sched: Prevent compiler from optimising the sched_avg_update() loop
[deliverable/linux.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/stop_machine.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
74 #include <linux/slab.h>
75
76 #include <asm/tlb.h>
77 #include <asm/irq_regs.h>
78
79 #include "sched_cpupri.h"
80
81 #define CREATE_TRACE_POINTS
82 #include <trace/events/sched.h>
83
84 /*
85 * Convert user-nice values [ -20 ... 0 ... 19 ]
86 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
87 * and back.
88 */
89 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
90 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
91 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
92
93 /*
94 * 'User priority' is the nice value converted to something we
95 * can work with better when scaling various scheduler parameters,
96 * it's a [ 0 ... 39 ] range.
97 */
98 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
99 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
100 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
101
102 /*
103 * Helpers for converting nanosecond timing to jiffy resolution
104 */
105 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
106
107 #define NICE_0_LOAD SCHED_LOAD_SCALE
108 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
109
110 /*
111 * These are the 'tuning knobs' of the scheduler:
112 *
113 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
114 * Timeslices get refilled after they expire.
115 */
116 #define DEF_TIMESLICE (100 * HZ / 1000)
117
118 /*
119 * single value that denotes runtime == period, ie unlimited time.
120 */
121 #define RUNTIME_INF ((u64)~0ULL)
122
123 static inline int rt_policy(int policy)
124 {
125 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
126 return 1;
127 return 0;
128 }
129
130 static inline int task_has_rt_policy(struct task_struct *p)
131 {
132 return rt_policy(p->policy);
133 }
134
135 /*
136 * This is the priority-queue data structure of the RT scheduling class:
137 */
138 struct rt_prio_array {
139 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
140 struct list_head queue[MAX_RT_PRIO];
141 };
142
143 struct rt_bandwidth {
144 /* nests inside the rq lock: */
145 raw_spinlock_t rt_runtime_lock;
146 ktime_t rt_period;
147 u64 rt_runtime;
148 struct hrtimer rt_period_timer;
149 };
150
151 static struct rt_bandwidth def_rt_bandwidth;
152
153 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
154
155 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
156 {
157 struct rt_bandwidth *rt_b =
158 container_of(timer, struct rt_bandwidth, rt_period_timer);
159 ktime_t now;
160 int overrun;
161 int idle = 0;
162
163 for (;;) {
164 now = hrtimer_cb_get_time(timer);
165 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
166
167 if (!overrun)
168 break;
169
170 idle = do_sched_rt_period_timer(rt_b, overrun);
171 }
172
173 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
174 }
175
176 static
177 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
178 {
179 rt_b->rt_period = ns_to_ktime(period);
180 rt_b->rt_runtime = runtime;
181
182 raw_spin_lock_init(&rt_b->rt_runtime_lock);
183
184 hrtimer_init(&rt_b->rt_period_timer,
185 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
186 rt_b->rt_period_timer.function = sched_rt_period_timer;
187 }
188
189 static inline int rt_bandwidth_enabled(void)
190 {
191 return sysctl_sched_rt_runtime >= 0;
192 }
193
194 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
195 {
196 ktime_t now;
197
198 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
199 return;
200
201 if (hrtimer_active(&rt_b->rt_period_timer))
202 return;
203
204 raw_spin_lock(&rt_b->rt_runtime_lock);
205 for (;;) {
206 unsigned long delta;
207 ktime_t soft, hard;
208
209 if (hrtimer_active(&rt_b->rt_period_timer))
210 break;
211
212 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
213 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
214
215 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
216 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
217 delta = ktime_to_ns(ktime_sub(hard, soft));
218 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
219 HRTIMER_MODE_ABS_PINNED, 0);
220 }
221 raw_spin_unlock(&rt_b->rt_runtime_lock);
222 }
223
224 #ifdef CONFIG_RT_GROUP_SCHED
225 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
226 {
227 hrtimer_cancel(&rt_b->rt_period_timer);
228 }
229 #endif
230
231 /*
232 * sched_domains_mutex serializes calls to arch_init_sched_domains,
233 * detach_destroy_domains and partition_sched_domains.
234 */
235 static DEFINE_MUTEX(sched_domains_mutex);
236
237 #ifdef CONFIG_CGROUP_SCHED
238
239 #include <linux/cgroup.h>
240
241 struct cfs_rq;
242
243 static LIST_HEAD(task_groups);
244
245 /* task group related information */
246 struct task_group {
247 struct cgroup_subsys_state css;
248
249 #ifdef CONFIG_FAIR_GROUP_SCHED
250 /* schedulable entities of this group on each cpu */
251 struct sched_entity **se;
252 /* runqueue "owned" by this group on each cpu */
253 struct cfs_rq **cfs_rq;
254 unsigned long shares;
255 #endif
256
257 #ifdef CONFIG_RT_GROUP_SCHED
258 struct sched_rt_entity **rt_se;
259 struct rt_rq **rt_rq;
260
261 struct rt_bandwidth rt_bandwidth;
262 #endif
263
264 struct rcu_head rcu;
265 struct list_head list;
266
267 struct task_group *parent;
268 struct list_head siblings;
269 struct list_head children;
270 };
271
272 #define root_task_group init_task_group
273
274 /* task_group_lock serializes add/remove of task groups and also changes to
275 * a task group's cpu shares.
276 */
277 static DEFINE_SPINLOCK(task_group_lock);
278
279 #ifdef CONFIG_FAIR_GROUP_SCHED
280
281 #ifdef CONFIG_SMP
282 static int root_task_group_empty(void)
283 {
284 return list_empty(&root_task_group.children);
285 }
286 #endif
287
288 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
289
290 /*
291 * A weight of 0 or 1 can cause arithmetics problems.
292 * A weight of a cfs_rq is the sum of weights of which entities
293 * are queued on this cfs_rq, so a weight of a entity should not be
294 * too large, so as the shares value of a task group.
295 * (The default weight is 1024 - so there's no practical
296 * limitation from this.)
297 */
298 #define MIN_SHARES 2
299 #define MAX_SHARES (1UL << 18)
300
301 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
302 #endif
303
304 /* Default task group.
305 * Every task in system belong to this group at bootup.
306 */
307 struct task_group init_task_group;
308
309 #endif /* CONFIG_CGROUP_SCHED */
310
311 /* CFS-related fields in a runqueue */
312 struct cfs_rq {
313 struct load_weight load;
314 unsigned long nr_running;
315
316 u64 exec_clock;
317 u64 min_vruntime;
318
319 struct rb_root tasks_timeline;
320 struct rb_node *rb_leftmost;
321
322 struct list_head tasks;
323 struct list_head *balance_iterator;
324
325 /*
326 * 'curr' points to currently running entity on this cfs_rq.
327 * It is set to NULL otherwise (i.e when none are currently running).
328 */
329 struct sched_entity *curr, *next, *last;
330
331 unsigned int nr_spread_over;
332
333 #ifdef CONFIG_FAIR_GROUP_SCHED
334 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
335
336 /*
337 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
338 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
339 * (like users, containers etc.)
340 *
341 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
342 * list is used during load balance.
343 */
344 struct list_head leaf_cfs_rq_list;
345 struct task_group *tg; /* group that "owns" this runqueue */
346
347 #ifdef CONFIG_SMP
348 /*
349 * the part of load.weight contributed by tasks
350 */
351 unsigned long task_weight;
352
353 /*
354 * h_load = weight * f(tg)
355 *
356 * Where f(tg) is the recursive weight fraction assigned to
357 * this group.
358 */
359 unsigned long h_load;
360
361 /*
362 * this cpu's part of tg->shares
363 */
364 unsigned long shares;
365
366 /*
367 * load.weight at the time we set shares
368 */
369 unsigned long rq_weight;
370 #endif
371 #endif
372 };
373
374 /* Real-Time classes' related field in a runqueue: */
375 struct rt_rq {
376 struct rt_prio_array active;
377 unsigned long rt_nr_running;
378 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
379 struct {
380 int curr; /* highest queued rt task prio */
381 #ifdef CONFIG_SMP
382 int next; /* next highest */
383 #endif
384 } highest_prio;
385 #endif
386 #ifdef CONFIG_SMP
387 unsigned long rt_nr_migratory;
388 unsigned long rt_nr_total;
389 int overloaded;
390 struct plist_head pushable_tasks;
391 #endif
392 int rt_throttled;
393 u64 rt_time;
394 u64 rt_runtime;
395 /* Nests inside the rq lock: */
396 raw_spinlock_t rt_runtime_lock;
397
398 #ifdef CONFIG_RT_GROUP_SCHED
399 unsigned long rt_nr_boosted;
400
401 struct rq *rq;
402 struct list_head leaf_rt_rq_list;
403 struct task_group *tg;
404 #endif
405 };
406
407 #ifdef CONFIG_SMP
408
409 /*
410 * We add the notion of a root-domain which will be used to define per-domain
411 * variables. Each exclusive cpuset essentially defines an island domain by
412 * fully partitioning the member cpus from any other cpuset. Whenever a new
413 * exclusive cpuset is created, we also create and attach a new root-domain
414 * object.
415 *
416 */
417 struct root_domain {
418 atomic_t refcount;
419 cpumask_var_t span;
420 cpumask_var_t online;
421
422 /*
423 * The "RT overload" flag: it gets set if a CPU has more than
424 * one runnable RT task.
425 */
426 cpumask_var_t rto_mask;
427 atomic_t rto_count;
428 #ifdef CONFIG_SMP
429 struct cpupri cpupri;
430 #endif
431 };
432
433 /*
434 * By default the system creates a single root-domain with all cpus as
435 * members (mimicking the global state we have today).
436 */
437 static struct root_domain def_root_domain;
438
439 #endif
440
441 /*
442 * This is the main, per-CPU runqueue data structure.
443 *
444 * Locking rule: those places that want to lock multiple runqueues
445 * (such as the load balancing or the thread migration code), lock
446 * acquire operations must be ordered by ascending &runqueue.
447 */
448 struct rq {
449 /* runqueue lock: */
450 raw_spinlock_t lock;
451
452 /*
453 * nr_running and cpu_load should be in the same cacheline because
454 * remote CPUs use both these fields when doing load calculation.
455 */
456 unsigned long nr_running;
457 #define CPU_LOAD_IDX_MAX 5
458 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
459 #ifdef CONFIG_NO_HZ
460 u64 nohz_stamp;
461 unsigned char in_nohz_recently;
462 #endif
463 unsigned int skip_clock_update;
464
465 /* capture load from *all* tasks on this cpu: */
466 struct load_weight load;
467 unsigned long nr_load_updates;
468 u64 nr_switches;
469
470 struct cfs_rq cfs;
471 struct rt_rq rt;
472
473 #ifdef CONFIG_FAIR_GROUP_SCHED
474 /* list of leaf cfs_rq on this cpu: */
475 struct list_head leaf_cfs_rq_list;
476 #endif
477 #ifdef CONFIG_RT_GROUP_SCHED
478 struct list_head leaf_rt_rq_list;
479 #endif
480
481 /*
482 * This is part of a global counter where only the total sum
483 * over all CPUs matters. A task can increase this counter on
484 * one CPU and if it got migrated afterwards it may decrease
485 * it on another CPU. Always updated under the runqueue lock:
486 */
487 unsigned long nr_uninterruptible;
488
489 struct task_struct *curr, *idle;
490 unsigned long next_balance;
491 struct mm_struct *prev_mm;
492
493 u64 clock;
494
495 atomic_t nr_iowait;
496
497 #ifdef CONFIG_SMP
498 struct root_domain *rd;
499 struct sched_domain *sd;
500
501 unsigned long cpu_power;
502
503 unsigned char idle_at_tick;
504 /* For active balancing */
505 int post_schedule;
506 int active_balance;
507 int push_cpu;
508 struct cpu_stop_work active_balance_work;
509 /* cpu of this runqueue: */
510 int cpu;
511 int online;
512
513 unsigned long avg_load_per_task;
514
515 u64 rt_avg;
516 u64 age_stamp;
517 u64 idle_stamp;
518 u64 avg_idle;
519 #endif
520
521 /* calc_load related fields */
522 unsigned long calc_load_update;
523 long calc_load_active;
524
525 #ifdef CONFIG_SCHED_HRTICK
526 #ifdef CONFIG_SMP
527 int hrtick_csd_pending;
528 struct call_single_data hrtick_csd;
529 #endif
530 struct hrtimer hrtick_timer;
531 #endif
532
533 #ifdef CONFIG_SCHEDSTATS
534 /* latency stats */
535 struct sched_info rq_sched_info;
536 unsigned long long rq_cpu_time;
537 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
538
539 /* sys_sched_yield() stats */
540 unsigned int yld_count;
541
542 /* schedule() stats */
543 unsigned int sched_switch;
544 unsigned int sched_count;
545 unsigned int sched_goidle;
546
547 /* try_to_wake_up() stats */
548 unsigned int ttwu_count;
549 unsigned int ttwu_local;
550
551 /* BKL stats */
552 unsigned int bkl_count;
553 #endif
554 };
555
556 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
557
558 static inline
559 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
560 {
561 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
562
563 /*
564 * A queue event has occurred, and we're going to schedule. In
565 * this case, we can save a useless back to back clock update.
566 */
567 if (test_tsk_need_resched(p))
568 rq->skip_clock_update = 1;
569 }
570
571 static inline int cpu_of(struct rq *rq)
572 {
573 #ifdef CONFIG_SMP
574 return rq->cpu;
575 #else
576 return 0;
577 #endif
578 }
579
580 #define rcu_dereference_check_sched_domain(p) \
581 rcu_dereference_check((p), \
582 rcu_read_lock_sched_held() || \
583 lockdep_is_held(&sched_domains_mutex))
584
585 /*
586 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
587 * See detach_destroy_domains: synchronize_sched for details.
588 *
589 * The domain tree of any CPU may only be accessed from within
590 * preempt-disabled sections.
591 */
592 #define for_each_domain(cpu, __sd) \
593 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
594
595 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
596 #define this_rq() (&__get_cpu_var(runqueues))
597 #define task_rq(p) cpu_rq(task_cpu(p))
598 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
599 #define raw_rq() (&__raw_get_cpu_var(runqueues))
600
601 #ifdef CONFIG_CGROUP_SCHED
602
603 /*
604 * Return the group to which this tasks belongs.
605 *
606 * We use task_subsys_state_check() and extend the RCU verification
607 * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
608 * holds that lock for each task it moves into the cgroup. Therefore
609 * by holding that lock, we pin the task to the current cgroup.
610 */
611 static inline struct task_group *task_group(struct task_struct *p)
612 {
613 struct cgroup_subsys_state *css;
614
615 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
616 lockdep_is_held(&task_rq(p)->lock));
617 return container_of(css, struct task_group, css);
618 }
619
620 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
621 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
622 {
623 #ifdef CONFIG_FAIR_GROUP_SCHED
624 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
625 p->se.parent = task_group(p)->se[cpu];
626 #endif
627
628 #ifdef CONFIG_RT_GROUP_SCHED
629 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
630 p->rt.parent = task_group(p)->rt_se[cpu];
631 #endif
632 }
633
634 #else /* CONFIG_CGROUP_SCHED */
635
636 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
637 static inline struct task_group *task_group(struct task_struct *p)
638 {
639 return NULL;
640 }
641
642 #endif /* CONFIG_CGROUP_SCHED */
643
644 inline void update_rq_clock(struct rq *rq)
645 {
646 if (!rq->skip_clock_update)
647 rq->clock = sched_clock_cpu(cpu_of(rq));
648 }
649
650 /*
651 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
652 */
653 #ifdef CONFIG_SCHED_DEBUG
654 # define const_debug __read_mostly
655 #else
656 # define const_debug static const
657 #endif
658
659 /**
660 * runqueue_is_locked
661 * @cpu: the processor in question.
662 *
663 * Returns true if the current cpu runqueue is locked.
664 * This interface allows printk to be called with the runqueue lock
665 * held and know whether or not it is OK to wake up the klogd.
666 */
667 int runqueue_is_locked(int cpu)
668 {
669 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
670 }
671
672 /*
673 * Debugging: various feature bits
674 */
675
676 #define SCHED_FEAT(name, enabled) \
677 __SCHED_FEAT_##name ,
678
679 enum {
680 #include "sched_features.h"
681 };
682
683 #undef SCHED_FEAT
684
685 #define SCHED_FEAT(name, enabled) \
686 (1UL << __SCHED_FEAT_##name) * enabled |
687
688 const_debug unsigned int sysctl_sched_features =
689 #include "sched_features.h"
690 0;
691
692 #undef SCHED_FEAT
693
694 #ifdef CONFIG_SCHED_DEBUG
695 #define SCHED_FEAT(name, enabled) \
696 #name ,
697
698 static __read_mostly char *sched_feat_names[] = {
699 #include "sched_features.h"
700 NULL
701 };
702
703 #undef SCHED_FEAT
704
705 static int sched_feat_show(struct seq_file *m, void *v)
706 {
707 int i;
708
709 for (i = 0; sched_feat_names[i]; i++) {
710 if (!(sysctl_sched_features & (1UL << i)))
711 seq_puts(m, "NO_");
712 seq_printf(m, "%s ", sched_feat_names[i]);
713 }
714 seq_puts(m, "\n");
715
716 return 0;
717 }
718
719 static ssize_t
720 sched_feat_write(struct file *filp, const char __user *ubuf,
721 size_t cnt, loff_t *ppos)
722 {
723 char buf[64];
724 char *cmp = buf;
725 int neg = 0;
726 int i;
727
728 if (cnt > 63)
729 cnt = 63;
730
731 if (copy_from_user(&buf, ubuf, cnt))
732 return -EFAULT;
733
734 buf[cnt] = 0;
735
736 if (strncmp(buf, "NO_", 3) == 0) {
737 neg = 1;
738 cmp += 3;
739 }
740
741 for (i = 0; sched_feat_names[i]; i++) {
742 int len = strlen(sched_feat_names[i]);
743
744 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
745 if (neg)
746 sysctl_sched_features &= ~(1UL << i);
747 else
748 sysctl_sched_features |= (1UL << i);
749 break;
750 }
751 }
752
753 if (!sched_feat_names[i])
754 return -EINVAL;
755
756 *ppos += cnt;
757
758 return cnt;
759 }
760
761 static int sched_feat_open(struct inode *inode, struct file *filp)
762 {
763 return single_open(filp, sched_feat_show, NULL);
764 }
765
766 static const struct file_operations sched_feat_fops = {
767 .open = sched_feat_open,
768 .write = sched_feat_write,
769 .read = seq_read,
770 .llseek = seq_lseek,
771 .release = single_release,
772 };
773
774 static __init int sched_init_debug(void)
775 {
776 debugfs_create_file("sched_features", 0644, NULL, NULL,
777 &sched_feat_fops);
778
779 return 0;
780 }
781 late_initcall(sched_init_debug);
782
783 #endif
784
785 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
786
787 /*
788 * Number of tasks to iterate in a single balance run.
789 * Limited because this is done with IRQs disabled.
790 */
791 const_debug unsigned int sysctl_sched_nr_migrate = 32;
792
793 /*
794 * ratelimit for updating the group shares.
795 * default: 0.25ms
796 */
797 unsigned int sysctl_sched_shares_ratelimit = 250000;
798 unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
799
800 /*
801 * Inject some fuzzyness into changing the per-cpu group shares
802 * this avoids remote rq-locks at the expense of fairness.
803 * default: 4
804 */
805 unsigned int sysctl_sched_shares_thresh = 4;
806
807 /*
808 * period over which we average the RT time consumption, measured
809 * in ms.
810 *
811 * default: 1s
812 */
813 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
814
815 /*
816 * period over which we measure -rt task cpu usage in us.
817 * default: 1s
818 */
819 unsigned int sysctl_sched_rt_period = 1000000;
820
821 static __read_mostly int scheduler_running;
822
823 /*
824 * part of the period that we allow rt tasks to run in us.
825 * default: 0.95s
826 */
827 int sysctl_sched_rt_runtime = 950000;
828
829 static inline u64 global_rt_period(void)
830 {
831 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
832 }
833
834 static inline u64 global_rt_runtime(void)
835 {
836 if (sysctl_sched_rt_runtime < 0)
837 return RUNTIME_INF;
838
839 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
840 }
841
842 #ifndef prepare_arch_switch
843 # define prepare_arch_switch(next) do { } while (0)
844 #endif
845 #ifndef finish_arch_switch
846 # define finish_arch_switch(prev) do { } while (0)
847 #endif
848
849 static inline int task_current(struct rq *rq, struct task_struct *p)
850 {
851 return rq->curr == p;
852 }
853
854 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
855 static inline int task_running(struct rq *rq, struct task_struct *p)
856 {
857 return task_current(rq, p);
858 }
859
860 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
861 {
862 }
863
864 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
865 {
866 #ifdef CONFIG_DEBUG_SPINLOCK
867 /* this is a valid case when another task releases the spinlock */
868 rq->lock.owner = current;
869 #endif
870 /*
871 * If we are tracking spinlock dependencies then we have to
872 * fix up the runqueue lock - which gets 'carried over' from
873 * prev into current:
874 */
875 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
876
877 raw_spin_unlock_irq(&rq->lock);
878 }
879
880 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
881 static inline int task_running(struct rq *rq, struct task_struct *p)
882 {
883 #ifdef CONFIG_SMP
884 return p->oncpu;
885 #else
886 return task_current(rq, p);
887 #endif
888 }
889
890 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
891 {
892 #ifdef CONFIG_SMP
893 /*
894 * We can optimise this out completely for !SMP, because the
895 * SMP rebalancing from interrupt is the only thing that cares
896 * here.
897 */
898 next->oncpu = 1;
899 #endif
900 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
901 raw_spin_unlock_irq(&rq->lock);
902 #else
903 raw_spin_unlock(&rq->lock);
904 #endif
905 }
906
907 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
908 {
909 #ifdef CONFIG_SMP
910 /*
911 * After ->oncpu is cleared, the task can be moved to a different CPU.
912 * We must ensure this doesn't happen until the switch is completely
913 * finished.
914 */
915 smp_wmb();
916 prev->oncpu = 0;
917 #endif
918 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
919 local_irq_enable();
920 #endif
921 }
922 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
923
924 /*
925 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
926 * against ttwu().
927 */
928 static inline int task_is_waking(struct task_struct *p)
929 {
930 return unlikely(p->state == TASK_WAKING);
931 }
932
933 /*
934 * __task_rq_lock - lock the runqueue a given task resides on.
935 * Must be called interrupts disabled.
936 */
937 static inline struct rq *__task_rq_lock(struct task_struct *p)
938 __acquires(rq->lock)
939 {
940 struct rq *rq;
941
942 for (;;) {
943 rq = task_rq(p);
944 raw_spin_lock(&rq->lock);
945 if (likely(rq == task_rq(p)))
946 return rq;
947 raw_spin_unlock(&rq->lock);
948 }
949 }
950
951 /*
952 * task_rq_lock - lock the runqueue a given task resides on and disable
953 * interrupts. Note the ordering: we can safely lookup the task_rq without
954 * explicitly disabling preemption.
955 */
956 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
957 __acquires(rq->lock)
958 {
959 struct rq *rq;
960
961 for (;;) {
962 local_irq_save(*flags);
963 rq = task_rq(p);
964 raw_spin_lock(&rq->lock);
965 if (likely(rq == task_rq(p)))
966 return rq;
967 raw_spin_unlock_irqrestore(&rq->lock, *flags);
968 }
969 }
970
971 static void __task_rq_unlock(struct rq *rq)
972 __releases(rq->lock)
973 {
974 raw_spin_unlock(&rq->lock);
975 }
976
977 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
978 __releases(rq->lock)
979 {
980 raw_spin_unlock_irqrestore(&rq->lock, *flags);
981 }
982
983 /*
984 * this_rq_lock - lock this runqueue and disable interrupts.
985 */
986 static struct rq *this_rq_lock(void)
987 __acquires(rq->lock)
988 {
989 struct rq *rq;
990
991 local_irq_disable();
992 rq = this_rq();
993 raw_spin_lock(&rq->lock);
994
995 return rq;
996 }
997
998 #ifdef CONFIG_SCHED_HRTICK
999 /*
1000 * Use HR-timers to deliver accurate preemption points.
1001 *
1002 * Its all a bit involved since we cannot program an hrt while holding the
1003 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1004 * reschedule event.
1005 *
1006 * When we get rescheduled we reprogram the hrtick_timer outside of the
1007 * rq->lock.
1008 */
1009
1010 /*
1011 * Use hrtick when:
1012 * - enabled by features
1013 * - hrtimer is actually high res
1014 */
1015 static inline int hrtick_enabled(struct rq *rq)
1016 {
1017 if (!sched_feat(HRTICK))
1018 return 0;
1019 if (!cpu_active(cpu_of(rq)))
1020 return 0;
1021 return hrtimer_is_hres_active(&rq->hrtick_timer);
1022 }
1023
1024 static void hrtick_clear(struct rq *rq)
1025 {
1026 if (hrtimer_active(&rq->hrtick_timer))
1027 hrtimer_cancel(&rq->hrtick_timer);
1028 }
1029
1030 /*
1031 * High-resolution timer tick.
1032 * Runs from hardirq context with interrupts disabled.
1033 */
1034 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1035 {
1036 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1037
1038 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1039
1040 raw_spin_lock(&rq->lock);
1041 update_rq_clock(rq);
1042 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1043 raw_spin_unlock(&rq->lock);
1044
1045 return HRTIMER_NORESTART;
1046 }
1047
1048 #ifdef CONFIG_SMP
1049 /*
1050 * called from hardirq (IPI) context
1051 */
1052 static void __hrtick_start(void *arg)
1053 {
1054 struct rq *rq = arg;
1055
1056 raw_spin_lock(&rq->lock);
1057 hrtimer_restart(&rq->hrtick_timer);
1058 rq->hrtick_csd_pending = 0;
1059 raw_spin_unlock(&rq->lock);
1060 }
1061
1062 /*
1063 * Called to set the hrtick timer state.
1064 *
1065 * called with rq->lock held and irqs disabled
1066 */
1067 static void hrtick_start(struct rq *rq, u64 delay)
1068 {
1069 struct hrtimer *timer = &rq->hrtick_timer;
1070 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1071
1072 hrtimer_set_expires(timer, time);
1073
1074 if (rq == this_rq()) {
1075 hrtimer_restart(timer);
1076 } else if (!rq->hrtick_csd_pending) {
1077 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1078 rq->hrtick_csd_pending = 1;
1079 }
1080 }
1081
1082 static int
1083 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1084 {
1085 int cpu = (int)(long)hcpu;
1086
1087 switch (action) {
1088 case CPU_UP_CANCELED:
1089 case CPU_UP_CANCELED_FROZEN:
1090 case CPU_DOWN_PREPARE:
1091 case CPU_DOWN_PREPARE_FROZEN:
1092 case CPU_DEAD:
1093 case CPU_DEAD_FROZEN:
1094 hrtick_clear(cpu_rq(cpu));
1095 return NOTIFY_OK;
1096 }
1097
1098 return NOTIFY_DONE;
1099 }
1100
1101 static __init void init_hrtick(void)
1102 {
1103 hotcpu_notifier(hotplug_hrtick, 0);
1104 }
1105 #else
1106 /*
1107 * Called to set the hrtick timer state.
1108 *
1109 * called with rq->lock held and irqs disabled
1110 */
1111 static void hrtick_start(struct rq *rq, u64 delay)
1112 {
1113 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1114 HRTIMER_MODE_REL_PINNED, 0);
1115 }
1116
1117 static inline void init_hrtick(void)
1118 {
1119 }
1120 #endif /* CONFIG_SMP */
1121
1122 static void init_rq_hrtick(struct rq *rq)
1123 {
1124 #ifdef CONFIG_SMP
1125 rq->hrtick_csd_pending = 0;
1126
1127 rq->hrtick_csd.flags = 0;
1128 rq->hrtick_csd.func = __hrtick_start;
1129 rq->hrtick_csd.info = rq;
1130 #endif
1131
1132 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1133 rq->hrtick_timer.function = hrtick;
1134 }
1135 #else /* CONFIG_SCHED_HRTICK */
1136 static inline void hrtick_clear(struct rq *rq)
1137 {
1138 }
1139
1140 static inline void init_rq_hrtick(struct rq *rq)
1141 {
1142 }
1143
1144 static inline void init_hrtick(void)
1145 {
1146 }
1147 #endif /* CONFIG_SCHED_HRTICK */
1148
1149 /*
1150 * resched_task - mark a task 'to be rescheduled now'.
1151 *
1152 * On UP this means the setting of the need_resched flag, on SMP it
1153 * might also involve a cross-CPU call to trigger the scheduler on
1154 * the target CPU.
1155 */
1156 #ifdef CONFIG_SMP
1157
1158 #ifndef tsk_is_polling
1159 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1160 #endif
1161
1162 static void resched_task(struct task_struct *p)
1163 {
1164 int cpu;
1165
1166 assert_raw_spin_locked(&task_rq(p)->lock);
1167
1168 if (test_tsk_need_resched(p))
1169 return;
1170
1171 set_tsk_need_resched(p);
1172
1173 cpu = task_cpu(p);
1174 if (cpu == smp_processor_id())
1175 return;
1176
1177 /* NEED_RESCHED must be visible before we test polling */
1178 smp_mb();
1179 if (!tsk_is_polling(p))
1180 smp_send_reschedule(cpu);
1181 }
1182
1183 static void resched_cpu(int cpu)
1184 {
1185 struct rq *rq = cpu_rq(cpu);
1186 unsigned long flags;
1187
1188 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
1189 return;
1190 resched_task(cpu_curr(cpu));
1191 raw_spin_unlock_irqrestore(&rq->lock, flags);
1192 }
1193
1194 #ifdef CONFIG_NO_HZ
1195 /*
1196 * When add_timer_on() enqueues a timer into the timer wheel of an
1197 * idle CPU then this timer might expire before the next timer event
1198 * which is scheduled to wake up that CPU. In case of a completely
1199 * idle system the next event might even be infinite time into the
1200 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1201 * leaves the inner idle loop so the newly added timer is taken into
1202 * account when the CPU goes back to idle and evaluates the timer
1203 * wheel for the next timer event.
1204 */
1205 void wake_up_idle_cpu(int cpu)
1206 {
1207 struct rq *rq = cpu_rq(cpu);
1208
1209 if (cpu == smp_processor_id())
1210 return;
1211
1212 /*
1213 * This is safe, as this function is called with the timer
1214 * wheel base lock of (cpu) held. When the CPU is on the way
1215 * to idle and has not yet set rq->curr to idle then it will
1216 * be serialized on the timer wheel base lock and take the new
1217 * timer into account automatically.
1218 */
1219 if (rq->curr != rq->idle)
1220 return;
1221
1222 /*
1223 * We can set TIF_RESCHED on the idle task of the other CPU
1224 * lockless. The worst case is that the other CPU runs the
1225 * idle task through an additional NOOP schedule()
1226 */
1227 set_tsk_need_resched(rq->idle);
1228
1229 /* NEED_RESCHED must be visible before we test polling */
1230 smp_mb();
1231 if (!tsk_is_polling(rq->idle))
1232 smp_send_reschedule(cpu);
1233 }
1234
1235 int nohz_ratelimit(int cpu)
1236 {
1237 struct rq *rq = cpu_rq(cpu);
1238 u64 diff = rq->clock - rq->nohz_stamp;
1239
1240 rq->nohz_stamp = rq->clock;
1241
1242 return diff < (NSEC_PER_SEC / HZ) >> 1;
1243 }
1244
1245 #endif /* CONFIG_NO_HZ */
1246
1247 static u64 sched_avg_period(void)
1248 {
1249 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1250 }
1251
1252 static void sched_avg_update(struct rq *rq)
1253 {
1254 s64 period = sched_avg_period();
1255
1256 while ((s64)(rq->clock - rq->age_stamp) > period) {
1257 /*
1258 * Inline assembly required to prevent the compiler
1259 * optimising this loop into a divmod call.
1260 * See __iter_div_u64_rem() for another example of this.
1261 */
1262 asm("" : "+rm" (rq->age_stamp));
1263 rq->age_stamp += period;
1264 rq->rt_avg /= 2;
1265 }
1266 }
1267
1268 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1269 {
1270 rq->rt_avg += rt_delta;
1271 sched_avg_update(rq);
1272 }
1273
1274 #else /* !CONFIG_SMP */
1275 static void resched_task(struct task_struct *p)
1276 {
1277 assert_raw_spin_locked(&task_rq(p)->lock);
1278 set_tsk_need_resched(p);
1279 }
1280
1281 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1282 {
1283 }
1284 #endif /* CONFIG_SMP */
1285
1286 #if BITS_PER_LONG == 32
1287 # define WMULT_CONST (~0UL)
1288 #else
1289 # define WMULT_CONST (1UL << 32)
1290 #endif
1291
1292 #define WMULT_SHIFT 32
1293
1294 /*
1295 * Shift right and round:
1296 */
1297 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1298
1299 /*
1300 * delta *= weight / lw
1301 */
1302 static unsigned long
1303 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1304 struct load_weight *lw)
1305 {
1306 u64 tmp;
1307
1308 if (!lw->inv_weight) {
1309 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1310 lw->inv_weight = 1;
1311 else
1312 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1313 / (lw->weight+1);
1314 }
1315
1316 tmp = (u64)delta_exec * weight;
1317 /*
1318 * Check whether we'd overflow the 64-bit multiplication:
1319 */
1320 if (unlikely(tmp > WMULT_CONST))
1321 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1322 WMULT_SHIFT/2);
1323 else
1324 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1325
1326 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1327 }
1328
1329 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1330 {
1331 lw->weight += inc;
1332 lw->inv_weight = 0;
1333 }
1334
1335 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1336 {
1337 lw->weight -= dec;
1338 lw->inv_weight = 0;
1339 }
1340
1341 /*
1342 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1343 * of tasks with abnormal "nice" values across CPUs the contribution that
1344 * each task makes to its run queue's load is weighted according to its
1345 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1346 * scaled version of the new time slice allocation that they receive on time
1347 * slice expiry etc.
1348 */
1349
1350 #define WEIGHT_IDLEPRIO 3
1351 #define WMULT_IDLEPRIO 1431655765
1352
1353 /*
1354 * Nice levels are multiplicative, with a gentle 10% change for every
1355 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1356 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1357 * that remained on nice 0.
1358 *
1359 * The "10% effect" is relative and cumulative: from _any_ nice level,
1360 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1361 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1362 * If a task goes up by ~10% and another task goes down by ~10% then
1363 * the relative distance between them is ~25%.)
1364 */
1365 static const int prio_to_weight[40] = {
1366 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1367 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1368 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1369 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1370 /* 0 */ 1024, 820, 655, 526, 423,
1371 /* 5 */ 335, 272, 215, 172, 137,
1372 /* 10 */ 110, 87, 70, 56, 45,
1373 /* 15 */ 36, 29, 23, 18, 15,
1374 };
1375
1376 /*
1377 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1378 *
1379 * In cases where the weight does not change often, we can use the
1380 * precalculated inverse to speed up arithmetics by turning divisions
1381 * into multiplications:
1382 */
1383 static const u32 prio_to_wmult[40] = {
1384 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1385 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1386 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1387 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1388 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1389 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1390 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1391 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1392 };
1393
1394 /* Time spent by the tasks of the cpu accounting group executing in ... */
1395 enum cpuacct_stat_index {
1396 CPUACCT_STAT_USER, /* ... user mode */
1397 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1398
1399 CPUACCT_STAT_NSTATS,
1400 };
1401
1402 #ifdef CONFIG_CGROUP_CPUACCT
1403 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1404 static void cpuacct_update_stats(struct task_struct *tsk,
1405 enum cpuacct_stat_index idx, cputime_t val);
1406 #else
1407 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1408 static inline void cpuacct_update_stats(struct task_struct *tsk,
1409 enum cpuacct_stat_index idx, cputime_t val) {}
1410 #endif
1411
1412 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1413 {
1414 update_load_add(&rq->load, load);
1415 }
1416
1417 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1418 {
1419 update_load_sub(&rq->load, load);
1420 }
1421
1422 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1423 typedef int (*tg_visitor)(struct task_group *, void *);
1424
1425 /*
1426 * Iterate the full tree, calling @down when first entering a node and @up when
1427 * leaving it for the final time.
1428 */
1429 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1430 {
1431 struct task_group *parent, *child;
1432 int ret;
1433
1434 rcu_read_lock();
1435 parent = &root_task_group;
1436 down:
1437 ret = (*down)(parent, data);
1438 if (ret)
1439 goto out_unlock;
1440 list_for_each_entry_rcu(child, &parent->children, siblings) {
1441 parent = child;
1442 goto down;
1443
1444 up:
1445 continue;
1446 }
1447 ret = (*up)(parent, data);
1448 if (ret)
1449 goto out_unlock;
1450
1451 child = parent;
1452 parent = parent->parent;
1453 if (parent)
1454 goto up;
1455 out_unlock:
1456 rcu_read_unlock();
1457
1458 return ret;
1459 }
1460
1461 static int tg_nop(struct task_group *tg, void *data)
1462 {
1463 return 0;
1464 }
1465 #endif
1466
1467 #ifdef CONFIG_SMP
1468 /* Used instead of source_load when we know the type == 0 */
1469 static unsigned long weighted_cpuload(const int cpu)
1470 {
1471 return cpu_rq(cpu)->load.weight;
1472 }
1473
1474 /*
1475 * Return a low guess at the load of a migration-source cpu weighted
1476 * according to the scheduling class and "nice" value.
1477 *
1478 * We want to under-estimate the load of migration sources, to
1479 * balance conservatively.
1480 */
1481 static unsigned long source_load(int cpu, int type)
1482 {
1483 struct rq *rq = cpu_rq(cpu);
1484 unsigned long total = weighted_cpuload(cpu);
1485
1486 if (type == 0 || !sched_feat(LB_BIAS))
1487 return total;
1488
1489 return min(rq->cpu_load[type-1], total);
1490 }
1491
1492 /*
1493 * Return a high guess at the load of a migration-target cpu weighted
1494 * according to the scheduling class and "nice" value.
1495 */
1496 static unsigned long target_load(int cpu, int type)
1497 {
1498 struct rq *rq = cpu_rq(cpu);
1499 unsigned long total = weighted_cpuload(cpu);
1500
1501 if (type == 0 || !sched_feat(LB_BIAS))
1502 return total;
1503
1504 return max(rq->cpu_load[type-1], total);
1505 }
1506
1507 static unsigned long power_of(int cpu)
1508 {
1509 return cpu_rq(cpu)->cpu_power;
1510 }
1511
1512 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1513
1514 static unsigned long cpu_avg_load_per_task(int cpu)
1515 {
1516 struct rq *rq = cpu_rq(cpu);
1517 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1518
1519 if (nr_running)
1520 rq->avg_load_per_task = rq->load.weight / nr_running;
1521 else
1522 rq->avg_load_per_task = 0;
1523
1524 return rq->avg_load_per_task;
1525 }
1526
1527 #ifdef CONFIG_FAIR_GROUP_SCHED
1528
1529 static __read_mostly unsigned long __percpu *update_shares_data;
1530
1531 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1532
1533 /*
1534 * Calculate and set the cpu's group shares.
1535 */
1536 static void update_group_shares_cpu(struct task_group *tg, int cpu,
1537 unsigned long sd_shares,
1538 unsigned long sd_rq_weight,
1539 unsigned long *usd_rq_weight)
1540 {
1541 unsigned long shares, rq_weight;
1542 int boost = 0;
1543
1544 rq_weight = usd_rq_weight[cpu];
1545 if (!rq_weight) {
1546 boost = 1;
1547 rq_weight = NICE_0_LOAD;
1548 }
1549
1550 /*
1551 * \Sum_j shares_j * rq_weight_i
1552 * shares_i = -----------------------------
1553 * \Sum_j rq_weight_j
1554 */
1555 shares = (sd_shares * rq_weight) / sd_rq_weight;
1556 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1557
1558 if (abs(shares - tg->se[cpu]->load.weight) >
1559 sysctl_sched_shares_thresh) {
1560 struct rq *rq = cpu_rq(cpu);
1561 unsigned long flags;
1562
1563 raw_spin_lock_irqsave(&rq->lock, flags);
1564 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
1565 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1566 __set_se_shares(tg->se[cpu], shares);
1567 raw_spin_unlock_irqrestore(&rq->lock, flags);
1568 }
1569 }
1570
1571 /*
1572 * Re-compute the task group their per cpu shares over the given domain.
1573 * This needs to be done in a bottom-up fashion because the rq weight of a
1574 * parent group depends on the shares of its child groups.
1575 */
1576 static int tg_shares_up(struct task_group *tg, void *data)
1577 {
1578 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
1579 unsigned long *usd_rq_weight;
1580 struct sched_domain *sd = data;
1581 unsigned long flags;
1582 int i;
1583
1584 if (!tg->se[0])
1585 return 0;
1586
1587 local_irq_save(flags);
1588 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1589
1590 for_each_cpu(i, sched_domain_span(sd)) {
1591 weight = tg->cfs_rq[i]->load.weight;
1592 usd_rq_weight[i] = weight;
1593
1594 rq_weight += weight;
1595 /*
1596 * If there are currently no tasks on the cpu pretend there
1597 * is one of average load so that when a new task gets to
1598 * run here it will not get delayed by group starvation.
1599 */
1600 if (!weight)
1601 weight = NICE_0_LOAD;
1602
1603 sum_weight += weight;
1604 shares += tg->cfs_rq[i]->shares;
1605 }
1606
1607 if (!rq_weight)
1608 rq_weight = sum_weight;
1609
1610 if ((!shares && rq_weight) || shares > tg->shares)
1611 shares = tg->shares;
1612
1613 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1614 shares = tg->shares;
1615
1616 for_each_cpu(i, sched_domain_span(sd))
1617 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1618
1619 local_irq_restore(flags);
1620
1621 return 0;
1622 }
1623
1624 /*
1625 * Compute the cpu's hierarchical load factor for each task group.
1626 * This needs to be done in a top-down fashion because the load of a child
1627 * group is a fraction of its parents load.
1628 */
1629 static int tg_load_down(struct task_group *tg, void *data)
1630 {
1631 unsigned long load;
1632 long cpu = (long)data;
1633
1634 if (!tg->parent) {
1635 load = cpu_rq(cpu)->load.weight;
1636 } else {
1637 load = tg->parent->cfs_rq[cpu]->h_load;
1638 load *= tg->cfs_rq[cpu]->shares;
1639 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1640 }
1641
1642 tg->cfs_rq[cpu]->h_load = load;
1643
1644 return 0;
1645 }
1646
1647 static void update_shares(struct sched_domain *sd)
1648 {
1649 s64 elapsed;
1650 u64 now;
1651
1652 if (root_task_group_empty())
1653 return;
1654
1655 now = cpu_clock(raw_smp_processor_id());
1656 elapsed = now - sd->last_update;
1657
1658 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1659 sd->last_update = now;
1660 walk_tg_tree(tg_nop, tg_shares_up, sd);
1661 }
1662 }
1663
1664 static void update_h_load(long cpu)
1665 {
1666 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1667 }
1668
1669 #else
1670
1671 static inline void update_shares(struct sched_domain *sd)
1672 {
1673 }
1674
1675 #endif
1676
1677 #ifdef CONFIG_PREEMPT
1678
1679 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1680
1681 /*
1682 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1683 * way at the expense of forcing extra atomic operations in all
1684 * invocations. This assures that the double_lock is acquired using the
1685 * same underlying policy as the spinlock_t on this architecture, which
1686 * reduces latency compared to the unfair variant below. However, it
1687 * also adds more overhead and therefore may reduce throughput.
1688 */
1689 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1690 __releases(this_rq->lock)
1691 __acquires(busiest->lock)
1692 __acquires(this_rq->lock)
1693 {
1694 raw_spin_unlock(&this_rq->lock);
1695 double_rq_lock(this_rq, busiest);
1696
1697 return 1;
1698 }
1699
1700 #else
1701 /*
1702 * Unfair double_lock_balance: Optimizes throughput at the expense of
1703 * latency by eliminating extra atomic operations when the locks are
1704 * already in proper order on entry. This favors lower cpu-ids and will
1705 * grant the double lock to lower cpus over higher ids under contention,
1706 * regardless of entry order into the function.
1707 */
1708 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1709 __releases(this_rq->lock)
1710 __acquires(busiest->lock)
1711 __acquires(this_rq->lock)
1712 {
1713 int ret = 0;
1714
1715 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1716 if (busiest < this_rq) {
1717 raw_spin_unlock(&this_rq->lock);
1718 raw_spin_lock(&busiest->lock);
1719 raw_spin_lock_nested(&this_rq->lock,
1720 SINGLE_DEPTH_NESTING);
1721 ret = 1;
1722 } else
1723 raw_spin_lock_nested(&busiest->lock,
1724 SINGLE_DEPTH_NESTING);
1725 }
1726 return ret;
1727 }
1728
1729 #endif /* CONFIG_PREEMPT */
1730
1731 /*
1732 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1733 */
1734 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1735 {
1736 if (unlikely(!irqs_disabled())) {
1737 /* printk() doesn't work good under rq->lock */
1738 raw_spin_unlock(&this_rq->lock);
1739 BUG_ON(1);
1740 }
1741
1742 return _double_lock_balance(this_rq, busiest);
1743 }
1744
1745 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1746 __releases(busiest->lock)
1747 {
1748 raw_spin_unlock(&busiest->lock);
1749 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1750 }
1751
1752 /*
1753 * double_rq_lock - safely lock two runqueues
1754 *
1755 * Note this does not disable interrupts like task_rq_lock,
1756 * you need to do so manually before calling.
1757 */
1758 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1759 __acquires(rq1->lock)
1760 __acquires(rq2->lock)
1761 {
1762 BUG_ON(!irqs_disabled());
1763 if (rq1 == rq2) {
1764 raw_spin_lock(&rq1->lock);
1765 __acquire(rq2->lock); /* Fake it out ;) */
1766 } else {
1767 if (rq1 < rq2) {
1768 raw_spin_lock(&rq1->lock);
1769 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1770 } else {
1771 raw_spin_lock(&rq2->lock);
1772 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1773 }
1774 }
1775 }
1776
1777 /*
1778 * double_rq_unlock - safely unlock two runqueues
1779 *
1780 * Note this does not restore interrupts like task_rq_unlock,
1781 * you need to do so manually after calling.
1782 */
1783 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1784 __releases(rq1->lock)
1785 __releases(rq2->lock)
1786 {
1787 raw_spin_unlock(&rq1->lock);
1788 if (rq1 != rq2)
1789 raw_spin_unlock(&rq2->lock);
1790 else
1791 __release(rq2->lock);
1792 }
1793
1794 #endif
1795
1796 #ifdef CONFIG_FAIR_GROUP_SCHED
1797 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1798 {
1799 #ifdef CONFIG_SMP
1800 cfs_rq->shares = shares;
1801 #endif
1802 }
1803 #endif
1804
1805 static void calc_load_account_idle(struct rq *this_rq);
1806 static void update_sysctl(void);
1807 static int get_update_sysctl_factor(void);
1808
1809 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1810 {
1811 set_task_rq(p, cpu);
1812 #ifdef CONFIG_SMP
1813 /*
1814 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1815 * successfuly executed on another CPU. We must ensure that updates of
1816 * per-task data have been completed by this moment.
1817 */
1818 smp_wmb();
1819 task_thread_info(p)->cpu = cpu;
1820 #endif
1821 }
1822
1823 static const struct sched_class rt_sched_class;
1824
1825 #define sched_class_highest (&rt_sched_class)
1826 #define for_each_class(class) \
1827 for (class = sched_class_highest; class; class = class->next)
1828
1829 #include "sched_stats.h"
1830
1831 static void inc_nr_running(struct rq *rq)
1832 {
1833 rq->nr_running++;
1834 }
1835
1836 static void dec_nr_running(struct rq *rq)
1837 {
1838 rq->nr_running--;
1839 }
1840
1841 static void set_load_weight(struct task_struct *p)
1842 {
1843 if (task_has_rt_policy(p)) {
1844 p->se.load.weight = 0;
1845 p->se.load.inv_weight = WMULT_CONST;
1846 return;
1847 }
1848
1849 /*
1850 * SCHED_IDLE tasks get minimal weight:
1851 */
1852 if (p->policy == SCHED_IDLE) {
1853 p->se.load.weight = WEIGHT_IDLEPRIO;
1854 p->se.load.inv_weight = WMULT_IDLEPRIO;
1855 return;
1856 }
1857
1858 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1859 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1860 }
1861
1862 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1863 {
1864 update_rq_clock(rq);
1865 sched_info_queued(p);
1866 p->sched_class->enqueue_task(rq, p, flags);
1867 p->se.on_rq = 1;
1868 }
1869
1870 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1871 {
1872 update_rq_clock(rq);
1873 sched_info_dequeued(p);
1874 p->sched_class->dequeue_task(rq, p, flags);
1875 p->se.on_rq = 0;
1876 }
1877
1878 /*
1879 * activate_task - move a task to the runqueue.
1880 */
1881 static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1882 {
1883 if (task_contributes_to_load(p))
1884 rq->nr_uninterruptible--;
1885
1886 enqueue_task(rq, p, flags);
1887 inc_nr_running(rq);
1888 }
1889
1890 /*
1891 * deactivate_task - remove a task from the runqueue.
1892 */
1893 static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1894 {
1895 if (task_contributes_to_load(p))
1896 rq->nr_uninterruptible++;
1897
1898 dequeue_task(rq, p, flags);
1899 dec_nr_running(rq);
1900 }
1901
1902 #include "sched_idletask.c"
1903 #include "sched_fair.c"
1904 #include "sched_rt.c"
1905 #ifdef CONFIG_SCHED_DEBUG
1906 # include "sched_debug.c"
1907 #endif
1908
1909 /*
1910 * __normal_prio - return the priority that is based on the static prio
1911 */
1912 static inline int __normal_prio(struct task_struct *p)
1913 {
1914 return p->static_prio;
1915 }
1916
1917 /*
1918 * Calculate the expected normal priority: i.e. priority
1919 * without taking RT-inheritance into account. Might be
1920 * boosted by interactivity modifiers. Changes upon fork,
1921 * setprio syscalls, and whenever the interactivity
1922 * estimator recalculates.
1923 */
1924 static inline int normal_prio(struct task_struct *p)
1925 {
1926 int prio;
1927
1928 if (task_has_rt_policy(p))
1929 prio = MAX_RT_PRIO-1 - p->rt_priority;
1930 else
1931 prio = __normal_prio(p);
1932 return prio;
1933 }
1934
1935 /*
1936 * Calculate the current priority, i.e. the priority
1937 * taken into account by the scheduler. This value might
1938 * be boosted by RT tasks, or might be boosted by
1939 * interactivity modifiers. Will be RT if the task got
1940 * RT-boosted. If not then it returns p->normal_prio.
1941 */
1942 static int effective_prio(struct task_struct *p)
1943 {
1944 p->normal_prio = normal_prio(p);
1945 /*
1946 * If we are RT tasks or we were boosted to RT priority,
1947 * keep the priority unchanged. Otherwise, update priority
1948 * to the normal priority:
1949 */
1950 if (!rt_prio(p->prio))
1951 return p->normal_prio;
1952 return p->prio;
1953 }
1954
1955 /**
1956 * task_curr - is this task currently executing on a CPU?
1957 * @p: the task in question.
1958 */
1959 inline int task_curr(const struct task_struct *p)
1960 {
1961 return cpu_curr(task_cpu(p)) == p;
1962 }
1963
1964 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1965 const struct sched_class *prev_class,
1966 int oldprio, int running)
1967 {
1968 if (prev_class != p->sched_class) {
1969 if (prev_class->switched_from)
1970 prev_class->switched_from(rq, p, running);
1971 p->sched_class->switched_to(rq, p, running);
1972 } else
1973 p->sched_class->prio_changed(rq, p, oldprio, running);
1974 }
1975
1976 #ifdef CONFIG_SMP
1977 /*
1978 * Is this task likely cache-hot:
1979 */
1980 static int
1981 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1982 {
1983 s64 delta;
1984
1985 if (p->sched_class != &fair_sched_class)
1986 return 0;
1987
1988 /*
1989 * Buddy candidates are cache hot:
1990 */
1991 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
1992 (&p->se == cfs_rq_of(&p->se)->next ||
1993 &p->se == cfs_rq_of(&p->se)->last))
1994 return 1;
1995
1996 if (sysctl_sched_migration_cost == -1)
1997 return 1;
1998 if (sysctl_sched_migration_cost == 0)
1999 return 0;
2000
2001 delta = now - p->se.exec_start;
2002
2003 return delta < (s64)sysctl_sched_migration_cost;
2004 }
2005
2006 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2007 {
2008 #ifdef CONFIG_SCHED_DEBUG
2009 /*
2010 * We should never call set_task_cpu() on a blocked task,
2011 * ttwu() will sort out the placement.
2012 */
2013 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2014 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2015 #endif
2016
2017 trace_sched_migrate_task(p, new_cpu);
2018
2019 if (task_cpu(p) != new_cpu) {
2020 p->se.nr_migrations++;
2021 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2022 }
2023
2024 __set_task_cpu(p, new_cpu);
2025 }
2026
2027 struct migration_arg {
2028 struct task_struct *task;
2029 int dest_cpu;
2030 };
2031
2032 static int migration_cpu_stop(void *data);
2033
2034 /*
2035 * The task's runqueue lock must be held.
2036 * Returns true if you have to wait for migration thread.
2037 */
2038 static bool migrate_task(struct task_struct *p, int dest_cpu)
2039 {
2040 struct rq *rq = task_rq(p);
2041
2042 /*
2043 * If the task is not on a runqueue (and not running), then
2044 * the next wake-up will properly place the task.
2045 */
2046 return p->se.on_rq || task_running(rq, p);
2047 }
2048
2049 /*
2050 * wait_task_inactive - wait for a thread to unschedule.
2051 *
2052 * If @match_state is nonzero, it's the @p->state value just checked and
2053 * not expected to change. If it changes, i.e. @p might have woken up,
2054 * then return zero. When we succeed in waiting for @p to be off its CPU,
2055 * we return a positive number (its total switch count). If a second call
2056 * a short while later returns the same number, the caller can be sure that
2057 * @p has remained unscheduled the whole time.
2058 *
2059 * The caller must ensure that the task *will* unschedule sometime soon,
2060 * else this function might spin for a *long* time. This function can't
2061 * be called with interrupts off, or it may introduce deadlock with
2062 * smp_call_function() if an IPI is sent by the same process we are
2063 * waiting to become inactive.
2064 */
2065 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2066 {
2067 unsigned long flags;
2068 int running, on_rq;
2069 unsigned long ncsw;
2070 struct rq *rq;
2071
2072 for (;;) {
2073 /*
2074 * We do the initial early heuristics without holding
2075 * any task-queue locks at all. We'll only try to get
2076 * the runqueue lock when things look like they will
2077 * work out!
2078 */
2079 rq = task_rq(p);
2080
2081 /*
2082 * If the task is actively running on another CPU
2083 * still, just relax and busy-wait without holding
2084 * any locks.
2085 *
2086 * NOTE! Since we don't hold any locks, it's not
2087 * even sure that "rq" stays as the right runqueue!
2088 * But we don't care, since "task_running()" will
2089 * return false if the runqueue has changed and p
2090 * is actually now running somewhere else!
2091 */
2092 while (task_running(rq, p)) {
2093 if (match_state && unlikely(p->state != match_state))
2094 return 0;
2095 cpu_relax();
2096 }
2097
2098 /*
2099 * Ok, time to look more closely! We need the rq
2100 * lock now, to be *sure*. If we're wrong, we'll
2101 * just go back and repeat.
2102 */
2103 rq = task_rq_lock(p, &flags);
2104 trace_sched_wait_task(p);
2105 running = task_running(rq, p);
2106 on_rq = p->se.on_rq;
2107 ncsw = 0;
2108 if (!match_state || p->state == match_state)
2109 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2110 task_rq_unlock(rq, &flags);
2111
2112 /*
2113 * If it changed from the expected state, bail out now.
2114 */
2115 if (unlikely(!ncsw))
2116 break;
2117
2118 /*
2119 * Was it really running after all now that we
2120 * checked with the proper locks actually held?
2121 *
2122 * Oops. Go back and try again..
2123 */
2124 if (unlikely(running)) {
2125 cpu_relax();
2126 continue;
2127 }
2128
2129 /*
2130 * It's not enough that it's not actively running,
2131 * it must be off the runqueue _entirely_, and not
2132 * preempted!
2133 *
2134 * So if it was still runnable (but just not actively
2135 * running right now), it's preempted, and we should
2136 * yield - it could be a while.
2137 */
2138 if (unlikely(on_rq)) {
2139 schedule_timeout_uninterruptible(1);
2140 continue;
2141 }
2142
2143 /*
2144 * Ahh, all good. It wasn't running, and it wasn't
2145 * runnable, which means that it will never become
2146 * running in the future either. We're all done!
2147 */
2148 break;
2149 }
2150
2151 return ncsw;
2152 }
2153
2154 /***
2155 * kick_process - kick a running thread to enter/exit the kernel
2156 * @p: the to-be-kicked thread
2157 *
2158 * Cause a process which is running on another CPU to enter
2159 * kernel-mode, without any delay. (to get signals handled.)
2160 *
2161 * NOTE: this function doesnt have to take the runqueue lock,
2162 * because all it wants to ensure is that the remote task enters
2163 * the kernel. If the IPI races and the task has been migrated
2164 * to another CPU then no harm is done and the purpose has been
2165 * achieved as well.
2166 */
2167 void kick_process(struct task_struct *p)
2168 {
2169 int cpu;
2170
2171 preempt_disable();
2172 cpu = task_cpu(p);
2173 if ((cpu != smp_processor_id()) && task_curr(p))
2174 smp_send_reschedule(cpu);
2175 preempt_enable();
2176 }
2177 EXPORT_SYMBOL_GPL(kick_process);
2178 #endif /* CONFIG_SMP */
2179
2180 /**
2181 * task_oncpu_function_call - call a function on the cpu on which a task runs
2182 * @p: the task to evaluate
2183 * @func: the function to be called
2184 * @info: the function call argument
2185 *
2186 * Calls the function @func when the task is currently running. This might
2187 * be on the current CPU, which just calls the function directly
2188 */
2189 void task_oncpu_function_call(struct task_struct *p,
2190 void (*func) (void *info), void *info)
2191 {
2192 int cpu;
2193
2194 preempt_disable();
2195 cpu = task_cpu(p);
2196 if (task_curr(p))
2197 smp_call_function_single(cpu, func, info, 1);
2198 preempt_enable();
2199 }
2200
2201 #ifdef CONFIG_SMP
2202 /*
2203 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2204 */
2205 static int select_fallback_rq(int cpu, struct task_struct *p)
2206 {
2207 int dest_cpu;
2208 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2209
2210 /* Look for allowed, online CPU in same node. */
2211 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2212 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2213 return dest_cpu;
2214
2215 /* Any allowed, online CPU? */
2216 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2217 if (dest_cpu < nr_cpu_ids)
2218 return dest_cpu;
2219
2220 /* No more Mr. Nice Guy. */
2221 if (unlikely(dest_cpu >= nr_cpu_ids)) {
2222 dest_cpu = cpuset_cpus_allowed_fallback(p);
2223 /*
2224 * Don't tell them about moving exiting tasks or
2225 * kernel threads (both mm NULL), since they never
2226 * leave kernel.
2227 */
2228 if (p->mm && printk_ratelimit()) {
2229 printk(KERN_INFO "process %d (%s) no "
2230 "longer affine to cpu%d\n",
2231 task_pid_nr(p), p->comm, cpu);
2232 }
2233 }
2234
2235 return dest_cpu;
2236 }
2237
2238 /*
2239 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
2240 */
2241 static inline
2242 int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
2243 {
2244 int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
2245
2246 /*
2247 * In order not to call set_task_cpu() on a blocking task we need
2248 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2249 * cpu.
2250 *
2251 * Since this is common to all placement strategies, this lives here.
2252 *
2253 * [ this allows ->select_task() to simply return task_cpu(p) and
2254 * not worry about this generic constraint ]
2255 */
2256 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
2257 !cpu_online(cpu)))
2258 cpu = select_fallback_rq(task_cpu(p), p);
2259
2260 return cpu;
2261 }
2262
2263 static void update_avg(u64 *avg, u64 sample)
2264 {
2265 s64 diff = sample - *avg;
2266 *avg += diff >> 3;
2267 }
2268 #endif
2269
2270 /***
2271 * try_to_wake_up - wake up a thread
2272 * @p: the to-be-woken-up thread
2273 * @state: the mask of task states that can be woken
2274 * @sync: do a synchronous wakeup?
2275 *
2276 * Put it on the run-queue if it's not already there. The "current"
2277 * thread is always on the run-queue (except when the actual
2278 * re-schedule is in progress), and as such you're allowed to do
2279 * the simpler "current->state = TASK_RUNNING" to mark yourself
2280 * runnable without the overhead of this.
2281 *
2282 * returns failure only if the task is already active.
2283 */
2284 static int try_to_wake_up(struct task_struct *p, unsigned int state,
2285 int wake_flags)
2286 {
2287 int cpu, orig_cpu, this_cpu, success = 0;
2288 unsigned long flags;
2289 unsigned long en_flags = ENQUEUE_WAKEUP;
2290 struct rq *rq;
2291
2292 this_cpu = get_cpu();
2293
2294 smp_wmb();
2295 rq = task_rq_lock(p, &flags);
2296 if (!(p->state & state))
2297 goto out;
2298
2299 if (p->se.on_rq)
2300 goto out_running;
2301
2302 cpu = task_cpu(p);
2303 orig_cpu = cpu;
2304
2305 #ifdef CONFIG_SMP
2306 if (unlikely(task_running(rq, p)))
2307 goto out_activate;
2308
2309 /*
2310 * In order to handle concurrent wakeups and release the rq->lock
2311 * we put the task in TASK_WAKING state.
2312 *
2313 * First fix up the nr_uninterruptible count:
2314 */
2315 if (task_contributes_to_load(p)) {
2316 if (likely(cpu_online(orig_cpu)))
2317 rq->nr_uninterruptible--;
2318 else
2319 this_rq()->nr_uninterruptible--;
2320 }
2321 p->state = TASK_WAKING;
2322
2323 if (p->sched_class->task_waking) {
2324 p->sched_class->task_waking(rq, p);
2325 en_flags |= ENQUEUE_WAKING;
2326 }
2327
2328 cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
2329 if (cpu != orig_cpu)
2330 set_task_cpu(p, cpu);
2331 __task_rq_unlock(rq);
2332
2333 rq = cpu_rq(cpu);
2334 raw_spin_lock(&rq->lock);
2335
2336 /*
2337 * We migrated the task without holding either rq->lock, however
2338 * since the task is not on the task list itself, nobody else
2339 * will try and migrate the task, hence the rq should match the
2340 * cpu we just moved it to.
2341 */
2342 WARN_ON(task_cpu(p) != cpu);
2343 WARN_ON(p->state != TASK_WAKING);
2344
2345 #ifdef CONFIG_SCHEDSTATS
2346 schedstat_inc(rq, ttwu_count);
2347 if (cpu == this_cpu)
2348 schedstat_inc(rq, ttwu_local);
2349 else {
2350 struct sched_domain *sd;
2351 for_each_domain(this_cpu, sd) {
2352 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2353 schedstat_inc(sd, ttwu_wake_remote);
2354 break;
2355 }
2356 }
2357 }
2358 #endif /* CONFIG_SCHEDSTATS */
2359
2360 out_activate:
2361 #endif /* CONFIG_SMP */
2362 schedstat_inc(p, se.statistics.nr_wakeups);
2363 if (wake_flags & WF_SYNC)
2364 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2365 if (orig_cpu != cpu)
2366 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2367 if (cpu == this_cpu)
2368 schedstat_inc(p, se.statistics.nr_wakeups_local);
2369 else
2370 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2371 activate_task(rq, p, en_flags);
2372 success = 1;
2373
2374 out_running:
2375 trace_sched_wakeup(p, success);
2376 check_preempt_curr(rq, p, wake_flags);
2377
2378 p->state = TASK_RUNNING;
2379 #ifdef CONFIG_SMP
2380 if (p->sched_class->task_woken)
2381 p->sched_class->task_woken(rq, p);
2382
2383 if (unlikely(rq->idle_stamp)) {
2384 u64 delta = rq->clock - rq->idle_stamp;
2385 u64 max = 2*sysctl_sched_migration_cost;
2386
2387 if (delta > max)
2388 rq->avg_idle = max;
2389 else
2390 update_avg(&rq->avg_idle, delta);
2391 rq->idle_stamp = 0;
2392 }
2393 #endif
2394 out:
2395 task_rq_unlock(rq, &flags);
2396 put_cpu();
2397
2398 return success;
2399 }
2400
2401 /**
2402 * wake_up_process - Wake up a specific process
2403 * @p: The process to be woken up.
2404 *
2405 * Attempt to wake up the nominated process and move it to the set of runnable
2406 * processes. Returns 1 if the process was woken up, 0 if it was already
2407 * running.
2408 *
2409 * It may be assumed that this function implies a write memory barrier before
2410 * changing the task state if and only if any tasks are woken up.
2411 */
2412 int wake_up_process(struct task_struct *p)
2413 {
2414 return try_to_wake_up(p, TASK_ALL, 0);
2415 }
2416 EXPORT_SYMBOL(wake_up_process);
2417
2418 int wake_up_state(struct task_struct *p, unsigned int state)
2419 {
2420 return try_to_wake_up(p, state, 0);
2421 }
2422
2423 /*
2424 * Perform scheduler related setup for a newly forked process p.
2425 * p is forked by current.
2426 *
2427 * __sched_fork() is basic setup used by init_idle() too:
2428 */
2429 static void __sched_fork(struct task_struct *p)
2430 {
2431 p->se.exec_start = 0;
2432 p->se.sum_exec_runtime = 0;
2433 p->se.prev_sum_exec_runtime = 0;
2434 p->se.nr_migrations = 0;
2435
2436 #ifdef CONFIG_SCHEDSTATS
2437 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2438 #endif
2439
2440 INIT_LIST_HEAD(&p->rt.run_list);
2441 p->se.on_rq = 0;
2442 INIT_LIST_HEAD(&p->se.group_node);
2443
2444 #ifdef CONFIG_PREEMPT_NOTIFIERS
2445 INIT_HLIST_HEAD(&p->preempt_notifiers);
2446 #endif
2447 }
2448
2449 /*
2450 * fork()/clone()-time setup:
2451 */
2452 void sched_fork(struct task_struct *p, int clone_flags)
2453 {
2454 int cpu = get_cpu();
2455
2456 __sched_fork(p);
2457 /*
2458 * We mark the process as running here. This guarantees that
2459 * nobody will actually run it, and a signal or other external
2460 * event cannot wake it up and insert it on the runqueue either.
2461 */
2462 p->state = TASK_RUNNING;
2463
2464 /*
2465 * Revert to default priority/policy on fork if requested.
2466 */
2467 if (unlikely(p->sched_reset_on_fork)) {
2468 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2469 p->policy = SCHED_NORMAL;
2470 p->normal_prio = p->static_prio;
2471 }
2472
2473 if (PRIO_TO_NICE(p->static_prio) < 0) {
2474 p->static_prio = NICE_TO_PRIO(0);
2475 p->normal_prio = p->static_prio;
2476 set_load_weight(p);
2477 }
2478
2479 /*
2480 * We don't need the reset flag anymore after the fork. It has
2481 * fulfilled its duty:
2482 */
2483 p->sched_reset_on_fork = 0;
2484 }
2485
2486 /*
2487 * Make sure we do not leak PI boosting priority to the child.
2488 */
2489 p->prio = current->normal_prio;
2490
2491 if (!rt_prio(p->prio))
2492 p->sched_class = &fair_sched_class;
2493
2494 if (p->sched_class->task_fork)
2495 p->sched_class->task_fork(p);
2496
2497 set_task_cpu(p, cpu);
2498
2499 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2500 if (likely(sched_info_on()))
2501 memset(&p->sched_info, 0, sizeof(p->sched_info));
2502 #endif
2503 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2504 p->oncpu = 0;
2505 #endif
2506 #ifdef CONFIG_PREEMPT
2507 /* Want to start with kernel preemption disabled. */
2508 task_thread_info(p)->preempt_count = 1;
2509 #endif
2510 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2511
2512 put_cpu();
2513 }
2514
2515 /*
2516 * wake_up_new_task - wake up a newly created task for the first time.
2517 *
2518 * This function will do some initial scheduler statistics housekeeping
2519 * that must be done for every newly created context, then puts the task
2520 * on the runqueue and wakes it.
2521 */
2522 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2523 {
2524 unsigned long flags;
2525 struct rq *rq;
2526 int cpu __maybe_unused = get_cpu();
2527
2528 #ifdef CONFIG_SMP
2529 rq = task_rq_lock(p, &flags);
2530 p->state = TASK_WAKING;
2531
2532 /*
2533 * Fork balancing, do it here and not earlier because:
2534 * - cpus_allowed can change in the fork path
2535 * - any previously selected cpu might disappear through hotplug
2536 *
2537 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2538 * without people poking at ->cpus_allowed.
2539 */
2540 cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
2541 set_task_cpu(p, cpu);
2542
2543 p->state = TASK_RUNNING;
2544 task_rq_unlock(rq, &flags);
2545 #endif
2546
2547 rq = task_rq_lock(p, &flags);
2548 activate_task(rq, p, 0);
2549 trace_sched_wakeup_new(p, 1);
2550 check_preempt_curr(rq, p, WF_FORK);
2551 #ifdef CONFIG_SMP
2552 if (p->sched_class->task_woken)
2553 p->sched_class->task_woken(rq, p);
2554 #endif
2555 task_rq_unlock(rq, &flags);
2556 put_cpu();
2557 }
2558
2559 #ifdef CONFIG_PREEMPT_NOTIFIERS
2560
2561 /**
2562 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2563 * @notifier: notifier struct to register
2564 */
2565 void preempt_notifier_register(struct preempt_notifier *notifier)
2566 {
2567 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2568 }
2569 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2570
2571 /**
2572 * preempt_notifier_unregister - no longer interested in preemption notifications
2573 * @notifier: notifier struct to unregister
2574 *
2575 * This is safe to call from within a preemption notifier.
2576 */
2577 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2578 {
2579 hlist_del(&notifier->link);
2580 }
2581 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2582
2583 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2584 {
2585 struct preempt_notifier *notifier;
2586 struct hlist_node *node;
2587
2588 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2589 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2590 }
2591
2592 static void
2593 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2594 struct task_struct *next)
2595 {
2596 struct preempt_notifier *notifier;
2597 struct hlist_node *node;
2598
2599 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2600 notifier->ops->sched_out(notifier, next);
2601 }
2602
2603 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2604
2605 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2606 {
2607 }
2608
2609 static void
2610 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2611 struct task_struct *next)
2612 {
2613 }
2614
2615 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2616
2617 /**
2618 * prepare_task_switch - prepare to switch tasks
2619 * @rq: the runqueue preparing to switch
2620 * @prev: the current task that is being switched out
2621 * @next: the task we are going to switch to.
2622 *
2623 * This is called with the rq lock held and interrupts off. It must
2624 * be paired with a subsequent finish_task_switch after the context
2625 * switch.
2626 *
2627 * prepare_task_switch sets up locking and calls architecture specific
2628 * hooks.
2629 */
2630 static inline void
2631 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2632 struct task_struct *next)
2633 {
2634 fire_sched_out_preempt_notifiers(prev, next);
2635 prepare_lock_switch(rq, next);
2636 prepare_arch_switch(next);
2637 }
2638
2639 /**
2640 * finish_task_switch - clean up after a task-switch
2641 * @rq: runqueue associated with task-switch
2642 * @prev: the thread we just switched away from.
2643 *
2644 * finish_task_switch must be called after the context switch, paired
2645 * with a prepare_task_switch call before the context switch.
2646 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2647 * and do any other architecture-specific cleanup actions.
2648 *
2649 * Note that we may have delayed dropping an mm in context_switch(). If
2650 * so, we finish that here outside of the runqueue lock. (Doing it
2651 * with the lock held can cause deadlocks; see schedule() for
2652 * details.)
2653 */
2654 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2655 __releases(rq->lock)
2656 {
2657 struct mm_struct *mm = rq->prev_mm;
2658 long prev_state;
2659
2660 rq->prev_mm = NULL;
2661
2662 /*
2663 * A task struct has one reference for the use as "current".
2664 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2665 * schedule one last time. The schedule call will never return, and
2666 * the scheduled task must drop that reference.
2667 * The test for TASK_DEAD must occur while the runqueue locks are
2668 * still held, otherwise prev could be scheduled on another cpu, die
2669 * there before we look at prev->state, and then the reference would
2670 * be dropped twice.
2671 * Manfred Spraul <manfred@colorfullife.com>
2672 */
2673 prev_state = prev->state;
2674 finish_arch_switch(prev);
2675 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2676 local_irq_disable();
2677 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2678 perf_event_task_sched_in(current);
2679 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2680 local_irq_enable();
2681 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2682 finish_lock_switch(rq, prev);
2683
2684 fire_sched_in_preempt_notifiers(current);
2685 if (mm)
2686 mmdrop(mm);
2687 if (unlikely(prev_state == TASK_DEAD)) {
2688 /*
2689 * Remove function-return probe instances associated with this
2690 * task and put them back on the free list.
2691 */
2692 kprobe_flush_task(prev);
2693 put_task_struct(prev);
2694 }
2695 }
2696
2697 #ifdef CONFIG_SMP
2698
2699 /* assumes rq->lock is held */
2700 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2701 {
2702 if (prev->sched_class->pre_schedule)
2703 prev->sched_class->pre_schedule(rq, prev);
2704 }
2705
2706 /* rq->lock is NOT held, but preemption is disabled */
2707 static inline void post_schedule(struct rq *rq)
2708 {
2709 if (rq->post_schedule) {
2710 unsigned long flags;
2711
2712 raw_spin_lock_irqsave(&rq->lock, flags);
2713 if (rq->curr->sched_class->post_schedule)
2714 rq->curr->sched_class->post_schedule(rq);
2715 raw_spin_unlock_irqrestore(&rq->lock, flags);
2716
2717 rq->post_schedule = 0;
2718 }
2719 }
2720
2721 #else
2722
2723 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2724 {
2725 }
2726
2727 static inline void post_schedule(struct rq *rq)
2728 {
2729 }
2730
2731 #endif
2732
2733 /**
2734 * schedule_tail - first thing a freshly forked thread must call.
2735 * @prev: the thread we just switched away from.
2736 */
2737 asmlinkage void schedule_tail(struct task_struct *prev)
2738 __releases(rq->lock)
2739 {
2740 struct rq *rq = this_rq();
2741
2742 finish_task_switch(rq, prev);
2743
2744 /*
2745 * FIXME: do we need to worry about rq being invalidated by the
2746 * task_switch?
2747 */
2748 post_schedule(rq);
2749
2750 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2751 /* In this case, finish_task_switch does not reenable preemption */
2752 preempt_enable();
2753 #endif
2754 if (current->set_child_tid)
2755 put_user(task_pid_vnr(current), current->set_child_tid);
2756 }
2757
2758 /*
2759 * context_switch - switch to the new MM and the new
2760 * thread's register state.
2761 */
2762 static inline void
2763 context_switch(struct rq *rq, struct task_struct *prev,
2764 struct task_struct *next)
2765 {
2766 struct mm_struct *mm, *oldmm;
2767
2768 prepare_task_switch(rq, prev, next);
2769 trace_sched_switch(prev, next);
2770 mm = next->mm;
2771 oldmm = prev->active_mm;
2772 /*
2773 * For paravirt, this is coupled with an exit in switch_to to
2774 * combine the page table reload and the switch backend into
2775 * one hypercall.
2776 */
2777 arch_start_context_switch(prev);
2778
2779 if (likely(!mm)) {
2780 next->active_mm = oldmm;
2781 atomic_inc(&oldmm->mm_count);
2782 enter_lazy_tlb(oldmm, next);
2783 } else
2784 switch_mm(oldmm, mm, next);
2785
2786 if (likely(!prev->mm)) {
2787 prev->active_mm = NULL;
2788 rq->prev_mm = oldmm;
2789 }
2790 /*
2791 * Since the runqueue lock will be released by the next
2792 * task (which is an invalid locking op but in the case
2793 * of the scheduler it's an obvious special-case), so we
2794 * do an early lockdep release here:
2795 */
2796 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2797 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2798 #endif
2799
2800 /* Here we just switch the register state and the stack. */
2801 switch_to(prev, next, prev);
2802
2803 barrier();
2804 /*
2805 * this_rq must be evaluated again because prev may have moved
2806 * CPUs since it called schedule(), thus the 'rq' on its stack
2807 * frame will be invalid.
2808 */
2809 finish_task_switch(this_rq(), prev);
2810 }
2811
2812 /*
2813 * nr_running, nr_uninterruptible and nr_context_switches:
2814 *
2815 * externally visible scheduler statistics: current number of runnable
2816 * threads, current number of uninterruptible-sleeping threads, total
2817 * number of context switches performed since bootup.
2818 */
2819 unsigned long nr_running(void)
2820 {
2821 unsigned long i, sum = 0;
2822
2823 for_each_online_cpu(i)
2824 sum += cpu_rq(i)->nr_running;
2825
2826 return sum;
2827 }
2828
2829 unsigned long nr_uninterruptible(void)
2830 {
2831 unsigned long i, sum = 0;
2832
2833 for_each_possible_cpu(i)
2834 sum += cpu_rq(i)->nr_uninterruptible;
2835
2836 /*
2837 * Since we read the counters lockless, it might be slightly
2838 * inaccurate. Do not allow it to go below zero though:
2839 */
2840 if (unlikely((long)sum < 0))
2841 sum = 0;
2842
2843 return sum;
2844 }
2845
2846 unsigned long long nr_context_switches(void)
2847 {
2848 int i;
2849 unsigned long long sum = 0;
2850
2851 for_each_possible_cpu(i)
2852 sum += cpu_rq(i)->nr_switches;
2853
2854 return sum;
2855 }
2856
2857 unsigned long nr_iowait(void)
2858 {
2859 unsigned long i, sum = 0;
2860
2861 for_each_possible_cpu(i)
2862 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2863
2864 return sum;
2865 }
2866
2867 unsigned long nr_iowait_cpu(void)
2868 {
2869 struct rq *this = this_rq();
2870 return atomic_read(&this->nr_iowait);
2871 }
2872
2873 unsigned long this_cpu_load(void)
2874 {
2875 struct rq *this = this_rq();
2876 return this->cpu_load[0];
2877 }
2878
2879
2880 /* Variables and functions for calc_load */
2881 static atomic_long_t calc_load_tasks;
2882 static unsigned long calc_load_update;
2883 unsigned long avenrun[3];
2884 EXPORT_SYMBOL(avenrun);
2885
2886 static long calc_load_fold_active(struct rq *this_rq)
2887 {
2888 long nr_active, delta = 0;
2889
2890 nr_active = this_rq->nr_running;
2891 nr_active += (long) this_rq->nr_uninterruptible;
2892
2893 if (nr_active != this_rq->calc_load_active) {
2894 delta = nr_active - this_rq->calc_load_active;
2895 this_rq->calc_load_active = nr_active;
2896 }
2897
2898 return delta;
2899 }
2900
2901 #ifdef CONFIG_NO_HZ
2902 /*
2903 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
2904 *
2905 * When making the ILB scale, we should try to pull this in as well.
2906 */
2907 static atomic_long_t calc_load_tasks_idle;
2908
2909 static void calc_load_account_idle(struct rq *this_rq)
2910 {
2911 long delta;
2912
2913 delta = calc_load_fold_active(this_rq);
2914 if (delta)
2915 atomic_long_add(delta, &calc_load_tasks_idle);
2916 }
2917
2918 static long calc_load_fold_idle(void)
2919 {
2920 long delta = 0;
2921
2922 /*
2923 * Its got a race, we don't care...
2924 */
2925 if (atomic_long_read(&calc_load_tasks_idle))
2926 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
2927
2928 return delta;
2929 }
2930 #else
2931 static void calc_load_account_idle(struct rq *this_rq)
2932 {
2933 }
2934
2935 static inline long calc_load_fold_idle(void)
2936 {
2937 return 0;
2938 }
2939 #endif
2940
2941 /**
2942 * get_avenrun - get the load average array
2943 * @loads: pointer to dest load array
2944 * @offset: offset to add
2945 * @shift: shift count to shift the result left
2946 *
2947 * These values are estimates at best, so no need for locking.
2948 */
2949 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2950 {
2951 loads[0] = (avenrun[0] + offset) << shift;
2952 loads[1] = (avenrun[1] + offset) << shift;
2953 loads[2] = (avenrun[2] + offset) << shift;
2954 }
2955
2956 static unsigned long
2957 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2958 {
2959 load *= exp;
2960 load += active * (FIXED_1 - exp);
2961 return load >> FSHIFT;
2962 }
2963
2964 /*
2965 * calc_load - update the avenrun load estimates 10 ticks after the
2966 * CPUs have updated calc_load_tasks.
2967 */
2968 void calc_global_load(void)
2969 {
2970 unsigned long upd = calc_load_update + 10;
2971 long active;
2972
2973 if (time_before(jiffies, upd))
2974 return;
2975
2976 active = atomic_long_read(&calc_load_tasks);
2977 active = active > 0 ? active * FIXED_1 : 0;
2978
2979 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2980 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2981 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2982
2983 calc_load_update += LOAD_FREQ;
2984 }
2985
2986 /*
2987 * Called from update_cpu_load() to periodically update this CPU's
2988 * active count.
2989 */
2990 static void calc_load_account_active(struct rq *this_rq)
2991 {
2992 long delta;
2993
2994 if (time_before(jiffies, this_rq->calc_load_update))
2995 return;
2996
2997 delta = calc_load_fold_active(this_rq);
2998 delta += calc_load_fold_idle();
2999 if (delta)
3000 atomic_long_add(delta, &calc_load_tasks);
3001
3002 this_rq->calc_load_update += LOAD_FREQ;
3003 }
3004
3005 /*
3006 * Update rq->cpu_load[] statistics. This function is usually called every
3007 * scheduler tick (TICK_NSEC).
3008 */
3009 static void update_cpu_load(struct rq *this_rq)
3010 {
3011 unsigned long this_load = this_rq->load.weight;
3012 int i, scale;
3013
3014 this_rq->nr_load_updates++;
3015
3016 /* Update our load: */
3017 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3018 unsigned long old_load, new_load;
3019
3020 /* scale is effectively 1 << i now, and >> i divides by scale */
3021
3022 old_load = this_rq->cpu_load[i];
3023 new_load = this_load;
3024 /*
3025 * Round up the averaging division if load is increasing. This
3026 * prevents us from getting stuck on 9 if the load is 10, for
3027 * example.
3028 */
3029 if (new_load > old_load)
3030 new_load += scale-1;
3031 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3032 }
3033
3034 calc_load_account_active(this_rq);
3035 }
3036
3037 #ifdef CONFIG_SMP
3038
3039 /*
3040 * sched_exec - execve() is a valuable balancing opportunity, because at
3041 * this point the task has the smallest effective memory and cache footprint.
3042 */
3043 void sched_exec(void)
3044 {
3045 struct task_struct *p = current;
3046 unsigned long flags;
3047 struct rq *rq;
3048 int dest_cpu;
3049
3050 rq = task_rq_lock(p, &flags);
3051 dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
3052 if (dest_cpu == smp_processor_id())
3053 goto unlock;
3054
3055 /*
3056 * select_task_rq() can race against ->cpus_allowed
3057 */
3058 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
3059 likely(cpu_active(dest_cpu)) && migrate_task(p, dest_cpu)) {
3060 struct migration_arg arg = { p, dest_cpu };
3061
3062 task_rq_unlock(rq, &flags);
3063 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
3064 return;
3065 }
3066 unlock:
3067 task_rq_unlock(rq, &flags);
3068 }
3069
3070 #endif
3071
3072 DEFINE_PER_CPU(struct kernel_stat, kstat);
3073
3074 EXPORT_PER_CPU_SYMBOL(kstat);
3075
3076 /*
3077 * Return any ns on the sched_clock that have not yet been accounted in
3078 * @p in case that task is currently running.
3079 *
3080 * Called with task_rq_lock() held on @rq.
3081 */
3082 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3083 {
3084 u64 ns = 0;
3085
3086 if (task_current(rq, p)) {
3087 update_rq_clock(rq);
3088 ns = rq->clock - p->se.exec_start;
3089 if ((s64)ns < 0)
3090 ns = 0;
3091 }
3092
3093 return ns;
3094 }
3095
3096 unsigned long long task_delta_exec(struct task_struct *p)
3097 {
3098 unsigned long flags;
3099 struct rq *rq;
3100 u64 ns = 0;
3101
3102 rq = task_rq_lock(p, &flags);
3103 ns = do_task_delta_exec(p, rq);
3104 task_rq_unlock(rq, &flags);
3105
3106 return ns;
3107 }
3108
3109 /*
3110 * Return accounted runtime for the task.
3111 * In case the task is currently running, return the runtime plus current's
3112 * pending runtime that have not been accounted yet.
3113 */
3114 unsigned long long task_sched_runtime(struct task_struct *p)
3115 {
3116 unsigned long flags;
3117 struct rq *rq;
3118 u64 ns = 0;
3119
3120 rq = task_rq_lock(p, &flags);
3121 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3122 task_rq_unlock(rq, &flags);
3123
3124 return ns;
3125 }
3126
3127 /*
3128 * Return sum_exec_runtime for the thread group.
3129 * In case the task is currently running, return the sum plus current's
3130 * pending runtime that have not been accounted yet.
3131 *
3132 * Note that the thread group might have other running tasks as well,
3133 * so the return value not includes other pending runtime that other
3134 * running tasks might have.
3135 */
3136 unsigned long long thread_group_sched_runtime(struct task_struct *p)
3137 {
3138 struct task_cputime totals;
3139 unsigned long flags;
3140 struct rq *rq;
3141 u64 ns;
3142
3143 rq = task_rq_lock(p, &flags);
3144 thread_group_cputime(p, &totals);
3145 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3146 task_rq_unlock(rq, &flags);
3147
3148 return ns;
3149 }
3150
3151 /*
3152 * Account user cpu time to a process.
3153 * @p: the process that the cpu time gets accounted to
3154 * @cputime: the cpu time spent in user space since the last update
3155 * @cputime_scaled: cputime scaled by cpu frequency
3156 */
3157 void account_user_time(struct task_struct *p, cputime_t cputime,
3158 cputime_t cputime_scaled)
3159 {
3160 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3161 cputime64_t tmp;
3162
3163 /* Add user time to process. */
3164 p->utime = cputime_add(p->utime, cputime);
3165 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3166 account_group_user_time(p, cputime);
3167
3168 /* Add user time to cpustat. */
3169 tmp = cputime_to_cputime64(cputime);
3170 if (TASK_NICE(p) > 0)
3171 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3172 else
3173 cpustat->user = cputime64_add(cpustat->user, tmp);
3174
3175 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3176 /* Account for user time used */
3177 acct_update_integrals(p);
3178 }
3179
3180 /*
3181 * Account guest cpu time to a process.
3182 * @p: the process that the cpu time gets accounted to
3183 * @cputime: the cpu time spent in virtual machine since the last update
3184 * @cputime_scaled: cputime scaled by cpu frequency
3185 */
3186 static void account_guest_time(struct task_struct *p, cputime_t cputime,
3187 cputime_t cputime_scaled)
3188 {
3189 cputime64_t tmp;
3190 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3191
3192 tmp = cputime_to_cputime64(cputime);
3193
3194 /* Add guest time to process. */
3195 p->utime = cputime_add(p->utime, cputime);
3196 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3197 account_group_user_time(p, cputime);
3198 p->gtime = cputime_add(p->gtime, cputime);
3199
3200 /* Add guest time to cpustat. */
3201 if (TASK_NICE(p) > 0) {
3202 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3203 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3204 } else {
3205 cpustat->user = cputime64_add(cpustat->user, tmp);
3206 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3207 }
3208 }
3209
3210 /*
3211 * Account system cpu time to a process.
3212 * @p: the process that the cpu time gets accounted to
3213 * @hardirq_offset: the offset to subtract from hardirq_count()
3214 * @cputime: the cpu time spent in kernel space since the last update
3215 * @cputime_scaled: cputime scaled by cpu frequency
3216 */
3217 void account_system_time(struct task_struct *p, int hardirq_offset,
3218 cputime_t cputime, cputime_t cputime_scaled)
3219 {
3220 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3221 cputime64_t tmp;
3222
3223 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3224 account_guest_time(p, cputime, cputime_scaled);
3225 return;
3226 }
3227
3228 /* Add system time to process. */
3229 p->stime = cputime_add(p->stime, cputime);
3230 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3231 account_group_system_time(p, cputime);
3232
3233 /* Add system time to cpustat. */
3234 tmp = cputime_to_cputime64(cputime);
3235 if (hardirq_count() - hardirq_offset)
3236 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3237 else if (softirq_count())
3238 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3239 else
3240 cpustat->system = cputime64_add(cpustat->system, tmp);
3241
3242 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3243
3244 /* Account for system time used */
3245 acct_update_integrals(p);
3246 }
3247
3248 /*
3249 * Account for involuntary wait time.
3250 * @steal: the cpu time spent in involuntary wait
3251 */
3252 void account_steal_time(cputime_t cputime)
3253 {
3254 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3255 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3256
3257 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3258 }
3259
3260 /*
3261 * Account for idle time.
3262 * @cputime: the cpu time spent in idle wait
3263 */
3264 void account_idle_time(cputime_t cputime)
3265 {
3266 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3267 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3268 struct rq *rq = this_rq();
3269
3270 if (atomic_read(&rq->nr_iowait) > 0)
3271 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3272 else
3273 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
3274 }
3275
3276 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
3277
3278 /*
3279 * Account a single tick of cpu time.
3280 * @p: the process that the cpu time gets accounted to
3281 * @user_tick: indicates if the tick is a user or a system tick
3282 */
3283 void account_process_tick(struct task_struct *p, int user_tick)
3284 {
3285 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3286 struct rq *rq = this_rq();
3287
3288 if (user_tick)
3289 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3290 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3291 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3292 one_jiffy_scaled);
3293 else
3294 account_idle_time(cputime_one_jiffy);
3295 }
3296
3297 /*
3298 * Account multiple ticks of steal time.
3299 * @p: the process from which the cpu time has been stolen
3300 * @ticks: number of stolen ticks
3301 */
3302 void account_steal_ticks(unsigned long ticks)
3303 {
3304 account_steal_time(jiffies_to_cputime(ticks));
3305 }
3306
3307 /*
3308 * Account multiple ticks of idle time.
3309 * @ticks: number of stolen ticks
3310 */
3311 void account_idle_ticks(unsigned long ticks)
3312 {
3313 account_idle_time(jiffies_to_cputime(ticks));
3314 }
3315
3316 #endif
3317
3318 /*
3319 * Use precise platform statistics if available:
3320 */
3321 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
3322 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3323 {
3324 *ut = p->utime;
3325 *st = p->stime;
3326 }
3327
3328 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3329 {
3330 struct task_cputime cputime;
3331
3332 thread_group_cputime(p, &cputime);
3333
3334 *ut = cputime.utime;
3335 *st = cputime.stime;
3336 }
3337 #else
3338
3339 #ifndef nsecs_to_cputime
3340 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
3341 #endif
3342
3343 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3344 {
3345 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
3346
3347 /*
3348 * Use CFS's precise accounting:
3349 */
3350 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3351
3352 if (total) {
3353 u64 temp;
3354
3355 temp = (u64)(rtime * utime);
3356 do_div(temp, total);
3357 utime = (cputime_t)temp;
3358 } else
3359 utime = rtime;
3360
3361 /*
3362 * Compare with previous values, to keep monotonicity:
3363 */
3364 p->prev_utime = max(p->prev_utime, utime);
3365 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
3366
3367 *ut = p->prev_utime;
3368 *st = p->prev_stime;
3369 }
3370
3371 /*
3372 * Must be called with siglock held.
3373 */
3374 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3375 {
3376 struct signal_struct *sig = p->signal;
3377 struct task_cputime cputime;
3378 cputime_t rtime, utime, total;
3379
3380 thread_group_cputime(p, &cputime);
3381
3382 total = cputime_add(cputime.utime, cputime.stime);
3383 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3384
3385 if (total) {
3386 u64 temp;
3387
3388 temp = (u64)(rtime * cputime.utime);
3389 do_div(temp, total);
3390 utime = (cputime_t)temp;
3391 } else
3392 utime = rtime;
3393
3394 sig->prev_utime = max(sig->prev_utime, utime);
3395 sig->prev_stime = max(sig->prev_stime,
3396 cputime_sub(rtime, sig->prev_utime));
3397
3398 *ut = sig->prev_utime;
3399 *st = sig->prev_stime;
3400 }
3401 #endif
3402
3403 /*
3404 * This function gets called by the timer code, with HZ frequency.
3405 * We call it with interrupts disabled.
3406 *
3407 * It also gets called by the fork code, when changing the parent's
3408 * timeslices.
3409 */
3410 void scheduler_tick(void)
3411 {
3412 int cpu = smp_processor_id();
3413 struct rq *rq = cpu_rq(cpu);
3414 struct task_struct *curr = rq->curr;
3415
3416 sched_clock_tick();
3417
3418 raw_spin_lock(&rq->lock);
3419 update_rq_clock(rq);
3420 update_cpu_load(rq);
3421 curr->sched_class->task_tick(rq, curr, 0);
3422 raw_spin_unlock(&rq->lock);
3423
3424 perf_event_task_tick(curr);
3425
3426 #ifdef CONFIG_SMP
3427 rq->idle_at_tick = idle_cpu(cpu);
3428 trigger_load_balance(rq, cpu);
3429 #endif
3430 }
3431
3432 notrace unsigned long get_parent_ip(unsigned long addr)
3433 {
3434 if (in_lock_functions(addr)) {
3435 addr = CALLER_ADDR2;
3436 if (in_lock_functions(addr))
3437 addr = CALLER_ADDR3;
3438 }
3439 return addr;
3440 }
3441
3442 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3443 defined(CONFIG_PREEMPT_TRACER))
3444
3445 void __kprobes add_preempt_count(int val)
3446 {
3447 #ifdef CONFIG_DEBUG_PREEMPT
3448 /*
3449 * Underflow?
3450 */
3451 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3452 return;
3453 #endif
3454 preempt_count() += val;
3455 #ifdef CONFIG_DEBUG_PREEMPT
3456 /*
3457 * Spinlock count overflowing soon?
3458 */
3459 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3460 PREEMPT_MASK - 10);
3461 #endif
3462 if (preempt_count() == val)
3463 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3464 }
3465 EXPORT_SYMBOL(add_preempt_count);
3466
3467 void __kprobes sub_preempt_count(int val)
3468 {
3469 #ifdef CONFIG_DEBUG_PREEMPT
3470 /*
3471 * Underflow?
3472 */
3473 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3474 return;
3475 /*
3476 * Is the spinlock portion underflowing?
3477 */
3478 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3479 !(preempt_count() & PREEMPT_MASK)))
3480 return;
3481 #endif
3482
3483 if (preempt_count() == val)
3484 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3485 preempt_count() -= val;
3486 }
3487 EXPORT_SYMBOL(sub_preempt_count);
3488
3489 #endif
3490
3491 /*
3492 * Print scheduling while atomic bug:
3493 */
3494 static noinline void __schedule_bug(struct task_struct *prev)
3495 {
3496 struct pt_regs *regs = get_irq_regs();
3497
3498 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3499 prev->comm, prev->pid, preempt_count());
3500
3501 debug_show_held_locks(prev);
3502 print_modules();
3503 if (irqs_disabled())
3504 print_irqtrace_events(prev);
3505
3506 if (regs)
3507 show_regs(regs);
3508 else
3509 dump_stack();
3510 }
3511
3512 /*
3513 * Various schedule()-time debugging checks and statistics:
3514 */
3515 static inline void schedule_debug(struct task_struct *prev)
3516 {
3517 /*
3518 * Test if we are atomic. Since do_exit() needs to call into
3519 * schedule() atomically, we ignore that path for now.
3520 * Otherwise, whine if we are scheduling when we should not be.
3521 */
3522 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
3523 __schedule_bug(prev);
3524
3525 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3526
3527 schedstat_inc(this_rq(), sched_count);
3528 #ifdef CONFIG_SCHEDSTATS
3529 if (unlikely(prev->lock_depth >= 0)) {
3530 schedstat_inc(this_rq(), bkl_count);
3531 schedstat_inc(prev, sched_info.bkl_count);
3532 }
3533 #endif
3534 }
3535
3536 static void put_prev_task(struct rq *rq, struct task_struct *prev)
3537 {
3538 if (prev->se.on_rq)
3539 update_rq_clock(rq);
3540 rq->skip_clock_update = 0;
3541 prev->sched_class->put_prev_task(rq, prev);
3542 }
3543
3544 /*
3545 * Pick up the highest-prio task:
3546 */
3547 static inline struct task_struct *
3548 pick_next_task(struct rq *rq)
3549 {
3550 const struct sched_class *class;
3551 struct task_struct *p;
3552
3553 /*
3554 * Optimization: we know that if all tasks are in
3555 * the fair class we can call that function directly:
3556 */
3557 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3558 p = fair_sched_class.pick_next_task(rq);
3559 if (likely(p))
3560 return p;
3561 }
3562
3563 class = sched_class_highest;
3564 for ( ; ; ) {
3565 p = class->pick_next_task(rq);
3566 if (p)
3567 return p;
3568 /*
3569 * Will never be NULL as the idle class always
3570 * returns a non-NULL p:
3571 */
3572 class = class->next;
3573 }
3574 }
3575
3576 /*
3577 * schedule() is the main scheduler function.
3578 */
3579 asmlinkage void __sched schedule(void)
3580 {
3581 struct task_struct *prev, *next;
3582 unsigned long *switch_count;
3583 struct rq *rq;
3584 int cpu;
3585
3586 need_resched:
3587 preempt_disable();
3588 cpu = smp_processor_id();
3589 rq = cpu_rq(cpu);
3590 rcu_note_context_switch(cpu);
3591 prev = rq->curr;
3592 switch_count = &prev->nivcsw;
3593
3594 release_kernel_lock(prev);
3595 need_resched_nonpreemptible:
3596
3597 schedule_debug(prev);
3598
3599 if (sched_feat(HRTICK))
3600 hrtick_clear(rq);
3601
3602 raw_spin_lock_irq(&rq->lock);
3603 clear_tsk_need_resched(prev);
3604
3605 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3606 if (unlikely(signal_pending_state(prev->state, prev)))
3607 prev->state = TASK_RUNNING;
3608 else
3609 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3610 switch_count = &prev->nvcsw;
3611 }
3612
3613 pre_schedule(rq, prev);
3614
3615 if (unlikely(!rq->nr_running))
3616 idle_balance(cpu, rq);
3617
3618 put_prev_task(rq, prev);
3619 next = pick_next_task(rq);
3620
3621 if (likely(prev != next)) {
3622 sched_info_switch(prev, next);
3623 perf_event_task_sched_out(prev, next);
3624
3625 rq->nr_switches++;
3626 rq->curr = next;
3627 ++*switch_count;
3628
3629 context_switch(rq, prev, next); /* unlocks the rq */
3630 /*
3631 * the context switch might have flipped the stack from under
3632 * us, hence refresh the local variables.
3633 */
3634 cpu = smp_processor_id();
3635 rq = cpu_rq(cpu);
3636 } else
3637 raw_spin_unlock_irq(&rq->lock);
3638
3639 post_schedule(rq);
3640
3641 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3642 prev = rq->curr;
3643 switch_count = &prev->nivcsw;
3644 goto need_resched_nonpreemptible;
3645 }
3646
3647 preempt_enable_no_resched();
3648 if (need_resched())
3649 goto need_resched;
3650 }
3651 EXPORT_SYMBOL(schedule);
3652
3653 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3654 /*
3655 * Look out! "owner" is an entirely speculative pointer
3656 * access and not reliable.
3657 */
3658 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
3659 {
3660 unsigned int cpu;
3661 struct rq *rq;
3662
3663 if (!sched_feat(OWNER_SPIN))
3664 return 0;
3665
3666 #ifdef CONFIG_DEBUG_PAGEALLOC
3667 /*
3668 * Need to access the cpu field knowing that
3669 * DEBUG_PAGEALLOC could have unmapped it if
3670 * the mutex owner just released it and exited.
3671 */
3672 if (probe_kernel_address(&owner->cpu, cpu))
3673 return 0;
3674 #else
3675 cpu = owner->cpu;
3676 #endif
3677
3678 /*
3679 * Even if the access succeeded (likely case),
3680 * the cpu field may no longer be valid.
3681 */
3682 if (cpu >= nr_cpumask_bits)
3683 return 0;
3684
3685 /*
3686 * We need to validate that we can do a
3687 * get_cpu() and that we have the percpu area.
3688 */
3689 if (!cpu_online(cpu))
3690 return 0;
3691
3692 rq = cpu_rq(cpu);
3693
3694 for (;;) {
3695 /*
3696 * Owner changed, break to re-assess state.
3697 */
3698 if (lock->owner != owner)
3699 break;
3700
3701 /*
3702 * Is that owner really running on that cpu?
3703 */
3704 if (task_thread_info(rq->curr) != owner || need_resched())
3705 return 0;
3706
3707 cpu_relax();
3708 }
3709
3710 return 1;
3711 }
3712 #endif
3713
3714 #ifdef CONFIG_PREEMPT
3715 /*
3716 * this is the entry point to schedule() from in-kernel preemption
3717 * off of preempt_enable. Kernel preemptions off return from interrupt
3718 * occur there and call schedule directly.
3719 */
3720 asmlinkage void __sched preempt_schedule(void)
3721 {
3722 struct thread_info *ti = current_thread_info();
3723
3724 /*
3725 * If there is a non-zero preempt_count or interrupts are disabled,
3726 * we do not want to preempt the current task. Just return..
3727 */
3728 if (likely(ti->preempt_count || irqs_disabled()))
3729 return;
3730
3731 do {
3732 add_preempt_count(PREEMPT_ACTIVE);
3733 schedule();
3734 sub_preempt_count(PREEMPT_ACTIVE);
3735
3736 /*
3737 * Check again in case we missed a preemption opportunity
3738 * between schedule and now.
3739 */
3740 barrier();
3741 } while (need_resched());
3742 }
3743 EXPORT_SYMBOL(preempt_schedule);
3744
3745 /*
3746 * this is the entry point to schedule() from kernel preemption
3747 * off of irq context.
3748 * Note, that this is called and return with irqs disabled. This will
3749 * protect us against recursive calling from irq.
3750 */
3751 asmlinkage void __sched preempt_schedule_irq(void)
3752 {
3753 struct thread_info *ti = current_thread_info();
3754
3755 /* Catch callers which need to be fixed */
3756 BUG_ON(ti->preempt_count || !irqs_disabled());
3757
3758 do {
3759 add_preempt_count(PREEMPT_ACTIVE);
3760 local_irq_enable();
3761 schedule();
3762 local_irq_disable();
3763 sub_preempt_count(PREEMPT_ACTIVE);
3764
3765 /*
3766 * Check again in case we missed a preemption opportunity
3767 * between schedule and now.
3768 */
3769 barrier();
3770 } while (need_resched());
3771 }
3772
3773 #endif /* CONFIG_PREEMPT */
3774
3775 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3776 void *key)
3777 {
3778 return try_to_wake_up(curr->private, mode, wake_flags);
3779 }
3780 EXPORT_SYMBOL(default_wake_function);
3781
3782 /*
3783 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3784 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3785 * number) then we wake all the non-exclusive tasks and one exclusive task.
3786 *
3787 * There are circumstances in which we can try to wake a task which has already
3788 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3789 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3790 */
3791 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3792 int nr_exclusive, int wake_flags, void *key)
3793 {
3794 wait_queue_t *curr, *next;
3795
3796 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3797 unsigned flags = curr->flags;
3798
3799 if (curr->func(curr, mode, wake_flags, key) &&
3800 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3801 break;
3802 }
3803 }
3804
3805 /**
3806 * __wake_up - wake up threads blocked on a waitqueue.
3807 * @q: the waitqueue
3808 * @mode: which threads
3809 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3810 * @key: is directly passed to the wakeup function
3811 *
3812 * It may be assumed that this function implies a write memory barrier before
3813 * changing the task state if and only if any tasks are woken up.
3814 */
3815 void __wake_up(wait_queue_head_t *q, unsigned int mode,
3816 int nr_exclusive, void *key)
3817 {
3818 unsigned long flags;
3819
3820 spin_lock_irqsave(&q->lock, flags);
3821 __wake_up_common(q, mode, nr_exclusive, 0, key);
3822 spin_unlock_irqrestore(&q->lock, flags);
3823 }
3824 EXPORT_SYMBOL(__wake_up);
3825
3826 /*
3827 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3828 */
3829 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3830 {
3831 __wake_up_common(q, mode, 1, 0, NULL);
3832 }
3833 EXPORT_SYMBOL_GPL(__wake_up_locked);
3834
3835 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3836 {
3837 __wake_up_common(q, mode, 1, 0, key);
3838 }
3839
3840 /**
3841 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3842 * @q: the waitqueue
3843 * @mode: which threads
3844 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3845 * @key: opaque value to be passed to wakeup targets
3846 *
3847 * The sync wakeup differs that the waker knows that it will schedule
3848 * away soon, so while the target thread will be woken up, it will not
3849 * be migrated to another CPU - ie. the two threads are 'synchronized'
3850 * with each other. This can prevent needless bouncing between CPUs.
3851 *
3852 * On UP it can prevent extra preemption.
3853 *
3854 * It may be assumed that this function implies a write memory barrier before
3855 * changing the task state if and only if any tasks are woken up.
3856 */
3857 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3858 int nr_exclusive, void *key)
3859 {
3860 unsigned long flags;
3861 int wake_flags = WF_SYNC;
3862
3863 if (unlikely(!q))
3864 return;
3865
3866 if (unlikely(!nr_exclusive))
3867 wake_flags = 0;
3868
3869 spin_lock_irqsave(&q->lock, flags);
3870 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3871 spin_unlock_irqrestore(&q->lock, flags);
3872 }
3873 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3874
3875 /*
3876 * __wake_up_sync - see __wake_up_sync_key()
3877 */
3878 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3879 {
3880 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3881 }
3882 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3883
3884 /**
3885 * complete: - signals a single thread waiting on this completion
3886 * @x: holds the state of this particular completion
3887 *
3888 * This will wake up a single thread waiting on this completion. Threads will be
3889 * awakened in the same order in which they were queued.
3890 *
3891 * See also complete_all(), wait_for_completion() and related routines.
3892 *
3893 * It may be assumed that this function implies a write memory barrier before
3894 * changing the task state if and only if any tasks are woken up.
3895 */
3896 void complete(struct completion *x)
3897 {
3898 unsigned long flags;
3899
3900 spin_lock_irqsave(&x->wait.lock, flags);
3901 x->done++;
3902 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3903 spin_unlock_irqrestore(&x->wait.lock, flags);
3904 }
3905 EXPORT_SYMBOL(complete);
3906
3907 /**
3908 * complete_all: - signals all threads waiting on this completion
3909 * @x: holds the state of this particular completion
3910 *
3911 * This will wake up all threads waiting on this particular completion event.
3912 *
3913 * It may be assumed that this function implies a write memory barrier before
3914 * changing the task state if and only if any tasks are woken up.
3915 */
3916 void complete_all(struct completion *x)
3917 {
3918 unsigned long flags;
3919
3920 spin_lock_irqsave(&x->wait.lock, flags);
3921 x->done += UINT_MAX/2;
3922 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
3923 spin_unlock_irqrestore(&x->wait.lock, flags);
3924 }
3925 EXPORT_SYMBOL(complete_all);
3926
3927 static inline long __sched
3928 do_wait_for_common(struct completion *x, long timeout, int state)
3929 {
3930 if (!x->done) {
3931 DECLARE_WAITQUEUE(wait, current);
3932
3933 __add_wait_queue_tail_exclusive(&x->wait, &wait);
3934 do {
3935 if (signal_pending_state(state, current)) {
3936 timeout = -ERESTARTSYS;
3937 break;
3938 }
3939 __set_current_state(state);
3940 spin_unlock_irq(&x->wait.lock);
3941 timeout = schedule_timeout(timeout);
3942 spin_lock_irq(&x->wait.lock);
3943 } while (!x->done && timeout);
3944 __remove_wait_queue(&x->wait, &wait);
3945 if (!x->done)
3946 return timeout;
3947 }
3948 x->done--;
3949 return timeout ?: 1;
3950 }
3951
3952 static long __sched
3953 wait_for_common(struct completion *x, long timeout, int state)
3954 {
3955 might_sleep();
3956
3957 spin_lock_irq(&x->wait.lock);
3958 timeout = do_wait_for_common(x, timeout, state);
3959 spin_unlock_irq(&x->wait.lock);
3960 return timeout;
3961 }
3962
3963 /**
3964 * wait_for_completion: - waits for completion of a task
3965 * @x: holds the state of this particular completion
3966 *
3967 * This waits to be signaled for completion of a specific task. It is NOT
3968 * interruptible and there is no timeout.
3969 *
3970 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3971 * and interrupt capability. Also see complete().
3972 */
3973 void __sched wait_for_completion(struct completion *x)
3974 {
3975 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3976 }
3977 EXPORT_SYMBOL(wait_for_completion);
3978
3979 /**
3980 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3981 * @x: holds the state of this particular completion
3982 * @timeout: timeout value in jiffies
3983 *
3984 * This waits for either a completion of a specific task to be signaled or for a
3985 * specified timeout to expire. The timeout is in jiffies. It is not
3986 * interruptible.
3987 */
3988 unsigned long __sched
3989 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3990 {
3991 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3992 }
3993 EXPORT_SYMBOL(wait_for_completion_timeout);
3994
3995 /**
3996 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3997 * @x: holds the state of this particular completion
3998 *
3999 * This waits for completion of a specific task to be signaled. It is
4000 * interruptible.
4001 */
4002 int __sched wait_for_completion_interruptible(struct completion *x)
4003 {
4004 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4005 if (t == -ERESTARTSYS)
4006 return t;
4007 return 0;
4008 }
4009 EXPORT_SYMBOL(wait_for_completion_interruptible);
4010
4011 /**
4012 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4013 * @x: holds the state of this particular completion
4014 * @timeout: timeout value in jiffies
4015 *
4016 * This waits for either a completion of a specific task to be signaled or for a
4017 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4018 */
4019 unsigned long __sched
4020 wait_for_completion_interruptible_timeout(struct completion *x,
4021 unsigned long timeout)
4022 {
4023 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4024 }
4025 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4026
4027 /**
4028 * wait_for_completion_killable: - waits for completion of a task (killable)
4029 * @x: holds the state of this particular completion
4030 *
4031 * This waits to be signaled for completion of a specific task. It can be
4032 * interrupted by a kill signal.
4033 */
4034 int __sched wait_for_completion_killable(struct completion *x)
4035 {
4036 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4037 if (t == -ERESTARTSYS)
4038 return t;
4039 return 0;
4040 }
4041 EXPORT_SYMBOL(wait_for_completion_killable);
4042
4043 /**
4044 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4045 * @x: holds the state of this particular completion
4046 * @timeout: timeout value in jiffies
4047 *
4048 * This waits for either a completion of a specific task to be
4049 * signaled or for a specified timeout to expire. It can be
4050 * interrupted by a kill signal. The timeout is in jiffies.
4051 */
4052 unsigned long __sched
4053 wait_for_completion_killable_timeout(struct completion *x,
4054 unsigned long timeout)
4055 {
4056 return wait_for_common(x, timeout, TASK_KILLABLE);
4057 }
4058 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4059
4060 /**
4061 * try_wait_for_completion - try to decrement a completion without blocking
4062 * @x: completion structure
4063 *
4064 * Returns: 0 if a decrement cannot be done without blocking
4065 * 1 if a decrement succeeded.
4066 *
4067 * If a completion is being used as a counting completion,
4068 * attempt to decrement the counter without blocking. This
4069 * enables us to avoid waiting if the resource the completion
4070 * is protecting is not available.
4071 */
4072 bool try_wait_for_completion(struct completion *x)
4073 {
4074 unsigned long flags;
4075 int ret = 1;
4076
4077 spin_lock_irqsave(&x->wait.lock, flags);
4078 if (!x->done)
4079 ret = 0;
4080 else
4081 x->done--;
4082 spin_unlock_irqrestore(&x->wait.lock, flags);
4083 return ret;
4084 }
4085 EXPORT_SYMBOL(try_wait_for_completion);
4086
4087 /**
4088 * completion_done - Test to see if a completion has any waiters
4089 * @x: completion structure
4090 *
4091 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4092 * 1 if there are no waiters.
4093 *
4094 */
4095 bool completion_done(struct completion *x)
4096 {
4097 unsigned long flags;
4098 int ret = 1;
4099
4100 spin_lock_irqsave(&x->wait.lock, flags);
4101 if (!x->done)
4102 ret = 0;
4103 spin_unlock_irqrestore(&x->wait.lock, flags);
4104 return ret;
4105 }
4106 EXPORT_SYMBOL(completion_done);
4107
4108 static long __sched
4109 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4110 {
4111 unsigned long flags;
4112 wait_queue_t wait;
4113
4114 init_waitqueue_entry(&wait, current);
4115
4116 __set_current_state(state);
4117
4118 spin_lock_irqsave(&q->lock, flags);
4119 __add_wait_queue(q, &wait);
4120 spin_unlock(&q->lock);
4121 timeout = schedule_timeout(timeout);
4122 spin_lock_irq(&q->lock);
4123 __remove_wait_queue(q, &wait);
4124 spin_unlock_irqrestore(&q->lock, flags);
4125
4126 return timeout;
4127 }
4128
4129 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4130 {
4131 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4132 }
4133 EXPORT_SYMBOL(interruptible_sleep_on);
4134
4135 long __sched
4136 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4137 {
4138 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4139 }
4140 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4141
4142 void __sched sleep_on(wait_queue_head_t *q)
4143 {
4144 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4145 }
4146 EXPORT_SYMBOL(sleep_on);
4147
4148 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4149 {
4150 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4151 }
4152 EXPORT_SYMBOL(sleep_on_timeout);
4153
4154 #ifdef CONFIG_RT_MUTEXES
4155
4156 /*
4157 * rt_mutex_setprio - set the current priority of a task
4158 * @p: task
4159 * @prio: prio value (kernel-internal form)
4160 *
4161 * This function changes the 'effective' priority of a task. It does
4162 * not touch ->normal_prio like __setscheduler().
4163 *
4164 * Used by the rt_mutex code to implement priority inheritance logic.
4165 */
4166 void rt_mutex_setprio(struct task_struct *p, int prio)
4167 {
4168 unsigned long flags;
4169 int oldprio, on_rq, running;
4170 struct rq *rq;
4171 const struct sched_class *prev_class;
4172
4173 BUG_ON(prio < 0 || prio > MAX_PRIO);
4174
4175 rq = task_rq_lock(p, &flags);
4176
4177 oldprio = p->prio;
4178 prev_class = p->sched_class;
4179 on_rq = p->se.on_rq;
4180 running = task_current(rq, p);
4181 if (on_rq)
4182 dequeue_task(rq, p, 0);
4183 if (running)
4184 p->sched_class->put_prev_task(rq, p);
4185
4186 if (rt_prio(prio))
4187 p->sched_class = &rt_sched_class;
4188 else
4189 p->sched_class = &fair_sched_class;
4190
4191 p->prio = prio;
4192
4193 if (running)
4194 p->sched_class->set_curr_task(rq);
4195 if (on_rq) {
4196 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
4197
4198 check_class_changed(rq, p, prev_class, oldprio, running);
4199 }
4200 task_rq_unlock(rq, &flags);
4201 }
4202
4203 #endif
4204
4205 void set_user_nice(struct task_struct *p, long nice)
4206 {
4207 int old_prio, delta, on_rq;
4208 unsigned long flags;
4209 struct rq *rq;
4210
4211 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4212 return;
4213 /*
4214 * We have to be careful, if called from sys_setpriority(),
4215 * the task might be in the middle of scheduling on another CPU.
4216 */
4217 rq = task_rq_lock(p, &flags);
4218 /*
4219 * The RT priorities are set via sched_setscheduler(), but we still
4220 * allow the 'normal' nice value to be set - but as expected
4221 * it wont have any effect on scheduling until the task is
4222 * SCHED_FIFO/SCHED_RR:
4223 */
4224 if (task_has_rt_policy(p)) {
4225 p->static_prio = NICE_TO_PRIO(nice);
4226 goto out_unlock;
4227 }
4228 on_rq = p->se.on_rq;
4229 if (on_rq)
4230 dequeue_task(rq, p, 0);
4231
4232 p->static_prio = NICE_TO_PRIO(nice);
4233 set_load_weight(p);
4234 old_prio = p->prio;
4235 p->prio = effective_prio(p);
4236 delta = p->prio - old_prio;
4237
4238 if (on_rq) {
4239 enqueue_task(rq, p, 0);
4240 /*
4241 * If the task increased its priority or is running and
4242 * lowered its priority, then reschedule its CPU:
4243 */
4244 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4245 resched_task(rq->curr);
4246 }
4247 out_unlock:
4248 task_rq_unlock(rq, &flags);
4249 }
4250 EXPORT_SYMBOL(set_user_nice);
4251
4252 /*
4253 * can_nice - check if a task can reduce its nice value
4254 * @p: task
4255 * @nice: nice value
4256 */
4257 int can_nice(const struct task_struct *p, const int nice)
4258 {
4259 /* convert nice value [19,-20] to rlimit style value [1,40] */
4260 int nice_rlim = 20 - nice;
4261
4262 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4263 capable(CAP_SYS_NICE));
4264 }
4265
4266 #ifdef __ARCH_WANT_SYS_NICE
4267
4268 /*
4269 * sys_nice - change the priority of the current process.
4270 * @increment: priority increment
4271 *
4272 * sys_setpriority is a more generic, but much slower function that
4273 * does similar things.
4274 */
4275 SYSCALL_DEFINE1(nice, int, increment)
4276 {
4277 long nice, retval;
4278
4279 /*
4280 * Setpriority might change our priority at the same moment.
4281 * We don't have to worry. Conceptually one call occurs first
4282 * and we have a single winner.
4283 */
4284 if (increment < -40)
4285 increment = -40;
4286 if (increment > 40)
4287 increment = 40;
4288
4289 nice = TASK_NICE(current) + increment;
4290 if (nice < -20)
4291 nice = -20;
4292 if (nice > 19)
4293 nice = 19;
4294
4295 if (increment < 0 && !can_nice(current, nice))
4296 return -EPERM;
4297
4298 retval = security_task_setnice(current, nice);
4299 if (retval)
4300 return retval;
4301
4302 set_user_nice(current, nice);
4303 return 0;
4304 }
4305
4306 #endif
4307
4308 /**
4309 * task_prio - return the priority value of a given task.
4310 * @p: the task in question.
4311 *
4312 * This is the priority value as seen by users in /proc.
4313 * RT tasks are offset by -200. Normal tasks are centered
4314 * around 0, value goes from -16 to +15.
4315 */
4316 int task_prio(const struct task_struct *p)
4317 {
4318 return p->prio - MAX_RT_PRIO;
4319 }
4320
4321 /**
4322 * task_nice - return the nice value of a given task.
4323 * @p: the task in question.
4324 */
4325 int task_nice(const struct task_struct *p)
4326 {
4327 return TASK_NICE(p);
4328 }
4329 EXPORT_SYMBOL(task_nice);
4330
4331 /**
4332 * idle_cpu - is a given cpu idle currently?
4333 * @cpu: the processor in question.
4334 */
4335 int idle_cpu(int cpu)
4336 {
4337 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4338 }
4339
4340 /**
4341 * idle_task - return the idle task for a given cpu.
4342 * @cpu: the processor in question.
4343 */
4344 struct task_struct *idle_task(int cpu)
4345 {
4346 return cpu_rq(cpu)->idle;
4347 }
4348
4349 /**
4350 * find_process_by_pid - find a process with a matching PID value.
4351 * @pid: the pid in question.
4352 */
4353 static struct task_struct *find_process_by_pid(pid_t pid)
4354 {
4355 return pid ? find_task_by_vpid(pid) : current;
4356 }
4357
4358 /* Actually do priority change: must hold rq lock. */
4359 static void
4360 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4361 {
4362 BUG_ON(p->se.on_rq);
4363
4364 p->policy = policy;
4365 p->rt_priority = prio;
4366 p->normal_prio = normal_prio(p);
4367 /* we are holding p->pi_lock already */
4368 p->prio = rt_mutex_getprio(p);
4369 if (rt_prio(p->prio))
4370 p->sched_class = &rt_sched_class;
4371 else
4372 p->sched_class = &fair_sched_class;
4373 set_load_weight(p);
4374 }
4375
4376 /*
4377 * check the target process has a UID that matches the current process's
4378 */
4379 static bool check_same_owner(struct task_struct *p)
4380 {
4381 const struct cred *cred = current_cred(), *pcred;
4382 bool match;
4383
4384 rcu_read_lock();
4385 pcred = __task_cred(p);
4386 match = (cred->euid == pcred->euid ||
4387 cred->euid == pcred->uid);
4388 rcu_read_unlock();
4389 return match;
4390 }
4391
4392 static int __sched_setscheduler(struct task_struct *p, int policy,
4393 struct sched_param *param, bool user)
4394 {
4395 int retval, oldprio, oldpolicy = -1, on_rq, running;
4396 unsigned long flags;
4397 const struct sched_class *prev_class;
4398 struct rq *rq;
4399 int reset_on_fork;
4400
4401 /* may grab non-irq protected spin_locks */
4402 BUG_ON(in_interrupt());
4403 recheck:
4404 /* double check policy once rq lock held */
4405 if (policy < 0) {
4406 reset_on_fork = p->sched_reset_on_fork;
4407 policy = oldpolicy = p->policy;
4408 } else {
4409 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4410 policy &= ~SCHED_RESET_ON_FORK;
4411
4412 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4413 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4414 policy != SCHED_IDLE)
4415 return -EINVAL;
4416 }
4417
4418 /*
4419 * Valid priorities for SCHED_FIFO and SCHED_RR are
4420 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4421 * SCHED_BATCH and SCHED_IDLE is 0.
4422 */
4423 if (param->sched_priority < 0 ||
4424 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4425 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4426 return -EINVAL;
4427 if (rt_policy(policy) != (param->sched_priority != 0))
4428 return -EINVAL;
4429
4430 /*
4431 * Allow unprivileged RT tasks to decrease priority:
4432 */
4433 if (user && !capable(CAP_SYS_NICE)) {
4434 if (rt_policy(policy)) {
4435 unsigned long rlim_rtprio;
4436
4437 if (!lock_task_sighand(p, &flags))
4438 return -ESRCH;
4439 rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
4440 unlock_task_sighand(p, &flags);
4441
4442 /* can't set/change the rt policy */
4443 if (policy != p->policy && !rlim_rtprio)
4444 return -EPERM;
4445
4446 /* can't increase priority */
4447 if (param->sched_priority > p->rt_priority &&
4448 param->sched_priority > rlim_rtprio)
4449 return -EPERM;
4450 }
4451 /*
4452 * Like positive nice levels, dont allow tasks to
4453 * move out of SCHED_IDLE either:
4454 */
4455 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4456 return -EPERM;
4457
4458 /* can't change other user's priorities */
4459 if (!check_same_owner(p))
4460 return -EPERM;
4461
4462 /* Normal users shall not reset the sched_reset_on_fork flag */
4463 if (p->sched_reset_on_fork && !reset_on_fork)
4464 return -EPERM;
4465 }
4466
4467 if (user) {
4468 retval = security_task_setscheduler(p, policy, param);
4469 if (retval)
4470 return retval;
4471 }
4472
4473 /*
4474 * make sure no PI-waiters arrive (or leave) while we are
4475 * changing the priority of the task:
4476 */
4477 raw_spin_lock_irqsave(&p->pi_lock, flags);
4478 /*
4479 * To be able to change p->policy safely, the apropriate
4480 * runqueue lock must be held.
4481 */
4482 rq = __task_rq_lock(p);
4483
4484 #ifdef CONFIG_RT_GROUP_SCHED
4485 if (user) {
4486 /*
4487 * Do not allow realtime tasks into groups that have no runtime
4488 * assigned.
4489 */
4490 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4491 task_group(p)->rt_bandwidth.rt_runtime == 0) {
4492 __task_rq_unlock(rq);
4493 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4494 return -EPERM;
4495 }
4496 }
4497 #endif
4498
4499 /* recheck policy now with rq lock held */
4500 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4501 policy = oldpolicy = -1;
4502 __task_rq_unlock(rq);
4503 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4504 goto recheck;
4505 }
4506 on_rq = p->se.on_rq;
4507 running = task_current(rq, p);
4508 if (on_rq)
4509 deactivate_task(rq, p, 0);
4510 if (running)
4511 p->sched_class->put_prev_task(rq, p);
4512
4513 p->sched_reset_on_fork = reset_on_fork;
4514
4515 oldprio = p->prio;
4516 prev_class = p->sched_class;
4517 __setscheduler(rq, p, policy, param->sched_priority);
4518
4519 if (running)
4520 p->sched_class->set_curr_task(rq);
4521 if (on_rq) {
4522 activate_task(rq, p, 0);
4523
4524 check_class_changed(rq, p, prev_class, oldprio, running);
4525 }
4526 __task_rq_unlock(rq);
4527 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4528
4529 rt_mutex_adjust_pi(p);
4530
4531 return 0;
4532 }
4533
4534 /**
4535 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4536 * @p: the task in question.
4537 * @policy: new policy.
4538 * @param: structure containing the new RT priority.
4539 *
4540 * NOTE that the task may be already dead.
4541 */
4542 int sched_setscheduler(struct task_struct *p, int policy,
4543 struct sched_param *param)
4544 {
4545 return __sched_setscheduler(p, policy, param, true);
4546 }
4547 EXPORT_SYMBOL_GPL(sched_setscheduler);
4548
4549 /**
4550 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4551 * @p: the task in question.
4552 * @policy: new policy.
4553 * @param: structure containing the new RT priority.
4554 *
4555 * Just like sched_setscheduler, only don't bother checking if the
4556 * current context has permission. For example, this is needed in
4557 * stop_machine(): we create temporary high priority worker threads,
4558 * but our caller might not have that capability.
4559 */
4560 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4561 struct sched_param *param)
4562 {
4563 return __sched_setscheduler(p, policy, param, false);
4564 }
4565
4566 static int
4567 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4568 {
4569 struct sched_param lparam;
4570 struct task_struct *p;
4571 int retval;
4572
4573 if (!param || pid < 0)
4574 return -EINVAL;
4575 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4576 return -EFAULT;
4577
4578 rcu_read_lock();
4579 retval = -ESRCH;
4580 p = find_process_by_pid(pid);
4581 if (p != NULL)
4582 retval = sched_setscheduler(p, policy, &lparam);
4583 rcu_read_unlock();
4584
4585 return retval;
4586 }
4587
4588 /**
4589 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4590 * @pid: the pid in question.
4591 * @policy: new policy.
4592 * @param: structure containing the new RT priority.
4593 */
4594 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4595 struct sched_param __user *, param)
4596 {
4597 /* negative values for policy are not valid */
4598 if (policy < 0)
4599 return -EINVAL;
4600
4601 return do_sched_setscheduler(pid, policy, param);
4602 }
4603
4604 /**
4605 * sys_sched_setparam - set/change the RT priority of a thread
4606 * @pid: the pid in question.
4607 * @param: structure containing the new RT priority.
4608 */
4609 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4610 {
4611 return do_sched_setscheduler(pid, -1, param);
4612 }
4613
4614 /**
4615 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4616 * @pid: the pid in question.
4617 */
4618 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4619 {
4620 struct task_struct *p;
4621 int retval;
4622
4623 if (pid < 0)
4624 return -EINVAL;
4625
4626 retval = -ESRCH;
4627 rcu_read_lock();
4628 p = find_process_by_pid(pid);
4629 if (p) {
4630 retval = security_task_getscheduler(p);
4631 if (!retval)
4632 retval = p->policy
4633 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4634 }
4635 rcu_read_unlock();
4636 return retval;
4637 }
4638
4639 /**
4640 * sys_sched_getparam - get the RT priority of a thread
4641 * @pid: the pid in question.
4642 * @param: structure containing the RT priority.
4643 */
4644 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4645 {
4646 struct sched_param lp;
4647 struct task_struct *p;
4648 int retval;
4649
4650 if (!param || pid < 0)
4651 return -EINVAL;
4652
4653 rcu_read_lock();
4654 p = find_process_by_pid(pid);
4655 retval = -ESRCH;
4656 if (!p)
4657 goto out_unlock;
4658
4659 retval = security_task_getscheduler(p);
4660 if (retval)
4661 goto out_unlock;
4662
4663 lp.sched_priority = p->rt_priority;
4664 rcu_read_unlock();
4665
4666 /*
4667 * This one might sleep, we cannot do it with a spinlock held ...
4668 */
4669 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4670
4671 return retval;
4672
4673 out_unlock:
4674 rcu_read_unlock();
4675 return retval;
4676 }
4677
4678 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4679 {
4680 cpumask_var_t cpus_allowed, new_mask;
4681 struct task_struct *p;
4682 int retval;
4683
4684 get_online_cpus();
4685 rcu_read_lock();
4686
4687 p = find_process_by_pid(pid);
4688 if (!p) {
4689 rcu_read_unlock();
4690 put_online_cpus();
4691 return -ESRCH;
4692 }
4693
4694 /* Prevent p going away */
4695 get_task_struct(p);
4696 rcu_read_unlock();
4697
4698 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4699 retval = -ENOMEM;
4700 goto out_put_task;
4701 }
4702 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4703 retval = -ENOMEM;
4704 goto out_free_cpus_allowed;
4705 }
4706 retval = -EPERM;
4707 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
4708 goto out_unlock;
4709
4710 retval = security_task_setscheduler(p, 0, NULL);
4711 if (retval)
4712 goto out_unlock;
4713
4714 cpuset_cpus_allowed(p, cpus_allowed);
4715 cpumask_and(new_mask, in_mask, cpus_allowed);
4716 again:
4717 retval = set_cpus_allowed_ptr(p, new_mask);
4718
4719 if (!retval) {
4720 cpuset_cpus_allowed(p, cpus_allowed);
4721 if (!cpumask_subset(new_mask, cpus_allowed)) {
4722 /*
4723 * We must have raced with a concurrent cpuset
4724 * update. Just reset the cpus_allowed to the
4725 * cpuset's cpus_allowed
4726 */
4727 cpumask_copy(new_mask, cpus_allowed);
4728 goto again;
4729 }
4730 }
4731 out_unlock:
4732 free_cpumask_var(new_mask);
4733 out_free_cpus_allowed:
4734 free_cpumask_var(cpus_allowed);
4735 out_put_task:
4736 put_task_struct(p);
4737 put_online_cpus();
4738 return retval;
4739 }
4740
4741 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4742 struct cpumask *new_mask)
4743 {
4744 if (len < cpumask_size())
4745 cpumask_clear(new_mask);
4746 else if (len > cpumask_size())
4747 len = cpumask_size();
4748
4749 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4750 }
4751
4752 /**
4753 * sys_sched_setaffinity - set the cpu affinity of a process
4754 * @pid: pid of the process
4755 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4756 * @user_mask_ptr: user-space pointer to the new cpu mask
4757 */
4758 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4759 unsigned long __user *, user_mask_ptr)
4760 {
4761 cpumask_var_t new_mask;
4762 int retval;
4763
4764 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4765 return -ENOMEM;
4766
4767 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4768 if (retval == 0)
4769 retval = sched_setaffinity(pid, new_mask);
4770 free_cpumask_var(new_mask);
4771 return retval;
4772 }
4773
4774 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4775 {
4776 struct task_struct *p;
4777 unsigned long flags;
4778 struct rq *rq;
4779 int retval;
4780
4781 get_online_cpus();
4782 rcu_read_lock();
4783
4784 retval = -ESRCH;
4785 p = find_process_by_pid(pid);
4786 if (!p)
4787 goto out_unlock;
4788
4789 retval = security_task_getscheduler(p);
4790 if (retval)
4791 goto out_unlock;
4792
4793 rq = task_rq_lock(p, &flags);
4794 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4795 task_rq_unlock(rq, &flags);
4796
4797 out_unlock:
4798 rcu_read_unlock();
4799 put_online_cpus();
4800
4801 return retval;
4802 }
4803
4804 /**
4805 * sys_sched_getaffinity - get the cpu affinity of a process
4806 * @pid: pid of the process
4807 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4808 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4809 */
4810 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4811 unsigned long __user *, user_mask_ptr)
4812 {
4813 int ret;
4814 cpumask_var_t mask;
4815
4816 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4817 return -EINVAL;
4818 if (len & (sizeof(unsigned long)-1))
4819 return -EINVAL;
4820
4821 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4822 return -ENOMEM;
4823
4824 ret = sched_getaffinity(pid, mask);
4825 if (ret == 0) {
4826 size_t retlen = min_t(size_t, len, cpumask_size());
4827
4828 if (copy_to_user(user_mask_ptr, mask, retlen))
4829 ret = -EFAULT;
4830 else
4831 ret = retlen;
4832 }
4833 free_cpumask_var(mask);
4834
4835 return ret;
4836 }
4837
4838 /**
4839 * sys_sched_yield - yield the current processor to other threads.
4840 *
4841 * This function yields the current CPU to other tasks. If there are no
4842 * other threads running on this CPU then this function will return.
4843 */
4844 SYSCALL_DEFINE0(sched_yield)
4845 {
4846 struct rq *rq = this_rq_lock();
4847
4848 schedstat_inc(rq, yld_count);
4849 current->sched_class->yield_task(rq);
4850
4851 /*
4852 * Since we are going to call schedule() anyway, there's
4853 * no need to preempt or enable interrupts:
4854 */
4855 __release(rq->lock);
4856 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4857 do_raw_spin_unlock(&rq->lock);
4858 preempt_enable_no_resched();
4859
4860 schedule();
4861
4862 return 0;
4863 }
4864
4865 static inline int should_resched(void)
4866 {
4867 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4868 }
4869
4870 static void __cond_resched(void)
4871 {
4872 add_preempt_count(PREEMPT_ACTIVE);
4873 schedule();
4874 sub_preempt_count(PREEMPT_ACTIVE);
4875 }
4876
4877 int __sched _cond_resched(void)
4878 {
4879 if (should_resched()) {
4880 __cond_resched();
4881 return 1;
4882 }
4883 return 0;
4884 }
4885 EXPORT_SYMBOL(_cond_resched);
4886
4887 /*
4888 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4889 * call schedule, and on return reacquire the lock.
4890 *
4891 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4892 * operations here to prevent schedule() from being called twice (once via
4893 * spin_unlock(), once by hand).
4894 */
4895 int __cond_resched_lock(spinlock_t *lock)
4896 {
4897 int resched = should_resched();
4898 int ret = 0;
4899
4900 lockdep_assert_held(lock);
4901
4902 if (spin_needbreak(lock) || resched) {
4903 spin_unlock(lock);
4904 if (resched)
4905 __cond_resched();
4906 else
4907 cpu_relax();
4908 ret = 1;
4909 spin_lock(lock);
4910 }
4911 return ret;
4912 }
4913 EXPORT_SYMBOL(__cond_resched_lock);
4914
4915 int __sched __cond_resched_softirq(void)
4916 {
4917 BUG_ON(!in_softirq());
4918
4919 if (should_resched()) {
4920 local_bh_enable();
4921 __cond_resched();
4922 local_bh_disable();
4923 return 1;
4924 }
4925 return 0;
4926 }
4927 EXPORT_SYMBOL(__cond_resched_softirq);
4928
4929 /**
4930 * yield - yield the current processor to other threads.
4931 *
4932 * This is a shortcut for kernel-space yielding - it marks the
4933 * thread runnable and calls sys_sched_yield().
4934 */
4935 void __sched yield(void)
4936 {
4937 set_current_state(TASK_RUNNING);
4938 sys_sched_yield();
4939 }
4940 EXPORT_SYMBOL(yield);
4941
4942 /*
4943 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4944 * that process accounting knows that this is a task in IO wait state.
4945 */
4946 void __sched io_schedule(void)
4947 {
4948 struct rq *rq = raw_rq();
4949
4950 delayacct_blkio_start();
4951 atomic_inc(&rq->nr_iowait);
4952 current->in_iowait = 1;
4953 schedule();
4954 current->in_iowait = 0;
4955 atomic_dec(&rq->nr_iowait);
4956 delayacct_blkio_end();
4957 }
4958 EXPORT_SYMBOL(io_schedule);
4959
4960 long __sched io_schedule_timeout(long timeout)
4961 {
4962 struct rq *rq = raw_rq();
4963 long ret;
4964
4965 delayacct_blkio_start();
4966 atomic_inc(&rq->nr_iowait);
4967 current->in_iowait = 1;
4968 ret = schedule_timeout(timeout);
4969 current->in_iowait = 0;
4970 atomic_dec(&rq->nr_iowait);
4971 delayacct_blkio_end();
4972 return ret;
4973 }
4974
4975 /**
4976 * sys_sched_get_priority_max - return maximum RT priority.
4977 * @policy: scheduling class.
4978 *
4979 * this syscall returns the maximum rt_priority that can be used
4980 * by a given scheduling class.
4981 */
4982 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4983 {
4984 int ret = -EINVAL;
4985
4986 switch (policy) {
4987 case SCHED_FIFO:
4988 case SCHED_RR:
4989 ret = MAX_USER_RT_PRIO-1;
4990 break;
4991 case SCHED_NORMAL:
4992 case SCHED_BATCH:
4993 case SCHED_IDLE:
4994 ret = 0;
4995 break;
4996 }
4997 return ret;
4998 }
4999
5000 /**
5001 * sys_sched_get_priority_min - return minimum RT priority.
5002 * @policy: scheduling class.
5003 *
5004 * this syscall returns the minimum rt_priority that can be used
5005 * by a given scheduling class.
5006 */
5007 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5008 {
5009 int ret = -EINVAL;
5010
5011 switch (policy) {
5012 case SCHED_FIFO:
5013 case SCHED_RR:
5014 ret = 1;
5015 break;
5016 case SCHED_NORMAL:
5017 case SCHED_BATCH:
5018 case SCHED_IDLE:
5019 ret = 0;
5020 }
5021 return ret;
5022 }
5023
5024 /**
5025 * sys_sched_rr_get_interval - return the default timeslice of a process.
5026 * @pid: pid of the process.
5027 * @interval: userspace pointer to the timeslice value.
5028 *
5029 * this syscall writes the default timeslice value of a given process
5030 * into the user-space timespec buffer. A value of '0' means infinity.
5031 */
5032 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5033 struct timespec __user *, interval)
5034 {
5035 struct task_struct *p;
5036 unsigned int time_slice;
5037 unsigned long flags;
5038 struct rq *rq;
5039 int retval;
5040 struct timespec t;
5041
5042 if (pid < 0)
5043 return -EINVAL;
5044
5045 retval = -ESRCH;
5046 rcu_read_lock();
5047 p = find_process_by_pid(pid);
5048 if (!p)
5049 goto out_unlock;
5050
5051 retval = security_task_getscheduler(p);
5052 if (retval)
5053 goto out_unlock;
5054
5055 rq = task_rq_lock(p, &flags);
5056 time_slice = p->sched_class->get_rr_interval(rq, p);
5057 task_rq_unlock(rq, &flags);
5058
5059 rcu_read_unlock();
5060 jiffies_to_timespec(time_slice, &t);
5061 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5062 return retval;
5063
5064 out_unlock:
5065 rcu_read_unlock();
5066 return retval;
5067 }
5068
5069 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5070
5071 void sched_show_task(struct task_struct *p)
5072 {
5073 unsigned long free = 0;
5074 unsigned state;
5075
5076 state = p->state ? __ffs(p->state) + 1 : 0;
5077 printk(KERN_INFO "%-13.13s %c", p->comm,
5078 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5079 #if BITS_PER_LONG == 32
5080 if (state == TASK_RUNNING)
5081 printk(KERN_CONT " running ");
5082 else
5083 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5084 #else
5085 if (state == TASK_RUNNING)
5086 printk(KERN_CONT " running task ");
5087 else
5088 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5089 #endif
5090 #ifdef CONFIG_DEBUG_STACK_USAGE
5091 free = stack_not_used(p);
5092 #endif
5093 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5094 task_pid_nr(p), task_pid_nr(p->real_parent),
5095 (unsigned long)task_thread_info(p)->flags);
5096
5097 show_stack(p, NULL);
5098 }
5099
5100 void show_state_filter(unsigned long state_filter)
5101 {
5102 struct task_struct *g, *p;
5103
5104 #if BITS_PER_LONG == 32
5105 printk(KERN_INFO
5106 " task PC stack pid father\n");
5107 #else
5108 printk(KERN_INFO
5109 " task PC stack pid father\n");
5110 #endif
5111 read_lock(&tasklist_lock);
5112 do_each_thread(g, p) {
5113 /*
5114 * reset the NMI-timeout, listing all files on a slow
5115 * console might take alot of time:
5116 */
5117 touch_nmi_watchdog();
5118 if (!state_filter || (p->state & state_filter))
5119 sched_show_task(p);
5120 } while_each_thread(g, p);
5121
5122 touch_all_softlockup_watchdogs();
5123
5124 #ifdef CONFIG_SCHED_DEBUG
5125 sysrq_sched_debug_show();
5126 #endif
5127 read_unlock(&tasklist_lock);
5128 /*
5129 * Only show locks if all tasks are dumped:
5130 */
5131 if (!state_filter)
5132 debug_show_all_locks();
5133 }
5134
5135 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5136 {
5137 idle->sched_class = &idle_sched_class;
5138 }
5139
5140 /**
5141 * init_idle - set up an idle thread for a given CPU
5142 * @idle: task in question
5143 * @cpu: cpu the idle task belongs to
5144 *
5145 * NOTE: this function does not set the idle thread's NEED_RESCHED
5146 * flag, to make booting more robust.
5147 */
5148 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5149 {
5150 struct rq *rq = cpu_rq(cpu);
5151 unsigned long flags;
5152
5153 raw_spin_lock_irqsave(&rq->lock, flags);
5154
5155 __sched_fork(idle);
5156 idle->state = TASK_RUNNING;
5157 idle->se.exec_start = sched_clock();
5158
5159 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
5160 __set_task_cpu(idle, cpu);
5161
5162 rq->curr = rq->idle = idle;
5163 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5164 idle->oncpu = 1;
5165 #endif
5166 raw_spin_unlock_irqrestore(&rq->lock, flags);
5167
5168 /* Set the preempt count _outside_ the spinlocks! */
5169 #if defined(CONFIG_PREEMPT)
5170 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5171 #else
5172 task_thread_info(idle)->preempt_count = 0;
5173 #endif
5174 /*
5175 * The idle tasks have their own, simple scheduling class:
5176 */
5177 idle->sched_class = &idle_sched_class;
5178 ftrace_graph_init_task(idle);
5179 }
5180
5181 /*
5182 * In a system that switches off the HZ timer nohz_cpu_mask
5183 * indicates which cpus entered this state. This is used
5184 * in the rcu update to wait only for active cpus. For system
5185 * which do not switch off the HZ timer nohz_cpu_mask should
5186 * always be CPU_BITS_NONE.
5187 */
5188 cpumask_var_t nohz_cpu_mask;
5189
5190 /*
5191 * Increase the granularity value when there are more CPUs,
5192 * because with more CPUs the 'effective latency' as visible
5193 * to users decreases. But the relationship is not linear,
5194 * so pick a second-best guess by going with the log2 of the
5195 * number of CPUs.
5196 *
5197 * This idea comes from the SD scheduler of Con Kolivas:
5198 */
5199 static int get_update_sysctl_factor(void)
5200 {
5201 unsigned int cpus = min_t(int, num_online_cpus(), 8);
5202 unsigned int factor;
5203
5204 switch (sysctl_sched_tunable_scaling) {
5205 case SCHED_TUNABLESCALING_NONE:
5206 factor = 1;
5207 break;
5208 case SCHED_TUNABLESCALING_LINEAR:
5209 factor = cpus;
5210 break;
5211 case SCHED_TUNABLESCALING_LOG:
5212 default:
5213 factor = 1 + ilog2(cpus);
5214 break;
5215 }
5216
5217 return factor;
5218 }
5219
5220 static void update_sysctl(void)
5221 {
5222 unsigned int factor = get_update_sysctl_factor();
5223
5224 #define SET_SYSCTL(name) \
5225 (sysctl_##name = (factor) * normalized_sysctl_##name)
5226 SET_SYSCTL(sched_min_granularity);
5227 SET_SYSCTL(sched_latency);
5228 SET_SYSCTL(sched_wakeup_granularity);
5229 SET_SYSCTL(sched_shares_ratelimit);
5230 #undef SET_SYSCTL
5231 }
5232
5233 static inline void sched_init_granularity(void)
5234 {
5235 update_sysctl();
5236 }
5237
5238 #ifdef CONFIG_SMP
5239 /*
5240 * This is how migration works:
5241 *
5242 * 1) we invoke migration_cpu_stop() on the target CPU using
5243 * stop_one_cpu().
5244 * 2) stopper starts to run (implicitly forcing the migrated thread
5245 * off the CPU)
5246 * 3) it checks whether the migrated task is still in the wrong runqueue.
5247 * 4) if it's in the wrong runqueue then the migration thread removes
5248 * it and puts it into the right queue.
5249 * 5) stopper completes and stop_one_cpu() returns and the migration
5250 * is done.
5251 */
5252
5253 /*
5254 * Change a given task's CPU affinity. Migrate the thread to a
5255 * proper CPU and schedule it away if the CPU it's executing on
5256 * is removed from the allowed bitmask.
5257 *
5258 * NOTE: the caller must have a valid reference to the task, the
5259 * task must not exit() & deallocate itself prematurely. The
5260 * call is not atomic; no spinlocks may be held.
5261 */
5262 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
5263 {
5264 unsigned long flags;
5265 struct rq *rq;
5266 unsigned int dest_cpu;
5267 int ret = 0;
5268
5269 /*
5270 * Serialize against TASK_WAKING so that ttwu() and wunt() can
5271 * drop the rq->lock and still rely on ->cpus_allowed.
5272 */
5273 again:
5274 while (task_is_waking(p))
5275 cpu_relax();
5276 rq = task_rq_lock(p, &flags);
5277 if (task_is_waking(p)) {
5278 task_rq_unlock(rq, &flags);
5279 goto again;
5280 }
5281
5282 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
5283 ret = -EINVAL;
5284 goto out;
5285 }
5286
5287 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5288 !cpumask_equal(&p->cpus_allowed, new_mask))) {
5289 ret = -EINVAL;
5290 goto out;
5291 }
5292
5293 if (p->sched_class->set_cpus_allowed)
5294 p->sched_class->set_cpus_allowed(p, new_mask);
5295 else {
5296 cpumask_copy(&p->cpus_allowed, new_mask);
5297 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5298 }
5299
5300 /* Can the task run on the task's current CPU? If so, we're done */
5301 if (cpumask_test_cpu(task_cpu(p), new_mask))
5302 goto out;
5303
5304 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5305 if (migrate_task(p, dest_cpu)) {
5306 struct migration_arg arg = { p, dest_cpu };
5307 /* Need help from migration thread: drop lock and wait. */
5308 task_rq_unlock(rq, &flags);
5309 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
5310 tlb_migrate_finish(p->mm);
5311 return 0;
5312 }
5313 out:
5314 task_rq_unlock(rq, &flags);
5315
5316 return ret;
5317 }
5318 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5319
5320 /*
5321 * Move (not current) task off this cpu, onto dest cpu. We're doing
5322 * this because either it can't run here any more (set_cpus_allowed()
5323 * away from this CPU, or CPU going down), or because we're
5324 * attempting to rebalance this task on exec (sched_exec).
5325 *
5326 * So we race with normal scheduler movements, but that's OK, as long
5327 * as the task is no longer on this CPU.
5328 *
5329 * Returns non-zero if task was successfully migrated.
5330 */
5331 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5332 {
5333 struct rq *rq_dest, *rq_src;
5334 int ret = 0;
5335
5336 if (unlikely(!cpu_active(dest_cpu)))
5337 return ret;
5338
5339 rq_src = cpu_rq(src_cpu);
5340 rq_dest = cpu_rq(dest_cpu);
5341
5342 double_rq_lock(rq_src, rq_dest);
5343 /* Already moved. */
5344 if (task_cpu(p) != src_cpu)
5345 goto done;
5346 /* Affinity changed (again). */
5347 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
5348 goto fail;
5349
5350 /*
5351 * If we're not on a rq, the next wake-up will ensure we're
5352 * placed properly.
5353 */
5354 if (p->se.on_rq) {
5355 deactivate_task(rq_src, p, 0);
5356 set_task_cpu(p, dest_cpu);
5357 activate_task(rq_dest, p, 0);
5358 check_preempt_curr(rq_dest, p, 0);
5359 }
5360 done:
5361 ret = 1;
5362 fail:
5363 double_rq_unlock(rq_src, rq_dest);
5364 return ret;
5365 }
5366
5367 /*
5368 * migration_cpu_stop - this will be executed by a highprio stopper thread
5369 * and performs thread migration by bumping thread off CPU then
5370 * 'pushing' onto another runqueue.
5371 */
5372 static int migration_cpu_stop(void *data)
5373 {
5374 struct migration_arg *arg = data;
5375
5376 /*
5377 * The original target cpu might have gone down and we might
5378 * be on another cpu but it doesn't matter.
5379 */
5380 local_irq_disable();
5381 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5382 local_irq_enable();
5383 return 0;
5384 }
5385
5386 #ifdef CONFIG_HOTPLUG_CPU
5387 /*
5388 * Figure out where task on dead CPU should go, use force if necessary.
5389 */
5390 void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5391 {
5392 struct rq *rq = cpu_rq(dead_cpu);
5393 int needs_cpu, uninitialized_var(dest_cpu);
5394 unsigned long flags;
5395
5396 local_irq_save(flags);
5397
5398 raw_spin_lock(&rq->lock);
5399 needs_cpu = (task_cpu(p) == dead_cpu) && (p->state != TASK_WAKING);
5400 if (needs_cpu)
5401 dest_cpu = select_fallback_rq(dead_cpu, p);
5402 raw_spin_unlock(&rq->lock);
5403 /*
5404 * It can only fail if we race with set_cpus_allowed(),
5405 * in the racer should migrate the task anyway.
5406 */
5407 if (needs_cpu)
5408 __migrate_task(p, dead_cpu, dest_cpu);
5409 local_irq_restore(flags);
5410 }
5411
5412 /*
5413 * While a dead CPU has no uninterruptible tasks queued at this point,
5414 * it might still have a nonzero ->nr_uninterruptible counter, because
5415 * for performance reasons the counter is not stricly tracking tasks to
5416 * their home CPUs. So we just add the counter to another CPU's counter,
5417 * to keep the global sum constant after CPU-down:
5418 */
5419 static void migrate_nr_uninterruptible(struct rq *rq_src)
5420 {
5421 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
5422 unsigned long flags;
5423
5424 local_irq_save(flags);
5425 double_rq_lock(rq_src, rq_dest);
5426 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5427 rq_src->nr_uninterruptible = 0;
5428 double_rq_unlock(rq_src, rq_dest);
5429 local_irq_restore(flags);
5430 }
5431
5432 /* Run through task list and migrate tasks from the dead cpu. */
5433 static void migrate_live_tasks(int src_cpu)
5434 {
5435 struct task_struct *p, *t;
5436
5437 read_lock(&tasklist_lock);
5438
5439 do_each_thread(t, p) {
5440 if (p == current)
5441 continue;
5442
5443 if (task_cpu(p) == src_cpu)
5444 move_task_off_dead_cpu(src_cpu, p);
5445 } while_each_thread(t, p);
5446
5447 read_unlock(&tasklist_lock);
5448 }
5449
5450 /*
5451 * Schedules idle task to be the next runnable task on current CPU.
5452 * It does so by boosting its priority to highest possible.
5453 * Used by CPU offline code.
5454 */
5455 void sched_idle_next(void)
5456 {
5457 int this_cpu = smp_processor_id();
5458 struct rq *rq = cpu_rq(this_cpu);
5459 struct task_struct *p = rq->idle;
5460 unsigned long flags;
5461
5462 /* cpu has to be offline */
5463 BUG_ON(cpu_online(this_cpu));
5464
5465 /*
5466 * Strictly not necessary since rest of the CPUs are stopped by now
5467 * and interrupts disabled on the current cpu.
5468 */
5469 raw_spin_lock_irqsave(&rq->lock, flags);
5470
5471 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5472
5473 activate_task(rq, p, 0);
5474
5475 raw_spin_unlock_irqrestore(&rq->lock, flags);
5476 }
5477
5478 /*
5479 * Ensures that the idle task is using init_mm right before its cpu goes
5480 * offline.
5481 */
5482 void idle_task_exit(void)
5483 {
5484 struct mm_struct *mm = current->active_mm;
5485
5486 BUG_ON(cpu_online(smp_processor_id()));
5487
5488 if (mm != &init_mm)
5489 switch_mm(mm, &init_mm, current);
5490 mmdrop(mm);
5491 }
5492
5493 /* called under rq->lock with disabled interrupts */
5494 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5495 {
5496 struct rq *rq = cpu_rq(dead_cpu);
5497
5498 /* Must be exiting, otherwise would be on tasklist. */
5499 BUG_ON(!p->exit_state);
5500
5501 /* Cannot have done final schedule yet: would have vanished. */
5502 BUG_ON(p->state == TASK_DEAD);
5503
5504 get_task_struct(p);
5505
5506 /*
5507 * Drop lock around migration; if someone else moves it,
5508 * that's OK. No task can be added to this CPU, so iteration is
5509 * fine.
5510 */
5511 raw_spin_unlock_irq(&rq->lock);
5512 move_task_off_dead_cpu(dead_cpu, p);
5513 raw_spin_lock_irq(&rq->lock);
5514
5515 put_task_struct(p);
5516 }
5517
5518 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5519 static void migrate_dead_tasks(unsigned int dead_cpu)
5520 {
5521 struct rq *rq = cpu_rq(dead_cpu);
5522 struct task_struct *next;
5523
5524 for ( ; ; ) {
5525 if (!rq->nr_running)
5526 break;
5527 next = pick_next_task(rq);
5528 if (!next)
5529 break;
5530 next->sched_class->put_prev_task(rq, next);
5531 migrate_dead(dead_cpu, next);
5532
5533 }
5534 }
5535
5536 /*
5537 * remove the tasks which were accounted by rq from calc_load_tasks.
5538 */
5539 static void calc_global_load_remove(struct rq *rq)
5540 {
5541 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5542 rq->calc_load_active = 0;
5543 }
5544 #endif /* CONFIG_HOTPLUG_CPU */
5545
5546 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5547
5548 static struct ctl_table sd_ctl_dir[] = {
5549 {
5550 .procname = "sched_domain",
5551 .mode = 0555,
5552 },
5553 {}
5554 };
5555
5556 static struct ctl_table sd_ctl_root[] = {
5557 {
5558 .procname = "kernel",
5559 .mode = 0555,
5560 .child = sd_ctl_dir,
5561 },
5562 {}
5563 };
5564
5565 static struct ctl_table *sd_alloc_ctl_entry(int n)
5566 {
5567 struct ctl_table *entry =
5568 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5569
5570 return entry;
5571 }
5572
5573 static void sd_free_ctl_entry(struct ctl_table **tablep)
5574 {
5575 struct ctl_table *entry;
5576
5577 /*
5578 * In the intermediate directories, both the child directory and
5579 * procname are dynamically allocated and could fail but the mode
5580 * will always be set. In the lowest directory the names are
5581 * static strings and all have proc handlers.
5582 */
5583 for (entry = *tablep; entry->mode; entry++) {
5584 if (entry->child)
5585 sd_free_ctl_entry(&entry->child);
5586 if (entry->proc_handler == NULL)
5587 kfree(entry->procname);
5588 }
5589
5590 kfree(*tablep);
5591 *tablep = NULL;
5592 }
5593
5594 static void
5595 set_table_entry(struct ctl_table *entry,
5596 const char *procname, void *data, int maxlen,
5597 mode_t mode, proc_handler *proc_handler)
5598 {
5599 entry->procname = procname;
5600 entry->data = data;
5601 entry->maxlen = maxlen;
5602 entry->mode = mode;
5603 entry->proc_handler = proc_handler;
5604 }
5605
5606 static struct ctl_table *
5607 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5608 {
5609 struct ctl_table *table = sd_alloc_ctl_entry(13);
5610
5611 if (table == NULL)
5612 return NULL;
5613
5614 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5615 sizeof(long), 0644, proc_doulongvec_minmax);
5616 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5617 sizeof(long), 0644, proc_doulongvec_minmax);
5618 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5619 sizeof(int), 0644, proc_dointvec_minmax);
5620 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5621 sizeof(int), 0644, proc_dointvec_minmax);
5622 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5623 sizeof(int), 0644, proc_dointvec_minmax);
5624 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5625 sizeof(int), 0644, proc_dointvec_minmax);
5626 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5627 sizeof(int), 0644, proc_dointvec_minmax);
5628 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5629 sizeof(int), 0644, proc_dointvec_minmax);
5630 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5631 sizeof(int), 0644, proc_dointvec_minmax);
5632 set_table_entry(&table[9], "cache_nice_tries",
5633 &sd->cache_nice_tries,
5634 sizeof(int), 0644, proc_dointvec_minmax);
5635 set_table_entry(&table[10], "flags", &sd->flags,
5636 sizeof(int), 0644, proc_dointvec_minmax);
5637 set_table_entry(&table[11], "name", sd->name,
5638 CORENAME_MAX_SIZE, 0444, proc_dostring);
5639 /* &table[12] is terminator */
5640
5641 return table;
5642 }
5643
5644 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5645 {
5646 struct ctl_table *entry, *table;
5647 struct sched_domain *sd;
5648 int domain_num = 0, i;
5649 char buf[32];
5650
5651 for_each_domain(cpu, sd)
5652 domain_num++;
5653 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5654 if (table == NULL)
5655 return NULL;
5656
5657 i = 0;
5658 for_each_domain(cpu, sd) {
5659 snprintf(buf, 32, "domain%d", i);
5660 entry->procname = kstrdup(buf, GFP_KERNEL);
5661 entry->mode = 0555;
5662 entry->child = sd_alloc_ctl_domain_table(sd);
5663 entry++;
5664 i++;
5665 }
5666 return table;
5667 }
5668
5669 static struct ctl_table_header *sd_sysctl_header;
5670 static void register_sched_domain_sysctl(void)
5671 {
5672 int i, cpu_num = num_possible_cpus();
5673 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5674 char buf[32];
5675
5676 WARN_ON(sd_ctl_dir[0].child);
5677 sd_ctl_dir[0].child = entry;
5678
5679 if (entry == NULL)
5680 return;
5681
5682 for_each_possible_cpu(i) {
5683 snprintf(buf, 32, "cpu%d", i);
5684 entry->procname = kstrdup(buf, GFP_KERNEL);
5685 entry->mode = 0555;
5686 entry->child = sd_alloc_ctl_cpu_table(i);
5687 entry++;
5688 }
5689
5690 WARN_ON(sd_sysctl_header);
5691 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5692 }
5693
5694 /* may be called multiple times per register */
5695 static void unregister_sched_domain_sysctl(void)
5696 {
5697 if (sd_sysctl_header)
5698 unregister_sysctl_table(sd_sysctl_header);
5699 sd_sysctl_header = NULL;
5700 if (sd_ctl_dir[0].child)
5701 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5702 }
5703 #else
5704 static void register_sched_domain_sysctl(void)
5705 {
5706 }
5707 static void unregister_sched_domain_sysctl(void)
5708 {
5709 }
5710 #endif
5711
5712 static void set_rq_online(struct rq *rq)
5713 {
5714 if (!rq->online) {
5715 const struct sched_class *class;
5716
5717 cpumask_set_cpu(rq->cpu, rq->rd->online);
5718 rq->online = 1;
5719
5720 for_each_class(class) {
5721 if (class->rq_online)
5722 class->rq_online(rq);
5723 }
5724 }
5725 }
5726
5727 static void set_rq_offline(struct rq *rq)
5728 {
5729 if (rq->online) {
5730 const struct sched_class *class;
5731
5732 for_each_class(class) {
5733 if (class->rq_offline)
5734 class->rq_offline(rq);
5735 }
5736
5737 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5738 rq->online = 0;
5739 }
5740 }
5741
5742 /*
5743 * migration_call - callback that gets triggered when a CPU is added.
5744 * Here we can start up the necessary migration thread for the new CPU.
5745 */
5746 static int __cpuinit
5747 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5748 {
5749 int cpu = (long)hcpu;
5750 unsigned long flags;
5751 struct rq *rq = cpu_rq(cpu);
5752
5753 switch (action) {
5754
5755 case CPU_UP_PREPARE:
5756 case CPU_UP_PREPARE_FROZEN:
5757 rq->calc_load_update = calc_load_update;
5758 break;
5759
5760 case CPU_ONLINE:
5761 case CPU_ONLINE_FROZEN:
5762 /* Update our root-domain */
5763 raw_spin_lock_irqsave(&rq->lock, flags);
5764 if (rq->rd) {
5765 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5766
5767 set_rq_online(rq);
5768 }
5769 raw_spin_unlock_irqrestore(&rq->lock, flags);
5770 break;
5771
5772 #ifdef CONFIG_HOTPLUG_CPU
5773 case CPU_DEAD:
5774 case CPU_DEAD_FROZEN:
5775 migrate_live_tasks(cpu);
5776 /* Idle task back to normal (off runqueue, low prio) */
5777 raw_spin_lock_irq(&rq->lock);
5778 deactivate_task(rq, rq->idle, 0);
5779 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5780 rq->idle->sched_class = &idle_sched_class;
5781 migrate_dead_tasks(cpu);
5782 raw_spin_unlock_irq(&rq->lock);
5783 migrate_nr_uninterruptible(rq);
5784 BUG_ON(rq->nr_running != 0);
5785 calc_global_load_remove(rq);
5786 break;
5787
5788 case CPU_DYING:
5789 case CPU_DYING_FROZEN:
5790 /* Update our root-domain */
5791 raw_spin_lock_irqsave(&rq->lock, flags);
5792 if (rq->rd) {
5793 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5794 set_rq_offline(rq);
5795 }
5796 raw_spin_unlock_irqrestore(&rq->lock, flags);
5797 break;
5798 #endif
5799 }
5800 return NOTIFY_OK;
5801 }
5802
5803 /*
5804 * Register at high priority so that task migration (migrate_all_tasks)
5805 * happens before everything else. This has to be lower priority than
5806 * the notifier in the perf_event subsystem, though.
5807 */
5808 static struct notifier_block __cpuinitdata migration_notifier = {
5809 .notifier_call = migration_call,
5810 .priority = 10
5811 };
5812
5813 static int __init migration_init(void)
5814 {
5815 void *cpu = (void *)(long)smp_processor_id();
5816 int err;
5817
5818 /* Start one for the boot CPU: */
5819 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5820 BUG_ON(err == NOTIFY_BAD);
5821 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5822 register_cpu_notifier(&migration_notifier);
5823
5824 return 0;
5825 }
5826 early_initcall(migration_init);
5827 #endif
5828
5829 #ifdef CONFIG_SMP
5830
5831 #ifdef CONFIG_SCHED_DEBUG
5832
5833 static __read_mostly int sched_domain_debug_enabled;
5834
5835 static int __init sched_domain_debug_setup(char *str)
5836 {
5837 sched_domain_debug_enabled = 1;
5838
5839 return 0;
5840 }
5841 early_param("sched_debug", sched_domain_debug_setup);
5842
5843 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5844 struct cpumask *groupmask)
5845 {
5846 struct sched_group *group = sd->groups;
5847 char str[256];
5848
5849 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5850 cpumask_clear(groupmask);
5851
5852 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5853
5854 if (!(sd->flags & SD_LOAD_BALANCE)) {
5855 printk("does not load-balance\n");
5856 if (sd->parent)
5857 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5858 " has parent");
5859 return -1;
5860 }
5861
5862 printk(KERN_CONT "span %s level %s\n", str, sd->name);
5863
5864 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5865 printk(KERN_ERR "ERROR: domain->span does not contain "
5866 "CPU%d\n", cpu);
5867 }
5868 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5869 printk(KERN_ERR "ERROR: domain->groups does not contain"
5870 " CPU%d\n", cpu);
5871 }
5872
5873 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5874 do {
5875 if (!group) {
5876 printk("\n");
5877 printk(KERN_ERR "ERROR: group is NULL\n");
5878 break;
5879 }
5880
5881 if (!group->cpu_power) {
5882 printk(KERN_CONT "\n");
5883 printk(KERN_ERR "ERROR: domain->cpu_power not "
5884 "set\n");
5885 break;
5886 }
5887
5888 if (!cpumask_weight(sched_group_cpus(group))) {
5889 printk(KERN_CONT "\n");
5890 printk(KERN_ERR "ERROR: empty group\n");
5891 break;
5892 }
5893
5894 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
5895 printk(KERN_CONT "\n");
5896 printk(KERN_ERR "ERROR: repeated CPUs\n");
5897 break;
5898 }
5899
5900 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5901
5902 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5903
5904 printk(KERN_CONT " %s", str);
5905 if (group->cpu_power != SCHED_LOAD_SCALE) {
5906 printk(KERN_CONT " (cpu_power = %d)",
5907 group->cpu_power);
5908 }
5909
5910 group = group->next;
5911 } while (group != sd->groups);
5912 printk(KERN_CONT "\n");
5913
5914 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5915 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5916
5917 if (sd->parent &&
5918 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5919 printk(KERN_ERR "ERROR: parent span is not a superset "
5920 "of domain->span\n");
5921 return 0;
5922 }
5923
5924 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5925 {
5926 cpumask_var_t groupmask;
5927 int level = 0;
5928
5929 if (!sched_domain_debug_enabled)
5930 return;
5931
5932 if (!sd) {
5933 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5934 return;
5935 }
5936
5937 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5938
5939 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
5940 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
5941 return;
5942 }
5943
5944 for (;;) {
5945 if (sched_domain_debug_one(sd, cpu, level, groupmask))
5946 break;
5947 level++;
5948 sd = sd->parent;
5949 if (!sd)
5950 break;
5951 }
5952 free_cpumask_var(groupmask);
5953 }
5954 #else /* !CONFIG_SCHED_DEBUG */
5955 # define sched_domain_debug(sd, cpu) do { } while (0)
5956 #endif /* CONFIG_SCHED_DEBUG */
5957
5958 static int sd_degenerate(struct sched_domain *sd)
5959 {
5960 if (cpumask_weight(sched_domain_span(sd)) == 1)
5961 return 1;
5962
5963 /* Following flags need at least 2 groups */
5964 if (sd->flags & (SD_LOAD_BALANCE |
5965 SD_BALANCE_NEWIDLE |
5966 SD_BALANCE_FORK |
5967 SD_BALANCE_EXEC |
5968 SD_SHARE_CPUPOWER |
5969 SD_SHARE_PKG_RESOURCES)) {
5970 if (sd->groups != sd->groups->next)
5971 return 0;
5972 }
5973
5974 /* Following flags don't use groups */
5975 if (sd->flags & (SD_WAKE_AFFINE))
5976 return 0;
5977
5978 return 1;
5979 }
5980
5981 static int
5982 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5983 {
5984 unsigned long cflags = sd->flags, pflags = parent->flags;
5985
5986 if (sd_degenerate(parent))
5987 return 1;
5988
5989 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5990 return 0;
5991
5992 /* Flags needing groups don't count if only 1 group in parent */
5993 if (parent->groups == parent->groups->next) {
5994 pflags &= ~(SD_LOAD_BALANCE |
5995 SD_BALANCE_NEWIDLE |
5996 SD_BALANCE_FORK |
5997 SD_BALANCE_EXEC |
5998 SD_SHARE_CPUPOWER |
5999 SD_SHARE_PKG_RESOURCES);
6000 if (nr_node_ids == 1)
6001 pflags &= ~SD_SERIALIZE;
6002 }
6003 if (~cflags & pflags)
6004 return 0;
6005
6006 return 1;
6007 }
6008
6009 static void free_rootdomain(struct root_domain *rd)
6010 {
6011 synchronize_sched();
6012
6013 cpupri_cleanup(&rd->cpupri);
6014
6015 free_cpumask_var(rd->rto_mask);
6016 free_cpumask_var(rd->online);
6017 free_cpumask_var(rd->span);
6018 kfree(rd);
6019 }
6020
6021 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6022 {
6023 struct root_domain *old_rd = NULL;
6024 unsigned long flags;
6025
6026 raw_spin_lock_irqsave(&rq->lock, flags);
6027
6028 if (rq->rd) {
6029 old_rd = rq->rd;
6030
6031 if (cpumask_test_cpu(rq->cpu, old_rd->online))
6032 set_rq_offline(rq);
6033
6034 cpumask_clear_cpu(rq->cpu, old_rd->span);
6035
6036 /*
6037 * If we dont want to free the old_rt yet then
6038 * set old_rd to NULL to skip the freeing later
6039 * in this function:
6040 */
6041 if (!atomic_dec_and_test(&old_rd->refcount))
6042 old_rd = NULL;
6043 }
6044
6045 atomic_inc(&rd->refcount);
6046 rq->rd = rd;
6047
6048 cpumask_set_cpu(rq->cpu, rd->span);
6049 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6050 set_rq_online(rq);
6051
6052 raw_spin_unlock_irqrestore(&rq->lock, flags);
6053
6054 if (old_rd)
6055 free_rootdomain(old_rd);
6056 }
6057
6058 static int init_rootdomain(struct root_domain *rd, bool bootmem)
6059 {
6060 gfp_t gfp = GFP_KERNEL;
6061
6062 memset(rd, 0, sizeof(*rd));
6063
6064 if (bootmem)
6065 gfp = GFP_NOWAIT;
6066
6067 if (!alloc_cpumask_var(&rd->span, gfp))
6068 goto out;
6069 if (!alloc_cpumask_var(&rd->online, gfp))
6070 goto free_span;
6071 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
6072 goto free_online;
6073
6074 if (cpupri_init(&rd->cpupri, bootmem) != 0)
6075 goto free_rto_mask;
6076 return 0;
6077
6078 free_rto_mask:
6079 free_cpumask_var(rd->rto_mask);
6080 free_online:
6081 free_cpumask_var(rd->online);
6082 free_span:
6083 free_cpumask_var(rd->span);
6084 out:
6085 return -ENOMEM;
6086 }
6087
6088 static void init_defrootdomain(void)
6089 {
6090 init_rootdomain(&def_root_domain, true);
6091
6092 atomic_set(&def_root_domain.refcount, 1);
6093 }
6094
6095 static struct root_domain *alloc_rootdomain(void)
6096 {
6097 struct root_domain *rd;
6098
6099 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6100 if (!rd)
6101 return NULL;
6102
6103 if (init_rootdomain(rd, false) != 0) {
6104 kfree(rd);
6105 return NULL;
6106 }
6107
6108 return rd;
6109 }
6110
6111 /*
6112 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6113 * hold the hotplug lock.
6114 */
6115 static void
6116 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6117 {
6118 struct rq *rq = cpu_rq(cpu);
6119 struct sched_domain *tmp;
6120
6121 for (tmp = sd; tmp; tmp = tmp->parent)
6122 tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
6123
6124 /* Remove the sched domains which do not contribute to scheduling. */
6125 for (tmp = sd; tmp; ) {
6126 struct sched_domain *parent = tmp->parent;
6127 if (!parent)
6128 break;
6129
6130 if (sd_parent_degenerate(tmp, parent)) {
6131 tmp->parent = parent->parent;
6132 if (parent->parent)
6133 parent->parent->child = tmp;
6134 } else
6135 tmp = tmp->parent;
6136 }
6137
6138 if (sd && sd_degenerate(sd)) {
6139 sd = sd->parent;
6140 if (sd)
6141 sd->child = NULL;
6142 }
6143
6144 sched_domain_debug(sd, cpu);
6145
6146 rq_attach_root(rq, rd);
6147 rcu_assign_pointer(rq->sd, sd);
6148 }
6149
6150 /* cpus with isolated domains */
6151 static cpumask_var_t cpu_isolated_map;
6152
6153 /* Setup the mask of cpus configured for isolated domains */
6154 static int __init isolated_cpu_setup(char *str)
6155 {
6156 alloc_bootmem_cpumask_var(&cpu_isolated_map);
6157 cpulist_parse(str, cpu_isolated_map);
6158 return 1;
6159 }
6160
6161 __setup("isolcpus=", isolated_cpu_setup);
6162
6163 /*
6164 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6165 * to a function which identifies what group(along with sched group) a CPU
6166 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6167 * (due to the fact that we keep track of groups covered with a struct cpumask).
6168 *
6169 * init_sched_build_groups will build a circular linked list of the groups
6170 * covered by the given span, and will set each group's ->cpumask correctly,
6171 * and ->cpu_power to 0.
6172 */
6173 static void
6174 init_sched_build_groups(const struct cpumask *span,
6175 const struct cpumask *cpu_map,
6176 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
6177 struct sched_group **sg,
6178 struct cpumask *tmpmask),
6179 struct cpumask *covered, struct cpumask *tmpmask)
6180 {
6181 struct sched_group *first = NULL, *last = NULL;
6182 int i;
6183
6184 cpumask_clear(covered);
6185
6186 for_each_cpu(i, span) {
6187 struct sched_group *sg;
6188 int group = group_fn(i, cpu_map, &sg, tmpmask);
6189 int j;
6190
6191 if (cpumask_test_cpu(i, covered))
6192 continue;
6193
6194 cpumask_clear(sched_group_cpus(sg));
6195 sg->cpu_power = 0;
6196
6197 for_each_cpu(j, span) {
6198 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6199 continue;
6200
6201 cpumask_set_cpu(j, covered);
6202 cpumask_set_cpu(j, sched_group_cpus(sg));
6203 }
6204 if (!first)
6205 first = sg;
6206 if (last)
6207 last->next = sg;
6208 last = sg;
6209 }
6210 last->next = first;
6211 }
6212
6213 #define SD_NODES_PER_DOMAIN 16
6214
6215 #ifdef CONFIG_NUMA
6216
6217 /**
6218 * find_next_best_node - find the next node to include in a sched_domain
6219 * @node: node whose sched_domain we're building
6220 * @used_nodes: nodes already in the sched_domain
6221 *
6222 * Find the next node to include in a given scheduling domain. Simply
6223 * finds the closest node not already in the @used_nodes map.
6224 *
6225 * Should use nodemask_t.
6226 */
6227 static int find_next_best_node(int node, nodemask_t *used_nodes)
6228 {
6229 int i, n, val, min_val, best_node = 0;
6230
6231 min_val = INT_MAX;
6232
6233 for (i = 0; i < nr_node_ids; i++) {
6234 /* Start at @node */
6235 n = (node + i) % nr_node_ids;
6236
6237 if (!nr_cpus_node(n))
6238 continue;
6239
6240 /* Skip already used nodes */
6241 if (node_isset(n, *used_nodes))
6242 continue;
6243
6244 /* Simple min distance search */
6245 val = node_distance(node, n);
6246
6247 if (val < min_val) {
6248 min_val = val;
6249 best_node = n;
6250 }
6251 }
6252
6253 node_set(best_node, *used_nodes);
6254 return best_node;
6255 }
6256
6257 /**
6258 * sched_domain_node_span - get a cpumask for a node's sched_domain
6259 * @node: node whose cpumask we're constructing
6260 * @span: resulting cpumask
6261 *
6262 * Given a node, construct a good cpumask for its sched_domain to span. It
6263 * should be one that prevents unnecessary balancing, but also spreads tasks
6264 * out optimally.
6265 */
6266 static void sched_domain_node_span(int node, struct cpumask *span)
6267 {
6268 nodemask_t used_nodes;
6269 int i;
6270
6271 cpumask_clear(span);
6272 nodes_clear(used_nodes);
6273
6274 cpumask_or(span, span, cpumask_of_node(node));
6275 node_set(node, used_nodes);
6276
6277 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6278 int next_node = find_next_best_node(node, &used_nodes);
6279
6280 cpumask_or(span, span, cpumask_of_node(next_node));
6281 }
6282 }
6283 #endif /* CONFIG_NUMA */
6284
6285 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6286
6287 /*
6288 * The cpus mask in sched_group and sched_domain hangs off the end.
6289 *
6290 * ( See the the comments in include/linux/sched.h:struct sched_group
6291 * and struct sched_domain. )
6292 */
6293 struct static_sched_group {
6294 struct sched_group sg;
6295 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6296 };
6297
6298 struct static_sched_domain {
6299 struct sched_domain sd;
6300 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6301 };
6302
6303 struct s_data {
6304 #ifdef CONFIG_NUMA
6305 int sd_allnodes;
6306 cpumask_var_t domainspan;
6307 cpumask_var_t covered;
6308 cpumask_var_t notcovered;
6309 #endif
6310 cpumask_var_t nodemask;
6311 cpumask_var_t this_sibling_map;
6312 cpumask_var_t this_core_map;
6313 cpumask_var_t send_covered;
6314 cpumask_var_t tmpmask;
6315 struct sched_group **sched_group_nodes;
6316 struct root_domain *rd;
6317 };
6318
6319 enum s_alloc {
6320 sa_sched_groups = 0,
6321 sa_rootdomain,
6322 sa_tmpmask,
6323 sa_send_covered,
6324 sa_this_core_map,
6325 sa_this_sibling_map,
6326 sa_nodemask,
6327 sa_sched_group_nodes,
6328 #ifdef CONFIG_NUMA
6329 sa_notcovered,
6330 sa_covered,
6331 sa_domainspan,
6332 #endif
6333 sa_none,
6334 };
6335
6336 /*
6337 * SMT sched-domains:
6338 */
6339 #ifdef CONFIG_SCHED_SMT
6340 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
6341 static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
6342
6343 static int
6344 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6345 struct sched_group **sg, struct cpumask *unused)
6346 {
6347 if (sg)
6348 *sg = &per_cpu(sched_groups, cpu).sg;
6349 return cpu;
6350 }
6351 #endif /* CONFIG_SCHED_SMT */
6352
6353 /*
6354 * multi-core sched-domains:
6355 */
6356 #ifdef CONFIG_SCHED_MC
6357 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6358 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6359 #endif /* CONFIG_SCHED_MC */
6360
6361 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6362 static int
6363 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6364 struct sched_group **sg, struct cpumask *mask)
6365 {
6366 int group;
6367
6368 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6369 group = cpumask_first(mask);
6370 if (sg)
6371 *sg = &per_cpu(sched_group_core, group).sg;
6372 return group;
6373 }
6374 #elif defined(CONFIG_SCHED_MC)
6375 static int
6376 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6377 struct sched_group **sg, struct cpumask *unused)
6378 {
6379 if (sg)
6380 *sg = &per_cpu(sched_group_core, cpu).sg;
6381 return cpu;
6382 }
6383 #endif
6384
6385 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6386 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
6387
6388 static int
6389 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6390 struct sched_group **sg, struct cpumask *mask)
6391 {
6392 int group;
6393 #ifdef CONFIG_SCHED_MC
6394 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6395 group = cpumask_first(mask);
6396 #elif defined(CONFIG_SCHED_SMT)
6397 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6398 group = cpumask_first(mask);
6399 #else
6400 group = cpu;
6401 #endif
6402 if (sg)
6403 *sg = &per_cpu(sched_group_phys, group).sg;
6404 return group;
6405 }
6406
6407 #ifdef CONFIG_NUMA
6408 /*
6409 * The init_sched_build_groups can't handle what we want to do with node
6410 * groups, so roll our own. Now each node has its own list of groups which
6411 * gets dynamically allocated.
6412 */
6413 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
6414 static struct sched_group ***sched_group_nodes_bycpu;
6415
6416 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6417 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
6418
6419 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6420 struct sched_group **sg,
6421 struct cpumask *nodemask)
6422 {
6423 int group;
6424
6425 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
6426 group = cpumask_first(nodemask);
6427
6428 if (sg)
6429 *sg = &per_cpu(sched_group_allnodes, group).sg;
6430 return group;
6431 }
6432
6433 static void init_numa_sched_groups_power(struct sched_group *group_head)
6434 {
6435 struct sched_group *sg = group_head;
6436 int j;
6437
6438 if (!sg)
6439 return;
6440 do {
6441 for_each_cpu(j, sched_group_cpus(sg)) {
6442 struct sched_domain *sd;
6443
6444 sd = &per_cpu(phys_domains, j).sd;
6445 if (j != group_first_cpu(sd->groups)) {
6446 /*
6447 * Only add "power" once for each
6448 * physical package.
6449 */
6450 continue;
6451 }
6452
6453 sg->cpu_power += sd->groups->cpu_power;
6454 }
6455 sg = sg->next;
6456 } while (sg != group_head);
6457 }
6458
6459 static int build_numa_sched_groups(struct s_data *d,
6460 const struct cpumask *cpu_map, int num)
6461 {
6462 struct sched_domain *sd;
6463 struct sched_group *sg, *prev;
6464 int n, j;
6465
6466 cpumask_clear(d->covered);
6467 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
6468 if (cpumask_empty(d->nodemask)) {
6469 d->sched_group_nodes[num] = NULL;
6470 goto out;
6471 }
6472
6473 sched_domain_node_span(num, d->domainspan);
6474 cpumask_and(d->domainspan, d->domainspan, cpu_map);
6475
6476 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6477 GFP_KERNEL, num);
6478 if (!sg) {
6479 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
6480 num);
6481 return -ENOMEM;
6482 }
6483 d->sched_group_nodes[num] = sg;
6484
6485 for_each_cpu(j, d->nodemask) {
6486 sd = &per_cpu(node_domains, j).sd;
6487 sd->groups = sg;
6488 }
6489
6490 sg->cpu_power = 0;
6491 cpumask_copy(sched_group_cpus(sg), d->nodemask);
6492 sg->next = sg;
6493 cpumask_or(d->covered, d->covered, d->nodemask);
6494
6495 prev = sg;
6496 for (j = 0; j < nr_node_ids; j++) {
6497 n = (num + j) % nr_node_ids;
6498 cpumask_complement(d->notcovered, d->covered);
6499 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
6500 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
6501 if (cpumask_empty(d->tmpmask))
6502 break;
6503 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
6504 if (cpumask_empty(d->tmpmask))
6505 continue;
6506 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6507 GFP_KERNEL, num);
6508 if (!sg) {
6509 printk(KERN_WARNING
6510 "Can not alloc domain group for node %d\n", j);
6511 return -ENOMEM;
6512 }
6513 sg->cpu_power = 0;
6514 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
6515 sg->next = prev->next;
6516 cpumask_or(d->covered, d->covered, d->tmpmask);
6517 prev->next = sg;
6518 prev = sg;
6519 }
6520 out:
6521 return 0;
6522 }
6523 #endif /* CONFIG_NUMA */
6524
6525 #ifdef CONFIG_NUMA
6526 /* Free memory allocated for various sched_group structures */
6527 static void free_sched_groups(const struct cpumask *cpu_map,
6528 struct cpumask *nodemask)
6529 {
6530 int cpu, i;
6531
6532 for_each_cpu(cpu, cpu_map) {
6533 struct sched_group **sched_group_nodes
6534 = sched_group_nodes_bycpu[cpu];
6535
6536 if (!sched_group_nodes)
6537 continue;
6538
6539 for (i = 0; i < nr_node_ids; i++) {
6540 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6541
6542 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
6543 if (cpumask_empty(nodemask))
6544 continue;
6545
6546 if (sg == NULL)
6547 continue;
6548 sg = sg->next;
6549 next_sg:
6550 oldsg = sg;
6551 sg = sg->next;
6552 kfree(oldsg);
6553 if (oldsg != sched_group_nodes[i])
6554 goto next_sg;
6555 }
6556 kfree(sched_group_nodes);
6557 sched_group_nodes_bycpu[cpu] = NULL;
6558 }
6559 }
6560 #else /* !CONFIG_NUMA */
6561 static void free_sched_groups(const struct cpumask *cpu_map,
6562 struct cpumask *nodemask)
6563 {
6564 }
6565 #endif /* CONFIG_NUMA */
6566
6567 /*
6568 * Initialize sched groups cpu_power.
6569 *
6570 * cpu_power indicates the capacity of sched group, which is used while
6571 * distributing the load between different sched groups in a sched domain.
6572 * Typically cpu_power for all the groups in a sched domain will be same unless
6573 * there are asymmetries in the topology. If there are asymmetries, group
6574 * having more cpu_power will pickup more load compared to the group having
6575 * less cpu_power.
6576 */
6577 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6578 {
6579 struct sched_domain *child;
6580 struct sched_group *group;
6581 long power;
6582 int weight;
6583
6584 WARN_ON(!sd || !sd->groups);
6585
6586 if (cpu != group_first_cpu(sd->groups))
6587 return;
6588
6589 child = sd->child;
6590
6591 sd->groups->cpu_power = 0;
6592
6593 if (!child) {
6594 power = SCHED_LOAD_SCALE;
6595 weight = cpumask_weight(sched_domain_span(sd));
6596 /*
6597 * SMT siblings share the power of a single core.
6598 * Usually multiple threads get a better yield out of
6599 * that one core than a single thread would have,
6600 * reflect that in sd->smt_gain.
6601 */
6602 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
6603 power *= sd->smt_gain;
6604 power /= weight;
6605 power >>= SCHED_LOAD_SHIFT;
6606 }
6607 sd->groups->cpu_power += power;
6608 return;
6609 }
6610
6611 /*
6612 * Add cpu_power of each child group to this groups cpu_power.
6613 */
6614 group = child->groups;
6615 do {
6616 sd->groups->cpu_power += group->cpu_power;
6617 group = group->next;
6618 } while (group != child->groups);
6619 }
6620
6621 /*
6622 * Initializers for schedule domains
6623 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6624 */
6625
6626 #ifdef CONFIG_SCHED_DEBUG
6627 # define SD_INIT_NAME(sd, type) sd->name = #type
6628 #else
6629 # define SD_INIT_NAME(sd, type) do { } while (0)
6630 #endif
6631
6632 #define SD_INIT(sd, type) sd_init_##type(sd)
6633
6634 #define SD_INIT_FUNC(type) \
6635 static noinline void sd_init_##type(struct sched_domain *sd) \
6636 { \
6637 memset(sd, 0, sizeof(*sd)); \
6638 *sd = SD_##type##_INIT; \
6639 sd->level = SD_LV_##type; \
6640 SD_INIT_NAME(sd, type); \
6641 }
6642
6643 SD_INIT_FUNC(CPU)
6644 #ifdef CONFIG_NUMA
6645 SD_INIT_FUNC(ALLNODES)
6646 SD_INIT_FUNC(NODE)
6647 #endif
6648 #ifdef CONFIG_SCHED_SMT
6649 SD_INIT_FUNC(SIBLING)
6650 #endif
6651 #ifdef CONFIG_SCHED_MC
6652 SD_INIT_FUNC(MC)
6653 #endif
6654
6655 static int default_relax_domain_level = -1;
6656
6657 static int __init setup_relax_domain_level(char *str)
6658 {
6659 unsigned long val;
6660
6661 val = simple_strtoul(str, NULL, 0);
6662 if (val < SD_LV_MAX)
6663 default_relax_domain_level = val;
6664
6665 return 1;
6666 }
6667 __setup("relax_domain_level=", setup_relax_domain_level);
6668
6669 static void set_domain_attribute(struct sched_domain *sd,
6670 struct sched_domain_attr *attr)
6671 {
6672 int request;
6673
6674 if (!attr || attr->relax_domain_level < 0) {
6675 if (default_relax_domain_level < 0)
6676 return;
6677 else
6678 request = default_relax_domain_level;
6679 } else
6680 request = attr->relax_domain_level;
6681 if (request < sd->level) {
6682 /* turn off idle balance on this domain */
6683 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6684 } else {
6685 /* turn on idle balance on this domain */
6686 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6687 }
6688 }
6689
6690 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6691 const struct cpumask *cpu_map)
6692 {
6693 switch (what) {
6694 case sa_sched_groups:
6695 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
6696 d->sched_group_nodes = NULL;
6697 case sa_rootdomain:
6698 free_rootdomain(d->rd); /* fall through */
6699 case sa_tmpmask:
6700 free_cpumask_var(d->tmpmask); /* fall through */
6701 case sa_send_covered:
6702 free_cpumask_var(d->send_covered); /* fall through */
6703 case sa_this_core_map:
6704 free_cpumask_var(d->this_core_map); /* fall through */
6705 case sa_this_sibling_map:
6706 free_cpumask_var(d->this_sibling_map); /* fall through */
6707 case sa_nodemask:
6708 free_cpumask_var(d->nodemask); /* fall through */
6709 case sa_sched_group_nodes:
6710 #ifdef CONFIG_NUMA
6711 kfree(d->sched_group_nodes); /* fall through */
6712 case sa_notcovered:
6713 free_cpumask_var(d->notcovered); /* fall through */
6714 case sa_covered:
6715 free_cpumask_var(d->covered); /* fall through */
6716 case sa_domainspan:
6717 free_cpumask_var(d->domainspan); /* fall through */
6718 #endif
6719 case sa_none:
6720 break;
6721 }
6722 }
6723
6724 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6725 const struct cpumask *cpu_map)
6726 {
6727 #ifdef CONFIG_NUMA
6728 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
6729 return sa_none;
6730 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
6731 return sa_domainspan;
6732 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
6733 return sa_covered;
6734 /* Allocate the per-node list of sched groups */
6735 d->sched_group_nodes = kcalloc(nr_node_ids,
6736 sizeof(struct sched_group *), GFP_KERNEL);
6737 if (!d->sched_group_nodes) {
6738 printk(KERN_WARNING "Can not alloc sched group node list\n");
6739 return sa_notcovered;
6740 }
6741 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
6742 #endif
6743 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
6744 return sa_sched_group_nodes;
6745 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
6746 return sa_nodemask;
6747 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
6748 return sa_this_sibling_map;
6749 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
6750 return sa_this_core_map;
6751 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
6752 return sa_send_covered;
6753 d->rd = alloc_rootdomain();
6754 if (!d->rd) {
6755 printk(KERN_WARNING "Cannot alloc root domain\n");
6756 return sa_tmpmask;
6757 }
6758 return sa_rootdomain;
6759 }
6760
6761 static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
6762 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
6763 {
6764 struct sched_domain *sd = NULL;
6765 #ifdef CONFIG_NUMA
6766 struct sched_domain *parent;
6767
6768 d->sd_allnodes = 0;
6769 if (cpumask_weight(cpu_map) >
6770 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
6771 sd = &per_cpu(allnodes_domains, i).sd;
6772 SD_INIT(sd, ALLNODES);
6773 set_domain_attribute(sd, attr);
6774 cpumask_copy(sched_domain_span(sd), cpu_map);
6775 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
6776 d->sd_allnodes = 1;
6777 }
6778 parent = sd;
6779
6780 sd = &per_cpu(node_domains, i).sd;
6781 SD_INIT(sd, NODE);
6782 set_domain_attribute(sd, attr);
6783 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
6784 sd->parent = parent;
6785 if (parent)
6786 parent->child = sd;
6787 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
6788 #endif
6789 return sd;
6790 }
6791
6792 static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
6793 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6794 struct sched_domain *parent, int i)
6795 {
6796 struct sched_domain *sd;
6797 sd = &per_cpu(phys_domains, i).sd;
6798 SD_INIT(sd, CPU);
6799 set_domain_attribute(sd, attr);
6800 cpumask_copy(sched_domain_span(sd), d->nodemask);
6801 sd->parent = parent;
6802 if (parent)
6803 parent->child = sd;
6804 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
6805 return sd;
6806 }
6807
6808 static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
6809 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6810 struct sched_domain *parent, int i)
6811 {
6812 struct sched_domain *sd = parent;
6813 #ifdef CONFIG_SCHED_MC
6814 sd = &per_cpu(core_domains, i).sd;
6815 SD_INIT(sd, MC);
6816 set_domain_attribute(sd, attr);
6817 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
6818 sd->parent = parent;
6819 parent->child = sd;
6820 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
6821 #endif
6822 return sd;
6823 }
6824
6825 static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
6826 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6827 struct sched_domain *parent, int i)
6828 {
6829 struct sched_domain *sd = parent;
6830 #ifdef CONFIG_SCHED_SMT
6831 sd = &per_cpu(cpu_domains, i).sd;
6832 SD_INIT(sd, SIBLING);
6833 set_domain_attribute(sd, attr);
6834 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
6835 sd->parent = parent;
6836 parent->child = sd;
6837 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
6838 #endif
6839 return sd;
6840 }
6841
6842 static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
6843 const struct cpumask *cpu_map, int cpu)
6844 {
6845 switch (l) {
6846 #ifdef CONFIG_SCHED_SMT
6847 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
6848 cpumask_and(d->this_sibling_map, cpu_map,
6849 topology_thread_cpumask(cpu));
6850 if (cpu == cpumask_first(d->this_sibling_map))
6851 init_sched_build_groups(d->this_sibling_map, cpu_map,
6852 &cpu_to_cpu_group,
6853 d->send_covered, d->tmpmask);
6854 break;
6855 #endif
6856 #ifdef CONFIG_SCHED_MC
6857 case SD_LV_MC: /* set up multi-core groups */
6858 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
6859 if (cpu == cpumask_first(d->this_core_map))
6860 init_sched_build_groups(d->this_core_map, cpu_map,
6861 &cpu_to_core_group,
6862 d->send_covered, d->tmpmask);
6863 break;
6864 #endif
6865 case SD_LV_CPU: /* set up physical groups */
6866 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
6867 if (!cpumask_empty(d->nodemask))
6868 init_sched_build_groups(d->nodemask, cpu_map,
6869 &cpu_to_phys_group,
6870 d->send_covered, d->tmpmask);
6871 break;
6872 #ifdef CONFIG_NUMA
6873 case SD_LV_ALLNODES:
6874 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
6875 d->send_covered, d->tmpmask);
6876 break;
6877 #endif
6878 default:
6879 break;
6880 }
6881 }
6882
6883 /*
6884 * Build sched domains for a given set of cpus and attach the sched domains
6885 * to the individual cpus
6886 */
6887 static int __build_sched_domains(const struct cpumask *cpu_map,
6888 struct sched_domain_attr *attr)
6889 {
6890 enum s_alloc alloc_state = sa_none;
6891 struct s_data d;
6892 struct sched_domain *sd;
6893 int i;
6894 #ifdef CONFIG_NUMA
6895 d.sd_allnodes = 0;
6896 #endif
6897
6898 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6899 if (alloc_state != sa_rootdomain)
6900 goto error;
6901 alloc_state = sa_sched_groups;
6902
6903 /*
6904 * Set up domains for cpus specified by the cpu_map.
6905 */
6906 for_each_cpu(i, cpu_map) {
6907 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
6908 cpu_map);
6909
6910 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
6911 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
6912 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
6913 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
6914 }
6915
6916 for_each_cpu(i, cpu_map) {
6917 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
6918 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
6919 }
6920
6921 /* Set up physical groups */
6922 for (i = 0; i < nr_node_ids; i++)
6923 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
6924
6925 #ifdef CONFIG_NUMA
6926 /* Set up node groups */
6927 if (d.sd_allnodes)
6928 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
6929
6930 for (i = 0; i < nr_node_ids; i++)
6931 if (build_numa_sched_groups(&d, cpu_map, i))
6932 goto error;
6933 #endif
6934
6935 /* Calculate CPU power for physical packages and nodes */
6936 #ifdef CONFIG_SCHED_SMT
6937 for_each_cpu(i, cpu_map) {
6938 sd = &per_cpu(cpu_domains, i).sd;
6939 init_sched_groups_power(i, sd);
6940 }
6941 #endif
6942 #ifdef CONFIG_SCHED_MC
6943 for_each_cpu(i, cpu_map) {
6944 sd = &per_cpu(core_domains, i).sd;
6945 init_sched_groups_power(i, sd);
6946 }
6947 #endif
6948
6949 for_each_cpu(i, cpu_map) {
6950 sd = &per_cpu(phys_domains, i).sd;
6951 init_sched_groups_power(i, sd);
6952 }
6953
6954 #ifdef CONFIG_NUMA
6955 for (i = 0; i < nr_node_ids; i++)
6956 init_numa_sched_groups_power(d.sched_group_nodes[i]);
6957
6958 if (d.sd_allnodes) {
6959 struct sched_group *sg;
6960
6961 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
6962 d.tmpmask);
6963 init_numa_sched_groups_power(sg);
6964 }
6965 #endif
6966
6967 /* Attach the domains */
6968 for_each_cpu(i, cpu_map) {
6969 #ifdef CONFIG_SCHED_SMT
6970 sd = &per_cpu(cpu_domains, i).sd;
6971 #elif defined(CONFIG_SCHED_MC)
6972 sd = &per_cpu(core_domains, i).sd;
6973 #else
6974 sd = &per_cpu(phys_domains, i).sd;
6975 #endif
6976 cpu_attach_domain(sd, d.rd, i);
6977 }
6978
6979 d.sched_group_nodes = NULL; /* don't free this we still need it */
6980 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
6981 return 0;
6982
6983 error:
6984 __free_domain_allocs(&d, alloc_state, cpu_map);
6985 return -ENOMEM;
6986 }
6987
6988 static int build_sched_domains(const struct cpumask *cpu_map)
6989 {
6990 return __build_sched_domains(cpu_map, NULL);
6991 }
6992
6993 static cpumask_var_t *doms_cur; /* current sched domains */
6994 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6995 static struct sched_domain_attr *dattr_cur;
6996 /* attribues of custom domains in 'doms_cur' */
6997
6998 /*
6999 * Special case: If a kmalloc of a doms_cur partition (array of
7000 * cpumask) fails, then fallback to a single sched domain,
7001 * as determined by the single cpumask fallback_doms.
7002 */
7003 static cpumask_var_t fallback_doms;
7004
7005 /*
7006 * arch_update_cpu_topology lets virtualized architectures update the
7007 * cpu core maps. It is supposed to return 1 if the topology changed
7008 * or 0 if it stayed the same.
7009 */
7010 int __attribute__((weak)) arch_update_cpu_topology(void)
7011 {
7012 return 0;
7013 }
7014
7015 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7016 {
7017 int i;
7018 cpumask_var_t *doms;
7019
7020 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7021 if (!doms)
7022 return NULL;
7023 for (i = 0; i < ndoms; i++) {
7024 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7025 free_sched_domains(doms, i);
7026 return NULL;
7027 }
7028 }
7029 return doms;
7030 }
7031
7032 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7033 {
7034 unsigned int i;
7035 for (i = 0; i < ndoms; i++)
7036 free_cpumask_var(doms[i]);
7037 kfree(doms);
7038 }
7039
7040 /*
7041 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7042 * For now this just excludes isolated cpus, but could be used to
7043 * exclude other special cases in the future.
7044 */
7045 static int arch_init_sched_domains(const struct cpumask *cpu_map)
7046 {
7047 int err;
7048
7049 arch_update_cpu_topology();
7050 ndoms_cur = 1;
7051 doms_cur = alloc_sched_domains(ndoms_cur);
7052 if (!doms_cur)
7053 doms_cur = &fallback_doms;
7054 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7055 dattr_cur = NULL;
7056 err = build_sched_domains(doms_cur[0]);
7057 register_sched_domain_sysctl();
7058
7059 return err;
7060 }
7061
7062 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7063 struct cpumask *tmpmask)
7064 {
7065 free_sched_groups(cpu_map, tmpmask);
7066 }
7067
7068 /*
7069 * Detach sched domains from a group of cpus specified in cpu_map
7070 * These cpus will now be attached to the NULL domain
7071 */
7072 static void detach_destroy_domains(const struct cpumask *cpu_map)
7073 {
7074 /* Save because hotplug lock held. */
7075 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7076 int i;
7077
7078 for_each_cpu(i, cpu_map)
7079 cpu_attach_domain(NULL, &def_root_domain, i);
7080 synchronize_sched();
7081 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7082 }
7083
7084 /* handle null as "default" */
7085 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7086 struct sched_domain_attr *new, int idx_new)
7087 {
7088 struct sched_domain_attr tmp;
7089
7090 /* fast path */
7091 if (!new && !cur)
7092 return 1;
7093
7094 tmp = SD_ATTR_INIT;
7095 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7096 new ? (new + idx_new) : &tmp,
7097 sizeof(struct sched_domain_attr));
7098 }
7099
7100 /*
7101 * Partition sched domains as specified by the 'ndoms_new'
7102 * cpumasks in the array doms_new[] of cpumasks. This compares
7103 * doms_new[] to the current sched domain partitioning, doms_cur[].
7104 * It destroys each deleted domain and builds each new domain.
7105 *
7106 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7107 * The masks don't intersect (don't overlap.) We should setup one
7108 * sched domain for each mask. CPUs not in any of the cpumasks will
7109 * not be load balanced. If the same cpumask appears both in the
7110 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7111 * it as it is.
7112 *
7113 * The passed in 'doms_new' should be allocated using
7114 * alloc_sched_domains. This routine takes ownership of it and will
7115 * free_sched_domains it when done with it. If the caller failed the
7116 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7117 * and partition_sched_domains() will fallback to the single partition
7118 * 'fallback_doms', it also forces the domains to be rebuilt.
7119 *
7120 * If doms_new == NULL it will be replaced with cpu_online_mask.
7121 * ndoms_new == 0 is a special case for destroying existing domains,
7122 * and it will not create the default domain.
7123 *
7124 * Call with hotplug lock held
7125 */
7126 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7127 struct sched_domain_attr *dattr_new)
7128 {
7129 int i, j, n;
7130 int new_topology;
7131
7132 mutex_lock(&sched_domains_mutex);
7133
7134 /* always unregister in case we don't destroy any domains */
7135 unregister_sched_domain_sysctl();
7136
7137 /* Let architecture update cpu core mappings. */
7138 new_topology = arch_update_cpu_topology();
7139
7140 n = doms_new ? ndoms_new : 0;
7141
7142 /* Destroy deleted domains */
7143 for (i = 0; i < ndoms_cur; i++) {
7144 for (j = 0; j < n && !new_topology; j++) {
7145 if (cpumask_equal(doms_cur[i], doms_new[j])
7146 && dattrs_equal(dattr_cur, i, dattr_new, j))
7147 goto match1;
7148 }
7149 /* no match - a current sched domain not in new doms_new[] */
7150 detach_destroy_domains(doms_cur[i]);
7151 match1:
7152 ;
7153 }
7154
7155 if (doms_new == NULL) {
7156 ndoms_cur = 0;
7157 doms_new = &fallback_doms;
7158 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7159 WARN_ON_ONCE(dattr_new);
7160 }
7161
7162 /* Build new domains */
7163 for (i = 0; i < ndoms_new; i++) {
7164 for (j = 0; j < ndoms_cur && !new_topology; j++) {
7165 if (cpumask_equal(doms_new[i], doms_cur[j])
7166 && dattrs_equal(dattr_new, i, dattr_cur, j))
7167 goto match2;
7168 }
7169 /* no match - add a new doms_new */
7170 __build_sched_domains(doms_new[i],
7171 dattr_new ? dattr_new + i : NULL);
7172 match2:
7173 ;
7174 }
7175
7176 /* Remember the new sched domains */
7177 if (doms_cur != &fallback_doms)
7178 free_sched_domains(doms_cur, ndoms_cur);
7179 kfree(dattr_cur); /* kfree(NULL) is safe */
7180 doms_cur = doms_new;
7181 dattr_cur = dattr_new;
7182 ndoms_cur = ndoms_new;
7183
7184 register_sched_domain_sysctl();
7185
7186 mutex_unlock(&sched_domains_mutex);
7187 }
7188
7189 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7190 static void arch_reinit_sched_domains(void)
7191 {
7192 get_online_cpus();
7193
7194 /* Destroy domains first to force the rebuild */
7195 partition_sched_domains(0, NULL, NULL);
7196
7197 rebuild_sched_domains();
7198 put_online_cpus();
7199 }
7200
7201 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7202 {
7203 unsigned int level = 0;
7204
7205 if (sscanf(buf, "%u", &level) != 1)
7206 return -EINVAL;
7207
7208 /*
7209 * level is always be positive so don't check for
7210 * level < POWERSAVINGS_BALANCE_NONE which is 0
7211 * What happens on 0 or 1 byte write,
7212 * need to check for count as well?
7213 */
7214
7215 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7216 return -EINVAL;
7217
7218 if (smt)
7219 sched_smt_power_savings = level;
7220 else
7221 sched_mc_power_savings = level;
7222
7223 arch_reinit_sched_domains();
7224
7225 return count;
7226 }
7227
7228 #ifdef CONFIG_SCHED_MC
7229 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7230 struct sysdev_class_attribute *attr,
7231 char *page)
7232 {
7233 return sprintf(page, "%u\n", sched_mc_power_savings);
7234 }
7235 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7236 struct sysdev_class_attribute *attr,
7237 const char *buf, size_t count)
7238 {
7239 return sched_power_savings_store(buf, count, 0);
7240 }
7241 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7242 sched_mc_power_savings_show,
7243 sched_mc_power_savings_store);
7244 #endif
7245
7246 #ifdef CONFIG_SCHED_SMT
7247 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7248 struct sysdev_class_attribute *attr,
7249 char *page)
7250 {
7251 return sprintf(page, "%u\n", sched_smt_power_savings);
7252 }
7253 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7254 struct sysdev_class_attribute *attr,
7255 const char *buf, size_t count)
7256 {
7257 return sched_power_savings_store(buf, count, 1);
7258 }
7259 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7260 sched_smt_power_savings_show,
7261 sched_smt_power_savings_store);
7262 #endif
7263
7264 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7265 {
7266 int err = 0;
7267
7268 #ifdef CONFIG_SCHED_SMT
7269 if (smt_capable())
7270 err = sysfs_create_file(&cls->kset.kobj,
7271 &attr_sched_smt_power_savings.attr);
7272 #endif
7273 #ifdef CONFIG_SCHED_MC
7274 if (!err && mc_capable())
7275 err = sysfs_create_file(&cls->kset.kobj,
7276 &attr_sched_mc_power_savings.attr);
7277 #endif
7278 return err;
7279 }
7280 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7281
7282 #ifndef CONFIG_CPUSETS
7283 /*
7284 * Add online and remove offline CPUs from the scheduler domains.
7285 * When cpusets are enabled they take over this function.
7286 */
7287 static int update_sched_domains(struct notifier_block *nfb,
7288 unsigned long action, void *hcpu)
7289 {
7290 switch (action) {
7291 case CPU_ONLINE:
7292 case CPU_ONLINE_FROZEN:
7293 case CPU_DOWN_PREPARE:
7294 case CPU_DOWN_PREPARE_FROZEN:
7295 case CPU_DOWN_FAILED:
7296 case CPU_DOWN_FAILED_FROZEN:
7297 partition_sched_domains(1, NULL, NULL);
7298 return NOTIFY_OK;
7299
7300 default:
7301 return NOTIFY_DONE;
7302 }
7303 }
7304 #endif
7305
7306 static int update_runtime(struct notifier_block *nfb,
7307 unsigned long action, void *hcpu)
7308 {
7309 int cpu = (int)(long)hcpu;
7310
7311 switch (action) {
7312 case CPU_DOWN_PREPARE:
7313 case CPU_DOWN_PREPARE_FROZEN:
7314 disable_runtime(cpu_rq(cpu));
7315 return NOTIFY_OK;
7316
7317 case CPU_DOWN_FAILED:
7318 case CPU_DOWN_FAILED_FROZEN:
7319 case CPU_ONLINE:
7320 case CPU_ONLINE_FROZEN:
7321 enable_runtime(cpu_rq(cpu));
7322 return NOTIFY_OK;
7323
7324 default:
7325 return NOTIFY_DONE;
7326 }
7327 }
7328
7329 void __init sched_init_smp(void)
7330 {
7331 cpumask_var_t non_isolated_cpus;
7332
7333 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7334 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7335
7336 #if defined(CONFIG_NUMA)
7337 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7338 GFP_KERNEL);
7339 BUG_ON(sched_group_nodes_bycpu == NULL);
7340 #endif
7341 get_online_cpus();
7342 mutex_lock(&sched_domains_mutex);
7343 arch_init_sched_domains(cpu_active_mask);
7344 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7345 if (cpumask_empty(non_isolated_cpus))
7346 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7347 mutex_unlock(&sched_domains_mutex);
7348 put_online_cpus();
7349
7350 #ifndef CONFIG_CPUSETS
7351 /* XXX: Theoretical race here - CPU may be hotplugged now */
7352 hotcpu_notifier(update_sched_domains, 0);
7353 #endif
7354
7355 /* RT runtime code needs to handle some hotplug events */
7356 hotcpu_notifier(update_runtime, 0);
7357
7358 init_hrtick();
7359
7360 /* Move init over to a non-isolated CPU */
7361 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7362 BUG();
7363 sched_init_granularity();
7364 free_cpumask_var(non_isolated_cpus);
7365
7366 init_sched_rt_class();
7367 }
7368 #else
7369 void __init sched_init_smp(void)
7370 {
7371 sched_init_granularity();
7372 }
7373 #endif /* CONFIG_SMP */
7374
7375 const_debug unsigned int sysctl_timer_migration = 1;
7376
7377 int in_sched_functions(unsigned long addr)
7378 {
7379 return in_lock_functions(addr) ||
7380 (addr >= (unsigned long)__sched_text_start
7381 && addr < (unsigned long)__sched_text_end);
7382 }
7383
7384 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
7385 {
7386 cfs_rq->tasks_timeline = RB_ROOT;
7387 INIT_LIST_HEAD(&cfs_rq->tasks);
7388 #ifdef CONFIG_FAIR_GROUP_SCHED
7389 cfs_rq->rq = rq;
7390 #endif
7391 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7392 }
7393
7394 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7395 {
7396 struct rt_prio_array *array;
7397 int i;
7398
7399 array = &rt_rq->active;
7400 for (i = 0; i < MAX_RT_PRIO; i++) {
7401 INIT_LIST_HEAD(array->queue + i);
7402 __clear_bit(i, array->bitmap);
7403 }
7404 /* delimiter for bitsearch: */
7405 __set_bit(MAX_RT_PRIO, array->bitmap);
7406
7407 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7408 rt_rq->highest_prio.curr = MAX_RT_PRIO;
7409 #ifdef CONFIG_SMP
7410 rt_rq->highest_prio.next = MAX_RT_PRIO;
7411 #endif
7412 #endif
7413 #ifdef CONFIG_SMP
7414 rt_rq->rt_nr_migratory = 0;
7415 rt_rq->overloaded = 0;
7416 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
7417 #endif
7418
7419 rt_rq->rt_time = 0;
7420 rt_rq->rt_throttled = 0;
7421 rt_rq->rt_runtime = 0;
7422 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
7423
7424 #ifdef CONFIG_RT_GROUP_SCHED
7425 rt_rq->rt_nr_boosted = 0;
7426 rt_rq->rq = rq;
7427 #endif
7428 }
7429
7430 #ifdef CONFIG_FAIR_GROUP_SCHED
7431 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7432 struct sched_entity *se, int cpu, int add,
7433 struct sched_entity *parent)
7434 {
7435 struct rq *rq = cpu_rq(cpu);
7436 tg->cfs_rq[cpu] = cfs_rq;
7437 init_cfs_rq(cfs_rq, rq);
7438 cfs_rq->tg = tg;
7439 if (add)
7440 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7441
7442 tg->se[cpu] = se;
7443 /* se could be NULL for init_task_group */
7444 if (!se)
7445 return;
7446
7447 if (!parent)
7448 se->cfs_rq = &rq->cfs;
7449 else
7450 se->cfs_rq = parent->my_q;
7451
7452 se->my_q = cfs_rq;
7453 se->load.weight = tg->shares;
7454 se->load.inv_weight = 0;
7455 se->parent = parent;
7456 }
7457 #endif
7458
7459 #ifdef CONFIG_RT_GROUP_SCHED
7460 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7461 struct sched_rt_entity *rt_se, int cpu, int add,
7462 struct sched_rt_entity *parent)
7463 {
7464 struct rq *rq = cpu_rq(cpu);
7465
7466 tg->rt_rq[cpu] = rt_rq;
7467 init_rt_rq(rt_rq, rq);
7468 rt_rq->tg = tg;
7469 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
7470 if (add)
7471 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7472
7473 tg->rt_se[cpu] = rt_se;
7474 if (!rt_se)
7475 return;
7476
7477 if (!parent)
7478 rt_se->rt_rq = &rq->rt;
7479 else
7480 rt_se->rt_rq = parent->my_q;
7481
7482 rt_se->my_q = rt_rq;
7483 rt_se->parent = parent;
7484 INIT_LIST_HEAD(&rt_se->run_list);
7485 }
7486 #endif
7487
7488 void __init sched_init(void)
7489 {
7490 int i, j;
7491 unsigned long alloc_size = 0, ptr;
7492
7493 #ifdef CONFIG_FAIR_GROUP_SCHED
7494 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7495 #endif
7496 #ifdef CONFIG_RT_GROUP_SCHED
7497 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7498 #endif
7499 #ifdef CONFIG_CPUMASK_OFFSTACK
7500 alloc_size += num_possible_cpus() * cpumask_size();
7501 #endif
7502 if (alloc_size) {
7503 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7504
7505 #ifdef CONFIG_FAIR_GROUP_SCHED
7506 init_task_group.se = (struct sched_entity **)ptr;
7507 ptr += nr_cpu_ids * sizeof(void **);
7508
7509 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7510 ptr += nr_cpu_ids * sizeof(void **);
7511
7512 #endif /* CONFIG_FAIR_GROUP_SCHED */
7513 #ifdef CONFIG_RT_GROUP_SCHED
7514 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7515 ptr += nr_cpu_ids * sizeof(void **);
7516
7517 init_task_group.rt_rq = (struct rt_rq **)ptr;
7518 ptr += nr_cpu_ids * sizeof(void **);
7519
7520 #endif /* CONFIG_RT_GROUP_SCHED */
7521 #ifdef CONFIG_CPUMASK_OFFSTACK
7522 for_each_possible_cpu(i) {
7523 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7524 ptr += cpumask_size();
7525 }
7526 #endif /* CONFIG_CPUMASK_OFFSTACK */
7527 }
7528
7529 #ifdef CONFIG_SMP
7530 init_defrootdomain();
7531 #endif
7532
7533 init_rt_bandwidth(&def_rt_bandwidth,
7534 global_rt_period(), global_rt_runtime());
7535
7536 #ifdef CONFIG_RT_GROUP_SCHED
7537 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7538 global_rt_period(), global_rt_runtime());
7539 #endif /* CONFIG_RT_GROUP_SCHED */
7540
7541 #ifdef CONFIG_CGROUP_SCHED
7542 list_add(&init_task_group.list, &task_groups);
7543 INIT_LIST_HEAD(&init_task_group.children);
7544
7545 #endif /* CONFIG_CGROUP_SCHED */
7546
7547 #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
7548 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
7549 __alignof__(unsigned long));
7550 #endif
7551 for_each_possible_cpu(i) {
7552 struct rq *rq;
7553
7554 rq = cpu_rq(i);
7555 raw_spin_lock_init(&rq->lock);
7556 rq->nr_running = 0;
7557 rq->calc_load_active = 0;
7558 rq->calc_load_update = jiffies + LOAD_FREQ;
7559 init_cfs_rq(&rq->cfs, rq);
7560 init_rt_rq(&rq->rt, rq);
7561 #ifdef CONFIG_FAIR_GROUP_SCHED
7562 init_task_group.shares = init_task_group_load;
7563 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7564 #ifdef CONFIG_CGROUP_SCHED
7565 /*
7566 * How much cpu bandwidth does init_task_group get?
7567 *
7568 * In case of task-groups formed thr' the cgroup filesystem, it
7569 * gets 100% of the cpu resources in the system. This overall
7570 * system cpu resource is divided among the tasks of
7571 * init_task_group and its child task-groups in a fair manner,
7572 * based on each entity's (task or task-group's) weight
7573 * (se->load.weight).
7574 *
7575 * In other words, if init_task_group has 10 tasks of weight
7576 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7577 * then A0's share of the cpu resource is:
7578 *
7579 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7580 *
7581 * We achieve this by letting init_task_group's tasks sit
7582 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7583 */
7584 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
7585 #endif
7586 #endif /* CONFIG_FAIR_GROUP_SCHED */
7587
7588 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7589 #ifdef CONFIG_RT_GROUP_SCHED
7590 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7591 #ifdef CONFIG_CGROUP_SCHED
7592 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
7593 #endif
7594 #endif
7595
7596 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7597 rq->cpu_load[j] = 0;
7598 #ifdef CONFIG_SMP
7599 rq->sd = NULL;
7600 rq->rd = NULL;
7601 rq->cpu_power = SCHED_LOAD_SCALE;
7602 rq->post_schedule = 0;
7603 rq->active_balance = 0;
7604 rq->next_balance = jiffies;
7605 rq->push_cpu = 0;
7606 rq->cpu = i;
7607 rq->online = 0;
7608 rq->idle_stamp = 0;
7609 rq->avg_idle = 2*sysctl_sched_migration_cost;
7610 rq_attach_root(rq, &def_root_domain);
7611 #endif
7612 init_rq_hrtick(rq);
7613 atomic_set(&rq->nr_iowait, 0);
7614 }
7615
7616 set_load_weight(&init_task);
7617
7618 #ifdef CONFIG_PREEMPT_NOTIFIERS
7619 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7620 #endif
7621
7622 #ifdef CONFIG_SMP
7623 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7624 #endif
7625
7626 #ifdef CONFIG_RT_MUTEXES
7627 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
7628 #endif
7629
7630 /*
7631 * The boot idle thread does lazy MMU switching as well:
7632 */
7633 atomic_inc(&init_mm.mm_count);
7634 enter_lazy_tlb(&init_mm, current);
7635
7636 /*
7637 * Make us the idle thread. Technically, schedule() should not be
7638 * called from this thread, however somewhere below it might be,
7639 * but because we are the idle thread, we just pick up running again
7640 * when this runqueue becomes "idle".
7641 */
7642 init_idle(current, smp_processor_id());
7643
7644 calc_load_update = jiffies + LOAD_FREQ;
7645
7646 /*
7647 * During early bootup we pretend to be a normal task:
7648 */
7649 current->sched_class = &fair_sched_class;
7650
7651 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
7652 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
7653 #ifdef CONFIG_SMP
7654 #ifdef CONFIG_NO_HZ
7655 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
7656 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7657 #endif
7658 /* May be allocated at isolcpus cmdline parse time */
7659 if (cpu_isolated_map == NULL)
7660 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7661 #endif /* SMP */
7662
7663 perf_event_init();
7664
7665 scheduler_running = 1;
7666 }
7667
7668 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7669 static inline int preempt_count_equals(int preempt_offset)
7670 {
7671 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7672
7673 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
7674 }
7675
7676 void __might_sleep(const char *file, int line, int preempt_offset)
7677 {
7678 #ifdef in_atomic
7679 static unsigned long prev_jiffy; /* ratelimiting */
7680
7681 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7682 system_state != SYSTEM_RUNNING || oops_in_progress)
7683 return;
7684 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7685 return;
7686 prev_jiffy = jiffies;
7687
7688 printk(KERN_ERR
7689 "BUG: sleeping function called from invalid context at %s:%d\n",
7690 file, line);
7691 printk(KERN_ERR
7692 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7693 in_atomic(), irqs_disabled(),
7694 current->pid, current->comm);
7695
7696 debug_show_held_locks(current);
7697 if (irqs_disabled())
7698 print_irqtrace_events(current);
7699 dump_stack();
7700 #endif
7701 }
7702 EXPORT_SYMBOL(__might_sleep);
7703 #endif
7704
7705 #ifdef CONFIG_MAGIC_SYSRQ
7706 static void normalize_task(struct rq *rq, struct task_struct *p)
7707 {
7708 int on_rq;
7709
7710 on_rq = p->se.on_rq;
7711 if (on_rq)
7712 deactivate_task(rq, p, 0);
7713 __setscheduler(rq, p, SCHED_NORMAL, 0);
7714 if (on_rq) {
7715 activate_task(rq, p, 0);
7716 resched_task(rq->curr);
7717 }
7718 }
7719
7720 void normalize_rt_tasks(void)
7721 {
7722 struct task_struct *g, *p;
7723 unsigned long flags;
7724 struct rq *rq;
7725
7726 read_lock_irqsave(&tasklist_lock, flags);
7727 do_each_thread(g, p) {
7728 /*
7729 * Only normalize user tasks:
7730 */
7731 if (!p->mm)
7732 continue;
7733
7734 p->se.exec_start = 0;
7735 #ifdef CONFIG_SCHEDSTATS
7736 p->se.statistics.wait_start = 0;
7737 p->se.statistics.sleep_start = 0;
7738 p->se.statistics.block_start = 0;
7739 #endif
7740
7741 if (!rt_task(p)) {
7742 /*
7743 * Renice negative nice level userspace
7744 * tasks back to 0:
7745 */
7746 if (TASK_NICE(p) < 0 && p->mm)
7747 set_user_nice(p, 0);
7748 continue;
7749 }
7750
7751 raw_spin_lock(&p->pi_lock);
7752 rq = __task_rq_lock(p);
7753
7754 normalize_task(rq, p);
7755
7756 __task_rq_unlock(rq);
7757 raw_spin_unlock(&p->pi_lock);
7758 } while_each_thread(g, p);
7759
7760 read_unlock_irqrestore(&tasklist_lock, flags);
7761 }
7762
7763 #endif /* CONFIG_MAGIC_SYSRQ */
7764
7765 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7766 /*
7767 * These functions are only useful for the IA64 MCA handling, or kdb.
7768 *
7769 * They can only be called when the whole system has been
7770 * stopped - every CPU needs to be quiescent, and no scheduling
7771 * activity can take place. Using them for anything else would
7772 * be a serious bug, and as a result, they aren't even visible
7773 * under any other configuration.
7774 */
7775
7776 /**
7777 * curr_task - return the current task for a given cpu.
7778 * @cpu: the processor in question.
7779 *
7780 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7781 */
7782 struct task_struct *curr_task(int cpu)
7783 {
7784 return cpu_curr(cpu);
7785 }
7786
7787 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7788
7789 #ifdef CONFIG_IA64
7790 /**
7791 * set_curr_task - set the current task for a given cpu.
7792 * @cpu: the processor in question.
7793 * @p: the task pointer to set.
7794 *
7795 * Description: This function must only be used when non-maskable interrupts
7796 * are serviced on a separate stack. It allows the architecture to switch the
7797 * notion of the current task on a cpu in a non-blocking manner. This function
7798 * must be called with all CPU's synchronized, and interrupts disabled, the
7799 * and caller must save the original value of the current task (see
7800 * curr_task() above) and restore that value before reenabling interrupts and
7801 * re-starting the system.
7802 *
7803 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7804 */
7805 void set_curr_task(int cpu, struct task_struct *p)
7806 {
7807 cpu_curr(cpu) = p;
7808 }
7809
7810 #endif
7811
7812 #ifdef CONFIG_FAIR_GROUP_SCHED
7813 static void free_fair_sched_group(struct task_group *tg)
7814 {
7815 int i;
7816
7817 for_each_possible_cpu(i) {
7818 if (tg->cfs_rq)
7819 kfree(tg->cfs_rq[i]);
7820 if (tg->se)
7821 kfree(tg->se[i]);
7822 }
7823
7824 kfree(tg->cfs_rq);
7825 kfree(tg->se);
7826 }
7827
7828 static
7829 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7830 {
7831 struct cfs_rq *cfs_rq;
7832 struct sched_entity *se;
7833 struct rq *rq;
7834 int i;
7835
7836 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7837 if (!tg->cfs_rq)
7838 goto err;
7839 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7840 if (!tg->se)
7841 goto err;
7842
7843 tg->shares = NICE_0_LOAD;
7844
7845 for_each_possible_cpu(i) {
7846 rq = cpu_rq(i);
7847
7848 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7849 GFP_KERNEL, cpu_to_node(i));
7850 if (!cfs_rq)
7851 goto err;
7852
7853 se = kzalloc_node(sizeof(struct sched_entity),
7854 GFP_KERNEL, cpu_to_node(i));
7855 if (!se)
7856 goto err_free_rq;
7857
7858 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
7859 }
7860
7861 return 1;
7862
7863 err_free_rq:
7864 kfree(cfs_rq);
7865 err:
7866 return 0;
7867 }
7868
7869 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7870 {
7871 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
7872 &cpu_rq(cpu)->leaf_cfs_rq_list);
7873 }
7874
7875 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
7876 {
7877 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
7878 }
7879 #else /* !CONFG_FAIR_GROUP_SCHED */
7880 static inline void free_fair_sched_group(struct task_group *tg)
7881 {
7882 }
7883
7884 static inline
7885 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7886 {
7887 return 1;
7888 }
7889
7890 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7891 {
7892 }
7893
7894 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
7895 {
7896 }
7897 #endif /* CONFIG_FAIR_GROUP_SCHED */
7898
7899 #ifdef CONFIG_RT_GROUP_SCHED
7900 static void free_rt_sched_group(struct task_group *tg)
7901 {
7902 int i;
7903
7904 destroy_rt_bandwidth(&tg->rt_bandwidth);
7905
7906 for_each_possible_cpu(i) {
7907 if (tg->rt_rq)
7908 kfree(tg->rt_rq[i]);
7909 if (tg->rt_se)
7910 kfree(tg->rt_se[i]);
7911 }
7912
7913 kfree(tg->rt_rq);
7914 kfree(tg->rt_se);
7915 }
7916
7917 static
7918 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
7919 {
7920 struct rt_rq *rt_rq;
7921 struct sched_rt_entity *rt_se;
7922 struct rq *rq;
7923 int i;
7924
7925 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
7926 if (!tg->rt_rq)
7927 goto err;
7928 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
7929 if (!tg->rt_se)
7930 goto err;
7931
7932 init_rt_bandwidth(&tg->rt_bandwidth,
7933 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
7934
7935 for_each_possible_cpu(i) {
7936 rq = cpu_rq(i);
7937
7938 rt_rq = kzalloc_node(sizeof(struct rt_rq),
7939 GFP_KERNEL, cpu_to_node(i));
7940 if (!rt_rq)
7941 goto err;
7942
7943 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
7944 GFP_KERNEL, cpu_to_node(i));
7945 if (!rt_se)
7946 goto err_free_rq;
7947
7948 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
7949 }
7950
7951 return 1;
7952
7953 err_free_rq:
7954 kfree(rt_rq);
7955 err:
7956 return 0;
7957 }
7958
7959 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
7960 {
7961 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
7962 &cpu_rq(cpu)->leaf_rt_rq_list);
7963 }
7964
7965 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
7966 {
7967 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
7968 }
7969 #else /* !CONFIG_RT_GROUP_SCHED */
7970 static inline void free_rt_sched_group(struct task_group *tg)
7971 {
7972 }
7973
7974 static inline
7975 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
7976 {
7977 return 1;
7978 }
7979
7980 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
7981 {
7982 }
7983
7984 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
7985 {
7986 }
7987 #endif /* CONFIG_RT_GROUP_SCHED */
7988
7989 #ifdef CONFIG_CGROUP_SCHED
7990 static void free_sched_group(struct task_group *tg)
7991 {
7992 free_fair_sched_group(tg);
7993 free_rt_sched_group(tg);
7994 kfree(tg);
7995 }
7996
7997 /* allocate runqueue etc for a new task group */
7998 struct task_group *sched_create_group(struct task_group *parent)
7999 {
8000 struct task_group *tg;
8001 unsigned long flags;
8002 int i;
8003
8004 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8005 if (!tg)
8006 return ERR_PTR(-ENOMEM);
8007
8008 if (!alloc_fair_sched_group(tg, parent))
8009 goto err;
8010
8011 if (!alloc_rt_sched_group(tg, parent))
8012 goto err;
8013
8014 spin_lock_irqsave(&task_group_lock, flags);
8015 for_each_possible_cpu(i) {
8016 register_fair_sched_group(tg, i);
8017 register_rt_sched_group(tg, i);
8018 }
8019 list_add_rcu(&tg->list, &task_groups);
8020
8021 WARN_ON(!parent); /* root should already exist */
8022
8023 tg->parent = parent;
8024 INIT_LIST_HEAD(&tg->children);
8025 list_add_rcu(&tg->siblings, &parent->children);
8026 spin_unlock_irqrestore(&task_group_lock, flags);
8027
8028 return tg;
8029
8030 err:
8031 free_sched_group(tg);
8032 return ERR_PTR(-ENOMEM);
8033 }
8034
8035 /* rcu callback to free various structures associated with a task group */
8036 static void free_sched_group_rcu(struct rcu_head *rhp)
8037 {
8038 /* now it should be safe to free those cfs_rqs */
8039 free_sched_group(container_of(rhp, struct task_group, rcu));
8040 }
8041
8042 /* Destroy runqueue etc associated with a task group */
8043 void sched_destroy_group(struct task_group *tg)
8044 {
8045 unsigned long flags;
8046 int i;
8047
8048 spin_lock_irqsave(&task_group_lock, flags);
8049 for_each_possible_cpu(i) {
8050 unregister_fair_sched_group(tg, i);
8051 unregister_rt_sched_group(tg, i);
8052 }
8053 list_del_rcu(&tg->list);
8054 list_del_rcu(&tg->siblings);
8055 spin_unlock_irqrestore(&task_group_lock, flags);
8056
8057 /* wait for possible concurrent references to cfs_rqs complete */
8058 call_rcu(&tg->rcu, free_sched_group_rcu);
8059 }
8060
8061 /* change task's runqueue when it moves between groups.
8062 * The caller of this function should have put the task in its new group
8063 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8064 * reflect its new group.
8065 */
8066 void sched_move_task(struct task_struct *tsk)
8067 {
8068 int on_rq, running;
8069 unsigned long flags;
8070 struct rq *rq;
8071
8072 rq = task_rq_lock(tsk, &flags);
8073
8074 running = task_current(rq, tsk);
8075 on_rq = tsk->se.on_rq;
8076
8077 if (on_rq)
8078 dequeue_task(rq, tsk, 0);
8079 if (unlikely(running))
8080 tsk->sched_class->put_prev_task(rq, tsk);
8081
8082 set_task_rq(tsk, task_cpu(tsk));
8083
8084 #ifdef CONFIG_FAIR_GROUP_SCHED
8085 if (tsk->sched_class->moved_group)
8086 tsk->sched_class->moved_group(tsk, on_rq);
8087 #endif
8088
8089 if (unlikely(running))
8090 tsk->sched_class->set_curr_task(rq);
8091 if (on_rq)
8092 enqueue_task(rq, tsk, 0);
8093
8094 task_rq_unlock(rq, &flags);
8095 }
8096 #endif /* CONFIG_CGROUP_SCHED */
8097
8098 #ifdef CONFIG_FAIR_GROUP_SCHED
8099 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
8100 {
8101 struct cfs_rq *cfs_rq = se->cfs_rq;
8102 int on_rq;
8103
8104 on_rq = se->on_rq;
8105 if (on_rq)
8106 dequeue_entity(cfs_rq, se, 0);
8107
8108 se->load.weight = shares;
8109 se->load.inv_weight = 0;
8110
8111 if (on_rq)
8112 enqueue_entity(cfs_rq, se, 0);
8113 }
8114
8115 static void set_se_shares(struct sched_entity *se, unsigned long shares)
8116 {
8117 struct cfs_rq *cfs_rq = se->cfs_rq;
8118 struct rq *rq = cfs_rq->rq;
8119 unsigned long flags;
8120
8121 raw_spin_lock_irqsave(&rq->lock, flags);
8122 __set_se_shares(se, shares);
8123 raw_spin_unlock_irqrestore(&rq->lock, flags);
8124 }
8125
8126 static DEFINE_MUTEX(shares_mutex);
8127
8128 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8129 {
8130 int i;
8131 unsigned long flags;
8132
8133 /*
8134 * We can't change the weight of the root cgroup.
8135 */
8136 if (!tg->se[0])
8137 return -EINVAL;
8138
8139 if (shares < MIN_SHARES)
8140 shares = MIN_SHARES;
8141 else if (shares > MAX_SHARES)
8142 shares = MAX_SHARES;
8143
8144 mutex_lock(&shares_mutex);
8145 if (tg->shares == shares)
8146 goto done;
8147
8148 spin_lock_irqsave(&task_group_lock, flags);
8149 for_each_possible_cpu(i)
8150 unregister_fair_sched_group(tg, i);
8151 list_del_rcu(&tg->siblings);
8152 spin_unlock_irqrestore(&task_group_lock, flags);
8153
8154 /* wait for any ongoing reference to this group to finish */
8155 synchronize_sched();
8156
8157 /*
8158 * Now we are free to modify the group's share on each cpu
8159 * w/o tripping rebalance_share or load_balance_fair.
8160 */
8161 tg->shares = shares;
8162 for_each_possible_cpu(i) {
8163 /*
8164 * force a rebalance
8165 */
8166 cfs_rq_set_shares(tg->cfs_rq[i], 0);
8167 set_se_shares(tg->se[i], shares);
8168 }
8169
8170 /*
8171 * Enable load balance activity on this group, by inserting it back on
8172 * each cpu's rq->leaf_cfs_rq_list.
8173 */
8174 spin_lock_irqsave(&task_group_lock, flags);
8175 for_each_possible_cpu(i)
8176 register_fair_sched_group(tg, i);
8177 list_add_rcu(&tg->siblings, &tg->parent->children);
8178 spin_unlock_irqrestore(&task_group_lock, flags);
8179 done:
8180 mutex_unlock(&shares_mutex);
8181 return 0;
8182 }
8183
8184 unsigned long sched_group_shares(struct task_group *tg)
8185 {
8186 return tg->shares;
8187 }
8188 #endif
8189
8190 #ifdef CONFIG_RT_GROUP_SCHED
8191 /*
8192 * Ensure that the real time constraints are schedulable.
8193 */
8194 static DEFINE_MUTEX(rt_constraints_mutex);
8195
8196 static unsigned long to_ratio(u64 period, u64 runtime)
8197 {
8198 if (runtime == RUNTIME_INF)
8199 return 1ULL << 20;
8200
8201 return div64_u64(runtime << 20, period);
8202 }
8203
8204 /* Must be called with tasklist_lock held */
8205 static inline int tg_has_rt_tasks(struct task_group *tg)
8206 {
8207 struct task_struct *g, *p;
8208
8209 do_each_thread(g, p) {
8210 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8211 return 1;
8212 } while_each_thread(g, p);
8213
8214 return 0;
8215 }
8216
8217 struct rt_schedulable_data {
8218 struct task_group *tg;
8219 u64 rt_period;
8220 u64 rt_runtime;
8221 };
8222
8223 static int tg_schedulable(struct task_group *tg, void *data)
8224 {
8225 struct rt_schedulable_data *d = data;
8226 struct task_group *child;
8227 unsigned long total, sum = 0;
8228 u64 period, runtime;
8229
8230 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8231 runtime = tg->rt_bandwidth.rt_runtime;
8232
8233 if (tg == d->tg) {
8234 period = d->rt_period;
8235 runtime = d->rt_runtime;
8236 }
8237
8238 /*
8239 * Cannot have more runtime than the period.
8240 */
8241 if (runtime > period && runtime != RUNTIME_INF)
8242 return -EINVAL;
8243
8244 /*
8245 * Ensure we don't starve existing RT tasks.
8246 */
8247 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8248 return -EBUSY;
8249
8250 total = to_ratio(period, runtime);
8251
8252 /*
8253 * Nobody can have more than the global setting allows.
8254 */
8255 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8256 return -EINVAL;
8257
8258 /*
8259 * The sum of our children's runtime should not exceed our own.
8260 */
8261 list_for_each_entry_rcu(child, &tg->children, siblings) {
8262 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8263 runtime = child->rt_bandwidth.rt_runtime;
8264
8265 if (child == d->tg) {
8266 period = d->rt_period;
8267 runtime = d->rt_runtime;
8268 }
8269
8270 sum += to_ratio(period, runtime);
8271 }
8272
8273 if (sum > total)
8274 return -EINVAL;
8275
8276 return 0;
8277 }
8278
8279 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8280 {
8281 struct rt_schedulable_data data = {
8282 .tg = tg,
8283 .rt_period = period,
8284 .rt_runtime = runtime,
8285 };
8286
8287 return walk_tg_tree(tg_schedulable, tg_nop, &data);
8288 }
8289
8290 static int tg_set_bandwidth(struct task_group *tg,
8291 u64 rt_period, u64 rt_runtime)
8292 {
8293 int i, err = 0;
8294
8295 mutex_lock(&rt_constraints_mutex);
8296 read_lock(&tasklist_lock);
8297 err = __rt_schedulable(tg, rt_period, rt_runtime);
8298 if (err)
8299 goto unlock;
8300
8301 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8302 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8303 tg->rt_bandwidth.rt_runtime = rt_runtime;
8304
8305 for_each_possible_cpu(i) {
8306 struct rt_rq *rt_rq = tg->rt_rq[i];
8307
8308 raw_spin_lock(&rt_rq->rt_runtime_lock);
8309 rt_rq->rt_runtime = rt_runtime;
8310 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8311 }
8312 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8313 unlock:
8314 read_unlock(&tasklist_lock);
8315 mutex_unlock(&rt_constraints_mutex);
8316
8317 return err;
8318 }
8319
8320 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8321 {
8322 u64 rt_runtime, rt_period;
8323
8324 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8325 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8326 if (rt_runtime_us < 0)
8327 rt_runtime = RUNTIME_INF;
8328
8329 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8330 }
8331
8332 long sched_group_rt_runtime(struct task_group *tg)
8333 {
8334 u64 rt_runtime_us;
8335
8336 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8337 return -1;
8338
8339 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8340 do_div(rt_runtime_us, NSEC_PER_USEC);
8341 return rt_runtime_us;
8342 }
8343
8344 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8345 {
8346 u64 rt_runtime, rt_period;
8347
8348 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8349 rt_runtime = tg->rt_bandwidth.rt_runtime;
8350
8351 if (rt_period == 0)
8352 return -EINVAL;
8353
8354 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8355 }
8356
8357 long sched_group_rt_period(struct task_group *tg)
8358 {
8359 u64 rt_period_us;
8360
8361 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8362 do_div(rt_period_us, NSEC_PER_USEC);
8363 return rt_period_us;
8364 }
8365
8366 static int sched_rt_global_constraints(void)
8367 {
8368 u64 runtime, period;
8369 int ret = 0;
8370
8371 if (sysctl_sched_rt_period <= 0)
8372 return -EINVAL;
8373
8374 runtime = global_rt_runtime();
8375 period = global_rt_period();
8376
8377 /*
8378 * Sanity check on the sysctl variables.
8379 */
8380 if (runtime > period && runtime != RUNTIME_INF)
8381 return -EINVAL;
8382
8383 mutex_lock(&rt_constraints_mutex);
8384 read_lock(&tasklist_lock);
8385 ret = __rt_schedulable(NULL, 0, 0);
8386 read_unlock(&tasklist_lock);
8387 mutex_unlock(&rt_constraints_mutex);
8388
8389 return ret;
8390 }
8391
8392 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8393 {
8394 /* Don't accept realtime tasks when there is no way for them to run */
8395 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8396 return 0;
8397
8398 return 1;
8399 }
8400
8401 #else /* !CONFIG_RT_GROUP_SCHED */
8402 static int sched_rt_global_constraints(void)
8403 {
8404 unsigned long flags;
8405 int i;
8406
8407 if (sysctl_sched_rt_period <= 0)
8408 return -EINVAL;
8409
8410 /*
8411 * There's always some RT tasks in the root group
8412 * -- migration, kstopmachine etc..
8413 */
8414 if (sysctl_sched_rt_runtime == 0)
8415 return -EBUSY;
8416
8417 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8418 for_each_possible_cpu(i) {
8419 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8420
8421 raw_spin_lock(&rt_rq->rt_runtime_lock);
8422 rt_rq->rt_runtime = global_rt_runtime();
8423 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8424 }
8425 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8426
8427 return 0;
8428 }
8429 #endif /* CONFIG_RT_GROUP_SCHED */
8430
8431 int sched_rt_handler(struct ctl_table *table, int write,
8432 void __user *buffer, size_t *lenp,
8433 loff_t *ppos)
8434 {
8435 int ret;
8436 int old_period, old_runtime;
8437 static DEFINE_MUTEX(mutex);
8438
8439 mutex_lock(&mutex);
8440 old_period = sysctl_sched_rt_period;
8441 old_runtime = sysctl_sched_rt_runtime;
8442
8443 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8444
8445 if (!ret && write) {
8446 ret = sched_rt_global_constraints();
8447 if (ret) {
8448 sysctl_sched_rt_period = old_period;
8449 sysctl_sched_rt_runtime = old_runtime;
8450 } else {
8451 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8452 def_rt_bandwidth.rt_period =
8453 ns_to_ktime(global_rt_period());
8454 }
8455 }
8456 mutex_unlock(&mutex);
8457
8458 return ret;
8459 }
8460
8461 #ifdef CONFIG_CGROUP_SCHED
8462
8463 /* return corresponding task_group object of a cgroup */
8464 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8465 {
8466 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8467 struct task_group, css);
8468 }
8469
8470 static struct cgroup_subsys_state *
8471 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8472 {
8473 struct task_group *tg, *parent;
8474
8475 if (!cgrp->parent) {
8476 /* This is early initialization for the top cgroup */
8477 return &init_task_group.css;
8478 }
8479
8480 parent = cgroup_tg(cgrp->parent);
8481 tg = sched_create_group(parent);
8482 if (IS_ERR(tg))
8483 return ERR_PTR(-ENOMEM);
8484
8485 return &tg->css;
8486 }
8487
8488 static void
8489 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8490 {
8491 struct task_group *tg = cgroup_tg(cgrp);
8492
8493 sched_destroy_group(tg);
8494 }
8495
8496 static int
8497 cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
8498 {
8499 #ifdef CONFIG_RT_GROUP_SCHED
8500 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
8501 return -EINVAL;
8502 #else
8503 /* We don't support RT-tasks being in separate groups */
8504 if (tsk->sched_class != &fair_sched_class)
8505 return -EINVAL;
8506 #endif
8507 return 0;
8508 }
8509
8510 static int
8511 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8512 struct task_struct *tsk, bool threadgroup)
8513 {
8514 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
8515 if (retval)
8516 return retval;
8517 if (threadgroup) {
8518 struct task_struct *c;
8519 rcu_read_lock();
8520 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8521 retval = cpu_cgroup_can_attach_task(cgrp, c);
8522 if (retval) {
8523 rcu_read_unlock();
8524 return retval;
8525 }
8526 }
8527 rcu_read_unlock();
8528 }
8529 return 0;
8530 }
8531
8532 static void
8533 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8534 struct cgroup *old_cont, struct task_struct *tsk,
8535 bool threadgroup)
8536 {
8537 sched_move_task(tsk);
8538 if (threadgroup) {
8539 struct task_struct *c;
8540 rcu_read_lock();
8541 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8542 sched_move_task(c);
8543 }
8544 rcu_read_unlock();
8545 }
8546 }
8547
8548 #ifdef CONFIG_FAIR_GROUP_SCHED
8549 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8550 u64 shareval)
8551 {
8552 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8553 }
8554
8555 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8556 {
8557 struct task_group *tg = cgroup_tg(cgrp);
8558
8559 return (u64) tg->shares;
8560 }
8561 #endif /* CONFIG_FAIR_GROUP_SCHED */
8562
8563 #ifdef CONFIG_RT_GROUP_SCHED
8564 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8565 s64 val)
8566 {
8567 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
8568 }
8569
8570 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
8571 {
8572 return sched_group_rt_runtime(cgroup_tg(cgrp));
8573 }
8574
8575 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8576 u64 rt_period_us)
8577 {
8578 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8579 }
8580
8581 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8582 {
8583 return sched_group_rt_period(cgroup_tg(cgrp));
8584 }
8585 #endif /* CONFIG_RT_GROUP_SCHED */
8586
8587 static struct cftype cpu_files[] = {
8588 #ifdef CONFIG_FAIR_GROUP_SCHED
8589 {
8590 .name = "shares",
8591 .read_u64 = cpu_shares_read_u64,
8592 .write_u64 = cpu_shares_write_u64,
8593 },
8594 #endif
8595 #ifdef CONFIG_RT_GROUP_SCHED
8596 {
8597 .name = "rt_runtime_us",
8598 .read_s64 = cpu_rt_runtime_read,
8599 .write_s64 = cpu_rt_runtime_write,
8600 },
8601 {
8602 .name = "rt_period_us",
8603 .read_u64 = cpu_rt_period_read_uint,
8604 .write_u64 = cpu_rt_period_write_uint,
8605 },
8606 #endif
8607 };
8608
8609 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8610 {
8611 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8612 }
8613
8614 struct cgroup_subsys cpu_cgroup_subsys = {
8615 .name = "cpu",
8616 .create = cpu_cgroup_create,
8617 .destroy = cpu_cgroup_destroy,
8618 .can_attach = cpu_cgroup_can_attach,
8619 .attach = cpu_cgroup_attach,
8620 .populate = cpu_cgroup_populate,
8621 .subsys_id = cpu_cgroup_subsys_id,
8622 .early_init = 1,
8623 };
8624
8625 #endif /* CONFIG_CGROUP_SCHED */
8626
8627 #ifdef CONFIG_CGROUP_CPUACCT
8628
8629 /*
8630 * CPU accounting code for task groups.
8631 *
8632 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8633 * (balbir@in.ibm.com).
8634 */
8635
8636 /* track cpu usage of a group of tasks and its child groups */
8637 struct cpuacct {
8638 struct cgroup_subsys_state css;
8639 /* cpuusage holds pointer to a u64-type object on every cpu */
8640 u64 __percpu *cpuusage;
8641 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
8642 struct cpuacct *parent;
8643 };
8644
8645 struct cgroup_subsys cpuacct_subsys;
8646
8647 /* return cpu accounting group corresponding to this container */
8648 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8649 {
8650 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8651 struct cpuacct, css);
8652 }
8653
8654 /* return cpu accounting group to which this task belongs */
8655 static inline struct cpuacct *task_ca(struct task_struct *tsk)
8656 {
8657 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8658 struct cpuacct, css);
8659 }
8660
8661 /* create a new cpu accounting group */
8662 static struct cgroup_subsys_state *cpuacct_create(
8663 struct cgroup_subsys *ss, struct cgroup *cgrp)
8664 {
8665 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8666 int i;
8667
8668 if (!ca)
8669 goto out;
8670
8671 ca->cpuusage = alloc_percpu(u64);
8672 if (!ca->cpuusage)
8673 goto out_free_ca;
8674
8675 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8676 if (percpu_counter_init(&ca->cpustat[i], 0))
8677 goto out_free_counters;
8678
8679 if (cgrp->parent)
8680 ca->parent = cgroup_ca(cgrp->parent);
8681
8682 return &ca->css;
8683
8684 out_free_counters:
8685 while (--i >= 0)
8686 percpu_counter_destroy(&ca->cpustat[i]);
8687 free_percpu(ca->cpuusage);
8688 out_free_ca:
8689 kfree(ca);
8690 out:
8691 return ERR_PTR(-ENOMEM);
8692 }
8693
8694 /* destroy an existing cpu accounting group */
8695 static void
8696 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8697 {
8698 struct cpuacct *ca = cgroup_ca(cgrp);
8699 int i;
8700
8701 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8702 percpu_counter_destroy(&ca->cpustat[i]);
8703 free_percpu(ca->cpuusage);
8704 kfree(ca);
8705 }
8706
8707 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8708 {
8709 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8710 u64 data;
8711
8712 #ifndef CONFIG_64BIT
8713 /*
8714 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8715 */
8716 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8717 data = *cpuusage;
8718 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8719 #else
8720 data = *cpuusage;
8721 #endif
8722
8723 return data;
8724 }
8725
8726 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8727 {
8728 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8729
8730 #ifndef CONFIG_64BIT
8731 /*
8732 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8733 */
8734 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8735 *cpuusage = val;
8736 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8737 #else
8738 *cpuusage = val;
8739 #endif
8740 }
8741
8742 /* return total cpu usage (in nanoseconds) of a group */
8743 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8744 {
8745 struct cpuacct *ca = cgroup_ca(cgrp);
8746 u64 totalcpuusage = 0;
8747 int i;
8748
8749 for_each_present_cpu(i)
8750 totalcpuusage += cpuacct_cpuusage_read(ca, i);
8751
8752 return totalcpuusage;
8753 }
8754
8755 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8756 u64 reset)
8757 {
8758 struct cpuacct *ca = cgroup_ca(cgrp);
8759 int err = 0;
8760 int i;
8761
8762 if (reset) {
8763 err = -EINVAL;
8764 goto out;
8765 }
8766
8767 for_each_present_cpu(i)
8768 cpuacct_cpuusage_write(ca, i, 0);
8769
8770 out:
8771 return err;
8772 }
8773
8774 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8775 struct seq_file *m)
8776 {
8777 struct cpuacct *ca = cgroup_ca(cgroup);
8778 u64 percpu;
8779 int i;
8780
8781 for_each_present_cpu(i) {
8782 percpu = cpuacct_cpuusage_read(ca, i);
8783 seq_printf(m, "%llu ", (unsigned long long) percpu);
8784 }
8785 seq_printf(m, "\n");
8786 return 0;
8787 }
8788
8789 static const char *cpuacct_stat_desc[] = {
8790 [CPUACCT_STAT_USER] = "user",
8791 [CPUACCT_STAT_SYSTEM] = "system",
8792 };
8793
8794 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8795 struct cgroup_map_cb *cb)
8796 {
8797 struct cpuacct *ca = cgroup_ca(cgrp);
8798 int i;
8799
8800 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
8801 s64 val = percpu_counter_read(&ca->cpustat[i]);
8802 val = cputime64_to_clock_t(val);
8803 cb->fill(cb, cpuacct_stat_desc[i], val);
8804 }
8805 return 0;
8806 }
8807
8808 static struct cftype files[] = {
8809 {
8810 .name = "usage",
8811 .read_u64 = cpuusage_read,
8812 .write_u64 = cpuusage_write,
8813 },
8814 {
8815 .name = "usage_percpu",
8816 .read_seq_string = cpuacct_percpu_seq_read,
8817 },
8818 {
8819 .name = "stat",
8820 .read_map = cpuacct_stats_show,
8821 },
8822 };
8823
8824 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
8825 {
8826 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
8827 }
8828
8829 /*
8830 * charge this task's execution time to its accounting group.
8831 *
8832 * called with rq->lock held.
8833 */
8834 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8835 {
8836 struct cpuacct *ca;
8837 int cpu;
8838
8839 if (unlikely(!cpuacct_subsys.active))
8840 return;
8841
8842 cpu = task_cpu(tsk);
8843
8844 rcu_read_lock();
8845
8846 ca = task_ca(tsk);
8847
8848 for (; ca; ca = ca->parent) {
8849 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8850 *cpuusage += cputime;
8851 }
8852
8853 rcu_read_unlock();
8854 }
8855
8856 /*
8857 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
8858 * in cputime_t units. As a result, cpuacct_update_stats calls
8859 * percpu_counter_add with values large enough to always overflow the
8860 * per cpu batch limit causing bad SMP scalability.
8861 *
8862 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
8863 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
8864 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
8865 */
8866 #ifdef CONFIG_SMP
8867 #define CPUACCT_BATCH \
8868 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
8869 #else
8870 #define CPUACCT_BATCH 0
8871 #endif
8872
8873 /*
8874 * Charge the system/user time to the task's accounting group.
8875 */
8876 static void cpuacct_update_stats(struct task_struct *tsk,
8877 enum cpuacct_stat_index idx, cputime_t val)
8878 {
8879 struct cpuacct *ca;
8880 int batch = CPUACCT_BATCH;
8881
8882 if (unlikely(!cpuacct_subsys.active))
8883 return;
8884
8885 rcu_read_lock();
8886 ca = task_ca(tsk);
8887
8888 do {
8889 __percpu_counter_add(&ca->cpustat[idx], val, batch);
8890 ca = ca->parent;
8891 } while (ca);
8892 rcu_read_unlock();
8893 }
8894
8895 struct cgroup_subsys cpuacct_subsys = {
8896 .name = "cpuacct",
8897 .create = cpuacct_create,
8898 .destroy = cpuacct_destroy,
8899 .populate = cpuacct_populate,
8900 .subsys_id = cpuacct_subsys_id,
8901 };
8902 #endif /* CONFIG_CGROUP_CPUACCT */
8903
8904 #ifndef CONFIG_SMP
8905
8906 void synchronize_sched_expedited(void)
8907 {
8908 barrier();
8909 }
8910 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
8911
8912 #else /* #ifndef CONFIG_SMP */
8913
8914 static atomic_t synchronize_sched_expedited_count = ATOMIC_INIT(0);
8915
8916 static int synchronize_sched_expedited_cpu_stop(void *data)
8917 {
8918 /*
8919 * There must be a full memory barrier on each affected CPU
8920 * between the time that try_stop_cpus() is called and the
8921 * time that it returns.
8922 *
8923 * In the current initial implementation of cpu_stop, the
8924 * above condition is already met when the control reaches
8925 * this point and the following smp_mb() is not strictly
8926 * necessary. Do smp_mb() anyway for documentation and
8927 * robustness against future implementation changes.
8928 */
8929 smp_mb(); /* See above comment block. */
8930 return 0;
8931 }
8932
8933 /*
8934 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
8935 * approach to force grace period to end quickly. This consumes
8936 * significant time on all CPUs, and is thus not recommended for
8937 * any sort of common-case code.
8938 *
8939 * Note that it is illegal to call this function while holding any
8940 * lock that is acquired by a CPU-hotplug notifier. Failing to
8941 * observe this restriction will result in deadlock.
8942 */
8943 void synchronize_sched_expedited(void)
8944 {
8945 int snap, trycount = 0;
8946
8947 smp_mb(); /* ensure prior mod happens before capturing snap. */
8948 snap = atomic_read(&synchronize_sched_expedited_count) + 1;
8949 get_online_cpus();
8950 while (try_stop_cpus(cpu_online_mask,
8951 synchronize_sched_expedited_cpu_stop,
8952 NULL) == -EAGAIN) {
8953 put_online_cpus();
8954 if (trycount++ < 10)
8955 udelay(trycount * num_online_cpus());
8956 else {
8957 synchronize_sched();
8958 return;
8959 }
8960 if (atomic_read(&synchronize_sched_expedited_count) - snap > 0) {
8961 smp_mb(); /* ensure test happens before caller kfree */
8962 return;
8963 }
8964 get_online_cpus();
8965 }
8966 atomic_inc(&synchronize_sched_expedited_count);
8967 smp_mb__after_atomic_inc(); /* ensure post-GP actions seen after GP. */
8968 put_online_cpus();
8969 }
8970 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
8971
8972 #endif /* #else #ifndef CONFIG_SMP */
This page took 0.213513 seconds and 6 git commands to generate.