }
7535 #endif
7536
7537 rd = alloc_rootdomain();
7538 if (!rd) {
7539 printk(KERN_WARNING "Cannot alloc root domain\n");
7540 goto free_sched_groups;
7541 }
7542
7543 #ifdef CONFIG_NUMA
7544 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
7545 #endif
7546
7547 /*
7548 * Set up domains for cpus specified by the cpu_map.
7549 */
7550 for_each_cpu(i, cpu_map) {
7551 struct sched_domain *sd = NULL, *p;
7552
7553 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
7554
7555 #ifdef CONFIG_NUMA
7556 if (cpumask_weight(cpu_map) >
7557 SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
7558 sd = &per_cpu(allnodes_domains, i);
7559 SD_INIT(sd, ALLNODES);
7560 set_domain_attribute(sd, attr);
7561 cpumask_copy(sched_domain_span(sd), cpu_map);
7562 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7563 p = sd;
7564 sd_allnodes = 1;
7565 } else
7566 p = NULL;
7567
7568 sd = &per_cpu(node_domains, i);
7569 SD_INIT(sd, NODE);
7570 set_domain_attribute(sd, attr);
7571 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
7572 sd->parent = p;
7573 if (p)
7574 p->child = sd;
7575 cpumask_and(sched_domain_span(sd),
7576 sched_domain_span(sd), cpu_map);
7577 #endif
7578
7579 p = sd;
7580 sd = &per_cpu(phys_domains, i).sd;
7581 SD_INIT(sd, CPU);
7582 set_domain_attribute(sd, attr);
7583 cpumask_copy(sched_domain_span(sd), nodemask);
7584 sd->parent = p;
7585 if (p)
7586 p->child = sd;
7587 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
7588
7589 #ifdef CONFIG_SCHED_MC
7590 p = sd;
7591 sd = &per_cpu(core_domains, i).sd;
7592 SD_INIT(sd, MC);
7593 set_domain_attribute(sd, attr);
7594 cpumask_and(sched_domain_span(sd), cpu_map,
7595 cpu_coregroup_mask(i));
7596 sd->parent = p;
7597 p->child = sd;
7598 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7599 #endif
7600
7601 #ifdef CONFIG_SCHED_SMT
7602 p = sd;
7603 sd = &per_cpu(cpu_domains, i).sd;
7604 SD_INIT(sd, SIBLING);
7605 set_domain_attribute(sd, attr);
7606 cpumask_and(sched_domain_span(sd),
7607 &per_cpu(cpu_sibling_map, i), cpu_map);
7608 sd->parent = p;
7609 p->child = sd;
7610 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
7611 #endif
7612 }
7613
7614 #ifdef CONFIG_SCHED_SMT
7615 /* Set up CPU (sibling) groups */
7616 for_each_cpu(i, cpu_map) {
7617 cpumask_and(this_sibling_map,
7618 &per_cpu(cpu_sibling_map, i), cpu_map);
7619 if (i != cpumask_first(this_sibling_map))
7620 continue;
7621
7622 init_sched_build_groups(this_sibling_map, cpu_map,
7623 &cpu_to_cpu_group,
7624 send_covered, tmpmask);
7625 }
7626 #endif
7627
7628 #ifdef CONFIG_SCHED_MC
7629 /* Set up multi-core groups */
7630 for_each_cpu(i, cpu_map) {
7631 cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
7632 if (i != cpumask_first(this_core_map))
7633 continue;
7634
7635 init_sched_build_groups(this_core_map, cpu_map,
7636 &cpu_to_core_group,
7637 send_covered, tmpmask);
7638 }
7639 #endif
7640
7641 /* Set up physical groups */
7642 for (i = 0; i < nr_node_ids; i++) {
7643 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7644 if (cpumask_empty(nodemask))
7645 continue;
7646
7647 init_sched_build_groups(nodemask, cpu_map,
7648 &cpu_to_phys_group,
7649 send_covered, tmpmask);
7650 }
7651
7652 #ifdef CONFIG_NUMA
7653 /* Set up node groups */
7654 if (sd_allnodes) {
7655 init_sched_build_groups(cpu_map, cpu_map,
7656 &cpu_to_allnodes_group,
7657 send_covered, tmpmask);
7658 }
7659
7660 for (i = 0; i < nr_node_ids; i++) {
7661 /* Set up node groups */
7662 struct sched_group *sg, *prev;
7663 int j;
7664
7665 cpumask_clear(covered);
7666 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7667 if (cpumask_empty(nodemask)) {
7668 sched_group_nodes[i] = NULL;
7669 continue;
7670 }
7671
7672 sched_domain_node_span(i, domainspan);
7673 cpumask_and(domainspan, domainspan, cpu_map);
7674
7675 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
7676 GFP_KERNEL, i);
7677 if (!sg) {
7678 printk(KERN_WARNING "Can not alloc domain group for "
7679 "node %d\n", i);
7680 goto error;
7681 }
7682 sched_group_nodes[i] = sg;
7683 for_each_cpu(j, nodemask) {
7684 struct sched_domain *sd;
7685
7686 sd = &per_cpu(node_domains, j);
7687 sd->groups = sg;
7688 }
7689 sg->__cpu_power = 0;
7690 cpumask_copy(sched_group_cpus(sg), nodemask);
7691 sg->next = sg;
7692 cpumask_or(covered, covered, nodemask);
7693 prev = sg;
7694
7695 for (j = 0; j < nr_node_ids; j++) {
7696 int n = (i + j) % nr_node_ids;
7697
7698 cpumask_complement(notcovered, covered);
7699 cpumask_and(tmpmask, notcovered, cpu_map);
7700 cpumask_and(tmpmask, tmpmask, domainspan);
7701 if (cpumask_empty(tmpmask))
7702 break;
7703
7704 cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
7705 if (cpumask_empty(tmpmask))
7706 continue;
7707
7708 sg = kmalloc_node(sizeof(struct sched_group) +
7709 cpumask_size(),
7710 GFP_KERNEL, i);
7711 if (!sg) {
7712 printk(KERN_WARNING
7713 "Can not alloc domain group for node %d\n", j);
7714 goto error;
7715 }
7716 sg->__cpu_power = 0;
7717 cpumask_copy(sched_group_cpus(sg), tmpmask);
7718 sg->next = prev->next;
7719 cpumask_or(covered, covered, tmpmask);
7720 prev->next = sg;
7721 prev = sg;
7722 }
7723 }
7724 #endif
7725
7726 /* Calculate CPU power for physical packages and nodes */
7727 #ifdef CONFIG_SCHED_SMT
7728 for_each_cpu(i, cpu_map) {
7729 struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
7730
7731 init_sched_groups_power(i, sd);
7732 }
7733 #endif
7734 #ifdef CONFIG_SCHED_MC
7735 for_each_cpu(i, cpu_map) {
7736 struct sched_domain *sd = &per_cpu(core_domains, i).sd;
7737
7738 init_sched_groups_power(i, sd);
7739 }
7740 #endif
7741
7742 for_each_cpu(i, cpu_map) {
7743 struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
7744
7745 init_sched_groups_power(i, sd);
7746 }
7747
7748 #ifdef CONFIG_NUMA
7749 for (i = 0; i < nr_node_ids; i++)
7750 init_numa_sched_groups_power(sched_group_nodes[i]);
7751
7752 if (sd_allnodes) {
7753 struct sched_group *sg;
7754
7755 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7756 tmpmask);
7757 init_numa_sched_groups_power(sg);
7758 }
7759 #endif
7760
7761 /* Attach the domains */
7762 for_each_cpu(i, cpu_map) {
7763 struct sched_domain *sd;
7764 #ifdef CONFIG_SCHED_SMT
7765 sd = &per_cpu(cpu_domains, i).sd;
7766 #elif defined(CONFIG_SCHED_MC)
7767 sd = &per_cpu(core_domains, i).sd;
7768 #else
7769 sd = &per_cpu(phys_domains, i).sd;
7770 #endif
7771 cpu_attach_domain(sd, rd, i);
7772 }
7773
7774 err = 0;
7775
7776 free_tmpmask:
7777 free_cpumask_var(tmpmask);
7778 free_send_covered:
7779 free_cpumask_var(send_covered);
7780 free_this_core_map:
7781 free_cpumask_var(this_core_map);
7782 free_this_sibling_map:
7783 free_cpumask_var(this_sibling_map);
7784 free_nodemask:
7785 free_cpumask_var(nodemask);
7786 free_notcovered:
7787 #ifdef CONFIG_NUMA
7788 free_cpumask_var(notcovered);
7789 free_covered:
7790 free_cpumask_var(covered);
7791 free_domainspan:
7792 free_cpumask_var(domainspan);
7793 out:
7794 #endif
7795 return err;
7796
7797 free_sched_groups:
7798 #ifdef CONFIG_NUMA
7799 kfree(sched_group_nodes);
7800 #endif
7801 goto free_tmpmask;
7802
7803 #ifdef CONFIG_NUMA
7804 error:
7805 free_sched_groups(cpu_map, tmpmask);
7806 free_rootdomain(rd);
7807 goto free_tmpmask;
7808 #endif
7809 }
7810
7811 static int build_sched_domains(const struct cpumask *cpu_map)
7812 {
7813 return __build_sched_domains(cpu_map, NULL);
7814 }
7815
7816 static struct cpumask *doms_cur; /* current sched domains */
7817 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7818 static struct sched_domain_attr *dattr_cur;
7819 /* attribues of custom domains in 'doms_cur' */
7820
7821 /*
7822 * Special case: If a kmalloc of a doms_cur partition (array of
7823 * cpumask) fails, then fallback to a single sched domain,
7824 * as determined by the single cpumask fallback_doms.
7825 */
7826 static cpumask_var_t fallback_doms;
7827
7828 /*
7829 * arch_update_cpu_topology lets virtualized architectures update the
7830 * cpu core maps. It is supposed to return 1 if the topology changed
7831 * or 0 if it stayed the same.
7832 */
7833 int __attribute__((weak)) arch_update_cpu_topology(void)
7834 {
7835 return 0;
7836 }
7837
7838 /*
7839 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7840 * For now this just excludes isolated cpus, but could be used to
7841 * exclude other special cases in the future.
7842 */
7843 static int arch_init_sched_domains(const struct cpumask *cpu_map)
7844 {
7845 int err;
7846
7847 arch_update_cpu_topology();
7848 ndoms_cur = 1;
7849 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
7850 if (!doms_cur)
7851 doms_cur = fallback_doms;
7852 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
7853 dattr_cur = NULL;
7854 err = build_sched_domains(doms_cur);
7855 register_sched_domain_sysctl();
7856
7857 return err;
7858 }
7859
7860 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7861 struct cpumask *tmpmask)
7862 {
7863 free_sched_groups(cpu_map, tmpmask);
7864 }
7865
7866 /*
7867 * Detach sched domains from a group of cpus specified in cpu_map
7868 * These cpus will now be attached to the NULL domain
7869 */
7870 static void detach_destroy_domains(const struct cpumask *cpu_map)
7871 {
7872 /* Save because hotplug lock held. */
7873 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7874 int i;
7875
7876 for_each_cpu(i, cpu_map)
7877 cpu_attach_domain(NULL, &def_root_domain, i);
7878 synchronize_sched();
7879 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7880 }
7881
7882 /* handle null as "default" */
7883 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7884 struct sched_domain_attr *new, int idx_new)
7885 {
7886 struct sched_domain_attr tmp;
7887
7888 /* fast path */
7889 if (!new && !cur)
7890 return 1;
7891
7892 tmp = SD_ATTR_INIT;
7893 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7894 new ? (new + idx_new) : &tmp,
7895 sizeof(struct sched_domain_attr));
7896 }
7897
7898 /*
7899 * Partition sched domains as specified by the 'ndoms_new'
7900 * cpumasks in the array doms_new[] of cpumasks. This compares
7901 * doms_new[] to the current sched domain partitioning, doms_cur[].
7902 * It destroys each deleted domain and builds each new domain.
7903 *
7904 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
7905 * The masks don't intersect (don't overlap.) We should setup one
7906 * sched domain for each mask. CPUs not in any of the cpumasks will
7907 * not be load balanced. If the same cpumask appears both in the
7908 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7909 * it as it is.
7910 *
7911 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7912 * ownership of it and will kfree it when done with it. If the caller
7913 * failed the kmalloc call, then it can pass in doms_new == NULL &&
7914 * ndoms_new == 1, and partition_sched_domains() will fallback to
7915 * the single partition 'fallback_doms', it also forces the domains
7916 * to be rebuilt.
7917 *
7918 * If doms_new == NULL it will be replaced with cpu_online_mask.
7919 * ndoms_new == 0 is a special case for destroying existing domains,
7920 * and it will not create the default domain.
7921 *
7922 * Call with hotplug lock held
7923 */
7924 /* FIXME: Change to struct cpumask *doms_new[] */
7925 void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
7926 struct sched_domain_attr *dattr_new)
7927 {
7928 int i, j, n;
7929 int new_topology;
7930
7931 mutex_lock(&sched_domains_mutex);
7932
7933 /* always unregister in case we don't destroy any domains */
7934 unregister_sched_domain_sysctl();
7935
7936 /* Let architecture update cpu core mappings. */
7937 new_topology = arch_update_cpu_topology();
7938
7939 n = doms_new ? ndoms_new : 0;
7940
7941 /* Destroy deleted domains */
7942 for (i = 0; i < ndoms_cur; i++) {
7943 for (j = 0; j < n && !new_topology; j++) {
7944 if (cpumask_equal(&doms_cur[i], &doms_new[j])
7945 && dattrs_equal(dattr_cur, i, dattr_new, j))
7946 goto match1;
7947 }
7948 /* no match - a current sched domain not in new doms_new[] */
7949 detach_destroy_domains(doms_cur + i);
7950 match1:
7951 ;
7952 }
7953
7954 if (doms_new == NULL) {
7955 ndoms_cur = 0;
7956 doms_new = fallback_doms;
7957 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
7958 WARN_ON_ONCE(dattr_new);
7959 }
7960
7961 /* Build new domains */
7962 for (i = 0; i < ndoms_new; i++) {
7963 for (j = 0; j < ndoms_cur && !new_topology; j++) {
7964 if (cpumask_equal(&doms_new[i], &doms_cur[j])
7965 && dattrs_equal(dattr_new, i, dattr_cur, j))
7966 goto match2;
7967 }
7968 /* no match - add a new doms_new */
7969 __build_sched_domains(doms_new + i,
7970 dattr_new ? dattr_new + i : NULL);
7971 match2:
7972 ;
7973 }
7974
7975 /* Remember the new sched domains */
7976 if (doms_cur != fallback_doms)
7977 kfree(doms_cur);
7978 kfree(dattr_cur); /* kfree(NULL) is safe */
7979 doms_cur = doms_new;
7980 dattr_cur = dattr_new;
7981 ndoms_cur = ndoms_new;
7982
7983 register_sched_domain_sysctl();
7984
7985 mutex_unlock(&sched_domains_mutex);
7986 }
7987
7988 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7989 static void arch_reinit_sched_domains(void)
7990 {
7991 get_online_cpus();
7992
7993 /* Destroy domains first to force the rebuild */
7994 partition_sched_domains(0, NULL, NULL);
7995
7996 rebuild_sched_domains();
7997 put_online_cpus();
7998 }
7999
8000 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
8001 {
8002 unsigned int level = 0;
8003
8004 if (sscanf(buf, "%u", &level) != 1)
8005 return -EINVAL;
8006
8007 /*
8008 * level is always be positive so don't check for
8009 * level < POWERSAVINGS_BALANCE_NONE which is 0
8010 * What happens on 0 or 1 byte write,
8011 * need to check for count as well?
8012 */
8013
8014 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
8015 return -EINVAL;
8016
8017 if (smt)
8018 sched_smt_power_savings = level;
8019 else
8020 sched_mc_power_savings = level;
8021
8022 arch_reinit_sched_domains();
8023
8024 return count;
8025 }
8026
8027 #ifdef CONFIG_SCHED_MC
8028 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
8029 char *page)
8030 {
8031 return sprintf(page, "%u\n", sched_mc_power_savings);
8032 }
8033 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
8034 const char *buf, size_t count)
8035 {
8036 return sched_power_savings_store(buf, count, 0);
8037 }
8038 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
8039 sched_mc_power_savings_show,
8040 sched_mc_power_savings_store);
8041 #endif
8042
8043 #ifdef CONFIG_SCHED_SMT
8044 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
8045 char *page)
8046 {
8047 return sprintf(page, "%u\n", sched_smt_power_savings);
8048 }
8049 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
8050 const char *buf, size_t count)
8051 {
8052 return sched_power_savings_store(buf, count, 1);
8053 }
8054 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
8055 sched_smt_power_savings_show,
8056 sched_smt_power_savings_store);
8057 #endif
8058
8059 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
8060 {
8061 int err = 0;
8062
8063 #ifdef CONFIG_SCHED_SMT
8064 if (smt_capable())
8065 err = sysfs_create_file(&cls->kset.kobj,
8066 &attr_sched_smt_power_savings.attr);
8067 #endif
8068 #ifdef CONFIG_SCHED_MC
8069 if (!err && mc_capable())
8070 err = sysfs_create_file(&cls->kset.kobj,
8071 &attr_sched_mc_power_savings.attr);
8072 #endif
8073 return err;
8074 }
8075 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
8076
8077 #ifndef CONFIG_CPUSETS
8078 /*
8079 * Add online and remove offline CPUs from the scheduler domains.
8080 * When cpusets are enabled they take over this function.
8081 */
8082 static int update_sched_domains(struct notifier_block *nfb,
8083 unsigned long action, void *hcpu)
8084 {
8085 switch (action) {
8086 case CPU_ONLINE:
8087 case CPU_ONLINE_FROZEN:
8088 case CPU_DEAD:
8089 case CPU_DEAD_FROZEN:
8090 partition_sched_domains(1, NULL, NULL);
8091 return NOTIFY_OK;
8092
8093 default:
8094 return NOTIFY_DONE;
8095 }
8096 }
8097 #endif
8098
8099 static int update_runtime(struct notifier_block *nfb,
8100 unsigned long action, void *hcpu)
8101 {
8102 int cpu = (int)(long)hcpu;
8103
8104 switch (action) {
8105 case CPU_DOWN_PREPARE:
8106 case CPU_DOWN_PREPARE_FROZEN:
8107 disable_runtime(cpu_rq(cpu));
8108 return NOTIFY_OK;
8109
8110 case CPU_DOWN_FAILED:
8111 case CPU_DOWN_FAILED_FROZEN:
8112 case CPU_ONLINE:
8113 case CPU_ONLINE_FROZEN:
8114 enable_runtime(cpu_rq(cpu));
8115 return NOTIFY_OK;
8116
8117 default:
8118 return NOTIFY_DONE;
8119 }
8120 }
8121
8122 void __init sched_init_smp(void)
8123 {
8124 cpumask_var_t non_isolated_cpus;
8125
8126 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
8127
8128 #if defined(CONFIG_NUMA)
8129 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
8130 GFP_KERNEL);
8131 BUG_ON(sched_group_nodes_bycpu == NULL);
8132 #endif
8133 get_online_cpus();
8134 mutex_lock(&sched_domains_mutex);
8135 arch_init_sched_domains(cpu_online_mask);
8136 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
8137 if (cpumask_empty(non_isolated_cpus))
8138 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
8139 mutex_unlock(&sched_domains_mutex);
8140 put_online_cpus();
8141
8142 #ifndef CONFIG_CPUSETS
8143 /* XXX: Theoretical race here - CPU may be hotplugged now */
8144 hotcpu_notifier(update_sched_domains, 0);
8145 #endif
8146
8147 /* RT runtime code needs to handle some hotplug events */
8148 hotcpu_notifier(update_runtime, 0);
8149
8150 init_hrtick();
8151
8152 /* Move init over to a non-isolated CPU */
8153 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
8154 BUG();
8155 sched_init_granularity();
8156 free_cpumask_var(non_isolated_cpus);
8157
8158 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
8159 init_sched_rt_class();
8160 }
8161 #else
8162 void __init sched_init_smp(void)
8163 {
8164 sched_init_granularity();
8165 }
8166 #endif /* CONFIG_SMP */
8167
8168 int in_sched_functions(unsigned long addr)
8169 {
8170 return in_lock_functions(addr) ||
8171 (addr >= (unsigned long)__sched_text_start
8172 && addr < (unsigned long)__sched_text_end);
8173 }
8174
8175 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
8176 {
8177 cfs_rq->tasks_timeline = RB_ROOT;
8178 INIT_LIST_HEAD(&cfs_rq->tasks);
8179 #ifdef CONFIG_FAIR_GROUP_SCHED
8180 cfs_rq->rq = rq;
8181 #endif
8182 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8183 }
8184
8185 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8186 {
8187 struct rt_prio_array *array;
8188 int i;
8189
8190 array = &rt_rq->active;
8191 for (i = 0; i < MAX_RT_PRIO; i++) {
8192 INIT_LIST_HEAD(array->queue + i);
8193 __clear_bit(i, array->bitmap);
8194 }
8195 /* delimiter for bitsearch: */
8196 __set_bit(MAX_RT_PRIO, array->bitmap);
8197
8198 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
8199 rt_rq->highest_prio = MAX_RT_PRIO;
8200 #endif
8201 #ifdef CONFIG_SMP
8202 rt_rq->rt_nr_migratory = 0;
8203 rt_rq->overloaded = 0;
8204 #endif
8205
8206 rt_rq->rt_time = 0;
8207 rt_rq->rt_throttled = 0;
8208 rt_rq->rt_runtime = 0;
8209 spin_lock_init(&rt_rq->rt_runtime_lock);
8210
8211 #ifdef CONFIG_RT_GROUP_SCHED
8212 rt_rq->rt_nr_boosted = 0;
8213 rt_rq->rq = rq;
8214 #endif
8215 }
8216
8217 #ifdef CONFIG_FAIR_GROUP_SCHED
8218 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8219 struct sched_entity *se, int cpu, int add,
8220 struct sched_entity *parent)
8221 {
8222 struct rq *rq = cpu_rq(cpu);
8223 tg->cfs_rq[cpu] = cfs_rq;
8224 init_cfs_rq(cfs_rq, rq);
8225 cfs_rq->tg = tg;
8226 if (add)
8227 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8228
8229 tg->se[cpu] = se;
8230 /* se could be NULL for init_task_group */
8231 if (!se)
8232 return;
8233
8234 if (!parent)
8235 se->cfs_rq = &rq->cfs;
8236 else
8237 se->cfs_rq = parent->my_q;
8238
8239 se->my_q = cfs_rq;
8240 se->load.weight = tg->shares;
8241 se->load.inv_weight = 0;
8242 se->parent = parent;
8243 }
8244 #endif
8245
8246 #ifdef CONFIG_RT_GROUP_SCHED
8247 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8248 struct sched_rt_entity *rt_se, int cpu, int add,
8249 struct sched_rt_entity *parent)
8250 {
8251 struct rq *rq = cpu_rq(cpu);
8252
8253 tg->rt_rq[cpu] = rt_rq;
8254 init_rt_rq(rt_rq, rq);
8255 rt_rq->tg = tg;
8256 rt_rq->rt_se = rt_se;
8257 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
8258 if (add)
8259 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8260
8261 tg->rt_se[cpu] = rt_se;
8262 if (!rt_se)
8263 return;
8264
8265 if (!parent)
8266 rt_se->rt_rq = &rq->rt;
8267 else
8268 rt_se->rt_rq = parent->my_q;
8269
8270 rt_se->my_q = rt_rq;
8271 rt_se->parent = parent;
8272 INIT_LIST_HEAD(&rt_se->run_list);
8273 }
8274 #endif
8275
8276 void __init sched_init(void)
8277 {
8278 int i, j;
8279 unsigned long alloc_size = 0, ptr;
8280
8281 #ifdef CONFIG_FAIR_GROUP_SCHED
8282 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8283 #endif
8284 #ifdef CONFIG_RT_GROUP_SCHED
8285 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8286 #endif
8287 #ifdef CONFIG_USER_SCHED
8288 alloc_size *= 2;
8289 #endif
8290 /*
8291 * As sched_init() is called before page_alloc is setup,
8292 * we use alloc_bootmem().
8293 */
8294 if (alloc_size) {
8295 ptr = (unsigned long)alloc_bootmem(alloc_size);
8296
8297 #ifdef CONFIG_FAIR_GROUP_SCHED
8298 init_task_group.se = (struct sched_entity **)ptr;
8299 ptr += nr_cpu_ids * sizeof(void **);
8300
8301 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8302 ptr += nr_cpu_ids * sizeof(void **);
8303
8304 #ifdef CONFIG_USER_SCHED
8305 root_task_group.se = (struct sched_entity **)ptr;
8306 ptr += nr_cpu_ids * sizeof(void **);
8307
8308 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8309 ptr += nr_cpu_ids * sizeof(void **);
8310 #endif /* CONFIG_USER_SCHED */
8311 #endif /* CONFIG_FAIR_GROUP_SCHED */
8312 #ifdef CONFIG_RT_GROUP_SCHED
8313 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8314 ptr += nr_cpu_ids * sizeof(void **);
8315
8316 init_task_group.rt_rq = (struct rt_rq **)ptr;
8317 ptr += nr_cpu_ids * sizeof(void **);
8318
8319 #ifdef CONFIG_USER_SCHED
8320 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8321 ptr += nr_cpu_ids * sizeof(void **);
8322
8323 root_task_group.rt_rq = (struct rt_rq **)ptr;
8324 ptr += nr_cpu_ids * sizeof(void **);
8325 #endif /* CONFIG_USER_SCHED */
8326 #endif /* CONFIG_RT_GROUP_SCHED */
8327 }
8328
8329 #ifdef CONFIG_SMP
8330 init_defrootdomain();
8331 #endif
8332
8333 init_rt_bandwidth(&def_rt_bandwidth,
8334 global_rt_period(), global_rt_runtime());
8335
8336 #ifdef CONFIG_RT_GROUP_SCHED
8337 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8338 global_rt_period(), global_rt_runtime());
8339 #ifdef CONFIG_USER_SCHED
8340 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8341 global_rt_period(), RUNTIME_INF);
8342 #endif /* CONFIG_USER_SCHED */
8343 #endif /* CONFIG_RT_GROUP_SCHED */
8344
8345 #ifdef CONFIG_GROUP_SCHED
8346 list_add(&init_task_group.list, &task_groups);
8347 INIT_LIST_HEAD(&init_task_group.children);
8348
8349 #ifdef CONFIG_USER_SCHED
8350 INIT_LIST_HEAD(&root_task_group.children);
8351 init_task_group.parent = &root_task_group;
8352 list_add(&init_task_group.siblings, &root_task_group.children);
8353 #endif /* CONFIG_USER_SCHED */
8354 #endif /* CONFIG_GROUP_SCHED */
8355
8356 for_each_possible_cpu(i) {
8357 struct rq *rq;
8358
8359 rq = cpu_rq(i);
8360 spin_lock_init(&rq->lock);
8361 rq->nr_running = 0;
8362 init_cfs_rq(&rq->cfs, rq);
8363 init_rt_rq(&rq->rt, rq);
8364 #ifdef CONFIG_FAIR_GROUP_SCHED
8365 init_task_group.shares = init_task_group_load;
8366 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8367 #ifdef CONFIG_CGROUP_SCHED
8368 /*
8369 * How much cpu bandwidth does init_task_group get?
8370 *
8371 * In case of task-groups formed thr' the cgroup filesystem, it
8372 * gets 100% of the cpu resources in the system. This overall
8373 * system cpu resource is divided among the tasks of
8374 * init_task_group and its child task-groups in a fair manner,
8375 * based on each entity's (task or task-group's) weight
8376 * (se->load.weight).
8377 *
8378 * In other words, if init_task_group has 10 tasks of weight
8379 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8380 * then A0's share of the cpu resource is:
8381 *
8382 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8383 *
8384 * We achieve this by letting init_task_group's tasks sit
8385 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8386 */
8387 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
8388 #elif defined CONFIG_USER_SCHED
8389 root_task_group.shares = NICE_0_LOAD;
8390 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
8391 /*
8392 * In case of task-groups formed thr' the user id of tasks,
8393 * init_task_group represents tasks belonging to root user.
8394 * Hence it forms a sibling of all subsequent groups formed.
8395 * In this case, init_task_group gets only a fraction of overall
8396 * system cpu resource, based on the weight assigned to root
8397 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8398 * by letting tasks of init_task_group sit in a separate cfs_rq
8399 * (init_cfs_rq) and having one entity represent this group of
8400 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8401 */
8402 init_tg_cfs_entry(&init_task_group,
8403 &per_cpu(init_cfs_rq, i),
8404 &per_cpu(init_sched_entity, i), i, 1,
8405 root_task_group.se[i]);
8406
8407 #endif
8408 #endif /* CONFIG_FAIR_GROUP_SCHED */
8409
8410 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8411 #ifdef CONFIG_RT_GROUP_SCHED
8412 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
8413 #ifdef CONFIG_CGROUP_SCHED
8414 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
8415 #elif defined CONFIG_USER_SCHED
8416 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8417 init_tg_rt_entry(&init_task_group,
8418 &per_cpu(init_rt_rq, i),
8419 &per_cpu(init_sched_rt_entity, i), i, 1,
8420 root_task_group.rt_se[i]);
8421 #endif
8422 #endif
8423
8424 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8425 rq->cpu_load[j] = 0;
8426 #ifdef CONFIG_SMP
8427 rq->sd = NULL;
8428 rq->rd = NULL;
8429 rq->active_balance = 0;
8430 rq->next_balance = jiffies;
8431 rq->push_cpu = 0;
8432 rq->cpu = i;
8433 rq->online = 0;
8434 rq->migration_thread = NULL;
8435 INIT_LIST_HEAD(&rq->migration_queue);
8436 rq_attach_root(rq, &def_root_domain);
8437 #endif
8438 init_rq_hrtick(rq);
8439 atomic_set(&rq->nr_iowait, 0);
8440 }
8441
8442 set_load_weight(&init_task);
8443
8444 #ifdef CONFIG_PREEMPT_NOTIFIERS
8445 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8446 #endif
8447
8448 #ifdef CONFIG_SMP
8449 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8450 #endif
8451
8452 #ifdef CONFIG_RT_MUTEXES
8453 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8454 #endif
8455
8456 /*
8457 * The boot idle thread does lazy MMU switching as well:
8458 */
8459 atomic_inc(&init_mm.mm_count);
8460 enter_lazy_tlb(&init_mm, current);
8461
8462 /*
8463 * Make us the idle thread. Technically, schedule() should not be
8464 * called from this thread, however somewhere below it might be,
8465 * but because we are the idle thread, we just pick up running again
8466 * when this runqueue becomes "idle".
8467 */
8468 init_idle(current, smp_processor_id());
8469 /*
8470 * During early bootup we pretend to be a normal task:
8471 */
8472 current->sched_class = &fair_sched_class;
8473
8474 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8475 alloc_bootmem_cpumask_var(&nohz_cpu_mask);
8476 #ifdef CONFIG_SMP
8477 #ifdef CONFIG_NO_HZ
8478 alloc_bootmem_cpumask_var(&nohz.cpu_mask);
8479 #endif
8480 alloc_bootmem_cpumask_var(&cpu_isolated_map);
8481 #endif /* SMP */
8482
8483 scheduler_running = 1;
8484 }
8485
8486 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8487 void __might_sleep(char *file, int line)
8488 {
8489 #ifdef in_atomic
8490 static unsigned long prev_jiffy; /* ratelimiting */
8491
8492 if ((!in_atomic() && !irqs_disabled()) ||
8493 system_state != SYSTEM_RUNNING || oops_in_progress)
8494 return;
8495 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8496 return;
8497 prev_jiffy = jiffies;
8498
8499 printk(KERN_ERR
8500 "BUG: sleeping function called from invalid context at %s:%d\n",
8501 file, line);
8502 printk(KERN_ERR
8503 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8504 in_atomic(), irqs_disabled(),
8505 current->pid, current->comm);
8506
8507 debug_show_held_locks(current);
8508 if (irqs_disabled())
8509 print_irqtrace_events(current);
8510 dump_stack();
8511 #endif
8512 }
8513 EXPORT_SYMBOL(__might_sleep);
8514 #endif
8515
8516 #ifdef CONFIG_MAGIC_SYSRQ
8517 static void normalize_task(struct rq *rq, struct task_struct *p)
8518 {
8519 int on_rq;
8520
8521 update_rq_clock(rq);
8522 on_rq = p->se.on_rq;
8523 if (on_rq)
8524 deactivate_task(rq, p, 0);
8525 __setscheduler(rq, p, SCHED_NORMAL, 0);
8526 if (on_rq) {
8527 activate_task(rq, p, 0);
8528 resched_task(rq->curr);
8529 }
8530 }
8531
8532 void normalize_rt_tasks(void)
8533 {
8534 struct task_struct *g, *p;
8535 unsigned long flags;
8536 struct rq *rq;
8537
8538 read_lock_irqsave(&tasklist_lock, flags);
8539 do_each_thread(g, p) {
8540 /*
8541 * Only normalize user tasks:
8542 */
8543 if (!p->mm)
8544 continue;
8545
8546 p->se.exec_start = 0;
8547 #ifdef CONFIG_SCHEDSTATS
8548 p->se.wait_start = 0;
8549 p->se.sleep_start = 0;
8550 p->se.block_start = 0;
8551 #endif
8552
8553 if (!rt_task(p)) {
8554 /*
8555 * Renice negative nice level userspace
8556 * tasks back to 0:
8557 */
8558 if (TASK_NICE(p) < 0 && p->mm)
8559 set_user_nice(p, 0);
8560 continue;
8561 }
8562
8563 spin_lock(&p->pi_lock);
8564 rq = __task_rq_lock(p);
8565
8566 normalize_task(rq, p);
8567
8568 __task_rq_unlock(rq);
8569 spin_unlock(&p->pi_lock);
8570 } while_each_thread(g, p);
8571
8572 read_unlock_irqrestore(&tasklist_lock, flags);
8573 }
8574
8575 #endif /* CONFIG_MAGIC_SYSRQ */
8576
8577 #ifdef CONFIG_IA64
8578 /*
8579 * These functions are only useful for the IA64 MCA handling.
8580 *
8581 * They can only be called when the whole system has been
8582 * stopped - every CPU needs to be quiescent, and no scheduling
8583 * activity can take place. Using them for anything else would
8584 * be a serious bug, and as a result, they aren't even visible
8585 * under any other configuration.
8586 */
8587
8588 /**
8589 * curr_task - return the current task for a given cpu.
8590 * @cpu: the processor in question.
8591 *
8592 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8593 */
8594 struct task_struct *curr_task(int cpu)
8595 {
8596 return cpu_curr(cpu);
8597 }
8598
8599 /**
8600 * set_curr_task - set the current task for a given cpu.
8601 * @cpu: the processor in question.
8602 * @p: the task pointer to set.
8603 *
8604 * Description: This function must only be used when non-maskable interrupts
8605 * are serviced on a separate stack. It allows the architecture to switch the
8606 * notion of the current task on a cpu in a non-blocking manner. This function
8607 * must be called with all CPU's synchronized, and interrupts disabled, the
8608 * and caller must save the original value of the current task (see
8609 * curr_task() above) and restore that value before reenabling interrupts and
8610 * re-starting the system.
8611 *
8612 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8613 */
8614 void set_curr_task(int cpu, struct task_struct *p)
8615 {
8616 cpu_curr(cpu) = p;
8617 }
8618
8619 #endif
8620
8621 #ifdef CONFIG_FAIR_GROUP_SCHED
8622 static void free_fair_sched_group(struct task_group *tg)
8623 {
8624 int i;
8625
8626 for_each_possible_cpu(i) {
8627 if (tg->cfs_rq)
8628 kfree(tg->cfs_rq[i]);
8629 if (tg->se)
8630 kfree(tg->se[i]);
8631 }
8632
8633 kfree(tg->cfs_rq);
8634 kfree(tg->se);
8635 }
8636
8637 static
8638 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8639 {
8640 struct cfs_rq *cfs_rq;
8641 struct sched_entity *se;
8642 struct rq *rq;
8643 int i;
8644
8645 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8646 if (!tg->cfs_rq)
8647 goto err;
8648 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8649 if (!tg->se)
8650 goto err;
8651
8652 tg->shares = NICE_0_LOAD;
8653
8654 for_each_possible_cpu(i) {
8655 rq = cpu_rq(i);
8656
8657 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8658 GFP_KERNEL, cpu_to_node(i));
8659 if (!cfs_rq)
8660 goto err;
8661
8662 se = kzalloc_node(sizeof(struct sched_entity),
8663 GFP_KERNEL, cpu_to_node(i));
8664 if (!se)
8665 goto err;
8666
8667 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
8668 }
8669
8670 return 1;
8671
8672 err:
8673 return 0;
8674 }
8675
8676 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8677 {
8678 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8679 &cpu_rq(cpu)->leaf_cfs_rq_list);
8680 }
8681
8682 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8683 {
8684 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8685 }
8686 #else /* !CONFG_FAIR_GROUP_SCHED */
8687 static inline void free_fair_sched_group(struct task_group *tg)
8688 {
8689 }
8690
8691 static inline
8692 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8693 {
8694 return 1;
8695 }
8696
8697 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8698 {
8699 }
8700
8701 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8702 {
8703 }
8704 #endif /* CONFIG_FAIR_GROUP_SCHED */
8705
8706 #ifdef CONFIG_RT_GROUP_SCHED
8707 static void free_rt_sched_group(struct task_group *tg)
8708 {
8709 int i;
8710
8711 destroy_rt_bandwidth(&tg->rt_bandwidth);
8712
8713 for_each_possible_cpu(i) {
8714 if (tg->rt_rq)
8715 kfree(tg->rt_rq[i]);
8716 if (tg->rt_se)
8717 kfree(tg->rt_se[i]);
8718 }
8719
8720 kfree(tg->rt_rq);
8721 kfree(tg->rt_se);
8722 }
8723
8724 static
8725 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8726 {
8727 struct rt_rq *rt_rq;
8728 struct sched_rt_entity *rt_se;
8729 struct rq *rq;
8730 int i;
8731
8732 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8733 if (!tg->rt_rq)
8734 goto err;
8735 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8736 if (!tg->rt_se)
8737 goto err;
8738
8739 init_rt_bandwidth(&tg->rt_bandwidth,
8740 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8741
8742 for_each_possible_cpu(i) {
8743 rq = cpu_rq(i);
8744
8745 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8746 GFP_KERNEL, cpu_to_node(i));
8747 if (!rt_rq)
8748 goto err;
8749
8750 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8751 GFP_KERNEL, cpu_to_node(i));
8752 if (!rt_se)
8753 goto err;
8754
8755 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
8756 }
8757
8758 return 1;
8759
8760 err:
8761 return 0;
8762 }
8763
8764 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8765 {
8766 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8767 &cpu_rq(cpu)->leaf_rt_rq_list);
8768 }
8769
8770 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8771 {
8772 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8773 }
8774 #else /* !CONFIG_RT_GROUP_SCHED */
8775 static inline void free_rt_sched_group(struct task_group *tg)
8776 {
8777 }
8778
8779 static inline
8780 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8781 {
8782 return 1;
8783 }
8784
8785 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8786 {
8787 }
8788
8789 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8790 {
8791 }
8792 #endif /* CONFIG_RT_GROUP_SCHED */
8793
8794 #ifdef CONFIG_GROUP_SCHED
8795 static void free_sched_group(struct task_group *tg)
8796 {
8797 free_fair_sched_group(tg);
8798 free_rt_sched_group(tg);
8799 kfree(tg);
8800 }
8801
8802 /* allocate runqueue etc for a new task group */
8803 struct task_group *sched_create_group(struct task_group *parent)
8804 {
8805 struct task_group *tg;
8806 unsigned long flags;
8807 int i;
8808
8809 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8810 if (!tg)
8811 return ERR_PTR(-ENOMEM);
8812
8813 if (!alloc_fair_sched_group(tg, parent))
8814 goto err;
8815
8816 if (!alloc_rt_sched_group(tg, parent))
8817 goto err;
8818
8819 spin_lock_irqsave(&task_group_lock, flags);
8820 for_each_possible_cpu(i) {
8821 register_fair_sched_group(tg, i);
8822 register_rt_sched_group(tg, i);
8823 }
8824 list_add_rcu(&tg->list, &task_groups);
8825
8826 WARN_ON(!parent); /* root should already exist */
8827
8828 tg->parent = parent;
8829 INIT_LIST_HEAD(&tg->children);
8830 list_add_rcu(&tg->siblings, &parent->children);
8831 spin_unlock_irqrestore(&task_group_lock, flags);
8832
8833 return tg;
8834
8835 err:
8836 free_sched_group(tg);
8837 return ERR_PTR(-ENOMEM);
8838 }
8839
8840 /* rcu callback to free various structures associated with a task group */
8841 static void free_sched_group_rcu(struct rcu_head *rhp)
8842 {
8843 /* now it should be safe to free those cfs_rqs */
8844 free_sched_group(container_of(rhp, struct task_group, rcu));
8845 }
8846
8847 /* Destroy runqueue etc associated with a task group */
8848 void sched_destroy_group(struct task_group *tg)
8849 {
8850 unsigned long flags;
8851 int i;
8852
8853 spin_lock_irqsave(&task_group_lock, flags);
8854 for_each_possible_cpu(i) {
8855 unregister_fair_sched_group(tg, i);
8856 unregister_rt_sched_group(tg, i);
8857 }
8858 list_del_rcu(&tg->list);
8859 list_del_rcu(&tg->siblings);
8860 spin_unlock_irqrestore(&task_group_lock, flags);
8861
8862 /* wait for possible concurrent references to cfs_rqs complete */
8863 call_rcu(&tg->rcu, free_sched_group_rcu);
8864 }
8865
8866 /* change task's runqueue when it moves between groups.
8867 * The caller of this function should have put the task in its new group
8868 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8869 * reflect its new group.
8870 */
8871 void sched_move_task(struct task_struct *tsk)
8872 {
8873 int on_rq, running;
8874 unsigned long flags;
8875 struct rq *rq;
8876
8877 rq = task_rq_lock(tsk, &flags);
8878
8879 update_rq_clock(rq);
8880
8881 running = task_current(rq, tsk);
8882 on_rq = tsk->se.on_rq;
8883
8884 if (on_rq)
8885 dequeue_task(rq, tsk, 0);
8886 if (unlikely(running))
8887 tsk->sched_class->put_prev_task(rq, tsk);
8888
8889 set_task_rq(tsk, task_cpu(tsk));
8890
8891 #ifdef CONFIG_FAIR_GROUP_SCHED
8892 if (tsk->sched_class->moved_group)
8893 tsk->sched_class->moved_group(tsk);
8894 #endif
8895
8896 if (unlikely(running))
8897 tsk->sched_class->set_curr_task(rq);
8898 if (on_rq)
8899 enqueue_task(rq, tsk, 0);
8900
8901 task_rq_unlock(rq, &flags);
8902 }
8903 #endif /* CONFIG_GROUP_SCHED */
8904
8905 #ifdef CONFIG_FAIR_GROUP_SCHED
8906 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
8907 {
8908 struct cfs_rq *cfs_rq = se->cfs_rq;
8909 int on_rq;
8910
8911 on_rq = se->on_rq;
8912 if (on_rq)
8913 dequeue_entity(cfs_rq, se, 0);
8914
8915 se->load.weight = shares;
8916 se->load.inv_weight = 0;
8917
8918 if (on_rq)
8919 enqueue_entity(cfs_rq, se, 0);
8920 }
8921
8922 static void set_se_shares(struct sched_entity *se, unsigned long shares)
8923 {
8924 struct cfs_rq *cfs_rq = se->cfs_rq;
8925 struct rq *rq = cfs_rq->rq;
8926 unsigned long flags;
8927
8928 spin_lock_irqsave(&rq->lock, flags);
8929 __set_se_shares(se, shares);
8930 spin_unlock_irqrestore(&rq->lock, flags);
8931 }
8932
8933 static DEFINE_MUTEX(shares_mutex);
8934
8935 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8936 {
8937 int i;
8938 unsigned long flags;
8939
8940 /*
8941 * We can't change the weight of the root cgroup.
8942 */
8943 if (!tg->se[0])
8944 return -EINVAL;
8945
8946 if (shares < MIN_SHARES)
8947 shares = MIN_SHARES;
8948 else if (shares > MAX_SHARES)
8949 shares = MAX_SHARES;
8950
8951 mutex_lock(&shares_mutex);
8952 if (tg->shares == shares)
8953 goto done;
8954
8955 spin_lock_irqsave(&task_group_lock, flags);
8956 for_each_possible_cpu(i)
8957 unregister_fair_sched_group(tg, i);
8958 list_del_rcu(&tg->siblings);
8959 spin_unlock_irqrestore(&task_group_lock, flags);
8960
8961 /* wait for any ongoing reference to this group to finish */
8962 synchronize_sched();
8963
8964 /*
8965 * Now we are free to modify the group's share on each cpu
8966 * w/o tripping rebalance_share or load_balance_fair.
8967 */
8968 tg->shares = shares;
8969 for_each_possible_cpu(i) {
8970 /*
8971 * force a rebalance
8972 */
8973 cfs_rq_set_shares(tg->cfs_rq[i], 0);
8974 set_se_shares(tg->se[i], shares);
8975 }
8976
8977 /*
8978 * Enable load balance activity on this group, by inserting it back on
8979 * each cpu's rq->leaf_cfs_rq_list.
8980 */
8981 spin_lock_irqsave(&task_group_lock, flags);
8982 for_each_possible_cpu(i)
8983 register_fair_sched_group(tg, i);
8984 list_add_rcu(&tg->siblings, &tg->parent->children);
8985 spin_unlock_irqrestore(&task_group_lock, flags);
8986 done:
8987 mutex_unlock(&shares_mutex);
8988 return 0;
8989 }
8990
8991 unsigned long sched_group_shares(struct task_group *tg)
8992 {
8993 return tg->shares;
8994 }
8995 #endif
8996
8997 #ifdef CONFIG_RT_GROUP_SCHED
8998 /*
8999 * Ensure that the real time constraints are schedulable.
9000 */
9001 static DEFINE_MUTEX(rt_constraints_mutex);
9002
9003 static unsigned long to_ratio(u64 period, u64 runtime)
9004 {
9005 if (runtime == RUNTIME_INF)
9006 return 1ULL << 20;
9007
9008 return div64_u64(runtime << 20, period);
9009 }
9010
9011 /* Must be called with tasklist_lock held */
9012 static inline int tg_has_rt_tasks(struct task_group *tg)
9013 {
9014 struct task_struct *g, *p;
9015
9016 do_each_thread(g, p) {
9017 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
9018 return 1;
9019 } while_each_thread(g, p);
9020
9021 return 0;
9022 }
9023
9024 struct rt_schedulable_data {
9025 struct task_group *tg;
9026 u64 rt_period;
9027 u64 rt_runtime;
9028 };
9029
9030 static int tg_schedulable(struct task_group *tg, void *data)
9031 {
9032 struct rt_schedulable_data *d = data;
9033 struct task_group *child;
9034 unsigned long total, sum = 0;
9035 u64 period, runtime;
9036
9037 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9038 runtime = tg->rt_bandwidth.rt_runtime;
9039
9040 if (tg == d->tg) {
9041 period = d->rt_period;
9042 runtime = d->rt_runtime;
9043 }
9044
9045 /*
9046 * Cannot have more runtime than the period.
9047 */
9048 if (runtime > period && runtime != RUNTIME_INF)
9049 return -EINVAL;
9050
9051 /*
9052 * Ensure we don't starve existing RT tasks.
9053 */
9054 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
9055 return -EBUSY;
9056
9057 total = to_ratio(period, runtime);
9058
9059 /*
9060 * Nobody can have more than the global setting allows.
9061 */
9062 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
9063 return -EINVAL;
9064
9065 /*
9066 * The sum of our children's runtime should not exceed our own.
9067 */
9068 list_for_each_entry_rcu(child, &tg->children, siblings) {
9069 period = ktime_to_ns(child->rt_bandwidth.rt_period);
9070 runtime = child->rt_bandwidth.rt_runtime;
9071
9072 if (child == d->tg) {
9073 period = d->rt_period;
9074 runtime = d->rt_runtime;
9075 }
9076
9077 sum += to_ratio(period, runtime);
9078 }
9079
9080 if (sum > total)
9081 return -EINVAL;
9082
9083 return 0;
9084 }
9085
9086 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
9087 {
9088 struct rt_schedulable_data data = {
9089 .tg = tg,
9090 .rt_period = period,
9091 .rt_runtime = runtime,
9092 };
9093
9094 return walk_tg_tree(tg_schedulable, tg_nop, &data);
9095 }
9096
9097 static int tg_set_bandwidth(struct task_group *tg,
9098 u64 rt_period, u64 rt_runtime)
9099 {
9100 int i, err = 0;
9101
9102 mutex_lock(&rt_constraints_mutex);
9103 read_lock(&tasklist_lock);
9104 err = __rt_schedulable(tg, rt_period, rt_runtime);
9105 if (err)
9106 goto unlock;
9107
9108 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9109 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
9110 tg->rt_bandwidth.rt_runtime = rt_runtime;
9111
9112 for_each_possible_cpu(i) {
9113 struct rt_rq *rt_rq = tg->rt_rq[i];
9114
9115 spin_lock(&rt_rq->rt_runtime_lock);
9116 rt_rq->rt_runtime = rt_runtime;
9117 spin_unlock(&rt_rq->rt_runtime_lock);
9118 }
9119 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9120 unlock:
9121 read_unlock(&tasklist_lock);
9122 mutex_unlock(&rt_constraints_mutex);
9123
9124 return err;
9125 }
9126
9127 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
9128 {
9129 u64 rt_runtime, rt_period;
9130
9131 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9132 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
9133 if (rt_runtime_us < 0)
9134 rt_runtime = RUNTIME_INF;
9135
9136 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9137 }
9138
9139 long sched_group_rt_runtime(struct task_group *tg)
9140 {
9141 u64 rt_runtime_us;
9142
9143 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9144 return -1;
9145
9146 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9147 do_div(rt_runtime_us, NSEC_PER_USEC);
9148 return rt_runtime_us;
9149 }
9150
9151 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
9152 {
9153 u64 rt_runtime, rt_period;
9154
9155 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
9156 rt_runtime = tg->rt_bandwidth.rt_runtime;
9157
9158 if (rt_period == 0)
9159 return -EINVAL;
9160
9161 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9162 }
9163
9164 long sched_group_rt_period(struct task_group *tg)
9165 {
9166 u64 rt_period_us;
9167
9168 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
9169 do_div(rt_period_us, NSEC_PER_USEC);
9170 return rt_period_us;
9171 }
9172
9173 static int sched_rt_global_constraints(void)
9174 {
9175 u64 runtime, period;
9176 int ret = 0;
9177
9178 if (sysctl_sched_rt_period <= 0)
9179 return -EINVAL;
9180
9181 runtime = global_rt_runtime();
9182 period = global_rt_period();
9183
9184 /*
9185 * Sanity check on the sysctl variables.
9186 */
9187 if (runtime > period && runtime != RUNTIME_INF)
9188 return -EINVAL;
9189
9190 mutex_lock(&rt_constraints_mutex);
9191 read_lock(&tasklist_lock);
9192 ret = __rt_schedulable(NULL, 0, 0);
9193 read_unlock(&tasklist_lock);
9194 mutex_unlock(&rt_constraints_mutex);
9195
9196 return ret;
9197 }
9198 #else /* !CONFIG_RT_GROUP_SCHED */
9199 static int sched_rt_global_constraints(void)
9200 {
9201 unsigned long flags;
9202 int i;
9203
9204 if (sysctl_sched_rt_period <= 0)
9205 return -EINVAL;
9206
9207 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9208 for_each_possible_cpu(i) {
9209 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9210
9211 spin_lock(&rt_rq->rt_runtime_lock);
9212 rt_rq->rt_runtime = global_rt_runtime();
9213 spin_unlock(&rt_rq->rt_runtime_lock);
9214 }
9215 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9216
9217 return 0;
9218 }
9219 #endif /* CONFIG_RT_GROUP_SCHED */
9220
9221 int sched_rt_handler(struct ctl_table *table, int write,
9222 struct file *filp, void __user *buffer, size_t *lenp,
9223 loff_t *ppos)
9224 {
9225 int ret;
9226 int old_period, old_runtime;
9227 static DEFINE_MUTEX(mutex);
9228
9229 mutex_lock(&mutex);
9230 old_period = sysctl_sched_rt_period;
9231 old_runtime = sysctl_sched_rt_runtime;
9232
9233 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
9234
9235 if (!ret && write) {
9236 ret = sched_rt_global_constraints();
9237 if (ret) {
9238 sysctl_sched_rt_period = old_period;
9239 sysctl_sched_rt_runtime = old_runtime;
9240 } else {
9241 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9242 def_rt_bandwidth.rt_period =
9243 ns_to_ktime(global_rt_period());
9244 }
9245 }
9246 mutex_unlock(&mutex);
9247
9248 return ret;
9249 }
9250
9251 #ifdef CONFIG_CGROUP_SCHED
9252
9253 /* return corresponding task_group object of a cgroup */
9254 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9255 {
9256 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9257 struct task_group, css);
9258 }
9259
9260 static struct cgroup_subsys_state *
9261 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9262 {
9263 struct task_group *tg, *parent;
9264
9265 if (!cgrp->parent) {
9266 /* This is early initialization for the top cgroup */
9267 return &init_task_group.css;
9268 }
9269
9270 parent = cgroup_tg(cgrp->parent);
9271 tg = sched_create_group(parent);
9272 if (IS_ERR(tg))
9273 return ERR_PTR(-ENOMEM);
9274
9275 return &tg->css;
9276 }
9277
9278 static void
9279 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9280 {
9281 struct task_group *tg = cgroup_tg(cgrp);
9282
9283 sched_destroy_group(tg);
9284 }
9285
9286 static int
9287 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9288 struct task_struct *tsk)
9289 {
9290 #ifdef CONFIG_RT_GROUP_SCHED
9291 /* Don't accept realtime tasks when there is no way for them to run */
9292 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
9293 return -EINVAL;
9294 #else
9295 /* We don't support RT-tasks being in separate groups */
9296 if (tsk->sched_class != &fair_sched_class)
9297 return -EINVAL;
9298 #endif
9299
9300 return 0;
9301 }
9302
9303 static void
9304 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9305 struct cgroup *old_cont, struct task_struct *tsk)
9306 {
9307 sched_move_task(tsk);
9308 }
9309
9310 #ifdef CONFIG_FAIR_GROUP_SCHED
9311 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9312 u64 shareval)
9313 {
9314 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9315 }
9316
9317 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9318 {
9319 struct task_group *tg = cgroup_tg(cgrp);
9320
9321 return (u64) tg->shares;
9322 }
9323 #endif /* CONFIG_FAIR_GROUP_SCHED */
9324
9325 #ifdef CONFIG_RT_GROUP_SCHED
9326 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9327 s64 val)
9328 {
9329 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
9330 }
9331
9332 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
9333 {
9334 return sched_group_rt_runtime(cgroup_tg(cgrp));
9335 }
9336
9337 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9338 u64 rt_period_us)
9339 {
9340 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9341 }
9342
9343 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9344 {
9345 return sched_group_rt_period(cgroup_tg(cgrp));
9346 }
9347 #endif /* CONFIG_RT_GROUP_SCHED */
9348
9349 static struct cftype cpu_files[] = {
9350 #ifdef CONFIG_FAIR_GROUP_SCHED
9351 {
9352 .name = "shares",
9353 .read_u64 = cpu_shares_read_u64,
9354 .write_u64 = cpu_shares_write_u64,
9355 },
9356 #endif
9357 #ifdef CONFIG_RT_GROUP_SCHED
9358 {
9359 .name = "rt_runtime_us",
9360 .read_s64 = cpu_rt_runtime_read,
9361 .write_s64 = cpu_rt_runtime_write,
9362 },
9363 {
9364 .name = "rt_period_us",
9365 .read_u64 = cpu_rt_period_read_uint,
9366 .write_u64 = cpu_rt_period_write_uint,
9367 },
9368 #endif
9369 };
9370
9371 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9372 {
9373 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9374 }
9375
9376 struct cgroup_subsys cpu_cgroup_subsys = {
9377 .name = "cpu",
9378 .create = cpu_cgroup_create,
9379 .destroy = cpu_cgroup_destroy,
9380 .can_attach = cpu_cgroup_can_attach,
9381 .attach = cpu_cgroup_attach,
9382 .populate = cpu_cgroup_populate,
9383 .subsys_id = cpu_cgroup_subsys_id,
9384 .early_init = 1,
9385 };
9386
9387 #endif /* CONFIG_CGROUP_SCHED */
9388
9389 #ifdef CONFIG_CGROUP_CPUACCT
9390
9391 /*
9392 * CPU accounting code for task groups.
9393 *
9394 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9395 * (balbir@in.ibm.com).
9396 */
9397
9398 /* track cpu usage of a group of tasks and its child groups */
9399 struct cpuacct {
9400 struct cgroup_subsys_state css;
9401 /* cpuusage holds pointer to a u64-type object on every cpu */
9402 u64 *cpuusage;
9403 struct cpuacct *parent;
9404 };
9405
9406 struct cgroup_subsys cpuacct_subsys;
9407
9408 /* return cpu accounting group corresponding to this container */
9409 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9410 {
9411 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9412 struct cpuacct, css);
9413 }
9414
9415 /* return cpu accounting group to which this task belongs */
9416 static inline struct cpuacct *task_ca(struct task_struct *tsk)
9417 {
9418 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9419 struct cpuacct, css);
9420 }
9421
9422 /* create a new cpu accounting group */
9423 static struct cgroup_subsys_state *cpuacct_create(
9424 struct cgroup_subsys *ss, struct cgroup *cgrp)
9425 {
9426 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9427
9428 if (!ca)
9429 return ERR_PTR(-ENOMEM);
9430
9431 ca->cpuusage = alloc_percpu(u64);
9432 if (!ca->cpuusage) {
9433 kfree(ca);
9434 return ERR_PTR(-ENOMEM);
9435 }
9436
9437 if (cgrp->parent)
9438 ca->parent = cgroup_ca(cgrp->parent);
9439
9440 return &ca->css;
9441 }
9442
9443 /* destroy an existing cpu accounting group */
9444 static void
9445 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9446 {
9447 struct cpuacct *ca = cgroup_ca(cgrp);
9448
9449 free_percpu(ca->cpuusage);
9450 kfree(ca);
9451 }
9452
9453 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9454 {
9455 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9456 u64 data;
9457
9458 #ifndef CONFIG_64BIT
9459 /*
9460 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9461 */
9462 spin_lock_irq(&cpu_rq(cpu)->lock);
9463 data = *cpuusage;
9464 spin_unlock_irq(&cpu_rq(cpu)->lock);
9465 #else
9466 data = *cpuusage;
9467 #endif
9468
9469 return data;
9470 }
9471
9472 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9473 {
9474 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9475
9476 #ifndef CONFIG_64BIT
9477 /*
9478 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9479 */
9480 spin_lock_irq(&cpu_rq(cpu)->lock);
9481 *cpuusage = val;
9482 spin_unlock_irq(&cpu_rq(cpu)->lock);
9483 #else
9484 *cpuusage = val;
9485 #endif
9486 }
9487
9488 /* return total cpu usage (in nanoseconds) of a group */
9489 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9490 {
9491 struct cpuacct *ca = cgroup_ca(cgrp);
9492 u64 totalcpuusage = 0;
9493 int i;
9494
9495 for_each_present_cpu(i)
9496 totalcpuusage += cpuacct_cpuusage_read(ca, i);
9497
9498 return totalcpuusage;
9499 }
9500
9501 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9502 u64 reset)
9503 {
9504 struct cpuacct *ca = cgroup_ca(cgrp);
9505 int err = 0;
9506 int i;
9507
9508 if (reset) {
9509 err = -EINVAL;
9510 goto out;
9511 }
9512
9513 for_each_present_cpu(i)
9514 cpuacct_cpuusage_write(ca, i, 0);
9515
9516 out:
9517 return err;
9518 }
9519
9520 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9521 struct seq_file *m)
9522 {
9523 struct cpuacct *ca = cgroup_ca(cgroup);
9524 u64 percpu;
9525 int i;
9526
9527 for_each_present_cpu(i) {
9528 percpu = cpuacct_cpuusage_read(ca, i);
9529 seq_printf(m, "%llu ", (unsigned long long) percpu);
9530 }
9531 seq_printf(m, "\n");
9532 return 0;
9533 }
9534
9535 static struct cftype files[] = {
9536 {
9537 .name = "usage",
9538 .read_u64 = cpuusage_read,
9539 .write_u64 = cpuusage_write,
9540 },
9541 {
9542 .name = "usage_percpu",
9543 .read_seq_string = cpuacct_percpu_seq_read,
9544 },
9545
9546 };
9547
9548 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9549 {
9550 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9551 }
9552
9553 /*
9554 * charge this task's execution time to its accounting group.
9555 *
9556 * called with rq->lock held.
9557 */
9558 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9559 {
9560 struct cpuacct *ca;
9561 int cpu;
9562
9563 if (!cpuacct_subsys.active)
9564 return;
9565
9566 cpu = task_cpu(tsk);
9567 ca = task_ca(tsk);
9568
9569 for (; ca; ca = ca->parent) {
9570 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9571 *cpuusage += cputime;
9572 }
9573 }
9574
9575 struct cgroup_subsys cpuacct_subsys = {
9576 .name = "cpuacct",
9577 .create = cpuacct_create,
9578 .destroy = cpuacct_destroy,
9579 .populate = cpuacct_populate,
9580 .subsys_id = cpuacct_subsys_id,
9581 };
9582 #endif /* CONFIG_CGROUP_CPUACCT */
This page took 0.212378 seconds and 6 git commands to generate.