sched: fix race in schedule()
[deliverable/linux.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/reciprocal_div.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69
70 #include <asm/tlb.h>
71 #include <asm/irq_regs.h>
72
73 /*
74 * Scheduler clock - returns current time in nanosec units.
75 * This is default implementation.
76 * Architectures and sub-architectures can override this.
77 */
78 unsigned long long __attribute__((weak)) sched_clock(void)
79 {
80 return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
81 }
82
83 /*
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
87 */
88 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
91
92 /*
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
96 */
97 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
100
101 /*
102 * Helpers for converting nanosecond timing to jiffy resolution
103 */
104 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
105
106 #define NICE_0_LOAD SCHED_LOAD_SCALE
107 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
108
109 /*
110 * These are the 'tuning knobs' of the scheduler:
111 *
112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
113 * Timeslices get refilled after they expire.
114 */
115 #define DEF_TIMESLICE (100 * HZ / 1000)
116
117 #ifdef CONFIG_SMP
118 /*
119 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
120 * Since cpu_power is a 'constant', we can use a reciprocal divide.
121 */
122 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
123 {
124 return reciprocal_divide(load, sg->reciprocal_cpu_power);
125 }
126
127 /*
128 * Each time a sched group cpu_power is changed,
129 * we must compute its reciprocal value
130 */
131 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
132 {
133 sg->__cpu_power += val;
134 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
135 }
136 #endif
137
138 static inline int rt_policy(int policy)
139 {
140 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
141 return 1;
142 return 0;
143 }
144
145 static inline int task_has_rt_policy(struct task_struct *p)
146 {
147 return rt_policy(p->policy);
148 }
149
150 /*
151 * This is the priority-queue data structure of the RT scheduling class:
152 */
153 struct rt_prio_array {
154 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
155 struct list_head queue[MAX_RT_PRIO];
156 };
157
158 #ifdef CONFIG_GROUP_SCHED
159
160 #include <linux/cgroup.h>
161
162 struct cfs_rq;
163
164 static LIST_HEAD(task_groups);
165
166 /* task group related information */
167 struct task_group {
168 #ifdef CONFIG_CGROUP_SCHED
169 struct cgroup_subsys_state css;
170 #endif
171
172 #ifdef CONFIG_FAIR_GROUP_SCHED
173 /* schedulable entities of this group on each cpu */
174 struct sched_entity **se;
175 /* runqueue "owned" by this group on each cpu */
176 struct cfs_rq **cfs_rq;
177 unsigned long shares;
178 #endif
179
180 #ifdef CONFIG_RT_GROUP_SCHED
181 struct sched_rt_entity **rt_se;
182 struct rt_rq **rt_rq;
183
184 u64 rt_runtime;
185 #endif
186
187 struct rcu_head rcu;
188 struct list_head list;
189 };
190
191 #ifdef CONFIG_FAIR_GROUP_SCHED
192 /* Default task group's sched entity on each cpu */
193 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
194 /* Default task group's cfs_rq on each cpu */
195 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
196
197 static struct sched_entity *init_sched_entity_p[NR_CPUS];
198 static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
199 #endif
200
201 #ifdef CONFIG_RT_GROUP_SCHED
202 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
203 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
204
205 static struct sched_rt_entity *init_sched_rt_entity_p[NR_CPUS];
206 static struct rt_rq *init_rt_rq_p[NR_CPUS];
207 #endif
208
209 /* task_group_lock serializes add/remove of task groups and also changes to
210 * a task group's cpu shares.
211 */
212 static DEFINE_SPINLOCK(task_group_lock);
213
214 /* doms_cur_mutex serializes access to doms_cur[] array */
215 static DEFINE_MUTEX(doms_cur_mutex);
216
217 #ifdef CONFIG_FAIR_GROUP_SCHED
218 #ifdef CONFIG_USER_SCHED
219 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
220 #else
221 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
222 #endif
223
224 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
225 #endif
226
227 /* Default task group.
228 * Every task in system belong to this group at bootup.
229 */
230 struct task_group init_task_group = {
231 #ifdef CONFIG_FAIR_GROUP_SCHED
232 .se = init_sched_entity_p,
233 .cfs_rq = init_cfs_rq_p,
234 #endif
235
236 #ifdef CONFIG_RT_GROUP_SCHED
237 .rt_se = init_sched_rt_entity_p,
238 .rt_rq = init_rt_rq_p,
239 #endif
240 };
241
242 /* return group to which a task belongs */
243 static inline struct task_group *task_group(struct task_struct *p)
244 {
245 struct task_group *tg;
246
247 #ifdef CONFIG_USER_SCHED
248 tg = p->user->tg;
249 #elif defined(CONFIG_CGROUP_SCHED)
250 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
251 struct task_group, css);
252 #else
253 tg = &init_task_group;
254 #endif
255 return tg;
256 }
257
258 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
259 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
260 {
261 #ifdef CONFIG_FAIR_GROUP_SCHED
262 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
263 p->se.parent = task_group(p)->se[cpu];
264 #endif
265
266 #ifdef CONFIG_RT_GROUP_SCHED
267 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
268 p->rt.parent = task_group(p)->rt_se[cpu];
269 #endif
270 }
271
272 static inline void lock_doms_cur(void)
273 {
274 mutex_lock(&doms_cur_mutex);
275 }
276
277 static inline void unlock_doms_cur(void)
278 {
279 mutex_unlock(&doms_cur_mutex);
280 }
281
282 #else
283
284 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
285 static inline void lock_doms_cur(void) { }
286 static inline void unlock_doms_cur(void) { }
287
288 #endif /* CONFIG_GROUP_SCHED */
289
290 /* CFS-related fields in a runqueue */
291 struct cfs_rq {
292 struct load_weight load;
293 unsigned long nr_running;
294
295 u64 exec_clock;
296 u64 min_vruntime;
297
298 struct rb_root tasks_timeline;
299 struct rb_node *rb_leftmost;
300 struct rb_node *rb_load_balance_curr;
301 /* 'curr' points to currently running entity on this cfs_rq.
302 * It is set to NULL otherwise (i.e when none are currently running).
303 */
304 struct sched_entity *curr;
305
306 unsigned long nr_spread_over;
307
308 #ifdef CONFIG_FAIR_GROUP_SCHED
309 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
310
311 /*
312 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
313 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
314 * (like users, containers etc.)
315 *
316 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
317 * list is used during load balance.
318 */
319 struct list_head leaf_cfs_rq_list;
320 struct task_group *tg; /* group that "owns" this runqueue */
321 #endif
322 };
323
324 /* Real-Time classes' related field in a runqueue: */
325 struct rt_rq {
326 struct rt_prio_array active;
327 unsigned long rt_nr_running;
328 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
329 int highest_prio; /* highest queued rt task prio */
330 #endif
331 #ifdef CONFIG_SMP
332 unsigned long rt_nr_migratory;
333 int overloaded;
334 #endif
335 int rt_throttled;
336 u64 rt_time;
337
338 #ifdef CONFIG_RT_GROUP_SCHED
339 unsigned long rt_nr_boosted;
340
341 struct rq *rq;
342 struct list_head leaf_rt_rq_list;
343 struct task_group *tg;
344 struct sched_rt_entity *rt_se;
345 #endif
346 };
347
348 #ifdef CONFIG_SMP
349
350 /*
351 * We add the notion of a root-domain which will be used to define per-domain
352 * variables. Each exclusive cpuset essentially defines an island domain by
353 * fully partitioning the member cpus from any other cpuset. Whenever a new
354 * exclusive cpuset is created, we also create and attach a new root-domain
355 * object.
356 *
357 */
358 struct root_domain {
359 atomic_t refcount;
360 cpumask_t span;
361 cpumask_t online;
362
363 /*
364 * The "RT overload" flag: it gets set if a CPU has more than
365 * one runnable RT task.
366 */
367 cpumask_t rto_mask;
368 atomic_t rto_count;
369 };
370
371 /*
372 * By default the system creates a single root-domain with all cpus as
373 * members (mimicking the global state we have today).
374 */
375 static struct root_domain def_root_domain;
376
377 #endif
378
379 /*
380 * This is the main, per-CPU runqueue data structure.
381 *
382 * Locking rule: those places that want to lock multiple runqueues
383 * (such as the load balancing or the thread migration code), lock
384 * acquire operations must be ordered by ascending &runqueue.
385 */
386 struct rq {
387 /* runqueue lock: */
388 spinlock_t lock;
389
390 /*
391 * nr_running and cpu_load should be in the same cacheline because
392 * remote CPUs use both these fields when doing load calculation.
393 */
394 unsigned long nr_running;
395 #define CPU_LOAD_IDX_MAX 5
396 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
397 unsigned char idle_at_tick;
398 #ifdef CONFIG_NO_HZ
399 unsigned char in_nohz_recently;
400 #endif
401 /* capture load from *all* tasks on this cpu: */
402 struct load_weight load;
403 unsigned long nr_load_updates;
404 u64 nr_switches;
405
406 struct cfs_rq cfs;
407 struct rt_rq rt;
408 u64 rt_period_expire;
409 int rt_throttled;
410
411 #ifdef CONFIG_FAIR_GROUP_SCHED
412 /* list of leaf cfs_rq on this cpu: */
413 struct list_head leaf_cfs_rq_list;
414 #endif
415 #ifdef CONFIG_RT_GROUP_SCHED
416 struct list_head leaf_rt_rq_list;
417 #endif
418
419 /*
420 * This is part of a global counter where only the total sum
421 * over all CPUs matters. A task can increase this counter on
422 * one CPU and if it got migrated afterwards it may decrease
423 * it on another CPU. Always updated under the runqueue lock:
424 */
425 unsigned long nr_uninterruptible;
426
427 struct task_struct *curr, *idle;
428 unsigned long next_balance;
429 struct mm_struct *prev_mm;
430
431 u64 clock, prev_clock_raw;
432 s64 clock_max_delta;
433
434 unsigned int clock_warps, clock_overflows, clock_underflows;
435 u64 idle_clock;
436 unsigned int clock_deep_idle_events;
437 u64 tick_timestamp;
438
439 atomic_t nr_iowait;
440
441 #ifdef CONFIG_SMP
442 struct root_domain *rd;
443 struct sched_domain *sd;
444
445 /* For active balancing */
446 int active_balance;
447 int push_cpu;
448 /* cpu of this runqueue: */
449 int cpu;
450
451 struct task_struct *migration_thread;
452 struct list_head migration_queue;
453 #endif
454
455 #ifdef CONFIG_SCHED_HRTICK
456 unsigned long hrtick_flags;
457 ktime_t hrtick_expire;
458 struct hrtimer hrtick_timer;
459 #endif
460
461 #ifdef CONFIG_SCHEDSTATS
462 /* latency stats */
463 struct sched_info rq_sched_info;
464
465 /* sys_sched_yield() stats */
466 unsigned int yld_exp_empty;
467 unsigned int yld_act_empty;
468 unsigned int yld_both_empty;
469 unsigned int yld_count;
470
471 /* schedule() stats */
472 unsigned int sched_switch;
473 unsigned int sched_count;
474 unsigned int sched_goidle;
475
476 /* try_to_wake_up() stats */
477 unsigned int ttwu_count;
478 unsigned int ttwu_local;
479
480 /* BKL stats */
481 unsigned int bkl_count;
482 #endif
483 struct lock_class_key rq_lock_key;
484 };
485
486 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
487
488 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
489 {
490 rq->curr->sched_class->check_preempt_curr(rq, p);
491 }
492
493 static inline int cpu_of(struct rq *rq)
494 {
495 #ifdef CONFIG_SMP
496 return rq->cpu;
497 #else
498 return 0;
499 #endif
500 }
501
502 /*
503 * Update the per-runqueue clock, as finegrained as the platform can give
504 * us, but without assuming monotonicity, etc.:
505 */
506 static void __update_rq_clock(struct rq *rq)
507 {
508 u64 prev_raw = rq->prev_clock_raw;
509 u64 now = sched_clock();
510 s64 delta = now - prev_raw;
511 u64 clock = rq->clock;
512
513 #ifdef CONFIG_SCHED_DEBUG
514 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
515 #endif
516 /*
517 * Protect against sched_clock() occasionally going backwards:
518 */
519 if (unlikely(delta < 0)) {
520 clock++;
521 rq->clock_warps++;
522 } else {
523 /*
524 * Catch too large forward jumps too:
525 */
526 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
527 if (clock < rq->tick_timestamp + TICK_NSEC)
528 clock = rq->tick_timestamp + TICK_NSEC;
529 else
530 clock++;
531 rq->clock_overflows++;
532 } else {
533 if (unlikely(delta > rq->clock_max_delta))
534 rq->clock_max_delta = delta;
535 clock += delta;
536 }
537 }
538
539 rq->prev_clock_raw = now;
540 rq->clock = clock;
541 }
542
543 static void update_rq_clock(struct rq *rq)
544 {
545 if (likely(smp_processor_id() == cpu_of(rq)))
546 __update_rq_clock(rq);
547 }
548
549 /*
550 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
551 * See detach_destroy_domains: synchronize_sched for details.
552 *
553 * The domain tree of any CPU may only be accessed from within
554 * preempt-disabled sections.
555 */
556 #define for_each_domain(cpu, __sd) \
557 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
558
559 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
560 #define this_rq() (&__get_cpu_var(runqueues))
561 #define task_rq(p) cpu_rq(task_cpu(p))
562 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
563
564 unsigned long rt_needs_cpu(int cpu)
565 {
566 struct rq *rq = cpu_rq(cpu);
567 u64 delta;
568
569 if (!rq->rt_throttled)
570 return 0;
571
572 if (rq->clock > rq->rt_period_expire)
573 return 1;
574
575 delta = rq->rt_period_expire - rq->clock;
576 do_div(delta, NSEC_PER_SEC / HZ);
577
578 return (unsigned long)delta;
579 }
580
581 /*
582 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
583 */
584 #ifdef CONFIG_SCHED_DEBUG
585 # define const_debug __read_mostly
586 #else
587 # define const_debug static const
588 #endif
589
590 /*
591 * Debugging: various feature bits
592 */
593 enum {
594 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
595 SCHED_FEAT_WAKEUP_PREEMPT = 2,
596 SCHED_FEAT_START_DEBIT = 4,
597 SCHED_FEAT_TREE_AVG = 8,
598 SCHED_FEAT_APPROX_AVG = 16,
599 SCHED_FEAT_HRTICK = 32,
600 SCHED_FEAT_DOUBLE_TICK = 64,
601 };
602
603 const_debug unsigned int sysctl_sched_features =
604 SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
605 SCHED_FEAT_WAKEUP_PREEMPT * 1 |
606 SCHED_FEAT_START_DEBIT * 1 |
607 SCHED_FEAT_TREE_AVG * 0 |
608 SCHED_FEAT_APPROX_AVG * 0 |
609 SCHED_FEAT_HRTICK * 1 |
610 SCHED_FEAT_DOUBLE_TICK * 0;
611
612 #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
613
614 /*
615 * Number of tasks to iterate in a single balance run.
616 * Limited because this is done with IRQs disabled.
617 */
618 const_debug unsigned int sysctl_sched_nr_migrate = 32;
619
620 /*
621 * period over which we measure -rt task cpu usage in us.
622 * default: 1s
623 */
624 unsigned int sysctl_sched_rt_period = 1000000;
625
626 static __read_mostly int scheduler_running;
627
628 /*
629 * part of the period that we allow rt tasks to run in us.
630 * default: 0.95s
631 */
632 int sysctl_sched_rt_runtime = 950000;
633
634 /*
635 * single value that denotes runtime == period, ie unlimited time.
636 */
637 #define RUNTIME_INF ((u64)~0ULL)
638
639 /*
640 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
641 * clock constructed from sched_clock():
642 */
643 unsigned long long cpu_clock(int cpu)
644 {
645 unsigned long long now;
646 unsigned long flags;
647 struct rq *rq;
648
649 /*
650 * Only call sched_clock() if the scheduler has already been
651 * initialized (some code might call cpu_clock() very early):
652 */
653 if (unlikely(!scheduler_running))
654 return 0;
655
656 local_irq_save(flags);
657 rq = cpu_rq(cpu);
658 update_rq_clock(rq);
659 now = rq->clock;
660 local_irq_restore(flags);
661
662 return now;
663 }
664 EXPORT_SYMBOL_GPL(cpu_clock);
665
666 #ifndef prepare_arch_switch
667 # define prepare_arch_switch(next) do { } while (0)
668 #endif
669 #ifndef finish_arch_switch
670 # define finish_arch_switch(prev) do { } while (0)
671 #endif
672
673 static inline int task_current(struct rq *rq, struct task_struct *p)
674 {
675 return rq->curr == p;
676 }
677
678 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
679 static inline int task_running(struct rq *rq, struct task_struct *p)
680 {
681 return task_current(rq, p);
682 }
683
684 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
685 {
686 }
687
688 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
689 {
690 #ifdef CONFIG_DEBUG_SPINLOCK
691 /* this is a valid case when another task releases the spinlock */
692 rq->lock.owner = current;
693 #endif
694 /*
695 * If we are tracking spinlock dependencies then we have to
696 * fix up the runqueue lock - which gets 'carried over' from
697 * prev into current:
698 */
699 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
700
701 spin_unlock_irq(&rq->lock);
702 }
703
704 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
705 static inline int task_running(struct rq *rq, struct task_struct *p)
706 {
707 #ifdef CONFIG_SMP
708 return p->oncpu;
709 #else
710 return task_current(rq, p);
711 #endif
712 }
713
714 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
715 {
716 #ifdef CONFIG_SMP
717 /*
718 * We can optimise this out completely for !SMP, because the
719 * SMP rebalancing from interrupt is the only thing that cares
720 * here.
721 */
722 next->oncpu = 1;
723 #endif
724 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
725 spin_unlock_irq(&rq->lock);
726 #else
727 spin_unlock(&rq->lock);
728 #endif
729 }
730
731 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
732 {
733 #ifdef CONFIG_SMP
734 /*
735 * After ->oncpu is cleared, the task can be moved to a different CPU.
736 * We must ensure this doesn't happen until the switch is completely
737 * finished.
738 */
739 smp_wmb();
740 prev->oncpu = 0;
741 #endif
742 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
743 local_irq_enable();
744 #endif
745 }
746 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
747
748 /*
749 * __task_rq_lock - lock the runqueue a given task resides on.
750 * Must be called interrupts disabled.
751 */
752 static inline struct rq *__task_rq_lock(struct task_struct *p)
753 __acquires(rq->lock)
754 {
755 for (;;) {
756 struct rq *rq = task_rq(p);
757 spin_lock(&rq->lock);
758 if (likely(rq == task_rq(p)))
759 return rq;
760 spin_unlock(&rq->lock);
761 }
762 }
763
764 /*
765 * task_rq_lock - lock the runqueue a given task resides on and disable
766 * interrupts. Note the ordering: we can safely lookup the task_rq without
767 * explicitly disabling preemption.
768 */
769 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
770 __acquires(rq->lock)
771 {
772 struct rq *rq;
773
774 for (;;) {
775 local_irq_save(*flags);
776 rq = task_rq(p);
777 spin_lock(&rq->lock);
778 if (likely(rq == task_rq(p)))
779 return rq;
780 spin_unlock_irqrestore(&rq->lock, *flags);
781 }
782 }
783
784 static void __task_rq_unlock(struct rq *rq)
785 __releases(rq->lock)
786 {
787 spin_unlock(&rq->lock);
788 }
789
790 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
791 __releases(rq->lock)
792 {
793 spin_unlock_irqrestore(&rq->lock, *flags);
794 }
795
796 /*
797 * this_rq_lock - lock this runqueue and disable interrupts.
798 */
799 static struct rq *this_rq_lock(void)
800 __acquires(rq->lock)
801 {
802 struct rq *rq;
803
804 local_irq_disable();
805 rq = this_rq();
806 spin_lock(&rq->lock);
807
808 return rq;
809 }
810
811 /*
812 * We are going deep-idle (irqs are disabled):
813 */
814 void sched_clock_idle_sleep_event(void)
815 {
816 struct rq *rq = cpu_rq(smp_processor_id());
817
818 spin_lock(&rq->lock);
819 __update_rq_clock(rq);
820 spin_unlock(&rq->lock);
821 rq->clock_deep_idle_events++;
822 }
823 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
824
825 /*
826 * We just idled delta nanoseconds (called with irqs disabled):
827 */
828 void sched_clock_idle_wakeup_event(u64 delta_ns)
829 {
830 struct rq *rq = cpu_rq(smp_processor_id());
831 u64 now = sched_clock();
832
833 rq->idle_clock += delta_ns;
834 /*
835 * Override the previous timestamp and ignore all
836 * sched_clock() deltas that occured while we idled,
837 * and use the PM-provided delta_ns to advance the
838 * rq clock:
839 */
840 spin_lock(&rq->lock);
841 rq->prev_clock_raw = now;
842 rq->clock += delta_ns;
843 spin_unlock(&rq->lock);
844 touch_softlockup_watchdog();
845 }
846 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
847
848 static void __resched_task(struct task_struct *p, int tif_bit);
849
850 static inline void resched_task(struct task_struct *p)
851 {
852 __resched_task(p, TIF_NEED_RESCHED);
853 }
854
855 #ifdef CONFIG_SCHED_HRTICK
856 /*
857 * Use HR-timers to deliver accurate preemption points.
858 *
859 * Its all a bit involved since we cannot program an hrt while holding the
860 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
861 * reschedule event.
862 *
863 * When we get rescheduled we reprogram the hrtick_timer outside of the
864 * rq->lock.
865 */
866 static inline void resched_hrt(struct task_struct *p)
867 {
868 __resched_task(p, TIF_HRTICK_RESCHED);
869 }
870
871 static inline void resched_rq(struct rq *rq)
872 {
873 unsigned long flags;
874
875 spin_lock_irqsave(&rq->lock, flags);
876 resched_task(rq->curr);
877 spin_unlock_irqrestore(&rq->lock, flags);
878 }
879
880 enum {
881 HRTICK_SET, /* re-programm hrtick_timer */
882 HRTICK_RESET, /* not a new slice */
883 };
884
885 /*
886 * Use hrtick when:
887 * - enabled by features
888 * - hrtimer is actually high res
889 */
890 static inline int hrtick_enabled(struct rq *rq)
891 {
892 if (!sched_feat(HRTICK))
893 return 0;
894 return hrtimer_is_hres_active(&rq->hrtick_timer);
895 }
896
897 /*
898 * Called to set the hrtick timer state.
899 *
900 * called with rq->lock held and irqs disabled
901 */
902 static void hrtick_start(struct rq *rq, u64 delay, int reset)
903 {
904 assert_spin_locked(&rq->lock);
905
906 /*
907 * preempt at: now + delay
908 */
909 rq->hrtick_expire =
910 ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
911 /*
912 * indicate we need to program the timer
913 */
914 __set_bit(HRTICK_SET, &rq->hrtick_flags);
915 if (reset)
916 __set_bit(HRTICK_RESET, &rq->hrtick_flags);
917
918 /*
919 * New slices are called from the schedule path and don't need a
920 * forced reschedule.
921 */
922 if (reset)
923 resched_hrt(rq->curr);
924 }
925
926 static void hrtick_clear(struct rq *rq)
927 {
928 if (hrtimer_active(&rq->hrtick_timer))
929 hrtimer_cancel(&rq->hrtick_timer);
930 }
931
932 /*
933 * Update the timer from the possible pending state.
934 */
935 static void hrtick_set(struct rq *rq)
936 {
937 ktime_t time;
938 int set, reset;
939 unsigned long flags;
940
941 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
942
943 spin_lock_irqsave(&rq->lock, flags);
944 set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
945 reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
946 time = rq->hrtick_expire;
947 clear_thread_flag(TIF_HRTICK_RESCHED);
948 spin_unlock_irqrestore(&rq->lock, flags);
949
950 if (set) {
951 hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
952 if (reset && !hrtimer_active(&rq->hrtick_timer))
953 resched_rq(rq);
954 } else
955 hrtick_clear(rq);
956 }
957
958 /*
959 * High-resolution timer tick.
960 * Runs from hardirq context with interrupts disabled.
961 */
962 static enum hrtimer_restart hrtick(struct hrtimer *timer)
963 {
964 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
965
966 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
967
968 spin_lock(&rq->lock);
969 __update_rq_clock(rq);
970 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
971 spin_unlock(&rq->lock);
972
973 return HRTIMER_NORESTART;
974 }
975
976 static inline void init_rq_hrtick(struct rq *rq)
977 {
978 rq->hrtick_flags = 0;
979 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
980 rq->hrtick_timer.function = hrtick;
981 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
982 }
983
984 void hrtick_resched(void)
985 {
986 struct rq *rq;
987 unsigned long flags;
988
989 if (!test_thread_flag(TIF_HRTICK_RESCHED))
990 return;
991
992 local_irq_save(flags);
993 rq = cpu_rq(smp_processor_id());
994 hrtick_set(rq);
995 local_irq_restore(flags);
996 }
997 #else
998 static inline void hrtick_clear(struct rq *rq)
999 {
1000 }
1001
1002 static inline void hrtick_set(struct rq *rq)
1003 {
1004 }
1005
1006 static inline void init_rq_hrtick(struct rq *rq)
1007 {
1008 }
1009
1010 void hrtick_resched(void)
1011 {
1012 }
1013 #endif
1014
1015 /*
1016 * resched_task - mark a task 'to be rescheduled now'.
1017 *
1018 * On UP this means the setting of the need_resched flag, on SMP it
1019 * might also involve a cross-CPU call to trigger the scheduler on
1020 * the target CPU.
1021 */
1022 #ifdef CONFIG_SMP
1023
1024 #ifndef tsk_is_polling
1025 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1026 #endif
1027
1028 static void __resched_task(struct task_struct *p, int tif_bit)
1029 {
1030 int cpu;
1031
1032 assert_spin_locked(&task_rq(p)->lock);
1033
1034 if (unlikely(test_tsk_thread_flag(p, tif_bit)))
1035 return;
1036
1037 set_tsk_thread_flag(p, tif_bit);
1038
1039 cpu = task_cpu(p);
1040 if (cpu == smp_processor_id())
1041 return;
1042
1043 /* NEED_RESCHED must be visible before we test polling */
1044 smp_mb();
1045 if (!tsk_is_polling(p))
1046 smp_send_reschedule(cpu);
1047 }
1048
1049 static void resched_cpu(int cpu)
1050 {
1051 struct rq *rq = cpu_rq(cpu);
1052 unsigned long flags;
1053
1054 if (!spin_trylock_irqsave(&rq->lock, flags))
1055 return;
1056 resched_task(cpu_curr(cpu));
1057 spin_unlock_irqrestore(&rq->lock, flags);
1058 }
1059 #else
1060 static void __resched_task(struct task_struct *p, int tif_bit)
1061 {
1062 assert_spin_locked(&task_rq(p)->lock);
1063 set_tsk_thread_flag(p, tif_bit);
1064 }
1065 #endif
1066
1067 #if BITS_PER_LONG == 32
1068 # define WMULT_CONST (~0UL)
1069 #else
1070 # define WMULT_CONST (1UL << 32)
1071 #endif
1072
1073 #define WMULT_SHIFT 32
1074
1075 /*
1076 * Shift right and round:
1077 */
1078 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1079
1080 static unsigned long
1081 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1082 struct load_weight *lw)
1083 {
1084 u64 tmp;
1085
1086 if (unlikely(!lw->inv_weight))
1087 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
1088
1089 tmp = (u64)delta_exec * weight;
1090 /*
1091 * Check whether we'd overflow the 64-bit multiplication:
1092 */
1093 if (unlikely(tmp > WMULT_CONST))
1094 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1095 WMULT_SHIFT/2);
1096 else
1097 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1098
1099 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1100 }
1101
1102 static inline unsigned long
1103 calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
1104 {
1105 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
1106 }
1107
1108 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1109 {
1110 lw->weight += inc;
1111 }
1112
1113 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1114 {
1115 lw->weight -= dec;
1116 }
1117
1118 /*
1119 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1120 * of tasks with abnormal "nice" values across CPUs the contribution that
1121 * each task makes to its run queue's load is weighted according to its
1122 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1123 * scaled version of the new time slice allocation that they receive on time
1124 * slice expiry etc.
1125 */
1126
1127 #define WEIGHT_IDLEPRIO 2
1128 #define WMULT_IDLEPRIO (1 << 31)
1129
1130 /*
1131 * Nice levels are multiplicative, with a gentle 10% change for every
1132 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1133 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1134 * that remained on nice 0.
1135 *
1136 * The "10% effect" is relative and cumulative: from _any_ nice level,
1137 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1138 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1139 * If a task goes up by ~10% and another task goes down by ~10% then
1140 * the relative distance between them is ~25%.)
1141 */
1142 static const int prio_to_weight[40] = {
1143 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1144 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1145 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1146 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1147 /* 0 */ 1024, 820, 655, 526, 423,
1148 /* 5 */ 335, 272, 215, 172, 137,
1149 /* 10 */ 110, 87, 70, 56, 45,
1150 /* 15 */ 36, 29, 23, 18, 15,
1151 };
1152
1153 /*
1154 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1155 *
1156 * In cases where the weight does not change often, we can use the
1157 * precalculated inverse to speed up arithmetics by turning divisions
1158 * into multiplications:
1159 */
1160 static const u32 prio_to_wmult[40] = {
1161 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1162 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1163 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1164 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1165 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1166 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1167 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1168 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1169 };
1170
1171 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1172
1173 /*
1174 * runqueue iterator, to support SMP load-balancing between different
1175 * scheduling classes, without having to expose their internal data
1176 * structures to the load-balancing proper:
1177 */
1178 struct rq_iterator {
1179 void *arg;
1180 struct task_struct *(*start)(void *);
1181 struct task_struct *(*next)(void *);
1182 };
1183
1184 #ifdef CONFIG_SMP
1185 static unsigned long
1186 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1187 unsigned long max_load_move, struct sched_domain *sd,
1188 enum cpu_idle_type idle, int *all_pinned,
1189 int *this_best_prio, struct rq_iterator *iterator);
1190
1191 static int
1192 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1193 struct sched_domain *sd, enum cpu_idle_type idle,
1194 struct rq_iterator *iterator);
1195 #endif
1196
1197 #ifdef CONFIG_CGROUP_CPUACCT
1198 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1199 #else
1200 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1201 #endif
1202
1203 #ifdef CONFIG_SMP
1204 static unsigned long source_load(int cpu, int type);
1205 static unsigned long target_load(int cpu, int type);
1206 static unsigned long cpu_avg_load_per_task(int cpu);
1207 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1208 #endif /* CONFIG_SMP */
1209
1210 #include "sched_stats.h"
1211 #include "sched_idletask.c"
1212 #include "sched_fair.c"
1213 #include "sched_rt.c"
1214 #ifdef CONFIG_SCHED_DEBUG
1215 # include "sched_debug.c"
1216 #endif
1217
1218 #define sched_class_highest (&rt_sched_class)
1219
1220 static inline void inc_load(struct rq *rq, const struct task_struct *p)
1221 {
1222 update_load_add(&rq->load, p->se.load.weight);
1223 }
1224
1225 static inline void dec_load(struct rq *rq, const struct task_struct *p)
1226 {
1227 update_load_sub(&rq->load, p->se.load.weight);
1228 }
1229
1230 static void inc_nr_running(struct task_struct *p, struct rq *rq)
1231 {
1232 rq->nr_running++;
1233 inc_load(rq, p);
1234 }
1235
1236 static void dec_nr_running(struct task_struct *p, struct rq *rq)
1237 {
1238 rq->nr_running--;
1239 dec_load(rq, p);
1240 }
1241
1242 static void set_load_weight(struct task_struct *p)
1243 {
1244 if (task_has_rt_policy(p)) {
1245 p->se.load.weight = prio_to_weight[0] * 2;
1246 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1247 return;
1248 }
1249
1250 /*
1251 * SCHED_IDLE tasks get minimal weight:
1252 */
1253 if (p->policy == SCHED_IDLE) {
1254 p->se.load.weight = WEIGHT_IDLEPRIO;
1255 p->se.load.inv_weight = WMULT_IDLEPRIO;
1256 return;
1257 }
1258
1259 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1260 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1261 }
1262
1263 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1264 {
1265 sched_info_queued(p);
1266 p->sched_class->enqueue_task(rq, p, wakeup);
1267 p->se.on_rq = 1;
1268 }
1269
1270 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1271 {
1272 p->sched_class->dequeue_task(rq, p, sleep);
1273 p->se.on_rq = 0;
1274 }
1275
1276 /*
1277 * __normal_prio - return the priority that is based on the static prio
1278 */
1279 static inline int __normal_prio(struct task_struct *p)
1280 {
1281 return p->static_prio;
1282 }
1283
1284 /*
1285 * Calculate the expected normal priority: i.e. priority
1286 * without taking RT-inheritance into account. Might be
1287 * boosted by interactivity modifiers. Changes upon fork,
1288 * setprio syscalls, and whenever the interactivity
1289 * estimator recalculates.
1290 */
1291 static inline int normal_prio(struct task_struct *p)
1292 {
1293 int prio;
1294
1295 if (task_has_rt_policy(p))
1296 prio = MAX_RT_PRIO-1 - p->rt_priority;
1297 else
1298 prio = __normal_prio(p);
1299 return prio;
1300 }
1301
1302 /*
1303 * Calculate the current priority, i.e. the priority
1304 * taken into account by the scheduler. This value might
1305 * be boosted by RT tasks, or might be boosted by
1306 * interactivity modifiers. Will be RT if the task got
1307 * RT-boosted. If not then it returns p->normal_prio.
1308 */
1309 static int effective_prio(struct task_struct *p)
1310 {
1311 p->normal_prio = normal_prio(p);
1312 /*
1313 * If we are RT tasks or we were boosted to RT priority,
1314 * keep the priority unchanged. Otherwise, update priority
1315 * to the normal priority:
1316 */
1317 if (!rt_prio(p->prio))
1318 return p->normal_prio;
1319 return p->prio;
1320 }
1321
1322 /*
1323 * activate_task - move a task to the runqueue.
1324 */
1325 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1326 {
1327 if (task_contributes_to_load(p))
1328 rq->nr_uninterruptible--;
1329
1330 enqueue_task(rq, p, wakeup);
1331 inc_nr_running(p, rq);
1332 }
1333
1334 /*
1335 * deactivate_task - remove a task from the runqueue.
1336 */
1337 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1338 {
1339 if (task_contributes_to_load(p))
1340 rq->nr_uninterruptible++;
1341
1342 dequeue_task(rq, p, sleep);
1343 dec_nr_running(p, rq);
1344 }
1345
1346 /**
1347 * task_curr - is this task currently executing on a CPU?
1348 * @p: the task in question.
1349 */
1350 inline int task_curr(const struct task_struct *p)
1351 {
1352 return cpu_curr(task_cpu(p)) == p;
1353 }
1354
1355 /* Used instead of source_load when we know the type == 0 */
1356 unsigned long weighted_cpuload(const int cpu)
1357 {
1358 return cpu_rq(cpu)->load.weight;
1359 }
1360
1361 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1362 {
1363 set_task_rq(p, cpu);
1364 #ifdef CONFIG_SMP
1365 /*
1366 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1367 * successfuly executed on another CPU. We must ensure that updates of
1368 * per-task data have been completed by this moment.
1369 */
1370 smp_wmb();
1371 task_thread_info(p)->cpu = cpu;
1372 #endif
1373 }
1374
1375 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1376 const struct sched_class *prev_class,
1377 int oldprio, int running)
1378 {
1379 if (prev_class != p->sched_class) {
1380 if (prev_class->switched_from)
1381 prev_class->switched_from(rq, p, running);
1382 p->sched_class->switched_to(rq, p, running);
1383 } else
1384 p->sched_class->prio_changed(rq, p, oldprio, running);
1385 }
1386
1387 #ifdef CONFIG_SMP
1388
1389 /*
1390 * Is this task likely cache-hot:
1391 */
1392 static int
1393 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1394 {
1395 s64 delta;
1396
1397 if (p->sched_class != &fair_sched_class)
1398 return 0;
1399
1400 if (sysctl_sched_migration_cost == -1)
1401 return 1;
1402 if (sysctl_sched_migration_cost == 0)
1403 return 0;
1404
1405 delta = now - p->se.exec_start;
1406
1407 return delta < (s64)sysctl_sched_migration_cost;
1408 }
1409
1410
1411 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1412 {
1413 int old_cpu = task_cpu(p);
1414 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1415 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1416 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1417 u64 clock_offset;
1418
1419 clock_offset = old_rq->clock - new_rq->clock;
1420
1421 #ifdef CONFIG_SCHEDSTATS
1422 if (p->se.wait_start)
1423 p->se.wait_start -= clock_offset;
1424 if (p->se.sleep_start)
1425 p->se.sleep_start -= clock_offset;
1426 if (p->se.block_start)
1427 p->se.block_start -= clock_offset;
1428 if (old_cpu != new_cpu) {
1429 schedstat_inc(p, se.nr_migrations);
1430 if (task_hot(p, old_rq->clock, NULL))
1431 schedstat_inc(p, se.nr_forced2_migrations);
1432 }
1433 #endif
1434 p->se.vruntime -= old_cfsrq->min_vruntime -
1435 new_cfsrq->min_vruntime;
1436
1437 __set_task_cpu(p, new_cpu);
1438 }
1439
1440 struct migration_req {
1441 struct list_head list;
1442
1443 struct task_struct *task;
1444 int dest_cpu;
1445
1446 struct completion done;
1447 };
1448
1449 /*
1450 * The task's runqueue lock must be held.
1451 * Returns true if you have to wait for migration thread.
1452 */
1453 static int
1454 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1455 {
1456 struct rq *rq = task_rq(p);
1457
1458 /*
1459 * If the task is not on a runqueue (and not running), then
1460 * it is sufficient to simply update the task's cpu field.
1461 */
1462 if (!p->se.on_rq && !task_running(rq, p)) {
1463 set_task_cpu(p, dest_cpu);
1464 return 0;
1465 }
1466
1467 init_completion(&req->done);
1468 req->task = p;
1469 req->dest_cpu = dest_cpu;
1470 list_add(&req->list, &rq->migration_queue);
1471
1472 return 1;
1473 }
1474
1475 /*
1476 * wait_task_inactive - wait for a thread to unschedule.
1477 *
1478 * The caller must ensure that the task *will* unschedule sometime soon,
1479 * else this function might spin for a *long* time. This function can't
1480 * be called with interrupts off, or it may introduce deadlock with
1481 * smp_call_function() if an IPI is sent by the same process we are
1482 * waiting to become inactive.
1483 */
1484 void wait_task_inactive(struct task_struct *p)
1485 {
1486 unsigned long flags;
1487 int running, on_rq;
1488 struct rq *rq;
1489
1490 for (;;) {
1491 /*
1492 * We do the initial early heuristics without holding
1493 * any task-queue locks at all. We'll only try to get
1494 * the runqueue lock when things look like they will
1495 * work out!
1496 */
1497 rq = task_rq(p);
1498
1499 /*
1500 * If the task is actively running on another CPU
1501 * still, just relax and busy-wait without holding
1502 * any locks.
1503 *
1504 * NOTE! Since we don't hold any locks, it's not
1505 * even sure that "rq" stays as the right runqueue!
1506 * But we don't care, since "task_running()" will
1507 * return false if the runqueue has changed and p
1508 * is actually now running somewhere else!
1509 */
1510 while (task_running(rq, p))
1511 cpu_relax();
1512
1513 /*
1514 * Ok, time to look more closely! We need the rq
1515 * lock now, to be *sure*. If we're wrong, we'll
1516 * just go back and repeat.
1517 */
1518 rq = task_rq_lock(p, &flags);
1519 running = task_running(rq, p);
1520 on_rq = p->se.on_rq;
1521 task_rq_unlock(rq, &flags);
1522
1523 /*
1524 * Was it really running after all now that we
1525 * checked with the proper locks actually held?
1526 *
1527 * Oops. Go back and try again..
1528 */
1529 if (unlikely(running)) {
1530 cpu_relax();
1531 continue;
1532 }
1533
1534 /*
1535 * It's not enough that it's not actively running,
1536 * it must be off the runqueue _entirely_, and not
1537 * preempted!
1538 *
1539 * So if it wa still runnable (but just not actively
1540 * running right now), it's preempted, and we should
1541 * yield - it could be a while.
1542 */
1543 if (unlikely(on_rq)) {
1544 schedule_timeout_uninterruptible(1);
1545 continue;
1546 }
1547
1548 /*
1549 * Ahh, all good. It wasn't running, and it wasn't
1550 * runnable, which means that it will never become
1551 * running in the future either. We're all done!
1552 */
1553 break;
1554 }
1555 }
1556
1557 /***
1558 * kick_process - kick a running thread to enter/exit the kernel
1559 * @p: the to-be-kicked thread
1560 *
1561 * Cause a process which is running on another CPU to enter
1562 * kernel-mode, without any delay. (to get signals handled.)
1563 *
1564 * NOTE: this function doesnt have to take the runqueue lock,
1565 * because all it wants to ensure is that the remote task enters
1566 * the kernel. If the IPI races and the task has been migrated
1567 * to another CPU then no harm is done and the purpose has been
1568 * achieved as well.
1569 */
1570 void kick_process(struct task_struct *p)
1571 {
1572 int cpu;
1573
1574 preempt_disable();
1575 cpu = task_cpu(p);
1576 if ((cpu != smp_processor_id()) && task_curr(p))
1577 smp_send_reschedule(cpu);
1578 preempt_enable();
1579 }
1580
1581 /*
1582 * Return a low guess at the load of a migration-source cpu weighted
1583 * according to the scheduling class and "nice" value.
1584 *
1585 * We want to under-estimate the load of migration sources, to
1586 * balance conservatively.
1587 */
1588 static unsigned long source_load(int cpu, int type)
1589 {
1590 struct rq *rq = cpu_rq(cpu);
1591 unsigned long total = weighted_cpuload(cpu);
1592
1593 if (type == 0)
1594 return total;
1595
1596 return min(rq->cpu_load[type-1], total);
1597 }
1598
1599 /*
1600 * Return a high guess at the load of a migration-target cpu weighted
1601 * according to the scheduling class and "nice" value.
1602 */
1603 static unsigned long target_load(int cpu, int type)
1604 {
1605 struct rq *rq = cpu_rq(cpu);
1606 unsigned long total = weighted_cpuload(cpu);
1607
1608 if (type == 0)
1609 return total;
1610
1611 return max(rq->cpu_load[type-1], total);
1612 }
1613
1614 /*
1615 * Return the average load per task on the cpu's run queue
1616 */
1617 static unsigned long cpu_avg_load_per_task(int cpu)
1618 {
1619 struct rq *rq = cpu_rq(cpu);
1620 unsigned long total = weighted_cpuload(cpu);
1621 unsigned long n = rq->nr_running;
1622
1623 return n ? total / n : SCHED_LOAD_SCALE;
1624 }
1625
1626 /*
1627 * find_idlest_group finds and returns the least busy CPU group within the
1628 * domain.
1629 */
1630 static struct sched_group *
1631 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1632 {
1633 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1634 unsigned long min_load = ULONG_MAX, this_load = 0;
1635 int load_idx = sd->forkexec_idx;
1636 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1637
1638 do {
1639 unsigned long load, avg_load;
1640 int local_group;
1641 int i;
1642
1643 /* Skip over this group if it has no CPUs allowed */
1644 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1645 continue;
1646
1647 local_group = cpu_isset(this_cpu, group->cpumask);
1648
1649 /* Tally up the load of all CPUs in the group */
1650 avg_load = 0;
1651
1652 for_each_cpu_mask(i, group->cpumask) {
1653 /* Bias balancing toward cpus of our domain */
1654 if (local_group)
1655 load = source_load(i, load_idx);
1656 else
1657 load = target_load(i, load_idx);
1658
1659 avg_load += load;
1660 }
1661
1662 /* Adjust by relative CPU power of the group */
1663 avg_load = sg_div_cpu_power(group,
1664 avg_load * SCHED_LOAD_SCALE);
1665
1666 if (local_group) {
1667 this_load = avg_load;
1668 this = group;
1669 } else if (avg_load < min_load) {
1670 min_load = avg_load;
1671 idlest = group;
1672 }
1673 } while (group = group->next, group != sd->groups);
1674
1675 if (!idlest || 100*this_load < imbalance*min_load)
1676 return NULL;
1677 return idlest;
1678 }
1679
1680 /*
1681 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1682 */
1683 static int
1684 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1685 {
1686 cpumask_t tmp;
1687 unsigned long load, min_load = ULONG_MAX;
1688 int idlest = -1;
1689 int i;
1690
1691 /* Traverse only the allowed CPUs */
1692 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1693
1694 for_each_cpu_mask(i, tmp) {
1695 load = weighted_cpuload(i);
1696
1697 if (load < min_load || (load == min_load && i == this_cpu)) {
1698 min_load = load;
1699 idlest = i;
1700 }
1701 }
1702
1703 return idlest;
1704 }
1705
1706 /*
1707 * sched_balance_self: balance the current task (running on cpu) in domains
1708 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1709 * SD_BALANCE_EXEC.
1710 *
1711 * Balance, ie. select the least loaded group.
1712 *
1713 * Returns the target CPU number, or the same CPU if no balancing is needed.
1714 *
1715 * preempt must be disabled.
1716 */
1717 static int sched_balance_self(int cpu, int flag)
1718 {
1719 struct task_struct *t = current;
1720 struct sched_domain *tmp, *sd = NULL;
1721
1722 for_each_domain(cpu, tmp) {
1723 /*
1724 * If power savings logic is enabled for a domain, stop there.
1725 */
1726 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1727 break;
1728 if (tmp->flags & flag)
1729 sd = tmp;
1730 }
1731
1732 while (sd) {
1733 cpumask_t span;
1734 struct sched_group *group;
1735 int new_cpu, weight;
1736
1737 if (!(sd->flags & flag)) {
1738 sd = sd->child;
1739 continue;
1740 }
1741
1742 span = sd->span;
1743 group = find_idlest_group(sd, t, cpu);
1744 if (!group) {
1745 sd = sd->child;
1746 continue;
1747 }
1748
1749 new_cpu = find_idlest_cpu(group, t, cpu);
1750 if (new_cpu == -1 || new_cpu == cpu) {
1751 /* Now try balancing at a lower domain level of cpu */
1752 sd = sd->child;
1753 continue;
1754 }
1755
1756 /* Now try balancing at a lower domain level of new_cpu */
1757 cpu = new_cpu;
1758 sd = NULL;
1759 weight = cpus_weight(span);
1760 for_each_domain(cpu, tmp) {
1761 if (weight <= cpus_weight(tmp->span))
1762 break;
1763 if (tmp->flags & flag)
1764 sd = tmp;
1765 }
1766 /* while loop will break here if sd == NULL */
1767 }
1768
1769 return cpu;
1770 }
1771
1772 #endif /* CONFIG_SMP */
1773
1774 /***
1775 * try_to_wake_up - wake up a thread
1776 * @p: the to-be-woken-up thread
1777 * @state: the mask of task states that can be woken
1778 * @sync: do a synchronous wakeup?
1779 *
1780 * Put it on the run-queue if it's not already there. The "current"
1781 * thread is always on the run-queue (except when the actual
1782 * re-schedule is in progress), and as such you're allowed to do
1783 * the simpler "current->state = TASK_RUNNING" to mark yourself
1784 * runnable without the overhead of this.
1785 *
1786 * returns failure only if the task is already active.
1787 */
1788 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1789 {
1790 int cpu, orig_cpu, this_cpu, success = 0;
1791 unsigned long flags;
1792 long old_state;
1793 struct rq *rq;
1794
1795 smp_wmb();
1796 rq = task_rq_lock(p, &flags);
1797 old_state = p->state;
1798 if (!(old_state & state))
1799 goto out;
1800
1801 if (p->se.on_rq)
1802 goto out_running;
1803
1804 cpu = task_cpu(p);
1805 orig_cpu = cpu;
1806 this_cpu = smp_processor_id();
1807
1808 #ifdef CONFIG_SMP
1809 if (unlikely(task_running(rq, p)))
1810 goto out_activate;
1811
1812 cpu = p->sched_class->select_task_rq(p, sync);
1813 if (cpu != orig_cpu) {
1814 set_task_cpu(p, cpu);
1815 task_rq_unlock(rq, &flags);
1816 /* might preempt at this point */
1817 rq = task_rq_lock(p, &flags);
1818 old_state = p->state;
1819 if (!(old_state & state))
1820 goto out;
1821 if (p->se.on_rq)
1822 goto out_running;
1823
1824 this_cpu = smp_processor_id();
1825 cpu = task_cpu(p);
1826 }
1827
1828 #ifdef CONFIG_SCHEDSTATS
1829 schedstat_inc(rq, ttwu_count);
1830 if (cpu == this_cpu)
1831 schedstat_inc(rq, ttwu_local);
1832 else {
1833 struct sched_domain *sd;
1834 for_each_domain(this_cpu, sd) {
1835 if (cpu_isset(cpu, sd->span)) {
1836 schedstat_inc(sd, ttwu_wake_remote);
1837 break;
1838 }
1839 }
1840 }
1841 #endif
1842
1843 out_activate:
1844 #endif /* CONFIG_SMP */
1845 schedstat_inc(p, se.nr_wakeups);
1846 if (sync)
1847 schedstat_inc(p, se.nr_wakeups_sync);
1848 if (orig_cpu != cpu)
1849 schedstat_inc(p, se.nr_wakeups_migrate);
1850 if (cpu == this_cpu)
1851 schedstat_inc(p, se.nr_wakeups_local);
1852 else
1853 schedstat_inc(p, se.nr_wakeups_remote);
1854 update_rq_clock(rq);
1855 activate_task(rq, p, 1);
1856 check_preempt_curr(rq, p);
1857 success = 1;
1858
1859 out_running:
1860 p->state = TASK_RUNNING;
1861 #ifdef CONFIG_SMP
1862 if (p->sched_class->task_wake_up)
1863 p->sched_class->task_wake_up(rq, p);
1864 #endif
1865 out:
1866 task_rq_unlock(rq, &flags);
1867
1868 return success;
1869 }
1870
1871 int wake_up_process(struct task_struct *p)
1872 {
1873 return try_to_wake_up(p, TASK_ALL, 0);
1874 }
1875 EXPORT_SYMBOL(wake_up_process);
1876
1877 int wake_up_state(struct task_struct *p, unsigned int state)
1878 {
1879 return try_to_wake_up(p, state, 0);
1880 }
1881
1882 /*
1883 * Perform scheduler related setup for a newly forked process p.
1884 * p is forked by current.
1885 *
1886 * __sched_fork() is basic setup used by init_idle() too:
1887 */
1888 static void __sched_fork(struct task_struct *p)
1889 {
1890 p->se.exec_start = 0;
1891 p->se.sum_exec_runtime = 0;
1892 p->se.prev_sum_exec_runtime = 0;
1893
1894 #ifdef CONFIG_SCHEDSTATS
1895 p->se.wait_start = 0;
1896 p->se.sum_sleep_runtime = 0;
1897 p->se.sleep_start = 0;
1898 p->se.block_start = 0;
1899 p->se.sleep_max = 0;
1900 p->se.block_max = 0;
1901 p->se.exec_max = 0;
1902 p->se.slice_max = 0;
1903 p->se.wait_max = 0;
1904 #endif
1905
1906 INIT_LIST_HEAD(&p->rt.run_list);
1907 p->se.on_rq = 0;
1908
1909 #ifdef CONFIG_PREEMPT_NOTIFIERS
1910 INIT_HLIST_HEAD(&p->preempt_notifiers);
1911 #endif
1912
1913 /*
1914 * We mark the process as running here, but have not actually
1915 * inserted it onto the runqueue yet. This guarantees that
1916 * nobody will actually run it, and a signal or other external
1917 * event cannot wake it up and insert it on the runqueue either.
1918 */
1919 p->state = TASK_RUNNING;
1920 }
1921
1922 /*
1923 * fork()/clone()-time setup:
1924 */
1925 void sched_fork(struct task_struct *p, int clone_flags)
1926 {
1927 int cpu = get_cpu();
1928
1929 __sched_fork(p);
1930
1931 #ifdef CONFIG_SMP
1932 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1933 #endif
1934 set_task_cpu(p, cpu);
1935
1936 /*
1937 * Make sure we do not leak PI boosting priority to the child:
1938 */
1939 p->prio = current->normal_prio;
1940 if (!rt_prio(p->prio))
1941 p->sched_class = &fair_sched_class;
1942
1943 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1944 if (likely(sched_info_on()))
1945 memset(&p->sched_info, 0, sizeof(p->sched_info));
1946 #endif
1947 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1948 p->oncpu = 0;
1949 #endif
1950 #ifdef CONFIG_PREEMPT
1951 /* Want to start with kernel preemption disabled. */
1952 task_thread_info(p)->preempt_count = 1;
1953 #endif
1954 put_cpu();
1955 }
1956
1957 /*
1958 * wake_up_new_task - wake up a newly created task for the first time.
1959 *
1960 * This function will do some initial scheduler statistics housekeeping
1961 * that must be done for every newly created context, then puts the task
1962 * on the runqueue and wakes it.
1963 */
1964 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1965 {
1966 unsigned long flags;
1967 struct rq *rq;
1968
1969 rq = task_rq_lock(p, &flags);
1970 BUG_ON(p->state != TASK_RUNNING);
1971 update_rq_clock(rq);
1972
1973 p->prio = effective_prio(p);
1974
1975 if (!p->sched_class->task_new || !current->se.on_rq) {
1976 activate_task(rq, p, 0);
1977 } else {
1978 /*
1979 * Let the scheduling class do new task startup
1980 * management (if any):
1981 */
1982 p->sched_class->task_new(rq, p);
1983 inc_nr_running(p, rq);
1984 }
1985 check_preempt_curr(rq, p);
1986 #ifdef CONFIG_SMP
1987 if (p->sched_class->task_wake_up)
1988 p->sched_class->task_wake_up(rq, p);
1989 #endif
1990 task_rq_unlock(rq, &flags);
1991 }
1992
1993 #ifdef CONFIG_PREEMPT_NOTIFIERS
1994
1995 /**
1996 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1997 * @notifier: notifier struct to register
1998 */
1999 void preempt_notifier_register(struct preempt_notifier *notifier)
2000 {
2001 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2002 }
2003 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2004
2005 /**
2006 * preempt_notifier_unregister - no longer interested in preemption notifications
2007 * @notifier: notifier struct to unregister
2008 *
2009 * This is safe to call from within a preemption notifier.
2010 */
2011 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2012 {
2013 hlist_del(&notifier->link);
2014 }
2015 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2016
2017 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2018 {
2019 struct preempt_notifier *notifier;
2020 struct hlist_node *node;
2021
2022 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2023 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2024 }
2025
2026 static void
2027 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2028 struct task_struct *next)
2029 {
2030 struct preempt_notifier *notifier;
2031 struct hlist_node *node;
2032
2033 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2034 notifier->ops->sched_out(notifier, next);
2035 }
2036
2037 #else
2038
2039 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2040 {
2041 }
2042
2043 static void
2044 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2045 struct task_struct *next)
2046 {
2047 }
2048
2049 #endif
2050
2051 /**
2052 * prepare_task_switch - prepare to switch tasks
2053 * @rq: the runqueue preparing to switch
2054 * @prev: the current task that is being switched out
2055 * @next: the task we are going to switch to.
2056 *
2057 * This is called with the rq lock held and interrupts off. It must
2058 * be paired with a subsequent finish_task_switch after the context
2059 * switch.
2060 *
2061 * prepare_task_switch sets up locking and calls architecture specific
2062 * hooks.
2063 */
2064 static inline void
2065 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2066 struct task_struct *next)
2067 {
2068 fire_sched_out_preempt_notifiers(prev, next);
2069 prepare_lock_switch(rq, next);
2070 prepare_arch_switch(next);
2071 }
2072
2073 /**
2074 * finish_task_switch - clean up after a task-switch
2075 * @rq: runqueue associated with task-switch
2076 * @prev: the thread we just switched away from.
2077 *
2078 * finish_task_switch must be called after the context switch, paired
2079 * with a prepare_task_switch call before the context switch.
2080 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2081 * and do any other architecture-specific cleanup actions.
2082 *
2083 * Note that we may have delayed dropping an mm in context_switch(). If
2084 * so, we finish that here outside of the runqueue lock. (Doing it
2085 * with the lock held can cause deadlocks; see schedule() for
2086 * details.)
2087 */
2088 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2089 __releases(rq->lock)
2090 {
2091 struct mm_struct *mm = rq->prev_mm;
2092 long prev_state;
2093
2094 rq->prev_mm = NULL;
2095
2096 /*
2097 * A task struct has one reference for the use as "current".
2098 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2099 * schedule one last time. The schedule call will never return, and
2100 * the scheduled task must drop that reference.
2101 * The test for TASK_DEAD must occur while the runqueue locks are
2102 * still held, otherwise prev could be scheduled on another cpu, die
2103 * there before we look at prev->state, and then the reference would
2104 * be dropped twice.
2105 * Manfred Spraul <manfred@colorfullife.com>
2106 */
2107 prev_state = prev->state;
2108 finish_arch_switch(prev);
2109 finish_lock_switch(rq, prev);
2110 #ifdef CONFIG_SMP
2111 if (current->sched_class->post_schedule)
2112 current->sched_class->post_schedule(rq);
2113 #endif
2114
2115 fire_sched_in_preempt_notifiers(current);
2116 if (mm)
2117 mmdrop(mm);
2118 if (unlikely(prev_state == TASK_DEAD)) {
2119 /*
2120 * Remove function-return probe instances associated with this
2121 * task and put them back on the free list.
2122 */
2123 kprobe_flush_task(prev);
2124 put_task_struct(prev);
2125 }
2126 }
2127
2128 /**
2129 * schedule_tail - first thing a freshly forked thread must call.
2130 * @prev: the thread we just switched away from.
2131 */
2132 asmlinkage void schedule_tail(struct task_struct *prev)
2133 __releases(rq->lock)
2134 {
2135 struct rq *rq = this_rq();
2136
2137 finish_task_switch(rq, prev);
2138 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2139 /* In this case, finish_task_switch does not reenable preemption */
2140 preempt_enable();
2141 #endif
2142 if (current->set_child_tid)
2143 put_user(task_pid_vnr(current), current->set_child_tid);
2144 }
2145
2146 /*
2147 * context_switch - switch to the new MM and the new
2148 * thread's register state.
2149 */
2150 static inline void
2151 context_switch(struct rq *rq, struct task_struct *prev,
2152 struct task_struct *next)
2153 {
2154 struct mm_struct *mm, *oldmm;
2155
2156 prepare_task_switch(rq, prev, next);
2157 mm = next->mm;
2158 oldmm = prev->active_mm;
2159 /*
2160 * For paravirt, this is coupled with an exit in switch_to to
2161 * combine the page table reload and the switch backend into
2162 * one hypercall.
2163 */
2164 arch_enter_lazy_cpu_mode();
2165
2166 if (unlikely(!mm)) {
2167 next->active_mm = oldmm;
2168 atomic_inc(&oldmm->mm_count);
2169 enter_lazy_tlb(oldmm, next);
2170 } else
2171 switch_mm(oldmm, mm, next);
2172
2173 if (unlikely(!prev->mm)) {
2174 prev->active_mm = NULL;
2175 rq->prev_mm = oldmm;
2176 }
2177 /*
2178 * Since the runqueue lock will be released by the next
2179 * task (which is an invalid locking op but in the case
2180 * of the scheduler it's an obvious special-case), so we
2181 * do an early lockdep release here:
2182 */
2183 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2184 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2185 #endif
2186
2187 /* Here we just switch the register state and the stack. */
2188 switch_to(prev, next, prev);
2189
2190 barrier();
2191 /*
2192 * this_rq must be evaluated again because prev may have moved
2193 * CPUs since it called schedule(), thus the 'rq' on its stack
2194 * frame will be invalid.
2195 */
2196 finish_task_switch(this_rq(), prev);
2197 }
2198
2199 /*
2200 * nr_running, nr_uninterruptible and nr_context_switches:
2201 *
2202 * externally visible scheduler statistics: current number of runnable
2203 * threads, current number of uninterruptible-sleeping threads, total
2204 * number of context switches performed since bootup.
2205 */
2206 unsigned long nr_running(void)
2207 {
2208 unsigned long i, sum = 0;
2209
2210 for_each_online_cpu(i)
2211 sum += cpu_rq(i)->nr_running;
2212
2213 return sum;
2214 }
2215
2216 unsigned long nr_uninterruptible(void)
2217 {
2218 unsigned long i, sum = 0;
2219
2220 for_each_possible_cpu(i)
2221 sum += cpu_rq(i)->nr_uninterruptible;
2222
2223 /*
2224 * Since we read the counters lockless, it might be slightly
2225 * inaccurate. Do not allow it to go below zero though:
2226 */
2227 if (unlikely((long)sum < 0))
2228 sum = 0;
2229
2230 return sum;
2231 }
2232
2233 unsigned long long nr_context_switches(void)
2234 {
2235 int i;
2236 unsigned long long sum = 0;
2237
2238 for_each_possible_cpu(i)
2239 sum += cpu_rq(i)->nr_switches;
2240
2241 return sum;
2242 }
2243
2244 unsigned long nr_iowait(void)
2245 {
2246 unsigned long i, sum = 0;
2247
2248 for_each_possible_cpu(i)
2249 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2250
2251 return sum;
2252 }
2253
2254 unsigned long nr_active(void)
2255 {
2256 unsigned long i, running = 0, uninterruptible = 0;
2257
2258 for_each_online_cpu(i) {
2259 running += cpu_rq(i)->nr_running;
2260 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2261 }
2262
2263 if (unlikely((long)uninterruptible < 0))
2264 uninterruptible = 0;
2265
2266 return running + uninterruptible;
2267 }
2268
2269 /*
2270 * Update rq->cpu_load[] statistics. This function is usually called every
2271 * scheduler tick (TICK_NSEC).
2272 */
2273 static void update_cpu_load(struct rq *this_rq)
2274 {
2275 unsigned long this_load = this_rq->load.weight;
2276 int i, scale;
2277
2278 this_rq->nr_load_updates++;
2279
2280 /* Update our load: */
2281 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2282 unsigned long old_load, new_load;
2283
2284 /* scale is effectively 1 << i now, and >> i divides by scale */
2285
2286 old_load = this_rq->cpu_load[i];
2287 new_load = this_load;
2288 /*
2289 * Round up the averaging division if load is increasing. This
2290 * prevents us from getting stuck on 9 if the load is 10, for
2291 * example.
2292 */
2293 if (new_load > old_load)
2294 new_load += scale-1;
2295 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2296 }
2297 }
2298
2299 #ifdef CONFIG_SMP
2300
2301 /*
2302 * double_rq_lock - safely lock two runqueues
2303 *
2304 * Note this does not disable interrupts like task_rq_lock,
2305 * you need to do so manually before calling.
2306 */
2307 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2308 __acquires(rq1->lock)
2309 __acquires(rq2->lock)
2310 {
2311 BUG_ON(!irqs_disabled());
2312 if (rq1 == rq2) {
2313 spin_lock(&rq1->lock);
2314 __acquire(rq2->lock); /* Fake it out ;) */
2315 } else {
2316 if (rq1 < rq2) {
2317 spin_lock(&rq1->lock);
2318 spin_lock(&rq2->lock);
2319 } else {
2320 spin_lock(&rq2->lock);
2321 spin_lock(&rq1->lock);
2322 }
2323 }
2324 update_rq_clock(rq1);
2325 update_rq_clock(rq2);
2326 }
2327
2328 /*
2329 * double_rq_unlock - safely unlock two runqueues
2330 *
2331 * Note this does not restore interrupts like task_rq_unlock,
2332 * you need to do so manually after calling.
2333 */
2334 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2335 __releases(rq1->lock)
2336 __releases(rq2->lock)
2337 {
2338 spin_unlock(&rq1->lock);
2339 if (rq1 != rq2)
2340 spin_unlock(&rq2->lock);
2341 else
2342 __release(rq2->lock);
2343 }
2344
2345 /*
2346 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2347 */
2348 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2349 __releases(this_rq->lock)
2350 __acquires(busiest->lock)
2351 __acquires(this_rq->lock)
2352 {
2353 int ret = 0;
2354
2355 if (unlikely(!irqs_disabled())) {
2356 /* printk() doesn't work good under rq->lock */
2357 spin_unlock(&this_rq->lock);
2358 BUG_ON(1);
2359 }
2360 if (unlikely(!spin_trylock(&busiest->lock))) {
2361 if (busiest < this_rq) {
2362 spin_unlock(&this_rq->lock);
2363 spin_lock(&busiest->lock);
2364 spin_lock(&this_rq->lock);
2365 ret = 1;
2366 } else
2367 spin_lock(&busiest->lock);
2368 }
2369 return ret;
2370 }
2371
2372 /*
2373 * If dest_cpu is allowed for this process, migrate the task to it.
2374 * This is accomplished by forcing the cpu_allowed mask to only
2375 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2376 * the cpu_allowed mask is restored.
2377 */
2378 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2379 {
2380 struct migration_req req;
2381 unsigned long flags;
2382 struct rq *rq;
2383
2384 rq = task_rq_lock(p, &flags);
2385 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2386 || unlikely(cpu_is_offline(dest_cpu)))
2387 goto out;
2388
2389 /* force the process onto the specified CPU */
2390 if (migrate_task(p, dest_cpu, &req)) {
2391 /* Need to wait for migration thread (might exit: take ref). */
2392 struct task_struct *mt = rq->migration_thread;
2393
2394 get_task_struct(mt);
2395 task_rq_unlock(rq, &flags);
2396 wake_up_process(mt);
2397 put_task_struct(mt);
2398 wait_for_completion(&req.done);
2399
2400 return;
2401 }
2402 out:
2403 task_rq_unlock(rq, &flags);
2404 }
2405
2406 /*
2407 * sched_exec - execve() is a valuable balancing opportunity, because at
2408 * this point the task has the smallest effective memory and cache footprint.
2409 */
2410 void sched_exec(void)
2411 {
2412 int new_cpu, this_cpu = get_cpu();
2413 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2414 put_cpu();
2415 if (new_cpu != this_cpu)
2416 sched_migrate_task(current, new_cpu);
2417 }
2418
2419 /*
2420 * pull_task - move a task from a remote runqueue to the local runqueue.
2421 * Both runqueues must be locked.
2422 */
2423 static void pull_task(struct rq *src_rq, struct task_struct *p,
2424 struct rq *this_rq, int this_cpu)
2425 {
2426 deactivate_task(src_rq, p, 0);
2427 set_task_cpu(p, this_cpu);
2428 activate_task(this_rq, p, 0);
2429 /*
2430 * Note that idle threads have a prio of MAX_PRIO, for this test
2431 * to be always true for them.
2432 */
2433 check_preempt_curr(this_rq, p);
2434 }
2435
2436 /*
2437 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2438 */
2439 static
2440 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2441 struct sched_domain *sd, enum cpu_idle_type idle,
2442 int *all_pinned)
2443 {
2444 /*
2445 * We do not migrate tasks that are:
2446 * 1) running (obviously), or
2447 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2448 * 3) are cache-hot on their current CPU.
2449 */
2450 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2451 schedstat_inc(p, se.nr_failed_migrations_affine);
2452 return 0;
2453 }
2454 *all_pinned = 0;
2455
2456 if (task_running(rq, p)) {
2457 schedstat_inc(p, se.nr_failed_migrations_running);
2458 return 0;
2459 }
2460
2461 /*
2462 * Aggressive migration if:
2463 * 1) task is cache cold, or
2464 * 2) too many balance attempts have failed.
2465 */
2466
2467 if (!task_hot(p, rq->clock, sd) ||
2468 sd->nr_balance_failed > sd->cache_nice_tries) {
2469 #ifdef CONFIG_SCHEDSTATS
2470 if (task_hot(p, rq->clock, sd)) {
2471 schedstat_inc(sd, lb_hot_gained[idle]);
2472 schedstat_inc(p, se.nr_forced_migrations);
2473 }
2474 #endif
2475 return 1;
2476 }
2477
2478 if (task_hot(p, rq->clock, sd)) {
2479 schedstat_inc(p, se.nr_failed_migrations_hot);
2480 return 0;
2481 }
2482 return 1;
2483 }
2484
2485 static unsigned long
2486 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2487 unsigned long max_load_move, struct sched_domain *sd,
2488 enum cpu_idle_type idle, int *all_pinned,
2489 int *this_best_prio, struct rq_iterator *iterator)
2490 {
2491 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
2492 struct task_struct *p;
2493 long rem_load_move = max_load_move;
2494
2495 if (max_load_move == 0)
2496 goto out;
2497
2498 pinned = 1;
2499
2500 /*
2501 * Start the load-balancing iterator:
2502 */
2503 p = iterator->start(iterator->arg);
2504 next:
2505 if (!p || loops++ > sysctl_sched_nr_migrate)
2506 goto out;
2507 /*
2508 * To help distribute high priority tasks across CPUs we don't
2509 * skip a task if it will be the highest priority task (i.e. smallest
2510 * prio value) on its new queue regardless of its load weight
2511 */
2512 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2513 SCHED_LOAD_SCALE_FUZZ;
2514 if ((skip_for_load && p->prio >= *this_best_prio) ||
2515 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2516 p = iterator->next(iterator->arg);
2517 goto next;
2518 }
2519
2520 pull_task(busiest, p, this_rq, this_cpu);
2521 pulled++;
2522 rem_load_move -= p->se.load.weight;
2523
2524 /*
2525 * We only want to steal up to the prescribed amount of weighted load.
2526 */
2527 if (rem_load_move > 0) {
2528 if (p->prio < *this_best_prio)
2529 *this_best_prio = p->prio;
2530 p = iterator->next(iterator->arg);
2531 goto next;
2532 }
2533 out:
2534 /*
2535 * Right now, this is one of only two places pull_task() is called,
2536 * so we can safely collect pull_task() stats here rather than
2537 * inside pull_task().
2538 */
2539 schedstat_add(sd, lb_gained[idle], pulled);
2540
2541 if (all_pinned)
2542 *all_pinned = pinned;
2543
2544 return max_load_move - rem_load_move;
2545 }
2546
2547 /*
2548 * move_tasks tries to move up to max_load_move weighted load from busiest to
2549 * this_rq, as part of a balancing operation within domain "sd".
2550 * Returns 1 if successful and 0 otherwise.
2551 *
2552 * Called with both runqueues locked.
2553 */
2554 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2555 unsigned long max_load_move,
2556 struct sched_domain *sd, enum cpu_idle_type idle,
2557 int *all_pinned)
2558 {
2559 const struct sched_class *class = sched_class_highest;
2560 unsigned long total_load_moved = 0;
2561 int this_best_prio = this_rq->curr->prio;
2562
2563 do {
2564 total_load_moved +=
2565 class->load_balance(this_rq, this_cpu, busiest,
2566 max_load_move - total_load_moved,
2567 sd, idle, all_pinned, &this_best_prio);
2568 class = class->next;
2569 } while (class && max_load_move > total_load_moved);
2570
2571 return total_load_moved > 0;
2572 }
2573
2574 static int
2575 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2576 struct sched_domain *sd, enum cpu_idle_type idle,
2577 struct rq_iterator *iterator)
2578 {
2579 struct task_struct *p = iterator->start(iterator->arg);
2580 int pinned = 0;
2581
2582 while (p) {
2583 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2584 pull_task(busiest, p, this_rq, this_cpu);
2585 /*
2586 * Right now, this is only the second place pull_task()
2587 * is called, so we can safely collect pull_task()
2588 * stats here rather than inside pull_task().
2589 */
2590 schedstat_inc(sd, lb_gained[idle]);
2591
2592 return 1;
2593 }
2594 p = iterator->next(iterator->arg);
2595 }
2596
2597 return 0;
2598 }
2599
2600 /*
2601 * move_one_task tries to move exactly one task from busiest to this_rq, as
2602 * part of active balancing operations within "domain".
2603 * Returns 1 if successful and 0 otherwise.
2604 *
2605 * Called with both runqueues locked.
2606 */
2607 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2608 struct sched_domain *sd, enum cpu_idle_type idle)
2609 {
2610 const struct sched_class *class;
2611
2612 for (class = sched_class_highest; class; class = class->next)
2613 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
2614 return 1;
2615
2616 return 0;
2617 }
2618
2619 /*
2620 * find_busiest_group finds and returns the busiest CPU group within the
2621 * domain. It calculates and returns the amount of weighted load which
2622 * should be moved to restore balance via the imbalance parameter.
2623 */
2624 static struct sched_group *
2625 find_busiest_group(struct sched_domain *sd, int this_cpu,
2626 unsigned long *imbalance, enum cpu_idle_type idle,
2627 int *sd_idle, cpumask_t *cpus, int *balance)
2628 {
2629 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2630 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2631 unsigned long max_pull;
2632 unsigned long busiest_load_per_task, busiest_nr_running;
2633 unsigned long this_load_per_task, this_nr_running;
2634 int load_idx, group_imb = 0;
2635 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2636 int power_savings_balance = 1;
2637 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2638 unsigned long min_nr_running = ULONG_MAX;
2639 struct sched_group *group_min = NULL, *group_leader = NULL;
2640 #endif
2641
2642 max_load = this_load = total_load = total_pwr = 0;
2643 busiest_load_per_task = busiest_nr_running = 0;
2644 this_load_per_task = this_nr_running = 0;
2645 if (idle == CPU_NOT_IDLE)
2646 load_idx = sd->busy_idx;
2647 else if (idle == CPU_NEWLY_IDLE)
2648 load_idx = sd->newidle_idx;
2649 else
2650 load_idx = sd->idle_idx;
2651
2652 do {
2653 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
2654 int local_group;
2655 int i;
2656 int __group_imb = 0;
2657 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2658 unsigned long sum_nr_running, sum_weighted_load;
2659
2660 local_group = cpu_isset(this_cpu, group->cpumask);
2661
2662 if (local_group)
2663 balance_cpu = first_cpu(group->cpumask);
2664
2665 /* Tally up the load of all CPUs in the group */
2666 sum_weighted_load = sum_nr_running = avg_load = 0;
2667 max_cpu_load = 0;
2668 min_cpu_load = ~0UL;
2669
2670 for_each_cpu_mask(i, group->cpumask) {
2671 struct rq *rq;
2672
2673 if (!cpu_isset(i, *cpus))
2674 continue;
2675
2676 rq = cpu_rq(i);
2677
2678 if (*sd_idle && rq->nr_running)
2679 *sd_idle = 0;
2680
2681 /* Bias balancing toward cpus of our domain */
2682 if (local_group) {
2683 if (idle_cpu(i) && !first_idle_cpu) {
2684 first_idle_cpu = 1;
2685 balance_cpu = i;
2686 }
2687
2688 load = target_load(i, load_idx);
2689 } else {
2690 load = source_load(i, load_idx);
2691 if (load > max_cpu_load)
2692 max_cpu_load = load;
2693 if (min_cpu_load > load)
2694 min_cpu_load = load;
2695 }
2696
2697 avg_load += load;
2698 sum_nr_running += rq->nr_running;
2699 sum_weighted_load += weighted_cpuload(i);
2700 }
2701
2702 /*
2703 * First idle cpu or the first cpu(busiest) in this sched group
2704 * is eligible for doing load balancing at this and above
2705 * domains. In the newly idle case, we will allow all the cpu's
2706 * to do the newly idle load balance.
2707 */
2708 if (idle != CPU_NEWLY_IDLE && local_group &&
2709 balance_cpu != this_cpu && balance) {
2710 *balance = 0;
2711 goto ret;
2712 }
2713
2714 total_load += avg_load;
2715 total_pwr += group->__cpu_power;
2716
2717 /* Adjust by relative CPU power of the group */
2718 avg_load = sg_div_cpu_power(group,
2719 avg_load * SCHED_LOAD_SCALE);
2720
2721 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
2722 __group_imb = 1;
2723
2724 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2725
2726 if (local_group) {
2727 this_load = avg_load;
2728 this = group;
2729 this_nr_running = sum_nr_running;
2730 this_load_per_task = sum_weighted_load;
2731 } else if (avg_load > max_load &&
2732 (sum_nr_running > group_capacity || __group_imb)) {
2733 max_load = avg_load;
2734 busiest = group;
2735 busiest_nr_running = sum_nr_running;
2736 busiest_load_per_task = sum_weighted_load;
2737 group_imb = __group_imb;
2738 }
2739
2740 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2741 /*
2742 * Busy processors will not participate in power savings
2743 * balance.
2744 */
2745 if (idle == CPU_NOT_IDLE ||
2746 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2747 goto group_next;
2748
2749 /*
2750 * If the local group is idle or completely loaded
2751 * no need to do power savings balance at this domain
2752 */
2753 if (local_group && (this_nr_running >= group_capacity ||
2754 !this_nr_running))
2755 power_savings_balance = 0;
2756
2757 /*
2758 * If a group is already running at full capacity or idle,
2759 * don't include that group in power savings calculations
2760 */
2761 if (!power_savings_balance || sum_nr_running >= group_capacity
2762 || !sum_nr_running)
2763 goto group_next;
2764
2765 /*
2766 * Calculate the group which has the least non-idle load.
2767 * This is the group from where we need to pick up the load
2768 * for saving power
2769 */
2770 if ((sum_nr_running < min_nr_running) ||
2771 (sum_nr_running == min_nr_running &&
2772 first_cpu(group->cpumask) <
2773 first_cpu(group_min->cpumask))) {
2774 group_min = group;
2775 min_nr_running = sum_nr_running;
2776 min_load_per_task = sum_weighted_load /
2777 sum_nr_running;
2778 }
2779
2780 /*
2781 * Calculate the group which is almost near its
2782 * capacity but still has some space to pick up some load
2783 * from other group and save more power
2784 */
2785 if (sum_nr_running <= group_capacity - 1) {
2786 if (sum_nr_running > leader_nr_running ||
2787 (sum_nr_running == leader_nr_running &&
2788 first_cpu(group->cpumask) >
2789 first_cpu(group_leader->cpumask))) {
2790 group_leader = group;
2791 leader_nr_running = sum_nr_running;
2792 }
2793 }
2794 group_next:
2795 #endif
2796 group = group->next;
2797 } while (group != sd->groups);
2798
2799 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2800 goto out_balanced;
2801
2802 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2803
2804 if (this_load >= avg_load ||
2805 100*max_load <= sd->imbalance_pct*this_load)
2806 goto out_balanced;
2807
2808 busiest_load_per_task /= busiest_nr_running;
2809 if (group_imb)
2810 busiest_load_per_task = min(busiest_load_per_task, avg_load);
2811
2812 /*
2813 * We're trying to get all the cpus to the average_load, so we don't
2814 * want to push ourselves above the average load, nor do we wish to
2815 * reduce the max loaded cpu below the average load, as either of these
2816 * actions would just result in more rebalancing later, and ping-pong
2817 * tasks around. Thus we look for the minimum possible imbalance.
2818 * Negative imbalances (*we* are more loaded than anyone else) will
2819 * be counted as no imbalance for these purposes -- we can't fix that
2820 * by pulling tasks to us. Be careful of negative numbers as they'll
2821 * appear as very large values with unsigned longs.
2822 */
2823 if (max_load <= busiest_load_per_task)
2824 goto out_balanced;
2825
2826 /*
2827 * In the presence of smp nice balancing, certain scenarios can have
2828 * max load less than avg load(as we skip the groups at or below
2829 * its cpu_power, while calculating max_load..)
2830 */
2831 if (max_load < avg_load) {
2832 *imbalance = 0;
2833 goto small_imbalance;
2834 }
2835
2836 /* Don't want to pull so many tasks that a group would go idle */
2837 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2838
2839 /* How much load to actually move to equalise the imbalance */
2840 *imbalance = min(max_pull * busiest->__cpu_power,
2841 (avg_load - this_load) * this->__cpu_power)
2842 / SCHED_LOAD_SCALE;
2843
2844 /*
2845 * if *imbalance is less than the average load per runnable task
2846 * there is no gaurantee that any tasks will be moved so we'll have
2847 * a think about bumping its value to force at least one task to be
2848 * moved
2849 */
2850 if (*imbalance < busiest_load_per_task) {
2851 unsigned long tmp, pwr_now, pwr_move;
2852 unsigned int imbn;
2853
2854 small_imbalance:
2855 pwr_move = pwr_now = 0;
2856 imbn = 2;
2857 if (this_nr_running) {
2858 this_load_per_task /= this_nr_running;
2859 if (busiest_load_per_task > this_load_per_task)
2860 imbn = 1;
2861 } else
2862 this_load_per_task = SCHED_LOAD_SCALE;
2863
2864 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2865 busiest_load_per_task * imbn) {
2866 *imbalance = busiest_load_per_task;
2867 return busiest;
2868 }
2869
2870 /*
2871 * OK, we don't have enough imbalance to justify moving tasks,
2872 * however we may be able to increase total CPU power used by
2873 * moving them.
2874 */
2875
2876 pwr_now += busiest->__cpu_power *
2877 min(busiest_load_per_task, max_load);
2878 pwr_now += this->__cpu_power *
2879 min(this_load_per_task, this_load);
2880 pwr_now /= SCHED_LOAD_SCALE;
2881
2882 /* Amount of load we'd subtract */
2883 tmp = sg_div_cpu_power(busiest,
2884 busiest_load_per_task * SCHED_LOAD_SCALE);
2885 if (max_load > tmp)
2886 pwr_move += busiest->__cpu_power *
2887 min(busiest_load_per_task, max_load - tmp);
2888
2889 /* Amount of load we'd add */
2890 if (max_load * busiest->__cpu_power <
2891 busiest_load_per_task * SCHED_LOAD_SCALE)
2892 tmp = sg_div_cpu_power(this,
2893 max_load * busiest->__cpu_power);
2894 else
2895 tmp = sg_div_cpu_power(this,
2896 busiest_load_per_task * SCHED_LOAD_SCALE);
2897 pwr_move += this->__cpu_power *
2898 min(this_load_per_task, this_load + tmp);
2899 pwr_move /= SCHED_LOAD_SCALE;
2900
2901 /* Move if we gain throughput */
2902 if (pwr_move > pwr_now)
2903 *imbalance = busiest_load_per_task;
2904 }
2905
2906 return busiest;
2907
2908 out_balanced:
2909 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2910 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2911 goto ret;
2912
2913 if (this == group_leader && group_leader != group_min) {
2914 *imbalance = min_load_per_task;
2915 return group_min;
2916 }
2917 #endif
2918 ret:
2919 *imbalance = 0;
2920 return NULL;
2921 }
2922
2923 /*
2924 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2925 */
2926 static struct rq *
2927 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2928 unsigned long imbalance, cpumask_t *cpus)
2929 {
2930 struct rq *busiest = NULL, *rq;
2931 unsigned long max_load = 0;
2932 int i;
2933
2934 for_each_cpu_mask(i, group->cpumask) {
2935 unsigned long wl;
2936
2937 if (!cpu_isset(i, *cpus))
2938 continue;
2939
2940 rq = cpu_rq(i);
2941 wl = weighted_cpuload(i);
2942
2943 if (rq->nr_running == 1 && wl > imbalance)
2944 continue;
2945
2946 if (wl > max_load) {
2947 max_load = wl;
2948 busiest = rq;
2949 }
2950 }
2951
2952 return busiest;
2953 }
2954
2955 /*
2956 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2957 * so long as it is large enough.
2958 */
2959 #define MAX_PINNED_INTERVAL 512
2960
2961 /*
2962 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2963 * tasks if there is an imbalance.
2964 */
2965 static int load_balance(int this_cpu, struct rq *this_rq,
2966 struct sched_domain *sd, enum cpu_idle_type idle,
2967 int *balance)
2968 {
2969 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2970 struct sched_group *group;
2971 unsigned long imbalance;
2972 struct rq *busiest;
2973 cpumask_t cpus = CPU_MASK_ALL;
2974 unsigned long flags;
2975
2976 /*
2977 * When power savings policy is enabled for the parent domain, idle
2978 * sibling can pick up load irrespective of busy siblings. In this case,
2979 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2980 * portraying it as CPU_NOT_IDLE.
2981 */
2982 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2983 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2984 sd_idle = 1;
2985
2986 schedstat_inc(sd, lb_count[idle]);
2987
2988 redo:
2989 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2990 &cpus, balance);
2991
2992 if (*balance == 0)
2993 goto out_balanced;
2994
2995 if (!group) {
2996 schedstat_inc(sd, lb_nobusyg[idle]);
2997 goto out_balanced;
2998 }
2999
3000 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
3001 if (!busiest) {
3002 schedstat_inc(sd, lb_nobusyq[idle]);
3003 goto out_balanced;
3004 }
3005
3006 BUG_ON(busiest == this_rq);
3007
3008 schedstat_add(sd, lb_imbalance[idle], imbalance);
3009
3010 ld_moved = 0;
3011 if (busiest->nr_running > 1) {
3012 /*
3013 * Attempt to move tasks. If find_busiest_group has found
3014 * an imbalance but busiest->nr_running <= 1, the group is
3015 * still unbalanced. ld_moved simply stays zero, so it is
3016 * correctly treated as an imbalance.
3017 */
3018 local_irq_save(flags);
3019 double_rq_lock(this_rq, busiest);
3020 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3021 imbalance, sd, idle, &all_pinned);
3022 double_rq_unlock(this_rq, busiest);
3023 local_irq_restore(flags);
3024
3025 /*
3026 * some other cpu did the load balance for us.
3027 */
3028 if (ld_moved && this_cpu != smp_processor_id())
3029 resched_cpu(this_cpu);
3030
3031 /* All tasks on this runqueue were pinned by CPU affinity */
3032 if (unlikely(all_pinned)) {
3033 cpu_clear(cpu_of(busiest), cpus);
3034 if (!cpus_empty(cpus))
3035 goto redo;
3036 goto out_balanced;
3037 }
3038 }
3039
3040 if (!ld_moved) {
3041 schedstat_inc(sd, lb_failed[idle]);
3042 sd->nr_balance_failed++;
3043
3044 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
3045
3046 spin_lock_irqsave(&busiest->lock, flags);
3047
3048 /* don't kick the migration_thread, if the curr
3049 * task on busiest cpu can't be moved to this_cpu
3050 */
3051 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3052 spin_unlock_irqrestore(&busiest->lock, flags);
3053 all_pinned = 1;
3054 goto out_one_pinned;
3055 }
3056
3057 if (!busiest->active_balance) {
3058 busiest->active_balance = 1;
3059 busiest->push_cpu = this_cpu;
3060 active_balance = 1;
3061 }
3062 spin_unlock_irqrestore(&busiest->lock, flags);
3063 if (active_balance)
3064 wake_up_process(busiest->migration_thread);
3065
3066 /*
3067 * We've kicked active balancing, reset the failure
3068 * counter.
3069 */
3070 sd->nr_balance_failed = sd->cache_nice_tries+1;
3071 }
3072 } else
3073 sd->nr_balance_failed = 0;
3074
3075 if (likely(!active_balance)) {
3076 /* We were unbalanced, so reset the balancing interval */
3077 sd->balance_interval = sd->min_interval;
3078 } else {
3079 /*
3080 * If we've begun active balancing, start to back off. This
3081 * case may not be covered by the all_pinned logic if there
3082 * is only 1 task on the busy runqueue (because we don't call
3083 * move_tasks).
3084 */
3085 if (sd->balance_interval < sd->max_interval)
3086 sd->balance_interval *= 2;
3087 }
3088
3089 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3090 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3091 return -1;
3092 return ld_moved;
3093
3094 out_balanced:
3095 schedstat_inc(sd, lb_balanced[idle]);
3096
3097 sd->nr_balance_failed = 0;
3098
3099 out_one_pinned:
3100 /* tune up the balancing interval */
3101 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3102 (sd->balance_interval < sd->max_interval))
3103 sd->balance_interval *= 2;
3104
3105 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3106 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3107 return -1;
3108 return 0;
3109 }
3110
3111 /*
3112 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3113 * tasks if there is an imbalance.
3114 *
3115 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3116 * this_rq is locked.
3117 */
3118 static int
3119 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
3120 {
3121 struct sched_group *group;
3122 struct rq *busiest = NULL;
3123 unsigned long imbalance;
3124 int ld_moved = 0;
3125 int sd_idle = 0;
3126 int all_pinned = 0;
3127 cpumask_t cpus = CPU_MASK_ALL;
3128
3129 /*
3130 * When power savings policy is enabled for the parent domain, idle
3131 * sibling can pick up load irrespective of busy siblings. In this case,
3132 * let the state of idle sibling percolate up as IDLE, instead of
3133 * portraying it as CPU_NOT_IDLE.
3134 */
3135 if (sd->flags & SD_SHARE_CPUPOWER &&
3136 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3137 sd_idle = 1;
3138
3139 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3140 redo:
3141 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3142 &sd_idle, &cpus, NULL);
3143 if (!group) {
3144 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3145 goto out_balanced;
3146 }
3147
3148 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
3149 &cpus);
3150 if (!busiest) {
3151 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3152 goto out_balanced;
3153 }
3154
3155 BUG_ON(busiest == this_rq);
3156
3157 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3158
3159 ld_moved = 0;
3160 if (busiest->nr_running > 1) {
3161 /* Attempt to move tasks */
3162 double_lock_balance(this_rq, busiest);
3163 /* this_rq->clock is already updated */
3164 update_rq_clock(busiest);
3165 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3166 imbalance, sd, CPU_NEWLY_IDLE,
3167 &all_pinned);
3168 spin_unlock(&busiest->lock);
3169
3170 if (unlikely(all_pinned)) {
3171 cpu_clear(cpu_of(busiest), cpus);
3172 if (!cpus_empty(cpus))
3173 goto redo;
3174 }
3175 }
3176
3177 if (!ld_moved) {
3178 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3179 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3180 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3181 return -1;
3182 } else
3183 sd->nr_balance_failed = 0;
3184
3185 return ld_moved;
3186
3187 out_balanced:
3188 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3189 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3190 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3191 return -1;
3192 sd->nr_balance_failed = 0;
3193
3194 return 0;
3195 }
3196
3197 /*
3198 * idle_balance is called by schedule() if this_cpu is about to become
3199 * idle. Attempts to pull tasks from other CPUs.
3200 */
3201 static void idle_balance(int this_cpu, struct rq *this_rq)
3202 {
3203 struct sched_domain *sd;
3204 int pulled_task = -1;
3205 unsigned long next_balance = jiffies + HZ;
3206
3207 for_each_domain(this_cpu, sd) {
3208 unsigned long interval;
3209
3210 if (!(sd->flags & SD_LOAD_BALANCE))
3211 continue;
3212
3213 if (sd->flags & SD_BALANCE_NEWIDLE)
3214 /* If we've pulled tasks over stop searching: */
3215 pulled_task = load_balance_newidle(this_cpu,
3216 this_rq, sd);
3217
3218 interval = msecs_to_jiffies(sd->balance_interval);
3219 if (time_after(next_balance, sd->last_balance + interval))
3220 next_balance = sd->last_balance + interval;
3221 if (pulled_task)
3222 break;
3223 }
3224 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3225 /*
3226 * We are going idle. next_balance may be set based on
3227 * a busy processor. So reset next_balance.
3228 */
3229 this_rq->next_balance = next_balance;
3230 }
3231 }
3232
3233 /*
3234 * active_load_balance is run by migration threads. It pushes running tasks
3235 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3236 * running on each physical CPU where possible, and avoids physical /
3237 * logical imbalances.
3238 *
3239 * Called with busiest_rq locked.
3240 */
3241 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3242 {
3243 int target_cpu = busiest_rq->push_cpu;
3244 struct sched_domain *sd;
3245 struct rq *target_rq;
3246
3247 /* Is there any task to move? */
3248 if (busiest_rq->nr_running <= 1)
3249 return;
3250
3251 target_rq = cpu_rq(target_cpu);
3252
3253 /*
3254 * This condition is "impossible", if it occurs
3255 * we need to fix it. Originally reported by
3256 * Bjorn Helgaas on a 128-cpu setup.
3257 */
3258 BUG_ON(busiest_rq == target_rq);
3259
3260 /* move a task from busiest_rq to target_rq */
3261 double_lock_balance(busiest_rq, target_rq);
3262 update_rq_clock(busiest_rq);
3263 update_rq_clock(target_rq);
3264
3265 /* Search for an sd spanning us and the target CPU. */
3266 for_each_domain(target_cpu, sd) {
3267 if ((sd->flags & SD_LOAD_BALANCE) &&
3268 cpu_isset(busiest_cpu, sd->span))
3269 break;
3270 }
3271
3272 if (likely(sd)) {
3273 schedstat_inc(sd, alb_count);
3274
3275 if (move_one_task(target_rq, target_cpu, busiest_rq,
3276 sd, CPU_IDLE))
3277 schedstat_inc(sd, alb_pushed);
3278 else
3279 schedstat_inc(sd, alb_failed);
3280 }
3281 spin_unlock(&target_rq->lock);
3282 }
3283
3284 #ifdef CONFIG_NO_HZ
3285 static struct {
3286 atomic_t load_balancer;
3287 cpumask_t cpu_mask;
3288 } nohz ____cacheline_aligned = {
3289 .load_balancer = ATOMIC_INIT(-1),
3290 .cpu_mask = CPU_MASK_NONE,
3291 };
3292
3293 /*
3294 * This routine will try to nominate the ilb (idle load balancing)
3295 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3296 * load balancing on behalf of all those cpus. If all the cpus in the system
3297 * go into this tickless mode, then there will be no ilb owner (as there is
3298 * no need for one) and all the cpus will sleep till the next wakeup event
3299 * arrives...
3300 *
3301 * For the ilb owner, tick is not stopped. And this tick will be used
3302 * for idle load balancing. ilb owner will still be part of
3303 * nohz.cpu_mask..
3304 *
3305 * While stopping the tick, this cpu will become the ilb owner if there
3306 * is no other owner. And will be the owner till that cpu becomes busy
3307 * or if all cpus in the system stop their ticks at which point
3308 * there is no need for ilb owner.
3309 *
3310 * When the ilb owner becomes busy, it nominates another owner, during the
3311 * next busy scheduler_tick()
3312 */
3313 int select_nohz_load_balancer(int stop_tick)
3314 {
3315 int cpu = smp_processor_id();
3316
3317 if (stop_tick) {
3318 cpu_set(cpu, nohz.cpu_mask);
3319 cpu_rq(cpu)->in_nohz_recently = 1;
3320
3321 /*
3322 * If we are going offline and still the leader, give up!
3323 */
3324 if (cpu_is_offline(cpu) &&
3325 atomic_read(&nohz.load_balancer) == cpu) {
3326 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3327 BUG();
3328 return 0;
3329 }
3330
3331 /* time for ilb owner also to sleep */
3332 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3333 if (atomic_read(&nohz.load_balancer) == cpu)
3334 atomic_set(&nohz.load_balancer, -1);
3335 return 0;
3336 }
3337
3338 if (atomic_read(&nohz.load_balancer) == -1) {
3339 /* make me the ilb owner */
3340 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3341 return 1;
3342 } else if (atomic_read(&nohz.load_balancer) == cpu)
3343 return 1;
3344 } else {
3345 if (!cpu_isset(cpu, nohz.cpu_mask))
3346 return 0;
3347
3348 cpu_clear(cpu, nohz.cpu_mask);
3349
3350 if (atomic_read(&nohz.load_balancer) == cpu)
3351 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3352 BUG();
3353 }
3354 return 0;
3355 }
3356 #endif
3357
3358 static DEFINE_SPINLOCK(balancing);
3359
3360 /*
3361 * It checks each scheduling domain to see if it is due to be balanced,
3362 * and initiates a balancing operation if so.
3363 *
3364 * Balancing parameters are set up in arch_init_sched_domains.
3365 */
3366 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3367 {
3368 int balance = 1;
3369 struct rq *rq = cpu_rq(cpu);
3370 unsigned long interval;
3371 struct sched_domain *sd;
3372 /* Earliest time when we have to do rebalance again */
3373 unsigned long next_balance = jiffies + 60*HZ;
3374 int update_next_balance = 0;
3375
3376 for_each_domain(cpu, sd) {
3377 if (!(sd->flags & SD_LOAD_BALANCE))
3378 continue;
3379
3380 interval = sd->balance_interval;
3381 if (idle != CPU_IDLE)
3382 interval *= sd->busy_factor;
3383
3384 /* scale ms to jiffies */
3385 interval = msecs_to_jiffies(interval);
3386 if (unlikely(!interval))
3387 interval = 1;
3388 if (interval > HZ*NR_CPUS/10)
3389 interval = HZ*NR_CPUS/10;
3390
3391
3392 if (sd->flags & SD_SERIALIZE) {
3393 if (!spin_trylock(&balancing))
3394 goto out;
3395 }
3396
3397 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3398 if (load_balance(cpu, rq, sd, idle, &balance)) {
3399 /*
3400 * We've pulled tasks over so either we're no
3401 * longer idle, or one of our SMT siblings is
3402 * not idle.
3403 */
3404 idle = CPU_NOT_IDLE;
3405 }
3406 sd->last_balance = jiffies;
3407 }
3408 if (sd->flags & SD_SERIALIZE)
3409 spin_unlock(&balancing);
3410 out:
3411 if (time_after(next_balance, sd->last_balance + interval)) {
3412 next_balance = sd->last_balance + interval;
3413 update_next_balance = 1;
3414 }
3415
3416 /*
3417 * Stop the load balance at this level. There is another
3418 * CPU in our sched group which is doing load balancing more
3419 * actively.
3420 */
3421 if (!balance)
3422 break;
3423 }
3424
3425 /*
3426 * next_balance will be updated only when there is a need.
3427 * When the cpu is attached to null domain for ex, it will not be
3428 * updated.
3429 */
3430 if (likely(update_next_balance))
3431 rq->next_balance = next_balance;
3432 }
3433
3434 /*
3435 * run_rebalance_domains is triggered when needed from the scheduler tick.
3436 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3437 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3438 */
3439 static void run_rebalance_domains(struct softirq_action *h)
3440 {
3441 int this_cpu = smp_processor_id();
3442 struct rq *this_rq = cpu_rq(this_cpu);
3443 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3444 CPU_IDLE : CPU_NOT_IDLE;
3445
3446 rebalance_domains(this_cpu, idle);
3447
3448 #ifdef CONFIG_NO_HZ
3449 /*
3450 * If this cpu is the owner for idle load balancing, then do the
3451 * balancing on behalf of the other idle cpus whose ticks are
3452 * stopped.
3453 */
3454 if (this_rq->idle_at_tick &&
3455 atomic_read(&nohz.load_balancer) == this_cpu) {
3456 cpumask_t cpus = nohz.cpu_mask;
3457 struct rq *rq;
3458 int balance_cpu;
3459
3460 cpu_clear(this_cpu, cpus);
3461 for_each_cpu_mask(balance_cpu, cpus) {
3462 /*
3463 * If this cpu gets work to do, stop the load balancing
3464 * work being done for other cpus. Next load
3465 * balancing owner will pick it up.
3466 */
3467 if (need_resched())
3468 break;
3469
3470 rebalance_domains(balance_cpu, CPU_IDLE);
3471
3472 rq = cpu_rq(balance_cpu);
3473 if (time_after(this_rq->next_balance, rq->next_balance))
3474 this_rq->next_balance = rq->next_balance;
3475 }
3476 }
3477 #endif
3478 }
3479
3480 /*
3481 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3482 *
3483 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3484 * idle load balancing owner or decide to stop the periodic load balancing,
3485 * if the whole system is idle.
3486 */
3487 static inline void trigger_load_balance(struct rq *rq, int cpu)
3488 {
3489 #ifdef CONFIG_NO_HZ
3490 /*
3491 * If we were in the nohz mode recently and busy at the current
3492 * scheduler tick, then check if we need to nominate new idle
3493 * load balancer.
3494 */
3495 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3496 rq->in_nohz_recently = 0;
3497
3498 if (atomic_read(&nohz.load_balancer) == cpu) {
3499 cpu_clear(cpu, nohz.cpu_mask);
3500 atomic_set(&nohz.load_balancer, -1);
3501 }
3502
3503 if (atomic_read(&nohz.load_balancer) == -1) {
3504 /*
3505 * simple selection for now: Nominate the
3506 * first cpu in the nohz list to be the next
3507 * ilb owner.
3508 *
3509 * TBD: Traverse the sched domains and nominate
3510 * the nearest cpu in the nohz.cpu_mask.
3511 */
3512 int ilb = first_cpu(nohz.cpu_mask);
3513
3514 if (ilb != NR_CPUS)
3515 resched_cpu(ilb);
3516 }
3517 }
3518
3519 /*
3520 * If this cpu is idle and doing idle load balancing for all the
3521 * cpus with ticks stopped, is it time for that to stop?
3522 */
3523 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3524 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3525 resched_cpu(cpu);
3526 return;
3527 }
3528
3529 /*
3530 * If this cpu is idle and the idle load balancing is done by
3531 * someone else, then no need raise the SCHED_SOFTIRQ
3532 */
3533 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3534 cpu_isset(cpu, nohz.cpu_mask))
3535 return;
3536 #endif
3537 if (time_after_eq(jiffies, rq->next_balance))
3538 raise_softirq(SCHED_SOFTIRQ);
3539 }
3540
3541 #else /* CONFIG_SMP */
3542
3543 /*
3544 * on UP we do not need to balance between CPUs:
3545 */
3546 static inline void idle_balance(int cpu, struct rq *rq)
3547 {
3548 }
3549
3550 #endif
3551
3552 DEFINE_PER_CPU(struct kernel_stat, kstat);
3553
3554 EXPORT_PER_CPU_SYMBOL(kstat);
3555
3556 /*
3557 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3558 * that have not yet been banked in case the task is currently running.
3559 */
3560 unsigned long long task_sched_runtime(struct task_struct *p)
3561 {
3562 unsigned long flags;
3563 u64 ns, delta_exec;
3564 struct rq *rq;
3565
3566 rq = task_rq_lock(p, &flags);
3567 ns = p->se.sum_exec_runtime;
3568 if (task_current(rq, p)) {
3569 update_rq_clock(rq);
3570 delta_exec = rq->clock - p->se.exec_start;
3571 if ((s64)delta_exec > 0)
3572 ns += delta_exec;
3573 }
3574 task_rq_unlock(rq, &flags);
3575
3576 return ns;
3577 }
3578
3579 /*
3580 * Account user cpu time to a process.
3581 * @p: the process that the cpu time gets accounted to
3582 * @cputime: the cpu time spent in user space since the last update
3583 */
3584 void account_user_time(struct task_struct *p, cputime_t cputime)
3585 {
3586 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3587 cputime64_t tmp;
3588
3589 p->utime = cputime_add(p->utime, cputime);
3590
3591 /* Add user time to cpustat. */
3592 tmp = cputime_to_cputime64(cputime);
3593 if (TASK_NICE(p) > 0)
3594 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3595 else
3596 cpustat->user = cputime64_add(cpustat->user, tmp);
3597 }
3598
3599 /*
3600 * Account guest cpu time to a process.
3601 * @p: the process that the cpu time gets accounted to
3602 * @cputime: the cpu time spent in virtual machine since the last update
3603 */
3604 static void account_guest_time(struct task_struct *p, cputime_t cputime)
3605 {
3606 cputime64_t tmp;
3607 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3608
3609 tmp = cputime_to_cputime64(cputime);
3610
3611 p->utime = cputime_add(p->utime, cputime);
3612 p->gtime = cputime_add(p->gtime, cputime);
3613
3614 cpustat->user = cputime64_add(cpustat->user, tmp);
3615 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3616 }
3617
3618 /*
3619 * Account scaled user cpu time to a process.
3620 * @p: the process that the cpu time gets accounted to
3621 * @cputime: the cpu time spent in user space since the last update
3622 */
3623 void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
3624 {
3625 p->utimescaled = cputime_add(p->utimescaled, cputime);
3626 }
3627
3628 /*
3629 * Account system cpu time to a process.
3630 * @p: the process that the cpu time gets accounted to
3631 * @hardirq_offset: the offset to subtract from hardirq_count()
3632 * @cputime: the cpu time spent in kernel space since the last update
3633 */
3634 void account_system_time(struct task_struct *p, int hardirq_offset,
3635 cputime_t cputime)
3636 {
3637 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3638 struct rq *rq = this_rq();
3639 cputime64_t tmp;
3640
3641 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
3642 return account_guest_time(p, cputime);
3643
3644 p->stime = cputime_add(p->stime, cputime);
3645
3646 /* Add system time to cpustat. */
3647 tmp = cputime_to_cputime64(cputime);
3648 if (hardirq_count() - hardirq_offset)
3649 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3650 else if (softirq_count())
3651 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3652 else if (p != rq->idle)
3653 cpustat->system = cputime64_add(cpustat->system, tmp);
3654 else if (atomic_read(&rq->nr_iowait) > 0)
3655 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3656 else
3657 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3658 /* Account for system time used */
3659 acct_update_integrals(p);
3660 }
3661
3662 /*
3663 * Account scaled system cpu time to a process.
3664 * @p: the process that the cpu time gets accounted to
3665 * @hardirq_offset: the offset to subtract from hardirq_count()
3666 * @cputime: the cpu time spent in kernel space since the last update
3667 */
3668 void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
3669 {
3670 p->stimescaled = cputime_add(p->stimescaled, cputime);
3671 }
3672
3673 /*
3674 * Account for involuntary wait time.
3675 * @p: the process from which the cpu time has been stolen
3676 * @steal: the cpu time spent in involuntary wait
3677 */
3678 void account_steal_time(struct task_struct *p, cputime_t steal)
3679 {
3680 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3681 cputime64_t tmp = cputime_to_cputime64(steal);
3682 struct rq *rq = this_rq();
3683
3684 if (p == rq->idle) {
3685 p->stime = cputime_add(p->stime, steal);
3686 if (atomic_read(&rq->nr_iowait) > 0)
3687 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3688 else
3689 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3690 } else
3691 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3692 }
3693
3694 /*
3695 * This function gets called by the timer code, with HZ frequency.
3696 * We call it with interrupts disabled.
3697 *
3698 * It also gets called by the fork code, when changing the parent's
3699 * timeslices.
3700 */
3701 void scheduler_tick(void)
3702 {
3703 int cpu = smp_processor_id();
3704 struct rq *rq = cpu_rq(cpu);
3705 struct task_struct *curr = rq->curr;
3706 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
3707
3708 spin_lock(&rq->lock);
3709 __update_rq_clock(rq);
3710 /*
3711 * Let rq->clock advance by at least TICK_NSEC:
3712 */
3713 if (unlikely(rq->clock < next_tick)) {
3714 rq->clock = next_tick;
3715 rq->clock_underflows++;
3716 }
3717 rq->tick_timestamp = rq->clock;
3718 update_cpu_load(rq);
3719 curr->sched_class->task_tick(rq, curr, 0);
3720 update_sched_rt_period(rq);
3721 spin_unlock(&rq->lock);
3722
3723 #ifdef CONFIG_SMP
3724 rq->idle_at_tick = idle_cpu(cpu);
3725 trigger_load_balance(rq, cpu);
3726 #endif
3727 }
3728
3729 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3730
3731 void __kprobes add_preempt_count(int val)
3732 {
3733 /*
3734 * Underflow?
3735 */
3736 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3737 return;
3738 preempt_count() += val;
3739 /*
3740 * Spinlock count overflowing soon?
3741 */
3742 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3743 PREEMPT_MASK - 10);
3744 }
3745 EXPORT_SYMBOL(add_preempt_count);
3746
3747 void __kprobes sub_preempt_count(int val)
3748 {
3749 /*
3750 * Underflow?
3751 */
3752 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3753 return;
3754 /*
3755 * Is the spinlock portion underflowing?
3756 */
3757 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3758 !(preempt_count() & PREEMPT_MASK)))
3759 return;
3760
3761 preempt_count() -= val;
3762 }
3763 EXPORT_SYMBOL(sub_preempt_count);
3764
3765 #endif
3766
3767 /*
3768 * Print scheduling while atomic bug:
3769 */
3770 static noinline void __schedule_bug(struct task_struct *prev)
3771 {
3772 struct pt_regs *regs = get_irq_regs();
3773
3774 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3775 prev->comm, prev->pid, preempt_count());
3776
3777 debug_show_held_locks(prev);
3778 if (irqs_disabled())
3779 print_irqtrace_events(prev);
3780
3781 if (regs)
3782 show_regs(regs);
3783 else
3784 dump_stack();
3785 }
3786
3787 /*
3788 * Various schedule()-time debugging checks and statistics:
3789 */
3790 static inline void schedule_debug(struct task_struct *prev)
3791 {
3792 /*
3793 * Test if we are atomic. Since do_exit() needs to call into
3794 * schedule() atomically, we ignore that path for now.
3795 * Otherwise, whine if we are scheduling when we should not be.
3796 */
3797 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3798 __schedule_bug(prev);
3799
3800 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3801
3802 schedstat_inc(this_rq(), sched_count);
3803 #ifdef CONFIG_SCHEDSTATS
3804 if (unlikely(prev->lock_depth >= 0)) {
3805 schedstat_inc(this_rq(), bkl_count);
3806 schedstat_inc(prev, sched_info.bkl_count);
3807 }
3808 #endif
3809 }
3810
3811 /*
3812 * Pick up the highest-prio task:
3813 */
3814 static inline struct task_struct *
3815 pick_next_task(struct rq *rq, struct task_struct *prev)
3816 {
3817 const struct sched_class *class;
3818 struct task_struct *p;
3819
3820 /*
3821 * Optimization: we know that if all tasks are in
3822 * the fair class we can call that function directly:
3823 */
3824 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3825 p = fair_sched_class.pick_next_task(rq);
3826 if (likely(p))
3827 return p;
3828 }
3829
3830 class = sched_class_highest;
3831 for ( ; ; ) {
3832 p = class->pick_next_task(rq);
3833 if (p)
3834 return p;
3835 /*
3836 * Will never be NULL as the idle class always
3837 * returns a non-NULL p:
3838 */
3839 class = class->next;
3840 }
3841 }
3842
3843 /*
3844 * schedule() is the main scheduler function.
3845 */
3846 asmlinkage void __sched schedule(void)
3847 {
3848 struct task_struct *prev, *next;
3849 unsigned long *switch_count;
3850 struct rq *rq;
3851 int cpu;
3852
3853 need_resched:
3854 preempt_disable();
3855 cpu = smp_processor_id();
3856 rq = cpu_rq(cpu);
3857 rcu_qsctr_inc(cpu);
3858 prev = rq->curr;
3859 switch_count = &prev->nivcsw;
3860
3861 release_kernel_lock(prev);
3862 need_resched_nonpreemptible:
3863
3864 schedule_debug(prev);
3865
3866 hrtick_clear(rq);
3867
3868 /*
3869 * Do the rq-clock update outside the rq lock:
3870 */
3871 local_irq_disable();
3872 __update_rq_clock(rq);
3873 spin_lock(&rq->lock);
3874 clear_tsk_need_resched(prev);
3875
3876 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3877 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3878 unlikely(signal_pending(prev)))) {
3879 prev->state = TASK_RUNNING;
3880 } else {
3881 deactivate_task(rq, prev, 1);
3882 }
3883 switch_count = &prev->nvcsw;
3884 }
3885
3886 #ifdef CONFIG_SMP
3887 if (prev->sched_class->pre_schedule)
3888 prev->sched_class->pre_schedule(rq, prev);
3889 #endif
3890
3891 if (unlikely(!rq->nr_running))
3892 idle_balance(cpu, rq);
3893
3894 prev->sched_class->put_prev_task(rq, prev);
3895 next = pick_next_task(rq, prev);
3896
3897 sched_info_switch(prev, next);
3898
3899 if (likely(prev != next)) {
3900 rq->nr_switches++;
3901 rq->curr = next;
3902 ++*switch_count;
3903
3904 context_switch(rq, prev, next); /* unlocks the rq */
3905 /*
3906 * the context switch might have flipped the stack from under
3907 * us, hence refresh the local variables.
3908 */
3909 cpu = smp_processor_id();
3910 rq = cpu_rq(cpu);
3911 } else
3912 spin_unlock_irq(&rq->lock);
3913
3914 hrtick_set(rq);
3915
3916 if (unlikely(reacquire_kernel_lock(current) < 0))
3917 goto need_resched_nonpreemptible;
3918
3919 preempt_enable_no_resched();
3920 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3921 goto need_resched;
3922 }
3923 EXPORT_SYMBOL(schedule);
3924
3925 #ifdef CONFIG_PREEMPT
3926 /*
3927 * this is the entry point to schedule() from in-kernel preemption
3928 * off of preempt_enable. Kernel preemptions off return from interrupt
3929 * occur there and call schedule directly.
3930 */
3931 asmlinkage void __sched preempt_schedule(void)
3932 {
3933 struct thread_info *ti = current_thread_info();
3934 struct task_struct *task = current;
3935 int saved_lock_depth;
3936
3937 /*
3938 * If there is a non-zero preempt_count or interrupts are disabled,
3939 * we do not want to preempt the current task. Just return..
3940 */
3941 if (likely(ti->preempt_count || irqs_disabled()))
3942 return;
3943
3944 do {
3945 add_preempt_count(PREEMPT_ACTIVE);
3946
3947 /*
3948 * We keep the big kernel semaphore locked, but we
3949 * clear ->lock_depth so that schedule() doesnt
3950 * auto-release the semaphore:
3951 */
3952 saved_lock_depth = task->lock_depth;
3953 task->lock_depth = -1;
3954 schedule();
3955 task->lock_depth = saved_lock_depth;
3956 sub_preempt_count(PREEMPT_ACTIVE);
3957
3958 /*
3959 * Check again in case we missed a preemption opportunity
3960 * between schedule and now.
3961 */
3962 barrier();
3963 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
3964 }
3965 EXPORT_SYMBOL(preempt_schedule);
3966
3967 /*
3968 * this is the entry point to schedule() from kernel preemption
3969 * off of irq context.
3970 * Note, that this is called and return with irqs disabled. This will
3971 * protect us against recursive calling from irq.
3972 */
3973 asmlinkage void __sched preempt_schedule_irq(void)
3974 {
3975 struct thread_info *ti = current_thread_info();
3976 struct task_struct *task = current;
3977 int saved_lock_depth;
3978
3979 /* Catch callers which need to be fixed */
3980 BUG_ON(ti->preempt_count || !irqs_disabled());
3981
3982 do {
3983 add_preempt_count(PREEMPT_ACTIVE);
3984
3985 /*
3986 * We keep the big kernel semaphore locked, but we
3987 * clear ->lock_depth so that schedule() doesnt
3988 * auto-release the semaphore:
3989 */
3990 saved_lock_depth = task->lock_depth;
3991 task->lock_depth = -1;
3992 local_irq_enable();
3993 schedule();
3994 local_irq_disable();
3995 task->lock_depth = saved_lock_depth;
3996 sub_preempt_count(PREEMPT_ACTIVE);
3997
3998 /*
3999 * Check again in case we missed a preemption opportunity
4000 * between schedule and now.
4001 */
4002 barrier();
4003 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4004 }
4005
4006 #endif /* CONFIG_PREEMPT */
4007
4008 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4009 void *key)
4010 {
4011 return try_to_wake_up(curr->private, mode, sync);
4012 }
4013 EXPORT_SYMBOL(default_wake_function);
4014
4015 /*
4016 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4017 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4018 * number) then we wake all the non-exclusive tasks and one exclusive task.
4019 *
4020 * There are circumstances in which we can try to wake a task which has already
4021 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4022 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4023 */
4024 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4025 int nr_exclusive, int sync, void *key)
4026 {
4027 wait_queue_t *curr, *next;
4028
4029 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4030 unsigned flags = curr->flags;
4031
4032 if (curr->func(curr, mode, sync, key) &&
4033 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4034 break;
4035 }
4036 }
4037
4038 /**
4039 * __wake_up - wake up threads blocked on a waitqueue.
4040 * @q: the waitqueue
4041 * @mode: which threads
4042 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4043 * @key: is directly passed to the wakeup function
4044 */
4045 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4046 int nr_exclusive, void *key)
4047 {
4048 unsigned long flags;
4049
4050 spin_lock_irqsave(&q->lock, flags);
4051 __wake_up_common(q, mode, nr_exclusive, 0, key);
4052 spin_unlock_irqrestore(&q->lock, flags);
4053 }
4054 EXPORT_SYMBOL(__wake_up);
4055
4056 /*
4057 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4058 */
4059 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4060 {
4061 __wake_up_common(q, mode, 1, 0, NULL);
4062 }
4063
4064 /**
4065 * __wake_up_sync - wake up threads blocked on a waitqueue.
4066 * @q: the waitqueue
4067 * @mode: which threads
4068 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4069 *
4070 * The sync wakeup differs that the waker knows that it will schedule
4071 * away soon, so while the target thread will be woken up, it will not
4072 * be migrated to another CPU - ie. the two threads are 'synchronized'
4073 * with each other. This can prevent needless bouncing between CPUs.
4074 *
4075 * On UP it can prevent extra preemption.
4076 */
4077 void
4078 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4079 {
4080 unsigned long flags;
4081 int sync = 1;
4082
4083 if (unlikely(!q))
4084 return;
4085
4086 if (unlikely(!nr_exclusive))
4087 sync = 0;
4088
4089 spin_lock_irqsave(&q->lock, flags);
4090 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4091 spin_unlock_irqrestore(&q->lock, flags);
4092 }
4093 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4094
4095 void complete(struct completion *x)
4096 {
4097 unsigned long flags;
4098
4099 spin_lock_irqsave(&x->wait.lock, flags);
4100 x->done++;
4101 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4102 spin_unlock_irqrestore(&x->wait.lock, flags);
4103 }
4104 EXPORT_SYMBOL(complete);
4105
4106 void complete_all(struct completion *x)
4107 {
4108 unsigned long flags;
4109
4110 spin_lock_irqsave(&x->wait.lock, flags);
4111 x->done += UINT_MAX/2;
4112 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4113 spin_unlock_irqrestore(&x->wait.lock, flags);
4114 }
4115 EXPORT_SYMBOL(complete_all);
4116
4117 static inline long __sched
4118 do_wait_for_common(struct completion *x, long timeout, int state)
4119 {
4120 if (!x->done) {
4121 DECLARE_WAITQUEUE(wait, current);
4122
4123 wait.flags |= WQ_FLAG_EXCLUSIVE;
4124 __add_wait_queue_tail(&x->wait, &wait);
4125 do {
4126 if ((state == TASK_INTERRUPTIBLE &&
4127 signal_pending(current)) ||
4128 (state == TASK_KILLABLE &&
4129 fatal_signal_pending(current))) {
4130 __remove_wait_queue(&x->wait, &wait);
4131 return -ERESTARTSYS;
4132 }
4133 __set_current_state(state);
4134 spin_unlock_irq(&x->wait.lock);
4135 timeout = schedule_timeout(timeout);
4136 spin_lock_irq(&x->wait.lock);
4137 if (!timeout) {
4138 __remove_wait_queue(&x->wait, &wait);
4139 return timeout;
4140 }
4141 } while (!x->done);
4142 __remove_wait_queue(&x->wait, &wait);
4143 }
4144 x->done--;
4145 return timeout;
4146 }
4147
4148 static long __sched
4149 wait_for_common(struct completion *x, long timeout, int state)
4150 {
4151 might_sleep();
4152
4153 spin_lock_irq(&x->wait.lock);
4154 timeout = do_wait_for_common(x, timeout, state);
4155 spin_unlock_irq(&x->wait.lock);
4156 return timeout;
4157 }
4158
4159 void __sched wait_for_completion(struct completion *x)
4160 {
4161 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4162 }
4163 EXPORT_SYMBOL(wait_for_completion);
4164
4165 unsigned long __sched
4166 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4167 {
4168 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4169 }
4170 EXPORT_SYMBOL(wait_for_completion_timeout);
4171
4172 int __sched wait_for_completion_interruptible(struct completion *x)
4173 {
4174 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4175 if (t == -ERESTARTSYS)
4176 return t;
4177 return 0;
4178 }
4179 EXPORT_SYMBOL(wait_for_completion_interruptible);
4180
4181 unsigned long __sched
4182 wait_for_completion_interruptible_timeout(struct completion *x,
4183 unsigned long timeout)
4184 {
4185 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4186 }
4187 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4188
4189 int __sched wait_for_completion_killable(struct completion *x)
4190 {
4191 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4192 if (t == -ERESTARTSYS)
4193 return t;
4194 return 0;
4195 }
4196 EXPORT_SYMBOL(wait_for_completion_killable);
4197
4198 static long __sched
4199 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4200 {
4201 unsigned long flags;
4202 wait_queue_t wait;
4203
4204 init_waitqueue_entry(&wait, current);
4205
4206 __set_current_state(state);
4207
4208 spin_lock_irqsave(&q->lock, flags);
4209 __add_wait_queue(q, &wait);
4210 spin_unlock(&q->lock);
4211 timeout = schedule_timeout(timeout);
4212 spin_lock_irq(&q->lock);
4213 __remove_wait_queue(q, &wait);
4214 spin_unlock_irqrestore(&q->lock, flags);
4215
4216 return timeout;
4217 }
4218
4219 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4220 {
4221 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4222 }
4223 EXPORT_SYMBOL(interruptible_sleep_on);
4224
4225 long __sched
4226 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4227 {
4228 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4229 }
4230 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4231
4232 void __sched sleep_on(wait_queue_head_t *q)
4233 {
4234 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4235 }
4236 EXPORT_SYMBOL(sleep_on);
4237
4238 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4239 {
4240 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4241 }
4242 EXPORT_SYMBOL(sleep_on_timeout);
4243
4244 #ifdef CONFIG_RT_MUTEXES
4245
4246 /*
4247 * rt_mutex_setprio - set the current priority of a task
4248 * @p: task
4249 * @prio: prio value (kernel-internal form)
4250 *
4251 * This function changes the 'effective' priority of a task. It does
4252 * not touch ->normal_prio like __setscheduler().
4253 *
4254 * Used by the rt_mutex code to implement priority inheritance logic.
4255 */
4256 void rt_mutex_setprio(struct task_struct *p, int prio)
4257 {
4258 unsigned long flags;
4259 int oldprio, on_rq, running;
4260 struct rq *rq;
4261 const struct sched_class *prev_class = p->sched_class;
4262
4263 BUG_ON(prio < 0 || prio > MAX_PRIO);
4264
4265 rq = task_rq_lock(p, &flags);
4266 update_rq_clock(rq);
4267
4268 oldprio = p->prio;
4269 on_rq = p->se.on_rq;
4270 running = task_current(rq, p);
4271 if (on_rq)
4272 dequeue_task(rq, p, 0);
4273 if (running)
4274 p->sched_class->put_prev_task(rq, p);
4275
4276 if (rt_prio(prio))
4277 p->sched_class = &rt_sched_class;
4278 else
4279 p->sched_class = &fair_sched_class;
4280
4281 p->prio = prio;
4282
4283 if (running)
4284 p->sched_class->set_curr_task(rq);
4285 if (on_rq) {
4286 enqueue_task(rq, p, 0);
4287
4288 check_class_changed(rq, p, prev_class, oldprio, running);
4289 }
4290 task_rq_unlock(rq, &flags);
4291 }
4292
4293 #endif
4294
4295 void set_user_nice(struct task_struct *p, long nice)
4296 {
4297 int old_prio, delta, on_rq;
4298 unsigned long flags;
4299 struct rq *rq;
4300
4301 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4302 return;
4303 /*
4304 * We have to be careful, if called from sys_setpriority(),
4305 * the task might be in the middle of scheduling on another CPU.
4306 */
4307 rq = task_rq_lock(p, &flags);
4308 update_rq_clock(rq);
4309 /*
4310 * The RT priorities are set via sched_setscheduler(), but we still
4311 * allow the 'normal' nice value to be set - but as expected
4312 * it wont have any effect on scheduling until the task is
4313 * SCHED_FIFO/SCHED_RR:
4314 */
4315 if (task_has_rt_policy(p)) {
4316 p->static_prio = NICE_TO_PRIO(nice);
4317 goto out_unlock;
4318 }
4319 on_rq = p->se.on_rq;
4320 if (on_rq) {
4321 dequeue_task(rq, p, 0);
4322 dec_load(rq, p);
4323 }
4324
4325 p->static_prio = NICE_TO_PRIO(nice);
4326 set_load_weight(p);
4327 old_prio = p->prio;
4328 p->prio = effective_prio(p);
4329 delta = p->prio - old_prio;
4330
4331 if (on_rq) {
4332 enqueue_task(rq, p, 0);
4333 inc_load(rq, p);
4334 /*
4335 * If the task increased its priority or is running and
4336 * lowered its priority, then reschedule its CPU:
4337 */
4338 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4339 resched_task(rq->curr);
4340 }
4341 out_unlock:
4342 task_rq_unlock(rq, &flags);
4343 }
4344 EXPORT_SYMBOL(set_user_nice);
4345
4346 /*
4347 * can_nice - check if a task can reduce its nice value
4348 * @p: task
4349 * @nice: nice value
4350 */
4351 int can_nice(const struct task_struct *p, const int nice)
4352 {
4353 /* convert nice value [19,-20] to rlimit style value [1,40] */
4354 int nice_rlim = 20 - nice;
4355
4356 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4357 capable(CAP_SYS_NICE));
4358 }
4359
4360 #ifdef __ARCH_WANT_SYS_NICE
4361
4362 /*
4363 * sys_nice - change the priority of the current process.
4364 * @increment: priority increment
4365 *
4366 * sys_setpriority is a more generic, but much slower function that
4367 * does similar things.
4368 */
4369 asmlinkage long sys_nice(int increment)
4370 {
4371 long nice, retval;
4372
4373 /*
4374 * Setpriority might change our priority at the same moment.
4375 * We don't have to worry. Conceptually one call occurs first
4376 * and we have a single winner.
4377 */
4378 if (increment < -40)
4379 increment = -40;
4380 if (increment > 40)
4381 increment = 40;
4382
4383 nice = PRIO_TO_NICE(current->static_prio) + increment;
4384 if (nice < -20)
4385 nice = -20;
4386 if (nice > 19)
4387 nice = 19;
4388
4389 if (increment < 0 && !can_nice(current, nice))
4390 return -EPERM;
4391
4392 retval = security_task_setnice(current, nice);
4393 if (retval)
4394 return retval;
4395
4396 set_user_nice(current, nice);
4397 return 0;
4398 }
4399
4400 #endif
4401
4402 /**
4403 * task_prio - return the priority value of a given task.
4404 * @p: the task in question.
4405 *
4406 * This is the priority value as seen by users in /proc.
4407 * RT tasks are offset by -200. Normal tasks are centered
4408 * around 0, value goes from -16 to +15.
4409 */
4410 int task_prio(const struct task_struct *p)
4411 {
4412 return p->prio - MAX_RT_PRIO;
4413 }
4414
4415 /**
4416 * task_nice - return the nice value of a given task.
4417 * @p: the task in question.
4418 */
4419 int task_nice(const struct task_struct *p)
4420 {
4421 return TASK_NICE(p);
4422 }
4423 EXPORT_SYMBOL(task_nice);
4424
4425 /**
4426 * idle_cpu - is a given cpu idle currently?
4427 * @cpu: the processor in question.
4428 */
4429 int idle_cpu(int cpu)
4430 {
4431 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4432 }
4433
4434 /**
4435 * idle_task - return the idle task for a given cpu.
4436 * @cpu: the processor in question.
4437 */
4438 struct task_struct *idle_task(int cpu)
4439 {
4440 return cpu_rq(cpu)->idle;
4441 }
4442
4443 /**
4444 * find_process_by_pid - find a process with a matching PID value.
4445 * @pid: the pid in question.
4446 */
4447 static struct task_struct *find_process_by_pid(pid_t pid)
4448 {
4449 return pid ? find_task_by_vpid(pid) : current;
4450 }
4451
4452 /* Actually do priority change: must hold rq lock. */
4453 static void
4454 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4455 {
4456 BUG_ON(p->se.on_rq);
4457
4458 p->policy = policy;
4459 switch (p->policy) {
4460 case SCHED_NORMAL:
4461 case SCHED_BATCH:
4462 case SCHED_IDLE:
4463 p->sched_class = &fair_sched_class;
4464 break;
4465 case SCHED_FIFO:
4466 case SCHED_RR:
4467 p->sched_class = &rt_sched_class;
4468 break;
4469 }
4470
4471 p->rt_priority = prio;
4472 p->normal_prio = normal_prio(p);
4473 /* we are holding p->pi_lock already */
4474 p->prio = rt_mutex_getprio(p);
4475 set_load_weight(p);
4476 }
4477
4478 /**
4479 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4480 * @p: the task in question.
4481 * @policy: new policy.
4482 * @param: structure containing the new RT priority.
4483 *
4484 * NOTE that the task may be already dead.
4485 */
4486 int sched_setscheduler(struct task_struct *p, int policy,
4487 struct sched_param *param)
4488 {
4489 int retval, oldprio, oldpolicy = -1, on_rq, running;
4490 unsigned long flags;
4491 const struct sched_class *prev_class = p->sched_class;
4492 struct rq *rq;
4493
4494 /* may grab non-irq protected spin_locks */
4495 BUG_ON(in_interrupt());
4496 recheck:
4497 /* double check policy once rq lock held */
4498 if (policy < 0)
4499 policy = oldpolicy = p->policy;
4500 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4501 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4502 policy != SCHED_IDLE)
4503 return -EINVAL;
4504 /*
4505 * Valid priorities for SCHED_FIFO and SCHED_RR are
4506 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4507 * SCHED_BATCH and SCHED_IDLE is 0.
4508 */
4509 if (param->sched_priority < 0 ||
4510 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4511 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4512 return -EINVAL;
4513 if (rt_policy(policy) != (param->sched_priority != 0))
4514 return -EINVAL;
4515
4516 /*
4517 * Allow unprivileged RT tasks to decrease priority:
4518 */
4519 if (!capable(CAP_SYS_NICE)) {
4520 if (rt_policy(policy)) {
4521 unsigned long rlim_rtprio;
4522
4523 if (!lock_task_sighand(p, &flags))
4524 return -ESRCH;
4525 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4526 unlock_task_sighand(p, &flags);
4527
4528 /* can't set/change the rt policy */
4529 if (policy != p->policy && !rlim_rtprio)
4530 return -EPERM;
4531
4532 /* can't increase priority */
4533 if (param->sched_priority > p->rt_priority &&
4534 param->sched_priority > rlim_rtprio)
4535 return -EPERM;
4536 }
4537 /*
4538 * Like positive nice levels, dont allow tasks to
4539 * move out of SCHED_IDLE either:
4540 */
4541 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4542 return -EPERM;
4543
4544 /* can't change other user's priorities */
4545 if ((current->euid != p->euid) &&
4546 (current->euid != p->uid))
4547 return -EPERM;
4548 }
4549
4550 #ifdef CONFIG_RT_GROUP_SCHED
4551 /*
4552 * Do not allow realtime tasks into groups that have no runtime
4553 * assigned.
4554 */
4555 if (rt_policy(policy) && task_group(p)->rt_runtime == 0)
4556 return -EPERM;
4557 #endif
4558
4559 retval = security_task_setscheduler(p, policy, param);
4560 if (retval)
4561 return retval;
4562 /*
4563 * make sure no PI-waiters arrive (or leave) while we are
4564 * changing the priority of the task:
4565 */
4566 spin_lock_irqsave(&p->pi_lock, flags);
4567 /*
4568 * To be able to change p->policy safely, the apropriate
4569 * runqueue lock must be held.
4570 */
4571 rq = __task_rq_lock(p);
4572 /* recheck policy now with rq lock held */
4573 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4574 policy = oldpolicy = -1;
4575 __task_rq_unlock(rq);
4576 spin_unlock_irqrestore(&p->pi_lock, flags);
4577 goto recheck;
4578 }
4579 update_rq_clock(rq);
4580 on_rq = p->se.on_rq;
4581 running = task_current(rq, p);
4582 if (on_rq)
4583 deactivate_task(rq, p, 0);
4584 if (running)
4585 p->sched_class->put_prev_task(rq, p);
4586
4587 oldprio = p->prio;
4588 __setscheduler(rq, p, policy, param->sched_priority);
4589
4590 if (running)
4591 p->sched_class->set_curr_task(rq);
4592 if (on_rq) {
4593 activate_task(rq, p, 0);
4594
4595 check_class_changed(rq, p, prev_class, oldprio, running);
4596 }
4597 __task_rq_unlock(rq);
4598 spin_unlock_irqrestore(&p->pi_lock, flags);
4599
4600 rt_mutex_adjust_pi(p);
4601
4602 return 0;
4603 }
4604 EXPORT_SYMBOL_GPL(sched_setscheduler);
4605
4606 static int
4607 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4608 {
4609 struct sched_param lparam;
4610 struct task_struct *p;
4611 int retval;
4612
4613 if (!param || pid < 0)
4614 return -EINVAL;
4615 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4616 return -EFAULT;
4617
4618 rcu_read_lock();
4619 retval = -ESRCH;
4620 p = find_process_by_pid(pid);
4621 if (p != NULL)
4622 retval = sched_setscheduler(p, policy, &lparam);
4623 rcu_read_unlock();
4624
4625 return retval;
4626 }
4627
4628 /**
4629 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4630 * @pid: the pid in question.
4631 * @policy: new policy.
4632 * @param: structure containing the new RT priority.
4633 */
4634 asmlinkage long
4635 sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4636 {
4637 /* negative values for policy are not valid */
4638 if (policy < 0)
4639 return -EINVAL;
4640
4641 return do_sched_setscheduler(pid, policy, param);
4642 }
4643
4644 /**
4645 * sys_sched_setparam - set/change the RT priority of a thread
4646 * @pid: the pid in question.
4647 * @param: structure containing the new RT priority.
4648 */
4649 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4650 {
4651 return do_sched_setscheduler(pid, -1, param);
4652 }
4653
4654 /**
4655 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4656 * @pid: the pid in question.
4657 */
4658 asmlinkage long sys_sched_getscheduler(pid_t pid)
4659 {
4660 struct task_struct *p;
4661 int retval;
4662
4663 if (pid < 0)
4664 return -EINVAL;
4665
4666 retval = -ESRCH;
4667 read_lock(&tasklist_lock);
4668 p = find_process_by_pid(pid);
4669 if (p) {
4670 retval = security_task_getscheduler(p);
4671 if (!retval)
4672 retval = p->policy;
4673 }
4674 read_unlock(&tasklist_lock);
4675 return retval;
4676 }
4677
4678 /**
4679 * sys_sched_getscheduler - get the RT priority of a thread
4680 * @pid: the pid in question.
4681 * @param: structure containing the RT priority.
4682 */
4683 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4684 {
4685 struct sched_param lp;
4686 struct task_struct *p;
4687 int retval;
4688
4689 if (!param || pid < 0)
4690 return -EINVAL;
4691
4692 read_lock(&tasklist_lock);
4693 p = find_process_by_pid(pid);
4694 retval = -ESRCH;
4695 if (!p)
4696 goto out_unlock;
4697
4698 retval = security_task_getscheduler(p);
4699 if (retval)
4700 goto out_unlock;
4701
4702 lp.sched_priority = p->rt_priority;
4703 read_unlock(&tasklist_lock);
4704
4705 /*
4706 * This one might sleep, we cannot do it with a spinlock held ...
4707 */
4708 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4709
4710 return retval;
4711
4712 out_unlock:
4713 read_unlock(&tasklist_lock);
4714 return retval;
4715 }
4716
4717 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4718 {
4719 cpumask_t cpus_allowed;
4720 struct task_struct *p;
4721 int retval;
4722
4723 get_online_cpus();
4724 read_lock(&tasklist_lock);
4725
4726 p = find_process_by_pid(pid);
4727 if (!p) {
4728 read_unlock(&tasklist_lock);
4729 put_online_cpus();
4730 return -ESRCH;
4731 }
4732
4733 /*
4734 * It is not safe to call set_cpus_allowed with the
4735 * tasklist_lock held. We will bump the task_struct's
4736 * usage count and then drop tasklist_lock.
4737 */
4738 get_task_struct(p);
4739 read_unlock(&tasklist_lock);
4740
4741 retval = -EPERM;
4742 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4743 !capable(CAP_SYS_NICE))
4744 goto out_unlock;
4745
4746 retval = security_task_setscheduler(p, 0, NULL);
4747 if (retval)
4748 goto out_unlock;
4749
4750 cpus_allowed = cpuset_cpus_allowed(p);
4751 cpus_and(new_mask, new_mask, cpus_allowed);
4752 again:
4753 retval = set_cpus_allowed(p, new_mask);
4754
4755 if (!retval) {
4756 cpus_allowed = cpuset_cpus_allowed(p);
4757 if (!cpus_subset(new_mask, cpus_allowed)) {
4758 /*
4759 * We must have raced with a concurrent cpuset
4760 * update. Just reset the cpus_allowed to the
4761 * cpuset's cpus_allowed
4762 */
4763 new_mask = cpus_allowed;
4764 goto again;
4765 }
4766 }
4767 out_unlock:
4768 put_task_struct(p);
4769 put_online_cpus();
4770 return retval;
4771 }
4772
4773 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4774 cpumask_t *new_mask)
4775 {
4776 if (len < sizeof(cpumask_t)) {
4777 memset(new_mask, 0, sizeof(cpumask_t));
4778 } else if (len > sizeof(cpumask_t)) {
4779 len = sizeof(cpumask_t);
4780 }
4781 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4782 }
4783
4784 /**
4785 * sys_sched_setaffinity - set the cpu affinity of a process
4786 * @pid: pid of the process
4787 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4788 * @user_mask_ptr: user-space pointer to the new cpu mask
4789 */
4790 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4791 unsigned long __user *user_mask_ptr)
4792 {
4793 cpumask_t new_mask;
4794 int retval;
4795
4796 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4797 if (retval)
4798 return retval;
4799
4800 return sched_setaffinity(pid, new_mask);
4801 }
4802
4803 /*
4804 * Represents all cpu's present in the system
4805 * In systems capable of hotplug, this map could dynamically grow
4806 * as new cpu's are detected in the system via any platform specific
4807 * method, such as ACPI for e.g.
4808 */
4809
4810 cpumask_t cpu_present_map __read_mostly;
4811 EXPORT_SYMBOL(cpu_present_map);
4812
4813 #ifndef CONFIG_SMP
4814 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4815 EXPORT_SYMBOL(cpu_online_map);
4816
4817 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4818 EXPORT_SYMBOL(cpu_possible_map);
4819 #endif
4820
4821 long sched_getaffinity(pid_t pid, cpumask_t *mask)
4822 {
4823 struct task_struct *p;
4824 int retval;
4825
4826 get_online_cpus();
4827 read_lock(&tasklist_lock);
4828
4829 retval = -ESRCH;
4830 p = find_process_by_pid(pid);
4831 if (!p)
4832 goto out_unlock;
4833
4834 retval = security_task_getscheduler(p);
4835 if (retval)
4836 goto out_unlock;
4837
4838 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
4839
4840 out_unlock:
4841 read_unlock(&tasklist_lock);
4842 put_online_cpus();
4843
4844 return retval;
4845 }
4846
4847 /**
4848 * sys_sched_getaffinity - get the cpu affinity of a process
4849 * @pid: pid of the process
4850 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4851 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4852 */
4853 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4854 unsigned long __user *user_mask_ptr)
4855 {
4856 int ret;
4857 cpumask_t mask;
4858
4859 if (len < sizeof(cpumask_t))
4860 return -EINVAL;
4861
4862 ret = sched_getaffinity(pid, &mask);
4863 if (ret < 0)
4864 return ret;
4865
4866 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4867 return -EFAULT;
4868
4869 return sizeof(cpumask_t);
4870 }
4871
4872 /**
4873 * sys_sched_yield - yield the current processor to other threads.
4874 *
4875 * This function yields the current CPU to other tasks. If there are no
4876 * other threads running on this CPU then this function will return.
4877 */
4878 asmlinkage long sys_sched_yield(void)
4879 {
4880 struct rq *rq = this_rq_lock();
4881
4882 schedstat_inc(rq, yld_count);
4883 current->sched_class->yield_task(rq);
4884
4885 /*
4886 * Since we are going to call schedule() anyway, there's
4887 * no need to preempt or enable interrupts:
4888 */
4889 __release(rq->lock);
4890 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4891 _raw_spin_unlock(&rq->lock);
4892 preempt_enable_no_resched();
4893
4894 schedule();
4895
4896 return 0;
4897 }
4898
4899 static void __cond_resched(void)
4900 {
4901 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4902 __might_sleep(__FILE__, __LINE__);
4903 #endif
4904 /*
4905 * The BKS might be reacquired before we have dropped
4906 * PREEMPT_ACTIVE, which could trigger a second
4907 * cond_resched() call.
4908 */
4909 do {
4910 add_preempt_count(PREEMPT_ACTIVE);
4911 schedule();
4912 sub_preempt_count(PREEMPT_ACTIVE);
4913 } while (need_resched());
4914 }
4915
4916 #if !defined(CONFIG_PREEMPT) || defined(CONFIG_PREEMPT_VOLUNTARY)
4917 int __sched _cond_resched(void)
4918 {
4919 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4920 system_state == SYSTEM_RUNNING) {
4921 __cond_resched();
4922 return 1;
4923 }
4924 return 0;
4925 }
4926 EXPORT_SYMBOL(_cond_resched);
4927 #endif
4928
4929 /*
4930 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4931 * call schedule, and on return reacquire the lock.
4932 *
4933 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4934 * operations here to prevent schedule() from being called twice (once via
4935 * spin_unlock(), once by hand).
4936 */
4937 int cond_resched_lock(spinlock_t *lock)
4938 {
4939 int resched = need_resched() && system_state == SYSTEM_RUNNING;
4940 int ret = 0;
4941
4942 if (spin_needbreak(lock) || resched) {
4943 spin_unlock(lock);
4944 if (resched && need_resched())
4945 __cond_resched();
4946 else
4947 cpu_relax();
4948 ret = 1;
4949 spin_lock(lock);
4950 }
4951 return ret;
4952 }
4953 EXPORT_SYMBOL(cond_resched_lock);
4954
4955 int __sched cond_resched_softirq(void)
4956 {
4957 BUG_ON(!in_softirq());
4958
4959 if (need_resched() && system_state == SYSTEM_RUNNING) {
4960 local_bh_enable();
4961 __cond_resched();
4962 local_bh_disable();
4963 return 1;
4964 }
4965 return 0;
4966 }
4967 EXPORT_SYMBOL(cond_resched_softirq);
4968
4969 /**
4970 * yield - yield the current processor to other threads.
4971 *
4972 * This is a shortcut for kernel-space yielding - it marks the
4973 * thread runnable and calls sys_sched_yield().
4974 */
4975 void __sched yield(void)
4976 {
4977 set_current_state(TASK_RUNNING);
4978 sys_sched_yield();
4979 }
4980 EXPORT_SYMBOL(yield);
4981
4982 /*
4983 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4984 * that process accounting knows that this is a task in IO wait state.
4985 *
4986 * But don't do that if it is a deliberate, throttling IO wait (this task
4987 * has set its backing_dev_info: the queue against which it should throttle)
4988 */
4989 void __sched io_schedule(void)
4990 {
4991 struct rq *rq = &__raw_get_cpu_var(runqueues);
4992
4993 delayacct_blkio_start();
4994 atomic_inc(&rq->nr_iowait);
4995 schedule();
4996 atomic_dec(&rq->nr_iowait);
4997 delayacct_blkio_end();
4998 }
4999 EXPORT_SYMBOL(io_schedule);
5000
5001 long __sched io_schedule_timeout(long timeout)
5002 {
5003 struct rq *rq = &__raw_get_cpu_var(runqueues);
5004 long ret;
5005
5006 delayacct_blkio_start();
5007 atomic_inc(&rq->nr_iowait);
5008 ret = schedule_timeout(timeout);
5009 atomic_dec(&rq->nr_iowait);
5010 delayacct_blkio_end();
5011 return ret;
5012 }
5013
5014 /**
5015 * sys_sched_get_priority_max - return maximum RT priority.
5016 * @policy: scheduling class.
5017 *
5018 * this syscall returns the maximum rt_priority that can be used
5019 * by a given scheduling class.
5020 */
5021 asmlinkage long sys_sched_get_priority_max(int policy)
5022 {
5023 int ret = -EINVAL;
5024
5025 switch (policy) {
5026 case SCHED_FIFO:
5027 case SCHED_RR:
5028 ret = MAX_USER_RT_PRIO-1;
5029 break;
5030 case SCHED_NORMAL:
5031 case SCHED_BATCH:
5032 case SCHED_IDLE:
5033 ret = 0;
5034 break;
5035 }
5036 return ret;
5037 }
5038
5039 /**
5040 * sys_sched_get_priority_min - return minimum RT priority.
5041 * @policy: scheduling class.
5042 *
5043 * this syscall returns the minimum rt_priority that can be used
5044 * by a given scheduling class.
5045 */
5046 asmlinkage long sys_sched_get_priority_min(int policy)
5047 {
5048 int ret = -EINVAL;
5049
5050 switch (policy) {
5051 case SCHED_FIFO:
5052 case SCHED_RR:
5053 ret = 1;
5054 break;
5055 case SCHED_NORMAL:
5056 case SCHED_BATCH:
5057 case SCHED_IDLE:
5058 ret = 0;
5059 }
5060 return ret;
5061 }
5062
5063 /**
5064 * sys_sched_rr_get_interval - return the default timeslice of a process.
5065 * @pid: pid of the process.
5066 * @interval: userspace pointer to the timeslice value.
5067 *
5068 * this syscall writes the default timeslice value of a given process
5069 * into the user-space timespec buffer. A value of '0' means infinity.
5070 */
5071 asmlinkage
5072 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5073 {
5074 struct task_struct *p;
5075 unsigned int time_slice;
5076 int retval;
5077 struct timespec t;
5078
5079 if (pid < 0)
5080 return -EINVAL;
5081
5082 retval = -ESRCH;
5083 read_lock(&tasklist_lock);
5084 p = find_process_by_pid(pid);
5085 if (!p)
5086 goto out_unlock;
5087
5088 retval = security_task_getscheduler(p);
5089 if (retval)
5090 goto out_unlock;
5091
5092 /*
5093 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5094 * tasks that are on an otherwise idle runqueue:
5095 */
5096 time_slice = 0;
5097 if (p->policy == SCHED_RR) {
5098 time_slice = DEF_TIMESLICE;
5099 } else if (p->policy != SCHED_FIFO) {
5100 struct sched_entity *se = &p->se;
5101 unsigned long flags;
5102 struct rq *rq;
5103
5104 rq = task_rq_lock(p, &flags);
5105 if (rq->cfs.load.weight)
5106 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
5107 task_rq_unlock(rq, &flags);
5108 }
5109 read_unlock(&tasklist_lock);
5110 jiffies_to_timespec(time_slice, &t);
5111 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5112 return retval;
5113
5114 out_unlock:
5115 read_unlock(&tasklist_lock);
5116 return retval;
5117 }
5118
5119 static const char stat_nam[] = "RSDTtZX";
5120
5121 void sched_show_task(struct task_struct *p)
5122 {
5123 unsigned long free = 0;
5124 unsigned state;
5125
5126 state = p->state ? __ffs(p->state) + 1 : 0;
5127 printk(KERN_INFO "%-13.13s %c", p->comm,
5128 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5129 #if BITS_PER_LONG == 32
5130 if (state == TASK_RUNNING)
5131 printk(KERN_CONT " running ");
5132 else
5133 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5134 #else
5135 if (state == TASK_RUNNING)
5136 printk(KERN_CONT " running task ");
5137 else
5138 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5139 #endif
5140 #ifdef CONFIG_DEBUG_STACK_USAGE
5141 {
5142 unsigned long *n = end_of_stack(p);
5143 while (!*n)
5144 n++;
5145 free = (unsigned long)n - (unsigned long)end_of_stack(p);
5146 }
5147 #endif
5148 printk(KERN_CONT "%5lu %5d %6d\n", free,
5149 task_pid_nr(p), task_pid_nr(p->real_parent));
5150
5151 show_stack(p, NULL);
5152 }
5153
5154 void show_state_filter(unsigned long state_filter)
5155 {
5156 struct task_struct *g, *p;
5157
5158 #if BITS_PER_LONG == 32
5159 printk(KERN_INFO
5160 " task PC stack pid father\n");
5161 #else
5162 printk(KERN_INFO
5163 " task PC stack pid father\n");
5164 #endif
5165 read_lock(&tasklist_lock);
5166 do_each_thread(g, p) {
5167 /*
5168 * reset the NMI-timeout, listing all files on a slow
5169 * console might take alot of time:
5170 */
5171 touch_nmi_watchdog();
5172 if (!state_filter || (p->state & state_filter))
5173 sched_show_task(p);
5174 } while_each_thread(g, p);
5175
5176 touch_all_softlockup_watchdogs();
5177
5178 #ifdef CONFIG_SCHED_DEBUG
5179 sysrq_sched_debug_show();
5180 #endif
5181 read_unlock(&tasklist_lock);
5182 /*
5183 * Only show locks if all tasks are dumped:
5184 */
5185 if (state_filter == -1)
5186 debug_show_all_locks();
5187 }
5188
5189 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5190 {
5191 idle->sched_class = &idle_sched_class;
5192 }
5193
5194 /**
5195 * init_idle - set up an idle thread for a given CPU
5196 * @idle: task in question
5197 * @cpu: cpu the idle task belongs to
5198 *
5199 * NOTE: this function does not set the idle thread's NEED_RESCHED
5200 * flag, to make booting more robust.
5201 */
5202 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5203 {
5204 struct rq *rq = cpu_rq(cpu);
5205 unsigned long flags;
5206
5207 __sched_fork(idle);
5208 idle->se.exec_start = sched_clock();
5209
5210 idle->prio = idle->normal_prio = MAX_PRIO;
5211 idle->cpus_allowed = cpumask_of_cpu(cpu);
5212 __set_task_cpu(idle, cpu);
5213
5214 spin_lock_irqsave(&rq->lock, flags);
5215 rq->curr = rq->idle = idle;
5216 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5217 idle->oncpu = 1;
5218 #endif
5219 spin_unlock_irqrestore(&rq->lock, flags);
5220
5221 /* Set the preempt count _outside_ the spinlocks! */
5222 task_thread_info(idle)->preempt_count = 0;
5223
5224 /*
5225 * The idle tasks have their own, simple scheduling class:
5226 */
5227 idle->sched_class = &idle_sched_class;
5228 }
5229
5230 /*
5231 * In a system that switches off the HZ timer nohz_cpu_mask
5232 * indicates which cpus entered this state. This is used
5233 * in the rcu update to wait only for active cpus. For system
5234 * which do not switch off the HZ timer nohz_cpu_mask should
5235 * always be CPU_MASK_NONE.
5236 */
5237 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5238
5239 /*
5240 * Increase the granularity value when there are more CPUs,
5241 * because with more CPUs the 'effective latency' as visible
5242 * to users decreases. But the relationship is not linear,
5243 * so pick a second-best guess by going with the log2 of the
5244 * number of CPUs.
5245 *
5246 * This idea comes from the SD scheduler of Con Kolivas:
5247 */
5248 static inline void sched_init_granularity(void)
5249 {
5250 unsigned int factor = 1 + ilog2(num_online_cpus());
5251 const unsigned long limit = 200000000;
5252
5253 sysctl_sched_min_granularity *= factor;
5254 if (sysctl_sched_min_granularity > limit)
5255 sysctl_sched_min_granularity = limit;
5256
5257 sysctl_sched_latency *= factor;
5258 if (sysctl_sched_latency > limit)
5259 sysctl_sched_latency = limit;
5260
5261 sysctl_sched_wakeup_granularity *= factor;
5262 sysctl_sched_batch_wakeup_granularity *= factor;
5263 }
5264
5265 #ifdef CONFIG_SMP
5266 /*
5267 * This is how migration works:
5268 *
5269 * 1) we queue a struct migration_req structure in the source CPU's
5270 * runqueue and wake up that CPU's migration thread.
5271 * 2) we down() the locked semaphore => thread blocks.
5272 * 3) migration thread wakes up (implicitly it forces the migrated
5273 * thread off the CPU)
5274 * 4) it gets the migration request and checks whether the migrated
5275 * task is still in the wrong runqueue.
5276 * 5) if it's in the wrong runqueue then the migration thread removes
5277 * it and puts it into the right queue.
5278 * 6) migration thread up()s the semaphore.
5279 * 7) we wake up and the migration is done.
5280 */
5281
5282 /*
5283 * Change a given task's CPU affinity. Migrate the thread to a
5284 * proper CPU and schedule it away if the CPU it's executing on
5285 * is removed from the allowed bitmask.
5286 *
5287 * NOTE: the caller must have a valid reference to the task, the
5288 * task must not exit() & deallocate itself prematurely. The
5289 * call is not atomic; no spinlocks may be held.
5290 */
5291 int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
5292 {
5293 struct migration_req req;
5294 unsigned long flags;
5295 struct rq *rq;
5296 int ret = 0;
5297
5298 rq = task_rq_lock(p, &flags);
5299 if (!cpus_intersects(new_mask, cpu_online_map)) {
5300 ret = -EINVAL;
5301 goto out;
5302 }
5303
5304 if (p->sched_class->set_cpus_allowed)
5305 p->sched_class->set_cpus_allowed(p, &new_mask);
5306 else {
5307 p->cpus_allowed = new_mask;
5308 p->rt.nr_cpus_allowed = cpus_weight(new_mask);
5309 }
5310
5311 /* Can the task run on the task's current CPU? If so, we're done */
5312 if (cpu_isset(task_cpu(p), new_mask))
5313 goto out;
5314
5315 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
5316 /* Need help from migration thread: drop lock and wait. */
5317 task_rq_unlock(rq, &flags);
5318 wake_up_process(rq->migration_thread);
5319 wait_for_completion(&req.done);
5320 tlb_migrate_finish(p->mm);
5321 return 0;
5322 }
5323 out:
5324 task_rq_unlock(rq, &flags);
5325
5326 return ret;
5327 }
5328 EXPORT_SYMBOL_GPL(set_cpus_allowed);
5329
5330 /*
5331 * Move (not current) task off this cpu, onto dest cpu. We're doing
5332 * this because either it can't run here any more (set_cpus_allowed()
5333 * away from this CPU, or CPU going down), or because we're
5334 * attempting to rebalance this task on exec (sched_exec).
5335 *
5336 * So we race with normal scheduler movements, but that's OK, as long
5337 * as the task is no longer on this CPU.
5338 *
5339 * Returns non-zero if task was successfully migrated.
5340 */
5341 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5342 {
5343 struct rq *rq_dest, *rq_src;
5344 int ret = 0, on_rq;
5345
5346 if (unlikely(cpu_is_offline(dest_cpu)))
5347 return ret;
5348
5349 rq_src = cpu_rq(src_cpu);
5350 rq_dest = cpu_rq(dest_cpu);
5351
5352 double_rq_lock(rq_src, rq_dest);
5353 /* Already moved. */
5354 if (task_cpu(p) != src_cpu)
5355 goto out;
5356 /* Affinity changed (again). */
5357 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5358 goto out;
5359
5360 on_rq = p->se.on_rq;
5361 if (on_rq)
5362 deactivate_task(rq_src, p, 0);
5363
5364 set_task_cpu(p, dest_cpu);
5365 if (on_rq) {
5366 activate_task(rq_dest, p, 0);
5367 check_preempt_curr(rq_dest, p);
5368 }
5369 ret = 1;
5370 out:
5371 double_rq_unlock(rq_src, rq_dest);
5372 return ret;
5373 }
5374
5375 /*
5376 * migration_thread - this is a highprio system thread that performs
5377 * thread migration by bumping thread off CPU then 'pushing' onto
5378 * another runqueue.
5379 */
5380 static int migration_thread(void *data)
5381 {
5382 int cpu = (long)data;
5383 struct rq *rq;
5384
5385 rq = cpu_rq(cpu);
5386 BUG_ON(rq->migration_thread != current);
5387
5388 set_current_state(TASK_INTERRUPTIBLE);
5389 while (!kthread_should_stop()) {
5390 struct migration_req *req;
5391 struct list_head *head;
5392
5393 spin_lock_irq(&rq->lock);
5394
5395 if (cpu_is_offline(cpu)) {
5396 spin_unlock_irq(&rq->lock);
5397 goto wait_to_die;
5398 }
5399
5400 if (rq->active_balance) {
5401 active_load_balance(rq, cpu);
5402 rq->active_balance = 0;
5403 }
5404
5405 head = &rq->migration_queue;
5406
5407 if (list_empty(head)) {
5408 spin_unlock_irq(&rq->lock);
5409 schedule();
5410 set_current_state(TASK_INTERRUPTIBLE);
5411 continue;
5412 }
5413 req = list_entry(head->next, struct migration_req, list);
5414 list_del_init(head->next);
5415
5416 spin_unlock(&rq->lock);
5417 __migrate_task(req->task, cpu, req->dest_cpu);
5418 local_irq_enable();
5419
5420 complete(&req->done);
5421 }
5422 __set_current_state(TASK_RUNNING);
5423 return 0;
5424
5425 wait_to_die:
5426 /* Wait for kthread_stop */
5427 set_current_state(TASK_INTERRUPTIBLE);
5428 while (!kthread_should_stop()) {
5429 schedule();
5430 set_current_state(TASK_INTERRUPTIBLE);
5431 }
5432 __set_current_state(TASK_RUNNING);
5433 return 0;
5434 }
5435
5436 #ifdef CONFIG_HOTPLUG_CPU
5437
5438 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5439 {
5440 int ret;
5441
5442 local_irq_disable();
5443 ret = __migrate_task(p, src_cpu, dest_cpu);
5444 local_irq_enable();
5445 return ret;
5446 }
5447
5448 /*
5449 * Figure out where task on dead CPU should go, use force if necessary.
5450 * NOTE: interrupts should be disabled by the caller
5451 */
5452 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5453 {
5454 unsigned long flags;
5455 cpumask_t mask;
5456 struct rq *rq;
5457 int dest_cpu;
5458
5459 do {
5460 /* On same node? */
5461 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5462 cpus_and(mask, mask, p->cpus_allowed);
5463 dest_cpu = any_online_cpu(mask);
5464
5465 /* On any allowed CPU? */
5466 if (dest_cpu == NR_CPUS)
5467 dest_cpu = any_online_cpu(p->cpus_allowed);
5468
5469 /* No more Mr. Nice Guy. */
5470 if (dest_cpu == NR_CPUS) {
5471 cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
5472 /*
5473 * Try to stay on the same cpuset, where the
5474 * current cpuset may be a subset of all cpus.
5475 * The cpuset_cpus_allowed_locked() variant of
5476 * cpuset_cpus_allowed() will not block. It must be
5477 * called within calls to cpuset_lock/cpuset_unlock.
5478 */
5479 rq = task_rq_lock(p, &flags);
5480 p->cpus_allowed = cpus_allowed;
5481 dest_cpu = any_online_cpu(p->cpus_allowed);
5482 task_rq_unlock(rq, &flags);
5483
5484 /*
5485 * Don't tell them about moving exiting tasks or
5486 * kernel threads (both mm NULL), since they never
5487 * leave kernel.
5488 */
5489 if (p->mm && printk_ratelimit()) {
5490 printk(KERN_INFO "process %d (%s) no "
5491 "longer affine to cpu%d\n",
5492 task_pid_nr(p), p->comm, dead_cpu);
5493 }
5494 }
5495 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
5496 }
5497
5498 /*
5499 * While a dead CPU has no uninterruptible tasks queued at this point,
5500 * it might still have a nonzero ->nr_uninterruptible counter, because
5501 * for performance reasons the counter is not stricly tracking tasks to
5502 * their home CPUs. So we just add the counter to another CPU's counter,
5503 * to keep the global sum constant after CPU-down:
5504 */
5505 static void migrate_nr_uninterruptible(struct rq *rq_src)
5506 {
5507 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
5508 unsigned long flags;
5509
5510 local_irq_save(flags);
5511 double_rq_lock(rq_src, rq_dest);
5512 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5513 rq_src->nr_uninterruptible = 0;
5514 double_rq_unlock(rq_src, rq_dest);
5515 local_irq_restore(flags);
5516 }
5517
5518 /* Run through task list and migrate tasks from the dead cpu. */
5519 static void migrate_live_tasks(int src_cpu)
5520 {
5521 struct task_struct *p, *t;
5522
5523 read_lock(&tasklist_lock);
5524
5525 do_each_thread(t, p) {
5526 if (p == current)
5527 continue;
5528
5529 if (task_cpu(p) == src_cpu)
5530 move_task_off_dead_cpu(src_cpu, p);
5531 } while_each_thread(t, p);
5532
5533 read_unlock(&tasklist_lock);
5534 }
5535
5536 /*
5537 * Schedules idle task to be the next runnable task on current CPU.
5538 * It does so by boosting its priority to highest possible.
5539 * Used by CPU offline code.
5540 */
5541 void sched_idle_next(void)
5542 {
5543 int this_cpu = smp_processor_id();
5544 struct rq *rq = cpu_rq(this_cpu);
5545 struct task_struct *p = rq->idle;
5546 unsigned long flags;
5547
5548 /* cpu has to be offline */
5549 BUG_ON(cpu_online(this_cpu));
5550
5551 /*
5552 * Strictly not necessary since rest of the CPUs are stopped by now
5553 * and interrupts disabled on the current cpu.
5554 */
5555 spin_lock_irqsave(&rq->lock, flags);
5556
5557 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5558
5559 update_rq_clock(rq);
5560 activate_task(rq, p, 0);
5561
5562 spin_unlock_irqrestore(&rq->lock, flags);
5563 }
5564
5565 /*
5566 * Ensures that the idle task is using init_mm right before its cpu goes
5567 * offline.
5568 */
5569 void idle_task_exit(void)
5570 {
5571 struct mm_struct *mm = current->active_mm;
5572
5573 BUG_ON(cpu_online(smp_processor_id()));
5574
5575 if (mm != &init_mm)
5576 switch_mm(mm, &init_mm, current);
5577 mmdrop(mm);
5578 }
5579
5580 /* called under rq->lock with disabled interrupts */
5581 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5582 {
5583 struct rq *rq = cpu_rq(dead_cpu);
5584
5585 /* Must be exiting, otherwise would be on tasklist. */
5586 BUG_ON(!p->exit_state);
5587
5588 /* Cannot have done final schedule yet: would have vanished. */
5589 BUG_ON(p->state == TASK_DEAD);
5590
5591 get_task_struct(p);
5592
5593 /*
5594 * Drop lock around migration; if someone else moves it,
5595 * that's OK. No task can be added to this CPU, so iteration is
5596 * fine.
5597 */
5598 spin_unlock_irq(&rq->lock);
5599 move_task_off_dead_cpu(dead_cpu, p);
5600 spin_lock_irq(&rq->lock);
5601
5602 put_task_struct(p);
5603 }
5604
5605 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5606 static void migrate_dead_tasks(unsigned int dead_cpu)
5607 {
5608 struct rq *rq = cpu_rq(dead_cpu);
5609 struct task_struct *next;
5610
5611 for ( ; ; ) {
5612 if (!rq->nr_running)
5613 break;
5614 update_rq_clock(rq);
5615 next = pick_next_task(rq, rq->curr);
5616 if (!next)
5617 break;
5618 migrate_dead(dead_cpu, next);
5619
5620 }
5621 }
5622 #endif /* CONFIG_HOTPLUG_CPU */
5623
5624 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5625
5626 static struct ctl_table sd_ctl_dir[] = {
5627 {
5628 .procname = "sched_domain",
5629 .mode = 0555,
5630 },
5631 {0, },
5632 };
5633
5634 static struct ctl_table sd_ctl_root[] = {
5635 {
5636 .ctl_name = CTL_KERN,
5637 .procname = "kernel",
5638 .mode = 0555,
5639 .child = sd_ctl_dir,
5640 },
5641 {0, },
5642 };
5643
5644 static struct ctl_table *sd_alloc_ctl_entry(int n)
5645 {
5646 struct ctl_table *entry =
5647 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5648
5649 return entry;
5650 }
5651
5652 static void sd_free_ctl_entry(struct ctl_table **tablep)
5653 {
5654 struct ctl_table *entry;
5655
5656 /*
5657 * In the intermediate directories, both the child directory and
5658 * procname are dynamically allocated and could fail but the mode
5659 * will always be set. In the lowest directory the names are
5660 * static strings and all have proc handlers.
5661 */
5662 for (entry = *tablep; entry->mode; entry++) {
5663 if (entry->child)
5664 sd_free_ctl_entry(&entry->child);
5665 if (entry->proc_handler == NULL)
5666 kfree(entry->procname);
5667 }
5668
5669 kfree(*tablep);
5670 *tablep = NULL;
5671 }
5672
5673 static void
5674 set_table_entry(struct ctl_table *entry,
5675 const char *procname, void *data, int maxlen,
5676 mode_t mode, proc_handler *proc_handler)
5677 {
5678 entry->procname = procname;
5679 entry->data = data;
5680 entry->maxlen = maxlen;
5681 entry->mode = mode;
5682 entry->proc_handler = proc_handler;
5683 }
5684
5685 static struct ctl_table *
5686 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5687 {
5688 struct ctl_table *table = sd_alloc_ctl_entry(12);
5689
5690 if (table == NULL)
5691 return NULL;
5692
5693 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5694 sizeof(long), 0644, proc_doulongvec_minmax);
5695 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5696 sizeof(long), 0644, proc_doulongvec_minmax);
5697 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5698 sizeof(int), 0644, proc_dointvec_minmax);
5699 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5700 sizeof(int), 0644, proc_dointvec_minmax);
5701 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5702 sizeof(int), 0644, proc_dointvec_minmax);
5703 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5704 sizeof(int), 0644, proc_dointvec_minmax);
5705 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5706 sizeof(int), 0644, proc_dointvec_minmax);
5707 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5708 sizeof(int), 0644, proc_dointvec_minmax);
5709 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5710 sizeof(int), 0644, proc_dointvec_minmax);
5711 set_table_entry(&table[9], "cache_nice_tries",
5712 &sd->cache_nice_tries,
5713 sizeof(int), 0644, proc_dointvec_minmax);
5714 set_table_entry(&table[10], "flags", &sd->flags,
5715 sizeof(int), 0644, proc_dointvec_minmax);
5716 /* &table[11] is terminator */
5717
5718 return table;
5719 }
5720
5721 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5722 {
5723 struct ctl_table *entry, *table;
5724 struct sched_domain *sd;
5725 int domain_num = 0, i;
5726 char buf[32];
5727
5728 for_each_domain(cpu, sd)
5729 domain_num++;
5730 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5731 if (table == NULL)
5732 return NULL;
5733
5734 i = 0;
5735 for_each_domain(cpu, sd) {
5736 snprintf(buf, 32, "domain%d", i);
5737 entry->procname = kstrdup(buf, GFP_KERNEL);
5738 entry->mode = 0555;
5739 entry->child = sd_alloc_ctl_domain_table(sd);
5740 entry++;
5741 i++;
5742 }
5743 return table;
5744 }
5745
5746 static struct ctl_table_header *sd_sysctl_header;
5747 static void register_sched_domain_sysctl(void)
5748 {
5749 int i, cpu_num = num_online_cpus();
5750 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5751 char buf[32];
5752
5753 WARN_ON(sd_ctl_dir[0].child);
5754 sd_ctl_dir[0].child = entry;
5755
5756 if (entry == NULL)
5757 return;
5758
5759 for_each_online_cpu(i) {
5760 snprintf(buf, 32, "cpu%d", i);
5761 entry->procname = kstrdup(buf, GFP_KERNEL);
5762 entry->mode = 0555;
5763 entry->child = sd_alloc_ctl_cpu_table(i);
5764 entry++;
5765 }
5766
5767 WARN_ON(sd_sysctl_header);
5768 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5769 }
5770
5771 /* may be called multiple times per register */
5772 static void unregister_sched_domain_sysctl(void)
5773 {
5774 if (sd_sysctl_header)
5775 unregister_sysctl_table(sd_sysctl_header);
5776 sd_sysctl_header = NULL;
5777 if (sd_ctl_dir[0].child)
5778 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5779 }
5780 #else
5781 static void register_sched_domain_sysctl(void)
5782 {
5783 }
5784 static void unregister_sched_domain_sysctl(void)
5785 {
5786 }
5787 #endif
5788
5789 /*
5790 * migration_call - callback that gets triggered when a CPU is added.
5791 * Here we can start up the necessary migration thread for the new CPU.
5792 */
5793 static int __cpuinit
5794 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5795 {
5796 struct task_struct *p;
5797 int cpu = (long)hcpu;
5798 unsigned long flags;
5799 struct rq *rq;
5800
5801 switch (action) {
5802
5803 case CPU_UP_PREPARE:
5804 case CPU_UP_PREPARE_FROZEN:
5805 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
5806 if (IS_ERR(p))
5807 return NOTIFY_BAD;
5808 kthread_bind(p, cpu);
5809 /* Must be high prio: stop_machine expects to yield to it. */
5810 rq = task_rq_lock(p, &flags);
5811 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5812 task_rq_unlock(rq, &flags);
5813 cpu_rq(cpu)->migration_thread = p;
5814 break;
5815
5816 case CPU_ONLINE:
5817 case CPU_ONLINE_FROZEN:
5818 /* Strictly unnecessary, as first user will wake it. */
5819 wake_up_process(cpu_rq(cpu)->migration_thread);
5820
5821 /* Update our root-domain */
5822 rq = cpu_rq(cpu);
5823 spin_lock_irqsave(&rq->lock, flags);
5824 if (rq->rd) {
5825 BUG_ON(!cpu_isset(cpu, rq->rd->span));
5826 cpu_set(cpu, rq->rd->online);
5827 }
5828 spin_unlock_irqrestore(&rq->lock, flags);
5829 break;
5830
5831 #ifdef CONFIG_HOTPLUG_CPU
5832 case CPU_UP_CANCELED:
5833 case CPU_UP_CANCELED_FROZEN:
5834 if (!cpu_rq(cpu)->migration_thread)
5835 break;
5836 /* Unbind it from offline cpu so it can run. Fall thru. */
5837 kthread_bind(cpu_rq(cpu)->migration_thread,
5838 any_online_cpu(cpu_online_map));
5839 kthread_stop(cpu_rq(cpu)->migration_thread);
5840 cpu_rq(cpu)->migration_thread = NULL;
5841 break;
5842
5843 case CPU_DEAD:
5844 case CPU_DEAD_FROZEN:
5845 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
5846 migrate_live_tasks(cpu);
5847 rq = cpu_rq(cpu);
5848 kthread_stop(rq->migration_thread);
5849 rq->migration_thread = NULL;
5850 /* Idle task back to normal (off runqueue, low prio) */
5851 spin_lock_irq(&rq->lock);
5852 update_rq_clock(rq);
5853 deactivate_task(rq, rq->idle, 0);
5854 rq->idle->static_prio = MAX_PRIO;
5855 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5856 rq->idle->sched_class = &idle_sched_class;
5857 migrate_dead_tasks(cpu);
5858 spin_unlock_irq(&rq->lock);
5859 cpuset_unlock();
5860 migrate_nr_uninterruptible(rq);
5861 BUG_ON(rq->nr_running != 0);
5862
5863 /*
5864 * No need to migrate the tasks: it was best-effort if
5865 * they didn't take sched_hotcpu_mutex. Just wake up
5866 * the requestors.
5867 */
5868 spin_lock_irq(&rq->lock);
5869 while (!list_empty(&rq->migration_queue)) {
5870 struct migration_req *req;
5871
5872 req = list_entry(rq->migration_queue.next,
5873 struct migration_req, list);
5874 list_del_init(&req->list);
5875 complete(&req->done);
5876 }
5877 spin_unlock_irq(&rq->lock);
5878 break;
5879
5880 case CPU_DYING:
5881 case CPU_DYING_FROZEN:
5882 /* Update our root-domain */
5883 rq = cpu_rq(cpu);
5884 spin_lock_irqsave(&rq->lock, flags);
5885 if (rq->rd) {
5886 BUG_ON(!cpu_isset(cpu, rq->rd->span));
5887 cpu_clear(cpu, rq->rd->online);
5888 }
5889 spin_unlock_irqrestore(&rq->lock, flags);
5890 break;
5891 #endif
5892 }
5893 return NOTIFY_OK;
5894 }
5895
5896 /* Register at highest priority so that task migration (migrate_all_tasks)
5897 * happens before everything else.
5898 */
5899 static struct notifier_block __cpuinitdata migration_notifier = {
5900 .notifier_call = migration_call,
5901 .priority = 10
5902 };
5903
5904 void __init migration_init(void)
5905 {
5906 void *cpu = (void *)(long)smp_processor_id();
5907 int err;
5908
5909 /* Start one for the boot CPU: */
5910 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5911 BUG_ON(err == NOTIFY_BAD);
5912 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5913 register_cpu_notifier(&migration_notifier);
5914 }
5915 #endif
5916
5917 #ifdef CONFIG_SMP
5918
5919 /* Number of possible processor ids */
5920 int nr_cpu_ids __read_mostly = NR_CPUS;
5921 EXPORT_SYMBOL(nr_cpu_ids);
5922
5923 #ifdef CONFIG_SCHED_DEBUG
5924
5925 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
5926 {
5927 struct sched_group *group = sd->groups;
5928 cpumask_t groupmask;
5929 char str[NR_CPUS];
5930
5931 cpumask_scnprintf(str, NR_CPUS, sd->span);
5932 cpus_clear(groupmask);
5933
5934 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5935
5936 if (!(sd->flags & SD_LOAD_BALANCE)) {
5937 printk("does not load-balance\n");
5938 if (sd->parent)
5939 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5940 " has parent");
5941 return -1;
5942 }
5943
5944 printk(KERN_CONT "span %s\n", str);
5945
5946 if (!cpu_isset(cpu, sd->span)) {
5947 printk(KERN_ERR "ERROR: domain->span does not contain "
5948 "CPU%d\n", cpu);
5949 }
5950 if (!cpu_isset(cpu, group->cpumask)) {
5951 printk(KERN_ERR "ERROR: domain->groups does not contain"
5952 " CPU%d\n", cpu);
5953 }
5954
5955 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5956 do {
5957 if (!group) {
5958 printk("\n");
5959 printk(KERN_ERR "ERROR: group is NULL\n");
5960 break;
5961 }
5962
5963 if (!group->__cpu_power) {
5964 printk(KERN_CONT "\n");
5965 printk(KERN_ERR "ERROR: domain->cpu_power not "
5966 "set\n");
5967 break;
5968 }
5969
5970 if (!cpus_weight(group->cpumask)) {
5971 printk(KERN_CONT "\n");
5972 printk(KERN_ERR "ERROR: empty group\n");
5973 break;
5974 }
5975
5976 if (cpus_intersects(groupmask, group->cpumask)) {
5977 printk(KERN_CONT "\n");
5978 printk(KERN_ERR "ERROR: repeated CPUs\n");
5979 break;
5980 }
5981
5982 cpus_or(groupmask, groupmask, group->cpumask);
5983
5984 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5985 printk(KERN_CONT " %s", str);
5986
5987 group = group->next;
5988 } while (group != sd->groups);
5989 printk(KERN_CONT "\n");
5990
5991 if (!cpus_equal(sd->span, groupmask))
5992 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5993
5994 if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
5995 printk(KERN_ERR "ERROR: parent span is not a superset "
5996 "of domain->span\n");
5997 return 0;
5998 }
5999
6000 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6001 {
6002 int level = 0;
6003
6004 if (!sd) {
6005 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6006 return;
6007 }
6008
6009 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6010
6011 for (;;) {
6012 if (sched_domain_debug_one(sd, cpu, level))
6013 break;
6014 level++;
6015 sd = sd->parent;
6016 if (!sd)
6017 break;
6018 }
6019 }
6020 #else
6021 # define sched_domain_debug(sd, cpu) do { } while (0)
6022 #endif
6023
6024 static int sd_degenerate(struct sched_domain *sd)
6025 {
6026 if (cpus_weight(sd->span) == 1)
6027 return 1;
6028
6029 /* Following flags need at least 2 groups */
6030 if (sd->flags & (SD_LOAD_BALANCE |
6031 SD_BALANCE_NEWIDLE |
6032 SD_BALANCE_FORK |
6033 SD_BALANCE_EXEC |
6034 SD_SHARE_CPUPOWER |
6035 SD_SHARE_PKG_RESOURCES)) {
6036 if (sd->groups != sd->groups->next)
6037 return 0;
6038 }
6039
6040 /* Following flags don't use groups */
6041 if (sd->flags & (SD_WAKE_IDLE |
6042 SD_WAKE_AFFINE |
6043 SD_WAKE_BALANCE))
6044 return 0;
6045
6046 return 1;
6047 }
6048
6049 static int
6050 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6051 {
6052 unsigned long cflags = sd->flags, pflags = parent->flags;
6053
6054 if (sd_degenerate(parent))
6055 return 1;
6056
6057 if (!cpus_equal(sd->span, parent->span))
6058 return 0;
6059
6060 /* Does parent contain flags not in child? */
6061 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6062 if (cflags & SD_WAKE_AFFINE)
6063 pflags &= ~SD_WAKE_BALANCE;
6064 /* Flags needing groups don't count if only 1 group in parent */
6065 if (parent->groups == parent->groups->next) {
6066 pflags &= ~(SD_LOAD_BALANCE |
6067 SD_BALANCE_NEWIDLE |
6068 SD_BALANCE_FORK |
6069 SD_BALANCE_EXEC |
6070 SD_SHARE_CPUPOWER |
6071 SD_SHARE_PKG_RESOURCES);
6072 }
6073 if (~cflags & pflags)
6074 return 0;
6075
6076 return 1;
6077 }
6078
6079 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6080 {
6081 unsigned long flags;
6082 const struct sched_class *class;
6083
6084 spin_lock_irqsave(&rq->lock, flags);
6085
6086 if (rq->rd) {
6087 struct root_domain *old_rd = rq->rd;
6088
6089 for (class = sched_class_highest; class; class = class->next) {
6090 if (class->leave_domain)
6091 class->leave_domain(rq);
6092 }
6093
6094 cpu_clear(rq->cpu, old_rd->span);
6095 cpu_clear(rq->cpu, old_rd->online);
6096
6097 if (atomic_dec_and_test(&old_rd->refcount))
6098 kfree(old_rd);
6099 }
6100
6101 atomic_inc(&rd->refcount);
6102 rq->rd = rd;
6103
6104 cpu_set(rq->cpu, rd->span);
6105 if (cpu_isset(rq->cpu, cpu_online_map))
6106 cpu_set(rq->cpu, rd->online);
6107
6108 for (class = sched_class_highest; class; class = class->next) {
6109 if (class->join_domain)
6110 class->join_domain(rq);
6111 }
6112
6113 spin_unlock_irqrestore(&rq->lock, flags);
6114 }
6115
6116 static void init_rootdomain(struct root_domain *rd)
6117 {
6118 memset(rd, 0, sizeof(*rd));
6119
6120 cpus_clear(rd->span);
6121 cpus_clear(rd->online);
6122 }
6123
6124 static void init_defrootdomain(void)
6125 {
6126 init_rootdomain(&def_root_domain);
6127 atomic_set(&def_root_domain.refcount, 1);
6128 }
6129
6130 static struct root_domain *alloc_rootdomain(void)
6131 {
6132 struct root_domain *rd;
6133
6134 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6135 if (!rd)
6136 return NULL;
6137
6138 init_rootdomain(rd);
6139
6140 return rd;
6141 }
6142
6143 /*
6144 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6145 * hold the hotplug lock.
6146 */
6147 static void
6148 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6149 {
6150 struct rq *rq = cpu_rq(cpu);
6151 struct sched_domain *tmp;
6152
6153 /* Remove the sched domains which do not contribute to scheduling. */
6154 for (tmp = sd; tmp; tmp = tmp->parent) {
6155 struct sched_domain *parent = tmp->parent;
6156 if (!parent)
6157 break;
6158 if (sd_parent_degenerate(tmp, parent)) {
6159 tmp->parent = parent->parent;
6160 if (parent->parent)
6161 parent->parent->child = tmp;
6162 }
6163 }
6164
6165 if (sd && sd_degenerate(sd)) {
6166 sd = sd->parent;
6167 if (sd)
6168 sd->child = NULL;
6169 }
6170
6171 sched_domain_debug(sd, cpu);
6172
6173 rq_attach_root(rq, rd);
6174 rcu_assign_pointer(rq->sd, sd);
6175 }
6176
6177 /* cpus with isolated domains */
6178 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
6179
6180 /* Setup the mask of cpus configured for isolated domains */
6181 static int __init isolated_cpu_setup(char *str)
6182 {
6183 int ints[NR_CPUS], i;
6184
6185 str = get_options(str, ARRAY_SIZE(ints), ints);
6186 cpus_clear(cpu_isolated_map);
6187 for (i = 1; i <= ints[0]; i++)
6188 if (ints[i] < NR_CPUS)
6189 cpu_set(ints[i], cpu_isolated_map);
6190 return 1;
6191 }
6192
6193 __setup("isolcpus=", isolated_cpu_setup);
6194
6195 /*
6196 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6197 * to a function which identifies what group(along with sched group) a CPU
6198 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6199 * (due to the fact that we keep track of groups covered with a cpumask_t).
6200 *
6201 * init_sched_build_groups will build a circular linked list of the groups
6202 * covered by the given span, and will set each group's ->cpumask correctly,
6203 * and ->cpu_power to 0.
6204 */
6205 static void
6206 init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
6207 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6208 struct sched_group **sg))
6209 {
6210 struct sched_group *first = NULL, *last = NULL;
6211 cpumask_t covered = CPU_MASK_NONE;
6212 int i;
6213
6214 for_each_cpu_mask(i, span) {
6215 struct sched_group *sg;
6216 int group = group_fn(i, cpu_map, &sg);
6217 int j;
6218
6219 if (cpu_isset(i, covered))
6220 continue;
6221
6222 sg->cpumask = CPU_MASK_NONE;
6223 sg->__cpu_power = 0;
6224
6225 for_each_cpu_mask(j, span) {
6226 if (group_fn(j, cpu_map, NULL) != group)
6227 continue;
6228
6229 cpu_set(j, covered);
6230 cpu_set(j, sg->cpumask);
6231 }
6232 if (!first)
6233 first = sg;
6234 if (last)
6235 last->next = sg;
6236 last = sg;
6237 }
6238 last->next = first;
6239 }
6240
6241 #define SD_NODES_PER_DOMAIN 16
6242
6243 #ifdef CONFIG_NUMA
6244
6245 /**
6246 * find_next_best_node - find the next node to include in a sched_domain
6247 * @node: node whose sched_domain we're building
6248 * @used_nodes: nodes already in the sched_domain
6249 *
6250 * Find the next node to include in a given scheduling domain. Simply
6251 * finds the closest node not already in the @used_nodes map.
6252 *
6253 * Should use nodemask_t.
6254 */
6255 static int find_next_best_node(int node, unsigned long *used_nodes)
6256 {
6257 int i, n, val, min_val, best_node = 0;
6258
6259 min_val = INT_MAX;
6260
6261 for (i = 0; i < MAX_NUMNODES; i++) {
6262 /* Start at @node */
6263 n = (node + i) % MAX_NUMNODES;
6264
6265 if (!nr_cpus_node(n))
6266 continue;
6267
6268 /* Skip already used nodes */
6269 if (test_bit(n, used_nodes))
6270 continue;
6271
6272 /* Simple min distance search */
6273 val = node_distance(node, n);
6274
6275 if (val < min_val) {
6276 min_val = val;
6277 best_node = n;
6278 }
6279 }
6280
6281 set_bit(best_node, used_nodes);
6282 return best_node;
6283 }
6284
6285 /**
6286 * sched_domain_node_span - get a cpumask for a node's sched_domain
6287 * @node: node whose cpumask we're constructing
6288 * @size: number of nodes to include in this span
6289 *
6290 * Given a node, construct a good cpumask for its sched_domain to span. It
6291 * should be one that prevents unnecessary balancing, but also spreads tasks
6292 * out optimally.
6293 */
6294 static cpumask_t sched_domain_node_span(int node)
6295 {
6296 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
6297 cpumask_t span, nodemask;
6298 int i;
6299
6300 cpus_clear(span);
6301 bitmap_zero(used_nodes, MAX_NUMNODES);
6302
6303 nodemask = node_to_cpumask(node);
6304 cpus_or(span, span, nodemask);
6305 set_bit(node, used_nodes);
6306
6307 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6308 int next_node = find_next_best_node(node, used_nodes);
6309
6310 nodemask = node_to_cpumask(next_node);
6311 cpus_or(span, span, nodemask);
6312 }
6313
6314 return span;
6315 }
6316 #endif
6317
6318 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6319
6320 /*
6321 * SMT sched-domains:
6322 */
6323 #ifdef CONFIG_SCHED_SMT
6324 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6325 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6326
6327 static int
6328 cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6329 {
6330 if (sg)
6331 *sg = &per_cpu(sched_group_cpus, cpu);
6332 return cpu;
6333 }
6334 #endif
6335
6336 /*
6337 * multi-core sched-domains:
6338 */
6339 #ifdef CONFIG_SCHED_MC
6340 static DEFINE_PER_CPU(struct sched_domain, core_domains);
6341 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6342 #endif
6343
6344 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6345 static int
6346 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6347 {
6348 int group;
6349 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6350 cpus_and(mask, mask, *cpu_map);
6351 group = first_cpu(mask);
6352 if (sg)
6353 *sg = &per_cpu(sched_group_core, group);
6354 return group;
6355 }
6356 #elif defined(CONFIG_SCHED_MC)
6357 static int
6358 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6359 {
6360 if (sg)
6361 *sg = &per_cpu(sched_group_core, cpu);
6362 return cpu;
6363 }
6364 #endif
6365
6366 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6367 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6368
6369 static int
6370 cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6371 {
6372 int group;
6373 #ifdef CONFIG_SCHED_MC
6374 cpumask_t mask = cpu_coregroup_map(cpu);
6375 cpus_and(mask, mask, *cpu_map);
6376 group = first_cpu(mask);
6377 #elif defined(CONFIG_SCHED_SMT)
6378 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6379 cpus_and(mask, mask, *cpu_map);
6380 group = first_cpu(mask);
6381 #else
6382 group = cpu;
6383 #endif
6384 if (sg)
6385 *sg = &per_cpu(sched_group_phys, group);
6386 return group;
6387 }
6388
6389 #ifdef CONFIG_NUMA
6390 /*
6391 * The init_sched_build_groups can't handle what we want to do with node
6392 * groups, so roll our own. Now each node has its own list of groups which
6393 * gets dynamically allocated.
6394 */
6395 static DEFINE_PER_CPU(struct sched_domain, node_domains);
6396 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
6397
6398 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6399 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6400
6401 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6402 struct sched_group **sg)
6403 {
6404 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
6405 int group;
6406
6407 cpus_and(nodemask, nodemask, *cpu_map);
6408 group = first_cpu(nodemask);
6409
6410 if (sg)
6411 *sg = &per_cpu(sched_group_allnodes, group);
6412 return group;
6413 }
6414
6415 static void init_numa_sched_groups_power(struct sched_group *group_head)
6416 {
6417 struct sched_group *sg = group_head;
6418 int j;
6419
6420 if (!sg)
6421 return;
6422 do {
6423 for_each_cpu_mask(j, sg->cpumask) {
6424 struct sched_domain *sd;
6425
6426 sd = &per_cpu(phys_domains, j);
6427 if (j != first_cpu(sd->groups->cpumask)) {
6428 /*
6429 * Only add "power" once for each
6430 * physical package.
6431 */
6432 continue;
6433 }
6434
6435 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6436 }
6437 sg = sg->next;
6438 } while (sg != group_head);
6439 }
6440 #endif
6441
6442 #ifdef CONFIG_NUMA
6443 /* Free memory allocated for various sched_group structures */
6444 static void free_sched_groups(const cpumask_t *cpu_map)
6445 {
6446 int cpu, i;
6447
6448 for_each_cpu_mask(cpu, *cpu_map) {
6449 struct sched_group **sched_group_nodes
6450 = sched_group_nodes_bycpu[cpu];
6451
6452 if (!sched_group_nodes)
6453 continue;
6454
6455 for (i = 0; i < MAX_NUMNODES; i++) {
6456 cpumask_t nodemask = node_to_cpumask(i);
6457 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6458
6459 cpus_and(nodemask, nodemask, *cpu_map);
6460 if (cpus_empty(nodemask))
6461 continue;
6462
6463 if (sg == NULL)
6464 continue;
6465 sg = sg->next;
6466 next_sg:
6467 oldsg = sg;
6468 sg = sg->next;
6469 kfree(oldsg);
6470 if (oldsg != sched_group_nodes[i])
6471 goto next_sg;
6472 }
6473 kfree(sched_group_nodes);
6474 sched_group_nodes_bycpu[cpu] = NULL;
6475 }
6476 }
6477 #else
6478 static void free_sched_groups(const cpumask_t *cpu_map)
6479 {
6480 }
6481 #endif
6482
6483 /*
6484 * Initialize sched groups cpu_power.
6485 *
6486 * cpu_power indicates the capacity of sched group, which is used while
6487 * distributing the load between different sched groups in a sched domain.
6488 * Typically cpu_power for all the groups in a sched domain will be same unless
6489 * there are asymmetries in the topology. If there are asymmetries, group
6490 * having more cpu_power will pickup more load compared to the group having
6491 * less cpu_power.
6492 *
6493 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6494 * the maximum number of tasks a group can handle in the presence of other idle
6495 * or lightly loaded groups in the same sched domain.
6496 */
6497 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6498 {
6499 struct sched_domain *child;
6500 struct sched_group *group;
6501
6502 WARN_ON(!sd || !sd->groups);
6503
6504 if (cpu != first_cpu(sd->groups->cpumask))
6505 return;
6506
6507 child = sd->child;
6508
6509 sd->groups->__cpu_power = 0;
6510
6511 /*
6512 * For perf policy, if the groups in child domain share resources
6513 * (for example cores sharing some portions of the cache hierarchy
6514 * or SMT), then set this domain groups cpu_power such that each group
6515 * can handle only one task, when there are other idle groups in the
6516 * same sched domain.
6517 */
6518 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6519 (child->flags &
6520 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6521 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6522 return;
6523 }
6524
6525 /*
6526 * add cpu_power of each child group to this groups cpu_power
6527 */
6528 group = child->groups;
6529 do {
6530 sg_inc_cpu_power(sd->groups, group->__cpu_power);
6531 group = group->next;
6532 } while (group != child->groups);
6533 }
6534
6535 /*
6536 * Build sched domains for a given set of cpus and attach the sched domains
6537 * to the individual cpus
6538 */
6539 static int build_sched_domains(const cpumask_t *cpu_map)
6540 {
6541 int i;
6542 struct root_domain *rd;
6543 #ifdef CONFIG_NUMA
6544 struct sched_group **sched_group_nodes = NULL;
6545 int sd_allnodes = 0;
6546
6547 /*
6548 * Allocate the per-node list of sched groups
6549 */
6550 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
6551 GFP_KERNEL);
6552 if (!sched_group_nodes) {
6553 printk(KERN_WARNING "Can not alloc sched group node list\n");
6554 return -ENOMEM;
6555 }
6556 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6557 #endif
6558
6559 rd = alloc_rootdomain();
6560 if (!rd) {
6561 printk(KERN_WARNING "Cannot alloc root domain\n");
6562 return -ENOMEM;
6563 }
6564
6565 /*
6566 * Set up domains for cpus specified by the cpu_map.
6567 */
6568 for_each_cpu_mask(i, *cpu_map) {
6569 struct sched_domain *sd = NULL, *p;
6570 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6571
6572 cpus_and(nodemask, nodemask, *cpu_map);
6573
6574 #ifdef CONFIG_NUMA
6575 if (cpus_weight(*cpu_map) >
6576 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6577 sd = &per_cpu(allnodes_domains, i);
6578 *sd = SD_ALLNODES_INIT;
6579 sd->span = *cpu_map;
6580 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6581 p = sd;
6582 sd_allnodes = 1;
6583 } else
6584 p = NULL;
6585
6586 sd = &per_cpu(node_domains, i);
6587 *sd = SD_NODE_INIT;
6588 sd->span = sched_domain_node_span(cpu_to_node(i));
6589 sd->parent = p;
6590 if (p)
6591 p->child = sd;
6592 cpus_and(sd->span, sd->span, *cpu_map);
6593 #endif
6594
6595 p = sd;
6596 sd = &per_cpu(phys_domains, i);
6597 *sd = SD_CPU_INIT;
6598 sd->span = nodemask;
6599 sd->parent = p;
6600 if (p)
6601 p->child = sd;
6602 cpu_to_phys_group(i, cpu_map, &sd->groups);
6603
6604 #ifdef CONFIG_SCHED_MC
6605 p = sd;
6606 sd = &per_cpu(core_domains, i);
6607 *sd = SD_MC_INIT;
6608 sd->span = cpu_coregroup_map(i);
6609 cpus_and(sd->span, sd->span, *cpu_map);
6610 sd->parent = p;
6611 p->child = sd;
6612 cpu_to_core_group(i, cpu_map, &sd->groups);
6613 #endif
6614
6615 #ifdef CONFIG_SCHED_SMT
6616 p = sd;
6617 sd = &per_cpu(cpu_domains, i);
6618 *sd = SD_SIBLING_INIT;
6619 sd->span = per_cpu(cpu_sibling_map, i);
6620 cpus_and(sd->span, sd->span, *cpu_map);
6621 sd->parent = p;
6622 p->child = sd;
6623 cpu_to_cpu_group(i, cpu_map, &sd->groups);
6624 #endif
6625 }
6626
6627 #ifdef CONFIG_SCHED_SMT
6628 /* Set up CPU (sibling) groups */
6629 for_each_cpu_mask(i, *cpu_map) {
6630 cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
6631 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
6632 if (i != first_cpu(this_sibling_map))
6633 continue;
6634
6635 init_sched_build_groups(this_sibling_map, cpu_map,
6636 &cpu_to_cpu_group);
6637 }
6638 #endif
6639
6640 #ifdef CONFIG_SCHED_MC
6641 /* Set up multi-core groups */
6642 for_each_cpu_mask(i, *cpu_map) {
6643 cpumask_t this_core_map = cpu_coregroup_map(i);
6644 cpus_and(this_core_map, this_core_map, *cpu_map);
6645 if (i != first_cpu(this_core_map))
6646 continue;
6647 init_sched_build_groups(this_core_map, cpu_map,
6648 &cpu_to_core_group);
6649 }
6650 #endif
6651
6652 /* Set up physical groups */
6653 for (i = 0; i < MAX_NUMNODES; i++) {
6654 cpumask_t nodemask = node_to_cpumask(i);
6655
6656 cpus_and(nodemask, nodemask, *cpu_map);
6657 if (cpus_empty(nodemask))
6658 continue;
6659
6660 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
6661 }
6662
6663 #ifdef CONFIG_NUMA
6664 /* Set up node groups */
6665 if (sd_allnodes)
6666 init_sched_build_groups(*cpu_map, cpu_map,
6667 &cpu_to_allnodes_group);
6668
6669 for (i = 0; i < MAX_NUMNODES; i++) {
6670 /* Set up node groups */
6671 struct sched_group *sg, *prev;
6672 cpumask_t nodemask = node_to_cpumask(i);
6673 cpumask_t domainspan;
6674 cpumask_t covered = CPU_MASK_NONE;
6675 int j;
6676
6677 cpus_and(nodemask, nodemask, *cpu_map);
6678 if (cpus_empty(nodemask)) {
6679 sched_group_nodes[i] = NULL;
6680 continue;
6681 }
6682
6683 domainspan = sched_domain_node_span(i);
6684 cpus_and(domainspan, domainspan, *cpu_map);
6685
6686 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6687 if (!sg) {
6688 printk(KERN_WARNING "Can not alloc domain group for "
6689 "node %d\n", i);
6690 goto error;
6691 }
6692 sched_group_nodes[i] = sg;
6693 for_each_cpu_mask(j, nodemask) {
6694 struct sched_domain *sd;
6695
6696 sd = &per_cpu(node_domains, j);
6697 sd->groups = sg;
6698 }
6699 sg->__cpu_power = 0;
6700 sg->cpumask = nodemask;
6701 sg->next = sg;
6702 cpus_or(covered, covered, nodemask);
6703 prev = sg;
6704
6705 for (j = 0; j < MAX_NUMNODES; j++) {
6706 cpumask_t tmp, notcovered;
6707 int n = (i + j) % MAX_NUMNODES;
6708
6709 cpus_complement(notcovered, covered);
6710 cpus_and(tmp, notcovered, *cpu_map);
6711 cpus_and(tmp, tmp, domainspan);
6712 if (cpus_empty(tmp))
6713 break;
6714
6715 nodemask = node_to_cpumask(n);
6716 cpus_and(tmp, tmp, nodemask);
6717 if (cpus_empty(tmp))
6718 continue;
6719
6720 sg = kmalloc_node(sizeof(struct sched_group),
6721 GFP_KERNEL, i);
6722 if (!sg) {
6723 printk(KERN_WARNING
6724 "Can not alloc domain group for node %d\n", j);
6725 goto error;
6726 }
6727 sg->__cpu_power = 0;
6728 sg->cpumask = tmp;
6729 sg->next = prev->next;
6730 cpus_or(covered, covered, tmp);
6731 prev->next = sg;
6732 prev = sg;
6733 }
6734 }
6735 #endif
6736
6737 /* Calculate CPU power for physical packages and nodes */
6738 #ifdef CONFIG_SCHED_SMT
6739 for_each_cpu_mask(i, *cpu_map) {
6740 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6741
6742 init_sched_groups_power(i, sd);
6743 }
6744 #endif
6745 #ifdef CONFIG_SCHED_MC
6746 for_each_cpu_mask(i, *cpu_map) {
6747 struct sched_domain *sd = &per_cpu(core_domains, i);
6748
6749 init_sched_groups_power(i, sd);
6750 }
6751 #endif
6752
6753 for_each_cpu_mask(i, *cpu_map) {
6754 struct sched_domain *sd = &per_cpu(phys_domains, i);
6755
6756 init_sched_groups_power(i, sd);
6757 }
6758
6759 #ifdef CONFIG_NUMA
6760 for (i = 0; i < MAX_NUMNODES; i++)
6761 init_numa_sched_groups_power(sched_group_nodes[i]);
6762
6763 if (sd_allnodes) {
6764 struct sched_group *sg;
6765
6766 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6767 init_numa_sched_groups_power(sg);
6768 }
6769 #endif
6770
6771 /* Attach the domains */
6772 for_each_cpu_mask(i, *cpu_map) {
6773 struct sched_domain *sd;
6774 #ifdef CONFIG_SCHED_SMT
6775 sd = &per_cpu(cpu_domains, i);
6776 #elif defined(CONFIG_SCHED_MC)
6777 sd = &per_cpu(core_domains, i);
6778 #else
6779 sd = &per_cpu(phys_domains, i);
6780 #endif
6781 cpu_attach_domain(sd, rd, i);
6782 }
6783
6784 return 0;
6785
6786 #ifdef CONFIG_NUMA
6787 error:
6788 free_sched_groups(cpu_map);
6789 return -ENOMEM;
6790 #endif
6791 }
6792
6793 static cpumask_t *doms_cur; /* current sched domains */
6794 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6795
6796 /*
6797 * Special case: If a kmalloc of a doms_cur partition (array of
6798 * cpumask_t) fails, then fallback to a single sched domain,
6799 * as determined by the single cpumask_t fallback_doms.
6800 */
6801 static cpumask_t fallback_doms;
6802
6803 /*
6804 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6805 * For now this just excludes isolated cpus, but could be used to
6806 * exclude other special cases in the future.
6807 */
6808 static int arch_init_sched_domains(const cpumask_t *cpu_map)
6809 {
6810 int err;
6811
6812 ndoms_cur = 1;
6813 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6814 if (!doms_cur)
6815 doms_cur = &fallback_doms;
6816 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
6817 err = build_sched_domains(doms_cur);
6818 register_sched_domain_sysctl();
6819
6820 return err;
6821 }
6822
6823 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
6824 {
6825 free_sched_groups(cpu_map);
6826 }
6827
6828 /*
6829 * Detach sched domains from a group of cpus specified in cpu_map
6830 * These cpus will now be attached to the NULL domain
6831 */
6832 static void detach_destroy_domains(const cpumask_t *cpu_map)
6833 {
6834 int i;
6835
6836 unregister_sched_domain_sysctl();
6837
6838 for_each_cpu_mask(i, *cpu_map)
6839 cpu_attach_domain(NULL, &def_root_domain, i);
6840 synchronize_sched();
6841 arch_destroy_sched_domains(cpu_map);
6842 }
6843
6844 /*
6845 * Partition sched domains as specified by the 'ndoms_new'
6846 * cpumasks in the array doms_new[] of cpumasks. This compares
6847 * doms_new[] to the current sched domain partitioning, doms_cur[].
6848 * It destroys each deleted domain and builds each new domain.
6849 *
6850 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
6851 * The masks don't intersect (don't overlap.) We should setup one
6852 * sched domain for each mask. CPUs not in any of the cpumasks will
6853 * not be load balanced. If the same cpumask appears both in the
6854 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6855 * it as it is.
6856 *
6857 * The passed in 'doms_new' should be kmalloc'd. This routine takes
6858 * ownership of it and will kfree it when done with it. If the caller
6859 * failed the kmalloc call, then it can pass in doms_new == NULL,
6860 * and partition_sched_domains() will fallback to the single partition
6861 * 'fallback_doms'.
6862 *
6863 * Call with hotplug lock held
6864 */
6865 void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
6866 {
6867 int i, j;
6868
6869 lock_doms_cur();
6870
6871 /* always unregister in case we don't destroy any domains */
6872 unregister_sched_domain_sysctl();
6873
6874 if (doms_new == NULL) {
6875 ndoms_new = 1;
6876 doms_new = &fallback_doms;
6877 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
6878 }
6879
6880 /* Destroy deleted domains */
6881 for (i = 0; i < ndoms_cur; i++) {
6882 for (j = 0; j < ndoms_new; j++) {
6883 if (cpus_equal(doms_cur[i], doms_new[j]))
6884 goto match1;
6885 }
6886 /* no match - a current sched domain not in new doms_new[] */
6887 detach_destroy_domains(doms_cur + i);
6888 match1:
6889 ;
6890 }
6891
6892 /* Build new domains */
6893 for (i = 0; i < ndoms_new; i++) {
6894 for (j = 0; j < ndoms_cur; j++) {
6895 if (cpus_equal(doms_new[i], doms_cur[j]))
6896 goto match2;
6897 }
6898 /* no match - add a new doms_new */
6899 build_sched_domains(doms_new + i);
6900 match2:
6901 ;
6902 }
6903
6904 /* Remember the new sched domains */
6905 if (doms_cur != &fallback_doms)
6906 kfree(doms_cur);
6907 doms_cur = doms_new;
6908 ndoms_cur = ndoms_new;
6909
6910 register_sched_domain_sysctl();
6911
6912 unlock_doms_cur();
6913 }
6914
6915 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6916 static int arch_reinit_sched_domains(void)
6917 {
6918 int err;
6919
6920 get_online_cpus();
6921 detach_destroy_domains(&cpu_online_map);
6922 err = arch_init_sched_domains(&cpu_online_map);
6923 put_online_cpus();
6924
6925 return err;
6926 }
6927
6928 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6929 {
6930 int ret;
6931
6932 if (buf[0] != '0' && buf[0] != '1')
6933 return -EINVAL;
6934
6935 if (smt)
6936 sched_smt_power_savings = (buf[0] == '1');
6937 else
6938 sched_mc_power_savings = (buf[0] == '1');
6939
6940 ret = arch_reinit_sched_domains();
6941
6942 return ret ? ret : count;
6943 }
6944
6945 #ifdef CONFIG_SCHED_MC
6946 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6947 {
6948 return sprintf(page, "%u\n", sched_mc_power_savings);
6949 }
6950 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6951 const char *buf, size_t count)
6952 {
6953 return sched_power_savings_store(buf, count, 0);
6954 }
6955 static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6956 sched_mc_power_savings_store);
6957 #endif
6958
6959 #ifdef CONFIG_SCHED_SMT
6960 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6961 {
6962 return sprintf(page, "%u\n", sched_smt_power_savings);
6963 }
6964 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6965 const char *buf, size_t count)
6966 {
6967 return sched_power_savings_store(buf, count, 1);
6968 }
6969 static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6970 sched_smt_power_savings_store);
6971 #endif
6972
6973 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6974 {
6975 int err = 0;
6976
6977 #ifdef CONFIG_SCHED_SMT
6978 if (smt_capable())
6979 err = sysfs_create_file(&cls->kset.kobj,
6980 &attr_sched_smt_power_savings.attr);
6981 #endif
6982 #ifdef CONFIG_SCHED_MC
6983 if (!err && mc_capable())
6984 err = sysfs_create_file(&cls->kset.kobj,
6985 &attr_sched_mc_power_savings.attr);
6986 #endif
6987 return err;
6988 }
6989 #endif
6990
6991 /*
6992 * Force a reinitialization of the sched domains hierarchy. The domains
6993 * and groups cannot be updated in place without racing with the balancing
6994 * code, so we temporarily attach all running cpus to the NULL domain
6995 * which will prevent rebalancing while the sched domains are recalculated.
6996 */
6997 static int update_sched_domains(struct notifier_block *nfb,
6998 unsigned long action, void *hcpu)
6999 {
7000 switch (action) {
7001 case CPU_UP_PREPARE:
7002 case CPU_UP_PREPARE_FROZEN:
7003 case CPU_DOWN_PREPARE:
7004 case CPU_DOWN_PREPARE_FROZEN:
7005 detach_destroy_domains(&cpu_online_map);
7006 return NOTIFY_OK;
7007
7008 case CPU_UP_CANCELED:
7009 case CPU_UP_CANCELED_FROZEN:
7010 case CPU_DOWN_FAILED:
7011 case CPU_DOWN_FAILED_FROZEN:
7012 case CPU_ONLINE:
7013 case CPU_ONLINE_FROZEN:
7014 case CPU_DEAD:
7015 case CPU_DEAD_FROZEN:
7016 /*
7017 * Fall through and re-initialise the domains.
7018 */
7019 break;
7020 default:
7021 return NOTIFY_DONE;
7022 }
7023
7024 /* The hotplug lock is already held by cpu_up/cpu_down */
7025 arch_init_sched_domains(&cpu_online_map);
7026
7027 return NOTIFY_OK;
7028 }
7029
7030 void __init sched_init_smp(void)
7031 {
7032 cpumask_t non_isolated_cpus;
7033
7034 get_online_cpus();
7035 arch_init_sched_domains(&cpu_online_map);
7036 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7037 if (cpus_empty(non_isolated_cpus))
7038 cpu_set(smp_processor_id(), non_isolated_cpus);
7039 put_online_cpus();
7040 /* XXX: Theoretical race here - CPU may be hotplugged now */
7041 hotcpu_notifier(update_sched_domains, 0);
7042
7043 /* Move init over to a non-isolated CPU */
7044 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
7045 BUG();
7046 sched_init_granularity();
7047 }
7048 #else
7049 void __init sched_init_smp(void)
7050 {
7051 sched_init_granularity();
7052 }
7053 #endif /* CONFIG_SMP */
7054
7055 int in_sched_functions(unsigned long addr)
7056 {
7057 return in_lock_functions(addr) ||
7058 (addr >= (unsigned long)__sched_text_start
7059 && addr < (unsigned long)__sched_text_end);
7060 }
7061
7062 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
7063 {
7064 cfs_rq->tasks_timeline = RB_ROOT;
7065 #ifdef CONFIG_FAIR_GROUP_SCHED
7066 cfs_rq->rq = rq;
7067 #endif
7068 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7069 }
7070
7071 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7072 {
7073 struct rt_prio_array *array;
7074 int i;
7075
7076 array = &rt_rq->active;
7077 for (i = 0; i < MAX_RT_PRIO; i++) {
7078 INIT_LIST_HEAD(array->queue + i);
7079 __clear_bit(i, array->bitmap);
7080 }
7081 /* delimiter for bitsearch: */
7082 __set_bit(MAX_RT_PRIO, array->bitmap);
7083
7084 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7085 rt_rq->highest_prio = MAX_RT_PRIO;
7086 #endif
7087 #ifdef CONFIG_SMP
7088 rt_rq->rt_nr_migratory = 0;
7089 rt_rq->overloaded = 0;
7090 #endif
7091
7092 rt_rq->rt_time = 0;
7093 rt_rq->rt_throttled = 0;
7094
7095 #ifdef CONFIG_RT_GROUP_SCHED
7096 rt_rq->rt_nr_boosted = 0;
7097 rt_rq->rq = rq;
7098 #endif
7099 }
7100
7101 #ifdef CONFIG_FAIR_GROUP_SCHED
7102 static void init_tg_cfs_entry(struct rq *rq, struct task_group *tg,
7103 struct cfs_rq *cfs_rq, struct sched_entity *se,
7104 int cpu, int add)
7105 {
7106 tg->cfs_rq[cpu] = cfs_rq;
7107 init_cfs_rq(cfs_rq, rq);
7108 cfs_rq->tg = tg;
7109 if (add)
7110 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7111
7112 tg->se[cpu] = se;
7113 se->cfs_rq = &rq->cfs;
7114 se->my_q = cfs_rq;
7115 se->load.weight = tg->shares;
7116 se->load.inv_weight = div64_64(1ULL<<32, se->load.weight);
7117 se->parent = NULL;
7118 }
7119 #endif
7120
7121 #ifdef CONFIG_RT_GROUP_SCHED
7122 static void init_tg_rt_entry(struct rq *rq, struct task_group *tg,
7123 struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
7124 int cpu, int add)
7125 {
7126 tg->rt_rq[cpu] = rt_rq;
7127 init_rt_rq(rt_rq, rq);
7128 rt_rq->tg = tg;
7129 rt_rq->rt_se = rt_se;
7130 if (add)
7131 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7132
7133 tg->rt_se[cpu] = rt_se;
7134 rt_se->rt_rq = &rq->rt;
7135 rt_se->my_q = rt_rq;
7136 rt_se->parent = NULL;
7137 INIT_LIST_HEAD(&rt_se->run_list);
7138 }
7139 #endif
7140
7141 void __init sched_init(void)
7142 {
7143 int highest_cpu = 0;
7144 int i, j;
7145
7146 #ifdef CONFIG_SMP
7147 init_defrootdomain();
7148 #endif
7149
7150 #ifdef CONFIG_GROUP_SCHED
7151 list_add(&init_task_group.list, &task_groups);
7152 #endif
7153
7154 for_each_possible_cpu(i) {
7155 struct rq *rq;
7156
7157 rq = cpu_rq(i);
7158 spin_lock_init(&rq->lock);
7159 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7160 rq->nr_running = 0;
7161 rq->clock = 1;
7162 init_cfs_rq(&rq->cfs, rq);
7163 init_rt_rq(&rq->rt, rq);
7164 #ifdef CONFIG_FAIR_GROUP_SCHED
7165 init_task_group.shares = init_task_group_load;
7166 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7167 init_tg_cfs_entry(rq, &init_task_group,
7168 &per_cpu(init_cfs_rq, i),
7169 &per_cpu(init_sched_entity, i), i, 1);
7170
7171 #endif
7172 #ifdef CONFIG_RT_GROUP_SCHED
7173 init_task_group.rt_runtime =
7174 sysctl_sched_rt_runtime * NSEC_PER_USEC;
7175 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7176 init_tg_rt_entry(rq, &init_task_group,
7177 &per_cpu(init_rt_rq, i),
7178 &per_cpu(init_sched_rt_entity, i), i, 1);
7179 #endif
7180 rq->rt_period_expire = 0;
7181 rq->rt_throttled = 0;
7182
7183 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7184 rq->cpu_load[j] = 0;
7185 #ifdef CONFIG_SMP
7186 rq->sd = NULL;
7187 rq->rd = NULL;
7188 rq->active_balance = 0;
7189 rq->next_balance = jiffies;
7190 rq->push_cpu = 0;
7191 rq->cpu = i;
7192 rq->migration_thread = NULL;
7193 INIT_LIST_HEAD(&rq->migration_queue);
7194 rq_attach_root(rq, &def_root_domain);
7195 #endif
7196 init_rq_hrtick(rq);
7197 atomic_set(&rq->nr_iowait, 0);
7198 highest_cpu = i;
7199 }
7200
7201 set_load_weight(&init_task);
7202
7203 #ifdef CONFIG_PREEMPT_NOTIFIERS
7204 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7205 #endif
7206
7207 #ifdef CONFIG_SMP
7208 nr_cpu_ids = highest_cpu + 1;
7209 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
7210 #endif
7211
7212 #ifdef CONFIG_RT_MUTEXES
7213 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
7214 #endif
7215
7216 /*
7217 * The boot idle thread does lazy MMU switching as well:
7218 */
7219 atomic_inc(&init_mm.mm_count);
7220 enter_lazy_tlb(&init_mm, current);
7221
7222 /*
7223 * Make us the idle thread. Technically, schedule() should not be
7224 * called from this thread, however somewhere below it might be,
7225 * but because we are the idle thread, we just pick up running again
7226 * when this runqueue becomes "idle".
7227 */
7228 init_idle(current, smp_processor_id());
7229 /*
7230 * During early bootup we pretend to be a normal task:
7231 */
7232 current->sched_class = &fair_sched_class;
7233
7234 scheduler_running = 1;
7235 }
7236
7237 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7238 void __might_sleep(char *file, int line)
7239 {
7240 #ifdef in_atomic
7241 static unsigned long prev_jiffy; /* ratelimiting */
7242
7243 if ((in_atomic() || irqs_disabled()) &&
7244 system_state == SYSTEM_RUNNING && !oops_in_progress) {
7245 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7246 return;
7247 prev_jiffy = jiffies;
7248 printk(KERN_ERR "BUG: sleeping function called from invalid"
7249 " context at %s:%d\n", file, line);
7250 printk("in_atomic():%d, irqs_disabled():%d\n",
7251 in_atomic(), irqs_disabled());
7252 debug_show_held_locks(current);
7253 if (irqs_disabled())
7254 print_irqtrace_events(current);
7255 dump_stack();
7256 }
7257 #endif
7258 }
7259 EXPORT_SYMBOL(__might_sleep);
7260 #endif
7261
7262 #ifdef CONFIG_MAGIC_SYSRQ
7263 static void normalize_task(struct rq *rq, struct task_struct *p)
7264 {
7265 int on_rq;
7266 update_rq_clock(rq);
7267 on_rq = p->se.on_rq;
7268 if (on_rq)
7269 deactivate_task(rq, p, 0);
7270 __setscheduler(rq, p, SCHED_NORMAL, 0);
7271 if (on_rq) {
7272 activate_task(rq, p, 0);
7273 resched_task(rq->curr);
7274 }
7275 }
7276
7277 void normalize_rt_tasks(void)
7278 {
7279 struct task_struct *g, *p;
7280 unsigned long flags;
7281 struct rq *rq;
7282
7283 read_lock_irqsave(&tasklist_lock, flags);
7284 do_each_thread(g, p) {
7285 /*
7286 * Only normalize user tasks:
7287 */
7288 if (!p->mm)
7289 continue;
7290
7291 p->se.exec_start = 0;
7292 #ifdef CONFIG_SCHEDSTATS
7293 p->se.wait_start = 0;
7294 p->se.sleep_start = 0;
7295 p->se.block_start = 0;
7296 #endif
7297 task_rq(p)->clock = 0;
7298
7299 if (!rt_task(p)) {
7300 /*
7301 * Renice negative nice level userspace
7302 * tasks back to 0:
7303 */
7304 if (TASK_NICE(p) < 0 && p->mm)
7305 set_user_nice(p, 0);
7306 continue;
7307 }
7308
7309 spin_lock(&p->pi_lock);
7310 rq = __task_rq_lock(p);
7311
7312 normalize_task(rq, p);
7313
7314 __task_rq_unlock(rq);
7315 spin_unlock(&p->pi_lock);
7316 } while_each_thread(g, p);
7317
7318 read_unlock_irqrestore(&tasklist_lock, flags);
7319 }
7320
7321 #endif /* CONFIG_MAGIC_SYSRQ */
7322
7323 #ifdef CONFIG_IA64
7324 /*
7325 * These functions are only useful for the IA64 MCA handling.
7326 *
7327 * They can only be called when the whole system has been
7328 * stopped - every CPU needs to be quiescent, and no scheduling
7329 * activity can take place. Using them for anything else would
7330 * be a serious bug, and as a result, they aren't even visible
7331 * under any other configuration.
7332 */
7333
7334 /**
7335 * curr_task - return the current task for a given cpu.
7336 * @cpu: the processor in question.
7337 *
7338 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7339 */
7340 struct task_struct *curr_task(int cpu)
7341 {
7342 return cpu_curr(cpu);
7343 }
7344
7345 /**
7346 * set_curr_task - set the current task for a given cpu.
7347 * @cpu: the processor in question.
7348 * @p: the task pointer to set.
7349 *
7350 * Description: This function must only be used when non-maskable interrupts
7351 * are serviced on a separate stack. It allows the architecture to switch the
7352 * notion of the current task on a cpu in a non-blocking manner. This function
7353 * must be called with all CPU's synchronized, and interrupts disabled, the
7354 * and caller must save the original value of the current task (see
7355 * curr_task() above) and restore that value before reenabling interrupts and
7356 * re-starting the system.
7357 *
7358 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7359 */
7360 void set_curr_task(int cpu, struct task_struct *p)
7361 {
7362 cpu_curr(cpu) = p;
7363 }
7364
7365 #endif
7366
7367 #ifdef CONFIG_GROUP_SCHED
7368
7369 #ifdef CONFIG_FAIR_GROUP_SCHED
7370 static void free_fair_sched_group(struct task_group *tg)
7371 {
7372 int i;
7373
7374 for_each_possible_cpu(i) {
7375 if (tg->cfs_rq)
7376 kfree(tg->cfs_rq[i]);
7377 if (tg->se)
7378 kfree(tg->se[i]);
7379 }
7380
7381 kfree(tg->cfs_rq);
7382 kfree(tg->se);
7383 }
7384
7385 static int alloc_fair_sched_group(struct task_group *tg)
7386 {
7387 struct cfs_rq *cfs_rq;
7388 struct sched_entity *se;
7389 struct rq *rq;
7390 int i;
7391
7392 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
7393 if (!tg->cfs_rq)
7394 goto err;
7395 tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
7396 if (!tg->se)
7397 goto err;
7398
7399 tg->shares = NICE_0_LOAD;
7400
7401 for_each_possible_cpu(i) {
7402 rq = cpu_rq(i);
7403
7404 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
7405 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
7406 if (!cfs_rq)
7407 goto err;
7408
7409 se = kmalloc_node(sizeof(struct sched_entity),
7410 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
7411 if (!se)
7412 goto err;
7413
7414 init_tg_cfs_entry(rq, tg, cfs_rq, se, i, 0);
7415 }
7416
7417 return 1;
7418
7419 err:
7420 return 0;
7421 }
7422
7423 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7424 {
7425 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
7426 &cpu_rq(cpu)->leaf_cfs_rq_list);
7427 }
7428
7429 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
7430 {
7431 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
7432 }
7433 #else
7434 static inline void free_fair_sched_group(struct task_group *tg)
7435 {
7436 }
7437
7438 static inline int alloc_fair_sched_group(struct task_group *tg)
7439 {
7440 return 1;
7441 }
7442
7443 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7444 {
7445 }
7446
7447 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
7448 {
7449 }
7450 #endif
7451
7452 #ifdef CONFIG_RT_GROUP_SCHED
7453 static void free_rt_sched_group(struct task_group *tg)
7454 {
7455 int i;
7456
7457 for_each_possible_cpu(i) {
7458 if (tg->rt_rq)
7459 kfree(tg->rt_rq[i]);
7460 if (tg->rt_se)
7461 kfree(tg->rt_se[i]);
7462 }
7463
7464 kfree(tg->rt_rq);
7465 kfree(tg->rt_se);
7466 }
7467
7468 static int alloc_rt_sched_group(struct task_group *tg)
7469 {
7470 struct rt_rq *rt_rq;
7471 struct sched_rt_entity *rt_se;
7472 struct rq *rq;
7473 int i;
7474
7475 tg->rt_rq = kzalloc(sizeof(rt_rq) * NR_CPUS, GFP_KERNEL);
7476 if (!tg->rt_rq)
7477 goto err;
7478 tg->rt_se = kzalloc(sizeof(rt_se) * NR_CPUS, GFP_KERNEL);
7479 if (!tg->rt_se)
7480 goto err;
7481
7482 tg->rt_runtime = 0;
7483
7484 for_each_possible_cpu(i) {
7485 rq = cpu_rq(i);
7486
7487 rt_rq = kmalloc_node(sizeof(struct rt_rq),
7488 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
7489 if (!rt_rq)
7490 goto err;
7491
7492 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
7493 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
7494 if (!rt_se)
7495 goto err;
7496
7497 init_tg_rt_entry(rq, tg, rt_rq, rt_se, i, 0);
7498 }
7499
7500 return 1;
7501
7502 err:
7503 return 0;
7504 }
7505
7506 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
7507 {
7508 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
7509 &cpu_rq(cpu)->leaf_rt_rq_list);
7510 }
7511
7512 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
7513 {
7514 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
7515 }
7516 #else
7517 static inline void free_rt_sched_group(struct task_group *tg)
7518 {
7519 }
7520
7521 static inline int alloc_rt_sched_group(struct task_group *tg)
7522 {
7523 return 1;
7524 }
7525
7526 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
7527 {
7528 }
7529
7530 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
7531 {
7532 }
7533 #endif
7534
7535 static void free_sched_group(struct task_group *tg)
7536 {
7537 free_fair_sched_group(tg);
7538 free_rt_sched_group(tg);
7539 kfree(tg);
7540 }
7541
7542 /* allocate runqueue etc for a new task group */
7543 struct task_group *sched_create_group(void)
7544 {
7545 struct task_group *tg;
7546 unsigned long flags;
7547 int i;
7548
7549 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7550 if (!tg)
7551 return ERR_PTR(-ENOMEM);
7552
7553 if (!alloc_fair_sched_group(tg))
7554 goto err;
7555
7556 if (!alloc_rt_sched_group(tg))
7557 goto err;
7558
7559 spin_lock_irqsave(&task_group_lock, flags);
7560 for_each_possible_cpu(i) {
7561 register_fair_sched_group(tg, i);
7562 register_rt_sched_group(tg, i);
7563 }
7564 list_add_rcu(&tg->list, &task_groups);
7565 spin_unlock_irqrestore(&task_group_lock, flags);
7566
7567 return tg;
7568
7569 err:
7570 free_sched_group(tg);
7571 return ERR_PTR(-ENOMEM);
7572 }
7573
7574 /* rcu callback to free various structures associated with a task group */
7575 static void free_sched_group_rcu(struct rcu_head *rhp)
7576 {
7577 /* now it should be safe to free those cfs_rqs */
7578 free_sched_group(container_of(rhp, struct task_group, rcu));
7579 }
7580
7581 /* Destroy runqueue etc associated with a task group */
7582 void sched_destroy_group(struct task_group *tg)
7583 {
7584 unsigned long flags;
7585 int i;
7586
7587 spin_lock_irqsave(&task_group_lock, flags);
7588 for_each_possible_cpu(i) {
7589 unregister_fair_sched_group(tg, i);
7590 unregister_rt_sched_group(tg, i);
7591 }
7592 list_del_rcu(&tg->list);
7593 spin_unlock_irqrestore(&task_group_lock, flags);
7594
7595 /* wait for possible concurrent references to cfs_rqs complete */
7596 call_rcu(&tg->rcu, free_sched_group_rcu);
7597 }
7598
7599 /* change task's runqueue when it moves between groups.
7600 * The caller of this function should have put the task in its new group
7601 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7602 * reflect its new group.
7603 */
7604 void sched_move_task(struct task_struct *tsk)
7605 {
7606 int on_rq, running;
7607 unsigned long flags;
7608 struct rq *rq;
7609
7610 rq = task_rq_lock(tsk, &flags);
7611
7612 update_rq_clock(rq);
7613
7614 running = task_current(rq, tsk);
7615 on_rq = tsk->se.on_rq;
7616
7617 if (on_rq)
7618 dequeue_task(rq, tsk, 0);
7619 if (unlikely(running))
7620 tsk->sched_class->put_prev_task(rq, tsk);
7621
7622 set_task_rq(tsk, task_cpu(tsk));
7623
7624 #ifdef CONFIG_FAIR_GROUP_SCHED
7625 if (tsk->sched_class->moved_group)
7626 tsk->sched_class->moved_group(tsk);
7627 #endif
7628
7629 if (unlikely(running))
7630 tsk->sched_class->set_curr_task(rq);
7631 if (on_rq)
7632 enqueue_task(rq, tsk, 0);
7633
7634 task_rq_unlock(rq, &flags);
7635 }
7636
7637 #ifdef CONFIG_FAIR_GROUP_SCHED
7638 static void set_se_shares(struct sched_entity *se, unsigned long shares)
7639 {
7640 struct cfs_rq *cfs_rq = se->cfs_rq;
7641 struct rq *rq = cfs_rq->rq;
7642 int on_rq;
7643
7644 spin_lock_irq(&rq->lock);
7645
7646 on_rq = se->on_rq;
7647 if (on_rq)
7648 dequeue_entity(cfs_rq, se, 0);
7649
7650 se->load.weight = shares;
7651 se->load.inv_weight = div64_64((1ULL<<32), shares);
7652
7653 if (on_rq)
7654 enqueue_entity(cfs_rq, se, 0);
7655
7656 spin_unlock_irq(&rq->lock);
7657 }
7658
7659 static DEFINE_MUTEX(shares_mutex);
7660
7661 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7662 {
7663 int i;
7664 unsigned long flags;
7665
7666 /*
7667 * A weight of 0 or 1 can cause arithmetics problems.
7668 * (The default weight is 1024 - so there's no practical
7669 * limitation from this.)
7670 */
7671 if (shares < 2)
7672 shares = 2;
7673
7674 mutex_lock(&shares_mutex);
7675 if (tg->shares == shares)
7676 goto done;
7677
7678 spin_lock_irqsave(&task_group_lock, flags);
7679 for_each_possible_cpu(i)
7680 unregister_fair_sched_group(tg, i);
7681 spin_unlock_irqrestore(&task_group_lock, flags);
7682
7683 /* wait for any ongoing reference to this group to finish */
7684 synchronize_sched();
7685
7686 /*
7687 * Now we are free to modify the group's share on each cpu
7688 * w/o tripping rebalance_share or load_balance_fair.
7689 */
7690 tg->shares = shares;
7691 for_each_possible_cpu(i)
7692 set_se_shares(tg->se[i], shares);
7693
7694 /*
7695 * Enable load balance activity on this group, by inserting it back on
7696 * each cpu's rq->leaf_cfs_rq_list.
7697 */
7698 spin_lock_irqsave(&task_group_lock, flags);
7699 for_each_possible_cpu(i)
7700 register_fair_sched_group(tg, i);
7701 spin_unlock_irqrestore(&task_group_lock, flags);
7702 done:
7703 mutex_unlock(&shares_mutex);
7704 return 0;
7705 }
7706
7707 unsigned long sched_group_shares(struct task_group *tg)
7708 {
7709 return tg->shares;
7710 }
7711 #endif
7712
7713 #ifdef CONFIG_RT_GROUP_SCHED
7714 /*
7715 * Ensure that the real time constraints are schedulable.
7716 */
7717 static DEFINE_MUTEX(rt_constraints_mutex);
7718
7719 static unsigned long to_ratio(u64 period, u64 runtime)
7720 {
7721 if (runtime == RUNTIME_INF)
7722 return 1ULL << 16;
7723
7724 return div64_64(runtime << 16, period);
7725 }
7726
7727 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7728 {
7729 struct task_group *tgi;
7730 unsigned long total = 0;
7731 unsigned long global_ratio =
7732 to_ratio(sysctl_sched_rt_period,
7733 sysctl_sched_rt_runtime < 0 ?
7734 RUNTIME_INF : sysctl_sched_rt_runtime);
7735
7736 rcu_read_lock();
7737 list_for_each_entry_rcu(tgi, &task_groups, list) {
7738 if (tgi == tg)
7739 continue;
7740
7741 total += to_ratio(period, tgi->rt_runtime);
7742 }
7743 rcu_read_unlock();
7744
7745 return total + to_ratio(period, runtime) < global_ratio;
7746 }
7747
7748 /* Must be called with tasklist_lock held */
7749 static inline int tg_has_rt_tasks(struct task_group *tg)
7750 {
7751 struct task_struct *g, *p;
7752 do_each_thread(g, p) {
7753 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
7754 return 1;
7755 } while_each_thread(g, p);
7756 return 0;
7757 }
7758
7759 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7760 {
7761 u64 rt_runtime, rt_period;
7762 int err = 0;
7763
7764 rt_period = (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
7765 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7766 if (rt_runtime_us == -1)
7767 rt_runtime = RUNTIME_INF;
7768
7769 mutex_lock(&rt_constraints_mutex);
7770 read_lock(&tasklist_lock);
7771 if (rt_runtime_us == 0 && tg_has_rt_tasks(tg)) {
7772 err = -EBUSY;
7773 goto unlock;
7774 }
7775 if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
7776 err = -EINVAL;
7777 goto unlock;
7778 }
7779 tg->rt_runtime = rt_runtime;
7780 unlock:
7781 read_unlock(&tasklist_lock);
7782 mutex_unlock(&rt_constraints_mutex);
7783
7784 return err;
7785 }
7786
7787 long sched_group_rt_runtime(struct task_group *tg)
7788 {
7789 u64 rt_runtime_us;
7790
7791 if (tg->rt_runtime == RUNTIME_INF)
7792 return -1;
7793
7794 rt_runtime_us = tg->rt_runtime;
7795 do_div(rt_runtime_us, NSEC_PER_USEC);
7796 return rt_runtime_us;
7797 }
7798 #endif
7799 #endif /* CONFIG_GROUP_SCHED */
7800
7801 #ifdef CONFIG_CGROUP_SCHED
7802
7803 /* return corresponding task_group object of a cgroup */
7804 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7805 {
7806 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7807 struct task_group, css);
7808 }
7809
7810 static struct cgroup_subsys_state *
7811 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
7812 {
7813 struct task_group *tg;
7814
7815 if (!cgrp->parent) {
7816 /* This is early initialization for the top cgroup */
7817 init_task_group.css.cgroup = cgrp;
7818 return &init_task_group.css;
7819 }
7820
7821 /* we support only 1-level deep hierarchical scheduler atm */
7822 if (cgrp->parent->parent)
7823 return ERR_PTR(-EINVAL);
7824
7825 tg = sched_create_group();
7826 if (IS_ERR(tg))
7827 return ERR_PTR(-ENOMEM);
7828
7829 /* Bind the cgroup to task_group object we just created */
7830 tg->css.cgroup = cgrp;
7831
7832 return &tg->css;
7833 }
7834
7835 static void
7836 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
7837 {
7838 struct task_group *tg = cgroup_tg(cgrp);
7839
7840 sched_destroy_group(tg);
7841 }
7842
7843 static int
7844 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7845 struct task_struct *tsk)
7846 {
7847 #ifdef CONFIG_RT_GROUP_SCHED
7848 /* Don't accept realtime tasks when there is no way for them to run */
7849 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_runtime == 0)
7850 return -EINVAL;
7851 #else
7852 /* We don't support RT-tasks being in separate groups */
7853 if (tsk->sched_class != &fair_sched_class)
7854 return -EINVAL;
7855 #endif
7856
7857 return 0;
7858 }
7859
7860 static void
7861 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7862 struct cgroup *old_cont, struct task_struct *tsk)
7863 {
7864 sched_move_task(tsk);
7865 }
7866
7867 #ifdef CONFIG_FAIR_GROUP_SCHED
7868 static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7869 u64 shareval)
7870 {
7871 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
7872 }
7873
7874 static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
7875 {
7876 struct task_group *tg = cgroup_tg(cgrp);
7877
7878 return (u64) tg->shares;
7879 }
7880 #endif
7881
7882 #ifdef CONFIG_RT_GROUP_SCHED
7883 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7884 struct file *file,
7885 const char __user *userbuf,
7886 size_t nbytes, loff_t *unused_ppos)
7887 {
7888 char buffer[64];
7889 int retval = 0;
7890 s64 val;
7891 char *end;
7892
7893 if (!nbytes)
7894 return -EINVAL;
7895 if (nbytes >= sizeof(buffer))
7896 return -E2BIG;
7897 if (copy_from_user(buffer, userbuf, nbytes))
7898 return -EFAULT;
7899
7900 buffer[nbytes] = 0; /* nul-terminate */
7901
7902 /* strip newline if necessary */
7903 if (nbytes && (buffer[nbytes-1] == '\n'))
7904 buffer[nbytes-1] = 0;
7905 val = simple_strtoll(buffer, &end, 0);
7906 if (*end)
7907 return -EINVAL;
7908
7909 /* Pass to subsystem */
7910 retval = sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
7911 if (!retval)
7912 retval = nbytes;
7913 return retval;
7914 }
7915
7916 static ssize_t cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft,
7917 struct file *file,
7918 char __user *buf, size_t nbytes,
7919 loff_t *ppos)
7920 {
7921 char tmp[64];
7922 long val = sched_group_rt_runtime(cgroup_tg(cgrp));
7923 int len = sprintf(tmp, "%ld\n", val);
7924
7925 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
7926 }
7927 #endif
7928
7929 static struct cftype cpu_files[] = {
7930 #ifdef CONFIG_FAIR_GROUP_SCHED
7931 {
7932 .name = "shares",
7933 .read_uint = cpu_shares_read_uint,
7934 .write_uint = cpu_shares_write_uint,
7935 },
7936 #endif
7937 #ifdef CONFIG_RT_GROUP_SCHED
7938 {
7939 .name = "rt_runtime_us",
7940 .read = cpu_rt_runtime_read,
7941 .write = cpu_rt_runtime_write,
7942 },
7943 #endif
7944 };
7945
7946 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7947 {
7948 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
7949 }
7950
7951 struct cgroup_subsys cpu_cgroup_subsys = {
7952 .name = "cpu",
7953 .create = cpu_cgroup_create,
7954 .destroy = cpu_cgroup_destroy,
7955 .can_attach = cpu_cgroup_can_attach,
7956 .attach = cpu_cgroup_attach,
7957 .populate = cpu_cgroup_populate,
7958 .subsys_id = cpu_cgroup_subsys_id,
7959 .early_init = 1,
7960 };
7961
7962 #endif /* CONFIG_CGROUP_SCHED */
7963
7964 #ifdef CONFIG_CGROUP_CPUACCT
7965
7966 /*
7967 * CPU accounting code for task groups.
7968 *
7969 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7970 * (balbir@in.ibm.com).
7971 */
7972
7973 /* track cpu usage of a group of tasks */
7974 struct cpuacct {
7975 struct cgroup_subsys_state css;
7976 /* cpuusage holds pointer to a u64-type object on every cpu */
7977 u64 *cpuusage;
7978 };
7979
7980 struct cgroup_subsys cpuacct_subsys;
7981
7982 /* return cpu accounting group corresponding to this container */
7983 static inline struct cpuacct *cgroup_ca(struct cgroup *cont)
7984 {
7985 return container_of(cgroup_subsys_state(cont, cpuacct_subsys_id),
7986 struct cpuacct, css);
7987 }
7988
7989 /* return cpu accounting group to which this task belongs */
7990 static inline struct cpuacct *task_ca(struct task_struct *tsk)
7991 {
7992 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
7993 struct cpuacct, css);
7994 }
7995
7996 /* create a new cpu accounting group */
7997 static struct cgroup_subsys_state *cpuacct_create(
7998 struct cgroup_subsys *ss, struct cgroup *cont)
7999 {
8000 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8001
8002 if (!ca)
8003 return ERR_PTR(-ENOMEM);
8004
8005 ca->cpuusage = alloc_percpu(u64);
8006 if (!ca->cpuusage) {
8007 kfree(ca);
8008 return ERR_PTR(-ENOMEM);
8009 }
8010
8011 return &ca->css;
8012 }
8013
8014 /* destroy an existing cpu accounting group */
8015 static void
8016 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
8017 {
8018 struct cpuacct *ca = cgroup_ca(cont);
8019
8020 free_percpu(ca->cpuusage);
8021 kfree(ca);
8022 }
8023
8024 /* return total cpu usage (in nanoseconds) of a group */
8025 static u64 cpuusage_read(struct cgroup *cont, struct cftype *cft)
8026 {
8027 struct cpuacct *ca = cgroup_ca(cont);
8028 u64 totalcpuusage = 0;
8029 int i;
8030
8031 for_each_possible_cpu(i) {
8032 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
8033
8034 /*
8035 * Take rq->lock to make 64-bit addition safe on 32-bit
8036 * platforms.
8037 */
8038 spin_lock_irq(&cpu_rq(i)->lock);
8039 totalcpuusage += *cpuusage;
8040 spin_unlock_irq(&cpu_rq(i)->lock);
8041 }
8042
8043 return totalcpuusage;
8044 }
8045
8046 static struct cftype files[] = {
8047 {
8048 .name = "usage",
8049 .read_uint = cpuusage_read,
8050 },
8051 };
8052
8053 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8054 {
8055 return cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
8056 }
8057
8058 /*
8059 * charge this task's execution time to its accounting group.
8060 *
8061 * called with rq->lock held.
8062 */
8063 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8064 {
8065 struct cpuacct *ca;
8066
8067 if (!cpuacct_subsys.active)
8068 return;
8069
8070 ca = task_ca(tsk);
8071 if (ca) {
8072 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
8073
8074 *cpuusage += cputime;
8075 }
8076 }
8077
8078 struct cgroup_subsys cpuacct_subsys = {
8079 .name = "cpuacct",
8080 .create = cpuacct_create,
8081 .destroy = cpuacct_destroy,
8082 .populate = cpuacct_populate,
8083 .subsys_id = cpuacct_subsys_id,
8084 };
8085 #endif /* CONFIG_CGROUP_CPUACCT */
This page took 0.209608 seconds and 6 git commands to generate.