Merge branch 'master' of /home/gregkh/linux/git/torvalds-2.6
[deliverable/linux.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/kthread.h>
59 #include <linux/proc_fs.h>
60 #include <linux/seq_file.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
74
75 #include <asm/tlb.h>
76 #include <asm/irq_regs.h>
77
78 #include "sched_cpupri.h"
79
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/sched.h>
82
83 /*
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
87 */
88 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
91
92 /*
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
96 */
97 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
100
101 /*
102 * Helpers for converting nanosecond timing to jiffy resolution
103 */
104 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
105
106 #define NICE_0_LOAD SCHED_LOAD_SCALE
107 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
108
109 /*
110 * These are the 'tuning knobs' of the scheduler:
111 *
112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
113 * Timeslices get refilled after they expire.
114 */
115 #define DEF_TIMESLICE (100 * HZ / 1000)
116
117 /*
118 * single value that denotes runtime == period, ie unlimited time.
119 */
120 #define RUNTIME_INF ((u64)~0ULL)
121
122 static inline int rt_policy(int policy)
123 {
124 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
125 return 1;
126 return 0;
127 }
128
129 static inline int task_has_rt_policy(struct task_struct *p)
130 {
131 return rt_policy(p->policy);
132 }
133
134 /*
135 * This is the priority-queue data structure of the RT scheduling class:
136 */
137 struct rt_prio_array {
138 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
139 struct list_head queue[MAX_RT_PRIO];
140 };
141
142 struct rt_bandwidth {
143 /* nests inside the rq lock: */
144 raw_spinlock_t rt_runtime_lock;
145 ktime_t rt_period;
146 u64 rt_runtime;
147 struct hrtimer rt_period_timer;
148 };
149
150 static struct rt_bandwidth def_rt_bandwidth;
151
152 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
153
154 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
155 {
156 struct rt_bandwidth *rt_b =
157 container_of(timer, struct rt_bandwidth, rt_period_timer);
158 ktime_t now;
159 int overrun;
160 int idle = 0;
161
162 for (;;) {
163 now = hrtimer_cb_get_time(timer);
164 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
165
166 if (!overrun)
167 break;
168
169 idle = do_sched_rt_period_timer(rt_b, overrun);
170 }
171
172 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
173 }
174
175 static
176 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
177 {
178 rt_b->rt_period = ns_to_ktime(period);
179 rt_b->rt_runtime = runtime;
180
181 raw_spin_lock_init(&rt_b->rt_runtime_lock);
182
183 hrtimer_init(&rt_b->rt_period_timer,
184 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
185 rt_b->rt_period_timer.function = sched_rt_period_timer;
186 }
187
188 static inline int rt_bandwidth_enabled(void)
189 {
190 return sysctl_sched_rt_runtime >= 0;
191 }
192
193 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
194 {
195 ktime_t now;
196
197 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
198 return;
199
200 if (hrtimer_active(&rt_b->rt_period_timer))
201 return;
202
203 raw_spin_lock(&rt_b->rt_runtime_lock);
204 for (;;) {
205 unsigned long delta;
206 ktime_t soft, hard;
207
208 if (hrtimer_active(&rt_b->rt_period_timer))
209 break;
210
211 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
212 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
213
214 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
215 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
216 delta = ktime_to_ns(ktime_sub(hard, soft));
217 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
218 HRTIMER_MODE_ABS_PINNED, 0);
219 }
220 raw_spin_unlock(&rt_b->rt_runtime_lock);
221 }
222
223 #ifdef CONFIG_RT_GROUP_SCHED
224 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
225 {
226 hrtimer_cancel(&rt_b->rt_period_timer);
227 }
228 #endif
229
230 /*
231 * sched_domains_mutex serializes calls to arch_init_sched_domains,
232 * detach_destroy_domains and partition_sched_domains.
233 */
234 static DEFINE_MUTEX(sched_domains_mutex);
235
236 #ifdef CONFIG_GROUP_SCHED
237
238 #include <linux/cgroup.h>
239
240 struct cfs_rq;
241
242 static LIST_HEAD(task_groups);
243
244 /* task group related information */
245 struct task_group {
246 #ifdef CONFIG_CGROUP_SCHED
247 struct cgroup_subsys_state css;
248 #endif
249
250 #ifdef CONFIG_USER_SCHED
251 uid_t uid;
252 #endif
253
254 #ifdef CONFIG_FAIR_GROUP_SCHED
255 /* schedulable entities of this group on each cpu */
256 struct sched_entity **se;
257 /* runqueue "owned" by this group on each cpu */
258 struct cfs_rq **cfs_rq;
259 unsigned long shares;
260 #endif
261
262 #ifdef CONFIG_RT_GROUP_SCHED
263 struct sched_rt_entity **rt_se;
264 struct rt_rq **rt_rq;
265
266 struct rt_bandwidth rt_bandwidth;
267 #endif
268
269 struct rcu_head rcu;
270 struct list_head list;
271
272 struct task_group *parent;
273 struct list_head siblings;
274 struct list_head children;
275 };
276
277 #ifdef CONFIG_USER_SCHED
278
279 /* Helper function to pass uid information to create_sched_user() */
280 void set_tg_uid(struct user_struct *user)
281 {
282 user->tg->uid = user->uid;
283 }
284
285 /*
286 * Root task group.
287 * Every UID task group (including init_task_group aka UID-0) will
288 * be a child to this group.
289 */
290 struct task_group root_task_group;
291
292 #ifdef CONFIG_FAIR_GROUP_SCHED
293 /* Default task group's sched entity on each cpu */
294 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
295 /* Default task group's cfs_rq on each cpu */
296 static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
297 #endif /* CONFIG_FAIR_GROUP_SCHED */
298
299 #ifdef CONFIG_RT_GROUP_SCHED
300 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
301 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq_var);
302 #endif /* CONFIG_RT_GROUP_SCHED */
303 #else /* !CONFIG_USER_SCHED */
304 #define root_task_group init_task_group
305 #endif /* CONFIG_USER_SCHED */
306
307 /* task_group_lock serializes add/remove of task groups and also changes to
308 * a task group's cpu shares.
309 */
310 static DEFINE_SPINLOCK(task_group_lock);
311
312 #ifdef CONFIG_FAIR_GROUP_SCHED
313
314 #ifdef CONFIG_SMP
315 static int root_task_group_empty(void)
316 {
317 return list_empty(&root_task_group.children);
318 }
319 #endif
320
321 #ifdef CONFIG_USER_SCHED
322 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
323 #else /* !CONFIG_USER_SCHED */
324 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
325 #endif /* CONFIG_USER_SCHED */
326
327 /*
328 * A weight of 0 or 1 can cause arithmetics problems.
329 * A weight of a cfs_rq is the sum of weights of which entities
330 * are queued on this cfs_rq, so a weight of a entity should not be
331 * too large, so as the shares value of a task group.
332 * (The default weight is 1024 - so there's no practical
333 * limitation from this.)
334 */
335 #define MIN_SHARES 2
336 #define MAX_SHARES (1UL << 18)
337
338 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
339 #endif
340
341 /* Default task group.
342 * Every task in system belong to this group at bootup.
343 */
344 struct task_group init_task_group;
345
346 /* return group to which a task belongs */
347 static inline struct task_group *task_group(struct task_struct *p)
348 {
349 struct task_group *tg;
350
351 #ifdef CONFIG_USER_SCHED
352 rcu_read_lock();
353 tg = __task_cred(p)->user->tg;
354 rcu_read_unlock();
355 #elif defined(CONFIG_CGROUP_SCHED)
356 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
357 struct task_group, css);
358 #else
359 tg = &init_task_group;
360 #endif
361 return tg;
362 }
363
364 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
365 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
366 {
367 #ifdef CONFIG_FAIR_GROUP_SCHED
368 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
369 p->se.parent = task_group(p)->se[cpu];
370 #endif
371
372 #ifdef CONFIG_RT_GROUP_SCHED
373 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
374 p->rt.parent = task_group(p)->rt_se[cpu];
375 #endif
376 }
377
378 #else
379
380 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
381 static inline struct task_group *task_group(struct task_struct *p)
382 {
383 return NULL;
384 }
385
386 #endif /* CONFIG_GROUP_SCHED */
387
388 /* CFS-related fields in a runqueue */
389 struct cfs_rq {
390 struct load_weight load;
391 unsigned long nr_running;
392
393 u64 exec_clock;
394 u64 min_vruntime;
395
396 struct rb_root tasks_timeline;
397 struct rb_node *rb_leftmost;
398
399 struct list_head tasks;
400 struct list_head *balance_iterator;
401
402 /*
403 * 'curr' points to currently running entity on this cfs_rq.
404 * It is set to NULL otherwise (i.e when none are currently running).
405 */
406 struct sched_entity *curr, *next, *last;
407
408 unsigned int nr_spread_over;
409
410 #ifdef CONFIG_FAIR_GROUP_SCHED
411 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
412
413 /*
414 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
415 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
416 * (like users, containers etc.)
417 *
418 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
419 * list is used during load balance.
420 */
421 struct list_head leaf_cfs_rq_list;
422 struct task_group *tg; /* group that "owns" this runqueue */
423
424 #ifdef CONFIG_SMP
425 /*
426 * the part of load.weight contributed by tasks
427 */
428 unsigned long task_weight;
429
430 /*
431 * h_load = weight * f(tg)
432 *
433 * Where f(tg) is the recursive weight fraction assigned to
434 * this group.
435 */
436 unsigned long h_load;
437
438 /*
439 * this cpu's part of tg->shares
440 */
441 unsigned long shares;
442
443 /*
444 * load.weight at the time we set shares
445 */
446 unsigned long rq_weight;
447 #endif
448 #endif
449 };
450
451 /* Real-Time classes' related field in a runqueue: */
452 struct rt_rq {
453 struct rt_prio_array active;
454 unsigned long rt_nr_running;
455 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
456 struct {
457 int curr; /* highest queued rt task prio */
458 #ifdef CONFIG_SMP
459 int next; /* next highest */
460 #endif
461 } highest_prio;
462 #endif
463 #ifdef CONFIG_SMP
464 unsigned long rt_nr_migratory;
465 unsigned long rt_nr_total;
466 int overloaded;
467 struct plist_head pushable_tasks;
468 #endif
469 int rt_throttled;
470 u64 rt_time;
471 u64 rt_runtime;
472 /* Nests inside the rq lock: */
473 raw_spinlock_t rt_runtime_lock;
474
475 #ifdef CONFIG_RT_GROUP_SCHED
476 unsigned long rt_nr_boosted;
477
478 struct rq *rq;
479 struct list_head leaf_rt_rq_list;
480 struct task_group *tg;
481 struct sched_rt_entity *rt_se;
482 #endif
483 };
484
485 #ifdef CONFIG_SMP
486
487 /*
488 * We add the notion of a root-domain which will be used to define per-domain
489 * variables. Each exclusive cpuset essentially defines an island domain by
490 * fully partitioning the member cpus from any other cpuset. Whenever a new
491 * exclusive cpuset is created, we also create and attach a new root-domain
492 * object.
493 *
494 */
495 struct root_domain {
496 atomic_t refcount;
497 cpumask_var_t span;
498 cpumask_var_t online;
499
500 /*
501 * The "RT overload" flag: it gets set if a CPU has more than
502 * one runnable RT task.
503 */
504 cpumask_var_t rto_mask;
505 atomic_t rto_count;
506 #ifdef CONFIG_SMP
507 struct cpupri cpupri;
508 #endif
509 };
510
511 /*
512 * By default the system creates a single root-domain with all cpus as
513 * members (mimicking the global state we have today).
514 */
515 static struct root_domain def_root_domain;
516
517 #endif
518
519 /*
520 * This is the main, per-CPU runqueue data structure.
521 *
522 * Locking rule: those places that want to lock multiple runqueues
523 * (such as the load balancing or the thread migration code), lock
524 * acquire operations must be ordered by ascending &runqueue.
525 */
526 struct rq {
527 /* runqueue lock: */
528 raw_spinlock_t lock;
529
530 /*
531 * nr_running and cpu_load should be in the same cacheline because
532 * remote CPUs use both these fields when doing load calculation.
533 */
534 unsigned long nr_running;
535 #define CPU_LOAD_IDX_MAX 5
536 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
537 #ifdef CONFIG_NO_HZ
538 unsigned char in_nohz_recently;
539 #endif
540 /* capture load from *all* tasks on this cpu: */
541 struct load_weight load;
542 unsigned long nr_load_updates;
543 u64 nr_switches;
544
545 struct cfs_rq cfs;
546 struct rt_rq rt;
547
548 #ifdef CONFIG_FAIR_GROUP_SCHED
549 /* list of leaf cfs_rq on this cpu: */
550 struct list_head leaf_cfs_rq_list;
551 #endif
552 #ifdef CONFIG_RT_GROUP_SCHED
553 struct list_head leaf_rt_rq_list;
554 #endif
555
556 /*
557 * This is part of a global counter where only the total sum
558 * over all CPUs matters. A task can increase this counter on
559 * one CPU and if it got migrated afterwards it may decrease
560 * it on another CPU. Always updated under the runqueue lock:
561 */
562 unsigned long nr_uninterruptible;
563
564 struct task_struct *curr, *idle;
565 unsigned long next_balance;
566 struct mm_struct *prev_mm;
567
568 u64 clock;
569
570 atomic_t nr_iowait;
571
572 #ifdef CONFIG_SMP
573 struct root_domain *rd;
574 struct sched_domain *sd;
575
576 unsigned char idle_at_tick;
577 /* For active balancing */
578 int post_schedule;
579 int active_balance;
580 int push_cpu;
581 /* cpu of this runqueue: */
582 int cpu;
583 int online;
584
585 unsigned long avg_load_per_task;
586
587 struct task_struct *migration_thread;
588 struct list_head migration_queue;
589
590 u64 rt_avg;
591 u64 age_stamp;
592 u64 idle_stamp;
593 u64 avg_idle;
594 #endif
595
596 /* calc_load related fields */
597 unsigned long calc_load_update;
598 long calc_load_active;
599
600 #ifdef CONFIG_SCHED_HRTICK
601 #ifdef CONFIG_SMP
602 int hrtick_csd_pending;
603 struct call_single_data hrtick_csd;
604 #endif
605 struct hrtimer hrtick_timer;
606 #endif
607
608 #ifdef CONFIG_SCHEDSTATS
609 /* latency stats */
610 struct sched_info rq_sched_info;
611 unsigned long long rq_cpu_time;
612 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
613
614 /* sys_sched_yield() stats */
615 unsigned int yld_count;
616
617 /* schedule() stats */
618 unsigned int sched_switch;
619 unsigned int sched_count;
620 unsigned int sched_goidle;
621
622 /* try_to_wake_up() stats */
623 unsigned int ttwu_count;
624 unsigned int ttwu_local;
625
626 /* BKL stats */
627 unsigned int bkl_count;
628 #endif
629 };
630
631 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
632
633 static inline
634 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
635 {
636 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
637 }
638
639 static inline int cpu_of(struct rq *rq)
640 {
641 #ifdef CONFIG_SMP
642 return rq->cpu;
643 #else
644 return 0;
645 #endif
646 }
647
648 /*
649 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
650 * See detach_destroy_domains: synchronize_sched for details.
651 *
652 * The domain tree of any CPU may only be accessed from within
653 * preempt-disabled sections.
654 */
655 #define for_each_domain(cpu, __sd) \
656 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
657
658 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
659 #define this_rq() (&__get_cpu_var(runqueues))
660 #define task_rq(p) cpu_rq(task_cpu(p))
661 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
662 #define raw_rq() (&__raw_get_cpu_var(runqueues))
663
664 inline void update_rq_clock(struct rq *rq)
665 {
666 rq->clock = sched_clock_cpu(cpu_of(rq));
667 }
668
669 /*
670 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
671 */
672 #ifdef CONFIG_SCHED_DEBUG
673 # define const_debug __read_mostly
674 #else
675 # define const_debug static const
676 #endif
677
678 /**
679 * runqueue_is_locked
680 * @cpu: the processor in question.
681 *
682 * Returns true if the current cpu runqueue is locked.
683 * This interface allows printk to be called with the runqueue lock
684 * held and know whether or not it is OK to wake up the klogd.
685 */
686 int runqueue_is_locked(int cpu)
687 {
688 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
689 }
690
691 /*
692 * Debugging: various feature bits
693 */
694
695 #define SCHED_FEAT(name, enabled) \
696 __SCHED_FEAT_##name ,
697
698 enum {
699 #include "sched_features.h"
700 };
701
702 #undef SCHED_FEAT
703
704 #define SCHED_FEAT(name, enabled) \
705 (1UL << __SCHED_FEAT_##name) * enabled |
706
707 const_debug unsigned int sysctl_sched_features =
708 #include "sched_features.h"
709 0;
710
711 #undef SCHED_FEAT
712
713 #ifdef CONFIG_SCHED_DEBUG
714 #define SCHED_FEAT(name, enabled) \
715 #name ,
716
717 static __read_mostly char *sched_feat_names[] = {
718 #include "sched_features.h"
719 NULL
720 };
721
722 #undef SCHED_FEAT
723
724 static int sched_feat_show(struct seq_file *m, void *v)
725 {
726 int i;
727
728 for (i = 0; sched_feat_names[i]; i++) {
729 if (!(sysctl_sched_features & (1UL << i)))
730 seq_puts(m, "NO_");
731 seq_printf(m, "%s ", sched_feat_names[i]);
732 }
733 seq_puts(m, "\n");
734
735 return 0;
736 }
737
738 static ssize_t
739 sched_feat_write(struct file *filp, const char __user *ubuf,
740 size_t cnt, loff_t *ppos)
741 {
742 char buf[64];
743 char *cmp = buf;
744 int neg = 0;
745 int i;
746
747 if (cnt > 63)
748 cnt = 63;
749
750 if (copy_from_user(&buf, ubuf, cnt))
751 return -EFAULT;
752
753 buf[cnt] = 0;
754
755 if (strncmp(buf, "NO_", 3) == 0) {
756 neg = 1;
757 cmp += 3;
758 }
759
760 for (i = 0; sched_feat_names[i]; i++) {
761 int len = strlen(sched_feat_names[i]);
762
763 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
764 if (neg)
765 sysctl_sched_features &= ~(1UL << i);
766 else
767 sysctl_sched_features |= (1UL << i);
768 break;
769 }
770 }
771
772 if (!sched_feat_names[i])
773 return -EINVAL;
774
775 *ppos += cnt;
776
777 return cnt;
778 }
779
780 static int sched_feat_open(struct inode *inode, struct file *filp)
781 {
782 return single_open(filp, sched_feat_show, NULL);
783 }
784
785 static const struct file_operations sched_feat_fops = {
786 .open = sched_feat_open,
787 .write = sched_feat_write,
788 .read = seq_read,
789 .llseek = seq_lseek,
790 .release = single_release,
791 };
792
793 static __init int sched_init_debug(void)
794 {
795 debugfs_create_file("sched_features", 0644, NULL, NULL,
796 &sched_feat_fops);
797
798 return 0;
799 }
800 late_initcall(sched_init_debug);
801
802 #endif
803
804 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
805
806 /*
807 * Number of tasks to iterate in a single balance run.
808 * Limited because this is done with IRQs disabled.
809 */
810 const_debug unsigned int sysctl_sched_nr_migrate = 32;
811
812 /*
813 * ratelimit for updating the group shares.
814 * default: 0.25ms
815 */
816 unsigned int sysctl_sched_shares_ratelimit = 250000;
817 unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
818
819 /*
820 * Inject some fuzzyness into changing the per-cpu group shares
821 * this avoids remote rq-locks at the expense of fairness.
822 * default: 4
823 */
824 unsigned int sysctl_sched_shares_thresh = 4;
825
826 /*
827 * period over which we average the RT time consumption, measured
828 * in ms.
829 *
830 * default: 1s
831 */
832 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
833
834 /*
835 * period over which we measure -rt task cpu usage in us.
836 * default: 1s
837 */
838 unsigned int sysctl_sched_rt_period = 1000000;
839
840 static __read_mostly int scheduler_running;
841
842 /*
843 * part of the period that we allow rt tasks to run in us.
844 * default: 0.95s
845 */
846 int sysctl_sched_rt_runtime = 950000;
847
848 static inline u64 global_rt_period(void)
849 {
850 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
851 }
852
853 static inline u64 global_rt_runtime(void)
854 {
855 if (sysctl_sched_rt_runtime < 0)
856 return RUNTIME_INF;
857
858 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
859 }
860
861 #ifndef prepare_arch_switch
862 # define prepare_arch_switch(next) do { } while (0)
863 #endif
864 #ifndef finish_arch_switch
865 # define finish_arch_switch(prev) do { } while (0)
866 #endif
867
868 static inline int task_current(struct rq *rq, struct task_struct *p)
869 {
870 return rq->curr == p;
871 }
872
873 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
874 static inline int task_running(struct rq *rq, struct task_struct *p)
875 {
876 return task_current(rq, p);
877 }
878
879 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
880 {
881 }
882
883 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
884 {
885 #ifdef CONFIG_DEBUG_SPINLOCK
886 /* this is a valid case when another task releases the spinlock */
887 rq->lock.owner = current;
888 #endif
889 /*
890 * If we are tracking spinlock dependencies then we have to
891 * fix up the runqueue lock - which gets 'carried over' from
892 * prev into current:
893 */
894 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
895
896 raw_spin_unlock_irq(&rq->lock);
897 }
898
899 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
900 static inline int task_running(struct rq *rq, struct task_struct *p)
901 {
902 #ifdef CONFIG_SMP
903 return p->oncpu;
904 #else
905 return task_current(rq, p);
906 #endif
907 }
908
909 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
910 {
911 #ifdef CONFIG_SMP
912 /*
913 * We can optimise this out completely for !SMP, because the
914 * SMP rebalancing from interrupt is the only thing that cares
915 * here.
916 */
917 next->oncpu = 1;
918 #endif
919 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
920 raw_spin_unlock_irq(&rq->lock);
921 #else
922 raw_spin_unlock(&rq->lock);
923 #endif
924 }
925
926 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
927 {
928 #ifdef CONFIG_SMP
929 /*
930 * After ->oncpu is cleared, the task can be moved to a different CPU.
931 * We must ensure this doesn't happen until the switch is completely
932 * finished.
933 */
934 smp_wmb();
935 prev->oncpu = 0;
936 #endif
937 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
938 local_irq_enable();
939 #endif
940 }
941 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
942
943 /*
944 * __task_rq_lock - lock the runqueue a given task resides on.
945 * Must be called interrupts disabled.
946 */
947 static inline struct rq *__task_rq_lock(struct task_struct *p)
948 __acquires(rq->lock)
949 {
950 for (;;) {
951 struct rq *rq = task_rq(p);
952 raw_spin_lock(&rq->lock);
953 if (likely(rq == task_rq(p)))
954 return rq;
955 raw_spin_unlock(&rq->lock);
956 }
957 }
958
959 /*
960 * task_rq_lock - lock the runqueue a given task resides on and disable
961 * interrupts. Note the ordering: we can safely lookup the task_rq without
962 * explicitly disabling preemption.
963 */
964 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
965 __acquires(rq->lock)
966 {
967 struct rq *rq;
968
969 for (;;) {
970 local_irq_save(*flags);
971 rq = task_rq(p);
972 raw_spin_lock(&rq->lock);
973 if (likely(rq == task_rq(p)))
974 return rq;
975 raw_spin_unlock_irqrestore(&rq->lock, *flags);
976 }
977 }
978
979 void task_rq_unlock_wait(struct task_struct *p)
980 {
981 struct rq *rq = task_rq(p);
982
983 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
984 raw_spin_unlock_wait(&rq->lock);
985 }
986
987 static void __task_rq_unlock(struct rq *rq)
988 __releases(rq->lock)
989 {
990 raw_spin_unlock(&rq->lock);
991 }
992
993 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
994 __releases(rq->lock)
995 {
996 raw_spin_unlock_irqrestore(&rq->lock, *flags);
997 }
998
999 /*
1000 * this_rq_lock - lock this runqueue and disable interrupts.
1001 */
1002 static struct rq *this_rq_lock(void)
1003 __acquires(rq->lock)
1004 {
1005 struct rq *rq;
1006
1007 local_irq_disable();
1008 rq = this_rq();
1009 raw_spin_lock(&rq->lock);
1010
1011 return rq;
1012 }
1013
1014 #ifdef CONFIG_SCHED_HRTICK
1015 /*
1016 * Use HR-timers to deliver accurate preemption points.
1017 *
1018 * Its all a bit involved since we cannot program an hrt while holding the
1019 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1020 * reschedule event.
1021 *
1022 * When we get rescheduled we reprogram the hrtick_timer outside of the
1023 * rq->lock.
1024 */
1025
1026 /*
1027 * Use hrtick when:
1028 * - enabled by features
1029 * - hrtimer is actually high res
1030 */
1031 static inline int hrtick_enabled(struct rq *rq)
1032 {
1033 if (!sched_feat(HRTICK))
1034 return 0;
1035 if (!cpu_active(cpu_of(rq)))
1036 return 0;
1037 return hrtimer_is_hres_active(&rq->hrtick_timer);
1038 }
1039
1040 static void hrtick_clear(struct rq *rq)
1041 {
1042 if (hrtimer_active(&rq->hrtick_timer))
1043 hrtimer_cancel(&rq->hrtick_timer);
1044 }
1045
1046 /*
1047 * High-resolution timer tick.
1048 * Runs from hardirq context with interrupts disabled.
1049 */
1050 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1051 {
1052 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1053
1054 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1055
1056 raw_spin_lock(&rq->lock);
1057 update_rq_clock(rq);
1058 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1059 raw_spin_unlock(&rq->lock);
1060
1061 return HRTIMER_NORESTART;
1062 }
1063
1064 #ifdef CONFIG_SMP
1065 /*
1066 * called from hardirq (IPI) context
1067 */
1068 static void __hrtick_start(void *arg)
1069 {
1070 struct rq *rq = arg;
1071
1072 raw_spin_lock(&rq->lock);
1073 hrtimer_restart(&rq->hrtick_timer);
1074 rq->hrtick_csd_pending = 0;
1075 raw_spin_unlock(&rq->lock);
1076 }
1077
1078 /*
1079 * Called to set the hrtick timer state.
1080 *
1081 * called with rq->lock held and irqs disabled
1082 */
1083 static void hrtick_start(struct rq *rq, u64 delay)
1084 {
1085 struct hrtimer *timer = &rq->hrtick_timer;
1086 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1087
1088 hrtimer_set_expires(timer, time);
1089
1090 if (rq == this_rq()) {
1091 hrtimer_restart(timer);
1092 } else if (!rq->hrtick_csd_pending) {
1093 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1094 rq->hrtick_csd_pending = 1;
1095 }
1096 }
1097
1098 static int
1099 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1100 {
1101 int cpu = (int)(long)hcpu;
1102
1103 switch (action) {
1104 case CPU_UP_CANCELED:
1105 case CPU_UP_CANCELED_FROZEN:
1106 case CPU_DOWN_PREPARE:
1107 case CPU_DOWN_PREPARE_FROZEN:
1108 case CPU_DEAD:
1109 case CPU_DEAD_FROZEN:
1110 hrtick_clear(cpu_rq(cpu));
1111 return NOTIFY_OK;
1112 }
1113
1114 return NOTIFY_DONE;
1115 }
1116
1117 static __init void init_hrtick(void)
1118 {
1119 hotcpu_notifier(hotplug_hrtick, 0);
1120 }
1121 #else
1122 /*
1123 * Called to set the hrtick timer state.
1124 *
1125 * called with rq->lock held and irqs disabled
1126 */
1127 static void hrtick_start(struct rq *rq, u64 delay)
1128 {
1129 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1130 HRTIMER_MODE_REL_PINNED, 0);
1131 }
1132
1133 static inline void init_hrtick(void)
1134 {
1135 }
1136 #endif /* CONFIG_SMP */
1137
1138 static void init_rq_hrtick(struct rq *rq)
1139 {
1140 #ifdef CONFIG_SMP
1141 rq->hrtick_csd_pending = 0;
1142
1143 rq->hrtick_csd.flags = 0;
1144 rq->hrtick_csd.func = __hrtick_start;
1145 rq->hrtick_csd.info = rq;
1146 #endif
1147
1148 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1149 rq->hrtick_timer.function = hrtick;
1150 }
1151 #else /* CONFIG_SCHED_HRTICK */
1152 static inline void hrtick_clear(struct rq *rq)
1153 {
1154 }
1155
1156 static inline void init_rq_hrtick(struct rq *rq)
1157 {
1158 }
1159
1160 static inline void init_hrtick(void)
1161 {
1162 }
1163 #endif /* CONFIG_SCHED_HRTICK */
1164
1165 /*
1166 * resched_task - mark a task 'to be rescheduled now'.
1167 *
1168 * On UP this means the setting of the need_resched flag, on SMP it
1169 * might also involve a cross-CPU call to trigger the scheduler on
1170 * the target CPU.
1171 */
1172 #ifdef CONFIG_SMP
1173
1174 #ifndef tsk_is_polling
1175 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1176 #endif
1177
1178 static void resched_task(struct task_struct *p)
1179 {
1180 int cpu;
1181
1182 assert_raw_spin_locked(&task_rq(p)->lock);
1183
1184 if (test_tsk_need_resched(p))
1185 return;
1186
1187 set_tsk_need_resched(p);
1188
1189 cpu = task_cpu(p);
1190 if (cpu == smp_processor_id())
1191 return;
1192
1193 /* NEED_RESCHED must be visible before we test polling */
1194 smp_mb();
1195 if (!tsk_is_polling(p))
1196 smp_send_reschedule(cpu);
1197 }
1198
1199 static void resched_cpu(int cpu)
1200 {
1201 struct rq *rq = cpu_rq(cpu);
1202 unsigned long flags;
1203
1204 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
1205 return;
1206 resched_task(cpu_curr(cpu));
1207 raw_spin_unlock_irqrestore(&rq->lock, flags);
1208 }
1209
1210 #ifdef CONFIG_NO_HZ
1211 /*
1212 * When add_timer_on() enqueues a timer into the timer wheel of an
1213 * idle CPU then this timer might expire before the next timer event
1214 * which is scheduled to wake up that CPU. In case of a completely
1215 * idle system the next event might even be infinite time into the
1216 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1217 * leaves the inner idle loop so the newly added timer is taken into
1218 * account when the CPU goes back to idle and evaluates the timer
1219 * wheel for the next timer event.
1220 */
1221 void wake_up_idle_cpu(int cpu)
1222 {
1223 struct rq *rq = cpu_rq(cpu);
1224
1225 if (cpu == smp_processor_id())
1226 return;
1227
1228 /*
1229 * This is safe, as this function is called with the timer
1230 * wheel base lock of (cpu) held. When the CPU is on the way
1231 * to idle and has not yet set rq->curr to idle then it will
1232 * be serialized on the timer wheel base lock and take the new
1233 * timer into account automatically.
1234 */
1235 if (rq->curr != rq->idle)
1236 return;
1237
1238 /*
1239 * We can set TIF_RESCHED on the idle task of the other CPU
1240 * lockless. The worst case is that the other CPU runs the
1241 * idle task through an additional NOOP schedule()
1242 */
1243 set_tsk_need_resched(rq->idle);
1244
1245 /* NEED_RESCHED must be visible before we test polling */
1246 smp_mb();
1247 if (!tsk_is_polling(rq->idle))
1248 smp_send_reschedule(cpu);
1249 }
1250 #endif /* CONFIG_NO_HZ */
1251
1252 static u64 sched_avg_period(void)
1253 {
1254 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1255 }
1256
1257 static void sched_avg_update(struct rq *rq)
1258 {
1259 s64 period = sched_avg_period();
1260
1261 while ((s64)(rq->clock - rq->age_stamp) > period) {
1262 rq->age_stamp += period;
1263 rq->rt_avg /= 2;
1264 }
1265 }
1266
1267 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1268 {
1269 rq->rt_avg += rt_delta;
1270 sched_avg_update(rq);
1271 }
1272
1273 #else /* !CONFIG_SMP */
1274 static void resched_task(struct task_struct *p)
1275 {
1276 assert_raw_spin_locked(&task_rq(p)->lock);
1277 set_tsk_need_resched(p);
1278 }
1279
1280 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1281 {
1282 }
1283 #endif /* CONFIG_SMP */
1284
1285 #if BITS_PER_LONG == 32
1286 # define WMULT_CONST (~0UL)
1287 #else
1288 # define WMULT_CONST (1UL << 32)
1289 #endif
1290
1291 #define WMULT_SHIFT 32
1292
1293 /*
1294 * Shift right and round:
1295 */
1296 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1297
1298 /*
1299 * delta *= weight / lw
1300 */
1301 static unsigned long
1302 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1303 struct load_weight *lw)
1304 {
1305 u64 tmp;
1306
1307 if (!lw->inv_weight) {
1308 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1309 lw->inv_weight = 1;
1310 else
1311 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1312 / (lw->weight+1);
1313 }
1314
1315 tmp = (u64)delta_exec * weight;
1316 /*
1317 * Check whether we'd overflow the 64-bit multiplication:
1318 */
1319 if (unlikely(tmp > WMULT_CONST))
1320 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1321 WMULT_SHIFT/2);
1322 else
1323 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1324
1325 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1326 }
1327
1328 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1329 {
1330 lw->weight += inc;
1331 lw->inv_weight = 0;
1332 }
1333
1334 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1335 {
1336 lw->weight -= dec;
1337 lw->inv_weight = 0;
1338 }
1339
1340 /*
1341 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1342 * of tasks with abnormal "nice" values across CPUs the contribution that
1343 * each task makes to its run queue's load is weighted according to its
1344 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1345 * scaled version of the new time slice allocation that they receive on time
1346 * slice expiry etc.
1347 */
1348
1349 #define WEIGHT_IDLEPRIO 3
1350 #define WMULT_IDLEPRIO 1431655765
1351
1352 /*
1353 * Nice levels are multiplicative, with a gentle 10% change for every
1354 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1355 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1356 * that remained on nice 0.
1357 *
1358 * The "10% effect" is relative and cumulative: from _any_ nice level,
1359 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1360 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1361 * If a task goes up by ~10% and another task goes down by ~10% then
1362 * the relative distance between them is ~25%.)
1363 */
1364 static const int prio_to_weight[40] = {
1365 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1366 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1367 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1368 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1369 /* 0 */ 1024, 820, 655, 526, 423,
1370 /* 5 */ 335, 272, 215, 172, 137,
1371 /* 10 */ 110, 87, 70, 56, 45,
1372 /* 15 */ 36, 29, 23, 18, 15,
1373 };
1374
1375 /*
1376 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1377 *
1378 * In cases where the weight does not change often, we can use the
1379 * precalculated inverse to speed up arithmetics by turning divisions
1380 * into multiplications:
1381 */
1382 static const u32 prio_to_wmult[40] = {
1383 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1384 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1385 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1386 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1387 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1388 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1389 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1390 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1391 };
1392
1393 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1394
1395 /*
1396 * runqueue iterator, to support SMP load-balancing between different
1397 * scheduling classes, without having to expose their internal data
1398 * structures to the load-balancing proper:
1399 */
1400 struct rq_iterator {
1401 void *arg;
1402 struct task_struct *(*start)(void *);
1403 struct task_struct *(*next)(void *);
1404 };
1405
1406 #ifdef CONFIG_SMP
1407 static unsigned long
1408 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1409 unsigned long max_load_move, struct sched_domain *sd,
1410 enum cpu_idle_type idle, int *all_pinned,
1411 int *this_best_prio, struct rq_iterator *iterator);
1412
1413 static int
1414 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1415 struct sched_domain *sd, enum cpu_idle_type idle,
1416 struct rq_iterator *iterator);
1417 #endif
1418
1419 /* Time spent by the tasks of the cpu accounting group executing in ... */
1420 enum cpuacct_stat_index {
1421 CPUACCT_STAT_USER, /* ... user mode */
1422 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1423
1424 CPUACCT_STAT_NSTATS,
1425 };
1426
1427 #ifdef CONFIG_CGROUP_CPUACCT
1428 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1429 static void cpuacct_update_stats(struct task_struct *tsk,
1430 enum cpuacct_stat_index idx, cputime_t val);
1431 #else
1432 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1433 static inline void cpuacct_update_stats(struct task_struct *tsk,
1434 enum cpuacct_stat_index idx, cputime_t val) {}
1435 #endif
1436
1437 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1438 {
1439 update_load_add(&rq->load, load);
1440 }
1441
1442 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1443 {
1444 update_load_sub(&rq->load, load);
1445 }
1446
1447 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1448 typedef int (*tg_visitor)(struct task_group *, void *);
1449
1450 /*
1451 * Iterate the full tree, calling @down when first entering a node and @up when
1452 * leaving it for the final time.
1453 */
1454 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1455 {
1456 struct task_group *parent, *child;
1457 int ret;
1458
1459 rcu_read_lock();
1460 parent = &root_task_group;
1461 down:
1462 ret = (*down)(parent, data);
1463 if (ret)
1464 goto out_unlock;
1465 list_for_each_entry_rcu(child, &parent->children, siblings) {
1466 parent = child;
1467 goto down;
1468
1469 up:
1470 continue;
1471 }
1472 ret = (*up)(parent, data);
1473 if (ret)
1474 goto out_unlock;
1475
1476 child = parent;
1477 parent = parent->parent;
1478 if (parent)
1479 goto up;
1480 out_unlock:
1481 rcu_read_unlock();
1482
1483 return ret;
1484 }
1485
1486 static int tg_nop(struct task_group *tg, void *data)
1487 {
1488 return 0;
1489 }
1490 #endif
1491
1492 #ifdef CONFIG_SMP
1493 /* Used instead of source_load when we know the type == 0 */
1494 static unsigned long weighted_cpuload(const int cpu)
1495 {
1496 return cpu_rq(cpu)->load.weight;
1497 }
1498
1499 /*
1500 * Return a low guess at the load of a migration-source cpu weighted
1501 * according to the scheduling class and "nice" value.
1502 *
1503 * We want to under-estimate the load of migration sources, to
1504 * balance conservatively.
1505 */
1506 static unsigned long source_load(int cpu, int type)
1507 {
1508 struct rq *rq = cpu_rq(cpu);
1509 unsigned long total = weighted_cpuload(cpu);
1510
1511 if (type == 0 || !sched_feat(LB_BIAS))
1512 return total;
1513
1514 return min(rq->cpu_load[type-1], total);
1515 }
1516
1517 /*
1518 * Return a high guess at the load of a migration-target cpu weighted
1519 * according to the scheduling class and "nice" value.
1520 */
1521 static unsigned long target_load(int cpu, int type)
1522 {
1523 struct rq *rq = cpu_rq(cpu);
1524 unsigned long total = weighted_cpuload(cpu);
1525
1526 if (type == 0 || !sched_feat(LB_BIAS))
1527 return total;
1528
1529 return max(rq->cpu_load[type-1], total);
1530 }
1531
1532 static struct sched_group *group_of(int cpu)
1533 {
1534 struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
1535
1536 if (!sd)
1537 return NULL;
1538
1539 return sd->groups;
1540 }
1541
1542 static unsigned long power_of(int cpu)
1543 {
1544 struct sched_group *group = group_of(cpu);
1545
1546 if (!group)
1547 return SCHED_LOAD_SCALE;
1548
1549 return group->cpu_power;
1550 }
1551
1552 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1553
1554 static unsigned long cpu_avg_load_per_task(int cpu)
1555 {
1556 struct rq *rq = cpu_rq(cpu);
1557 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1558
1559 if (nr_running)
1560 rq->avg_load_per_task = rq->load.weight / nr_running;
1561 else
1562 rq->avg_load_per_task = 0;
1563
1564 return rq->avg_load_per_task;
1565 }
1566
1567 #ifdef CONFIG_FAIR_GROUP_SCHED
1568
1569 static __read_mostly unsigned long *update_shares_data;
1570
1571 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1572
1573 /*
1574 * Calculate and set the cpu's group shares.
1575 */
1576 static void update_group_shares_cpu(struct task_group *tg, int cpu,
1577 unsigned long sd_shares,
1578 unsigned long sd_rq_weight,
1579 unsigned long *usd_rq_weight)
1580 {
1581 unsigned long shares, rq_weight;
1582 int boost = 0;
1583
1584 rq_weight = usd_rq_weight[cpu];
1585 if (!rq_weight) {
1586 boost = 1;
1587 rq_weight = NICE_0_LOAD;
1588 }
1589
1590 /*
1591 * \Sum_j shares_j * rq_weight_i
1592 * shares_i = -----------------------------
1593 * \Sum_j rq_weight_j
1594 */
1595 shares = (sd_shares * rq_weight) / sd_rq_weight;
1596 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1597
1598 if (abs(shares - tg->se[cpu]->load.weight) >
1599 sysctl_sched_shares_thresh) {
1600 struct rq *rq = cpu_rq(cpu);
1601 unsigned long flags;
1602
1603 raw_spin_lock_irqsave(&rq->lock, flags);
1604 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
1605 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1606 __set_se_shares(tg->se[cpu], shares);
1607 raw_spin_unlock_irqrestore(&rq->lock, flags);
1608 }
1609 }
1610
1611 /*
1612 * Re-compute the task group their per cpu shares over the given domain.
1613 * This needs to be done in a bottom-up fashion because the rq weight of a
1614 * parent group depends on the shares of its child groups.
1615 */
1616 static int tg_shares_up(struct task_group *tg, void *data)
1617 {
1618 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
1619 unsigned long *usd_rq_weight;
1620 struct sched_domain *sd = data;
1621 unsigned long flags;
1622 int i;
1623
1624 if (!tg->se[0])
1625 return 0;
1626
1627 local_irq_save(flags);
1628 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1629
1630 for_each_cpu(i, sched_domain_span(sd)) {
1631 weight = tg->cfs_rq[i]->load.weight;
1632 usd_rq_weight[i] = weight;
1633
1634 rq_weight += weight;
1635 /*
1636 * If there are currently no tasks on the cpu pretend there
1637 * is one of average load so that when a new task gets to
1638 * run here it will not get delayed by group starvation.
1639 */
1640 if (!weight)
1641 weight = NICE_0_LOAD;
1642
1643 sum_weight += weight;
1644 shares += tg->cfs_rq[i]->shares;
1645 }
1646
1647 if (!rq_weight)
1648 rq_weight = sum_weight;
1649
1650 if ((!shares && rq_weight) || shares > tg->shares)
1651 shares = tg->shares;
1652
1653 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1654 shares = tg->shares;
1655
1656 for_each_cpu(i, sched_domain_span(sd))
1657 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1658
1659 local_irq_restore(flags);
1660
1661 return 0;
1662 }
1663
1664 /*
1665 * Compute the cpu's hierarchical load factor for each task group.
1666 * This needs to be done in a top-down fashion because the load of a child
1667 * group is a fraction of its parents load.
1668 */
1669 static int tg_load_down(struct task_group *tg, void *data)
1670 {
1671 unsigned long load;
1672 long cpu = (long)data;
1673
1674 if (!tg->parent) {
1675 load = cpu_rq(cpu)->load.weight;
1676 } else {
1677 load = tg->parent->cfs_rq[cpu]->h_load;
1678 load *= tg->cfs_rq[cpu]->shares;
1679 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1680 }
1681
1682 tg->cfs_rq[cpu]->h_load = load;
1683
1684 return 0;
1685 }
1686
1687 static void update_shares(struct sched_domain *sd)
1688 {
1689 s64 elapsed;
1690 u64 now;
1691
1692 if (root_task_group_empty())
1693 return;
1694
1695 now = cpu_clock(raw_smp_processor_id());
1696 elapsed = now - sd->last_update;
1697
1698 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1699 sd->last_update = now;
1700 walk_tg_tree(tg_nop, tg_shares_up, sd);
1701 }
1702 }
1703
1704 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1705 {
1706 if (root_task_group_empty())
1707 return;
1708
1709 raw_spin_unlock(&rq->lock);
1710 update_shares(sd);
1711 raw_spin_lock(&rq->lock);
1712 }
1713
1714 static void update_h_load(long cpu)
1715 {
1716 if (root_task_group_empty())
1717 return;
1718
1719 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1720 }
1721
1722 #else
1723
1724 static inline void update_shares(struct sched_domain *sd)
1725 {
1726 }
1727
1728 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1729 {
1730 }
1731
1732 #endif
1733
1734 #ifdef CONFIG_PREEMPT
1735
1736 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1737
1738 /*
1739 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1740 * way at the expense of forcing extra atomic operations in all
1741 * invocations. This assures that the double_lock is acquired using the
1742 * same underlying policy as the spinlock_t on this architecture, which
1743 * reduces latency compared to the unfair variant below. However, it
1744 * also adds more overhead and therefore may reduce throughput.
1745 */
1746 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1747 __releases(this_rq->lock)
1748 __acquires(busiest->lock)
1749 __acquires(this_rq->lock)
1750 {
1751 raw_spin_unlock(&this_rq->lock);
1752 double_rq_lock(this_rq, busiest);
1753
1754 return 1;
1755 }
1756
1757 #else
1758 /*
1759 * Unfair double_lock_balance: Optimizes throughput at the expense of
1760 * latency by eliminating extra atomic operations when the locks are
1761 * already in proper order on entry. This favors lower cpu-ids and will
1762 * grant the double lock to lower cpus over higher ids under contention,
1763 * regardless of entry order into the function.
1764 */
1765 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1766 __releases(this_rq->lock)
1767 __acquires(busiest->lock)
1768 __acquires(this_rq->lock)
1769 {
1770 int ret = 0;
1771
1772 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1773 if (busiest < this_rq) {
1774 raw_spin_unlock(&this_rq->lock);
1775 raw_spin_lock(&busiest->lock);
1776 raw_spin_lock_nested(&this_rq->lock,
1777 SINGLE_DEPTH_NESTING);
1778 ret = 1;
1779 } else
1780 raw_spin_lock_nested(&busiest->lock,
1781 SINGLE_DEPTH_NESTING);
1782 }
1783 return ret;
1784 }
1785
1786 #endif /* CONFIG_PREEMPT */
1787
1788 /*
1789 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1790 */
1791 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1792 {
1793 if (unlikely(!irqs_disabled())) {
1794 /* printk() doesn't work good under rq->lock */
1795 raw_spin_unlock(&this_rq->lock);
1796 BUG_ON(1);
1797 }
1798
1799 return _double_lock_balance(this_rq, busiest);
1800 }
1801
1802 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1803 __releases(busiest->lock)
1804 {
1805 raw_spin_unlock(&busiest->lock);
1806 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1807 }
1808 #endif
1809
1810 #ifdef CONFIG_FAIR_GROUP_SCHED
1811 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1812 {
1813 #ifdef CONFIG_SMP
1814 cfs_rq->shares = shares;
1815 #endif
1816 }
1817 #endif
1818
1819 static void calc_load_account_active(struct rq *this_rq);
1820 static void update_sysctl(void);
1821 static int get_update_sysctl_factor(void);
1822
1823 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1824 {
1825 set_task_rq(p, cpu);
1826 #ifdef CONFIG_SMP
1827 /*
1828 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1829 * successfuly executed on another CPU. We must ensure that updates of
1830 * per-task data have been completed by this moment.
1831 */
1832 smp_wmb();
1833 task_thread_info(p)->cpu = cpu;
1834 #endif
1835 }
1836
1837 #include "sched_stats.h"
1838 #include "sched_idletask.c"
1839 #include "sched_fair.c"
1840 #include "sched_rt.c"
1841 #ifdef CONFIG_SCHED_DEBUG
1842 # include "sched_debug.c"
1843 #endif
1844
1845 #define sched_class_highest (&rt_sched_class)
1846 #define for_each_class(class) \
1847 for (class = sched_class_highest; class; class = class->next)
1848
1849 static void inc_nr_running(struct rq *rq)
1850 {
1851 rq->nr_running++;
1852 }
1853
1854 static void dec_nr_running(struct rq *rq)
1855 {
1856 rq->nr_running--;
1857 }
1858
1859 static void set_load_weight(struct task_struct *p)
1860 {
1861 if (task_has_rt_policy(p)) {
1862 p->se.load.weight = prio_to_weight[0] * 2;
1863 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1864 return;
1865 }
1866
1867 /*
1868 * SCHED_IDLE tasks get minimal weight:
1869 */
1870 if (p->policy == SCHED_IDLE) {
1871 p->se.load.weight = WEIGHT_IDLEPRIO;
1872 p->se.load.inv_weight = WMULT_IDLEPRIO;
1873 return;
1874 }
1875
1876 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1877 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1878 }
1879
1880 static void update_avg(u64 *avg, u64 sample)
1881 {
1882 s64 diff = sample - *avg;
1883 *avg += diff >> 3;
1884 }
1885
1886 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1887 {
1888 if (wakeup)
1889 p->se.start_runtime = p->se.sum_exec_runtime;
1890
1891 sched_info_queued(p);
1892 p->sched_class->enqueue_task(rq, p, wakeup);
1893 p->se.on_rq = 1;
1894 }
1895
1896 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1897 {
1898 if (sleep) {
1899 if (p->se.last_wakeup) {
1900 update_avg(&p->se.avg_overlap,
1901 p->se.sum_exec_runtime - p->se.last_wakeup);
1902 p->se.last_wakeup = 0;
1903 } else {
1904 update_avg(&p->se.avg_wakeup,
1905 sysctl_sched_wakeup_granularity);
1906 }
1907 }
1908
1909 sched_info_dequeued(p);
1910 p->sched_class->dequeue_task(rq, p, sleep);
1911 p->se.on_rq = 0;
1912 }
1913
1914 /*
1915 * __normal_prio - return the priority that is based on the static prio
1916 */
1917 static inline int __normal_prio(struct task_struct *p)
1918 {
1919 return p->static_prio;
1920 }
1921
1922 /*
1923 * Calculate the expected normal priority: i.e. priority
1924 * without taking RT-inheritance into account. Might be
1925 * boosted by interactivity modifiers. Changes upon fork,
1926 * setprio syscalls, and whenever the interactivity
1927 * estimator recalculates.
1928 */
1929 static inline int normal_prio(struct task_struct *p)
1930 {
1931 int prio;
1932
1933 if (task_has_rt_policy(p))
1934 prio = MAX_RT_PRIO-1 - p->rt_priority;
1935 else
1936 prio = __normal_prio(p);
1937 return prio;
1938 }
1939
1940 /*
1941 * Calculate the current priority, i.e. the priority
1942 * taken into account by the scheduler. This value might
1943 * be boosted by RT tasks, or might be boosted by
1944 * interactivity modifiers. Will be RT if the task got
1945 * RT-boosted. If not then it returns p->normal_prio.
1946 */
1947 static int effective_prio(struct task_struct *p)
1948 {
1949 p->normal_prio = normal_prio(p);
1950 /*
1951 * If we are RT tasks or we were boosted to RT priority,
1952 * keep the priority unchanged. Otherwise, update priority
1953 * to the normal priority:
1954 */
1955 if (!rt_prio(p->prio))
1956 return p->normal_prio;
1957 return p->prio;
1958 }
1959
1960 /*
1961 * activate_task - move a task to the runqueue.
1962 */
1963 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1964 {
1965 if (task_contributes_to_load(p))
1966 rq->nr_uninterruptible--;
1967
1968 enqueue_task(rq, p, wakeup);
1969 inc_nr_running(rq);
1970 }
1971
1972 /*
1973 * deactivate_task - remove a task from the runqueue.
1974 */
1975 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1976 {
1977 if (task_contributes_to_load(p))
1978 rq->nr_uninterruptible++;
1979
1980 dequeue_task(rq, p, sleep);
1981 dec_nr_running(rq);
1982 }
1983
1984 /**
1985 * task_curr - is this task currently executing on a CPU?
1986 * @p: the task in question.
1987 */
1988 inline int task_curr(const struct task_struct *p)
1989 {
1990 return cpu_curr(task_cpu(p)) == p;
1991 }
1992
1993 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1994 const struct sched_class *prev_class,
1995 int oldprio, int running)
1996 {
1997 if (prev_class != p->sched_class) {
1998 if (prev_class->switched_from)
1999 prev_class->switched_from(rq, p, running);
2000 p->sched_class->switched_to(rq, p, running);
2001 } else
2002 p->sched_class->prio_changed(rq, p, oldprio, running);
2003 }
2004
2005 #ifdef CONFIG_SMP
2006 /*
2007 * Is this task likely cache-hot:
2008 */
2009 static int
2010 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2011 {
2012 s64 delta;
2013
2014 if (p->sched_class != &fair_sched_class)
2015 return 0;
2016
2017 /*
2018 * Buddy candidates are cache hot:
2019 */
2020 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
2021 (&p->se == cfs_rq_of(&p->se)->next ||
2022 &p->se == cfs_rq_of(&p->se)->last))
2023 return 1;
2024
2025 if (sysctl_sched_migration_cost == -1)
2026 return 1;
2027 if (sysctl_sched_migration_cost == 0)
2028 return 0;
2029
2030 delta = now - p->se.exec_start;
2031
2032 return delta < (s64)sysctl_sched_migration_cost;
2033 }
2034
2035 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2036 {
2037 #ifdef CONFIG_SCHED_DEBUG
2038 /*
2039 * We should never call set_task_cpu() on a blocked task,
2040 * ttwu() will sort out the placement.
2041 */
2042 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2043 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2044 #endif
2045
2046 trace_sched_migrate_task(p, new_cpu);
2047
2048 if (task_cpu(p) == new_cpu)
2049 return;
2050
2051 p->se.nr_migrations++;
2052 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2053
2054 __set_task_cpu(p, new_cpu);
2055 }
2056
2057 struct migration_req {
2058 struct list_head list;
2059
2060 struct task_struct *task;
2061 int dest_cpu;
2062
2063 struct completion done;
2064 };
2065
2066 /*
2067 * The task's runqueue lock must be held.
2068 * Returns true if you have to wait for migration thread.
2069 */
2070 static int
2071 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
2072 {
2073 struct rq *rq = task_rq(p);
2074
2075 /*
2076 * If the task is not on a runqueue (and not running), then
2077 * the next wake-up will properly place the task.
2078 */
2079 if (!p->se.on_rq && !task_running(rq, p))
2080 return 0;
2081
2082 init_completion(&req->done);
2083 req->task = p;
2084 req->dest_cpu = dest_cpu;
2085 list_add(&req->list, &rq->migration_queue);
2086
2087 return 1;
2088 }
2089
2090 /*
2091 * wait_task_context_switch - wait for a thread to complete at least one
2092 * context switch.
2093 *
2094 * @p must not be current.
2095 */
2096 void wait_task_context_switch(struct task_struct *p)
2097 {
2098 unsigned long nvcsw, nivcsw, flags;
2099 int running;
2100 struct rq *rq;
2101
2102 nvcsw = p->nvcsw;
2103 nivcsw = p->nivcsw;
2104 for (;;) {
2105 /*
2106 * The runqueue is assigned before the actual context
2107 * switch. We need to take the runqueue lock.
2108 *
2109 * We could check initially without the lock but it is
2110 * very likely that we need to take the lock in every
2111 * iteration.
2112 */
2113 rq = task_rq_lock(p, &flags);
2114 running = task_running(rq, p);
2115 task_rq_unlock(rq, &flags);
2116
2117 if (likely(!running))
2118 break;
2119 /*
2120 * The switch count is incremented before the actual
2121 * context switch. We thus wait for two switches to be
2122 * sure at least one completed.
2123 */
2124 if ((p->nvcsw - nvcsw) > 1)
2125 break;
2126 if ((p->nivcsw - nivcsw) > 1)
2127 break;
2128
2129 cpu_relax();
2130 }
2131 }
2132
2133 /*
2134 * wait_task_inactive - wait for a thread to unschedule.
2135 *
2136 * If @match_state is nonzero, it's the @p->state value just checked and
2137 * not expected to change. If it changes, i.e. @p might have woken up,
2138 * then return zero. When we succeed in waiting for @p to be off its CPU,
2139 * we return a positive number (its total switch count). If a second call
2140 * a short while later returns the same number, the caller can be sure that
2141 * @p has remained unscheduled the whole time.
2142 *
2143 * The caller must ensure that the task *will* unschedule sometime soon,
2144 * else this function might spin for a *long* time. This function can't
2145 * be called with interrupts off, or it may introduce deadlock with
2146 * smp_call_function() if an IPI is sent by the same process we are
2147 * waiting to become inactive.
2148 */
2149 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2150 {
2151 unsigned long flags;
2152 int running, on_rq;
2153 unsigned long ncsw;
2154 struct rq *rq;
2155
2156 for (;;) {
2157 /*
2158 * We do the initial early heuristics without holding
2159 * any task-queue locks at all. We'll only try to get
2160 * the runqueue lock when things look like they will
2161 * work out!
2162 */
2163 rq = task_rq(p);
2164
2165 /*
2166 * If the task is actively running on another CPU
2167 * still, just relax and busy-wait without holding
2168 * any locks.
2169 *
2170 * NOTE! Since we don't hold any locks, it's not
2171 * even sure that "rq" stays as the right runqueue!
2172 * But we don't care, since "task_running()" will
2173 * return false if the runqueue has changed and p
2174 * is actually now running somewhere else!
2175 */
2176 while (task_running(rq, p)) {
2177 if (match_state && unlikely(p->state != match_state))
2178 return 0;
2179 cpu_relax();
2180 }
2181
2182 /*
2183 * Ok, time to look more closely! We need the rq
2184 * lock now, to be *sure*. If we're wrong, we'll
2185 * just go back and repeat.
2186 */
2187 rq = task_rq_lock(p, &flags);
2188 trace_sched_wait_task(rq, p);
2189 running = task_running(rq, p);
2190 on_rq = p->se.on_rq;
2191 ncsw = 0;
2192 if (!match_state || p->state == match_state)
2193 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2194 task_rq_unlock(rq, &flags);
2195
2196 /*
2197 * If it changed from the expected state, bail out now.
2198 */
2199 if (unlikely(!ncsw))
2200 break;
2201
2202 /*
2203 * Was it really running after all now that we
2204 * checked with the proper locks actually held?
2205 *
2206 * Oops. Go back and try again..
2207 */
2208 if (unlikely(running)) {
2209 cpu_relax();
2210 continue;
2211 }
2212
2213 /*
2214 * It's not enough that it's not actively running,
2215 * it must be off the runqueue _entirely_, and not
2216 * preempted!
2217 *
2218 * So if it was still runnable (but just not actively
2219 * running right now), it's preempted, and we should
2220 * yield - it could be a while.
2221 */
2222 if (unlikely(on_rq)) {
2223 schedule_timeout_uninterruptible(1);
2224 continue;
2225 }
2226
2227 /*
2228 * Ahh, all good. It wasn't running, and it wasn't
2229 * runnable, which means that it will never become
2230 * running in the future either. We're all done!
2231 */
2232 break;
2233 }
2234
2235 return ncsw;
2236 }
2237
2238 /***
2239 * kick_process - kick a running thread to enter/exit the kernel
2240 * @p: the to-be-kicked thread
2241 *
2242 * Cause a process which is running on another CPU to enter
2243 * kernel-mode, without any delay. (to get signals handled.)
2244 *
2245 * NOTE: this function doesnt have to take the runqueue lock,
2246 * because all it wants to ensure is that the remote task enters
2247 * the kernel. If the IPI races and the task has been migrated
2248 * to another CPU then no harm is done and the purpose has been
2249 * achieved as well.
2250 */
2251 void kick_process(struct task_struct *p)
2252 {
2253 int cpu;
2254
2255 preempt_disable();
2256 cpu = task_cpu(p);
2257 if ((cpu != smp_processor_id()) && task_curr(p))
2258 smp_send_reschedule(cpu);
2259 preempt_enable();
2260 }
2261 EXPORT_SYMBOL_GPL(kick_process);
2262 #endif /* CONFIG_SMP */
2263
2264 /**
2265 * task_oncpu_function_call - call a function on the cpu on which a task runs
2266 * @p: the task to evaluate
2267 * @func: the function to be called
2268 * @info: the function call argument
2269 *
2270 * Calls the function @func when the task is currently running. This might
2271 * be on the current CPU, which just calls the function directly
2272 */
2273 void task_oncpu_function_call(struct task_struct *p,
2274 void (*func) (void *info), void *info)
2275 {
2276 int cpu;
2277
2278 preempt_disable();
2279 cpu = task_cpu(p);
2280 if (task_curr(p))
2281 smp_call_function_single(cpu, func, info, 1);
2282 preempt_enable();
2283 }
2284
2285 #ifdef CONFIG_SMP
2286 static int select_fallback_rq(int cpu, struct task_struct *p)
2287 {
2288 int dest_cpu;
2289 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2290
2291 /* Look for allowed, online CPU in same node. */
2292 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2293 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2294 return dest_cpu;
2295
2296 /* Any allowed, online CPU? */
2297 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2298 if (dest_cpu < nr_cpu_ids)
2299 return dest_cpu;
2300
2301 /* No more Mr. Nice Guy. */
2302 if (dest_cpu >= nr_cpu_ids) {
2303 rcu_read_lock();
2304 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
2305 rcu_read_unlock();
2306 dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
2307
2308 /*
2309 * Don't tell them about moving exiting tasks or
2310 * kernel threads (both mm NULL), since they never
2311 * leave kernel.
2312 */
2313 if (p->mm && printk_ratelimit()) {
2314 printk(KERN_INFO "process %d (%s) no "
2315 "longer affine to cpu%d\n",
2316 task_pid_nr(p), p->comm, cpu);
2317 }
2318 }
2319
2320 return dest_cpu;
2321 }
2322
2323 /*
2324 * Called from:
2325 *
2326 * - fork, @p is stable because it isn't on the tasklist yet
2327 *
2328 * - exec, @p is unstable, retry loop
2329 *
2330 * - wake-up, we serialize ->cpus_allowed against TASK_WAKING so
2331 * we should be good.
2332 */
2333 static inline
2334 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
2335 {
2336 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
2337
2338 /*
2339 * In order not to call set_task_cpu() on a blocking task we need
2340 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2341 * cpu.
2342 *
2343 * Since this is common to all placement strategies, this lives here.
2344 *
2345 * [ this allows ->select_task() to simply return task_cpu(p) and
2346 * not worry about this generic constraint ]
2347 */
2348 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
2349 !cpu_online(cpu)))
2350 cpu = select_fallback_rq(task_cpu(p), p);
2351
2352 return cpu;
2353 }
2354 #endif
2355
2356 /***
2357 * try_to_wake_up - wake up a thread
2358 * @p: the to-be-woken-up thread
2359 * @state: the mask of task states that can be woken
2360 * @sync: do a synchronous wakeup?
2361 *
2362 * Put it on the run-queue if it's not already there. The "current"
2363 * thread is always on the run-queue (except when the actual
2364 * re-schedule is in progress), and as such you're allowed to do
2365 * the simpler "current->state = TASK_RUNNING" to mark yourself
2366 * runnable without the overhead of this.
2367 *
2368 * returns failure only if the task is already active.
2369 */
2370 static int try_to_wake_up(struct task_struct *p, unsigned int state,
2371 int wake_flags)
2372 {
2373 int cpu, orig_cpu, this_cpu, success = 0;
2374 unsigned long flags;
2375 struct rq *rq, *orig_rq;
2376
2377 if (!sched_feat(SYNC_WAKEUPS))
2378 wake_flags &= ~WF_SYNC;
2379
2380 this_cpu = get_cpu();
2381
2382 smp_wmb();
2383 rq = orig_rq = task_rq_lock(p, &flags);
2384 update_rq_clock(rq);
2385 if (!(p->state & state))
2386 goto out;
2387
2388 if (p->se.on_rq)
2389 goto out_running;
2390
2391 cpu = task_cpu(p);
2392 orig_cpu = cpu;
2393
2394 #ifdef CONFIG_SMP
2395 if (unlikely(task_running(rq, p)))
2396 goto out_activate;
2397
2398 /*
2399 * In order to handle concurrent wakeups and release the rq->lock
2400 * we put the task in TASK_WAKING state.
2401 *
2402 * First fix up the nr_uninterruptible count:
2403 */
2404 if (task_contributes_to_load(p))
2405 rq->nr_uninterruptible--;
2406 p->state = TASK_WAKING;
2407
2408 if (p->sched_class->task_waking)
2409 p->sched_class->task_waking(rq, p);
2410
2411 __task_rq_unlock(rq);
2412
2413 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
2414 if (cpu != orig_cpu)
2415 set_task_cpu(p, cpu);
2416
2417 rq = __task_rq_lock(p);
2418 update_rq_clock(rq);
2419
2420 WARN_ON(p->state != TASK_WAKING);
2421 cpu = task_cpu(p);
2422
2423 #ifdef CONFIG_SCHEDSTATS
2424 schedstat_inc(rq, ttwu_count);
2425 if (cpu == this_cpu)
2426 schedstat_inc(rq, ttwu_local);
2427 else {
2428 struct sched_domain *sd;
2429 for_each_domain(this_cpu, sd) {
2430 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2431 schedstat_inc(sd, ttwu_wake_remote);
2432 break;
2433 }
2434 }
2435 }
2436 #endif /* CONFIG_SCHEDSTATS */
2437
2438 out_activate:
2439 #endif /* CONFIG_SMP */
2440 schedstat_inc(p, se.nr_wakeups);
2441 if (wake_flags & WF_SYNC)
2442 schedstat_inc(p, se.nr_wakeups_sync);
2443 if (orig_cpu != cpu)
2444 schedstat_inc(p, se.nr_wakeups_migrate);
2445 if (cpu == this_cpu)
2446 schedstat_inc(p, se.nr_wakeups_local);
2447 else
2448 schedstat_inc(p, se.nr_wakeups_remote);
2449 activate_task(rq, p, 1);
2450 success = 1;
2451
2452 /*
2453 * Only attribute actual wakeups done by this task.
2454 */
2455 if (!in_interrupt()) {
2456 struct sched_entity *se = &current->se;
2457 u64 sample = se->sum_exec_runtime;
2458
2459 if (se->last_wakeup)
2460 sample -= se->last_wakeup;
2461 else
2462 sample -= se->start_runtime;
2463 update_avg(&se->avg_wakeup, sample);
2464
2465 se->last_wakeup = se->sum_exec_runtime;
2466 }
2467
2468 out_running:
2469 trace_sched_wakeup(rq, p, success);
2470 check_preempt_curr(rq, p, wake_flags);
2471
2472 p->state = TASK_RUNNING;
2473 #ifdef CONFIG_SMP
2474 if (p->sched_class->task_woken)
2475 p->sched_class->task_woken(rq, p);
2476
2477 if (unlikely(rq->idle_stamp)) {
2478 u64 delta = rq->clock - rq->idle_stamp;
2479 u64 max = 2*sysctl_sched_migration_cost;
2480
2481 if (delta > max)
2482 rq->avg_idle = max;
2483 else
2484 update_avg(&rq->avg_idle, delta);
2485 rq->idle_stamp = 0;
2486 }
2487 #endif
2488 out:
2489 task_rq_unlock(rq, &flags);
2490 put_cpu();
2491
2492 return success;
2493 }
2494
2495 /**
2496 * wake_up_process - Wake up a specific process
2497 * @p: The process to be woken up.
2498 *
2499 * Attempt to wake up the nominated process and move it to the set of runnable
2500 * processes. Returns 1 if the process was woken up, 0 if it was already
2501 * running.
2502 *
2503 * It may be assumed that this function implies a write memory barrier before
2504 * changing the task state if and only if any tasks are woken up.
2505 */
2506 int wake_up_process(struct task_struct *p)
2507 {
2508 return try_to_wake_up(p, TASK_ALL, 0);
2509 }
2510 EXPORT_SYMBOL(wake_up_process);
2511
2512 int wake_up_state(struct task_struct *p, unsigned int state)
2513 {
2514 return try_to_wake_up(p, state, 0);
2515 }
2516
2517 /*
2518 * Perform scheduler related setup for a newly forked process p.
2519 * p is forked by current.
2520 *
2521 * __sched_fork() is basic setup used by init_idle() too:
2522 */
2523 static void __sched_fork(struct task_struct *p)
2524 {
2525 p->se.exec_start = 0;
2526 p->se.sum_exec_runtime = 0;
2527 p->se.prev_sum_exec_runtime = 0;
2528 p->se.nr_migrations = 0;
2529 p->se.last_wakeup = 0;
2530 p->se.avg_overlap = 0;
2531 p->se.start_runtime = 0;
2532 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
2533
2534 #ifdef CONFIG_SCHEDSTATS
2535 p->se.wait_start = 0;
2536 p->se.wait_max = 0;
2537 p->se.wait_count = 0;
2538 p->se.wait_sum = 0;
2539
2540 p->se.sleep_start = 0;
2541 p->se.sleep_max = 0;
2542 p->se.sum_sleep_runtime = 0;
2543
2544 p->se.block_start = 0;
2545 p->se.block_max = 0;
2546 p->se.exec_max = 0;
2547 p->se.slice_max = 0;
2548
2549 p->se.nr_migrations_cold = 0;
2550 p->se.nr_failed_migrations_affine = 0;
2551 p->se.nr_failed_migrations_running = 0;
2552 p->se.nr_failed_migrations_hot = 0;
2553 p->se.nr_forced_migrations = 0;
2554
2555 p->se.nr_wakeups = 0;
2556 p->se.nr_wakeups_sync = 0;
2557 p->se.nr_wakeups_migrate = 0;
2558 p->se.nr_wakeups_local = 0;
2559 p->se.nr_wakeups_remote = 0;
2560 p->se.nr_wakeups_affine = 0;
2561 p->se.nr_wakeups_affine_attempts = 0;
2562 p->se.nr_wakeups_passive = 0;
2563 p->se.nr_wakeups_idle = 0;
2564
2565 #endif
2566
2567 INIT_LIST_HEAD(&p->rt.run_list);
2568 p->se.on_rq = 0;
2569 INIT_LIST_HEAD(&p->se.group_node);
2570
2571 #ifdef CONFIG_PREEMPT_NOTIFIERS
2572 INIT_HLIST_HEAD(&p->preempt_notifiers);
2573 #endif
2574 }
2575
2576 /*
2577 * fork()/clone()-time setup:
2578 */
2579 void sched_fork(struct task_struct *p, int clone_flags)
2580 {
2581 int cpu = get_cpu();
2582
2583 __sched_fork(p);
2584 /*
2585 * We mark the process as waking here. This guarantees that
2586 * nobody will actually run it, and a signal or other external
2587 * event cannot wake it up and insert it on the runqueue either.
2588 */
2589 p->state = TASK_WAKING;
2590
2591 /*
2592 * Revert to default priority/policy on fork if requested.
2593 */
2594 if (unlikely(p->sched_reset_on_fork)) {
2595 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2596 p->policy = SCHED_NORMAL;
2597 p->normal_prio = p->static_prio;
2598 }
2599
2600 if (PRIO_TO_NICE(p->static_prio) < 0) {
2601 p->static_prio = NICE_TO_PRIO(0);
2602 p->normal_prio = p->static_prio;
2603 set_load_weight(p);
2604 }
2605
2606 /*
2607 * We don't need the reset flag anymore after the fork. It has
2608 * fulfilled its duty:
2609 */
2610 p->sched_reset_on_fork = 0;
2611 }
2612
2613 /*
2614 * Make sure we do not leak PI boosting priority to the child.
2615 */
2616 p->prio = current->normal_prio;
2617
2618 if (!rt_prio(p->prio))
2619 p->sched_class = &fair_sched_class;
2620
2621 if (p->sched_class->task_fork)
2622 p->sched_class->task_fork(p);
2623
2624 #ifdef CONFIG_SMP
2625 cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
2626 #endif
2627 set_task_cpu(p, cpu);
2628
2629 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2630 if (likely(sched_info_on()))
2631 memset(&p->sched_info, 0, sizeof(p->sched_info));
2632 #endif
2633 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2634 p->oncpu = 0;
2635 #endif
2636 #ifdef CONFIG_PREEMPT
2637 /* Want to start with kernel preemption disabled. */
2638 task_thread_info(p)->preempt_count = 1;
2639 #endif
2640 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2641
2642 put_cpu();
2643 }
2644
2645 /*
2646 * wake_up_new_task - wake up a newly created task for the first time.
2647 *
2648 * This function will do some initial scheduler statistics housekeeping
2649 * that must be done for every newly created context, then puts the task
2650 * on the runqueue and wakes it.
2651 */
2652 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2653 {
2654 unsigned long flags;
2655 struct rq *rq;
2656
2657 rq = task_rq_lock(p, &flags);
2658 BUG_ON(p->state != TASK_WAKING);
2659 p->state = TASK_RUNNING;
2660 update_rq_clock(rq);
2661 activate_task(rq, p, 0);
2662 trace_sched_wakeup_new(rq, p, 1);
2663 check_preempt_curr(rq, p, WF_FORK);
2664 #ifdef CONFIG_SMP
2665 if (p->sched_class->task_woken)
2666 p->sched_class->task_woken(rq, p);
2667 #endif
2668 task_rq_unlock(rq, &flags);
2669 }
2670
2671 #ifdef CONFIG_PREEMPT_NOTIFIERS
2672
2673 /**
2674 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2675 * @notifier: notifier struct to register
2676 */
2677 void preempt_notifier_register(struct preempt_notifier *notifier)
2678 {
2679 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2680 }
2681 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2682
2683 /**
2684 * preempt_notifier_unregister - no longer interested in preemption notifications
2685 * @notifier: notifier struct to unregister
2686 *
2687 * This is safe to call from within a preemption notifier.
2688 */
2689 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2690 {
2691 hlist_del(&notifier->link);
2692 }
2693 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2694
2695 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2696 {
2697 struct preempt_notifier *notifier;
2698 struct hlist_node *node;
2699
2700 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2701 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2702 }
2703
2704 static void
2705 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2706 struct task_struct *next)
2707 {
2708 struct preempt_notifier *notifier;
2709 struct hlist_node *node;
2710
2711 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2712 notifier->ops->sched_out(notifier, next);
2713 }
2714
2715 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2716
2717 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2718 {
2719 }
2720
2721 static void
2722 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2723 struct task_struct *next)
2724 {
2725 }
2726
2727 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2728
2729 /**
2730 * prepare_task_switch - prepare to switch tasks
2731 * @rq: the runqueue preparing to switch
2732 * @prev: the current task that is being switched out
2733 * @next: the task we are going to switch to.
2734 *
2735 * This is called with the rq lock held and interrupts off. It must
2736 * be paired with a subsequent finish_task_switch after the context
2737 * switch.
2738 *
2739 * prepare_task_switch sets up locking and calls architecture specific
2740 * hooks.
2741 */
2742 static inline void
2743 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2744 struct task_struct *next)
2745 {
2746 fire_sched_out_preempt_notifiers(prev, next);
2747 prepare_lock_switch(rq, next);
2748 prepare_arch_switch(next);
2749 }
2750
2751 /**
2752 * finish_task_switch - clean up after a task-switch
2753 * @rq: runqueue associated with task-switch
2754 * @prev: the thread we just switched away from.
2755 *
2756 * finish_task_switch must be called after the context switch, paired
2757 * with a prepare_task_switch call before the context switch.
2758 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2759 * and do any other architecture-specific cleanup actions.
2760 *
2761 * Note that we may have delayed dropping an mm in context_switch(). If
2762 * so, we finish that here outside of the runqueue lock. (Doing it
2763 * with the lock held can cause deadlocks; see schedule() for
2764 * details.)
2765 */
2766 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2767 __releases(rq->lock)
2768 {
2769 struct mm_struct *mm = rq->prev_mm;
2770 long prev_state;
2771
2772 rq->prev_mm = NULL;
2773
2774 /*
2775 * A task struct has one reference for the use as "current".
2776 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2777 * schedule one last time. The schedule call will never return, and
2778 * the scheduled task must drop that reference.
2779 * The test for TASK_DEAD must occur while the runqueue locks are
2780 * still held, otherwise prev could be scheduled on another cpu, die
2781 * there before we look at prev->state, and then the reference would
2782 * be dropped twice.
2783 * Manfred Spraul <manfred@colorfullife.com>
2784 */
2785 prev_state = prev->state;
2786 finish_arch_switch(prev);
2787 perf_event_task_sched_in(current, cpu_of(rq));
2788 finish_lock_switch(rq, prev);
2789
2790 fire_sched_in_preempt_notifiers(current);
2791 if (mm)
2792 mmdrop(mm);
2793 if (unlikely(prev_state == TASK_DEAD)) {
2794 /*
2795 * Remove function-return probe instances associated with this
2796 * task and put them back on the free list.
2797 */
2798 kprobe_flush_task(prev);
2799 put_task_struct(prev);
2800 }
2801 }
2802
2803 #ifdef CONFIG_SMP
2804
2805 /* assumes rq->lock is held */
2806 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2807 {
2808 if (prev->sched_class->pre_schedule)
2809 prev->sched_class->pre_schedule(rq, prev);
2810 }
2811
2812 /* rq->lock is NOT held, but preemption is disabled */
2813 static inline void post_schedule(struct rq *rq)
2814 {
2815 if (rq->post_schedule) {
2816 unsigned long flags;
2817
2818 raw_spin_lock_irqsave(&rq->lock, flags);
2819 if (rq->curr->sched_class->post_schedule)
2820 rq->curr->sched_class->post_schedule(rq);
2821 raw_spin_unlock_irqrestore(&rq->lock, flags);
2822
2823 rq->post_schedule = 0;
2824 }
2825 }
2826
2827 #else
2828
2829 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2830 {
2831 }
2832
2833 static inline void post_schedule(struct rq *rq)
2834 {
2835 }
2836
2837 #endif
2838
2839 /**
2840 * schedule_tail - first thing a freshly forked thread must call.
2841 * @prev: the thread we just switched away from.
2842 */
2843 asmlinkage void schedule_tail(struct task_struct *prev)
2844 __releases(rq->lock)
2845 {
2846 struct rq *rq = this_rq();
2847
2848 finish_task_switch(rq, prev);
2849
2850 /*
2851 * FIXME: do we need to worry about rq being invalidated by the
2852 * task_switch?
2853 */
2854 post_schedule(rq);
2855
2856 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2857 /* In this case, finish_task_switch does not reenable preemption */
2858 preempt_enable();
2859 #endif
2860 if (current->set_child_tid)
2861 put_user(task_pid_vnr(current), current->set_child_tid);
2862 }
2863
2864 /*
2865 * context_switch - switch to the new MM and the new
2866 * thread's register state.
2867 */
2868 static inline void
2869 context_switch(struct rq *rq, struct task_struct *prev,
2870 struct task_struct *next)
2871 {
2872 struct mm_struct *mm, *oldmm;
2873
2874 prepare_task_switch(rq, prev, next);
2875 trace_sched_switch(rq, prev, next);
2876 mm = next->mm;
2877 oldmm = prev->active_mm;
2878 /*
2879 * For paravirt, this is coupled with an exit in switch_to to
2880 * combine the page table reload and the switch backend into
2881 * one hypercall.
2882 */
2883 arch_start_context_switch(prev);
2884
2885 if (likely(!mm)) {
2886 next->active_mm = oldmm;
2887 atomic_inc(&oldmm->mm_count);
2888 enter_lazy_tlb(oldmm, next);
2889 } else
2890 switch_mm(oldmm, mm, next);
2891
2892 if (likely(!prev->mm)) {
2893 prev->active_mm = NULL;
2894 rq->prev_mm = oldmm;
2895 }
2896 /*
2897 * Since the runqueue lock will be released by the next
2898 * task (which is an invalid locking op but in the case
2899 * of the scheduler it's an obvious special-case), so we
2900 * do an early lockdep release here:
2901 */
2902 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2903 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2904 #endif
2905
2906 /* Here we just switch the register state and the stack. */
2907 switch_to(prev, next, prev);
2908
2909 barrier();
2910 /*
2911 * this_rq must be evaluated again because prev may have moved
2912 * CPUs since it called schedule(), thus the 'rq' on its stack
2913 * frame will be invalid.
2914 */
2915 finish_task_switch(this_rq(), prev);
2916 }
2917
2918 /*
2919 * nr_running, nr_uninterruptible and nr_context_switches:
2920 *
2921 * externally visible scheduler statistics: current number of runnable
2922 * threads, current number of uninterruptible-sleeping threads, total
2923 * number of context switches performed since bootup.
2924 */
2925 unsigned long nr_running(void)
2926 {
2927 unsigned long i, sum = 0;
2928
2929 for_each_online_cpu(i)
2930 sum += cpu_rq(i)->nr_running;
2931
2932 return sum;
2933 }
2934
2935 unsigned long nr_uninterruptible(void)
2936 {
2937 unsigned long i, sum = 0;
2938
2939 for_each_possible_cpu(i)
2940 sum += cpu_rq(i)->nr_uninterruptible;
2941
2942 /*
2943 * Since we read the counters lockless, it might be slightly
2944 * inaccurate. Do not allow it to go below zero though:
2945 */
2946 if (unlikely((long)sum < 0))
2947 sum = 0;
2948
2949 return sum;
2950 }
2951
2952 unsigned long long nr_context_switches(void)
2953 {
2954 int i;
2955 unsigned long long sum = 0;
2956
2957 for_each_possible_cpu(i)
2958 sum += cpu_rq(i)->nr_switches;
2959
2960 return sum;
2961 }
2962
2963 unsigned long nr_iowait(void)
2964 {
2965 unsigned long i, sum = 0;
2966
2967 for_each_possible_cpu(i)
2968 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2969
2970 return sum;
2971 }
2972
2973 unsigned long nr_iowait_cpu(void)
2974 {
2975 struct rq *this = this_rq();
2976 return atomic_read(&this->nr_iowait);
2977 }
2978
2979 unsigned long this_cpu_load(void)
2980 {
2981 struct rq *this = this_rq();
2982 return this->cpu_load[0];
2983 }
2984
2985
2986 /* Variables and functions for calc_load */
2987 static atomic_long_t calc_load_tasks;
2988 static unsigned long calc_load_update;
2989 unsigned long avenrun[3];
2990 EXPORT_SYMBOL(avenrun);
2991
2992 /**
2993 * get_avenrun - get the load average array
2994 * @loads: pointer to dest load array
2995 * @offset: offset to add
2996 * @shift: shift count to shift the result left
2997 *
2998 * These values are estimates at best, so no need for locking.
2999 */
3000 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3001 {
3002 loads[0] = (avenrun[0] + offset) << shift;
3003 loads[1] = (avenrun[1] + offset) << shift;
3004 loads[2] = (avenrun[2] + offset) << shift;
3005 }
3006
3007 static unsigned long
3008 calc_load(unsigned long load, unsigned long exp, unsigned long active)
3009 {
3010 load *= exp;
3011 load += active * (FIXED_1 - exp);
3012 return load >> FSHIFT;
3013 }
3014
3015 /*
3016 * calc_load - update the avenrun load estimates 10 ticks after the
3017 * CPUs have updated calc_load_tasks.
3018 */
3019 void calc_global_load(void)
3020 {
3021 unsigned long upd = calc_load_update + 10;
3022 long active;
3023
3024 if (time_before(jiffies, upd))
3025 return;
3026
3027 active = atomic_long_read(&calc_load_tasks);
3028 active = active > 0 ? active * FIXED_1 : 0;
3029
3030 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3031 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3032 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3033
3034 calc_load_update += LOAD_FREQ;
3035 }
3036
3037 /*
3038 * Either called from update_cpu_load() or from a cpu going idle
3039 */
3040 static void calc_load_account_active(struct rq *this_rq)
3041 {
3042 long nr_active, delta;
3043
3044 nr_active = this_rq->nr_running;
3045 nr_active += (long) this_rq->nr_uninterruptible;
3046
3047 if (nr_active != this_rq->calc_load_active) {
3048 delta = nr_active - this_rq->calc_load_active;
3049 this_rq->calc_load_active = nr_active;
3050 atomic_long_add(delta, &calc_load_tasks);
3051 }
3052 }
3053
3054 /*
3055 * Update rq->cpu_load[] statistics. This function is usually called every
3056 * scheduler tick (TICK_NSEC).
3057 */
3058 static void update_cpu_load(struct rq *this_rq)
3059 {
3060 unsigned long this_load = this_rq->load.weight;
3061 int i, scale;
3062
3063 this_rq->nr_load_updates++;
3064
3065 /* Update our load: */
3066 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3067 unsigned long old_load, new_load;
3068
3069 /* scale is effectively 1 << i now, and >> i divides by scale */
3070
3071 old_load = this_rq->cpu_load[i];
3072 new_load = this_load;
3073 /*
3074 * Round up the averaging division if load is increasing. This
3075 * prevents us from getting stuck on 9 if the load is 10, for
3076 * example.
3077 */
3078 if (new_load > old_load)
3079 new_load += scale-1;
3080 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3081 }
3082
3083 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3084 this_rq->calc_load_update += LOAD_FREQ;
3085 calc_load_account_active(this_rq);
3086 }
3087 }
3088
3089 #ifdef CONFIG_SMP
3090
3091 /*
3092 * double_rq_lock - safely lock two runqueues
3093 *
3094 * Note this does not disable interrupts like task_rq_lock,
3095 * you need to do so manually before calling.
3096 */
3097 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
3098 __acquires(rq1->lock)
3099 __acquires(rq2->lock)
3100 {
3101 BUG_ON(!irqs_disabled());
3102 if (rq1 == rq2) {
3103 raw_spin_lock(&rq1->lock);
3104 __acquire(rq2->lock); /* Fake it out ;) */
3105 } else {
3106 if (rq1 < rq2) {
3107 raw_spin_lock(&rq1->lock);
3108 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
3109 } else {
3110 raw_spin_lock(&rq2->lock);
3111 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
3112 }
3113 }
3114 update_rq_clock(rq1);
3115 update_rq_clock(rq2);
3116 }
3117
3118 /*
3119 * double_rq_unlock - safely unlock two runqueues
3120 *
3121 * Note this does not restore interrupts like task_rq_unlock,
3122 * you need to do so manually after calling.
3123 */
3124 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
3125 __releases(rq1->lock)
3126 __releases(rq2->lock)
3127 {
3128 raw_spin_unlock(&rq1->lock);
3129 if (rq1 != rq2)
3130 raw_spin_unlock(&rq2->lock);
3131 else
3132 __release(rq2->lock);
3133 }
3134
3135 /*
3136 * sched_exec - execve() is a valuable balancing opportunity, because at
3137 * this point the task has the smallest effective memory and cache footprint.
3138 */
3139 void sched_exec(void)
3140 {
3141 struct task_struct *p = current;
3142 struct migration_req req;
3143 int dest_cpu, this_cpu;
3144 unsigned long flags;
3145 struct rq *rq;
3146
3147 again:
3148 this_cpu = get_cpu();
3149 dest_cpu = select_task_rq(p, SD_BALANCE_EXEC, 0);
3150 if (dest_cpu == this_cpu) {
3151 put_cpu();
3152 return;
3153 }
3154
3155 rq = task_rq_lock(p, &flags);
3156 put_cpu();
3157
3158 /*
3159 * select_task_rq() can race against ->cpus_allowed
3160 */
3161 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3162 || unlikely(!cpu_active(dest_cpu))) {
3163 task_rq_unlock(rq, &flags);
3164 goto again;
3165 }
3166
3167 /* force the process onto the specified CPU */
3168 if (migrate_task(p, dest_cpu, &req)) {
3169 /* Need to wait for migration thread (might exit: take ref). */
3170 struct task_struct *mt = rq->migration_thread;
3171
3172 get_task_struct(mt);
3173 task_rq_unlock(rq, &flags);
3174 wake_up_process(mt);
3175 put_task_struct(mt);
3176 wait_for_completion(&req.done);
3177
3178 return;
3179 }
3180 task_rq_unlock(rq, &flags);
3181 }
3182
3183 /*
3184 * pull_task - move a task from a remote runqueue to the local runqueue.
3185 * Both runqueues must be locked.
3186 */
3187 static void pull_task(struct rq *src_rq, struct task_struct *p,
3188 struct rq *this_rq, int this_cpu)
3189 {
3190 deactivate_task(src_rq, p, 0);
3191 set_task_cpu(p, this_cpu);
3192 activate_task(this_rq, p, 0);
3193 check_preempt_curr(this_rq, p, 0);
3194 }
3195
3196 /*
3197 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3198 */
3199 static
3200 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
3201 struct sched_domain *sd, enum cpu_idle_type idle,
3202 int *all_pinned)
3203 {
3204 int tsk_cache_hot = 0;
3205 /*
3206 * We do not migrate tasks that are:
3207 * 1) running (obviously), or
3208 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3209 * 3) are cache-hot on their current CPU.
3210 */
3211 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3212 schedstat_inc(p, se.nr_failed_migrations_affine);
3213 return 0;
3214 }
3215 *all_pinned = 0;
3216
3217 if (task_running(rq, p)) {
3218 schedstat_inc(p, se.nr_failed_migrations_running);
3219 return 0;
3220 }
3221
3222 /*
3223 * Aggressive migration if:
3224 * 1) task is cache cold, or
3225 * 2) too many balance attempts have failed.
3226 */
3227
3228 tsk_cache_hot = task_hot(p, rq->clock, sd);
3229 if (!tsk_cache_hot ||
3230 sd->nr_balance_failed > sd->cache_nice_tries) {
3231 #ifdef CONFIG_SCHEDSTATS
3232 if (tsk_cache_hot) {
3233 schedstat_inc(sd, lb_hot_gained[idle]);
3234 schedstat_inc(p, se.nr_forced_migrations);
3235 }
3236 #endif
3237 return 1;
3238 }
3239
3240 if (tsk_cache_hot) {
3241 schedstat_inc(p, se.nr_failed_migrations_hot);
3242 return 0;
3243 }
3244 return 1;
3245 }
3246
3247 static unsigned long
3248 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3249 unsigned long max_load_move, struct sched_domain *sd,
3250 enum cpu_idle_type idle, int *all_pinned,
3251 int *this_best_prio, struct rq_iterator *iterator)
3252 {
3253 int loops = 0, pulled = 0, pinned = 0;
3254 struct task_struct *p;
3255 long rem_load_move = max_load_move;
3256
3257 if (max_load_move == 0)
3258 goto out;
3259
3260 pinned = 1;
3261
3262 /*
3263 * Start the load-balancing iterator:
3264 */
3265 p = iterator->start(iterator->arg);
3266 next:
3267 if (!p || loops++ > sysctl_sched_nr_migrate)
3268 goto out;
3269
3270 if ((p->se.load.weight >> 1) > rem_load_move ||
3271 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3272 p = iterator->next(iterator->arg);
3273 goto next;
3274 }
3275
3276 pull_task(busiest, p, this_rq, this_cpu);
3277 pulled++;
3278 rem_load_move -= p->se.load.weight;
3279
3280 #ifdef CONFIG_PREEMPT
3281 /*
3282 * NEWIDLE balancing is a source of latency, so preemptible kernels
3283 * will stop after the first task is pulled to minimize the critical
3284 * section.
3285 */
3286 if (idle == CPU_NEWLY_IDLE)
3287 goto out;
3288 #endif
3289
3290 /*
3291 * We only want to steal up to the prescribed amount of weighted load.
3292 */
3293 if (rem_load_move > 0) {
3294 if (p->prio < *this_best_prio)
3295 *this_best_prio = p->prio;
3296 p = iterator->next(iterator->arg);
3297 goto next;
3298 }
3299 out:
3300 /*
3301 * Right now, this is one of only two places pull_task() is called,
3302 * so we can safely collect pull_task() stats here rather than
3303 * inside pull_task().
3304 */
3305 schedstat_add(sd, lb_gained[idle], pulled);
3306
3307 if (all_pinned)
3308 *all_pinned = pinned;
3309
3310 return max_load_move - rem_load_move;
3311 }
3312
3313 /*
3314 * move_tasks tries to move up to max_load_move weighted load from busiest to
3315 * this_rq, as part of a balancing operation within domain "sd".
3316 * Returns 1 if successful and 0 otherwise.
3317 *
3318 * Called with both runqueues locked.
3319 */
3320 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3321 unsigned long max_load_move,
3322 struct sched_domain *sd, enum cpu_idle_type idle,
3323 int *all_pinned)
3324 {
3325 const struct sched_class *class = sched_class_highest;
3326 unsigned long total_load_moved = 0;
3327 int this_best_prio = this_rq->curr->prio;
3328
3329 do {
3330 total_load_moved +=
3331 class->load_balance(this_rq, this_cpu, busiest,
3332 max_load_move - total_load_moved,
3333 sd, idle, all_pinned, &this_best_prio);
3334 class = class->next;
3335
3336 #ifdef CONFIG_PREEMPT
3337 /*
3338 * NEWIDLE balancing is a source of latency, so preemptible
3339 * kernels will stop after the first task is pulled to minimize
3340 * the critical section.
3341 */
3342 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3343 break;
3344 #endif
3345 } while (class && max_load_move > total_load_moved);
3346
3347 return total_load_moved > 0;
3348 }
3349
3350 static int
3351 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3352 struct sched_domain *sd, enum cpu_idle_type idle,
3353 struct rq_iterator *iterator)
3354 {
3355 struct task_struct *p = iterator->start(iterator->arg);
3356 int pinned = 0;
3357
3358 while (p) {
3359 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3360 pull_task(busiest, p, this_rq, this_cpu);
3361 /*
3362 * Right now, this is only the second place pull_task()
3363 * is called, so we can safely collect pull_task()
3364 * stats here rather than inside pull_task().
3365 */
3366 schedstat_inc(sd, lb_gained[idle]);
3367
3368 return 1;
3369 }
3370 p = iterator->next(iterator->arg);
3371 }
3372
3373 return 0;
3374 }
3375
3376 /*
3377 * move_one_task tries to move exactly one task from busiest to this_rq, as
3378 * part of active balancing operations within "domain".
3379 * Returns 1 if successful and 0 otherwise.
3380 *
3381 * Called with both runqueues locked.
3382 */
3383 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3384 struct sched_domain *sd, enum cpu_idle_type idle)
3385 {
3386 const struct sched_class *class;
3387
3388 for_each_class(class) {
3389 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3390 return 1;
3391 }
3392
3393 return 0;
3394 }
3395 /********** Helpers for find_busiest_group ************************/
3396 /*
3397 * sd_lb_stats - Structure to store the statistics of a sched_domain
3398 * during load balancing.
3399 */
3400 struct sd_lb_stats {
3401 struct sched_group *busiest; /* Busiest group in this sd */
3402 struct sched_group *this; /* Local group in this sd */
3403 unsigned long total_load; /* Total load of all groups in sd */
3404 unsigned long total_pwr; /* Total power of all groups in sd */
3405 unsigned long avg_load; /* Average load across all groups in sd */
3406
3407 /** Statistics of this group */
3408 unsigned long this_load;
3409 unsigned long this_load_per_task;
3410 unsigned long this_nr_running;
3411
3412 /* Statistics of the busiest group */
3413 unsigned long max_load;
3414 unsigned long busiest_load_per_task;
3415 unsigned long busiest_nr_running;
3416
3417 int group_imb; /* Is there imbalance in this sd */
3418 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3419 int power_savings_balance; /* Is powersave balance needed for this sd */
3420 struct sched_group *group_min; /* Least loaded group in sd */
3421 struct sched_group *group_leader; /* Group which relieves group_min */
3422 unsigned long min_load_per_task; /* load_per_task in group_min */
3423 unsigned long leader_nr_running; /* Nr running of group_leader */
3424 unsigned long min_nr_running; /* Nr running of group_min */
3425 #endif
3426 };
3427
3428 /*
3429 * sg_lb_stats - stats of a sched_group required for load_balancing
3430 */
3431 struct sg_lb_stats {
3432 unsigned long avg_load; /*Avg load across the CPUs of the group */
3433 unsigned long group_load; /* Total load over the CPUs of the group */
3434 unsigned long sum_nr_running; /* Nr tasks running in the group */
3435 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3436 unsigned long group_capacity;
3437 int group_imb; /* Is there an imbalance in the group ? */
3438 };
3439
3440 /**
3441 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3442 * @group: The group whose first cpu is to be returned.
3443 */
3444 static inline unsigned int group_first_cpu(struct sched_group *group)
3445 {
3446 return cpumask_first(sched_group_cpus(group));
3447 }
3448
3449 /**
3450 * get_sd_load_idx - Obtain the load index for a given sched domain.
3451 * @sd: The sched_domain whose load_idx is to be obtained.
3452 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3453 */
3454 static inline int get_sd_load_idx(struct sched_domain *sd,
3455 enum cpu_idle_type idle)
3456 {
3457 int load_idx;
3458
3459 switch (idle) {
3460 case CPU_NOT_IDLE:
3461 load_idx = sd->busy_idx;
3462 break;
3463
3464 case CPU_NEWLY_IDLE:
3465 load_idx = sd->newidle_idx;
3466 break;
3467 default:
3468 load_idx = sd->idle_idx;
3469 break;
3470 }
3471
3472 return load_idx;
3473 }
3474
3475
3476 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3477 /**
3478 * init_sd_power_savings_stats - Initialize power savings statistics for
3479 * the given sched_domain, during load balancing.
3480 *
3481 * @sd: Sched domain whose power-savings statistics are to be initialized.
3482 * @sds: Variable containing the statistics for sd.
3483 * @idle: Idle status of the CPU at which we're performing load-balancing.
3484 */
3485 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3486 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3487 {
3488 /*
3489 * Busy processors will not participate in power savings
3490 * balance.
3491 */
3492 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3493 sds->power_savings_balance = 0;
3494 else {
3495 sds->power_savings_balance = 1;
3496 sds->min_nr_running = ULONG_MAX;
3497 sds->leader_nr_running = 0;
3498 }
3499 }
3500
3501 /**
3502 * update_sd_power_savings_stats - Update the power saving stats for a
3503 * sched_domain while performing load balancing.
3504 *
3505 * @group: sched_group belonging to the sched_domain under consideration.
3506 * @sds: Variable containing the statistics of the sched_domain
3507 * @local_group: Does group contain the CPU for which we're performing
3508 * load balancing ?
3509 * @sgs: Variable containing the statistics of the group.
3510 */
3511 static inline void update_sd_power_savings_stats(struct sched_group *group,
3512 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3513 {
3514
3515 if (!sds->power_savings_balance)
3516 return;
3517
3518 /*
3519 * If the local group is idle or completely loaded
3520 * no need to do power savings balance at this domain
3521 */
3522 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3523 !sds->this_nr_running))
3524 sds->power_savings_balance = 0;
3525
3526 /*
3527 * If a group is already running at full capacity or idle,
3528 * don't include that group in power savings calculations
3529 */
3530 if (!sds->power_savings_balance ||
3531 sgs->sum_nr_running >= sgs->group_capacity ||
3532 !sgs->sum_nr_running)
3533 return;
3534
3535 /*
3536 * Calculate the group which has the least non-idle load.
3537 * This is the group from where we need to pick up the load
3538 * for saving power
3539 */
3540 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3541 (sgs->sum_nr_running == sds->min_nr_running &&
3542 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3543 sds->group_min = group;
3544 sds->min_nr_running = sgs->sum_nr_running;
3545 sds->min_load_per_task = sgs->sum_weighted_load /
3546 sgs->sum_nr_running;
3547 }
3548
3549 /*
3550 * Calculate the group which is almost near its
3551 * capacity but still has some space to pick up some load
3552 * from other group and save more power
3553 */
3554 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
3555 return;
3556
3557 if (sgs->sum_nr_running > sds->leader_nr_running ||
3558 (sgs->sum_nr_running == sds->leader_nr_running &&
3559 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3560 sds->group_leader = group;
3561 sds->leader_nr_running = sgs->sum_nr_running;
3562 }
3563 }
3564
3565 /**
3566 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3567 * @sds: Variable containing the statistics of the sched_domain
3568 * under consideration.
3569 * @this_cpu: Cpu at which we're currently performing load-balancing.
3570 * @imbalance: Variable to store the imbalance.
3571 *
3572 * Description:
3573 * Check if we have potential to perform some power-savings balance.
3574 * If yes, set the busiest group to be the least loaded group in the
3575 * sched_domain, so that it's CPUs can be put to idle.
3576 *
3577 * Returns 1 if there is potential to perform power-savings balance.
3578 * Else returns 0.
3579 */
3580 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3581 int this_cpu, unsigned long *imbalance)
3582 {
3583 if (!sds->power_savings_balance)
3584 return 0;
3585
3586 if (sds->this != sds->group_leader ||
3587 sds->group_leader == sds->group_min)
3588 return 0;
3589
3590 *imbalance = sds->min_load_per_task;
3591 sds->busiest = sds->group_min;
3592
3593 return 1;
3594
3595 }
3596 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3597 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3598 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3599 {
3600 return;
3601 }
3602
3603 static inline void update_sd_power_savings_stats(struct sched_group *group,
3604 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3605 {
3606 return;
3607 }
3608
3609 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3610 int this_cpu, unsigned long *imbalance)
3611 {
3612 return 0;
3613 }
3614 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3615
3616
3617 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3618 {
3619 return SCHED_LOAD_SCALE;
3620 }
3621
3622 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3623 {
3624 return default_scale_freq_power(sd, cpu);
3625 }
3626
3627 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
3628 {
3629 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3630 unsigned long smt_gain = sd->smt_gain;
3631
3632 smt_gain /= weight;
3633
3634 return smt_gain;
3635 }
3636
3637 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3638 {
3639 return default_scale_smt_power(sd, cpu);
3640 }
3641
3642 unsigned long scale_rt_power(int cpu)
3643 {
3644 struct rq *rq = cpu_rq(cpu);
3645 u64 total, available;
3646
3647 sched_avg_update(rq);
3648
3649 total = sched_avg_period() + (rq->clock - rq->age_stamp);
3650 available = total - rq->rt_avg;
3651
3652 if (unlikely((s64)total < SCHED_LOAD_SCALE))
3653 total = SCHED_LOAD_SCALE;
3654
3655 total >>= SCHED_LOAD_SHIFT;
3656
3657 return div_u64(available, total);
3658 }
3659
3660 static void update_cpu_power(struct sched_domain *sd, int cpu)
3661 {
3662 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3663 unsigned long power = SCHED_LOAD_SCALE;
3664 struct sched_group *sdg = sd->groups;
3665
3666 if (sched_feat(ARCH_POWER))
3667 power *= arch_scale_freq_power(sd, cpu);
3668 else
3669 power *= default_scale_freq_power(sd, cpu);
3670
3671 power >>= SCHED_LOAD_SHIFT;
3672
3673 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3674 if (sched_feat(ARCH_POWER))
3675 power *= arch_scale_smt_power(sd, cpu);
3676 else
3677 power *= default_scale_smt_power(sd, cpu);
3678
3679 power >>= SCHED_LOAD_SHIFT;
3680 }
3681
3682 power *= scale_rt_power(cpu);
3683 power >>= SCHED_LOAD_SHIFT;
3684
3685 if (!power)
3686 power = 1;
3687
3688 sdg->cpu_power = power;
3689 }
3690
3691 static void update_group_power(struct sched_domain *sd, int cpu)
3692 {
3693 struct sched_domain *child = sd->child;
3694 struct sched_group *group, *sdg = sd->groups;
3695 unsigned long power;
3696
3697 if (!child) {
3698 update_cpu_power(sd, cpu);
3699 return;
3700 }
3701
3702 power = 0;
3703
3704 group = child->groups;
3705 do {
3706 power += group->cpu_power;
3707 group = group->next;
3708 } while (group != child->groups);
3709
3710 sdg->cpu_power = power;
3711 }
3712
3713 /**
3714 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3715 * @sd: The sched_domain whose statistics are to be updated.
3716 * @group: sched_group whose statistics are to be updated.
3717 * @this_cpu: Cpu for which load balance is currently performed.
3718 * @idle: Idle status of this_cpu
3719 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3720 * @sd_idle: Idle status of the sched_domain containing group.
3721 * @local_group: Does group contain this_cpu.
3722 * @cpus: Set of cpus considered for load balancing.
3723 * @balance: Should we balance.
3724 * @sgs: variable to hold the statistics for this group.
3725 */
3726 static inline void update_sg_lb_stats(struct sched_domain *sd,
3727 struct sched_group *group, int this_cpu,
3728 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3729 int local_group, const struct cpumask *cpus,
3730 int *balance, struct sg_lb_stats *sgs)
3731 {
3732 unsigned long load, max_cpu_load, min_cpu_load;
3733 int i;
3734 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3735 unsigned long sum_avg_load_per_task;
3736 unsigned long avg_load_per_task;
3737
3738 if (local_group) {
3739 balance_cpu = group_first_cpu(group);
3740 if (balance_cpu == this_cpu)
3741 update_group_power(sd, this_cpu);
3742 }
3743
3744 /* Tally up the load of all CPUs in the group */
3745 sum_avg_load_per_task = avg_load_per_task = 0;
3746 max_cpu_load = 0;
3747 min_cpu_load = ~0UL;
3748
3749 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3750 struct rq *rq = cpu_rq(i);
3751
3752 if (*sd_idle && rq->nr_running)
3753 *sd_idle = 0;
3754
3755 /* Bias balancing toward cpus of our domain */
3756 if (local_group) {
3757 if (idle_cpu(i) && !first_idle_cpu) {
3758 first_idle_cpu = 1;
3759 balance_cpu = i;
3760 }
3761
3762 load = target_load(i, load_idx);
3763 } else {
3764 load = source_load(i, load_idx);
3765 if (load > max_cpu_load)
3766 max_cpu_load = load;
3767 if (min_cpu_load > load)
3768 min_cpu_load = load;
3769 }
3770
3771 sgs->group_load += load;
3772 sgs->sum_nr_running += rq->nr_running;
3773 sgs->sum_weighted_load += weighted_cpuload(i);
3774
3775 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3776 }
3777
3778 /*
3779 * First idle cpu or the first cpu(busiest) in this sched group
3780 * is eligible for doing load balancing at this and above
3781 * domains. In the newly idle case, we will allow all the cpu's
3782 * to do the newly idle load balance.
3783 */
3784 if (idle != CPU_NEWLY_IDLE && local_group &&
3785 balance_cpu != this_cpu && balance) {
3786 *balance = 0;
3787 return;
3788 }
3789
3790 /* Adjust by relative CPU power of the group */
3791 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
3792
3793
3794 /*
3795 * Consider the group unbalanced when the imbalance is larger
3796 * than the average weight of two tasks.
3797 *
3798 * APZ: with cgroup the avg task weight can vary wildly and
3799 * might not be a suitable number - should we keep a
3800 * normalized nr_running number somewhere that negates
3801 * the hierarchy?
3802 */
3803 avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
3804 group->cpu_power;
3805
3806 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3807 sgs->group_imb = 1;
3808
3809 sgs->group_capacity =
3810 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
3811 }
3812
3813 /**
3814 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3815 * @sd: sched_domain whose statistics are to be updated.
3816 * @this_cpu: Cpu for which load balance is currently performed.
3817 * @idle: Idle status of this_cpu
3818 * @sd_idle: Idle status of the sched_domain containing group.
3819 * @cpus: Set of cpus considered for load balancing.
3820 * @balance: Should we balance.
3821 * @sds: variable to hold the statistics for this sched_domain.
3822 */
3823 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3824 enum cpu_idle_type idle, int *sd_idle,
3825 const struct cpumask *cpus, int *balance,
3826 struct sd_lb_stats *sds)
3827 {
3828 struct sched_domain *child = sd->child;
3829 struct sched_group *group = sd->groups;
3830 struct sg_lb_stats sgs;
3831 int load_idx, prefer_sibling = 0;
3832
3833 if (child && child->flags & SD_PREFER_SIBLING)
3834 prefer_sibling = 1;
3835
3836 init_sd_power_savings_stats(sd, sds, idle);
3837 load_idx = get_sd_load_idx(sd, idle);
3838
3839 do {
3840 int local_group;
3841
3842 local_group = cpumask_test_cpu(this_cpu,
3843 sched_group_cpus(group));
3844 memset(&sgs, 0, sizeof(sgs));
3845 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
3846 local_group, cpus, balance, &sgs);
3847
3848 if (local_group && balance && !(*balance))
3849 return;
3850
3851 sds->total_load += sgs.group_load;
3852 sds->total_pwr += group->cpu_power;
3853
3854 /*
3855 * In case the child domain prefers tasks go to siblings
3856 * first, lower the group capacity to one so that we'll try
3857 * and move all the excess tasks away.
3858 */
3859 if (prefer_sibling)
3860 sgs.group_capacity = min(sgs.group_capacity, 1UL);
3861
3862 if (local_group) {
3863 sds->this_load = sgs.avg_load;
3864 sds->this = group;
3865 sds->this_nr_running = sgs.sum_nr_running;
3866 sds->this_load_per_task = sgs.sum_weighted_load;
3867 } else if (sgs.avg_load > sds->max_load &&
3868 (sgs.sum_nr_running > sgs.group_capacity ||
3869 sgs.group_imb)) {
3870 sds->max_load = sgs.avg_load;
3871 sds->busiest = group;
3872 sds->busiest_nr_running = sgs.sum_nr_running;
3873 sds->busiest_load_per_task = sgs.sum_weighted_load;
3874 sds->group_imb = sgs.group_imb;
3875 }
3876
3877 update_sd_power_savings_stats(group, sds, local_group, &sgs);
3878 group = group->next;
3879 } while (group != sd->groups);
3880 }
3881
3882 /**
3883 * fix_small_imbalance - Calculate the minor imbalance that exists
3884 * amongst the groups of a sched_domain, during
3885 * load balancing.
3886 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3887 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3888 * @imbalance: Variable to store the imbalance.
3889 */
3890 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3891 int this_cpu, unsigned long *imbalance)
3892 {
3893 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3894 unsigned int imbn = 2;
3895
3896 if (sds->this_nr_running) {
3897 sds->this_load_per_task /= sds->this_nr_running;
3898 if (sds->busiest_load_per_task >
3899 sds->this_load_per_task)
3900 imbn = 1;
3901 } else
3902 sds->this_load_per_task =
3903 cpu_avg_load_per_task(this_cpu);
3904
3905 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3906 sds->busiest_load_per_task * imbn) {
3907 *imbalance = sds->busiest_load_per_task;
3908 return;
3909 }
3910
3911 /*
3912 * OK, we don't have enough imbalance to justify moving tasks,
3913 * however we may be able to increase total CPU power used by
3914 * moving them.
3915 */
3916
3917 pwr_now += sds->busiest->cpu_power *
3918 min(sds->busiest_load_per_task, sds->max_load);
3919 pwr_now += sds->this->cpu_power *
3920 min(sds->this_load_per_task, sds->this_load);
3921 pwr_now /= SCHED_LOAD_SCALE;
3922
3923 /* Amount of load we'd subtract */
3924 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3925 sds->busiest->cpu_power;
3926 if (sds->max_load > tmp)
3927 pwr_move += sds->busiest->cpu_power *
3928 min(sds->busiest_load_per_task, sds->max_load - tmp);
3929
3930 /* Amount of load we'd add */
3931 if (sds->max_load * sds->busiest->cpu_power <
3932 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3933 tmp = (sds->max_load * sds->busiest->cpu_power) /
3934 sds->this->cpu_power;
3935 else
3936 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3937 sds->this->cpu_power;
3938 pwr_move += sds->this->cpu_power *
3939 min(sds->this_load_per_task, sds->this_load + tmp);
3940 pwr_move /= SCHED_LOAD_SCALE;
3941
3942 /* Move if we gain throughput */
3943 if (pwr_move > pwr_now)
3944 *imbalance = sds->busiest_load_per_task;
3945 }
3946
3947 /**
3948 * calculate_imbalance - Calculate the amount of imbalance present within the
3949 * groups of a given sched_domain during load balance.
3950 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3951 * @this_cpu: Cpu for which currently load balance is being performed.
3952 * @imbalance: The variable to store the imbalance.
3953 */
3954 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3955 unsigned long *imbalance)
3956 {
3957 unsigned long max_pull;
3958 /*
3959 * In the presence of smp nice balancing, certain scenarios can have
3960 * max load less than avg load(as we skip the groups at or below
3961 * its cpu_power, while calculating max_load..)
3962 */
3963 if (sds->max_load < sds->avg_load) {
3964 *imbalance = 0;
3965 return fix_small_imbalance(sds, this_cpu, imbalance);
3966 }
3967
3968 /* Don't want to pull so many tasks that a group would go idle */
3969 max_pull = min(sds->max_load - sds->avg_load,
3970 sds->max_load - sds->busiest_load_per_task);
3971
3972 /* How much load to actually move to equalise the imbalance */
3973 *imbalance = min(max_pull * sds->busiest->cpu_power,
3974 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
3975 / SCHED_LOAD_SCALE;
3976
3977 /*
3978 * if *imbalance is less than the average load per runnable task
3979 * there is no gaurantee that any tasks will be moved so we'll have
3980 * a think about bumping its value to force at least one task to be
3981 * moved
3982 */
3983 if (*imbalance < sds->busiest_load_per_task)
3984 return fix_small_imbalance(sds, this_cpu, imbalance);
3985
3986 }
3987 /******* find_busiest_group() helpers end here *********************/
3988
3989 /**
3990 * find_busiest_group - Returns the busiest group within the sched_domain
3991 * if there is an imbalance. If there isn't an imbalance, and
3992 * the user has opted for power-savings, it returns a group whose
3993 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3994 * such a group exists.
3995 *
3996 * Also calculates the amount of weighted load which should be moved
3997 * to restore balance.
3998 *
3999 * @sd: The sched_domain whose busiest group is to be returned.
4000 * @this_cpu: The cpu for which load balancing is currently being performed.
4001 * @imbalance: Variable which stores amount of weighted load which should
4002 * be moved to restore balance/put a group to idle.
4003 * @idle: The idle status of this_cpu.
4004 * @sd_idle: The idleness of sd
4005 * @cpus: The set of CPUs under consideration for load-balancing.
4006 * @balance: Pointer to a variable indicating if this_cpu
4007 * is the appropriate cpu to perform load balancing at this_level.
4008 *
4009 * Returns: - the busiest group if imbalance exists.
4010 * - If no imbalance and user has opted for power-savings balance,
4011 * return the least loaded group whose CPUs can be
4012 * put to idle by rebalancing its tasks onto our group.
4013 */
4014 static struct sched_group *
4015 find_busiest_group(struct sched_domain *sd, int this_cpu,
4016 unsigned long *imbalance, enum cpu_idle_type idle,
4017 int *sd_idle, const struct cpumask *cpus, int *balance)
4018 {
4019 struct sd_lb_stats sds;
4020
4021 memset(&sds, 0, sizeof(sds));
4022
4023 /*
4024 * Compute the various statistics relavent for load balancing at
4025 * this level.
4026 */
4027 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
4028 balance, &sds);
4029
4030 /* Cases where imbalance does not exist from POV of this_cpu */
4031 /* 1) this_cpu is not the appropriate cpu to perform load balancing
4032 * at this level.
4033 * 2) There is no busy sibling group to pull from.
4034 * 3) This group is the busiest group.
4035 * 4) This group is more busy than the avg busieness at this
4036 * sched_domain.
4037 * 5) The imbalance is within the specified limit.
4038 * 6) Any rebalance would lead to ping-pong
4039 */
4040 if (balance && !(*balance))
4041 goto ret;
4042
4043 if (!sds.busiest || sds.busiest_nr_running == 0)
4044 goto out_balanced;
4045
4046 if (sds.this_load >= sds.max_load)
4047 goto out_balanced;
4048
4049 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
4050
4051 if (sds.this_load >= sds.avg_load)
4052 goto out_balanced;
4053
4054 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
4055 goto out_balanced;
4056
4057 sds.busiest_load_per_task /= sds.busiest_nr_running;
4058 if (sds.group_imb)
4059 sds.busiest_load_per_task =
4060 min(sds.busiest_load_per_task, sds.avg_load);
4061
4062 /*
4063 * We're trying to get all the cpus to the average_load, so we don't
4064 * want to push ourselves above the average load, nor do we wish to
4065 * reduce the max loaded cpu below the average load, as either of these
4066 * actions would just result in more rebalancing later, and ping-pong
4067 * tasks around. Thus we look for the minimum possible imbalance.
4068 * Negative imbalances (*we* are more loaded than anyone else) will
4069 * be counted as no imbalance for these purposes -- we can't fix that
4070 * by pulling tasks to us. Be careful of negative numbers as they'll
4071 * appear as very large values with unsigned longs.
4072 */
4073 if (sds.max_load <= sds.busiest_load_per_task)
4074 goto out_balanced;
4075
4076 /* Looks like there is an imbalance. Compute it */
4077 calculate_imbalance(&sds, this_cpu, imbalance);
4078 return sds.busiest;
4079
4080 out_balanced:
4081 /*
4082 * There is no obvious imbalance. But check if we can do some balancing
4083 * to save power.
4084 */
4085 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4086 return sds.busiest;
4087 ret:
4088 *imbalance = 0;
4089 return NULL;
4090 }
4091
4092 /*
4093 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4094 */
4095 static struct rq *
4096 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
4097 unsigned long imbalance, const struct cpumask *cpus)
4098 {
4099 struct rq *busiest = NULL, *rq;
4100 unsigned long max_load = 0;
4101 int i;
4102
4103 for_each_cpu(i, sched_group_cpus(group)) {
4104 unsigned long power = power_of(i);
4105 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
4106 unsigned long wl;
4107
4108 if (!cpumask_test_cpu(i, cpus))
4109 continue;
4110
4111 rq = cpu_rq(i);
4112 wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
4113 wl /= power;
4114
4115 if (capacity && rq->nr_running == 1 && wl > imbalance)
4116 continue;
4117
4118 if (wl > max_load) {
4119 max_load = wl;
4120 busiest = rq;
4121 }
4122 }
4123
4124 return busiest;
4125 }
4126
4127 /*
4128 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4129 * so long as it is large enough.
4130 */
4131 #define MAX_PINNED_INTERVAL 512
4132
4133 /* Working cpumask for load_balance and load_balance_newidle. */
4134 static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4135
4136 /*
4137 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4138 * tasks if there is an imbalance.
4139 */
4140 static int load_balance(int this_cpu, struct rq *this_rq,
4141 struct sched_domain *sd, enum cpu_idle_type idle,
4142 int *balance)
4143 {
4144 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
4145 struct sched_group *group;
4146 unsigned long imbalance;
4147 struct rq *busiest;
4148 unsigned long flags;
4149 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4150
4151 cpumask_copy(cpus, cpu_active_mask);
4152
4153 /*
4154 * When power savings policy is enabled for the parent domain, idle
4155 * sibling can pick up load irrespective of busy siblings. In this case,
4156 * let the state of idle sibling percolate up as CPU_IDLE, instead of
4157 * portraying it as CPU_NOT_IDLE.
4158 */
4159 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
4160 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4161 sd_idle = 1;
4162
4163 schedstat_inc(sd, lb_count[idle]);
4164
4165 redo:
4166 update_shares(sd);
4167 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
4168 cpus, balance);
4169
4170 if (*balance == 0)
4171 goto out_balanced;
4172
4173 if (!group) {
4174 schedstat_inc(sd, lb_nobusyg[idle]);
4175 goto out_balanced;
4176 }
4177
4178 busiest = find_busiest_queue(group, idle, imbalance, cpus);
4179 if (!busiest) {
4180 schedstat_inc(sd, lb_nobusyq[idle]);
4181 goto out_balanced;
4182 }
4183
4184 BUG_ON(busiest == this_rq);
4185
4186 schedstat_add(sd, lb_imbalance[idle], imbalance);
4187
4188 ld_moved = 0;
4189 if (busiest->nr_running > 1) {
4190 /*
4191 * Attempt to move tasks. If find_busiest_group has found
4192 * an imbalance but busiest->nr_running <= 1, the group is
4193 * still unbalanced. ld_moved simply stays zero, so it is
4194 * correctly treated as an imbalance.
4195 */
4196 local_irq_save(flags);
4197 double_rq_lock(this_rq, busiest);
4198 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4199 imbalance, sd, idle, &all_pinned);
4200 double_rq_unlock(this_rq, busiest);
4201 local_irq_restore(flags);
4202
4203 /*
4204 * some other cpu did the load balance for us.
4205 */
4206 if (ld_moved && this_cpu != smp_processor_id())
4207 resched_cpu(this_cpu);
4208
4209 /* All tasks on this runqueue were pinned by CPU affinity */
4210 if (unlikely(all_pinned)) {
4211 cpumask_clear_cpu(cpu_of(busiest), cpus);
4212 if (!cpumask_empty(cpus))
4213 goto redo;
4214 goto out_balanced;
4215 }
4216 }
4217
4218 if (!ld_moved) {
4219 schedstat_inc(sd, lb_failed[idle]);
4220 sd->nr_balance_failed++;
4221
4222 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
4223
4224 raw_spin_lock_irqsave(&busiest->lock, flags);
4225
4226 /* don't kick the migration_thread, if the curr
4227 * task on busiest cpu can't be moved to this_cpu
4228 */
4229 if (!cpumask_test_cpu(this_cpu,
4230 &busiest->curr->cpus_allowed)) {
4231 raw_spin_unlock_irqrestore(&busiest->lock,
4232 flags);
4233 all_pinned = 1;
4234 goto out_one_pinned;
4235 }
4236
4237 if (!busiest->active_balance) {
4238 busiest->active_balance = 1;
4239 busiest->push_cpu = this_cpu;
4240 active_balance = 1;
4241 }
4242 raw_spin_unlock_irqrestore(&busiest->lock, flags);
4243 if (active_balance)
4244 wake_up_process(busiest->migration_thread);
4245
4246 /*
4247 * We've kicked active balancing, reset the failure
4248 * counter.
4249 */
4250 sd->nr_balance_failed = sd->cache_nice_tries+1;
4251 }
4252 } else
4253 sd->nr_balance_failed = 0;
4254
4255 if (likely(!active_balance)) {
4256 /* We were unbalanced, so reset the balancing interval */
4257 sd->balance_interval = sd->min_interval;
4258 } else {
4259 /*
4260 * If we've begun active balancing, start to back off. This
4261 * case may not be covered by the all_pinned logic if there
4262 * is only 1 task on the busy runqueue (because we don't call
4263 * move_tasks).
4264 */
4265 if (sd->balance_interval < sd->max_interval)
4266 sd->balance_interval *= 2;
4267 }
4268
4269 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4270 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4271 ld_moved = -1;
4272
4273 goto out;
4274
4275 out_balanced:
4276 schedstat_inc(sd, lb_balanced[idle]);
4277
4278 sd->nr_balance_failed = 0;
4279
4280 out_one_pinned:
4281 /* tune up the balancing interval */
4282 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4283 (sd->balance_interval < sd->max_interval))
4284 sd->balance_interval *= 2;
4285
4286 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4287 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4288 ld_moved = -1;
4289 else
4290 ld_moved = 0;
4291 out:
4292 if (ld_moved)
4293 update_shares(sd);
4294 return ld_moved;
4295 }
4296
4297 /*
4298 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4299 * tasks if there is an imbalance.
4300 *
4301 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
4302 * this_rq is locked.
4303 */
4304 static int
4305 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
4306 {
4307 struct sched_group *group;
4308 struct rq *busiest = NULL;
4309 unsigned long imbalance;
4310 int ld_moved = 0;
4311 int sd_idle = 0;
4312 int all_pinned = 0;
4313 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4314
4315 cpumask_copy(cpus, cpu_active_mask);
4316
4317 /*
4318 * When power savings policy is enabled for the parent domain, idle
4319 * sibling can pick up load irrespective of busy siblings. In this case,
4320 * let the state of idle sibling percolate up as IDLE, instead of
4321 * portraying it as CPU_NOT_IDLE.
4322 */
4323 if (sd->flags & SD_SHARE_CPUPOWER &&
4324 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4325 sd_idle = 1;
4326
4327 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4328 redo:
4329 update_shares_locked(this_rq, sd);
4330 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4331 &sd_idle, cpus, NULL);
4332 if (!group) {
4333 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4334 goto out_balanced;
4335 }
4336
4337 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
4338 if (!busiest) {
4339 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4340 goto out_balanced;
4341 }
4342
4343 BUG_ON(busiest == this_rq);
4344
4345 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4346
4347 ld_moved = 0;
4348 if (busiest->nr_running > 1) {
4349 /* Attempt to move tasks */
4350 double_lock_balance(this_rq, busiest);
4351 /* this_rq->clock is already updated */
4352 update_rq_clock(busiest);
4353 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4354 imbalance, sd, CPU_NEWLY_IDLE,
4355 &all_pinned);
4356 double_unlock_balance(this_rq, busiest);
4357
4358 if (unlikely(all_pinned)) {
4359 cpumask_clear_cpu(cpu_of(busiest), cpus);
4360 if (!cpumask_empty(cpus))
4361 goto redo;
4362 }
4363 }
4364
4365 if (!ld_moved) {
4366 int active_balance = 0;
4367
4368 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4369 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4370 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4371 return -1;
4372
4373 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4374 return -1;
4375
4376 if (sd->nr_balance_failed++ < 2)
4377 return -1;
4378
4379 /*
4380 * The only task running in a non-idle cpu can be moved to this
4381 * cpu in an attempt to completely freeup the other CPU
4382 * package. The same method used to move task in load_balance()
4383 * have been extended for load_balance_newidle() to speedup
4384 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4385 *
4386 * The package power saving logic comes from
4387 * find_busiest_group(). If there are no imbalance, then
4388 * f_b_g() will return NULL. However when sched_mc={1,2} then
4389 * f_b_g() will select a group from which a running task may be
4390 * pulled to this cpu in order to make the other package idle.
4391 * If there is no opportunity to make a package idle and if
4392 * there are no imbalance, then f_b_g() will return NULL and no
4393 * action will be taken in load_balance_newidle().
4394 *
4395 * Under normal task pull operation due to imbalance, there
4396 * will be more than one task in the source run queue and
4397 * move_tasks() will succeed. ld_moved will be true and this
4398 * active balance code will not be triggered.
4399 */
4400
4401 /* Lock busiest in correct order while this_rq is held */
4402 double_lock_balance(this_rq, busiest);
4403
4404 /*
4405 * don't kick the migration_thread, if the curr
4406 * task on busiest cpu can't be moved to this_cpu
4407 */
4408 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4409 double_unlock_balance(this_rq, busiest);
4410 all_pinned = 1;
4411 return ld_moved;
4412 }
4413
4414 if (!busiest->active_balance) {
4415 busiest->active_balance = 1;
4416 busiest->push_cpu = this_cpu;
4417 active_balance = 1;
4418 }
4419
4420 double_unlock_balance(this_rq, busiest);
4421 /*
4422 * Should not call ttwu while holding a rq->lock
4423 */
4424 raw_spin_unlock(&this_rq->lock);
4425 if (active_balance)
4426 wake_up_process(busiest->migration_thread);
4427 raw_spin_lock(&this_rq->lock);
4428
4429 } else
4430 sd->nr_balance_failed = 0;
4431
4432 update_shares_locked(this_rq, sd);
4433 return ld_moved;
4434
4435 out_balanced:
4436 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4437 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4438 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4439 return -1;
4440 sd->nr_balance_failed = 0;
4441
4442 return 0;
4443 }
4444
4445 /*
4446 * idle_balance is called by schedule() if this_cpu is about to become
4447 * idle. Attempts to pull tasks from other CPUs.
4448 */
4449 static void idle_balance(int this_cpu, struct rq *this_rq)
4450 {
4451 struct sched_domain *sd;
4452 int pulled_task = 0;
4453 unsigned long next_balance = jiffies + HZ;
4454
4455 this_rq->idle_stamp = this_rq->clock;
4456
4457 if (this_rq->avg_idle < sysctl_sched_migration_cost)
4458 return;
4459
4460 for_each_domain(this_cpu, sd) {
4461 unsigned long interval;
4462
4463 if (!(sd->flags & SD_LOAD_BALANCE))
4464 continue;
4465
4466 if (sd->flags & SD_BALANCE_NEWIDLE)
4467 /* If we've pulled tasks over stop searching: */
4468 pulled_task = load_balance_newidle(this_cpu, this_rq,
4469 sd);
4470
4471 interval = msecs_to_jiffies(sd->balance_interval);
4472 if (time_after(next_balance, sd->last_balance + interval))
4473 next_balance = sd->last_balance + interval;
4474 if (pulled_task) {
4475 this_rq->idle_stamp = 0;
4476 break;
4477 }
4478 }
4479 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4480 /*
4481 * We are going idle. next_balance may be set based on
4482 * a busy processor. So reset next_balance.
4483 */
4484 this_rq->next_balance = next_balance;
4485 }
4486 }
4487
4488 /*
4489 * active_load_balance is run by migration threads. It pushes running tasks
4490 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4491 * running on each physical CPU where possible, and avoids physical /
4492 * logical imbalances.
4493 *
4494 * Called with busiest_rq locked.
4495 */
4496 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
4497 {
4498 int target_cpu = busiest_rq->push_cpu;
4499 struct sched_domain *sd;
4500 struct rq *target_rq;
4501
4502 /* Is there any task to move? */
4503 if (busiest_rq->nr_running <= 1)
4504 return;
4505
4506 target_rq = cpu_rq(target_cpu);
4507
4508 /*
4509 * This condition is "impossible", if it occurs
4510 * we need to fix it. Originally reported by
4511 * Bjorn Helgaas on a 128-cpu setup.
4512 */
4513 BUG_ON(busiest_rq == target_rq);
4514
4515 /* move a task from busiest_rq to target_rq */
4516 double_lock_balance(busiest_rq, target_rq);
4517 update_rq_clock(busiest_rq);
4518 update_rq_clock(target_rq);
4519
4520 /* Search for an sd spanning us and the target CPU. */
4521 for_each_domain(target_cpu, sd) {
4522 if ((sd->flags & SD_LOAD_BALANCE) &&
4523 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4524 break;
4525 }
4526
4527 if (likely(sd)) {
4528 schedstat_inc(sd, alb_count);
4529
4530 if (move_one_task(target_rq, target_cpu, busiest_rq,
4531 sd, CPU_IDLE))
4532 schedstat_inc(sd, alb_pushed);
4533 else
4534 schedstat_inc(sd, alb_failed);
4535 }
4536 double_unlock_balance(busiest_rq, target_rq);
4537 }
4538
4539 #ifdef CONFIG_NO_HZ
4540 static struct {
4541 atomic_t load_balancer;
4542 cpumask_var_t cpu_mask;
4543 cpumask_var_t ilb_grp_nohz_mask;
4544 } nohz ____cacheline_aligned = {
4545 .load_balancer = ATOMIC_INIT(-1),
4546 };
4547
4548 int get_nohz_load_balancer(void)
4549 {
4550 return atomic_read(&nohz.load_balancer);
4551 }
4552
4553 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4554 /**
4555 * lowest_flag_domain - Return lowest sched_domain containing flag.
4556 * @cpu: The cpu whose lowest level of sched domain is to
4557 * be returned.
4558 * @flag: The flag to check for the lowest sched_domain
4559 * for the given cpu.
4560 *
4561 * Returns the lowest sched_domain of a cpu which contains the given flag.
4562 */
4563 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4564 {
4565 struct sched_domain *sd;
4566
4567 for_each_domain(cpu, sd)
4568 if (sd && (sd->flags & flag))
4569 break;
4570
4571 return sd;
4572 }
4573
4574 /**
4575 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4576 * @cpu: The cpu whose domains we're iterating over.
4577 * @sd: variable holding the value of the power_savings_sd
4578 * for cpu.
4579 * @flag: The flag to filter the sched_domains to be iterated.
4580 *
4581 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4582 * set, starting from the lowest sched_domain to the highest.
4583 */
4584 #define for_each_flag_domain(cpu, sd, flag) \
4585 for (sd = lowest_flag_domain(cpu, flag); \
4586 (sd && (sd->flags & flag)); sd = sd->parent)
4587
4588 /**
4589 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4590 * @ilb_group: group to be checked for semi-idleness
4591 *
4592 * Returns: 1 if the group is semi-idle. 0 otherwise.
4593 *
4594 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4595 * and atleast one non-idle CPU. This helper function checks if the given
4596 * sched_group is semi-idle or not.
4597 */
4598 static inline int is_semi_idle_group(struct sched_group *ilb_group)
4599 {
4600 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4601 sched_group_cpus(ilb_group));
4602
4603 /*
4604 * A sched_group is semi-idle when it has atleast one busy cpu
4605 * and atleast one idle cpu.
4606 */
4607 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4608 return 0;
4609
4610 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4611 return 0;
4612
4613 return 1;
4614 }
4615 /**
4616 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4617 * @cpu: The cpu which is nominating a new idle_load_balancer.
4618 *
4619 * Returns: Returns the id of the idle load balancer if it exists,
4620 * Else, returns >= nr_cpu_ids.
4621 *
4622 * This algorithm picks the idle load balancer such that it belongs to a
4623 * semi-idle powersavings sched_domain. The idea is to try and avoid
4624 * completely idle packages/cores just for the purpose of idle load balancing
4625 * when there are other idle cpu's which are better suited for that job.
4626 */
4627 static int find_new_ilb(int cpu)
4628 {
4629 struct sched_domain *sd;
4630 struct sched_group *ilb_group;
4631
4632 /*
4633 * Have idle load balancer selection from semi-idle packages only
4634 * when power-aware load balancing is enabled
4635 */
4636 if (!(sched_smt_power_savings || sched_mc_power_savings))
4637 goto out_done;
4638
4639 /*
4640 * Optimize for the case when we have no idle CPUs or only one
4641 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4642 */
4643 if (cpumask_weight(nohz.cpu_mask) < 2)
4644 goto out_done;
4645
4646 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4647 ilb_group = sd->groups;
4648
4649 do {
4650 if (is_semi_idle_group(ilb_group))
4651 return cpumask_first(nohz.ilb_grp_nohz_mask);
4652
4653 ilb_group = ilb_group->next;
4654
4655 } while (ilb_group != sd->groups);
4656 }
4657
4658 out_done:
4659 return cpumask_first(nohz.cpu_mask);
4660 }
4661 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4662 static inline int find_new_ilb(int call_cpu)
4663 {
4664 return cpumask_first(nohz.cpu_mask);
4665 }
4666 #endif
4667
4668 /*
4669 * This routine will try to nominate the ilb (idle load balancing)
4670 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4671 * load balancing on behalf of all those cpus. If all the cpus in the system
4672 * go into this tickless mode, then there will be no ilb owner (as there is
4673 * no need for one) and all the cpus will sleep till the next wakeup event
4674 * arrives...
4675 *
4676 * For the ilb owner, tick is not stopped. And this tick will be used
4677 * for idle load balancing. ilb owner will still be part of
4678 * nohz.cpu_mask..
4679 *
4680 * While stopping the tick, this cpu will become the ilb owner if there
4681 * is no other owner. And will be the owner till that cpu becomes busy
4682 * or if all cpus in the system stop their ticks at which point
4683 * there is no need for ilb owner.
4684 *
4685 * When the ilb owner becomes busy, it nominates another owner, during the
4686 * next busy scheduler_tick()
4687 */
4688 int select_nohz_load_balancer(int stop_tick)
4689 {
4690 int cpu = smp_processor_id();
4691
4692 if (stop_tick) {
4693 cpu_rq(cpu)->in_nohz_recently = 1;
4694
4695 if (!cpu_active(cpu)) {
4696 if (atomic_read(&nohz.load_balancer) != cpu)
4697 return 0;
4698
4699 /*
4700 * If we are going offline and still the leader,
4701 * give up!
4702 */
4703 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4704 BUG();
4705
4706 return 0;
4707 }
4708
4709 cpumask_set_cpu(cpu, nohz.cpu_mask);
4710
4711 /* time for ilb owner also to sleep */
4712 if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) {
4713 if (atomic_read(&nohz.load_balancer) == cpu)
4714 atomic_set(&nohz.load_balancer, -1);
4715 return 0;
4716 }
4717
4718 if (atomic_read(&nohz.load_balancer) == -1) {
4719 /* make me the ilb owner */
4720 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4721 return 1;
4722 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4723 int new_ilb;
4724
4725 if (!(sched_smt_power_savings ||
4726 sched_mc_power_savings))
4727 return 1;
4728 /*
4729 * Check to see if there is a more power-efficient
4730 * ilb.
4731 */
4732 new_ilb = find_new_ilb(cpu);
4733 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4734 atomic_set(&nohz.load_balancer, -1);
4735 resched_cpu(new_ilb);
4736 return 0;
4737 }
4738 return 1;
4739 }
4740 } else {
4741 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4742 return 0;
4743
4744 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4745
4746 if (atomic_read(&nohz.load_balancer) == cpu)
4747 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4748 BUG();
4749 }
4750 return 0;
4751 }
4752 #endif
4753
4754 static DEFINE_SPINLOCK(balancing);
4755
4756 /*
4757 * It checks each scheduling domain to see if it is due to be balanced,
4758 * and initiates a balancing operation if so.
4759 *
4760 * Balancing parameters are set up in arch_init_sched_domains.
4761 */
4762 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4763 {
4764 int balance = 1;
4765 struct rq *rq = cpu_rq(cpu);
4766 unsigned long interval;
4767 struct sched_domain *sd;
4768 /* Earliest time when we have to do rebalance again */
4769 unsigned long next_balance = jiffies + 60*HZ;
4770 int update_next_balance = 0;
4771 int need_serialize;
4772
4773 for_each_domain(cpu, sd) {
4774 if (!(sd->flags & SD_LOAD_BALANCE))
4775 continue;
4776
4777 interval = sd->balance_interval;
4778 if (idle != CPU_IDLE)
4779 interval *= sd->busy_factor;
4780
4781 /* scale ms to jiffies */
4782 interval = msecs_to_jiffies(interval);
4783 if (unlikely(!interval))
4784 interval = 1;
4785 if (interval > HZ*NR_CPUS/10)
4786 interval = HZ*NR_CPUS/10;
4787
4788 need_serialize = sd->flags & SD_SERIALIZE;
4789
4790 if (need_serialize) {
4791 if (!spin_trylock(&balancing))
4792 goto out;
4793 }
4794
4795 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4796 if (load_balance(cpu, rq, sd, idle, &balance)) {
4797 /*
4798 * We've pulled tasks over so either we're no
4799 * longer idle, or one of our SMT siblings is
4800 * not idle.
4801 */
4802 idle = CPU_NOT_IDLE;
4803 }
4804 sd->last_balance = jiffies;
4805 }
4806 if (need_serialize)
4807 spin_unlock(&balancing);
4808 out:
4809 if (time_after(next_balance, sd->last_balance + interval)) {
4810 next_balance = sd->last_balance + interval;
4811 update_next_balance = 1;
4812 }
4813
4814 /*
4815 * Stop the load balance at this level. There is another
4816 * CPU in our sched group which is doing load balancing more
4817 * actively.
4818 */
4819 if (!balance)
4820 break;
4821 }
4822
4823 /*
4824 * next_balance will be updated only when there is a need.
4825 * When the cpu is attached to null domain for ex, it will not be
4826 * updated.
4827 */
4828 if (likely(update_next_balance))
4829 rq->next_balance = next_balance;
4830 }
4831
4832 /*
4833 * run_rebalance_domains is triggered when needed from the scheduler tick.
4834 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4835 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4836 */
4837 static void run_rebalance_domains(struct softirq_action *h)
4838 {
4839 int this_cpu = smp_processor_id();
4840 struct rq *this_rq = cpu_rq(this_cpu);
4841 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4842 CPU_IDLE : CPU_NOT_IDLE;
4843
4844 rebalance_domains(this_cpu, idle);
4845
4846 #ifdef CONFIG_NO_HZ
4847 /*
4848 * If this cpu is the owner for idle load balancing, then do the
4849 * balancing on behalf of the other idle cpus whose ticks are
4850 * stopped.
4851 */
4852 if (this_rq->idle_at_tick &&
4853 atomic_read(&nohz.load_balancer) == this_cpu) {
4854 struct rq *rq;
4855 int balance_cpu;
4856
4857 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4858 if (balance_cpu == this_cpu)
4859 continue;
4860
4861 /*
4862 * If this cpu gets work to do, stop the load balancing
4863 * work being done for other cpus. Next load
4864 * balancing owner will pick it up.
4865 */
4866 if (need_resched())
4867 break;
4868
4869 rebalance_domains(balance_cpu, CPU_IDLE);
4870
4871 rq = cpu_rq(balance_cpu);
4872 if (time_after(this_rq->next_balance, rq->next_balance))
4873 this_rq->next_balance = rq->next_balance;
4874 }
4875 }
4876 #endif
4877 }
4878
4879 static inline int on_null_domain(int cpu)
4880 {
4881 return !rcu_dereference(cpu_rq(cpu)->sd);
4882 }
4883
4884 /*
4885 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4886 *
4887 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4888 * idle load balancing owner or decide to stop the periodic load balancing,
4889 * if the whole system is idle.
4890 */
4891 static inline void trigger_load_balance(struct rq *rq, int cpu)
4892 {
4893 #ifdef CONFIG_NO_HZ
4894 /*
4895 * If we were in the nohz mode recently and busy at the current
4896 * scheduler tick, then check if we need to nominate new idle
4897 * load balancer.
4898 */
4899 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4900 rq->in_nohz_recently = 0;
4901
4902 if (atomic_read(&nohz.load_balancer) == cpu) {
4903 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4904 atomic_set(&nohz.load_balancer, -1);
4905 }
4906
4907 if (atomic_read(&nohz.load_balancer) == -1) {
4908 int ilb = find_new_ilb(cpu);
4909
4910 if (ilb < nr_cpu_ids)
4911 resched_cpu(ilb);
4912 }
4913 }
4914
4915 /*
4916 * If this cpu is idle and doing idle load balancing for all the
4917 * cpus with ticks stopped, is it time for that to stop?
4918 */
4919 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4920 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4921 resched_cpu(cpu);
4922 return;
4923 }
4924
4925 /*
4926 * If this cpu is idle and the idle load balancing is done by
4927 * someone else, then no need raise the SCHED_SOFTIRQ
4928 */
4929 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4930 cpumask_test_cpu(cpu, nohz.cpu_mask))
4931 return;
4932 #endif
4933 /* Don't need to rebalance while attached to NULL domain */
4934 if (time_after_eq(jiffies, rq->next_balance) &&
4935 likely(!on_null_domain(cpu)))
4936 raise_softirq(SCHED_SOFTIRQ);
4937 }
4938
4939 #else /* CONFIG_SMP */
4940
4941 /*
4942 * on UP we do not need to balance between CPUs:
4943 */
4944 static inline void idle_balance(int cpu, struct rq *rq)
4945 {
4946 }
4947
4948 #endif
4949
4950 DEFINE_PER_CPU(struct kernel_stat, kstat);
4951
4952 EXPORT_PER_CPU_SYMBOL(kstat);
4953
4954 /*
4955 * Return any ns on the sched_clock that have not yet been accounted in
4956 * @p in case that task is currently running.
4957 *
4958 * Called with task_rq_lock() held on @rq.
4959 */
4960 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4961 {
4962 u64 ns = 0;
4963
4964 if (task_current(rq, p)) {
4965 update_rq_clock(rq);
4966 ns = rq->clock - p->se.exec_start;
4967 if ((s64)ns < 0)
4968 ns = 0;
4969 }
4970
4971 return ns;
4972 }
4973
4974 unsigned long long task_delta_exec(struct task_struct *p)
4975 {
4976 unsigned long flags;
4977 struct rq *rq;
4978 u64 ns = 0;
4979
4980 rq = task_rq_lock(p, &flags);
4981 ns = do_task_delta_exec(p, rq);
4982 task_rq_unlock(rq, &flags);
4983
4984 return ns;
4985 }
4986
4987 /*
4988 * Return accounted runtime for the task.
4989 * In case the task is currently running, return the runtime plus current's
4990 * pending runtime that have not been accounted yet.
4991 */
4992 unsigned long long task_sched_runtime(struct task_struct *p)
4993 {
4994 unsigned long flags;
4995 struct rq *rq;
4996 u64 ns = 0;
4997
4998 rq = task_rq_lock(p, &flags);
4999 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
5000 task_rq_unlock(rq, &flags);
5001
5002 return ns;
5003 }
5004
5005 /*
5006 * Return sum_exec_runtime for the thread group.
5007 * In case the task is currently running, return the sum plus current's
5008 * pending runtime that have not been accounted yet.
5009 *
5010 * Note that the thread group might have other running tasks as well,
5011 * so the return value not includes other pending runtime that other
5012 * running tasks might have.
5013 */
5014 unsigned long long thread_group_sched_runtime(struct task_struct *p)
5015 {
5016 struct task_cputime totals;
5017 unsigned long flags;
5018 struct rq *rq;
5019 u64 ns;
5020
5021 rq = task_rq_lock(p, &flags);
5022 thread_group_cputime(p, &totals);
5023 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
5024 task_rq_unlock(rq, &flags);
5025
5026 return ns;
5027 }
5028
5029 /*
5030 * Account user cpu time to a process.
5031 * @p: the process that the cpu time gets accounted to
5032 * @cputime: the cpu time spent in user space since the last update
5033 * @cputime_scaled: cputime scaled by cpu frequency
5034 */
5035 void account_user_time(struct task_struct *p, cputime_t cputime,
5036 cputime_t cputime_scaled)
5037 {
5038 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5039 cputime64_t tmp;
5040
5041 /* Add user time to process. */
5042 p->utime = cputime_add(p->utime, cputime);
5043 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5044 account_group_user_time(p, cputime);
5045
5046 /* Add user time to cpustat. */
5047 tmp = cputime_to_cputime64(cputime);
5048 if (TASK_NICE(p) > 0)
5049 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5050 else
5051 cpustat->user = cputime64_add(cpustat->user, tmp);
5052
5053 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
5054 /* Account for user time used */
5055 acct_update_integrals(p);
5056 }
5057
5058 /*
5059 * Account guest cpu time to a process.
5060 * @p: the process that the cpu time gets accounted to
5061 * @cputime: the cpu time spent in virtual machine since the last update
5062 * @cputime_scaled: cputime scaled by cpu frequency
5063 */
5064 static void account_guest_time(struct task_struct *p, cputime_t cputime,
5065 cputime_t cputime_scaled)
5066 {
5067 cputime64_t tmp;
5068 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5069
5070 tmp = cputime_to_cputime64(cputime);
5071
5072 /* Add guest time to process. */
5073 p->utime = cputime_add(p->utime, cputime);
5074 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5075 account_group_user_time(p, cputime);
5076 p->gtime = cputime_add(p->gtime, cputime);
5077
5078 /* Add guest time to cpustat. */
5079 if (TASK_NICE(p) > 0) {
5080 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5081 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
5082 } else {
5083 cpustat->user = cputime64_add(cpustat->user, tmp);
5084 cpustat->guest = cputime64_add(cpustat->guest, tmp);
5085 }
5086 }
5087
5088 /*
5089 * Account system cpu time to a process.
5090 * @p: the process that the cpu time gets accounted to
5091 * @hardirq_offset: the offset to subtract from hardirq_count()
5092 * @cputime: the cpu time spent in kernel space since the last update
5093 * @cputime_scaled: cputime scaled by cpu frequency
5094 */
5095 void account_system_time(struct task_struct *p, int hardirq_offset,
5096 cputime_t cputime, cputime_t cputime_scaled)
5097 {
5098 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5099 cputime64_t tmp;
5100
5101 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
5102 account_guest_time(p, cputime, cputime_scaled);
5103 return;
5104 }
5105
5106 /* Add system time to process. */
5107 p->stime = cputime_add(p->stime, cputime);
5108 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
5109 account_group_system_time(p, cputime);
5110
5111 /* Add system time to cpustat. */
5112 tmp = cputime_to_cputime64(cputime);
5113 if (hardirq_count() - hardirq_offset)
5114 cpustat->irq = cputime64_add(cpustat->irq, tmp);
5115 else if (softirq_count())
5116 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
5117 else
5118 cpustat->system = cputime64_add(cpustat->system, tmp);
5119
5120 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
5121
5122 /* Account for system time used */
5123 acct_update_integrals(p);
5124 }
5125
5126 /*
5127 * Account for involuntary wait time.
5128 * @steal: the cpu time spent in involuntary wait
5129 */
5130 void account_steal_time(cputime_t cputime)
5131 {
5132 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5133 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5134
5135 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
5136 }
5137
5138 /*
5139 * Account for idle time.
5140 * @cputime: the cpu time spent in idle wait
5141 */
5142 void account_idle_time(cputime_t cputime)
5143 {
5144 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5145 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5146 struct rq *rq = this_rq();
5147
5148 if (atomic_read(&rq->nr_iowait) > 0)
5149 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
5150 else
5151 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
5152 }
5153
5154 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
5155
5156 /*
5157 * Account a single tick of cpu time.
5158 * @p: the process that the cpu time gets accounted to
5159 * @user_tick: indicates if the tick is a user or a system tick
5160 */
5161 void account_process_tick(struct task_struct *p, int user_tick)
5162 {
5163 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
5164 struct rq *rq = this_rq();
5165
5166 if (user_tick)
5167 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
5168 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
5169 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
5170 one_jiffy_scaled);
5171 else
5172 account_idle_time(cputime_one_jiffy);
5173 }
5174
5175 /*
5176 * Account multiple ticks of steal time.
5177 * @p: the process from which the cpu time has been stolen
5178 * @ticks: number of stolen ticks
5179 */
5180 void account_steal_ticks(unsigned long ticks)
5181 {
5182 account_steal_time(jiffies_to_cputime(ticks));
5183 }
5184
5185 /*
5186 * Account multiple ticks of idle time.
5187 * @ticks: number of stolen ticks
5188 */
5189 void account_idle_ticks(unsigned long ticks)
5190 {
5191 account_idle_time(jiffies_to_cputime(ticks));
5192 }
5193
5194 #endif
5195
5196 /*
5197 * Use precise platform statistics if available:
5198 */
5199 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
5200 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5201 {
5202 *ut = p->utime;
5203 *st = p->stime;
5204 }
5205
5206 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5207 {
5208 struct task_cputime cputime;
5209
5210 thread_group_cputime(p, &cputime);
5211
5212 *ut = cputime.utime;
5213 *st = cputime.stime;
5214 }
5215 #else
5216
5217 #ifndef nsecs_to_cputime
5218 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
5219 #endif
5220
5221 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5222 {
5223 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
5224
5225 /*
5226 * Use CFS's precise accounting:
5227 */
5228 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
5229
5230 if (total) {
5231 u64 temp;
5232
5233 temp = (u64)(rtime * utime);
5234 do_div(temp, total);
5235 utime = (cputime_t)temp;
5236 } else
5237 utime = rtime;
5238
5239 /*
5240 * Compare with previous values, to keep monotonicity:
5241 */
5242 p->prev_utime = max(p->prev_utime, utime);
5243 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
5244
5245 *ut = p->prev_utime;
5246 *st = p->prev_stime;
5247 }
5248
5249 /*
5250 * Must be called with siglock held.
5251 */
5252 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5253 {
5254 struct signal_struct *sig = p->signal;
5255 struct task_cputime cputime;
5256 cputime_t rtime, utime, total;
5257
5258 thread_group_cputime(p, &cputime);
5259
5260 total = cputime_add(cputime.utime, cputime.stime);
5261 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
5262
5263 if (total) {
5264 u64 temp;
5265
5266 temp = (u64)(rtime * cputime.utime);
5267 do_div(temp, total);
5268 utime = (cputime_t)temp;
5269 } else
5270 utime = rtime;
5271
5272 sig->prev_utime = max(sig->prev_utime, utime);
5273 sig->prev_stime = max(sig->prev_stime,
5274 cputime_sub(rtime, sig->prev_utime));
5275
5276 *ut = sig->prev_utime;
5277 *st = sig->prev_stime;
5278 }
5279 #endif
5280
5281 /*
5282 * This function gets called by the timer code, with HZ frequency.
5283 * We call it with interrupts disabled.
5284 *
5285 * It also gets called by the fork code, when changing the parent's
5286 * timeslices.
5287 */
5288 void scheduler_tick(void)
5289 {
5290 int cpu = smp_processor_id();
5291 struct rq *rq = cpu_rq(cpu);
5292 struct task_struct *curr = rq->curr;
5293
5294 sched_clock_tick();
5295
5296 raw_spin_lock(&rq->lock);
5297 update_rq_clock(rq);
5298 update_cpu_load(rq);
5299 curr->sched_class->task_tick(rq, curr, 0);
5300 raw_spin_unlock(&rq->lock);
5301
5302 perf_event_task_tick(curr, cpu);
5303
5304 #ifdef CONFIG_SMP
5305 rq->idle_at_tick = idle_cpu(cpu);
5306 trigger_load_balance(rq, cpu);
5307 #endif
5308 }
5309
5310 notrace unsigned long get_parent_ip(unsigned long addr)
5311 {
5312 if (in_lock_functions(addr)) {
5313 addr = CALLER_ADDR2;
5314 if (in_lock_functions(addr))
5315 addr = CALLER_ADDR3;
5316 }
5317 return addr;
5318 }
5319
5320 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5321 defined(CONFIG_PREEMPT_TRACER))
5322
5323 void __kprobes add_preempt_count(int val)
5324 {
5325 #ifdef CONFIG_DEBUG_PREEMPT
5326 /*
5327 * Underflow?
5328 */
5329 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5330 return;
5331 #endif
5332 preempt_count() += val;
5333 #ifdef CONFIG_DEBUG_PREEMPT
5334 /*
5335 * Spinlock count overflowing soon?
5336 */
5337 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5338 PREEMPT_MASK - 10);
5339 #endif
5340 if (preempt_count() == val)
5341 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5342 }
5343 EXPORT_SYMBOL(add_preempt_count);
5344
5345 void __kprobes sub_preempt_count(int val)
5346 {
5347 #ifdef CONFIG_DEBUG_PREEMPT
5348 /*
5349 * Underflow?
5350 */
5351 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5352 return;
5353 /*
5354 * Is the spinlock portion underflowing?
5355 */
5356 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5357 !(preempt_count() & PREEMPT_MASK)))
5358 return;
5359 #endif
5360
5361 if (preempt_count() == val)
5362 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5363 preempt_count() -= val;
5364 }
5365 EXPORT_SYMBOL(sub_preempt_count);
5366
5367 #endif
5368
5369 /*
5370 * Print scheduling while atomic bug:
5371 */
5372 static noinline void __schedule_bug(struct task_struct *prev)
5373 {
5374 struct pt_regs *regs = get_irq_regs();
5375
5376 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5377 prev->comm, prev->pid, preempt_count());
5378
5379 debug_show_held_locks(prev);
5380 print_modules();
5381 if (irqs_disabled())
5382 print_irqtrace_events(prev);
5383
5384 if (regs)
5385 show_regs(regs);
5386 else
5387 dump_stack();
5388 }
5389
5390 /*
5391 * Various schedule()-time debugging checks and statistics:
5392 */
5393 static inline void schedule_debug(struct task_struct *prev)
5394 {
5395 /*
5396 * Test if we are atomic. Since do_exit() needs to call into
5397 * schedule() atomically, we ignore that path for now.
5398 * Otherwise, whine if we are scheduling when we should not be.
5399 */
5400 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
5401 __schedule_bug(prev);
5402
5403 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5404
5405 schedstat_inc(this_rq(), sched_count);
5406 #ifdef CONFIG_SCHEDSTATS
5407 if (unlikely(prev->lock_depth >= 0)) {
5408 schedstat_inc(this_rq(), bkl_count);
5409 schedstat_inc(prev, sched_info.bkl_count);
5410 }
5411 #endif
5412 }
5413
5414 static void put_prev_task(struct rq *rq, struct task_struct *prev)
5415 {
5416 if (prev->state == TASK_RUNNING) {
5417 u64 runtime = prev->se.sum_exec_runtime;
5418
5419 runtime -= prev->se.prev_sum_exec_runtime;
5420 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5421
5422 /*
5423 * In order to avoid avg_overlap growing stale when we are
5424 * indeed overlapping and hence not getting put to sleep, grow
5425 * the avg_overlap on preemption.
5426 *
5427 * We use the average preemption runtime because that
5428 * correlates to the amount of cache footprint a task can
5429 * build up.
5430 */
5431 update_avg(&prev->se.avg_overlap, runtime);
5432 }
5433 prev->sched_class->put_prev_task(rq, prev);
5434 }
5435
5436 /*
5437 * Pick up the highest-prio task:
5438 */
5439 static inline struct task_struct *
5440 pick_next_task(struct rq *rq)
5441 {
5442 const struct sched_class *class;
5443 struct task_struct *p;
5444
5445 /*
5446 * Optimization: we know that if all tasks are in
5447 * the fair class we can call that function directly:
5448 */
5449 if (likely(rq->nr_running == rq->cfs.nr_running)) {
5450 p = fair_sched_class.pick_next_task(rq);
5451 if (likely(p))
5452 return p;
5453 }
5454
5455 class = sched_class_highest;
5456 for ( ; ; ) {
5457 p = class->pick_next_task(rq);
5458 if (p)
5459 return p;
5460 /*
5461 * Will never be NULL as the idle class always
5462 * returns a non-NULL p:
5463 */
5464 class = class->next;
5465 }
5466 }
5467
5468 /*
5469 * schedule() is the main scheduler function.
5470 */
5471 asmlinkage void __sched schedule(void)
5472 {
5473 struct task_struct *prev, *next;
5474 unsigned long *switch_count;
5475 struct rq *rq;
5476 int cpu;
5477
5478 need_resched:
5479 preempt_disable();
5480 cpu = smp_processor_id();
5481 rq = cpu_rq(cpu);
5482 rcu_sched_qs(cpu);
5483 prev = rq->curr;
5484 switch_count = &prev->nivcsw;
5485
5486 release_kernel_lock(prev);
5487 need_resched_nonpreemptible:
5488
5489 schedule_debug(prev);
5490
5491 if (sched_feat(HRTICK))
5492 hrtick_clear(rq);
5493
5494 raw_spin_lock_irq(&rq->lock);
5495 update_rq_clock(rq);
5496 clear_tsk_need_resched(prev);
5497
5498 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5499 if (unlikely(signal_pending_state(prev->state, prev)))
5500 prev->state = TASK_RUNNING;
5501 else
5502 deactivate_task(rq, prev, 1);
5503 switch_count = &prev->nvcsw;
5504 }
5505
5506 pre_schedule(rq, prev);
5507
5508 if (unlikely(!rq->nr_running))
5509 idle_balance(cpu, rq);
5510
5511 put_prev_task(rq, prev);
5512 next = pick_next_task(rq);
5513
5514 if (likely(prev != next)) {
5515 sched_info_switch(prev, next);
5516 perf_event_task_sched_out(prev, next, cpu);
5517
5518 rq->nr_switches++;
5519 rq->curr = next;
5520 ++*switch_count;
5521
5522 context_switch(rq, prev, next); /* unlocks the rq */
5523 /*
5524 * the context switch might have flipped the stack from under
5525 * us, hence refresh the local variables.
5526 */
5527 cpu = smp_processor_id();
5528 rq = cpu_rq(cpu);
5529 } else
5530 raw_spin_unlock_irq(&rq->lock);
5531
5532 post_schedule(rq);
5533
5534 if (unlikely(reacquire_kernel_lock(current) < 0))
5535 goto need_resched_nonpreemptible;
5536
5537 preempt_enable_no_resched();
5538 if (need_resched())
5539 goto need_resched;
5540 }
5541 EXPORT_SYMBOL(schedule);
5542
5543 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
5544 /*
5545 * Look out! "owner" is an entirely speculative pointer
5546 * access and not reliable.
5547 */
5548 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5549 {
5550 unsigned int cpu;
5551 struct rq *rq;
5552
5553 if (!sched_feat(OWNER_SPIN))
5554 return 0;
5555
5556 #ifdef CONFIG_DEBUG_PAGEALLOC
5557 /*
5558 * Need to access the cpu field knowing that
5559 * DEBUG_PAGEALLOC could have unmapped it if
5560 * the mutex owner just released it and exited.
5561 */
5562 if (probe_kernel_address(&owner->cpu, cpu))
5563 goto out;
5564 #else
5565 cpu = owner->cpu;
5566 #endif
5567
5568 /*
5569 * Even if the access succeeded (likely case),
5570 * the cpu field may no longer be valid.
5571 */
5572 if (cpu >= nr_cpumask_bits)
5573 goto out;
5574
5575 /*
5576 * We need to validate that we can do a
5577 * get_cpu() and that we have the percpu area.
5578 */
5579 if (!cpu_online(cpu))
5580 goto out;
5581
5582 rq = cpu_rq(cpu);
5583
5584 for (;;) {
5585 /*
5586 * Owner changed, break to re-assess state.
5587 */
5588 if (lock->owner != owner)
5589 break;
5590
5591 /*
5592 * Is that owner really running on that cpu?
5593 */
5594 if (task_thread_info(rq->curr) != owner || need_resched())
5595 return 0;
5596
5597 cpu_relax();
5598 }
5599 out:
5600 return 1;
5601 }
5602 #endif
5603
5604 #ifdef CONFIG_PREEMPT
5605 /*
5606 * this is the entry point to schedule() from in-kernel preemption
5607 * off of preempt_enable. Kernel preemptions off return from interrupt
5608 * occur there and call schedule directly.
5609 */
5610 asmlinkage void __sched preempt_schedule(void)
5611 {
5612 struct thread_info *ti = current_thread_info();
5613
5614 /*
5615 * If there is a non-zero preempt_count or interrupts are disabled,
5616 * we do not want to preempt the current task. Just return..
5617 */
5618 if (likely(ti->preempt_count || irqs_disabled()))
5619 return;
5620
5621 do {
5622 add_preempt_count(PREEMPT_ACTIVE);
5623 schedule();
5624 sub_preempt_count(PREEMPT_ACTIVE);
5625
5626 /*
5627 * Check again in case we missed a preemption opportunity
5628 * between schedule and now.
5629 */
5630 barrier();
5631 } while (need_resched());
5632 }
5633 EXPORT_SYMBOL(preempt_schedule);
5634
5635 /*
5636 * this is the entry point to schedule() from kernel preemption
5637 * off of irq context.
5638 * Note, that this is called and return with irqs disabled. This will
5639 * protect us against recursive calling from irq.
5640 */
5641 asmlinkage void __sched preempt_schedule_irq(void)
5642 {
5643 struct thread_info *ti = current_thread_info();
5644
5645 /* Catch callers which need to be fixed */
5646 BUG_ON(ti->preempt_count || !irqs_disabled());
5647
5648 do {
5649 add_preempt_count(PREEMPT_ACTIVE);
5650 local_irq_enable();
5651 schedule();
5652 local_irq_disable();
5653 sub_preempt_count(PREEMPT_ACTIVE);
5654
5655 /*
5656 * Check again in case we missed a preemption opportunity
5657 * between schedule and now.
5658 */
5659 barrier();
5660 } while (need_resched());
5661 }
5662
5663 #endif /* CONFIG_PREEMPT */
5664
5665 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
5666 void *key)
5667 {
5668 return try_to_wake_up(curr->private, mode, wake_flags);
5669 }
5670 EXPORT_SYMBOL(default_wake_function);
5671
5672 /*
5673 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5674 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
5675 * number) then we wake all the non-exclusive tasks and one exclusive task.
5676 *
5677 * There are circumstances in which we can try to wake a task which has already
5678 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
5679 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5680 */
5681 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
5682 int nr_exclusive, int wake_flags, void *key)
5683 {
5684 wait_queue_t *curr, *next;
5685
5686 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5687 unsigned flags = curr->flags;
5688
5689 if (curr->func(curr, mode, wake_flags, key) &&
5690 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
5691 break;
5692 }
5693 }
5694
5695 /**
5696 * __wake_up - wake up threads blocked on a waitqueue.
5697 * @q: the waitqueue
5698 * @mode: which threads
5699 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5700 * @key: is directly passed to the wakeup function
5701 *
5702 * It may be assumed that this function implies a write memory barrier before
5703 * changing the task state if and only if any tasks are woken up.
5704 */
5705 void __wake_up(wait_queue_head_t *q, unsigned int mode,
5706 int nr_exclusive, void *key)
5707 {
5708 unsigned long flags;
5709
5710 spin_lock_irqsave(&q->lock, flags);
5711 __wake_up_common(q, mode, nr_exclusive, 0, key);
5712 spin_unlock_irqrestore(&q->lock, flags);
5713 }
5714 EXPORT_SYMBOL(__wake_up);
5715
5716 /*
5717 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5718 */
5719 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
5720 {
5721 __wake_up_common(q, mode, 1, 0, NULL);
5722 }
5723
5724 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5725 {
5726 __wake_up_common(q, mode, 1, 0, key);
5727 }
5728
5729 /**
5730 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
5731 * @q: the waitqueue
5732 * @mode: which threads
5733 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5734 * @key: opaque value to be passed to wakeup targets
5735 *
5736 * The sync wakeup differs that the waker knows that it will schedule
5737 * away soon, so while the target thread will be woken up, it will not
5738 * be migrated to another CPU - ie. the two threads are 'synchronized'
5739 * with each other. This can prevent needless bouncing between CPUs.
5740 *
5741 * On UP it can prevent extra preemption.
5742 *
5743 * It may be assumed that this function implies a write memory barrier before
5744 * changing the task state if and only if any tasks are woken up.
5745 */
5746 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5747 int nr_exclusive, void *key)
5748 {
5749 unsigned long flags;
5750 int wake_flags = WF_SYNC;
5751
5752 if (unlikely(!q))
5753 return;
5754
5755 if (unlikely(!nr_exclusive))
5756 wake_flags = 0;
5757
5758 spin_lock_irqsave(&q->lock, flags);
5759 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
5760 spin_unlock_irqrestore(&q->lock, flags);
5761 }
5762 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5763
5764 /*
5765 * __wake_up_sync - see __wake_up_sync_key()
5766 */
5767 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5768 {
5769 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5770 }
5771 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5772
5773 /**
5774 * complete: - signals a single thread waiting on this completion
5775 * @x: holds the state of this particular completion
5776 *
5777 * This will wake up a single thread waiting on this completion. Threads will be
5778 * awakened in the same order in which they were queued.
5779 *
5780 * See also complete_all(), wait_for_completion() and related routines.
5781 *
5782 * It may be assumed that this function implies a write memory barrier before
5783 * changing the task state if and only if any tasks are woken up.
5784 */
5785 void complete(struct completion *x)
5786 {
5787 unsigned long flags;
5788
5789 spin_lock_irqsave(&x->wait.lock, flags);
5790 x->done++;
5791 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
5792 spin_unlock_irqrestore(&x->wait.lock, flags);
5793 }
5794 EXPORT_SYMBOL(complete);
5795
5796 /**
5797 * complete_all: - signals all threads waiting on this completion
5798 * @x: holds the state of this particular completion
5799 *
5800 * This will wake up all threads waiting on this particular completion event.
5801 *
5802 * It may be assumed that this function implies a write memory barrier before
5803 * changing the task state if and only if any tasks are woken up.
5804 */
5805 void complete_all(struct completion *x)
5806 {
5807 unsigned long flags;
5808
5809 spin_lock_irqsave(&x->wait.lock, flags);
5810 x->done += UINT_MAX/2;
5811 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
5812 spin_unlock_irqrestore(&x->wait.lock, flags);
5813 }
5814 EXPORT_SYMBOL(complete_all);
5815
5816 static inline long __sched
5817 do_wait_for_common(struct completion *x, long timeout, int state)
5818 {
5819 if (!x->done) {
5820 DECLARE_WAITQUEUE(wait, current);
5821
5822 wait.flags |= WQ_FLAG_EXCLUSIVE;
5823 __add_wait_queue_tail(&x->wait, &wait);
5824 do {
5825 if (signal_pending_state(state, current)) {
5826 timeout = -ERESTARTSYS;
5827 break;
5828 }
5829 __set_current_state(state);
5830 spin_unlock_irq(&x->wait.lock);
5831 timeout = schedule_timeout(timeout);
5832 spin_lock_irq(&x->wait.lock);
5833 } while (!x->done && timeout);
5834 __remove_wait_queue(&x->wait, &wait);
5835 if (!x->done)
5836 return timeout;
5837 }
5838 x->done--;
5839 return timeout ?: 1;
5840 }
5841
5842 static long __sched
5843 wait_for_common(struct completion *x, long timeout, int state)
5844 {
5845 might_sleep();
5846
5847 spin_lock_irq(&x->wait.lock);
5848 timeout = do_wait_for_common(x, timeout, state);
5849 spin_unlock_irq(&x->wait.lock);
5850 return timeout;
5851 }
5852
5853 /**
5854 * wait_for_completion: - waits for completion of a task
5855 * @x: holds the state of this particular completion
5856 *
5857 * This waits to be signaled for completion of a specific task. It is NOT
5858 * interruptible and there is no timeout.
5859 *
5860 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5861 * and interrupt capability. Also see complete().
5862 */
5863 void __sched wait_for_completion(struct completion *x)
5864 {
5865 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
5866 }
5867 EXPORT_SYMBOL(wait_for_completion);
5868
5869 /**
5870 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5871 * @x: holds the state of this particular completion
5872 * @timeout: timeout value in jiffies
5873 *
5874 * This waits for either a completion of a specific task to be signaled or for a
5875 * specified timeout to expire. The timeout is in jiffies. It is not
5876 * interruptible.
5877 */
5878 unsigned long __sched
5879 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
5880 {
5881 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
5882 }
5883 EXPORT_SYMBOL(wait_for_completion_timeout);
5884
5885 /**
5886 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5887 * @x: holds the state of this particular completion
5888 *
5889 * This waits for completion of a specific task to be signaled. It is
5890 * interruptible.
5891 */
5892 int __sched wait_for_completion_interruptible(struct completion *x)
5893 {
5894 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5895 if (t == -ERESTARTSYS)
5896 return t;
5897 return 0;
5898 }
5899 EXPORT_SYMBOL(wait_for_completion_interruptible);
5900
5901 /**
5902 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5903 * @x: holds the state of this particular completion
5904 * @timeout: timeout value in jiffies
5905 *
5906 * This waits for either a completion of a specific task to be signaled or for a
5907 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5908 */
5909 unsigned long __sched
5910 wait_for_completion_interruptible_timeout(struct completion *x,
5911 unsigned long timeout)
5912 {
5913 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
5914 }
5915 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
5916
5917 /**
5918 * wait_for_completion_killable: - waits for completion of a task (killable)
5919 * @x: holds the state of this particular completion
5920 *
5921 * This waits to be signaled for completion of a specific task. It can be
5922 * interrupted by a kill signal.
5923 */
5924 int __sched wait_for_completion_killable(struct completion *x)
5925 {
5926 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5927 if (t == -ERESTARTSYS)
5928 return t;
5929 return 0;
5930 }
5931 EXPORT_SYMBOL(wait_for_completion_killable);
5932
5933 /**
5934 * try_wait_for_completion - try to decrement a completion without blocking
5935 * @x: completion structure
5936 *
5937 * Returns: 0 if a decrement cannot be done without blocking
5938 * 1 if a decrement succeeded.
5939 *
5940 * If a completion is being used as a counting completion,
5941 * attempt to decrement the counter without blocking. This
5942 * enables us to avoid waiting if the resource the completion
5943 * is protecting is not available.
5944 */
5945 bool try_wait_for_completion(struct completion *x)
5946 {
5947 unsigned long flags;
5948 int ret = 1;
5949
5950 spin_lock_irqsave(&x->wait.lock, flags);
5951 if (!x->done)
5952 ret = 0;
5953 else
5954 x->done--;
5955 spin_unlock_irqrestore(&x->wait.lock, flags);
5956 return ret;
5957 }
5958 EXPORT_SYMBOL(try_wait_for_completion);
5959
5960 /**
5961 * completion_done - Test to see if a completion has any waiters
5962 * @x: completion structure
5963 *
5964 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5965 * 1 if there are no waiters.
5966 *
5967 */
5968 bool completion_done(struct completion *x)
5969 {
5970 unsigned long flags;
5971 int ret = 1;
5972
5973 spin_lock_irqsave(&x->wait.lock, flags);
5974 if (!x->done)
5975 ret = 0;
5976 spin_unlock_irqrestore(&x->wait.lock, flags);
5977 return ret;
5978 }
5979 EXPORT_SYMBOL(completion_done);
5980
5981 static long __sched
5982 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
5983 {
5984 unsigned long flags;
5985 wait_queue_t wait;
5986
5987 init_waitqueue_entry(&wait, current);
5988
5989 __set_current_state(state);
5990
5991 spin_lock_irqsave(&q->lock, flags);
5992 __add_wait_queue(q, &wait);
5993 spin_unlock(&q->lock);
5994 timeout = schedule_timeout(timeout);
5995 spin_lock_irq(&q->lock);
5996 __remove_wait_queue(q, &wait);
5997 spin_unlock_irqrestore(&q->lock, flags);
5998
5999 return timeout;
6000 }
6001
6002 void __sched interruptible_sleep_on(wait_queue_head_t *q)
6003 {
6004 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
6005 }
6006 EXPORT_SYMBOL(interruptible_sleep_on);
6007
6008 long __sched
6009 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
6010 {
6011 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
6012 }
6013 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
6014
6015 void __sched sleep_on(wait_queue_head_t *q)
6016 {
6017 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
6018 }
6019 EXPORT_SYMBOL(sleep_on);
6020
6021 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
6022 {
6023 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
6024 }
6025 EXPORT_SYMBOL(sleep_on_timeout);
6026
6027 #ifdef CONFIG_RT_MUTEXES
6028
6029 /*
6030 * rt_mutex_setprio - set the current priority of a task
6031 * @p: task
6032 * @prio: prio value (kernel-internal form)
6033 *
6034 * This function changes the 'effective' priority of a task. It does
6035 * not touch ->normal_prio like __setscheduler().
6036 *
6037 * Used by the rt_mutex code to implement priority inheritance logic.
6038 */
6039 void rt_mutex_setprio(struct task_struct *p, int prio)
6040 {
6041 unsigned long flags;
6042 int oldprio, on_rq, running;
6043 struct rq *rq;
6044 const struct sched_class *prev_class = p->sched_class;
6045
6046 BUG_ON(prio < 0 || prio > MAX_PRIO);
6047
6048 rq = task_rq_lock(p, &flags);
6049 update_rq_clock(rq);
6050
6051 oldprio = p->prio;
6052 on_rq = p->se.on_rq;
6053 running = task_current(rq, p);
6054 if (on_rq)
6055 dequeue_task(rq, p, 0);
6056 if (running)
6057 p->sched_class->put_prev_task(rq, p);
6058
6059 if (rt_prio(prio))
6060 p->sched_class = &rt_sched_class;
6061 else
6062 p->sched_class = &fair_sched_class;
6063
6064 p->prio = prio;
6065
6066 if (running)
6067 p->sched_class->set_curr_task(rq);
6068 if (on_rq) {
6069 enqueue_task(rq, p, 0);
6070
6071 check_class_changed(rq, p, prev_class, oldprio, running);
6072 }
6073 task_rq_unlock(rq, &flags);
6074 }
6075
6076 #endif
6077
6078 void set_user_nice(struct task_struct *p, long nice)
6079 {
6080 int old_prio, delta, on_rq;
6081 unsigned long flags;
6082 struct rq *rq;
6083
6084 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
6085 return;
6086 /*
6087 * We have to be careful, if called from sys_setpriority(),
6088 * the task might be in the middle of scheduling on another CPU.
6089 */
6090 rq = task_rq_lock(p, &flags);
6091 update_rq_clock(rq);
6092 /*
6093 * The RT priorities are set via sched_setscheduler(), but we still
6094 * allow the 'normal' nice value to be set - but as expected
6095 * it wont have any effect on scheduling until the task is
6096 * SCHED_FIFO/SCHED_RR:
6097 */
6098 if (task_has_rt_policy(p)) {
6099 p->static_prio = NICE_TO_PRIO(nice);
6100 goto out_unlock;
6101 }
6102 on_rq = p->se.on_rq;
6103 if (on_rq)
6104 dequeue_task(rq, p, 0);
6105
6106 p->static_prio = NICE_TO_PRIO(nice);
6107 set_load_weight(p);
6108 old_prio = p->prio;
6109 p->prio = effective_prio(p);
6110 delta = p->prio - old_prio;
6111
6112 if (on_rq) {
6113 enqueue_task(rq, p, 0);
6114 /*
6115 * If the task increased its priority or is running and
6116 * lowered its priority, then reschedule its CPU:
6117 */
6118 if (delta < 0 || (delta > 0 && task_running(rq, p)))
6119 resched_task(rq->curr);
6120 }
6121 out_unlock:
6122 task_rq_unlock(rq, &flags);
6123 }
6124 EXPORT_SYMBOL(set_user_nice);
6125
6126 /*
6127 * can_nice - check if a task can reduce its nice value
6128 * @p: task
6129 * @nice: nice value
6130 */
6131 int can_nice(const struct task_struct *p, const int nice)
6132 {
6133 /* convert nice value [19,-20] to rlimit style value [1,40] */
6134 int nice_rlim = 20 - nice;
6135
6136 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
6137 capable(CAP_SYS_NICE));
6138 }
6139
6140 #ifdef __ARCH_WANT_SYS_NICE
6141
6142 /*
6143 * sys_nice - change the priority of the current process.
6144 * @increment: priority increment
6145 *
6146 * sys_setpriority is a more generic, but much slower function that
6147 * does similar things.
6148 */
6149 SYSCALL_DEFINE1(nice, int, increment)
6150 {
6151 long nice, retval;
6152
6153 /*
6154 * Setpriority might change our priority at the same moment.
6155 * We don't have to worry. Conceptually one call occurs first
6156 * and we have a single winner.
6157 */
6158 if (increment < -40)
6159 increment = -40;
6160 if (increment > 40)
6161 increment = 40;
6162
6163 nice = TASK_NICE(current) + increment;
6164 if (nice < -20)
6165 nice = -20;
6166 if (nice > 19)
6167 nice = 19;
6168
6169 if (increment < 0 && !can_nice(current, nice))
6170 return -EPERM;
6171
6172 retval = security_task_setnice(current, nice);
6173 if (retval)
6174 return retval;
6175
6176 set_user_nice(current, nice);
6177 return 0;
6178 }
6179
6180 #endif
6181
6182 /**
6183 * task_prio - return the priority value of a given task.
6184 * @p: the task in question.
6185 *
6186 * This is the priority value as seen by users in /proc.
6187 * RT tasks are offset by -200. Normal tasks are centered
6188 * around 0, value goes from -16 to +15.
6189 */
6190 int task_prio(const struct task_struct *p)
6191 {
6192 return p->prio - MAX_RT_PRIO;
6193 }
6194
6195 /**
6196 * task_nice - return the nice value of a given task.
6197 * @p: the task in question.
6198 */
6199 int task_nice(const struct task_struct *p)
6200 {
6201 return TASK_NICE(p);
6202 }
6203 EXPORT_SYMBOL(task_nice);
6204
6205 /**
6206 * idle_cpu - is a given cpu idle currently?
6207 * @cpu: the processor in question.
6208 */
6209 int idle_cpu(int cpu)
6210 {
6211 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6212 }
6213
6214 /**
6215 * idle_task - return the idle task for a given cpu.
6216 * @cpu: the processor in question.
6217 */
6218 struct task_struct *idle_task(int cpu)
6219 {
6220 return cpu_rq(cpu)->idle;
6221 }
6222
6223 /**
6224 * find_process_by_pid - find a process with a matching PID value.
6225 * @pid: the pid in question.
6226 */
6227 static struct task_struct *find_process_by_pid(pid_t pid)
6228 {
6229 return pid ? find_task_by_vpid(pid) : current;
6230 }
6231
6232 /* Actually do priority change: must hold rq lock. */
6233 static void
6234 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
6235 {
6236 BUG_ON(p->se.on_rq);
6237
6238 p->policy = policy;
6239 p->rt_priority = prio;
6240 p->normal_prio = normal_prio(p);
6241 /* we are holding p->pi_lock already */
6242 p->prio = rt_mutex_getprio(p);
6243 if (rt_prio(p->prio))
6244 p->sched_class = &rt_sched_class;
6245 else
6246 p->sched_class = &fair_sched_class;
6247 set_load_weight(p);
6248 }
6249
6250 /*
6251 * check the target process has a UID that matches the current process's
6252 */
6253 static bool check_same_owner(struct task_struct *p)
6254 {
6255 const struct cred *cred = current_cred(), *pcred;
6256 bool match;
6257
6258 rcu_read_lock();
6259 pcred = __task_cred(p);
6260 match = (cred->euid == pcred->euid ||
6261 cred->euid == pcred->uid);
6262 rcu_read_unlock();
6263 return match;
6264 }
6265
6266 static int __sched_setscheduler(struct task_struct *p, int policy,
6267 struct sched_param *param, bool user)
6268 {
6269 int retval, oldprio, oldpolicy = -1, on_rq, running;
6270 unsigned long flags;
6271 const struct sched_class *prev_class = p->sched_class;
6272 struct rq *rq;
6273 int reset_on_fork;
6274
6275 /* may grab non-irq protected spin_locks */
6276 BUG_ON(in_interrupt());
6277 recheck:
6278 /* double check policy once rq lock held */
6279 if (policy < 0) {
6280 reset_on_fork = p->sched_reset_on_fork;
6281 policy = oldpolicy = p->policy;
6282 } else {
6283 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
6284 policy &= ~SCHED_RESET_ON_FORK;
6285
6286 if (policy != SCHED_FIFO && policy != SCHED_RR &&
6287 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6288 policy != SCHED_IDLE)
6289 return -EINVAL;
6290 }
6291
6292 /*
6293 * Valid priorities for SCHED_FIFO and SCHED_RR are
6294 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6295 * SCHED_BATCH and SCHED_IDLE is 0.
6296 */
6297 if (param->sched_priority < 0 ||
6298 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
6299 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
6300 return -EINVAL;
6301 if (rt_policy(policy) != (param->sched_priority != 0))
6302 return -EINVAL;
6303
6304 /*
6305 * Allow unprivileged RT tasks to decrease priority:
6306 */
6307 if (user && !capable(CAP_SYS_NICE)) {
6308 if (rt_policy(policy)) {
6309 unsigned long rlim_rtprio;
6310
6311 if (!lock_task_sighand(p, &flags))
6312 return -ESRCH;
6313 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6314 unlock_task_sighand(p, &flags);
6315
6316 /* can't set/change the rt policy */
6317 if (policy != p->policy && !rlim_rtprio)
6318 return -EPERM;
6319
6320 /* can't increase priority */
6321 if (param->sched_priority > p->rt_priority &&
6322 param->sched_priority > rlim_rtprio)
6323 return -EPERM;
6324 }
6325 /*
6326 * Like positive nice levels, dont allow tasks to
6327 * move out of SCHED_IDLE either:
6328 */
6329 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6330 return -EPERM;
6331
6332 /* can't change other user's priorities */
6333 if (!check_same_owner(p))
6334 return -EPERM;
6335
6336 /* Normal users shall not reset the sched_reset_on_fork flag */
6337 if (p->sched_reset_on_fork && !reset_on_fork)
6338 return -EPERM;
6339 }
6340
6341 if (user) {
6342 #ifdef CONFIG_RT_GROUP_SCHED
6343 /*
6344 * Do not allow realtime tasks into groups that have no runtime
6345 * assigned.
6346 */
6347 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6348 task_group(p)->rt_bandwidth.rt_runtime == 0)
6349 return -EPERM;
6350 #endif
6351
6352 retval = security_task_setscheduler(p, policy, param);
6353 if (retval)
6354 return retval;
6355 }
6356
6357 /*
6358 * make sure no PI-waiters arrive (or leave) while we are
6359 * changing the priority of the task:
6360 */
6361 raw_spin_lock_irqsave(&p->pi_lock, flags);
6362 /*
6363 * To be able to change p->policy safely, the apropriate
6364 * runqueue lock must be held.
6365 */
6366 rq = __task_rq_lock(p);
6367 /* recheck policy now with rq lock held */
6368 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6369 policy = oldpolicy = -1;
6370 __task_rq_unlock(rq);
6371 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
6372 goto recheck;
6373 }
6374 update_rq_clock(rq);
6375 on_rq = p->se.on_rq;
6376 running = task_current(rq, p);
6377 if (on_rq)
6378 deactivate_task(rq, p, 0);
6379 if (running)
6380 p->sched_class->put_prev_task(rq, p);
6381
6382 p->sched_reset_on_fork = reset_on_fork;
6383
6384 oldprio = p->prio;
6385 __setscheduler(rq, p, policy, param->sched_priority);
6386
6387 if (running)
6388 p->sched_class->set_curr_task(rq);
6389 if (on_rq) {
6390 activate_task(rq, p, 0);
6391
6392 check_class_changed(rq, p, prev_class, oldprio, running);
6393 }
6394 __task_rq_unlock(rq);
6395 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
6396
6397 rt_mutex_adjust_pi(p);
6398
6399 return 0;
6400 }
6401
6402 /**
6403 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6404 * @p: the task in question.
6405 * @policy: new policy.
6406 * @param: structure containing the new RT priority.
6407 *
6408 * NOTE that the task may be already dead.
6409 */
6410 int sched_setscheduler(struct task_struct *p, int policy,
6411 struct sched_param *param)
6412 {
6413 return __sched_setscheduler(p, policy, param, true);
6414 }
6415 EXPORT_SYMBOL_GPL(sched_setscheduler);
6416
6417 /**
6418 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6419 * @p: the task in question.
6420 * @policy: new policy.
6421 * @param: structure containing the new RT priority.
6422 *
6423 * Just like sched_setscheduler, only don't bother checking if the
6424 * current context has permission. For example, this is needed in
6425 * stop_machine(): we create temporary high priority worker threads,
6426 * but our caller might not have that capability.
6427 */
6428 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6429 struct sched_param *param)
6430 {
6431 return __sched_setscheduler(p, policy, param, false);
6432 }
6433
6434 static int
6435 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
6436 {
6437 struct sched_param lparam;
6438 struct task_struct *p;
6439 int retval;
6440
6441 if (!param || pid < 0)
6442 return -EINVAL;
6443 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6444 return -EFAULT;
6445
6446 rcu_read_lock();
6447 retval = -ESRCH;
6448 p = find_process_by_pid(pid);
6449 if (p != NULL)
6450 retval = sched_setscheduler(p, policy, &lparam);
6451 rcu_read_unlock();
6452
6453 return retval;
6454 }
6455
6456 /**
6457 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6458 * @pid: the pid in question.
6459 * @policy: new policy.
6460 * @param: structure containing the new RT priority.
6461 */
6462 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6463 struct sched_param __user *, param)
6464 {
6465 /* negative values for policy are not valid */
6466 if (policy < 0)
6467 return -EINVAL;
6468
6469 return do_sched_setscheduler(pid, policy, param);
6470 }
6471
6472 /**
6473 * sys_sched_setparam - set/change the RT priority of a thread
6474 * @pid: the pid in question.
6475 * @param: structure containing the new RT priority.
6476 */
6477 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
6478 {
6479 return do_sched_setscheduler(pid, -1, param);
6480 }
6481
6482 /**
6483 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6484 * @pid: the pid in question.
6485 */
6486 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
6487 {
6488 struct task_struct *p;
6489 int retval;
6490
6491 if (pid < 0)
6492 return -EINVAL;
6493
6494 retval = -ESRCH;
6495 rcu_read_lock();
6496 p = find_process_by_pid(pid);
6497 if (p) {
6498 retval = security_task_getscheduler(p);
6499 if (!retval)
6500 retval = p->policy
6501 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
6502 }
6503 rcu_read_unlock();
6504 return retval;
6505 }
6506
6507 /**
6508 * sys_sched_getparam - get the RT priority of a thread
6509 * @pid: the pid in question.
6510 * @param: structure containing the RT priority.
6511 */
6512 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
6513 {
6514 struct sched_param lp;
6515 struct task_struct *p;
6516 int retval;
6517
6518 if (!param || pid < 0)
6519 return -EINVAL;
6520
6521 rcu_read_lock();
6522 p = find_process_by_pid(pid);
6523 retval = -ESRCH;
6524 if (!p)
6525 goto out_unlock;
6526
6527 retval = security_task_getscheduler(p);
6528 if (retval)
6529 goto out_unlock;
6530
6531 lp.sched_priority = p->rt_priority;
6532 rcu_read_unlock();
6533
6534 /*
6535 * This one might sleep, we cannot do it with a spinlock held ...
6536 */
6537 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6538
6539 return retval;
6540
6541 out_unlock:
6542 rcu_read_unlock();
6543 return retval;
6544 }
6545
6546 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
6547 {
6548 cpumask_var_t cpus_allowed, new_mask;
6549 struct task_struct *p;
6550 int retval;
6551
6552 get_online_cpus();
6553 rcu_read_lock();
6554
6555 p = find_process_by_pid(pid);
6556 if (!p) {
6557 rcu_read_unlock();
6558 put_online_cpus();
6559 return -ESRCH;
6560 }
6561
6562 /* Prevent p going away */
6563 get_task_struct(p);
6564 rcu_read_unlock();
6565
6566 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6567 retval = -ENOMEM;
6568 goto out_put_task;
6569 }
6570 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6571 retval = -ENOMEM;
6572 goto out_free_cpus_allowed;
6573 }
6574 retval = -EPERM;
6575 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
6576 goto out_unlock;
6577
6578 retval = security_task_setscheduler(p, 0, NULL);
6579 if (retval)
6580 goto out_unlock;
6581
6582 cpuset_cpus_allowed(p, cpus_allowed);
6583 cpumask_and(new_mask, in_mask, cpus_allowed);
6584 again:
6585 retval = set_cpus_allowed_ptr(p, new_mask);
6586
6587 if (!retval) {
6588 cpuset_cpus_allowed(p, cpus_allowed);
6589 if (!cpumask_subset(new_mask, cpus_allowed)) {
6590 /*
6591 * We must have raced with a concurrent cpuset
6592 * update. Just reset the cpus_allowed to the
6593 * cpuset's cpus_allowed
6594 */
6595 cpumask_copy(new_mask, cpus_allowed);
6596 goto again;
6597 }
6598 }
6599 out_unlock:
6600 free_cpumask_var(new_mask);
6601 out_free_cpus_allowed:
6602 free_cpumask_var(cpus_allowed);
6603 out_put_task:
6604 put_task_struct(p);
6605 put_online_cpus();
6606 return retval;
6607 }
6608
6609 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6610 struct cpumask *new_mask)
6611 {
6612 if (len < cpumask_size())
6613 cpumask_clear(new_mask);
6614 else if (len > cpumask_size())
6615 len = cpumask_size();
6616
6617 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6618 }
6619
6620 /**
6621 * sys_sched_setaffinity - set the cpu affinity of a process
6622 * @pid: pid of the process
6623 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6624 * @user_mask_ptr: user-space pointer to the new cpu mask
6625 */
6626 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6627 unsigned long __user *, user_mask_ptr)
6628 {
6629 cpumask_var_t new_mask;
6630 int retval;
6631
6632 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6633 return -ENOMEM;
6634
6635 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6636 if (retval == 0)
6637 retval = sched_setaffinity(pid, new_mask);
6638 free_cpumask_var(new_mask);
6639 return retval;
6640 }
6641
6642 long sched_getaffinity(pid_t pid, struct cpumask *mask)
6643 {
6644 struct task_struct *p;
6645 unsigned long flags;
6646 struct rq *rq;
6647 int retval;
6648
6649 get_online_cpus();
6650 rcu_read_lock();
6651
6652 retval = -ESRCH;
6653 p = find_process_by_pid(pid);
6654 if (!p)
6655 goto out_unlock;
6656
6657 retval = security_task_getscheduler(p);
6658 if (retval)
6659 goto out_unlock;
6660
6661 rq = task_rq_lock(p, &flags);
6662 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
6663 task_rq_unlock(rq, &flags);
6664
6665 out_unlock:
6666 rcu_read_unlock();
6667 put_online_cpus();
6668
6669 return retval;
6670 }
6671
6672 /**
6673 * sys_sched_getaffinity - get the cpu affinity of a process
6674 * @pid: pid of the process
6675 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6676 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6677 */
6678 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6679 unsigned long __user *, user_mask_ptr)
6680 {
6681 int ret;
6682 cpumask_var_t mask;
6683
6684 if (len < cpumask_size())
6685 return -EINVAL;
6686
6687 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6688 return -ENOMEM;
6689
6690 ret = sched_getaffinity(pid, mask);
6691 if (ret == 0) {
6692 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6693 ret = -EFAULT;
6694 else
6695 ret = cpumask_size();
6696 }
6697 free_cpumask_var(mask);
6698
6699 return ret;
6700 }
6701
6702 /**
6703 * sys_sched_yield - yield the current processor to other threads.
6704 *
6705 * This function yields the current CPU to other tasks. If there are no
6706 * other threads running on this CPU then this function will return.
6707 */
6708 SYSCALL_DEFINE0(sched_yield)
6709 {
6710 struct rq *rq = this_rq_lock();
6711
6712 schedstat_inc(rq, yld_count);
6713 current->sched_class->yield_task(rq);
6714
6715 /*
6716 * Since we are going to call schedule() anyway, there's
6717 * no need to preempt or enable interrupts:
6718 */
6719 __release(rq->lock);
6720 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
6721 do_raw_spin_unlock(&rq->lock);
6722 preempt_enable_no_resched();
6723
6724 schedule();
6725
6726 return 0;
6727 }
6728
6729 static inline int should_resched(void)
6730 {
6731 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
6732 }
6733
6734 static void __cond_resched(void)
6735 {
6736 add_preempt_count(PREEMPT_ACTIVE);
6737 schedule();
6738 sub_preempt_count(PREEMPT_ACTIVE);
6739 }
6740
6741 int __sched _cond_resched(void)
6742 {
6743 if (should_resched()) {
6744 __cond_resched();
6745 return 1;
6746 }
6747 return 0;
6748 }
6749 EXPORT_SYMBOL(_cond_resched);
6750
6751 /*
6752 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
6753 * call schedule, and on return reacquire the lock.
6754 *
6755 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
6756 * operations here to prevent schedule() from being called twice (once via
6757 * spin_unlock(), once by hand).
6758 */
6759 int __cond_resched_lock(spinlock_t *lock)
6760 {
6761 int resched = should_resched();
6762 int ret = 0;
6763
6764 lockdep_assert_held(lock);
6765
6766 if (spin_needbreak(lock) || resched) {
6767 spin_unlock(lock);
6768 if (resched)
6769 __cond_resched();
6770 else
6771 cpu_relax();
6772 ret = 1;
6773 spin_lock(lock);
6774 }
6775 return ret;
6776 }
6777 EXPORT_SYMBOL(__cond_resched_lock);
6778
6779 int __sched __cond_resched_softirq(void)
6780 {
6781 BUG_ON(!in_softirq());
6782
6783 if (should_resched()) {
6784 local_bh_enable();
6785 __cond_resched();
6786 local_bh_disable();
6787 return 1;
6788 }
6789 return 0;
6790 }
6791 EXPORT_SYMBOL(__cond_resched_softirq);
6792
6793 /**
6794 * yield - yield the current processor to other threads.
6795 *
6796 * This is a shortcut for kernel-space yielding - it marks the
6797 * thread runnable and calls sys_sched_yield().
6798 */
6799 void __sched yield(void)
6800 {
6801 set_current_state(TASK_RUNNING);
6802 sys_sched_yield();
6803 }
6804 EXPORT_SYMBOL(yield);
6805
6806 /*
6807 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6808 * that process accounting knows that this is a task in IO wait state.
6809 */
6810 void __sched io_schedule(void)
6811 {
6812 struct rq *rq = raw_rq();
6813
6814 delayacct_blkio_start();
6815 atomic_inc(&rq->nr_iowait);
6816 current->in_iowait = 1;
6817 schedule();
6818 current->in_iowait = 0;
6819 atomic_dec(&rq->nr_iowait);
6820 delayacct_blkio_end();
6821 }
6822 EXPORT_SYMBOL(io_schedule);
6823
6824 long __sched io_schedule_timeout(long timeout)
6825 {
6826 struct rq *rq = raw_rq();
6827 long ret;
6828
6829 delayacct_blkio_start();
6830 atomic_inc(&rq->nr_iowait);
6831 current->in_iowait = 1;
6832 ret = schedule_timeout(timeout);
6833 current->in_iowait = 0;
6834 atomic_dec(&rq->nr_iowait);
6835 delayacct_blkio_end();
6836 return ret;
6837 }
6838
6839 /**
6840 * sys_sched_get_priority_max - return maximum RT priority.
6841 * @policy: scheduling class.
6842 *
6843 * this syscall returns the maximum rt_priority that can be used
6844 * by a given scheduling class.
6845 */
6846 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
6847 {
6848 int ret = -EINVAL;
6849
6850 switch (policy) {
6851 case SCHED_FIFO:
6852 case SCHED_RR:
6853 ret = MAX_USER_RT_PRIO-1;
6854 break;
6855 case SCHED_NORMAL:
6856 case SCHED_BATCH:
6857 case SCHED_IDLE:
6858 ret = 0;
6859 break;
6860 }
6861 return ret;
6862 }
6863
6864 /**
6865 * sys_sched_get_priority_min - return minimum RT priority.
6866 * @policy: scheduling class.
6867 *
6868 * this syscall returns the minimum rt_priority that can be used
6869 * by a given scheduling class.
6870 */
6871 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
6872 {
6873 int ret = -EINVAL;
6874
6875 switch (policy) {
6876 case SCHED_FIFO:
6877 case SCHED_RR:
6878 ret = 1;
6879 break;
6880 case SCHED_NORMAL:
6881 case SCHED_BATCH:
6882 case SCHED_IDLE:
6883 ret = 0;
6884 }
6885 return ret;
6886 }
6887
6888 /**
6889 * sys_sched_rr_get_interval - return the default timeslice of a process.
6890 * @pid: pid of the process.
6891 * @interval: userspace pointer to the timeslice value.
6892 *
6893 * this syscall writes the default timeslice value of a given process
6894 * into the user-space timespec buffer. A value of '0' means infinity.
6895 */
6896 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6897 struct timespec __user *, interval)
6898 {
6899 struct task_struct *p;
6900 unsigned int time_slice;
6901 unsigned long flags;
6902 struct rq *rq;
6903 int retval;
6904 struct timespec t;
6905
6906 if (pid < 0)
6907 return -EINVAL;
6908
6909 retval = -ESRCH;
6910 rcu_read_lock();
6911 p = find_process_by_pid(pid);
6912 if (!p)
6913 goto out_unlock;
6914
6915 retval = security_task_getscheduler(p);
6916 if (retval)
6917 goto out_unlock;
6918
6919 rq = task_rq_lock(p, &flags);
6920 time_slice = p->sched_class->get_rr_interval(rq, p);
6921 task_rq_unlock(rq, &flags);
6922
6923 rcu_read_unlock();
6924 jiffies_to_timespec(time_slice, &t);
6925 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
6926 return retval;
6927
6928 out_unlock:
6929 rcu_read_unlock();
6930 return retval;
6931 }
6932
6933 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6934
6935 void sched_show_task(struct task_struct *p)
6936 {
6937 unsigned long free = 0;
6938 unsigned state;
6939
6940 state = p->state ? __ffs(p->state) + 1 : 0;
6941 printk(KERN_INFO "%-13.13s %c", p->comm,
6942 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6943 #if BITS_PER_LONG == 32
6944 if (state == TASK_RUNNING)
6945 printk(KERN_CONT " running ");
6946 else
6947 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
6948 #else
6949 if (state == TASK_RUNNING)
6950 printk(KERN_CONT " running task ");
6951 else
6952 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
6953 #endif
6954 #ifdef CONFIG_DEBUG_STACK_USAGE
6955 free = stack_not_used(p);
6956 #endif
6957 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6958 task_pid_nr(p), task_pid_nr(p->real_parent),
6959 (unsigned long)task_thread_info(p)->flags);
6960
6961 show_stack(p, NULL);
6962 }
6963
6964 void show_state_filter(unsigned long state_filter)
6965 {
6966 struct task_struct *g, *p;
6967
6968 #if BITS_PER_LONG == 32
6969 printk(KERN_INFO
6970 " task PC stack pid father\n");
6971 #else
6972 printk(KERN_INFO
6973 " task PC stack pid father\n");
6974 #endif
6975 read_lock(&tasklist_lock);
6976 do_each_thread(g, p) {
6977 /*
6978 * reset the NMI-timeout, listing all files on a slow
6979 * console might take alot of time:
6980 */
6981 touch_nmi_watchdog();
6982 if (!state_filter || (p->state & state_filter))
6983 sched_show_task(p);
6984 } while_each_thread(g, p);
6985
6986 touch_all_softlockup_watchdogs();
6987
6988 #ifdef CONFIG_SCHED_DEBUG
6989 sysrq_sched_debug_show();
6990 #endif
6991 read_unlock(&tasklist_lock);
6992 /*
6993 * Only show locks if all tasks are dumped:
6994 */
6995 if (!state_filter)
6996 debug_show_all_locks();
6997 }
6998
6999 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
7000 {
7001 idle->sched_class = &idle_sched_class;
7002 }
7003
7004 /**
7005 * init_idle - set up an idle thread for a given CPU
7006 * @idle: task in question
7007 * @cpu: cpu the idle task belongs to
7008 *
7009 * NOTE: this function does not set the idle thread's NEED_RESCHED
7010 * flag, to make booting more robust.
7011 */
7012 void __cpuinit init_idle(struct task_struct *idle, int cpu)
7013 {
7014 struct rq *rq = cpu_rq(cpu);
7015 unsigned long flags;
7016
7017 raw_spin_lock_irqsave(&rq->lock, flags);
7018
7019 __sched_fork(idle);
7020 idle->state = TASK_RUNNING;
7021 idle->se.exec_start = sched_clock();
7022
7023 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
7024 __set_task_cpu(idle, cpu);
7025
7026 rq->curr = rq->idle = idle;
7027 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
7028 idle->oncpu = 1;
7029 #endif
7030 raw_spin_unlock_irqrestore(&rq->lock, flags);
7031
7032 /* Set the preempt count _outside_ the spinlocks! */
7033 #if defined(CONFIG_PREEMPT)
7034 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
7035 #else
7036 task_thread_info(idle)->preempt_count = 0;
7037 #endif
7038 /*
7039 * The idle tasks have their own, simple scheduling class:
7040 */
7041 idle->sched_class = &idle_sched_class;
7042 ftrace_graph_init_task(idle);
7043 }
7044
7045 /*
7046 * In a system that switches off the HZ timer nohz_cpu_mask
7047 * indicates which cpus entered this state. This is used
7048 * in the rcu update to wait only for active cpus. For system
7049 * which do not switch off the HZ timer nohz_cpu_mask should
7050 * always be CPU_BITS_NONE.
7051 */
7052 cpumask_var_t nohz_cpu_mask;
7053
7054 /*
7055 * Increase the granularity value when there are more CPUs,
7056 * because with more CPUs the 'effective latency' as visible
7057 * to users decreases. But the relationship is not linear,
7058 * so pick a second-best guess by going with the log2 of the
7059 * number of CPUs.
7060 *
7061 * This idea comes from the SD scheduler of Con Kolivas:
7062 */
7063 static int get_update_sysctl_factor(void)
7064 {
7065 unsigned int cpus = min_t(int, num_online_cpus(), 8);
7066 unsigned int factor;
7067
7068 switch (sysctl_sched_tunable_scaling) {
7069 case SCHED_TUNABLESCALING_NONE:
7070 factor = 1;
7071 break;
7072 case SCHED_TUNABLESCALING_LINEAR:
7073 factor = cpus;
7074 break;
7075 case SCHED_TUNABLESCALING_LOG:
7076 default:
7077 factor = 1 + ilog2(cpus);
7078 break;
7079 }
7080
7081 return factor;
7082 }
7083
7084 static void update_sysctl(void)
7085 {
7086 unsigned int factor = get_update_sysctl_factor();
7087
7088 #define SET_SYSCTL(name) \
7089 (sysctl_##name = (factor) * normalized_sysctl_##name)
7090 SET_SYSCTL(sched_min_granularity);
7091 SET_SYSCTL(sched_latency);
7092 SET_SYSCTL(sched_wakeup_granularity);
7093 SET_SYSCTL(sched_shares_ratelimit);
7094 #undef SET_SYSCTL
7095 }
7096
7097 static inline void sched_init_granularity(void)
7098 {
7099 update_sysctl();
7100 }
7101
7102 #ifdef CONFIG_SMP
7103 /*
7104 * This is how migration works:
7105 *
7106 * 1) we queue a struct migration_req structure in the source CPU's
7107 * runqueue and wake up that CPU's migration thread.
7108 * 2) we down() the locked semaphore => thread blocks.
7109 * 3) migration thread wakes up (implicitly it forces the migrated
7110 * thread off the CPU)
7111 * 4) it gets the migration request and checks whether the migrated
7112 * task is still in the wrong runqueue.
7113 * 5) if it's in the wrong runqueue then the migration thread removes
7114 * it and puts it into the right queue.
7115 * 6) migration thread up()s the semaphore.
7116 * 7) we wake up and the migration is done.
7117 */
7118
7119 /*
7120 * Change a given task's CPU affinity. Migrate the thread to a
7121 * proper CPU and schedule it away if the CPU it's executing on
7122 * is removed from the allowed bitmask.
7123 *
7124 * NOTE: the caller must have a valid reference to the task, the
7125 * task must not exit() & deallocate itself prematurely. The
7126 * call is not atomic; no spinlocks may be held.
7127 */
7128 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
7129 {
7130 struct migration_req req;
7131 unsigned long flags;
7132 struct rq *rq;
7133 int ret = 0;
7134
7135 /*
7136 * Since we rely on wake-ups to migrate sleeping tasks, don't change
7137 * the ->cpus_allowed mask from under waking tasks, which would be
7138 * possible when we change rq->lock in ttwu(), so synchronize against
7139 * TASK_WAKING to avoid that.
7140 */
7141 again:
7142 while (p->state == TASK_WAKING)
7143 cpu_relax();
7144
7145 rq = task_rq_lock(p, &flags);
7146
7147 if (p->state == TASK_WAKING) {
7148 task_rq_unlock(rq, &flags);
7149 goto again;
7150 }
7151
7152 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
7153 ret = -EINVAL;
7154 goto out;
7155 }
7156
7157 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
7158 !cpumask_equal(&p->cpus_allowed, new_mask))) {
7159 ret = -EINVAL;
7160 goto out;
7161 }
7162
7163 if (p->sched_class->set_cpus_allowed)
7164 p->sched_class->set_cpus_allowed(p, new_mask);
7165 else {
7166 cpumask_copy(&p->cpus_allowed, new_mask);
7167 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
7168 }
7169
7170 /* Can the task run on the task's current CPU? If so, we're done */
7171 if (cpumask_test_cpu(task_cpu(p), new_mask))
7172 goto out;
7173
7174 if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
7175 /* Need help from migration thread: drop lock and wait. */
7176 struct task_struct *mt = rq->migration_thread;
7177
7178 get_task_struct(mt);
7179 task_rq_unlock(rq, &flags);
7180 wake_up_process(rq->migration_thread);
7181 put_task_struct(mt);
7182 wait_for_completion(&req.done);
7183 tlb_migrate_finish(p->mm);
7184 return 0;
7185 }
7186 out:
7187 task_rq_unlock(rq, &flags);
7188
7189 return ret;
7190 }
7191 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
7192
7193 /*
7194 * Move (not current) task off this cpu, onto dest cpu. We're doing
7195 * this because either it can't run here any more (set_cpus_allowed()
7196 * away from this CPU, or CPU going down), or because we're
7197 * attempting to rebalance this task on exec (sched_exec).
7198 *
7199 * So we race with normal scheduler movements, but that's OK, as long
7200 * as the task is no longer on this CPU.
7201 *
7202 * Returns non-zero if task was successfully migrated.
7203 */
7204 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
7205 {
7206 struct rq *rq_dest, *rq_src;
7207 int ret = 0;
7208
7209 if (unlikely(!cpu_active(dest_cpu)))
7210 return ret;
7211
7212 rq_src = cpu_rq(src_cpu);
7213 rq_dest = cpu_rq(dest_cpu);
7214
7215 double_rq_lock(rq_src, rq_dest);
7216 /* Already moved. */
7217 if (task_cpu(p) != src_cpu)
7218 goto done;
7219 /* Affinity changed (again). */
7220 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7221 goto fail;
7222
7223 /*
7224 * If we're not on a rq, the next wake-up will ensure we're
7225 * placed properly.
7226 */
7227 if (p->se.on_rq) {
7228 deactivate_task(rq_src, p, 0);
7229 set_task_cpu(p, dest_cpu);
7230 activate_task(rq_dest, p, 0);
7231 check_preempt_curr(rq_dest, p, 0);
7232 }
7233 done:
7234 ret = 1;
7235 fail:
7236 double_rq_unlock(rq_src, rq_dest);
7237 return ret;
7238 }
7239
7240 #define RCU_MIGRATION_IDLE 0
7241 #define RCU_MIGRATION_NEED_QS 1
7242 #define RCU_MIGRATION_GOT_QS 2
7243 #define RCU_MIGRATION_MUST_SYNC 3
7244
7245 /*
7246 * migration_thread - this is a highprio system thread that performs
7247 * thread migration by bumping thread off CPU then 'pushing' onto
7248 * another runqueue.
7249 */
7250 static int migration_thread(void *data)
7251 {
7252 int badcpu;
7253 int cpu = (long)data;
7254 struct rq *rq;
7255
7256 rq = cpu_rq(cpu);
7257 BUG_ON(rq->migration_thread != current);
7258
7259 set_current_state(TASK_INTERRUPTIBLE);
7260 while (!kthread_should_stop()) {
7261 struct migration_req *req;
7262 struct list_head *head;
7263
7264 raw_spin_lock_irq(&rq->lock);
7265
7266 if (cpu_is_offline(cpu)) {
7267 raw_spin_unlock_irq(&rq->lock);
7268 break;
7269 }
7270
7271 if (rq->active_balance) {
7272 active_load_balance(rq, cpu);
7273 rq->active_balance = 0;
7274 }
7275
7276 head = &rq->migration_queue;
7277
7278 if (list_empty(head)) {
7279 raw_spin_unlock_irq(&rq->lock);
7280 schedule();
7281 set_current_state(TASK_INTERRUPTIBLE);
7282 continue;
7283 }
7284 req = list_entry(head->next, struct migration_req, list);
7285 list_del_init(head->next);
7286
7287 if (req->task != NULL) {
7288 raw_spin_unlock(&rq->lock);
7289 __migrate_task(req->task, cpu, req->dest_cpu);
7290 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
7291 req->dest_cpu = RCU_MIGRATION_GOT_QS;
7292 raw_spin_unlock(&rq->lock);
7293 } else {
7294 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
7295 raw_spin_unlock(&rq->lock);
7296 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
7297 }
7298 local_irq_enable();
7299
7300 complete(&req->done);
7301 }
7302 __set_current_state(TASK_RUNNING);
7303
7304 return 0;
7305 }
7306
7307 #ifdef CONFIG_HOTPLUG_CPU
7308
7309 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7310 {
7311 int ret;
7312
7313 local_irq_disable();
7314 ret = __migrate_task(p, src_cpu, dest_cpu);
7315 local_irq_enable();
7316 return ret;
7317 }
7318
7319 /*
7320 * Figure out where task on dead CPU should go, use force if necessary.
7321 */
7322 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
7323 {
7324 int dest_cpu;
7325
7326 again:
7327 dest_cpu = select_fallback_rq(dead_cpu, p);
7328
7329 /* It can have affinity changed while we were choosing. */
7330 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7331 goto again;
7332 }
7333
7334 /*
7335 * While a dead CPU has no uninterruptible tasks queued at this point,
7336 * it might still have a nonzero ->nr_uninterruptible counter, because
7337 * for performance reasons the counter is not stricly tracking tasks to
7338 * their home CPUs. So we just add the counter to another CPU's counter,
7339 * to keep the global sum constant after CPU-down:
7340 */
7341 static void migrate_nr_uninterruptible(struct rq *rq_src)
7342 {
7343 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
7344 unsigned long flags;
7345
7346 local_irq_save(flags);
7347 double_rq_lock(rq_src, rq_dest);
7348 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7349 rq_src->nr_uninterruptible = 0;
7350 double_rq_unlock(rq_src, rq_dest);
7351 local_irq_restore(flags);
7352 }
7353
7354 /* Run through task list and migrate tasks from the dead cpu. */
7355 static void migrate_live_tasks(int src_cpu)
7356 {
7357 struct task_struct *p, *t;
7358
7359 read_lock(&tasklist_lock);
7360
7361 do_each_thread(t, p) {
7362 if (p == current)
7363 continue;
7364
7365 if (task_cpu(p) == src_cpu)
7366 move_task_off_dead_cpu(src_cpu, p);
7367 } while_each_thread(t, p);
7368
7369 read_unlock(&tasklist_lock);
7370 }
7371
7372 /*
7373 * Schedules idle task to be the next runnable task on current CPU.
7374 * It does so by boosting its priority to highest possible.
7375 * Used by CPU offline code.
7376 */
7377 void sched_idle_next(void)
7378 {
7379 int this_cpu = smp_processor_id();
7380 struct rq *rq = cpu_rq(this_cpu);
7381 struct task_struct *p = rq->idle;
7382 unsigned long flags;
7383
7384 /* cpu has to be offline */
7385 BUG_ON(cpu_online(this_cpu));
7386
7387 /*
7388 * Strictly not necessary since rest of the CPUs are stopped by now
7389 * and interrupts disabled on the current cpu.
7390 */
7391 raw_spin_lock_irqsave(&rq->lock, flags);
7392
7393 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7394
7395 update_rq_clock(rq);
7396 activate_task(rq, p, 0);
7397
7398 raw_spin_unlock_irqrestore(&rq->lock, flags);
7399 }
7400
7401 /*
7402 * Ensures that the idle task is using init_mm right before its cpu goes
7403 * offline.
7404 */
7405 void idle_task_exit(void)
7406 {
7407 struct mm_struct *mm = current->active_mm;
7408
7409 BUG_ON(cpu_online(smp_processor_id()));
7410
7411 if (mm != &init_mm)
7412 switch_mm(mm, &init_mm, current);
7413 mmdrop(mm);
7414 }
7415
7416 /* called under rq->lock with disabled interrupts */
7417 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
7418 {
7419 struct rq *rq = cpu_rq(dead_cpu);
7420
7421 /* Must be exiting, otherwise would be on tasklist. */
7422 BUG_ON(!p->exit_state);
7423
7424 /* Cannot have done final schedule yet: would have vanished. */
7425 BUG_ON(p->state == TASK_DEAD);
7426
7427 get_task_struct(p);
7428
7429 /*
7430 * Drop lock around migration; if someone else moves it,
7431 * that's OK. No task can be added to this CPU, so iteration is
7432 * fine.
7433 */
7434 raw_spin_unlock_irq(&rq->lock);
7435 move_task_off_dead_cpu(dead_cpu, p);
7436 raw_spin_lock_irq(&rq->lock);
7437
7438 put_task_struct(p);
7439 }
7440
7441 /* release_task() removes task from tasklist, so we won't find dead tasks. */
7442 static void migrate_dead_tasks(unsigned int dead_cpu)
7443 {
7444 struct rq *rq = cpu_rq(dead_cpu);
7445 struct task_struct *next;
7446
7447 for ( ; ; ) {
7448 if (!rq->nr_running)
7449 break;
7450 update_rq_clock(rq);
7451 next = pick_next_task(rq);
7452 if (!next)
7453 break;
7454 next->sched_class->put_prev_task(rq, next);
7455 migrate_dead(dead_cpu, next);
7456
7457 }
7458 }
7459
7460 /*
7461 * remove the tasks which were accounted by rq from calc_load_tasks.
7462 */
7463 static void calc_global_load_remove(struct rq *rq)
7464 {
7465 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
7466 rq->calc_load_active = 0;
7467 }
7468 #endif /* CONFIG_HOTPLUG_CPU */
7469
7470 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7471
7472 static struct ctl_table sd_ctl_dir[] = {
7473 {
7474 .procname = "sched_domain",
7475 .mode = 0555,
7476 },
7477 {}
7478 };
7479
7480 static struct ctl_table sd_ctl_root[] = {
7481 {
7482 .procname = "kernel",
7483 .mode = 0555,
7484 .child = sd_ctl_dir,
7485 },
7486 {}
7487 };
7488
7489 static struct ctl_table *sd_alloc_ctl_entry(int n)
7490 {
7491 struct ctl_table *entry =
7492 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
7493
7494 return entry;
7495 }
7496
7497 static void sd_free_ctl_entry(struct ctl_table **tablep)
7498 {
7499 struct ctl_table *entry;
7500
7501 /*
7502 * In the intermediate directories, both the child directory and
7503 * procname are dynamically allocated and could fail but the mode
7504 * will always be set. In the lowest directory the names are
7505 * static strings and all have proc handlers.
7506 */
7507 for (entry = *tablep; entry->mode; entry++) {
7508 if (entry->child)
7509 sd_free_ctl_entry(&entry->child);
7510 if (entry->proc_handler == NULL)
7511 kfree(entry->procname);
7512 }
7513
7514 kfree(*tablep);
7515 *tablep = NULL;
7516 }
7517
7518 static void
7519 set_table_entry(struct ctl_table *entry,
7520 const char *procname, void *data, int maxlen,
7521 mode_t mode, proc_handler *proc_handler)
7522 {
7523 entry->procname = procname;
7524 entry->data = data;
7525 entry->maxlen = maxlen;
7526 entry->mode = mode;
7527 entry->proc_handler = proc_handler;
7528 }
7529
7530 static struct ctl_table *
7531 sd_alloc_ctl_domain_table(struct sched_domain *sd)
7532 {
7533 struct ctl_table *table = sd_alloc_ctl_entry(13);
7534
7535 if (table == NULL)
7536 return NULL;
7537
7538 set_table_entry(&table[0], "min_interval", &sd->min_interval,
7539 sizeof(long), 0644, proc_doulongvec_minmax);
7540 set_table_entry(&table[1], "max_interval", &sd->max_interval,
7541 sizeof(long), 0644, proc_doulongvec_minmax);
7542 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
7543 sizeof(int), 0644, proc_dointvec_minmax);
7544 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
7545 sizeof(int), 0644, proc_dointvec_minmax);
7546 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
7547 sizeof(int), 0644, proc_dointvec_minmax);
7548 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
7549 sizeof(int), 0644, proc_dointvec_minmax);
7550 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
7551 sizeof(int), 0644, proc_dointvec_minmax);
7552 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
7553 sizeof(int), 0644, proc_dointvec_minmax);
7554 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
7555 sizeof(int), 0644, proc_dointvec_minmax);
7556 set_table_entry(&table[9], "cache_nice_tries",
7557 &sd->cache_nice_tries,
7558 sizeof(int), 0644, proc_dointvec_minmax);
7559 set_table_entry(&table[10], "flags", &sd->flags,
7560 sizeof(int), 0644, proc_dointvec_minmax);
7561 set_table_entry(&table[11], "name", sd->name,
7562 CORENAME_MAX_SIZE, 0444, proc_dostring);
7563 /* &table[12] is terminator */
7564
7565 return table;
7566 }
7567
7568 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7569 {
7570 struct ctl_table *entry, *table;
7571 struct sched_domain *sd;
7572 int domain_num = 0, i;
7573 char buf[32];
7574
7575 for_each_domain(cpu, sd)
7576 domain_num++;
7577 entry = table = sd_alloc_ctl_entry(domain_num + 1);
7578 if (table == NULL)
7579 return NULL;
7580
7581 i = 0;
7582 for_each_domain(cpu, sd) {
7583 snprintf(buf, 32, "domain%d", i);
7584 entry->procname = kstrdup(buf, GFP_KERNEL);
7585 entry->mode = 0555;
7586 entry->child = sd_alloc_ctl_domain_table(sd);
7587 entry++;
7588 i++;
7589 }
7590 return table;
7591 }
7592
7593 static struct ctl_table_header *sd_sysctl_header;
7594 static void register_sched_domain_sysctl(void)
7595 {
7596 int i, cpu_num = num_possible_cpus();
7597 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7598 char buf[32];
7599
7600 WARN_ON(sd_ctl_dir[0].child);
7601 sd_ctl_dir[0].child = entry;
7602
7603 if (entry == NULL)
7604 return;
7605
7606 for_each_possible_cpu(i) {
7607 snprintf(buf, 32, "cpu%d", i);
7608 entry->procname = kstrdup(buf, GFP_KERNEL);
7609 entry->mode = 0555;
7610 entry->child = sd_alloc_ctl_cpu_table(i);
7611 entry++;
7612 }
7613
7614 WARN_ON(sd_sysctl_header);
7615 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7616 }
7617
7618 /* may be called multiple times per register */
7619 static void unregister_sched_domain_sysctl(void)
7620 {
7621 if (sd_sysctl_header)
7622 unregister_sysctl_table(sd_sysctl_header);
7623 sd_sysctl_header = NULL;
7624 if (sd_ctl_dir[0].child)
7625 sd_free_ctl_entry(&sd_ctl_dir[0].child);
7626 }
7627 #else
7628 static void register_sched_domain_sysctl(void)
7629 {
7630 }
7631 static void unregister_sched_domain_sysctl(void)
7632 {
7633 }
7634 #endif
7635
7636 static void set_rq_online(struct rq *rq)
7637 {
7638 if (!rq->online) {
7639 const struct sched_class *class;
7640
7641 cpumask_set_cpu(rq->cpu, rq->rd->online);
7642 rq->online = 1;
7643
7644 for_each_class(class) {
7645 if (class->rq_online)
7646 class->rq_online(rq);
7647 }
7648 }
7649 }
7650
7651 static void set_rq_offline(struct rq *rq)
7652 {
7653 if (rq->online) {
7654 const struct sched_class *class;
7655
7656 for_each_class(class) {
7657 if (class->rq_offline)
7658 class->rq_offline(rq);
7659 }
7660
7661 cpumask_clear_cpu(rq->cpu, rq->rd->online);
7662 rq->online = 0;
7663 }
7664 }
7665
7666 /*
7667 * migration_call - callback that gets triggered when a CPU is added.
7668 * Here we can start up the necessary migration thread for the new CPU.
7669 */
7670 static int __cpuinit
7671 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
7672 {
7673 struct task_struct *p;
7674 int cpu = (long)hcpu;
7675 unsigned long flags;
7676 struct rq *rq;
7677
7678 switch (action) {
7679
7680 case CPU_UP_PREPARE:
7681 case CPU_UP_PREPARE_FROZEN:
7682 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
7683 if (IS_ERR(p))
7684 return NOTIFY_BAD;
7685 kthread_bind(p, cpu);
7686 /* Must be high prio: stop_machine expects to yield to it. */
7687 rq = task_rq_lock(p, &flags);
7688 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7689 task_rq_unlock(rq, &flags);
7690 get_task_struct(p);
7691 cpu_rq(cpu)->migration_thread = p;
7692 rq->calc_load_update = calc_load_update;
7693 break;
7694
7695 case CPU_ONLINE:
7696 case CPU_ONLINE_FROZEN:
7697 /* Strictly unnecessary, as first user will wake it. */
7698 wake_up_process(cpu_rq(cpu)->migration_thread);
7699
7700 /* Update our root-domain */
7701 rq = cpu_rq(cpu);
7702 raw_spin_lock_irqsave(&rq->lock, flags);
7703 if (rq->rd) {
7704 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7705
7706 set_rq_online(rq);
7707 }
7708 raw_spin_unlock_irqrestore(&rq->lock, flags);
7709 break;
7710
7711 #ifdef CONFIG_HOTPLUG_CPU
7712 case CPU_UP_CANCELED:
7713 case CPU_UP_CANCELED_FROZEN:
7714 if (!cpu_rq(cpu)->migration_thread)
7715 break;
7716 /* Unbind it from offline cpu so it can run. Fall thru. */
7717 kthread_bind(cpu_rq(cpu)->migration_thread,
7718 cpumask_any(cpu_online_mask));
7719 kthread_stop(cpu_rq(cpu)->migration_thread);
7720 put_task_struct(cpu_rq(cpu)->migration_thread);
7721 cpu_rq(cpu)->migration_thread = NULL;
7722 break;
7723
7724 case CPU_DEAD:
7725 case CPU_DEAD_FROZEN:
7726 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
7727 migrate_live_tasks(cpu);
7728 rq = cpu_rq(cpu);
7729 kthread_stop(rq->migration_thread);
7730 put_task_struct(rq->migration_thread);
7731 rq->migration_thread = NULL;
7732 /* Idle task back to normal (off runqueue, low prio) */
7733 raw_spin_lock_irq(&rq->lock);
7734 update_rq_clock(rq);
7735 deactivate_task(rq, rq->idle, 0);
7736 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7737 rq->idle->sched_class = &idle_sched_class;
7738 migrate_dead_tasks(cpu);
7739 raw_spin_unlock_irq(&rq->lock);
7740 cpuset_unlock();
7741 migrate_nr_uninterruptible(rq);
7742 BUG_ON(rq->nr_running != 0);
7743 calc_global_load_remove(rq);
7744 /*
7745 * No need to migrate the tasks: it was best-effort if
7746 * they didn't take sched_hotcpu_mutex. Just wake up
7747 * the requestors.
7748 */
7749 raw_spin_lock_irq(&rq->lock);
7750 while (!list_empty(&rq->migration_queue)) {
7751 struct migration_req *req;
7752
7753 req = list_entry(rq->migration_queue.next,
7754 struct migration_req, list);
7755 list_del_init(&req->list);
7756 raw_spin_unlock_irq(&rq->lock);
7757 complete(&req->done);
7758 raw_spin_lock_irq(&rq->lock);
7759 }
7760 raw_spin_unlock_irq(&rq->lock);
7761 break;
7762
7763 case CPU_DYING:
7764 case CPU_DYING_FROZEN:
7765 /* Update our root-domain */
7766 rq = cpu_rq(cpu);
7767 raw_spin_lock_irqsave(&rq->lock, flags);
7768 if (rq->rd) {
7769 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7770 set_rq_offline(rq);
7771 }
7772 raw_spin_unlock_irqrestore(&rq->lock, flags);
7773 break;
7774 #endif
7775 }
7776 return NOTIFY_OK;
7777 }
7778
7779 /*
7780 * Register at high priority so that task migration (migrate_all_tasks)
7781 * happens before everything else. This has to be lower priority than
7782 * the notifier in the perf_event subsystem, though.
7783 */
7784 static struct notifier_block __cpuinitdata migration_notifier = {
7785 .notifier_call = migration_call,
7786 .priority = 10
7787 };
7788
7789 static int __init migration_init(void)
7790 {
7791 void *cpu = (void *)(long)smp_processor_id();
7792 int err;
7793
7794 /* Start one for the boot CPU: */
7795 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7796 BUG_ON(err == NOTIFY_BAD);
7797 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7798 register_cpu_notifier(&migration_notifier);
7799
7800 return 0;
7801 }
7802 early_initcall(migration_init);
7803 #endif
7804
7805 #ifdef CONFIG_SMP
7806
7807 #ifdef CONFIG_SCHED_DEBUG
7808
7809 static __read_mostly int sched_domain_debug_enabled;
7810
7811 static int __init sched_domain_debug_setup(char *str)
7812 {
7813 sched_domain_debug_enabled = 1;
7814
7815 return 0;
7816 }
7817 early_param("sched_debug", sched_domain_debug_setup);
7818
7819 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7820 struct cpumask *groupmask)
7821 {
7822 struct sched_group *group = sd->groups;
7823 char str[256];
7824
7825 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7826 cpumask_clear(groupmask);
7827
7828 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7829
7830 if (!(sd->flags & SD_LOAD_BALANCE)) {
7831 printk("does not load-balance\n");
7832 if (sd->parent)
7833 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7834 " has parent");
7835 return -1;
7836 }
7837
7838 printk(KERN_CONT "span %s level %s\n", str, sd->name);
7839
7840 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
7841 printk(KERN_ERR "ERROR: domain->span does not contain "
7842 "CPU%d\n", cpu);
7843 }
7844 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
7845 printk(KERN_ERR "ERROR: domain->groups does not contain"
7846 " CPU%d\n", cpu);
7847 }
7848
7849 printk(KERN_DEBUG "%*s groups:", level + 1, "");
7850 do {
7851 if (!group) {
7852 printk("\n");
7853 printk(KERN_ERR "ERROR: group is NULL\n");
7854 break;
7855 }
7856
7857 if (!group->cpu_power) {
7858 printk(KERN_CONT "\n");
7859 printk(KERN_ERR "ERROR: domain->cpu_power not "
7860 "set\n");
7861 break;
7862 }
7863
7864 if (!cpumask_weight(sched_group_cpus(group))) {
7865 printk(KERN_CONT "\n");
7866 printk(KERN_ERR "ERROR: empty group\n");
7867 break;
7868 }
7869
7870 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
7871 printk(KERN_CONT "\n");
7872 printk(KERN_ERR "ERROR: repeated CPUs\n");
7873 break;
7874 }
7875
7876 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
7877
7878 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7879
7880 printk(KERN_CONT " %s", str);
7881 if (group->cpu_power != SCHED_LOAD_SCALE) {
7882 printk(KERN_CONT " (cpu_power = %d)",
7883 group->cpu_power);
7884 }
7885
7886 group = group->next;
7887 } while (group != sd->groups);
7888 printk(KERN_CONT "\n");
7889
7890 if (!cpumask_equal(sched_domain_span(sd), groupmask))
7891 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
7892
7893 if (sd->parent &&
7894 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
7895 printk(KERN_ERR "ERROR: parent span is not a superset "
7896 "of domain->span\n");
7897 return 0;
7898 }
7899
7900 static void sched_domain_debug(struct sched_domain *sd, int cpu)
7901 {
7902 cpumask_var_t groupmask;
7903 int level = 0;
7904
7905 if (!sched_domain_debug_enabled)
7906 return;
7907
7908 if (!sd) {
7909 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7910 return;
7911 }
7912
7913 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7914
7915 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7916 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7917 return;
7918 }
7919
7920 for (;;) {
7921 if (sched_domain_debug_one(sd, cpu, level, groupmask))
7922 break;
7923 level++;
7924 sd = sd->parent;
7925 if (!sd)
7926 break;
7927 }
7928 free_cpumask_var(groupmask);
7929 }
7930 #else /* !CONFIG_SCHED_DEBUG */
7931 # define sched_domain_debug(sd, cpu) do { } while (0)
7932 #endif /* CONFIG_SCHED_DEBUG */
7933
7934 static int sd_degenerate(struct sched_domain *sd)
7935 {
7936 if (cpumask_weight(sched_domain_span(sd)) == 1)
7937 return 1;
7938
7939 /* Following flags need at least 2 groups */
7940 if (sd->flags & (SD_LOAD_BALANCE |
7941 SD_BALANCE_NEWIDLE |
7942 SD_BALANCE_FORK |
7943 SD_BALANCE_EXEC |
7944 SD_SHARE_CPUPOWER |
7945 SD_SHARE_PKG_RESOURCES)) {
7946 if (sd->groups != sd->groups->next)
7947 return 0;
7948 }
7949
7950 /* Following flags don't use groups */
7951 if (sd->flags & (SD_WAKE_AFFINE))
7952 return 0;
7953
7954 return 1;
7955 }
7956
7957 static int
7958 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7959 {
7960 unsigned long cflags = sd->flags, pflags = parent->flags;
7961
7962 if (sd_degenerate(parent))
7963 return 1;
7964
7965 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7966 return 0;
7967
7968 /* Flags needing groups don't count if only 1 group in parent */
7969 if (parent->groups == parent->groups->next) {
7970 pflags &= ~(SD_LOAD_BALANCE |
7971 SD_BALANCE_NEWIDLE |
7972 SD_BALANCE_FORK |
7973 SD_BALANCE_EXEC |
7974 SD_SHARE_CPUPOWER |
7975 SD_SHARE_PKG_RESOURCES);
7976 if (nr_node_ids == 1)
7977 pflags &= ~SD_SERIALIZE;
7978 }
7979 if (~cflags & pflags)
7980 return 0;
7981
7982 return 1;
7983 }
7984
7985 static void free_rootdomain(struct root_domain *rd)
7986 {
7987 synchronize_sched();
7988
7989 cpupri_cleanup(&rd->cpupri);
7990
7991 free_cpumask_var(rd->rto_mask);
7992 free_cpumask_var(rd->online);
7993 free_cpumask_var(rd->span);
7994 kfree(rd);
7995 }
7996
7997 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7998 {
7999 struct root_domain *old_rd = NULL;
8000 unsigned long flags;
8001
8002 raw_spin_lock_irqsave(&rq->lock, flags);
8003
8004 if (rq->rd) {
8005 old_rd = rq->rd;
8006
8007 if (cpumask_test_cpu(rq->cpu, old_rd->online))
8008 set_rq_offline(rq);
8009
8010 cpumask_clear_cpu(rq->cpu, old_rd->span);
8011
8012 /*
8013 * If we dont want to free the old_rt yet then
8014 * set old_rd to NULL to skip the freeing later
8015 * in this function:
8016 */
8017 if (!atomic_dec_and_test(&old_rd->refcount))
8018 old_rd = NULL;
8019 }
8020
8021 atomic_inc(&rd->refcount);
8022 rq->rd = rd;
8023
8024 cpumask_set_cpu(rq->cpu, rd->span);
8025 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
8026 set_rq_online(rq);
8027
8028 raw_spin_unlock_irqrestore(&rq->lock, flags);
8029
8030 if (old_rd)
8031 free_rootdomain(old_rd);
8032 }
8033
8034 static int init_rootdomain(struct root_domain *rd, bool bootmem)
8035 {
8036 gfp_t gfp = GFP_KERNEL;
8037
8038 memset(rd, 0, sizeof(*rd));
8039
8040 if (bootmem)
8041 gfp = GFP_NOWAIT;
8042
8043 if (!alloc_cpumask_var(&rd->span, gfp))
8044 goto out;
8045 if (!alloc_cpumask_var(&rd->online, gfp))
8046 goto free_span;
8047 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
8048 goto free_online;
8049
8050 if (cpupri_init(&rd->cpupri, bootmem) != 0)
8051 goto free_rto_mask;
8052 return 0;
8053
8054 free_rto_mask:
8055 free_cpumask_var(rd->rto_mask);
8056 free_online:
8057 free_cpumask_var(rd->online);
8058 free_span:
8059 free_cpumask_var(rd->span);
8060 out:
8061 return -ENOMEM;
8062 }
8063
8064 static void init_defrootdomain(void)
8065 {
8066 init_rootdomain(&def_root_domain, true);
8067
8068 atomic_set(&def_root_domain.refcount, 1);
8069 }
8070
8071 static struct root_domain *alloc_rootdomain(void)
8072 {
8073 struct root_domain *rd;
8074
8075 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
8076 if (!rd)
8077 return NULL;
8078
8079 if (init_rootdomain(rd, false) != 0) {
8080 kfree(rd);
8081 return NULL;
8082 }
8083
8084 return rd;
8085 }
8086
8087 /*
8088 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
8089 * hold the hotplug lock.
8090 */
8091 static void
8092 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
8093 {
8094 struct rq *rq = cpu_rq(cpu);
8095 struct sched_domain *tmp;
8096
8097 /* Remove the sched domains which do not contribute to scheduling. */
8098 for (tmp = sd; tmp; ) {
8099 struct sched_domain *parent = tmp->parent;
8100 if (!parent)
8101 break;
8102
8103 if (sd_parent_degenerate(tmp, parent)) {
8104 tmp->parent = parent->parent;
8105 if (parent->parent)
8106 parent->parent->child = tmp;
8107 } else
8108 tmp = tmp->parent;
8109 }
8110
8111 if (sd && sd_degenerate(sd)) {
8112 sd = sd->parent;
8113 if (sd)
8114 sd->child = NULL;
8115 }
8116
8117 sched_domain_debug(sd, cpu);
8118
8119 rq_attach_root(rq, rd);
8120 rcu_assign_pointer(rq->sd, sd);
8121 }
8122
8123 /* cpus with isolated domains */
8124 static cpumask_var_t cpu_isolated_map;
8125
8126 /* Setup the mask of cpus configured for isolated domains */
8127 static int __init isolated_cpu_setup(char *str)
8128 {
8129 alloc_bootmem_cpumask_var(&cpu_isolated_map);
8130 cpulist_parse(str, cpu_isolated_map);
8131 return 1;
8132 }
8133
8134 __setup("isolcpus=", isolated_cpu_setup);
8135
8136 /*
8137 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
8138 * to a function which identifies what group(along with sched group) a CPU
8139 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
8140 * (due to the fact that we keep track of groups covered with a struct cpumask).
8141 *
8142 * init_sched_build_groups will build a circular linked list of the groups
8143 * covered by the given span, and will set each group's ->cpumask correctly,
8144 * and ->cpu_power to 0.
8145 */
8146 static void
8147 init_sched_build_groups(const struct cpumask *span,
8148 const struct cpumask *cpu_map,
8149 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
8150 struct sched_group **sg,
8151 struct cpumask *tmpmask),
8152 struct cpumask *covered, struct cpumask *tmpmask)
8153 {
8154 struct sched_group *first = NULL, *last = NULL;
8155 int i;
8156
8157 cpumask_clear(covered);
8158
8159 for_each_cpu(i, span) {
8160 struct sched_group *sg;
8161 int group = group_fn(i, cpu_map, &sg, tmpmask);
8162 int j;
8163
8164 if (cpumask_test_cpu(i, covered))
8165 continue;
8166
8167 cpumask_clear(sched_group_cpus(sg));
8168 sg->cpu_power = 0;
8169
8170 for_each_cpu(j, span) {
8171 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
8172 continue;
8173
8174 cpumask_set_cpu(j, covered);
8175 cpumask_set_cpu(j, sched_group_cpus(sg));
8176 }
8177 if (!first)
8178 first = sg;
8179 if (last)
8180 last->next = sg;
8181 last = sg;
8182 }
8183 last->next = first;
8184 }
8185
8186 #define SD_NODES_PER_DOMAIN 16
8187
8188 #ifdef CONFIG_NUMA
8189
8190 /**
8191 * find_next_best_node - find the next node to include in a sched_domain
8192 * @node: node whose sched_domain we're building
8193 * @used_nodes: nodes already in the sched_domain
8194 *
8195 * Find the next node to include in a given scheduling domain. Simply
8196 * finds the closest node not already in the @used_nodes map.
8197 *
8198 * Should use nodemask_t.
8199 */
8200 static int find_next_best_node(int node, nodemask_t *used_nodes)
8201 {
8202 int i, n, val, min_val, best_node = 0;
8203
8204 min_val = INT_MAX;
8205
8206 for (i = 0; i < nr_node_ids; i++) {
8207 /* Start at @node */
8208 n = (node + i) % nr_node_ids;
8209
8210 if (!nr_cpus_node(n))
8211 continue;
8212
8213 /* Skip already used nodes */
8214 if (node_isset(n, *used_nodes))
8215 continue;
8216
8217 /* Simple min distance search */
8218 val = node_distance(node, n);
8219
8220 if (val < min_val) {
8221 min_val = val;
8222 best_node = n;
8223 }
8224 }
8225
8226 node_set(best_node, *used_nodes);
8227 return best_node;
8228 }
8229
8230 /**
8231 * sched_domain_node_span - get a cpumask for a node's sched_domain
8232 * @node: node whose cpumask we're constructing
8233 * @span: resulting cpumask
8234 *
8235 * Given a node, construct a good cpumask for its sched_domain to span. It
8236 * should be one that prevents unnecessary balancing, but also spreads tasks
8237 * out optimally.
8238 */
8239 static void sched_domain_node_span(int node, struct cpumask *span)
8240 {
8241 nodemask_t used_nodes;
8242 int i;
8243
8244 cpumask_clear(span);
8245 nodes_clear(used_nodes);
8246
8247 cpumask_or(span, span, cpumask_of_node(node));
8248 node_set(node, used_nodes);
8249
8250 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
8251 int next_node = find_next_best_node(node, &used_nodes);
8252
8253 cpumask_or(span, span, cpumask_of_node(next_node));
8254 }
8255 }
8256 #endif /* CONFIG_NUMA */
8257
8258 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
8259
8260 /*
8261 * The cpus mask in sched_group and sched_domain hangs off the end.
8262 *
8263 * ( See the the comments in include/linux/sched.h:struct sched_group
8264 * and struct sched_domain. )
8265 */
8266 struct static_sched_group {
8267 struct sched_group sg;
8268 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8269 };
8270
8271 struct static_sched_domain {
8272 struct sched_domain sd;
8273 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8274 };
8275
8276 struct s_data {
8277 #ifdef CONFIG_NUMA
8278 int sd_allnodes;
8279 cpumask_var_t domainspan;
8280 cpumask_var_t covered;
8281 cpumask_var_t notcovered;
8282 #endif
8283 cpumask_var_t nodemask;
8284 cpumask_var_t this_sibling_map;
8285 cpumask_var_t this_core_map;
8286 cpumask_var_t send_covered;
8287 cpumask_var_t tmpmask;
8288 struct sched_group **sched_group_nodes;
8289 struct root_domain *rd;
8290 };
8291
8292 enum s_alloc {
8293 sa_sched_groups = 0,
8294 sa_rootdomain,
8295 sa_tmpmask,
8296 sa_send_covered,
8297 sa_this_core_map,
8298 sa_this_sibling_map,
8299 sa_nodemask,
8300 sa_sched_group_nodes,
8301 #ifdef CONFIG_NUMA
8302 sa_notcovered,
8303 sa_covered,
8304 sa_domainspan,
8305 #endif
8306 sa_none,
8307 };
8308
8309 /*
8310 * SMT sched-domains:
8311 */
8312 #ifdef CONFIG_SCHED_SMT
8313 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8314 static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
8315
8316 static int
8317 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8318 struct sched_group **sg, struct cpumask *unused)
8319 {
8320 if (sg)
8321 *sg = &per_cpu(sched_groups, cpu).sg;
8322 return cpu;
8323 }
8324 #endif /* CONFIG_SCHED_SMT */
8325
8326 /*
8327 * multi-core sched-domains:
8328 */
8329 #ifdef CONFIG_SCHED_MC
8330 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8331 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
8332 #endif /* CONFIG_SCHED_MC */
8333
8334 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
8335 static int
8336 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8337 struct sched_group **sg, struct cpumask *mask)
8338 {
8339 int group;
8340
8341 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8342 group = cpumask_first(mask);
8343 if (sg)
8344 *sg = &per_cpu(sched_group_core, group).sg;
8345 return group;
8346 }
8347 #elif defined(CONFIG_SCHED_MC)
8348 static int
8349 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8350 struct sched_group **sg, struct cpumask *unused)
8351 {
8352 if (sg)
8353 *sg = &per_cpu(sched_group_core, cpu).sg;
8354 return cpu;
8355 }
8356 #endif
8357
8358 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8359 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
8360
8361 static int
8362 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8363 struct sched_group **sg, struct cpumask *mask)
8364 {
8365 int group;
8366 #ifdef CONFIG_SCHED_MC
8367 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
8368 group = cpumask_first(mask);
8369 #elif defined(CONFIG_SCHED_SMT)
8370 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8371 group = cpumask_first(mask);
8372 #else
8373 group = cpu;
8374 #endif
8375 if (sg)
8376 *sg = &per_cpu(sched_group_phys, group).sg;
8377 return group;
8378 }
8379
8380 #ifdef CONFIG_NUMA
8381 /*
8382 * The init_sched_build_groups can't handle what we want to do with node
8383 * groups, so roll our own. Now each node has its own list of groups which
8384 * gets dynamically allocated.
8385 */
8386 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
8387 static struct sched_group ***sched_group_nodes_bycpu;
8388
8389 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
8390 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
8391
8392 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8393 struct sched_group **sg,
8394 struct cpumask *nodemask)
8395 {
8396 int group;
8397
8398 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
8399 group = cpumask_first(nodemask);
8400
8401 if (sg)
8402 *sg = &per_cpu(sched_group_allnodes, group).sg;
8403 return group;
8404 }
8405
8406 static void init_numa_sched_groups_power(struct sched_group *group_head)
8407 {
8408 struct sched_group *sg = group_head;
8409 int j;
8410
8411 if (!sg)
8412 return;
8413 do {
8414 for_each_cpu(j, sched_group_cpus(sg)) {
8415 struct sched_domain *sd;
8416
8417 sd = &per_cpu(phys_domains, j).sd;
8418 if (j != group_first_cpu(sd->groups)) {
8419 /*
8420 * Only add "power" once for each
8421 * physical package.
8422 */
8423 continue;
8424 }
8425
8426 sg->cpu_power += sd->groups->cpu_power;
8427 }
8428 sg = sg->next;
8429 } while (sg != group_head);
8430 }
8431
8432 static int build_numa_sched_groups(struct s_data *d,
8433 const struct cpumask *cpu_map, int num)
8434 {
8435 struct sched_domain *sd;
8436 struct sched_group *sg, *prev;
8437 int n, j;
8438
8439 cpumask_clear(d->covered);
8440 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
8441 if (cpumask_empty(d->nodemask)) {
8442 d->sched_group_nodes[num] = NULL;
8443 goto out;
8444 }
8445
8446 sched_domain_node_span(num, d->domainspan);
8447 cpumask_and(d->domainspan, d->domainspan, cpu_map);
8448
8449 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8450 GFP_KERNEL, num);
8451 if (!sg) {
8452 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
8453 num);
8454 return -ENOMEM;
8455 }
8456 d->sched_group_nodes[num] = sg;
8457
8458 for_each_cpu(j, d->nodemask) {
8459 sd = &per_cpu(node_domains, j).sd;
8460 sd->groups = sg;
8461 }
8462
8463 sg->cpu_power = 0;
8464 cpumask_copy(sched_group_cpus(sg), d->nodemask);
8465 sg->next = sg;
8466 cpumask_or(d->covered, d->covered, d->nodemask);
8467
8468 prev = sg;
8469 for (j = 0; j < nr_node_ids; j++) {
8470 n = (num + j) % nr_node_ids;
8471 cpumask_complement(d->notcovered, d->covered);
8472 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
8473 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
8474 if (cpumask_empty(d->tmpmask))
8475 break;
8476 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
8477 if (cpumask_empty(d->tmpmask))
8478 continue;
8479 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8480 GFP_KERNEL, num);
8481 if (!sg) {
8482 printk(KERN_WARNING
8483 "Can not alloc domain group for node %d\n", j);
8484 return -ENOMEM;
8485 }
8486 sg->cpu_power = 0;
8487 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
8488 sg->next = prev->next;
8489 cpumask_or(d->covered, d->covered, d->tmpmask);
8490 prev->next = sg;
8491 prev = sg;
8492 }
8493 out:
8494 return 0;
8495 }
8496 #endif /* CONFIG_NUMA */
8497
8498 #ifdef CONFIG_NUMA
8499 /* Free memory allocated for various sched_group structures */
8500 static void free_sched_groups(const struct cpumask *cpu_map,
8501 struct cpumask *nodemask)
8502 {
8503 int cpu, i;
8504
8505 for_each_cpu(cpu, cpu_map) {
8506 struct sched_group **sched_group_nodes
8507 = sched_group_nodes_bycpu[cpu];
8508
8509 if (!sched_group_nodes)
8510 continue;
8511
8512 for (i = 0; i < nr_node_ids; i++) {
8513 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8514
8515 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8516 if (cpumask_empty(nodemask))
8517 continue;
8518
8519 if (sg == NULL)
8520 continue;
8521 sg = sg->next;
8522 next_sg:
8523 oldsg = sg;
8524 sg = sg->next;
8525 kfree(oldsg);
8526 if (oldsg != sched_group_nodes[i])
8527 goto next_sg;
8528 }
8529 kfree(sched_group_nodes);
8530 sched_group_nodes_bycpu[cpu] = NULL;
8531 }
8532 }
8533 #else /* !CONFIG_NUMA */
8534 static void free_sched_groups(const struct cpumask *cpu_map,
8535 struct cpumask *nodemask)
8536 {
8537 }
8538 #endif /* CONFIG_NUMA */
8539
8540 /*
8541 * Initialize sched groups cpu_power.
8542 *
8543 * cpu_power indicates the capacity of sched group, which is used while
8544 * distributing the load between different sched groups in a sched domain.
8545 * Typically cpu_power for all the groups in a sched domain will be same unless
8546 * there are asymmetries in the topology. If there are asymmetries, group
8547 * having more cpu_power will pickup more load compared to the group having
8548 * less cpu_power.
8549 */
8550 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8551 {
8552 struct sched_domain *child;
8553 struct sched_group *group;
8554 long power;
8555 int weight;
8556
8557 WARN_ON(!sd || !sd->groups);
8558
8559 if (cpu != group_first_cpu(sd->groups))
8560 return;
8561
8562 child = sd->child;
8563
8564 sd->groups->cpu_power = 0;
8565
8566 if (!child) {
8567 power = SCHED_LOAD_SCALE;
8568 weight = cpumask_weight(sched_domain_span(sd));
8569 /*
8570 * SMT siblings share the power of a single core.
8571 * Usually multiple threads get a better yield out of
8572 * that one core than a single thread would have,
8573 * reflect that in sd->smt_gain.
8574 */
8575 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8576 power *= sd->smt_gain;
8577 power /= weight;
8578 power >>= SCHED_LOAD_SHIFT;
8579 }
8580 sd->groups->cpu_power += power;
8581 return;
8582 }
8583
8584 /*
8585 * Add cpu_power of each child group to this groups cpu_power.
8586 */
8587 group = child->groups;
8588 do {
8589 sd->groups->cpu_power += group->cpu_power;
8590 group = group->next;
8591 } while (group != child->groups);
8592 }
8593
8594 /*
8595 * Initializers for schedule domains
8596 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8597 */
8598
8599 #ifdef CONFIG_SCHED_DEBUG
8600 # define SD_INIT_NAME(sd, type) sd->name = #type
8601 #else
8602 # define SD_INIT_NAME(sd, type) do { } while (0)
8603 #endif
8604
8605 #define SD_INIT(sd, type) sd_init_##type(sd)
8606
8607 #define SD_INIT_FUNC(type) \
8608 static noinline void sd_init_##type(struct sched_domain *sd) \
8609 { \
8610 memset(sd, 0, sizeof(*sd)); \
8611 *sd = SD_##type##_INIT; \
8612 sd->level = SD_LV_##type; \
8613 SD_INIT_NAME(sd, type); \
8614 }
8615
8616 SD_INIT_FUNC(CPU)
8617 #ifdef CONFIG_NUMA
8618 SD_INIT_FUNC(ALLNODES)
8619 SD_INIT_FUNC(NODE)
8620 #endif
8621 #ifdef CONFIG_SCHED_SMT
8622 SD_INIT_FUNC(SIBLING)
8623 #endif
8624 #ifdef CONFIG_SCHED_MC
8625 SD_INIT_FUNC(MC)
8626 #endif
8627
8628 static int default_relax_domain_level = -1;
8629
8630 static int __init setup_relax_domain_level(char *str)
8631 {
8632 unsigned long val;
8633
8634 val = simple_strtoul(str, NULL, 0);
8635 if (val < SD_LV_MAX)
8636 default_relax_domain_level = val;
8637
8638 return 1;
8639 }
8640 __setup("relax_domain_level=", setup_relax_domain_level);
8641
8642 static void set_domain_attribute(struct sched_domain *sd,
8643 struct sched_domain_attr *attr)
8644 {
8645 int request;
8646
8647 if (!attr || attr->relax_domain_level < 0) {
8648 if (default_relax_domain_level < 0)
8649 return;
8650 else
8651 request = default_relax_domain_level;
8652 } else
8653 request = attr->relax_domain_level;
8654 if (request < sd->level) {
8655 /* turn off idle balance on this domain */
8656 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8657 } else {
8658 /* turn on idle balance on this domain */
8659 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8660 }
8661 }
8662
8663 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
8664 const struct cpumask *cpu_map)
8665 {
8666 switch (what) {
8667 case sa_sched_groups:
8668 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
8669 d->sched_group_nodes = NULL;
8670 case sa_rootdomain:
8671 free_rootdomain(d->rd); /* fall through */
8672 case sa_tmpmask:
8673 free_cpumask_var(d->tmpmask); /* fall through */
8674 case sa_send_covered:
8675 free_cpumask_var(d->send_covered); /* fall through */
8676 case sa_this_core_map:
8677 free_cpumask_var(d->this_core_map); /* fall through */
8678 case sa_this_sibling_map:
8679 free_cpumask_var(d->this_sibling_map); /* fall through */
8680 case sa_nodemask:
8681 free_cpumask_var(d->nodemask); /* fall through */
8682 case sa_sched_group_nodes:
8683 #ifdef CONFIG_NUMA
8684 kfree(d->sched_group_nodes); /* fall through */
8685 case sa_notcovered:
8686 free_cpumask_var(d->notcovered); /* fall through */
8687 case sa_covered:
8688 free_cpumask_var(d->covered); /* fall through */
8689 case sa_domainspan:
8690 free_cpumask_var(d->domainspan); /* fall through */
8691 #endif
8692 case sa_none:
8693 break;
8694 }
8695 }
8696
8697 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
8698 const struct cpumask *cpu_map)
8699 {
8700 #ifdef CONFIG_NUMA
8701 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
8702 return sa_none;
8703 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
8704 return sa_domainspan;
8705 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
8706 return sa_covered;
8707 /* Allocate the per-node list of sched groups */
8708 d->sched_group_nodes = kcalloc(nr_node_ids,
8709 sizeof(struct sched_group *), GFP_KERNEL);
8710 if (!d->sched_group_nodes) {
8711 printk(KERN_WARNING "Can not alloc sched group node list\n");
8712 return sa_notcovered;
8713 }
8714 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
8715 #endif
8716 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
8717 return sa_sched_group_nodes;
8718 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
8719 return sa_nodemask;
8720 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
8721 return sa_this_sibling_map;
8722 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
8723 return sa_this_core_map;
8724 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
8725 return sa_send_covered;
8726 d->rd = alloc_rootdomain();
8727 if (!d->rd) {
8728 printk(KERN_WARNING "Cannot alloc root domain\n");
8729 return sa_tmpmask;
8730 }
8731 return sa_rootdomain;
8732 }
8733
8734 static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
8735 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
8736 {
8737 struct sched_domain *sd = NULL;
8738 #ifdef CONFIG_NUMA
8739 struct sched_domain *parent;
8740
8741 d->sd_allnodes = 0;
8742 if (cpumask_weight(cpu_map) >
8743 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
8744 sd = &per_cpu(allnodes_domains, i).sd;
8745 SD_INIT(sd, ALLNODES);
8746 set_domain_attribute(sd, attr);
8747 cpumask_copy(sched_domain_span(sd), cpu_map);
8748 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
8749 d->sd_allnodes = 1;
8750 }
8751 parent = sd;
8752
8753 sd = &per_cpu(node_domains, i).sd;
8754 SD_INIT(sd, NODE);
8755 set_domain_attribute(sd, attr);
8756 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8757 sd->parent = parent;
8758 if (parent)
8759 parent->child = sd;
8760 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
8761 #endif
8762 return sd;
8763 }
8764
8765 static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
8766 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8767 struct sched_domain *parent, int i)
8768 {
8769 struct sched_domain *sd;
8770 sd = &per_cpu(phys_domains, i).sd;
8771 SD_INIT(sd, CPU);
8772 set_domain_attribute(sd, attr);
8773 cpumask_copy(sched_domain_span(sd), d->nodemask);
8774 sd->parent = parent;
8775 if (parent)
8776 parent->child = sd;
8777 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
8778 return sd;
8779 }
8780
8781 static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
8782 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8783 struct sched_domain *parent, int i)
8784 {
8785 struct sched_domain *sd = parent;
8786 #ifdef CONFIG_SCHED_MC
8787 sd = &per_cpu(core_domains, i).sd;
8788 SD_INIT(sd, MC);
8789 set_domain_attribute(sd, attr);
8790 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
8791 sd->parent = parent;
8792 parent->child = sd;
8793 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
8794 #endif
8795 return sd;
8796 }
8797
8798 static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
8799 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8800 struct sched_domain *parent, int i)
8801 {
8802 struct sched_domain *sd = parent;
8803 #ifdef CONFIG_SCHED_SMT
8804 sd = &per_cpu(cpu_domains, i).sd;
8805 SD_INIT(sd, SIBLING);
8806 set_domain_attribute(sd, attr);
8807 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
8808 sd->parent = parent;
8809 parent->child = sd;
8810 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
8811 #endif
8812 return sd;
8813 }
8814
8815 static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
8816 const struct cpumask *cpu_map, int cpu)
8817 {
8818 switch (l) {
8819 #ifdef CONFIG_SCHED_SMT
8820 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
8821 cpumask_and(d->this_sibling_map, cpu_map,
8822 topology_thread_cpumask(cpu));
8823 if (cpu == cpumask_first(d->this_sibling_map))
8824 init_sched_build_groups(d->this_sibling_map, cpu_map,
8825 &cpu_to_cpu_group,
8826 d->send_covered, d->tmpmask);
8827 break;
8828 #endif
8829 #ifdef CONFIG_SCHED_MC
8830 case SD_LV_MC: /* set up multi-core groups */
8831 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
8832 if (cpu == cpumask_first(d->this_core_map))
8833 init_sched_build_groups(d->this_core_map, cpu_map,
8834 &cpu_to_core_group,
8835 d->send_covered, d->tmpmask);
8836 break;
8837 #endif
8838 case SD_LV_CPU: /* set up physical groups */
8839 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
8840 if (!cpumask_empty(d->nodemask))
8841 init_sched_build_groups(d->nodemask, cpu_map,
8842 &cpu_to_phys_group,
8843 d->send_covered, d->tmpmask);
8844 break;
8845 #ifdef CONFIG_NUMA
8846 case SD_LV_ALLNODES:
8847 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
8848 d->send_covered, d->tmpmask);
8849 break;
8850 #endif
8851 default:
8852 break;
8853 }
8854 }
8855
8856 /*
8857 * Build sched domains for a given set of cpus and attach the sched domains
8858 * to the individual cpus
8859 */
8860 static int __build_sched_domains(const struct cpumask *cpu_map,
8861 struct sched_domain_attr *attr)
8862 {
8863 enum s_alloc alloc_state = sa_none;
8864 struct s_data d;
8865 struct sched_domain *sd;
8866 int i;
8867 #ifdef CONFIG_NUMA
8868 d.sd_allnodes = 0;
8869 #endif
8870
8871 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
8872 if (alloc_state != sa_rootdomain)
8873 goto error;
8874 alloc_state = sa_sched_groups;
8875
8876 /*
8877 * Set up domains for cpus specified by the cpu_map.
8878 */
8879 for_each_cpu(i, cpu_map) {
8880 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
8881 cpu_map);
8882
8883 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
8884 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
8885 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
8886 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
8887 }
8888
8889 for_each_cpu(i, cpu_map) {
8890 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
8891 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
8892 }
8893
8894 /* Set up physical groups */
8895 for (i = 0; i < nr_node_ids; i++)
8896 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
8897
8898 #ifdef CONFIG_NUMA
8899 /* Set up node groups */
8900 if (d.sd_allnodes)
8901 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
8902
8903 for (i = 0; i < nr_node_ids; i++)
8904 if (build_numa_sched_groups(&d, cpu_map, i))
8905 goto error;
8906 #endif
8907
8908 /* Calculate CPU power for physical packages and nodes */
8909 #ifdef CONFIG_SCHED_SMT
8910 for_each_cpu(i, cpu_map) {
8911 sd = &per_cpu(cpu_domains, i).sd;
8912 init_sched_groups_power(i, sd);
8913 }
8914 #endif
8915 #ifdef CONFIG_SCHED_MC
8916 for_each_cpu(i, cpu_map) {
8917 sd = &per_cpu(core_domains, i).sd;
8918 init_sched_groups_power(i, sd);
8919 }
8920 #endif
8921
8922 for_each_cpu(i, cpu_map) {
8923 sd = &per_cpu(phys_domains, i).sd;
8924 init_sched_groups_power(i, sd);
8925 }
8926
8927 #ifdef CONFIG_NUMA
8928 for (i = 0; i < nr_node_ids; i++)
8929 init_numa_sched_groups_power(d.sched_group_nodes[i]);
8930
8931 if (d.sd_allnodes) {
8932 struct sched_group *sg;
8933
8934 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8935 d.tmpmask);
8936 init_numa_sched_groups_power(sg);
8937 }
8938 #endif
8939
8940 /* Attach the domains */
8941 for_each_cpu(i, cpu_map) {
8942 #ifdef CONFIG_SCHED_SMT
8943 sd = &per_cpu(cpu_domains, i).sd;
8944 #elif defined(CONFIG_SCHED_MC)
8945 sd = &per_cpu(core_domains, i).sd;
8946 #else
8947 sd = &per_cpu(phys_domains, i).sd;
8948 #endif
8949 cpu_attach_domain(sd, d.rd, i);
8950 }
8951
8952 d.sched_group_nodes = NULL; /* don't free this we still need it */
8953 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
8954 return 0;
8955
8956 error:
8957 __free_domain_allocs(&d, alloc_state, cpu_map);
8958 return -ENOMEM;
8959 }
8960
8961 static int build_sched_domains(const struct cpumask *cpu_map)
8962 {
8963 return __build_sched_domains(cpu_map, NULL);
8964 }
8965
8966 static cpumask_var_t *doms_cur; /* current sched domains */
8967 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
8968 static struct sched_domain_attr *dattr_cur;
8969 /* attribues of custom domains in 'doms_cur' */
8970
8971 /*
8972 * Special case: If a kmalloc of a doms_cur partition (array of
8973 * cpumask) fails, then fallback to a single sched domain,
8974 * as determined by the single cpumask fallback_doms.
8975 */
8976 static cpumask_var_t fallback_doms;
8977
8978 /*
8979 * arch_update_cpu_topology lets virtualized architectures update the
8980 * cpu core maps. It is supposed to return 1 if the topology changed
8981 * or 0 if it stayed the same.
8982 */
8983 int __attribute__((weak)) arch_update_cpu_topology(void)
8984 {
8985 return 0;
8986 }
8987
8988 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
8989 {
8990 int i;
8991 cpumask_var_t *doms;
8992
8993 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
8994 if (!doms)
8995 return NULL;
8996 for (i = 0; i < ndoms; i++) {
8997 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
8998 free_sched_domains(doms, i);
8999 return NULL;
9000 }
9001 }
9002 return doms;
9003 }
9004
9005 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
9006 {
9007 unsigned int i;
9008 for (i = 0; i < ndoms; i++)
9009 free_cpumask_var(doms[i]);
9010 kfree(doms);
9011 }
9012
9013 /*
9014 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
9015 * For now this just excludes isolated cpus, but could be used to
9016 * exclude other special cases in the future.
9017 */
9018 static int arch_init_sched_domains(const struct cpumask *cpu_map)
9019 {
9020 int err;
9021
9022 arch_update_cpu_topology();
9023 ndoms_cur = 1;
9024 doms_cur = alloc_sched_domains(ndoms_cur);
9025 if (!doms_cur)
9026 doms_cur = &fallback_doms;
9027 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
9028 dattr_cur = NULL;
9029 err = build_sched_domains(doms_cur[0]);
9030 register_sched_domain_sysctl();
9031
9032 return err;
9033 }
9034
9035 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
9036 struct cpumask *tmpmask)
9037 {
9038 free_sched_groups(cpu_map, tmpmask);
9039 }
9040
9041 /*
9042 * Detach sched domains from a group of cpus specified in cpu_map
9043 * These cpus will now be attached to the NULL domain
9044 */
9045 static void detach_destroy_domains(const struct cpumask *cpu_map)
9046 {
9047 /* Save because hotplug lock held. */
9048 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
9049 int i;
9050
9051 for_each_cpu(i, cpu_map)
9052 cpu_attach_domain(NULL, &def_root_domain, i);
9053 synchronize_sched();
9054 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
9055 }
9056
9057 /* handle null as "default" */
9058 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
9059 struct sched_domain_attr *new, int idx_new)
9060 {
9061 struct sched_domain_attr tmp;
9062
9063 /* fast path */
9064 if (!new && !cur)
9065 return 1;
9066
9067 tmp = SD_ATTR_INIT;
9068 return !memcmp(cur ? (cur + idx_cur) : &tmp,
9069 new ? (new + idx_new) : &tmp,
9070 sizeof(struct sched_domain_attr));
9071 }
9072
9073 /*
9074 * Partition sched domains as specified by the 'ndoms_new'
9075 * cpumasks in the array doms_new[] of cpumasks. This compares
9076 * doms_new[] to the current sched domain partitioning, doms_cur[].
9077 * It destroys each deleted domain and builds each new domain.
9078 *
9079 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
9080 * The masks don't intersect (don't overlap.) We should setup one
9081 * sched domain for each mask. CPUs not in any of the cpumasks will
9082 * not be load balanced. If the same cpumask appears both in the
9083 * current 'doms_cur' domains and in the new 'doms_new', we can leave
9084 * it as it is.
9085 *
9086 * The passed in 'doms_new' should be allocated using
9087 * alloc_sched_domains. This routine takes ownership of it and will
9088 * free_sched_domains it when done with it. If the caller failed the
9089 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
9090 * and partition_sched_domains() will fallback to the single partition
9091 * 'fallback_doms', it also forces the domains to be rebuilt.
9092 *
9093 * If doms_new == NULL it will be replaced with cpu_online_mask.
9094 * ndoms_new == 0 is a special case for destroying existing domains,
9095 * and it will not create the default domain.
9096 *
9097 * Call with hotplug lock held
9098 */
9099 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
9100 struct sched_domain_attr *dattr_new)
9101 {
9102 int i, j, n;
9103 int new_topology;
9104
9105 mutex_lock(&sched_domains_mutex);
9106
9107 /* always unregister in case we don't destroy any domains */
9108 unregister_sched_domain_sysctl();
9109
9110 /* Let architecture update cpu core mappings. */
9111 new_topology = arch_update_cpu_topology();
9112
9113 n = doms_new ? ndoms_new : 0;
9114
9115 /* Destroy deleted domains */
9116 for (i = 0; i < ndoms_cur; i++) {
9117 for (j = 0; j < n && !new_topology; j++) {
9118 if (cpumask_equal(doms_cur[i], doms_new[j])
9119 && dattrs_equal(dattr_cur, i, dattr_new, j))
9120 goto match1;
9121 }
9122 /* no match - a current sched domain not in new doms_new[] */
9123 detach_destroy_domains(doms_cur[i]);
9124 match1:
9125 ;
9126 }
9127
9128 if (doms_new == NULL) {
9129 ndoms_cur = 0;
9130 doms_new = &fallback_doms;
9131 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
9132 WARN_ON_ONCE(dattr_new);
9133 }
9134
9135 /* Build new domains */
9136 for (i = 0; i < ndoms_new; i++) {
9137 for (j = 0; j < ndoms_cur && !new_topology; j++) {
9138 if (cpumask_equal(doms_new[i], doms_cur[j])
9139 && dattrs_equal(dattr_new, i, dattr_cur, j))
9140 goto match2;
9141 }
9142 /* no match - add a new doms_new */
9143 __build_sched_domains(doms_new[i],
9144 dattr_new ? dattr_new + i : NULL);
9145 match2:
9146 ;
9147 }
9148
9149 /* Remember the new sched domains */
9150 if (doms_cur != &fallback_doms)
9151 free_sched_domains(doms_cur, ndoms_cur);
9152 kfree(dattr_cur); /* kfree(NULL) is safe */
9153 doms_cur = doms_new;
9154 dattr_cur = dattr_new;
9155 ndoms_cur = ndoms_new;
9156
9157 register_sched_domain_sysctl();
9158
9159 mutex_unlock(&sched_domains_mutex);
9160 }
9161
9162 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9163 static void arch_reinit_sched_domains(void)
9164 {
9165 get_online_cpus();
9166
9167 /* Destroy domains first to force the rebuild */
9168 partition_sched_domains(0, NULL, NULL);
9169
9170 rebuild_sched_domains();
9171 put_online_cpus();
9172 }
9173
9174 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
9175 {
9176 unsigned int level = 0;
9177
9178 if (sscanf(buf, "%u", &level) != 1)
9179 return -EINVAL;
9180
9181 /*
9182 * level is always be positive so don't check for
9183 * level < POWERSAVINGS_BALANCE_NONE which is 0
9184 * What happens on 0 or 1 byte write,
9185 * need to check for count as well?
9186 */
9187
9188 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
9189 return -EINVAL;
9190
9191 if (smt)
9192 sched_smt_power_savings = level;
9193 else
9194 sched_mc_power_savings = level;
9195
9196 arch_reinit_sched_domains();
9197
9198 return count;
9199 }
9200
9201 #ifdef CONFIG_SCHED_MC
9202 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
9203 char *page)
9204 {
9205 return sprintf(page, "%u\n", sched_mc_power_savings);
9206 }
9207 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
9208 const char *buf, size_t count)
9209 {
9210 return sched_power_savings_store(buf, count, 0);
9211 }
9212 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
9213 sched_mc_power_savings_show,
9214 sched_mc_power_savings_store);
9215 #endif
9216
9217 #ifdef CONFIG_SCHED_SMT
9218 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
9219 char *page)
9220 {
9221 return sprintf(page, "%u\n", sched_smt_power_savings);
9222 }
9223 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
9224 const char *buf, size_t count)
9225 {
9226 return sched_power_savings_store(buf, count, 1);
9227 }
9228 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
9229 sched_smt_power_savings_show,
9230 sched_smt_power_savings_store);
9231 #endif
9232
9233 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
9234 {
9235 int err = 0;
9236
9237 #ifdef CONFIG_SCHED_SMT
9238 if (smt_capable())
9239 err = sysfs_create_file(&cls->kset.kobj,
9240 &attr_sched_smt_power_savings.attr);
9241 #endif
9242 #ifdef CONFIG_SCHED_MC
9243 if (!err && mc_capable())
9244 err = sysfs_create_file(&cls->kset.kobj,
9245 &attr_sched_mc_power_savings.attr);
9246 #endif
9247 return err;
9248 }
9249 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
9250
9251 #ifndef CONFIG_CPUSETS
9252 /*
9253 * Add online and remove offline CPUs from the scheduler domains.
9254 * When cpusets are enabled they take over this function.
9255 */
9256 static int update_sched_domains(struct notifier_block *nfb,
9257 unsigned long action, void *hcpu)
9258 {
9259 switch (action) {
9260 case CPU_ONLINE:
9261 case CPU_ONLINE_FROZEN:
9262 case CPU_DOWN_PREPARE:
9263 case CPU_DOWN_PREPARE_FROZEN:
9264 case CPU_DOWN_FAILED:
9265 case CPU_DOWN_FAILED_FROZEN:
9266 partition_sched_domains(1, NULL, NULL);
9267 return NOTIFY_OK;
9268
9269 default:
9270 return NOTIFY_DONE;
9271 }
9272 }
9273 #endif
9274
9275 static int update_runtime(struct notifier_block *nfb,
9276 unsigned long action, void *hcpu)
9277 {
9278 int cpu = (int)(long)hcpu;
9279
9280 switch (action) {
9281 case CPU_DOWN_PREPARE:
9282 case CPU_DOWN_PREPARE_FROZEN:
9283 disable_runtime(cpu_rq(cpu));
9284 return NOTIFY_OK;
9285
9286 case CPU_DOWN_FAILED:
9287 case CPU_DOWN_FAILED_FROZEN:
9288 case CPU_ONLINE:
9289 case CPU_ONLINE_FROZEN:
9290 enable_runtime(cpu_rq(cpu));
9291 return NOTIFY_OK;
9292
9293 default:
9294 return NOTIFY_DONE;
9295 }
9296 }
9297
9298 void __init sched_init_smp(void)
9299 {
9300 cpumask_var_t non_isolated_cpus;
9301
9302 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
9303 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
9304
9305 #if defined(CONFIG_NUMA)
9306 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
9307 GFP_KERNEL);
9308 BUG_ON(sched_group_nodes_bycpu == NULL);
9309 #endif
9310 get_online_cpus();
9311 mutex_lock(&sched_domains_mutex);
9312 arch_init_sched_domains(cpu_active_mask);
9313 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9314 if (cpumask_empty(non_isolated_cpus))
9315 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
9316 mutex_unlock(&sched_domains_mutex);
9317 put_online_cpus();
9318
9319 #ifndef CONFIG_CPUSETS
9320 /* XXX: Theoretical race here - CPU may be hotplugged now */
9321 hotcpu_notifier(update_sched_domains, 0);
9322 #endif
9323
9324 /* RT runtime code needs to handle some hotplug events */
9325 hotcpu_notifier(update_runtime, 0);
9326
9327 init_hrtick();
9328
9329 /* Move init over to a non-isolated CPU */
9330 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
9331 BUG();
9332 sched_init_granularity();
9333 free_cpumask_var(non_isolated_cpus);
9334
9335 init_sched_rt_class();
9336 }
9337 #else
9338 void __init sched_init_smp(void)
9339 {
9340 sched_init_granularity();
9341 }
9342 #endif /* CONFIG_SMP */
9343
9344 const_debug unsigned int sysctl_timer_migration = 1;
9345
9346 int in_sched_functions(unsigned long addr)
9347 {
9348 return in_lock_functions(addr) ||
9349 (addr >= (unsigned long)__sched_text_start
9350 && addr < (unsigned long)__sched_text_end);
9351 }
9352
9353 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
9354 {
9355 cfs_rq->tasks_timeline = RB_ROOT;
9356 INIT_LIST_HEAD(&cfs_rq->tasks);
9357 #ifdef CONFIG_FAIR_GROUP_SCHED
9358 cfs_rq->rq = rq;
9359 #endif
9360 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9361 }
9362
9363 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9364 {
9365 struct rt_prio_array *array;
9366 int i;
9367
9368 array = &rt_rq->active;
9369 for (i = 0; i < MAX_RT_PRIO; i++) {
9370 INIT_LIST_HEAD(array->queue + i);
9371 __clear_bit(i, array->bitmap);
9372 }
9373 /* delimiter for bitsearch: */
9374 __set_bit(MAX_RT_PRIO, array->bitmap);
9375
9376 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
9377 rt_rq->highest_prio.curr = MAX_RT_PRIO;
9378 #ifdef CONFIG_SMP
9379 rt_rq->highest_prio.next = MAX_RT_PRIO;
9380 #endif
9381 #endif
9382 #ifdef CONFIG_SMP
9383 rt_rq->rt_nr_migratory = 0;
9384 rt_rq->overloaded = 0;
9385 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
9386 #endif
9387
9388 rt_rq->rt_time = 0;
9389 rt_rq->rt_throttled = 0;
9390 rt_rq->rt_runtime = 0;
9391 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
9392
9393 #ifdef CONFIG_RT_GROUP_SCHED
9394 rt_rq->rt_nr_boosted = 0;
9395 rt_rq->rq = rq;
9396 #endif
9397 }
9398
9399 #ifdef CONFIG_FAIR_GROUP_SCHED
9400 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9401 struct sched_entity *se, int cpu, int add,
9402 struct sched_entity *parent)
9403 {
9404 struct rq *rq = cpu_rq(cpu);
9405 tg->cfs_rq[cpu] = cfs_rq;
9406 init_cfs_rq(cfs_rq, rq);
9407 cfs_rq->tg = tg;
9408 if (add)
9409 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9410
9411 tg->se[cpu] = se;
9412 /* se could be NULL for init_task_group */
9413 if (!se)
9414 return;
9415
9416 if (!parent)
9417 se->cfs_rq = &rq->cfs;
9418 else
9419 se->cfs_rq = parent->my_q;
9420
9421 se->my_q = cfs_rq;
9422 se->load.weight = tg->shares;
9423 se->load.inv_weight = 0;
9424 se->parent = parent;
9425 }
9426 #endif
9427
9428 #ifdef CONFIG_RT_GROUP_SCHED
9429 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9430 struct sched_rt_entity *rt_se, int cpu, int add,
9431 struct sched_rt_entity *parent)
9432 {
9433 struct rq *rq = cpu_rq(cpu);
9434
9435 tg->rt_rq[cpu] = rt_rq;
9436 init_rt_rq(rt_rq, rq);
9437 rt_rq->tg = tg;
9438 rt_rq->rt_se = rt_se;
9439 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
9440 if (add)
9441 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9442
9443 tg->rt_se[cpu] = rt_se;
9444 if (!rt_se)
9445 return;
9446
9447 if (!parent)
9448 rt_se->rt_rq = &rq->rt;
9449 else
9450 rt_se->rt_rq = parent->my_q;
9451
9452 rt_se->my_q = rt_rq;
9453 rt_se->parent = parent;
9454 INIT_LIST_HEAD(&rt_se->run_list);
9455 }
9456 #endif
9457
9458 void __init sched_init(void)
9459 {
9460 int i, j;
9461 unsigned long alloc_size = 0, ptr;
9462
9463 #ifdef CONFIG_FAIR_GROUP_SCHED
9464 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9465 #endif
9466 #ifdef CONFIG_RT_GROUP_SCHED
9467 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9468 #endif
9469 #ifdef CONFIG_USER_SCHED
9470 alloc_size *= 2;
9471 #endif
9472 #ifdef CONFIG_CPUMASK_OFFSTACK
9473 alloc_size += num_possible_cpus() * cpumask_size();
9474 #endif
9475 if (alloc_size) {
9476 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
9477
9478 #ifdef CONFIG_FAIR_GROUP_SCHED
9479 init_task_group.se = (struct sched_entity **)ptr;
9480 ptr += nr_cpu_ids * sizeof(void **);
9481
9482 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9483 ptr += nr_cpu_ids * sizeof(void **);
9484
9485 #ifdef CONFIG_USER_SCHED
9486 root_task_group.se = (struct sched_entity **)ptr;
9487 ptr += nr_cpu_ids * sizeof(void **);
9488
9489 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9490 ptr += nr_cpu_ids * sizeof(void **);
9491 #endif /* CONFIG_USER_SCHED */
9492 #endif /* CONFIG_FAIR_GROUP_SCHED */
9493 #ifdef CONFIG_RT_GROUP_SCHED
9494 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9495 ptr += nr_cpu_ids * sizeof(void **);
9496
9497 init_task_group.rt_rq = (struct rt_rq **)ptr;
9498 ptr += nr_cpu_ids * sizeof(void **);
9499
9500 #ifdef CONFIG_USER_SCHED
9501 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9502 ptr += nr_cpu_ids * sizeof(void **);
9503
9504 root_task_group.rt_rq = (struct rt_rq **)ptr;
9505 ptr += nr_cpu_ids * sizeof(void **);
9506 #endif /* CONFIG_USER_SCHED */
9507 #endif /* CONFIG_RT_GROUP_SCHED */
9508 #ifdef CONFIG_CPUMASK_OFFSTACK
9509 for_each_possible_cpu(i) {
9510 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9511 ptr += cpumask_size();
9512 }
9513 #endif /* CONFIG_CPUMASK_OFFSTACK */
9514 }
9515
9516 #ifdef CONFIG_SMP
9517 init_defrootdomain();
9518 #endif
9519
9520 init_rt_bandwidth(&def_rt_bandwidth,
9521 global_rt_period(), global_rt_runtime());
9522
9523 #ifdef CONFIG_RT_GROUP_SCHED
9524 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9525 global_rt_period(), global_rt_runtime());
9526 #ifdef CONFIG_USER_SCHED
9527 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9528 global_rt_period(), RUNTIME_INF);
9529 #endif /* CONFIG_USER_SCHED */
9530 #endif /* CONFIG_RT_GROUP_SCHED */
9531
9532 #ifdef CONFIG_GROUP_SCHED
9533 list_add(&init_task_group.list, &task_groups);
9534 INIT_LIST_HEAD(&init_task_group.children);
9535
9536 #ifdef CONFIG_USER_SCHED
9537 INIT_LIST_HEAD(&root_task_group.children);
9538 init_task_group.parent = &root_task_group;
9539 list_add(&init_task_group.siblings, &root_task_group.children);
9540 #endif /* CONFIG_USER_SCHED */
9541 #endif /* CONFIG_GROUP_SCHED */
9542
9543 #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
9544 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
9545 __alignof__(unsigned long));
9546 #endif
9547 for_each_possible_cpu(i) {
9548 struct rq *rq;
9549
9550 rq = cpu_rq(i);
9551 raw_spin_lock_init(&rq->lock);
9552 rq->nr_running = 0;
9553 rq->calc_load_active = 0;
9554 rq->calc_load_update = jiffies + LOAD_FREQ;
9555 init_cfs_rq(&rq->cfs, rq);
9556 init_rt_rq(&rq->rt, rq);
9557 #ifdef CONFIG_FAIR_GROUP_SCHED
9558 init_task_group.shares = init_task_group_load;
9559 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9560 #ifdef CONFIG_CGROUP_SCHED
9561 /*
9562 * How much cpu bandwidth does init_task_group get?
9563 *
9564 * In case of task-groups formed thr' the cgroup filesystem, it
9565 * gets 100% of the cpu resources in the system. This overall
9566 * system cpu resource is divided among the tasks of
9567 * init_task_group and its child task-groups in a fair manner,
9568 * based on each entity's (task or task-group's) weight
9569 * (se->load.weight).
9570 *
9571 * In other words, if init_task_group has 10 tasks of weight
9572 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9573 * then A0's share of the cpu resource is:
9574 *
9575 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9576 *
9577 * We achieve this by letting init_task_group's tasks sit
9578 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9579 */
9580 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
9581 #elif defined CONFIG_USER_SCHED
9582 root_task_group.shares = NICE_0_LOAD;
9583 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
9584 /*
9585 * In case of task-groups formed thr' the user id of tasks,
9586 * init_task_group represents tasks belonging to root user.
9587 * Hence it forms a sibling of all subsequent groups formed.
9588 * In this case, init_task_group gets only a fraction of overall
9589 * system cpu resource, based on the weight assigned to root
9590 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9591 * by letting tasks of init_task_group sit in a separate cfs_rq
9592 * (init_tg_cfs_rq) and having one entity represent this group of
9593 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9594 */
9595 init_tg_cfs_entry(&init_task_group,
9596 &per_cpu(init_tg_cfs_rq, i),
9597 &per_cpu(init_sched_entity, i), i, 1,
9598 root_task_group.se[i]);
9599
9600 #endif
9601 #endif /* CONFIG_FAIR_GROUP_SCHED */
9602
9603 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9604 #ifdef CONFIG_RT_GROUP_SCHED
9605 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
9606 #ifdef CONFIG_CGROUP_SCHED
9607 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
9608 #elif defined CONFIG_USER_SCHED
9609 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
9610 init_tg_rt_entry(&init_task_group,
9611 &per_cpu(init_rt_rq_var, i),
9612 &per_cpu(init_sched_rt_entity, i), i, 1,
9613 root_task_group.rt_se[i]);
9614 #endif
9615 #endif
9616
9617 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9618 rq->cpu_load[j] = 0;
9619 #ifdef CONFIG_SMP
9620 rq->sd = NULL;
9621 rq->rd = NULL;
9622 rq->post_schedule = 0;
9623 rq->active_balance = 0;
9624 rq->next_balance = jiffies;
9625 rq->push_cpu = 0;
9626 rq->cpu = i;
9627 rq->online = 0;
9628 rq->migration_thread = NULL;
9629 rq->idle_stamp = 0;
9630 rq->avg_idle = 2*sysctl_sched_migration_cost;
9631 INIT_LIST_HEAD(&rq->migration_queue);
9632 rq_attach_root(rq, &def_root_domain);
9633 #endif
9634 init_rq_hrtick(rq);
9635 atomic_set(&rq->nr_iowait, 0);
9636 }
9637
9638 set_load_weight(&init_task);
9639
9640 #ifdef CONFIG_PREEMPT_NOTIFIERS
9641 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9642 #endif
9643
9644 #ifdef CONFIG_SMP
9645 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9646 #endif
9647
9648 #ifdef CONFIG_RT_MUTEXES
9649 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
9650 #endif
9651
9652 /*
9653 * The boot idle thread does lazy MMU switching as well:
9654 */
9655 atomic_inc(&init_mm.mm_count);
9656 enter_lazy_tlb(&init_mm, current);
9657
9658 /*
9659 * Make us the idle thread. Technically, schedule() should not be
9660 * called from this thread, however somewhere below it might be,
9661 * but because we are the idle thread, we just pick up running again
9662 * when this runqueue becomes "idle".
9663 */
9664 init_idle(current, smp_processor_id());
9665
9666 calc_load_update = jiffies + LOAD_FREQ;
9667
9668 /*
9669 * During early bootup we pretend to be a normal task:
9670 */
9671 current->sched_class = &fair_sched_class;
9672
9673 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9674 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
9675 #ifdef CONFIG_SMP
9676 #ifdef CONFIG_NO_HZ
9677 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
9678 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
9679 #endif
9680 /* May be allocated at isolcpus cmdline parse time */
9681 if (cpu_isolated_map == NULL)
9682 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
9683 #endif /* SMP */
9684
9685 perf_event_init();
9686
9687 scheduler_running = 1;
9688 }
9689
9690 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9691 static inline int preempt_count_equals(int preempt_offset)
9692 {
9693 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
9694
9695 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
9696 }
9697
9698 void __might_sleep(char *file, int line, int preempt_offset)
9699 {
9700 #ifdef in_atomic
9701 static unsigned long prev_jiffy; /* ratelimiting */
9702
9703 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
9704 system_state != SYSTEM_RUNNING || oops_in_progress)
9705 return;
9706 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9707 return;
9708 prev_jiffy = jiffies;
9709
9710 printk(KERN_ERR
9711 "BUG: sleeping function called from invalid context at %s:%d\n",
9712 file, line);
9713 printk(KERN_ERR
9714 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9715 in_atomic(), irqs_disabled(),
9716 current->pid, current->comm);
9717
9718 debug_show_held_locks(current);
9719 if (irqs_disabled())
9720 print_irqtrace_events(current);
9721 dump_stack();
9722 #endif
9723 }
9724 EXPORT_SYMBOL(__might_sleep);
9725 #endif
9726
9727 #ifdef CONFIG_MAGIC_SYSRQ
9728 static void normalize_task(struct rq *rq, struct task_struct *p)
9729 {
9730 int on_rq;
9731
9732 update_rq_clock(rq);
9733 on_rq = p->se.on_rq;
9734 if (on_rq)
9735 deactivate_task(rq, p, 0);
9736 __setscheduler(rq, p, SCHED_NORMAL, 0);
9737 if (on_rq) {
9738 activate_task(rq, p, 0);
9739 resched_task(rq->curr);
9740 }
9741 }
9742
9743 void normalize_rt_tasks(void)
9744 {
9745 struct task_struct *g, *p;
9746 unsigned long flags;
9747 struct rq *rq;
9748
9749 read_lock_irqsave(&tasklist_lock, flags);
9750 do_each_thread(g, p) {
9751 /*
9752 * Only normalize user tasks:
9753 */
9754 if (!p->mm)
9755 continue;
9756
9757 p->se.exec_start = 0;
9758 #ifdef CONFIG_SCHEDSTATS
9759 p->se.wait_start = 0;
9760 p->se.sleep_start = 0;
9761 p->se.block_start = 0;
9762 #endif
9763
9764 if (!rt_task(p)) {
9765 /*
9766 * Renice negative nice level userspace
9767 * tasks back to 0:
9768 */
9769 if (TASK_NICE(p) < 0 && p->mm)
9770 set_user_nice(p, 0);
9771 continue;
9772 }
9773
9774 raw_spin_lock(&p->pi_lock);
9775 rq = __task_rq_lock(p);
9776
9777 normalize_task(rq, p);
9778
9779 __task_rq_unlock(rq);
9780 raw_spin_unlock(&p->pi_lock);
9781 } while_each_thread(g, p);
9782
9783 read_unlock_irqrestore(&tasklist_lock, flags);
9784 }
9785
9786 #endif /* CONFIG_MAGIC_SYSRQ */
9787
9788 #ifdef CONFIG_IA64
9789 /*
9790 * These functions are only useful for the IA64 MCA handling.
9791 *
9792 * They can only be called when the whole system has been
9793 * stopped - every CPU needs to be quiescent, and no scheduling
9794 * activity can take place. Using them for anything else would
9795 * be a serious bug, and as a result, they aren't even visible
9796 * under any other configuration.
9797 */
9798
9799 /**
9800 * curr_task - return the current task for a given cpu.
9801 * @cpu: the processor in question.
9802 *
9803 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9804 */
9805 struct task_struct *curr_task(int cpu)
9806 {
9807 return cpu_curr(cpu);
9808 }
9809
9810 /**
9811 * set_curr_task - set the current task for a given cpu.
9812 * @cpu: the processor in question.
9813 * @p: the task pointer to set.
9814 *
9815 * Description: This function must only be used when non-maskable interrupts
9816 * are serviced on a separate stack. It allows the architecture to switch the
9817 * notion of the current task on a cpu in a non-blocking manner. This function
9818 * must be called with all CPU's synchronized, and interrupts disabled, the
9819 * and caller must save the original value of the current task (see
9820 * curr_task() above) and restore that value before reenabling interrupts and
9821 * re-starting the system.
9822 *
9823 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9824 */
9825 void set_curr_task(int cpu, struct task_struct *p)
9826 {
9827 cpu_curr(cpu) = p;
9828 }
9829
9830 #endif
9831
9832 #ifdef CONFIG_FAIR_GROUP_SCHED
9833 static void free_fair_sched_group(struct task_group *tg)
9834 {
9835 int i;
9836
9837 for_each_possible_cpu(i) {
9838 if (tg->cfs_rq)
9839 kfree(tg->cfs_rq[i]);
9840 if (tg->se)
9841 kfree(tg->se[i]);
9842 }
9843
9844 kfree(tg->cfs_rq);
9845 kfree(tg->se);
9846 }
9847
9848 static
9849 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9850 {
9851 struct cfs_rq *cfs_rq;
9852 struct sched_entity *se;
9853 struct rq *rq;
9854 int i;
9855
9856 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9857 if (!tg->cfs_rq)
9858 goto err;
9859 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9860 if (!tg->se)
9861 goto err;
9862
9863 tg->shares = NICE_0_LOAD;
9864
9865 for_each_possible_cpu(i) {
9866 rq = cpu_rq(i);
9867
9868 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9869 GFP_KERNEL, cpu_to_node(i));
9870 if (!cfs_rq)
9871 goto err;
9872
9873 se = kzalloc_node(sizeof(struct sched_entity),
9874 GFP_KERNEL, cpu_to_node(i));
9875 if (!se)
9876 goto err_free_rq;
9877
9878 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9879 }
9880
9881 return 1;
9882
9883 err_free_rq:
9884 kfree(cfs_rq);
9885 err:
9886 return 0;
9887 }
9888
9889 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9890 {
9891 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9892 &cpu_rq(cpu)->leaf_cfs_rq_list);
9893 }
9894
9895 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9896 {
9897 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9898 }
9899 #else /* !CONFG_FAIR_GROUP_SCHED */
9900 static inline void free_fair_sched_group(struct task_group *tg)
9901 {
9902 }
9903
9904 static inline
9905 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9906 {
9907 return 1;
9908 }
9909
9910 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9911 {
9912 }
9913
9914 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9915 {
9916 }
9917 #endif /* CONFIG_FAIR_GROUP_SCHED */
9918
9919 #ifdef CONFIG_RT_GROUP_SCHED
9920 static void free_rt_sched_group(struct task_group *tg)
9921 {
9922 int i;
9923
9924 destroy_rt_bandwidth(&tg->rt_bandwidth);
9925
9926 for_each_possible_cpu(i) {
9927 if (tg->rt_rq)
9928 kfree(tg->rt_rq[i]);
9929 if (tg->rt_se)
9930 kfree(tg->rt_se[i]);
9931 }
9932
9933 kfree(tg->rt_rq);
9934 kfree(tg->rt_se);
9935 }
9936
9937 static
9938 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9939 {
9940 struct rt_rq *rt_rq;
9941 struct sched_rt_entity *rt_se;
9942 struct rq *rq;
9943 int i;
9944
9945 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9946 if (!tg->rt_rq)
9947 goto err;
9948 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9949 if (!tg->rt_se)
9950 goto err;
9951
9952 init_rt_bandwidth(&tg->rt_bandwidth,
9953 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9954
9955 for_each_possible_cpu(i) {
9956 rq = cpu_rq(i);
9957
9958 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9959 GFP_KERNEL, cpu_to_node(i));
9960 if (!rt_rq)
9961 goto err;
9962
9963 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9964 GFP_KERNEL, cpu_to_node(i));
9965 if (!rt_se)
9966 goto err_free_rq;
9967
9968 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
9969 }
9970
9971 return 1;
9972
9973 err_free_rq:
9974 kfree(rt_rq);
9975 err:
9976 return 0;
9977 }
9978
9979 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9980 {
9981 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9982 &cpu_rq(cpu)->leaf_rt_rq_list);
9983 }
9984
9985 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9986 {
9987 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9988 }
9989 #else /* !CONFIG_RT_GROUP_SCHED */
9990 static inline void free_rt_sched_group(struct task_group *tg)
9991 {
9992 }
9993
9994 static inline
9995 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9996 {
9997 return 1;
9998 }
9999
10000 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
10001 {
10002 }
10003
10004 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
10005 {
10006 }
10007 #endif /* CONFIG_RT_GROUP_SCHED */
10008
10009 #ifdef CONFIG_GROUP_SCHED
10010 static void free_sched_group(struct task_group *tg)
10011 {
10012 free_fair_sched_group(tg);
10013 free_rt_sched_group(tg);
10014 kfree(tg);
10015 }
10016
10017 /* allocate runqueue etc for a new task group */
10018 struct task_group *sched_create_group(struct task_group *parent)
10019 {
10020 struct task_group *tg;
10021 unsigned long flags;
10022 int i;
10023
10024 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
10025 if (!tg)
10026 return ERR_PTR(-ENOMEM);
10027
10028 if (!alloc_fair_sched_group(tg, parent))
10029 goto err;
10030
10031 if (!alloc_rt_sched_group(tg, parent))
10032 goto err;
10033
10034 spin_lock_irqsave(&task_group_lock, flags);
10035 for_each_possible_cpu(i) {
10036 register_fair_sched_group(tg, i);
10037 register_rt_sched_group(tg, i);
10038 }
10039 list_add_rcu(&tg->list, &task_groups);
10040
10041 WARN_ON(!parent); /* root should already exist */
10042
10043 tg->parent = parent;
10044 INIT_LIST_HEAD(&tg->children);
10045 list_add_rcu(&tg->siblings, &parent->children);
10046 spin_unlock_irqrestore(&task_group_lock, flags);
10047
10048 return tg;
10049
10050 err:
10051 free_sched_group(tg);
10052 return ERR_PTR(-ENOMEM);
10053 }
10054
10055 /* rcu callback to free various structures associated with a task group */
10056 static void free_sched_group_rcu(struct rcu_head *rhp)
10057 {
10058 /* now it should be safe to free those cfs_rqs */
10059 free_sched_group(container_of(rhp, struct task_group, rcu));
10060 }
10061
10062 /* Destroy runqueue etc associated with a task group */
10063 void sched_destroy_group(struct task_group *tg)
10064 {
10065 unsigned long flags;
10066 int i;
10067
10068 spin_lock_irqsave(&task_group_lock, flags);
10069 for_each_possible_cpu(i) {
10070 unregister_fair_sched_group(tg, i);
10071 unregister_rt_sched_group(tg, i);
10072 }
10073 list_del_rcu(&tg->list);
10074 list_del_rcu(&tg->siblings);
10075 spin_unlock_irqrestore(&task_group_lock, flags);
10076
10077 /* wait for possible concurrent references to cfs_rqs complete */
10078 call_rcu(&tg->rcu, free_sched_group_rcu);
10079 }
10080
10081 /* change task's runqueue when it moves between groups.
10082 * The caller of this function should have put the task in its new group
10083 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
10084 * reflect its new group.
10085 */
10086 void sched_move_task(struct task_struct *tsk)
10087 {
10088 int on_rq, running;
10089 unsigned long flags;
10090 struct rq *rq;
10091
10092 rq = task_rq_lock(tsk, &flags);
10093
10094 update_rq_clock(rq);
10095
10096 running = task_current(rq, tsk);
10097 on_rq = tsk->se.on_rq;
10098
10099 if (on_rq)
10100 dequeue_task(rq, tsk, 0);
10101 if (unlikely(running))
10102 tsk->sched_class->put_prev_task(rq, tsk);
10103
10104 set_task_rq(tsk, task_cpu(tsk));
10105
10106 #ifdef CONFIG_FAIR_GROUP_SCHED
10107 if (tsk->sched_class->moved_group)
10108 tsk->sched_class->moved_group(tsk, on_rq);
10109 #endif
10110
10111 if (unlikely(running))
10112 tsk->sched_class->set_curr_task(rq);
10113 if (on_rq)
10114 enqueue_task(rq, tsk, 0);
10115
10116 task_rq_unlock(rq, &flags);
10117 }
10118 #endif /* CONFIG_GROUP_SCHED */
10119
10120 #ifdef CONFIG_FAIR_GROUP_SCHED
10121 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
10122 {
10123 struct cfs_rq *cfs_rq = se->cfs_rq;
10124 int on_rq;
10125
10126 on_rq = se->on_rq;
10127 if (on_rq)
10128 dequeue_entity(cfs_rq, se, 0);
10129
10130 se->load.weight = shares;
10131 se->load.inv_weight = 0;
10132
10133 if (on_rq)
10134 enqueue_entity(cfs_rq, se, 0);
10135 }
10136
10137 static void set_se_shares(struct sched_entity *se, unsigned long shares)
10138 {
10139 struct cfs_rq *cfs_rq = se->cfs_rq;
10140 struct rq *rq = cfs_rq->rq;
10141 unsigned long flags;
10142
10143 raw_spin_lock_irqsave(&rq->lock, flags);
10144 __set_se_shares(se, shares);
10145 raw_spin_unlock_irqrestore(&rq->lock, flags);
10146 }
10147
10148 static DEFINE_MUTEX(shares_mutex);
10149
10150 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
10151 {
10152 int i;
10153 unsigned long flags;
10154
10155 /*
10156 * We can't change the weight of the root cgroup.
10157 */
10158 if (!tg->se[0])
10159 return -EINVAL;
10160
10161 if (shares < MIN_SHARES)
10162 shares = MIN_SHARES;
10163 else if (shares > MAX_SHARES)
10164 shares = MAX_SHARES;
10165
10166 mutex_lock(&shares_mutex);
10167 if (tg->shares == shares)
10168 goto done;
10169
10170 spin_lock_irqsave(&task_group_lock, flags);
10171 for_each_possible_cpu(i)
10172 unregister_fair_sched_group(tg, i);
10173 list_del_rcu(&tg->siblings);
10174 spin_unlock_irqrestore(&task_group_lock, flags);
10175
10176 /* wait for any ongoing reference to this group to finish */
10177 synchronize_sched();
10178
10179 /*
10180 * Now we are free to modify the group's share on each cpu
10181 * w/o tripping rebalance_share or load_balance_fair.
10182 */
10183 tg->shares = shares;
10184 for_each_possible_cpu(i) {
10185 /*
10186 * force a rebalance
10187 */
10188 cfs_rq_set_shares(tg->cfs_rq[i], 0);
10189 set_se_shares(tg->se[i], shares);
10190 }
10191
10192 /*
10193 * Enable load balance activity on this group, by inserting it back on
10194 * each cpu's rq->leaf_cfs_rq_list.
10195 */
10196 spin_lock_irqsave(&task_group_lock, flags);
10197 for_each_possible_cpu(i)
10198 register_fair_sched_group(tg, i);
10199 list_add_rcu(&tg->siblings, &tg->parent->children);
10200 spin_unlock_irqrestore(&task_group_lock, flags);
10201 done:
10202 mutex_unlock(&shares_mutex);
10203 return 0;
10204 }
10205
10206 unsigned long sched_group_shares(struct task_group *tg)
10207 {
10208 return tg->shares;
10209 }
10210 #endif
10211
10212 #ifdef CONFIG_RT_GROUP_SCHED
10213 /*
10214 * Ensure that the real time constraints are schedulable.
10215 */
10216 static DEFINE_MUTEX(rt_constraints_mutex);
10217
10218 static unsigned long to_ratio(u64 period, u64 runtime)
10219 {
10220 if (runtime == RUNTIME_INF)
10221 return 1ULL << 20;
10222
10223 return div64_u64(runtime << 20, period);
10224 }
10225
10226 /* Must be called with tasklist_lock held */
10227 static inline int tg_has_rt_tasks(struct task_group *tg)
10228 {
10229 struct task_struct *g, *p;
10230
10231 do_each_thread(g, p) {
10232 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
10233 return 1;
10234 } while_each_thread(g, p);
10235
10236 return 0;
10237 }
10238
10239 struct rt_schedulable_data {
10240 struct task_group *tg;
10241 u64 rt_period;
10242 u64 rt_runtime;
10243 };
10244
10245 static int tg_schedulable(struct task_group *tg, void *data)
10246 {
10247 struct rt_schedulable_data *d = data;
10248 struct task_group *child;
10249 unsigned long total, sum = 0;
10250 u64 period, runtime;
10251
10252 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10253 runtime = tg->rt_bandwidth.rt_runtime;
10254
10255 if (tg == d->tg) {
10256 period = d->rt_period;
10257 runtime = d->rt_runtime;
10258 }
10259
10260 #ifdef CONFIG_USER_SCHED
10261 if (tg == &root_task_group) {
10262 period = global_rt_period();
10263 runtime = global_rt_runtime();
10264 }
10265 #endif
10266
10267 /*
10268 * Cannot have more runtime than the period.
10269 */
10270 if (runtime > period && runtime != RUNTIME_INF)
10271 return -EINVAL;
10272
10273 /*
10274 * Ensure we don't starve existing RT tasks.
10275 */
10276 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
10277 return -EBUSY;
10278
10279 total = to_ratio(period, runtime);
10280
10281 /*
10282 * Nobody can have more than the global setting allows.
10283 */
10284 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
10285 return -EINVAL;
10286
10287 /*
10288 * The sum of our children's runtime should not exceed our own.
10289 */
10290 list_for_each_entry_rcu(child, &tg->children, siblings) {
10291 period = ktime_to_ns(child->rt_bandwidth.rt_period);
10292 runtime = child->rt_bandwidth.rt_runtime;
10293
10294 if (child == d->tg) {
10295 period = d->rt_period;
10296 runtime = d->rt_runtime;
10297 }
10298
10299 sum += to_ratio(period, runtime);
10300 }
10301
10302 if (sum > total)
10303 return -EINVAL;
10304
10305 return 0;
10306 }
10307
10308 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
10309 {
10310 struct rt_schedulable_data data = {
10311 .tg = tg,
10312 .rt_period = period,
10313 .rt_runtime = runtime,
10314 };
10315
10316 return walk_tg_tree(tg_schedulable, tg_nop, &data);
10317 }
10318
10319 static int tg_set_bandwidth(struct task_group *tg,
10320 u64 rt_period, u64 rt_runtime)
10321 {
10322 int i, err = 0;
10323
10324 mutex_lock(&rt_constraints_mutex);
10325 read_lock(&tasklist_lock);
10326 err = __rt_schedulable(tg, rt_period, rt_runtime);
10327 if (err)
10328 goto unlock;
10329
10330 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10331 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10332 tg->rt_bandwidth.rt_runtime = rt_runtime;
10333
10334 for_each_possible_cpu(i) {
10335 struct rt_rq *rt_rq = tg->rt_rq[i];
10336
10337 raw_spin_lock(&rt_rq->rt_runtime_lock);
10338 rt_rq->rt_runtime = rt_runtime;
10339 raw_spin_unlock(&rt_rq->rt_runtime_lock);
10340 }
10341 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10342 unlock:
10343 read_unlock(&tasklist_lock);
10344 mutex_unlock(&rt_constraints_mutex);
10345
10346 return err;
10347 }
10348
10349 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10350 {
10351 u64 rt_runtime, rt_period;
10352
10353 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10354 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10355 if (rt_runtime_us < 0)
10356 rt_runtime = RUNTIME_INF;
10357
10358 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10359 }
10360
10361 long sched_group_rt_runtime(struct task_group *tg)
10362 {
10363 u64 rt_runtime_us;
10364
10365 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
10366 return -1;
10367
10368 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
10369 do_div(rt_runtime_us, NSEC_PER_USEC);
10370 return rt_runtime_us;
10371 }
10372
10373 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10374 {
10375 u64 rt_runtime, rt_period;
10376
10377 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10378 rt_runtime = tg->rt_bandwidth.rt_runtime;
10379
10380 if (rt_period == 0)
10381 return -EINVAL;
10382
10383 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10384 }
10385
10386 long sched_group_rt_period(struct task_group *tg)
10387 {
10388 u64 rt_period_us;
10389
10390 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10391 do_div(rt_period_us, NSEC_PER_USEC);
10392 return rt_period_us;
10393 }
10394
10395 static int sched_rt_global_constraints(void)
10396 {
10397 u64 runtime, period;
10398 int ret = 0;
10399
10400 if (sysctl_sched_rt_period <= 0)
10401 return -EINVAL;
10402
10403 runtime = global_rt_runtime();
10404 period = global_rt_period();
10405
10406 /*
10407 * Sanity check on the sysctl variables.
10408 */
10409 if (runtime > period && runtime != RUNTIME_INF)
10410 return -EINVAL;
10411
10412 mutex_lock(&rt_constraints_mutex);
10413 read_lock(&tasklist_lock);
10414 ret = __rt_schedulable(NULL, 0, 0);
10415 read_unlock(&tasklist_lock);
10416 mutex_unlock(&rt_constraints_mutex);
10417
10418 return ret;
10419 }
10420
10421 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10422 {
10423 /* Don't accept realtime tasks when there is no way for them to run */
10424 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10425 return 0;
10426
10427 return 1;
10428 }
10429
10430 #else /* !CONFIG_RT_GROUP_SCHED */
10431 static int sched_rt_global_constraints(void)
10432 {
10433 unsigned long flags;
10434 int i;
10435
10436 if (sysctl_sched_rt_period <= 0)
10437 return -EINVAL;
10438
10439 /*
10440 * There's always some RT tasks in the root group
10441 * -- migration, kstopmachine etc..
10442 */
10443 if (sysctl_sched_rt_runtime == 0)
10444 return -EBUSY;
10445
10446 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10447 for_each_possible_cpu(i) {
10448 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10449
10450 raw_spin_lock(&rt_rq->rt_runtime_lock);
10451 rt_rq->rt_runtime = global_rt_runtime();
10452 raw_spin_unlock(&rt_rq->rt_runtime_lock);
10453 }
10454 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10455
10456 return 0;
10457 }
10458 #endif /* CONFIG_RT_GROUP_SCHED */
10459
10460 int sched_rt_handler(struct ctl_table *table, int write,
10461 void __user *buffer, size_t *lenp,
10462 loff_t *ppos)
10463 {
10464 int ret;
10465 int old_period, old_runtime;
10466 static DEFINE_MUTEX(mutex);
10467
10468 mutex_lock(&mutex);
10469 old_period = sysctl_sched_rt_period;
10470 old_runtime = sysctl_sched_rt_runtime;
10471
10472 ret = proc_dointvec(table, write, buffer, lenp, ppos);
10473
10474 if (!ret && write) {
10475 ret = sched_rt_global_constraints();
10476 if (ret) {
10477 sysctl_sched_rt_period = old_period;
10478 sysctl_sched_rt_runtime = old_runtime;
10479 } else {
10480 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10481 def_rt_bandwidth.rt_period =
10482 ns_to_ktime(global_rt_period());
10483 }
10484 }
10485 mutex_unlock(&mutex);
10486
10487 return ret;
10488 }
10489
10490 #ifdef CONFIG_CGROUP_SCHED
10491
10492 /* return corresponding task_group object of a cgroup */
10493 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
10494 {
10495 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10496 struct task_group, css);
10497 }
10498
10499 static struct cgroup_subsys_state *
10500 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
10501 {
10502 struct task_group *tg, *parent;
10503
10504 if (!cgrp->parent) {
10505 /* This is early initialization for the top cgroup */
10506 return &init_task_group.css;
10507 }
10508
10509 parent = cgroup_tg(cgrp->parent);
10510 tg = sched_create_group(parent);
10511 if (IS_ERR(tg))
10512 return ERR_PTR(-ENOMEM);
10513
10514 return &tg->css;
10515 }
10516
10517 static void
10518 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10519 {
10520 struct task_group *tg = cgroup_tg(cgrp);
10521
10522 sched_destroy_group(tg);
10523 }
10524
10525 static int
10526 cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
10527 {
10528 #ifdef CONFIG_RT_GROUP_SCHED
10529 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
10530 return -EINVAL;
10531 #else
10532 /* We don't support RT-tasks being in separate groups */
10533 if (tsk->sched_class != &fair_sched_class)
10534 return -EINVAL;
10535 #endif
10536 return 0;
10537 }
10538
10539 static int
10540 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10541 struct task_struct *tsk, bool threadgroup)
10542 {
10543 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
10544 if (retval)
10545 return retval;
10546 if (threadgroup) {
10547 struct task_struct *c;
10548 rcu_read_lock();
10549 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10550 retval = cpu_cgroup_can_attach_task(cgrp, c);
10551 if (retval) {
10552 rcu_read_unlock();
10553 return retval;
10554 }
10555 }
10556 rcu_read_unlock();
10557 }
10558 return 0;
10559 }
10560
10561 static void
10562 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10563 struct cgroup *old_cont, struct task_struct *tsk,
10564 bool threadgroup)
10565 {
10566 sched_move_task(tsk);
10567 if (threadgroup) {
10568 struct task_struct *c;
10569 rcu_read_lock();
10570 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10571 sched_move_task(c);
10572 }
10573 rcu_read_unlock();
10574 }
10575 }
10576
10577 #ifdef CONFIG_FAIR_GROUP_SCHED
10578 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
10579 u64 shareval)
10580 {
10581 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
10582 }
10583
10584 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
10585 {
10586 struct task_group *tg = cgroup_tg(cgrp);
10587
10588 return (u64) tg->shares;
10589 }
10590 #endif /* CONFIG_FAIR_GROUP_SCHED */
10591
10592 #ifdef CONFIG_RT_GROUP_SCHED
10593 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
10594 s64 val)
10595 {
10596 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
10597 }
10598
10599 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
10600 {
10601 return sched_group_rt_runtime(cgroup_tg(cgrp));
10602 }
10603
10604 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10605 u64 rt_period_us)
10606 {
10607 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10608 }
10609
10610 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10611 {
10612 return sched_group_rt_period(cgroup_tg(cgrp));
10613 }
10614 #endif /* CONFIG_RT_GROUP_SCHED */
10615
10616 static struct cftype cpu_files[] = {
10617 #ifdef CONFIG_FAIR_GROUP_SCHED
10618 {
10619 .name = "shares",
10620 .read_u64 = cpu_shares_read_u64,
10621 .write_u64 = cpu_shares_write_u64,
10622 },
10623 #endif
10624 #ifdef CONFIG_RT_GROUP_SCHED
10625 {
10626 .name = "rt_runtime_us",
10627 .read_s64 = cpu_rt_runtime_read,
10628 .write_s64 = cpu_rt_runtime_write,
10629 },
10630 {
10631 .name = "rt_period_us",
10632 .read_u64 = cpu_rt_period_read_uint,
10633 .write_u64 = cpu_rt_period_write_uint,
10634 },
10635 #endif
10636 };
10637
10638 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10639 {
10640 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
10641 }
10642
10643 struct cgroup_subsys cpu_cgroup_subsys = {
10644 .name = "cpu",
10645 .create = cpu_cgroup_create,
10646 .destroy = cpu_cgroup_destroy,
10647 .can_attach = cpu_cgroup_can_attach,
10648 .attach = cpu_cgroup_attach,
10649 .populate = cpu_cgroup_populate,
10650 .subsys_id = cpu_cgroup_subsys_id,
10651 .early_init = 1,
10652 };
10653
10654 #endif /* CONFIG_CGROUP_SCHED */
10655
10656 #ifdef CONFIG_CGROUP_CPUACCT
10657
10658 /*
10659 * CPU accounting code for task groups.
10660 *
10661 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10662 * (balbir@in.ibm.com).
10663 */
10664
10665 /* track cpu usage of a group of tasks and its child groups */
10666 struct cpuacct {
10667 struct cgroup_subsys_state css;
10668 /* cpuusage holds pointer to a u64-type object on every cpu */
10669 u64 *cpuusage;
10670 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
10671 struct cpuacct *parent;
10672 };
10673
10674 struct cgroup_subsys cpuacct_subsys;
10675
10676 /* return cpu accounting group corresponding to this container */
10677 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
10678 {
10679 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
10680 struct cpuacct, css);
10681 }
10682
10683 /* return cpu accounting group to which this task belongs */
10684 static inline struct cpuacct *task_ca(struct task_struct *tsk)
10685 {
10686 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10687 struct cpuacct, css);
10688 }
10689
10690 /* create a new cpu accounting group */
10691 static struct cgroup_subsys_state *cpuacct_create(
10692 struct cgroup_subsys *ss, struct cgroup *cgrp)
10693 {
10694 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
10695 int i;
10696
10697 if (!ca)
10698 goto out;
10699
10700 ca->cpuusage = alloc_percpu(u64);
10701 if (!ca->cpuusage)
10702 goto out_free_ca;
10703
10704 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10705 if (percpu_counter_init(&ca->cpustat[i], 0))
10706 goto out_free_counters;
10707
10708 if (cgrp->parent)
10709 ca->parent = cgroup_ca(cgrp->parent);
10710
10711 return &ca->css;
10712
10713 out_free_counters:
10714 while (--i >= 0)
10715 percpu_counter_destroy(&ca->cpustat[i]);
10716 free_percpu(ca->cpuusage);
10717 out_free_ca:
10718 kfree(ca);
10719 out:
10720 return ERR_PTR(-ENOMEM);
10721 }
10722
10723 /* destroy an existing cpu accounting group */
10724 static void
10725 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10726 {
10727 struct cpuacct *ca = cgroup_ca(cgrp);
10728 int i;
10729
10730 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10731 percpu_counter_destroy(&ca->cpustat[i]);
10732 free_percpu(ca->cpuusage);
10733 kfree(ca);
10734 }
10735
10736 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10737 {
10738 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10739 u64 data;
10740
10741 #ifndef CONFIG_64BIT
10742 /*
10743 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10744 */
10745 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
10746 data = *cpuusage;
10747 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
10748 #else
10749 data = *cpuusage;
10750 #endif
10751
10752 return data;
10753 }
10754
10755 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10756 {
10757 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10758
10759 #ifndef CONFIG_64BIT
10760 /*
10761 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10762 */
10763 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
10764 *cpuusage = val;
10765 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
10766 #else
10767 *cpuusage = val;
10768 #endif
10769 }
10770
10771 /* return total cpu usage (in nanoseconds) of a group */
10772 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10773 {
10774 struct cpuacct *ca = cgroup_ca(cgrp);
10775 u64 totalcpuusage = 0;
10776 int i;
10777
10778 for_each_present_cpu(i)
10779 totalcpuusage += cpuacct_cpuusage_read(ca, i);
10780
10781 return totalcpuusage;
10782 }
10783
10784 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10785 u64 reset)
10786 {
10787 struct cpuacct *ca = cgroup_ca(cgrp);
10788 int err = 0;
10789 int i;
10790
10791 if (reset) {
10792 err = -EINVAL;
10793 goto out;
10794 }
10795
10796 for_each_present_cpu(i)
10797 cpuacct_cpuusage_write(ca, i, 0);
10798
10799 out:
10800 return err;
10801 }
10802
10803 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10804 struct seq_file *m)
10805 {
10806 struct cpuacct *ca = cgroup_ca(cgroup);
10807 u64 percpu;
10808 int i;
10809
10810 for_each_present_cpu(i) {
10811 percpu = cpuacct_cpuusage_read(ca, i);
10812 seq_printf(m, "%llu ", (unsigned long long) percpu);
10813 }
10814 seq_printf(m, "\n");
10815 return 0;
10816 }
10817
10818 static const char *cpuacct_stat_desc[] = {
10819 [CPUACCT_STAT_USER] = "user",
10820 [CPUACCT_STAT_SYSTEM] = "system",
10821 };
10822
10823 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10824 struct cgroup_map_cb *cb)
10825 {
10826 struct cpuacct *ca = cgroup_ca(cgrp);
10827 int i;
10828
10829 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10830 s64 val = percpu_counter_read(&ca->cpustat[i]);
10831 val = cputime64_to_clock_t(val);
10832 cb->fill(cb, cpuacct_stat_desc[i], val);
10833 }
10834 return 0;
10835 }
10836
10837 static struct cftype files[] = {
10838 {
10839 .name = "usage",
10840 .read_u64 = cpuusage_read,
10841 .write_u64 = cpuusage_write,
10842 },
10843 {
10844 .name = "usage_percpu",
10845 .read_seq_string = cpuacct_percpu_seq_read,
10846 },
10847 {
10848 .name = "stat",
10849 .read_map = cpuacct_stats_show,
10850 },
10851 };
10852
10853 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10854 {
10855 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10856 }
10857
10858 /*
10859 * charge this task's execution time to its accounting group.
10860 *
10861 * called with rq->lock held.
10862 */
10863 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10864 {
10865 struct cpuacct *ca;
10866 int cpu;
10867
10868 if (unlikely(!cpuacct_subsys.active))
10869 return;
10870
10871 cpu = task_cpu(tsk);
10872
10873 rcu_read_lock();
10874
10875 ca = task_ca(tsk);
10876
10877 for (; ca; ca = ca->parent) {
10878 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10879 *cpuusage += cputime;
10880 }
10881
10882 rcu_read_unlock();
10883 }
10884
10885 /*
10886 * Charge the system/user time to the task's accounting group.
10887 */
10888 static void cpuacct_update_stats(struct task_struct *tsk,
10889 enum cpuacct_stat_index idx, cputime_t val)
10890 {
10891 struct cpuacct *ca;
10892
10893 if (unlikely(!cpuacct_subsys.active))
10894 return;
10895
10896 rcu_read_lock();
10897 ca = task_ca(tsk);
10898
10899 do {
10900 percpu_counter_add(&ca->cpustat[idx], val);
10901 ca = ca->parent;
10902 } while (ca);
10903 rcu_read_unlock();
10904 }
10905
10906 struct cgroup_subsys cpuacct_subsys = {
10907 .name = "cpuacct",
10908 .create = cpuacct_create,
10909 .destroy = cpuacct_destroy,
10910 .populate = cpuacct_populate,
10911 .subsys_id = cpuacct_subsys_id,
10912 };
10913 #endif /* CONFIG_CGROUP_CPUACCT */
10914
10915 #ifndef CONFIG_SMP
10916
10917 int rcu_expedited_torture_stats(char *page)
10918 {
10919 return 0;
10920 }
10921 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10922
10923 void synchronize_sched_expedited(void)
10924 {
10925 }
10926 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10927
10928 #else /* #ifndef CONFIG_SMP */
10929
10930 static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
10931 static DEFINE_MUTEX(rcu_sched_expedited_mutex);
10932
10933 #define RCU_EXPEDITED_STATE_POST -2
10934 #define RCU_EXPEDITED_STATE_IDLE -1
10935
10936 static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10937
10938 int rcu_expedited_torture_stats(char *page)
10939 {
10940 int cnt = 0;
10941 int cpu;
10942
10943 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
10944 for_each_online_cpu(cpu) {
10945 cnt += sprintf(&page[cnt], " %d:%d",
10946 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
10947 }
10948 cnt += sprintf(&page[cnt], "\n");
10949 return cnt;
10950 }
10951 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10952
10953 static long synchronize_sched_expedited_count;
10954
10955 /*
10956 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
10957 * approach to force grace period to end quickly. This consumes
10958 * significant time on all CPUs, and is thus not recommended for
10959 * any sort of common-case code.
10960 *
10961 * Note that it is illegal to call this function while holding any
10962 * lock that is acquired by a CPU-hotplug notifier. Failing to
10963 * observe this restriction will result in deadlock.
10964 */
10965 void synchronize_sched_expedited(void)
10966 {
10967 int cpu;
10968 unsigned long flags;
10969 bool need_full_sync = 0;
10970 struct rq *rq;
10971 struct migration_req *req;
10972 long snap;
10973 int trycount = 0;
10974
10975 smp_mb(); /* ensure prior mod happens before capturing snap. */
10976 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
10977 get_online_cpus();
10978 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
10979 put_online_cpus();
10980 if (trycount++ < 10)
10981 udelay(trycount * num_online_cpus());
10982 else {
10983 synchronize_sched();
10984 return;
10985 }
10986 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
10987 smp_mb(); /* ensure test happens before caller kfree */
10988 return;
10989 }
10990 get_online_cpus();
10991 }
10992 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
10993 for_each_online_cpu(cpu) {
10994 rq = cpu_rq(cpu);
10995 req = &per_cpu(rcu_migration_req, cpu);
10996 init_completion(&req->done);
10997 req->task = NULL;
10998 req->dest_cpu = RCU_MIGRATION_NEED_QS;
10999 raw_spin_lock_irqsave(&rq->lock, flags);
11000 list_add(&req->list, &rq->migration_queue);
11001 raw_spin_unlock_irqrestore(&rq->lock, flags);
11002 wake_up_process(rq->migration_thread);
11003 }
11004 for_each_online_cpu(cpu) {
11005 rcu_expedited_state = cpu;
11006 req = &per_cpu(rcu_migration_req, cpu);
11007 rq = cpu_rq(cpu);
11008 wait_for_completion(&req->done);
11009 raw_spin_lock_irqsave(&rq->lock, flags);
11010 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
11011 need_full_sync = 1;
11012 req->dest_cpu = RCU_MIGRATION_IDLE;
11013 raw_spin_unlock_irqrestore(&rq->lock, flags);
11014 }
11015 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
11016 synchronize_sched_expedited_count++;
11017 mutex_unlock(&rcu_sched_expedited_mutex);
11018 put_online_cpus();
11019 if (need_full_sync)
11020 synchronize_sched();
11021 }
11022 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
11023
11024 #endif /* #else #ifndef CONFIG_SMP */
This page took 0.309288 seconds and 6 git commands to generate.